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Abstract

Blue Energy is the term given to the energy generated by the salinity difference between
two bodies of water. An osmotic process allows the conversion of this energy into electricity,
from the ion flow through membranes like in PRO or RED energy harvesting processes. The
estimated power to be produced from Blue Energy in the world is equivalent to 1000 nuclear
plants. However, the power density of current technologies is too low to make the process
cost-effective and technically viable.

From a physical point of view, this issue falls within the general theme of energy conver-
sion in nanofluidics. These conversions are based on the coupling between hydrodynamics,
electrokinetics and the transport of ionic species. These couplings obviously depend on the
properties of the confined fluids but also on the equilibrium characteristics of the systems
such as the surface charge. To our knowledge, there is no experiment allowing simultaneous
measurements of the transport and equilibrium properties of a nanofluidic system.

In this manuscript, the instrumental development of a dynamic Force Surface Apparatus
is presented. This machine and its surrounding have been adapted to study electrolyte
solutions confined throughout five orders of magnitude (10 µm to 1 Å), with a strict environ-
mental control. Experiments were performed on NaCl aqueous solutions, confined between
Borosilicate glass or Boron Nitride coated glass surfaces. We have shown the existence of
an over-dissipation induced by ions from electrolytes compared to a classical Newtonian
behavior. Preliminary results on the influence of the ionic concentration and surface charge
on electrolyte over-dissipation are presented.



Résumé

L’énergie bleue est le terme donné à l’énergie générée par la différence de salinité entre
deux masses d’eau. Un processus osmotique permet de convertir cette énergie en électricité, à
partir du flux d’ions à travers les membranes, comme dans les processus de collecte d’énergie
PRO ou RED. On estime que l’énergie produite par l’Energie Bleue dans le monde équivaut
à 1000 centrales nucléaires. Cependant, la densité de puissance des technologies actuelles est
trop faible pour que le processus soit rentable et techniquement viable.

D’un point de vue physique, cette question s’inscrit dans le thème général de la con-
version de l’énergie dans la nanofluidique. Ces conversions sont basées sur le couplage
entre l’hydrodynamique, l’électrocinétique et le transport d’espèces ioniques. Ces couplages
dépendent évidemment des propriétés des fluides confinés, mais aussi des caractéristiques
d’équilibre des systèmes telles que la charge de surface. A notre connaissance, il n’existe
pas d’expérience permettant de mesurer simultanément les propriétés de transport et des
propriétés d’équilibre d’un système nanofluidique.

Dans ce manuscrit, le développement instrumental d’un Appareil à Force de Surface
dynamique est présenté. Cette machine et son environnement ont été adaptés pour étudier
des solutions d’électrolytes confinées sur cinq ordres de grandeur (10 µm à 1 Å), avec un
contrôle environnemental strict. Les expériences ont été réalisées sur des solutions aqueuses
de NaCl, confinées entre des surfaces de verre Borosilicaté ou revêtues de Nitrure de Bore.
Nous avons montré l’existence d’une surdissipation induite par les ions des électrolytes par
rapport à un comportement newtonien classique. Des résultats préliminaires sur l’influence de
la concentration ionique et ceux de la charge de surface sur la surdissipation de l’électrolyte
sont présentés.
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Introduction

Electrolytes are a very special class of liquids. Like plasma with which they share certain
characteristics, they are composed of charge carriers and remain electrically neutral. They play
a role in many domains, from stratified flows in oceanography for example, to biology through
the transmission of nerve impulses. From an application point of view, they are at the basis of
batteries since Volta’s discoveries at the beginning of the 19th century. Today, in the context
of the energy transition, the interest in electrolytes is growing. The control of techniques at
the nanometric scale allows a new field of applications. Electrolytes in confinement, at the
nanoscale, are utilized in multiple domains, from the injection of charged polymer solutions
into wells for Enhanced Oil Recovery (EOR) operations [1], to the application of electrical
potential onto ionic liquids inside supercapacitors [2]. In this thesis, we are interested in
the study of saline solutions such as those found in sea water, and in understanding the
phenomena at the origin of osmotic processes to harvest the so-called Blue Energy [3].

Osmotic (or Blue) Energy is harvested by mixing two bodies of water with different
saline concentrations. It has been estimated that the transfer of non-salty water found in
the Amazonian river mouth that opens to the Atlantic ocean would generate 1 TW of power
[4], equivalent to the production of 1000 nuclear plants. Although many efforts have been
made to harvest osmotic energy with nanometric porous membranes, their performances are
not good enough to make the technology viable [5]. However, nanotubes made of different
materials, such as Carbon or Boron Nitride, have proved to exhibit giant power densities,
attributed to a high density of electric charges on solid surfaces [6].

The electrokinetic processes at play in Blue Energy harvesting are by nature surface
phenomena, due to the contact between the electrolyte solution and the solid surface [7].
They are enhanced in a situation of confinement down to the nanometric scale and the
key parameters are the electrical (surface charges) and hydrodynamic (liquid slippage at
the interface) boundary conditions. Theories have been developed for the equilibrium and
out-of-equilibrium properties of diluted electrolytes, describing the electrostatic interactions
and the coupled transport in confinement. Even if theories describing systems at equilibrium
are well documented experimentally, in particular by the work of Israelachvili during the
1970s [8], those concerning transport are limited to assuming a state of equilibrium without
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experimental validation of this strong hypothesis. So far, experimental studies focused on
a particular transport coefficient, like electric conductivity or streaming current, providing
inconsistent fitted values for the surface charge [9]. This is why an experimental technique
allowing the simultaneous measurement of static and dynamic properties in nano-confined
electrolytes is needed.

Although micro- and nano-fluidic techniques are commonly used to study liquids in
confinement, they do not offer the possibility of probing the equilibrium properties and of
varying the confinement during an experiment. The dynamic Surface Force Apparatus (dSFA)
at LIPhy, device used in this thesis, does not have these limitations [10]. A liquid is confined
in a sphere-plane geometry and the separation between the two surfaces can be continuously
varied over five orders of magnitude (10 µm to 1 Å). A quasi-static approach allows to
measure the force between the sphere and the plane as a function of their separation, including
the electrostatic interaction and the electric boundary condition, i.e., the screening length
and the surface charge. Simultaneously, the oscillation of one surface at a given frequency
generates a drainage flow and gives access to the nanorheology of the liquid, including the
viscosity and the hydrodynamic boundary condition, i.e. the slip length.

The dSFA at LIPhy was built during the thesis work of Garcia [11] and Barraud [12]. As
the atmospheric conditions were not controlled, it was difficult to work with volatile liquids:
evaporation changed the composition of the solution, produced large signal drifts and reduced
the lifetime of an experiment. This is the case with aqueous solutions, the most common
electrolytes on Earth and at the heart of Blue Energy recovery. Therefore, the first objective
of my thesis was to improve the environmental conditions of the experiment, installing an
atmospheric control and a thermal regulation system, and by working accordingly on the
instrumentation of the dSFA to adapt it to the environmental changes. The main modification
was the construction of new interferometers, with compact designs and optimized sensitivities.
The second objective was to conduct experimental campaigns with different saline solutions
and confining surfaces in order to vary the screening length and the surface charge.

The work done during the thesis has been summarized in this manuscript, divided into
three sections:

I. State of the Art (Chapters 1 and 2), presents the electrostatic and electrokinetic
processes in confined electrolytes, and central physical quantities such as the mechanical
impedance and admittance that describe the nanorheology of a fluid confined between a
sphere and a plane with the dSFA.

II. Materials and Methods (Chapters 3 and 4) describes the dSFA’s operating principle,
the improvements made to the instrument and the performances obtained, followed by the
description of the experimental procedure from sample preparation to data treatment.
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III. Results and Discussion (Chapters 5 and 6) presents and proposes first interpretations
of experiments performed with NaCl aqueous solutions of different concentrations and pH,
confined between Borosilicate glass and Boron Nitride coated glass surfaces.

The conclusion summarizes the main results and outlines the perspectives of this thesis
work.





Part I

State of the Art





Chapter 1

Electrolytes in Confinement
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Introduction

In this chapter I will present the physical phenomena involving electrolytes at- and out-of-
equilibrium, and the theories to describe them. I will limit the study in this manuscript
to dilute electrolytes as I have studied them experimentally. They represent the class of
electrolytes used in applications related with osmotic energy harvesting. I will also try to
present the open questions in the field, which motivated my research work presented in this
thesis manuscript.

1.1 Equilibrium Properties

In the vicinity of a charged surface, the distribution of ions in the electrolyte is modified.
This ionic distribution results from electrostatic forces that balance with entropic effects in
solution. To describe this equilibrium state, one can introduce the electrochemical potential
of the ions which, in addition to the traditional contribution of a dilute gas, includes the
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electrostatic energy of the ions within the potential developed from the solid surface. At
equilibrium, the electrochemical potential of the ions is uniform in the solution.

1.1.1 Characterization of the Interface

The contact between an electrolyte solution and a solid surface generally results in a charged
solid-fluid interface, where long-range electrostatic interactions take place between the ions
of the solution and between the ions and the charge supported by the surface. The surface
charge is progressively screened by the counter-ions of the solution, in an interfacial region
which structure and dynamics is governed by a range of physical and chemical processes. A
broadly used model for charged interfaces is the Electric Double Layer (EDL) (Figure 1.1).

The Electric Double Layer

A solid surface can be charged electrostatically. The charging of conductive surfaces (elec-
trodes) is commonly achieved by the application of an electrical voltage with an external
source. In the case of dielectric surfaces, spontaneous charging occurs whether by the dis-
sociation of surface groups, by the adsorption of ions from the solution, by the exchange
of charges from one surface to the other when two different surfaces are very close to each
other [13] etc. The resulting surface charge will be partially screened by an adsorbed layer of
counter-ions (hydrated or partially-hydrated): this is the so-called Stern layer. The screening
of the residual surface charge after the Stern layer is produced by counter-ions which keep a
certain mobility. Their distribution is governed by the thermodynamic equilibrium of the
solution in the vicinity of the charged surface: it is the so-called Diffuse layer. Both the Stern
layer and the Diffuse layer form the EDL model, also called the Gouy-Chapman-Stern model.

Characteristic Lengths

The EDL develops from the solid-liquid interface to the bulk. Electrolytes at the vicinity
of a solid surface or in confinement are first of all a matter of length scale. The Figure 1.2
represents the different length scales that can be found in equilibrium, confinement or flow
situations. Before introducing these different lengths, we can already notice that they are all
under the micrometer. Consequently, it is at the nanometric scale that we can expect surface
or confinement effects for electrolytes.

Let’s start with two lengths not shown on the Figure 1.2. The first length scale is the
Gouy-Chapman length ℓGC. At this scale, of the order of a tenth of nanometer, the
Coulombic energy between a single charge e and a surface of charge density σ is equal to the
thermal energy, so that:

ℓGC = 2ϵkBT

e |σ|
(1.1)



1.1 Equilibrium Properties 9

Figure 1.1 Schematic of the Gouy-Chapman-Stern model of the solid-electrolyte interface,
with the corresponding potential distribution Ψ as a function of the distance z from the wall.
Figure from [14].
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Figure 1.2 Characteristic Lengths. Figure from [7].

where ϵ = ϵ0ϵr is the absolute permittivity equal to ϵ0 the vacuum permittivity times ϵr the
relative dielectric constant of the medium, kB is the Boltzmann constant, T is the temperature,
e is the elementary charge, and σ is the surface charge density. The Gouy-Chapman length
depends on the surface charge density, but not on the bulk ion concentration [7].

The second one is the Bjerrum length ℓB. Physically, the Bjerrum length is the distance
between two charges at which their Coulombic interaction energy equals the thermal energy,
written as:

ℓB = e2

4πϵkBT
(1.2)

For instance, the Bjerrum length for water at 298 K is equal 0.7 nm.
The Debye length λD is the characteristic thickness of the Diffuse layer [15]. Qualitatively,

it corresponds to length necessary to screen any charge density fluctuation in the electrolyte:

λD =
√
ϵkBT

2e2C
= (8πℓBC)−1/2 (1.3)

with C the concentration of ions in the bulk in number of ions per unit volume, in the simplest
case of a single pair of monovalent ions. The Debye length depends solely on the bulk ion
concentration and not of the surface charge. For instance, for an aqueous NaCl solution at
10−4 mol/L the Debye length is λD = 30.4 nm, and for pure water at pH 7, is λD = 960 nm.

The Dukhin length ℓDu compares the surface charge effects against volume charge
effects, and it can also be rewritten in terms of Debye and Gouy-Chapman lenghts:

ℓDu = |σ|
eC

= 4λ2
D

ℓGC
(1.4)
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Since it is inversely proportional to the ions density, the Dukhin length can vary in many
magnitude orders. For example in water, ℓDu = 0.1 nm for C = 1 mol/L and ℓDu = 1000 nm
for C = 10−4 mol/L.

Poisson-Boltzmann theory

We will describe quantitatively the behavior of an electrolyte near a surface. For this, we
choose a monovalent electrolyte whose concentration far from the surface is noted C. The
surface is flat and uniformly charged with a surface charge σ. We note z the coordinate
perpendicular to the surface. The problem is then one-dimensional and the physical quantities
only depend on z. We will start by writing the equality of the electrochemical potentials for
the two ion species:

µ+ = µ− = kBT ln(C)

where µ+ is the electrochemical potential of cations and µ− is the electrochemical potential
of anions. The electrochemical potentials can be written as follows:

µ± = ±eV (z) + kBT lnC±(z)

where V is the electric potential developed in the electrolyte at z and C±(z) is the ion
concentration at z. We directly find that the concentrations follow a Boltzmann distribution:

C±(z) = Ce
∓ eV

kBT (1.5)

To access the concentrations and the potential in the electrolyte, we need an additional
equation and for this we will use the Poisson equation from electrostatics:

∆V = −ρ

ϵ
with ρ = e(C+ − C−) (1.6)

When combined, the normalized Poisson-Boltzmann (PB) equation allows to know the
non-dimensional potential Ψ = eV/kBT between the two surfaces:

∂2Ψ
∂z2 = − 1

λ2
D

sinh Ψ(z) (1.7)

where λD is the Debye length.
In the case of electric potentials such that e |V | ≪ kBT , i.e., |V | ≪ 25 mV, the Debye-

Hückel approximation is applied. The Poisson-Boltzmann equation is linearized (Eq.
1.8):

∂2Ψ
∂z2 ≈ − Ψ

λ2
D

(1.8)
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Solving this equation requires electric boundary conditions. We consider here a simple
configuration, where there is only one surface so that the electric potential reaches zero
at infinite distances (Ψ(z = ∞) = 0), and where a constant surface potential boundary
condition applies (Ψ(z = 0) = Ψs). We obtain the solution of the Debye-Hückel approximation
presented in Eq. 1.9:

Ψ(z) = Ψs exp−z/λD (1.9)

which shows that the screening action of the ions in the EDL triggers an exponential decay
of the electric potential. Note that this approximation can be applied for arbitrary large
surface potentials Ψs, providing that the distance z considered is large enough, such that
Ψ(z) ≪ 1. In this case, Ψs is an apparent surface potential, obtained by extrapolating the
large distance behavior to the surface.

In the Debye-Hückel approximation, it can be shown that the repulsive force between two
planar and spherical surfaces, of same surface potential and separated by a distance D, is
due to an excess of osmotic pressure. Its expression can be found in [13]:

Frepulsive = RZλ−1
D e−D/λD (1.10)

with Z an interaction constant. For a monovalent 1:1 electrolyte such as NaCl, Z =
64πϵ(kBT/e)2 tanh2(eVs/4kBT ).

Furthermore, thanks to Grahame equation (1.11), it is possible to relate the surface
potential Vs = kT

e Ψs and the surface charge σ, supposing zero electric field in the solid:

|Vs| = 2kBT

e
asinh

( |σ|√
8ϵCkBT

)
≈ 2kBT

e
ln

( |σ|√
2ϵkBT

)
+ kBT ln 10

e
pC (1.11)

for e |Vs| ≫ kBT and where pC = −log(C).

1.1.2 The DLVO Theory and the Derjaguin approximation

From the contribution of Derjaguin, Landau, Verwey and Overbeek, the classical theory of
DLVO was formulated, allowing to explain the stability of colloidal solutions. Here I give the
basic ingredients of this theory, considering a sphere-plane geometry.

When two macroscopic solids are separated by an electrolyte, their interaction is the result
of all the pair potentials acting between the molecules and ions involved. The DLVO theory
describes the equilibrium of the attractive van der Waals forces at play between symmetric
surfaces with the repulsive electrostatic interactions due to the surface charge screened by
the counter-ions of the solution: F (D) = F (D)attractive + F (D)repulsive (Figure 1.3).

We have already presented half of the DLVO theory thanks to the electrostatic contribution
to the interaction force presented in the previous section. To finish, I present here the attractive
contribution to the interaction based on van der Waals interactions.
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Figure 1.3 Schematic of the DLVO interaction energy profiles as a function of the distance
between two flat surfaces. Figure from [13].

Derjaguin approximation

The disjoining pressure Π(D) is the internal pressure needed to separate or approach two
planar parallel surfaces, which depends on the distance D between them. The integration of
the disjoining pressure gives direct access to the interaction energy by unit of surface W , as
dW (D)

dD = −Π(D). In realistic configurations with surfaces of finite curvatures, for example a
sphere of radius R and a plane, one has to integrate the pair potential exerted between all
the constituents in order to access the total force F acting between the surfaces.

However, in the limit R ≫ D Derjaguin showed that [16]:

F (D) = 2πRW (D) (1.12)

Consequently, the equilibrium force F (D), accessible experimentally between a sphere
and a plane, can be rescaled by 2πR in order to get the interaction energy by unit of surface
W (D) or the disjoining pressure Π(D) between equivalent planar parallel surfaces.

van der Waals interactions

Using the Derjaguin approximation, it can be shown that the attractive van der Waals force
between a large-radius sphere R and a flat surface of same materials is equal to:
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Fattractive = − AR

6D2 (1.13)

where A is the so-called Hamaker constant.

1.2 Out-of-Equilibrium Phenomena

A range of electrokinetic phenomena are known in the colloid literature, from purely dif-
fusive Brownian motion to more complex physical processes involving several couplings
(hydrodynamics, diffusion, electric conduction, etc.).

A simple example is osmosis, the process that occurs when two reservoirs of different ion
concentrations are separated by a semi-permeable membrane: a driving force will push solvent
molecules through the membrane towards the more concentrated region, while retaining
solute ions, and an (osmotic) pressure will be needed to counteract the flow. van ’t Hoff
formulated an equation analogous to the perfect gas law [17], where the solute particles exert
an osmotic pressure in the solution that is equal to:

∆Π = kBT∆C (1.14)

with ∆C the solute gradient between reservoirs.
Figure 1.4 illustrates for example how diffusion and osmosis can provoke the displacement

of ions or solvent molecules. Transport can be induced by purely electric, diffusive or
hydrodynamic effects, and also by couplings of these effects. Identifying the multiple forces
acting on the solvent and the solute is the key for understanding the subtle phenomena
of osmosis and its derivatives, diffusio-osmosis and electric-osmosis processes from which
breakthrough applications in different domains have been found in the last decades [18], [4],
[19].

Figure 1.4 Schematics of diffusion versus osmosis, based on [20]. On the left, the displacement
of solute ions is governed by diffusion, while on the right, the solvent is pushed through the
membrane by osmosis towards the more concentrated region.
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1.2.1 Hydrodynamic-Diffusive-Electric Coupling

Mazur and Overbeek [21] used a capillary containing an electrolyte solution to prove a series
of relations between electrokinetic phenomena, such as electro-osmosis. These are Onsager
relations, in the context of electrolytes near charged surfaces. More recently, Brunet and
Adjari adapted them for any type of geometry, as a form of a symmetric transport matrix
[22].

The transport matrix compiles the irreversible processes that relate the transport in
electrolytes to three different origins (Figure 1.5). A hypothesis of linearity is made to
proportionally reciprocate flows and fields for systems near thermodynamic equilibrium.
The diagonal coefficients in the matrix relate respectively: a pressure gradient −∇P to a
hydrodynamic flow Q, an electric potential gradient −∇V to an electrical current I and
a concentration gradient −∇C to a diffusive flux J − CQ. The anti-diagonal coefficients
represent the diffusio-osmotic, electro-osmotic, and diffusio-electric couplings respectively.

Figure 1.5 Transport matrix, with colors indicating symmetric terms. Image adapted from
[20].

Modeling these couplings is very important for application of osmotic energy harvesting.
For instance, the matrix can be used to characterize microfluidic geometries and improve
the efficiency of new devices for energy conversion, or to help understanding the influence of
parameters such as surface charge and zeta potential in the aforementioned applications.

1.2.2 Example of Electro-Osmosis

When a solution is in contact with a charged solid surface and subjected to an electric field
parallel to the surface, the motion of the non-electrically neutral Diffuse layer at the interface
near the surface will create a flow of solvent parallel to the solid, by a so-called electro-osmotic
process (Figure 1.6).

Starting from Stokes equation in the absence of a pressure gradient, we have the expression
1.15:

η
d2v

dz2 + ρeE = 0 (1.15)
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where E is the applied electric field parallel to the surface (direction x), ρe is the charge
volume density, v is the fluid velocity in direction x, z is the distance to the surface and η is
the fluid viscosity.

The charge volume density is given by the Poisson equation as:

d2V

dz2 = −ρe
ϵ

(1.16)

where V is the electrostatic potential. The Stokes equation can be integrated twice with two
boundary conditions: a plug-like flow far from the surface (∂v/∂z|z=∞ = 0), and a Navier
slip boundary condition at the wall (b ∂v/∂z|z=0 = v(z = 0)) with a slip length b (more
details in Chapter 2). The velocity profile is given in Equation 1.17:

v(z) = ϵ

η
E(V (z) − ζ) (1.17)

where ζ is the value of the potential at the point where the velocity vanishes. ζ is an
important parameter associated with transport properties of the electrolyte. It can reasonably
be assumed that its value is close to the surface potential, at least for a no-slip boundary
condition. As illustrated in Figure 1.6, the velocity of the fluid flow is proportional to the
electric field in the EDL, but far from the surface the electro-osmotic flow it reaches an
asymptotic value. Far from the surface (z = ∞), the electric potential cancels out, and we
get the electro-osmotic velocity vEO first formulated by Smoluchowski [23]:

vEO = −ϵζ

η
E (1.18)

This expression reflects the balance between the electric force driving the fluid and the
viscous force opposing its motion.

In the Debye-Hückel approximation, it can be shown that the boundary parameters can
be related by:

ζ = Vs(1 + b/λD) (1.19)

1.3 Open questions

Boundary Properties: Surface Charge and Zeta Potential

Based on the physical phenomena discussed in this chapter, I present here the main questions
that will try to answer during my thesis.

We have seen that the Surface Charge σ intervenes in the characteristic lengths, which
suggests that this parameter has a strong influence on the statics and dynamics of electrolyte
solutions in confinement. In fact, it has been shown that surface charge can dominate electric
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Figure 1.6 Schematic of electro-osmotic transport. A force Fe = ρeE is applied to the diffuse
layer, created from an electric field E and a density of ions ρe. By viscosity, the motion of
ions drive the entire fluid.

transport in nanofluidic devices for solutions at low salt concentration [24]. Static surface
charge can be measured by several different techniques, like potentiometric titration, UV
spectometry or neutron reflectivity [25]. For instance, in Figure 1.7 we show measurements of
the surface charge of silica for different concentrations of KCl solutions, obtained by acid-base
titration [26]. However, it is often necessary to combine experimental and simulation results
to understand all surface-charge-related properties of liquid-solid interfaces [9].

Indeed, one single parameter cannot explain all the interfacial properties. Another
important parameter that can also be determined experimentally is the Zeta Potential ζ.
It results from the distribution and flow of ions near the charged surface, and depends on the
pH and ionic concentration of the solution [27]. It corresponds to the electric potential V
at the shear (or no-slip) plane, and it is a priori different from the surface potential. The
results compiled by Kirby [28] from electrokinetic measurements, represented in Figure 1.7,
are consistent with those obtained by other techniques, such as Total Internal Reflection
Fluorescence microscopy (TIRF) performed on microfluidic channels [29]. They provide a
clear view of the dependence of the zeta potential as a function of ion concentration. A linear
dependence of ζ is observed as a function of pC = -log(C) with C the ion concentration.

ζ is a quantity that depends on both static (distribution of charges) and dynamic (flow)
properties. There are various technical constraints to measure static and dynamic properties
onto the same sample. Thanks to Grahame equation (section 1.1.1) the electrostatic potential
can be related to the electrokinetic surface charge, thus obtaining a dynamic measurement of
σ. However, values of static surface charge (obtained by the measurement of electrostatic
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Figure 1.7 On the left, dependence of surface charge density on the pH of the solution, as
a result of titration measurements for different concentrations of KCl on SiO2 surfaces [26].
On the right, results of electrokinetic measurements show dependence of zeta potential on
ion concentration [28].

surface potential) are not always consistent with those found in transport measurements
(from electrokinetic couplings) [9]. This discrepancy can be related to contributions from
the solid surface, the nature of the charge or the ion mobility. Once transport properties
are added into the question, the complexity of the system is higher and requires support of
modeling [30].

Electric and Hydrodynamic Boundary Conditions

The surface charge, equilibrium quantity, and the ζ potential, transport quantity, are two
different physical parameters related as electrical boundary conditions. It is tempting to
link them and, for lack of a better term, the Grahame equation is often used for this link.
As a surprising example, we would like to give a comparison of two experiments. Current
monitoring experiments [31] done on glass with a 0.1 mol/L KCl solution give a ζ potential
equal to 90 mV which corresponds, using the Grahame equation, to a surface charge of
2 mC/m2. Conductivity measurements on an identical system give a surface charge of
60 mC/m2[24]. We are facing a major problem: either the surface charge strongly dependsy
on the flow or the transport measurements lack a theoretical support to interpret the results
correctly. And it is even more difficult if we include the hydrodynamic boundary condition
on which the ζ potential depends.

The Grahame equation can relate these two parameters, but a choice must be made:
whether to take the boundary condition at the non-slip plane (as seen in Figure 1.1 for the ζ
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potential) or at the solid surface (as for the surface potential Vs). If we choose the latter, the
surface charge must be considered, but how to define it?

In most cases, neither the surface charge nor the surface potential stay constant as the
solution conditions change. Surface charge is not always fully dissociated, but it can also
be partially neutralized by the binding of ions from the solution. Even for globally neutral
surfaces, there could be patches of high local charge density. An independent measurement
of the surface potential might be needed to validate the assumption of a constant potential,
or if another EDL model needs to be considered, such as charge regulation [13].

Furthermore, ζ and σ play a major role in interfacial phenomena such as slippage. When
there is no slippage, the ζ potential and the surface potential values might be very similar
[29]. However, the larger the slippage, the larger the difference between these values. Most
experiments on ion transport assume no slip, but do not measure it [31]. As well, there is no
experimental evidence concerning the correct application of Grahame equation very close to
the wall. Ideally, it would be necessary to measure simultaneously the slippage, in order to
know where the non-slip plane is located.

Slippage has proven to amplify the values of zeta potential. Bouzigues measured by
Total Internal Reflection Fluorescence (TIRF) the velocimetry profiles of nanoparticules in
nanochannels [32]. The experimental data showed a good agreement with the theoretical
expressions, both in the hydrophilic and hydrophobic cases (Figure 1.8). In the same way,
Silkina showed by numerical simulations that electro-osmotic flows in carbon nanotubes
and graphene nanoslits were enhanced in thin and thick channels by partial hydrodynamic
slippage (and a possible combined effect of partial mobility of adsorbed surface charges) [33].

Figure 1.8 On the left, experimentally measured electro-osmotic velocity profiles for hy-
drophobic OTS (blue squares) and hydrophilic glass (red circles). Dashed lines are fits to the
theoretical predictions, with slip lengths of b = 38 ± 6 nm and b = 0 ± 10 nm respectively [32].
On the right, results of simulations of electro-osmotic velocity profiles, for a thick (open circles
with under dashed lines) and a thin (dashed lines) channel configuration. The theoretical
curves were plotted with a constant surface charge boundary condition, for µb = 100 nm
(green lines) and µb = 0 nm (blue lines), where µ is the lateral mobility of surface anions in
response to the external electric field E [33].
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For a better understanding of the situation, it seems essential to measure the electrical
and hydrodynamic boundary conditions separately. For this reason, it is unavoidable to
measure the equilibrium and hydrodynamic transport properties independently. We could
then, without any ambiguity, have the values of the surface charge, the surface potential, and
the hydrodynamic slip. These experiments could help to better understand the link between
surface charge and ζ potential, beyond the use of Grahame equation.

1.4 Conclusion

In this chapter, I briefly described the existing models for the equilibrium and transport
properties in confined electrolytes. These models have been exploited but never experimentally
validated, because they require simultaneous measurement of equilibrium and transport
properties, in particular the electrostatic (surface charge) and hydrodynamic (slip) boundary
conditions.

To our knowledge, no experiment allows to carry out these equilibrium and transport
measurements simultaneously. The work I present here is a first step in this direction, based
on the instrumental development of the Surface Force Apparatus.

The Surface Force Apparatus (SFA) was originally designed for equilibrium measurements.
Over time however, Chan [34], Israelachvili [35], Tonck [36], Restagno [37], and Garcia [10]
built dynamic Surface Force Apparatus (dSFA), allowing simultaneous dynamic measurements
and quantitative determination of the boundary conditions. Therefore I employed the dynamic
Surface Force Apparatus during my thesis, in order to achieve a better understanding of the
physics of confined electrolytes.
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Introduction

This chapter proposes a theoretical description of the dynamic mechanical properties of simple
fluids which are confined between a sphere and a plane down to the nanometric scale. The
notions of viscosity, slip boundary condition and elastic response of the confining surfaces are
recalled. We introduce the concept of mechanical impedance, a central physical quantity for
the interpretation of the experiments performed during my thesis with the dynamic Surface
Apparatus (dSFA).

2.1 Mechanical Impedance and Admittance

When two solid surfaces, a sphere and a plane, are approached one towards the other, a
pressure field builds up in the surrounding fluid. This translates into a normal force Ftot

that is exerted between the surfaces and depends on the distance Dtot that separates them
(Figure 2.1). If the motion actually involves an harmonic oscillation hdyn cos(ωt + φH) at
frequency ω/2π around a quasi-static position D with hdyn ≪ D, the oscillating pressure
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field in the fluid creates an oscillatory flow. In the framework of the linear response of
the system, distance and force can be described by a quasi-static component {D,F} and a
dynamic component {hdyn cos(ωt+ φH), fdyn cos(ωt+ φF )}, resulting in Equations 2.1 and
2.2 respectively.

Figure 2.1 Schematic of the principle of the dynamic Surface Force Apparatus. An oscillation of
the distance between a sphere and a plane around its quasi-static value induces a proportional
force response between the surfaces. The drainage of the fluid is illustrated, with v⃗ the
velocity profile of the flow and e(r) the thickness of the fluid film at a radial distance r.

Dtot = D + hdyn cos(ωt+ φH) = D + Re[hdyne
j(ωt+φH)] (2.1)

Ftot = F + fdyn cos(ωt+ φF ) = F + Re[fdyne
j(ωt+φF )] (2.2)

The dynamic component of the force has an amplitude proportional and a phase shifted
compared to the dynamic component of the distance. Using complex formalism, we can
define the complex mechanical impedance Z, first introduced by Israelachvili [35]:

Z(ω,D) = Z ′ + jZ ′′ = fdyn
hdyn

ej(φF −φH) (2.3)

This physical quantity describes the linear mechanical response of the system, in terms of
in-phase, conservative contribution (real part Z ′) and out-of-phase, dissipative contribution
(imaginary part Z ′′). We can also define the mechanical admittance as:

Y (ω,D) = Y ′ + jY ′′ = 1
Z

(2.4)

Qualitatively, the mechanical impedance is more convenient to manipulate when the
different physical mechanisms at play involve additive forces, whereas the mechanical admit-
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tance is preferable when these mechanisms involve additive displacements. Throughout this
chapter, I will employ one or the other, and the reasons for each choice will be discussed
accordingly.

2.2 Case of non-deformable and non-slippery surfaces

We position ourselves in the classical framework of continuum hydrodynamics, supported by
the work of Bocquet and Charlaix [7] who showed how various experiments and simulations
on simple fluids proved the validity of Navier-Stokes equations for confining distances down
to ∼ 1 nm. We assume the following hypotheses for the flow between the sphere and the
plane:

• a Newtonian fluid, meaning that the shear stress τ(r, z) is proportional to the velocity
gradient in the direction normal to the flow with a proportionality factor given by the
dynamic viscosity η, i.e., τ(r, z) = η ∂vr

∂z ,

• an incompressible flow,

• lubrication conditions, with a distance much smaller than the sphere radius of the
sphere D ≪ R,

• negligible gravity effects,

• negligible non-stationary effects.

We add other hypotheses to start with the simplest case:

• non-deformable confining surfaces,

• a no-slip boundary condition, namely a tangential velocity of the flow is zero at the
walls: vr(r, z = 0) = vr(r, z = e(r)) = 0.

From the previous hypotheses, we know that the flow between the sphere and the plane
is described by the Stokes equation and is of Poiseuille type. By integrating the pressure
gradient, we show that the pressure P (r) is then written:

P (r) = P0 − 3ηRḊtot
e(r)2 (2.5)

where P0 is the pressure far from the confinement zone and e(r) is the thickness of the
fluid film at the distance r from the apex of the sphere. The pressure is maximum on the
axis of symmetry where e(r) is minimum. Since D ≪ R, we can approximate the sphere
profile by a parabola e(r) ≈ D + r2/2R. The pressure field decreases when the thickness e(r)
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increases and it is reduced by a factor of 10 on a lateral extension r =
√

(
√

10 − 1)2RD. The
associated velocity profile reads:

vr(r, z) = −3Ḋtotr

e(r)3 z(e(r) − z) (2.6)

The radial velocity is zero at the walls, and reaches its maximum value vr,max = −3Ḋtot
8

√
2R
D

when z = e(r)/2 and r =
√

2RD. The shear stress can be deduced as:

τ(r, z) = −3ηḊtotr

e(r)3 (e(r) − 2z) (2.7)

The modulus of the shear stress is maximum at the walls and r =
√

2RD/3, where it is
equal to |τmax(r, z)| = 35/2

27/2
Ḋtot

√
R

D3/2 .
In Figure 2.2 the characteristics of the drainage flow are illustrated: the velocity, pressure

and shear stress profiles. These three quantities decay on the lateral direction on a typical
lengthscale ∼

√
2RD, giving rise to the concept of fluid probe, introduced by Leroy and

Charlaix [38, 39]. Measuring the viscous flow in such geometry of confinement allows to
probe the mechanical properties of the system composed of the fluid and the confining solids,
without direct contact between them, on a scale ∼

√
2RD.

Figure 2.2 Schematic of the principle of the fluid probe, showing the velocity, pressure and
shear stress profiles.

Integrating the pressure field over the surface of our probe, we obtain the total Reynolds
force acting between the surfaces, of purely viscous origin :

Ftot,Rey = −6πηR2Ḋtot
D

(2.8)
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Strictly speaking, the quasi-static component of the total force contains a viscous contri-
bution because of the drainage flow at velocity Ḋ, given by the Reynolds force:

FRey = −6πηR2Ḋ

D
(2.9)

which is repulsive (taken positive) upon approach and attractive (taken negative) upon
retraction.

The dynamic component of the total force contains a viscous contribution because of the
oscillatory flow at velocity −ωhdyn sin(ωt+ φH) = Re[jωhdyne

j(ωt+φH)], corresponding to a
Reynolds impedance:

ZRey(ω,D) = j
6πηωR2

D
(2.10)

The mechanical impedance is purely imaginary, and is inversely proportional to the
distance between the surfaces. As proposed by Georges et al. [40] and Tonck et al. [36],
looking at the inverse quantity is convenient when analyzing experimental data to define the
position of the no-slip plane (the hydrodynamic zero). The Reynolds admittance reads:

YRey(ω,D) = −j D

6πηωR2 (2.11)

which has only an imaginary component that varies linearly with the distance between the
surfaces.

2.3 Case of partially slippery surfaces

As supposed since Bernoulli in 1738 [41], the velocity of a fluid is often considered to be zero
at solid boundaries for macroscopic flows, namely a no-slip boundary condition is applied.
However as the fluid is confined, it becomes evident that the velocity at solid boundaries is
not necessarily zero. It was actually Navier in 1823 [42] who formulated this hypothesis: the
tangential velocity of the fluid could be non-zero at the wall, based on the continuity of the
tangential stress (Eq. 2.12). The viscous shear stress in the fluid is balanced by the friction
stress exerted by the solid on the fluid, as:

η
∂vr

∂z

∣∣∣
z=0

= λvr(z = 0) (2.12)

where η is the fluid dynamic viscosity and λ is a solid friction coefficient.
A length-scale emerges from this (Navier) partial slip boundary condition: the slip length

b = η/λ. This length characterizes the slippage and corresponds to the distance from the
wall at which the linear extrapolation of the velocity profile cancels out:

• a zero slip length means a no-slip boundary condition,
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• a positive slip length locates the no-slip plane in the solid,

• and a negative slip length locates the no-slip plane in the fluid, suggesting qualitatively
a layer of fluid molecules that are blocked near the wall.

Figure 2.3 Illustration of a no-slip boundary condition (top surface) and of a positive slip
boundary condition (bottom surface). The slip length is the distance from the fluid-solid
interface where the linear extrapolation of the velocity profile is zero.

The effect of slippage on the viscous forces depends of its sign: a positive slippage decreases
dissipation while a negative slippage increases it. Vinogradova [43] calculated the expression
for the viscous force between a sphere and a plane in the case of positive slippage, resulting
in:

Fslip = −6πηR2Ḋ

D
f∗(D/b) (2.13)

where f∗(D/b) is a corrective factor depending on the slip length, equal to:

f∗(D/b) = 1
4

[
1 + 6D

4b

((
1 + D

4b
)

ln
(
1 + 4b

D

)
− 1

)]
(2.14)

in the case of slippage on one surface, or equal to:

f∗(D/b) = D

3b
[(

1 + D

6b
)

ln
(
1 + 6b

D

)
− 1

]
(2.15)

in the case of slippage on both surfaces. The mechanical impedance is given by the expression:

Zslip(ω,D) = j
6πηωR2

D
f∗(D/b) (2.16)

which shows that slippage induces a modification of the dissipative contribution Z ′′, while
the conservative contribution Z ′ is still zero. The mechanical admittance reads:
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Yslip(ω,D) = −j D

6πηωR2
1

f∗(D/b) (2.17)

At large distances D ≫ b the corrective factor is equivalent to f∗(D/b) ∼ D
D+b , so the

admittance is of the form:

Yslip(ω,D) ∼ −j D + b

6πηωR2 for D ≫ b (2.18)

which is equal to the Reynolds admittance shifted along the X axis by −b < 0 (so towards
negative values of D). Therefore, fitting linearly the imaginary part Y ′′ of the admittance at
large distances and extrapolating this fit to small distances allows to determine the positive
slip length b.

In the case of negative slippage, the admittance is equal to the Reynolds admittance
shifted along the X axis by +b > 0 (so towards positive values of D). Similarly, the negative
slip length b can be characterized by fitting linearly the imaginary part Y ′′ of the admittance
at large distances.

This phenomenon of partial slippage has been observed experimentally by various methods,
but the dSFA has proved to a tool of choice to quantitatively measure slip lengths in the
nanometric range. For instance, a change of the slip behavior with the wettability of the
surfaces has been reported for water confined between glass surfaces [44], as represented in
Figure 2.4.

2.4 Case of deformable surfaces: elasto-hydrodynamics

As seen previously, a pressure field builds up when two solid surfaces are approached one
towards the other in a viscous fluid. Because this hydrodynamic pressure varies as D−2 on an
area scaling like

√
2RD, it can be very large in a confinement situation, and can eventually

deform the surfaces even if they are not in direct contact.
If these deformations are small, one can estimate the total indentation Utot = U +

udyn cos(ωt + φU ) = U + Re[udyne
j(ωt+φU )] of the surfaces by approximating the viscous

force by the one calculated in the case of rigid surfaces. Considering a pressure exerted on
a characteristic lateral distance of

√
2RD and associated to a total Reynolds force Ftot,Rey,

one can write down the Hooke’s law:

Utot√
2RD

∼ Ftot,Rey/π2RD
E∗ (2.19)

where E∗ = E
2(1−ν2) is the reduced Young modulus with E the Young modulus and ν the

Poisson coefficient.
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Figure 2.4 Imaginary part of the mechanical admittance as a function of distance, measured
with a dSFA confining water confined between a sphere and a plane [44]. When the surfaces
are hydrophilic (Pyrex, i.e., borosilicate glass), a zero slip is found (in black). However, for a
hydrophobic plane (silanized Pyrex), a positive slip length of 17 ± 2 nm is obtained (in blue).
The full lines correspond to the best adjustments using the expression 2.13, while the dashed
line is the linear fit to large distances given by equation 2.18. Figure adapted from [44].
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As illustrated in Fig. 2.5 in the case of an infinitely rigid sphere and a deformable plane,
the system is equivalent to a damper and a spring that are associated in series [45]. The
damping coefficient, related to the viscous flow in the fluid, is equal to:

λ(D) =
∣∣∣∣Ftot,Rey

Ḋtot

∣∣∣∣ ∼ 6πηR2

D
(2.20)

The spring stiffness, due to the elastic deformations of the solid surfaces, is given by:

k(D) = Ftot,Rey
Utot

∼ E∗π
√

2RD (2.21)

The same force Ftot,Rey applies to the two elements, while the displacements Dtot and
Utot should be added. Therefore it is convenient to use the mechanical admittance to describe
the dynamic response, as:

Yeh(ω,D) ∼ 1
k

+ 1
jωλ

∼ 1
E∗π

√
2RD

− j
D

6πηωR2 (2.22)

The dynamic response presents a dissipative contribution due to the fluid viscosity, and a
conservative contribution due to the solid elasticity. This expression is correct if the dynamic
deformation is small, i.e., hdyn ≫ udyn, equivalent to:

1
ωλ

≫ 1
k

or D ≫ Dc ∝ R

(
ηω

E∗

)2/3
(2.23)

and the admittance can be re-written as:

Yeh(ω,D) ∼ D

6πηωR2

[(
Dc
D

)3/2
− j

]
for D ≫ Dc (2.24)

The mechanical impedance is deduced as:

Zeh(ω,D) ∼ 1
1
k + 1

jωλ

∼ ωλ

(
ωλ

k
+ j

)
∼ 6πηωR2

D

[(
Dc
D

)3/2
+ j

]
for D ≫ Dc (2.25)

Leroy et al. [39] developed a complete theory, which is valid for any deformations in the
framework of linear elasticity. They showed that the dynamic response is of the form:

Yeh(ω,D) = D

6πηωR2 g
−1
k

( D
Dc

)
(2.26)

Zeh(ω,D) = 6πηωR2

D
gk

( D
Dc

)
(2.27)

where Dc = 8R
( ηω

E∗
)2/3 and gk is a master function that can be calculated numerically.
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Figure 2.5 Schematic of the drainage flow (with a no-slip condition) for a Newtonian fluid
confined between an infinitely rigid sphere and a deformable plane. The plane is deformed
on a scale of

√
2RD, which is the characteristic size of the fluid probe. If the deformations

are small (at large distances) the system is equivalent to a damper and a spring that are
associated in series.

In Fig. 2.6 is shown a simulation of a model system, composed of a liquid of viscosity
2.4 mPa s confined between surfaces of Young modulus E = 64 GPa and a Poisson ratio
ν = 0.2, corresponding to a reduced Young modulus 32 GPa (modeling propylene carbonate
between Borosilicate glass surfaces), and an oscillation frequency of 130 Hz. At large distances
D ≫ Dc ∼ 1 nm, the dynamic response is mainly viscous, with imaginary parts larger than
real parts: it is the so-called viscous regime. The deformations are small so we recover the
scaling laws obtained with the damper-spring model, with Y ′ ∝ D−1/2 and Y ′′ ∝ D1 (as in
equation 2.24), Z ′ ∝ D−5/2 and Z ′′ ∝ D−1 (as in equation 2.25). At critical distance D ∼ Dc,
the elastic and viscous contributions are exactly equal. At small distances D ≪ Dc, the
dynamic response is mainly elastic, with real parts larger than imaginary parts, all signals
exhibiting saturation: it is the so-called elastic regime.

2.5 Conclusion

From the measurement of the mechanical admittance or impedance, it is possible to explore
the rheological behavior of a fluid confined between solid surfaces. The rheological properties
involve the fluid flow, the fluid-solid slip boundary condition and the solid deformations. The
dSFA is therefore a tool of choice to understand the transport phenomena in electrolytes
near charged surfaces.
A few points are important to keep in mind from this chapter:

• The fluid viscosity can be measured thanks to the slope of the imaginary part of the
mechanical admittance as a function of the distance between the surfaces.

• The slip boundary condition is obtained by fitting linearly the variation of the mechanical
admittance with the distance at large distances, and by extrapolating this fit to small
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Figure 2.6 Mechanical admittance Y on the left and impedance Z on the right, numerically-
solved for a system composed of a liquid of viscosity 2.4 mPa s confined between surfaces
of reduced Young modulus 32 GPa (modeling propylene carbonate between Borosilicate
glass surfaces), and an oscillation frequency of 130 Hz. The real parts are in red while the
imaginary parts are in blue.

distances. The intersection with the X axis provides the hydrodynamic zero, which has
to be compared to the mechanical zero (direct contact between the surfaces) to deduce
the slip length.

• The elastic deformation of the surfaces induces a non-zero conservative contribution, and
a saturation of the dynamic response below a critical distance. The elasto-hydrodynamic
theory allows to describe these phenomena in a quantitative way.
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Introduction

During my thesis, the experimental characterization of the rheology of confined fluids has been
possible thanks to the dynamic Surface Force Apparatus at LIPhy. While it has proven to be
a unique tool to investigate interactions between two surfaces, with great resolution from the
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bulk to the molecular scale, it is very sensitive to changes in the set-up or in its environment.
In this chapter, the principle of the instrument will be described, the improvements made
to the mechanical, optical, electronic and environmental aspects of the machine will be
presented, and the consequences of these modifications as well as the challenges overcome
during the instrumentation phase will be discussed.

3.1 Description of the dynamic Surface Force Apparatus at
LIPhy

The dynamic Surface Force Apparatus (dSFA) at LIPhy has been conceived by E. Charlaix
and B. Cross, and manufactured by J. Giraud [46], [10], [47]. The SFA was built during the
theses of C. Barraud [12] and L. Garcia [11], who studied the rheological properties of polymer
and electrolyte solutions, respectively. In this section, the machine and its environment is
described, as well as the improvements implemented during my thesis work.

3.1.1 Brief Overview

The main elements of the dSFA are two surfaces. First, a sphere that is supported on the free
extremity of a flexure hinge, acting as an elastic spring. Second, a plane that is supported
by a plane-holder and fixed on a piezo-electric actuator, as observed in Figure 3.1. The
sphere and the plane are positioned one on top of the other, normally separated by a few
micrometers. In between the surfaces, a liquid is injected. The vertical arrangement of the
surfaces allows to perform immersed measurements with volatile liquids.

First, a quasi-static displacement of the plane towards the sphere is applied, as in
a classical SFA. However, the machine at LIPhy has a unique feature: it also allows to
study the dynamic properties of the system by additionally applying a small harmonic
oscillation to the plane. While the surfaces are brought into contact (and out of contact), the
relative distance between the surfaces is measured, for both static and dynamic components
Htot = hstat +hdyn cos(ωt+φH). At the same time, the flexure hinge senses the force exerted
by the plane throughout the liquid and onto the sphere, translating it as a mechanical
deflection. This deflection is measured and the force is deduced thanks to the flexure hinge
transfer function obtained by calibration. In the framework of linear response, the force is
also composed of static and dynamic components, resulting in Ftot = fstat +fdyn cos(ωt+φF ).

Two independent optical interferometers are used to measure the relative separation of
the surfaces and the deflection of the elastic spring, based on polarization interferometry. In
short, two pairs of mirrors are attached to the moving elements and are contained in what
we call the heart of the machine (represented in Figure 3.2), together with the motors to
control their position and the translation of the surfaces. The rest of the optical elements that
compose the interferometers are accommodated on a optical board held above the dSFA’s
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Piezo-electric actuator

Plane holder
Plane

Sphere

Flexure Hinge

Mirrors

Fixed arm

Figure 3.1 Schematic of the main elements of the dynamic Surface Force Apparatus, designed
on Solidworks by J. Giraud. We can observe two facing surfaces (sphere and plane), the
piezo-electric actuator, the mirrors: one on the fixed arm, one fixed to the piezo and a double
one on top of the flexure hinge. Credit: J. Giraud.



38 Instrumental Development

heart, with a 45◦ mirror making the transition from the optical board to the heart. For each
inteferometer, a linearly-polarized laser beam first reaches a birefringent calcite, leading to a
separation of the beam into two orthogonally polarized beams. These beams are reflected
by two different mirrors, and are reunited by the calcite on the way back. Interferometry is
then used to determine the phase difference between these two beams, and so the distance
between the mirrors. Further explanation of each component of the machine will be given
later in the chapter.

3.1.2 Mechanical Elements

The dSFA’s heart and all the mechanical components that it contains have not been modified
from the previous version of this machine [12], [11]. We can identify as mechanical elements
mainly the flexure hinge, as well as the translation/rotation elements for the mirrors and the
surfaces, as shown in Figure 3.2.

M-126

Right M-230

Left M-228

M-VP-25XA

First tilt plane

Second tilt plane

Calcite

Housing

Flexure hinge holder

Figure 3.2 Schematic of the dSFA’s heart and all the elements that it contains, designed on
Solidworks by J. Giraud. The flexure hinge holder as well as the elements in charge of the
translation of surfaces and the positioning of mirrors are identified. The birefringent calcite
on the top and the mirrors in the dSFA can also be observed. Credits: J. Giraud.

Flexure hinge

The free end of the flexure hinge behaves like a double-beam whose static deflection is simply
proportional to the force exerted on it. The chosen geometry, shown in Figure 3.3, ensures
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a movement as close as possible to pure translation, with very little rotation. Since the
deflection depends on the flexure hinge stiffness K, this parameter is essential for the design
and fabrication of the flexure hinge. On one hand, the stiffness should be low in order to
obtain a significant deflection from a small force. On the other hand, the flexure hinge should
be light and stiff for it to be sensitive at high frequencies. As a compromise, a stiffness of
6000 N/m was desired.

The stiffness of an element can be predicted based on its material properties (here Al 7075-
T6 Aluminum alloy) and its geometric characteristics. Supposing that the four hinges at
the corners were identical, Smith’s calculation [48] predicted that the stiffness K follows
the relation K = EI/αRL2, with E the material’s Young modulus (72 GPa), R the hinges
radius of curvature (4 mm), L the length between the hinges (30 mm), I and α parameters
depending on the geometry of the flexure hinge. I is the inertia moment given by I = wt3/12
and α is a correction factor equal to α = 0.565t/R+ 0.166, with w the width of the flexure
hinge (10 mm) and t its thickness (0.3 mm). Based on Smith’s prediction and according to
a simulation performed on SolidWorks by J. Giraud with these parameters, a deflection of
163 nm is observed when a force of 1 mN is applied, corresponding to a stiffness of 6135 N/m,
which agrees well with the desired value for our experiments.

The actual stiffness and dynamic transfer function of the flexure hinge was obtained
experimentally, thanks to a calibration procedure explained in section 3.2.4.

Figure 3.3 Photograph of the flexure hinge and identification of the elements that compose it
and their sizes.
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Coil-Magnet System

The coil-magnet system allows the calibrations of the flexure hinge and of the two inter-
ferometers. It is composed of a NdFeB magnet (diameter 4 mm, length 2 mm) glued onto
the free extremity of the flexure hinge, and of a copper coil (diameter 5 mm, length 6 mm,
3000 turns per meter) attached to the fixed flexure hinge holder, with a distance between
the coil and the magnet of typically 1 mm (see Figure 3.3). A current passing by the coil
proportionality generates first a magnetic field, then a magnetic force acting on the magnet,
there a deflection of the flexure hinge.

The current is controlled by applying voltages at the two ends of the solenoid. On one
end, a quasi-DC voltage ramp (from -10 V to +10 V) is imposed to obtain a quasi-static
displacement (of the order of 1 µm). On the other end, an AC voltage generated by a lock-in
amplifier is applied to produce a dynamic excitation of desired amplitude (between 0.5 nm
and 10 nm) and frequency (between 10 Hz and 1 kHz).

Piezo-electric actuator

The P-753.1CD ceramic piezo actuator1 allows to carry out the fine displacement of the
plane towards the sphere during measurements. The voltage applied to the actuator is first
composed of a quasi-DC component (a slow ramp between 0 V and 120 V), resulting in a
quasi-static approach-retraction of the surfaces on a range of 14 µm (the approximate linear
sensitivity of the piezoelectric crystal being α = 110 nm/V) at a constant speed chosen
between 50 pm/s and 5 nm/s approximately. The speed limitations are due to thermal drifts
at low velocities, and to the finite integration time for the acquisition of each measurement
point at high velocities. Secondly, a harmonic voltage (AC component) generated by a lock-in
amplifier is also applied to the actuator, resulting in a small oscillation of the plane at a
desired amplitude (between 0.2 nm and 20 nm) and frequency (between 10 Hz and 1 kHz).

Vertical and Horizontal Translations

The surfaces have independent translation stages. A M-126 translation stage2, with an overall
stroke of 25 mm with a sub-micron resolution, is in charge of the coarse (micrometric) vertical
displacement to bring the plane to approximately 10 µm from the sphere before injection
of the liquid. A M-VP-25XA translation stage3, located below the dSFA housing, admits
displacements from 0.1 µm up to 25 mm in the horizontal direction for the ensemble of pieces
attached to the frame. A translation with this stage shifts the position of the flexure hinge,
and consequently of the sphere, while the plane stays immobile. This degree of freedom is

1P-753.1CD LISA Linear Actuator and Stage. Manufacturer: Physik Instrumente
2M-126: Precision Translation Stage. Manufacturer: Physik Instrumente
3M-VP-25XA Metric Precision Compact Linear Stage. Manufacturer: Newport Corporation
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used to find a clean spot to perform the experiment, in case of presence of a dust particle on
the plane. Note that this is not applicable if the dust particle is on the sphere.

Tilt Motors

Since the mirror related to the piezo-electric actuator is fixed and not controlled by any
motorized stage, the alignment of the incident laser beam with respect to this mirror is
performed by orienting the optical board, which is supported by three points of contact: one
pinned support, one sliding support and one roller support.

In order to achieve the parallelism of the rest of mirrors, their orientation is defined by
two planes, each plane controlled by two motors. The first tilt plane is the circular base of
the dSFA’s heart that controls the degree of inclination of elements attached to the housing
(all elements except those related to the plane). The mirrors on top of the flexure hinge are
then inclined to reach parallelism with the mirror related to the piezo, thanks to two M-230
motors4 providing a linear motion for a travel range up to to 10 mm with steps as low as
1 µm. Given the design of the dSFA’s heart, this corresponds to an orientation that can be
tuned on a typical range of ±4◦ with a precision of 4 · 10−4◦.

The second tilt plane is found in the structure that holds the calcite and the arm that
supports the fixed mirror. The inclination of these two important elements is controlled by
two M-228 motors5, to reach parallelism with the mirrors of the flexure hinge. These motors
can travel linearly up to 10 mm with a minimal incremental motion of 1 µm, corresponding
to an orientation that can be tuned on a typical range of ±7◦ with a precision of 7 · 10−4◦.

3.1.3 Optical Elements

New interferometers were built to adapt to the new environment of the dSFA (see section
3.1.5), in order to measure independently the distance between the surfaces and the deflection
of the flexure hinge. The two interferometers are identical and based on a quadrature-phase
Nomarsky interferometer.

In short, for each interferometer a linearly-polarized laser beam is sent on a birefringent
element separating the incident beam into two orthogonally polarized beams. These beams
are reflected by a pair of mirrors on the dSFA, they are reunited by the calcite thereafter
and then they reach a beam-splitter cube. On one side, the beam hits another birefringent
element, producing interference and giving an intensity that varies with the cosine of the
phase difference between the two polarization states. On the other side, the beam hits
a quarter-wave plate and another birefringent element, similarly producing interference
and giving an intensity that varies with the sine of the phase difference between the two
polarization states.

4M-230 High-Resolution Linear Actuator with DC and Stepper Motor. Manufacturer: Physik Instrumente
5M-228 High-Resolution Linear Actuator with Stepper Motor. Manufacturer: Physik Instrumente
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Such a choice of interferometer allows to measure the phase difference with a sensitivity
which is both high and constant with the phase difference, as well as for the distance between
the surfaces or the deflection of the flexure hinge which can be deduced from the phase
difference.

Laser Coupling System

A linearly-polarized, frequency and amplitude stabilized He-Ne laser6 (λ = 632.8 nm in
air) generates the beam that is coupled into a polarization-maintaining optical fiber. As
illustrated in Figure 3.4, the laser head is aligned so that the beam has the same horizontal
polarization as the optical table plane. A Faraday isolator turns the polarization of the beam
on 45◦, stopping any parasite reflection from returning and destabilizing the laser source.
The beam is then reflected by a mirror, goes through a lens mounted on the optical fiber
and finally enters the fiber. The beam and the lens-fiber ensemble are aligned in position
and angle with four adjustment screws (two for the orientation of the mirror and two for
the orientation of the lens-fiber ensemble), so that the maximal light intensity is obtained.
The light source as well as the coupling system are placed in the airlock compartment (see
section 3.1.5).

Figure 3.4 Schematic of the laser coupling system installed in the airlock compartment,
allowing to inject the laser beam into a polarization-maintaining optical fiber that travels to
the dSFA in the experimental room.

Interferometers

When the optical fiber travels to the experimental room, it is introduced inside the isolating
box (see section 3.1.5), up the optical board, where its output is held by a beam collimator.

6Manufacturer: Sios Precision. Model: SL-04A. Output power ∼ 1.5 mW. Stabilization in frequency of
±1 MHz or in amplitude < 2% over 1 hour.
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That is the point where the actual interferometric set-up starts. Figure 3.5 shows a schematic
diagram of the new interferometers.

Figure 3.5 Schematic of the new interferometers showing the trajectory (following the arrows)
of the laser beam from the collimator at the output of the optical fiber. Various optical
elements create a second optical path (one for the force and one for the distance), and both
beams go downwards through the calcite and to the mirrors of the dSFA, and then back
upwards to the analysis units and the photodiodes.

Following the arrows leading the optical path, it can be observed that after leaving the
guiding optical fiber, the beam is reflected by two mirrors, whose orientations allow to finely
tune the position and direction of the beam. The beam then passes though a Glann-Taylor
polarizer oriented at 45◦, ensuring two states of polarization es and ep of same intensity.
We use it in case the polarization-maintaining fiber does not play its role perfectly, because
of thermal or mechanical drifts, etc. It is important to mention that possible variations of
polarization are translated into variations of intensity, which will be taken into account in
the analysis.
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When desired, the translation of the prism inside the Babinet-Soleil compensator is
used to add a phase shift between the two states of polarization. This can be useful to
change the operating point or for troubleshooting. Afterwards, the beam hits a 50% : 50%
non-polarizing beam-splitter cube, where one part of the beam is redirected towards the
dSFA (the force interferometer), and the other part passes through a series of mirrors, in
order to be reintroduced into the beam-splitter cube, creating a second optical path next to
the first one. Again, a part of this second beam is redirected towards the dSFA (the distance
interferometer), and the other part is blocked by a diaphragm to stop the cycle.

Both beams going to the dSFA are reflected by a 45◦ mirror and sent downwards, passing
through the optical board and entering the vacuum chamber, where the dSFA’s heart is
placed. A calcite crystal separates spatially each beam into two beams of polarizations es and
ep, which hit the two pairs of mirrors below. One pair of mirrors allows to collect information
for the distance (one mirror attached to the piezo actuator, the other to the flexure hinge),
and the other pair for the force (one mirror attached to the flexure hinge, one mirror attached
to a fixed frame). After reflection by the mirrors, the beams are spatially recombined by
the calcite, and a phase shift is accumulated between the states of polarization es and ep,
because of the different positions of the mirrors.

The beams then travel towards their own interferometer. On each case, the beam hits a
second 50% : 50% non-polarizing beam-splitter cube. One part is sent directly to an analysis
unit called X, producing interference and giving an intensity that varies with the cosine
of the phase difference between es and ep. The other part is sent through a quarter-wave
plate adding a shift of π/2 between the two polarization states, and then to an analysis unit
called Y, producing interference and giving an intensity that varies with the sine of the phase
difference between es and ep. This quadrature measurement ensures maximal sensitivity at
all times: when the sensitivity of the optical path X is zero, the sensitivity of the optical
path Y is maximum, and vice versa.

Each unit contains a Wollaston prism oriented at 45◦, which projects the polarization
states and splits the beam into two beams separated by an angle of 2◦, giving rise to
interferences in opposition to the two beams that are collected by photodiodes. A good
alignment of the mirrors in the dSFA’s heart, and a good orientation of all birefringent
elements is needed to obtain interferences with maximum contrast.

3.1.4 Electronic Elements

Very few electronic elements are involved in the new version of the dSFA developed during
this thesis: a circuit controlling the quasi-static displacement of the piezo-electric actuator,
the photodiodes converting the optical signals into electrical signals, and the multimeters
and lock-in amplifiers collecting the quasi-static and dynamic signals.
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Controller of the piezo-electric actuator

For quasi-static displacements, the piezo-actuator is powered by a quasi-DC voltage, which is
supplied by an electronic unit composed of an integrator amplifier and a subtractor amplifier7,
as seen in Figure 3.6. These operational amplifiers are supplied by a stabilized DC source8

providing Vmax = 120 V. The first amplifier integrates a constant input voltage Vin ranging
from -5 V to +5 V given by a signal generator9, creating for Vint a voltage ramp from 0 V
to 120 V with a slope of −Vin/RC, where R = 1 MΩ is the resistance and C = 10 µF is
the capacity10. The second amplifier subtracts Vmax and Vint, so that the "discharged state"
of the capacitor corresponds to the maximum distance between the plane and the sphere,
i.e., to a piezo crystal that is fully expanded under 120 V. Finally, the output voltage Vout

presents a voltage ramp from 120 V to 0 V with a slope of +Vin/RC.

Figure 3.6 Schematic of the electronic assembly of integrator and subtractor amplifiers used
to supply the piezoelectric actuator with a voltage ramp and so to control the approach-
retraction of the plane towards the sphere at constant speed.

As described in section 3.1.2, the linear sensitivity of the piezoelectric crystal is α =
110 nm/V, so we expect the velocity of the plane to be equal to αVin/RC. However, in
practice we have observed that the response of the piezoelectric actuator with this controller
is not perfectly linear, and that the speed does not cancel at zero voltage (Figure 3.7).
Empirically, the relation between the applied voltage Vin and the velocity U follows the
quadratic expression:

U = a(Vin − V0) + b(Vin − V0)2

where V0 is an offset of order typically around 45 ± 10 mV, which slightly depends on the
thermal drift. Accurately knowing this relationship is important to choose the right pace for
the approach and retraction of the plane, that is why it has been calibrated.

7Manufacturer: Linear Technology. Model: LTC6090.
8Manufacturer: Aim-TTi. Model: PLH120
9Manufacturer: Agilent. Model: 33220A

10Manufacturer: Cornell Dubilier. Model: 935C2W10K



46 Instrumental Development

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

 U
 [n

m
/s

]

-600 -500 -400 -300 -200 -100 0 100 200 300 400
 Vin [mV]

 Measurement 1
 Measurement 2

a = 0.0148 ± 0.0002 (nm/s)/mV

b = (9.0e ± 0.4).10
-6

 (nm/s)/mV
2

Figure 3.7 Non-linear relation between the voltage applied to the piezo-electric actuator and
its velocity. The two groups of measurements were taken at different times and therefore
with different drifts. The approach-retraction threshold is found at 45 ± 3 mV and 52 ± 2 mV
for these two measurements.

Photodiodes

The role of the photodiodes is to convert the optical intensities into electrical currents. In our
set-up, these currents are typically of the order of 1 µA. The photodiodes were chosen for
their high shunt resistance, minimizing the measurement noise for low light intensity11. Used
in photovoltaic mode, dark current is avoided and low noise and best linearity are ensured,
at a modest price in terms of dynamics given the frequencies used (<1 kHz).

Multimeters and Lock-in Amplifiers

The DC current coming from each of the eight photodiodes is measured with a multimeter12.
These high precision multimeters present a 1-day precision of ∼ 1 nA when working on DC
current mode with an adapted range of 10 µA.

The AC current coming from each of four photodiodes (one per analysis unit, labeled
as 1) is measured with a lock-in amplifier13, plugged in series with a multimeter (Figure
3.8). A master lock-in amplifier generates a harmonic signal of desired amplitude (typically
between 0.004 VRMS and 0.3 VRMS) and frequency (typically between 10 Hz and 1 kHz)

11Manufacturer: Osram Opto Semiconductors. Model: SFH206K.
12Manufacturer: Keysight. Model: 34465A
13Manufacturer: Stanford Research Systems. Model: SR830
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which is applied to the piezo-electric actuator, while the other lock-in amplifiers are locked in
frequency and phase with the master one. The lock-in amplifiers are configured in current
mode, and are able to measure an oscillation typically between 1 nA and 100 nA with an
amplitude resolution of 100 pA and a phase resolution of 0.01◦.

Figure 3.8 Schematic of the electric circuit between the photodiodes and the precision
multimeters and lock-in amplifiers for both static and dynamic measurements, for one
analysis unit (for example, HX).

These devices are connected by ethernet or GPIB to the computer. The signals are
acquired simultaneously by TTL triggering every 500 ms, with an integration time of 300 ms.
Several LabVIEW programs are used to pilot all the stages and function generators, and to
record the data in text format. These data are visualized and processed in real time using
dedicated procedures with the Igor (WaveMetrics) software.

3.1.5 Environmental Control

White Room Conditions

The protection of the dSFA machine from contamination is crucial for reliable results. Any
particle of dust deposited on the surfaces close enough to the apex of the sphere would falsify
the results, as the measured forces would reflect the mechanical properties of the dust particle
and not the surface forces between the surfaces across the surrounding liquid. The ideal work
space must be critically unpolluted, so the cleanliness of the environment and the surfaces
is a priority. A protocol similar to that of a clean room is employed to work in the dSFA’s
surrounding rooms. Certain protective equipment such as gloves, lab coat, mask and cap
are needed in order to enter the room. The experimental room is isolated from any public
transit area in the laboratory, and it is over-pressurized for air removal and renewal between
experiments only.

All the surfaces, syringes, beakers and tools are carefully cleaned following a strict protocol,
detailed in section 4.1.1. As a last resort, the sphere can be moved in the horizontal direction
in a way to get further from the dust particle and find a clean spot to work with.
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Mechanical Stability

Another source of pollution for the experiments are vibrations, because they could displace
the mirrors and eventually be sensed by the flexure hinge. Since air damping would be
detrimental for the measurement, the set-up is mounted on a passive anti-vibration table14,
which attenuates any vibration above 0.5 Hz (Figure 3.9). Its working mechanism is composed
of a weight load, a set of springs and a damping element. The weight range needed for the
optimal functioning of our table is 286 − 408 kg. In our case, besides the weight of the
interferometer and dSFA’s heart, several weights made of stainless steel, corresponding to
an added mass of 350 kg, were installed since the previous version of the dSFA to increase
the inertia of the table. This works also as a thermal mass, since it helps slowing down the
thermal drift. The table as well as the added weights are visible on Figure 3.12.

Figure 3.9 Manufacturer’s data of the vertical and the horizontal transmissibility of the
anti-vibration table for a frequency range between 125 mHz and 100 Hz.

The isolating box used for thermal stability (see section 3.1.5) is also used as an additional
protection layer against acoustic vibrations in the air, complementing the protection for
mechanical stability of the set-up.

14Manufacturer: Minus-K. Model: BM-1 Bench Top Vibration Isolation Platform
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Thermal Stability

To achieve the best control of temperature, we encapsulate the set-up with four thermalized
levels of increasing quality controls: the experimental room, the airlock compartment, the
thermal insulating box and the vacuum chamber. Each of this isolation elements constitutes
a thermal barrier for temperature changes.

The firsts thermal barriers are the two rooms that accommodate the experimental set-up
(Figure 3.10), separated by a common wall. The airlock compartment contains the laser
injection system, the data acquisition equipment, the thermal regulation circuit, and allows
the connection of hydraulic and electric circuits to the room above, where the command
equipment is placed, to remotely control the circulation of thermalized fluid and the mechanic
movement of the dSFA, respectively, as well as the visualization of the collected data. These
equipment have been placed in the airlock compartment to avoid any sources of heat and air
convection inside the experimental room.

A thermal regulation system was installed in the airlock compartment, as shown in Figure
3.11. This thermal circuit was built from a series of radiators working in cooling mode, fixed
near the ceiling, and fed by the cold water lines from the laboratory. Since we aim to have
the slowest possible temperature change in the room and to attenuate the thermal drift
in the experiment, the circulation system has to regulate the flow of water in the circuit
depending on the external heat transfer during the day. Such a regulation is performed by a
PID temperature controller (PID), which adjusts the mixing of cold water with a three-way
valve (M) if the temperature of control (TC), measured with a PT-100 resistance, deviates
from the target point of 24◦C. Unlike air conditioning, the regulation of this system presents
little oscillation and little convection. In conditions of an experiment, i.e., when nobody is
present in the room and the room has stabilized over typically one day, the temperature in
the airlock compartment fluctuates only by 0.3◦C around 24◦C.

The experimental room contains the dSFA’s heart, the interferometer, and other equip-
ment used for atmospheric and thermal control. Cables, optical fiber, as well as hydraulic
connections built for the circulation in the hydraulic circuit and the vacuum chamber go from
the airlock compartment to the experimental room through properly isolated wall passages,
as seen in Figure 3.10.

The third thermal barrier is the thermal isolating box, conceived to weaken temperature
drifts around the dSFA. This box is homemade from polyurethane foam of 10 cm thickness
and wrapped with isolating adhesive tape. This passive enclosure reduces the acoustic
vibrations from the environment and helps controlling the thermal drift around the set-up.
Additional layers of foam were added below and around the set-up (Figure 3.12) to ensure
the damping of vibrations from the floor and to block the passage of air, in order to avoid
convection air rolls playing against the mechanical stability of the set-up.
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Figure 3.10 Schematic of the accommodation of the dSFA, with the corresponding data
acquisition equipment, optical set-up and environmental control elements, distributed in the
experimental room and the airlock compartment.
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M

TC
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T in T out

PID

Figure 3.11 Schematic of the thermal regulation system, based on a series of radiators working
in cooling mode and operated by a PID temperature controller (PID), a three-way valve (M),
a the temperature of control (TC) measured with a PT-100 resistance and a flow meter (FM).
The red arrows show the water flow direction.

During my thesis, a vacuum chamber has been added to contain the dSFA’s heart, acting
as a fourth thermal barrier (further information in section 3.1.5).

In order to control the stability and the homogeneity of the temperature, nine PT-100
Platinum resistances have been placed at different locations (in both the airlock compartment
and the experimental room, inside and outside the isolating box), the reading been performed
with a data acquisition unit15 equipped with a multiplexer module16. Finally, all these efforts
allow to obtain thermal drifts inside the vacuum chamber that are as low as ∼ 0.04◦C in
4 hours (the typical time needed for recording one approach-retraction curve). Figure 3.13
shows the temperature measured from the sensor installed inside the vacuum chamber during
an experiment.

Atmospheric Stability

The vacuum chamber mentioned above17 allows to have a stable and controlled temperature,
and to control the atmosphere around the liquid used. Additionally, it could potentially let
us work under vacuum, under inert atmosphere (Ar, N2, etc.), or under controlled vapor

15Manufacturer: Agilent, model: 34972A.
16Manufacturer: Agilent, model: 34901A.
17Manufacturer: Lesker, product specifications met by our requirements.
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Figure 3.12 Schematic of the set-up of the dSFA inside the vacuum chamber, below the
interferometer. Both are placed on top of an anti-vibration table, surrounded by a thermal
isolating box. Other elements are also illustrated and labeled.
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Figure 3.13 Temperature measured inside the vacuum chamber by a thermo-resistance sensor.
The thermal drift measured inside the chamber is (9.00 ± 0.02) · 10−3◦C/h.

pressure and humidity, which is useful for hygroscopic and volatile liquids, among other
advantages.

The vacuum chamber as seen in Figure 3.14 is fabricated out of stainless steel, and a
hydraulic circuit its carved on its walls, allowing a circulating flow of regulated temperature.
The hydraulic circuit of the vacuum chamber is connected to a spiral-shaped hydraulic circuit
below the optical table holding the set-up. This hydraulic circuit contains the water coming
in from the thermostatic bath, placed at the floor above the experimental room.

3.2 Analysis of the Interferometric Measurement

With the new double interferometer and the new electronic configuration, the pre-treatment
procedure to obtain the static and dynamic distance and force has changed. Below we
describe the new procedure for ideal then real signals, and we present an extension of the
analysis when the detectors operate in non-linear regime.

3.2.1 Ideal Signals

For illustration purposes, a general expression is shown in Eq.3.1 for all eight signals coming
from the photodiodes (two interferometers with two analysis units each, and two photodiodes
in each unit). Here IH

L
X
Y

1
2

and ϕH
L

respectively represent the electrical current flowing from the
photodiode and the optical phase shift between the two polarization states, considered as
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Figure 3.14 Photograph of the new version of the dSFA, showing the addition of a vacuum
chamber containing the dSFA’s heart, with the interferometers built on the optical board
above.
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instantaneous (i.e., without integration at this stage) and total (i.e., containing both static
and dynamic information). There is no difference between both interferometers, with index H
for distance and index L for force. However, for quadrature purposes, there is a 90◦ phase-shift
between the channel X and Y (blue index) of each analysis unit, which explains the choice of
cosine or sine, highlighted in blue. Additionally, a change of sign between photodiodes 1 and
2 (red index) of each channel for the subtraction of signals is represented in the red symbol.
The prefactor I0 corresponds to the total intensity arriving on each analysis unit.

IH
L

X
Y

1
2

= I0

[
1±

cos
sin

(
ϕH

L

)]
(3.1)

In the following, to avoid redundant mathematical development for all signals, only the
development for one pair of signals IHX1

2
is presented in equation 3.2, showing the sign

variations corresponding to one pair of photodiodes. This same applies to the other 3 pairs
of signals: IHY1

2
, ILX1

2
and ILY1

2
.

IHX1
2

= I0
[
1 ± cos(ϕH)

]
(3.2)

The expression of the phase shift is given by equation 3.3. We note that the factor 2 is
due to the back and forth of the interfering laser beams in the dSFA’s heart.

ϕH = 4π
λ

[hstat + hdyn cos(ωt + φH)] (3.3)

In all experiments, the amplitude of the dynamic oscillation is small: hdyn ≪ λ/4π ≃
50 nm. Therefore, we can develop the expression of IHX1

2
with the ratio 4πhdyn/λ. In this

section, we will first consider the simplest case where the detector operates in the linear-regime,
i.e., we will limit the development to the first order in 4πhdyn/λ:

IHX1
2

≃ I0
[
1 ± cos

(4π
λ
hstat

)
∓ sin

(4π
λ
hstat

)4π
λ
hdyn cos(ωt+ φH)

]
(3.4)

We begin by writing the expressions of the quasi-static and dynamic signals measured
experimentally. The multimeters collect the quasi-static component by integrating the signals
over T = 300 ms at a time t:

Istat
HX1

2
(t) ≡

t+T∫
t

IHX1
2
(t′)dt

′

T
(3.5)

In the following, we suppose that hstat varies quasi-statically, i.e., that the temporal
variations of hstat are slow at the scale of T:

4π
λ

|U |T ≪ 1 so a speed |U| ≪ λ

4πT ≃ 170 nm/s
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One can then easily calculate:

Istat
HX1

2
(t) ≃ I0

[
1±cos

(4π
λ
hstat

)
∓ sin

(4π
λ
hstat

)4π
λ
hdyn cos

(
ω

(
t+ T

2
)

+φH
)
sinc

(ωT
2

)]
(3.6)

The third term is due to the fact that in general T is not a multiple of 2π/ω. But its
amplitude is damped by the sinc function if the oscillation frequency and integration time
are large enough:

ωT

2 ≫ 1

In our case, T = 300 ms and ω/2π ≥ 10 Hz, giving ωT/2 ≥ 9.4, so this condition is
reasonably verified. We finally get the quasi-static component, i.e., only the zero order:

Istat
HX1

2
(t) ≃ I0

[
1 ± cos

(4π
λ
hstat

)]
(3.7)

The lock-in amplifier, plugged in series on photodiode 1, collects the two quadratures of
the dynamic component (real and imaginary parts). It can formally be written as:

IRe
HX1(t) ≡

t+T∫
t

IHX1
2
(t′)2 cos(ωt)dt

′

T
(3.8)

IImHX1(t) ≡
t+T∫
t

IHX1
2
(t′)2 cos

(
ωt+ π

2
)dt′

T
(3.9)

Similarly than for the static-component, one can show that if ωT ≫ 1 we get the dynamic
component oscillating at ω, i.e., only the first order:

IRe
HX1(t) ≃ −I0 sin

(4π
λ
hstat

)4π
λ
hdyn cos(φH) (3.10)

IImHX1(t) ≃ −I0 sin
(4π
λ
hstat

)4π
λ
hdyn sin(φH) (3.11)

Equivalently, we obtain the modulus and argument of the dynamic component:

Imod
HX1(t) = I0

∣∣∣ sin
(4π
λ
hstat

)∣∣∣4π
λ
hdyn (3.12)

Iarg
HX1(t) = φH if sin

(4π
λ
hstat

)
< 0, φH − π otherwise (3.13)

The mathematical expressions for HY, FX and FY are similar. In the case of ideal signals
in linear regime, the pre-treatment of the data is straightforward. We numerically compute
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normalized "contrast" quantities, to be insensitive to any intensity fluctuations of the light
source. For example for HX:

V stat
HX ≡ 10I

stat
HX1 − Istat

HX2
Istat

HX1 + Istat
HX2

= 10 cos
(4π
λ
hstat

)
(3.14)

V mod
HX ≡ 20 Imod

HX1
Istat

HX1 + Istat
HX2

= 10
∣∣∣ sin

(4π
λ
hstat

)∣∣∣4π
λ
hdyn (3.15)

V arg
HX ≡ Iarg

HX (3.16)

Then, in principle we can obtain the quasi-static displacements hstat, lstat, and the dynamic
moduli hdyn, ldyn and phases φH, φL corresponding to the oscillatory displacements.

3.2.2 Real Signals in Linear Regime

Real signals are affected by various optical and electronic subtleties. For simplicity, we will
express them only for the channel HX. Experimentally, we observed that the quasi-static
signal has the form:

Istat
HX1

2
= a1

2
I0

[
1 ± b1

2
cos

(4π
λ
hstat + ∆φstat

1
2

)]
(3.17)

The parameter a1
2

is due to several effects, which we list in a non-exhaustive way:

• different adsorptions for lasers beams traveling along different optical path,

• beams clipped on the edges of the photodiodes,

• different photodiodes sensitivities.

The parameter b1
2

includes effects caused by:

• an imperfect superposition of interfering beams (due to imperfect alignment of the
pairs of mirrors, or to beams of slightly different diameters on the detector),

• Wollaston prism’s angles not perfectly adjusted.

The parameter ∆φstat
1
2

is possibly caused by:

• a time delay in triggering the acquisitions of the multimeters,

• an optical phase shift originating from reflection and transmission coefficients on the
optical pathways which vary slightly with polarization.
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Also experimentally, we observed that the modulus and argument of the dynamic signal
have the form:

Imod
HX1 = a1 b1 I0

∣∣∣ sin
(4π
λ
hstat + ∆φstat/dyn

1

)∣∣∣4π
λ
hdyn (3.18)

Iarg
H = φH if sin

(4π
λ
hstat + ∆φstat/dyn

1

)
< 0, φH − π otherwise (3.19)

The parameters a1 and b1 are the same than for the static measurement, whereas φstat/dyn
1

is a shift between the measurements coming from the multimeter and the lock-in amplifier
plugged in series on the same photodiode. It clearly originates from a time delay in triggering
the acquisitions of these equipment.

Calibration

In order to quantify the values of the different parameters in the real signals and to be able
to correct them, we perform a calibration. With the help of the coil-magnet system, we set
the flexure hinge into motion, which can be detected on the two inteferometers thanks to
the double mirror fixed on it (see Figure 3.3). First, a quasi-static displacement is obtained
by imposing a quasi-DC voltage ramp of 20 V, equivalent to a ∼ 1 µm travel, to one end of
the coil. Simultaneously, an AC voltage is applied on the other end of the coil to produce a
dynamic excitation. A typical amplitude of oscillation is 2 nm, with a voltage depending on
the chosen work frequency.

The first step of the analysis of the calibration is to fit a sine onto the temporal evolution
of each quasi-static current. For instance, on channel HX: Istat

HX1
2

are fitted while imposing
an average frequency framp, obtaining each signal’s offset, amplitude and phase (Figure
3.15). The amplitude ratio is calculated as r = a1 b1

a2 b2
, and the phase shift is deduced

as ∆φstat
2−1 = ∆φstat

2 − ∆φstat
1 . The signal coming from photodiode 2 is thereafter shifted

temporally and multiplied by the amplitude ratio to obtain a corrected sum:

Istat
HXsum(t) = Istat

HX1(t) + r Istat
HX2(t− ∆φstat

2−1/2πframp) (3.20)

Checking that this corrected sum is constant with time is a way to validate the calibration
(Figure 3.15).

The second step of the analysis of the calibration is to fit a sine onto the temporal
evolution of each dynamic current together with the corresponding quasi-static component.
For instance, on channel HX: Istat

HX1 and IRe
HX1 are fitted while imposing an average frequency

framp (Figure 3.16). The phase shift between the dynamic and static signals is deduced as
∆φdyn−stat

1 = ∆φdyn
1 − ∆φstat

1 . The dynamic signals in quadrature coming from the lock-in
amplifier are thereafter shifted temporally to recover synchronization with the quasi-static
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Figure 3.15 Sinus fitting of current signals from photodiodes 1 and 2 of channel HX and
correction of their time lag and amplitude difference to calculate a constant corrected sum.
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signal coming from the multimeter. In the same ways as in the first step, a corrected sum
can be calculated to validate the calibration (Figure 3.16).

3.0

2.5

2.0

1.5

1.0

0.5

0.0

C
ur

re
nt

 I s
ta

t [
µA

]

900800700600500400

Current Istat [µA]

-3

-2

-1

0

1

2

3

C
urrent IR

e [nA
]

 Istat 

 IRe (+90°) 

 Fit Istat & IRe

1.5

1.4

1.3

1.2

1.1

C
ur

re
nt

 [µ
A

]

5004003002001000

Time [s*0.5]

 Sum Istat & IRe (+90°)

Figure 3.16 Sinus fitting of current signals from static and dynamic measurements and
correction of their time lag that results in a constant sum of current intensities. For their
addition, the real part of the dynamic signal was shifted by π/2.

After these two steps, we can numerically calculate contrasts, corrected by the amplitude
ratio and the phase shift:

V stat
HX (t) ≡ 10I

stat
HX1(t) − r Istat

HX2(t− ∆φstat
2−1/2πframp)

Istat
HX1(t) + r Istat

HX2(t− ∆φstat
2−1/2πframp) (3.21)

V mod
HX (t) ≡ 20 Imod

HX1(t− ∆φdyn−stat
1 )

Istat
HX1(t) + r Istat

HX2(t− ∆φstat
2−1/2πframp) (3.22)

V arg
HX (t) ≡ Iarg

HX1(t− ∆φdyn−stat
1 ) (3.23)

One can deduce:
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V stat
HX (t) = 10b2 − b1

b2 + b1
+ 20 b2 b1

b2 + b1
cos

(4π
λ
hstat

)
(3.24)

V mod
HX (t) = 20 b2 b1

b2 + b1

∣∣∣ sin
(4π
λ
hstat

)∣∣∣4π
λ
hdyn (3.25)

V arg
HX (t) = φH if sin

(4π
λ
hstat

)
< 0, φH − π otherwise (3.26)

From these equations we define the offset V off
HX = 10 b2−b1

b2+b1
and amplitude V amp

HX = 20 b2 b1
b2+b1

.
We follow the same steps for the channel HY and get similar expressions, except that

the phases are shifted by −π/2 + ψH, because of the (imperfect) setting of the quarter-wave
plate. We end up with the following expressions for the quasi-static components:

V stat
HX = V off

HX + V amp
HX cos

(4π
λ
hstat

)
(3.27)

V stat
HY = V off

HY + V amp
HY sin

(4π
λ
hstat + ψH

)
(3.28)

The expressions for the dynamic components read:

V mod
HX = V amp

HX

∣∣∣ sin
(4π
λ
hstat

)∣∣∣4π
λ
hdyn (3.29)

V mod
HY = V amp

HY

∣∣∣ cos
(4π
λ
hstat + ψH

)∣∣∣4π
λ
hdyn (3.30)

V arg
HX = φH if sin

(4π
λ
hstat

)
< 0, φH − π otherwise (3.31)

V arg
HY = φH if cos

(4π
λ
hstat + ψH

)
> 0, φH − π otherwise (3.32)

The third step of the analysis of the calibration consists in plotting the quasi-static V stat
HY

versus V stat
HX , and in adjusting an elliptic function to obtain the values of V off

HX, V off
HY, V amp

HX ,
V amp

HY and ψH (Figure 3.17). The residuals between the fit and the data show random noise
of maximum amplitude ∼ 5 · 10−3 for ellipse amplitudes of ∼ 9.

The same three-step analysis is performed to calibrate the force interferometer.

Calculation of quasi-static displacements

Once the calibration is done, all the measured signals are pre-treated as follows. The raw
electric currents, static and dynamic, are numerically converted for each analysis unit into
corrected contrasts (for example V stat

HX and V dyn
HX for HX), knowing the amplitude ratio r and

the phase shifts ∆φstat
2−1 and ∆φdyn−stat

1 (following equations 3.21 and 3.22). These contrasts
can then be used to determine the quasi-static displacement for each interferometer, knowing
the ellipse parameters. For example for the distance interferometer, the offsets V off

HX and
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Figure 3.17 On the left, fitting of V stat
HY as a function of V stat

HX with an ellipse to calibrate the
parameters of offset, amplitude and the phase shift. On the right, residuals associated to the
fit.

V off
HY, amplitudes V amp

HX and V amp
HY , and phase shift ψH are known, and one can numerically

calculate:

cos
(4π
λ
hstat

)
= V stat

HX − V off
HX

V amp
HX

(3.33)

sin
(4π
λ
hstat

)
=

[V stat
HY − V off

HY
V amp

HY
− V stat

HX − V off
HX

V amp
HX

sin(ψH)
] 1
cos(ψH) (3.34)

Knowing the cosine and the sine of the static phase 4π
λ hstat allows to determine the

static phase with a constant sensitivity whatever its value. The phase at initial time t = 0
is computed modulo 2π, because one does not know the position of the optical contact
(corresponding by definition to hstat = 0). However for subsequent times, it is possible to
"count" the passing interference fringes, and so to determine variations of the phase by more
than 2π by simply unwrapping the signal. The quasi-static displacement hstat can therefore
be deduced to within one constant (Figure 3.18).

Calculation of dynamic displacements

For example, on the distance interferometer, the static and dynamic contrasts are combined
by numerically computing the quantities cRe

H and cImH , defined as:

cRe
H ≡ −V mod

HX cos(V arg
HX )(V stat

HY − V off
HY) + V mod

HY cos(V arg
HY )(V stat

HX − V off
HX) (3.35)

cImH ≡ −V mod
HX sin(V arg

HX )(V stat
HY − V off

HY) + V mod
HY sin(V arg

HY )(V stat
HX − V off

HX) (3.36)

One can show that:
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Figure 3.18 On the left, the contrast signals V stat
HX and V stat

HY from the distance interferometer
during the calibration with the coil-magnet system. On the right, the resulting quasi-static
distance hstat. The small deviation from linearity is due to the non-linear voltage/displacement
conversion of the piezo-electric actuator.

hdyn = λ

4π

√
cRe

H
2 + cImH

2

V amp
HX V amp

HY cos(ψH) (3.37)

We can therefore determine the amplitude hdyn of the dynamic displacement, with a
constant sensitivity whatever the operating point (Figure 3.19).
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Figure 3.19 On the left, the dynamic modulus V mod
HX and V mod

HX from the distance interferometer
during the calibration with the coil-magnet system. On the right, the resulting dynamic
displacement hdyn for the distance interferometer. Errors in measurements and analysis result
in fluctuations of the order of 1 %.

The arguments V arg
HX and V arg

HY of the dynamic components are equal to the phase φH of
the dynamic displacement, except that they present jumps of amplitude ±π. These jumps
can be removed by unwrapping the signals. However, measurements are significantly noisier
around the jumps, because it corresponds to the operation point where the sensitivity of a
given channel is zero: sin

(
4π
λ hstat

)
= 0 for HX and cos

(
4π
λ hstat + ψH

)
= 0 for HY. We build
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a combined phase signal which does not present this imperfection, by periodically switching
from one channel to the other. The phase φH is then known modulo π (Figure 3.19).
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Figure 3.20 On the left, the dynamic arguments V arg
HX and V arg

HX from the distance interferometer
during the calibration with the coil-magnet system. On the right, the resulting phase of the
dynamic phase harg for the distance interferometer.

3.2.3 Extension to the non-linear regime

The linear analysis presented in the previous section allows to work with small oscillation
amplitudes, typically hdyn < 10 nm. It can be useful to be able to quantitatively measure
larger oscillation amplitudes. This is typically the case at large distances between the surfaces
where the force is small: increasing the amplitude of the dynamic distance will proportionally
increase the amplitude of the dynamic force, making it larger than the noise level. Thus an
extension to the non-linear regime was needed for the distance interferometer, typically when
hdyn ∼ 30 nm.

This required to install a current divider before each lock-in amplifier associated to the
distance interferometer, in order to avoid its saturation. The current divider was built with
two resistors in parallel, 1 kΩ and 10 kΩ, dividing the voltage by 11.

In the same vein of the calculation done in section 3.2.1, we have developed the expression
of the instantaneous total current IHX1

2
to the third order in 4πhdyn/λ. Here we will not

write these calculations, but simply summarize the results.
The first effect of non-linearity of the detector is to reduce the moduli of the dynamic

contrast V mod
HX and V mod

HY by a factor (1 − αh2
dyn) with α = 2π2/λ = 4.9.10−5 nm−2. As a

result, the apparent dynamic amplitude hdyn, app that is obtained with the linear analysis is
smaller than the true dynamic amplitude hdyn:

hdyn, app = hdyn − αh3
dyn (3.38)
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The second effect of non-linearity of the detector is to reduce the amplitudes of the quasi-
static contrast V stat

HX and V stat
HY by a factor (1 − βh2

dyn) with β = 2α = 4π2/λ = 9.8.10−5 nm2.
The apparent quasi-static amplitudes V amp

HX, app and V amp
HY, app are smaller than the amplitudes

V amp
HX and V amp

HY calibrated in the linear regime:

V amp
HX, app = V amp

HX (1 − βh2
dyn) (3.39)

V amp
HY, app = V amp

HY (1 − βh2
dyn) (3.40)

As a result, the quasi-static signals follow an ellipse of smaller semi axes, and the apparent
quasi-static amplitude hstat, app that is obtained with the linear analysis is not equal to the
true quasi-static amplitude hstat.

Taking these corrections into account in the analysis is not straightforward, because
the quasi-static and dynamic signals are mixed. Indeed, first we need to know the true
dynamic amplitude hdyn to correct for the reduction of the quasi-static amplitudes V amp

HX, app
and V amp

HY, app, then to deduce the true quasi-static amplitude hstat and the apparent dynamic
amplitude hdyn, app, then to get the true dynamic amplitude hdyn. Therefore we proceed
perturbatively:

• first we perform the linear analysis (i.e., we suppose α = β = 0) to get estimates hstat,0

and hdyn,0,

• secondly we give back their standard values to α and β, use hdyn,0 in the right-hand
sides of equations 3.38, 3.39 and 3.40, and follow the whole analysis to obtain better
estimates hstat,1 and hdyn,1,

• then we iterate the previous step as many times as necessary.

Empirically, we estimated that N ∼ 2 iterations are enough for the values of hstat,N and
hdyn,N to converge within 1%.

In practice, we find that the theoretical values of α and β do not provide a quantitative
correction for the non-linearities. Instead, their values are manually adjusted for each
experiment. β is determined by plotting the corrected quasi-static V stat

HY, co = V amp
HY, app/(1 −

βh2
dyn) versus V stat

HX, co = V amp
HX, app/(1 − βh2

dyn), and making that all the data from the
experiment collapse on the same ellipse (Figure 3.21). α is fixed by ensuring that the true
dynamic amplitude hdyn varies proportionally with the dynamic voltage applied to the piezo
actuator. A wrong value for α also reflects in a ratio ldyn/hdyn which presents a jump when
changing hdyn in the non-linear range (Figure 3.22). The typical values of α and β coefficients
at 32 Hz are 1.10−4 nm−2 and 2.10−4 nm−2 respectively, and can vary from 50% to 200%
with the chosen frequency.
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Figure 3.21 On the left, the ellipse formed by the apparent amplitudes of V stat
HY, app as a

function of V stat
HX, app for the distance interferometer during an experiment. On the right, the

resulting ellipse after correction of the quasi-static amplitudes by the (1 − βh2
dyn) factor.
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Figure 3.22 On the top graph, the measured hdyn (and the apparent hdyn, app) dynamic
amplitude of the distance interferometer according to the voltage applied to the piezo-electric
actuator during an experiment (surface separation decreased from ∼ 10 µm to ∼ 1 µm). The
measured dynamic force amplitude ldyn is added on the right axis. On the bottom graph, the
ratio of force and distance dynamic amplitudes (hdyn and hdyn, app) is plotted for the same
time interval.
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3.2.4 Deduction of Mechanical Quantities

Relation between Force and Deflection

The force interferometer allows to measure the total deflection of the flexure hinge. In the
framework of linear response, it is composed of a quasi-static component plus a dynamic
component:

Ltot = lstat + ldyn cos(ωt+ φL) (3.41)

The force exerted on the flexure hinge is deduced from the deflection:

Ftot = fstat + fdyn cos(ωt+ φF) (3.42)
= Klstat + |G(ω)| ldyn cos (ωt+ arg(G(ω)) + φL) (3.43)

where K is the static stiffness and G−1(ω) is the complex transfer function of the flexure
hinge.

The flexure hinge’s free extremity is modeled as an harmonic oscillator, presenting an
effective mass M , a stiffness K and viscous damping coefficient C. The flexure hinge is driven
by a force F , and its deflection L obeys Newton second law: ML̈ = −CL̇−KL+ F , where
L̇ and L̈ correspond to the velocity and acceleration respectively. Using complex formalism
F ⋆ = fdyn exp(j(ωt+ φF)), L⋆ = ldyn exp(j(ωt+ φL)), one can show that:

[K −Mω2 + jωC]L⋆ = F ⋆ (3.44)

The complex transfer function is deduced as:

G−1(ω) ≡ L⋆

F ⋆
= 1/K

1 − (ω/ω0)2 + j(ω/ω0)/Q (3.45)∣∣∣G−1(ω)
∣∣∣ ≡ ldyn

fdyn
= 1/K√

(1 − (ω/ω0)2)2 + ((ω/ω0)/Q)2 (3.46)

arg(G−1(ω)) ≡ φL − φF (3.47)

= − arctan
( (ω/ω0)/Q

1 − (ω/ω0)2

)
for ω < ω0, (3.48)

= − arctan
( (ω/ω0)/Q

1 − (ω/ω0)2

)
− π for ω > ω0 (3.49)

where ω0/2π =
√
K/M/2π is the resonance frequency and Q =

√
KM/C is the quality

factor.
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Flexure Hinge Calibration

To characterize the mechanical response of the flexure hinge G−1(ω), we perform a calibration
while there is no liquid in between the planar and spherical surfaces. We set the flexure hinge
into motion at a given frequency f = ω/2π, by powering the coil-magnet system with an
AC voltage udyn supplied by a lock-in amplifier. We include a resistance R in series with
the coil in the circuit and we measure the dynamic voltage across the resistor with a lock-in
amplifier (Figure 3.23). This voltage has the advantage to be proportional to the current
flowing through the coil, which is proportional to the magnetic force exerted by the coil on
the magnet, i.e., the force F acting on the flexure hinge.

Figure 3.23 Schematic of the electronic assembly to perform the flexure hinge’s calibration.
The voltage udyn is applied by a lock-in amplifier and we measure the dynamic voltage VR
across the resistor, with another lock-in amplifier.

We simultaneously measure the dynamic deflection L of the flexure hinge thanks to two
other lock-in amplifiers associated to the force interferometer. We then scan the frequency
of the excitation from 10 Hz to 1 kHz, to get the complex transfer function G−1(ω) to a
multiplicative constant (see Figure 3.25). Because the modulus of the transfer function spans
other about four orders of magnitude, several scans are actually performed:

• In the first scan, the frequency is swept from 10 Hz to 1 kHz with a large amplitude
udyn = 100 mVRMS and a small resistance R = 100 Ω, to induce a large excitation and
so to reduce noise at high frequencies far from the resonance.

• In the second scan, the frequency is swept from ∼ 110 Hz to ∼ 120 Hz with a small
amplitude udyn = 20 mVRMS and a large resistance R = 10 kΩ, to induce a small
excitation and so to avoid saturation of the deflection measurement very close to the
resonance.

• In the third scan, the frequency is swept from ∼ 60 Hz to ∼ 160 Hz with a large
amplitude udyn = 100 mVRMS and a large resistance R = 10 kΩ, for frequencies
moderately far away from the resonance.

The complex transfer function is fitted as follow: first the phase in Figure 3.24 is fitted
with equation 3.49, because it depends only on two fitting parameters (versus three for
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the modulus) and it is very sensitive to the quality factor around the resonance. This sets
the resonance frequency and the quality factor, to respectively f0 = 116.25 ± 0.05 Hz and
Q = 450 ± 50. Secondly, the modulus shown in Figure 3.25, is fitted with equation 3.46, to
check if a good agreement is achieved. But this does not allow to access the stiffness, because
the transfer function is only known at a multiplicative constant.
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Figure 3.24 Flexure hinge’s transfer function argument for no added mass and its corresponding
fit.

The stiffness is calibrated thanks to the added mass method. It consists in measuring
the resonance frequency while adding masses at the end of the flexure hinge. Indeed, the
resonance frequency is equal to f0 =

√
K/M/2π, and is expected to decrease with the total

effective mass M = m + ∆m, with m the initial mass (flexure hinge plus the sphere) and
∆m the added mass. As shown in Figure 3.26, we observe such a shift of the resonance,
that we can fit to extract the resonance frequency for different added masses. Because
f0

−2 = 4π2(m+ ∆m)/K, it is convenient to plot the inverse of the squared of the resonance
frequency f0

−2 as a function of the added mass ∆m (Figure 3.27), and to perform a linear fit
to obtain the stiffness of K = 5567 ± 85 N/m (and the initial mass m = 10.44 ± 0.16 g).

Calculation of the mechanical impedance and admittance

The complex mechanical impedance is given by:

Z = Z ′ + jZ ′′ = |G(ω)| ldyn
hdyn

× exp [j (arg (G(ω)) + φL − φH (+π))] (3.50)
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Figure 3.25 Flexure hinge’s transfer function modulus for no added mass and its corresponding
fit. Inset zooms on the peak of the resonance around 116.25 ±0.05 Hz.
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Figure 3.26 Flexure hinge’s transfer function for no added mass and for one, two and three
added masses, as a function of frequency. Inset zooms on the peaks of the resonance for each
curve.
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Figure 3.27 Inverse of the squared of the flexure hinge’s resonance frequency, as a function of
the added mass. The slope gives access to the stiffness of the flexure hinge and its initial
mass.

where the term π is added or not to get Z ′′ > 0, because φH and φL are known modulo π.
Then, the complex mechanical admittance is defined as:

Y = Y ′ + jY ′′ = 1
Z

(3.51)

3.3 Consequences of the modifications made during the thesis

Now that I have explained how the dSFA works in its final state, I will go back to the
changes I made to the set-up during my thesis: the motivations that drove these changes,
the improvements generated, the difficulties encountered and how I overcame them.

3.3.1 Mechanical Aspects

As previously mentioned, a passive anti-vibration table with a 0.5 Hz horizontal and vertical
low-pass frequency is used to isolate the dSFA from the mechanical vibrations transmitted
through the ground. Since a vacuum chamber was added for atmospheric and thermal control,
and the interferometer was rebuilt to adapt to the new environment, one of the consequences
was that the load and the gravity center of the set-up were modified. To correct this, new
weight loads were replaced on the anti-vibration table allowing it to work in its optimal range.
Additionally, some measurements were performed to characterize the mechanics of the set-up
in the new surrounding conditions.
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Noise Spectrum

The amplitudes of the signals on both interferometers were measured while scanning the
frequency from 10 Hz to 1 kHz with no voltage applied to the piezo, using lock-in amplifiers
with an integration time of 300 ms like in a normal experiment. This provided the dynamic
noise levels for the distance and force dynamic measurements, hdyn, noise and ldyn, noise

respectively. Figure 3.28 allows us to compare the noise levels of the current state of the
dSFA with the noise level from the previous version of the machine.
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Figure 3.28 Amplitude of the noise spectrum for the distance and force interferometers in the
current state of the dSFA, compared to the noise level of the previous version of the machine.

We observe an improvement for frequencies above the flexure hinge’s resonance frequency
(f > f0) and on the contrary, higher noise levels below the resonance (f < f0). We will
describe later how we dealt with this noise in experiments.

Mechanical Cross-talk

Other measurements were performed with lock-in amplifiers by imposing a sinusoidal oscilla-
tion with defined amplitude onto the piezo-actuator, and measuring the magnitude of the
response of each interferometer for a broad frequency spectrum, with a integration time of
300 ms (same as the acquisition time in our experiments).

Figure 3.29 shows the amplitude of the distance interferometer’s response for excitation
amplitudes of 20 mV and 100 mV, as well as the case for no excitation applied to the
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piezo (dynamic noise level already shown previously). We observe that the interferometric
measurement response is proportional to the excitation applied and typically 100 times above
the noise level for the chosen amplitudes. The frequency dependence corresponds to the
spectral response of the piezo-electric actuator.
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Figure 3.29 Magnitude of the distance interferometer response for oscillation amplitudes of
0 mV (no excitation), 20 mV and 100 mV applied to the piezo-electric actuator.

Figure 3.30 shows the amplitude of the force interferometer’s response for excitation
amplitudes of 0 mV, 20 mV and 100 mV imposed to the piezo actuator. During the
measurements, we expected to measure only a response from the distance interferometer,
related to the difference of distance between the mirror on the static flexure hinge and the
one on the oscillating piezo. The surfaces are far from each other with no liquid in between,
so ideally the dynamic force should have been zero. However, we observe in practice that
this is not the case, for reasons that depend on the range of frequencies considered. As
Figure 3.30 shows, below the resonance frequency, the response obtained is independent
of the amplitude of the oscillation applied on the surfaces, and is equal to the noise level.
Above the resonance frequency on the contrary, the force response is proportional to the
amplitude of the oscillation applied on the piezo, with a magnitude significantly larger than
the noise level. This implies the existence of an unwanted mechanical cross-talk between the
distance and force measurements, suggesting that a part of the oscillation applied to one
surface by the piezo-actuator is transmitted to the other surface by the dSFA frame or its
surroundings. It is important to clarify that we made sure there was no optical cross-talk
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Figure 3.30 Magnitude of the force interferometer response for oscillation amplitudes of 0 mV
(no excitation), 20 mV and 100 mV applied to the piezo-electric actuator.

between interferometric channels prior to performing the measurements (optical cross-talk
is explained later in section 3.3.2). The mechanical cross-talk is confirmed in Figure 3.31,
where the ratio ldyn, cross−talk/hdyn between the force and distance interferometers is plotted
for each excitation amplitude applied. A superposition of curves is observed above the
resonance frequency, proving the proportionality between the magnitude responses in both
interferometers.

We built a simple model for this mechanical cross-talk, supposing that the oscillation of
the piezo actuator is partially transmitted to the (not perfectly) fixed mirror by an amplitude
xfixed = ϵhdyn cos(ωt). Similarly than for the calibration of the flexure hinge (section 3.2.4),
we model the flexure hinge’s free extremity and the mirror attached on it (at coordinate
xhinge) as an harmonic oscillator of effective mass M , stiffness K and damping coefficient
C. Its equation of motion reads M ¨xhinge = −C ˙xhinge − K(xhinge − xfixed). Using complex
formalism xfixed = ϵhdyn exp(jωt), xhinge = x exp(j(ωt+ φ)), one can show that:

[K −Mω2 + jωC]xhinge = xfixed (3.52)

We simply deduce:

xhinge =
[ 1

1 − (ω/ω0)2 + j(ω/ω0)/Q

]
xfixed (3.53)
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with ω0/2π =
√
K/M/2π the resonance frequency and Q =

√
KM/C the quality factor.

The force interferometer is sensitive to the difference of positions between the mirrors
attached to the flexure hinge and to the (non perfectly) fixed frame, respectively:

xhinge − xfixed =
[

(ω/ω0)2 − j(ω/ω0)/Q
1 − (ω/ω0)2 + j(ω/ω0)/Q

]
xfixed (3.54)

The mechanical cross-talk finally reads:

ldyn, cross−talk/hdyn ≡ |xhinge − xfixed|
hdyn

= ϵ

√
(ω/ω0)4 + ((ω/ω0)/Q)2

((1 − (ω/ω0)2)2 + (ω/ω0)/Q)2 (3.55)

As shown as a dashed line in Figure 3.31, this simple model captures well the fact the
mechanical cross-talk shows up above the resonance frequency. Qualitatively, this is because
the flexure hinge acts a low-pass mechanical filter:

• At low frequencies, the mirror on the flexure hinge’s extremity moves like the fixed
mirror at ϵhdyn cos(ωt), leading to a constant distance between the mirrors and to no
mechanical cross-talk observed.

• At high frequencies, the mirror on the flexure hinge’s extremity does not move while
the fixed mirror moves at ϵhdyn cos(ωt), leading to a oscillating distance between the
mirrors and to a finite mechanical cross-talk.

Above the resonance, the model predicts a plateau of amplitude ϵ = 0.01, whereas the
data exhibit maxima and minima. This is probably because the partial transmission of the
piezo oscillation by the dSFA frame or its surroundings depend on the resonance modes of
the set-up, and so depends on the frequency.

We suspected the origin of the mechanical cross-talk to be the vacuum chamber, caused
by the deformation of its bottom plate. Since the vacuum chamber has a hydraulic circuit
passing through its walls, we believe the bottom plate might be composed by two thin metal
layers, one above (internal face) and one below (external face) the hydraulic circuit, in a
sandwich-like manner. Several solutions were tested, such as tightening up the bottom plate
with a support rod below, or a thick plate attached above, or adding a layer of sand between
the bottom plate and the dSFA’s heart to damp the mechanical transmission, but no major
improvement was observed.

Practical aspects to perform experiments

In order to choose the work frequencies, I systematically performed such noise and cross-talk
measurements before every campaign of experiments when a new system (solid surfaces and
liquid solution) was installed. To understand how the mechanical noise and cross-talk influence
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Figure 3.31 Ratio of Force and Distance interferometric responses, for different oscillations
amplitudes applied onto the piezo-electric actuator. Theoretical curve given by the simple
model describing the mechanical cross-talk, with ϵ = 0.01.

our experiments, we must compare them with typical measurements. These imperfections
show up when the physical force to measure is small. This is typically the case at large
separation distances, where the main force originates from viscous damping in the liquid gap
(for a Newtonian fluid, no slip and rigid surfaces):

ldyn, physical =
∣∣∣G−1(ω)

∣∣∣ × 12π2ηR2f

D
× hdyn (3.56)

where G−1(ω) is the flexure hinge’s complex transfer function, η the liquid viscosity (taken
as 1 mPa.s in the following), R the sphere radius (taken as 3 mm in the following), f the
excitation frequency and D the separation distance.

Below the resonance, the physical signal ldyn, physical has to be compared with the noise
level ldyn, noise. As observed in the red curve in Figure 3.32, the physical signal would be
drowned by noise if we oscillated at hdyn = 1 nm at large distance D ∼ 10 µm. It is essential
then to oscillate at large amplitudes, hence the interest of extending the operation of the
distance interferometer in the non-linear regime. As shown as the blue curve, oscillating at
hdyn = 30 nm results in a physical signal about 15 times higher than the noise level. Because
the physical force increases when approaching the surfaces, the linear regime of excitation
hdyn = 1 nm becomes enough for distances smaller than D ∼ 1 µm (see the green curve). In
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addition, work frequencies are chosen where the noise level is at the lowest, typically 30 Hz
and 75 Hz.

Above the resonance, the physical signal has to be compared with the mechanical cross-
talk. Because these two quantities increase proportionally with the excitation amplitude hdyn,
one has to compare the ratios ldyn, physical/hdyn and ldyn, cross−talk/hdyn. In Figure 3.33, the
physical signal is always lower than the mechanical cross-talk at large distance D ∼ 10 µm
(see the red curve). They start to be of the same order of magnitude at distance D ∼ 1 µm
(see the green curve). Work frequencies are chosen where the mechanical cross-talk is the
smallest, around 210 Hz, 430 Hz and 770 Hz. During an experiement, i.e., when doing an
approach at a fixed frequency, the finite mechanical cross-talk will manifest in the dynamic
force as an constant contribution added to the physical signal. It will be deleted with the
residual during the data analysis (as explained in the next chapter).
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Figure 3.32 Comparison of the noise level with the dynamic force originating for viscous
damping in the liquid gap, for different oscillation amplitudes hdyn and separation distances
D.

3.3.2 Optical Aspects

Due to the changes made in the dSFA’s environment (see section 3.1.5), a redesigned
interferometer was built in order to adapt to the new conditions. Although assembled in a
more compacted manner, it possesses several degrees of freedom for optical and mechanical
adjusting. For instance, the previous possibility of small adjustments to create large angular
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Figure 3.33 Comparison of the mechanical cross-talk with the dynamic impedance originating
for viscous damping in the gap, for different separation distances D.

displacements (as in a lever arm) for optical tuning had become impractical, since the addition
of the vacuum chamber decreased the available height inside the isolating box. In Figure
3.34, the old version of the SFA is presented, showing the heart of the machine next to the
optical elements forming the old interferometer and surrounded by the isolating box.

Therefore, the new interferometer was built on one single level, reducing the occupied
surface area by more than 70% compared to the old interferometer, and utilizing only 1/3 of
the available volume inside the isolating box.

Previously, the force interferometer did not have a double optical path, meaning no
quadrature-phase measurement, which was present only in the distance interferometer. The
addition of the second optical path allowed to measure large amplitudes forces, such as those
found when the surfaces are in contact.

Optical Crosstalk

We noticed that part of the information contained in one optical channel was being transferred
to the other one (from the distance interferometer to the force one, or vice versa). This
cross-talk was observed in the static and dynamic signals, and its amplitude was found to be
independent of the oscillation frequency, in particular it was present even below the resonance
frequency where the mechanical cross-talk is negligibly small (see section 3.3.1).
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Figure 3.34 Photograph of the previous version of the dSFA. We can observe the dSFA’s
heart, the interferometer and the thermal isolating box. Image taken from [12], while text
has been translated.

We characterized this artefact when no liquid is present between the surfaces and the
surfaces are far from contact. The cross-talk from the distance interferometer to the force
one was measured by imposing on the piezo-actuactor a quasi-static plus a sinusoidal motion
(at a frequency below the resonance, typically 30 Hz and of large amplitude, typically 30
nm), and by looking at the force measurement (which should only exhibit random noise).
On the left graph of Figure 3.35, we notice that the force dynamic modulus represents 0.1%
of the displacement dynamic modulus. In the same way, on the right graph of Figure 3.35,
we observe the phase in force signals changing with the phase of distance. The fact that this
cross-talk exhibits oscillations in phase with the distance interferometer points towards an
optical origin. Similarly, the cross-talk from the force interferometer to the distance one was
measured by imposing on the coil-magnet system a quasi-static plus a sinusoidal motion (at a
frequency below the resonance, typically 30 Hz and of large amplitude, typically 30 nm) while
blocking the laser beam associated to the distance measurement before going to the dSFA’s
heart, and by looking at the distance signal (which should only exhibit random noise).

The source of this problem was difficult to identify, since such a pollution of the signals
could be due to light beams of very small intensities compared to the main beam, and which
are invisible to the eye. Finally, two causes for optical cross-talk were identified.

• Parasite light beams returned from the dSFA mirrors following the inverse optical path,
arriving to the beam-splitter cube and polluting the opposite optical channel with
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Figure 3.35 Optical cross-talk between channels in the interferometer, from distance onto
force measurements on the X-analysis unit (also obtained from Y optical paths). On the left,
the modulus of the raw dynamic signals, and on the right, the phase.

information that does not correspond to that interferometer (Figure 3.36). Hence, some
modifications were set up to intercept this parasite light:

– The optical path of the beam between the force and distance interferometers was
increased.

– The beam of the distance interferometer was tilted by a small angle.

– A slit was added to block the parasite beams while keeping the beams of interest.

• The compact interferometer design, adapted to the new controlled environment, forced
the light beams from the two channels to be parallel to each other and separated by 4
mm at almost all times. Supposing a Gaussian beam, the intensity of the tail of the beam
(which is not perceived by human eye) decreases exponentially with the radial distance r
as I = I0 exp(−r2/σ2), where σ ∼ 1 mm is the radius of the beam defined as the lateral
distance over which the intensity is divided by e, the Euler number. A fraction ϵ = 0.1%
of the central intensity is reached at a distance r = σ ∗

√
−ln(ϵ) ∼ 2.6 mm, meaning

that 0.1% of the light is transferred between two beams separated by ∼ 2.6 mm, which
we found to be enough to induce the observed cross-talk. Since the critical spots for
optical cross-talk were identified as the two right-angle prisms that deviate one beam
and let the other one to pass straight forward before hitting the Wollaston prisms (see
schematics on Figure 3.36), some changes were made into the interferometer:

– The optical path of the beam on the distance interferometer has been maximized,
allowing to impose the smallest possible angle on the path going down to the
dSFA, but originating a larger tilt on the backward path, assuring a maximal
separation of beams when reaching the prims.

– Convergent lenses were added in order to reduce the size of beams when they
reach the prisms.
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– Prisms were mounted on manual translation plates, in order to catch the beam
near its edge.

– Dark blocking elements were installed between the two interferometer beams,
to absorb any light from the beam tails in between the two beams. They were
mounted on manual translation plates, so as to let the beam pass close to its edge,
while all the intermediate zone being absorbed by the blocking element.

Figure 3.36 Schematic of the interferometer with the parasite beams that come backwards from
the dSFA’s heart and pollute the opposite optical path, creating optical cross-talk between
sensors. The optical path in blue explains the cross-talk from distance to force interferometer,
while the one in green explains the cross-talk from force to distance interferometer. The
circles point to the sensible areas for optical cross-talk on the interferometer.

We observe in Figure 3.37 the modulus and phase of the dynamic signals after the
modifications in the interferometer and the suppression of the optical cross-talk.
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Figure 3.37 On the left the modulus, and on the right the phase signals after correction of
the optical cross-talk. Red curves for the distance and blue curves for the force.

3.3.3 Electronic Aspects

In the previous version of the dSFA, electronic circuits made of several operational amplifiers
were used to convert the photo-currents into normalized contrast quantities for each analysis
unit. For example for HX:

VHX = K
IHX1 − VHX1
IHX1 + VHX1

(3.57)

with K = 10 V a gain factor. These signals were simultaneously used in two different
ways. First, the instantaneous contrasts were measured with precision multimeters to obtain
quasi-static contrasts analogous to equation 3.14, to finally get the quasi-static displacements
hstat, lstat (see details in [11], [12]). Secondly, the instantaneous and averaged contrasts were
combined in another electronic circuit to compute a voltage equal to (for example for the
distance interferometer):

VHX × VHY − VHX × VHY (3.58)

with the bars stand for average values, providing a voltage whose dynamic component is in
principle proportional to hdyn. These signals were measured with lock-in amplifiers, to finally
get the dynamic displacements hdyn, ldyn [11, 12].

Effects on the Quasi-Static Measurements

A first effect of this previous configuration comes from the fact that electronic calculations
of normalized contrasts did not allow to correct for the imperfections present in the optical
signals. In the previous version of the dSFA, the analysis of the quasi-static contrast supposed
that the two signals of a given analysis unit are cosine functions of exact same amplitudes
and in perfect phase opposition. We have shown in section 3.2.2 that it is not the case in
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practice. This lead to a denominator of equation 3.57 which was not a constant (as in Figure
3.15) but presented a small sinusoidal oscillation (Figure 3.38).
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Figure 3.38 Current signals from photodiodes 1 and 2 of channel HX, and small sinusoidal
oscillations observed when simply summing them, without correcting for their time lag and
amplitude difference.

A direct consequence was that the variation of V stat
HY with V stat

HX did not follow a perfect
ellipse. This could be seen by looking at the residuals associated to an elliptic fit during the
quasi-static calibration, showing a trifolium of amplitude ∼ 60 mV for ellipse amplitudes of
∼ 9 V (Figure 3.39, to compare with Figure 3.17). The analysis of the quasi-static data in
these conditions lead to artificial oscillations (at the frequency of the interference fringes) of
the quasi-static displacements hstat, lstat around their true values, corresponding to periodic
errors of relative amplitudes ∆hstat/hstat ∼ ∆lstat/lstat ∼ 60 · 10−3/9 ∼ 0.7 %. Measurements
obtained with the new set-up are free of such periodic errors.

A second effect is due to an unwanted offset added by the electronics in the denominator
of equation 3.57, which was not proportional to the light intensity arriving on the analysis
unit. This implied that the long-term variations of the laser intensity were not perfectly
corrected by the normalization. As shown in Figure 3.40, the contrast calculated electronically
(with the offset) exhibited artificial jumps, whereas the one calculated numerically (with
no offset) exhibits no jump. It lead to errors on the determination of the true quasi-static
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Figure 3.39 On the left, fitting of V stat
HY as a function of V stat

HX with an ellipse, for contrasts
deduced from previous approach. On the right, residuals associated to the fit, showing a
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displacements hstat, lstat, of relative amplitudes ∆hstat/hstat ∼ ∆lstat/lstat ∼ 0.1 %, which do
not exist anymore in the new version of the set-up.
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Figure 3.40 Long-term variations of the contrast calculated electronically (in blue) and
numerically (in red), when no motion is applied with the actuators.

Effects on the Dynamic Measurements

A first effect comes again from the fact that electronic calculations of normalized contrasts
did not allow to correct for the imperfections present in the optical signals. Similarly to
the quasi-static measurements, the analysis of the dynamic data in these conditions lead
to artificial oscillations (at the frequency, the double frequency and the triple frequency of
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the interference fringes) around their true values of the dynamic displacements hdyn, ldyn,
corresponding to periodic errors of relative amplitudes ∆hdyn/hdyn ∼ ∆ldyn/ldyn ∼ 10 %.
An empirical calibration of this artefact was necessary in order to correct the signals and to
obtain relative errors of the order of 1 % (Figure 3.41). In the new version of the dSFA, this
calibration is not required anymore to get relative errors of ∼ 1 % (see Figure 3.19).
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Figure 3.41 Empirical calibration of the artificial oscillations observed on the dynamic
displacements hdyn, due to the imperfections present in the optical signals which were not
corrected by the electronic calculations.

A second effect is due to the low-pass behavior of the electronic circuit, and can be seen
when measuring the mechanical transfer function of the flexure hinge. In Figures 3.42 and
3.43 are respectively shown the modulus and the phase of the flexure hinge’s transfer function,
measured with the previous (in red) and new (in black) set-ups. One can see that the data
deviate significantly from each other, in particular for the phase signal, all the more than
the frequency is high. As explained in section 3.2.4, the data obtained with the new set-up
can be reasonably fitted with a harmonic oscillator model (green dashed line), i.e., a second
order band-pass-filter. On the contrary, the data obtained with the previous set-up resulted
from the mechanical transfer function of the flexure hinge multiplied by the electronical
transfer function of the electronic circuit. We find a good agreement when supposing that
the electronics acts as a first order low-pass filter (blue dashed line), of the form:
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G−1
el (ω) = 1

1 + jω/ωc
(3.59)∣∣∣G−1

el (ω)
∣∣∣ = 1√

1 + (ω/ωc)2 (3.60)

arg
(
G−1

el (ω)
)

= − arctan(ω/ωc) (3.61)

with ωc/2π = 900 ± 20 Hz the cut-off frequency. The low-pass behavior of the electronics
was not only deleterious to the calibration of the flexure hinge’s mechanical response, but
it also induced a systematic error in the determination of the dynamic phases φH and φL,
associated respectively to the distance and force interferometers. This problem is solved in
the new version of the set-up.
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Figure 3.42 Modulus of the flexure hinge’s transfer function obtained with the new and
previous set-ups, and corresponding fits. Inset allows a clearer view of the gap between the
measurements.

A third effect of the previous set-up is that it did not allow for a quantitative measurement
of dynamic displacements in the non-linear regime. This is because it was not possible to take
into account the reduction of the amplitudes of the quasi-static contrasts when calculating
electronically the quantity given by equation 3.58. Such a quantitative analysis is now possible
with the new set-up, as described in section 3.2.3.



3.3 Consequences of the modifications made during the thesis 87

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

ar
g 

(G
-1
) 

[r
ad

]

1000900800700600500400300200100

f [Hz]

 Phase G
-1

 New

 Phase G
-1

 Old
 

 Fit Harmonic Oscillator Model
 Fit Model + Low-Pass Filter

Figure 3.43 Phase of the flexure hinge’s transfer function obtained with the new and previous
set-ups, and corresponding fits.

3.3.4 Environmental Aspects

The atmospheric stability was the main problem faced in the previous version of the dSFA.
The addition of the vacuum chamber allowed to work under vacuum, inert atmosphere (Ar,
N2, etc.), or controlled vapor pressure and humidity. This is crucial when using volatile or
hygroscopic liquids, in order to avoid changes of the chemical composition of the liquid (for
example salt concentration in aqueous electrolytes, or humidity level in ionic liquids) , or
pollution of the surfaces (due to drainage of dust particles to the contact point by the contact
line during evaporation).

The thermal stability was another difficulty in the previous version of the dSFA. Although
the box significantly improved the thermal isolation of the set-up, stabilization during many
hours was necessary before the measurements and long-term drifts were not eliminated. As
explained in section 3.1.5, the encapsulation of the set-up with four thermalized levels allowed
to obtain thermal drifts in the vacuum chamber as low as 0.04◦C in 4 hours (the typical
time needed for recording one approach-retraction curve). As a result, typical drifts of the
quasi-static displacement on the force interferometer has been found to be as low as 0.2 pm/s,
to compare with 5 pm/s in the previous version of the dSFA.
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3.3.5 Stability of the Quasi-Static Signals

Pseudo-periodic fluctuations on the quasi-static signals were observed, with a peak-to-peak
amplitude typically ranging from 1 to 2 nm and a period of about 20 to 30 s (Figure 3.44).
The fluctuations are present on both interferometers and are in phase, albeit not perfectly
identical. This artefact is particularly detrimental for the quasi-static force measurement,
as it translates into a force sensitivity of 10 µN, i.e., the same order of magnitude than the
typical electrostatic force to measure (see chapter 5).
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Figure 3.44 Quasi-static fluctuations of 1 nm of amplitude observed every 20 s approximately,
on distance and force interferometric measurements.

Many tests were performed to find their origin, and will be discussed in the following.

Stability of laser intensity

First, we observed that these fluctuations were contained in the phase of the interfering
beams, and not in their intensities (Figure 3.45). We confirmed this by monitoring directly
the intensity of the light coming out of the optical fiber with a power-meter, which showed
that the laser power fluctuates by less than 0.1% at the timescale of ∼ 30 s.

In addition, our method to analyze the interferometric measurements involves the calcu-
lation of normalized contrasts, thus the quasi-static displacements obtained are insensitive to
fluctuations of the laser intensity.
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Figure 3.45 On the left, the raw signals from a pair of photodiodes, showing the fluctuations
every ∼20 s. On the right, the addition and subtraction of these signals.

Stability of laser polarization

Our measurements are based on polarization interferometry, and are therefore very sensitive
to the beam polarization. We included a Glann Taylor polarizer in the optical path, ensuring
that any polarization fluctuation caused by the laser or the optical fiber would be converted
into intensity fluctuations. But this had no effect on the artefact, and measurements of a
stable intensity after the polarizer disproved the existence of fluctuations of such origin.

We tested the removal of the Babinet-Soleil compensator, with the idea that its mechanical
fluctuations could translate into polarization fluctuations, but no improvement was obtained.

Stability of laser frequency

In a period of six months, two stabilized laser sources stopped functioning, thus at some point
we used a non-stabilized laser. We then noticed synchronized oscillations in the distance and
force signals, of amplitude ∼2 nm and period ∼30 s (Figure 3.46a). As these fluctuations
with a non-stabilized laser were of similar amplitude and timescale than with the stabilized
lasers, we hypothesized that these were due to stabilized lasers that were not functioning
properly.

One can show that frequency fluctuations ∆f would reflect as distance fluctuations ∆hstat

by:

∆hstat = ∆fλhstat
c

(3.62)

with λ = 632.8 nm the average laser wavelength, c = 3 · 108 m/s the speed of light in
vacuum, and hstat ∼ 1 cm the distance between the two mirrors (considered here from optical
contact). Distance fluctuations of 2 nm would be explained by this scenario if laser frequency
fluctuations of ∆f ∼ 100 MHz were observed over 30 seconds.

We performed measurements with stabilized lasers working in the two types of stabilization
modes (frequency or intensity stabilization), but no difference was observed. We also measured
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directly the temporal variations of the laser frequency, thanks to a wave-meter provided by
colleagues of "LAsers, Molecules and Environment" (LAME) team at LIPhy. We obtained
typical fluctuations of about 10 MHz in a 30 s window (see cursors in Figure 3.46b), which are
one order of magnitude larger than the specifications given by the manufacturer (2 MHz/hr),
but one order of magnitude too small to explain the fluctuations observed in our signals.
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Figure 3.46 Tests to assess the influence of laser frequency.

Stability of laser beam direction

The interferometric measurement relies on the spatial superposition of the two interfering
beams. Any fluctuation of the beam direction would therefore reflect into fluctuating signals.
It is known for monomode fibers that any angular fluctuation of the beam at the fiber
input translates into intensity fluctuation at the fiber output. Thus our artefact can not
be explained by the pointing stability of the laser itself, but could be due to orientation
fluctuations of optical elements after the fiber output.

Thanks to the collaboration with the LAME team at LIPhy, we performed measurements
of the pointing (angular tracking) of the beam after the fiber output with a with four-
quadrants diode, simultaneously with the interferometric measurement. In Figure 3.47, we
present the results of the test that showed a clear correlation between the beam position and
the distance measurements. A series of pointing measurements were performed at different
distances from the fiber’s output and we observed that the lateral displacement measured by
the sensor increased with the optical path length. This told us that the angular fluctuations
of the beam were at least partly responsible for our fluctuations on the quasi-static signals.

The pointing stability of a beam just after the output of the optical fiber is mainly
determined by the mechanical and thermal stability of the mount supporting this output.
We replaced the X-Y translating mount by a more rigid (fixed and thick) one, which resulted
in a reduction of the fluctuations on the quasi-static signals down to approximately 0.5 nm.
This reduction of the amplitude by a factor 4 was a major improvement, corresponding to an
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Figure 3.47 Correlation between distance measurement and angular tracking.

enhanced force sensitivity of ∼ 2.5 µN, but it was still too high for optimal measurement of
electrostatic forces. We checked that all the other optical elements were attached on stable
mounts, but we did not further improve the stability of the signals by this method.

Given the little time I had left to perform the experiments for my thesis, we decided to
move forward with this partial improvement. For all the presented experimental results in
this manuscript, the quasi-static resolution was 0.5 nm (or equivalently ∼ 2.5 µN). A trick
we found to bypass this issue was to decrease the speed of approach or retraction of the
piezo at small distances (typically 50 pm/s from ∼ 100 nm to contact). This allowed to get
approximately one pseudo-period of fluctuation while moving by one nanometer, which were
smoothed with a sliding average filter of 400 points, equivalent to 200 seconds or about 10
pseudo-periods.

Thermal convection rollers

Additional observations at the end of my thesis allowed to identify another origin of the
pseudo-periodic fluctuations present on the quasi-static signals.

First, we inserted a thick plate made of Al 7075-T6 Aluminum alloy in between the dSFA’s
heart and the bottom plate of the vacuum chamber, and removed the three screws at the base
of the dSFA’s heart (added in the past because of the non-planarity of the bottom plate).
The initial motivation was to reduce the mechanical cross-talk on the dynamic signals (see
section 3.3.1), but no significant improvement was made on this aspect. However, we observed
that this lead to fluctuations on the quasi-static signals that were transiently not present,
while they were always present in the past. An important change was the enhancement of
the thermal coupling of the dSFA’s heart with the vacuum chamber, and from this point we
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strongly suspected that the fluctuations originated from thermal convection rollers in the
vacuum chamber.

To examine this scenario, we made a first test consisting in setting the air in the vacuum
chamber into motion with a fan, during about one minute before closing the chamber. As
shown in Figure 3.48, we observed no fluctuations on top of a large drift, and the reappearance
of the fluctuations after about 15 minutes.
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Figure 3.48 Quasi-static fluctuations reappearing after air motion test with fan inside the
vacuum chamber.

As a second test, we added in the vacuum chamber a ∼ 50 g piece of metal previously
cooled down in a freezer. In a similar way, we obtained a disappearance of the fluctuations
during about 15 minutes.

As a third test, we filled as much as possible the vacuum chamber with crumpled
Aluminum foil, and noticed that it made the fluctuations change (peak-amplitude of 0.1 nm,
pseudo-period of about 60 s), or even disappear (Figure 3.49).

The heat sources in the vacuum chamber are the piezo actuator (consuming ∼ 5 W), the
two PT-100 Platinum resistance sensors placed on top and bottom of the vacuum chamber
(dissipating ∼ 10 mW each by Joule effect), and the laser beams (a small fraction of laser
power ∼ 1.5 mW being adsorbed). The main heat source is the piezo actuator, transferring
heat to the bottom plate by the M-126 translation stage and its support, and producing a
small vertical gradient of temperature in the vacuum chamber. Such gradient may generate
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Figure 3.49 Quasi-static fluctuations changing features and eventually disappearing after test
filling up the vacuum chamber with Aluminum foil.

thermal convection rollers in the vacuum chamber, depending on the value of the Rayleigh
number:

Ra = βgh3∆T
νκ

(3.63)

with β ∼ 1/297 K−1, ν ∼ 1.5 · 10−5 m2·s−1, κ ∼ 2 · 10−5 m2·s−1 respectively the thermal
expansion coefficient, kinematic viscosity and thermal diffusivity of air, h ∼ 0.4 m the vacuum
chamber’s internal height and g = 9.81 m · s−2 the gravitational acceleration. Convection
instability starts when the Rayleigh number is larger than a critical value, of the order
of 1700. In our case, we find that this threshold is reached for a very small temperature
gradient: ∼ 2 · 10−4 K between the bottom and top plates of the vacuum chamber. Thermal
convection rollers are therefore very likely to be present, and to disturb the interferometric
measurement by producing variations of the air refractive index. Indeed, a temperature
fluctuation ∆T/T ∼ (2 · 10−4/40)/299 ∼ 2 · 10−8 over the ∼ 1 cm optical path where the
interferometric beams are separated would induce an equivalent refractive index fluctuation
∆n/n, which would be interpreted as a displacement fluctuation ∆hstat = hstat ×∆n/n. With
hstat ∼ 1 cm the distance between the two mirrors (considered here from optical contact), we
find ∆hstat ∼ 0.2 nm, i.e., the same order of magnitude than the fluctuations observed on
the quasi-static signals.
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To summarize, the different experimental observations and order of magnitude calculations
strongly advocate for such a convection scenario. Note that the prominence of this phenomenon
has been possible only because of the remarkable stability of the set-up, in particular the
absence of air flow coming from the environment. In the next version of the dSFA, this
phenomenon will be suppressed by adding a strong thermal coupling between the piezo
actuator and the top of the vacuum chamber.

3.4 Conclusion on the new dSFA

The dynamic Surface Force Apparatus is a privileged tool for the study of the nanorheology
of confined fluids within a sphere-plane geometry. Yet, the previous version of the dSFA at
LIPhy presented limitations that were identified and overcame during my thesis. Namely,
the atmospheric control and the thermal regulation system are major enhancements to the
machine, in terms of accuracy, reliability and versatility.

The performances of the set-up, for both static and dynamic measurements, are presented
in Table 3.1.

Table 3.1 Performances the new version of the dSFA.

Quasi-Static measurement Dynamic measurement
Drift Noise1 Noise2

Distance 2 pm/s 20 pm 1-10 pm
Force 0.2 pm/s 120 nN 6-60 nN

1 After removal of the pseudo-periodic fluctuations on the quasi-
static signals.
2 Depending on the chosen work frequency.
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Introduction

A campaign of experiments performed with the dynamic Surfaces Forces Apparatus at
LIPhy requires a strict systematic procedure for the preparation and installation of samples,
the characterization of the noise and mechanical cross-talk, the actual realization of the
measurements and the data treatment. The steps of such procedure will be described in this
chapter.
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4.1 Experiment Preparation and Execution

The most critical aspect of the preparation of an experiment is the cleanness of a sample,
since the presence of dust particles or any other pollution source on the surfaces, even of
nanometric size, can ruin the experiment. Indeed, the sphere might feel parasite forces that
do not actually belong to the interaction with the fluid and the plane, but with the dust
particle, as schematized in Figure 4.1. In the sphere-plane geometry, since the separation
between the surfaces is much smaller than the sphere’s radius D ≪ R ≈ 3 mm, a parabolic
approximation can be made locally for the thickness of the liquid film:

e(r) = D + r2

2R

Assuming the height of the particle to be e(r) = 10 nm, we find that real contact between
the sphere’s apex and the plane cannot be achieved if the particle is situated at a radial
distance of r =

√
2e(r)R = 7.3 µm or less from the sphere’s apex. In other words, the lateral

radius of influence of a dust particle is much larger than its size, because of the quasi-planar
geometry. This is why the cleaning of surfaces is such an important step in the experiment’s
preparation.

Figure 4.1 Schematic of the surface roughness effect in dSFA measurements. In the presence
of a nanometric dust particle near the sphere’s apex, the contact (molecular-size separation)
between the sphere and the plane is not possible. Forces across the dust particle are dominant
when the surfaces are still far from each other and that can fault our results.

4.1.1 Surfaces Preparation and Installation

The spheres and the planes are made out of Borosilicate glass (also known as Pyrex)1. The
planes are fabricated by the supplier using the float glass process, resulting in squared glass

1Manufacturer: Pignat
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sheets of 15 mm on each side and 3.8 mm thickness, having eased edges to avoid any pollution
of glass fragments during their manipulation. The spheres are formed in the lab by cutting
and melting a glass rod. The cutting process is performed with a diamond tip, on glass rods
that are initially 50 cm in length and 5 mm of diameter, obtaining multiple 2-3 cm long
pieces. Then, the tip of each glass rod is melted using oxyacetylene welding, until achieving
a 3 mm radius of curvature approximately. Particular care is needed to have symmetrical
and bubble-free spheres.

The measurement of the radius of the spheres were performed after each campaign of
experiments, using a camera2. Images were taken in orthogonal sides of the sphere, in order
to obtain the two full curvature profiles (Figure 4.2). The image processing was performed
on ImageJ and the data was fitted on Igor with the equation of a circle

y(x) =
√
R2

i − (x− x0)2 + y0

where x0 and y0 are the two coordinates at the center of the circle and Ri = R1, R2 are the
two sphere radii obtained from profiles taken at 90◦ of each other. The difference between R1

and R2 is typically of the few percents. The average curvature radius R is calculated from
the Gaussian radius, i.e., by calculating a geometric mean R =

√
R1R2 [13].

Figure 4.2 Measurement of the sphere’s curvature radius. On the left, a picture taken
with a optical camera of one of the two orthogonal sides of the sphere. On the right, the
profile obtained from image processing and the fit of the sphere’s curvature from a circle
approximation.

2Manufacturer: Digital Microscope
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The cleaning protocol consists in putting the surfaces in their respective glass containers
(pre-washed with the same protocol as the surfaces), filled with a cleaning solution (Microson
from Fisher Scientific) diluted in deionized water3. They are washed in an ultrasonic bath at
50◦C for 15 minutes, rinsed by overflow with deionized water. The procedure is repeated
twice. They are left to dry under a laminar flow hood.

In order to quantify the roughness of our cleaned surfaces, AFM tapping-mode measure-
ments were performed at LIPhy by C. Cramail, PhD student. As shown in Figure 4.3, the
area of study of a plane is set to 10 µm2 and certain corrections are applied to eliminate
artefacts in the measurement that could change the sample’s measured flatness and false
the measured roughness, such as a non-straight displacement of the tip of the AFM or an
eventual angle between the AFM’s tip and the sample. The image is cropped to obtain a
0.01 µm2 surface and the measured surface heights distribution is presented in the histogram
of Figure 4.3. For a Borosilicate glass plane, a RMS roughness of 1 Å RMS is found, which
agrees with Garcia’s results [11].
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Figure 4.3 Surface roughness measurements by AFM for a Borosilicate glass surface. On the
left, at 10 µm2 initial area of study, and the 0.01 µm2 cropped surface. On the right, the
histogram distribution for the 0.01 µm2 area.

C. Cramail also carried out a material deposition using the sputtering machine present
at LIPhy to obtain a dielectric surface of different nature. A 30 nm layer of Boron Nitride
was coated onto Borosilicate glass surfaces, performed on AC mode. Following the same
measurement protocol on the AFM, the measured surface heights distribution is presented
in Figure 4.4, providing a a RMS roughness of 3.6 Å RMS. This is slightly larger than
the supporting glass, but in both cases the roughness values fulfill the requirements for our
experiments.

The cleaned spheres are mounted on the flexure hinge under a laminar flow hood. All
elements needed for the installation (surfaces, surface holders and tools) that have been

3DI water (18.2 MΩ · cm, Millipore water purification system)
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Figure 4.4 Surface roughness measurements by AFM for a Boron Nitride coated surface. On
the left, at 10 µm2 initial area of study, and the 0.01 µm2 cropped surface. On the right, the
histogram distribution for the 0.01 µm2 area.

cleaned, are put into air-tight boxes and transported to the dSA experimental room. The
flexure hinge holding the sphere is installed, in a way to achieve the closest parallelism
possible with the interferometers. The plane is mounted on its holder, fixed to the piezo
actuator. The fluid is filtered for particles larger than 100 nm before injection with a particle
filter mounted on a syringe. When the liquid is not volatile, one or two droplets are enough
to form a capillary bridge between the surfaces (Figure 4.5a). Otherwise, a 120 mL reservoir
is installed for the surfaces to be fully immersed in the liquid of study so they would not be
affected by evaporation (Figure 4.5b). In this case, another reservoir with the same solution
(same pH and concentration) is added inside the vacuum box in order to saturate the air
with humidity.

The interferometer and the dSFA’s four mirrors are finely adjusted for parallelism. The
vacuum chamber as well as the polyurethane isolating box are closed, the air extraction
system is turned off, the anti-vibration table is adjusted and the system is left to stabilize
thermally and mechanically until the next morning, when we can observe the drift in signals
on the order of ∼ 1 − 5 pm/s. Normally, a whole campaign of experiments can be performed
with the same set of surfaces and liquid (if not evaporated or contaminated).

4.1.2 Measurement protocol

Once the surfaces are well installed in the dSFA, the liquid of study has been injected and
the system is relaxed, the first step is to run a calibration, following the procedure explained
in section 3.2.2. A new calibration is needed each time the interferometer has been adjusted,
more liquid has been injected or the frequency of excitation has been changed. Even if no
modifications have been made, a new calibration is needed for each experiment to take into
account the time lag between electronic equipment, which can change from run to run.
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(a) Capillary bridge in "droplet" mode. (b) Fully immersed surfaces in "dipped" mode.

Figure 4.5 Arrangement of surfaces and liquid during an experiment.
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Following the calibration, a noise and a mechanical cross-talk measurement are performed
while the surfaces are far away, so no interaction force can be sensed. The first one is useful
to determine the work frequencies below the resonance threshold, where the physical signal
is mainly affected by noise. The second measurement tells us which frequencies above the
resonance threshold show the lowest level of mechanical cross-talk.

Once we obtain this information, it is necessary to know the separation distance between
sphere and plane. This step is also performed only once for a whole set of experiments
where the surfaces have not been changed. The surfaces are approached coarsely by the
M-126 motor, with steps ranging from 10 to 100 µm, while finely displacing the piezo-electric
actuator at speed U ∼ 2 nm/s. While the surfaces are carefully being approached, we observe
the evolution of the admittance. The extrapolation of the admittance with the distance
gives us an estimate of the contact position. The surfaces are then separated again by
approximately 10 µm from each other with the M-126 motor while the piezo actuator is fully
expanded, and then we are ready to start the experiments.

The quasi-static approach of the surfaces during an experiment is performed finely by
the piezo actuator, starting with a velocity of 2 nm/s and decreasing down to 0.05 nm/s for
separations below 100 nm (Figure 4.6). Simultaneously, the amplitude of dynamic excitation
of the piezo is set to a high value when surfaces are far from each other, typically ∼ 25 nm
(non-linear regime) for frequencies below the resonance, or ∼ 10 nm (linear regime) for
frequencies above the resonance. The amplitude is then lessened progressively as the surfaces
approach, to be of the order ∼ 5 nm when the separation of surfaces is below 1 µm, and as
small as 0.3 nm when the distance is smaller than 10 nm. The sensitivities of the four lock-in
amplifiers are adjusted accordingly. The inverse progressive augmentation of the velocity
and excitation amplitude is applied for the separation of the surfaces (Figure 4.6). A typical
approach-retraction cycle lasts around 6 hours.

4.2 Data Treatment

In order to duly extract the correct information from an experiment, a step of corrections
must be applied to the data, since it can contain artefacts and other systematic errors. For
instance, no matter how small a drift in temperature is, it can influence the displacement
measurement due to an induced thermal expansion of some elements in the interferometer.

A systematic correction protocol has been implemented in the same order as it is detailed
below. All the data in this section was obtained from an experimental campaign performed
with pure Propylene Carbonate confined between Borosilicate glass at different frequencies.
The radius of the sphere was measured to be 2.885 ± 0.007 mm, and the temperature of the
experiments was 24 ± 1◦C.
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Figure 4.6 On the left axis, the displacement measured hstat for the quasi-static approach
and retraction of the piezo. On the right axis, the dynamic amplitude hdyn simultaneously
applied to the piezo during an experiment performed at a frequency below the resonance.

4.2.1 Variation of calibration parameters

Deviations were identified between the parameters obtained from the calibration of the
distance interferometer with the coil-magnet system and the piezo-electric system. Other
deviations were also noticed when a calibration was performed during the approach of surfaces
or their retraction. Clearly, the ellipse followed by the distance interferometer was not exactly
the same depending on the actuator and the direction of motion. This could be due to slightly
different translation directions between the actuator, and a tiny rotation of the traveling part
of the piezo actuator when changing direction.

Consequently, three calibrations are needed in one experiment: the one performed with
the coil-magnet system before the experiment for the force interferometer, another with the
piezo for the distance interferometer when approaching the surfaces, and the third, also
with the piezo for the distance interferometer when retracting the surfaces. The variables of
interest are then recalculated by segments depending of each calibration.

4.2.2 Non-Linear Parameters

It is at this moment that we adjust the parameters α and β according to the method explained
in section 3.2.3 to consider the non-linearities in the distance interferometer.
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4.2.3 Thermal Drifts and Mechanical Contact

After the stabilization of the system, we can still observe a slow thermal drift in the quasi-
static force curves, which we can fit with a straight line far from contact in order to be
subtracted from the data. Figure 4.7 presents the measured force curve as a function of time,
which shows the mentioned drift before and after the contact of surfaces. The corrected force
curve is presented as well, with the drift which has been subtracted according to the linear
expression with the coefficients αF, βF as in:

F = fstat − (αF + βFt)
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Figure 4.7 Correction of the thermal drift from the force measured signal. In red, the
measured force and in blue the corrected curve after the subtraction of a straight line. The
peak corresponds to the contact of the surfaces, with a maximum due to the change in
direction of movement.

The βF parameter compensates for the thermal drift on the force interferometer, while
the αF parameter allows to position the zero for the quasi-static force far from contact. We
have observed typically a constant thermal drift of 1.1 nN/s or 0.2 pm/s from the force
interferometer.

In the same way, the drift on the distance interferometer has to be subtracted from
the measured distance hstat. However, by definition hstat was varied continuously, so the
drift is observed by plotting the imaginary part of the mechanical admittance as a function
of the distance between surfaces. We expect a curve where approach and retraction are
superimposed, supposing the conditions of the liquid and the surfaces did not change during
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Figure 4.8 Correction of the thermal drift from the displacement measured signal. The red
curve shows a separation between the approach and retraction pieces of the admittance curve
as a function of distance. For illustration purposes, this separation was slightly increased. In
blue, the two pieces of the curve overlap after correction.

an approach-retraction cycle. In reality, the small drift on the distance interferometer slightly
adds a gap between the approach and retraction parts of the measurement, observed in Figure
4.8. The correction of the drift brings them both back together, overlapping the approach
and retraction pieces of the curve.

The correction in the displacement measurement is approximated to a linear drift velocity,
with the coefficients αH, βH following the expression:

D = hstat − (αH + βHt)

The βH parameter compensates for the thermal drift on the distance interferometer, while
the αH parameter is adjusted to position the origin for the quasi-static distance, defining the
mechanical contact between the surfaces. The model used to estimate this mechanical origin
changes according to the system of study. More details of the different models are given in
section 4.3.1.

4.2.4 Residuals on the Mechanical Impedance

Both the measured real and imaginary components of the mechanical impedance contain
parasite residuals. As seen on the left-side graph of Figure 4.9, an elastic residual and a
viscous residual of similar magnitude are identified when observing Z ′ and Z ′′ near 10 µm of
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separation of the surfaces. One origin of this artefact is the mechanical cross-talk (section
3.3.1). Other origins are capillary and viscous forces at the contact lines, non-stationary
effects [11, 12], etc.

The residual on Z ′ is easy to correct since it reaches a quasi-constant regime at large
distances. On the right-side graph in Figure 4.9, the corrected Z ′

co is presented, after
subtracting a constant residual:

Z ′
co = Z ′

meas − Z ′
res
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Figure 4.9 On the left, the measured residuals on the real and imaginary components of the
mechanical impedance. On the right, for the same experiment at 74 Hz, correction of the
residual on the real part of the mechanical impedance.

The residual on Z ′′ is more difficult to subtract, as Z ′′ still contains physical signal even at
such distance, namely the viscous dissipation in the liquid. To correct it, it is better to observe
the inverse of the imaginary part of the mechanical impedance as a function of the distance.
Figure 4.10 shows the measured and the corrected curve of 1/Z ′′(D), with the respective
fit corresponding to a Reynolds impedance Z ′′

Rey = 6πηωR2

D . A linear fit is performed in a
distance interval approximately around 200 nm and 1300 nm, since no additional dissipative
effects should be measured in this region. To obtain the corrected Z ′′

co, we subtract a constant
residual, which is adjusted to obtain 1/Z ′′ proportional to distance D up to largest distances:

Z ′′
co = Z ′′

meas − Z ′′
res

4.2.5 Machine Stiffness

When all effects previously mentioned have been corrected, there is an additional cause of
error in the dSFA measurements. This is the machine stiffness, a systematic error in the
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Figure 4.10 Correction of the residual on the imaginary part of the mechanical impedance,
for an experiment at 74 Hz.

distance measurement due to the finite stiffness of the machine, and in particular of the
chain of transmission of the efforts between the confining surfaces and the mirrors being used
to measure their relative displacement. Figure 4.11 shows how this transmission chain can
be modeled as an unique spring in series with the system of study. The measured distance
Dtot,meas and the true distance Dtot,true are related by the expression:

Dtot,meas = Dtot,true + Ftot
KM

where KM the machine stiffness and Ftot the total force transmitted by the flexure hinge.
The machine stiffness has an influence on the quasi-static measurement, which we can

write simply as Dmeas = Dtrue + F
KM

. This effect is significant only when the quasi-static
force is large, i.e., when the surfaces are in contact. The machine stiffness also affects the
dynamic measurement, as hdyn,meas e

jφH = hdyn,true e
jφH + fdyn ejφF

KM
. This effect translates

into the measured mechanical impedance Zmeas as:

Zmeas = fdyn e
jφF

hdyn,meas ejφH
= fdyn e

jφF

hdyn,true ejφH + fdyn ejφF

KM

= Ztrue

1 + Ztrue
KM

(4.1)

At large distances (D ≫ Dc) the elasto-hydrodynamic response is mostly viscous and
given by the Reynolds formula with ZRey ≪ KM:
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Figure 4.11 Schematic of the machine stiffness, modeled by a spring in series with the system
of surfaces and liquid. Image adapted from [12].

Zmeas ≃ ZRey

1 + ZRey
KM

≃ (6πηωR2)2

KMD2 + j
6πηωR2

D
(4.2)

The machine stiffness produces a parasitic elastic response at large distances. By plotting
the squared root of the inverse of real component of the mechanical impedance as a function
of distance (Figure 4.12), we observe its influence as a linear trend whose slope allows us to
retrieve the value of the machine stiffness. Before correction of the experimental data, the
elastic response of the system scales as D−2 (Figure 4.12). The D−5/2 scaling expected from
elasto-hydrodynamics is recovered after machine stiffness correction. The measured values of
KM are dependent on the work frequency, and here is equal to 303000 N/m at 435 Hz.

4.3 Characterization of a Simple Fluid

The results presented in this section have been obtained with a system composed of Hexadecane
as liquid and Borosilicate glass as surfaces. The radius of the sphere was measured to be
2.882 ± 0.001 mm, and the temperature of the experiments was 23 ± 1◦C. The displayed
curves show data already corrected from the previously described effects. These data are in
agreement with well-known results in the field, such as those reported by Chan and Horn [34]
for alkanes confined between mica surfaces, and they are used to bring to light quantitative
information about the performances of the machine.

4.3.1 Quasi-Static Force

Figure 4.13 presents the interaction force between sphere and plane, transmitted by the
liquid, as a function of separation of the surfaces. At large distances, no quasi-static force is



108 Experimental Procedure

14

12

10

8

6

4

2

0

 Z
'-1

/2
  [µ

N
-1

/2
.n

m
1/

2 
]

10008006004002000

 D [nm]

0.1

1

10

100

1000

 Z
' [

µN
/n

m
]

0.1
2 3 4 5 6

1
2 3 4 5 6

10
2 3 4 5 6

100
 D [nm]

-5/2

-2

 Z'meas

 Z'true

Figure 4.12 On the left, the squared root of the inverse of Z’ as a function of separation of
surfaces. The slope from the linear fit gives the value of the machine stiffness. On the right,
the measured Z’ curve for 435 Hz without the correction of the machine stiffness is presented
in black, and the corrected curve in red. The value found for this experiment is 303000 N/m.

measured, until separation distance is decreased to some molecular sizes, in this case below
∼ 1 nm. The effect of adhesion present in the retraction movement (separation of surfaces) is
evident, as negative forces down to Fadh = −76 ± 6 µN are reached, and prove the cleanliness
of surfaces. The distance at which the force is minimum has been chosen as the mechanical
origin. It is at this minimum that the surfaces jump apart with a slope equal to the flexure
hinge’s stiffness. This jump is due to the spring instability, i.e., the fact that the flexure
hinge’s stiffness is smaller than the gradient of the attractive van der Waals force interaction
force.

It has been shown that the adhesion force is equal to:

Fadh = − AR

6D2
0

where A is the amplitude of the van der Waals attraction integrating the different continuous
bodies, andD0 = 0.165 nm is a microscopic cut-off due to the (at least atomic) roughness of the
solid surfaces [13]. With this formula we find an Hamaker constant Aexp = (4.3±0.4) ·10−21 J,
in reasonable agreement with the theoretical value Atheo = 3.0 · 10−21 J expected for the
Borosilicate/Hexadecane/Borosilicate system [11]. The ∼ 43% overestimation on the Hamaker
constant A may come from a ∼ 22% overestimation on the microscopic cut-off D0, which
would indicate the very low roughness of the Borosilicate glass surfaces.

In some cases, the measured force profile does not exhibit a minimum of adhesion. An
example is shown in Figures 4.14a and 4.14b. In this case, the repulsion of large amplitude is
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Figure 4.13 On the left axis in red, quasi-static force as a function of distance for Hexadecane
and Borosilicate surfaces at 30 Hz. Strong adhesion is observed at the retraction of the
surfaces. The black arrow and markers are a visual help to follow the data points at the jump
of separation of surfaces. On the right axis in dark blue, the imaginary part of the mechanical
admittance as a function of distance. The dashed light blue line corresponds to the linear
fit of data at large distances, in agreement with the Reynolds admittance. Note that the
hydrodynamic origin (intersect of the dynamic dissipation) coincides with the mechanical
origin (position of force minimum).
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adjusted with an elastic deformation law for the surfaces in order to determine the mechanical
origin. In our geometry with R ≫ D, the elastic deformation of the surfaces is given by the
Hertz theory [49]:

FHertz = a(D0 −D)3/2

with D ≤ D0 and a = 4E∗√
R

3(1−ν2) with E∗ = E/2(1 − ν2), where E∗ is the effective Young
modulus, E the Young modulus and ν the Poisson ratio of the surface material and R is the
radius of the sphere. Fitting the quasi-static force as a function of the distance with Hertz
law allows in principle to find the mechanical contact (Figure 4.14a). However, the curve is
very steep and to get a better fit, we inverse the equation:

DHertz = −(F/a)2/3 +D0

and the correct mechanical contact D0 is found. Then the distance D can be shifted by
D0, in such a way that the mechanical contact corresponds to D = 0 (as in Figure 4.14b).
Furthermore, knowing the sphere radius R = 2.882 ± 0.001 mm and taking a Poisson ratio
ν = 0.2 from the literature [50], we can deduce the Young modulus from the parameter a,
providing E = 64 ± 2 GPa, in agreement with manufacturer specifications for Borosilicate
glass4.
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(a) Data fitted with Hertz equation.
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Figure 4.14 Quasi-static force as a function of distance for Hexadecane and Borosilicate
surfaces at 435 Hz. No adhesion is observed in this run. The mechanical origin is deduced
from the Hertz law fit, as well as the Young modulus E = 64 ± 2 GPa.

4Borosilicate glass - Information sheet available at https://www.continentaltrade.com.pl/en/downloads/technical-
glass
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4.3.2 Hydrodynamic Behavior

As shown in Figure 4.15, Y ′′ is proportional to the distance between the surfaces, for distances
up to ∼ 10 µm. Experiments with three different oscillation frequencies show that the slope of
this linear relation depends on the frequency. After normalizing the admittance by frequency,
all three curves are superimposed (Figure 4.16), following the Reynolds admittance (derived
in section 2.2).

The slope of the master curve provides a viscosity η = 2.91±0.04 mPa s5 at 298±1 K, which
agrees with tabulated values for Hexadecane η = 3.03 mPa s at 298 K and η = 2.67±0.04 mPa s
at 300 K [51].

The intersection of the master curve with the X axis allows to determine the hydrodynamic
origin, which is found to coincide with the mechanical origin with the experimental uncertainty
of the order of ±1 nm. In other words, we find that the hydrodynamics of this system is well
accounted for with a no-slip boundary condition, in agreement with [52].
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Figure 4.15 Imaginary component of the mechanical admittance as a function of separation
of surfaces, for different frequencies. In all cases, the Reynolds admittance holds up to a
distance of 10 µm, shown in the dashed fit lines.

5The limiting factor in determining the viscosity from impedance/admittance curves comes from the
incertitude on the sphere radius measurement.
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Figure 4.16 Imaginary component of the admittance normalized by frequency for three sets
of experiments at 30, 67 and 140 Hz. The slightly imperfect superposition of the curves
comes from the error on the sphere radius measurement. As shown by the dashed fit lines,
the Reynolds admittance holds up to a distance of 10 µm.
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4.3.3 Elasto-hydrodynamics

Figure 4.17 shows that at large distances the main response to the harmonic oscillation is
viscous, i.e., Z ′′ ≫ Z ′, with a dissipative response Z ′′ varying as D−1 and an elastic response
Z ′ varying as D−5/2. However, as confinement increases, draining the liquid is more and
more difficult, and below a critical distance Dc ∼ 3 nm it becomes easier to deform elastically
the surfaces, i.e., Z ′ ≫ Z ′′.
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Figure 4.17 Real and imaginary components of the mechanical impedance measured for
Hexadecane between Borosilicate surfaces at 435 Hz (dots), and predicted by the elasto-
hydrodynamic model (lines), on log-log scale on the left and lin-lin scale on the right.

Analogous observations can be made when looking at the mechanical admittance (Figure
4.18), with at large distances a dissipative response Y ′′ varying as D1 and an elastic response
Y ′ varying as D−1/2.

This elasto-hydrodynamic behavior is quantitatively captured by the complete theory
developed by Leroy et al. [39] (see section 2.4). The parameters used in the calculation are
the sphere radius, the frequency, the viscosity η = 2.91 ± 0.04 mPa s obtained from the fit of
the dissipation at large distances (previous section), the Young modulus E = 64 ± 2 GPa
obtained from the fit of the quasi-static force at large amplitudes by the Hertz model (section
4.3.1) and the Poisson ratio ν = 0.2 [50].

We can see from Figures 4.17 and 4.18 that the calculation of the mechanical response,
done without adjustable parameters, perfectly describes the measurements at all length scales,
from macroscopic down to molecular levels.
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Figure 4.18 Real and imaginary components of the mechanical admittance measured for
Hexadecane between Borosilicate surfaces at 435 Hz (dots), and predicted by the elasto-
hydrodynamic model (lines), on log-log scale on the left and lin-lin scale on the right.

4.4 Conclusion

The dSFA at LIPhy allows the simultaneous, independent and accurate measurement of the
quasi-static interaction force and of the dynamic mechanical impedance of a system composed
of a fluid confined between two solid surfaces, over five orders of magnitude of confinement
from 10 µm to 1 Å.
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Phenomenology of electrolytes in
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Introduction

The objective of this chapter is to present the results of measurements performed using the
dSFA on NaCl aqueous solution of concentration C = 10−3 mol/L and pH 6 confined between
Borosilicate glass surfaces. We show how the electrostatic and electrokinetic phenomena that
were introduced in the state-of-the-art chapters are involved in surface force measurements,
in terms of quasi-static and dynamic responses.
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5.1 Quasi-static response

In this section I will discuss the measured quasi-static force and how to determine the surface
charge, related to the electrostatic interaction between the two charged surfaces across the
electrolyte. I will show how the Poisson-Boltzmann theory describes the physics observed
through the experimental data and how an error in the positioning the mechanical origin can
alter the value obtained for the surface charge.

5.1.1 Electrostatic force

The quasi-static interaction force as a function of separation of surfaces is showed in Figure
5.1, for measurements performed at 32 Hz and 158 Hz. A first observation is that we have a
repulsion, which is consistent with the use of symmetrical surfaces of same surface charges.
We cannot deduce the sign of the surface charge from this curve, but we know from the
literature that the surface charge of glass is negative at neutral pH [26].

Secondly, we observe the same exponential behavior for both curves at distances larger
than a few nanometers. This is characteristic of electrostatic interactions in the limits of a
weak potential |V | ≪ kBT

e , where the Poisson-Boltzmann (PB) equation can be linearized.
At shorter distances, the potential increases and the exponential trend is lost. At "negative"
distances, the force increases steeply because of the elastic deformation of the surfaces.
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Figure 5.1 Quasi-static force as a function of distance between surfaces, for measurement done
at 32 Hz and 158 Hz. The lines correspond to the adjustment with the Poisson-Boltzmann
theory supposing a constant surface charge boundary condition.
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To fit our data with the PB theory, two possible boundary conditions are tested: the
constant surface charge and the constant surface potential. In Figure 5.2, we observe the
quasi-static force-distance curve at 32 Hz with the respective PB theory adjustment at
constant surface charge (in green) and constant surface potential (in black). The adjustment
procedure is presented in detail, including the constant surface charge force calculation
developed in Garcia’s thesis, Appendix D [11]. The boundary condition that best describes
our results is the constant surface charge, in agreement with experiments performed on
similar systems [13]. The screening length is given by the length-scale of the exponential
decay, corresponding to 12 ± 0.5 nm, close to the Debye length of 10 nm expected for the
chosen salt concentration (C = 10−3 mol/L). The surface charge is determined by the height
of the exponential curve and the shape of the force profile at short distances. The adjustment
with a constant surface charge boundary condition results in an absolute value of the surface
charge equal to |σ| = 4.9 ± 0.3 mC/m2. Using the Grahame equation, this value of surface
charge corresponds to an absolute value of surface potential equal to |Vs| = 65 ± 0.5 mV.
Both values are in agreement to the ones which can be found in the literature [11, 53].
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Figure 5.2 Quasi-static force as a function of distance between surfaces, at 32 Hz. The green
full line is a fit with the PB theory supposing a constant surface charge boundary condition,
while the dashed black line corresponds to the PB theory with a constant surface potential
boundary condition.
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5.1.2 Influence of the mechanical origin

The position of the origin of distances is defined as the mechanical contact between the
surfaces. It has no effect on the fitted screening length. However, the determination of the
surface charge is based on an important hypothesis, which is that the contact position of
surfaces has been perfectly determined. An error in the origin of distances directly translates
into an error in the surface charge.

One can estimate that the mechanical origin is determined with an error of ±1 nm with
the method described in section 4.3.1. Figure 5.3 presents the quasi-static force at 32 Hz, for
three different mechanical origins, shifted by -1 nm, 0 nm and +1 nm. The PB theory is
used to fit the data. As expected, the Debye length is the same in all cases, but the absolute
value of the surface charge results in 4.4 mC/m2, 4.9 mC/m2 and 5.4 mC/m2 for the green,
red and blue curves respectively. Therefore, the error of ±1 nm on the mechanical contact of
surfaces induces an error of ±0.5 mC/m2, i.e., 11% on the surface charge.
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Figure 5.3 Effect of the position of the origin of distances on the surface charge, for the
quasi-static forces at 32 Hz. A difference on the position of surfaces of ± 1 nm results in a
change of surface charge values of ±0.5 mC/m2.

5.2 Conservative contribution to the dynamic response

At the same time as the equilibrium response is measured, the dynamic response is character-
ized by the mechanical impedance. In this section, the real part Z ′ is presented, corresponding
to the conservative dynamic response of the confined electrolyte.
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5.2.1 Dependence with the frequency?

Figure 5.4 presents the real part of the mechanical impedance for 32 Hz and 158 Hz as a
function of the separation of distances. All the necessary corrections (for drifts, residuals, etc.)
have been applied to the data, except the machine stiffness which deserves to be discussed
here since we have a priori a non-zero elastic response of the liquid film.
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Figure 5.4 Elastic part of the mechanical impedance for measurements performed at 32 Hz
and 158 Hz. All corrections on the data are done, except the machine stiffness which is left
as infinite.

At zero frequency, the elastic part of the dynamic response should coincide with the
quasi-static response, i.e., we expect to get:

Z ′
eq = − dF

dD (5.1)

We plotted on Figure 5.4 the opposite derivative of the quasi-static force-distance curve,
which we calculated by taking the derivative of the fit with the PB theory. Although with a
shape compatible with exponential behaviors, we observe that the elastic response exhibits
an amplitude which is significantly larger than the quasi-static limit and which increases
with the frequency. Such behavior was already observed during the thesis of Léo Garcia, and
has been qualitatively attributed to the relaxation dynamics of the electric double layers [11].

In the following sections, I will show that this effect is an experimental artefact due to
the machine stiffness.
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5.2.2 Influence of the machine stiffness

The determination of the right value of the machine stiffness KM is not straightforward. After
correction of the residuals (see 4.2.4), the slope of 1/

√
Z ′ as a function of distance should

provide the value of the machine stiffness (as shown in section 4.2.5). However, in Figure 5.5
we observe that the slope of 1/

√
Z ′ depends on the distance interval chosen for the fit, giving

different values for the machine stiffness KM, respectively:

• KM = 240 µN/nm between ∼ 140 nm and ∼ 170 nm,

• KM = 15 µN/nm between ∼ 70 nm and ∼ 140 nm,

• KM = 4 µN/nm between ∼ 0 nm and ∼ 70 nm.
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Figure 5.5 Fitting of 1/
√
Z ′ as a function of distance for a experiment at 32 Hz. The distance

interval chosen to fit the slope results in different values of the machine stiffness.

Figure 5.6 shows the resulting Z ′ curves obtained with these machine stiffness values:

• KM = 240 µN/nm has no effect on the data,

• KM = 15 µN/nm reduces the amplitude of the elastic response,

• KM = 4 µN/nm results in nonphysical negative values for the elastic response.

The difficulty comes from the fact that a long-range electrostatic interaction is involved,
contrary to the case of Hexadecane which was described in section 4.2.5, for which the
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Figure 5.6 Conservative part of the mechanical impedance at 32 Hz after correction of different
machine stiffness values, taken from the fits in Figure 5.5 obtained at different distance
intervals.

dynamic response was piloted by elasto-hydrodynamics only. Therefore, we have to adapt
the method of determination of the machine stiffness in the case where an electrostatic
contribution is present in Z ′. By inverting equation 4.1 we get:

Ztrue = Zmeas

1 − Zmeas
KM

≃ Zmeas + Zmeas
2

KM
(5.2)

at first order in |Zmeas|
KM

≪ 1 (condition 1). The real and imaginary parts of this equation read:

Z ′
true ≃ Z ′

meas + Z ′
meas

2 − Z ′′
meas

2

KM
≃ Z ′

meas − Z ′′
meas

2

KM
(5.3)

Z ′′
true ≃ Z ′′

meas

(
1 + 2Z ′

meas
KM

)
(5.4)

if |Z ′
meas| ≪ |Z ′′

meas| (condition 2). At large distances (D ≫ Dc ∼ 3 nm - condition 3) the
elasto-hydrodynamic response is mostly viscous and given by the Reynolds formula, i.e.,
Z ′′

true = 6πηωR2

D . We combine the last two equations to obtain, at first order in |Zmeas|
KM

:

Z ′
true ≃ Z ′

meas − (6πηωR2)2

KMD2 (5.5)
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To determine the machine stiffness, we should obtain a linear relationship between 1/
√
Z ′

meas
and D. This happens only in a distance range where the physically relevant contributions
to Z ′

true (electrostatics and elasto-hydrodynamics) are negligible compared to the machine
stiffness term, i.e., |Z ′

el| , |Z ′
eh| ≪ Z′′

meas
2

KM
(condition 4).

In Figure 5.7 are shown the real and imaginary parts of the measured impedance as a
function of the distance in semi-log scales. On one hand, we observe that the imaginary
part is a least one order of magnitude larger than the real one, i.e., condition 2 is fulfilled,
for distances D ≳ 70 nm. On the other hand, we see that real part changes abruptly and
becomes extremely small for distances D ≳ 140 nm. This is due to the lock-in amplifiers,
which are not able to resolve phase differences smaller than 0.01◦, corresponding to a ratio∣∣∣Z′

meas
Z′′

meas

∣∣∣ smaller than ∼ 10−4. Therefore, it appears clearly that only distances ranging from
∼ 70 nm to ∼ 140 nm are appropriate for the determination of the machine stiffness, giving
KM = 15 µN/nm.
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Figure 5.7 Comparison between the conservative Z ′ and dissipative Z ′′ components of the
mechanical impedance measured at 32 Hz (before correction of the machine stiffness), and
the machine stiffness KM = 15 µN/nm.

Then, one has to check that this distance interval and this value of machine stiffness
allow to verify the conditions listed previously. In Figure 5.7 we observe that this value of
machine stiffness is much larger than the impedance in the considered distance range, i.e.,
condition 1 is fulfilled. Condition 3, i.e., D ≫ Dc ∼ 3 nm, is also trivially true. To assess
whether condition 4 is verified, we plotted in Figure 5.8 the correction factor Z ′′

meas
2/KM, the

measured real impedance Z ′
meas, the contribution Z ′

eh from the elasto-hydrodynamics theory,
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and the electrostatic contribution Z ′
el, supposed equal to the equilibrium one Z ′

eq = − dF
dD .

This graph confirms the fact that, between ∼ 70 nm and ∼ 140 nm, the correction factor is
much larger than the physically relevant contributions to Z ′

true, and it accounts for most of
the measured real impedance Z ′

meas.
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Figure 5.8 Comparison between the conservative component expected at zero frequency, Z ′

measured at 32 Hz (before correction of the machine stiffness), and the correction factor
Z ′′

meas
2/KM.

The Z ′
true curves at 32 Hz and 158 Hz, after correction of the machine stiffness, are

shown in Figure 5.9. Their amplitudes have been lowered by the correction, making the
frequency effect disappear and the curves superpose each other. The curves are also well
superimposed with the equilibrium prediction Z ′

eq, given the noise on the dynamic and
quasi-static measurements. Note that the latter is not visible in this representation, as we
have shown the negative derivative of the PB fit to the quasi-static force profile.

More precisely, we observe:

• at 32 Hz (Figure 5.10a), that the main origin of Z ′ is the electrostatic equilibrium
contribution, while elasto-hydrodynamics plays a negligible role,

• at 158 Hz (Figure 5.10a), that the origins of Z ′ are elasto-hydrodynamics and electro-
statics, with the former acting almost twice as much the latter.

We used our method of machine stiffness correction to reanalyze the data from Garcia
[11], which were obtained with Propylene Carbonate at 30 Hz and 220 Hz (Figures 5.11a
and 5.11b). This allowed us to confirm our interpretation with another set of data, i.e., the
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Figure 5.9 Z ′ curves at 32 Hz and 158 Hz after correction of the right value of the machine
stiffness, i.e., KM = 15 µN/nm. Both sets of data agree with the equilibrium response
predicted by Eq. 5.1, given the noise on the dynamic and quasi-static measurements (the
latter being not visible in this representation).
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(a) Experiment at 32 Hz
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Figure 5.10 Correction of the machine stiffness on the real part of the measured mechanical
impedance. Comparison with the negative derivative of the quasi-static force and the
conservative contribution predicted by the elasto-hydrodynamic theory.
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Figure 5.11 Correction of the machine stiffness on the real part of the measured mechanical
impedance, from Garcia’s results [11]. Comparison to the negative derivative of the quasi-
static force and the conservative contribution predicted by the elasto-hydrodynamic theory.

fact that the conservative dynamic response of the confined electrolyte is not affected by
a relaxation process of the electric double layers, but is due to the electrostatic repulsion
between the surfaces and the elasto-hydrodynamic deformation of the surfaces. To summarize,
with our current resolutions and in the frequency range explored, we have no evidence of a
frequency dependence of the conservative response associated to the electrical double layer.

Finally, note that here we have considered two limit models:

• electrostatics with rigid surfaces,

• elasto-hydrodynamics with charge-less surfaces and liquid.

In order to quantitatively fit the conservative dynamic response when these two effects are of
the same order (around 80 Hz for our system), we would need a combined model describing
both the electrostatics and the elasto-hydrodynamics.

5.3 Dissipative contribution to the dynamic response

In this section we discuss the measured imaginary part of the mechanical impedance Z ′′,
corresponding to the dissipative dynamic response of the confined electrolyte. In particular,
we demonstrate the presence of an electrolytic over-dissipation at short distances, compared
to a Newtonian fluid of same viscosity.
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5.3.1 Newtonian behavior at large distances

In Figure 5.12 we observe that the imaginary part of the admittance Y ′′ varies linearly with
the distance between the surfaces, for two different frequencies and for distances ranging
from ∼ 500 nm up to 10 µm. In the inset, we show that the two curves at 32 Hz and 158 Hz
are well superimposed at large distances after normalized by the frequency and the squared
sphere’s radius. These observations show that the dissipative response of the system follows
the Reynolds behavior of confined fluids (see section 2.2).

The slope of the normalized curve provides a dynamic viscosity η = 0.95 ± 0.01 mPa.s, in
reasonable agreement with the viscosity of pure water of 0.89 mPa.s at 25◦C [54]. Note that
the error in the determination of the viscosity with this method mostly comes from the error
in the measurement of the sphere’s radius, which participates as R2 in the expression of the
admittance Y ′′.

400

300

200

100

0

 Y
" 

[n
m

/µ
N

]

100009000800070006000500040003000200010000

 D [nm]

 32 Hz
 Newtonian fluid

 
 158 Hz
 Newtonian fluid 

2500

2000

1500

1000

500

0

Y
" 

f R
2
 [n

m
/µ

N
.H

z.
m

2
]

2000160012008004000
D [nm]

Figure 5.12 Admittance Y ′′ as a function of separation distance for 32 Hz in red and 158 Hz
in blue, and respective linear fits at large distances. In the inset, both curves are normalized
by the frequency and the squared sphere’s radius.

5.3.2 Slip boundary condition

In Figure 5.13 are plotted the same data at shorter distances. We observe that the linear
fits performed between ∼ 500 nm and 10 µm cross the X axis at a positive distance. Such
behavior is typical of a negative slip boundary condition, with a negative slip length b = 49±1
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nm (see section 2.3). This corresponds to a situation where the no-slip plane is located within
the liquid phase.

Generally, such slip boundary condition is qualitatively interpreted as two films of thickness
b/2 = 24.5 ± 0.5 nm at the vicinity of the solid surfaces that do not flow [34]. However,
characterizing the slip boundary condition from large scale extrapolation tells us nothing
about the microscopic origin of such slip. To this end, one has to look at the data at shorter
distances. This is the purpose of the next section.
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Figure 5.13 Admittance Y ′′ as a function of separation distance for 32 Hz in red and 158 Hz
in blue, the two curves being normalized by the frequency and the squared sphere’s radius.
The linear fits stand for the Reynolds behavior at large distances, crossing the X axis at a
negative slip length b = 49 ± 1 nm.

5.3.3 Over-dissipation

In Figure 5.14 is represented the proportional law expected for a Newtonian fluid of same
viscosity but with no slippage. To do so, the linear fit at large scales has been shifted to
pass through the origin. We clearly see that the data are located below this reference line,
showing that the measured imaginary part of the admittance is smaller than the Reynolds
admittance. In other words, the system exhibits an over-dissipation in comparison with a
Newtonian fluid of same viscosity without slippage.
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Figure 5.14 Admittance Y ′′ as a function of separation distance for 32 Hz in red and 158 Hz
in blue, the two curves being normalized by the frequency and the squared sphere’s radius.
The black dashed line is the linear fit at large distances, while the green dashed line represents
what would have been the result of a Newtonian fluid of same viscosity but with no slippage.
The two-fluid model fit in bright blue describes our data accurately.
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More precisely, the two curves at 32 Hz and 158 Hz are remarkably well superimposed
at small distances after normalizing by the frequency, showing that the over-dissipation is
simply proportional to the excitation frequency. In addition, we observe at large distances
that the imaginary admittance as a function of the distance exhibits a slope that is consistent
with the bulk viscosity. But below ∼ 500 nm, the curve starts to bend with a slope that
decreases even more as the mechanical contact is approached. This progressive inflection
corresponds to an "effective" viscosity (linked to the inverse of the slope) which grows with
confinement.

The concept of effective viscosity has been used by Chauveteau et al. in 1984 [55] to
describe the rheology of polymer solutions flowing in micrometric pores. In the case of
repulsive walls, they observed a decrease of the effective viscosity when the pore size was
reduced, which they attributed to a depletion layer near the walls. On the contrary, in the
case of attractive walls, they observed an increase of the effective viscosity when the pore
size was reduced, which they attributed to the adsorption of polymers onto the walls.

A similar reduction with confinement of the effective viscosity of polymer solutions has
been measured with the dSFA during the thesis of Chloé Barraud at LIPhy [12]. A two-fluid
model, illustrated in Figure 5.15, has been developed to account for such effective viscosity
reduction [56]. It consists in splitting the confined fluids into two regions : a fluid of bulk
viscosity ηbulk in the middle of the gap, and a fluid of viscosity ηlayer ̸= ηbulk forming a liquid
layer of thickness e covering the solid surfaces. The underlying idea was that the depleted
region near the walls presents a smaller viscosity than the bulk polymer solution, equal to
the solvent viscosity. The two-fluid model formally expresses the imaginary admittance as:

Y ′′ = − D

6πηbulkωR2f∗(D
e ,

ηlayer
ηbulk

)
(5.6)

where f∗ is a master function which depends on the ratio between the surface separation
and the layer thickness and the ratio between the layer viscosity and the bulk viscosity. At
large distances D ≫ e, f∗ tends towards 1 and the dissipation is dominated by the fluid
in the bulk. At small distances D ≪ e, f∗ tends towards ηlayer/ηbulk and the dissipation is
dominated by the fluid in the layers. More details on the model can be found in [56].

We tested whether such two-fluid model is able to describe our data quantitatively. In
Figure 5.14 we can observe that a remarkably good fit of the normalized admittance at 32 Hz
and 158 Hz can be achieved at all scales, with a bulk viscosity ηbulk = 0.95 ± 0.01 mPa.s
determined at large scales and layers of thicknesses e = 50 ± 1 nm and viscosity ηlayer =
1.75 ± 0.05 mPa.s determined at small scales. Note that in the present case the model
accounts for an increase of the effective viscosity, with a fluid which is more viscous at the
solid-liquid interfaces than in the bulk, with ηlayer/ηbulk = 1.8 ± 0.08.

The two-fluid model seems effective to describe our data, and it allows to characterize
quantitatively the over-dissipation. However, the observed increase in effective viscosity
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Figure 5.15 Schematic of the variables present in the two-fluid model, where a liquid layer of
thickness e and viscosity ηlayer is covering both the sphere and the plane, and the surrounding
fluid has a viscosity ηbulk. Figure adapted from [56].

cannot not be explained by an increase in ionic concentration in the EDL. Considering
C±(z) = Ce

∓ eV
kBT and that the glass surface is negatively charged at neutral pH, the cations

are in excess in the EDL in comparison with the bulk, and their concentration is bounded
by Ce

+ e|Vs|
kBT , with |Vs| = 65 ± 0.5 mV the absolute value of the surface potential. For a

concentration in solution of C = 1.10−3 mol/L, we obtain 2.10−2 mol/L as the upper limit
of ionic concentration in the diffuse layer. A paper by Kestin et al. [57] reports viscosities
of NaCl aqueous solutions, for concentrations larger than the one discussed here. At 20oC,
the viscosity varies from 1.002 mPa.s for pure water to 1.043 mPa.s for a 0.5 mol/L solution,
therefore the increase in viscosity due to ion excess in the EDL is much smaller than the one
given by the two-fluid model.

Similarly, the observed increase in effective viscosity cannot be reasonably related to
the electroviscous effects reported by Klein [58]. In the vicinity of the surface, we have an
electric field E that could have an influence on the viscosity of the diffuse ionic layer. Indeed,
viscous friction can increase under the effect of an electric field according to the relation
η(E) = ηbulk(1 + fE2). Taking the measured value of f = 1.10−15 m2/V2 for water [58] and
assuming an electric field in the electric double layer given by the surface potential divided
by the Debye length E ≈ 65 mV/12 nm, we find a viscosity increase of ∼ 3% for η(E) well
below the values found here for ηlayer.

As it is an effective model, it does not tell us much about the underlying physics. If the
over-dissipation is not due to the increase in viscosity under an electric field, it can only
originate from electrokinetic transport phenomena in the electrolyte, which is confined between
charged surfaces. A possible general mechanism is illustrated in Figure 5.16. Qualitatively,
when the surfaces are approached, a viscous flow leads to the ejection of the electrolyte from
the apex towards the sides. As the surfaces are charged and the electric double layers are
electrically non-neutral, counter-ions are virtually in deficit at the apex and in excess far
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away. Such unbalance virtually creates radial gradients of concentration and electric potential,
leading to diffusio-osmotic and electro-osmotic flows. These counter-flows would ultimately
result in an over-dissipation and apparent slippage, in comparison with a charge-less fluid of
same viscosity.

Figure 5.16 Schematic of the formation of simultaneous electrokinetic flows: a Poiseuille
flow is induced by a pressure gradient and drags charged electric double layers, which in its
turn induces concentration and electric potential gradients, creating diffusio-osmotic and
electro-osmotic flows. Credits: [11].

Preliminary measurements of Garcia’s thesis [11] had allowed to glimpse this over-
dissipation. During my thesis, I have first confirmed the presence of such over-dissipation.
My second goal was to collect new experimental information in order to achieve a more
precise understanding of the mechanisms at play. In particular, a central question was
the confinement scale at which such over-dissipation emerges. In this perspective, it is
worth noting that the range of the over-dissipation obtained in this reference measurement,
characterized empirically by the negative slip length or the layer thickness in the two-fluid
model, seems to correspond to the scale given by the Dukhin length (ℓDu = 51 nm), and not
by the Gouy-Chapman length (ℓGC = 7.3 nm) or the Debye length (λD = 12 nm). These
aspects will be discussed in chapter 6.

5.4 Conclusion

In this chapter, I have chosen to present the phenomena observed experimentally with the
dSFA, for a representative system composed of an aqueous solution of NaCl at 10−3 mol/L
and pH 6 confined between Borosilicate glass surfaces. We have shown that :

• The quasi-static response presents a repulsive electrostatic force, which can be fitted
with the Poisson-Boltzmann theory to obtain a true, equilibrium surface charge (unlike
most of the literature which relies on transport measurements),
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• The measured electrostatic force is best described with a constant surface charge
boundary condition, and the value of the surface charge critically depends on the
determination of the mechanical contact between the surfaces,

• The conservative dynamic response can be explained by the combination of electrostatics
and elasto-hydrodynamics (model to be developed), after accurate correction of the
machine stiffness,

• The dissipative dynamic response exhibits an over-dissipation at small distances, which
is the signature of electrokinetic phenomena at play, leading to an apparent negative
slip length,

• The over-dissipation is proportional to the excitation frequency, opening the way to
the concept of effective viscosity that increases with confinement, and which can be
characterized quantitatively thanks to a two-fluid model.
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Introduction

After having presented in Chapter 5 a reference measurement obtained with a NaCl aqueous
solution at a concentration of C = 10−3 mol/L and pH 6 confined between Borosilicate glass
surfaces, this chapter aims to investigate the influence of key parameters on the electrolytic
over-dissipation.

In order to determine the role of the screening length λD, the ion concentration C of the
solution was varied. In the same way, solutions with different pH allowed us to analyze the
influence of the surface charge σ of Borosilicate glass. Finally, the Borosilicate glass surface
was coated with a Boron Nitride (BN) layer, which has been reported as a promising material
for energy conversion in nanofluidic applications [6].

In each section, the results are compared to the reference measurement presented in
Chapter 5 (here in red in all graphs). Because all these dSFA experiments have been performed
with different sphere radii R and excitation frequencies f , a proper normalization of the
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measurements by these parameters was required in order to compare them. Therefore, I
present the results for the quasi-static measurement as a normalized quasi-static force-distance
curve F/R(D) (following the Derjaguin approximation presented in Chapter 1), and the
results for the dynamic measurement as a normalized imaginary admittance - distance curve
Y ′′fR2(D) (according to the observations made in Chapter 5).

6.1 Varying the screening length λD with the ion concentration
C

I performed two experiments at different concentrations of NaCl in water at pH 6, confined
between Borosilicate surfaces : C1 = 10−3 mol/L (reference) and C2 = 100 mol/L.

Figure 6.1 shows the measured quasi-static force-distance curves, and the corresponding
adjustments with the Poisson-Boltzmann theory for a constant surface charge boundary
condition. For the reference at C1 = 10−3 mol/L, we recall that we got λD,1 = 12±0.5 nm (in
reasonable agreement with the Debye length of 10 nm expected) and |σ1| = 4.9 ± 0.3 mC/m2.
For C2 = 100 mol/L, the interaction force is below the sensitivity limit, until a short-
range repulsion is measured at distances D ≲ 2 nm. We obtained a screening length
λD,2 = 1.5±0.5 nm and a surface charge |σ2| = 2.5±0.1 mC/m2. At such a high concentration,
the Debye length is equal to 0.3 nm, i.e., close to the ion size and we are clearly beyond the
limit of validity of the PB theory. The fit of the data with the PB theory has therefore no
theoretical support in this case, but it allows to characterize qualitatively the electrostatic
repulsion. In particular, we can say that the screening length has been shorten by about one
order of magnitude with the highest concentration compared to the reference.

Figure 6.2 shows the measured imaginary admittance as a function of distance. The
linear fits at large distances shown in the inset provide viscosities η1 = 0.95 ± 0.01 mPa.s and
η2 = 0.95 ± 0.03 mPa.s, in agreement with the expected values of 0.89 mPa.s for pure water
at 25◦ and 1.02 mPa.s at 20◦C for a 100 mol/L NaCl aqueous solution respectively [54]. In
the main graph, we can observe the presence of an over-dissipation for both experiments.
Very surprisingly, we found that the curves overlap remarkably well, providing the same value
of negative slip length and same parameters when fitting with a two-fluid model. In other
words, varying the concentration of the solution by three orders of magnitude or the screening
length by about one order of magnitude has no measurable effect on the over-dissipation.
Simultaneously, significant changes have been made on the Dukhin length (ℓDu,1 = 51 nm,
ℓDu,2 = 0.026 nm) and the Gouy-Chapman length (ℓGC,1 = 7.3 nm, ℓGC,2 = 15 nm), but no
clear correlation can be found with the range of the over-dissipation, when characterized it
empirically by the values of negative slip length or layer thickness in the two-fluid model.
Therefore, from these experiments it seems that the range of the electrolytic over-dissipation
is not piloted by the screening length, the Dukhin length or the Gouy-Chapman length.
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Figure 6.1 Quasi-static force as a function of distance in semi-log scales, for NaCl aqueous
solutions of pH 6 between Borosilicate glass surfaces, at different concentrations: C1 =
10−3 mol/L (reference) and C2 = 100 mol/L. The lines correspond to the adjustment with
the Poisson-Boltzmann theory for a constant surface charge boundary condition. In the inset,
a zoom near contact is presented in linear scales.
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Figure 6.2 Imaginary admittance as a function of distance, for NaCl aqueous solutions of pH 6
between Borosilicate glass surfaces, at different concentrations: C1 = 10−3 mol/L (reference)
and C2 = 100 mol/L. The inset shows the linear fits at large distances, while the main graph
shows the behavior at small distances.



6.2 Varying the surface charge σ with the pH of the solution 139

6.2 Varying the surface charge σ with the pH of the solution

The surface charge supported by dielectric surfaces in contact with an aqueous solution is
known to depend on the pH of the solution. Such dependency is well documented in the
case of glass [26], for which the surface charge is negative at neutral pH, and even more
negative at basic pH (see Figure 1.7 from Chapter 1). The solution used for the reference
measurement presented in Chapter 5 has been obtained by simply dissolving NaCl salt into
fresh DI water. Its pH was measured before and after the experiment and found to be equal
to 6, a slightly acidic pH attributed to spontaneous dissolution of atmospheric carbon dioxide.
To investigate the effect of the surface charge, I performed another dSFA experiment with a
NaCl aqueous solution of concentration C = 10−3 mol/L between Borosilicate glass surfaces,
but at pH 10. The solution was prepared by adding droplets of NaOH solution to fresh DI
water to reach the desired pH, and then by dissolving NaCl salt into this basic solution.
Again, pH was measured before and after the experiment and found to be equal to 10.

Figure 6.3 shows the measured quasi-static force-distance curves at pH 10 and pH 6
(reference), and the corresponding adjustments with the Poisson-Boltzmann theory for a
constant surface charge boundary condition. Note that for pH 10, the mechanical origin was
positioned on the minimum of adhesion on the retraction curve, and is known at a precision
better than ±1 nm. The electrostatic repulsion shows a slightly smaller screening length
λD,2 = 8 ± 1 nm at pH 10 than λD,1 = 12 ± 1 nm obtained at pH 6. These two values are
reasonably close to the expected Debye length of 10 nm, with discrepancies attributed to the
quasi-static sensitivity of the dSFA at that time (as explained in section 3.3.5). The fitted
absolute value of the surface charge is found to be |σ2| = 12 ± 0.5 mC/m2 at pH 10, instead
of |σ1| = 4.9 ± 0.3 mC/m2 at pH 6. Increasing the pH thus allowed to increase the absolute
surface charge by a factor of ∼ 2.7 in comparison with the reference measurement.

Figure 6.4 shows the measured imaginary admittance as a function of distance. The
linear fits at large distances shown in the inset provide a slightly smaller viscosity η2 =
0.84 ± 0.05 mPa.s at pH 10 compared to η1 = 0.95 ± 0.01 mPa.s obtained at pH 6. These
two values are reasonably close to the viscosity of pure water (0.89 mPa.s at 25◦ [54]), with
discrepancies that can be due to experimental errors on the determination of the sphere radius,
or on small temperature differences. In the main graph however, we observe a major difference
between both curves: the over-dissipation that is observed for the solution at pH 6 is not
present for the solution at pH 10. Indeed, for the basic solution we find that the linear fit at
large scales intersects the X axis at a position compatible with the mechanical origin (D = 0),
given the ±5 nm uncertainty on the extrapolation of the dissipation. The system is correctly
described by a simple Reynolds admittance, like Hexadecane presented in Chapter 4. Note
that this difference cannot be explained by a possible difference in concentration, as we have
seen in the previous section that the screening length has no influence on the over-dissipation.
This behavior is extremely surprising from the perspective of the scenario we proposed in
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Figure 6.3 Quasi-static force as a function of distance, for NaCl aqueous solutions of concen-
tration C = 10−3 mol/L between Borosilicate glass surfaces, at pH 6 (reference) and pH 10.
The lines correspond to the adjustment with the Poisson-Boltzmann theory for a constant
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Chapter 4, where surface charge is the driving force behind the electrolytic over-dissipation.
Indeed, an increase rather than a suppression of the over-dissipation with the absolute of the
surface charge was expected in this qualitative picture.
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Figure 6.4 Imaginary admittance as a function of distance, for NaCl aqueous solutions of
concentration C = 10−3 mol/L between Borosilicate glass surfaces, at pH 6 (reference) and
pH 10. The inset shows the linear fits at large distances, while the main graph shows the
behavior at small distances.

6.3 First dSFA measurements performed on Boron Nitride
surfaces

As presented in Chapter 4, 30 nm thick Boron Nitride layers were coated on Borosilicate
glass substrates. Measurements were performed at difference frequencies with an aqueous
solution of NaCl with a concentration C = 10−3 M and different pH.

6.3.1 BN-coated glass surfaces at pH 6

Origin of distance and surface charge

Figure 6.5c shows the measured quasi-static force-distance curves measured at pH 6 for
BN-coated glass surfaces and Borosilicate glass surfaces (reference). We observe an hysteresis
between the approach and the retraction curves with the BN-coated glass surfaces, on the last
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∼ 4 nm before contact. This could a priori signify the presence of a dust particle, however
we do not observe any hysteresis on the dynamic measurement.

Three mechanical origins for the sphere-plane distance were tested to adjust the data with
the Poisson-Boltzmann theory. In Figure 6.5a, the mechanical origin has been determined
by fitting with a Hertz law the portion of the retraction curve with large forces. The best
fit of the portion of the approach curve with low forces with the Poisson-Boltzmann theory
for a constant surface charge boundary condition gives λD,1 = 5 nm and |σ1| = 13 mC/m2,
but the fit is clearly not satisfying for distances smaller than ∼ 4 nm. In Figure 6.5b, a
minimum offset has been applied on the mechanical contact, in order to have a good PB
adjustment with a constant charge boundary condition. The minimum shift was of +3.8 nm,
and it provided λD,2 = 5 nm and |σ2| = 65 mC/m2. A slightly larger shift can still result in
a good PB fit, but the shift cannot be arbitrary large. A first reason is that the amplitude of
the electrostatic force at large distances (D ≳ λD) saturates for large surface charges (see
Appendix A). This is because at some point any increase of the surface charge is screened
by the counter-ions in the very close proximity of the surfaces (D ≪ λD), which is possible
in the PB theory where the ions have no excluded volume. A second reason is that real
surfaces cannot support arbitrary large surface charges. Figure 6.5c shows the PB prediction
for λD,3 = 5 nm and a maximum surface charge |σ3| = 1000 mC/m2, corresponding to an
average distance (|σ3|/e)−1/2 = 4 Å between each elementary charge on the surface. A good
fit of the data is achieved in this case with a maximum offset on the mechanical contact equal
to +4.8 nm.

In summary, the position of the mechanical contact is determined within an uncertainty
of ±2.4 nm, and the surface charge is > 13 mC/m2, possibly equal to 65 mC/m2, but in any
case it is larger in comparison with the reference measurement (4.9 mC/m2).
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(c) Mechanical origin shifted by +4.8 nm (at PB saturation and maximum surface charge).

Figure 6.5 Quasi-static force as a function of distance, for NaCl aqueous solutions of concen-
tration C = 10−3 mol/L and pH 6, confined between Borosilicate glass surfaces (reference)
and BN-coated glass surfaces. For the latter, three attempts are made to adjust the approach
curve with the Poisson-Boltzmann theory for a constant surface charge boundary condition.
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Dissipation

Figure 6.6 shows the measured imaginary admittance as a function of distance at pH 6 for
BN-coated glass surfaces and Borosilicate glass surfaces (reference). As shown in inset, the
linear fit at large distances of the data with BN-coated glass surfaces provides a viscosity of
0.86 ± 0.05 mPa.s, in reasonable agreement with the water viscosity’s value of 0.89 mPa.s
for pure water at 25◦ [54]. In the main graph, we observe that the system is characterized
by a negative slip length of 55 ± 1 nm and exhibits an over-dissipation. More precisely, we
see in Figure 6.7 that the over-dissipation is larger for BN-coated glass surfaces than for the
reference. A fit with the two-fluid model results in two layers of thicknesses e = 30 ± 5 nm
and viscosity ηlayer = 5 ± 0.2 mPa.s, i.e., a ratio ηlayer/ηbulk = 5.8 ± 0.6.

Therefore, in the present case where the absolute value of the surface charge has been
increased significantly by changing the nature of the surfaces while keeping the same solution,
it seems that the amplitude of the electrolytic over-dissipation has indeed been increased.
In line with the measurements at different concentrations, we find that the range of the
over-dissipation, characterized by the value of the negative slip length or of the layer thickness
in the two-fluid model, does not correlate with the Dukhin length (ℓDu ≥ 135 nm), or the
Gouy-Chapman length (ℓGC ≤ 2.8 nm).
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Figure 6.6 Left: Imaginary admittance as a function of distance, for NaCl aqueous solutions
of concentration C = 10−3 mol/L and pH 6, confined between Borosilicate glass surfaces
(reference) and BN-coated glass surfaces. The lines are linear fits at large distances.
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Figure 6.7 Imaginary admittance as a function of distance, for NaCl aqueous solutions
of concentration C = 10−3 mol/L and pH 6, confined between Borosilicate glass surfaces
(reference) and BN-coated glass surfaces. The dashed lines represent the trends that would
be obtained in the absence of over-dissipation, while the full lines are adjustments with the
two-fluid model.
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6.3.2 BN-coated glass at pH 10

Figure 6.8 shows the measured quasi-static force-distance curves measured at pH 10 for BN-
coated glass surfaces, compared the data at pH 6 with Borosilicate glass surfaces (reference).
Here there is no ambiguity on the positioning of the mechanical contact, which is fixed
by fitting a Hertz law on the portion of the curve with large forces. The constant surface
charge PB adjustment of the portion of the curve with low forces is satisfactory, and provides
λD = 8 ± 0.2 nm and |σ| = 10.5 ± 0.5 mC/m2, about twice as high as the reference one. We
do not find the value reported at pH 11 in Boron Nitride nanotubes [6]. The particularly high
value of 1 C/m2, measured by conductivity measurements, is indeed two orders of magnitude
above the value found here. The difference lies either in the pH value, the molecular structure
of BN or in the method of measurement. This point remains to be investigated.
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Figure 6.8 Quasi-static force as a function of distance, for NaCl aqueous solutions of concen-
tration C = 10−3 mol/L, with pH 6 between Borosilicate glass surfaces (reference), or with
pH 10 between BN-coated glass surfaces. The lines correspond to the adjustment with the
Poisson-Boltzmann theory for a constant surface charge boundary condition.

Figure 6.9 shows the measured imaginary admittance as a function of distance at pH 10
for BN-coated glass surfaces, compared the data at pH 6 with Borosilicate glass surfaces
(reference). We observe that this system exhibits no measurable over-dissipation, similarly to
the measurements performed at pH 10 with Borosilicate glass surfaces (section 6.2). Again,
such behavior is extremely surprising, as we expected an increase rather than a suppression
of the over-dissipation when increasing the surface charge.
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A possible explanation could come from the fact that increasing the pH increases not
only the surface charge, but also the concentration of HO− ions in solution. At pH 10 the
hydroxide concentration is [HO−] = 10−4 mol/L, i.e., about 10 times smaller than the chloride
concentration [Cl−] = 10−3 mol/L and the sodium concentration [Na+] = 1.1 · 10−3 mol/L.
Hydroxide ions may have negligible effect on the equilibrium, i.e., electrostatic screening of
the surface charge (in particular on the value of the Debye length), however they could affect
significantly the transport, i.e., the electrolytic over-dissipation. Indeed, hydroxides ions have
a high mobility in water, because the negative charge can be transferred by creation / breakage
of bonds between Oxygen and Hydrogen of a chain of water molecules, more efficiently than
by the transport of the hydroxide ion in the solution. Such enhanced mobility of hydroxide
as a charge carrier is reflected in a diffusion coefficient equal to DHO− = 5.27.10−5 cm2/s,
about 2.5 times larger than the chloride diffusion coefficient DCl− = 2.03.10−5 cm2/s and 4
times larger than the sodium diffusion coefficient DNa+ = 1.33.10−5 cm2/s [54]. Qualitatively,
the rapid diffusion of HO− ions in solution could prevent any dynamic deviation of charge
distribution from equilibrium, thus annihilating any possibility of over-dissipation.
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Figure 6.9 Imaginary admittance as a function of distance, for NaCl aqueous solutions of
concentration C = 10−3 mol/L, with pH 6 between Borosilicate glass surfaces (reference),
or with pH 10 between BN-coated glass surfaces. The inset shows the linear fits at large
distances, while the main graph shows the behavior at small distances.
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6.4 Conclusion

In this chapter, we investigated the influence of three key parameters on the over-dissipation:
the screening length, the surface charge and the nature of the surfaces. Table 6.1 aggregates
the results obtained. We can summarize the main observations made on a few systems as:

• The range of the over-dissipation, quantified as a negative slip length or layer thickness
in a two fluid model, does not seem to correlate with the Debye length, the Dukhin
length or the Gouy-Chapman length,

• The amplitude of the over-dissipation increases with the surface charge, if the surface
charge is varied significantly by changing the nature of the surfaces while keeping the
exact same solution (in particular the same pH),

• Increasing the pH of the solution can simultaneously lead to an increase of the surface
charge and a suppression of the over-dissipation, a behavior that could be due to the
large mobility of hydroxide ions in water.

Table 6.1 Summary of the results obtained.

Surfaces pH C (mol/L) λD (nm) |σ| (mC/m2) ℓGC (nm) ℓDu (nm) b (nm) e (nm) ηlayer/ηbulk

Borosilicate 6 10−3 12 4.9 7.3 51 49 50 1.8

Borosilicate 6 100 1.5 2.5 15 0.026 49 50 1.8
Borosilicate 10 10−3 8 12 3 125 0 0 1

Boron Nitride 6 10−3 5 ≥ 13 ≤ 2.8 ≥ 135 55 30 5
Boron Nitride 10 10−3 8 10.5 3.5 109 0 0 1



Conclusion and Perspectives

The equilibrium and transport properties of confined electrolytes were the object of study of
my thesis. A dynamic Surface Force Apparatus (dSFA) has been employed to investigate
them experimentally. This instrument can be used to confine a fluid between two surfaces (a
sphere and a plane) and to measure the fluid-surface interactions. The dSFA allows to explore
5 decades of confinement from 10 µm to 1 Å during one experiment, and to simultaneously
perform quasi-static and dynamic measurements, in order to access at-equilibrium and
out-of-equilibrium properties of confined fluids.

The existing dSFA at LIPhy required important modifications in order to be able to
obtain reproducible measurements with volatile fluids, such as aqueous solutions which are at
the center of Blue Energy applications. Thus the first step taken during my thesis was to work
on the atmospheric control. A vacuum chamber has been added, reducing evaporation and
thermal drifts, and giving the possibility to control the temperature and pressure. Thermal
drifts have decreased by ten times in comparison with the previous version of the machine,
with current temperature changes smaller than 0.01◦C/h. However, this addition of a vacuum
chamber led to other changes in the set up, in order to adapt the mechanics and optics
to the new version of the machine. This is why new, more compact, interferometers have
been built. The electronics has also been modified, by directly measuring the photocurrents
coming from the interferometers with precision multimeters and lock-in amplifiers in current
mode, eliminating some non-desired effects in both static and dynamic measurements. Based
on a number of different tests and calibrations, issues such as the optical cross-talk or the
fluctuations on the quasi-static signals have been solved. Imperfections like the dynamic
noise or the mechanical cross-talk have been identified, and protocols have been implemented
to characterize them and to determine the optimum working conditions.

A benchmark experimental campaign consisting of Hexadecane confined between two
Borosilicate glass surfaces has been performed in order to characterize the performances of
the machine. The results have proved that the new version of the dSFA allows to obtain
quasi-static interaction profiles with a resolution of 20 pm for distance and 120 nN for force
(after fixing the problem of fluctuations on the quasi-static signals), and to perform dynamic
measurements with resolutions of 1-10 pm and 6-60 nN for distance and force respectively.
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Then, an experimental campaign has been conducted with an aqueous NaCl solution of
low concentration and neutral pH between Borosolicate glass surfaces, demonstrating the rich
phenomenology which can be access with the dSFA. First, adjustment of the electrostatic
repulsion with the Poisson-Boltzmann theory has allowed to characterize the screening length
and the surface charge. Then, careful correction of the machine stiffness, by fitting the
data in the right distance interval (essentially such that the electrostatic contribution is
negligible), has shown that the conservative dynamic response results from contribution of
electrostatics and elasto-hydrodynamics. There, analysis of the dissipative dynamic response
has revealed the presence of an over-dissipation, proportional to the excitation frequency.
This over-dissipation has been characterized empirically with a negative slip length or with a
two-fluid model, even if its physical origin remained to be determined.

Several experimental campaigns have been performed to investigate the influence of the
screening length, the surface charge and the nature of the surfaces on the over-dissipation.
This has been done by changing the ion concentration, the pH of the solution and by per-
forming the first dSFA measurements on Boron Nitride (BN)-coated glass surfaces. Varying
the screening length turned out to have no measurable influence on the over-dissipation.
The over-dissipation has been found to present a larger amplitude and shorter range for
BN-coated glass than for Borosilicate glass at neutral pH, which could result from the larger
surface charge measured quasi-statically. Very surprisingly, for the two natures of surfaces,
increasing the pH to 10 resulted simultaneously in the increase of the surface charge and
the suppression of the over-dissipation. The very large mobility of hydroxide ions has been
hypothesized to be responsible for such behavior.

Several perspectives to this thesis work can be formulated. First, a few improvements
could be made on the instrumental point of view:

• Reduction of the dynamic noise and of the mechanical cross-talk could be achieved
by working on the design of the bottom of the vacuum chamber, namely by making
it solid, stiff and in direct contact with the damping table, to reduce resonances and
unwanted transmission of motions to the surfaces by the surroundings,

• Setting-up a syringe pump system would allow to change the solution during one
experimental campaign, i.e., without changing the surfaces, and so to multiply the
number of feasible experiments, in order to investigate more systematically the influence
of key parameters like concentration or pH.

Second, new directions emerge from this thesis work for dSFA experiments with confined
electrolytes:

• Varying the ions mobility while keeping the surface charge constant, by using large ions
without changing the solvent, the concentration, the pH or the nature of the surfaces,
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• Varying the surface charge while keeping the ions mobility constant, by using various
dielectric substrates at same neutral pH, or by polarizing conductive substrates.

Third, important theoretical work is needed to reach a fundamental understanding of the
physics of confined electrolytes probed with the dSFA:

• A model that would be able to reproduce quantitatively the observed over-dissipation,
in order to decipher whether this dynamic dissipative response can be accounted for in
a consistent way with the electrostatic response,

• A model combining electrostatics, elasticity and hydrodynamics to describe in the same
framework the quasi-static force profile and the dynamic conservative response.





Appendix A

Force curves for two boundary cases

We present here the curves calculated for the electrostatic force profile in two limiting electric
boundary conditions: constant surface charge or constant surface potential.

A.1 Constant Surface Charge Boundary Condition

Figure A.1 shows the interaction forces for different values of the surface charge, in the case
of a symmetric system and a 1:1 electrolyte with a Debye length λD = 10 nm.
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Figure A.1 Electrostatic force predicted by the Poisson-Boltzmann theory for λD = 10 nm
and a constant surface charge boundary condition, in the case of symmetric surfaces with
absolute surface charges |σ| of 0.1, 1, 10, 100 and 1000 mC/m2.
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We observe that the magnitude of the electrostatic force does not simply increase linearly
with the surface charge, especially at large distances. At very high surface charge ∼ 1000
mC/m2, the curves saturate.

A.2 Constant Surface Potential Boundary Condition

Figure A.2 shows the interaction forces for different values of the surface potential, in the
case of a symmetric system and a 1:1 electrolyte with a Debye length λD = 10 nm.
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Figure A.2 Electrostatic force predicted by the Poisson-Boltzmann model for λD = 10 nm
and a constant surface potential boundary condition, in the case of symmetric surfaces with
absolute potentials |Vs| of 1, 10, 100 and 1000 mV.

At low surface potential (∼ 100 mV), the force varies exponentially with the distance,
and its magnitude scales like the surface potential at the power 2. At larger surface potential
and D ≲ λD, a deviation from the exponential behavior is clearly visible.
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