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Résumé 

Le monde du Calcul Haute Performance ne cesse d’évoluer, en proposant des modèles de 
programmation parallèles vastes et variés. Pour s’adapter aux exigences de l’exascale en terme 
de puissance de calcul et de traitement rapide. Le modèle de programma- tion parallèle le 
plus utilisé est le Message Passing Interface (MPI). Le standard MPI a été utilisé dans le HPC 
pendant des décennies. Le protocole de communication point à point send/receive, appelé 
two-sided MPI, est largement utilisé et privilégié dans les applications. Une alternative à ce 
modèle de communication point à point est les com- munications one-sided, principalement 
implémenté dans les langages et bibliothèques PGAS (Partitioned Global Address Space). Le 
standard MPI-3, qui a été présenté en Septembre 2012, a inclus une mise à jour importante des 
communications one-sided dans MPI, aussi appelées les RMA (Remote Memory Access) et 
adoptées par le standard de- puis MPI-2, pour fournir plus de performance et introduire de 
nouveaux modes d’accès aux données. Cependant, les performances des communications 
one-sided restent loin d’être celles attendues. 

Développer un programme parallèle est souvent plus difficile mais plus performant dans 
de la mémoire partagée plutôt que d’utiliser des transferts send/receiv pour échan- ger des 
données, les processus peuvent implicitement communiquer dans la mémoire partagée avec 
une utilisation de certains mécanismes de synchronisation (verrous, séma- phores..) pour 
garantir un accés sans concurrence à la partie mémoire souhaitée. 

 
Dans ces travaux de recherche nous allons principalement nous intéresser au modèles de 

programmation à mémoire distribuée et globalement adressable MPI-RMA dont le principe 
est de designer un espace mémoire virtuel global et partagé dans les systèmes à mémoire 
distribuée, ce qui permet aux processus de communiquer à travers cette mémoire. Bien que 
le modèle PGAS existe depuis très longtemps, et promet plus d’asyn- chronisme. Ce modèle 
reste peu utilisé par la communauté du HPC à cause de plusieurs raisons notamment les 
modes de synchronisation requis pour sécuriser le programme. Comme le modèle PGAS 
propose un concept de programmation en mémoire partagée dans de la mémoire distribuée. 
Les problèmes de concurrence d’accès s y appliquent. Pour cette raison la programmation 
PGAS peut se révéler très difficile, car l’utilisateur a la responsabilité de gérer explicitement 
tous les accès mémoire pour garantir la co- hérence du programme. Il est donc intéressant 
pour les programmeurs d’applications, d’avoir des outils qui leur permettent de faciliter la 
programmation. De développer des codes correctes et efficaces. 

Dans le cadre de ces travaux de recherche l’objectif principal est de développer une 
analyse dynamique à l’exécution, et une analyse statique à la compilation, pour vérifier les 
codes des applications PGAS. Cette analyse mixte permet d’exploiter les avantages des deux 
approches. une approche dynamique qui repose sur des exécutions concrètes qui dépendent 
d’un seul jeu d’entrée, et donc se limiter à détecter que les erreurs présentes 
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dans l’exécution analysée. Une approche statique qui ne dépend pas du jeu d’entrée et offre 
une vue globale du code, et considère tous les chemins d’exécution possibles. 

 
Durant cette thèse nous avons developpé un outil qui regroupe les deux analyses 

statique et dynamique appelé RMA-Analyzer. Il a été propsé dans but d’aider à la 
programmation de codes MPI-RMA, notamment en proposant une aide avancée à l’uti- 
lisateur dans la détection d’erreurs de concurrence connus comme accès illégaux liés aux 
applications MPI-RMA. Dans le but de faciliter la programmation aux utilisateurs, avec une aide 
dynamique sur la réalité et l’origine des éventuels blocages en MPI-RMA. 

Mots clès : Programmation parallèle, MPI-RMA, Analyse statique et dynmaique. 
 

Contexte de la recherche 

La simulation numérique demande des codes qui ont un fort besoin en puissance de calcul 
et de traitement rapide, pour résoudre des problèmes à très grande taille. Cela a conduit à la 
conception de machines très puissantes et massivement parallèles et qui visent le milliard de 
milliards d’opérations par seconde (exaflops). Pour utiliser ces ma- chines efficacement, nous 
avons besoin de modèles de programmation parallèles simples et de supports d’exécution 
efficaces. Dans ce contexte, nous allons nous intéresser au modèle de programmation 
parallèle basé sur des communications unilatérales appelé MPI-RMA. 

Développer un programme parallèle en utilisant MPI-RMA est souvent plus difficile, mais 
plus performant grace aux accès directs à la mémoire partagée entre les processus, plutôt que 
d’utiliser des transferts send/receive pour échanger des données, les processus peuvent 
implicitement communiquer directement en utilisant les communications unila- térales. Dans 
le cadre de l’utilisation de ces communications, et comme la mémoire et globalement 
accessible par tous les processus d’un communicateur, des erreurs d’accès à la mémoire 
partagée peuvent avoir lieu. La détection de ces erreurs peut se révéler difficile et cela peut 
avoir des impacts négatifs et réduit l’utilisation de ce modèle de programmation. 

Très peu d’outils ont été developpés dans le cadre de la détection d’accès concurrents dans 
des programmes MPI-RMA. Les outils qui existent privilégient des solutions à base de fichiers de 
traces qui proposent des retours à l’utilisateur à la fin du programme. Les developpeurs sont 
donc contraints d’attendre la fin de leurs programmes pour retrouver l’erreur avec très peu 
d’aide. En plus, la taille des fichiers de traces peut vite devenir très grande. Ces solutions ne 
sont pas adaptées à des applications à très grande échelles. 

Durant cette thèse, nous nous sommes intéressés à la détection des erreurs d’accès 
concurrents à la mémoire partagée entre processus dans les applications MPI-RMA. Nous avons 
développé un outil de vérification appelé le RMA-Analyzer qui effectue une analyse 
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statique et une analyse dynamique afin de détecter les erreurs d’accès concurrents dans des 
applications MPI-RMA. Le RMA-Analayzer vérifie à la compilation la présence de potentielles 
erreurs locales de concurrence pour alerter l’utilisateur avant le lancement du programme. 
Ensuite, le RMA-Analyzer vérifie tous les accès concurrents à l’exécution pour arrêter le 
programme à la première erreur trouvée. 

 

Démarche adoptée 

Dans le cadre de cette thèse, notre but principal est d’apporter une aide efficace au 
programmeur pour lui faciliter la programmation en MPI-RMA. Programmer en MPI-RMA 
requiert une connaissance particulière de comment programmer en mémoire distribué et 
globalement adressable pour avoir une partie de la mémoire qui sera par- tagée entre 
processus. Un programmeur doit d’abord ouvrir une fenêtre mémoire pour que les processus 
s’échangent les accès, et à la fin du programme, cette fenêtre mémoire est libérée. Durant la 
vie de cette fenêtre mémoire des communications entre processus peuvent avoir lieu dans 
des époques de synchronisation bien précises pour préciser avec quel processus et quel type 
d’opération vont avoir lieu sur une zone mémoire ciblée. Avec ce principe de programmation, 
des zones mémoires sont partagées entre processus et des opérations de lecture écriture sur 
une même zone mémoire peuvent vite devenir problématiques. Des accès concurrents 
peuvent avoir lieu sur la même zone mémoire. 

Notre outil repère les erreurs de concurrence d’accès à la mémoire et se charge de les 
montrer à l’utilisateur. Pour cela, pendant l’exécution du programme, note outil instru- mente 
le code pour vérifier les erreurs. Nous traçons tous les accès mémoire et nous les 
enregistrons dans une structure de données appelée arbre binaire de recherche et nous 
analysons tous les accès mémoire entre les processus d’un même communicateur loca- 
lement et globalement. Les processus se partagent chacun les accès enregistrés à leurs 
mémoires respectives aussi en s’envoyant les informations grâce à un protocole de Send/- Recv 
classique. Si deux accès concurrents sont détectés et au moins un des accès est une opération 
d’écriture, on arrête immédiatement le programme. Une analyse statique a été ajoutée comme 
un support à cette analyse dynamique dans le but d’alerter le program- meur pendant la 
compilation des potentielles erreurs liées aux accès concurrents. Toutes les erreurs locales à 
un processus sont ainsi détectable au préalable de l’exécution. Ce- pendant, comme le jeu 
d’entrée n’est pas connu au moment de la compilation, nous ne pouvons pas affirmer la 
présence des erreurs. 

Notre première contribution consiste à identifier les d’afférents types d’erreurs qui 
peuvent avoir lieu dans un programme MPI-RMA. Le premier type d’erreur peut avoir lieu au 
sein d’un même processus et donc, des accès natifs load et store peuvent se chevaucher avec 
des accès distants (RMA) ou que des accès RMA entre eux (nous ne détectons pas les erreurs 
de concurrence d’accès purement natives). Le deuxième type d’erreur c’est les erreurs 
d’accès concurrents qui peuvent impliquer plusieurs processus d’un même communicateur. 
Ces accès peuvent avoir lieu au sein d’une mémoire d’un 
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processus donné avec des accès provenant de différents processus. Il peut aussi y avoir un 
chevauchement entre les accès load/store et les opérations RMA de plusieurs proces- sus 
visant la même adresse mémoire. En identifiant les types d’erreurs, nous avons créé une 
matrice avec croisement des accès locaux et distants dans le but de l’utiliser durant le process 
de la vérification d’erreur. 

Une fois les types d’erreurs sont connus et identifiés, Cette matrice sera utile à notre 
algorithme de détection dynamique pourlever une erreur de concurrence si elle existe. À l’aide 
de la platforme de profiling MPI (PMPI). Nous enregistrons tous les accès d’un jeu de données 
durant le temps d’exécution du programme. Nous construisons des intervalles qui représentent 
la zone mémoire sur laquelle un des processus lit ou écrit selon l’opéra- tion de 
communication. La borne inférieure de l’intervalle représente le début de la zone mémoire 
choisie et la borne inférieure représente la fin de la zone mémoire. Ces inter- valles sont tous 
enregistrés avec leurs types d’accès (lecture, écriture) durant le temps d’exécution. Selon le 
type d’accès et la zone mémoire, s’il y a un chevauchement entre les intervalles (intersection 
d’intervalle), ça veut dire qu’une zone mémoire est simultané- ment accédée avec au moins 
un accès en écriture. Nous précisons ici que Le programme s’arrête dès la première erreur 
trouvée, car d’autres erreurs de concurrences dans le pro- gramme peuvent être des séquelles 
de la première, d’où notre intérêt de traiter le plus tôt possible ce type d’erreurs. Cette 
démarche implique aussi une instrumentation des accès load /store grâce à une pass LLVM 
pour enregistrer tous les accès locaux aussi et les comparer avec les accès RMA. Ceci peut 
engendrer un temps d’exécution beaucoup plus élevé au moment on nous exceutons un 
programme avec notre outil. C’est pourquoi nous avons réfléchi à notre deuxième 
contribution qui est de faire une analyse statique qui sera un support à la première analyse. 

Une analyse statique a pour but de trouver où se placer dans la chaîne de compilation pour 
analyser le flot de contrôle du programme et de regarder tous les chemins possibles du code. 
Nous allons ensuite appliquer une recherche en largeur et en profondeur du Graphe de Flot 
de Contrôle (CFG) pour rechercher des accès concurrents à la mémoire dans les différentes 
branches du CFG et être sûr de tout vérifier. Comme le CFG dépend fortement du rang de 
chaque processus, il est important de souligner que certaines er- reurs de concurrence entre 
plusieurs processus ne peuvent pas être visibles et donc, pas détectables avec une simple 
analyse statique. Cela dit, toutes les erreurs potentielles et locales à un seul processus 
peuvent être examinées et détectées avec cette analyse. 

 

Résultats obtenus 

Nous avons implémenté le RMA-Analyzer comme étant un outil indépendant qui peut 
être utilisé pour la vérification des programmes MPI-RMA écrits en C et Fortran. Car, un 
support pour les codes Fortran a été ajouté. 
Nous avons utilisé pour nos tests la machine Pise qui appartient à l’équipe MPI et IA 
distribuée de la R&D de l’entreprise Atos située à Échirolles. 



6  

 

À fin de nous rendre compte du bon fonctionnement du RMA-Analyzer, nous avons 
développé une suite de tests qui contient toutes les erreurs possibles qui peuvent avoir lieu à 
cause de différents accès à la même zone mémoire et qui couvre tous les croisements possibles 
de la matrice d’erreur précédemment décrite. Cette matrice a été réduite pour le cas d’erreurs 
locales détectables statiquement. Notre outil détecte toutes ces erreurs dynamiquement et 
statiquement aussi, mais uniquement pour les tests qui contiennent des erreurs locales. 
L’outil renvoie un retour à l’utilisateur en soulignant le fichier, la ligne et le type d’erreur. De 
plus, nous avons fait tourner notre outil sur deux grandes applications appelées CFD-Proxy et 
Nemo. 

Nous avons utilisé CFD-Proxy pour l’instrumentation partielle avec les accès MPI- RMA 
seulement sans les accès locaux load/store, pour mesurer le cout engendré par l’utilisation 
de l’outil en faisant une comparaison entre les temps d’exécution avec et sans le RMA-
Analyzer. Le coût engendré par le RMA-Analyzer sur CFD-Proxy est re- lativement haut, mais 
raisonnable avec un taux à 40% au mieux sur l’une des variantes de cette application. 

 
Nous avons ensuite testé le RMA-Anlayzer sur Nemo pour une instrumentation glo- bale en 

prenant en compte cette fois-ci les accès locaux, load/store. Nous avons effectué une 
comparaison des temps d’exécution sur deux variantes de l’application avec et sans le RMA-
Analyzer. Le coût engendré sur l’application Nemo avec une instrumentation générale 
augmente considérablement à cause des enregistrements des accès load/store. 

Nous avons utilisé notre analyse statique sur un code expérimental d’environ 3500 lignes 
de codes, écrits en C++. Le code est basé sur le benchmark Global Update Ran- domAccess 
(AKA GUPS). Le code que nous avons utilisé est une version MPI-RMA d’un code existant écrit 
en UPC++. Notre analyse arrive à détecter les erreurs locales trouvées dans ce code. 

 

Conclusion 

Les programmeurs des applications MPI ont besoin d’outils efficaces et fiables à fin de 
pouvoir détecter des erreurs de programmation. Dans le cadre de cette thèse, nous 
proposons un outil appelé le RMA-Analyzer qui a pour but d’aider au mieux les pro- 
grammeurs des applications MPI-RMA à détecter les erreurs liées aux accès concurrents à la 
mémoire. Le RMA-Analyzer propose une analyse dynamique accompagnée d’une analyse 
statique pour vérifier les erreurs de concurrence dans des programmes MPI- RMA. La 
particularité de cet outil est qu’il propose une analyse complète qui détecte toutes les 
erreurs durant le temps d’exécution du programme et arrête immédiatement le programme 
dès la première erreur trouvée. Cet outil est le premier à pouvoir rajouter une analyse statique 
pour détecter statiquement les potentielles erreurs de concurrence locales. L’outil alerte 
l’utilisateur de la présence des erreurs avec un retour précis de l’endroit et du type de 
l’erreur. 
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Comme travaux futurs, nous prévoyons d’améliorer l’outil sur plusieurs axes : 
—Améliorer le coût engendré par l’outil en améliorant l’analyse statique pour pou- voir 

détecter des erreurs entre processus, et ensuite combiner les deux analyses. 
—Notre outil ne prend pas en compte les synchronisations unilatérales, mais uni- 

quement les synchronisations globales entre les époques. De ce fait, l’outil peut être 
amélioré pour prendre les synchronisations inter époques. 

—Nous prévoyons d’intégrer les travaux de cette thèse dans PARCOACH : PARallel COntrol 
flow Anomaly CHecker. Cet outil est utilisé dans la détection d’erreur liées aux 
blocages de fonctions collectives dans des programmes MPI, OpenMP, MPI+OpenMP. 

—Nous prévoyaons aussi d’étendre la vérification d’erreurs à d’autres applications PGAS. 
Comme le modèle de communication unilatéral et le modèle de mémoire basé sur 
PGAS de MPI-RMA est compatible avec d’autres runtimes et implé- mentations PGAS. 
Étendre l’outil dans cette direction va aider d’autres pro- grammeurs. 
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Abstract 

Almost all high performance computing applications are written in MPI, which will 
continue to be the case for at least the next several years. MPI offers one-sided communi- 
cations which is a well known distributed programming paradigm for high performance 
computers, as its properties allows for a greater asynchronism and computation/com- 
munication overlap than classical message passing mechanisms. In this work, we focus on the 
Remote Memory Access interface of MPI (MPI-RMA), in which each process explicitly 
exposes an area of its local memory as accessible to other processes to pro- vide 
asynchronous one-sided reads, writes and updates. While MPI-RMA is expected to greatly 
enhance the performance and permit efficient implementations on multiple platforms, it 
also comes with several challenges with respect to memory consistency. This programming 
model imposes restrictions with respect to performing asynchronous accesses to shared data. 
Developers must handle complex memory consistency models and complex programming 
semantics. 

This thesis focuses on detecting memory consistency errors in MPI-RMA programs. We 
developed an hybrid approach verification tool for MPI-RMA programs that can provide 
solutions in detecting errors over the space of memory consistency (also known as data races) 
in MPI-RMA programs. 

Our method combines two analyses. First, we perform an on-the-fly analysis to stop the 
program in case of a consistency violation during runtime. Second, a static analysis support is 
added to detect local concurrency errors and warn the user of the presence of potential 
memory consistency errors at compile time. 

The experimental results demonstrate that our method is validated on a collection of 
codes containing errors and on two real applications. Our experiments show that our 
approach is scalable when running on MPI one-sided applications with an overhead of 40% at 
best on one of our experiments. We also show on several tests and an MPI-RMA variant of the 
GUPS benchmark that the static analysis allows to detect such errors on user codes. The 
error codes have been validated for an integration in the MPI Bugs Initiative open-source test 
suite (MBI). 

Key words : High Performance Computing, Hybrid analysis, MPI-RMA 
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CHAPTER 1    

INTRODUCTION 

 
 
 

High-Performance Computing (HPC) has become an important area of progress across a 
wide range of scientific and engineering disciplines like Computational Fluid Dynamics (CFD) 
engineering, climate simulation, weather prediction, computational chemistry, bio-
informatics and nuclear reactors. High performance computing is the ability to process data 
and perform complex calculations at high speeds which predicted the increase in frequency of 
a computer’s Central Processing Unit (CPU). Today su- percomputers are becoming faster, 
cheaper, and more popular, the future growth in computing power will have to come from 
both the hardware side and the software side. Programmers who are used to think and code 
sequential software now have to turn to parallel software to achieve the desired 
performance. Parallel programs can be written by using different programming paradigms. 
Among them, the Message Passing Inter- face (MPI) [42], and the Partitioned Global Address 
Space (PGAS) [104] model that are largely used in HPC systems. While MPI and PGAS are often 
referred as two different programming paradigms MPI is the industry standard communication 
library for HPC. MPI is the most widely used programming API for writing parallel programs 
that run on large clusters. The design goals of MPI are flexibility, performance and portability. 

MPI accomplishes those goals by providing a very rich semantics that incorporate the 
features of synchronous and asynchronous systems with several communication modes. 
Synchronous communications are easy to use and understand in contrast to asynchronous 
communications which are more complex. MPI introduces a model for asynchronous and 
remote memory access called MPI-RMA first presented in the MPI-2 specification and then 
improved and updated in MPI-3. this programming model is quite similar to PGAS, as it is also 
based on one-sided communications of data, and global access of partitioned memory. Unlike 
MPI two-sided, where the sender and the receiver explicitly call the send and receive 
functions, one-sided communications decouple data movement from synchronization and 
offer asynchronous reads, writes, and updates without involving the target process. MPI-
RMA allows efficient data movement between processes with 



28  

 

MPI_Win_lock_all(win) 

MPI_Get(&buf, 1, MPI_INT, 0, 0, 1, MPI_INT, win) 

if(buf%2 == 0) /*bug:load/store access of buf */ 

buf ++; 

… 

MPI_Win_unlock_all(win) 

 

less synchronizations but the performance and flexibility of MPI-RMA come with several 
debugging challenges. MPI programs, especially under the presence of non-determinism, are 
notoriously hard to debug. It thus poses programming challenges to use as few 
synchronizations as possible, while preventing data race and unsafe accesses without 
tampering with the performance. 

 
 
 
 

 

Figure 1.1 – MPI One-sided communication bug. 
 

To highlight how difficult debugging can get with MPI, we consider a simple MPI- RMA 
program shown in figure1.1which contains a subtle bug where the one-sided MPI_Get 
operation is asynchronous, it retrieves the data from the target process and as a result the 
data may not be ready before the MPI_Win_unlock. Because of this situation the load access 
of buf can retrieve an old value and the store access on buf can be overwritten by a value 
retrieved from MPI_Get. This example illustrates the need for more powerful verification 
techniques tools than ordinary random testing on a cluster. These tools can help maintaining 
data consistency in the presence of asynchronous data accesses from multiple processes. 
Even though there are many techniques and tools that help developers discover MPI non- 
determinism errors, they basically fall into one of these three categories: static methods, 
dynamic methods, and model checking. Static methods have the advantages of being input-
independent since they verify the program at the source code level. However, they tend to 
provide too many false alarms, especially for a large code base, due to the lack of runtime 
knowledge. Model checking methods are very powerful for small programs in terms of 
verification coverage but they quickly become impractical for large software due to the 
infeasibility of building models for such software. Dynamic methods such as testing or 
dynamic verification are the most applicable methods for large MPI programs since they 
produce no false alarms and also require little work from the tool users. 
Unfortunately, the state of the art in MPI-RMA debugging remains a fundamental chal- lenge 
and to the best of our knowledge, very few works exist to detect concurrency bugs in MPI-RMA 
and most of them rely on post-mortem analyses. 
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This thesis was set up as part of a collaboration between Inria Bordeuax Sud-Ouest and 
Atos Echirolles. The main objective was to develop a tool that can help the pro- grammer to 
easily code MPI-RMA applications. This tool should provide solutions to detect memory 
consistency errors in MPI-RMA applications. We will introduce the RMA-Analyzer, a 
framework that identifies memory consistency errors in MPI-RMA programs written in C and 
Fortran. Our framework uses a static and a dynamic on-the- fly analyses and focuses on MPI-3 
features. The advantages of our approach are twofold. First, contrary to state-of-the-art 
solutions, this analysis can detect potential local con- currency errors at compile time. Second, 
it detects all consistency errors that can happen during the execution of an MPI-RMA program 
for a given set of input data. When an error occurs, the analysis can directly stop the 
program, warn the user about the error, and provide detailed information on the conflicting 
accesses. Indeed, since a silent race condition can provoke errors later in the program, it is 
mandatory to detect the first race condition and immediately warn the user that an error has 
happened, instead of waiting until the end of the program to do so. We argue that these two 
properties are of tantamount importance for helping users porting large-scale code bases on 
MPI-RMA. 

The RMA-Analyzer will be fully integrated into the PARallel COntrol flow Anomaly CHecker 
(PARCOACH) [85]. PARCOACH was developed to provide a combination of static and dynamic 
analyses to enable an early verification of hybrid HPC applications. This thesis proposes to 
extend the PARCOACH framework to help and guide the pro- grammer in the development of 
PGAS programs, in particular by detecting data race errors with a dynamic help on the reality 
of these issues with precise feedback to the user. It can also provide an optimization of an 
MPI program into a PGAS or MPI one-sided program. 

 

1.1 Plan of Study 

This thesis focuses on data race detection for MPI-RMA programs. We talk about two 
main pieces. The first part, focuses on dynamic analysis of MPI-RMA programs to detect all 
the errors that can occur during the execution time of the program. The second part, focuses 
on a static analysis of MPI-RMA programs that comes as support to the dynamic analysis with 
the aim of detecting more relevant local concurrency errors before executing the program. 

The rest of this thesis is organized as follows: Chapter 2 presents the related back- 
ground and motivation of this work. Chapter 3 and chapter 4 describe both the corre- 
sponding contributions. Chapter 5 discuss the related work to survey some debugging and 
correctness tools of MPI programs. Chapter 6 concludes the work and discuss the future 
research directions. 
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1.2 Terms Used 

A cluster consists of hundreds or thousands of compute servers that are networked 
together. Each server is called a node which in each cluster work in parallel with each other, 
boosting processing speed to deliver high performance computing. 
A process is an entity that encapsulates a private local memory space, i.e., memory that by 
default is only accessible from within that process. A process may expose parts of its local 
memory space to other processes, either through shared memory to allow access to other 
processes on the same node, or by contributing it to a global memory space, in which memory 
is available to processes executing on different nodes. Inside a process, several threads of 
execution (or threads) may execute concurrently with shared access to the memory in the local 
memory space and shared node-local and global memory that the process has access to. 
A thread typically executes in a local execution context, i.e., local variables and a pri- vate 
stack to call functions, but has access to global variables shared by all threads in the process. 
The concurrent execution may be real parallel execution on distinct CPU cores or seemingly 
parallel through time-slicing performed by the operating system or a user-level runtime library. 
Thus, threads (in the meaning of the term used in this work) are preemptable, i.e., the 
operating system scheduler may force the thread to yield the core and schedule another 
thread or process to execute on it. A task typically consists of an action to be executed, i.e., a 
function call, as well as a set of inputs and outputs. The task’s action is executed either 
directly on the stack of the executing thread or  in the context of a user-level thread (ULT), 
which then contains the execution state throughout the course of execution of the action. 
The difference between a thread and task is that tasks are typically non-preemptable and a 
cooperative scheduler relies on the task to eventually complete its execution. A task is a self-
contained work-package that transforms a set of input data into a set of output data. 
The term parallel will be used to describe actions that actually happen at the same time, e.g., 
two processes executing on two different nodes run in parallel. 
A communicator : a group of processes. An MPI applications starts always by in- cluding all 
processes in a default communicator called MPI_COMM_WORLD. New communicators can 
be created from the MPI_COMM_WORLD. MPI ensures that each communicator is unique thus 
a communicator can be seen as a system defined tag. Col- lective communications rely on 
communicators. 
A window is composed of a group of processes, specified at window creation time by a 
communicator and a contiguous region of memory at each process and this memory region 
may differ in size and address. 
An epoch is the execution span occurring between calls to MPI synchronization func- tions. 
The term concurrent will be used to describe actions that may happen at the same time, e.g., 
two independent operations may be executed at the same time. The term concurrency on 
the other hand, describes the maximally possible degree of parallelism, i.e., the set of actions 
that could be executed at the same time in the absence of resource 
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restrictions. 
The term runtime system (or runtime) refers to an entity that is part of the soft- ware stack 
and typically resides between the application and the operating system or hardware, 
coordinating operations and resources requested by the application. Task schedulers and 
MPI implementations are two examples of runtime systems. 

 

1.3 Thesis Contributions 

This thesis makes the following contributions : 
We present the extended compatibility table to show all the errors that can possibly occur in 
MPI-RMA programs. Errors are grouped into two categories : local concur- rency errors and 
remote concurrency errors depending on the process that performs the communication 
operation (origin or target). We bring forward our data race detec- tion algorithms to discuss 
our technique that comes with a new hybrid approach. Our method presents two main steps 
to detect memory consistency errors in MPI-RMA pro- grams. Firstly, at execution time we 
perform an on-the-fly analysis to collect relevant MPI-RMA operations and load/store 
accesses. If a data race error is found we stop the program and report a consistency violation. 
Secondly, we present a static analysis that has been added in order to automate the dynamic 
analysis. It detects all common local concurrency errors before dynamic analysis takes place. 
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CHAPTER 2    

BACKGROUND AND MOTIVATION 

 
 
 

Since the work described in this thesis is largely relying on MPI communication 
paradigms, with an emphasis on the semantics of MPI one-sided communication, in this 
chapter we provide related background on MPI communication paradigms so that the reader 
can better understand the semantics provided by the MPI standard. 

 

2.1 Introduction 

Parallel programs can be written by using different programming paradigms. Among them, 
the Message Passing Interface (MPI), and the Parallel Global Address Space (PGAS). These 
paradigms are largely used in HPC systems. While MPI and PGAS are often referred as two 
different programming paradigms, MPI allows a model for remote memory access called MPI-
RMA also called MPI one-sided communication. First in- troduced in the MPI-2 specification, 
and has updated and seen a major review in the MPI-3 by including several routines in order 
to handle additional window allocations and add new synchronization modes. The main goal 
of these modifications is to fully take advantage of the network’s low-level remote direct 
memory access (RDMA) ca- pabilities[31]. This programming model is quite similar to PGAS, 
as it is also based on one-sided communications of data, and global access of partitioned 
memory. Unlike MPI two-sided, where the sender and the receiver explicitly call the send and 
receive functions, one-sided communication decouples data movement from synchronization 
and offer asynchronous reads, writes, and updates without involving the target process and 
allow a better overlap of computation with communication. While MPI-RMA allows efficient 
data movement between processes with less synchronizations, its programming is error-prone 
as it is the user responsibility to ensure memory consistency. It thus poses programming 
challenges to use as few synchronizations as possible, while preventing data race and unsafe 
accesses without tampering with the performance. In this chapter we give the background 
according to PGAS and both MPI two-sided and one-sided com- 
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munications. We first, introduce the partitioned global address space and its languages and 
system-level libraries. Second, we discuss both MPI point-to-point communication and 
collectives. Finally, we introduce MPI one-sided by giving its overview, and its programming 
challenges. 

 

2.2 Partitioned Global Address Space (PGAS) 

PGAS is a parallel programming paradigm that aims to improve programmer pro- 
ductivity while at the same time targeting for high performance. The main premise of PGAS is 
that a globally shared address space improves productivity, and that distinction between local 
and remote data accesses allow performance optimizations and support scalability on large-
scale parallel architectures. To this end, PGAS preserves the global address space while 
embracing awareness of non-uniform communication costs. 
In PGAS programs, each process exposes a part of its local memory to other processes as 
shown in figure2.1. This way, the memory of other processes can be directly ad- dressed from 
a sender, thus allowing to perform one-sided communications (e.g. Put, Get). This 
communication model is known to significantly improve the asynchronism and the overlap of 
communications with computations, which is why it is expected to gain focus in the next years 
for the Exascale era and beyond [7]. Compute Express Link CXL [99] which is a cache-coherent 
interconnect for processors, memory expansion, and accelerators implements advanced PGAS 
inter-process communication mechanism. It maintains a unified coherent memory space 
between the CPU and any memory on the attached CXL device. It is designed to address the 
growing needs of high-performance computational workloads by supporting heterogeneous 
processing and memory systems. 

 
 

 

Figure 2.1 – Overview of the Partitioned Global Address Space (PGAS) model. 
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2.2.1 PGAS Languages 

Today, about a dozen languages exist that adhere to the PGAS model here we men- tion: 
Co-Array Fortran (CAF) [73] is a very old PGAS language, however, it remains one of the most 
known. It is a parallel extension of Fortran 95 which adds the Co-Array as a feature to the 
language. CAF aims to manage and explicit the cost of accessing remote data asynchronously. 
CAF fosters the programmer to use the local proprieties of the code. Remote accesses are 
different from the classic Fortran code. 
Titanium[105] is a Java language designed for high-performance parallel scientific com- puting. 
It was conceived at UC Berkeley and provides implementations for symmetric 
multiprocessing (SMP) as well as for distributed systems. The language is designed to enable 
explicit asynchronous parallel programming, while facilitating compiler optimiza- tions for 
optimal performance. It provides the notion of local and remote references and uses explicit 
asynchronous communication primitives to exchange data. 
Unified Parallel C (UPC) [39] is a PGAS extension of the C language. It integrates features 
from three proposals: PCP [13], Split C [26], and AC.  The specification of the UPC language is 
provided by the UPC consortium, which consists of academic and government institutions as 
well as companies. Well-known implementations of the UPC language include Berkeley UPC, 
GNU GCC UPC, and HP UPC. UPC programs can make use of shared data objects, which is the 
main PGAS facility of the language. Data values that reside in shared memory are hosted by 
one of multiple threads but can be accessed asynchronously in a syntactically transparent way 
from different threads, even though a ‘remote access’ normally comes at a communication 
cost. 
Chapel[17] is a parallel programming language developed by Cray as part of the Cray Cascade 
project [16]. It identifies the global view of computation and give the support for both task and 
data-driven parallelism, besides, the separation of the algorithm and data structure details is 
the main programmability concepts of the language. Chapel provides concepts for multi-
threaded and locality-aware parallel programming. The language also supports many concepts 
from object-oriented languages and generic programming. 
X10 [20] is a programming language developed by IBM Research. The name X10 refers to times 
10, the aim of the language to achieve 10 times more productivity in HPC soft- ware 
development. X10 is described as a modern object-oriented programming language providing 
an asynchronous PGAS programming model with the goal of enabling scalable parallel 
programming for high-end computers. X10 extends the PGAS model with asyn- chronicity by 
supporting lightweight asynchronous activities and enforcing asynchronous access to non-local 
state. Its explicit fork/join programming abstractions and a sophis- ticated type system are 
meant to guide the programmer to write highly parallel and scalable code, while making the 
cost of communication explicit. The task parallelism is implemented on top of a work-stealing 
scheduler. 
Fortress [94] is a programming language designed for high-performance computing, 
originally developed by Sun Micro-systems. The expressive type system facilitates static 
analysis, while efficient scheduling of implicitly parallel computations is guaranteed by the 
work-stealing algorithm. Another characteristic of Fortress is its mathematical syn- 
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tax. The use of uni-code for instance for the sum operator and the idea of “typeset- ting” 
code give the language a mathematical look-and-feel. This language is no longer under 
development. 

2.2.2 PGAS Libraries 

PGAS terminology is also used to design a system level in the context of a num- ber of 
communication libraries such as MPI-2 [42], GASNet [9], ARMCI [72] ,GPI [45] and 
OpenSHMEM [19]. These libraries are used for SPMD programs to store memory segments 
for remote memory access through one-sided operations such as put, get and accumulate. 
MPI-3 [38] proposes to fix the MPI-2 RMA API as it does not respond  to the needs of 
application programmers. GASNet is used by Berkely UPC and other PGAS languages, while 
ARMCI is used by Global Arrays. Theses libraries are not meant to be used by application 
developers. 
UPC++ [6] is also a C++ library that supports PGAS programming, and is designed to 
interoperate with MPI, OpenMP [18], CUDA [25], ROCm HIP [59] and other HPC frameworks. 
It leverages GASNet-EX [8] to deliver low-overhead, fine-grained commu- nication, including 
Remote Memory Access and Remote Procedure Call (RPC) [69]. 

In the context of this thesis, we will only focus on MPI library with a particular interest in 
MPI-3 specification. 

2.2.3 PGAS Data Distribution Model 

What we mean by the data distribution model is how data are distributed in the program. 
There are two distribution models: in languages where the programmer does not control data 
distribution thus, the language has implicit model. However, languages where the programmer 
can specify the data distribution are said to have an explicit model. In addition to this two 
distribution models, if a PGAS language allows the data to be distributed by remote pointers 
we say the language supports irregular data distri- bution. However, if a PGAS language allows 
the distribution of packed data structures, such as arrays or matrices, we say the language 
supports regular data distribution. Note that for the different types of data distributions (e.g. 
regular and irregular data) implicit and explicit data distribution may coexist. 

2.2.4 PGAS Data Access Model 

Data access model describes how data can be distributed, represented, declared and 
accessed. The data access model is part of data distribution model. The main aspects for data 
accesses are how a distributed data is accessed and how access to remote data is performed. 
The remote data access to shared data can be either implicit or explicit. Remote data access 
is explicit when accessing remote data requires devoted syntax. 
The syntax of the remote data accesses can either imply how the data is retrieved like in CAF 

(the co-array syntax is shown in figure2.2(a)) or a migration of the computation 
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… 

shared [4] INT arr [N]; 

… 

arr[i]++; 

… 

 
 
 
 
 

 

  
(a) Data access in CAF (b) Data access in X10 

 

(c) Data access in UPC 

 

 

Figure 2.2 – Comparing the syntax used in CAF, X10, and UPC to access remote data. 

 
to the place where the data is, like in X10 (as shown in figure2.2(b)). Otherwise if remote 
data access is syntactically transparent like in UPC (like in figure2.2(c)), the PGAS language 
supports implicit access of remote data. 

 

2.3 The Message Passing Interface (MPI) 

The message passing interface MPI [44] is a library interface. MPI is designed to help 
programmers write high performance parallel message passing programs that are scalable 
and portable. MPI is the defacto standard for writing parallel programs run- ning on large 
clusters in order to achieve higher performance by providing a very rich semantics that 
incorporate the features of both asynchronous and synchronous systems. A description of an 
MPI program can be found in the MPI standard [44]. MPI programs are written in C, C++ and 
Fortran. There are many different implementations [67,76, 43] that follow the specific 
instructions given by the standard. 
Note that MPI supports several modes such as non blocking communication, non deter- 
ministic receives and collective calls. These modes are largely used in order to provide higher 
performance and portability. 

val d = Dist.MakeUnique(); 

val arr = DistArray.make[int](d, o); 

at (arr.dist[i]) { 

arr[i]++; 

} 

… 
INTEGER arr(4,M) [ * ]; 

… 

arr(i,j)[k]++; 

… 
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2.3.1 Point to Point Communication 

The point to point communication is the basic process of sending and receiving mes- sages 
between different MPI processes. By using MPI point-to point communication one process 
performs a send operation MPI_Send while the other performs a matching re- ceive 
operation MPI_Recv involving a synchronization between peers as shown in listing 
1. With this kind of communication MPI guarantees that every message will be received 
without errors. Errors as deadlocks often occur when the send and receive operations do not 
match. Deadlock means that neither the sending process nor receiving process can perform 
an operation until the other completes its action. Note that MPI_Send and MPI_Recv use a 
blocking methods for transferring messages between two MPI pro- cesses. The term Blocking 
means that the sending process waits until the whole message has been correctly sent to the 
receiving process, and the receiving process waits until it correctly receives the complete 
message. More complex communications methods can be built upon these two methods we 
define synchronous point-to-point communication and non-blocking point-to-point 
communication. 

1 #includ e <s t d i o . h> 
2 #includ e <mpi . h> 3 
4 int main ( int argc , char ∗∗ argv ) { 
5 int my_rank , c l u s t e r _ s i z e , message_item ; 
6 MPI_Init(& argc , &argv ) ; 
7 MPI_Comm_size(MPI_COMM_WORLD, &c l u s t e r _ s i z e ) ; 
8 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank) ; 9 

10 i f ( my_rank == 0 ) { 
11 message_item = 4 2 ; 
12 MPI_Send(&message_item , 1 , MPI_INT, 1 , 1 , 
13 MPI_COMM_WORLD) ; 
14 p r i n t f ( " Message Sent : %d\n " , message_item ) ; 15 } 
16 
17 else i f ( my_rank == 1 ) { 
18 MPI_Recv(&message_item , 1 , MPI_INT, 0 , 1 , 
19 MPI_COMM_WORLD, MPI_STATUS_IGNORE) ; 
20 p r i n t f ( " Message Received :%d\n " , message_item ) ; 21 } 
22 
23 MPI_Finalize ( ) ; 
24 return 0 ; 25
 } 

Listing 2.1 – A Simple MPI program with send receive pattern 

 
Synchronous Point-to-Point Communication is the synchronous blocking send form of MPI 
point-to-point communication. While MPI_Send has the same blocking behavior as 
MPI_Ssend, according to the MPI standard, its behavior is asynchronous because the call can 
return before a matching receive is posted. Synchronous point-to- point communication as its 
name indicates needs the implementation of some rendez-vous 



38  

 

protocols for synchronization between peers where the receiver blocks until it starts to 
receive data from a matching sender. In the case of a synchronous send, the sender should 
block until it receives an acknowledgement from the receiver that has started the receiving 
process. 
This type of communication are used because it presents several advantages: it is easier to use 
and understand compared to non-blocking communication(detailed as well in this section), 
which allows higher productivity and the programmer can easily provide correct programs by 
using this type of communication. It also helps prevent memory exhaus- tion by not requiring 
the MPI runtime to provide message buffer. However, synchronous communication usually 
comes with performance penalty due to the synchronization, especially for applications that 
use large messages. In order to address this problem, MPI offers two alternatives: buffered 
communication and asynchronous communication. Buffered communication allows the 
process to issue a sending request and continue pro- cessing without waiting for the 
acknowledgement from the receiver. MPI programmers can take advantage of buffered 
communication through one of these two methods: first, by allocating an explicit buffer and 
provide it to the MPI_Bsend call through the use of MPI_Buffer_attach. Note that the user can 
only attach one buffer per process and the buffer can be used for more than one message. 
MPI_Buffer_detach can be called later to force the reception of all messages that are in the 
buffer. Second, it takes advantage of the MPI runtime’s buffer through the use of MPI_Send. 
The user buffer is available immediately after the call since the data has been copied into the 
runtime’s buffer. It is generally not recommended to rely on the runtime to provide such a 
buffer because MPI standard does not mandate that the implementation should provide any 
buffer. If the runtime runs out of buffer space due to excessive pending communication, 
MPI_Send will block until more buffer space is available, or until the data has been transmitted 
on the receiver’s buffer. 
For this type of communication MPI offers the matching MPI_Ssend which is quite similar to 
the MPI_Send. There is a small but important difference between the two. MPI_Ssend does 
not return until the message has been received at the receiver side even for small messages. 

 
Non-blocking Point-to-point Communication unlike synchronous point-to-point 
communication that offers robustness and predictability of message delivery at the ex- pense 
of program flexibility and performance. Many applications show their interest in performing 
communication-computation overlap. The overlap of computation with communication 
would allow having the ability to issue some communication requests, continue with local 
processing, and process the results of those requests when the com- putation phase is done, 
with the hope that the MPI runtime has sent/delivered the message during the computation 
phase. This could be very beneficial for applications to gain in computation time. For these 
reasons MPI offers non-blocking point-to-point communication through the use of calls such 
as MPI_Isend and MPI_Irecv. As shown in figure2.3the process would provide a buffer, issue 
the call, obtain a request handle from the runtime, and wait for the communication request 
to finish later using either 
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MPI_Wait or MPI_Test or their variants MPI_Waitall or MPI_Waitany. Before MPI-2 the process 
cannot access the buffer while the requests are still pending. In MPI-2.2 and higher this has 
changed to only read sending requests that are pending with no-access for the receiving 
requests that are pending. 
Similarly to MPI_Send, the MPI runtime use the buffering technique for the messages sent by 
MPI_Isend and thus, the call to MPI_Wait simply states that the data have been copied to the 
runtime’s buffer and the process can now reuse the buffer associated with the MPI_Isend. 
Those applications that require a rendezvous semantics for such situations will have to use 
MPI_Issend where the corresponding MPI_Wait will block until the receiver has started to 
receive the data. 

 

Figure 2.3 – Example of asynchronous point-to-point communication using the rendez- vous 
protocol. 

 
2.3.2 Collective Communication 

As the name suggests, collective communication refers to MPI functions that require the 
participation of all processes collectively within a defined communicator. We can see the 
collective communications as a set of point-to-point operations. We give the exam- ple of 
MPI_Bcast call which can be decomposed into multiple MPI_Send calls from the root to all 
other processes in the communicator and multiple MPI_Recv calls from the other processes 
to receive the data from the root. In general, collective operations are heavily optimized by 
most implementations depending on the size of the messages and the network structure. For 
example, the MPI_Bcast call can use a tree-based algorithm to broadcast the message 
efficiently. 
While it is intuitive for developers to consider collective operations as having synchroniz- 
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ing behavior, the implementation is often not required to provide such semantics. There are 
only a few collective calls that have synchronization semantics such as MPI_Barrier while the 
rest are only required to block until they have fulfilled their roles in the col- lective operation. 
For example, for an MPI_Reduce call, after a process has sent out its data to the reducing root, 
it can proceed locally without having to wait for the root to receive all messages from other 
processes. However, the MPI standard does require that all processes in the communicator 
execute the collective. 
Although, the collective operations are the most used, they also have concerns related to 
synchronization semantics, but these are not the same issues that we deal with in the 
context of thesis. An example of code evoking collective communication is given in listing 2 
that shows how to calculate π by using MPI_Bcast and MPI_Reduce. 
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1 #include " mpi . h " 
2 #include < s t d i o . h> 3 
#include <math . h> 
4 
5 int main ( int argc , char ∗ argv [ ] ) 6 { 
7 int n , myid , numprocs , i ; 
8 double PI25DT = 3 . 141592653589793238462643 ; 
9 double mypi , pi , h , sum , x ; 

10 MPI_Init(& argc ,& argv ) ; 
11 MPI_Comm_size(MPI_COMM_WORLD,& numprocs ) ; 
12 MPI_Comm_rank(MPI_COMM_WORLD,& myid ) ; 
13 while ( 1 ) { 
14 i f ( myid == 0 ) { 
15 p r i n t f ( " Enter the number o f i n t e r v a l s : ( 0  q u i t s )  " ) ; 16 s c a n f 
( "%d " ,&n ) ; 
17 } 
18 MPI_Bcast(&n , 1 , MPI_INT, 0 , MPI_COMM_WORLD) ; 19 i f ( n == 
0 ) 
20 break ; 
21 else { 
22 h = 1 . 0 / ( double ) n ; 
23 sum = 0 . 0 ; 
24 for ( i = myid + 1 ; i <=  n ;  i  +=  numprocs )  {  25 
 x = h ∗ ( ( double ) i − 0 . 5 ) ; 
26 sum += ( 4 . 0 / ( 1 . 0 + x∗x ) ) ; 
27 } 
28 mypi = h ∗ sum ; 
29 MPI_Reduce(&mypi , &pi , 1 , MPI_DOUBLE, MPI_SUM, 0 , 
30 MPI_COMM_WORLD) ; 
31 i f ( myid == 0 ) 
32 p r i n t f ( " p i i s approximately  %.16 f , Error i s %.16 f \n " , 
33 pi , f a b s ( p i − PI25DT) ) ; 34 } 
35 } 
36 MPI_Finalize ( ) ; 
37 return 0 ; 38 
} 

Listing 2.2 – An MPI Program Calculating π by Using Collectives 

 
2.3.3 MPI One-sided Communication with Remote Memory Access (RMA) 

MPI standard offers in addition to two-sided synchronous and non-blocking point- to-
point communication the one-sided fashion also called MPI remote memory access (MPI-
RMA). MPI-RMA performs one-sided, asynchronous and direct accesses to the processes 
memory location that are part of a given communicator. It permits to one- sidedly send data 
to a memory location of another MPI process without any buffering technique. It uses 
MPI_Put which can be seen as executing a send by the origin process and a matching receive 
by the target process. The difference with the send in two- 
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sided communication is that all arguments are provided by the origin process in a single routine 
as shown in figure2.4. It also uses an MPI_Get which is the read equivalent of MPI_Put. 
In MPI-RMA the synchronization is decoupled from the communication but one still needs 
global or local synchronizations to perform the communication within epochs. As we can see 
in the example of listing 3, where the MPI_Put is performed between two synchronization 
calls by using MPI_Fence. 

 

 

P0 P1 P0 P1 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Figure 2.4 – Comparing the syntax of MPI_Put with MPI_Send. 
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1 #i n c l u d e < s t d i o . h> 
2 #i n c l u d e < s t d l i b . h> 
3 #i n c l u d e <mpi . h> 
4 int main ( int argc , char ∗ argv [ ] ) 5 { 
6 MPI_Init(& argc , &argv ) ; 
7 int comm_size ; 
8 MPI_Comm_size(MPI_COMM_WORLD, &comm_size ) 
9 /∗ This a p p l i c a t i o n needs two MPI p r o ce s s e s  ∗/ 

10 i f ( comm_size != 2 ) 
11 { 
12 p r i n t f ( " 2 MPI p r o c e s s e s , not %d . \ n " , comm_size ) ; 
13 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE) ; 14 } 
15 int my_rank ; 
16 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank) ; 
17 int window_buffer = 0 ; 
18 MPI_Win window ; 
19 MPI_Win_create(& window_buffer , s i z e o f ( int ) , s i z e o f ( int ) , 

MPI_INFO_NULL, MPI_COMM_WORLD, &window ) ; 
20 MPI_Win_fence ( 0 , window ) ; 
21 i f ( my_rank == 0 ) 
22 { 
23 int my_value = 12345 ; 
24 MPI_Put(&my_value , 1 , MPI_INT, 1 , 0 , 1 , MPI_INT, window ) ; 
25 p r i n t f ( " [ MPI p r o c e s s 0 ]  I  put  data %d  i n  MPI  p r o c e s s  1  window v i a MPI_Put . \ n " , 

my_value ) ; 
26 } 
27 MPI_Win_fence ( 0 , window ) ; 
28 MPI_Win_free(&window ) ; 
29 MPI_Finalize ( ) ; 
30 return EXIT_SUCCESS; 31 } 
32 

33 

Listing 2.3 – Example of One-sided Communication 

Since the focus of this thesis is directly related to MPI one-sided communication, the 
following sections of this chapter will be dedicated to MPI-RMA with an overview and more 
detailed definitions. 

 

2.4 MPI-RMA programming Overview 

The MPI-3 standard, introduced in September 2012 includes a significant update to the 
one-sided communication interface. In particular, the interface has been extended to better 
support popular one-sided and global-address-space parallel programming mod- els, to 
provide better access to hardware performance features, and to enable new data access 
modes. By using MPI-RMA the target process is not actively involved in the communication as 
shown in the example of figure2.5. Unlike non-blocking two-sided point to point 
communication here the communication operations are issued without 
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using additional buffers. 

MPI disassociates the memory synchronization or consistency and the process synchro- 
 

Figure 2.5 – One-sided communication example. Process 1 is not actively involved in the 
communication. 

nization. Furthermore, such synchronization can be non-blocking. 
Consistency, completion, and synchronization are the key points in MPI-RMA program- ming. 
MPI provides them as separate concepts and allow the user to reason about them separately. 
MPI-RMA programming is thus slightly more complex because of complex interactions of 
synchronization and communication operations. In MPI-RMA program- ming model all 
communication operations are non-blocking. It means that the commu- nication functions 
may return before the completion of operations and bulk synchro- nization functions are 
used to complete before the initiated operations. Like most RMA programming models, it 
allows the programmer to initiate operations asynchronously and complete them (locally or 
remotely) later in order to allow the communication- computation overlap. 
All these features make using MPI-RMA programming model more beneficial and it permits 
to enhance the performance of application that use one-sided communication pattern. All at 
once, these features also make reasoning about MPI-RMA program semantics much more 
complex and it comes with complex programming environment which is often hard and not 
suitable for domain-scientists programmer. It the responsi- bility of high-level libraries writers 
to provide domain-specific extensions that can hide the complexity. 
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2.4.1 Key Benefits of MPI-RMA Programming 

As MPI-RMA programming model enables direct access to remote memory through the 
network interface. It allows a better overlap of computation with communication by providing 
asynchronous direct reads, writes and updates. It provides a remote memory access and 
bypasses the operating system and the CPU, enabling low latency and high bandwidth.  Since 
the hardware implementation in the network card is a simple set  of queues at the lowest 
hardware level, RMA networks are programmed through user- level libraries such as MPI, 
ARMCI and GASNet that directly communicate with the hardware. The rule of these libraries 
is to provide calls to read and write or update the remote memory location and give several 
modes of synchronization that a given program can use to handle the communication through 
peers. The RMA programming systems are similar to shared memory systems however, RMA 
systems do not offer atomicity by default and the global address space is partitioned such 
that each network endpoint owns a fixed address range. Furthermore, a study [31] shows that 
MPI-3 RMA enhances the performance and the usability of MPI-RMA. This study also 
provides a complete implementation of MPI-3 RMA and its performance optimization 
opportunities. In addition, As RMA technology is widely supported, it is available for 
InfiniBand [84], Blue Gene/P [2], Blue Gene/Q [22], IBM PERCS [5], and Cray’s Gemini and 
Aries networks [4,35]. RMA technology is largely used by several programming systems like 
UPC, Co-array Fortran and MPI-3 which is our main focus in this thesis. 

 
2.4.2 Comparing MPI-RMA and MPI Two-sided Programming Mod- els 

One-sided communication offers several advantages to the programmer. One-sided 
communication reduces synchronization while two-sided communication implies some 
degree of synchronization. A receive operation cannot complete before the respective send 
has started. Further, because a sender cannot usually write in the receiver’s address space. This 
type of communication is based on buffering technique, it uses buffers to transfer data from 
the sender’s side to the receiver’s side. If a buffer is small compared to the data volume, 
additional synchronization should occur and the sender must wait for the receiver to free up 
the buffer. With one-sided communication there is no need to specify a synchronization at 
the same time as issuing communication operations, it uses a single synchronization over 
many data movements and thus, it decouples data movement from synchronization. 
As shown in figure2.6, one-sided communication offers computation-communication overlap 
and reduces data movement, in comparison with two-sided communication that introduces 
intermediate buffering and rendez-vous protocols. Two-sided communication incurs extra 
data movement compared to the case where processes write directly to another process’s 
address space. Furthermore, one-sided communication can simplify programming because the 
information about a data transfer must be known and specified on only the sender side instead 
of both sender and receiver. 
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Figure 2.6 – Comparing MPI one-sided and MPI two sided programming Models. 

 
2.4.3 Implementation of MPI-RMA Operations 

There are different implementation choices for MPI-RMA operations. Two exiting open-
source MPI implementations support MPI-RMA: MPICH [43] and Open MPI [37]. 

 
HW-based operation Implementation is supposed to provide higher performance, but, it 
comes with some restrictions because this implementation only offers simple RDMA 
communication such as writing and reading contiguous data. It does not sup- port complex 
communication like accumulating non contiguous data segments 
(e.g. MPI_Accumulate). 

 
AM-Based operation Implementation this is different from the previous one be- cause when 
an origin process preforms a one-sided operation by using MPI_Isend the target process 
receives a set of messages with a receiving progress. 
As HW-based operation comes with some limitations, MPI implementations combine both 
HW-based and AM-based implementations. We mention that the remote mem- ory access 
between processes on the same node is implemented as HW-based operations because it uses 
direct memory accesses to a shared-memory region. 
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2.4.4 MPI-RMA Window Creation 

All MPI-RMA communication operations occur in a window. A window in MPI- RMA is 
represented by a group of processes, stated at window creation time by a com- municator 
and a contiguous region of memory at each process. The memory region at each process can 
be different in address and size for each process. MPI window creation is a collective and 
synchronous operation over the given communicator that occurs by calling MPI_Win_create 
or other window creation routines that will be described here. In addition to a communicator, 
buffer pointer, and buffer size parameter, there is a ‘dis- placement unit’ and an optional set of 
MPI_Info hints which can be specified to enable potential optimizations by the MPI 
implementation. 
One-sided communications can only be used in the exposed memory in the window. MPI-3 
specifies three new window creations: we cite here the allocated windows, dy- namic 
windows, and shared-memory windows. MPI allocated windows are created by using 
MPI_Win_allocate in comparison with MPI-2 windows creation where the user provides the 
window buffer, here MPI allocates the buffer for this window. Windows creation are done 
collectively in the communicator, each process associates only one memory region with the 
window. This is an issue for the applications that need a dynamic allocation and deallocation 
of memory. This is why MPI-3 provides a new dy- namic window creation as shown in 
figure2.7which creates a window collectively without initiating the associated memory. 
Memory can thus be asynchronously attached to or detached from this window by a given 
process by using MPI_Win_create_dynamic, MPI_Win_attach, and MPI_Win_detach. 
MPI also provides the MPI_Win_allocate_shared routine which is used to create a new shared 
memory window, it allows processes to allocate a shared memory segment and then be used 
for the shared memory programming. It allows programmers to do hybrid programming by 
combining MPI with OpenMP or threading libraries. Additionally, MPI_Win_sync is used to 
synchronize load/store operations to minimize the overhead compared to a full window 
synchronization. The shared memory windows supply pro- grammers a complete and portable 
inter-process shared memory programming system by using MPI-RMA synchronization and 
atomic operations. Figure2.8shows an overview of three different versions of windows 
creation. 

2.4.5 MPI-RMA Data Movement Operations 

MPI-RMA offers the basic data-movement operations put and get and additional atomic 
operations called accumulates. MPI provides six types of data movement opera- tions. 
MPI_Put, MPI_Get, MPI_Accumulate, MPI_Get_accumulate, MPI_Fetch_and_op, and 
MPI_Compare_and_swap. 
MPI_Put transfers the data from the origin process to the target process. MPI_Get transfers 
the data from the target process to the origin process. 
MPI_Accumulate add the data from the origin process to the data on the target process. 
MPI_Get_accumulate also does the same as MPI_Accumulate but it re- turns the original 
value of the target data. MPI_fetch_and_op is a custom case of 
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Figure 2.7 – MPI-RMA window initialisation operations. 
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Figure 2.8 – MPI-3 memory window creation variants. 
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MPI_Get_accumulate that accumulates only one basic element from the origin process to the 
target process. Those MPI_Accumulate-like operations do computation to accu- mulate both 
the origin and the target data. MPI_Compare_and_swap transfers one basic element from 
the origin process to the target process by transferring two elements the origin element and 
the compare element. It first compares the "compare" element with the target element, if the 
two elements are equal then, it replaces the target element with the origin element and 
returns the original target value. 
The three data movement operations MPI_Get_accumulate, MPI_Fetch_and_op and 
MPI_Compare_and_swap perform the "read-modify-write" type of one sided operation 
between the origin process and the target process. 

In the context of this thesis we focused only on MPI_Put, MPI_Get and MPI_Accumulate. 
All these data movement operations are non-blocking. We see on the right of figure2.9 an 
overview of communication options in the MPI specification. 

 

Figure 2.9 – Overview of communication options in the MPI-3 specification from [49]. 

 
2.4.6 Accumulates Purpose 

MPI-RMA provides accumulate operations in addition to the basic data transfer op- 
erations. Accumulate-like operations are designed to take full advantage of the hardware 
support. By using accumulate-like operations the overlapping conflicting accesses are 
allowed only if the basic types are identical. MPI requires a specification of ordering and by 
providing these operations, it offers strict ordering by default, which is most conve- nient and 
easy to use for programmers. However, one should know that accumulate-like operations 
come with a cost and can worsen the performance because atomic updates are much harder 
to achieve than basic data transfer with put and get. A programmer can write its program 
with no ordering. Accumulates can also be adopted as atomic put or get if overlapping 
accesses are mandatory. The MPI_Get_accumulate with the operation "no op" acts like an 
atomic read, and MPI_Accumulate with the operation "re- place" acts like an atomic write. 
However, according to [49] the atomicity is guaranteed only at the level of each basic datatype. 
In other words, if two processes use "replace" to 
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perform two simultaneous accumulates of the same set of two integers (either specified as a 
count or as a datatype), the result may be that one integer has the value from the first process 
and the second integer has the value from the second process and thus, the result may be 
false. 

 
2.4.7 Synchronization in MPI-RMA 

In MPI-RMA all communication operations are asynchronous and performed in epochs. 
An epoch is defined by synchronization operations and forms a unit of com- munication. By 
the end of an epoch all the initiating communication operations are completed locally at the 
origin process and remotely at the target process. Epochs can be also seen as access and 
exposure epoch. In an exposure epochs the target process exposes its local window memory 
in order to be accessed remotely by other processes in the communicator, however, an 
access epoch is used to access the remote memory of another process and thus performed by 
origin processes. Note here that a process can be simultaneously in access and exposure 
epochs. 
MPI offers two main synchronization modes based on the involvement of the target pro- cess: 
active target synchronization and passive target synchronization. In active target 
synchronization, the target processes expose their memory in exposure epochs and thus 
participate in process synchronization. In passive target synchronization, the target pro- cesses 
are always in an exposure epoch and do not participate in synchronization with the accessing 
processes. Each mode is targeted at different use cases. Active target synchronization 
supports bulk-synchronous applications with a relatively static commu- nication pattern, while 
passive target synchronization is best suited for random accesses with quickly changing target 
processes. 

 
Active Target Synchronization MPI offers two modes of active target synchroniza- tion: fence 
and general post-start-complete-wait. In the fence synchronization mode, all processes 
associated with the window call fence and advance from one epoch to the next. Fence 
epochs are always both exposure and access epochs. This type of epoch is best suited for bulk 
synchronous parallel applications that have quickly-changing access patterns, such as many 
graph-search problems [21]. In Post-start-complete-wait mode, active target 
synchronization, processes can choose to which other processes they open an access epoch 
and for which other processes they open an exposure epoch. Access and exposure epochs may 
overlap. This method is more scalable than fence synchronization when communication is 
with a subset of the processes in the window, since it does not involve synchronization 
among all processes. Exposure epochs are started with a call to post (which exposes the 
window memory to a selected group) and completed with a call to test or wait (which tests or 
waits for the access group to finish their accesses). Access epochs begin with a call to start 
(which may wait until all target processes in the exposure group exposed their memory) and 
finish with a call to complete. The groups of start and post and complete and wait must 
match; that is, each group has to specify 
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the complete set of access or target processes. This type of access is best for compu- tations 
that have relatively static communication patterns, such as many stencil access applications 
[27]. Figure2.10shows an example of both active target modes. 
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Figure 2.10 – Examples of Active Target modes where synchronizations are made through Fence 
functions (on the left) or with Post-Start-Complete-Wait (on the right). 

 
Passive Target Synchronization The concept of exposure and access epochs is not relevant in 
passive mode, since all processes always expose their memory and can ac- cess other 
memory locations. This feature leads to arbitrary access to different memory locations but 
also potentially to improved performance. Passive mode can be used in two ways: single-
process lock/unlock as in MPI-2 and global shared lock accesses since MPI-3 as we can see in 
on the left of figure2.9that shows the main changes in MPI-3. 
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Figure 2.11 – Examples of Passive Target modes where synchronizations are made through 
Lock/Unlock functions targeting a specific process (on the left) or Lock_all Unlock_all (on the 
right). 
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MPI_LOCK_SHARED: multiple process can acquire a lock on the same target con- currently; 
(b) MPI_LOCK_EXCLUSIVE: only one process can acquire a lock on the target process in order 
to avoid conflicts with local accesses, a process may lock its local window exclusively. Exclusive 
remote window locks may be used to protect conflicting accesses and avoid data-race errors. 
The lock function itself is a non-blocking function it does not need a wait for the lock to be 
acquired. In the "lock_all unlock_all" model, each process starts a lock_all epoch (it is by 
definition shared) to all other processes. Processes then communicate via MPI-RMA 
operations to read write and update data by using MPI-RMA communication operations or 
synchronization operations. Figure2.11 shows an example of a lock_all epoch with several 
communications and flushes. MPI also allows mixing both models freely. 

2.4.8 MPI-RMA Memory Model 

MPI provides two memory models for the remote memory access the separate mem- ory 
model and since MPI-3 the unified memory model. These memory models are used to better 
support different applications and non-coherent systems and offer more pro- gramming 
flexibility. The MPI standard separates the window into a private and public copies. Many 
systems offer either a public memory region that is globally addressable by all processes or 
private buffers that are local to each process which is used for local load and store accesses. 
Local buffers are used primarily to store the copied data from the main memory. Besides, this 
local buffers are either coherent where all updates to main memory are reflected in all private 
copies consistently, or non-coherent, where conflicting accesses to main memory need to be 
synchronized and updated in all the private copies. Consistent systems allow for direct remote 
memory updates without any remote partic- ipation. On the other hand, non-coherent 
systems must call RMA functions to reflect public window updates into their private memory. 
Thus, in coherent memory, the public and the private window are identical while they remain 
logically separate in the non- coherent case. MPI thus differentiates between two memory 
models called RMA unified, if public and private window are logically identical, and RMA 
separate, otherwise. 
Furthermore, local load and store accesses always access the local window copy while the 
remote put, get and accumulates access the public window copy. Figures2.12and 2.13show 
the two memory models. 

In the separate memory model in order to handle memory consistency the the remote 
updates are handled by the public copy whereas, load and store accesses are managed by 
the private copy. Note here that the lock/unlock and sync synchronize the contents of the 
two copies for a local window. As described in [49] the semantics don’t say that windows 
have to be separated, just that they can be separated. In other words, remote updates may 
also update a private copy. However, the rules in the separate memory model ensure that a 
correct program will always observe the memory in a coherent manner. Those rules force the 
programmer to perform separate synchronizations. In contrast, the unified memory model 
relies on hardware in order to manage memory co- herency. According to Hoefler et al, the 
unified memory model assumes that the private and public copies are identical and the 
hardware automatically spreads updates from 
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Figure 2.12 – MPI RMA memory model (separate windows). 
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Figure 2.13 – MPI RMA memory model (unified windows) 
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one to the other. This model is close to today’s existing RDMA networks [81] where such a 
transmission is always performed. It allows one to exploit the whole performance potential 
from architectures in which both the processor and network provide strong ordering 
guarantees. Note that programs that are correct in the separate model are always also 
correct in the unified model and programming in the separate model is more portable but may 
require additional synchronization calls. 

 
 Load Store Get Put Acc 

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL 
Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL 

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL 

Put NOVL NOVL NOVL NOVL NOVL 

Acc NOVL NOVL NOVL NOVL OVL+NOVL 
 

Table 2.1 – MPI-RMA operation compatibility table when two or more processes access a 
window at the same target concurrently in the unified memory model. 
OVL: Overlapping operations permitted. NOVL: 
Non-overlapping operations permitted. From [31]. 

 
 

 Load Store Get Put Acc 

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL 

Store OVL+NOVL OVL+NOVL NOVL X X 

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL 

Put NOVL X NOVL NOVL NOVL 

Acc NOVL X NOVL NOVL OVL+NOVL 
 

Table 2.2 – MPI-RMA operation compatibility table when two or more processes access a 
window at the same target concurrently in the separate memory model. 
OVL: Overlapping operations permitted. NOVL: 
Non-overlapping operations permitted. X: The 
combination of operations is erroneous. From [31] 

 
The compatibility of MPI-RMA and native load/store operations changes from the two 

memory models when two or more processes access a window at the same target 
concurrently. For the separate memory model the non-overlapping of store with put or 
accumulates leads to an error whereas in the separate model the non-overlapping between 
those operations is permitted. the two tables2.1,2.2show two different compatibility matrix 
of MPI-RMA and native load/store on both separate and unified memory model respectively. 
As in the unified memory model concurrent local load store and RMA 
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MPI_Win_lock_all(win) 

… 

MPI_Accumulate(write_data, rank, REPLACE) 

MPI_Get_accumulate(read_data, rank, NO_OP) 

MPI_Win_flush(rank) 

… 

MPI_Win_unlock_all(win) 

 

accesses are allowed and according to the standard they are not invalid (the outcome is not 
defined by MPI but defined by the hardware). Thus, our focus in this thesis will be on the 
unified memory model model. 

 
2.4.9 MPI-RMA Operation Ordering 

The MPI standard in its current form does not offer any ordering mechanisms for the 
classic put get operations (non atomic operations) or non-overlapping operations. MPI offers 
two solutions to order the MPI-RMA operations from the same origin to the same target: 
atomic operations and additional synchronizations by using flush, fence or lock that wait for 
the operation to complete on the target side. 

 
Atomic Operations from the origin to the same target memory location these oper- ations 
are ordered for the program execution by default. Atomic operations have limited applicability 
because of their complex use and expensive in term of implementation. An example is shown 
in figure2.14. 

 
 

 

Figure 2.14 – Ordered accumulate operations. 

 
Flush Operations or Separate Epochs Flush operations become necessary in the 
passive target mode. A flush waits until all messages that were sent before the flush call are 
completed and their effects are visible to other processes. Flush synchronization can be called 
during any passive-target access epoch as shown in figure2.15(a) and ensures either local 
(flush-local, flush-local-all) or both local and remote (flush, flush- all) completion of all 
preceding MPI-RMA operations to the target. 

This provides a way to synchronize without the overhead associated with re-obtaining a lock. A 
flush incurs an expensive network round trip and thus a significant overhead by forcing the 
application to wait for the completion of the operations even if the immediate completion is not 
required. It is highly recommended to minimize the use of a flush synchronizations to 
improve the performance. 
Separate epochs as shown in figure2.15(b) can also be used to guarantee the ordering of 
operations. However it requires more synchronizations in the program. 
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(a) Ordering by flush (b) Ordering by epoch 

 

Figure 2.15 – Ordering by synchronizations. 

 
2.4.10 MPI-RMA Request Based operations 

MPI-RMA since MPI-3 provides some variants of put, get, accumulate, and 
get_accumulate called "R" version (MPI_Rput, MPI_Rget, MPI_Raccumulate, and 
MPI_Rget_accumulate) in order to control the completion of specific messages and the 
associated local buffer resources. 
These operations return an MPI_Request that can be used to determine a completion of a 
particular MPI-RMA operation. The request object can be similar to non-blocking point-to-
point communication that wait or test the completion by using MPI_Test and MPI_Wait or 
their equivalent. 
The same can be used in MPI-RMA request-based operations. It allows the user to dedicate a 
request handler with the MPI-RMA operations and test or wait for the local completion of 
these requests using the functions MPI_Wait and MPI_Test. Neverthe- less, completion refers 
only to local completion. For MPI_Rput and MPI_Raccumulate operations, local completion 
means that the local buffer is willing to be accessed. For MPI_Rget and MPI_Rget_accumulate 
operations, local completion means that the re- mote data has been landed in the local buffer. 
This operations are useful in cases where the application issues an enormous set of out- 
standing RMA operations and waits for the completion of them before it can start its 
computation. A common case would be for the application to issue data fetch opera- tions 
from a number of remote locations by using MPI_Rget and process them out of order as each 
one finishes (see listing 2.4). The Request-based operations present some drawbacks, these 
request-generating operations may be used only in passive target syn- chronization epochs 
(i.e., with lock/unlock and lock_all/unlock_all). The completion of a request returned by 
MPI_Rput, MPI_Raccumulate, and MPI_Rget_accumulate only signals local completion, thus 
the remote completion requires flush synchroniza- tion to signal the completion to the 
target. This flush may wait for the completion of unrelated operations, potentially from other 
processes. Additionally, users should be aware that the associated request manipulation can 
also cause additional overhead in 

… 

MPI_Win_lock(rank) 

MPI_Put(write_data, rank, …) epoch 1 

MPI_Win_unlock(rank) 

 
MPI_Win_lock(rank) 

MPI_Get(read_data, rank, …) epoch 2 

MPI_Unlock(rank) 

… 

 

MPI_Win_lock_all(win) 

… 

MPI_Put(write_data, rank, …) 

MPI_Win_flush(win) 

MPI_Get(read_data, rank, …) 

… 

MPI_Unlock_all(win) 
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the MPI implementation because it uses a finer-grained of individual RMA operations. For 
those reasons the request-based operations fall out of the scope of this work we did not 
consider them. 

1 int main ( int argc , char ∗∗ argv ) 2 { 
3 /∗ MPI i n i t i a l i z a t i o n and window c r eat ion  ∗/ 
4 
5 for ( i = 0 ; i < 1 0 0 ; i ++) 
6 MPI_Rget( buf [ i ] , 1000 , MPI DOUBLE, . . . , &req [ i ] ) ; 
7 while ( 1 ) { 
8 MPI_Waitany ( 100 , req , &idx , MPI STATUS IGNORE) ; 
9 p r o c e s s data ( buf [ idx ] ) ; 10 } 

11 
12 /∗ Window f r e e and MPI f i n a l i z a t i o n ∗/ 
13 return 0 ; 14 
} 

Listing 2.4 – Pseudo Code Using Request-based Operations 

 
2.5 MPI-RMA Proprieties and Programming Challenges 

The main challenges of RMA programming revolve around the semantics of op- eration 
completion, operation ordering, and memory consistency. Most programming systems offer 
some kind of weak or relaxed consistency because sequential consistency is too expensive to 
implement. Thus, separating the communication (remote access) from synchronization leads 
to complications for remote memory access programming. Furthermore, the MPI interface 
divides synchronization into memory synchronization or memory consistency and process 
synchronization. On top of that, the asynchronous nature of MPI-RMA operations makes 
programming in MPI-RMA even more challeng- ing. As results we cite here three main 
programming priorities that are mandatory to achieve efficient overlap of communication 
with computation. 
The first property relates to completion. To allow overlap of communications with com- 
putations, one-sided communications are asynchronous by nature, i.e. there is no need of 
progress for these communications to complete. This also means that, when initiated, the 
programmer has no way to know when the communication has been completed, be- fore the 
end of the current epoch. Figure2.16shows an example of this propriety. The Put from 
process 0 can complete at any time during the MPI epoch between the two Fence calls. This 
means that MPI_Put call can either return 1 or 0 depending on when the operation completes. 
A synchronization call like an end of epoch as Fence or an ex- plicit synchronization call such as 
MPI_Win_flush is needed to ensure the completion of MPI-RMA communications. 

The second property revolves around the ordering of communications. The ordering of 
MPI-RMA operations during an epoch is not defined. Communications can happen in any 
order and it is often fixed by over-synchronizing the program, causing a severe 
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Figure 2.16 – An example illustrating an unknown completion of MPI-RMA operations inside 
an epoch. 

 
performance loss due to lack of overlapping possibilities. As shown in Figure2.17de- pending 
on the execution order of the two MPI_Put operations, the result of the read on the value 
they write on can be either 2 or 1 depending on the execution order of the operations. 
Finally, the third property is about atomicity. Except for Accumulate routines ensuring 
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Figure 2.17 – An example illustrating the lack of ordering when using MPI-RMA oper- ations. 
 

the atomicity of accesses, regular MPI-RMA one-sided communications (e.g. MPI_Put, 
MPI_Get) are not atomic. This means that concurrent accesses to the same memory location 
result in an undefined behavior. An example of the type of issues that can happen is shown 
on Figure2.18. If a buffer composed of several elements of a specific MPI datatype here, two 
integers are written concurrently through MPI_Put to the same destination, the result can be 
either one of them (depending on the ordering), or a com- bination of the two where the unit 
of atomicity is the MPI dataype, here an integer. 

The MPI standard does not categorize this case as an error, but specifies that this is 
implementation dependent. In this work, we report such scenarios as errors. 
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Figure 2.18 – An example illustrating the non atomicity when using MPI-RMA opera- tions. 

 
While these three properties completion, ordering and atomicity are the root of the per- 
formance of MPI-RMA, the associated non-determinism makes it difficult to implement such 
programs without errors. 
Our goal is to tackle these issues and help the programmer find such errors in MPI-RMA 
programs. 

 

2.6 Conclusion 

In this chapter, we first introduced PGAS and its characteristics, we then presented MPI 
synchronous and asynchronous two-sided point-to-point communication and MPI collectives 
before talking about MPI one-sided point-to-point communication and its semantics. We 
showed that the main difference between the two MPI point-to-point patterns (one-sided 
and two-sided) is that the RMA interface separates communication and synchronization and 
offers different collective and non-collective synchronization modes. Besides, it allows the 
programmer to choose between implicit notification in active target mode and explicit 
notification in passive target mode in addition to several ways of creating windows. This large 
variety of options allows users to create complex programs but, current MPI-RMA 
implementations come with several limitations and challenges with respect to operation 
ordering, operation completion and atomicity. 
These challenges make reasoning about MPI-RMA more complex and lead to memory 
consistency errors. On top of that, These limitations generate non-deterministic behav- iors 
and thus result on undefined execution states. 

Our goal is to address these limitations by providing a solution to tackle memory 
consistency issues. In the next chapter, we will introduce memory consistency and show some 
motivating examples of memory consistency errors. We will then, exhibit our main 
contributions for the purpose of detecting data race errors in MPI-RMA programs. First, by 
dynamically analyzing the program, we detect data race errors at runtime. Second, we detect 
local concurrency errors at compile time by using a static analysis based on pointer aliasing. 
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CHAPTER 3    

DYNAMIC DATA  RACE  ERRORS DETECTION IN MPI-RMA 

PROGRAMS 

 
 
 

The work that will be shown in this chapter has been published at EuroMPI in 2021 [1]. The 
content is reproduced in this chapter. 

 

3.1 Introduction 

Several MPI programs are written in Fortran/C/C++ and run on clusters with thou- sands to 
hundreds of thousands of cores. These programs can have not only the common C/C++/Fortran 
bugs such as memory leaks or buffer overflow, but also bugs specific to MPI such as deadlocks, 
illegal buffer reuse or hazard accesses to a memory region. Ear- lier, we presented MPI-RMA 
programming challenges involving data race errors, which is troublesome for developers to 
debug because those bugs appear somewhere in the pro- gram. There are many tools for MPI 
errors detection that are unreliable for such bugs because they do not provide any coverage 
guarantee over the space of nondeterminism or data race errors in MPI programs. 

The MPI standard offers a rich set of features such as non-blocking primitives and 
nondeterministic constructs that help developers write better high performance applica- tions. 
These features, however, complicate the task of large-scale debugging, especially over the 
space of nondeterminism, which requires causality tracking. It also creates debugging 
challenges that are even more difficult than the scenarios presented in the previous section. 
Traditional causality tracking algorithms, such as Lamport clocks and vector clocks, are usually 
not sufficient to handle such complex semantics especially when it comes to data race errors 
detection. In addition to MPI-related bugs, data race errors in distributed memory 
programming are recognized as challenging bugs. The difficulty of these bugs lies in the lack of 
ensuring the same order of processes interaction and the absence of completion awareness. 
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In this thesis, we investigate the insufficiency of the studies that have been done for this 
kind of errors such as trace-based approaches and Lamport happens-before order. We 
propose a new approach to detect data race errors in MPI-RMA programs. To detect this kind of 
errors in MPI-RMA programs for a given set of data, a dynamic verification is more suitable. By 
using a dynamic verification we can detect the very first data race error that occurs in the 
program and thus, stop the program immediately as other data races can be a side-effect of 
the first one. 

While there are a lot of existing dynamic verification tools for other types of parallel 
software, to the best of our knowledge there is no similar tool that support MPI-RMA 
programs. We provide a main analysis that can realize and maintain a full coverage of the 
data race errors detection. It relies on analysing the program at execution time for purposes 
of collecting all memory accesses including native load and store ones. This approach gives a 
very good error coverage but comes with overhead costs. A static anal- ysis of the program 
could improve the overhead cost by better filtering and collecting load and store accesses. 

While in dynamic verification, searching data race errors in a program count on a given 
set of data, it is still restricted by the information obtained during runtime. Static analysis might 
automate this process and can warn the user of data race errors before performing the 
dynamic analysis. 

Both protocols are implemented in our tool called the RMA-Analyzer. The RMA- Analyzer 
implements the data race errors algorithm and provide a complete data race errors analysis 
to detect all possible errors in MPI-RMA programs. 

 

3.2 Memory Consistency in MPI-RMA 

A memory consistency is the term used to determine if the memory accesses state is well 
defined. A memory consistency state is generally used to verify if concurrent accesses or 
non-deterministic behaviors occur during a given program. If a memory vi- olation is found it 
can cause memory consistency errors. 

 
To explain how a memory consistency error can occur in MPI-RMA programs. We 

introduce some memory consistency properties respectively called "Happens-before" and 
"consistency order" based on some formulas used by a paper written by the MPI-RMA 
working group [49]. 

3.2.1 Happens-before Rules 

Based on Lamport clocks [80] and vector clocks [93] the relation hb 

events of a system depends on the following conditions: 

[60] of a set of 
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−→ b it does not imply the consistency order between the two operations. Thus, a −→ 

 

—if a and b are events in the same process, and a comes before b, then 

a −h→b   b. 

—if a is the event that sends a message by one process and b is the event that 

receives the same message by another process then a −h→b   b. 

—if  a −h→b   b and b −h→b   c then a −h→b   c. 
Furthermore the −h→b   order can be necessary to know when the execution effects of an 

operation are completed. Retrieve this information for MPI events can be a difficult task 
because an MPI event can be in different states from the invocation of the MPI call by a given 
process to the end of the event locally. To order the MPI events correctly the completion 
state does not suffice thus a correct synchronization requires a definition of 

the −h→b   relation between conflicting accesses. For example let’s consider two operations 
Op1 at time t1 and Op2 at time t2 accessing the same memory location M with an intended 
ordering of t1 < t2. The effect of Op1 on M (if any) must be visible for t2 and no effect of Op2 
on M shall be visible before. Concerning the conflicting accesses read and write operations 
that access the same memory location so-called data hazards impose a strict ordering among 
operations: write-after-write, read-after-write, and write- after-read. The ordering restrictions 
of such operations are imposed by the application, e.g., by the sequential order [40] of 
operations in the application’s source code. Compilers may typically reorder operations as long 
as these ordering constraints are not violated, which otherwise would lead to erroneous 
results. 

3.2.2 Consistency Order Rules 

The Consistency order [49] is the partial order of actions that happen in memory. 
If a −c→o   b that means that the memory effects of action a are visible before those of b. 

This order is mandatory for some synchronization actions like the flush ones to order the 
memory accesses without any synchronization between processes. 

The consistency order does not introduce any happens before relations, if a −c→o   b then the 
effects are guaranteed to be visible only if a −h→b   b. Otherwise, b could happen in real time 
before a and thus a’s affects are not visible to b even if a −c→o   b and holds for a particular 
execution.  It is guaranteed however, that a −c→o   b implies that operations that happen 

later than b will eventually observe the effects of a. This guarantee is needed for polling 

and does not require −h→b   ordering.  On the other hand, an operation that synchronizes 

processes and is thus, part of the −h→b   may not synchronize memory accesses, that is if a 
hb hb 

does not imply any −c→o  . 
 

3.2.3 Memory Consistency Errors in MPI-RMA Programs (Data Race 

Memory consistency errors also called data race errors in MPI-RMA programs were clearly 
specified in the work of [23]. 
If there are two concurrent events accessing the same memory area and there is at least one of 

them that is an update (write) operation (local or remote), there exists a memory 
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−−
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Figure 3.1 – Conflicting two operations in the same program. 

 
consistency error in an MPI-RMA program execution. An exception to this definition is made 
for accumulate operations that use the same operation and basic datatype. 

Two events a and b are concurrent (∥cohb) when they are not ordered by consistency 
 
 
 
 
 
 
 
 

 
cohb 

 
 
 
 
 
 
 
 
 

Figure 3.2 – Synchronized operations in an MPI-RMA program. 
 

happens-before order −c−oh→b  . In other words, a data race error may occur in the program 
if a cohb b, and if they are directed towards overlapping memory locations at the same 

process and either: 
—one of the two operations is a put rp (remote put). 
—if one of the operations is an accumulate RA (remote accumulate). 

—if the first operation is a get rg (remote get) and the second one a local write (w). 

Path1 

Path2 

 

MPI_Win_lock_all(win) 

 
 

MPI_Put  MPI_Get 

 
 

MPI_Win_unlock_all(win) 

 
MPI_Win_lock_all(win); 

int s = 12, r = 0; 

MPI_Put(&s, …, X, Target); 

MPI_Get(&r, …, X, Target); 

assert(r==10); 

MPI_Win_unlock_all(win); 

MPI_Lock_all 

MPI_Put(buf) 

MPI_Flush(win) 

MPI_Get(buf) 

MPI_Unock_all 
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−−
→ 

−−
→ 

X = 0 

P1 : 

Y = 1 

P2 : 

X = get(Y, P2) 

a = X 

Y = get(X, P1) 

b = Y 

 

a ∥cohb b ⇔ a cohb b ∧ b cohb 
a

 

Figure3.1shows an example of two conflicting operations (eg; put and get) in the same 
program. 
By contrast a program is called data-races free if all the conflicting accesses are ordered 
by the −c−oh→b as depicted in figure3.2. 

a −
c
−
oh
→

b 
b ⇔ a 

−h→b 

b ∧ a −c→o   b 

Only programs where all executions are data-races free have well-defined memory 
semantics. If a program has well-defined semantics, then a read action r will always return 
the last written value (last as defined by the consistent happens-before order). 

 

3.2.3.1 Non-determinism in MPI-RMA 

The MPI standard allows MPI calls to have nondeterministic behaviour to give more 
flexibility to the programmers and reduce code complexity. In MPI-RMA programs we can 
face some nondeterministic behaviours due to the lack of memory consistency. To better 
understand the non-determinism issue in MPI-RMA programs, we provide an intuitive 
example to explain the MPI-RMA semantics, we illustrate possible MPI-RMA programs 
behavior using example shown in figure3.3. The figure considers the MPI- 

 

 

Figure 3.3 – Example of a non-deterministic behavior in RMA programs. 

RMA program with two processes P1 and P2.  The process P1  has shared variable  X with 
initial value 0 and local register a. Process P2 has shared variable Y with initial value 1 and 
local register b. We assume here that the programs synchronize after setting initial values for 
their shared variables. In this program we see RMA’s remote reads and writes. The first 
process reads remotely the value of Y and stores it in X. The process P2 reads remotely the 
value of X and stores it it in Y. The CPU handles the remote accesses which are enqueued onto 
its network interface card (NIC), the NIC then executes required remote communication and 
memory accesses without involving the CPU. After initiating the remote accesses, each 
process reads locally the variables X and Y, respectively, and stores the results in registers a 
and b. To understand this program under sequential consistency, one needs to consider the 
inter-leavings of the actions making up the get statements in each process. Possible execution 
results include a = 0, b = 0 and a = 1, b = 1, and, with non-atomic get statements, a = 1, b = 0. 
Nevertheless, RMA has additional behaviors, because the local reads are not guaranteed 
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to run after the get statements. We have a possible execution result under a non- 
sequentially-consistent memory model which is a = 0, b = 1. 

Discussion 

We have provided the notion of happens-before consistency order, which allows us to study 
the causality between events in an MPI execution. We have also defined the con- cept of 
concurrent events in a program, which is the effect of not verifying the happens- before 
consistency order between MPI-RMA events. This is in contrast with most proto- cols based on 
the traditional Lamport clocks and vector clocks, which consider an a event to happen-before 
the b event as sufficient to determine overlapping accesses. We will introduce some 
motivating examples and show some data race errors that can happen in MPI-RMA programs 
when the MPI-RMA events are not ordered by happens-before consistency order. Since MPI-
RMA communication operations are asynchronous the happens-before relation between 
operation is by default not verified. We will also show two different kinds of data race errors 
and later in the chapter introduce the MPI-RMA operation compatibility table which is a 
matrix that presents all data race errors that can be caused between local and remote 
accesses. 

3.2.4 Motivating Examples of MPI-RMA Programs 

The main characteristic of MPI-RMA programming is the ability to decouple data 
movement from synchronization, it is the strength of one-sided communication, but, it is also 
hard to use and understand. Furthermore, programmers must face complex memory model and 
insert the synchronization operations needed to maintain data consistency in the presence of 
asynchronous data accesses from multiple processes. It thus, presents a complex 
synchronization model and it is difficult to maintain memory consistency between possibly 
conflicting asynchronous data accesses. Bugs related to memory con- sistency may lead to an 
erroneous state manifested during one execution that may not be triggered during another 
execution due to the underlying MPI library and network interconnect facilities. Often, errors 
remain unnoticed for a long period of time and only occur in large-scale scenarios or after 
porting the application to a different HPC platform. This complexity can expose applications 
to synchronization defects. We will introduce some memory consistency related bugs that are 
divided in two types of errors: at a single process in the same epoch and between several 
processes in different epochs. We will also show some motivating examples and highlight the 
most common errors in a one-sided communication program. 
In MPI-RMA programs we can have two kinds of memory consistency errors. One oc- curs 
within an epoch involving one process, the other happens across several epochs and between 
two ore more than two processes. 
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P0 (Origin) 

 
MPI_Win_lock_all(win) 

MPI_Put(buf, 1, Y …) 

buf = … 

MPI_Win_unlock_all(win) 

P1 (Target) 

Window location Y 

MPI_Win_lock_all(win) 

MPI_Win_unlock_all(win) 

 

Consistency errors within the same epoch in MPI-RMA programs 

A data race can happen at the same process within an epoch. Several data race errors can 
occur between the MPI-RMA operations and the native load store operations. In a single 
program, conflict accesses to the same memory region are allowed. Figure3.4 shows a typical 
example of a data race error within an epoch at a single process in a given MPI-RMA program. 
MPI_Put sends a data in buf from process P0 to P1. In this Example the MPI_Put has the 
program order with the store operation on buf occurring right after. However, the MPI_Put 
does not have the consistency order with the store operation and as the MPI_Put is an 
asynchronous operation the data may or may not be sent. The MPI_Put and the store operation 
do not have the "consistency order happens- before" relation since the two operations access 
the variable buf and happen on the same process and the data may be corrupted. Such errors 
are very common in MPI-RMA programs and even in applications that use one-sided 
communication. The same problem was found in the Asynchronous Dynamic Load Balancing 
(ADLB) [65] library, which is used in the Green’s function Monte Carlo (GFMC) [79]. Since this 
application transfers data by using MPI_Put and it does not wait for the completion. This 
application worked correctly on multiple machines. But, when the code was transferred to 
the IBM Blue Gene/Q, the MPI implementation has shown a buggy state. Because the 
function was out of local buffers and had to transfer the data when the buffer were freed. In 
such cases, the function stack was overwritten by other functions, resulting in concurrent 
accesses. 
Several scenarios can be the origin of this kind of error for example between an MPI_Put and a 
store or MPI_Get with a load or store happening right after or even between only MPI-RMA 
operations from the same origin towards the same window memory location. 

 
 
 
 

 

Figure 3.4 – Memory consistency error within an epoch at a single process. 
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MPI_Win_wait 

MPI_Win_post 

  

MPI_Win_start 

  

MPI_Win_complete 

  

 

 Group B 

MPI_Win_lock(P1) 

  

MPI_Win_unlock(P1) 

  

 

 

Consistency Errors among several epoch in MPI-RMA programs 

A data race also occurs across several processes in different epochs (eg, between two 
synchronization modes) as shown in figure3.5. The MPI_Put from process  P2  that is issued 
inside a lock/unlock synchronization epoch in group B towards process P1 of group A, and the 
MPI_Get that is issued in a Post-Wait epoch in group A are con- flicting accesses. As a Get is a 
local write in process P1 and the Put is a remote write in process P1 from process P2 even by 
using different synchronization modes, those communication operations are considered as 
concurrent accesses because they target the same memory location independently of epochs 
in which the communication operations are issued. 

Figures3.6,3.7and3.8illustrate errors occurring among multiple processes and be- 
 
 
 
 

 
 
 
 
 

Figure 3.5 – Memory consistency error occurring in several synchronization epochs. 

tween different epochs. In figure3.6, an MPI_Put on P0  and an MPI_Get on P1 both access 
the same window buffer Y located on P1. The two operations do not have happens-before 
consistency order relation between them, since they could happen in any order. This means 
they access the same memory location concurrently and thus lead to a data corruption or 
undefined results during the execution time of the program. Here we can see that memory 
consistency errors also exist when interleaving MPI-RMA operations between processes. 

Secondly, in figure3.7, processes P0 and P2 both perform an MPI_Put at the same 
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Figure 3.6 – Consistency error between two processes. 

 
window location Y on process P1. For the same reason as before, a consistency issue also exists 
in this case, where different processes access a same memory location concurrently on the 
same peer. 

Finally, figure3.8depicts an example of a memory consistency across processes where 
 
 

 

P0 (Origin) P1 (Target) 

Window location Y 

P3 (Origin) 

MPI_Win_lock_all(win) 

MPI_Put(_, 1, Y, …) 

MPI_Win_unlock_all(win) 

MPI_Win_lock_all(win) 
 

MPI_Win_unlock_all(win) 

MPI_Win_lock_all(win) 

MPI_Put(_, 1, Y, …) 

MPI_Win_unlock_all(win) 

 

 

Figure 3.7 – Consistency error between three processes. 

both MPI_Put on process P0 and the store on process P1 access the same window buffer Y 
belonging to process P1. Furthermore, the two operations are concurrent and happen 
between two different processes. Thus, there exists a data race error between MPI-RMA 
operations and native load store operations among several processes. 

 
These errors that are demonstrated here are common and happen frequently in an MPI-

RMA program because of the possibility of having several implementation choices. One can 
freely use communication operations with less synchronization calls. The lack of 
synchronization calls in the program can be a justified choice to deal with performance but it can 
also be the reason of the presence of data race errors in the program. 

P0 (Origin) 

 
MPI_Win_lock_all(win) 

MPI_Put(_, 1, Y, …) 

… 

MPI_Win_unlock_all(win) 

P1 (Target) 

Window location Y 

MPI_Win_lock_all(win) 

MPI_Get(Y, 0, _, ...) 
… 

MPI_Win_unlock_all(win) 
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Figure 3.8 – Consistency error between native Store and MPI_Put across two processes 

. 

 

3.2.5 Extending MPI-RMA Operations Compatibility 

Since MPI-3, all MPI-RMA operations are allowed inside an epoch but some situ- ations 
can lead to an undefined behavior. MPI-RMA operations compatibility table is presented in 
table3.1. In this table, all operations are supposed to read or write on  the same memory 
location. The cross means that consistency order between the two operations is not 
guaranteed. This table is different from the one in [23] as we separate operations from/to the 
origin and target processes. Indeed, MPI-RMA operations can be considered as READ or 
WRITE operations depending on the process that performs them (Origin or Target). As an 
example, a Put operation is a READ for the origin pro- cess and a WRITE for the target process. 
We differentiate local and remote statements as follows: 

 

 ORIGIN TARGET 
LOAD STORE 

GET PUT GET PUT 

O GET 

PUT 

x 

x 
x 
✓ 

x 
✓ 

x 

x 
x 
✓ 

x 

x 

T GET 

PUT 

x 
x 

✓ 
x 

✓ 
x 

x 
x 

✓ 
x 

x 
x 

LOAD x ✓ ✓ x - - 
STORE x x x x - - 

Table 3.1 – Compatibility of RMA operations and local load/store accesses on the same address 
space. O=ORIGIN, T=TARGET, ✓= overlapping is permitted,x=undefined behavior, overlapping 
is not permitted. 

 
 

Local Statements (Local Accesses) A local statement also called local access can only read or 
write variables that are at the origin process, the origin process executes 

P0 (Origin) 

 
MPI_Win_lock_all(win) 

MPI_Put(_, 1, Y, …) 

… 

MPI_Win_unlock_all(win) 

P1 (Target) 

Window location Y 

MPI_Win_lock_all(win) 

Store Y 

… 

MPI_Win_unlock_all(win) 
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the statement. By using a local statement, a given process can access variables in its 
memory. The term local is used because of the process does not access the memory of other 
processes. Accessing a variable can be either atomic or non-atomic. 
Local put Process P reads its local memory location and writes it to a remote memory location. 
Local get Process P reads from a remote memory location and writes it to its local memory 
location. 

 
Remote Statements (Remote Accesses) A remote statement also called a remote access can 
read or write to and from any memory location. By using a remote access, a given process can 
access any variable in memory. Remote accesses are performed asyn- chronously. When a 
process performs a remote access, it requests the network interface card to perform the 
needed read or write operations. 
Remote put A remote process RP reads from a remote memory location of P and writes it to 
its local memory location. 
Remote get A remote process RP reads its local memory location and writes it to a remote 
memory location of P. 
We show an example of this local and remote accesses in figure3.9aand3.9b. As the 
completion of RMAs can occur any time during an epoch, and it is not dependent on the time 
when the RMA call is issued, so if two accesses are performed to the same address during the 
same epoch, and one of them is a write, then there is a memory consistency issue. 
Several scenarios involving different processes can account for this situation: figure3.9 

 

address space Pi 
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window 

 
P1 P2 
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LOAD 

 
STORE 

 

 

 
LOAD 

 

 

(a) Concurrency 
process. 

Register 
 

errors inside a 

 

 

(b) Concurrency errors across processes. 

Figure 3.9 – Example of memory consistency errors. Dashed edges represent WRITE 
operations while plain edges represent READ operations on the colored boxes. O and T 
respectively indicate the origin and target processes. 

 
presents conflicting accesses at (a) origin and (b) target of RMA operations. Conflicts can also 
arise if one memory location is used as origin (i.e., as local buffer in Get/Put) and as target 
window. First, in figure3.9a, one process can issue a remote Get to write a local variable in its 
private address space and use this variable with a load. As both accesses are unordered, this is 
memory consistency issue. The same situation arises when 
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the access address is in a window: a local store for instance and a Put to a distant vari- able, 
reading this same variable is also a memory consistency issue. Second, figure3.9b illustrates 
different cases involving three processes. For instance, a remote Put by one process and a 
remote Get by another process, to the same address in the same window leads to non 
coherent result (red edges in the figure). 

All this memory consistency errors should be detected and tracked during a program 
compile time and execution time in order to ensure a correct program and a correct 
execution state. By defining all possible errors and separating them into two groups: local 
errors and remote errors depending on the process causing them. On this basis, we can verify 
MPI-RMA programs and tackle coherency issues by providing a complete program analysis. 

Discussion 

As we introduced some examples that show how a data race error can occur inside a single 
epoch with one process and among multiple processes in several epochs. 
We also extended the compatibility table that summarizes all the possible scenarios of 
concurrent accesses. In contrast to the state of the art compatibility matrix we distin- guish 
between local and remote accesses depending on the origin process that initiates the 
communication operation in order to cover all the possible data race errors. This table allows 
us to clearly identify the type of memory access that can lead to a data race error. In 
reference to this table we can easily pinpoint data race errors in a given program and tackle 
them at compile time and execution time. 

 
3.3 Dynamic Data Race Detection Algorithm 

To detect errors presented in table3.1, the runtime has to maintain a precise state of the 
distributed memory by keeping track, for each process, of all the accesses performed to 
memory addresses it owns and shares with other processes through RMA. Accesses can be 
either local loads and stores, or MPI-RMA operations, from the process itself or from remote 
processes. In order to reduce the cost in term of time and space of such bookkeeping, 
memory regions modified are stored as union of disjoint intervals in a binary search tree 
(BST). Each node of the BST contains a memory address interval (itv), the access type (access) 
and possibly empty left (Left) and right (Right) sub-tree containing intervals lower and higher 
resp. to the parent interval. All BST modifications are protected by a lock. 
For each window created, each process creates a BST associated to the addresses it owns in this 
window. In order to be notified by distant processes of accesses to the addresses it owns in a 
window, a new thread is created and keeps calling MPI_Recv from any source to receive access 
notifications from other processes. A BST is also created for variables that are not in any 
window, at MPI_Init. For each beginning of epoch, associated to the 
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window is emptied. When a GET is executed, the BST of the origin process is updated with the 
local variable written, either the BST of a window or the BST of local variables. The distant 
variable has to be added to the BST of the target process as a read. The GET function is 
instrumented to send a notification (with an MPI_Send) of the address read to the target 
process, and the process increases the number of notification sent to the target. Likewise, a 
PUT sends a notification for a write to the target process and adds a read to the local BST. In 
both cases the target process receives the notifications and all updates to the BST are 
performed according to Algorithm1. It checks if the new memory access will lead to a 
concurrency error or not. If the memory access is safe, the memory interval is inserted in the 
BST (line 5 in the algorithm). If the memory access overlaps a memory interval stored in the 
BST and one of them is a write, the program is stopped and an error message is returned to 
the developer (line 3 in the algorithm). The same applies for PUT accesses. 

When an epoch terminates, each process counts the number of notification the other 

Algorithm 1 Data Race Errors Detection 
 

Require: Binary search tree T , Memory interval I, Access type A ▷ A is READ, 
WRITE, local READ or local WRITE 

Ensure: Updated T. An error message is issued in case of a data race 
1:  procedure BSTUPDATE(T, I, A) 
2: if I T.itv = then 
3: if ACCESS(A, T.access) == ERROR then 
4: Raise an error and stop the program 
5: else 

6: T ← splitInterval(T, I ∩ T.itv, A) 

7: I I T.itv 
8: if isLeaf(T ) then 

9: T ← newNode(I,A) 

10: if I T.itv is an interval and A == T.access then 
11: T.itv I T.itv 
12: mergeNeighboringIntervals(T) 
13: else 
14: if I < T.itv then 
15: BSTupdate(T.Left, I, A) 
16: else 

17: BSTupdate(T.Right, I, A) 

process have sent to it (with an MPI_Reduce) and terminates the receiver thread when all 
messages have been received. This behavior is made possible by the fact that, we focus on MPI-
RMA programs that use the epoch synchronization calls on all the processes of the window, 
i.e. as a collective call. Generalizing this approach by exchanging this number of notifications 
through Send/Recv calls instead would be feasible, but is out of the scope of this thesis. 
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Finally, all load and store accesses are also instrumented during an epoch and theses 
accesses are registered in the BST for local variables or the BST associated to a window, 
depending on the range of addresses. 
The intervals of the BST do not approximate regions: all addresses in the interval have been 
accessed with the access type registered. There is no over-approximation of the accessed 
regions and therefore no false positive. 
table3.2defines the types of access to the memory (ACCESS function on line 2 in the 

 

ACCESS local read local write read write 

O GET 

PUT 

write 
read 

write 
read 

ERROR 
read 

ERROR 
ERROR 

T GET 

PUT 

read 

ERROR 

ERROR 

ERROR 

read 

ERROR 

ERROR 

ERROR 

LOAD local read local write read ERROR 
STORE local write local write ERROR ERROR 

Table 3.2 – Transition table for access types. Given an address with an access type (first row) 
and a new operation to this address (first column), the table defines the new access type after 
the operation. We assume there is no data race within a (multithreaded) process. 

 
algorithm). Local access types correspond to coherent accesses within the process. No 
coherency issues can arise with only local accesses. A local store access to an address 
previously locally read modifies its access type without error. To compare two statements for 
memory accesses, the first access is to be read by column, and the second one by row. For 
example, in the figure3.4, the first access at origin side is a PUT, thus a read in column. The 
second access is a STORE in row. This combinaison leads to an error. If the two statements 
were inverted, a STORE would have been associated to a local write in column and the PUT at 
origin in row, which would have resulted in a legal read access. Line 6 splits the interval if the 
access A is different from the interval access. If accesses are the same, the splitInterval does 
nothing. Lines 11-12 correspond to the case where the new interval is disjoint and next to the 
interval T. Both intervals are then fused, and possibly with the rightmost interval of the left 
sub-tree or the leftmost interval of the right sub-tree of the modified node. This is what the 
function mergeNeighboringIntervals does. 

 
Algorithm Proof we now prove that Algorithm1detects all memory consistency er- rors, 
and only memory consistency errors when there is no aliasing between co-existing windows. 

 
All memory consistency errors are detected by the RMA-Analyzer : An error 
happens when two accesses are performed to the same address of the same process, one 
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of them is a write and they are unordered. Let us assume first that this address is inside a 
window, and only belongs to one window (aliasing between windows is not considered). It is 
owned by one process and this process has created a BST at window creation. One of the 
accesses is either a PUT or GET distant or local, and the other access is either a PUT, GET, 
load or store. Load and store accesses are assumed to be coherent ac- cesses, even if multi-
threaded accesses are performed. The RMA calls a MPI_Send to the process owning the 
address and since all notifications are counted before closing an epoch, this notification 
reaches the target process and updates the BST of this window (unique). A load or store 
access updates the same BST of the window accordingly and since the BST is protected with a 
lock, modifications are serialized and the Algorithm 1 will raise an error at the second 
modification. 
Since the BST is emptied only at the beginning of an epoch (epoch creation is a collec- tive) 
the BST will find that two accesses are performed to the same address with one of them is a 
write. If the address is not in a window, the BST in charge of local addresses is used. The local 
address of the GET or PUT is accessed and as these functions insert their accesses to the local 
BST, the coherency issue is detected. 

 
The only errors detected by the RMA-Analyzer are memory consistency er- rors : In order to 
detect the error, the two accesses have to appear in the same epoch (BST are reset between 
epochs), and in the same window (there is only one BST per window) or in the same private 
memory (local variables of a process). According to table 3.2, the error can only be raised 
when two accesses are performed to the same address with one of them distant and one of 
them a write. 

 

3.4 Design and Implementations of the RMA-Analyzer 

Our data race errors detection algorithm passes by two main steps. As first step, we use 
the MPI profiling interface (PMPI) in order to intercept all RMA calls and retrieve all the 
needed information to our analysis. As second step, for the local load store accesses we use 
an llvm pass to collect them from the first MPI-RMA window opening in the program and 
check for data race errors (if any). 
We first, present PMPI and the LLVM toolchain. Second, we introduce the PARCOACH framework 
overview prior to discussing the RMA-Analyzer framework overview. 

3.4.1 The MPI profiling Interface 

MPI defines a profiling interface called PMPI to help the user to perform various 
analyses. PMPI thus, can be used for the performance measurement and data tracking. The 
profiling interface provides wrappers for all MPI calls in order to help the user  to take 
advantage of the profiling either individual MPI calls (e.g., PMPI_Put) or the whole library. 
This functionality is provided by providing two APIs for each MPI routine MPI_ and PMPI_. The 
wrapper invokes the MPI calls from the runtime by issuing the 
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… 

if ( rank == 0 ) { 

MPI_Put( … ) 

} 

… 

Wrapper 
Executable 

int MPI_Put ( … ) { 

put_counter ++; 

return PMPI_Put( … ); 

} 

 

corresponding PMPI calls. 
Figure3.10shows a simple example of the use of PMPI wrapper that counts the number of 
MPI_Put that are found in the program. Furthermore, this interface may be used to change 
the behaviour of the MPI routines without code source modification. The flip side of the 
profiling interface is that there can be only one active wrapper linked with the program. 

 
 

Source Code 

 
 

Figure 3.10 – A simple example of PMPI wrapper counting the number of MPI_Put. 

 
 

3.4.2 LLVM Pass 

“LLVM is a Static Single Assignment (SSA) based representation that provides type safety, 
low-level operations, flexibility, and the capability of representing ‘all’ high-level languages 
cleanly. It is the common code representation used throughout all phases of the LLVM 
compilation strategy.” -LLVM Language Reference Manual [62]. 
The Low Level Virtual Machine (LLVM) is a compiler framework which is built around the LLVM 
Intermediate Representation (LLVM-IR) and comes with a large variety of analysis and 
transformation called LLVM passes. The LLVM framework was especially designed to optimize 
a program throughout its lifetime, which means at compile time, link time and even run time. 
Furthermore, LLVM includes back ends for static and 
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just-in-time code generation for architectures like x86-32, x86-64, ARM or PowerPC. LLVM has 
been developed as a set of libraries which implement various parts of a compiler. They can 
either be embedded into existing compilers to incorporate LLVM functionality or a set of LLVM 
command line tools can be used to access library features directly. All libraries provided by LLVM 
work on a common intermediate representation called LLVM-IR. It is possible to export the 
LLVM-IR at different stages of the compi- lation, to move it between tools or to modify it 
manually. 
To get an idea of how LLVM works, figure3.11shows a classical static compilation process that 
uses LLVM tools. The example shows a small program consisting of three source files that is 
compiled into a single executable. The source files contain code writ- ten in c, c++, and 
Fortran. There exists a language specific frontend to LLVM-IR for each source code. We cite 
here the frontends clang or llvm-gcc for C/C++ code as well as flang or llvm-gfortran for 
FORTRAN code. According to [36] flang will be replaced by Fortran18 (F18). F18 is the he New 
Fortran Front-end and is becoming the standard Fortran compiler for LLVM. To optimize the 
translation unit of each source code the tool chain uses llvm-opt tool that is run on each 
LLVM-IR file. The optimizers can be run as set of standard optimizations passes or as 
individually selected passes. 

 
 

 

Figure 3.11 – Static compilation using the llvm toolchain. 
 

Overall, LLVM provides a consistent infrastructure for the whole compilation process that is 
used in many important compilers. As all compilers target LLVM-IR as common intermediate 
representation LLVM is a great platform to write programming language 
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and target independent optimizations. 

3.4.3 Parallel Control Flow Anomaly Checker (PARCOACH) 

PARCOACH [85,50] is a framework that detects deadlocks caused by collectives in MPI, 
OpenMP, UPC and CUDA. 
It detects errors in two steps. First, an interprocedural static analysis builds a parallel 
program control flow graph (PPCFG) in order to get interprocedural information. In the 
PPCFG, each function is replaced by its CFG. This analysis is performed in order to study the 
control flow of all the functions of a program to find statically the incorrect ones: functions 
containing potential deadlocks. In this step warnings are triggered with all conditionals that 
potentially can be the cause of a deadlock. If a potential deadlock is detected, all collectives 
that are found inside incorrect functions are instrumented in order to verify the potential 
deadlocks at execution time. Check functions are thus, inserted before all collectives and 
return statement of the program. In case of an actual deadlock situation at runtime, the 
program is stopped. A message displaying the error is shown to the user with compilation 
information. 
An overview of the PARCOACH framework is given in figure3.12. The static analysis 

 

 
 

Figure 3.12 – Overview of the PARCOACH Framework. 

is performed in the compilation chain (middle end). Check functions are implemented in a 
library. 

Examples of potential incorrect situations are given in figure3.13. 
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(a) MPI Code 1 (b) MPI Code 2 (c) MPI Code 3 

 
 
 

 
Figure 3.13 – Examples of MPI codes containing collectives. 

 
All codes have two functions: f and c, collectives are written in bold. For the MPI code 1, 
PARCOACH finds a potential deadlock in function f because of the conditional (if) and triggers 
a warning about the MPI_ Barrier found the line right after (if). Indeed, depending on the 
conditional in f. The same error is reported for MPI_Ibarrier. 

For the MPI code 2 PARCOACH identifies the conditional (if) in c as a potential deadlock, but 
not the conditional (if) in f. Parcoach finds the same collective error and will not report any 
problem in f either. Nevertheless, as there is no valid sequence of collectives, the summary of 
c is empty. And yet, the conditional (if) in f is also respon- sible for a potential deadlock. 
In MPI code 3, PARCOACH will report an error for MPI_Reduce in c and MPI_Barrier in f. A 
potential error is detected for MPI_Reduce only because of the conditional (if) in c. 
PARCOACH returns conditionals (if) in c and f as potential deadlocks. 
When a deadlock is about to occur, PARCOACH stops the execution and reports an error 
message with compilation information. 
Figure3.14illustrates the PPCFG of the example MPI code 2 presented in figure3.13. The 
PPCFG is built based on the initial functions CFG presented in figure3.14(a). Thick nodes are 
collective nodes, boxes represent functions. 

For the code (1) presented figure3.13, PARCOACH reports the message presented in 
figure3.15. This feedback helps fixing the deadlock. For example the non-blocking barrier 
can be easily replaced by a blocking one. 

void c(){ 

MPI_Barrier(com); 

if(..) 

MPI_Reduce(..); 

} 

 
void f(){ 

if(..) 

MPI_Barrier(com); 

else 

c(); 

} 

void c(){ 

if(..) 

MPI_Barrier(com, ..); 

} 

 
void f(){ 

if(..) 

c(); 

} 

void c(){ 

MPI_Ibarrier(com, ..); 

… 

} 

 
void f(){ 

if(..) 

MPI_Barrier(com); 

else 

c(); 

} 
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$ PARCOACH : Error detected on rank 0 

Abort is invoking line 8 before calling MPI_Barrier in MPIcode1.c 

See Warning (s) : MPI_Barrier line 8 possibly not called by all 

processes because of conditional (s) line(s) 7, 

MPI_Ibarrier line 2 possibly not called by all processes because of 

conditional (s) line (s) 7. 

 

 

   

(a) Functions CFG (b) Functions PPCFG 

 

 

Figure 3.14 – MPI Code 2 functions CFG (left) and the corresponding PPCFG (right). 
 
 
 

 

 

 

Figure 3.15 – Error output returned by PARCAOCH used for the code in figure3.13 (a). 
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The RMA-Analyzer like PARCOACH combines the two analyses to detect memory 
consistency errors in MPI-RMA programs. However, the algorithms are not the same. The 
RMA-Analyzer adopts the synchronization semantics imposed by the MPI standard. 

3.4.4 The RMA-Analyzer Framework Overview 

An overview of the whole RMA-Analyzer framework is given in figure3.16. 

 

 

Figure 3.16 – Overview of the RMA-Analyzer Framework. 

 
Collecting Memory Accesses The first step of our analysis is about collecting all memory 
accesses of a program. To do so, we use two methods, depending on which memory 
accesses are recorded. 
To collect MPI-RMA routines information needed by our data race analysis, we use the PMPI 
interface. From the MPI_Win_create call, we get the size and the base pointer of the memory 
region exposed to other processes, and we start tracking it. From the MPI_Put and MPI_Get 
calls, we get the size and the offset of the remote access, the pointer of the local access, and 
their respective access types (read or write). We also instrument the beginning and the end 
of MPI epochs (i.e. MPI_Win_lock_all and MPI_Win_unlock_all in our case) to trigger and 
stop the recording of memory events respectively, and purge them at each end of epochs. 
Finally,  we  instrument the MPI_Win_free call to assess when to stop tracking the memory 
accesses on the associated MPI window. These pieces of information are then registered by 
the core of the RMA-Analyzer. While this solution is quite simple to implement and use in 
practice it only needs to be pre-loaded at runtime through the LD_PRELOAD environment 
variable, it does not consider local memory accesses (i.e., not from an MPI routine) and cannot 
detect all the errors listed in table3.1. 
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In addition to MPI-RMA routines information, we have developed an LLVM pass to instrument 
relevant load and store instructions. This enables us to detect all the errors listed in table3.1. 
Moreover, we implemented in this solution a compatibility with C and Fortran programs, 
which makes it desirable for analyzing production-quality codes that are often written in 
Fortran. However, it requires the user to rebuild its code to execute the LLVM pass, which can 
hinder its applicability for large-scale code bases. 
A developer may use the GCC compiler instead of LLVM but will be limited to the detection of 
memory consistency errors between MPI-RMA operations only. Our LLVM pass needs to be 
adapted to instrument load/store instructions in GCC. 

 
RMA-Analyzer Core The core of our RMA-Analyzer takes as input the memory accesses 
gathered by the instrumentation presented previously, and implements the data race detection 
algorithm. For those purposes, we implemented the memory interval itv as a structure 
containing the lower and upper bounds of the memory region, and its ac- cess type. Then, we 
implemented a BST of memory intervals, where we aggregate both local accesses (i.e. load, 
store and local data accesses due to MPI_Put and MPI_Get) and remote accesses due to 
remote MPI-RMA calls for each MPI window. This allows the tool to compare local accesses 
with remote accesses, enabling it to properly cover all error cases shown in table3.1. 
Local access registration is quite simple. For load and store accesses, the routine that 
implements the data race detection is simply called for each MPI window that is tracked by the 
RMA-Analyzer at the time of the access. For MPI-RMA communications, the data race 
detection is simply called on the local access made by the communication. Remote access 
registration, however, is more complex. For each MPI window, we im- plement a routine 
handled by a dedicated POSIX thread that is spawned at window creation. It is tasked to poll 
for all incoming communications on a specific tag range dedicated to this window by the 
RMA-Analyzer, and within this tag range on a specific tag identifying the MPI epoch that is 
currently active. This tag-based implementation is made possible by the semantics of the MPI-
RMA window creation and synchronization routines, that must be performed by all the 
involved MPI processes for the program to be correct. This weak synchronicity allows us to 
implement a tag-based communica- tion recognition system to identify all the control 
messages pertaining to a specific MPI epoch. Then, each time an MPI-RMA call is performed by 
the application program, the RMA-Analyzer adds a two-sided control message beside it (e.g. 
MPI_Send, MPI_Irecv) to send to the target the memory interval structure related to this 
memory access, with the appropriate MPI tag. Finally, when a control message is received, 
the thread that matches it calls the routine that implements the data race detection 
algorithm on its associated MPI window. 

 

3.5 Implementation concerns 

While this implementation successfully detects all memory consistency errors, we need 
to pay attention to the overhead of such analysis on the execution time of the 
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application. The first issue we tackle here is about instrumenting all load and store calls, that 
can become very costly at scale. 
We implement a twofold solution in the RMA-Analyzer to filter the registering of these calls. 
The tool only registers memory accesses performed when an MPI epoch is opened on the 
tracked MPI window, i.e. only when MPI-RMA calls are legal on this window. The second 
issue is about the active polling of communications, made by the threads dedicated to receive 
incoming control messages from the RMA-Analyzer. While it greatly improves the reactivity of 
our tool, it can also severely hinders the performance of the application. In our 
implementation, we yield the thread every 100 calls to MPI_Test on the request associated to 
the MPI_Irecv call to release the thread as soon as possible and reduce the pressure on 
computational resources. It is also possible to reserve additional CPU resources so that the 
RMA-Analyzer threads can work on it without disturbing the application threads. Finally, it is 
noteworthy that while the Passive Target mode with MPI_Lock/Unlock_all is our main focus in 
this thesis, the RMA-Analyzer also supports the Fence model of the Active Target 
synchronization mode to ease the development of other MPI-RMA programs. 

 

3.6 Experimental Results 

3.6.1 Experimental Setup 

Our experiments were performed on the Pise cluster that belongs to the Atos R&D 
department, located at Echirolles, France. Each node is composed of two AMD EPYC 7402 
@2.8GHz 24-core processors with 128 GB of RAM. The nodes we used are linked with 
InfiniBand Mellanox 200 GB/sec (4X HDR) network cards. For the software con- figuration, we 
use a RHEL8.1 environment. Our software stack is built with LLVM 9.0.0. We use the OpenMPI 
implementation of MPI, built in its 4.0.5 version. The OpenMPI components are setup as 
follows: 

—OMPI_MCA_pml=ucx 
—OMPI_MCA_osc=ucx 

—OMPI_MCA_btl= vader,openib,uct 

3.6.2 Targeted Applications 

We performed our experimental results on two applications : CFD-Proxy and Nemo. 
 

CFD-Proxy [78] is a proxy-application for computational fluid dynamics. It imple- ments and 
evaluates the overlap efficiency for halo exchanges in unstructured meshes that requires 
indirect read/write access via the edges of the mesh to the actual mesh data. 
For an efficient overlap of computation with communication, the application aims to trigger 
the communication as early as possible. When preprocessing the mesh, it an- notates with 
color all finalized points that belong to the mesh halo. The thread which completes the final 
update for a specific communication partner peer on these halo 
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points then triggers the corresponding communication either via MPI_Isend, MPI_Put or 
gaspi_write_notify. While this method allows for a maximal overlap of commu- nication and 
computation, it either requires a full MPI_THREAD_MULTIPLE or a MPI_THREAD_SERIALIZED 
of MPI version. For the latter version the developers have encapsulated the actual MPI_Isend 
and MPI_Put in an OpenMP critical section. The actual CFD kernel implements and evaluates 
the overlap efficiency of the two one- sided Active Target models and the two-sided model of 
MPI, and a GASPI version of the kernel. For our overhead evaluation, as we focus on this work 
on the Passive Target mode of MPI-RMA, we retrieved the Passive Target flavors implemented 
by Sergent et al. in [89] to test with the RMA-Analyzer. This application is of interest for 
overhead evaluation for MPI-RMA, as it is implemented in a full MPI_THREAD_MULTIPLE + 
OpenMP model, with all OpenMP threads performing communications in parallel. This means 
that any overhead introduced will strongly impact the performance, which makes it a perfect 
candidate to evaluate our RMA-Analyzer tool in the context of strongly optimized MPI-RMA 
applications. 

 
Nucleolus for European Modeling of the Ocean (NEMO) [70] is a state-of-the art modelling 
platform for oceanographic research, operational oceanography, seasonal forecasts and 
climate studies. NEMO includes three major components; the blue ocean (dynamics), the 
white ocean (sea-ice) and the green ocean (ocean biogeochemistry).  It also allows coupling 
through interfaces with atmosphere (through OASIS software), waves, ice-shelves, so as 
nesting through the adaptive mesh refinement software AGRIF [28]. Some reference 
configurations and test cases allowing to explore, to set-up and to validate the applications, 
and a set of tools to use the platform are also available to the community. The whole 
numerical ocean platform and its documentation are available under free licence. The 
evolution and reliability of NEMO are organised and controlled by a European Consortium 
between CMCC (Italy), CNRS (France), NOC (UK), UKMO (UK).Consortium members agree on 
long term strategy and yearly plans, sharing exper- tise and efforts within the NEMO System 
Team: the core team of NEMO developers in order to ensure the successful and sustainable 
development of the NEMO System as a well-organised, state-of-the-art ocean model code 
system suitable for both research and operational work. 
We target this application because it is a representative candidate to tackle the appli- cability 
of our contribution for production-oriented applications. The specific kernel we target in this 
work is the tra_adv kernel (Tracer Advection). We retrieved a flavor of this kernel developed 
internally by Atos that uses MPI-RMA communications instead of two-sided ones for 
performance study purposes, and run our RMA-Analyzer with it. 

3.6.3 Microbenchmarks 

To highlight the functionality of the RMA-Analyzer, we created a micro-benchmark suite 
containing programs with correct and incorrect uses of MPI one-sided operations. This suite 
covers all error cases depicted in table3.1. 
An example of error output returned by the RMA-Analyzer when run on the code of 
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$ mpirun -np 3 ./rr_put_put 

[RMA-Analyzer Process 1] Error when inserting memory access of type 

RMA_WRITE from file remote_remote/rr_out_put.c at line 35 with 

already inserted access of type RMA_WRITE from file 

remote_remote/rr_out_put.c at line 35. 

The program will be exiting now with MPI_Abort. 

 

figure3.7is shown on figure3.17. To help the user identifying the cause of the issue in its code, 
the file name and file lines of the accesses causing the error, the type of these accesses, and 
the MPI process on which the conflict has been detected are displayed to the user before 
aborting the program. 

 
 
 
 

 

 

Figure 3.17 – Error output returned by the RMA-Analyzer tool used for the code of Figure3.7. 

 
3.6.4 Runtime Overhead Impacts of Dynamic verification on CFD- Proxy 

In order to show the overhead impacts of the RMA-Analyzer when using only MPI- RMA 
calls instrumentation (without load and store impact), we present in figure3.18a comparison 
of CFD-Proxy run with and without the RMA-Analyzer, on 2 nodes of the Pise cluster. For this 
first application, we only use the PMPI instrumentation of our RMA-Analyzer. We compare 
three distributions between MPI processes and OpenMP threads on this configuration, from 
12 MPI processes and 8 OpenMP threads to 48 MPI processes and 2 OpenMP threads. We 
compare three flavors of CFD-Proxy in these experiments. The Comm Free (CF) flavor 
corresponds to a run of CFD-Proxy applica- tion where all the communications are assumed to 
be instantaneous and with negligible overhead. When comparing the different 
communication schemes, the CF accords to the practical maximum attainable performance. 
This provides the best execution time to compare with both implementations, as it takes into 
account the increasing number of MPI processes, which increase the computations due the 
halo exchanges. The two other flavors stands for Passive Target (PT) and Notified Passive 
Target (NPT). The PT flavor uses the MPI_Win_flush call to synchronize the communications. 
The NPT one adds a flag at the end of each sent data buffer, so that each process can check 
this flag to ensure the completeness of the operation. It emulates a notification system for 
communications, thus its name. 
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Figure 3.18 – Runtime overhead of the RMA-Analyzer on CFD-Proxy passive target with tree 
approaches. CF = Comm Free, PT = Passive Target, NPT = Notified Passive Target. "+ A" means 
execution time with the RMA-Analyzer. 
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We observe two specific behaviors in this figure. For 12 and 24 MPI processes, the 
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Figure 3.19 – Runtime overhead of the RMA-Analyzer on CFD-Proxy active target with tree 
approaches. CF = Comm Free, mpi_sync = Bulk fence synchronization version, mpi_async = 
MPI fence with early receives in asynchronous manner. "+ A" means execution time with the 
RMA-Analyzer. 

 
overhead incurred by the RMA-Analyzer stabilizes around 40%. On these distributions, the 
threads of the RMA-Analyzer here 4 as CFD-Proxy uses 4 MPI windows in par- allel can use 
the hyperthreads of the cores used by the OpenMP threads to poll the communications, thus 
minimizing the impact on application threads. However, for 48 MPI processes, we see a 
severe degradation of the performance, with an execution time multiplied by 40 in the worst 
case. This is due to a lack of spare cores to use for the RMA-Analyzer threads (only 2 for 4 
RMA-Analyzer threads), that will then compete with the application threads for the CPU 
resources. This also means that, if application developers can use spare cores during the 
design phase of their application, the cost of using the RMA-Analyzer remains reasonable. It 
is also noteworthy to recall that the overhead is not an issue for detecting errors, as the 
analysis is not dependent of the execution order: it detects all errors pertaining to a specific 
entry data set. 
We also tested the active target flavors of CFD-Proxy with our RMA-Analyzer, with similar 
results as shown in figure3.19. 
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3.6.5 Runtime Overhead Impacts of Dynamic verification on NEMO 

In order to show the overhead impacts of the RMA-Analyzer with its full instrumen- tation, 
i.e. the PMPI instrumentation plus the LLVM pass which instruments the load and store calls. 
We run NEMO with and without the RMA-Analyzer. 
We present an excution time comparison of the tra_adv kernel with the RMA-Analyzer in 
figure3.20, on 4 nodes of the Pise cluster with two distributions. In the right one, we allocate 5 
cores per MPI process, so that the 4 threads allocated by the RMA-Analyzer. As this kernel also 
uses 4 MPI windows for its computations the kernel can use spare 
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Figure 3.20 – Runtime overhead of the RMA-Analyzer on NEMO tra_adv kernel. "+ A" means 
execution time with the RMA-Analyzer. 

 
cores and that won’t disturb the main application’s thread. We observe that, contrary to the 
CFD-Proxy experiments, the overhead is already quite high, with a 3̃50% overhead. This is 
mainly due to the registering of the load and the store calls, which are performed by the main 
application’s thread and heavily slows down the execution. For this code, the LLVM pass 
detects around 5.300 load and 2.300 store calls. In the second (left) distribution, where we 
remove one core per MPI process, we observe that the overhead grows to ̃600% of the original 
execution time. Similarly with the CFD-Proxy application, this is explained by the RMA-
Analyzer’s threads that competes for CPU resources with the main application’s thread, thus 
disturbing it heavily. 
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3.6.6 Memory Consumption Impacts 

In order to see the impacts of all previous collecting of memory accesses, the RMA- 
Analyzer has to store all transitions (i.e., the MPI-RMA and load/store calls) for each process. 
This consumes a considerable amount of memory. The problem was not very apparent when 
we tested the RMA-Analyzer with the benchmark suite, which made fewer than a dozen MPI 
calls in our testing. However when we tested the RMA-Analyzer on CFD-Proxy and NEMO; the 
runs exceeded all available memory allocations. 
The problem was attributed to the storage taken by RMA-Analyzer’s Node structure which 
maintains the interval-tree data structure of transitions for each process. This structure grew 
quadratically. 
In order to take a look at the overhead in terms of memory and complexity. table 3.3shows 
different statistics of our RMA-Analyzer tool for the three applications we presented in this 
section, from the validation test to the NEMO kernel. The third  and fourth columns shows 
the memory fooprint of the RMA-Analyzer’s BST and the user’s MPI window respectively. 
This allows to compare the size in memory of the BST compared to the user memory region it 
tracks. 
We observe that, while the BST size seems reasonable for the CFD-Proxy application, 

 

Benchmark Appli Language BST 
memory 
size 

User 
window 
memory 
size 

Nodes in 

BST 

BST 
Max 
depth 

Validation test C 0.08 0.39 2 2 

CFD-Proxy C 60 479 1500 61 
Nemo Fortran 5700 6490 142183 64893 

 
Table 3.3 – RMA-Analyzer statistics on BST for each application. Memory sizes are in KB. 

 
it becomes of the same order of magnitude than the user memory region for the NEMO 
kernel. This is explained by the additional tracking of the load and store calls, which adds a lot 
of information to register in the tree. We can also observe this inflation in the fifth and sixth 
columns, which display the number of nodes in the BST, and its balance (i.e. the maximum 
depth of the longest branch of the tree). While the number of nodes was around 1500 in CFD-
Proxy, it goes up to 142183 nodes with NEMO. Moreover, the balance of the BST is worse 
with NEMO again, with the longest branch containing almost half of the nodes of the tree. 
This means that the BST may need to be rotated to ensure a good balance and reduce the 
complexity of inserting new nodes in it, and thus the overhead. 
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3.7 Conclusion 

In this chapter, we introduced a method to address memory consistency and non- 
determinism challenges in MPI one-sided communication. We implemented these con- 
tributions in a tool called RMA-Analyzer, which will be integrated in the PARCOACH software. 

 
Existing MPI-RMA verification tools have several limitations with respect to memory 

consistency. These limitations prevent the MPI runtime system from successfully scaling 
applications onto large-scale machines, because metadata for processes and outstanding 
operations uses up all internal resources. Our contribution provides new algorithms and 
strategies to manage different kinds of metadata in MPI one-sided communication by using a 
dynamic analysis. This method detects all possible errors that can occur in an MPI-RMA 
programs that we have shown in table3.1. Nevertheless, we have also shown that it comes with 
a significant overhead cost. That is why an additional static analysis is needed to better filter 
load and store accesses and reduces the overhead generated by the RMA-Analyzer due to the 
dynamic registering of load and store accesses. We detect all possible data race errors at 
runtime but some of them can be detected at compile time without executing the program. 
This is the main focus of the next chapter. We will discuss our static analysis that we have 
developed in order to detect only local concurrency errors at compile-time. 
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CHAPTER 4    

STATIC DATA RACE DETECTION IN MPI-RMA PROGRAMS 

 
 
 

The work that will be presented in this chapter has been published at the correctness 
workshop 2022 (TO APPEAR) [87]. The content is reproduced in this chapter. 

 

4.1 Introduction 

One-sided communications are often praised to be efficient to overlap communications with 
computations, but challenging to program. The use of one-sided communications is 
becoming increasingly popular. Applications often use them through abstractions, such as 
PGAS languages, that hides the complexity of the handling of one-sided com- munications in 
terms of memory consistency and performance optimizations. However, even expert runtime 
programmers can face issues providing a support for such languages when using runtime 
systems that implement one-sided communications support. 

While being complex at program and use, tools that have tackled the issue of detect- ing 
memory consistency errors at compile time in MPI-RMA programs are no-existent (referred 
as local and global concurrency in [61]). In this chapter, we introduce a novel static analysis 
that enables programmers to detect local memory consistency errors di- rectly at compile 
time. While the dynamic analysis is exhaustive in terms of error detection, the static analysis 
will be more restrictive. Nevertheless, since the analysis is performed at compile time, it 
scales on large code bases and can be of use for produc- tion quality codes. The detection is 
based on a novel local concurrency errors detection algorithm that tracks accesses through 
BFS searches on the Control Flow Graphs of a program. 
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4.2 Motivating Examples 

In order to see how a local concurrency error occurs at an origin processes either 
between only MPI-RMA accesses or mixing MPI-RMA and load/store accesses. Here we give 
some example in both active target and passive target synchronization epochs. Examples of 
these concurrency situations are shown : in example4.1, the first and sec- ond accesses are 
both MPI-RMA Get accesses which are write accesses in local window memory X, these two 
succeeded accesses in local memory conduct to a data race error. As these two 
communication operations are asynchronous the second Get that writes a value retrieved 
from P1 can issue before the first Get and thus, update the value of buf before the first write 
access with a value retrieved from P2. The same is described in figure4.2. In this example the 
two MPI-RMA Put and Get accesses are considered as a data race error (Get as a write Put as 
a read) in the same memory location Y for the same reasons of example4.1. Another example 
is shown in figure4.3, a data race error occurs at the origin process P2. The MPI-RMA Get 
access conflicts with the store on buf. As MPI-RMA communication operations are 
asynchronous the value on buf can be updated before the Get returns which is an error in 
this case. 

 
 
 
 

P0 (Origin) 
MPI_Win_lock_all(win) 
MPI_Get(buf, 2, X, …) 

P1(Target) 

MPI_Win_lock_all(win) 

P2(Target) 

MPI_Win_lock_all(win) 

MPI_Get(buf, 1, X, …)   

MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) 

 
 

Figure 4.1 – An example of local memory concurrency errors at origin process P0 in passive 
target "Lock/Unlock_all" mode. Bold statements are conflicting memory ac- cesses(Get, Get) 
at origin side. X = Window memory location of P0. 

 
Examples in active target "Fence" mode are also shown in order to prove that these local 

concurrency errors also occur even in a collective synchronization epoch. 
Example4.4the MPI-RMA asynchronous Get and Put operations (respectively a write after a 
read on buf at the window memory location X ) lead to a data race error. Since the completion 
of the first operation (Get) is not known the Put operation may read an old value of buf before 
sending it to the target. 
Still in this active target mode example4.5shows another data race error between the MPI-
RMA Get operation which is a write with the load on buf at the origin process P1. As 
explained previously the write operation of Get can happen at any time during this epoch. 
Thus the load on buf can finish before the issuing of the Get operation. 
The last example in figure4.6also shows a data race errors between the MPI-RMA Put 
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P0 (Target) 

MPI_Win_lock_all(win) 

P1 (Origin) 

MPI_Win_lock_all(win) 

MPI_Put(buf, 2, Y, …) 

P2 (Target) 

MPI_Win_lock_all(win) 

 MPI_Get(buf, 0, Y, …)  

MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) 

 

Figure 4.2 – An example of local memory concurrency errors at origin process P1 in pas- sive 
target "Lock/Unlock_all" mode. Bold statements are conflicting memory accesses (Put,Get) 
at origin side. Y = Window memory location of P1. 

 
 
 
 
 
 
 
 
 
 
 
 

P0 (Target) 

MPI_Win_lock_all(win) 

P1 (Target) 

MPI_Win_lock_all(win) 

P2 (Origin) 

MPI_Win_lock_all(win) 

MPI_Get(buf, 1, Z, …) 
  buf = … 

MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) 

 

Figure 4.3 – An example of local memory concurrency errors at origin process P2 in pas- sive 
target "Lock/Unlock_all" mode. Bold statements are conflicting memory accesses (Get with 
Store on buf ) at origin side. Z = Window memory location of P2. 
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and the store on buf. The store can finish before the Put and thus, update wrongly the value of 
buf transferred by the MPI-Put. 

 
Note that if the accesses were reversed i.e. the store before the Put or any native access 

before an MPI-RMA one there would be no errors, since the native load or store would have 
completed before the beginning of the Put. 

 
 
 
 

P0 (origin) 

MPI_Win_fence(win) 

MPI_Get(buf, 1, X, …) 

P1 (Target) 

MPI_Win_fence(win) 

P2 (Target) 

MPI_Win_fence(win) 

MPI_Put(buf, 2, X, …)   

MPI_Win_fence(win) MPI_Win_fence(win) MPI_Win_fence(win) 

 

Figure 4.4 – An example of local memory concurrency errors at origin P0 in active target "Fence" 
mode. Bold statements are conflicting memory accesses (Get with Put) at origin side. X = 
Window memory location of P0. 

 
 
 
 

P0 (Target) 

MPI_Win_fence(win) 

P1 (Origin) 

MPI_Win_fence(win) 

MPI_Get(buf, 2, Y, …) 

P2 (Target) 

MPI_Win_fence(win) 

 … = buf  

MPI_Win_fence(win) MPI_Win_fence(win) MPI_Win_fence(win) 

 

Figure 4.5 – An example of local memory concurrency errors at origin P1 in active target "Fence" 
mode. Bold statements are conflicting memory accesses (Get with Load on buf ) at origin side. Y 
= Window memory location of P1. 

 
Correct solution of codes one can correct their codes either by adding an "in-epoch" 
synchronization call like MPI_Win_flush in the case of a passive target lock_all/unlock_all only like in 
examples in4.1,4.2, and4.3or by ending the epoch and starting a new one 
to ensure all communications have ended in the case of active target fence mode4.4,4.5, 
and4.6. Figure4.7and4.8show the correct version of codes4.1and4.6. 

On both of these codes, the static analysis successfully identifies the codes as correct after 
such changes. 
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P0 (Target) 

MPI_Win_fence(win) 

P1 (Target) 

MPI_Win_fence(win) 

P2 (Origin) 

MPI_Win_fence(win) 

MPI_Put(buf, 0, Z, …) 
  buf = … 

MPI_Win_fence(win) MPI_Win_fence(win) MPI_Win_fence(win) 

 

Figure 4.6 – An example of local memory concurrency errors at origin P2 in active target "Fence" 
mode. Bold statements are conflicting memory accesses (Put with Store on buf ) at origin side. Z 
= Window memory location Of P2. 

 
 
 
 
 

 

P0 (Origin) 
MPI_Win_lock_all(win) 
MPI_Get(buf, 2, X, …) 

P1(Target) 

MPI_Win_lock_all(win) 

P2(Target) 

MPI_Win_lock_all(win) 

MPI_Win_flush(2, win)   

MPI_Get(buf, 1, X, …)   

MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) MPI_Win_unlock_all(win) 

 

Figure 4.7 – Correction of code4.1. 
 
 
 
 

 

P0 (Target) 

MPI_Win_fence(win) 

P1 (Target) 

MPI_Win_fence(win) 

P2 (Origin) 

MPI_Win_fence(win) 

MPI_Put(buf, 0, Z, …) 

MPI_Win_fence(win) MPI_Win_fence(win) MPI_Win_fence(win) 
  buf = … 

MPI_Win_fence(win) MPI_Win_fence(win) MPI_Win_fence(win) 

 

Figure 4.8 – Correction of code4.6. 
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4.3 Static Detection of Local Concurrency Errors 

Local concurrency errors occur at one and single process locally and cause conflicts 
between native load/store and MPI-RMA accesses as shown in the previous examples. The 
goal of adding static analysis is to detect all errors that can be identified at compile time. In this 
thesis, we focus on all errors happening at the origin side of communications, where a program 
analysis coupled with an alias analysis is sufficient to find errors between overlapping accesses. 
Detecting errors at target side would be possible if the offset of the remote communication is 
completely known at compile time (in particular, if this offset is not dependent of the MPI 
rank), but this is out of the scope of this work. 
To clearly state the errors that our static analysis can detect, we reuse the table3.1 and keep 
only the accesses at origin side, which results in table4.1. In this table, we suppose that 
memory accesses are performed on overlapping memory regions, and we show the 
compatibility of local load/store operations with local buffers of MPI-RMA communications. 
The table should be read as follows: the first access is read in row, the second in column. 

 
 

 READ WRITE 
PUT LOAD GET STORE 

R LOAD 

PUT 
✓ 
✓ 

- 
✓ 

✓ 
x 

- 
x 

W GET 

STORE 

x 
✓ 

x 
- 

x 
✓ 

x 
- 

Table 4.1 – Compatibility of RMA operations and local load/store accesses on the same address 
space. ✓= overlapping is permitted,x= undefined behavior, overlapping is not permitted. R = 
READ, W = WRITE. 

 

 
4.4 Local Concurrency Errors Detection Algorithm 

To detect the errors presented in table4.1we devised a local concurrency detection 
algorithm that takes place in the middle of the compilation chain. It consists in an analysis of 
the Control Flow Graph (CFG). The CFG is defined as a directed graph. Nodes are basic blocks 
that represent maximal sequence of linear code and contains a list of instructions. Edges 
represent the flow of control between the nodes. 
Based on this structure, Algorithm2details the steps to detect local concurrency errors in a 
function. First, a breadth-first search (BFS) is done on each loop of a function from the inner 
loops to the outer loops. Once a loop has been checked, the back edges are removed to avoid 
infinite loop during the BFS on an outer loop and the CFG. Finally a BFS is done on the entire 
CFG of a function. During the BFS, the memory accesses 
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are spread between basic blocks (from a basic block to its successors). This is made by 
keeping a ValueMap containing (Value, Instruction) pairs. A value represents a memory access. 
Also, a basic block cannot be analyzed if all its predecessors have not been seen (function 
mustWait line 9 in Alg.3). The BFS is described in Algorithm3. The algorithm shows the BFS on 
a function but the principle is the same on loops. A coloring system is used during the graph 
traversal to identify unvisited nodes. 

Algorithm 2 Local Concurrency Errors Detection 
 

Require: CFG of function F 
1:  procedure DETECTION(Function F) 
2: for each Loop L in F do 
3: BFS(L) ▷ (see Alg.3) 

4: Remove back edges in L 

5: BFS(F) ▷ (see Alg.3) 

 

Algorithm 3 Breadth-first Search 
 

Require: CFG of function F, ValueMap MemInBB (contains {Value, Instruction} pairs) 
1: procedure BFS(Function F) 
2: Set each BasicBlock BB in F at WHITE 
3: deque < BasicBlock > Unvisited 
4: Unvisited.push_back(F getEntryBlock()) 
5: while Unvisited.size() > 0 do 
6: header Unvisited.begin() 
7: Unvisited.pop_front() 
8: if header.color = BLACK then continue 
9: if mustWait(header) then 

10: Unvisited.push_back(header); continue 

11: UpdateMemAccesses(header) (see Alg.4) 
12: header.color = GREY 
13: for all successors Succ of header do 
14: if Succ.color = WHITE then 
15: Succ.MemInBB = header.MemInBB 
16: Unvisited.push_back(Succ) 
17: Succ.color = GREY 
18: else 

19: Succ.MemInBB.insert(header.MemInBB) 

20: header.color = BLACK 
 

Algorithm4gives the analysis of a basic block. The algorithm iterates over the in- 
structions of a basic block to find memory instructions (lines 2-3). A memory instruction is either 
a MPI_Put, MPI_Get, a LOAD or a STORE. When a memory instruction is found, 
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we retrieve the memory location (line 4) and check if another access on this memory location 
has been recorded (line 5). Function find line 5 returns the previous memory access on mem 
or a memory access that alias with it. If there is no previous access, we register it in 
MemInBB but only if it is a one-sided operation (lines 6-7). We don’t need to keep load/store 
instructions. If there is a previous access, two options arise.  If the previous access or the new 
one is a write, we raise an error (line 9-10). Other- wise, we update the last instruction 
accessing mem if it is a Put (we don’t register load instructions). 

Finally, if a synchronization instruction (i.e., end of an epoch like MPI_Win_fence, 
MPI_Win_Flush, MPI_Win_Flush_all) is found, MemInBB is reset. 

Algorithm 4 Analysis of a basic block 
 

Require: ValueMap MemInBB (contains {Value, Instruction} pairs) 
1:  procedure UPDATEMEMACCESSES(BasicBlock BB) 
2: for each Instruction I in BB do 
3: if I is a memory instruction then 
4: mem getLocalMemAccess(I) 
5: PrevAccess find(BB.MemInBB, mem) 
6: if !PrevAccess AND I is an MPI-RMA then 
7: add (mem, I) in BB.MemInBB 
8: else 
9: if isWrite(PrevAccess) OR isWrite(I) then 

10: Raise an error 
11: else 
12: if I = MPI_Put then 
13: PrevAccess I 
14: if I is a synchronization instruction then 

15: BB.MemInBB.clear() 

 

4.4.1 Example of a Control Flow Graph 

Figure4.9presents a CFG extracted from a benchmark computing a binary tree broadcast 
algorithm. This example contains a MPI_Get in a loop (node if.then9). Only relevant 
instructions are shown in the basic blocks. The algorithm first analyzes the loop {while.cond, 
while.body,if.then9, if.end11}. The BFS updates the memory accesses from the header of the 
loop (while.cond). MemInBB in the header is empty at the beginning of the BFS. The load 
instruction thus does not conflict with any other memory access. Nothing is registered when 
analyzing while.body. MemInBB is updated for if.then9 with the MPI_Get instruction and 9 
which is the local memory location associated. When we encounter while.cond the second 
time, the load instruction is reported as conflicting with MPI_Get. MemInBB is updated for 
while.cond with the Get instruction. The algorithm then removes the back edge if.end11 → 
while.cond from 
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while.end: 
%call12 = call i32 @MPI_Win_unlock_all(...) T 

while.body 

F 

if.end: 
store i32 0, i32* %my_value 
%call6 = call i32 @MPI_Win_lock_all(...) 

if.then 

if.end11 

if.then9: 
%9 = bitcast i32* %my_value to i8* 
%call10 = call i32 @MPI_Get(i8* %9, ...) 

 

the loop. A new BFS is performed on the entire CFG without the back edge. The loop is 
analyzed again to report concurrent accesses with the beginning of the graph if any. The Get 
function can conflict with itself at the second iteration of the loop. An error is then reported 
for that. No other local concurrency is detected. 

 
 

 
entry 

T F 

 

 
while.cond: 
%7 = load i32, i32* %my_value 

T F 

 
 
 
 
 

 
 

Figure 4.9 – CFG from a benchmark computing a binary tree broadcast algorithm. 

 
4.4.2 Proof of the Algorithm 

Algorithm2is correct if all local concurrency situations are captured. The main constraint we 
have is that our analysis is intra-procedural and is thus limited to the scope  of a function.

 An inter-procedural analysis is left for future work. We then 
assume that a function contains all memory information needed to detect a data race. As our 

goal is to detect local concurrency errors only with the static analysis, we just 
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$ mpicc -c -g -emit-llvm ll_get_get.c 

$ opt -basicaa -load analysis.so ll_get_get.bc 

 
[STATIC ANALYSIS] LocalConcurrency detected: 

conflict with MPI_Get line 38 in ll_get_get.c and MPI_Get line 35 in 

ll_get_get.c. 

 

need to record memory accesses in a single epoch. 
The first BFS on all loops ensures the detection of concurrency errors inside them and set the 
memory accesses in the headers of the loops. Then, the BFS on the entire CFG takes into 
account another iteration in loops and finishes because back edges are removed. All basic 
blocks are encountered and thus we register all memory accesses in a function. 
The precision of the analysis is related to the alias analysis we use to detect aliasing. The alias 
analysis of LLVM is conservative and false positives are possible. 

 

4.5 Experimental Results 

Our analysis is implemented as a pass in the LLVM framework 9.0 and use Flang based on 
this version. We use the basic alias analysis of LLVM to detect aliasing on memory accesses. 
The pass detects errors in C, C++ and Fortran codes. 
To highlight the functionality of our analysis, we created a microbenchmark suite con- taining 
small programs with correct and incorrect use of MPI-RMA written in C and Fortran. The suite 
contains 34 codes in total.  table4.2shows a subset of the codes,  the language in which they 
are written, if they contain a local concurrency and if our analysis was able to detect the 
error. The names of the codes correspond to the order of the operations in the code. The 
first 12 codes represent all scenarios in table4.1. 
The second part of the table are more complicated codes, such as codes with loops, and the 
correct codes of figures4.7and4.8. Our static analysis was able to detect all concurrency 
errors and does not report any false positives on the microbenchmark suite. An example of the 
feedback reported by our analysis is presented in figure4.10. 

Note that our microbenchmark suite has been approved to be integrated in the MBI 
project [61], a collection of correct and incorrect MPI codes. 

 
 
 
 

 

 

Figure 4.10 – Output returned by the analysis on the code figure4.1. 
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Program Name Language Local concurrency Detect? 
ll_get_get 
ll_get_store 
ll_get_load 
ll_get_put 
ll_put_get 
ll_put_store 
ll_put_put 
ll_put_load 
ll_load_get 
ll_load_put 
ll_store_get 
ll_store_put 

C 
C/Fortran 
C/Fortran 
C 
C 
C/Fortran C 
C/Fortran C 
C 
C 
C/Fortran 

yes 
yes 
yes 
yes 
yes 
yes 
no 
no 
no 
no 
no 
no 

yes 
yes 
yes 
yes 
yes 
yes 
no 
no 
no 
no 
no 
no 

ll_load_get_loop 
ll_get_get_ok 
ll_put_store_ok 

Fortran 
C 
C 

yes 
no 
no 

yes 
no 
no 

Table 4.2 – Results on our microbenchmark suite. 

 

We also used our analysis on an experimental code of around 3500 lines of codes, written 
in C++. The code is based on the Global Update RandomAccess benchmark (AKA GUPS) [83], 
which updates memory at random locations according to a sequence of random numbers. The 
code we used is an MPI-RMA version of an existing code written in UPC++ [6], obtained from 
the UPC++ website atupcxx.lbl.govand was modified to (1) aggregate data to avoid overheads 
costs, (2) relax the look-ahead con- straint and (3) to run deterministically. A snippet of the 
code is presented in figure 4.11. 

 
The code iterates over a set of batches of random numbers. Each number is routed to its 
corresponding target, but aggregated. 

Then aggregated random numbers are put to the memory of a remote rank. The code 
has been simplified to show only relevant instructions and the communication scheme. Our 
analysis reports a local concurrency between MPI_Put line 21 and the store instructions *pa = A 
- 1 and T[target * A + counter[targ]] = rans lines 19 and 
12. This error happens because of the missing else statement in the conditional line 25. No 
flush is encountered if the conditional is false which lead to a concurrency at the second 
iteration of the for loop. 
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1 Window b u f f e r upd 
2 /∗ Create a 2D t a b l e T o f s i z e ( nranks x A) ; ∗/ 
3 /∗ Create a t a b l e counter  o f s i z e nranks ; ∗/ 
4 
5 for each batch { 
6 for each x  i n  batch  { 7 
8 /∗ . . . ∗/ 
9 

10 i f ( t a r g e t != myrank ) { 
11 // I n s e r t rans in T at the r i g h t t a r g e t : 
12 T[ t a r g e t ∗ A + counter  [ t a r g ] ] = rans ; 13 
14 /∗ . . . ∗/ 
15 
16 i f ( counter  [ t a r g e t ] == A) { 
17 uint 64 ∗pa = T + o f f s e t ; 18 /∗ . 
. . ∗/ 
19 ∗pa = A − 1 ; 
20 // Send the row in out b u f f t a b l e concern ing  t a r g e t to t a r g e t : 
21 MPI_Put( pa , A, MPI_UINT64_T, t a r g e t , my_koff + n_ buffered , A, MPI_UINT64_T, upd ) ; 
22 // l o c a l _ f l u s h : 
23 i f ( is Flush Mode ( ) ) 
24 MPI_Win_flush ( t a r g e t , upd ) ; 
25 else i f ( is Flush Local Mode ( ) | | i s Src Complete ( ) ) 
26 MPI_Win_flush_local ( t a r g e t , upd ) ; 27 
28 } 
29 } else { 
30 /∗ . . . ∗/ 
31 } 
32 } 
33 /∗ Sending the remaining updates ; ∗/ 

34 } 
 

Figure 4.11 – Code snippet from an MPI-RMA version of GUPS. 
 

4.6 Conclusion 

In this Chapter we have discussed our static analysis of MPI-RMA programs. We 
presented a novel static analysis that helps programmers debugging and understanding their 
MPI-RMA programs. While one-sided communications have some traction in the community, 
especially through PGAS languages it remains difficult for programmers to use directly 
runtime-level libraries that implements one-sided communications due to complex and 
error-prone memory semantics, that prevent them from obtaining the wanted performance 
gain. 

This static analysis is based on a local concurrency errors detection algorithm that 
performs a double BFS search on the CFG of the program to tag all conflicting local 
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memory accesses (loads, stores and local buffers of MPI-RMA operations) and raises a 
compiling error when an issue is identified. 
We implemented it in an LLVM pass and showed on small tests and on an MPI-RMA version of 
the GUPS benchmark that our analysis can detect local concurrency errors on such codes. 

In the next and last Chapter, we will discuss the related work and emphasize those that 
are more closely related work to memory consistency errors detection. 
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CHAPTER 5    

RELATED WORK 

 
 
 

"The only good bug is a dead bug" 

– Starship Troopers (1997) 
 

5.1 Introduction 

There have been a lot of recent interest in analysing and debugging MPI programs. A 
number of debugging and correctness tools have been developed and proposed over the 
years, some of which have been used to debug MPI programs while others to analyze MPI 
programs. Discovering bugs and analyzing MPI programs is a very challenging task especially for 
programs running on large scale and use a large degree of complexity such as real-life parallel 
applications. Luckily, there has been an enormous amount of research works that have been 
done on developing tools used in debugging and analyzing these type of applications, thanks 
to the large use and popularity of large clusters. In this chapter we survey some of those tools 
and their functionalities and highlight those that are more closely related work to ours. We 
discuss two kinds of related work. First, we discuss the work on debugging and correctness 
checking tools for MPI programs. Second, we group data race detection tools into two major 
categories: data race detection tools for MPI-RMA programs, and data race detection tools 
for shared memory programs. 

 

5.2 Debugging and Correctness Checking Tools for MPI Programs 

In this section we provide some MPI debuggers and correctness checking tools. We 
further split this category up into debuggers and correctness checking tools. The differ- ence 
between debuggers and correctness checking tools is that debuggers only provide a debugging 
interface and do not offer any error checking capabilities contrary to most of 
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correctness checking tools. However, correctness checking tools do not allow the devel- opers 
to interact with the MPI processes while they are running. 

5.2.1 Debugging tools 

The GNU Project Debugger(gdb) [96] is a well known debugger and the most commonly 
used tool among programmers. It was developed by Richard Stallman who played a key role in 
the the development of Linux. It is possible to use gdp as a support for MPI by attaching gdb to 
each MPI process of an application. We can use mpigdb 
[75] in order to run the MPI processes with gdb, but the number of MPI processes is limited. 
Valgrind[71] is a dynamic binary instrumentation (DBI) framework designed for build- ing 
heavyweight dynamic binary analysis (DBA) tools. Valgrind is a bug detector and can be used 
as gdp for debugging MPI applications. It provides a support for shadow values-a for DBA 
techniques which is difficult to implement. This tool executes pro- grams by using dynamic 
binary translation without requiring source code, and without the need for recompilation or 
relinking prior to execution. The major drawback of Val- grind is that it runs very slowly 
comparatively to other DBI framworks like Pin[64] and DynamoRIO[14] because of the 
support provided for several crucial design features. Valgrind can be used to build more 
interesting, heavyweight tools that are difficult or impossible to build with the other DBI 
frameworks. 
Tools like DDT [3] and Totalview[97,41] are often regarded as the gdb for MPI pro- grams. 
these tools provides usual functionality of debuggers. In fact, DDT attaches gdb instances to 
running MPI processes to provide debugging capabilities. These tools allow the users to step 
through MPI programs as they would with a normal C/C++ program. The users are provided 
with a host of useful debugging tools such as breakpoints inser- tion, procedures stepping, 
viewing the values of a variable across multiple processes, and obtaining stack traces. However, 
like gdb, they do not provide any correctness checking and only serve as debugging IDEs. As 
these tools do not require the recompilation or relinking of the source code, they are usually 
the only choices available if the user does not have access to the source. Furthermore, 
TotalView can be used to debug both se- rial and parallel programs. It supports several HPC 
platforms and can handle multiple types of HPC parallel coding (MPI, OpenMP, UPC and GA, 
OpenACC and CUDA). TotalView provides key features like a graphical data visualization and a 
memory leaks and malloc errors debugging. 

5.2.2 Correctness Checking Tools for MPI Programs 

MPI correctness checking tools are used to check if there are runtime errors by run- ning 
the MPI program or check for potential errors at compile-time in order to verify the correctness 
of the program. What we call by runtime errors is errors that occur during a given run. This is 
usually accomplished by recompiling and relinking the program. 
We group the correctness checking tools for MPI programs into four categories: (i) online 
dynamic analyses, (ii) static analyses, (iii) trace based dynamic analyses and (iv) hybrid 
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approaches. 

 
Online Dynamic Tools : 

These tools checks for runtime errors that happen during the execution time. The ability 
of detecting MPI errors by these tools depend greatly on errors that actually occur in a given 
run only. Unfortunately, these tools do not take into account the al- ternative outcome due 
to the nondeterminism of MPI programs. That means that the nondeterminism induced bugs 
is still a challenge for these tools. A proposed solution is to run the program with the same 
test harness as many times as the computing re- sources permit. Unluckily, by doing so the 
performance endures severe degradation as it has been shown in some recent studies [103]. 
In this category of tools we present: Umpire [100] is a dynamic software testing tool 
developed at the Lawrence Liver- more National Laboratory (LLNL) by Jeffrey Vetter and 
Bronis de Supinski, Umpire is one of the first correctness checking tools for MPI. Despite not 
being actively main- tained, Umpire remains a useful tool for many MPI programmers. 
Umpire does not require recompilation of the MPI programs being checked, but it does 
require relink- ing the MPI program with its MPI profiling interface. At runtime, each MPI 
program launches several threads that communicate with the Umpire manager thread about 
the processes’ MPI activities. The communication between the manager and the error check- 
ing threads rely on MPI itself, which means Umpire requires the MPI runtime to support 
MPI_THREAD_MULTIPLE. Umpire separates MPI error checks into local checks and global 
checks in which local checks include unfinished communication requests, unfreed 
communicators, uncommitted types, and bad arguments while global checks include 
deadlocks and type mismatch. In the most widely available Umpire version, deadlock 
checking is done through a simple dependency graph mechanism. A new deadlock de- tection 
mechanism that is based on Wait-For-Graphs and provides better scalability has been 
implemented as an experimental project for Umpire. 
Marmot [57,56] is also an MPI dynamic checker which is similar to Umpire. This tool uses the 
MPI profiling interface to capture the MPI calls at runtime in order to analyze them. The error 
checking consists of local checks and global checks, similarly to those of Umpire. Each 
processes handles the local checks such as resource leaks and passes along the data to a 
debug server, which is a separate MPI process (Marmot requires one extra process to run the 
debug server), for global error checking such as deadlocks. In contrast with the previous 
tools, Marmot uses a simple timeout-based deadlock detec- tion scheme that has low 
overhead but can potentially produce false alarms. Marmot has extensive integration 
capabilities with other GUI tools to help the user visualize the checking results. Marmot has 
also common work with the following tools: Cube and Microsoft Visual Studio [58], DDT [55], 
Eclipse [33], and Vampir [15]. 
Must [48] is the successor of Marmot that combines the functionalities of the two tools 
(Marmot Umpire Support Tool). Must is a runtime MPI correctness checking. It was designed 
to overcome the limitations of scalability and extensibility of Umpire and Mar- mot and their 
hard coded trace communication with a centralized manager. Must uses 
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a fine-grained module-based design that uses PMPI, it allows the offloading of checks to extra 
processes and threads. Further, by using a flexible communication system that promises an 
efficient transfer of trace records between different processes or threads. 
Scalasca [47] is a software tool that supports the performance optimization of parallel 
programs by measuring and analyzing their runtime behavior. The analysis identifies 
potential performance bottlenecks in particular those concerning communication and 
synchronization and offers guidance in exploring their causes by providing useful infor- 
mation in order to diagnose the root of the issue. 
MPIDD [46] has been developed for dynamically detecting deadlocks in parallel pro- grams 
that are written using C++ and MPI. MPIDD only offers deadlock detection capabilities. It 
uses a centralized approach in which a separate MPI process acts as a manager and 
communicates with other processes through TCP socket calls and builds a dependency graph 
based on the data that it receives from the processes. The tool uses a standard Depth-First-
Search cycle detection algorithm to detect deadlock during runtime. 
ISP [98,102] is a dynamic formal verification tool for MPI. ISP uses PMPI to intercept MPI 
operations and to enforce particular outcomes for non-deterministic operations. In particular, 
the ISP scheduler employs an MPI-semantics aware algorithm that reorders or rewrites MPI 
operations before sending them into the MPI runtime. ISP uses cen- tralized scheduling 
algorithm that is non-scalable and applying it to significantly larger process counts is 
infeasible. ISP must delay non-deterministic outcomes even at small scales, which leads to 
long testing times. In effect, its scheduler poorly exploits the par- allelism offered by the 
cluster on which the MPI program is being dynamically verified. DAMPI [101] is the successor 
of ISP, it is a dynamic analyzer for MPI programs that overcomes the performance limitations 
of ISP through a decentralized and scalable algo- rithm based on Lamport-clocks(vector clocks 
focused on call order). DAMPI computes alternative non-deterministic matches and enforces 
them in subsequent program replays. 

Static Tools : 

Static tools are mainly based on model checking and require symbolic execution of the 
program. These tools check the correctness of the program at compile-time. Static analysis is 
the automated testing of source code without executing it. It considers all possible paths of a 
program. It has the advantage of being input-independent. However, static analysis tends to 
provide false positives. We cite : 
MPI-SPIN [91] is a model checker for verifying and debugging MPI-based parallel pro- grams. It 
detects deadlock related bugs. MPI-SPIN can show that the program does not deadlock by 
exploring all possible executions of an MPI program. 
TASS [92] is the successor of MPI-SPIN that uses model checking and symbolic exe- cution. 
TASS in addition to deadlock errors verifies various safety properties as well as comparing two 
programs for functional equivalence and also if a propriety is violated such as an incorrect 
order of collective calls. TASS explores reachable states of the model that was built. The tool 
also gives a trace of the program in order to show the values of variables at each state of the 
given model. 
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MPI-Checker [32] is a static analysis checker that verifies the correct usage of the MPI API 
written in C and C++. It principally uses the Clang’s Static Analyzer. MPI- Checker works with 
both path-sensitive (e.g., double request usage of non-blocking calls, missing wait) and non-
path-sensitive analysis by using the information provided by the abstract syntax tree 
representation of the source code. MPI-Checker enables AST-based checks to verify correct type 
usage in MPI functions, and unmatched point-to-point calls, unreachable calls, type mismatch, 
invalid argument type, collective call in rank branch. Nguyen et al. [86] presents an extension 
of PARCOACH (PARCOACH will be pre- sented in the category that discusses hybrid 
approaches). This work presents a static analysis to detect misuse of nonblocking and 
persistent operations in MPI programs including MPI persistent collectives. This work 
proposes two algorithms based on the notion of generalized dominators and post-dominators 
to add new error detection. This analysis is built on top of LLVM 10 and it is based on data-flow 
analysis which is fully automatic and it is implemented as an LLVM pass. This static analysis 
can automat- ically find five type of errors: wrong management of the operation arguments, 
missing wait, unmatched wait, request overwriting and buffer data race. 
Greg Bronevetsky [12] presents an approach that focuses on send-receive matching and 
dataflow analysis. This work provides framework from the compiler analysis of the program. It 
can extend traditional dataflow analyses to message passing applications. It works on an 
extended control-flow graph that includes all possible inter-process in- teractions of any 
numbers of processes. It provides a dataflow analyses built on top  of this framework to 
gather information about the application’s parallel behavior and communication topology. 
This framework is used for the communication model with an unlimited number of processes 
that communicate principally via send and deterministic receive operations. To analyze the 
parallel applications This analysis defines a parallel control flow graph (pCFG) and dataflow 
equations. A pCFG is an extension of CFG, the main difference is that a pCFG shows all possible 
control-flow states and transitions that may be performed by multiple sets of processes. 

Trace-based Dynamic tools : 

Trace-based tools rely on postmortem analysis. They provide a trace file to the developer 
that contains a run history information about the error that was generated during the 
program. 
Dealing with trace based analysis we can mention: 
Intel Message Checker (IMC) [29,90] is an MPI checker that provides postmortem analysis of 
MPI-related errors detected during program execution in a trace files. IMC has three main 
components: the Trace Collector that intercepts MPI calls using PMPI to collect information such 
as input parameters and message buffer checksum. the Analyzer Engine is used to read the trace 
files from the Trace Collector and analyzes them to check for MPI errors. The Visualizer that 
interprets the output from the Analyzer and allows the user to find the errors. IMC can detect 
common MPI errors such as deadlock, unsafe buffer access (i.e., accessing the buffer of a 
pending communication request), and type mismatches. IMC has limited scalability due to 
the trace size generated by the 
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program analysis. Furthermore, if a critical MPI error occurs and the program crashes, the 
behavior of the Trace Collector remains undefined, which means the user might not get the 
trace files. 
Intel Trace Analyzer and Collector (ITAC) [74,51] is the successor of IMC, the two tools are part of 
Intel Cluster Tools (ICT) [95]. ITAC is designed for Intel MPI. Unlike IMC, TAC does not rely on 
postmortem analysis. Similarly to Marmot and Umpire, TAC distinguishes between local checks 
and global checks. The local checks return not only the line number in the source code but 
also provide a full stack trace. In contrast with how most tools handle global checks, TAC 
handles global checks in a distributed fashion and does not rely on a centralized approach. 
Instead, each process creates different TCP-based communication channels with all other 
processes and communicates with them through a predefined API. This mechanism allows TAC 
to detect deadlock as well as type mismatches. However, this independent communication 
layer potentially limits the scalability of the tool. 

Hybrid Approaches : 

Tools combining both methods have also been developed to detect errors in MPI 
programs. These methods leverage information about the control flow, in order to dy- 
namically adjust the analysis. This leads to greater flexibility when balancing accuracy and 
performance, as well as enabling long-term and large-scale analyses that might not be 
possible with other techniques. We can cite : 
PARCOACH [85] is a tool that combines static and dynamic analyses by mainly per- forming 
two major steps to detect incorrect collective patterns in MPI programs. For each function 
Parcoach first uses an llvm pass to statically identify the code fragments calling collectives that 
may deadlock at compile time and analyses the control-flow parts that may lead to this 
deadlock. If a potential deadlock is found Parcoach sends warn- ings to the user. Second, 
Parcoach transforms the identified code fragments in order to dynamically capture these 
situations before they arise. This work has been extended to an inter-procedural analysis [50] 
in order to detect collective errors in MPI , OpenMP and MPI+OpenMP applications and 
pinpoint their root causes. 
Note here that the work of this thesis will fully be integrated in the Parcoach frame- work. 
MPI-CHECK [63] is a tool developed to aid the programmer in the debugging of MPI 
programs that are written in free or fixed format Fortran 90 and Fortran 77. MPI-CHECK 
provides automatic compile-time and run-time checking of MPI programs. An experimental 
C/C++ version exists but is no longer in active development. MPI- CHECK instruments the 
source code of the program to replace MPI calls with MPI- CHECK’s own versions. During the 
parsing of the source code, MPI-CHECK also checks the program for usage errors (e.g., using a 
negative number for the destination field in MPI Send). During execution, the MPI processes 
sends information of the execution to a centralized manager through the use of TCP sockets. 
MPI-CHECK can detect common errors such as deadlock, type mismatches between sends 
and receives, and under-allocated message buffer). 
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We show a survey of these correctness checking tools in table5.1. 
 

MPI programs Verification tools 
Dynamic 
tools 

Static tools Trace Based On- 
line tools 

Hybrid Approaches 

Umpire 
Marmot 
Must 
Scalasca 
MPIDD 
ISP 
DAMPI 

MPI-SPIN 
TASS 
MPI-Checker 
Nguyen et al. Greg 
Bronevetsky 

IMC 

ITAC 

PARCOACH 

MPI-CHECK 

Table 5.1 – List of MPI correctness checking tools 

 
5.2.3 Discussion 

Some of these tools stated above are applied for MPI-RMA programs verification. Must 
and Marmot can be used for semantic parameter checking in order to detect errors which are 
caused by an erroneous sequence of MPI-RMA calls for example mismatched lock/unlock 
calls. Scalasca also can be used to detect inefficient wait states to highlight performance 
bottlenecks in MPI-RMA applications. However these tools can not uncover data race errors due 
to the nature of the problem tracked which is with respect to memory consistency and 
synchronization semantics of an MPI-RMA program. This is why we will discuss data race 
error detection tools separately. 

 

5.3 Data race errors detection Tools for MPI-RMA and Shared 
Memory Programs 

Here we present some tools that focus on data race errors detection for both MPI- RMA 
and shared memory programming models. 

5.3.1 Data Race Detection Tools for MPI-RMA Programs 

To help the programmer write correct MPI-RMA programs and help them to reason about 
memory consistency and data hazard accesses very few tools were proposed. In this part of 
the thesis we discuss related research focused on data race detection for MPI-RMA 
programs. We refer to: 
MC-Checker[23] is a trace-based approach tool that focuses on detecting memory con- sistency 
errors in MPI-RMA programs. MC-Checker analyses the trace files to build a directed acyclic 
graph (DAG) based on the happens-before relation. MC-Checker detects memory consistency 
errors by profiling both MPI RMA and native load store accesses by using three main steps ST-
Analyzer, Profiler and DN-Analyzer. Based on the MPI-2 
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semantics, it finds potential data races between different MPI processes which concur- rently 
access overlapping target memory. This analysis does not scale well because it takes much 
time when traversing the DAG and uses an incomplete utilization of the happened-before 
relation. Besides, MC-Checker only covers the MPI-2 standard which follows different 
synchronization semantics compared to MPI-3 and it focuses only on C programs. In addition, 
the tool provides many false positives and it is considered  as its major limitation. Unlike MC-
Checker our RMA-Analyzer performs an on-the-fly dynamic analysis to detect memory 
consistency errors between local and remote accesses and covers new functionalities 
introduced in MPI-3. Moreover, the RMA-Analyzer cov- ers C and Fortran programs. 
MC-Cchecker[30] is also a trace based approach that is based on vector clocks in order to detect 
memory consistency errors in MPI-RMA programs. It works as an advanced iteration in order 
to enhance the MC-Checker analysis by taking full advantage of the encoded vector clock to 
replace the DAG with the aim of fully preserving the happened- before relation by making use of 
an encoded vector clock. MC-Cchecker inherits its main features from MC-Checker by reusing 
ST-Analyzer and Profiler while focusing mainly on the optimization of DN-Analyzer. It 
eliminates the potential source of false positives but still does not scale well because it reuses 
the same static analysis as MC-Checker. This tool is also based on a trace file approach which 
is different from our approach. Besides, this tool does not cover MPI-3 functionalities and 
Fortran programs. 
NastyMPI [54,53] is another tool developed to address synchronization errors in MPI- 3 one-
sided applications. Nasty-MPI also relies on program profiling. It dynamically intercepts RMA 
calls and reschedules them into pessimistic executions which are valid in terms of the MPI-3 
standard. It mainly detects latent synchronization bugs. Based on the semantic flexibility of the 
MPI-3 specification the tool dynamically modifies execu- tions of improperly synchronized 
MPI remote memory accesses to force a manifestation of an error. Despite the fact that this 
tool is considered as a memory consistency error detection tool this approach forces 
synchronization errors rather than detecting them which is far different from our method. 
Mi-Young et al. [77] presents an effort to uncover memory consistency errors dynam- ically by 
leveraging mirror memory. This approach also uses PMPI to create a mirror window 
whenever a process creates a window memory for one-sided communication, and uses it to 
monitor and detect race conditions. If any one-sided operation accesses a window memory, 
the corresponding mirror window will be marked and checked to see if the window memory is 
unsafely accessed by any concurrent operation. The number of entries in the mirror memory 
and the window memory is the same. However, the mir- ror memory takes less memory 
compared with the window memory. The justification for using the mirror memory is to know 
the current state of the corresponding window memory being ‘read’, ‘write’ or ‘no_op’, 
thereby, detecting memory consistency errors precisely. However, the on-the-fly approach is 
unfeasible in practice since each time it remotely writes (MPI_Put) or reads (MPI_Get) into the 
window memory of the target process, it needs to check the mirror memory first. For that 
reason, it is implemented by putting PMPI_Get inside both MPI_Put and MPI_Get via the MPI 
profiling inter- 
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face, which leads to performance depletion and even conflicts implementation principles of 
MPI one-sided communication. This tool can not be used for large MPI programs and unlike 
the RMA-Analyzer this tool doesn’t handle the concurrent accesses between native load store 
and RMA operations because the scope of this research has not consid- ered local memory 
accesses. Hence, it cannot detect the conflicting operations between MPI communication 
calls and the local memory accesses. 

To our best knowledge there is no tool that detects data race errors for MPI-RMA 
programs at compile time. The method that we presented in this thesis is the first to tackle 
memory consistency errors at compile time and presents a relevant support for the dynamic 
analysis of MPI-RMA programs. 
table5.2summarizes memory consistency checking tools for MPI-RMA programs. 

 
 

MPI-RMA Memory Consistency Checking Tools 

Dynamic tools Static tools Trace Based tools 
RMA-Analyzer 
Nasty-MPI 

Mi-Young et al. 

RMA-Analyzer MC-Checker 

MC-Cchecker 

Table 5.2 – List of MPI-RMA memory consistency checking tools 

 
5.3.2 Data Race Detection tools for Shared Memory Programs 

Several studies have been conducted to deal with data race errors in shared memory 
programs by performing static analyses, dynamic analyses or combining both static and 
dynamic analyses. Some tools are stated here: 
RacerX [34] is a static tool that uses flow-sensitive, inter-procedural analysis to detect both 
race conditions and deadlocks in multi-threaded programs. RacerX is explicitly designed to 
find errors in complex and large multi-threaded systems. It checks several information such as 
operations protected by locks, it also checks code contexts if they are multi-threaded or not and 
the tool also verifies shared data accesses. It uses techniques to counter the impact of analysis 
mistakes by tracking a set of code features in order to sort errors from most to least severe. 
LOCKSMITH [82] was developed to statically detect data races in C programs by look- ing for 
memory accesses violations. The tool looks for the relationship between locks and the locations 
they protect and the consistent correlation between them, this technique is a constraint-
based analysis that infers consistent correlation context-sensitively, using the results to check 
that locations are properly guarded by locks. The tool uses several techniques to improve the 
precision and performance of the analysis, including a sharing analysis for inferring thread 
locality; existential quantification for modeling locks in data structures; and heuristics for 
modeling unsafe features of C such as type casts. 
ERASER [66] is a data race instrumentation tool that uses several levels of static pro- 
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gram analysis ranging from little analysis to aggressive inter-procedural and dependence 
analyses. It uses this aggressive program analysis in order to prune the number of ref- 
erences to be monitored. The tool principally aims to reduce data race instrumentation 
overhead at compile time. It identifies variable references that not have the need to be 
monitored at runtime because these references cannot be involved in a data race. 
Chord [68] is a static data race detection in shared memory programs in presence of locks. It 
is based on must not alias analysis. Chord reformulates the data race detection with a dual not 
alias analysis instead of the classical must alias analysis. 
Kahlon et al. [52] propose a race warning generation system for data race errors which is based 
on a must alias analysis of data accesses in a shared program. It presents a dataflow 
algorithm for shared variable detection. The algorithm focuses on the precision of the pointer 
analysis used to compute aliases for lock pointers. It formulates a new context sensitive alias 
analysis that effectively combines a divide and conquer strategy with function summarization 
to provide a new technique in resolving data race errors. LLOV [11] is a static data race 
checker for shared memory programs based on the LLVM compiler framework. LLOV 
developed on top of the LLVM compiler framework and operates at LLVM-IR level, it can 
support a multitude of programming languages supported by the LLVM infrastructure. 
PACER [10] is a dynamic tool that detects data race errors at runtime by finding races whose 
first occurs during a global sampling period. During runtime PACER tracks all accesses using 
the dynamically sound and precise FastTrack algorithm. At non-sampling periods, PACER skips 
sampled access information that cannot be part of a reported race thus, PACER simplifies 
tracking of the happens-before relationship to effectively report races found in the program. 
Eraser data race detector [88] aimed to improve the static analysis provided by ERASER and 
provide a dynamic analysis. Eraser data race detector dynamically de- tects data races in 
lock-based multi-threaded programs. Eraser uses binary rewriting techniques to monitor 
every shared-memory reference and verify that consistent locking behavior is observed. 
Jong-Deok Cho et al. [24] also presented an approach to dynamically detect data-race errors in 
multi-threaded object-oriented programs. This approach combines a static data race analysis, 
optimized instrumentation, runtime access caching and runtime detection phases. 

 
5.3.3 Discussion 

The aforementioned methods and tools are used to detect data race errors in shared 
memory programs by using a static or a dynamic analysis to find the data race error. 

 
Several key differences can be distinguished between shared memory data race de- 

tection and detecting memory consistency errors in the MPI one-sided memory model. In 
the MPI RMA model, only the origin process can perform direct load and store ac- cesses. All 
other accesses are performed through library calls. In addition, in the MPI 
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RMA model, only buffers that are involved in MPI-RMA calls can be subject to mem- ory 
consistency errors, whereas, in shared-memory programs data race errors occur in any 
memory location. Because of theses differences, the bug detection algorithms are different. 
Since in MPI-RMA the data race detection algorithm is strongly related to the 
synchronization semantics that orders the memory accesses, our work focuses on tackling 
the MPI-RMA specific synchronization modes to devise a detection algorithm adapted to the 
constraints of these semantics. 

 

5.4 Summary 

The difficulty of debugging programs under the presence of data race errors has trig- gered 
many research efforts for multi-threaded programs as shown in this chapter but only few 
works have been done for MPI-RMA programs. 
Non-deterministic behaviors and data race errors, when found in the program, make difficult 
the programming process. To this end a data race error tool is needed because in addition to 
analyzing the program, a data race detection tool has many other usages including 
performance analysis and relevant feed-backs of the data race error. 

 
For MPI-RMA programs, finding data race errors is quiet complex because a data race 

error could be local to one process’s memory location or present remotely on another process’s 
memory location. In addition, in distributed memory programming the error detection 
becomes a lot more complicated because an MPI process has to locally and remotely keep 
the state of memory accesses and the information of the current run. This bookkeeping process 
requires tracking read and write accesses to all shared variables as well as enforcing the same 
order of accesses by the thread that preforms the permanent receive during this process. 
Since tracking every access to shared data is expensive, works that have been done in data 
race errors detection for MPI-RMA programs rely on post mortem analysis that uses a trace file 
based approach. The major drawback of this approach is that the trace data could be very large, 
especially for programs that exchange huge amounts of data. Thus, performing a complete 
analysis to detect data race errors by a post mortem analysis is very costly. These approaches 
do not scale well. For theses reasons our data race detection approach performs an on the fly 
dynamic analysis with a static analysis support to detect data race errors between local and 
remote accesses and covers new functionalities introduced in MPI-3 (lock_/unlock_all 
synchronization mode). 

We have also presented some data race error detection tools for shared memory 
programming and the main difference resides in the handling of MPI-RMA specific syn- 
chronization semantics. Indeed, the data race condition problem in shared memory has been 
heavily addressed in the literature, but its handling is strongly linked to the syn- chronization 
model available to enforce the consistency between memory accesses. Since the data race 
detection algorithm is strongly related to the synchronization semantics that orders the 
memory accesses, our work differs from this approaches by tackling the 
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MPI-RMA specific synchronization modes to provide an adapted a algorithm to satisfy the 
specifications of these semantics. 
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CHAPTER 6    

CONCLUSION 

 
 
 

The MPI standard offers a rich set of features such as remote memory access primi- tives 
and nondeterministic constructs that help developers write better high performance 
applications. 

 
Synchronization and communication are at the heart of one-sided programming 

paradigm, since processes are able to read from and write to any location in the lo- cal and 
global memory space during their execution without relying on communication activity of 
other processes. In general, this leads to concurrent accesses to shared data. Thus, data race 
errors are present in local and global memory locations. 

This work presents a novel approach towards the detection of memory consistency errors 
in MPI-RMA programs. We have presented local and global data race errors that occur within a 
single process and among several processes in MPI-RMA programs. To tackle these issues, we 
provide a dynamic analysis technique for MPI-RMA programs in which we cover all possible 
data race errors. We have also developed a static analysis support to deal with local 
concurrency errors at compile time. 

We implemented our data race detection approach in a tool called RMA-Analyzer. The 
RMA-Analyzer provides a global instrumentation of local load store accesses that detects 
conflicts between MPI-RMA operations and native accesses. We have measured the overhead 
costs of our tool on two real-world applications CFD-Proxy and NEMO. On CFD-Proxy we have 
shown the overhead cost that was reasonable with partial in- strumentation without taking 
into account the native load/store accesses. Nevertheless, the overhead cost increases 
drastically on NEMO because of the full instrumentation including load and store accesses. 
We successfully applied our method on two micro- benchmark suites that were developed in 
order to cover all possible data race errors including local concurrency errors for the static 
detection. In addition, our static anal- ysis reported local concurrency errors on an 
experimental code which is based on the 



117  

 

Global Update RandomAccess benchmark (GUPS). 

As far as we know, this is the first time that MPI-RMA programs have been verified based on 
static and dynamic analyses. We believe that this work makes a step towards hybrid 
techniques on detecting memory consistency errors in MPI-RMA programs. 

 
Finally, this thesis is part of a collaborative effort between industry and academia. Our 

contributions will be incorporated in the PARCOACH framework. PARCOACH actually detects 
deadlocks in MPI, openMP, MPI+OpenMP, UPC and CUDA programs. Our goal is to expand 
PARCOACH to detect memory consistency errors within MPI- RMA programs. To this end, a 
wide-ranging partnership for collaboration growth was discussed and negotiated between 
Inria and Atos. Furthermore, Atos is involved in the European DEEP-SEA project in which Atos 
contributes in the data race errors detection for MPI-RMA programs. 

 

Future Research Directions 

As future work, we plan to investigate some other lines of research directions : 

First of all we plan to improve the overhead of the tool. As discussed in section3 the 
overhead of the load and store instrumentation can limit the scaling of the RMA- Analyzer. To 
deal with the overhead cost, we think of filling the BST with these calls before the execution 
with a static analysis. Once the static analysis is extended to detect other errors in addition to 
those that occur locally at the origin’s memory location. For examples concurrent accesses 
from more than one process (as target) in the same mem- ory location. As our approach is 
based on a CFG traversal and it depends on the process rank, the offset of the remote 
communication is not known at compile time. We can miss some concurrent accesses among 
processes in different branches, this area needs further investigation. We can then, provide a 
complete hybrid method which can significantly reduce the overhead of the dynamic analysis. 
We can filter all the load store accesses at compile time. By detecting all the potential errors 
at compile time, the user will have the choice to perform only the static analysis without 
dealing with the overhead costs begotten at execution time. Another solution would be to 
delegate the registering of these calls to the RMA-Analyzer threads. Currently, the LLVM pass 
instrumentation of load and store calls is performed by the main thread of the application. 
Delegating this work to the RMA-Analyzer threads (or another dedicated thread) through a 
queue of requests to register memory access would be beneficial to reduce the overhead. 

We can also investigate how to handle in-epochs synchronization (e.g. MPI_Win_flush) and 
atomic like operations (MPI_Accumulate and the put/get variations). Introducing the 
synchronizations is key to ensure the memory consistency of calls inside an MPI epoch without 
multiplying the epochs – thus the global synchronizations – inside the program. However, 
implementing the support of such synchronizations is not trivial. 
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The semantic of the MPI_Win_flush and MPI_Win_flush_local implies only the local completion 
(at the origin side). The origin knows that communications have been com- pleted which is not 
the case of the target process. This means that we need to introduce specific control messages 
to warn the target that communications from a specific origin has been completed (in the 
case of an MPI_Win_flush call). Moreover, with this han- dling, we may also give advice to 
users about where to introduce those synchronizations inside a bogus program to ensure 
memory consistency. For atomic operations, while we believe that their access rights can be 
described with the taxonomy explained in this thesis, the interactions between atomic and 
classical RMA operations can prove to be tedious to study and describe. 

We can provide better feedback on the data race error by adding a solution that may be 
suitable for the programmer. We can improve the bug report and suggest simple and effective 
solutions such as recommending the use of additional synchronizations such as MPI_Fence in 
the case of active target synchronization or MPI_Flush (and variants) in the case of passive 
target synchronization. 

 
We can also investigate how to transform programs written in MPI two-sided into MPI 

one-sided. We can provide options in how to rewrite these programs and ease the alteration 
two-sided to one-sided. With the aim of facilitating MPI-RMA programming, programmers will 
have support on their one-side programs and can easily adopt MPI- RMA semantics. 

We have already done some work on synchronization optimization through previous work 
[89]. During my internship at Atos we have implemented notified synchronizations to replace 
passive target synchronization modes and warn the target as soon as any data has landed 
locally in its memory (communication and a notification sent at the same time). We can 
investigate how to extend our RMA-Analyzer to detect data race errors when using notified 
communications. 

MPI-RMA comes with the promise of enhancing applications performance due to the 
overlapping of communication with computation by decoupling the data movement from 
synchronization. However, programming with MPI-RMA comes with several challenges as it 
has been shown in this thesis. The programmer needs to handle complex synchro- nization 
semantics and know how to use them in order to provide correct programs. I believe that the 
lock_all/unlock_all synchronization mode should definitely replace the other modes. This 
mode can be used as a global call (not collective). It can free the communications between 
peers and thus, processes can compute more. In addition, this mode is easy to use and can be 
seen as a global window opening at the beginning of the program, and globally close the 
window before freeing the window. 



119  

 

Publications : 

Thesis Related Publications : 

Dynamic Data Race Detection for MPI-RMA Programs [1]. Published at EuroMPI in 2021. 
Static Local Concurrency Errors Detection in MPI-RMA Programs [87]. Published at the 

Correctness Workshop 2022 (TO APPEAR). 

 
Other Publications : 

Efficient notifications for MPI one-sided applications [89]. Published at EuroMPI in 2019. 



 

 



120  

 
 
 
 
 
 
 

 
 
 
 
 

 

[1] Tassadit Célia Aitkaci et al. “Dynamic Data Race Detection for MPI-RMA Pro- grams”. 
In: EuroMPI 2021-European MPI Users’s Group Meeting. 2021. 

[2] Frances Allen et al. “Blue Gene: A vision for protein science using a petaflop 
supercomputer”. In: IBM systems journal 40.2 (2001), pp. 310–327. 

[3] Allinea DDT.http://www.allinea.com/products/ddt/. 

[4] Robert Alverson, Duncan Roweth, and Larry Kaplan. “The gemini system inter- connect”. 
In: 2010 18th IEEE Symposium on High Performance Interconnects. IEEE. 2010, pp. 83–
87. 

[5] Baba Arimilli et al. “The PERCS high-performance interconnect”. In: 2010 18th 
IEEE Symposium on High Performance Interconnects. IEEE. 2010, pp. 75–82. 

[6] John Bachan et al. “UPC++: A High-Performance Communication Framework for 
Asynchronous Computation”. In: 2019 IEEE International Parallel and Dis- tributed 
Processing Symposium (IPDPS). 2019, pp. 963–973. DOI:10.1109/IPDPS. 2019.00104. 

[7] David E Bernholdt et al. “A survey of MPI usage in the US exascale computing project”. 
In: Concurrency and Computation: Practice and Experience 32.3 (2020), e4851. 

[8] Dan Bonachea and Paul H Hargrove. “GASNet-EX: A high-performance, portable 
communication library for exascale”. In: International Workshop on Languages and 
Compilers for Parallel Computing. Springer. 2018, pp. 138–158. 

[9] Dan Bonachea and Jaein Jeong. “Gasnet: A portable high-performance commu- nication 
layer for global address-space languages”. In: CS258 Parallel Computer Architecture 
Project, Spring 31 (2002). 

[10] Michael D Bond, Katherine E Coons, and Kathryn S McKinley. “Pacer: Propor- tional 
detection of data races”. In: ACM Sigplan Notices 45.6 (2010), pp. 255– 268. 

 
BIBLIOGRAPHY 

http://www.allinea.com/products/ddt/
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/IPDPS.2019.00104


121  

 

[11] Utpal Bora et al. “Llov: A fast static data-race checker for openmp programs”. In: ACM 
Transactions on Architecture and Code Optimization (TACO) 17.4 (2020), pp. 1–26. 

[12] Greg Bronevetsky. “Communication-sensitive static dataflow for parallel message 
passing applications”. In: 2009 International Symposium on Code Generation and 
Optimization. IEEE. 2009, pp. 1–12. 

[13] Eugene D Brooks III. PCP: A parallel extension of C that is 99% fat free. Tech. rep. 
Lawrence Livermore National Lab., CA (USA), 1988. 

[14] Derek Bruening, Qin Zhao, and Saman Amarasinghe. “Transparent dynamic in- 
strumentation”. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual 
Execution Environments. 2012, pp. 133–144. 

[15] Holger Brunst et al. “Tools for scalable parallel program analysis: Vampir NG, MARMOT, 
and DeWiz”. In: International Journal of Computational Science and Engineering 4.3 
(2009), pp. 149–161. 

[16] David Callahan, Bradford L Chamberlain, and Hans P Zima. “The cascade high 
productivity language”. In: Ninth International Workshop on High-Level Parallel 
Programming Models and Supportive Environments, 2004. Proceedings. IEEE. 2004, pp. 
52–60. 

[17] Bradford L Chamberlain, David Callahan, and Hans P Zima. “Parallel pro- grammability 
and the chapel language”. In: The International Journal of High Performance 
Computing Applications 21.3 (2007), pp. 291–312. 

[18] Rohit Chandra et al. Parallel programming in OpenMP. Morgan kaufmann, 2001. 

[19]Barbara Chapman et al. “Introducing OpenSHMEM: SHMEM for the PGAS 
community”. In: Proceedings of the Fourth Conference on Partitioned Global Ad- dress 
Space Programming Model. 2010, pp. 1–3. 

[20] Philippe Charles et al. “X10: an object-oriented approach to non-uniform cluster 
computing”. In: Acm Sigplan Notices 40.10 (2005), pp. 519–538. 

[21] Fabio Checconi et al. “Breaking the speed and scalability barriers for graph ex- ploration 
on distributed-memory machines”. In: SC’12: Proceedings of the Inter- national 
Conference on High Performance Computing, Networking, Storage and Analysis. IEEE. 
2012, pp. 1–12. 

[22] Dong Chen et al. “The IBM Blue Gene/Q interconnection network and message unit”. In: 
SC’11: Proceedings of 2011 International Conference for High Perfor- mance 
Computing, Networking, Storage and Analysis. IEEE. 2011, pp. 1–10. 

[23] Zhezhe Chen et al. “Mc-checker: Detecting memory consistency errors in mpi one-sided 
applications”. In: SC’14: Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and Analysis. IEEE. 2014, pp. 499–510. 



122  

 

[24] Jong-Deok Choi et al. “Efficient and precise datarace detection for multithreaded 
object-oriented programs”. In: Proceedings of the ACM SIGPLAN 2002 Confer- ence on 
Programming language design and implementation. 2002, pp. 258–269. 

[25] Shane Cook. CUDA programming: a developer’s guide to parallel computing with 
GPUs. Newnes, 2012. 

[26] David E Culler et al. “Parallel programming in Split-C”. In: Supercomputing’93: 
Proceedings of the 1993 ACM/IEEE conference on Supercomputing. IEEE. 1993, pp. 262–
273. 

[27] Kaushik Datta et al. “Stencil computation optimization and auto-tuning on state- of-the-art 
multicore architectures”. In: SC’08: Proceedings of the 2008 ACM/IEEE conference on 
Supercomputing. IEEE. 2008, pp. 1–12. 

[28] Laurent Debreu, Christophe Vouland, and Eric Blayo. “AGRIF: Adaptive grid refinement 
in Fortran”. In: Computers & Geosciences 34.1 (2008), pp. 8–13. 

[29] Jayant DeSouza et al. “Automated, scalable debugging of MPI programs with Intel® 
Message Checker”. In: Proceedings of the second international workshop on software 
engineering for high performance computing system applications. 2005, pp. 78–82. 

[30] Thanh-Dang Diep, Karl Fürlinger, and Nam Thoai. “MC-CChecker: A clock- based 
approach to detect memory consistency errors in MPI one-sided applica- tions”. In: 
Proceedings of the 25th European MPI Users’ Group Meeting. 2018, pp. 1–11. 

[31] James Dinan et al. “An implementation and evaluation of the MPI 3.0 one-  sided 
communication interface”. In: Concurrency and Computation: Practice and Experience 
28.17 (2016), pp. 4385–4404. 

[32] Alexander Droste, Michael Kuhn, and Thomas Ludwig. “MPI-checker: static anal- ysis for 
MPI”. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in 
HPC. 2015, pp. 1–10. 

[33] Eclipse.http://www.eclipse.org/. 

[34] Dawson Engler and Ken Ashcraft. “RacerX: Effective, static detection of race con- ditions 
and deadlocks”. In: ACM SIGOPS operating systems review 37.5 (2003), pp. 237–252. 

[35] Greg Faanes et al. “Cray cascade: a scalable HPC system based on a Dragonfly network”. 
In: SC’12: Proceedings of the International Conference on High Per- formance 
Computing, Networking, Storage and Analysis. IEEE. 2012, pp. 1–9. 

[36] Flang and F18: Home Page.https://https://github.com/flang-compiler/flang/ wiki/. 

[37] Edgar Gabriel et al. “Open MPI: Goals, concept, and design of a next generation MPI 
implementation”. In: European Parallel Virtual Machine/Message Passing Interface 
Users’ Group Meeting. Springer. 2004, pp. 97–104. 

http://www.eclipse.org/


123  

 

[38] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. “Enabling highly-scalable remote 
memory access programming with MPI-3 one sided”. In: Proceedings of the International 
Conference on High Performance Computing, Networking, Storage and Analysis. 2013, 
pp. 1–12. 

[39] Tarek El-Ghazawi and Lauren Smith. “UPC: unified parallel C”. In: Proceedings of the 2006 
ACM/IEEE conference on Supercomputing. 2006, 27–es. 

[40] James R Goodman. Cache consistency and sequential consistency. Tech. rep. Uni- versity of 
Wisconsin-Madison Department of Computer Sciences, 1991. 

[41] Chris Gottbrath. “Eliminating parallel application memory bugs with totalview”. 
In: Proceedings of the 2006 ACM/IEEE conference on supercomputing. 2006, 210– es. 

[42] William Gropp, Steven Huss-Lederman, and Marc Snir. MPI: the complete ref- 
erence. The MPI-2 extensions. Vol. 2. Mit Press, 1998. 

[43] William Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Implemen- 
tation of MPI. 1996. 

[44] William Gropp et al. “A high-performance, portable implementation of the MPI message 
passing interface standard”. In: Parallel computing 22.6 (1996), pp. 789– 828. 

[45] Daniel Grünewald and Christian Simmendinger. “The GASPI API specification and its 
implementation GPI 2.0”. In: 7th International Conference on PGAS Programming 
Models. Vol. 243. 2013, p. 52. 

[46] Waqar Haque. “Concurrent deadlock detection in parallel programs”. In: Inter- 
national Journal of Computers and Applications 28.1 (2006), pp. 19–25. 

[47] Marc-André Hermanns et al. “Understanding the formation of wait states in 
applications with one-sided communication”. In: Proceedings of the 20th European MPI 
Users’ Group Meeting. 2013, pp. 73–78. 

[48] Tobias Hilbrich et al. “MUST: A scalable approach to runtime error detection in MPI 
programs”. In: Tools for high performance computing 2009. Springer, 2010, pp. 53–66. 

[49] Torsten Hoefler et al. “Remote memory access programming in MPI-3”. In: ACM 
Transactions on Parallel Computing (TOPC) 2.2 (2015), pp. 1–26. 

[50] Pierre Huchant et al. “Parcoach extension for a full-interprocedural collectives 
verification”. In: 2018 IEEE/ACM 2nd International Workshop on Software Cor- rectness 
for HPC Applications (Correctness). IEEE. 2018, pp. 69–76. 

[51] Intel Trace Analyzer.http :// software. intel . com/ en- us/ intel - trace - analyzer. pages28. 

[52] Vineet Kahlon et al. “Fast and accurate static data-race detection for concur- rent 
programs”. In: International Conference on Computer Aided Verification. Springer. 
2007, pp. 226–239. 

http://software.intel.com/en-us/intel-trace-analyzer.%20pages%2028
http://software.intel.com/en-us/intel-trace-analyzer.%20pages%2028


124  

 

[53] Roger Kowalewski and Karl Fürlinger. “Debugging Latent Synchronization Errors in MPI-3 
One-Sided Communication”. In: Tools for High Performance Computing 2016. Springer, 
2017, pp. 83–96. 

[54] Roger Kowalewski and Karl Fürlinger. “Nasty-MPI: Debugging synchronization errors in 
MPI-3 one-sided applications”. In: European Conference on Parallel Processing. 
Springer. 2016, pp. 51–62. 

[55] Bettina Krammer, Valentin Himmler, David Lecomber, et al. “Coupling DDT and Marmot 
for Debugging of MPI Applications.” In: PARCO. Vol. 7. Citeseer. 2007, pp. 653–660. 

[56] Bettina Krammer and Michael M Resch. “Correctness checking of MPI one-sided 
communication using Marmot”. In: European Parallel Virtual Machine/Message 
Passing Interface Users’ Group Meeting. Springer. 2006, pp. 105–114. 

[57] Bettina Krammer et al. “MARMOT: An MPI analysis and checking tool”. In: 

Advances in Parallel Computing. Vol. 13. Elsevier, 2004, pp. 493–500. 

[58] Bettina Krammer et al. “MPI correctness checking with marmot”. In: Tools for 
High Performance Computing. Springer, 2008, pp. 61–78. 

[59] Evgeny Kuznetsov and Vladimir Stegailov. “Porting CUDA-based molecular dy- namics 
algorithms to AMD ROCm platform using hip framework: performance analysis”. In: 
Russian Supercomputing Days. Springer. 2019, pp. 121–130. 

[60] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system”. 

In: Concurrency: the Works of Leslie Lamport. 2019, pp. 179–196. 

[61] Mathieu Laurent, Emmanuelle Saillard, and Martin Quinson. “The MPI Bugs Ini- tiative: a 
Framework for MPI Verification Tools Evaluation”. In: 2021 IEEE/ACM 5th International 
Workshop on Software Correctness for HPC Applications (Cor- rectness). 

[62] LLVM Language Reference Manual. 2016.http://llvm.org/docs/LangRef.html/. 

[63]Glenn Luecke et al. “MPI-CHECK: a tool for checking Fortran 90 MPI programs”. 
In: Concurrency and Computation: Practice and Experience 15.2 (2003), pp. 93– 100. 

[64] Chi-Keung Luk et al. “Pin: building customized program analysis tools with dy- namic 
instrumentation”. In: Acm sigplan notices 40.6 (2005), pp. 190–200. 

[65] Ewing L Lusk, Steve C Pieper, Ralph M Butler, et al. “More scalability, less pain: A simple 
programming model and its implementation for extreme computing”. In: SciDAC 
Review 17.1 (2010), pp. 30–37. 

[66] John Mellor-Crummey. “Compile-time support for efficient data race detection  in 
shared-memory parallel programs”. In: ACM SIGPLAN Notices 28.12 (1993), pp. 129–
139. 

[67] MPI-2 over InfiniBand.http://mvapich.cse.ohio-state.edu/. 

http://llvm.org/docs/LangRef.html/
http://mvapich.cse.ohio-state.edu/


125  

 

[68] Mayur Naik and Alex Aiken. “Conditional must not aliasing for static race de- tection”. 
In: ACM SIGPLAN Notices 42.1 (2007), pp. 327–338. 

[69] Bruce Jay Nelson. Remote procedure call. Carnegie Mellon University, 1981. 

[70] NEMO : Nucleus for European Modelling of the Ocean.https://www.cmcc.it/ 
models/nemo/. 

[71] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavyweight 
dynamic binary instrumentation”. In: ACM Sigplan notices 42.6 (2007), pp. 89– 100. 

[72] Jarek Nieplocha and Bryan Carpenter. “ARMCI: A portable remote memory copy library 
for distributed array libraries and compiler run-time systems”. In: International 
Parallel Processing Symposium. Springer. 1999, pp. 533–546. 

[73] Robert W Numrich and John Reid. “Co-Array Fortran for parallel programming”. 
In: ACM Sigplan Fortran Forum. Vol. 17. 2. ACM New York, NY, USA. 1998, pp. 1–31. 

[74] Patrick Ohly and Werner Krotz-Vogel. “Automated MPI Correctness Checking What if 
there was a magic option?” In: Proceedings of the 8th LCI International Conference on 
High-Performance Clustered Computing. 2007, pp. 19–25. 

[75] Masao Okita, Fumihiko Ino, and Kenichi Hagihara. “Debugging Tool for Localiz- ing Faulty 
Processes in Message Passing Programs”. In: arXiv preprint cs/0310015 (2003). 

[76] OpenMPI:Open Source High Performance Computing.http : / / www . openmpi . org/. 

[77] Mi-Young Park and Sang-Hwa Chung. “Detecting race conditions in one-sided 
communication of MPI programs”. In: 2009 Eighth IEEE/ACIS International Conference 
on Computer and Information Science. IEEE. 2009, pp. 867–872. 

[78] PGAS-community-benchmarks.http://github.com/PGAS-community-benchmarks/ CFD-
Proxy/. 

[79] Steven C Pieper and Robert B Wiringa. “Quantum Monte Carlo calculations    of light 
nuclei”. In: Annual Review of Nuclear and Particle Science 51.1 (2001), pp. 53–90. 

[80] Manoj Plakal et al. “Lamport clocks: verifying a directory cache-coherence proto- col”. 
In: Proceedings of the tenth annual ACM symposium on Parallel algorithms and 
architectures. 1998, pp. 67–76. 

[81] Marius Poke and Torsten Hoefler. “Dare: High-performance state machine repli- cation 
on rdma networks”. In: Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing. 2015, pp. 107–118. 

[82] Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. “Locksmith: context- sensitive 
correlation analysis for race detection”. In: Acm Sigplan Notices 41.6 (2006), pp. 320–
331. 

https://www.cmcc.it/models/nemo/
https://www.cmcc.it/models/nemo/
https://www.cmcc.it/models/nemo/
http://www.openmpi.org/
http://www.openmpi.org/
http://github.com/PGAS-community-benchmarks/CFD-Proxy/
http://github.com/PGAS-community-benchmarks/CFD-Proxy/
http://github.com/PGAS-community-benchmarks/CFD-Proxy/


126  

 

[83] RandomAccess, HPC Challenge Benchmarks.http://icl.cs.utk.edu/projectsfiles/ 
hpcc/RandomAccess/. 

[84] Yufei Ren et al. “Design and testbed evaluation of RDMA-based middleware for high-
performance data transfer applications”. In: Journal of Systems and Soft- ware 86.7 
(2013), pp. 1850–1863. 

[85] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. “PARCOACH: Combining 
static and dynamic validation of MPI collective communications”. In: The International 
Journal of High Performance Computing Applications 28.4 (2014), pp. 425–434. 

[86] Emmanuelle Saillard et al. “PARCOACH Extension for Static MPI Nonblocking and 
Persistent Communication Validation”. In: 2020 IEEE/ACM 4th Interna- tional 
Workshop on Software Correctness for HPC Applications (Correctness). IEEE. 2020, pp. 
31–39. 

[87] Emmanuelle Saillard et al. “Static Local Concurrency Errors Detection in MPI- RMA 
Programs”. In: 2022 IEEE/ACM 6th International Workshop on Software Correctness for 
HPC Applications (Correctness). 

[88] Stefan Savage et al. “Eraser: A dynamic data race detector for multithreaded programs”. 
In: ACM Transactions on Computer Systems (TOCS) 15.4 (1997), pp. 391–411. 

[89] Marc Sergent et al. “Efficient notifications for MPI one-sided applications”. In: 

Proceedings of the 26th European MPI Users’ Group Meeting. 2019, pp. 1–10. 

[90] Subodh V Sharma, Ganesh Gopalakrishnan, and Robert M Kirby. “A survey of MPI 
related debuggers and tools”. In: Researchgate-Article (2007). 

[91] Stephen F Siegel. “Verifying parallel programs with MPI-Spin”. In: European Par- allel Virtual 
Machine/Message Passing Interface Users’ Group Meeting. Springer. 2007, pp. 13–14. 

[92] Stephen F Siegel and Timothy K Zirkel. “Automatic formal verification of MPI- based 
parallel programs”. In: ACM Sigplan Notices 46.8 (2011), pp. 309–310. 

[93] Mukesh Singhal and Ajay Kshemkalyani. “An efficient implementation of vector 
clocks”. In: Information Processing Letters 43.1 (1992), pp. 47–52. 

[94] Guy L Steele Jr. “Parallel programming and code selection in Fortress”. In: Pro- ceedings 
of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel 
programming. 2006, pp. 1–1. 

[95] Alexander Supalov et al. Optimizing HPC applications with intel cluster tools. 

Springer Nature, 2014. 

[96] The GNU Project Debugger.http://www.gnu.org/software/gdb/gdb.html/. 

[97] TotalView Software.http://www.roguewave.com/products/totalview/. 

http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://www.gnu.org/software/gdb/gdb.html/
http://www.roguewave.com/products/totalview/


127  

 

[98] Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M Kirby. “Dynamic verification 
of MPI programs with reductions in presence of split operations and relaxed 
orderings”. In: International Conference on Computer Aided Verification. Springer. 2008, 
pp. 66–79. 

[99] Stephen Van Doren. “HOTI 2019: compute express link”. In: 2019 IEEE Sympo- 
sium on High-Performance Interconnects (HOTI). IEEE. 2019, pp. 18–18. 

[100] Jeffrey S Vetter and Bronis R De Supinski. “Dynamic software testing of MPI applications 
with Umpire”. In: SC’00: Proceedings of the 2000 ACM/IEEE Con- ference on 
Supercomputing. IEEE. 2000, pp. 51–51. 

[101] Anh Vo et al. “A scalable and distributed dynamic formal verifier for MPI pro- grams”. In: 
SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance 
Computing, Networking, Storage and Analysis. IEEE. 2010, pp. 1–10. 

[102] Anh Vo et al. “Sound and efficient dynamic verification of MPI programs with probe non-
determinism”. In: European Parallel Virtual Machine/Message Passing Interface Users’ 
Group Meeting. Springer. 2009, pp. 271–281. 

[103] Ruini Xue et al. “MPIWiz: Subgroup reproducible replay of MPI applications”. 
In: Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel 
programming. 2009, pp. 251–260. 

[104] Katherine Yelick et al. “Productivity and performance using partitioned global address 
space languages”. In: Proceedings of the 2007 international workshop on Parallel 
symbolic computation. 2007, pp. 24–32. 

[105] Kathy Yelick et al. “Titanium: a high-performance Java dialect”. In: Concurrency 
and Computation: Practice and Experience 10.11-13 (1998), pp. 825–836. 


