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Abstract

Blue Energy is the term given to the energy generated by the salinity difference between
two bodies of water. An osmotic process allows the conversion of this energy into electricity,
from the ion flow through membranes like in PRO or RED energy harvesting processes. The
estimated power to be produced from Blue Energy in the world is equivalent to 1000 nuclear
plants. However, the power density of current technologies is too low to make the process

cost-effective and technically viable.

From a physical point of view, this issue falls within the general theme of energy conver-
sion in nanofluidics. These conversions are based on the coupling between hydrodynamics,
electrokinetics and the transport of ionic species. These couplings obviously depend on the
properties of the confined fluids but also on the equilibrium characteristics of the systems
such as the surface charge. To our knowledge, there is no experiment allowing simultaneous

measurements of the transport and equilibrium properties of a nanofluidic system.

In this manuscript, the instrumental development of a dynamic Force Surface Apparatus
is presented. This machine and its surrounding have been adapted to study electrolyte
solutions confined throughout five orders of magnitude (10 pm to 1 A), with a strict environ-
mental control. Experiments were performed on NaCl aqueous solutions, confined between
Borosilicate glass or Boron Nitride coated glass surfaces. We have shown the existence of
an over-dissipation induced by ions from electrolytes compared to a classical Newtonian
behavior. Preliminary results on the influence of the ionic concentration and surface charge

on electrolyte over-dissipation are presented.



Résumé

L’énergie bleue est le terme donné a ’énergie générée par la différence de salinité entre
deux masses d’eau. Un processus osmotique permet de convertir cette énergie en électricité, a
partir du flux d’ions a travers les membranes, comme dans les processus de collecte d’énergie
PRO ou RED. On estime que ’énergie produite par ’Energie Bleue dans le monde équivaut
a 1000 centrales nucléaires. Cependant, la densité de puissance des technologies actuelles est

trop faible pour que le processus soit rentable et techniquement viable.

D’un point de vue physique, cette question s’inscrit dans le theme général de la con-
version de I’énergie dans la nanofluidique. Ces conversions sont basées sur le couplage
entre '’hydrodynamique, 1’électrocinétique et le transport d’especes ioniques. Ces couplages
dépendent évidemment des propriétés des fluides confinés, mais aussi des caractéristiques
d’équilibre des systémes telles que la charge de surface. A notre connaissance, il n’existe
pas d’expérience permettant de mesurer simultanément les propriétés de transport et des

propriétés d’équilibre d’un systéeme nanofluidique.

Dans ce manuscrit, le développement instrumental d’un Appareil & Force de Surface
dynamique est présenté. Cette machine et son environnement ont été adaptés pour étudier
des solutions d’électrolytes confinées sur cing ordres de grandeur (10 pm a 1 A), avec un
controle environnemental strict. Les expériences ont été réalisées sur des solutions aqueuses
de NaCl, confinées entre des surfaces de verre Borosilicaté ou revétues de Nitrure de Bore.
Nous avons montré 'existence d’une surdissipation induite par les ions des électrolytes par
rapport a un comportement newtonien classique. Des résultats préliminaires sur I'influence de
la concentration ionique et ceux de la charge de surface sur la surdissipation de 1’électrolyte

sont présentés.
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Introduction

Electrolytes are a very special class of liquids. Like plasma with which they share certain
characteristics, they are composed of charge carriers and remain electrically neutral. They play
a role in many domains, from stratified flows in oceanography for example, to biology through
the transmission of nerve impulses. From an application point of view, they are at the basis of
batteries since Volta’s discoveries at the beginning of the 19th century. Today, in the context
of the energy transition, the interest in electrolytes is growing. The control of techniques at
the nanometric scale allows a new field of applications. Electrolytes in confinement, at the
nanoscale, are utilized in multiple domains, from the injection of charged polymer solutions
into wells for Enhanced Oil Recovery (EOR) operations [1], to the application of electrical
potential onto ionic liquids inside supercapacitors [2]. In this thesis, we are interested in
the study of saline solutions such as those found in sea water, and in understanding the
phenomena at the origin of osmotic processes to harvest the so-called Blue Energy [3].
Osmotic (or Blue) Energy is harvested by mixing two bodies of water with different
saline concentrations. It has been estimated that the transfer of non-salty water found in
the Amazonian river mouth that opens to the Atlantic ocean would generate 1 TW of power
[4], equivalent to the production of 1000 nuclear plants. Although many efforts have been
made to harvest osmotic energy with nanometric porous membranes, their performances are
not good enough to make the technology viable [5]. However, nanotubes made of different
materials, such as Carbon or Boron Nitride, have proved to exhibit giant power densities,

attributed to a high density of electric charges on solid surfaces [6].

The electrokinetic processes at play in Blue Energy harvesting are by nature surface
phenomena, due to the contact between the electrolyte solution and the solid surface [7].
They are enhanced in a situation of confinement down to the nanometric scale and the
key parameters are the electrical (surface charges) and hydrodynamic (liquid slippage at
the interface) boundary conditions. Theories have been developed for the equilibrium and
out-of-equilibrium properties of diluted electrolytes, describing the electrostatic interactions
and the coupled transport in confinement. Even if theories describing systems at equilibrium
are well documented experimentally, in particular by the work of Israelachvili during the

1970s [8], those concerning transport are limited to assuming a state of equilibrium without
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experimental validation of this strong hypothesis. So far, experimental studies focused on
a particular transport coefficient, like electric conductivity or streaming current, providing
inconsistent fitted values for the surface charge [9]. This is why an experimental technique
allowing the simultaneous measurement of static and dynamic properties in nano-confined

electrolytes is needed.

Although micro- and nano-fluidic techniques are commonly used to study liquids in
confinement, they do not offer the possibility of probing the equilibrium properties and of
varying the confinement during an experiment. The dynamic Surface Force Apparatus (dSFA)
at LIPhy, device used in this thesis, does not have these limitations [10]. A liquid is confined
in a sphere-plane geometry and the separation between the two surfaces can be continuously
varied over five orders of magnitude (10 pm to 1 A). A quasi-static approach allows to
measure the force between the sphere and the plane as a function of their separation, including
the electrostatic interaction and the electric boundary condition, i.e., the screening length
and the surface charge. Simultaneously, the oscillation of one surface at a given frequency
generates a drainage flow and gives access to the nanorheology of the liquid, including the
viscosity and the hydrodynamic boundary condition, i.e. the slip length.

The dSFA at LIPhy was built during the thesis work of Garcia [11] and Barraud [12]. As
the atmospheric conditions were not controlled, it was difficult to work with volatile liquids:
evaporation changed the composition of the solution, produced large signal drifts and reduced
the lifetime of an experiment. This is the case with aqueous solutions, the most common
electrolytes on Earth and at the heart of Blue Energy recovery. Therefore, the first objective
of my thesis was to improve the environmental conditions of the experiment, installing an
atmospheric control and a thermal regulation system, and by working accordingly on the
instrumentation of the dSFA to adapt it to the environmental changes. The main modification
was the construction of new interferometers, with compact designs and optimized sensitivities.
The second objective was to conduct experimental campaigns with different saline solutions

and confining surfaces in order to vary the screening length and the surface charge.

The work done during the thesis has been summarized in this manuscript, divided into
three sections:

I. State of the Art (Chapters 1 and 2), presents the electrostatic and electrokinetic
processes in confined electrolytes, and central physical quantities such as the mechanical
impedance and admittance that describe the nanorheology of a fluid confined between a
sphere and a plane with the dSFA.

II. Materials and Methods (Chapters 3 and 4) describes the dSFA’s operating principle,
the improvements made to the instrument and the performances obtained, followed by the

description of the experimental procedure from sample preparation to data treatment.
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III. Results and Discussion (Chapters 5 and 6) presents and proposes first interpretations
of experiments performed with NaCl aqueous solutions of different concentrations and pH,
confined between Borosilicate glass and Boron Nitride coated glass surfaces.

The conclusion summarizes the main results and outlines the perspectives of this thesis

work.
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State of the Art






Chapter 1

Electrolytes in Confinement

Contents
1.1 Equilibrium Properties . . . . . ... ... ... .. 00000, 7
1.1.1 Characterization of the Interface . . . . . . .. ... ... ... ... 8
1.1.2 The DLVO Theory and the Derjaguin approximation . . . . . . . .. 12
1.2 Out-of-Equilibrium Phenomena . . . .. ... ............ 14
1.2.1 Hydrodynamic-Diffusive-Electric Coupling . . . . . . .. . ... ... 15
1.2.2 Example of Electro-Osmosis . . . . . . . . ... ... ... ...... 15
1.3 Openquestions . . . . . . . . . i i i i i i it i i ittt e, 16
1.4 Conclusion .. ... ... i i e e 20
Introduction

In this chapter I will present the physical phenomena involving electrolytes at- and out-of-
equilibrium, and the theories to describe them. I will limit the study in this manuscript
to dilute electrolytes as I have studied them experimentally. They represent the class of
electrolytes used in applications related with osmotic energy harvesting. I will also try to
present the open questions in the field, which motivated my research work presented in this

thesis manuscript.

1.1 Equilibrium Properties

In the vicinity of a charged surface, the distribution of ions in the electrolyte is modified.
This ionic distribution results from electrostatic forces that balance with entropic effects in
solution. To describe this equilibrium state, one can introduce the electrochemical potential

of the ions which, in addition to the traditional contribution of a dilute gas, includes the
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electrostatic energy of the ions within the potential developed from the solid surface. At

equilibrium, the electrochemical potential of the ions is uniform in the solution.

1.1.1 Characterization of the Interface

The contact between an electrolyte solution and a solid surface generally results in a charged
solid-fluid interface, where long-range electrostatic interactions take place between the ions
of the solution and between the ions and the charge supported by the surface. The surface
charge is progressively screened by the counter-ions of the solution, in an interfacial region
which structure and dynamics is governed by a range of physical and chemical processes. A
broadly used model for charged interfaces is the Electric Double Layer (EDL) (Figure 1.1).

The Electric Double Layer

A solid surface can be charged electrostatically. The charging of conductive surfaces (elec-
trodes) is commonly achieved by the application of an electrical voltage with an external
source. In the case of dielectric surfaces, spontaneous charging occurs whether by the dis-
sociation of surface groups, by the adsorption of ions from the solution, by the exchange
of charges from one surface to the other when two different surfaces are very close to each
other [13] etc. The resulting surface charge will be partially screened by an adsorbed layer of
counter-ions (hydrated or partially-hydrated): this is the so-called Stern layer. The screening
of the residual surface charge after the Stern layer is produced by counter-ions which keep a
certain mobility. Their distribution is governed by the thermodynamic equilibrium of the
solution in the vicinity of the charged surface: it is the so-called Diffuse layer. Both the Stern

layer and the Diffuse layer form the EDL model, also called the Gouy-Chapman-Stern model.

Characteristic Lengths

The EDL develops from the solid-liquid interface to the bulk. Electrolytes at the vicinity
of a solid surface or in confinement are first of all a matter of length scale. The Figure 1.2
represents the different length scales that can be found in equilibrium, confinement or flow
situations. Before introducing these different lengths, we can already notice that they are all
under the micrometer. Consequently, it is at the nanometric scale that we can expect surface
or confinement effects for electrolytes.

Let’s start with two lengths not shown on the Figure 1.2. The first length scale is the
Gouy-Chapman length /qc. At this scale, of the order of a tenth of nanometer, the
Coulombic energy between a single charge e and a surface of charge density o is equal to the
thermal energy, so that:

2¢kgT
lac =

(1.1)

elo|
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inner Helmholiz plane
outer Helmholtz plane
slip plane

Qa +— water molecule

- - —
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:
w.f
&
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Figure 1.1 Schematic of the Gouy-Chapman-Stern model of the solid-electrolyte interface,
with the corresponding potential distribution ¥ as a function of the distance z from the wall.
Figure from [14].
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Figure 1.2 Characteristic Lengths. Figure from [7].

where € = ¢pe; is the absolute permittivity equal to ¢g the vacuum permittivity times ¢, the
relative dielectric constant of the medium, kg is the Boltzmann constant, 71" is the temperature,
e is the elementary charge, and o is the surface charge density. The Gouy-Chapman length
depends on the surface charge density, but not on the bulk ion concentration [7].

The second one is the Bjerrum length /5. Physically, the Bjerrum length is the distance
between two charges at which their Coulombic interaction energy equals the thermal energy,

written as:

62

B drekpT
For instance, the Bjerrum length for water at 298 K is equal 0.7 nm.
The Debye length Ap is the characteristic thickness of the Diffuse layer [15]. Qualitatively,

it corresponds to length necessary to screen any charge density fluctuation in the electrolyte:

Ao = |/ = (87C) (1.3)

with C the concentration of ions in the bulk in number of ions per unit volume, in the simplest

(1.2)

case of a single pair of monovalent ions. The Debye length depends solely on the bulk ion
concentration and not of the surface charge. For instance, for an aqueous NaCl solution at
10~* mol/L the Debye length is Ap = 30.4 nm, and for pure water at pH 7, is A\p = 960 nm.

The Dukhin length /p, compares the surface charge effects against volume charge

effects, and it can also be rewritten in terms of Debye and Gouy-Chapman lenghts:

_ ol _ 4%

lpy = —= = B 1.4
Du™02C ™ Yoo (1.4)
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Since it is inversely proportional to the ions density, the Dukhin length can vary in many
magnitude orders. For example in water, ¢p, = 0.1 nm for C' =1 mol/L and ¢p, = 1000 nm
for C = 10~* mol/L.

Poisson-Boltzmann theory

We will describe quantitatively the behavior of an electrolyte near a surface. For this, we
choose a monovalent electrolyte whose concentration far from the surface is noted C'. The
surface is flat and uniformly charged with a surface charge 0. We note z the coordinate
perpendicular to the surface. The problem is then one-dimensional and the physical quantities
only depend on z. We will start by writing the equality of the electrochemical potentials for
the two ion species:

pt = p— = kgT'In(C)

where p4 is the electrochemical potential of cations and p_ is the electrochemical potential

of anions. The electrochemical potentials can be written as follows:
pt = eV (2) + kT In Cy(z)

where V' is the electric potential developed in the electrolyte at z and Cy(z) is the ion

concentration at z. We directly find that the concentrations follow a Boltzmann distribution:

Ci(z) = Ce%:BiVT (1.5)

To access the concentrations and the potential in the electrolyte, we need an additional

equation and for this we will use the Poisson equation from electrostatics:

AV = -2 with p=e(Cp—C) (1.6)
€

When combined, the normalized Poisson-Boltzmann (PB) equation allows to know the
non-dimensional potential ¥ = eV /kpT between the two surfaces:
9w 1
ﬁ = —g Slnh\I’(Z) (17)
where Ap is the Debye length.
In the case of electric potentials such that e |V| < kT, i.e., |V| < 25 mV, the Debye-
Hiickel approximation is applied. The Poisson-Boltzmann equation is linearized (Eq.
1.8):

O’ v

ov ¥ 1.
022 PYS (1.8)
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Solving this equation requires electric boundary conditions. We consider here a simple
configuration, where there is only one surface so that the electric potential reaches zero
at infinite distances (¥(z = oo) = 0), and where a constant surface potential boundary
condition applies (V(z = 0) = ¥g). We obtain the solution of the Debye-Hiickel approximation
presented in Eq. 1.9:

U(z) = U exp ?/Ap (1.9)

which shows that the screening action of the ions in the EDL triggers an exponential decay
of the electric potential. Note that this approximation can be applied for arbitrary large
surface potentials Wy, providing that the distance z considered is large enough, such that
U(z) < 1. In this case, ¥, is an apparent surface potential, obtained by extrapolating the
large distance behavior to the surface.

In the Debye-Hiickel approximation, it can be shown that the repulsive force between two
planar and spherical surfaces, of same surface potential and separated by a distance D, is

due to an excess of osmotic pressure. Its expression can be found in [13]:
Frepulsive = RZA]Sle_D/AD (110)

with Z an interaction constant. For a monovalent 1:1 electrolyte such as NaCl, Z =
64me(kgT/e)? tanh?(eV,/4kpT).
Furthermore, thanks to Grahame equation (1.11), it is possible to relate the surface

potential Vi = %\Ils and the surface charge o, supposing zero electric field in the solid:

o] ) N QkBTln( lo| ) n kgTIn 10
VBeChsT/) ™~ V2T P
for e |Vs| > kT and where pC = —log(C).

2% T
V| = TBasinh( C (1.11)

e (&

1.1.2 The DLVO Theory and the Derjaguin approximation

From the contribution of Derjaguin, Landau, Verwey and Overbeek, the classical theory of
DLVO was formulated, allowing to explain the stability of colloidal solutions. Here I give the
basic ingredients of this theory, considering a sphere-plane geometry.

When two macroscopic solids are separated by an electrolyte, their interaction is the result
of all the pair potentials acting between the molecules and ions involved. The DLVO theory
describes the equilibrium of the attractive van der Waals forces at play between symmetric
surfaces with the repulsive electrostatic interactions due to the surface charge screened by
the counter-ions of the solution: F(D) = F(D)attractive + F(D)repulsive (Figure 1.3).

We have already presented half of the DLVO theory thanks to the electrostatic contribution
to the interaction force presented in the previous section. To finish, I present here the attractive

contribution to the interaction based on van der Waals interactions.
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Figure 1.3 Schematic of the DLVO interaction energy profiles as a function of the distance
between two flat surfaces. Figure from [13].

Derjaguin approximation

The disjoining pressure II(D) is the internal pressure needed to separate or approach two
planar parallel surfaces, which depends on the distance D between them. The integration of
the disjoining pressure gives direct access to the interaction energy by unit of surface W, as
dW(D) _ —TII(D). In realistic configurations with surfaces of finite curvatures, for example a

dD
sphere of radius R and a plane, one has to integrate the pair potential exerted between all

the constituents in order to access the total force F' acting between the surfaces.

However, in the limit R > D Derjaguin showed that [16]:

F(D) = 2rRW (D) (1.12)

Consequently, the equilibrium force F'(D), accessible experimentally between a sphere
and a plane, can be rescaled by 2w R in order to get the interaction energy by unit of surface

W (D) or the disjoining pressure II(D) between equivalent planar parallel surfaces.

van der Waals interactions

Using the Derjaguin approximation, it can be shown that the attractive van der Waals force

between a large-radius sphere R and a flat surface of same materials is equal to:
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AR

T (1.13)

F, attractive — —

where A is the so-called Hamaker constant.

1.2 Out-of-Equilibrium Phenomena

A range of electrokinetic phenomena are known in the colloid literature, from purely dif-
fusive Brownian motion to more complex physical processes involving several couplings
(hydrodynamics, diffusion, electric conduction, etc.).

A simple example is osmosis, the process that occurs when two reservoirs of different ion
concentrations are separated by a semi-permeable membrane: a driving force will push solvent
molecules through the membrane towards the more concentrated region, while retaining
solute ions, and an (osmotic) pressure will be needed to counteract the flow. van ’t Hoff
formulated an equation analogous to the perfect gas law [17], where the solute particles exert

an osmotic pressure in the solution that is equal to:

ATl = kgTAC (1.14)

with AC' the solute gradient between reservoirs.

Figure 1.4 illustrates for example how diffusion and osmosis can provoke the displacement
of ions or solvent molecules. Transport can be induced by purely electric, diffusive or
hydrodynamic effects, and also by couplings of these effects. Identifying the multiple forces
acting on the solvent and the solute is the key for understanding the subtle phenomena
of osmosis and its derivatives, diffusio-osmosis and electric-osmosis processes from which
breakthrough applications in different domains have been found in the last decades [18], [4],
[19].
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Figure 1.4 Schematics of diffusion versus osmosis, based on [20]. On the left, the displacement
of solute ions is governed by diffusion, while on the right, the solvent is pushed through the
membrane by osmosis towards the more concentrated region.
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1.2.1 Hydrodynamic-Diffusive-Electric Coupling

Mazur and Overbeek [21] used a capillary containing an electrolyte solution to prove a series
of relations between electrokinetic phenomena, such as electro-osmosis. These are Onsager
relations, in the context of electrolytes near charged surfaces. More recently, Brunet and
Adjari adapted them for any type of geometry, as a form of a symmetric transport matrix
[22].

The transport matrix compiles the irreversible processes that relate the transport in
electrolytes to three different origins (Figure 1.5). A hypothesis of linearity is made to
proportionally reciprocate flows and fields for systems near thermodynamic equilibrium.
The diagonal coeflicients in the matrix relate respectively: a pressure gradient —V P to a
hydrodynamic flow @, an electric potential gradient —VV to an electrical current I and
a concentration gradient —VC' to a diffusive flux J — CQ. The anti-diagonal coefficients

represent the diffusio-osmotic, electro-osmotic, and diffusio-electric couplings respectively.

e Diffusio- Electro- .

Q Fermeability osmotic flow osmotic flow VP
Excess flux Excess flux

J-C Q = under Diffusion under x| =VC
pressure electric field

I Streaming 8;?:::% Electric —N/ V
ion current . conductance

ion current

Figure 1.5 Transport matrix, with colors indicating symmetric terms. Image adapted from
[20].

Modeling these couplings is very important for application of osmotic energy harvesting.
For instance, the matrix can be used to characterize microfluidic geometries and improve
the efficiency of new devices for energy conversion, or to help understanding the influence of

parameters such as surface charge and zeta potential in the aforementioned applications.

1.2.2 Example of Electro-Osmosis

When a solution is in contact with a charged solid surface and subjected to an electric field
parallel to the surface, the motion of the non-electrically neutral Diffuse layer at the interface
near the surface will create a flow of solvent parallel to the solid, by a so-called electro-osmotic
process (Figure 1.6).

Starting from Stokes equation in the absence of a pressure gradient, we have the expression
1.15:

d?v
T]@ + peE =0 (115)
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where E is the applied electric field parallel to the surface (direction z), pe is the charge
volume density, v is the fluid velocity in direction z, z is the distance to the surface and 7 is
the fluid viscosity.
The charge volume density is given by the Poisson equation as:
d?v Pe
d22 e

where V is the electrostatic potential. The Stokes equation can be integrated twice with two

(1.16)

boundary conditions: a plug-like flow far from the surface (0v/0z|,_. = 0), and a Navier
slip boundary condition at the wall (b dv/0z|,_, = v(z = 0)) with a slip length b (more
details in Chapter 2). The velocity profile is given in Equation 1.17:

o(z) = %E(V(z) e (1.17)

where ( is the value of the potential at the point where the velocity vanishes. ( is an
important parameter associated with transport properties of the electrolyte. It can reasonably
be assumed that its value is close to the surface potential, at least for a no-slip boundary
condition. As illustrated in Figure 1.6, the velocity of the fluid flow is proportional to the
electric field in the EDL, but far from the surface the electro-osmotic flow it reaches an
asymptotic value. Far from the surface (z = 00), the electric potential cancels out, and we
get the electro-osmotic velocity vgo first formulated by Smoluchowski [23]:
oo = 2B (1.18)
n
This expression reflects the balance between the electric force driving the fluid and the
viscous force opposing its motion.

In the Debye-Hiickel approximation, it can be shown that the boundary parameters can
be related by:

¢ =Vi(14+b/Ap) (1.19)

1.3 Open questions

Boundary Properties: Surface Charge and Zeta Potential

Based on the physical phenomena discussed in this chapter, I present here the main questions
that will try to answer during my thesis.

We have seen that the Surface Charge o intervenes in the characteristic lengths, which
suggests that this parameter has a strong influence on the statics and dynamics of electrolyte

solutions in confinement. In fact, it has been shown that surface charge can dominate electric
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Figure 1.6 Schematic of electro-osmotic transport. A force F, = p.F is applied to the diffuse
layer, created from an electric field ¥ and a density of ions p.. By viscosity, the motion of
ions drive the entire fluid.

transport in nanofluidic devices for solutions at low salt concentration [24]. Static surface
charge can be measured by several different techniques, like potentiometric titration, UV
spectometry or neutron reflectivity [25]. For instance, in Figure 1.7 we show measurements of
the surface charge of silica for different concentrations of KCl solutions, obtained by acid-base
titration [26]. However, it is often necessary to combine experimental and simulation results
to understand all surface-charge-related properties of liquid-solid interfaces [9].

Indeed, one single parameter cannot explain all the interfacial properties. Another
important parameter that can also be determined experimentally is the Zeta Potential (.
It results from the distribution and flow of ions near the charged surface, and depends on the
pH and ionic concentration of the solution [27]. It corresponds to the electric potential V'
at the shear (or no-slip) plane, and it is a priori different from the surface potential. The
results compiled by Kirby [28] from electrokinetic measurements, represented in Figure 1.7,
are consistent with those obtained by other techniques, such as Total Internal Reflection
Fluorescence microscopy (TIRF) performed on microfluidic channels [29]. They provide a
clear view of the dependence of the zeta potential as a function of ion concentration. A linear
dependence of ( is observed as a function of pC = -log(C) with C' the ion concentration.

¢ is a quantity that depends on both static (distribution of charges) and dynamic (flow)
properties. There are various technical constraints to measure static and dynamic properties
onto the same sample. Thanks to Grahame equation (section 1.1.1) the electrostatic potential
can be related to the electrokinetic surface charge, thus obtaining a dynamic measurement of

o. However, values of static surface charge (obtained by the measurement of electrostatic
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Figure 1.7 On the left, dependence of surface charge density on the pH of the solution, as
a result of titration measurements for different concentrations of KCI on SiOg surfaces [26].
On the right, results of electrokinetic measurements show dependence of zeta potential on
ion concentration [28].

surface potential) are not always consistent with those found in transport measurements
(from electrokinetic couplings) [9]. This discrepancy can be related to contributions from
the solid surface, the nature of the charge or the ion mobility. Once transport properties
are added into the question, the complexity of the system is higher and requires support of
modeling [30].

Electric and Hydrodynamic Boundary Conditions

The surface charge, equilibrium quantity, and the  potential, transport quantity, are two
different physical parameters related as electrical boundary conditions. It is tempting to
link them and, for lack of a better term, the Grahame equation is often used for this link.
As a surprising example, we would like to give a comparison of two experiments. Current
monitoring experiments [31] done on glass with a 0.1 mol/L KCI solution give a ¢ potential
equal to 90 mV which corresponds, using the Grahame equation, to a surface charge of
2 mC/m?. Conductivity measurements on an identical system give a surface charge of
60 mC/m?[24]. We are facing a major problem: either the surface charge strongly dependsy
on the flow or the transport measurements lack a theoretical support to interpret the results
correctly. And it is even more difficult if we include the hydrodynamic boundary condition
on which the ¢ potential depends.

The Grahame equation can relate these two parameters, but a choice must be made:

whether to take the boundary condition at the non-slip plane (as seen in Figure 1.1 for the ¢
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potential) or at the solid surface (as for the surface potential V). If we choose the latter, the
surface charge must be considered, but how to define it?

In most cases, neither the surface charge nor the surface potential stay constant as the
solution conditions change. Surface charge is not always fully dissociated, but it can also
be partially neutralized by the binding of ions from the solution. Even for globally neutral
surfaces, there could be patches of high local charge density. An independent measurement
of the surface potential might be needed to validate the assumption of a constant potential,
or if another EDL model needs to be considered, such as charge regulation [13].

Furthermore, ¢ and o play a major role in interfacial phenomena such as slippage. When
there is no slippage, the ¢ potential and the surface potential values might be very similar
[29]. However, the larger the slippage, the larger the difference between these values. Most
experiments on ion transport assume no slip, but do not measure it [31]. As well, there is no
experimental evidence concerning the correct application of Grahame equation very close to
the wall. Ideally, it would be necessary to measure simultaneously the slippage, in order to
know where the non-slip plane is located.

Slippage has proven to amplify the values of zeta potential. Bouzigues measured by
Total Internal Reflection Fluorescence (TIRF) the velocimetry profiles of nanoparticules in
nanochannels [32]. The experimental data showed a good agreement with the theoretical
expressions, both in the hydrophilic and hydrophobic cases (Figure 1.8). In the same way,
Silkina showed by numerical simulations that electro-osmotic flows in carbon nanotubes
and graphene nanoslits were enhanced in thin and thick channels by partial hydrodynamic

slippage (and a possible combined effect of partial mobility of adsorbed surface charges) [33].
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Figure 1.8 On the left, experimentally measured electro-osmotic velocity profiles for hy-
drophobic OTS (blue squares) and hydrophilic glass (red circles). Dashed lines are fits to the
theoretical predictions, with slip lengths of b = 38 6 nm and b = 0 £ 10 nm respectively [32].
On the right, results of simulations of electro-osmotic velocity profiles, for a thick (open circles
with under dashed lines) and a thin (dashed lines) channel configuration. The theoretical
curves were plotted with a constant surface charge boundary condition, for pub = 100 nm
(green lines) and pb = 0 nm (blue lines), where p is the lateral mobility of surface anions in
response to the external electric field E [33].
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For a better understanding of the situation, it seems essential to measure the electrical
and hydrodynamic boundary conditions separately. For this reason, it is unavoidable to
measure the equilibrium and hydrodynamic transport properties independently. We could
then, without any ambiguity, have the values of the surface charge, the surface potential, and
the hydrodynamic slip. These experiments could help to better understand the link between

surface charge and ( potential, beyond the use of Grahame equation.

1.4 Conclusion

In this chapter, I briefly described the existing models for the equilibrium and transport
properties in confined electrolytes. These models have been exploited but never experimentally
validated, because they require simultaneous measurement of equilibrium and transport
properties, in particular the electrostatic (surface charge) and hydrodynamic (slip) boundary
conditions.

To our knowledge, no experiment allows to carry out these equilibrium and transport
measurements simultaneously. The work I present here is a first step in this direction, based
on the instrumental development of the Surface Force Apparatus.

The Surface Force Apparatus (SFA) was originally designed for equilibrium measurements.
Over time however, Chan [34], Israelachvili [35], Tonck [36], Restagno [37], and Garcia [10]
built dynamic Surface Force Apparatus (dSFA), allowing simultaneous dynamic measurements
and quantitative determination of the boundary conditions. Therefore I employed the dynamic
Surface Force Apparatus during my thesis, in order to achieve a better understanding of the

physics of confined electrolytes.
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Introduction

This chapter proposes a theoretical description of the dynamic mechanical properties of simple
fluids which are confined between a sphere and a plane down to the nanometric scale. The
notions of viscosity, slip boundary condition and elastic response of the confining surfaces are
recalled. We introduce the concept of mechanical impedance, a central physical quantity for
the interpretation of the experiments performed during my thesis with the dynamic Surface
Apparatus (dSFA).

2.1 Mechanical Impedance and Admittance

When two solid surfaces, a sphere and a plane, are approached one towards the other, a
pressure field builds up in the surrounding fluid. This translates into a normal force Fiq
that is exerted between the surfaces and depends on the distance Dy that separates them
(Figure 2.1). If the motion actually involves an harmonic oscillation hgyn cos(wt + ¢pr) at

frequency w/2m around a quasi-static position D with hqyn < D, the oscillating pressure
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field in the fluid creates an oscillatory flow. In the framework of the linear response of
the system, distance and force can be described by a quasi-static component {D, F'} and a
dynamic component {hgyn cos(wt + @x), fayn cos(wt + @)}, resulting in Equations 2.1 and
2.2 respectively.

Figure 2.1 Schematic of the principle of the dynamic Surface Force Apparatus. An oscillation of
the distance between a sphere and a plane around its quasi-static value induces a proportional
force response between the surfaces. The drainage of the fluid is illustrated, with ¢ the
velocity profile of the flow and e(r) the thickness of the fluid film at a radial distance r.

Diot = D + hgyn cos(wt + pp) = D + D‘ie[hdynej(wH‘PH)] (2.1)
Fiot = F + fdyn COS(Wt + (PF) =F+ Z‘y}‘e[fdynej(“)t-HpF)] (2'2)

The dynamic component of the force has an amplitude proportional and a phase shifted
compared to the dynamic component of the distance. Using complex formalism, we can

define the complex mechanical impedance Z, first introduced by Israelachvili [35]:

Z(w,D)=27"+jz" = fﬁﬂeﬂ'(w—%"ﬂ (2.3)
yn

This physical quantity describes the linear mechanical response of the system, in terms of
in-phase, conservative contribution (real part Z’) and out-of-phase, dissipative contribution

(imaginary part Z”). We can also define the mechanical admittance as:

1
Y. D) =Y +5Y" =~ (2.4)

Qualitatively, the mechanical impedance is more convenient to manipulate when the

different physical mechanisms at play involve additive forces, whereas the mechanical admit-



2.2 Case of non-deformable and non-slippery surfaces 23

tance is preferable when these mechanisms involve additive displacements. Throughout this
chapter, I will employ one or the other, and the reasons for each choice will be discussed

accordingly.

2.2 Case of non-deformable and non-slippery surfaces

We position ourselves in the classical framework of continuum hydrodynamics, supported by
the work of Bocquet and Charlaix [7] who showed how various experiments and simulations
on simple fluids proved the validity of Navier-Stokes equations for confining distances down
to ~ 1 nm. We assume the following hypotheses for the flow between the sphere and the

plane:

a Newtonian fluid, meaning that the shear stress 7(r, z) is proportional to the velocity

gradient in the direction normal to the flow with a proportionality factor given by the

dynamic viscosity 7, i.e., 7(r,2) = 7]%12,

e an incompressible flow,

e lubrication conditions, with a distance much smaller than the sphere radius of the
sphere D < R,

o negligible gravity effects,

negligible non-stationary effects.
We add other hypotheses to start with the simplest case:
¢ non-deformable confining surfaces,

e a no-slip boundary condition, namely a tangential velocity of the flow is zero at the

walls: v,(r, 2 =0) = v.(r, 2 = e(r)) = 0.

From the previous hypotheses, we know that the flow between the sphere and the plane
is described by the Stokes equation and is of Poiseuille type. By integrating the pressure

gradient, we show that the pressure P(r) is then written:

_ 377]%,5t0t

P(T’) = PQ 6(T)2

(2.5)
where Py is the pressure far from the confinement zone and e(r) is the thickness of the
fluid film at the distance r from the apex of the sphere. The pressure is maximum on the
axis of symmetry where e(r) is minimum. Since D < R, we can approximate the sphere

profile by a parabola e(r) &~ D + r?/2R. The pressure field decreases when the thickness e(r)
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increases and it is reduced by a factor of 10 on a lateral extension = 1/(v/10 — 1)2RD. The

associated velocity profile reads:

3Dtot7'
UT(Ta Z) == 6(?")3 2(6(7“) - Z) (26)
The radial velocity is zero at the walls, and reaches its maximum value v, max = — % %%
when z = e(r)/2 and r = V2RD. The shear stress can be deduced as:
37]Dt0t7"
T(r,z) = —W(e(’r) —22) (2.7)

The modulus of the shear stress is maximum at the walls and r = \/2RD/3, where it is

35/2 Dyt VR
o772 p3/2 -

In Figure 2.2 the characteristics of the drainage flow are illustrated: the velocity, pressure

equal to |Tmax(r, 2)| =

and shear stress profiles. These three quantities decay on the lateral direction on a typical
lengthscale ~ v2RD, giving rise to the concept of fluid probe, introduced by Leroy and
Charlaix [38, 39]. Measuring the viscous flow in such geometry of confinement allows to
probe the mechanical properties of the system composed of the fluid and the confining solids,
without direct contact between them, on a scale ~ v2RD.

Figure 2.2 Schematic of the principle of the fluid probe, showing the velocity, pressure and
shear stress profiles.

Integrating the pressure field over the surface of our probe, we obtain the total Reynolds

force acting between the surfaces, of purely viscous origin :

6mnR2D o
Ftot,Rey = _% (28)
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Strictly speaking, the quasi-static component of the total force contains a viscous contri-

bution because of the drainage flow at velocity D, given by the Reynolds force:

6mnR2D

p (2.9)

FRey:_

which is repulsive (taken positive) upon approach and attractive (taken negative) upon
retraction.

The dynamic component of the total force contains a viscous contribution because of the
oscillatory flow at velocity —whayn sin(wt + ¢p) = Re[jwhayne’ (@ten)] | corresponding to a
Reynolds impedance:

6w R?
ZRey(w7 D)= JUT

The mechanical impedance is purely imaginary, and is inversely proportional to the

(2.10)

distance between the surfaces. As proposed by Georges et al. [40] and Tonck et al. [36],
looking at the inverse quantity is convenient when analyzing experimental data to define the

position of the no-slip plane (the hydrodynamic zero). The Reynolds admittance reads:

D

Yoy, D) =T o

(2.11)

which has only an imaginary component that varies linearly with the distance between the

surfaces.

2.3 Case of partially slippery surfaces

As supposed since Bernoulli in 1738 [41], the velocity of a fluid is often considered to be zero
at solid boundaries for macroscopic flows, namely a no-slip boundary condition is applied.
However as the fluid is confined, it becomes evident that the velocity at solid boundaries is
not necessarily zero. It was actually Navier in 1823 [42] who formulated this hypothesis: the
tangential velocity of the fluid could be non-zero at the wall, based on the continuity of the
tangential stress (Eq. 2.12). The viscous shear stress in the fluid is balanced by the friction

stress exerted by the solid on the fluid, as:

vy
" 0z

where 7 is the fluid dynamic viscosity and A is a solid friction coefficient.

o A (z = 0) (2.12)

A length-scale emerges from this (Navier) partial slip boundary condition: the slip length
b =n/\. This length characterizes the slippage and corresponds to the distance from the

wall at which the linear extrapolation of the velocity profile cancels out:

e a zero slip length means a no-slip boundary condition,
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o a positive slip length locates the no-slip plane in the solid,

e and a neg