
HAL Id: tel-04291048
https://theses.hal.science/tel-04291048

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications of AI to study of finite algebraic structures
and automated theorem proving

Boris Shminke

To cite this version:
Boris Shminke. Applications of AI to study of finite algebraic structures and automated theorem
proving. Artificial Intelligence [cs.AI]. Université Côte d’Azur, 2023. English. �NNT : 2023COAZ4058�.
�tel-04291048�

https://theses.hal.science/tel-04291048
https://hal.archives-ouvertes.fr

Applications de l’IA à l’étude des structures

algébriques finies et à la démonstration

automatique de théorèmes

Boris Shminke
Laboratoire Jean Alexandre Dieudonné (LJAD)

Présentée en vue de l’obtention

du grade de docteur en mathématiques

d’Université Côte d’Azur

Dirigée par : Carlos Simpson

Soutenue le : 01/09/2023

Devant le jury, composé de :

David Alfaya Sánchez, Assistant Professor, Universidad

Pontificia Comillas

Kevin Buzzard, Professor, Imperial College London

Mai Gehrke, Directrice de recherche, Université Côte d'Azur

Moa Johansson, Associate Professor, Chalmers University

Laura Kovács, Professor, Vienna University of Technology

Carlos Simpson, DR, Université Côte d'Azur

Martin Suda, Senior Researcher, Czech Technical University

in Prague

Applications de l’IA à l’étude des structures algébriques finies
et à la démonstration automatique de théorèmes

Jury :

Présidente du jury :

Laura Kovács, Professor, Vienna University of Technology

Rapporteurs :

Kevin Buzzard, Professor, Imperial College London

Martin Suda, Senior Researcher, Czech Technical University in Prague

Examinateur·rice·s :

Mai Gehrke, Directrice de Recherche, Université Côte d’Azur

Moa Johansson, Associate Professor, Chalmers University

David Alfaya Sánchez, Assistant Professor, Universidad Pontificia Comillas

Directeur de Thèse :

Carlos Simpson, Directeur de Recherche, Université Côte d’Azur

2

Applications de l’IA à l’étude des structures algébriques finies
et à la démonstration automatique de théorèmes

Résumé

Cette thèse contribue à une recherche de modèles finis et à la démonstration automa-
tisée de théorèmes, en se concentrant principalement, mais sans s’y limiter, sur les méth-
odes d’intelligence artificielle. Dans la première partie, nous résolvons une question de
recherche ouverte à partir de l’algèbre abstraite en utilisant une recherche automatisée
de modèles finis massivement parallèles, en utilisant l’assistant de preuve Isabelle. À
savoir, nous établissons l’indépendance de certaines lois de distributivité abstraites dans
les binaires résiduels dans le cas général. En tant que sous-produit de cette découverte,
nous apportons un client Python au serveur Isabelle. Le client a déjà trouvé son ap-
plication dans les travaux d’autres chercheurs et de l’enseignement supérieur. Dans la
deuxième partie, nous proposons une architecture de réseau neuronal génératif pour
produire des modèles finis de structures algébriques appartenant à une variété donnée
d’une manière inspirée des modèles de génération d’images tels que les GAN (réseaux
antagonistes génératifs) et les autoencodeurs. Nous contribuons également à un paquet
Python pour générer des semi-groupes finis de petite taille comme implémentation
de référence de la méthode proposée. Dans la troisième partie, nous concevons une
architecture générale de guidage des vérificateurs de saturation avec des algorithmes
d’apprentissage par renforcement. Nous contribuons à une collection d’environnements
compatibles OpenAI Gym pour diriger Vampire et iProver et démontrons sa viabilité sur
des problèmes sélectionnés de la bibliothèque TPTP (Thousand of Problems for Theo-
rem Provers). Nous contribuons également à une version conteneurisée d’un modèle
ast2vec existant et montrons son applicabilité à l’incorporation de formules logiques
écrites sous la forme clausal-normale. Nous soutenons que l’approche modulaire pro-
posée peut accélérer considérablement l’expérimentation de différentes représentations
de formules logiques et de schémas de génération de preuves synthétiques à l’avenir,
résolvant ainsi le problème de la rareté des données, limitant notoirement les progrès
dans l’application des techniques d’apprentissage automatique pour la démonstration
automatisée de théorèmes.

Mots clés : intelligence artificielle, démonstration automatique de théorèmes, struc-
tures algebriques finies

3

Applications of AI to study of finite algebraic structures and
automated theorem proving

Abstract

This thesis contributes to a finite model search and automated theorem proving, focus-
ing primarily but not limited to artificial intelligence methods. In the first part, we solve
an open research question from abstract algebra using an automated massively parallel
finite model search, employing the Isabelle proof assistant. Namely, we establish the in-
dependence of some abstract distributivity laws in residuated binars in the general case.
As a by-product of this finding, we contribute a Python client to the Isabelle server. The
client has already found its application in the work of other researchers and higher
education. In the second part, we propose a generative neural network architecture
for producing finite models of algebraic structures belonging to a given variety in a
way inspired by image generation models such as GANs (generative adversarial net-
works) and autoencoders. We also contribute a Python package for generating finite
semigroups of small size as a reference implementation of the proposed method. In
the third part, we design a general architecture of guiding saturation provers with re-
inforcement learning algorithms. We contribute an OpenAI Gym-compatible collection
of environments for directing Vampire and iProver and demonstrate its viability on se-
lect problems from the Thousands of Problems for Theorem Provers (TPTP) library.
We also contribute a containerised version of an existing ast2vec model and show its
applicability to embedding logical formulae written in the clausal-normal form. We ar-
gue that the proposed modular approach can significantly speed up experimentation
with different logic formulae representations and synthetic proof generation schemes
in future, thus addressing the data scarcity problem, notoriously limiting the progress
in applying the machine learning techniques for automated theorem proving.

Keywords: artificial intelligence, automated theorem proving, finite algebraic struc-
tures

4

Acknowledgements

My research leading to this thesis will not be possible without input from many peo-
ple, and I use this page to say thanks to my wife Sveta, who supported me every time I
needed it and unconsciously hinted at one of the key ideas; Édouard Balzin for initiating
an innocent side project that resulted in writing this thesis; Carlos Simpson for supervis-
ing my look for the truth non-pervasively but consistently; Wesley Fussner for showing
me the beauty of quantum logic models and directing me towards a crackable problem;
Anthony Bordg for suggesting to try Nitpick for cases where MACE4 failed; Jean-Marc
Lacroix for fighting processes in uninterruptible sleep spawned as by-products of my
scripts running on the lab servers; Fabian Huch for becoming the first unaffiliated user
of isabelle-client; Martin Suda, whose adherence to open-source software principles
helped me understand much better, co k čemu; Michael Rawson for showing an exam-
ple and encouraging me to undertake the most breathtaking experiments; Zacharaya
Shabka for sharing his experience in graph neural networks for reinforcement learn-
ing; Athanasios Vasileiadis for questioning why my algorithms should work in the first
place, particularly when I was sure they did; Zsolt Zombori for reanimating FLoP code
for me; Konstantin Korovin for adding new features to iProver to facilitate my experi-
ments; Ali Ballout for helping me discover semantic representations of logic formulae.

I am also grateful to people who did not contribute to my research directly but
made other parts of my studies much brighter. I bow to: Clara Salaun for breaking a
stereotype of slow French bureaucracy; Najwa Ghannoum for taking me through the
PhD candidate survival guide and looking after Scott; Maryse De Micheli for guiding me
along the rocky road of being a French language learner and always finding something
to praise, even when I was not that sure I was doing well; Vivien Lake for helping me
not to get mad while teaching Master students; Mehdi Zaïdi for persuading me that
there is life after thesis.

I thank Kevin Buzzard for writing a report on this thesis and Mai Gehrke, Laura
Kovács, Moa Johansson, and David Alfaya Sánchez for serving as jury members for its
defence.

This work has been supported by the French government, through the 3IA Côte
d’Azur Investments in the Future project managed by the National Research Agency
(ANR) with the reference number ANR-19-P3IA-0002. Part of this work was performed
using HPC resources from GENCI-IDRIS (Grant 2021-AD011013125).

Finally, I bring my anonymised but sincere gratitude to all others who made my
journey, if not always enjoyable, but at least not always impossible.

5

6

Contents

1 General introduction 1

2 Artificial Intelligence for Model Search of Finite Algebraic Structures 3
2.1 Basic algebraic structures . 4
2.2 Residuated Algebraic Structures . 5
2.3 One Previously Open Problem . 7
2.4 Python client for Isabelle server . 10

2.4.1 General description . 10
2.4.2 Usage example . 11

2.5 Software solution architecture . 12
2.5.1 General description . 12
2.5.2 Theory templates generation . 13
2.5.3 Storing and postprocessing the finite models 14
2.5.4 Found models verification . 14

2.6 Conclusion and future work . 14

3 Neural Networks for Model Generation 17
3.1 Additional algebraic notions . 18
3.2 Deep Learning Basics . 19

3.2.1 Why use deep learning and how . 19
3.2.2 Autoencoders . 20
3.2.3 Deep adversarial networks . 21

3.3 Generating algebraic structures with deep learning networks 22
3.3.1 Similar tasks . 22
3.3.2 Denoising as a simpler task . 22
3.3.3 Suitable neural network type . 22
3.3.4 Training data . 23
3.3.5 Non-unique ground truth . 23
3.3.6 Loss function . 24

3.4 Experiment setup . 25
3.4.1 Data representation . 25
3.4.2 Network architecture . 26
3.4.3 Loss functions . 27
3.4.4 Noise . 28

7

3.4.5 Training and testing datasets . 28
3.4.6 Quality metrics . 29
3.4.7 Training process . 29
3.4.8 Experiment results . 29

3.5 Conclusion and future work . 30

4 Reinforcement Learning for Automated Theorem Proving 33
4.1 Automated reasoning basics . 33

4.1.1 Interactive and automated theorem provers 33
4.1.2 First-order logic and Clausal Normal Form 34
4.1.3 Given clause algorithm . 35
4.1.4 Deductive systems . 37
4.1.5 Hints and proof sketches in saturation provers 38
4.1.6 TPTP language . 38

4.2 Reinforcement learning basics . 41
4.2.1 Reinforcement learning glossary and Markov Decision Processes . 41
4.2.2 Observation as state representation . 42
4.2.3 Sparse rewards and parametric actions 42
4.2.4 Multi-armed bandits . 43

4.3 Machine learning guided automated reasoning 44
4.3.1 Related work and software architecture choices 44
4.3.2 A saturation prover as an RL task . 45
4.3.3 A saturation prover as a multi-armed bandit 47

4.4 gym-saturation . 47
4.4.1 General description . 47
4.4.2 Usage examples . 48
4.4.3 Architecture . 49
4.4.4 Implementation details . 50
4.4.5 Release history and lessons learned . 51

4.5 Conclusion and future work . 53

5 Generic Reinforcement Learning Prover 55
5.1 RL-guided prover architecture . 56

5.1.1 Short overview of existing solutions . 56
5.1.2 Prover-agnosticity . 57
5.1.3 On representations . 57
5.1.4 Original RL algorithm implementations 58

5.2 Representation subsystem . 58
5.2.1 Existing first-order formulae representations and related projects . 58
5.2.2 ast2vec and our contributions to it . 58
5.2.3 Latency considerations . 59

5.3 RL algorithm . 60
5.3.1 Proximal Policy Optimisation . 60
5.3.2 Motivation for choosing PPO . 62

5.4 RL-guided ATP evaluation . 64
5.4.1 Episode truncation conditions . 64
5.4.2 What to expect from ML guidance . 65

5.5 Experiments . 66
5.5.1 Software and hardware . 66

8

5.5.2 Data . 66
5.5.3 Algorithm meta-parameters and random baseline 69
5.5.4 Experiment results . 70
5.5.5 Experiment results: answers . 71
5.5.6 Experiment results: questions . 72

5.6 Multi-task RL . 73
5.6.1 Existing evaluation protocols . 73
5.6.2 Multi-task and meta-reinforcement learning 73
5.6.3 Meta-learning in pairs experiment . 74
5.6.4 Meta-learning experiment results . 75

5.7 Why have so many moving parts . 75
5.8 Conclusion and future work . 76

A Details of ast2vec representation 79

9

10

List of Figures

1 A Hasse diagram of the minimal non-distributive modular lattice. 5
2 A Hasse diagram of the minimal non-modular lattice. 5
3 Lattice reduct of counter-examples . 8
4 Python client interaction with Isabelle server 11

5 Klein Vierergruppe . 18
6 Different semigroups arising from the same partially filled table 23
7 A typical GAN training pipeline . 24
8 A possible generative network for algebraic structures 24
9 A typical denoising autoencoder training pipeline 25
10 A novel generation process for algebraic structures 25
11 Translating a multiplication table into a partially filled one 26
12 Autoencoder architecture used to generate Cayley tables 27

13 gym-saturation wrapping Vampire . 49
14 gym-saturation interacting with iProver . 50

15 gym-saturation communication with ast2vec 59

16 An example of a Python AST . 80

11

12

CHAPTER 1

General introduction

Search for answers on the perennial quest
Where dreams are followed, and time is a test

Chuck Schuldiner, “Symbolic”, 1995

I first learnt that computers could prove theorems when I was around twelve. A
couple of years before entering the university, reading a Russian translation of one of
Gottfried Wilhelm Leibniz’s works brought to my attention the idea that some things,
about which people often vividly argue, one can compute by applying a suitable calcu-
lus. I passed my university courses on mathematical logic with no particular interest
because they were too dry and “applied” (translated into too many computations and a
desperate lack of their meaningfulness). In parallel, during one of the summer holidays,
I read a book on logic [31] “for humanity students”, but an unorthodox one (at least, for
Russian humanities departments), balancing between mathematical technicalities and
philosophical discourse. This book only amplified my calculemus attitude, which prob-
ably crystallised when I learnt how to formalise mathematics in Mizar [44] shortly after
my graduation. Soon after a paper [117] with my Mizar formalisation appeared, I moved
on to a still booming “next big thing”: artificial intelligence (AI). After working in the
private sector and applying AI in entertainment and banking for five years, I could not
imagine myself doing something as “impractical” as good old calculemus again. Even
less can I express how happy I am I did.

I describe my journey in the following four chapters: the first two deal with appli-
cations of artificial intelligence to the study of finite algebraic structures, and the last
two — with its applications to automated theorem proving.

In Chapter 2, we apply artificial intelligence in a more general sense (not including
machine learning) to generate finite algebraic structures and partly solve a previously
open problem in abstract algebra.

In Chapter 3, we talk about machine learning in general and deep learning in partic-
ular and contribute a novel deep neural network architecture to generate finite models
of algebraic structures.

In Chapter 4, we dive into reinforcement learning and automated theorem proving
and contribute an environment for training agents to prove theorems in different calculi.

In Chapter 5, we contribute a proof of concept of a generic reinforcement learning

1

2 Chapter 1. General introduction

prover of micro-service architecture. We also report the experimental results demon-
strating the viability of our architecture and its ability to generalise in a meta-learning
sense. Since I worked alone on this project and not for the total timespan of my studies,
I did not target to build a competition-ready prover but to “use RL as a research tool to
further our understanding of proof search dynamics” [72].

CHAPTER 2

Artificial Intelligence for Model Search of Finite Algebraic Structures

This chapter describes a collaborative project of applying artificial intelligence tools
to finite algebraic structures studies. We published the main result (a solution to an
open research problem in abstract algebra) as a short peer-reviewed paper [34] at an
international conference. To get this result, the thesis author contributed an open-
source software package [114], two consecutive versions of which were peer-reviewed
and published ([68] and [64]) in the international conference proceedings. In addition,
the thesis author submitted a pre-print [113] of a fuller package description.

Being funded by the Interdisciplinary Institute for Artificial Intelligence, this thesis
author sees collaborations with mathematicians like this one as an integral part of his
mission. Coming from private sector research, he knew that many domains could
benefit from applications of novel software solutions, that one can automate many un-
likely tasks for the benefit of all, and that artificial intelligence techniques need not be
high-end (or even include machine learning) to be fruitful. We started this ingenuously
interdisciplinary project on a what-if basis without guarantees that our approach might
bring any noteworthy results. Nevertheless, we managed to make the machine help
mathematicians in their work.

Outline of the chapter:
In Section 2.1, we recall definitions for the well-known algebraic structures for the

convenience of an artificial intelligence practitioner who might not deal with them daily.
In Section 2.2, we remind definitions of more specific algebraic structures of partic-

ular interest for the project, which we will use throughout this chapter.
In Section 2.3, we introduce the problem we managed to solve using artificial intel-

ligence tools and communicate the main mathematical result of the project.
In Section 2.4, we describe a specialised software package developed by the thesis

author as his contribution to the project.
In Section 2.5, we detail the software architecture we used to arrive at the solution.

3

4Chapter 2. Artificial Intelligence for Model Search of Finite Algebraic Structures

Finally, in Section 2.6, we discuss the consequent and possible future development
of created software and its applications outside the original project. We also reflect on
lessons learned from the project and potentially fruitful directions of research related
to ours.

2.1 Basic algebraic structures

Definition 2.1 (Binar). A binar (A, ·) is a set equipped with a single binary operation
with no other properties imposed. A binar is often called magma and sometimes — a
groupoid.

Definition 2.2 (Semigroup). A semigroup (A, ·) is a binar (see Definition 2.1) in which
a binary operation (usually called multiplication) is associative, i.e. for all x, y, z ∈ A:

x · (y · z) = (x · y) · z (2.1)

Remark 2.3. If a binary operation · satisfies an equation x · y = y · x, we talk about a
commutative operation, and so of a commutative binar or a commutative semigroup.

Definition 2.4 (Monoid). A monoid (A, ·, e) is an algebraic structure where (A, ·) is
a semigroup (see Definition 2.2) and an element e ∈ A (called identity) satisfies the
following axioms for all x ∈ A:

e · x = x (2.2)

x · e = x (2.3)

Example 2.5. A prominent example of a (non-commutative) monoid in computer sci-
ence is a set of string variables with the concatenation operation and an empty string
as an identity.

Definition 2.6 (Lattice). A lattice (A,∧,∨) is a set equipped with two binary operations,
meet ∧ and join ∨, such that (A,∧) and (A,∨) are both commutative semigroups (see
Definition 2.2), and the two following so-called absorption laws hold (for all x, y ∈ A):

x ∧ (x ∨ y) = x (2.4)

x ∨ (x ∧ y) = x (2.5)

Remark 2.7. One can view every lattice can as a partially ordered set with an order
relation ≤ defined as

x ≤ y ⇐⇒ x ∧ y = x (2.6)

Definition 2.8 (Distributive Lattice). A distributive lattice (A,∧,∨) is a lattice (see Def-
inition 2.6), such that for all x, y, z ∈ A:

x ∧ (y ∨ z) = (x ∨ y) ∧ (x ∨ z) (2.7)

2.2. Residuated Algebraic Structures 5

⟘

x y z

⟙

Figure 1: A Hasse diagram of the min-
imal non-distributive modular lattice.

⟘

x

z y

⟙

Figure 2: A Hasse diagram of the min-
imal non-modular lattice.

Example 2.9. Variables of a complex type of immutable set of strings in Python (anno-
tated as frozenset[str]) form a distributive lattice with meet and join being intersection1

and union2 respectively.

Definition 2.10 (Modular Lattice). A modular lattice (A,∧,∨) is a lattice (see Defini-
tion 2.6), such that for all x, y, z ∈ A:

(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ (x ∧ z)) (2.8)

Remark 2.11. Every distributive lattice is modular.

Example 2.12. The smallest possible non-distributive modular lattice is defined by a
Hasse diagram from Figure 1. The smallest possible non-modular lattice has a Hasse
diagram from Figure 2.

2.2 Residuated Algebraic Structures

Definition 2.13 (Residuated Binar). A residuated binar is an algebraic structure (A,∧,∨, ·, /, \)
such that (A,∧,∨) is a lattice (see Definition 2.6), (A, ·) is any binar (see Definition 2.1)
and for all x, y, z ∈ A the following axiom holds:

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y. (2.9)

Remark 2.14. If the underlying binar (A, ·) of a residuated binar is a semigroup (see
Definition 2.2), one talks of a residuated semigroup.

Definition 2.15 (Residuated Magma). A residuated magma is an algebraic structure
(A,≤, ·, /, \) such that (A,≤) is a partially ordered set and the law 2.9 holds.

1https://docs.python.org/3/library/stdtypes.html#frozenset.intersection
2https://docs.python.org/3/library/stdtypes.html#frozenset.union

https://docs.python.org/3/library/stdtypes.html#frozenset.intersection
https://docs.python.org/3/library/stdtypes.html#frozenset.union

6Chapter 2. Artificial Intelligence for Model Search of Finite Algebraic Structures

Remark 2.16. Since every lattice is a partially ordered set but not vice versa, one can
see the residuated magma concept as a strong generalisation of residuated binars.

Definition 2.17 (Residuated Lattice). A residuated lattice is an algebraic structure
(A,∧,∨, ·, /, \, e) such that (A,∧,∨, ·, \, /) is a residuated binar (see Definition 2.13) and
(A, ·, e) is a monoid (see Definition 2.4).

Remark 2.18. The study of residuated binars and lattices can have many applications:
for example, they serve as algebraic models of so-called substructural logics [36]. The
latter are logic calculi used in quantum physics [30].

Since residuated binars have five binary operations, one can construct many different
abstract distributivity laws using them. It is well known [33] that several such laws hold
in any residuated binar, namely the following ones:

x · (y ∨ z) = (x · y) ∨ (x · z) (·∨)

(x ∨ y) · z = (x · z) ∨ (y · z) (∨·)

x\ (y ∧ z) = (x\y) ∧ (x\z) (\∧)

(x ∧ y) /z = (x/z) ∧ (y/z) (∧/)

x/ (y ∨ z) = (x/y) ∧ (x/z) (/∨)

(x ∨ y) \z = (x\z) ∧ (y\z) (∨\)

Note that (/∨) and (∨\) are not exactly distributivity laws between two binary operations.
Such equations are sometimes called antidistributivity [50] laws and arise even in classi-
cal logic. General distributivity laws can represent inference rules in different models
of quantum logic. They were also used to establish non-trivial categorical equivalences
[35] and to obtain decidability results for models of program execution [138], among
other things.

Examples of distributivity laws which can hold or not depending on a residuated
binar at hand (for example, they can all be true in residuated lattices; see Definition 2.17)
are the following six:

x · (y ∧ z) = (x · y) ∧ (x · z) (·∧)

(x ∧ y) · z = (x · z) ∧ (y · z) (∧·)

x\ (y ∨ z) = (x\y) ∨ (x\z) (\∨)

(x ∨ y) /z = (x/z) ∨ (y/z) (∨/)

x/ (y ∧ z) = (x/y) ∨ (x/z) (/∧)

(x ∧ y) \z = (x\z) ∨ (y\z) (∧\)

2.3. One Previously Open Problem 7

2.3 One Previously Open Problem

Some distributivity laws can follow from combinations of others, namely:

Theorem 2.19 (Theorem 2.3 and Proposition 3.1 of [33]). If in a residuated binar (see
Definition 2.13) or a residuated semigroup (see Remark 2.14) the underlying lattice
is a distributive one (see Definition 2.8) there are no other implications between the
distributivity laws (·∧),(∧·),(\∨),(∨/),(/∧), and (∧\), except the following ones:

1. (∨/) and (∧\) implies (\∨).

2. (\∨) and (/∧) implies (∨/).

3. (·∧) and (∨/) implies (/∧).

4. (∧·) and (\∨) implies (∧\).

5. (∧\) and (·∧) implies (∧·).

6. (/∧) and (∧·) implies (·∧).

[33] was published in Jan 2019, and since then until spring 2021, thus for more
than two years, it was not known whether any combination of distributive laws implies
one of them without lattice distributivity condition. From personal discussions, we are
aware of attempts made to find counter-examples using specialised software (namely
MACE4 [74]) and that the co-authors of [33] had opposite opinions on whether 2.19 can
be true in the general case. Counter-examples backing 2.19 were of sizes 4 and 5, but
MACE4 worked without finding anything for unreasonably long while traversing the
model candidates of cardinality 6. We could only guess the reasons for it since for al-
gebraic structures with similar numbers and arities of operations (residuated magmas,
see Definition 2.15), one applied the MACE4 proof-finding counterpart PROVER9 success-
fully [122, 55]. PROVER9/MACE4 tandem has a long and glorious track record [90] of
serving mathematicians, so one can already see its inability to find counter-examples as
empirical evidence (by no means sufficient, of course) of their inexistence.

8Chapter 2. Artificial Intelligence for Model Search of Finite Algebraic Structures

⟘

a b

c d

e f

hg

⟙

Figure 3: A Hasse diagram of the lattice reduct is the same for all the counter-examples
found

Nonetheless, in [34], we found enough finite models to establish the following

Theorem 2.20. In a general residuated binar, none of the distributivity laws (·∧),
(∧·), (\∨), (∨/), (/∧), and (∧\) follows from any combination of the others.

Proof. Let is take six finite residuated binars A1, A2, A3, A4, A5, and A6 having the same
underlying lattice (also called lattice reduct, see Figure 3) and the following multiplica-
tion tables (one can uniquely reconstruct the tables for \ and / using the multiplication
table, the lattice structure, and the residuation property 2.9). For A1 and A2:

· ⊥ a b c d e f g h ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ a ⊥ a ⊥ a ⊥ a a

b ⊥ b ⊥ b b b b b b b

c ⊥ ⊥ g ⊥ g ⊥ g ⊥ g g

d ⊥ b a b d b d b d d

e ⊥ ⊥ g ⊥ g ⊥ g ⊥ g g

f ⊥ b a b d b d b d d

g ⊥ ⊥ g ⊥ g ⊥ g ⊥ g g

h ⊥ b g b ⊤ b ⊤ b ⊤ ⊤
⊤ ⊥ b g b ⊤ b ⊤ b ⊤ ⊤

· ⊥ a b c d e f g h ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

c ⊥ a ⊥ g a g a g g g

d ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

e ⊥ a ⊥ g a g a g g g

f ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

g ⊥ a ⊥ g a g a g g g

h ⊥ a b g d g d g ⊤ ⊤
⊤ ⊥ a b g d g d g ⊤ ⊤

2.3. One Previously Open Problem 9

For A3 and A4:

· ⊥ a b c d e f g h ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ g ⊥ g

b ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

c ⊥ ⊥ ⊥ g ⊥ g ⊥ g g g

d ⊥ ⊥ b ⊥ b ⊥ b g b ⊤
e ⊥ ⊥ ⊥ g ⊥ g ⊥ g g g

f ⊥ ⊥ b ⊥ b ⊥ b g b ⊤
g ⊥ ⊥ ⊥ g ⊥ g ⊥ g g g

h ⊥ ⊥ b g b g b g ⊤ ⊤
⊤ ⊥ ⊥ b g b g b g ⊤ ⊤

· ⊥ a b c d e f g h ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥ g ⊥ g ⊥ g g g

b ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

c ⊥ ⊥ ⊥ g ⊥ g ⊥ g g g

d ⊥ ⊥ b g b g b g ⊤ ⊤
e ⊥ ⊥ ⊥ g ⊥ g ⊥ g g g

f ⊥ ⊥ b g b g b g ⊤ ⊤
g ⊥ g ⊥ g g g g g g g

h ⊥ ⊥ b g b g b g ⊤ ⊤
⊤ ⊥ g b g ⊤ g ⊤ g ⊤ ⊤

For A5 and A6:

· ⊥ a b c d e f g h ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

b ⊥ c ⊥ c c c c g c g

c ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

d ⊥ c b c h c h g h ⊤
e ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

f ⊥ c b c h c h g h ⊤
g ⊥ ⊥ b ⊥ b ⊥ b ⊥ b b

h ⊥ c b c h c h g h ⊤
⊤ ⊥ c b c h c h g h ⊤

· ⊥ a b c d e f g h ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ c ⊥ c ⊥ c ⊥ c c

b ⊥ b ⊥ b b b b b b b

c ⊥ ⊥ c ⊥ c ⊥ c ⊥ c c

d ⊥ b c b h b h b h h

e ⊥ ⊥ c ⊥ c ⊥ c ⊥ c c

f ⊥ b c b h b h b h h

g ⊥ ⊥ g ⊥ g ⊥ g ⊥ g g

h ⊥ b c b h b h b h h

⊤ ⊥ b g b ⊤ b ⊤ b ⊤ ⊤

Direct calculation verifies that

1. (·∧),(∧·),(\∨),(/∧),(∧\) are true for A1, but not (∨/)

2. (·∧),(∧·),(∨/),(/∧),(∧\) are true for A2, but not (\∨)

3. (·∧),(∧·),(\∨),(∨/),(∧\) are true for A3, but not (/∧)

4. (·∧),(∧·),(\∨),(∨/),(/∧) are true for A4, but not (∧\)

5. (∧·),(\∨),(∨/),(/∧),(∧\) are true for A5, but not (·∧)

6. (·∧),(\∨),(∨/),(/∧),(∧\) are true for A6, but not (∧·)

Remark 2.21. By ‘direct calculation’, we do not necessarily mean a manual one, but
rather a computer-assisted one, since the tables, while not prohibitively huge to exhibit,

10Chapter 2. Artificial Intelligence for Model Search of Finite Algebraic Structures

can still be a bit too complex to be treated with paper and pencil. See more details on
that in the next section.

Remark 2.22. The underlying lattice of all our counter-examples (depicted in Figure 3)
is non-modular. We tried to find similar counter-examples for the modular case but
did not get anything for the implications mentioned in the theorem 2.19, even after
gradually increasing the model size to 14 and running servers for several days. The
theorem 2.19 might generalise to the modular lattices (see Definition 2.10). We observed
similar behaviour when adding a multiplication associativity condition instead of lattice
modularity (none of the multiplication tables found is associative).

Remark 2.23. The multiplication table of A5 is a transposition of one for A6. It is not
surprising since they serve to deny similar equations ((·∧) and (∧·) respectively), but we
do not know what this fact might suggest.

We obtained Theorem 2.20 with the help of Nitpick [16], a highly efficient tool for the
construction of finite counter-examples packaged with the Isabelle proof assistant [80].
We can only guess why it worked for us where MACE4 failed. It might be related to
general progress in the field of finite model search done in the last decade. The version
of MACE4 usually run by working mathematicians dates back to December 2007 3. Since
then, the Paradox [22] system introduced so-called static symmetry reduction, a tech-
nique reducing the number of isomorphic models (see [11] for MACE4 and Paradox com-
parison). Later, Kodkod (see [137] for realisation details and comparison with Paradox)
brought sparse representation of binary relations and even more symmetry-breaking
schemes to the process of translating a model-search task into a propositional satisfia-
bility (SAT) problem. Nitpick serves as a translator from Isabelle language to Kodkod,
which relied (in 2021) on Jingeling ([14], the winner of SAT 2020 competition [32]). Our
work exploits the Isabelle server implementation ability to run Nitpick tasks in parallel,
yielding an environment for countermodel search with impressive computational ad-
vantages. Namely, we conducted our computational experiments yielding Theorem 2.20
on three Linux machines, the largest having 180 CPU cores (INTEL® XEON® Gold 6254
3.10GHz) and 832 GB of RAM, totalling to about two weeks of wall-clock time.

2.4 Python client for Isabelle server

2.4.1 General description

Isabelle interactive theorem prover (ITP) has included the Isabelle server as part of its
standard distribution since 2018 [144]. The Isabelle server enables users to run multiple
sessions and manage concurrent tasks to process Isabelle theory files through TCP. It
makes, in principle, possible to communicate with the Isabelle server using any popular
programming language [136], including Python. Python clients already existed for other

3https://www.cs.unm.edu/~mccune/mace4/gui/v05.html

https://www.cs.unm.edu/~mccune/mace4/gui/v05.html

2.4. Python client for Isabelle server 11

major ITPs, for example, one [105] for Lean [78] or another one [99] for Coq [134].
Despite existing projects where Python and Isabelle were used together (see, e.g. [28]),
there was no stand-alone and reusable Python client available.

The client relies on a standard Python package asyncio for low-level communication
with the server. It implements wrapper methods for all commands of Isabelle server
listed in its manual [145]. The package also includes a function for starting the Isabelle
server from a Python script.

isabelle-client package

theory
file

Isabelle
Server

an instance of
IsabelleClient class

start_isabelle_server
function

init params

server info
server info

requests
replies

other Python scripts

as arguments

theory
file

generate

theories' processing
results

theory
file

Figure 4: In a project where Python scripts generate Isabelle theory files, one can use
the isabelle-client to start the Isabelle server, send these files for parallel processing
and get back the results.

The package is available for Python 3.7+ on GNU/Linux and Windows. Every new
build is tested in a continuous integration workflow against each supported Python
version. Detailed documentation pages are built automatically, and the code is nearly
100% covered with tests. The package is hosted now not only on the Python Package
Index (PyPI) but also on Conda Forge [23], which enables its installation with both pip
and conda package managers. In addition, one can run the client inside a Docker
container, for example, in a cloud using Binder [93]. This option provides the client
coupled with the Isabelle server and is particularly useful for students specialising in
logic who do not necessarily have much experience in information technologies.

2.4.2 Usage example

Figure 4 represents a typical scenario of the isabelle-client application. First, one
should start the Isabelle server, for example, using a utility function start_isabelle_server

12Chapter 2. Artificial Intelligence for Model Search of Finite Algebraic Structures

from the package. Second, one creates an instance of IsabelleClient object, e.g. us-
ing the factory function get_isabelle_client. Finally, one can issue any command
supported by the Isabelle server (see section 4.4 in [145] for a complete list) using
IsabelleClient object, which implements all these commands as methods. Usually,
these commands rely on existing Isabelle theory files, for example, generated by third-
party Python scripts (not by isabelle-client). See also listing 1 for a basic code
snippet.

""" An example of the ``isabelle-client`` usage """
from isabelle_client import get_isabelle_client, start_isabelle_server

first, we start Isabelle server
server_info, _ = start_isabelle_server(

name="test", port=9999, log_file="server.log"
)
then we create an ``IsabelleClient`` instance
isabelle = get_isabelle_client(server_info)
now we can send theory files to the server and get a response
isabelle.use_theories(theories=["Example"], master_dir=".")
or we can build a session document using ROOT and root.tex files
isabelle.session_build(dirs=["."], session="examples")
isabelle.shutdown()

Listing 1: How to use the isabelle-client.

2.5 Software solution architecture

2.5.1 General description

isabelle-client per se can not produce Theorem 2.20. It only serves as a part of
larger script (use_nitpick.py from [116]) which namely does the following:

1. generate theory files templates (all possible combinations of statements studied)

2. fix the model cardinality (at least 2 for the lattice-based structures)

3. generate theory files from the templates by adding a Nitpick task for the cardi-
nality fixed at step 2 (the task here can also be a Sledgehammer task for finding
automated proofs rather than finite counter-examples)

4. pass the theory files to Isabelle server and store replies in a dedicated folder (here
we use isabelle-client)

5. extract models found (if any) from server logs and store them in the result folder

6. remove the theory templates for which there were the models found

2.5. Software solution architecture 13

7. if there are still theory templates (with no finite models found) and we have not
reached the cardinality limit, go to step 2

One can notice that we studied a question of axiom independence. Indeed, since we
know that equations from (·∧)-(∧\) are independent of the axioms of residuated binars,
we could imagine defining a new algebraic structure where (·∧)-(∧\) are additional
axioms. Then Theorem 2.20 states that the axioms of this new algebraic structure are
mutually independent. Using finite model finders for axiom independence is nothing
new (see, for example, [21] for application of Paradox to establishing the independence
of axioms of algebraic structures serving as models of fuzzy logics). Contrary to our
work, the authors of [21] did not publish the code to reproduce their results.

At first, not only we intended to find counter-examples showing independence of
(·∧)-(∧\), but also we hoped to use automated theorem provers to prove that some
statements follow from combinations of others under certain conditions (similar to the
E prover usage in [21]). For example, we hope that lattice modularity 2.8 can establish
implications from Theorem 2.19 even without lattice distributivity 2.7. Unfortunately,
provers shipped with Isabelle (including E and Vampire) could not do anything with
the propositions we studied, but we kept related scripts in the final version for anyone
interested.

2.5.2 Theory templates generation

Since we have six statements (·∧)-(∧\), we can construct
(
25 − 1

)
× 6 = 186 different

implications between them. One can argue that if we want to prove the independence
of six statements, it is enough to find counter-examples for six ‘five statements imply the
one rest’ propositions. And if anyone knew from the beginning that the six statements
(·∧)-(∧\) were, in fact, independent, yes, we could do that way. But since there were
opposite opinions on whether Theorem 2.20 might have held, we had nothing but to
start from scratch. It was not improbable that for some implications (e.g. those from
Theorem 2.19), we could never find any reasonably-sized counter-examples. And it was
the case for multiplication associativity or lattice modularity in our other experiments.
In addition, propositions of form ‘five statements imply the one rest’ took incomparably
longer than ‘three statements of six imply one of six’. The more statements in the
antecedent of the implication - the longer was search process. So, with a clean slate, it
was not unreasonable to test all the 186 possibilities starting from the simplest ones.

One can verify the generated templates’ correctness by passing them to the Isabelle
server with a dummy task oops instead of Nitpick or Sledgehammer. It will make
Isabelle check the syntax of theory files and the validity of import statements in them.

14Chapter 2. Artificial Intelligence for Model Search of Finite Algebraic Structures

2.5.3 Storing and postprocessing the finite models

Isabelle server returns its logs in JSON format. The actual values inside these parcels
can have varying formats from one version of Isabelle to another. We had to parse them
using the regular expressions library in Python to get the binary and unary operations
tables. In such form, we can store them on the disk in JSON or pickle (Python binary
object) format. Then we packed these tables into objects of Python classes representing
lattices and other structures and programmed procedures to extract lattice partial order
relationships from the join and meet operations tables. After all these transformations,
we wrote scripts to generate LATEX code for Cayley tables displayed in Theorem 2.20
proof and used Graphviz [37] Python wrapper for drawing Hasse diagrams (e.g. that in
Figure 3).

2.5.4 Found models verification

Nitpick sometimes can find spurious examples (it even prints a disclaimer about it). Of
course, no software is bug-free, so one should verify with another system any counter-
examples found by one system. Fussner, Simpson, and Shminke all independently
verified that counter-examples mentioned in the proof of Theorem 2.20 were indeed:

• satisfying residuated binars axioms

• satisfying all but one propositions from (·∧)-(∧\)

Simpson and Shminke have open-sourced the scripts of their two independent checkers
so anyone can reproduce the result. Unfortunately, we are not aware of researchers
not having a conflict of interests (including anonymous reviewers of our previously
published work) who had verified the counter-examples proving Theorem 2.20.

2.6 Conclusion and future work

The lessons learned from this project often repeated the known data science folklore.
Nevertheless, we realised that:

• one can solve some open research problems in seemingly abstract and non-
computational subfields of mathematics only by using more computing power
(especially parallel computations) or contemporary software

• although working mathematicians never stopped using provers and finite model
finders in their work [56] and the automated reasoning researchers never stopped
writing new and updating older software, the latest advances of the latter often
are not reusable by the former 4

4“Mathematicians like a lot your tools! You should invest a little bit... a lot in your tools, so that we
could use them, we could prove theorems, and all world would be much happier.” (João Araùjo at the 7th
Conference on Artificial Intelligence and Theorem Proving on September 6, 2022)

2.6. Conclusion and future work 15

• one often does not need machine learning to make artificial intelligence work

• mathematicians need not only counter-examples, the search for which is easily
parallelisable but also (and maybe even more) to get actual proofs. And we can
not reduce the provers computational improvements to parallel computations (e.g.
in PROVER 9, the main loop is sequential by its nature)

Addressing these testimonies, we kept our research results as reusable as possi-
ble. For example, apart from its original application to discover Theorem 2.20, we
used the isabelle-client running in a Docker container on Binder during the prac-
tical sessions of the Advanced Logic course taught at the Université Côte d’Azur in the
autumn of the 2021-2022 academic year. The client helped students not trained in func-
tional programming languages used for Isabelle development (Scala and StandardML)
to concentrate on understanding the Isabelle language syntax and consequently gener-
ating theory files with Python scripts without installing and running the Isabelle GUI
on their laptops. Also, a maintainer of the ’Proving for Fun’ backend [49] notified us
they were using the isabelle-client for debugging and suggested several technical
improvements.

We examine how machine learning can improve finite models search in Chapter 3
of this thesis.

We also present our research on applications of artificial intelligence techniques to
automated provers in Chapters 4 and 5.

16Chapter 2. Artificial Intelligence for Model Search of Finite Algebraic Structures

CHAPTER 3

Neural Networks for Model Generation

This chapter describes a collaborative project of application of machine learning tools
(namely, artificial neural networks) to the finite algebraic structures study. We previ-
ously submitted the work as a pre-print [9] to which the thesis author contributed a
Python package for generating finite semigroup with deep learning networks.

This project was the first one after this thesis author received funding from the
Interdisciplinary Institute for Artificial Intelligence and the first attempt to work with a
working mathematician in a domain that one might consider unrelated to deep learning.
We did not arrive at any conclusive results, but we laid the foundation for a better un-
derstanding of the relations of our respective fields of study and, even more important,
for future work in this direction.

Outline of the chapter:

In Section 3.1, we remind several additional concepts from abstract algebra needed
to understand the problems treated in this chapter.

In Section 3.2, we remind the basics of deep learning.

In Section 3.3, we formulate a problem of generating models of finite algebraic struc-
tures by deep learning networks and discuss challenges it poses if compared to other
ways to incorporate machine learning into finite model search and to other domains
where generatve deep learning networks show impressive results.

In Section 3.4, we describe the precise setup of our experiments with a proof of
concept implementation of principles discussed in the previous section, including neural
network architecture and training techniques applied. We also present the results of
the experiments of generating finite semigroups with deep learning networks.

In Section 3.5, we discuss possible generalisations of proposed approaches, their
known limitations and open problems worth further investigation.

17

18 Chapter 3. Neural Networks for Model Generation

3.1 Additional algebraic notions

Definition 3.1 (Quasigroup). A quasigroup (A, ·, /, \) is an algebraic structure where
(A, ·) is a binar (see Definition 2.1) and for every x, y ∈ A the following laws hold:

x · (x\y) = y (·\)

x\ (x · y) = y (\·)

(y · x) /x = y (·/)

(y/x) · x = y (/·)

Remark 3.2. In a quasigroup, for every a, b ∈ A, there is a unique solution for an
equation a · x = b (namely x = a\b), and also there is a unique solution for an equation
x · a = b (namely x = b/a).

Remark 3.3. One can define a quasigroup by giving only a multiplication table for · —
the operation tables for / and \ will follow from it.

Example 3.4. A multiplication table for · always is a Latin square: each element of A

is present in each row and each column of it exactly once. This observation gives us
many examples of quasigroups, e.g. one depicted in Figure 5.

· e a b c

e e a b c
a a e c b
b b a e a
c c b c e

Figure 5: Multiplication table of a quasigroup of 4 elements (so-called Klein Vier-
ergruppe)

Definition 3.5 (Semigroups equivalence). A homomorphism of semigroups (see Defi-
nition 2.2) (A, ·) → (B, ·) is a map of sets h : A → B such that for all x, y ∈ A, one has
h (x · y) = h (x) · h (y). If h is one-to-one map (bijection), h is called isomorphism. If, on
the contrary, for all x, y ∈ A we have h (x · y) = h (y) · h (x), and h is a bijection, we call
h an anti-isomorphism. If there is either isomorphism or anti-isomorphism between
semigroups (A, ·) and (B, ·), we call such semigroups equivalent.

Definition 3.6 (Variety). A variety of algebras is the class of all algebraic structures
having the same number and arities of operations and satisfying a given set of equations.

Example 3.7. Semigroups, quasigroups (see Definition 3.1), and lattices (see Defini-
tion 2.6) are all varieties since we defined them by equations. Residuated binars (see
Definition 2.13) are also a variety since there exists an equivalent definition by a list of
equational axioms defining it instead of residuation propertry 2.9 we used.

3.2. Deep Learning Basics 19

3.2 Deep Learning Basics

3.2.1 Why use deep learning and how

Definition 3.8 (Deep Feedforward Network). A deep feedforward network ([42], Chap-
ter 6; or fully connected network) is a function F : Rn → Rn′ defined by the following
computation procedure

∀x ∈ Rn F (x) = σ (Whah + bh)

∀1 < i < h ai = σ (Wi−1ai−1 + bi−1)

∀x ∈ Rn a1 = σ (W1x + b1)

where

• for all 1 ≤ i ≤ h we call a function ai−1 7→ σ (Wi−1ai−1 + bi−1) a hidden layer

• the matrices Wi ∈ Rli−1×li (we set l0 = n, lh = n′) are weights

• the vectors bi ∈ Rli are biases

• the function σ : R→ R (applied coordinate-wise to vectors) is an activation func-
tion

• the vectors ai are activations

• items of weights and biases together are called network parameters, and we will
denote them by θ = {Wi, bi}hi=1

• the number of hidden layers h is called a network depth

• for all 1 ≤ i ≤ h, we call li hidden layer sizes and the maximum of them we denote
by m and call the width of the network

Theorem 3.9 (Universal Approximation Theorem for Width-Bounded ReLU Networks,
Theorem 1 from [70]). For any Lebesgue-integrable function f : Rn → R and any ε > 0,
there exists a fully-connected network F with ReLU activation σ (x) = max {x, 0} and
with width m ≤ n + 4, such that

ˆ

Rn

|f (x)− F (x)| dx < ε (3.1)

Remark 3.10. One builds the Theorem 3.9 proof in such a way that one has to in-
crease the depth of the network for smaller ε, thus we speak of deep neural networks
(DNNs) which often give us better approximations in practice than so-called shallow
ones (having fewer hidden layers).

20 Chapter 3. Neural Networks for Model Generation

Often, to find a DNN F approximating observed data, we introduce so-called loss
function L : Rn′ × Rn′ → R and try to solve the following optimisation task:

max
θ

N∑
j=1

L (F (xj) , yj) (3.2)

where the set {(xj , yj)}Nj=1 is a training set, each (xj , yj) is a data point, and yj are
(ground truth) labels. L somehow measures the closeness of its arguments. Such task
is called supervised learning (see more in [104], Chapter 19) since there is a ‘teacher’
who gives labels to the network to learn from, so the input data xj is labelled and thus
somehow structured by forces external to the network.

Since the sum in 3.2 can contain too many addends (for example, a popular ImageNet
dataset [103] has more than 14 million images), it is impractical to optimise it as a whole.
Instead, one usually samples batches (relatively small subsets, usually of several dozens)
of datapoints and does the gradient descent steps on them (see stochastic gradient
descent (SGD) in [110], Chapter 14). After we fix a batch size, we can talk about the
whole batch as a new random variable x whose values belong to Rb×n×n′ where b is the
batch size, and x includes both all xj and all yj for a given batch. Then we can say we
optimise L (θ, x) by varying θ.

3.2.2 Autoencoders

We do not always need labels to extract useful information from our data. If only some
raw data points xj are labelled (exist in a pair (xj , yj)), but we still want to be capable
of labelling any xj , we talk about semi-supervised learning. If there are no labels
at all, and we do not have any structure of data in mind, we talk about unsupervised
learning (e.g. clustering or anomaly detection tasks [104], Chapter 19). On the contrary,
if we want to instil a particular structure we pre-suppose to exist in the data (e.g. that
there are such and such labels, but hidden from us), we talk about self-supervised
learning. A prominent case of self-supervised models is an autoencoder where instead
of L (F (xj) , yj) in 3.2 we use L (F (xj) , xj). In other words, an autoencoder tries to get
its original input after applying a series of non-trivial transformations. Of course, a well-
trained DNN of an autoencoder per se is useless, so we look not at the output but rather
at activations of a particular hidden layer, which usually serves as a representation of
input (often, but not necessarily, of smaller dimension).

In practice, we rarely train simple autoencoders but rather denoising ones. Suppose
our data points are distorted images (some parts of a photo were time-corrupted, lost
during digitalisation, et cetera), and we want to reconstruct the original ones. To model
this process, we take a batch x of undistorted images, then apply different types of
corruption to them randomly to get x̄ and treat x̄ as a raw data point to label and x as
the label. Again, we can apply SGD to L ((x̄, x) , θ), since randomness (or noise) exists

3.2. Deep Learning Basics 21

outside the set of network parameters θ. Independent of their original reconstructing
ability, denoising autoencoders are known to much better capture the structure of the
data than basic ones (with no noise, where input is the label). See Chapter 14 of [42]
for more details and an extended bibliography.

3.2.3 Deep adversarial networks

Lately, DNNs have become famous for generating deceptively realistic images of objects
and creatures never being in existence [60]. The basis of this technology is so-called
generative adversarial nets (GANs) [43]. One formulates a GAN as a zero-sum game of
two players, a generator and a discriminator. A generator samples pseudo-observations
x = g (z; θg) where g is a deterministic function (modelled by a DNN), θg are parameters
of the DNN g, and z is a random variable (noise or source of randomness). Instead
of considering part of parameters of g to be random variables with a given probability
distribution, we say that probability distributions parameters are also among determin-
istic parameters of g, and all the randomness we have (we denote it z) is input to g

(although there is no real input to g from any dataset). Such an approach is called a
reparametrisation trick and enables us to continue using SGD for the generator net-
work as if the source of randomness was not in the network weights but came from
the data batching process.

A discriminator plays with a network d (x; θd) where d is a DNN, θd — its parameters,
and x is data coming either from real-world data distribution pdata or from a distribution
of samples produced by the generator pgen. Each turn, with probability 1

2 one samples
either from real-world data, point x ∼ pdata or asks a generator to produce a fake one
x ∼ pgen. Then, the discriminator computes d (x) to evaluate a probability of x being
real. If it guesses, it wins, and the generator wins otherwise. Hence, the payoff of the
discriminator (log-likelihood of data coming from different distributions) is

v (θg, θd) = Ex∼pdata log d (x) + Ex∼pgen (1− log d (x)) (3.3)

and the payoff of the generator is −v (θg, θd).

Usually, after training a pair of a generator and a discriminator, the latter is dis-
carded since there is no guarantee it could discriminate fake data coming from other
distributions (produced by other generators, not trained in a couple with it). In princi-
ple, a discriminator can be an oracle rather than a neural network we train side-by-side
with the generator. Such approaches (with both generator and discriminator doubled
by oracles) were recently shown [91] to demonstrate better convergence properties and
final DNN qualities than the original GAN formulation.

22 Chapter 3. Neural Networks for Model Generation

3.3 Generating algebraic structures with deep learning net-
works

3.3.1 Similar tasks

As seen in Chapter 2, using intelligent software to find finite models of logic theories
can help working mathematicians prove theorems otherwise unreachable. A contem-
porary piece of software producing counter-examples is usually called an SMT (satisfia-
bility modulo theory) solver (e.g. Z3 [25]). Deep neural networks are sometimes applied
as parts of well-known model search algorithms instead of search-guiding heuristics,
making the search process faster (see, e.g. fastSMT[8]). Even in less general cases
of generating only semigroups [118], authors take a similar approach. On the other
hand, the world has recently seen an overwhelming success of deep neural networks
generating all sorts of objects, from images (e.g. StyleGAN [61]) to texts (see [54] for a
survey), based on expected qualities of these objects (i.e. their style in case of works
of art). It begs the question: can we create a deep neural network (see Definition 3.8)
generating algebraic structures as a whole instead of serving only as a part of a gen-
eration algorithm? For example, can we build a neural network whose outputs are the
whole semigroup multiplication tables?

3.3.2 Denoising as a simpler task

This thesis author got the inspiration from a project [87] of solving a popular puzzle
game of sudoku using convolutional neural networks (CNNs, [42], chapter 9). From
an algebraist point of view, solved sudoku is a multiplication table of a quasigroup (see
Definition 3.1) of 9 elements with some additional constraints. Since such multiplication
tables have properties easily identifiable by the naked eye (they are Latin squares; see
Example 3.4), we can consider solved sudoku as an image of 9× 9 pixels with a colour
channel having values from 1 to 9. Then a sudoku to solve is the same image but with
some hidden pixels (e.g. colour set to black or 0). The task of computing the missing
pixels’ colour is well known in computer vision and called (image) denoising. CNN
denoise well both images and quasigroup multiplication tables (sudokus). Even if not
generated from scratch, can we at least denoise semigroup multiplication tables as well
as it worked for sudokus?

3.3.3 Suitable neural network type

A semigroup multiplication table has no evident visual marks easily captured by the
human eye. In semigroups, the order of the elements is arbitrary, and permuting them
in any way gives an equivalent (see Definition 3.5) semigroup. It means that using
CNNs relying on topological structures (like lines and shapes in an image) might not be
as applicable, but more general neural network architectures for denoising any input

3.3. Generating algebraic structures with deep learning networks 23

signal type exist, namely denoising autoencoders (see Subsection 3.2.2 or [42], chapter 14
for more).

Table 3.1: Number of semigroups up to equivalence ([26, 27]).

Cardinality # of semigroups
1 1
2 4
3 18
4 126
5 1,160
6 15,973
7 836,021
8 1,843,120,128
9 52,989,400,714,478
10 12,418,001,077,381,302,684

3.3.4 Training data

To train a denoising autoencoder, one should first get a dataset of complete examples
and then add random noise as part of the training process. For sudoku and photos,
there are algorithms to generate and solve a sudoku, and photographs of any kind
are available in abundance nowadays. For semigroups, the situation is a bit different.
On the one hand, semigroups of sizes up to and including 8 are catalogued and freely
available as a part of smallsemi package [26] of GAP system [135]. The semigroups of
sizes 9 and 10 are all known [27], but not stored anywhere (it could take from around a
terabyte to hundreds of petabytes of disk space; see Table 3.1). The systematisation of
the semigroups of more than ten elements at the moment of writing seemed beyond
reach.

· 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 1 2
4 1 1 1 2 1
5 1 1 2 1 2

⇐

· 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1
4 1 1
5 1 1

⇒

· 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 2 2
4 1 1 2 2 2
5 1 1 2 2 2

Figure 6: Different semigroups arising from the same partially filled table

3.3.5 Non-unique ground truth

When denoising images, one expects a neural network to discover the exact original
image (ground truth). Although (in general) one can complete an incomplete quasi-
group multiplication table in more than one way, one designs sudoku to have only one
solution. In case of incomplete semigroups, we either have to ignore the fact of sev-
eral completions existing (see, e.g. Figure 6) thus punishing the network for finding a

24 Chapter 3. Neural Networks for Model Generation

different completion, or allow it to generate something associative, but not necessarily
unique. We compared these two approaches in our experiments.

3.3.6 Loss function

A typical GAN (generative adversarial network) (see Subsection 3.2.3) includes two sub-
networks: a generator and a discriminator (see, e.g. Figure 7). The generator’s output
mimics images with desired properties based on random input (noise), and the discrim-
inator tries to distinguish between a currently generated image and a randomly chosen
real one.

Figure 7: A typical GAN training pipeline

In case of algebraic structures from a given variety (see Definition 3.6), there is no
difference between a freshly generated and a “real” (previously catalogued) multiplica-
tion tables. The only thing which matters is whether the variety equations hold. So, in
contrast to images, we do not need to train a discriminator network since we already
have a pre-determined oracle which in addition does not need any non-generated input.
Such an AGN (algebraic generative network) architecture is depicted in Figure 8. We
can even think of the discriminator-oracle as a part of generator loss function in this
case.

Figure 8: A possible generative network for algebraic structures

AGN looks very similar to a typical denoising autoencoder (DAE, see Figure 9),
the difference being that DAE needs non-generated input to generate the output and
compute loss.

3.4. Experiment setup 25

Figure 9: A typical denoising autoencoder training pipeline

This thesis author proposed a combination of DAE and GAN (see Figure 10) for
effective algebraic structures generation, which we describe in detail in consequent
sections.

Figure 10: A novel generation process for algebraic structures

3.4 Experiment setup

3.4.1 Data representation

Definition 3.11 (Probabilistic Cayley Table). Given a set S = {ei}ni=1, consider a function
F : S×S×S → [0, 1]. We want to treat this function as a probability distribution for the
potential multiplication: P(ei ·ej = ek) = F (ei, ej , ek). For this to make sense, the function
F must satisfy the following condition:

n∑
k=1

F (ei, ej , ek) = 1 for all possible choices of i

and j. We call such a function F a probabilistic Cayley table. A probabilistic Cayley
table F is filled at 1 ≤ i, j ≤ n if there exists k such that Fi,j,k = F (ei, ej , ek) = 1.

Any semigroup structure on S provides the probabilistic Cayley table filled at all i, j:

Fi,j,k =

1, if ei · ej = ek

0, otherwise
(3.4)

However, not every Cayley table sampled from the distribution defined by a probabilistic

26 Chapter 3. Neural Networks for Model Generation

table F corresponds to an associative multiplication. For this reason, define:

Definition 3.12 (Solvable table). A probabilistic Cayley table (see Definition 3.11) F :
S × S × S → [0, 1] is solvable if there exists a semigroup structure on S (which we will
call a completion) described by conditions in form 3.4 which can be sampled from a
probability distribution described by F with non-zero probability.

As noted in Subsection 3.3.5, a solvable F can have multiple semigroup completions.

We can store Fi,j,k as a tensor (in PyTorch [88] parlance) of one axis of dimension
n3, e.g. using a lexicographical order of triples of indices (i, j, k). We use these tensors
as the principal data representation method in this work.

Figure 11: Translating a multiplication table into a partially filled one. F : {0, 1, 2, 3}3 →
[0, 1].

Assume now that for a set S, we specified only some multiplications for a semigroup
structure. It still allows us to define the function F . If the result of multiplication ei ·ej is
missing, we can extend by employing a uniform distribution in such cases, i.e. assume
in that case that Fi,j,k = 1

n for all k (Figure 11).

3.4.2 Network architecture

One can consider a probabilistic Cayley table as a result of adding noise to a corre-
sponding filled table. Similarly, we can view arbitrary probabilistic tensors as noisy
counterparts of zero-or-one tensors. We can apply a training pipeline of denoising
autoencoders (Figure 9) to remove noise and restore the original input.

3.4. Experiment setup 27

Figure 12: Autoencoder architecture used to generate Cayley tables. The arrow from
the input with added noise (masking out cells) to the “leave only denoised” layer corre-
sponds to restoring the values of initially known cells.

For a scheme of the autoencoder architecture used in our experiments, see Fig-
ure 12. Besides adding noise to its input, this network also cleans its output of guesses
of the cells, which we did not mask during noise addition; these cells correspond to
known fillings of the Cayley table. In other words, if the input was filled at i, j so that
ei · ej = el and the output Fi,j,k during the forward pass is a float between 0 and 1, it is
then redefined as Fi,j,k = 0 or 1 corresponding to k ̸= l or k = l.

Another particular thing to note is that we usually have encoders, which move from
higher dimensions to lower ones. Here we have the input and output of dimension n3

and all the hidden layers of the dimension n5.

3.4.3 Loss functions

If x is an input for an autoencoder and y is its output, we can define its loss function
L (x, y) in many ways. Since, in our case, values of x and y are probability distribu-

28 Chapter 3. Neural Networks for Model Generation

tions, it could be a good idea to use some measure of dissimilarity between these two
distributions, e.g. their Kullback-Leibler divergence (see Chapter 21 of [104]):

KL (x, y) =
n∑

i=1
xi log xi

yi
(3.5)

Note that this choice of a loss function does not explicitly enforce any notion of asso-
ciativity. The problem with this function is that after applying noise to x, one can often
recover it as y non-uniquely, yet the loss function (x, y) 7→ KL(x, y) will prefer y = x to
any other value of y, even if that value is associative.

Another choice of a loss function is what we call the associator loss. First, remember
that y corresponds to the probability distribution yijk = P {ei · ej = ek} and all events
ei·ej = ek are independent. Then we can calculate probabilities of double multiplications:

P {(ei · ej) · ek = el} =
n∑

m=1
P {em · ek = el|ei · ej = em}P {ei · ej = em}

=
n∑

m=1
ymklyijm.

Now we can define the loss function as a KL-divergence between the distributions
P {(ei · ej) · ek = el} and P {ei · (ej · ek) = el}:

AL (x, y) = KL
(

n∑
m=1

yijmymkl,
n∑

m=1
yimlyjkm

)
. (3.6)

Remark 3.13. Effectively, such a loss function, independent of the input without noise,
corresponds not to a classical DAE (Figure 9) but to a novel training pipeline proposed
by this thesis author (Figure 10).

3.4.4 Noise

In our case, the noise the autoencoder is treating corresponds to the absence of some
cells in a Cayley table. In our experiments, both for training and testing, we take tables
of semigroups of cardinality 5. Given any table F : S × S × S → R we then add noise
by re-setting Fi,j,k = 1

5 for i, j corresponding to randomly chosen 50% of cells of the
original Cayley table.

3.4.5 Training and testing datasets

For this work, we used an extensive database of finite semigroups of up to eight elements
from [26].

In our experiments, we used semigroups of 5 elements for experiments: this cor-
responds to 1160 semigroups with 183732 possible Cayley tables. In detail, we divided
this set of 1160 equivalence classes into three subsets: training, validation, and testing

3.4. Experiment setup 29

in proportion 10/10/80. We then produced all Cayley tables of isomorphic and anti-
isomorphic semigroups corresponding to these equivalence classes, a procedure one
can view as a data augmentation technique (see Chapter 12 from [42]).

Finally, we applied the noise described in Subsection 3.4.4 to only validation and
testing sets. The training set gets its noise during the training process, and 50% of cells
for being masked are chosen at random for every batch and not fixed in advance for
the training process. Note that all probabilistic tables appearing here are solvable (see
Definition 3.12).

3.4.6 Quality metrics

Since we train autoencoders or something resembling GANs, it is natural to use the
following metrics:

Definition 3.14. The guess rate is the percentage of outputs of a network which coin-
cide with their inputs before applying noise. The associative rate is the percentage of
outputs of a network which satisfy the associativity condition.

The associative rate appears to be a more mathematically relevant quality metric
since we are interested not in the exact reconstruction of inputs but in generating
associative tables. It serves as a discriminator loss of a kind. One can complete a half-
filled table into different semigroups, but the guess rate will accept only the original
table for its score.

3.4.7 Training process

We trained all the networks using the PyTorch [88] framework, using an Adam opti-
mizer [62] with the learning rate set to 0.0001. We performed training for a maximum
of 1000 epochs with an early stopping applied if the loss did not go down for ten consec-
utive epochs. For training hardware, we relied on Google Colaboratory [15] free cloud
resources, where the training took several hours. We performed batch normalisation
on each layer and used random network parameter initialisation.

3.4.8 Experiment results

First, we note that teaching an autoencoder to reconstruct its exact input without know-
ing anything about associativity proved to be not only unnatural but bringing poorer
results. Even in terms of its principal goal – finding the original table from the input
with added noise – the KL divergence loss is less adequate than the associator loss (AL):
see Table 3.2 for exact numbers. One way to interpret the KL-AL guess ratio difference
might be by observing that the AL network does better at the associativity task overall:
in particular, it does better at reconstructing the original table.

30 Chapter 3. Neural Networks for Model Generation

Table 3.2: Comparison of impacts of a loss function choice. The associator loss network
fares better not only at producing associative tables, but also at guessing the original
table to which we applied noise.

Loss function used Guess rate Associative rate
KL divergence 0.0977 0.5838
Probabilistic associator loss 0.1453 0.8212

The AL network results are rather promising. We produced a full associative table
given only half of the filled cells as an input in 82% of cases. That is even more
impressive given that we relied only on 10% of all available tables from the database,
thus generalising to 80% (which went to the test set). Our results remain dependant on
the choice of these 10% tables for a training set, with deviation representing about 2 per
cent of the loss (see Table 3.3 for the details).

Table 3.3: Comparison of impacts of training set choice on guess and associative rates
(AL network).

Metric min average max std deviation
Guess rate 0.1362 0.13979 0.1463 0.0036
Associative rate 0.7878 0.8181 0.8468 0.0187

3.5 Conclusion and future work

In this project, we made the first steps toward a neural network generating finite alge-
braic structures of a given cardinality and from a given variety. Indeed, one could view
the associator loss as the suitable "architectural adaptation" to the case of semigroups:
instead of convolutional layers, we are dealing with algebraic equations written into the
loss function in probabilistic terms. Moreover, we got 3.6 by applying a probabilistic
representation of operators to the associativity law 2.1. So, if we have more operators
and more variety-defining equations, we can still construct similar losses. A reasonable
research question in this direction is how to combine losses steaming from different
equations.

Then we can generate algebraic structures from noise only since we might not
have readily available training datasets for varieties other than semigroups. Balzin and
Bulić conducted such experiments during the internship of the latter, for which this
thesis author served as a consultant. It is worth mentioning that this thesis author
finished his work on the code more than half a year before Bulić’s contribution (see
semigroups-generation notebook in the source code 1). Thus we consider the goal of
leaving our research results in the state reusable by others, set in Section2.6, as fulfilled.

Another potentially fruitful direction of research we envision is to not only add
equations but also their negations. It can help algebraists find counter-examples similar

1https://github.com/inpefess/neural-semigroups

https://github.com/inpefess/neural-semigroups

3.5. Conclusion and future work 31

to those we got to establish Theorem 2.20. The exact changes to the loss function
needed seem to be a viable research question.

Here finishes our research in applications of artificial intelligence to finite algebraic
structures study. In the following Chapters (4 and 5), we focus on another fundamental
task working mathematicians face every day: finding theorem proofs.

32 Chapter 3. Neural Networks for Model Generation

CHAPTER 4

Reinforcement Learning for Automated Theorem Proving

This chapter describes a project of the thesis author dedicated to applying the reinforce-
ment learning (RL) paradigm to automated theorem proving. Parts of this chapter were
previously reported at a peer-reviewed international conference [112] and published in
a peer-reviewed international journal [111].

We found inspiration for this work in the idea of the HOList [10] environment
for machine learning of theorem proving and the lack of resembling environment-
ish projects in the world of saturation provers (despite of existence of Deepire [128]
and ENIGMA [53] which inspired us immensely). Notably, we wanted to propose such a
way of guiding provers by machine learning that we could relatively effortlessly trans-
fer solutions implemented in one to others leading to the mutual enrichment of ideas
and research results.

Outline of the chapter:
In Section 4.1, we remind automated theorem proving basics.
In Section 4.2, we remind RL concepts pertinent to our work.
In Section 4.3, we formulate a problem we strive to solve and outline the general

architecture of a proposed solution. We make a short overview of related work and
explain our design choices.

In Section 4.4, we present an RL environment for conducting experiments with
different automated provers with no additional work.

In Section 4.5, we discuss possible future work.

4.1 Automated reasoning basics

4.1.1 Interactive and automated theorem provers

Automated reasoning systems include two prominent types: interactive theorem provers
(ITPs) and automated theorem provers (ATPs). An ITP strives to find a proof of a math-

33

34 Chapter 4. Reinforcement Learning for Automated Theorem Proving

ematical theorem semi-automatically by completing the proof steps input by a human,
and an ATP tries to generate the whole proof itself with no input but the theorem
statement and axioms. Examples of ITPs are Isabelle [80] which we used in Chapter 2,
Coq [134], HOL Light [48], HOL4 [119], and Lean [78] among many others. An ITP relies
on a human-readable and machine-verifiable formal language to write down theorems
and proofs. All the ITPs we mentioned in this chapter use different languages, and
for any given pair of such languages, an automatic translator from one to the other
usually does not exist (to our best knowledge). It is not only because of the grammati-
cal peculiarities of these languages but also because the ITPs might be using different
foundations of mathematics. Each mature ITP usually comes with a library of mathe-
matical statements proven in its formalism, one of the first and the largest among such
libraries belonging to the Mizar system [44].

Examples of ATPs are Prover 9 [74] which we used in Chapter 2, Vampire [66],
E [108], iProver [29], and Leo III [126], among many others. In contrast to ITPs, all
popular ATPs support theorem statement input in a common language — that of the
Thousands of Problems for Theorem Provers (TPTP) library [131]. The TPTP does not
contain ATP-generated proofs but axioms and theorem statements. Such a common
library enables comparison of ATPs by a competition (who solves more problems from
the TPTP, in a nutshell), namely the CASC [132].

In principle, an ATP can move from axioms and theorem assumptions, combining
them according to inference rules of a chosen deductive system and trying to pro-
duce the theorem conclusion. Or it can start with the axioms, the assumptions, and
the negated conjecture and infer their logic consequences until (hopefully) reaching
falsehood. In these two opposite cases, we talk about forward proofs and proofs by
contradiction, respectively. Nowadays, practically all popular ATPs are of the latter
type, so we also talk about refutation provers.

In many ITPs, a computer can propose the next step of a proof started by a human
or even complete it. Often this functionality relies on ATPs addressed as hammers in
this situation. A user can also ask the ITP to apply a complex proof state transformation,
often called tactic, to get to the next step instead of manually inputting it. In principle,
one can imagine proof in ITP generated automatically, step by step, by applying suitable
hammers or tactics, so, to some extent, ITPs can be viewed as ATPs with much more
complex languages and systems of deduction rules.

4.1.2 First-order logic and Clausal Normal Form

In our work, we focused on a particular formal language:

Definition 4.1 (First-order logic). ([104], Chapter 8)
First-order logic (FOL) is a tuple (V, F, P, σ, L) where

• V is a set of variables, F — a set of function symbols, P — a set of predicate

4.1. Automated reasoning basics 35

symbols (these sets are, in principle, countably infinite, but in our case, they will
be all finite)

• σ : F ∪ P → N (N is a set of natural numbers including zero) is a function called
arity. If for a symbol s ∈ F (or s ∈ P), we have σ (s) = n, we say that a symbol s

has arity n (or is an n-ary symbol). If for some f ∈ F we have σ (f) = 0, we call
such a function symbol f a constant.

• L is a set of well-formed formulae of the language recursively defined as follows:

1. every variable and every constant is a term

2. for every n-ary function symbol f and any n terms t1, t2, . . . , tn, an expression
f (t1, t2, . . . , tn) is a term

3. for every n-ary predicate symbol p and any n terms t1, t2, . . . , tn, an expression
p (t1, t2, . . . , tn) is an atom. Any 0-ary predicate symbol is also an atom. All
atoms are formulae

4. if A is a formula, ¬A is a formula. If A is an atom, then both A and ¬A are
called literals

5. if A and B are formulae, then A ∧B, A ∨B are formulae

6. if A is a formula and x is a variable, then ∃xA and ∀xA are formulae

One can transform every FOL formula to an equisatisfiable formula in so-called
clausal normal form (CNF): C1∧C2∧· · ·∧Cn. n depends on a formula at hand, and each
formula Ci, 1 ≤ i ≤ n is called a clause and has a form L1∨L2∨· · ·∨Lm. m depends on
the clause at hand and each formula Li, 1 ≤ i ≤ m is a literal. In CNF, all variables are im-
plicitly universally quantified, i.e. we write C1∧C2∧· · ·∧Cn instead of ∀x1∀x2 . . . ∀xN C1∧
C2∧· · ·∧Cn where x1, x2, . . . , xN is a list of all variables occurred in clauses C1, C2, . . . , Cn.
To get rid of existence quantifiers (∃), we apply so-called Skolemization by introducing
Skolem functions. For example, a FOL formula ∀x (∃yf (y) ∧ ¬g (x, y))) ∨ (∃zg (z, x))
when Skolemized, becomes ∀x (f (s1 (x)) ∧ ¬g (x, s1 (x))))∨(g (s2 (x) , x)). The new sym-
bols introduced s1, s2 are Skolem functions representing the existence of variables sat-
isfying the original formula and depending on the variable x from an outer scope. For
more details, see [104], Chapter 9.

4.1.3 Given clause algorithm

An implementation of a backbone algorithm for proof search in many ATPs called given
clause algorithm (Algorithm 1) first appeared in Otter [75], a Prover 9 predecessor. To
apply it, one should first pre-process a theorem in the following way:

1. from a theorem B1, B2, . . . , Bn =⇒ C in a theory with axioms A1, A2, . . . , AN , we
produce one formula T = A1 ∧A2 ∧ · · · ∧AN ∧B1 ∧B2 ∧ · · · ∧Bn ∧¬C (a negation
of the theorem in the theory)

36 Chapter 4. Reinforcement Learning for Automated Theorem Proving

2. we transform formula T to the formula T ′ = C1 ∧ C2 ∧ · · · ∧ Cm (in CNF)

3. we treat T ′ as a set of clauses {C1, C2, . . . , Cm} to use as input to the given clause
algorithm

Algorithm 1 Given clause algorithm
Require: input is a set I of clauses

P ← ∅ (processed set)
U ← I (unprocessed set)
while U ̸= ∅ and ⊥ /∈ U do

select given clause g ∈ U
P ← P ∪ {g}
N ← ∅ (new clauses)
for all i from inference rules do

use i to infer all possible clauses Ni from g (and clauses from P if needed by i)
N ← N ∪Ni

end for
U ← (U ∪N) \ {g}

end while

A while loop in Algorithm 1 has an invariant: all possible inferences from clauses in a
processed set done (before the iteration starts). At first, the processed set is empty, so
the invariant holds trivially, and then it is easy to see how it persists through the loop.
It guarantees we will not miss any inference which might bring us to a refutation.

The processed set grows linearly (one given clause each loop iteration), but the
unprocessed one grows much faster (folklore based on experimental evidence suggests
quadratic law). This property of a given clause algorithm makes it prone to out-of-
memory errors if running for a long time.

Remark 4.2 (Portfolios). The time (and the total number of loop iterations) needed to
find a proof depends tremendously on how one selects a given clause. Usually, ATPs
rely on a clever mixture of heuristics for the selection task. A well-known and easily
implementable approach (see, e.g. [109] for educational Python implementation) is to
organise two priority queues from the unprocessed set: one contains all the unprocessed
clauses sorted by their ‘age’ (the given clause algorithm step number at which step they
appeared among the unprocessed), and the other keeps the same clauses ordered by
‘weight’ (the number of logic symbols occurred in the clause). Then one defines a
strategy consisting of repetitively choosing a given clause from one queue n times and
then — choosing it from the other for m following times. Moreover, such strategies
can be packed into portfolios (see, for example [97]), and a prover might be running
the whole portfolio in parallel (with shorter time limits) and guessing which strategy
would be the best one given the problem input.

Remark 4.3. ATPs based on the given clause algorithm are also called saturation
provers (see [101] for more context and precise definition). Not all existing ATPs are

4.1. Automated reasoning basics 37

saturation provers. Another popular class of provers are connection (or tableaux)
provers. In contrast to the given clause algorithm, which is inherently sequential, the
analytic tableaux method (see Chapter 3 in [47] for more details) is parallelisable. More-
over, it does not need an input formula to be in the CNF, thus eliminating the need for
Skolemization. One can exploit these advantages for building ATPs (e.g. Goéland [20])
working better on some problem classes. Nevertheless, tableaux provers rarely made
it to the top at the CASC competition, and all the ATPs mentioned in this chapter are
saturation ones if not said otherwise.

4.1.4 Deductive systems

The given clause algorithm will not terminate with a guarantee with just any system of
inference rules.

Definition 4.4 (Refutation completeness). (see Chapter 3 of [47]) A system of inference
rules is refutation complete if, for an unsatisfiable set Γ of clauses, it can derive the
empty one and verify that unsatisfiability (non-existence of a model in which every
clause from Γ holds).

Refutation completeness of an inference rules system (as stated in Definition 4.4) is
a necessary condition for the given clause algorithm to terminate.

For example, the following system is known to be refutation complete [17]:

C1 ∨A1, C2 ∨ ¬A2
σ (C1 ∨ C2) , σ = mgu (A1, A2) resolution

C1 ∨ s ≈ t, C2 ∨ L [r]
σ (L [t] ∨ C1 ∨ C2) , σ = mgu (s, r) paramodulation

C ∨A1 ∨A2
σ (C ∨A1) , σ = mgu (A1, A2) factoring

C ∨ s ̸≈ t

σ (C) , σ = mgu (s, t) reflexivity resolution

where C, C1, C2 are clauses, A1, A2 are atomic formulae, L is a literal, r, s, t are terms,
and σ is a substitution (most general unifier). L [t] is a result of substituting the term t

in L [r] for the term r at only one chosen position.
The resolution rule itself is refutation complete in languages without the equality

symbol. The paramodulation rule is one of the rules that successfully works with equal-
ity. Another one, which is a restriction of paramodulation, is called superposition [6].

In addition to different rules to produce new clauses, ATP practitioners employ other
ones that help to remove unnecessary clauses. A first-order clause C subsumes another
D, if there is some substitution σ such that the set of literals of σ (C) is a subset of that
of the literals of D.

38 Chapter 4. Reinforcement Learning for Automated Theorem Proving

C, σ (C) ∨D

C
subsumption

Namely, forward subsumption checks if any processed clause subsumes the given
clause and discards the latter if that is the case instead of making other inferences from
it. Backward subsumption removes processed clauses subsumed by the given clause
instead of adding them to the unprocessed set. See more in [109]

For proofs of refutation completeness of more general versions of a given clause
algorithm serving as base loops of contemporary ATPs and including different inference
rules types mentioned in this section, see [142].

4.1.5 Hints and proof sketches in saturation provers

A hint to the given clause algorithm is a clause C such that if there is a clause D among
unprocessed ones which subsumes (see subsumption) C or which is subsumed by C ,
then the algorithm prioritises the clause D for selection as a given one. Hints might
come from a proof sketch — a list of clauses which form a (hopefully backbone) part
of a complete proof (a list of clauses itself). For example, a mathematician might design
a proof sketch based on their intuition and previous experience in proving similar
theorems or theorems from the same domain. The technique of hints appeared in
PROVER 9 predecessor OTTER [139], and was preserved by PROVER 9. Another source of
hints might be proof of a weaker theorem, which an ATP can solve contrary to a more
general theorem. In this case, the hint list is not a real sketch of a general theorem
proof in the strict sense because the clauses-hints do not necessarily appear in the final
proof. That is why we spoke about subsumption (instead of the exact equivalence of
clauses) and prioritisation rather than taking the hint immediately as a given clause.
Working mathematicians describe hints as a “particularly powerful method” [63], and
for a reason: they solved many open problems in mathematics with it [140]. E prover
further generalised the idea of hint lists, calling them watchlists [102] and not insisting
on a particular nature of their source. For example, in the ENIGMAWatch [40] project,
authors tried to learn the priority of an unprocessed clause based on its aggregated
similarity to clauses from a series of watchlists composed of clauses that appeared in
proofs (generated by the same ATP) of theorems from the same domain. It means that
one can generate hints from previous experience with an ATP rather than write them
manually from the experience of a human mathematician.

4.1.6 TPTP language

The TPTP library [131] language is an impressively expressive one 1 and comprises a
multitude of dialects. The most useful for our purpose is one for writing FOL formulae.

1https://www.tptp.org/TPTP/SyntaxBNF.html

https://www.tptp.org/TPTP/SyntaxBNF.html

4.1. Automated reasoning basics 39

It somehow mirrors Definition 4.1 (notice that alphanumeric characters include the
underscore in the TPTP):

• variables are alphanumeric strings starting with a capital letter, e.g. X or Y1

• function and predicate symbols are alphanumeric strings starting with a lower-
case letter, e.g. join or is_subset

• some function and predicate symbols have special meaning and start with a dollar
sign, e.g. $false stands for tautological falsehood

• for predicates and functions, the default form is the prefix one. One does not
write X * Y in the TPTP, but rather $product(X, Y). Nevertheless, the equality
and inequality predicates are infix: X != Y (for X ̸= Y) or X = Y

• terms are combinations of variables, function symbols, brackets, commas, and
whitespace as usual, e.g. join(X, Y)

• negation (¬), disjunction (∨), and conjuction (∧) are ~, |, and & respectively, e.g.
(~man(X) | mortal(X)) & man(socrates). There are also many other logic con-
nectors in the TPTP that we do not use, e.g. =>. Note that the TPTP defines only
the syntax, not the semantics, so ~man(X) | mortal(X) and man(X) => mortal(X)
are different character strings. Whether they are equivalent in some sense follows
from axioms at hand, not the TPTP itself

• quantifiers ∀ and ∃ are ! and ? respectively, e.g. ![X, Y]: join(X, Y) = join(Y, X)
or ![X]: ?[Y]: X != Y.

A complete FOL formula in TPTP can have the following form (linebreaks are whites-
pace, one can remove them or change them for tabulations or spaces):

cnf(
label,
role,
formula,
inference(inference_rule, useful_info, inference_parents)

).

where fof stands for ‘first order formula’ and

• label is an alphanumeric formula label. It can be something meaningful, like
socrates_is_mortal, or an order number like 10.

• role is a formula role, an alphanumeric like axiom or negated_conjecture

• formula is a FOL formula in a format described above

40 Chapter 4. Reinforcement Learning for Automated Theorem Proving

• inference_rule is an inference rule according to which we got the formula, an al-
phanumeric string like input (we read the formula from a file as is) or resolution
(the prover produced the formula using the resolution rule)

• useful_info will be empty for all cases we examine

• inference_parents is a list of labels of the formulae used to infer the one at hand,
e.g. an empty list (for the input rule)

Here is an example of a classical syllogism in TPTP (again, line breaks are whites-
pace, and the full-stop character serves as a delimiter between formulae):

fof(1, axiom, ![X]: (man(X) => mortal(X)), inference(input, , [])).
fof(2, axiom, man(socrates), inference(input, ,[])).
fof(3, lemma, mortal(socrates), inference(resolution, , [1,2])).

Another TPTP dialect we will mainly use in this thesis is a CNF one. It is nearly the
same, but the formula must be in CNF, and the trailing header is different, e.g.

cnf(1, axiom, ~man(X) | mortal(X), inference(input, , [])).

Apart from listing formulae, the TPTP file can contain an include statement for
copying contents of other files (typically, the axiom sets used by different problem files),
e.g.

include('Axioms/SET001-0.ax').

The path in include statements is relative to the TPTP root folder (not the prover
working directory).

TPTP problem files obey the following naming conventions:

• the filename extension for problems is .p, and for axioms — .ax

• the filename without the extension has the form DOMXXXYZZ where

• DOM is a three-letters domain acronym (e.g. SET — set theory, GRP — group theory)

• XXX is a three-digits order number of a problem, starting with 001

• Y is a dialect-defining delimiter, e.g. + for FOL and - for CNF. One file can not
contain formulae written in different dialects

• ZZ is a one or two digits problem version number, usually starting from 1. E.g.,
there can be two problems with the same theorem statement using two slightly
different axiom sets

4.2. Reinforcement learning basics 41

4.2 Reinforcement learning basics

4.2.1 Reinforcement learning glossary and Markov Decision Processes

Reinforcement learning (RL) is one of the paradigms of machine learning (ML) (see Chap-
ter 20 of [104]). In contrast to supervised learning that we applied in Chapter 3 where an
agent (ML model) passively observes example input/output pairs provided by a “teacher”,
an RL agent (also called actor sometimes) actively learns from its own experience of
interaction with an environment. Usually, the agent interacts with the environment in
a finite series of steps of discrete time. At each step, the agent sends a signal called
action to the environment and receives back another signal called reward, as well as a
(partial) snapshot of the environment’s current state called observation. Mathematically
such situations are often modelled ([104], Chapter 17) by a

Definition 4.5 (Markov Decision Process). Markov Decision Process (MDP) is a tuple
(S, A, P, R) where

• S is a set of states of the environment

• A is a set of actions (action space). For each s ∈ S, we have a subset As ⊆ A

of actions available to the agent when interacting with the environment in state s.
For a terminal state s, we have As = ∅

• P : S × S ×A→ [0, 1] is a transition model, such that for each s, s′ ∈ S, a ∈ A the
value of P (s′|s, a) is a probability of transition to state s′ from state s as a result of
agent’s action a. Notice that P is Markovian: it depends only on the current state
s of the environment, not on the history of all previous states. For a terminal
state s, for each s′ ∈ S, a ∈ A and s ̸= s′ we have P (s′|s, a) = 0.

• R : S × A × S → R is a reward function, such that for each s, s′ ∈ S, a ∈ A the
value of R (s, a, s′) is a reward received by an agent after a transition from state s

to state s′ as a result of agent’s action a

Agent behaviour is modelled by a policy π, a stochastic process mapping a pair (s, t)
of a state s ∈ S and a step number t to a probability distribution over the As. Sometimes
a policy does not depend on t, then we speak about static policies. In our work, all of
them will be dynamic (depending on t) by default.

The objective of an agent trying to solve an MDP is to find a policy which maximizes
its gain:

Est+1∼P (.|st,π(st,t))

[
H∑

t=0
γtR (st, π (st, t) , st+1)

]
(4.1)

where γ ∈ (0, 1] is the discount factor and H is an integer number (or infinity) called a
horizon. In the case of an infinite horizon, γ < 1, but in the case of a finite one (or a
transition model having terminal states), we can set γ = 1.

42 Chapter 4. Reinforcement Learning for Automated Theorem Proving

In RL practice, one groups steps into episodes, each beginning in a possible start-
ing state of the environment and ending either in a terminal state of the environment
(so-called termination of the episode) or because of the exhaustion of the agent re-
sources (e.g. a maximal possible number of steps in a row) which situation is called a
truncation of an episode. At the end of each episode (or at each step), an agent can ad-
just its policy of selecting the actions. A sequence of transitions (st, at, rt, st+1) (where
rt = R (st, at, st+1) and at = π (st, t)) happened during a particular episode is called a
trajectory.

4.2.2 Observation as state representation

In real RL applications, an agent rarely has access to the complete environment state
or processes it in its original format. In the case of deep reinforcement learning, we
model a policy by a deep neural network, so we expect the observation to be a tensor.
For example, in simple video games [77], an input can be a tensor of screen pixel colour
channels. But then, while training a deep learning model for the policy, we perform
two tasks simultaneously:

• extracting valuable information from raw visual input (representation learning)

• learning how to win a game based on the information extracted (reinforcement
learning per se)

The network architecture in [77] even mirrored these two stages: two convolutional lay-
ers first and then two fully-connected ones. Current advances in RL rely on decoupling
representation learning from reinforcement learning [127] or the so-called pre-training
and fine-tuning paradigm. In such an approach, instead of building one large model
for a particular task, we:

• start by building an unsupervised or self-supervised generic (task-independent)
model learning representations of data points from a huge dataset

• fine-tune the model built at the previous step (i.e. pre-trained) as a part of a
supervised or RL model solving a particular task

For example, this paradigm became a cornerstone of the InstructGPT [84] (a “sibling
model” of the world-famous ChatGPT [82]) produced by fine-tuning the GPT-3 [19], an
enormous (175 billion parameters) language model.

4.2.3 Sparse rewards and parametric actions

Apart from the partially observed state discussed in the previous subsection, real-world
RL problems differ from an MDP model because the reward can be sparse, i.e. there
is no reward (or it equals zero) for nearly all the steps of an episode (often except the
last one). For example, let us set a reward to be 1 if a chess player wins, −1 if they lose,

4.2. Reinforcement learning basics 43

and 0 in case of a draw. Then, during a game of, e.g. 40 moves after each of them but
the last one, we can not say who will win with certainty, and thus there is no reward.
Setting it to 0 for each non-final move does not change much: we still do not get any
information on how the current game move differs from the previous one (it means
we can not learn at each step). Contemporary RL algorithms usually work with such
situations out of the box. However, sometimes the reward is so sparse that an agent
can go through episode after episode without seeing anything but zero. For example,
imagine a robotic arm supposed to put a box at a particular spot on the table with a
binary reward which equals 1 only when the task is accomplished and is 0 otherwise,
no matter how close the box is to the target circle. Standard approaches can not even
initialise learning in such cases, and no learning means no change in the policy, which
forms a vicious circle without rewards. Nevertheless, the research community recently
developed practical RL approaches even for such cases [4].

When the number of actions becomes too large (e.g. around 80000 for Dota 2 [13]),
their space being discrete stops making much sense in practice. Nonetheless, moving
to full-blown continuous action RL can still be an unnecessary complication. In such
situations, practitioners represent observations and actions by embeddings (real-valued
vectors) stored in an embedding dictionary (thus keeping the action space finite). Of
course, if a policy returns an embedding of non-existent action, an agent chooses one
with the nearest embedding instead. One can either use pre-trained static embeddings
representing action space topology or train action embeddings from scratch simulta-
neously with the RL agent policy (or even pre-train and then fine-tune as with obser-
vations). We will call such action representations parametric actions, following [38]
(where authors report “more than millions of possible actions” in RL applications for
recommender systems).

4.2.4 Multi-armed bandits

Definition 4.6 (Contextual bandit). [2] A contextual bandit is an MDP (see Defini-
tion 4.5) for which

• the state space S ⊆
(
Rd
)N

consists of N -tuples of d-dimensional real vectors
bi, 1 ≤ i ≤ N . Each bi is called a context

• the action space A = {1, 2, . . . , N} is a finite set. The set of available actions for
every state s is the same As = A. Each action a ∈ A is called an arm. Thus we
talk about an N -armed contextual bandit

Remark 4.7. The simplest case of a contextual bandit is when all the contexts are
constant. One can assume d = N and S having only one item, namely (b1, b2, . . . , bN)
where {bi}Ni=1 form a basis in RN . Then we talk about a multi-armed bandit (MAB)
(thus not a contextual one). The name comes from a hypothetical situation of an agent
playing simultaneously several one-armed bandits (slot machines standing in a casino)

44 Chapter 4. Reinforcement Learning for Automated Theorem Proving

and striving to learn which ones have better potential pay-offs. Notice that we also can
talk about parametric actions in this case (see Subsection 4.2.3) since our action space
is discrete and finite, but every action has a constant vector embedding.

4.3 Machine learning guided automated reasoning

4.3.1 Related work and software architecture choices

ML is applied widely in the automated reasoning domain. There are several projects
using reinforcement or supervised learning to guide ITPs: HOList [10] for HOL Light,
ASTactic [148] for Coq, TacticZero [146] for HOL4, and another one for Lean [92] to
name a few. In these projects, a task for a learning agent is to make the next step
in the proof. To achieve that, one gathers a database of existing human-written proof
steps, which agents then try to memorise and mimic. As a result, each of these projects
comes with its distinctive benchmark, which renders agents guiding different ITPs in-
comparable. We want to avoid such uniqueness, and keep our research results easier
to scrutinise by other research groups. In addition, a benchmarking dataset built from
human-written proof formalisations is prohibitively expensive to scale (one needs a
graduate student level worker who completed an additional training in the ITP at hand
to perform a formalisation, and even then, it is never fast) and biased (depending on
the style of thinking of a person who did the formalisation). We want to get tons of
cheap data for our ML models, and we also believe a computer can discover proofs
inherently different from known ones. After all, we do not want to simulate a working
mathematician for the sake of doing it, but we want more theorems proved. So, in our
work, we decided not to guide an ITP.

Among ATPs, there are also many projects applying supervised and reinforcement
learning techniques. They exist for both saturation (e.g. Deepire [128] for Vampire,
ENIGMA [53] for E, and TRAIL [1]) and connection provers (e.g. rlCoP [57] for ml-
CoP [58], FLoP (Finding Longer Proofs) [152] for fCoP [59], and another one for lazy-
CoP [98]). Unfortunately, even these projects often are evaluated using different bench-
marks, and hardly ever an ML-guided prover enters the CASC competition. Neverthe-
less, they all can work with theorems from the TPTP library, so, at least in principle,
one can objectively compare existing ML-guided ATPs with newly created ones. In
addition, since the TPTP does not contain proofs, the agents learn from their proof
attempts rather than human-style proofs, which can help us to generate much more
training data than we can extract from existing libraries of formalised mathematics.

Among ATPs, one can consider saturation provers less suitable for the RL (e.g., see
design considerations from [96]), but the projects we mentioned (ENIGMA, Deepire,
and TRAIL) show encouraging results. For example, ENIGMA beat all participants
except Vampire in the FOL division of the CASC-J10 [132]. So, keeping possible risks
in mind, we decided to concentrate on guiding clause selection in the given clause

4.3. Machine learning guided automated reasoning 45

algorithm by RL.
Despite the community-accepted standard for implementing RL environments for

reproducible research (OpenAI Gym [18]), only the FLoP system followed it from all the
projects we mention here. Nevertheless, the FLoP guides a closed-source prover called
fCoP, an OCaml reimplementation of leanCoP [83] (GPL licensed prover in Prolog). In
our opinion, relying on closed-source software reduces freedom of experimentation and
research reproducibility. RL source code for guiding lazyCoP (itself open-sourced) and
the source of the rlCoP were never released (to our best knowledge), and the TRAIL
is completely proprietary software developed by IBM. Deepire and ENIGMA exist as
patched versions of Vampire and E which means that separating the environment from
the agent code demands proficiency in the programming languages used to code the
provers (C++ and C, respectively) and also a solid understanding of the respective
project codebase. One might suppose that such architectural design choices might be
among the reasons why ideas contributed by Deepire were never implemented (to our
best knowledge) in ENIGMA despite the published evidence of a potential performance
boost. Also, in the status quo, one can not judge with certainty whether a particular ML
algorithm perks or the underlying ATP properties were the main reason for an ML-
guided ATP performance improvement. We want more free idea flow between different
research groups (not limited to automated deduction community) for faster scientific
progress. Thus, we decided to, first of all, create an RL environment for saturation
provers.

4.3.2 A saturation prover as an RL task

For practical implementations of RL, we use Gymnasium2, a maintained fork of OpenAI Gym [18].

import gymnasium as gym

env = gym.make("Environment-v1")
observation, info = env.reset()
terminated, truncated = False, False
while not (terminated or truncated):

action = ... # agent's policy call
observation, reward, terminated, truncated, info = env.step(action)

env.close()

Listing 2: A typical use-case for Gymnasium environment

If we look at the Listing 2 and Algorithm 1 on page 36, we will see lots of similarities,
ending up in the following translation from ATP to RL parlance (we ignore satisfiable
sets of clauses for the rest of the chapter):

2https://github.com/Farama-Foundation/Gymnasium

https://github.com/Farama-Foundation/Gymnasium

46 Chapter 4. Reinforcement Learning for Automated Theorem Proving

RL term saturation ATP term
available actions set of unprocessed clauses
action given clause
policy heuristics for given clause selection
observation sets of processed and unprocessed clauses
episode proof attempt
termination refutation found
truncation timeout or out-of-memory
environment deduction system (inference rules)
reward 1 if refutation found, 0 otherwise

Things to notice and challenges are:

1. action space and observation space are countably infinite. Thus, one will have to
rely on some representations (embeddings) for both, i.e. we are in the situation of
parametric actions. We will discuss clause representations in Chapter 5 in more
detail

2. available actions set can grow with each step. Nevertheless, since an ATP usually
store clauses in RAM, one can set a maximum possible number of clauses as a
‘soft’ version of the memory limit

3. One can not repeat actions. After an agent selects a given clause, it moves from
the unprocessed set from which all future given clauses will come. A typical
solution for action availability is defining an action mask — an array action_mask
of size N (the maximal number of actions mentioned in the previous point) of
zeros and ones where action_mask[i] == 1.0 if and only if the option with order
number i is available. Such representation also helps to deal with the fact that in
the beginning, we have a much smaller number of actions than N (all the rest are
zeroes in action_mask). This property is somewhat peculiar for an RL problem,
although not unique and shared with the Travelling Salesman Problem (TSP). An
action in the TSP is the city to visit next on the condition that the agent must visit
each city exactly once. See [73] for a survey of RL for combinatorial optimisation,
including the TSP.

4. reward is binary and exceedingly sparse. It is related to the fact that even sub-
human performance in automated deduction still seems out of reach. Most proof
attempts finish without proof found, so they give no positive reward for an agent
to learn from. As mentioned in Subsection 4.2.3, it is not a completely unknown
problem in RL, and we will discuss more possible solutions in Chapter 5.

5. if we fix the starting state of the environment (a theorem to prove), it becomes
completely deterministic (i.e. we do not have a real MDP here). Nevertheless,
we can randomise the environment reset function by letting it use different the-
orems from some (potentially infinite) pool. This situation makes ATP similar to

4.4. gym-saturation 47

the environment built with Box2D [18] physics simulator with landscapes (maps)
changing randomly from episode to episode, and we expect the agent to generalise
its experience to different conditions. A distinctive property of ATPs here is that
some theorems are inherently more complex to prove than others. Curriculum
learning [79] is a well-known approach for training a multi-task agent in case of
inhomogeneous tasks.

4.3.3 A saturation prover as a multi-armed bandit

Instead of deciding which clause to choose, one can determine from which priority
queue of clauses to draw (see Remark 4.2). Such an approach makes the number of
possible actions small and fixed at each episode step, thus reformulating the given clause
choice problem into a MAB (see Definition 4.7). In addition, one can attach the clause
representation for the clauses coming from different priority queues and regard the
problem as a contextual bandit (see Definition 4.6). The main hindrance, however, will
be that the bandit algorithms like Thompson sampling [2] expect the pay-off to be tied
to a particular arm, even if not received immediately after playing it. In the case of
proofs, we do not get the reward for steps but rather for episodes (like in the game
of chess). So we do not assume bandit formulation to be suitable for guiding provers,
although we highlight its deceiving similarities.

4.4 gym-saturation

4.4.1 General description

gym-saturation is a collection of OpenAI Gym [18] environments for RL agents guiding
the selection of a given clause in saturation provers. It includes two environments: one
for Vampire and the other for iProver. Its main features include:

• gym-saturation is a free software. All its code is publicly available, as well as the
code of the provers it relies on. A permissive licence (Apache 2.0 3) lets anyone
modify the code for their experiments

• gym-saturation is maintained. It is not a public archive of an accompanying code
for a paper, but a full-blown Python package, distributed through both PyPI 4

and Conda 5. It has been receiving updates nearly monthly since July 2021. The
maintainer is committed to going on with the compatibility releases and bug fixes
after the thesis defence

3https://www.apache.org/licenses/LICENSE-2.0.html
4https://pypi.org/project/gym-saturation/
5https://anaconda.org/conda-forge/gym-saturation

https://www.apache.org/licenses/LICENSE-2.0.html
https://pypi.org/project/gym-saturation/
https://anaconda.org/conda-forge/gym-saturation

48 Chapter 4. Reinforcement Learning for Automated Theorem Proving

• gym-saturation adopts the best practices of software development such as con-
tinuous integration 6, automatic generation of API documentation 7, near 100%
code coverage 8 by unit-tests and providing a complete environment (a Docker
container) to run the code on any machine

• an end-user does not need to be a Vampire or iProver developer, nor they have
to have any knowledge of C++ or OCaml. Only Python programming skills and
knowledge of OpenAI Gym standard are pre-requisites

• one can use an agent guiding Vampire prover through gym-saturation for guiding
iProver (and vice versa) with minimal code edits (see Listing 3 for details)

• gym-saturation treats an underlying prover as a black box, so it is independent
on a particular inference rules system

All these features make gym-saturation a unique piece of software, and we hope that it
can bring much additional value when applied by researchers from different research
groups and diverse backgrounds.

4.4.2 Usage examples

import gym_saturation
import gymnasium

env = gymnasium.make("Vampire-v0") # or "iProver-v0"
skip this line to use the default problem
env.set_task("a-TPTP-problem-filename")
observation, info = env.reset()
terminated, truncated = False, False
while not (terminated or truncated):

apply policy (a valid random action here)
action = env.action_space.sample(mask=observation["action_mask"])
observation, reward, terminated, truncated, info = env.step(action)

env.close()

Listing 3: How to use gym-saturation

When combined with an agent, gym-saturation can work as an ATP. See Listing 3
for an example of a random prover. Notice that to guide iProver instead of Vampire,
we have to change only the name of a prover.

For an example of age-weight agent implementation, please look at agent_testing
module in the gym-saturation package. Notice that the agent remains external towards
the prover and thus independent from it.

6https://app.circleci.com/pipelines/github/inpefess/gym-saturation
7https://gym-saturation.readthedocs.io/en/latest/api/utils.html
8https://app.codecov.io/gh/inpefess/gym-saturation

https://app.circleci.com/pipelines/github/inpefess/gym-saturation
https://gym-saturation.readthedocs.io/en/latest/api/utils.html
https://app.codecov.io/gh/inpefess/gym-saturation

4.4. gym-saturation 49

Of course, guiding a prover with an external wrapper introduces significant over-
head, so for better efficiency, after we get the best possible ML model, we should extract
or reimplement machine learning guidance in the prover, avoiding slower languages
like Python. In the case of C++ and Torch, one can transform a Python object of
a trained model into C++-compatible TorchScript 9 artefact as in [71]. Nevertheless,
we argue that ML model development progresses faster in a dedicated environment
separated from the prover’s implementation technical details.

4.4.3 Architecture

Although the gym-saturation user communicates with both iProver and Vampire in
the same manner, under the hood, they use different protocols. For Vampire, we relied
on the so-called manual (interactive) clause selection mode implemented several years
ago for an unrelated task [39]. In this mode, Vampire interrupts the saturation loop and
listens to standard input for a number of a given clause instead of applying heuristics.
Independent of this mode, Vampire writes (or not, depending on the option show_all)
newly inferred clauses to its standard output. Using Python package pexpect, we attach
to Vampire’s standard input and output, pass the action chosen by the agent to the
former and read observations from the latter. In manual clause selection mode, Vampire
works like a server awaiting a request with an action to which it replies with observation
(exactly what an environment typically does).

Figure 13: gym-saturation wrapping Vampire

In the case of iProver, there existed a way for it to communicate with an external
TCP server providing it with guidance. See, for example, the experimental release 10

(iProver did not ship official binary releases at the time of writing). So, iProver behaves
as a client which sends a request with observations to some server and awaits a reply
containing an action. To make it work with gym-saturation, we implemented a tiny
relay server. It accepts a long-running TCP connection from a running iProver thread,
stores its requests to a thread-safe queue 11, and sends responses to it from another
such queue filled by gym-saturation thread.

9https://pytorch.org/docs/stable/jit.html
10https://gitlab.com/inpefess/iprover/-/releases/2022.11.03
11https://docs.python.org/3/library/queue.html#queue.Queue

https://pytorch.org/docs/stable/jit.html
https://gitlab.com/inpefess/iprover/-/releases/2022.11.03
https://docs.python.org/3/library/queue.html#queue.Queue

50 Chapter 4. Reinforcement Learning for Automated Theorem Proving

See Figure 13 and Figure 14 for a comparison of different communication schemes
under the hood of gym-saturation.

Figure 14: gym-saturation interacting with iProver

4.4.4 Implementation details

Clause is a Python dictionary having the following keys and respective values:

• literals — a string of clause literals in the TPTP format, e.g. ’member(X0,bb) |
member(X0,b)’

• label — a string label of a clause, e.g. ‘21’. Some provers (e.g. Vampire) use inte-
ger numbers for labelling clauses, but others (e.g. iProver) use an alphanumeric
mixture (e.g. ‘c_54’)

• role — a string description of a clause role in a proof (hypothesis, negated con-
jecture, axiom, et cetera)

• inference_rule — a string name of an inference rule used to produce the clause.
It includes not only resolution and superposition but also values like ‘axiom’ and
‘input’ (for theorem assumptions)

• inference_parents — a tuple of clause labels if needed by the inference rule
(‘axiom’ does not need any, ‘factoring’ expects only one, ‘resolution’ — two, et
cetera)

• birth_step — an integer step number when the clause appeared in the proof
state. Axioms, assumptions, and the negated conjecture have birth step zero.

All the fields except the birth_step exist in the TPTP format.

4.4. gym-saturation 51

Observation is a Python dictionary with several keys:

• real_obs is a tuple of clauses. It can be transformed to tensor representation by
so-called observation wrappers

• action_mask is a numpy [46] array of the size max_clauses (a parameter which
one can set during the environment object instantiation) having a value 1.0 at index
i if and only if a clause with a zero-based order number i currently exists and is
not yet processed. All other values of action_mask are zeros. This array simplifies
tensor operations on observation representations.

Action is a zero-based order number of a clause from real_obs. If a respective
action_mask is zero, a prover throws an exception during execution of the step method.

Reward is 1.0 after a step if we found the refutation at this step and 0.0 otherwise. We
discuss different options for post-processing rewards of completed episodes in Chap-
ter 5

Render modes of the environment include a human one which is the same as ANSI
one and is the TPTP formatted string. For example, a clause dictionary

{
"literals": "subset(X0,X0)",
"label": "11",
"role": "lemma",
"inference_parents": ("10",),
"inference_rule": "duplicate_literal_removal",
"birth_step": 3

}

becomes
’cnf(11, lemma, subset(X0,X0), inference(duplicate_literal_removal, [], [10])).’

4.4.5 Release history and lessons learned

According to the git log 12, we have been developing gym-saturation since 2021-07-26,
making over 500 commits at more than 130 days of activity. It accumulates to about
six working months over two years, making it the most labour-intensive project of
this thesis. Here we present a list of development milestones with notes and remarks
highlighting our findings relevant to the automated provers research.

12https://github.com/inpefess/gym-saturation/commits/master

https://github.com/inpefess/gym-saturation/commits/master

52 Chapter 4. Reinforcement Learning for Automated Theorem Proving

• 2021-07-26. The first public version of gym-saturation. It did not rely on existing
provers like Vampire or iProver but implemented a resolution-based calculus in
Python. The inspiration for this work came from PyRes [109], a simplistic ATP in
Python.

• 2021-10-01. The first version was submitted for external review (later published
as [111]). It added paramodulation to our pure Python prover and its evaluation
on the Jean Zay super-computer 13.

• 2022-04-07. The first version with two different provers using the same API. We
added a Vampire wrapper and realised that our paramodulation implementation
was tremendously inefficient and that Python, in general, was prohibitively slow
for implementing a prover

• 2022-05-07. gym-saturation appeared in the curated list of the third-party OpenAI
Gym environments 14

• 2022-05-21. We moved the TPTP parser employed by our pure Python prover to
a separate project [115]. To our best knowledge, it was the first Python package
for parsing the TPTP language

• 2022-10-16. We replaced our pure Python prover with iProver, keeping two dif-
ferent ATPs in the environment collection.

• 2023-02-25. We moved from the original OpenAI Gym to the updated Gymnasium
API because of the discontinuance of the general maintenance of the former.

We learned several lessons during our work on gym-saturation:

• it is practically impossible to do equally well in training ML models and building
ATPs. We implemented paramodulation calculus, for example, but to no surprise,
it worked worse than in Vampire, being developed for nearly three decades by a
professional team. This sentiment is not only ours 15, and we suppose that more
thoughtful design of ML and ATP systems (and their interactions) can facilitate
the collaboration of specialists from two respective domains which we see as a
remedy

• the more community verified components you reuse, the better. Even a task of
parsing the TPTP language, however trivially sounding in the twenty-first century,
can bring numerous singularities to debug and performance tweaks to implement

13http://www.idris.fr/eng/jean-zay/
14https://gymnasium.farama.org/environments/third_party_environments/

#gym-saturation-environments-used-to-prove-theorems
15“If you do a doctorate in ML for ATP, then ATP people are intrigued but suspicious of you (they also

expect you to apply ML to their obscure ATP stuff); ML people are pleased but have no idea what this ATP
thing is (they also expect you to use their obscure ML techniques). Problem one: you know neither...”,
Michael Rawson at the 7th Conference on Artificial Intelligence and Theorem Proving on September 6,
2022)

http://www.idris.fr/eng/jean-zay/
https://gymnasium.farama.org/environments/third_party_environments/#gym-saturation-environments-used-to-prove-theorems
https://gymnasium.farama.org/environments/third_party_environments/#gym-saturation-environments-used-to-prove-theorems

4.5. Conclusion and future work 53

• running a prover at scale (on a Slurm 16 cluster, or StarExec 17) can be technically
complex and demanding skills not necessary to develop it. For this matter, we
assume that keeping a research team more diversified (not only researchers, but
DevOps engineers) might help

• maintaining a research-support system is costly (dependencies change, and one
needs to work to keep the system compatible and runnable) and gratifying, al-
though not necessarily expressing itself in papers published and cited

4.5 Conclusion and future work

We briefly overviewed existing attempts of supervised ML and RL applications to au-
tomated deduction and justified our focus on saturation provers. Then we analysed a
saturation prover guidance as an RL task and identified its three main components:
the environment (deductive system/inference rules/calculus), the state representation
(encoding logic clauses to real vectors), and the agent (using RL algorithms instead of
heuristics). Finally, we contributed a collection of RL environments in standard for-
mat (OpenAI Gym) working with two provers: Vampire, written in C++, and iProver,
written in OCaml). We showed that when given a policy (a mapping from the state
representation to a proposed given clause), an agent can guide both provers seamlessly.
We hope that using such standard environments will help:

• ATP developers — to easier transfer policies (including heuristics) from one
prover to another without mastering several programming languages and large
code bases at a time

• RL practitioners — to apply their experience to automated theorem proving study
without the need to deeply specialise in it before they could even start doing what
they do best

If the future, we would be happy to add other popular provers to gym-saturation: first
of all, E, but also other CASC top competitors like Twee [120], Zipperposition [141], and
Leo-III (read more on its given clause algorithm version in Chapter 4 of [123]). We also
hope that gym-saturation might get contributions from someone except its original
author. Or at least it will inspire a more successful project that will supersede it, but
the community will adopt the RL best practices nonetheless.

Now, we have an RL environment that works, but can an RL agent learn to prove
theorems in it? We investigate it in Chapter 5.

16https://slurm.schedmd.com/overview.html
17https://starexec.ccs.miami.edu/starexec/public/about.jsp

https://slurm.schedmd.com/overview.html
https://starexec.ccs.miami.edu/starexec/public/about.jsp

54 Chapter 4. Reinforcement Learning for Automated Theorem Proving

CHAPTER 5

Generic Reinforcement Learning Prover

The thesis author conducted the research presented in this chapter alone and did not
previously publish it elsewhere.

This thesis author started creating an RL-guided prover at the end of the first year
of his studies. After running the first makeshift version, it became evident that it was
not a coincidence that many publications on attempts to guide ATPs with ML had many
co-authors or were parts of many-years projects. Combining graph neural networks,
paramodulation calculus, TPTP parsing, and RL in one code repository was too much.
Dependencies quickly started conflicting, and the code became undebuggable. Then
the idea of a separate environment appeared (described in Chapter 4). A pure Python
saturation prover and TPTP parser saw the light of day only to be abandoned as too
slow and inefficient shortly afterwards. Guiding Vampire came to the rescue, but the
question of state representation stayed impenetrable. Eventually, the architecture using
a representation server based on a pre-trained model gave birth to the proof of concept
we present here.

Outline of the chapter:
In Section 5.1, we remind architectures of existing ML-guided projects.
In Section 5.2, we introduce a pre-trained model for Python code snippets’ embed-

dings and our technical improvements to it.
In Section 5.3, we talk about the RL algorithm we used in our experiments and why.
In Section 5.4, we look in more detail at how one evaluates RL algorithms in the

ATP context.
In Section 5.5, we detail the experiment setup and report the results.
In Section 5.6, we examine approaches to multi-task RL and more experimental data

pertinent to our case.
In Section 5.7, we discuss the possible value and risks of using non-monolith archi-

tecture for ATP development.
In Section 5.8, we overview lessons learned, problems encountered, and further

research directions worth pursuing.

55

56 Chapter 5. Generic Reinforcement Learning Prover

5.1 RL-guided prover architecture

5.1.1 Short overview of existing solutions

In Chapter 4, we noted that to guide a saturation prover with RL, we need at least
three components: the environment (gym-saturation described in detail in the same
chapter), the observation representation, and the RL algorithm per se. We list several
projects using RL to guide ATPs and detail their components: base ATP (corresponding
to the environment), clause representation, and the RL algorithm.

FLoP [152]

• complete rewrite of an existing prover

• existing clause representation (but depending on the prover)

• standard training algorithm implementation

lazyCoP-based [98]

• an original prover

• original clause representation

• original training algorithm implementation

TRAIL [1]

• claims to be prover-agnostic (but does not publish any code)

• original clause representation

• original training algorithm implementation

The following projects do not claim using RL, but rather iterative learning or su-
pervised learning applied in a loop.

Hindsight experience replay-based [5]

• new prover (resolution-only, which effectively means inability to handle equality)

• original clause representation

• original training algorithm

ENIGMA [53]

• uses a patched version of E prover

• original clause representation

• original training algorithm implementation

Deepire [128]

• uses a patched version of Vampire

• original clause representation

• original training algorithm implementation

5.1. RL-guided prover architecture 57

5.1.2 Prover-agnosticity

As we can see, in all projects we mentioned, authors either:

• write a prover from scratch

• uses an experimental (often heavily modified) version of an existing prover

• do not publish code

Since we also tried implementing a pure Python prover, we can suggest arguments
for writing a new ATP for its ML guidance. Existing ATPs are highly competitive, thus
(rightfully) sacrificing the readability and maintainability of the code for computational
efficiency. It makes navigating and changing their codebases (even when assisted by
their developers) sufficiently demanding. For example, during their work on [69], one
of Tensorflow core developers proposed a change-set to E code base, noting that “it
does not build” 1. E prover maintainer tried to merge the experimental branch only to
revert it later 2. We think creating new ATPs is not something the community should
abandon, but we also believe that ML-guidance should be prover-agnostic. For example,
gym-saturation can, in principle, work with any saturation prover, and it works with
a stable Vampire version and an experimental version of iProver (but the maintainer
merged this experimental branch to the main one since then, and iProver does not
publish stable binaries).

5.1.3 On representations

To our best knowledge, there were no attempts to compare clause representations
published by different research teams, despite such embeddings being an object of
dedicated study [94]. Also, we are unaware of attempts to use generic abstract syntax
tree (AST) embeddings to guide ATPs. One probable reason for it is that researchers
creating embeddings either:

• do not publish embedding models training code rendering their research irrepro-
ducible (rare, but unfortunate case of some projects we cite in our work)

• do not publish digital artefacts of pre-trained embedding models they successfully
applied for guiding ATPs or other tasks (nearly all of the published ATP papers
we cite in this thesis)

• implement embedding model inference procedures in an arguably suboptimal way
(e.g. in code2vec, one has to write a Java code snippet to a file on a disk before
calling the embedding function — an unnecessary operation wasting precious
time)

We do not claim such practices to be detrimental, especially given the latency con-
siderations from Subsection 5.2.3. Nevertheless, we argue that making an efficient pre-
trained FOL embedding model available for free might help RL and ML practitioners
to focus more on applying artificial intelligence techniques for theorem proving and
make ideas flow between different research groups more fluidly.

1https://github.com/eprover/eprover/pull/2#issue-205749518
2https://github.com/eprover/eprover/commit/ce581f869932ac98e3c623b48293a8ab12e88dcb

https://github.com/eprover/eprover/pull/2#issue-205749518
https://github.com/eprover/eprover/commit/ce581f869932ac98e3c623b48293a8ab12e88dcb

58 Chapter 5. Generic Reinforcement Learning Prover

5.1.4 Original RL algorithm implementations

RL training algorithms are notorious for the number of details that can differ from one
implementation to another [51]. It is a well-known problem in the RL community and
relates to the general problem of machine learning research reproducibility. We can
not imagine any reasonable explanation for not comparing novel RL algorithms with
community-verified implementations of well-known ones in a scholarly work. Neverthe-
less, we acknowledge existing pressure for swift and breathtaking (but irreproducible)
results. For example, an anonymous reviewer [151] criticised the FLoP for not being
“methodologically new” because it relied on a standard RL algorithm (PPO).

5.2 Representation subsystem

5.2.1 Existing first-order formulae representations and related projects

As discussed in Subsection 4.2.2, to apply any deep reinforcement learning algorithm,
one needs a representation of the environment state in a tensor form first. In the case
of ML-empowered ATPs (for each project mentioned in this thesis), the authors pro-
posed feature engineering procedures. It can be as simple as clause age and weight
(see Remark 4.2), or information extracted from a clause syntax tree [81] or an infer-
ence lineage of a clause (Deepire). Representing logic formulae as such is an active
research domain: for example, in [95], the authors proposed more than a dozen dif-
ferent embedding techniques based on formulae syntax. In communities other than
automated deduction, researchers also study first-order formulae representation: for
example, in [7], the authors use semantics representation rather than syntax. One can
also notice that first-order logic is nothing more than a formal language, so abstract
syntax trees of FOL are not, in principle, that different from those of programming
language statements. And of course, encoding models for programming languages
(like code2vec [3] for Java) exist, and solutions as GPT-3 [19] code embeddings are even
commercially available on cloud platforms 3.

To make the first step in this direction, we took advantage of existing pre-trained
embedding models for programming languages and tried to apply them to a seemingly
disconnected domain of ATPs.

5.2.2 ast2vec and our contributions to it

In [85], the authors proposed a particular neural network architecture they called Re-
cursive Tree Grammar Autoencoders (RTG-AE), which encodes ASTs produced by a
programming language parser into real vectors. Being interested in education applica-
tions, they also published the pre-trained model for Python [86].

To make use of it for our purpose, we furnished several technical improvements to
their code:

• a TorchServe 4 handler for HTTP POST requests for embeddings

• request caching with the Memcached server 5

3for example, OpenAI code embeddings delivered by Microsoft: https://learn.microsoft.com/en-us/
azure/cognitive-services/openai/concepts/understand-embeddings#embedding-models

4https://github.com/pytorch/serve
5https://www.memcached.org/

https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/understand-embeddings#embedding-models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/understand-embeddings#embedding-models
https://github.com/pytorch/serve
https://www.memcached.org/

5.2. Representation subsystem 59

• Docker container to start the whole subsystem easily on any operating system

Our code contribution is freely available 6.
To integrate the ast2vec server with gym-saturation environments, we added sev-

eral Gymnasium observation wrappers, transforming a clause in the TPTP language to
a Python script. See Figure 15 for a communication diagram and Appendix A for more
details.

Figure 15: gym-saturation communication with ast2vec

5.2.3 Latency considerations

Looking at Figure 15, one might wonder how efficient is such an architecture. The
average response time observed in our experiments was 2ms (with a 150ms maximum).
A typical natural language processing model which embeds whole texts has a latency
from 40ms to more than 600ms 7 (depending on the model complexity and the length
of a text to embed) when run on CPU, so there is no reason to believe that ast2vec is
too slow. When evaluating an ATP, one usually fixes the time limit: for example, 60s
is the default value for Vampire. Being written in C++ and with a cornucopia of opti-
misation tweaks, Vampire can generate around a million clauses during this relatively
short timeframe. Thus, to be on par with Vampire, a representation service must have
latency around 60µs (orders of magnitude faster than we have). There can be several
ways to lower the latency:

• inference in batches (one should train the embedding model to do it; ast2vec does
not do it out of the box). The improvement may vary

6https://gitlab.com/inpefess/ast2vec
7https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-inference-with-tensorrt/

https://gitlab.com/inpefess/ast2vec
https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-inference-with-tensorrt/

60 Chapter 5. Generic Reinforcement Learning Prover

• use GPU. NVIDIA reports around 20x improvement vs CPU 8. However, throwing
more GPUs will not be as efficient without batch inference from the previous point

• request an embedding for a binary object of an already parsed clause instead of a
TPTP string. It means not repeating parsing already done by an ATP, which might
lower the latency substantially. To do this, one will have to patch an underlying
ATP to return binary objects instead of TPTP strings

• use RPC (remote procedure call) instead of REST protocol. TorchServe relies on
REST and parcels in JSON format, and in gRPC 9, they prefer the binary protobuf
format. One rarely expects sub-millisecond latency from REST, although for RPC,
150µs is not unusual. This point does not make much sense without the previous
one

Since we wanted to build our system without hacking existing ATPs and with an off-
the-shelf representation model, we limited the maximal number of clauses for each
proof attempt instead. Of course, by trying to solve only problems with 1000 clauses
instead of 1000000, we will not create a new ATP that will beat Vampire. But our goal
is to understand how RL techniques can help automated theorem proving in principle
and provide future researchers with a framework for more fruitfully doing collaborative
research. And we hope that the experiments’ results presented in the following sections
of this chapter show that we achieved this goal.

5.3 RL algorithm

5.3.1 Proximal Policy Optimisation

Definition 5.1 (Q-function). A quality function (or Q-function, sometimes also called
action-value function) is the expectation of discounted cumulative rewards conditional
on the current state s, the action a chosen in this state, and the policy with parameters
θ, according to which the agent selects all the following actions:

Q (s, a; θ) = E

 H∑
j=t

γjR (sj , aj , sj+1) |st = s, at = a, aj>t = π (sj , j; θ)

 (5.1)

One can observe that (see Chapter 3 of [133]):

Q (s, a; θ) = Ea′=π(s′,t;θ),s′
[
R
(
s, a, s′)+ γQ

(
s′, a′; θ

)]
(5.2)

Definition 5.2 (Value function). A value function [106] V (s) is the expectation of dis-
counted cumulative rewards conditional on the current state s and the policy with pa-
rameters θ:

V (s; θ) = E

 H∑
j=t

γjR (sj , aj , sj+1) |st = s, aj = π (sj , j; θ)

 (5.3)

Remark 5.3. One can notice that Definition 5.2 looks very similar to Definition 5.1 of
Q-function. Indeed,

V (s; θ) = Ea=π(s,t) [Q (s, a; θ)] (5.4)
8https://developer.nvidia.com/blog/nlu-with-tensorrt-bert/
9https://grpc.io/

https://developer.nvidia.com/blog/nlu-with-tensorrt-bert/
https://grpc.io/

5.3. RL algorithm 61

Moreover, we can rewrite 5.2 to get:

Q (s, a; θ) = Ea′=π(s′,t;θ),s′
[
R
(
s, a, s′)]+ γEs′

[
V
(
s′; θ

)]
(5.5)

Definition 5.4 (Advantage function). An advantage function

A (s, a; θ) = Q (s, a; θ)− V (s; θ) (5.6)

shows how much better, on average, is taking action a in the state s than sticking to a
chosen policy with parameters θ.

If we use a neural network V̂ (st) to estimate V (st; θ) and observe a reward rt at the
step t of an episode during the agent training, we can use an estimator of the advantage
function based on 5.5 and called a temporal difference (TD):

δt = rt + γV̂ (st+1)− V̂ (st) (5.7)

In practice, one uses a truncated generalised advantage estimation with a parameter
λ:

Ât =
T −t−1∑

i=0
(γλ)i δt+i (5.8)

where T is much less than the episode’s length.

Algorithm 2 Proximal policy optimisation
for iteration= 1, 2, . . . do

for agent= 1, 2 . . . , N do
Run policy π (., t; θ) in an environment for T times
Compute advantage estimates Â1, Â2, . . . , ÂT

end for
Optimise L 5.9 wrt θ, with K iterations and minibatch size M ≤ NT
Update θ with the results of optimisation

end for

In proximal policy optimisation (PPO) algorithm (see Algorithm 2 and [107] for
more details) one optimises the loss function

L = Êt

[
−LCLIP + βLKLP EN + c1LV F − c2Ht

]
(5.9)

where β, c1, c2 are non-negative meta-parameters for balancing different aspects of the
loss, Êt is an expectation’s estimation (mini-batch average), and the addends are:

1. clipped surrogate objective LCLIP = min
(
ρtÂt, clip (ρt, 1− ϵ, 1 + ϵ) Ât

)
where

• clip (x, a, b) = max (a, min (x, b)) is a clipping function
• ρt = π(st,t;θ)

π(st,t;θold) is a probability ratio of two action distributions: π (st, t; θ) —
the policy which we are training at the moment, and π (st, t; θold) — the old
policy (used to collect trajectories for the current training phase)

• 0 < ϵ < 1 is a meta-parameter

2. penalty on KL divergence LKLP EN = KL [π (st, t; θold) , π (st, t; θ)] where KL is a
Kullback-Leibler divergence 3.5 for the old and current policies as discrete prob-
ability distributions on possible actions

62 Chapter 5. Generic Reinforcement Learning Prover

3. squared error loss of the value function LV F =
(
V̂t − Ĝt

)2
where Ĝt =

T −t−1∑
i=0

γirt+i

is a target value function

4. entropy bonus Ht = −E [π (st, t; θ) log π (st, t; θ)] is an entropy of the distribution
of the action according to the trained policy at the moment t. Note that the ex-
pectation operator is computable, so one does not need an estimation.

In some sense, the “main” part of the loss 5.9 is LV F , and LCLIP and LKLP EN are
“only” regularisations. In reality, the clipping and KL penalties constitute the principal
PPO contribution making the whole value function optimisation process stable enough
for practical applications. Both LCLIP and LKLP EN try to prevent the policy from
changing too much based on observed trajectories.

In PPO, the policy network (architecturally incorporated into V̂ (s)) returns, not
the action probabilities but the normal distribution parameters to sample the actions.
Such an approach incorporates the exploration strategy, so one needs to account for it
explicitly. The general weight of the exploration in the training process is regulated by
the c2 coefficient (for the policy entropy).

5.3.2 Motivation for choosing PPO

Apart from PPO being a go-to algorithm to try out first new problems among RL
practitioners, FLoP [152] successfully used a ‘vanilla’ PPO for guiding a tableaux prover.
An anonymous reviewer asked [151] how techniques applied could help for saturation
provers (namely, they cited a project relying on E [69]). We are unaware of papers
employing ‘vanilla’ PPO to saturation provers.

Indeed, TRAIL uses a policy gradient algorithm which belongs to the same family as
PPO but is not as sophisticated. For example, its loss includes two terms: the entropy
from 5.9 and a much simpler gain estimator. A more significant difference from how
PPO works in FLoP is trajectory post-processing. After a successful proof attempt, we
know which given clauses became part of refutation proof. So, at step t of a successful
proof attempt where the action ai is selected, the reward rt is 0 if ai is not part of
the refutation proof; otherwise, rt is inversely proportional to the time spent proving
the conjecture. In FLoP, all the rewards are 0 except for the final step of a successful
episode (then it is 1).

ENIGMA does not use a proper RL algorithm but applies Algorithm 3 (see [41] for
details).

5.3. RL algorithm 63

Algorithm 3 ENIGMA training/evaluation loop
fix a set of tasks T
T0 ← ∅
for T ∈ T do

if non-guided ATP solves T then
add clauses generated while solving T to T0

end if
end for
for i = 0, 1, 2, . . . do

train a classifier (clause in proof or not) Mi on Ti

Ti+1 ← Ti

for T ∈ T do
if ATP guided by Mi solves T then

add clauses generated while solving T to Ti+1
end if

end for
end for

Although one might notice similarities between Algorithm 3 and Algorithm 2, there
are enough differences:

• one gathers the initial training data not with a random policy but using a state-of-
the-art ATP (with no ML)

• trajectory post-processing (similar to TRAIL: given clauses which ended up as
parts of proof get 1 as a reward, and others — 0)

• one discard unsuccessful proof attempts (not the case for the TRAIL)

An analogous loop (called incremental learning) appears in another recent work [5]
for guiding an unpublished saturation prover. However, there is no pre-generation of
training data, and instead of discarding unsuccessful proof attempts, authors produce
new tasks from them.

We decided to rely on an existing RL framework containing tested implementa-
tions of well-known baselines to eliminate the risk of abandoning an RL algorithm as
unsuitable for guiding an ATP only because of flaws in our implementation of it. We
have chosen Ray RLlib [67] as a library claiming both deep learning framework inde-
pendence and extendability. Solutions like Tensorflow Agents [45] or Catalyst.RL [65]
tend to support only one framework, which we wanted to avoid for greater generality.
Since gym-saturation implements the standard OpenAI Gym API, it is relatively easy
to integrate with libraries like Ray RLlib.

Saying all that, we propose the following research question: can we successfully
guide a saturation prover with RL while

• using an out-of-the-box implementation of PPO

• not applying any trajectory post-processing

• not discarding and not transforming unsuccessful proof attempts

• relying on a pre-trained clause representation without fine-tuning it

64 Chapter 5. Generic Reinforcement Learning Prover

5.4 RL-guided ATP evaluation

5.4.1 Episode truncation conditions

When we guide the given clause selection in a saturation algorithm over the refutation-
complete deductive system and do not limit time and RAM usage, even a random policy
will eventually arrive at a proof if only it exists. So the question is not whether an agent
can prove a theorem in principle but whether it can succeed within its resource limit.
There are several points of view on what constitutes the most valuable resource for an
ATP:

• wall-clock time. A standard measure used in CASC competition. It makes perfect
sense for “hammers” since they should work fast enough for a human proving a
theorem not to get bored

• number of saturation loop iterations (or activations since one sometimes calls
processed clauses active ones, thus choosing a clause as a given one “activates”
it) as in [97]. It is a particularly intuitive measure if we try to discern which given
clauses are parts of a proof

• number of processor instructions (used in a massive study of random age-weight
policy [129]) as a more robust alternative for wall-clock time

• memory (mentioned as a hypothetical bottleneck instead of running time in [130]).
Even if not the principal bottleneck for saturation provers, it certainly can be one
for some problems. For example, in our experiments with problems from outside
the TPTP library (on residuated binars), we saw that Vampire could allocate more
than 32GB in less than 15 minutes

• number of clauses (processed and unprocessed combined). We consider this met-
ric a compromise between too imprecise wall-clock time and a much harder-to-
evaluate number of processor instructions. We also notice that the number of
clauses correlates to RAM allocated, thus having a mixture of different aspects
of ATP limitations. In gym-saturation, it is a mandatory environment parameter,
and we will stick to it in our experiments

We also argue that using time-limit or number of processor instructions metrics en-
tangle two unrelated properties of policies: how effective are the actions they propose
in traversing the search space and how computationally efficient they are. Sometimes
ML models can produce spectacular results, but their latency or cost of engineering
into their target platforms would prevent any practical applications. For example, the
Netflix Prize competition [12] harvested dozens of research papers with influential ideas.
Nevertheless, the winning model never made it to serve recommendations to the com-
pany customers 10. Nevertheless, if we keep agent’s ability to generate proofs separate
from how long it takes, we can focus on the study of prospective RL algorithms instead
of acing C++ programming. We will need the latter but only for the best candidate
model.

In reinforcement learning research, there is an established separation between the-
oretical benchmarks and practical competitions. For example, the Meta-World [149]
benchmark includes object picking and placing task simulations, but there also was a

10https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

5.4. RL-guided ATP evaluation 65

competition [24], in which robots had 20 minutes to pick twelve specified items from
shelves in a warehouse. Not every RL algorithm tested with the Meta-World bench-
mark controls working robots, but this fact can not undermine their research value. To
sum up, we suggest evaluating ML guidance of provers per se, not the resulting provers,
which often are complex enough even without ML. For that matter, we propose to limit
the number of generated clauses in a proof attempt.

5.4.2 What to expect from ML guidance

Running ML models can be slower than computing simple heuristics and not economi-
cally viable. Statistics gathered with Deepire [128] show that the less time an ATP spends
applying ML, the more problems it solves in a given timeframe. In [5], authors built
a system finding proofs 25 times slower than E. Our consideration for representation
latency (see Subsection 5.2.3) suggests a similar problem. What do we expect from
machine learning models guiding ATPs, then? One can come up with several answers:

• ML guidance is so effective that it gets us across the search space further in
one-second step than dozens of super-fast heuristics steps done within the same
second

• ML guidance can not outsmart heuristics on shorter time limits, but when provided
with more time, an ML-enhanced prover can solve problems which heuristics can
not reach even in a whole day of computations

Or we can focus on wallclock-time-independent features of proofs. For example, in
Table 5.1, we took all unsatisfiable CNF problems in set theory from TPTP using a
particular axiomatisation. We then ran Vampire on each task using a 1 : 5 age-to-
weight ratio and observed how many steps an attempt took, how many clauses the
prover generated, and how many characters there were in these clauses. We then ran
Vampire in a manual clause selection mode feeding it only with clauses from proofs
found. Not only it reduced the number of steps (more than ten times in some cases),
but also the prover generated much fewer clauses in total (more than 40 times in some
cases), and the total length of these clauses could be up to 50 times smaller.

Table 5.1: Basic set theory problems from the TPTP. Vampire solves all of them in
different number of steps from which only some make part of proof

Problem
name

Steps
attempted

Steps
needed

Clauses
generated

Clauses
needed

Total
chars

Chars
needed

SET001-1 9 9 14 13 459 407
SET002-1 35 19 116 30 5613 1216
SET003-1 13 10 22 20 893 850
SET004-1 14 10 23 20 946 850
SET005-1 271 57 2179 202 176314 14755
SET006-1 16 10 28 20 1077 885
SET007-1 1075 78 14721 311 1277271 23898
SET008-1 87 13 345 40 21228 2179
SET009-1 70 23 215 36 11720 1638
SET010-1 1282 90 12675 458 1114679 35827
SET011-1 257 38 2246 116 190038 9030

66 Chapter 5. Generic Reinforcement Learning Prover

So, when using ML models (or more powerful heuristics), we essentially fight for
successful proof attempts, which contain fewer steps, but also for less numerous and
shorter clauses (which translates to both working faster and requiring less memory).
RAM is a much more problematic resource to deal with since there is no principal
problem in running a prover for a bit longer when we reach the limit, but one can not
add more RAM to a server as easily.

We thus propose to look not only (and not mainly) at the number of problems from
a particular pool solved but at how frugal the ML model is.

5.5 Experiments

5.5.1 Software and hardware

We use gym-saturation as an environment, PPO implementation from Ray RLlib as an
agent training algorithm, and the modified version of ast2vec model server for clause
representation.

We ran all the experiments in this chapter using a workstation with 32GB of RAM
and Intel® Core™ i7-10850H CPU @ 2.70GHz.

5.5.2 Data

We have chosen a trivial problem from a fragment of set theory to start 11:

include('Axioms/SET001-0.ax').

cnf(b_equals_bb,hypothesis,
equal_sets(b,bb)).

cnf(element_of_b,hypothesis,
member(element_of_b,b)).

cnf(prove_element_of_bb,negated_conjecture,
~ member(element_of_b,bb)).

which means
A

.= B, x ∈ A

x ∈ B
(5.10)

Where .= (equal_sets in TPTP) denotes sets equality defined by the following axioms 12:

cnf(membership_in_subsets,axiom,
(~ member(Element,Subset)
| ~ subset(Subset,Superset)
| member(Element,Superset))).

cnf(subsets_axiom1,axiom,
(subset(Subset,Superset)
| member(member_of_1_not_of_2(Subset,Superset),Subset))).

11https://tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=SET&File=SET001-1.p
12https://www.tptp.org/cgi-bin/SeeTPTP?Category=Axioms&File=SET001-0.ax

https://tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=SET&File=SET001-1.p
https://www.tptp.org/cgi-bin/SeeTPTP?Category=Axioms&File=SET001-0.ax

5.5. Experiments 67

cnf(subsets_axiom2,axiom,
(~ member(member_of_1_not_of_2(Subset,Superset),Superset)
| subset(Subset,Superset))).

cnf(set_equal_sets_are_subsets1,axiom,
(~ equal_sets(Subset,Superset)
| subset(Subset,Superset))).

cnf(set_equal_sets_are_subsets2,axiom,
(~ equal_sets(Superset,Subset)
| subset(Subset,Superset))).

cnf(subsets_are_set_equal_sets,axiom,
(~ subset(Set1,Set2)
| ~ subset(Set2,Set1)
| equal_sets(Set2,Set1))).

The first axiom ties ∈ (member) and ⊂ (subset) together (both having their common
meaning: set membership and subset relation):

¬ (x ∈ A) ∨ ¬ (A ⊂ B) ∨ (x ∈ B) (5.11)

Then there are two axioms defining a function m0 (A, B) (member_of_1_not_of_2)
which returns an element which is in A, but not in B (and is undefined if A ⊂ B):

(A ⊂ B) ∨ (m0 (A, B) ∈ A) (5.12)

¬ (m0 (A, B) ∈ B) ∨ (A ⊂ B) (5.13)

These two axioms are irrelevant for 5.10, but the prover does not know it in advance.
And finally, SET001-0.ax contains three axioms translating to the following state-

ments in common mathematical language:

¬ (A .= B) ∨ (A ⊂ B) (5.14)

¬ (A .= B) ∨ (B ⊂ A) (5.15)

¬ (A ⊂ B) ∨ ¬ (B ⊂ A) ∨ (A .= B) (5.16)

where ¬ and ∨ are logic negation and disjunction respectively. They serve as a definition
for set equality relation .=. Notice that we use a different symbol for this equality since
= (=) is an equality of terms interpreted by provers as the possibility of substitution of
one term for another.

There are only fifteen problems using the axiom set SET001-0.ax in the TPTP. We
take only the unsatisfiable ones. Vampire can find refutations for all of them using
the 1 : 5 age-weight ratio but generates different numbers of clauses. We sort these
theorems by the ascending number of clauses in the final proof state (reflecting how
much time Vampire needed to produce the clauses). Some problems use additional
axiom sets.

SET001-1.ax defines the set union:

68 Chapter 5. Generic Reinforcement Learning Prover

cnf(member_of_union_is_member_of_one_set,axiom,
(~ union(Set1,Set2,Union)
| ~ member(Element,Union)
| member(Element,Set1)
| member(Element,Set2))).

cnf(member_of_set1_is_member_of_union,axiom,
(~ union(Set1,Set2,Union)
| ~ member(Element,Set1)
| member(Element,Union))).

cnf(member_of_set2_is_member_of_union,axiom,
(~ union(Set1,Set2,Union)
| ~ member(Element,Set2)
| member(Element,Union))).

cnf(union_axiom1,axiom,
(union(Set1,Set2,Union)
| member(g(Set1,Set2,Union),Set1)
| member(g(Set1,Set2,Union),Set2)
| member(g(Set1,Set2,Union),Union))).

cnf(union_axiom2,axiom,
(~ member(g(Set1,Set2,Union),Set1)
| ~ member(g(Set1,Set2,Union),Union)
| union(Set1,Set2,Union))).

cnf(union_axiom3,axiom,
(~ member(g(Set1,Set2,Union),Set2)
| ~ member(g(Set1,Set2,Union),Union)
| union(Set1,Set2,Union))).

The first three axioms introduce a predicate union(Set1,Set2,Union) meaning that the
set Union is a union of two sets Set1 and Set2. These three formulae are CNF of the
following statement

(A ∪B = C)⇒ (x ∈ C ⇔ (x ∈ A ∨ x ∈ B)) (5.17)

The last three axioms define a function g (A, B, C) returning an element from C , but
not from A and B, and not defined when C = A ∪ B. They are CNF of the following
statement:

C = A ∪B∨
(g (A, B, C) ∈ C ⇔ (g (A, B, C) /∈ A ∧ g (A, B, C) /∈ B))

Notice the similarity to 5.12.
Analogously, SET001-2.ax introduces intersection, and SET001-3.ax — the set dif-

ference.
For example, the SET008-1 is:

%----Include the member and subset axioms

5.5. Experiments 69

include('Axioms/SET001-0.ax').
%----Include the member and intersection axioms
include('Axioms/SET001-2.ax').
%----Include the member and difference axioms
include('Axioms/SET001-3.ax').

cnf(b_minus_a,hypothesis,
difference(b,a,bDa)).

cnf(a_intersection_bDa,negated_conjecture,
~ intersection(a,bDa,aI_bDa)).

cnf(prove_aI_bDa_is_empty,negated_conjecture,
~ member(A,aI_bDa)).

It is the CNF of the following statement:

∀A, B, C, D C = A\B ⇒ (D = B ∩ C ∨ ∃x : x ∈ D) (5.18)

where \ is a set difference, and ∩ is intersection. It means that the intersection of a set
difference with its second operand is empty. To compare, the SET009-1 is:

%----Include the member and subset axioms
include('Axioms/SET001-0.ax').
%----Include the member and difference axioms
include('Axioms/SET001-3.ax').

cnf(d_is_a_subset_of_a,hypothesis,
subset(d,a)).

cnf(b_minus_a,hypothesis,
difference(b,a,bDa)).

cnf(b_minus_d,hypothesis,
difference(b,d,bDd)).

cnf(prove_bDa_is_a_subset_of_bDd,negated_conjecture,
~ subset(bDa,bDd)).

It is the CNF of the following statement:

∀A, B, C, D, E (A ⊂ B ∧D = C\B ∧ E = C\A)⇒ D ⊂ E (5.19)

It is a somewhat verbose form of set difference anti-monotonicity:

X ⊂ Y ⇒ (Z\Y) ⊂ (Z\X) (5.20)

5.5.3 Algorithm meta-parameters and random baseline

PPO works with any tensor input that, in our case, are 500 × 256 since we have at
maximum 500 clauses in a proof state, and ast2vec returns embeddings of size 256. We

70 Chapter 5. Generic Reinforcement Learning Prover

limited the number of clauses to 500 based on Table 5.1 (the maximal number of clauses
needed equals 458).

We approximate the value function by a dense neural network with two hidden
layers of size 256. Discount factor γ = 0.99 and the learning rate equals 0.0005. The
truncation parameter in 5.8 λ = 1.0. The amount of transitions collected by two agents
in parallel (N = 2) before starting the training phase (denoted as NT in Algorithm 2)
is 1024, the training batch size (M in Algorithm 2) is 128, and the number of training
iterations K = 8 (one epoch). Clipping parameter from the loss function 5.9 ϵ = 0.3, the
value function target impact c1 = 1.0, the KL penalty weight β = 0.2, and the entropy
part is missing (c2 = 0.0). All these are default parameter values in Ray RLlib, except for
N , NT , and K . We reduced the number of parallel agents and the size of the training
buffer to fit RAM.

We trained PPO until reaching 0.99 successful episodes at each problem. We also
stopped training when having less than 0.01 successful episodes after more than 10000
steps sampled. PPO training started from scratch for each task.

In addition to the PPO, we ran a random agent for 100 episodes at each task. This
agent chooses given clauses uniformly at random, so it can perform a bit differently
than the first experience collection phase of the PPO, which samples from randomly
initialised normal distributions.

5.5.4 Experiment results

We present results in the following tables having similar structures. Table 5.2 shows
how many steps were in the best proof found by PPO and random agent, compared to
heuristics results from Table 5.1.

Table 5.2: Number of steps attempted to find a proof guiding Vampire by heuristics, best
result of a random agent, and best result by PPO

Problem 1:5 Heuristic Best Random Best PPO PPO iterations

SET001-1 9 9 10 1
SET002-1 35 19 36 1
SET003-1 13 9 12 3
SET004-1 14 17 8 8
SET006-1 16 15 14 1
SET008-1 87 23 16 27
SET009-1 70 - 33 14

We can see that sometimes (when the “PPO iterations” column is 1), a problem is
so simple that we do not need to train any ML, and a random agent finds proof in
fewer steps than a heuristics-based one. That happens because we report only the
best result over 100 episodes. We also notice that the random agent can not solve
some problems (e.g. SET009-1), but the PPO can. Since the PPO starts with random
exploration, it can not solve the tasks not present in the table (SET005-1, SET007-1,
SET010-1, SET011-1), which the random agent can not solve either. Nevertheless, after
getting the first negative feedback for the SET009-1, the PPO adjusts exploration to
find a solution. For the problems where PPO did some training (“PPO iterations”
column is more than 1), we observe solutions with fewer unnecessary steps, although
not necessarily without them.

5.5. Experiments 71

We can see similar patterns in Table 5.3 and Table 5.4 for the numbers of clauses
and characters generated, respectively.

Table 5.3: Number of clauses Vampire needs to generate to find a proof when guided
by heuristics, best result of a random agent, and best result by PPO

Problem 1:5 Heuristics Best Random Best PPO PPO iterations

SET001-1 14 14 15 1
SET002-1 116 32 191 1
SET003-1 22 21 22 3
SET004-1 23 26 21 8
SET006-1 28 30 30 1
SET008-1 345 82 53 27
SET009-1 215 - 55 14

Table 5.4: Vampire characters

Total number of characters in clauses generated by Vampire to find a proof when
guided by heuristics, best result of a random agent, and best result by PPO

Problem 1:5 Heuristics Best Random Best PPO PPO iterations

SET001-1 459 419 451 1
SET002-1 5613 1255 12482 1
SET003-1 893 863 893 3
SET004-1 946 1177 863 8
SET006-1 1077 1343 1599 1
SET008-1 21228 5054 3148 27
SET009-1 11720 - 2345 14

5.5.5 Experiment results: answers

The experimental evidence helps us to answer positively to our research question. We
can successfully guide a saturation prover with RL while

• using an out-of-the-box implementation of PPO

• not applying any trajectory post-processing

• not discarding and not transforming unsuccessful proof attempts

• relying on a pre-trained clause representation without fine-tuning it

We consider this finding a foundation stone for future ablation studies in research
applying RL to ATPs. First, we did not tweak PPO from Ray RLlib in any tangible
way. The PPO itself is a well-established algorithm in the RL practice. So, we propose
that whoever uses an original RL algorithm should compare it with classical ones and
quantify the effect of introducing more complexity.

Second, we did not use any particular neural network architecture for the task. Of
course, the dense layers have the annoying property of having too many weights. If
we want to scale our networks to millions of clauses, we will stop processing the proof
state as a monolithic array of clause embeddings. We can, for example, notice that

72 Chapter 5. Generic Reinforcement Learning Prover

we have to separate tasks: fine-tuning clause embeddings and then operating on col-
lections of clauses. If we view these collections as unordered sets, we can use Deep
Set architecture [150]. If we think they are sequences, the recurrent neural networks
(see Chapter 10 of [42]) are the first option to try. We can treat them as trees or graphs
(clauses are nodes, and edges are relations of being an inference parent) and use re-
current or graph neural networks. As always with deep neural networks, options are
endless here, so we expect future research to quantify how any architecture complica-
tion helps. We also want to highlight that seeking a better neural network architecture
is out of the question without a fast enough representation scalable to millions of clauses.

Third, we succeed in not dealing with the reward sparsity. Many saturation ATP guid-
ing projects spread the final reward to all the steps in a finished trajectory. Namely,
we can assign a positive reward to the steps where we selected a given clause encoun-
tered in a proof, leaving everything else zero. In the PPO, we train using a local buffer
containing complete episodes. It shifts the perspective of our agents from proof steps
to complete proofs. And as we saw, they can even discover shorter ones because of it.
We do not claim such an approach to be better or worse per se, but we suggest future
research should quantify the effect of trajectory post-processing.

Finally, we saw that the representation does not matter that much. In many projects
cited in this thesis, the authors trained clause embeddings based on previous proof
attempts. In our case, we did not learn representation. Moreover, we did not even
use a specialised one (pre-trained on first-order logic). ast2vec are embeddings of
Python scripts. Of course, Python, like nearly any contemporary programming lan-
guage, have Boolean values and Boolean-valued functions (predicates). So, in a sense,
ast2vec can encode first-order logic formulae, but it is not specialised in this task. One
can say it is not that surprising since contemporary ATPs work well with much simpler
representations (only two-dimensional: formula’s ‘age’ and ‘weight’). Nevertheless, we
expect future research to quantify the effect of introducing and tweaking sophisticated
representations.

5.5.6 Experiment results: questions

First of all, the representation latency is crucial, and to play on par with contemporary
ATPs, we can not rely on modern code embedding models if we want to work with
gigantic proof states (with millions or more clauses). Of course, we can try making
representation faster (see Subsection 5.2.3). Another way will be to use a more fine-
grained saturation algorithm. E.g., in the TRAIL project [1], they define an action as a
pair comprising an inference rule and the given clause. We can make it even more
detailed, saying it is a pair of clauses (for the resolution rule). Then we will not generate
multiple new clauses at each step which will substantially reduce the number of rep-
resentation requests. Such an approach can help us tame the representation problem
while keeping its latency as it is. Of course, the downside will be the quadratic size of
the action space, but ours is already large enough. One can also argue that managing a
huge action space of pairs could be easier than an enormous space of a more complex
structure. One also should remember that most clauses generated during saturation are
useless and not even considered potential candidates for a given clause. So, although
the action space will be larger, it will not grow as fast as in a classical given clause
algorithm. And finally, moving to non-saturation (e.g. tableaux) provers will spare us of
this problem altogether (and undoubtedly bring other headaches instead).

Second, we confirmed that random search does not always work to initialise train-

5.6. Multi-task RL 73

ing with sparse rewards. There is a plethora of possible solutions to try here. Some of
them appeared in previous works (curriculum learning in [152] and hindsight expe-
rience replay in [5]) while others including classical curiosity-driven exploration [89]
and bleeding-edge Learning Online with Guidance Offline [100] are waiting for the
time.

Another thing to notice is that we trained the PPO on each problem separately and
evaluated them in the same way. It is not typical for ATPs, so we devote the following
section to this topic development.

5.6 Multi-task RL

5.6.1 Existing evaluation protocols

In the CASC competition, a prover managing to solve more tasks under fixed constraints
wins. To model this situation, we can count the problems solved by a trained RL agent
limited, as discussed in the previous subsection, by the maximal clause’s number in the
proof state. Unfortunately, the same agent can succeed or fail on the same problem
(depending on the random seed) since its policy does not often return a single action
but rather a probability distribution over them. Of course, one can “fix” such behaviour
for evaluation by always choosing the most probable choice instead of sampling them.

We argue that such a CASC-like evaluation outside the competition does not have
the same logic. Even if one shows that a system solves more problems from a subset
(mentioned in several previously published articles) than a particular ATP, there are
still free parameters in such a scheme (fixed in the CASC):

• exact base ATP version. Usually, they become better with time

• time and RAM limits. One can fix them in one research article but not across all
of them

• of hardware. Even a random policy can do better on faster CPUs

Another question is whether we should evaluate the agent on the same TPTP prob-
lems on which we trained it or on a hold-out set never exposed to the agent during the
training time. ENIGMA has used a hold-out set since its appearance [53]. Deepire [128]
does not explicitly define any hold-out, but since it trains only on successful proof at-
tempts and counts the problems solved by a trained model in addition to training ones,
the absence of an explicit hold-out does not represent a data leak. Indeed, the authors
of [5] give a similar justification for not having a hold-out task set.

5.6.2 Multi-task and meta-reinforcement learning

In the RL setting, an agent can interact with MDPs varying from episode to episode
(but the MDP stays the same at each step of an episode). In this case, we speak about
multi-task reinforcement learning [149]. Tasks can be similar (a robotic arm moving
a box to the corners or the sides of a table) or strongly inhomogeneous (a robotic arm
moving a box around the table or the same arm opening a window). Theorem proving
belongs more to the latter case, since

• Some theorems have compact proofs, and others — enormous ones

74 Chapter 5. Generic Reinforcement Learning Prover

• Some theorems have concise statements, and others need a whole theory devel-
oped and numerous definitions introduced before one even can formulate it (and
the complexity of the theorem statement does not necessarily correlate with its
proof size)

• theorems belong to various subdomains or use different (even if equivalent) axiom
systems

• properties of complex objects can depend on only a subset of defining axioms
(e.g. residuated binars from Definition 2.13 are lattices from Definition 2.6, thus
some theorems about residuated binars need only lattice axioms)

So, we claim that proving theorems is essentially a multi-task RL problem, and one
should evaluate it accordingly. The standard [149] quality metric for a multi-task RL
problem is the following.

Definition 5.5 (Mult-task reinforcement learning). A task T comes from a task distri-
bution p (T), and each task corresponds to a different MDP (see Definition 4.5). We
try to build a task-conditioned policy π (s, t, z) (where z denotes the task’s T real vector
encoding) to maximize

ET ∼p(T)

[
Eπ

[
H∑

t=0
γtR (st, π (st, t, z) , st+1)

]]
(5.21)

This evaluation scheme translates well to the ones discussed in the previous subsec-
tion, and we will stick to it.

However, there exists so-called meta-reinforcement learning [149]. We take M
meta-training tasks {T }Mi=1 from the distribution p (T). We then train a policy π (s, t, z)
to solve these tasks. We then take another subset of meta-testing tasks coming from
the same distribution p (T) and continue training the same policy π (s, t, z) on them.
The meta-learning is successful if policy training achieves better gains on meta-testing
tasks in fewer steps than it would without being pre-trained on meta-training ones.

Meta-learning evaluation is somewhat vague, and in [121], the authors highlighted
several ambiguities inherent to binary reward environments. For example, the more
one runs an agent on a given task T , the better gain one observes on T (not only
because the agent learns, but also because it randomly explores). We saw it in our
single-problem experiments (e.g. see Table 5.2). So, when applying meta-RL, we will
focus on the number of steps needed to achieve a particular average episode reward
level rather than the level itself.

If we plan to use an ML-guided ATP as a “hammer” (part of an ITP), then its appli-
cation time is often limited by seconds, and continuing training it during this timeframe
seems to be an unfit solution. But if we see an ML-guided ATP as a prover we want to
use to solve open problems in mathematics, then whatever it does (uses a pre-trained
policy or continues training it) is all right if it finds proof eventually. So we argue that
the meta-RL approach can be reasonable for ML-guided provers depending on the final
goal. For the same reason, we do not evaluate only once (as in Algorithm 3) while in a
multi-task RL setting.

5.6.3 Meta-learning in pairs experiment

We repeat the experiment from the previous sections, but instead of training the PPO
on a single problem until it reaches a 0.99 success rate, we do the following:

5.7. Why have so many moving parts 75

• train the PPO on one problem until it reaches a 0.99 success rate

• continue training the PPO, but using a different problem until it reaches 0.99
success rate or stagnates at less than 0.01 success rate during more than 10000
steps sampled

We do it for all possible pairs of different problems using 7 problems (which the PPO
can solve) from the same pool.

5.6.4 Meta-learning experiment results

We present the results in Table 5.5. Sometimes solving another problem before helps
to crack the second one faster (each PPO iteration is a sampling of 1024 given clause
algorithm steps; it takes around three minutes together with training). In other cases,
the effect is the opposite (in RL, they call it negative transfer). We have not noticed
any distinctive features explaining why sometimes the transfer is positive. It seems to
be related to the axiom sets used by the problems but not with 100% certainty.

Table 5.5: The number of the PPO iterations needed to achieve 0.99 success rate for
the second problem after solving the first problem.

1st \ 2nd SET001-1 SET002-1 SET003-1 SET004-1 SET006-1 SET008-1 SET009-1
None 1 1 3 8 1 27 14

SET001-1 4 1 7 1 21 19
SET002-1 1 1 6 1 34 19
SET003-1 1 1 7 1 22 20
SET004-1 1 1 1 1 19 19
SET006-1 1 5 1 6 23 -
SET008-1 1 1 1 5 1 -
SET009-1 1 1 1 1 1 65

Because of the high frequency of negative transfer cases, our experiments in the
multi-task setting (5.21) did not show any encouraging results. That is not to say it can
not work in principle, but it means that how successful meta- or multi-task-learning
might be, depends heavily on the problems at hand and, probably, on other compo-
nents. These experiments show that even the simplest multi-layer perceptron model
can generalise and transfer what it learned from solving one problem to others. Gen-
erating and ordering training data for an RL-based ATP seems to be a rewarding and
highly non-trivial task.

5.7 Why have so many moving parts

A typical ATP is a single binary: one can download and run it as is. Having a rep-
resentation server, multiple agents and environment copies running in parallel and
communicating with base prover processes might seem a bit of a mess. There are,
of course, many situations when a monolith architecture is preferable. Let us discuss
several well-known ones [76]:

• unclear domain. When potential micro-services boundaries are vague, haphaz-
ardly drawing them might be the worst solution. It is certainly not the case with

76 Chapter 5. Generic Reinforcement Learning Prover

guiding an ATP by ML. Parsing TPTP input is one thing, and making deduction
inferences is another. And they both have nothing to do with calculating given
clause selection heuristics, let alone the process of learning the best algorithms
for computing these heuristics.

• start-ups (since they need to focus on finding the right fit for their products). Every
research project is, of course, a start-up. But the mature ATPs like Vampire, E,
and especially PROVER 9 are already not. And we already know what the ATPs
are fit for. They can solve open problems in mathematics, for example. And if
mathematicians collaborate with computer scientists, they can afford to run all the
micro-services on HPC servers without wasting their time with the tasks they do
not excel in

• customer-installed and managed software. Of course, if an ATP is a “hammer” or
a mathematician uses it, it is better not to have any moving parts. But for larger-
scale (and collaborative) projects, the resulting ML-guided ATP is never (to our
best knowledge) a customer-installed software. In our experience, such systems
are too often hard to install even while working in pair with its creator

• not having a good reason for using micro-services. And we have the reasons we
already mentioned. We believe that ATPs are already complex enough: written
in specialised languages (e.g. functional ones like Haskell, OCaml, or Scala), opti-
mised with readability sacrificed, bearing a legacy of past design decisions. Mixing
ML in will not make them any more manageable. Moreover, a person well-versed
in formal logic and software engineering was not the most common hire for an
automated deduction research team. Asking such a candidate to be (in addition)
an ML or RL professional might become a unicorn hunt.

We believe that ease of experimentation is a prerequisite for fruitful research. And we
argue that searching for the best first-order logic representation and the most optimal
implementation of logic calculus could and should be done by specialists in different
domains. And finally, we advocate for the collaboration of mentioned specialists and
hope that the architecture proposed will serve that purpose.

Another peculiar point we noticed is that parsers of the TPTP language are also
inseparable parts of many ATPs. There are exceptions, of course, for example, the
scala-tptp-parser [125] used by the Leo III [124] prover. We think that the low-latency
first-order formulae representation project should start with such a detachable parser.
And later, we propose there should be “light” versions of contemporary ATPs containing
only deductive inference rules and the given clause loop but no heuristics or clause
evaluation procedures. One could link them as separate modules to build a “customer-
installed” version of an ATP. To reiterate, we do not propose to ship an ATP with ML
guidance as a bunch of micro-services but to develop an ATP as a collection of loosely
coupled sub-projects, each of which can be a microservice when in active research.

5.8 Conclusion and future work

In this chapter, we presented the results of our experiments demonstrating the viability
of a generic RL prover architecture we proposed. We built it from several ideas to each
of which we contributed our implementations:

5.8. Conclusion and future work 77

• an RL environment giving access to different saturation provers through the same
API (100% compatible with the OpenAI Gym standard) and decoupling what we
guide from how: gym-saturation of Chapter 4

• external clause representation service decoupling representation learning from
reinforcement learning: ast2vec with our technical improvements

• an agent built from off-the-shelf components (easy to test and modify): code for
this chapter using the Ray RLlib

We argue that such an approach can facilitate collaboration between machine learn-
ing and automated deduction research communities and consider the software we con-
tributed a proof of concept.

Unfortunately, the representation service latency seems to be a bottleneck of our
architecture. We identify training a faster first-order formulae embedding model as
the best next research goal before improving other architectural parts. Learning first-
order formula representations will not be interesting only for guiding saturation provers
but also tableaux-based, and even outside of the ATP community per se, e.g. for SMT-
solvers.

78 Chapter 5. Generic Reinforcement Learning Prover

APPENDIX A

Details of ast2vec representation

Let us take one of the set theory axioms defined in the TPTP file Axioms/SET001-0.ax:

cnf(membership_in_subsets,axiom,
(~ member(Element,Subset)
| ~ subset(Subset,Superset)
| member(Element,Superset))).

In commonly-used mathematical notation, it means

∀x∀A∀B (x ∈ A ∧A ⊂ B) =⇒ x ∈ B (A.1)

The formula

(~ member(Element,Subset)
| ~ subset(Subset,Superset)
| member(Element,Superset))

is itself a syntactically correct expression in Python. So, when passed to the pre-
trained ast2vec model, it is first parsed to the abstract syntax tree (AST) depicted in
Figure 16.

First, one can notice that the tree in Figure 16 is not a graph since one presume the
order of nodes, e.g. a BinOp node always has three child nodes in exactly the following
order: first operand, binary operation name, second operand. It is not a typical way
of encoding graphs in graph neural networks (GNNs). But since ast2vec relies on
recursive neural networks, it does not matter. As a remedy for using GNNs, one can
draw additional arrows in Figure 16 representing the argument order. To distinguish
between different types of edges, one can assign values to them (a widespread practice
in GNN training).

79

80 Appendix A. Details of ast2vec representation

Module

Expr

BinOp

BinOp BitOr Call

UnaryOp BitOr UnaryOp Name Name Name

Invert Call Invert Call

Name Name Name Name Name Name

Figure 16: An example of a Python AST

Second, we have lost nearly all the information about symbols: variable names,
functions, and predicates are gone. On the one hand, it reflects an inherent renaming
invariance of formal languages: we can rename Element to Element_1 or FirstElement
without changing the semantics and validity of our statement. On the other hand, we
are missing that some objects called Name in Figure 16 refer to the same variable, while
others denote different symbols. It leads to ast2vec representation being too ‘forgetful’,
e.g. the following axiom.

cnf(subsets_are_set_equal_sets,axiom,
(~ subset(Set1,Set2)
| ~ subset(Set2,Set1)
| equal_sets(Set2,Set1))).

will have the AST depicted in Figure 16. As a result, A.1 and

∀A∀B (A ⊂ B ∧B ⊂ A) =⇒ A
.= B

will have the same 256-dimensional embedding produced by ast2vec. Such a situ-
ation might prevent a machine learning model from preferring one of them over the
other as a candidate for a given clause and result in failing a proof attempt. One can
transform the graph in Figure 16 by adding new nodes and edges representing the
relation ‘are instances of the same symbol’.

These drawbacks of ASTs are well-known in code analysis research, and enriching
them with additional edges is a typical solution (see, for example, [147]).

Bibliography

[1] Ibrahim Abdelaziz, Maxwell Crouse, Bassem Makni, Vernon Austel, Cristina Cor-
nelio, Shajith Ikbal, Pavan Kapanipathi, Ndivhuwo Makondo, Kavitha Srinivas,
Michael Witbrock, and Achille Fokoue. Learning to Guide a Saturation-Based The-
orem Prover. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(1):738–751, 2023.

[2] Shipra Agrawal and Navin Goyal. Thompson Sampling for Contextual Bandits with
Linear Payoffs. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceed-
ings of Machine Learning Research, pages 127–135, Atlanta, Georgia, USA, 17–19
Jun 2013. PMLR.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2Vec: Learning
Distributed Representations of Code. Proceedings of the ACM on Programming
Languages, 3(POPL):40:1–40:29, January 2019.

[4] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
Hindsight Experience Replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[5] Eser Aygün, Ankit Anand, Laurent Orseau, Xavier Glorot, Stephen M Mcaleer, Vlad
Firoiu, Lei M Zhang, Doina Precup, and Shibl Mourad. Proving Theorems using
Incremental Learning and Hindsight Experience Replay. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 1198–1210. PMLR, 17–23
Jul 2022.

[6] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. J. Log. Comput., 4(3):217–247, 1994.

[7] Ali Ballout, Célia da Costa Pereira, and Andrea G. B. Tettamanzi. Learning to Classify
Logical Formulas Based on Their Semantic Similarity. In Reyhan Aydoğan, Natalia
Criado, Jérôme Lang, Victor Sanchez-Anguix, and Marc Serramia, editors, PRIMA

81

82 Bibliography

2022: Principles and Practice of Multi-Agent Systems, pages 364–380, Cham, 2023.
Springer International Publishing.

[8] Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to Solve SMT Formulas.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[9] Edouard Balzin and Boris Shminke. A neural network for semigroups. arXiv [cs.LG],
abs/2103.07388, 2021.

[10] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart
Wilcox. HOList: An Environment for Machine Learning of Higher Order Logic
Theorem Proving. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 454–463. PMLR, 2019.

[11] P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli. Computing finite models
by reduction to function-free clause logic. Journal of Applied Logic, 7(1):58–74, 2009.

[12] James Bennett, Charles Elkan, Bing Liu, Padhraic Smyth, and Domonkos Tikk.
KDD Cup and Workshop 2007. SIGKDD Explor. Newsl., 9(2):51–52, dec 2007.

[13] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher
Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael
Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy
Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and
Susan Zhang. Dota 2 with Large Scale Deep Reinforcement Learning. arXiv [cs.LG],
abs/1912.06680, 2019.

[14] A. Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2017. In T. Balyo, M. Heule, and M. Järvisalo, editors, Proc. of SAT
Competition 2017 – Solver and Benchmark Descriptions, volume B-2017-1 of De-
partment of Computer Science Series of Publications B, pages 14–15. University
of Helsinki, 2017.

[15] Ekaba Bisong. Google Colaboratory, pages 59–64. Apress, Berkeley, CA, 2019.

[16] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample gen-
erator for higher-order logic based on a relational model finder. In Matt Kaufmann
and Lawrence C. Paulson, editors, Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172
of Lecture Notes in Computer Science, pages 131–146. Springer, 2010.

[17] D. Brand. Proving Theorems with the Modification Method. SIAM Journal on
Computing, 4(4):412–430, 1975.

[18] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv [cs.LG], abs/1606.01540,
2016.

Bibliography 83

[19] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models Are Few-Shot Learners. In Proceedings of
the 34th International Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[20] Julie Cailler, Johann Rosain, David Delahaye, Simon Robillard, and Hinde Lilia
Bouziane. Goéland: A concurrent tableau-based theorem prover (system descrip-
tion). In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated
Reasoning, pages 359–368, Cham, 2022. Springer International Publishing.

[21] Karel Chvalovský. On the Independence of Axioms in BL and MTL. Fuzzy Sets
and Systems, 197(C):123–129, jun 2012.

[22] K. Claessen and N. Sörensson. New techniques that improve MACE-style finite
model finding. In Proceedings of the CADE-19 Workshop: Model Computation-
Principles, Algorithms, Applications, pages 11–27. Citeseer, 2003.

[23] conda-forge community. The conda-forge Project: Community-based Soft-
ware Distribution Built on the conda Package Format and Ecosystem. Zenodo,
https://doi.org/10.5281/zenodo.4774216, July 2015.

[24] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert Causo,
Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and Peter R. Wur-
man. Analysis and Observations From the First Amazon Picking Challenge. IEEE
Transactions on Automation Science and Engineering, 15(1):172–188, 2018.

[25] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[26] A. Distler and J. Mitchell. Smallsemi, a library of small semigroups, Version 0.6.13.
https://gap-packages.github.io/smallsemi, Feb 2022. GAP package.

[27] Andreas Distler, Chris Jefferson, Tom Kelsey, and Lars Kotthoff. The Semigroups
of Order 10. In Michela Milano, editor, Principles and Practice of Constraint
Programming, pages 883–899, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[28] Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. The Refinement Calculus
of Reactive Systems Toolset. Int. J. Softw. Tools Technol. Transf., 22(6):689–708, 2020.

[29] André Duarte and Konstantin Korovin. Implementing Superposition in iProver
(System Description). In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors,
Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris,
France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes in
Computer Science, pages 388–397. Springer, 2020.

84 Bibliography

[30] Davide Fazio, Antonio Ledda, Francesco Paoli, and Gavin St. John. A substructural
Gentzen calculus for orthomodular quantum logic. The Review of Symbolic Logic,
page 1–22, 2022.

[31] Гладкий А. В. Введение в современную логику. МЦНМО, Москва, 2001. https:
//www.mccme.ru/free-books/gladkii/glad.pdf.

[32] Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. SAT
competition 2020. Artif. Intell., 301:103572, 2021.

[33] Wesley Fussner and Peter Jipsen. Distributive laws in residuated binars. Algebra
Universalis, 80.54, 2019.

[34] Wesley Fussner and Boris Shminke. Mining counterexamples for wide-signature
algebras with an Isabelle server. arXiv [cs.LO], 2021.

[35] N. Galatos and J.G. Raftery. A category equivalence for odd Sugihara monoids and
its applications. J. Pure Appl. Algebra, 216:2177–2192, 2012.

[36] Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated
Lattices: An Algebraic Glimpse at Substructural Logics, volume 151 of Studies in
Logic and the Foundations of Mathematics. Elsevier, 2007.

[37] Emden R. Gansner and Stephen C. North. An open graph visualization system and
its applications to software engineering. Softw. Pract. Exp., 30(11):1203–1233, 2000.

[38] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary
Kaden, Vivek Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. Horizon:
Facebook’s Open Source Applied Reinforcement Learning Platform. arXiv [cs.LG],
2018.

[39] Bernhard Gleiss, Laura Kovács, and Lena Schnedlitz. Interactive visualization of
saturation attempts in vampire. In Wolfgang Ahrendt and Silvia Lizeth Tapia Tarifa,
editors, Integrated Formal Methods, pages 504–513, Cham, 2019. Springer Interna-
tional Publishing.

[40] Zarathustra Goertzel, Jan Jakubův, and Josef Urban. ENIGMAWatch: ProofWatch
Meets ENIGMA. In Serenella Cerrito and Andrei Popescu, editors, Automated Rea-
soning with Analytic Tableaux and Related Methods, pages 374–388, Cham, 2019.
Springer International Publishing.

[41] Zarathustra A. Goertzel, Jan Jakubův, Cezary Kaliszyk, Miroslav Olšák, Jelle Piepen-
brock, and Josef Urban. The Isabelle ENIGMA. In June Andronick and Leonardo
de Moura, editors, 13th International Conference on Interactive Theorem Prov-
ing (ITP 2022), volume 237 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:21, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[42] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[43] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.

https://www.mccme.ru/free-books/gladkii/glad.pdf
https://www.mccme.ru/free-books/gladkii/glad.pdf

Bibliography 85

In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014.

[44] Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a Nutshell.
Journal of Formalized Reasoning, 3(2):153–245, 2010.

[45] Danijar Hafner, James Davidson, and Vincent Vanhoucke. TensorFlow Agents: Effi-
cient Batched Reinforcement Learning in TensorFlow. arXiv [cs.LG], abs/1709.02878,
2017.

[46] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020.

[47] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cam-
bridge University Press, 2009.

[48] John Harrison. HOL Light: An Overview. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order
Logics, pages 60–66, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[49] Maximilian PL Haslbeck and Simon Wimmer. Competitive Proving for Fun. Kalpa
Publications in Computing, 10:9–14, 2019.

[50] Eric C. R. Hehner. A Practical Theory of Programming. Texts and Monographs
in Computer Science. Springer, 1993.

[51] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep Reinforcement Learning That Matters. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1), Apr. 2018.

[52] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado
van Hasselt, and David Silver. Distributed Prioritized Experience Replay. In Inter-
national Conference on Learning Representations, 2018.

[53] Jan Jakubův and Josef Urban. ENIGMA: Efficient Learning-Based Inference Guiding
Machine. In Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe, and
Olaf Teschke, editors, Intelligent Computer Mathematics, pages 292–302, Cham,
2017. Springer International Publishing.

[54] Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. Deep Learn-
ing for Text Style Transfer: A Survey. Computational Linguistics, 48(1):155–205,
March 2022.

[55] Peter Jipsen and Michael Kinyon. Nonassociative right hoops. Algebra Universalis,
80.47, 2019.

[56] Peter Jipsen, Olim Tuyt, and Diego Valota. The structure of finite commutative
idempotent involutive residuated lattices. Algebra universalis, 82(4):57, Sep 2021.

86 Bibliography

[57] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák. Rein-
forcement Learning of Theorem Proving. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc., 2018.

[58] Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Certified Connection Tableaux
Proofs for HOL Light and TPTP. In Xavier Leroy and Alwen Tiu, editors, Pro-
ceedings of the 2015 Conference on Certified Programs and Proofs, CPP 2015,
Mumbai, India, January 15-17, 2015, pages 59–66. ACM, 2015.

[59] Cezary Kaliszyk, Josef Urban, and Jiři Vyskočil. Certified Connection Tableaux
Proofs for HOL Light and TPTP. In Proceedings of the 2015 Conference on Cer-
tified Programs and Proofs, CPP ’15, page 59–66, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[60] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. Alias-free generative adversarial networks. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 852–863. Curran As-
sociates, Inc., 2021.

[61] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture
for Generative Adversarial Networks. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4396–4405, 2019.

[62] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[63] Michael Kinyon. Proof simplification and automated theorem proving. Philos.
Trans. Roy. Soc. A, 377.20180034, 2019.

[64] Peter Koepke, Anton Lorenzen, and Boris Shminke. CICM’22 System Entries. In
Kevin Buzzard and Temur Kutsia, editors, Intelligent Computer Mathematics, pages
344–348, Cham, 2022. Springer International Publishing.

[65] Sergey Kolesnikov and Oleksii Hrinchuk. Catalyst.RL: A Distributed Framework
for Reproducible RL Research. arXiv [cs.LG], abs/1903.00027, 2019.

[66] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, pages
1–35, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[67] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gon-
zalez, Ken Goldberg, and Ion Stoica. Ray RLlib: A Composable and Scalable Rein-
forcement Learning Library. arXiv [cs.AI], abs/1712.09381, 2017.

[68] Martin Líska, Dávid Lupták, Vít Novotný, Michal Ruzicka, Boris Shminke, Petr So-
jka, Michal Stefánik, and Makarius Wenzel. CICM’21 Systems Entries. In Fairouz
Kamareddine and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathe-
matics - 14th International Conference, CICM 2021, Timisoara, Romania, July
26-31, 2021, Proceedings, volume 12833 of Lecture Notes in Computer Science,
pages 245–248. Springer, 2021.

Bibliography 87

[69] Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep Net-
work Guided Proof Search. In Thomas Eiter and David Sands, editors, LPAR-21.
21st International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, volume 46 of EPiC Series in Computing, pages 85–105. EasyChair,
2017.

[70] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The Ex-
pressive Power of Neural Networks: A View from the Width. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017.

[71] Suda Martin. LAWA: Learning Age-Weight Alternation for Vampire with LSTM.
https://github.com/quickbeam123/lawa, August 2022. GitHub.

[72] Martin Suda. Elements of Reinforcement Learning in Saturation-based Theorem
Proving. http://aitp-conference.org/2022/abstract/AITP_2022_paper_11.pdf, 9 2022.
7th Conference on Artificial Intelligence and Theorem Proving.

[73] Nina Mazyavkina, Sergei Sviridov, Sergei Ivanov, and Evgeny Burnaev. Rein-
forcement Learning for Combinatorial Optimization: A Survey. arXiv [cs.LG],
abs/2003.03600, 2020.

[74] W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/,
2005–2010.

[75] William McCune and Larry Wos. Otter - The CADE-13 Competition Incarnations.
Journal of Automated Reasoning, 18(2):211–220, 1997.

[76] Nabor C. Mendonça, Craig Box, Costin Manolache, and Louis Ryan. The Monolith
Strikes Back: Why Istio Migrated From Microservices to a Monolithic Architecture.
IEEE Software, 38(5):17–22, 2021.

[77] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing Atari with Deep
Reinforcement Learning. arXiv [cs.LG], abs/1312.5602, 2013.

[78] Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Pro-
gramming Language. In André Platzer and Geoff Sutcliffe, editors, Automated De-
duction – CADE 28, pages 625–635, Cham, 2021. Springer International Publishing.

[79] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor,
and Peter Stone. Curriculum Learning for Reinforcement Learning Domains: A
Framework and Survey. Journal of Machine Learning Research, 21(181):1–50, 2020.

[80] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

[81] Miroslav Olsák, Cezary Kaliszyk, and Josef Urban. Property Invariant Embedding
for Automated Reasoning. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilk-
ina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang, editors, ECAI
2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September

88 Bibliography

2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020),
2020.

[82] OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, nov 2022.

[83] Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based theorem prov-
ing. Journal of Symbolic Computation, 36(1):139–161, 2003. First Order Theorem
Proving.

[84] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter
Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to
follow instructions with human feedback. arXiv [cs.CL], 2022.

[85] Benjamin Paaßen, Irena Koprinska, and Kalina Yacef. Recursive tree grammar
autoencoders. Machine Learning, Aug 2022.

[86] Benjamin Paassen, Jessica McBroom, Bryn Jeffries, Irena Koprinska, and Kalina
Yacef. Mapping Python Programs to Vectors using Recursive Neural Encodings.
Journal of Educational Data Mining, 13(3):1–35, Oct. 2021.

[87] Kyubyong Park. Can convolutional neural networks crack sudoku puzzles?
https://github.com/Kyubyong/sudoku, 2018. GitHub.

[88] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

[89] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-
driven Exploration by Self-supervised Prediction. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceed-
ings of Machine Learning Research, pages 2778–2787. PMLR, 2017.

[90] J.D. Phillips and D. Stanovský. Automated theorem proving in quasigroup and loop
theory. AI Communications, 23:267–283, 2010.

[91] Aye Phyu Phyu Aung, Xinrun Wang, Runsheng Yu, Bo An, Senthilnath Jayavelu,
and Xiaoli Li. DO-GAN: A Double Oracle Framework for Generative Adversarial
Networks. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 11265–11274, 2022.

[92] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin,
and Ilya Sutskever. Formal Mathematics Statement Curriculum Learning. In Inter-
national Conference on Learning Representations, 2023.

Bibliography 89

[93] Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian
Granger, Tim Head, Chris Holdgraf, Kyle Kelley, Gladys Nalvarte, Andrew Osheroff,
M Pacer, Yuvi Panda, Fernando Perez, Benjamin Ragan Kelley, and Carol Willing.
Binder 2.0 - Reproducible, interactive, sharable environments for science at scale.
In Fatih Akici, David Lippa, Dillon Niederhut, and M Pacer, editors, Proceedings of
the 17th Python in Science Conference, pages 113 – 120, 2018.

[94] StanisŁaw PurgaŁ, Julian Parsert, and Cezary Kaliszyk. A study of continuous
vector representations for theorem proving. Journal of Logic and Computation,
31(8):2057–2083, 02 2021.

[95] StanisŁaw PurgaŁ, Julian Parsert, and Cezary Kaliszyk. A study of continuous
vector representations for theorem proving. Journal of Logic and Computation,
31(8):2057–2083, 02 2021.

[96] Michael Rawson and Giles Reger. A Neurally-Guided, Parallel Theorem Prover.
In Andreas Herzig and Andrei Popescu, editors, Frontiers of Combining Systems,
pages 40–56, Cham, 2019. Springer International Publishing.

[97] Michael Rawson and Giles Reger. Old or Heavy? Decaying Gracefully with
Age/Weight Shapes. In Pascal Fontaine, editor, Automated Deduction – CADE 27,
pages 462–476, Cham, 2019. Springer International Publishing.

[98] Michael Rawson and Giles Reger. lazyCoP: Lazy Paramodulation Meets Neurally
Guided Search. In Anupam Das and Sara Negri, editors, Automated Reasoning
with Analytic Tableaux and Related Methods - 30th International Conference,
TABLEAUX 2021, Birmingham, UK, September 6-9, 2021, Proceedings, volume
12842 of Lecture Notes in Computer Science, pages 187–199. Springer, 2021.

[99] Emilio Jesus Gallego Arias and Thierry Martinez. PyCoq: Access Coq from Python!
https://github.com/ejgallego/pycoq, January 2022. GitHub.

[100] Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep M. Kalathil, and Srinivas
Shakkottai. Reinforcement Learning with Sparse Rewards using Guidance from
Offline Demonstration. In The Tenth International Conference on Learning Rep-
resentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[101] John Alan Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, 1965.

[102] Constantin Ruhdorfer and Stephan Schulz. Efficient Implementation of Large-
Scale Watchlists. In Pascal Fontaine, Konstantin Korovin, Ilias S. Kotsireas, Philipp
Rümmer, and Sophie Tourret, editors, Joint Proceedings of the 7th Workshop
on Practical Aspects of Automated Reasoning (PAAR) and the 5th Satisfiability
Checking and Symbolic Computation Workshop (SC-Square) Workshop, 2020 co-
located with the 10th International Joint Conference on Automated Reasoning
(IJCAR 2020), Paris, France, June-July, 2020 (Virtual), volume 2752 of CEUR Work-
shop Proceedings, pages 120–133. CEUR-WS.org, 2020.

[103] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

90 Bibliography

[104] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th
Edition). Pearson, 2020.

[105] Jason Rute, Patrick Massot, Julian Berman, and Frederic Le Roux. Lean client for
Python. https://github.com/leanprover-community/lean-client-python, August 2021.
GitHub.

[106] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter
Abbeel. High-Dimensional Continuous Control Using Generalized Advantage Es-
timation. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

[107] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. arXiv [cs.LG], abs/1707.06347, 2017.

[108] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, Higher, Stronger:
E 2.3. In Pascal Fontaine, editor, Automated Deduction – CADE 27, pages 495–507,
Cham, 2019. Springer International Publishing.

[109] Stephan Schulz and Adam Pease. Teaching Automated Theorem Proving by Ex-
ample: PyRes 1.2. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors,
Automated Reasoning, pages 158–166, Cham, 2020. Springer International Publish-
ing.

[110] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

[111] Boris Shminke. gym-saturation: an OpenAI Gym environment for saturation
provers. Journal of Open Source Software, 7(71):3849, 2022.

[112] Boris Shminke. Project proposal: A modular reinforcement learning based auto-
mated theorem prover. arXiv [cs.AI], 2022.

[113] Boris Shminke. Python client for isabelle server. arXiv [cs.LO], abs/2212.11173,
2022.

[114] Boris Shminke. Python client for Isabelle server (0.3.5). Zenodo,
https://doi.org/10.5281/zenodo.6490275, April 2022.

[115] Boris Shminke. Python TPTP Parser, v.0.0.9.
https://doi.org/10.5281/zenodo.7040540, September 2022. Zenodo.

[116] Boris Shminke. Scripts for finding finite models of residuated binars. Zenodo,
https://doi.org/10.5281/zenodo.7723244, July 2022.

[117] Shminke Boris. Routh’s, Menelaus’ and Generalized Ceva’s Theorems. Formal-
ized Mathematics, 20(2):157–159, 2013.

[118] Carlos Simpson. Learning proofs for the classification of nilpotent semigroups.
arXiv [cs.LG], abs/2106.03015, 2021.

[119] Konrad Slind and Michael Norrish. A Brief Overview of HOL4. In Otmane Ait
Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher
Order Logics, pages 28–32, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Bibliography 91

[120] Nicholas Smallbone. Twee: An Equational Theorem Prover. In André Platzer and
Geoff Sutcliffe, editors, Automated Deduction – CADE 28, pages 602–613, Cham,
2021. Springer International Publishing.

[121] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-Task Reinforcement Learn-
ing with Context-based Representations. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 9767–9779. PMLR, 18–24
Jul 2021.

[122] M. Spinks and R. Veroff. Constructive Logic with Strong Negation is a Substruc-
tural Logic I. Studia Logica, 88:325–348, 2008.

[123] Alexander Steen. Extensional paramodulation for higher-order logic and its
effective implementation Leo-III. PhD thesis, Free University of Berlin, Dahlem,
Germany, 2018.

[124] Alexander Steen. Leo-III 1.7. https://doi.org/10.5281/zenodo.7650205, July 2022.
Zenodo.

[125] Alexander Steen. scala-tptp-parser v1.7.0. https://doi.org/10.5281/zenodo.7739821,
March 2023. Zenodo.

[126] Alexander Steen and Christoph Benzmüller. The Higher-Order Prover Leo-III.
In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated
Reasoning, pages 108–116, Cham, 2018. Springer International Publishing.

[127] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling Rep-
resentation Learning from Reinforcement Learning. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 9870–
9879. PMLR, 18–24 Jul 2021.

[128] Martin Suda. Improving ENIGMA-style Clause Selection while Learning From
History. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE
28, pages 543–561, Cham, 2021. Springer International Publishing.

[129] Martin Suda. Vampire getting noisy: Will random bits help conquer chaos? (sys-
tem description). In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors,
Automated Reasoning, pages 659–667, Cham, 2022. Springer International Publish-
ing.

[130] Martin Suda. Vampire getting noisy: Will random bits help conquer chaos? (sys-
tem description). EasyChair Preprint no. 7719, EasyChair, 2022.

[131] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure - From
CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

[132] Geoff Sutcliffe. The 10th IJCAR automated theorem proving system competition
- CASC-J10. AI Communications, 34(2):163–177, 2021.

[133] R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Intro-
duction. Adaptive Computation and Machine Learning series. MIT Press, 2018.

92 Bibliography

[134] The Coq Development Team. The Coq Proof Assistant. Zenodo,
https://doi.org/10.5281/zenodo.5846982, January 2022.

[135] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.12.2,
2022. https://www.gap-system.org.

[136] TIOBE Software BV. The TIOBE Programming Community index.
https://www.tiobe.com/tiobe-index/, April 2022.

[137] E. Torlak and D. Jackson. Kodkod: A relational model finder. In In Tools and
Algorithms for Construction and Analysis of Systems (TACAS), pages 632–647.
Wiley, 2007.

[138] Sam van Gool, Adrien Guatto, George Metcalfe, and Simon Santschi. Time Warps,
from Algebra to Algorithms. In Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and
Michael Winter, editors, Relational and Algebraic Methods in Computer Science,
pages 309–324, Cham, 2021. Springer International Publishing.

[139] Robert Veroff. Using Hints to Increase the Effectiveness of an Automated Rea-
soning Program: Case Studies. Journal of Automated Reasoning, 16(3):223–239,
1996.

[140] Robert Veroff. Solving Open Questions and Other Challenge Problems Using
Proof Sketches. Journal of Automated Reasoning, 27(2):157–174, 2001.

[141] Petar Vukmirovic, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa
Nummelin, and Sophie Tourret. Making Higher-Order Superposition Work. Journal
of Automated Reasoning, 66(4):541–564, 2022.

[142] Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette. A Com-
prehensive Framework for Saturation Theorem Proving. Journal of Automated
Reasoning, 66(4):499–539, 2022.

[143] Mingzhe Wang and Jia Deng. Learning to Prove Theorems by Learning to Gen-
erate Theorems. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc.

[144] Makarius Wenzel. Isabelle/PIDE after 10 years of development. In 13th Interna-
tional Workshop on User Interfaces for Theorem Provers (UITP 2018), Federated
Logic Conference 2018, 2018.

[145] Makarius Wenzel. The Isabelle System Manual.
https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/system.pdf, December 2021.

[146] Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. TacticZero:
Learning to Prove Theorems from Scratch with Deep Reinforcement Learning. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 9330–9342.
Curran Associates, Inc., 2021.

[147] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium on
Security and Privacy, pages 590–604, 2014.

Bibliography 93

[148] Kaiyu Yang and Jia Deng. Learning to Prove Theorems via Interacting with Proof
Assistants. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 6984–6994. PMLR, 2019.

[149] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. Meta-World: A Benchmark and Evaluation for Multi-Task
and Meta Reinforcement Learning. In Leslie Pack Kaelbling, Danica Kragic, and
Komei Sugiura, editors, Proceedings of the Conference on Robot Learning, volume
100 of Proceedings of Machine Learning Research, pages 1094–1100. PMLR, 30
Oct–01 Nov 2020.

[150] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep Sets. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[151] Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, and Josef
Urban. Towards finding longer proofs, 2020. OpenReview.net.

[152] Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, and Josef
Urban. Towards Finding Longer Proofs. In Anupam Das and Sara Negri, editors,
Automated Reasoning with Analytic Tableaux and Related Methods, pages 167–
186, Cham, 2021. Springer International Publishing.

	General introduction
	Artificial Intelligence for Model Search of Finite Algebraic Structures
	Basic algebraic structures
	Residuated Algebraic Structures
	One Previously Open Problem
	Python client for Isabelle server
	General description
	Usage example

	Software solution architecture
	General description
	Theory templates generation
	Storing and postprocessing the finite models
	Found models verification

	Conclusion and future work

	Neural Networks for Model Generation
	Additional algebraic notions
	Deep Learning Basics
	Why use deep learning and how
	Autoencoders
	Deep adversarial networks

	Generating algebraic structures with deep learning networks
	Similar tasks
	Denoising as a simpler task
	Suitable neural network type
	Training data
	Non-unique ground truth
	Loss function

	Experiment setup
	Data representation
	Network architecture
	Loss functions
	Noise
	Training and testing datasets
	Quality metrics
	Training process
	Experiment results

	Conclusion and future work

	Reinforcement Learning for Automated Theorem Proving
	Automated reasoning basics
	Interactive and automated theorem provers
	First-order logic and Clausal Normal Form
	Given clause algorithm
	Deductive systems
	Hints and proof sketches in saturation provers
	TPTP language

	Reinforcement learning basics
	Reinforcement learning glossary and Markov Decision Processes
	Observation as state representation
	Sparse rewards and parametric actions
	Multi-armed bandits

	Machine learning guided automated reasoning
	Related work and software architecture choices
	A saturation prover as an RL task
	A saturation prover as a multi-armed bandit

	gym-saturation
	General description
	Usage examples
	Architecture
	Implementation details
	Release history and lessons learned

	Conclusion and future work

	Generic Reinforcement Learning Prover
	RL-guided prover architecture
	Short overview of existing solutions
	Prover-agnosticity
	On representations
	Original RL algorithm implementations

	Representation subsystem
	Existing first-order formulae representations and related projects
	ast2vec and our contributions to it
	Latency considerations

	RL algorithm
	Proximal Policy Optimisation
	Motivation for choosing PPO

	RL-guided ATP evaluation
	Episode truncation conditions
	What to expect from ML guidance

	Experiments
	Software and hardware
	Data
	Algorithm meta-parameters and random baseline
	Experiment results
	Experiment results: answers
	Experiment results: questions

	Multi-task RL
	Existing evaluation protocols
	Multi-task and meta-reinforcement learning
	Meta-learning in pairs experiment
	Meta-learning experiment results

	Why have so many moving parts
	Conclusion and future work

	Details of ast2vec representation

