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RÉSUMÉ EN FRANÇAIS

L’assimilation de données est le processus d’incorporation de données d’observations
partielles d’un système dans un modèle d’évolution numérique de ce même système afin
d’enrichir sa dynamique et de faire de l’estimation ou de la prédiction d’états du système.
L’assimilation est utilisée depuis bien longtemps et demeure aujourd’hui un domaine de
recherche très actif pour la prévision météorologique et les systèmes géophysiques. Une
large panoplie de méthodes a été conçue en ce sens, allant du contrôle optimal au filtrage
stochastique, parmi tant d’autres méthodes dont on peut trouver une description dans le
panorama récent proposé par Carrassi et al. (2018). Parmi elles, trois classes de méthodes
ont été particulièrement étudiées et/ou efficaces d’un point de vue opérationnel : les
méthodes dites variationnelles, les filtres de Kalman d’ensemble et les filtres particulaires.

Les méthodes variationnelles sont à rapprocher de la théorie du contrôle optimal (Le
Dimet and Talagrand, 1986; Simon et al., 2011; Blayo et al., 2014). Étant donné un estimé
a priori (dit de background), la méthode consiste à minimiser une fonction de coût qui
prend en compte les écarts au background et aux observations. Dans certains cas, la
fonction est quadratique et donc facilement minimisable. Mais la plupart du temps, ces
méthodes demandent en théorie un calcul explicite du modèle linéaire tangent, ce qui
peut être très coûteux et bien sûr intrinsèquement lié à l’état courant du code considéré,
même si de nos jours les procédures d’auto-différentiation épargnent ou rendent implicite
ce calcul. D’autres techniques ont également été appliquées aux méthodes variationnelles,
telles que le préconditionnement (Gürol et al., 2014) et les méthodes de Gauss-Newton
(Gratton et al., 2007).

Les méthodes d’ensemble se basent sur des ensembles de réalisations d’un système dy-
namique donné. Parmi elles, les filtres de Kalman d’ensemble (EnKF en anglais) calculent
l’ensemble filtré (ou postérieur) comme combinaisons linéaires des membres de l’ensemble
non filtré (ou antérieur). On renvoie à Evensen (1994); Asch et al. (2016); Evensen (2006);
Reich and Cotter (2015) pour des descriptions précises des différentes variantes de l’EnKF.
Bien que les équations de Kalman aient été originellement établies sous des hypothèses
de linéarité du modèle dynamique et de Gaussianité du bruit de modèle, l’application
ensembliste de ces méthodes s’est montrée efficace pour des modèles non linéaires, même
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Résumé en français

en très grande dimension (Houtekamer and Mitchell, 1998, 2001, 2005; Houtekamer et al.,
2005), pour lesquels le principe de superposition induit par les EnKF est a priori sujet
à caution. À noter que ces méthodes épargnent tout calcul explicite du modèle linéaire
tangent. Le problème de stockage des matrices de covariance en très grande dimension a
mené à des reformulations des équations de Kalman en termes de matrices d’anomalie,
aboutissant à ce que l’on appelle des filtres d’ensemble "square-root" (ESRF)(Anderson,
2001; Bishop et al., 2001; Pham, 2001; Tippett et al., 2003; Whitaker and Hamill, 2002a).
La principale limitation de ces méthodes est la taille de l’ensemble, qui est généralement
de taille très limitée (entre 10 et 200). En effet, ces approches se basent sur une approxi-
mation de rang faible de la "vraie" matrice de covariance, de taille DX ×DX , en notant
DX la dimension de l’espace d’états, par la matrice de covariance empirique, qui est au
mieux de rang N − 1, où N est la taille de l’ensemble. Les techniques dites de localisation
ont été conçues pour contourner ce problème via une réduction artificielle de la dimension
de l’espace d’états par des voisinages locaux (Anderson, 2007, 2012; Hamill et al., 2001;
Sakov and Bertino, 2011), conduisant de facto à une augmentation du rang de la matrice
de covariance empirique dégénérée. La localisation est implémentée en multipliant par un
produit de Schur soit la matrice de covariance empirique, soit la matrice de covariance
d’erreur d’observation par une matrice issue d’une fonction à support compact visant à
tuer les corrélations résiduelles entre des points de grille éloignés, définissant ainsi un
voisinage local d’intérêt. Ces méthodes sont très efficaces d’un point de vue calculatoire.
Néanmoins, les membres d’ensemble postérieurs sont par construction des combinaisons
par blocs de filtrages locaux, et peuvent donc ne plus être solutions du système dynamique
considéré.

Les filtres particulaires constituent une autre classe de méthodes d’ensemble, bien
qu’elles soient davantage à rapprocher des méthodes de Monte-Carlo. Contrairement aux
filtres de Kalman d’ensemble, les membres d’ensemble postérieurs ne sont pas calculés
comme combinaisons linéaires des membres antérieurs. Ils sont des copies bien choisies
des membres d’ensemble (aussi appelés particules dans ce contexte) qui sont les plus prob-
ables relativement aux observations. Ainsi les combinaisons linéaires ne sont pas réalisées
sur les membres d’ensemble, c’est-à-dire les états X, mais sur les atomes de la distribution
de filtrage δX . Les filtres particulaires ne nécessitent aucune hypothèse particulière sur la
nature du modèle et du bruit, ce qui présente en soi un avantage théorique incontestable.
Néanmoins, les filtres particulaires classiques comme le rééchantillonnage par importance
(SIR en anglais) (Rubin, 1987) ne fonctionnent pas pour des systèmes de grande dimen-
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sion. En effet, comme la plupart des méthodes de Monte-Carlo, le nombre de particules
doit croître exponentiellement avec la dimension de l’espace d’états pour que la méthode
soit efficace (Snyder et al., 2008). Des avancées ont été faites avec des techniques addi-
tionnelles apportées au filtre particulaire classique (Cotter et al., 2020a,b; Beskos et al.,
2017; Kantas et al., 2014) pour les systèmes de grande dimension.

Comme mentionné ci-dessus, ces méthodes d’ensemble se basent sur un principe de
superposition, qui est complètement justifié pour les filtres particulaires (combinaisons
linéaires d’atomes de distribution) mais pas pour les EnKF (combinaisons linéaires d’états).
Afin de le justifier complètement, une approche consiste à utiliser la théorie des espaces
de Hilbert à noyau auto-reproduisant (RKHS en anglais) liés à des caractéristiques in-
trinsèques du système dynamique. L’opérateur de Koopman est en ce sens un candidat
d’étude idéal. La représentation spectrale de l’opérateur de Koopman permet l’extraction
de fonctions propres intrinsèques au système dynamique (c’est-à-dire indépendantes de
la condition initiale) et constitue en soi un outil fondamental à buts théorique (théorie
ergodique (Eisner et al., 2015)) et numérique comme par exemple pour de la modélisation
guidée par les données. La plupart de ces approches numériques se basent soit sur des
moyennes en temps long (Mezic, 2005; Budisic, M. and Mohr, R. and Mezic, I. , 2012;
Das and Giannakis, 2019; Das and D.Giannakis, 2020) avec une hypothèse d’ergodicité de
la dynamique, ou sur des approximations de dimension finie de l’opérateur de Koopman
comme la décomposition en modes dynamiques et ces extensions (Rowley et al., 2009;
Schmid, 2010) ou sur des approximations de Galerkin et des techniques dites de "delay
embedding" (Brunton et al., 2017; Giannakis et al., 2015; Giannakis, 2017). Ces méth-
odes permettent une projection spectrale du système issue de longues séries temporelles
de données observées, mais sont par essence des approximations de dimension finie d’un
opérateur de dimension infinie qui contient pourtant un spectre avec potentiellement une
composante continue (Mezic, 2005), ou avec une famille infinie dénombrable de modes.
Travailler dans des espaces de fonctions lisses comme les RKHS s’est montré efficace pour
traiter ces problèmes (Das and Giannakis, 2019; Das and D.Giannakis, 2020; Das et al.,
2021). Dans un contexte d’assimilation de données, l’idée est de remplacer de longues séries
temporelles de données par un ensemble de réalisations visant à explorer, localement en
temps, l’espace des phases via les RKHS. Cela permettra de générer des nouvelles trajec-
toires solutions par un principe de superposition pleinement justifié, légitimant l’usage de
filtres de Kalman dans cette configuration.

L’assimilation de données, et en particulier le filtrage stochastique (avec l’EnKF comme
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représentant du cas linéaire gaussien), pose naturellement la question de l’aléatoire en
jeu. Dans la plupart des cas, l’aléatoire considéré provient de la condition initiale de réal-
isations déterministes, et dans certains cas une variable aléatoire additive représentant
l’erreur de modèle. Un problème classique avec ce genre d’aléas est le manque de vari-
abilité de l’ensemble, comme il n’est pas (ou que très marginalement) généré par l’aspect
chaotique de la dynamique. L’inflation de la variance a été introduite pour enrichir la
variabilité de l’ensemble. L’inflation additive consiste en l’ajout de perturbations globales
aléatoires aux membres d’ensemble et peut être utilisée aussi bien pour les filtres partic-
ulaires que pour les EnKF. Néanmoins, l’inflation additive constitue un ajout de variance
aveugle sans structure spatiale bien précise, et qui n’est par conséquent que peu utilisée
en pratique. L’inflation multiplicative est bien plus répandue et consiste en la multipli-
cation de l’anomalie de chaque membre d’ensemble (c’est-à-dire son écart à la moyenne
empirique) par un scalaire. Cette inflation est plus subtile car elle est sensée accroître
la variabilité de l’ensemble dans des directions intéressantes, avec potentiellement une
structure spatiale appropriée.

Une grande partie de cette thèse étudie une manière plus sophistiquée d’introduire
l’aléatoire pour les modèles géophysiques. L’idée est de faire de l’aléatoire une part en-
tière du modèle, et pas simplement par le biais d’un forçage ad hoc ou de l’inflation.
Cette méthodologie, appelée incertitude de position (LU en anglais), a été initialement
formalisée par Mémin (2014), et s’appuie sur une décomposition de la vitesse Lagrang-
ienne en une composante grande-échelle, lisse en temps, et d’une composante aléatoire
fortement oscillante et décorrélée en temps. Toute la dynamique est ensuite déduite de
ce point de départ afin de représenter complètement l’impact des comportements à petite
échelle sur le système global. De ce point de vue, le but de LU de représenter des com-
portements physiques cachés de la grande échelle peuvent être vus comme faisant partie
du domaine de la physique stochastique pour les sciences du climat (Berner et al., 2017;
Franzke et al., 2014; Gottwald et al., 2016; Palmer, 2019). Le principal intérêt de cette
méthode, comparativement aux méthodes déterministes, est que la dérivation du modèle
LU intègre directement le caractère aléatoire de la dynamique dans un opérateur de trans-
port stochastique modifié, qui remplace la dérivée matérielle habituelle. Par conséquent,
la méthode est complètement portée par la dynamique et dérive des lois de conservation
physiques. Des précédentes études sur la quantification d’incertitude (Resseguier et al.,
2017c, 2020a; Bauer et al., 2020a,b) ont montré que LU, pour les modèles considérés, four-
nissait un meilleur compromis biais-variance que la perturbation des conditions initiales
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pour les simulations déterministes. Le cadre LU a été également utilisé pour des systèmes
géophysiques grande échelle (Resseguier et al., 2017a,b,c; Bauer et al., 2020a,b; Brecht
et al., 2021) et pour la simulation aux grandes échelles (LES - Large Eddies Simulation)
(Kadri Harouna and Mémin, 2017; Chandramouli et al., 2020).

Après cette introduction générale, présentons maintenant un résumé succinct du plan
de la thèse.

Le chapitre 1 constitue un panorama rapide des techniques d’assimilation d’intérêt
dans nos différentes études. Le chapitre 2 présente la méthode stochastique LU et sa for-
mulation pour le modèle SQG. Le modèle SQG est un modèle océanique 2D relativement
simple qui recèle néanmoins des caractéristiques hautement non-linéaires (Blumen, 1978;
Constantin et al., 1994, 1999, 2012; Held et al., 1995; Lapeyre and Klein, 2006). Il constitue
donc un modèle jouet intéressant et non-trivial pour nos expériences. Les procédures de
génération du bruit sont également détaillées dans ce chapitre. Le chapitre 3 regroupe les
résultats qui ont été publiés pendant ce doctorat. La section 3.2 étudie la pertinence de la
modélisation stochastique par LU pour remplacer l’inflation déterministe pour les filtres
de Kalman d’ensemble dans le modèle SQG (Dufée et al., 2022). La section 3.3 décrit
une méthodologie basée sur LU et les transformations de Girsanov qui permet de guider
l’essaim de trajectoires vers une région d’intérêt, proche des observations. Les résultats
expérimentaux montrent des améliorations significatives apportées par cette procédure
(Dufée et al., 2023a). Le chapitre 4 explore le formalisme des RKHS pour l’opérateur de
Koopman dans le cadre de la prédiction d’ensemble (Dufée et al., 2023b) et présente des
techniques d’assimilation adaptées au formalisme théorique adopté.

Des parties de cette thèse seront largement inspirées des études publiées pendant ce
doctorat (Dufée et al., 2022; Dufée et al., 2023a; Dufée et al., 2023b).
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INTRODUCTION

Sequential data assimilation is the process that incorporates partial observations of a
given physical system into a numerical dynamical model of this system in order to enrich
its knowledge and make state estimation or prediction. It has been used for a long time
and is still an active area of research for weather forecasting and geophysical systems.
A wide variety of methods have been designed for this kind of purpose, from optimal
control theory to stochastic filtering, among many other techniques that can be found in
Carrassi et al. (2018), which proposes an up-to-date overview of data assimilation tech-
niques. Among all these, three main classes of methods have proven effective in operational
centers: variational methods, ensemble Kalman filters and particle filters.

Variational methods are part of optimal control theory (Le Dimet and Talagrand, 1986;
Simon et al., 2011; Blayo et al., 2014). Given a background estimate, the method consists in
minimizing a cost function that accounts for the departure from both the background and
the observation. In some particular cases, the function is quadratic and thus manageable.
But most of the time, these methods theoretically require the explicit computation of
the tangent linear model, which can be very costly and is naturally code-related, even
if nowadays auto-differentiation procedures become very efficient by sparing (or making
implicit) this computation. We may also refer to the applications of preconditioning (Gürol
et al., 2014) and Gauss-Newton methods (Gratton et al., 2007) to variational methods.

Ensemble methods rely on ensemble of realizations of a given dynamical system.
Among them, ensemble Kalman filters (EnKF) compute the filtered (or posterior) en-
semble as linear combinations of the non-filtered (or prior) ensemble members. We refer
to Evensen (1994); Asch et al. (2016); Evensen (2006); Reich and Cotter (2015) for precise
descriptions of the different variants of EnKF. Even if the Kalman equations were initially
set in hypotheses of model linearity and noise Gaussianity, these methods were shown to
be efficient with non-linear models, even in very high-dimensional systems (Houtekamer
and Mitchell, 1998, 2001, 2005; Houtekamer et al., 2005), for which the superposition prin-
ciple entailed by the EnKF is a priori questionable. Note that these methods completely
spare the explicit computation of the tangent linear model. Computational intractabil-
ity of the covariance matrices in high-dimensional problems led to reformulations of the
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Kalman equations in terms of the anomaly matrices, resulting in the so called ensem-
ble square-root filters (ESRF) (Anderson, 2001; Bishop et al., 2001; Pham, 2001; Tippett
et al., 2003; Whitaker and Hamill, 2002a). The main limitation of these methods is the en-
semble size, which is generally of moderate size (from tens to 100-200 at most), especially
when dealing with high-dimensional systems. Indeed, these approaches rely on a low-rank
approximation of the actual covariance matrix, which is of size DX×DX , denoting DX the
size of the state space, by the empirical covariance matrix, which is at best of rank N −1,
where N is the ensemble size. In order to address this possible sampling issue, localization
techniques were designed to artificially reduce the dimension of the state space in local
neighborhoods (Anderson, 2007, 2012; Hamill et al., 2001; Sakov and Bertino, 2011). This
localization is implemented by a Schur product between either the empirical covariance
matrix or the observation error covariance matrix by a tapering matrix with compact
support that kills spurious correlations between distant grid points and defines a local
window of relevance. This is computationally very efficient. Nevertheless, the posterior
ensemble members are by construction a recombination of local updates, which might not
be solution of the underlying system anymore.

Particle filters constitute another class of ensemble methods, but are part of the more
general Monte-Carlo methods. Contrary to the Kalman filters, the posterior ensemble
members are not linear combinations of the prior ones, but copies of the prior ensemble
members (also called particles in this context) that are the most likely with respect to the
observations. So the linear combinations are not made on the states X, but instead on
the Dirac measures of the distribution δX . Particle filtering does not require any hypothe-
ses on the noise or on the model, which is a theoretical great advantage. Nevertheless,
standard particle filters like Sampling Importance Resampling (SIR) (Rubin, 1987) fail in
high-dimensional systems, as the number of particles has to scale exponentially with the
dimension so that the method works (Snyder et al., 2008). Progress was made with addi-
tionnal techniques brought to the standard particle filter (Cotter et al., 2020a,b; Beskos
et al., 2017; Kantas et al., 2014) for high-dimensional problems.

As previously mentioned, these ensemble-based methodologies rely on a superposition
principle, which is fully justified for the particle filter (superposition of Dirac measures)
but not for EnKF (linear combinations of states). An approach in order to justify this
superposition principle is to work with reproducing kernel Hilbert spaces (RKHS) that
are linked with intrinsic features of the dynamical system, so the Koopman operator is a
perfect candidate with this respect. The spectral representation of the Koopman operator
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enables to extract intrinsic eigenfunctions of the system dynamics and constitutes in itself
a powerful tool for both theoretical (ergodic theory (Eisner et al., 2015) ) and numerical
purposes such as data-driven modeling. Most of them rely either on longtime averages with
ergodicity assumptions of the dynamics (Mezic, 2005; Budisic, M. and Mohr, R. and Mezic,
I. , 2012; Das and Giannakis, 2019; Das and D.Giannakis, 2020) or on finite-dimensional
approximations of the Koopman operator such as the dynamic modes representation and
its extensions (Rowley et al., 2009; Schmid, 2010) or on Galerkin approximation and delay
embedding (Brunton et al., 2017; Giannakis et al., 2015; Giannakis, 2017). These methods
enable performing spectral projection from long time series of measured observables of the
system, but are by essence finite dimensional approximations of an infinite dimensional
operator that often admits a spectrum that is partly continuous or with a summable
infinite number of modes (Mezic, 2005). Working in spaces of smooth functions like RKHS
was shown helpful to tackle these issues (Das and Giannakis, 2019; Das and D.Giannakis,
2020; Das et al., 2021). In an ensemble data assimilation context, the idea is to substitute
long time series of data by the ensemble of realizations in order to explore, locally in time,
the phase space of trajectories using RKHS. This will enable to generate new trajectories
through a justified superposition principle, and justifies the use of EnKF in this framework.

Data assimilation methods naturally raise the nature of the randomness at stake. In
most cases, the randomness considered is related to the initial condition of deterministic
realizations, and in some cases an additive random variable accounting for the model error.
A classical issue with such randomness is the lack of ensemble spread, as it is not (or very
marginally) generated by the chaotic dynamics. Variance inflation was introduced to try to
enrich the ensemble spread. Additive inflation is based on the addition of random global
perturbations to the ensemble members and can be used for both EnKF and particle
filters. Still, this is a completely blind increase of variance with no particular spatial
pattern, which is barely used in practice. Multiplicative inflation is much more popular
as it multiplies the ensemble members’ anomaly (i.e. the departure from the empirical
mean) by a scaling factor. This is more subtle as this is expected to expand the spread in
directions that are needed, with potentially an adequate spatial pattern.

A major part of this thesis studies a more sophisticated randomization framework
for geophysical problems, that does not add stochasticity as an external forcing or infla-
tion, but is fully part of the model and its derivation. This methodology, called Location
Uncertainty (LU), was first formalized in Mémin (2014), and relies on the decomposi-
tion of the Lagrangian velocity in terms of a smooth (in time) component and a highly
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oscillating random component which is time-uncorrelated. The whole dynamics is then
derived from this starting point in order to fully represent the impact of the small-scale
behaviors on the global system. With this respect, the aim of LU to represent some sort
of hidden physics can be seen as part of the domain of stochastic physics for climate sci-
ences (Berner et al., 2017; Franzke et al., 2014; Gottwald et al., 2016; Palmer, 2019). The
main asset of this method compared to deterministic ones is that the derivation of LU
implies the enforcement of the randomness in a modified stochastic transport operator
that replaces the usual material derivative. Consequently, the framework is completely
flow-driven and is based on actual physical conservation laws. Some previous studies on
uncertainty quantification (Resseguier et al., 2017c, 2020a; Bauer et al., 2020a,b) pointed
out that LU, on the models at stake, was exhibiting a better error-spread trade-off than
perturbations of initial conditions for deterministic simulations. The LU framework was
used to address large-scale geophysical systems (Resseguier et al., 2017a,b,c; Bauer et al.,
2020a,b; Brecht et al., 2021) and for large eddy simulations (Kadri Harouna and Mémin,
2017; Chandramouli et al., 2020).

After this general introduction, let us present the outline of this thesis.
Chapter 1 will constitute a quick overview of the data assimilation techniques of in-

terest in our different studies. Chapter 2 presents the LU stochastic methodology and
the formulation of the Surface Quasi-Geostrophic (SQG) model in this framework. The
SQG model is a quite simple 2D model but for which ocean highly non-linear features
are at play (Blumen, 1978; Constantin et al., 1994, 1999, 2012; Held et al., 1995; Lapeyre
and Klein, 2006). So it constitutes a nice and non trivial toy model for our experiments.
The noise generation procedures are also detailed in this chapter. Chapter 3 recaps the
findings that were published during this PhD. Section 3.2 investigates how LU is a more
efficient and secure way to replace inflation for ensemble Kalman filters in the SQG system
(Dufée et al., 2022). Section 3.3 describes a methodology that, based on LU and Girsanov
transforms, enables to guide the ensemble members towards a desired region close to the
observation. Experimental results show significant improvements brought by this addi-
tional technique (Dufée et al., 2023a). Chapter 4 investigates the RKHS formalism of the
Koopman operator for ensemble forecast (Dufée et al., 2023b) and presents theoretically
well-posed ensemble data-assimilation techniques adapted to this framework.

Some parts of this thesis will be highly inspired from the studies published during the
PhD (Dufée et al., 2022; Dufée et al., 2023a; Dufée et al., 2023b).
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Chapter 1

FILTERING PROBLEM AND DATA

ASSIMILATION METHODS

Sequential data assimilation aims at incorporating real-world data in order to correct
a realization or a set of realizations resulting from the forecast of a dynamical numer-
ical model. This chapter will formulate data assimilation methods in the framework of
stochastic filtering problems and will recap the existing methods able to solve it.
In what follows, the reference trajectory of the dynamical system will be denoted by (Xt)t
with Xt ∈ RDX for all t, where DX denotes the dimension of the state space. The ob-
servations (Yk)k are assumed to be obtained at discrete times (tk)k from an observation
operator H : RDX → RDY , such that, for any k,

Yk = H(Xtk) + ηk, (1.1)

where DY is the dimension of the observational space and ηk is the observation error.

1.1 The filtering problem

The filtering problem consists in determining, at every time t, the posterior distribution
of the underlying truth of the system, denoted by πat , given the observations obtained up
to time t. For the sequence of observation acquisition times (tk)k, the filtering distribution
is defined, for any k and any bounded measurable function ϕ, by

πakϕ = E[ϕ(Xtk)|Yk], (1.2)

where Yk = σ(Yk:) is the filtration associated to the observations gathered up to time tk.
This filtering problem can be recursively solved through a prediction-correction proce-

dure. Let us define the prediction density, for any k and any bounded measurable function
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ϕ, by
πfkϕ = E[ϕ(Xtk)|Yk−1]. (1.3)

We also define the likelihood function L : RDY → R such that, for any k and any Borelian
set B ⊂ RDY ,

P(Yk ∈ B|Xtk = xk) =
∫
B
L(yk −H(xk))dyk. (1.4)

An usual choice for the likelihood is a centered Gaussian density of a prescribed standard
deviation σk.
Then, the prediction step is defined by the transport of the posterior density of the
previous step by the model, namely, for any k and any Borelian set A ⊂ RDX ,

πfk (A) =
∫
Mk(xk−1, A)dπak−1(xk−1) (1.5)

where Mk is the probability transition kernel related to the underlying dynamical model
(it can be either deterministic or stochastic depending on the dynamical model at hand).
Finally, Bayes’ theorem yields the correction step:

πak(A) =
∫
A L(Yk −H(xk))dπfk (xk)∫
L(Yk −H(xk))dπfk (xk)

(1.6)

Considering that the posterior distribution is actually computed, an additional goal
is to exhibit some optimal estimates Xa

k of the underlying truth of the system. In the
classical assumption of Gaussianity of the posterior distribution, the usual estimate is the
posterior mean

Xa
k =

∫
xkdπ

a
k(xk). (1.7)

In case of non Gaussianity, the maximum of the posterior distribution is another natural
candidate, as it matches the posterior mean in the Gaussian case.

In practice, for ensemble methods like ensemble Kalman methods or particle filters,
the posterior distribution will not be exactly computed, but estimated by an ensemble
empirical distribution evaluated from a set of realizations of the dynamical system. In this
case, the empirical mean is the natural estimate of the truth. Other non ensemble-based
techniques, like variational methods aim at exhibiting this state estimate only, regardless
of the distribution. All these methods are the topic of the rest of this chapter.
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In what follows, the observation operator H will be assumed to be linear, and the ob-
servation error will be assumed to be Gaussian with a constant covariance error covariance
matrix R, meaning that, for all k,

ηk ∼ N (0,R)

Data assimilation techniques are usually split into a forecast step, essentially propagating
the model in time, and an analysis step that incorporates the observation through filtering.
In the following, the focus will be on the analysis (update) step, as the forecast step will
not differ from one method to another. Modifications of the forecast step accounting for
data will be considered in Section 3.3.

Note that the dependance on time tk will be dropped for the description of the methods.

1.2 Variational data assimilation

Variational data assimilation basically consists, given a prior (or background) estimate
of the state of the system Xf with background error covariance matrix B and an obser-
vation Y , to solve the most generally ill-posed problem HX = Y . A regularization term,
accounting for the departure from the prior estimate is added, so that the 3D-Var method
finally consists in minimizing the following cost function

J(X) = 1
2 ||HX − Y ||R−1 + 1

2 ||X −X
f ||B−1 . (1.8)

Note that the cost function reads formally the same without the linear hypothesis
on H, replacing HX by H(X). In this latter case, note however that J is no longer a
quadratic function.
The function J is strictly convex, so it has a unique minimum, defined as the posterior
estimate Xa, that satisfies

∇J(Xa) = 0. (1.9)

The gradient and the Hessian matrix of J read as follows:

∇J(X) = HTR−1(HX − Y ) + B−1(X −Xf ) (1.10)

∇2J = HTR−1H + B−1. (1.11)
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The posterior estimate Xa can thus be expressed by

Xa = (HTR−1H + B−1)(HTR−1Y + B−1Xf ) = −(∇2J)−1∇J(0), (1.12)

which recovers an usual result in optimization theory. For a more explicit writing of Xa ,
one can apply the Sherman-Morrison-Woodbury formula (Reinhardt, 2020) to the Hessian
matrix and finally get

Xa = Xf −BHT (HBHT + R)−1(HXf − Y ). (1.13)

Note that the optimization problem does not necessarily need the potentially very
costly inversion of the Hessian matrix. Optimal control methods that rely on an explicit
computation of the tangent linear model and its adjoint (Le Dimet and Talagrand, 1986),
can be used to minimize J in an efficient way. We may also refer to the applications of
preconditioning (Gürol et al., 2014) and Gauss-Newton methods (Gratton et al., 2007)
for variational methods.

In the case of a time series of observations (Yk)k=0,...,K obtained over a time window
[t0, tK ] and an initial estimate Xf

0 , a similar procedure is the 4D-Var method, that consists
in minimizing the functional

J(X) = 1
2

K∑
k=1
||HXk − Yk||R−1 + 1

2 ||X −X
f
0 ||B−1 , (1.14)

where Xk is obtained from the transport of X by the dynamical model up to time tk.

1.3 Ensemble Kalman filters

Contrary to the variational methods, ensemble methods are based on an empirical
approximation of the tangent linear model from a set of realizations of the underlying
dynamical model. Ensembles denoted (X(n))n=1,...,N will contain N members in the state
space RDX . The empirical mean will be denoted by X and the (unbiased) ensemble co-
variance matrix is defined by

P = 1
N − 1

N∑
n=1

(X(n) −X)(X(n) −X)T . (1.15)
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Let us do a recap on different ensemble methods, from the classical EnKF to the localized
ensemble square root filter.

1.3.1 Classical EnKF (with perturbed observations)

Starting from a prior forecast ensemble denoted (X(n),f )n=1,...,N , the classical EnKF
updates the ensemble as follows :

— The so called Kalman gain matrix is defined by

K = PfHT (HPfHT + R)−1. (1.16)

— The ensemble members are updated individually by

X(n),a = X(n),f −K(HX(n),f − Y − ξ(n)), (1.17)

with ξ(n) ∼ N (0,R), which corresponds to random draws of the observation error.

1.3.2 Ensemble Square Root Filter (ESRF)

The square root formulation was designed in Whitaker and Hamill (2002b) and pro-
vides a fully deterministic way to compute the posterior ensemble, with no need to sample
the ξ(n)s. The method proposes a different update of the ensemble members based on the
anomaly matrices. As consequences of the previous Kalman equations, we have:

— The innovation term HX
f − Y weighted by the Kalman gain matrix K accounts

for how much the ensemble mean needs to be corrected:

X
a = X

f −K(HX
f − Y ). (1.18)

— The ensemble covariance matrix is updated accordingly:

Pa = Pf −KHPf . (1.19)

Note that, according to (1.18), the posterior empirical mean is solution of the 3D-Var
problem (1.13) with respect to the prior estimate Xf and its empirical covariance matrix
Pf . Dealing with very high dimensional systems in practice, the ensemble covariance ma-
trices raise a tractability issue. An alternative is to rewrite the previous Kalman equations
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only in terms of much more tractable matrices, namely the ensemble anomaly matrices

A = [(X(1) −X), (X(2) −X), . . . , (X(N) −X)],

which is a DX ×N matrix, so a much more convenient one to store and manipulate. The
ensemble covariance matrix is related to the anomaly matrix by

P = 1
N − 1AAT , (1.20)

and the same relation holds for the posterior (or analysis) matrices. The idea of the square
root filter is to look for the posterior ensemble anomaly in the form

Aa = AfS, (1.21)

where S is a N ×N matrix, such that the posterior ensemble covariance matrix satisfies
the Kalman equations, especially (1.19). Injecting (1.20) in equation (1.19) of the update
of Pa, one can find, after some algebraic manipulations, that

Aa(Aa)T = Af
(

I− 1
N − 1(HAf )T (HPfH + R)−1HAf

)
(Af )T .

So, the matrix S satisfying equation (1.21) is such that

SST = I− 1
N − 1(HAf )T (HPfH + R)−1HAf .

Using the Sherman-Morrison-Woodbury formula (Anderson and Moore, 2012), we deduce
that

S =
(

I + 1
N − 1(HAf )TR−1HAf

)− 1
2
. (1.22)

Note that this matrix has very moderate size N ×N and, in practice, Singular Value De-
composition (SVD) can be used in order to compute the inverse square root. By definition
of Aa, the posterior forecast is given by

Xa = X
a + Aa = X

a + AfS. (1.23)
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It can be shown that the mean Xa can be written as a linear combination of the members
of the forecast ensemble, namely

X
a =

N∑
i=1

ωiX
(i),f ,

where ωi is the i-th coordinate of the column vector

ω = 1
N
1− 1

N − 1S2(Af )THTR−1(HX
f − Y ). (1.24)

Finally, combining this with equation (1.23), the members of the posterior ensemble can
be computed, for n = 1, . . . , N ,

X(n),a =
N∑
i=1

ωiX
(i),f +

N∑
i=1

(X(i),f −Xf )Sin. (1.25)

This filter is part of what is generally called Linear Ensemble Transform Kalman Filter
(LETKF), because members of the posterior ensemble are linear combinations of the
forecast ones. Here

X(n),a =
N∑
i=1

c
(n)
i X(i),f ,

with
c

(n)
i = ωi + Si,n −

1
N

N∑
j=1

Sj,n.

Algorithm 1 recaps the ESRF.

Algorithm 1 Ensemble Square Root Filter (ESRF)
Input: Initial ensemble (X(1)

0 , ..., X
(N)
0 ), sequence of observations (Yj), observation error

covariance matrix R, observation operator H.
for j = 1, 2, ... do
Propagate all the ensemble members according to the underlying dynamics to get
the forecast ensemble (X(1),f

j , ..., X
(N),f
j )

Get observation Yj.
Compute the anomaly matrix Af

Compute the matrix S according to formula (1.22), so that Aa = AfS.
Compute the weight vector w with formula (1.24) such that Xa = ∑N

i=1 ωiX
(i),f

Update individually the ensemble members X(n),a by formula (1.25).
end for
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Let us mention that such a superposition principle (stability of solutions by linear
combinations) is in theory only valid for linear dynamics. In the context of nonlinear
dynamics, this setting has to be understood as constraining the solution to live in a
particular Hilbert space of Gaussian processes spanned by the ensemble members and
associated to a norm defined by the inverse ensemble covariance matrix.

Ensemble-based methods are very convenient because, as mentioned, it spares the
knowledge and computation of the tangent linear operator, which is approximated by
an empirical one. The counterpart of that is the low-rank approximation of the "real"
covariance matrix by the empirical covariance matrices of rank at most N − 1, which is
much smaller than DX for computational affordability. It was shown (see Houtekamer
and Mitchell (1998) for example) that this can result in filter divergence, as too much
confidence is put in the forecast ensemble members, possibly preventing them from being
strongly corrected, even if the observation would require it.

Two possible techniques were figured out in order to counter the latter effect. The first
one, called inflation, consists in artificially increase the ensemble spread to try to recover
some additional diversity theoretically lost through the low-rank approximation of the
covariance matrix. The second is to turn the problem around and to artificially reduce
the dimension of the state space by so called localization techniques, so that, locally, the
ensemble covariance matrix becomes a very decent approximation of the "real" covariance
matrix.

Both aspects are detailed hereafter.

1.3.3 Inflation

The need for inflation naturally appears when dealing with deterministic models, where
the only randomness considered is most commonly related to the initial conditions. After
some time, the ensemble may exhibit insufficient spread, causing a progressive drift from
the observations and ultimately to filter divergence.

The most common way to inflate an ensemble is called multiplicative inflation. It can
be applied either on the prior, before the assimilation, or on the posterior. Given an
ensemble (X(1), ..., X(N)) and its empirical mean X, multiplicative inflation consists in
building an inflated ensemble (X̃(1), ..., X̃(N)) such that, for any n,

X̃(n) = X + α(X(n) −X),
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where α > 1 is called the multiplicative inflation parameter. This artificially increases the
variance by inflating the anomaly.

Another method is called additive inflation and simply consists in adding random
perturbations to the posterior ensemble members after the filtering step, which possibly
degraded the ensemble spread:

X̃(n),a = X(n),a + η(n)

with η(n) ∼ N (0, β2Pa) and β > 0 is the additive inflation parameter. This perturbs the
new initial conditions before propagating by the numerical model in order to recover some
diversity.

1.3.4 Localization for the ESRF

There exist two main ways to localize the filter. The R-localization (or local analysis)
aims at transforming the observation error covariance matrix R. Another way to achieve
localization is to work on the ensemble covariance matrix P (B-localization or covariance
localization). As equations (1.22-1.25) are only based on the use of the anomaly matrices
instead of the whole covariance matrices P, R-localization is the only one compatible with
the square root filter, and more generally with the LETKF equations. Sakov and Bertino
(2011) give details on both localization techniques and give numerical insights showing
that both methods are likely to produce similar results.
The basic idea of R-localization is to update the ensemble members locally, grid point
after grid point, according to local neighborhoods of "relevance". One asset of this method
is to dramatically reduce the dimension of the state space for each local update.
In the following, the respective number of points on the simulation (state space) grid and
on the observation grid will be denoted dX and dY .
More precisely, for each grid point k = 1, . . . , dX , let us denote pk the projection on the
k-th coordinate (or grid point). For each k, the aim is to compute the local coefficients
c

(n)
i,k such that

pk(X(n),a) =
N∑
i=1

c
(n)
i,k pk(X(i),f ). (1.26)

In order to do this, R-localization is applied, meaning that the observation error covariance
matrix will be converted into a local matrix for each grid point, and then the previous
formulas (1.22-1.25) will apply for this local matrix. This is done in order to kill spurious
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correlations.
For each k = 1, . . . , dX , a diagonal localization matrix Ck of size dY × dY is defined and
the diagonal coefficients are given, for l = 1, . . . , dY , by

(Ck)ll = ρ

(
d(l, k)
rloc

)
, (1.27)

where :

— d(l, k) denotes the distance between the grid point k and the observation site l.

— rloc is the localization radius.

— ρ is the Gaspari-Cohn function, defined for any z ≥ 0 by

ρ(z) =


−1

4z
5 + 1

2z
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3 − 5

3z
2 + 1 if z < 1

1
12z

5 − 1
2z

4 + 5
8z
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2 − 5z + 4− 2
3z if 1 ≤ z ≤ 2

0 if z ≥ 2
.

It basically behaves like a Gaussian, but has compact support [0, 2], so that the
coefficients are set to zero as soon as d(l, k) is twice as big as the localization radius.

Then the inverse observation error covariance matrix is modified by the Schür product

R−1
k = Ck ◦R−1. (1.28)

By doing so, the grid points outside this area are no longer taken into account, as the
observation error is set to infinity at these points. Finally, R is replaced by Rk in formula
(1.22), which gives a localized version Sk of S, and consequently a localized version of
equation (1.25).
In order to sum everything up, in this localized setting, the update formula is given by

X(n),a =
dX∑
k=1

pk(X(n),a) =
dX∑
k=1

N∑
i=1

c
(n)
i,k pk(X(i),f ). (1.29)

One theoretical drawback of this localization is the impossibility to guarantee the
conservation of some physical balances from the prior to the posterior ensemble members,
and more drastically the posterior is not solution of the global underlying dynamical
system, which can become a serious issue.
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1.4. Particle filters

Algorithm 2 Localized Ensemble Square Root Filter (LESRF)
Input: Initial ensemble (X(1)

0 , ..., X
(N)
0 ), sequence of observations (Yj), obser-

vation error covariance matrix R, observation operator H, localization radius
rloc.
for j = 1, 2, ... do
Propagate all the ensemble members according to the underlying dynamics to get
the forecast ensemble (X(1),f

j , ..., X
(N),f
j )

Get observation Yj.
Compute the anomaly matrix Af

for k = 1, ..., dX do
Compute the diagonal localization matrix Ck in equation (1.27).
Compute the localized inverse observation error covariance matrix R−1

k with equa-
tion (1.28).
Compute the corresponding matrix Sk according to formula (1.22).
Compute the weight vector wk with formula (1.24) such that pk(X)a =∑N
i=1 ωipk(X(i),f )

end for
Update individually and locally the ensemble members X(n),a by formula (1.29).

end for

1.4 Particle filters

Particle filters are part of the Monte-Carlo methods and is based, like the ensemble
Kalman filters, on an ensemble representation of the distribution. It largely differs from
the Kalman methodology in the sense that it no longer relies on a modification of the
ensemble members through linear combinations. Instead, it affects and updates an im-
portance weight to each ensemble member (also called particle in this framework) that
represents how likely the particle is according to the observation.

Assuming that we start from a forecast ensemble (X(n),f )n=1,...,N and the empirical
approximation of the prior distribution

πf = 1
N

N∑
n=1

δ(X(n),f ),

where δ is the Dirac distribution, the "quality" of each prior particle is assessed through
the likelihood function, and the particle is given its weight: for all n,

w(n) = L(X(n),f − Y ),

21



Chapter 1 – Filtering problem and data assimilation methods

where Y stands for the observation. Then we accordingly define the normalized weight
vector

w = (w(n))n=1,...,N ; w(n) = w(n)∑N
i=1w

(i) .

Without modifying the ensemble members, the posterior distribution will write

πa = 1
N

N∑
n=1

w(n)δ(X(n),f ) (1.30)

Another big difference with the EnKF is the relaxation of the assumptions of observation
and model noise Gaussianity and model linearity from which the Kalman equations were
originally derived.
The following parts detail the algorithmic translation of this distribution point of view.

1.4.1 Sampling Importance Resampling (SIR) algorithm

This is the most basic particle filter. Given the particles and the observation, the
normalized weight vector w is computed and a resampling procedure is applied on the
ensemble, which consists in discarding particles with low weights, and to replace them by
random duplicates of particles with higher weights.
Algorithm 1 gives an example of resampling procedure, called multinomial resampling.
This algorithm is equivalent to draw the number of offspring for all the particles according

Algorithm 3 Multinomial Resampling
Input: Forecast ensemble (X(1), ..., X(N)) and its normalized weight vector w.

Compute the cumulative normalized importance weight vector c using this for loop :
for i = 1, ..., N do
ci = ∑i

l=1w
(l)

end for
for n=1,...,N do
Draw one random variable un ∼ U [0, 1].
Find the resampling index ψ(n) = min{i, un ≤ ci}.
Replace particle n by particle ψ(n).

end for

to a multinomial distribution with parameters (N,w).
The main drawback of resampling is the huge loss of diversity entailed by such a procedure.
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1.4. Particle filters

In the extreme case where only one particle has a weight close to 1, and all the others an
almost zero weight, the posterior ensemble will basically be N duplicates of one particle.
This phenomenon is called ensemble degeneracy.
Degeneracy can be due to too frequent resampling procedures that are not necessary. A
criterion to assess the level of degeneracy of the filter is called the Effective Sample Size
(ESS), defined by

ESS(w) =
(

N∑
n=1

w(n)2
)−1

.

This indicator measures the variability of the ensemble weights. If all particles have almost
the same weights, then w(n) ' 1

N
and the ESS is approximately N . On the contrary, if

only a small group of particles have the largest weights (ensemble degeneracy), then the
ESS will decrease dramatically. So the ESS is a good indicator to decide whether or not
we should proceed to resampling. An usual choice is to perform it only if ESS < N∗

where N∗ is a fixed threshold. Algorithm 4 sums up the procedure for the SIR filter. In

Algorithm 4 Bootstrap particle filter
Input: Initial ensemble (X(1)

0 , ..., X
(N)
0 ).

for j = 1, 2, ... do
Propagate all the particles according to the underlying dynamics to get the forecast
ensemble (X(1)

j , ..., X
(N)
j )

Get observation Yj.
Compute the normalized weight vector w
if ESS(w) < N∗ then
Resample using Algorithm 3

end if
end for

practice, filter degeneracy is not due to too frequent assimilations. In high-dimensional
systems, the usual choice of likelihood based on the L2-norm over the observation grid
is overdiscriminating and will, after very few steps of simulation, lead to a very small
ESS (close to 1) and a highly degenerate filter. A first possible solution is to strongly
constrain the truth to stay in the ensemble spread by controlling the initial condition
to be very close (or even exactly) the truth, and to filter the ensemble very frequently.
Additive inflation, presented in section 1.3.4, which is also called particle rejuvenation in
the particle filter community, can also be used in deterministic settings to reintroduce
some spread after the filtering, so that the posterior distribution is not exactly a single
Dirac measure in the degenerate case.
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Chapter 1 – Filtering problem and data assimilation methods

Additional techniques were carried out by Cotter et al. (2020a,b) in order to counteract
filter degeneracy and are detailed hereafter. Note that some of these methods will only
apply in the framework of stochastic forecast models.

1.4.2 Jittering

Jittering aims at recovering the diversity of the posterior ensemble and is similar to
the stochastic version of additive inflation. The objective of both procedures is the same,
to perturb the posterior initial conditions before propagating them again according to the
underlying dynamics.

In this method, particles resampled by the filter will no longer be duplicates of particles
with higher weights, but will be generated according to a Metropolis-Hasting Markov
Chain Monte Carlo (MCMC) method. One way to proceed is to slightly modify the noise
according to which the stochastic PDE (SPDE) is driven for these particles. If the original
one was driven by a standard Brownian motion B, the jittered one will be driven by

ρB +
√

1− ρ2B̃, (1.31)

where B̃ is a new Brownian motion independent from B, and ρ is called the jittering pa-
rameter. It controls the amplitude of the perturbation brought by the new noise compared
to the original one. In practice, ρ is chosen sufficiently close to 1 so that particles do not
go to far from the duplicate, but small enough so that it indeed has an impact (typically
ρ = 0.999 in our experiments, this way the new noise is around 20 times weaker than the
original one).
Then the new realization X̃ will be accepted and replace the former realization X with
probability

a(X, X̃) = min
(

1, L(X̃ − Y )
L(X − Y )

)
. (1.32)

Algorithm 5 recaps what happens in one jittering step.

1.4.3 Tempering

The idea of tempering is the following: given a forecast ensemble which has a bad
ESS, the variance of the distribution is artificially increased using a rescaling of the log-
likelihood by a scalar φ ∈]0, 1[, called the temperature by analogy with annealing algo-
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1.4. Particle filters

Algorithm 5 Jittering step at time tj using MCMC
Input: Ensemble (X(1)

tj , ..., X
(N)
tj ), the number of MCMC steps M and the jittering pa-

rameter ρ.
for m = 1, ...,M do
for n = 1, ..., N do
Generate a new proposal X̃(n)

tj starting from X
(n)
tj−1 with the jittered noise (1.31).

Compute the weight of this new proposal w̃(n) = L(X̃(n)
tj − Ytj).

if w̃(n) ≥ w(n) then
The acceptance probability a is equal to 1, so update X(n)

tj = X̃
(n)
tj .

else
a = w̃(n)

w(n) .
Draw a random variable u ∼ U([0, 1]).
if u ≤ a then
Update X(n)

tj = X̃
(n)
tj

end if
end if

end for
end for

rithms. This temperature is chosen so that the ESS is good (above a given threshold N∗)
for this tempered distribution, enabling the application of resampling (jittered or not).
The next temperature will be chosen in the interval ]φ, 1[, and this is iterated until the
initial distribution is fully recovered, corresponding to temperature 1.
In other words, the Radon-Nikodym distribution of the posterior distribution with respect
to the forecast, which is exactly the likelihood function dπa

dπf
∝ L(· − Y ) leads to a bad

ESS ensemble, so it is decomposed as follows:

dπa

dπf
= dπ1

dπ0
...

dπR
dπR−1

, (1.33)

where 0 = φ0 < φ1 < ... < φR = 1 is the sequence of temperatures such that π0 = πf ,
πR = πa, and for r = 1, ..., R,

dπr
dπr−1

= L(· − Y )φr−φr−1 . (1.34)

and ESS(wr) denotes the ESS of the weight vector computed with this likelihood.
These tempered distributions should progressively lead to a balanced and diverse posterior
ensemble.
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The procedure is recapped in Algorithm 6.

Algorithm 6 Tempered particle filter
Input: Initial ensemble (X(1)

0 , ..., X
(N)
0 ).

for j = 1, 2, ... do
Propagate all the particles according to the underlying dynamics to get the forecast
ensemble (X(1)

tj , ..., X
(N)
tj )

Get observation Ytj .
Compute the normalized weight vector w
Set φ0 = 0, r = 1
while ESS(wr−1) < N∗ do
Set p = 2 and φr = 1

p
.

while ESS(wr) < N∗ do
p = p+ 1

end while
Resample using Algorithm 3 with wr as the weight vector.
Apply jittering using Algorithm 5 with the tempered likelihood (10).
r=1

end while
Resample and jitter with r = R and φR = 1 to get the posterior ensemble.

end for

1.5 Convergence results

This section recaps the existing convergence results for ensemble methods when the
ensemble size N goes to +∞.

1.5.1 Ensemble Kalman filters

The convergence properties are quite straightforward to obtain at time 0. As the
initial ensemble is generated from i.i.d. samples of the initial background distribution
p0 ∼ (Xb,B), the strong law of large numbers provides, when N → +∞, the convergence
of the empirical mean and covariance matrix respectively towards Xb and B. The idea is
to propagate this result in time with continuity arguments for both the forecast and the
analysis step. We refer to Le Gland et al. (2011) or Mandel et al. (2011) for proofs for the
standard EnKF with perturbed observations. Kwiatkowski and Mandel (2015) formulated
the results of convergence for the ensemble square root filter:
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1.5. Convergence results

Theorem 1. Assume that the state space is a finite dimensional or separable Hilbert
space, the initial state X0 has a distribution such that all moments exist, E(|X0|p) < ∞
for 1 ≤ p <∞, the initial ensemble (X(n)

0 )n=1,...,N is an iid sample from this distribution,
and the model is linear. Then, for any iteration k, the ensemble mean XN,a

k and covariance
matrix PN,a

k resulting from the ensemble square root filter respectively converge to the mean
X
a

k and covariance matrix P resulting from the (non ensemble) Kalman filter, in Lp for
1 ≤ p <∞, as N →∞, with the convergence rate 1√

N
. Namely,

||XN,a

k −Xa

k||p ≤
Cp,k√
N
, (1.35)

||PN,a
k −Pa

k||p ≤
Cp,k√
N
, (1.36)

for all 1 ≤ p < ∞, and all N ∈ N, where Cp,k is a constant that does not depend on the
ensemble size or the dimension of the state space.

This theorem quantifies the convergence of the ensemble square root filter distribution
towards the Kalman filter distribution which is, in the linear and Gaussian case, solution of
the filtering problem. Note that, in a non linear or non Gaussian case, this theorem ensures
the convergence towards a distribution which is not necessarily the filtering distribution.

We may also refer to Bishop and Del Moral (2023) for recent progress on theoretical
results for the ensemble Kalman-Bucy filter in the linear Gaussian case that, among many
other results, spares the time dependance in the previous fluctuation estimate.

1.5.2 Particle filters

As particle filters deal with probability distributions, the convergence results are stated
for the topology associated with the weak convergence of distributions. The law of large
numbers and a central limit theorem were respectively proven in Del Moral (1997) and
Del Moral and Guionnet (1999). We also refer to Crisan and Doucet (2002) for an early
overview of convergence results for particle filters. This first theorem states a law of large
numbers for the SIR algorithm.

Theorem 2. Under the assumptions that the transition kernel driving the underlying
process X is Feller and that the likelihood function L is bounded, continuous and strictly
positive, then, for any iteration k, the posterior distribution πN,ak resulting from the SIR
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Chapter 1 – Filtering problem and data assimilation methods

algorithm (equation (1.30)) converges almost surely towards the filtering distribution πak

(equation (1.2)). Namely, for any test function f : Rd → R,

lim
N→+∞

∫
f(x)dπN,ak (x) =

∫
f(x)dπak(x)

The assumptions of the theorem are essentially here to ensure the continuity of the
time transition between πN,ak and πN,ak+1 and hence to propagate in time the convergence
property, as it was needed for the ensemble square root filter convergence result. This
law of large numbers for the SIR can be accompanied with a convergence result for the
estimate MSE:

Theorem 3. Under the same hypothesis, for any test function f : Rd → R and any
N ∈ N,

E
[(∫

fdπN,ak −
∫
fdπak

)2
]
≤ Ck

||f ||2

N
.

These results are much stronger than its EnKF counterparts. They ensure the conver-
gence towards the filtering distribution, even out of the classical linear Gaussian setting.
With this respect, particle filter has an undeniable theoretical advantage in a data assim-
ilation perspective. We also refer to Beskos et al. (2014) for the theoretical justification
of tempering and jittering procedures.

Nevertheless, Bishop and Del Moral (2023) point out that, in a linear Gaussian setting,
the particle filter is unable to keep track of unstable reference signals, with the example of
McKean-Vlasov diffusions, whereas the EnKF, which is in this case a mean-field approx-
imation of the diffusion process, is able to do it. This illustrates that the EnKF, with its
ability to explore the neighborhood of the state space spanned by the ensemble members,
can compensate an unstable forecast step, whereas the SIR algorithm is more dependent
on the forecast reliability.

1.6 Synthesis and choice of the PhD focus

After this quick overview, let us point out that most of the contents of this thesis
will be focused on the ensemble square root filter and its localized version. The choice to
elaborate on this family of methods is motivated by the early experiments of the PhD,
and we refer to the conclusive chapter for more precise explanations. As a short summary
of this conclusion, despite an undeniably more reliable theory, the particle filter and its
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variations with tempering and jittering did not prove effective enough (in terms of MSE)
compared to the ensemble square root filter, and even less compared to its localized
version. In order to make particle filter effective (for a short period of time) in our case,
we needed a very careful control of the ensemble spread around the observations, a quite
linear dynamical behavior, and a much higher computational cost, coming either from a
bigger ensemble or jittering and tempering procedures. As a consequence, the contents of
the thesis will be mainly focused on the EnKF, even if some bridges with particle filters
and variational methods will be attempted in the end of Chapter 4.
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Chapter 2

STOCHASTIC MODELING UNDER

LOCATION UNCERTAINTY (LU)

The purpose of this chapter is to present the principles of modeling under Location Un-
certainty and how it modifies the formulation of transport equations. The SQG equations
are stated in this framework and noise generation procedures are suggested.

2.1 General principles of LU

Location Uncertainty models the impact of the small scales on the global flow dy-
namics. It is a stochastic framework that relies on the following decomposition of the
Lagrangian velocity of a fluid particle positioned at Xt in a spatial domain Ω ⊂ Rd :

dXt = v(Xt, t)dt+ σ(Xt, t)dBt, (2.1)

where v is a smooth-in-time component (referred to as the large-scale component in the
following) and σdBt is a highly oscillating random component, built from a (cylindrical)
Wiener process Bt (ie a well-defined Brownian motion taking values in a functional space)
(Prato and Zabczyk, 1992). This latter component is uncorrelated in time. Let us point
out that the above relation is rigorously understood in its integral form and corresponds
thus only to a practical shortcut notation. The correlation operator σ is defined through
a bounded matrix kernel σ̂, for any function f ∈ (L2(Ω))d, by

σ(x, t)f =
∫
Ω
σ̂(x, y, t)f(y)dy. (2.2)

From this correlation operator, the covariance matrix kernel q̂ reads

q̂(x, y, t) =
∫
Ω
σ̂(x, x′, t)σ̂(y, x′, t)Tdx′, (2.3)
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and the associated covariance operator Q is given by

Q(x, t)f =
∫
Ω
q̂(x, y, t)f(y)dy. (2.4)

The random velocity is Gaussian and distributed as

σdBt ∼ N (0, Qdt). (2.5)

Moreover, at each time t, the covariance operator Q(·, t) is self-adjoint, non-negative
definite and compact. Thus it admits an orthonormal eigenfunction basis {φn(·, t)}n∈N
with non-negative eigenvalues (λn(t))n∈N. This entails an alternative convenient spectral
definition of the noise as

σ(x, t)dBt =
∑
n∈N

√
λn(t)φn(x, t)dβnt , (2.6)

where the βn are i.i.d standard Brownian motions. From (2.6), the noise variance tensor
a is then defined by

a(x, t) =
∑
n∈N

λn(t)φn(x, t)φn(x, t)T . (2.7)

It can be noticed that the variance tensor has the physical dimension of a viscosity (ie
m2/s). The properties and structure of the noise will of course depend on the procedure
used to generate the orthonormal basis functions. The one used in our experiments will
be presented later. In the deterministic case, a transported tracer Θ has zero material
derivative :DtΘ = ∂tΘ + v · ∇Θ = 0. In the LU framework, the material derivative is
replaced by the stochastic transport operator

DtΘ = dtΘ + (v∗dt+ σdBt) ·∇Θ− 1
2∇ · (a∇Θ)dt, (2.8)

where

— dtΘ = Θ(x, t+ dt)−Θ(x, t) is the forward time increment of the tracer.

— The effective advection velocity is defined by

v∗ = v − 1
2∇ · a. (2.9)

— The term σdBt · ∇Θ is a non-Gaussian multiplicative noise corresponding to the
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2.1. General principles of LU

tracer’s transport by the small-scale flow.

— The last term is a diffusion term, as the variance tensor a is definite positive.

Note that the expression of the transport operator is given here for a divergence-free
noise. In the case of a compressible random field, the modified advection incorporates an
additional term related to the noise divergence (Resseguier et al., 2017a). One key prop-
erty of LU (for an incompressible random term) is that, under the same ideal boundary
conditions as in the deterministic case, it conserves the energy of the transported random
tracer Θ:

d
∫
Ω

Θ2(x)dx = 0. (2.10)

Most importantly, this energy conservation property holds pathwise (i.e for any realiza-
tion of the Brownian noise) (Bauer et al., 2020a; Resseguier et al., 2017a). A few general
remarks on the stochastic transport operator can be done at this point. Compared to
the usual material derivative, it is embedded with new additional terms. The viscosity
associated with the mixing of the advected quantity by the noise is now described by
the variance tensor a. It is no longer a scalar variable but a (positive definite) diffusion
matrix. It is thus richer than the classical eddy viscosity models (Boussinesq, 1877) de-
rived from an analogy with the molecular friction (the so called Boussinesq’s assumption).
The multiplicative noise corresponds to a backscattering of energy that is exactly com-
pensated by the loss of energy brought by the stochastic diffusion (meaning the second
order differential term associated to the stochastic transport operator in equation (2.8),
which is indeed diffusive, in the sense that it dissipates energy). This balance is the rea-
son why we have the energy conservation property and can be seen as a redistribution of
the tracer (in the same way as a deterministic advection equation). Finally, the modified
advection corresponds to the statistical effect induced by the small-scale inhomogeneity
on the large scale component structuration (Bauer et al., 2020a). With this term, the par-
ticles are statistically encouraged to migrate from regions with high variance (i.e. of high
kinetic turbulent energy) to regions with low variance. This modification of advection, the
backscattering carried by the advection noise and the balanced diffusion matrix are the
three distinctive ingredients of the modeling under location uncertainty. It is important
to point out that this balance only holds globally. Locally in space, these three terms may
play their own role without any balance. This scheme has been used for the modeling
of large scale flow dynamics for numerous flow configurations. From a data assimilation
point of view, it has been used in an optimal control setting for 3D flow reconstruction
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and for joint parameter estimation in a 1D shallow water model (Chandramouli et al.,
2020; Yang and Mémin, 2019), where it was shown to provide an interesting trade-off with
the so called weak constraint variational assimilation.

2.2 The LU-SQG system

In this work we apply the LU framework to the 2D Surface Quasi-Geostrophic (SQG)
model. This model constitutes an idealized dynamics for surface oceanic currents. Yet, it
involves many realistic features of real world phenomena such as front, strong multiscale
eddies, driven by a 3D like turbulent energy cascade, see Constantin et al. (1999); Lapeyre
and Klein (2006) for details.

The SQG model relies on a (deterministic or stochastic) transport equation of the
buoyancy field b (in m.s−2) (or density fluctuation b = −gρ′

ρ0
, with g the gravitational

constant and ρ′ the density fluctuation around a base constant density ρ0):

Dtb = 0, (2.11)

coupled with a kinematic equation

b = N(−∆) 1
2ψ (2.12)

and the incompressibility constraints

v = ∇⊥ψ; ∇ · σdBt = 0, (2.13)

linking the buoyancy field to the velocity field v, where ψ (in m2.s−1) is the stream
function, Nstrat (in s−1) is the stratification, and ∇f = (∂xf, ∂yf)T , ∇⊥f = (−∂yf, ∂xf)
respectively stand for the classical and orthogonal gradients, while ∆ denotes the Laplace
operator. As shown in Resseguier et al. (2017b) for noise of moderate amplitude, the
stochastic dynamics simply consist in replacing the material derivative Dt by the stochas-
tic transport operator Dt given by (2.8). We show in Figure 2.1 several realizations of the
stochastic dynamics obtained with a so called SVD noise (see Section 2.3.2) in a four-
vortex configuration with double periodic boundary conditions (see Figure 3.1) and the
numerical setup described in Section 3.1. Note that for noise of higher amplitude, the
elliptic relation (2.12) is modified and involves an additional diffusion operator associated
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to the noise Resseguier et al. (2017c). This case will not be considered here.
It can be noticed that the large-scale component of the different runs remain quite

close after 17 days. They mainly differ by their small-scale features and vortices (subfigures
(a,b,c,d)). We also added the states of these realizations at day 72 as an example to point
out that the system is chaotic and may lead to significant large scale differences (subfigures
(e,f,g,h)), at least on the time range studied in this work. This system is unforced and
involves in its numerical implementation a small hyperviscosity term. It is hence decaying
in the long run. However, as shown in Figure 2.1, the system remains turbulent at the end
of the time period on which we will focus in this study. So called mesoscale eddies as well
as submesoscale eddies, filaments and fronts can be observed for the different realizations
at day 72 of Figure 2.1.

2.3 Noise generation procedures

The LU scheme obviously depends on the noise parameterization chosen. For instance,
for a homogeneous noise associated to Fourier basis functions, the variance tensor is ho-
mogeneous and constant (even diagonal for a divergence free flow). Hence, there is no
modified advection. Note however that homogeneous noise is in theory restricted to pe-
riodic domains or to dynamics defined over the whole space. For a stationary noise, the
variance field is constant in time and thus not related to the evolving large-scale com-
ponents. The ability to build a flow-dependent noise enables us to improve probabilistic
forecasting skills (Brecht et al., 2021). For the SQG dynamics, several noise parame-
terizations have been compared and assessed through different statistical proper scores
(Resseguier et al., 2020a). One of the main findings of this work is that a time-varying
inhomogeneous parameterization, termed as SVD (Singular Value Decomposition) noise,
provides the best quantification results. Still, this method is very costly compared to sta-
tionary noises based on purely data-driven methods. The rest of this section is dedicated
to both types of methods, which will be used in the experiments presented afterwards.

2.3.1 Data-driven stationary noise (POD noise)

This method relies on a data-driven method called proper orthogonal decomposition
(POD) to estimate the empirical orthogonal functions in the spectral representation of
equation (2.6). By a slight abuse of notation in the following, this noise will be referred
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(a) Realization 1 (b) Realization 2

(c) Realization 3 (d) Realization 4

(e) Realization 1 (f) Realization 2

(g) Realization 3 (h) Realization 4

Figure 2.1 – Four different realizations for the stochastic dynamics at day 17 and day 72.
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to as POD noise. We give some details in what follows.
The data considered here is a time-series of velocity snapshots {v(x, tn), n = 1, ..., Nt}

coming from pre-processed high-dimensional data. From these, the temporal mean v is
computed and then removed to get the fluctuation snapshots around this mean v′ = v−v.
The temporal covariance tensor associated to v′ is then defined by C = (ci,j)i,j=1,...,Nt with

ci,j = 1
|Ω|

∫
Ω
v′(x, ti)v′(x, tj)dx := 1

|Ω|
〈v′(·, ti), v′(·, tj)〉Ω (2.14)

The covariance operator being compact, self-adjoint and definite positive, the eigen prob-
lem

CB = ΛB

can be solved in order to estimate the set of real positive decaying eigenvalues Λ =
(λn)n=1,...,Nt and the corresponding set of temporal orthogonal eigenvectorsB = (bi,j)i,j=1,...,Nt =
(bi(tj))i,j=1,...,Nt . These temporal modes are normalized such that

bi(·)bj(·) = λiδi,j. (2.15)

Then the spatial modes (φn)n=1,...,Nt are defined by

φn(x) = bn(·)v′(x, ·) (2.16)

and are orthonormal with respect to the spatial inner product defined in (2.14).
Then, each snapshot can be recovered through the following spectral decomposition :

v(x, ti) = v(x) +
Nt∑
n=1

bn(ti)φn(x). (2.17)

We make the additional assumption that, for ∆t small enough, the small-scale random ve-
locity σdBt

∆t only lives in the space spanned by only a subset of small modes (φk)M≤k≤M+K ,
meaning that

1
∆tσ(x)dBt '

M+K∑
k=M

√
λkφk(x)ξk, (2.18)

where (ξk)k are i.i.d. standard Gaussian variables.
The noise modes are divergence-free and stationary by construction, so the global

structure of the noise will not vary in time. The POD noise is very easy and cheap to
compute. Still, in case of chaotic geophysical models like the SQG system, it may not offer
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Chapter 2 – Stochastic modeling under Location Uncertainty (LU)

enough spread from a data assimilation perspective.

2.3.2 Flow-driven non stationary noise (SVD noise)

An alternative is to build a time-evolving noise that embraces the small-scale vari-
ability at any time. The method relies on the creation of pseudo-observations at each
point of the simulation grid, and then on the diagonalization of the associated empirical
matrix to extract a proper basis to decompose the noise. Here the domain Ω is a two-
dimensional regular grid of size dx × dy. The pseudo observations are constructed from
the running velocity fluctuations around a sample mean, more precisely around a velocity
field composed of local spatial means computed at each grid point. At each time t and
each grid point xi,j, a spatial window Wi,j of size dw × dw (with dw odd), much smaller
than the whole simulation grid, is built around the point, together with the model bound-
ary conditions (periodicity, replication,...) if the current point is on the border. Then a
pseudo-observation is given by a draw of the velocity in the following set :

I(xi,j, t) = {v(xk,l, t) |k, l ∈ Wi,j} . (2.19)

Proceeding to no draws within the window, and iterating over all the grid points, a
global pseudo-observation matrix V is built :

V =


v1

1 · · · vno1
... · · · ...

v1
dxdy · · · vnodxdy

 , (2.20)

whose size is (2× dx× dy)× no (the 2 comes from the two components of the velocity v).
Then the mean over the no pseudo-observations 〈V 〉 is removed

V ′ = V − 〈V 〉 (2.21)

and Singular Value Decomposition is applied to the fluctuation matrix V ′ to diagonalize
the corresponding second order empirical moment. This way, the matrix Φ of the left
eigenvectors on which we can decompose the noise as in (2.6) is obtained.
Let us denote ` the simulation grid scale and L = dw` the spatial scale of the sliding
window used to compute the noise. The procedure described above provides a noise σLdBt

at scale L, which is artificial and it must be downscaled to the true simulation scale `.
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Kadri Harouna and Mémin (2017) proposed a rescaling of the variance tensors based on
3D turbulent cascade assumption :

a` =
(
`

L

) 4
3

aL,

which relies on an estimation of the velocity fluctuations at the simulation scale `. Then
the effective noise for the simulation grid is

σdBt = d
− 2

3
w σLdBt. (2.22)

Let us note that the SQG model has the particularity to be associated to 3D like spectrum
while it is a 2D flow. Resseguier et al. (2020b) also show that the Uncertainty Quantifi-
cation (UQ) results for the SVD noise forecast reliability are good for all the metrics
presented, in particular they are much better than Perturbations of the Initial Conditions
(PIC), often used in ensemble data assimilation and that tends to produce underdisper-
sive ensembles.. It also proves better than the POD noise, whose stationarity is highly
detrimental for non-stationary unforced flows we are focusing here. The SVD noise has
the advantage to be purely flow-driven; it requires no data and remains simple to imple-
ment. As the basis depends both on time and on the ensemble member at hand, some
adaptations should probably be devised for realistic models in order to reduce the noise
computational cost. One can envisage, for instance, a combination with wavelet basis or
flow-based criterion to decide across time when the noise basis should be updated.

2.4 Synthesis

This chapter presented the principles of the Location Uncertainty formalism, based
on a semi-martingale decomposition of the Lagrangian velocity. This framework entails a
modification of the usual material derivative towards a stochastic transport operator, pre-
serving the physical conservation laws. The LU version of the Surface Quasi-Geostrophic
model was presented and two noise generation procedures were exposed, one describing a
data-driven stationary noise, and a second one a flow-driven non-stationary noise.
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Chapter 3

APPLICATION OF DATA ASSIMILATION TO

STOCHASTIC MODELS

This chapter gathers our main findings in the application of ensemble data assimilation
methods to the stochastic SQG system. LU is first compared to deterministic inflation
procedures. Then, a noise calibration procedure is presented and relies on Girsanov trans-
forms to achieve a guiding role for the ensemble towards a desired region of interest, close
to the observations.

3.1 Generation of the observations

This very short subsection describes the numerical and observation setup that will be
common to both studies of Chapter 3.

The stochastic and deterministic simulations are run on a simulation grid, Gs, of size
64× 64, meaning that each realization X is a 64× 64 matrix, or equivalently a vector of
size 4096 (because here only the buoyancy field is observed and simulated, the velocity
being obtained through the inversion of a fractional Laplacian). The actual physical size
of the domain being 1000km × 1000km, two neighbor grid points are distant of about
15km. An observation Y on a coarser observation grid Go, of size 16 × 16, is assumed
to be available every day (i.e. every 600 time steps of the dynamics). It is generated as
follows:

— A trajectory (Zt)t is run from the deterministic model (PDE) at a very fine resolution
grid Gf , of size 512× 512.

— Then, a convolution-decimation procedure (Lindeberg, 1993) is applied, which is the
composition of a Gaussian filter Gσ and a decimation operator D subsampling one
pixel out of two. The Gaussian filtering writes

Gσ(Zt)(x) = (gσ ∗ Zt)(x),
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where gσ is a two-dimensional Gaussian function. For any observable f defined on
a grid (x11, ..., x2n,2n), we define Df on a decimated subgrid (x′11, ..., x

′
n,n) by

Df(x′ij) = f(x2i,2j).

This convolution-decimation operator D◦Gσ is then performed three times in order
to fit to the targeted simulation grid.

— Finally, a projection operator P is applied from Gs to Go, the latter being a subset
of the first, and the observation is defined, for all t, by

Yt = P ◦ (D ◦Gσ)3(Zt) + ηt,

where
ηt ∼ N (0,R) and R = diag(r2

1, ..., r
2
dY

) (3.1)

is the diagonal observation covariance matrix. It will often be considered that R =
r2IDY , where DY is the number of points on the observation grid. As a consequence,
the operator P plays the role of the observation operator H in the Kalman equations.

In practice, in our experiments, r is set to 10−5 (1% of the maximum amplitude of the
initial buoyancy field) and Gσ is a Gaussian filter applied on 5× 5 patches with σ = 2.

Numerical setup : The simulations are performed with a pseudo-spectral code in
space (Resseguier et al., 2020b). The time-scheme is a fourth-order Runge-Kutta scheme
for the deterministic PDE, and an Euler-Maruyama scheme for the SPDEs (Kloeden and
Platen, 1999). Regardless of the resolution and stochasticity, we use a standard hypervis-
cosity model to dissipate the energy at the resolution cut-off. The resulting implemented
dynamics is :

Dtb = α∆4bdt, (3.2)

with a hyperviscosity coefficient α = (5×1029m8.s−1)D−8
X , where DX is the grid resolution

(here 512 for the fine-resolution PDE used to generate the observations, and 64 for the
ensemble members). The boundary conditions are double-periodic. As mentioned before,
the equations are mostly handled in the Fourier space, where the following SQG relation
between velocity and buoyancy Fourier transforms can be used:

v̂ = ik⊥
b̂

Nstrat||k||
, (3.3)
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3.2. Comparison between LU and deterministic variance inflation for EnKF

with k is the horizontal wave-vector, k⊥ the orthogonal horizontal wave-vector and Nstrat

is the stratification.

3.2 Comparison between LU and deterministic vari-
ance inflation for EnKF

The aim of this first study was to assess the benefits brought by stochastic dynamics
in an up-to-date version of the ensemble Kalman filter with localization and prior mul-
tiplicative inflation (details in Section 1.3). In particular, we wish to observe whether or
not the stochastic dynamics brings by itself an efficient and practical inflation procedure
for ensemble Kalman filtering.

The test case considered in this study is the following: an ensemble ofN = 100 particles
is started from the very same initial condition at day 0, which consists in two cold vortices
to the north and two warm vortices to the south (Figure 3.1):

Figure 3.1 – Initial condition of the buoyancy field for all ensemble members.

The initial field is mathematically defined on each grid point p =
x
y

 by the following

formula:
b0(p) = F (p− p1)− F (p− p2)− F (p− p3)− F (p− p4), (3.4)

where the vortices initial cores are

p1 =
250km

250km

 ; p2 =
750km

250km

 ; p3 =
250km

750km

 ; p4 =
750km

750km
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and the function F is defined by

F (r) = B0 exp
(
−1

2

(
x2

σ2
x

+ y2

σ2
y

))
(3.5)

with B0 = 10−3m.s−2, σx = 67 km and σy = 133 km. We also set the Coriolis frequency
to f0 = 1.028× 10−4s−1 and the stratification to Nstrat = 3f0.
In this experiment, we study the differences of efficiency of the localized Ensemble Square
Root Filter (cf Section 1.3.5) with inflated deterministic forecast and non inflated stochas-
tic simulations. In both cases, the initial ensemble is generated as follows. Starting from
the initial condition, the stochastic dynamics is simulated using the SVD noise for 3 days
(meaning 1800 time steps for the SPDE), without data assimilation. This way, a random
ensemble is generated, and the performances of the SVD noise indicate that this ensemble
is well-spread around the truth, which will be confirmed in Figure 3.6. An observation is
provided each day (i.e. every 600 time steps of the SPDE (or PDE)), with an observation
error covariance set to ri = 10−5 for i = 1, ..., DY in equation (3.1), which corresponds to
a weak (but not negligible, 1% of the maximum amplitude of the initial buoyancy field)
noise on the observation. For the rest of the simulation (100 days), this ensemble is used
for two experiments:

— Experiment 1 (deterministic dynamics with inflation): The stochasticity is
shut down after day 3, the forecast is then generated by the deterministic PDE,
and prior multiplicative inflation is used to artificially increase the ensemble spread.
Namely, before the assimilation step, given a forecast ensemble Xf , the inflated
ensemble X̃f is defined, for all n, by

X̃(n),f = X
f + α(X(n),f −Xf ) (3.6)

where α > 1 is the inflation parameter. Then the localized ESRF is applied to X̃f

and the same procedure is done each day at each new observation time.

— Experiment 2 (stochastic dynamics without inflation): The same SPDE
drives the particles for the whole simulation, and the localized ESRF is applied
with an observation each day.

The localization radius was set to lobs here, where lobs ' 60km denotes the distance
between two neighboring observational sites, as it provided the best results for both cases.
The metric used here is the mean square error (MSE) on the buoyancy fields, defined for
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3.2. Comparison between LU and deterministic variance inflation for EnKF

any time t byMSE(t) = 1
N

∑N
i=1 ||btruth(·, t)−b(i)(·, t)||22, where btruth is the 512×512 SQG

reference, adequately filtered and decimated. The inflation procedure is very sensitive to
the parameter α. It must be finely tuned to have the best results. If it is too small, then
the spread is not large enough. If it is too large, then it could entail a divergence of the
filter (cf figure 3.2). For our SQG configuration, it turns out that the range of validity of

Figure 3.2 – Buoyancy Mean Square Error curves for different values of the inflation
parameter α in the deterministic case (case 1): magenta (α = 1.10), cyan (α = 1.09),
green (α = 1.08), blue (α = 1.05) and black (no inflation: α = 1.0). Inflation is overall
very beneficial compared to the black line (no inflation), but too big values of α lead to
a long-term divergence of the filter (magenta and cyan).

α is between 1 and 1.08 approximately. Starting from α = 1.09, the filter starts diverging
in the long term. In the context of our model, this small range for the inflation parameter
and the tuning procedure is in itself a drawback of the inflation method. Still this tuning
can be very different depending on the model at hand, so we do not claim that this range
is small in general. Moreover, when α is badly chosen, it brings in the additional problem
of strong divergence of the ensemble members for the localized ESRF, as shown in Figure
3.3. In this example (rloc = 3lobs and α = 1.15), starting from day 50 or so, strong
gradients between neighboring grid points can be observed, and progressively lead to non

45



Chapter 3 – Application of data assimilation to stochastic models

physical predictions. Obviously the same kind of behaviour also occurs in our setting with
a smaller value of rloc. This was theoretically expected as, in the localization procedure,
the posterior ensemble members are combinations by block of linear combinations of
the prior ensemble members (cf equation (1.29) in Section 1.3.4). This formula relies
on the strong assumption that such a block recombination remains a solution of the
underlying PDE (or SPDE), which suggests that the global equation is equivalent to a
combination of local ones. Let us note that for instance for fluid dynamics equations, the
presence of a pressure term, solution of an elliptic problem, is intrinsically global and
theoretically prevents such a local modeling. A careless application of localization may
lead to the appearance of some discontinuities or gradients due to very different decisions
taken by the filter at neighboring points. This may entail, after subsequent iterations of
the underlying dynamics, major errors, numerical divergence of some ensemble members,
leading eventually to unphysical realizations.

Figure 3.3 – Examples of diverging realizations of buoyancy resulting from LESRF with
rloc = 3lobs ' 180km and α = 1.15.

The long-term instability of inflation is not a good sign, especially considering we deal
here with a rather coarse-scale diffusive simulation. For finer resolutions with less diffusion
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and much more pronounced non-linear features, divergence is likely to occur sooner for
the same inflation value. This instability is theoretically expected, as the artificial vari-
ance injection entailed by inflation is never counterbalanced in any way in the model. At
a coarse resolution, even for low inflation parameters, the typical slow growth of error at
the end of the simulation seems to indicate that long-time divergence, as in figures 3.4
and 3.3, is likely to be observed extending the simulation time (Figure 3.5 equivalently
shows that increasing the inflation parameter makes the divergence occur earlier). The
divergence caused by variance inflation can be attenuated by temporal adaptive schemes
with the introduction of diagnostic criteria (Lee et al., 2017; Raanes et al., 2019). An-
other alternative consists in changing the hypothesis on the prior distribution accounting
for the sampling errors in the ensemble, which was shown in Bocquet (2011) to make
multiplicative inflation optional on low dimensional Lorenz models.

An increase of variance without controlling the global energy by a balanced dissipation
raises question on the mathematical well-posedness of the numerical scheme but also on
the modified physics undergone by this artificial forcing. These two questions are far from
cosmetic. The first one is related to the generality of the numerical scheme (i.e. it must be
valid for any noise and at any resolution, etc.). The second point is about the error terms
introduced, they should not change dramatically the targeted underlying physical system
(Chapron et al., 2018). These two points can hardly be met by an artificial increase of
variance or by non physical multiplicative noise (see Chapron et al. (2018) for an example
on the Lorenz63 model, in which an artificial multiplicative noise of low amplitude was
shown to change radically the statistics of the underlying system).

On the opposite, the LU setting brings a natural balance between the energy brought
by the noise and the amount dissipated by the stochastic diffusion. In addition, as shown
in Figure 3.4, the simulation is stable while bringing an equivalent spread as a relatively
strongly inflated deterministic simulation value (with respect to the SQG dynamics stud-
ied here). It leads also to better MSE results than the deterministic setting for the different
values of inflation experimented here.

Figure 3.5 shows the same comparison with a greater inflation parameter set to
α = 1.20. The time window is reduced to 50 days because, as expected, increasing the in-
flation parameter leads to an earlier divergence, here starting from days 40-50. Still it has
comparable results with LU in the first 30-35 days. This means that LU has short-term
MSE performances comparable with a very strong deterministic inflation parameter, and
avoids long-term divergence as well.
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Figure 3.4 – The LU framework (in red) performs better, in terms of buoyancy MSE, than
the deterministic cases for all the reasonable inflation parameters tested and plotted in
cyan (α = 1.09), green (α = 1.08), blue (α = 1.05) and black (no inflation: α = 1.0) color.
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Figure 3.5 – Same figure as 3.4 with additional inflation parameters α = 1.10 (in magenta)
and α = 1.20 (in orange). The time window is reduced to 50 days as the orange curve
diverges much sooner than the others.
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Additionally, we examine the spread of the ensemble members around the truth and
observation points. We chose three characteristic grid points, corresponding to the center,
north and southwest of the southwest warm vortex of the initial condition (Figure 3.1).
In the following figure (Figure 3.6), we compare the behavior of the spread of LU en-
semble members (in red) and deterministically inflated ones with parameter α = 1.10 (in
magenta) and α = 1.20 (in orange) around the truth (blue dots) and observation points
(black dots). Note that the two chosen inflation parameters are quite strong and lead both
to divergence of the filter, with the second one exhibiting a divergence much sooner than
the first one.

Figure 3.6 shows this comparison for the first 17 days of simulation. Although both
spreads of subfigures (a) and (b) seem very similar for the figures of left and right columns,
we observe on the center column figure that deterministic inflation does not provide
enough spread to contain the truth, while LU does (see for instance time window 8,000-
10,000). It can also be noticed that the truth at time step 8400 is completely skipped by
magenta and orange spreads, while LU manages to reach it.
We see that increasing the inflation parameter does not counteract the flaws of the smaller
inflation parameter α = 1.10 (magenta spread, Figure 3.6), meaning that increasing α does
not entail a richer ensemble. To that extent, we can also notice that when the stochasticity
is shut down at day 3, the deterministic sets of trajectories immediately become less dense
than the stochastic one. This means that the neighborhood of the truth/observation is
visited much more often (in time) by stochastic trajectories. This improved "density" of
the stochastic ensemble in the state space is an interesting feature, not exploited yet but
it could be relevant in a particle filter framework.

Deterministic inflation sometimes offers more spread than LU. We observe this situ-
ation for example at the time window 9,000-10,000 on the right column figure. But this
spread seems bigger than necessary, as LU has a smaller spread, but already well-centered
around the truth. This supports the idea that deterministic inflation behaves blindly com-
pared to LU, in the sense that it is partly decorrelated from the dynamics and the current
state of the ensemble. LU does not only provide a spread of the ensemble equivalent to
a strong inflation parameter, it brings an ensemble of better quality. This ensemble is
constructed from the large-scale fluctuations in a way to fit the physics encoded by the
original dynamics.

Another indicator of this is the following spread-error consistency shown in Figure
3.7. We compared the ensemble bias absolute value e(x, t) = |b(x, t)− btruth(x, t)| with the
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Figure 3.6 – Comparison of spread between LU and deterministic inflation on the first
17 days of the dynamics for three points located at the center, top and bottom left of
the bottom left warm vortex of the initial condition. The upper row shows in red the
buoyancy values at these points for the stochastic ensemble. The two lower ones show
the buoyancy values at the same points for the deterministically inflated ensembles for
α = 1.10 (in magenta) and α = 1.20 (in orange). The black dots are the observations; the
blue line stand for the truth.

error estimated from the ensemble spread ε(x, t) = 1.96
√

1
N−1

∑N
i=1(b(i)(x, t)− b(x, t))2.

These two quantities do not necessarily have the same amplitude, but should have the
same spatial structure if the ensemble variability is relevant. We did this for LU and for
the deterministic setting with inflation parameters α = 1.10 and α = 1.20 at day 17, when
the three models are very close in terms of global MSE (see Figure 3.5). The results clearly
point out that the LU framework provides much more spread and a better estimation of
the error. The spread induced by inflation has similar structures around the vortices, even
if its amplitude is much lower, confirming the insights of Figure 3.6. However, inflation
puts non zero spread in areas that are irrelevant, typically at ordinates 0, 5 and 10 (×105),
whereas LU only focuses the noise around the vortices.
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(a) LU

(b) Deterministic inflation α = 1.10

(c) Deterministic inflation α = 1.20

Figure 3.7 – Comparison between the ensemble bias absolute value e(x) = |b(x)−btruth(x)|
(left maps) compared to the estimate error (1.96× the standard deviation of the ensemble)
evaluated at each grid point (right maps) at day 17. The upper row shows this comparison
for LU, the other two show the same comparison with the deterministic setting respectively
for inflation parameters of α = 1.10 (central row) and α = 1.20 (bottom row).
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3.3 Noise calibration for ensemble data assimilation

As mentioned in the beginning of Chapter 1, data assimilation filters are composed of
a forecasting step of the ensemble to provide a sampling of the forecast distribution, and
an analysis step correcting the departure from the observations. Until now, observations
essentially took part in the analysis step when it comes to correct the predictions of the
numerical model. This section suggests a methodology that actually incorporates in some
way the observations into the forecasting step.

3.3.1 Change of measure

The purpose of the proposed noise calibration is to modify the forecast distribution,
taking into account the upcoming observation, in order to guide the forecast towards it.
In the context of transport equations such as in the SQG model, this extra guiding term
is an added drift in the noise σdBt, which was initially built to have zero mean. Allowing
σdBt to have a non-zero mean entails a modification of the transport equation in order
to rewrite it in terms of a centered noise. This is called the Girsanov transform, and it
consists in a change of underlying measure so that a non-centered noise becomes centered
under a new probability measure, up to a drift term accounting for this change of measure.
For now, σdBt is defined on a probability space (Ω,F ,P) and we define (Ft)t the filtration
adapted to σdBt.

Theorem 4 (Girsanov theorem). Assume that (Yt)0≤t≤T is a stochastic process such that:

— (Yt)0≤t≤T is adapted to the Wiener filtration (Ft)0≤t≤T .

— For the current probability measure P, we have, P-almost surely,
∫ T

0
||Yt||2dt <∞.

— The process (Zt)0≤t≤T defined by

Zt = exp
(∫ t

0
YsdBs −

1
2

∫ t

0
||Ys||2ds

)
(3.7)

is a Ft-martingale.

Then, there exists a probability measure P̃ under which:
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— The process (B̃t)0≤t≤T defined by

B̃t = Bt −
∫ t

0
Ysds (3.8)

is a standard cylindrical Wiener process.

— The Radon-Nikodym derivative of P̃ with respect to P is ZT .

We refer to Prato and Zabczyk (1992) for details on this theorem. The assumption of
the martingale property of Z can be substituted by a sufficient condition, called Novikov’s
condition, stating that having

E
[
exp

(
1
2

∫ T

0
||Yt||2dt

)]
<∞ (3.9)

is enough to ensure that (Zt)0≤t≤T is a Ft-martingale. We also refer to Delyon and Hu
(2006) for a version of the theorem for locally bounded drifts.

Let us denote by (Γt)0≤t≤T the drift we intend to add to the noise. With such a change
of measure, let us see how equation (2.8) is modified. According to equation (3.8), we
have

dBt = dB̃t + Γtdt, (3.10)

so the stochastic transport operator rewrites

Dtb = dtb+ (v∗dt+ σ[dB̃t + Γtdt]) ·∇b− 1
2∇ · (a∇b)dt (3.11a)

= dtb+ (v∗dt+ vΓdt+ σdB̃t) ·∇b− 1
2∇ · (a∇b)dt, (3.11b)

where
vΓ =

K∑
k=1

γkφk (3.12)

is the velocity drift entailed by the Girsanov transform and we assume that Γt = Γ =
(γ1, ..., γK) is constant on a small time step dt, which will be the case for the discretized
numerical scheme that we use.
As a result, under the probability measure P̃, (3.11) presents the same form as equation
(2.8) since B̃ is indeed a centered cylindrical Wiener process under P̃, but with an added
drifted advection velocity.
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3.3.2 Computation of the Girsanov drift

We now describe how to compute Γ in order to guide the forecast towards the next
observation.
Let us start from a given time t1 where a complete buoyancy and velocity field is available.
The next observation bobs(·, t2) is available at time t2 and L numerical time steps are
performed until then (t2 − t1 = Lδt, where δt is the time discretization step).
At time t1, a rough prediction of the buoyancy at time t2 can be estimated with the
current velocity (which, more precisely, comes from previous stochastic iterations, but is
Ft1-measurable), namely

bobs (x+ v(x, t1)Lδt, t2) := b̃(x, t2), (3.13)

that stands for the backward-registered observation with respect to the current determin-
istic velocity. This way the error made is

∆tb̃(x) = b̃(x, t2)− b(x, t1). (3.14)

So b̃(x, t2) is a value taken in a modified observation field, because bobs is advected by
the current velocity v(·, t1). For this reason we consider that the backward-registered
obervation used for the calibration does not have the same nature as the raw observation
used for data assimilation. It constitutes a pseudo-observation, for which we can consider
that the error due to the imprecision of the backward-registration (ensuing in particular
from successive bilinear interpolations) is way bigger than the observation noise, and
almost uncorrelated to the latter. In the second case, only the raw observation is used
for the Kalman filter, corresponding only to the observation noise. The aim is now to
calibrate the current velocity by adding a Girsanov drift vΓ = ∑K

k=1 γkφk, such that the
solution of the following transport equation

b

(
x+ v(x, t1)Lδt + vΓLδt +

K∑
k=1

(
√
δtφk)(

√
Lδtβk), t2

)
= b(x, t1). (3.15)

is approximated in a least square sense. In other words, we solve the following minimization
problem:

min
Γ

∫
Ω
E
[
bobs

(
x+ v(x, t1)Lδt + vΓLδt +

K∑
k=1

(
√
δtφk)(

√
Lδtβk), t2

)
− b(x, t1)

]2

dx. (3.16)
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This can be rewritten as

min
Γ

∫
Ω

[
∆tb̃+∇b̃ · vΓLδt −

1
2∇b̃ ·∇aLδt −

1
2∇ · (a∇b̃)Lδt

]2
dx.

Using the identities

∇ · a =
K∑
k=1

(φk ·∇)φk ; ∇ · (a∇b) =
K∑
k=1

(φk ·∇)(φk ·∇b), (3.17)

we rewrite the minimization problem as

min
Γ

∫
Ω

[
∆tb̃+∇b̃ ·

(
K∑
k=1

γkφk

)
Lδt −

1
2

K∑
k=1

(∇b̃ · Fk +Gk(b̃))Lδt
]2

dx (3.18)

where
Fk = (φk ·∇)φk ; Gk(b̃) = (φk ·∇)(φk ·∇b̃).

Denoting by J the integrand, we have

∂J

∂γi
= 2

∫
Ω

(∇b̃ · φi)Lδt
[
∆tb̃+∇b̃ ·

(
K∑
k=1

γkφk

)
Lδt −

1
2

K∑
k=1

(∇b̃ · Fk +Gk(b̃))Lδt
]

dx.

(3.19)
Finally, we add a regularization term α||vΓ||22 = α

∑K
k=1 γ

2
kλk, where λk is the eigenvalue

of the Q-eigenfunction φk in equation (3.18) to ensure the uniqueness of the solution of
the proposed minimization problem, where α needs to be tuned properly.
As a result, the minimization problem can be written as an inverse problem

AΓ = c (3.20)

where

Aik := 2
∫
Ω

(∇b̃ · φi)(∇b̃ · φk) + 2αλkδik (3.21a)

ci :=
∫
Ω

(∇b̃ · φi)
[
2∆tb̃−

K∑
k=1

(∇b̃ · Fk +Gk(b̃))
]

dx. (3.21b)

The parameter α is a priori fixed in order to control the resulting euclidian norm of vΓ,
||vΓ||2. Large values of α lead to very small corrections (Γ tends to (0, ..., 0) when α goes
to +∞) whereas small values yield very strong and noisy drifts, as we get closer to an
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Chapter 3 – Application of data assimilation to stochastic models

ill-posed problem. For now, we use an empirical iterative way to tune α, we increase it
until the resulting norm of vΓ is under a given threshold

3.3.3 Multi-resolution procedure

In the previous procedure, the Girsanov drift is computed only by solving the regular-
ized inverse problem (3.20) at the full resolution of the system. In this section, we explain
an alternative multi-resolution framework to compute vΓ. Let ρs and ρc respecively stand
for the simulation grid resolution and a coarser resolution fixed.
For any resolution ρc ≤ ρ ≤ ρs, we assume to have at disposal an observation bobsρ (·, t2)
(obtained from low-pass filtering and decimation as explained in section 3.1) and sub-
sampled velocity fields for all ensemble members v(n)

ρ (·, t1), n = 1, ..., N matching this
resolution. The POD procedure is also applied at each resolution to get the adequate
noise modes (φρk)k=1,...,K . Let us now detail the multi-resolution computation of vΓ.

For each resolution ρ, we compute the associated backward registered observation with
respect to the subsampled velocity field at resolution ρ:

bobsρ (x+ vρ(x, t1)Lδt, t2) := b̃ρ(x, t2), (3.22)

similarly to what is done in equation (3.13). We define accordingly

∆tb̃ρ(x) = b̃ρ(x, t2)− bρ(x, t1). (3.23)

At this resolution, the aim is to calibrate the current velocity by a Girsanov drift term

vρΓ =
K∑
k=1

γρkφ
ρ
k, (3.24)

which is decomposed on the adequate noise modes for resolution ρ. This Girsanov drift is
solution of the equivalent system of equations (3.15-3.20), substituting the full-resolution
fields by the subsampled ones at resolution ρ.
Once the minimization problem is solved, the goal is now to export the information
brought by vρΓ towards the finer resolution ρ+ 1. In order to do that, the velocity field at
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3.3. Noise calibration for ensemble data assimilation

resolution ρ+ 1 should be incrementally modified accordingly by

ṽρ+1 = vρ+1 + E(vρΓ), (3.25)

where E is an extension operator from the coarser to the finer grid (see next subsection
for the description of E in our test case). By doing so, we enrich the structure of the
velocity field at resolution ρ + 1 with a corrected principal component inherited from
a noise calibration at a coarser scale. This can be seen as a Gauss-Newton incremental
resolution of the initial minimization problem (3.18). This optimization is akin to classical
multi-resolution incremental fluid motion estimation (Cai et al. (2018)).

Then, equations (3.21-3.24) are iterated until the simulation grid resolution is reached.

3.3.4 Numerical experiments

The goal is to study the benefits brought by a noise-calibrated forecast in an up-to-date
version of a localized ensemble Kalman filter. In particular we wish to observe whether
or not the noise calibration brings by itself an efficient and practical improvement of the
assimilation step.

One important assumption of the classical EnKF is to consider that the observation
and model noise are uncorrelated. This observation-calibrated forecast could imply that
the latter assumption no longer holds. Still, the discussion following equation (3.14) on the
observation nature explains why we can consider the uncorrelation between the forecast
and observation noise. If this assumption appears to be not valid, we refer to the work
made in Arnaud et al. (2005) to rigorously justify the introduction of an observation-
dependent forecast. In this work, both Kalman and particle filter equations were rewritten
to be slightly generalized in terms of the conditional expectation with respect to the
underlying sequence of current and past observations.

We refer to section 3.1 for the generation of the observations and the numerical setup.
Just note that, in the single-resolution framework of subsection 3.3.2, we have Go = Gs

and P = Id. In the multi-resolution one, observations Yρ and subsample velocity fields
are obtained by applying a decimation operator Dρ from Gs to Gρ, similarly to what is
done by the convolution-decimation operator D ◦Gσ. The extension operator E : Gρ →
Gρ+1 used in equation (3.25) is a duplication operator that is in some way the inverse
of the decimation operator, copying the values of every point on the coarse grid to its 4
corresponding pixels on the finer grid.
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Chapter 3 – Application of data assimilation to stochastic models

Figure 3.8 – Initial conditions of buoyancy for the truth (on the left) and for each stochastic
run (on the right, common to all ensemble members). We enforce an underestimation of
the amplitude of the initial vortices of 20%.

The test case considered in this study is the following: an ensemble of N = 100
ensemble members is started from the very same initial condition at day 0, which consists
in two cold vortices to the north and two warm vortices to the south. However, and very
importantly, the amplitude of the initial vortices was decreased compared to the initial
condition used for the deterministic run (considered as the truth) by 20%, as shown in
Figure 3.8. We imposed thus a strong bias in the initial condition compared to the true
one. We refer to Section 3.2 for a mathematical expression of this field.

In this experiment, we study the differences of efficiency of the localized Ensemble
Square Root Filter with both noise-calibrated forecast and classical stochastic simulations.
We also refer to Raanes et al. (2015) for the extension of the square root filter for additive
forecast noise based on covariance transformation, where the advantages of additional
model error in the forecast step are shown.

In both cases, starting from the underestimated initial condition, the stochastic dy-
namics is simulated using the POD noise with K = 10 modes. An observation is provided
each day (i.e. every 600 time steps of the SPDE), with an observation error covariance
set to r = 10−5 in (3.1), which corresponds to a weak (but not negligible, 1% of the max-
imum amplitude in the initial buoyancy field) noise on the observation. The localization
radius is set to lobs here, where lobs ' 60km denotes the distance between two neighboring
observational sites, as it provided the best results for both cases.

In our configuration, the typical behavior of the vortices, at least at the beginning
of the simulation, is to spin with no translation of the cores. With the bias we imposed
on the initial condition, the true (observed) vortices will spin much faster than those in
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3.3. Noise calibration for ensemble data assimilation

Figure 3.9 – Comparison of buoyancy MSE along time between the non calibrated forecast
(in black) and all the different values of the regularization parameter tested here for the
noise calibration. The snapshots shown in Figure 3.11 are taken at day 15 (black dashed
line).

the biased stochastic runs. The goal of the calibration is then to speed these (simulated)
vortices up in order to get them closer to the truth. The forecast is calibrated at a
single resolution (Section 3.3.2) at each time step of the SPDE, using the upcoming
observation to do it. Multiple values were tried for the regularization parameter α, or
alternatively for the upper bound allowed for the L2-norm of the Girsanov drift vΓ. Figure
3.9 compares the MSE along time for all the range of values tested here, with also the
same experiment without noise calibration. For this latter, the LESRF faces a very difficult
task, as it tries to find linear combinations of the prior ensemble members, which all have
an underestimated velocity, to get closer to the observation. This is a general issue for
ensemble methods (as well as for particle filters), which are not able, by design, to correct
the bias if this correction is not made in the forecast. By contrast, the LU calibration
offers an additional degree of freedom to guide the ensemble towards the observation. This
procedure significantly improves the results in terms of MSE. At day 13, when the MSE
is maximal for the usual case, we observe an improvement from 85% to 93% depending
on the values tested for the regularization parameter. In Figure 3.10, we provide the MSE
results of the multi-resolution procedure with a two-resolution setting. We compare it to
the best result obtained with the single resolution procedure, and we doubled the number
of ensemble members in the latter so that the computational costs match. At day 1, when
the MSE is maximal for both cases, the multi-resolution scheme provides an additional
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Chapter 3 – Application of data assimilation to stochastic models

Figure 3.10 – Comparison of buoyancy MSE along time between the best result of single-
resolution calibration forecast (in red) and all the different values of the regularization
parameter tested here for the multi-resolution noise calibration (with two resolutions).
The single-resolution calibration is done with twice as many ensemble members so that
all experiments have equivalent computational costs.

improvement of the MSE results from 28% to 45% depending on the values tested.

The case of the underestimation is an example, but we expect this procedure to be
efficient in any situation in which all ensemble members have a similar problem of bias,
bad amplitude estimation, artefacts, unsymmetrical features, etc. With a reasonably small
ensemble size, which is generally the case in practice, this is likely to occur if the initial
conditions have such features.
As explained previously, the regularization term α controls the amplitude of the allowed
correction drift. In our experiments, all values tested yield significant improvements com-
pared to the classical case, still a good trade-off seems to be found with a control of
||vΓ||2 between 70 and 150. Starting from 150, we observe higher MSE in the very first
days, certainly due to a lack of constraint on the inverse problem. In addition to the MSE
results, we show in Figure 3.11 a more visual example of what calibration does. At day
15, the configuration of the truth is that all four vortices are along the x-axis. Without
calibration (first row), the vortices are slanted because of the initial underestimation of
the velocity. The velocity field has not been properly corrected. On the other hand, the
LU calibration offers a more reliable prediction, as we recovered the global shape of the
vortices, with additional spread around the mean. Similarly to Figure 3.11, we also show
in Figure 3.12 the comparison between single and multi-resolution procedures at day 1.
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3.3. Noise calibration for ensemble data assimilation

The two-resolution setting provides a smoother mean field, certainly due to the fact that
vΓ is partially expanded on coarse-resolution modes, which are expected to be smoother.
Finally, we show in Figure 3.13 an insight of how the Girsanov correction vΓ behaves in
time. As the structure of the noise is stationnary, so is the structure of vΓ because it relies
on the same modes as the noise. What is interesting is the evolution of the amplitude
of this field, which decreases in time, meaning that most of the calibration work is done
in the very first days of simulation, potentially entailing non-physical features as it can
be observed in the mean fields in Figure 3.12, but crucially feeding the forecast with the
information of the upcoming observation. Once the forecast manages to get closer to the
truth, the need for calibration is less crucial and the Girsanov correction gets weaker.
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No calibration

Calibration

High-resolution truth

Figure 3.11 – Comparison between the ensemble mean (left) and the ensemble standard
deviation (right) buoyancy maps, with and without calibration, at day 15 with the high-
resolution truth.
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Single-resolution calibration

Two-resolution calibration

High-resolution truth

Figure 3.12 – Comparison between the ensemble mean (left) and the ensemble standard
deviation (right) buoyancy maps, with single and two-resolution calibration, at day 1 with
the high-resolution truth.
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Day 0 Day 17

Figure 3.13 – Vorticity of the Girsanov drift vΓ computed for one ensemble member at
the first time step after the initial condition (left) and at the first time step after day 17
(right).

3.4 Synthesis

This chapter recaps our findings on the application of ensemble data assimilation
methods to the LU-SQG model. The results of Section 3.2 show that LU seems to be
a more efficient and secure way to replace multiplicative inflation for ensemble Kalman
filters in the SQG system. It prevents explosion in finite time that occurs for deterministic
inflation coupled with localization, and performs better both in terms of MSE and spread
relevance. Section 3.3 describes a methodology, based on LU and Girsanov transforms,
that aims at modifying the forecast step in order to guide the ensemble towards a desired
region close to the observation. In the case of underestimation of the initial conditions,
the numerical results show significant improvements brought by this additional technique.
A multi-resolution scheme is also presented and yields additional improvements both in
terms of MSE and field smoothness in the early stages of the filter.
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Chapter 4

DATA ASSIMILATION FOR ENSEMBLE

FORECAST IN RKHS

This chapter investigates the link between data assimilation methods and kernel-based
approaches. The framework of reproducing kernel Hilbert spaces (RKHS) is stated in
connection with the Koopman operator in order to get these spaces to be intrinsically
related to the dynamics at play. A spectral representation of the Koopman operator
is formulated in this setting. Within this framework, some classical data assimilation
techniques are adapted and enriched with the theoretical properties of RKHS. Among
them, the superposition principle assumeded by EnKFs is interpreted as a consequence of
a fundamental property of RKHS, and its use is legitimated in this setting.

4.1 Reproducing kernel Hilbert spaces

A RKHS H, is a Hilbert space of smooth complex functions f : E 7→ C defined
over a non empty set E on which a positive definite kernel and a kernel-based inner
product, 〈· , ·〉H can be defined. Throughout this work, we will consider the set E to
be a locally convex topological compact set as we will work with an integral compact
operator from which a convenient functional description can be set and as we will deal
with a RKHS of functions that are Gateaux differentiable – through an assumption of
smooth enough kernels. RKHS possess remarkable properties, which make their use very
appealing in statistical machine learning applications and interpolation problems (Berlinet
and Thomas-Agnan, 2001; Cucker and Smale, 2001). The kernels from which they are
defined have a so called « reproducing property ».

Definition 1 (Reproducing kernel). Let H be a Hilbert space of C-valued functions defined
on a non-empty compact locally convex topological space E. A map k : E × E 7→ C is
called a reproducing kernel of H if it satisfies the following principal properties: ∀x ∈ E,
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• membership of the evaluation function k(·, x) ∈ H,

• reproducing property ∀f ∈ H,
〈
f, k(·, x)

〉
H

= f(x).

The last property provides an expression of the kernel as k(x, y) = k(y, x) =
〈
k(·, y), k(·, x)

〉
H
,

which is Hermitian – with • denoting complex conjugate –, positive definite and associ-
ated with a continuous evaluation function δxf =

〈
f, k(·, x)

〉
H

= f(x). The continuity of
the Dirac evaluation operator is indeed sometimes taken as a definition of RKHS. By the
Moore-Aronszajn theorem (Aronszajn, 1950), the kernel k defines uniquely the RKHS,
H, and vice versa. The set spanned by the feature maps Span{k(·, x), x ∈ E}, is dense
in (H, ‖ · ‖H). We note also that useful kernel closure properties enable to define kernels
through operations such as addition, Schur product, and function composition (Berlinet
and Thomas-Agnan, 2001). Besides, RKHS can be meaningfully characterized through
integral operators, leading to an isometry with L2

C(E, ν) the space of square integrable
functions defined on a compact metric space E with finite measure ν Cucker and Smale
(2001).

Integral kernel operators

Let k : E × E 7→ C be C(1,1)(E × E) (i.e. one time differentiable with respect to each
argument), Hermitian, and positive definite, and let the map Lk : L2

C(E, ν) 7→ L2
C(E, ν)

be defined as: (
Lkf

)
(x) =

∫
E
k(x, y)f(y) ν(dy). (4.1)

This operator, which must be understood within the composition with the continuous
inclusion i : C0(E,C) ↪→ L2

C(E, ν), can be shown to be well defined, positive, compact
and self-adjoint (Cucker and Smale, 2001). The range of this operator is assumed to be
dense in L2

C(E, ν). From Mercer’s theorem (König, 1986), the feature maps k(·, x) span a
RKHS defined through the eigenpairs (µi, ϕi)i∈N of the kernel operator Lk :

H :=
{
f ∈ L2

C(E, ν), f =
∞∑
i=0

aiϕi :
∑
i

|ai|2

µi
<∞

}
, (4.2)

with no null eigenvalues since we have assumed that the kernel range is dense in L2
C(E, ν).

The rank of the kernel (number of – non-zero – eigenvalues) corresponds to the dimension
of H, and will potentially be infinite in this work, as E will be a subspace of functions.
The RKHS H is a space of smooth functions that expand on the eigenfunctions of Lk

68



4.2. Dynamical systems on a RKHS family

with decreasing coefficients. In fact, there exists a constant C > 0 such that, for all u ∈ E
and all f ∈ H, we have ‖∂uf‖L2

C(E,ν) ≤ C ‖f‖H (Dufée et al., 2023b), where the derivative
denotes the Gateaux directional derivative of function f in the direction u defined as

∀x, u ∈ E, ∂uf = lim
ε→0

1
ε

(
f(x+ εu)− f(x)

)
.

In order to properly define the Gateaux derivative, E should be embedded with a local
vector space structure, which is for instance the case of differentiable manifolds. We may
also define uniquely a square-root symmetric isometric bijective operator L1/2

k between
L2
C(E, ν) and H. This operator enables to go from L2

C(E, ν) to H by increasing the func-
tions regularity while its inverse lowers the function regularity by bringing them back to
L2
C(E, ν). Both operators are bounded. The injection j : H 7→ L2

C(E, ν) is continuous and
compact (Dufée et al., 2023b) and j(H) is assumed to be dense in L2

C(E, ν) If Lk has a
non trivial kernel, then L1/2

k is a bijection between V = Ker(Lk)⊥ ⊂ L2
C(E, ν) and H.

Remark 1. The spaces H and L2
C(E, ν) are of course considered here as infinite dimen-

sional spaces, preventing E to be a finite set.

4.2 Dynamical systems on a RKHS family

We consider an invertible nonsingular dynamical systemX(t) = Φt(X0), defined from a
continuous flow, Φt (meaning that, for any X ∈ Ω, the mapping t 7→ Φt(X) is continuous),
on a compact invariant phase space differentiable manifold, Ω, (i.e. Φ−1

t (Ω) = Ω, ∀t ∈ R+)
of time evolving vector functions over a spatial support Ωx. The functions X : R+×Ωx 7→
Rd with X ∈ Cp, p ≥ 1, are solutions of the following d-dimensional differential system:

∂tX(t, ·) =M
(
X(t, ·)

)
, with X(t, ·) ∈ Ω, ∀t > 0,

X(0, ·) = X0(·).
(4.3)

The nonlinear differential operator M : Ω → Ω is assumed to be C1, and in particular
its linear tangent expression defined as the Gateaux derivative:

∂XM(X)δX = lim
β→0

1
β

(
M
(
X(t, ·) + βδX(t, ·)

)
−M

(
X(t, ·)

))
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is such that supX∈Ω ∂XM(X) <∞ (since Ω is compact). We consider the measure space
(Ωx,Lb) where Lb is the Lebesgue measure on Ωx. We denote L2(Ωx,Rd) the space of
the square-integrable functions on (Ωx,Lb) and L2(Ωx,Rd) := {f = (f1, .., fd) : Ωx 7→
Rd : for all 1 ≤ i ≤ d fi ∈ L2(Ωx,R)}. We note ‖ · ‖L2 the norm associated with
L2(Ωx,Rd), which is given by ‖f‖2

L2 := ∑d
i=1 ‖fi‖2

L2(Ωx,R) for all f ∈ L2(Ωx,Rd). The
set Ω is included in L2(Ωx,Rd). The system (4.3) is assumed to admit a finite invariant
measure ν on Ω (note that from the invertibility property, the measure is also nonsingular
with ν(Φ−1

t (A)) = 0, ∀A ⊂ Ω such that ν(A) = 0). The system’s observables are square
integrable measurable complex functions with respect to measure ν. They belong to the
Hilbert space L2

C(Ω, ν) with the inner product 〈· , ·〉L2
C(Ω,ν) given for f and g ∈ L2

C(Ω, ν)
by

〈f , g〉L2
C(Ω,ν) :=

∫
Ω
f(y) g(y) ν(dy).

Depending on the context, X(t, ·) or Xt will denote either an element of Ω or the function
X(t, ·) : Ωx → Rd such that x 7→ X(t, x).

In this work, the set of different initial conditions Ω0 is an infinite compact subset
of L2(Ωx,Rd). For all time t ≥ 0, we denote by Ωt ⊂ Ω ⊂ L2(Ωx,Rd) the space defined
by Ωt := Φt(Ω0). Furthermore, the set Ω0 of initial conditions will be assumed to be
composed of points that uniquely characterize all the dynamical system trajectories and
to be sufficiently rich so that ⋃t≥0(Ωt) = Ω. Hence, by this, each point of the manifold,
Ω, is assumed to be uniquely characterized by an initial condition and the integration of
the dynamical system over a given time t. In other words, for any X ∈ Ω, there exist a
unique initial condition X0 ∈ Ω0 and a unique time t ∈ R+ such that X = Φt(X0). All
the sets Ωt will be assumed to be locally convex.

Defining at each time t, from the subset Ωt, a positive Hermitian kernel kΩt : Ωt×Ωt,
there exists a unique associated RKHS Ht. In the following, for the sake of concision, the
kernels kΩt will be denoted by kt to refer to the dependence on the set Ωt. For all t ≥ 0,
we will use the notation Xt = Φt(X0) and

(
Ht, 〈 · , · 〉Ht , ‖ · ‖Ht

)
for the RKHS associated

with the kernel kt defined on Ωt×Ωt. The kernels are assumed to be C(1,1)(Ωt×Ωt) and as
a consequence, the associated feature maps have derivatives in Ht (Dufée et al., 2023b).
The RKHSs Ht for all time t ≥ 0 form a family of Hilbert spaces of complex functions,
each of them equipped with their own inner product kt(Yt, Xt), for all functions Xt, Yt ∈
Ωt. At any time, a measurable function of the system state, usually often referred to as
an observable f , belonging to the RKHS Ht can be described as a linear combination
of the feature maps {kt(·, Xt), Xt ∈ Ωt} As it will be shown, the features maps of this
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RKHS family can be expressed on a time evolving orthonormal system of basis functions,
connected to each other through an exponential form and given by the eigenfunctions of
the infinitesimal generator of a “Koopman-like” operator defined on the RKHS family.
The RKHS family is defined by W = (Ht)t≥0. In the following, we present a summary of
the mathematical results associated to the Koopman operator in the RKHS family.

Numerically, in practice, the setup is based on N realizations (called ensemble mem-
bers) of this dynamical system, {X(i)

t , i = 1, . . . , N}, generated from a finite set of different
initial conditions {X(i)

0 , i = 1, . . . , N} ⊂ Ω0, and are available up to time T . Still, we un-
derline that, in the following development, the time horizon can be infinite, the sets Ωt

are infinite and the corresponding RKHS Ht are infinite dimensional. This setting (both
practically and theoretically) is quite common for ensemble methods applied to geophys-
ical systems. The ensemble size is small in general, while the phase space is in theory
infinite (or at least very high) dimensional.

4.3 Koopman operator in the RKHS family

So far we did not give any precise definition of the kernels associated to the RKHS
family Ht yet. These kernels are defined from a known a priori initial kernel, k0 : Ω0×Ω0,
as:

Definition 2 (Ht kernel). The kernel kt associated to the RKHS Ht are defined as

∀Xt, Yt ∈ Ωt, kt
(
Yt , Xt

)
= k0

(
Φ−1
t (Yt) , Φ−1

t (Xt)
)
, (4.4)

where k0 : Ω0 ×Ω0 is a given kernel.

These kernels can also be equivalently defined introducing the operators Ut acting on
the feature maps. An isometric property of this operator on the RKHS family enables us
to fully define the kernels along time, in the same way as in the previous definition. The
operator Ut : H0 7→ Ht is defined such that

Utk0(·, X0) = kt
(
·,Φt(X0)

)
, (4.5)

and transports the kernel feature maps on the RKHS family by composition with the
system’s dynamics. This operator, and more specifically its infinitesimal operator, will
enable us to define the feature maps of Ht from the initial feature maps on H0. As it will
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be detailed in section 4.3.1, the operator Ut is indeed directly related to the restriction on
Ht of the adjoint of the Koopman operator Ut on a bigger RKHS space H, associated to
a fixed kernel defined on the whole phase space Ω. As Ut propagates forward the second
argument of the feature maps, it is referred to in the following as the Koopman kernel
operator in the RKHS family. Indeed, it will be pointed out that, for any f ∈ H and any
X0 ∈ Ω0,

Utf(X0) = f(Xt) =
〈
Rtf , kt(· , Xt)

〉
Ht

=
〈
Rtf , Utk0(· , X0)

〉
Ht
,

where Ut denotes the Koopman operator operating on L2
C(Ω, ν) and Rtf denotes the

restriction of f on Ωt ⊂ Ω. This expression corresponds to a kernel expression of the
Koopman operator definition and formally, at this point, the operator Ut can hence be
thought as a kernel expression of the Koopman operator.

The global kernel k (respectively the associated RKHS) is tightly bound to the time
evolving kernels kt (respectively (Ht)t≥0). The restriction on H of the Koopman opera-
tor Ut and its adjoint the Perron-Frobenius Pt exhibit some remarkable properties. As
classically, the operators Ut and Pt are unitary in L2

C(Ω, ν) (Prop. 1), but they have the
striking property to be uniformly continuous in L2

C(Ω, ν) (i.e. with bounded generators
– Theorem 6). As such, they can be expended in an uniformly converging exponential
series. Nevertheless, it must be outlined that the fixed kernel k(x, y) and consequently
H are in practice only partially accessible as they are defined on the whole manifold of
the dynamics and such expansion cannot be directly used. A local representation of the
RKHS family W is on the other hand much easier to infer in practice through the time
evolution of ensembles Ωt and kernels kt. As we will see, the operator Ut, on W inherits a
lot of the properties of Ut and, in particular, a related form of exponential series expansion
(Theorem 5).

The Koopman kernel operator in the RKHS familyUt defines an isometry from H0 to
Ht (Theorem 7)

〈
kt
(
·,Φt(Y0)

)
, kt
(
·,Φt(X0)

)〉
Ht

=
〈
k0
(
·,Y0

)
, k0

(
·,X0

)〉
H0

, (4.6)

kt
(
Φt(X0),Φt(Y0)

)
=k0(X0, Y0).

This isometry ensues obviously directly from definition 2. But it can also be guessed from
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4.3. Koopman operator in the RKHS family

definition (4.5) and the unitarity of Ut (Theorem 7, Prop.6), inherited from the unitarity
in L2

C(Ω, ν) of the Koopman operator and of its adjoint, the Perron-Frobenious operator.
This property is of major practical interest as it allows us to define the kernels of the
RKHS family from a given initial kernel fixed by the user. The kernels remain constant
along the system trajectories. Alternatively, an explicit form of the feature maps can
be obtained from an adjoint transport equation associated to the infinitesimal generator
of the Koopman operator in the RKHS family. Nevertheless, the isometry is far more
straightforward to use to set the kernel evolution. Strikingly, we have even more than
this kernel isometry. An evolution operator AU, t : Ht → L2

C(Ωt, ν), associated to the
infinitesimal generator of Koopman operator Ut can also be defined as

AU, t kt(·, Xt) := ∂M(·) kt(·, Xt), (4.7)

where ∂ukt(·, Xt) stands for the Gateaux directional derivative along u ∈ Ω of function
k(·, Xt). This operator, that will be shown to be bounded (Prop.7) and skew-symmetric
(Prop.8) for the inner product of L2

C(Ω, ν), plays the role of an infinitesimal generator on
W and enables us expressing an exponential expansion of Ut.

Theorem 5 (The RKHS family spectral representation). For a measure preserving in-
vertible dynamical system of the form (4.3), assuming a C(2,2) initial kernel, the evolution
operator AU, t : Ht 7→ L2

C(Ωt, ν) defined in (4.7), and which is defined from the infinites-
imal generator of the Koopman operator in L2

C(Ω, ν), can be diagonalized, at any time
t ≥ 0, by an orthonormal basis (ψt`)` of Ht such that, for all Xt ∈ Ωt,

AU, tψ
t
`(Xt) = λ`j◦ψt`(Xt),

where j is the injection j : Ht 7→ L2
C(Ω, ν). We have in addition the following relation

between the orthonormal basis systems along time:

∀t ≥ 0, ∀X0 ∈ Ω0, ψt`(Xt) = exp(t λ`)ψ0
` (X0), (4.8)

with Xt = Φt(X0). Furthermore, the purely imaginary eigenvalues (λ`)` do not depend on
time.

This theorem, which constitutes our main result, provides us a time-evolving system
of orthonormal bases of the RKHS family. It brings us the capability to express any ob-
servable of the system in terms of bases that are intrinsically linked to the dynamics and
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related to each other by an exponential relation. The eigenvalues of AU, t are purely imag-
inary since this operator is skew-symmetric in L2

C(Ωt, ν). Remarkably, the eigenvalues of
each AU, t do not depend on time and are connected with the same covariant eigenfunctions
(in the sense of (4.8)). These eigenfunctions correspond to restrictions of eigenfunctions
of the infinitesimal generator of Koopman/Perron-Frobenius operators defined on H. The
scheme of the proofs of these results are presented in the next section.

The kernel isometry (4.6) (Theorem 7) and the Koopman spectral representation in
the RKHS family (Theorem 5) constitute fundamental results enabling us to build very
simple ensemble-based trajectory reconstructions for new initial conditions without the re-
quirement of resimulating the dynamical system. Amazingly, the family of RKHS together
with the Koopman isometry allows to define a system’s trajectory as a constant-in-time
linear combination of the time varying RKHS feature maps. Several of such data assim-
ilation techniques, based on this fully justified superposition principle, will be derived in
section 4.4. In the next section, we demonstrate the different properties related to the
RKHS family.

4.3.1 Schemes of proof on the properties of the Koopman oper-
ator in the RKHS family and of the RKHS family spectral
theorem

As explained in the previous section, the RKHS family
(
Ht

)
t≥0

does not have a good
topology to work with. We first need to define a “big” set with a better topology and
which encompasses all the RKHSs Ht. On this big encompassing set, we shall then define
a Koopman operator, enabling us to study properly the Koopman operator in the RKHS
family.

Construction of the « big » encompassing set H

The phase space Ω corresponds to the set generated by the values of the dynamical
system at a given time t. We hence note that Ωt is a subset of Ω. Each point of Ω is a
phase-space pointX = Φt(X0) uniquely defined from time t and initial conditionX0 ∈ Ω0.
In order to define the RKHS H, let us define, from the kernels kt : Ωt ×Ωt, a symmetric
positive definite map k : Ω ×Ω.
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4.3. Koopman operator in the RKHS family

Definition 3 (H kernel). For all X = Φr(X0), Y = Φs(Y0) ∈ Ω, with X0, Y0 ∈ Ω0, we
define

k(X , Y ) = k0
(
X0 , Y0

)
`(r, s) = kt

(
Φt

(
X0)

)
, Φt

(
Y0)

))
`(r, s) ∀t ≥ 0, (4.9)

where ` : R+ × R+ → R is a symmetric kernel defined, for all r, s ∈ R by

`(r, s) = ϕ(r − s), (4.10)

where ϕ is a twice-differentiable even function such that ϕ(0) = 1.

The positivity and symmetry of kernel k ensues from the properties of kernels k0 and
`, which are assumed to be valid kernels. Kernel k inherits the regularity conditions of k0

and ` and is C(1,1)(Ω×Ω) as well. In the trivial case where ϕ = 1, then comparing any pair
of points on two trajectories would be equivalent to compare the initial conditions, which
would result in a quite poor kernel and degeneracy issues. In order to enrich the kernel
structure, one can think of ϕ as a regularized Dirac distribution, or a time Gaussian
distribution, that will discriminate the points of the phase space that are reached at
different times.

By the Moore-Aronszajn theorem, there exists a unique RKHS (H, 〈 · , · 〉H, ‖ · ‖H)
with kernel k. We note that, in practice, the full knowledge of the phase-space is completely
unreachable. Again, we therefore stress the fact that the setting of this encompassing
RKHS H has only a theoretical purpose. The RKHS H can be connected to each RKHS of
the familyW through extension and restriction operators denoted Et and Rt respectively,
and defined as follows. For all t ≥ 0, let

Et : Ht 7→ H
kt( · , Xt) 7→ k( · , Xt)

(4.11)

and extend this definition by linearity on Span{kt( · , Xt) : Xt ∈ Ωt}. Then, by density,
the function Et(f) is defined for all f ∈ Ht. The restriction

Rt : H 7→ Ht

k( · , X) = k( · , Φr(X0)) 7→ k( · , X) �
Ωt

= kt
(

· , Φt(X0)
)
`(t, r)

(4.12)

is defined similarly for g ∈ Hsp = Span{k
(

· , X
)

: X ∈ Ω} and extended by density in
H by the Moore-Aronszajn theorem Aronszajn (1950). The extension map is built in such
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a way that each RKHS Ht of the family is included in the « big » encompassing RKHS
H.

In (Dufée et al., 2023b), several useful properties of the restriction and extension
operators are listed. Namely, Et and Rt are both isometries, they form an adjoint pair
and the restriction is continuous in L2

C(Ωt, ν). We define now the Koopman operator on
the encompassing RKHS H.

Koopman operators on H

For all t ≥ 0, we consider the Koopman operator Ut : H → H defined by

Ut(f)(X) := f ◦ Φt(X) = f
(
Φt(X)

)
, for all f ∈ H. (4.13)

Since H is dense in (L2
C(Ω, ν), ‖ · ‖L2

C(Ω,ν)), the operator Ut can be continuously extended
on L2

C(Ω, ν) and, to avoid notation inflation, we keep denoting Ut this extension. We
first study Ut : L2

C(Ω, ν) 7→ L2
C(Ω, ν) with the L2

C(Ω, ν) topology. The family (Ut)t≥0 is a
strongly continuous semi-group on (L2

C(Ω, ν), ‖ · ‖L2
C(Ω,ν)) since t 7→ Φt(·) is continuous on

R+. As the feature maps are functions of H, it can be noticed that, for all Xr ∈ Ω,

Ut [ k( · , Xr) ] = k
(

Φt(·) , Xr

)
, (4.14)

which justifies the stability of H by the operator Ut. This corresponds to a natural ex-
pression of the Koopman operator for any function g ∈ Hsp, extended then by density to
H. Yet another useful equivalent expression of the Koopman operator is available for the
feature maps. We have, for any points X = Φr(X0), Y = Φs(Y0) ∈ Ω,

Ut [ k( · , X) ] (Y ) = k
(
Φt(Y ) , X

)
= k

(
Φt+s

(
Y0)

)
, Φr

(
X0)

))
= k0(Y0, X0)`(t+ s, r).

(4.15)
From the properties of the time kernel `, we get

`(t+ s, r) = ϕ(t+ s− r) = ϕ(s− (r − t)) = `(s, r − t), (4.16)

which leads to

k
(
Φt(Y ) , X

)
= k0(Y0, X0)`(t+s, r) = k0(Y0, X0)`(s, r−t) = k

(
Φs

(
Y0)

)
, Φr−t

(
X0)

))
= k

(
Y,Φ−1

t (X)
)
.

(4.17)

76



4.3. Koopman operator in the RKHS family

and hence
Ut [ k( · , X) ] (Y ) = k

(
Y,Φ−1

t (X)
)
. (4.18)

As the previous equality is true for all Y ∈ Ω, this implies that, for all X ∈ Ω,

Ut [ k( · , X) ] = k
(

· , Φ−1
t (X)

)
. (4.19)

This dual formulation of the kernel expression of the Koopman operator is intrinsically
linked to the definition of the kernel k. This dual expression will be of central interest in
the following, as it enables to formulate the time evolution of the feature maps in terms
of the Koopman operator Ut and its adjoint at any time t ≥ 0.

Remark 2 (Transport of the kernel k). For all X = Φr(X0) ∈ Ω and t ≥ 0, by definition
of the Koopman operator on the feature maps and (4.19), Ut [ k( · , X)] has two expressions
and we obtain

Ut [ k( · , X)] = k
(

Φt(·) , X
)

= k
(

· , Φ−1
t (X)

)
.

The next remark provides a useful commutation property between Ut and the kernel
integral operator Lk defined in equation (4.1) or of its unique symmetric square-root
L1/2
k defined from the square-root of the kernel eigenvalues (see Dufée et al. (2023b) for

a precise definition in the general case). Note that in the case of H, the kernel integral
operator is indeed a complex object which hides a time dependency.

Remark 3 (Commutation between L1/2
k (or Lk) and Ut ). For all X ∈ Ω, we have

L1/2
k ◦ Ut [k( · , X)] = Ut ◦ L1/2

k [k( · , X)].

This commutation property, that ensues directly from the compositional nature of the
Koopman operator, allows us to write immediately the equality

Lk ◦ Ut [k( · , X)] = Ut ◦ Lk [k( · , X)]. (4.20)

By linearity these properties extend to all functions of H.
The next proposition shows the Koopman operator defined on RKHS H is unitary

in L2
C(Ω, ν), which is a classical property of the Koopman operator in L2 for measure

preserving invertible systems.

Proposition 1 (Unitarity of the Koopman operator in L2
C(Ω, ν)). The map

Ut : (L2
C(Ω, ν), ‖ · ‖L2

C(Ω,ν)) → (L2
C(Ω, ν), ‖ · ‖L2

C(Ω,ν)) is unitary for all t ≥ 0.
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Proposition 1, shows that the Koopman operator Ut is invertible and that its inverse in
L2
C(Ω, ν) is U∗t . Denoting by Pt the operator defined by Pt := U∗t , for all f and g ∈ L2

C(Ω, ν)
we have 〈Ut(f) , g〉L2

C(Ω,ν) = 〈f , Pt(g) 〉L2
C(Ω,ν). The family (Pt)t is a strongly continuous

semi-group on
(
L2
C(Ω, ν), ‖ ·‖L2

C(Ω,ν)

)
. This operator is referred to as the Perron-Frobenius

operator. For all t ≥ 0, the Perron-Frobenius operator Pt verifies for all X ∈ Ω

Pt[k
(
Φt(·), X)

]
= k( · , X). (4.21)

From Remark 1, we can write a more explicit expression of Pt on the featutre maps: for
all X ∈ Ω,

Pt
[
k(·, X)

]
= k

(
·,Φt(X)

)
. (4.22)

Informally, if we see the function k(·, X) as an atom of the measure, then its expression
at a future time is provided by (4.22), which corresponds well to the idea that the Perron-
Frobenius operator advances in time the density.

As previously stated, the Koopman operator Ut is an isometry in L2
C(Ω, ν). The next

result asserts that Ut is also an isometry in H.

Proposition 2 (Isometric relation of the kernel). For all X and Y ∈ Ω, we have
k
(
Φt(X) ,Φt(Y )

)
= k(X , Y ).

This results follows immediately from the kernel definition: for all X = Φr(X0), Y =
Φs(Y0) ∈ Ω, we have

k
(
Φt(X) ,Φt(Y )

)
= k

(
Φt+r(X0),Φt+s(Y0)

)
= k0(X0, Y0)`(t+r, t+s) = k0(X0, Y0)`(r, s) = k(X, Y ).

(4.23)
Remark 2 on the application of the operator Ut to k( · , X), with X ∈ Ω, shows that

applying the flow Φt on the first variable of k( · , · ). is equivalent to applying Φ−1
t to the

second variable and vice-versa. Consequently, for all f ∈ L2
C(Ω, ν) and X ∈ Ω, we have

〈f , k
(

· , Φt(X)
)
〉L2

C(Ω,ν) = 〈f , k
(

Φ−1
t (·) , X

)
〉L2

C(Ω,ν) = 〈f , Pt k( · , X)〉L2
C(Ω,ν) and by

definition of the adjoint, we obtain

〈
f , k

(
· , Φt(X)

) 〉
L2
C(Ω,ν)

=
〈
Ut(f) , k( · , X)

〉
L2
C(Ω,ν)

. (4.24)

We already knew that this equality was right for f ∈ H and for the inner product in
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H, namely

〈
f, k

(
·,Φt(X)

)〉
H

= f
(
Φt(X)

)
= Utf(X) =

〈
Ut(f), k(·, X)

〉
H
. (4.25)

Equation (4.24) provides a weak (in the sense that the L2
C(Ω, ν)-inner product against

a feature map is no longer the evaluation function) formulation of the transport of any
observable in L2

C(Ω, ν) by the flow.
In order to further exhibit several analytical results on the Koopman operator (Ut)t≥0

in L2
C(Ω, ν), we introduce in the following its infinitesimal generator.

Koopman infinitesimal generator

We will note as
(
A
U
,D(A

U
)
)
the infinitesimal generator of the strongly continuous

semigroup (Ut)t≥0 on L2
C(Ω, ν) and its domain. As the Koopman and Perron-Frobenius

operators are adjoint in L2
C(Ω, ν) their infinitesimal generators are also adjoint of each

other with possibly their own domain. The following lemma characterizes first the Perron-
Frobenius infinitesimal generator A

P
and its domain D (A

P
).

Lemma 1 (Perron-Frobenius infinitesimal generator). The Perron-Frobenius infinitesimal
generator is the unbounded operator, (A

P
,D (A

P
)) defined by

D (A
P

) =
{
f ∈ L2

C(Ω, ν) : x 7→ ∂M(x)f(x) ∈ L2
C(Ω, ν)

}
and

A
P
f := −∂M(·) f(·) for f ∈ D (A

P
) ,

whereM denotes the differential operator of the system dynamics (4.3) and ∂uf stands
for the directional derivative of f along u ∈ Ω.

For all t ≥ 0, Pt is the adjoint of Ut in L2
C(Ω, ν). The Koopman infinitesimal generator

in L2
C(Ω, ν) is consequently given by

D(A
U

) = D(A∗
P

) and A
U

= A∗
P
. (4.26)

The Koopman and Perron-Frobenius operators are unitary in L2
C(Ω, ν), as D (A

U
) is

dense in L2
C(Ω, ν), by Stone’s theorem, their infinitesimal generators are therefore skew

symmetric for 〈 · , · 〉L2
C(Ω,ν) and we have

D
(
A∗
P

)
= D (A

P
) and A∗

P
= −A

P
, (4.27)
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D
(
A∗
U

)
= D (A

U
) and A∗

U
= −A

U
. (4.28)

The adjoint has to be understood in the topology of L2
C(Ω, ν). The two next propositions

– well known in L2
C(Ω, ν) for invertible measure preserving systems –, summarize (4.26),

(4.27) and (4.28).

Proposition 3 (Koopman infinitesimal generator). The Koopman infinitesimal generator
of (Ut)t in L2

C(Ω, ν) is the unbounded operator,
(
A
U
,D(A

U
)
)
, defined by

D (A
U

) =
{
f ∈ L2

C(Ω, ν) : x 7→ ∂M(x)f(x) ∈ L2
C(Ω, ν)

}
and

A
U
f = ∂M(·)f(·) for f ∈ D (A

U
) .

Proposition 4 (Skew symmetry of the generators). The Koopman infinitesimal generator
AU is skew-symmetric in L2

C(Ω, ν) .

We set now a continuity property of the Koopman infinitesimal generator on H, which is
a subspace of D(A

U
) (Dufée et al., 2023b).

Theorem 6 (Continuity of the Koopman generator on H). The restriction of the Koop-
man infinitesimal generator

A
U

: (H , ‖ · ‖H) 7→
(
L2
C(Ω, ν) , ‖ · ‖L2

C(Ω,ν)

)
is continuous.

Through the dual expression of the Koopman operator (remark 2), the infinitesimal
generator AU provides a dynamical system specifying the time evolution of the feature
maps as, for all X ∈ Ω, the feature map k( · ,Φt(X)) verifies

∂t Ut k( · , X) = ∂t k
(

Φt(·) , X
)

= AU k
(

Φt(·) , X
)
. (4.29)

We have the following useful differentiation formulae.

Proposition 5 (Differentiation formulae). For all f ∈ H (with f = Etg, g ∈ Ht) and
Xt ∈ Ωt, we have

〈Lk ◦ ∂tf , k( · , Xt)〉H = −〈f , Lk ◦ ∂t k( · , Xt)〉H.
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As already outlined, the whole phase space Ω and the global embedding RKHS H
defined on it are both completely inaccessible for high dimensional state spaces. Instead
of seeking to reconstruct this global RKHS, we will work in the following with time-varying
“local” RKHSs built from a small (with respect to the phase space dimension) ensemble
of initial conditions. The set of these time-varying spaces forms the RKHS family. In order
to express the time evolution of the features maps associated to the RKHS family, we now
define an appropriate expression of the Koopman operator on this family.

Derivation of Koopman operator expression in W

To fully specify the Koopman operators in the RKHS family, we rely on the family
of extension, restriction mappings (Et)t≥0 and (Rt)t≥0 (4.11, 4.12) relating the “big” en-
compassing RKHS H to the family of time-evolving RKHS Ht and use the Koopman
operators Ut : L2

C(Ω, ν) 7→ L2
C(Ω, ν) for t ≥ 0. The adjoints Pt will also be very helpful as

well as Remark 2 on the dissymmetry of the application of the flow in the global kernel
k.

From now on, we note Xt := Φt(X0) for all X0 ∈ Ω0 with Xt belonging to Ωt. We
define the Koopman operator in the RKHS family by Ut := Rt ◦ Pt ◦E0 for all t ≥ 0. For
all X0 ∈ Ω0, we have

Ut [ k0( · , X0) ] = Rt ◦ Pt [ k( · , X0) ] = Rt k( · , Xt) = kt(· , Xt) , (4.30)

where the second equality is due to (4.22), and the third equality holds true from the
definition of Rt and the fact that `(t, t) = 1. The Koopman operator in the RKHS family,
Ut : H0 7→ Ht, transports the kernel feature maps on the RKHS family by composition
with the system’s dynamics. It inherits some of the nice properties of the Perron-Frobenius
operator defined on the encompassing global RKHS. As shown by the following theorem,
proposition 2 remains valid for the family of kernels (kt)t≥0 and Ut is still unitary in the
sense of the following theorem.

Theorem 7 (Koopman RKHS isometry). The Koopman operator on the RKHS family
defines an isometry from H0 to Ht: for all X0 and Y0 ∈ Ω0,

〈
Ut k0( · , Y0) , Ut k0( · , X0)

〉
Ht

=
〈
k0( · , Y0) , k0( · , X0)

〉
H0
.

The range of Ut : H0 7→ Ht is dense in Ht.
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Let us now determine the adjoint of the Koopman operator in the RKHS family. Let
Pt := R0 ◦ Ut ◦Et for all t ≥ 0 and let Xt = Φt(X0) ∈ Ωt. With the same arguments as
for Ut, we have

Pt [ kt( · , Xt) ] = k0(· , X0) . (4.31)

The mapping Pt : Ht 7→ H0 with t ≥ 0 constitutes the Perron-Frobenius family of
operators in the RKHS family. The mapping Pt : Ht 7→ H0 is unitary for the RKHS
family topology (isometry from Ht to H0 and the range of Pt is dense in H0). The next
proposition justifies that Ut and Pt have inverse actions on the feature maps.

Proposition 6 (Koopman Perron-Frobenius duality). For all X0 ∈ Ω0 and Yt = Φt(Y0) ∈
Ωt, we have

〈 Ut k0( · , X0) , kt( · , Yt) 〉Ht = 〈 k0( · , X0) , Pt [kt( · , Yt)] 〉H0
.

In order to derive the Koopman and Perron-Frobenius operators’ spectral representa-
tion in the RKHS family, we exhibit now two propagation operators that will allow us to
express the evolution of the feature maps in the RKHS family.

The RKHS family spectral representation

We specify hereafter a family of operators (AU, t)t≥0 related to the Koopman infinites-
imal generator AU , and that give rise to an evolution equation on Ωt akin to (4.29). They
will play, in that sense, the role of infinitesimal generators on the RKHS family.

For all t ≥ 0, let AU, t be defined by AU, t := Rt ◦ AU
◦ Et with Et : Ht 7→ H and

Rt : L2
C(Ω, ν) 7→ L2

C(Ωt, ν).

Proposition 7 (Continuity of AU, t). The mapping AU, t : (Ht, ‖ · ‖Ht ) 7→ (L2
C(Ωt, ν), ‖ ·

‖L2
C(Ωt,ν)) is well-defined and continuous.

In a very similar way as the infinitesimal generator on H, the operator AU, t can be
understood as an evolution equation of the feature maps defined on Ωt and associated to
Ht. For Xt ∈ Ωt, by proposition 3, it can be noticed that

AU, t kt( · , Xt) = Rt ◦ AU
[k( · , Xt)] = Rt

[
∂M(·) k( · , Xt)

]
and, in particular on Ωt,

AU, t kt( · , Xt) = ∂M(·) kt( · , Xt). (4.32)
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Remark 4. Operator AU, t is alike the Koopman infinitesimal generator AU . As a matter
of fact, by proposition 3 and theorem 6, we have, for all X ∈ Ω,

A
U
k( · , X) = ∂M(·) k( · , X),

and for all Xt ∈ Ωt,
AU, t kt( · , Xt) = ∂M(·) kt( · , Xt).

Notice that these two operators are different and act on different domains.

Remark 5. Operators AU, t can be understood as an evolution operator for the feature
maps. As a matter of fact through (4.29) and the definition of AU, t, we have, for all
X ∈ Ωt0

∂t k
(

· , Φt(X)
)
|Ωt

= AU, t kt
(

· , Φt(X)
)
. (4.33)

Through the above remark, the operator AU, t inherits the properties of operator A
U

defined on the global encompassing RKHSH. As shown in the next proposition, it remains
in particular skew-symmetric.

Proposition 8 (Skew-symmetry ofAU, t). The operator AU, t is skew-symmetric in L2
C(Ωt, ν):

for all f and g ∈ Ht

〈AU, t f , g〉L2
C(Ωt,ν) = −〈f , AU, t g〉L2

C(Ωt,ν).

Everything is now set to prove the RKHS family spectral representation theorem,
which states that the bounded operator AU, t : Ht 7→ L2

C(Ωt, ν) is diagonalizable for all
t ≥ 0.

Scheme of proof of Theorem 5 [The RKHS family spectral representation]

The full proof, organized in two main steps, is thoroughly detailed in Dufée et al.
(2023b). For this proof, we consider the infinitesimal generator A

U
: H 7→ L2

C(Ω, ν),
which is connected to each AU, t for t ≥ 0 through the restriction operator Rt. In the
first step, the diagonalization of the operator A

U
: H 7→ L2

C(Ω, ν) in L2
C(Ω, ν) is first

performed. To that end, we introduce an intermediate (approximating) operator denoted
Ã
U
, directly related to A

U
and whose inverse is shown to be compact and self-adjoint.

The second step of the proof consists in deducing the diagonalization of each AU, t from
the diagonalization of A

U
obtained at step 1.
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Chapter 4 – Data assimilation for ensemble forecast in RKHS

4.3.2 Tangent linear dynamics

A result of practical interest concerns the establishment of a rigorous ensemble ex-
pression of the tangent linear dynamics operator. Recall that we note Xt = Φt(X0) for all
t ≥ 0. We define δX(t, ·) := Φt[X0(·) + δX0(·)] − Φt[X0(·)] for all t ≥ 0 and almost all
x ∈ Ωx, where δX0(x) is a perturbation of the initial condition at point x. The function
δX(t, ·) ∈ L2(Ωx,Rd) is the perturbation of the flow at time t with respect to the initial
condition X0. We have, for almost any x ∈ Ωx,

Φt(X0 + δX0)− Φt(X0) =
∫ t

0
M[Φs(X0 + δX0)]−M[Φs(X0)] ds+ o(δX0)

=
∫ t

0
d(M◦ Φs(X0))δX0 ds+ o(δX0)

and we obtain also that

Φt(X0 + δX0)− Φt(X0) =
∫ t

0
dM[Φs(X0)] [dΦs(X0)δX0] ds+ o(δX0)

=
∫ t

0
∂XM[Φs(X0)] δX(s, ·) ds+ o(δX0).

The variation of the flow verifies δX(t, ·) =
∫ t

0 ∂XM[Xs]δX(s, ·) ds almost everywhere
on Ωx. Recall thatM is assumed to be C1, in particular supX∈Ω ∂XM(X) <∞ (since Ω
is compact). The function δX(t, ·) belongs to L2(Ωx,Rd) and verifies, for all t ≥ 0,

∂t δX(t, ·) = ∂XM[Xt]δX(t, ·). (4.34)

Each component [δX(t, ·)]i of δX(t, ·) belongs to L2(Ωx,R). For all x ∈ Ωx, let us define
a map gx : Ω → Rd such that, for all X ∈ Ω,

gx(X) = X(x).

Then, for 1 ≤ i ≤ d, the map [gx(δXt)]i : Ω 7→ C defined for all x ∈ Ωx by

[gx(δXt)]i := [δXt(x)]i

is an element of L2(Ω, ν). For any x ∈ Ωx, the quantity gx(Xt) corresponds to a vector of
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4.3. Koopman operator in the RKHS family

observables of the dynamical system and we may immediately write for all t ≥ 0

∂t gx(δXt) = ∂XM(Xt)gx(δXt). (4.35)

We are now ready to exhibit a kernel expression of the tangent linear operator ∂XM(Xt).
For all 1 ≤ i ≤ d, the function Lk [gx]i ∈ H verifies, for all δXt ∈ Ω,

〈Lk ◦ ∂t Lk [gx]i , k( · , δXt)〉H = Lk (∂t Lk [gx]i)(δXt). (4.36)

Upon applying the differentiation formulae of proposition 5 and the evolution equation
(4.29), we have

〈Lk ◦ ∂t Lk [gx]i , k( · , δXt) 〉H = −〈Lk[gx]i , Lk ◦ ∂t k( · , δXt)〉H
= −〈Lk[gx]i , Lk [A

U
k( · , δXt] 〉H

= −〈L1/2
k [gx]i , L1/2

k [A
U
k( · , δXt] 〉L2

C(Ω,ν).

The operator L1/2
k being self-adjoint in L2

C(Ω, ν) and A
U
being skew-symmetric for the

inner product of L2
C(Ω, ν), we have

〈Lk ◦ ∂t Lk [gx]i , k( · , δXt) 〉H = 〈A
U
Lk[gx]i , k( · , δXt) 〉L2

C(Ω,ν)

= 〈L1/2
k A

U
Lk[gx]i , L−1/2

k k( · , δXt) 〉L2
C(Ω,ν)

= 〈Lk AU
Lk[gx]i , k( · , δXt) 〉H

= Lk AU
Lk [gx]i(δXt).

Combining the right-hand side of the above expression with (4.36), we have

Lk( ∂t Lk[gx]i )(δXt) = Lk (A
U
Lk[gx]i )(δXt). (4.37)

As Lk is injective, the kernel of the tangent linear operator in the RKHS H reads:

(∂t Lk[gx]i) (δXt) = A
U
Lk [gx]i(δXt).

As Ω is bounded, the function t 7→ δX(t, ·) belongs to L∞([0, T ]) and therefore δXt 7→
gx(δXt) belongs to L∞

(
[0, T ], L2(Ω, ν)

)
. By (4.35), we have also that δXt 7→ ∂t gx(δXt)
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belongs to L∞
(
[0, T ], L2(Ω, ν)

)
since supY ∈Ω ∂XM(Y ) <∞. We have therefore on Ω

∂t Lk[gx]i(δXt) =
∫
Ω
k(δXt , z) ∂t[gx]i(z) ν(dz) = Lk (∂t [gx]i )(δXt),

and thus
∂t [gx]i(δXt) = L−1

k A
U
Lk [gx]i(δXt).

By the commutation property of remark 3, together with (4.35) and as L1/2
k [gx]i ∈ H, the

following equalities hold for all δXt ∈ Ω:

∂t [gx]i(δXt) = L−1/2
k A

U
L1/2
k [gx]i(δXt),

∂XM(Xt) gx (δXt) = L−1/2
k A

U
L1/2
k gx(δXt). (4.38)

Let us specify now the kernel expression of the tangent linear dynamics in Ωs for all
s ≥ 0. The function L1/2

k [gx]|Ωs belongs to Hs. We have as well L1/2
k (∂tgx) = L1/2

ks
(∂tgx)

on Ωs. For all Ys and X ′s ∈ Ωs, we have that A
U
k( · , X ′s)(Ys) = AU,s ks( · , X ′s)(Ys).

In particular, we get A
U
L1/2
k [gx](Ys) = AU,s L1/2

ks
[gx](Ys). We obtain hence the kernel

expression for all Ys ∈ Ωs:

∂XM(Xs) gx (Ys) = L−1/2
ks

AU, s L1/2
ks
gx (Ys). (4.39)

Note that the domains of the kernel expressions of the tangent linear (4.38) and (4.39)
are different. The right-hand side of (4.39) provides a convenient kernel expression of
the tangent linear operator, enabling us to evaluate the tangent linear dynamics from an
ensemble of feature maps. The adjoint of the tangent linear dynamics is straightforwardly
given by

∂XM∗(Xs)gx (Ys) = −L−1/2
ks

AU, s L1/2
ks
gx (Ys). (4.40)

Remark 6 (Projection observables). The point observable functions gx used above can be
extended to other functions defined from a basis (Ψj)j≥0 of L2(Ωx,Rd), with

gψxXt :=
∞∑
j

〈Xt ,Ψj〉L2(Ωx)Ψj(x),

gψx : Ω 7→
∞∑
j

〈· ,Ψj〉L2(Ωx)Ψj(x) ∈ C.
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4.3. Koopman operator in the RKHS family

Remark 7 (Dependence on Xt). It should be noted that in (4.39) and (4.40) the right-
hand side does not depend on Xs whereas the tangent linear operator or its adjoint on
the left-hand side does. Function Xs indicates around which function of Ωs the nonlinear
system is linearized. The infinitesimal generator of the Koopman operator, representing
the dynamics’ linear tangent operator on the RKHS family, depends necessarily also on
this function. This dependence is here implicit and induced by the considered sampled
functions used to define the RKHS Ht. If the set of members (X(i)

t )i≥1 are centered around
a particular function Xs, the infinitesimal generators of the Koopman operator can be
interpreted as a representation of the tangent linear operator around function Xs. In
ensemble methods, Xs is in general taken as the ensemble mean, and (X(i)

s )i≥1 is an
ensemble of time-dependent perturbations around this mean.

In the perspective of evaluating the tangent linear dynamics, the following remark
provides an even more convenient expression than (4.39).

Remark 8 (More regularity on δXt). For all 1 ≤ i ≤ d, if we suppose that the function
[gx]i belongs to H ⊂ L2

C(Ω, ν), the proof can be simplified and (4.39) is replaced by

∂XM(Xs) gx (δXs) = AU, s gx (δXs). (4.41)

It can be pointed out that the expression above corresponds to the approximation
of the tangent linear dynamics used in ensemble methods if we work in a finite dimen-
sional space such that Ω ⊂ Rn and assume that kt(·, Xt) is defined as (N − 1)−1/2〈(Xt −
X t), · − X t〉Rn , with X t the empirical ensemble mean. With that definition, we have
AU, tkt(·, X(i)) = ∑

j ∂Xjkt(·, X
(i)
t )M(·)j = 〈(δ

X
(i)
t
− 1

N

∑
` δX(`)

t
)M(·), · −X t〉Rn that reads

(N − 1)−1/2〈M(X(i)
t ) − 1

N

∑
jM(X(j)

t ), · −X t〉Rn , for i = 1, . . . , N and for which, when
associated to the Rn Euclidean inner product on a resolution grid of size n, the left-hand
side of this latter expression corresponds to the so-called (N × n) anomaly matrix built
from N ensemble members of the dynamical system. The tangent linear approximation
provided by ensemble methods can be thus immediately interpreted as a particular in-
stance of feature maps together with a given choice of specific inner product to define
the reproducing kernel. Keeping a finite dimensional approximation but working without
assuming that the functions [gx] belong to H, and thus with now expression (4.38) for the
ensemble tangent linear expression, corresponds to the case in which a localization pro-
cedure identified to the square root operator L1/2

kt
has been considered. These two choices

embed the problem within a particular RKHS family of functions. The relation between
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Chapter 4 – Data assimilation for ensemble forecast in RKHS

the tangent linear dynamics and the anomaly matrix is in our case exact and does not
correspond to a finite difference approximation as classically presented in ensemble meth-
ods. The RKHS family can be seen as a way of linearizing locally a nonlinear system in
a convenient sequence of spaces of smooth functions.

4.3.3 Finite time Lyapunov exponents

The kernel of the Koopman operator provides also a direct access to the finite time
Lyapunov exponents. Recalling from (4.35) that for any punctual observable gx, as defined
previously, we have

gx(δXt) =
∫ t

0
∂XM(Xs)gx(δXs)ds+ o(δX0). (4.42)

With the expression of the tangent linear operator in terms of the Koopman infinitesimal
generator (4.38) on Ωs, we have then, at first order,

gx(δXt) =
∫ t

0
L−1/2
ks

AU,s L1/2
ks
gx(δXs) ds. (4.43)

For all s ∈ [0, t], we consider a perturbation gx(δXs) = L−1/2
ks

ψs` (δXs) along a Koopman
generator eigenfunction associated to the eigenvalue of maximal modulus |λ`|. By Theorem
5, we have

∂tgx(δXs) = λ` L−1/2
ks

ψs` = λ` gx(δXs).

Therefore we get
|gx(δXt)| = e|λ`|t |gx(δX0)|, (4.44)

and the finite time Lyapunov exponent is consequently defined as

σ = |λ`|. (4.45)

For regular perturbations gx ∈ Hs with unitary perturbation gx(δXs) = ψs` (δXs), the
derivation is even simpler as we obtain from remark 8

∂tgx(δXs) = AU, t gx(δXs),

which yields directly to expression (4.44) and to the same expression for the Lyapunov
exponent.
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4.3. Koopman operator in the RKHS family

The modulus of the larger Koopman eigenvalue in the RKHS family provides thus an
estimate of the Lyapunov exponent. It can be outlined that the computation of Lyapunov
exponents for large scale systems is computationally very demanding as it requires the
construction of the linear tangent dynamics operator and the solution of an eigenvalue
problem of very big dimension. The construction of the exact numerical tangent linear
operator is in general a tedious task when expressed in L2(Ωx), as in equation (4.34).
The ensemble-based method provided by our formalism is on the contrary very simple
by expressing the tangent linear operator in L2

C(Ωt, ν), as in equation (4.35). It can be
noticed that, by this change of norm in the definition, the computed values are not the
same.

Three distinct values can then be defined for practical computations. First, the Lya-
punov spectrum expressed in L2

C(Ωt, ν) can be determined by computing the singular
values of L−1/2

kt
AU,t L1/2

kt
. The time integral is dropped since the evaluations are constant

along trajectories. It can be viewed as an advantage of working in L2
C(Ωt, ν) instead of

L2(Ωx) as performed classically. The time independence is due to the fact that the Koop-
man operator is intrinsic to the dynamical system. However, from a numerical point of
view, as the computation is performed in practice through an ensemble with a limited
number of members, the learned spectrum is representative only of the local dynamics
at the time (t = t0) at which the kernel has been evaluated. As an alternative, modal
Lyapunov exponents can be defined by the square root of the first singular values of
L−1/2
kt

ψ`|λ`|2ψ∗`K−1
t L

1/2
kt

= L−1/2
kt

ψ`|λ`|2ψ∗`L
−1/2
kt

with Kt(i, j) = kt(X(i)
t , X

(j)
t ). We call

these singular values the Koopman modal Lyapunov exponents (KMLE). Finally, as a
third option, equation (4.45) can simply be considered to evaluate modal exponents. We
can notice that the two modal Lyapunov exponents definitions are very similar; the former
being expressed in L2

C(Ωt, ν) and the latter in Ht.

4.3.4 Practical considerations

Let us stress again that in practice, we only have access to the mappings kt and AU, t
with t ≥ 0. The mapping k and A

U
are completely inaccessible for high-dimensional sys-

tems, as they require the complete knowledge of the phase space or at least of a long
enough orbit with a density assumption in the whole phase space. This last assumption
is associated to strong requirements of the dynamical system and is not necessarily valid
for a given time series of a particular observable. Instead of working with an infinite
(dense) trajectory, Theorem 5 enables us to estimate the eigenvalues and eigenfunctions
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of the Koopman operator locally in the RKHS family, which can locally conveniently be
accessed from an ensemble of finite time trajectories. As it will be described in the fol-
lowing, operators AU, t, can be discretized as an ensemble matrix – itself related, as we
saw it previously, to the tangent linear dynamics operator. This matrix is then diagonal-
ized to get access to Koopman eigenvalues and their associated eigenfunctions. In theory,
the diagonalization of AU, t needs to be performed only once, at a given time, to access
the Koopman eigenpairs (ψt`)` and (λ`)`. However, the exponential relation between dis-
tinct instants allows us also to consider averaging strategies to eventually robustify the
estimation in practice.

Diagonalization in practice

For all t ≥ 0, letmt be the kernel expression of the operatorAU, t given bymt(Xt , Yt) :=
A∗U, t

[
kt( · , Yt)

]
(Xt) for all Xt and Yt ∈ Ωt. By Proposition 8, we have mt(Xt , Yt) =

−AU, t
[
kt( · , Yt)

]
(Xt).

Let us denote by {X(i)
t : 1 ≤ i ≤ N} an ensemble of members generated by the

dynamical system and by {kt( · , X(i)
t ) : 1 ≤ i ≤ N} the N associated feature maps. For

all t ≥ 0, these N feature maps enable us to build a kernel expression of the operator AU,t
as the N ×N matrix Mt =

(
mt(X(i)

t , X
(j)
t )

)
1≤i,j≤N

with:

(Mt)ij := −AU, t
[
kt(· , X(j)

t )
]

(X(i)
t ) =

[
−∂M(·) kt( · , X(j)

t )
]

(X(i)
t ).

As shown in the following, this matrix enables us to access to the Koopman generator
eigenvalues and to the evaluation of the eigenfunctions at the ensemble members.

By definition of AU, t, we have AU, t[ kt(· , X(j)
t ) ] = A

U
[ k(· , X(j)

t ) ]. Moreover, as−L1/2
k ◦

A
U

[ k( · , X(j)
t ) ] belongs toH, by the proof of Theorem 5 (Dufée et al., 2023b) and denoting

(ψ`)` an orthonormal basis of H set from the eigenfunctions of A
U
, we get

−L1/2
k ◦ AU

[
k(· , X(j)

t )
]
(X(i)

t ) = −
N∑
`=0
〈L1/2

k ◦ AU

[
k(· , X(j)

t )
]
, ψ` 〉H ψ`,

= −
N∑
`=0
〈A

U
k( · , X(j)

t ) , L−1/2
k ψ` 〉L2

C(Ω,ν) ψ`.
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Denoting β` the eigenvalues of Lk, we have also Lkj(ψ`) = β` j(ψ`) and

−L1/2
k ◦ AU

[
k(· , X(j)

t )
]

= −
N∑
`=0

β
−1/2
` 〈A

U
k( · , X(j)

t ) , j(ψ`) 〉L2
C(Ω,ν) ψ`.

By the skew symmetry of the generators (proposition 4), we have that

−L1/2
k ◦ AU

[
k(· , X(j)

t )
]

=
N∑
`=0

λ` β
−1/2
` 〈k(· , X(j)

t ) , j(ψ`) 〉L2
C(Ω,ν) ψ`

=
N∑
`=0

λ` β
−1/2
` Lkj(ψ`)(X(j)

t ) ψ`,

which leads to

−L1/2
k ◦ AU

[
k(· , X(j)

t )
]

=
N∑
`=0

λ` β
1/2
` ψ`(X(j)

t ) ψ`,

and, upon applying L−1/2
k on both sides, we get

−A
U

[
k(· , X(j)

t )
]

=
N∑
`=0

λ` β
1/2
` ψ`(X(j)

t ) L−1/2
k ψ` =

N∑
`=0

λ` ψ`(X(j)
t ) j(ψ`).

By the restriction expression, we finally obtain the following equality for all t ≥ 0:

mt(X(i)
t , X

(j)
t ) =

N∑
`=0

λ` ψ
t
`(X

(i)
t ) ψt`(X

(j)
t ),

which shows that the diagonalization of Mt provides a set of the Koopman generator
eigenpairs in the RKHS family.

In practice, the skew-symmetric matrix Mt :=
(
mt(X(i)

t , X
(j)
t )

)
1≤i,j≤N

is assembled
from the definition of AU, t and a given choice of the kernel. As explained in the previous
section, this matrix corresponds to a kernel expression of AU, t with

Mt(X(i)
t , X

(j)
t ) := −AU, t

[
kt(· , X(j)

t )
]
(X(i)

t ) = [−∂M(·) kt( · , X(j)
t )] (X(i)

t ).

This matrix can be interpreted in the RKHS setting as resulting from the matrix multi-
plication:

Mt(X(i)
t , X

(j)
t ) :=

∑
`

Ft(j, `)Kt(`, i),
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with Ft(i, `) = −AU, t
[
kt(Z(`) , X

(j)
t )

]
. This indeed corresponds to a discretization of the

kernel expression of operator AU, t through the empirical Dirac measure. Numerically, in-
stead of working with matrix Mt (i.e. the evaluation of AU, tkt(·, X) at several discrete
points), we will work directly with matrix Ft = MtK

−1
t . This has the advantage of di-

rectly working with an implicit discretization of operator AU, t, and to relax somehow its
dependency on the kernel choice. The skew-symmetric matrix MtK

−1
t is then diagonalized

through a direct numerical procedure (using LAPACK library and working numerically
on the anti-symmetric part of MtK

−1
t ) and can be written MtK

−1
t = VtΛV T

t , with Vt

a unitary matrix and Λ a diagonal matrix. The matrix Vt gathers eigenvectors V t
j of F,

which is a discretization of AU, tkt(·, X) giving access to the values of the Koopman eigen-
functions ψtj = L1/2

k V t
j at the n ensemble members points X(i)

t . The matrix Λ is composed
of Koopman eigenvalues with conjugate pairs of pure imaginary eigenvalues.

As previously mentioned, this diagonalization can be performed at a single time or
at several instants accompanied with an averaging procedure. Theorem 5 and (4.8), give
access to the eigenvectors evaluation along a trajectory for all time instants.

We provide below, as examples, expressions of the evaluation of Mt(X(i)
t , X

(j)
t ) =(

−∂M(·) kt(·, X(j)
t )

) (
X

(i)
t

)
for the empirical covariance kernel (kE) and the Gaussian ker-

nel (kG). The empirical covariance kernel is defined through the kernel isometry property
as

kt(X(i)
t , X

(j)
t ) = kE(X(i)

0 , X
(j)
0 ) =

〈
X

(i)
0 , X

(j)
0

〉
Ωx
, (4.46)

with (·, ·)Ωx the inner product of L2(Ωx,Rd) and where Ωx denotes the physical domain
of the considered dynamics. We obtain

Mt(X(i)
t , X

(j)
t ) =

〈
∂

∂t
X

(j)
0 , X

(i)
0

〉
Ωx

. (4.47)

In this expression, we see that the time derivative of the ensemble members at the initial
time is required. Similarly, the Gaussian kernel is defined as

kt(X(i)
t , X

(j)
t ) = kG(X(i)

0 , X
(j)
0 ) = exp

(
− 1
`G

2

∥∥∥X(i)
0 −X

(j)
0

∥∥∥2

Ωx

)
. (4.48)

92



4.4. Data assimilation for ensemble forecast in RKHS

This leads to

Mt(X(i)
t , X

(j)
t ) = − 2

`G
2

〈
∂

∂t
X

(j)
0 ,

(
X

(i)
0 −X

(j)
0

)〉
Ωx

exp
(
− 1
`G

2

∥∥∥X(i)
0 −X

(j)
0

∥∥∥2

Ωx

)
. (4.49)

Thanks to the isometry property, this matrix needs to be evaluated only at a single time.

4.4 Data assimilation for ensemble forecast in RKHS

This subsection aims at providing data assimilation techniques enriched with the
RKHS structure in their formulations.

On a time horizon T , related to the Lyapunov exponents of the system, we are given
the ensemble of trajectories (X(i)

t )i=1,...,N ;t=0,...,T resulting from the dynamical system (4.3)
started from initial conditions (X(i)

0 )i=1,...,N . At discrete times t1, ..., tJ ∈ [0, T ], we are
given observations

Ytj = H(Xtj) + εj,

where (Xt)t=0,...,T is the underlying truth or reference of the system, H is the observation
operator which, for all t, mapsΩt to an observation-related space RDY , and εj ∼ N (0,Rtj),
where Rtj ∈ RDY ×DY is the observation error covariance matrix.
In a classical variational data assimilation framework, one is looking for the estimator
X̂ = ∑N

i=1 βiX
(i) minimizing the following cost function:

J(X) = 1
2T

∫ T

0
||H(Xt)− Yt||2R−1

t
dt+ 1

2 ||X −Xb||2B−1 ,

where Xb = (X(1)
b , ..., X

(N)
b ) ∈ ΩN is called the background ensemble and B is the back-

ground covariance matrix in Ω. There is a certain degree of freedom for the definition
of the penalization term (the second term). The norm could be either computed in the
family of phase spaces Ωt or in the RKHS family built in the previous subsections, with
also the choice of the time t at which it is computed (time 0 for the initial condition, time
T for the ending point of the trajectory,...) Different leads are explored hereafter.

In the following, the observation covariance matrix is assumed to be constant over
time (Rt = R for all t). We define the observation space Y = (RDY )J and denote by
Y = (Yt1 , ..., YtJ ) ∈ Y the observation discrete trajectory.
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4.4.1 Smoothness hypothesis

This subsection provides a simple relation between the superposition principle that is
completely justified for the feature maps, and the one applied to the states of the system,
which is questionable for the EnKF for nonlinear dynamics. This relation relies on a so
called smoothness hypothesis on a particular family of observables.

Let X be an element of the phase space Ω. Then, by the RKHS properties, its feature
map k(·, X) can be expanded as a linear combination of the ensemble feature maps.
Namely,

k(·, X) =
N∑
i=1

αik(·, X(i)). (4.50)

Morally, if one thinks of k as a smooth (and signed) version of the Dirac distribution
(which is of course not a valid candidate in our framework), the latter equation is precisely
the expression of the posterior distribution resulting from a particle filter (1.30) for signed
weighths. With this respect, looking for the adequate linear combination of the feature
maps can be seen as an extension of particle filtering, for which the superposition principle
makes perfect sense. Still, we can notice that, in the particle filter, the linear combination
defining δX is convex by construction, which is not necessarily the case for the linear
combination defining the feature map k(·, X) in the RKHS. Now, the point is to see how
the superposition principle, completely legitimate for the feature maps, can translate to
the states themselves. This is the object of the rest of this section.

Similarly to Remark 8, the space-wise evaluation functions gx : Ω → Rd such that
gx(X) = X(x) for all x ∈ Ωx and X ∈ Ω will be assumed to have all its components
[gx]i belonging to the RKHS H for 1 ≤ i ≤ d. For the sake of concision, we will take the
shortcut notation that gx ∈ H. This hypothesis, called in the following the smoothness
hypothesis, considerably simplifies this transfer between feature maps and states to see
how to establish Kalman-like schemes. An alternative without this assumption will be
considered in Section 4.4.4.
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Considering the previous hypothesis, we have, for all x ∈ Ωx,

X(x) = gx(X) = 〈gx, k(·, X)〉H

=
〈
gx,

N∑
i=1

αik(·, X(i))
〉
H

=
N∑
i=1

αigx(X(i))

=
N∑
i=1

αiX
(i)(x).

As this holds for all x ∈ Ωx, then

X =
N∑
i=1

αiX
(i), (4.51)

which means that the linear combination that defines k(·, X) still holds for X itself.
This can be seen a linear interpolation of the kernel. Indeed, with these assumptions we
get

k

(
·,

N∑
i=1

αiX
(i)
)

=
N∑
i=1

αik(·, X(i)), (4.52)

so k behaves like a right-linear kernel. Moreover, under these hypothesis, the usual eu-
clidian norms that are considered in data assimilation cost functions can be interpreted
as norms in the RKHS. Indeed,

||X||2Ω =
∑
x∈Ωx
|X(x)|2 =

∑
x∈Ωx
|〈gx, k(·, X)〉H|2 . (4.53)

As a summary, this smoothness assumption transposes the superposition principle, which
is completely justified for the feature maps, to the state space, and hence fully justifies the
use of Kalman techniques. In short, Kalman filters can be seen as local (in time) linear
ensemble interpolations of a given RKHS kernel.

4.4.2 Ensemble Kalman filter for pieces of trajectory in RKHS

The idea of the following modified EnKF is to make the cost function account for
the whole set of observations gathered along time, but still looking for the posterior
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ensemble members, which are whole pieces of trajectory between times 0 and T , as linear
combinations of the prior ones. An usual framework would be to sequentially filter each
observation at each time it comes in, resulting in time-varying linear combinations for
the posterior ensemble members. The RKHS family spectral representation theorem 5
coupled with the smoothness hypothesis presented above ensures that it is legitimate to
consider linear combinations with constant in time coefficients as potential solutions of
the system.

A trajectory-wise observation operator is introduced as

H̃ : (Ωt)t≥0 → Y

X 7→ (H(Xt1), ...,H(XtJ )),

so that
Y = H̃(X) + ε,

where ε ∼ N (0, R̃) with R̃ = IJ ⊗R.
Similarly, we define the discrete trajectory

X̃ = (Xt1 , ..., XtJ ),

and the discrete anomaly matrix

Ã =


At1
...

AtJ

 ∈ R(JDX)×N ,

whereDX = |Ωx|×d denotes the dimension of the state space. The corresponding ensemble
covariance matrix is defined accordingly by P̃ = 1

N−1ÃÃT ∈ R(JDX)×(JDX).
With these notations, the cost function can be rewritten

J(X̃) = 1
2 ||H̃(X̃)− Y ||2Y,R̃−1 + 1

2 ||X̃ − X̃||
2
ΩJ ,P̃−1.

This cost function is very similar to the classical one introduced in Section 1.2, but with
extended observation and state spaces. Moreover, it is now justified by the smoothness
hypothesis that the penalization term can be seen as a RKHS norm and that the su-
perposition principle applies to the states X. Following the Kalman equations that were
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presented in Section 1.3, let us now define the Kalman gain matrix

K̃ = P̃H̃T (H̃P̃H̃T + R̃)−1, (4.54)

where H̃ = IJ ⊗H. The ensemble square root filter derivation (see Section 1.3.2) provides
the equations for the update of the posterior ensemble: for n = 1, ..., N,

X̃(n)
a =

N∑
i=1

wiX̃
(i) +

N∑
i=1

(X̃(i) − X̃)Sin, (4.55)

where
S =

(
IN + 1

N − 1(H̃Ã)T R̃−1H̃Ã
)− 1

2
(4.56)

and
w = 1

N
1− 1

N − 1S2(H̃Ã)T R̃−1(H̃(X̃)− Y ). (4.57)

The case J = 1 corresponds to the standard scheme where an ESRF is applied each
time an observation comes in. Contrary to classical smoothing techniques with forward-
backward strategy (Anderson and Moore, 2012), the incorporation of several observations
(J > 1) is here immediate.
Localization techniques can be applied in the very same way as for a classical square root
filter (cf Section 1.3.4). Still, localization remains a questionable technique in the general
case, and its justification in the RKHS formalism stays unclear.

4.4.3 Ensemble Kalman filter on the initial perturbation

In this subsection, a new cost function accounting for the Koopman formalism is
introduced and a Kalman-like scheme is presented, that updates the vectors of coefficients
that define the ensemble members as linear combinations instead of the ensemble members
themselves. As previously, these coefficients can be considered constant in time, so the
method boils down to studying the initial perturbation.

Regularization by the initial perturbation

The initial perturbation is defined as the following linear combination of the ensemble
initial conditions

X0 =
N∑
i=1

wiX
(i)
0 = X0w ∈ Ω0, (4.58)
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where X0 = [X(1)
0 , · · · , X(N)

0 ] and w = (w1, ..., wN)T . The initial anomaly X ′0 is defined
accordingly, with X ′ = X −X and X is the empirical ensemble mean. Note that

X ′0 = A0w, (4.59)

where A0 is the initial anomaly matrix.
As we seek the solution as the perturbation of the initial conditions, we suggest the

following regularization term to replace the second term of the cost function by

P = 1
2 ||k0(·, X ′0)||2H0 . (4.60)

which is the initial anomaly squared norm in H0. From the reproducing property, k0(·, X ′0)
can be expanded as a linear combination of the feature maps:

k0(·, X ′0) =
N∑
i=1

αik0(·, X(i)
0 ). (4.61)

Using the smoothness hypothesis (Section 4.4.1), the vector of coefficients α is related
to w by:

α = w − 1
N

1 := w′. (4.62)

The penalization term in this smooth case, denoted by P s in the following, writes

P s = 1
2w

′TKw′, (4.63)

where K is the kernel matrix defined by Ki,j = k0(X(i)
0 , X

(j)
0 ). Then, its Hessian matrix

is simply
∇2
wP

s = K. (4.64)

Expansion of the observation term on the Koopman eigenfunctions

The goal is now to simplify the main term of the cost function with the Koopman
formalism. In what follows, the observation operator will be assumed to have all its com-
ponents in the RKHS, namely H = (H, ..., H) ∈ HDY .

The infinitesimal generators of the Koopman operator AU,t were shown to be diagonal-
izable in the RKHS family spectral representation theorem (Theorem 5) with eigenpairs
(λ`, ψt`)`. As a consequence, the functions RtH ∈ Ht can be expanded on the Koopman
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eigenfunctions by:

RtH(Xt) =
∑
`

mH
` ψ

t
`(Xt) =

∑
`

mH
` e

λ`tψ0
` (X0), (4.65)

where
mH
` =

〈
RtH,ψ

t
`

〉
Ht

= 〈H,ψl〉H = 〈R0H,ψ
0
l 〉H0 , (4.66)

recalling that the time-dependant family of basis (ψtl )l are built in the proof of Theorem
5 (Dufée et al., 2023b) as restrictions of global basis functions (ψl)l of H. Finally,

H(Xt) =
∑
`

mH
` e

λ`tψ0
` (X0). (4.67)

As ψ0
l ∈ H0, the reproducing property enables to rewrite, for all `,

ψ0
` (X0) =

N∑
i=1

β
(i)
` k0(X0, X

(i)
0 ) = βT` k, (4.68)

where the components of k are defined by ki = k(X0, X
(i)
0 ). In the end, we have

H(Xt) = vtk, (4.69)

where
vt =

∑
l

mle
λltβTl . (4.70)

Denoting Vt =


vt
...
vt

 ∈ RDY ×N , we get

H(Xt) = Vtk. (4.71)

Similarly to equation (4.52), it can be shown with the smoothness hypohtesis that, for all
i = 1, ..., N ,

k0(X0, X
(i)
0 ) = k0

 N∑
j=1

wjX
(j)
0 , X

(i)
0

 =
N∑
j=1

wjk0(X(j)
0 , X

(i)
0 ). (4.72)

99



Chapter 4 – Data assimilation for ensemble forecast in RKHS

As a consequence, we get
k = Kw. (4.73)

The first term of the cost function finally rewrites

1
T

∫ T

0
||H(Xt)− Yt||2R−1dt = (VKw − Y )∗R̃−1(VKw − Y ), (4.74)

where V = 1
J


Vt1
...

VtJ

 ∈ R(JDY )×N , Y = (Ytj)j=1,...,J and R̃ = IJ ⊗R.

The cost function accounting for the RKHS framework can now be fully expressed
with respect to the w variable:

J(w) = 1
2(VKw − Y )∗R̃−1(VKw − Y ) + 1

2w
′TKw′. (4.75)

Kalman scheme

Now the problem boils down to Kalman-like schemes, interpreting the matrix VK as
the observation operator and K−1 as the prior empirical covariance matrix for the variable
w, for which no dynamics is prescribed a priori.

More precisely, the Hessian matrix of the cost function is given by

∇2
wJ0 = (VK)∗R̃−1(VK) + K. (4.76)

Denoting Pa the posterior ensemble covariance matrix for w, the Sherman-Morrison-
Woodbury formula gives

Pa = [(VK)∗R̃−1(VK) + K]−1

= K−1 −G(VK)K−1

where
G = K−1(VK)∗

(
R̃ + (VK)K−1(VK)∗

)−1
(4.77)

is the equivalent of the Kalman gain matrix in the classical covariance matrix update
equation (1.19). As previously mentioned, the latter equation corresponds to (1.19), in-
terpreting VK as the observation operator and K−1 as the prior ensemble covariance
matrix for the vectors of coefficients w.
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The posterior ensemble of vectors of coefficients (w(i),a)i=1,...,N can then be updated in
a square root filter way. We first update (cf equation (1.18)) the ensemble mean by

wa = wf −G(VKwf − Y ). (4.78)

Then, denoting Aw the anomaly matrix for the vectors of coefficients w, each ensemble
member i = 1, ..., N by (cf equation (1.25)):

w(i),a = wa +
N∑
j=1

(w(j),f − wf )Sj,n, (4.79)

where, similarly to equation (1.22)

S =
(

I + 1
N − 1(VKAf

w)TR−1VKAf
w

)− 1
2
. (4.80)

The actual ensemble members in the state space are then updated accordingly:

X(i),a =
N∑
j=1

(w(i),a)jX(j),f . (4.81)

Note that, as we have VKw = HX, the matrix S defined in equation (4.80) is exactly
the same as the one defined for the classical ESRF in equation (1.22).

4.4.4 Relaxation of the smoothness hypothesis

This subsection provides an equivalent of the cost function computed in (4.75) without
using the smoothness hypothesis for the space-wise evaluation functions gx. The following
will study once again the two terms of the cost function as in the previous subsection.
This is a fundamental change, as the linear combination defining the feature maps (coef-
ficients α) and the states (coefficients w) will no longer be the same, and have a nonlinear
relationship through the kernel.

Regularization by the initial perturbation

Starting over from (4.58), the regularization term is still defined as

P = 1
2 ||k0(·, X ′0)||2H0 . (4.82)
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From the reproducing property (4.61), we get, for all j = 1, ..., N ,

k0(X(j)
0 , X ′0) =

N∑
i=1

αik0(X(j)
0 , X

(i)
0 ). (4.83)

So the coefficients α rewrite
α = K−1−→k ′, (4.84)

where −→k ′i = k0(X(i)
0 , X ′0). The regularization term then rewrites:

2P = ||k0(·, X ′0)||2H0 =
〈

N∑
i=1

αik0(·, X(i)
0 ),

N∑
j=1

αjk0(·, X(j)
0 )

〉
H0

=
∑
i,j

αiα
∗
jk0(X(j)

0 , X
(i)
0 )

= α∗Kα

= −→k ′∗K−1−→k ′.

Expansion of the observation term on the Koopman eigenfunctions

Starting over from equation (4.71), the smoothness assumption no longer ensures that
−→
k = Kw (equation 4.73). So the integral term of the cost function writes

1
T

∫ T

0
||H(Xt)− Yt||2R−1dt = (V−→k − Y )∗R̃−1(V−→k − Y ), (4.85)

with the notations of (4.74). The whole cost function then rewrites with respect to the
vector −→k as follows:

J(w) = 1
2(V−→k − Y )∗R̃−1(V−→k − Y ) + 1

2
−→
k
′∗K−1−→k ′. (4.86)

Gradient and Hessian matrix computations

For the gradient computation, we will use the following result: for any Y ∈ Ω0, we
have

∇wk0(X0, Y ) = X∗0∇Xk0(X0, Y ) (4.87)

and
∇2
wk0(X0, Y ) = X∗0∇Xk0(X0, Y )X0. (4.88)
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Defining a 3D tensor X̃0 =


X0
...

X0

 ∈ RN×DX×N and denoting respectively ·∗2,3 and ⊗2,3

the transposition and tensor product with respect to the last two coordinates, we get

∇w

−→
k ′ = X̃∗2,30 ⊗2,3 ∇X

−→
k ′ =


∇wk0(X(1)

0 , X ′0)
...

∇wk0(X(N)
0 , X ′0)

 ∈ RN×N (4.89)

and

∇2
w

−→
k ′ = X̃∗2,30 ⊗2,3 ∇2

X

−→
k ′ ⊗2,3 X̃0 =


∇2
wk0(X(1)

0 , X ′0)
...

∇2
wk0(X(N)

0 , X ′0)

 ∈ RN×N×N (4.90)

We can then compute the gradient of P :

2∇wP = (∇w

−→
k ′)∗K−1−→k ′ +−→k ′∗K∇w

−→
k ′ (4.91)

and the hessian matrix

2∇2
wP = (∇2

w

−→
k ′)∗K−1−→k ′ +−→k ′∗K−1∇2

w

−→
k ′ + 2(∇w

−→
k ′)∗K−1∇w

−→
k ′. (4.92)

4.4.5 Numerical experiments

Similarly to what was done in Section 3.1, we describe the numerical setup for the
experiments.

Contrary to the experiments of Chapter 3, only the deterministic SQG will be at stake
here, as the stochasticity is not handled yet by the RKHS formalism. The variability comes
from the set of initial conditions. They are generated from the exact same procedure that
generates the SVD noise (cf Section 2.3.2). As a quick reminder, this procedure consists
in building pseudo-observations resulting from the random draws of local velocity fluctu-
ations around a sample mean. Applying this procedure to the reference initial condition
for the truth of the system (cf Figure 3.1), the set of initial conditions is taken as the set
of pseudo-observations gathered in the matrix V of equation (2.20).

The simulation grid Gs remains of size 64 × 64, but we now consider a new type
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of observations, namely one meridional line of partial observations, moving in time, at
the maximum resolution resolved by the simulations. Consequently, the observation grid
Go now has size 64 × 1, instead of 16 × 16 in the previous experiments. This change
is motivated by a wish to get closer to realistic settings, where lines of observations at
finer resolution can be collected much more often than global observed fields at coarser
resolution, which are in practice agglomerated and interpolated from past series of sparse
observations. Our numerical setting can be seen as a very simplified version of the one
chosen for wide-swath altimetry in Le Guillou et al. (2021), where back and forth nudging
is coupled with 4D-Var methods for both balanced motions and internal tides. In our
setting, the snapshots of two meridional lines will be assumed to be collected 4 times a
day (every 6h) instead of one coarse 16× 16 observation collected every day.

We first studied the performances of the ensemble square root filter (ESRF) for pieces
of trajectory (Section 4.4.2) that agglomerates the J = 4 observations over 1 day before
filtering with the update formula given by equation (4.55). In Figure 4.1, it is compared
with a more classical scheme that consists in applying a standard ESRF every 6h with the
same nature of observations considered (two meridional lines moving with time), which
in fact corresponds to applying the previous scheme with J = 1. It appears to be very
beneficial in the long term to wait for multiple observations to be gathered before filtering
with a global ESRF.

This statement is not necessarily true for the local ESRF, as shown in Figure 4.2.
As the local ESRF corrects much more brutally the ensemble members, waiting too long
for upcoming observations can be detrimental for the filtering, as the ensemble may not
be corrected soon and strong enough. In Figure 4.2, we tested different numbers J of
observations to gather before performing a local ESRF in order to find an adequate
trade-off. It appears that waiting for 3 partial observations or more becomes detrimental
in this case.

Second, we compared the ESRF for pieces of trajectory with the ESRF on the initial
perturbation (Section 4.4.3), which is enriched with a regularization term in the RKHS
(equation (4.60)). The kernels considered are the empirical covariance kernel (4.46) and the
Gaussian kernel (4.48). As the balance between the observation term and the penalization
term in the original cost function and the RKHS enriched cost function (4.75) is clearly
modified, we allow ourselves to set a scaling parameter for the penalization term in (4.60).
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Figure 4.1 – Mean Square Error curves for a classical scheme where a standard ESRF is
applied each time (every 6 hours) an observation comes up (in black), compared with the
ESRF scheme on pieces of trajectory that gathers one day (J = 4) of observations before
performing the filtering (in blue).
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Figure 4.2 – Mean Square Error curves for a classical scheme where a standard LESRF is
applied each time (every 6 hours) an observation comes up (in red), compared with the
ESRF scheme on pieces of trajectory that gathers multiple observations before performing
the filtering: J = 4 observations (in magenta), J = 3 observations (in green) and J = 2
observations (in purple). It appears that waiting for more than two observations becomes
detrimental for the filter.
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Namely, this term will be computed as

P = C

2 ||k0(·, X ′0)||2H0 , (4.93)

where C is a scaling parameter to tune and that can highly depend on the kernel con-
sidered. Figure 4.3 compares, additionally to Figure 4.1, the ESRF with the RKHS reg-
ularization term for both the empirical and Gaussian kernel, with the parameters C that
yield the best results for each kernel. We observe that, with the empirical kernel tuned
with the right scaling factor C = 105, the ensemble behaves relatively alike the empiri-
cal mean, it is a very decent estimator in the early stages and then diverges in the long
term. However, the Gaussian kernel with its well-tuned parameter (C = 104) brings a
significant improvement starting from day 17 approximately. The main ingredient of the
success of the Gaussian kernel in the numerics, which is striking in our experiments, is a
high production of spread, as shown in Figure 4.4, with the example of day 35, where the
Gaussian kernel is at its lower MSE. This is certainly due to a higher rank of the Gaussian
kernel matrix compared to the empirical kernel, coupled with non negligible non-diagonal
coefficients, penalizing the redundancies in the ensemble.

4.5 Synthesis

This chapter investigates the framework of reproducing kernel Hilbert spaces (RKHS)
for the Koopman operator. A spectral representation of the Koopman operator is formu-
lated in this setting. Within this framework, some classical data assimilation techniques
are adapted and enriched with the theoretical properties of RKHS. Among them, the
superposition principle entailed by EnKFs is interpreted as a consequence of a funda-
mental property of RKHS, and its use is legitimated in this setting. These modified data
assimilation techniques rely on a justified gathering of observations along a trajectory
time-horizon before performing the filtering, instead of assimilating each observation se-
quentially. Numerical experiments show that it can be worth accumulating information
from multiple observations in the proposed modified Kalman schemes.
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Figure 4.3 – Mean Square Error curves for a classical scheme where a standard ESRF
is applied each time (every 6 hours) an observation comes up (in black), compared with
the ESRF scheme on pieces of trajectory (Section 4.4.2) that gathers one day (J = 4) of
observations before performing the filtering (in blue), and ESRF schemes enriched with
a RKHS regularization term (Section 4.4.3) with both empirical (in green) and Gaussian
(in magenta) kernel, with the best scaling parameter C for each kernel.

ESRF on pieces of trajectory ESRF RKHS Gaussian kernel

Figure 4.4 – Comparison of spread at day 35 between the ESRF on pieces of trajectory
and the ESRF with RKHS regularization term with a Gaussian kernel and the scaling
parameter C = 104.
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CONCLUSIVE CHAPTER

This conclusive chapter aims at putting in perspective the process that led to the work
presented in this thesis and explain the choices that were made to present part of the job
that was tried and explored.

In this thesis, we investigated data assimilation techniques for ocean models and par-
ticularly stochastic ones. The stochastic framework driving these models, called Location
Uncertainty, was first presented in its initial principles and its main features were shown.
It is based on a decomposition of the Lagrangian velocity into a time-smooth component
and a highly oscillating noise term. It satisfies classical physical conservation laws and
provides a stochastic equivalent of the deterministic material derivative. This stochas-
tic transport operator was stated in a Surface Quasi-Geostrophic (SQG) case and the
different possibilities in order to generate the noise were exposed.

The main objective of this thesis was to handle high-dimensional systems with nonlin-
ear features from a data assimilation point of view. In the LU framework, the cylindrical
Wiener process provides a multiplicative non Gaussian noise in the stochastic transport
operator. In short, both conditions that are theoretically set to derive classical ensemble
Kalman filters are clearly not met in the models at stake. As they constitute a widely
spread data assimilation technique, we first implemented them in their different varia-
tions, with the localized ensemble square root filter (ESRF) as the method with the best
numerical results in our framework. Still, the two main features of this method are the-
oretically more than questionable. First, these methods look for the posterior ensemble
members as linear combinations of the prior ones, which consequently cannot be solutions
of the underlying dynamical system anymore. Second, the localization procedure is also
likely to introduce important gradients through different decisions taken at neighboring
points, potentially destroying the physical balance of the posterior members. We even
pointed out that, with deterministic dynamics coupled with inflation, the system blew
up in finite time, partially due to the fact that the SQG system is based on an elliptic
equation that will not handle unexpectedly high gradients. This issue was stabilized by
the introduction of the stochastic parametrization, that improved the latter procedure
from many aspects, and these findings were published in Dufée et al. (2022).
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In order to handle nonlinear systems with no hypothesis on the model noise, particle
filters constitute the theoretical ideal framework. Still, these methods are well-known to
struggle with high-dimensional systems. As they are Monte-Carlo methods, the number
of realizations to run has to scale exponentially with the dimension of the state space to
be effective, which is computationally intractable. The main issue, called ensemble de-
generacy, consists in one single particle absorbing the whole ensemble because it is the
closest to the observation in an Euclidian norm quantification, which overdiscriminates
particles in high-dimension. Some strategies were figured out to handle filter degeneracy
(see Section 1.4 and references therein). Tempering consists in guiding the set of parti-
cles towards the observation through a Monte-Carlo Markov Chain (MCMC) procedure.
Jittering then intends to resimulate multiple realizations in a small neigbourhood of the
best particles after a possible filter degeneracy, in order to recover the diversity that was
lost in the filtering. Although these methods are very interesting from a theoretical point
of view, they did not prove effective enough in our case of interest.

Tempering is a very costly procedure that needs to resimulate whole pieces of trajectory
many times. Jittering is not as expensive as tempering, as it just consists in one re-run to
perturb around the particles of interest that were picked by the filter. In order to reduce
its cost, in our case, we had to be very careful about the initial conditions, and more
generally one needs to ensure that the ensemble spread contains the observation so that
the method can indeed enhance the standard particle filter.

Numerical results are produced in Figures C.1 and C.2. For this simulation, we sticked
to the numerical setting of Section 3.2. Namely, we started a set of 100 particles starting
from the same "exact" initial condition of the system with the LU parametrization and a
SVD noise. In this setting, the comparison was made between local and global Ensemble
Square Root Filter (LESRF and ESRF), the standard particle filter (SIR) and a modified
particle filter with tempering and jittering.

Figure C.1 shows the comparison of MSE between these filters over 10 days. In this pe-
riod, the SQG system is quite predictable at large scales and the LU framework was shown
to provide sufficient spread so that the observations are contained within the spread (even
the empirical mean is a very decent estimator in this case). When these conditions are
fulfilled, we can see that the modified particle filter matches the performances of the local
ensemble square root filter (still the comparison is not entirely fair as the computational
cost of tempering is much bigger).

However, when the SQG model starts its highly non-linear behavior, typically between
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Figure C.1 – Mean Square Error curves for different types of particle and Kalman filters.
In this 10 day period, the modified particle filter with tempering and jittering (cyan)
performs better than standard SIR (blue) and global ESRF (magenta) and matches the
local ESRF performances (red).
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day 15 and 20, the enhanced particle filter diverges exactly as its standard version, while
the ensemble square root filters remain very stable. The corresponding results are shown
in Figure C.2.

Figure C.2 – Mean Square Error curves for different types of particle and Kalman filters.
Contrary to Kalman filters, even the enhanced particle filter diverges at long term.

Local particle filters (Farchi, 2019; Poterjoy, 2016; Shen et al., 2017) or hybrid filters
combining Kalman and particle filter methodologies (Papadakis et al., 2010; Shen and
Tang, 2015; Reinhardt, 2020) were shown to prove as effective or slightly better than
ensemble Kalman filters, with possibly a more crucial need of an ensemble size large
enough. Still, localization raises the same theoretical problems for particle filters, as the
weights of the posterior distribution of the global state are no longer global. Consequently,
the choice that was made in this thesis consists in elaborating on ensemble Kalman filters
in the purpose of the study of stochastic geophysical systems, as they constitute the best
up-to-date method in the benchmarks that we made on the model at hand, the SQG
system.

As previously stated, we have first shown that, for this model, the introduction of the
LU stochastic parametrization enables to improve a localized ESRF when compared to an
ensemble simulation of the original deterministic dynamics. The stochastic framework was

112



shown to provide better MSE performance and spread together with an improved phys-
ical relevance compared to deterministic dynamics. Finally, it does not require variance
inflation, contrary to the latter. The parameter of such inflation is known to be difficult
to set and requires a fine tuning to get good performances. The fact that the stochastic
framework is spared from inflation is a first clear advantage. Moreover, we have shown
that, even for small values of the inflation parameter, the classical deterministic system
was exploding in finite time when combined with local filtering, which is likely to be due
to the combination of both (localization and inflation) procedures, as explained before.

The stochastic framework also provides an additional degree of freedom, which is the
noise in itself. In particular, we explored the idea to give this noise a non-zero expectation.
Girsanov transform ensures the possibility to conserve the form of the equation up to
changing the underlying probability measure. This non-zero expectation is computed with
techniques that are close to optimal flow estimation procedures, and is designed to play
a guiding role for the set of realizations, targeting the upcoming observation. This first
quite rough approach was shown to be very effective in case of underestimation of the
initial condition (for instance resulting from initial estimations relying on regularized
inverse problems). A multi-resolution scheme was then designed in order to refine this
first approach and to compute smoother guiding terms for the ensemble members.

Finally, the last part of this thesis attempts to propose a bridge with respect to the
questions raised about the ensemble Kalman filter methodology. In this section, we aim
in particular at justifying the superposition principle, which is the core feature of the
ensemble Kalman filters, through the theoretical help of reproducing kernel Hilbert spaces
(RKHS). The Koopman operator acting on the RKHS associated with the phase space is
studied and a spectral representation theorem is stated. In this RKHS, the feature maps
can, by essence, be expressed as linear combinations of ensemble feature maps, which
legitimates the goal to look for the posterior ensemble members through a superposition
principle.

Part of the perspectives for future work consists in the extension of the Wonderland
representation for stochastic dynamical systems like in LU, and to observe how random-
ness plays a role in a stochastic version of a spectral representation theorem for the
stochastic Koopman operator. For such stochastic setting, as two degrees of freedom are
now introduced (initial condition and noise realization), one could think of an ensemble
(indexed by randomness) of ensembles of realizations starting from different initial condi-
tions, given this randomness (or the associated noise term). In such setting, an interesting
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way to proceed could be to use a particle filter that picks the best ensemble(s) in terms
of randomness, so the best realizations of the noise, and then let an ensemble Kalman
filter assimilate the chosen ensembles. These are just ideas, which would need an adequate
stochastic Wonderland spectral theorem to be further developed. As this setting seems
to offer new perspectives for data assimilation techniques, we also hope this framework,
either to justify the localization in some way or, even better, to get rid of it through more
sophisticated approaches.
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Titre : Assimilation de données pour des modèles océaniques stochastiques

Mot clés : Assimilation de données, modélisation stochastique, systèmes dynamiques, prévision d’ensemble

Résumé : Cette thèse explore différentes techniques d’as-
similation de données pour des modèles océaniques, et en
particulier les modèles stochastiques. La méthodologie sto-
chastique utilisée s’appelle l’incertitude de position (LU en an-
glais) et vise à incorporer un caractère stochastique à des mo-
dèles géophysiques via une décomposition de la vitesse en
une composante grande échelle lisse en temps, ainsi qu’une
composante aléatoire fortement oscillante, modélisée par un
processus de Wiener cylindrique. Comme le caractère aléa-
toire du modèle ainsi que la quantification d’incertitude sont
cruciaux pour l’assimilation de données, il est exposé dans
cette thèse que le modèle LU comporte des avantages indé-
niables sur le modèle SQG (Surface Quasi-Geostrophic en an-
glais).
Nous avons dans un premier temps, pour ce modèle SQG,
comparé le modèle stochastique aux techniques déterministes
d’inflation pour un filtre de Kalman d’ensemble "square-root"
localisé. Nous avons obtenu, dans cette première étude, une
validation numérique que l’inflation peut être difficile à régler
et peut mener à une divergence du filtre en temps fini, et que
le modèle stochastique donne de meilleurs performances que

les modèles déterministes avec inflation en terme d’erreurs et
de qualité de variance d’ensemble.
Une deuxième étude a consisté à la proposition d’une procé-
dure de calibration du bruit stochastique, visant à guider l’es-
saim de trajectoires vers une région d’intérêt, proche des ob-
servations. Cette procédure s’appuie sur le caractère stochas-
tique inhérent de LU et se base sur les transformations de
Girsanov. L’ajout de ce terme de guidage a mené à une amé-
lioration significative des résultats dans le cas d’une mauvaise
estimation de la condition initiale.
La dernière partie de cette thèse étudie la prédiction d’en-
semble sous le point de vue des espaces de Hilbert à noyau
auto-repoduisant (RKHS en anglais). Dans ce contexte, l’opé-
rateur de Koopman associé à la dynamique et son adjoint sont
tous deux unitaires et uniformément continus, ce qui conduit à
l’énoncé d’un théorème spectral adapté aux RKHS. Des mé-
thodes d’assimilation de données sont conçues pour prendre
en compte la structure et les propriétés des RKHS, qui jus-
tifient notamment un principe de superposition qui est large-
ment utilisé, bien que sujet à caution, pour les filtres de Kal-
man d’ensemble.

Title: Data assimilation for stochastic ocean models

Keywords: Data assimilation, stochastic modeling, dynamical system, ensemble forecasting

Abstract: This thesis explores data assimilation techniques
for ocean models, and particularly for stochastic models. The
stochastic framework of interest is called location uncertainty
(LU) and aims at incorporating the stochasticity in geophysical
systems through a velocity decomposition into a large-scale
smooth in time component, and a highly oscillating random
velocity, modelized as a cylindrical Wiener process. As model
randomness and uncertainty quantification are of upmost im-
portance for data assimilation, LU is shown, in this thesis, to
have undeniable advantages on the model at hand, namely
the Surface Quasi-Geostrophic (SQG) model.
We first compared, for this SQG model, the stochastic frame-
work with deterministic inflation techniques for a localized en-
semble square-root filter. We found in this first study a numer-
ical validation that inflation can be difficult to tune and lead to
filter divergence in finite time, and that the stochastic setting
performs better than deterministic ones in terms of MSE and

spread relevance.
A second study designed a noise-calibration procedure, aim-
ing at guiding the set of realizations towards a region of in-
terest, close to the observations. This procedure relies on the
inherent stochasticity of LU and is based on Girsanov trans-
forms. The addition of this extra guiding term was shown to
significantly improve the numerical results in the case of bad
estimation of the initial condition.
The last part of the thesis studies ensemble forecasts within
the framework of reproducing kernel Hilbert spaces (RKHS).
In this framework, the Koopman operator attached to the dy-
namics and its adjoint are both unitary and uniformly contin-
uous, which leads to a RKHS spectral theorem adapted to
this framework. Adequate data assimilation techniques are de-
vised, enriched with the RKHS structure and properties, which
can in some sense justify the questionable superposition prin-
ciple widely used in ensemble Kalman filters.
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