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Introduction (en Français)

Cette thèse concerne le développement d’outils fondamentaux basés sur la
théorie de la démonstration structurelle pour traiter les langages formels pour
la représentation de la démonstration. L’objectif est d’améliorer la communi-
cation de documents mathématiques formels d’origines différentes, produits
soit par des humains avec l’aide de logiciels, soit produits uniquement par des
logiciels. Par fondamentaux, nous entendons que nous cherchons à faire le
moins d’engagement possible envers une certaine vision philosophique dans
les concepts que nous introduisons, ce qui nous permettra de capturer plus
de formes de raisonnement dans notre cadre. Nous élucidons certaines de nos
opinions sur le sujet et présentons brièvement les résultats présentés dans cette
thèse.

Le tournant linguistique. La logique en tant que champ d’étude se situe à la
croisée des chemins de lamathématique, de la philosophie et de l’informatique.
Elle concerne, à sa base, l’analyse des éléments fondamentaux qui constituent
les éléments de discours dans les trois disciplines. Une telle attention aux élé-
ments de base de leur discours est particulièrement importante lorsqu’on con-
sidère la tendance notoire à l’obscurantisme de nombreux praticiens de ces
domaines.

Ce que nous entendons par logique de nos jours est cependant le résultat
de certains changements dramatiques survenus au cours du XIXe siècle. Tout
d’abord, la mathématisation des principes logiques par Boole a posé les bases
pour la logique mathématique, où pour la première fois l’objet d’étude de la
logique avait une présentation de leur propre droit ainsi que des méthodes
mathématiques puissantes pour raisonner à leur sujet. Ensuite, le développe-
ment du langage plus riche de la logique propositionnelle par Frege [Fre80]
est à l’origine de ce qui est devenu connu sous le nom de ”tournant linguis-
tique” dans l’histoire de la philosophie. Frege est parvenu à la conclusion que
pour discuter de la pensée, il fallait discuter du sens des propositions. Cela
est dû au fait qu’il n’y a peu de sens à analyser le sens des mots et des con-
cepts en isolation, et c’est seulement dans le contexte des propositions que la
question a du sens. Le rôle de la logique est donc central, car la logique est
l’étude des propositions et de leurs significations. Ces vues ont révolutionné la
philosophie occidentale au XXe siècle, et ont causé ce qui ressemble presque à
un schisme entre l’école analytique, se conformant à cette attention à la logique
et au langage, et la tradition continentale.

Logicisme et formalisme L’objectif principal de Frege était d’étudier le sens
des entités mathématiques, dans le but de donner une explication purement
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fondée sur la logique pour l’ensemble des mathématiques. Dans ce processus,
Frege a entamé de féroces débats avec Russell et Hilbert. Ce dernier, cepen-
dant, a discuté de la nature purement logique des mathématiques et a pro-
posé en alternative la ”méthode finie”, qui suppose l’existence d’entités ex-
tralogiques primitives que nous pouvons représenter dans la pensée; une col-
lection d’opérations sûres et finies est alors autorisée sur ces entités. Le célèbre
etmalheureux programmedeHilbert était de sécuriser la consistance de toutes
les mathématiques sur ces méthodes.

Ce qui a déterminé le sort malheureux du programme de Hilbert est la dé-
couverte des théorèmes d’incomplétude de Gödel, qui ont déclaré l’ de prou-
ver la consistance de l’arithmétique par des méthodes finies. Bien qu’il puisse
être discuté en détail si cela a réellement été la fin pour le programme de
Hilbert, il est certain que cela a convaincu beaucoup que la sécurisation des
fondements des mathématiques n’était pas possible, et donc que l’activité fas-
tidieuse demathématiques formelles que Frege et Russell avaient initiée n’était
finalement pas si importante.

Il sera peut-être suffisant de citer le travail de Bourbaki, une tentative de
construire les mathématiques à partir de zéro. Malgré la renommée de ce
projet, il semble en lisant leur travail que Bourbaki a ignoré la plupart de ces
développements en logique, y compris le théorème d’incomplétude de Gödel
lui-même. Le membre de Bourbaki, Dieudonné, a si peu pensé à la logique
mathématique que, notamment en 1980, il a déclaré : ”Si tout ce que les logi-
ciens ont fait après 1925 disparaissait, on ne remarquerait même pas”. Même
sans recourir à de telles positions extrêmes, après l’échec du programme de
Hilbert, l’intérêt des mathématiciens pour les mathématiques formelles et la
métamathématique est resté minimal.

Formalisation et formalisme Lorsque le débat sur le formalisme en mathé-
matiques a ralenti, la question a été repoussée par l’informatique. La formali-
sationmathématique aidée par ordinateur a commencé à devenir une possibil-
ité concrète, et en 1976, le premier grand-échelle expérience (bien que menée
par une seule personne) a été effectuée avec la formalisation d’un livre sur
l’analyse mathématique dans le système Automath. Quelques années aupar-
avant, Hoare avait proposé une fondation logique pour la vérification de pro-
grammes, conduisant à l’idée que les programmes informatiques pouvaient
être vérifiés pour la correction par des machines.

Ce n’est qu’à la fin des années 80 que plusieurs systèmes commencent à
apparaître et que des processus plus importants peuvent être réalisés en col-
laboration. Vers ce moment, le manifeste influent QED [Boy94] présente un
plan pour le développement d’un grand corps de mathématiques formelle-
ment vérifiés. Dans celui-ci, l’auteur aborde dans une série de réponses aux ob-
jections possibles, la première étant: quelle fondation logique devrions-nous
choisir? L’auteur fournit deux réponses, la première assez déflationnaire (”on
peut souvent transférer presque toutes les techniques développées dans une logique à
une logique ultérieure, mieux”) et la seconde beaucoup plus subjective:

Ce sont des controverses en Philosophie des Mathématiques. Qui
s’en soucie? La très grande majorité des mathématiciens contem-
porains croient qu’il n’y a pas de doutes quant à ce que signifie
qu’une preuve soit correcte.
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Ce qui manque dans cette réponse, c’est le fait que le choix des fondements
pour un système informatique détermine non seulement l’expressivité (math-
ématique) de l’outil, mais aussi la structure de ses arguments et leur présenta-
tion. En rejetant la question, un point crucial pour la communication formelle
de la preuve est également rejeté. Alors que les mathématiciens travaillant
souvent ignorent la question des fondements car ils peuvent lire des travaux
indépendamment des fondements dans lesquels ils tombent, ce n’est pas le
cas pour les mathématiques informatisées : ici, le fondement choisi est directe-
ment reflété dans le formalisme, et pour savoir qu’une preuve est correcte, il est
nécessaire d’exécuter le bon morceau de logiciel. À titre d’exemple, le prou-
veur de théorème Lean est en train de publier sa version 4, qui ne sera pas
compatible avec la plupart des développements réalisés dans ce même sys-
tème jusqu’à présent.

Dans une section ultérieure du manifeste, il y a une discussion plus mod-
érée des fondements logiques, et comporte des observations que nous sommes
très d’accord : parmi celles-ci, l’auteur identifie le piège de la recherche d’une
seule logique idéale qui devrait sous-tendre tout développement et pousse
l’idée que de nombreuses fondations devraient coexister, en soulignant com-
ment il est important que ces fondations différentes puissent être facilement
implémentées et que l’une puisse servir de base à l’autre.

Cependant, il semble que au fil du temps, ces observations aient été lues
pour le pire, et à la lumière de la négligence philosophique suggérée par la
citation. Dans une évaluation de 20 ans de QED [HUW16], nous lisons que
“la balkanisation a encore empiré”. Une communication fructueuse entre dif-
férents assistants à la preuve semble être loin.

Certificats de Preuve Fondamentaux Le programme de recherche des Cer-
tificats de Preuve Fondamentaux (FPC en abrégé) propose une réponse aux
problèmes de communication de preuves formelles en se concentrant sur l’idée
que le démontreur devrait être capable d’expliquer son langage de preuve
dans un langage minimal. À son tour, ce langage minimal est celui où le sens
de la preuve est connu pour être clair, mais aucun choix particulier n’est fait sur
ce qu’il devrait être. Le dispositif technique permettant cela est celui du Cal-
cul des Séquents, une représentation de preuves introduite par Gentzen dans
le contexte de l’analyse finitiste de Hilbert. Nous avons un esprit similaire en
fondant le sens de l’inférence sur le sens atomique des règles du calcul; en plus
de cela, des résultats récents sur ce qu’on appelle le calcul des séquents axés
permettent une façon claire de composer ces opérations atomiques en opéra-
tions complexes, de telle sorte que le fonctionnement de ces plus grandes règles
peut correspondre extérieurement à celui d’un démonstrateur de théorèmes,
tandis que son sens est toujours fourni par le système fondamental.

Le credo est que ces petits fondements robustes fournissent à la fois les
outils théoriques et techniques pour construire des explications formelles de
langages logiques plus riches.

Contenu de la thèse Le cadre des Certificats de Preuve Fondamentaux a été
présenté, à son introduction, comme capable d’exprimer des preuves formelles
présentées dans une variété de systèmes formels [Chi15]. Subséquemment,
il a été montré comment il pourrait gérer les preuves provenant de démon-



6 Contents

strateurs de théorèmes automatisés [Bla17]. Dans cette thèse, nous proposons
deux nouvelles avancées, ainsi que des résultats théoriques visant à augmenter
l’expressivité du cadre:

• Dans le chapter 1, nous fournissons un aperçu sur la théorie des preuves
et la certification de preuves. Nous introduisons les systèmes de preuves
axés et définissons formellement le cadre des Certificats de preuve fon-
damentaux.

• Dans le chapter 2, nous considérons deux transformations courantes qui
sont utilisées comme étapes de prétraitement dans la démonstration au-
tomatique de théorèmes, la Skolemisation et la transformation de Tseitin.
Nousmontrons comment elles peuvent être expliquées commedes opéra-
tions sur le calcul de séquents axé, obtenant ainsi unemanière de les cap-
turer à l’intérieur des Certificats de preuve fondamentaux.

• Dans le chapter 3, nous considérons des systèmes de logique linéaire et
classique étendus avec un opérateur de point fixe, et nous obtenons cer-
taines propriétés pour eux qui seront utiles pour la description de for-
mats de certificats pour l’arithmétique.

• Dans le chapter 4, nous présentons deux implémentations prototypes
de composants basés sur les Certificats de preuve fondamentaux dans
l’assistant de preuve Coq. Le premier prototype permet d’importer des
preuves externes dans Coq, et le second de générer des contre-exemples
pour des conjectures.

Publications La chapter 2 est basée sur [CMM19], la chapter 3 est basée sur
les brouillons [MM22a; MM22b] et la chapter 4 est basée sur [MMM20] et les
soumissions à des ateliers [BMM20a; BMM20b].

Code Le code discuté dans la thèse se trouve dans plusieurs dépôts

• Le code général pour FPC mentionné dans la chapter 1 peut être trouvé
à https://github.com/manmatteo/thesis-code

• Le développement principal est constitué de deux tactiques intégrant un
contrôleur pour FPC dans un Coq. Le code pour eux ainsi que quelques
exemples peuvent être trouvés à https://github.com/proofcert/fpc-elpi

• Le code pour la procédure de déskolémisation décrite dans la chapter 2
se trouve à https://github.com/chaudhuri/proofcert-deskolemize

https://github.com/manmatteo/thesis-code
https://github.com/proofcert/fpc-elpi
https://github.com/chaudhuri/proofcert-deskolemize


Introduction

This thesis concerns the development of foundational tools based on structural
proof theory to treat formal languages for proof representation. The aim is to
improve the communication of formal mathematical documents of different
origins, either produced by humans through the assistance of software or pro-
duced by software alone. By foundational we mean that we strive to make as
minimal a commitment as possible to a certain philosophical view in the con-
cepts we introduce; this will allow us to capture more flavours of reasoning
in our framework. We elucidate some of our views on the subject and briefly
introduce the results presented in this thesis.

The linguistic turn. Logic as a field of study lies at the crossroads of mathe-
matics, philosophy, and computer science. It concerns, at its core, the analysis
of the fundamental elements that constitute the bits and pieces of the discourse
in the three disciplines. Such an attention to the basic elements of their dis-
course is particularly important when one considers the notorious tendency
to obscurantism of many of the practitioners in these fields.

What we mean by logic nowadays, however, is the result of some dramatic
changes occurred over the course of the 19th century. First, the mathematiza-
tion of logical principles by Boole laid the ground formathematical logic, where
for the first time the object of study of logic had a presentation of their own
right as well as powerful mathematical methods to reason about them. Then,
the development of the richer language of predicate logic by Frege [Fre80] is
at the root of what became known as the linguistic turn in the history of phi-
losophy. Frege came to the conclusion that in order to discuss thought, one
had to discuss the meaning of propositions. This is because there is little point
in analyzing the meaning of words and concepts in isolation, and it is only in
the context of propositions that the question makes sense. The role of logic is
therefore a central one, since logic is the study of propositions and their mean-
ings. These views revolutionized western philosophy in the 20th century, and
caused what has almost been a schism between the analytic school, abiding to
this attention to logic and language, and the continental tradition.

Logicism and formalism Themain aim of Frege, however, was that of study-
ing the meaning of the mathematical entities, with the aim of giving for the
entire of mathematics an explanation that was purely grounded on logic. In
this process, Frege embarked in fierce debates with Russell and Hilbert. The
former, after discovering the well-known paradox in Frege’s system, worked
on a logicist system of his own. The latter, on the other side, disagreed on the
purely logical nature of mathematics and proposed as an alternative the fini-
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tary method, which presupposes the existence of primitive, extralogical entities
that we can represent in thought; then, a collection of secure, finitary operation
is allowed on these entities. Hilbert’s celebrated and ill-fated program was to
secure the consistency of all mathematics based on these methods.

What determined the ill fate of Hilbert’s program is the discovery of the
incompleteness theorems by Gödel, which stated the impossibility of proving
the consistency of arithmetic byfinitarymethods. Although it can be discussed
at length whether this was really the end for Hilbert’s program, what is certain
is that it convinced many that there was no hope to secure the foundations of
mathematics, and thus the tedious activity of formal mathematics that Frege
and Russell had pioneered was in the end not so important.

Perhaps it will be sufficient to cite the work of Bourbaki, an attempt to build
mathematics from the ground up. Despite the fame of this project, it seems
from reading their work that Bourbaki ignored most of these developments
in logic, including Gödel’s incompleteness theorem itself. Bourbaki member
Dieudonné thought so little of mathematical logic that he notably said in 1980
“Were everything logicians did after 1925 to disappear, one wouldn’t even no-
tice”. Even without resorting to such extreme positions, after the failure of
Hilbert’s program the interest of mathematicians in formal mathematics and
metamathematics remained minimal.

Formalization and formalism As the debate over formalism in mathematics
slowed down, thematter was to be picked up by computer science. Computer-
aidedmathematical formalization started becoming a concrete possibility, and
in 1976 the first large-scale experiment (although done by a single person)was
carried out with the formalization of a book on mathematical analysis within
the Automath system. A few years before, Hoare had proposed a logical foun-
dation for program verification, leading to the idea that computer programs
could be checked for correctness by machines.

It is not until the end of the 80s that multiple systems start to appear, and
larger, collaborative processes appear to be possible. Around this time, the
influential QED Manifesto [Boy94] presents a plan for the development of a
large body of formally verified mathematics. In it, the author embraces in a
series of answers to possible objections, the first of which is: which logical
foundations should we choose? The author provides two answers, the first
quite deflationary (“one can often transfer almost all of the technique developed in
one logic to a subsequent, better logic”) and the second much more opinionated:

These are controversies in the Philosophy of Mathematics. Who
cares? The overwhelming majority of contemporary mathemati-
cians believe that there are no doubts about what it means for a
proof to be correct.

What is missing in this answer is the fact that the choice of foundations for
a software system determines not only the (mathematical) expressiveness of
the tool, but also the structure of its arguments and their presentation. By dis-
missing the question, a crucial point for formal proof communication is also
dismissed. Whereas working mathematicians often ignore the matter of foun-
dations since they can read works independently of the foundations they hap-
pen into, this is not the case for computer-formalizedmathematics: herewhich



Contents 9

foundation one choses is directly reflected on the formalism, and in order to
know that a proof is correct one needs to execute the correct piece of software.
Just as an example, the Lean theorem prover is now in the process of releasing
its version 4, which will not be compatible with most developments carried
out in that same system so far.

In a latter section themanifesto contains amilder discussion of logical foun-
dations, and contains observations that we very much agree with: among
these, the author identifies the trap of looking for a single, ideal logic that
should underlay any development, and pushes the idea that many founda-
tions should coexist, stressing the importance that these different foundation
can be easily implemented and are such that one can form the basis for the
other.

However, it seems that over the course of time these observations have been
read for the worse, and in the light of the philosophical neglection suggested
by the quote. In a 20-year evaluation of QED [HUW16], we read that “Balka-
nization got even worse”. Fruitful communication between different proof as-
sistants seems to be far away.

Foundational ProofCertificates The research programof Foundational Proof
Certificates (FPC for short) proposes an answer to the issues in the communi-
cation of formal proofs that is centered around the idea that the prover should
be able to explain their proof language in a minimal language. In turn, this
minimal language is one where the meaning of proof is known to be clear,
but no particular choices are made on what it should be. The technical de-
vice allowing this is that of the Sequent Calculus, a representation of proofs
introduced by Gentzen in the context of Hilbert’s finitist analysis. We have a
similar spirit in grounding the meaning of inference on the atomic meaning of
the rules of the calculus; in addition to this, recent results on what is known as
focused sequent calculus allow a clear way to compose these atomic operations
into complex ones, such that the operation of these bigger rules can externally
match that of a theorem prover, while its meaning is still provided by the foun-
dational system.

The tenet is that these small, robust foundations provide the meaning-
theoretical and technical tools to build formal explanations of richer logical
languages.

Contents of the thesis The framework of Foundational Proof Certificates has
been presented, at its introduction, as capable of expressing proof evidence
presented in a variety of formal systems [Chi15]. Subsequently, it has been
shown how it could handle proof evidence coming from automated theorem
provers [Bla17]. In this thesis we propose two new advances, as well as some
theoretical results aimed at increasing the expressivity of the framework:

• In chapter 1we provide some background on proof theory and proof cer-
tification. We introduce focused proof systems, and we define formally
the framework of Foundational Proof Certificates.

• In chapter 2 we consider two common transformations that are used as
preprocessing steps in automated theorem proving, Skolemization and
the Tseitin transformation. We show how they can be explained in terms
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of operations on the focused sequent calculus, thus obtaining a way to
capture them inside Foundational Proof Certificates.

• In chapter 3 we consider systems of linear and classical logic extended
with a fixed-point operator, and we obtain some properties for them that
will be useful for the description of certificate formats for arithmetic.

• In chapter 4 we present two prototype implementations of components
based on Foundational Proof Certificates into the Coq proof assistant.
The first prototype allows importing external proof evidence in Coq, and
the second to generate counterexamples for conjectures.

Publications Chapter 2 is based on [CMM19], chapter 3 is based on thedrafts
[MM22a; MM22b] chapter 4 is based on [MMM20] and the workshop submis-
sions [BMM20a; BMM20b].

Code The code discussed in the thesis is located in several repositories

• The general code for FPC that is mentioned in chapter 1 can be found at
https://github.com/manmatteo/thesis-code

• Themain development are two tactics embedding a checker for FPC into
a Coq. The code for them along with some examples can be found at
https://github.com/proofcert/fpc-elpi

• The code for the deskolemization procedure described in chapter 2 is at
https://github.com/chaudhuri/proofcert-deskolemize

https://github.com/manmatteo/thesis-code
https://github.com/proofcert/fpc-elpi
https://github.com/chaudhuri/proofcert-deskolemize


Chapter 1

Background material

The developments of this thesis are carried out in the setting of structural proof
theory. Our reference framework is the research on Foundational Proof Cer-
tificates, as proposed in [CMR17]. Structural proof theory is centered on the
study of tree-like presentations of proofs and their properties, and Founda-
tional Proof Certificate propose a refinement of these structure as a protocol
for the communication between simple checkers buildingGentzen-style proofs
and formal proofs in a range of different proof structures.

This chapter presents the background technical material on logic and proof
certification, outlines our view on these matters and introduces the technolo-
gies used for the implementations of tools and prototypes related to this work.

1.1 Structural proof theory

1.1.1 Syntax of formulas
We will use the λ-tree approach to syntax [MP99], where we use Church’s
Simply Typed λ calculus [Chu40] to represent the formulas. We consider two
basic types ι and o, and buildmore complex types with the→ right-associative
constructor.

Definition 1. Terms and types are built according to this grammar:

Types: α, β := ι| o| α → β

Terms: t, u := x | λx. t | t u

The terms are related to types by means of the typing relation, denoted by the
semicolon and built with the following rules:

Σ, x : α ` t : β

Σ ` λx. t : α → β
abs

Σ ` t : α → β Σ ` u : α

Σ ` t u : β
app

Σ, x : α ` x : α
ax

The type o is the type of formulas. We extend the system with a number of
typed logical constants, that we will write infix:

> : o ⊥ : o

∧ : o → o → o ∨ : o → o → o ⊃: o → o → o

11
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As usual we write the connectives infix, and we use capital letters for atomic
formulas. An additional unary constant ¬ : o → o could be included, but we
treat it instead ¬A as a definition for A ⊃ ⊥. Atomic formulas and negated
atomic formulas will be called literals. Finally, we have the typed quantifiers:

∀ : (ι → o) → o ∃ : (ι → o) → o

Finally, we assume the existence of a countable set of constants of type o that
are the propositional constants, or propositional atoms, and of a countable set
of constants of types τ → o, where τ is an arbitrary type not containing o that
are the predicate constants. We denote propositional atoms with p, q, r . . . and
predicate constants with P,Q,R . . . . A term P t̄ of type o is a first-order atom.

The typing of the quantifiersmakes it so that the binders usually associated
with them are handled in the sameway as term-level binders by the λ notation.
For example, a universally quantified formula is written in this notation as
∀ (λx. Px). However, since there is no ambiguity, wewill use the usual concrete
syntax ∀x. Px. Additionally, substitution is handled by β-reduction: given a
formula ∀x.A we define [t/x]A, the substitution of t for x in its body, as the
β-normal form of (λx. P ) t.

1.1.2 Sequent calculus
The basic toolkit of structural proof theory builds on the works of Gentzen
[Gen35], and in particular his systems of Natural Deduction and Sequent Cal-
culus. Natural Deduction and its reading through the Curry-Howard isomor-
phism are usually presented as the underlying proof system for many proof
assistants (such as Coq, Matita). However, we find Natural Deduction to be
too opinionated as a proof formalism, and thus unsuitable as a foundational
language. In particular, it lacks explicit primitives to handle the information
in the context, and its handling of classical logic can feel unnatural. On the
other side, Sequent Calculus provides a clear encoding of both classical and
intuitionistic logic, and Natural Deduction proofs can be easily expressed in
a fragment of the Sequent Calculus. The finer rules available in the Sequent
Calculus make it more usable as a foundation for syntax. We shall dwell more
on these arguments later, but let’s now move on to the technical definitions.

The basic objects of the system are sequents of the form Σ;Γ ` ∆ where
both Γ and ∆ are multisets of formulas, and Σ is a set of typing judgements.
A sequent is meant to represent a certain point in an inference, its left-hand
side is called antecedent and contains the premises, and the right-hand side
is called consequent and contains the conclusions. Asserting that a sequent is
valid amounts to saying that from asserting all the premises, we can correctly
draw one of the conclusions. The way to show that a sequent is valid is by
subsequent application of proof rules.

The rules for LK, the sequent calculus for first order classical logic, are
shown in fig. 1.1. We call the rules in the first two groups introduction rules,
and this is traditionally motivated by their top-down reading, where we see
one connective being introduced on one side for each rule. Introduction rules
are named after the side they act on and the connective they introduce, for
example ∧-left and so on. The rules in the Identity group handle the overall
organization of the deduction: the init rule concludes the reasoning, while the
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Right introduction rules

Σ;Γ⊢∆, A Σ;Γ⊢∆, B

Σ;Γ⊢∆, A ∧B

Σ;Γ⊢∆, A,B

Σ;Γ⊢∆, A ∨B

Σ;Γ, A⊢∆, B

Σ;Γ⊢∆, A ⊃ B

Σ;Γ⊢∆
Σ;Γ⊢∆,⊥ Σ;Γ⊢∆,⊤

Σ⊢ t : ι Σ;Γ⊢∆, [t/x]A

Σ;Γ⊢∆, ∃x.A
Σ, y : ι; Γ⊢∆, [y/x]A

Σ;Γ⊢∆, ∀x.A
y /∈ Σ

Left introduction rules

Σ;Γ, A,B⊢∆
Σ;Γ, A ∧B⊢∆

Σ;Γ, A⊢∆ Σ;Γ, B⊢∆
Σ;Γ, A ∨B⊢∆

Σ;Γ⊢∆, A Σ;Γ, B⊢∆
Σ;Γ, A ⊃ B⊢∆

Σ;Γ⊢∆
Σ;Γ,⊤⊢∆ Σ;Γ,⊥⊢∆

Σ, y : ι; Γ, [y/x]A⊢∆
Σ;Γ, ∃x.A⊢∆

Σ ⊢ t : ι Γ, [t/x]A⊢∆
Σ;Γ, ∀x.A⊢∆

y /∈ Σ

Identity rules

Σ;Γ⊢∆, A Σ;Γ, A⊢∆
Σ;Γ⊢∆ cut

Σ;Γ, A⊢∆, A
init

Structural rules
Σ;Γ⊢∆, A,A

Σ;Γ⊢∆, A
Contraction-R

Σ;Γ⊢∆, A

Σ;Γ⊢∆
Weakening-R

Σ;Γ, A,A⊢∆
Σ;Γ, A⊢∆ Contraction-L

Σ;Γ⊢∆
Σ;Γ, A⊢∆

Weakening-L

Figure 1.1: Rules of LK

cut rule handles the integration of lemmas inside a proof. The rules in the final
group are called structural rules and are used to handle the context.

What led Gentzen into investigating the LK calculus was the search for nor-
mal formdeductions in the calculus ofNatural Deduction. Instead of the intro-
duction rules for both sides of a sequent, Natural Deduction consists of pairs
of introduction and elimination rules for each connective, such as:

Γ, A ` B

Γ ` A ⊃ B
⊃ -intro Γ ` A ⊃ B Γ ` A

Γ ` B
⊃ -elim

These rules can be combined in a way that presents a detour in the argument
when an introduction rule for a connective is immediately followed by an elim-
ination rule on that same occurrence of a connective. Gentzen’s program to
prove that any theorem is provable without detours went through for intu-
itionistic logic, but didn’t work for classical logic. That’s what led Gentzen to
develop sequent calculi as a framework where it was possible to encode prov-
ability in natural deduction; the generalization to having multiple formulas
on the right-hand side and the discovery of LK allowed him to study classical
logic. The normalization theorem then becomes what has since been known
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as Gentzen’s Hauptsatz: a formula is provable in LK if and only if it is prov-
able without the use of the Cut rule. As a consequence of this, by inspection
on the rules of LK one gets that every formula can be proved by only appeal-
ing to subformulas, and this in turn means that no detour is present in the
corresponding natural deduction proof. A sequent calculus for intuitionistic
logic is obtained by restricting the consequent to only contain one formula: the
cut elimination theorem goes through for this system with minimal modifica-
tions, and provides therefore another normalization theorem for intuitionistic
natural deduction.

By inspecting the rules of LK, we quickly realize that there is some redun-
dancy: left introduction rules for ∧,∨, ∀, ∃ can be seen as being the DeMorgan
dual of right introduction rules. We see for example that when treating the
formula (A ∧B) ⊃ C on the right-hand side with the ⊃-right, the subformula
A ∧B is moved to the left-hand side, while C remains on the right-hand side.
Then the conjunction is treated on the left side with a rule that resembles the
rule for disjunction on the right. Conversely, if the formula (A ∧ B) ⊃ C is in
the antecedent of a sequent, the⊃-left rule originates a premise whereC is left
in the antecedent, and another premise where A ∧ B has been moved to the
right, where it is going to be treated by an analogue of the∨-left rule. Thus, the
rules for⊃ have themain effect of moving their left subformula to the opposite
side of the sequent. Recall moreover that we defined negation of a formula F
as F ⊃ ⊥: when this is treated by the⊃ rules, the⊥ is immediately eliminated
by the relevant ⊥ rules, and the only effect is that of moving F to the opposite
side of the sequent.

We can make this observations concrete by including an orthogonality op-
erator ·⊥, that embodies the idea that formulas in the left-hand side can equiv-
alently stay on the same side provided they are treated with the rule of their
dual connective. Then, we get rid of the ⊃ logical constant and replace it with
a combination of ∨ and ·⊥. We keep the ¬ constant around to denote the or-
thogonal of an atom. This is also well known as the Negation Normal Form,
since it can be seen as pushing ¬ inside formulas by repeatedly applying the
De Morgan dualities, so that it is only applied to atoms.

Definition 2 (Negation Normal Form). The Negation Normal Form of a for-
mula is

nnf(A) = A if A is atomic, ⊥ or > nnf(A ⊃ B) = A⊥ ∨ nnf(B)

nnf(A ∧B) = nnf(A) ∧ nnf(B) nnf(A ∨B) = nnf(A) ∨ nnf(B)

nnf(∀x.A) = ∀x. nnf(A) nnf(∃x.A) = ∃x. nnf(A)

The operator ·⊥ is defined as follows:

(A)⊥ = ¬A if A is atomic

(A ∧B)⊥ = A⊥ ∨B⊥ (A ∨B)⊥ = A⊥ ∧B⊥ (A ⊃ B)⊥ = nnf(A) ∧B⊥

>⊥ = ⊥ ⊥⊥ = > (∀x.A)⊥ = ∃x.A⊥ (∃x.A)⊥ = ∀x.A⊥

When Γ is a multiset, Γ⊥ and nnf(Γ) are obtained by applying ·⊥ or nnf
to all formulas in Γ.
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Logical rules

Σ⊢Γ, A Σ⊢Γ, B
Σ⊢Γ, A ∧B

Σ⊢Γ, A,B

Σ⊢Γ, A ∨B

Σ⊢Γ
Σ⊢Γ,⊥ Σ⊢Γ,⊤

Σ⊢ t : ι Σ⊢Γ, [t/x]A
Σ⊢Γ, ∃x.A

Σ, y : ι⊢Γ, [y/x]A
Σ⊢Γ, ∀x.A

y /∈ Σ

Identity rules

Σ⊢Γ, A Σ⊢Γ, A⊥

Σ⊢Γ cut
Σ⊢Γ, A⊥, A

init

Structural rules
Σ⊢Γ, A,A

Σ⊢Γ, A contraction
Σ⊢Γ

Σ⊢Γ, A
weakening

Figure 1.2: Single sided version of LK

Figure 1.2 contains the single sided version of LK, where there is no antecedent.
It is easy to see that a sequent Γ ` ∆ is provable in the two-sided version of LK
if and only if ` Γ⊥, nnf(∆) is provable in the single sided version.

1.1.3 Implementations in Higher Order Logic Programming
The implementation of the tools and prototypes related to the current work
has been carried out using the λProlog language, and more specifically the
ELPI implementation [Dun+15]. The foundation of λProlog is the theory of
Hereditary Harrop Formulas in intuitionistic Higher Order logic. The main
extensions with respect to traditional logic programming are

• Terms are built with λ-tree syntax and are typedwith a type system anal-
ogous to the one of definition 1, where atoms are those terms of a specific
type (prop in ELPI).

• Clauses can contain implications in their bodies with the ⇒ operator,
which are interpreted as dynamic, scoped extensions of the program.

• Similarly, clauses can contain universal quantifications in their bodies
with the pi operator, which are interpreted as dynamic, scoped extension
of the program’s signature.

The mechanisms of dynamic scoped extensions provide a uniform treatment
for binders, and binders in the syntax are easily treated by means of binders
in the program. A complete reference for λProlog is the book [MN12], while
more examples and tutorials can be found in the webpage of the ELPI project.

In listing 1.1 a type checker for the typing relation defined in definition 1
is implemented. The implementation technique is standard in Higher Order
Logic Programming. The first step is defining the types tm, ty to represent
terms and types of the object language, and by introducing the constructors
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for them according to the grammar we provided. The abs constructor corre-
sponds to the λ term constructor, and handles the binder: this is obtained by
typing abs with a higher order type, that takes a tm abstraction and returns
a tm. Thanks to this, we don’t need to include variables with an explicit con-
structor.

The next code block introduces the constants for terms and types, and then
we move on to the definition and implementation of the typing relation of.
The two clauses for app and abs directly correspond to the rule of definition 1.
The clause for abs, in particular, exploits the mechanism of scoped extensions
to encode the extension to the context Σ, by introducing a new term x together
with its typing judgement andmaking it available to the subsequent call to the
type checking predicate.

Listing 1.1: λProlog implementation of the typechecker for definition 1

kind ty, tm type.
type (−→) ty→ ty→ ty.
type abs (tm→ tm)→ tm.
type app tm→ tm→ tm.

type i,o ty.
type arr tm.
type all tm.

type of tm→ ty→ prop.

of arr (o−→o−→o).
of all ((i−→o)−→o).

of (app T U) B :-
of T (A−→B),
of U A.

of (abs T) (A−→B) :-
pi x\ of x A⇒
of (T x) B.

We can test the program in ELPI with a query like:
?- pi p\ of p (i−→o)⇒

pi q\ of q (i−→o)⇒
of (app all (abs x\ app (app arr (app p x)) (app q x))) o.

This query extends the program’s signaturewith two constants p and q and
the assertions that their types are i −→ o1, and then checks that the term
∀ (λx. Px → Qx) has type o. In the implemented prototypes we use a simpler
encoding of formulas, where we directly use a λProlog type as the type of
formulas, instead of having a type ty of object types, and a λProlog term o that
is the type of propositions in the encoded system. In this way typeckeching
will be performed by the type checker of ELPI.

1.2 Polarities, focusing and proof certificates

Structural proof theory is a well-studied discipline that precisely serves the
task of giving an account of formal provability. However, proofs from auto-
mated theorem provers come in many formats and employ specialized opti-
mizations and transformations. There’s often a big gap between them and the
languages of proof checkers and proof assistants. We present now some more
recent advancements in proof theory that lead to a communication protocol

1This could have equivalently been done by extending the body of the program by including
the declarations type p tm. type q tm. as well as the assertions for of.
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where what one means by a proof is left to the proof author, who gets in ex-
change automated tools for checking the proof.

1.2.1 Focusing the sequent calculus
The advantages of the rules of LK due to their locality are easily seen. How-
ever, it is not nearly as intuitive how they can serve as a foundation for proof
search and proof reconstruction tasks. There are some arguments that are usu-
ally raised against the idea that proofs in this formalism contain an adequate
amount of information:

1. Neither the single nor the double-sided sequents are amenable to a clear
explanation of logical inference, since there is in principle no particular
formula that is the site of the inference. Rather, the entire right-hand
side contains formulas that could in principle be part of the inference
but won’t necessarily be.

2. Contraction andweakening have no constraints, could happen anywhere
and multiple times. Their role is useful for expressiveness, but they lack
a meaning-theoretical interpretation.

3. Many rules can be permuted between each other. Consider for example

Σ`Γ, A,B,C Σ`Γ, A,B,D

Σ`Γ, A,B,C ∧D

Σ`Γ, A ∨B,C ∧D

Σ`Γ, A,B,C

Σ`Γ, A ∨B,C

Σ`Γ, A,B,D

Σ`Γ, A ∨B,D

Σ`Γ, A ∨B,C ∧D

Here the choice of which rule to use first is irrelevant. This is not always
the case, if we consider on the other side

Σ`Γ, At1, At2

Σ`Γ, At1, ∃x.A
Σ`Γ, ∃x.A, ∃x.A

Σ`Γ, ∃x.A

Σ`Γ, At1, At1

Σ`Γ, At1

Σ`Γ, ∃x.A

By reading the proof trees bottom-up, here the contraction rule has to be
used before the existential rule, if we want to be able to create the two
distinct instances for t1 and t2.

An additional problem comes from the analysis of cut elimination. Al-
though the study of proof reductions is not the center of this work, a major
source of concern about LK was the fact that the set of reductions given by
Gentzen for his Hauptsatz was not confluent, and thus choices made during
the simplification phase could lead to totally different arguments as result of
the transformation. The foundational status of sequent calculus was greatly
contested by these criticisms.

Several analyses in the beginning of the nineties, especially after Girard’s
Linear Logic [Gir87a], led to discoveries of a finer structure of the sequent cal-
culus. We can trace the origins of what became known as focused proof systems
to a few authors:
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• Uniform proofs [Mil+91] are a study on goal-directed proofs, that are
composed of an alternation of deterministic goal-reduction phase and a
non-deterministic phase of clause selection. They were introduced as a
proof-theoretic foundation for logic programming languages (and con-
stitute the foundation of λProlog).

• Andreoli’s work on focused proofs for linear logic [And92] introduced
the general notion of focused proof, and provided an analysis of full lin-
ear logic based on a system akin to uniform proofs.

• Herbelin’s LJT sequent calculus and λ̄ calculus [Her95] linked the ideas
of focusing to concepts in functional programming languages.

The first substantial realization behind the original works on focused proof
theory is thatwe should classify the rules of LK into invertible and non-invertible.
Rules of the first type are those where knowledge of the end sequent of the
inference guarantees knowledge of the premise sequent. This is contrasted by
non-invertible rules, where knowledge of the end sequent of the inference does
not suffice to guarantee knowledge of the premise sequent. Consider the two
inferences:

Σ`Γ, t : ι Σ`Γ, [t/x]A
Σ`Γ, ∃x.A

Σ`Γ, A,B

Σ`Γ, A ∨B

In the inference on the left, merely knowing ∃x.A is not enough to know that
it is t for which A holds. This additional knowledge was part of the inference
that allowed us to conclude ∃x.A. On the contrary, in the inference on the
right knowing that A ∨ B holds is enough to conclude that one of A,B holds
given Γ. Thus, the rule we gave for ∃ is not invertible, while the rule for ∨
is. When dealing with invertible rules, no choice has been made during the
inference: the focusing properties of proof systems show that these rules can
be chained, and their permutation is irrelevant. Conversely, whendealingwith
non-invertible rules, sequences of choices can be made in succession, so that
an entire sequence of choices can be undone if we are searching for a proof and
hit a dead end. Notice however that we could give non-invertible rules for ∨
as well:

Σ`Γ, A
Σ`Γ, A ∨B

Σ`Γ, B
Σ`Γ, A ∨B

In this version, information is needed to know from which one of the two dis-
juncts A ∨ B has been concluded. The early results on focusing showed that
rules of each category can be chained, so that the possible backtracking points
are greatly reduced.

The second substantial realization is the discovery of polarity. In addition
to classifying rules, we can classify formulas based on whether they are to be
inferred by an invertible or non-invertible rule. Consider formula occurrences
in the single-sided sequent calculus (or equivalently, as the consequent in a
dual sided sequent calculus):
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1. Formulas which are built from a connective that is introduced with a
non-invertible rule should be classified as positive. This captures the idea
that the meaning of the formula is given by its introduction rule.

2. Formulas which are built from a connective that is introduced with an
invertible rule should be classified as negative. This captures the idea
that the meaning of the formula is given by how we draw consequences
from it.

3. This same division also applies to atomic constants. The inference that
characterizes atoms is init, and thus we get that an atom is negative if we
can conclude something from knowing it, while it is positive if in order
to prove it we need to know it is among the premises.

Since the ∧ and ∨ connectives can be presented both with invertible and
non-invertible rules, they should be split into two different connectives that
we denote ∧+++ , ∨+++ and ∧−, ∨−. The quantifiers have a fix polarity, namely ∃ is posi-
tive while ∀ is negative. The intuitionistic implication has a negative polarity.
Atoms have an assigned polarity, but we only mention it at the meta-level.
Finally, the ·⊥ operator flips the polarity of the connectives. The concepts of
polarity and focusing phases proved fundamental in the study of functional
languages as well, where negative types are understood as computations and
positive types are understood as values [CH00; Zei], and different polarization
strategies can represent different evaluation strategies.

Ultimately focused calculi for classical and intuitionistic logics, akin to An-
dreoli’s calculus for linear logic, have been presented by Liang and Miller in
[LM09]. Their system LKF of focused, single sided classical logic is presented
in fig. 1.3, and is the system upon which our work is carried out. Sequents in
LKF extend those in LK, and come in two types: sequents of the formΣ`Γ ⇓ F
are called synchronous, those of the form Σ`Γ ⇑Θ are called asynchronous.
As before, Σ is a typing context and Γ is a multiset of formulas. We now call
Γ the storage area. The new additions are Θ, a list of formulas, and F , a select
formula which is said to be under focus.

The rules of LKF are divided into four blocks that are a refinement of the
blocks in fig. 1.2. Asynchronous rules treat asynchronous sequents, and are
invertible, while synchronous rules treat synchronous sequents and are non-
invertible. The system is fully focused: asynchronous rules continue decom-
posing the goals on the right of ⇑, until positive subformulas or literals are ex-
posed and moved to the storage area; then, the decide rule places one positive
formula under focus, and the branches in the synchronous phase continue de-
composing the formula until either they end by init, or a negative subformula
is found and a release reinstates the asynchronous phase.

Given a classical formula F , we call F̂ a polarization of F if it consists of F
where all the connectives have been replaced by polarized versions, andwhere
the atoms have polarity information (thus, there is an exponential amount of
possible polarizations). Then we have

Theorem 1 (Soundness and completeness). If F is a formula in negation normal
form and F̂ is any polarization of F , F is provable in LK if and only if F̂ is provable
in LKF.
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Asynchronous rules

Σ⊢Γ ⇑Θ, A Σ⊢Γ ⇑Θ, B

Σ⊢Γ ⇑Θ, A ∧− B Σ⊢Γ ⇑Θ, ⊤
−

Σ⊢Γ ⇑Θ, A,B

Σ⊢Γ ⇑Θ, A ∨− B

Σ⊢Γ ⇑Θ

Σ⊢Γ ⇑Θ, ⊥
−

Σ, y⊢Γ ⇑Θ, [y/x]A

Σ⊢Γ ⇑Θ, ∀x.A
y /∈ Σ

Synchronous rules

Σ⊢Γ ⇓A Σ⊢Γ ⇓B

Σ⊢Γ ⇓A ∧+++ B Σ⊢Γ ⇓ ⊤
+++

Σ⊢Γ ⇓A

Σ⊢Γ ⇓A ∨+++ B

Σ⊢Γ ⇓B

Σ⊢Γ ⇓A ∨+++ B

Σ⊢ t Σ⊢Γ ⇓ [t/x]A

Σ⊢Γ ⇓ ∃x.A

Identity rules

Σ⊢Γ,¬ p ⇓ p
init

Σ⊢Γ ⇑A Σ⊢Γ ⇑A⊥

Σ⊢Γ ⇑ · cut

Structural rules
Σ⊢Γ, R ⇑Θ

Σ⊢Γ ⇑R,Θ
store

Σ⊢Γ, P ⇓ P

Σ⊢Γ, P ⇑ · decide
Σ⊢Γ ⇑N

Σ⊢Γ ⇓N
release

In the store rule, R is a positive formula or a literal

Figure 1.3: Rules of LKF. Γ is a multiset of positive formulas or literals, and Θ
is a list of formulas.

At the opposite extremes of the focusing discipline we find the purely pos-
itive or purely negative polarizations. The former terminology is for formulas
whose connectives and atoms are all positive (and thus can’t contain ∀), while
the latter is all negative (and thus can’t contain ∃). Proofs of formulas of the
first kind will only use the storage for negated literals; since the only way to
end a proof is by having the complement of a stored literal under focus, they
will need to be steered through many decisions on ∨+++ rules and instantiations
on ∃ rules in order to find exactly the two opposite literals in each branch. On
the opposite, proofs of purely negative formulas proceed by decomposing the
subproof into lots of literals that are stored and only at the end a decide rule
can be used, on one of the stored literals for which its complementary has been
found.

If we restrict to propositional logic, we see that the same formula could
be polarized either fully negatively or fully positively. Then, if the formula
is provable, both polarizations are provable; however their proofs may look
completely different.

1.2.2 Foundational proof certificates
The focused sequent calculus for classical logic provides answers to all criti-
cisms that were brought out in subsection 1.2.1: now we have a notion of for-
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mula under focus that can explain inference; irrelevant rule permutations are
hidden by abstracting focused phases; contraction is precisely controlled by
means of finer structural rules; cut reductions become deterministic. More-
over, we already got a hint at how different polarizations can lead to proof
requiring different amounts of information: in general, performing an infer-
ence on a positive connective requires external information, while performing
an inference on a negative connective can be reconstructed automatically by
a proof checker. At the same time we are just refining Gentzen’s system, as
proofs in LK can be retrieved from proofs in LKF by simply ignoring the focus-
ing and polarity information. This provides a much better ground where to
anchor a formal semantics of proof languages.

The framework of Foundational Proof Certificates is centered around the di-
vision between a kernel and a client. The kernel implements a version of LKF
geared towards proof-search, that should be trusted and performs the proof
certification. The client provides a proof object, together with a description of
how it should be used to build a full proof. Since the asynchronous rules don’t
need external information in order to be performed by the kernel, the corre-
sponding external evidence just needs to be transformed so that it is suitable
to be dispatched to the premises (which might be two distinct branches); we
call these dispatchers clerks. In the case of the asynchronous rules, instead, the
kernel wishes to obtain information from the proof evidence. This information
can be seen as coming in three kinds:

1. In the ∨+++ rule, a left/right bit is needed in order to decide which disjunct
to choose.

2. In the ∃ rule, a well-formed term is needed in order to create an instance.

3. In the decide and init rules, an index is needed in order to know which
formula should be selected. This index should be assigned to the formula
in correspondence with the store rule.

The framework we are introducing is developed in the context of logic pro-
gramming. This programming paradigm is particularly well suited for the en-
coding of this kind of checkers, since the combination of unification and back-
tracking proof search make it easy to treat partial proof evidence: any of the
components specified above might be left out in an evidence, and the checker
will try its best to fill the gaps. Therefore, the natural consequence is to im-
plement the clerks and experts as relational specifications, denoting relations
between the proof evidence available in the end sequent of a rule application
and that which will be handed to the premises. The full system is built by
asking that at each inference the corresponding clerk or expert holds of the
available proof evidence. We call the system LKFa, for Augmented LKF, and
the full rules are presented in fig. 1.4

We fix the types cert of certificates, index of formula index and choice
of left/right choices. The sequents of LKFa have the forms Ξ;Σ`Γ ⇑Θ and
Ξ;Σ`Γ ⇓ F , where Σ, F and Θ are like in LKF, Ξ is a certificate, and Γ is now
an indexed storage, that is a multiset of pairs of the form i : F where i is an
index and F is a formula. The rules of LKFa mimic those of LKF, but add the
condition that the certificate satisfies the clerks and experts at each rule.



22 Chapter 1. Background material

Asynchronous rules

Ξ1; Σ⊢Γ ⇑A,Θ Ξ2; Σ⊢Γ ⇑B,Θ ∧c(Ξ0,Ξ1,Ξ2)

Ξ0; Σ⊢Γ ⇑A ∧− B,Θ

Ξ0; Σ⊢Γ ⇑ ⊤
−
,Θ

Ξ1; Σ⊢Γ ⇑A,B,Θ ∨c(Ξ0,Ξ1)

Ξ0; Σ⊢Γ ⇑A ∨− B,Θ

Ξ1; Σ⊢Γ ⇑Θ ⊥c(Ξ0,Ξ1)

Ξ0; Σ⊢Γ ⇑ ⊥
−
,Θ

(Ξ1 y); Σ, y : i⊢Γ ⇑ [y/x]A,Θ ∀c(Ξ0,Ξ1)

Ξ0; Σ⊢Γ ⇑ ∀x.A,Θ
y /∈ Σ

Synchronous rules

Ξ1; Σ⊢Γ ⇓A Ξ2; Σ⊢Γ ⇓B ∧e(Ξ0,Ξ1,Ξ2)

Ξ0; Σ⊢Γ ⇓A ∧+++ B

⊤e(Ξ0)

Ξ0; Σ⊢Γ ⇓ ⊤
+++

Ξ1; Σ⊢Γ ⇓Ai ∨e(Ξ0,Ξ1, i)

Ξ0; Σ⊢Γ ⇓A1 ∨+++ A2
i ∈ {1, 2}

Σ⊢ t : i Ξ1; Σ⊢Γ ⇓ [t/x]A ∃e(Ξ0,Ξ1, t)

Ξ0; Σ⊢Γ ⇓ ∃x.A

Identity rules

inite(Ξ0, l)

Ξ0; Σ⊢Γ, l:¬ p ⇓ p
init

Ξ1; Σ⊢Γ ⇑A Ξ2; Σ⊢Γ ⇑A⊥ cute(Ξ0,Ξ1,Ξ2, A)

Ξ0; Σ⊢Γ ⇑ · cut

Structural rules
Ξ1; Σ⊢Γ, l:P ⇓ P decidee(Ξ0,Ξ1, l)

Ξ0; Σ⊢Γ, l:P ⇑ · decide

Ξ1; Σ⊢Γ ⇑N releasee(Ξ0,Ξ1)

Ξ0; Σ⊢Γ ⇓N
release

Ξ1; Σ⊢Γ, l:R ⇑Θ storec(Ξ0,Ξ1, l)

Ξ0; Σ⊢Γ ⇑R,Θ
store

In the store rule, R is a positive formula or a literal

Figure 1.4: Rules of LKFa, an augmented version of LKF. Γ is a multiset of pairs
of the form l:R where l is an index and R is a positive formula or literal, and
Θ is a list of formulas.
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type dd int→ cert.
type indx index.
% The decide expert reduces the depth by one
decide_ke (dd D) (dd D') indx :- D > 0, D' is D - 1.
% All other clerks and experts thread through the certificate
andPos_ke (dd D) (dd D) (dd D).
andNeg_kc (dd D) (dd D) (dd D).
initial_ke (dd _D) indx.
orNeg_kc (dd D) (dd D).
orPos_ke (dd D) (dd D) _Dec.
all_kc (dd D) (x\ dd D).
false_kc (dd D) (dd D).
release_ke (dd D) (dd D).
some_ke (dd D) (dd D) _Term.
store_kc (dd D) (dd D) indx.
true_ke (dd _D).

Figure 1.5: The decide-depth FPC

1.2.3 Some examples of FPC definitions
Decide depth A very simple definition for an FPC is the one that simply
limits the number of bipoles that compose the proof: this is done by bounding
the number of decide rules on every branch of the proof. Since no polarization
is assumed, proofs thus bounded can vary wildly: if a negative polarization
is chosen for propositional classical logic, in particular, any formula can be
proven with just one usage of the decide rule, just below the initial rule at ev-
ery leaf. More than the actual size of the proof, decide depth limits the amount
of external guidance that the proof is allowed to take. A presentation of the
clerks and experts is given in fig. 1.5.

Resolution refutations A more interesting example, that we will use in sec-
tion 2.2 is the FPC for resolution refutations, presented in [CMR17] and ex-
tended in [Bla17].

Resolution is a method for building refutations of formulas that are in con-
junctive normal form, that is formulas of the form C1 ∧ . . . Cn where each of
the Ci (called a clause) is of the form L1 ∨ . . . Ln and each of the Li is a literal,
that is either an atom, a negated atom or ⊥.

Definition 3 (Resolution refutation). The resolution rule is:

L1 ∨ . . . Ln ∨ a O1 ∨ . . . On ∨ ¬a
L1 ∨ . . . Ln ∨O1 ∨ · · · ∨On

A resolution refutation for a formulaC1∧. . . Cn is built out of the following
three lists:

• The list of initial clauses C1, . . . Cn

• A subsequent list of clauses Cn+1, . . . Ck, where the clause ⊥ appears
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% Deduced clauses
type lemma int→ form→ o.
% Stored clauses
type idx int→ index.
% Stored literals
type lit index.
% Initial indexing
type start int→ list cert→

cert.
% List of resolution triples
kind triple type.
type rlist list triple→

cert.

% Extract index of new clause
type rlisti int→ list

triple→ cert.
% Resolvent triple
type resolve int→ int→ int

→ triple.
% Check resolution step
type dlist list int→ cert.
% End with initial
type rdone cert.
% End of left cut premise
type done cert.

Figure 1.6: Signature of the resolution FPC

• A list of triples 〈i, j, k〉, indicating that Ck has been obtained by the reso-
lution rule from Ci and Cj

From a model theoretic perspective refuting a set of clauses amounts to
showing that no model satisfies the set, and in many cases model-theoretic
reasoning is used (see [RV01]). However, most theorem provers can be in-
structed to output a trace in a format akin to that of definition 3.

In the single-sided calculus LKFa we can interpret the refutation of a clause
normal form formula C1 ∧ . . . ∧ Cn as a direct proof of the co-clause normal
form formulaC1

⊥∨. . .∨Cn
⊥, where each of the co-clausesCi

⊥ is a conjunction
of literals. Following the approach of [CMR17], the choice of polarization is
∧+++ for the conjunction and ∨− for the disjunction in the formula we prove: this
means that the disjunction between co-clauses is automatically decomposed,
while the conjunction that makes up the co-clauses requires naming that will
be used throughout the proof.

The signature for the FPC is in fig. 1.6. Indexes have three constructors: the
main one builds an index from an integer, and is meant to directly replay the
indexing of clauses in the refutation; the other two are used in the replication
of the resolution rule. Correspondingly, the code for the FPC in fig. 1.7 can
be divided into three zones: a starting zone that indexes the clauses, and two
other that are used to replicate the resolution rule.

The implementation of the clerks and experts is in fig. 1.7, and consists of
three phases: the first phase where the initial clauses of the goal formula are
indexed; a second phase where all subsequent resolution steps are translated
to cut inferences; a third phase where the left-hand sides of all resolution steps
are checked.

The constructor start gives rise to the following synthetic inference rule:

start (n + 1) R ` idx 1 : C1
⊥, . . . , (idx n) : Cn

⊥ ⇑ ·

start 1 R ` · ⇑ C1
⊥ ∨− . . . ∨− Cn

⊥

Since we chose the negative polarity for disjunction, this is forcefully used
right away. Once there is nothing left on the right-hand side of the arrow, we
can use either cut or decide. Since the certificate we have at the end of this
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synthetic rule is built with start, the only expert that can be used is cut: this
switches to the second certificate constructor, rlist, that directly manipulates
the trace of the resolution refutation given as triples:

dlist [i,j] ` Γ ⇑ Ck

rlist R ` Γ, idx k : Ck
⊥ ⇑ ·

rlisti k R ` Γ ⇑ Ck
⊥ store

start (n + 1) (resolve i j k :: R ) ` Γ ⇑ · cut

Thus begins the second phase, where all resolution steps are translated to
cuts, in a right-branching fashion. The index k for the newly built clause is
passed to the lemma predicate, which is provided by the user and should con-
tain the clause that is built by the resolution step; it is then also shipped to the
intermediate certificate constructor rlsti, so that the new co-clause is stored
at the right index. This continues until the list of triples is empty: at this point,
the resolution refutation has been completely processed, and a clause ⊥ must
have been encountered; therefore, a co-clause > is present in the sequent and
the decide expert non-deterministically looks for it so that the trueE expert
can conclude the proof.

The left-hand branch of each of these cut inferences is what is left to check
in the third phase. Here, we want to use the knowledge that clauses Ci and Cj

resolve to give clause Ck in order to build a proof of Ck in a context where the
co-clauses Ci

⊥ and Cj
⊥ are available. Since we chose to polarize conjunctions

positively in the co-clause, the clauses like Ck are built with the dual of ∧+++ and
are therefore negative disjunctions of literals. The code for the FPC allows the
blind decomposition of these disjunctions, and instructs the kernel to store all
the uncovered literals at a same address, resulting in the following:

dlist [j] ` Γ,Λ ⇓ a1 dlist [j] ` Γ,Λ ⇓ a2 dlist [j] ` Γ,Λ ⇓ a2

dlist [j] ` Γ, lit : L1, . . . , lit : Lq ⇓ C⊥
i

dlist [i,j] ` Γ, lit : L1, . . . , lit : Lq ⇑ ·
dlist [i,j] ` Γ ⇑ Ck

The certificate dlist [i,j] contains the indexes of the two co-clauses to
be resolved, among which decideE picks one nondeterministically, and leaves
the other in the resulting certificate. Say the expert picks i, resulting on a de-
cide on the co-clause which will be of the form Ci

⊥ = a1 ∧+++ a2∧3. Then, several
branches corresponding to the decomposition of ∧+++ are created. In each branch
the proof will be concluded either by immediately finding a complementary
stored literal arising from the decomposition ofCk, or by storing the literal un-
der focus and deciding on co-clauseCj

⊥ to finding the complementary literals
for the second co-clause.

1.2.4 Hosting calculi
Thedeclarative essence of Foundational ProofCertificates allows for a great va-
riety of proof formats that can be specified, and an equivalently great variety of
programming methodologies that can be used to encode them. For example,
the user can craft a modular specification where common preprocessing steps
that appear inside proofs are specified by means of simple macros or more
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orC (start Ct Certs) (start Ct Certs).
falseC (start Ct Certs) (start Ct Certs).
storeC (start Ct Certs) (start ’Ct Certs) (idx Ct) :-

inc Ct ’Ct.
cutE (start _ Certs) C1 C2 Cut :-

cutE (rlist Certs) C1 C2 Cut.

cutE (rlist (resolve I J K ::Certs))
(dlist [I,J]) (rlisti K Certs) Cut :-
lemma K Cut.

falseC (rlist Rs) (rlist Rs).
storeC (rlisti K Rs) (rlist Rs) (idx K).
decideE (rlist []) rdone (idx I).
trueE rdone.

% Left premise
allC (dlist L) (x\ dlist L).
orC (dlist L) (dlist L).
falseC (dlist L) (dlist L).
storeC (dlist L) (dlist L) lit.
decideE (dlist L) (dlist [J]) (idx I) :- L = [I,J] ; L =

[J,I].
decideE (dlist [I]) (dlist []) (idx I).
decideE (dlist L) (dlist []) lit :- L = [I] ; L = [].
initialE (dlist L) lit.
trueE (dlist _L).
andE (dlist L) (dlist L) (dlist L).
someE (dlist L) (dlist L) T.
releaseE (dlist L) (dlist L).

Figure 1.7: Implementation of the resolution FPC

complex subroutines. Thus, we can have certificates that are themselves inter-
preters for some domain-specific certificate format, that automatically benefits
of the soundness provided by the general framework. But what if we couple
this with a logical translation of another object logic inside the client logic?
Then what we obtain is a device that allows for a faithful encoding of proofs in
different user-provided systems on top of a kernel, unbeknownst to the kernel
itself.

This has been called hosting of kernels [Chi15; CIM16], and is based on
ideas that have been used in presentations of focused proof systems since their
inception [LM07].

The task of the client in these cases includes an additional step. First of
all, they must provide adequate meaning for the clerks and experts of the ob-
ject logic they wish to encode by composing the meaning of the kernel’s clerks
and experts. In addition to this, they must also provide a logical transforma-
tion from the object logic into the logic of the kernel. The fact that this logical
transformation preserves meaning is not checked by the kernel, but has to be
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taken care of by the user. Therefore, it lies out of the trusted zone. Some useful
examples of hosted systems are:

• The two-sided version of LKF can be reconstructed on top of LKFa by fol-
lowing the same argument that was presented in subsection 1.1.2. The
logical transformation here is the transformation to negation normal form
of definition 2. In the two-sided classical logic we have left-introduction
rules that have the dual role of right-introduction rules; every negative
connective has therefore an expert on the left, and every positive connec-
tive has a clerk on the left. The object logic encoding contains clerks and
experts for the ⊃ negative connective that keep track of the fact that the
proof evidence of the antecedent needs to be treated by the dual connec-
tive.

• Double negation embeddings of classical logic into intuitionistic logic
can be given an account based on polarity [CIM16; FO12]. This made it
possible to implement LKFa as a hosted kernel on top of the LJFa calculus
for intuitionistic logic.

1.3 Proof Certificates and syntactic foundation

So far we have argued for the foundational status of foundational proof cer-
tificates and focused proof theory mainly on the grounds of simplicity and
expressivity. More points have been made about this program, and more pro-
grams were built on similar concepts with a more distinctly foundational fla-
vor.

In thework of Nigam andMiller [NM10] the focused proof theory of linear
logic has been used as the metatheory for describing proof systems. Thanks to
this, they discovered that some proof systems (such as Natural Deduction and
the sequent calculus) can be described as making different meta-level choices
about polarization: that is, whether the antecedents and consequents of se-
quents are themselves to be treated as positive or negative entities, whether
they should be eagerly decomposed or only externally inspected. Henriksen
later showed that an intuitionistic focused metatheory already suffices for this
characterization[Hen10], and active research continues in this field, trying to
uniformly establish meta-theoretic results about proof systems expressed in a
focused metatheory.

The work of Nigam and Miller proposes three levels of adequacy when
discussing the encoding of proof systems:

• Relative completeness is established when the provable formulas in the
encoding are the same as in the codified system.

• Full completeness of proofs is establishedwhen the completed proofs are
in one-to-one correspondence.

• Full completeness of derivations requires in addition that open deriva-
tions (such as inference rules themselves) are also in one-to-one corre-
spondence.

The FPC framework does not require a focused meta-theory to be carried
out, and it does not target meta-theoretic results per se. However, it has first
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class handling of polarities, and it can be seen as achieving full completeness
since the user specification have a granularity that can be constrained enough
that it can mimic single rules. What handling open derivations means in this
context is still not fully explored; however, we had to take this into account
when designing the integration of FPC checkers into elaborators for proof as-
sistants. The nature of derivation in proof assistants is naturally that of being
incomplete, since for the most part of their development the user is working
on them; despite this, the usermight want to get access to external information
in the process of proving. This includes the cases where the user attempting to
prove something that turns out not to be provable, but asks an external prover
to solve a goal that happens to be solvable nonetheless. Or themore tricky case
where the incautious user is again attempting to prove a falsehood, and asks
for a counterexample (that is, a proof of the negation of their claim): then, it
would be much more useful if instead of discarding the current work the user
could interact with the counterproof in order to find the precise spot where
the argument is fallacious.

The search for a foundation of syntax by including partial derivation as first
class elements is reminiscent of the project of J.-Y. Girard (from the early works
on focusing [Gir91] to the work on Ludics [Gir01] up until the most recent
program of Transcendental Syntax [Gir17; Eng]). These projects start from
the realization that there is always some sort of circularity in the grounding of
logical systems, whereby when trying to explain inference one has to resort,
in some form or another, to a metatheoretic inference that is taken as granted.
The innovation that the project of Transcendental Syntax aims to bring, in par-
ticular, is also presented by a system of levels that partly relates to Miller and
Nigam’s. In Girard’s view, the levels are:

• Level -1 is the analysis of truth embodied by Tarskian Semantics. Here
truth is defined as ameta-level mathematical construction, and theorem-
hood is checked against it. If the test passes we are fine, however noth-
ing is known about distinct propositions except for the fact that they are
claimed to be true.

• Level -2 takes proof into account, and is exemplifiedby theCurry-Howard
view, the Brouwer-Heyting-Kolmogorov semantics for intuitionistic logic,
or realizability. A proof formalism is presented that has a particularly
good behavior, and meaning is rooted upon this formalism. Proof be-
come useful objects, and they are also used as computational objects.

• Level -3 is represented by the projects of Geometry of Interaction and
Ludics. The proof formalismdisappears and is replaced bymore abstract
constructions. In particular, constructions that are possibly not proofs
are allowed. These constructions come with a notion of interaction (that
is the precursor of the reductions of a cut elimination procedure), and
objects that can give rise to proofs are characterized by how they interact
with counter-proofs.

• Level -4 where the new Transcendental Syntax project is placed. The
need to reach this level is due to the fact that Level -3 does not provide
a finitary test for validity of a proof: in principle one would have to test
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a candidate proof-object with any possible counterproof. At this level,
instead, onewishes to find finite tests for validity of the pre-proof objects.
An example of this is the correctness criteria for Proof Nets in (fragments
of) Linear Logic. The main technical development that is being carried
out for this new project is stellar resolution [Eng].

It should be clear from the discussionwe had so far that the project of Foun-
dational Proof Certificates easily gives an account for concepts at least up until
Level -2. In particular, in chapter 2 we will present work that tries to free some
optimizations in automated theorem proving from being stuck at Level -1, and
in chapter 4we try to improve the situation of proof assistants being at Level -2.

The general program of FPC however aims at level -3, where a language
is provided for the generic representation of proofs, and interaction with a
(possibly incomplete) object of this language is possible. How and if FPCs
can be brought to level -4 is unclear: at the moment, since not even level -3 is
completed, the only test we have for a certificate is at level -2, that is the recon-
struction of a full proof. We believe this discussion to be relevant nonetheless,
given that the notions of focusing and polarity are central to both projects; ulti-
mately, one could say that Girard’s project aims at using these to rebuild logic
from inside out, while the FPC project aims at further refining the structures
of sequent calculus from outside in.

Another presentation of a proof-theoretic foundation that takes the views of
polarized logic at its core is the work of Zeilberger [Zei08]. Zeilberger revis-
its the pragmatist and verificationist meaning theories of Dummett [Dum93]
using the judgmental method of Martin-Löf [ML96]. Dummett proposed two
approaches to the foundations ofNaturalDeduction: in the verificationistmean-
ing theory the meaning of a connective is given by its introduction rule, while
its elimination rule of Natural Deduction is justified by it2; in the pragmatist
meaning theory the meaning of a connective is given by its elimination rule,
and the introduction rule is determined by it.

Zeilberger showed that the alternative views of pragmatist and verification-
ist meaning theories can be reconciled, and argues that this distinction is coin-
cident with the distinction between positive and negative polarities. A verifi-
cationist meaning theory serves to determine the meaning of positive connec-
tives, while a pragmatist theory serves to determine the meaning of negative
ones. Echoes of this exposition have been used in subsection 1.2.1 to introduce
the concepts of polarity. However, the foundational work of Zeilberger (as
well as its references in Dummett, Prawitz andMartin-Löf) is centered around
natural deduction, and inherits from that system some technical difficulties for
our scopes.

2This is a view that is also found in comments made by Gentzen [Gen35], and is held among
others by Prawitz [Pra06]





Chapter 2

Names for terms and subproofs

The format of FPC operates a clear separation into the information that is pro-
vided by the user and the part of deduction that an automated checker can
deal with in all cases. It enables also a finer distinction of the different kinds
of provided information, as well as their different structure and their interac-
tion with the proving process. In particular, we can note that experts need to
obtain three kinds of information:

• Bits for choices such as left or right in the ∨ rule

• Terms for the instantiation of quantifiers

• Indexes for the store, decide and initial rules

• Formulas to be introduced by the cut rule

The structure for the first kind of data is rapidly explained: the information to
be exchanged amounts to nothingmore than an indication onwhich premise to
choose; client and kernel should therefore agree on such a format that contains
two alternatives, and nothing more1. The treatment of formulas, on the other
side, is well explained by the theory of polarization. The two remainig kinds
of information, terms and indexes, can be explored further.

Terms make part of the language of first order logic; however, the client
need not use the same naming structures as the kernel. This is in particular
the case when automated theorem provers introduce new terms in order to in-
crease their performance. Indexes are a concept that derives from the analysis
of focused proof systems, and they are not present in standard presentations
of logic; however, they model a concept that is a natural part of the descrip-
tion of a deductive process that is the act of keeping track of the hypothesis
or goals that are either under analysis or postponed. Indexes provide a viable
tool to further understand the different ways by which knowledge is accessed
or made available. In this chapter, we will see in more detail how by a careful
analysis of these two structures we can recover a pure proof-theoretic under-
standing of two common optimization techniques in theorem proving.

1Nevertheless, the amount of information that a prover decides to share may vary consider-
ably: for example, the most recent draft for the Alethe format to be used by veriT and cvc5 omits
completely these bits and only records that a projection rule was used.

31
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2.1 Communicating terms

In addition to the logical constants, first order logic comes with two kinds of
non-logical symbols: predicate symbols and term (or function) symbols. The
structure of predicate symbols is rather clear: they are used to build the atoms
from which formulas are built, and this atom building process depends on
their arity. The way the atoms are then organized in formulas depends more
on our view on the logical symbols (for example, we have presented the λ-tree
syntax in section 1.1, but other choices could have been taken) rather than on
the predicate symbols themselves. The only addition we require to the com-
mon presentation of the syntax of predicate symbols in FPCs is that they are
to be divided into two categories, namely the positive and the negative.

The situation is slightly more complicated for term symbols. We can start
by observing that the usual presentation of first order terms as being built up
of function symbols and variables needs to be augmented with the notions of
free and bound variable, both of which depend on the particular occurrence of
the term. This induces the notions of scoping and dependency over the vari-
ables that occur in a formula, and common tasks in theorem proving such as
unification need to deal with them in a way that can lead to different imple-
mentations of the same concepts. Tightly related to this distinction is the ne-
cessity of identifying during the proof process those occurrences of variables
that should denote new, generic individuals (as opposed to those individuals
that are denoted by terms and variables that occur elsewhere in the proof’s
assumptions).

Reasoning with quantifiers requires the notion of a generic name. For ex-
ample, when we want to conclude “all philosophers are mortal”, we will try to
infer for an arbitrary person that “if person is a philosopher then person is mor-
tal”. Tarskian semantics is deeply unsatisfactory, as it often is, since it treats
generic individual with its weird old trick: it replaces it with a meta-level no-
tion. Therefore, the notion of generic name is hidden away by appealing to
the meta-level quantification, where it is assumed that the reader knows how
to think about a generic person and no real explanation for what is going on
is given2. In particular, the notion of dependency is completely hidden away.
Proof theory is left with the entire task of formalizing generic elements, and
it is here that we meet concepts that might seem esoteric, since a distinction
needs to be made between individuals and generic individuals.

In order to capture this distinction, Gentzen’s proof systems introduce one
additional category of terms that are called eigenvariables, whose role in the
proof process is precisely to be generic individuals handled by one of the quan-
tifier rules. Eigenvariables can both be presented as being in their own syn-
tactic category or being variables with specific constraints. An alternative to
eigenvariables is Hilbert’s ϵ operator. Most theorem provers, however, rely on
skolemization: a device that internalizes most notions we discussed into the
syntax of terms by extending the language with fresh uninterpreted functions,
and thus removes the need for special care in the proof search process.

Formats and systems for proof exchange make the assumption that the
proof-checking kernel and the user agree entirely on the signature. However

2Kit Fine proposed an extension of a formalized semantics in the style of Tarski where a primi-
tive notion of generic element is included [Fin85]. His aimwas to create amodel theory that could
explain proofs instead of mere provability, and in particular explain the notion of eigenvariable.
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Ξ1; Σ, (copy t y)`Γ ⇑ [y/x]A,Θ ∀c(Ξ0,Ξ1, t)

Ξ0; Σ`Γ ⇑ ∀x.A,Θ
y /∈ Σ

Σ`(copy t s) Ξ1; Σ`Γ ⇓ [s/x]A ∃e(Ξ0,Ξ1, t)

Ξ0; Σ`Γ ⇓ ∃x.A

Figure 2.1: LKFa rules augmented with copy clauses

by using skolemization the prover extends the signature during the proof pro-
cess, and it is no longer the case that they agree. In this section we elaborate
on this idea and show how to handle proofs produced by a prover that uses
skolemization. We interpret those proofs making use of an extended language
into our kernel, which doesn’t extend the original signature but employs eigen-
variables.

2.1.1 Treating user terms and kernel terms
Reviewing the rules for ∀ and ∃ in fig. 1.4, we note in particular that the uni-
versal rule extends the signature Σ with a new eigenvariable; the result Ξ1 of
the ∀ clerk is a certificate constructor that takes an input term, and the new
eigenvariable is fed to it in order to continue the proof. Thus, the certificate
handles a variable that is bound directly to the reconstructed proof tree by the
kernel.

In order to allow for differentiating user terms and kernel terms and trans-
lating between them, we extend the LKFa kernel with a relation that initially
puts in correspondence all user terms and their corresponding kernel term.
During the proof checking process, the relation is extended with new eigen-
variables on the kernel side, andwhat is known about the user termon the user
side. Correspondingly the definition of the clerk for the universal quantifier
is updated to also make it possible for the user to communicate information
about the term that will reference the generic individual in the proof. Since in
the case of skolemization no trace is left in the proof corresponding to these in-
ference steps, typically the proof will omit any evidence concerning this term
and the new kernel eigenvariable will be associated with an unknown term.
We similarly extend the proof rules where the user provides an instantiation
term: the kernel instantiates the formula with the kernel term corresponding
to the user-supplied term. The resulting rules are in fig. 2.1.

The relational handling of the correspondence between user and kernel
terms can be put to work in the context of logic programming by using copy
clauses, as presented in [MN12]: by interpreting the copy relation we just
sketched as a logic program, we obtain an extensible way to perform efficient
substitution on user and kernel term, as well as a handler for reconstructing
partially specified terms.

In the implementation, the predicate copy: user_term → kernel_term
→ prop is initialized with a rule for each symbol in the signature: constant
symbols need to be copied to a constant, while for symbols with arity greater
than one we state that a kernel term is the copy of a user term if all the argu-
ments are recursively copies; we write CΣ for the set of copy clauses generated
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from the signature Σ.

Example 1. Assume that the base signature for both the client and the ker-
nel is L = {a/0, f/1, g/2}. The copy clauses in CΣ are:

copy a a.
copy (f X) (f U) :- copy X U.
copy (g X Y) (g U V) :- copy X U, copy Y V.

In the simplest case, that we are considering here, user terms and kernel
terms have the same type and their distinction only concerns their extension
during proof checking (eigenvariables on the kernel side, Skolem terms on
the user side). More complex behavior could be captured by means of this
approach, such as user terms being less determinate or built out of a different
syntax.

2.1.2 Skolemization
Skolemization is a term that is used in reference to a variety of techniques
aimed at quantifier elimination, and justified by theorems of Skolem, Löwen-
heim and Herbrand. The core of the idea is that any quantifier that will be
treated by an inference that uses a generic individual can be eliminated, and
the variable that it was binding can be replaced by a fresh function symbol
applied to all the variables that are visible in that scope. Since the function
symbol is fresh, nothing constrains its interpretation, and we get an effective
representation of a generic individual in a language that is the original lan-
guage extended with these new generic individuals. For example when trying
to establish that All philosophers are mortal we would remove the quantifier, in-
troduce the function symbol c with arity 0 and move on to prove the formula
If c is a philosopher, then c is mortal.

It is common to call Herbrandization the procedure where only universal
quantifiers are removed, and skolemization the procedure where only exis-
tential quantifiers are removed. Traditionally one would use Herbrandization
when wanting to preserve model-theoretic validity in the transformation, and
skolemization when wanting to preserve model-theoretic satisfiability. How-
ever, when discussing the matter in a proof theoretic perspective we can see
the two as the same procedure, applied to the right hand side or the left hand
side of a sequent. We use the term skolemization even though we will work
on the right-hand side of sequents, in a single-sided calculus.

In the following, wewill use the following two definitions of skolemization
(which are standard, see for example [RV01]):

Definition 4 (Skolemization).

• An outer skolemization step is a pair of formulas in which

– the first formula, say,B is such that it contains the subformula ∀x.C
that is not in the scope of any universal quantifier and which is in
the scope of existential quantifiers binding the variables x1, . . . , xn

(n ≥ 0); and
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– the second formula results from picking an n-arity symbol f from
Σsk that does not appear inB and replacing that occurrence of ∀x.C
in B with the instance [f(x1, . . . , xn)/x]C.

• An inner skolemization step is a pair of formulas that is defined analo-
gously with the only difference being that the Skolem term used to in-
stantiate x in C is f(y1, . . . , ym)where y1, . . . , ym are the free variables of
the occurrence of ∀x.C.

• The formulaE is the result of performing outer skolemization onB if there
is a sequence of outer skolemization steps that carries B to E and where
E does not contain any strong quantifiers (i.e., universal quantifiers).
Similarly, the formulaE is the result of performing inner skolemization on
B if there is a sequence of inner skolemization steps that carries B to E
and where E does not contain any strong quantifiers.

Automated theoremprovers use skolemization in order to simplify the uni-
fication steps in their algorithms: once quantifier alternation is removed, sim-
ple first order unification suffices. This is a standard step in theorem provers
based on the Davis-Putnam algorithm [DP60] and similar. Here is an example
of the definition in action:

Example 2. The formula ∃x. (¬D(x) ∨ ∀y.D(y)) can be skolemized as fol-
lows.

• Outer: ∃x. (¬D(x) ∨D(f(x)))

• Inner: ∃x. (¬D(x) ∨D(f))

The theorem that ensures the applicability of skolemization says:
Theorem 2 (Skolem). Let B be a first-order formula over the signature Σ0 and let
E be either an inner or outer Skolemization of B. If E is provable then so is B.

The proof of the theorem for the case of outer skolemization is a standard
result in logic, while the case of inner skolemization was proved by Andrews
(for this reason it is often referenced as Andrew’s skolemization). In both
cases, the proof of the theorem relies on a model theoretic argument that uses
the axiom of choice: this is a combination that wouldn’t leave any hope of get-
ting some understanding of the proof of a formula if we are handed a proof of
its skolemization.

If we view skolemization as a naming device as we have just presented, we
obtain the following:

Example 1 (continuing). Assume that the client is using h/1 as a Skolem
function and that the kernel has introduced two eigenvariables x and y and
that Σ contains exactly the two associations (copy (h a) x) and (copy
(h (f a)) y). The λProlog query

CΣ,Σ ` (copy (g (h (f a)) (f (h a))) X)

for some logic variable X will have a unique solution, namely, the one that
binds X to (g y (f x)). It is this step that performs deskolemization. Note,
however, that we do not necessarily assume that deskolemization is deter-
minate. In particular, if the Γ context contained the atoms (copy (h a) x)
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and (copy (h a) y), then there are two solutions to the query (copy (g
(h a) (f a)) X), namely, binding X to either (g x (f a)) or (g y (f
a)).

2.1.3 Proofs of skolemized statements

Our interest is in building the proof of a formula when the prover hands us
a proof of its skolemization. We will now look into how proofs of skolem-
ized formulas in the LK sequent calculus look like, in order to draw some first
conclusions. We start by analyzing example 2, and consider proofs of the two
skolemized formulas over a signature containing a constant symbol c

Example 3 (Outer skolemization and inner skolemization).
Outer: ∃x. (¬D(x) ∨D(f(x)))

`¬D(c), D(f(c)),¬D(f(c)), D(f(f(c)))
init

`¬D(c), D(f(c)),¬D(f(c)) ∨D(f(f(c)))
∨

`¬D(c), D(f(c)), ∃x. (¬D(x) ∨D(f(x)))
∃f(c).

`¬D(c) ∨D(f(c)), ∃x. (¬D(x) ∨D(f(x)))
∨

`∃x. (¬D(x) ∨D(f(x))), ∃x. (¬D(x) ∨D(f(x)))
∃c.

`∃x. (¬D(x) ∨D(f(x)))
C

An LK proof of the outer skolemized form needs to start with a contrac-
tion and uses two witness terms, c and f(c) (where c is the individual we
included in the global signature)
Inner: ∃x. (¬D(x) ∨D(f))

`¬D(f), D(f)
init

`¬D(f) ∨D(f)
∨r

`∃x. (¬D(x) ∨ d(f))
∃f.

The inner skolemized form, on the other hand, has a simple LK proof that
provides the witness f for x and does not require a contraction nor an ap-
peal to the postulated individual.

Ifwe try to reconstruct a proof of the original, unskolemized formula ∃x. (¬D(x)∨
∀y.D(y)) by following the first script we are easily successful: we can start in
the same way with C, ∃c. and ∨; at this point the sequent will contain the
subformula ∀y.D(y) to which we can apply a ∀ rule that will introduce an
eigenvariable. This eigenvariable is what we must use in the next ∃ rule, and
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the proof is then similarly concluded.

`¬D(c), D(y),¬D(y), ∀y.D(y)
init

`¬D(c), D(y),¬D(y) ∨ ∀y.D(y)
∨

`¬D(c), D(y), ∃x. (¬D(x) ∨ ∀y.D(y))
∃y.

`¬D(c), ∀y.D(y), ∃x. (¬D(x) ∨ ∀y.D(y))
∀

`¬D(c) ∨ ∀y.D(y), ∃x. (¬D(x) ∨ ∀y.D(y))
∨

`∃x. (¬D(x) ∨ ∀y.D(y)), ∃x. (¬D(x) ∨ ∀y.D(y))
∃c.

`∃x. (¬D(x) ∨ ∀y.D(y))
C

The same cannot be said about the proof script involving inner skolemiza-
tion. Here the existential rule is used immediately, but the only individual
that is available right away in the non-skolemized world is c; when we intro-
duce the eigenvariable corresponding to the universal subformula, we cannot
match the two instances to conclude the proof.

???
`¬D(c), D(y)

???

`¬D(c), ∀y.D(y)
∀

`¬D(c) ∨ ∀y.D(y)
∨

`∃x. (¬D(x) ∨ ∀y.D(y))
∃c.

Inner skolemization adds a new constant term to the signature instead of
a function, and thereby erases all information on dependencies. The constant
term can be used outside its scope.

If we look at the proof script top-down, we see that an alternative way to
follow this inference would be by relaxing the eigenvariable condition, and
starting with the sequent `¬D(c), D(c) inferring `¬d(c), ∀y.D(y). Very re-
cently several works by Baaz and others [BL22; AB19] studied a variant of LK
where the eigenvariable condition is relaxed in a way that allows this infer-
ence. The proof scripts translate to the reasoning below, where the new rule is
used in the inference from 1 to 2:

1. That Kurt Gödel is Austrian, entails that Kurt Gödel is Austrian

2. Hence, that Kurt Gödel is Austrian entails that everybody is Austrian

3. That is, if Kurt Gödel is Austrian then all the people are Austrian

4. Therefore there exists a person such that if that person is Austrian then
all the people are Austrian

The conclusion is indeed the drinker’s formula, and the proof corresponds
to the one we have for the inner skolemization. In the works of Baaz et al.
a translation is provided from this extended calculus into LK, together with a
proof that there is no elementary function bounding the length of the obtained
LK proofs in terms of the proofs in the extended calculus. Therefore, there is
little hope to be able to directly use proofs of inner skolemizations as certifi-
cates. Ralph [Ral20] drew a connection between Baaz’s calculus and Deep
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Inference, which could provide an alternative framework to understand these
proofs.

It is well known that inner skolemization is problematic when it comes to
proof reconstruction, and as of presentwe are not aware of any proposed proof
checking system that allows for checking this kind of proof. The case of outer
skolemization is usually seen as less problematic; however we should see that
it also needs some special care. We start by noticing how in the proof script
in example 3 we make the choice of interleaving the two applications of the ∃
rule with the ∨ rule. While this choice is not relevant in that proof, and we
could easily exchange the two applications, this is not the case once we try
to de-skolemize the proof: the ∀ rule needs to be applied between the two
applications of the ∃ rule, and it needs to follow the ∨ rule; therefore, the ∨
rule must be used before the second ∃.

To make things clearer, we modify slightly the example and consider the
formula ((∀x. ¬P (x))∧¬ q)∨∃x. (P (x)∨q). Supposewe have proof evidence in
the formof an LK proof for its outer skolemization (¬P (f)∧¬ q)∨∃x. (P (x)∨q),
with f a fresh Skolem constant. This formula has the following two proofs:

Example 4 (Different proofs with outer skolemization).

`¬P (f), P (f), q
init

`¬P (f), ∃x. (P (x) ∨ q)
∃(f),∨

`¬ q, P (f), q
init

`¬ q, ∃x. (P (x) ∨ q)
∃(f),∨

`(¬P (f) ∧ ¬ q) ∨ ∃x. (P (x) ∨ q)
∨,∧

`¬P (f), P (f), q
init `¬ q, P (f), q

init

`¬P (f) ∧ ¬ q, P (f) ∨ q
∧,∨

`(¬P (f) ∧ ¬ q) ∨ ∃x. (P (x) ∨ q)
∨, ∃(f)

The first, longer, proof contains all the informationwe need to build a proof
of the original formula. When reconstructing the proof, we begin by using
the ∨ and ∧ rules, at which point we have two branches where the sequents
we are proving contain the subformula ∀x. ¬P (x). An application of the ∀
rule in both branches will add to the contexts the eigenvariables we need to
subsequently use the ∃ rule and successfully concludewith the∨ and init rules.

The second proof looks problematic, in a way that reminds us of the previ-
ous problem with inner skolemization. However now we are facing a formula
where inner and outer skolemization coincide, so the phenomena is slightly
different. Indeed, it was already noted in [BHW12] that outer skolemization
allows for proofs that can be exponentially shorter than the proofs of the orig-
inal statement; in particular, the example we chose comes directly from that
paper, and is part of a class of formula whose shortest proofs are proved to be
exponentially longer than the proofs of their skolemization.

By analyzing these proofs through polarization and focused proof systems,
we can uncover more of what’s going on. We start by noting that in all the
examples so far we chose to use the ∨ rule of LK that corresponds to the ∨− rule
of LKF; in a focused proof the ∨− connectivemust be eagerly decomposedduring
the asynchronous phase and, if under focus, will stop the synchronous phase.
The proof we considered in example 3 contains precisely this interruption of
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the synchronous phase, where the disjunction is decomposed between the two
existential instantiations; we had indeed noticed that this had to be the case if
we wanted to understand this as a proof of the original formula. In a similar
spirit, the difference between the two proofs in example 4 lies in whether we
are using the positive or negative conjunction; only the negative can be used
to get insight on a proof of the original formula, and the positive on the other
side corresponds to the shorter proof (as is usually the case).

Consider LKFa with the new rules in fig. 2.1. Assume an FPC specification
for a format that uses skolemization. We add to it the following specification
for the ∀ clerk (which is obviously not specified if skolemization is assumed):

allC Cert Cert _T.
That is, no user term is provided as generic name, and a fresh logic meta-
variable is handed to the kernel instead. Wehave the following theorem,which
is a generalization of Theorem 6.12 in [Mil87].

Theorem 3. Let F be a formula and F ′ be the outer skolemization of F . Let F̂ ′ and
F̂ be their purely negative polarizations, and let Ξ be a certificate for F̂ ′. Then, Ξ is a
certificate for F̂ .

Consider for example the first proof of example 3. Its initial set of copy
clauses is CΣ = {copy c c}. Its reconstruction in LKFa looks like this:

copy (f c) y, copy Y z, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)),¬D(c), D(y), D(z) ⇓ ¬D(y)

copy (f c) y, copy Y z, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)),¬D(c), D(y),¬D(y), D(z) ⇑ ·
copy (f c) y, copy Y z, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)),¬D(c), D(y),¬D(y) ⇑D(z)

copy (f c) y, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)),¬D(c), D(y),¬D(y) ⇑ ∀y.D(y)
∀

copy (f c) y, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)),¬D(c), D(y) ⇓ ¬D(y), ∀y.D(y)
rel, store

copy X y, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)),¬D(c), D(y) ⇓ ∃x. (¬D(x) ∨− ∀y.D(y))
∃ X,∨−

copy X y, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)),¬D(c), D(y) ⇑ · decide

copy X y, CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)) ⇑ ¬D(c), D(y)
store

CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)) ⇑ ¬D(c), ∀y.D(y)
∀

CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)) ⇑ ¬D(c) ∨− ∀y.D(y)
∨

CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)) ⇓ ∃x. (¬D(x) ∨− D(f(x)))
release

CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)) ⇓ ∃x. (¬D(x) ∨− D(f(x)))
∃c.

CΣ⊢∃x. (¬D(x) ∨− ∀y.D(y)) ⇑ · decide

CΣ⊢· ⇑ ∃x. (¬D(x) ∨− ∀y.D(y))
store

Theneweigenvariables are associatedwith non-determinate user names. Upon
attempting to instantiate an existential with the user-provided Skolem term,
that is unknown to the kernel, the new name f(c) is unified with the avail-
able logic variable X, and the user term is translated to the kernel term y. A
new logic variable is created for the second eigenvariable instantiation, but
that turns out to be not relevant for the proof. The builtin control of eigenvari-
ables done by λProlog ensures that no free occurrence condition is violated.

While on a first sight restricting to negative polarities might seem a big
restriction, it is not new. We hope that framing it in the context of focused
proof theory will help further developments. Among the few approaches to
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proof reconstruction and certification that treat skolemization by deskolem-
izing (as opposed to including skolemization in the certifier’s metatheory by
adding axioms or rules), most are incapable of treating proofs involving the
positive sequent calculus rules, although the different formalisms don’t make
this limitation easy to appreciate ([FK16; EH21]). The most complete treat-
ment of proofs with skolemization is found in the GAPT tool [Ebn+16], where
the algorithms from [BHW12] and subsequent articles are used and proof are
internally represented using a structure similar to the Expansion Trees intro-
duced in [Mil87]; this means that proofs of skolemized statements involving
positive rules are converted to Expansion Trees before being available to the
user, and deskolemization is only performed on Expansion Trees.

Indeed, most proof-theoretic results on deskolemization ultimately rely on
[Mil87], where Expansion Trees and their deskolemization are introduced. In
the next section we will look at a concrete example of handling proof evidence
in the form of Expansion Trees.

2.1.4 Proof evidence containing Skolem terms
We describe now the concrete proof format of Expansion Trees. This allows us
to showanother angle of the discussion about user terms, since expansion trees
internalize the dependency conditions by means of the notion of select variable.
Even when not talking about proofs containing skolemization, we will need
to leverage the extended rules we just introduce in order to certify proofs in
the form of expansion trees. We conclude the section with the treatment of
skolemized expansion trees.

Definition 5 (Expansion trees).

• A literal or logical constant is an expansion tree for itself.

• If Q1 and Q2 are expansion trees of A1 and A2, then (eOr Q1 Q2) and
(eAnd Q1 Q2) are expansion trees for A1 ∨A2 and A1 ∧A2 respectively

• If u is a variable (called a select variable) and Q is an expansion tree of
[u/x]A, then (eAll u Q) is an expansion tree for ∀x.A.

• If t1, . . . , tn is a list of expansion terms and if Qi is an expansion tree for
[ti/x]A (for i ∈ 1..n), then

(eSome [(t1, Q1), . . . , (tn, Qn)])

is an expansion tree for ∃x.A.

Expansion terms can certainly contain select variables. The formal, stand-
alone definition of expansion trees requires additional correctness conditions
to be assumed (that a certain propositional formula derived from the expan-
sion tree is a tautology and that a certain relationship on select variables is
acyclic) but these conditions are not needed here since they will be implicitly
handled by the proof checking kernel itself.

The datatype for expansion trees can be formalized by the λProlog signa-
ture in Figure 2.2 and themore general notion of certificate based on expansion
trees is given in Figure 2.3. There, proof certificates (terms of type cert) are
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kind et type.
type eTrue, eFalse et.
type eLit et.
type eAnd, eOr et→ et→ et.
type eAll i → et→ et.
type eSome list (pair i et)→ et.

Figure 2.2: The datatype for expansion trees. The kind declaration introduces
a primitive type et and the type declarations introduce constructors for this
primitive type.
kind address type.
type root address.
type lf, rg, dn address→ address.
type idx address→ index.
typeabbrev context list (pair address et).
type astate context→ context→ cert.
type dstate context→ context→ cert.
type sstate context→ pair address et→ cert.

Figure 2.3: Certificate constructors for expansion trees. The primitive types
index and cert are declared as part of the kernel. The type address is intro-
duced for this particular FPC.
orC (astate Left ((pr Add (eOr E1 E2))::Qs))

(astate Left ((pr (lf Add) E1)::
(pr (rg Add) E2)::Qs)).

andC (astate Left ((pr Add (eAnd E1 E2))::Qs))
(astate Left ((pr (lf Add) E1)::Qs))
(astate Left ((pr (rg Add) E2)::Qs)).

someE (sstate Left
(pr Add (eSome ((pr Term ET)::nil)))

(dstate Left ((pr (dn Add) ET)::nil)) Term.
allCx (eAll Term Cert) Cert Term.

Figure 2.4: Some of the clerks and experts for expansion trees. All of these
λProlog clauses are simply atomic formulas that perform some pattern match-
ing and simple transformations on certificates.

built from three constructors: astate is consumed during the asynchronous
phase and records two contexts representing some information about the stor-
age zone Γ and the asynchronous zone Θ; sstate is consumed during the
synchronous phase and records the storage and the formula under focus; and
dstate is used to break focusing on adjacent existential introductions. For-
mulas are paired in the certificate with the expansion trees to which they are
associated. Addresses are essentially paths through the proposed theorem:
they are used to uniquely describe subformulas. For example, such addresses
are used to link stored formulas (note that indexes contain addresses) with
expansion trees sorted within certificate terms.
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The main clerks and experts are specified in Figure 2.4. Since connectives
are polarized negatively, most of the work is carried out by clerks that simply
consume expansion trees and reorganize internal components of certificates.
When proof checking encounters a strong quantifier, the expansion-tree-cum-
certificate contains the select variable associated to it: we then use the allCx to
instruct the kernel to create a new eigenvariable and associate the client’s select
variable as a name for that eigenvariable. When proof checking meets an exis-
tential node, together with the list of terms by which the existential should be
instantiated, we can simply communicate one of the client’s expansion terms
to the kernel which then proceed to translate it to a kernel term. Note that, in
the code, wemake the assumption that only one term is present in the list: this
is because contraction is handled by the expert for the decide rule (not shown
here).

Note that the mechanism we have described as deskolemization is exactly
the same mechanism that can replace variable names (select variables) with
eigenvariables. Note also that if the expansion tree that is being checked uses
a select variable more than once to name different eigenvariables, the checker
will need to deal with nondeterminism in sorting out which assignment of
select variable to eigenvariable leads to a proper proof. Similar to the comment
in Example 1, such non-unique naming is not a soundness problem: it can,
however, raise the cost and complexity of proof checking.

We now turn our attention to the setting where the client has an expansion
tree relative to a skolemized formula, but we would like to use it as proof evi-
dence of the original, unskolemized formula. As it turns out, there is not much
which is left to do here. Since there are no strong quantifiers left in the skolem-
ized formula, the expansion tree will not contain any select variables (nor any
Skolem terms). Accordingly, we modify the allCx to be just
allCx Cert Cert T.

Thus, when the checker finds a strong quantifier it will simply associate to the
newly created eigenvariable a logic variable (here, T) as the name for it. This
variable will ultimately be instantiated to be an actual Skolem term (through
the interaction of proof checking and unification).

2.2 Communicating indexes

A central part in the theory of focused proof systems is played by the store,
decide, release and initial rules. Their read back in the original Gentzen cal-
culus are the contraction and initial rules, but when we move to focused proof
theory they gain a finer meaning: here, they act as delimiters of the different
phases in a proof and provide control to its geometry; moreover, by managing
when to contract and which formulas to put under focus, they give rise to a
notion of full-fledged storage area. The data structure these rules rely on is
that of an index.

Several preprocessing steps employed in automated theorem provers in-
volve dealing with aspects of a formula that are related to its geometry and
other morphological facets. In these steps we typically see the goal formula
being transformed to a different one so that the new one complies to a pre-
determined shape, in order to permit the application of automation techniques.
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A prominent case is the transformation to Clause Normal Form, where a for-
mula is transformed into one that is structured as a conjunction of disjunctions,
in such a way that satisfiability is preserved.

2.2.1 Tseitin transformation
The most direct transformation to conjunctive normal form relies on using the
distributivity property of disjunction over conjunction; however this generates
formulas whose size can be exponential in the number of disjunctions: in the
case of the formula (p ∧ q) ∨ r we obtain (p ∨ r) ∧ (q ∨ r) with one application
of distributivity, and r has been duplicated.

This is why several optimization strategies exist that provide shorter for-
mulas in CNF. One chief example of such transformations is Tseitin’s transfor-
mation, which manages to produce formulas whose size is linear in the size
of the input formula and are equisatisfiable. The idea of the transformation is
to introduce new propositional constants in correspondence with every sub-
formula of the input formula, and to build the output CNF formula so that it
can be treated as a set of clauses stating that each one of the newly generated
propositional constants must be logically equivalent to the subformula it cor-
responds to. It is also called Definitional CNF (see [Har09]), since it involves
introducing new symbols together with their definition. Formally, given a for-
mula F , let SF (F ) be the set of subformulas of F , excluding the literals. The
transformation proceeds as follows:

Definition 6. • T (F ) := aF ∧
∧

G∈SF (F )

t(G)

• t(¬G) := (¬ a¬G ∨ ¬ aG) ∧ (a¬G ∨ aG)

• t(G1∧G2) := (¬ aG1∧G2∨aG1)∧(¬ aG1∧G2∨aG2)∧(¬ aG1∨¬ aG2∨aG1∧G2)

• t(G1∨G2) := (¬ aG1∨aG1∨G2)∧(¬ aG2∨aG1∨G2)∧(¬ aG1∨G2∨aG1∨aG2)

Since we are working in negation normal form, we don’t need to consider
the clause for negation. Moreover, since the soundness of our system is always
guaranteed by the soundness of LKFa, we only need to consider the first half
of the clauses. The reduced definition consists of only the two following cases:

• t(G1 ∧G2) := (¬ aG1∧G2 ∨ aG1) ∧ (¬ aG1∧G2 ∨ aG2)

• t(G1 ∨G2) := (¬ aG1∨G2 ∨ aG1 ∨ aG2)

Consider the following example:

Example 5. Say we want to prove F := G1 ∨ G2, where G1 := (p ∧ ¬ q) ∨
(q ∧ ¬ p) and G2 := (p ∧ ¬ r) ∨ ((¬ q ∨ r) ∧ (¬ p ∨ q)).
We first negate it: F⊥ := G1

⊥ ∧ G2
⊥, G1 := (¬ p ∨ q) ∧ (¬ q ∨ p) and

G2 := (¬ p ∨ r) ∧ ((q ∧ ¬ r) ∨ (p ∧ ¬ q)).
Then its Tseitin transformation is T ((F )⊥) =

aF ∧ (¬ aF⊥ ∨ aG1
⊥) ∧ (¬ aF⊥ ∨ aG2

⊥) ∧ (¬ aG1
⊥ ∨ ¬ p ∨ q)∧

(¬ aG1
⊥ ∨ ¬ q ∨ p) ∧ (¬ aG2

⊥ ∨ ¬ p ∨ r) ∧ (¬ aG2
⊥ ∨ a(q∧¬ r) ∨ a(p∧¬ q))∧

(¬ aq∧¬ r ∨ q) ∧ (¬ aq∧¬ r ∨ ¬ r) ∧ (¬ ap∧¬ q ∨ p) ∧ (¬ ap∧¬ q ∨ ¬ q)
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The formula obtained through this transformation has a size that is linear
in the size of the input formula, and is equisatisfiable with it. The prover will
try to refute T ((F )⊥). Such a refutation, if found, guarantees that (F )⊥ can be
refuted aswell, and constitutes therefore the proof evidence for the provability
of F .

The justification for thismethod is usually presented by appealing tomodel
theoretic reasoning: if a model exists for the translated formula, then we can
read back a model for the original formula by looking at the assignments it
makes to the propositional constants that appear in the original formula.

By observing this reasoning, however, it stands out that the newly intro-
duced constants do not bear any real logical meaning, and are rather just used
as shorthand for the denoted subformula: this is highlighted by the fact that
we assign and read back their valuations bymaking a simple meta-level obser-
vation that these should correspond to the valuation of the subformula they
denote. As such, they seem misplaced as logical constructs, and should rather
be explained as a metalogical device.

Just as in the previous section, we consider also the dualized transforma-
tion and obtain a validity-preserving transformation. Additionally, we note
that once we are working in negation normal form we can use a reduced ver-
sion of the transformationwhere no clause for the negation connective is present,
and as a consequence only one direction of the implication is left. We get the
following definition:

Definition 7 (Valitity-preserving Tseitin transformation).

• T (F ) := aF ∨−
∨

G∈SF (F )

t(G)

• t(G1 ∨G2) := (¬ aG1∨G2 ∧ aG1) ∨ (¬ aG1∨G2 ∧ aG2)

• t(G1 ∧G2) := (¬ aG1∧G2 ∧ aG1 ∧ aG2)

2.2.2 The structure of indexes
Our choice of using the set of subformulas itself as the set of indexes for the
Tseitin constants makes this remark very evident. It is however something that
is usually neglected in most presentations of the Tseitin transformation (such
as [Har09]), where the set of indexes is just that of natural numbers with the
effect of blurring the information that is contained in the proof.

Let’s go back to the initial observation, and let’s place ourselves in front of
the task of certifying a proof evidence where the prover employed the Tseitin
transformation. More specifically, we are looking for a way to understand the
inferences involving Tseitin clauses as inferencesmade on the original formula,
within the original language. We argue that if themeaning of a Tseitin constant
is entirely determined by the subformula that was used to build it (and is, in
many cases, used to name it or even somehow index it), then they should be
understood and treated as indexes relative to that subformula, and we will
explain this interpretation in the next section.

The indexingmechanism of LKFa presented in subsection 1.2.2 is governed
by choices in the polarization of the formula. In particular, we know that an in-
dex is built for everything positive that is encountered during an asynchronous
phase. In order to be able to carry out our interpretation of proofs of Tseitin
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transformations, we need to start by describing a suitable polarization that
imposes a corresponding indexing strategy. We have argued that the Tseitin
transformation amounts to imposing that every subformula be indexed; for a
start, then, we need every subformula to be positive. Note that this is different
from saying that every connective should be positive, as this would also impose
a proving strategy. The way to proceed is thus to introduce a positive delay be-
fore every negative subformula. This is not enough, since sequences of nested
positive connectives are treated as composants of a same indexed piece of in-
formation and subsequently decomposed during a single synchronous phase,
without introducing further indexes. What the Tseitin indexing does is instead
an indexing of each and every distinct subformula. In order to force the intro-
duction of a new index, we need to immediately stop the synchronous phase
after a connective has been treated, so that a new index is created for the un-
covered subformulas. This is the dual of what we have just discussed, since
we need to have negative subformulas below every positive connective, and
we obtain this by including a negative delay before positive subformulas.

Definition 8 (Tseitin polarization). The Tseitin polarization T ′(F ) of a polar-
ized formula F is defined by induction on F :

• T ′(G1 ∧− G2) = ∂
+++

(T ′(G1) ∧− T ′(G2))

• T ′(G1 ∨− G2) = ∂
+++

(T ′(G1) ∨− T ′(G2))

• T ′(G1 ∧+++ G2) = ∂
−
(T ′(G1) ∧+++ T ′(G2))

• T ′(G1 ∨+++ G2) = ∂
−
(T ′(G1) ∨+++ T ′(G2))

• T ′(p) = p for every literal.

Example 6. Consider the formula we wanted to prove in example 5. Start
by choosing a polarization of F ; this choice has no impact right now, so we
will start by choosing a fully negative polarization out of simplicity. Name
F̂ the purely negative polarization of F , its focused Tseitin transformation
is

T ′(F̂ ) := ∂
+

(∂
+

(∂
+

(p ∧− ¬ q) ∨− ∂
+

(q ∧− ¬ p)) ∨− ∂
+

(∂
+

(p ∧− ¬ r) ∨− ∂
+

(∂
+

(¬ q ∨− r) ∧− ∂
+

(¬ p ∨− q))))

An LKFa proof of T ′(F̂ ′), as shown in fig. 2.5, has a very constrained struc-
ture in its lowermost part: as a first inference we are forced to immediately
store the delayedmain formula, stop the asynchronous phase and then resume
it and strip off the positive delay operator. Subsequently, since we chose the
negative polarization of connectives, wemust resume the asynchronous phase
and consume the connective that has just been unveiled; the sequent we have
just unveiled has the same structure as the initial sequent, where the formulas
in the focus area are surrounded by the positive delay operator introduced by
T ′.

The certificate that we elaborate must begin with the instructions on how
to build the indexes for all the subformulas. Since we imposed delays (and
thus indexing) on all subformulas and since all connectives are negatively po-
larized, the only way for the certificate to contain information for concluding a
proof is by presenting the index for a propositional constant once its comple-
mentary is under focus.
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Ξ6⊢ i:∂+
++

(F ), j:T ′(Ĝ[1]), k:T ′(Ĝ[2]) ⇑ · storec(Ξ5,Ξ6, k)

Ξ5⊢ i:∂+
++

(F ), j:T ′(Ĝ[1]) ⇑ T ′(Ĝ[2]) storec(Ξ4,Ξ5, j)

Ξ4⊢ i:T ′(F̂ ) ⇑ T ′(Ĝ[1]), T ′(Ĝ[2]) ∨c(Ξ3,Ξ4)

Ξ3⊢ i:T ′(F̂ ) ⇑ T ′(Ĝ[1]) ∨− T ′(Ĝ[2]) releasee(Ξ2,Ξ3)

Ξ2⊢ i:T ′(F̂ ) ⇓ T ′(Ĝ[1]) ∨− T ′(Ĝ[2]) delay
release

Ξ2⊢ i:T ′(F̂ ) ⇓ ∂
+++

(T ′(Ĝ[1]) ∨− T ′(Ĝ[2])) decidee(Ξ1,Ξ2, i)

Ξ1⊢ i:T ′(F̂ ) ⇑ · storec(Ξ0,Ξ1, i)
decide

Ξ0⊢· ⇑ T ′(F̂ )
store

Figure 2.5: An LKFa proof of the focused Tseitin transform for a polarization
of the formula in example 6

If the polarization we choose is richer, the certificate can contain more in-
formation. However, in order for us to consume the information relative to
a certain subformula we will need to be steered through the delays that en-
close it, and therefore build the indexes for the subformulas we meet. This is
how the Tseitin transformation is internalized: just like here, in a proof of the
usual Tseitin transformation of a formula we need to go through a series of
expansion of the definitional clauses before we can apply an insight relative to
subformulas of the original formula.

2.2.3 Proof evidence for Tseitin transformation
In this section we describe how to elaborate a proof of the Tseitin transfor-
mation of a formula as a certificate for the original formula, where no Tseitin
constants will appear in the formula and in the proof. Contrarily to the case
of skolemization in section 2.1, here we are able to interpret proofs involving
any polarization. Therefore the strategy we should use is more akin to the one
of the hosted calculi in subsection 1.2.4. We consider the case where the client
handles us:

• An FPC specification for a format of proofs of formulas obtained through
the Tseitin transformation, composed of clerks and experts that we mark
with ·T .

• Themethodology bywhich the transformationwas built, comprising the
names of the newly introduced constants, the subformula theywere built
from and the indexes of their definitional clauses inside a context Θ.

• A polarization for the clauses in Θ.

• The proof certificate and the Tseitin transformed sequent that it consti-
tutes evidence for, of the form ΞT `T Θ ⇑ aF .

There are some immediate constraints for the polarization of the clauses.
First of all, the disjunctions linking them must be negative: this means that
all clauses should be split up as soon as possible and stored at their own in-
dex; in this way we can assume that Θ already contains the indexed clauses.
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A positive polarization could also have worked, as it would have signified a
more bureaucratic approach where every time one of the definitional clauses
is used its location inside the big disjunction is provided. More importantly,
the conjunction between the literal and the body in each of the clauses must
be positive polarity, since it asks that Tseitin clauses are indeed indexed. Our
aim is to write a collection of clerks and experts that can interpret these as a
proof of the sequent ΞT `I · ⇑ F , where `I is provability in LKFa with the
interpreter’s clerks and experts.

We start by inspecting how the proof looks like in LKFa augmented with
the ·T clerks and experts. Initially only the aF literal is present, and since aF
does not appear inΘ the proofwill store it and call the decideTe expert to extract
the index on one of the clauses in Θ.

Π1

ΞT
4 ` Θ, t:aF ⇓ ¬ ai

Π2

ΞT
5 ` Θ, t:aF ⇓ φ ∧+++Te (ΞT

3 ,Ξ
T
4 ,Ξ

T
5 )

ΞT
3 ` Θ, t:aF ⇓ ¬ ai ∧+++ φ decideTe (ΞT

2 ,Ξ
T
3 , i)

ΞT
2 ` Θt:aF ⇑ storeTc (ΞT ,ΞT

2 , t)
ΞT ` Θ ⇑ aF

If the proof contains a decide on the definitional axiom for the i-th Tseitin
constant, its body φ will be uncovered. The body can be either a single logical
(non-Tseitin) literal, a single Tseitin literal, or the conjunction of two of these.
In any case, the right-hand premise of the ∧+++ inference doesn’t contain negated
Tseitin literals, and the left-hand premise contains one non-negated Tseitin lit-
eral. The right branch of the proof will keep extendingwithout negated Tseitin
literals, and contains the logical part of the proof. This does not make the left
branch less interesting, although its shape greatly depends on the polarity as-
signed to the Tseitin literals. If ¬ ai is positive, then the branch must be con-
cludedwith init; since aF is the only available non-negated literal, we conclude
that if all the literals are negatively polarizedwe forcefully decided on the defi-
nitional clause for F . On the other side, if there are positively polarized literals
we are free to chose one, regardless of which subformula location it denotes,
and this might lead to much shorter proofs.

This proof clearly resembles the proof in fig. 2.5 forwhat concerns the index
handling part; in particular, deciding on a Tseitin clause for which the Tseitin
literal is negative is in direct correspondencewith a decide on the denoted sub-
formula. In order to treat the case of positive Tseitin literals, we allow cuts in
the reconstructed proof. The code for the interpreter is presented in fig. 2.6,
where we implement the clerks and experts for the interpreter in terms of any
FPC specification that uses the Tseitin transformation; the clerks and experts
for the user FPC are marked with an additional T. The two insights we illus-
trated are contained in the second clause for decidee and in the one for cute.
In the former, we recognize that we should decide on a subformula when the
left branch side of a decide immediately ends with initial. In the latter, we
recognize that we should build a lemma if we find a release in the left branch.

We now prove the completeness of the interpreter. Let F be a formula, Θ
the list of indexed, polarized Tseitin definitional clauses for F , Ω (for open con-
text) a list of indexed Tseitin literals, ∆ (for delayed context) a list of indexed
negated Tseitin literals, and Λ (for logical context) a list of indexed logical lit-
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accumulate mimic-lkf-fpc.

release_ke C1 C2 :-
release_tke C1 C2.

decide_ke C C3 J :-
decide_tke C C1 _I,
andPos_tke C1 C2 C3,
initial_tke C2 J,
J = (idx _).

eta_initial C I :-
initial_tke C I.

cut_ke C C2 (litcert C3) F'
:-

decide_tke C C1 I,
andPos_tke C1 C2 C3,
release_tke C2 _C4,
mapsto I F, polarize_res F

F'.

decide_ke C1 C2 I :-
decide_tke C1 C2 I.

release_ke (litcert C)
(litcert C).

store_kc (litcert C) (litidx
C I) I.

decide_ke (litidx C I) C I.

store_kc C1 C2 I :-
store_tkc C1 C2 I.

initial_ke C I :-
initial_tke C I.

release_ke C (mimic I) :-
initial_tke C I.

orNeg_kc C1 C2 :-
orNeg_tkc C1 C2.

orPos_ke C C _Choice.
Figure 2.6: A hosted interpreter for Tseitin proofs

erals appearing in F . Moreover, let Ω′ be the list obtained from Ω by replacing
the literals with the subformula of F they denote and including F , and let ∆′

be obtained by replacing the literals in ∆ with the negations of the subformu-
las of F they denote (in both Ω′ and ∆′ we leave the same indexes as in Ω and
∆).

Theorem 4. Let F̂ be the Tseitin polarization of F , let a be either a (possibly negated)
Tseitin literal or a logical literal, and let D be a if a is logical, or the subformula of F̂
denoted by a if it is a Tseitin literal, or its negation if a is a negated Tseitin literal.

If the sequent ΞT `T Θ,Ω,∆,Λ ⇑ a is provable, then ΞT `I Ω′,∆′,Λ ⇑ D is
provable. Moreover, if the sequent ΞT `T Θ,Ω,∆,Λ ⇓ a is provable, then ΞT `I

Ω′,∆′,Λ ⇓D is provable.

Proof. We proceed by induction on the derivation and start by proving the two
base cases

i If ΞT `T Θ,Ω,∆,Λ ⇓ a is proved with an initial, then initTe (ΞT , i) holds.
If a is a logical literal, i : ¬ a ∈ Λ and the proof of ΞT `I Ω′,∆′,Λ ⇓ a
can be concluded with init on the same index. If a is a possibly negated
Tseitin literal, then its complement is in Ω ∪ ∆; therefore, the negation of
D is in Ω′ ∪ ∆′ (including the case where the literal is ¬ aF , since always
include F in Ω′), and the proof of ΞT `I Ω′,∆′,Λ⇓D can be concluded by
performing a release and then using the mimic FPC from [CMR17] on i.

ii The base case for ΞT `T Θ,Ω,∆,Λ⇑a is store followed by decide and then
by initial. This means that we are deciding on a literal; in the interpreted
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proof we store D at the same index as a, and use decide and init on the
same indexes. The arising cases are treated in the sameway as the previous
point. This includes the case of aF , the only literal in Θ, which requires
¬ aF ∈ Ω ∪∆.

The inductive case for ΞT `T Θ,Ω,∆,Λ ⇓ a is quickly dealt with. If a is
positive, then the only applicable rule is init and we conclude as in (i). If a is
negative, the only possible rule is release; since we added negative delays to
every subformula in the Tseitin polarization, the proof of ΞT `I Ω′,∆′,Λ ⇓D
must start with a release as well. Then, we can apply the ⇑ inductive hypoth-
esis.

We move to the inductive case for ΞT `T Θ,Ω,∆,Λ ⇑ a. The bottom infer-
encesmust be store anddecide, and thus itmust be the case that storeTe (ΞT ,ΞT

1 , k)

and decideTe (ΞT ,ΞT
1 , i) for indexes k, i. If the formula stored at i is a literal, we

can conclude with the ⇓ inductive hypothesis.
We are left with the case where we decide on one of the definitional clauses

from Θ. Let aG be the literal in the definitional clause, G be the subformula it
denotes, and φ the body of the definitional clause. The next rule has to be ∧+++ ,
and thus we have two subproofs:

ΠT
1

ΞT
2 ` Θ,Ω,∆,Λ ⇓ ¬ aG

ΠT
2

ΞT
3 ` Θ,Ω,∆,Λ ⇓ φ ∧+++Te (ΞT

1 ,Ξ
T
2 ,Ξ

T
3 )

ΞT
1 ` Θ,Ω,∆,Λ ⇓ ¬ aG ∧+++ φ

We start by noting that from ΠT
2 we can obtain a proof of ΞT

3 ` Θ,Ω,∆,Λ ⇓G,
and we do this based on the shape of G. If G = G1 ∧+++ G2 then also φ = a1 ∧+++

a2, where the two literals denote the two subformulas, so the Tseitin proof
must continue the synchronous phase with the ∧+++ rule and we can apply the
⇓ inductive hypothesis to the premises. If G = G1 ∨+++ G2 then φ is the literal
denoting one of the two disjuncts, depending onwhich definitional clause was
selected; the interpreter will extract the according left/right bit for the ∨+++ rule,
and then the ⇓ inductive hypothesis can be used.

We can now use this proof of ΞT
3 ` Θ,Ω,∆,Λ ⇓ G to obtain a proof of

ΞT
3 ` Θ,Ω,∆,Λ ⇑ ·, by combining it with the interpretation of ΞT

2 . There are
two possible cases for Π1: either the proof ends with initial and ai ∈ Ω, or the
proof continues with release, store and begins another asynchronous phase.

i In the first case initiale(ΞT
2 , j) holds for an index j and j : ai ∈ Ω; therefore,

G ∈ Ω′, andwe interpret the decide on the definitional clausewith a decide
on the index j, after which we continue with the interpretation of ΠT

2 we
just saw.

ii In the second case, we have that releasee(ΞT
2 ,Ξ

T
4 ) holds and we apply the ⇑

inductive hypothesis to ΞT
4 `T Θ,Ω,∆,Λ⇑¬ aG to obtain a proof of ΞT

4 `I

Ω′,∆′,Λ ⇑ ¬G. We obtain the required proof by using cut on the formula
∂
+++

G. The left branch of the cut (where the goal formula is ¬ ∂
+++

G = ∂
− ¬G)

immediately removes the delay and continues with the interpretation of
ΞT
4 , while the right branch stores the cut formula at a temporary index in

order to immediately decide on it and continues with the interpretation of
ΞT
3 .
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We already observed at the beginning of this section that if the Tseitin lit-
erals are polarized negatively by the client, the proof has a more constrained
shape. By observing the proof of theorem 4 we can immediately state the fol-
lowing corollary:

Corollary 1. IfΞT `T Θ⇑aF is provablewithout cuts and all the Tseitin literals
have negative polarization, then ΞT `I F̂ is provable without cuts.

Note that we are not asking that the connectives are polarized negatively.
Essentially, the negative polarization of Tseitin literals disallows the choice of
a formula that is not an immediate subformula of one of those in the context.

2.2.4 Resolution refutations
When we introduced the Tseitin transformation in subsection 2.2.3, its chief
motivationwas that of creating short CNF formulas suitable for resolution the-
orem proving. In subsection 1.2.3 we presented an FPC specification for reso-
lution refutations from the literature, where each resolution step is translated
to a cut. Although the solution we just presented can interpret proofs certifi-
cates for arbitrary FPC specifications, it is restricted to cut-free proof evidence
and as such it cannot be used straight away to interpret resolution proofs in the
format from the introduction. Nevertheless, we shall now see that it is indeed
possible to extend the interpretation we just gave to the case of the resolution
FPC.

Consider the formula F from example 5; in order to prove it, we build the
Tseitin transformation for its negation, T ((F )⊥) and provide a resolution refu-
tation for it in fig. 2.7. The resolution FPC from subsection 1.2.3 handles the
interpretation of refutations of formulas as proofs of their negation; therefore,
in our case, it interprets fig. 2.7 as a proof of (T ((F )⊥))⊥, which is (modulo
renaming the subscripts of the Tseitin literals) the dualized Tseitin transfor-
mation of F ; using the interpreter from subsection 2.2.3, we can interpret this
as a proof of the Tseitin polarization of F .

Our concern is that of finding a suitable treatment for the cut inferences.
Recall from the description of the resolution FPC that the cuts that are intro-
duced correspond to each resolution step, where the deduced clause is the
cut formula. As we can see in the refutation trace in fig. 2.7, deduced clauses
can contain any combination of logical literals, and Tseitin literals. The strat-
egy will be that of reconstructing the cuts by using as cut formula the formula
where we substitute to each literal the subformula it denotes. Operationally,
we will use again copy clauses for performing substitutions in λProlog. We
introduce a predicate that we name detseitin for clarity, we initialize the
clauses by copying to themselves all atoms, and we take the set of Tseitin
clauses and build detseitin clauses relating each index to the subformula
it denotes. We add to fig. 2.6 the following clauses:

Listing 2.1: Cut for resolution with Tseitin literals
cut_ke C1 C2 C3 TF :-
cut_tke C1 C2 C3 F,
detseitin F DF, nnf DF PF, polarize_tseitin PF TF.
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Input formula, from 5 F⊥ := G1
⊥ ∧ G2

⊥, where G1
⊥ := (¬ p ∨ q) ∧

(¬ q ∨ p) and G2
⊥ := (¬ p ∨ r) ∧ ((q ∧ ¬ r) ∨ (p ∧ ¬ q))

Tseitin transformation:

aF⊥ (2.1)
(¬ aF⊥ ∨ aG1

⊥) (2.2)
(¬ aF⊥ ∨ aG2

⊥) (2.3)
(¬ aG1

⊥ ∨ ¬ p ∨ q) (2.4)
(¬ aG1

⊥ ∨ ¬ q ∨ p) (2.5)
(¬ aG2

⊥ ∨ ¬ p ∨ r) (2.6)

(¬ aG2
⊥ ∨ a(q∧¬ r) ∨ a(p∧¬ q))

(2.7)
(¬ aq∧¬ r ∨ q) (2.8)
(¬ aq∧¬ r ∨ ¬ r) (2.9)
(¬ ap∧¬ q ∨ p) (2.10)
(¬ ap∧¬ q ∨ ¬ q) (2.11)

aG1
⊥ 2.1, 2.2 (2.12)

aG2
⊥ 2.1, 2.3 (2.13)

¬ p ∨ q 2.12, 2.4 (2.14)
¬ q ∨ p 2.12, 2.5 (2.15)
¬ p ∨ r 2.6, 2.13 (2.16)
a(q∧¬ r) ∨ a(p∧¬ q) 2.7, 2.13 (2.17)

¬ ap∧¬ q ∨ q 2.10, 2.14 (2.18)
¬ aq∧¬ r ∨ p 2.8, 2.15 (2.19)
¬ aq∧¬ r ∨ r 2.19, 2.16 (2.20)
¬ aq∧¬ r 2.20, 2.9 (2.21)
¬ ap∧¬ q 2.11, 2.18 (2.22)
aq∧¬ r 2.17, 2.22 (2.23)
⊥ 2.23, 2.21 (2.24)

Figure 2.7: A resolution refutation for the formula in example 6

detseitin (A ||- B) (A' ||- B') :-
detseitin A A', detseitin B B'.

% Continue similarly with the detseitin clauses

Note in particular that there the formula F provided by the Tseitin cut expert
might contain negated occurrences of Tseitin literals, and therefore after re-
placing them the formula we get is not in negation normal form. We use a
simple predicate nnf to transform it to negation normal form, and then we
introduce the delays as per definition 8.

We now review the three blocks of the FPC specification in fig. 1.7, through
the interpreter in fig. 2.6. The first block concerns the handling of the start
certificates; while at a first glance nothing surprising happens here, note that
the resolution FPC assumes that the storage is empty at the initial state, while
the interpreter expects the object proof to include the indexed Tseitin clauses in
its initial state. We have seen in the introduction that the start certificate gives
rise to a simple synthetic rule where all the starting clauses are subsequently
stored. This rule is applied immediately and it only uses the store and ∨− rules,
which the interpreter executes right away. Therefore, we reach the initial state
that is expected by the interpreter.

Next is the backbone of cuts generated by the rlisti certificate construc-
tor. Here we need to translate the cut formula by using the detseitin clauses
we introduced earlier. Consider for example the first three resolution steps
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(2.12,2.13,2.14) (certificate and indexes annotation are ignored for succinct-
ness in this tree):

Π12

⊢ T ′(G1) ∨+++ T ′(G2) ⇑ (T ′(G1))
⊥

Π13

⊢ T ′(F ), T ′(G1) ⇑ (T ′(G2))
⊥

Π14

⊢ T ′(F ) ⇑ ¬ p ∨− q

...
⊢ T ′(F ) ⇑ (p ∧+++ ¬ q)

⊢ T ′(F ), T ′(G1) ⇑ T ′(G2)
res

⊢ T ′(G1) ∨+++ T ′(G2) ⇑ T ′(G1)
res

⊢ · ⇑ ∂
−
(T ′(G1) ∨+++ T ′(G2))

res

The situation is slightly more complex when several Tseitin or non-Tseitin
are mixed. For example, in steps 2.17 and 2.18 we get the following (where Γ
contains the previously stored deduced lemmas, and the second tree contains
the right branch Πr of the first tree):

Π17

⊢ Γ ⇑ (q ∧+++ ¬ r) ∨− (p ∧+++ ¬ q)

Πr

⊢ Γ ⇑ (¬ q ∨− r) ∧+++ (¬ p ∨− q)

⊢ Γ ⇑ ·

Π18

⊢ Γ, (¬ q ∨− r) ∧+++ (¬ p ∨− q) ⇑ (¬ p ∨+++ q) ∨− q

...
⊢ Γ, (¬ q ∨− r) ∧+++ (¬ p ∨− q) ⇑ (p ∧− ¬ q) ∧+++ q

⊢ Γ ⇑ (¬ q ∨− r) ∧+++ (¬ p ∨− q)

When building the second cut formula, the occurrence of the Tseitin literal
ap∧¬ q in¬ ap∧¬ q∨q is replaced by the denoted formula, and through the nega-
tion normal form transformation we obtain (¬ p ∧+++ q) ∨− q.

Finally, the dlist constructor checks each resolution step on the left-hand
side of the cuts we have introduced. This is where we see in action the inter-
preter for the Tseitin constants. In fact, a certificate of the form dlist [i,j]
steers the proof through at least one decide on one of i or j, which are indexes
for possibly Tseitin clauses. Let’s analyzeΠ12, corresponding to the resolution
step 2.12. For the sake of greater clearness, fig. 2.8 shows how the argument
is reconstructed by leaving Tseitin constants in, in the original resolution FPC.
The dlst certificate determines a decide rule on the Tseitin clause stored at 2.3,
which is then split in two branches; the first one is concluded by finding aF⊥ in
the storage at index 1, while the second is concluded by finding the resolvant
indexed at lit.

dl [1] ` 1 : ¬ aF⊥ , l : aG1
⊥ ⇓ aF⊥ dl [1] ` 1 : ¬ aF⊥ , l : aG1

⊥ ⇓ ¬ aG1
⊥

dlist [2.1] ` 2.1 : ¬ aF⊥ , lit : aG1
⊥ ⇓ (aF⊥ ∧+++ ¬ aG1

⊥)

dlist [2.1,2.2] ` 2.1 : ¬ aF⊥ , lit : aG1
⊥ ⇑ · dec 2.2

dlist [2.1,2.2] ` 2.1 : ¬ aF⊥ ⇑ aG1
⊥

Figure 2.8: Resolution step check for 2.12

Figure 2.9 contains the interpreted proof. We have just seen that the decide
on clause 2.2 uncovers an ∧+++ that has a left-side branch that ends with an initial
on the complementary literal stored at 2.1, an index that corresponds to a for-
mula that is available in the non-Tseitin storage where it refers to F . Therefore,
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the clause for the decide of the Tseitin interpreter is satisfied: this is mapped
to a direct decide on the stored 2.1, to uncover its subformulas. The correct in-
dex for ∨+++ is nondeterministically reconstructed, andwe reach the second initial
from the original resolution proof. The Tseitin interpreter is now focused on a
negative formula, thus performs a release and ends the proof with a mimic on
the dual subformula stored at lit.

mimic lit ` 1 : ∂
+++

F⊥, lit : (¬ p ∨− q) ∧+++ (¬ q ∨− p) ⇑ (p ∧+++ ¬ q) ∨− (q ∧+++ ¬ p)

dlist [2.1] ` 1 : ∂
+++

F⊥, lit : (¬ p ∨− q) ∧+++ (¬ q ∨− p) ⇓ ∂
−
(T ′(G1))

rel

dlist [2.1] ` 1 : ∂
+++

F⊥, lit : (¬ p ∨− q) ∧+++ (¬ q ∨− p) ⇓ ∂
−
(T ′(G1)) ∨+++ ∂

−
(T ′(G2))

dlist [2.1,2.2] ` 1 : ∂
+++

F⊥, lit : (¬ p ∨− q) ∧+++ (¬ q ∨− p) ⇑ ·
dec 2.2

dlist [2.1,2.2] ` 1 : T ′(F ) ⇑ (¬ p ∨− q) ∧+++ (¬ q ∨− p)

Figure 2.9: Tseitin interpretation of fig. 2.8

This case was simple: the resolution step precisely resolved the Tseitin
clause against its head literal, and the literal denoted the formula F which was
in the context. What we get is exactly the selection of an immediate subfor-
mula. This is the case also for the proofs trees Π13,Π14 and Π17 in the partial
backbones we considered before. Consider now the subproof Π18 verifying
the resolution step 2.18, which starts with the certificate dlist [2.10, 2.14]
and resolves a Tseitin clause with a deduced clause upon a non-Tseitin literal.
Its interpretation is shown in fig. 2.10. Just like in fig. 2.9, an entire subformula
is stored at lit. However, this is no longer the unveiled body of a definitional
clause, but it is instead the head of the clause composed with a literal from
another clause. Still, the decision on index 2.10 corresponds to a decision on a
definitional clause for a subformula which is now stored ad lit (to make this
clearer, see the partial derivation for the original resolution proof in fig. 2.11).
The decision on the stored subformula leads to the selection of its subformula
¬ p and, since the other resolvant is a deduced clause that does not contain any
Tseitin literal, the proof can be concluded as a usual resolution proof.

` Γ, lit : (¬ p ∨+++ q), lit : q, lit : ¬ p ⇓ p ` Γ, lit : (¬ p ∨+++ q), lit : q, lit : ¬ p ⇓ ¬ q

dlist [] ` Γ, lit : (¬ p ∨+++ q), lit : q, lit : ¬ p ⇓ p ∧+++ ¬ q

dlist [2.14] ` Γ, lit : (¬ p ∨+++ q), lit : q, lit : ¬ p ⇑ · decide 2.14

dlist [2.14] ` Γ, lit : (¬ p ∨+++ q), lit : q ⇑ ¬ p

dlist [2.14] ` Γ, lit : (¬ p ∨+++ q), lit : q ⇓ ¬ p

dlist [2.14] ` Γ, lit : (¬ p ∨+++ q), lit : q ⇓ (¬ p ∨+++ q)

dlist [2.10,2.14] ` Γ, lit : (¬ p ∨+++ q), lit : q ⇑ · decide lit

dlist [2.10,2.14] ` Γ ⇑ (¬ p ∨+++ q) ∨− q

Figure 2.10: Tseitin interpretation of the resolution step check 2.18

We have seen that with a careful treatment of the cut formulas we have
obtained a reconstruction procedure for resolution using the Tseitin transfor-
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dlist [2.14] ⊢ lit : ¬ ap∧¬ q, lit : q ⇓ ap∧¬ q

...
dlist [2.14] ⊢ lit : ¬ ap∧¬ q, lit : q ⇓ ¬ p

dlist [2.14] ⊢ lit : ¬ ap∧¬ q, lit : q ⇓ ap∧¬ q ∧ ¬ p

dlist [2.10,2.14] ⊢ lit : ¬ ap∧¬ q, lit : q ⇑ ·
dlist [2.10,2.14] ⊢ ⇑¬ ap∧¬ q ∨ q

Figure 2.11: Partial derivation of the resolution step check for eq. (2.23)

mation as a pre-processing step. Moreover, the resolution FPC from subsec-
tion 1.2.3 uses a negative polarization for the literals; therefore, we do not in-
troduce more cuts in the proof due to this additional step. One could argue
that, since some resolution steps (such as inference 2.12) are only used to ex-
pand on a Tseitin clause, then one should be able to avoid completely the use
of cuts inmany places. While this is certainly true, our aim herewas that of de-
vising a general methodology to treat proof evidence with Tseitin definitions.
A more ad-hoc solution specifically targetting resolution refutation could be
more optimized.

2.3 Further references

skolemization has a long story in mathematical logic, either as a technique for
theorem proving or as part of the eponymous theorem of Skolem. This the-
orem is usually stated in the context of model theory as saying that any first
order theory that has a model has a countable model. Its proof involves con-
structing a model with a set of additional constants and function symbols, in a
similar way as we see in the proofs of skolemized statemets. The paradoxical
result is that even a theory that appearently talks about uncountable sets has a
model where those sets are countable. This seems to be rooted in the fact that
we can replace the actual individuals of the formula with formal placeholders,
that only maintain the information on their mutual dependency (with various
levels of strictness, as we have seen). Hilary Putnam (who helped popularize
skolemization as a technical device for theorem proving [DP60]) used this fact
at the center of one of his most notoriously difficult arguments in his philoso-
phy of mind [Put80], whereby he refused the idea that what one talks about in
logic is a mind-independent reality; however one tries to further specify what
is the reference of their discourse, the result is “just more theory” being added,
which is still subject to Skolem’s theorem.

Several languages for the representation of mathematical knowledge, or in-
ferences more generally, have faced the problem of including a construct to
handle generic individuals. We cite a few, and the way their constructions are
devised. This should convince us that they could be handled by an appropri-
ate FPC with the methodology that we have introduced:

• The TSTP format, part of the TPTP benchmark for theorem provers, con-
tains a proof directive to indicate the creation of a new name [SZS]. This
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is not limited to skolemization but could in principle serve other purpose,
which is still perfectly in scope of our treatment.

• The Alethe proof language, proposed for use in cvc5, uses choice oper-
ators instead. While different in presentation, they can be explained as
naming devices as well.

• The RDF format for the semantic web has a notion of “Blank node” that
doesn’t have a name and depends on its location. Those nodes can be
assigned a name by the user through a method that is called skolemiza-
tion in that context. A similar attempt by the W3C was the Provenance
Markup Language [Sem].

• The MathML format for the representation on the web of mathematical
data and mathematical proofs, also by the W3c [Bou] provides a prim-
itive notion of bound variable that needs to pass an aciclicity constraint
(however at the moment of writing most of MathML is not implemented
in any browser).

Tseitin transformation are present in many places in the literature of proof
theory. In the same paper where he introduced focusing for linear logic, J.-M.
Andreoli proposed a logic programming language called LinLog, that resem-
bles languages based on uniform proofs. This language only uses a fragment
of linear logic, and thus its search procedure is not directly a complete focused
theorem proving procedure; in order to use the proof-search procedure of Lin-
Log for full linear logic, Andreoli provides a series of transformations of lin-
ear logic formulas into this fragment. One of these transformations, which he
calls skolemization, is actually a Tseitin transformation; our opinion is that he
would just have needed to include delays in his system. The geometrisation of
theories by Dyckhoff and Negri is also tightly related [DN15].

The Z3 SMT solver has some documentation about how the Tseitin transfor-
mation is presented in proof objects produced by the prover [MB08]: literals
are introduced as quotations of each subformula, and the proof trace uses an
axiom that is parametrized by the subformula, indicating that a definitional
clause has been used. Current works on extracting proofs from Z3 for the use
in proof assistants [Boh09; PSU21] build lemmas for each of these steps; how-
ever, since the proofs are a variation of resolution proofs it should be possible
to reconstruct them without cuts, as per corollary 1.





Chapter 3

Linearized arithmetic

The expressiveness of first order logic is very limited, especially since its foun-
dations eschew on purpose any mathematical principle. If we wish to formal-
ize reasoning over a specific theory, there are several roads that can be taken.

In the realm of proof assistants it is typical to have different notions of in-
ductive definition as a basis for the description of mathematical structures.
Indeed, inductive definitions are very close to the usual style of definitions in
mathematics.

David Baelde [BM07b] introduced the system µMALL, consisting of linear
logic without exponentials and with fixed points, and proved completeness
of a focused proof system for it. In this chapter we prove some additional
results about this and related systems. We show some initial connections with
axiomatic systems of arithmetic, and we propose a way to identify functional
computations.

While the formal semantics of Foundational Proof Certificates has not yet
been extended to these systems, the results exposed in this chapter are meant
to help lay out such a semantics. Focusing has already been employed to de-
velop theorem proving tools in [BMS10]. Hetzl and Wong started a program
analyzing methods in theorem proving for arithmetic with the help of struc-
tural proof theory [HW18].

3.1 Systems of arithmetic based on fixed point definitions

The logical basis for most of this chapter will be multiplicative-additive linear
logic, the subsystem of linear logicwhere contraction andweakening are never
allowed. The ∧+++ , ∧− and ∨+++ , ∨− connectives are not provably equivalent without
contraction and weakening, and we will therefore introduce the linear logic
notation⊗,& and⊕,`. Once contraction andweakening are allowed inMALL
we get full equiprovability with LKwith the linear connectives replaced by the
polarized ones.

The system µMALL adds to MALL the two unary connectives µ and ν,
denoting respectively the least and greatest fixpoint of a predicate operator.
By following Church’s notation, as we did in 1, we have that a propositional
predicate operator has type o → o; the two new connectives construct a new
predicate out of the operator, and therefore in the propositional case their type
is (o → o) → o. When we move to first order logic, the type of n-ary predi-
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cate operators is (

n︷ ︸︸ ︷
i → · · · → i → o) → (

n︷ ︸︸ ︷
i → · · · → i → o). This means that

the µ and ν operators are actually a family of operators one for each arity,
building predicates of arity n from operators of arity n, and whose type is

((

n︷ ︸︸ ︷
i → · · · → i → o) → (

n︷ ︸︸ ︷
i → · · · → i → o)) → (

n︷ ︸︸ ︷
i → · · · → i → o). However,

there is usually no ambiguity in the usage, and we will leave out these details.
In addition to these, we treat equality as a logical connective, and include the
symbols = and 6= of type i → i → o.

The system has no undefined predicates, and therefore all predicates are
built out of the µ or ν operators applied to an operator. We will explicitly use
the lambda notation when building predicates, like in ((µλPλx(B P x)) t):
here we abstract both on a term variable x and on a predicate variable P (this
is reminiscent of the fact that the inductive reasoning we are trying to capture
deals with a restricted form of second order reasoning). Predicate operators,
and therefore predicate variables, can only appear in fixed point constructions;
the polarity of atoms built with predicate variables is therefore dependent on
what kind of occurrence this is, and will be positive when occurring in a µ
fixed point, negative in the ν fixed point.

If we include the constant symbols 0 of arity 0 and s of arity 1, we can now
express natural numbers with the fixed point:

nat := µλNλn(n = 0 ⊕ ∃n′(n = (s n′) ⊗ N n′))

3.1.1 Proof rules
The rules are divided in three groups: fig. 3.1 shows the rules for the fragment
of linear logic without exponentials; fig. 3.2 shows the rules for fixed points;
fig. 3.3 contains the weakening and contraction rules that extend the system
µMALL to be classical. We call the classical system µLK.

The ν-rule can be better understood by noting that in a two-sided sequent
calculus it becomes the following two rules:

Γ, St̄`∆ BSx̄`Sx̄
Γ, µBt̄`∆ induction

Γ`∆, St̄ Sx̄`BSx̄

Γ`νBt̄,∆
coinduction

That is, the one rule for ν yields both coinduction and induction. In gen-
eral, we shall speak of the higher-order substitution term S used in both of
these rules as the invariant of that rule (therefore we will not use the term co-
invariant even though that might be more appropriate in some settings).

The left-hand side states that, when we are drawing a conclusion from the
least fixed point of an operator, we need to start by finding an invariant for the
operator. Then, the proof consists a proof of the conclusion from the invariant,
together with a proof of the fact that the invariant really is one. In the case of
the nat fixed point we just introduced, we get:

Γ, S x`∆
`S 0

S n′`S (s n′)

∃n′(x = (s n′) ⊗ S n′)`S x

x = 0 ⊕ ∃n′(x = (s n′) ⊗ S n′)`S x

Γ, natx`∆ induction
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The three premises are easily recognizable as a formalization of induction
on natural numbers, where we check that S holds of 0 and that whenever S
holds of n′, it holds of its successor as well.

We make the following additional observations about this proof system.

1. The µν rule is a limited form of the initial rule. The general form of the
initial rule, namely, that the sequent `Q, (Q)⊥ is provable, is admissible:
this more general rule is named init.

2. The rule for µ allows for the µ fixed point to be unfolded. This rule cap-
tures, in part, the identification of µB with B(µB); that is, that µB is
a fixed point of B. This inference rules allows one occurrence of B in
(µB) to be expanded to two occurrences of B in B(µB). In this way,
unbounded behaviors can appear in µMALL where it did not occur in
MALL.

3. The unfold rule in Figure 3.3, which simply unfolds ν-expression, is ad-
missible in this proof system by using the ν-rule with the invariant S =
B(νB).

4. In the 6=-introduction rule, if the terms t and t′ are not unifiable, then the
premise is empty and the conclusion is immediately proved.

3.1.2 Encoding arithmetical statements
We saw how the induction rule can capture a reasoning similar to the usual
induction on natural numbers. We now bring forward this argument to arith-
metical statements, and show in particular that since µLK is based on classical
logic it can prove an appropriate encoding of all the statements of PeanoArith-
metic (PA).

Consider as a standard presentation of PA a system based on first order
(non polarized) logic with equality, with a language consisting of 0, s,+, · and
the following axioms:

∀x. (s x) 6= 0 ∀x. ∀y(x+ s x) = s(x+ y)
∀x∀y. (s x = s y) ⊃ (x = y) ∀x. (x · 0 = 0)
∀x. (x+ 0 = x) ∀x. (x · s y = (x · y + x))
(A0 ∧ ∀x. (Ax ⊃ A(s x))) ⊃ ∀x.Ax

We start by observing that while we need to have the constants 0 and s in
the language, we don’t need to introduce the symbols for addition and multi-
plication in our language. Indeed, it is sufficient to encode them as the fixed
points:

plus :=µλPλnλmλp((n = 0 ⊗ m = p) ⊕
∃n′∃p′(n = (s n′) ⊗ p = (s p′) ⊗ P n′ m p′))

mult :=µλMλnλmλp
(
(n = 0 ⊗ p = 0) ⊕

∃n′∃p′(n = (s n′) ⊗ plus m p′ p ⊗ M n′ m p′)
)



60 Chapter 3. Linearized arithmetic

`Γ, P `∆, Q

`Γ,∆, P ⊗ Q
⊗

`1 1
`Γ, P,Q

`Γ, P ` Q
` `Γ

`Γ,⊥ ⊥

`Γ, P `Γ, Q
`Γ, P & Q

& `∆,> >
`Γ, Pi

`Γ, P0 ⊕ P1
⊕

`Γ, P t

`Γ, ∃x.Px
∃

`Γ, Py

`Γ, ∀x.Px
∀

Figure 3.1: Multiplicative-Additive linear logic

{ `Γθ : θ = mgu(t, t′) }
`Γ, t 6= t′

6=
` t = t

=
`Γ, St̄ `BSx̄, (Sx̄)

`Γ, νBt̄
ν

`Γ, B(µB)t̄

`Γ, µBt̄
µ

`µBt̄, νBt̄
µν

Figure 3.2: Add these rules to the core set to get µMALL

`Γ, B(νB)t̄

`Γ, νBt̄
unfold

`Γ, Q,Q

`Γ, Q C
`Γ

`Γ, Q W
`Γ, Q `∆, Q

`Γ,∆ cut

Figure 3.3: Additional rules for classical logic

The induction principle is now a rule rather than an axiom, and we carry
out induction on the naturals by reasoning over the inductively defined nat
predicate. Accordingly, we define a translation □◦ from formulas of PA to for-
mulas of µLK that extends the usual polarizing translation □̂ as follows:

Definition 9 (Embedding of PA in µLK).

(∀x.A)◦ := ∀x. ((nat x)⊥ ` (Ax)) (∃x.A)◦ := ∃x. (nat x ⊗ (Ax))

(x+ y = w)◦ := plus x y w (x · y = w)◦ := mult x y w

(A ∧B)◦ := polar. translation (A ∨B)◦ := polar. translation
(¬A)◦ := ¬(A)◦

Checking that the translation of the axioms of PA is provable in µLK is not
particularly challenging:

Theorem 5 (µLK contains Peano arithmetic). Let Q be any unpolarized formula
and let Q̂ be a polarized version of Q. If Q is provable in Peano arithmetic then (Q̂)◦

is provable in µLK.
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Proof. It is easy to prove that mult and plus describe precisely the multiplica-
tion and addition operations on natural numbers. Furthermore, the transla-
tions of the Peano Axioms can all be proved in µLK. We illustrate just one of
these axioms here. In particular, a polarization of the translation of the induc-
tion scheme is

(
(
A0 ⊗ ∀x. ((nat x)⊥ ` (Ax)⊥ ` A(s x))

)
)⊥ ` ∀x. ((nat x)⊥ ` Ax)

An application of the ν rule to the second occurrence of (nat x)⊥ can provide
an immediate proof of this axiom. Finally, the cut rule in µLK allows us to
encode the inference rule of modus ponens.

As we have seen for the definitions of mult and plus, the mechanism of
fixed points is particularly well suited for encoding definitions in the style of
logic programming. We can encode the specification of primitive recursive
functions as µMALL formulas in the following way:

succ(y, z) := z = Sy

projin(ȳ, z) := z = yi

If F and G1 . . . Gn are the specification of the functions f, g1, . . . gn, then the
specification H of their composition h is given by

H(ȳ, z) := ∀x̄.G1(ȳ, x1) ⊸ G2(ȳ, x2) . . . Gn(ȳ, xn) ⊸ F (x̄, z)

If F and G are the specification of f of arity n and g of arity n + 2, then the
specification H of the function h obtained by primitive recursion is

H := µλH.λn.λȳ.λz.(n = 0 ⊗ F (ȳ, z))

⊕ (∃m.∃o.n = Sm ⊗ H(n, ȳ, o) ⊗ G(m, o, ȳ, z))

We can easily be convinced that for any primitive recursive function f there
is a specification F such that f(x̄) = z if and only if F (x̄, z) holds.

3.1.3 Consistency of µ LK
We move on to show that the classical system arising from the addition of the
structural rules to µMALL is consistent. By second-order linear logic, LL2,
we mean the logic of MALL with the addition of the following logical connec-
tives: two exponentials ! and ?, negation (·)⊥, equality and non-equality, and
first-order and second-order quantification (no occurrences of fixed points are
permitted). Cut-elimination of this version of LL2 follows fromGirard’s origi-
nal cut-elimination proof [Gir87b] (see also [Oka99]) and the cut-elimination
proofs known for equality and non-equality [Gir92; SH93].

We translate µLK formulas into LL2 formulas by translating fixed point ex-
pressions into second-order quantified formulas, quantifying over the invari-
ant. The least fixed point expression µBx̄ should be translated to a formula
roughly of the form ∀S

(
!(∀y⃗ . BSy⃗ ⊸ Sy⃗) ⊸ Sx̄

)
. This translation must

also insert ? into formulas in order to account for the fact that in µLK, any for-
mula can be contracted and weakened at any point in a proof. The translation
is given as follows.
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• dt = se = ?(t = s) and dt 6= se = ?(t 6= s)

• d∀x.Pxe = ? ∀x.dPxe and d∃x.Pxe = ? ∃x.dPxe.

• dB ⊗ Ce = ?(dBe ⊗ dCe), dB ` Ce = ?(dBe ` dCe), dB & Ce =
?(dBe & dCe),
dB ⊕ Ce = ?(dBe ⊕ dCe)

• d1e = ?1, d⊥e = ?⊥, d0e = ?0, d>e = ?>

• dµBx̄e = ? ∀S[(? ∃y⃗ . dBeSy⃗ ⊗ (Sy⃗)⊥) ` Sx̄ ]

• dνBx̄e = ? ∃S[(! ∀y⃗ . dBeSy⃗ ` (Sy⃗)⊥) ⊗ Sx̄ ]

• dAe = A where A is an atomic formula.

• The d·e operator commutes with λ-abstraction: dλx.Be = λx.dBe. This
feature of d·e permit translating invariants and the body of fixed point
expressions.

• The d·e operator can be applied to amultiset of formulas: dΓe = {dP e | P ∈
Γ}.

Note that when B is the λ-abstraction λpλx̄.C, where C is a µMALL for-
mula, p is a first-order predicate variable, and x̄ is a list of first-order variables,
then dBedSet̄ is equal to dBSt̄e up to λ-conversion. We shall also need the
following inference rule in LL2, which is a kind of generalization of the cut
rule.

` Γ, BQt̄ ` ¬(Qx̄), P x̄

` Γ, BP t̄
deep.

Here, of course, the first-order variables x̄ are new. Also, the expression B has
the type that takes a first-order predicate to a first-order predicate and also
monotonic, meaning that there are no occurrences of negated predicate vari-
ables in B. It is proved in [BM07a, Proposition 2] that this rule is admissible
in LL2. This rule essentially allows us to move from the fact that Q ⊆ P and
to the fact that BQ ⊆ BP .

Lemma 1. If ` Γ is derivable in µLK then ` dΓe is derivable in LL2.

Proof. We proceed by induction on the structure of cut-free µLK proofs. In
particular, assume that ` Γ has a cut-free µLK proof Ξ.
Case: The last inference rule of Ξ comes from Figure 3.13.2, i.e., it is an intro-
duction rule for a propositional connective, a unit, or a quantifier. For example,
assume that this last inference rule is the following ⊗ introduction rule.

` Γ, P ` ∆, Q

` Γ,∆, P ⊗ Q
⊗

By the inductive assumption, ` dΓe, dP e and ` d∆e, dQe have LL2 proofs.
Hence, ` dΓe, d∆e, dP e ⊗ dQe has an LL2 proof. By using the dereliction
rule for ? and the definition of d·e, we know that ` dΓ,∆e, dP ⊗ Qe has an LL2

proof.
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Case: The last inference rule is either weakening W or contraction C. Since
the image of d·e always has a ? exponential as its top-level connective, the cor-
responding LL2 inference rule is built with the same structural rule.
Case: The last inference rule ofΞ is one of the fixed point rules from Figure 3.2.
Assume, for example, that the last rule is

` µBt̄, νBt̄
µν

The desired translation of this inference rule into LL2 is

` dBeSy⃗, d(B)⊥e(λw⃗(Sw⃗)⊥)y⃗ ` (Sy⃗)⊥,¬((Sx̄)⊥)
init

` dBeSy⃗ ⊗ (Sy⃗)⊥, d(B)⊥e(λw⃗(Sw⃗)⊥)y⃗ ` ¬((Sy⃗)⊥)
`,⊗

` ? ∃y⃗.dBeSy⃗ ⊗ (Sy⃗)⊥, !(∀y⃗.d(B)⊥e(λw⃗(Sw⃗)⊥)y⃗ ` ¬((Sy⃗)⊥))
!R, ?D, ∀, ∃

` Sx̄, (Sx̄)⊥
init

` ?(∃y⃗.dBeSy⃗ ⊗ (Sy⃗)⊥) ` Sx̄ , !(∀y⃗.d(B)⊥e(λw⃗(Sw⃗)⊥)y⃗ ` ¬((Sy⃗)⊥)) ⊗ (Sx̄)⊥
`,⊗

` ?(∃y⃗ . dBeSy⃗ ⊗ (Sy⃗)⊥) ` Sx̄ , ∃S[!(∀y⃗ . d(B)⊥eSy⃗ ` (Sy⃗)⊥) ⊗ Sx̄ ]
∃λw⃗(Sw⃗)⊥

` ? ∀S[?(∃y⃗ . dBeSy⃗ ⊗ (Sy⃗)⊥) ` Sx̄ ], ? ∃S[!(∀y⃗ . d(B)⊥eSy⃗ ` (Sy⃗)⊥) ⊗ Sx̄ ]
?D, ∀

An induction on the structure of the formula B provides a proof that there is
an LL2 proof of remaining open premise.

Assume instead that the last rule of Ξ is the introduction for ν, namely,

` Γ, St̄ ` BSx̄, (Sx̄)
⊥

` Γ, νBt̄
ν

The higher-order quantifier that appears in the LL2 encoding is instantiated
with dSe. Thus, the desired LL2 proof is

` dBSx̄e, d(Sx̄)⊥e ` ¬(d(Sx̄)⊥e),¬(dSex̄)
` dBedSex̄,¬(dSex̄) cut ` dΓe, dSt̄e

` dΓe, !(∀y⃗ . dBedSey⃗ ` ¬(dSey⃗)) ⊗ dSet̄
⊗, ∀,`

` dΓe, ? ∃S[!(∀y⃗ . dBeSy⃗ ` ¬(Sy⃗)) ⊗ St̄ ]
?D, ∃ S 7→ dSe

By the inductive hypothesis, the leftmost and rightmost premises have LL2

proof. Induction on first-order abstractions such as S shows that the middle
premise also has an LL2 proof.

Assume instead that the last rule of Ξ is the introduction for µ, namely,

` Γ, B(µB)t̄

` Γ, µBt̄
µ

We first show that ` dBedµBet̄ ⊸ dµBt̄e has an LL2 proof for all B and t̄.

` (dBedµBet̄)⊥, dBedµBet̄
init Ξ

` ?(∃y⃗ . dBeSy⃗ ⊗ (Sy⃗)⊥), (dµBex̄)⊥, Sx̄
` (dBedµBet̄)⊥, ?(∃y⃗ . dBeSy⃗ ⊗ (Sy⃗)⊥), dBeSt̄

deep
` (St̄)⊥, St̄

init

` (dBedµBet̄)⊥, ?(∃y⃗ . dBeSy⃗ ⊗ (Sy⃗)⊥), dBeSt̄ ⊗ (St̄)⊥, St̄
⊗

` (dBedµBet̄)⊥, ?(∃y⃗ . dBeSy⃗ ⊗ (Sy⃗)⊥), St̄
C,D, ∃

` (dBedµBet̄)⊥, dµBt̄e
?, ∀,`
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Here,Ξ is a straightforwardLL2 proof. Finally, using this proof of` (dBedµBet̄)⊥, dµBt̄e
and the cut rule for LL2, we have shown the soundness of the µ rule in Fig-
ure 3.2.

Theorem 6. µLK is consistent

Proof. Assume that ` B and ` (B)⊥ have µLK proofs. By Lemma 1, we know
that` dBe and` d(B)⊥ehaveLL2 proofs. While it is not the case that d(B)⊥e =
(dBe)⊥, a simple induction on the structure of B shows that d(B)⊥e ` (dBe)⊥
is provable in LL2. Since LL2 has a cut rule, we know that there is an LL2

proof of ` · (the empty sequent). By the cut-elimination theorem of LL2, this
sequent also has a cut-free LL2 proof, which is impossible.

3.2 Linearly and classically provable statements

The combined action of linearity on one side and the availability of inductive
predicates on the other, renders the task of understanding the class of formu-
las that are provable in µMALL particularly difficult. The matter has been
extensively analyzed in the λ-calculus literature, where it corresponds to ana-
lyzing the behavior of a recursion operator in absence of the contraction rule
(see [DL05; Alv+10]), as well as more recently in the context of cyclic proof
systems [KPP21].

In the original work on µMALL by David Baelde [Bae08], it was shown
how one can obtain primitive recursive functions in a Curry-Howard interpre-
tation of µMALL; the first order counterpart to that encoding was presented
in subsection 3.1.2. Establishing an upper bound remains an open problem.
Our attempt at tackling the question has been by comparison with µLK. We
present here some results on a fragment were the two systems coincide.

When trying to compare µMALLwith µLK, we find that there are a number
of statements that are provable in µLK but not in µMALL since their proofs
require contraction. Take for example the formula ⊥ ⊸ ⊥ ⊗ ⊥ or the for-
mula ∀x∀y(x = y ⊕ x 6= y), which are provable in µLK by using contraction,
but not provable in µMALL. We now wish to identify classes of formulas for
which provability in µLK is conservative over µMALL: we do this by mak-
ing restrictions on the polarities of the connectives that appear in formulas.
Both the small counterexamples we mentioned before involved an alternation
of positive and negative connectives. Our first conservativity result involves
examining purely positive formulas.

Theorem 7. Let Γ be a multiset of purely positive formulas. If ` Γ has a µLK proof,
then there exists a P ∈ Γ such that ` P has a µMALL proof.

Proof. This proof proceeds by induction on the structure of cut-freeµLKproofs.
Since the µν rule is not applicable, the only possible base cases are the intro-
duction rules for = and 1, and, in both cases, the theorem holds immediately.

In the inductive step, consider the case of an application of the ⊗ rule to
derive the sequent ` Γ,∆, P ⊗ Q from the premises ` Γ, P and ` ∆, Q. By the
inductive hypothesis, each of these premises contains a formula that is prov-
able in µMALL. We distinguish three different subcases depending on which
of the formulas in the premises are selected.
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• P and Q are selected. Then by an application of ⊗ we can prove in
µMALL P ⊗ Q, which appears in the endsequent.

• R ∈ Γ is selected. ThenR is provable in µMALL by inductive hypothesis
and appears in the endsequent.

• R ∈ ∆ is selected. As in the previous point.

The cases for introducing ⊕, ∃, µ are analogous and simpler. We are left with
the cases of weakening and contraction and in these cases, the conclusion is
immediate.

A consequence of this theorem is the following. Let Q be an arithmetic
formula that can be polarized as a purely positive formula Q̂. By definition 9,
if ` Q has a proof in Peano Arithmetic then ` Q̂◦ has a proof in µMALL. It
is important to note that induction (the ν inference rule) does not play a role
in this proof, since, to use induction, we require the presence of the negative
connective ν.

The use of induction in µMALL allows for some formulas to be weakened
and contracted. The following proposition is well known and can be proved
by induction of the structure of purely negative formulas [Bae12a].

Proposition 1. Theweakening and contraction rules are admissible in µMALL
for purely negative formulas.

Another way to state this proposition is that the linear logic equivalence
N ˛ ?N holds for purely negative formulas N . Thus, expressions such as
(nat 5)⊥ and (plus n m p)⊥ can be used any number of times within a µMALL
proof. (If we presented a two-sided sequent system for µMALL then assump-
tions such as nat 5 and plusnmp can be used any number of times.) As a result,
µMALL proofs can, occasionally, feel like working in a classical logic setting.
A similar result is known for linear lambda calculi, where, in the presence of a
recursor, one can obtain duplication and erasure for the type of natural num-
bers (but not for functions) [Alv+06].

Definition 10. A bipolar formula is a negative formula in which no negative
connective occurrence appears in the scope of a positive connective. Thus, a
bipolar formula consists of some negative top-level connectives with purely
positive subformulas underneath: there is at most one alternation of polarity
from negative to positive.

By employing the polarizing translation from Peano Arithmetic, we can
view these classes as containing some fragments of the arithmetical hierarchy.

Proposition 2. Let P be a formula of Peano Arithmetic. Then

• If P is Σ0
1, there is a polarization P̂ ◦ that is purely positive.

• If P is Π0
2, there is a polarization P̂ ◦ that is a bipolar formula.

One should not be led into confusion by thinking that, thanks to Theorem 7,
we could prove open, purely positive formulas and then strengthen them by



66 Chapter 3. Linearized arithmetic

universal quantification in order to get stronger theorems expressing, for ex-
ample, the totality of a function. For example, a formula such as ∃x .plus a b x
is not provable since it requires more information on the a and b variables
(and the proof needs to proceed by induction on them). The provable for-
mula that expresses totality of the plus relation is then ∀x. nat x ⊃ ∀y. nat y ⊃
∃u .plus x y u, which is a bipolar formula. Note that the two examples of µLK
provable formulas without µMALL proofs at the start of this section are not
bipolar formulas.

When the induction rule ν is available, we will restrict occurrences of in-
ductive invariants to be purely positive in order to prevent complex formulas
from appearing in proofs. We callµLK1 the system consisting of the same rules
as µLK but where the inductive invariants are restricted to be purely positive.
The notation comes from the fact that this fragment is similar to the fragment
IΣ1 of Peano Arithmetic.

We now finish this section with proving that any bipolar formula provable
in µLK1 is provable in µMALL. This conservativity result can be applied to
the formulas stating the totality and determinancy properties of relations de-
fined by purely positive fixed points are all bipolar formulas. The proof of this
result would be aided greatly if we had a focusing theorem for µLK. If we
take the focused proof system for µMALL given in [Bae12a; BM07a] and add
contraction and weakening in the usual fashion, we have a natural candidate
for a focused proof system for µLK. However, the completeness of that proof
system is currently open. As Girard points out in [Gir91], the completeness
of such a focused (cut-free) proof system would allow the extraction of the
constructive content of classical Π0

2 theorems, and we should not expect such
a result to follow from the usual ways that we prove cut-elimination and the
completeness of focusing. As a result of not possessing such a focused proof
system for µLK, we must reproduce aspects of focusing in order to prove our
conservation result.

Definition 11. A reduced sequent is a sequent that contains only purely nega-
tive, purely positive, and bipolar formulas. If Γ1 and Γ2 are reduced sequents,
we say that Γ1 contains Γ2 if Γ2 is a sub-multiset of Γ1. Finally, we say that a
reduced sequent is a pointed sequent if it contains exactly one formula that is
either purely positive or bipolar.

Definition 12. A positive region is a cut-free µLK1 proof that contains only the
inference rulesµν, contractions, weakening, and introduction rules for the pos-
itive connectives.

Definition 13. The Cνν rule is the following derived rule of inference.

` Γ, St⃗, U t⃗ ` BUx̄, (Ux̄)⊥ ` BSx̄, (Sx̄)⊥

` Γ, νBt⃗
Cνν

The Cνν rule is justified as the following combination of ν and contraction
rules.

` Γ, St⃗, U t⃗ ` BUx̄, (Ux̄)⊥

` Γ, νBt⃗, St⃗
ν

` BSx̄, (Sx̄)⊥

` Γ, νBt⃗, νBt⃗
ν

` Γ, νBt⃗
C
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Since we are working within the setting of µLK1, the invariants S and U are
purely positive.

Definition 14. A negative region is a cut-free µLK1 partial proof in which the
open premises are all reduced sequent and where the only inference rules are
introductions for negative connectives plus the Cνν rule.

Lemma 2. If a reduced sequent Γ has a positive region proof then Γ contains
a pointed sequent that has a µMALL proof.

Proof. This proof is a simple generalization of the proof of theorem 7.

Lemma 3. If every premise of a negative region contains a pointed sequent
with a µMALL proof, then the conclusion of the negative region contains a
pointed sequent with a µMALL proof.

Proof. This proof is by induction on the height of the negative region. The
most interesting case to examine is the one where the last inference rule of the
negative region is theCνν rule. Referring to the inference rule displayed above,
the inductive hypothesis ensures that the reduced sequent ` Γ, St⃗, U t⃗ contains
a pointed sequent ∆, C where ∆ is a multiset of purely negative formula in Γ
and where the formula C (that is either purely positive or is bipolar) is either
a member of Γ or is equal to either St⃗ or Ut⃗. In the first case, ∆, C is also
contained in the endsequent Γ, νBt⃗. In the second case, we have one of the
following proofs:

` ∆, St⃗ ` BSx̄, (Sx̄)⊥

` Γ, νBt⃗
ν

` ∆, U t⃗ ` BUx̄, (Ux̄)⊥

` Γ, νBt⃗
ν

depending on whether or not C is St⃗ or Ut⃗.

Lemma 4. If the reduced sequent Γ has a cut-free µLK1 proof then Γ has a
proof that can be divided into a negative region that proves Γ in which all its
premises have positive region proofs.

Proof. This lemma is provedby appealing to the permutation of inference rules.
As is shown in [Bae12b], the introduction rules for negative connectives per-
mute down over all inference rules in µMALL. Not considered in that paper
is how such negative introduction rules permute down over contractions. It is
easy to check that such permutations do, in fact, happen except in the case of
the ν rule. In general, contractions below a ν rule will not permute upwards,
and, as a result, the negative region is designed to include theCνν rule (where
contraction is stuck with the ν rule). As a result, negative rules (including
Cνν) permute down while contraction and introductions of positive connec-
tives permute upward. This gives rise to the two-region proof structure.

By combining the results of this section we get the following comparison
between classical and linear arithmetic:

Theorem 8. Any bipolar formula provable in µLK1 is provable in µMALL.
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Totality statements for primitive recursive functions are included among
the formulas towhichTheorem8 can be applied. Recentwork, such as [KPP21],
shows how allowing a more general induction rule in a linear setting, where
the context is duplicated and provided to the right branch, makes it possible to
capture computations that go beyond primitive recursion. Such an extension
to µMALL would increase the expressiveness of the system, as for example
the proof of the totality of Ackermann’s function necessitates precisely similar
access to the global context during the inductive proof; whether this would
make the system collapse to µLK remains to be assessed.

The focused inductive theorem proving strategy reported in [BMS10] can now
be justified (in large part) by Theorem 8: in particular, the contraction rule was
not used in the search procedure reported there.

3.3 Using proof search to compute functions

One way to prove that a binary relation ϕ encodes a function is to prove the
totality and determinancy properties of ϕ: that is, prove

[∀x∃y.ϕ(x, y)] ∧ [∀x∀y1∀y2.ϕ(x, y1) ⊃ ϕ(x, y2) ⊃ y1 = y2].

Clearly, these properties imply that for every natural number x, the predi-
cate λy.ϕ(x, y) denotes a singleton set. If our logic contains a choice opera-
tor, such as Church’s definite description operator ι [Chu40], then this function
can be represented via the expression λx.ιy.ϕ(x, y). A more computationally-
oriented approach to encoding such functions follows the Curry-Howard ap-
proach of relating proof theory to computation [How80]: one extracts from a
natural deduction proof of ∀x∃y.ϕ(x, y) a λ-term, which can be seen as an algo-
rithm for computing the implied function. The algorithmic content of such a
λ-term arises from a non-deterministic rewriting process that iteratively selects
β-redexes for reduction. In most typed λ-calculus systems, all such sequences
of rewritings will end in the same normal form, although some sequences of
rewrites might be very long, and others can be very short. This section will
describe an alternative mechanism for computing functions from their rela-
tional specification that relies on using proof search mechanisms instead of
the Curry-Howard correspondence.

Note that if P and Q are predicates of arity one and if P denotes a single-
ton, then ∃x[Px ∧ Qx] and ∀x[Px ⊃ Qx] are logically equivalent. We assume
here that Px is a purely positive expression with x as its only free variable.
Notice that the proof search semantics of these equivalent formulas are sur-
prisingly different. In particular, if we attempt to prove ∃x[Px ∧Qx], then we
must guess a term t and then check that t denotes the element of the singleton
(by proving P (t)). In contrast, if we attempt to prove ∀x[Px ⊃ Qx] then we
allocate an eigenvariable y (which we will eventually instantiate with t) and
then attempt to prove the sequent ` Py ⊃ Qy. Such an attempt at building a
proof might actually compute the value t (especially if we can restrict proofs of
that implication to not involve the general form of induction).
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Example 7. The following derivation verifying that 4 is a sum of 2 and 2.

` 2 = (s 1)
=

` 4 = (s 3)
=

` plus 1 2 3

` 2 = (s 1) ⊗ 4 = (s 3) ⊗ plus 1 2 3
⊗ ×2

` ∃n′∃p′(2 = (s n′) ⊗ 4 = (s p′) ⊗ plus n′ 2 p′)
∃ × 2

` (2 = 0 ⊗ 2 = 4) ⊕ ∃n′∃p′(2 = (s n′) ⊗ 4 = (s p′) ⊗ P n′ 2 p′)
⊕

` plus 2 2 4
µ

` ∃p.plus 2 2 p
∃

To complete this proof, we must construct a similar subproof verifying that
1+2 = 3. In particular, the witness used to instantiate the final ∃p is, in fact,
that sum. Unfortunately, proof construction in this system does not help us
construct this sum’s value. Instead, the first step in building such a proof
bottom-up starts with guessing a value and checking that it is the correct
sum.
Example 8. Given the definition of addition on natural numbers above, the
following totality and determinancy formulas

[∀x1∀x2. nat x1 ⊃ nat x2 ⊃ ∃y.(plus(x1, x2, y) ∧ nat y)]
[∀x1∀x2. nat x1 ⊃ nat x2 ⊃ ∀y1∀y2. plus(x1, x2, y1) ⊃ plus(x1, x2, y2) ⊃ y1 = y2]

can be proved in µMALL where these formulas are polarized using the
multiplicative connectives. These proofs require both induction and the µν
rule. Using the cut rule with (the obvious) proofs of nat 2 and nat 3, we
know that λy.(plus 2 3 y) denotes a singleton. In order to compute the sole
member of the singleton λy.(plus 2 3 y), we could perform cut-elimination
with the inductively proved totality theorem in this example. Instead of
such a proof-reduction approach to computation, the proof search approach
starts by replacing the goal ∃y.(plus 2 3 y ∧ nat y) with ∀y.(plus 2 3 y ⊃
nat y). Attempting to prove this second formula leads to an incremental
construction of the answer substitution for y, namely, 5.

Assume that P is a purely positive predicate expression of type i → o and
that we have a µMALL proof that P is a singleton. As we stated above, this
means that we have a µMALL proof of ∀x[Px ⊃ nat x]. This proof can be
understood as a means to compute the unique element of P except that there
might be instances of the induction rule in the proof of ∀x[Px ⊃ nat x]. Sup-
pose we can force, however, the proof of this latter formula to be restricted
so that the only form of induction is unfolding. In that case, such a restricted
proof can provide an explicit computation. As the following example shows,
it is not the case that if there is a µMALL proof of ∀x[Px ⊃ nat x] then it has a
proof with the induction rule replaced by unfolding.

Example 9. Let P be µ(λRλx.x = 0 ⊕ (R (s x))). Clearly, P denotes the
singleton set containing zero. There is also a µMALL proof that ∀x[Px ⊃
nat x], but there is no (cut-free) proof of this theorem that uses unfolding
instead of the more general induction rule: just using unfoldings leads to
an unbounded proof search attempt which roughly follows the following
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outline.

` nat 0

...
` (P (s (s y)))⊥, nat y
` (P (s y))⊥, nat y

unfold,&, 6=

` (P y)⊥, nat y
unfold,&, 6=

Although proof search can contain potentially unbounded branches, we
can still use the proof search concepts of unification and non-deterministic
search to compute the value within a singleton. We define a non-deterministic
algorithm as follows. The state of this algorithm is a triple of the form

〈x1, . . . , xn ;B1, . . . , Bm ; t〉,

where t is a term, B1, . . . , Bm is a multiset of purely positive formulas, and all
variables free in t and in the formulas B1, . . . , Bm are in the set of variables
x1, . . . , xn. A success state is one of the form 〈· ; · ; t〉 (that is, when n = m = 0):
such a state is said to have value t. Given the state S = 〈Σ ;B1, . . . , Bm ; t〉with
m ≥ 1, we can non-deterministically select one of theBi formulas: for the sake
of simplicity, assume thatwe have selectedB1. We define the transitionS ⇒ S′

of state S to state S′ by a case analysis of the top-level structure of B1.

• If B1 is u = v and the terms u and v are unifiable with most general
unifier θ, then we transition to 〈Σθ ;B2θ, . . . , Bmθ ; tθ〉.

• If B1 is B ⊗ B′ then we transition to 〈Σ ;B,B′, B2, . . . , Bm ; t〉.

• If B1 is B ⊕ B′ then we transition to either 〈Σ ;B,B2, . . . , Bm ; t〉 or
〈Σ ;B′, B2, . . . , Bm ; t〉.

• If B1 is µBt̄ then we transition to 〈Σ ;B(µB)t̄, B2, . . . , Bm ; t〉.

• If B1 is ∃y. B y then we transition to 〈Σ, y ;B y,B2, . . . , Bm ; t〉 assuming
that y is not in Σ.

This non-deterministic algorithm is essentially applying left-introduction
rules in a bottom-up fashion and, if there are two premises, selecting (non-
deterministically) just one premise to follow.

Lemma 5. Assume that P is a purely positive expression of type i → o and
that ∃y.Py has a µLK proof. There is a sequence of transitions from the initial
state 〈y ;P y ; y〉 to a success state with value t such that P t has a µMALL
proof.

Proof.
An augmented state is a structure of the form 〈Σ | θ ;B1 | Ξ1, . . . , Bm | Ξm ; t〉,

where

• θ is a substitutionwith domain equal toΣ andwhich has no free variables
in its range, and

• for all i ∈ {1, . . . ,m}, Ξi is a µMALL proof of θ(Bi).
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Clearly, if we strike out the augmented items (in red), we are left with a regular
state. Given thatwe have aµLKproof of ∃y.Py, conservativity (Theorem7) en-
sures us thatwe have a µMALLproof of ∃y.Py. Thus, we there exists a µMALL
proof Ξ0 of P t for some term t. Note that there is no occurrence of induc-
tion in Ξ0. We now set the initial augmented state to 〈y | [y 7→ t] ;Py | Ξ0 ; y〉.
As we detail now, the proof structures Ξi provide oracles that steer this non-
deterministic algorithm to a success state with value t. Given the augmented
state 〈Σ | θ ;B1 | Ξ1, . . . , Bm | Ξm ; s〉, we consider selecting the first pairB1 | Ξ1

and consider the structure of B1.

• If B1 is B′ ⊗ B′′ then the last inference of Ξ1 is ⊗ with premises Ξ′ and
Ξ′′, and wemake a transition to 〈Σ | θ ;B′ | Ξ′, B′′ | Ξ′′, . . . , Bm | Ξm ; s〉.

• IfB1 isB′ ⊕ B′′ then the last inference rule ofΞ1 is⊕ and that rule selects
either the first or the second disjunct. In either case, let Ξ′ be the proof of
its premise. Depending on which of these disjuncts is selected, we make
a transition to either 〈Σ | θ ;B′ | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉 or
〈Σ | θ ;B′′ | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉, respectively.

• If B1 is µBt̄ then the last inference rule of Ξ1 is µ. Let Ξ′ be the proof of
the premise of that inference rule. We make a transition to

]〈Σ | θ ;B(µB)t̄ | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉

.

• If B1 is ∃y. B y then the last inference rule of Ξ1 is ∃. Let r be the substi-
tution term used to introduce this ∃ quantifier and let Ξ′ be the proof of
the premise of that inference rule. Then we make a transition to

〈Σ, w | θ ◦ φ ;B w | Ξ′, B2 | Ξ2, . . . , Bm | Ξm ; s〉

, where w is a variable not in Σ and φ is the substitution [w 7→ r]. Here,
we assume that the composition of substitutions satisfies the equation
(θ ◦ φ)(x) = φ(θ(x)).

• IfB1 isu = v and the termsu and v are unifiablewithmost general unifier
φ, thenwemake a transition to 〈Σφ | ρ ;φ(B2) | Ξ2, . . . , φ(Bm) | Ξm ; (φt)〉
where ρ is the substitution such that θ = φ ◦ ρ.

In each of these cases, we must show that the transition is made to an aug-
mented state. This is easy to show in all but the last two rules above. In the
case of the transition due to ∃, we know that Ξ′ is a proof of θ(B r), but that
formula is simply φ(θ(B w)) since w is new and r contains no variables free
in Σ. In the case of the transition due to equality, we know that Ξ1 is a proof
of the formula θ(u = v) which means that θu and θv are the same terms and,
hence, that u and v are unifiable and that θ is a unifier. Let φ be the most gen-
eral unifier of u and v. Thus, there is a substitution ρ such that θ = φ ◦ ρ and,
for i ∈ {2, . . . ,m}, Ξi is a proof of (φ ◦ ρ)(Bi). Finally, termination of this al-
gorithm is ensured since the number of occurrences of inference rules in the
included proofs decreases at every step of the transition. Since we have shown
that there is an augmented path that terminates, we have that there exists a
path of states to a success state with value t.
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This lemma ensures that our search algorithm can compute amember from
a non-empty set, given an µLK proof that that set is non-empty.

We can now prove the following theorem about singleton sets. We abbre-
viate (∃x.P x) ∧ (∀x1∀x2.P x1 ⊃ P x2 ⊃ x1 = x2) by ∃!x.P x in the following
theorem.

Theorem 9. Assume that P is a purely positive expression of type i → o and that
∃!y.Py has a µLK proof. There is a sequence of transitions from the initial state
〈y ;P y ; y〉 to a success state of value t if and only if P t has a µLK proof.

Proof. Given a (cut-free) µLK proof of ∃!y.Py, that proof contains a µLK proof
of ∃y.Py. Since this formula is purely positive, there is a µMALL proof for
∃y.Py. The forward direction is immediate: given a sequence of transitions
from the initial state 〈y ;P y ; y〉 to the success state 〈· ; · ; t〉, it is easy to build
a µMALL proof of P t. Conversely, assume that there is a µLK proof of P t
for some term t. By conservativity, there is a µMALL proof of P t and, hence,
of ∃y.P y. By Lemma 5, there is a sequence of transitions from initial state
〈y ;P y ; y〉 to the success state 〈· ; · ; s〉, where P s has a µMALL proof. Given
that Pt and Ps and ∀x1∀x2.P x1 ⊃ P x2 ⊃ x1 = x2 all have µLKp proofs,
using the cut rule, we can conclude that t = s.

Thus, a (naive) proof-search algorithm involving both unification and non-
deterministic search is sufficient for computing the functions encoded in rela-
tions.

3.4 Reconstructing model checking arguments

We conclude the chapter by presenting a different application of the focused
proof theory ofµMALL, as the foundation for the reconstruction of verification
arguments. This serves as the foundation for some of the developments in the
next chapter.

3.4.1 Logic programming and model checking
The µMALL system can be restricted by removing (co-)induction and includ-
ing instead the following rule for fixpoint expansions:

` Γ, B(νB)t̄

` Γ, νBt̄

Call the system µMALL−. As we show now, the proof theory of logic pro-
grammingwithHorn clauses is completely described byusing proofs of purely
positive formulas in this restricted system.

The connection between Horn clauses and least fixed points is well-known
and goes back to at least the Clark completion of Horn clauses [Cla78]. To illus-
trate, consider the following two Horn clauses axiomatizing addition, written
using Prolog-style syntax (meaning that :-denotes the reverse implication⊂).

∀N. plus 0 N N.
∀N∀M∀P. plus (s N) M (s P ) :- plus N M P
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By moving the term structures in the head to the body of these clauses, we
have the equivalent clauses:

∀N∀M∀P. plus N M P :- N = 0 ∧M = P.
∀N∀M∀P. plus N M P :- ∃N ′∃P ′ (N = (s N ′) ∧ P = (s P ′) ∧ plus N ′ M P ′).

These two clauses can now be merged into one by introducing a disjunction.

∀N∀M∀P. plus N M P :- (N = 0 ∧M = P ) ∨
∃N ′∃P ′ (N = (s N ′) ∧ P = (s P ′) ∧ plus N M P ).

We have recovered the usual fixed point expression for the definition of addi-
tion in µMALL:

plus = µλPλnλmλp((n = 0 ⊗ m = p) ⊕ ∃n′∃p′(n = (s n′) ⊗ p = (s p′) ⊗ P n′ mp′))

In general, all Horn clauses can be rewritten in this fashion so that all the pred-
icates they define can be expressed as purely positive expressions.

An immediate consequence of theorem 7 (section 3.2) is the fact that if
such a purely positive expression has a µLK proof, then it is also provable
in µMALL. It is also clear that if there exists a µMALL proof of a purely
positive formula, then that proof does not use induction, and is therefore a
proof in µMALL1. Finally, given that Horn clauses can interpret Turing ma-
chines [Tä77], it is undecidable whether a purely positive expression has a
µMALL proof.

Example 10 (Taken from [HM18]). Let the sets A = {0,1} and B =
{0,1,2} be encoded as the λ-expressions λx. x = 0 ∨ x = 1 and λx. x =
0 ∨ x = 1 ∨ x = 2, respectively. A polarized version of the formula
∀x.Ax ⊃ Bx is ∀x.[(x 6= 0 & x 6= 1) ` (x = 0 ⊕ x = 1 ⊕ x = 2)]
and this formula has the following µMALL proof.

` 0 = 0
=

` 0 = 0 ⊕ 0 = 1 ⊕ 0 = 2
⊕

` x 6= 0, x = 0 ⊕ x = 1 ⊕ x = 2
6=

` 1 = 1
=

` 1 = 0 ⊕ 1 = 1 ⊕ 1 = 2
⊕

` x 6= 1, x = 0 ⊕ x = 1 ⊕ x = 2
6=

` x 6= 0 & x 6= 1, x = 0 ⊕ x = 1 ⊕ x = 2
&

` ∀x.[(x 6= 0 & x 6= 1) ` (x = 0 ⊕ x = 1 ⊕ x = 2)]
∀,`

Here, the doubled horizontal line indicates that more than one inference
rule is applied.

Switching tomodel checking terminology, proofs involving logic programs
express reachability problems. But what about non-reachability? As has been
shown [HSH91], the notion of negation as finite failure can be captured (in our
setting) by building a µMALL1 proof of a purely negative expression. Along
a similar vein, the model checking problem of determining simulation and
bisimulation of two transition systems is easily written as a negative formula
with at most one alternation of polarities [HM18; MMP03] (assuming that the
transition systems are defined using purely positive expressions).

In general, capturing simulationwith proofs restricted to µMALL1 requires
that transition systems are acyclic. Capturing both non-reachability and sim-
ulation (and non-simulation) for cyclic transitions is possible by including the
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induction rule, and thus allows for adding an invariant. For example, consider
a graph thatmay contain cycles and consider a proof that there is no path from,
say, node a to node b. This is provable by using an invariant S that encodes a
connected component containing a but not b. The coinductive proof that one
must then build must show that the set S is closed under one-step transitions
and contains a and does not contain b. Such reasoning does not, surprisingly,
need to use the µν rule [HM18].

3.4.2 Property-based testing as proof reconstruction
Property-based testing (PBT) [FB97] is a technique for testing whether some
piece of code satisfies specific properties established by executable specifica-
tions, by automatically generating test data and checking it against the be-
havior of the specification. If the condition is not met, counterexamples are
produced. The absence of counterexamples of course is of no direct use for
establishing a proof, but having a counterexample can be very valuable for
discovering errors in what one is trying to prove in the first place. Typically,
the techniques for PBT revolve around efficient generation of randomized test
data and extraction of small counterexamples.

A proof-theoretic reconstruction of PBT for relational specifications is pre-
sented in [BMM19], adopting techniques from foundational proof certificates
and the focused proof theory of logics with fixed points. The authors showed
how to account for several features of this testing paradigm: from various gen-
eration strategies for input data, to shrinking of counterexamples, and fault lo-
calization. We present it briefly here, as it forms the foundation for the devel-
opment in subsection 4.2.4.

Consider the problem of PBT for a relational specification in the form of a
collection of Horn clauses. We can express these clauses as the purely posi-
tive fixed points A1 . . . An, and the property we are checking against as B; the
statement that the property holds for data meeting the specification becomes:
∀x1 . . . xn, A1 ∧+++ . . . ∧+++ Am ⊃ B. It is usual that the data under consideration has
some assigned typing or sorting information; in the relational presentation of
computations that we dealt with in this chapter, this was obtained by assum-
ing that specific predicates like nat hold of the variables. Then, for a collection
τ1, . . . , τn of data type predicates we obtain the more general formulation of
the query as:

∀x1 . . . xn. [τ1(x1) ∧
+

. . . τn(xn) ⊃ (A1 ∧
+

. . . ∧Am ⊃ B)]

The PBT problem asks us to find counterexamples to this. In µMALL, we can
refute this formula by looking for proofs of

∃x1 . . . xn.
[
(τ1(x1) ∧

+

. . . τn(xn) ∧
+

A1 ∧
+

. . . ∧
+

Am) ∧
+

B⊥]
Revisit now example 10: the problem of inclusion between the two sets

is expressed as ∀x. nat x ∧+++ A x ⊃ B x, which can be seen as a PBT query
where the data is of type nat, the specification is the membership to A and the
property we test against is membership to B. The counterexample query is
∃x. nat x ∧+++ A x ⊃ B⊥ x, but the statement holds and there are no counterex-
amples.
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The very simple formulas for counterexample querying have a clear polar-
ized structure: they start with a purely positive outside, with the existential
quantifiers and the (purely positive) predicates for typing and specification;
then, the negation of the property B⊥ is a purely negative fixpoint (because
it is the dual of a purely positive). This separation matches two phases that
are typical in PBT: data generation and testing. In a focused setting, the data
generation phase needs to make choices that necessitate external steering; the
testing phase is pure checking, performed in a single asynchronous phase.

Foundational Proof Certificates can easily be employed to guide the gener-
ation part. Remember though that the generation part is split into the typing
predicates and the specification the data should satisfy, with the latter in the
form of an executable specification. The don’t know non-determinism in this
part is part of the computational paradigm, and it is likely that the user wishes
this computation not to be tied to a particular certificate. Therefore we distin-
guish

• Generation proper, which consists of proving the typing judgments based
on certificate information from the user.

• Execution, which continues the synchronous phase with no certificate in-
formation provided.

• Testing, performed in the final, negative phase.

Consider for example the signature containing the constants 0, S, nil, cons.
We can define predicates

listnat := µλL. λx. (x = nil ∨
+

(∃r. ∃y. L r ∧
+

nat y ∧
+

x = cons y r))

memb := µλM. λl. λx. (∃l1. ∃y. l = cons y l1 ∧
+

(y = x ∨
+

M l1 x))

app := µλA. λxs. λys. λzs. ((xs = nil ∧
+

ys = zs)∨
∃x1. ∃xs1. ∃zs1. (xs = cons x1 xs1 ∧

+

zs = cons x1 zs1 ∧
+

A xs1 ys zs1))

Suppose we want to check that the app definition satisfies the fact that ap-
pending a singleton yields a list containing the new element. Then we would
search for counterexamples by querying ∃l1. listnat l1∃l2. listnat l2 ∧+++ ∃x. nat x ∧+++

app l1 (cons x nil) l2 ∧+++ (memb x l2)
⊥. The predicates that are relevant for

the generation phase are here listnat l1 and nat x. A certificate for them can
contain information such as how long a list to build, or how big a number to
generate. In a randomized setting, the certificate could contain the expected
length for lists and a bound on the number of generation attempts. The execu-
tion phase should then correspond with the interpretation as a logic program
of app l1 (cons x nil) l2, for an appropriate substitution of l1 and x with some
generated data. This in turn generates a substitution for l2 with the result of the
computation. Finally, the testing phase consists of establishing that memb x l2
does not hold for this substitution instance: since all the data is at this point is
instantiated, this does not need any external evidence in order to be checked.





Chapter 4

Experiments and prototypes

Several of the ideas in this thesiswere implemented in someprototypes. Part of
this was used in the development of an experimental Coq tactic that leverages
Coq-Elpi in order to build an elaborator for proof certificates into Coq proofs.

4.1 Proof certificates and Type Theory

We introduce here some additional background elements that form the theo-
retical foundation of the integration between the FPC elaborator and the Coq
proof assistant. Since the foundation of Coq is intuitionistic, and so far proof
certificates have been introduced only for classical logic. We take a moment
to introduce LJFa, in fig. 4.1, the intuitionistic counterpart to the LKFa calcu-
lus. LJFa is based on the focused sequent calculus for intuitionistic logic LJF.
Compared to LKFa (fig. 1.4), it is a two-sided calculus, where the consequent
can only contain one formula. Both sides have an active area (between the ar-
row and the turnstile) and a storage area (the leftmost and rightmost parts).
The disjunction only comes in the positive variant. The synchronous and asyn-
chronous phases now span across both sides of the sequent. Rules on the an-
tecedent of a sequent have a dual role to those in the consequent, so negative
formulas are stored during the asynchronous phase and treated in the syn-
chronous phase.

4.1.1 Pure Type Systems
The Coq proof assistant has a type theoretic foundation based on the Calcu-
lus of Constructions. This calculus can be presented as a generalization of the
simply typed lambda calculus (that we have introduced as a syntax for formu-
las in subsection 1.1.1) along three axes: in addition to having terms that are
parametrized by other terms (with the λ constructor), we have terms that are
parametrized by types (that is, polymorphic terms); types can be parametrized
by terms as well (giving dependent types); and finally, types are higher order
and can be parametrized by other types. We shall give more attention to this
later.

The usual logical reading of this system is through the Curry-Howard cor-
respondence [SU06]. The core of this approach is the observation that the typ-
ing rules for lambda terms are in a one-to-one correspondence with the rules

77
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Asynchronous rules

Ξ1; Σ: Γ ⇑A ⊢ B ⇑ ⊃c (Ξ0,Ξ1)

Ξ0; Σ: Γ ⇑ · ⊢ A ⊃ B ⇑
(Ξ1y); Σ, y : ι : Γ ⇑ · ⊢ [y/x]B ⇑ ∀c(Ξ0,Ξ1)

Ξ0; Σ: Γ ⇑ · ⊢ ∀x.B ⇑

Ξ1; Σ: Γ ⇑ · ⊢ A ⇑ Ξ1 : Γ ⇑ · ⊢ B ⇑ ∧−c (Ξ0; Σ,Ξ1,Ξ2)

Ξ0; Σ: Γ ⇑ · ⊢ A ∧− B ⇑
⊤
−
c(Ξ0)

Ξ0; Σ: Γ ⇑ · ⊢ ⊤
− ⇑

Ξ1; Σ: Γ ⇑A,B,Θ ⊢ R ∧+++ c (Ξ0,Ξ1)

Ξ0; Σ: Γ ⇑A ∧+++ B,Θ ⊢ R
Ξ1; Σ: Γ ⇑Θ ⊢ R ⊤

+++

c(Ξ0,Ξ1)

Ξ0; Σ: Γ ⇑ ⊤
+++

,Θ ⊢ R
Ξ1; Σ: Γ ⇑A,Θ ⊢ R Ξ2; Σ: Γ ⇑B,Θ ⊢ R ∨c(Ξ0,Ξ1,Ξ2)

Ξ0; Σ: Γ ⇑A ∨B,Θ ⊢ R
⊥c(Ξ0)

Ξ0; Σ: Γ ⇑ ⊥,Θ ⊢ R
(Ξ1y); Σ, y : ι : Γ ⇑ [y/x]B,Θ ⊢ R ∃c(Ξ0,Ξ1)

Ξ0; Σ: Γ ⇑ ∃x.B,Θ ⊢ R
Synchronous Rules

Ξ1; Σ: Γ ⊢ A ⇓ Ξ2 : Γ ⇓ B ⊢ R ⊃e (Ξ0,Ξ1,Ξ2)

Ξ0; Σ: Γ ⇓ A ⊃ B ⊢ R

Ξ1; Σ: Γ ⊢ Ai ⇓ ∨e(Ξ0,Ξ1, i)

Ξ0; Σ: Γ ⊢ A1 ∨A2 ⇓
Ξ1; Σ: Γ ⇓ Ai ⊢ R ∧−e (Ξ0,Ξ1, i)

Ξ0; Σ: Γ ⇓ A1 ∧− A2 ⊢ R
Ξ1; Σ: Γ ⊢ A ⇓ Ξ2 : Γ ⊢ B ⇓ ∧+++e (Ξ0,Ξ1,Ξ2)

Ξ0; Σ: Γ ⊢ A ∧+++ B ⇓
Σ ⊢ t : ι Ξ1; Σ: Γ ⊢ [t/x]B ⇓ ∃e(Ξ0,Ξ1, t)

Ξ0; Σ: Γ ⊢ ∃x.B ⇓
⊤
+++

e(Ξ0)

Ξ0; Σ: Γ ⊢ ⊤
+++ ⇓

Σ ⊢ t : ι Ξ1; Σ: Γ ⇓ [t/x]B ⊢ R ∀e(Ξ0,Ξ1, t)

Ξ0; Σ: Γ ⇓ ∀x.B ⊢ R
Identity rules

initLe(Ξ0)

Ξ0; Σ: Γ ⇓ Na ⊢ Na

(l, Pa) ∈ Γ initRe(Ξ0, l)

Ξ0; Σ: Γ ⊢ Pa ⇓
Ξ1; Σ: Γ ⇑ · ⊢ F ⇑ · Ξ2; Σ: Γ ⇑ F ⊢ · ⇑R cute(Ξ0,Ξ1,Ξ2, F )

Ξ0; Σ: Γ ⇑ · ⊢ · ⇑R

Structural rules
l : N ∈ Γ Ξ1 : Γ ⇓ N ⊢ R decideLe(Ξ0,Ξ1, l)

Ξ0; Σ: Γ ⇑ · ⊢ · ⇑R

Ξ1; Σ: Γ ⊢ P ⇓ decideRe(Ξ0,Ξ1)

Ξ0; Σ: Γ ⇑ · ⊢ · ⇑ P

Ξ1; Σ: Γ ⇑ P ⊢ · ⇑ R releaseLe(Ξ0,Ξ1)

Ξ0; Σ: Γ ⇓ P ⊢ R
Ξ1; Σ: Γ ⇑ · ⊢ N ⇑ · releaseRe(Ξ0,Ξ1)

Ξ0; Σ: Γ ⊢ N ⇓
Ξ1; Σ: l : C,Γ ⇑Θ ⊢ R storeLc(Ξ0,Ξ1, l)

Ξ0; Σ: Γ ⇑ C,Θ ⊢ R
Ξ1; Σ: Γ ⇑ · ⊢ · ⇑D storeRc(Ξ0,Ξ1)

Ξ0; Σ: Γ ⇑ · ⊢ D ⇑ ·

Figure 4.1: Rules of LJFa, a calculus with proof certificates for first order intu-
itionistic logic. The focused zones are between the two arrows, and the storage
is at the outside. Γ is a multiset of pairs of the form l:Rwhere l is an index and
R is a positive formula or literal, andΘ is a list of formulas. R is any consequent
(either with the single formula stored or not).
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∅ wf

Γ ` A : s (x 6∈ Dom(Γ))

Γ, x : A wf

Γ wf x : A ∈ Γ

Γ ` x : A

Γ wf (s, s′) ∈ A

Γ ` s : s′
Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R

Γ ` (x : A)B : s3

Γ ` (x : A)B : s Γ, x : A ` M : B

Γ ` λxA.M : (x : A)B

Γ ` t : (x : A)B Γ ` u : A

Γ ` t u : [t/x]B

Figure 4.2: PTS in the usual Natural Deduction presentation

of Natural Deduction (for example, the rules for the arrow type in subsec-
tion 1.1.1 correspond to the rules for implication in Natural Deduction). The
Curry-Howard correspondence then mandates that propositions in the logic
are to be regarded as types of a type theory, and the proofs of a proposition
are the lambda terms that inhabit the corresponding type.

The Calculus of Constructions includes therefore a basic type Prop whose
elements are the propositions, that can be inhabited by proofs. At the same
time, to avoid circularity a basic axiom is introduced saying that Prop : Type
(when we read this out loud, we find the slogan that propositions are types).
What this implies is that the syntax of propositions (that inhabit the typeProp)
should be built out of the same elements that build proofs. As a consequence,
there is no longer a grammatical distinction between terms and types. A uni-
form treatment of the different dependency relations between terms and types
is provided by presenting the system in the style of a Pure Type System. This
presentation depends on a set S of sorts, that wewrite s, s1, s2, . . . . The gram-
mar for terms and types in Pure Type Systems is:

t, u, A,B := x | λxA.B | (x : A)B | t u | s

In addition to this, we have a relation A ⊆ S ×S of axioms and a relation
R ⊆ S ×S of rules. These two sets parametrize the inference rules shown in
fig. 4.2, and control which sorts can depend on which sorts by only allowing
certain forms for the product (x : A)B.

A presentation of first order (minimal) logic similar to the one we gave in
chapter 1 can be obtained as a PTS if we consider as the sets of sorts {o, i, ⋆}
with axioms {(o, ⋆), (i, ⋆)} and rules {(o, o, o), (i, i, i), (i, o, o)}: the first rule
corresponds to the → connective, and the second to the ∀ connective. The
Calculus of Constructions is given by S = {⋆,□},A = {(⋆ : □)},R =
{(⋆, ⋆, ⋆), (⋆,□,□), (□, ⋆, ⋆), (□,□,□)}.

4.1.2 Sequent calculus and PTS
Pure Type Systems provide a presentation of typed lambda calculi that is both
flexible and elegant, and are particularly effective for representing systems
with dependent types. However, when we look at them as logical systems,
they are overly restrictive since they come with built-in notions of what is a
proof and what is a computation, by fixing them as Natural Deduction proofs
and β-reduction of lambda terms. This seems at odds with what we desire
for proof certificates, where we would like to have a middle ground where the
user can specify their proof format.
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Sorting rules

∅ wf

Γ ⇑ · ` A : · ⇑ s (x 6∈ Dom(Γ))

Γ, x : A wf

Γ wf (s, s′) ∈ A

Γ ⇑ · ` s : · ⇑ s′

Γ ⇑ · ` A : · ⇑ s1 Γ, x : A ⇑ · ` B : · ⇑ s2 (s1, s2, s3) ∈ R

Γ ⇑ · ` (x : A)B : · ⇑ s3

Initial
Γ ⇑ · ` N : · ⇑ s s ∈ S

Γ ⇓ N ` ϵ : · ⇓ N
init

Product
Γ ⇑ · ` (x : A)B : · ⇑ s Γ ⇑ A ` M : B ⇑ ·

Γ ⇑ · ` λxA.M : (x : A)B ⇑ ·
Pr

Γ ⇑ · ` (x : A)B : · ⇑ s Γ ⇑ · ` t : · ⇑ A Γ ⇓ [t/x]B ` l : · ⇓ C

Γ ⇓ (x : A)B ` t :: l : · ⇓ C
Pl

Structural rules
Γ, x : A ⇓ A ` l : · ⇓ B

Γ, x : A ⇑ · ` x l : · ⇑ B
decide

Γ, x : N ⇑ · ` t : A ⇑ ·
Γ ⇑ N ` t : A ⇑ · storel

Figure 4.3: Sequent calculus for PTS with negative bias

Luckily, alternative presentations for PTS exist that are based on a system
more similar to the sequent calculus. The landmark work of Lengrand, Dy-
ckhoff and McKinna [LDM11] leverages Herbelin’s λ̄ calculus (whose typing
rules are in correspondence with the rules of a sequent calculus instead of
natural deduction) and builds a complete framework for proof search in Pure
Type Systems. In fig. 4.3 we show a variation on this system where we employ
the notation from [BNGG15]; in that paper, a λ-calculus is introduced whose
typing rules are shown to be corresponding to the rules of LJF from [LM09].

In particular, the arising system is in correspondence with the fragment of
LJF everything is polarized with negative bias. Note that atoms are the only
thing whose polarity we can describe, since we only have products and atoms,
and products are negative by virtue of being a generalization of both implica-
tion and universal quantification. The syntax of terms in this fragment is:

t, A,B ::= λxA.B | (x : A)B | x k | s
k ::= ϵ | t :: k |

Since terms are to be in one-to-one correspondence with the rules of the cal-
culus, we have two categories of terms for the synchronous and asynchronous
rules. The first line corresponds to terms proper, that are introduced by asyn-
chronous rules, while the second corresponds to continuations, introduced by
synchronous rules.

Compare now the rules for Pure Type Systems in fig. 4.3 with those of LJFa:
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• Since everything is negative in this fragment, everything that reaches the
antecedent during the asynchronous phase is stored.

• There are no structural rules on the right (neither of decide, store, re-
lease): this is because since everything is negative, a synchronous phase
with a formula focused in the consequent can only release and store it
right away, and never needs to decide on it again. For this reason the
second premise to the Pl rule automatically has A released and stored,
differently from LJFa.

• Dually, there is no release on the left since there are no positive formulas.
The onlyway a synchronous phasewith a focused formula on the left can
end is with init.

• Since we are in a Pure Type System, there is no distinct syntax for terms
and formulas, so there is no separate contextΣ. On the other side, sorting
rules are present: note that sorts always appear as stored on the right; this
is because they are negative atoms as well.

Themore verbose syntaxwith respect to the traditional presentation of PTS
in natural deduction makes for a slightly different formulation of types, since
the same syntax is used for both types and terms. Therefore, for example, in a
context with a constant a : Prop we will derive that a ϵ → a ϵ is a well-formed
Prop:

∅ wf

⇑ · ` Prop : Type ⇑ ·
(a : Prop) ⇓ Prop ` ϵ : · ⇓ Prop

init

a : Prop ⇑ · ` aϵ : · ⇑ Prop

∅ wf

⇑ · ` Prop : Type ⇑ ·
(a : Prop) ⇓ Prop ` ϵ : · ⇓ Prop

init

a : Prop ⇑ · ` aϵ : · ⇑ Prop

a : Prop ⇑ · ` aϵ → aϵ : Prop ⇑ ·

Similarly, that the identity function can be typed with this type is verified as
follows:

...
a : Prop ⇑ · ` aϵ → aϵ : Prop ⇑ ·

...
a : Prop ⇑ · ` aϵ : · ⇑ Prop

a : Prop, x : aϵ ⇓ aϵ ` ϵ : · ⇓ aϵ
init

a : Prop, x : aϵ ⇑ · ` x : aϵ ⇑ · decide

a : Prop ⇑ · ` λxaϵ.xϵ : (aϵ → aϵ) ⇑ ·
Pr

In general, instances are always fully applied to a list of arguments, that could
be the empty list. When no ambiguity is present, we write a in place of a ϵ.

4.1.3 The Calculus of Inductive Constructions
The logic that Coq implements is an extension of the Calculus of Constructions
that includes inductive type definitions, called the Calculus of Inductive Con-
structions (CiC). In this work we consider a fragment of CiC without induc-
tion principles, that we describe in the next paragraph. In addition to this, we
place some restrictions also on the presentation of CoC that is implemented in
Coq. The sorts in Coq are Prop, SProp, Set and a numbered infinity of sorts
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Type(i) for any integer i ≥ 1; roughly, they are the sorts of propositions, of
proof-irrelevant propositions, of data types and then Type(i) is a hierarchy of
universes. We won’t consider the hierarchy, nor proof-irrelevance, and are left
with S := {Prop, Set, Type}. The rules for the formation of the dependent
product are those we presented in subsection 4.1.1 (where ⋆ is Prop and □ is
Type), with the addition that elements of Set can’t be formed by abstracting
over Type: A = {(Prop : Type), (Set : Type)},R = {(s, Prop, Prop) | s ∈
{Set, Prop, Type}} ∪ {(s, Set, Set) | s ∈ {Prop, Set}} ∪ {(s, Type, Type) | s ∈
{Prop, Type}}. Finally, Coq maintains a notion of global context and one of
local context. The local context Γ is used inside the development of a proof,
while the global context E contains user provided assumptions or definitions
for constants. The only moment where we access the global environment in
this work is when dealing with inductive types, therefore we left them out of
the presentation of the system in fig. 4.7.

Definitions for inductive types are included in E as constants that extend
the base signature of the type theory, and are paired with their constructors;
the system then generates additional constants that represent the destructors,
or induction principles, for these types. Moreover, an inductive definition can
contain several, mutually defined, inductive types; an inductive definition is
represented as Ind[p] (ΓI := ΓC), where p is the number of parameters,ΓI is the
set of the newly defined types (ai : Ai), and ΓC is the set of their constructors
(ci : Ci). As an example, consider a definition of the inductive type of lists of
an arbitrary type A: there is one parameter (A : Set), the newly introduced
type is one (List : Set → Set) and there are two constructors. The definition
of the inductive type of lists augments the base signature with the following:

Ind[1]

(
List : Set → Set :=

Nil : (A : Set)List A :: ϵ
cons : (A : Set)A ϵ → List A :: ϵ → List A :: ϵ

)
The global context E is built out of such inductive definitions, and we write
E[Γ] for the union of the local context Γ and E. The two typing rules for in-
ductive types and constructors presented in Coq’s reference manual are:

Ind[p](ΓI := ΓC) ∈ E (a : A) ∈ ΓI

E[Γ] ` a : A

Ind[p](ΓI := ΓC) ∈ E (c : C) ∈ ΓC

E[Γ] ` c : C

These rules are expressed in natural deduction style. We formulate rules for
these constants as an extension of the sequent calculus of fig. 4.3. Fix a global
context E, then we have the following two rules that correspond to unfolding
the inductive definition:

Ind[p] (ΓI := ΓC) ∈ E (A : T ) ∈ ΓI c : D ∈ ΓC Γ ⇓ D ` l : · ⇓ A

Γ ⇑ · ` c l : · ⇑ A

Ind[p] (ΓI := ΓC) ∈ E (A : T ) ∈ ΓI Γ ⇓ T ` l : · ⇓ s

Γ ⇑ · ` A l : · ⇑ s

Figure 4.4: Unfolding rules for inductive definitions

Finally, it is worth noting that the logical connectives ∧,∨, ∃ are given in
Coq as inductive types over the type of propositions. The unfolding of these
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definitions through the rules in fig. 4.4 gives rise to the usual right rules for ∧−,
∨+++ and ∃. Consider for example the inductive definition for the ∃ connective:

Ind[2]

(
∃ : (A : Type)(P : A → Prop)Prop :=

∃intro : (x : A)(Px → ∃A ϵ :: P ϵ :: ϵ)

)
Just as in subsection 1.1.1, the binder for the existential is handled by a more
generic binding device. When the type T is unambiguous, the concrete syntax
for ∃ A ϵ :: P ϵ :: ϵ is ∃y. P . This inductive definition gives rise to the un-
folding rule for its sole constructor (where the subproofs for checking that the
products are well-sorted are omitted, and we use the concrete syntax ∃y. P ):

...
Γ ⇑ · ` t : · ⇑ A

...
Γ ⇑ · ` u : · ⇑ Pt

Π
Γ ⇑ · ` ∃ A ϵ :: P ϵ :: ϵ : · ⇑ Prop

Γ ⇓ ∃y. Py ` ϵ : · ⇓ ∃y. P init

Γ ⇓ [x/t](Px → ∃y. Py) ` u :: ϵ : · ⇓ ∃y. P
Γ ⇓ (x : A)(Px → ∃y. P ) ` t :: u :: ϵ : · ⇓ ∃y. P

Γ ⇑ · ` ∃intro t :: u :: ϵ : · ⇑ ∃y. P unfold

This is the usual right introduction rule for ∃, similar to the one of LJF: we
need to provide a term t of type A and a proof of Pt in order to conclude
the existential. The signature check for the term t is now encoded in the same
sequent calculus as the logic. The second unfolding rule concerns the check for
well-sortedness of the formulas using the connective, and can be used directly
for the premise Π:

Γ ⇑ · ` A ϵ : · ⇑ Type

Γ ⇑ · ` P ϵ : · ⇑ A ϵ → Prop

∅ wf

⇑ · ` Prop : · ⇑ Type

Γ ⇓ Prop ` ϵ : · ⇓ Prop

Γ ⇓ (P : A ϵ → Prop)Prop ` P ϵ :: ϵ : · ⇓ Prop

Γ ⇓ (A : Type)(P : A → Prop)Prop ` A ϵ :: P ϵ :: ϵ : · ⇓ Prop

Γ ⇑ · ` ∃ A ϵ :: P ϵ :: ϵ : · ⇑ Prop
unfold

In order to conclude the two open premises of this proof, we need the context
Γ to contain the judgments A : Type and P : A ϵ → Prop.

4.2 Implementing an elaborator for proof certificates

In this section we detail the implementation of two Coq plugins based on the
proposed sequent calculus. So far we presented all of our development in a
logic programming paradigm, whereas most proof assistants (including Coq)
adopt predominantly functional programming languages and tools. For this
reason, we start with a general discussion on the role of logic programming in
proof assistants. We then present the tooling for writing logic programming
tactics in Coq with Coq-Elpi, and then we present the implementations based
on Foundational Proof Certificates.
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4.2.1 Logic programming and proof assistants
Several automation components that are present in proof assistants employ
mechanism that resemble logic programming. Perhaps the most known cases
are simple automation tactics, like Coq’s auto and eauto, which are usually
presented as solvers that will perform Prolog-like computation. However, the
presence of logic programming computations goes much further than this, as
they underlay several other components like typeclass or coercion resolution:
this is true to the extent that there has been an attempt to reuse Coq’s typeclass
resolution component as an engine for an improved version of the auto tactic
itself [ZH17].

The resolution of typeclasses and coercions happens in the component of
a proof assistant that is responsible for synthesizing a fully explicit, complete
proof term that the kernel can check, starting from the ambiguous and possi-
bly partial proof scripts that the user has typed in. This component, named
the elaborator, is by itself another typical instance of a logic program, that has
to deal with backtracking search and unification. The Elpi dialect of λProlog
[Dun+15] was born precisely with the aim of providing a flexible language to
specify the different parts of Coq’s elaborator.

So far, we have referred to our implementations of LKFa as the kernel of our
proof-checking system. In the context of a proof assistant however the aim
of an FPC checker should not be that of replacing its kernel: a proof object
always reaches this stage in a specific, maximally explicit, format. Allowing
more would be meaningful only in the context of a hypothetical fully format-
agnostic proof assistant, which is something that is not even clearly specified.
Rather, we see more clearly the role of FPC checkers in the context of proof
elaboration: given a proof certificate in any FPC specification, our checker
should help rebuild a proof in the format assumed by the proof assistant and
make it available to the user for interaction in their workflow.

4.2.2 Tactics in Coq-Elpi
Coq-Elpi [Tas18] is a plugin for Coq that provides an API for manipulating
Coq’s environment with λProlog. It also provides the possibility to build tac-
tics that can be called when in proof mode, have access to the currently open
goals, and can solve them completely or progress on them by possibly open-
ing new goals. The embedding of terms in λProlog takes advantage of the
native λProlog constructs such as lists and binders; moreover, logic variables
in λProlog directly correspond to Existential Variables in Coq. The following
is part of the Coq-Elpi API signature of constants we use:

Listing 4.1: Signature for the main components of Coq-Elpi’s term representa-
tion
kind term type. % reification of Coq terms
kind gref type. % references to global terms
type app list term→ term. % n-ary application
type prod name→ term→ (term→ term)→ term. % products
type fun name→ term→ (term→ term)→ term. % λ-abstraction
type global gref→ term. % terms from global context
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type indt inductive→ gref. % inductive types in glob. ctx
type indc constructor→ gref. % constructors of ind. types

The representation of terms resemblesmore the Sequent Calculus presentation
that we have discussed in the previous section rather than the Natural Deduc-
tion one: app is an applicative list, and not an application between two terms
like in Natural Deduction. Nevertheless, in the case the list of arguments of a
term t is empty, the term is represented as t rather than app [t|nil]. Note
that prod and fun encode dependent products and functions by taking a name
for pretty printing, a term for the abstracted type, and a λProlog abstraction
from terms to terms: i.e., (x : B)D is encoded by prod ``x'' B (x\ D x).

Two types of extensions can be developed with Coq-Elpi: tactics and com-
mands. Commands are used outside the proof mode, and have access to the
global state of the prover. Tactics are used during proof mode and have addi-
tional access to the currently unsolved goals and their context.

Listing 4.2: Signature for tactics
type solve goal→ list sealed-goal→ prop.
type goal goal-ctx→ term→ term→ term→ list argument→ goal.

They are implemented by providing a definition of the solve predicates, that
has type goal → sealed-goal → prop; a sealed goal is just a goal where
all variables are locally bound, and solve transforms the currently open goal
into a list of new goals. The only constructor for the type goal is used with:
goal Ctx RawSolution Ty Solution Arguments where Ctx is the context,
Ty is the type that needs to be inhabited, Solution is the variable that should
be assigned with the proof term. RawSolution has some additional syntactic
constraints, and Arguments carries some additional information, but we won’t
be using them. A trivial tactic that simply prints out the current goal, and
leaves the state unchanged is implemented like this:
Elpi Tactic show.
Elpi Accumulate lp:{{
solve Goal _ :-
Goal = (goal Ctx _R Type _Sol _Args),
coq.say Ctx Goal.

}}
Elpi Typecheck.

This code is used like this:

Lemma foo: ∀ A, A → A.
elpi show.

Lemma foo: ∀ A, A → A.
intros.
elpi show.

With the code on the left column, the tactic will print this line:
[] (prod `A` (sort (typ «Top.2»)) c0 \ prod `_` c0 c1 \ c0)

Whereas with the one in the right column, it will print this line:
[decl c1 `X` c0, decl c0 `A` (sort (typ «Top.2»))] c0

In the first case the context is empty, the goal is the entire type. After we in-
troduce the hypotheses with intros, the context contains the type declaration
and names for the two λProlog eigenvariables c0 (of type Type in a certain
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universe, and named A) and c1 (of type c0, and named X). The goal is A, that
is, the eigenvariable c0.

For amore interesting example, let’s implement a tactic that performs bounded
goal directed proof search, mimicking the behavior of Coq’s eauto tactic. This
prolog-like search is obtained by considering a fragment of the sequent calcu-
lus in fig. 4.3: we restrict the goal to be atomic, we don’t perform the check for
well-sortedness (and instead rely on Coq’s unificationwhen applying init), we
include the rule for unfolding constructors of inductive types from fig. 4.4 and
add an extra case for proof of equality by reflexivity. The result is the code in
listing 4.3, where the asynchronous sequents are simplified as goal-reduction
(go) and the synchronous ones are the backchaining sequents (bc). No stor-
age is present since there are only atoms on the consequent of sequents.

Listing 4.3: A goal-directed, bounded proof search tactic in Coq-Elpi
%% Goal reduction
check Cert (go {{lp:G1 = lp:G2}} {{eq_refl}}):-
coq.unify-eq G1 G2 ok,
eq_expert Cert.

% Unfold inductive goals
check Cert (go Atom Term) :-
coq.safe-dest-app Atom (global (indt Prog)) _Args,
coq.env.indt Prog _ _ _ _Type Kn KnTypes,
Kons = global (indc K),
std.mem Kn K,
% Use the selected constructor as key to find its
% clause in the zipped list of constructors and clauses.
std.lookup {std.zip Kn KnTypes} K Clause,
Cert > 0, Cert' is Cert - 1,
check Cert' (bc Clause Atom ListArgs),
coq.mk-app Kons ListArgs Term.

% Weak head reduction
check Cert (go (app [(fun Name Type Body)| Args]) Term) :-
coq.mk-app (fun Name Type Body) Args App,
check Cert (go App Term).

%% Backchain
check _ (bc A A' []) :-
coq.unify-eq A A' ok.

check Cert (bc (prod _ Ty1 Ty2) Goal OutTerm) :-
check Cert (bc (Ty2 Tm) Goal ListArgs),
coq.typecheck Tm Ty1 ok,
OutTerm = [Tm|ListArgs].

The second parameter to the check predicate is the sequent as we have de-
scribed it, while its first parameter is the user provided bound, that decreases
every time a decision on a constructor is made. The unfolding rule makes
use of the Coq-Elpi primitives coq.safe-dest-app in order to obtain the head
term of a (possibly nested) application, and coq.env.indt in order to access
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the global context of inductive definitions and query for information about
them. Then, a constructor is non-deterministically selected together with its
type, and the backchaining phase is initiated.

While no special rule is present for the existential quantifier, remember
that ∃ is given in Coq as an inductive type with two parameters (the type it
quantifies over and the quantified proposition). The unfolding rule treats it
by backchaining on its only constructor, which has type (x : A)P x → ∃y. P y.
The backchain rule introduces fresh variables Tm for every dependent product,
obtaining the behavior of eauto, whichwould have similarly introduced a Coq
Existential variable.

This code is packaged in an Elpi tactic with the following glue code:

Elpi Tactic dprolog.
Elpi Accumulate lp:{{
solve (goal _Ctx _RawEv Goal _Ev [int N] as G) OutGoals :-
check N (go Goal Term),
refine Term G OutGoals.

}}.

The solve predicate simply calls check to synthesize a term of type Goal, and
the Coq-Elpi built-in predicate refine is then used to try to close the goal.
Consider a predicate that defines insertions on lists of naturals in relational
style as follows:

Inductive insert (x:nat) : list nat → list nat → Prop :=
i_n : insert x [] [x]
| i_s : ∀ y: nat, ∀ ys: list nat, x <= y →

insert x (y :: ys) (x :: y :: ys)
| i_c : ∀ y: nat, ∀ ys: list nat, ∀ rs: list nat,

y <= x → insert x ys rs → insert x (y :: ys) (y :: rs).

This tactic can solve some simple queries such as:

Lemma i1: ∃ R, insert 2 ([0; 1]) R.
elpi dprolog 5.

Qed.

Additional features of eauto such as hints and databases of hints are also eas-
ily accounted for, by leveraging the Database feature of Coq-Elpi which allows
building pieces of λProlog code that are conditionally loaded: we would then
have an additional goal-reduction rule that starts a backchaining phase by se-
lecting a clause from the available hints.

4.2.3 Elaborators for Foundational Proof Certificates
The size bound parameter to the dprolog tactic can already be seen as a small
instance of an FPC elaborator for the restricted backchaining calculus. It is
not by chance that the height parameter was named Cert. When we wish
to extend this approach to encompass more complex certificates and more of
the type theory, there are several directions that we can take. For one, the
logic we have discussed so far is first order and distinguishes the clerks and
experts for implication from those for universal quantification. Both are here
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subsumed by the dependent product. Additionally, the calculus of fig. 4.3 only
has negative rules, and lacks some structural rules of LJFa.

Themost direct generalization is obtained by augmenting the calculus com-
posed by the rules in fig. 4.3 with clerks and experts handling proof certificates
for each rule in the initial, product and structural groups. The signatures for
such clerks and experts is presented in listing 4.4.

Listing 4.4: Clerks and experts for the calculus in fig. 4.3
type storeL_jc cert→ (A→ cert)→ index→ prop.
type decideL_je cert→ cert→ index→ prop.
type initialL_je cert→ prop.
type prod_jc cert→ (A→ cert)→ prop.
type prod_je cert→ cert→ cert→ prop.

No clerk nor expert is present for the sorting rules: the certificate information
here is provided by the set A ,R of axioms and rules. In addition to this we
can include an expert for the unfolding rules in fig. 4.4:
type unfoldL_je list constructor→ cert→

cert→ constructor→ prop.
This small set of clerks and experts gives us a playground for more expressive
certificates, although still limited to have a purely negative polarity. Simple
examples for this are (in addition to the usual depth or size bounds) differ-
ent representations of λ-terms. In the example code at https://github.com/
proofcert/fpc-elpi a tactic for elaborating terms with de Bruijn indexes in-
stead of bound variables is presented.

In order to treat more proofs coming from FPC specifications in the style of
LJFa, we need someway to treat connectives andpositive polarities. There is no
way around having positive polarities, since the existential quantifier and the
intuitionistic disjunction are positive. However, the calculus we have chosen
both as a foundation for certificates and as a representation of Coq terms does
not allow positives: this is enforced in the Pl rule, where we expect to build a
list of arguments; if B is some form of positive type, it must be immediately
decomposed on the left, and thus the typed term can’t be the list l but would
instead be the term corresponding with the typing rule forB (for example, an
injection if B is a disjunction).

We can recover positive polarities restricted to first-order by decoupling
the term representation and the foundation for proof certificates. We obtain
a version of LJFa enriched with Coq terms in natural deduction style. The
rules for universal quantification and implication are separated, but they are
annotated with the same Coq terms, and are no longer tied to the negative
polarity assumptions:

Ξ1 : Γ ⇓ · ` t : A ⇓ · Ξ2 : Γ ⇓ y : B ` u : · ⇓ C ⊃e (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇓ z : A ⊃ B ` [z t/y]u : · ⇓ C

Ξ1 : Γ ⇓ · ` t : A ⇓ · Ξ2 : Γ ⇓ y : [t/x]A ` u : · ⇓ C ∀e(Ξ0,Ξ1, t)

Ξ0 : Γ ⇓ z : ∀x.A ` [z t/y]u : · ⇓ C

Now u can be a term of any shape, and thus positive polarities are allowed.
Since the signature for the terms instantiated by the quantifiers is now the same

https://github.com/proofcert/fpc-elpi
https://github.com/proofcert/fpc-elpi
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as the one for terms, which is in turn the internal representation of proofs, we
see in the two expert predicates two different takes in action for a similar task:
in the first, a certificate is provided to guide the proof of A and the simulta-
neous synthesis of t; in the second, a representation of t is directly present in
the certificate. Both approaches can be meaningful in a dependently typed
setting, although the first is more general and can encompass the second. The
structural rules of LKFa that are not present in fig. 4.3 will thread through the
unmodified Coq term. For example:

Ξ1; : Γ ⇑ · ` t : N ⇑ · releaseRe(Ξ0,Ξ1)

Ξ0; : Γ ` t : N ⇓

By decoupling the internal term representation from the proof checker we
can elaborate proofs in first-order logic containing positive polarities into Coq
proofs. In this way, we get a consistent treatment of positive connectives as
well. To obtain the left rules for the connectives, we need to consider the in-
duction principles associated with them. The induction principles are auto-
matically derived by Coq for every inductive definition, and are inhabited by
proof terms that perform recursion with case analysis. We don’t look into the
structure of these terms, but just at their types. Consider the induction princi-
ple or_ind for the inductively defined disjunction:

Coq < About or_ind.
or_ind : forall [A B P : Prop], (A→ P)→ (B→ P)→ A \/ B→ P

In Coq’s concrete syntax, we get something which corresponds to the Natural
Deduction rule for disjunction elimination: P is provable if we can prove it
independently of the assumption A and from the assumption B, and we can
prove A ∨ B. We can use this in the LKFa rule for the left introduction of
disjunction in the following way:

Ξ : Γ ⇑ A,Θ ` u1 : · ⇑ C Ξ : Γ ⇑ B,Θ ` u2 : · ⇑ C ∨c(Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇑ x : A ∨B,Θ ` orind A B C u1 u2 x : · ⇑ C

This allows us to have a full elaborator for LJFa proof certificates into Coq
proofs.

4.2.4 An Elpi tactic for PBT
The second prototype implementation is a lightweight plugin that employs
proof certificates to guide the generation of data for Property-Based Testing
of relational specifications, with the strategy introduced in subsection 3.4.2.
Given the common foundation, it is in principle possible to port all the PBT fea-
tures that are accounted for in [BMM19]. However, we will now present only
FPC corresponding to different flavors of exhaustive generation, as adopted,
e.g., in SmallCheck [RNL08] and αCheck [CM17].

Coq already features QuickChick [Par+15], which is a sophisticated and
well-supported PBT tool, based on a different perspective: being a clone of
Haskell’sQuickCheck, it emphasizes testing executable specificationswith func-
tional, decidable generators. While current research [LPP18] aims to increase
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type interp term → o.
type backchain term → term → o.

interp {{True}}.
interp (sort _).

interp {{lp:G1 /\ lp:G2}} :-
interp G1,
interp G2.

interp {{lp:G1 \/ lp:G2}} :-
interp G1;
interp G2.

interp {{lp:G1 = lp:G2}} :-
coq.unify-eq G1 G2 ok.

interp (app [global (indt Prog) | _Args] as Atom) :-
coq.env.indt Prog _ _ _ _Type _Kn Clauses,

std.mem Clauses D,
get_head D Atom,
backchain D Atom.

backchain (prod _ Ty (x\P)) G :- !, backchain P G, interp Ty.
backchain (prod _ _Ty (x\P x)) G :- !, backchain (P X_) G.
backchain G G' :- coq.unify-eq G G' ok.

Figure 4.5: Meta interpreter for PBT

automation, it is fair to say that testing with QuickChick is still very labor-
intensive, in particular when it comes to relational specifications. We do not
intend to compete with QuickChick at this stage, but we shall see that we can
test immediately Inductive definitions that corresponds to pure Horn pro-
grams, without having to provide a decidability proof for those definitions.
Furthermore, we are not committed to a fixed random generation strategy,
which in general requires additional work in the configuration of generators
and shrinkers.

Recall the setting we described for PBT in subsection 3.4.2: we have a data
type τ , an executable specification P and a property Q that we wish the spec-
ification to meet. Looking for a counterexample then means looking for an
existential witness for the formula

∃x[(τ(x) ∧ P (x)) ∧ ¬Q(x)]

In our Coq setting P and Q will be propositions, while τ is a datatype. We
generate data for the types τ , while predicates will only be checked.

The intended usage of the pluginwe develop is to be invoked inside a proof
context, where the goal the user is trying to prove is the property Q that the
specification shouldmeet. At this point, the typing judgments for the variables



4.2. Implementing an elaborator for proof certificates 91

and the specification information are part of the context. Invoking the plugin
will try to find counterexamples to Q based on the input parameters taken
from the context.

The user specifies which variables of the environment should be used for
generating data and which for executing the specification. In addition to this,
the user should specify all the certificate information that will guide the data
generation phase. For a context where the wished specification formulas are
H1 : A1∧· · ·∧Hm : Am andwhere the variables forwhich generation is needed
according to cert are x1 : τ1, . . . xn : τn, the call to the tactic will be:

elpi dep_pbt <cert> (H1 ∧ · · · ∧Hm) (x1) . . . (xn).

The implementation of the tactic is structured as follows:

• First, a pre-processing step retrieves the variables in the context and pairs
them with λProlog metavariables. Then, they are substituted with their
metavariable whenever they appear in the specification A1, . . . Am or in
the property (that is, the goal formula)Q. From a logical viewpoint, this
corresponds to turning the entire context from universally quantified to
existentially quantified.

• Then, the types of the variables x1, . . . , xn that weremarked for data gen-
eration are retrieved. Goals for the FPC elaborator are created by pairing
their corresponding metavariables X1,…,Xn (that were introduced at the
previous point) with their types: X1:τ1,…,Xn:τn. The FPC elaborator is
called on these goals paired with the user provided certificate.

• If the call to the elaborator has been successful, X1,…,Xn are now instanti-
ated, including in the specificationA1, . . . , Am that had been generalized
in the first step. The interpreter of fig. 4.5 is run on the specification, ob-
taining further instantiated values for the remaining metavariables.

• Finally, we have a completely ground instance of the goal formula Q.
Since it is completely ground, once we see it as a Horn clause attempt-
ing to negate it corresponds to its negation-as-failure. Therefore, we call
not (interp Q): if this succeeds, a counterexample has been found and
the substitution instances for X1,…,Xn are returned to the user. Other-
wise, backtracking is automatically triggered and new data is generated
if the backtracking points allowed by the certificate are not completely
exhausted.

The preprocessing steps take a big advantage from the handling of λ-tree syn-
tax in λProlog. The substitutions in terms are performed with different sets
of copy clauses, and logic metavariables are used in place of the existentially
quantified variables. Consider now for a first example this definition of or-
dered lists:

Inductive ordered : list nat → Prop :=
| o_n : ordered []
| o_s : ∀ x : nat, ordered [x]
| o_c : ∀ (x y : nat), ∀ xs, ordered xs →

x <= y → ordered (x :: y :: xs).
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Apropertywemaywish to check before embarking in a formal proof iswhether
insertion preserves order:

Conjecture ins_ord: ∀ (x : nat) xs rs, ordered xs →
insert x xs rs → ordered rs.

intros x xs rs Ho Hi.
elpi dep_pbt height 5 (Ho ∧ Hi ) (x) (xs).
Abort.

In this query the tactic tests the hypotheses Ho and Hi against data x,xs gener-
ated exhaustively up to height atmost 5 from the library Inductive definitions
of nat and list. We do not generate values for rs, since by mode information
we know that it will be computed. Since we did slip in an error, our tactic re-
ports a counter-example, namely x = 0 and xs = [0; 1; 0]. As the latter is
definitely not an ordered list, this points to a quite evident bug in the definition
of ordered. We leave it to the reader, and we abort the proof.

Testing the above conjecture with QuickChick would have required more
setup: if we wished to proceed relationally as above, we would have had to
provide a proof of decidability of the relevant notions. Were we to use func-
tions, then we would have to implement a generator and shrinker for ordered
lists, since automatic derivation of the former does not (yet) work for this kind
of specification.

For a more significant case study, let us turn to the semantics of program-
ming languages, where PBThas beenused extensively and successfully [Kle+12].
Herewewill consider a far simpler example, a small typed arithmetic language
featuring numerals with predecessor and test-for-zero, and Booleans with if-
then-else, which comes from the Software Foundations book series [Pie22]. The
terms for the language are given by:

Inductive tm : Type :=
| ttrue : tm | tfalse : tm | tif : tm→ tm→ tm→ tm | tzero

: tm | tsucc : tm→ tm
| tpred : tm→ tm | tiszero : tm→ tm.

Inductive typ : Type :=
| TBool : typ | TNat : typ.

The completely standard static and small step dynamic semantics rules are re-
ported in fig. 4.6. We pose ourselves the task of proving the subject expansion
property for this calculus; it seems likely that it doesn’t hold, so we call the
PBT tactic:

Conjecture subexp: forall e e' t, e ==⇒e'→ has_type e' t→
has_type e t.

intros e e' t HS HT.
elpi dep_pbt height 2 (HS /\ HT) (e).

We generate a term e, perform a step and obtain the type of the reduced term.
Then, it is checked whether e has this same type. Indeed, we obtain a coun-
terexample assignment: e = tif ttrue tzero ttrue, which is notwell-typed
but reduces to a term of type TNat.

Another way to assess the fault detection capability of a PBT setup is via
mutation analysis [CCM20], whereby localized bugs are voluntarily inserted,
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with the view that they should be caught by a well-prepared testing suite. Fol-
lowing on an exercise in the aforementioned chapter of Software Foundations,
we modify the typing relation by adding the following (nonsensical) clause:
Module M1.
Inductive has_type : tm→ typ→ Prop :=
$\dots$
| T_SuccBool : forall t, has_type t TBool→

has_type (tsucc t) TBool.
end M1.

Some of the required properties for the system under test now fail: not only
type uniqueness, but also progress:
Definition progress (e :tm) (Has_type : tm→ typ→ Prop)
(Step : tm→ tm→ Prop):= forall t, Has_type e t→ notstuck

e Step.

Conjecture progress_m1: forall e, progress e M1.has_type step.
unfold progress.
intros e t Ht.
elpi dep_pbt height 2 (Ht) (e) .

The inserted bug is immediately located, and we obtain the counterexample
assignment e = tsucc ttrue.

These examples are quite simple, but have already been used in the liter-
ature as a benchmark for evaluating QuickChick’s generators [Lam+17]. An
important part of Property-Based Testing is the random generation of data.
Here, we just discussed minimal formats of certificates providing a mere size
bound, since the focus was the integration of the tool with Coq; however, the
underlying implementation technique is the same as that in [BMM19], and the
randomized generation from that work can immediately be put to work in the
current context.
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Inductive has_type : tm → typ → Prop :=
| T_Tru : has_type ttrue TBool
| T_Fls : has_type tfalse TBool
| T_Test : ∀ t1 t2 t3 T, has_type t1 TBool →

has_type t2 T →
has_type t3 T → has_type (tif t1 t2 t3) T

| T_Zro : has_type tzero TNat
| T_Scc : ∀ t1, has_type t1 TNat → has_type (tsucc t1) TNat
| T_Prd : ∀ t1, has_type t1 TNat → has_type (tpred t1 ) TNat
| T_Iszro : ∀ t1, has_type t1 TNat →

has_type (tiszero t1) TBool.

Inductive nvalue : tm → Prop :=
| nv_zero : nvalue tzero
| nv_succ : ∀ t, nvalue t → nvalue (tsucc t).
Inductive bvalue : tm → Prop :=
| bv_t : bvalue ttrue
| bv_f : bvalue tfalse.
Reserved Notation "t1 '=⇒ ' t2" (at level 40).
Inductive step : tm → tm → Prop :=

| ST_IfTrue : ∀ t1 t2, (tif ttrue t1 t2) =⇒ t1
| ST_IfFalse : ∀ t1 t2, (tif tfalse t1 t2) =⇒ t2
| ST_If : ∀ t1 t1' t2 t3,

t1 =⇒ t1' → (tif t1 t2 t3) =⇒ (tif t1' t2 t3)
| ST_Succ : ∀ t1 t1',

t1 =⇒ t1' → (tsucc t1) =⇒ (tsucc t1')
| ST_PredZero : (tpred tzero) =⇒ tzero
| ST_PredSucc : ∀ t1,

nvalue t1 → (tpred (tsucc t1)) =⇒ t1
| ST_Pred : ∀ t1 t1',

t1 =⇒ t1' → (tpred t1) =⇒ (tpred t1')
| ST_IszeroZero : (tiszero tzero) =⇒ ttrue
| ST_IszeroSucc : ∀ t1,

nvalue t1 → (tiszero (tsucc t1)) =⇒ tfalse
| ST_Iszero : ∀ t1 t1',

t1 =⇒ t1' → (tiszero t1) =⇒ (tiszero t1')
where "t1 '=⇒ ' t2" := (step t1 t2).

Inductive notstuck (e : tm) (Step : tm → tm → Prop) : Prop :=
| pn : nvalue e → notstuck e Step
| pb : bvalue e → notstuck e Step
| ps e' : Step e e' → notstuck e Step.

Figure 4.6: Semantics for a simple language with arithmetic expressions. With
an error!



Conclusion

Wehave presented some advancements to Foundational Proof Certificates and
the proof theory behind them along several directions. We briefly them up in
the light of the global project, and sketch some future research lines.

Proof certificates and automation In chapter 2 we have shown how to inter-
pret proof-theoretically some logical transformation that are commonly used
as pre-processing steps in automatedprovers. The presented techniques should
be developed further in experiments with real-world automated provers. In
particular, the Alethe proof format [Sch+21], that has recently been proposed
as a formalism to be employed by veriT and possibly other SMT solver, should
be provided with an FPC presentation.

Linearized arithmetic In chapter 3 we have presented some results on the
proof theory of logics with fixed points relative to focusing and polarization.
We have used them as the foundation for some of the implementations in chap-
ter 4. Much remains to be understood about the logical content and properties
of these theories: a focusing theorem for classical logic with fixed points needs
to be established, and the relation between intuitionistic, linear and classical
systems needs to be studied. Based on this, the semantics of proof certificates
could be more clearly extended to systems with induction or fixed points.

Interactive proof developments We have presented two simple extensions
based on proof-theoretic foundations that increase the automation of proof as-
sistants, either by automatically reconstructing arguments based on external
proof evidence or by providing counterexamples. The integration of coun-
terexamples into mathematical practice constitutes a central point in the work
of Lakatos [Lak77]. In his critique of the formalist approach to mathemat-
ics, Lakatos argues against the view that mathematical discovery happens in a
strictly deductive way, where precise definitions are laid out at first, and then
theorems and their proofs are proposed and carried out as purely deductive
activities. To this view Lakatos opposes one where mathematical discovery
happens by a repeated process of proposing informal proofs and discovering
counterexamples and refutations to the claimed proofs. In a twist of events,
these views of Lakatos have been of inspiration for defenses of the practice of
formalizedmathematics such as [AGN09]. The argument here is that what the
user carries out during the development of a formal proof does indeed hap-
pen in an informal setting: the actual formalization step is brought in when
one appeals to the proof assistant’s kernel to check the validity of the input.

95
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The component that turns the user script (which might contain holes and am-
biguous notation) into a full term to be checked is the elaborator, that we have
discussed in chapter 4.

Two directions stem from this observation. One direction concerns increas-
ing the expressivity of Foundational Proof Certificates as a device for easier
elaboration of proof scripts into full proofs, by investigating more the features
of interactive theorem prover. As an example, it is natural to encode type-
class resolutionmechanisms in logic programming (see for example [BKL19]),
and the style of this implementation resembles that of FPC; what would be in-
teresting to explore is whether these devices require an extension to the FPC
paradigm or whether they can be accounted for already in the current presen-
tation.

The other direction is the analysis of counterexamples in this context. In-
deed, it seems that the authors of [AGN09] contented themselves with con-
sidering the duality of partial versus complete proof scripts as a presentation
of a paradigm in the style of Lakatos. However we have shown how a seman-
tics of proofs can be useful for considering (formal) counterexamples. Lakatos
distinguishes global counterexample to the primitive conjecture, and local coun-
terexamples to a particular lemma. The PBT tacticwe developed in chapter 4 can
be useful only for an analysis of local counterexamples: it can be used only on
purely positive goals, and not on complex conjectures; the resulting trace of a
synchronous phase is a single data structure (a term invalidating the property,
or an index in a case analysis) and it is of no help in localizing where a smaller
offending lemma might be. Therefore, the intended usage is still contrary to
the method of Lakatos: the user needs to elaborate a precise proof strategy for
their theorem by pinpointing a series of small lemmas, and only using the em-
pirical, PBT-supported method on such smaller lemmas. However, we see a
path beyond this once we consider counterexamples to more complex claims,
that is, once we go beyond purely positive formulas. In this setting, counter-
proofs generated by an automated helper contain more information that is not
available at first sight: as a minimal example, consider an universal quantifier
around a purely positive formula, for which a refutation certificate contains
only a method refuting each user provided witness. The user should embark
in an interaction with the certificate, for example by testing several witnesses
and seeing them all refuted, in order to learn more about their conjecture. A
proposal for this interaction has been done in [Mil21], and it should be possi-
ble to integrate this in a future version of our plugins for Coq.

Abstract proof representations We have referred in chapter 1 to the work on
transcendental syntax, a research project proposed by J.-Y. Girard and brought
forward by Eng [Eng]. While it is not clear whether the analysis of Founda-
tional Proof Certificates is in total agreement with Transcendental Syntax, it
could be interesting to study the properties of certificates as objects of their
own right, without interpreting them as fully detailed proofs in a sequent cal-
culus. In particular, the paradigm of interactionwith counterexamples that we
sketched in the previous paragraph should happen in this uninterpreted set-
ting, since it involves partial and possibly incorrect derivations. On the other
hand, an easier task should be that of describing the Stellar Resolution of Eng
ans Seiller [ES22], which embodies the ideas of Transcendental Syntax, as a
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format of proof certificates.

Positive polarities in type theories In chapter 4 we have presented an adap-
tation of a focused proof system for depentent types as the foundation for the
elaboration of proof certificates in proof assistants based on such type theories.
However, in order to account for positive polarities we restricted ourselves to
first order proofs and we decoupled the term representation from the proof
system. In order to obtain a clear treatment of proof certificates in proof as-
sistants, a focused proof system with both positive and negative polarities is
needed.

We have described in chapter 1 and 2 how positive polarities correspond to
locally named subproofs. When proofs are represented by means of λ-terms,
this corresponds to using let binders, which is a feature present inmany proof
assistants. The system λκ from [BNGG15], whose negative fragment we have
employed in our work, provides a decomposition of let binders by means of
the binder κ. When building a continuation (in the negative fragment, an ap-
plicative list terminated by ϵ, corresponding to the initial rule), if the negative
phase ends by a release instead of init the κ binder is inserted, which names
the currently built subproof and handles it to the store rule, to be indexed and
stored. The proof termbuilt in such a phase has the form k :: l :: κxA.(t), which
corresponds in Coq’s syntax to let x : A := k l in t. The same authors of
λκ noted in [GG15] that their system would have been beneficial for proof as-
sistants, but didn’t reach a complete presentation of the system.

We leave a proposal for an extension of Pure Type Systems that accounts for
positive types in fig. 4.7: the main idea we add is that of adding, on top of the
set S of sorts, a covering {N ,P}. The intended meaning is that inhabitants
of a sort belonging toN are negative, and the inhabitants of a sort belonging to
P are positive. Therefore, we obtain for example the types Prop− of negative
propositions, or Type+ of positive types, or Set+ of positive data types. The
metatheory of this system needs to be studied, and further applications can
be explored. A prototype implementation of this system is available at https:
//github.com/manmatteo/playground/tree/master/fpc-cic

https://github.com/manmatteo/playground/tree/master/fpc-cic
https://github.com/manmatteo/playground/tree/master/fpc-cic
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Sorting rules

∅ wf

Γ ⇑ · ` A : s ⇑ · (x 6∈ Dom(Γ))

Γ, x : A wf

Γ wf (s, s′) ∈ A

Γ ⇓ · ` s : s′ ⇓ ·
Γ wf s ∈ S

Γ ⇓ s ` ϵ : · ⇓ s

Γ ⇓ · ` A : s1 ⇓ · Γ, x : A ⇓ · ` B : s2 ⇓ · Γ ⇓ s3 ` l : s3 ⇓ · (s1, s2, s3) ∈ R

Γ ⇑ · ` (x : A)B l : s3 ⇑ ·

Initial

Γ ⇑ · ` N : s− ⇑ ·
Γ ⇓ N ` ϵ : · ⇓ N

axiomn

Γ ⇑ · ` B : s+ ⇑ ·
Γ, x : B ⇓ · ` x : B ⇓ ·

axiomp

Product
Γ ⇑ · ` (x : A)B : s ⇑ · Γ ⇑ A ` M : B ⇑ ·

Γ ⇑ · ` λxA.M : (x : A)B ⇑ ·
Pr

Γ ⇑ · ` (x : A)B : s ⇑ · Γ ⇓ · ` p : A ⇓ · Γ ⇓ [x/p]B ` l : · ⇓ C

Γ ⇓ (x : A)B ` p :: l : · ⇓ C
Pl

Structural rules

Γ ⇑ · ` A : s− ⇑ · Γ, x : A ⇓ A ` l : · ⇓ B

Γ, x : A ⇑ · ` x l : · ⇑ B
decidel

Γ, x : N ⇑ Θ ` t : A ⇑ ·
Γ ⇑ N,Θ ` t : A ⇑ · storel

Γ ⇑ · ` P : s+ ⇑ · Γ ⇓ · ` p : P ⇓ ·
Γ ⇑ · ` dpe : · ⇑ P

decider
Γ ⇑ · ` t : · ⇑ A

Γ ⇑ · ` t : A ⇑ · storer

Γ ⇑ · ` P : s+ ⇑ · Γ ⇑ P ` M : · ⇑ A

Γ ⇓ P ` κxP .(M) : · ⇓ A
releasel

Γ ⇑ · ` N : s− ⇑ · Γ ⇑ · ` t : N ⇑ ·
Γ ⇓ · ` btc : N ⇓ · releaser

Figure 4.7: A calculus for polarized pure type systems, where s− ∈ N and
s+ ∈ P
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Titre : Developpements de théorie de la démonstration pour le partage de démonstrations

Mots clés : Logique, Démonstration automatisé de théorèmes, Théorie de la démonstration, Raisonnement
automatisé, Certificats de preuve, Vérification de démonstrations

Résumé : La vérification automatisée de démonstra-
tions mathématiques est une application de la logique
computationnelle qui est de grande importance à la
fois pour les mathématiques et pour l’informatique.
Ces applications vont de la vérification de propriétés
de systèmes logiciels, afin d’accroître la confiance que
le logiciel fonctionnera selon les expectations, à la créa-
tion de corpus de mathématiques formalisées, où l’ac-
tivité des mathématiciens est vérifiée par la machine
et rendue disponible à d’autres mathématiciens. Les
démonstrations formelles peuvent, de leur part, être
produites soit par des humains à l’aide d’un logiciel,
soit par des logiciels de démonstration automatisée.
Ces certificats pour la validité des énoncés viennent
donc en beaucoup de formats différents et sont expri-
més dans une variété de paradigmes : à une extrémité,
il y a les langages les plus expressifs, destinés à être
lisibles par des humains ; à l’autre extrémité, il y a les
formats plus succincts qui proposent une évidence mi-
nimale pour la validité d’un énoncé obtenue par des
logiciels très optimisés. Cette thèse concerne certaines
avancées dans le projet des Certificats de Preuve Fon-
damentaux (FPC), un projet de recherche qui vise à
ancrer la signification des langages concrets pour la re-

présentation des preuves à la théorie structurelle des
démonstrations. La théorie structurelle des démons-
trations est l’étude mathématique des preuves mathé-
matiques, initiée par Gentzen. On montrera comment
les FPC sont suffisamment expressifs pour prendre en
compte l’interprétation directe des deux passages d’op-
timisation utilisés par les démonstrateurs automatisés :
la Skolemization et les transformations de Tseitin. Ha-
bituellement, un utilisateur qui souhaite inclure dans
son travail des preuves obtenues à l’aide d’un démons-
trateur automatisé utilisant ces techniques aurait dû
inclure plus d’axiomes ou faire confiance en quelque fa-
çon à ces procédures ; on montrera une méthode pour
interpréter ces démonstrations directement comme dé-
monstrations de l’énoncé original, avant la transfor-
mation. Puis, on montrera des propriétés de la théorie
de la démonstration des logiques avec point fixe qui
avancent les fondations nécessaires pour la définition
de la signification des démonstrations qui utilisent l’in-
duction mathématique dans le contexte des FPC. Fi-
nalement, nous présenterons le développement de deux
extensions de l’assistant de preuve Coq qui intègrent le
traitement des certificats de preuve dans le processus
interactive de démonstration avec cet assistant.

Title: Developing proof theory for proof exchange

Keywords: Logic, Theorem proving, Proof theory, Automated Reasoning, Proof Certificates, Proof Verification

Abstract: The mechanized verification of mathemati-
cal proofs is an application of computational logic that
is of importance in both mathematics and computer
science. These applications range from the verification
of formal properties of software systems, to increase
the trust that software will work as expected, to the
creation of corpora of formalized mathematics, where
the activity of mathematicians is checked by machine
and made available to other mathematicians for inte-
gration into their work. Formal proofs, in turn, can be
produced either by humans with the aid of software,
or by automated theorem provers and similar pieces
of software that produce some form of evidence that a
statement should hold. These certificates for the va-
lidity of statements come therefore in various formats
with wildly different paradigms: on one extreme, there
are languages that are very expressive and aimed at
being readable by humans, while at the other extreme
there are very succinct formats that represent minimal
evidence provided by highly optimized pieces of soft-
ware. This thesis concerns some advancements in the
project of Foundational Proof Certificates (FPC), a re-

search program that anchors the meaning of concrete
languages for the representation of proofs to structural
proof theory. Structural proof theory is the mathe-
matical study of mathematical proofs, pioneered by
the works of Gentzen. We show how FPC are expres-
sive enough to account for the direct interpretation
of two common preprocessing steps performed by the-
orem provers: Skolemization and Tseitin transforma-
tions. Usually, a user who wishes to include in their
work proofs produced by an automated prover employ-
ing these techniques would have needed to include ad-
ditional axioms or trust in some other way these pro-
cedures, while we show a way to interpret these proofs
directly as proofs of the original statement, before the
transformations. Then, we show some properties of
the proof theory of logics with fixed points that ad-
vance the foundations needed to define the meaning of
proofs involving induction in terms of FPC. Finally,
we present the development of two plugins for the Coq
proof assistant that integrate the treatment of Foun-
dational Proof Certificates in the interactive process of
proving theorems with this proof assistant.
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