
HAL Id: tel-04291337
https://theses.hal.science/tel-04291337

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging formal specification to implement a database
backend
Saalik Hatia

To cite this version:
Saalik Hatia. Leveraging formal specification to implement a database backend. Databases [cs.DB].
Sorbonne Université, 2023. English. �NNT : 2023SORUS137�. �tel-04291337�

https://theses.hal.science/tel-04291337
https://hal.archives-ouvertes.fr

Thèse présentée pour l’obtention du grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Spécialité

Ingénierie / Systèmes Informatiques

École doctorale

Informatique, Télécommunication et Électronique Paris (ED130)

Leveraging formal specification to implement a database

backend

Saalik Hatia

Soutenue publiquement le : 01 juin 2023

Devant un jury composé de :
Emmanuelle ANCEAUME, Research Scholar, IRISA, CNRS Reviewer
Gaël THOMAS, Professor, Telecom SudParis Reviewer
Carla FERREIRA, Associate Professor, Nova Examiner
Antoine MINÉ, Professor, LIP6, Sorbonne Université Examiner
Serdar TASIRAN, Principal applied scientist, Amazon Examiner
Patrick VALDURIEZ, Distinguished Research Scholar, Sorbonne Université Examiner
Marc SHAPIRO, Distinguished Research Scholar, Sorbonne Université, LIP6 Advisor

To her

Copyright:
Except where otherwise noted, this work is licensed under
https://creativecommons.org/licenses/by-nc-nd/4.0/

ii

Acknowledgement

"Don’t go to university you’ll get lost," said my high school physics teacher when I
told her I applied for Université Pierre et Marie Curie. She was right, I got lost, but I
embarked on an amazing journey. Started with an enrolment in Physics and ended
up doing a Ph.D. in Distributed Systems. There are a lot of people that made this
possible, so I will get right into thanking them.

First I would like to thank the reviewers Emmanuelle Anceaume and Gaël Thomas,
for their time reading and reviewing this thesis. I would also like to thank the
examiners Carla Ferreira, Antoine Miné, Serdar Tasiran, Patrick Valduriez for taking
the time to be part of the jury.

When Marc Shapiro asked me to continue my internship into a Ph.D., I politely
declined. Few years later here I am, writing the acknowledgements. This thesis
would not exist had you accepted my initial answer. Thank you for trusting me, help
me think critically, question myself and better my writing. You also pushed me to
present my work even when I thought it was insignificant. During the Ph.D you were
always ready to have a meeting, to talk, to entertain an idea which I am grateful
for. I hope you enjoyed working with me as much as I did, I will continue to push
forward the way you taught me.

A huge thank you to Annette Bieniusa, Carla Ferreira and Gustavo for collaborating
with us on this thesis. This work is the result of hours upon hours of discussions, in
multiple countries and I hope you had as much pleasure working with me as I had
with you.

Thank you to the members of the lab who were my teachers, inspired me to continue
in research and then became my colleagues. Thank you Julien Sopena, you made
me want to teach and are probably responsible for me being always late to class.
Thank you Jonathan LeJeune for being always there and help whenever I needed.
Thank you Pierre Sens for being always so nice and having great advice. Thank
you to Fabrice Kordon it was a pleasure teaching together and having all those tech
discussions. Thank you also to Luciana Arantes, Swan Dubois, Claude Dutheillet,
Franck Petit, Yann Thierry-Mieg.

iii

To my fellow past and current Ph.D student and lab colleagues, thank you for all
the interesting discussions we had about work, tech, politics, sports and the other
absurdly diverse set of hobby everyone has that I learned from. Thank you Aymeric
Agon-Rambosson, Maxime Ayrault, Maxime Bittan, Antoine Blin, Marjorie Bournat,
Florent Coriat, Cédric Courtaud, Arnaud Favier, Guillaume Fraysse, Yoann Ghigoff,
Sara Hamouda, Redha Gouciem, Francis Laniel, Alexandre Lavigne, Gabriel Le
Bouder, Ludovic Le Frioux, Etienne Le Louët, Célia Mahamdi, Benoit Martin, Darius
Mercadier, Hakan Metin, Sreeja Nair, Ayush Pandey, Baptiste Pires, Laurent Prosperi,
Thomas Romera, Lucas Serrano, Ilyas Toumlilt, Vincent Vallade, Dimitrios Vasilas,
Vincent Vallade, Daniel Wilhelm. I hope you enjoyed our conversations as much as
I did, you are some of the smartest and kindest people I met. I was planning on
writing a sentence for each and every one of you but I’m not planning on writing a
second manuscript.

To the family I met during my bachelor. We had fun, we became adults together
and formed bonds that will never be broken. Thank you Julien Henon, Clémentine
Larcena, Michal Rudek, Jonathan Sid-Otmane, Oskar Viljasaar.

To the family I met before university. We’ve known each other for so long, yet our
friendship never faded. Thank you Jeremy Assal, Irwin Assal, Leslie Assal, Niels
Assal, Olivier Dopke, Hélène Fernandez, Sina Ghassemi, Dean Huseini, Anne-Laure
Kersaudy, Lola Lellouche, Zoe Lellouche, Vinuja Maniccavasagam, Alfred Rodriguez,
Savannah Salvoni, Elena Rouche, Hermina Siassia, Nicolas Sidahmed, Laura Zribi.

To Claire-Marine Galletti I am grateful to have you in my life. I know it was not easy
to support me throughout this Ph.D and I would not have made it without you (and
Tataki).

Finally, thank you to my parents for raising me into who I am, for giving me all the
opportunities in life. Thank you to my brother and sister for supporting me and for
being the best siblings I could ask for.

I thought I would be the one writing funny acknowledgement, but I also failed, so
one last time thanks to each and every one of you.

iv

Abstract

Conceptually, a database storage backend is just a map of keys to values. However,
to provide performance and reliability, a modern store is a complex, concurrent
software system, opening many opportunities for bugs. This thesis reports on our
journey from formal specification of a store to its implementation. The specification
is terse and unambiguous, and helps reason about correctness. Read as pseudocode,
the specification provides a rigorous grounding for implementation. The specification
describes a store as a simple transactional shared memory, with two (behaviourally
equivalent) variants, map- and journal-based. We implement these two basic variants
verbatim in Java. We specify the features of a modern store, such as a write-ahead
log with checkpointing and truncation, as a dynamic composition of instances of
the two basic variants. Our experimental evaluation of an implementation has
acceptable performance, while our rigorous methodology increases confidence in its
correctness.

Keywords: Databases, Distributed systems, Consistency, Modular architecture, For-
mal specification

v

Résumé

Conceptuellement, un système de stockage de base de données n’est qu’une corre-
spondance entre des clés et des valeurs. Cependant, pour offrir des performances
élevées et une fiabilité, une base de donnée moderne est un système complexe et
concurrent, rendant le système prône aux erreurs. Cette thèse relate notre parcours,
allant de la spécification formelle d’une base de données à son implémentation.
La spécification est courte et non ambigüe, et aide à raisonner sur la justesse. La
lecture du pseudocode de la spécification fournit une base rigoureuse pour une
implémentation. La spécification décrit la couche de stockage comme une mémoire
partagée transactionnelle simple, avec deux variantes (au comportement équiva-
lent), basées sur une map et un journal. Nous implémentons ces deux variantes en
restant fidèles à notre spécification. Nous spécifions les fonctionnalités d’une base
de données moderne, ayant un système de journalisation avec des snapshots et de la
troncature, comme une composition des deux variants. Finalement, nous présentons
une évaluation expérimentale avec des performances qui sont acceptables pour une
implémentation qui est correcte.

Mots-clés: Base de données, Systèmes distribués, Cohérence, Architecture modu-
laire, Spécification formelle

vii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 2

1.3 Publications . 3

I Background 5

2 Database design 7

2.1 Database Backends . 7

2.1.1 Relational Databases (RDBMS) 7

2.1.2 NoSQL Databases . 8

2.2 Transactions . 11

2.2.1 ACID Properties . 12

2.2.2 Concurrency Control . 13

2.3 Consistency Models . 14

2.3.1 Sequential Consistency . 14

2.3.2 Linearizability . 15

2.3.3 Snapshot isolation . 15

2.3.4 Serializability . 15

2.3.5 Causal Consistency . 16

2.3.6 Eventual Consistency . 18

2.3.7 Strong Eventual Consistency 18

2.3.8 Transactional Causal+ Consistency 19

2.4 Data structures . 19

2.4.1 Conflict Free Replicated Data Types 19

2.4.2 All-or-Nothing: Shadow paging vs write-ahead logging 20

2.4.3 Update-in-place vs MVCC . 21

2.4.4 Timestamps and Clocks . 22

2.4.5 Log-Structured Merge-tree . 23

2.4.6 Distributed Transactions . 23

ix

2.4.7 Sharding . 23

2.4.8 Two-Phase Commit . 24

2.4.9 Challenges in Ensuring Consistency in Distributed Systems . . 25

2.4.10 Conclusion . 26

II Contributions 27

3 Formal Specification of a Database Backend 31

3.1 System Model . 31

3.1.1 Fault model . 31

3.1.2 Keys, values, and timestamps 32

3.1.3 Timestamps and clocks . 33

3.1.4 Effects . 33

3.1.5 Traces . 34

3.1.6 History . 34

3.1.7 Snapshots . 35

3.1.8 Transactions . 35

3.1.9 Visibility . 36

3.1.10 Values associated with a store 36

3.2 Formal Model of Transactions . 38

3.2.1 Composing effects . 38

3.2.2 Semantics of transactions . 39

3.2.3 Informal presentation . 39

3.2.4 Parameters . 40

3.2.5 Transaction begin . 41

3.2.6 Reads and writes . 41

3.2.7 Transaction termination . 42

3.3 Conclusion . 42

4 From Specification to Implementation 45

4.1 Implementation Approach . 45

4.1.1 Implementing common components 46

4.1.2 Implementation challenges and considerations 49

4.1.3 Enforcing the causality premise 50

4.1.4 Enforcing the visibility premise 51

4.1.5 Implementing the Transaction Coordinator 52

4.2 Basic Variants . 57

4.2.1 Map store semantics . 57

4.2.2 Map store implementation . 58

x

4.2.3 Journal store semantics . 61

4.2.4 Journal store implementation 61

4.2.5 Discussion about design choices and performance 63

5 Composing Stores 65

5.1 Composing Stores . 65

5.1.1 Field and domain of a store 68

5.1.2 Composition of stores . 69

5.1.3 Modifying a composition . 70

5.1.4 Total store . 71

5.1.5 Garbage collection . 72

6 Conductor 73

6.1 Implementing a Write-ahead Log by Composition 73

6.1.1 Write-ahead log (WAL) . 75

III Experimental Evaluation 81

7 Experimental evaluation 83

7.0.1 Performance comparison . 83

7.0.2 Correctness . 83

7.0.3 Code coverage . 85

7.0.4 Lessons learned . 85

7.0.5 Note . 86

IV Current and future work 87

8 Current and future work 89

8.1 Advancing the Conductor . 89

8.1.1 Incorporating Cache for Improved Performance 89

8.1.2 Authorize blind . 89

8.1.3 Implementing an LSM-Tree through Composition 89

8.1.4 Exploring Sharding Mechanisms through Composition 90

8.1.5 Dynamic Addition and Removal of Ministores during Execution 90

8.1.6 Creating Adapters for Existing Databases 90

8.2 Formal Verification . 90

8.3 Checkpointing distributed database 92

8.3.1 AntidoteDB . 92

8.4 Consistent cuts of interest . 93

xi

8.4.1 Checkpoint Time (CT) . 93
8.4.2 DC-Wide Causal Safe Point (DCSf) 94
8.4.3 Global Causal Stable Point (GCSt) 94
8.4.4 Min_dependency and Max_committed 95
8.4.5 Low-Watermark and High-Watermark 96
8.4.6 Invariants . 96

V Conclusion 99

9 Related Work 101
9.0.1 Formal specification of transactions and isolation models . . . 101
9.0.2 Using lightweight formal methods to validate storage systems 102
9.0.3 Verified implementations . 102
9.0.4 Compiling specifications to executable code 103

10 Conclusion 105

Bibliography 107

A Notations 119

xii

Introduction 1
Databases are an integral part of modern computing, serving as the backbone of
applications, services, and systems that are used in every aspect of our lives. From
local applications running on individual devices to massive data centers power-
ing global-scale services, databases store and manage data, ensuring accessibility,
consistency, and reliability.

As the scale of applications and services expands, so does the complexity of manag-
ing data. Local applications typically rely on single-node databases, which focus on
optimizing data access and storage within the confines of a single device. Moving
to large-scale data centers introduces new challenges such as concurrent access,
distributed storage, and high availability. These demands necessitate feature-rich
database systems capable of balancing performance, scalability, and fault toler-
ance.

In geo-distributed settings, where data must be replicated across geographically dis-
persed locations to ensure low-latency access and global availability, the complexity
grows even further. This introduces additional challenges related to data consis-
tency, synchronization, and conflict resolution, as well as increased susceptibility to
network partitions and other failures.

As these requirements grow more complex, database systems have been adding
feature after feature in an ad-hoc manner, resulting in complex, monolithic systems
that are difficult to understand, maintain, and extend. In order to address these
challenges, we argue in this thesis that it is realistic to formally specify the database
and derive the implementation rigorously from the specification. By leveraging
formal models and specifications, we can build robust and efficient transactional
database backends that address the diverse challenges and requirements of modern
distributed systems, from local applications to geo-distributed settings.

1.1 Overview

In the first part of this thesis, we delve into the realm of databases, focusing on
various aspects crucial to understanding the complexities of distributed systems. Fol-

1

lowed by an overview of transactions, guarantees they provide, and the challenges
of implementing them in distributed systems. We then provide a background on
concurrency control mechanisms and describe various consistency models, specifi-
cally Transactional Causal Consistency (TCC). Lastly, we touch upon various data
structures employed in state-of-the-art databases.

The second part of this thesis presents the contributions of our research. We begin
by introducing a formal specification of a database backend, which includes defining
the system model and the semantics of transactions.

In the third part, we explore the implementation of our specifications into multiple
variants, employing either a journal-based backend with Write-Ahead Logging (WAL)
or a map-based backend. This allows us to analyze the trade-offs and benefits of
each approach in detail.

In the fourth part, we discuss the implementation of the Conductor, a mechanism
that handles composition of multiple combined backends while enforcing our system
specification. This approach allows resulting database to combine features, such as
crash recovery, of each backend, while mitigating some of the drawbacks.

Finally, we talk about ongoing efforts and future research topics to continue and
extends our work. We hope that this work will pave the way for future research in
this area.

1.2 Contributions

The main results of this dissertation are as follows:

• A formal specification of a database backend, with rules for two variants: map-
and journal-based. With composition we introduce a safe way of composing
independent stores, and a way to bound the storage footprint of a store.

• A verbatim implementation of the specification in Java, with a map-based and a
journal-based store, both in memory and on disk.

• A composition of the two stores, with a journal-based store as the primary store
and a map-based store as the secondary store. This is the first step in implementing
a full-featured database with cache and checkpointing.

• An experimental evaluation of the implementation, showing that our rigorous
approach does not preclude performance.

2 Chapter 1 Introduction

Our experimental evaluation shows that the map-based store is limited by memory
size, while the journal-based store is IO-bound. We also show with experiments that
each of our variants are equivalent. We show the difference in performance between
the different implementations and explain the result based on the specification.

1.3 Publications

Some of the results presented in this thesis have been published as follows:

• Our paper was submitted to Systor and was rejected. We received good
feedback. We are currently updating the paper for a submission to EuroSys.

• Compas 2022 - Towards correct high-performance database backends

During my thesis, I explored other directions and collaborated in several projects
that have helped me to get insights on the challenges of specifying databases. These
efforts have led me to contribute to the following publications and deliverables:

• TechReport - Specification of a Transactionally and Causally-Consistent (TCC)
database Hatia and Shapiro [HS20] ANR RainbowFS

1.3 Publications 3

Part I

Background

Database design 2
2.1 Database Backends

Database backends are responsible for handling the lowest level of data, from caching
to persisting to answering queries. They form the core of database systems, providing
efficient storage and retrieval mechanisms while handling various performance and
consistency requirements. Most modern databases can be categorized into two
main types: SQL and NoSQL. The main user-facing difference between them is the
querying model, the former uses Structured Query Language (SQL) and the latter
uses mainly keys to access data. Data models are also different, but there is more
diversity in NoSQL databases, which can be classified into five main types: Key-Value
Store, Document-based, Vector-based, Graph-based, and Column-family based.

2.1.1 Relational Databases (RDBMS)

Relational databases (Codd [Cod70], Date [Dat03], [Sto02], Bernstein and Goodman
[BG81], Gray and Reuter [GR92a]), also referred to as SQL databases, typically
store data in the form of tables. Tables consist of rows and columns where each
row represents a record (data entites) and each column represents an attribute. In
order to access and manipulate data in an RDBMS database, users must use the
standardized Structured Query Language (SQL) to interface with the database. One
advantage of using SQL is the application independence it provides, as the same
SQL queries can be used across different database systems and should provide the
same results regardless of the underlying database system. This relational model
also allows for complex relationships between data entities that enable complex
application logic like ACID transactions. ACID stands for Atomicity, Consistency,
Isolation, and Durability and it stands for the properties that a transaction must
provide to ensure data integrity and consistency. We will talk more about transactions
in Section 3.1.8.

While SQL databases are well suited for handling complex data relationships, they
have some drawbacks. Data is stored in a fixed schema, so as applications evolve
over time the schema must be updated to accommodate changes or new data models.

7

When a query is executed, the database acquires a lock on the data it is accessing,
which allows for isolation but also prevents other queries from accessing the same
data. This can lead to performance issues during high loads and also prevents the
database from scaling horizontally.

ACID properties are desirable in any database system, but they come at a cost. SQL
databases are not well suited for handling unstructured data, as they require a fixed
schema. They also do not scale well in distributed environments, as they rely on a
centralized architecture and do not support horizontal scalability.

Examples of SQL databases are MariaDB, PostgreSQL, and SQLite.

2.1.2 NoSQL Databases

To avoid the drawbacks of SQL databases, as the internet and we applications became
more prevalent NoSQL emerged. Main motivations for NoSQL databases is to provide
a more flexible data model that is tailored to the need of an application. One effect
of NoSQL databases having no standardized query language is that multiple data
model co-exist in the space. The diversity provides a lot of flexibility, as there are
databases that are made for a wide ranges of use cases from embedded systems
to large scale distributed systems. This diversity leads to five main categories of
NoSQL databases: Key-Value Store, Document-based, Column-family, Graph-based,
and Vector-based.

Key-Value Store (KVS)

Key-Value Stores (KVS) are the simplest form of NoSQL databases. In a KVS,
data is stored as a mapping from a unique key to corresponding value(s). This
straightforward data model lends itself to efficient implementations and is suitable
for a wide range of use cases. The primary operations supported by a KVS are the
retrieval of a value based on its key (get) and the storage or update of a value
associated with a key (put). Due to their simplicity and performance characteristics,
KVS databases are often employed as components of larger, more complex systems,
such as caching layers, SQL backend, other NoSQL database backend or distributed
storage systems.

A common implementation of a Key-Value Store relies on a hash table, a data
structure that efficiently maps keys to their corresponding values. Hash tables allow
for rapid insertion, deletion, and retrieval of key-value pairs, making them a suitable

8 Chapter 2 Database design

foundation for KVS databases. In addition to hash tables, other data structures and
algorithms, such as B-trees (Bayer and McCreight [BM70]), LSM-trees (O’Neil et al.
[O’N+96]), or trie-based structures, can be employed to optimize specific aspects
of KVS performance, such as read or write latency, storage overhead, or memory
footprint.

It is important to note that the simplicity of the Key-Value Store data model can
also be a limitation in certain scenarios. For example, KVS databases do not support
complex data structures, relationships between entities, or advanced querying
capabilities like those provided by SQL databases or other NoSQL databases, such as
document-based, graph-based based databases. Consequently, Key-Value Stores are
best suited for use cases where the data model is straightforward, and operations are
primarily focused on individual key-value pairs rather than complex relationships or
analytical queries.

One exemple of KVS is RocksDB [Roc] an embedded database, based on LevelDB
[Lev], designed for fast storage and retrieval of data. It utilizes a Log-Structured
Merge Tree (LSM Tree, O’Neil et al. [O’N+96]) to store data, which combines the
benefits of both log-based [RO92] and B-tree-based storage systems. We talk in
more detail about LSM Trees in Section 2.4.5.

Document Databases

A Document-based NoSQL database store data in the form of documents, typically
using formats such as JSON or BSON. Data is stored based on schemas like SQL
databases, but they require less structure and are more flexible.

It is designed for storing, retrieving, and managing document-oriented information.
They provide a flexible schema, allowing for the storage of complex and nested data
structures. Example of Document-based databases are MongoDB, CouchDB, and
RavenDB.

Column-family Databases

A Column-family database is a type of NoSQL database where data is organized
in tables with rows and columns similar to a relational database. A key difference
is that columns are grouped into column families, i.e. groups of related columns,
which are the primary unit of access and storage.

2.1 Database Backends 9

It is designed for large-scale, write-heavy workloads and support agregation queries
and time-series data. Examples of Column-family databases are Cassandra, HBase,
and ScyllaDB.

Graph Database

Applications that require complex data relationships like social networks, recom-
mendation engines, and knowledge graphs can benefit from using Graph-based
databases.

A Graph-based database is different from SQL database in that it does not rely on a
fixed schemas and offer more flexibility to developers on how data is handled. In
addition, they enable efficient querying of connected data, as they are optimized to
navigate and traverse relationships between nodes without the need for expensive
join operations.

A Graph-based database employs various indexing and storage techniques to opti-
mize graph traversal and querying. Some of the notable techniques include adja-
cency lists, adjacency matrices, and various graph partitioning methods. Additionally,
Graph-based databases often support specialized query languages, such as Cypher
(used by Neo4j) and Gremlin (used by Amazon Neptune and others), which allow
users to express complex graph traversals and queries in a concise and intuitive
manner.

In recent years, there has been a growing interest in combining graph databases with
other database types to create hybrid systems. For example, some databases combine
the flexibility of graph databases with the high-performance querying capabilities of
column-family databases or the powerful search functionality of document-based
databases. This approach allows users to take advantage of the strengths of multiple
database types while minimizing their drawbacks.

Examples of Graph-based databases include Neo4j, Amazon Neptune, and Ori-
entDB.

Vector Databases

High-dimensional vector data presents unique challenges for database systems.
Traditional indexing methods, such as B-trees and hash indexes, are inefficient for
high-dimensional data due to the "curse of dimensionality", which makes searching
and indexing increasingly difficult as the number of dimensions increases (Beyer et al.

10 Chapter 2 Database design

[Bey+99]). Historically, most state-of-the-art nearest neighbor search functionality
was provided to existing databases through libraries like Annoy [Ber], Faiss [Fai],
and NMSLIB [Nms]. Vector databases, also known as vector-based databases or
vector similarity search engines, are specialized databases designed to handle high-
dimensional vector data. These databases are useful for applications involving
machine learning, image and text processing, and similarity search, where data is
represented as high-dimensional vectors in a vector space.

One of the most popular techniques for indexing high-dimensional data is the
Locality-Sensitive Hashing (LSH) [GIM99]. LSH is an approximate nearest neighbor
search algorithm that reduces the dimensionality of the data by hashing it into
a lower-dimensional space. The key idea behind LSH is that similar vectors are
more likely to hash to the same bucket, thereby allowing efficient search for similar
items.

Another technique used in vector databases is the use of tree-based data structures,
such as k-d trees (Bentley [Ben75]), ball trees (Omohundro [Omo89]), and vantage-
point trees (Yianilos [Yia93]). These data structures partition the vector space into
regions based on distance metrics, which can then be used to efficiently search for
nearest neighbours.

A more recent approach to indexing high-dimensional data involves using graph-
based data structures, such as Hierarchical Navigable Small World (HNSW) graphs
(Malkov and Yashunin [MY18]). HNSW graphs exploit the small-world properties
of high-dimensional vector spaces, where most nodes can be reached from any
other node through a relatively small number of hops. This enables fast search and
retrieval of similar items.

In conclusion, NoSQL databases are a broad category of database systems with a
wide range of data models and storage solutions. By understanding the intricacies
of each type of NoSQL database, developers can choose the right database for their
application and take advantage of the strengths of each database type. In the next
section, we will discuss ACID properties, which are crucial for maintaining data
integrity and consistency in database systems.

2.2 Transactions

A transaction can be defined as an indivisible atomic sequence of operations per-
formed on a database.

2.2 Transactions 11

2.2.1 ACID Properties

As defined by Haerder and Reuter [HR83], ACID stands for Atomicity, Consistency,
Isolation and Durability, these are properties that a transaction must satisfy to be
considered ACID-compliant (Hellerstein et al. [HSH07]).

• Atomicity is the All-or-nothing guarantee. This means that either all operations
in a transaction commit or none of them do.

• Consistency This is an application-specific guarantee. Given a set of invariants,
a transaction must ensure these invariants are preserved, when run in isolation,
after the transaction is committed.

• Isolation Transactions are isolated from each other, meaning that the effects
of a transaction are not visible to other transactions until the transaction has
been committed. Note that there are multiple degrees of isolation known as
consistency guarantees.

• Durability Once a transaction has been committed, its effects on the database
are permanent.

Snapshot is a consistent view of a database, a term introduced by Reed in the
context of distributed systems [Ree83]. Snapshots are used in a concurrent environ-
ment, to ensure that each transaction operates on a consistent and stable view of
the database. Snapshots provide support for the Isolation property of ACID.

Write atomicity is the property that ensures that either all or none of the writes
in a transaction are applied to the database. It an essential aspect of the Atomicity
property. Implementing write atomicity can be achieved with techniques, such as
Write-Ahead Logging (WAL) and Shadow Paging which we compare in Section 2.3.

Read atomicity ensures that a transaction observes a consistent Snapshot of a
database while executing its read operations, satisfying the Isolation property of
ACID transactions. This property is essential to prevent a transaction from reading
partially committed or inconsistent data from concurrent transactions. Implementing
read atomicity can be achieved with techniques such as Multi-Version Concurrency
Control (MVCC) or Update-in-Place (UIP) which we compare in Section 2.4.3.

12 Chapter 2 Database design

2.2.2 Concurrency Control

Concurrency control, as defined by Bernstein and Goodman [BG84], ensures that
in a concurrent system to ensure that transactions execute correctly even when
multiple transactions are accessing the same data simultaneously. Correctly in this
context means that the transactions are executed in a way that preserves the ACID
properties. To do so database systems employ concurrency control mechanisms to
manage concurrent access to shared data.

There are two categories of techniques for managing these type of concurrency:
locking and latching [HSH07].

Locking

Locking [GR92b] is a concurrency control technique to ensure ACID properties
of transactions, particularly the Isolation property. Locks are primarily employed
to manage concurrent transactions and prevent conflicts that may arise due to
simultaneous access to shared data.

A lock is designed to protect an associated ressource from concurrent access. There
is different types of locks, such as readers–writer locks and exclusive locks. Readers-
writer locks allow multiple transactions to read a ressource concurrently but prevent
a concurrent transaction from modifying the associated ressource. An exclusive lock
allows only a single transaction at a time to access the associated data item, blocking
any concurrent transaction from reading or writing it.

Two-Phase Locking (2PL) Papadimitriou [Pap79] is another lock-based concurrency
control mechanism that guarantees serializability (see 3.1)). The 2PL protocol
consists of two phases: the growing phase, in which a transaction acquires locks
but cannot release them, and the shrinking phase, in which the transaction releases
locks but cannot acquire new ones.

However, locking mechanisms can lead to issues such as deadlocks and starvation,
affecting the performance and throughput of the database system.

Latching

Latching is a low-level synchronization mechanism used to manage concurrent
access to shared data structures in multi-core systems. Latches are similar to locks

2.2 Transactions 13

in their purpose but are employed at finer granularity, protecting the internal data
structures of a database system where a lock protects a user-level data item.

Latches are generally used to ensure the consistency and integrity of shared data
structures, such as B-trees, when accessed by multiple threads in a multi-core
environment. Latches are more lightweight than locks and are managed by the
database system’s internal components rather than its transaction management
subsystem.

Latches can be implemented using various strategies, such as reader-writer latches,
spinlocks, or mutexes.

2.3 Consistency Models

A consistency model defines the rules and guarantees provided by a concurrent or
distributed system regarding the ordering of operations and the visibility of data.
The different non-transactional consistency models are detailed by Viotti and Vukolić
[VV16]. Cerone et al. [CBG15] followed by specifying transactional consistency
models. We will present a few of them that are relevant to our work and let the
reader refer to the paper for a more in-depth discussion.

Consistency models are primarily concerned with the following aspects:

Visibility: The consistency model specifies when the effects of an operation, such as
an update or a write, become visible to other operations, such as reads or queries.

Ordering: The consistency model defines the permissible order of operations and
the relative order in which the effects of these operations are observed by other
components of the system.

2.3.1 Sequential Consistency

Sequential consistency is defined by Lamport [Lam79] as a consistency model that
ensures that the result of any execution is the same as ". . . the result of any execution
is the same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in the
order specified by its program.".

14 Chapter 2 Database design

2.3.2 Linearizability

Linearizability [HW90] is a stricter consistency model than sequential consistency.
A Linearizable system is Sequentially consistent and consistent with the real-time
ordering of operations. In a Linearizable system, each operation appears to take
effect at a single point in time, which is between the invocation and the return
of that operation. All linearization points are totally ordered, and this total order
respects real time.

If an operation µ[1] finishes before another operation µ[2] starts, then µ[1] appears
to take effect before µ[2].

2.3.3 Snapshot isolation

Snapshot Isolation (SI) [Ber+95] is an isolation level that guarantees that each
transaction observes a consistent view of the database chosen at the beginning of
the transaction. This ensures read atomicity, i.e., a transaction observes a consistent
snapshot of the database while executing its read operations, preventing it from
reading inconsistent data written by concurrent transactions.

This allows multiple transactions to execute concurrently without the need for
locking. When a transaction wants to commit, the database will check if there are
any conflict in regards to the consistency requirements of the database. If there is
no conflict the transaction is committed and made visible, meaning all the changes
are made visible to other transactions atomically and in an all-or-nothing manner.
We define visibility in detail in Section 3.1.9.

While the SI idea is simple, it is not trivial to implement. Having only one version of
an object makes it difficult to isolate the effects from and to other transactions. One
way databases implements SI is with Multi-Version Concurrency Control (MVCC)
discussed in Section 2.4.3.

2.3.4 Serializability

Serializability [Ber+95] is a consistency model that guarantees that the result of
concurrent execution of transactions is equivalent to some serial execution of the
transactions. Intuitively this means that transactions are made visible in a total
order. This total order also applies the transactions corresponding snapshots and
commits.

2.3 Consistency Models 15

2.3.5 Causal Consistency

Under causal consistency each process may perceive a different serialization of
operations, but they must respect certain ordering guarantees. Intuitively, under
causal consistency, if two events have a natural ("causal") order, they become visible
in that order, but unordered events ("concurrent") can become visible either way.
In order to explain causal consistency, we introduce three new relations: program
order (→), write-into (7→) and happened-before ().

Program Order (→)

Program order (→) refers to the order in which operations are executed within a
single process [Aha+95]. This order is defined by the sequence of instructions in
the process’s program.

The following properties hold for program order:

• For any two operations µi and µj executed by the same process P , if µi occurs
before µj in the program order, then µi → µj . This implies that the order of
operations executed by a single process is maintained.

• Program order is a partial order. It only imposes an ordering on operations
executed by the same process.

• Program order is not transitive across different processes. In other words, if
µi → µj and µj belongs to process P1 while µk belongs to process P2, it does
not imply that µi → µk.

• The program order relationship is combined with other relationships, such
as write-into (7→) and happened-before (), to define the causal order for
operations in a distributed system. Causal order ensures that the partial
orderings of operations established by these relationships are respected, even
as different processes observe different orderings of all operations in H.

Write-Into (7→)

Write-into (7→) defines a dependency between write operations and read operations.
We define writes as w(x)v, where x is the key and v is the value written and reads
as r(x)v, where x is the key and v is the value read. Intuitively, if a value is read in a

16 Chapter 2 Database design

state µi, it must have been written at some point. Ahamad et al. [Aha+95] define
these relations as follows:

• All reads follow a write: If µi 7→ µj , then there must be a key x and a value v
such that µi = w(x)v and µj = r(x)v.

• A read may depend on one write only. For any operation µj , there is at most
one operation µi such that: µi 7→ µj .

• If a read follows no write on a value, the value returned is the initial value: If
for µj = r(x)v, there is no µi such that µi 7→ µj , then v = ⊥.

Happened-Before ()

Lamport defines the happened-before relationship () as follows [Lam78]:

• µi µj if µi 7→ µj . If a process Pi sees two operations ordered in it’s
local execution, then these operations are linked with the happened-before
relationship. If two operations of a process Pi,

• µi µj if µi 7→ µj . If µj reads a value written by µi, then µi happened-before
µj .

• µi µj if µi µk and µk µj . Happened-before is a transitive relationship.
If two operations µi and µj are not linked by the happened-before relationship,
then they are not causally related, and these two operations are concurrent.

Causal Order

Causal consistency applies over the local history of each process in the system. They
may all see a different ordering of all operations in H, but this order must respect
the causal order of all operations. The causal order is the transitive closure of the
union of program order (→) and write-into (7→) relations. The intuition of causal
consistency is that while linearizability tries to impose a total order linked with real
time, causal consistency attempts to impose a partial order linked with logical time.
Program order imposes an order dependency that must be respected, and a data
dependency is also introduced with the write-into relationship.

Causal consistency is related to the so-called four session guarantees. A session is an
ordered set of operations. The term "session" is loosely defined and depends largely
on the system or application being used. In this context, we understand a session as

2.3 Consistency Models 17

the succession of operations observed by a process. These definitions are inspired by
Viotti and Vukolić [VV16]:

1. Read your writes: If a process P applies a write operation µi = w(x)v, then
all subsequent reads without an interleaving write in this session must return
this value µi+n = r(x)v.

2. Monotonic reads: Let there be two operations applied by a process P : µi =
w(x)u followed by µj = w(x)v. Once any read operation has returned µ =
r(x)v, then no other operation may return µ = r(x)u. Intuitively, this means
that our data stores move only forward in time and cannot return previous
values.

3. Monotonic writes: All writes belonging to the same session must be visible in
the same order.

4. Writes follow read (also called session causality): Any write operation made
during the session is ordered after a write in any session whose effect was seen
by a read operation in this session. If µj = r(x)v is a read operation made
during the current session, and µi = w(x)v is a write operation on the same
key made during another session, µi reads the value written by µj: µi 7→ µj ,
then if a write µk = w(y)u is made afterwards during the session, µi must be
visible before µk.

2.3.6 Eventual Consistency

In Eventual Consistency (EC), the order of operations is not guaranteed. Instead
in the absence of new updates, given the same set of operations, all replicas will
eventually converge to the same state. Here replicas refers to a copy of the database
that is stored on a different machine. EC is essentially a liveness condition whereas
the others focus on safety.

2.3.7 Strong Eventual Consistency

Strong eventual consistency (SEC) is a stronger version of eventual consistency that
focus on safety. In SEC, two replicas that have the same set of operations visible are
in an equivalent state and any update delivered to some replica will eventually be
delivered to all replicas.

18 Chapter 2 Database design

To achieve SEC, developers use specific data structures that are designed to be
convergent and offer deterministic merge operations, described in section 2.4.1.

2.3.8 Transactional Causal+ Consistency

Transactional causal+ consistency (TCC+) is a consistency model that is based on
causal consistency. In TCC+, snapshots provide the isolation for transactions and
the system uses data structure like Conflict-free Replicated Data Types (CRDTs) to
provide strong convergence of the replicas.

2.4 Data structures

In this section we present data structures and techniques used in distributed sys-
tems.

2.4.1 Conflict Free Replicated Data Types

Conflict-free Replicated Data Types (CRDTs) are data structures that enforce the
strong convergence property of SEC. CRDTs were introduced by Shapiro et al. [Sha+11]
as a way to ensure that replicas can eventually merge into a consistent state, even
in the presence of conflicts, by using deterministic merge functions and specialized
data structures.

CRDTs achieve this by being built on the following properties:

Commutativity: The order in which concurrent updates are applied does not affect
the final state. This means that if two updates A and B are concurrent, then applying
A followed by B should yield the same result as applying B followed by A.

Associativity: The grouping of updates does not affect the final state. If three
updates A, B, and C are applied, it does not matter if A is combined with B and then
combined with C, or if A is combined with the result of B combined with C.

Idempotence: Applying the same update multiple times has the same effect as
applying it once. This property ensures that if an update is accidentally duplicated,
it will not cause any inconsistencies in the system.

There are two main types of CRDTs: state-based and operation-based.

2.4 Data structures 19

State-based CRDTs (CvRDTs)

With State-based CRDTs, also called Convergent Replicated Data Types (CvRDTs),
updates are propagated by sending the entire local state to other replicas, where they
are merged with the local state. The merge function of a CvRDTs is commutative,
associative, and idempotent. The merge can be defined as a least upper bound
(LUB) over a join-semilattice[BM99]. State-based CRDTs can become large over
time increasing the cost of sending the entire state to other replicas. To solve this
Almeida et al. [ASB15] introduced Delta CRDTs, where only difference between the
states are sent to other replicas.

Operation-based CRDTs (CmRDTs)

Operation-based CRDTs, also called Commutative Replicated Data Types (CmRDTs),
are lighter as updates are propagated by sending only the operations to other
replicas. The replica receives the update and apply them locally. Update operations
are commutative, however, they are not idempotent. CmRDTs assumes a messaging
layer that guarantees that messages delivered in a causal order and exactly-once.

2.4.2 All-or-Nothing: Shadow paging vs write-ahead logging

There are two common techniques to achieve the all-or-nothing property of transac-
tions: shadow paging and write-ahead logging.

Shadow paging

Shadow paging is originally a disk-based technique where a database maintains
two separate page tables: current and shadow. When a transaction starts, a copy of
the current page is created, the shadow page. The shadow page is not referenced
anywhere so updates can be made to it without affecting the current page. When
the transaction commits, the shadow page table becomes the current page table in
an atomic operation. In case a transaction aborts, the shadow page is discarded.

20 Chapter 2 Database design

Write-ahead logging

Write-ahead logging (WAL) [Moh+92], also known as journaling, is a technique
where a database maintains a log of operations called journal or log. When a
transaction starts, it writes all its operations to the log. When a transaction commits,
a commit record is written in the log. Depending on the implementation, the updates
can be written during the transaction execution or when the transaction commits.
In case a transaction aborts, an abort record is written in the log and the log is used
to undo the changes made by the transaction.

Write-ahead logging is also used to perform recovery in case of a crash. As the log
provide a history of operations that can be reapplied to the database to bring it to a
consistent state.

2.4.3 Update-in-place vs MVCC

Update-in-place and Multi-Version Concurrency Control (MVCC) are different ap-
proaches to managing concurrent access to data in a database system. Both methods
provide a consistent view of the data and maintain isolation between concurrent
transactions.

Update-in-place

Update-in-place is a technique where the database directly modifies data on disk or
in-memory when a transaction makes changes. This approach is straightforward
but require locking mechanisms to maintain consistency and isolation between
concurrent transactions.

Update-in-place are space efficient but locking can cause contention and limit
concurrency, as transaction needs to wait for locks to be released before they can
proceed.

Multi-Version Concurrency Control

Multi-Version Concurrency Control (MVCC) [Ree78] provides isolation by maintain-
ing multiple versions of each object. With MVCC transactions read the database at a
given time without interference from other transactions providing SI, and writes are
isolated from reads and writes from other transactions.

2.4 Data structures 21

Two common ways of implementing MVCC is to maintain multiple version of each
object or to maintain a log of all the operations like we described in 2.4.2 that have
been performed on the database.

Versioning maintain multiple version of the same object to allow transaction to
read them without another transaction modifying the object. And also this allows a
transaction to write to the database without other transaction being able to see the
changes until the transaction is committed. Versionning allows for fast reads but it is
space consuming as it requires to store multiple version of the same object and it
requires additional application logic in order to do correct garbage collection.

Logging is a more space-efficient way of implementing MVCC as it is logging all
the operations that have been performed on the database. This way a transaction
can reconstruct (materialize) any version of an object by replaying the log. While
overall space efficient compared to versioning, it is slower as it requires to replay
the log from the beginning to materialize an object.

2.4.4 Timestamps and Clocks

Timestamps are used in database systems to order events, such as transactions
or updates, and maintain a consistent view of the data. Scalar timestamps (e.g.,
Lamport timestamps) and vector clocks are two common mechanisms used to order
events in distributed systems.

Scalar Timestamps are simple, monotonically increasing values assigned to events.
They provide a partial order of events, which is sufficient for many applications.
However, scalar timestamps cannot capture causality between events, leading to
potential inconsistencies in the presence of concurrent updates.

Vector Clocks are arrays of scalar timestamps, one for each process in the dis-
tributed system. They maintain a causal order of events, capturing the happened-
before relationship between events in the system. Vector clocks allow for better
visibility control and consistency in distributed systems, at the cost of increased
storage and communication overhead.

22 Chapter 2 Database design

2.4.5 Log-Structured Merge-tree

Log-Structured Merge-tree (LSM-tree) is a data structure introduced by O’Neil et al.
[O’N+96], designed to provide efficient and scalable write performance in key-value
stores.

An LSM-tree is composed of multiple levels, at least two, with first level C0 being
in-memory and the rest on disk (C1, C2, ...). One property of LSM-tree is that each
level has a different size, with the first level being the smallest and most frequently
updated and the last level being the largest and less frequently updated. C0 stores
key-value pairs in an in-memory data structure. When C0 is full the level is flushed
to disk to next level. When a persistent level is full, it is merged with the next level.
When a read is performed, the levels are scanned from the smallest to the largest
until the key is found.

The LSM-tree architecture is used in modern databases and storage systems, such
as LevelDB, RocksDB, and Apache Cassandra, due to its ability to handle high
write throughput while having a read complexity of O(logn) . Modern LSM-tree
implementations store smaller level on fast storage and larger levels on slower but
bigger storage. This approach balances performance and storage cost as frequent
accessed level benefits from faster storage and larger level can be stored cost-effective
storage. They also use optimizations like using a write-ahead log for the memory
level to provide crash resistance. Other notable optimizations are, SSTables to store
the data on disk, which are immutable and sorted key-value stores, and Bloom
filters Bloom [Blo70] to reduce the number of disk reads.

2.4.6 Distributed Transactions

2.4.7 Sharding

Sharding is a technique used to distribute data across multiple nodes. Where a node
can be a physical machine or a virtual machine. It involves splitting the data into
multiple partitions and assigning the storage and handling of these partitions to
different nodes. This approach allows the database to spread a workload among
multiple nodes, thus scaling the database horizontally.

There are multiple ways of sharding a database, the most common are:

• Range-based sharding: Data is partitioned based on a specific range of keys.

2.4 Data structures 23

• Hash-based sharding: A consistent hashing function is applied to an attribute
value to determine the shard where the data should be stored. This approach
can help distribute the data evenly across shards, reducing hotspots and
improving performance.

Replication

Replication is a technique used to further distribute data. A replicated database
maintains multiple copies of the same data on different nodes in order to improve
availability and fault tolerance. Replication can be performed at different levels of
granularity, from the entire database to partition level or even individual objects.
A full copy of the database is called a replica. Having replicas allows the database
to spread the workload among multiple nodes, thus improving performance and
availability.

There are multiple replication strategies used:

Synchronous replication is a strategy where the database waits for the replicas
to acknowledge the write before returning to the client. This is needed to provide
strong consistency across replicas but result in high latency for writes and can lead
to unavailability in a replica crashes.

Asynchronous replication is a strategy where the database does not wait for the
replicas to acknowledge the write before returning to the client. Once the transaction
is committed to the local replica it returns to the client. And asynchronously sends
the updates to other replicas.

K-Stability is a strategy where the database waits for k replicas to acknowledge the
write before returning to the client. This strategy is a trade-off between synchronous
and asynchronous replication. It provides strong consistency and availability as long
as k replicas are available.

2.4.8 Two-Phase Commit

One of the primary challenges in implementing transactions in distributed systems is
ensuring that all participating nodes agree on the outcome of the transaction, either

24 Chapter 2 Database design

committing or aborting it. Two-phase commit (2PC) is a widely used protocol for
achieving this agreement. In 2PC, a coordinator node is responsible for initiating
the transaction and collecting votes from participating nodes to decide whether to
commit or abort a transaction. The 2PC algorithm can be described in two main
phases:

1. Prepare Phase: The coordinator sends a prepare message to all participating
nodes, requesting them to prepare for the transaction commit. Each participant
ensures that it can commit the transaction, locks the necessary resources, and
responds with a vote (either commit or abort).

2. Commit or Abort Phase: After collecting votes from all participants, the
coordinator decides whether to commit or abort the transaction based on the
received votes. If all participants vote to commit, the coordinator sends a
commit message to all participants, indicating that they should commit the
transaction. Otherwise, the coordinator sends an abort message, instructing
participants to abort the transaction.

2.4.9 Challenges in Ensuring Consistency in Distributed Systems

Large-scale distributed systems are used everywhere, from social networks to e-
commerce platforms and financial services. These systems often rely on distributed
databases designed to scale horizontally, providing high availability and fault toler-
ance.

In such systems, writing data to a database involves more than just updating a single
machine with a single copy of the data. As previously discussed, data is distributed
across multiple nodes, and multiple copies of the data are maintained while adopting
weaker consistency models unlike Serializability.

One of the primary challenges in ensuring consistency in distributed systems stems
from the CAP theorem [GL02] [Bre12]. This theorem states that, in the presence of a
network partition, a distributed system must choose between strong consistency and
availability. For most large-scale applications requiring high throughput, prioritizing
strong consistency at the expense of availability is not a viable option.

Moreover, implementing the techniques outlined in the previous sections to ensure
consistency in distributed systems can be quite complex, particularly in systems
that are built in an ad-hoc manner. This complexity can lead to inconsistencies and
errors, potentially causing significant problems for the applications relying on these

2.4 Data structures 25

systems. We believe that there is a need for a formalism-based approach to design
and build reliable and consistent distributed storage.

2.4.10 Conclusion

In this chapter, we have presented different types of databases and the different
properties they provide. We present different consistency models and ways to
describe how operations are ordered in a distributed system. We have also presented
the different techniques used to handle data access and modifications.

We highlighted the challenges of ensuring consistency in distributed systems and
the need for a formalism-based approach to design and build reliable and consistent
distributed storage.

26 Chapter 2 Database design

Part II

Contributions

As we venture into the second part of this thesis, we shift our focus to the con-
tributions of our research, centered around the design and implementation of a
formally specified and modularly composed database backend. Our objective is
to demonstrate the feasibility and effectiveness of a rigorous approach to storage
system design, which is both theoretically sound and practically viable in terms of
performance and scalability.

Building upon the foundational concepts explored in the first part of the thesis, we
begin by introducing the formal specification of a database backend. This involves
defining the system model and the semantics of transactions, which serve as the basis
for reasoning about the correctness and behavior of our proposed storage system.
By formalizing the system’s properties, invariants, and constraints, we aim to ensure
that our implementation adheres to the desired consistency and isolation guarantees,
providing a solid foundation for the development of a reliable and robust storage
system.

In the third part of the thesis, we delve into the implementation of our specifications
into multiple variants, employing either a journal-based backend with Write-Ahead
Logging (WAL) or a map-based backend. This exploration allows us to analyze
the trade-offs and benefits of each approach in detail, examining factors such
as performance, scalability, and crash recovery capabilities. By comparing and
contrasting the different backend implementations, we aim to provide valuable
insights into the practical considerations and challenges that arise in the design and
implementation of modern storage systems.

In the fourth part of the thesis, we discuss the composition of multiple database
backends to achieve a desirable balance of features. We introduce the Conductor,
a mechanism that handles the composition of multiple combined backends while
enforcing the system specification. This approach allows the resulting database to
capitalize on the features, such as crash recovery, of each backend, while mitigating
some of the drawbacks. By demonstrating the feasibility and effectiveness of a
modular composition approach, we hope to inspire new avenues of research and
innovation in the field of storage systems.

Finally, we touch upon ongoing and unfinished research efforts to adapt the non-
distributed semantics presented in this thesis to accommodate distribution. We
discuss the challenges of tracking causality in distributed systems and maintaining
a consistent view of the database state while still providing the same guarantees.
Our goal is to pave the way for future research in this area, exploring the potential
of formally specified and modularly composed storage systems in the context of
distributed environments.

29

In summary, the second part of this thesis presents our contributions to the field
of storage systems, focusing on the design, implementation, and evaluation of a
formally specified and modularly composed database backend. By showcasing the
potential of a rigorous and principled approach to storage system design, we hope
to encourage further research and innovation in this exciting and rapidly evolving
domain.

30

Formal Specification of a
Database Backend

3

3.1 System Model

In this chapter we explore the key concepts, principles, and abstractions involved in
designing a database backend that can effectively support transactions, functionality
like journaling, crash resistance, read write performance, and consistency guarantees.
We begin by introducing the core components of our database backend, use them to
define the system model, and then present the semantics of transactions.

3.1.1 Fault model

We first define the fault model that we will use to reason about correctness and
behavior of a storage system. Failures are assumed non-byzantine stop-restart. The
system can stop due to a clean power-down or to a crash. Memory supports blocking
reads and non-blocking writes. Meaning that a read will block until the value is
available, but a write may fail if the memory is busy. We consider three kinds of
memory:

• Volatile memory (the default) models DRAM. Volatile memory is lost on
restart.

• Persistent memory models secondary storage. Before a power-down, in-
progress writes first terminate. If the system crashes, in-progress writes may
take effect or not, non-deterministically.

• Crash-tolerant memory models an append-mode log file. Writes are sequen-
tially ordered; If some write succeeds, all preceding writes will have succeeded.
Furthermore, it supports a blocking flush operation: If flush returns successfully,
or is followed by a power-down, all preceding writes will have succeeded. If a
crash occurs before flush returns, it is guaranteed that some non-deterministic
prefix of the preceding writes terminated successfully.

31

3.1.2 Keys, values, and timestamps

A store operates on a key-value interface, where each entry is associated with a
unique key, and a key maps to multiple data versions. Each version consists of a
pair of value and timestamp, which itself identifies the specific version of the key.
To better understand these components, let us delve into the details of keys, values,
and timestamps.

Keys

A Key is an element of the opaque type Key, represented by the meta-variable k. A
Key serves as unique identifier of a data item within the store. Keys are opaque and
can only be compared for equality; and no other operations can be performed on
them. This property ensures that keys remain distinct, unambiguous identifiers for
accessing and updating data items in the store. A key maps to multiple versions
of the associated data, allowing for tracking the history of changes and supporting
various consistency and isolation models in a transactional system.

Values

A value, on the other hand, represents the actual data associated with a given key
and version. It belongs to opaque type Value, represented by meta-variable v.

Timestamps

A Timestamp plays several roles, in particular identifies a specific version of a key-
value pair within the store. It is an element of opaque type TS, represented by
meta-variable t. A timestamp is associated with an update made to a key-value
pair, providing a means to track the history of changes and enabling the retrieval of
specific versions. Timestamps can be compared to determine the order of updates,
allowing the store to maintain a consistent view of the data and to provide the
necessary guarantees for concurrent transactional systems.

Timestamps are partially ordered by ≤. This does not preclude strong-consistency
models, which require a total order. Timestamps are concurrent if not mutually
ordered: t1 ‖ t2

4= t1 6≤ t2 ∧ t2 6≤ t1.

32 Chapter 3 Formal Specification of a Database Backend

3.1.3 Timestamps and clocks

Two timestamps have a least upper bound max and a greatest lower bound min. We
generalize min and max to a set in the standard fashion; as a shorthand, maxT(x) 4=
max(Πx(T)) is the least-upper-bound of the x dimension1 in the set of tuples T. We
note t1 = t2

4= t1 6< t2, read “greater, equal, or concurrent.” The notations min and
5 are defined symmetrically.

As is standard, the timestamp type can be represented by a vector of integers, with
the classical definitions for ≤ or < [Mat88; Fid88]. In this case, we define max as
follows: ∀i : max(t1, t2)[i] = max(t1[i], t2[i]); and similarly for min. Timestamps
become particularly useful in the context of replication.

A clock is an object that returns unique and monotonically-increasing timestamps.

3.1.4 Effects

The current state of the store results from applying a history of updates, which we
call effects.

We define effect, denoted by the meta-variable δ and the domain of effects Eff , as a
function that maps a value to another value. We distinguish between two types of
effects: non-assignments and assignments.

An operation, or non-assignement, is the reification of an update, representing a
function that maps a value to another value. For example, the increment function
incr10(arg) adds 10 to its argument, which is assumed to be an integer value. We use
the meta-variable Op to denote an operation and the domain of operation Op.

An assignment, denoted by :−, is the constant effect. For instance, ":= 27" always
returns 27. Since an assignment masks any earlier assignments or effects to the
same key, the earlier ones can be ignored.

Assignments are useful for simplifying and optimizing the history of a key-value
pair by consolidating previous effects into a single assignment or by combining the
last assignment with subsequent effects into a new assignment. This consolidation
allows the system to ignore and potentially garbage collect previous effects, reducing
the overhead of tracking the entire history of effects on a key.

1In this context, the term "dimension" refers to the position within the timestamp tuple. For example,
given a tuple (a, b, c), the first dimension corresponds to the value of a, the second to b, and the
third to c.

3.1 System Model 33

3.1.5 Traces

Notation δct
k , called a tagged effect, refers to δ updating key k at commit timestamp

ct. We call (legal) trace a set of tagged effects (ordered by vis→ defined in the
next Section 3.1.6), produced by the rules of Figure 3.1; a trace is denoted by
meta-variable Θ.

3.1.6 History

Before diving into the details of operations and assignments, it is essential to
introduce the concept of a history. A history is a sequence of all effects applied in a
given execution. It is a linearization of a trace. By organizing effects into histories,
it becomes easy to manage updates, resolve conflicts in concurrent transactional
systems, and optimize the storage and retrieval of data. We represent history order
by the relation hist→ .

For example, the history:

Hk = Opk(19) hist→ Opk(90) hist→ k := 42 hist→ δk(1) hist→ δk(5)

Represents the sequence of effect Opk(19), Opk(90), := 42, Op5, and Opk(1) applied
to k.

Here, the assignment := 42 masks (i.e. overrides) the effects of Opk(19) and Opk(90),
as their outcome is replaced by the assignment resulting in an equivalent history:

Hk := 42 hist→ δk(1) hist→ δk(5)

If there are concurrent δ, they can be merged by an appropriate merge operator,
which is commutative, associative, and idempotent [Sha+11; Bur+14]. For instance,
the widely used last-writer-wins approach merges concurrent assignments by impos-
ing a deterministic total order on their timestamps. This method ensures that the
most recent update to a key-value pair takes precedence, enabling a consistent view
of the data in a concurrent transactional system.

In the following subsection, we will explore the roles of effects in the context of
histories and their impact on the overall efficiency and consistency of the system.

34 Chapter 3 Formal Specification of a Database Backend

3.1.7 Snapshots

A snapshot represents a specific view of the history, which includes all operations up
to a given point in time.

A snapshot is characterized by a snapshot timestamp, denoted dt. The snapshot
timestamp, or dependency timestamp, indicates the point in time at which the snapshot
was taken, and is used to determine the visibility of operations in the snapshot. We
discuss visibility in Section3.1.9.

3.1.8 Transactions

A transaction is a sequence of operations. All it reads come from a same snapshot, as
defined by the transaction’s dependency timestamp that includes all transactions that
committed before such as:

∀δct ∈ dt ⇐⇒ ct < dt

The operations of a running transaction are not visible outside of it, ensuring
isolation. A transaction terminates in an all-or-nothing manner: it either aborts,
making no changes to the store, or it commits with a commit timestamp. In the latter
case, its operations become visible in the store atomically, labeled with the commit
timestamp.

A transaction descriptor is a tuple composed of its identifier τ , its dependency
timestamp dt, its read set R, its dirty set W, its state buffer B, and its commit
timestamp ct. The tuple is represented as:

(τ, dt,R,W,B, ct)

Where τ is the transaction identifier, R is the set of keys read by the transaction,W
is the set of keys written by the transaction, B is a buffer where are stored read value
and updates of the transaction.

An example transactional execution is illustrated in Figure 5.1(a).

3.1 System Model 35

3.1.9 Visibility

Effects are ordered by the visibility relation δ1
vis→ δ2 (read “δ1 is visible to δ2”) defined

as follows:

• δ
vis→ δ′ if both execute in the same transaction and δ′ executes before δ′.

• δ
vis→ δ′ if they belong to different transactions, τ and τ ′ respectively, where τ ′

can read from τ . Formally, τ has committed, and τ ′.dt is greater than τ .ct.

Visibility is a partial order, meaning that even if timestamps form a total order
(strong consistency), transactions might still be concurrent if for two transaction
τand τ ’, their range]dt, ct] overlap, for instance under Snapshot Isolation.

Committed operations that are not ordered are said to be concurrent, denoted as
δ‖ δ’. Note that an uncommitted operation is not considered concurrent to another
transaction since it is not visible outside of its transaction.

A transaction’s snapshot dt has visibility of an operation if and only if the latter’s
transaction commit timestamp ct is strictly less than dt.

3.1.10 Values associated with a store

Assume that at some point in time, the operations on key k are {δi, δj , . . . }, ordered
by vis→. Intuitively, the current value associated with key k can be computed by
applying all the visible operations to k in order, merging concurrent operations.

Operations earlier than the most recent assignment can be ignored, as they do not
influence the result. If a store contains only assignments, then its expected value
for key k is maxvis→

{δi, δj , . . . }, defined as the most recent assignement, or if multiple
assignments are concurrent, the most recent after of merging them.

For example, suppose store σ maps assignment 27 to version 100 of key k (assuming,
for the sake of example, scalar timestamps). Then, lookup(σ, k, 101) should return
27. If there are no other versions between 100 and 110, lookup(σ, k, 111) should also
return 27. If the next mapping is at timestamp 120, to incr10(), then lookup(σ, k, 121)
should return 37.

We formalize this in Section 3.2.1.

36 Chapter 3 Formal Specification of a Database Backend

BEGIN_TXN

τ /∈ Πτ (Ta ∪ Tc ∪ Tr) causal_dep(dt) T ′
r = Tr ∪ {(τ, dt,R,W,B,+∞)}

(σ,Fσ , Ta, Tc, Tr)
begin(dt)−−−−−→

τ
(σ,Fσ , Ta, Tc, T ′

r)

INIT_KEY

Tr = T ′′
r ∪ {(τ, dt,R,W,B,+∞)} k /∈ R lookup(σ, k, dt) = δ

R′ = R∪ {k} B′ = B[k ← δ] T ′
r = T ′′

r ∪ {(τ, dt,R′,W,B′,+∞)}
(σ,Fσ , Ta, Tc, Tr) −→

τ
(σ,Fσ , Ta, Tc, T ′

r)

READ
Tr = T ′′

r ∪ {(τ, dt,R,W,B,+∞)} k ∈ R B[k] = δ ∈ Ass v = δ(⊥)

(σ,Fσ , Ta, Tc, Tr)
readτ (k)→v−−−−−−−→

τ
(σ,Fσ , Ta, Tc, Tr)

UPDATE
Tr = T ′′

r ∪ {(τ, dt,R,W,B,+∞)} k ∈ R σ′ = doUpdate(σ, τ, k, δ)
W ′ =W ∪ {k} B′ = B[k ← B[k]� δ] T ′

r = T ′′
r ∪ {(τ, dt,R,W ′,B′,+∞)}

(σ,Fσ , Ta, Tc, Tr)
update(τ,k,δ)−−−−−−−−→

τ
(σ′,Fσ , Ta, Tc, T ′

r)

ABORT
Tr = T ′

r ∪ {(τ, dt,R,W,B,+∞)} T ′
a = Ta ∪ {(τ, dt,R,W,B,+∞)}

(σ,Fσ , Ta, Tc, Tr)
abortτ−−−−→
τ

(σ,Fσ , T ′
a , Tc, T ′

r)

COMMIT
Tr = T ′

r ∪ {(τ, dt,R,W,B,+∞)}
ct /∈ Πct(Tc) dt ≤ ct 6 ∃T ∈ Tc ∪ Tr : ct < T.dt

σ′ = doCommit(σ, τ,R,W,B, ct) T ′
c = Tc ∪ {(τ, dt,R,W,B, ct)}

(σ,Fσ , Ta, Tc, Tr)
commitτ(ct)−−−−−−−→

τ
(σ′,Fσ , Ta, T ′

c , T ′
r)

Fig. 3.1.: Operational Semantics of Transactions

lookup : Σ×Key × TS→ Eff⊥

doUpdate : Σ× TID ×Key × Eff → Σ
doCommit : Σ× TID × P(Key)× P(Key)× Sbuf × TS→ Σ

Fig. 3.2.: Store interface

3.1 System Model 37

[H]
δk t δ′k′ = δ′k′ t δk =

δk if δ′k′ = ⊥ (null effect)

δ′k′ if δk = ⊥ (null effect)

δk if δk = δ′k′ (idempotence)

δ′k′ ◦ δk if k 6= k′ (independent keys)

δ′k′ ◦ δk if δk
vis→ δ′k′ (apply in vis→ order)

δk ◦ δ′k′ if δ′k′
vis→ δk (apply in vis→ order)

merge(δk , δ′k′) if merge def. ∧ δk ‖ δ′k′ (merge concurrent)

undefined otherwise (error)

Fig. 3.3.: Effect composition
The first two lines state that the null effect ⊥ (corresponding for instance to a
non-initialized key) can be ignored. The third line ensures that the same effect is
not applied in duplicate. The fourth line states that keys are independent: effects to
different keys commute (they can be applied in any order). The next two lines apply
effects that are related by visibility in visibility order. The penultimate one ensures
that concurrent effects are merged. Any other case would compose a non-committed
effect with an effect that is not visible, and would therefore be an error; hence the
final line.

3.2 Formal Model of Transactions

In this section, we provide a generic formal specification of transactions and store
operations. Later sections will formalize specific variants.

3.2.1 Composing effects

The current state of a key is the result of applying the effects to the key in visibility
order and merging concurrent ones. We formalize this intuition with the effect
composition rule in Figure 3.3. Here, ◦ denotes functional composition: ∀v, (δ2 ◦
δ1)(v) 4= δ2(δ1(v)). Recall that ◦ binds right-to-left.

The t operator is associative, commutative, and idempotent. It defines a least upper
bound between effects, in a join-semilattice whose least element is ⊥.

δ t δ′ = δ′ t δ (commutative)

(δ′′ t δ′) t δ = δ′′ t (δ′ t δ) (associative)

δ t δ = δ (idempotent)

38 Chapter 3 Formal Specification of a Database Backend

The value expected of key k, at some timestamp t, results from applying effects to
k up to t, in visibility order, while merging concurrent effects, i.e., safe(Θ, k, t) 4=⊔
{δt′k : δt′k ∈ Θ ∧ t′ < t}, where Θ is a legal trace of effects, and δt

′
k is an effect to

key k committed with timestamp t′. A legal trace is one produced by the semantic
rules specified in Section 3.2.2.

Note that an assignment overwrites the previous history of the key, i.e., δk
vis→

δ′k ∧ δ′k ∈ Value =⇒ δk t δ′k = δ′k . More generally, if a key’s value is known at some
point, earlier updates to that key can be ignored (by associativity of t). Say the value
of k at timestamp t0 < t is known, then: safe(Θ, k, t) = safe(Θ, k, t0) t

⊔
{δt′k : δt′k ∈

Θ∧t0 < t′ < t}. This justifies the common algorithm for computing the current state
of a key. Lookup its most recently-known value (from a cache or a checkpoint) and
apply later updates in visibility order. If we impose that the dependency timestamp
of running transactions be greater than min_dt, then the prefix of Θ up to min_dt
can be replaced by the checkpoint of values computed at min_dt. We return to
checkpointing in Section 5.1.1.

3.2.2 Semantics of transactions

Figure 3.1 presents the semantics of transactions. The specification is fully formal
and unambiguous: we use it to reason about the system, and it is meant to be
eventually translated to the language of a proof tool such as Coq. Most interestingly,
it can be read as pseudocode, as we explain now.

3.2.3 Informal presentation

The semantics are written as a set of rules. A rule consists of a set of premises above
a long horizontal line, and a conclusion below. A premise is a logical predicate,
specifying expected pre-state (unprimed variables) or post-state (primed variables).
If the premises are satisfied, the state-change transition described by the conclusion
can take place. A label on the transition arrow under the line represents a client API
call. Thus a rule can be seen as terse pseudocode for the computation to be carried
out by the API.

To explain the syntax, consider for example rule BEGIN_TXN. The conclusion de-
scribes the transition made by API begin(dt) from pre-state (σ,Fσ , Ta, Tc, Tr) on the

left of the arrow
begin(dt)−−−−−→

τ
, to post-state (σ,Fσ , Ta, Tc, T ′r) on the right. The premise is

a set of logical conditions; one that uses only non-primed variables is a pre-condition

3.2 Formal Model of Transactions 39

on the prestate; if it contains a primed variable, it is a post-condition that constrains
the post-state. Note that in the right-hand side of this conclusion, only Tr is primed,
indicating that the other elements of the state do not change.

Such a transition is atomic, i.e., there are no intermediate states from a semantic
perspective; any intermediate states in the implementation must not be observable.

3.2.4 Parameters

The system is defined as a tuple (σ,Fσ , Ta, Tc, Tr) consisting of a store, its field, and
the sets of aborted, committed, and running transactions’ descriptors.

The rules describe a transaction system, which is a tuple (σ,Fσ , Ta, Tc, Tr) consisting
of a store σ, its associated field F, and sets of transaction descriptors Ta, Tc, and
Tr, which keep track of aborted, committed and running (ongoing) transactions
respectively. We will ignore Fσ until Section 5.1.

Recall from Section 3.1.8 that a transaction descriptor is a tuple composed of its
identifier τ , its dependency timestamp dt, its read set R, its dirty set W, its state
buffer B, and its commit timestamp ct. The two timestamps define visibility between
transactions, as defined previously (Section 3.1.9). Initially, after rule BEGIN_TXN,
the sets and the buffer are empty and the commit timestamp is invalid. For each
key that is accessed, rule INIT_KEY initializes the buffers, and rule UPDATE updates
them. Computation of the actual commit timestamp may be deferred to the COMMIT

rule.

The API of a store consist of commands lookup, doUpdate and doCommit, specified
in Figure 3.2. These commands serve the following general purposes:

• lookup(σ, k, dt) is responsible for retrieving the current value of a key kfrom
store σin the context of transaction τ , considering its dependency timestamp
and read set.

• doUpdate(σ, τ , k, δ) is used to modify the value of a key k, updating the dirty
setW and state buffer B accordingly to reflect the changes made within the
transaction.

• doCommit(σ, τ , R, B,W, ct) is in charge of committing transaction τ , atomi-
cally applying its effects to the store σand setting the commit timestamp.

40 Chapter 3 Formal Specification of a Database Backend

These commands will be specialized for each specific store variant, as detailed later:
the map-based variant in Section 4.2.1, the journal-based variant in Section 4.2.3,
and composition variant in Section 5.1.

We now describe the rules in turn, then identify the implementation issues that they
raise.

3.2.5 Transaction begin

BEGIN_TXN describes how API begin(dt) begins a new transaction with dependency
timestamp dt. The first premise chooses a fresh transaction identifier τ . The last
premise adds a transaction descriptor to the set of running transactions.

The snapshot of the new transaction is timestamped by dt, passed as an argument.
Remember that a snapshot includes all transactions that committed with a strictly
lesser commit timestamp.

As the transition is labeled by τ , multiple instances of BEGIN_TXN are mutually
independent and might execute in parallel, as long as each such transition appears
atomic.

3.2.6 Reads and writes

Reading or updating operate on the transaction’s state buffer B, which must contain
the relevant key.

Rule INIT_KEY specifies a buffer miss, which initialises the buffer for some key k.
As it does not have an API label, it can be called arbitrarily. It modifies only the
current transaction’s descriptor. The first premise takes the descriptor of the current
transaction τ from the set of running transactions Tr. The second one checks that k
is not already in the read set, ensuring that the state buffer is initialized once per
key. The third reads the appropriate key-version by using lookup (specific to a store
variant). The next two premises update the read set, and initialise the state buffer
with the return value of lookup. The final premise puts the transaction descriptor,
containing the updated read set and state buffer, back into the descriptor set of
running transactions.

In Rule READ, API readτ (k) returns the content of the state buffer. It does not modify
the store. The first clause pulls out the transaction descriptor, as above. The second
one requires that the key is in the read set, thus ensuring that INIT_KEY has been

3.2 Formal Model of Transactions 41

applied. The third one identifies the return value as the value of k stored in the state
buffer.

In Rule UPDATE, API update(τ, k, δ) applies effect δ to key k. It updates both the
store and the transaction descriptor. The first two clauses are similar to READ, and
similarly require a buffer miss if the key has not been used before (avoiding blind
writes). It updates the state buffer, ensuring that the transaction will read its own
writes, and puts the key in the dirty set. It calls the variant-specific command
doUpdate, discussed later in the context of each variant.

3.2.7 Transaction termination

A transaction terminates, either by aborting without changing the store, or by
committing, which applies its effects atomically to the store.

Rule ABORT moves the current transaction’s descriptor from Tr to Ta, marking it as
aborted. It does not make any other change.

API commitτ(ct) takes a commit timestamp argument. It is enabled by rule COMMIT,
which modifies the store, the running set, and the committed set. The first premise
is as usual. Commit timestamp ct must satisfy the constraints stated in the next
two conditions: it is unique (it does not appear in Tc); it is greater or equal to the
dependency. Operation doCommit (specific to a store variant) provides the new state
of the store; it should ensure that the effects of the committed transaction become
visible in the store, labelled with the commit timestamp. Finally, the transaction
descriptor, now containing the commit timestamp, is moved to the set of committed
transactions.

3.3 Conclusion

In this chapter, we have presented the formal specification of a transaction within
the context of distributed systems. We have laid the groundwork for understanding
the key components of a transaction, such as effects, operations, assignments, and
effect composition rules.

As we conclude this chapter, it is important to recognize that understanding the
formal semantics and specifications of transactions is only the first step towards
building effective distributed transactional systems. The challenge lies in translating

42 Chapter 3 Formal Specification of a Database Backend

these theoretical concepts into practical implementations that can be efficiently
deployed in real-world scenarios.

In the next chapter, titled "From Specification to Implementation" (4), we will
explore the process of turning the formal transaction specifications introduced in
this chapter into concrete implementations for distributed systems. We will discuss
various strategies for implementing these concepts, address the challenges and trade-
offs involved in designing and optimizing transactional systems, and investigate
techniques for ensuring correctness, performance, and fault tolerance.

3.3 Conclusion 43

From Specification to
Implementation

4

In this chapter, we will delve into the process of making the formal specification into
functional implementations. The objective is to create multiple implementations that
closely follows the specification, supporting different functionalities while having
good performance. By adhering to the specification, we can ensure that the resulting
system exhibits the intended behaviours and properties, while being able to adapt
and extend the implementations for different store variants.

We start by discussing the general approach taken to convert the formal rules
and parameters into code, focusing on the techniques and strategies employed
to maintain a high degree of correspondence between the specification and the
implementation. Then we present multiple store implementations, showcasing how
the specification can be translated into different stores, each with their unique
characteristics and optimizations.

4.1 Implementation Approach

In this section, we discuss the overall approach taken to implement the formal
specification, outlining the key principles, strategies, and design patterns employed.
In order to implement the specification, we chose Java as the programming language,
primarily due to our familiarity with the language. It also benefits from an extensive
ecosystem and strong typing. Utilizing the Java Standard Library, we were able to
leverage the collection of classes and utilities it provides, ensuring a robust and
reliable implementation.

For future work, using Java we can easily interface with different databases, such as
MySQL, PostgreSQL, and MongoDB, and use them as the underlying store.

During the initial stages of development, we used the Google Guava library to
implement certain aspects of the system. Google Guava is a popular library that
offers a range of helpful utilities, extending the capabilities of the Java Standard

45

Library. However, as our implementation progressed, we decided to simplify our
codebase by removing optimizations that relied on Guava.

4.1.1 Implementing common components

Timestamps and timestamp generator

In the current implementation of the system, timestamps are represented as simple
integer values, allowing for easy management and comparison. However, the
system is designed to be flexible and easily extensible to support other timestamp
representations, such as vector clocks, in the future.

The Timestamp class contains a single integer field and implements the Comparable
interface for easy comparison between instances. To prepare for potential extension
to vector clocks, it provides a compare method returning a TimestampCompareType
enumeration value (LOWER, EQUAL, HIGHER, or UNKNOWN), allowing for com-
parison functions that can handle concurrent timestamps, essential when working
with vector clocks.

The TimestampGenerator class ensures unique and monotonically increasing commit
timestamps. It uses an AtomicInteger, min_allowed_ct, to store and increment
the current minimum allowed commit timestamp value. Another AtomicInteger,
max_allowed_dt, keeps track of the maximum allowed dependency timestamp value.
A sorted set, commitRunning, stores the commit timestamps of currently running
transactions. We will talk about the relationships and interaction between these
values in more detail in Section 4.1.4.

The generator provides methods for generating new timestamps (next), peeking at
the current maximum allowed dependency timestamp (peek), and notifying when
a commit ends (endCommitNotify). To support recovery, the generator offers a
persist() method for persisting the current minimum allowed commit timestamp
value to disk. The restore() method reads the value from disk and returns it, and a
static delete() method allows for deleting the persisted timestamp file if necessary.

Having a persistency mechanism is not strictly necessary for the system to function,
as we consider a persistent store to be able to compute the last commit timestamp
from the store information.

46 Chapter 4 From Specification to Implementation

CRDTs and their implementation

We use CRDTs (Conflict-free Replicated Data Types) as a means of managing concur-
rent updates within the transactional framework. To implement CRDTs, we have
created an abstract class, which serves as the foundation for more specific CRDT
types. We implemented two types of CRDTs for our variants: PN Counters and
Last-Write-Wins (LWW) Registers. This design choice allows for easy extensibility,
enabling the addition of more complex CRDTs as needed.

The abstract CRDT class provides a common interface for the concrete CRDT imple-
mentations, facilitating interaction and management of these data structures. Each
concrete CRDT class inherits from the abstract CRDT class, implementing necessary
methods such as update and merge.

The merge operation in each CRDT type guarantees the least upper bound property,
ensuring that the system converges to a consistent state.

PN Counters : PN Counters, which allow concurrent increments and decrements
without conflicts, consist of two separate counters: one for increments (P) and one
for decrements (N). When implementing the PN Counter class, the update and merge
methods are defined to support concurrent updates. In the merge operation, the
system ensures the least upper bound property by taking the element-wise maximum
of the P and N counters from both CRDT instances. The PNCounter implementation
here can be used as both state-based and operation-based, depending on the store
variant. For state-based stores, each transaction will have a copy of the PNCounter,
and the merge operation is performed during lookup. For operation based stores,
the increment and decrement operations are stored and applied to an old or new
copy of the PNCounter during lookup. The positive and negative values for each
client are stored in a ConcurrentHashMap, with a ClientUid as the key which is a
unique identifier for each client. Each ClientUid maps to a ConcurrentHashMap,
which stores the timestamp and value for each operation. The merge operation takes
another PNCounter as an argument, and for each ClientUid in the other counter, it
checks if the client is in this counter. If the client is not in this counter, it adds it. If
the client is in this counter, it merges the values. The merge operation is shown in
Listing 4.1.

Arguably for our current implementation it can be less complex. In our implementa-
tion a client can execute only one transaction at a time, so we do not need to keep
track of all the operations. We chose to keep a tried and tested implementation, and
it also allows for future extensibility.

4.1 Implementation Approach 47

1 public void merge(Value <?> other) {
2 if (!(other instanceof PNCounter)) {
3 throw new IllegalArgumentException ("Can only merge

PNCounters ");
4 }
5 PNCounter otherNew = (PNCounter) other;
6 // for each ClientUId in the other counter
7 for (ClientUId client : otherNew . positive . keySet ()) {
8 // if the client is not in this counter , add it
9 if (! positive . containsKey (client)) {

10 positive .put(client , otherNew . positive .get(client))
;

11 } else {
12 // if the client is in this counter , merge the

values
13 positive .get(client). putAll (otherNew . positive .get(

client));
14 }
15 }
16 // for each ClientUId in the other counter
17 for (ClientUId client : otherNew . negative . keySet ()) {
18 // if the client is not in this counter , add it
19 if (! negative . containsKey (client)) {
20 negative .put(client , otherNew . negative .get(client))

;
21 } else {
22 // if the client is in this counter , merge the

values
23 negative .get(client). putAll (otherNew . negative .get(

client));
24 }
25 }
26 }

Listing 4.1: Merge implementation for PN Counters.

LWW Registers : Last-Write-Wins (LWW) register is a straightforward CRDT type
that resolves conflicts between updates by selecting the update with the highest
timestamp. Each LWW register contains a value and an associated timestamp.
When two updates occur concurrently, the value with the highest timestamp takes
precedence. In the case of a tie, a deterministic conflict resolution strategy (such as

48 Chapter 4 From Specification to Implementation

lexicographic ordering of replica IDs) is employed. This guarantees the least upper
bound property.

Transaction

The Transaction class represents a transaction descriptor, as defined in the formal
part of the specification (Section 3.1.8). The Transaction class contains fields
corresponding to each element of the transaction descriptor tuple: the transaction
identifier (tid), dependency timestamp (dt), read set (readSet), dirty set (dirtySet),
state buffer (stateBuffer), and commit timestamp (ct). These fields are initialized
in the constructor, and getter and setter methods are provided for accessing and
updating them.

The main purpose of the Transaction class is to maintain the state and information
associated with a given transaction throughout its execution. Each transaction
object maintains a private state buffer, which stores the transaction’s view of the
data it has read or written, allowing for transactional isolation and atomic visibility
upon commit. For every write the key is added to the dirty set. This way, by
creating a separate Transaction object for each transaction, the system achieves
isolation between concurrent transactions, ensuring that the operations of a running
transaction are not visible outside of it.

Additionally, the Transaction class provides methods for adding values to the state
buffer and updating the dirty set, based on the specific CRDT types involved. These
methods ensure that the transaction system correctly handles the different types of
CRDTs, such as LWW and PNCounter, when updating the state buffer.

4.1.2 Implementation challenges and considerations

A close examination of the specification and our initial prototype implementations
has allowed us to uncover several interesting aspects and potential implementation
challenges.

1. Transactions access the store concurrently in INIT_KEY, UPDATE, and COMMIT.
However, they never make conflicting access to the same key-version concur-
rently. Consequently, the corresponding synchronization can be lightweight,
reducing the potential overhead of ensuring transactional consistency.

4.1 Implementation Approach 49

2. The set of committed transactions Tc grows without bound. However, it is
only used to ensure the uniqueness of transaction identifiers and commit
timestamps. Instead of the full set, we can maintain only a summary of the
identifiers and timestamps in use (not the full set), in order to minimize
resource consumption. This approach, which reduces to a few atomic integers,
is discussed in Section 4.1.4.

3. While Ta is also unbounded, it serves merely as a notational convenience and
does not require implementation.

4. COMMIT is the rule that ensures a transaction’s durability. A significant chal-
lenge lies in ensuring that its transition appears atomic despite failures. This
issue is discussed in Section 4.1.4.

5. Enforcing the visibility premise of COMMIT necessitates synchronization be-
tween concurrent transactions. This synchronization process is examined in
depth in Section 4.1.4.

6. The store accumulates versions without bound. To mitigate this issue, a
garbage collection strategy can be employed to remove obsolete versions. This
approach is discussed in Section 5.1.5.

There are numerous possible implementations of the specification, including those
with or without sharding, with or without replication, using a Write-Ahead Log
(WAL), employing a cache, or utilizing multiple storage layers. Existing literature
often explains these variants informally, resulting in complex descriptions that
deviate from the specification. We argue that these challenges can be addressed
systematically by composing a small number of basic variants. This approach
simplifies understanding and implementation, enabling the development of more
robust and efficient systems in various contexts.

4.1.3 Enforcing the causality premise

A causally consistent cut is a set of effects that is closed under the visibility relation,
i.e., if some effect is in the cut, all effects that are transitively visible to it are also in
the cut.

causal_cut(∆ ⊆ Eff) 4= ∀δ, δ′ ∈ Eff : δ vis→ δ′ ∧ δ′ ∈ ∆ =⇒ δ ∈ ∆

50 Chapter 4 From Specification to Implementation

If we consider whole transactions, then:

causal_cut(T ⊆ Tr ∪ Tc)
4= ∀τ, τ ′ ∈ T : τ.ct < τ ′.dt ∧ τ ′ ∈ T =⇒ τ ∈ T

The premise causal_dep(dt) in Rule BEGIN_TXN requires the transaction’s depen-
dencies to form a causally-consistent cut. This means that, for any transaction τ that
this transaction depends upon, it transitively depends on any transaction τ ′ that τ
itself depends on. Formally:

causal_dep(dt) 4= causal_cut({τ ∈ Tc|τ.ct < dt})

The implementation naturally enforces this premise by maintaining an upper bound
on the commit timestamps of transactions that are known to have committed. This is
correct because, thanks to the visibility premise discussed next, transactions commit
in timestamp order.

Our implementation maintains a single, monotonically increasing, atomic integer to
represent the timestamps. To enforce this premise Timestamp Generator advances
max_allowed_dt to cta only when all the transactions with ct less than cta have
committed. This way any transaction that starts with an allowed snapshot. We show
this in Listings 4.3 and 4.2.

4.1.4 Enforcing the visibility premise

The visibility premise of COMMIT 6 ∃T ∈ Tc ∪ Tr : ct < T.dt forbids to read from a
non-committed transaction.

We can re-write it to a simpler form:

6 ∃T ∈ Tc ∪ Tr : ct < T.dt ≡ ∀t ∈ Πdt(Tc ∪ Tr) : ct = t

≡ ct = maxTc∪Tr(dt)

To illustrate why this premise is necessary, consider the following example: 1. Trans-
action T1 has commit timestamp 1; 2. Transaction T2 starts with dependency
timestamp 2 > 1; thus T2 must read the writes of T1; 3. however, T1 is slow and
its committed effects reach the store only after the read by T2. Clearly, this would
be incorrect. To avoid this, T2 must not start until T1 has finalized its transition
to committed. This requires synchronization between concurrent transactions. We
implement it as follows.

4.1 Implementation Approach 51

To enforce this premise in the implementation, the timestamp generator described
in Section 4.1.1, maintains two monotonically non-decreasing atomic counters
max_allowed_dt 5 min_allowed_ct, as described next.

When a transaction starts (rule BEGIN_TXN), it chooses a dtsuch as dt 5 max_allowed_dt.
A transaction requests a new commit timestamp ct = min_allowed_ct from the
timestamp server, at the latest during the transition from running to committed (in
rule COMMIT). The request of ct is a getAndIncrement operation on min_allowed_ct.
It is added to the list of pending commit timestamps and then returns the ct. After
the coordinator’s call to doCommit returns, the coordinator notifies the timestamp
server. If there are any in-flight transactions with a lower timestamp, the server
adds the ct to a list of pending commit timestamps. Otherwise, the server atomi-
cally advance max_allowed_dt up to being equal to min_allowed_ct; this makes this
transaction visible to future transactions.

1 public synchronized void endCommitNotify (int ct) {
2 commitRunning . remove (ct);
3 if (commitRunning . isEmpty ()) {
4 max_allowed_dt .set(ct +1);
5 } else {
6 max_allowed_dt .set(commitRunning .first ());
7 }
8 }

Listing 4.2: endCommitNotify

4.1.5 Implementing the Transaction Coordinator

The transaction coordinator is an entity located between clients and the store. It
implements the semantics described in Figure 3.1. Our implementation directly
translates the specification, viewed as pseudocode, into sequential Java code, without
any optimization. Each premise in the specification corresponds to an assertion in
the Java code. A coordinator handles a single transaction at a time, maintaining the
state (buffer and read- and dirty-sets) private to the coordinator.

Coordinators for different transactions run in parallel. As they concurrently ac-
cess the store (or multiple stores), and we describe the synchronization to avoid
data races below, under the corresponding store variant. A coordinator uses the
Timestamp Generator to keep track of running and committed transactions. Lastly,
synchronization is necessary to enforce the visibility premise, as described in the
previous section.

52 Chapter 4 From Specification to Implementation

To ensure deterministic comparison of results between stores, a coordinator can
call any of our stores, or multiple stores simultaneously, with the same arguments
(transaction identifier, dependency timestamp, commit timestamp, etc.).

The Coordinator class implements each rule in a corresponding method:

• begin: Starts a new transaction with a dependency timestamp. There exist in
the implementation a version that does not take a dependency timestamp as
an argument. It ask the Timestamp Generator for max_allowed_dtand use it
to call the version that takes a dependency timestamp as an argument.

• read: Reads a value from a given key in the store. Call the doCommit method
of the store.

• init_key: Initializes a key in the transaction’s state buffer if not already
present before a read or write.

• update: Updates the value associated with a given key in the store. Calls the
doUpdate method of the store.

• commit: Attempts to commit the current transaction. If it can, it calls the
doCommit method of the store otherwise calls doAbort.

• abort: Aborts the current transaction. Calls the doAbort method of the store.

The coordinator is agnostic to the underlying store implementation. It calls the
corresponding methods of the store to perform the requested actions even if the
method is a no-op according to the store semantics.

The Coordinator class also contains a run method that listens for client requests
and performs the requested actions based on the input. This method handles com-
munication with clients with input and output streams, processes a client requests,
and dispatches to the appropriate method.

To demonstrate that the Java implementation of the transaction coordinator adheres
to the specification invariants, we can look at the code snippets containing assertions.
These assertions are in line with the premises defined in the specification.

1. In the begin method:

1 public void begin(Timestamp dependency) throws IOException {
2 try {
3 assert (! transactionInProgress);
4 // Check if the dependency is valid

4.1 Implementation Approach 53

5 // isDependencyValid returns true if dependency <=
max_allowed_dt

6 assert (dependency != null && ! timestampGenerator .
isDependencyValid (dependency));

7

8 transaction = new Transaction (dependency);
9 transactionInProgress = true;

10 store. doBegin (transaction);
11 if (out != null)
12 write(Integer . toString (transaction .getDt ().

getTimestamp ()));
13 } catch (Exception e) {...}
14 }

Listing 4.3: beginTransaction

The assertion checks that there is no transaction currently in progress before
starting a new one.

If specified, the dependency timestamp is compared against the value returned
by the timestamp generator’s peek method.

2. In the read method:

1 public Value <?> read(Key key) throws IOException {
2 assert (transactionInProgress && transaction != null);
3 if (transaction . getStateBuffer (). containsKey (key)
4 && transaction . getStateBuffer ().get(key) != null) {
5 write ((String) transaction . getStateBuffer ().get(key).

get ());
6 } else {
7 init_key (key);
8 if (transaction . getStateBuffer (). containsKey (key)) {
9 if (transaction . getStateBuffer ().get(key) != null)

{
10 Value <?> value = transaction . getStateBuffer ().

get(key);
11 if (value.get () instanceof String){
12 write ((String) value.get ());
13 } else {
14 write(Integer . toString ((Integer) value.get

()));
15 }
16 return value;
17 } else {

54 Chapter 4 From Specification to Implementation

18 write("null");
19 }
20 } else {
21 assert false : "Key not found after initialization "

;
22 }
23 }
24 if (out != null)
25 out.flush ();
26 return null;
27 }

Listing 4.4: read

The assertion ensures that a transaction is in progress and that the transaction
object is not null before performing a read operation. As per the specification,
the read operation first checks if the key is present in the transaction’s state
buffer and returns the value if it is. Otherwise, it calls INIT_KEY to initialize
the key in the state buffer.

3. In the init_key method:

1 assert (! transaction . getStateBuffer (). containsKey (key));

Listing 4.5: init_key

This assertion checks that the key is not already present in the transaction’s
state buffer before initializing it.

4. In the update method:

1 public void update (Key key , Value <?> value) {
2 assert (transactionInProgress && transaction != null);
3 if (! transaction . getStateBuffer (). containsKey (key)) {
4 init_key (key);
5 }
6 store. doUpdate (transaction , key , value);
7 transaction . addUpdate (key , value);
8 }

Listing 4.6: update

Similar to the read operation, this assertion ensures that a transaction is in
progress and that the transaction object is not null before performing an update
operation. As per the specification, it first checks if the key is present in the

4.1 Implementation Approach 55

lookup(σ, k, dt) =
⊔

maxt<dt{σ(k, t)}
doUpdate(σ, _, _, _) = σ

doCommit(σ, _, _,W,B, ct)(k) =
{
σ(k) ∪ {(B(k), ct)} if k ∈ W
σ(k) otherwise

where maxt<dt returns the element with the highest timestamp less than dt.

Fig. 4.1.: Operations of map store

transaction’s state buffer before calling doUpdate. Otherwise, it calls INIT_KEY

to initialize the key in the state buffer.

5. In the commit method:

1 public void commit () {
2 assert (transactionInProgress && transaction != null);
3 Timestamp commit = new Timestamp (timestampGenerator .

next ());
4 assert (commit . getTimestamp () >= transaction .getDt ().

getTimestamp ());
5 store. doCommit (transaction , commit);
6 timestampGenerator . endCommitNotify (commit . getTimestamp

());
7 transactionInProgress = false ;
8 transaction = null;
9 }

Listing 4.7: commit

The first assertion checks that a transaction is in progress and that the transac-
tion object is not null before committing. The second assertion ensures that
the commit timestamp is greater than or equal to the dependency timestamp.

6. In the abort method:

1 assert (transactionInProgress && transaction != null);

Listing 4.8: abort

Similar to the commit operation, this assertion ensures that a transaction is in
progress and that the transaction object is not null before aborting.

Building on the Coordinator we have implemented two stores that implement the
Store interface.

56 Chapter 4 From Specification to Implementation

lookup(σ, k, dt) =
⊔(

committed_before(σ, k, dt)
)

doUpdate(σ, τ, k, δ) = σ � (update, τ, k, δ)
doCommit(σ, τ, _, _, _, ct) = σ � (commit, τ, ct)

with the following notation: 1. σ is a journal-based store; 2. � represents concatenation;
3. ‘update’ and ‘commit’ are tags to distinguish the type of a journal record.
4. committed_before(σ, k, dt) denotes the subsequence of journal σ, of records tagged with
key k, that have a commit timestamp less or equal to dt; formally:

committed_before(σ, k, dt) 4= {(δ, t) | σ = σ0 � (update, τ, k, δ) � σ1 � (commit, τ, t) � σ2 and t < dt}

Fig. 4.2.: Operations of Journal store

4.2 Basic Variants

In this section, we present two basic variants of transactional storage systems, each
with their unique advantages and characteristics. These variants are the map-based
store and the journal-based store.

4.2.1 Map store semantics

Our first variant is the random-access map-based store, located either in memory or
on disk. A map store is restricted to contain only assignments.

As illustrated informally in Figure 5.1(c), a map store can be abstracted as an infinite
matrix, with a row per key and a column per time unit.1 An empty store contains all
⊥. The cell at index (k, t) is populated iff some transaction committed an update to
key k at timestamp t. A version remains valid until the next following version in the
same k row.

The map-store algorithm is described by the semantics of Figure 4.1. Starting from
an initially empty map store:

• Command lookup(σ, k, dt) (called in the context of rule INIT_KEY), finds in
store σ the most recent version of key k that is visible from the current
transaction’s dependency timestamp dt. If there are multiple concurrent
most-recent versions, it merges them.

• Command doUpdate is a no-op for this variant.

1In the figure, ignore for now the dividing line between 4 and 5, and the bound indications underneath.
To simplify the illustration, it assumes that time ranges over the natural integers. (Section 6.1).

4.2 Basic Variants 57

• When a transaction commits with timestamp ct, doCommit eagerly copies its
update to every dirty key k, from the state buffer into coordinates (k, ct) of
the matrix.2

We made some semantic choices in this variant that are directly related to the
implementation. Command doUpdate being a no-op is not necessary here. One
possible version of the map store semantics would have doUpdate add the update
to the store. The doCommit command would then be responsible for updating
every update in the store with the selected commit timestamp. However, if every
transaction would publish its updates to the store with a ctset to ⊥, we need to
differentiate them by adding the transaction identifier in the metadata. Additionally
another downside of this approach is that for multiple updates to the same key,
we would write an equivalent number of updates to the store or delete previous
uncommitted versions of the key.

We described in Section4.1.4 how we ensure that uncommitted update are invisible
to other transactions.

4.2.2 Map store implementation

The in-memory implementation uses a standard concurrent Java hashmap (Con-
currentHashMap) to map keys to a CopyOnWriteArrayList of timestamped versions.
CopyOnWriteArrayList is a thread-safe variant of ArrayList that allows concurrent
reads and writes. This ensures that every transaction execute using its own private
copy of the CopyOnWriteArrayList without being affected by concurrent updates.

The lookup algorithm retrieves the visible value of a key for a given snapshot
timestamp. It is designed to work efficiently with the Multi-Version Concurrency
Control (MVCC) approach used in the map store. Here is a step-by-step explanation
of the lookup algorithm:

1. Retrieve the list of timestamped values for the given key.

2. Sort the list based on their timestamps.

3. Iterate through the sorted list to find the most recent value whose timestamp
is less than or equal to the given snapshot timestamp. Timestamps being

2Strictly speaking, one could copy all the keys. However, this optimisation of copying only the dirty
keys is justified in practice, as the space of keys is essentially unbounded (e.g., if keys are arbitrary
strings).

58 Chapter 4 From Specification to Implementation

scalar values there is a total order on them. In the future, in the presence of
concurrent updates a merge operation is performed.

4. Return the found value as the visible value for the key at the given snapshot
timestamp.

The following code snippet shows the lookup algorithm:

1 public Value <?> lookup (Key key , Timestamp timestamp) {
2 CopyOnWriteArrayList <Value <?>> values = store.

getOrDefault (key , null);
3 if (values != null) {
4 values .sort(Comparator . comparing (Value :: getTimestamp)

);
5 Value <?> result = null;
6 result = values .get(values .size () - 1);
7 if (result . getTimestamp (). compareTo (timestamp) < 0) {
8 return result ;
9 }

10 for (Value <?> v : values) {
11 if (v. getTimestamp (). compareTo (timestamp) <= 0) {
12 result = v;
13 } else {
14 break ;
15 }
16 }
17 return result ;
18 } else {
19 return null;
20 }
21 }

Listing 4.9: Map store lookup algorithm

The doCommit method checks for the existence of a CopyOnWriteArrayList associated
with a given key, creates a new one if needed, and adds the new value. If it does, the
method adds the new value to the existing CopyOnWriteArrayList. If not, it creates
a new CopyOnWriteArrayList, adds the new value to it, and then associates the new
ArrayList with the given key in the store.

The following code snippet demonstrates this process:

1 public synchronized void doCommit (Transaction transaction ,
Timestamp commit) {

4.2 Basic Variants 59

2 HashMap <Key , Value <?>> stateBuffer = transaction .
getStateBuffer ();

3 Set <Key > keys = transaction . getDirtySet ();
4 for (Key key : keys) {
5 Value <?> value = stateBuffer .get(key);
6 value. setTimestamp (commit);
7 CopyOnWriteArrayList <Value <?>> values = store.

getOrDefault (key , null);
8 if (values != null) {
9 store.get(key).add(value);

10 } else {
11 values = new CopyOnWriteArrayList <>();
12 values .add(value);
13 store.put(key , values);
14 }
15 }
16 }

Listing 4.10: Map store commit algorithm

There is a potential issue that can occur with concurrent transactions: if two trans-
actions are committing at the same time, they might attempt to create a new
CopyOnWriteArrayList for the same key simultaneously. In this scenario, one of
the CopyOnWriteArrayLists would be added to the store while the other would be
discarded, causing the loss of some updates. To avoid this, the doCommit method is
synchronized, i.a. only one transaction a time can call doCommit.

The doUpdate method is no-op, as the updates are not immediately applied to the
map store. Instead, recall that the coordinator adds them to the stateBuffer and
updates the dirtySet. The updates are applied to the store in doCommit. As discussed
in the previous Section4.2.1 doUpdate being a no-op, simplifies the implementation
and provides an efficient way to handle updates without affecting the map store’s
state during the transaction.

In an implementation without the Timestamp Generator, persisting the last commit
timestamp would be useful as it would allow the store to avoid seeking through
the entire store to find the most recent commit timestamp. This can be done by
writing the commit timestamp to one of two on-disk locations, alternating between
the two, and assuming that such a write is atomic and each location is monotonically
increasing. When the store restarts after a power-down, it takes the highest of the
two.

60 Chapter 4 From Specification to Implementation

4.2.3 Journal store semantics

Our second variant is the journal-based store. In contrast to the map store, 1. a
journal is accessed sequentially, 2. it contains general effects (not just assignments),
and 3. it materialises values lazily on lookup.3 Figure 5.1(b) provides an informal
illustration.4

Figure 4.2 gives the formal semantics of a journal store. Function doUpdate appends
an update record to the journal, with arguments transaction identifier τ , key k,
and effect δ. Similarly, doCommit appends a commit record containing the transac-
tion identifier and commit timestamp. The read-set, dirty-set and state buffer are
discarded.

The real action is in lookup. To find the value of k, it extracts from the log the
effects of all transactions that the current transaction depends upon, i.e., those
whose commit-timestamp is before dt, and composes these effects (in visibility
order, ignoring any effects that precede the most recent assignment, and merging
concurrent effects).

4.2.4 Journal store implementation

We provide an in-memory and an on-disk implementation of the journal. We make
the following assumptions of the disk. Writes are sequentially ordered; there is a
blocking flush operation; if it returns successfully, or is followed by a power-down,
all preceding writes have succeeded. If a crash occurs before flush returns, it is
guaranteed that some prefix of the preceding writes terminated successfully.

Thus, flushing the single commit record to secondary storage ensures crash-atomicity.
In the event of a crash, either the commit record and all preceding records were
written, making the whole transaction durable, or it has not, and the transaction is
aborted on recovery.

Being sequential, a persistent journal generally has better write throughput, and
worse read response time, than a persistent map store.

Our implementation of the journal store is a straightforward, translation of the
specification into Java, deliberately avoiding optimizations, and checking premises
with assertions. The in-memory implementation is an append-only data structure,

3Technically, this is a redo log. An undo log would store inverse effects.
4Again, ignore for now the dividing line between 3 and 4, and the bounds indicated underneath.

4.2 Basic Variants 61

containing a sequence of records; the on-disk journal writes its records to a sequential
file. There are three main types of records:

• A begin record marks the beginning of a transaction. It contains its identifier
and a dependency timestamp.

• An update record contains an update, tagged by the identifier of the corre-
sponding transaction.

• A record marking the end of a transaction is either abort or commit. Both carry
the transaction identifier; a commit also contains its commit timestamp ct.

Records of type begin and abort are not strictly required by the specification, but
they facilitate parsing the journal and recovery.

Disk writes are asynchronous. However, doCommit performs flush to ensure that
all the records of the transaction are stored persistently in case of a crash. The
coordinator calls into the timestamp server to advance min_allowed_ct only once
doCommit has returned, after flush has succeeded. This ensures that the transaction
becomes visible only once its commit has persisted to disk, ensuring correct recovery
after a crash. After a crash if a commit record is found, we know all the update
records preceding it are persisted.

1 public synchronized void doCommit (Transaction transaction ,
Timestamp commit) {

2 writeRecord (new Record (transaction . getTid (), commit , Record
.Type. COMMIT));

3 flush ();
4 super . doCommit (transaction , commit);
5 }

Listing 4.11: doCommit

Function lookup reads the journal sequentially, and applies the effects of the commit-
ted transactions that are visible to the current transaction. When it reads an update,
it defers applying it until it reads a matching commit record.

The journal store writer is implemented using a single-thread executor, to ensure
that the journal is written sequentially. Reading while a concurrent transaction is
writing is not a problem, since the timestamp server ensures that, commits become
visible in increasing timestamp order. As the journal contains all updates, the store
can materialize any version required, without any concurrency issues.

The records from multiple transactions may be interleaved in the journal. The
implementation enforces the invariant that each transaction is structured as a begin

62 Chapter 4 From Specification to Implementation

record, followed by any number of matching update records, followed either by a
matching commit, or a matching abort record. Duplicate commit or abort records are
ignored. After a crash, the recovery procedure closes any incomplete transaction,
i.e. transactions that are missing a commit or abort record, with an abort record,
and compares the highest commit timestamp found with the timestamp server’s
current value. If the timestamp server’s value is higher, we assume that a running
transaction was interrupted by the crash, and revert the timestamp server’s value to
the highest commit timestamp found in the journal.

4.2.5 Discussion about design choices and performance

Timestamp Generator

We acknowledge that using a Timestamp Generator adds a point of failure to the
system. Handling critical information such as max_allowed_dt and min_allowed_ct
in a single separate component adds complexity to the system. However, one of our
goals is to compare multiple stores to one another. Handling multiple timestamps
in each would mean that during testing the stores would have to be aware of each
other and require a certain amount of coordination to ensure that the histories of
each store are equivalent.

The Journal store as it is implemented can compute using the timestamps in the
journal the max_allowed_dt and min_allowed_ct. For the Map store, we use discuss
at the end the Section4.2.1 how to persist the timestamps in TimestampGeneratorless
design.

Optimisation

We presented a number of design choices that can be adjusted to provide better
performance. For the sake of simplicity, we privileged synchronization of methods
like doCommit when fine-tune locks would lead to better performance. For the
Journal we have a single writer thread, which is not optimal for performance. We
could use multiple journal files, each managed by a dedicated writer thread. This
approach would allow use to maintain the sequential nature of write. However, it
requires careful management of the order in which these journal files are written
and read to ensure data consistency.

4.2 Basic Variants 63

Sharding and replication

One obvious way to improve the performance of both stores is to shard the data or
to replicate the stores. These present a number of challenges, such as ensuring that
the timestamps are consistent across the shards or replicas. We discuss these issues
in Section8.1.

Using off the shelf components and libraries

In the context of this thesis, we chose to implement the stores from scratch. However,
in a real-world scenario, we would probably use off-the-shelf components and
libraries. One obvious example would be to combine multiple stores into a single
store in order to leverage their strengths. We call it composing stores and discuss it
in the next Chapter5.

64 Chapter 4 From Specification to Implementation

Composing Stores 5
5.1 Composing Stores

The basic store variants of the previous section are simple but have performance
issues, e.g., they grow without bound. Modern stores improve performance with
features such as caching, write-ahead logging, layered storage, etc. We argue in this
section that these features can be represented as composition of our basic variants.

The composition rules are particularly simple. A composed store is simply a set of
stores (called ministores), each restricted to a specific domain. The lookup, doUpdate
and doCommit operations over the composition extend recursively to its component
ministores, as formalised in Figure 5.3.

65

Fig. 5.1.: Store variants and store composition. Subfigure (a) represents a history; the
following ones different variants and ranges. To simplify the figure, timestamps
are assumed integer (scalar), and the history is represented as a sequence of
transactions with strictly monotonic dependency and commit timestamp. Nota-
tion: x, y: keys; := 0: assign key with value 0; +2,−3: increment key’s value by 2,
decrement by 3; y.4 +1: increment y by 1 with commit timestamp 4. ⇒ extends
validity of a cache entry; in J :1:(2, 3]: J = journal/M = map, low_history=1,
domain (low_lookup = 2, high_lookup = 3].

66 Chapter 5 Composing Stores

lookup(σ, k, dt) =
{

as in Fig. 4.1 or 4.2 if (k, t) ∈ Dσ
⊥ otherwise

doUpdate(σ, τ, k, δ) =
{

as in Fig. 4.1 or 4.2 if (k, t) ∈ Dσ
σ otherwise

doCommit(σ, τ,R,W,B, ct) =
{

as in Fig. 4.1 or 4.2 if (k, t) ∈ Dσ
σ otherwise

Fig. 5.2.: Store σ with domain Dσ

lookup({σ1, σ2}, k, dt) = max
<
{lookup(σ1, k, dt), lookup(σ2, k, dt)}

doUpdate({σ1, σ2}, τ, k, δ) = doUpdate(σ1, τ, k, δ) ‖ doUpdate(σ2, τ, k, δ)
doCommit({σ1, σ2}, τ,R,W,B, ct) = doCommit(σ1, τ,R,W,B, ct) ‖ doCommit(σ2, τ,R,W,B, ct)

Fig. 5.3.: Operations of composed store

ADD_MINISTORE

σ = {σ1, σ2, . . . }
Dσ = Dσ1 ∪ Dσ2 ∪ . . . ∀(k, t) ∈ Dσ0 ∩ Dσ : lookup(σ0, k, t) = lookup(σ, k, t) σ′ = σ ∪ σ0 Dσ′ = Dσ ∪ Dσ0

(σ,Fσ , Ta, Tc, Tr)
addmini(σ,Fσ ,σ0,Fσ0)
−−−−−−−−−−−−−−→ (σ′,Fσ′ , Ta, Tc, Tr)

REMOVE_MINISTORE

σ = {σ0, σ1, σ2, . . . } Dσ = Dσ0 ∪ Dσ1 ∪ Dσ2 ∪ . . .
σ′ = σ \ σ0 Dσ′ = Dσ1 ∪ Dσ2 ∪ . . . ∀(k, t) ∈ Dσ′ : lookup(σ′, k, t) = lookup(σ, k, t)

(σ,Fσ , Ta, Tc, Tr)
rmvmini(σ,Fσ ,σ0,Fσ0)
−−−−−−−−−−−−−−→ (σ′,Fσ′ , Ta, Tc, Tr)

Fig. 5.4.: Operational semantics of store composition. σ is the composition of ministores σ1, σ2, Dσ is the domain
component of Fσ .

5.1 Composing Stores 67

For instance, a cache is an in-memory record of recently-used versions; ignoring
the details of the caching policy, the cache is a map ministore, whose domain is
an arbitrary subset of key-timestamp pairs. For instance, Figure 5.1(d) represents
a cache containing versions {(x, 1), (x, 6), (y, 2), (y, 4)}, where (x, 1) and (y, 4) are
known to remain valid until timestamps 2 and 6 respectively. A cache is fast, but
must be composed with a (possibly slower) persistent store covering the full range
of keys and timestamps; for instance either the journal in Figure 5.1(b) or the map
in (c).

Another example is a write-ahead log (WAL). A WAL combines a sequential, fault-
tolerant journal ministore, with a random-access map ministore. When an update
commits, it is written (in a crash-tolerant manner) to the journal; later, it is copied
and persisted to the map. Thus, the journal’s time domain includes the most recent
updates, whereas the map’s is slightly delayed. For instance, the first map in Fig-
ure 5.1(c) might be combined with the second journal in Subfigure (b). Furthermore,
this WAL might be composed with the in-memory cache of Subfigure (d) to decrease
average response time.

The LSM-Tree approach [O’N+96] decomposes a store into a series of layers. The
top layer contains the most recent updates, which percolate downwards towards
the bottom layer as they age. When reading, the system queries the layers from
top to bottom in succession, returning the first value found. We represent this as a
composition of map ministores that differ in the time domain.

In future work, we plan to formalise sharding and geo-replication [Akk+16] by
composition.

5.1.1 Field and domain of a store

We associate store σ with auxiliary information, its field Fσ , itself composed of
a lower bound low_history ∈ TS and a domain Dσ ⊆ Key × TS. We modify the
store operations lookup, doUpdate and doCommit to be significant only within the
associated domain; outside, they are no-ops. This is formalised in Figure 5.2.

We will call total store one whose field is the full universe (0,Key×TS), and ministore
one whose domain is a strict subset. A ministore may restrict the key domain, the
time domain, or both. For instance, sharding composes ministores that partition the
key domain.

Caches aside, the rest of this paper focuses on stores whose time domain is a
continuous segment of time (low_lookup, high_lookup]. Timestamp low_history is

68 Chapter 5 Composing Stores

significant only for segment domains, and represents the beginning of the history
used in computing this segment. We summarise this information with notation
X :low_history:(low_lookup, high_lookup], where X is M (for a map) or J (for a jour-
nal).

A checkpoint is a map whose domain is restricted to a single point: (high_lookup −
1, high_lookup] = {high_lookup}. A checkpoint contains only the latest version of
each key in the range (low_history, high_lookup]. A checkpoint σt0 = C :0:(t0 − 1, t0]
is a map store containing these values at time t0: σt0

4= {t 7→ safe(Θ, k, t0)}. Then
one can compute any later version of the key from the checkpoint and its later
updates: safe(Θ, k, t) = lookup(σt0 t

⊔
{δt′k : δt′k ∈ Θ ∧ t0 < t′ < t}.

For instance (assuming for simplicity that timestamps are integers), a ministore
σ=J :10:(20, 30] is a journal, representing the history between times 10 (exclusive)
and 30 (inclusive), but for which lookup(σ, k, t) is significant only if 20 < t ≤ 30.
Figure 5.1(b) represents two journal ministores J :0:(0, 3] and J :3:(3, 7]; the second
contains only the incremental effects in range (3, 7], ignoring those at or before
its low_history = 3. Subfigure (c) represents two map ministores; the second one
reflects only the incremental versions created starting at timestamp 5. Subfigure (e)
shows three incremental checkpoints, recording only the last value in the domain,
and only if updated between low_history and high_lookup.

Obviously, low_history ≤ low_lookup < high_lookup. Typically, either low_history =
low_lookup (it records all versions in range) or low_lookup + 1 = high_lookup (a
checkpoint summarising the updates between low_history and high_lookup).

5.1.2 Composition of stores

A composed store is simply a set of ministores. Its domain is the union of components’
domains. An operation on the composed store just calls itself recursively on the
component ministores.

Formally, consider ministores σ1 and σ2, with domains D1 and D2 respectively. Their
composition {σ1, σ2} has domainD1∪D2. Its operations are defined by the equations
in Figure 5.3, where ‖ denotes parallel composition.

We showed earlier that stores are functional and that lookup on any map or journal
returns the same result. It follows that, if a key-timestamp pair is in domain of
two components, it is equivalent to perform lookup on one, on the other, or on
both. Therefore it is often most efficient to perform lookup on the most recent

5.1 Composing Stores 69

ministore first, and to stop as soon as a lookup returns an Assignment. Similarly, an
operation can skip recursing into a component for which the arguments are not in
domain. By abuse of notation, we identify a composed store with a store, and note
σ = {σ1, σ2}.

The composition of segment stores, whose domains are adjacent or overlap, behaves
like single union segment. For instance, in Figure 5.1 the composition of mini-
journals J :0:(0, 3] and J :3:(3, 7] behaves like J :0:(0, 7]. Similarly, combining the
second checkpoint M :2:(3, 4] with mini-map M :4:(4, 7] behaves like M :2:(3, 7]. Mini-
map M :0:(0, 4] combined with mini-journal J :3:(3, 7] behaves like M :0:(0, 7]. In
contrast, it is not useful to compose checkpoint M :0:(1, 2] with J :3:(3, 7], as this
would leave a gap.

Formally,1 composing M :LH 1:(LL1,HL1] with M :LH 2:(LL2,HL2] where there are
no gaps between the two, i.e., HL1 ≥ LL2∧HL1 ≥ LH 2, behaves like M :LH 1:(LL1,HL2].
Similarly for J-segment ministores.

Another interesting case is when their histories are adjacent but not their domains.
In this case, the history of the composition is the composition of histories, but the
domain is just the higher one. For instance, in Figure 5.1, composing M :0:(0, 4] with
checkpoint M :4:(6, 7] behaves like M :0:(6, 7].

Formally, if HL1 6≥ LL2 ∧ HL1 ≥ LH 2, then the composition of M :LH 1:(LL1,HL1]
with M :LH 2:(LL2,HL2] behaves like M :LH 1:(LL2,HL2].

5.1.3 Modifying a composition

A composition typically does not remain static but gets modified over time. Consider
for instance the WAL, where an update is first written to a journal, and later copied
to a map. The map’s high_lookup is always a bit behind the most recent commits,
but increases monotonically with time. Conversely, once an update has been copied,
it can be truncated away from the journal, increasing the latter’s low_lookup. Thus
a WAL is a store composed of a map and a journal, whose domains get modified
concurrently with the execution of transactions.

Figure 5.4 specifies the rules for adding or removing a ministore. The composed
store is denoted σ, with domain Dσ , and the added/removed ministore is noted σ0

with domain Dσ0 .

1For brevity, for the rest of this section, we will use the abbreviations LH , LL and HL for low_history,
low_lookup and high_lookup respectively.

70 Chapter 5 Composing Stores

Recall that, for any query lookup(σ, k, t), any store σ that is produced by applying the
transaction semantics (Figure 3.1) returns the same result, as long as the arguments
are in domain, i.e., (k, t) ∈ Dσ . We must ensure that this remains true for a store
produced by the new rules of Figure 5.4. Hence, in Rule ADD_MINISTORE, the
precondition ∀(k, t) ∈ Dσ0 ∩ Dσ : lookup(σ0, k, t) = lookup(σ, k, t).

Otherwise, the rules are very simple. ADD_MINISTORE states that adding a minis-
tore to a composition extends its domain, whereas REMOVE_MINISTORE states the
reverse.

Note that there is no rule for extending or shrinking ministore’s domain, as this can
be expressed as a combination of adding and removing. For instance, consider a
composed store with a single component, σ = {σ1}. For the sake of argument, say
σ1 = J :10:(20, 30], and we wish to extend the store’s upper bound to 45. For this,
copy the contents of σ1 into σ2 = J :10:(20, 45]; add σ2 to σ; and finally remove σ1

from σ. Doing it in this order ensures that σ continues to service lookup, doUpdate
and doCommit operations correctly and without interruption.

Let us return to the WAL, moving updates from the journal to the map and truncating
the journal. For the sake of argument, consider a WAL σ = {M :0:(0, 100], J :100:(100, 140]}.
This composition has no gaps. To represent growing the map, we add a new
map M ′:0:(0, 120], initialised by copying the contents of M , adding the result of
lookup(σ, k, t) for all t ∈ (100, 120]. Once this is done, M is redundant, and we re-
move it from σ. Alternatively, we could add an incremental segment M ′′:100:(100, 120]
and not remove M .

Now we can truncate the journal. We copy J into J ′:110:(110, 200], add J ′ to σ, and
remove J . As we were careful to never introduce gaps, this ordering ensures that σ
continues to service transactions uninterrupted.

5.1.4 Total store

A total store is a segment store that represents the whole history, i.e., with low_history =
0. To capture this, we add to the rules of Figure 5.4 the following for a total
store: • A total store is created as a segment store with low_history = 0. • In
REMOVE_MINISTORE, the result domain Dσ′ must be a segment store that satisfies
low_history = 0.

Removing a ministore from the total store should not interfere with the reads of
a running transaction. Therefore, in Figure 3.1, we add the following premise to
COMMIT for a total store: σ.low_lookup < dt.

5.1 Composing Stores 71

5.1.5 Garbage collection

As a store accumulates versions, the older versions of a key become obsolete and
take up space unnecessarily. Garbage collection refers to the removal of such
obsolete versions from a total store. Obviously, a removed version cannot be
read by transactions any more. Garbage collection is a direct application of store
composition. As an example, consider a store with upper bound 200; say it contains
the single segment M :0:(0, 200]. To garbage-collect to timestamp 100, we may
replace that single segment with the combination of a checkpoint M ′:0:(100, 100]
with incremental map M ′′:0:(100, 200].

72 Chapter 5 Composing Stores

Conductor 6
6.1 Implementing a Write-ahead Log by Composition

To manage composition, we introduce a “conductor” store.1 In order to compose
dynamically, the conductor supports the addmini, rmvmini interface of Figure 5.4.
Although the semantics treat all ministores equally, in practice a conductor maintains
a topology of ministores and their domains, in order 1. to access the ministores in
an efficient order, and 2. to ensure fault tolerance. For each store the conductor
maintains the list of highLookups, lowLookups and lowHistories. As any store, the
conductor also supports the lookup, doUpdate, doCommit interface, which recurse
through the ministores as specified in Figure 5.3, but follows the topology.

The addmini and rmvmini operations are implemented as addSore and removeStore
operations in the conductor. The addStore is pretty straight forward, it just adds the
ministore to the topology and initializes the domain of the ministore to the highest
commit timestamp. The domain of the new store is]highlookup, highlookup].
Making it unqueryable until a transaction commits to this store.

The addmini operation is as follows:

1 public void addStore (KeyValueStore store) {
2 Timestamp initTimestamp = generalHighLookup ;
3 lowHistories .add(initTimestamp);
4 lowLookups .add(initTimestamp);
5 highLookups .add(initTimestamp);
6 stores .add(store);
7 }

Listing 6.1: addStore operation

The removeStore operation is trickier. We implemented a naive version where a
store σa is removed from the composition, if there exist a store σb such that the
domain Dσa ⊆ Dσb. The ideal algorithm must check if there is a combination of
store that covers the domain of the store to be removed. The removeStore operation
is as follows:

1Unfortunately mixing musical metaphors.

73

1 public boolean removeStore (int index) {
2 if (index >= 0 && index < stores .size ()) {
3 for (int i = 0; i < stores .size (); i++) {
4 if (i != index && lowHistories .get(i). compareTo

(lowHistories .get(index)) <= 0 &&
5 highLookups .get(i). compareTo (

highLookups .get(index)) >= 0) {
6 stores . remove (index);
7 lowHistories . remove (index);
8 lowLookups . remove (index);
9 highLookups . remove (index);

10 return true;
11 }
12 }
13 }
14 return false;
15 }

Listing 6.2: removeStore operation

The lookup algorithm is straightforward, for performance, the conductor recurses
into a ministore only if the arguments are in its domain. It directs lookup to the top
layer, then to lower ones, returning to the client as soon as a ministore returns non-⊥.
If no ministore returns a value, the conductor returns ⊥. Function doUpdate applies
to all ministores in range, but this generally reduces to the top-layer journal.

The lookup method is as follows:

1 public Value <?> lookup (Key key , Timestamp timestamp) {
2 Value <?> result = null;
3 for (int i = 0; i < stores .size (); i++) {
4 if (timestamp . compareTo (lowLookups .get(i)) >= 0 &&

timestamp . compareTo (highLookups .get(i)) <= 0) {
5 result = stores .get(i). lookup (key , timestamp);
6 if (result != null) {
7 break ;
8 }
9 }

10 }
11 return result ;
12 }

Listing 6.3: lookup operation

74 Chapter 6 Conductor

The preferred topology (ignoring caches) has a journal at the top layer, to leverage
its write throughput and fault tolerance properties. Therefore in our implementation,
the conductor chooses the top layer to write new transactions.

6.1.1 Write-ahead log (WAL)

As an illustrative example, consider the case of a write-ahead log (WAL).

A WAL combines a journal J at the top layer, with a checkpoint M . An update goes
first to the journal, and is later merged into the checkpoint. As upper bound M.HL
of the checkpoint advances, the journal can be truncated, advancing its lower bound
J.LL. To maintain the gap-freedom invariant J.LL 5 M.HL, the correct order is
therefore to first checkpoint, then truncate.

In more detail, the algorithm is as follows. Assume the conductor is managing a total
store composed of checkpoint M :0:(HL− 1,HL] and J :LL:(LL,HL], where M.HL =
J.LL. It creates a new checkpoint M ′:0:(HL′ − 1,HL′] with M.HL < M ′.HL′.

The conductor persists a description of the checkpoint in the journal itself. A
CheckpointBegin record describes an upcoming checkpoint, and includes both values
M.HL and M ′.HL′. Once M ′ has been persisted (remember from Section 4.2.4 that
this is atomic), the conductor identifies (if any) the first running transaction τ within
M ′ that terminates beyond M ′, i.e., such that τ.dt ≤M ′.HL′ < τ.ct. The conductor
appends a CheckpointEnd record to the journal, which contains the identifier of the
begin record of τ . The conductor adds the new checkpoint M ′ to the composition,
then removes the old one M . Now, the high_lookup of the checkpoint has safely
increased to M ′.HL′.

However, the conductor must not truncate away the records of any ongoing transac-
tion, i.e., it must stop truncation before the begin record of τ . Thus it can replace
J with J ′:LL′:(LL′,HL] where LL′ 5 τ.dt. Following this ordering ensures that
truncation remains transparent and crash-tolerant.

In our implementation, the journal has a ReadWriteLock to avoid concurrent check-
pointing and truncation. CheckpointBegin writes a record to the journal, and materi-
alize all update between LH and the specified timestamp. Then returns the values
that are part of the checkpoint. CheckpointEnd writes a record to the journal. Finally,
a Truncate function advances the LL of the journal and removes the records that are
no longer needed.

6.1 Implementing a Write-ahead Log by Composition 75

1 public ConcurrentHashMap <Key , Value <?>> checkpointBegin (
Timestamp checkpointTime) {

2 return checkpointBegin (getlowLookup (), checkpointTime);
3 }
4

5 public ConcurrentHashMap <Key , Value <?>> checkpointBegin (
Timestamp lowWatermark , Timestamp checkpointTime) {

6 assert this. lowHistory . compareTo (checkpointTime) <= 0;
7 ConcurrentHashMap <Key , Value <?>> updates = new

ConcurrentHashMap <>();
8 addRecord (new Record (checkpointTime , Record .Type.

CHECKPOINTBEGIN));
9 try {

10 lowWatermarkReadLock .lock ();
11 int beginIndex = (lowWatermark . compareTo (this.

lowHistory) == 0) ? lowWatermarkRecordId :
getBeginIndex (lowWatermark);

12 int commitIndex = getCommitRecordIdIndex (
checkpointTime);

13 if (beginIndex == -1 || commitIndex == -1) {
14 throw new RuntimeException ("No begin or commit

record found with the given timestamps ");
15 }
16 for (int i = beginIndex ; i <= commitIndex ; i++) {
17 Record record = journal .get(i);
18 if (record . getType () == Record .Type. EFFECT) {
19 if (record . getDependency (). compareTo (

lowWatermark) >= 0) {
20 updates .put(record . getKey (), record .

getValue ());
21 }
22 }
23 }
24 return updates ;
25 } finally {
26 lowWatermarkReadLock . unlock ();
27 }
28 }

Listing 6.4: checkpointBegin

76 Chapter 6 Conductor

1 public void checkpointEnd (Timestamp LowWatermark) {
2 addRecord (new Record (LowWatermark , Record .Type.

CHECKPOINTEND));
3 }

Listing 6.5: checkpointEnd

1 public void truncate (Timestamp lowWatermark) {
2 try {
3 lowWatermarkWriteLock .lock ();
4 this. lowLookup = lowWatermark ;
5 int recordIdOfCommit = -1;
6 for (int i = lowWatermarkRecordId ; i < journal .size ()

; i++) {
7 Record record = journal .get(i);
8 if (record . getType () == Record .Type. COMMIT) {
9 if (record . getCommitTime (). compareTo (

lowWatermark) == 0) {
10 recordIdOfCommit = record . getRecordId ();
11 break ;
12 }
13 }
14 }
15 if (recordIdOfCommit == -1) {
16 throw new RuntimeException ("No commit record

found with commit time " + lowWatermark);
17 }
18 // Once we have the recordId of the commit record
19 // with the low watermark commit time ,
20 // we need to find the first begin record with a
21 // recordId lower than the recordId of the commit

record
22 // that has a commit record with a recordId higher

than
23 // the recordId of the commit record .
24 ArrayList <Record > beginRecords = new ArrayList <>();
25 ArrayList <Record > commitRecords = new ArrayList <>();
26 System .out. println ("Store " + journal . toString ());
27 for (int i = lowWatermarkRecordId ; i <=

recordIdOfCommit ; i++) {
28 System .out. println ("i = " + i + " journal .size ()

= " + journal .size () + " recordIdOfCommit = "
+ recordIdOfCommit + " lowWatermarkRecordId =
" + lowWatermarkRecordId);

6.1 Implementing a Write-ahead Log by Composition 77

29 Record record = journal .get(i);
30 if (record . getType () == Record .Type.BEGIN) {
31 beginRecords .add(record);
32 } else if (record . getType () == Record .Type. COMMIT

) {
33 commitRecords .add(record);
34 }
35 }
36 // Remove all the begin records from beginRecords
37 // that do not have a commit record with the same
38 // transaction id in the commitRecords list.
39 // Meaning running transactions that have not

committed yet
40 // are not removed .
41 for (int i = 0; i < beginRecords .size (); i++) {
42 Record beginRecord = beginRecords .get(i);
43 boolean found = false ;
44 for (Record commitRecord : commitRecords) {
45 if (beginRecord . getTrId (). equals (commitRecord

. getTrId ())) {
46 found = true;
47 break;
48 }
49 }
50 if (! found) {
51 beginRecords . remove (i);
52 i--;
53 }
54 }
55 // find the begin record with the lowest record id.
56 int lowestRecordId = Integer . MAX_VALUE ;
57 for (Record beginRecord : beginRecords) {
58 if (beginRecord . getRecordId () < lowestRecordId) {
59 lowestRecordId = beginRecord . getRecordId ();
60 }
61 }
62 lowWatermarkRecordId = lowestRecordId ;
63

64 } finally {
65 if (lowWatermarkWriteLock . isHeldByCurrentThread ()) {
66 lowWatermarkWriteLock . unlock ();
67 }
68 }
69 }

78 Chapter 6 Conductor

Listing 6.6: truncate

The WAL recovers as follows. The journal recovers as in Section 4.2.4. If it contains
a CheckpointBegin record without the matching CheckpointEnd (a checkpoint might
have not terminated), recovery restarts the checkpoint from the beginning using
the arguments stored in CheckpointBegin; remember that persisting a map store is
idempotent. On success, the conductor appends the missing CheckpointEnd record
to the journal, and finally re-initializes the domain of the checkpoint and the journal
from the information stored in the journal.

6.1 Implementing a Write-ahead Log by Composition 79

Part III

Experimental Evaluation

Experimental evaluation 7
Our implementation code is available at https://anonymous.4open.science/r/
ConductorStore-F533. It consists of just under 3,000 lines of Java code, containing
55 assertions. After some experiment on multiple machines, we ran our experiments
on a 2021 14” MacBook Pro under MacOS 13.2.1, with 8 cores, 8 hardware threads,
and 16 GB of RAM and a 512 Go SSD. Our workload is I/O intensive and this machine
had the best I/O performance. Run-time assertion checking is enabled.

7.0.1 Performance comparison

Our performance measurements are intended as an existence proof, and aim only to
show decent performance, and to compare the different variants. We run a transac-
tional version of YCSB, with 5 operations per transaction, under three workloads,
varying the number of reads and writes. Each workload executes for 60 seconds
with 1, 2 or 4 concurrent coordinator threads.

Figure 7.1 plots the throughput. The overall results are not surprising, as our
implementation is purposely not optimised. Unexpectedly, however, the on-disk map
store has higher throughput than the journal. Indeed, as the Update rule forbids blind
writes, every write is preceded by a read, which is especially costly since a journal is
sequential. As the journal grows in size, the read performance degrades degrades
and with the INIT_KEY rule, the journal is forced to read before persisting a write
operation to disk. Our crash-resistant WAL implementation (marked “Conductor”
in the figure) suffers from the same issue as the Journal is the prefered layer for
writing in our implementation. An obvious solution will be to compose the WAL
with a cache for absorbing reads, and to allow blind writes.

7.0.2 Correctness

Assertion checking was purposely enabled (disabling it would improve performance).
We ran YCSB up to 3 million operations on the map store, and 200,000 operations
on the journal, triggering no asserts.

83

https://anonymous.4open.science/r/ConductorStore-F533
https://anonymous.4open.science/r/ConductorStore-F533

Fig. 7.1.: Average throughput of the different stores

Our second objective was to validate experimentally the theoretical result that
stores are behaviourally equivalent. To this effect, we implemented a variant of the
coordinator called emphMultiCoordinator. Like the Conductor the MultiCoordinator,
has list of stores, and it executes the same transactions on all of them. For every read
the MultiCoordinator waits for a response from all stores, and then compares the
return values, see Listing 4.5. If there are any differences, it throws an exception.

1 public void init_key (Key key) {
2 assert (! transaction . getStateBuffer (). containsKey (key));
3 ArrayList <Value <?>> values = new ArrayList <>();
4 // Read from each store and ensure that the values are

the same
5 for (KeyValueStore store : listOfStore) {
6 Value <?> value = store. lookup (key , transaction .getDt

());
7 values .add(value);
8 }
9 if (values .size () > 1) {

10 for (int i = 1; i < values .size (); i++) {
11 if (values .get(i) == null && values .get(i -1) ==

null) {
12 continue ;
13 } else if (values .get(i) == null || values .get(i

-1) == null) {
14 System .out. println (values .get(i -1) + " " +

values .get(i));
15 assert (false);
16 } else {

84 Chapter 7 Experimental evaluation

17 assert (values .get(i). isEquals (values .get(i -1)
));

18 }
19 }
20 }
21 transaction . addValueToStateBuffer (key , values .get (0));
22 }

Listing 7.1: MultiCoordinator, Init_Key

Thanks to early tests using this experiment, we were able to find several small
divergence bugs in our implementation of the journal-store and the map-based
store.

This experiment runs a randomly-generated workload: the coordinator chooses a
random key, a random value and a random dependency, and a random commit
timestamp in the future; then it calls doUpdate and doCommit on every store. Trun-
cation is disabled for this test, since it would throw away some dependencies. Then
it reads the value back with lookup and compares. We run this experiment with an
in-memory map, an in-memory journal, and a WAL. After 50,000 transactions, we
find no divergence.

7.0.3 Code coverage

During our development, we tried to maximize code coverage. The stores are still in
active development, and we are still adding tests. Code coverage is not a good metric
for correctness, but it is a good indicator of the testing effort. Java is a verbose
language making it hard to cover we do not cover all the setter and getter methods,
as well as the exception handling. In the current state of the code we show that we
have decent coverage, as shown in Table 7.1.

7.0.4 Lessons learned

Although we strived to translate the specification verbatim, the asserts were invalu-
able for detecting bugs early. Consider for instance enforcing the visibility premise
(Section 4.1.4). Our initial implementation used a single atomic counter to generate
the commit timestamp and to assign a dependency to a transaction. While this
appears correct in a sequential execution, assert checking identified a bug, whereby
the dependency was assigned before a concurrent transaction had fully committed.

85

Tab. 7.1.: Code coverage

Element Method, % Line, %

Key 100% (5/5) 100%

Record 100% (18/18) 95%

Timestamp 83% (5/6) 46%

Transaction 100% (8/8) 75%

Conductor 61% (13/21) 50%

LWW 100% (4/4) 83%

PNCounter 60% (6/10) 78%

JournalMemory 77% (17/22) 73%

Journal Persistent 100 (11/11) 61%

MapMemory 88% (8/9) 97%

MapPersistent 85% (6/7) 49%

TimestampGenerator 100% (12/12) 91%

Coordinator 76% (10/13) 40%

MultiCoordinator 100% (9/9) 100%

Hence our move to the current design with the two atomic counters max_allowed_dt
and min_allowed_ct. Following this change, we found two more cascading bugs.

The specification is invaluable to help reason about the behaviour. Direct transla-
tion of the transitions and the invariants in the code is a practical way to ensure
correctness. In case the specification changes, the assertions are quick to catch any
incorrect side effects of the changes, and help solve the resulting issues.

7.0.5 Note

More experiments are on the way, but we are currently changing the conductor
implementation to support a cache. We are also planning on running the same YSCB
benchmark on other databases to compare the performance of our WAL with other
systems.

86 Chapter 7 Experimental evaluation

Part IV

Current and future work

Current and future work 8
8.1 Advancing the Conductor

The current implementation of the conductor is a Write-Ahead Log (WAL), which
leaves room for enhancements and future research opportunities. This section
discusses a few avenues that warrant further exploration.

8.1.1 Incorporating Cache for Improved Performance

Ongoing improvement to the conductor is the integration of a cache to enhance
overall performance. The cache constitutes a map-store containing arbitrary key-
value pairs, aimed at minimizing the overhead associated with frequently accessing
the underlying storage layers.

8.1.2 Authorize blind

Another ongoing improvement to the conductor is the implementation of blindwrites
to the journal. Write heavy performance is heavily impacted by the need to call
Init_Key on the journal for every write.

8.1.3 Implementing an LSM-Tree through Composition

Following the successful integration of cache, the next stage of conductor develop-
ment involves the implementation of an LSM-Tree using composition. The current
conductor design does not perform periodic checkpointing and pruning of the jour-
nal. LSM-Tree-like compaction through composition would allow the conductor to
periodically merge multiple stores.

89

8.1.4 Exploring Sharding Mechanisms through Composition

We believe the composition theory presented in this thesis offers a foundation for
justifying sharding. In this thesis we have mainly explored composition through
temporal domain using timestamps to define the domain of each ministore. Sharding
is a way to partition the data domain and use it to provide additional mechanisms
to improve performance and scalability.

8.1.5 Dynamic Addition and Removal of Ministores during Execution

Another research direction to be considered for the future development of the
conductor is support for dynamic addition and removal of ministores. This capability
will allow the conductor to dynamically scale. One example would be to add
additional nodes for shading and using the different domain information to correctly
reshard existing data.

8.1.6 Creating Adapters for Existing Databases

An interesting approach to composition would to create adapters for existing
databases, enabling them to be incorporated into the composition framework. These
adapters would act as an intermediary layer, exposing the store interface to the
conductor. The adapter would be responsible for translating the store interface
to the underlying database interface. This work is not trivial as it would require
to compensate for missing features and consistency guarantees. For example, a
database that does not support transactions would require the adapter to implement
a transactional interface and ensure that transitions are visible atomically.

8.2 Formal Verification

As part of an ongoing collaboration, we aim to formally verify the equivalence
between different store variants using Coq. Given any two implementations of the
store, we will prove that they are behaviourally equivalent. In particular given
equivalent histories (ones containing the same updates with the same timestamps,
in any legal order), any two stores will return the same result to the same call to
lookup.

90 Chapter 8 Current and future work

The proof goals for the composition include:

1. Show that when composing a journal and a checkpoint, where the lower
bound of the journal overlaps the upper bound of the checkpoint, the resulting
system is equivalent to the full store. This would confirm the correctness of
the composition-based approach when merging journal and checkpoint data.

2. Prove that composing a cache with either a map or a journal results in a
system equivalent to a cacheless one. This implies that the presence of a
cache does not affect the system’s correctness, and the cache only serves as an
optimization mechanism.

3. Establish that checkpointing and truncation can be executed concurrently
with transactions without compromising correctness. This would demonstrate
the ability of the conductor to maintain data consistency in a concurrent
environment.

4. Demonstrate that chunked (incremental) checkpoints are equivalent to non-
chunked (monolithic) checkpoints in terms of functionality and correctness.

8.2 Formal Verification 91

8.3 Checkpointing distributed database

In the beginning of this thesis we started working on a way to correctly prune
AntidoteDB. Our goal was to define the portion of the history that can be safely
removed.

8.3.1 AntidoteDB

AntidoteDB is a distributed Journal-store. AntidoteDB supports concurrent updates
occurring in geo-distributed, highly-available Data centres (replicas); each DC
originates its own set of updates. In turn, a DC is partitioned into shards, that
are coordinated by Transaction Managers. The latter is responsible for assigning
clients to transaction coordinators, which are responsible for executing transactions
much like our implementation. Thus, in every shard the journal here is not a single
sequential data structure, but is logically the union of a number of sequential journal
streams, one per shard per DC. The originating shard is the single writer of a journal
stream; all other replicas are readers. Furthermore, a stream originating in some
shard in some DC is replicated to the same shard in all other DCs.1

Zooming into a given shard at a given DC, the former contains a local journal that
contains the effects to this shard originating from the latter, and a set of remote
journal streams, each one replicating the effects to this same shard at some other
DC.

Another source of complexity is the Transactional Causal Consistency (TCC) model.
Each DC is logically sequential, based on a variant of Snapshot Isolation. However,
two DCs may update the database concurrently, and effects are related by the
happened-before partial order (sometimes called causal order).

To keep track of happened-before, Antidote uses vector timestamps with one entry
per DC. Every event in the database is tagged by the corresponding vector timestamp.
A consistent vector timestamp (CVT) marks a transactionally- and causally-consistent
cut. This means that, if a CVT contains some effect δ, then it also contains all effects
in the same transaction as δ, as well as those that happened-before δ. The snapshot
time and commit are different, they are represented by CVTs.

Recall that a given DC-shard has a local journal stream and one journal stream per
remote DC. Similarly, a CVT has a timestamp entry per DC. We can now map each

1We ignore here the fact that a shard is itself replicated in its DC for fault tolerance, because this
does not change the fact that each journal stream is sequential.

92 Chapter 8 Current and future work

entry in a CVT (for some DC) to the prefix of the journal stream (of the same DC)
that happened-before it. This cut forms a transactionally- and causally-consistent
snapshot.

8.4 Consistent cuts of interest

The causal ordering of events implies that their vector timestamps are ordered in
the same way: If Event 1 is causally-before Event 2, their vector timestamps vt1
and vt2 are such that vc1 < vc2. Note that the converse is not true in Antidote.
The timestamps of two concurrent events may be either incomparable or arbitrarily
ordered.

The order between vector timestamps vt1 and vt2 is defined as follows:

• vt1 = vt2 if every entry of vt1 is equal to the corresponding entry of vt2. They
represent the same event.

• vt1 ≤ vt2 if every entry of vt1 is less or equal to the corresponding entry of vt2.

• vt1 < vt2 if vt1 ≤ vt2 and vt1 6= vt2. Event 1 being causally before Event 2
implies vt1 < vt2, but the converse is not guaranteed.

• vt1 is incomparable to vt2 if vt1 ¬ ≤ vt2 ∧ vt1 ¬ ≤ vt2. There is some entry in
vt1 that is lower than the corresponding entry in vt2, and vice-versa. Events 1
and 2 are necessarily concurrent, but the converse is not true; that is, if two
events are concurrent, this does not guarantee that their vector timestamps
are incomparable.

A vector timestamp represents a cut or time of the data store. We are interested only
in consistent cut as they have properties that are useful for maintaining information
about the database.

8.4.1 Checkpoint Time (CT)

Every time a checkpoint is created, we persist a checkpoint record in the journal.

The variable Checkpoint Time designates the oldest available checkpoint, i.e., lowest
CVT that includes, for every object, a checkpoint whose state includes all the update
records committed at any time ≤ CheckpointTime. State prior to CT cannot be safely
recovered.

8.4 Consistent cuts of interest 93

Checkpoint Time = −∞, implies that the journal cannot be trimmed. Note that,
while recovering from CT is safe, typically recovery will proceed from the most recent
available checkpoint for performance reasons. To save space, a system typically
stores only a few numbers of checkpoints, preferably only one. If the checkpoint
store does not support versioning (i.e., each object has a single version), then there
is a single checkpoint, identified by Checkpoint Time. For the rest of this section, we
assume that the checkpoint store has a single version.

8.4.2 DC-Wide Causal Safe Point (DCSf)

Each shard in a DC is replicated to all other DCs. All effects that originate in some
DC are sent asynchronously to the corresponding shard in other DCs. Although the
shard-to-shard connection is FIFO, the storage state of different shards in the same
DC is not causally consistent. Without extra care, a transaction that reads from
multiple shards might be unsafe. To avoid this, a transaction should wait if a shard
is missing effects with respect to another.

The Cure protocol [Akk+16] is what ensures the TCC properties. Cure has two main
objectives:

1. Ensure that transactions in a DC commit atomically, and in a total order across
all shards of that DC. It uses the Clock-SI design for this purpose [DEZ13].

2. Ensure that effects are observed in a causally-consistent order within a DC. To
this effect, each shard continuously computes a safe lower bound for that DC,
called its DC-Wide Causal Safe Point (DCSf).2 The DCSf is a CVT across all
shards of the DC that is causally safe, i.e., the corresponding updates, and their
causal predecessors, have been received and persisted by all shards of this DC.
States that are above the DCSf are not visible. A transaction whose snapshot
time is not earlier than the DCSf must be blocked until the DCSf advances
beyond it.

8.4.3 Global Causal Stable Point (GCSt)

In our new design, we will also leverage the concept of a Global Causal Stable
point (GCSt). A GCSt is a state where all concurrent operations have been received
and resolved. Formally, any updates that are delivered after the GCSt is computed

2Called the Global Stable Snapshot (GSS) in the Cure paper [Akk+16].

94 Chapter 8 Current and future work

will have a higher timestamp than the GCSt [BAS17, Definition 5.1]. To simplify
the logic, we assume that successive computations of a GCSt at some shard are
monotonically non-decreasing (this is always possible). To compute the GCSt each
shard shares its DCSf periodically with their counterparts in other DCs. The vague
GCSt is computed as the lower bound of all known DCSf.

State that is earlier than the GCSt, can be stored using its sequential representation,
avoiding any concurrency-related metadata such as vector clocks or tombstones.
The transitions between successive GCSt’s can be explained as sequential updates.
This makes the representation simpler and more compact and enables the use of any
sequential database as a checkpoint store. We leverage this fact by choosing check-
point states to be earlier than GCSt whenever possible, this makes the sequentially
consistent.

One issue with GCSt is that it makes progress only when every single DC is available.
It stops advancing as soon as any single DC does not regularly communicate its
metadata.

8.4.4 Min_dependency and Max_committed

In order to satisfy the properties of checkpoints, of the DCSf and the GCSt we keep
track of all the dependencies of running transactions but also all the commit times
of finished transactions.

Among those we single out those who are the most important.

min_dependency represents the oldest snapshot any running transaction is read-
ing from. Because a checkpoints is sequentially consistent, there should be no
in-flight transactions at Checkpoint-Time. To ensure that this property holds true
min_dependency is used to track the point beyond which sequentiality is not guar-
anteed. When a transaction is finished, committed or aborted, the min_dependency
advances to the next Dependency. One issue is that while a transaction is run-
ning, min_dependency will not advance, and consequently checkpointing will be
paused.

max_committed is the last commit time recorded in the Journal. DCSf’s advancement
is bounded by max_committed, making sure that a new transaction does not read
unsafe updates. Every time a transaction commits, its commit time become the
new max_committed. Similarly to min_dependency, if no transaction commits,
max_committed does not advances, nor does DCSf.

8.4 Consistent cuts of interest 95

8.4.5 Low-Watermark and High-Watermark

To represent the persistent portion of the log we use Low-Watermark and High-
Watermark. With Low-Watermark representing the lower bound and High-Watermark
the higher bound. Records that precede Low-Watermark may be deleted and records
that postdates High-Watermark might be volatile.

8.4.6 Invariants

Our goal is to have no perceivable loss of information, meaning that records that
have not been checkpointed must not be deleted. Hence, our first invariant is
Low −Watermark ≤ CheckpointTime. Checkpoints should be sequentially consis-
tent and stable across all DCs. Hence, the invariants CheckpointTime ≤ GCSt
and CheckpointTime ≤ min_dependency. By construction the GCSt is computed
as the lower bound of all known DCSfs across so this gives us the following
invariant GCSt ≤ DCSf . DCSf represents the point of safety in a DC using
shared information between shards about their registered commit times therefore
DCSf ≤ max_committed. These relations control the behaviour of each shard (figure
8.1).

Intuitively, using these relations we deduce the portion of the journal that is safe
to be pruned, represented in orange in figure 8.1. It represents a CVT that is the
lower bound of the GCSt and min_dependency. Meaning it only contains effects
that are stable across all DCs and that have no concurrent transactions running.
The next step of this work was proving that AntidoteDB with our new design was
behaviourally equivalent to the original design. After trying to specify AntidoteDB
we decided to start with a non distributed database which lead to the work presented
in this thesis.

96 Chapter 8 Current and future work

Fig. 8.1.: Relevant system states and their relations (for a given shard, at a given DC).
Each horizontal tape (one per DC) depicts a journal stream for this shard. Each
vertical line depicts a cut of interest and its vector timestamp. Over time, each
journal stream grows to the right (and is trimmed to the left), and each state
of interest advances monotonically to the right. As this happens, the causal
precedence invariants, denoted ≤, must be maintained. To enforce ≤ requires
synchronization between the corresponding processes.

8.4 Consistent cuts of interest 97

Part V

Conclusion

Related Work 9
There is a large body of recent literature on specifying, verifying, and/or correctly
implementing concurrent data structures and algorithms, including distributed
systems and storage and file systems. As far as we are aware, none of the related
work addresses the complexity of a modern storage backend.

In contrast to previous work, our focus is not to prove a particular algorithm, but
to implement a correct system building on first principles. We show that a rigorous
approach is not incompatible with performance.

Our approach of composing simple modules into a more complex structure is the
standard approach in software engineering. In our case, each basic variant is
sufficiently simple to be convinced of its correctness almost by inspection. We
formalize the correctness rules for composition, which we leverage to conclude to
correctness of the composed system. We believe this is novel in the case of a modern
storage system design.

9.0.1 Formal specification of transactions and isolation models

Cerone et al. [CBG15] provide a detailed formalization framework for reasoning
about the properties, invariants, and constraints of a concurrent transactional system.
The focus of their work is to specify the different consistency/isolation models
(e.g., serialisability, snapshot isolation, etc.) in a declarative fashion, and to prove
their formalization equivalent to a more traditional operational specification. Our
transaction semantics leverages their framework while simplifying it. Our current
work focuses on causal consistency, but we believe we can extend it to stronger
levels, by borrowing from their results. Their framework is monolithic, does not
provide insight on the storage subsystem, and does not consider composition.

Sharing some similarities with the above, Crooks et al. [Cro+17] provide a state-
based formalization of storage systems. They describe the storage system as a black
box, aiming to characterize correct answers, whereas our approach is to derive an
implementation.

101

9.0.2 Using lightweight formal methods to validate storage systems

Hance et al. [Han+23] applies lightweight formal methods to validate a new key-
value storage node. Their approach uses formal specifications, which they translate
into reference executables. Correcteness properties are extracted from the reference
model and used to develop automated tools to test ongoing developement. In
contrast, we start from a full formal specification of both transactions and the store.
We implement them manually, paying special attention to efficient synchronization
and crash atomicity. The use of property-based testing is an interesting avenue for
future work.

9.0.3 Verified implementations

Chajed et al. [Cha+22] verify the crash safety of a file system implemented in Go
against a formal specification. The implementation adds two-phase locking on top
of the previously-verified implementation of a crash-safe journal. Having proved the
correctness of two-phase locking, the file system behaves equivalently to a sequential
system, enabling the use of a sequential proof system.

In contrast, we derive the Java implementation manually from the specification and
reason only informally about the crash safety of our journal, our focus being on the
higher levels. We leverage the explicit versioning of our store interface to show (in
a future publication) that all stores are behaviourally equivalent; this obviates the
need to specifically prove equivalence to a sequential execution.

Similarly, Chen et al. [Che+15] produce a machine-checked proof that the imple-
mentation of a simple file system recovers correctly from crashes. The paper extends
Hoare logic with specific rules to describe crashing and recovery. As explained above,
we do not formalize crash resistance, and use standard Hoare-style logic.

Malecha et al. [Mal+10] prove the correctness of a relational database management
system, including B-Tree storage and query optimization.

In a related vein, Hawblitzel et al. [Haw+15] prove correct a sharded, distributed
key-value store that synchronizes with Paxos. Our specification allows more be-
haviours as it does not assume consensus, but does enforce transactional semantics.
Fleshing out distributed sharding is future work.

An alternative approach is to use a formal specification to generate tests. For instance,
Ridge et al. [Rid+15] derive a test oracle for file systems from a formal specification.
This is an interesting direction for future work.

102 Chapter 9 Related Work

9.0.4 Compiling specifications to executable code

A recent approach is to compile an implementation directly from the formal speci-
fication Hackett et al. [Hac+23] and Costa [Cos19]. While attractive, we did not
attempt this avenue, which we believe is still out of reach pragmatically. We believe
our approach will be educational and appealing to software engineers.

103

Conclusion 10
Throughout this thesis, we have delved into the formal specification of a database
backend. From the system model to the formal model of transactions, our goal was
to provide a rigorous ground for implementing a correct database backend. We then
presented our implementation of multiple variants of a store based on different data
structures.

Building on our model, we implemented multiple variants. Using the variants we
presented the Conductor, an approach to compose multiple stores, such as map-based
and journal-based store into a single system. We presented the semantic for the
composition and presented an implementation of the Conductor. We tested through
testing the behavioural equivalence between our stores and show the performance of
the implementation are decent by leave room for improvement and future work.

Finally, we talk about the current and future work that can improve on the building
blocks presented in this thesis. We hope the work presented in this thesis will lead
to a better understanding of the complexity of a database backend and help in the
design of future database backend and make them safer and more reliable.

105

Bibliography

[Aha+95] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.
Hutto. “Causal Memory: Definitions, Implementation, and Programming”. In:
Distrib. Comput. 9.1 (1995), 37–49 (cit. on pp. 16, 17).

[Akk+16] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, et al. “Cure:
Strong semantics meets high availability and low latency”. In: Int. Conf. on
Distributed Comp. Sys. (ICDCS). Nara, Japan, June 2016, pp. 405–414 (cit. on
pp. 68, 94).

[ASB15] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. “Efficient State-Based
CRDTs by Delta-Mutation”. In: Int. Conf. on Networked Systems (NETYS). Vol. 9466.
Lecture Notes in Comp. Sc. (LNCS). Agadir, Morocco: Springer-Verlag, May 2015,
pp. 62–76 (cit. on p. 20).

[BAS17] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Pure Operation-Based
Replicated Data Types. ArXiv e-print 1710.04469. arXiv Computing Research
Repository (CoRR), Oct. 2017 (cit. on p. 95).

[BM99] Carlos Baquero and Francisco Moura. “Using structural characteristics for au-
tonomous operation”. In: Operating Systems Review 33.4 (1999), pp. 90–96
(cit. on p. 20).

[BM70] R. Bayer and E. McCreight. “Organization and Maintenance of Large Ordered
Indices”. In: Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control. SIGFIDET ’70. Houston, Texas: Association
for Computing Machinery, 1970, 107–141 (cit. on p. 9).

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative
Searching”. In: Commun. ACM 18.9 (1975), 509–517 (cit. on p. 11).

[Ber+95] Hal Berenson, Phil Bernstein, Jim Gray, et al. “A Critique of ANSI SQL Isolation
Levels”. In: SIGMOD Rec. 24.2 (May 1995), pp. 1–10 (cit. on p. 15).

[Ber] Bernhardsson. GitHub - spotify/annoy: Approximate Nearest Neighbors in C++/Python
optimized for memory usage and loading/saving to disk — github.com. https:
//github.com/spotify/annoy. [Accessed 29-Apr-2023] (cit. on p. 11).

[BG84] Philip A. Bernstein and Nathan Goodman. “An Algorithm for Concurrency
Control and Recovery in Replicated Distributed Databases”. In: ACM Trans. on
Database Systems (TODS) 9.4 (Dec. 1984), pp. 596–615 (cit. on p. 13).

[BG81] Philip A. Bernstein and Nathan Goodman. “Concurrency Control in Distributed
Database Systems”. In: ACM Comput. Surv. 13.2 (1981), 185–221 (cit. on p. 7).

107

https://github.com/spotify/annoy
https://github.com/spotify/annoy

[Bey+99] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. “When
Is ”Nearest Neighbor” Meaningful?” In: Proceedings of the 7th International
Conference on Database Theory. ICDT ’99. Berlin, Heidelberg: Springer-Verlag,
1999, 217–235 (cit. on p. 10).

[Blo70] Burton H. Bloom. “Space/Time Trade-Offs in Hash Coding with Allowable
Errors”. In: Commun. ACM 13.7 (1970), 422–426 (cit. on p. 23).

[Bre12] Eric Brewer. “CAP Twelve Years Later: How the “Rules” Have Changed”. In: IEEE
Computer 45.2 (Feb. 2012), pp. 23–29 (cit. on p. 25).

[Bur+14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
“Replicated Data Types: Specification, Verification, Optimality”. In: Symp. on
Principles of Prog. Lang. (POPL). San Diego, CA, USA, Jan. 2014, pp. 271–284
(cit. on p. 34).

[CBG15] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. “A Framework for
Transactional Consistency Models with Atomic Visibility”. In: Int. Conf. on Con-
currency Theory (CONCUR). Ed. by Luca Aceto and David de Frutos Escrig.
Vol. 42. Leibniz Int. Proc. in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 58–71 (cit. on pp. 14, 101).

[Cha+22] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans Kaashoek, and Nickolai
Zeldovich. “Verifying the DaisyNFS concurrent and crash-safe file system with
sequential reasoning”. In: Symp. on Op. Sys. Design and Implementation (OSDI).
Ed. by Marcos K. Aguilera and Hakim Weatherspoon. Carlsbad, CA, USA: Usenix,
July 2022, pp. 447–463 (cit. on p. 102).

[Che+15] Haogang Chen, Daniel Ziegler, Tej Chajed, et al. “Using Crash Hoare Logic for
Certifying the FSCQ File System”. In: Symp. on Op. Sys. Principles (SOSP). SOSP
’15. Monterey, CA, USA: Assoc. for Computing Machinery, Oct. 2015, pp. 18–37
(cit. on p. 102).

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In:
Commun. ACM 13.6 (1970), 377–387 (cit. on p. 7).

[Cos19] Renato Mascarenhas Costa. “Compiling distributed system specifications into
implementations”. MA thesis. Vancouver, BC, Canada: U. of British Columbia,
May 2019 (cit. on p. 103).

[Cro+17] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. “Seeing is Believ-
ing: A Client-Centric Specification of Database Isolation”. In: Symp. on Principles
of Dist. Comp. (PODC). PODC ’17. Washington, DC, USA: Assoc. for Computing
Machinery, 2017, pp. 73–82 (cit. on p. 101).

[Dat03] Chris J. Date. An Introduction to Database Systems. 8th ed. Boston, MA: Addison-
Wesley, 2003 (cit. on p. 7).

[DEZ13] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. “Clock-SI: Snapshot Isola-
tion for Partitioned Data Stores Using Loosely Synchronized Clocks”. In: Symp.
on Reliable Dist. Sys. (SRDS). Braga, Portugal: IEEE Comp. Society, Oct. 2013,
pp. 173–184 (cit. on p. 94).

108 Bibliography

[Fid88] C. J. Fidge. “Timestamps in message-passing systems that preserve the partial
ordering”. In: 11th Australian Computer Science Conference. U. of Queensland,
Australia, 1988, pp. 55–66 (cit. on p. 33).

[GL02] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services”. In: SIGACT News 33.2 (2002),
pp. 51–59 (cit. on p. 25).

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. “Similarity Search in High
Dimensions via Hashing”. In: Proceedings of the 25th International Conference on
Very Large Data Bases. VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, 518–529 (cit. on p. 11).

[Fai] GitHub - facebookresearch/faiss: A library for efficient similarity search and cluster-
ing of dense vectors. — github.com. https://github.com/facebookresearch/
faiss. [Accessed 29-Apr-2023] (cit. on p. 11).

[Roc] GitHub - facebook/rocksdb: A library that provides an embeddable, persistent
key-value store for fast storage. — github.com. https://github.com/facebook/
rocksdb/. [Accessed 29-Apr-2023] (cit. on p. 9).

[Lev] GitHub - google/leveldb: LevelDB is a fast key-value storage library written at
Google that provides an ordered mapping from string keys to string values. —
github.com. https://github.com/google/leveldb. [Accessed 29-Apr-2023]
(cit. on p. 9).

[Nms] GitHub - nmslib/nmslib: Non-Metric Space Library (NMSLIB): An efficient sim-
ilarity search library and a toolkit for evaluation of k-NN methods for generic
non-metric spaces. — github.com. https://github.com/nmslib/nmslib. [Ac-
cessed 29-Apr-2023] (cit. on p. 11).

[GR92a] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992 (cit. on
p. 7).

[GR92b] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992 (cit. on
p. 13).

[Hac+23] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. “Compiling Distributed System Models with PGo”. In: Int. Conf. on Archi.
Support for Prog. Lang. and Systems (ASPLOS). ASPLOS 2023. Vancouver, BC,
Canada: Assoc. for Computing Machinery, 2023, pp. 159–175 (cit. on p. 103).

[HR83] Theo Haerder and Andreas Reuter. “Principles of Transaction-Oriented Database
Recovery”. In: ACM Comput. Surv. 15.4 (1983), 287–317 (cit. on p. 12).

[Han+23] Travis Hance, Yi Zhou, Andrea Lattuada, et al. “Sharding the State Machine:
Automated Modular Reasoning for Complex Concurrent Systems”. In: Symp. on
Op. Sys. Design and Implementation (OSDI). Usenix. Boston, MA, USA, July 2023,
TBD (cit. on p. 102).

Bibliography 109

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/
https://github.com/google/leveldb
https://github.com/nmslib/nmslib

[HS20] Saalik Hatia and Marc Shapiro. Specification of a Transactionally and Causally-
Consistent (TCC) database. Research Report RR-9355. DELYS ; LIP6, Sorbonne
Université, Inria, Paris, France, July 2020 (cit. on p. 3).

[Haw+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, et al. “IronFleet: Proving Practi-
cal Distributed Systems Correct”. In: Symp. on Op. Sys. Principles (SOSP). SOSP
’15. Monterey, CA, USA: Assoc. for Computing Machinery, Oct. 2015, pp. 1–17
(cit. on p. 102).

[HSH07] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. “Architecture
of a Database System”. In: Found. Trends Databases 1.2 (2007), 141–259 (cit. on
pp. 12, 13).

[HW90] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: A Correctness
Condition for Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3
(1990), 463–492 (cit. on p. 15).

[Lam79] L. Lamport. “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs”. In: IEEE Trans. Comput. 28.9 (1979), 690–691 (cit. on
p. 14).

[Lam78] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Communications of the ACM 21.7 (July 1978), pp. 558–565 (cit. on
p. 17).

[Mal+10] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. “To-
ward a Verified Relational Database Management System”. In: Symp. on Prin-
ciples of Prog. Lang. (POPL). POPL ’10. Madrid, Spain: Assoc. for Computing
Machinery, 2010, pp. 237–248 (cit. on p. 102).

[MY18] Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs. 2018. arXiv:
1603.09320 [cs.DS] (cit. on p. 11).

[Mat88] Friedmann Mattern. “Virtual Time and Global States of Distributed Systems”. In:
Int. W. on Parallel and Distributed Algorithms. Bonas, France: Elsevier Science
Publishers B.V. (North-Holland), Oct. 1988, pp. 215–226 (cit. on p. 33).

[Moh+92] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
“ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking
and Partial Rollbacks Using Write-Ahead Logging”. In: ACM Trans. Database Syst.
17.1 (1992), 94–162 (cit. on p. 21).

[Omo89] Stephen M. Omohundro. Five Balltree Construction Algorithms. Tech. rep. TR-89-
063. International Computer Science Institute, 1989 (cit. on p. 11).

[O’N+96] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. “The
log-structured merge-tree (LSM-tree)”. In: Acta Informatica 33.4 (June 1996),
pp. 351–385 (cit. on pp. 9, 23, 68).

[Pap79] Christos H. Papadimitriou. “The Serializability of Concurrent Database Updates”.
In: J. ACM 26.4 (1979), 631–653 (cit. on p. 13).

110 Bibliography

https://arxiv.org/abs/1603.09320

[Ree78] D. P. Reed. NAMING AND SYNCHRONIZATION IN A DECENTRALIZED COMPUTER
SYSTEM. Tech. rep. USA, 1978 (cit. on p. 21).

[Ree83] David P. Reed. “Implementing Atomic Actions on Decentralized Data”. In: ACM
Trans. Comput. Syst. 1.1 (1983), 3–23 (cit. on p. 12).

[Rid+15] Tom Ridge, David Sheets, Thomas Tuerk, et al. “SibylFS: Formal Specification
and Oracle-Based Testing for POSIX and Real-World File Systems”. In: Symp. on
Op. Sys. Principles (SOSP). Monterey, CA, USA: Assoc. for Computing Machinery,
Oct. 2015, pp. 38–53 (cit. on p. 102).

[RO92] Mendel Rosenblum and John K. Ousterhout. “The Design and Implementation
of a Log-Structured File System”. In: ACM Trans. on Computer Systems (TOCS)
10.1 (Feb. 1992), pp. 26–52 (cit. on p. 9).

[Sha+11] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. “Conflict-
free Replicated Data Types”. In: Int. Symp. on Stabilization, Safety, and Security
of Dist. Sys. (SSS). Ed. by Xavier Défago, Franck Petit, and V. Villain. Vol. 6976.
Lecture Notes in Comp. Sc. (LNCS). Grenoble, France: Springer-Verlag, Oct.
2011, pp. 386–400 (cit. on pp. 19, 34).

[Sto02] Michael Stonebraker, ed. Readings in Database Systems, Second Edition. Morgan
Kaufmann, Jan. 3, 2002 (cit. on p. 7).

[VV16] Paolo Viotti and Marko Vukolić. Consistency in Non-Transactional Distributed
Storage Systems. 2016. arXiv: 1512.00168 [cs.DC] (cit. on pp. 14, 18).

[Yia93] Peter N. Yianilos. “Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces”. In: Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’93. Austin, Texas, USA: Society for
Industrial and Applied Mathematics, 1993, 311–321 (cit. on p. 11).

Bibliography 111

https://arxiv.org/abs/1512.00168

List of Figures

3.1 Operational Semantics of Transactions 37
3.2 Store interface . 37
3.3 Effect composition . 38

4.1 Operations of map store . 56
4.2 Operations of Journal store . 57

5.1 Store variants and store composition 66
5.2 Store σ with domain Dσ . 67
5.3 Operations of composed store . 67
5.4 Operational semantics of store composition 67

7.1 Average throughput of the different stores 84

8.1 Consistent cuts of interest and their relations 97

113

List of Tables

7.1 Code coverage . 86

115

List of Listings

4.1 Merge implementation for PN Counters. 48
4.2 endCommitNotify . 52
4.3 beginTransaction . 53
4.4 read . 54
4.5 init_key . 55
4.6 update . 55
4.7 commit . 56
4.8 abort . 56
4.9 Map store lookup algorithm . 59
4.10 Map store commit algorithm . 59
4.11 doCommit . 62

6.1 addStore operation . 73
6.2 removeStore operation . 74
6.3 lookup operation . 74
6.4 checkpointBegin . 76
6.5 checkpointEnd . 77
6.6 truncate . 77

7.1 MultiCoordinator, Init_Key . 84

117

Notations A
k, t, v ∈ Key,∈ TS,∈ Value Primitive Key, Timestamp, Value

δ ∈ Eff = Value⊥ → Value⊥ Effect

:= v or v ∈ Ass ⊂ Eff Assignment

Op ∈ = {:= v, := v◦ := v, . . . } Operation, non-assignement

⊥ /∈ Eff Absence of effect

δt
k ∈ TEff = Eff ×Key × TS Effect to key k with commit timestamp t

δ1
vis→ δ2 δ1 visible to δ2

σ ∈ Σ = Key × TS→ Eff⊥ Store

F = (low_history,D) ∈ TS× 2Key×TS Field of store

{ σ1, σ2, . . . } Composition of stores

Θ ∈ (TEff, vis→) Trace

τ ∈ TID Transaction identifier

dt ∈ TS Dependency timestamp (of transaction)

R ∈ P(Key) Read set = set of keys read in transaction

W ∈ P(Key) Dirty set = set of keys modified in transaction

B ∈ Sbuf = Key → Eff⊥ State buffer (of transaction)

ct ∈ TS Commit timestamp (of transaction)

(τ , dt, R,W, B, ct) ∈ TDESC = TID × TS

×P(Key)× P(Key)× Sbuf × TS Transaction descriptor

Ta ⊆ TDESC Aborted transactions

Tc ⊆ TDESC Committed transactions

Tr ⊆ TDESC Running transactions

ΠxT Project set of tuples T along dimension x

LH Low history

LL Low lookup

HL High lookup

σ, Tr, . . . Before transition

σ′, Tr
′, . . . After transition

119

121

	Cover
	Remerciements
	Abstract
	Résumé
	Contents
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Publications

	I Background
	2 Database design
	2.1 Database Backends
	2.1.1 Relational Databases (RDBMS)
	2.1.2 NoSQL Databases

	2.2 Transactions
	2.2.1 ACID Properties
	2.2.2 Concurrency Control

	2.3 Consistency Models
	2.3.1 Sequential Consistency
	2.3.2 Linearizability
	2.3.3 Snapshot isolation
	2.3.4 Serializability
	2.3.5 Causal Consistency
	2.3.6 Eventual Consistency
	2.3.7 Strong Eventual Consistency
	2.3.8 Transactional Causal+ Consistency

	2.4 Data structures
	2.4.1 Conflict Free Replicated Data Types
	2.4.2 All-or-Nothing: Shadow paging vs write-ahead logging
	2.4.3 Update-in-place vs MVCC
	2.4.4 Timestamps and Clocks
	2.4.5 Log-Structured Merge-tree
	2.4.6 Distributed Transactions
	2.4.7 Sharding
	2.4.8 Two-Phase Commit
	2.4.9 Challenges in Ensuring Consistency in Distributed Systems
	2.4.10 Conclusion

	II Contributions
	3 Formal Specification of a Database Backend
	3.1 System Model
	3.1.1 Fault model
	3.1.2 Keys, values, and timestamps
	3.1.3 Timestamps and clocks
	3.1.4 Effects
	3.1.5 Traces
	3.1.6 History
	3.1.7 Snapshots
	3.1.8 Transactions
	3.1.9 Visibility
	3.1.10 Values associated with a store

	3.2 Formal Model of Transactions
	3.2.1 Composing effects
	3.2.2 Semantics of transactions
	3.2.3 Informal presentation
	3.2.4 Parameters
	3.2.5 Transaction begin
	3.2.6 Reads and writes
	3.2.7 Transaction termination

	3.3 Conclusion

	4 From Specification to Implementation
	4.1 Implementation Approach
	4.1.1 Implementing common components
	4.1.2 Implementation challenges and considerations
	4.1.3 Enforcing the causality premise
	4.1.4 Enforcing the visibility premise
	4.1.5 Implementing the Transaction Coordinator

	4.2 Basic Variants
	4.2.1 Map store semantics
	4.2.2 Map store implementation
	4.2.3 Journal store semantics
	4.2.4 Journal store implementation
	4.2.5 Discussion about design choices and performance

	5 Composing Stores
	5.1 Composing Stores
	5.1.1 Field and domain of a store
	5.1.2 Composition of stores
	5.1.3 Modifying a composition
	5.1.4 Total store
	5.1.5 Garbage collection

	6 Conductor
	6.1 Implementing a Write-ahead Log by Composition
	6.1.1 Write-ahead log (WAL)

	III Experimental Evaluation
	7 Experimental evaluation
	7.0.1 Performance comparison
	7.0.2 Correctness
	7.0.3 Code coverage
	7.0.4 Lessons learned
	7.0.5 Note

	IV Current and future work
	8 Current and future work
	8.1 Advancing the Conductor
	8.1.1 Incorporating Cache for Improved Performance
	8.1.2 Authorize blind
	8.1.3 Implementing an LSM-Tree through Composition
	8.1.4 Exploring Sharding Mechanisms through Composition
	8.1.5 Dynamic Addition and Removal of Ministores during Execution
	8.1.6 Creating Adapters for Existing Databases

	8.2 Formal Verification
	8.3 Checkpointing distributed database
	8.3.1 AntidoteDB

	8.4 Consistent cuts of interest
	8.4.1 Checkpoint Time (CT)
	8.4.2 DC-Wide Causal Safe Point (DCSf)
	8.4.3 Global Causal Stable Point (GCSt)
	8.4.4 Min_dependency and Max_committed
	8.4.5 Low-Watermark and High-Watermark
	8.4.6 Invariants

	V Conclusion
	9 Related Work
	9.0.1 Formal specification of transactions and isolation models
	9.0.2 Using lightweight formal methods to validate storage systems
	9.0.3 Verified implementations
	9.0.4 Compiling specifications to executable code

	10 Conclusion
	Bibliography
	A Notations

