
HAL Id: tel-04292301
https://theses.hal.science/tel-04292301

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning and Algorithms for Online Matching
Flore Sentenac

To cite this version:
Flore Sentenac. Learning and Algorithms for Online Matching. Statistics [math.ST]. Institut Poly-
technique de Paris, 2023. English. �NNT : 2023IPPAG005�. �tel-04292301�

https://theses.hal.science/tel-04292301
https://hal.archives-ouvertes.fr

N
N

T
:

20
23

IP
PA

G
00

5

Learning and Algorithms for Online Matching
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à l’École nationale de la statistique et de l’administration économique

École doctorale n◦574 École doctorale de mathématiques Hadamard (EDMH)
Spécialité de doctorat: Mathématiques appliquées

Thèse présentée et soutenue à Palaiseau, le 11 juillet 2023, par

Flore Sentenac

Composition du Jury :

Alfred Galichon
Professeur, New York University Président du jury
Olivier Tercieux
Paris School of Economics (PSE) and CNRS Rapporteur
Laurent Massoulié
Professeur, Inria Paris, Université DIENS PSL Rapporteur
Shie Mannor
Professeur, Technion Examinateur

Jaouad Mourtada
Professeur adjoint, CREST, ENSAE Examinateur
Vianney Perchet
Professeur, CREST, ENSAE Directeur de Thèse

Remerciements

Mes remerciements vont d’abord à mon directeur de thèse Vianney, pour son encadrement et

son soutien tout au long de la thèse. Je t’ai contacté en juillet 2019, sans bourse ni projet

de thèse très précis, et pourtant déjà là tu m’as soutenue, présenté d’autres chercheurs et

des projets de recherche potentiels. J’ai commencé à travailler avec toi quelques mois après,

et les quatre années qui ont suivi ont été si riches que j’aurais du mal à en faire un résumé

complet. Tu m’as offert un environnement de recherche incroyablement stimulant, plein de

rencontres, poussé à la curiosité et soutenu dans tous mes projets, le tout avec enthousiasme et

décontraction. Je n’aurais certainement pas fait le quart de la moitié de tout ce que j’ai fait

sans ça. Merci pour tout, je mesure la chance que j’ai eue, et pour un peu, j’aurais du mal à partir.

Un grand merci à Laurent Massoulié et à Olivier Tercieux pour le temps qu’ils ont consacré

à la lecture de mon manuscrit et pour leurs rapports détaillés et constructifs.

Je tiens également à exprimer ma gratitude à Alfred Galichon, Shie Mannor et Jaouad

Mourtada pour avoir accepté d’être membres de mon jury. C’est un honneur et un plaisir de

présenter mon travail en votre présence.

Je voudrais aussi remercier particulièrement Claire. Mon passage à Londres a bien sûr

été vraiment enrichissant grâce à toi, mais pas seulement. Tous les conseils que tu m’as

donnés, toutes les discussions qu’on a eues m’ont beaucoup apporté, autant personnellement

qu’intellectuellement, et j’espère que nous aurons (beaucoup) d’autres occasions de nous recroiser.

Julien, mon "binôme" de thèse, tu sais déjà que ces années n’auraient pas du tout été

les mêmes sans toi. Tu m’as aidé à résoudre autant de problèmes de maths que de crises

i

existentielles. Merci pour toutes ces répétitions de présentation, ces relectures de mail et de

candidatures. J’aimerais te dire que je vais arrêter d’abuser de ta bienveillance, mais je ne veux

pas mentir par écrit.

Au cours de ma thèse, j’ai eu la chance de collaborer avec de nombreux autres chercheurs.

Nathan, qui a été présent tout au long du parcours et m’a beaucoup appris. Etienne, Hugo,

Corentin, Mathieu et Nadav qui sont des amis autant que des collaborateurs (in english for you

Nadav: thank you for illuminating my slides with funny pictures).

Merci aussi à Milan, Clément, Matthieu et Laurent de m’avoir partagé votre expérience.

Malgré la coupure du covid, j’ai eu la chance de profiter de l’environnement du CREST et de

son équipe de permanents. Merci à Arnak, Nicolas, Anna, Victor-Emmanuel, Jaouad , Cristina,

Guillaume et Azadeh pour toutes ces discussions.

J’ai aussi eu la chance de partager ce moment avec toute une équipe de co-thésards et

post-docs géniaux, les anciens, Pierre, Firas et Evrard, ceux qui sont arrivés en cours de route,

Maria, Côme, Mike, Sasila, Hafedh et Ziyad, Felipe et Dorian, et le seul qui ait été là tout

du long, Lorenzo. Merci pour tous les group meeting et les reading group (surtout pour votre

soutien aux moments de faible compréhension). Vos gâteaux vont me manquer.

Il y a aussi eu tous ceux du CREST avec qui j’ai partagé les déjeuners Magnan, les siestes

poufs, les cafés sur la terrasse et la "table des enfants" du CIRM de décembre Arya, Evgenii,

Nicolas, Lu, Suzanne, Etienne, Clara, Hugo, Younès, Amir, Meyer, Théo et Nina. Mention

particulière à toi Nayel, pour m’avoir tant de fois épargné le RER de 7h du matin. Mon sommeil

t’en remercie encore.

Je remercie aussi tout le personnel administratif et en particulier Leyla, Djamila et Fanda qui

m’ont, entre autres, aidé à gérer mes inscriptions et permis d’assister aux différentes conférences

et summer schools.

Je voudrais aussi remercier sans les nommer mes amis pour tous les moments passés avec

vous pendant ces quatre années. Des confinements aux verres en terrasse, vous mettez des

paillettes dans ma vie.

ii

Je remercie aussi ma famille. Mon père Jean, pour m’avoir transmis le goût des maths, et

ma mère Bénédicte, pour m’avoir rappelé qu’il n’y avait pas que les maths. Mes grands-parents,

Eric et Béatrice, qui m’ont beaucoup accueilli en télétravail, et m’ont poussé à la curiosité

depuis la petite enfance. Mes deux sœurs, Camille et Philippine, mon parrain Bernard, ma

marraine Charlotte, mon oncle Harold, ma tante Claire, et le petit Victor, qui je l’espère sera

sage pendant la soutenance.

Enfin, merci à Ayman de partager ma vie. T’avoir à mes côtés est un privilège. Et il va bien

falloir que je l’admette, tu avais raison quand tu me disais il y a presque dix ans que j’aimerais

la recherche.

iii

Contents

1 Introduction (version française) 4

1.1 Apprentissage séquentiel . 5

1.2 Algorithmes séquentiel . 7

1.3 Plan et Contributions . 16

1.4 Liste des Publications . 17

2 Introduction to Online Learning and Algorithms 19

2.1 Online Learning . 20

2.2 Online Algorithms . 22

2.3 Outline and Contributions . 30

2.4 List of Publications . 32

I Online Learning 33

3 Pure Exploration and Regret Minimization in Matching Bandits 34

3.1 Introduction . 35

3.2 Objectives and problem statement . 36

3.3 Pair selection problem . 37

3.4 Matching selection problem . 41

3.5 Experiments . 45

3.A Appendix . 49

4 Decentralized Learning in Online Queuing Systems 93

4.1 Introduction . 94

1

4.2 Queuing Model . 96

4.3 The case for a cooperative algorithm . 97

4.4 A decentralized algorithm . 99

4.5 Simulations . 104

4.6 Conclusion . 105

4.A Appendix . 106

II Online Algorithms 124

5 Online Matching in Sparse Random Graphs: Non-Asymptotic Performances

of Greedy Algorithm 125

5.1 Introduction . 126

5.2 Online Matching Problems; Models and main result 128

5.3 Ideas of proof of Theorem 5.2.1 . 133

5.4 Appendix . 138

6 Online Matching in Geometric Random Graphs 158

6.1 Introduction . 159

6.2 Maximum Matching in 1D Uniform Geometric Graph 163

6.3 Match to the closest point algorithm . 166

6.4 Study of the Random Walk . 171

6.5 Proof of the auxiliary Lemmas for graph-rounding 173

6.6 Proof of Lemma 6.3.7 (Gaps repartition) . 176

6.7 Application of the Differential Equation Method 179

6.A Appendix . 183

7 On Preemption and Learning in Stochastic Scheduling 185

7.1 Introduction . 186

7.2 Related Work . 187

7.3 Benchmark: Follow The Perfect Prediction . 188

7.4 Non-Preemptive Algorithms . 189

7.5 Preemptive Algorithms . 193

2

CONTENTS

7.6 Experiments . 196

7.7 Conclusion and Future Work . 197

7.A Appendix . 199

3

Chapter 1

Introduction (version française)

Contents
1.1 Apprentissage séquentiel . 5

1.1.1 Bandits Multi-Bras Stochastiques et Regret 5
1.1.2 Borne inférieure . 5
1.1.3 Algorithmes classiques de bandits . 6

1.2 Algorithmes séquentiel . 7
1.2.1 Ratio de compétitivité . 8
1.2.2 Matching séquentiel dans les graphes bipartis 8
1.2.3 Cadres classiques de matching séquentiel et algorithmes 9
1.2.4 Algorithmes "learning-augmented" . 15

1.3 Plan et Contributions . 16
1.4 Liste des Publications . 17

Dans les scénarios séquentiels, une option parmi plusieurs est irrévocablement choisie à
chaque itération et les performances globales de l’algorithme sont mesurées à la fin de l’exécution.
Cela modélise de nombreux problèmes de la vie réelle et est particulièrement pertinent pour les
applications numériques.

Le cadre du Bandit Multi-Bras est au cœur de la section Section 1.1. Il a été introduit
dans le contexte des essais cliniques Robbins (1952); Thompson (1933), et a récemment attiré à
nouveau l’attention en raison de son application aux systèmes de recommandation séquentiels.
Le modèle de matching séquentiel, détaillé dans la section Section 1.2.2, est particulièrement
pertinent pour la publicité numérique.

4

1.1. APPRENTISSAGE SÉQUENTIEL

1.1 Apprentissage séquentiel

Dans cette section, nous introduisons les bandits multi-bras stochastiques ainsi que les principaux
résultats dans ce modèle. La section se termine par une brève introduction à une sélection
d’algorithmes de bandits. Cela fournira une base pour une partie du travail présenté dans cette
thèse. Pour une introduction plus approfondie aux bandits multi-bras, nous renvoyons le lecteur
à la monographie Lattimore and Szepesvári (2020).

1.1.1 Bandits Multi-Bras Stochastiques et Regret

Au début de l’exécution, un agent dispose de K options disponibles, appelées "bras". Chacune
de ces options i ∈ K a une récompense moyenne associée µi ∈ [0, 1]. À chaque itération t
jusqu’à l’horizon T , il choisit une option a(t) ∈ [K]. Nous disons que l’agent "tire le bras a(t)".
Il reçoit ensuite et observe la récompense bruitée r(t) = µa(t) + εt, où (εt)t∈[T] est une séquence
i.i.d. tirée d’une distribution 1-sous-gaussienne à moyenne nulle.

Lorsque les valeurs des moyennes des différents bras, (µi)i∈[K], sont connues, la stratégie
optimale consiste à choisir le bras avec la moyenne la plus élevée µ∗ à chaque itération. Cependant,
ces moyennes sont inconnues de l’agent au début de l’exécution. L’objectif de l’agent est alors
de concevoir une stratégie qui minimise la différence entre la récompense espérée obtenue en
suivant cette stratégie et la récompense espérée pour la stratégie optimale. Cette quantité est
appelée regret et est formellement définie pour une stratégie π comme suit :

Rπ(T) := E

∑
t∈T

µ∗ − µa(t)

 .
L’espérance est prise par rapport à la stratégie de l’agent.

D’une part, à une certaine itération, l’agent peut exploiter sa connaissance actuelle pour
maximiser la récompense instantanée de manière greedy. D’autre part, à chaque itération, l’agent
n’observe qu’une version bruitée de la moyenne du bras tiré. Ainsi, apprendre les moyennes des
bras nécessite de les tirer, ce qui implique que les stratégies raisonnables incorporent un niveau
d’exploration.

Dans cette exposition, nous nous concentrerons sur les bornes configuration-dépendante.
Ce sont des bornes supérieures et inférieures sur les performances des algorithmes pour des
valeurs de paramètres fixes. Nous renvoyons les lecteurs intéressés par les bornes minimax à la
monographie Lattimore and Szepesvári (2020).

1.1.2 Borne inférieure

Dans cette section, nous exposons une borne inférieure sur le regret configuration-dépendant
atteignable par des algorithmes "raisonnables", définis dans la littérature comme la classe
suivante d’algorithmes asymptotiquement cohérents.

Definition 1.1.1 (Algorithme asymptotiquement cohérent). Un algorithme π est asympto-
tiquement cohérent si, pour chaque instance de bandit, pour tout α > 0, Rπ(T) = o(Tα).

Remarquez que pour tout algorithme asymptotiquement cohérent, la récompense accumulée
est asymptotiquement de même ordre que celle de la stratégie optimale qui tire le meilleur bras
à chaque itération.

La borne inférieure suivante est dérivée à partir d’arguments d’information théorique que
nous ne détaillerons pas ici.

5

CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

Theorem 1.1.2 (Lai and Robbins (1985)). Considérons une instance de bandit où le bruit
εt ∼ N (0, 1). Alors tout algorithme asymptotiquement cohérent a la borne inférieure suivante
sur son regret asymptotique :

lim inf
T→+∞

R(T)
log(T) ≥

∑
µk<µ∗

2
µ∗ − µk

.

Bien que cette borne inférieure soit asymptotique, elle indique que la borne supérieure sur
le regret de tout algorithme raisonnable ne peut pas être inférieure à O

(∑
µk<µ∗

log(T)
µ∗−µk

)
.

1.1.3 Algorithmes classiques de bandits

Un large éventail d’algorithmes a été proposé pour traiter le cadre des bandits multi-bras
stochastiques. Ici, nous nous concentrerons sur deux stratégies seulement : une première dans
laquelle l’exploration est réalisée en une seule fois au début, et une deuxième dans laquelle
l’exploration et l’exploitation sont entrelacées. Nous fournissons des pseudo-codes succincts et
des bornes supérieures sur le regret sans démonstration. Certains algorithmes de cette thèse
s’appuient sur les idées des deux stratégies présentées ici.

Dans les présentations des deux algorithmes, nous notons :
• Nk(t) le nombre de fois où le bras k a été tiré jusqu’au temps t,

• µ̂k(t) = 1
Nk(t)

∑t−1
s=1 r(t)1

{
a(t) = k

}
, la moyenne empirique pour le bras k à l’itération t,

• Lk(t) = µ̂k(t) −
√

2 log(T)
Nk(t) , Uk(t) = µ̂k(t) +

√
2 log(T)
Nk(t) , bornes inférieure et supérieure à

l’itération t sur la vraie moyenne du bras k avec une forte probabilité.

Algorithme Explore-Then-Commit La stratégie la plus simple d’Explore-Then-Commit
consiste à explorer uniformément tous les bras, puis à se concentrer sur le bras avec la plus
haute moyenne empirique. L’algorithme présenté dans Algorithm 1 est une version légèrement
affinée de ce principe, également appelée Successive-Elimination. L’algorithme maintient un
ensemble de bras actifs A, qui sont candidats pour être le bras avec la plus haute moyenne. Les
bras de cet ensemble sont échantillonnés uniformément. Lorsqu’un bras est jugé sous-optimal
avec une forte probabilité, il est définitivement éliminé de cet ensemble et donc jamais tiré à
nouveau.

Algorithm 1: Explore-Then-Commit
Entrée : ensemble de bras [K] et horizon T

1 A = [K];
2 while |A| > 1 do
3 Tirer une fois chaque bras dans A;
4 ∀k ∈ [K] tel que Uk(t) ≤ maxi∈A Li(t), enlever k de A;
5 end
6 Tirer le bras restant dans A jusqu’à la fin;

Theorem 1.1.3 (Perchet and Rigollet (2013)). Le regret de Algorithm 1 avec l’horizon connu
T est borné supérieurement par :

R(T) = O

 ∑
µk<µ∗

log(T)
µ∗ − µk

 .
6

1.2. ALGORITHMES SÉQUENTIEL

Comme le montre la Section 1.1.2, la borne sur le regret obtenue pour cet algorithme simple
n’est qu’une constante supérieure à la borne inférieure asymptotique sur le regret configuration-
dépendant. Cependant, il est connu que le regret de toute stratégie Explore-Then-Commit
est sous-optimal d’une constante multiplicative Garivier and Kaufmann (2016). Néanmoins,
la simplicité de l’algorithme est avantageuse et peut s’avérer utile dans des contextes plus
complexes.

Algorithme Upper-Confidence-Bound L’algorithme Upper-Confidence-Bound (UCB),
Auer et al. (2002a), est un exemple d’algorithme de bandit entièrement adaptatif. À chaque
itération, l’indice de chaque bras Uk(t) est une borne supérieure de la vraie moyenne du bras
avec une forte probabilité, et le bras avec l’indice le plus élevé est tiré.

Algorithm 2: Upper-Confidence-Bound
Entrée : ensemble de bras [K] et horizon T

1 for t = 1, . . . , T do
2 Tirer arg maxk∈[K] Uk(t);
3 end

Theorem 1.1.4 (Auer et al. (2002a)). Le regret de Algorithm 2 avec l’horizon connu T est
borné supérieurement par :

R(T) ≤
∑

µk<µ∗

16 log(T)
µ∗ − µk

+ 3(µ∗ − µk).

Encore une fois, l’algorithme UCB atteint asymptotiquement la borne inférieure Section 1.1.2
à constante multiplicatrice près. Mieux encore, pour certaines distributions, l’algorithme UCB
avec une version légèrement modifiée des bornes supérieures est asymptotiquement optimal
Cappé et al. (2013).

Ainsi, Algorithm 2 fonctionne strictement mieux que Algorithm 1, mais il est parfois plus
difficile à généraliser dans des contextes plus complexes.

1.2 Algorithmes séquentiel

Par définition, un algorithme séquentiel est un algorithme qui traite séquentiellement ses entrées
sans avoir accès à la séquence complète au début de l’exécution.

Un exemple classique est le problème de la location de skis. Une personne arrive en vacances
et peut décider chaque jour de louer des skis pour une journée au prix de p ou de les acheter au
prix de B. Si la personne sait qu’elle va passer D jours en vacances, la décision optimale est
évidente : acheter des skis le premier jour si B < pD, sinon les louer chaque jour. Lorsque D
est inconnu, la situation est plus complexe, mais il existe toujours un moyen de s’assurer de ne
pas payer plus de deux fois le prix optimal : louer des skis pendant les premiers ⌊Bp ⌋ jours, puis
les acheter le jour suivant.

Généralement, comme dans l’exemple précédent, les algorithmes séquentiels sont évalués
par comparaison avec les algorithmes optimaux qui ont connaissance de la séquence complète
des entrées.

La prochaine section est consacrée à la définition du ratio de compétitivité (C.R.), une
mesure classique de la performance des algorithmes séquentiels. Ensuite, nous donnerons plus

7

CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

de détails sur le cadre de matching séquentiel, qui est l’un des principaux points d’intérêt de
cette thèse.

Dans cette section et tout au long de la thèse, un algorithme séquentiel désigne un algorithme
pour lequel la séquence est révélée de manière séquentielle (comme celui qui n’a pas accès à D
dans l’exemple de la location de skis), tandis qu’un algorithme hors ligne désigne un algorithme
qui a accès à la séquence complète des entrées (comme celui qui connaît D dans le même
exemple).

1.2.1 Ratio de compétitivité

On peut considérer à la fois des algorithmes de minimisation des coûts et des algorithmes de
maximisation de la récompense. Comme nous traitons des algorithmes de maximisation de la
récompense dans le cadre du problème de matching séquentiel, cette section formule tout en
termes d’algorithmes de maximisation de la récompense avec des récompenses positives.

Soit ALG(G) le score d’un algorithme pour une entrée G et OPT l’algorithme hors ligne
optimal.

Definition 1.2.1 (Ratio de compétitivité (C.R.)). Un algorithme de maximisation de la
récompense ALG atteint un rapport de compétitivité α pour une classe d’entrées G s’il existe
une constante c telle que pour tout G ∈ G,

E[ALG(G)] ≥ αE[OPT(G)] + c,

où les espérances sont prises par rapport aux éventuelles variations aléatoires des algorithmes et
de l’entrée G.

Remarque : Pour un algorithme de minimisation des coûts, le
min serait remplacé par un max et l’inégalité serait inversée.
Notez que le ratio de compétitivité (C.R.) est borné entre 0 et 1, plus la valeur est élevée,

mieux c’est. Deux éléments influencent sa valeur : l’algorithme lui-même et la classe d’entrées
G sur laquelle l’algorithme est évalué. Si des hypothèses plus restrictives sont faites sur G, il est
alors plus facile d’obtenir des algorithmes avec un ratio de compétitivité élevé.

Dans l’exemple de la location de skis, une entrée G est un ensemble de trois paramètres
p,B,D. Si ces paramètres peuvent prendre n’importe quelle valeur positive, ce qui correspond à
la classe d’entrées la plus large possible, le plus petit ratio de compétitivité (C.R.) atteignable
est 2. Cependant, si nous supposons que ces paramètres sont tirés d’une distribution connue, il
est possible d’obtenir un ratio de compétitivité (C.R.) plus petit.

Remarque : Selon la définition 1.1.1, tout algorithme de bandit asymptotiquement consis-
tant a un ratio de compétitivité asymptotique de 1.

1.2.2 Matching séquentiel dans les graphes bipartis

Matching hors ligne. Nous commençons par détailler la version hors ligne du problème de
matching avant de passer à sa contrepartie séquentielle. Cette thèse porte sur les matching
dans les graphes bipartis.

Definition 1.2.2 (Graphe biparti). Un graphe biparti G = (U ∪ V, E) est un graphe avec deux
ensembles de sommets U et V et un ensemble d’arêtes E tel que aucun sommet du même
ensemble n’est adjacent.

Tout au long de ce manuscrit, un matching est définie comme suit.

8

1.2. ALGORITHMES SÉQUENTIEL

Definition 1.2.3 (Matching). Une matching M sur le graphe G est un sous-ensemble de E tel
que chaque sommet de G soit l’extrémité d’au plus une arête dans M . Si un sommet u ∈ U ∪ V
est l’extrémité d’une arête dans M , nous disons que u est matché, sinon il est libre ou non
matché. Un matching de cardinalité maximale est un matching maximale.

Le problème de trouver un matching maximal dans un graphe biparti peut être résolu à
l’aide de l’algorithme de Hopcroft-Karp, avec un temps d’exécution de O

(
|U ∪ V|1/2|E|

)
. Dans

le cas d’une matching pondéré, où chaque arête (u, v) ∈ E est associée à un poids wu,v, et
l’objectif est de trouver un matching maximisant la somme des arêtes sélectionnées, l’algorithme
hongrois peut être utilisé, avec un temps d’exécution de O

(
|U ∪ V|3

)
.

Matching séquentiel. La version en ligne du problème peut être formulée comme suit :

1. Au début de l’exécution, tous les sommets du côté "hors ligne" U sont disponibles.

2. À chaque itération, un sommet v ∈ V est révélé, ainsi que ses arêtes.

3. v peut être associé à l’un de ses voisins libres, et le match choisi (s’il y en a un) est
irrévocable.

Ce cadre théorique est particulièrement adapté à la publicité en ligne : U est l’ensemble des
campagnes/publicités qu’un annonceur peut diffuser et les utilisateurs v1, v2, . . . , vT arrivent
séquentiellement (Manshadi et al., 2012; Mehta, 2012). Certains d’entre eux sont éligibles pour
un sous-ensemble important de campagnes, tandis que d’autres ne le sont pas (généralement en
fonction de leurs attributs/caractéristiques, tels que la localisation géographique, l’historique
de navigation ou toute autre information pertinente). L’objectif d’un annonceur (dans ce
modèle simplifié) est de maximiser le nombre de publicités affichées. En pratique, les cam-
pagnes/publicités ne sont pas affichées une seule fois, mais ont un budget maximal d’impressions
(par exemple, une publicité spécifique peut être affichée uniquement 10 000 fois par jour). Une
astuce possible consiste à dupliquer les sommets de U autant de fois que le budget le permet.

La version séquentielle du matching est évidemment plus difficile que la version hors ligne,
notamment car on ne peut généralement pas obtenir un matching maximal. Nous détaillons
dans la section suivante, en fonction des hypothèses sur la classe de graphes considérée, les
valeurs du C.R. réalisables pour les algorithmes de matching en ligne.

1.2.3 Cadres classiques de matching séquentiel et algorithmes

Dans cette section, nous détaillerons les hypothèses classiques faites sur la classe de graphes
considérée G, ainsi que les algorithmes proposés dans la littérature dans chaque contexte.

Cadre adversarial Dans le cadre adversarial, aucune restriction n’est imposée sur la classe
d’entrée G. Le graphe peut être n’importe quel graphe et les sommets arrivent dans n’importe
quel ordre. C’est pourquoi on parle d’adversarial, car en se référant à la définition du C.R.
dans Theorem 1.2.1, on constate que dans ce paramètre, le C.R. d’un algorithme est évalué sur
le graphe sur lequel il a les performances les plus faibles.

Il est peut-être surprenant que, même dans ce cadre difficile, une garantie de 1/2 sur le C.R.
soit facilement obtenue avec l’algorithme suivant :

Pour être cohérent avec le reste de la thèse, nous définissons greedy comme l’algorithme qui
choisit le match du sommet entrant uniformément au hasard, mais le résultat suivant est valable
pour tous les algorithmes choisissant n’importe quel match dès qu’il en existe un disponible.

9

CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

Algorithm 3: Algorithme greedy
1 for t = 1, . . . , |V| do
2 Associer vt à un voisin libre choisi uniformément au hasard;
3 end

Theorem 1.2.4. Dans le cadre adversarial,

C.R.(greedy) ≥ 1
2 .

Proof. Considérons l’événement où greedy échoue à matcher à un sommet vt qui est apparié
dans le matching maximal du graphe final. Cela ne peut se produire que si l’appariement de vt
dans le matching optimal était déjà apparié à un autre sommet. Ainsi, pour tout événement
de "manqué" (greedy n’arrive pas à apparier un sommet qui est matché dans le matching
maximal), il y a au moins un événement de "match" (greedy apparie un sommet). Cela
implique qu’il y a au plus deux fois le nombre de sommets appariés dans le matching maximale
par rapport au matching construit par greedy, d’où la borne inférieure de 1/2 sur le C.R..

Figure 1.1: Une instance dif-
ficile pour greedy

Cette borne inférieure est optimale.

Proposition 1.2.5. Dans le cadre adversarial,

C.R.(greedy) = 1
2 .

Proof. Considérons la famille de graphes (Gn)n∈N suivante, illus-
trée dans Line 3. Il y a 2n sommets de chaque côté de Gn, qui
sont divisés en deux moitiés, U = U1 ∪ U2 et V = V1 ∪ V2, avec
U1 = {u1, . . . , un}, U2 = {un+1, . . . , u2n}, de même pour V . Nous
avons l’ensemble d’arêtes suivant :

E = {(ui, vi), ∀i ∈ [2n], (un+i, vj)∀(i, j) ∈ [n]2}.

Dans chaque Gn, il existe un matching de cardinalité 2n,
M = {(ui, vi), ∀i ∈ [2n]}. Analysons l’exécution de greedy.
Tout d’abord, nous observons que tout sommet ui ∈ V1 choisira
son matching dans V2 avec une probabilité supérieure à n−i+1

n−i+2 ,
car il n’a qu’un seul voisin dans U1, et à l’itération i, au plus
i− 1 sommets ont déjà été matchés dans U2. Cela implique qu’en
moyenne, n− o(n) sommets de V1 sont matchés avec un sommet

uj ∈ U2. Pour tous ces uj ∈ U2, leur match dans la correspondance maximale reste non apparié,
et nous avons donc :

lim
n→+∞

E[greedy(Gn)]
2n = 1

2 .

Pour dépasser ce C.R. de 1/2, un algorithme différent est nécessaire. L’algorithme ranking
Karp et al. (1990) utilise ce que l’on appelle informellement une "randomisation corrélée" et a
un C.R. plus élevé dans le cadre adversarial.

Il fonctionne comme suit : au début de l’exécution, une permutation aléatoire π est tirée et
le sommet ui ∈ U se voit attribuer le rang π(i). Lorsqu’un sommet vt ∈ V arrive, il est apparié

10

1.2. ALGORITHMES SÉQUENTIEL

à son voisin libre de rang le plus bas. On parle de "randomisation corrélée" car le choix du
voisin pour vt, bien qu’étant toujours aléatoire, est corrélé d’une itération à l’autre.

Algorithm 4: Algorithme ranking
1 Tirer une permutation aléatoire π;
2 for i = 1, . . . , |U| do
3 Attribuer à ui le rang π(i);
4 end
5 for t = 1, . . . , |V| do
6 Apparier vt avec son voisin libre de rang le plus bas;
7 end

On peut comprendre pourquoi ranking a un C.R. plus élevé que greedy en examinant
l’exemple difficile pour greedy. Dans cet exemple, chaque sommet de U2 a un degré élevé,
et à chaque fois qu’un de ses voisins arrive, il a une opportunité d’être choisi, ce qui signifie
qu’ils ont tendance à être appariés tôt dans le processus, et plus généralement greedy semble
favoriser l’appariement des sommets de degré élevé en premier. L’intuition dicterait l’opposé :
les sommets de degré élevé devraient être appariés aussi tard que possible comme option de
secours pour les sommets n’ayant pas d’autre option. Avec la randomisation corrélée, ranking
corrige en partie ce biais : au début de l’exécution, le voisin libre de rang le plus bas du
sommet entrant ui ∈ U1 se trouve toujours dans U2. Cependant, à mesure que les sommets de
rang bas de U2 sont appariés, la probabilité que le voisin libre de rang le plus bas du sommet
entrant ui ∈ U1 soit son appariement dans l’appariement maximal augmente. Ainsi, en moyenne,
ranking apparie plus de sommets que greedy sur cet exemple.

Theorem 1.2.6. Dans le cadre adversarial,

C.R.(ranking) ≥ 1− 1
e
≈ 0.63.

Il existe plusieurs preuves de ce résultat. Pour une preuve directe basée sur la correspondance
entre les événements de "manqué" et les événements de "match", voir Birnbaum and Mathieu
(2008). Pour une preuve basée sur l’analyse primal-dual, voir Devanur et al. (2013).

Dans l’article qui a introduit l’algorithme ranking, Karp et al. (1990), l’auteur a démontré
que la borne inférieure sur le C.R. est optimale avec l’exemple des graphes triangulaires
supérieurs (Tn)n∈N, illustrés dans la Line 7, qui ont n sommets de chaque côté et l’ensemble
des arêtes suivant :

E = {(ui, vj), (i, j) ∈ [n]2 avec j ≤ i}.

Il existe un matching de taille n dans ces graphes, et les auteurs ont prouvé que ranking
apparie O

(
(1− 1

e)n
)

sommets sur ces exemples. À l’aide de ces mêmes exemples, ils ont
également prouvé le résultat plus fort suivant.

Proposition 1.2.7. Pour tout algorithme ALG, dans le cadre adversarial :

C.R.(ALG) ≤ 1− 1
e
.

Proof. Considérons un algorithme ALG quelconque (aléatoire ou non). Soit πn une permutation
quelconque sur [n], πn ∈ Sn, et Πn la distribution uniforme sur Sn. Notons (Tn, πn) le graphe
où les lignes sont permutées par π et les colonnes arrivent dans l’ordre 1, . . . , n. Notons D la
classe de tous les algorithmes déterministes. En utilisant le lemme de Yao :

min
πn∈Sn

E
[
ALG

(
(Tn, πn)

)]
≤ max

A∈D
Eπn∼Πn

[
A
(
(Tn, πn)

)]
.

11

CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

La deuxième étape de la preuve consiste à relier les termes Eπn∼Πn

[
A
(
(Tn, πn)

)]
pour tout

algorithme déterministe à la performance de greedy (appelé random dans Karp et al. (1990))
sur Tn :

Eπn∼Πn

[
A
(
(Tn, πn)

)]
= E

[
greedy (Tn)

]
.

Cette égalité est obtenue par induction sur les deux propriétés suivantes :

1. Pour l’algorithme A sur (Tn, πn), avec πn ∼ Πn, ainsi que pour greedy sur Tn, s’il y a k
lignes éligibles au moment t, elles ont toutes la même probabilité d’être n’importe quel
ensemble de k lignes parmi les n− t+ 1 premières lignes de Tn.

2. Pour chaque k, la probabilité qu’il y ait k lignes éligibles au moment k est la même pour
greedy exécuté sur Tn que pour A exécuté sur (Tn, πn).

Il reste à calculer E
[
greedy (Tn)

]
. Définissons x(t) = n − t + 1 comme étant le nombre de

colonnes restantes à l’itération t et y(t) comme étant le nombre de voisins libres de vt lors de
son arrivée à l’itération t. Tant que y(t) > 1, y(t) diminue de 2 si ut est libre à l’itération t et
n’est pas sélectionné. Avec la première propriété de la récurrence ci-dessus, cela se produit avec
une probabilité de

(
y(t)−1
y(t)

y(t)
x(t)

)
. Sinon, cela diminue de 1. Ainsi, nous obtenons :

E[y(t+ 1)− y(t)] = −1− y(t)− 1
x(t) .

Comme x(t+ 1)− x(t) = −1, nous pouvons réécrire :

E[y(t+ 1)− y(t)]
E[x(t+ 1)− x(t)] = 1 + y(t)− 1

x(t) .

Ainsi, par le théorème de Kuts, avec une probabilité tendant vers 1 lorsque n→ +∞, y(t) =
g(t) + o(n) avec g(t) la solution de l’équation différentielle suivante :

dg

dx
= 1 + g(t)− 1

x(t)

avec la condition initiale g(1) = n. Nous obtenons g(t) = 1 + x(t)
(
n−1
n − ln

(
x(t)
n

))
en résolvant l’EDO. Ainsi, g(t) = 1 pour x(t) = n

e + o(n). Cela implique que la taille de
l’appariement construit par greedy sur Tn est

(
1− 1

e

)
n+ o(n).

Ordre Aléatoire Dans ce cas, le graphe peut toujours être n’importe quel graphe, mais les
sommets arrivent dans un ordre aléatoire. Sans surprise, le C.R. de ranking et de greedy
est plus élevé dans ce contexte que dans le cadre adversarial.

Tout d’abord, greedy a un C.R. de 1− 1
e . Nous avons déjà obtenu une borne supérieure lors

de l’étude de greedy sur les graphes triangulaires supérieurs Tn. Quant à la borne inférieure,
elle découle de la borne inférieure sur le C.R. de ranking dans le cadre adversarial. En effet,
greedy dans le cadre de l’ordre aléatoire émule ranking et son classement aléatoire avec les
rôles des deux côtés inversés.

Le C.R. exact de ranking dans ce cadre est toujours une question ouverte. Une borne
inférieure de 0.696 a été obtenue par une méthode assistée par ordinateur appelée "factor
revealing LP" Karande et al. (2011); Mahdian and Yan (2011). Une borne supérieure de 0.75
est connue pour le graphe montré dans la Line 7, Karande et al. (2011).

12

1.2. ALGORITHMES SÉQUENTIEL

Figure 1.2: Un exemple dif-
ficile pour ranking dans le
cadre de l’ordre aléatoire

Le meilleur C.R. réalisable dans ce cadre est également un
problème ouvert. La borne inférieure la plus élevée connue est
celle du C.R. de ranking. La borne supérieure la plus basse
est celle qui s’applique dans le cadre "Known i.i.d.", un modèle
plus restreint détaillé dans le paragraphe suivant.

Known i.i.d. Les paramètres adversarial et ordre aléatoire peu-
vent sembler pessimistes car, en pratique, certaines informations
sur le graphe peuvent être disponibles. Le cadre appelé "Known
i.i.d.", introduit par Feldman et al. (2009), modélise cette connais-
sance par un ensemble de K types connus de sommets entrants.
Les sommets d’un même type ont un ensemble prédéfini d’arêtes
connues de l’algorithme, par exemple, tous les sommets de type 1
sont connectés à u1, u6 et u7, tous les sommets de type 2 à u2, u3
et u7, etc. Lorsque le type i a une arête avec un sommet u ∈ U ,
nous notons cela (u, i) ∈ E . À chaque itération, un type est tiré
selon la distribution D sur [K]. Le type i est tiré avec une probabilité pi,

∑
i∈[K] pi = 1. La

valeur de chaque pi est également disponible pour l’algorithme. Nous surchargeons la notation et
notons également G ∼ D lorsque le graphe G est généré avec des types tirés selon la distribution
D.

Pour simplifier, nous supposons dans cette section que pin ∈ N pour chaque i ∈ [K], ce qui
signifie informellement que chaque type arrive un nombre entier de fois en espérance. Nous
expliquons à la fin de la section comment supprimer cette hypothèse. Sans perte de généralité,
nous pouvons même supposer que pin = 1, car nous pouvons dupliquer les types pin fois sans
modifier le processus de génération du graphe.

Les informations sur les types aident grandement à concevoir des algorithmes avec un taux
de compétitivité plus élevé. À titre d’illustration, nous présentons l’algorithme suggested-
matching (Line 5), introduit dans Feldman et al. (2009), un algorithme naïf atteignant un
C.R. de 1− 1

e .
Grâce à l’hypothèse des taux d’arrivée unitaires, nous pouvons calculer un graphe espéré

Ĝ, dans lequel V est l’ensemble de tous les types. Ensuite, nous calculons un appariement
maximum M̂ dans ce graphe espéré Ĝ. Ensuite, dès la première arrivée d’un type i, le sommet
est apparié à son appariement dans M̂ s’il en existe un. S’il arrive une deuxième fois ou plus, il
reste non apparié.

Algorithm 5: suggested-matching
1 Construire le graphe espéré Ĝ;
2 Calculer le matching maximum M̂ dans Ĝ;
3 for t = 1, .., |V| do
4 Tirer le type d’arrivée it ∼ D;
5 end
6 if it arrive pour la première fois then
7 Apparier vt avec son appariement dans M̂ s’il en existe un;
8 end
9 else

10 Le laisser non apparié
11 end

13

CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

Remarque Trouver un matching maximum dans Ĝ revient à résoudre la programmation
linéaire en nombres entiers suivante :

maximiser
∑

(u,i)∈U×[K]
xui,

sous contraintes
∑

i:(u,i)∈E
xui ≤ 1,∀u ∈ U ,

∑
u:(u,i)∈E

xui ≤ 1,∀i ∈ [K], (Matching-ILP)

xui ∈ {0, 1},∀(u, i) ∈ E .

Pour les graphes bipartis, les contraintes d’intégralité peuvent être transformées en contraintes
de positivité sans modifier la valeur du programme linéaire, Lovász and Plummer (2009a). Cela
implique que |M̂| est la valeur du programme linéaire suivant :

maximiser
∑

(u,i)∈U×[K]
xui,

sous contraintes
∑

i:(u,i)∈E
xui ≤ 1, ∀u ∈ U ,

∑
u:(u,i)∈E

xui ≤ 1, ∀i ∈ [K], (Matching-LP)

xui ≥ 0, ∀(u, i) ∈ E .

Theorem 1.2.8. Dans le cadre des arrivées connues i.i.d. avec des taux d’arrivée entiers :

C.R.(suggested-matching) ≥ 1− 1
e
.

Proof. Considérons un type i qui est apparié dans M̂. Aucun sommet de type i n’est apparié
par suggested-matching sauf si ce type n’arrive jamais. Cela se produit avec une probabilité(
1− 1

n

)n
. Ainsi, nous avons :

EG∼D[suggested-matching(G)] =
∑

i apparié dans M̂

E[1{iarrive au moins une fois}]

=|M̂|
(

1− 1
n

)n
≥|M̂|

(
1− 1

e

)
.

Il reste à prouver que |M̂| ≥ EG∼D[opt(G)]. Cela découle de la caractérisation des
matchings maximums sur les graphes bipartis en tant que solutions d’une programmation
linéaire en nombres entiers (ILP). Considérons une réalisation donnée G ∼ D, et notons rGi le
nombre de fois où le type i est présent dans cette réalisation. En effet, trouver un matching

14

1.2. ALGORITHMES SÉQUENTIEL

maximum dans le graphe G revient à trouver une solution du programme ILP suivant :

maximiser
∑

(u,i)∈U×[K]
xui,

sous contraintes
∑

i:(u,i)∈E
xui ≤ 1,∀u ∈ U ,

∑
u:(u,i)∈E

xui ≤ rGi ,∀i ∈ [K],

xui ∈ N,∀(u, i) ∈ E .

Désignons par (xGui)(u,i)∈U×[K] la solution du programme ci-dessus et x̄ui = EG∼D
[
xGui

]
.

Nous avons :
EG∼D[opt(G)] =

∑
(u,i)∈U×[K]

x̄ui.

Étant donné que E[ri] = 1, (x̄ui)(u,i)∈U×[K] satisfait les contraintes du PL
Matching-LP, ce qui implique que EG∼D[opt(G)] est dominé par sa valeur |M̂|. Ainsi,

EG∼D[opt(G)] ≤ |M̂|.

L’algorithme Line 5 est sous-optimal car tout type qui arrive pour la deuxième fois ou plus
est laissé sans appariement. Un long travail a été consacré à l’amélioration de cet algorithme avec
plusieurs choix pour chaque type. Dans une première séquence, des algorithmes avec deux choix
ont été proposés, augmentant le CR des algorithmes à 0.706 (sans l’hypothèse des taux d’arrivée
entiers), Feldman et al. (2009),Manshadi et al. (2012),Jaillet and Lu (2014). La construction de
ces deux choix reposait sur la solution d’un LP soigneusement conçu. Récemment seulement,
un algorithme avec plus de deux choix a été proposé. Il repose également sur la solution d’un
LP, avec des techniques supplémentaires de résolution des conflits en ligne (Online Contention
Resolution Scheme, OCRS), Huang et al. (2022). Nous rapportons ici le CR le plus élevé connu
à ce jour pour ce cadre.

Theorem 1.2.9 (Huang et al. (2022)). Dans le cadre des arrivées connues i.i.d., il existe un
algorithme avec un CR de 0.711.

Le meilleur CR réalisable dans ce cadre est encore un problème ouvert, mais la borne
supérieure suivante sur le CR de tout algorithme est connue.

Proposition 1.2.10 (Manshadi et al. (2012)). Il existe une instance du problème de matching
stochastique en ligne pour laquelle aucun algorithme ne peut atteindre un rapport de compétitivité
meilleur que 0.823.

1.2.4 Algorithmes "learning-augmented"

Une récente ligne de recherche a proposé d’améliorer les algorithmes en ligne grâce à des
prédictions d’entrée Mitzenmacher and Vassilvitskii (2020). Comme cela a été fait dans l’article
introduisant le concept, illustrons ce principe sur le problème de location de skis, où une
personne passe un nombre inconnu de jours D en vacances et doit décider chaque jour s’il loue
des skis pour un prix p ou les achète pour B. Nous avons vu dans l’introduction de la section
comment obtenir un CR de 2 lorsque D est inconnu. Imaginons maintenant que nous ayons
accès à une prédiction D̂ et définissons η = |D − D̂|, la différence entre le nombre réel et prédit
de jours de ski. L’application de l’algorithme hors ligne optimal avec D̂ comme le nombre
réel de jours de ski, c’est-à-dire l’achat de skis si bD̂ > D, peut conduire à des performances

15

CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

arbitrairement médiocres. En effet, dans le cas où D = 1 et D̂ = 2B, le coût de l’algorithme en
ligne est de B, tandis que le coût de l’algorithme hors ligne optimal est de b.

Maintenant, soit λ ∈ [0, 1] un paramètre représentant la méfiance dans la prédiction (une
valeur élevée pour λ correspond à une faible confiance dans la prédiction). Si D̂ > B, le skieur
achète le jour ⌈λB/b⌉, et sinon, il achète le jour ⌈B/bλ⌉.

Remarquons d’abord que si λ = 1, c’est-à-dire si la prédiction n’est pas du tout fiable, nous
retrouvons l’algorithme pire des cas original. Une analyse cas par cas permet d’obtenir que le
rapport de compétitivité de cet algorithme est borné par :

1 + min
(

1
λ
, λ+ η

(1− λ)OPT

)
.

Lorsque l’erreur de prédiction tend vers 0, le ratio de compétitivité n’est pas supérieur à
1 + λ < 2. Même lorsque l’erreur est grande, le ratio n’est jamais pire que 1 + 1/λ.

Plus généralement, les algorithmes améliorés par l’apprentissage visent à être :

1. Consistants : leurs performances devraient être proches de celles de l’algorithme hors
ligne optimal lorsque la prédiction est bonne.

2. Robustes : même lorsque la prédiction est mauvaise, le rapport de compétitivité doit
rester borné.

1.3 Plan et Contributions

1. Apprentissage séquentiel

• Matchings successifs, Chapter 3 : Dans les jeux en ligne ou les plateformes de
travail en ligne, certaines activités, telles que le travail d’équipe ou le jeu à 2 contre 2,
impliquent d’apparier successivement des utilisateurs. Certaines applications de jeux
en ligne apparient les joueurs entre eux (par exemple, Go, des quiz compétitifs et des
dessins), mais les joueurs ne participent que s’ils le souhaitent tous les deux. Dans un
modèle simple, le joueur i décide de participer avec une probabilité ui, et les joueurs
appariés i et j participent à un jeu avec une probabilité uiuj . Le nombre attendu de
jeux joués à partir d’un appariement proposé m est alors ∑(i,j)∈m uiuj . Les revenus
de telles applications proviennent généralement des publicités affichées pendant les
jeux, donc plus il y a de jeux joués, mieux c’est. Dans ce cadre, nous avons affiné
certaines techniques de bandits existantes pour tirer parti de la structure spécifique
du modèle, et nous avons proposé un nouvel algorithme résolvant le problème des
matchings successifs.

• Systèmes de files d’attente, Chapter 4 : Les systèmes de files d’attente séquentiels
sont composés de files d’attente qui reçoivent des paquets à des débits différents.
Ils envoient périodiquement des paquets aux serveurs, chacun d’eux traitant au
plus un paquet à la fois. Les paquets non traités sont renvoyés aux files d’attente.
Dans ce modèle, chaque file d’attente est un agent en concurrence pour le service
des serveurs. Un aspect important est l’effet de report des paquets d’une ronde à
l’autre. Il est traditionnel dans la littérature sur les jeux répétés de supposer que
les rondes successives du jeu sont indépendantes. Cette hypothèse n’est pas réaliste
dans de nombreuses applications pratiques, par exemple dans le cas du routage des
paquets dans les réseaux informatiques. Les systèmes de files d’attente séquentiels
ont été introduits dans Gaitonde and Tardos (2020a), en tant que cadre où cette

16

1.4. LISTE DES PUBLICATIONS

hypothèse est levée, dans le but de combler le fossé entre la théorie des jeux répétés et
certaines applications. Dans notre projet, inspiré par les techniques des bandits, nous
avons conçu un algorithme d’apprentissage décentralisé atteignant des performances
similaires à celles de l’algorithme centralisé.

2. Algorithmes séquentiels

• Contraintes sur le modèle de matching séquentiel, Chapter 5 : Plutôt que
d’évaluer un algorithme dans le pire des cas, notre approche donne une loi générale
pour le score d’un algorithme de matching en ligne dans des classes spécifiques de
graphes aléatoires. Nous avons étudié l’algorithme glouton - le plus simple des
algorithmes de matching séquentiel - dans une classe appelée modèle de configuration.
Ce travail nous a permis d’illustrer théoriquement que l’algorithme glouton fonctionne
beaucoup mieux que sa performance adversariale sur une grande classe de graphes.
Nous avons également mis en évidence comment les caractéristiques des graphes
influencent les performances de l’algorithme.
Ce choix du modèle de configuration a été motivé par l’observation suivante :
supposons que les campagnes peuvent être soit "intensives" (avec de nombreux
utilisateurs éligibles), soit "sélectives/légères" (peu d’utilisateurs éligibles), avec une
proportion empirique de, disons, 20%/80%. Que l’annonceur gère 100 campagnes en
même temps ou 10 000, il aura toujours à peu près cette proportion de campagnes
intensives par rapport aux campagnes légères. De même, certains utilisateurs sont
plus précieux que d’autres et sont donc éligibles à plus de campagnes que d’autres ;
la proportion de chaque type étant indépendante de la taille totale de la population.

• Introduction de features, Chapter 6 : Un aspect clé manquant dans le modèle
précédent est l’asymétrie dans l’association des utilisateurs aux campagnes. Dans la
plupart des applications, les utilisateurs et les campagnes ont des caractéristiques
inhérentes, et les premiers sont éligibles aux seconds s’ils sont "suffisamment similaires".
Dans un travail ultérieur toujours en cours, nous modélisons ces interactions sous
la forme d’un graphe aléatoire biparti géométrique : les caractéristiques des 2N
sommets (N utilisateurs et N campagnes) sont tirées indépendamment dans un
espace métrique et une arête est présente entre un nœud de campagne et un nœud
d’utilisateur si la distance entre leurs caractéristiques est inférieure à c/N , où c > 0
est le paramètre du modèle.

• Allocation avec apprentissage, Chapter 7 : Une approche populaire pour aller
au-delà de l’analyse dans le pire des cas des algorithmes en ligne consiste à supposer
l’existence de prédictions qui peuvent être exploitées pour améliorer les performances.
Ces prédictions sont généralement fournies par des sources externes qui ne peuvent
pas être entièrement fiables. Au lieu de cela, nous soutenons que des prédictions
fiables peuvent être construites par des algorithmes pendant leur exécution. Nous
étudions cette idée dans le contexte de scheduling statique avec des tailles de tâches
exponentielles. En nous appuyant sur des idées issues de la littérature sur les bandits,
nous avons conçu un algorithme d’apprentissage efficace dont les performances
asymptotiques (en fonction du nombre de tâches) correspondent à celles du meilleur
algorithme ayant accès à une prédiction des tailles des tâches.

1.4 Liste des Publications
Les chapitres de cette thèse sont basés soit sur des publications dans des conférences de machine
learning, soit sur des travaux actuellement soumis, comme indiqué ci-dessous.

17

CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

• Chapter 3: "Pure exploration and regret minimization in matching bandits", avec Jialin
Yi, Clément Calauzenes, Vianney Perchet et Milan Vojnovic. ICML (2021).

• Chapter 4: "Decentralized learning in online queuing systems", avec Etienne Boursier et
Vianney Perchet, NeurIPS (2021).

• Chapter 5: "Online matching in sparse random graphs: Non-asymptotic performances of
greedy algorithm", avec Nathan Noiry et Vianney Perchet. NeurIPS (2021).

• Chapter 6: "Online Matching in Geometric Random Graphs", avec Vianney Perchet,
Nathan Noiry, Laurent Ménard et Matthieu Lerasle. Working paper.

• Chapter 7: "On Preemption and Learning in Stochastic Scheduling", avec Nadav Merlis,
Hugo Richard, Mathieu Molina, Corentin Odic et Vianney Perchet. ICML (2023).

L’auteur a également participé aux travaux publiés suivants, qui ne sont pas discutés dans
cette thèse.

• "Robust estimation of discrete distributions under local differential privacy", avec Julien
Chhor. ALT (2023).

18

Chapter 2

Introduction to Online Learning and
Algorithms

Contents
2.1 Online Learning . 20

2.1.1 Stochastic Multi-Armed Bandits and Regret 20
2.1.2 Lower Bound . 20
2.1.3 Classical Bandit Algorithms . 21

2.2 Online Algorithms . 22
2.2.1 Competitive Ratio . 22
2.2.2 Online Matching in Bipartite Graphs 23
2.2.3 Classical Online Matching Settings and Algorithms 24
2.2.4 Learning Augmented Algorithms . 30

2.3 Outline and Contributions . 30
2.4 List of Publications . 32

In online scenarios, an option out of several is irrevocably picked at every iteration and the
overall performance of the algorithm is measured at the end of the run. This models many
real-life problems and is particularly relevant for digital applications.

The Multi-Armed Bandit framework is the focus of Section 2.1. It was introduced in the
context of clinical trials Robbins (1952); Thompson (1933), and has received renewed attention
recently due to its application to online recommendation systems. The Online Matching model,
detailed in Section 2.2.2, is particularly relevant for digital advertising.

19

CHAPTER 2. INTRODUCTION TO ONLINE LEARNING AND ALGORITHMS

2.1 Online Learning

In this section, we introduce stochastic multi-armed bandits as well as the main results in that
model. The section ends with a quick introduction to selected bandit algorithms. This will
provide a ground for some of the work presented in this thesis. For a more thorough introduction
to Multi-Armed Bandits, we refer the reader to the survey Lattimore and Szepesvári (2020).

2.1.1 Stochastic Multi-Armed Bandits and Regret

At the beginning of the run, an agent has K available options, called "arms". Each i ∈ K of
those options has an associated mean reward µi ∈ [0, 1]. At every iteration t up to the horizon
T , he picks an option a(t) ∈ [K]. We say the agent "pulls arm a(t)". He then receives and
observes the noisy reward r(t) = µa(t) + εt, where (εt)t∈[T] is an i.i.d. sequence drawn from a
mean-zero 1-sub-gaussian distribution.

When the values of the means of the different arms, (µi)i∈[K], are known, the optimal
strategy is to pick the arm with the highest mean µ∗ at every iteration. However, those means
are unknown to the agent at the beginning of the run. The goal of the agent is then to design
a strategy minimizing the difference between the expected reward received by following that
strategy at the expected reward for the optimal strategy. This quantity is called the regret and
is formally defined for a strategy π as follows:

Rπ(T) := E

∑
t∈T

µ∗ − µa(t)

 .
The expectation is taken with respect to the agent’s strategy.

On the one hand, at a given iteration, the agent may exploit his current knowledge to
maximize the instantaneous reward in a greedy manner. On the other hand, at every iteration,
the agent observes only a noisy version of the mean of the pulled arm. Thus, learning the
arms mean requires pulling them, which entails that reasonable strategies incorporate a level of
exploration.

In this exposition, we will focus on instance-dependent bounds. Those are upper and lower
bounds on the performance of algorithms for fixed parameter values. We refer the reader
interested in minimax bounds to the survey Lattimore and Szepesvári (2020).

2.1.2 Lower Bound

In this section, we expose a lower bound on the instance dependent regret achievable by
"reasonable" algorithms, which are defined in the literature as the following class of asymptotically
consistent algorithms.

Definition 2.1.1 (Asymptotically consistent algorithm). An algorithm π is asymptotically
consistent if for every bandit instance, any α > 0, Rπ(T) = o(Tα).

Note that for any asymptotically consistent algorithm, the accumulated reward is asymptot-
ically in T of the same order as that of the optimal strategy which pulls the best arm at every
iteration.

The following lower bound is derived through information-theoretic arguments that we will
not detail here.

Theorem 2.1.2 (Lai and Robbins (1985)). Consider a bandit instance where the noise εt ∼
N (0, 1). Then any asymptotically consistent algorithm has the following lower bound on its

20

2.1. ONLINE LEARNING

asymptotic regret:
lim inf
T→+∞

R(T)
log(T) ≥

∑
µk<µ∗

2
µ∗ − µk

.

Although this lower bound is asymptotic, it indicates that the upper bound on the regret of
any reasonable algorithm cannot be smaller than O

(∑
µk<µ∗

log(T)
µ∗−µk

)
.

2.1.3 Classical Bandit Algorithms

A wide array of algorithms have been proposed to deal with the stochastic MAB setting. Here,
we will focus on two strategies only, a first one in which exploration is done all at once at the
beginning, and a second one in which exploration and exploitation are weaved in together. We
provide brief pseudo-codes and upper bounds on the regret without proof. Some algorithms in
this thesis build upon the ideas of the two strategies presented here.

In both algorithms presentations, we denote

• Nk(t) the number of pulls of arm k up to time t,

• µ̂k(t) = 1
Nk(t)

∑t−1
s=1 r(t)1

{
a(t) = k

}
, the empirical mean for arm k at iteration t,

• Lk(t) = µ̂k(t)−
√

2 log(T)
Nk(t) , Uk(t) = µ̂k(t) +

√
2 log(T)
Nk(t) , lower and upper bounds at iteration

t on the true mean of arm k w.h.p..

Explore-Then-Commit Algorithm The simplest Explore-Then-Commit strategy con-
sists in exploring uniformly all the arms, then committing to the arm with the highest empirical
mean. The algorithm presented in Algorithm 6 is a slightly refined version of that principle,
also called Successive-Elimination. The algorithm maintains a set of active arm A, that are
candidates to be the arm with the highest mean. Arms from this set are sampled uniformly.
When an arm is deemed sub-optimal w.h.p., it is definitively eliminated from this set and thus
never pulled again.

Algorithm 6: Explore-Then-Commit
input : set of arms [K] and horizon T

1 A = [K];
2 while |A| > 1 do
3 Pull once every arm in A;
4 ∀k ∈ [K] s.t. Uk(t) ≤ maxi∈A Li(t), remove k from A;
5 end
6 Pull remaining arm in A until the end;

Theorem 2.1.3 (Perchet and Rigollet (2013)). The regret of Algorithm 6 with known horizon
T is upper bounded as:

R(T) = O

 ∑
µk<µ∗

log(T)
µ∗ − µk

 .
As shown in Section 2.1.2, the bound on the regret obtained for this simple algorithm

is only a constant larger than the asymptotic lower bound on the instance-dependent regret.
However, it is known that the regret of any Explore-Then-Commit strategy is a multiplicative
constant sub-optimal, Garivier and Kaufmann (2016). Still, the simplicity of the algorithm is
advantageous and can prove useful in more complex settings.

21

CHAPTER 2. INTRODUCTION TO ONLINE LEARNING AND ALGORITHMS

Upper-Confidence-Bound Algorithm The Upper-Confidence-Bound (UCB) Algorithm,
Auer et al. (2002a), in an example of fully adaptive bandit algorithm. At every iteration, the
index of each arm Uk(t) is an upper bound on the true mean of the arm w.h.p., and the arm
with the highest index is pulled.

Algorithm 7: Upper-Confidence-Bound
input : set of arms [K] and horizon T

1 for t = 1, . . . , T do
2 Pull arg maxk∈[K] Uk(t);
3 end

Theorem 2.1.4 (Auer et al. (2002a)). The regret of Algorithm 7 with known horizon T is
upper bounded as:

R(T) ≤
∑

µk<µ∗

16 log(T)
µ∗ − µk

+ 3(µ∗ − µk).

Again, the UCB algorithm asymptotically reaches the lower bound Section 2.1.2 up to a
multiplicative constant. Even better, for some distributions, the UCB algorithm with a slightly
modified version of the upper bounds is asymptotically optimal, Cappé et al. (2013).

Thus, Algorithm 7 performs stricly better than Algorithm 6, but it is sometimes harder to
generalize in more complex settings.

2.2 Online Algorithms
By definition, an online algorithm is any algorithm that sequentially processes its input without
having access to the whole sequence at the beginning of the run.

A classical example is the ski rental problem. A person arrives on holiday and can decide
every day to rent skis for one day for a price p or buy them for a price B. If the person knows
they are going to spend D days on holiday, the optimal decision is obvious: buy skis on the first
day if B < pD, rent them every day otherwise. When D is unknown, the situation is trickier,
but there is still a way to ensure one does not pay more than twice the optimal price: rent skis
for the first ⌊Bp ⌋ days, buy them on the following one.

Generally, as in the previous example, online algorithms are evaluated in comparison with
the optimal algorithms aware of the full input sequence.

The next section is dedicated to the definition of the Competitive ratio (C.R.), a classical
measure of performance for online algorithms. Then, we give more detail on the Online Matching
setting, which is one of the main focus points of this thesis.

In this section and the remainder of the thesis, an online algorithm is an algorithm for which
the sequence is revealed sequentially (the one that does not have access to D in the ski rental
example), and an offline algorithm is an algorithm that has access to the full input sequence
(the one that knows D in the same example).

2.2.1 Competitive Ratio

We could consider both cost minimizing algorithms or reward maximizing ones. As in the Online
Matching problem we deal with reward maximizing ones, this section formulates everything in

22

2.2. ONLINE ALGORITHMS

terms of reward maximizing algorithms, with positive rewards.
We denote as ALG(G) the score of an algorithm over input G and OPT the optimal offline

algorithm.

Definition 2.2.1 (Competitive Ratio (C.R.)). A reward maximizing algorithm ALG reaches
competitive ratio α over input class G if there exists a constant c s.t. for any G ∈ G

E[ALG(G)] ≥ αE[OPT(G)] + c,

where the expectations are taken with respect to the possible randomness in the algorithms and
the input G.

Remark: For a cost minimizing algorithm, the min would be replaced by a max and the
inequality would be reversed.

Note that the C.R. is bounded between 0 and 1, the higher the better. Two elements
impact its value: the algorithm and the class of input G over which the algorithm is evaluated.
If more restrictive assumptions are made on G, then it is easier to get algorithms with a high
competitive ratio.

In the ski rental example, an input G is a set of three parameters p,B,D. If those parameters
can take any positive values, which corresponds to the largest input class possible, 2 is the
smallest C.R. achievable. However, if we assume that those parameters are drawn from a
known distribution, it may be possible to get a smaller C.R..

Remark: By Theorem 2.1.1, any asymptotically consistent bandit algorithm has an
asymptotic C.R. of 1.

2.2.2 Online Matching in Bipartite Graphs

Offline Matching. We start by detailing the offline version of the matching problem before
moving on to its online counterpart. This thesis focuses on matchings in bipartite graphs.

Definition 2.2.2 (Bipartite Graph). A bipartite graph G = (U ∪ V, E) is a graph with two sets
of vertices U and V and set of edges E such that no vertices within the same set are adjacent.

Throughout this manuscript, a matching is defined as follows.

Definition 2.2.3 (Matching). A matching M on graph G is a subset of E s.t. each vertex of G
is the endpoint of at most one edge in M . If a vertex u ∈ U ∪ V is the endpoint of an edge in
M , we say that u is matched, otherwise it is free or unmatched. A matching of maximal
cardinality is a maximum matching.

The problem of finding a maximum matching in a bipartite graph can be solved using
the Hopcroft-Karp algorithm, with running time O

(
|U ∪ V|1/2|E|

)
. In the case of a weighted

matching, where each edge (u, v) ∈ E is associated with a weight wu,v, and the goal is to find a
matching maximizing the sum of the selected edges, the Hungarian algorithm can be used, with
running time O

(
|U ∪ V|3

)
.

Online Matching. The online version of the problem can be stated as follows:

1. at the beginning of the run, all vertices of the "offline" side U are available,

2. at every iteration, a vertex v ∈ V is revealed, along with its edges,

23

CHAPTER 2. INTRODUCTION TO ONLINE LEARNING AND ALGORITHMS

3. v can be matched to one of its free neighbors, and the chosen match (if there is one) is
irrevocable.

This theoretical setting is particularly well suited for online advertising: U is the set of
campaigns/ads that an advertiser can run and users v1, v2, . . . , vT arrive sequentially (Manshadi
et al., 2012; Mehta, 2012). Some of them are eligible for a large subset of campaigns, while
others are not (usually based on their attributes/features, such as geographic localization,
browsing history, or any other relevant information). The objective of an advertiser (in this
over-simplified model) is to maximize the number of displayed ads. In practice, campaigns/ads
are not displayed only once but have a maximal budget of impressions (say, a specific ad can be
displayed only 10.000 times each day). A possible trick consists of duplicating the vertices of U
as many times as the budget.

The online matching version is obviously harder than the offline one, notably one can not
obtain a maximum matching in most cases. We detail in the next section, depending on the
assumptions on the class of graphs considered, the values of the attainable C.R. for online
matching algorithms.

2.2.3 Classical Online Matching Settings and Algorithms

In this section, we will detail the classical hypothesis made on the considered class of graphs G,
as well as the algorithms proposed in the literature in each context.

Adversarial setting In the adversarial setting, no restriction is put on the class of input G.
The graph may be any graph and the vertices arrive in any order. Hence the name adversarial,
as looking back at Theorem 2.2.1, we see that in that setting, the C.R. of an algorithm is
evaluated on the graph on which it has the poorest performance.

Perhaps surprisingly, even in that hard setting, a guarantee of 1/2 on the C.R. is easily
obtained with

Algorithm 8: greedy Algorithm
1 for t = 1, . . . , |V| do
2 Match vt to a free neighbor chosen uniformly at random;
3 end

For consistency with the rest of the thesis, we define greedy as the algorithm which picks
the match of the incoming vertex uniformly at random, but the following result holds for all
algorithms picking any match as soon as one is available.
Theorem 2.2.4. In the adversarial setting,

C.R.(greedy) ≥ 1
2 .

Proof. Consider the event that greedy fails to match a vertex vt which is matched in the
maximum matching of the final graph. This can only happen if the match of vt in the optimal
matching was previously matched to another vertex. Thus, for any "miss" event (greedy fails
to match a vertex that is matched in the maximum matching), there is at list one "match" event
(greedy matches a vertex). This implies that there are at most twice the number of matched
vertices in the maximum matching as in the matching constructed by greedy, hence the lower
bound of 1/2 on the C.R..

24

2.2. ONLINE ALGORITHMS

Figure 2.1: A difficult in-
stance for greedy

This lower bound is tight.

Proposition 2.2.5. In the adversarial setting,

C.R.(greedy) = 1
2 .

Proof. Consider the following family of graphs (Gn)n∈N, illus-
trated in Line 3. There 2n vertices on either side of Gn, which are
split in half, U = U1∪U2 and V = V1∪V2, with U1 = {u1, . . . , un},
U2 = {un+1, . . . , u2n}, similarly for V. We have the following set
of edges:

E = {(ui, vi), ∀i ∈ [2n], (un+i, vj)∀(i, j) ∈ [n]2}.

In each Gn, there exists a matching of cardinality 2n, M =
{(ui, vi), ∀i ∈ [2n]}. Let us analyse the run of greedy. First we
observe that any vertex ui ∈ V1 will pick its match in V2 with
probability greater than n−i+1

n−i+2 , as it has only one neighbor in
U1, and at iteration i, at most i− 1 vertices have already been
matched in U2. This implies that in expectation, n−o(n) vertices

of V1 are matched with vertex uj ∈ U2. For all of those uj ∈ U2, there match in the maximum
matching remains unmatched, and we thus have:

lim
n→+∞

E[greedy(Gn)]
2n = 1

2 .

To get beyond this C.R. of 1/2, a different algorithm is needed. The ranking algorithm
Karp et al. (1990), uses what is informally referred to as "correlated randomness" and has a
higher C.R. in the adversarial setting.

It proceeds as follows: at the beginning of the run, a random permutation π is drawn, and
vertex ui ∈ U is assigned rank π(i). When a vertex vt ∈ V arrives, it is matched to its lowest
ranked free neighbor. We say there is "correlated randomness", since the choice of neighbor for
vt, albeit still random, is correlated from iteration to iteration.

Algorithm 9: ranking Algorithm
1 Draw a random permutation π;
2 for i = 1, .., |U| do
3 Assign to ui rank π(i);
4 end
5 for t = 1, .., |V| do
6 Match vt to its lowest ranked free neighbor;
7 end

We can get some intuition on why ranking has a higher C.R. than greedy by looking
back at the difficult instance for greedy. In that instance, each vertex of U2 has a high degree,
and every time one of its neighbors arrives, it has an opportunity to be picked, which means
they tend to get matched early on in the process, and more generally greedy seems biased
towards matching high degree vertices early. Intuition would dictate the opposite: high degrees
vertices should be matched as late as possible as a fallback option for vertices with no other
option. With correlated randomness, ranking partly corrects this bias: at the beginning of the

25

CHAPTER 2. INTRODUCTION TO ONLINE LEARNING AND ALGORITHMS

run, the lowest ranked free neighbor of the incoming vertex ui ∈ U1 is still in U2. However, as
the low ranked vertices of U2 get matched, the probability that the lowest rank free neighbor
of the incoming vertex ui ∈ U1 is its match in the maximum matching increases. Thus, in
expectation ranking matches more vertices than greedy on that instance.

Theorem 2.2.6. In the adversarial setting,

C.R.(ranking) ≥ 1− 1
e
≈ 0.63.

There exist multiple proofs of this result. For a direct proof based on the mapping of "miss"
events to "match" events, see Birnbaum and Mathieu (2008). For a proof based on Primal-Dual
Analysis see Devanur et al. (2013).

Figure 2.2: A difficult in-
stance for ranking

In the article that introduced the ranking algorithm, Karp
et al. (1990), the author proved that the lower bound on the
C.R. is tight with the example of the upper triangular graphs
(Tn)n∈N,illustrated in Line 7, that has n vertices on both sides
and set of edges:

E = {(ui, v, j), (i, j) ∈ [n]2 s.t.j ≤ i}.

There is a matching of size n in these graphs, and the authors
prove that ranking matches O

(
(1− 1

e)n
)

vertices on those
instances. Through those same instances, they also proved the
following stronger result.

Proposition 2.2.7. For any algorithm ALG, in the adversarial
setting:

C.R.(ALG) ≤ 1− 1
e
.

Proof. Consider any (random or not) algorithm ALG. Let πn be any permutation over [n],
πn ∈ Sn , and Πn the uniform distribution over Sn. We note (Tn, πn) the graph where the rows
are permuted by π and the columns arrive in order 1, . . . , n. Note D the class of all deterministic
algorithms. By Yao’s Lemma:

min
πn∈Sn

E
[
ALG

(
(Tn, πn)

)]
≤ max

A∈D
Eπn∼Πn

[
A
(
(Tn, πn)

)]
.

The second step of the proof is to relate the Eπn∼Πn

[
A
(
(Tn, πn)

)
)
]

for any deterministic
algorithm with the performance of greedy (called random in Karp et al. (1990)) on Tn:

Eπn∼Πn

[
A
(
(Tn, πn)

)]
= E

[
greedy (Tn)

]
.

This equality is obtained by induction on the two following properties:

1. For algorithm A on (Tn, πn), with πn ∼ Πn, as well as for greedy on Tn, if there are k
eligible rows at time t, then they are equally likely to be any set of k rows from among
the first n− t+ 1 rows of Tn.

2. For each k, the probability that there are k eligible rows at time k is the same for greedy
run on Tn as it is for A run on (Tn, πn).

It remains to compute E
[
greedy (Tn)

]
. Define x(t) = n − t + 1 the number of columns

remaining at iteration t and y(t) the number of free neighbors of vt upon its arrival at iteration

26

2.2. ONLINE ALGORITHMS

t. As long as y(t) > 1, it decreases by 2 if ut is free at iteration t and does not get picked. With
the first property in the above recursion, this happens with probability

(
y(t)−1
y(t)

y(t)
x(t)

)
. Otherwise,

it decreases by 1. Thus, we obtain:

E[y(t+ 1)− y(t)] = −1− y(t)− 1
x(t) .

As x(t+ 1)− x(t) = −1, we can rewrite:

E[y(t+ 1)− y(t)]
E[x(t+ 1)− x(t)] = 1 + y(t)− 1

x(t) .

Thus, by Kuts theorem, with probability tending to 1 as n→ +∞, y(t) = g(t) + o(n) with
g(t) the solution of the following differential equation:

dg

dx
= 1 + g(t)− 1

x(t)

with initial condition g(1) = n. Solving the ODE, we get g(t) = 1 + x(t)
(
n−1
n − ln

(
x(t)
n

))
.

Thus, g(t) = 1 for x(t) = n
e + o(n). This implies that the size of the matching constructed by

greedy on Tn is
(
1− 1

e

)
n+ o(n).

Random Order In this setting, the graph can still be any graph, but the vertices arrive
in random order. Unsurprisingly, the C.R. of both ranking and greedy are higher in that
setting than in the adversarial one.

Figure 2.3: A difficult in-
stance for ranking in the
Random Order Setting

First, greedy has a C.R. of 1 − 1
e . We already obtained

in upper bound when studying greedy on the upper triangular
graphs Tn. As for the lower bound, it is a consequence of the
lower bound on the C.R. of ranking in the adversarial setting.
Indeed, greedy in the random order setting emulates ranking
and its random ranking with the roles of the two sides switched.

The exact C.R. of ranking in that setting is still an open
question. A lower bound of 0.696 was obtained through a com-
puter assisted method called "factor revealing LP", Karande et al.
(2011); Mahdian and Yan (2011). An upper bound of 0.75 is
known for the graph shown in Line 7, Karande et al. (2011).

Th best C.R. achievable in that setting is also an open
problem. The highest known lower bound is the one on the C.R.
of ranking. The lowest upper bound is one that holds in the
Known i.i.d. setting, a more restricted model detailed in the next
paragraph.

Known i.i.d. The adversarial and random order settings may seem pessimistic as in practice,
some information about the graph can be available. The so-called Known i.i.d. setting,
introduced by Feldman et al. (2009), models that knowledge by a set of K known types of
incoming vertices. Vertices of one type have a predefined set of edges known to the algorithm,
for instance, all vertices of type 1 are connected to u1, u6 and u7, all vertices of type 2 to u2, u3
and u7, etc... When type i has an edge with a vertex u ∈ U , we note this (u, i) ∈ E . At every

27

CHAPTER 2. INTRODUCTION TO ONLINE LEARNING AND ALGORITHMS

iteration, a type is drawn from distribution D on [K]. Type i is drawn with probability pi,∑
i∈[K] pi = 1. The value of each pi is also available to the algorithm. We overload the notation

and also note G ∼ D when the graph G is generated with types drawn from distribution D.

For simplicity, we assume in that section pin ∈ N for each i ∈ [K], which informally means
that each type arrives an integral number of times in expectation. We detail at the end of
the section how to remove this hypothesis. W.l.o.g., we can even assume pin = 1, as we can
duplicate types pin times without modifying the graph generating process.

The information of the types greatly helps in designing algorithms with a higher competitive
ratio. As a mean of illustration, we expose the suggested-matching algorithm (Line 10),
introduced in Feldman et al. (2009), a naive algorithm reaching a C.R. of 1− 1

e .

Thanks to the unitary arrival rates hypothesis, we can compute an expected graph Ĝ, in
which V is the set of all types. Next, compute a maximum matching M̂ in that expected graph
Ĝ. Then upon the first arrival of a type i, the vertex gets matched to its match in M̂ if there is
one. If it arrives a second time or more, it remains unmatched.

Algorithm 10: suggested-matching
1 Construct expected graph Ĝ;
2 Compute maximum matching M̂ in Ĝ;
3 for t = 1, .., |V| do
4 Draw incoming type it ∼ D;
5 end
6 if it arrives for the first time then
7 Match vt to its match in M̂ if there is one;
8 end
9 else

10 Leave it unmatched
11 end

Remark Finding a maximum matching in Ĝ is equivalent to solving the following ILP:

maximize
∑

(u,i)∈U×[K]
xui,

s.t.
∑

i:(u,i)∈E
xui ≤ 1, ∀u ∈ U ,

∑
u:(u,i)∈E

xui ≤ 1, ∀i ∈ [K], (Matching-ILP)

xui ∈ {0, 1}, ∀(u, i) ∈ E .

For bipartite graphs, the integrality constraints may be turned into positivity constraints
without modifying the value of the LP, Lovász and Plummer (2009a). This implies that |M̂| is

28

2.2. ONLINE ALGORITHMS

the value of the following LP:

maximize
∑

(u,i)∈U×[K]
xui,

s.t.
∑

i:(u,i)∈E
xui ≤ 1,∀u ∈ U ,

∑
u:(u,i)∈E

xui ≤ 1,∀i ∈ [K], (Matching-LP)

xui ≥ 0,∀(u, i) ∈ E .

Theorem 2.2.8. In the Known i.i.d. setting with integral arrival rates:

C.R.(suggested-matching) ≥ 1− 1
e
.

Proof. Consider a type i that is matched in M̂. No vertex of type i is matched by suggested-
matching only if this type never arrives. This happens with probability

(
1− 1

n

)n
. Thus we

have:

EG∼D[suggested-matching(G)] =
∑

i matched in M̂

E[1{iarrives at least once}]

=|M̂|
(

1− 1
n

)n
≥|M̂|

(
1− 1

e

)
.

It remains to prove that |M̂| ≥ EG∼D[opt(G)]. This stems from the characterisation of
maximum matchings on bipartite graphs as solutions of an ILP. Consider a given realisation
G ∼ D, and note rGi the number of times type i is present in that realisation. Indeed, finding a
maximum matching in the graph G is equivalent to finding a solution of the following ILP:

maximize
∑

(u,i)∈U×[K]
xui,

s.t.
∑

i:(u,i)∈E
xui ≤ 1, ∀u ∈ U ,

∑
u:(u,i)∈E

xui ≤ rGi , ∀i ∈ [K],

xui ∈ N, ∀(u, i) ∈ E .

Denote as (xGui)(u,i)∈U×[K] the solution of the above program and x̄ui = EG∼D
[
xGui

]
. We

have:
EG∼D[opt(G)] =

∑
(u,i)∈U×[K]

x̄ui.

Since E[ri] = 1, (x̄ui)(u,i)∈U×[K] satisfies the constraints of the LP Matching-LP, whihch implies
that EG∼D[opt(G)] is dominated by its value |M̂|. Thus EG∼D[opt(G)] ≤ |M̂|.

Line 10 is sub-optimal as any type arriving for the second time or more is left unmatched.
A long line of work has been dedicated to improving this algorithm with multiple choices
for each type. In a first sequence, algorithms with two choices where proposed, raising the

29

CHAPTER 2. INTRODUCTION TO ONLINE LEARNING AND ALGORITHMS

CR of algorithms to 0.706 (without the integral arrival rates hypothesis), Feldman et al.
(2009),Manshadi et al. (2012),Jaillet and Lu (2014). The construction of those two choices relied
on the solution of a carefully designed LP. Only recently, an algorithm with more than two
choices was proposed. It also relies on the solution of a LP, with additional Online Contention
resolution Scheme (OCS) techniques, Huang et al. (2022). We report here the highest CR
known for that setting to date.

Theorem 2.2.9. In the Known i.i.d. setting, there exists an algorithm with a CR of 0.711.

The best achievable CR in that setting is still an open problem, but the following upper
bound on the CR of any algorithm is known.

Proposition 2.2.10 (Manshadi et al. (2012)). There is an instance of the online stochastic
matching problem for which no algorithm can achieve a competitive ratio better than 0.823.

2.2.4 Learning Augmented Algorithms

A recent line of work has proposed to improve online algorithms through predicted input
Mitzenmacher and Vassilvitskii (2020). As was done in the article introducing the concept, let
us illustrate this principle on the ski rental problem, where a person spends an unknown number
of days D on holiday and has to decide each day whether to rent skis for a price p or buy
them for B. We saw in the introduction of the section how to achieve a CR of 2 when D was
unknown. Let us now imagine that we have access to a prediction D̂, and define η = |D − D̂|,
the difference between the true and predicted number of skied days. Applying the optimal
offline algorithm with D̂ as the true number of skied days, i.e. buying skis if bD̂ > D, can lead
to arbitrarily poor performances. Indeed, in the case D = 1 and D̂ = 2B, the cost of the online
algorithm is B, whereas the cost of the optimal offline one is b.

Now, let λ ∈ [0, 1] be a parameter representing the mistrust in the prediction (a high value
for lambda λ corresponds with a low trust in the prediction). If D̂ > B, the skier buys on day
⌈λB/b⌉, and otherwise, he buys on day ⌈B/bλ⌉.

Note first that if λ = 1, i.e. the prediction is not trusted at all and we recover the original
worse case algorithm. Through a case by case analysis one obtains that the competitive ratio of
that algorithm is bounded by:

1 + min
(

1
λ
, λ+ η

(1− λ)OPT

)
.

As the prediction error drops to 0, the competitive ratio is no larger than 1 + λ < 2. Even when
the error is large the ratio is never worse than 1 + 1/λ.

More generally, learning augmented algorithms aim to be:

1. Consistent: their performance should be close to that of the offline optimum algorithm
when the prediction is good.

2. Robust: even when the prediction is bad, the competitive ratio should remain bounded.

2.3 Outline and Contributions
1. Online Learning

• Successive Matchings, Chapter 3: In online gaming or online labor platforms, some
activities, such as teamwork or 2v2 gameplay, involve successively matching users

30

2.3. OUTLINE AND CONTRIBUTIONS

together. Some online gaming apps match players together (e.g. Go, competitive
quizzes, and drawings) but players will participate only if they both want to. In
a simple model, player i decides to participate with probability ui, and matched
players i and j participate in a game with probability uiuj . The expected number
of played games from a proposed matching m is then ∑(i,j)∈m uiuj . The revenue
of such apps typically comes from ads displayed during games, so the more games
played the better. In that setting, we refined some existing bandit techniques to
leverage the specific structure of the model, and proposed a novel algorithm solving
the successive matching problem.

• Queuing systems, Chapter 4: Online queuing systems are composed of queues
that receive packets at different rates. Repeatedly, they send packets to servers,
each of them treating only at most one packet at a time. The untreated packets
are sent back to the queues. In this model, each queue is an agent, competing for
the service of servers. An important aspect is the carryover effect of the packets
from round to round. It is traditional in the repeated game literature to assume
that the successive rounds of the game are independent. This assumption is not
realistic in many practical applications, for instance in the case of packet routing
in computer networks. Online queuing systems were introduced in Gaitonde and
Tardos (2020a), as a setting where that assumption is removed, in an effort to
bridge the gap between the theory of repeated games and some applications. In
our project, inspired by bandit techniques, we designed a decentralized learning
algorithm reaching performances similar to those of the centralized one.

2. Online Algorithm

• Constraining the online matching model, Chapter 5: Rather than evaluating
an algorithm in the worst case, our approach gives a general law for the score of
an online matching algorithm in specific classes of random graphs. We studied the
greedy algorithm - the simplest sequential matching algorithm - in a class called the
configuration model. This work allowed us to illustrate theoretically that the greedy
algorithm performs much better than its adversarial performance on a large class of
graphs. We have also highlighted how the characteristics of the graphs affect the
performance of the algorithm.
This choice of the configuration model was motivated by the following observation:
assume that campaigns can either be “intensive” (with many eligible users) or
“selective/light” (few eligible users), with an empirical proportion of, say, 20%/80%.
Then whether an advertiser handles 100 campaigns at the same time or 10.000, it
will always have roughly this proportion of intensive vs. light campaigns. Similarly,
some users are more valuable than others, and are thus eligible for more campaigns
than others; the proportion of each type being independent of the total population
size.

• Introducing features,Chapter 6: A key aspect missing in the previous model is
the asymmetry in the association of users to campaigns. In most applications, both
users and campaigns have inherent features, and the former is eligible to the latter
if they are “similar enough”. In a subsequent still ongoing work, we model these
interactions as a bipartite geometric random graph: the features of the 2N vertices
(N users and N campaigns) are drawn independently in a metric space and an edge
is present between a campaign and a user node if the distance between their features
is smaller than c/N , where c > 0 is the parameter of the model.

31

CHAPTER 2. INTRODUCTION TO ONLINE LEARNING AND ALGORITHMS

• Allocating while learning,Chapter 7: A popular approach to go beyond the
worst-case analysis of online algorithms is to assume the existence of predictions that
can be leveraged to improve performances. Those predictions are usually given by
some external sources that cannot be fully trusted. Instead, we argue that reliable
predictions can be built by algorithms, while they run. We investigate this idea in
the context of static scheduling with exponential job sizes. Leveraging ideas from
the bandit literature, we designed an efficient learning algorithm with asymptotic (in
the number of jobs) performances matching that of the best algorithm with access
to a prediction of the sizes of the jobs.

2.4 List of Publications
The chapters of this thesis are based either on publications in proceedings of machine learning
conferences or works currently submitted, as listed below.

• Chapter 3: "Pure exploration and regret minimization in matching bandits", with Jialin
Yi, Clément Calauzenes, Vianney Perchet and Milan Vojnovic. ICML (2021).

• Chapter 4: "Decentralized learning in online queuing systems", with Etienne Boursier and
Vianney Perchet, NeurIPS (2021).

• Chapter 5: "Online matching in sparse random graphs: Non-asymptotic performances of
greedy algorithm", with Nathan Noiry and Vianney Perchet. NeurIPS (2021).

• Chapter 6: "Online Matching in Geometric Random Graphs", with Vianney Perchet,
Nathan Noiry, Laurent Ménard and Matthieu Lerasle. Working paper.

• Chapter 7: "On Preemption and Learning in Stochastic Scheduling", with Nadav Merlis,
Hugo Richard, Mathieu Molina, Corentin Odic and Vianney Perchet. ICML (2023).

The author also participated in the following published work, which is not discussed in this
thesis.

• "Robust estimation of discrete distributions under local differential privacy", with Julien
Chhor. ALT (2023).

32

Part I

Online Learning

33

Chapter 3

Pure Exploration and Regret
Minimization in Matching Bandits

Finding an optimal matching in a weighted graph is a standard combinatorial problem. We
consider its semi-bandit version where either a pair or a full matching is sampled sequentially. We
prove that it is possible to leverage a rank-1 assumption on the adjacency matrix to reduce the
sample complexity and the regret of off-the-shelf algorithms up to reaching a linear dependency
in the number of vertices (up to poly log terms).

Contents
3.1 Introduction . 35

3.1.1 Related work . 35

3.1.2 Organization of the chapter and our contributions 36

3.2 Objectives and problem statement 36

3.3 Pair selection problem . 37

3.3.1 Bipartite case . 38

3.3.2 Monopartite case . 39

3.4 Matching selection problem . 41

3.4.1 Pure exploration for matching . 41

3.5 Experiments . 45

3.5.1 Pair selection . 46

3.5.2 Matching selection . 47

3.A Appendix . 49

3.A.1 Pair-Elim algorithm . 49

3.A.2 Pair-Elim-Mono algorithm . 58

3.A.3 Pair-Select algorithm . 63

3.A.4 simple-Adaptive-Matching algorithm 65

3.A.5 Adaptive-Matching algorithm . 70

3.A.6 Comparison of Adaptive-Matching with an exploration policy . . . 84

3.A.7 Matching-id algorithm . 86

34

3.1. INTRODUCTION

3.1 Introduction

Finding matchings in graphs, i.e., subsets of edges without common vertices, is a long standing
problem Lovász and Plummer (2009a) with many different applications in economics Roth et al.
(2004), operations research Wheaton (1990), and machine learning Mehta (2012). We consider
here its sequential variant where at each time step t, an agent chooses a matching mt of some
graph, defined by its unknown weighted adjacency matrix W (with bounded elements in (0, 1)),
and observes noisy evaluations of the chosen entries {Xi,j,t : (i, j) ∈ mt}, with E[Xi,j,t] = Wi,j .
This problem obviously falls in the realm of combinatorial bandits Cesa-Bianchi and Lugosi
(2012), but we aim at leveraging a specific structural property: in many relevant examples, W
is a rank 1 matrix.

Two different types of graphs are relevant for matchings, bipartite and monopartite, and
we are going to consider both of them (even though the latter is more intriguing, the former,
maybe more intuitive, will serve as a warm-up and to convey insights). In the bipartite case,
the set of vertices is separated in two distinct subsets U and V (of respective sizes N and M)
and edges only exist across subsets, not within. The rank-1 adjacency matrix W is then a
N ×M matrix, that can be written as W = uv⊤ for some u ∈ (0, 1)N and v ∈ (0, 1)M . The
canonical application of this setting is online advertising, where the probability that a user
clicks on an ad depends on both the position at which the ad is displayed and its relevance
to the user Katariya et al. (2017b). Other motivations come from two-sided markets, where
matching occurs between offers and demands, e.g. in online labor markets, ui may represent
the utility for a user seeking a solution to a project and vj may represent the expertise of a
project solver.

On the other hand, monopartite graphs have 2N vertices and their rank-1 adjacency matrix
W can be written as W = uu⊤ for some u ∈ (0, 1)2N . This setting models collaborative
activities that arise in teamwork, online gaming, and online labor platforms Johari et al. (2018).
For instance, some online gaming apps match players together (e.g. Go, competitive quizzes,
and drawings) but players will participate only if they both want to. In a simple model, player
i decides to participate with probability ui, and matched players i and j participate in a game
with probability uiuj . The expected number of played games from a proposed matching m is
then ∑(i,j)∈m uiuj . The revenue of such apps typically comes from ads displayed during games,
so the more games played the better. In these examples, the app will match (say, everyday) as
many pairs of players as possible and not just one (as in the bipartite example).

We will consider the aforementioned two variants of these sequential choices of matchings:
either the matching has to be “minimal”, i.e., it has to be a single pair of vertices, or it has to
be “maximal”, i.e., a choice of N distinct pairs. We will refer the former to as pair selection
and the latter as matching selection problem. As standard in multi-armed bandits, we shall
investigate both the regret minimization over an arbitrary given time horizon and the pure
exploration in a PAC learning setting.

3.1.1 Related work

The matching problems defined above are special classes of combinatorial bandit problems
with semi-bandit feedback Cesa-Bianchi and Lugosi (2012) with many recent improvements for
regret minimization Combes et al. (2015); Cuvelier et al. (2021); Degenne and Perchet (2016);
Perrault et al. (2020); Wang and Chen (2021) as well as pure exploration Chen et al. (2014);
Garivier and Kaufmann (2016). The combinatorial structure is quite clear, as the cardinality of
the set of matchings is equal to (2N)!/(2NN !) ∼

√
2
(
2N/e

)N
.

Off-the-shelf combinatorial bandits algorithms would incur a regret scaling as Õ(N2 log(T)/∆min),

35

CHAPTER 3. MATCHING BANDIT

where ∆min denotes the expected reward gap between an optimal matching and the best sub-
optimal matching. This has been recently improved, but only in the aforementioned bipartite
case, where the rank-1 structure has been leveraged in the line of work of stochastic rank-1
bandits Katariya et al. (2017a,b); Trinh et al. (2020), yet either with sub-optimal parameter
dependencies or with asymptotic performances. This quadratic dependency would also appear
in pure exploration, as standard algorithms would require in the bipartite case O(NM log(1/δ))
iterations to find the best pair with probability at least 1− δ Garivier and Kaufmann (2016).

The classical matching problem has strong connections with ranking/sorting; it is obviously
the same with their sequential variants Rejwan and Mansour (2020); Zoghi et al. (2017) even
though they do not directly handle the bandit feedback.

3.1.2 Organization of the chapter and our contributions

The remaining of the chapter is divided in four main parts. First, we formally introduce the
general model in Section 3.2. Then we investigate the pair selection problem (both for regret
minimization and pure exploration) in Section 3.3, and afterwards the matching selection
problem (again, for regret and pure exploration) in Section 3.4. Finally, we present numerical
results in Section 3.5. They validate the tightness of our results and demonstrate competitiveness
and performance gains obtained by our proposed algorithms over some state-of-the-art baseline
algorithms.

Our contributions can be summarized as follows:

i) For the pair selection problem in the bipartite case, we introduce a new algorithm, called
Pair-Elim, in Section 3.3.1 with an optimal (up to a multiplicative constant) regret
bound: perhaps interestingly, the algorithm eliminates sub-optimal rows and columns on
different timescales. This result is extended to the monopartite case in the same Section
3.3.1.
For pure exploration, we simply adapt Pair-Elim; it still leverages the rank-1 structure
to find the optimal pair with a linear (instead of quadratic) sampling complexity in
O((N +M) log(1/δ)).

ii) The monopartite case, still with pair sampling, is investigated in Section 3.3.2; we transform
the above algorithm into Pair-Elim-Mono, that can handle both regret minimization
and pure exploration. It is also extended for best matching identification, with again
optimal bound (up to a multiplicative constant).

iii) Section 3.4.1 is dedicated to pure exploration with matching sampling; a new algorithm is
developed with optimal sample complexity for non-degenerate ranges of parameters (i.e.,
it equals the new lower bounds proved up to multiplicative constants).

iv) Finally, regret minimization in the matching selection problem is investigated in Section 7;
we introduce a new Adaptive-Matching algorithm with a linear (instead of quadratic)
dependency in N since its regret scales as Õ(N log(T)/∆min).
Roughly speaking, this algorithm elies on a divide and conquer type of approach.

3.2 Objectives and problem statement

Noise model. We assume the noisy observation Xt of W is generated as follow: for any
(i, j, t), Xi,j,t = Wi,j + εi,j,t where εi,j,t are independent, zero-mean, sub-Gaussian random
variables.

36

3.3. PAIR SELECTION PROBLEM

Optimal matching. The objective is to find a matching m, either minimal or maximal
depending on the setting, that maximizes the expected reward E[∑(i,j)∈mXi,j,t] = ∑

(i,j)∈mWi,j .
It turns out that in both the bipartite case and the monopartite one, under the rank-1 assumption,
the optimal matching is the one that pairs better items together. More formally and without
loss of generality, for the bipartite case (W = uv⊤), we assume that u1 ≥ · · · ≥ uN and
v1 ≥ · · · ≥ vM . The optimal matching is the one that associates (u1, v1), then (u2, v2), and so
on1. Similarly, for the monopartite case (W = uu⊤), we assume that u1 ≥ u1 ≥ · · · ≥ u2N and
the optimal matching associates any odd index with its successor, i.e. (u1, u2) then (u3, u4) and
so on. In both cases finding the optimal matching boils down to finding the order of the entries
of u and v.

Pure exploration. A first objective the agent can aim for is to identify the best matching
with high probability and as fast as possible. Formally, given a confidence level 0 < δ < 1/2, the
agent seeks to minimize the worst-case number of samples τδ needed for the algorithm to finish
and return the optimal matching with probability at least 1− δ.

Regret minimization. Another objective for the agent is to find the best matching while
playing sub-optimally as few times as possible in the process. Formally, her goal is to minimize
the regret, i.e., the difference between the cumulative reward of the oracle (that knows the best
pair or the best matching) and her cumulative reward. Denoting by M the set of matching
considered – e.g. minimal matchings for pair selection or maximal matchings for matching
selection – the regret after T steps is defined as:

R(T) = T max
m∈M

∑
(i,j)∈m

Wi,j −
T∑
t=1

∑
(i,j)∈mt

Wi,j . (3.1)

Universal vs. parameter dependent constants. In order to avoid cumbersomeness, we
shall use the notations cu to denote some universal constant and cp to denote constants (w.r.t.
T) but that can depend on other problem parameters. They might change from one statement
to another, but they are always defined explicitly in the proofs.

3.3 Pair selection problem

In this section we consider the pair selection problem. Even though playing one pair (i, j)
of items at each time step may seem very similar to dueling bandits Yue et al. (2012) in
the monopartite case, the reward information structure is very different. In dueling bandits
the information is competitive, one observes which i or j is best (in expectation). Here, the
information is collaborative, the higher the parameters of both i and j, the higher the observation
(in expectation). Thus, in our case, playing the pair (i, j) does not provide information on the
relative order of i and j. Instead, to get information about the relative order of i and j, it is
necessary to use a third item j′ as a point of comparison and play both (i, j′) and (j, j′). We
will refer to this as comparing i with j against j′. A crucial idea, that is key to several of the
algorithms presented in the chapter, is that the fastest way to compare two items i and j is to
compare them against the item j′ with the highest possible parameter value. It turns out this
last remark also holds in the bipartite case.

1This is a direct consequence of the rearrangement inequality.

37

CHAPTER 3. MATCHING BANDIT

3.3.1 Bipartite case

As the bipartite case has already been studied and might be simpler to grasp, we start with it
and then extend the results to the monopartite case. The fastest way to compare row items is to
compare them against the best column, and reciprocally for columns. Similarly to Rank1Elim
Katariya et al. (2017b), the algorithm maintains a list of active rows (resp. columns) that
are, with high probability, non-provably dominated as defined by confidence sets computed
from the samples. As Rank1Elim, Pair-Elim performs an Explore Then Commit (ETC)
strategy, playing all active rows against randomly chosen active columns to collect samples
and update the confidence sets. Then it uses a similar ETC strategy on columns. The main
difference with Rank1Elim resides in Pair-Elim eliminating row and columns at different
timescales. Pair-Elim implements an ETC policy with horizon T for rows. Simultaneously, it
runs an ETC policy for columns, but over shorter time windows w (referred to as “blocks”)
between steps Tw−1 and Tw − 1 where Tw := Tw−1 + 22w . Within a block, columns are only
temporarily eliminated. They are reinstated as active at the beginning of the next block, when
a new instance of the ETC is run in the new horizon. The detailed pseudo-code is given in
Appendix 3.A.1.

Algorithm 11: Pair-Elim
1 Set target precision to δ;
2 for t = 0... do
3 Identify active rows and columns;
4 Sample all active columns against a random active row;
5 Sample all active rows against a random active column;
6 if t >

∑w
s=0 22s then

7 Reset samples for columns;
8 w = w + 1;
9 end

10 Update confidence sets on rows and columns;
11 if Optimal pair detected with confidence ≥ 1− δ then
12 Output optimal pair;
13 end
14 end

The key intuition is that the algorithm is more aggressive in the elimination of columns (i.e.
with lower confidence) as they are only temporarily eliminated. Thus, sub-optimal rows will
be eliminated after log(T) samples while the number of samples of sub-optimal columns only
increases logarithmically in the current number of samples. This implies that pairs (i, j) that
are “doubly-suboptimal”, i.e. both i and j are sub-optimal, are eliminated after log(log(T))
samples. On the other hand, pairs that are only suboptimal, but not doubly, are eliminated
after log(T) samples.

It is noteworthy that this cannot be achieved with a standard Explore Then Commit (ETC)
independent on rows and columns, as the number of samples of sub-optimal decisions would
then scale linearly (not logarithmically) with the number of samples – before elimination. This
is the reason why the algorithm Rank1Elim is sub-optimal.

The complexity of bandit problems is characterized by the gaps, i.e., the difference in
expectation between basic item performances. In this case, we need to differentiate gaps on
rows and columns, namely, ∆U

i = maxi′∈[N] ui′ − ui and ∆V
j = maxj′∈[M] vj′ − vj that appear

both in the regret and in the sample complexity.

38

3.3. PAIR SELECTION PROBLEM

Theorem 3.3.1. For any time horizon T > 0, the expected regret of Pair-Elim with δ = (1/T)
is upper bounded as,

E[R(T)] ≤ cuA(u, v) log(T) + cp log(log(T))

where
A(u, v) =

∑
i∈[N]:∆U

i >0

1
v1∆U

i

+
∑

j∈[M]:∆V
j >0

1
u1∆V

j

.

The proof of Theorem 3.3.1 is available in Appendix 3.A.1.
Theorem 3.3.2. For any δ ∈ (0, 1), Pair-Elim outputs the best pair with probability at least
1− δ at stage τδ s.t.

E[τδ] ≤ cuA(u, v) log(1/δ) + cp log log(1/δ)

where
A(u, v) =

∑
i∈[N]:∆U

i >0

1
(v1∆U

i)2 +
∑

j∈[M]:∆V
j >0

1
(u1∆V

j)2

which is tight up to a multiplicative constant.

Proofs of the upper bound of Theorem 3.3.2 is in Appendix 3.A.1. The lower was proven in
previous work Katariya et al. (2017b).

The improvement compared to Rank1Elim is visible, as the leading term of the regret
scales as the inverse of the parameters mean for Rank1Elim, while it only scales as the inverse
of the best parameter, for Pair-Elim.

3.3.2 Monopartite case

We introduce a new algorithm, Pair-Elim-Mono, that generalizes the main ideas of Pair-Elim.
Instead of working on monopartite graph (of size 2N), it first duplicates items and create a
bipartite graph with U = V = [2N]. Then, as in the previous section, an elimination policy is
run over rows with horizon T and over columns by blocks.

The major difference between the mono and bipartite case is that, in the former, two items of
U and V are optimal (instead of only one, because of the initial duplication). As a consequence,
active pairs are tracked instead of active rows and columns. Pairs containing item i are all
eliminated after they have been deemed smaller than two other distinct items. If i is deemed
smaller than another item j, all pairs containing item i are eliminated except (i, j). If entry
(i, j) is eliminated as a consequence of row i’s sub-optimality, entry (j, i) is also eliminated.

Note that the fastest way to compare item 1 with item i > 2 is to compare them against
item 2 and the fastest way to compare item 2 with item i > 2 is to compare them against
item 1. Similarly, it is harder to identify the second best item than the best item, as simple
computations yield

u1∆2,i ≤ u2∆1,i.

where ∆i,j = ui − uj .
Apart from the algorithm itself, another difference with the bipartite case is the way to

measure the gaps, but the guarantees are very similar to the bipartite case.
Theorem 3.3.3. The expected regret of Pair-Elim-Mono satisfies, for any time horizon
T > 0,

E[R(T)] ≤ cuA(u) log(T) + cp log log(T) (3.2)

where
A(u) =

∑
i∈{3,...,2N}:∆2,i>0

1
u1∆2,i

.

39

CHAPTER 3. MATCHING BANDIT

Algorithm 12: Pair-Elim-Mono
1 Set target precision to δ;
2 Initiate rows U = [2N] and columns V = [2N];
3 for t = 0, 1, . . . do
4 Identify active pairs;
5 Sample all active pairs;
6 if t >

∑w
s=0 22s then

7 Reset samples for columns;
8 w = w + 1;
9 end

10 Update confidence sets on rows and columns;
11 if Optimal pair detected with confidence ≥ 1− δ then
12 Output optimal pair;
13 end
14 end

The proof is provided in Appendix 3.A.2.

Theorem 3.3.4. For any δ ∈ (0, 1), the sample complexity of the Pair-Elim-Mono algorithm
satisfies

τδ ≤ cuA(u) log(1/δ) + cp log log(1/δ)

with probability at least 1− δ, where

A(u) =
∑

i∈[2N]:∆i>0

1
(u1∆2,i)2

which is tight up to a multiplicative constant.

The proof is provided in Appendix 3.A.2.

Towards maximal matchings. The matching selection setting can be seen as a constrained
versions of pair selection where the agent has the constraint that N consecutively sampled pairs
should form a maximal matching instead of being chosen freely. Hence, before diving in this
setting, we can wonder what would be the sample complexity to identify the best maximal
matching, but by freely choosing the pairs, which is arguably a simpler problem than matching
selection. This can be done in two steps: 1) identify the two best items using Pair-Elim-Mono,
2) sample all unranked items against them until the full best matching is identified. We refer to
this two-step algorithm as Pair-Select. There again, the sample complexity of the algorithm
is optimal up to a multiplicative constant, proofs are deferred to Appendix 3.A.3.

Theorem 3.3.5. For any δ ∈ (0, 1), the sample complexity of the Pair-Select algorithm
satisfies

τδ ≤ cuA(u) log(1/δ) + cp log log(1/δ)

with probability at least 1− δ, where

A(u) =
∑

i∈[2N]:∆i>0

1
(u1∆i)2 ,

with ∆2,i = u2i − u2i+1 and ∆2i−1 = u2i−2 − u2i−1

40

3.4. MATCHING SELECTION PROBLEM

which is tight up to a multiplicative constant.

Surprisingly, identifying the full order of the items rather than simply the top two ones does
not require N times more samples. Rather the degradation appears in the gap, that are not
anymore the gap to the second-best item, but rather the gap between consecutive matched
pairs.

In the following section, we investigate if similar guarantees hold in the matching selection
setting or if the constraints on the choice of consecutive pairs have a stronger impact.

3.4 Matching selection problem

In this section, we present our results for the matching selection problem, where recall at each
iteration step a maximal matching of items needs to be selected. We first consider the objective
of pure exploration, and then consider the regret minimization objective. In this section, pair i
refers to the ith pair of consecutive items (u2i−1, u2i), the pair with the ith highest expected
reward in the optimal matching.

Contrarily to the pair selection setting, where the same algorithm has tight guarantees for
both regret minimization and pure exploration, the matching selection setting requires different
algorithms. This can be understood from a simple example where the smallest gap between
consecutive items i, i + 1 appears at the bottom of the ranking (between low quality items).
From a pure exploration point of view, the fastest way to rank them is to compare them against
the top ranked item. However, this is sub-optimal from a regret point of view as misranking
i and i + 1 incurs a low regret, while playing (1, i) or (1, i + 1) incurs a high regret. The
pure exploration objective and the regret minimization objective are treated separately in the
following as they require the use of different algorithms.

3.4.1 Pure exploration for matching

The algorithm for matching selection with an objective of pure exploration, referred to as
Matching-id, is based on this idea of comparing items with the top ones to rank them quickly
(remember finding an optimal matching amounts to finding an order over the items). It makes
use of two non-exclusive sets of items: S ⊆ [2N] is the set of un-ranked items (their exact rank
is unknown) and B the set of items that are still potentially amongst the |S| best items. The
algorithm proceeds through iterations, in each iteration sampling matchings from B ∪ S such
that all distinct pairs of items are sampled once. Items from S are ranked by using the samples
collected from matches with items in B. This procedure continues until the rank of all items is
known.

Algorithm 13: Matching-id
1 S = [2N];
2 while S ≠ ∅ do
3 Compute the set S of unranked items;
4 Compute the set B of candidate |S| best items;
5 Sample each item in B ∪ S once against each other item in that set;
6 Update confidence intervals for the items in S using observed outcomes of matches

with items in B;
7 end

41

CHAPTER 3. MATCHING BANDIT

We introduce the following notations

µ[2N]\{2k,2k+1} = 1
2N

∑
i∈[2N]\{2k,2k+1}

ui.

Let s and h denote the indices of the smallest and the second smallest gap, i.e. s =
arg mink∈[2,N−1] ∆2k,2k+1 and h = arg mink∈[N−1]\{s} ∆2k,2k+1µ[2N]\{2k,2k+1}. We also define

γmin = min
k∈[N−1]

{µ[2N]\{2k,2k+1}∆2k,2k+1}.

To simplify the exposition of the result, we assume that the smallest gap is not between the
two best pairs (general version of the result is given in Appendix 3.A.7).

Theorem 3.4.1 (upper bound). For any δ > 0, the sample complexity of the Matching-id
algorithm satisfies

τδ ≤ cu
1

γ2
min

log(1/δ) + cp

with probability at least 1− δ. Moreover, by denoting,

α := min
{1

2
(u1 + u2)∆2s,2s+1

µ[2N]\{2h,2h+1}∆2h,2h+1
, 1
}
,

the following holds with probability at least 1− δ

τδ ≤ cu
1

(1− α)2(u2
1 + u2

2)∆2
2s,2s+1

log(1/δ) + cp.

The proof of these upper-bounds is deferred to Appendix 3.A.7. These upper bounds are
tight, up to multiplicative factors, for some interesting regimes of parameters, as stated below.

Theorem 3.4.2. Assume that stochastic rewards of item pairs have Gaussian distribution with
unit variance. Then, for any δ-PAC algorithm, we have

E[τδ] ≥ cu
∑

i∈[2N]:∆i>0

1∑2N
j=1 u

2
j

1
∆2
i

log(1/δ)

and
E[τδ] ≥ cu

1
u2

1 + u2
2

1
∆2

2s,2s+1
log(1/δ).

In particular, if all gaps are equal, the first lower bound of Theorem 3.4.2 matches the first
upper bound of Theorem 3.4.1 up to a multiplicative constant. On the other hand, in the
opposite regime where one gap is substantively smaller than all others, then it is the second
bounds that are equivalent.

These results with matching matching should be put into perspective with their pendant,
Theorem 3.3.5, for pair selection. In this case, the sample complexity of the latter is N times
bigger than the one of the former. This might seem surprising at first sight as pair selection
is an “easier” problem (without constraints). The reason is that with matching selection, the
algorithm gets to observe N pairs at each iteration (and not just one). As a consequence, the
overall number of pairs evaluation Xi,j,s are actually of the same order.

This is quite surprising as selection matchings is much more constrained than selecting
batches of N arbitrary pairs (possibly with repetitions and/or single items sampled more than
just once in a batch). The main consequence is that the matching identification problem is as

42

3.4. MATCHING SELECTION PROBLEM

difficult with minimal than maximal matchings selection (and therefore in any intermediate
case).

Regret minimization

We first describe and analyze a simplified matching divide and conquer algorithm, which is
correct for problem instances satisfying a condition on model parameters introduced shortly.
This simplified algorithm allows us to convey the key idea that underlies the design of a more
complicated algorithm. Having described this simplified algorithm and shown the regret upper
bound, we will remove the aforementioned condition and show a regret upper bound that holds
for a matching divide and conquer algorithm. In the following, we assume there is a unique
optimal matching m∗.

Simple Adaptive Matching

We consider problem instances under the following assumption on model parameters:

Assumption 1. The model parameters u1, . . . , u2N are assumed to satisfy u2i−1 = u2i, for all
i ∈ [N].

Under Assumption 1, in the optimal matching every pair of matched items have equal
parameter values. This assumption avoids some complications that arise due to uneven clusters
in the divide and conquer procedure.

The Simple Adaptive Matching (simple-Adaptive-Matching) successively partitions
items into an ordered sequence of clusters (ranked clusters), such that all items in a cluster
have a higher rank than all items in any lower-ranked cluster with a high probability. Items in
a cluster S of size |S| = 2K are matched according to a round-robin tournament, which runs
over 2K − 1 iterations.

A cluster is split into two sub-clusters as soon as the upper bound for the reward of each
item in one of the sub-clusters is smaller than the lower bound for the reward of each item in
the other sub-cluster. Assumption 1 guarantees that, with high probability, at each iteration
step, all clusters contain an even number of items, so it is always possible to match all items
within each cluster.

Functions sample_matching and conf_bound of Algorithm 14 are detailed in Appendix
3.A.4. At the high level, sample_matching samples matchings that ensure that each |S| − 1
iterations, any given item in S has been matched once with any other item in S. conf_bound
builds confidence intervals for the total reward of each item per match with items in the same
cluster or in lower ranked cluster.

The regret of simple-Adaptive-Matching can be bounded by using the following additional
notation

∆min = min
m∈M:m ̸=m∗

{ ∑
(i,j)∈m∗

uiuj −
∑

(i,j)∈m
uiuj

}

and the proof is again deferred to Appendix 3.A.4.

Theorem 3.4.3. The expected regret of simple-Adaptive-Matching satisfies, for any horizon
T > 0,

E[R(T)] ≤ cu
N log(N)

∆min
log(T) + cp.

43

CHAPTER 3. MATCHING BANDIT

Algorithm 14: simple-Adaptive-Matching
input : set of items [2N] and horizon T

1 t = 0, C = X = C̃ = X̃ = [0]2N×2N ,S = {[2N]};
2 for t = 1 . . . T do
3 mt ← sample_matching(S, t);
4 for (i, j) ∈ mt do
5 X̃(i, j)← X̃(i, j) +Xi,j,t;
6 C̃(i, j)← C̃(i, j) + 1;
7 end
8 for S ∈ S do
9 if ∃i ∈ S s.t.

∑
j∈S C̃(i, j) = |S| − 1 then

10 X([s], :), C([S], :)+ = X̃([S], :), C̃([S], :);
11 X̃([S], :), C̃([S], :) = 0;
12 end
13 end
14 Q+, Q− ← conf_bound(X,C, T,Q+, Q−,S);
15 for S ∈ S do
16 Order items in S according to Q+;
17 for i ∈ {2, . . . , |S|} do
18 if Q+[i] < Q−[i− 1] then
19 Split S between i− 1 and i;
20 end
21 end
22 end
23 end

Adaptive-Matching algorithm

In general, when Assumption 1 does not hold, some of the clusters may have odd sizes. In
these odd-size clusters, uniform sampling within a cluster is infeasible, and we need to match
items residing in different clusters. In order to deal with these complications, we use a new
Adaptive-Matching algorithm.

Adaptive-Matching is defined as an extension of simple-Adaptive-Matching. It uses
the same policy for splitting clusters. The Sample-Matching procedure extends that of the
previous algorithm to unevenly split clusters. This procedure ensures that any two mutually
un-ranked items are matched similarly to other items, which guarantees that the expected
rewards for those items are scaled similarly. At the high level, it defines a list of matchings
that respect the desired item sampling proportion, then samples the matchings in this list in a
round-robin.

A detailed description of Sample-Matching, and the proof of the following result, are
given in Appendix 3.A.5.

Theorem 3.4.4. The expected regret of Adaptive-Matching is bounded, for any horizon
T > 0, as

E[R(T)] ≤ cu
N log(N)

∆min
log(T) + cp.

44

3.5. EXPERIMENTS

Figure 3.1: Regret comparison for Pair-Elim vs Rank1Elim: (top) regret versus T for fixed
∆ = 0.75 and (bottom) regret versus the gap parameter ∆ for fixed T = 2, 000, 000. We used
20 independent runs. The shaded areas show the range between the 5% and 95% percentile.

Comparison with an exploration policy

The Adaptive-Matching algorithm matches high parameter value items together as soon
as they are identified in order to exploit this for accruing reward. On the other hand, our
algorithms, for the pair sampling problem and the pure exploration matching identification
problem, used the detected high parameter value items to explore the un-ranked ones. Without
a comparison, it is unclear which of the two strategies will lead to a smaller regret in the
end. For this reason, we consider an exploration-first algorithm that matches identified high
parameter value items with other items to speed up the learning of the rank of these other
items, and compare it with Adaptive-Matching.

We do this under assumption that both algorithms are given as input the two best items, as
well as a set of 2(N − 1) un-ranked items. We chose as a comparison metric the upper bound
on the total regret incurred by the two algorithms until the un-ranked items can be partitioned
into two or more ranked clusters of items. We denote with UI the upper bound on the regret
RI for the exploration-first strategy and with UD the upper bound on the regret RD for the
Adaptive-Matching algorithm.

The following Lemma 3.4.5 states that unless the second best item is sufficiently worse
than the best item, the regret of the Adaptive-Matching algorithm is at most of the same
order as that of the exploration-first algorithm, and can be arbitrarily smaller depending on
the problem parameters. If the ratio between the parameter values of the first and the second
best item goes to zero, then the exploration-first algorithm becomes infinitely better than the
Adaptive-Matching algorithm.

Lemma 3.4.5. If u2/u1 > 1/2, then UD/UI ≤ cuN , and it can be arbitrarily close to 0
depending on the problem parameters. If u3/u2 > 1/2, then this ratio is smaller than a constant
independent from the parameters of the problem. On the other hand, limu2/u1→0RD/RI = +∞.

In summary, the lemma tells that Adaptive-Matching is essentially as good as the
exploration-first strategy for any problem instance such that the parameter value of the second
best item is at least a constant factor of the best item.

3.5 Experiments

In this section we present numerical results, which demonstrate tightness of our theoretical
bounds and compare our proposed algorithms with some state-of-the-art baseline algorithms.
We first consider the pair selection problem and then the matching selection problem. In
summary, our numerical results validate our theoretical results and demonstrate that significant
performance gains can be achieved against some previously proposed algorithms.

45

CHAPTER 3. MATCHING BANDIT

0.4 0.5 0.6 0.7 0.8 0.9
u1

20000

40000

60000

80000

100000

R(
T)

PairElim
Rank1Elim

0.4 0.5 0.6 0.7 0.8 0.9
u1

1.0

1.5

2.0

2.5

3.0

3.5

R R
an

k1
El

im
 /

R P
ai

rE
lim

Figure 3.2: Regret comparison for Pair-Elim vs Rank1Elim for different values of maximum
item parameter value: (top cumulative regrets, and (bottom) ratio of the cumulative regrets.
The parameter setting is N = 8, µU = 0.2, and we used 20 independent runs.

All the code used for obtaining the results in this section is available from this public Gitlab
repository: https://gitlab.com/roka/matching-bandit

3.5.1 Pair selection

We consider Rank1Elim as a baseline for comparison. As noted in the introduction, Rank1Elim
has a regret upper bound that is sub-optimal with respect to the problem parameters, which is
in contrast to our algorithm, Pair-Elim that has optimal regret bound up to a multiplicative
constant. We demonstrate that significant performance gains that can be achieved by using
Pair-Elim versus Rank1Elim for some problem instances.

In all experiments, the variables considered are Bernoulli variables. We consider the bipartite
case with N = M . Each problem instance is defined by a tuple (N, u1,∆), where 0 ≤ ∆ ≤ u1 ≤ 1,
and assuming that u1 = v1. The row parameter values u2, . . . , uN are defined as sorted values
of independent random variables according to uniform distribution on [0, 2(u1 −∆)], where ∆
is the expected gap between the value of the best item and the value of any other item. Note
that we have µU = u1 − (1− 1/N)∆. For fixed value of parameter u1 and increasing expected
gap ∆, we have problem instances with fixed maximum row parameter value and decreasing
mean row parameter value µU . We similarly define the column parameter values, and all the
observations above made for row parameter values hold for column parameter values. According
to our regret analysis, Pair-Elim algorithm will outperform Rank1Elim when ∆ is large for
fixed u1. To confirm this claim, we ran the two algorithms on a set of problem instance with
N = 8 and u1 = 0.9. The results are shown in Figure 3.1.

A notable improvement of Pair-Elim compared to Rank1Elim is that the cumulative regret
bound is inversely proportional to the maximums of row and column item parameter values,
instead of the means of row and column item parameter values. For our problem instances, the
former values correspond to u1 and v1 (with u1 = v1), while the latter values correspond to µU
and µV (with µU = µV). We thus expect that Pair-Elim would outperform Rank1Elim for
problem instances for which there is a significant gap between the maximum and mean values of
the row and column item parameter values. We demonstrate this for problem instances defined
as follows.

We consider the bipartite case with N = M . Each problem instance is defined by a tuple
(N, u1,∆), where 0 ≤ ∆ ≤ u1 ≤ 1, and assuming that u1 = v1. Other row item parameter values
u2, . . . , uN are sorted values of independent random variables according to uniform distribution
over [0, 2(u1 −∆)], where ∆ is the expected gap between the value of the best item and the
value of any other item. Note that we have µU = u1− (1− 1/N)∆. For fixed value of parameter
u1 and increasing expected gap ∆, we have problem instances with fixed maximum row item
parameter value and decreasing mean row item parameter value µU . We similarly define the

46

https://gitlab.com/roka/matching-bandit

3.5. EXPERIMENTS

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

1.0

1.5

2.0

2.5

3.0

R R
an

k1
El

im
 /

R P
ai

rE
lim

Figure 3.3: Regret comparison for Pair-Elim vs Rank1Elim for different values of the gap
parameter ∆: (top) cumulative regrets, and (bottom) ratio of the cumulative regrets. The
parameter setting is N = 8, u1 = 0.9, and we used 20 independent runs.

column item parameter values, and all the observations above made for row item parameter
values hold for column item parameter values.

We first consider problem instances such that the mean values of row and column item
parameters are fixed to value µU = 0.2, and we vary the value of parameter u1 in [0.4, 0.9]. The
results are shown in Figure 3.2. We observe that Pair-Elim provides a significant performance
gain over Rank1Elim, which for some problem instances is for as much as nearly a 1/3
reduction of the cumulative regret. We also observe that there is a general trend of Pair-Elim
outperforming Rank1Elim more for larger gaps between the mean and maximum values of
item parameter values.

We next consider problem instances that have the maximum row and column item parameter
values fixed to value u1 = 0.9 and varying gap parameter ∆ taking values in [0.5, 0.85]. Note
that with the value of the gap parameter ∆ increasing, the means of row and column item
parameter values decrease. As a consequence, the cumulative regret of Rank1Elim should
increase. On the other hand, as the maximum values of row and column item parameter
values are kept fixed, the cumulative regret of Pair-Elim should remain roughly the same.
These claims are confirmed in Figure 3.3 (top). In Figure 3.3 (bottom), we observe a trend of
Pair-Elim outperforming Rank1Elim more for larger values of ∆, and that this can be for a
significant amount.

3.5.2 Matching selection

In this section we evaluate the performance of our algorithm for the matching selection problem.
Our goal is twofold. We first demonstrate numerical results according to which our proposed
algorithm has expected regret that scales proportionally to N log(N)/∆min for a fixed horizon T .
We then compare its performance with that of ESCB, which, as discussed in the introduction,
has the expected regret bound O(N2 log2(N)/∆min) for fixed T . We demonstrate that our
algorithm can achieve significant performance gains over ESCB. In our evaluations. We use our
simple-Adaptive-Matching algorithm, for problem instances such that there is a unique
optimum matching with matched items having equal parameter values.

We first show that the regret of our proposed algorithm scales in the order of N log(N)/∆min.
We consider a set of problem instances, each is defined by a tuple (N, ∆̃), where 0 < (N−1)∆̃ ≤ 1
and ∆̃ is the gap between parameter values of adjacent matched pairs in the optimum matching,
so that ∆̃ =

√
∆min. The parameter values are defined by u2i−1 = u2i = (N − i)∆̃ for i ∈ [N].

We run our algorithm on problem instances with ∆̃ = 0.1. The results shown in Figure 3.4
suggest that the cumulative regret of simple-Adaptive-Matching scales as (1/∆min)N log(N)
as established in Theorem 3.4.3.

We next compare the performance of our algorithm and ESCB. We consider problem

47

CHAPTER 3. MATCHING BANDIT

Figure 3.4: Normalized regret of simple-Adaptive-Matching versus N for u2i−1 = u2i =
(N − i)∆̃, for i ∈ [N], with ∆̃ = 0.1 and T = 200, 000.

Figure 3.5: Regret comparison for simple-Adaptive-Matching (SAM) vs ESCB: (top) regret
versus T for fixed µ = 0.5 and (bottom) regret vs µ for fixed T = 200, 000.

instances defined by a tuple (N,µ, ∆̃) where µ is the mean of parameter values and ∆̃ is
the gap between parameter values. The values of item parameters are set as u2i−1 = u2i =
µ + (N + 1 − 2i)∆̃/2 ∈ [0, 1] for i ∈ [N]. Such problem instances allow us to vary µ while
keeping other parameters fixed; we fix N = 4 and ∆̃ = 0.1. In Figure 3.5 (top) we show the
regret versus the time horizon T for fixed µ = 1/2, which shows that our algorithm outperforms
ESCB for large enough values of T . We expect our algorithm to perform better than ESCB as
we increase µ. The results in Figure 3.5 (bottom) confirm this claim. We have performed these
experiments for a small value of N because of the computation complexity of ESCB. ESCB
requires solving an NP-hard problem in each iteration, and has overall computation complexity
O(|M|T) where M is the set of all arms. For the matching selection problem, |M| scales as√

2(2N/e)N .

48

3.A. APPENDIX

3.A Appendix

3.A.1 Pair-Elim algorithm

Algorithm description and pseudo-code

In this section, we describe Pair-Elim algorithm with the pseudo-code provided in Algorithm 15.
The key feature of Pair-Elim is the usage of two different time scales for elimination of

rows and columns. The rows are eliminated by using an ETC policy with horizon T , and the
columns are eliminated by using a similar ETC policy over time windows w (referred to as
“blocks”) between steps Tw−1 and Tw − 1.

The ETC policy relies on maintaining confidence intervals, QU+, QU− and QV+, QV− for rows
and columns, respectively. The confidence intervals for the rows are computed from all samples
gathered since the beginning of the run, while the confidence intervals for the columns are
limited to the samples gathered during the current time window. The target precision of the
confidence intervals also varies: for the rows, it is set to optimize the regret over the horizon T ,
for the columns, it is less precise and only optimizes the regret over the current time window.

A domination mapping hU is determined from the confidence intervals QU+ and QU−. It maps
any dominated row to to one of those that dominates it. In the column exploration step, a
random row is picked and all non-dominated rows are sampled against hU (i). hV is defined and
used similarly in the row explorations step.

Note that this domination mapping is not necessary to obtain the proven upper bound on
the regret of the algorithm. Sampling against any potentially optimal row or column would
provide the same theoretical guarantee. However, we observed experimentally that using the
domination mapping gave consistently better results.

When the algorithm is run in the regret minimization mode, the precision of the row
confidence intervals is set to the required precision so that they hold until the horizon is reached.
The precision of the column confidence intervals is set to the required precision so that they
hold until the end of the running time window.

When the algorithm is run in the regret minimization mode, the precision of the row
confidence intervals is set to the required precision so that they hold with probability ate least
1− δ. Until the best row is detected, the precision of the column confidence intervals is set to
the required precision so that they hold until the end of the running time window. Once the
best row is detected, it is set so that they hold with probability ate least 1− δ.

The algorithm uses function domination_map that defines hU by using QU+ and QU− through
the following equation:

hU (i) = i1{∃k∈[0,M] s.t. ∀j∈[N],Q+(k,i)>Q−(k,j)} + max
j∈[N]

j1{∃k∈[0,M] s.t. Q+(k,i)<Q−(k,j)}, ∀i ∈ U.

The algorithm uses function confidence_bound, with input arguments X,C, h,Q+, Q−,
and p, and outputs Q+ and Q− defined as follows. For each (k, i) ∈ U × V , if C(k, i) = kl, with
kl := ⌈4l+1 log(βl)⌉ for some integer l > 0, then:

Q−(k, i) = X(k, i)
C(k, i) −

√
log(βl)
kl

and Q+(k, i) = X(k, i)
C(k, i) +

√
log(βl)
kl

.

For each i ∈ U , if ∑M
k=1C(k, i) = kl for some kl,then:

Q−(0, i) =
∑M
k=1X(k, i)∑M
k=1C(k, i)

−

√
log(βl)
kl

and Q+(0, i) =
∑M
k=1X(k, i)∑M
k=1C(k, i)

+
√

log(βl)
kl

.

49

CHAPTER 3. MATCHING BANDIT

Algorithm 15: Pair-Elim
input : set of rows U , set of columns V , precision δ (or 1

T) and pure_explore
1 t = 0, C = X = Cw = Xw = [0]N×M , column_explore =True;
2 for t... do
3 for window w = 0, 1, 2, . . . do
4 // columns;
5 QV+, Q

V
− ← confidence_bound(Xw, Cw, 22w

, QV+, Q
V
−, column_explore);

6 hV ← domination_map(QV+, QV−);
7 J ←

⋃
j∈V

{
hV (j)

}
;

8 // rows;
9 QU+, Q

U
− ← confidence_bound(X,C, T,QU+, QU−, pure_explore) ;

10 hU ← domination_map(QU+, QU−);
11 I ←

⋃
i∈U

{
hU (i)

}
;

12 j ← hV
(
Unif(V)

)
;

13 for i ∈ I do
14 X(i, j)← X(i, j) + xi,j,t;
15 C(i, j)← C(i, j) + 1;
16 s← s+ 1, t← t+ 1;
17 end
18 i← hU

(
Unif(U)

)
;

19 for j ∈ J do
20 Xw(i, j)← Xw(i, j) + xi,j,t;
21 Cw(i, j)← Cw(i, j) + 1;
22 s← s+ 1, t← t+ 1;
23 end
24 if s > 22w and row_explore =True then
25 // Change time window;
26 s = 0, Cw = Xw = [0]N×M ;
27 end
28 if column_explore =False, |I|=1 and pure_explore then
29 // Start looking for the best column with high probability;
30 w = log2 log2(T);
31 column_explore =True;
32 end
33 if column_explore =True, |J |=1 and pure_explore then
34 // Return best entry;
35 return (I, J);
36 end
37 end
38 end

In all other cases, values in Q+ and Q− remain unchanged. The value used for pa-
rameter βl depends on h and p. In the case where p is false, βl = h. When p is true
βl = π

√
(N + 1)(M + 1)h/3 · l.

50

3.A. APPENDIX

Proof of the upper bound

In this section, we prove Theorems 3.3.1 and 3.3.2. The proof starts by a lemma that bounds
the probability that any of the built confidence interval fails. It is given in a slightly more
general form than needed, as it will be used in other proofs.

Let x1, ..., xk be a sequence of k independent samples from some distributions, and x̂ denote
the empirical mean

x̂ = 1
k

k∑
s=1

xs.

Let us denote x∗ = E[x̂]. The lower and upper bounds for x∗ are defined for k = kl, with
kl = ⌈4∆−2

l log(βl)⌉ where ∆l = 1/2l and βl is a parameter, as follows

Ll(x̂) = x̂−

√
log(βl)
kl

and Ul(x̂) = x̂+
√

log(βl)
kl

.

Let El(x̂) be the event that x∗ lies within the interval [Ll(x̂), Ul(x̂)], i.e.

El(x̂) = {x∗ ∈ [Ll(x̂), Ul(x̂)]}.

Lemma 3.A.1. The event El(x̂) holds with probability at least 1− 2/β2
l .

The proof of the lemma follows by direct application of Hoeffding’s inequality and is omitted.
2

We also state a general purpose lemma that bounds the number of samples before two sets
of samples can be ranked.

Let x1, . . . , xk and y1, . . . , yk be two sequences of sampled values, and x̂ and ŷ be their
respective empirical means. Let ∆(x̂, ŷ) = x∗ − y∗ > 0.
Lemma 3.A.2. If ∆l < ∆(x̂, ŷ)/2, then

Ul(ŷ) < Ll(x̂).

Proof of Theorem 3.3.1 (Regret):
The proof proceeds as follows. Let A be the "good event" that all row confidence intervals

hold. Lemma 3.A.1 together with a union bound on the N(M + 1) tracked parameters and all
confidence interval’s updates up to horizon T gives:

P[A] ≤ 2N(M + 1)
T

.

A first bound on the regret follows

R(T) ≤ E[R(T) | A] + TP[A]
≤ E[R(T) | A] + 2N(M + 1). (3.3)

Let Bw be the "good event w" that all column related confidence intervals hold during time
window w. Repeating the same arguments, we have

22w
P[Bw] ≤ 2(N + 1)M.

Note that w ranges from 0 to wmax, where wmax is the largest integer k such that 22k−1 ≤ T .
Hence, we have

wmax ≤ log2(log2(T)) + 1.

51

CHAPTER 3. MATCHING BANDIT

Which gives the following bound:

wmax∑
w=0

22w
P[Bw] ≤ 2(N + 1)M(log2(log2(T)) + 2). (3.4)

Under event Bw, optimal column 1 is never eliminated in time window w. Let n1,j,w denote
the number of times column j is sampled against the optimal row 1 during time window w.
Note that this number is equal for all non-eliminated columns. This, together with Lemma
3.A.2, gives the following bound

n1,j,w ≤

64 log(22w)
(u1∆V

j)2

 .
Let R1,j,w be the total regret incurred by the sampling of pair (1, j), at a sampling step

where 1 is the picked active row with which columns are sampled against, during time window
w. We show

wmax∑
w=0

R1,j,w ≤
512
u1∆V

j

log(T) + 2 log2(log2(T)) + 4. (3.5)

This follows from the following inequalities

wmax∑
w=0

R1,j,w ≤ 2u1∆V
j

wmax∑
w=0

n1,j,w

≤ 128
u1∆V

j

wmax∑
w=0

2w
 log(2) + 2wmax + 2

≤ 512
u1∆V

j

log(T) + 2 log2(log2(T)) + 4.

The factor 2 in the first inequality accounts for the possibility that active column j is the column
that active rows are sampled against at a given sampling step where 1 is the picked row.

Similarly, under event A, the number of times row i is sampled against the optimal column
1, denoted as ni,1, is bounded as

ni,1 ≤
⌈

64 log(T)
(v1∆U

i)2

⌉
.

Thus, we have
wmax∑
w=0

Ri,1,w ≤ 2v1∆U
i ni,1 ≤

128
v1∆U

i

log(T) + 1. (3.6)

Under event A, when row i is eliminated, it is mapped by hU to an item with higher
parameter. Thus, the following property always holds∑

i∈[N]
uhU (i) ≥

∑
i∈[N]

ui = NµU .

We let nj,w denote the number of sampling steps in time window w before suboptimal

52

3.A. APPENDIX

column j is eliminated. Thus, under event Bw, according to Lemma 3.A.2, we have

nj,w ≤

64 log(22w)
(µU∆V

j)2

 .
If the stochastic rewards are Bernoulli random variables, arms including column j such that

vj = 0 return a deterministic reward of value 0. Thus, those columns are eliminated before any
other. We define vmin = min{vj : j ∈ [C], vj > 0}. If the stochastic rewards are not Bernoulli
random variables, then vmin = vN .

The following property always holds∑
j∈V

vhV (j) ≥M min{vmin, µV }.

We let ṽmin = min{vmin, µV } and ni be the number of sampling steps before row i is
eliminated. The previous inequality together with Lemma 3.A.2 gives that under event A,

ni =
⌈

64 log(T)
(ṽmin∆U

i)2

⌉
.

This means that row i stops being sampled by the end of the first time window wi such that
22wi > (N +M)ni > 22wi−1 . Thus, we have

2wi+1 ≤ 4 log2(ni) + 4 log2(N +M).

Let Ri,j,w be the regret incurred by the sampling of pair (i, j) at a sampling step where row
i and/or column j are the active rows/columns other entries are sampled against. In the special
case where both row i and column j are picked, Ri,j,w also account for the "useless" samples
(i, 1) and (1, j), useless in the sense that they are not used to update the confidence intervals
related to items i and j. The following relations hold:

wmax∑
w=0

Ri,j,w ≤4(u1v1 − uivj)
wi∑
w=0

nj,w

≤256
∆U
i + ∆V

j

(µU∆V
j)2 log(2)

wi∑
w=0

2w + wi + 1

≤256
∆U
i + ∆V

j

(µU∆V
j)2 log(2)2wi+1 + 4wi + 4

≤1024
∆U
i + ∆V

j

(µU∆V
j)2 log

(
64 log(T)
(ṽmin∆U

i)2 + 1
)

+ 4 log2

4 log
(

64 log(T)
(ṽmin∆U

i)2 + 1
)

+ 1


(3.7)

+ 1024
∆U
i + ∆V

j

(µU∆V
j)2 log (N +M) + 4 log2(4 log2(N +M)) + 4.

Summing up the obtained terms (3.3), (3.4), (3.6), (3.5) and (3.7), completes the proof of
the theorem. 2

Proof of Theorem 3.3.2 (Pure exploration):
The proof goes as follows. Let A be the "good event" that all high probability confidence

intervals hold. Lemma 3.A.1 together with a union bound on the N(M + 1) + M tracked

53

CHAPTER 3. MATCHING BANDIT

parameters and all confidence interval’s updates gives:

P[A] ≤ δ.

Note that the algorithm runs in two phases: the first phase where the best row is identified,
which is followed by the second phase in which the best column is identified, using sampling
against the best row identified in the first phase.

At every sampling step, the expected values of the column active rows are sampled against
is at least vmin. Lemma 3.A.2 implies that rows 1 and i are guaranteed to be relatively ranked
by the first sampling step where ∑M

j=1C(i, j) = kl with:

1
2l+1 <

√
log(βl)
kl

<
1
4vmin∆U

i .

This implies

1
4vmin∆U

i ≤
1
2l .

Thus, we have

kl ≤
32

(vmin∆U
i)2 log

(1
δ

)
+ 32

(vmin∆U
i)2 log

(
π2N(M + 1)

3

)
+ 64 log

log2

(
1

vmin∆U
i

)
+ 2

 .
Let τU be the number of sampling steps after which the best row is detected with probability

at least 1− δ, i.e. τU is the length of the first phase. The previous inequality implies:

τU ≤ 32
(vmin∆U

2)2 log
(1
δ

)
+ 32

(vmin∆U
2)2 log

(
π2N(M + 1)

3

)
+ 64 log

log2

(
1

vmin∆U
2

)
+ 2

 .(3.8)

We start by bounding the number of "bad" samples, that is samples (i, j) with j > 1.
Repeating the computations used to prove equation 3.4, the expected number of "bad" samples
due to the failures of a confidence interval during any time window w is bounded as :

wmax∑
w=0

22w
P[Bw] ≤ 2(N + 1)M(log2(log2((N +M)τU)) + 2). (3.9)

At every sampling step, the expected values of the column active rows are sampled against
is at least µU . Repeating the computations used to obtain equation 3.6, under the good event
the confidence intervals hold during the successive time windows, the number of sampling steps
where sub-optimal column j is active during the first phase, τVj (1), is bounded as:

τVj (1) ≤ 256 1
(µU∆V

j)2 log
(
(N +M)τU

)
+ log2

(
4 log((N +M)τU)) + 1

)
. (3.10)

In a sampling step where column j is active, it is sampled at most N + 1 times. Thus the
number of "bad" samples involving column j is less than (N + 1)τVj (1).

The number of sampling steps where 1 is the picked column active rows are sampled against

54

3.A. APPENDIX

before sub-optimal entry i is eliminated, τUi , is bounded as:

τUi (1) ≤ 32
(v1∆U

i)2 log
(1
δ

)
+ 32

(v1∆U
i)2 log

(
π2N(M + 1)

3

)
+ 64 log

log2

(
1

v1∆U
i

)
+ 2

 .
The best row 1 is sampled at every sampling step until all other rows have been eliminated.

Thus, we have

τU1 (1) ≤ 32
(v1∆U

2)2 log
(1
δ

)
+ 32

(v1∆U
2)2 log

(
π2N(M + 1)

3

)
+ 64 log

log2

(
1

v1∆U
2

)
+ 2

 .
Also, in those sampling steps, column 1 is sampled against an active row. The number of

"good" samples (i, 1) is thus bounded by

3τU1 (1) +
N∑
i=2

τUi (1). (3.11)

Similarly, under the good event that the confidence intervals hold, during the second phase of
the algorithm, column j > 1 is eliminated after τVj (2) samples, with

τVj (2) ≤ 32
(u1∆V

j)2 log
(1
δ

)
+ 32

(u1∆V
i)2 log

(
π2M

3

)
+ 64 log

log2

 1
u1∆V

j

+ 2

 . (3.12)

The best column 1 is sampled at every sampling step until all other columns have been
eliminated. Thus, we have

τV1 (2) ≤ 32
(u1∆V

2)2 log
(1
δ

)
+ 32

(u1∆V
2)2 log

(
π2M)

3

)
+ 64 log

log2

(
1

u1∆V
2

)
+ 2

 . (3.13)

Summing up equations (3.9), (N + 1)(3.10), (3.11), (3.12) and (3.13) gives the result. 2

Proof of the lower bound

Let d(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) denote the binary relative entropy. Let
Fµ denote the distribution of the stochastic reward of a row-column pair with the product of
the parameters equal to µ. We admit the following assumption.

Assumption 2. For every p, q ∈ [0, 1], and κ ≥ 1 such that κp, κq ∈ [0, 1], it holds

DKL(Fp||Fq) ≤ DKL(Fκp||Fκq).

The assumption holds for normal distributions and Bernoulli distributions as explained next.
Let Fµ1 and Fµ2 be two normal distribution with means µ1 and µ2, and variances σ2

1 and σ2
2.

Then, we have DKL(Fµ1 ||Fµ2) = (1/(2σ2
2))(µ1 − µ2)2 + σ2

1/(2σ2
2) + log(σ1/σ2)− 1. From this, it

is readily observed that Assumption 2 holds. Now, assume that Fµ1 and Fµ2 are two Bernoulli
distributions with means µ1 and µ2, then by the data processing inequality in Theorem 2.2 and
Proposition 6 in Polyanskiy and Wu (2014), it follows that Assumption 2 holds.

We next prove the following theorem:

55

CHAPTER 3. MATCHING BANDIT

Theorem 3.A.3 (lower bound). Assume that stochastic rewards of row-column pairs satisfy
Assumption 2. Then, for any δ-PAC algorithm, the expected sampling complexity is lower
bounded as

E[τδ] ≥ AF (u, v)d(δ, 1− δ)

where

AF (u, v) := 1
2

 N∑
i=2

1
DKL(Fuiv1 ||F(ui+∆U

i)v1
) +

M∑
j=2

1
DKL(Fu1vj ||Fu1(vj+∆V

j))

 .
Proof : Let Ni,j(t) denote the number of time steps in which pair (i, j) is sampled until

step t, i.e.

Ni,j(t) =
t∑

s=1
1{(it,jt)=(i,j)}.

We use the following lemma of Kaufmann et al. (2016) adapted to our setting.

Lemma 3.A.4. . Consider two problem instances with parameters A = (u, v) and A′ = (u′, v′).
For any almost-surely finite stopping time σ with respect to the filtration Ft, we have∑

i<j

EA
[
Ni,j(σ)

]
DKL(Fuivj ||Fu′

iv
′
j
) ≥ sup

E∈Fσ

d
(
PA(E),PA′(E)

)

For any given u = (u1, . . . , uN) and α > 0, we define the following model alternatives

Uα = {uα,i = (u1, .., u
′
i, ..., uN) : u′

i = ui + ∆U
i + α), 1 < i ≤ N}

and we define Vα analogously.
Let E denotes the event that the algorithm outputs pair (1, 1). Let Aα,i = (uα,i, v). For any

δ-PAC algorithm, PA(E) > 1− δ and PAα,i(E) < δ (similarly for (u, vα,i)). This, together with
Lemma 3.A.4 gives that the solution to the following linear program is a lower bound on the
sample complexity of any δ-PAC algorithm:

LPα :
minimize

∑
i,j

xi,j

subject to
M∑
j=1

xi,jDKL(Fuivj ||Fuα,ivj) ≥ d(δ, 1− δ), for i ∈ [N]

N∑
i=1

xi,jDKL(Fuivj ||Fuivα,j) ≥ d(δ, 1− δ), for j ∈ [M].

Let x∗ = (x∗
i,j : (i, j) ∈ [N]× [M]) be an optimal solution to LPα, and let x̂ = (x̂i,j : (i, j) ∈

[N]× [M]) be defined as follows

x̂i,j =



∑M
j′=1 x

∗
1,j +∑N

i′=1 x
∗
i′,1 for i = 1 and j = 1∑N

i′=1 x
∗
j,i′ for i = 1 and 1 < j ≤M∑M

j′=1 x
∗
i,j′ for 1 < i ≤ N and j = 1

0 otherwise.

56

3.A. APPENDIX

The vectors x∗ and x̂ satisfy the following equation∑
i,j

x̂i,j = 2
∑
i,j

x∗
i,j .

By Assumption 2, it follows that x̂ is an admissible solution to the following linear program:

LP′
α :

minimize 1
2

N∑
i=1

xi,1 + 1
2

M∑
j=1

x1,j

subject to xi,1 ≥
1

DKL(Fuiv1 ||Fuα,iv1)d(δ, 1− δ), for i ∈ [N]

x1,j ≥
1

DKL(Fu1vj ||Fu1vα,j)d(δ, 1− δ), for j ∈ [M].

Thus, the optimal solution to LP′
α is a lower bound on the sample complexity. This lower

bound holds for any α > 0. Letting α go to zero establishes the proof of Theorem 3.A.3. 2

We next show lower bounds on the sampling complexity for stochastic rewards according to
normal distributions, and then after according to Bernoulli distributions.

Theorem 3.A.5. Assume that stochastic rewards of item pairs have normal distributions with
unit variance. Then, we have

E[τδ] ≥ A(u, v)
(

log
(1
δ

)
− 1

)

where
A(u, v) =

∑
i∈[N]:∆U

i >0

1
(v1∆U

i)2 +
∑

j∈[M]:∆V
j >0

1
(u1∆V

j)2 .

Proof: For stochastic rewards of item pairs according to normal distributions with unit
variances, we have DKL(Fµ1 || Fµ2) = (µ1 − µ2)2/2. This combined with the fact,

d(δ, 1− δ) = (1− 2δ) log
(

1− δ
δ

)
≥ log

(1
δ

)
− 1

yields the statement of the theorem. 2

Theorem 3.A.6. Assume that stochastic rewards of item pairs are Bernoulli random variables.
Then, we have

E[τδ] ≥
min{u1v1, 1− u1v1}

4 A(u, v)
(

log
(1
δ

)
− 1

)
.

Proof : If for some α ∈ (0, 1/2], α ≤ q ≤ 1− α, then

d(p, q) ≤ 2
α

(p− q)2.

Let us first consider the term DKL(Fuiv1 ||F(ui+∆U
i)v1

). Let p = uiv1 and q = (ui + ∆U
i)v1.

Note that q = u1v1. We can apply the above upper bound for the KL divergence by taking

57

CHAPTER 3. MATCHING BANDIT

α = min{u1v1, 1− u1v1}, and note that (p− q)2 = (v1∆U
i)2. It follows

DKL(Fuiv1 ||F(ui+∆U
i)v1

) ≤ 2(v1∆U
i)2

min{u1v1, 1− u1v1}
.

By the same arguments, we have

DKL(Fu1vj ||Fu1(vj+∆V
j)) ≤

2(u1∆V
j)2

min{u1v1, 1− u1v1}
.

2

3.A.2 Pair-Elim-Mono algorithm

Algorithm description and pseudo-code

The Pair-Elim-Mono algorithm is similar to the Pair-Elim algorithm. The main differences
are in the definition of the confidence intervals and the set of active pairs. The pseudo-code of
the algorithm is shown in Algorithm 16.

Algorithm 16: Pair-Elim-Mono
input : set of items U , precision δ (or 1

T) and pure_explore
1 t = 0, C = X = Cw = Xw = [0]2N×2N , S = {(i, j)|i ∈ [2N], j ∈ [2N], i ̸= j};
2 while t ≤ T do
3 for window w = 0, 1, 2, . . . do
4 QV+, Q

V
− ← confidence_bound(Xw, Cw, 22w

, QV+, Q
V
−,False);

5 QU+, Q
U
− ← confidence_bound(X,C, T,QU+, QU−, pure_explore);

6 S ← active_entries(QU+, QU−, QV+, QV−,S);
7 for (i, j) ∈ S do
8 X(i, j)← X(i, j) + xi,j,t;
9 C(i, j)← C(i, j) + 1;

10 Xw(j, i)← Xw(j, i) + xi,j,t+1;
11 Cw(j, i)← Cw(j, i) + 1;
12 s← s+ 2, t← t+ 2:;
13 end
14 if s > 22w then
15 // Change time window;
16 s = 0, Cw = Xw = [0]N×M ;
17 end
18 if pure_explore and optimal_pair(QU+, QU−) then
19 return optimal pair;
20 end
21 end
22 end

The function confidence_bound(X,C, h,Q+, Q−, p) updates Q+ and Q− as follows. For
each (i, j) ∈ U × U , if C(i, j) = kl, with kl := ⌈4l+1 log(h)⌉ for some integer l > 0, then:

Q−(i, j) = X(i, j)
C(i, j) −

√
log(h)
kl

and Q+(i, j) = X(i, j)
C(i, j) +

√
log(h)
kl

.

58

3.A. APPENDIX

If C ′(i, j) +∑2N
k=1,k ̸=i,j C(i, k) = kl for some kl, then:

Q−(i, 2N + j) =
∑2N
k=1,k ̸=i,j X(i, k)∑2N
k=1,k ̸=i,j C(i, k)

−

√
log(h)
kl

and

Q+(i, 2N + j) =
∑2N
k=1,k ̸=i,j X(i, k)∑2N
k=1,k ̸=i,j C(i, k)

+
√

log(h)
kl

.

The value used for parameter βl depends on h and p. In the case where p is false, βl = h. When
p is true βl = π

√
4N(2N − 1)h/3 · l

The function active_entries updates S as follows. For any item i:
• if there exist two entries j and j′ s.t. for some k, QU+(i, k) < QU−(j, k) and for some k′,
QU+(i, k′) < QU−(j′, k′), then all entries (i, l) and (l, i) are removed from S.

• if there exist two entries j and j′ s.t. for some k, QV+(i, k) < QV−(j, k) and for some k′,
QV+(i, k′) < QV−(j′, k′), then all entries (l, i) are removed from S.

• if there exist an entry j s.t. for some k, QU+(i, k) < QU−(j, k) then all entries (i, l) and (l, i)
are removed from S except for (i, j) and (j, i).

• if there exist an entry j s.t. for some k, QV+(i, k) < QV−(j, k) then all entries (l, i) are
removed from S except for (j, i).

Proof of the upper bounds

Many computational steps of the two following proofs are similar to those given in Appendix3.A.1
and are not repeated here.

Proof of Theorem 3.3.3 (Regret) The proof goes as follows. Pair-Elim-Mono algorithm
tracks 2N(N − 1) row parameters, and there are less than T confidence interval updates. Thus,
Lemma 3.A.1 together with a union bound yield the following bound

P[A] ≤ 4N(N − 1)
T

. (3.14)

Similarly, we have
wmax∑
w=0

22w
P[Bw] ≤ 4N(N − 1)(log2(log2(T)) + 2). (3.15)

From Lemma 3.A.2, under event A and Bw, the number of sampling steps where column j
is sampled against row 1 or row 2, n1,j,w and n2,j,w, during time window w are bounded as

n1,j,w ≤
⌈

64 log(22w)
(u1∆2,j)2

⌉
and n2,j,w ≤

⌈
64 log(22w)
(u2∆1,j)2

⌉
.

Thus, the total regret for sampling of pair (1, j), R1,j(T), is bounded as

R1,j(T) ≤ 512
u1∆2,j

log(T) + 2 log2(log2(T)) + 4 (3.16)

and the fact u1∆2,i < u2∆1,i gives

R2,j(T) ≤ R1,j(T). (3.17)

59

CHAPTER 3. MATCHING BANDIT

Similarly, we have

Ri,1(T) ≤ 128
u1∆2,i

log(T) + 1 (3.18)

and
Ri,2(T) ≤ Ri,1(T). (3.19)

Under assumption that event A occurs, rows 1 and 2 are active at every iteration. Thus,
at every sampling step, column j is sampled against the two optimal rows and is definitely
eliminated at most once it is found smaller than column 2, which gives

nj,w ≤
⌈

64 log(22w)
(u1∆2j)2

⌉
.

Consider a doubly sub-optimal pair (i, j) with i > j. Doubly sub-optimal pair (i, j) definitely
stops being sampled as soon as i has been deemed smaller than any other item ̸= j. Before this
happens, i can be compared with 1 or 2 against at least one of the active columns. The number
of sampling steps before doubly sub-optimal pair (i, j) is definitely eliminated is thus upper
bounded as

nij =
⌈

128 log(T)
(ũmin∆2,i)2

⌉
.

with ũmin = min{umin, µU}, umin = min{uj : j ∈ [C], uj > 0}.
Consider a doubly sub-optimal pair (i, j) with i < j. It may happen that the order i < j

is discovered before any other. In that case, i is only sampled against j and can no longer be
compared with either 1 or 2 at every sampling step, since j might get eliminated as a column.
However, doubly sub-optimal pair (i, j) is still definitely eliminated as soon as j is deemed
smaller than any other entry, and number of sampling steps before doubly sub-optimal entry
(i, j) is definitely eliminated is thus upper bounded as

nij =
⌈

128 log(T)
(ũmin∆2,j)2

⌉
.

Thus, the regret for the sampling of a doubly sub-optimal entry (i, j) is bounded as

wmax∑
w=0

Ri,j,w ≤512∆2,i + ∆2,j
(u1∆2,j)2 log

(
128

(ũmin min{∆2,i,∆2,j})2 log(T) + 1
)

+ log2

4 log
(

128 log(T)
(ũmin min{∆2,i,∆2,j})2 + 1

)
+ 1

 (3.20)

+ 512
∆U
i + ∆V

j

u1∆2
2,j

log
(
4N(2N − 1)

)
+ 4 log2(4 log2(4N(2N − 1))) + 4.

The results follows from equations (3.14), (3.15), (3.16), (3.17), (3.18), (3.19) and (3.20).2
Proof of Theorem 3.3.4 (Pure Exploration): The proof goes as follows. Let A be the

"good event" that all high probability confidence intervals hold. Lemma 3.A.1 together with a
union bound on the 4N(2N − 1) tracked parameters and all confidence interval updates gives

P[A] ≤ δ.

60

3.A. APPENDIX

Let τU be the number of sampling steps after which the best pair is detected with probability
at least 1− δ. The following holds:

τU ≤ 64
(ũmin∆23)2 log

(1
δ

)
+ 64

(ũmin∆23)2 log
(
π2N(M + 1)

3

)

+128 log2

(
log2

(1
ũmin∆23

)
+ 2

)

We call bad samples the sampled pairs (i, j) with j > 2. The expected number of "bad"
samples due to the failures of a confidence interval during any time window w is bounded as

wmax∑
w=0

22w
P[Bw] ≤ 2N(2N − 1)(log2(log2(2N(2N − 1)τU)) + 2).

Under the good event the confidence intervals hold, the number of sampling steps where
column j is sampled, τj , j > 2, is bounded as

τj ≤
256

(u1∆2j)2 log
(
2N(2N − 1)τU

)
+ log2

(
4 log(2N(2N − 1)τU)) + 1

)
.

In each of those sampling steps, column j is sampled less than 2(2N − 1) times.
Let τ2 be the number of samples to detect 1 when sampling against 2. The following holds

τ2 ≤ 64

 N∑
i=3

1
(u2∆1,i)2

 log
(1
δ

)

+128

 N∑
i=2

1
(u2∆1,i)2

1
2 log

(
π22N(2N − 1)

3

)
+ log2

log2

(
1

u2∆1,i

)
+ 2



 .

Let τ1 be the necessary number of samples to detect 2 when sampling against 1. The
following holds

τ1 ≤ 64

 N∑
i=3

1
(u1∆2,i)2

 log
(1
δ

)

+128

 N∑
i=3

1
(u1∆2,i)2

1
2 log

(
π22N(2N − 1)

3

)
+ log2

log2

(
1

u1∆2,i

)
+ 2



 .

The inequality u1∆2,i ≤ u2∆1,i gives τ2 ≤ τ1.
Under event A, the total number of samples is less than 4τ1 +2(2N−1)τj +∑wmax

w=0 22w
P[Bw],

which gives the result. 2

Proof of the lower bound As in Appendix 3.A.1, we admit Assumption 2. We prove the
following theorem.

61

CHAPTER 3. MATCHING BANDIT

Theorem 3.A.7. For any δ-PAC algorithm:

E[τδ] ≥
1
2

 n∑
i=2

1
d
(
θiθ1, (θi + ∆1,i + α)θ1

)
 d(δ, 1− δ) (3.21)

and

E[τδ] ≥
1
2

 n∑
i=3

1
d̃ (θiθ2, θ1θ2)

 d(δ, 1− δ) (3.22)

where d̃ (uiu2, u1u2) = min{d (uiu2, u1u2) , d (u1u2, uiu2)}.

We prove (3.21) by considering the classes of alternative models:

Uα = {uαi = (u1, .., u
′
i, ..., un) with uαi = ui ± (∆i + α) | i ∈ [2, N]}.

Let EMu denote the event that the algorithm outputs pair (1, 2). For any δ-PAC algorithm,
Pu(EMu) ≥ 1− δ and Puα

i
(EMu) ≤ δ. This together with Lemma 3.A.4 gives that the solution

to the following linear program is a lower bound on the sample complexity of any δ − PAC
algorithm:

LPα :
minimize

∑
i<j

xi,j

subject to
i−1∑
j=1

xj,id
(
uiuj , u

′
iuj
)

+
2N∑

j=i+1
xi,jd

(
uiuj , u

α
i uj

)
≥ d(δ, 1− δ), i ∈ {2, . . . , 2N}

Let x∗ = (x∗
i,j : (i, j) ∈ [2N] × [2N]) be an optimal solution to LPα, and let x̂ = (x̂i,j :

(i, j) ∈ [2N]× [2N]) be defined as follows

x̂i,j =


x̂1,i = ∑i−1

j=1 x
∗
j,i +∑N

j=i+1 x
∗
i,j for i ∈ {2, . . . , 2N}

x̂l,i = 0 for l > 1, i ∈ {2, . . . , 2N}
0 otherwise.

x∗ and x̂ satisfy the following equation∑
i,j

x̂i,j = 2
∑
i,j

x∗
i,j .

Thus, the solution of the following linear program is a lower bound on the sample complexity:

LP′
α :

minimize 1
2

n∑
i=2

xi,1

subject to xi,1 ≥
1

d
(
uiu1, uαi u1

)d(δ, 1− δ), i ∈ {2, . . . , 2N}

62

3.A. APPENDIX

Equation (3.22) is obtained by considering the class of alternative models:

uswitch = {ui = (ui, .., u1, ..., un) | i ∈ {3, . . . , 2N}}.

Considering the event EMu and Lemma 3.A.4 , we get that the solution of the following
linear program is a lower bound on the sample complexity of any δ − PAC algorithm:

LPswitch :
minimize

∑
i<j

xi,j

subject to
n∑

j=2,j ̸=i
x1,jd

(
u1uj , uiuj

)
+

n∑
j=2,j ̸=i

xj,id
(
uiuj , u1uj

)
≥ d(δ, 1− δ), i ∈ {3, . . . , 2N}

Using the same technique, from an optimal solution x∗ we can build an alternative solution
that satisfies the constraints.

∀i ∈ {1} ∪ [3, N] : x̂2,i =
i−1∑
j=2

xj,i +
N∑

j=i+1
xj,i

x̂i,j = 0, j ∈ {3, . . . , 2N}

As before, we also have ∑
i,j

x̂i,j = 2
∑
i,j

x∗
i,j .

Thus, the optimal solution to the following linear program is a lower bound on the sampling
complexity:

minimize 1
2

x1,2 +
∑
i

x2,i


subject to xi,2d (uiu2, u1u2) + x1,2d (u1u2, uiu2) ≥ d(δ, 1− δ), i ∈ {3, . . . , 2N}

which gives Equation (3.22).
As in Appendix 3.A.1, specific lower bounds can be obtained for Bernoulli and unit-variance

Gaussian random variables.

3.A.3 Pair-Select algorithm

Algorithm description and pseudo-code

Algorithm 17: Pair-Elim-Mono
input : set of items U , precision δ

1 Detect items 1, 2 with Pair-Elim-Mono;
2 Sample unranked items against items 1, 2 ;

63

CHAPTER 3. MATCHING BANDIT

Proof of the upper bound

The proof goes as follows. Recall the following definitions:

∆2,i = u2i − u2i+1 and ∆2i−1 = u2i−2 − u2i−1.

with the convention u2N+1 = u2N−2.

During the second phase of the algorithm, at least half of the gathered samples involving
item i are pairs (1, i). Repeating the computations used to obtain Equation (3.8), the number
of samples gathered during the second phase of the algorithm, τm, is bounded as:

τm ≤ 64

 N∑
i=3

1
(u1∆i)2

 log
(1
δ

)

+128

 N∑
i=3

1
(u1∆i)2

1
2 log

(
π22N(2N − 1)

3

)
+ log2

(
log2

(1
u1∆i

)
+ 2

)
 .

The upper bound on the number of samples to detect 1 and 2, is the same as the upper
bound on the sample complexity of Pair-Elim-Mono. Noticing that u1∆i ≤ u1∆2,i and
summing the bounds on the number of samples during each of the two phase completes the
proof. 2

Proof of the lower bound

Note that the lower bound of Theorem 3.A.7 still holds.

To ease the notations, we will note

u2i ±∆2,i = u2i+1 and u2i−1 ±∆2i−1 = u2i−2.

Theorem 3.A.8. For any δ-PAC algorithm, we have

E[τδ] ≥
1
2

 n∑
i=2

1
d
(
uiu1, (ui ±∆i)u1

)
 d(δ, 1− δ) (3.23)

We prove the theorem by considering the following classes of alternative models:

uα = {uαi = (u1, .., u
′
i, ..., u2N) with uαi = ui ± (∆i + α) | i ∈ {2, . . . , 2N}}.

Let EMu denote the event that the algorithm returns the optimal matching. For any δ-PAC
algorithm, Pu(EMu) ≥ 1 − δ and Puα

i
(EMu) ≤ δ. Using this with 3.A.4 we obtain that the

solution to the following linear program is a lower bound on the sample complexity of any
δ-PAC algorithm:

64

3.A. APPENDIX

LPα :
minimize

∑
i<j

xi,j

subject to
i−1∑
j=1

xj,id
(
uiuj , u

′
iuj
)

+
2N∑

j=i+1
xi,jd

(
uiuj , u

α
i uj

)
≥ d(δ, 1− δ), i ∈ {2, . . . , 2N}

Let x∗ = (x∗
i,j) be an optimal solution to LPα.

We can build an alternative solution satisfying the constraints of the linear program:

∀i ∈ {2, . . . , 2N} : x̂1,i =
i−1∑
j=1

x∗
j,i +

2N∑
j=i+1

x∗
i,j

x̂l,i = 0, ∀l > 1.

We have ∑
i,j

x̂i,j = 2
∑
i,j

x∗
i,j .

Thus, the solution of the following linear program is a lower bound on the sample complexity:

LP′
α

minimize 1
2

2N∑
i=2

xi,1

subject to xi,1 ≥
1

d
(
uiu1, uαi u1

)d(δ, 1− δ), i ∈ {2, . . . , 2N}

This lower bound holds for any α > 0, so we can let α go to zero and get Equation (3.A.6).
As in Appendix 3.A.1, specific lower bounds can be obtained for Bernoulli and unit-variance

Gaussian random variables.

3.A.4 simple-Adaptive-Matching algorithm

Algorithm description and pseudo-code

The items are split into even clusters with high probability. The sample_matching procedure
samples the items in the clusters following a round-robin tournament. For a cluster S, the
round-robin tournaments guarantees that each item has been matched once with any other item
in the cluster each |S| − 1 iterations.

The goal of the sample_matching procedure is to ensure that at every iteration, any two
items i, i′ in the same cluster S have been matched the same number of times with any other
item. This means that, for any item j ∈ [2N] \ {i, i′}, C(i, j) = C(i′, j), which guarantees:

E[X(i, j)−X(i′, j)]
C(i, j) = uj∆i,i′ . (3.24)

65

CHAPTER 3. MATCHING BANDIT

Algorithm 18: simple-Adaptive-Matching
input : set of items [2N] and horizon T

1 t = 0, C = X = C̃ = X̃ = [0]2N×2N ,S = {[2N]};
2 for t = 1 . . . T do
3 mt ← sample_matching(S, t);
4 for (i, j) ∈ mt do
5 X̃(i, j)← X̃(i, j) + xi,j,t;
6 C̃(i, j)← C̃(i, j) + 1;
7 end
8 for S ∈ S do
9 if ∃i ∈ S s.t.

∑
j∈S C̃(i, j) = |S| − 1 then

10 // the notation X([S], :) is a vectorized numpy index notation;
11 X([S], :), C([S], :)+ = X̃([S], :), C̃([S], :);
12 X̃([S], :), C̃([S], :) = 0;
13 end
14 end
15 Q+, Q− ← confidence_bound(X,C, T,Q+, Q−, S);
16 for S ∈ S do
17 Order items in s according to Q+;
18 for i ∈ {2, . . . , |S|} do
19 if Q+[i] < Q−[i− 1] then
20 Split S between i and i− 1;
21 end
22 end
23 end
24 end

This implies that it is possible to compare to items within the same cluster by comparing the
total reward received for both of those items.

We define an ordered sequence of clusters as a sequence Sk, . . . , Sk′ such that, for any
l ∈ {k, . . . , k′ − 1}

∀(i, j) ∈ Sl × Sl+1 : i < j.

At every iteration, S is an ordered sequence of clusters. We note S[k] the kth cluster of the
sequence.

The function confidence_bound computes confidence bounds for the total reward per item
when matched with an item within the same cluster or in a lower ranked cluster. Consider any
item i ∈ [2N] and k such that i ∈ S[k]. If ∑2N

j=1C(i, j)1{j∈S[k′]|k′≤k} = kl for some l, then

Q−(i) =
∑2N
j=1X(i, j)1{j∈S[k′]|k′≤k}

kl
−

√
log(T)
kl

and

Q+(i) =
∑2N
j=1X(i, j)1{j∈S[k′]|k′≤k}

kl
+
√

log(T)
kl

.

Equation 3.24 implies that for any two items i, i′ ins the same cluster S[k]:

66

3.A. APPENDIX

E[
∑2N
j=1(X(i, j)−X(i, j))1{j∈S[k′]|k′≤k}

kl
] = ∆i,i′

∑2N
j=1 ujC(i, j)1{j∈S[k′]|k′≤k}

kl

≥ ∆i,i′
1

|S[k]| − 1
∑

j∈S[k]\{i,i′}
uj (3.25)

Proof of the upper bound

The proof goes as follows. The simple-Adaptive-Matching algorithm tracks the expected
rewards per item. Lemma 3.A.1 together with a union bound on the 2N parameters and the
confidence interval updates implies

E[R(T)] ≤ E[R(T) | A] + TP(Ā) ≤
N∑
i=1

N∑
j=i+1

Ri,j(T) + 4N.

We call inter-pair match between pair i and pair j the match of an item of pair i with
an item of pair j. The per iteration average regret of a tournament on a cluster S can be
decomposed into the sum of regrets of inter-pair matches.

Lemma 3.A.9. Assume that items in S = {2k − 1, . . . , 2l}, for 1 ≤ k < l ≤ K, such that
|S| = 2K, are matched according to a round-robin tournament, so that every pair (i, j) with
i ̸= j is matched exactly once over 2K − 1 iterations. Then, the expected average regret, denoted
as RS, is given as

RS = 1
2K − 1

K∑
i=1

K∑
j=i+1

ri,j

where
ri,j = (u2i − u2j−1)(u2i−1 − u2j) + (u2i−1 − u2j−1)(u2i − u2j).

This proof of Lemma 3.A.9 is given in Appendix 24.

Lemma 3.A.10. The total number of sampled matchings TS before the set of items [2K] is
separated is upper bounded as

TS ≤
64

(µ̃−{k,k+1}∆k,k+1)2 log(T) + 2K − 1

for all k ∈ [2K − 1],where

µ̃−{k,k+1} = 1
2K − 1

2K∑
i=1

ui − uk − uk+1

 . (3.26)

The last lemma follows from Lemma 3.A.2 and equation 3.25.
Let Ri,j(T) denote the total regret incurred due to interactions between pairs i and j,

written

Ri,j(T) =
T∑
t=1

∑
{k,l}∈{2i−1,2i}×{2j−1,2j}

1{(k,l)∈mt}

(1
2(u2i−1u2i + u2j−1u2j)− uluk

)
.

Let Ei,j(S) denote the event that all inter-pair matches between pairs i and j are sampled

67

CHAPTER 3. MATCHING BANDIT

before S is separated. Note that

E[Ri,j(T) | Ei,j(S)] ≤ TS
|S| − 1ri,j

which with some computations yield the following lemma.

Lemma 3.A.11. Assume that all inter-pair matches between pairs i and j are sampled before
S is separated, for a set S such that |S| = 2K and K ≥ 3. Then under event A, the total regret
due to inter-pair matches between pairs i and j is upper bounded as

E[Ri,j(T) | Ei,j(S)] ≤ 640
K − 2

1
∆min

log(T) + 2.

If K = 2, the bound is

E[Ri,j(T) | Ei,j(S)] ≤ 384 1
∆min

log(T) + 2.

The proof of Lemma 3.A.11 is given in Appendix 24.
The total regret incurred for inter-pair matches between pairs i and j is bounded as

E[Ri,j(T)] ≤ max
S⊆[2N]:(i,j)∈S

E[Ri,j(T) | Ei,j(S)].

Adjacent pairs can interact in a cluster S with |S| = 2K and either 2 < K ≤ N or K = 2.
The total regret for interactions between pair i and pair i + 1 is thus upper bounded by
Lemma 3.A.11 as

Ri,i+1(T) ≤ max
S⊂[2N]:(i,i+1)∈S

E[Ri,i+1(T) | Ei,i+1(S)]

≤ max
{

384, max
2<K≤N

640
K − 2

}
log(T)
∆min

+ 2

≤ 640
∆min

log(T) + 2.

All non-adjacent items can only i and j interact in a cluster s.t. K ≥ j − i+ 1 ≥ 3. Thus,
Lemma 3.A.11 gives

Ri,j(T) ≤ 640
(j − i− 1)∆min

log(T) + 2.

Putting the pieces together, we have

R(T) ≤

N +
N∑
i=1

N∑
j=i+2

1
j − i− 1

 640 log(T)
∆min

+N2

≤

N +
N∑
i=1

N−i−1∑
k=1

1
k

 640 log(T)
∆min

+N2

≤

2N +
N∑
i=1

log(N − i− 1)

 640 log(T)
∆min

+N2

≤ 640N(log(N) + 2)
∆min

log(T) +N2.

68

3.A. APPENDIX

Proof of Lemma 3.A.9 The items in set S = {2k − 1, . . . , 2l} are matched according to a
round-robin tournament. This means that each pair (i, j) such that i ̸= j is matched exactly
once over 2K − 1 iterations. Therefore, the total expected reward over 2K − 1 iterations is:

2l∑
i=2k−1

2l∑
j=i+1

uiuj .

And the optimal way to match items in set S gives the expected reward

l∑
i=k

u2i−1u2i.

It follows that the expected regret per iteration over 2K − 1 iterations is

RS =
l∑

i=k
u2i−1u2i −

1
2(2K − 1)

2l∑
i=2k−1

2l∑
j=2k−1,j ̸=i

uiuj

= 1
2(2K − 1)

p∑
i=l

l∑
j=k,j ̸=i

[u2i−1(u2i − u2j−1) + u2i−1(u2i − u2j)

+ u2i(u2i−1 − u2j−1) + u2i(u2i−1 − u2j)]

= 1
2K + 1

l∑
i=k

K−1∑
j=i+1

ri,j .

Proof of Lemma 3.A.11 We first compute the bound for a cluster S of size 2K where
K > 2, and then consider the case K = 2. Without loss of generality, we enumerate the items
as 1, . . . , 2K.

Case: K ≥ 3 Consider any two pairs i and j cluster S. The total regret for interactions
between the two pairs until time TS is bounded as follows:

E[Ri,j(T) | Ei,j(S)] =
TS∑
t=1

∑
{k,l}∈{2i−1,2i}×{2j−1,2j}

1{{uk,ul}∈mt}

(1
2(u2i−1u2i + u2j−1u2j)− uluk

)

≤ TS
2K − 1ri,j

≤ TS
2K − 1r1,K

≤ TS
2K − 1

[
(u1 − u2K)(u2 − u2K−1) + (u1 − u2K−1)(u2 − u2K)

]
≤ TS

2K − 12∆2
2,2K−1

where the last inequality holds by Assumption 1.
Let m = arg max{∆k,k+1 : 1 < k ≤ 2K − 1} and γ = mini∈[K−2] ∆2i,2i+1. Note that

∆2,2K−1 ≤ (K − 1)∆m,m+1 and ∆min ≤ γ2

69

CHAPTER 3. MATCHING BANDIT

and

uk ≥ u2N +
N−1∑

i=⌈k/2⌉
∆2i,2i+1.

Recall the definition of µ−m,m+1 in Equation (3.26). We have

(2K − 1)µ̃−{m,m+1} =
2K∑
k=1

uk − (um + um+1)

≥
2K∑
k=3

uk ≥ (2K − 2)u2K +
2K∑
k=3

N−1∑
i=⌈ k

2 ⌉

γ

≥ (2K − 2)u2K−1 + (K − 1)(K − 2)γ
≥ (K − 1)(K − 2)γ

Combining with Lemma 3.A.10, we have

TS ≤
64(2K − 1)2

(K − 1)2(K − 2)2γ2∆2
m,m+1

log(T) + 2K − 1.

Therefore, we have

Ri,j(T) ≤ 128
(K − 1)2∆2

m,m+1(2K − 1)2

(2K − 1)(K − 1)2(K − 2)2γ2∆2
m,m+1

log(T) + 2

≤ 128 (2K − 1)
(K − 2)2γ2 log(T) + 2

≤ 640
(K − 2)∆min

log(T) + 2

which completes the proof.

Case: K = 2 Under Assumption 1, the regret can be bounded as follows

R0,1(T) ≤ 642 · 3 log(T)(u2 − u3)2

(u1 + u4)2(u1 − u2)2 + 2

≤ 384 log(T)
(u1 + u4)2 + 2 ≤ 384 log(T)

(u2 − u3)2 + 2

≤ 384 log(T)
∆min

+ 2.

3.A.5 Adaptive-Matching algorithm

Pseudo-code

The main difficulty when removing Assumption 1, is that there is no reason to believe the
created clusters will contain an even number of items. For instance, set of items {1, . . . , 6}
may be split into {1, 2, 3}, {4, 5, 6}. In that case, items can no longer be matched within the
cluster they belong to alone. To tackle this difficulty, we introduce the Sample-Matching
procedure. As in the simplified setting, this procedure guarantees that two items within a
cluster are matched the same number of time with any other item.

The rest of the algorithm is similar to the simple-Adaptive-Matchingalgorithm.

70

3.A. APPENDIX

Algorithm 19: Adaptive-Matching
input : set of items [2N] and horizon T

1 t = 0, C = X = C̃ = X̃ = [0]2N×2N ,S = {[2N]};
2 for t = 1 . . . T do
3 mt ← Sample-Matching(S, t);
4 for (i, j) ∈ mt do
5 X̃(i, j)← X̃(i, j) + xi,j,t;
6 C̃(i, j)← C̃(i, j) + 1;
7 X̃(j, i)← X̃(j, i) + xi,j,t;
8 C̃(j, i)← C̃(j, i) + 1;
9 end

10 for S ∈ S do
11 // r(S)and L(S) defined in the description of Sample-Matching;
12 if ∃i ∈ S s.t.

∑
j∈S C̃(i, j) = r(S)|L(S)| then

13 X([S], :), C([S], :)+ = X̃([S], :), C̃([S], :) ;
14 X̃([S], :), C̃([S], :) = 0;
15 end
16 end
17 Q+, Q− ← confidence_bound(X,C, T,Q+, Q−,S);
18 for S ∈ S do
19 Order items in S according to Q+;
20 for i ∈ [2, |s|] do
21 if Q+[s(i)] < Q−[s(i− 1)] then
22 Split S between S(i) and S(i− 1);
23 if S is part of a chain of clusters H then
24 X̃([H], :), C̃([H], :) = 0;
25 end
26 end
27 end
28 end
29 end

As in simple-Adaptive-Matching, the function confidence_bound computes confidence
bounds for the total reward per item when matched with an item within the same cluster
or in a lower ranked cluster. Consider any item i ∈ [2N] and k such that i ∈ S[k]. If∑2N
j=1C(i, j)1{j∈S[k′]|k′≤k} = kl for some l, then

Q−(i) =
∑2N
j=1X(i, j)1{j∈S[k′]|k′≤k}

kl
−

√
log(T)
kl

and

Q+(i) =
∑2N
j=1X(i, j)1{j∈S[k′]|k′≤k}

kl
+
√

log(T)
kl

.

The main difference between the simple-Adaptive-Matching and the Adaptive-Matching
algorithms is the Sample-Matching procedure, which is detailed in subsection 29.

71

CHAPTER 3. MATCHING BANDIT

Cluster properties

Before presenting the Sample-Matching procedure and the analysis of the algorithm, we
introduce some needed terminology.

Recall that an ordered sequence of clusters is a sequence Sk, . . . , Sk′ such that, for any
l ∈ {k, . . . , k′ − 1}

∀(i, j) ∈ Sl × Sl+1 : i < j.

In the optimal matching, the items are matched in decreasing order. Hence, only the lowest
and highest ranked items of a cluster Sl can be optimally matched outside the cluster.

• Isolated cluster: A cluster is said to be an isolated cluster if all items in this cluster
have their optimal matching partners within this cluster.

• Chain of clusters: A chain of clusters is an ordered sequence of clusters such that every
cluster in the chain contains an item whose optimal match is in the following cluster
(except for the last one). Also, each item and its optimal matching partner either belong
to the same cluster or to adjacent clusters in the chain.

• Trivial chain of clusters: A chain is referred to be a trivial chain if it is of the form
{2k − 1}, {2k, . . . , 2l − 1}, {2l}, for any 1 ≤ k < l ≤ N .

Note that if cluster Si and cluster Si+1 are adjacent clusters in a chain, the highest ranked
item of cluster Si is optimally matched with the lowest ranked item of cluster Si+1.

Note that within any cluster S, the items are not sorted in monotonic order. Therefore,
knowing the highest -or lowest- ranked item of S does not provide any information about which
item it should be matched with, as it could be any of the other un-ranked items. Also, the
sampling policy and confidence interval’s updates remain unchanged after splitting S between
the top -or bottom- item and the rest of the items. Thus, for simplicity, even if the highest or
the lowest element of the cluster (alone) is discovered, in the analysis, we consider that cluster
S is not yet split.

Sample-Matching procedure

At a high level, Sample-Matching is a procedure that constructs a list of matchings M̃, then
iteratively samples each matching in this ensemble. For each pair (i, j), we denote with pi,j the
proportion of draws of pair (i, j) in the list M̃:

pi,j = 1
|M̃|

∑
m∈M

1{(i,j)∈M}

Sampling guarantees The Sample-Matching procedure guarantees the following proper-
ties:

• Items residing in an isolated cluster S are uniformly matched among themselves:

pi,j = 1
|S| − 1 , ∀(i, j) ∈ S

2, i ̸= j.

• For every chain of clusters Sk, . . . , Sk′ , items residing within each cluster Si of the chain,
are uniformly matched among themselves

pi,j = |Sl| − 2
|Sl|(|Sl| − 1) , ∀(i, j) ∈ S

2
l , i ̸= j, l ∈ {k + 1, . . . , k′ − 1},

72

3.A. APPENDIX

pi,j = 1
|Sl|

, ∀(i, j) ∈ S2
l , i ̸= j, l = k or l = k′.

• All potential pairs (i, j) ∈ Sl × Sl+1, for l ∈ {k, . . . , k′ − 1}, are sampled uniformly;

pi,j = 1
|Sl||Sl+1|

, ∀(i, j) ∈ Sl × Sl+1, l ∈ [k, k′ − 1].

Let ν(S) be the sampling frequency of cluster S, which has values as follows:

ν(S) =


|S| − 1 if S is an isolated cluster
|S| if S is the first or the last cluster of a chain
|S|+ 1 if S is an intermediate cluster of a chain.

(3.27)

Let i and i′ be to items in cluster S[k]. If S[k] is an isolated or the first cluster of a chain,
then:

E[
∑2N
j=1(X(i, j)−X(i, j))1{j∈S[k′]|k′≤k}

kl
] ≥ ∆i,i′

1
ν(S[k])

∑
j∈S[k]\{i,i′}

uj (3.28)

If S[k] is an within or the last cluster of a chain, then:

E[
∑2N
j=1(X(i, j)−X(i, j))1{j∈S[k′]|k′≤k}

kl
] ≥ ∆i,i′

1
ν(S[k])

 ∑
j∈S[k]\{i,i′}

uj + 1
|S[k − 1]|

∑
j∈S[k−1]

uj


(3.29)

Note that in the case of isolated clusters, equations (3.25) and (3.28) are equivalent.

General procedure The Sample-Matching procedure constructs ensemble M̃ as follows.
Each cluster S = [k, l] is associated with a list of matching schemes L(S) = (l1, . . . , lr).
Each matching schemes li indicates which items should be paired together. For example,
li = {(a, b), . . . , (y, z)} indicates that items a and b, and items y and z should be matched
together. If S is part of a chain, matching schemes li may contain at most one pair (a,next) to
indicate that item i should be matched with an item of the next cluster. It may also contain at
most one pair (a,previous)) to indicate a match with the previous cluster. Constructing the
list of matching schemes therefore depends on the type of the cluster: whether the cluster is an
isolated cluster, the first, an intermediate, or the last cluster of the chain.

Each cluster S is associated with sampling rate rS , that depends on the position of the
cluster in the chain. For each cluster S, the matching schemes in LS are chosen according to a
deterministic round-robin schedule, with each matching being chosen rS times before moving
on to the next one. At iteration t, the Sample-Matching procedure builds a full matching by
aggregating the matching schemes chosen for individual clusters.

Construction of a list of matching schemes We discuss separately how lists of matching
schemes are constructed for each type of the cluster.

• Isolated cluster: The list of matching schemes L(S) is the scheduling list of an all-meet-
all tournament over items in S.
Note that in this case we have |L(S)| = |S| − 1.

73

CHAPTER 3. MATCHING BANDIT

• First or last cluster in a chain: A virtual item "next" or "previous" is added to cluster
S, and, then, L(S) is built using the isolated clusters’ method.
Note that in this case we have |L(S)| = |S|.

• Intermediate cluster in a chain: An auxiliary list of matchings L̃(S) = (l1, . . . , l|S|−1)
is built using the isolated clusters’ method. The list L(S) is iteratively constructed from
L̃(S) using Algorithm 20.
Note that |L(S)| = (|S| − 1)|S|. For each item a in S, pairs (a,prev) and (a,next) each
appear in |S| − 1 matching schemes . Each pair (a, b) ∈ S2, a ̸= b appears in |S| − 2
matching schemes. Also note that the matching schemes in L(S) are ordered so that all
pairs (a,prev) and (a,next), a ∈ S, appear once in each sub-list (ln|S|+1, . . . , l(n+1)|S|),
n ∈ {0, . . . , |S| − 2}.

Algorithm 20: InterList
1 L(S) = ∅;
2 L̃(S) = (l1, . . . , l|S|−1);
3 for li ∈ L̃(S) do
4 for (a, b) ∈ li do
5 li ← li \ (a, b);
6 L(S)← L(S) ∪

(
li, (a,next), (b,prev)

)
;

7 L(S)← L(S) ∪
(
li, (b, next), (a,prev)

)
;

8 end
9 end

Sampling rates and synchronization: If (a,next) and (prev, b) appear in the matchings
of adjacent clusters S1 and S2, pair (a, b) is sampled. A synchronization method is used in
Sample-Matching to ensure all pairs (a, b) ∈ S1 × S2 are sampled uniformly.

Note that their is no need for such a synchronization for an isolated cluster S: the sampling
rate rS is set to 1, and Sample-Matching iterates over L(S). Note that Sample-Matching
and sample_matching are equivalent on an isolated cluster.

The following paragraph explains, without loss of generality, the synchronisation method of
Sample-Matching for specific chain S1, . . . , SK .

Each cluster Si in the chain is associated with a sampling rate rSi that depends on its
position in the chain and the size of the adjacent clusters.

• If i is odd, rSi = 1.

• If i is even, rSi = LCM(|Si−1|, |Si+1|), with the convention |SK+1| = 1, and where
LCM(a, b) denotes the least common multiplier of a and b.

Sample-Matching selects the same matching schemes for cluster S, rS times, before
switching to the next one. Suppose Sample-Matching starts on the chain S1, . . . , SK at
iteration tinit. The following properties hold:

• If i is odd, all items in cluster Si are sampled against the same items between iterations
tinit and tinit + n|L(S)|, for every integer n.

• If i is even, all items in cluster Si are sampled against the same items between iterations
tinit and tinit + nr(S)|L(S)|, for every integer n.

74

3.A. APPENDIX

Consider the event that a cluster Si is separated at iteration tsplit. Sample-Matching
determines the list of matching schemes and the sampling rates associated with the newly
created clusters, and from iteration tsplit + 1, the matchings are sampled following those new
list of matching schemes and the sampling rates.

It may happen that at iteration tsplit, Sample-Matching is stopped in the middle of the
round on L(S) for some cluster S. Thus, some couple of items in the cluster have not been
uniformly sampled against the same other items. To correct this, all samples gathered after
iteration (tsplit − [(tsplit − tinit) (mod r(S)|L(S)|)]) are dropped for the items in S.

Lemma 3.A.12. The sum of the regret for all dropped samples is at most 32N6.

Proof : Note that for any cluster S, it always holds that r(S)|L(S)| < (2N)4. Thus, the
samples of at most (2N)4 iterations are not yet stored in X and C at any given split. Those
iterations all cost at most N in terms of regret, and there are at most 2N splits. 2

Proof of the upper bound

The proof goes as follows. The Adaptive-Matching algorithm tracks estimators of the
expected value of the total reward received for each of the 2N parameters. Lemma 3.A.1,
together with a union bound and the fact that the regret per iteration is always smaller than N
imply

E[R(T)] ≤ E[R(T) | A] + TP(Ā) ≤ E[R(T) | A] + 4N2.

We denote with RSk,...,Sk′ the average regret of the Sample-Matching procedure on the
chain of clusters Sk, . . . , Sk′ . The following lemma states that the average regret of Sample-
Matching on any chain of clusters can be decomposed into the sum of average regrets for
isolated clusters and trivial chains of clusters.

Lemma 3.A.13 (Chain regret). The expected average regret of the Sample-Matching proce-
dure on a chain of clusters Sk, . . . , Sk′ is equal to

RSk,...,Sk′ = RSk∪{v(Sk+1)} +
k′−1∑
i=k+1

R{li−1},Si,{v(Si+1)} +R{lk′−1}∪Sk′

where v(Si) is a virtual item with parameter value ūSi = 1
|Si|

∑
k∈Si

uk, and li is the highest
ranked item in Si.

To transform the problem on chains of cluster onto a problem on isolated clusters and trivial
chains of clusters, we introduce some additional notations. We denote with St(i) the cluster to
which item i belongs to at iteration t, and we let Ei(t) be the event {St(2i) = St(2i− 1)}. Let
ht(j) be a virtual item such that

ht(j) = 1Ej(t)j + 1Ej(t)v(St(j)).

The virtual match event Vt(l, j), is defined as follows:

Vt(l, j) = ({l ∈ S(j)} ∩ {(l, j) ∈ mt}) ∪ ({l ∈ S(n∗(j))} ∩ Ej(t) ∩ {mt(l) ∈ S(j)}).

This means that an item l is "virtually" matched with item j when either item j belongs to the
same cluster as l and l is matched with j at iteration t, or l belongs to the same cluster as j’s
optimal neighbor n∗(j), j belongs to another cluster S and l is matched with an item in S at
iteration t.

75

CHAPTER 3. MATCHING BANDIT

We define R̃i,j(T) as follows:

R̃i,j(T) =
T∑
t=1

∑
k∈{2i−1,2i}

1Vt(2j−1,k)

(1
2(u2i−1u2i + u2j−1u2j)− ulu2j−1

)

+
T∑
t=1

∑
k∈{2i−1,2i}

1Vt(k,2j)

(1
2(u2i−1u2i + u2j−1u2j)− uluht(2j)

)
.

Note that under Assumption 1, R̃i,j(T) and Ri,j(T) are equivalent, since pairs of items are
never split into different clusters.

According to Lemma 3.A.13, the following equation holds:

N∑
i=1

N∑
j=i+1

Ri,j(T) =
N∑
i=1

N∑
j=i+1

R̃i,j(T).

It remains to bound R̃i,j(T).

Lemma 3.A.14 (Trivial chain regret). The average regret of the Sample-Matching procedure
on a trivial chain of clusters is upper bounded as

R{2k−1},[2k,2l−1],{2l} ≤
2

2K + 1(u2k−1 − u2l)(u2k − u2l−1)

+ 1
2K + 1

l−1∑
j=k+1

l−1∑
j′=j+1

rj,j′ + 1
2K + 1

p−1∑
j=k+1

rj,l + rk,j

where K = l − k.

Note that this is exactly the regret of uniform matching over items {2k − 1, . . . , 2l}, except
that all inter-pair matches between pairs k and l are the most favorable ones, namely (2k−1, 2l−1)
and (2k, 2l). Recall that an inter-pair match between a pair i and a pair j is the match of an
item of pair i with an item of pair j.

Recall the definition of ν(S) in equation (3.27). Note that R̃i,j(T) has the following
properties:

• If St(2i) ̸= St(2j − 1):
R̃i,j(t+ 1)− R̃i,j(t) = 0.

• If pairs i and j belong to the same cluster S between iterations t and t+ ν(S), then

R̃i,j(t+ ν(S))− R̃i,j(t) ≤ ri,j

which follows from Lemmas 3.A.14 and 3.A.9.

• If at least three items of pairs i and j belong to the cluster S, the last property holds
with ri,j replaced with

ri,j,t = (u2i − u2j−1)(u2i−1 − uht(2j)) + (u2i−1 − u2j−1)(u2i − uht(2j))

• If only items 2i and 2j − 1 belong to the same cluster S between iterations t and t+ ν(S),
we have

R̃i,j(t+ ν(S))− R̃i,j(t) ≤ 2(u2i − u2j−1)(u2i−1 − uht(2j))

76

3.A. APPENDIX

which follows from Lemma 3.A.14. Notice that in that case, S is necessarily an intermediate
cluster in a chain.

The following equality holds:

ri,j = (u2i − u2j−1)(u2i−1 − u2j) + (u2i−1 − u2j−1)(u2i − u2j)
= 2(u2i − u2j−1)(u2i−1 − u2j) + ∆2i−1,2i∆2j−1,2j .

Let us define

ūj(t) = 1
t

t∑
s=1

uht(j)

and Ei,j(S) is redefined to be the event that cluster S is the last cluster to contain both items
2i and 2j − 1. And Ẽi,j(S′) is the event that cluster S′ is the last cluster to contain at least
three items of pairs i and j. For a cluster S, TS is the minimal number s.t. if for some i ∈ S,∑
j∈[2N]C(i, j) > TS , then S is separated. The following relation holds

E[R̃i,j(T) | Ei,j(S) ∩ Ẽi,j(S′)] ≤ TS
ν(S)2(u2i − u2j−1)(u2i−1 − ū2j(TS))

+ TS′

ν(S′)∆2i−1,2i(u2j−1 − ū2j(TS′))

+ h(i, j) + r(S′)|L(S′)|
ν(S′) + r(S)|L(S)|

ν(S)︸ ︷︷ ︸
:=b(i,j)

where h(i, j) accounts for the regret due to dropped samples. According to lemma 3.A.12:∑
(i,j)

h(i, j) ≤ 32N6.

Note that for any cluster S, it always holds that |L(S)|/ν(S) < N . Thus:

r(S′)|L(S′)|
ν(S′) + r(S)|L(S)|

ν(S) ≤ 2N3

Lemma 3.A.15. Consider an isolated cluster S = {2l−1, . . . , 2l′}, under event A, the minimal
number TS s.t. if for some i ∈ S,

∑
j∈[2N]C(i, j) > TS, then S is separated, is upper bounded as

TS ≤ 64 1
(µ̃−{k,k+1}∆k,k+1)2 log(T), for all k ∈ {2l, . . . , 2l′ − 2}

and
TS ≤ 64 max

{
1

(µ̃−{2l−1,2l}∆2l−1,2l)2 ,
1

(µ̃−{2l′−1,2l′}∆2l′−1,2l′)2

}
log(T).

where

µ̃−{k,k+1} = 1
ν(S)

 2l′∑
i=2l−1

ui − uk − uk+1

 .
If cluster S = {l, . . . , l′} belongs to a chain and is ranked between clusters S−1 and S+1 (those
clusters may be empty if S is the first or last element of the chain), under event A, TS is upper

77

CHAPTER 3. MATCHING BANDIT

bounded as
TS ≤ 64 1

(µ̃−{k,k+1}∆k,k+1)2 log(T), for all k ∈ {l, . . . , l′ − 1}

where

µ̃−{k,k+1} = 1
ν(S)

ūS−1 +

 l′∑
i=l

ui

− uk − uk+1

 .
This lemma is a consequence of Lemma 3.A.2 and equations (3.28),(3.29).
The following lemma bounds the regret for interactions between pair i and j.

Lemma 3.A.16. Under event A, the total regret for interaction between pairs i and j such
that j − i ≥ 2 is upper bounded as follows

R̃i,j(T)− b(i, j) ≤ cu
(j − i− 1)

1
∆min

log(T).

If j − i = 1, the following bound holds

R̃i,j(T)− b(i, j) ≤ cu
∆min

log(T).

The proof of Lemma 3.A.16 is given in Appendix 9.
It remains to sum the bounds over all possible pairs:

R(T) ≤ cu

N +
N∑
i=1

N∑
j=i+2

1
j − i− 1

 log(T)
∆min

+ 32N6 +N5 + 4N2

≤ cu

N +
N∑
i=1

N−i−1∑
k=1

1
k

 log(T)
∆min

+ 34N6

≤ cu

2N +
N∑
i=1

log(N − i− 1)

 log(T)
∆min

+ 34N6

≤ cu
N(log(N) + 2)

∆min
log(T) + 34N6.

2

Proof of Lemma 3.A.14 Let pi,j be the proportion of draws of pair (i, j) by Sample-
Matching on the chain of clusters {2k − 1}, S, {2l}. Let S = {2k} ∪A ∪ {2l − 1} so that A is
the set of items in S not in pair k or l. As noted in the analysis of Sample-Matching pi,j is
defined as

pi,j =


1

|S| if i ∈ S, j = 2k − 1 or j = 2l
0 if i = 2k − 1 and j = 2l

1
|S|

|S|−2
|S|−1 if (i, j) ∈ S2, i ̸= j

.

By definition, we have

R{2l−1},S,{2p} = 1
2

∑
i,j∈{u2l−1}∪S∪{u2p}

pi,jui(um∗(i) − uj).

The terms on the right hand side can be grouped to obtain the desired expression.

78

3.A. APPENDIX

The first group of terms corresponds to a scaled-down uniform matching on set A,

R1 = |S| − 2
|S|(|S| − 1)

p−1∑
j=l+1

p−1∑
j′=j+1

rj,j′ .

The second group of terms corresponds to matches (2l, 2p) and (2l − 1, 2p− 1), with value

R2 = 1
|S|

(u2l−1 − u2p)(u2l − u2p−1).

The third group of terms corresponds to matches (2l − 1, j), (2l,m∗(j)), and (2p − 1, j),
(2p,m∗(j))}, with respective values

R3 = |S| − 2
|S|(|S| − 1)

p−1∑
j=l+1

rl,j and R′
3 = |S| − 2
|S|(|S| − 1)

p−1∑
j=l+1

rj,p.

The last group of terms corresponds to matches (2l − 1, j), (2p,m∗(j)), and (2p − 1, 2l),
with value

R4 ≤
|S| − 2

|S|(|S| − 1)(u2l−1 − u2p)(u2l − u2p−1)

where the inequality comes from the fact that matches (2l−1, 2p−1), (j,m∗(j)), and (2l, 2p)
have a smaller expected reward than matches (2l − 1, j), (2p,m∗(j)), and (2p− 1, 2l).

Summing R1 +R2 +R3 +R′
3 +R4 gives the result of the lemma.

Proof of Lemma 3.A.13 Let Sj , . . . , Sj′ be a chain of clusters, and li denote the highest-
ranked item in cluster i. Let pk,k′ denote the proportion of draws of pair (k, k′) by Sample-
Matching on Sj , . . . , Sj′ . We use the convention Sj−1 = Sj′+1 = ∅. Let RSj ,...,Sj′ denote the
expected average regret of Sample-Matching on Sj , . . . , Sj′ .

We have the following relations

2RSj ,...,Sj′ =
j′∑
i=j

∑
k∈Si

ukum∗(k) −
j′∑
i=j

∑
k,k′∈Si

pk,k′ukuk′

− 2
j′∑
i=j

∑
k∈Si

∑
k′∈Si−1

pk,k′

(
ukuk′ − ukuli−1 + ukuli−1

)

+ 2
j′∑
i=j

∑
k∈Si

∑
k′∈Si+1

pk,k′
(
ukuk′ − uk′uli + uk′uli

)

=
j′∑
i=j

2uli
∑

k∈Si,k′∈Si+1

pk,k′uk′ +
∑

k∈Si∪{li−1}\{li}
ukum∗(k)


−

j′∑
i=j

 ∑
k,k′∈Si

pk,k′ukuk′ + 2
∑

k∈Si,k′∈Si+1

pk,k′ukuk′ + 2
∑

k′∈Si−1,k∈Si

pk,k′ukuli−1

 .

79

CHAPTER 3. MATCHING BANDIT

Let us define
ūS = 1

|S|
∑
k∈S

uk

and let us use the following convention ulj−1 = 0 and ūSp+1 = 0.
Note that the following equations hold:∑

k∈Si,k′∈Si+1

pk,k′uk′ = ūSi+1

∑
k∈Si,k′∈Si+1

pk,k′ukuk′ =
∑
k∈Si

1
|Si|

ukūSi+1

∑
k′∈Si−1,k∈Si

pk,k′ukuli−1 =
∑
k∈Si

1
|Si|

ukuli−1 .

The equation above for RSj ,...,Sj′ can be simplified to

2RSj ,...,Sj′ =
j′∑
i=j

2uli ūSi+1 +
∑

k∈Si∪{li−1}\{li}
ukum∗(k)


−

j′∑
i=j

 ∑
k,k′∈Si

pk,k′uku
′
k + 2

∑
k∈Si

1
|Si|

ukūSi+1 + 2
∑
k∈Si

1
|Si|

ukuli−1


which can be written as

RSj ,...,Sj′ = RSj∪{vj+1} +
j′−1∑
i=j+1

R{li−1},Si,{vi+1} +R{lj′−1}∪Sj′

where vk is a virtual item with parameter value ūSk
.

Proof of Lemma 3.A.16 For any two clusters S and S′, the following holds:

E[R̃i,j(T) | Ei,j(S) ∩ Ẽi,j(S′)]− b(i, j) ≤ TS
ν(S)2(u2i − u2j−1)(u2i−1 − ū2j(TS))

+ TS′

ν(S′)∆2i−1,2i(u2j−1 − ū2j(TS′)).

To simplify the proof, we first assume that S′ = {2i− 1, . . . , 2j} and S = {2i, . . . , 2j − 1} or
S = {2i− 1, . . . , 2j}, and then argue that the obtained result holds for arbitrary S and S′. Note
that this implies that S ⊂ S′, hence S is either isolated or in the trivial chain {2i− 1}, S, {2j}.

The section starts with the presentations and proofs of the two following lemmas. The proof
of Lemma 3.A.16 is provided afterwards.
Lemma 3.A.17 (Intermediate result). Assume that S′ = {2i−1, . . . , 2j} or S′ = {2i, . . . , 2j−1}
and S = {2i, . . . , 2j − 1}, with j − i ≥ 2. Then, we have

E[R̃i,j(T) | Ei,j(S) ∩ Ẽi,j(S′)]− b(i, j) ≤ cu
(j − i− 1)∆min

log(T).

Lemma 3.A.18 (Neighboring pairs). Suppose S′ = {2i− 1, . . . , 2j} with j − i = 1. Then, we
have

E[R̃i,j(T) | Ei,j(S) ∩ Ẽi,j(S′)]− b(i, j) ≤ cu
∆min

log(T).

80

3.A. APPENDIX

Proof of Lemma 3.A.17 Let m = arg maxk∈{2i,...,2j−1} ∆k,k+1. The following inequality
holds

(u2i − u2j−1)(u2i−1 − u2j) ≤ (2(j − i)− 1)2∆2
m,m+1 + ∆m,m+1(∆2i−1,2i + ∆2−1,2j). (3.30)

Let γ = mink∈[i,j−1] ∆2i−1,2i+2. We have the following inequalities

∆min ≤ γ2 and ∆min ≤ γ∆m,m+1.

For all k ∈ [2i− 1, 2j − 1],

uk ≥ u2j + 1
2∆2j−1,2j + 1

2

j−1∑
l=⌈ k+1

2 ⌉

γ.

Hence, it follows

(2(j − i) + 1)µ−m,m+1 ≥
2j−1∑
k=2i−1

uk − um − um+1 (3.31)

≥u2i−1 +
2j−1∑
k=2i+2

uk

≥j − i2 ∆2j−1,2j + ∆2i−1,2i + 1
2

 2j−1∑
k=2i+1

j − ⌈k + 1
2

⌉
 γ

≥j − i2 ∆2j−1,2j + ∆2i−1,2i + (j − i− 1)2

2 γ.

Combining with Equation (3.30), we have

Ai,j(S) := TS
2(j − i) + 12(u2i − u2j−1)(u2i−1 − u2j(TS))

≤ 642(j − i) + 1
∆2
m,m+1

(2(j − i)− 1)2∆2
m,m+1 + ∆m,m+1(∆2i−1,2i + ∆2j−1,2j)

(j−i2 ∆2j−1,2j + ∆2i−1,2i + (j−i−1)2

2 γ)2
log(T).

The following holds

a1 := 2(j − i) + 1
∆2
m,m+1

(2(j − i)− 1)2∆2
m,m+1

(j−i2 ∆2j−1,2j + ∆2i−1,2i + (j−i−1)2

2 γ)2

≤ 4(2(j − i) + 1)(2(j − i)− 1)2

(j − i− 1)4
1
γ2

≤ 180
j − i− 1

1
∆min

81

CHAPTER 3. MATCHING BANDIT

and

a2 := 2(j − i) + 1
∆2
m,m+1

∆m,m+1(∆2i−1,2i + ∆2j−1,2j)
(j−i2 ∆2j−1,2j + ∆2i−1,2i + (j−i−1)2

2 γ)2

≤ 2(j − i) + 1
∆m,m+1γ

∆m,m+1(∆2i−1,2i + ∆2j−1,2j)
(∆2j−1,2j + ∆2i−1,2i)(j − i− 1)2∆m,m+1

≤ 5
j − i− 1

1
∆min

.

Putting the bounds on a1 and a2 together gives

Ai,j(S) ≤ cu
j − i− 1

1
∆min

.

We note
Bi,j(S′) := TS′

ν(S′)∆2i−1,2i∆2j−1,2j .

We separately consider two different cases as follows.

• Case ∆2i−1,2i ≤ ∆m,m+1 or ∆2j−1,2j ≤ ∆m,m+1. By definition of S and S′, S′ is a cluster
containing S. Hence, we have

TS′

ν(S′) ≤
TS
ν(S) .

Then, we have

TS′

ν(S′)∆2i−1,2i∆2j−1,2j ≤
TS
ν(S)∆m,m+1(∆2i−1,2i + ∆2j−1,2j) = 64a2

which implies, according to the bound on a2,

Bi,j(S′) ≤ 320
j − i− 1

1
∆min

log(T).

• Case ∆2i−1,2i > ∆m,m+1 and ∆2j−1,2j > ∆m,m+1. According to Lemma 3.A.15, we have

Bi,j(S′) ≤ max
{

64
∆2

2i−1,2iµ
2
−2i−1,2i

,
64

∆2
2j−1,2iµ

2
−2j−1,2j

}
∆2i−1,2i∆2j−1,2j

2(j − i) + 1 log(T).

Repeating the computations in Equation (3.31) gives

(2(j − i) + 1)µ−2j−1,2j ≥ ∆2i−1,2i + (j − i− 1)2

2 γ.

Hence, we have

∆2i−1,2i∆2j−1,2j
(2(j − i) + 1)∆2

2j−1,2jµ
2
−2j−1,2j

≤ 2(j − i) + 1
(j − i− 1)2γ∆2j−1,2j

≤ 5
(j − i− 1)∆min

.

82

3.A. APPENDIX

Similarly, we obtain

(2(j − i) + 1)µ−2i−1,2i ≥ ∆2j−1,2j + (j − i− 1)2

2 γ.

This implies that the following holds

Bij(S′) ≤ 320
(j − i− 1)∆min

log(T).

Combining the bounds on Ai,j(S) and Bi,j(S′) gives the following bound

E[R̃i,j(T) | Ei,j(S) ∩ Ẽi,j(S′)] ≤ cu
j − i− 1

1
∆min

log(T) (3.32)

when S′ = {2i− 1, . . . , 2j} and S = {2i, . . . , 2j − 1}, j − i ≥ 2. 2

Proof of Lemma 3.A.18 The following inequality holds

∆min ≤ u2i−1∆2i,2j−1.

Hence, we have

TS
ν(S)2(u2i − u2j−1)(u2i−1 − u2j) ≤ 64 · 6(u2i − u2j−1)

∆2i,2j−1u2
2i

log(T)

≤ 384
∆2i,2j−1u2i

log(T)

≤ 384
∆min

log(T).

If ∆2i−1,2i ≤ ∆2i,2j−1 or ∆2j−1,2j ≤ ∆2i,2j−1, then

TS′

ν(S′)∆2i−1,2i∆2j−1,2j ≤
TS
ν(S)(u2i − u2j−1)(u2i−1 − u2j).

If ∆2i−1,2i > ∆2i,2j−1 and ∆2j−1,2j > ∆2i,2j−1, then

TS′

ν(S′)∆2i−1,2i∆2j−1,2j ≤ 64 max
{

3∆2i−1,2i∆2j−1,2j
∆2

2i−1,2i(u2j−1 + u2j)2 ,
3∆2i−1,2i∆2j−1,2j

∆2
2j−1,2j(u2i−1 + u2i)2

}
log(T)

≤ 192 max
{

1
∆2i−1,2iu2j−1

,
1

∆2j−1,2ju2i−1

}
log(T)

≤ 192
∆min

log(T).

2

Proof of Lemma 3.A.16 Up to now, S′ was an isolated cluster. Consider now it is the
first element of a chain S′ = {2i− 1, . . . , 2j − 1}, S2, All previous computations hold with
ū2j(T ′

S) instead of u2j , hence the result remains true.
If S′ is the last element of a chain, u2i−1 needs to be replaced by ū2i−1(T ′

S) in all expressions
for µ−k,k+1. Since uS−1 ≥ u2i−1, it holds that ū2i−1(T ′

S) ≥ u2i−1, so all previous results remain
true.

83

CHAPTER 3. MATCHING BANDIT

Therefore, for any cluster S′, such that S′ = {2i, . . . , 2j},S′ = {2i − 1, . . . , 2j − 1} or
S′ = {2i− 1, . . . , 2j}, and S = S′ or S = {2i, . . . , 2j − 1}:

E[R̃i,j(T)|Ei,j(S), Ẽi,j(S′)]− b(i, j) ≤ cu min(1, 1
j − i− 1) 1

∆min
log(T)

For any k ≤ i < j < l or k < i < j ≤ l,

ri,j(t) ≤ 2(u2k − u2l−1)(u2k−1 − ū2l(t)).

Thus, for any clusters such that S = [a, b] with a ∈ (2l − 1, 2l) and b ∈ (2k − 1, 2k), and any
subset S′, we have

E[R̃i,j(T)|Ei,j(S), Ẽi,j(S′)]− h(i, j) ≤ TS
ν(S)2(u2k − u2l−1)(u2k−1 − ū2l(t))

≤ cu min(1, 1
l − k − 1) 1

∆min
log(T)

≤ cu min(1, 1
j − i− 1) 1

∆min
log(T)

where the second inequality comes from the computations of the proof of Lemma 3.A.17. This
proves that the result still holds if the clusters S and S′ are larger (in the sense of inclusion)
than those studied in Lemma 3.A.17, and completes the proof. 2

3.A.6 Comparison of Adaptive-Matching with an exploration policy

Proof of Lemma 3.4.5

Consider a matching bandit problem on the ordered sequence of cluster

S = {1, 2}, {3, ..., 2N}

where the two best items are identified.
We consider an information first strategy that matches the items in S following a round-robin

tournament. The Adaptive-Matching algorithm matches 1 with 2 and items in set {3, ..., 2N}
following a round-robin tournament. We denote with RI and RD the regrets incurred by these
two strategies, respectively, before they can rank any two items m and m+ 1, m ∈ {3, . . . , 2N}.
According to Lemmas 3.A.2 and 3.A.9, the following bounds hold

RD ≤ UD := 2N − 3
∆2
m,m+1

∑N
i=2

∑N
j=i+1 ri,j

(∑2N
i=3 ui − um − um+1)2

(3.33)

and

RI ≤ UI := 2N − 2
∆2
m,m+1

∑N
j=2 r1,j +∑N

i=2
∑N
j=i+1 ri,j

(∑2N
i=1 ui − um − um+1)2

. (3.34)

Let us define ρ1, . . . , ρ2N such that

ui =
i∏

k=1
ρk, for i ∈ [2N].

84

3.A. APPENDIX

ri,j = 2(u2i−1 − u2j)(u2i − u2j−1) + (u2i−1 − u2i)(u2j−1 − u2j)

= 2

2i−1∏
k=1

ρk

2

ρ2i

1−
2j∏

k=2i+1
ρk

1−
2j∏
k=2i

ρk

+
2i−1∏
k=1

ρk

2j−1∏
k=1

ρk(1− ρ2i)(1− ρ2j)

=

2i−1∏
k=1

ρk

2

ρ2i

2

1−
2j−1∏
k=2i+1

ρk

1−
2j−1∏
k=2i

ρk

+
2j−1∏
k=2i+1

ρk(1− ρ2i)(1− ρ2j)


︸ ︷︷ ︸

ai,j

=

2i−1∏
k=1

ρk

2

ρ2iai,j

The expressions for UD and UI simplify to

UD = 2N − 3
∆2
m,m+1

∑N
i=2

∑N
j=i+1

(∏2i−1
k=1 ρk

)2
ρ2iai,j

(∑2N
i=3,i ̸=m,m+1

∏i
k=1 ρk)2

= 2N − 3
∆2
m,m+1

ρ4

∑N
j=3 a2,j +∑N

i=3
∑N
j=i+1

(∏2i−1
k=5 ρk

)2
ρ4ρ2iai,j

(1 +∑2N
i=4,i ̸=m,m+1

∏i
k=4 ρk)2

= 2N − 3
∆2
m,m+1

A2

(1 +∑2N
i=4,i ̸=m,m+1

∏i
k=4 ρk)2

where

A2 = ρ4

 N∑
j=3

a2,j +
N∑
i=3

N∑
j=i+1

2i−1∏
k=5

ρk

2

ρ4ρ2iai,j


and

UI = 2N − 1
∆2
m,m+1

∑N
i=1

∑N
j=i+1

(∏2i−1
k=1 ρk

)2
ρ2iai,j

(∑2N
i=1,i ̸=m,m+1

∏i
k=1 ρk)2

= 2N − 1
∆2
m,m+1

ρ2

∑N
j=2 a1,2 +∑N

i=2
∑N
j=i+1

(∏2i−1
k=3 ρk

)2
ρ2ρ2iai,j

(1 +∑2N
i=2,,i ̸=m,m+1

∏i
k=2 ρk)2

= 2N − 1
∆2
m,m+1

ρ2

∑N
j=2 a1,j + ρ2

3ρ2A2

(1 +∑2N
i=2,i ̸=m,m+1

∏i
k=2 ρk)2

.

From the last two expressions, we have

lim
ρ2→0

UD
UI

= +∞.

85

CHAPTER 3. MATCHING BANDIT

The following lower bound holds

a1,j =

2

1−
2j−1∏
k=3

ρk

1−
2j−1∏
k=2

ρk

+
2j−1∏
k=3

ρk(1− ρ2)(1− ρ2j)

 ≥ 2(1− ρ3)2.

Thus, UI is lower bounded as

UI ≥ ρ2
2N − 1
∆2
m,m+1

2N(1− ρ3)2 + ρ2
3ρ2A2

(1 +∑2N
i=2,i ̸=m,m+1

∏i
k=2 ρk)2

.

Note that A2 is at most of order N2, thus if ρ2 > 1/2, the ratio UD/UI is upper bounded
by cuN . If, in addition, ρ3 > 1/2, then the ratio UD/UI is upper bounded by a constant cu.

3.A.7 Matching-id algorithm

Algorithm description and pseudo-code

The algorithm is defined by the pseudo-code in Algorithm 21.

Algorithm 21: Matching-id
input : set of items [2N], required precision δ

1 U = [2N], X = C = [0][2N]×[2N];
2 while U ̸= ∅ do
3 B = {candidate |S| best items};
4 A = B ∪ S;
5 if |A| odd then
6 k = arg max[2N] \ A;
7 A = A ∪ k;
8 end
9 L(A) = {round-robin tournament on A};

10 d ={arbitrary matching on [2N] \A};
11 for m ∈ L(A) do
12 Sample m ∪ d;
13 for i ∈ U do
14 if (i, j) ∈ m and j ∈ T then
15 X(i, j)+ = xi,j,t;
16 C(i, j)+ = 1;
17 end
18 end
19 end
20 QU+, Q

U
− ← confidence_bound(X,C,U);

21 U ← unranked(QU+, QU−, U);
22 end

The function confidence_bound in Algorithm 21 computes confidence bounds for the
expected reward per item when matched with an item within T . If ∑2N

j=1C(i, j) = kl with

86

3.A. APPENDIX

kl = ⌈4l+1 log(βl)⌉, βl = π
√

(2N)/(3δ) · l, for some l, then

Q−(i) =
∑2N
j=1X(i, j)

kl
−

√
log(βl)
kl

and

Q+(i) =
∑2N
j=1X(i, j)

kl
+
√

log(βl)
kl

.

The function unranked in Algorithm 21 removes an item i from S if its associated confidence
interval intersects with no other intervals, or if it intersects only with that of another item that
would be its optimal match independently of their relative order.

Proof of the upper bound

We prove the following theorem.

Theorem 3.A.19 (upper bound). For any δ > 0, the sample complexity of the Matching-id
algorithm satisfies

τδ ≤ cu
1

γ2
min

log(1/δ) + cp

with probability at least 1− δ. Moreover, if s ≥ 2, then by denoting,

α := min
{(1

4
(u1 + u2)∆2s,2s+1

µ[2N]\{2h,2h+1}∆2h,2h+1

)2

1
}
,

the following holds with probability at least 1− δ,

τδ ≤ cu
1

(1− α)2(u2
1 + u2

2)∆2
2s,2s+1

log(1/δ) + cp.

else, if s = 1, then by denoting,

α := min
{(

u1/4∆2s,2s+1
µ[2N]\{2h,2h+1}∆2h,2h+1

)2

, 1
}

the following holds with probability at least 1− δ,

τδ ≤ cu
1

(1− α)2(u2
1)∆2

2s,2s+1
log(1/δ) + cp.

The set constructed by the algorithm, B and S have the following properties.

Proposition 3.A.20. The mean of the elements in |B| increases at the set of un-ranked items
S gets smaller.

The proposition is implied by the definition of B.

Proposition 3.A.21. It always holds that |B| ≤ 2|S|.

Proof : If item i with i > |S| is ranked, then for any other item j that is not i’s neighbor, it
is known whether i < j or j < i. If j is i’s neighbor, either it is known whether i < j or j < i,
or for all other item k, it is known whether k < min{i, j} or k > max{i, j}. Thus B ⊂ [i]. 2

87

CHAPTER 3. MATCHING BANDIT

We introduce the following notation:

µt(B \ {k, l}) = 1
t

t∑
s=1

1
|B|

∑
i∈B\{k,l}

ui.

Two relatively un-ranked i, j items are items in U s.t. Q+(i) > Q−(j) and Q+(j) > Q−(i).
Any two relatively un-ranked items i, j either both belong to B, in which case,∑

l∈B\i uiul

|B \ j|
−
∑
l∈B\j ujul

|B \ j|
= (ui − uj)

∑
l∈T\{i,j} ul

|B| − 1 ,

or, none of them belongs to B, in which case∑
l∈B\i uiul

|B \ j|
−
∑
l∈B\j ujul

|B \ j|
= (ui − uj)

∑
l∈B ul
|B|

.

Thus, for any two relatively un-ranked items i, j, at every iteration

E[
∑
l∈[2N]X(i, l)∑
l∈[2N]C(i, l) −

∑
l∈[2N]X(j, l)∑
l∈[2N]C(j, l)] ≥ ∆i,jµt(B \ {i, j}).

According to Proposition 3.A.20, we have

µt(T \ {i, j}) ≥
1

2N
∑

l∈[2N]\{i,j}
ul.

Thus, items i and j are guaranteed to be relatively ranked by the first iteration where∑2N
j=1C(i, j) = kl with

1
2l+1 <

√
log(βl)
kl

<
1
4∆i,j(

1
2N

∑
l∈[2N]\{i,j}

ul) := 1
4∆̃i,j .

This implies

1
4∆̃i,j ≤

1
2l .

Thus, we have

kl ≤
32

∆̃2
i,j

log(1
δ

) + 32
∆̃2
i,j

log
(
2− log2(∆̃i,j)

)2
+ 32

∆̃2
i,j

log(2Nπ2

3) := 32
∆̃2
i,j

[
log(1

δ
) + f(∆̃i,j)

]
(3.35)

Proposition 3.A.21 implies that at every iteration, for any i ∈ U :∑
j∈[2N]C(i, j)

t
≥ 4

9 . (3.36)

Recall
µ[2N]\{2k,2k+1} = 1

2N
∑

i∈[2N]\{2k,2k+1}
ui

88

3.A. APPENDIX

and
γmin = min

k∈[N−1]
{µ[2N]\{2k,2k+1}∆2k,2k+1}.

Equations 3.35 and 3.36 imply that sample complexity of the Matching-id algorithm is upper
bounded as:

τδ ≤
72
γ2

min

[
log(1

δ
) + f (γmin)

]
with probability at least 1− δ.

Let s = arg mink∈[1,N−1] ∆2k,2k+1, and let h = arg mink∈[1,N−1]\s ∆2k,2k+1µ[2N]\{2k,2k+1}.
Let τ2 be the stopping time at which all items except those in pairs s and s + 1 are ranked.
Under the "good event", the number of counted samples for unranked items in pairs s and s+ 1
before τ2, τ̃2 is upper bounded as

τ̃2 ≤ (32
∆2h,2h+1µ[2N]\{2h,2h+1}

)2[log(1
δ

) + f(∆2h,2h+1µ[2N]\{2h,2h+1})].

In the case where s ≥ 2, for any t > τ2, B ⊂ [4], thus the following holds:

µt(T \ {2s, 2s+ 1}) ≥ u1 + u2 + u3 + u4
4 + τ̃2

t̃
(1
2N

∑
l∈[2N]\{2s,2s+1}

ul −
u1 + u2 + u3 + u4

4)

At each iteration of the algorithm, the following bound holds on the number of counted
samples for un-ranked items in pairs s, s+ 1 t̃

t̃ ≤ 32
(∆2s,2s+1µt(T \ {2s, 2s+ 1})2 [log(1

δ
) + f(∆2s,2s+1µt(B \ {2s, 2s+ 1})]

Now, either

τ̃δ ≤
32

(∆2s,2s+1
u1+u2+u3+u4

4)2 [log(1
δ

) + f(∆2s,2s+1
u1 + u2 + u3 + u4

4)2)]

which implies a bound on τδ by τδ ≤ 9/4τ̃δ, or

√
τ̃2
τ̃δ
≤

∆2s,2s+1
u1+u2+u3+u4

4
∆2h,2h+1µ[2N]\{2h,2h+1}

√√√√√ log(1
δ) + f

(
∆2s,2s+1

u1+u2+u3+u4
4

)
log(1

δ) + f
(
∆2h,2h+1µ[2N]\{2h,2h+1}

) .
Since f is a decreasing function, if for some 0 < α < 1,(

∆2s,2s+1
u1+u2+u3+u4

4
∆2h,2h+1µ[2N]\{2h,2h+1}

)2

≤ α

then

τδ ≤
1

(1− α)2
72

(∆2s,2s+1
u1+u2+u3+u4

4)2

[
log(1

δ
) + f

(
(1− α)∆2s,2s+1

u1 + u2 + u3 + u4
4

)]

which complicates the proof in the case where s ≥ 2.
In the case when s = 1, we have

∆1,3µt(B \ {1, 3}) ≥ ∆2,3µt(B \ {2, 3}).

89

CHAPTER 3. MATCHING BANDIT

Thus, at every iteration of the algorithm, it holds

t̃ ≤ 32(
∆2,3µt

(
B \ {2, 3}

))2 [log(1
δ

) + f(∆2,3µt(B \ {2, 3})].

Therefore, repeating the steps of the previous proof, if for some 0 < α < 1, ∆2,3
u1
4

∆2h,2h+1
1

2N
∑
l∈[2N]\{2h,2h+1} ul

2

≤ α

then
τδ ≤

1
(1− α)2

72
(∆2,3

u1
4)2

[
log(1

δ
) + f

(
(1− α)∆2,3

u1
4

)]
.

Proof of the lower bound

We prove the following theorem.
Theorem 3.A.22. Assume that stochastic rewards of item pairs have Gaussian distribution
with unit variance. Then, for any δ-PAC algorithm, we have

E[τδ] ≥ cu
∑

i∈[2N]:∆i>0

1∑2N
j=1 u

2
j

1
∆2
i

log(1/δ).

Moreover, if s ≥ 2, then
E[τδ] ≥ cu

1
u2

1 + u2
2

1
∆2

2s,2s+1
log(1/δ)

else, if s = 1, then
E[τδ] ≥ cu

1
u2

1

1
∆2

2,3
log(1/δ).

Let us first rewrite the linear program that gives a lower bound on the sampling complexity.
Let us define

Λ(U) = {λ ∈ [0, 1]2N | m∗(λ) ̸= m∗(U)}/

to be the class of alternative models that give a different optimal arms. The expected sampling
complexity is lower bounded by the solution of the following linear program:

minimize
∑
m∈M

ηm

subject to
∑
m∈M

ηmd(u, λ) ≥ d(δ, 1− δ), for all λ ∈ Λ(U).

Which is equivalent to

minimize 1
4N

2N∑
1=1

2N∑
j=1

∑
m∈M

ηm1{(i,j)∈m}

subject to
2N∑
1=1

2N∑
j=1

∑
m∈M

ηm1{(i,j)∈m}d(uiuj , λiλj) ≥ d(δ, 1− δ), for all λ ∈ Λ(U).

Note that for any matching sampling vector, the following always holds for some constant c
and every (i, j) ∈ [2N]2:

90

3.A. APPENDIX


∑2N
j=1

∑
m∈M ηm1{(i,j)∈m} = c∑

m∈M ηm1{(i,j)∈m} = ∑
m∈M ηm1{(j,i)∈m}∑

m∈M ηm1{(i,i)∈m} = 0.

Thus the solution of the previous linear program is lower bounded by that of the following
one, LPm,

minimize c

2
subject to 1

2
∑

(i,j)∈[2N]2
xi,jd(uiuj , λiλj) ≥ d(δ, 1− δ), ∀λ ∈ Λ(U)

2N∑
j=1

xi,j = c, for all i ∈ [2N]

xi,j = xj,i, xi,i = 0, for all (i, j) ∈ [2N]2.

In the case where the stochastic rewards are Gaussian random variables with unit variance,
d(uiuj , λiλj) = (uiuj − λiλj)2.

We define s = arg mink∈[2,N−1] ∆2k,2k+1. By considering alternative models λ2s = u2s +
∆2s,2s+1 and λ2s+1 = u2s+1 −∆2s,2s+1, we obtain our first lower bound

E[τδ] ≥
1
2

1
u2

1 + u2
2

1
∆2

2s,2s+1

(
log

(1
δ

)
− 1

)
. (3.37)

Let us change variables in the linear program LPm for zi,j = ujxi,j . By considering the class
of alternative models λi = ui ±∆i, and dropping the constraint xi,j = xj,i for i, j ... we get
that the solution of the following linear program is a lower bound on the sampling complexity

minimize c

2

subject to
2N∑
i=1

zi,j ≥
1

∆2
j

d(δ, 1− δ), for all j ∈ [2N]

2N∑
j=1

zi,j = cu2
i , for all i ∈ [2N]

zi,i = 0, for all (i, j) ∈ [2N]2.

Note that ∑i,j zi,j = c
∑
j u

2
j ≥

∑
i:∆i>0(1/∆2

i)d(δ, 1− δ). This gives the second bound on
the sampling complexity

E[τδ] ≥

 ∑
i:∈∆i>0

1
∆2
i

 1∑
j u

2
j

(
log

(1
δ

)
− 1

)
. (3.38)

2

Finally, consider alternative model λ2 = u2 + ∆2,3 and λ3 = u3 −∆2,3. In this case, we first
obtain the same lower bound as in Equation (3.37) by removing the constraint x2,2 = 0, of the

91

CHAPTER 3. MATCHING BANDIT

linear program LPm, then note that the obtained lower bound implies the following one

E[τδ] ≥
1
4

1
u2

1

1
∆2

2,3

(
log

(1
δ

)
− 1

)
. (3.39)

2

92

Chapter 4

Decentralized Learning in Online
Queuing Systems

Motivated by packet routing in computer networks and resource allocation in radio networks,
online queuing systems are composed of queues receiving packets at different rates. Repeatedly,
they send packets to servers, each of them treating only at most one packet at a time. In the
centralized case, the number of accumulated packets remains bounded (i.e., the system is stable)
as long as the ratio between service rates and arrival rates is larger than 1. In the decentralized
case, individual no-regret strategies ensures stability when this ratio is larger than 2. Yet,
myopically minimizing regret disregards the long term effects due to the carryover of packets to
further rounds. On the other hand, minimizing long term costs leads to stable Nash equilibria as
soon as the ratio exceeds e

e−1 . Stability with decentralized learning strategies with a ratio below
2 was a major remaining question. We first argue that for ratios up to 2, cooperation is required
for stability of learning strategies, as selfish minimization of policy regret, a patient notion of
regret, might indeed still be unstable in this case. We therefore consider cooperative queues
and propose the first learning decentralized algorithm guaranteeing stability of the system as
long as the ratio of rates is larger than 1, thus reaching performances comparable to centralized
strategies.

Contents
4.1 Introduction . 94

4.1.1 Additional related work . 95
4.2 Queuing Model . 96
4.3 The case for a cooperative algorithm 97
4.4 A decentralized algorithm . 99

4.4.1 Choice of a dominant mapping . 101
4.4.2 Choice of a Birkhoff von Neumann decomposition 102
4.4.3 Stability guarantees . 104

4.5 Simulations . 104
4.6 Conclusion . 105
4.A Appendix . 106

4.A.1 General version of Theorem 4.4.9 . 106
4.A.2 Efficient computation of ϕ . 106
4.A.3 Unstable No-Policy regret system example 108
4.A.4 Proofs of Section 4.4 . 114

93

CHAPTER 4. QUEUING SYSTEMS

4.1 Introduction

Inefficient decisions in repeated games can stem from both strategic and learning considerations.
First, strategic agents selfishly maximize their own individual reward at others’ expense. The
price of anarchy (Koutsoupias and Papadimitriou, 1999) measures this inefficiency as the social
welfare ratio between the best possible situation and the worst Nash equilibrium. Although
reaching the best collective outcome might be illusory for selfish agents, considering the worst
Nash equilibrium might be too pessimistic. In games with external factors, more complex
interactions intervene and might lead the agents to the best equilibrium. Instead, the price of
stability (Schulz and Moses, 2003) measures the inefficiency by the social welfare ratio between
the best possible situation and the best Nash equilibrium.

Second, the agents also have to learn their environment, by repeatedly experimenting
different outcomes. Learning equilibria in repeated games is at the core of many problems in
computer science and economics (Cesa-Bianchi and Lugosi, 2006; Fudenberg et al., 1998). The
interaction between multiple agents can indeed interfere in the learning process, potentially
converging to no or bad equilibria. It is yet known that in repeated games, if all agents follow
no internal regret strategies, their actions converge in average to the set of correlated equilibria
(Blum and Monsour, 2007; Hart and Mas-Colell, 2000; Perchet, 2014).

Many related results are known in the classical repeated games (see e.g., Cesa-Bianchi and
Lugosi, 2006; Roughgarden, 2010), where a single game is repeated over independent rounds (but
the agents strategies might evolve and depend on the history). Motivated by packet routing in
computer networks, Gaitonde and Tardos (2020a) introduced a repeated game with a carryover
feature: the outcome of a round does not only depend on the actions of the agents, but also on
the previous rounds. They consider heterogeneous queues sending packets to servers. If several
queues simultaneously send packets to the same server, only the oldest packet is treated by the
server.

Because of this carryover effect, little is known about this type of game. In a first paper,
Gaitonde and Tardos (2020a) proved that if queues follow suitable no-regret strategies, a ratio
of 2 between server and arrival rates leads to stability of the system, meaning that the number
of packets accumulated by each queue remains bounded. However, the assumption of regret
minimization sort of reflects a myopic behavior and is not adapted to games with carryover.
Gaitonde and Tardos (2020b) subsequently consider a patient game, where queues instead
minimize their asymptotic number of accumulated packets. A ratio only larger than e

e−1 then
guarantees the stability of the system, while a smaller ratio leads to inefficient Nash equilibria.
As a consequence, going below the e

e−1 factor requires some level of cooperation between the
queues. This result actually holds with perfect knowledge of the problem parameters and it
remained even unknown whether decentralized learning strategies can be stable with a ratio
below 2.

We first argue that decentralized queues need some level of cooperation to ensure stability
with a ratio of rates below 2. Policy regret can indeed be seen as a patient alternative to the regret
notion. Yet even minimizing the policy regret might lead to instability when this ratio is below 2.
An explicit decentralized cooperative algorithm called ADeQuA (A Decentralized Queuing
Algorithm) is thus proposed. It is the first decentralized learning algorithm guaranteeing stability
when this ratio is only larger than 1. ADeQuA does not require communication between the
queues, but uses synchronisation between them to accurately estimate the problem parameters
and avoid interference when sending packets. Our main result is given by Theorem 4.1.1 below,
whose formal version, Theorem 4.4.9 in Section 4.4, also provides bounds on the number of
accumulated packets.

Theorem 4.1.1 (Theorem 4.4.9, informal). If the ratio between server rates and arrival rates

94

4.1. INTRODUCTION

is larger than 1 and all queues follow ADeQuA, the system is strongly stable.

The remaining of the chapter is organised as follows. The model and existing results are
recalled in Section 4.2. Section 4.3 argues that cooperation is required to guarantee stability of
learning strategies when the ratio of rates is below 2. ADeQuA is then presented in Section 4.4,
along with insights for the proof of Theorem 4.1.1. Section 4.5 finally compares the behavior
of ADeQuA with no-regret strategies on toy examples and empirically confirms the different
known theoretical results.

4.1.1 Additional related work

Queuing theory includes applications in diverse areas such as computer science, engineering,
operation research (Shortle et al., 2018). Borodin et al. (1996) for example use the stability
theorem of Pemantle and Rosenthal (1999), which was also used by Gaitonde and Tardos
(2020b), to study the problem of packet routing through a network. Our setting is the single-hop
particular instance of throughput maximization in wireless networks. Motivated by resource
allocation in multihop radio problem, packets can be sent through more general routing paths
in the original problem. Tassiulas and Ephremides (1990) proposed a first stable centralized
algorithm, when the service rates are known a priori. Stable decentralized algorithms were
later introduced in specific cases (Jiang and Walrand, 2009; Neely et al., 2008; Shah and Shin,
2012), when the rewards Xk(t) are observed before deciding which server to send the packet.
The main challenge then is coordination and queues aim at avoiding collisions with each other.
The proposed algorithms are thus not adapted to our setting, where both coordination between
queues and learning the service rates are required. We refer the reader to (Georgiadis et al.,
2006) for an extended survey on resource allocation in wireless networks.

Krishnasamy et al. (2016) first considered online learning for such queuing systems model,
in the simple case of a single queue. It is a particular instance of stochastic multi-armed bandits,
a celebrated online learning model, where the agent repeatedly takes an action within a finite
set and observes its associated reward. This model becomes intricate when considering multiple
queues, as they interfere when choosing the same server. It is then related to the multiplayer
bandits problem which considers multiple players simultaneously pulling arms. When several of
them pull the same arm, a collision occurs and they receive no reward (Anandkumar et al.,
2010).

The collision model is here different as one of the players still gets a reward. It is thus even
more closely related to competing bandits (Liu et al., 2020a,b), where arms have preferences
over the players and only the most preferred player pulling the arm actually gets the reward.
Arm preferences are here not fixed and instead depend on the packets’ ages. While collisions can
be used as communication tools between players in multiplayer bandits (Bistritz and Leshem,
2018; Boursier and Perchet, 2019; Mehrabian et al., 2020; Wang et al., 2020), this becomes
harder with an asymmetric collision model as in competing bandits. However, some level of
communication remains possible (Basu et al., 2021; Sankararaman et al., 2020). In queuing
systems, collisions are not only asymmetric, but depend on the age of the sent packets, making
such solutions unsuited.

While multiplayer bandits literature considers cooperative players, Boursier and Perchet
(2020) showed that cooperative algorithms could be made robust to selfish players. On the
other hand, competing bandits consider strategic players and arms as the goal is to reach a
bipartite stable matching between them. Despite being cooperative, ADeQuA also has strategic
considerations as the queues’ strategy converges to a correlated equilibrium of the patient game
described in Section 4.2.

95

CHAPTER 4. QUEUING SYSTEMS

An additional difficulty here appears as queues are asynchronous: they are not active at
each round, but only when having packets left. This is different from the classical notion of
asynchronicity (Bonnefoi et al., 2017), where players are active at each round with some fixed
probability. Most strategies in multiplayer bandits rely on synchronisation between the players
(Boursier and Perchet, 2019) to avoid collisions. While such a level of synchronisation is not
possible here, some lower level of synchronisation is still used to avoid collisions between queues.

4.2 Queuing Model
We consider a queuing system composed of N queues and K servers, associated with vectors of
arrival and service rates λ,µ, where at each time step t = 1, 2, . . . , the following happens:

• each queue i ∈ [N] receives a new packet with probability λi ∈ [0, 1], that is marked with
the timestamp of its arrival time. If the queue currently has packet(s) on hold, it sends
one of them to a chosen server j based on its past observations.

• Each server j ∈ [K] attempts to clear the oldest packet it has received, breaking ties
uniformly at random. It succeeds with probability µj ∈ [0, 1] and otherwise sends it back
to its original queue, as well as all other unprocessed packets.

At each time step, a queue only observes whether or not the packet sent (if any) is cleared
by the server. We note Qit the number of packets in queue i at time t. Given a packet-sending
dynamics, the system is stable if, for each i in [N], Qit/t converges to 0 almost surely. It is
strongly stable, if for any r, t ≥ 0 and i ∈ [N], E[(Qit)r] ≤ Cr, where Cr is an arbitrarily large
constant, depending on r but not t. Without ambiguity, we also say the policy or the queues
are (strongly) stable. Naturally, a strongly stable system is also stable (Gaitonde and Tardos,
2020a).

In the following, x(i) will denote the i-th order statistics of a vector x, i.e., λ(1) ≥ λ(2) ≥
. . . ≥ λ(N) and µ(1) ≥ . . . ≥ µ(K). Without loss of generality, we assume K ≥ N (otherwise, we
simply add fictitious servers with 0 service rate). The key quantity of a system is its slack,
defined as the largest real number η such that:

k∑
i=1

µ(i) ≥ η
k∑
i=1

λ(i), ∀ k ≤ N.

We also denote by P
(
[K]

)
the set of probability distributions on [K] and by ∆ the margin of

the system defined by

∆ := min
k∈[N]

1
k

k∑
i=1

(µ(i) − λ(i)). (4.1)

Notice that the alternative system where λ̃i = λi + ∆ and µ̃k = µk has a slack 1. In that sense,
∆ is the largest margin between service and arrival rates that all queues can individually get in
the system. Note that if η > 1, then ∆ > 0. We now recall existing results for this problem,
summarized in Figure 4.1 below.

Theorem 4.2.1 (Marshall et al. 1979). For any instance, there exists a strongly stable centralized
policy if and only if η > 1.

Theorem 4.2.2 (Gaitonde and Tardos 2020a, informal). If η > 2, queues following appropriate
no regret strategies are strongly stable.
For each N > 0, there exists a system and a dynamic s.t. η > 2− o(1/N), all queues follow
appropriate no-regret strategies, but they are not strongly stable.

96

4.3. THE CASE FOR A COOPERATIVE ALGORITHM

In the above theorem, an appropriate no regret strategy is a strategy such that there exists
a partitioning of the time into successive windows, for which the incurred regret is o (w) with
high probability on any window of length w. This for example includes the EXP3.P.1 algorithm
(Auer et al., 2002b) where the k-th window has length 2k.

The patient queuing game G = ([N], (ci)ni=1,µ,λ) is defined as follows. The strategy space
for each queue is P

(
[K]

)
. Let p−i ∈ (P

(
[K]

)
)N−1 denote the vector of fixed distributions for

all queues over servers, except for queue i. The cost function for queue i is defined as:

ci(pi,p−i) = lim
t→+∞

T it /t,

where T it is the age of the oldest packet in queue i at time t. Bounding T it is equivalent to
bounding Qit.

Theorem 4.2.3 (Gaitonde and Tardos 2020b, informal). If η > e
e−1 , any Nash equilibrium of

the patient game G is stable.

η

No
stable
strate-
gies

Stable centralized strategies (Thm. 4.2.1)

Stable no regret policies (Thm. 4.2.2)

Stable NE without learning (Thm. 4.2.3)

Stable decentralized strategies (Thm. 4.1.1)

0 1 e
e−1

2

Figure 4.1: Existing results depending on the slack η. Our result is highlighted in red.

4.3 The case for a cooperative algorithm

According to Theorems 4.2.2 and 4.2.3, queues that are patient enough and select a fixed
randomization over the servers are stable over a larger range of slack η than queues optimizing
their individual regret. A key difference between the two settings is that when minimizing their
regret, queues are myopic, which is formalized as follows. Let a1:t = (a1, ..., at) be the vector of
actions played by a queue up to time t and let νt(a1:t) be the indicator that it cleared a packet
at iteration t. Classical (external) regret of queue i over horizon T is then defined as:

Rext
i (T) := max

p∈P([K])

T∑
t=1

Eãt∼p[νt(a1:t−1, ãt)]−
T∑
t=1

νt(a1:t).

Thus minimizing the external regret is equivalent to maximizing the instant rewards at each
iteration, ignoring the consequences of the played action on the state of the system. However, in
the context of queuing systems, the actions played by the queues change the state of the system.
Notably, letting other queues clear packets can be in the best interest of a queue, as it may give
it priority in the subsequent iterations where it holds older packets. Since the objective is to
maximize the total number of packets cleared, it seems adapted to minimize a patient version of
the regret, namely the policy regret (Arora et al., 2012), rather than the external regret, which

97

CHAPTER 4. QUEUING SYSTEMS

is defined by

Rpol
i (T) := max

p∈P([K])

T∑
t=1

Eã1:t∼⊗t
i=1p

[νt(ã1:t)]−
T∑
t=1

νt(a1:t).

That is, Rpol
i (T) is the expected difference between the number of packets queue i cleared and

the number of packets it would have cleared over the whole period by playing a fixed (possibly
random) action, taking into account how this change of policy would affect the state of the
system.

However, as stated in Theorem 4.3.1, optimizing this patient version of the regret rather
than the myopic one could not guarantee stability on a wider range of slack value. This suggests
that adding only patience to the learning strategy of the queues is not enough to go beyond a
slack of 2, and that any strategy beating that factor 2 must somewhat include synchronisation
between the queues.

Proposition 4.3.1. Consider the partition of the time t = 1, 2, . . . into successive windows,
where wk = k2 is the length of the k-th one. For any N ≥ 2, there exists an instance with 2N
queues and servers, with slack η = 2−O

(
1
N

)
, s.t., almost surely, each queue’s policy regret is

o (wk) on all but finitely many of the windows, but the system is not strongly stable.

To ease comparison, the formulation in the above proposition matches that of the counter-
example used to prove Theorem 4.2.2 (Gaitonde and Tardos 2020a). In that counter-example, a
set of system parameters, for which any no external regret policies were unstable, was exhibited.
Whereas we exhibit in our case a specific strategy that satisfies the no policy regret condition,
but is unstable.

Sketch of proof. Consider a system with 2N queues and servers with λi = 1/2N and µi =
1/N − 1/4N2 for all i ∈ [2N]. The considered strategy profile is the following. For each k ≥ 0,
the kth time window is split into two stages. During the first stage, of length ⌈αwk⌉, queues 2i
and 2i+ 1 both play server 2i+ t (mod 2N) at iteration t, for all i ∈ [N]. During the second
stage of the time window, queue i plays server i + t (mod 2N) at iteration t. This counter
example, albeit very specific, illustrates well how when the queues are highly synchronised, it is
better to remain synchronized rather than deviate, even if the synchronisation is suboptimal in
terms of stability. The complete proof is provided in Section 4.A.3.

Queues following this strategy accumulate packets during the first stage, and clear more
packets than they receive during the second stage. The value of α is tuned so that the queues
still accumulate a linear portion of packets during each time window. For those appropriate α,
the system is unstable.

Now suppose that queue i deviates from the strategy and plays a fixed action p ∈ P
(
[K]

)
.

In the first stage of each time window, queue i can clear a bit more packets than it would by not
deviating. However, during the second stage, it is no longer synchronised with the other queues
and collides with them a large number of times. Because of those collisions, it will accumulate
many packets. In the detailed analysis, we demonstrate that, in the end, for appropriate values
of α, queue i accumulates more packets than it would have without deviating.

According to Theorem 4.2.3, the factor e
e−1 can be seen as the price of anarchy of the

problem, as for slacks below, the worst Nash equilibria might be unstable. On the other
hand, it is known that for any slack above 1, there exists a centralized stable strategy. This
centralized strategy actually consists in queues playing the same joint probability at each time
step, independently from the number of accumulated packets. As a consequence, it is also a
correlated equilibrium of the patient game and 1 can be seen as the correlated price of stability.

98

4.4. A DECENTRALIZED ALGORITHM

4.4 A decentralized algorithm

This section describes the decentralized algorithm ADeQuA, whose pseudocode is given in
Algorithm 22. Due to space constraints, all the proofs are postponed to Section 4.A.4. ADeQuA
assumes all queues a priori know the number N of queues in the game and have a unique rank or
id in [N]. Moreover, the existence of a shared randomness between all queues is assumed. The
id assumption is required to break the symmetry between queues and is classical in multiplayer
bandits without collision information. On the other side, the shared randomness assumption
is equivalent to the knowledge of a common seed for all queues, which then use this common
seed for their random generators. A similar assumption is used in multiplayer bandits (Bubeck
et al., 2020).

ADeQuA is inspired by the celebrated ε-greedy strategy. With probability εt = (N+K)t− 1
5 ,

at each time step, queues explore the different parameters λi and µi as described below.
Otherwise with probability 1− εt, they exploit the servers. Each queue i then sends a packet
to a server following a policy solely computed from its local estimates λ̂i, µ̂i of the problem
parameters λ and µ. The shared randomness is here used so that exploration simultaneously
happens for all queues. If exploration/exploitation was not synchronized between the queues,
an exploiting queue could collide with an exploring queue, biasing the estimates λ̂i, µ̂i of the
latter.

Algorithm 22: ADeQuA
input : N (number of queues), i ∈ [N] (queue id)

1 for t = 1, . . . ,∞ do
2 P̂ ← ϕ(λ̂, µ̂) and Â← ψ(P̂) where ϕ and ψ are resp. defined by Equations (4.3)

and (4.4)
3 Draw ω1 ∼ Bernoulli((N +K)t− 1

5) and ω2 ∼ U(0, 1) // shared randomness

4 if ω1 = 1 then Explore(i) // exploration

5 else Pull Â(ω2)(i) // exploitation

6 end

Exploration. When exploring, queues choose either to explore the servers’ parameters µk or
the other queues’ parameters λi as described in Algorithm 23 below. In the former case, all
queues choose different servers at random (if they have packets to send). These rounds are used
to estimate the servers means: µ̂ik is the empirical mean of server k observed by the queue i for
such rounds. Thanks to the shared randomness, queues pull different servers here, making the
estimates unbiased.

In the latter case, queues explore each other in a pairwise fashion. When queues i and j
explore each other at round t, each of them sends their most recent packet to some server
k, chosen uniformly at random, if and only if a packet appeared during round t. In that case,
we say that the queue i explores λj (and vice versa). To make sure that i and j are the only
queues choosing the server k during this step, we proceed as follows:

• queues sample a matching π between queues at random. To do so, the queues use the
same method to plan an all-meet-all (or round robin) tournament, for instance Berger
tables (Berger, 1899), and choose uniformly at random which round of the tournament
to play. If the number of queues N is odd, in each round of the tournament, one queue
remains alone and does nothing.

99

CHAPTER 4. QUEUING SYSTEMS

• the queues draw the same number l ∼ U([K]) with their shared randomness. For each
pair of queues (i, j) matched in π, associate k(i,j) = l+ min(i, j) (mod K) + 1 to this pair.
The queues i and j then send to the server k(i,j).

As we assumed that the server breaks ties in the packets’ age uniformly at random, the
queue i clears with probability (1− λj

2)µ̄, where µ̄ = 1
K

∑K
k=1 µk. Thanks to this, λj is estimated

by queue i as:
λ̂ij = 2− 2Ŝij/µ̃i, (4.2)

where µ̃i =
∑K

k=1 N
i
kµ̂

i
k∑K

k=1 N
i
k

, N i
k is the number of exploration pulls of server k by queue i and Ŝij is

the empirical probability of clearing a packet observed by queue i when exploring λj .

Algorithm 23: Explore
input : i ∈ [N] // queue id

1 k ← 0
2 Draw n ∼ U([N +K]) // shared randomness

3 if n ≤ K then // explore µ

4 k ← n+ i (mod K) + 1
5 Pull k ; Update Nk and µ̂k
6 else // explore λ

7 Draw r ∼ U([N]) and l ∼ U([K]) // shared randomness

8 j ← rth opponent in the all-meet-all tournament planned according to Berger tables
9 k ← l + min(i, j) (mod K) + 1

10 if k ̸= 0 and packet appeared at current time step then // explore λj on server k

11 Pull k with most recent packet ; Update Ŝj and λ̂j according to Equation (4.2)
12 end
13 end

Remark 4.4.1. The packet manipulation when exploring λj strongly relies on the servers tie
breaking rules (uniformly at random). If this rule was unknown or not explicit, the algorithm
can be adapted: when queue i explores λj, queue j instead sends the packet generated at time
t − 1 (if it exists), while queue i still sends the packet generated at time t. In that case, the
clearing probability for queue i is exactly (1− λj)µ̄, allowing to estimate λj. Anticipating the
nature of the round t (exploration vs. exploitation) can be done by drawing ω1 ∼ Bernoulli(εt)
at time t − 1. If ω1 = 1, the round t is exploratory and the packet generated at time t − 1 is
then kept apart by the queue j.

To describe the exploitation phase, we need a few more notations. We denote by BK the
set of doubly stochastic matrices (non-negative matrices such that each of its rows and columns
sums to 1) and by SK the set of permutation matrices in [K] (a permutation matrix will be
identified with its associated permutation for the sake of cumbersomeness).

A dominant mapping is a function ϕ : RN × RK → BK which, from (λ, µ), returns a
doubly stochastic matrix P such that λi < (Pµ)i for any i ∈ [N] if it exists (and the identity
matrix otherwise).

A BvN (Birkhoff von Neumann) decomposition is a function ψ : BK → P(SK) that
associates to any doubly stochastic matrix P a random variable ψ(P) such that E[ψ(P)] =
P ; stated otherwise, it expresses P as a convex combination of permutation matrices. For
convenience, we will represent this random variable as a function from [0, 1] (equipped with the
uniform distribution) to SK .

100

4.4. A DECENTRALIZED ALGORITHM

Informally speaking, those functions describe the strategies queues would follow in the
centralized case: a dominant mapping gives adequate marginals ensuring stability (since the
queue i clears in expectation (Pµ)i packets at each step, which is larger than λi by definition),
while a BvN decomposition describes the associated coupling to avoid collisions. Explicitly, the
joint strategy is for each queue to draw a shared random variable ω2 ∼ U(0, 1) and to choose
servers according to the permutation ψ(ϕ(λ, µ))(ω2)

Exploitation. In a decentralized system, each queue i computes a mapping Âi := ψ(ϕ(λ̂i, µ̂i))
solely based on its own estimates λ̂i, µ̂i. A shared variable ω2 ∈ [0, 1] is then generated uniformly
at random and queue i sends a packet to the server Âi(ω2)(i). If all queues knew exactly
the parameters λ, µ, the computed strategies Âi would be identical and they would follow the
centralized policy described above.

However, the estimates (λ̂i, µ̂i) are different between queues. The usual dominant mappings
and BvN decompositions in the literature are non-continuous. Using those, even queues with
close estimates could have totally different Âi, and thus collide a large number of times, which
would impede the stability of the system. Regular enough dominant mappings and BvN
decompositions are required, to avoid this phenomenon. The design of ϕ and ψ is thus crucial
and appropriate choices are given in the following Sections 4.4.1 and 4.4.2. Nonetheless, they
can be used in some black-box fashion, so we provide for the sake of completeness sufficient
conditions for stability, as well as a general result depending on the properties of ϕ and ψ, in
Section 4.A.1.

Remark 4.4.2. The exploration probability t−
1
5 gives the smallest theoretical dependency in ∆

in our bound. A trade-off between the proportion of exploration rounds and the speed of learning
indeed appears in the proof of Theorem 4.1.1. Exploration rounds have to represent a small
proportion of the rounds, as the queues accumulate packets when exploring. On the other hand,
if queues explore more often, the regime where their number of packets decreases starts earlier.
A general stability result depending on the choice of this probability is given by Theorem 4.A.1
in Section 4.A.1.
Yet in Section 4.5, taking a probability t−

1
4 empirically performs better as it speeds up the

exploration.

4.4.1 Choice of a dominant mapping

Recall that a dominant mapping takes as inputs (λ, µ) and returns, if possible, a doubly
stochastic matrix P such that

λi <
∑K
k=1 Pi,kµk for all i ∈ [N].

The usual dominant mappings sort the vector λ and µ in descending orders (Marshall et al.,
1979). Because of this operation, they are non-continuous and we thus need to design a regular
dominant mapping satisfying the above property. Inspired by the log-barrier method, it is done
by taking the minimizer of a strongly convex program as follows

ϕ(λ, µ) = arg min
P∈BK

max
i∈[N]

− ln
(K∑
j=1

Pi,jµj − λi
)

+ 1
2K ∥P∥

2
2. (4.3)

Although the objective function is non-smooth because of the max operator, it enforces
fairness between queues and leads to a better regularity of the arg min.

101

CHAPTER 4. QUEUING SYSTEMS

Remark 4.4.3. Computing ϕ requires solving a non-smooth strongly convex minimization
problem. This cannot be computed exactly, but a good approximation can be quickly obtained
using the scheme described in Section 4.A.2. If this approximation error is small enough, it has
no impact on the stability bound of Theorem 4.4.9. It is thus ignored for simplicity, i.e., we
assume in the following that ϕ(λ, µ) is exactly computed at each step.

As required, ϕ always returns a matrix P satisfying that λ < Pµ if possible, since otherwise
the objective is infinite (and in that case we assume that ϕ returns the identity matrix).
Moreover, the objective function is 1

K -strongly convex, which guarantees some regularity of the
arg min, namely local-Lipschitzness, leading to Theorem 4.4.4 below.

Lemma 4.4.4. For any (λ, µ) with positive margin ∆ (defined in Equation (4.1)), if ∥(λ̂ −
λ, µ̂− µ)∥∞ ≤ c1∆, for any c1 <

1
2
√
e+2 , then

∥ϕ(λ̂, µ̂)− ϕ(λ, µ)∥2 ≤
c2K

∆ ∥(λ̂− λ, µ̂− µ)∥∞,

where c2 = 4
(1−2c1)/

√
e−2c1

. Moreover, denoting P̂ = ϕ(λ̂, µ̂), it holds for any i ∈ [N],

λi ≤
∑K
k=1 P̂i,kµk −

(
1−2c1√

e
− 2c1

)
∆.

The first property guarantees that if the queues have close estimates, they also have close
doubly stochastic matrices P̂ . Moreover, the second property guarantees that any queue should
clear its packets with a margin of order ∆, in absence of collisions.

Remark 4.4.5. An alternative dominant mapping without the regularizing term in Equation (4.3)
can also be proposed. Yet, its local Lipschitz bound would also depend on the smallest difference
between the λi or the µi, which can be arbitrarily small. If two parameters λi or µi are equal,
this choice of dominant mapping might lead to unstable policies. Using a regularization term
in Equation (4.3) thus avoids this problem, although a smaller dependency might be possible
without this regularization term when the parameters λi and µi are very distinct.

4.4.2 Choice of a Birkhoff von Neumann decomposition

Given a doubly stochastic matrix P̂ , Birkhoff algorithm returns a convex combination of
permutation matrices P [j] such that P̂ = ∑

j z[j]P [j]. The classical version of Birkhoff
algorithm is non-continuous in its inputs and it even holds for its extensions as the one proposed
by Dufossé et al. (2018). Yet it can be smartly modified as in Ordered Birkhoff, described
in Algorithm 24, to get a regular BvN decomposition defined as follows for any ω ∈ (0, 1):

ψ(P)(ω) = P [jω] (4.4)
where P = ∑

j z[j]P [j] is the decomposition returned by Ordered Birkhoff algorithm
and jω verifies

∑
j≤jω

z[j] ≤ ω <
∑

j≤jω+1
z[j].

102

4.4. A DECENTRALIZED ALGORITHM

For a matrix P in the following, its support is defined as supp(P) = {(i, j) | Pi,j ̸= 0}.
Algorithm 24: Ordered Birkhoff

input : P̂ ∈ BK (doubly stochastic matrix), C ∈ RK×K (cost matrix)
1 j ← 1
2 while P̂ ̸= 0 do
3 Ci,k ← +∞ for all (i, k) ̸∈ supp(P̂) // remove edge (i, k) in induced graph

4 P [j]← Hungarian(C) // matching with minimal cost w.r.t. C

5 z[j]← min(i,k)∈supp(P [j]) P̂i,k
6 P̂ ← P̂ − z[j]P [j] and j ← j + 1
7 end
8 return (z[j], P [j])j

Obviously Eω∼U(0,1)[ψ(P)(ω)] = P and permutations avoid collisions between queues. The
difference with the usual Birkhoff algorithm happens at Line 4. Birkhoff algorithm usually
computes any perfect matching in the graph induced by the support of P̂ at the current iteration.
This is often done with the Hopcroft-Karp algorithm, while it is here done with the Hungarian
algorithm with respect to some cost matrix C. Although using the Hungarian algorithm slightly
increases the computational complexity of this step (K3 instead of K2.5), it ensures to output
the permutation matrices P [j] according to a fixed order defined below.

Definition 4.4.6. A cost matrix C induces an order ≺C on the permutation matrices defined,
for any P, P ′ ∈ SK by

P ≺C P ′ iff
∑
i,j Ci,jPi,j <

∑
i,j Ci,jP

′
i,j .

This order might be non-total as different permutations can have the same cost. However,
if C is drawn at random according to some continuous distribution, this order is total with
probability 1. The order ≺C has to be the same for all queues and is thus determined beforehand
for all queues.

Lemma 4.4.7. Given matrices C ∈ RK×K and P ∈ BK , Ordered Birkhoff outputs a
sequence (z[j], P [j])j of length at most K2 −K + 1, such that

P = ∑
j z[j]P [j], where for all j, z[j] > 0 and P [j] ∈ SK .

Moreover if the induced order ≺C is total, z[j] is the j-th non-zero element of the sequence
(zl(P))1≤l≤K! defined by

zj(P) = min
(i,k)∈supp(Pj)

(
P −

j−1∑
l=1

zl(P)Pl
)
i,k

(4.5)

where (Pj)1≤j≤K! is a ≺C-increasing sequence of permutation matrices, i.e., Pj ≺C Pj+1 for all
j.

Theorem 4.4.7 is crucial to guarantee the regularity of ψ, given by Theorem 4.4.8.

Lemma 4.4.8. Consider ψ defined as in Equation (4.4) with a cost matrix C inducing a total
order ≺C , then for any doubly stochastic matrices P, P ′

∫ 1

0
1
(
ψ(P)(ω) ̸= ψ(P ′)(ω)

)
dω ≤ 22(K2−K+1)∥P − P ′∥∞.

103

CHAPTER 4. QUEUING SYSTEMS

Theorem 4.4.8 indeed ensures that the probability of collision between two queues remains
small when they have close estimates. Unfortunately, the regularity constant is exponential in
K2, which yields a similar dependency in the stability bound of Theorem 4.4.9. The existence
of a BvN decomposition with polynomial regularity constants remains unknown, even without
computational considerations. The design of a better BvN decomposition is left open for
future work and would directly improve the stability bounds, using the general result given by
Theorem 4.A.1 in Section 4.A.1. The number of accumulated packets yet remain reasonably
small in the experiments of Section 4.5, suggesting that the bound given by Theorem 4.4.8 is
not tight and might be improved in future work.

4.4.3 Stability guarantees

This section finally provides theoretical guarantees on the stability of the system when all queues
follow ADeQuA. The success of ADeQuA relies on the accurate estimation of all problem
parameters by the queues, given by Theorem 4.A.7 in Section 4.A.4. After some time τ , the
queues have tight estimations of the problem parameters. Afterwards, they clear their packets
with a margin of order ∆, thanks to Theorems 4.4.4 and 4.4.8. This finally ensures the stability
of the system, as given by Theorem 4.4.9.
Theorem 4.4.9. For any η > 1, the system where all queues follow ADeQuA, for any queue i
and any r ∈ N, there exists a constant Cr depending only on r such that

E[(Qit)r] ≤ CrKN
(
N

5
2K

5
2 25(K2−K+1)(

min(1,Kµ̄)
¯
λ
) 5

4 ∆5

)r
, for all t ∈ N.

As a consequence, for any η > 1, this decentralized system is strongly stable.

Despite yielding an exponential dependency in K2, this anytime bound leads to a first
decentralized stability result when η ∈ (1, e

e−1), which closes the stability gap left by previous
works. Moreover it can be seen in the proof that the asymptotic number of packets is much
smaller. It actually converges, in expectation, to the number of packets the queues would
accumulate if they were following a stable centralized strategy from the beginning. As already
noted by Krishnasamy et al. (2016) for a single queue, the number of packets first increases
during the learning phase and then decreases once the queues have tight enough estimations,
until reaching the same state as in the perfect knowledge centralized case. This is empirically
confirmed in Section 4.5.

4.5 Simulations
Figures 4.2 and 4.3 compare on toy examples the stability of queues, when either each of
them follows the no-regret strategy EXP3.P.1, or each queue follows ADeQuA. For practical
considerations, we choose the exploration probability εt = (N +K)t− 1

4 for ADeQuA, as the
exploration is too slow with εt of order t− 1

5 .
These figures illustrate the evolution of the average queue length on two different instances

with N = K = 4. The code for the experiments is available at gitlab.com/f_sen/queuing_
systems.

In the first instance shown in Figure 4.2, for all i ∈ [N], λi = (N + 1)/N2. Moreover µ1 = 1
and for all i ≥ 2, µi = (N − 1)/N2. Here η < 2 and no-regret strategies are known to be
unstable (Gaitonde and Tardos, 2020a). It is empirically confirmed as the number of packets in
each queue diverges when they follow EXP3.P.1. Conversely, when the queues follow ADeQuA,
after a learning phase, the queues reach equilibrium and all succeed in clearing their packets.

104

gitlab.com/f_sen/queuing_systems
gitlab.com/f_sen/queuing_systems

4.6. CONCLUSION

In the second instance shown in Figure 4.3, for all i ∈ [N], λi = 0.55− 0.1 · i and µi = 2.1λi.
Here η > 2 and both strategies are known to be stable, which is again empirically confirmed.
However, ADeQuA requires more time to learn the different parameters, suggesting that
individual no-regret strategies might be better on easy instances where η > 2.

0.0 0.2 0.4 0.6 0.8 1.0
Iteration ×106

0
100

101

102

103

104

N
um

be
ro

fp
ac

ke
ts

ADeQuA
EXP3.P.1

Figure 4.2: Hard instance, η < 2.

0.0 0.2 0.4 0.6 0.8 1.0
Iteration ×105

0

100

101

N
um

be
ro

fp
ac

ke
ts

ADeQuA
EXP3.P.1

Figure 4.3: Easy instance, η > 2.

4.6 Conclusion
In this work, we showed that minimizing a more patient version of regret was not necessarily
stable when the system’s slack is smaller than two and we argued that some level of cooperation
was then required between learning queues to reach stability. We presented the first decentralized
learning algorithm guaranteeing stability of any queuing system with a slack larger than 1. Our
stability bound presents an exponential dependency in the number of queues and remains open
for improvement, e.g., through a better dominant mapping/BvN decomposition or a tighter
analysis of ours. The proposed algorithm relies heavily on synchronisation between the queues,
which all start the game simultaneously and share a common time discretisation. In particular,
the shared randomness assumption merely results from this synchronisation when the players
use a common random seed. Stability of asynchronous queues thus remains open for future
work, for which Glauber dynamics approaches used in scheduling problems might be of interest
(see e.g., Shah and Shin, 2012).

Remark : A subsequent work of Freund et al. (2022) managed to fix some of the issues
mentioned above. They got rid of the exponential dependency in the number of queues and
treat queues leaving and entering the game. To get this result, they designed a different decision
rule for the servers and assumed a known lower bound on the slack of the system.

105

CHAPTER 4. QUEUING SYSTEMS

4.A Appendix

4.A.1 General version of Theorem 4.4.9

ADeQuA is described for specific choices of the functions ϕ and ψ given by Sections 4.4.1
and 4.4.2. It yet uses them in a black box fashion and different functions can be used, as long
as they verify some key properties. This section provides a general version of Theorem 4.4.9,
when the used dominant mapping and BvN decomposition respect the properties given by
Assumptions 1 and 2.

Assumption 1 (regular dominant mapping). There are constants c1, c2 > 0 and a norm ∥ · ∥
on RK×K , such that if ∥(λ̂− λ, µ̂− µ)∥∞ ≤ c1∆, then

∥ϕ(λ̂, µ̂)− ϕ(λ, µ)∥ ≤ Lϕ · ∥(λ̂− λ, µ̂− µ)∥∞.

Moreover, P̂ = ϕ(λ̂, µ̂) is doubly stochastic and for any i ∈ [N],

λi ≤
∑K
k=1 P̂i,kµk − c2∆.

Assumption 2 (regular BvN decomposition). Consider the same norm ∥ · ∥ as Assumption 1
on RK×K . For any doubly stochastic matrices P, P ′

∫ 1

0
ψ(P)(ω)dω = P

and
∫ 1

0
1
(
ψ(P)(ω) ̸= ψ(P ′)(ω)

)
dω ≤ Lψ · ∥P − P ′∥.

Theorems 4.4.4 and 4.4.8 show that the functions described in Sections 4.4.1 and 4.4.2 verify
Assumptions 1 and 2 with the constants Lϕ and Lψ respectively of order K

∆ and 22K2 with the
norm ∥ · ∥∞. Designing a dominant mapping and a BvN decomposition with smaller constants
Lϕ and Lψ is left open for future work. It would lead to a direct improvement of the stability
bound, as shown by Theorem 4.A.1.

Theorem 4.A.1. Assume all queues follow ADeQuA, using an exploration probability εt =
xt−α with x > 0, α ∈ (0, 1) and functions ϕ and ψ verifying Assumptions 1 and 2 with the
constants Lϕ, Lψ. The system is then strongly stable and for any r ∈ N, there exists a constant
Cr such that:

E[(Qit)r] ≤ Cr

 xr/α

∆r/α
+KN

 N2KL2
ϕL

2
ψ

min(1,Kµ̄)
¯
λ∆2x

 r
1−α

 , for all t ∈ N

The proof directly follows the lines of the proof of Theorem 4.4.9 in Section 4.A.4 and is
thus omitted here. From this version, it can be directly deduced that α = 1

5 gives the best
dependency in ∆ for ADeQuA. Moreover the best choice for x varies with r. When r →∞, it
actually is x = N

2
5K

3
5 2 4

5K
2 for ADeQuA. The choice x = N +K is preferred for simplicity

and still yields quite similar problem dependent bounds.

4.A.2 Efficient computation of ϕ

As mentioned in Section 4.4.1, computing exactly ϕ(λ̂, µ̂) is not possible. Even efficiently
approximating it is not obvious, as the function to minimize is neither smooth nor Lipschitz.

106

4.A. APPENDIX

We here describe how an approximation of ϕ can be efficiently computed with guarantees on
the approximation error.

First define the empirical estimate of the margin ∆:

∆̂ := min
k∈[N]

1
k

 k∑
i=1

µ̂(i) − λ̂(i)

 .
It can be computed in time O

(
N log(N)

)
as it only requires to sort the vectors λ̂ and µ̂. If

∆̂ ≤ 0, then the value of the optimization problem is +∞ and any matrix can be returned.
Assume in the following ∆̂ > 0. Similarly to the proof of Theorem 4.4.4, it can be shown that
the value of the optimization problem is smaller than − ln(∆̂/

√
e). Noting by BK the set of

K ×K doubly stochastic matrices, the optimization problem given by Equation (4.3) is then
equivalent to

arg min
P∈X

g(P), (4.6)

where

X =

P ∈ BK | ∀i ∈ [N],∑K
j=1 Pi,jµj − λi ≥ ∆̂√

e

,
and g(P) = maxi∈[N]− ln(∑K

j=1 Pi,jµj − λi) + 1
2K ∥P∥

2
2.

Thanks to this new constraint set, the objective function of Equation (4.6) is now (
√
e

∆ + 1)-
Lipschitz. We can now use classical results for Lipschitz strongly convex minimization to obtain
convergence rates of order 1

t for the projected gradient descent algorithm (see e.g., Bubeck,
2014, Theorem 3.9). These results yet assume that the projection on the constraint set can
be exactly computed in a short time. This is not the case here, but it yet can be efficiently
approximated using interior point methods (see e.g., Bubeck, 2014, Section 5.3), which has a
linear convergence rate. If this approximation is good enough, similar convergence guarantees
than with exact projection can be shown similarly to the original proof.

Algorithm 25 then describes how to quickly estimate ϕ(λ̂, µ̂), where Π̂X returns an approx-
imation of the orthogonal projection on the set X and ∂g is a sub-gradient of g. It uses an
averaged value of the different iterates, as the last iterate does not have good convergence
guarantees.

Algorithm 25: Compute ϕ
input : function g, constraint set X , P 0 ∈ X

1 P, P̂ ← P 0

2 for t = 1, . . . , n do
3 P ← Π̂X

(
P − 2N

(t+1)∂g(P)
)

// approximated projection

4 P̂ ← t
t+2 P̂ + 2

t+2P

5 end
6 return P̂

In practice, the approximation can even be computed faster by initializing P 0 in Algorithm 25
with the solution of the previous round t− 1.

107

CHAPTER 4. QUEUING SYSTEMS

4.A.3 Unstable No-Policy regret system example

Algorithm 26: Unstable No-policy regret system example
input : wk, N , α, λ = (1/N, . . . , 1/N), µ = (2(N − d)/N2, . . . , 2(N − d)/N2)

1 for k = 1, . . . ,∞ do
2 for t = 1, . . . , ⌈αwk⌉ do
3 Queues 2i and 2i+ 1 play server 2i+ t (mod N) // stage 1

4 end
5 for t = ⌈αwk⌉+ 1, . . . , wk do
6 Queue i plays server i+ t (mod N) // stage 2

7 end
8 end

Lemma 4.A.2. Consider the system where the queues play according to the policy described in
Algorithm 26 over successive windows of length wk = k2. If α > 1 − d

N−d , the system is not
stable.

Proof. Note that the system is equivalent to a system where each queue or pair of queue would
always pick the same server. For simplicity, the analysis deals with that equivalent system.
Also, wlog, we analyse the subsystem with the two first queues and the two first servers. Let{
Bi
t

}
i∈[n],t≥1

be the independent random variables indicating the arrival of a packet on queue i

at time t,
{
Sit

}
i∈[n],t≥1

be the indicators that server j would clear a packet at iteration ℓ if one
were sent to it. For each queue i ∈ [N] and t ≥ 0, we have by Chernoff bound

Pr


∣∣∣∣∣∣
ℓ∑
t=1

Bi
t − λiℓ

∣∣∣∣∣∣ ≥
√
ℓ ln(ℓ)

 ≤ 2
ℓ2
.

The same holds for each queue, thus the probability that this event happens for queue 1 or
queue 2 is at most, 4

ℓ2 . As it is summable in ℓ, The Borel-Cantelli Lemma implies that, for large
enough ℓ, almost surely, for any i ∈ [2]:

ℓ∑
ℓ=1

Bi
t = λiℓ± Õ

(√
ℓ
)
. (4.7)

Let Wk = ∑k
i=1wi. Note that Wk = Θ

(
k3
)

= Θ
(
w

3/2
k

)
. Again by Chernoff bound and

Borel-Cantelli, for large enough k, almost surely, for any i ∈ {1, 2}:

Wk−1+⌈αwk⌉∑
t=Wk−1

Sit = µiαwk ± Õ
(√
wk
)
,

Wk∑
t=Wk−1+⌈αwk⌉

Sit = µi(1− α)wk ± Õ
(√
wk
)
. (4.8)

Thus, for any large enough k, the total number of packet in both queues at time Wk is

108

4.A. APPENDIX

almost surely lower bounded as:

Q1
Wk

+Q2
Wk
≥

Wk∑
t=1

(B1
t +B2

t)−
Wk∑
t=1

S1
t −

k∑
l=1

 Wl∑
t=Wl−1+⌈αwl⌉

S2
t

 (4.9)

≥
[

2
N
− 2(N − d)

N2 − (1− α)2(N − d)
N2

]
Wk − Õ

(
W

2/3
k

)
(4.10)

≥2
[
α(N − d)− (N − 2d)

]
N2 Wk − Õ

(
W

2/3
k

)
(4.11)

which is a diverging function of Wk. Note that this result also holds for any two pair of
queues (2i− 1, 2i), with i ∈ [N/2].

Lemma 4.A.3. Consider the same setting as in Theorem 4.A.2. For any i ∈ [N], for any large
enough k, queue i clears (

N − d
N2 + (1− α)N − d

N2 + o(1)
)
wk

packets almost surely over window wk.

Proof. The proof starts by showing that for any large enough t, all the queues hold roughly
the same number of packets. Then, as they receive roughly the same number of packets over a
time window and we can compute the approximate total number of packets cleared, the results
follows.

Let T ti be the age of the oldest packet in queue i at time t. By Chernoff bound,

P(|T ti −NQti| ≥ N
√
t ln(t)) ≤ 2

t2
.

Thus, using the Borel-Cantelli lemma, for any queue i, almost surely, for any large enough k
and any t ∈ [Wk−1 + 1,Wk],

|T ti −NQti| ≤ N
√
t ln(t) = Õ(w3/4

k). (4.12)

For any (i, j) ∈ [N]2, define

ϕ+
t (i, j) :=

(
Qit −Q

j
t − 2N

√
t ln(t)

)
+

and ϕ−
t (i, j) :=

(
Qit −Q

j
t + 2N

√
t ln(t)

)
−
.

Let Cit be the indicator function that queue i clears a packet at iteration t. Note that for
any large enough t, ϕ+

t (i, j) is a supermartingale. Indeed,

E[ϕ+
t+1(i, j)|ϕ+

1:t(i, j)] ≤ϕ+
t (i, j) + E[Bi

t −B
j
t |ϕ+

1:t(i, j)]− E[Cit − C
j
t |ϕ+

1:t(i, j)]
≤ϕ+

t (i, j).

The second inequality comes from Equation (4.12), that implies that for any large enough
t, if ϕ+

t (i, j) is strictly positive, queue i holds the oldest packet and thus clears one with
higher probability than queue j. By the same arguments, ϕ−

t (i, j) a submartingale. Also,
|ϕ+
t+1(i, j)− ϕ+

t (i, j)| ≤ 2(N + 1) for any t ≥ 0, and the same holds for ϕ−
t (i, j). Let τij be the

stopping time of the smallest iteration after which Equation (4.12) always holds for queues i

109

CHAPTER 4. QUEUING SYSTEMS

and j. By Azuma-Hoeffding’s inequality,

Pr
(
ϕ+
ℓ (i, j)− ϕ+

τij
(i, j) ≥ 3(N + 1)

√
ℓ ln(ℓ)

)
≤ 2
ℓ2

and
Pr
(
ϕ−
ℓ (i, j)− ϕ+

τij
(i, j) ≤ −3(N + 1)

√
ℓ ln(ℓ)

)
≤ 2
ℓ2
.

This, together with a union bound and Borel-Cantelli’s Lemma implies that almost surely,
for any large enough t, for any (i, j) ∈ [N]2

Qit −Q
j
t = Õ

(√
t
)
. (4.13)

This with Equation (4.9) implies that for any large enough k, for any i ∈ [N], almost surely,

QiWk
≥
[
α(N − d)− (N − 2d)

]
N2 Wk − Õ

(
W

2/3
k

)
.

This means that for any large enough k, every queue holds at least one packet over the whole
window wk. This and Equation (4.8) is already enough to show that for any time-window wk,
for any large enough k, the total number of packets cleared by any couple of queue (2i− 1, 2i),
i ∈ [N/2] is:

2
(
N − d
N2 + (1− α)N − d

N2

)
wk + Õ

(√
wk
)
.

During time window wk, according to Equation (4.7), both every queue receives αwk/N +
Õ
(
w

3/4
k

)
packets almost surely for any large enough k. Equation (4.13) implies that for any

i ∈ [N/2]
Q2i−1
Wk
−Q2i

Wk
= Õ

(
w

3/4
k

)
and Q2i−1

Wk−1
−Q2i

Wk−1 = Õ
(
w

3/4
k

)
.

Therefore, over each time-window wk, for any large enough k, each queue clears(
N − d
N2 + (1− α)N − d

N2 + o(1)
)
wk

packets almost surely.

Lemma 4.A.4. Consider again the system where the queues play according to the policy
described in Algorithm 26 over successive windows of length wk = k2. If α < 1 − 1

N−1 , the
queues have o (wk) policy regret in all but finitely many of the windows.

Wlog, let us consider that queue 1 deviates, and plays at every iteration a server chosen
from the probability distribution p = (p1, ..., pN), with pi the probability to play server i. To
upper bound the number of packets queue 1 clears over each time window, we can assume it
always has priority over queue 2 and ignore it in the analysis.

Before proving Theorem 4.A.4, we prove the following technical one.

Lemma 4.A.5. Consider that a queue deviates from the strategy considered in Theorem 4.A.4
and plays at every iteration a server chosen from the probability distribution p = (p1, ..., pN),
with pi the probability to play server i. For any large enough k, almost surely, the number of

110

4.A. APPENDIX

packets the deviating queue clears of the first stage of the kth window is(1
2 + 1

N

) 2(N − d)
N2 αwk + Õ

(
w

3/4
k

)
.

Proof. The proof starts by showing that for any large enough t, every non-deviating queue
holds approximately the same number of packets.

Fist note that for any large enough t, Equation (4.12) still holds surely for any queue i. For
any (i, j) ∈ {3, . . . , N}2, define

ϕ+
ℓ (i, j) :=

(
Qi⌈ℓN⌉ −Q

j
⌈ℓN⌉ − 4N

√
⌈ℓN⌉ ln(⌈ℓN⌉)

)
+

and
ϕ−
ℓ (i, j) :=

(
Qi⌈ℓN⌉ −Q

j
⌈ℓN⌉ + 4N

√
⌈ℓN⌉ ln(⌈ℓN⌉)

)
−
.

For any interval [⌈ℓN⌉, ⌈(ℓ + 1)N⌉] where Equation (4.12) holds for queues 1, i and j, if
ϕ+
ℓ (i, j) is strictly positive, then

E

⌈(ℓ+1)N⌉∑
t=⌈ℓN⌉

Cjt − Cit

∣∣∣∣∣ϕ+
1:t(i, j)

 ≤ 0.

Indeed, if ϕ+
ℓ (i, j) is strictly positive and Equation (4.12) holds, queue i holds the oldest packets

throughout the interval. Also, queue i and queue j collide with queue 1 the same number of
times over the interval in expectation, and if at one iteration of the interval, queue 1 holds
an older packet than queue i, it holds an older packet than queue j over the whole interval.
Thus ϕ+

ℓ (i, j) is a submartingale. By the same arguments, ϕ+
ℓ (i, j) is a supermartingale. Also,

|ϕ+
ℓ+1(i, j) − ϕ+

ℓ (i, j)| ≤ 4(N + 1)2 and the same holds for ϕ−
ℓ (i, j). Finishing with the same

arguments used to prove Equation (4.13), almost surely, for any (i, j) ∈ {3, . . . , N}2,

Qit −Q
j
t = Õ

(√
t
)
. (4.14)

We now show that for any large enough t, queue 1 can not hold many more packets than
the non-deviating queues. Define

ϕ+
t :=

(
Q1
t −max

i≥3
Qit − 2N

√
t ln(t)

)
+
.

Once again, at every iteration where ϕ+
t is strictly positive and Equation (4.12) holds, queue

1 holds the oldest packet and thus has priority on whichever server it chooses. This implies
that for any large enough t, ϕ+

t is a supermartingale. It also holds that for any t ≥ 0,
|ϕ+
t+1 − ϕ

+
t | ≤ 2(N + 1). Thus, with the same arguments used to prove Equation (4.13), almost

surely, (
Q1
t −max

i≥3
Qit

)
+

= Õ
(√

t
)
. (4.15)

With that at hand, we prove that for any large enough k, queue 1 does not get priority often
over the other queues during the first stage of the kth window. For any i ∈ {2, . . . , N/2}, pose:

ψiℓ = 1
2
(
Q2i−1

⌈ℓN⌉ +Q2i
⌈ℓN⌉

)
−Q1

⌈ℓN⌉ −
2(N − d)
N3 (⌈ℓN⌉ −Wk−1)

111

CHAPTER 4. QUEUING SYSTEMS

For any ℓ s.t. {⌈ℓN⌉; ⌈(ℓ+ 1)N − 1⌉} is included in the first phase of a window, we have

⌈(ℓ+1)N⌉−1∑
t=⌈ℓN⌉

E

C1
t

∣∣∣∣∣ψ+
1:ℓ(i, j)

 ≥ ⌈(ℓ+1)N⌉−1∑
t=⌈ℓN⌉

E

Sti1{queue 1 and only queue 1 picks server i}

∣∣∣∣∣ψ+
1:ℓ(i, j)


≥ N − d

N
+ 2(N − d)

N2

as well as
⌈(ℓ+1)N⌉−1∑
t=⌈ℓN⌉

E

1
2
(
C2i
t + C2i−1

t

) ∣∣∣∣∣ψ+
1:ℓ(i, j)

 ≤ ⌈(ℓ+1)N⌉−1∑
t=⌈ℓN⌉

E

1
2S

t
i+t (mod N)

∣∣∣∣∣ψ+
1:ℓ(i, j)


≤ N − d

N
.

Those two inequalities imply:

E[ψiℓ+1|ψ+
1:ℓ(i, j)] =ψ+

ℓ (i, j) +
⌈(ℓ+1)N⌉−1∑
t=⌈ℓN⌉

E

1
2(B2i

t −B2i−1
t)−B1

t

∣∣∣∣∣ψ+
1:ℓ(i, j)


−

⌈(ℓ+1)N⌉−1∑
t=⌈ℓN⌉

E

1
2(C2i

t − C2i−1
t)− C1

t

∣∣∣∣∣ψ+
1:ℓ(i, j)

− 2(N − d)
N2

≥ψ+
ℓ (i, j).

Thus, for any ℓ s.t. {⌈ℓN⌉; ⌈(ℓ + 1)N − 1⌉} is included in the first phase of a window, ψiℓ is
a submartingale. Moreover, for any ℓ ≥ 0, |ψiℓ+1 − ψiℓ| ≤ 3N . Thus, by Azuma-Hoeffding’s
inequality, for any ℓ s.t.{⌈ℓN⌉; ⌈(ℓ+ 1)N − 1⌉} ⊂ [Wk−1,Wk−1 + αwk],

Pr
(
ψiℓ − ψiWk

≤ −6N
√
ℓN ln(ℓN)

)
≤ 1

(ℓN)2 .

Borel-Cantelli’s lemma implies, that for any large enough ℓ s.t.{⌈ℓN⌉; ⌈(ℓ + 1)N − 1⌉} ⊂
[Wk−1,Wk−1 + αwk], almost surely:

ψiℓ ≥ ψiWk
− 6N

√
ℓN ln(ℓN).

This and Equation (4.15) applied at t = Wk, imply that for any large enough k, for any
t ∈ [Wk−1,Wk−1 + αwk],

1
2
(
Q2i−1
t +Q2i

t

)
≥Q1

⌈ℓN⌉ + 2(N − d)
N3 (t−Wk−1) + ψiWk

− Õ(
√
t)

≥Q1
⌈ℓN⌉ + 2(N − d)

N3 (t−Wk−1)− Õ(w3/4
k).

This and Equation (4.12) imply that during the first stage of the time window, queue 1
holds younger packets than any other queues i ≥ 3 after at most Õ(w3/4

k) iterations.

By Chernoff bound and the Borel-Cantelli lemma again, for any large enough k, almost
surely, the number of packets queue 1 clears during the first stage of the kth window on servers

112

4.A. APPENDIX

where it does not collide with other queues is:

Wk−1+αwk∑
t=Wk−1+1

N∑
i=1

Sti1{queue 1 and only queue 1 picks server i} = (1
2 + 1

N
)2(N − d)

N2 αwk + Õ
(√
wk
)
.

Since we have shown that for any large enough k, almost surely, queue 1 does not have
priority over the other queues after at most Õ(w3/4

k) iterations, for any large enough k, almost
surely, the number of packets queue 1 clears of the first stage of the kth window is(1

2 + 1
N

) 2(N − d)
N2 αwk + Õ

(
w

3/4
k

)
.

We are now ready to prove Theorem 4.A.4.

Proof. By Chernoff bound and the Borel-Cantelli lemma, almost surely for any large enough k,
the number of packets queue 1 clears during the second stage of the window on servers where it
does not collide with other queues is:

Wk−1∑
t=Wk−1+αwk

N∑
i=1

Sti1{queue 1 and only queue 1 picks server i} = 4(N − d)
N3 (1− α)wk + Õ

(√
wk
)
. (4.16)

Suppose that during the second stage of the window, queue 1 never gets priority over another
queue. In that case, according to Equation (4.16) and Theorem 4.A.5, for any large enough k,
almost surely, the total number of packets cleared by queue 1 during the time window is(

α

2 + 2− α
N

) 2(N − d)
N2 wk + Õ(w3/4

k).

For any large enough k, if α ≤ 1 − 1
N−1 this is smaller than the number of packets queue 1

would have cleared had it not deviated, according to Theorem 4.A.3.
On the other hand, suppose that queue gets priority over some other queue i at some

iteration τ of the second stage of the window. In that case, at that iteration, queue 1 holds the
oldest packets, which, according to Equation (4.12), implies

Qτ1 > Qτi − Õ(w3/4
k)

During the second stage of the window, for any i ≥ 3, γit :=
(
Qti −Qt1 − 2N

√
t ln(t)

)
+

is a
supermartingale with bounded increments for any t where Equation (4.12) holds for queues 1
and i. Indeed, in that case, if γit is strictly positive, queue i holds an older packet than queue 1,
and thus, whether they collide or not, it has a higher probability to clear a packet than queue 1.
Thus, by Azuma-Hoeffding and the Borel-cantelli lemma again, for any large enough k, almost
surely,

QWk
i −QWk

1 ≤ Qτi −Qτ1 + Õ(w3/4
k).

Thus it holds that QWk
1 ≥ QWk

i − Õ(w3/4
k) for any i ≥ 2. This and Equation (4.15) imply that

all the queues clear approximately the same number of packets over those time windows for any

113

CHAPTER 4. QUEUING SYSTEMS

large enough k almost surely. Thus queue 1 clears[
(2− α)(N − 2) + (α+ 4− 2α

N
)
] (N − d)

(N − 1)N2wk + Õ
(
w

3/4
k

)
packets almost surely, which again is smaller than the number of packets it would have cleared
had it not deviated.

Thus, the deviating queue clears almost surely less packets by time window than it would
have had it not deviated on all but finitely many of the time windows, which implies that it has
no policy regret on all but finitely many of the time windows.

4.A.4 Proofs of Section 4.4

Proof of Lemma 4.4.4

We want to show that if ∥(λ̂− λ, µ̂− µ)∥∞ ≤ c1∆, then

∥ϕ(λ̂, µ̂)− ϕ(λ, µ)∥2 ≤
c2K

∆ ∥(λ̂− λ, µ̂− µ)∥∞, (4.17)

with the constants c1, c2 given in Theorem 4.4.4.

Recall that ϕ is defined as

ϕ(λ, µ) = arg min
P∈BK

f(P, λ, µ),

where BK is the set of K ×K doubly stochastic matrices and f is defined as:

f(P, λ, µ) := max
i∈[N]

− ln(
K∑
j=1

Pi,jµk − λi) + 1
2K ∥P∥

2
2

Let P ∗ and P̂ ∗ be the minimizers of f with the respective parameters (λ, µ) and (λ̂, µ̂).
They are uniquely defined as f is 1

K strongly convex.
As the property of Theorem 4.4.4 is symmetric, we can assume without loss of generality

that f(P ∗, λ, µ) ≥ f(P̂ ∗, λ̂, µ̂).

Given the definition of ∆, we have the bound

− ln(∆) + 1
2 ≥ f(P ∗, λ, µ) ≥ − ln(∆).

The lower bound holds because the term in the ln is at most ∆ for at least one i. For
the upper bound, some matrix P ensures that the term in the ln is at least ∆ for all i and
∥P∥22 ≤ K.

Similarly for P̂ ∗, it follows:

− ln((1− 2c1)∆) + 1
2 ≥ f(P̂ ∗, λ̂, µ̂) ≥ − ln((1 + 2c1)∆).

114

4.A. APPENDIX

As a consequence, it holds for any i ∈ [N]:

− ln

 K∑
j=1

P̂ ∗
i,jµ̂j − λ̂i

 ≤ f(P̂ ∗, λ̂, µ̂)

≤ − ln((1− 2c1)∆/
√
e)

K∑
j=1

P̂ ∗
i,jµ̂j − λ̂i ≥ (1− 2c1)∆/

√
e.

Note that for any i ∈ [N],

K∑
j=1

P̂ ∗
i,jµ̂j − λ̂i ≤

K∑
j=1

P̂ ∗
i,jµj − λi + 2∥(λ̂− λ, µ̂− µ)∥∞.

It then yields the second point of Theorem 4.4.4:

K∑
j=1

P̂ ∗
i,jµj − λi ≥

(
(1− 2c1)/

√
e− 2c1

)
∆

Moreover, it follows

− ln

 K∑
j=1

P̂ ∗
i,jµ̂j − λ̂i

 ≥ − ln

 K∑
j=1

P̂ ∗
i,jµj − λi

− ln

1 + 2∥(λ̂− λ, µ̂− µ)∥∞∑K
j=1 P̂

∗
i,jµj − λi


≥ − ln

 K∑
j=1

P̂ ∗
i,jµj − λi

− 2∥(λ̂− λ, µ̂− µ)∥∞(
(1− 2c1)/

√
e− 2c1

)
∆

Recall that for a 1
K -strongly convex function g of global minimum x∗ and any x:∥∥x− x∗∥∥

2 ≤ 2K(g(x)− g(x∗))

As a consequence, it follows:

f(P̂ ∗, λ̂, µ̂) ≥ f(P̂ ∗, λ, µ)− 2∥(λ̂− λ, µ̂− µ)∥∞(
(1− 2c1)/

√
e− 2c1

)
∆

≥ f(P ∗, λ, µ)− 2∥(λ̂− λ, µ̂− µ)∥∞(
(1− 2c1)/

√
e− 2c1

)
∆

+ 1
2K ∥P

∗ − P̂ ∗∥2.

Equation (4.17) then follows.

Proof of Lemma 4.4.7

The coefficient Ci,j is replaced by +∞ as soon as the whole weight Pi,j is exhausted. Thanks to
this, the Hungarian algorithm does return a perfect matching with respect to the bipartite
graph with edges (i, j) where there remains some weight for Pi,j . Because of this, it can be shown

115

CHAPTER 4. QUEUING SYSTEMS

following the usual proof of Birkhoff algorithm (Birkhoff, 1946) that the sequence (z[j], P [j]) is
indeed of length at most K2 −K + 1 and is a valid decomposition of P .

Now assume that ≺C is a total order. At each iteration j of Hungarian algorithm, denote
P̃ j = P −

∑j−1
s=1 z[s]P [s] the remaining weights to attribute.

Let lj be such that P [j] = Plj for any iteration j of Hungarian algorithm.
It can now be shown by induction that

P̃ j = P −
lj∑
l=1

zl(P)Pl.

where zl(P) are defined by Equation (4.5). Indeed, by definition

P̃ j+1 = P̃ j − z[j + 1]P [j + 1]
= P̃ j − z[j + 1]Plj+1

The Hungarian algorithm returns the minimal cost matching with respect to the modified
cost matrix C where the coefficients i, k such that P̃ ji,k = 0 are replaced by +∞. Thanks
to this, Plj+1 is the minimal cost permutation matrix Pl (for ≺C) such that P̃ ji,k > 0 for all
(i, k) ∈ supp(Pl).

This means that for any l < lj+1

min
(i,k)∈supp(Pl)

(P̃ j)i,k = 0.

Using the induction hypothesis, this implies that zl(P) = 0 for any lj < l < lj+1. And finally,
this also implies that zlj+1(P) = z[j + 1].

This finally concludes the proof as P̃ j = 0 after the last iteration.

Proof of Lemma 4.4.8

For z and z′ the respective decompositions of P and P ′ defined in Theorem 4.4.7, then∫ 1

0
1
(
ψ(P)(ω) ̸= ψ(P ′)(ω)

)
dω = Pω∼U(0,1)

(
ψ(P)(ω) ̸= ψ(P ′)(ω)

)
.

In the following, note A = ψ(P) and A′ = ψ(P ′). It follows for Pn defined as in Theorem 4.4.7

∫ 1

0
1
(
ψ(P)(ω) ̸= ψ(P ′)(ω)

)
dω =

K!∑
n=1

P(A = Pn and A′ ̸= Pn)

= 1
2

K!∑
n=1

P(A = Pn and A′ ̸= Pn) + 1
2

K!∑
n=1

P(A′ = Pn and A ̸= Pn)

= 1
2

K!∑
n=1

vol


n−1∑
j=1

zj(P),
n∑
j=1

zj(P)

⊖
n−1∑
j=1

zj(P ′),
n∑
j=1

zj(P ′)


 ,

where vol denotes the volume of a set and A ⊖ B = (A \ B) ∪ (B \ A) is the symmetric
difference of A and B. The last equality comes from the expression of ψ with respect to the
coefficients zj(P), thanks to Theorem 4.4.7.

116

4.A. APPENDIX

It is easy to show that

vol
(
[a, b]⊖ [c, d]

)
≤
(
|c− a|+ |d− b|

)
1 (b > a or c > d) .

The previous equality then leads to

∫ 1

0
1
(
ψ(P)(ω) ̸= ψ(P ′)(ω)

)
dω ≤ 1

2

K!∑
n=1

∣∣∣∣∣∣
n−1∑
j=1

zj(P)− zj(P ′)

∣∣∣∣∣∣1
(
zn(P) + zn(P ′) > 0

)

+ 1
2

K!∑
n=1

∣∣∣∣∣∣
n∑
j=1

zj(P)− zj(P ′)

∣∣∣∣∣∣1
(
zn(P) + zn(P ′) > 0

)

≤
K!∑
n=1

∣∣∣∣∣∣
n∑
j=1

zj(P)− zj(P ′)

∣∣∣∣∣∣1
(
zn(P) + zn(P ′) > 0

)
. (4.18)

The last inequality holds because ∑k
j=1 zj(P)− zj(P ′) is counted twice when zk(P) + zk(P ′) is

positive: when n = k and for the next n such that the elements are counted in the sum.

Thanks to Theorem 4.4.7, only 2(K2 −K + 1) elements zj(P) and zj(P ′) are non-zero. Let
kn be the index of the n-th non-zero element of (zs(P) + zs(P ′))1≤s≤K!. Note that zs(P ′) can
be non-zero while zs(P) is zero (or conversely). Let also

(ikn , jkn) ∈ arg min
(i,j)∈supp(Pkn)

Pi,j −
∑
l<kn

zl(P)1
(
(i, j) ∈ supp(Pkn)

)
,

(i′kn
, j′
kn

) ∈ arg min
(i,j)∈supp(Pkn)

P ′
i,j −

∑
l<kn

zl(P ′)1
(
(i, j) ∈ supp(Pkn)

)
.

It then comes, thanks to Theorem 4.4.7

zkn(P)− zkn(P ′) ≤ Pi′
kn
,j′

kn
− P ′

i′
kn
,j′kn
−
∑
l<kn

(zl(P)− zl(P ′))1
(
(i′kn

, j′
kn

) ∈ supp(Pkn)
)

≤ Pi′
kn
,j′

kn
− P ′

i′
kn
,j′

kn
−
∑
l<n

(zkl
(P)− zkl

(P ′))1
(
(i′kn

, j′
kn

) ∈ supp(Pkn)
)

The second inequality holds, because for l′ ̸∈ {kl | l < 2K2}, the term in the sum is zero by
definition of the sequence kl.

A similar inequality holds for zkn(P ′)− zkn(P), which leads to

|zkn(P)− zkn(P ′)| ≤ ∥P − P ′∥∞ +
∑
l<n

|zkl
(P)− zkl

(P ′)|.

By induction, it thus holds

|zkn(P)− zkn(P ′)| ≤ 2n−1∥P − P ′∥∞.

117

CHAPTER 4. QUEUING SYSTEMS

We finally conclude using Equation (4.18)

∫ 1

0
1
(
ψ(P)(ω) ̸= ψ(P ′)(ω)

)
dω ≤

K!∑
n=1

∣∣∣∣∣∣
n∑
j=1

zj(P)− zj(P ′)

∣∣∣∣∣∣1
(
zn(P) + zn(P ′) > 0

)

≤
2(K2−K+1)−1∑

n=1

∣∣∣∣∣∣
kn∑
j=1

zj(P)− zj(P ′)

∣∣∣∣∣∣
≤

2(K2−K+1)−1∑
n=1

∣∣∣∣∣∣
n∑
l=1

zkl
(P)− zkl

(P ′)

∣∣∣∣∣∣
≤

2(K2−K+1)−1∑
n=1

n∑
j=1

2j−1∥P − P ′∥∞

≤ 22(K2−K+1)∥P − P ′∥∞.

In the fourth inequality, the 2(K2 −K + 1)-th term of the sum is ignored. It is indeed 0 as
z and z′ both sum to 1.

Proof of Theorem 4.4.9

First recall below a useful version of Chernoff bound.

Lemma 4.A.6. For any independent variables X1, . . . , Xn in [0, 1] and δ ∈ (0, 1),

P

 n∑
i=1

Xi ≤ (1− δ)
n∑
i=1

E[Xi]

 ≤ e−
δ2∑n

i=1 E[Xi]
2 .

We now prove the following concentration lemma.

Lemma 4.A.7. For any time t ≥ (N +K)5 and ε ∈ (0, 1
4),

P
(
|µ̂ik(t)− µk| ≥ ε

)
≤ 3 exp

(
−λi

(
t

4
5 − 1

)
ε2
)

P
(
|λ̂ij(t)− λj | ≥ ε

)
≤ 6 exp

−λiKµ̄t 4
5 − 1
145 ε2

 .
Proof.
Concentration for µ̂. Consider agent i in the following and denote by Nk(t) the number of
exploratory pulls of this agent on server k at time t. By definition, the probability to proceed
to an exploratory pull on the server k at round t is at least λi min(t− 1

5 , 1
N+K). The term λi

here appears as a pull is guaranteed if a packet appeared at the current time step. Yet the
number of exploratory pulls might be much larger in practice as queues should accumulate a
large number of uncleared packets at the beginning.

118

4.A. APPENDIX

For t ≥ (N +K)5, it holds:

t∑
n=1

min(n− 1
5 ,

1
N +K

) =
(N+K)5∑
n=1

1
N +K

+
t∑

n=(N+K)5+1
n− 1

5

≥ (N +K)4 +
∫ t

(N+K)5
x− 1

5 dx− 1

≥ 1
4
(
5t

4
5 − (N +K)4 − 4

)
≥ t

4
5 − 1.

Theorem 4.A.6 then gives for Nk(t):

P
(
Nk(t) ≤ (1− δ)E[Nk(t)]

)
≤ exp

(
−δ

2E[Nk(t)]
2

)

P
(
Nk(t) ≤ (1− δ)λi

(
t

4
5 − 1

))
≤ exp

−λiδ2
(
t

4
5 − 1

)
2

 .
Which leads for δ = 1

2 to

P
(
Nk(t) ≤

λi
2
(
t

4
5 − 1

))
≤ exp

−λi t 4
5 − 1

8

 . (4.19)

The number of exploratory pulls and the observations on the server k are independent.
Thanks to this, Hoeffding’s inequality can be directly used as follows

P
(
|µ̂ik(t)− µk| ≥ ε | Nk(t)

)
≤ 2 exp

(
−2Nk(t)ε2

)
.

Using Equation (4.19) now gives the first concentration inequality for ε ≤ 1
4 ≤

1
2
√

2 :

P
(
|µ̂ik(t)− µk| ≥ ε

)
≤ 2 exp

(
−λi

(
t

4
5 − 1

)
ε2
)

+ exp

−λi t 4
5 − 1

8


≤ 3 exp

(
−λi

(
t

4
5 − 1

)
ε2
)
.

Concentration for λ̂. Consider agent i in the following. First show a concentration
inequality for µ̃. Denote by N(t) the total number of exploratory pulls on servers proceeded by
player i at round t, i.e., N(t) = ∑K

k=1Nk(t). Similarly to Equation (4.19), it can be shown that

P

N(t) ≤ λiK
t

4
5 − 1

2

 ≤ exp

−λiKt
4
5 − 1

8

 .
119

CHAPTER 4. QUEUING SYSTEMS

Theorem 4.A.6 then gives for δ ∈ (0, 1):

P
(
|µ̃− µ̄| ≥ δµ̄

)
≤ 2 exp

−λiKδ2µ̄
t

4
5 − 1

8

+ exp

−λiKt
4
5 − 1

8


≤ 3 exp

−λiKδ2µ̄
t

4
5 − 1

8

 .
Note that |µ̃− µ̄| ≤ δµ̄ implies | 1µ̄ −

1
µ̃ | ≤

δ
(1−δ)µ̄ . So this gives the following inequality:

P

∣∣∣∣∣ 1µ̄ − 1
µ̃

∣∣∣∣∣ ≥ δ

(1− δ)µ̄

 ≤ 3 exp

−λiKδ2µ̄
t

4
5 − 1

8

 . (4.20)

A concentration bound on Ŝij can be shown similarly for any δ ∈ (0, 1)

P

∣∣∣∣∣Ŝij(t)− (1− λj
2)µ̄

∣∣∣∣∣ ≥ δµ̄
 ≤ 3 exp

−λiKδ2µ̄
t

4
5 − 1

8

 . (4.21)

Now recall that the estimate of λj is defined by λ̂j = 2− 2Ŝi
j

µ̃ . We then have the following
identity:

λ̂j − λj = 2(1
µ̃
− 1
µ̄

)Ŝij + 2
µ̄

(
(1− λj

2)µ̄− Ŝij

)
.

Since Ŝj ∈ [0, 1], it yields for ε ≤ 1
4 and x ∈ (0, 1):

P
(∣∣∣λ̂ij(t)− λj∣∣∣ ≥ ε) ≤ P

∣∣∣∣∣2(1
µ̃
− 1
µ̄

)Ŝij

∣∣∣∣∣ ≥ xε or

∣∣∣∣∣∣ 2µ̄
(

(1− λj
2)µ̄− Ŝj

)∣∣∣∣∣∣ ≥ (1− x)ε


≤ P

∣∣∣∣∣ 1µ̃ − 1
µ̄

∣∣∣∣∣ ≥ xε

2Ŝij
| Ŝij ≤ (1 + 1− x

8)µ̄

+ P

∣∣∣∣∣Ŝij(t)− (1− λj
2)µ̄

∣∣∣∣∣ ≥ (1− x)µ̄ε
2


≤ P

∣∣∣∣∣ 1µ̃ − 1
µ̄

∣∣∣∣∣ ≥ δ

(1− δ)µ̄ for δ = 4xε
9

+ P

∣∣∣∣∣Ŝij(t)− (1− λj
2)µ̄

∣∣∣∣∣ ≥ (1− x)µ̄ε
2


Taking x = 9

17 leads to 4x
9 = 1−x

2 and thus, using Equations (4.20) and (4.21):

P
(∣∣∣λ̂ij(t)− λj∣∣∣ ≥ ε) ≤ 6 exp

−λiK (8
17

)2
µ̄
t

4
5 − 1
32 ε2


≤ 6 exp

−λiKµ̄t 4
5 − 1
145 ε2



In the following, let c1 = 0.1 and c2 = 4
(1−2c1)/

√
e−2c1

≈ 14. For a problem instance, let the
good event Et at time t be defined as

120

4.A. APPENDIX

Et :=
{
∥(λ̂i − λ, µ̂i − µ)∥∞ ≤

0.1∆2

2c222K2KN
, ∀i ∈ [N]

}
.

As ∆ is smaller than 1, the right hand term in the definition of Et is smaller than c1∆.
Thanks to Theorems 4.4.4 and 4.4.8, Et then guarantees that any player will collide with another
player with probability at most 0.1∆, i.e., , ∀i ∈ [N],

Pω∼U(0,1)
(
∃j ∈ [N], Âit(ω) ̸= Âjt (ω) | Et

)
≤ 0.1∆.

Moreover, thanks to Theorem 4.4.4, under Et,

λi ≤
K∑
k=1

P̂i,kµk −
(

1− 2c1√
e
− 2c1

)
∆.

These two last inequalities lead to the following lemma.

Lemma 4.A.8. For t ≥ 25K5

0.085∆5 , denote by Ht the history of observations up to round t. Then

E
[
Sit | Et,Ht

]
≥ λi + 0.1∆.

Proof. This is a direct consequence of the following decomposition:

E
[
Sit | Et,Ht

]
≥

proba to exploit︷ ︸︸ ︷
(1− (N +K)t−

1
5)


proba to clear︷ ︸︸ ︷
P̂i,kµk −

collision proba︷ ︸︸ ︷
P
(
∃j ∈ [N], Âit(ω) ̸= Âjt (ω)∃ | Et

)
≥ (1− (N +K)t−

1
5)(λi +

(
1− 2c1√

e
− 2c1

)
∆− 0.1∆)

≥ (1− (N +K)t−
1
5)(λi + 0.18∆).

The last inequality is given by c1 = 0.1 and it leads to

E
[
Sit | Et,Ht

]
≥ λi + 0.18∆− (N +K)t−

1
5 .

For t ≥ 25K5

0.085∆5 , the last term is smaller than 0.08∆, giving Theorem 4.A.8.

Define the stopping time

τ := min
{
t ≥ 25K5

0.085∆5 | ∀t ≥ s, Es holds
}
. (4.22)

Lemma 4.A.9. For any integer r ≥ 1,

E[τ r] = O

KN
 N

5
2K

5
2 25K2(

min(1,Kµ̄)
¯
λ
) 5

4 ∆5

r
 ,

where the O notation hides constant factors that only depend on r.

Proof. Define for this proof t0 =
⌈

25K5

0.085∆5

⌉
. By definition, if Et does not hold for t > t0, then

121

CHAPTER 4. QUEUING SYSTEMS

τ ≥ t. As a consequence, for any t > t0 and thanks to Theorem 4.A.7:

P(τ ≥ t) ≤ P(¬Et)

≤ (3eKN + 6eN2) exp
(
−ct

4
5
)
,

where c = c0
min(1,Kµ̄)

¯
λ∆4

N2K224K2 for some universal constant c0 ≤ 1.
We can now bound the moments of τ :

E[τ r] = r

∫ ∞

0
tr−1P (τ ≥ t) dt

≤ tr0 + (3eKN + 6eN2)r
∫ ∞

0
tr−1e−ct

4
5 dt.

Using the change of variable u = ct
4
5 , it can be shown that∫ ∞

0
tr−1e−ct

4
5 dt = 5

4c
− 5r

4 Γ
(5r

4

)
,

where Γ denotes the Gamma function. It finally allows to conclude:

E[τ r] = O
(
K5r

∆5r +KNc− 5r
4

)

= O

KN
 N

5
2K

5
2 25K2(

min(1,Kµ̄)
¯
λ
) 5

4 ∆5

r
 .

Let Xt be a random walk biased towards 0 with the following transition probabilities:

P(Xt+1 = Xt + 1) = p, P(Xt+1 = Xt − 1|Xt > 0) = q,

P(Xt+1 = Xt|Xt > 0) = 1− p− q, P(Xt+1 = Xt|Xt = 0) = 1− p,
(4.23)

and X0 = 0.

Lemma 4.A.10. The non-asymptotic moments of the random walk defined by Equation (4.23)
are bounded. For any t > 0, r > 0:

E
[
(Xt)r

]
≤ r!(

ln
(
q/p

))r .
Proof : Let π be the stationary distribution of the random walk. It verifies the following

system of equations:
π(z) = pπ(z − 1) + qπ(z + 1) + (1− p− q)π(z), ∀z > 0
π(0) = (1− p)π(0) + qπ(1)∑
π(z) = 1

which gives:

π(z) = q − p
q

(
p

q

)z
.

122

4.A. APPENDIX

Equivalently, π(z) = P(⌊Y ⌋ = z) with Y an exponential random variable of parameter ln(q/p).
This gives:

EX∼π
[
(X)r

]
≤ r!(

ln
(
q/p

))r .
Let X̃t be the random walk with the same transition probabilities as Xt and X̃0 ∼ π. For

any t > 0, X̃t ∼ π. Moreover, for any t > 0, X̃t stochasticaly dominates Xt, which terminates
the proof. 2

Proof of Theorem 4.4.9. For τ the stopping time defined by Equation (4.22), Theorem 4.A.9
bounds its moments as follows

E[τ r] = O

KN
 N

5
2K

5
2 25K2(

min(1,Kµ̄)
¯
λ
) 5

4 ∆5

r
 .

Let
pi = λi(1− λi − 0.1∆) and qi = (λi + 0.1∆)(1− λi).

Let Xi
t be the random walk biased towards 0 with parameters pi and qi, with Xi

t = 0 for any
t ≤ 0. According to Lemma 4.A.8, past time τ , Qit is stochastically dominated by the random
process τ +Xi

t−τ . Thus, for any t > 0, for any r > 0

E[
(
Qti

)r
] ≤ max(1, 2r−1)

(
E[τ r] + E[(Xi

t−τ)r]
)

= O

KN
 N

5
2K

5
2 25K2(

min(1,Kµ̄)
¯
λ
) 5

4 ∆5

r + 1
ln(qi/pi)r


= O

KN
 N

5
2K

5
2 25K2(

min(1,Kµ̄)
¯
λ
) 5

4 ∆5

r + ∆−r


= O

KN
 N

5
2K

5
2 25K2(

min(1,Kµ̄)
¯
λ
) 5

4 ∆5

r
 .

123

Part II

Online Algorithms

124

Chapter 5

Online Matching in Sparse Random
Graphs: Non-Asymptotic
Performances of Greedy Algorithm

Motivated by sequential budgeted allocation problems, we investigate online matching problems
where connections between vertices are not i.i.d., but they have fixed degree distributions – the so-
called configuration model. We estimate the competitive ratio of the simplest algorithm, greedy,
by approximating some relevant stochastic discrete processes by their continuous counterparts,
that are solutions of an explicit system of partial differential equations. This technique gives
precise bounds on the estimation errors, with arbitrarily high probability as the problem size
increases. In particular, it allows the formal comparison between different configuration models.
We also prove that, quite surprisingly, greedycan have better performance guarantees than
ranking, another celebrated algorithm for online matching that usually outperforms the former.

Contents
5.1 Introduction . 126
5.2 Online Matching Problems; Models and main result 128

5.2.1 Structured online matching via Configuration Model 128
5.2.2 Competitive ratio of greedy algorithm. Main result 129
5.2.3 Examples, Instantiations and Corollaries 130
5.2.4 greedy can outperform ranking ! 132

5.3 Ideas of proof of Theorem 5.2.1 . 133
5.3.1 Building the graph together with the matching 134
5.3.2 Differential Equation Method - Stochastic Approximation 134
5.3.3 Aggregating solutions to compute greedy performances 136

5.4 Appendix . 138
5.4.1 General version of the result . 138
5.4.2 Additional Numerical Experiments . 140
5.4.3 Stochastic approximation & Differential equation method 143
5.4.4 Proofs of technical steps of Theorem 5.2.1 144
5.4.5 Proof of Theorem 5.4.1 . 150
5.4.6 Proof of Theorem 5.4.2 . 154
5.4.7 Proof of Theorem 5.2.2 . 156

125

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

5.1 Introduction

Finding matchings in bipartite graphs (U ∪ V, E), where E ⊂ U × V is a set of edges, is a
long-standing problem with different motivations and approaches (Bordenave et al., 2013;
Godsil, 1981; Lovász and Plummer, 2009b; Zdeborová and Mézard, 2006). If U is seen as a set
of resources and V as demands, the objective is to allocate as many resources to demands (an
allocation - or a matching - between u and v is admissible if (u, v) ∈ E) with the constraint that
a resource is allocated to only one demand and vice-versa.

Motivated particularly by practical applications to Internet advertising, the online variant
of this problem is receiving increasing attention (we refer to the excellent survey (Mehta, 2012)
for more applications, specific settings, results and techniques). In this case, the set of vertices
U is present at the beginning and the graph unveils sequentially: vertices v ∈ V are observed
sequentially, one after the other, along with the edges they belong to. An online algorithm must
decide, right after observing vk and its associated set of edges Ek := {(u, vk) ∈ E} to match it to
some other vertex u ∈ U , at the conditions that (u, vk) ∈ Ek and u ∈ U has not been matched
yet. The performance of an online algorithm is evaluated by its competitive ratio, which is
the ratio between the size of the matching it has created and the highest possible matching in
hindsight (Feldman et al., 2009).

This theoretical setting is particularly well suited for online advertising: U is the set of
campaigns/ads that an advertiser can run and users v1, v2, . . . , vT arrive sequentially (Manshadi
et al., 2012; Mehta, 2012). Some of them are eligible for a large subset of campaigns, others
are not (usually based on their attributes/features, such as the geographic localization, the
browsing history, or any other relevant information). The objective of an advertiser (in this
over-simplified model) is to maximize the number of displayed ads. In practice, campaigns/ads
are not displayed only once but have a maximal budget of impressions (say, a specific ad can be
displayed only 10.000 times each day). A possible trick consists of duplicating the vertices of
U as many times as the budget. However, this results in strong and undesirable correlations
between vertices. It is, therefore, more appropriate to consider a bipartite graph with capacities
and admissible matchings as subsets of edges such that each vertex belongs to several different
edges, but not more than their associated capacities ω ∈ N (a vertex v ∈ V is matched once
while u ∈ U can be matched ωu times).

This online matching problem with capacities has been quite extensively studied. It is known
that greedy, which matches all incoming vertices to any available neighbor has a competitive
ratio of 1/2 in the worst case, albeit it achieves 1− 1/e as soon as the incoming vertices arrive
in Random Order (Goel and Mehta, 2008). The worst-case optimal algorithm is the celebrated
ranking, which achieves 1− 1/e on any instance (Birnbaum and Mathieu, 2008; Devanur et al.,
2013; Karp et al., 1990), and also has better guarantees in the Random Order setting (Mahdian
and Yan, 2011).

Beyond the adversarial setting, the following stochastic setting has been considered: there
exist a finite set of L “base” vertices v(1), . . . , v(L) associated to base edge-sets E(1), . . . , E(L).
When a vertex vk arrives, its type θk ∈ {1, . . . , L} is drawn iid from some distribution (either
known beforehand or not) and then its edge set is set as Ek = E(θk). In the context where
the distribution is known, algorithms with much better competitive ratios than greedy or
ranking were designed (Brubach et al., 2019; Jaillet and Lu, 2014; Manshadi et al., 2012),
specifically with a competitive ratio of 1− 2/e2 when the expected number of arrival of each
type are integral and 0.706 without this assumption. Notably, those competitive ratios still
hold with Poisson arrival rates rather than a fixed number of arrivals.

On a side note, a vast line of work considers online matching in weighted graphs (Devanur
et al., 2012; Goel and Mehta, 2008; Mehta, 2012), which is outside the scope of this chapter.

126

5.1. INTRODUCTION

However, it is still worth noting that the unweighted graph is a weighted graph with all weights
equal.

This model of the stochastic setting is quite interesting but rather strong: it lacks flexibility
and cannot be used to represent some challenging instances (for example when the degrees
of each vertex U increase linearly with the number of vertices in V, or when the set U of
campaigns must be fixed so that the model is well specified, etc...). Another tentative is to
consider Erdős-Rényi graphs assuming that each possible edge is present in U × V with some
fixed probability and independently of the other edges (see (Mastin and Jaillet, 2013)). The
most interesting and challenging setting corresponds to the so-called sparse regime where each
vertex of U has an expected degree independent of the size n of V, which amounts to take a
probability of connection equal to c/n. Interestingly enough, even the analysis of the simplest
greedy algorithm is quite challenging and already insightful in those models (Arnosti, 2019;
Borodin et al., 2018; Dyer et al., 1993; Mastin and Jaillet, 2013). Unfortunately, although
this Erdős-Rényi model is compatible with growing sets U and V, it also turns out to be quite
restrictive. The main reason is that the approximate Poisson degree distribution of the vertices
has light-tail and does not allow for the appearance of the so-called scale-free property satisfied
by many real-world networks (Barabási et al., 2000; Van Der Hofstad, 2016).

We, therefore, consider a more appropriate random graphs generation process called config-
uration model, introduced by (Bender and Canfield, 1978) and (Bollobás, 1980). The optimal
matching of this model has been computed in (Bordenave et al., 2013). The configuration model
is particularly well suited to handle different situations such as the following one. Assume that
campaigns can either be “intensive” (with many eligible users) or “selective/light” (few eligible
users), with an empirical proportion of, say, 20%/80%. Then whether an advertiser handles 100
campaigns at the same time or 10.000, it will always have roughly this proportion of intensive
vs. light campaigns. Similarly, some users are more valuable than others, and are thus eligible
for more campaigns than the others; the proportion of each type being independent of the
total population size. The configuration model accommodates these observations by basically
drawing iid degrees for vertices U and V (accordingly to some different unknown distributions
for U and V) and then by finding a graph such that those degrees distribution are satisfied (up
to negligible errors); as a consequence, the graphs generated are sparse, in the sense that the
number of edges grows linearly with the number of vertices.

Additionally, the configuration model is a well-suited random graph model which mimics a
number of properties of real-world complex networks, while being analytically tractable. For
instance, choosing power-law distributions for the degrees allows to obtain the so-called scale-free
property (often observed in practice, as highlighted for the web by Faloutsos et al. (1999)).
The configuration model also displays the so called “small-world phenomenon” (observed for
instance in the graph of Facebook by Backstrom et al. (2012)) as its diameter is of logarithmic
order.

Main contribution

We investigate the performances (in terms of expected competitive ratio) of the greedy
matching algorithm in configuration models and we provide explicit quantitative results using
stochastic approximation techniques (Wormald, 1995); we prove that the increasing size of the
random matching created is arbitrarily close to the solution of some explicit ODE. Solving the
latter then gives in turn the solution to the original problem.

The remaining of the chapter is organized as follows. Section 5.2 describes precisely the
problem and Theorem 5.2.1 is our first main result: it describes the performances of greedy in
the capacity-less problem. The proof of Theorem 5.2.1 is delayed to Section 5.4.4, but the main
ideas and intuitions are provided in Section 5.3. The online matching with capacities problem

127

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

is treated in Section 5.4.1.

5.2 Online Matching Problems; Models and main result

Consider a bipartite graph with capacities G = (U ,V, E , ω) where U = {1, . . . , N} and V =
{1, . . . , T} are two finite set of vertices, E ⊂

{
(u, v), u ∈ U , v ∈ V

}
is the set of edges and

ω : U → N∗ is a capacity function. A matching M on G is a subset of edges e ∈ E such that any
vertex v ∈ V is the endpoint of at most one edge e ∈M and any vertex u ∈ U is the endpoint of
at most ωu edges in M . We will denote by M the set of matchings on G; the optimal matching
M∗ ∈M is the one (or any one) with the highest cardinality, denoted by |M∗|.

The batched matching problem consists in finding any optimal matching M∗ given a graph
with capacities G; the online variant might be a bit more challenging, as the matching is
constructed sequentially. Formally, the set of vertices U and their capacities ω are known from
the start, and vertices v ∈ V arrive sequentially (with the edges they belong to) and M0 = ∅.
At stage t ∈ N – assuming a matching Mt−1 has been constructed –, a decision maker observes
a new vertex1 vt and its associated set of edges {(u, vt);u ∈ E}. If possible, one of these edges
(ut, vt) is added to Mt−1, with the constraint that Mt = Mt−1 ∪ {(ut, vt)} is still a matching.
The objective is to maximize the size of the constructed matching MT . The classical way to
evaluate the performances of an algorithm is the competitive ratio, defined as |MT |/|M∗| ∈ [0, 1]
(the higher the better).

5.2.1 Structured online matching via Configuration Model

As mentioned before, the online matching problem can be quite difficult without additional
structure. We will therefore assume that the vertex degrees in U and V have (at least asymptot-
ically in N and T) some given subGaussian2 distributions πU and πV , of respective expectation
µU and µV and respective proxy-variance σ2

U and σ2
V . Those numbers are related in the sense

that we assume3 that T = µU
µV
N ∈ N. Given those degree distributions, the graphs we consider

are random draws from a bipartite configuration model described below; for the sake of clarity,
we first consider the capacity-less case (when ωu = 1 for all u ∈ U).

Given πU and πV and N,T ≥ 1, let N dU
1 , . . . , d

U
N ∈ N

i.i.d.∼ πU and dV
1 , . . . , d

V
T ∈ N

i.i.d.∼ πV
be independent random variables; intuitively, those numbers are respectively the number of
half-edges attached to vertex in U and V. Consider also two extra random variables

dV
T+1 = max

{ N∑
i=1

dU
i −

T∑
j=1

dV
j , 0

}
and dU

N+1 = max
{ T∑
j=1

dV
j −

N∑
i=1

dU
i , 0

}

so that equality between total degrees holds, i.e., ∑N+1
i=1 dU

i = ∑T+1
j=1 d

V
j . Finally, a random

(capacity-less) bipartite graph denoted by CM(dU ,dV) is constructed with a uniform pairing
of half-edges of U ∪ {N + 1} with half-edges of V ∪ {T + 1} and removing vertices T + 1 and
N + 1 and their associated edges. These two artificially added vertices are just here to define a
pairing between half-edges. Notice that, by the law of large numbers and since T = (µU/µV)N ,

1Although the order of arrival is irrelevant to the models we studied, it could have an impact on other models.
2X is subGaussian with proxy-variance σ2 if for any s ∈ R,E[exp(sX)] ≤ exp

(
σ2s2

2

)
. Actually, we only need

that πU and πV have some finite moment of order γ > 2.
3In the general case, consider T = ⌊NµU /µV⌋. The proof is identical, up to a negligible 1/N error term

128

5.2. ONLINE MATCHING PROBLEMS; MODELS AND MAIN RESULT

dV
T+1 = o(N) and dU

N+1 = o(N) almost surely4.
The bipartite configuration model CM(dU ,dV) is then the random graph obtained by a

uniform matching between the half-edges of U and the half-edges of V, where the random
sequences dU = (dU

i)i and dV = (dV
j)j are defined as above.

5.2.2 Competitive ratio of greedy algorithm. Main result

The first question to investigate in this structured setting is the computation of the (expected)
competitive ratio of the simple algorithm greedy. It constructs a matching by sequentially
adding any admissible edge uniformly at random. Describing it and stating our results require
the following additional notations: for any e = (u, v) ∈ E, u(e) = u (resp. v(e) = v) is the
extremity of e in U (resp. V); the generating series of πU and πV are denoted by ϕU and ϕV
and are defined as

ϕU (s) :=
∑
k≥0

πU (k)sk and ϕV(s) :=
∑
k≥0

πV(k)sk.

Our first main theorem, stated below, identifies the asymptotic size of the matching generated
by greedy on the bipartite configuration model we have just defined. As the batched problem
(i.e., computing the size of the optimal matching M∗) is well understood (Bordenave et al.,
2013), this quantity is sufficient to derive competitive ratios. Again, for the sake of presentation,
we first assume that all capacities are fixed, equal to one; the general case is presented in
Appendix 5.4.1.

Theorem 5.2.1. (Performances of greedy in the capacity-less case)
Given N ≥ 1 and T = µU

µV
N , let MT be the matching built by greedy on CM(dU ,dV) then

the following convergence in probability holds:

|MT |
N

P−→
N→+∞

1− ϕU (1−G(1)).

where G is the unique solution of the following ordinary differential equation:

G′(s) =
1− ϕV

(
1− 1

µU
ϕ′

U
(
1−G(s)

))
µV
µU
ϕ′

U (1−G(s)) ; G(0) = 0. (5.1)

Moreover, for any s ∈ [0, 1], if MT (s) is the matching obtained by greedy after seeing a
proportion s of vertices of V, then

|MT (s)|
N

P−→
N→+∞

1− ϕU (1−G(s)). (5.2)

Convergence rates are explicit; with probability exponentially large, at least 1− ζN exp(−ξN c/2),

sup
s∈[0,1]

∣∣∣∣ |MT (s)|
N

−
(
1− ϕU (1−G(s))

)∣∣∣∣ ≤ κN−c,

where ζ, ξ, κ depend only on the (first two) moments of both πV and πU , and c is some universal
constant (set arbitrarily as 1/20 in the proof).

4And even O(
√

N) with probability exponentially large in N as both distributions are sub-Gaussian. So the
effects of those additional vertices can be neglected.

129

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

Theorem 5.2.1 generalizes to the case with capacities, see Sections 5.4.1 and 5.4.1. The
details of the proof of Theorem 5.2.1 are postponed to Appendix 5.4.4, but the main ideas are
given in Section 5.3.

5.2.3 Examples, Instantiations and Corollaries

We provide in this section some interesting examples and corollaries that illustrate the power-
fulness of Theorem 5.2.1, and how it can be used to compare different situations.

d-regular graphs

The first typical example of random graphs are “ d-regular ”, for some d ∈ N, i.e., graphs such
that each vertex has an exact degree of d (to avoid trivial examples, we obviously assume d ≥ 2).

It is non-trivial to sample a d-regular graph at random, yet it is easy to generate random
graphs GN with the configuration model described above, with the specific choices of πU =
πV = δd, the Dirac mass at d. The downside is that GN is not exactly a d-regular bipartite
random graph (as some vertices might be connected more than once, i.e., there might exist
parallel edges). However, conditioned to be simple, i.e, without multiple edges and loops, it
has the law of a uniform d-regular bipartite random graph. Moreover, the probability of being
simple is bounded away from 0 (Van Der Hofstad, 2016); as a consequence, any property holding
with probability tending to 1 for GN , holds with probability tending to 1 for uniform d-regular
bipartite random graphs. Finally, we also mention that Hall’s Theorem (Frieze and Karoński,
2016) implies that GN admits a perfect matching, so that |M∗| = N .

Instantiating Equation (5.1) to d-regular graphs yields that the competitive ratio of greedy
converges, with probability 1, to 1− (1−G(1))d where G is the solution of the following ODE

(1−G(s))d−1

1−
(
1− (1−G(s))d−1)dG′(s) = 1

d
. (5.3)

As expected, had we taken d = 1, then G(s) = s hence the competitive ratio of greedy is
1 (but again, d = 1-regular graphs are trivial). More interestingly, if d = 2, the ODE has a
closed form solution: G(s) = exp(s2)− 1, so that the competitive ratio of greedy converges to
4
√
e− (e+ 3) ≃ 0.877≫ 1− 1

e ≃ 0.632, where the latter is a standard bound of the competitive
ratio of greedy (for general, non-regular graphs) (Mehta, 2012).

Solving Equation (5.3) In the general case d ≥ 3, even if Equation (5.3) does not have a
closed form solution, it is still possible to provide some insights. Notice first that the polynomial
P (X) = 1 − (1 − (1 − X)d−1)d admits n := d(d − 1) roots, among which there is 1 with
multiplicity d− 1. If X is another root, then(

1− (1−X)d−1
)d

= 1 ⇔ 1− (1−X)d−1 = e
ikπ

d , k = 1, . . . , d− 1.

Therefore,
(1−X)d−1 = 1− e

ikπ
d ,

which admits d − 1 distinct solutions for each k = 1, . . . , d − 1. The resulting n := (d − 1)2

distinct complex, denoted x1, . . . , xn, are the roots of P (X)/(1−X)d−1, so the ODE reduces to:

y′(t)∏
1≤i≤n y(t)− xi

= 1
d
. (5.4)

130

5.2. ONLINE MATCHING PROBLEMS; MODELS AND MAIN RESULT

Figure 5.1: Numerical computations (on Scilab, results are almost instantaneous) of greedy
performances for d = 2 (blue), d = 3 (red), d = 4 (green), d = 6 (black) and d = 10 (magenta).
On the left, global solution, on the right, zoom-in on the end points with final values.

Since the following trivially holds:

1∏
1≤i≤n(X − xi)

=
∑

1≤i≤n

1∏
j ̸=i(xi − xj)

1
X − xi

=:
∑

1≤i≤n

ai
X − xi

.

it is possible to integrate Equation (5.4) in ∑1≤i≤n ai log(y(t)− xi) = s
d + c to finally get∏

1≤i≤n
(y(t)− xi)ai = C exp(s

d
),

and since y(0) = 0, it must hold that C = ∏
1≤i≤n(−xi)ai . As a consequence, y(1) solves:∏

1≤i≤n
(y(1)− xi)ai = e1/d ∏

1≤i≤n
(−xi)ai .

Unfortunately, even for d = 3, the solution somehow simplifies but has no closed form; on the
other hand, numerical computations indicate that the competitive ratio of greedy converges
to 0.89 when d = 3 and N tends to infinity. We provide in Figure 5.3 the numerical solutions
of the ODE for d-regular graphs (actually, we draw the functions 1 − ϕU (1 −G(s)) that are
more relevant) for various values of d; the end-point obtained at s = 1 indicates the relative
performance of greedy. As expected, those functions are point-wise increasing with d (as the
problem becomes simpler and simpler for greedy when d ≥ 2).

The Erdős-Rényi case.

In a Erdős-Rényi graph, there is an edge between two vertices u ∈ U and v ∈ V with some
probability p = c

N , independently from each others. As N goes to infinity, the number of edges
to a vertex follows (approximately) a Poisson law of parameter c > 1.

As a consequence, we consider the configuration model where πU and πV are Poisson laws
of parameter c, which yields µ = c, ϕU (s) = ec(s−1). In this case, Equation (5.1) becomes:

cG′(s) e−cG(s)

1− e−c e−cG(s) = 1.

131

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

The solutions are given by:

G(s) = 1
c

log
(

c

log(ek−cs +1)

)
,

yielding
ϕX(1−G(s)) = 1

c
log

(
ek−cs +1

)
.

The initial condition ϕU(1−G(0)) = ϕU(1) = 1 gives ek = ec − 1, from which we deduce
that the number of matches of greedy is asymptotically proportional to

1− ϕU (1−G(1)) = 1−
log

(
2− e−c

)
c

,

which recovers, as a sanity check, some existing results (Mastin and Jaillet, 2013).

The comparison of different configuration models

Using Gronwall’s Lemma, it is possible to show Theorem 5.2.1 can be used to compare different
configuration models, as in the following Corollary.

Corollary 5.2.1.1. Consider two configuration models CM1(dU1 ,dV1) and CM2(dU2 ,dV2), s.t.
dU1 and dU1 are both drawn i.i.d. from πU , dV1 is drawn i.i.d. from π1

V and dV2 is drawn i.i.d.
from π2

V , with
∑
x xπ

1
V (x) = ∑

x xπ
2
V (x). If ϕ1

V (s) ≥ ϕ2
V (s) for any s ∈ (0, 1), then by denoting

respectively γ1 and γ2 the asymptotic proportion of vertices matched by greedy in CM1(dU1 ,dV1)
and CM2(dU2 ,dV2), it holds that necessarily γ2 ≥ γ1.

For instance, let us assume that the degree distribution on the offline side is fixed. Then the
matching size obtained by greedy is asymptotically larger if vertices on the online side all have
exactly the same degree d rather than if those degrees are drawn from a Poisson distribution
with expectation d.

A similar result (with a different criterion) holds with fixed degree distribution on the online
side and differing one on the offline side.

5.2.4 greedy can outperform ranking !

We recall that the ranking algorithm, which is the worse case optimal, chooses at random a
ranking over U and uses it to break ties (i.e., if two vertices u and u′ can be matched to vk,
then it is the one with the smallest rank that is matched by ranking). Quite surprisingly, we
get that in the configuration model ranking can have a worse competitive ratio than greedy,
which advocates again for its thorough study.

Proposition 5.2.2. Let γR and γG be the assymptotic performances of ranking and greedy
on the 2-regular graph. The following holds:

γG > γR.

In other words, greedy outperforms ranking in the 2-regular graph.

We conjecture that the above result actually holds for any d ≥ 2, and more generally for a
wide class of distributions πU and πV (finding a general criterion would be very interesting). The
proof of Proposition 5.2.2 is provided in Section 5.4.7. The main idea is that in the 2-regular
graph, ranking is biased towards selecting as matches vertices with two remaining half-edges

132

5.3. IDEAS OF PROOF OF THEOREM 5.2.1

rather than just one. Indeed, vertices with only one remaining half-edge were not selected
previously and thus have a higher rank. The vertices with only one remaining half-edge will not
get matched in the subsequent iterations, so not picking them as matches is suboptimal. On
the other hand, greedy picks any match uniformly at random and does not exhibit such bias.

Figure 5.2: Experimental performances of greedy vs. ranking on d-regular graphs

5.3 Ideas of proof of Theorem 5.2.1

The main idea behind the proof of Theorem 5.2.1 (postponed to Section 5.4.4) is to show
that the random deterministic evolution of the matching size generated by greedy is closely
related to the solution of some ODE (this is sometimes called “the differential equation method”
(Wormald, 1995) or “stochastic approximations” (Robbins and Monro, 1951)). Computing the
solution of the ODE is easier - if not explicitly, at least numerically in intricate cases - than
estimating the performances of greedy by Monte-Carlo simulations and it provides qualitative,
as well as quantitative, properties.

Tracking the matching size is non-trivial because the vertices (in U and V) have different
degrees, hence some of them are more likely to be matched than others. However, in the
configuration model, each vertex has the same distribution of degrees before the sequences dU

and dV are fixed. As a consequence, the proof relies on the three following techniques

1. The graph is built sequentially, along with the matching and not beforehand (fixing
the "randomness” at the beginning would be very difficult to handle in the analysis).
Thankfully, this does not change the law of the graph generated (this is obviously crucial).

2. We are not only going to track the size of the matching built as we need to handle different
probabilities of matching (and pairing the graph) for each vertex. As a consequence, we
are going to track the numbers of non-matched vertices which have still i half-edges to
be paired and the number of already matched vertices that have j half-edges remaining.
This will give one different ODE per value of i of j.
Since πU and πV are sub-Gaussian, we will prove that with arbitrarily high probability -
exponential in N -, there are only a polynomial number of such equations

3. All those differential equations are then “aggregated” to build the final ODE satisfied by
the matching size. Interestingly, this aggregated ODE has a simple form, while the full
system is on the other hand quite intricate.

In the following sub-sections, we separate the proofs in the different building blocks to
provide intuitions; the proof of technical lemmas are deferred to the appendix.

133

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

5.3.1 Building the graph together with the matching

The first step in the analysis is to notice that the bipartite configuration model can be constructed
by sequentially pairing the half-edges coming from V. The matching generated by greedy
is then constructed simultaneously with the graph. More precisely, given two sequences5 of
non-negative integers dU = (dU

1 , . . . , d
U
N) and dV ∪ {dV

T+1} = (dV
1 , . . . , d

V
T , d

V
T+1), we introduce

in the following a generating algorithm that simultaneously build the associated bipartite
configuration model CM(dU ,dV) together with greedy. Recall that the bipartite configuration
model is obtained through a uniform matching between the half-edges of U and the half-edges
of V . To avoid confusion, we will call a marked matching a pairing of two half-edges that
corresponds to an edge that will belong to the constructed matching M. This construction
pseudo-code is detailed in Algorithm 27.

Algorithm 27: greedy matching configuration model without capacities
Input: dU = (dU

1 , . . . , d
U
N) and dV = (dV

1 , . . . , d
V
T)

1 Initialization. M0 ← ∅, E0 ← ∅ and HU
0 ← { half-edges of U}

2 for t = 1, . . . , T do
3 Order uniformly at random the edges emanating from vt: et1, . . . , etkt

4 for i = 1, . . . , kt do
5 Choose uniformly an half-edge eU

i in HU

6 E ← E ∪ {u(eU
i), vt} // Create an edge between et

i and eU
i

7 HU ← HU \ {eU
i } // Remove the half-edge

8 if vt and u(eU
i) unmatched then

9 Mt ← Mt−1 ∪ {u(eU
i), vt} // vt is matched

10 end
11 end
12 end
13 CM(dU ,dV)← (U ,V, E).

Output: Bipartite configuration model CM(dU ,dV) and matching MT on it.

Since each pairing of each half-edge is done uniformly at random, the graph obtained at the
end of the algorithm has indeed the law of a bipartite configuration model. Moreover, it is easy
to see that M corresponds to the matching constructed by greedy matching on CM(dU ,dV).

5.3.2 Differential Equation Method - Stochastic Approximation

As mentioned above, several quantities are going to be tracked through time: for all k ∈
{0, . . . , T} and all i ≥ 0, we define:

• Fi(k) as the number of vertices u ∈ U that are not yet matched at the end of step k and
whose remaining degree is i, meaning that du − i of their initial half-edges have been
paired. We will refer them to as free vertices.

• Mi(k) as the number of vertices u ∈ U already matched at the end of step k and whose
remaining degree is i. We will refer them to as marked vertices.

Notice that for all 0 ≤ k ≤ T , the sum Fi(k)+Mi(k) corresponds to the total number of vertices
of U with remaining degree i at the end of step k. We also define

• F̂ (k) := ∑
i≥0 iFi(k) is the number of available half-edges attached to free vertices at the

end of step k,
5Without loss of generality, we assume that the additional extra vertex is always on the V side.

134

5.3. IDEAS OF PROOF OF THEOREM 5.2.1

• M̂(k) := ∑
i≥0 iMi(k) is the number of available half-edges attached to marked vertices

at the end of step k.
We are going to study the evolution of these quantities along with the one of greedy. A major
ingredient of the proof is to show that Fi(k) and Mi(k) closely follow the solutions of some ODE.
This is the so-called differential equation method (Wormald, 1995), stated in Appendix 5.4.3.
For instance, it can easily be seen that F̂ (k) + M̂(k) closely follows the function t 7→ µU − tµV
on (0, µU/µV) in the following sense.
Lemma 5.3.1. For every ε > 0, and for all 0 ≤ k ≤ T ,∣∣∣∣∣ F̂ (k) + M̂(k)

N
−
(
µU −

k

N
µV
))∣∣∣∣∣ ≤ ε.

with probability at least 1− exp
(
− Nϵ2

2σ2
U

)
+ exp

(
− Tϵ2

2σ2
V

)
.

We now turn to each individual quantity Fi (resp. Mi). We can prove a similar result, yet
the limit function is not explicit (unlike for the matching size as in Theorem 5.2.1 statement).
The following Lemma 5.3.2 states that the discrete sequences of (free and marked) half-edges
are closely related to the solutions of some system of differential equations.

Before stating it, we first introduce, for any sequence of non-negative numbers (xℓ)ℓ≥0 and
(yℓ)ℓ≥0 such that 0 <∑ℓ ℓ(xℓ + yℓ) <∞, every i ≥ 0, the following mappings

Φi(x0, x1, . . . , y0, y1, . . .) :=
−iµVxi + (i+ 1)µVxi+1 − h

(∑
ℓ≥0 ℓyℓ∑

ℓ≥0 ℓ(xℓ+yℓ)

)
(i+ 1)xi+1∑

ℓ≥0 ℓ(xℓ + yℓ)
(5.5)

and

Ψi(x0, x1, . . . , y0, y1, . . .) :=
−iµVyi + (i+ 1)µVyi+1 + h

(∑
ℓ≥0 ℓyℓ∑

ℓ≥0 ℓ(xℓ+yℓ)

)
(i+ 1)xi+1∑

ℓ≥0 ℓ(xℓ + yℓ)
,

where h is the following function, well-defined on [0, 1],

h(s) = 1− ϕV(s)
1− s .

Lemma 5.3.2. With probability 1− ζN exp(−ξN c/2), there are at most N c quantities Fi and
Mi, and for all 0 ≤ k ≤ T and all i ≥ 0∣∣∣∣∣Fi(k)

N
− fi

(
k

N

) ∣∣∣∣∣ ≤ κN−2c and
∣∣∣∣∣Mi(k)
N

−mi

(
k

N

) ∣∣∣∣∣ ≤ κN−2c,

where ζ, κ depend only on the (first two) moments of πV and πU and c = 1/20.
The continuous mappings fi and mi are solutions of the system of differential equations on

[0, µU/µV)
dfi
dt = Φi(f0, f1, . . . ,m0,m1, . . .),

dmi
dt = Ψi(f0, f1, . . . ,m0,m1, . . .),

fi(0) = πU (i),
mi(0) = 0.

(5.6)

This system is well defined as stated by the following Lemma 5.3.3.

135

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

Lemma 5.3.3. The system (5.6) has a unique solution which is well-defined on [0, µU/µV).
More precisely, denoting by f and m the generating series of the sequences (fi)i≥0 and (mi)i≥0,

f(t, s) =
∑
i≥0

fi(t)si and m(t, s) =
∑
i≥0

mi(t)si,

it holds that:
f

(
µU
µV

(
1− e−µV t

)
, s

)
= ϕU

(
(s− 1)e−µV t + 1− F (t)

)
, (5.7)

and
m

(
µU
µV

(
1− e−µV t

)
, s

)
=
∫ t

0
F ′(u)ϕ′

U

(
(s− 1)e−µVu + 1− F (u)

)
du.

where F is a solution of the following ODE

1
µU
ϕ′

U (1− F (t))

1− ϕV
(
1− 1

µU
ϕ′

U (1− F (t))
)F ′(t) = e−µV t .

5.3.3 Aggregating solutions to compute greedy performances

To get Theorem 5.2.1, notice that the number of vertices matched by greedy is N minus the
number of free vertices remaining at the end, which is approximately equal to Nf(µU

µV
, 1) by

definition of f and because of Lemma 5.3.2. This corresponds to t = +∞ in Equation (5.7),
thus the performance of greedy is, with arbitrarily high probability, arbitrarily close to

N(1− ϕU (1− F (+∞)))

The statement of Theorem 5.2.1 just follows from a simple final change of variable.

Conclusion

We studied theoretical performances of greedy algorithm on matching problems with different
underlying structures. Those precise results are quite interesting and raise many questions,
especially since greedy actually outperforms ranking in many different situations (in theory
for 2-regular graphs, but empirical evidence indicates that this happens more generically).

Our approach has also successfully been used to unveil some questions on the comparison
between different possible models. But more general questions are still open; for instance,
assuming that the expected degree is fixed, which situation is the more favorable to greedy
and online algorithm: small or high variance, or more generally this distribution πU or an
alternative one π′

U ? The obvious technique would be to compare the solution of the different
associated ODE’s. Similarly, the questions of stability/robustness of the solution to variation in
the distribution πU and πV are quite challenging and left for future work.

We believe online matching will become an important problem for the machine learning
community in the future. Each year, the complexity of the underlying graphs increases and we
are considering adding features to the model in future work (such as random variables on the
edges, modeling the interest for a consumer for a given product), or connection modeled via
some Kernel between vertices features (say, if users and products/campaigns are embedded in
the same space). In this context, machine learning tools will certainly be needed to tackle the
problem.

Here, we have focused on the study of specific matching algorithms, namely greedy and

136

5.3. IDEAS OF PROOF OF THEOREM 5.2.1

ranking in the configuration model. It remains to be studied how knowledge on the input
graph could drive algorithm design, for instance, can the knowledge of the degree distribution
be leveraged in an algorithm? An example in that direction, is the work of Aamand et al.
(2022), in which they exhibit the optimal algorithm for the bipartite version of a stochastic
graph model due to Chung, Lu, and Vu Chung et al. (2003) where the expected values of the
offline degrees are known.

137

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

5.4 Appendix

5.4.1 General version of the result

The fixed capacity matching problem

We now investigate the case where vertices u ∈ U have capacities, which means that they can
be matched to several vertices v ∈ V. Precisely, if the capacity of u is denoted by ωu, then this
vertex can be matched to at most ωu vertices in V (but as before, half-edges of u are going
to be paired with du half-edges originating from V). The graph is still constructed using the
configuration model introduced in Section 5.2.1, i.e., the law of du is πU (and similarly, degrees
of v ∈ V are i.i.d., with law πV).

For the moment, to simplify the analysis and the results statements, we are going to assume
that all vertices u ∈ U have the same initial capacity C ∈ N. We denote the random graph with
capacities generated this way by CM(dU ,dV , C)

Theorem 5.4.1. (Performances of greedy with fixed capacities)
Given N ≥ 1 and T = µU

µV
N , let MT be the matching built by greedy on CM(dU ,dV , C)

then the following convergence in probability holds:

|MT |
CN

P−→
N→+∞

1−
C−1∑
k=0

1− k/C
k! G(1)kϕ(k)

U
(
1−G(1)

)
.

where G is the unique solution of the following ordinary differential equation

G′(s) =
1− ϕV

(
1− 1

µU
ΓU (G(s))

)
µV
µU

ΓU (G(s)) .

where

ΓU (g) = ϕ′
U (1− g) +

C−1∑
k=1

gk

k! ϕ
(k+1)
U (1− g)

Moreover, for any s ∈ [0, 1], if MT (s) is the matching obtained by greedy after seeing a
proportion s of vertices of V, then

|MT (s)|
CN

P−→
N→+∞

1−
C−1∑
k=0

1− k/C
k! G(s)kϕ(k)

U
(
1−G(s)

)
.

The proof of Theorem 5.4.1, in Appendix 5.4.5, has three major differences with the one of
Theorem 5.2.1:

1. The first one is that more quantities must be tracked, not just the number of vertices
with remaining free half-edges, but the number of such vertices for each possible value
of remaining capacity; the total number of equations is roughly speaking multiplied by
a factor (C + 1)/2 (since only Fi(k) are affected by the capacities and not Mi(k)). We
will therefore denote in the remaining by F (c)

i (k) the number of vertices with i remaining
half-edges to be paired and with current capacity equal to c (those vertices can still be
matched to c different vertices v ∈ V).

2. The second major difference lies in the resolution of the system of differential equations.
The solution was rather direct without capacities (i.e., c = 1). Unfortunately, the evolution
of F (c)

i strongly depends on F
(c+1)
i . As a consequence, the trick is to solve this system

138

5.4. APPENDIX

by induction, starting from c = C (this solution is almost identical to that of the case
with no capacities) and then to inject this solution in the PDEs defining F (C−1)

i so on so
forth. Indeed, the fluid limits of ∑i Fi(c) and ∑iMi, that we denote respectively be f (c)

and m satisfy the following coupled equations (up to some time change θ(t) and where
H(t) = h(q(t)) for some function q(·) introduced in the proof):

∂tf
(c)(θ(t), s) =

[
−µVs+ µV −H(t)

]
∂sf

(c)(θ(t), s) +H(t)∂sf (c+1)(θ(t), s),

and
∂tm(θ(t), s) = [−µVs+ µV] ∂sm(θ(t), s) +H(t)∂sf (1)(θ(t), s).

3. Finally, the third main difference is how the performances of greedy are defined. The
upper bound is obviously to create the minimum between CN and T matches (where
T is the number of vertices in V). Anyway, those two numbers are within a constant
multiplicative factor (recall that T = µU

µV
N for a valid configuration model), hence we

arbitrarily chose to normalize greedy performances by CN . As a consequence, the
(normalized) performances of greedy now rewrite as

∑
i≥0

(
Mi(T) +∑C

c=1(1− c
C)F (c)

i (T)
)

N
,

where Mi(k) still denotes the number of marked vertices, i.e., those whose capacities have
been depleted before step k with i remaining half-edges to be paired.

General case, online matching with capacities

In the general case, we no longer assume that all vertices u ∈ U have the same initial capacities,
but ωu can be equal to any value in N (yet this capacity is independent of the degree). Notice
however that the capacities ωu of vertices could be capped at their degrees du (since they would
never be depleted otherwise). As a consequence, capacities can be assumed to be bounded by
C < Nβ for some β < 1 since the maximal degree is also smaller than Nβ with arbitrarily high
probability.

We therefore denote by pc ∈ [0, 1] the fraction of vertices of U whose initial capacity is
exactly c ∈ [1, C]. Notice, we do not need to assume that capacities are drawn i.i.d. accordingly
to some distribution, our results hold for any values (pc)c. We denote by CM(dU ,dV ,p) the
random graph with capacities generated.

Quite interestingly, the techniques are exactly the same as in the previous case: we consider
the exact same system of differential equations; the only differences are the initial conditions.
Similarly, the maximal matching size is no longer NC but NEp[c] := N

∑
c cpc. We also denote

the cdf of the empirical distribution pc by Pc := ∑
k≤c pc

Theorem 5.4.2. (Performances of greedy with different capacities)
Given N ≥ 1 and T = µU

µV
N , let MT be the matching built by greedy on CM(dU ,dV ,p)

then the following convergence holds in probability:

|MT |
NEp[c]

P−→
N→+∞

1−
C−1∑
k=0

∑C
c=1 cpc+k
Ep[c]

1
k!G(1)kϕ(k) (1−G(1)

)
.

139

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

where G is the unique solution of the following ordinary differential equation

G′(s) =
1− ϕV

(
1− 1

µU
Γp
U (G(s))

)
µV
µU

Γp
U (G(s)) .

with

Γp
U (g)) = ϕ′

U (1− g) +
C−1∑
k=1

(
(1− Pk)gk

k! ϕ
(k+1)
U (1− g)

)
.

Moreover, for any s ∈ [0, 1], if MT (s) is the matching obtained by greedy after seeing a
proportion s of vertices of V, then

|MT (s)|
NEp[c]

P−→
N→+∞

1−
C−1∑
k=0

∑C
c=1 cpc+k
Ep[c]

1
k!G(s)kϕ(k) (1−G(s)

)
.

As mentioned before, the proof (delayed to Appendix 5.4.6) is rather similar to the previous
one; the major difference is that the change of initial condition of the system of PDE makes it a
bit more complicated to solve (hence the more intricate formulation of the result).

5.4.2 Additional Numerical Experiments

Further comparisons between the theoretical result and simulations

We provide in Figure 5.3 a comparison between the score predicted by the numerical solutions of
the ODE (the functions 1− ϕU (1−G(s))) for 4-regular graphs and the simulated performance
of greedy for various values of N . As expected, the deviations of the simulated trajectories
remain within O(

√
N) of the expected theoretical trajectory. Figure 5.4 illustrates the same

comparison on an Erdős-Rényi graph whose expected degree equals 4.

Figure 5.3: Difference between the theoretical performances and simulated performances of
the greedy algorithm on the d-regular graph (d = 4) on 5 independent runs, with N =
100, 1000, 10000.

In Figure 5.5, we plot the theoretical performance of the greedy algorithm along with
its experimental performance on the d-regular graph for various values of d. We also plot the
competitive ratio of greedy predicted by the ODE as a function of d. As expected, the score
increases with d (as the problem becomes simpler and simpler for greedy when d ≥ 2).

greedy vs ranking

We further illustrate in this section the quite surprising fact that, in some configuration models,
greedy actually outperforms ranking.

In the adversarial configuration, it is known that the competitive ratio of ranking is 1− 1
e

which is bigger than the one of greedy, equal to 1/2, see (Mehta, 2012). In the following

140

5.4. APPENDIX

Figure 5.4: Difference between the theoretical value 5.2 and simulated performances of the
greedy algorithm on the Erdős-Rényi graph, c = 4, on 5 independent runs, with N =
100, 1000, 10000.

Figure 5.5: On the left, the expected theoretical performance of the greedy algorithm (dashed
line) along with the simulated performance (full line) for various values of d. On the right, the
expected competitive ratio of greedy on the d-regular graph as a function of d.

figures, we also plot the performances of two other “algorithms” smallest and highest, for
the sake of comparison; indeed, those are not admissible algorithms as they use the (future)
knowledge of the number of half-edges of each vertex u ∈ U .

More precisely, smallest matches a vertex vk ∈ V to the vertex u ∈ U with the smallest
number of remaining half-edges (under the constraints obviously that (u, vk) ∈ E). As a
consequence smallest could be seen as an upper limit for an online algorithm.

highest does the opposite: it matches vk to the vertex u ∈ U with the highest remaining
number of half-edges. So highest should serve as a lower bound/sanity check for any online
algorithm.

In Figure 5.6, the performances of those 4 matching “algorithms” (again smallest and
highest are not admissible as they use extra knowledge) are illustrated on configuration models
with d = 2, 4, 10 and 20.

As mentioned before, greedy surprisingly outperforms ranking in some configuration
models, with a relative performance that decreases with d (which is rather natural on the other
hand, since the relative performance of highest and smallest also decreases).

Figure 5.6 also illustrates the different time steps at which algorithms fail to match new
vertices vk (because all the u they are paired with are already matched with another vertex vj
for some j < k). This happens later and later as d increases (as expected), at around half the
horizon for d = 2 and roughly 82% with d = 20.

On the other hand, ranking and greedy have the same performance on Erdos-Renyi
graphs, which is a consequence of the memory-less property of those graphs, i.e. the probability
of creating a match at each iteration depends only on the number of matched vertices, as shown
in Figure 5.7.

In Figure 5.8, we plot the relative performance of ranking and greedy on bi-degrees
graph, where half the vertices have degree x, the other half 2x. The plots illustrate that the

141

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

Figure 5.6: greedy outperforms ranking in d-regular graphs

best algorithm is not always teh best one depending on the value of x.

A few vertices with high capacity vs many vertices with low capacity

In this section, we investigate how nodes’ capacities affect greedy’s expected performance.
The baseline is its performance on a random graph where all vertices have capacity 1 and the
vertices degrees in U and V follow the distributions πU and πV . The comparison graph with
capacity C has |U|/C "in-place" vertices, each with a capacity C, and their degrees follows the
modified distribution π̃UC where π̃UC (x = k) = πU (x = k/C). Informally, the graph with capacity
C is built from the baseline graph by merging C vertices of equal degree d into a single vertex
of degree dC.

The results of the simulation illustrate that the greedy performs better on graphs with

Figure 5.7: Experimental performances of greedy vs. ranking on Erdos-Renyi graphs

142

5.4. APPENDIX

Figure 5.8: Experimental performances of greedy vs. ranking on bi-degrees graphs

Figure 5.9: greedy performs better in high capacity graphs in d-regular graphs, from left to
right d = [2, 4, 10, 20]

vertices of high capacity.

5.4.3 Stochastic approximation & Differential equation method

The following theorem is an improved version of Wormald’s Theorem (Enriquez et al., 2019).

Theorem 5.4.3. Let a > 0. For all N ≥ 1 and all 1 ≤ k ≤ Na, let Yk(i) = Y
(N)
k (i) be a

Markov chain with respect to a filtration {Fi}i≥1. Suppose that, for all k ≥ 1, there exists a
function fk such that:

• Yk(0)/N = zk(0);

• |Yk(i+ 1)− Yk(i)| ≤ Nβ;

•
∣∣∣E [Yk(i+ 1)− Yk(i)

∣∣∣∣Fi
]
− fk

(
i
N ,

(Yk(i))1≤k≤Na

N

) ∣∣∣ ≤ cN−λ, for some constant c > 0

where 0 < β < 1/2, λ > 0. Suppose that the following infinite system of differential equations
with initial conditions (zk(0))k≥1 has a unique solution (zk)k≥1:

∀k ≥ 1, z′
k(t) = fk(t, (zk(t))k≥1).

Then, for all k ≥ 1, Yk(⌊tN⌋)/N converges in probability towards zk for the topology of uniform
convergence.

More precisely, for every 1 < ε < 1−β
β , for every (1+ε)β

2 < α < εβ and for every 0 ≤ i ≤ N
ω

where ω = N (1+ε)β, it holds that

P

(
|Y (iω)− z(iω

N
)N | ≤ i

(
Nα+β + cN (1+ε)β−λ +N2(1+ε)β−2

))
≤ i exp

(
− N2α−(1+ε)β

2

)

143

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

5.4.4 Proofs of technical steps of Theorem 5.2.1

Proof of Lemma 5.3.1

It is an application of (maximal) Hoeffding-Azuma inequality since, for every 0 ≤ k ≤M − 1,

E
[(
F̂ (k + 1) + M̂(k + 1)

)
−
(
F̂ (k) + M̂(k)

) ∣∣∣Fk] = −E
[
dV
k

]
= −µV .

Proof of Lemma 5.3.2

Since πV is σV subGaussian, then for any β > 0,

P
(
∃i ∈ {1, . . . , T}, dV

i ≥ µV +Nβ
)
≤ T exp(−N

2β

2σ2
V

).

In particular, for some β < 1/2 to be chosen later on, if µV ≤ Nβ/2, then all degrees are smaller
than Nβ with probability at least 1− T exp

(
− N2β

8σ2
V

)
; from now on, we will place ourselves on

that event.

We also denote by (Fk)0≤k≤M the natural filtration associated to the greedy matching
algorithm. In order to apply Theorem 5.4.3, it remains to control for every i ≥ 0 and
0 ≤ k ≤M − 1,∣∣∣∣∣E

[
Fi(k + 1)− Fi(k)

∣∣∣Fk]− Φi

F0

(
k

N

)
, F1

(
k

N

)
, . . . ,M0

(
k

N

)
,M1

(
k

N

)
, . . .

 ∣∣∣∣∣
and∣∣∣∣∣E

[
Mi(k + 1)−Mi(k)

∣∣∣Fk]−Ψi

F0

(
k

N

)
, F1

(
k

N

)
, . . . ,M0

(
k

N

)
,M1

(
k

N

)
, . . .

 ∣∣∣∣∣
Let 0 ≤ k ≤ T − 2Nγ

µV , with γ > 1/2 some parameter to be fixed later, so that, according
to Lemma 5.3.1, with probability at least 1 − exp(−N2γ−1

2σ2
U

) − exp(−µUN
2γ−1

2µVσ
2
V

) it holds that
F̂ (k) + M̂(k) ≥ Nγ .

Recall that, in the k-th step of the algorithm, half-edges of the k-th vertex of VN are ordered
uniformly at random: (eki)i for i = 1, . . . , dV

k . Then, each of these half-edges is sequentially
paired uniformly at random with half-edges of dV that are not yet paired. Let uki be the vertex
to which eki is paired and let Ik be the first integer i such that uki belongs to the free vertices
of U at time k, that is to the vertices that are not yet matched. If such an integer does not
exist, that is when all uki are already matched, we set Ik = +∞. As a consequence, we aim at
estimating P

(
Ik = i

∣∣∣Fk) for the different admissible values, where this probability has the
following explicit definition

P
(
Ik = i

∣∣∣Fk) = M̂(k)
F̂ (k) + M̂(k)

M̂(k)− 1
F̂ (k) + M̂(k)− 1

· · · M̂(k)− (i− 2)
F̂ (k) + M̂(k)− (i− 2)

F̂ (k)
F̂ (k) + M̂(k)− (i− 1)

= M̂(k)!
(M̂(k)− (i− 1))!

(F̂ (k) + M̂(k)− i)!
(F̂ (k) + M̂(k))!

F̂ (k)

144

5.4. APPENDIX

First, assume that M̂(k) ≥ 2N θ for some parameter θ > 2β to be chosen later, so that those
probabilities are all strictly positive. Using Stirling approximation formula, we get that, with
p(k) = M̂(k)

F̂ (k)+M̂(k)
and for any i,

0 ≥
P
(
Ik = i

∣∣∣Fk)− (1− p(k))i−1p(k)

(1− p(k))i−1p(k) ≥ −2N
2β

N θ
− Nβ

Nγ

Second, assume that M̂(k) < 2N θ for some θ > β. This immediately implies that, for i,

0 ≥ P
(
Ik = i

∣∣∣Fk)− (1− p(k))i−1p(k) ≥ −2N
θ

Nγ

Similar inequalities holds for P(Ik = +∞
∣∣∣Fk), except that it is approximately equal to

E
[
(1− p(k))dV

k

]
= ϕV(1− p(k)).

It remains to control the evolution of the processes Fi(k) and Mi(k). Notice that, by their
very definition, on the event Ik = x for some 1 ≤ x ≤ dV

k , the following happens:
1. The first x−1 half-edges e1

k, . . . , e
x
k are paired uniformly at random with marked half-edges

of U . If the corresponding vertex has a remaining degree equal to i, then Mi decreases by
one, and Mi−1 increases by one.

2. The x-th half-edge exk is paired uniformly at random with free half-edge of U . If the
corresponding vertex has a remaining degree i, then Fi decreases by one, and Mi−1
increases by one.

3. The dV
k − x remaining half-edges ex+1

k , . . . , e
dV

k
k are paired uniformly at random with half-

edges of U . If the corresponding vertex is free with remaining degree i, then Fi decreases
by one and Fi−1 increases by one. Otherwise, if the corresponding vertex is marked with
remaining degree i, then Mi decreases by one and Mi−1 increases by one.

Notice that, after the pairing of each half-edges, the quantity F̂ (k) (resp. M̂(k)) may
decrease (resp. increase) by one. Therefore, working on the event where dV

k ≤ Nβ, we deduce
that F̂ and M̂ are affected by an additive term of order at most Nβ . The same argument holds
on Fi and Mi.

All of these considerations imply that∣∣∣∣∣E[Fi(k + 1)− Fi(k)
∣∣∣Fk, It = x]−

(
− iFi(k)

F̂ (k)
+ (µV − x)

(
− iFi(k)
F̂ (k) + M̂(k)

+ (i+ 1)Fi+1(k)
F̂ (k) + M̂(k)

))∣∣∣∣∣
≤ 2σ2

µV

Nβ

Nγ

and similarly∣∣∣∣∣∣E[Mi(k + 1)−Mi(k)
∣∣∣Fk, It = x]−

(
(x− 1)

(
− iMi

M̂
+ (i+ 1)Mi+1

M̂

)
+ (i+ 1)Fi+1

F̂

)

+ (µV − x)
(
− iMi

F̂ + M̂
+ (i+ 1)Mi+1

F̂ + M̂

))∣∣∣∣∣∣
≤2σ2

µ

Nβ

Nγ
+ 2

x−1∑
j=1

j

M̂(k)− j

145

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

Finally, the case It = +∞ is handled similarly, as by definition

E[Fi(k + 1)− Fi(k) | Fk, It = +∞] = 0.

and the following also holds also holds:
∣∣∣∣∣E[Mi(k+1)−Mi(k) | Fk, It = +∞]−µV

(
− iMi

M̂
+ (i+ 1)Mi+1

M̂

) ∣∣∣∣∣ ≤ 2σ2
µ

Nβ

Nγ
+2

dV
k −1∑
j=1

j

M̂(k)− j
.

It remains to compute the expected variation in Fi(k) and Mi(k). It is a bit simpler for
the former, but still, to lighten the notations, we write p = pk and q = qk in the following
computation.

E
[
Fi(k + 1)− Fi(k)

∣∣∣Fk]
= EdV

k
∼πV

 dV
k∑

x=1
qx−1

(
− iFi

F̂ + M̂

)
+ p

dV
k∑

x=1
qx−1(dV

k − x)
(
− iFi

F̂ + M̂
+ (i+ 1)Fi+1

F̂ + M̂

)+ ηN

= 1
F̂ + M̂

EdV
k

∼πV

−iFi
 dV

k∑
i=1

qx−1 + pdV
k

dV
k∑

x=1
qx−1 − p

dV
k∑

x=1
xqx−1



+(i+ 1)Fi+1

pdV
k

dV
k∑

x=1
qx−1 − p

dV
k∑

x=1
xqx−1


+ ηN

= 1
F̂ + M̂

EdV
k

∼πV

− iFi
1− qdV

k

1− q + dV
k (1− qdV

k)− dV
k q

dV
k +1 − (dV

k + 1)qdV
k + 1

1− q


+ (i+ 1)Fi+1

q(1− qdV
k)− dqd

V
k +1 − (dV

k + 1)qdV
k + 1

1− q

+ ηN

= 1
F̂ + M̂

EdV
k

∼πV

−iFidV
k + (i+ 1)Fi+1

qd
V
k − dV

k q + (dV
k − 1)

1− q

+ ηN

= 1
F̂ + M̂

EdV
k

∼πV

−iFi + (i+ 1)dV
kFi+1 + (i+ 1)Fi+1

1− qdV
k

1− q

+ ηN

= −iµVFi + (i+ 1)µVFi+1 − (i+ 1)h(q)Fi+1

F̂ + M̂
+ ηN ,

which is exactly (5.5), up to error term ηN that satisfies, if M̂(k) < 2N θ,

|ηN | ≤ 2σ2
µV

Nβ

Nγ
+ 2µ2

V
N θ

Nγ

and, if M̂(k) ≥ 2N θ,

|ηN | ≤ 3σ2
µV

Nβ

Nγ
+ 2µ2

V
N2β

N θ
+ µ2

V
Nβ

Nγ

Computations are quite similar for the difference in Mi(k) and the error term still depends

146

5.4. APPENDIX

whether M̂(k) is bigger, or smaller, than 2N θ:

E
[
Mi(k + 1)−Mi(k)

∣∣∣Fk]

= EdV
k

∼πV


dV

k (1− p)dV
k

M̂
+

dV
k∑

x=1
pqx−1

(
(x− 1)
M̂

+ dV
k − x
M̂ + F̂

)((i+ 1)Mi+1 − iMi

)
+ EdV

k
∼πV

 dV
k∑

x=1
pqx−1 (i+ 1)Fi+1

F̂

+ εN

= 1
M̂ + F̂

EdV
k

∼πV


dV

k (1− p)dV
k −1 +

dV
k∑

x=1

(
pqx−2(x− 1) + pqx−1(dV

k − x)
)((i+ 1)Mi+1 − iMi

)
+ (i+ 1)h(q)Fi+1

M̂ + F̂
+ εN

= µV((i+ 1)Mi+1 − iMi) + (i+ 1)h(q)Fi+1

F̂ + M̂
+ εN ,

where εN satisfies, if M̂(k) < 2N θ,

|εn| ≤ 2σ2
V
N θ

Nγ
+ 2σ2

V
Nβ

Nγ
+ 2µ2

V
N θ

Nγ
;

and, if M̂(k) ≥ 2N θ, it satisfies

|εn| ≤ 3σ2
V
Nβ

Nγ
+ 2µ2

V
N2β

N θ
+ µ2

V
Nβ

Nγ
;

We used in the above computations (at the third equality) the following observation:

kqk−1 +
k∑
x=1

pqx−1
(
x− 1
q

+ k − x
)

= k

Summing error terms over all the 2Nβ equations relating Fi to fi and Mj to mj , the error
terms coming from the differential equation method Theorem 5.4.3, and using the fact that m
is µU -Lipschitz, we get that the total error, defined by,

Err := sup
s∈[0,1]

∣∣∣∣ |MT (s)|
N

−
(
1− ϕU (1−G(s))

)∣∣∣∣
satisfies

Err ≤ NβN (1+ε)β(Nα+β + 4(σ2
V + µ2

V)N (1+ε)β−γ/2+β +N2(1+ε)β−2) + µUN
(1+ε)β

as soon as θ = β + γ
2 .

It remains to pick admissible values for the different parameters, such as the following ones
(checking admissibility follows from immediate computations):

β = 1/20, ϵ = 10, γ = 21/40, θ = 25/80, α.23/80

147

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

Those choices ensures that Err = O(N−1/20).
All those arguments hold with probability at least (summing all the bad event probabilities)

1−T exp(−N
2β

2σ2
V

)−exp(−N
2γ−1

2σ2
U

)−exp(−µUN
2γ−1

2µVσ2
V

)−2NβN (1+ε)β) exp(−N2α−(1+ε)β) ≥ 1−O(N exp(−ζN1/40))

where the equality holds because of the choice of parameters.

Proof of Lemma 5.3.3

Notice that the functions f and m satisfy the following partial differential equations:

∂tf(t, s) = 1
µU − tµV

[
−µVs+ µV − h(q(t))

]
∂sf(t, s),

and
∂tm(t, s) = 1

µU − tµV
[−µVs+ µV] ∂sm(t, s) + h(q(t))∂sf(t, s),

where q(t) = ∂sf(t, 1)/(µU − tµV).
To solve these equations, we first perform a time change to get rid of the denominator. Let

θ(t) = µU
µV

(
1− e−µV t

)
so that θ′(t) = µU − θ(t)µV . In order to simplify notations, we set:

H(t) := h
(
q(θ(t))

)
.

Then, the new functions

g(t, s) := f(θ(t), s) and o(t, s) := m(θ(t), s)

satisfy the following PDEs:

∂tg(t, s) =
[
−µVs+ µV −H(t)

]
∂sg(t, s), (5.8)

and
∂to(t, s) = [−µVs+ µV] ∂so(t, s) +H(t)∂sg(t, s). (5.9)

These two equations fall into the classical framework of transport differential equation and can
be explicitly solved. We give the details for the reader’s convenience.

Solution of (5.8). Let s be a solution of the following ODE:

s′(t) = µVs(t)− µV +H(t). (5.10)

Then, the function g is constant along the curve (t, s(t)). Indeed:

d
dtg(t, s(t)) = ∂tg(t, s) + s′(t)∂sg(t, s) = 0.

The differential equation (5.10) admits the following general solutions:

sc(t) =
[
c+ e−µV t − 1 +

∫ t

0
e−µVuH(u)du

]
eµV t.

148

5.4. APPENDIX

Therefore,

(t, s) = (t, sc(t)) ⇐⇒ c = c(t, s) = (s− 1)e−µV t + 1−
∫ t

0
e−µVuH(u)du,

and we deduce that (the initial condition is g(0, s) = ϕU (s)):

g(t, s) = g(0, c(t, s)) = ϕU (c(t, s)) = ϕU

(
(s− 1)e−µV t + 1−

∫ t

0
e−µVuH(u)du

)
. (5.11)

Solution of (5.9). Let sγ(t) = γeµV t + 1. Then, s′
γ(t) = µVs(t) − µV and we deduce that,

along the curves (t, sγ(t)), o(t, s) satisfies the following ODE:

d
dto(t, sγ(t)) = 1− q(t)d

1− q(t) ∂sg(t, sγ(t)).

Since
(t, s) = (t, sγ(t)) ⇐⇒ γ = γ(t, s) = (s− 1)e−µV t,

we deduce that:
o(t, s) =

∫ t

0
H(u)∂sg(u, (s− 1)e−µV (t−u) + 1)du. (5.12)

We now define the function F (·) as

F (t) :=
∫ t

0
e−µVuH(u)du. (5.13)

Using Equations (5.11) and (5.12), one can easily deduce that

∂sg(t, 1) = e−µV t ϕ′
U (1− F (t))

and

∂so(t, 1) =
∫ t

0
H(u) e−µVu ϕ′′

U (1− F (u))du

= ϕ′
U (1)− ϕ′

U (1− F (t)) =
(
µU − ϕ′

U (1− F (t))
)

e−µV t .

In particular,

∂sg(t, 1) + ∂so(t, 1) = ∂sf(θ(t), 1) + ∂sm(θ(t), 1) = µU e−µV t .

Therefore,

H(t) =
1− ϕV

(
∂so(t,1)

∂sg(t,1)+∂so(t,1)

)
1− ∂so(t,1)

∂sg(t,1)+∂so(t,1)

= µU

1− ϕV

(
1− 1

µUϕ
′
U (1−F (t))

)
1− ϕU (1− F (t)) ,

which yields the following ordinary differential equation on F :
1
µU
ϕ′

U (1− F (t))

1− ϕV
(
1− 1

µU
ϕ′
U (1− F (t))

)F ′(t) = e−µV t . (5.14)

149

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

5.4.5 Proof of Theorem 5.4.1

We recall the notations introduced. For all k ∈ {0, . . . , T}, all c ∈ {0, . . . , C} and all i ≥ 0, we
define:

• F
(c)
i (k) the number of vertices of U that still have capacity c at the end of step k and

whose remaining degree is i. Those vertices are referred to as free (with remaining degree
i and capacity c at the end of step k).

• Mi(k) the number of vertices of U that have capacity c = 0 at the end of step k and whose
remaining degree is i. Those vertices are referred to as marked (with remaining degree i
at the end of step k).

We also define as before the number of remaining half-edges to respectively free and marked
vertices as

F̂ (k) =
C∑
c=1

∑
i≥0

iF
(c)
i (k), and M̂(k) =

∑
i≥0

iMi(k).

The normalized performance of greedy is the ratio between the matched vertices in V and
its maximal number, equal to CN :

A =

∑
i≥0

(
CMi(T) +∑C

c=1(C − c)F (c)
i (T)

)
CN

As in the proof of Theorem 5.2.1:
1. we will place ourselves on the event where all vertices have bounded degrees, smaller than
Nβ for some small β > 0

2. we will stop the analysis at Nγ steps of the horizon T so that F̂ (k) + M̂(k) > Nγ with
arbitrarily high probability

3. we will distinguish the cases where M̂(k) > 2N θ (with θ = β + γ/2)
As a consequence, the errors are going to be of the same order of magnitude with the same
order of probability (up to a multiplicative factor C) (hence those computations are skipped
and replace by O(·) notations). The interesting new component in this proof is the new system
of differential equations and their solutions.

The Differential equations

Using the same notations than in the proof of Theorem 5.2.1, we get that for all 0 ≤ k ≤ T ,
i ≥ 0 and c ≤ C,

E
[
F

(c)
i (k + 1)− F (c)

i (k)
∣∣∣Fk]

= Edk∼πV

 dk∑
x=1
−qx−1 iF

(c)
i

F̂ + M̂
+ p

dk∑
x=1

qx−1(dk − x)

(i+ 1)F (c)
i+1 − iF

(c)
i

F̂ + M̂




+ Edk∼πV

 dk∑
x=1

qx−1 (i+ 1)F (c+1)
i+1

F̂ + M̂

+O(N θ−γ)

=
µV

(
−iF (c)

i + (i+ 1)F (c)
i+1

)
− (i+ 1)h(q)F (c)

i+1 + (i+ 1)h(q)F (c+1)
i+1

F̂ + M̂
+O(N θ−γ)

150

5.4. APPENDIX

where the function h is still defined as h(q) = 1−ϕV (q)
1−q . Similarly, we can compute the expected

increment in Mi as

E
[
Mi(k + 1)−Mi(k)

∣∣∣Fk]
= Edk∼πV


dk(1− p)dk

M̂
+

dk∑
x=1

pqx−1
(

(x− 1)
M̂

+ dk − x
M̂ + F̂

)((i+ 1)Mi+1 − iMi
)

+ Edk∼πV

 dk∑
x=1

pqx−1 (i+ 1)F (1)
i+1

F̂

+O(N θ−γ)

=
µV((i+ 1)Mi+1 − iMi) + (i+ 1)h(q)F (1)

i+1

F̂ + M̂
+O(N θ−γ)

From this, we get the following system of differential equations:

∂tf
(c)(t, s) = 1

µU − tµV

[(
−µVs+ µV − h(q(t))

)
∂sf

(c)(t, s) + 1
µU − tµV

h(q(t))∂sf (c+1)(t, s)
]
,

(5.15)
and

∂tm(t, s) = 1
µU − tµV

[
(−µVs+ µV) ∂sm(t, s) + h(q(t))∂sf (1)(t, s)

]
(5.16)

With those notations, the normalized performances of greedy rewrite then into:

A = m(µU
µV

, 1) +
C∑
c=1

(1− c

C
)f (c)(µU

µV
, 1)

= 1−
C∑
c=1

c

C
f (c)(µU

µV
, 1)

Solving the PDEs

As in the previous section, we start with a time change. Let

θ(t) = µU
µV

(
1− e−µV t

)
(5.17)

so that θ′(t) = µU − θ(t)µV . In order to simplify notations, we set:

H(t) := h
(
q(θ(t))

)
. (5.18)

Then, the new functions

g(c)(t, s) := f (c)(θ(t), s) and o(t, s) := m(θ(t), s)

satisfy the following PDEs:

∂tg
(c)(t, s) =

[
−µVs+ µV −H(t)

]
∂sg

(c)(t, s) +H(t)∂sg(c+1)(t, s),

and
∂to(t, s) = [−µVs+ µV] ∂so(t, s) +H(t)∂sg(1)(t, s). (5.19)

151

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

We distinguish:
∂tg

(C)(t, s) =
[
−µVs+ µV −H(t)

]
∂sg

(C)(t, s) (5.20)

We define:
F (t) =

∫ t

0
e−µVuH(u)du

Solution of (5.20). This equation is the same as the one satisfied by g(t, s), with the same
initial conditions. Thus, we can write:

g(C)(t, s) = ϕU
(
(s− 1)e−µV t + 1− F (t)

)
.

Solution of (5.20). Lets define the curves:

st,s(u) =
[
(s− 1)e−µV t − F (t) + F (u)

]
eµVu + 1.

Along those curves, we have:

d
dtg

(c)(u, st,s(u)) = H(u)∂sg(c+1)(u, st,s(u)).

So:
g(c)(t, s) =

∫ t

0
H(u)∂sg(c+1)(u, st,s(u))du

Solution for c = C − 1. We have:

g(c−1)(t, s) =
∫ t

0
H(u)∂sg(C)(u, st,s(u))du

=
∫ t

0
F ′(u)ϕ′

U ((s− 1)e−µVu + 1− F (u))du

= F (t)ϕ′
U ((s− 1)e−µV t + 1− F (t))

Solution for c = C − k, general formula. We will prove by induction:

g(C−k)(t, s) = 1
k! (F (t))kϕ(k)((s− 1)e−µV t + 1− F (t))

If it is true for rank k, we have:

∂sg
(C−k)(u, st,s(u)) = e−µVu

k! (F (u))kϕ(k+1)
(
(s− 1)e−µV t + 1− F (t)

)
Which gives:

g(C−(k+1))(t, s) = 1
k!

(∫ t

0
F ′(u)(F (u))kdu

)
ϕ(k+1)

(
(s− 1)e−µV t + 1− F (t)

)
= 1

(k + 1)!(F (t))k+1ϕ(k+1)((s− 1)e−µV t + 1− F (t))

Solution of (5.19). Let’s define the curves:

γs,t(u) = 1 + (s− 1)e−µV (t−u)

152

5.4. APPENDIX

Along those curves:
d

duo(u, γt,s(u)) = H(u)∂sg(1)(u, γt,s(u))

So:

o(t, s) =
∫ t

0
F ′(u)(F (u))(C−1)

(C − 1)! ϕ(C)
(
(s− 1)e−µV t + 1− F (u)

)
du

Formula for greedy performances. Recall that the normalized performances of greedy
are

A = 1−
C∑
c=1

c

C
g(c)(+∞, 1)

= 1−
C−1∑
k=0

1− k
C

k! (F (+∞))kϕ(k) (1− F (+∞)
)

ODE for F

We have as before:
F ′(t) = H(t)e−µV t, H(t) = 1− ϕV(Q(t))

1−Q(t)
And we also have:

Q(t) = ∂so(t, 1)
∂so(t, 1) +∑C

c=1 ∂sg
(c)(t, 1)

According to the previous section :

∂so(t, 1) =
(∫ t

0
F ′(u)(F (u))(C−1)

(C − 1)! ϕ
(C+1)
U

(
1− F (u)

)
du
)
e−µV t

=
(∫ F (t)

0

x(C−1)

(C − 1)!ϕ
(C+1)
U (1− x) dx

)
e−µV t

=

ϕ′
U (1)− ϕ′

U (1− F (t))−
C−1∑
k=1

F (t)K
k! ϕ

(k+1)
U (1− F (t))

 e−µV t

Which gives:

Q(t) = 1− 1
µU

ϕ′
U (1− F (t)) +

C−1∑
k=1

F (t)k
k! ϕ

(k+1)
U (1− F (t))


We define:

ΓU (F (t)) = 1
µU

ϕ′
U (1− F (t)) +

C−1∑
k=1

F (t)k
k! ϕ

(k+1)
U (1− F (t))


This yields the following differential equation for F :

ΓU (F (t))
1− ϕV

(
1− ΓU (F (t))

)F ′(t) = e−µV t .

153

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

Theorem 5.4.1 then follows from the same arguments in the proof of Theorem 5.2.1 (except
that errors are C times bigger as there are C more equations to handle).

5.4.6 Proof of Theorem 5.4.2

As mentioned in the main text, the only difference with Theorem 5.4.1 is that C could be of
the order of Nβ (but not bigger on the event where all degrees are smaller than Nβ). As a
consequence, one must take β even smaller than 1/20 to have sublinear errors terms (choosing
β = 1/40 is admissible for instance) with exponentially high probability.

Solution of (5.20). This equation is the same as the one satisfied by g(t, s), the new initial
condition is g(C)(t, s) = pCϕU (s). Thus, we can write:

g(C)(t, s) = pCϕU
(
(s− 1)e−µV t + 1− F (t)

)
.

Solution for c = C − 1. We have:

g(c−1)(t, s) =
∫ t

0
H(u)∂sg(C)(u, st,s(u))du+ g(c−1)(0, st,s(0))

=
∫ t

0
F ′(u)ϕ′

U ((s− 1)e−µV t + 1− F (t))du+ p(C−1)ϕU ((s− 1)e−µV t − F (t) + 1)

= pCF (t)ϕ′
U ((s− 1)e−µV t + 1− F (t)) + p(C−1)ϕU ((s− 1)e−µV t + 1− F (t))

Solution for c = C − 2.

∂sg
(C−2)(u, st,s(u)) = pCe

−µVuF (u)ϕ′′
U

(
(s− 1)e−µV t + 1− F (t)

)
+ p(C−1)e

−µVuϕ′
U (st,s(u))

Let’s define:
c(t, s) = (s− 1)e−µV t + 1− F (t)

Which gives:

g(C−2)(t, s) =p(C−1)

(∫ t

0
F ′(u)F (u)du

)
ϕ

′′ (
c(t, s)

)
+ p(C−1)

(∫ t

0
F ′(u)eµVudu

)
ϕ

′ (
c(t, s)

)
du+ p(C−2)ϕU (st,s(0))

=pC
2 (F (t))2ϕ

′′((s− 1)e−µV t

+ 1− F (t)) + p(C−1)F (t)ϕ′((s− 1)e−µV t + p(C−2)ϕU (c(t, s))

Solution for c = C − k, general formula. We will prove by induction:

g(C−k)(t, s) =
k∑
l=0

pC−l
1

(k − l)! (F (t))k−lϕ(k−l)(c(t, s))

If it is true for rank k, we have:

∂sg
(C−k)(u, st,s(u)) =

k∑
l=0

pC−l
1

(k − l)! (F (t))k−le−µVuϕ(k+1−l)(c(t, s))

154

5.4. APPENDIX

Which gives:

g(C−(k+1))(t, s) = p(C−(k+1))ϕU (c(t, s)) +
k∑
l=0

p(C−l)
1

(k − l)!

(∫ t

0
F ′(u)(F (u))(k−l)du

)
ϕ(k+1−l) (c(t, s))

=
k+1∑
l=0

p(C−l)
1

(k + 1− l)! (F (t))k+1−lϕ(k+1−l)(c(t, s))

Solution of (5.19).

o(t, s) =
C∑
c=1

pc

∫ t

0
F ′(u)(F (u))(c−1)

(c− 1)! ϕ(c)
(
(s− 1)e−µV t + 1− F (u)

)
du

g(c)(t, s) =
C−c∑
k=0

pc+k
1
k! (F (t))kϕk(c(t, s))

Quantity of interest.

A = µV
µU

C∑
c=1

c(pc − g(c)(+∞, 1))

= µV
µU

 C∑
c=1

cpc −
C−1∑
k=0

 1
k! (F (+∞))kϕ(k) (1− F (+∞)

) C∑
c=1

cpc+k




ODE for the function F.

∂so(t, 1) =

 C∑
c=1

pc

∫ t

0
F ′(u)(F (u))(c−1)

(c− 1)! ϕ
(c+1)
U

(
1− F (u)

)
du

 e−µV t

=

ϕ′
U (1)− ϕ′

U (1− F (t)) +
C−1∑
k=1

F (t)k
k! ϕ

(k+1)
U (1− F (t))

C∑
c=k+1

pc


 e−µV t

Which yields:

Q(t) = 1− 1
µU

ϕ′
U (1− F (t)) +

C−1∑
k=1

F (t)k
k! ϕ

(k+1)
U (1− F (t))

C∑
c=k+1

pc




We define:

ΓU (F (t)) = 1
µU

ϕ′
U (1− F (t)) +

C−1∑
k=1

F (t)k
k! ϕ

(k+1)
U (1− F (t))

C∑
c=k+1

pc




This yields the following differential equation for F :

ΓU (F (t))
1− ϕV

(
1− ΓU (F (t))

)F ′(t) = e−µV t .

155

CHAPTER 5. MATCHING IN THE CONFIGURATION MODEL

5.4.7 Proof of Theorem 5.2.2

Lemma 5.4.4. On the 2-regular graph, the law of the matches generated by the algorithm
Ranking equals the law of the matches generated by a biased Greedy algorithm, that chooses a
free vertex of degree 2 over one of degree 1 with probability at least 2/3. This is biased as the
classical Greedy algorithm chooses it with probability 1/2.

Proof : Two vertices of the same degree are interchangeable, they are both equally likely to
have the smallest rank. Thus Ranking and Greedy behave the same on arriving vertices whose
potential neighbors all have the same degree. Let r(v) be the rank of vertex v and deg(v) its
residual number of unpaired half-edges.

Let At(u, 2) be the following event:

• u had one of its half-edges paired to the incoming vertex vt at iteration t,

• u was not matched and vt was instead matched to a vertex of residual degree 2.

Let At(u, 1) be the similar event with vt instead matched to a vertex of residual degree 1.

P
(
r(u) ≥ k|deg(u) = 1, u free at t

)
=
∑
t′<t

P
(
r(u) ≥ k|At′(u, 2)

)
P(At′(u, 2)|deg(u) = 1, u free at t)

+
∑
t′<t

P
(
r(u) ≥ k|At′(u, 1)

)
P(At′(u, 1)|deg(u) = 1, u free at t).

Now, assume

∀t′ < t,∀a ∈ [N],P(r(a) ≥ k|deg(a) = 1 and a free at t) ≥ P(r(a) ≥ k|deg(a) = 2). (5.21)

Hypothesis 5.21 implies:

∀t′ < t,P(r(u) ≥ k|At′(u, 1)) ≥ P(r(u) ≥ k|At′(u, 2)),

thus, the following inequality holds:

P(r(u) ≥ k|deg(u) = 1 and u free at t) ≥P(r(u) ≥ k| ∪t′<t At′(u, 2)).

Let a and b be two different numbers randomly chosen in [n]. Two vertices with two
remaining half-edges were not affected by the run before, and thus could have any rank. It
therefore holds:

P
(
r(u) ≥ k|deg(u) = 1 and u free at t

)
≥P

(
max(a, b) ≥ k

)
=1−

(k−1
2
)(n

2
)

=1− (k − 1)(k − 2)
n(n− 1) .

This inequality implies P
(
r(u) ≥ k|deg(u) = 1 and u free at t

)
≥ P

(
r(u) ≥ k|deg(u) = 2

)
,

thus 5.21 is true by induction.
Therefore, vertices with only one remaining half-edges are likely to have a higher rank than

156

5.4. APPENDIX

those with two remaining half-edges:

P(r(b) < r(a)|deg(b) = 2,deg(a) = 1) =
n∑
k=1

P(deg = k − 1, deg(a) ≥ k|deg(b) = 2,deg(a) = 1)

≥ 1−
n∑
k=1

(k − 1)(k − 2)
n2(n− 1)

≥ 2
3 +O

(1
n

)
.

2

Let MG
1 (t) and MR

1 (t) be the number of marked vertices of degree 1 by greedy and
ranking algorithms respectively. Note that the number of vertices of degree 2 is the same for
both algorithms, FG2 (t) = FR2 (t). Also, the following always holds

FG1 (t) = 2N − 2t− 2FG2 (t)−MG
1 (t).

This shows that in 2-regular graphs, the number of half-edges in each ensemble is a deterministic
quantity of MR

1 (t+ 1) and MG
1 (t+ 1).

Suppose it holds at time t that MG
1 (t) = MR

1 (t) = M1(t) (event A), then

E[MR
1 (t+ 1)|A]− E[MG

1 (t+ 1)|A] =E[1{ranking marks a vertex in FR
2 (t)}|A]

− E[1{greedy marks a vertex in FR
2 (t)}|A]

=1
6 ·

F1(t)F2(t)
2(N − t) > 0.

The first equality holds since the probability of pairing an half-edge in MR
1 (t + 1) and

MG
1 (t+ 1) only depends on the number of half edges in each ensembles, not on the algorithm.

Therefore, by application of Gronwald’s lemma, ranking generates strictly more marked
vertices of degree 1. As the probability that an incoming vertice is matched only to non-available
vertices increases with M1, ranking performs strictly worse than greedy on 2-regular graphs.

157

Chapter 6

Online Matching in Geometric
Random Graphs

In online advertisement, ad campaigns are sequentially displayed to users. Both users and
campaigns have inherent features, and the former is eligible to the latter if they are “similar
enough”. We model these interactions as a bipartite geometric random graph: the features of
the 2N vertices (N users and N campaigns) are drawn independently in a metric space and an
edge is present between a campaign and a user node if the distance between their features is
smaller than c/N , where c > 0 is the parameter of the model.

Our contributions are two-fold. In the one-dimensional case, with uniform distribution
over the segment [0, 1], we derive the size of the optimal offline matching in these bi-partite
random geometric graphs, and we build an algorithm achieving it (as a benchmark), and analyze
precisely its performance.

We then turn to the online setting where one side of the graph is known at the beginning
while the other part is revealed sequentially. We study the number of matches of the online
algorithm closest, which matches any incoming point to its closest available neighbor. We
show that its performances can be compared to its fluid limit, completely described as a solution
of an explicit PDE. From the latter, we can compute the competitive ratio of closest.

Contents
6.1 Introduction . 159

6.1.1 Further Related work . 160
6.1.2 Bi-partite 1D geometric random graphs 161
6.1.3 Contributions . 161
6.1.4 Organization of the chapter . 162

6.2 Maximum Matching in 1D Uniform Geometric Graph 163
6.3 Match to the closest point algorithm 166

6.3.1 Graph rounding . 167
6.3.2 Analysis of closest on the modified graph 169

6.4 Study of the Random Walk . 171
6.5 Proof of the auxiliary Lemmas for graph-rounding 173
6.6 Proof of Lemma 6.3.7 (Gaps repartition) 176
6.7 Application of the Differential Equation Method 179

6.7.1 Proof of the link with the continuous equation (Lemma 6.3.10) 182
6.A Appendix . 183

6.A.1 Poisson Point Processes . 183

158

6.1. INTRODUCTION

In online advertisement, ad campaigns are sequentially displayed to users. Both users and
campaigns have inherent features, and the former is eligible to the latter if they are “similar
enough”. We model these interactions as a bipartite geometric random graph: the features of
the 2N vertices (N users and N campaigns) are drawn independently in a metric space and an
edge is present between a campaign and a user node if the distance between their features is
smaller than c/N , where c > 0 is the parameter of the model.

Our contributions are two-fold. In the one-dimensional case, with uniform distribution
over the segment [0, 1], we derive the size of the optimal offline matching in these bi-partite
random geometric graphs, and we build an algorithm achieving it (as a benchmark), and analyze
precisely its performance.

We then turn to the online setting where one side of the graph is known at the beginning
while the other part is revealed sequentially. We study the number of matches of the online
algorithm closest, which matches any incoming point to its closest available neighbor. We
show that its performances can be compared to its fluid limit, completely described as a solution
of an explicit PDE. From the latter, we can compute the competitive ratio of closest.

6.1 Introduction

Online matching is motivated, among others, by its application to ad allocation on the internet.
Advertising platforms are faced with the following issue: there are on the platform several
companies launching their campaigns. These have two constraints, a budget constraint, the
maximum number of ads they are willing to pay for, and a targeting constraint, which describes
the population they wish to show ads to, based on age, location, etc... From the point of view
of the platform, this is a matching problem, where the goal is to maximize the number of valid
ad-user allocations whilst respecting the budget constraint. However, users do not arrive all
at once, they rather generate web pages sequentially as they surf the web. An ad has to be
allocated on the spot to the generated slot, which is otherwise lost. The interaction can be
formulated as an online matching problem.

Formally, consider the bipartite graph G(U ,V, E), with set of vertices U ∪ V and set of
edges E ∈ U × V. In our context of online matching, the “offline" vertices U represent the side
of the companies, they are present from the beginning, while the vertices V, which represent
the users, are revealed sequentially. At each arrival of a vertex v ∈ V, the edges adjacent to
vertex v are revealed. Based on those edges, the vertex can then be matched to a previously
unmatched neighbor, and this decision cannot be revoked. The excellent survey Mehta (2012)
details applications, results, and techniques of online matching.

Those types of online problems are evaluated through competitive analysis Borodin and
El-Yaniv (2005). In the context of online matching, the measure of performance of an algorithm
is its competitive ratio, that is the ratio of the size of the matching computed by the algorithm
divided by the size of the best matching in hindsight Feldman et al. (2009).

A first line of work studied online matching in the adversarial framework, where the algorithm
is evaluated on the worse possible instance with the worst possible arrival order of the vertices.
It is folklore that greedy random algorithms, which match incoming vertices to any available
neighbor at random have a competitive ratio of 1/2 in the worst case. However, they achieve
1− 1/e as soon as the incoming vertices arrive in Random Order Goel and Mehta (2008). The
ranking algorithm is the worst-case optimal, it achieves at least 1 − 1/e on any instance
Birnbaum and Mathieu (2008); Devanur et al. (2013); Karp et al. (1990), and also has a higher
competitive ratio in the Random Order setting Mahdian and Yan (2011).

159

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

Beyond this worse-case setting, the following stochastic model has been introduced. It is
assumed there exists a probability distribution over types of vertices, and at every iteration, the
incoming vertex is drawn i.i.d. from that distribution. With the knowledge of that distribution,
algorithms with much better competitive ratios than ranking were designed Brubach et al.
(2019); Jaillet and Lu (2014); Manshadi et al. (2012). If the expected number of arrival of each
type is integral, the designed algorithm achieves a competitive ratio of 1− 2/e2 ≈ 0, 729 and
0.706 with that assumption removed. Both those competitive ratios also hold with Poisson
arrival rates.

This stochastic model fits some situations and is certainly interesting, but too restrictive to
model the aforementioned practical motivating examples. The first criticism is that it fails to
handle simple random structures, such as a bipartite Erdos-Renyi random graph; embedding it
into the above stochastic model would require an exponential number of types with respect
to the number of vertices. As a consequence, another line of work considers standard online
algorithms on some classes of random graphs, representing situations where some properties of
the underlying graph are known. The seminal example would be online matching in Erdos-Renyi
graphs Mastin and Jaillet (2013), or more generally in the configuration model that specifies a
law on the degrees of the vertices Noiry et al. (2021). The idea behind the latter is that one
can “estimate” the typical attractivity of a campaign (say, some of them target a large number
of users while others are more selective).

Unfortunately, these approaches fail to model the following simple fact. Campaigns that are
“similar” tend to target the same users, and vice-versa (for instance, luxury products will target
users with high incomes, while baby products obviously target families). These interactions
can be modeled by assuming that both ads and users are represented by some feature vectors
and that an edge is present between two vertices if the features are similar enough. Random
geometric graphs are suited to that representation. Vertices are designed by locations in a
Euclidean space and an edge is drawn between two vertices if those are at a distance smaller
than a threshold (this is an arbitrary choice of the kernel).

As a consequence, we shall in the following introduce and analyze the online matching
problem for geometric graphs; for simplicity, we shall focus on the already challenging and
interesting one-dimensional geometric graph (the multi-dimensional one would be interesting
for future work).

6.1.1 Further Related work

Besides those already mentioned in the introduction, a vast line of works generalizes the online
matching problem.

It has been proposed to add capacities to the vertices of the offline side, as well as weights
to the edges. The problem in this setting is referred to as Adwords. In the setting with small
bids, the competitive ratio of greedy is 1 − 1/e Mehta et al. (2007). In the case where all
budgets are equal to b and all bids to 1, which is referred to as b-matching, a competitive ratio
of 1− 1/(1 + 1/b)b was obtained for algorithm Balance Kalyanasundaram and Pruhs (2000).
Under the small bid and i.i.d. arrivals assumption, the same algorithm is 1−O(1) competitive
Motwani et al. (2006).

Some works consider the case of edge arrivals instead of vertex arrivals. In the adversarial
setting, it has been shown that no algorithm beats the classical greedy algorithm and that
the competitive ratio is 1/2 Gamlath et al. (2019). With stochastic arrivals, a slightly better
competitive ratio of 0.503 was obtained Gravin et al. (2019).

A line of works relaxes the assumption that the online vertices arrive one by one. For
instance, in two-stage matching problems, where the vertices of the online stage arrive in two

160

6.1. INTRODUCTION

batches Feng et al. (2021). The arriving vertices may also be assigned a patience parameter
Brubach et al. (2021).

Another related approach is stochastic metric matching. In that context, vertices are also
points in a euclidean space. Any vertices on opposite sides of the partition may be matched
together, and the cost of the matching is the total distance between the matched points
Akbarpour et al. (2021); Gupta et al. (2019).

6.1.2 Bi-partite 1D geometric random graphs

We consider the bipartite geometric graph Geom(X ,Y, c), whose set of vertices X and Y are
two sets of N points drawn independently and uniformly in [0, 1],

X = (xi)i∈[N]
i.i.d.∼ U [0, 1] and Y = (yi)i∈[N]

i.i.d.∼ U [0, 1].

There is an edge between xi ∈ X and yj ∈ Y if and only if∣∣xi − yj∣∣ < c

N
.

This choice of parametrization ensures that the expected degree of a vertex remains bounded,
of order c (neglecting the boundary effects). In particular, the graph remains sparse and the
online matching problem is not trivial.

6.1.3 Contributions

First, we derive the size of the maximum matching in this geometric graph, as a function of the
parameter c, along with the description of an algorithm constructing this matching. We provide
a non-asymptotic convergence bound of the size of the maximum matching to c/(c + 1/2).
This bound is obtained through the study of the algorithm, via the construction of a potential
function which is then treated as a random walk. More precisely, we shall prove the following

Theorem 6.1.1 (informal). Let m∗ (X ,Y, c) be the size of the maximum matching in Geom(X ,Y, c).
With probability at least 1−O

(
1
N

)
,

m∗ (X ,Y, c) = c

c+ 1
2
N +O

(√
N ln(N)

)
.

This informal result is illustrated in Figure 6.1 which shows both the theoretical asymptotic
value and the optimal value in several realizations of random graphs for a variety of parameters
c.

We then study the size of the matching constructed by an online algorithm, closest, which
matches any incoming vertex to its closest available neighbor. We show the convergence of this
quantity to the solution of an explicit PDE. We do that by exhibiting tractable quantities that
can be approximated via the Differential Equation Method Enriquez et al. (2019).

More precisely, we shall prove the following Theorem.

Theorem 6.1.2 (informal). Let κ(c,N) be the size of the matching obtained by closest
algorithm on G(X ,Y, c), then

κ(c,N) P−−−−−→
N→+∞

1−
∫ +∞

0
f(x, t)dx

161

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

Figure 6.1: The asymptotic optimal offline matching size is displayed in red, as a function of
the parameter c. Several simulations (blue crosses) for different values of c and for N = 100
vertices illustrate that this limit is reached rapidly.

where f is the solution of some explicit PDE, described later in Equation (6.2).

The difference between the theoretical and the actual sizes of the matchings (as a function
of the number of online vertices observed) for different values of N is illustrated in Figure 6.2.

Figure 6.2: First row, from left to right: theoretical (red line) vs. experimental (blue lines) sizes
of the online matching in the 1D uniform geometric graph (c = 1) as a function of the number
of arrived vertices, for N = 100, N = 1.000 and N = 10.000. In the second row, we plot the
difference between the above blue and red curves; notice the change in Y -axis: in the first row,
it is the average matching size (that is, normalized by N), while on the second row, it is the
absolute difference in matching sizes (without normalization by N).

6.1.4 Organization of the chapter

The remaining is organized as follows. The main conceptual contributions are in the two
following subsections, followed by some simulations. The remaining sections are more technical.

Section 6.2: This section is dedicated to the offline case. We give the asymptotic formula of the
size of the optimal offline matching, given the full bipartite geometric graph. Interestingly,

162

6.2. MAXIMUM MATCHING IN 1D UNIFORM GEOMETRIC GRAPH

our approach is algorithmic: we provide a way to construct this optimal matching, and
we analyze the latter by carefully studying some random walk.

Section 6.3: This section focuses on the online case. We describe a simple algorithm, closest,
that matches any incoming vertex to the closest available one (as would do a greedy
procedure) and we characterize the size of the matching it creates by studying its fluid
limit. We shall prove it satisfies some PDE.

Section 6.4: This is the first section dedicated to technical results. This one concerns the
offline case, and we study in detail the random walk introduced in Section 6.2.

Section 6.5: This section and the following two, are dedicated to the technicalities of the
online case. In Section 6.3, we shall mention that we can "round" the geometric graph to
consider more malleable random objects (Poisson processes among others); more precisely,
we claim that we can consider the same problem on a circle rather than on a segment.
The purpose of this section is to prove such claims.

Section 6.6: In this section, we prove another claim of Section 6.3. Roughly speaking, we
said that the distribution of the distances between two successive vertices is “rotation
independent” (recall that we embedded the problem on the circle in the previous section)
and even “permutation independent”.

Section 6.7: In this final section, apart from the Appendix that recalls standard results, we
explain why the fluid limit result, which approximates the behavior of a random discrete
process by a deterministic and continuous solution of some PDE, holds.

6.2 Maximum Matching in 1D Uniform Geometric Graph

This section is dedicated to the offline case, where the whole underlying bi-partite 1D geometric
graph is known from the beginning. The size of the maximum matching is obtained by analyzing
an optimal matching algorithm that computes it. We call it the small-first algorithm
(illustrated in Figure Section 6.2), as it iteratively matches the unmatched vertices with the
smallest coordinates.

0 1
X

Y

Figure 6.3: Matching constructed with the small-first algorithm

Proposition 6.2.1. Algorithm small-first returns an optimal matching in 1D geometric
graphs.

Proof : The proof actually shows that the algorithm constructs a matching with no augment-
ing path. An augmenting path is a path in the graph starting at an unmatched vertex, then
alternating between unmatched and matched edges, then ending at an unmatched vertex. Note
that if such a path is found, the size of the matching may be increased by including the two
endpoints in the matching and changing the matched edges of the path for the unmatched ones.

163

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

By Berge’s theorem, a matching is optimal iif it presents no augmenting path Berge (1957).
By construction, two edges in the matching m returned by Algorithm small-first cannot
cross, that is if (xi, yj), (xi′ , yj′) ∈ m, then xi ≤ xi′ if and only if yj ≤ yj′ .

Assume that the matching m is not maximal. Then, by Berge’s theorem, it admits at least
an augmenting path. Consider an augmenting path with minimum length and, without loss of
generality, assume that it starts at a point in X . We denote the sequence of consecutive edges
in the path by

{(xi1 , yj1), (yj1 , xi2), . . . , (xiℓ , yjℓ)},

where xi1 and yjℓ are not matched and (yjk , xik+1) ∈ m, for any k < ℓ. Note that ℓ ≥ 3, as an
augmenting path is always of odd length and ℓ = 1 would imply that two neighbors are not
matched in the optimal matching, which is impossible by definition of optimality.

Since the vertex xi2 is matched by small-first to yi1 while xi1 , which is also a neighbor
yi1 , is not matched, then, by definition of small-first:

xi1 ≥ xi2 .

If there were an edge between xi1 and yj2 , the path could be shortened, so

yj1 ≥ yj2 .

Since two edges in m constructed by small-first cannot cross, and (xi2 , yi1), (xi3 , yi2)
belong to m thus

xi2 ≥ xi3 .

With the same arguments, we obtain by induction that for every k < l,

yjk ≥ yjk+1 and xik ≥ xik+1 .

In particular, this applies to k = ℓ− 1, so that yjℓ < yjℓ−1 . However, this is impossible as yjℓ−1

is matched to xiℓ , while there is an edge between xiℓ and yjℓ and the latter is unmatched by
small-first. This is an obvious contradiction as small-first would have matched xiℓ to yjℓ
rather than to yjℓ−1.

The conclusion is that small-first creates a matching without any augmenting path, which
is thus optimal. 2

Using the optimality of small-first, we can now prove the first main result.

Proposition 6.2.2. Let X and Y be two independent sets of N identically and uniformly
distributed points in [0, 1]and M∗(c,N) be the expected size of the maximum matching in
Geom(X ,Y, c). Then the following holds:

lim
N→∞

M∗(c,N)
N

= c

c+ 1
2
.

Let m∗ (X ,Y, c) be the realized size of the maximum matching in Geom(X ,Y, c). Then, with
probability at least 1−O

(
1
N

)
, the following holds:

m∗ (X ,Y, c) = c

c+ 1
2
N +O

(√
N ln(N)

)
.

Proof : The proof is decomposed into two steps. In the first step, we show that the size of
the maximum matching in Geom(X ,Y, c) is related to the size of the maximum matching in a

164

6.2. MAXIMUM MATCHING IN 1D UNIFORM GEOMETRIC GRAPH

geometric graph with a set of vertices generated by Poisson point processes. In the second step,
the asymptotic size of the maximum matching in those graphs is derived through the study of a
random walk.

Step 1, connection with Poisson point processes. Let ΦN
U be an independent homo-

geneous Poisson point process on the segment [0, 1] of intensity N . The definition and some
standard properties of Poisson Point Processes (PPP) are reported in Appendix 6.A.1 for the
sake of completeness. Let UN ∼ ΦN and VN ∼ ΦN denote two independent PPP, and γ∗(c,N)
be the expected size of the maximum matching in Geom(UN ,VN , c).

Lemma 6.2.3. Under the above notations, the following holds:

|γ∗(c,N)−M∗(c,N)| ≤ 4(1 +
√
N lnN).

Proof : Let NU = |U| and NV = |V| denote the size of the vertex sets. By Chernoff bound:

P
{
|NU −N | ≥ 2

√
N lnN

}
≤ 2
N

(6.1)

and the same holds for NV . We now explain how recover the construction of Geom(X ,Y, c)
from those two PPP (as they do not have the same vertex set sizes). From U , define a new
set Ũ of N vertices as follows. If NU > N , delete uniformly at random NU −N points from
UN . If N > NU , add N −NU points independently and uniformly distributed in [0, 1] to UN .
The set Ṽ is constructed from V similarly. This construction ensures that Geom(Ũ , Ṽ, c) and
Geom(X ,Y, c) have the same law. Moreover, the transformation affects the size of the matching
at most by the number of added and removed points. 2

Step 2, deriving γ∗(c,N). A possible way to draw sets UN from ϕN is through a renewal
process with exponential holding times. Precisely, let {Fk}k∈N be a sequence of independent,
identically distributed exponential random variables of parameter N . Ensemble UN is defined
as:

UN =

uk =
k∑
i=1

Fi for k s.t.
k∑
i=1

Fi < 1

 .
The same holds from VN (see Appendix 6.A.1).

To compute the size of the maximum matching in a given graph, we introduce a modified
version of Algorithm small-first, that generates the graph together with a matching. Algorithm
small-first-generative (Algorithm 18) proceeds as follows. The positions of the first points
in UN and VN are drawn independently from two exponential distributions of parameter N .
At iteration t, note ux(t) and vx(t) the position of the last generated points in UN and VN
respectively. Define the potential

ψ(t) := ux(t) − vx(t).

Until all the points on one side have been drawn, the following operations are iteratively
performed:

• if |ψ(t)| < c
N , edge (ux(t), vx(t)) is added to the matching and the next points on both

sides of the graph are generated.

• if ψ(t) > c, the next point in VN is generated.

• if ψ(t) < −c, the next point in UN is generated.

165

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

Algorithm 28: small-first-generative
input : N, c;

1 Draw u1 ∼ Exp(N) and v1 ∼ Exp(N);
2 Initialize x(1)← 1, y(1)← 1 and m← ∅ ;
3 Define for t = 1, . . ., ψ(t)← ux(t) − vx(t);
4 while ux(t) < 1 and vx(t) < 1 do
5 if |ψ(t)| < c then
6 m← m ∪ (ux(t), vx(t));
7 x(t+ 1)← x(t) + 1 and y(t+ 1)← y(t) + 1;
8 Draw ux(t+1) − ux(t) ∼ Exp(N) and vy(t+1) − vy(t) ∼ Exp(N);
9 end

10 if ψ(t) > c then
11 x(t+ 1)← x(t) and y(t+ 1)← y(t) + 1;
12 Draw vy(t+1) − vy(t) ∼ Exp(N);
13 end
14 if ψ(t) < −c then
15 x(t+ 1)← x(t) + 1 and y(t+ 1)← y(t);
16 Draw ux(t+1) − ux(t) ∼ Exp(N)
17 end
18 end

The potential function ψ(t) is a Markov chain with the following transition probability:

ψ(t+ 1)− ψ(t) =


xt − yt if |ψ(t)| ≤ c
xt if ψ(t) ≤ −c
−yt if ψ(t) ≥ c

with xt and yt independent exponential random variables of parameter N. The rest of the proof
consists in studying this random walk, its stationary distribution, and its convergence. Those
technical details are postponed to Section 6.4.

2

6.3 Match to the closest point algorithm

In this section, we study the performances on the 1D Geometric Graph of the online matching
algorithm closest, that matches the incoming vertex to its closest available neighbor if there
is one. The following theorem states that w.h.p., κ(c,N), the size of the matching obtained by
closest algorithm on G(X ,Y, c), is closely related to the solution of an explicit PDE.

Theorem 6.3.1. Let κ[c,N](t) be the size of the matching obtained by closest on G(X ,Y, c)
when t vertices have arrived, then

κ[c,N](t) P−−−−−→
N→+∞

1−
∫ +∞

0
f(x, t)dx

166

6.3. MATCH TO THE CLOSEST POINT ALGORITHM

with f(x, t) the solution of the following differential equation

∂f(x, t)
∂t

=−min(x, 2c)f(x, t)− 1∫+∞
0 f(x′, t)dx′

∫ +∞

0
min(x′, 2c)f(x′, t)dx′f(x, t)

+ 1∫+∞
0 f(x′, t)dx′

∫ x

0
min(x′, 2c)f(x′, t)f(x− x′, t)dx′ (6.2)

with the following initial conditions
f(x, 0) = e−x.

Proof structure: We first show that the score of closest in G(X ,Y, c) is closely related to
its score in G(Ũ ,Y, c), where the vertices of the offline side are generated through a Poisson
point process and have their coordinates rounded to a discrete grid (Section 6.3.1). We then
show that the score of closest on the modified graph is closely related to the solution of a
PDE through the differential equation method Enriquez et al. (2019)(Section 6.3.2). 2

Remark: It holds that

∂

∂t

∫
x
f(x, t)dx = −

∫
x

min(x, 2c)f(x, t)dx,

which rewrites as

∂

∂t

∫
x
f(x, t)dx = −2c

∫
x
f(x, t)dx+

∫ 2c

0
xf(x, t)dx.

The second term gets negligible in front of the first one as c goes to 0; yet it is non-negative,
which implies that

∫
x f(x, t)dx ≥ exp(−2ct) and thus the size of the matching obtained by

closest is smaller than 1− exp(−2ct). This is not really helpful for the analysis, as we aim at
lower-bounding the performance of an algorithm, but it provides insights on the approximate
performance for small values of c.

6.3.1 Graph rounding

Let X be an ensemble of N points drawn i.i.d. uniformly in [0, 1], and Y be an independent
ensemble of N points also drawn i.i.d. uniformly in [0, 1], with the vertices in the ensemble
indexed according to the order in which they are drawn. We define MC(G (X ,Y, c)) as the
number of matched vertices by closest in the graph G (X ,Y, c) when the vertices in Y arrived
in the order prescribed by their indexes.

The graph-rounding procedure, illustrated in Figure 6.4, associates to an ensemble X the
rounded ensemble Ũ through the following steps:

• Poissonization step: Let N0 ∼ Poi(N). If N0 > N , then let (ui)N0−N
i=1 be N0−N points

drawn uniformly and independently in [0, 1] and define U = X ∪ {ui | i ∈ [N0 −N]}. If
N0 < N , U is obtained be removing N −N0 points selected uniformly at random from X .
This is the same procedure used in Section 6.2.

• Rounding step: Transform U in a new ensemble ⌊U⌋ by rounding the coordinate of each
point u ∈ U to ⌊uNk⌋

Nk ,

⌊U⌋ :=

⌊uNk⌋Nk

∣∣∣∣∣ u ∈ U
 .

167

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

• Discarding step: For any ℓ ∈ [Nk], if multiple vertices have their coordinates rounded
to ℓ

Nk , a random vertex among those is selected, and all others are removed from the
graph. This gives the final ensemble Ũ .

• Gluing step: The interval [0, 1] is mapped to the unit circle of circumference one.
Formally, the distance is replaced with the following one:

d(x, y) = min(|x− y|, |x+ 1− y|).

We also add a vertex at coordinate 0 to Ũ if it is not already in it.

This final step produces graph Gglued
(
Ũ ,Y, c,N, k

)
as illustrated in Figure 6.4. Note that after

0
1

X Y

Poissonization

N0 ∼Poi(N)

N0 = N + 1

0
1

U Y

Rounding

bUc :={
buN3/2c

N3/2

}

0
1

bUc Y

Discard

0
1

Ũ Y

Gluing

0

Figure 6.4: Graph Rounding

the discarding step, the law of U is that of an ensemble of points drawn from a Poisson point
process of intensity N in [0, 1]. Let uℓ = ℓ/(Nk). For each ℓ ∈ [Nk], P(uℓ ∈ Ũ) = 1 − e−1/k,

and the events
(
{uℓ ∈ Ũ}

)
ℓ∈[Nk]

are independent of each other.
The following proposition states that this construction does not impact too much the size of

the matchings.
Proposition 6.3.2. With probability at least 1− 8 exp(−min(

√
c/5, 1/4)

√
N), we have:∣∣∣∣∣MC

(
G (X ,Y, c,N)

)
−MC

(
Gglued

(
Ũ ,Y, c,N, k

))∣∣∣∣∣ ≤ 49cN
k

+ 5N3/4.

Proof : The proposition is a consequence of the four following lemmas that bound the impact
in matching sizes incurred in each step.
Lemma 6.3.3 (Poissonization). With probability at least 1− 2 exp(−

√
N/4), it holds:∣∣∣MC

(
G (X ,Y, c,N)

)
−MC

(
G (U ,Y, c,N)

) ∣∣∣ ≤ N3/4.

168

6.3. MATCH TO THE CLOSEST POINT ALGORITHM

Lemma 6.3.4 (Rounding). With probability at least 1− 2 exp(−min(
√
c/5, 2)

√
N)− exp(−N),

it holds: ∣∣∣MC
(
G
(
⌊U⌋,Y, c,N

))
−MC

(
G (U ,Y, c,N, k)

) ∣∣∣ ≤ 48cN
k

+ 2
√
N.

Lemma 6.3.5 (Discard). With probability at least 1− 3 exp(−
√
N/4), it holds:∣∣∣∣∣MC

(
G
(
Ũ ,Y, c,N

))
−MC

(
G
(
⌊U⌋,Y, c,N, k

))∣∣∣∣∣ ≤ N

k
+ 2N3/4.

Lemma 6.3.6 (Gluing). With probability at least 1− exp(−
√
N), it holds:∣∣∣∣∣MC

(
G
(
Ũ ,Y, c,N

))
−MC

(
Gglued

(
Ũ ,Y, c,N, k

))∣∣∣∣∣ ≤ 2
√
N + 1.

The proofs of these technical lemmas are postponed to Section 6.5. 2

6.3.2 Analysis of closest on the modified graph

This section is dedicated to the analysis of the score of closest on the graphsGglued(Ũ ,Y, c,N, k).
Let Nt be the number of free vertices at iteration t. At time t, let ut(i) be the coordinate

of the ith free vertex, with the vertices enumerated according to their coordinates, and the
convention ut(Nt + 1) = ut(1). For ℓ ∈ [Nk], define

Fk,N (ℓ, t) :=

∣∣∣∣∣∣
{
i ∈ [Nt] s.t. N

(
ut(i+ 1)− ut(i)

)
= ℓ

k

}∣∣∣∣∣∣ ,
Note that at iteration t, the number of free vertices is equal to ∑l∈[N3/2] FN (ℓ, t). Define

also

Mk,N (ℓ−, ℓ+, t) :=

∣∣∣∣∣∣
{
i ∈ [Nt] s.t. N

(
ut(i)− ut(i− 1)

)
= ℓ−

k
and N

(
ut(i+ 1)− ut(i)

)
= ℓ+

k

}∣∣∣∣∣∣ .
Let Ft be the σ containing information of t the values of the sizes of the gaps up to time t,(
Fk,N

(
ℓ, t′

))
ℓ,t′≤t

. The following lemma describes how many expected times two gaps of a
certain size follow each other at iteration t, conditionally on Ft.

Lemma 6.3.7 (Gaps repartition). For all t ∈ [N], for all ℓ−, ℓ+ ∈ (N3/2)2,

E

Mk,N (ℓ−, ℓ+, t)
∣∣∣∣∣Ft
 = Fk,N (ℓ−, t)

(
1{l− ̸=ℓ+}

Fk,N (ℓ+, t)
Nt − 1 + 1{ℓ−=ℓ+}

Fk,N (ℓ+, t)− 1
Nt − 1

)
.

Sketch of Proof : This lemma is implied by a stronger result: conditionally on Ft, the gaps
ordering is uniformly random. This is proved by induction in Section 6.6 2

Note that the expression on the right-hand side is exactly the expectation obtained by
drawing uniformly without replacements two successive gaps among all gaps at time t.

This lemma entails explicit computation of the expected evolution of the gaps, still condi-
tionally on Ft.

169

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

Lemma 6.3.8 (Evolution law). For all t ∈ [N], for all l ∈ N,

NE

Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)
∣∣∣∣∣Ft
 =−

min(2c, ℓ/k) +
∑
ℓ′

min(2c, ℓ′/k)Fk,N (ℓ′, t)− 1ℓ=ℓ′
Nt − 1

Fk,N (ℓ, t)

+
l∑

ℓ′=0
min(2c, ℓ′/k)

Fk,N (ℓ′, t)
(
Fk,N (ℓ− ℓ′, t)− 1{ℓ−ℓ′=ℓ′}

)
Nt − 1 .

Proof : At every iteration, at most one vertex ut is matched. If ut ∈Mk,N (ℓ−, ℓ+, t), then

• Fk,N (ℓ−, t+ 1) = Fk,N (ℓ−, t)− 1,

• Fk,N (ℓ+, t+ 1) = Fk,N (ℓ+, t)− 1,

• Fk,N (ℓ+ + ℓ−, t+ 1) = Fk,N (ℓ+ + ℓ−, t) + 1.

At every iteration,

P
(
vt matched to ut ∈MN (ℓ−, ℓ+, t)

)
=:m(ℓ−, ℓ+, t)

=
min(c, ℓ−2k) + min(c, ℓ+2k)

N
.

Furthermore, the following chain of equalities holds:

E
[
Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)

∣∣∣∣Ft
]

=−
∑
ℓ′

m(ℓ, ℓ′, t)Mk,N (ℓ, ℓ′, t) +m(ℓ′, ℓ, t)Mk,N (ℓ′, ℓ, t)

+
∑
ℓ′≤ℓ

m(ℓ′, ℓ− ℓ′, t)Mk,N (ℓ′, ℓ− ℓ′, t)

=− 2
∑
ℓ′

min(c, ℓ
2k) + min(c, ℓ′2k)

N
Mk,N (ℓ, ℓ′, t)

+ 2
∑
ℓ′≤ℓ

min(c, ℓ′2k)
N

Mk,N (ℓ′, ℓ− ℓ′, t)

=− min(2c, ℓ/k)
N

Fk,N (ℓ, t)− Fk,N (ℓ, t)
∑
ℓ′

min(2c, ℓ′/k)
N

Fk,N (ℓ′, t)− 1ℓ=ℓ′
Nt − 1

+
ℓ∑

ℓ′=0

min(2c, ℓ′/k)
N

Fk,N (ℓ′, t)(Fk,N (ℓ− ℓ′, t)− 1{ℓ−ℓ′=ℓ′})
Nt − 1 .

2

The proof of the previous lemma, along with other technical ones, is given in Section 6.7.
We can now apply the Differential Equation Method, yielding the following result.

Lemma 6.3.9. For any t ∈ [0, 1],

1
N

kN∑
ℓ=0

Fk,N

(
ℓ,
⌊tN⌋
N

)
P−−−−−→

N→+∞

+∞∑
ℓ=0

fk(ℓ, t).

170

6.4. STUDY OF THE RANDOM WALK

where fk(ℓ, t) are the solutions of the following system of differential equations:

∂fk(ℓ, t)
∂t

=−min(ℓ
k
, 2c)fk(ℓ, t)−

1∑+∞
ℓ′=0 fk(ℓ′, t)

+∞∑
ℓ′=0

min(ℓ
k
, 2c)fk(ℓ′, t)

 fk(ℓ, t)
+ 1∑+∞

ℓ′=0 fk(ℓ′, t)

+∞∑
ℓ′=0

min(ℓ
′

k
, 2c)fk(ℓ′, t)fk(ℓ− ℓ′, t),

with the initial conditions:
fk(ℓ, 0) = k(1− e− 1

k)2e− ℓ
k .

The proof of this lemma can also be found in Section 6.7.
The last step of the proof is to link the functions fk(ℓ, t) to a single function f , independent

from N .

Lemma 6.3.10. For any t ∈ [0, 1], it holds:

|| f(x, t)− kfk(⌊kx⌋, t) ||L1≤
ω

k
.

with ω a constant depending only on c and f(x, t) the solution of the following PDE

∂f(x, t)
∂t

=−min(x, 2c)f(x, t)− 1∫+∞
0 f(x′, t)dx′

∫ +∞

0
min(x′, 2c)f(x′, t)dx′f(x, t) (6.3)

+ 1∫+∞
0 f(x′, t)dx′

∫ x

0
min(x′, 2c)f(x′, t)f(x− x′, t)dx′.

with initial conditions
f(x, 0) = e−x.

The proof of this lemma is postponed to Section 6.7.

6.4 Study of the Random Walk

In this section, we study in detail the aforementioned random walk, from which we can compute
the performances of the optimal matching.

Lemma 6.4.1. The Markov chain described in Section 6.2 admits the following stationary
distribution:

µ(t) =


1

2c+2 if |x| ≤ c
ex+c

2c+2 if x ≤ −c
e−(x−c)

2c+2 if x ≥ c.

Proof : Let us denote by Π the transition kernel of random walk ψ; then for any x ∈ [−c, c]:

(2c+ 2)
∫ +∞

−∞
Π(x, y)µ(y)dy =

∫ −c

−∞
e−(x−y)ey+cdy +

∫ +∞

c
e−(y−x)e−y+cdy

+
∫ x

−c

1
2e

−(x−y)dy +
∫ c

x

1
2e

x−ydy

=1.

171

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

Similarly, for any x ≤ −c:

(2c+ 2)
∫ +∞

−∞
Π(x, y)µ(y)dy =

∫ x

−∞
e−(x−y)ey+cdy +

∫ +∞

c
e−(y−x)e−y+cdy

+
∫ c

−c

1
2e

x−ydy

=ex+c.

By symmetry, the computation also holds ∀x ≥ c. 2

Let τN number of iterations in Algorithm small-first-generative run with input param-
eter N , and

pN := 1
τN

τN∑
t=1
1{|ψ(t)≤c|}.

By Equation (6.1), with probability at least 1− 2/N ,

τN ≥ N − 2
√
N lnN.

Thus, by the ergodic theorem, the following convergence holds:

γ∗(c,N) = E
[

2∑τN
t=1 1{|ψ(t)≤c|}

2∑τN
t=1 1{|ψ(t)≤c|} +∑τN

t=1 1{|ψ(t)≥c|}

]
N→+∞−−−−−→ 2µ(|x| > c)

2µ(|x| > c) + µ(|x| < c) = c

c+ 1
2
.

We can also derive high probability bounds. Indeed, for any y ∈ R,∫ +∞

−∞
Π(x, y)µ(y)dy ≤ 1

2

and for any x ∈ R, ∫ +∞

−∞
Π(x, y)µ(x)dx ≤ 3

4 .

Thus by Schur test’s lemma, the operator norm of the kernel is bounded as ||Π||µ ≤
√

3/8. By
a version of Hoeffding’s inequality adapted to Markov chains Miasojedow (2014), we get

P
(
|pN − µ(|x| < c)| ≥ ϵ

∣∣ τN) ≤ 4(c+ 1)e− ϵ2τN
5

Moreover, by Chernoff bound, with probability at least 1− e− N
4 ,

τN ≥
N

2 .

Thus, the following holds:

P
(
|pN − µ(|x| < c)| ≥ ϵ

∣∣ τN) ≤ 5(c+ 1)e− ϵ2N
8 .

This implies that with probability of at least 1−O(1
N),

m∗
(
UN/N,VN/N, c/N

)
= c

c+ 1
2
N +O

(√
N ln(N)

)
.

Combining this with Equation (6.1) ends the proof of Lemma 6.2.2.

172

6.5. PROOF OF THE AUXILIARY LEMMAS FOR GRAPH-ROUNDING

6.5 Proof of the auxiliary Lemmas for graph-rounding

Proof of Lemma 6.3.3 (Poissonisation) The proof unfolds in two steps: we first prove
that adding or removing a vertex to the ensemble of offline vertices modifies the score of the
algorithm by at most one. We then show that w.h.p. the Poissonization step adds or removes
a small number of vertices.

Lemma 6.5.1. Adding or removing a vertex to the offline side in the graph modifies the score
of closest by at most one.

Proof : Let us compare the runs of the closest algorithm in

G(X ,Y, c/N) and G(X ∪ x+
0 ,Y, c/N)

when the vertices in Y arrive in the same order. Let mt and m+
t be the number of matched

vertices at iteration t, and Xt and X+
t the sets of free vertices at iteration t, in G(X ,Y, c/N)

and G(X ∪ x+
0 ,Y, c/N) respectively. We will show by induction that at every iteration, one of

the following properties holds:

• (P1): mt = m+
t and ∃ x+

t ∈ X ∪ x+
0 s.t. X+

t = Xt ∪ x+
t ,

• (P2): mt + 1 = m+
t and X+

t = Xt.

If (P2) is true at some iteration t, it remains true until the end of the run and the proof is
over. If (P1) is true at iteration t, the following cases are possible:

1. the incoming vertex yt has no neighbor in X+
t , in which case it is unmatched in both

graphs,

2. yt’s closest neighbor in X+
t is not x+

t , in which case yt is matched to the same vertex in
both graphs,

3. yt’s closest neighbor in X+
t is x+

t and x+
t+1 in Xt, in which case it is matched to x+

t in
G(X ∪ x+

0 ,Y, c/N) and to x+
t+1 in G(X ,Y, c/N),

4. yt’s only neighbor in X+
t is x+

t , in which case it is matched to x+
t in G(X ∪ x+

0 ,Y, c/N)
and unmatched in G(X ,−Y, c/N).

Cases 1 to 3 imply that (P1) remains true at iteration t+ 1, case 4 implies that (P2) is true at
iteration t+ 1. (P1) is true at iteration 0, thus either (P1) or (P2) hold at iteration N . 2

Now, by concentration of Poisson random variables,

P
(
|N −N0| ≥ N3/4

)
≤2e

− N3/2

2(N+N3/4)

≤2e− N1/2
4

Thus, with probability at least 1− 2e− N1/2
4 , less than N3/4 vertices are added or removed

at the Poissonization step. Applying Lemma 6.5.1 terminates the proof.
2

173

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

Proof of Lemma 6.3.4 (Rounding) The closest algorithm can also be run through the
following process:

1. Assign to each vertex y ∈ Y a priority list ly containing y’s neighbors ranked according to
their distance to y,

2. Match the incoming vertex y to its lowest-ranked available neighbor in ly.

Lemma 6.5.2. Modifying priority list ly for some y ∈ Y affects the number of matched vertices
by the closest algorithm by at most 2.

Proof : Let us compare the runs of the algorithm on the graphs with the original list ly and
the modified one l′y. Until vertex y arrives, the run is the same on both graphs. If y is matched
differently in both graphs, the set of free vertices in the two graphs after y has been matched
may differ by at most two vertices. Lemma 6.5.1 terminates the proof. 2

A point y ∈ Y’s priority list is modified if:

• it gains or loses at least one neighbor after the rounding of the coordinates, which implies:

∃u ∈ U s.t.|y − u| ∈ [c− 1
Nk

; c+ 1
Nk

],

• two or more vertices in its neighbors’ list switch places, which implies

∃u, u′ ∈ ly s.t.
∣∣∣|y − u| − |y − u′|

∣∣∣ ∈ [0; c+ 2
Nk

].

Define
p1 =

∫ 1

0
1{∃u∈U s.t. |u−y|∈[c− 1

Nk
,c+ 1

Nk
]}dy

and
p2 =

∫ 1

0
1

{∃u,u′∈U s.t.
∣∣∣|y−u|−|y−u′|

∣∣∣∈[0;c+ 2
Nk

]}
dy.

With N0 = |U|, we have p1 ≤ 4c
NkN0. By concentration of poisson random variables,

P
(
p1 ≥

8c
k

)
=P (N0 ≥ 2N)

≤ exp(−N). (6.4)

We also have:

p2 ≤
2
Nk

∣∣∣{u, u′ ∈ U s.t. |u− u′| ≤ 4c
N
}
∣∣∣ (6.5)

Note that |{u, u′ ∈ U s.t. |u− u′| ≤ 4c
N }| is exactly the number of edges in a random geometric

graph generated by a Poisson point process of intensity N in [0, 1], where two vertices x, y
are connected if |x − y| ≤ 4c

N . This number is known to concentrate around its expectation
(Bachmann and Peccati (2015)), which is:

E
[∣∣∣{u, u′ ∈ U s.t. |u− u′| ≤ 4c

N
}
∣∣∣] = N4c− 8c2

174

6.5. PROOF OF THE AUXILIARY LEMMAS FOR GRAPH-ROUNDING

Following the upper tail bound on this number obtained in section 6.2 of Bachmann and
Peccati (2015), we have:

P(p2 ≥
16c
k

) ≤ exp(−
√
cN

5).

Let
B =

{
p1 + p2 ≤

24c
k

}
.

The points in Y are N points i.i.d. uniformly in [0, 1], thus the events ({ly is modified | U ,B})y∈Y
are independent, and we also have:

P
(
{ly is modified

∣∣∣ U ,B}) ≤ 24c
k
.

Let
Nmodified :=

∑
y∈Y

1{ly is modified}.

By Hoeffding’s inequality,

P

Nmodified ≥ 24cN
k

+
√
N

∣∣∣∣∣ U ,B
 ≤ exp(−2

√
N).

Thus,

P
(
Nmodified ≥ 24cN

k
+
√
N

)
≤ exp(−2

√
N) + P(B).

According to equations 6.4 and 6.5, P
(
B
)
≤ exp(−

√
cN
5)−exp(−N). This together with Lemma

6.5.2 terminates the proof. 2

Proof of Lemma 6.3.5 (Discard) For any ℓ ∈ [kN], let

nℓ :=

⌊uNk⌋Nk
= ℓ

Nk

∣∣∣∣∣ u ∈ U
 .

The points in U are generated through a Poisson point process of intensity N in [0, 1], thus, for
any ℓ ∈ [Nk]:

P(nℓ > 0) = 1− e−1/k,

and the (nℓ)ℓ∈[Nk] are independent of each other. The number of points in Ũ is

|Ũ | =
Nk∑
ℓ=1
1nℓ>0.

We have

E
[
|Ũ |
]

=Nk(1− e−1/k)

≥N − N

k
.

175

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

By Chernoff bound,
P(|Ũ | ≤ N − N

k
−N3/4) ≤ exp(−

√
N/2)

We have
Nremoved := |U| − |Ũ |.

We have already obtained by concentration of Poisson random variables

P
(∣∣∣N − |Ũ|∣∣∣ ≥ N3/4

)
≤2e− N1/2

4 .

Thus,

P
(
Nremoved ≥ 2N3/4 + N

k

)
≤ 3e− N1/2

4 .

Combining this with Lemma 6.5.1 terminates the proof. 2

Proof of Lemma 6.3.6 (Gluing) By Lemma 6.5.1, adding the vertex at coordinate 0
modifies the score of the algorithm by at most one.

The priority list of some vertex y ∈ Y may be modified by the gluing step only if y < c/N
or y > 1− c/N .

Ngluing :=
∑
y∈Y

1{ly is modified during the gluing step}.

By Chernoff bound,
P(Ngluing ≥ 2c+

√
N) ≤ e−

√
N .

Lemma 6.5.2 concludes the proof. 2

6.6 Proof of Lemma 6.3.7 (Gaps repartition)

We note |H| the length of a sequence H and S([N]) the ensemble of all permutations over [N].
For a sequence H = (hi)i∈[K] let At (H) be the event:{

Nt = |H|, ∃σ ∈ S([Nt]) s.t. ∀i ∈ [Nt], ut(i+ 1)− ut(i) =
hσ(i)
Nk

}
,

and At (σ,H) the event:{
Nt = |H|, ∀i ∈ [Nt], ut(i+ 1)− ut(i) =

hσ(i)
Nk

}
.

In other words, At (H) is the event that unordered values of the gaps between the free
vertices at iteration t is sequence H. Event At (σ,H) is the more constrained event that those
values are ordered following permutation σ. Note that

At (H) = ∪σ∈S([H])At (σ,H) .

Also note that it is possible for events σ, σ′ to be duplicates of each others if there are
duplicate values in the sequence H. For instance if all values in H are equal, then all At (σ,H)
are equal to event At (H). For a list of sequences H1, . . . ,Ht, we note A1:t (H1:t) the event that

176

6.6. PROOF OF LEMMA 6.3.7 (GAPS REPARTITION)

As(Hs) hold for all s ≤ t:
A1:t (H1:t) := ∩1≤s≤tAs(Hs).

Lemma 6.3.7 is a consequence of the following stronger Lemma.

Lemma 6.6.1. For any sequence H, any iteration t, any two permutations σ, σ′ ∈ S
([
|H|

])
,

P

At (σ,Ht)
∣∣∣∣∣ A1:t (H1:t)

 = P

At (σ′, Ht

) ∣∣∣∣∣ A1:t (H1:t)

 . (6.6)

Proof : We prove this lemma by induction. First, let pk = 1− e−1/k so that, by design of
the rounding procedure, for each ℓ ∈ [1, Nk − 1],

P
(

ℓ

Nk
∈ Ũ

)
= pk,

and the events
({

ℓ
Nk ∈ Ũ

})
ℓ∈[1,Nk−1]

are independent of each other (and we still have 0 ∈ Ũ).

Let K < Nk be a non-negative integer and let H = (hi)i be any sequence of integers s.t.

|H|∑
i=1

hi
Nk

= 1.

Since u0(1) = 0, the knowledge of the sizes and the ordering of the gaps determines the position
of the points. Thus, for any σ ∈ S

([
|H|

])
:

P
(
|H| = N0,∀i ∈ [N0], u0(i+ 1)− u0(i) =

hσ(i)
Nk

)
= pN0−1

N (1− pN)Nk−N0 .

This does not depend on the choice of permutation σ. Thus for any sequence H s.t. ∑|H|
i=1

hi
Nk = 1

and any two permutations (σ, σ′) ∈ S
([
|H|

])2
:

P

A0 (σ,H)
∣∣∣∣∣A0 (H)

 = P

A0
(
σ′, H

) ∣∣∣∣∣A0 (H)

 . (6.7)

We just proved that Equation (6.6) holds at iteration 0. Let us assume that Equation (6.6)
holds at all iterations until the t-th one. We aim at showing that this implies that it also
holds at iteration t+ 1. There are two cases possible, depending on whether or not a vertex is
matched.

We first show the implication in the case where the incoming vertex is not matched, i.e. it
lays at a distance larger than c/N of any free vertex. Note yt the incoming vertex at iteration t.
For any σ ∈ S([Nt]), any Ht a sequence of length Nt s.t. ∑|H|

i=1
hi
Nk = 1,

P
(
yt is not matched

∣∣∣ At (σ,Ht)
)

= 1−
Nt∑
i=1

min(2c, hi/k)
N

(6.8)

177

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

The following therefore holds:

P

At+1 (σ,Ht)
∣∣∣∣∣ A1:t (H1:t)

 = P

yt is not matched,At (σ,Ht)
∣∣∣∣∣ A1:t (H1:t)

 .
By the induction hypothesis and Equation (6.8), the right term does not depend on σ, thus, for
any σ, σ′ in S([Nt]),

P

At+1 (σ,Ht)
∣∣∣∣∣ A1:t (H1:t) ∩ At+1 (Ht)

 = P

At+1
(
σ′, Ht

) ∣∣∣∣∣ A1:t (H1:t) ∩ At+1 (Ht)

 .
We now turn to the case where yt is matched. We define an admissible sequence for sequence

H and a couple j < j′ ≤ |H| as a sequence H̃(j, j′) s.t. for any i ∈ [|H]− 1]

h̃j,j
′

i =


hi if i < j′ and i ̸= j

hj + hj′ if i = j

hi+1 if i ≥ j′.

Note it is the sequence of gaps obtained when event At (H) is true and a vertex ut(i) with
ut(i)− ut(i− 1) = hj and ut(i+ 1)− ut(i) = hj′ is matched.

For any H1:t, any j < j′ ≤ |Ht|, any σ ∈ S([|Ht| − 1]) define event Bt(σ,Ht, i, j, j
′) as:{

ut(i)− ut(i− 1) = hj

Nk and ut(i+ 1)− ut(i) = hj′
Nk

}
∪
{
ut(i)− ut(i− 1) = hj′

Nk and ut(i+ 1)− ut(i) = hj

Nk

}
,

∩{∀k < i− 1, ut(k + 1)− ut(k) =
h̃j,j′

σ(k)
Nk },

∩{∀k > i, ut(k + 1)− ut(k) =
h̃j,j′

σ(k−1)
Nk }.

For any H1:t, any j < j′ ≤ |Ht|, any σ ∈ S([|Ht| − 1]), it holds that:

P

At+1
(
σ, H̃t(j, j′)

) ∣∣∣∣∣ A1:t (H1:t)


=

∑
i s.t. h̃σ(i−1)=h̃j

P

ut(i) is matched,Bt(σ,Ht, i, j, j
′)
∣∣∣∣∣ A1:t (H1:t)


=

min(c, hj

k) + min(c, hj′
k)

N

∑
i s.t. h̃σ(i−1)=h̃j

P

Bt(σ,Ht, i, j, j
′)
∣∣∣∣∣ A1:t (H1:t)

 .
By the induction property, the right term does not depend on σ. This implies that the

induction property remains true when a vertex is matched as well, which implies that Equation
(6.6) holds for all t ∈ [N].

2

We now show that Lemma 6.6.1 implies Lemma 6.3.7. Let Ft be the event associated with
the values

(
Fk,N (ℓ, t′)

)
ℓ∈[Nk]

for all t′ ≤ t, which also determines the value of Nt. Let H be

178

6.7. APPLICATION OF THE DIFFERENTIAL EQUATION METHOD

any sequence of length Nt s.t. for any ℓ ∈ [Nk], |{hi = ℓ|i ∈ [Nt]}| = Fk,N (ℓ, t). Equation (6.6)
implies:

E
[
Mk,N (ℓ−, ℓ+, t)

∣∣∣∣Ft
]

= 1
|S([Nt])|

∑
σ∈S([Nt])

Nt∑
i=1
1{hσ(i)=ℓ−,hσ(i+1)=ℓ+}

=
Nt∑
i=1

1
|S([Nt])|

∑
σ∈S([Nt])

1{hσ(i)=ℓ−,hσ(i+1)=ℓ+}

=
Nt∑
i=1

|S([Nt − 2])|
|S([N0])|

[
1{ℓ− ̸=ℓ+}Fk,N (ℓ−, t)Fk,N (ℓ+, t)

]

+
Nt∑
i=1

|S([Nt − 2])|
|S([N0])|

[
1{ℓ−=ℓ+}Fk,N (ℓ−, t)

(
Fk,N (ℓ+, t)− 1

)]

=Fk,N (ℓ−, t)
(
1{ℓ− ̸=ℓ+}

Fk,N (ℓ+, t)
Nt − 1 + 1{ℓ−=ℓ+}

Fk,N (ℓ+, t)− 1
Nt − 1

)
.

2

6.7 Application of the Differential Equation Method
Lemma 6.7.1 (Initial Conditions). With probability at least 1− 4kN exp(−

√
N/4), for any

ℓ < kN , ∣∣∣∣FN,k(ℓ, 0)−Nke− ℓ
k

(
1− e− 1

k

)2
∣∣∣∣ ≤ 3N3/4.

Proof : Consider the process of placing a sequence of vertices (vi)+∞
i=1 in R, placing v0 at

zero, and having

P
(
vi+1 − vi = ℓ

Nk

)
= e− ℓ−1

k (1− e− 1
k).

Note that we have:
E[vi+1 − vi] = 1

Nk(1− e−1/k)
.

By Chernoff bound for sums of Bernoulli random variables,

P(vNk(1−e−1/k)+N3/4 < 1) ≤ exp(−
√
N/4) and P(vNk(1−e−1/k)−N3/4 > 1) ≤ exp(−

√
N/4)

(6.9)
and

P


∣∣∣∣∣∣∣
Nk(1−e−1/k)+N3/4∑

i=1
1{vi+1−vi= ℓ

Nk
} −Nke

− ℓ−1
k (1− e− 1

k)2

∣∣∣∣∣∣∣ > 2N3/4

 ≤ 2e−
√
N/4.

The law of the vertices placed before 1 is exactly the law of the vertices in Ũ . By Equation
(6.9), with probability at least 1− 2 exp(−

√
N/4), there are between N −N3/4 and N +N3/4

vertices places before 1. A union bound over (ℓ)kNℓ=1 terminates the proof. 2

Any vertex u ∈ Ũ that has no neighbor in Y is never matched. We call such vertices blocking
vertices. We will show that with high probability there is a linear number of such blocking
vertices. Let Nb be the number of blocking vertices.

179

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

Lemma 6.7.2 (Minimum number of vertices). W.h.p. there is a linear number of blocking
vertices:

P

Nb ≤
(1− 2e−4c)

(
1− e−2c

)
8c N − 2N3/4

∣∣∣∣∣C
 ≤ 2 exp

(
−min(1, c)N1/2/4

)
.

Proof : Define
fN (ℓ, t) = FN (ℓ, t)

N
.

Let us split the interval [0, 1] in N
4c small intervals of length 4c

N . There is a blocking vertex in
a small interval if there is no vertex y ∈ Y in it and at least a vertex u ∈ U at a distance larger
than c from its border. For any i ∈ [N4c],

P

Ũ ∩ [4ci+ c

N
,
4c(i+ 1)− c

N

]
̸= ∅

 =1− (1− pk)2ck

=1− e−2c.

Define

C :=


∣∣∣∣∣∣∣
Ũ ∩

[
4ci+ c

N
,
4c(i+ 1)− c

N

]
̸= ∅

∣∣∣ i ∈ [1;N]


∣∣∣∣∣∣∣ ≤

(
1− e−2c

)
8c N

 .
By Hoeffding’s inequality,

P (C) ≤ exp
(
−(1− e−2c)2N

32c2

)
.

The probability that at least a vertex y ∈ Y falls in one of the small intervals is:

1−
(

1− 4c
N

)N
≥ 1− 2e−4c.

Thus, the expected number of blocking vertices conditioned on event C is lower bounded as :

E
[
Nb | C

]
≥

(1− 2e−4c)
(
1− e−2c

)
8c N

Combining Hoeffding’s inequality with a Poissonization argument on the vertices (to get the
independence of the arrival on each small interval) we obtain:

P

Nb ≤
(1− 2e−4c)

(
1− e−2c

)
8c N − 2N3/4 | C

 ≤ 2 exp
(
−min(1, c)N1/2/4

)
.

2

In the rest of the proof, we use the shorthand:

180

6.7. APPLICATION OF THE DIFFERENTIAL EQUATION METHOD

Φk,ℓ

((
fk(ℓ′, t)

)
ℓ′

)
=−min(ℓ

k
, 2c)fk(ℓ, t)−

1∑+∞
ℓ′=0 fk(ℓ′, t)

+∞∑
ℓ′=0

min(ℓ
k
, 2c)fk(ℓ′, t)

 fk(ℓ, t)
+ 1∑+∞

ℓ′=0 fk(ℓ′, t)

+∞∑
ℓ′=0

min(ℓ
′

k
, 2c)fk(ℓ′, t)fk(ℓ− ℓ′, t),

Lemma 6.7.3 (Total length invariant). With fk the solution of the system of ODE in Lemma
6.3.9, for any t ∈ [0, 1],

+∞∑
ℓ=1

ℓ

k
fk(ℓ, t) = 1.

Proof : This is true for t = 0 by definition of the initial condition. We now show that this
quantity is an invariant of the system of ODEs. We have:

∂
∑+∞
ℓ=1

ℓ
kfk(ℓ, t)
∂t

=
∑
ℓ

Φk,ℓ

((
fk(ℓ′, t)

)
ℓ′

)
.

So:

∂
∑+∞
ℓ=1

ℓ
kfk(ℓ, t)
∂t

=−
+∞∑
ℓ=1

ℓ

k
min(ℓ

k
, 2c)f(ℓ

k
, t)

− 1∑+∞
ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

min(ℓ
k
, 2c)f(ℓ

k
, t)

+∞∑
ℓ=1

ℓ

k
f(ℓ
k
, t)

+ 1∑+∞
ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

+∞∑
ℓ′=0

min(ℓ
′

k
, 2c)fk(ℓ′, t)(ℓ− ℓ′)fk(ℓ− ℓ′, t)

+ 1∑+∞
ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

+∞∑
ℓ′=0

ℓ′ min(ℓ
′

k
, 2c)fk(ℓ′, t)fk(ℓ− ℓ′, t)

=−
+∞∑
ℓ=1

ℓ

k
min(ℓ

k
, 2c)f(ℓ

k
, t)

− 1∑+∞
ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

min(ℓ
k
, 2c)f(ℓ

k
, t)

+∞∑
ℓ=1

ℓ

k
f(ℓ
k
, t)

+ 1∑+∞
ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

min(ℓ
k
, 2c)f(ℓ

k
, t)

+∞∑
ℓ=1

ℓ

k
f(ℓ
k
, t)

+ 1∑+∞
ℓ=1 fk(ℓ, t)

+∞∑
ℓ=1

ℓ

k
min(ℓ

k
, 2c)f(ℓ

k
, t)

+∞∑
ℓ=1

fk(ℓ, t)

=0.

2

We also have that any t ∈ [0, 1], ∑Nk
ℓ=1

ℓ
NkFk,N (ℓ, ⌊tN⌋

N) = 1. This and the previous Lemma

181

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

imply that for any η > 0:

Nk∑
ℓ= k

η

FN,k(ℓ, t) ≤ ηN and
+∞∑
ℓ= k

η

fk(ℓ, t) ≤ η. (6.10)

It always holds that Nt > Nb. Now, for all t ∈ [N], for all ℓ ∈ N, following Lemma 6.3.8,

E

Fk,N (ℓ, t+ 1)− Fk,N (ℓ, t)
∣∣∣∣∣Ft, Nt ≥ c

(
1− e−2c

)
N


= −

min
(

2c, ℓ
k

)
+
∑
ℓ′

min
(

2c, ℓ
′

k

)
fk,N (ℓ′, t)
Nt/N

 fN (ℓ, t)

+
ℓ∑

ℓ′=0
min

(
2c, ℓ

′

k

)
fk,N (ℓ′, t)

(
fk,N (ℓ− ℓ′, t)

)
Nt/N

+O

(1
N

)
.

The end of the proof follows exactly the steps of the proof of Theorem 4.3 in Enriquez et al.
(2019) 2

6.7.1 Proof of the link with the continuous equation (Lemma 6.3.10)

It holds that

∂
∫+∞

0 f(x, t)dx
∂t

=−
∫ +∞

0
min(x, 2c)f(x, t)dx− 1∫+∞

0 f(x′, t)dx′

∫ +∞

0
min(x′, 2c)f(x′, t)dx′

∫ +∞

0
f(x, t)dx

+ 1∫+∞
0 f(x′, t)dx′

∫ +∞

0

∫ x

0
min(x′, 2c)f(x′, t)f(x− x′, t)dx′dx

=−
∫ +∞

0
min(x, 2c)f(x, t)dx−

∫ +∞

0
min(x′, 2c)f(x′, t)dx′

+ 1∫+∞
0 f(x′, t)dx′

∫ +∞

0
min(x′, 2c)f(x′, t)dx′

∫ +∞

0
f(x′, t)dx′

=−
∫ +∞

0
min(x, 2c)f(x, t)dx

≥− 2c
∫ +∞

0
f(x, t)dx.

This implies that for any t ∈ [0, 1],

e−2c ≤ e−2ct ≤
∫ +∞

0
f(x, t)dx ≤

∫ +∞

0
f(x, 0)dx = 1.

Define
Lc :=

{
g ∈ L1 s.t. e−4c ≤|| g ||L1≤ 1 and g ≥ 0

}
.

182

6.A. APPENDIX

Let us show that the application A : Lc → Lc

A(f)(x) =−min(x, 2c)f(x, t)− 1∫+∞
0 f(x′, t)dx′

∫ +∞

0
min(x′, 2c)f(x′, t)dx′f(x, t)

+ 1∫+∞
0 f(x′, t)dx′

∫ x

0
min(x′, 2c)f(x′, t)f(x− x′, t)dx′

is Lipschitz with respect to the L1 norm, and derive the Lipschitz constant. First, for any two
functions f, f ′ ∈ L2

c , ∣∣∣∣∣ 1∫+∞
0 f(x, t)dx

− 1∫+∞
0 f ′(x, t)dx

∣∣∣∣∣ ≤ e4c || f − f ′ ||L1 .

Also, noting f̃ the function min(x, 2c)f(x), we have || f̃(x)− f̃ ′(x) ||L1≤ 2c || f − f ′ ||L1 , and

|| f̃ ∗ f − f̃ ′ ∗ f ′ ||L1≤ || (f̃ − f̃ ′) ∗ f ||L1 + || f̃ ′ ∗ (f ′ − f) ||L1

≤ || f̃ − f̃ ′ ||L1 || f ||L1 + || f̃ ′ ||L1 || f ′ − f ||L1

≤4c || f ′ − f ||L1 ,

where the second line comes from Young’s inequality. Putting everything together, we get:

|| A(f)−A(f ′) ||L1≤ || f̃ ′ − f̃ ||L1 +(e4c + 2c) || f − f ′ ||L1

+ e4c || f − f ′ ||L1 || f ∗ f̃ ||L1 +e2c || f̃ ∗ f − f̃ ′ ∗ f ′ ||L1

≤
(
4c+ (2c+ 1) e4c + 4ce2c

)
|| f̃ ′ − f̃ ||L1 .

We note this Lipschitz constant lipc. Interpolating the function in Lemma 6.3.9 as:

fk(x, t) = f

(
⌈kx⌉
k

, t

)
,

yields
|| f(., 0)− fk(., 0) ||L1≤

2
k
.

Thus, by application of Gronwall’s Lemma, for any t ∈ [0, 1]

|| f(1, t)− fk(1, t) ||L1≤
2
k
elipct.

2

6.A Appendix

6.A.1 Poisson Point Processes

The following definitions and properties of point processes come from lecture notes Blaszczyszyn
(2017), and are reported here for clarity.

Definition 6.A.1. (Homogeneous Poisson point process). A point process Φ on [0, 1] is an
homogeneous Poisson point process of intensity λ if the following two conditions are satisfied:

1. For any (a, b] ∈ [0, 1],Φ(a, b], the number of points in interval (a, b], is a Poisson random

183

CHAPTER 6. MATCHING IN GEOMETRIC RANDOM GRAPHS

variable of intensity λ(b− a), i.e.;

P{Φ(a, b] = n} = [λ(b− a)]n
n! e−λ(b−a).

2. The number of points in any two disjoint intervals are independent of each other, and this
extends to any finite number of disjoint intervals, i.e.;

P
{
Φ (ai, bi] = ni, i = 1, . . . , k

}
=

k∏
i=1

[
λ (bi − ai)

]ni

ni!
e−λ(bi−ai),

for any integer k ≥ 2, any a1 < b1 ≤ a2 . . . < bk.

Note that the second point of the definition implies the following property: given there are
n points of the homogeneous Poisson process in the window B, these points are independently
and uniformly distributed in B.

Let ΦN be a Poisson point procees of intensity N on [0, 1], and UN ∼ ΦN . Let us enumerate
the points of the point process UN according to their coordinates. The sequence {uk} can be
constructed as a renewal process with exponential holding times, i.e., uk = ∑k

i=1 Fi for k ≥ 1,
where {Fk : k = 1, . . .} is a sequence of independent, identically distributed exponential random
variables of parameter N . Indeed,

P {F1 > t} = P {u1 > t} = P{Φ((0, t]) = 0} = e−Nt,

and, for k ≥ 2 by independence (second point of the definition),

P
{
Fk > t | F1, . . . , Fk−1

}
= P

{
uk − uk−1 > t | u1, . . . , uk−1

}
= P

{
Φ (uk−1, uk−1 + t] = 0 | uk−1

}
= e−Nt.

184

Chapter 7

On Preemption and Learning in
Stochastic Scheduling

In this work, we study single-machine scheduling of jobs, each belonging to a job type that
determines its duration distribution. We start by analyzing the scenario where the type
characteristics are known and then move to two learning scenarios where the types are unknown:
non-preemptive problems, where each started job must be completed before moving to another
job; and preemptive problems, where job execution can be paused in the favor of moving
to a different job. In both cases, we design algorithms that achieve sublinear excess cost,
compared to the performance with known types, and prove lower bounds for the non-preemptive
case. Notably, we demonstrate, both theoretically and through simulations, how preemptive
algorithms can greatly outperform non-preemptive ones when the durations of different job
types are far from one another, a phenomenon that does not occur when the type durations are
known.

Contents
7.1 Introduction . 186
7.2 Related Work . 187
7.3 Benchmark: Follow The Perfect Prediction 188

7.3.1 Non-clairvoyant Algorithms . 188
7.3.2 Performance of FTPP . 189

7.4 Non-Preemptive Algorithms . 189
7.4.1 Description of ETC-U and UCB-U . 190
7.4.2 Cost Analysis . 191
7.4.3 Lower bound . 192

7.5 Preemptive Algorithms . 193
7.5.1 ETC-RR and UCB-RR . 193
7.5.2 Cost Analysis . 194

7.6 Experiments . 196
7.6.1 Discussion . 197

7.7 Conclusion and Future Work . 197
7.A Appendix . 199

7.A.1 Benchmark FTPP . 199
7.A.2 Analysis of Non-Preemptive Learning algorithms 207
7.A.3 Analysis of Preemptive Learning algorithms 218
7.A.4 Additional experiments . 231

185

CHAPTER 7. SCHEDULING

7.1 Introduction

Single Machine Scheduling is a longstanding problem with many variants and applications
Pinedo (2012). In this problem, a set of N jobs must be processed on one machine, each of a
different ‘size’ – processing time required for its completion. An algorithm is a policy assigning
jobs to the machine, and performance is usually measured by flow time – the sum of the times
when jobs have finished. If one has access to the size of each job, then scheduling the jobs by
increasing size is optimal Schrage (1968). Unfortunately, for most applications, this knowledge
is unavailable; yet, oftentimes, some structure or knowledge on the jobs can still be leveraged.

In this paper, we focus on scheduling problems where jobs are grouped by types that
determine their duration distribution. This model approximates many real-world scenarios. For
example, when scheduling patients for surgery, patients may be grouped by expected procedure
time Magerlein and Martin (1978). The model is also relevant in computing problems, where
jobs with similar features are expected to have a similar processing time Li et al. (2006). Lastly,
in calendar learning, where an agent advises the user on how to organize its day based on
the tasks to be done, similar tasks can be assumed to have a similar duration White and
Hassan Awadallah (2019).

In practice, when encountering a new scheduling task, we usually know the type of each
job, but have little-to-no information on the expected duration under each type. Then, the
scheduling algorithm must learn the characteristics of each type to be able to utilize this
information. This must be done concurrently with the scheduling of tasks, which poses an extra
challenge – to be useful, learning must be done as early as possible; however, wrong scheduling
allocation at the beginning delays all jobs and causes large penalties.

In this work, we show how learning can be efficiently done in scheduling problems with job
types, characterized by exponential distributions, in two different settings – the non-preemptive
setting, where once a job started running, it must be completed, and the preemptive setting,
where jobs can be put on hold. We present two algorithms in each setting and show that the
preemptive setting has a clear advantage when the type durations have to be learned. This
comes in contrast to the case of known types, where under reasonable assumptions, the optimal
algorithm is non-preemptive.

While our algorithms resemble classic bandit methods, the scheduling objective requires
different analysis approaches. In particular, in the context of scheduling, the quality of an
algorithm is measured by the ordering of jobs. In stark contrast, regret-minimization objectives
measure the number of plays from each arm (job type). Indeed, in scheduling problems, the
number of pulls from each job type is always the same – by the end of the interaction, we
would finish all the n jobs of all types. Thus, both our algorithmic design and analysis will be
comparative – focus on the number of jobs evaluations from a bad type before the completion
of jobs of a good type.

Our contributions are as follows. (1) We present the scheduling setting with unknown
job types. (2) We analyze the optimal algorithm for the case of known job types, called
Follow-the-Perfect-Prediction (FTPP), and bound its competitive ratio (CR). (3) We present
explore-then-commit (ETC) and upper confidence bound (UCB) algorithms for the preemptive
and non-preemptive settings and bound their performance, compared to FTPP. In particular,
our bounds show that the non-preemptive algorithms have worse dependence on the durations of
the longest job types. (4) We complement this by proving lower bounds to the non-preemptive
case. (5) We end by simulating our suggested algorithms and show that their empirical behavior
is consistent with our theoretical findings.

186

7.2. RELATED WORK

7.2 Related Work

Scheduling problems. The scheduling literature and problem zoology are large. We focus on
static scheduling on a single machine where the objective is to minimize the flow time. Possible
generalizations include dynamic scheduling, where jobs arrive at different times Becchetti and
Leonardi (2004); weighted flow time Bansal and Dhamdhere (2007), where different jobs have
different weights; multiple machines Lawler and Labetoulle (1978)); and many more Dürr et al.
(2020); Tsung-Chyan et al. (1997). While we only tackle some versions of this problem, we
believe that our approaches can be adapted or extended to other settings.

Clairvoyant and non-clairvoyant scheduling. In clairvoyant scheduling, job sizes are assumed
to be known, and scheduling the shortest jobs first gives the lowest flow time Schrage (1968).
In non-clairvoyant scheduling, job sizes are arbitrary and unknown. The Round Robin (RR)
algorithm, which gives the same amount of computing time to all jobs, is the best deterministic
algorithm with a competitive ratio of 2 − 2

N+1 = 2 + o(N) Motwani et al. (1994). The best
randomized algorithm has a competitive ratio of 2− 4

N+3 = 2 + o(N) Motwani et al. (1994).

Stochastic scheduling. Stochastic scheduling covers a middle ground where job sizes are
known random variables. The field of optimal stochastic scheduling aims to design optimal
algorithms for stochastic scheduling (see Cai et al. 2014 for a review). When distributions have
a non-decreasing hazard rate, scheduling the shortest mean first is optimal (see Cai et al. 2014,
Corollary 2.1).

In this work, we consider exponential job sizes (which have a non-decreasing hazard rate),
as frequently assumed in the scheduling literature Cai and Zhou (2000, 2005); Cunningham and
Dutta (1973); Glazebrook (1979); Hamada and Glazebrook (1993); Kämpke (1989); Pinedo and
Weiss (1985) and similarly for the presence of different types of jobs Hamada and Glazebrook
(1993); Marbán et al. (2011); Mitzenmacher (2020). Yet, in contrast to most of the literature
on stochastic scheduling, the means of the exponential sizes are unknown to the scheduler
and are learned as the algorithm runs. Nonetheless, we later present algorithms whose CR
asymptotically converges to the optimal value, obtained in stochastic scheduling with known
job means.

The problem of learning in scheduling has received some attention lately. Specifically, Levi
et al. (2019) consider a setting where it is possible to ‘test’ jobs to learn about their attributes,
which comes at a cost. In Krishnasamy et al. (2018), the authors propose an algorithm to learn
the cµ rule (a rule to balance different holding costs per job) in the context of dynamic queues.
Perhaps closest to our setting, in Lee and Vojnovic (2021), job types are also considered, but
the length of the jobs is assumed to be known, and the goal is to deal with the uncertainty
on the holding costs, which are noisily observed at each iteration. In the last two papers, no
explicit exploration is needed, which stands in contrast with our setting.

The problem we tackle was previously studied in a Bayesian setting Marbán et al. (2011),
under the assumption of two job types, and a Bayesian algorithm, called LSEPT, was presented.
When run with an uninformative prior (the same for all job types), LSEPT is reduced to a
greedy algorithm; whenever a job finishes, it runs until completion a job whose type has the
lowest expected belief on its mean size (computed across jobs that have been processed so far).
The author proved it has better performance in expectation than fully non-adaptive methods,
but provided no other guarantee. In Section 7.A.4, we empirically evaluate this algorithm and
show it has a behavior typical of greedy algorithms: it has a very large variance, and its CR
does not converge to the optimal CR, in contrast to our suggested methods.

187

CHAPTER 7. SCHEDULING

Setting and Notations

We consider scheduling problems of N jobs on a single machine, each belonging to one of K job
types. We assume that N = nK, i.e, there are n jobs of each type. The different sizes (also
called processing times) of the jobs of type k are denoted (P ki)i∈[n],1 where P ki ∼ E(λk) are
independent samples from an exponential variable of parameter λk. By extension, E[P ki] = λk,
and we call λk the mean size of type k. We assume without loss of generality that the mean
sizes of the K types are in an increasing order λ1 ≤ λ2 . . . ≤ λK and denote λ = (λ1, . . . , λK).
With slight abuse of notations, we sometimes ignore the job types and denote the job durations
by Pi for i ∈ [N].

Next, denote bki and eki the beginning and end dates of the computation of the ith job
of type k. We define the cost of an algorithm ALG, also called flow time, as the sum of all
completion times: CALG = ∑K

k=1
∑
i∈n e

k
i . Given knowledge of the job size realizations, the cost

is minimized by an algorithm that computes them in increasing order, which we term as OPT.
Preemption is the operation of pausing the execution of one job in the favor of running another

one. Thus, preemptive algorithms are ones that support preemption, while non-preemptive
algorithms do not allow it and must run each started job until completion.

7.3 Benchmark: Follow The Perfect Prediction

We compare our algorithms to a baseline that completes each job by increasing expected sizes,
called Follow-The-Perfect-Prediction (FTPP). For exponential job sizes, this strategy is optimal
between all algorithms without access to job size realizations (see Cai et al. 2014, Corollary 2.1).
Thus, with learning, we aim at designing algorithms approaching the performance of FTPP,
whilst mitigating the cost of learning (i.e., mitigating the cost of exploration). In the rest of
this section, we analyze the performance of FTPP.

First, we evaluate the performance of non-clairvoyant algorithms that do not exploit the job
type structure. We then compare the performance of the best of those algorithms against that
of FTPP and show the clear advantage of using the structure of job types.

7.3.1 Non-clairvoyant Algorithms

An algorithm A is said non-clairvoyant if it does not have any information on the job sizes,
including the job type structure. Recall that RR is the algorithm that computes all unfinished
jobs in parallel and is the optimal deterministic algorithm in the adversarial setting. The
following proposition states that in our setting, it is the optimal algorithm among all non-
clairvoyant ones.

Proposition 7.3.1. For any λ and any (deterministic or randomized) non-clairvoyant algorithm
A, there exists a job ordering such that E[CA] ≥ E[CRR].

Proof sketch (full proof in Appendix 7.A.1). Consider TAij , the amount of time that job i and
job j delay each other. As the algorithm is unaware of the expected job size order, its run is
independent of whether the expected size of job i is smaller or greater than that of j. This
holds because a non-clairvoyant algorithm has no information on job expected sizes nor on
the existence of job types. As an adversary, we can therefore choose the job order so that the
algorithm incurs the largest flow time. A careful analysis then provides E[TAij] ≥ 2E[TOPTij]

1For clarity of exposition, we assume that there are exactly n jobs per type. When types have different
numbers of jobs n1, n2, . . . , nK , all algorithms can run with n = maxℓ nℓ, and all bounds hold with this same
parameter n.

188

7.4. NON-PREEMPTIVE ALGORITHMS

where OPT is the optimal realization-aware algorithm. A similar reasoning is made in the case
of randomized algorithms. We conclude by observing that RR achieves such delay.

Unfortunately, even though our setting is not adversarial, the CR of RR is bounded from
below (Lemma 7.A.3):

for any λ, E [CRR]
E [COPT] ≥ 2− 4

n+ 3 . (7.1)

7.3.2 Performance of FTPP

The first statement establishes that FTPP outperforms RR on any instance.

Lemma 7.3.2. For any n and λ,

E[CFTPP] ≤ E[CRR].

The inequality is strict if λ ̸= (a, , . . . , a) for some a > 0.

The proof is a straightforward computation, done in Section 7.A.1.
This indicates that when information on the job types is available, it is always advantageous

to use it. In the rest of the section, we quantify the improvement this extra information brings.
More precisely, we show that on a wide variety of instances, the CR of FTPP is much smaller
than that of RR. We first present such a bound when K = 2.

Proposition 7.3.3. The CR of FTPP with K = 2 types of jobs with n jobs per type with λ1 = 1
and λ2 = λ > 1 satisfies:

E[CFTPP]
E[COPT] ≤ 2− 4 λ− 1

(1 + λ)2 + 4λ.

Proof sketch (full proof in Theorem 7.A.4). The total expected flow time of any algorithm is
given by the sum of the expected time spent computing all jobs and the expected time lost
waiting as jobs delay each other. In the case of OPT, the expected flow time can be computed
in closed form using that job i and j delay each other by E[min(Xi, Xj)] = E[Xi]E[Xj]

E[Xi]+E[Xj] . The
CR E[CFTPP]

E[COPT] can then be calculated and is upper bounded to yield the result.

In the case K = 2, there exists values of λ for which the CR of FTPP is lower than 1.71. In
the general case, Theorem 7.A.5 in Section 7.A.1 shows that there exist values of K and λ for
which the CR is as low as 1.274.2

7.4 Non-Preemptive Algorithms
After establishing FTPP as the baseline for learning algorithms, we move to tackle learning in the
non-preemptive setting, where once started, job execution cannot be stopped (see Algorithm 29).
This is relevant, for example, to settings where switching tasks is very costly (e.g., in running
time or memory) or even impossible (e.g., in medical applications, where treatment of a patient
cannot be stopped). We show how algorithms from the bandit literature can be adapted to the
scheduling setting and bound their excessive cost, compared to FTPP. Specifically, by treating
each job type as an ‘arm’, we adapt explore-then-commit and optimism-based strategies to the
scheduling setting.

2An exact expression for the CR of FTPP is given at Equation (7.7) in the appendix and is omitted for clarity
reasons.

189

CHAPTER 7. SCHEDULING

Algorithm 29: Non-Preemptive Algorithms routine
1 Init: type set U = [K], active jobs ik = 1,∀k ∈ [K];
2 while U is not empty do
3 Use a type selection subroutine to select a type k ∈ U ;
4 Run job ik until completion;
5 Set ik ← ik + 1;
6 if All jobs of type k are completed then
7 Remove type k from U ;
8 end
9 end

7.4.1 Description of ETC-U and UCB-U

In the following, we describe the type selection mechanism for ETC-U and UCB-U. The full
pseudo-code of both algorithms is available in Section 7.A.2.

Let U be the set of all job types with at least one remaining job.

ETC-U type selection. While ETC-U runs, it maintains a set of types A that are candidates
for having the lowest mean size among the incomplete types U . At each iteration, ETC-U
chooses a job of type k of the minimal number of completed jobs in A and executes it to
completion. Then, U and A are updated and the procedure repeats until no more jobs are
available in U .

We now describe the mechanism of maintaining the candidate type set A. At a given
iteration, denote by mk and mℓ, the number of jobs of type k and ℓ that have been computed
up to that iteration. Letting

r̂
min(mk,mℓ)
k,ℓ =

∑min(mk,mℓ)
i=1 1

{
P ki < P ℓi

}
min(mk,mℓ)

and

δ
min(mk,mℓ)
k,ℓ =

√
log(2n2K3)

2 min(mk,mℓ)
,

a type ℓ is excluded from A if there exists a type k such that

r̂
min(mk,mℓ)
k,l − δmin(mk,mℓ)

k,ℓ > 0.5. (7.2)

In the proof, we show that this condition implies w.h.p. that λk < λℓ. Thus, when it holds, job
type ℓ is no longer a candidate for the remaining job type with the smallest expectation, and
we say that type k eliminates type ℓ. Once a job type is eliminated, it remains so until A is
empty, at which point all job types in U are reinstated to A.

Finally, whenever A contains only one type k, all jobs of this type are run to completion,
and after all jobs from type k are finished, it is removed from U and therefore from A. This
means that types that were eliminated by k can be candidates again.

UCB-U type selection. At every iteration, the algorithm computes an index for each job
type and plays a type with the minimal index from the incomplete types U . Specifically, if mk

190

7.4. NON-PREEMPTIVE ALGORITHMS

jobs were completed from type k, the index of the type is defined as

λmk
k = 2∑mk

i=1X
k
i

χ2
2mk

(1− 1
2n2K2)

,

where χ2
m(δ) is the δ-percentile of a χ2 distribution with m degrees of freedom. In the proof,

we show that these indices are a lower bound of the job means w.h.p., so choosing the minimal
index corresponds to choosing the type with the optimistic shortest duration.

7.4.2 Cost Analysis
Proposition 7.4.1. The following bounds hold:

E[CETC-U] ≤ E[CFTPP] + 1
n

E[COPT]

+
∑

k∈[K]

[
1
2(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3)

and

E[CUCB-U] ≤E[CFTPP]

+ n(K − 1)
√

3n ln (2n2K2)
K∑

k=1
λk

+ 2
n

E[COPT].

Proof sketch (full proof in Section 7.A.2). The above proposition is a concatenation of proposi-
tions 7.A.10 and 7.A.12.

The proof of both bounds starts with the decomposition of the cost with the following
Lemma (proven in Appendix 11).

Lemma 7.4.2 (Cost of non-preemptive algorithms). Any non-preemptive algorithm A has a
cost

E[CA] =E[CFTPP]

+
∑

(ℓ,k)∈[K2],k>ℓ
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
eki ≤ bℓj

}]
.

This lemma is obtained by computing explicitly the expected cost of algorithm FTPP and
using the fact that the realized length of the jobs conditioned on their type is independent of
their start date.

Then the two proofs diverge.
For ETC-U, the first step is to prove that condition (7.2) implies w.h.p that λk ≤ λℓ, which

implies that the type in U with the smallest mean is never eliminated. Then, for the sake of the
analysis, the run of the algorithm is divided into phases. In phase number ℓ, type ℓ is the job
type remaining with the smallest mean. We then bound the total number of samples before an
arm with a large mean is eliminated at phase ℓ.

The proof for UCB also starts by showing that w.h.p., arm indices lower bound the true
means. Then, under the condition that the bounds hold, we upper bound the number of times
an arm of type k ≥ ℓ can be pulled while type ℓ is still active.

191

CHAPTER 7. SCHEDULING

The bounds in 7.4.1 hold for any value of the parameters. When the parameter values are
far from each other, tighter bounds hold. We give here these tighter bounds for K = 2 when
λ2 ≥ 3λ1. A more general version of this bound is given in the Appendix, propositions 7.A.10
and 7.A.12.

Lemma 7.4.3. If K = 2 and λ2 ≥ 3λ1, the following bounds hold:

E[CETC-U] ≤E[CFTPP] + 12λ2n log(2n2K3)

+ 2
n

E[COPT].

and:

E[CUCB-U] ≤E[CFTPP] + 9
2λ2n ln

(
2n2K2

)
+ 4
n

E[COPT].

The bounds of this section seem quite discouraging – they imply that the existence of
even one type of extremely large duration has grave implications on the cost of any algorithm.
Unfortunately, for any non-preemptive algorithm, an extra cost w.r.t. FTPP scaling as nλK is
unavoidable. Indeed, in the beginning, no information on the mean types is available, and any
started job will be fully computed, delaying all remaining nK − 1 jobs (see Line 11 for a formal
proof).

7.4.3 Lower bound

We end this section by analyzing lower bounds for any non-preemptive scheduling algorithm. In
particular, we focus on the dependency of the excessive cost, compared to FTPP, as a function
of n. We focus on lower bounds for the case of K = 2, and provide a lower bound when λ1 and
λ2 are close to each other and show that in this case, the excess cost increases as n

√
n.

Proposition 7.4.4 (Dependency in n). For any λ1, λ2, the flow time of any non-preemptive
algorithm A satisfies:

E[CA] ≥ E[CFTPP] + (λ2 − λ1)n2/2
exp(−n (λ2−λ1)2

λ1λ2
)

4

In particular, for any λ2 ≤ λ1
(
1 + 1√

n

)
,

E[CA] ≥ E[CFTPP] + (λ1 + λ2)n
√
n
e−1/4

24 .

Proof sketch (full proof in Line 11). We start with the decomposition of Theorem 7.4.2 and
look at the event

E = 1


∑

(i,j)∈[n]2
1
{
e1
i < b2

j

}
≥ n2/2

 .
Then, using standard information-theoretic tools, we lower bound the probability that either
E occurs in the original scheduling problem or Ē occurs in a problem where the type order
has been switched. In both problems, the relevant event causes an excess cost of Ω(n2), and
substituting the exact probability of this failure case concludes the proof.

192

7.5. PREEMPTIVE ALGORITHMS

Algorithm 30: Preemptive Algorithms routine
1 Init: type set U = [K], active jobs ik = 1,∀k ∈ [K];
2 while U is not empty do
3 Use a type selection subroutine to select a type k ∈ U ;
4 Run job ik for ∆ time units;
5 if ik was completed then
6 Set ik ← ik + 1;
7 end
8 if All jobs of type k are completed then
9 Remove type k from U ;

10 end
11 end

7.5 Preemptive Algorithms

In this section, we show how to leverage preemption to get better theoretical and practical
performances.

In practice, we allow preemption by discretizing the computation time into small time slots
of length ∆. Then, at every iteration, one or multiple job types are selected depending on
some algorithm-specific criteria. The current running job(s) of the selected type is allocated
computation time ∆ instead of being run to completion. As before, we employ both an explore-
then-commit strategy and an optimism-based strategy. In both cases, the only dependence of
the resulting algorithm on the discretization size is due to the discretization error (the time
between the end of a job and the end of a window), which decreases with the discretization
step. We omit that discretization error of at most ∆N is the bounds.

Note that in practice, any implementation of RR proceeds in a similar manner. For instance,
in Motwani et al. (1994), the discretization step is assumed much smaller than the length of the
jobs. In particular, when we say we run jobs in parallel, in practice, they cyclically run in a RR
manner with a small discretization step.

7.5.1 ETC-RR and UCB-RR

ETC-RR type selection. As ETC-U, ETC-RR maintains a set of typesA that are candidates
for lowest mean size among the set U of types with at least one remaining jobs. The main
difference is that the job type selected is the one in A with the lowest total run-time (not the
one with the lowest number of computed jobs).

The statistics needed to construct A are different from the ones used in ETC-U. At a given
time, βk,ℓ is the number of times a job of type k has finished while ℓ and k were both active.
Moreover, we define

r̂k,ℓ = βk,ℓ
βk,ℓ + βℓ,k

and δk,ℓ =
√

log(2n2K3)
2(βk,ℓ + βℓ,k)

.

The elimination rule is the same as the one of ETC-U, using these modified statistics.
Reducing the number of algorithm updates: In practice, both the statistics and the chosen

types are not updated at every iteration; active jobs run in parallel (meaning in a round-robin
style), and the statistics are updated every time a job terminates. This formulation of the
algorithm is the one we implement(see pseudo-code in Section 7.A.3).

193

CHAPTER 7. SCHEDULING

UCB-RR type selection. For each job type k ∈ [K], we introduce Tk(t), the number of
times job type k has been chosen up to iteration t, and the random variables (xsk)s s.t.:

xsk =
∑
t

1
{
a(t) = k, Tk(t) = s and the job finishes

}
.

It is the indicator that a job of type k is completed when this type is picked for the sth time by
the algorithm. We define the empirical means as:

µ̂k(T) := 1
T

T∑
s=1

xsk,

and define the index for each arm k as

uk(t) = max
{
µ̃ ∈ [0, 1] : d

(
µ̂k(Tk(t)), µ̃

)
≤ logn2

Tk(t)

}
,

with d(x, y) the Kullback-Leibler divergence between x and y. A job type with the largest index
is selected.

Reducing the number of algorithm updates: As for ETC-RR, the running jobs and statistics
are not updated at every iteration. Suppose type k∗ is chosen at iteration type. If k∗ is the last
remaining type, it is run until the end. Otherwise, let ℓ be the type with the second largest
index. We define

µ̃γk(T) := 1
T + 2γ

T∑
s=1

xsk,

and

ũγk(t)

= max
{
µ̃ ∈ [0, 1] : d

(
µ̃γk(Tk(t)), µ̃

)
≤ logn2

Tk(t) + 2γ

}
.

This would be the new index of arm k, were it to run for additional 2γ iterations with no job
terminating during this additional iterations. Then, we set

γ∗ = arg max
γ

ũγk∗(t) ≥ uℓ(t),

and type k∗ is allocated 2γ∗ iterations with no statistics update.

7.5.2 Cost Analysis

Proposition 7.5.1. The following bounds hold:

E[CETC-RR] ≤E[CFTPP] + 12K
n

E[COPT]

+ 4n
√
n log(2n2K3)

K−1∑
k=1

(K − k)2λk.

194

7.5. PREEMPTIVE ALGORITHMS

Figure 7.1: CR of all algorithms with varying number of jobs, λ1 = 1, λ2 = 0.25, averaged over
400 seeds.

and for any ∆ ≤ λ1
4 and n ≥ max(20, 10 ln(K)),

E[CUCB-RR] ≤ E[CFTPP] + 12K
n

E[COPT]

+ 6n
√

2n log(2n2K2) + 2
K−1∑
k=1

(K − k)λk.

Proof sketch (full proof in Section 7.A.3). The above proposition is a combination of Proposi-
tions 7.A.16 and 7.A.17.

Both algorithms belong to the following family of type-wise non-preemptive algorithms.

Definition 7.5.2. Recall that bki and eki are the beginning and end dates of the computation of
the ith job of type k. A type-wise non-preemptive algorithm is an algorithm that computes
jobs of the same type one after another, i.e., ∀i ∈ [n],∀k ∈ [K], eki ≤ bki+1.

The following Lemma, proven in Appendix 7.A.2 bounds the expected cost of any type-wise
non-preemptive algorithms.

Lemma 7.5.3 (Cost of type-wise non-preemptive algorithms). Any type-wise non-preemptive
algorithm A has the following upper bound on its cost:

E[CA] ≤E[CFTPP]

+
∑

(ℓ,k)∈[K2],k>ℓ
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]

+ (K − 1)n
K∑
k=1

λk.

The proof of this Lemma again involves computing explicitly the cost of FTPP and using
that the realization of a job length is independent of its start date. A first upper bound is
obtained by noting that a job started before another delays the former in expectation by at most
its expected length. The second element to the proof is the fact that at every job termination,
at most a job of each other type is currently active. This observation leads to the upper bound
on the additional cost of preemption and the last term of the expression of the Lemma. Note
that this last term implies that our upper bound will include a term scaling as nλK , which

195

CHAPTER 7. SCHEDULING

Figure 7.2: Normalized excess cost of all algorithms w.r.t. FTPP with varying value of λ1, for
λ2 = 1 and n = 50, averaged over 5, 000 seeds.

would indicate that preemptive algorithms have an extra learning cost scaling as the highest
mean type. However, we strongly believe this to be an artefact of the analysis.

Given the decomposition, the two proofs diverge.
The analysis of ETC-RR is split into phases, as the analysis of ETC-U. However, the bound

on the number of ‘bad’ jobs computed in each phase requires more care because of independence
arguments. Specifically, the upper bound is derived from concentration bounds on the computed
statistics, and an additional bound on the number of successful jobs of each type when two
types are run in parallel. The details on how to deal with those two non-independent events
can be found in Appendix 7.

For UCB-RR, the first step is to distinguish two types of ‘failures’ of the index. In the
first failure case, the index deviates below the true mean. We show that this happens with
probability O(1/n2) (Theorem 7.A.20), independently of ∆. The second type of failure is when
the index of a sub-optimal arm is much larger than its true mean. Here, we show that the
upper bound on the number of iterations where this happens does diverge as ∆ goes to zero.
However, the algorithm only incurs a cost on the ‘bad pull’ of a type when the selected job
terminates. The probability of job termination decreases as ∆ decreases, which compensates for
the rise in the upper bound (Equation (7.32)).

7.6 Experiments

In this section, we design synthetic experiments to compare ETC-U, ETC-RR, UCB-RR,UCB-U,
RR and FTPP. All code is written in Python. We use matplotlib Hunter (2007) for plotting,
and numpy Harris et al. (2020) for array manipulations. The above libraries use open-source
licenses. Computations are run on a laptop.

The first experiment plots the CR of each algorithm for two types of jobs and fixed values
of λ1, λ2 as n varies (see Figure 7.1). Even though all our suggested algorithms have the same
asymptotic performance, their non-asymptotic behavior drastically varies. As predicted by
theory, the preemptive versions of the algorithm consistently outperform the non-preemptive
ones.

In the second experiment, n = 50 and λ2 = 1 are fixed, while λ1 varies in (0, 1) (see
Figure 7.2). To be able to discern performance gaps when λ1 is small, we plot the difference
between the CR of different algorithms and FTPP at a logarithmic scale. Here, for small values
of λ, both preemptive methods outperform the non-preemptive ones. This corresponds with the
improvement in the dominant error term of the preemptive cost upper bounds, as a function of

196

7.7. CONCLUSION AND FUTURE WORK

λ2.

7.6.1 Discussion

Preemptive vs. Non-Preemptive The competitive ratio of all algorithms is asymptotically
the one of FTPP. Indeed, it always holds that E[COPT] ≥ (λ1 + λ2)n2

4 (Equation (7.6)), so
by Propositions 7.5.1 and 7.4.1, for any algorithm A among ETC-U, ETC-RR, UCB-U and
UCB-RR:

CRA = CRFTPP +O

√ log(n)
n

 .
On the one hand, the leading term in the cost is the same for all algorithms. On the other
hand, the error term can be much smaller in the case of preemptive algorithms.

To illustrate this claim, let us consider the case where there are two types of jobs of expected
sizes λ1 and λ2, respectively. Instantiating the bounds of Propositions 7.4.1 and 7.5.1 to this
setting, we get:

E[CETC-U] ≤ E[CFTPP] + n(λ1 + λ2)
√

8n log(2n2K3)

+ 8
n

E[COPT], (7.3)

and

E[CETC-RR] ≤E[CFTPP] + 2nλ1(
√

4n log(2n2K3) + 1)

+ 16
n

E[COPT]. (7.4)

If λ2 ≫ λ1 the bound in Equation (7.3) is much larger than the bound in Equation (7.4), which
is consistent with what we observe in Figure 7.2. In particular, one can observe that for small
λ1, non-preemptive algorithms converge to a strictly positive error (due to the unavoidable
dependence in λ2 = 1), while the error of the preemptive algorithms diminishes. This empirically
supports our claim that the nλK-dependence, as appears in the preemptive cost decomposition
of Theorem 7.5.3, is only due to a proof artefact.

Optimism-based vs. explore-then-commit. In the simulations, we see that optimism-
based algorithms perform much better than their ETC counterparts. In traditional bandit
settings, it is well known that the regret of ETC strategies is a constant-times larger than that
of optimism-based strategies. Here, we believe that in addition to that, a second phenomenon,
not reflected in the analysis, renders the optimism-based strategies better than the other ones.
Because of the structure of the cost, a pull of a ‘bad job’ at the beginning is much more expensive
than the same pull done later in the interaction (as it delays more jobs). Optimism-based
strategies explore continuously as they run, whereas ETC strategies have all the exploration
at the beginning, when it is more expensive. Again, this phenomenon stands in contrast with
traditional bandits, where only the number of ‘bad pulls’ matter, and not their position.

7.7 Conclusion and Future Work

In this work, we designed and analyzed a family of algorithms for static scheduling on a single
machine in the presence of job types. The special cost structure of this problem differs from

197

CHAPTER 7. SCHEDULING

that of traditional bandit problems, and early mistakes carry much more weight than late ones,
as they delay more jobs. This modified cost directly impacts the performance of algorithms;
although all suggested algorithms asymptotically have the same CR as the optimal algorithm
that knows job type sizes (FTPP), their non-asymptotic performances differ.

When preemption is allowed, algorithms that explore job types with a strategy inspired by
the worst-case optimal deterministic algorithm RR have a clear advantage over non-preemptive
learning algorithms. Thus, because of the cost structure, the performance is impacted not only
by the number of exploratory steps but also by the nature of the exploratory steps.

Due to the ubiquitousness of scheduling problems, we believe that our results could be
extended to many other variants of this setting. In particular, it would be interesting to take
our algorithmic principles and test them on real-world scheduling problems.

Moreover, we believe that elements from our works can be taken to other online learning
settings outside the scope of scheduling. Specifically, we believe that the notion of types serves
as a reasonable approximation that allows the integration of learning to many online problems.
We also think that the study of cost functions that are sensitive the early exploration is of great
interest.

When jobs can be preempted, preemptive policies outperform non-preemptive ones. It would
be interesting to study what kind of trade-offs apear in the presence of switching costs.

198

7.A. APPENDIX

7.A Appendix

7.A.1 Benchmark FTPP

In this section, for all jobs i ∈ [N], we call Pi the job size of job i. Jobs are ordered in increasing
order of their expected size (Notation Pi and P ⌈i/n⌉

i (mod n) denote the same job). For any algorithm
A, we note TAij for each (i, j) ∈ [N]2 the amount of time job i and job j delay each other under
algorithm A.

Cost of OPT and FTPP, CR of RR

Let us express the expected cost of any algorithm in terms of TAi,j for k ∈ [K]:

E[CA] = E

 N∑
i=1

Pi +
N∑
i=1

N∑
j=i+1

TAi,j

 (7.5)

Lemma 7.A.1 (Cost of OPT). The cost of OPT is given by

E[COPT] = n2

 K∑
ℓ=1

1
4λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ
λk + λℓ

+ 3n
4

K∑
ℓ=1

λℓ.

Note that this lemma implies the following inequality, which will be used in other proofs:

E[COPT] ≥ n2

4

 K∑
ℓ=1

λℓ

 (7.6)

Proof. We apply Equation (7.5) with A = OPT. In that case, for any to jobs (i, j) ∈ [N], i ̸= j,
as the shortest job is scheduled first, we have

E[TAij] = E[min(Pi, Pj)].

So E[TAij] = λkλℓ
λk+λℓ

if job i is of type k and job j is of type ℓ.

E[COPT] = E

 N∑
i=1

Pi +
N∑
i=1

N∑
j=i+1

TAi,j


=

K∑
ℓ=1

n∑
i=1

λℓ +
n∑

j=i+1

λℓ
2 +

K∑
k=ℓ+1

n∑
j=1

λkλℓ
λk + λℓ


=

K∑
ℓ=1

nλℓ + n(n− 1)
2

λℓ
2 + n2

K∑
k=ℓ+1

λkλℓ
λk + λℓ


= n2

 K∑
ℓ=1

1
4λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ
λk + λℓ

+ 3n
4

K∑
k=1

λk.

199

CHAPTER 7. SCHEDULING

Lemma 7.A.2 (Cost of FTPP). The cost of FTPP is given by:

E[CFTPP] = n2

1
2

K∑
ℓ=1

λℓ +
K∑
ℓ=1

(K − ℓ)λℓ

+ n

(∑K
ℓ=1 λℓ
2

)

Proof. We apply Equation (7.5) with A = OPT, so that E[TAij] = min(λk, λℓ) if job i is of type
k and job j is of type ℓ

E[CFTPP] = E

 N∑
i=1

Pi +
N∑
i=1

N∑
j=i+1

TAi,j


=

K∑
ℓ=1

n∑
i=1

λℓ +
n∑

j=i+1
λℓ +

K∑
k=ℓ+1

n∑
j=1

λℓ


=

K∑
ℓ=1

nλℓ + n(n− 1)
2 λℓ + n2

K∑
k=ℓ+1

λℓ


= n2

1
2

K∑
ℓ=1

λℓ +
K∑
ℓ=1

(K − ℓ)λℓ

+ n

(∑K
ℓ=1 λℓ
2

)
.

Lemma 7.A.3 (CR of RR). For any For any λ, the following lower bound holds:

E[CRR]
E[COPT] ≥ 2− 4

n+ 3 .

Proof. For RR, any two jobs are run in parallel until one terminates, thus:

E[TRR
ij] = 2E[min(Pi, Pj)].

Thus, by equation 7.5:

E[CRR] =
N∑
i=1

E[Pi] +
N∑
j=1

2E[min(Pi, Pj)].

On the other hand:

E[COPT] =
N∑
i=1

E[Pi] +
N∑
j=1

E[min(Pi, Pj)].

Thus:

E[CRR]
E[COPT] = 2−

∑N
i=1 Pi

E[COPT]

= 2− n
∑K
ℓ=1 λℓ

n2
(∑K

ℓ=1
1
4λℓ +∑K

ℓ=1
∑K
k=ℓ+1

λkλℓ
λk+λℓ

)
+ 3n

4
∑K
ℓ=1 λℓ

≥ 2− n
∑K
ℓ=1 λℓ

n2
(∑K

ℓ=1
1
4λℓ
)

+ 3n
4
∑K
ℓ=1 λℓ

= 2− 4
n+ 3 .

200

7.A. APPENDIX

With the second line obtained by Lemma 7.A.1.

CR of FTPP

CR with K types

Proposition 7.A.4 (Upper bound on the CR in function of λ). The CR of FTPP with K
types of jobs with n jobs per type satisfies:

E[CFTPP]
E[COPT] ≤ 2− fK(λ)

where fK(λ) =
2
∑K

ℓ=1

∑K

k=ℓ+1
λkλℓ

λk+λℓ
−
∑K

ℓ=1(K−ℓ)λℓ∑K

ℓ=1
1
4λℓ+

∑K

ℓ=1

∑K

k=ℓ+1
λkλℓ

λk+λℓ

Note that instantiating this bound with K = 2 types of jobs, n jobs per type, λ1 = 1 and
λ2 = λ > 1, we get Theorem 7.3.3:

E[CFTPP]
E[COPT] ≤ 2− 4 λ− 1

(1 + λ)2 + 4λ.

Proof of Theorem 7.A.4. Compute E[COPT] using Theorem 7.A.1, E[CFTPP] using Theorem 7.A.2.
The competitive ratio of FTPP is given by:

CRFTPP = E[CFTPP]
E[COPT] =

n2
(

1
2
∑K
ℓ=1 λℓ +∑K

ℓ=1(K − ℓ)λℓ
)

+ n(1
2
∑K
ℓ=1 λℓ)

n2
(∑K

ℓ=1
1
4λℓ +∑K

ℓ=1
∑K
k=ℓ+1

λkλℓ
λk+λℓ

)
+ n(3

4
∑K
ℓ=1 λℓ)

(7.7)

For any values a, b, c, d ∈ R4
+,

if a > c > 0 and d > b > 0, then a+ b

c+ d
≤ a

c
. (7.8)

Now, we have 1
2 ≤

3
4 and

K∑
ℓ=1

1
4λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ
λk + λℓ

≤ 1
2

K∑
ℓ=1

λℓ +
K∑
ℓ=1

(K − ℓ)λℓ.

This implies:

CRFTPP ≤
1
2
∑K
ℓ=1 λℓ +∑K

ℓ=1(K − ℓ)λℓ∑K
ℓ=1

1
4λℓ +∑K

ℓ=1
∑K
k=ℓ+1

λkλℓ
λk+λℓ

= 2−
2∑K

ℓ=1
∑K
k=ℓ+1

λkλℓ
λk+λℓ

−
∑K
ℓ=1(K − ℓ)λℓ∑K

ℓ=1
1
4λℓ +∑K

k=1
∑K
k=ℓ+1

λkλℓ
λk+λℓ︸ ︷︷ ︸

fK(λ)

.

Upper bound on the CR for particular values of λ

201

CHAPTER 7. SCHEDULING

Proposition 7.A.5.

∀K > 1, ∃λ, 0 < λ1 ≤ · · · ≤ λK = 1,CRFTPP(λ) ≤
HK − 1

2BK
1
4BK +AK

with HK = ∑K
k=1

1
k , BK = ∑K

k=1
1
k2 and AK = ∑K

k=1
∑k−1
ℓ=1

1
k2+ℓ2 .

Furthermore limK→∞
HK− 1

2BK
1
4BK+AK

= 4
π ≈ 1.273 which implies that there exists some value of

K for which CRFTPP(λ) ≤ 1.274.

Proof. A way to prove such a result would be to find the minimum of CRFTPP with respect to
λ. But this is difficult. We propose another point λ̃.

λ̃k = 1
(K − k + 1)2 . (7.9)

We express the competitive ratio using λ̃:

CRFTPP(λ̃) =
∑K
k=1(1

2 +K − k)λ̃k∑K
k=1

(
1
4 λ̃k +∑K

ℓ=k+1
λ̃kλ̃ℓ

λ̃k+λ̃ℓ

)

=
∑K
k=1(1

2 +K − k) 1
(K−k+1)2∑K

k=1

(
1
4

1
(K−k+1)2 +∑K

ℓ=k+1
1

(K−k+1)2+(K−ℓ+1)2

)
=

∑K
k=1(1

2 + k − 1) 1
k2∑K

k=1

(
1
4

1
k2 +∑k−1

ℓ=1
1

k2+ℓ2
)

=
HK − 1

2BK
1
4BK +AK

with HK =
K∑
k=1

1
k
, BK =

K∑
k=1

1
k2 , and AK =

K∑
k=1

k−1∑
ℓ=1

1
k2 + ℓ2

.

This shows the first part of the lemma. The fact that HK− 1
2BK

1
4BK+AK

→ 4
π follows from Theorem 7.A.6.

Lemma 7.A.6.
lim
K→∞

HK − 1
2BK

1
4BK +AK

= 4
π

with HK = ∑K
k=1

1
k , BK = ∑K

k=1
1
k2 and AK = ∑K

k=1
∑k−1
ℓ=1

1
k2+ℓ2

Proof. We now focus on the behavior of HK− 1
2BK

1
4BK+AK

as K goes to ∞.

We know that for the harmonic number HK = Θ(log(K)), and that for the partial sum of
the Basel problem 0 ≤ BK ≤

∑∞
k=1 k

−2 = π2/6 = O(1). Let us bound Ak. Using the fact that
for y > 0 and x > 0 the function f : (x, y) 7→ (x2 + y2)−1 is decreasing in x, for (k, ℓ) ∈ [K]2 we

202

7.A. APPENDIX

have ∫ ℓ+1

ℓ

1
k2 + t2

dt ≤ 1
k2 + ℓ2

≤
∫ ℓ

ℓ−1

1
k2 + t2

1
k2

∫ ℓ+1

ℓ

1
(t/k)2 + 1dt ≤

1
k2 + ℓ2

≤ 1
k2

∫ ℓ

ℓ−1

1
(t/k)2 + 1dt

1
k

(arctan(ℓ+ 1
k

)− arctan(ℓ
k

)) ≤ 1
k2 + ℓ2

≤ 1
k

(arctan(ℓ
k

)− arctan(ℓ− 1
k

)).

Hence by summing for 1 ≤ ℓ < k ≤ K:

K∑
k=1

1
k

(arctan(1)− arctan(1
k

)) ≤ AK ≤
K∑
k=1

1
k

(arctan(k − 1
k

)− arctan(0)),

K∑
k=1

1
k

(π4 − arctan(1
k

)) ≤ Ak ≤
K∑
k=1

1
k

arctan(k − 1
k

).

For the right-hand-side we use that arctan is increasing, thus

AK ≤
K∑
k=1

1
k

arctan(k − 1
k

) ≤ π

4HK .

Using that arctan(x) ≤ x for x ≥ 0, we have

AK ≥
K∑
k=1

1
k

(π4 −
1
k

) = π

4HK −BK .

Combining everything we obtain the following inequality:

HK − 1
2BK

π
4HK + 1

4BK
≤ CRFTPP(λ̃) ≤

HK − 1
2BK

π
4HK − 3

4BK
.

Therefore
lim
K→∞

CRFTPP(λ̃) = 4
π
≈ 1.273.

The cost of FTPP is lower than the cost of RR Let us order all jobs i ∈ [N] in order of
their increasing expected size, and denote Pi, the size of job i. An alternative notation to Pi
is P ⌈i/n⌉

i (mod n), where the first is used in this proof for convenience. We consider here the most
general setting where K = N .

We have

Lemma 7.A.7.
E[CFTPP] ≤ E[CRR]

203

CHAPTER 7. SCHEDULING

Proof. The cost of FTPP with K = N and n = 1 is given by

E[CFTPP] =
N∑
i=1

E[Pi] +
N∑
i=1

N∑
j=i+1

E
[
TFTPP
ij

]

=
N∑
i=1

E[Pi] +
N∑
i=1

N∑
j=i+1

min(λi, λj)

where TFTPP
ij is the amount of time job i and job j delay each other in FTPP which verifies

E
[
TFTPP
ij

]
= min(λi, λj)

Similarly, using TRR
ij = 2 min(Pi, Pj) which implies E[TRR

ij] = 2 λiλj

λi+λj
, we get

E[CRR] =
N∑
i=1

E[Pi] +
N∑
i=1

N∑
j=i+1

E
[
TRR
ij

]

=
N∑
i=1

E[Pi] +
N∑
i=1

N∑
j=i+1

2 λiλj
λi + λj

Then we write

2 λiλj
λi + λj

= 2
1
λi

+ 1
λj

≥ 2
1

min(λi,λj) + 1
min(λi,λj)

≥ min(λi, λj)

We conclude that CFTPP ≤ CRR.

Lower bound: Proof of Proposition 7.3.1

Let us order all jobs i ∈ [N] in order of their increasing expected size, and denote Pi, the size
of job i. An alternative notation to Pi is P ⌈i/n⌉

i (mod n), where the first is used in this proof for
convenience. We consider here the most general setting where K = N . Any algorithm has a
cost:

E[CA] =
N∑
i=1

E[Pi] +
N∑
i=1

N∑
j=i+1

E[TAij]

where TAij = DA
ij +DA

ji where DA
ij is the amount of time job i delay job j.

Lemma 7.A.8. Consider K = N jobs where job i ∈ [N] has mean size λi and λ1 ≤ · · · ≤ λN .
Consider any algorithm A and let TAij the total amount of time spent by A on i or j while both
jobs are alive.

E[TAij] ≥ 2E[TOPTij]

where OPT is the optimal offline algorithm

204

7.A. APPENDIX

Proof of Lemma 7.A.8. Let us first prove our proposition for any deterministic algorithm A.
We denote i(t) amount of time that A allocates to job i after a time t < TAij is allocated to job
i or j.

E[TAij]

=
∫ +∞

t=0
P(TAij ≥ t)dt

=
∫ +∞

t=0
P
(
Pi ≥ i(t)

)
P
(
Pj ≥ t− i(t)

)
dt

=
∫ +∞

t=0
exp

(
− i(t)
λi

)
exp

(
− t− i(t)

λj

)
dt

=
∫ +∞

t=0
exp

(
− i(t) + t/2− t/2

λi

)
exp

(
− t−

(
i(t) + t/2− t/2

)
λj

)
dt

=
∫ +∞

t=0
exp

−(1
λi

+ 1
λj

)
t

2

 exp

−(1
λi
− 1
λj

)(
i(t)− t

2

) dt.
Calling f(t) = exp

(
−
(

1
λi

+ 1
λj

)
t
2

)
and g(t) = | 1

λi
− 1

λj
|
(
i(t)− t

2

)
it holds that either

∫ ∞

t=0
f(t) exp(−g(t))dt ≥

∫ ∞

t=0
f(t)dt

or ∫ ∞

t=0
f(t) exp(g(t))dt ≥

∫ ∞

t=0
f(t)dt.

Otherwise, we would have∫ ∞

t=0
f(t)1

2(exp(−g(t)) + exp(g(t)))dt <
∫ ∞

t=0
f(t)dt

which cannot be true since ∀t, 1
2(exp(−t) + exp(t)) ≥ 1.

Therefore an adversary knowing i(t) can always chose the order of λi and λj such that

E[TAij] ≥
∫ +∞

t=0
exp(−(1

λi
+ 1
λj

) t2)dt = 2 λiλj
λi + λj

The optimal delay is
E[TOPTij] = E[min(Pi, Pj)] = λiλj

λi + λj

so our Lemma is proven for any deterministic algorithm A.
Consider a randomized algorithm R which can be seen as a probabilistic distribution over

the set of deterministic algorithms. Therefore A, i(t) and g(t) are now seen as random variables.
By the tower rule, the amount of time job i and j delay each other in R is such that:

E[TRij] = E[E[TAij |A]]

= E[
∫ +∞

t=0
f(t) exp(sign(λi − λj)g(t))dt]

205

CHAPTER 7. SCHEDULING

By the same argument as in the deterministic case, it holds that either

E[
∫ ∞

t=0
f(t) exp(−g(t))dt] ≥

∫ ∞

t=0
f(t)dt

or
E[
∫ ∞

t=0
f(t) exp(g(t))dt] ≥

∫ ∞

t=0
f(t)dt

Otherwise, we would have

E[
∫ ∞

t=0
f(t)1

2(exp(−g(t)) + exp(g(t)))dt] <
∫ ∞

t=0
f(t)dt

which implies that there exists a deterministic function g such that∫ ∞

t=0
f(t)1

2(exp(−g(t)) + exp(g(t)))dt <
∫ ∞

t=0
f(t)dt

which cannot be true as shown in the deterministic case. The rest of the argument is the same
as in the deterministic case and therefore omitted.

Now we are ready to prove Proposition 7.3.1.

Proof of Proposition 7.3.1. Take any algorithm A

E[CA] =
N∑
i=1

E[Pi] +
N∑
i=1

N∑
j=i+1

E[TAij] (7.10)

≥
N∑
i=1

λi + 2
N∑
i=1

N∑
j=i+1

E[TOPTij] (7.11)

where (7.11) comes from Lemma 7.A.8.
Observe that applying RR on the same data would yield an expected completion time:

E[CRR] =
N∑
i=1

E[Pi] + 2
N∑
i=1

N∑
j=i+1

E[min(Pi, Pj)]

=
N∑
i=1

E[Pi] + 2
N∑
i=1

N∑
j=i+1

E[TOPTij]

≤ E[CA]

which concludes the proof.

206

7.A. APPENDIX

7.A.2 Analysis of Non-Preemptive Learning algorithms

Full Algorithmic Details

In this appendix, we present a full description of ETC-U and UCB-U.
Algorithm 31: Explore-Then-Commit Uniform (ETC-U)]
1 Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types);
2 For all pairs of different types k, ℓ initialize δk,ℓ = 0, r̂k,ℓ = 0 and hk,ℓ = 0;
3 For all types k, set mk = 0 ;
4 while U is not empty do
5 U is the set of types with at least one remaining job;
6 if A is empty then
7 A = {ℓ ∈ U ,∀k ∈ U , k ̸= ℓ, r̂k,ℓ − δk,ℓ ≤ 0.5} ;
8 end
9 Select the type ℓ with the lowest number of finished jobs ℓ = arg mink∈Amk and run

one job of type ℓ yielding a size P ℓmℓ+1.;
10 mℓ = mℓ + 1;
11 for k, ℓ in A, k ̸= ℓ do
12 hk,ℓ = ∑min(mk,mℓ)

i=1 1{P ki < P ℓi };

13 δk,ℓ =
√

log(2n2K4)
2 min(mk,mℓ) ;

14 r̂k,ℓ = hk,ℓ

min(mk,mℓ) ;
15 if r̂k,ℓ − δk,ℓ ≥ 0.5 or mℓ = n then
16 Remove ℓ from A;
17 end
18 end
19 end

Algorithm 32: Upper-Confidence-Bound-Uniform (UCB-U)
1 Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types);
2 For all types k ∈ [K], set mk = 0;
3 Set U = [K];
4 For all types k ∈ [K], compute the lower bound λmk

k using Equation (7.16);
5 while U is empty do
6 Select k∗ = arg mink∈U λ

mk
k ;

7 Set mk∗ = mk∗ + 1;
8 Compute a job of type k∗ until completion and record its size Pmk∗

k∗ ;
9 Update the lower bound λ

mk∗
k∗ using again Equation (7.16);

10 If mk∗ = n, remove k∗ from U ;
11 end

Cost Decomposition

In this appendix, we analyze the non-preemptive learning algorithms presented in our chapter -
ETC-U and UCB-U. We start by presenting a general cost decomposition result that relates
the cost of any non-preemptive algorithm to the one of FTPP. We will use this result to derive
the bounds of both our suggested algorithms.

207

CHAPTER 7. SCHEDULING

Lemma 7.A.9 (Cost of non-preemptive algorithms). Any non-preemptive algorithm A has a
cost

E[CA] = E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}]

Proof. Denote Pi, the size of the job i, and TAij = DA
ij +DA

ji, where DA
ij is the amount of time a

job i delays job j. For any algorithm, we have:

CA =
N∑
a=1

Pa +
N∑
a=1

N∑
b=a+1

TAab

For non-preemptive algorithms, TAab = Pa if job a is scheduled before b and Pb otherwise so that
we can write

CA =
N∑
a=1

Pa +
N∑
a=1

N∑
b=a+1

(
Pa1{Pa computed before Pb}+ Pb1{Pb computed before Pa}

)

Now assume w.l.o.g. that (Pa)a∈[N] are in the order chosen by FTPP, i.e., Pa is the ath
executed task by FTPP and if a ≤ b then E[Pa] ≤ E[Pb]. Under this convention, we get:

CFTPP =
N∑
a=1

Pa +
N∑
a=1

N∑
b=a+1

Pa

and recalling that

1{Pa computed before Pb} = 1− 1{Pb computed before Pa}

we have

CA = CFTPP +
N∑
a=1

N∑
b=a+1

(Pb − Pa)1{Pb computed before Pa}

Reindexing the job without changing the order, where P ki is now the i-th job of type k, we
have:

CA = CFTPP +
K∑
ℓ=1

n∑
j=1

K∑
k=ℓ+1

n∑
i=1

(P ki − P ℓj)1
{
P ki computed before P ℓj

}
Taking the expectation finishes the proof.

Upper bound for ETC-U

Proposition 7.A.10. The following upper bounds hold:

E[CETC-U] ≤ E[CFTPP] + 1
n

E[COPT] +
∑
k∈[K]

[1
2(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3).

208

7.A. APPENDIX

and

E[CETC-U] ≤ E[CFTPP] + 1
n

E[COPT] +
∑
k∈[K]

k−1∑
ℓ=1

(K − ℓ)(λk + λℓ)2

(λk − λℓ)
n8 log(2n2K3).

We start with the following technical lemma, isolated to be reused in other proofs. Pick
some α ∈ N. Let (X1

i)i∈[αn] and (X2
i)i∈[αn] be independent exponential variables of parameters

λ1 and λ2 respectively. Define for any m ∈ [αn]:

r̂m = 1
m

m∑
i=1
1X1

i <X
2
i

and

δ(m,n) =

√
log(2n2K3)

2m .

Let r denote the expectation r := E
[
1X1

i <X
2
i

]
= λ2

λ1+λ2
.

Lemma 7.A.11. For any m ∈ [αn], the estimator r̂m is within δ(m,n) of its expectation w.h.p:

P
(
∃m ∈ [αn] s.t. |r̂m − r| ≥ δ(m,n)

)
≤ α

nK3 .

Proof. By Hoeffding’s inequality:

∀m ∈ [αn], P

|r̂m − r| ≥
√

log(2n2K3)
2m

 ≤ 1
n2K3

The lemma is then obtained by a union bound over the αn possible values of m.

We are now ready to prove Proposition 7.A.10.

Proof. Recall that we assumed without loss of generality that λ1 ≤ · · · ≤ λK . Recall also the
definition for any (k, ℓ) ∈ [K]2, for any (mℓ,mk) ∈ [n]2, of:

r̂
min(mk,mℓ)
k,ℓ = 1

min(mk,mℓ)

min(mk,mℓ)∑
i=1

1Pk
i <P

ℓ
i
.

Let us define the good event E as:

E :=
{
∀(k, ℓ) ∈ [K]2,∀m ∈ [n], |r̂mk,ℓ − E[rmk,ℓ]| < δ(m,n)

}
By Lemma 7.A.11 applied with α = 1, for any couple (ℓ, k) it holds that :

P
(
∃m ∈ [n] s.t. |r̂mk,ℓ − E[rmk,ℓ]| > δ(m,n)

)
≤ 1
n
.

A union bound over the K(K−1)
2 possible pairs gives the following bound:

P
(
E
)
≤ 1

2nK . (7.12)

209

CHAPTER 7. SCHEDULING

With the help of Theorem 7.A.9, the cost of ETC-U can be decomposed using the event E
as follows:

E[CETC-U] = E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}]

(Theorem 7.A.9)

≤ E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}
|E
]

︸ ︷︷ ︸
(i)

+
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}
|E
]

P
(
E
)

︸ ︷︷ ︸
(ii)

.

(7.13)

Bounding (ii). Recall that by assumption, if k ≥ ℓ, then λk ≥ λℓ. Therefore, we have that

(ii) = P
(
E
) K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)︸ ︷︷ ︸
≥0

E

1{P ki computed before P ℓj
}

︸ ︷︷ ︸
≤1

|E


≤ P

(
E
) K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)

= n2P
(
E
) K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)

= n2P
(
E
) K∑

k=1
(k − 1)λk −

K∑
ℓ=1

(K − ℓ)λℓ


≤ n2KP

(
E
) K∑
k=1

λk

≤ 4KE[COPT]P
(
E
)

(Equation (7.6))

≤ 2
n

E[COPT], (7.14)

where the last inequality is by Equation (7.12).

Bounding (i). Consider any couple (k, ℓ) ∈ [K]2 s.t. ℓ ≤ k. Let m∗
ℓ,k be the number of

comparisons performed between jobs of type ℓ and k before the algorithm detects that λℓ ≤ λk.
A first obvious upper bound is m∗

ℓ,k ≤ n. A second upper is obtained by noting that m∗
ℓ,k is

smaller than any m′ s.t.

δ(m′,n) <
1
2

∣∣∣∣∣ λk
λk + λℓ

− 0.5
∣∣∣∣∣.

210

7.A. APPENDIX

For this value of δ(m′,n), the event E ensures that if λk ≥ λℓ, then

r̂m
′

ℓ,k − δ(m′,n) Under E
≥ E[rm′

ℓ,k]− 2δ(m′,n) >
λk

λk + λℓ
−
(

λk
λk + λℓ

− 1
2

)
= 1

2 ,

and type k would be eliminated. This implies the following upper bound on m∗
ℓ,k:

m∗
ℓ,k ≤ min

n, 8(λk + λℓ
λk − λℓ

)2

log
(
2n2K3

) . (7.15)

On the other hand, notice that under the good event E , a type ℓ will never be eliminated
due to a type k of greater expected duration λk ≥ λℓ, since

r̂m
′

k,ℓ − δ(m′,n) Under E
≤

(
E[rm′

ℓ,k] + δ(m′,n)
)
− δ(m′,n) = λℓ

λk + λℓ
≤ 1

2 .

We decompose the run of the algorithm into (up to K) phases. For each ℓ ∈ [K], we call
phase ℓ the iterations at which jobs of type ℓ are the jobs with the smallest mean still not
terminated. Note that during phase ℓ, job type ℓ is always active, as the contrary would mean
event E does not hold. This implies that the number of jobs of any type k > ℓ computed during
phase ℓ is lower than m∗

ℓ,k. We have the following bound:

(i) =
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}
|E
]

(1)
≤

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before phase ℓ+ 1

}
|E
]

≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
i∈[n]

n(λk − λℓ)E

 ℓ∑
o=1

1
{
P ki computed during phase o

}
|E


(2)
≤

K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

E[m∗
o,k|E]n(λk − λℓ)

≤
K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

E[m∗
o,k|E]n(λk − λo)

(3)=
K∑
k=1

k−1∑
o=1

k−1∑
l=o

E[m∗
o,k|E]n(λk − λo)

=
K∑
k=1

k−1∑
o=1

E[m∗
o,k|E]n(k − o)(λk − λo)

(4)
≤

K∑
k=1

k−1∑
ℓ=1

E[m∗
ℓ,k|E]n(K − ℓ)(λk − λℓ)

(5)
≤

K∑
k=1

k−1∑
ℓ=1

min

n, 8(λk + λℓ
λk − λℓ

)2

log
(
2n2K3

)n(K − ℓ)(λk − λℓ).

211

CHAPTER 7. SCHEDULING

(1) is since by the beginning of phase ℓ+ 1, all jobs of type ℓ were completed. (2) is since during
phase o, the oth type was not eliminated, so there cannot be more than m∗

o,k jobs of type k in
this phase. In (3), we changed the summation order and in (4), we replaced o→ ℓ. Finally, (5)
is due to the bound of Equation (7.15), which holds under E .

Next, for any λk ≥ λℓ, we have:

(λk − λℓ) min

n, 8(λk + λℓ
λk − λℓ

)2

log
(
2n2K3

) ≤ (λk + λℓ)
√

8n log(2n2K3),

since min {a, b} ≤
√
ab for any a, b ≥ 0. This implies that

(i) ≤
K∑
k=1

k−1∑
ℓ=1

n(K − ℓ)(λk + λℓ)
√

8n log(2n2K3)

=
K∑
k=1

[1
2(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3).

Substituting this and the bound of Equation (7.14) into the decomposition of Equation (7.13)
gives the first bound of the proposition.

The second bound is obtained by upper bounding:

(λk − λℓ) min

n, 8(λk + λℓ
λk − λℓ

)2

log
(
2n2K3

) ≤ 8(λk + λℓ)2

λk − λℓ
log

(
2n2K3

)
,

Upper bound for UCB-U

Proposition 7.A.12. The expected cost of UCB-U is upper bounded by:

E[CUCB-U] ≤ E[CFTPP] + n(K − 1)
√

3n ln
(
2n2K2) K∑

k=1
λk + 2

n
E[COPT],

and:

E[CUCB-U] ≤ E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

(λk + λℓ)2

λk − λℓ
3n ln

(
2n2K2

)
+ 2
n

E[COPT].

Concentration of exponential distribution If X ∼ E(λ), then 2
λX ∼ E(2) = χ2

2 (χ2 with
2 degrees of freedom). It follows that if ∀i ∈ [m], Xi ∼ E(λ), then 2

λ

∑m
i=1Xi ∼ χ2

2m. Denote
χ2

2m(α) the α-th percentile, we have with probability 1− δ that

2∑iXi

χ2
2m(1− δ/2) ≤ λ ≤

2∑iXi

χ2
2m(δ/2)

Setting δ = 1
n2K2 , we get the following formula for a lower bound:

λmk = 2∑m
i=1X

k
i

χ2
2m(1− 1

2n2K2)
(7.16)

212

7.A. APPENDIX

and another formula for the upper bound

λ
m
k = 2∑m

i=1X
k
i

χ2
2m(1

2n2K2)

If a job k is wrongly scheduled before a job of type ℓ, then the decision rule is misleading
meaning that:

λmk
k = 2∑nk

i=1X
k
i

χ2
2nk

(1− 1
2n2K2)

<
2∑nℓ

i=1X
ℓ
i

χ2
2nℓ

(1− 1
2n2K2)

= λmℓ
ℓ

even though λℓ < λk.

Bounding the cost From Theorem 7.A.9, the cost of any non preemptive algorithm A writes

E[CA] = E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}]
(7.17)

(7.18)

Let us then introduce the GOOD event which is:

E = {∀i ∈ [n], ∀k ∈ [K], λik ≤ λk ≤ λ
i
k}

With a union bound, it is easy to show that E holds with probability 1 − 1
nK and that the

contradictory event E happens with probability 1
nK .

Using the same method as in the proof of Proposition 7.A.10 (the decomposition using E
and E as done in Equation (7.13) and the derivation of Equation (7.14)), we can upper bound
the cost of UCB-U as:

E[CUCB−U] ≤ E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}
|E
]

︸ ︷︷ ︸
(i)

+ E[COPT] 4KP (E)︸ ︷︷ ︸
4/n

Furthermore, P ki computed before P ℓj implies that λik < λjℓ and therefore

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)P(λik < λjℓ |E)

Under E , we have λjℓ ≤ λℓ. Moreover, it holds that λik ≥ λk, and by the definition of λik, and λik,

λik =
χ2

2i(1
2n2K2)

χ2
2i(1− 1

2n2K2)
λ
i
k ≥

χ2
2i(1

2n2K2)
χ2

2i(1− 1
2n2K2)

λk.

213

CHAPTER 7. SCHEDULING

Combined, under E we can bound
{
λik < λjℓ

}
⊆
{
λk

χ2
2i(

1
2n2K2)

χ2
2i(1− 1

2n2K2) < λℓ

}
and therefore write

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

1

{
λk

χ2
2i(1

2n2K2)
χ2

2i(1− 1
2n2K2)

< λℓ

}

=
K∑
ℓ=1

K∑
k=ℓ+1

nmax
{
i ∈ [n], λk

χ2
2i(1

2n2K2)
χ2

2i(1− 1
2n2K2)

< λℓ

}
(λk − λℓ)

So finally we have

E[CUCB-U] ≤ E[CFTPP]+
K∑
ℓ=1

K∑
k=ℓ+1

nmax
{
i ∈ [n], λk

χ2
2i(1

2n2K2)
χ2

2i(1− 1
2n2K2)

< λℓ

}
(λk−λℓ)+

4
n

E[COPT]

(7.19)

Bounding the ratio. We now focus on bounding the maximum term in Equation (7.19). By
Lemma 1 of (Laurent and Massart, 2000), if U ∼ χ2

D, then

P
(
U ≥ D + 2

√
Dx+ 2x

)
≤ exp(−x), and P

(
U ≤ D − 2

√
Dx
)
≤ exp(−x), (7.20)

and in particular,

χ2
D(δ) ≥ D − 2

√
D ln 1

δ
, and χ2

D(1− δ) ≤ D + 2
√
D ln 1

δ
+ 2 ln 1

δ
. (7.21)

Thus, for any i ∈ [n], a necessary condition to the inequality λk
χ2

2i(
1

2n2K2)
χ2

2i(1− 1
2n2K2) < λℓ is

2i− 2
√

2i ln
(
2n2K2)

2i+ 2
√

2i ln
(
2n2K2)+ 2 ln

(
2n2K2) < λℓ

λk

⇒
(

1− λℓ
λk

)
i−

√
2 ln

(
2n2K2)(1 + λℓ

λk

)
√
i− λℓ

λk
ln
(
2n2K2

)
< 0

⇒ (λk − λℓ) i−
√

2 ln
(
2n2K2) (λk + λℓ)

√
i− λℓ ln

(
2n2K2

)
< 0

⇒
√
i <

√
2 ln

(
2n2K2) (λk + λℓ) +

√
2 ln

(
2n2K2) (λk + λℓ)2 + 4 ln

(
2n2K2)λℓ (λk − λℓ)

2 (λk − λℓ)

⇒
√
i <

√
2 ln

(
2n2K2)(λk + λℓ) +

√
(λk + λℓ)2 + 2λℓ (λk − λℓ)
2 (λk − λℓ)

Now, using the fact that 2λℓ ≤ λℓ + λk, we get the simplified bound

√
i <

√
2 ln

(
2n2K2)(λk + λℓ) +

√
2λk (λk + λℓ)

2 (λk − λℓ)
≤
√

2 ln
(
2n2K2) (1 +

√
2
) λk + λℓ

2 (λk − λℓ)
,

(7.22)

214

7.A. APPENDIX

or i ≤ 3 ln
(
2n2K2

) (
λk+λℓ
λk−λℓ

)2
. Since we also know that i ∈ [n], we can write

max
{
i ∈ [n], λk

χ2
2i(1

2n2K2)
χ2

2i(1− 1
2n2K2)

< λℓ

}
≤ min

3 ln
(
2n2K2

)(λk + λℓ
λk − λℓ

)2

, n


≤
√

3n ln
(
2n2K2)λk + λℓ

λk − λℓ
,

where the second inequality is since min {a, b} ≤
√
ab for a, b > 0. Substituting back into

Equation (7.19), we get the first bound in the proposition:

E[CUCB-U] ≤ E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

n
√

3n ln
(
2n2K2)λk + λℓ

λk − λℓ
(λk − λℓ) + 4

n
E[COPT]

= E[CFTPP] + n
√

3n ln
(
2n2K2) K∑

ℓ=1

K∑
k=ℓ+1

(λk + λℓ) + 4
n

E[COPT]

= E[CFTPP] + n
√

3n ln
(
2n2K2) K∑

k=1
(k − 1)λk +

K∑
ℓ=1

(K − ℓ)λℓ

+ 4
n

E[COPT]

= E[CFTPP] + n(K − 1)
√

3n ln
(
2n2K2) K∑

k=1
λk + 4

n
E[COPT].

The second bound is obtained through the upper bound:

(λk − λℓ) min

3 ln
(
2n2K2

)(λk + λℓ
λk − λℓ

)2

, n

 ≤ 3 ln
(
2n2K2

)((λk + λℓ)2

λk − λℓ

)
.

Lower bounds for Non-Preemptive Algorithms

Small Differences (Theorem 7.4.4)

Proof of Theorem 7.4.4. Assume K = 2 and take any non-preemptive algorithm A. Call P 1
i

the i-th job of type 1 and P 2
j the j-th job of type 2. According to Theorem 7.A.9, A has a cost

E[CA] = E[CFTPP] + (λ2 − λ1)E

 ∑
(i,j)∈[n]2

1
{
P 1
i computed before P 2

j

}
if λ2 > λ1 (the role of λ2 and λ1 are reversed if λ2 < λ1).

We then follow the same approach as in chapter 15 in Lattimore and Szepesvári (2020).
Consider situation 1 where λ1 = a, λ2 = b and situation 2 where λ1 = b and λ2 = a with
a < b and assumes that the adversary chooses the situation based on the algorithm A. Call
Pν1 the joint probability over the scheduling decisions and job sizes in situation 1 following
the policy prescribed by algorithm A and Pν2 the same probability in situation 2. Call
Pat(xt) the probability that the job of type at chosen at time t is of size xt. Calling KL
the KL divergence, we have following the Lemma 15.1 in Lattimore and Szepesvári (2020):
KL(Pν1 ,Pν2) = n(KL(Xa, Xb) +KL(Xb, Xa)) where Xa is an exponential random variable of
expectation a and Xb is an exponential random variable of expectation b.

Note right away that KL(Xa, Xb) = a
b − 1− log(ab) (e.g., Calin and Udrişte, 2014, Example

215

CHAPTER 7. SCHEDULING

4.2.1), therefore KL(Xa, Xb) +KL(Xb, Xa) = a
b − 2 + b

a = (b−a)2

ab so

KL(Pν1 ,Pν2) ≤ n(b− a)2

ab
.

The cost of algorithm A in situation 1 is lower bounded as:

Eν1 [CA] ≥ Eν1 [CFTPP] + (b− a)Eν1

1


∑
(i,j)∈[n]2

1
{
P 1
i computed before P 2

j

}
≥ n2/2


n2/2.

The cost of algorithm A in situation 2 is lower bounded as:

Eν1 [CA] ≥ Eν2 [CFTPP] + (b− a)Eν2

1


∑
(i,j)∈[n]2

1
{
P 2
j computed before P 1

i

}
≥ n2/2


n2/2.

Introduce the event E = 1

{∑
(i,j)∈[n]2 1

{
P 1
i computed before P 2

j

}
≥ n2/2

}
, we have that

E[CA] = max
ν∈{ν1,ν2}

Eν [CA]

≥ Eν1 [CA] + Eν2 [CA]
2

≥ Eν1 [CFTPP] + Eν2 [CFTPP]
2 + (b− a)n2/2Pν1(E) + Pν2(E)

2

First, let us notice that E[CFTPP] = Eν1 [CFTPP]+Eν2 [CFTPP]
2 . Then, using Bretagnolle–Huber in-

equality (Th 14.2 in Lattimore and Szepesvári (2020)), we get Pν1(E)+Pν2(E) ≥ 1
2 exp(−KL(Pν1 ,Pν2))

and since KL(Pν1 ,Pν2) ≤ n (λ2−λ1)2

λ1λ2
, we have

E[CA] ≥ E[CFTPP] + (b− a)n2/2
exp(−n (b−a)2

ab)
4

At this stage, we can rewrite the equation assuming λ2 ≥ λ1 and so that we get

E[CA] ≥ E[CFTPP] + (λ2 − λ1)n2/2
exp(−n (λ2−λ1)2

λ1λ2
)

4 ,

which proves the first result of the proposition. In particular, taking λ2 ≤ λ1
(
1 + 1√

n

)
gives its

second result

E[CA]− E[CFTPP] ≥ λ1n
√
n/2

exp(−n 1/n
(1+1/

√
n)2)

4

≥ λ1n
√
n
e−1/4

8

≥ (λ1 + λ2)n
√
n
e−1/4

24 .

216

7.A. APPENDIX

Large Differences

Proposition 7.A.13. For any non-preemptive algorithm, there exists a problem instance with
expected type durations of λ1 ≤ λ2 · · · ≤ λK such that

E[CA] ≥ E[CFTPP] + n

K

K∑
k=1

(2k −K − 1)λk.

In particular, for K = 2 and λ2 ≥ 3λ1, it holds that

E[CA] ≥ E[CFTPP] + n

4 (λ1 + λ2),

Let pk be the probability that a non-preemptive algorithm completes a job of type k at
its first. Notice that this distribution cannot depend on the expected duration of any of the
types, since no data was gathered. Thus, types can be arbitrarily ordered without affecting
this distribution. In particular, we assume w.l.o.g. that p1 ≤ p2 ≤ . . . pK and choose a problem
instance where job types are ordered in an increasing duration λ1 ≤ λ2 ≤ . . . λK . Then, the
expected cost of the algorithm can be bounded according to Theorem 7.A.9, by

E[CA] = E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P ki computed before P ℓj

}]

≥ E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
j∈[n]

(λk − λℓ)E
[
1
{
P k1 computed before P ℓj

}]

≥ E[CFTPP] + n
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)E
[
1
{
P k1 was the first job

}]

= E[CFTPP] + n
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)pk

= E[CFTPP] + n
K∑
k=1

pk

k−1∑
ℓ=1

(λk − λℓ).

Now, one can be easily convinced that between all probability vectors with non-decreasing
components, this bound is minimized by the uniform distribution pk = 1/K. To see this, observe
that the sum ∑k−1

ℓ=1 (λk − λℓ) increases with k. Therefore, if p is non-uniform, then pK > 1/K,
and there would exist a coordinate k < K to which we could move weight from pK , which would
decrease the bound.

Substituting pk = 1/K we then get

E[CA] ≥ E[CFTPP] + n

K

K∑
k=1

k−1∑
ℓ=1

(λk − λℓ)

= E[CFTPP] + n

K

K∑
k=1

(2k −K − 1)λk.

In particular, if K = 2, we get

E[CA] ≥ E[CFTPP] + n

2 (λ2 − λ1)

217

CHAPTER 7. SCHEDULING

and, for λ2 ≥ 3λ1, we have λ2 − λ1 ≥ λ1+λ2
2 and thus

E[CA] ≥ E[CFTPP] + n

4 (λ1 + λ2).

7.A.3 Analysis of Preemptive Learning algorithms

Full Algorithmic Details

In this appendix, we present a full description of ETC-RR and UCB-RR.

Algorithm 33: Explore-Then-Commit-Round-Robin (ETC-RR)
1 Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types);
2 For all pairs of different types k, ℓ initialize δk,ℓ = 0, r̂k,ℓ = 0 and hk,ℓ = 0;
3 For all types k, set ck = 0 ;
4 while U is not empty do
5 U is the set of types with at least one remaining job;
6 if A is empty then
7 A = {ℓ ∈ U ,∀k ∈ U , k ̸= ℓ, r̂k,ℓ − δk,ℓ ≤ 0.5};
8 end
9 Run jobs (P kck+1)k∈A in parallel until a job finishes and denote ℓ the type of this job;

10 cℓ = cℓ + 1;
11 for k ∈ A, k ̸= ℓ do
12 βℓ,k = βℓ,k + 1;

13 δℓ,k = δk,ℓ =
√

log(2n2K4)
2(βℓ,k+βk,ℓ) ;

14 r̂ℓ,k = βℓ,k

βk,ℓ+βℓ,k
;

15 r̂k,ℓ = βk,ℓ

βk,ℓ+βℓ,k
;

16 if r̂ℓ,k − δℓ,k ≥ 0.5 then
17 Remove k from A;
18 end
19 if r̂k,ℓ − δk,ℓ ≥ 0.5 or cℓ = n then
20 Remove ℓ from A;
21 end
22 end
23 end

Algorithm 34: Upper-Confidence-Bound-Round-Robin (UCB-RR)
1 Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types), discretization

step ∆;
2 while U is not empty do
3 U is the set of types with at least one remaining job;
4 Calculate type indices uk for all jobs k ∈ U according to Equation (7.29);
5 Choose type ℓ ∈ arg maxℓ∈U uℓ;
6 Run a job of type ℓ for ∆ time units;
7 end

218

7.A. APPENDIX

Cost Decomposition

We start with a cost decomposition, which relates the performance of preemptive algorithms to
the one of FTPP. We limit ourselves to the natural family of preemptive algorithms that do
not simultaneously run two tasks of the same type and is formally defined as follows.
Definition 7.A.14. Denote bℓi and eℓi the beginning and end dates of the computation of the
ith job of type ℓ. A type-wise non-preemptive algorithm is an algorithm that computes jobs
of the same type one after another, i.e., ∀i ∈ [n], ∀k ∈ [K], eℓi ≤ bℓi+1.

This property is very natural, as for exponential durations without knowledge of the real
execution times, there is no advantage in simultaneously running two tasks of the same type.
Specifically, all of our suggested algorithms fall under this definition.

For such algorithms, the cumulative cost can be compared to FTPP using the following
lemma.
Lemma 7.A.15 (Cost of type-wise non-preemptive algorithms). Any type-wise non-preemptive
algorithm A has the following upper bound on its cost:

E[CA] ≤ E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ.

Proof. Recall that if DA
ij is the amount of time a job i delays job j when running algorithm A,

then we can write the cost of algorithm A as

CA =
N∑
i=1

Pj +
N∑
i=1

N∑
j=i+1

(
DA
ij +DA

ji

)
.

Moreover, if bi,ei are the start (end) time of job i, it always holds that DA
ij ≤ Pi1

{
bi < ej

}
.

Using this inequality and dividing the summation into types, we get

E[CA] ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
E
[
P ℓi 1

{
bℓi < ekj

}]
+ E

[
P kj 1

{
bkj < eℓi

}])

+
K∑
ℓ=1

 n∑
i=1

E[P ℓi] +
n∑

j=i+1
E[P ℓi 1

{
bℓi < eℓj

}
] + E[P ℓj 1

{
bℓj < eℓi

}
]

 .
Since jobs are independent, the expected duration of a job of type ℓ is λℓ, independently of its
start time. Also, as the algorithm is type-wise non-preemptive, for all ℓ ∈ [K], j > i, we have
1
{
bℓj < eℓi]

}
= 0 and 1

{
bℓi ≤ eℓj]

}
= 1. Thus,

E[CA] ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
bℓi < ekj

}]
+ λkE

[
1
{
bkj < eℓi

}])
+

K∑
ℓ=1

 n∑
i=1

λℓ +
n∑

j=i+1
λℓ


=

K∑
ℓ=1

λℓ
n(n+ 1)

2 +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
bℓi < ekj

}]
+ λkE

[
1
{
bkj < eℓi

}])
︸ ︷︷ ︸

(i)

. (7.23)

We can now decompose the event that job i of type ℓ started before job j of type k finished:

1
{
bℓi < ekj

}
= 1

{
bℓi < ekj ≤ eℓi

}
+ 1

{
eℓi < ekj

}
= 1

{
bℓi < ekj ≤ eℓi

}
+ 1

{
eℓi < bkj

}
+ 1

{
bkj ≤ eℓi < ekj

}
.

219

CHAPTER 7. SCHEDULING

{
eℓi < bkj

}
is the event that job i of type ℓ was fully computed before job j of type k started.{

bℓi < ekj ≤ eℓi
}

is the event that job i of type ℓ was running when job j of type k finished, and
reciprocally for

{
bkj ≤ eℓi < ekj

}
. This gives the following decomposition:

(i) =
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
eℓi < bkj

}]
+ λkE

[
1
{
ekj < bℓi

}])
︸ ︷︷ ︸

(ii)

+
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

λℓE
[
1
{
bℓi < ekj ≤ eℓi

}]
+ 1

{
bkj ≤ eℓi < ekj

}
︸ ︷︷ ︸

(iii)

+
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

λkE
[
1
{
bkj < eℓi ≤ ekj

}
+ 1

{
bℓi ≤ ekj < eℓi

}]
︸ ︷︷ ︸

(iv)

Since the algorithm is type-wise non-preemptive, a single job of each type may run at a given
time. This implies that any job of type ℓ cannot be in a middle of two different jobs of type k,
namely

∀(ℓ, k) ∈ [K]2, ℓ ̸= k, ∀(i, j) ∈ [n]2,
n∑
j=1

1
{
bkj ≤ eℓi < ekj

}
≤ 1.

The same conclusion similarly holds for all other sums in terms (iii) and (iv), and therefore
implies the following bound:

(iii) + (iv) ≤ n
K∑
ℓ=1

K∑
k=ℓ+1

(λℓ + λk) = (K − 1)n
K∑
ℓ=1

λℓ.

We also have 1
{
ekj < bℓi

}
≤ 1− 1

{
bℓi < ekj

}
, thus

(ii) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓ + (λk − λℓ)E

[
1
{
ekj < bℓi

}])

= n2
K∑
ℓ=1

K∑
k=ℓ+1

(K − ℓ)λℓ +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
.

Combining everything into Equation (7.23), we get:

E[CA] ≤
K∑
ℓ=1

λℓ
n(n+ 1)

2 + n2
K∑
ℓ=1

K∑
k=ℓ+1

(K − ℓ)λℓ

+
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ

= E[CFTPP] +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ,

where the last equality is by Theorem 7.A.2.

220

7.A. APPENDIX

Upper bound for ETC-RR

Proposition 7.A.16. The following bound holds:

E[CETC-RR] ≤ E[CFTPP] + 12K
n

E[COPT] + 4n
√
n log(2n2K3)

K∑
ℓ=1

(K − ℓ)2λℓ. (7.24)

Good Event. For any couple (k, ℓ), if at some iteration βk,ℓ + βℓ,k = m, we define the
more precise notation for r̂ℓ,k at that iteration as r̂mℓ,k. Notice that m represents the number of
times that jobs of either type were completed while both were active. Therefore, m can have
2n different values, where the extreme case m = 2n− 1 is, for example, when n− 1 jobs of type
k are first completed and only then all n jobs of type ℓ are completed.

Let us start by showing that the estimators r̂ℓ,k well-concentrate around their expectations.
Exponential random variables are memory-less, i.e., if Xi ∼ Exp(λi), the law of Xi conditionally
on it being larger than a constant is unchanged. In particular, ‘resetting’ (replacing by an
independent copy) an exponential random variable at any time that precedes its activation
does not affect its distribution. We employ reset when one of the types is completed, or when
either of the types is removed from A (and then we discard the comparison between types k, ℓ),
and say that way a comparison is triggered, it is taken from an i.i.d. sequence of comparisons.
Specifically, given a deterministic number of comparisons m between types k, ℓ, we write

r̂mℓ,k
L= 1
m

m∑
i=1
1{Xℓ

i < Xk
i },

with (Xℓ
i)i∈[m] and (Xk

i)i∈[m] independent exponential variables of parameters λℓ and λk
respectively.

Finally, E be the event that all comparisons between k, ℓ are well-concentrated, namely,

E =

∀(k, ℓ) ∈ [K]2, ∀m ∈ [2n],
∣∣∣∣∣r̂mℓ,k − λk

λℓ + λk

∣∣∣∣∣ < δ(m,n)


with δ(m,n) =

√
log(2n2K3)

2m , and recall that for any m ∈ [2n], E[r̂mℓ,k] = λk
λℓ+λk

. By Lemma 7.A.11
applied with α = 2, and a union bound over the K(K−1)

2 possible pairs, we have:

P(E) ≤ 1
nK

. (7.25)

Notice that under E and type ℓ will never be eliminated by a type k with λk ≥ λℓ, since

r̂k,ℓ − δℓ,k <
(

λℓ
λk + λℓ

+ δℓ,k

)
− δℓ,k = λℓ

λk + λℓ
≤ 1

2 ,

so if k is the minimal type in A, then under the good event, it will never be eliminated. Moreover,
type k can only be compared to a type ℓ with λℓ ≤ λk at most

mmax
ℓ,k ≤ min

2n, 8
(
λk + λℓ
λk − λℓ

)2

log(2n2K3)

 := m∗
ℓ,k (7.26)

221

CHAPTER 7. SCHEDULING

since clearly m ≤ 2n and if m ≥ 8
(
λk+λℓ
λk−λℓ

)2
log(2n2K3), then δℓ,k ≤ 1

4
λk−λℓ
λk+λℓ

and

r̂ℓ,k − δℓ,k >
(

λk
λk + λℓ

− δℓ,k

)
− δℓ,k ≥

λk
λk + λℓ

− 2 · 1
4
λk − λℓ
λk + λℓ

= 1
2 .

Cost Analysis. Assume that the active type set A can only change at discrete times
t ∈ {0,∆, 2∆, . . . } ≜ T for some ∆ > 0. We will later take the limit ∆→ 0, which coincides
with the following Algorithm 33. In the following, we denote by A(t) the active type set at
time interval [t, t+ ∆), and U(t) incomplete type set at [t, t+ ∆). Also, let bℓi ∈ T be the start
time of the ith job of the ℓth type and eℓi ∈ T be its end-time (w.l.o.g., if a task ended at a time
t /∈ T , we delay its ending to ⌈ t∆⌉∆). Starting from the cost decomposition of Theorem 7.A.15,
we have

E[CA] ≤ E[CFTPP] + (K − 1)n
K∑
ℓ=1

λℓ +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]

≤ E[CFTPP] + (K − 1)n
K∑
ℓ=1

λℓ +
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
n∑
j=1

E
[
1
{
ekj < bℓn

}]
︸ ︷︷ ︸

(∗)

. (7.27)

We focus our attention on bounding term (∗). For any t ∈ T and every o ∈ [K], define the
events

Fo(t) =
{
o ∈ A(t), ∀p < o : p /∈ A(t)

}
, F̄o(t) =

{
∀p ≤ o : p /∈ A(t)

}
.

These events capture the notion of phases, namely, when Fo is active, the o is the type of the
smallest mean that has not been finished. Then, we can write

(∗) =
n∑
j=1

E
[
1
{
ekj < bℓn

}]

=
n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆, ekj < bℓn

}]
(1)
≤

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆, ℓ ∈ U(t)

}]

≤
ℓ∑

o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆,Fo(t)

}]
+

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆, ℓ ∈ U(t), F̄ℓ(t)

}]
(2)
≤

ℓ∑
o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆,Fo(t)

}]
+

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆, E

}]
(3)
≤

ℓ∑
o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆,Fo(t)

}]
︸ ︷︷ ︸

(i)

+nP(E).

(1) is true since the event
{
ekj = t+ ∆, ekj < bℓn

}
implies that bℓn > t, so type ℓ was not completed

at time t. (2) holds since under E , the type of the minimal duration expected is never eliminated,
so if ℓ ∈ U(t), it is impossible that p /∈ A(t) for all p ≤ ℓ (either there is a type p < ℓ, p ∈ U(t)

222

7.A. APPENDIX

that should not have been eliminated, or type ℓ should not have been eliminated since it is still
incomplete). Finally, (3) is since every job can only end at one time point.

We now further continue to bound term (i). To do so, observe that if ekj = t + ∆, then
k ∈ A(t) and the task j of this type was completed at the interval [t, t+ ∆). Moreover, since
the job durations are exponential, the completion of any job in A(t) at interval [t, t + ∆) is
independent of the events that occurred until time t. Taking into consideration that only one
job of any type can run in every interval, the two following equalities hold:

E
[
1
{
ekj = t+ ∆,Fo(t)

}]
=
(
1− exp(−∆/λk)

)
E
[
1
{
Fo(t), k ∈ A(t)

}]
E
[
1
{
ekj = t+ ∆ or eoj = t+ ∆,Fo(t), k ∈ A(t)

}]
=
(
1− exp(−∆/λk −∆/λo)

)
E
[
1
{
Fo(t), k ∈ A(t)

}]
.

Thus, (i) can be written as

(i) =
ℓ∑

o=1

(
1− exp(−∆/λk)

)(
1− exp(−∆/λk −∆/λo)

) n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆ or eoj = t+ ∆,Fo(t), k ∈ A(t)

}]

≤
ℓ∑

o=1

(
1− exp(−∆/λk)

)(
1− exp(−∆/λk −∆/λo)

)E
 n∑
j=1

∑
t∈T

1
{
ekj = t+ ∆ or eoj = t+ ∆,Fo(t), k ∈ A(t), E

}
︸ ︷︷ ︸

(ii)

+
ℓ∑

o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+ ∆ or eoj = t+ ∆,Fo(t), E

}]
︸ ︷︷ ︸

(iii)

The bad-event term can be bounded by

(iii) ≤ E

1{E} ℓ∑
o=1

n∑
j=1

∑
t∈T

1
{
ekj = t+ ∆ or eoj = t+ ∆,Fo(t)

}
≤ (ℓ+ 1)nP(E).

For the second term, recall that the ℓth phase, in which type ℓ is the smallest one that was not
completed, is represented by the event Fℓ(t). Furthermore, given the good event, the smallest
type is never eliminated. so once Fℓ(t) becomes active, it would end only when all jobs of type
ℓ are completed. In other words, the time indices in which Fℓ(t) hold form a (possibly empty)
interval I∆(ℓ), which represents the ℓth phase. Thus, term (ii) counts the expected number of
times that jobs of either type k or o could finish in this interval while type k is still active.

Now, we take the limit ∆→ 0 (and denoting the limit interval I∆(ℓ)→ I(ℓ)). Notice that
the limit and expectation are interchangeable by the bounded convergence theorem, as the
number of times a job of either type k or o can be completed is bounded by 2n.

(ii) →
∆→0

ℓ∑
o=1

λo
λk + λo

E

 ∑
t∈I(o)

n∑
j=1

1
{
ekj ∈ I(o) or eoj ∈ I(o), k ∈ A(t), E

}
≤

ℓ∑
o=1

λo
λk + λo

m∗
o,k.

223

CHAPTER 7. SCHEDULING

The inequality holds since under the good event, at any interval where both types k and o with
λo ≤ λk are active, there can be at most m∗

o,k comparisons. Substituting (ii) and (iii) back into
(i), we get

(i) ≤
ℓ∑

o=1

λo
λk + λo

m∗
o,k + (ℓ+ 1)nP(E),

and yet again, substituting this, through (∗), back into Equation (7.27), yields

E[CA]− E[CFTPP]

≤ (K − 1)n
K∑

ℓ=1
λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

 ℓ∑
o=1

λo

λk + λo
m∗

o,k + (ℓ+ 2)nP(E)


≤ (K − 1)n

K∑
ℓ=1

λℓ + 2Kn2P(E)
K∑

ℓ=1

K∑
k=ℓ+1

(λk − λℓ)

+
K∑

ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
ℓ∑

o=1

λo

λk + λo
min

{
2n, 8

(
λk + λo

λk − λo

)2
log(2n2K3)

}
(Equation (7.26))

≤ (K − 1)n
K∑

ℓ=1
λℓ + 2K2n2P(E)

K∑
ℓ=1

λℓ

+
K∑

ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

n(λk − λℓ)
λo

λk + λo
4
√
n log(2n2K3)λk + λo

λk − λo
(min {a, b} ≤

√
ab,∀a, b ≥ 0)

≤
(

2K − 1
n

+ 4K
n

)
E[COP T] (Equation (7.25) and (7.6))

+ 4n
K∑

ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

λo

√
n log(2n2K3) (λo ≤ λℓ)

≤ 6K
n

E[COP T] + 4n
√
n log(2n2K3)

K∑
ℓ=1

ℓ∑
o=1

(K − ℓ)λo

≤ 6K
n

E[COP T] + 4n
√
n log(2n2K3)

K∑
ℓ=1

(K − ℓ)2λℓ

Analysis of UCB-RR

Proposition 7.A.17. The following bound holds for any ∆ ≤ λ1
4 and n ≥ max(20, 10 ln(K)) :

E[CUCB-RR] ≤E[CFTPP] + 12K
n

E[COPT] + 6n
√

2n log(2n2K2)
K∑
ℓ=1

(K − ℓ)λℓ. (7.28)

Assume discretization of the time to units of ∆, as was done in the analysis of ETC-RR.
Specifically, assume that the active job only changes at times t ∈ {0,∆, 2∆, . . . } ≜ T for some
∆ > 0. We then denote the index of the discretization step by h = t

∆ + 1 ∈ {1, 2, . . . }.
For each job type ℓ ∈ [K], we introduce Tℓ(h), the number of times job type ℓ has been

chosen up to iteration h. Due to the fact that job durations are exponential, their increments
our independent, and increments of length ∆ of jobs of type ℓ have a termination probability of
µℓ = 1− e− ∆

λk . Leveraging this, let (xsℓ)s≥1 be sequences of i.i.d Bernoulli random variables of

224

7.A. APPENDIX

mean µℓ,. We then fix our probability space for the analysis s.t. when choosing a job of type ℓ
for the sth time, it is terminated if xsℓ = 1. Notice that while we allow the sequence (xsℓ)s≥1 to
have more than n job terminations, it is of no consequence of the analysis, as the algorithm will
never choose a job type after its nth job was terminated.

Next, define the empirical means after running m discretized intervals of type-ℓ jobs as
µ̂ℓ(m) := 1

m

∑m
s=1 x

s
ℓ , and the index at iteration h as

uℓ(h) = max

µ̃ ∈ [0, 1] : d
(
µ̂ℓ(Tℓ(t− 1)), µ̃

)
≤

log
(
n2K2

)
Tℓ(t− 1)

 . (7.29)

Starting from the cost decomposition of Theorem 7.A.15, we have

E[CA] ≤ E[CFTPP] + (K − 1)n
K∑
ℓ=1

λℓ +
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]

≤ E[CFTPP] + (K − 1)n
K∑
ℓ=1

λℓ +
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
n∑
j=1

E
[
1
{
ekj < eℓn

}]
︸ ︷︷ ︸

(∗)

. (7.30)

Denote a(h) ∈ [K], the type of job chosen at iteration h, and let εℓ,k > 0 be some constant that
will be determined later in the proof. Notice that if ekj < eℓn, then there must be an iteration
where type ℓ was not completed and a the jth job of type k were played and completed:

(∗) ≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1

{
a(h) = k, ℓ ∈ U(h), xTk(h)

k = 1
}]

=
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1

{
a(h) = k, ℓ ∈ U(h), uℓ(h) ≤ uk(h), xTk(h)

k = 1
}]

≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1

{
a(h) = k, ℓ ∈ U(h), uk(h) ≥ uℓ(h) ≥ µℓ − εℓ, xTk(h)

k = 1
}]

+
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1

{
a(h) = k, ℓ ∈ U(h), uℓ(h) ≤ µℓ − εℓ,k, xTk(h)

k = 1
}]

(1)
≤

∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)E
[
1
{
a(h) = k, uk(h) ≥ µℓ − εℓ

}]
︸ ︷︷ ︸

(i)

+
K∑
ℓ=1

K∑
k=ℓ+1

n2(λk − λℓ)P
(
∃h s.t. uℓ(h) ≤ µℓ − εℓ

)
︸ ︷︷ ︸

(ii)

(7.31)

In (1), we get the first line by the memoryless property of exponential random variables, noting
that all the events inside the indicator are determined before the beginning of the hth iteration.
The second line of this relation uses the fact that all tasks will eventually be completed, so∑∞
h=1 E

[
1

{
a(h) = k, x

Tk(h)
k = 1

}]
= n.

225

CHAPTER 7. SCHEDULING

Bounding term (i). We now bound the first term of the decomposition in Equation (7.31).

(i) :=
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)E
[
1
{
a(h) = k, uk(h) ≥ µℓ − εℓ

}]

=
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)
∞∑
h=1

E
[
1
{
a(h) = k, uk(h) ≥ µℓ − εℓ

}]
.

Denoting d(p, q) = d(p, q)1{p ≤ q}, we have

{µℓ − εℓ,k ≤ uk(h)} =⇒ {µ̂k(Tk(h)) ≤ µℓ − εℓ,k and d(µ̂k(Tk(h)), µℓ − εℓ,k) ≤
log

(
n2K2

)
Tk(h) }

or {µ̂k(Tk(h)) ≥ µℓ − εℓ,k},

which is equivalent to
{
d(µ̂k(Tk(h)), µℓ − εℓ,k) ≤

log(n2K2)
Tk(h)

}
. Thus, we can bound

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)
∞∑
h=1

E

1
a(h) = k, d(µ̂k(Tk(h)), µℓ − εℓ,k) ≤

log
(
n2K2

)
Tk(h)




≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)
∞∑
s=1

E

d(µ̂k(s), µℓ − εℓ,k) ≤
log

(
n2K2

)
Tk(h)

 ,
where the second inequality is since Tk(h) increases by 1 every time that a(h) = k. This can be
naturally bounded using the following lemma.

Lemma 7.A.18. Let X1, X2, . . . be a sequence of Bernoulli independent random variables with
mean µ, and let µ̂s = 1

s

∑s
t=1Xt be the sample mean. Further, let a > 0, µ′ > µ and define

κ = ∑∞
s=1 1

{
d(µ̂s, µ′) ≤ a

s

}
. Then,

E[κ] ≤ inf
ε∈(0,µ′−µ)

(
a

d(µ+ ε, µ′) + 1
d (µ+ ε, µ)

)
.

Proof. The proof closely follows the one of (Lattimore and Szepesvári, 2020, Lemma 10.8). For
completeness, we now state the well-known Chernoff bound.

Lemma 7.A.19 (Chernoff’s bound, e.g., Lattimore and Szepesvári (2020), Lemma 10.3). Let
X1, X2, . . . , XT be a sequence of Bernoulli independent random variables with mean µ, and let
µ̂ = 1

T

∑T
t=1Xt be the sample mean. Then, for a ≥ 0:

P(d(µ̂, µ) ≥ a, µ̂ ≤ µ) ≤ exp(−Ta).

226

7.A. APPENDIX

Let ϵ ∈ (0, µ′ − µ) and u = a
d(µ+ε,µ′) . Then, it holds that

E[κ] =
∞∑
s=1

P
{
d(µ̂s, µ′) ≤ a

s

}

=
∞∑
s=1

P
{
µ̂s ≥ µ′ or d(µ̂s, µ′) ≤ a

s

}

≤
∞∑
s=1

P
{
µ̂s ≥ µ+ ε or d(µ̂s, µ′) ≤ a

s

}
(µ′ > µ+ ϵ)

≤
∞∑
s=1

P
{
µ̂s ≥ µ+ ε or d(µ+ ε, µ′) ≤ a

s

}
(d(·, µ′) is decreasing in [0, µ′])

≤u+
∞∑
s=1

P {µ̂s ≥ µ+ ε}

≤u+
∞∑
s=1

∞∑
s=1

exp
(
−sd(µ+ ϵ, µ)

)
(Chernoff’s bound)

≤ a

d(µ+ ε, µ′) + 1
d (µ+ ε, µ) ,

and the proof is concluded by taking the infimum over all ε ∈ (0, µ′ − µ).

Now, assume w.l.o.g. that λk > λℓ (or, equivalently, µℓ < µk) for all k > ℓ; otherwise, terms
where λk = λℓ in (i) will be equal to 0. Then, letting κk,ℓ = ∑∞

s=1 1

{
d(µ̂k(s), µℓ − εℓ,k) ≤

log(n2K2)
s

}
,

the last lemma implies that

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)E[κk,ℓ]

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)

 log
(
n2K2

)
d(µk + εk,ℓ, µℓ − εℓ)

+ 1
d
(
µk + εk,ℓ, µk

)
 (7.32)

for some εk,ℓ ∈ (0, µℓ − εℓ,k − µk) that will be determined later.

Bounding term (ii). We next focus on bounding the probabilities at the second summation
of Equation (7.31). To do so, we prove the following lemma, which bounds each of the summands
of term (ii).

Lemma 7.A.20. The following bound holds: P
(
∃h s.t. uℓ(h) ≤ µℓ − εℓ,k

)
≤ µℓ

n2K2d(µℓ−εℓ,k,µℓ) .

Proof. Define Smax
ℓ := ∑∞

h=1 1
{
a(h) = ℓ

}
, the number of iterations ℓ is picked by the algorithm.

227

CHAPTER 7. SCHEDULING

We have:

P
(
∃h s.t. uℓ(h) ≤ µℓ − εℓ,k

)
= P

∃h s.t. µ̂ℓ(Tℓ(h)) ≤ µℓ − εℓ,k and d(µ̂ℓ(Tℓ(h)), µℓ − εℓ,k) ≥
log

(
n2K2

)
Tℓ(h)


= P

∃s ≤ Smax
ℓ s.t. µ̂ℓ(s) ≤ µℓ − εℓ,k and d(µ̂ℓ(s), µℓ − εℓ,k) ≥

log
(
n2K2

)
s


≤ P

∃1 ≤ s <∞ s.t. µ̂ℓ(s) ≤ µℓ − εℓ,k and d(µ̂ℓ(s), µℓ − εℓ,k) ≥
log

(
n2K2

)
s

 .

Now, observe that the empirical means µ̂ℓ decrease in intervals without successes. Namely,
if a < b are time indices such that xaℓ = 1, xbℓ = 1 and for all s ∈ [a+ 1, b− 1], xsℓ = 0, then for
any s ∈ [a, b− 1], it holds that µ̂ℓ(s) ≥ µ̂ℓ(b− 1). We thus have:

P

∃1 ≤ s <∞ : d
(
µ̂ℓ(s), µℓ − εℓ,k

)
>

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k


= P

∃1 ≤ s <∞ : d
(
µ̂ℓ(s), µℓ − εℓ,k

)
>

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k, xs+1
ℓ = 1

 .
Using the union bound, this implies

P
(
∃h s.t. uℓ(h) ≤ µℓ − εℓ,k

)
≤

∞∑
s=1

P

d (µ̂ℓ(s), µℓ − εℓ,k) > log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k, and xs+1
ℓ = 1


=

∞∑
s=1

P
(
xs+1
ℓ = 1

)
P

d (µ̂ℓ(s), µℓ − εℓ,k) > log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k|xs+1
ℓ = 1


=

∞∑
s=1

µℓP

d (µ̂ℓ(s), µℓ − εℓ,k) > log
(
n2K2

)
s

, µ̂ℓ(s) < µℓ − εℓ,k


≤

∞∑
s=1

µℓP

d (µ̂ℓ(s), µ) > log
(
n2K2

)
s

+ d(µℓ − εℓ,k, µℓ), µ̂ℓ(s) < µℓ

 ,
where we used the fact that the sequence xsℓ is independent and the last inequality is by (Lattimore
and Szepesvári, 2020, Lemma 10.2, (c)). Next, using Chernoff’s bound (Theorem 7.A.19), we

228

7.A. APPENDIX

get

P
(
∃h s.t. uℓ(h) ≤ µℓ − εℓ,k

)
≤ µℓ

∞∑
s=1

exp

−s
d(µℓ − εℓ,k, µℓ) +

log
(
n2K2

)
s




≤ µℓ
n2K2

∞∑
s=1

exp
(
−sd(µℓ − εℓ,k, µℓ)

)
≤ µℓ
n2K2d(µℓ − εℓ,k, µℓ)

,

which concludes the proof of Theorem 7.A.20.

Finally, substituting back into (ii) leads to the bound

(ii) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n2(λk − λℓ)
µℓ

n2K2d(µℓ − εℓ,k, µℓ)

= 1
K2

K∑
ℓ=1

K∑
k=ℓ+1

µℓ(λk − λℓ)
d(µℓ − εℓ,k, µℓ)

. (7.33)

Combining both bounds.

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

 µk log
(
n2K2

)
d(µk + εk,ℓ, µℓ − εℓ,k)

+ µk

d
(
µk + εk,ℓ, µk

)


+
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
µℓ

K2d(µℓ − εℓ,k, µℓ)
.

We now use a local refinement of Pinsker’s inequality Garivier et al. (2019):

d(p, q) ≥ 1
2 max(p, q)(p− q)2.

This implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

2µk
(
µℓ − εℓ,k

)
log

(
n2K2

)
(µℓ − εℓ,k − µk − εk,ℓ)2 + 2µk(µk + εk,ℓ)

ε2
k,ℓ


+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2
ℓ,k

.

Case 1: Assume µℓ ≥ 5µk. Setting εk,ℓ = µk, we obtain,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

2µk(µℓ − εℓ,k) log
(
n2K3

)
(µℓ − εℓ,k − 2µk)2 + 4

+
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2
ℓ,k

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

2µk(µℓ − εℓ,k) log
(
n2K3

)
(3

5µℓ − εℓ,k)2 + 4

+
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2
ℓ,k

229

CHAPTER 7. SCHEDULING

Setting εℓ,k = 1
5µℓ, we get:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

10µk log
(
n2K2

)
µℓ

+ 4

+
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
50
K2 .

We have µk = 1− e− ∆
λk ≤ ∆

λk
, and if ∆ ≤ 1

4λℓ,
1
µℓ
≤ 1.13λℓ

∆ , this implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

nλℓ11.3 log
(
n2K2

)
+

K∑
ℓ=1

λℓ

(50
K

+ 4nK
)
.

Since K ≥ 2, this implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

nλℓ11.3 log
(
n2K2

)
+

K∑
ℓ=1

λℓ (12.5 + 4n)K.

Case 2: Assume µℓ ≤ 5µk. Setting εk,ℓ = (µℓ − µk)/4 and εℓ,k = (µℓ − µk)/4, we obtain,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
µ2
k

(µℓ − µk)2

(
32 log

(
n2K2

)
+ 64

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
32µ2

ℓ

K2(µℓ − µk)2 .

It also holds that (∗) ≤∑K
ℓ=1

∑K
k=ℓ+1 n

2(λk − λℓ). Thus:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
4µk

(µℓ − µk)

√
2n
(
log

(
n2K3)+ 4

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
4
√

2µℓn
K(µℓ − µk)

.

If ∆ ≤ 1
4λℓ, we have:

1
µℓ − µk

≤ 1.46 λkλℓ
(λk − λℓ)

.

We thus obtain:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

6nλℓ
√

2n
(
log

(
n2K2)+ 4

)
+

K∑
ℓ=1

9nλℓ.

For any n ≥ max(10, 10 log(K)), we have:

ln(n2K2) ≤ 1
2n

which implies 6nλℓ
√

2n
(
log

(
n2K2)+ 4

)
≥ 11.3 log

(
n2K2

)
. Thus for any n ≥ max(10, 10 log(K))

and ∆ ≤ 1
4λℓ,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

6nλℓ
√

2n
(
log

(
n2K2)+ 4

)
+ 10K

n
E[COPT].

230

7.A. APPENDIX

7.A.4 Additional experiments

We implemented the Bayesian approach of Marbán et al. (2011) that we call LSEPT. We used
an uninformative prior α = 1, w = 0 (the same for all job types). LSEPT is then in essence a
greedy algorithm. Whenever a job finishes, it runs until completion a job whose type has the
lowest empirical mean size (computed across jobs that have been processed so far).

We ran all algorithms with K = 2, where jobs of type 1 have a mean size λ1 = 0.8 and jobs
of type 2 have a mean λ2 = 1.

As can be seen in Figure 7.3, LSEPT has better mean performance than RR, a non-adaptive
method. However, it has a large variance and its performance does not improve with n. This is
typical of the performance of greedy algorithms: since the algorithm commits very early, it can
either get very good or very bad performances. We plot the mean over 200 seeds.

Figure 7.3: CR on jobs with 2 different types. K = 2, λ2 = 1 and λ1 = 0.8, n takes a grid
of values.

231

Bibliography

Aamand, A., Chen, J., and Indyk, P. (2022). (optimal) online bipartite matching with degree
information. Advances in Neural Information Processing Systems, 35:5724–5737.

Akbarpour, M., Alimohammadi, Y., Li, S., and Saberi, A. (2021). The value of excess supply in
spatial matching markets.

Anandkumar, A., Michael, N., and Tang, A. (2010). Opportunistic spectrum access with
multiple users: Learning under competition. In 2010 Proceedings IEEE INFOCOM, pages
1–9. IEEE.

Arnosti, N. (2019). Greedy matching in bipartite random graphs. working paper.

Arora, R., Dekel, O., and Tewari, A. (2012). Online bandit learning against an adaptive
adversary: from regret to policy regret. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, pages 1747–1754.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77.

Bachmann, S. and Peccati, G. (2015). Concentration bounds for geometric poisson functionals:
Logarithmic sobolev inequalities revisited.

Backstrom, L., Boldi, P., Rosa, M., Ugander, J., and Vigna, S. (2012). Four degrees of separation.

Bansal, N. and Dhamdhere, K. (2007). Minimizing weighted flow time. ACM Transactions on
Algorithms (TALG), 3(4):39–es.

Barabási, A.-L., Albert, R., and Jeong, H. (2000). Scale-free characteristics of random networks:
the topology of the world-wide web. Physica A: statistical mechanics and its applications,
281(1-4):69–77.

Basu, S., Sankararaman, K. A., and Sankararaman, A. (2021). Beyond log2(t) regret for
decentralized bandits in matching markets. arXiv preprint arXiv:2103.07501.

Becchetti, L. and Leonardi, S. (2004). Nonclairvoyant scheduling to minimize the total flow
time on single and parallel machines. Journal of the ACM, 51(4):517–539.

Bender, E. A. and Canfield, E. R. (1978). The asymptotic number of labeled graphs with given
degree sequences. J. Combinatorial Theory Ser. A, 24(3):296–307.

Berge, C. (1957). Two theorems in graph theory. Proceedings of the National Academy of
Sciences, 43(9):842–844.

232

BIBLIOGRAPHY

Berger, J. (1899). Schach-jahrbuch fur 1899/1900 : fortsetzung des schach-jahrbuches fur
1892/93. Verlag von Veit.

Birkhoff, G. (1946). Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser. A,
5:147–154.

Birnbaum, B. and Mathieu, C. (2008). On-line bipartite matching made simple. SIGACT News,
39(1):80–87.

Bistritz, I. and Leshem, A. (2018). Distributed multi-player bandits-a game of thrones approach.
Advances in Neural Information Processing Systems (NeurIPS).

Blaszczyszyn, B. (2017). Lecture Notes on Random Geometric Models — Random Graphs,
Point Processes and Stochastic Geometry. Lecture.

Blum, A. and Monsour, Y. (2007). Learning, regret minimization, and equilibria. Algorithmic
Game Theory.

Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European J. Combin., 1(4):311–316.

Bonnefoi, R., Besson, L., Moy, C., Kaufmann, E., and Palicot, J. (2017). Multi-armed bandit
learning in iot networks: Learning helps even in non-stationary settings. In International
Conference on Cognitive Radio Oriented Wireless Networks, pages 173–185. Springer.

Bordenave, C., Lelarge, M., and Salez, J. (2013). Matchings on infinite graphs. Probability
Theory and Related Fields, 157(1-2):183–208.

Borodin, A. and El-Yaniv, R. (2005). Online computation and competitive analysis. cambridge
university press.

Borodin, A., Karavasilis, C., and Pankratov, D. (2018). Greedy bipartite matching in random
type poisson arrival model. arXiv preprint arXiv:1805.00578.

Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., and Williamson, D. P. (1996). Adversarial
queueing theory. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 376–385.

Boursier, E. and Perchet, V. (2019). SIC-MMAB: Synchronisation involves communication in
multiplayer multi-armed bandits. In NIPS Proceedings.

Boursier, E. and Perchet, V. (2020). Selfish robustness and equilibria in multi-player bandits.
In Conference on Learning Theory, pages 530–581. PMLR.

Brubach, B., Grammel, N., Ma, W., and Srinivasan, A. (2021). Follow your star: New
frameworks for online stochastic matching with known and unknown patience. In Banerjee,
A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages
2872–2880. PMLR.

Brubach, B., Sankararaman, K. A., Srinivasan, A., and Xu, P. (2019). Online stochastic
matching: New algorithms and bounds.

Bubeck, S. (2014). Convex optimization: Algorithms and complexity. arXiv preprint
arXiv:1405.4980.

233

BIBLIOGRAPHY

Bubeck, S., Budzinski, T., and Sellke, M. (2020). Cooperative and stochastic multi-player
multi-armed bandit: Optimal regret with neither communication nor collisions. arXiv preprint
arXiv:2011.03896.

Cai, X., Wu, X., and Zhou, X. (2014). Optimal Stochastic Scheduling, volume 4. Springer.

Cai, X. and Zhou, X. (2000). Asymmetric earliness and tardiness scheduling with exponential
processing times on an unreliable machine. Annals of Operations Research, 98(1):313–331.

Cai, X. and Zhou, X. (2005). Single-machine scheduling with exponential processing times and
general stochastic cost functions. Journal of Global Optimization, 31(2):317–332.

Calin, O. and Udrişte, C. (2014). Geometric modeling in probability and statistics, volume 121.
Springer.

Cappé , O., Garivier, A., Maillard, O.-A., Munos, R., and Stoltz, G. (2013). Kullback–leibler
upper confidence bounds for optimal sequential allocation. The Annals of Statistics, 41(3).

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge university
press.

Cesa-Bianchi, N. and Lugosi, G. (2012). Combinatorial bandits. Journal of Computer and
System Sciences, 78(5):1404–1422.

Chen, S., Lin, T., King, I., Lyu, M. R., and Chen, W. (2014). Combinatorial pure exploration
of multi-armed bandits. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 27, pages
379–387.

Chung, F., Lu, L., and Vu, V. (2003). Spectra of random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 100(11):6313–6318.

Combes, R., Shahi, M. S. T. M., Proutiere, A., et al. (2015). Combinatorial bandits revisited.
In Advances in Neural Information Processing Systems, pages 2116–2124.

Cunningham, A. A. and Dutta, S. K. (1973). Scheduling jobs, with exponentially distributed
processing times, on two machines of a flow shop. Naval Research Logistics Quarterly,
20(1):69–81.

Cuvelier, T., Combes, R., and Gourdin, E. (2021). Statistically efficient, polynomial time
algorithms for combinatorial semi bandits.

Degenne, R. and Perchet, V. (2016). Combinatorial semi-bandit with known covariance. In
NIPS 2016 (Conference on Neural Information Processing Systems).

Devanur, N., Jain, K., and Kleinberg, R. (2013). Randomized primal-dual analysis of ranking
for online bipartite matching.

Devanur, N. R., Sivan, B., and Azar, Y. (2012). Asymptotically optimal algorithm for stochastic
adwords. In Proceedings of the 13th ACM Conference on Electronic Commerce, EC ’12, page
388–404, New York, NY, USA. Association for Computing Machinery.

Dufossé, F., Kaya, K., Panagiotas, I., and Uçar, B. (2018). Further notes on birkhoff–von
neumann decomposition of doubly stochastic matrices. Linear Algebra and its Applications,
554:68–78.

234

BIBLIOGRAPHY

Dürr, C., Erlebach, T., Megow, N., and Meißner, J. (2020). An adversarial model for scheduling
with testing. Algorithmica, 82(12):3630–3675.

Dyer, M., Frieze, A., and Pittel, B. (1993). The average performance of the greedy matching
algorithm. The Annals of Applied Probability, pages 526–552.

Enriquez, N., Faraud, G., Ménard, L., and Noiry, N. (2019). Depth first exploration of a
configuration model. arXiv preprint arXiv:1911.10083.

Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On power-law relationships of the internet
topology. In Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’99, page 251–262, New York, NY, USA.
Association for Computing Machinery.

Feldman, J., Mehta, A., Mirrokni, V., and Muthukrishnan, S. (2009). Online stochastic matching:
Beating 1-1/e. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science,
pages 117–126. IEEE.

Feng, Y., Niazadeh, R., and Saberi, A. (2021). Two-stage Stochastic Matching with Application
to Ride Hailing, pages 2862–2877.

Freund, D., Lykouris, T., and Weng, W. (2022). Efficient decentralized multi-agent learning in
asymmetric queuing systems. In Conference on Learning Theory, pages 4080–4084. PMLR.

Frieze, A. and Karoński, M. (2016). Introduction to random graphs. Cambridge University
Press.

Fudenberg, D., Drew, F., Levine, D. K., and Levine, D. K. (1998). The theory of learning in
games, volume 2. MIT press.

Gaitonde, J. and Tardos, E. (2020a). Stability and learning in strategic queuing systems. In
Proceedings of the 21st ACM Conference on Economics and Computation, pages 319–347.

Gaitonde, J. and Tardos, E. (2020b). Virtues of patience in strategic queuing systems. arXiv
preprint arXiv:2011.10205.

Gamlath, B., Kapralov, M., Maggiori, A., Svensson, O., and Wajc, D. (2019). Online matching
with general arrivals. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 26–37. IEEE.

Garivier, A. and Kaufmann, E. (2016). Optimal best arm identification with fixed confidence.

Garivier, A., Ménard, P., and Stoltz, G. (2019). Explore first, exploit next: The true shape of
regret in bandit problems. Mathematics of Operations Research, 44(2):377–399.

Georgiadis, L., Neely, M. J., and Tassiulas, L. (2006). Resource allocation and cross-layer
control in wireless networks. Now Publishers Inc.

Glazebrook, K. D. (1979). Scheduling tasks with exponential service times on parallel processors.
Journal of Applied Probability, 16(3):685–689.

Godsil, C. D. (1981). Matchings and walks in graphs. Journal of Graph Theory, 5(3):285–297.

Goel, G. and Mehta, A. (2008). Online budgeted matching in random input models with
applications to adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’08, page 982–991, USA. Society for Industrial and Applied
Mathematics.

235

BIBLIOGRAPHY

Gravin, N., Tang, Z. G., and Wang, K. (2019). Online stochastic matching with edge arrivals.

Gupta, A., Guruganesh, G., Peng, B., and Wajc, D. (2019). Stochastic online metric matching.

Hamada, T. and Glazebrook, K. D. (1993). A bayesian sequential single machine scheduling
problem to minimize the expected weighted sum of flowtimes of jobs with exponential
processing times. Operations Research, 41(5):924–934.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M. H., Brett, M., Haldane, A., del R’ıo, J. F., Wiebe, M., Peterson, P., G’erard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825):357–362.

Hart, S. and Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68(5):1127–1150.

Huang, Z., Shu, X., and Yan, S. (2022). The power of multiple choices in online stochastic
matching. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2022, page 91–103, New York, NY, USA. Association for Computing
Machinery.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(3):90–95.

Jaillet, P. and Lu, X. (2014). Online stochastic matching: New algorithms with better bounds.
Mathematics of Operations Research, 39(3):624–646.

Jiang, L. and Walrand, J. (2009). A distributed csma algorithm for throughput and utility
maximization in wireless networks. IEEE/ACM Transactions on Networking, 18(3):960–972.

Johari, R., Kamble, V., Krishnaswamy, A. K., and Li, H. (2018). Exploration vs. exploitation
in team formation. CoRR, abs/1809.06937.

Kalyanasundaram, B. and Pruhs, K. R. (2000). An optimal deterministic algorithm for online
b-matching. Theoretical Computer Science, 233(1-2):319–325.

Kämpke, T. (1989). Optimal scheduling of jobs with exponential service times on identical
parallel processors. Operations Research, 37(1):126–133.

Karande, C., Mehta, A., and Tripathi, P. (2011). Online bipartite matching with unknown
distributions. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing, STOC ’11, page 587–596, New York, NY, USA. Association for Computing
Machinery.

Karp, R. M., Vazirani, U. V., and Vazirani, V. V. (1990). An optimal algorithm for on-line
bipartite matching. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory
of Computing, STOC ’90, page 352–358, New York, NY, USA. Association for Computing
Machinery.

Katariya, S., Kveton, B., Szepesvári, C., Vernade, C., and Wen, Z. (2017a). Bernoulli rank-1
bandits for click feedback. IJCAI’17, page 2001–2007. AAAI Press.

236

BIBLIOGRAPHY

Katariya, S., Kveton, B., Szepesvari, C., Vernade, C., and Wen, Z. (2017b). Stochastic Rank-1
Bandits. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning Research, pages 392–401, Fort
Lauderdale, FL, USA.

Kaufmann, E., Cappé, O., and Garivier, A. (2016). On the complexity of best-arm identification
in multi-armed bandit models. The Journal of Machine Learning Research, 17(1):1–42.

Koutsoupias, E. and Papadimitriou, C. (1999). Worst-case equilibria. In Annual Symposium on
Theoretical Aspects of Computer Science, pages 404–413. Springer.

Krishnasamy, S., Arapostathis, A., Johari, R., and Shakkottai, S. (2018). On learning the cµ
rule in single and parallel server networks. In 2018 56th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 153–154. IEEE.

Krishnasamy, S., Sen, R., Johari, R., and Shakkottai, S. (2016). Regret of queueing bandits. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc.

Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1):4–22.

Lattimore, T. and Szepesvári, C. (2020). Bandit Algorithms. Cambridge University Press.

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model
selection. Annals of Statistics, pages 1302–1338.

Lawler, E. L. and Labetoulle, J. (1978). On preemptive scheduling of unrelated parallel
processors by linear programming. Journal of the ACM (JACM), 25(4):612–619.

Lee, D. and Vojnovic, M. (2021). Scheduling jobs with stochastic holding costs. Advances in
Neural Information Processing Systems, 34:19375–19384.

Levi, R., Magnanti, T., and Shaposhnik, Y. (2019). Scheduling with testing. Management
Science, 65(2):776–793.

Li, H., Chen, J., Tao, Y., Gro, D., and Wolters, L. (2006). Improving a local learning technique
for queuewait time predictions. In Sixth IEEE International Symposium on Cluster Computing
and the Grid (CCGRID’06), volume 1, pages 335–342. IEEE.

Liu, L. T., Mania, H., and Jordan, M. (2020a). Competing bandits in matching markets. In
International Conference on Artificial Intelligence and Statistics, pages 1618–1628. PMLR.

Liu, L. T., Ruan, F., Mania, H., and Jordan, M. I. (2020b). Bandit learning in decentralized
matching markets. arXiv preprint arXiv:2012.07348.

Lovász, L. and Plummer, M. D. (2009a). Matching theory, volume 367. American Mathematical
Soc.

Lovász, L. and Plummer, M. D. (2009b). Matching theory, volume 367. American Mathematical
Soc.

Magerlein, J. M. and Martin, J. B. (1978). Surgical demand scheduling: a review. Health
services research, 13(4):418.

237

BIBLIOGRAPHY

Mahdian, M. and Yan, Q. (2011). Online bipartite matching with random arrivals: An approach
based on strongly factor-revealing lps. pages 597–606.

Manshadi, V. H., Gharan, S. O., and Saberi, A. (2012). Online stochastic matching: Online
actions based on offline statistics. Mathematics of Operations Research, 37(4):559–573.

Marbán, S., Rutten, C., and Vredeveld, T. (2011). Learning in stochastic machine scheduling.
In International Workshop on Approximation and Online Algorithms, pages 21–34. Springer.

Marshall, A. W., Olkin, I., and Arnold, B. C. (1979). Inequalities: theory of majorization and
its applications, volume 143. Springer.

Mastin, A. and Jaillet, P. (2013). Greedy online bipartite matching on random graphs. arXiv
preprint arXiv:1307.2536.

Mehrabian, A., Boursier, E., Kaufmann, E., and Perchet, V. (2020). A practical algorithm for
multiplayer bandits when arm means vary among players. In International Conference on
Artificial Intelligence and Statistics, pages 1211–1221. PMLR.

Mehta, A. (2012). Online matching and ad allocation. Theoretical Computer Science, 8(4):265–
368.

Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. (2007). Adwords and generalized online
matching. J. ACM, 54(5):22–es.

Miasojedow, B. (2014). Hoeffding’s inequalities for geometrically ergodic markov chains on
general state space. Statistics & Probability Letters, 87:115–120.

Mitzenmacher, M. (2020). Scheduling with predictions and the price of misprediction. In 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

Mitzenmacher, M. and Vassilvitskii, S. (2020). Algorithms with predictions.

Motwani, R., Panigrahy, R., and Xu, Y. (2006). Fractional matching via balls-and-bins. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 487–498. Springer.

Motwani, R., Phillips, S., and Torng, E. (1994). Nonclairvoyant scheduling. Theoretical computer
science, 130(1):17–47.

Neely, M. J., Modiano, E., and Li, C.-P. (2008). Fairness and optimal stochastic control for
heterogeneous networks. IEEE/ACM Transactions On Networking, 16(2):396–409.

Noiry, N., Sentenac, F., and Perchet, V. (2021). Online matching in sparse random graphs:
Non-asymptotic performances of greedy algorithm. In NeurIPS.

Pemantle, R. and Rosenthal, J. S. (1999). Moment conditions for a sequence with negative drift
to be uniformly bounded in lr. Stochastic Processes and their Applications, 82(1):143–155.

Perchet, V. (2014). Approachability, regret and calibration: Implications and equivalences.
Journal of Dynamics & Games, 1(2):181.

Perchet, V. and Rigollet, P. (2013). The multi-armed bandit problem with covariates. The
Annals of Statistics, 41(2).

238

BIBLIOGRAPHY

Perrault, P., Boursier, E., Perchet, V., and Valko, M. (2020). Statistical efficiency of thompson
sampling for combinatorial semi-bandits. In NeurIPS.

Pinedo, M. and Weiss, G. (1985). Scheduling jobs with exponentially distributed processing
times and intree precedence constraints on two parallel machines. Operations Research,
33(6):1381–1388.

Pinedo, M. L. (2012). Scheduling, volume 29. Springer.

Polyanskiy, Y. and Wu, Y. (2014). Lecture notes on information theory. Lecture Notes for
ECE563 (UIUC) and, 6(2012-2016):7.

Rejwan, I. and Mansour, Y. (2020). Top-k combinatorial bandits with full-bandit feedback.
In Kontorovich, A. and Neu, G., editors, Proceedings of the 31st International Conference
on Algorithmic Learning Theory, volume 117 of Proceedings of Machine Learning Research,
pages 752–776, San Diego, California, USA. PMLR.

Robbins, H. (1952). Some aspects of the sequential design of experiments.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of
mathematical statistics, pages 400–407.

Roth, A. E., Sönmez, T., and Ünver, M. U. (2004). Kidney exchange. The Quarterly journal of
economics, 119(2):457–488.

Roughgarden, T. (2010). Algorithmic game theory. Communications of the ACM, 53(7):78–86.

Sankararaman, A., Basu, S., and Sankararaman, K. A. (2020). Dominate or delete: Decentralized
competing bandits with uniform valuation. arXiv preprint arXiv:2006.15166.

Schrage, L. (1968). A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16(3):687–690.

Schulz, A. S. and Moses, N. E. S. (2003). On the performance of user equilibria in traffic
networks. In SODA, volume 3, pages 86–87.

Shah, D. and Shin, J. (2012). Randomized scheduling algorithm for queueing networks. The
Annals of Applied Probability, 22(1):128–171.

Shortle, J. F., Thompson, J. M., Gross, D., and Harris, C. M. (2018). Fundamentals of queueing
theory, volume 399. John Wiley & Sons.

Tassiulas, L. and Ephremides, A. (1990). Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. In 29th IEEE
Conference on Decision and Control, pages 2130–2132. IEEE.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25:285–294.

Trinh, C., Kaufmann, E., Vernade, C., and Combes, R. (2020). Solving Bernoulli rank-
one bandits with unimodal Thompson sampling. In Proceedings of the 31st International
Conference on Algorithmic Learning Theory, volume 117 of Proceedings of Machine Learning
Research, pages 862–889, San Diego, California, USA.

239

BIBLIOGRAPHY

Tsung-Chyan, L., Sotskov, Y. N., Sotskova, N. Y., and Werner, F. (1997). Optimal makespan
scheduling with given bounds of processing times. Mathematical and Computer Modelling,
26(3):67–86.

Van Der Hofstad, R. (2016). Random graphs and complex networks, volume 1. Cambridge
university press.

Wang, P.-A., Proutiere, A., Ariu, K., Jedra, Y., and Russo, A. (2020). Optimal algorithms for
multiplayer multi-armed bandits. In International Conference on Artificial Intelligence and
Statistics, pages 4120–4129. PMLR.

Wang, S. and Chen, W. (2021). Thompson sampling for combinatorial semi-bandits.

Wheaton, W. C. (1990). Vacancy, search, and prices in a housing market matching model.
Journal of political Economy, 98(6):1270–1292.

White, R. W. and Hassan Awadallah, A. (2019). Task duration estimation. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, pages 636–644.

Wormald, N. C. (1995). Differential equations for random processes and random graphs. The
annals of applied probability, 5(4):1217–1235.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. (2012). The k-armed dueling bandits
problem. J. Comput. Syst. Sci., 78(5):1538–1556.

Zdeborová, L. and Mézard, M. (2006). The number of matchings in random graphs. Journal of
Statistical Mechanics: Theory and Experiment, 2006(05):P05003.

Zoghi, M., Tunys, T., Ghavamzadeh, M., Kveton, B., Szepesvari, C., and Wen, Z. (2017). Online
learning to rank in stochastic click models. In Precup, D. and Teh, Y. W., editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 4199–4208, International Convention Centre, Sydney,
Australia.

240

Titre: Apprentissage et Algorithmes pour le Matching Séquentiel

Mots clés: Algorithmes, Apprentissage, Matching, Séquentiel

Résumé: Cette thèse se concentre principale-
ment sur les problèmes de matching séquen-
tiels, où des ensembles de ressources sont
alloués de manière séquentielle à des flux de
demandes. Nous les traitons à la fois du
point de vue de l’apprentissage séquentiel et
de l’analyse compétitive, toujours dans le cas
où l’entrée est stochastique.
Du côté de l’apprentissage séquentiel, nous
étudions comment la structure de matching
spécifique influence l’apprentissage dans la

première partie, puis comment les effets de
report dans le système affectent ses perfor-
mances.
Du côté de l’analyse compétitive, nous étu-
dions le problème de matching séquentiel
dans des classes spécifiques de graphes aléa-
toires, dans le but de nous éloigner de
l’analyse du pire des cas.
Enfin, nous explorons comment
l’apprentissage peut être utilisé dans le prob-
lème de scheduling.

Title: Learning and Algorithms for Online Matching

Keywords: Online; Algorithms; Learning; Matching

Abstract: This thesis focuses mainly on
online matching problems, where sets of re-
sources are sequentially allocated to demand
streams. We treat them both from an online
learning and a competitive analysis perspec-
tive, always in the case when the input is
stochastic.
On the online learning side, we study how the
specific matching structure influences learn-

ing in the first part, then how carry-over
effects in the system affect its performance.
On the competitive analysis side, we study
the online matching problem in specific
classes of random graphs, in an effort to
move away from worst-case analysis.
Finally, we explore how learning can be lever-
aged in the scheduling problem.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction (version française)
	Apprentissage séquentiel
	Algorithmes séquentiel
	Plan et Contributions
	Liste des Publications

	Introduction to Online Learning and Algorithms
	Online Learning
	Online Algorithms
	Outline and Contributions
	List of Publications

	I Online Learning
	Pure Exploration and Regret Minimization in Matching Bandits
	Introduction
	Objectives and problem statement
	Pair selection problem
	Matching selection problem
	Experiments
	Appendix

	Decentralized Learning in Online Queuing Systems
	Introduction
	Queuing Model
	The case for a cooperative algorithm
	A decentralized algorithm
	Simulations
	Conclusion
	Appendix

	II Online Algorithms
	Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of Greedy Algorithm
	Introduction
	Online Matching Problems; Models and main result
	Ideas of proof of Theorem 5.2.1
	Appendix

	Online Matching in Geometric Random Graphs
	Introduction
	Maximum Matching in 1D Uniform Geometric Graph
	Match to the closest point algorithm
	Study of the Random Walk
	Proof of the auxiliary Lemmas for graph-rounding
	Proof of Lemma 6.3.7 (Gaps repartition)
	Application of the Differential Equation Method
	Appendix

	On Preemption and Learning in Stochastic Scheduling
	Introduction
	Related Work
	Benchmark: Follow The Perfect Prediction
	Non-Preemptive Algorithms
	Preemptive Algorithms
	Experiments
	Conclusion and Future Work
	Appendix

