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ABSTRACT

Water distribution networks are complex systems that are difficult to manage and monitor with

extreme importance nowadays. The detection and location of leaks have become crucial for

water distribution because when there are bursts or leaks, this can generate economic losses and

an environmental issue and represents a potential risk to public health with contaminated water.

However, with all these risks, currently, this infrastructure does not perform satisfactorily in

practice.

The infrastructure in a medium-sized city can have pipes that span hundreds of kilometers

connected to hundreds of nodes (pipe junctions or customers that relate to the network). There-

fore, several factors can generate water loss during transport between the treatment plants and

the reservoir for consumers, usually attributed to several causes, including leaks, measurement

errors, and theft. Adequate leak supervision is vital for all of the factors mentioned above to

save financial resources and water.

In this context, this dissertation intends to provide a methodology for leak supervision in the

water distribution network (WDN), focusing on detecting, estimating, and locating leaks in the

system. Additionally, sensor placement and validation approaches are presented to bring more

robustness to the methods presented earlier. Finally, the entire methodology is introduced and

tested in different water distribution networks based on simulated and real case studies.
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The methods developed in this manuscript can be divided into model-based and data-driven.

Model-based methods use hydraulic models that must be well-calibrated to obtain reliable re-

sults. This type of method can get more accurate results in comparison with the data-driven;

however, not all WDNs have hydraulic models, or they are not updated to the current network

since, over the years, the city tends to expand. Because of that, the hydraulic model must be

constantly updated to be more faithful. Therefore, data-driven methods that use only sensor

measurements and system topological information can be applied when hydraulic models are

inaccurate or unavailable.

The leak detection methods presented in this thesis are fully data-driven that only require

historical data from the sensors installed in the WDN. The first method uses only information

from the flow sensors installed in the inlet of the network, detecting and estimating the leak’s

magnitude. The second is a complementary technique to focus on the multi-leaks problem,

i.e., when more than one leak co-occurs in the WDN. This method uses inlet flow and pressure

sensors installed around the WDN to group them by clustering and studying the leak’s impact

in all of the zone.

On the other hand, the leak localization strategies developed in this thesis are divided into

model-based and data-driven. All the leak localization techniques are based on the residual

pressure study generated using the comparison between leak-free pressure estimations and leak

pressure measurements. The first method is a model-based methodology that focuses on the

problem of multi-leaks in the WDN ideal when it is available a well-calibrated hydraulic model

of theWDN. Following, three data-driven approaches are presented: (i) starting with a technique

that aims to reduce the area of the leak localization in the WDN, to proceed that a distance

clustering with pre-defined centroids is generated, (ii) following an approach based on analyzing

the extra flow effect that appears in a system with leakage with the goal of pass from the cluster

analysis to a node study. (iii) The last method focuses on the multi-leak problem by applying the

fusion of the pressure residues applying the radial base function (RBF) interpolation to obtain

the network zone with the highest leak probability.

To complement the leak supervision, this thesis developed a method for sensor placement

ideal for the leak localization techniques based on the residual pressure analysis. In addition, a
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sensor validation method was designed to make the leak detection and localization more robust

since the technique allows the analysis to know if pressure sensors are working correctly. If not,

the measurement data from this sensor can be removed for other leak supervision techniques not

to be affected by wrong measurements.

Keywords: Water distribution networks, Leak detection, Leak localization, Real applica-

tions, Sensor placement, Sensor validation.



RÉSUMÉ

Les réseaux de distribution d’eau sont des systèmes complexes dont la gestion et la surveillance

revêtent une extrême importance. La détection et la localisation des fuites sont devenues cru-

ciales pour ce type de réseau, car la présence de fissures ou de fuites peut entraîner des pertes

économiques, des problèmes environnementaux, et un risque potentiel de contamination de l’eau

qui pourrait nuire à la santé publique. Malgré tous les risques encourus, les infrastructures de

distribution d’eau potable sont encore aujourd’hui grandement impactés par les fuites.

Dans une ville de taillemoyenne les infrastructures peuvent comporter des tuyaux de plusieurs

centaines de kilomètres reliés à des centaines de nœuds (jonctions de tuyaux ou clients liés au

réseau). Plusieurs facteurs, notamment les fuites, les erreurs de mesure et le vol, peuvent générer

des pertes durant l’acheminement de l’eau entre les stations de traitement, les réservoirs et les

consommateurs. Une surveillance appropriée des fuites est donc essentielle pour tous les fac-

teurs mentionnés ci-dessus afin de préserver l’eau et d’économiser des ressources financières.

Dans ce contexte, cette thèse vise à développer uneméthodologie pour la détection, l’estimation

et la localisation de fuites dans les réseaux de distribution d’eau potable. Elle présente égale-

ment une approche permettant de bien positionner les capteurs, en validant leur position, afin de

rendre la méthodologie plus robuste. Enfin, l’ensemble des techniques sont présentées et testées

dans différents réseaux de distribution d’eau sur la base d’études de cas simulées et réelles.
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Les méthodes développées dans cette thèse peuvent être divisées en deux catégories : les

méthodes basées sur des modèles et les méthodes basées sur des données. Les méthodes basées

sur des modèles utilisent des modèles hydrauliques des réseaux de distribution qui doivent être

bien calibrés pour obtenir des résultats fiables. Ce type de méthodes permet d’obtenir des ré-

sultats plus précis que les méthodes basées sur des données. Cependant, tous les réseaux de

distribution d’eau ne disposent pas de modèles hydrauliques, ou ceux-ci ne sont pas réactual-

isés assez souvent pour tenir compte de l’expansion des villes et des modifications que peuvent

subir les réseaux. Par conséquent, lorsque les modèles hydrauliques ne sont pas disponibles,

les approches basées sur les données offrent une très bonne alternative puisqu’elles n’utilisent

uniquement que les mesures issues des capteurs et les informations topologiques des réseaux.

Deux méthodes de détection de fuites entièrement guidées par les données sont présentées

dans cette thèse. La première méthode utilise uniquement les informations des capteurs de débit

installés, détectant et estimant l’ampleur d’une fuite unique. La seconde est une technique com-

plémentaire qui se concentre sur la détection de fuites multiples, c’est-à-dire lorsque plusieurs

fuites se produisent simultanément dans le réseau de distribution d’eau. Cette dernière méthode

utilise les capteurs de pression déjà installés et consiste à les regrouper par zone (i.e. par classe),

puis à étudier l’impact des fuites dans toutes ces zones.

Les stratégies de localisation des fuites sont basées sur l’étude de la pression résiduelle

générée par la comparaison entre les estimations de pression et les mesures de pression des

fuites. Les méthodologies développées peuvent être divisées en deux parties : (1) une approche

basée sur un modèle qui se concentre sur le problème de fuites multiples dans le réseau de dis-

tribution d’eau. Cette méthode est particulièrement adaptée aux réseaux équipés d’un système

de lecture automatique des compteurs garant de modèles hydrauliques précis. Cependant, cette

méthodologie nécessite que les modèles hydrauliques soient bien calibrés pour être efficiente.

(2) Les approches basées sur les données qui étudient l’effet des fuites sur les capteurs de pres-

sion installés dans les réseaux afin de sélectionner les zone les plus susceptibles d’être impactées

par une fuite. Ce type d’approches utilise principalement la théorie des graphes pour représenter

le réseau. Dans cette thèse, trois approches basées sur les données sont proposées : (i) La pre-

mière technique consiste à réduire la zone où l’occurence d’une fuite est la plus plausible. Cette
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technique repose sur une méthode de classification à base de distances et de noyaux qui sont

définis à partir des informations de pression des capteurs, et de certains nœuds sélectionnés. (ii)

La deuxième méthode proposée est basée sur l’analyse des effets des fuites avec pour objectif de

réduire la zone de recherche en passant de l’analyse de clusters de nœuds à l’analyse de nœuds.

(iii) La dernière méthode utilise la fusion des résidus de pression en interpolant une fonction de

base radiale (RBF) pour obtenir la zone du réseau ayant la plus forte probabilité d’être impactée

par une fuite.

Par ailleurs, le positionnement des capteurs dans les réseaux de distribution d’eau est fon-

damental car il peut grandement affecter les performances de localisation des fuites. Dans cette

thèse, une méthode de positionnement des capteurs de pression, idéale pour les techniques de

localisation de fuites qui analysent les résidus de pression, est proposée. Afin de robustifier

cette méthode, une approche de validation du positionnement des capteurs est développée, en

analysant le processus de détection des fuites en fonction de la position des capteurs. Si le posi-

tionnement d’un capteur n’entraine pas d’amélioration lors de la détection des fuites, les données

issues de ce capteur peuvent être retirées afin que les autres techniques de détection de fuites

n’en soient pas affectées.

Mots clés: Réseau de distribution d’eau, Détection de fuites, Localisation des fuites, Posi-

tionnement de capteurs, Validation du positionnement des capteurs, Cas d’étude réels.



RESUMEN

Las redes de distribución de agua son sistemas complejos, difíciles de gestionar y monitorizar

con extrema importancia en la actualidad. La detección y localización de fugas se ha vuelto

crucial para la distribución de agua, ya que cuando se presentan reventones o fugas de agua,

esto puede generar pérdidas económicas, un problema ambiental y representa un riesgo potencial

para la salud pública con agua contaminada. Sin embargo, con todos estos riesgos, actualmente,

estas infraestructuras no funcionan satisfactoriamente en la práctica. La infraestructura en una

ciudad mediana puede tener tuberías que se extienden por cientos de kilómetros conectadas a

cientos de nodos (uniones de tuberías o clientes que se relacionan con la red). Por lo tanto, varios

factores pueden generar pérdidas de agua durante el transporte entre las plantas de tratamiento

y el embalse para los consumidores, generalmente atribuidos a varias causas, incluidas fugas,

errores de medición y fraudes. La supervisión adecuada de fugas es vital para todos los factores

mencionados anteriormente para ahorrar recursos financieros y agua.

En este contexto, esta tesis doctoral presenta una nueva metodología para la supervisión de

fugas en las redes de distribución de agua (RDA), enfocándose en la detección, estimación y

localización de fugas en el sistema. Además, se presentan enfoques de validación y ubicación

de sensores para brindar más solidez a los métodos presentados anteriormente. Finalmente,

toda la metodología se introduce y se prueba en diferentes redes de distribución de agua en

base a estudios de casos reales y simulados. Los métodos desarrollados en este manuscrito se

xi
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pueden dividir en basados en modelos y basados en datos. Los métodos basados en modelos

usan modelos hidráulicos que deben estar bien calibrados para obtener resultados confiables.

Este tipo de métodos puede obtener resultados más precisos en comparación con el basado en

datos; sin embargo, no todas las RDA tienen modelos hidráulicos o no están actualizados a

la red actual ya que, con el paso de los años, la ciudad tiende a expandirse. Por esta razón,

el modelo hidráulico debe ser actualizado constantemente para ser más fiel. Por lo tanto, los

métodos basados en datos que usan solo las mediciones de los sensores las y la información

topológica del sistema se pueden aplicar cuando los modelos hidráulicos son inexactos o no

están disponibles. Los métodos de detección de fugas presentados en esta tesis están totalmente

basados en datos que solo requieren datos históricos de los sensores instalados en la RDA. El

primer método utiliza sólo información de los sensores de caudal instalados en la entrada de la

red, detectando y estimando la magnitud de la fuga. La segunda es una técnica complementaria

para centrarse en el problema de las fugas múltiples, es decir, cuando ocurre más de una fuga en

la RDA. Este método utiliza el flujo de entrada y los sensores de presión instalados en la RDA

para agruparlos y estudiar el impacto de la fuga en todas las zonas. Por otro lado, las estrategias

de localización de fugas desarrolladas en esta tesis se dividen en basadas en modelos y basadas

en datos. Todas las técnicas de localización de fugas se basan en el estudio de presión generado a

partir de la comparación entre estimaciones de presión sin fugas y mediciones de presión con la

fuga. El primer método es una metodología basada en modelos que se centra en el problema de

las fugas múltiples en la RDA ideal cuando se dispone de un modelo hidráulico bien calibrado

de la red. A continuación, se presentan tres enfoques basados en datos: (i) comenzando con

una técnica que apunta a reducir el área de localización de la fuga en la RDA, para proceder a

generar un agrupamiento basada en la distancia con centroides predefinidos, (ii) siguiendo una

enfoque basado en analizar el efecto de flujo extra que aparece en un sistema con fugas con

el objetivo de pasar del análisis de fuga a nivel de nodo. (iii) El último método se centra en

el problema de las fugas múltiples aplicando la fusión de los residuos de presión mediante la

interpolación dada por una función de base radial para obtener la zona de la red con la mayor

probabilidad de fuga. Para complementar la supervisión de fugas, esta tesis desarrolla unmétodo

de colocación de sensores ideal para las técnicas de localización de fugas basadas en el análisis

del residuo de presión. Además, se diseña un método de validación de sensores para hacer más
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robusta la detección y localización de fugas, ya que permite el análisis para saber si los sensores

de presión están funcionando correctamente. De lo contrario, los datos de medición de este

sensor se pueden eliminar para que las técnicas de supervisión de fugas no se vean afectadas por

mediciones incorrectas.

Palabras clave: Redes de distribución de agua, Detección de fugas, Localización de fugas,

Aplicaciones reales, Colocación de sensores, Validación de sensores.



RESUM

Les xarxes de distribució d’aigua són sistemes complexos, difícils de gestionar i monitoritzar

amb molta importància actualment. La detecció i la localització de fuites s’ha tornat crucial

per a la distribució d’aigua, ja que quan es presenten rebentades o fuites d’aigua, això pot

generar pèrdues econòmiques, un problema ambiental i representa un risc potencial per a la

salut pública amb aigua contaminada. No obstant això, amb tots aquests riscos, actualment,

aquestes infraestructures no funcionen satisfactòriament a la pràctica. La infraestructura en una

ciutat mitjana pot tenir canonades que s’estenen per centenars de quilòmetres connectades a

centenars de nodes (unions de canonades o clients que es relacionen amb la xarxa). Per tant, di-

versos factors poden generar pèrdues d’aigua durant el transport entre les plantes de tractament i

l’embassament per als consumidors, generalment atribuïts a diverses causes, incloses les fuites,

els errors de mesura i els fraus. La supervisió adequada de fuites és vital per a tots els factors

esmentats anteriorment per estalviar recursos financers i aigua.

En aquest context, aquesta tesi doctoral presenta una nova metodologia per a la supervisió

de fuites a les xarxes de distribució d’aigua (XDA), enfocant-se en la detecció, estimació i local-

ització de fuites al sistema. A més, es presenten enfocaments de validació i ubicació de sensors

per brindar més solidesa als mètodes presentats anteriorment. Finalment, tota la metodologia

s’introdueix i es prova a diferents xarxes de distribució d’aigua segons estudis de casos reals i

simulats. Els mètodes desenvolupats en aquest manuscrit es poden dividir en basats en models i
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basats en dades. Els mètodes basats en models usen models hidràulics que han d’estar ben cali-

brats per obtenir resultats fiables. Aquest tipus de mètodes pot obtenir resultats més precisos en

comparació del basat en dades; no obstant, no totes les XDA tenen models hidràulics o no estan

actualitzats a la xarxa actual ja que, amb el pas dels anys, la ciutat tendeix a expandir-se. Per

això, el model hidràulic ha de ser actualitzat constantment per ser més fidel. Per tant, els mè-

todes basats en dades que fan servir només les mesures dels sensors i la informació topològica

del sistema es poden aplicar quan els models hidràulics són inexactes o no estan disponibles.

Els mètodes de detecció de fuites presentats en aquesta tesi estan totalment basats en dades que

només requereixen dades històriques dels sensors instal∙lats a la XDA. El primer mètode utilitza

només informació dels sensors de cabal instal∙lats a l’entrada de la xarxa, detectant i estimant

la magnitud de la fuita. La segona és una tècnica complementària per centrar-se en el problema

de les fuites múltiples, és a dir, quan hi ha més d’una fuita a la XDA. Aquest mètode utilitza el

cabal d’entrada a la xarxa i els sensors de pressió instal∙lats a la XDA per agrupar-los i estudiar

l’impacte de la fugida a totes les zones. D’altra banda, les estratègies de localització de fuites

desenvolupades en aquesta tesi es divideixen en basades en models i basades en dades. Totes

les tècniques de localització de fuites es basen en l’estudi de pressió generat a partir de la com-

paració entre estimacions de pressió sense fugides i mesures de pressió amb la fuita. El primer

mètode és una metodologia basada enmodels que se centra en el problema de les fuites múltiples

a la XDA ideal quan es disposa d’un model hidràulic ben calibrat de la xarxa. A continuació, es

presenten tres enfocaments basats en dades: (i) començant amb una tècnica que apunta a reduir

l’àrea de localització de la fuita a la XDA, mitjançant la generació d’un agrupament basat en

la distància amb centroides predefinits, (ii) seguint un enfocament basat en analitzar l’efecte de

flux extra que apareix en un sistema amb fuites amb l’objectiu de passar de l’anàlisi de fuita a

nivell de node. (iii) L’últim mètode se centra en el problema de les fuites múltiples aplicant la

fusió dels residus de pressió mitjançant la interpolació donada per una funció de base radial per

obtenir la zona de la xarxa amb la probabilitat de fuita més gran. Per complementar la supervisió

de fuites, aquesta tesi desenvolupa un mètode de col∙locació de sensors ideal per a les tècniques

de localització de fuites basades en l’anàlisi del residu de pressió. A més, es dissenya un mètode

de validació de sensors per fer més robusta la detecció i la localització de fuites, ja que permet

l’anàlisi per saber si els sensors de pressió estan funcionant correctament. Si no, les dades de
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mesures d’aquest sensor es poden eliminar perquè les tècniques de supervisió de fuites no es

vegin afectades per les mesures incorrectes.

Paraules clau: Xarxes de distribució d’aigua, Detecció de fuites, Localització de fuites,

Aplicacions reals, Col∙locació de sensors, Validació de sensors.



RESUMO

As redes de distribuição de água são sistemas complexos de difícil gerenciamento e moni-

toramento com extrema importância nos dias atuais. A detecção e localização de vazamentos

tornaram-se cruciais para o monitoramento de distribuição de água, pois quando ocorrem es-

touros ou vazamentos, isso gera perdas econômicas e problemas ambientais e representa um

risco potencial à saúde com água contaminada. No entanto, com todos esses riscos, atualmente,

essa infraestrutura na prática não funciona de forma satisfatória.

A infraestrutura em uma cidade de médio porte pode ter tubulações que se estendem por

centenas de quilômetros conectadas a centenas de nós (junções de tubulação ou clientes que se

reportam à rede). Portanto, diversos fatores podem gerar perdas de água durante o transporte

entre as estações de tratamento e para os consumidores, geralmente atribuídas às causas do reser-

vatório, incluindo vazamentos, erros demedição e furtos. A supervisão adequada de vazamentos

é vital para todos os fatores mencionados acima para economizar recursos financeiros e água.

Neste contexto, esta dissertação pretende fornecer umametodologia para supervisão de vaza-

mentos na rede de distribuição de água (RDA), com foco na detecção, estimativa e localização

de vazamentos no sistema. Além disso, abordagens de posicionamento e validação de sensores

são apresentadas para trazer mais robustez aos métodos apresentados anteriormente. Por fim,

toda a metodologia é introduzida e testada em diferentes redes de distribuição de água com base
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em estudos de caso simulados e reais.

Os métodos desenvolvidos neste manuscrito podem ser divididos em baseados em modelos

e orientados por dados. Os métodos baseados emmodelos usammodelos hidráulicos que devem

ser bem calibrados para obter resultados confiáveis. Esse tipo de método pode obter resultados

mais precisos em comparação com o orientado a dados; no entanto, nem todas as WDNs pos-

suemmodelos hidráulicos, ou não são atualizadas para a rede atual, pois, com o passar dos anos,

a cidade tende a se expandir. Por isso, o modelo hidráulico deve ser constantemente atualizado

para ser mais fiel. Portanto, métodos baseados em dados que usam apenas medições de sensores

e informações topológicas do sistema podem ser aplicados quando os modelos hidráulicos são

imprecisos ou indisponíveis.

Os métodos de detecção de vazamentos apresentados nesta tese são totalmente orientados

a dados que requerem apenas dados históricos dos sensores instalados na WDN. O primeiro

método utiliza apenas informações dos sensores de vazão instalados na entrada da rede, de-

tectando e estimando a magnitude do vazamento. A segunda é uma técnica complementar para

focar no problema de multivazamento, ou seja, quando mais de um vazamento co-ocorre na

WDN. Este método usa sensores de vazão e pressão de entrada instalados ao redor do WDN

para agrupá-los agrupando e estudando o impacto do vazamento em toda a zona.

Por outro lado, as estratégias de localização de vazamentos desenvolvidas nesta tese são

divididas em baseadas em modelos e baseadas em dados. Todas as técnicas de localização

de vazamentos são baseadas no estudo de pressão residual gerado usando a comparação en-

tre estimativas de pressão livre de vazamento e medições de pressão de vazamento. O primeiro

método é uma metodologia baseada em modelo que foca no problema de multi-vazamento no

WDN ideal quando está disponível um modelo hidráulico bem calibrado do WDN. A seguir,

três abordagens orientadas a dados são apresentadas: (i) começando com uma técnica que visa

reduzir a área de localização do vazamento no WDN, para proceder que um agrupamento de

distância com centroides pré-definidos seja gerado , (ii) seguindo uma abordagem baseada na

análise do efeito de fluxo extra que aparece em um sistema com vazamento com o objetivo de

passar da análise de cluster para um estudo de nós. (iii) O último método foca no problema de

multivazamento aplicando a fusão dos resíduos de pressão aplicando a interpolação da função
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de base radial (RBF) para obter a zona da rede com maior probabilidade de vazamento.

Para complementar a supervisão de vazamentos, esta tese desenvolveu um método de posi-

cionamento de sensores ideal para as técnicas de localização de vazamentos baseado na análise

de pressão residual. Além disso, o método de validação de sensores foi projetado para tornar a

detecção e localização de vazamentos mais robusta, pois a técnica permite que a análise saiba

se os sensores de pressão estão funcionando corretamente. Caso contrário, os dados de medição

deste sensor podem ser removidos para que outras técnicas de supervisão de vazamento não

sejam afetadas por medições erradas.

Palabras chaves: Redes de distribuição de água, Detecção de vazamentos, Localização de

vazamentos, Aplicações reais, Posicionamento de sensores, Validação de sensores.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Water Distribution Networks (WDN) are essential infrastructures in modern cities for several

socioeconomic reasons. They are complex networks due to their size (thousands of pipes) and

hydraulic behavior due to their nonlinearity. One of the concerns to be managed in these systems

is water leakage, which may account for up to 30% of the total amount of distributed water [74],

being significant because water is a limited resource. Another concern is the scarcity of water

that can occur in 2025, which may affect half the world’s population that will not have access to

safe and accessible water for their basic needs [32]. However, with all these risks, currently, this

infrastructure does not perform satisfactorily in practice. According to Forum, [97] of Networks

of Intelligent Water, it can have an estimated loss of water called Non-Revenue Water (NRW)

of up to 70% in some cities.

Water loss can be divided into “real losses” and “apparent losses.” Apparent losses are con-

stituted by badly read measurements, data handling errors, and illegal water tapping. In contrast,

the real losses comprise leakage from all system parts and overflow at storage tanks. Finally,

real losses are composed of “background leakage” made up of small undetectable and detectable

leaks relevant for detection as they represent significant losses for the water distribution com-

1
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pany. The efficient and effective management of water distribution networks, which are in

charge of conveying water to the final consumption points, is crucial for the development and

sustainability of urban areas in modern society. The leak supervision process is a part of leak

management that aims to monitor a physical system. It takes actions to keep it functioning in

case of failures, which comprises leak detection, localization, and the study of sensor placement

and validation to get optimal results.

The critical nature of the problems generated when a leak occurs implies the need for man-

agement capable of taking into account the detection of the leak as quickly as possible and their

localization in the WDN. In addition, a study of the positioning of pressure sensors is essential,

as the zone can affect the result for the location of the leak [92] and a constant sensor validation

to guarantee that the sensors’ measures are proper. The methods of leak supervision in WDN

can be classified into Hardware-based and Software-based methods.

Hardware-based methods utilize hardware sensors to detect a leak directly and help the lo-

calization of the leak. As there are various types of sensors and instruments available, they can

be further sub-classified as acoustic and non-acoustic detection methods.

Software-based methods generally rely on an algorithm or model for detecting leaks. Unlike

Hardware-based methods, these methods do not seek to locate the leak point accurately but

minimize possible leakage areas. Since these methods are based on information, such as the

pressure of the pipe network, flow data, etc., they work well on any type of pipe. These methods

can be divided into physical modeling methods and data-driven methods. The physical model-

based methods identify the leak using a numerical model and compare the results with the field

data. For designing a model-based, an appropriate mathematical model is required to represent

the most relevant system dynamics.

On the other hand, data-driven methods analyze the monitoring data, combining tools such

as artificial intelligence or artificial neural networks. Thus it is possible to identify potential

areas of the leak based on specific rules or principles without resorting to the simulation of the

physical model results. However, these methods need, in general, an actual number of non-leak

and leak data scenarios in the training process to obtain good results. A hydraulic simulator can
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be used to generate leak data as a specific amount of leak scenarios are not available in general.

The research in this thesis is motivated by the UTILITIES 4.0–P1 and L-BEST Project from

the Spanish Ministry of Science and Innovation and AGAUR ACCIO RIS3CAT. This doctoral

thesis is dedicated to investigating methods for leak supervision at WDN to identify and isolate

“background leakage”. To this end, the development of techniques for leak detection and loca-

tion applying model-based and data-driven approaches are investigated. In addition, the study

of sensor positioning and sensor validation to achieve the optimal results in leak supervision

techniques.

1.2 State of the art

Various techniques for detecting, estimating, and isolating leakage in WDNs are already applied

or under development. The following subsections introduce an overview of the leak detection

and location methods. In the literature, leak detection and localization are summarized and clas-

sified from different perspectives. As we can see, the [74] delivered a comprehensive review

of leakage management methods divided them into three categories: leakage assessment quan-

tifying the amount of water lost, leakage detection that notices leakage hotspots, and control

methods effective control of current and future leakage levels. Other reviews such as [20] give

a comprehensive review of transient-basedmethods; the [57] classifies themethods as hardware-

based and software-based; the [22] review displays that acoustic reflectometry is most suitable

for the blockage detection techniques. Some reviews are focused just on leak detection tech-

niques as of [1, 105, 17, 113].

This manuscript proposes a classification for leak detection and isolation classification into

two sets: Hardware-based and Software-based. Figure 1.1 attempts to summarize the different

leakage management and detection methods. The hardware-based technique is the approach

that utilizes hardware sensors to detect the occurrence of a leak directly and help the localization

of the leak. As various types of sensors and instruments are available, they can be further sub-

classified as acoustic and non-acoustic detection methods. Software-based systems use different

software packages to monitor pressure, temperature, flow, or other pipeline parameters. They

can be divided into the model base using numerical modeling methods that identify possible
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Table 1.1: Summary of current reviews about leakage detection and location methods

References Focus on Classification

[20] Transient-based leak
detection methods

Transient leak detection
Inverse-transient analysis
Frequency domain techniques
Direct transient analysis

[74] Leakage management methods
Leakage assessment
Leakage detection
Leakage control

[57]
Burst/leakage
detection and
location

Hardware-based methods
Software-based methods

[22] Pipeline fault
detection methods

Blockage detection techniques
Leakage detection techniques

[1]
Pressure-based
leakage detection
method

Inverse-transient analysis method
Transient steady state method
Transient damping method
Inverse resonance method
Pressure-flow deviation method
Negative pressure wave method
Pressure residual vector method

[2] Leakage detection
and localization

Externally-based methods
Internally-based methods
Leak localization
Utilization of wireless sensor networks

[105]
Data-driven
approaches for
burst detection

Classification method
Prediction-classification method
Statistical method

[17] Leakage detection Current technologies
Intelligent methodologies

[113] Steady-state leakage
detection strategies

Hardware-based methods
Software-based methods
Hybrid leak detection techniques

[39] Leak detection and location strategies Data-driven
Model-based
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Leak detection/location Methods

Hardware-based Biological-based Software-based

Acoustic 
methods

Listening rod Gas injection

Leak 
correlator

Ground penetrating 
radar technology

Leak noise 
loggers

Infrared 
photography

Non-acoustic 
methods

Model based Data driven

Sensitivity 
matrix-based
approaches

Mixed model-
based/data

driven approaches

Optimization-
calibration
approaches

Error-domain 
model

falsification-based
approaches

Feature set 
classification

methods

Prediction-
classification

methods

Statistical 
approaches

Unsupervised 
clustering

techniques

Figure 1.1: Categorization of leak detection and localization methods

leak areas, establishing a relevant numerical model to obtain relevant data to compare with

simulation results. Moreover, the data-driven analysis monitoring data combined with tools

such as data mining or artificial intelligence algorithms and then identifies possible leak areas

based on specific rules or principles without resorting to the model simulation results.

1.2.1 Hardware-based methods

• Acoustic detection methods

These methods are based on the characteristics or principles of sound for detection. In gen-

eral, acoustic detection methods work well to detect leaks from medium and large metal pipes.

The current widely used methods are leak noise recorders, leak correlators, and listening bars.
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– Listening rod

The listening rods or the listening sticks are basic acoustic instruments [37, 12, 35]. They

have been used to detect and locate leaks since the mid-1960s and were called ground micro-

phones. This device is placed on the floor, which amplifies the sound produced by a leak to

facilitate detection, with the advantage that it is a cheap and useful tool. In contact with the

surface of the detection equipment, the listening rod can detect a variety of faint sounds that

human ears cannot hear due to air isolation or external interference when the equipment is in

operation. This technique depends on the engineer’s ability to hear the leak.

– Leak correlator

Leak noise recorders [86, 63] use acoustic receivers installed at different locations in the

pipeline network, such as hydrants, valves, and other exposed tubes. Usually, they are switched

on at predetermined times. Then, a particular software automatically registers all the record-

ings, and the leaks are identified with the difference of the recording with some noise recorders

already predetermined. Each leak point produces a continuous leak sound, which determines

the presence of leaks close to the recorder according to the degree of intensity and frequency.

The computer software will automatically identify this and make a two-dimensional or three-

dimensional map of the leak points.

– Leak noise loggers

Leak noise loggers [86, 63] use acoustic receivers installed in different locations in the

pipeline network, such as hydrants, valves and other exposed pipes. Usually, they are switched

on at predetermined times. Then, special software automatically registers all recordings. The

leaks are differentiated as each leak point will produce a continuous leak sound, which deter-

mines the presence of leaks close to the recorder according to the degree of intensity and fre-

quency that the recorder has noise records. The computer software will automatically identify

this and make a two-dimensional or three-dimensional map of the leak points.
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• Non-acoustic detection methods

The non-acoustic methods used for leak detection and location are able to detect small leaks

and not suffer a loss of accuracy for the pipe material. Here the authors discuss mainly the

gas injection method, ground penetration radar detection technology, and the method of thermal

infrared imaging.

– Gas injection

This method uses a gas detector to detect the presence of a leak. A gas with lighter properties

than air must be used. It is possible to use helium, but the most common is hydrogen due to a

lower cost and high performance. The gas is placed inside the pipes, and in the presence of a

leak they will escape to the outside. Hence the location of the leak in the pipe can be determined

according to the location of the detected gas. Since the gas detector is very sensitive to a minimal

amount of this gas, a tiny leak can be detected using this method [42]. However, this method is

costly if it is necessary to consider filling the entireWDN and consuming much time to transport

the detector over the network until it finds the leak. In addition, the technology has a significant

disadvantage, as only the leak above the pipe can be detected using this method, as the gas

cannot overflow from the bottom of the pipe.

– Ground penetrating radar

Ground-penetrating radar inspection (GPR) [41] is a non-destructive and non-invasive geo-

physical method that produces a continuous section or record of continuous underground re-

sources. This technique uses an emitter of electromagnetic waves that are propagated through

the ground and spread back to an electromagnetic detector, to infer the spatial location, struc-

ture, shape, and depth of the underground burial according to the electromagnetic wave received,

amplitude and changes in intensity and time [26]. Although this technique is cheap, it needs spe-

cialized personnel and, even so, it is easy to obtain false positives (e.g. joints or valves that alter

the image), and it cannot be applied in cold climates or saturated soil.



8 CHAPTER 1. INTRODUCTION

– Thermal infrared imaging

The principle of a thermal infrared (IR) camera [25] is based on thermal images; therefore,

when a leak occurs, the temperature of the soil around the leak can change and consequently can

be located. This method has several positive points such as high efficiency, accurate judgment,

intuitive, safe, non-contact detection, immunity to electromagnetic interference, long-range de-

tection, high speed, and is independent of the type and size of the pipe material. However, it also

has some disadvantages, for example, it is affected by many factors, such as climatic conditions,

soil conditions, and pavement surface.

1.2.2 Software-based

Software-based methods generally rely on an algorithm or model for detecting leaks. Unlike

hardware-based methods, these methods do not seek to locate the leak point accurately but min-

imize possible leakage areas. Since these methods are based on information, such as the pressure

of the pipe network, flow data, etc., they work well on any pipe. Software-based methods can

be divided into model-based and data-driven.

• Model-based

A hydraulic model of theWDS is used to simulate its operating state in the model-based leak

detection and location techniques. The hydraulic model, once built, needs to be calibrated to en-

sure it provides an accurate reflection of current operating conditions. Model-based approaches

involve four key steps: (i) Construction of a hydraulic model, (ii) Calibration of the hydraulic

model, (iii) Leak detection, (iv) Leak localization.

The two first steps are similar in all model-based approaches, while the other depends on

the type of data used and the method development. Table 1.2 compares and summarizes sev-

eral model-based leak detection techniques, with the method category, the reference the method

adopted, the data request, and the technique type: LD to leak detection and LL to leak localiza-

tion.
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Table 1.2: Summary and comparison among model-based approaches

Category References Technique adopted Data request Type

Sensitivity matrix-based
approaches

[72, 70, 71]
[14, 16] Pressure sensitivity matrix Pressure LD-LL

[49, 31] Flow sensitivity matrix Flow LD-LL
[82] Pressure/Flow sensitivity matrix Pressure/Flow LL
[68] Pressure/Flow sensitivity Pressure/Flow LD

Mixed model-based/data
driven approaches

[114, 67] Multiclass support vector machine Pressure/flow LL
[90, 91] K-nearest neighbors; Bayesian classifiers Pressure LL
[109] K-means clustering, linear classifier Pressure LL
[116] Fully linear DenseNet Pressure LL
[38] Multiscale neural networks Pressure/Flow LD

[27] Decision Tree, KNN, random forest,
and Bayesian network Pressure/flow LD

Optimization-calibration
approaches

[108, 65, 93] Genetic algorithm Pressure LD-LL

[83] Least squares (LS), geographically allocated
demand parameters Demand LD-LL

[36] Multi-objective and colony optimization Pressure/demand LD
Error-domain model
falsification-based
approaches

[33] Error-domain model falsification Demand LD
[85] Time-series-based Pressure/flow LD

[47]
Bayesian model updating approach;
multilevel Markov chain Monte Carlo
algorithm

Demand LD

– (i) Construction of a hydraulic model

In this step, the hydraulic model of the WDN is generated. For this, software such as

EPANET [81], LOOP [117], CADRE flow [13], Pipe flow expert [73], Synergi pipeline simula-

tor [98], InfoWorks WS [44], WaterGEMS [104], and NextGen Simulation Suite[66] are used.

– (ii) Calibration of the hydraulic model

In this step, the hydraulic parameters of the model are set. Examples are the nodal head,

water consumption, pipe length, pipe diameter, and pipe roughness coefficients. The most un-

certain input variables in the simulation model are the pipe roughness and water consumption

at a demand node because they are not typically directly measurable. Therefore, they require

calibration.

– (iii) Leak detection and (iv) Leak localization

After the hydraulic model calibration, the supervision for leak monitoring in the WDN starts

with detecting leaks in the system, and then the location technique is applied. Model-based
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techniques may be classified as sensitivity matrix-based approaches, mixed model-based/data-

driven approaches, optimization-calibration approaches, and error-domain model falsification

methods.

The sensitivity matrix-based approaches are based on pressure and flowmeasurement. They

use the interdependence of all the operating parameters to generate a sensitivity matrix to ana-

lyze the distribution of the network. The method is very efficient under ideal conditions using

such a sensitivity matrix; nevertheless, uncertainties in nodal demands and measurement noise

negatively affect the performance of these methods—the first time used was for leak location

in the distribution network of Barcelona by [72]. Subsequently, similar studies have been con-

ducted [70, 71, 16, 49, 82]. Finally, in [14, 31], the sensitivity matrix-based methodology is

applied to leak detection.

Mixedmodel-based/data-driven approaches usually are applied in the leak localization prob-

lem. In [114, 90], the model is used to generate a sensitivity matrix, and the leak location is

formulated like a classification problem. Researchers have used a variety of classification meth-

ods, such as Bayesian classification [91], linear classification [109] and deep learning identifies

[116]. In [27] the leak detection was performed applying the hybrid method using AI algorithms

and hydraulic relations developed and in [38], used the Multi-scale neural networks.

The optimization/calibration uses the observational values at the monitoring point to derive

parameters for unknown leaks, such as the location and size of the leak. In [108] developed a

method to leak detection using optimization problems to optimize the leakage node locations and

their associated emitter coefficients such that the differences between the model predicted and

the field observed values for pressure and flow are minimized and used the Genetic algorithm.

In [93] developed an optimization problem to leak localization using the Genetic algorithm to

solve it. In [83] developed an approach to compare the calibrated parameters with their historical

values to assess if changes in these parameters are caused by a leak using the least-squares and

geographically allocated demand parameters.

The error-domain model falsification-based approach uses the model parameters (leakage

location and intensity) to calibrate, attempting to minimize the difference between predicted and
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measured values by falsifying the model in the error domain. This approach does not require the

error structure of the model predictions to be fully defined, as it is sufficient to falsify the model

instanceswhere the difference between the predicted andmeasured values exceeds themaximum

plausible error. In [33], developed a technique to leak detection by falsification approach locates

candidate leaks by falsifying improbable leak scenarios. Model falsification has become widely

adopted as a leak detection method. Nonetheless, these methods also have a fewweaknesses; for

example, they are insensitive to small leaks [85], and they perform poorly if the WDN contains

a relatively small number of sensors [47].

Recent work has created model-based methods combining multiple categories to improve

the limitations of each type. For example, the work [95] developed a method of leak detection

and localization that uses the combination of time series, cluster analysis, and least squares to

calibrate the hydraulic model and study pressure derivations. This method detects multi-leak

problems with high true-positive rates for the leak isolation index.

• Data-driven

Data-driven approaches are techniques that do not use simulated results from network mod-

els. They analyze the monitoring data combined with tools like data mining or artificial in-

telligence algorithms, using some rules to identify and locate the leak. These methods have a

significant feature of not needing to establish a hydraulic model. Therefore, detailed piping and

equipment information and parameters are not needed; they need to analyze large amounts of

data and find the rule itself to identify system failures. These techniques typically utilize flow

or pressure data but may also use end-user water demands for leak analysis. Table 1.3 compares

and summarizes some of the data-driven leak detection and localization techniques, with the

method category, the reference, the method adopted, the data request, and the technique type:

LD to leak detection and LL to leak localization.

In most cases, a data-driven technique is performed in two steps: first, data acquisition, pre-

processing, and transformation; the last two are selected according to leak detection method and

data properties, and the primary purpose is to eliminate erroneous or missing data from time-

series data to facilitate subsequent analysis. And the second step is a leak detection strategy
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that can be divided into feature set classification methods, prediction-classification methods,

statistical methods, and unsupervised clustering methods.

Feature set classification methods use the data information to distinguish the leaks from

regular and fault operations. This approach needs considerable data to train the technique, which

often becomes complicated. Several studies have been conducted to solve problems caused by

a lack of training samples, e.g., [89] used Kriging spatial interpolation to obtain the pressure

data of all nodes. Feature extraction is key to the success of feature set classification methods.

To improve the accuracy of leak detection and localization, various methods have been used

to extract leak features, including Convolutional Neural Networks (CNN) in [19, 52], linear

prediction in [18, 96], discrete Fourier transform in [110] and Principal Component Analysis

[115].

Prediction-classification methods consist of two stages: first, to predict the system’s normal

operation using historical data of normal operations to produce predictions, and second, to clas-

sify the data by comparing predictions and measurements. The prediction stage estimates the

ideal WDS data under normal conditions. The use techniques such as artificial neural network

[77], Kalman filter [111, 50, 53], support vector regression [62], evolutionary polynomial re-

gression [56]), and long short-term memory [103]. Some researchers have also explored other

approaches for leak detection; for example, prediction and classification using dynamic time

warping [40], polynomial function based on weighted least squares [112].

Statistical approaches apply statistical analyses to the acquired data. The Statistical Process

Controls is an essential technique for this method, which uses graphical analysis to set control

limits to identify outliers measurements caused by a leak. The statistical approaches can predict

leaks simply by applying statistical analyses on the acquired data [69, 51, 64]. Although statis-

tical methods have shown promise for leak detection, they are deficient in certain aspects. For

example, the method used by [59] fails to account for unexpected water demands or the demands

of large users, whereas the method used by [76] quite time-consuming for leak detection.

Unsupervised clustering techniques rely on historical data of normal operations to cluster

the WDN in groups with similar behavior. This method is called unsupervised because cluster
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approaches do not need a priori information about the leakage scenarios. In this class of meth-

ods, the flow [106, 107] or pressure [30, 59] data are compared in terms of similarities via the

clustering analysis.

1.2.3 Discussion

As seen in the section above, the hardware-based methods are great methods to use in the WDN

to obtain accurate leak detection and location result. However, they are best suited for small

DMA or directly in pipe studies. On the other hand, model-based and data-driven are more

suitable for large-scale networks. When the system has a hydraulic model of the WDN, it is rec-

ommended to use methods based on these techniques. However, it is necessary to ensure that

these hydraulic models are accurately calibrated to ensure that their pressure and flow predic-

tions are realistic reflections of the operating states. When models are unavailable or inaccurate,

data-driven methods are the most indicated. These techniques show promising applicability for

leak detection in pipeline systems with ample monitoring sensors. Nevertheless, these tech-

niques exhibit high False Positive Rate (FPR) due to uncertainties in the monitored data and

their intrinsic limitations, which pose difficulties for effective decision-making.

The analysis of night-time flows for leak detection methods are applied because the flow

during the night usually does not have a significant variation during the year, as seen in [17];

however, the leak can be detected just when the data is updated during the night. In addition, the

leak detection methods focus on data-driven that use only the information of the flow sensor,

usually detecting bursts or outline events with the burst magnitude of more than 5% 10%of the

inflow average in the WDN as seen in the work [103, 69, 59]. Another concern that has been

studied recently is the study of leak detection when a multi-leak is happening in the network

[101]. This type of problem is complicated because multi-leaks affect the sensors installed in

the WDN in different magnitudes.

On the other hand, the leak localization methods still have a large field of research focusing

on the problem of multi-leak and data-driven approaches. For example, in model-based tech-

niques, the work of [91] has a satisfactory result applying pressure residuals; however, it is a

single leak method analysis. On the other hand, in the methods based on data-driven, the [89,
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Table 1.3: Summary and comparison among data-driven approaches

Category References Technique adopted Data request Type

Feature set classification
methods

[52] One-dimensional convolutional neural
network; supportvector machine Wave velocity LD-LL

[115] Kernel principal component analysis;
cascade support vectordata description Pressure LD

[89] Kriging spatial interpolation;
Bayesian reasoning Pressure LL

[96] Linear discriminant analysis;
neural networks Pressure LL

[18] Linear prediction Acoustic signals LD-LL

[110] Discrete Fourier transform;
isolation forest techniques Pressure LD

[19] Convolutional neural network;
variational autoencoder Acoustic signals LD

Prediction-classification
methods

[77] Artificial neural network Pressure/flow LD-LL
[61] Artificial neural network and density network Pressure/flow LD
[111] Linear Kalman filter Pressure/flow LD
[62] Support vector regression Pressure/flow LD

[8] Adaptive forecasting model and
deviation analysis Demand/pressure LD

[112] Polynomial function based on weighted least
squareswith EM algorithm Flow LD

[78] Bayesian inference system Pressure/flow LD
[43] Probabilistic demand forecasting model Demand LD
[50] Nonlinear Kalman filter Demand LD
[53] Predictive Kalman filter Wave velocity LD-LL
[56] Evolutionary polynomial regression Pressure/flow LD
[40] Dynamic time warping; supervised learning Demand/flow LD
[103] Deep learning recurrent neural networks Flow LD

Statistical approaches

[69] Principal component analysis;
statistical process control Flow LD

[51] Statistical process control Pressure/flow LD
[59] Modified statistical process control Flow LD

[76] Principal component analysis;
periodic transformation; vector extension Flow LD-LL

[64]
Principal component analysis;
standardized exponential weighted moving
average (EWMA)

Pressure/flow LD-LL

Unsupervised clustering
techniques

[106] Clustering Flow LD-LL
[107] Clustering; cosine distance Flow LD
[30] Feature-based clustering Pressure LD
[59] Time series data mining Pressure transients LD
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96] pointed out the need for more studies on the interpolation methods.

Furthermore, the [91, 96] highlights the importance of a previous study on the sensor posi-

tion and the sensor anomalies, communication issues, and noise often results in poverty data .

Consequently, the data/sensors must be validated by different techniques.

1.3 Objectives

After discussing the techniques for monitoring water distribution networks and the gaps ob-

served in the literature, three critical questions arise. First, how the leak detection can be im-

proved to detect a leak magnitude of 1% to 5% of the average system inflow, and how to detect

multi-leaks in theWDN? Second, how can the leak localization methods be improved to a multi-

leak scenario by applying only the flow and pressure sensor operating in a network of more than

one inlet? And last, how to improve the leak localization methods based on residual analyses

and assure the sensors’ good function?

To answer these questions, the main objective of this thesis is to develop methods focused on

model-based and data-driven leak detection and localization using the information of flow, pres-

sure sensors, and ATD equipment aiming to study incipient leaks. In addition, develop methods

in sensor validation and optimal sensor placement to assist the leak localization methodology

based on the residual analysis in achieving the optimal result. The specific thesis objectives are

summarized as follows:

• Objective 1 Propose leak detection and estimation methods able to detect incipient leaks

and distinguish multi-leak scenarios in WDNs.

• Objective 2Develop a leak localization scheme that combines hydraulic models and leak

detection analysis to tackle the multi-leak problem.

• Objective 3 Propose new data-driven approaches that tackle the problem of leak local-

ization at cluster and node level in WDN.

• Objective 4 Develop a new data-driven approach that tackles the multi-leak problem.
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• Objective 5 Tackle practical problems of using pressure sensors: Sensor validation and

optimal sensor placement.

1.4 Thesis Outline

Figure 1.2 shows the leakage supervision proposed in this thesis. It can be divided into two

steps, (i) off-line, Figure 1.2 .(a), and (ii) online phase, Figure 1.2 .(b). The main purpose of the

offline phase is to recreate the WDN through a hydraulic model or network representation, the

alternative of installing pressure sensors or not in the WDN is usually a decision of the water

company, and the calibration of the leak detection and localization methods. The online phase is

focused on the supervision techniques to keep the system working properly; it is first necessary

to check if the WDN leaks; if it does, it is necessary to locate it; if the network does not leak, it

is possible to validate the pressure sensors to make the method of leak detection and localization

more robust.

The techniques used in this doctorate are demonstrated in Chapter 2. Subsequently, a study

of the positioning of pressure sensors can be carried out; this step is not mandatory for allWDNs,

as some networks are already equipped with the sensors, and the water company does not want

to make any changes to the network. Nevertheless, if theWDNs install or modify the positioning

of the sensors, two models of sensor positioning is shown in Chapter 3, concerning Objective 5.

In the online phase of the leak supervision (Figure 1.2.(b)), it is first arranged in the detection

of failures in the system, as shown in Chapter 4 (Objective 1); if the system is operating under

normal conditions, the sensor validation method can be applied to ensure that all sensors in

the network still have a good performance index, a method presented in Chapter 3 for sensor

validation (Objectives 2, 3 and 4). Finally, if the leak detection method detects a leak in the

WDN, the leak localization technique will be applied; different leak localization methods in

Chapter 5 are depicted, focusing on model-based and data-driven.

In addition to the abovementioned chapters, Chapter 6 concludes this document. Chapters

2-6 are summarized as follows:

Chapter 2: Background
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Figure 1.2: Flow chart of the leak supervision developed in this thesis

This chapter recalls a general definition of the water distribution network mode with the

principal components of the WDN and the three forms to represent the network in this thesis.

Following the introduction of the residual study to the leak localization technique. Then some

explanations of strategies applied in this manuscript are introduced as the data fusion and inter-

polation techniques. Finally, the validation and evaluation indicators are shown.

Also, this chapter systematically presents the different case studies where the proposedmeth-

ods have been applied. The network illustrated is the real data from the Barcelona DMA, the

Hanoi network in Vietnam, Modena city in Italy, and the hypothetical city L-Town presented



18 CHAPTER 1. INTRODUCTION

for the first time in the global challenge BattLeDIM.

Chapter 3: Sensor Placement and Sensor Validation

This chapter proposes two methodologies to provide an optimum sensor deployment layout,

one based on a model-based approach and the other entirely data-driven. The first method is

formulated as an integer optimization problem, an optimization criterion that minimizes the

average topological distance. The second method is a new methodology to provide an optimum

sensor placement regarding how many sensors to install without using hydraulic information

but exploiting the knowledge of the topology of the Water Distribution Networks. In addition, a

pressure sensor validation method based on pressure residuals that allows the detection of sensor

faults is proposed.

Chapter 4: Leak Detection

This chapter deals with the leak detection problem in WDNs. The first technique is a leak

detection method based on the water demand analysis of District Metered Areas (DMAs). Then,

historical leak-free data of water demand flow is used to extract minimum, maximum values,

and statistical distributions of differences (errors) between demand flow and predicted values at

different time hours of the day. The concept of sensor fusion is applied to reduce measurement

uncertainties. For this, a virtual measurement is generated that considers each hour of the day

as a feature and, combined, develops a more accurate error analysis capable of detecting leaks

and estimating the leak size magnitude.

The second technique is a complementary study focused on the case with multi-leaks in the

system. The leak detection approach uses the fusion data of the flow and pressuremeasurements,

thus obtaining the instant where the leak starts and if there is more than one simultaneous leak

(multi-leak) occurring in the network.

Chapter 5: Leak Localization

This chapter presents the leak localization approaches developed in this thesis. The method-

ology can be divided into two types: a model-based approach that uses the hydraulic model of
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the network and pressure and demand information; data-driven approaches only require mea-

surements from the network operation. The model-based model investigates the problem of

multi-leaks using the automated meter reading that offers a better understanding of the con-

sumption modes and can generate more accurate models.

In sequence, three data-driven strategies are introduced; the first develops a technique to re-

duce the area of the leak localization in theWDN, using Graph theory to represent the network, a

distance clustering with pre-defined centroids that are the sensor pressure information, and some

selected nodes. Furthermore, extra pressure information of leak events in the selected centroids

is studied to develop a correlation between the pressure measurement and the event. The second

proposed method approach is based on the use of inlet pressure and flow measurements, other

pressure measurements available at some selected inner nodes of the WDN, and the topologi-

cal information of the network. A reduced-order model structure calculates non-leak pressure

estimations at sensed inner nodes. Residuals are generated using the comparison between these

estimations and leak pressure measurements. In a leak scenario, it is possible to determine the

relative incidence of a leak in a node by using the network topology, what it means to correlate

the probable leaking nodes with the available residual information. Topological information

and residual information can be integrated into a likelihood index used to determine the most

probable leak node in the WDN at a given instant k or, through applying the Bayes rule, in a

time horizon. The last method uses the fusion of the pressure residues by applying the radial

base function (RBF) interpolation to obtain the network zone with the highest leak probability.

Chapter 6: Conclusion

This chapter addresses the conclusions of this PhD thesis, and highlights the main contri-

butions made during its elaboration. Finally, some future works to be done in line of this PhD

thesis is proposed.

1.4.1 Related Publications

Much of the work and results presented in this thesis have been published in scientific journals

and conferences. A complete list of the publications is given in the following:
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Journals papers

• [6] Alves, D., Blesa, J., Duviella, E.,and Rajaoarisoa, L. (2021). Robust data-driven leak

localization in water distribution networks using pressure measurements and topological

information. Sensors, 21(22), 7551.

• [80] Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig, V., andDuviella, E. (2022)

“Leak Localization in Water Distribution Networks Using Data-Driven and Model-Based

Approaches”. In: Journal of Water Resources Planning and Management 148.5 (2022),

p. 04022016.

• Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig, V., and Duviella, E. - Leak

detection and localization in water distribution networks: review and perspective. (sub-

mitted)

Conference papers

• [4] Alves, D., Blesa, J., Duviella, E.,and Rajaoarisoa, L. (2022). Data-driven leak local-
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CHAPTER 2

BACKGROUND

2.1 Introduction

This section introduces some necessary definitions, mathematical tools, and properties, which

will be used in this thesis. First, the principal components and the techniques to represent the

WDNs are presented, followed by the introduction of the residual pressure study used in Chapter

3, 4,5. Next, some explanation of the concept of the data fusion technique applied in Chapter 4

subsequent two techniques of interpolation that is used in Chapter 5 . Following the evaluation

indicators used to evaluate the methods, finalizing with the WDN network used in the case

studies used in Chapter 3, 4,5 .

2.2 Water Distribution Networks

WDNs are large systems present in cities around the world. This system is usually organized

in District Metered Areas (DMAs) to facilitate the management of the water companies. The

principal components of the network are:

• Inlets, also called reservoirs: feed the network with water. The networks can have one or

several inlets.

21
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• Pressure ReducingValves (PRVs): ensure that an appropriate and comfortablewater usage

pressure is available at all times.

• Pipes: distribute the water across the network

• Node: can be junctions between pipes or points where the consumer users are connected

with the network.

• Sensors: different sensor types can be installed in the WDN; in this thesis, two types were

used (I) Flow sensors are usually installed in the reservoir for control and billing purposes

(II) pressure sensors are installed around the network to measure the pressure information.

• Automatic meter reading (AMR): is a remote reading device that attaches to a existing

water meter. This device allows the hydraulic models to be more accurate as it can inform

the consumption demand of the node in which it is installed.

Throughout this Ph.D., the methodology developed is divided into model-based and data-

driven, and the way the network is represented is different in each approach. The following

subsection will introduce the WDN representation, starting with the hydraulic model used in the

model-based methods; the following will present the Graph theory used in the leak localization

methods based on data-driven, and the reduced-order model applied to calculate the pressure

estimation in the leak detection method.

2.2.1 Hydraulic model

AWDN can be modeled using the non-differential Hazen-Williams equations as a static system,

considering that changes in demands and flows are slow enough to consider the system operating

in a steady-state. The relation of the flow in the pipes can be described as follow:

qi,j = (hi − hj)|hi − hj|
1
a
−1

(
10.7Li,j

Ca
i,jD

4.87
i,j

)1/a

(2.1)

where qi,j is the flow in the pipe between the nodes i and j [m3/h], the hi and hj are the head

of the nodes i and j respectively in [m], Li,j is the length of the pipe and Di,j is the diameter
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of the pipe, both in meters [m],Cj is the pipe roughness coefficient and a is the flow exponent

coefficient, which is equal to 1.852. In addition, a flow balance can be establish in the node in

the conservation law:

fi − di = 0 (2.2)

where di is the demand at node i and fi is the sum of the flows that pass through the node i, both in

[m3/s].Typically, demands on each node are estimated using billing records. These records are

used to calculate the average daily consumption of each node concerning global consumption.

Then, the demands on the nodes are considered that has the same pattern distribution, i.e., each

node always has the same proportion of the total inflow water in the WDN, so the demand on

each node is calculated as:

d̂i = αid̃WDN (2.3)

where the d̂i is the estimated demand at node i, d̃WDN is the total inflow of water in the WDN,

and αi is the normalized proportional outflow in node i with the sum of all α equal to one.

With the knowledge of the demand pattern distribution and the hydraulic characteristics (i.e.,

pipe shape, length, etc.), and the measurement of the boundary conditions (Pressure Reducing

Valves (PRVs), total water consumption, etc.), the WDN hydraulic system can be simulated

using a hydraulic simulator that provides a numerical solution.

A leak in the WDN can be modeled considering an extra demand in the network, and in this

Ph.D. thesis, for simplicity without loss of generality, it is considered that the leaks can occur

only in the nodes of the WDN. To consider the extra demand of a leak in node j (lj), a new

pattern distribution will be generated as

α
lj
i =

{
αi − αi

lj

d̃WDN
i ̸= j

αi − αi
lj

d̃WDN
+

lj

d̃WDN
i = j

(2.4)

where lj is the leak (with leak size magnitude l in [l/s]) at the node j, and αlj is the new demand
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pattern distribution with a simulated leak, with the condition to the sum of all α equal to one.

For the research to be more robust, uncertainties on demand, α, and leak magnitude,l, can be

added. These uncertainties are artificially generated using the methodology presented in [21].

To calculate the demand uncertainties, the pattern is modified as:

ᾱi = αi +
αiα

urand

100
(2.5)

where the ᾱi is the new demand with uncertainties in node i, αu is the amplitude of the demand

uncertainty [%], and rand is a random value uniformly distributed in a range [−0.5, 0.5]. To

satisfy the condition of all sums of alpha equal to one, the following normalization is done:

ᾱi =
ᾱi∑n
j=1 ᾱj

(2.6)

Then, the new generated demands with uncertainty can be computed as

d̄i = ᾱid̃WDN (2.7)

where d̄i is the demand at node i considering the uncertainty. Finally, to generate the uncertain-

ties in the leak magnitude, the following equation is used

l̄i = li +
lil

urand

100
(2.8)

where the l̄i is the new leak magnitude with uncertainties in node i, lu is the amplitude of the

leak magnitude uncertainty [%], and rand is a random value uniformly distributed in a range

[−0.5, 0.5]. As seen in the Chapter 1.2, there exist different software programs to simulate the

hydraulic model; in this thesis, the hydraulic simulator EPANET [81] is used.
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2.2.2 Graph theory

When using data-driven approaches, most often Graph theory is used to represent the network.

In this case, WDNs is composed ofm pipes, n internal consumer nodes and can be described by

a directed graph G = {V , E}, [23], with V = {v1, . . . , vn} is the set of vertices that represents

connections between the components of the network, additionally the last {vn−nI+1, ..., vn},

represent the vertices of the system’s input, being nI the number of the inlets, with nI ≥ 1. The

elements of the set E = {e1, . . . , em} are the edges, which represent them pipes in the network.

The graph G, can be represented by the incidence matrix H = [hij], in which the elements

hij with i = 1, .., n and j = 1, ..,m are defined as:

hij =



−1 if the jth edge is entering ith vertex.

0 if the jth edge is not connected to

the ith vertex.

1 if the jth edge is leaving ith vertex.

The direction of the edge represents a reference direction for the flow in the corresponding

pipe. The H is the incidence matrix of a connected and directed graph [46]. The incidence

matrix is composed of H ∈ {−1, 0, 1}n×m with each row corresponding to a node and column

corresponding to a pipe.

The WDN must fulfill mass conservation law, which expresses the conservation of mass in

each vertex, described by:

H · q = d (2.9)

where d ∈ Rn is the vector of nodal demands, with di > 0 when the flow is into the node i, and

q ∈ Rm is the vector of flows in the edges. By virtue of the mass conservation, it is possible to

have only n− 1 independent nodal demand,
∑n

i=1 di = 0, therefore the supply flow must equal

the end-user demands as there is no storage in the network.

Let p be the vector of absolute pressures at the nodes and ∆p be the vector of differential
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pressures across the pipes, both in meters of water column [mwc], then the energy law for water

networks gives:

∆p = HTp = f(q)−HT z (2.10)

where p ∈ Rn, and f : Rm → Rm, f(q) = (f1(q1), . . . , fm(qm)). The function fj(·) describes

the flow dependent pressure drop due to the hydraulic resistance in the jth edge. The relationship

between pipe flow and energy loss caused by friction in individual pipes can be computed using

Hazen-Williams formula to expression fj(·):

fj(qj) =
10.7 · Lj

Ca
j ·D4.87

j

· qj|qj|a−1 (2.11)

where Lj is the length of the pipe and Dj is the diameter of the pipe, both in meters [m], qj is

the pipe flow inm3/s and ρj is the pipe roughness coefficient.

The term HT z is the pressure drop across the pipes due to difference in geodesic level (i.e.

elevation) in meters [m] between the ends of the pipes with z ∈ Rn the vector of geodesic levels

at each vertex.

2.2.3 Reduced-order network model

In the leak diagnosis techniques, the representation of the node position is not required; however,

a good representation of the nominal pressure at all the sensors is necessary. The reduced-order

network model is used in this thesis to calculate the nominal pressure at the measured internal

nodes in the Chapter 4. The model uses the pressure dependence of the network’s internal nodes

with the pressure and flow measurements of the inlets. The details of the model derivation can

be found in [48] and [46].

A network can be divided into nodes connected with reservoirs (the inlets nodes) and internal

nodes that compose the system. To facilitate the explanation in this work, the information re-
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garding inlet nodes will be represented by (r) superscript and those of the internal nodes, which

will be expressed by (in) superscript. In particular, vector p(in) will contain pressure node val-

ues p1, ..., pn−nI
and p(r) inlet pressure values pn+1−nI

, ..., pn. The network requires to fulfill

some conditions for using the reduced model proposed:

Condition 1: corresponds to the demands of the internal nodes of the system, where equation

(2.9) can be defined as:

d(k) = −α(k)σ(k) (2.12)

where σ(k) denotes the total inlet flow into the network at time instant k, the vector α(k) defines

the distribution of the total demand in the internal nodes at every time k, with the property∑n
i αi(k) = 1 . Notice that if all consumers are residential, and all nodes demand have the

same consumption profile, in consequence, the α(k) will be constant α(k) = α.

Condition 2: is a particularly case when the vector p(r) of control inputs fulfill the following

case:

p(r)(k) + z(r) = κ(k)1 (2.13)

for some κ ∈ R which is the total head at the inlets in [mwc] and where 1 denote the vector con-

sisting of ones. In [46], there is a discussion on this definition’s feasibility where the controllers

should satisfy this premise at least in networks with the low total consumption.

If these two conditions are fulfilled, the pressure at the ith internal node can be expressed

by:

p
(in)
i (k) = αiσ

2(k) +

nI∑
j=1

βij(k)p
(r)
j (k) (2.14)

where αi is parameter dependent on the network topology and the distribution of demands in the
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network, and βij is dependent on the network topology with j = 1, ..., nI . The total inlet flows

σ is typically well-known since inlet flows are measured.

Some methods of identifying parameters can be used to identify parameters αi and βij since

model (2.14) of p(in)i is linear [87], using themeasures of σ, p(r), and p(in)i with nodes that contain

pressure sensors that will be denoted as pi ∀i = 1, ..., ns in the following where ns is the number

of sensors installed in inner nodes.

If the conditions are not fulfilled, it is possible to generate an estimation of the pressure in

inner nodes p̂i(c) using the historical data directly as a lookup table as was proposed in [89]. That

means, given the particular operating conditions, c provides the inner pressures from historical

data that had the closest operating conditions ĉ to c.

2.3 Residual study

A study widely used for the location of leaks is the study of residuals, i.e., differences between

estimations provided by the model and measurements provided by sensors installed indicative

of leaks, some works are [72, 75, 15, 11]. An important factor in the system in the presence of

a leak will be that it will affect the measurement of all pressure sensors, but the sensors closer

to the failure will be affected more [48, 79].

This section presents a basic leak location methodology based on residuals of pressure mea-

surements to isolate leaks in a water distribution network. Usually, the methods are triggered

when a leak is detected. Leak detection is usually done using inlet flow analysis. Inlet flow and

pressure sensors in inner nodes are installed in the WDN. Leak localization can be carried out

by employing the analysis of pressure residuals generated by the comparison of inner pressure

measurements and leak-free pressure estimations as

ri = p̂i(c)− pi(c), ∀i = 1, . . ., ns, (2.15)

where ri, p̂i and pi are the residual, leak-free pressure estimation, and pressure measurement at
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inner node i. c is the operating condition defined by inlet measurements, and ns is the number

of inner sensors installed in the WDN. Physical models or historical data can compute leak-free

pressure estimations. If a physical model of the WDN is available, a leak sensitivity matrix Ω

can be computed as

Ω =


dr1
df1

. . .
dr1
dfn... . . . ...

drns

df1
. . .

drns

dfn

 (2.16)

where
dr1
df1

= p̂i − p̂ji , p̂
j
i with is the pressure in node i considering a leak in node j denoted as

fi. Then, leak localization can be formulated as the maximum correlation between the observed

residuals and the different leak hypothesis

arg max
j∈1,...,ns

ωjr

||ωj||||r||
(2.17)

where ωj is the jth column of a sensitivity matrix (2.16) and r is the residual whose components

are computed in equation (2.15). Alternatively, if it is not available any hydraulic model of the

WDN the leak localization method can be formulated as the maximum residual component

arg max
j∈1,...,ns

ri (2.18)

The main disadvantage in the use of leak localization in equation (2.18) compared with leak

localization in equation (2.17) is that the result of the leak localization is not a node, but a cluster

related to one of the ns inner pressure sensors. But as it is very simple, and it does not require

any physical model, it is a good reference point to develop new data-driven leak localization

methods.
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2.4 Data fusion technique

The methods presented in the leak detection in Chapter 4 use the base of the data fusion. Inte-

grating data and knowledge from several sources is known as data fusion. Briefly, data fusion

can be defined as combining multiple sources to obtain improved information; in this context,

improved information means less expensive, higher quality, or more relevant information.

The equations methodology used in this thesis is found in the work [99]. Figure 2.1 shows

the impact of the fusion technique on the sensor’s variance, highlighting that the fused estimate’s

variance is smaller than the variances of the individual sensor measurement.

Figure 2.1: The variance σx̂ of the fused estimate x̂ is smaller than both σ1 and σ2

2.5 Interpolation techniques

Interpolation is the process of using known data values to estimate unknown data values. This

thesis uses interpolation in leak localization based on data-driven approaches. The interpolation

technique predicts the value of a function, ℧, at a given point, x by computing a relation to the

known values of the function, xj where j is the node that has sensors, in the neighborhood of the

point. The following section will introduce the Kriging and radial basis function interpolations.

Kriging

Kriging interpolation method is a multivariate regression approach well-known in the area of

geostatistics [54]. Universal kriging predictor [58] is given by
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℧(x) = w(x)β + g(x)ψ (2.19)

where w(x) defines the regression model as a function of spatial location x, g(x) considers

spatial correlations between sampling locations xj and spatial location x. And β,ψ are vectors

calibrated with the sampling observations.

Radial basis function interpolation

Radial basis function interpolation (RBF) provides a very general and flexible way of interpola-

tion in multidimensional spaces, even for unstructured data, where it is often impossible to apply

polynomial or spline interpolation. Due to its good approximation properties, it was chosen in

this work.

The method usually works in s dimensional Euclidean space which is Rs fitted with the

Euclidean norm || · ||. The interpolation space consists of all functions of the form:

℧(x) =
ns∑
j=1

λjϕ(||x− xj||) (2.20)

where x is a point inRs which is the value to be obtained with the interpolation, xj are the center

points for the RBFs, λj are coefficients to determine, ns are points in this space at which the

function to be approximated is known, in this thesis is the value in the node that has sensors,

and ϕ(r) is a radial basis function, set as a multiquadric problem:

ϕ(r) =
√
1 + ϵ2r2 (2.21)
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2.6 Validation and Evaluation Indicators

In this section, different indicators will be introduced to evaluate the performance of the methods

presented, focused on the problem of leak detection and localization and the sensor placement

and validation.

2.6.1 Leak detection indicators

To assess whether a fault detection method is working correctly, different scenarios should be

generated with different magnitude values of leaks comprised of a few days with the system in

normal operating mode and then a few days in a leak operating mode. The first performance

index to be evaluated is the True Positive Rate (TPR), which tells us the percentage of correctly

identified leaks as such. The second index is the False Positive Rate (FPR), which is the per-

centage of leak-free data that triggered the leak detection method, i.e., no leak is present in the

network when the detection is raised of the total number of sequences analyzed. Finally, the

Difference Time Detection (DTD) index measures the time in hours from the leak appearance

to the leak detection.

2.6.2 Leak localization indicators

TheAverage Topological Distance (ATD) index is applied in evaluating leak localizationmethod-

ologies. The index represents the node’s distance between the node predicted as leaking and the

actual node with the leak. To calculate the ATD is first necessary to create a matrix containing

the minimum topological distance (in nodes or meters), A ∈ Rn×n.

Second is necessary to calculate the confusion matrix, confusion that is a tabular way of

visualizing the performance of a prediction model. Each entry in a confusion matrix denotes the

number of predictions made by the model where it classified the classes correctly or incorrectly.

For our study, only the confusion matrix analysis would be inclusive since the objective is the

analysis of the proximity that the method points to the leakage and not its precision to the node

with the leakage. The confusion matrix Γi,j(n− nI × n− nI) depicted in Table 2.1 that is used

to assess the performance of leak localization approaches. The rows of this matrix correspond
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to the leak scenario and the columns to where the leak is located (l̂) by the leak localization

method. Considering confusion matrix Γ the ATD can be computed as follows:

Table 2.1: Confusion matrix Γ.

l̂1 · · · l̂i · · · l̂n−nI

l1 Γ1,1 · · · Γ1,i · · · Γ1,n−nI

...
...

...
...

...
...

li Γi,1 · · · Γi,i · · · Γi,n−nI

...
...

...
...

...
...

ln−nI
Γn−nI ,1 · · · Γn−nI ,i · · · Γn−nI ,n−nI

ATD =

∑n−nI

i=1

∑n−nI

j=1 Γi,jAi,j∑n−nI

i=1

∑n−nI

j=1 Γi,j

(2.22)

2.6.3 Sensor placement indicators

The indicators applied to evaluate the optimal sensor placement techniques are:

• F1-score is the weighted average of precision and recall, where precision is the analysis

of all positive predictions, how many are positive, and recall is the study of real positive

cases, how many are predicted positives. The F1 score is a good indicator of imbalanced

data [55].

• Cohen’s Kappa: represents the degree of accuracy and reliability, which is the difference

between the observed overall accuracy of the model and the overall accuracy obtained

by chance. It is a more practical measure to use on problems with an imbalance in the

classes. The kappa has a range from −1 to +1. Values superior to 0.6 are considered good

[79].

2.7 Case Studies

This section presents the case studies used along with the Ph.D. thesis. In particular, the WDN

and DMA networks are detailed.
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Figure 2.2: Historical leak-free inlet flow in Barcelona DMA1.

First, a DMA of the Barcelona WDN with only flow measurement at the inlet is presented.

The data was used to test the leak detection method proposed in Chapter 4. Then, the reduced

Hanoi benchmark WDN is presented, and the case is used for leak localization in Chapters 5.

Next, the Modena network is introduced and applied in the leak localization, sensor validation,

and sensor placement in Chapters 3 and 5. Finally, the hypothetical L-Town WDN is raised

and employed to evaluate the proposed leak detection and localization techniques presented in

Chapters 4 and 5.

2.7.1 DMA Barcelona WDN

Barcelona WDN supply water in 23 municipipalities that correspond to around three million

consumers. This network convers and area of 424 km2 and it is divided in more than 200 DMAs.

In this Thesis a DMA of the Barcelona WDN has been used as a case study in the framework

of the project ACCIO RIS3CAT UTILITIES 4.0–P1 ACTIV 4.0. ref. COMRDI-16-1-0054-

03. This DMA, that will be refered as BCN DMA1 , is an extensive network formed by two

reservoirs without PRVs, 3373 consumer nodes, and 3482 pipes. The data available is the total

water consumption from October to December 2013. And the water consumption varies from

approximately 8 to 50[l/s] shown in Figure 2.2.
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Figure 2.3: Simplified Hanoi WDN.

2.7.2 Hanoi

Hanoi’s WDN is a reduced city’s network model, from (Vietnam). The network is composed of

one inlet (reservoir), 34 pipes, 31 nodes, no pumping facilities are considered since only a single

fixed head source at elevation of 100m is available. The WDN is represented by figure 2.3. The

Hazen Williams coefficient for all the links is 130. The diameter of the pipes in this network

are between 305mm and 1, 016mm. The minimum flow requirement in this network is 5m3/h.

The network was introduced by [29] and widely used to test optimization approaches.

2.7.3 Modena

Modena WDN is a reduced model of the real water distribution network of the Italian city Mod-

ena. The gravity-fed large-scale network shown in Figure 2.4. This large-scale network com-

prises 268 junctions (nodes) connected through 317 pipes and served by four reservoirs.The

network is completely gravity-fed [102], therefore, it has no pumps.
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Figure 2.4: Modena WDN

2.7.4 L-Town

The Battle of the Leakage Detection and Isolation Methods is a challenge provided by the orga-

nizers of the BattLeDIM [101]. The aim is to detect and locate several leaks in a hypothetical

city created with this intent, as depicted in Figure 2.5. The city is located in the Northern hemi-

sphere and regroups a population of about 10,000 people. Thus, higher water usage is expected

around July/August and lower in December/January. The network is divided into three distinct

areas: Area A is supplied by two reservoirs, each containing flow sensors; Area B was installed

with a pressure reduction valve (PRV) to help reduce background leakages; and Area C was

installed with a pump and a water tank, with a flow sensor in this pump to control the flow

that enters in the tank. The network has 33 pressure sensors (see Figure 2.5), all transmitting

their measurements every 5 minutes to the utility’s Supervisory Control and Data Acquisition

(SCADA) System. In addition, it has been installed in Area C 82 Automated Metered Readings

(AMRs), a technology used in utility meters for collecting data that does not require physical ac-

cess or visual inspection ( see Figure 2.6 . In this area, only ten regular sensors were distributed,

and because Area C has a significant quantity of AMRS installed in the zone, a model-based

approach is a good option to solve the leak localization problem in this area.
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Figure 2.5: L-town WDN
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Figure 2.6: The 82 AMR locations (nodes with red color), the 10 nodes without AMRs ( node
with blue color), and the location of the pressure sensor (node with a star) installed in Area C.
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2.8 Summary

This chapter summarizes the general knowledge necessary to understand the methods of de-

tection and location of leaks and the technique of sensor placement and validation developed

throughout this manuscript. First, an introduction of the hydraulic model equations, the repre-

sentation of theWDN in graphs, and a reduced network model were presented. Additionally, the

residual studies’ explanation and the data-fusion concept were presented. Finally, the evaluation

indices and the networks used in the case study were presented.
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SENSOR PLACEMENT AND SENSOR VALIDATION

3.1 Introduction

This chapter will focus on developing sensor placement and sensor validation methods that are

an essential stage in WDN supervision. The sensor placement is in the offline phase of the

flowchart Figure 1.2, and the sensor validation is applied in the online step when the network

operates in normal conditions defined in the leak detection phase.

Leak localization in WDN is very sensitive to the positions of the sensors installed along

with the system, and the wrong positioning of sensors affects its performance. This sensitivity

in the sensor position can be noticed in Chapter 5, where different leak localization methods are

analyzed. The most straightforward optimal sensor placement algorithm using a model is to test

each possible sensor configuration subset, finding the one that minimizes the error in the leak

localization considering all possible leaks (simulated with the model). However, this exhaustive

search of the space is computationally intractable except for small sensor configuration sets, and

not all the WDN has models to simulate all possible leaks.

In this chapter, two methods developed for the positioning of pressure sensors will be pre-

sented, the first being a model-based approach, ideal for when theWDN has a reliable hydraulic

39
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model. The second will be data-driven, only needing the topological information of the net-

work, being used for systems that do not have hydraulic models or that are not reliable. The two

methods will be compared using the Moderna Network in the case study presented in Chapter

2.7.

Subsequently, the approach for validating pressure sensors is applied while the detection

leak methods are operating. When supervising the WDN, it must be ensured that the sensors

are working correctly since the leak localization methods will have satisfactory results if the

information is reliable. Therefore, the method will check if the pressure sensors installed on the

WDN are operating correctly. The information from the system’s pressure measurements will

be used, and the method will be validated using the Hanoi and Modena Network.

The contributions of this chapter have been published in:

• [6] Alves, D., Blesa, J., Duviella, E., and Rajaoarisoa, L. (2021). Robust data-driven leak

localization in water distribution networks using pressure measurements and topological

information. Sensors, 21(22), 7551.

• Alves, D., Blesa, J., Duviella, E., and Rajaoarisoa, L. (2022). Topological analysis of

water distribution networks for optimal leak localization. International Conference on

Hydroinformatics HIC 2022 − Water INFLUENCE. (to appear)

3.2 Sensor placement

Several works on leak localization were released using model-based approaches and commonly

used demand-driven hydraulic simulators [90, 45]. The results based on hydraulic models are

excellent. Nevertheless, the main difficulties characterize the model-based approaches are the

calibration of accurate models and data availability for all possible complex scenarios.

An element that has the potential to significantly improve the localization of leaks is the sen-

sor pressure configuration. Several strategies have been proposed in the last years that tackle

the optimal sensor placement problem in WDNs for leak localization. As a branch and bound
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searches [84], Genetic Algorithms [94], feature selection techniques [92], and game theory ap-

proaches [7]. This section aims to present the development of the approach to placing a given

number of sensors, ns, in a WDN to obtain a sensor configuration with a maximized leak local-

ization performance.

Two newmethodologies for sensor placement in theWDN. The first is formulated as an inte-

ger optimization problem bounded within upper and lower limits, the method uses the hydraulic

model to simulate leak scenarios in the network to calculate the objective function. Moreover,

the other uses only the topological network information to improve the leak localization meth-

ods. The second approach aspires to simplify the problem of sensor placement by eliminating

the need to calibrate the hydraulic water models and reducing the computational burden. The

methodology is based on the complex network theory applying the graph approach with the

topological information to represent the WDN.

In both methodologies, the goal is to improve the leak localization methods that use residual

analysis, first is necessary to set a simple leak localization method based on the pressure residual

analysis. The leak localization method in Chapter 2.3 is used in this approach to improve the

result of leak localization taking into account the sensor position.

In order to cope with the combinatory complexity of the sensor placement problem, follow-

ing the ideas of [9], a two-step suboptimal search algorithm is proposed:

• STEP 1: Divide the set of nodes S of the WDN where a sensor can be installed into s

clusters C = {C1, ..., Cns}, i.e., a cluster for every sensor to be installed in the WDN.

• STEP 2: Choose a node among all nodes of a cluster as the optimal place to install a

sensor.

To carry out the STEP 1, the WDN can be represented as a directed graph G = {V , E},

as seen in Chapter 2 with V as the set of vertices that represents the n connections between

the components of the network (junctions, reservoirs, and tanks), and E are the edges, which

represent them links (pipes, valves, and pumps) in the network. The edges are associated with
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a cost value based on the friction loss in pipes of the Hazen-Williams formula, that is, the pipe

length divided by the pipe diameter, to guarantee a model closer to the real behavior of the

water system. It will be consider that S ⊂ V and therefore the number of elements ℓ of S fulfils

ℓ ≤ n. The cluster problem can be defined as a set of observations nodes that aims to partition

the ℓ observations into ns(≤ ℓ) sets C = {C1, ..., Cns} considering S = C1 ∪ C2 ∪ · · · ∪ Cns

and Ci ∩ Cj = ∅ if i ̸= j . The Girvan-Newman (GN) [55] clustering method is proposed for

STEP 1, GN clustering is an algorithm that focuses on edges mostly between communities, so

clusters are defined by progressively removing edges from the original graph according to edge

betweenness, which measures the importance of an edge in a network by counting the number

of shortest paths that run through it.

For STEP 2, two methods were developed: the first being the model-based approach which

uses hydraulic models formulated as an integer optimization problem. This approach can only

be applied if the hydraulic model has high credibility. In addition, the second method is a data-

driven approach to locating sensors at the topologically most essential nodes of each cluster,

ensuring a spatially uniform distribution of sensors.

Model-based approach

To perform STEP 2 in the model-based is necessary to associate the nodes in the cluster Ci with

an index value organized the components in ascending order. To generate this arrangement a

new index variables x̂i ∈ {1, 2, ..., ℓ} and i = 1, 2, ..., ℓ are defined in such a way x̂i contain the

index to the physical node enumeration that has been rearranged as the ith node. In this way,

nodes are arranged with the new index in the cluster as follows

Ĉ1 = {x̂1, . . . , x̂N1}

Ĉ2 = {x̂N1 + 1, . . . , x̂N1 + x̂N2}
...

Ĉns = {
∑ns−1

i=1 x̂Ni
+ 1, . . . , ℓ}

(3.1)

where x̂Nj
represent the physical node that has been arranged as the last element of cluster Ĉj
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for j = 1, ..., ns, with x̂1 represents the physical node set to be the index number one of cluster

Ĉ1.

The goal in STEP 2 is to choose one node in each cluster C to be the place to install a sensor.

The ATD performance index seen in Chapter 2 can be minimized to perform the optimal sensor

placement by employing the following optimization problem

min
x

f(x)

s.t. xl
i ≤ xi ≤ xu

i , i = 1, ..., ns

x ∈ Zns

(3.2)

where x = {x1, ..., xns} is the set of ns sensors to be installed, with the constraint of x1 ∈

Ĉ1, ..., xns ∈ Ĉns and xl
i, x

u
i is the lower and upper bounds based on the equation (3.1), i.e.,

xl
1 = 1, xl

2 = x̂N1 + 1, . . . , xl
ns

=
∑ns−1

i=1 x̂Ni
+ 1 and xu

1 = x̂N1 , x
u
2 = x̂N1 + x̂N2 , . . . , x

u
ns

= ℓ.

And optimization function f(x) the performance of the leak localization method considering

sensor configuration x computed as the ATD performance index

f(x) =

∑no

i=1

∑no

j=1 Γi,jAi,j∑no

i=1

∑no

j=1 Γi,j

(3.3)

Once the optimization is complete, it is necessary the conversion of the indexes from clusters

Ĉi to clusters Ci to obtain the set of physical nodes where pressure sensors should be installed x̃

for the optimal leak localization performance.

x̃ = {x̂x1 , ..., x̂xns
} (3.4)

It should be noticed that simulations of leak scenarios in the inner nodes of the WDN,

no = n − nI , are necessary to compute the confusion Γ matrix defined in (2.1) and used in

the optimization function. The burst analysis is recommended for this study since the objective

is to have the lowest possible FPR value. The burst magnitude can be of the order of 5% to 10%

of the average consumption of the WDN, and the time analysis will depend on the analyzed
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WDN. Therefore, the performance of the leak localization will directly depend on the accuracy

of the hydraulic model.

Data-driven approach

As explained in the previous section, STEP 2 aims to select nodes in each cluster of C. The core

idea of the present section is to locate sensors without using any hydraulic simulations since data

availability is often limited or not suitable. In addition, it reduces the computational burden.

Thus, to define a criterion to approach the sensor placement problem, in the case of unavail-

able or incomplete hydraulic information on the network, the topology most central nodes of

each cluster are considered suitable sensors locations. For this purpose, three indicators of the

importance of the nodes were used to select the positioning of the sensors:

• Closeness centrality uses the inverse sum of the distance from a node to all other nodes

in the graph, the more central a node is, the closer it is to all other nodes.

cc(i) =
n− 1∑n
j=1 d(i, j)

(3.5)

where d(i, j) is the distance between vertices i and j . And n is the number of nodes in

the graph/clustering. Therefore for every cluster Ci, Closeness centrality (3.5) would be

computed for theNi elements of the cluster and the sensor iwould be the one that provides

a minimum value.

• Betweenness centrality: measures how often each graph node appears on the shortest path

between two nodes in the graph; for every cluster Ci, closeness centrality is computed for

theNi elements of the cluster, and the sensor iwould be the one that provides a maximum

value of equation:

cst(i) =
∑
s ̸=t ̸=i

σst(i)

σst

(3.6)

where σst is the total number of shortest paths from node s to node t and σst(i) is the



CHAPTER 3. SENSOR PLACEMENT AND SENSOR VALIDATION 45

number of those paths that pass through i ;

• Eigenvector centrality uses the eigenvector corresponding to the largest eigenvalue of the

graph adjacency matrix. A high eigenvector score means that a node is connected to many

nodes who themselves have high scores, for every cluster Ci, the eigenvector centrality

is computed for the Ni elements of the cluster, and the sensor i would be the one that

provides a maximum eigenvalue .

Asx = λmaxx (3.7)

whereAs is the adjacency matrix of the subgraph G of the cluster Ci,and λmax is the largest

eigenvalue. It computes the centrality for a node based on the centrality of its neighbors,

according to the coordinates ec(v) of the eigenvector x = ec, associated with the largest

eigenvalue of λmax matrix.

3.2.1 Case study

The case study selected to test the performance is the reduced model of the real WDN of the

Italian city Modena presented in Figure 2.4. EPANET hydraulic simulator was used to generate

the data required to apply the sensor placement method with the following simulation condition:

• Each node has a leak scenario with a constant leak magnitude, randomly selected, with

12.3 to 24l/s representing 5% to 10% of the average consumption of the WDN.

• Each scenario has 72h, samples were collected every 10 minutes and filtered to 24 hours

values;

The minimization of the optimization defined in Equation (3.2) is carried out using Genetic

algorithms (GA) based on principles of natural genetics and natural selection. The GA can be

used in the context of sensor placement in WDN to find the near-optimal placement of these

sensors for leak localization. In that case, a chromosome corresponds to the possible presence

or absence of a sensor at a given node.



46 CHAPTER 3. SENSOR PLACEMENT AND SENSOR VALIDATION

Table 3.1 shows the results obtained in three different scenarios: with 3, 5, and 10 possi-

bilities of sensor placement. The number of nodes chosen to have a sensor is exhibited in all

scenarios for the GA solution and each node importance method.

To analyze the performance of the proposed approach, data with different conditions have

been generated artificially. The following simulation conditions were used:

• A 72h with regular operation data with an uncertainty of 10% of the nominal demand

value was considered;

• Each node has a leak scenario with a constant leak magnitude, randomly selected, with 3

to 6l/s representing 1 to 2.5% of the average consumption of the WDN. An uncertainty

of 10% of the nominal demand value was considered in all scenarios;

• To reduce the uncertainty in the data, samples were collected every 10minutes and filtered

daily;

Table 3.1 show the ATD, F1 score and Kappa index performance to all scenarios. As the

optimization of Equation (3.2) is based on the optimization of the ATD index, the results pre-

sented in Table 3.1 show that the solution obtained by the GA will be the best in any case, even

if the proposed data-driven methodology is not the optimal solution of the sensor network, the

obtained values are not far from those of GA. Note that even getting the best optimal value of

the ATD, the solution obtained by the GA does not guarantee the best result for the F1 score and

the kappa. The Eigenvector centrality is the results that present the worst results, principally in

the scenario with three sensors, having the Cohen’s Kappa with the worst value, inferior a 0.6.

On the other hand, the Betweenness and the Closeness centrality had a similar result. How-

ever, analyzing the ATD index, the Betweenness metric improves the scenario with 3 and 5

sensors. In the scenario with ten sensors, the Closeness centrality has the better performance.

Whereas in a general case, the Betweenness centrality is the best choice in the data-driven

methodologies.

Figure 3.1 shows the result of the second scenario with 5 sensors. Each cluster is highlighted
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Table 3.1: Average evaluation metrics.

Criterion Nodes with sensors ATD F1 score (%) Kappa
3 sensors scenario

GA 88 109 207 6.82 82.43 0.74
Closeness 91 147 207 7.50 82.01 0.71
Betweenness 7 63 109 7.37 79.63 0.70
Eigenvector 4 83 119 8.05 67.48 0.48

5 sensors scenario
GA 5 41 80 110 164 5.80 47.01 0.71
Closeness 49 91 135 147 207 6.50 82.01 0.75
Betweenness 7 63 49 91 135 6.54 81.91 0.75
Eigenvector 4 83 92 119 134 6.70 75.64 0.65

10 sensors scenario
GA 10 31 47 78 129 171 129 183 225 258 4.45 28.97 0.62
Closeness 11 31 49 83 91 105 137 129 180 258 4.70 73.36 0.68
Betweenness 1 11 31 35 49 83 91 129 135 180 4.68 69.60 0.64
Eigenvector 1 4 31 83 92 102 119 129 134 180 4.71 83.36 0.79
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                             position:

Figure 3.1: WDN of Modena and the four sensor layouts according to the three topological
centrality metrics and GA solution.
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with a different shade. The position of the sensors obtained with the proposed methods is shown

with a circle with different colors. Clustering generated with GN provides a division focused

on edges between communities that do not guarantee a homogeneous distribution of nodes. As

the nodes are more communicated, the effect on the residue in a leak between these nodes will

affect the sensor installed in that region more.

3.3 Sensor Validation

As the sensor positioning study is critical to guarantee the optimal result for developing the leak

localization method in the WDN, a validation of the sensors is necessary during the leak local-

ization process. Sensor validation is essential because if one or more sensors are not working

correctly, the leak localization method will be compromised. This session will present the pres-

sure sensor validation method in the WDN that must be executed when a leak is not detected by

the leak detection method, as seen in the flowchart of Figure 1.2.

Anomalous values of pressure residuals ri, i = 1, ..., ns defined in (2.15) can be used to

detect sensor faults. In the same operating conditions, historical data of inner pressure sensors

(leak-free data) can be used first to calibrate a pressure estimation model. Moreover, residual

boundsϖ and ϖ̄ can be computed as maximum (positive and negative) residuals obtained with

leak-free data. These bounds, allow the implementation

ri(k) ∈
[
ϖi, ϖ̄i

]
⇒ No Fault in sensor i(ϕi(k) = 0)

ri(k) /∈
[
ϖi, ϖ̄i

]
⇒ Fault in sensor i (ϕi(k) = 1)

(3.8)

The accuracy of this fault detection method depends on the length of residual bounds ϖi

and ϖ̄i and, therefore, on the accuracy of pressure estimation. In order to increase the accuracy

of the fault detection method, spatial residuals [11] between pressure residuals (2.15) can be

computed

Sri,j(k) = ri(k)− rj(k) ∀i = 1, ..., ns − 1 and j = i+ 1, ..., ns (3.9)
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In the same way as pressure residuals, spatial residual bounds εi,j and ε̄i,j can be computed

using leak-free data, and the fault detection can be implemented as follows

Srsi,sj(k) ∈
[
εi,j, ε̄i,j

]
⇒ No Fault(Φi,j(k) = 0)

Srsi,sj(k) /∈
[
εi,j, ε̄i,j

]
⇒ Fault(Φi,j(k) = 1)

(3.10)

As model errors will affect in a similar way to close pressure sensors, it is expected that some

spatial residual bounds will be smaller than pressure residual bounds. Therefore fault detection

defined by (3.10) will be more sensitive to pressure sensor faults than the one defined by (3.8).

The accuracy of the sensor fault detection can be increased by means of average computing

residuals in a time window leading to smaller residual bounds.

Once a residual has been violated, i.e., at least one of the sensor faulty signals ϕi(k) i =

1, ..., ns or spatial faulty signals Φi,j(k) i = 1, ..., ns − 1 and j = i + 1, ..., ns is equal

to one, the sensor fault isolation can be implemented in two stages as described in Algorithm 1.

Algorithm 1 Sensor validation search for sensor fault.
Stage 1: In case of the activation of one or more sensor faulty signals ϕi(k) i = 1, ..., ns, as these signals are uniquely

related to sensors si i = 1, ..., ns, the isolation is trivial and faulty sensors must be discarded for future leak localization,

and the number of available healthy sensors ns should be updated.

Stage 2: Only considers Spatial faulty signals Φi,j(k) of the ns non-faulty sensors from Stage1. As these fault signals

are potentially affected by two possible sensor faults si and sj , the fault isolation can be implemented iteratively by the

following steps:

1: for i← 1, ns − 1 do

2: for j ← i+ 1, ns do

3: if Φi,j(k) == 1 then

4:

ı̂ = argmax
i∈{1,...,ns}

{
ns−1∑
j=i+1

Φi,j(k) +

i−1∑
j=1

Φj,i(k)} (3.11)

5: Discard sensor sı̂, eliminate faulty signals related to this sensors, update ns

6: end if

7: end for

8: end for
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Figure 3.2: Configuration of four pressure sensors in Hanoi WDN

In case that two or more sensors obtain the same cost function in (3.11) and less than the

maximum possible value ns − 1, the computation of (3.11) should be done in a time window

until new Spatial faulty signals are activated.

3.3.1 Case study

Two network are used for the case study to test the performance of the sensor validation ap-

proach. The first is the Hanoi network presented in Figure 2.3, and the second is the reduced

model of the real water distribution network of the Italian city Modena displayed in Figure 2.4

Hanoi

To analyze the performance of the proposed approach, data with different conditions have been

generated artificially using the EPANET hydraulic simulator. In order to consider realistic sce-

narios, some uncertainty has been added to the data [10]:
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• A white noise has been combined to emulate the noise present in real measurements, and

uncertainty of 10% (uniform distribution) was added in the nominal demand value.

• The sample rate is 10 min, but average hourly measurements are calculated to reduce

uncertainties on the diagnostic stage.

A case study with four sensors in the nodes numbers 12, 17, 23, 29 depicted in Figure 3.2

will be considered to illustrate the performance of the proposed sensor validation method. The

four-sensor residuals computed by equation (2.15) have been considered in a time window of

24 hours using leak-free data leading to upper residual bounds equal to

[ϖ̄1, ϖ̄2, ϖ̄3, ϖ̄4] = [0.11, 0.06, 0.09, 0.11]

and the lower residual bounds equal to

[ϖ1, ϖ2, ϖ3, ϖ4] = [−0.14,−0.10,−0.10,−0.08]

In the same way, the six spatial residuals defined by (3.9) have been computed in the same

conditions as sensor residuals leading to spatial residual bounds

[ε̄1,2, ε̄1,3, ε̄1,4, ε̄2,3, ε̄2,4, ε̄3,4] = [0.06, 0.07, 0.08, 0.04, 0.05, 0.03]

and

[
ε1,2, ε1,3, ε1,4, ε2,3, ε2,4, ε3,4

]
= [−0.04,−0.06,−0.08,−0.06,−0.09,−0.03]

Figures 3.3 and 3.4 depict the evolution of sensor and spatial residuals with their respective

residual bounds in a fault scenario of sensor 1 that corresponds to pressure sensor in node 12.

The fault is a drift of 0.1[mcw] that starts on the 5th day. As shown in Figure 3.3, applying (3.8)
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Figure 3.3: Graph of the filtered residual with a fault in sensor number 1 (a) 1st sensor (r1), (b)
2nd sensor (r4), (c) 3rd sensor (r3), and (d) 4th sensor (r2).

to sensor residuals it is impossible to detect the fault until the end of day 9 (i.e. 4 days later) when

residual sensor 1 violates the bounds. However, applying (3.10) to spatial residuals it is possible

to detect the fault in 10 hours: Srs1,s2 violates its bounds in 10 hours, and Srs1,s3 , Srs1,s4 violate

their bounds in 16 and 22 hours, respectively.

Modena Network

The Modena network was selected to illustrate the sensor validation in a large-scale network.

EPANET hydraulic simulator was used to generate artificial data to analyze the performance of

the proposed method. The following simulation conditions were considered:

• The leak scenario consists of data samples collected every 10 minutes and filtered to

hourly values to reduce the uncertainty in the data.

• The uncertainty of demand is considered by introducing the uncertainty of 10(%) of the

nominal demand value. In addition, white noise is deemed to emulate the noise in the
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Figure 3.4: Graph of the spatial residual with a fault in sensor number 1

measurements.

The sensor bias, sensor drift, and abrupt sensor failure of sensor faults were proposed to

analyze the sensor validation method. The sensor bias fault was simulated as a step change, and

the drift fault was given as a time-varying ramp signal. In both cases, the fault magnitude was

randomly chosen with a range of 0.1 to 0.2 [mwc]. The last fault was simulated by turning the

sensor output to zero.

A total of 6000 scenarios were simulated with ten days each to evaluate the sensor valida-

tion method for the five sensor configurations depicted in Figure 5.14. Thus, 1000 scenarios

were generated for each sensor with sensor bias, sensor drift, and abrupt sensor failure applied

randomly, and the remainder 1000 without faults.

To calculate the residual and spatial residuals bounds, a 6-month leak-free scenario was
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Figure 3.5: Configuration of pressure sensors in Modena WDN with 5 sensors.

generated. The five sensor residuals computed by equation (2.15) considering the time window

of 24 hours and increasing 24% observed bounds. Leading to upper residual bounds equal to

[ϖ̄1, ϖ̄2, ϖ̄3, ϖ̄4, ϖ̄5] = [0.10, 0.06, 0.04, 0.01, 0.04]

and to lower residual bounds equal to

[ϖ1, ϖ2, ϖ3, ϖ4, ϖ5] = [−0.08,−0.05,−0.03,−0.01,−0.06]

Following, the ten spatial residuals defined by (3.9) were computed in the same conditions

as sensor residuals leading to spatial residual bounds

[ε̄1,2, ε̄1,3, ε̄1,4, ε̄1,5,ε̄2,3, ε̄2,4, ε̄2,5, ε̄3,4, ε̄3,5, ε̄4,5] =

[0.07, 0.08, 0.08, 0.10, 0.06, 0.05, 0.06, 0.03, 0.06, 0.05].

and
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[ε1,2, ε1,3,ε1,4, ε1,5, ε2,3, ε2,4, ε2,5, ε3,4, ε3,5, ε4,5] =

[−0.07,−0.09,−0.08,−0.09,−0.05,−0.04,−0.06,−0.03,−0.04,−0.04]

For this study, the evaluation metric applied was classification accuracy. To this propose, the

confusionmatrix has been used, which presents the classification accuracy, andmisclassification

error, the horizontal axis of the confusion matrix describes the predicted labels of samples, while

the vertical axis depicts the true labels of samples. The right side shows the percentages of

correctly and incorrectly classified observations for each true class.
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Figure 3.6: Confusion matrix for sensor validation method.

Figure 3.6 illustrates the result for the confusion matrix to all scenarios generated, as depicts

the accuracy to detection fault in the sensor is very high, where the lowest accuracy is presented

in fault sensor number five with an accuracy of 95, 4% and the highest in fault sensor number

three with 100%of accuracy. Regarding the accuracy of the scenario with no-fault, 8 of the 1000

fault free scenarios presented one false alarm among the 240 samples of the scenario. Therefore,

providing an average interval between false detections of 240000/8 = 30000 hours.
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3.4 Summary

This chapter has tackled two problems related to the pressure sensors installed in the inner nodes

of the WDN. On the one hand, the optimal placement is to install inner pressure sensors in order

to optimize the leak localization performance. On the other hand, the sensor validation allows

the detection of possible pressure sensor faults that would affect the accuracy of leak localization.

As a result of the chapter, a sensor placement method and a sensor validation strategy have been

proposed.

The sensor positioning uses only the topological information from the WDN based on the

high connection density of the graph to find the most important nodes of the network clusters has

been presented. It employs only the topological characteristics of a WDN, combining the iden-

tification of clusters of nodes and topological centrality metrics for the design without carrying

out any hydraulic simulation. It was proposed to provide a tool specially adapted for the frequent

case where only partial information about the system is available. Following, a new approach to

sensor placement that minimizes the average topology distance of leak isolability has been pro-

posed, formulated as an integer optimization problem. However, the method uses a hydraulic

model to simulate all node leaks based on the system’s demand pattern and uncertainties.

In the following subsection, a sensor validation method based on the sensor pressure resid-

uals is proposed. Historical data is used to calculate non-leak pressure estimations at sensed

inner nodes. Residuals are generated using the comparison between these estimations and leak

pressure measurements. The method is able to detect and isolate pressure sensor faults.

The proposed approaches have been explained, and an example is presented using the Hanoi

and Modena Network as a case study. They demonstrate that the methodology for sensor place-

ment using only the system topology information obtained a good result, ideal for cases where

partial details on the system are available. In the analysis of the sensor validation, the results

are satisfactory results.

In future research, a study of how different objective functions can improve the selection

and the effect of other stressing conditions (i.e., sensor failures) in the network can change the
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result of sensor placement.



CHAPTER 4

LEAK DETECTION

4.1 Introduction

This chapter will present the methodologies for leak detection developed during the thesis. Two

methods will be demonstrated, both being data-driven methods that only depend on the infor-

mation from the sensor’s data.

The first method only uses information from the flow sensors installed in the inlets of the

WDN, requiring free historical data and the current measurements of the sensors. The pro-

cess uses the data fusion base seen in Chapter 2.4. The differential of this method is that the

leak’s location can occur during the entire duration of the day, as the method can combine the

sensor measurements, reducing the measurement variance. This means that even if the leak hap-

pens during the period of greatest water consumption when the variance is more significant, the

method can detect it within a few hours. The technique presented was applied to a DMA of the

Barcelona WDN.

The second method is improving the development of leak detection, tackling the system’s

multi-leaks problem. The method uses data from the flow and pressure sensors, using the extra

information from the sensor pressure to detect multi-leak. The fusion data of the flow and

58
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pressure measurements are studied, thus obtaining the instant where the leak starts and if there is

more than one simultaneous leak (multi-leaks) occurring in the network. As a result, the method

was applied to the L-Town network.

The contributions of this chapter have been submitted in:

• [3] Alves, D., Blesa, J., and Duviella, E(2020) “Detecçao de vazamento de distribuiçao de

água”. In: Conferência de Estudos em Engenharia Elétrica (CEEL) . DOI: 10.5281/2596-

2221.xviiiceel.2020.548.

• Alves, D., Blesa, J., Duviella, E.,and Rajaoarisoa, L. (2022) Leak Detection in Water

Distribution Networks Based on Water Demand Analysis . 11th IFAC Symposium on

Fault Detection, Supervision and Safety for Technical Processes - SAFEPROCESS. (to

appear)

• Alves, D., Blesa, J., Duviella, E.,and Rajaoarisoa, L. (2022) Multi-leak detection and

isolation in water distribution networks 2nd WDSA/CCWI Joint Conference.(to appear)

4.2 Methodology focus on single leaks

The proposed method to leak detection descends from the base of sensor fusion theory using

the inlet flow measurement of the WDN to generate a virtual measurement. The technique can

analyze if there is a leak in the system during all-day hours. Because of that, the leak detection

will be faster than a method based on Minimum Night Flow (MNF) analysis that uses flow

during night hours. Figure 4.1 shows the schema of the proposed method, which can be divided

into two phases. First, the offline phase is the calibration of the parameters. Furthermore, the

second online phase is where the evaluation of leak presence in the network is analyzed. We

will explain the methodology in detail in the following.

The fundamental aspect of offline and online phases represents the WDN inlet flow, approx-

imating the current and historical input flow. Therefore, the demand forecast in WDN is out of

the scope of this work. However, it can be assumed that a demand forecast method calibrated
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Figure 4.1: Overview of the proposed method

being historical data of the WDN [24] is available with the WDN input flow y(k) at the instant

k:

y(k) = ŷ(k) + e(k) (4.1)

where k = 0, 1, 2, 3, ... denotes the discrete time corresponding to time 0, Ts, 2Ts, 3Ts, ..., being

Ts the sample time of demand forecasting model, ŷ(k) is the demand forecast and e(k) is the

error that for this study is considered adjusted by a normal distribution (Gaussian) [60] repre-

sented by the notation N (µ, σ2) with mean µ and standard deviation σ. The incoming demand

estimation is more accurate in some periods of the days, thus a periodic variation in time T will

be considered:

e(k) ∼ N (0, σ2) with σ2 = σ2(k + T ) = σ2(k) (4.2)

Let us consider l(k) as the leak indicator, in the presence of a leak, l(k) > 0. Thus, Equation

(4.1) can be rewritten as
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y(k) = ŷ(k) + e(k) + l(k) (4.3)

An approximation of the leak size l̂(k) can be given by the difference between the actual and

the estimated inlet flow, with a leak estimation error equal to the demand forecasting error.

l̂(k) = y(k)− ŷ(k) = l(k) + e(k) (4.4)

It is possible to generate different leak estimations using a time window, W , taking into

account the current inlet flow value and the previous values using the following equations:

l̂(k) = y(k)− ŷ(k)

l̂(k + 1) = y(k + 1)− ŷ(k + 1)

...

l̂(k −W + 1) = y(k −W + 1)− ŷ(k −W + 1)

(4.5)

Notice that leak estimations l̂(k − i) with i = 0, ...,W − 1 have zero mean Gaussian errors

with variance σ2(k − i). Considering slow leak variation in time windowW , we get:

l(k) ≈ l(k) =
W−1∑
i=0

l(k − i)

W
(4.6)

an average leak estimation l̂(k) can be computed at instant k applying the maximum Likelihood

estimation method to the joint probability distribution of theW estimations fused in l(k). This

joint probability distribution function will be denoted as p(l̂(k), ..., l̂(k−W +1)|l(k), σ2
W ) and

can be expressed as
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p(l̂(k), ..., l̂(k −W + 1)|l(k), σ2
W ) =

W−1∏
i=0

1

σ(k − i)
√
2π

e
−(l̂(k−i)−l(k))2

2σ2(k−i)

(4.7)

where σ2
W is the variance of the fused value l(k)). The likelihood function L is defined as the

logarithm of p(l̂(k), ..., l̂(k −W + 1)|l(k), σ2
W ), given by:

L(l̂(k), ..., l̂(k −W + 1)|l(k), σ2
W ) =

−W

2
log(2π)−W

W−1∑
i=0

logσ(k − i)−
W−1∑
i=0

(l̂(k − i)− l(k))2

2σ2(k − i)

(4.8)

Maximizing the value of L(l̂1, l̂2, ..., l̂W |l(k), σ2
W ), equaling to zero the derivative of p(l̂1,

l̂2, ..., l̂W |l(k), σ2
W )with respect to l(k) [99], obtains the new virtual fused estimate measurement

l̂(k):

l̂(k) =

∑W−1
i=0

l̂(k−i)
σ2(k−i)∑W−1

i=0
1

σ2(k−i)

(4.9)

that presents a zero mean estimation error

eW (k) = l(k)− l̂(k) (4.10)

with variance

σ2
W =

1∑W−1
i=0

1
σ2(k−i)

(4.11)
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The leak detection problem can be formulated as a change detection problem because, in a

non-leak scenario, l̂(k)will lead to small values but different from zero due to demand estimation

errors, and in a leak scenario, its value will increase.

In the offline phase, the computation of the threshold∆W using historical free leak data will

determine a value of l̂(k) above which we can assume that a leak is present in the system. This

threshold can be computed applying Equation (4.9) to historical free leak data, considering the

worst-case scenario ∆W will be equal to the maximum value of l̂(k) computed for the whole

historical non-leak data.

Given ∆W , to reduce the number of false alarms, a nd value can be stipulated, being the

number of several following leak estimations bigger than the threshold that is necessary to trigger

the leak detection.

In the online phase, the process of fused estimate leak size can be done, and the leak detection

method can be computed by:

 l̂(k − i) > ∆W ⇒ Leak , ∀ i=1,..,nd

Otherwise ⇒ No Leak
(4.12)

4.2.1 Case Study

The method presented was applied to a DMA of the Barcelona WDN. In particular, the set

of historical inlet flows free-leak data depicted in Figure 2.2 presented in the Chapter 2.7 was

available. For the leak detection analysis, different leak scenarios have been created considering

the constant size of the leaks.

The scenarios have been tuned in the following way:

• The sample time, Ts, is one hour, and the period T equals 24 (1 day).

• The sample has 28 days. During the 14th first, the system is operating in regular operation.

The leak started on day 14 at a random time that can start at 1 AM until 00 AM.
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• The leak magnitude is constant for a given leak scenario but with different leak magni-

tudes of 0.5, 1.0, 1.5 and 2.0[l/s] for different leak scenarios. Adding the uncertainty of

Equation (2.8) with lu of 1%.

Exist different ways to represent the demand forecast in the literature, as [34, 43]. However,

in this case study, the demand forecast was considered only the periodicity of the demand ex-

tracted from the historical data to construct an estimate of the current water demand, as proposed

in [24]. So, given a set of historical inlet flow free-leak data ofNd days sampled at Ts =1 hour,

the demand forecast model will consist of 24 values (features) ŷh with h = 1, .., 24 organized by

the 1st feature equal to demand forecast at 1 AM, and the 24th is equal to 00 AM. These values

are computed from historical data as follows.

ŷh =
1

Nd

Nd−1∑
d=0

y(h+ 24d) h = 1, ..., 24 (4.13)

The first analysis made was concerning the election of the best amount of features, the leak

detection proposed in the previous section considers inlet flow values from all the hours of

the day (i.e., all the features), while most leak detection methods are based on Minimum Flow

Analysis that only consider the flow at some hours during the night. So a general analysis was

made considering time window W = T = 24 (i.e., one day) and maximum error threshold

for fault detection (4.12) using a different number of features. In addition, simple thresholds

δh h = 1, ..., 24 are computed as the maximum error of hourly demand estimations ŷh com-

puted by (4.13) considering the historical leak-free data. These thresholds show the lowest leak

value detectable only considering hourly measurements. The following equation was used to

generate δh:

δh = max
d=0,...,Nd−1

|yh(h+ 24d)− ŷh| (4.14)

This analysis is represented in upper Figure 4.2, which represents the hourly demand estima-

tion (4.13) in blue and the upper red line the prediction±δh threshold. On the other hand, in the
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lower Figure 4.2 represents hourly error variance σ2
h. Note that the biggest variance σ2

h happens

between 8 AM to 3 PM; this is already expected because they are the times of the biggest water

consumption in cities. Consequently, we have a larger δh in those hours. With the same analysis,

the smallest variance occurs during the night between 2 AM and 5 AM, as it is the last water

consumption period, having the smaller δh. Remark that in the worst case of leak detection, a

leak is produced in the hours with high σ2
h.

Continuing the analysis to know how the data is affected by the number of features selected,

they were stocked by the best variations in ascending order, i.e., the feature with the smallest

variance is now the 1st feature, and the biggest is the 24th feature, showing in upper Figure 4.3

. In order to know how it would affect the threshold ∆W , lower Figure 4.3 depicts the twenty-

four errors that can be computed ef |24(k) with f = 1, ..., 24 using error Equation (4.10) but

considering leak estimation in Equation (4.9) only with f features, being e24|24(k) = ew(k).

With every error obtained applying to leak-free data it can be computed a maximum error∆f |24,

being the∆24|24 = ∆W . In the analysis of the∆f |24, it is noted that this value decreases smoothly

when the number of features is bigger than five.

The second analysis was regarding the performance of the leak detection method. Four

different leak magnitudes, 0.5l/s to 1.5l/s, representing 1.5% to 5.5% of the average system

inflow, were generated with 10000 scenarios each, and they were applied to obtain the following

parameters:

• True Positive Rate (TPR) is the percentage of leaks that are correctly identified as such.

• False Positive Rate (FPR) is the percentage of leak-free data that triggered the leak detec-

tion method.

• Difference Time Detection (DTD) is the time (in hours) from the leak appearance to the

leak detection.

Tables 4.1, 4.2, 4.3 and 4.4 were created for the analysis of these parameters. The first choice

of the features was 4, which are the first four features with the lower variance that included in
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Figure 4.2: Hourly demand estimations ŷh with the respect δh and variance values σ2
h

the hours of the Minimum Night Flow Analysis. The second resource option was to use all

available resources, which means the number of Features f equals 24. The importance of nd

was also examined, with Table 4.1 and Table 4.2 considering nd equal to 1 and Table 4.3 and

Table 4.4 considering nd equal to 3.

Regarding nd, a small increase in the detection time is noted when using nd = 3 because

more measures are needed to activate the detection. On the other hand, the number of FPR is

Table 4.1: Leak detection performance considering nd = 1. Considering f = 4.

Leak magnitude (l/s) FPR= 0.009
TPR (%) DTD(hour)

0.5 17.7 162.872
1 90.3 111.374
1.5 100 36.888
2 100 18.998
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Table 4.2: Leak detection performance considering nd = 1. Considering f = 24.

Leak magnitude (l/s) FPR= 0.004
TPR (%) DTD(hour)

0.5 36.4 154.212
1 99.5 52.608
1.5 100 18.997
2 100 14.599

Table 4.3: Leak detection performance considering nd = 3. Considering f = 4.

Leak magnitude (l/s) FPR= 0.005
TPR (%) DTD(hour)

0.5 8.7 160.332
1 78.3 125.795
1.5 100 44.439
2 100 21.243

Table 4.4: Leak detection performance considering nd = 3. Considering f = 24.

Leak magnitude (l/s) FPR= 0.001
TPR (%) DTD(hour)

0.5 21.6 162.781
1 99.5 69.084
1.5 100 21.904
2 100 16.640
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Figure 4.3: Sorted σ2
h by feature and ∆f |24 with respect to the number of Features f

significantly lower: more than 50% reduction when f = 4. In addition, it can be noted that it is

already possible to detect leaks with a size of 0.5l/s but with a small TPR. Besides, it has 100%

detection when the leak size is greater than or equal to 1.5l/s.

For each network, it is necessary to do this type of analysis to know the value of the pa-

rameters to choose because each one has different behavior. The parameters must be selected

according to each water distribution company’s priorities. For example, it is also possible to

manipulate data by dividing it into working and unworked days. However, it is necessary to

have a wide range of data without leakage for this type of manipulation. For this data presented

in Figure 2.2, it is not worth separating them, as the amount of information is not sufficient.

Table 4.5 was developed to compare the proposed method’s efficiency with a method using

only MNF. As already mentioned, this study is used more frequently for leak detection because,

at this time of the day has the lowest water consumption and, consequently, the smallest variance.

The same case study of the previous analysis was applied, only using the measurements from 2
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Table 4.5: Leak detection performance using MNF measurement

Leak magnitude (l/s) FPR= 0.010
TPR (%) DTD(hour)

0.5 12.6 153.465
1 41.1 145.955
1.5 82.5 115.881
2 99.3 64.333
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Figure 4.4: Inlet flow with a leak,start on the 14th day at 12PM

am to 6 am. The leak estimation error (4.4) was applied in the leak detection method (4.12) with

nd = 1. The FPR index was a reference to the threshold selection to improve the comparison.

In this case, the FPR index of Table 4.1 was picked because it is an equivalent analysis that uses

the four best features during the day that occurs during the night.

The study using only the MNF measurements shows that for an FPR result equal to 0.010%,

the TPR is inferior to the result in Table 4.1 and the time detection is more significant because

of the time delay of monitoring, that if a leak is not detected during the night or the leak started

during the day, it is necessary to wait 24 hours to obtain new measurement information.
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Figure 4.5: Error analysis

Figure 4.4 shows the model of artificial data created with 14 days without a leak, and 14

days with a leak of 2l/s, the marker “x” and the red line show the exact instant that the leak was

produced, in this case at 12 PM, remark that visually it is difficult to identify the leak. Figure

4.5 shows the error calculated with Equation (4.9) to the case simulation in Figure 4.4 . The

analysis shows the leak detection when the error crosses the threshold. A second study can be

done regarding the average error after detection, which is around 2l/s that is the leak magnitude.

4.3 Methodology focus on multi-leaks

The limitation of the previous leak detection method and leak magnitude estimation is the pres-

ence of a multi-leak scenario in the WDN. To detect multi-leaks using the information only of

the inlet flow depends on the time distance between the leaks and if the leaks are abrupt bursts

because a peak can be seen in the error analysis. Nevertheless, an external human review must

analyze the error study. Moreover, in some situations, it is hard to differentiate when the net-

work has a multi-leak scenario or if it is an incipient leak. To solve this type of problem, a

complementary technique was developed with two steps: leak detection and Localization; this
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Figure 4.6: Flowchart of the leak detection and localization proposed method, highlighted the
detection method

section is focused on multi-leaks detection.

Figure 4.6 describes the steps for obtaining the leak initiation time information and calcu-

lating the most likely zone to contain a leak. This chapter will explain the first leak detection

phase. It descends from the base of sensor fusion theory using the inlet flow and the pressure

measurements of the WDN to generate virtual measurements, able to detect the start time of the

leaks in a multi-leak scenario. In the second phase, the fused pressure residual of all sensors and

the longitude, latitude, and elevation of each node is applied in the radial base function (RBF)

interpolation method to determine a network zone that has the fault that is explained in Chapter

5.

The fundamental aspect of the leak detection phase represents the WDN inlet flow and pres-

sure, approximating the current and historical data. Therefore, the demand forecast and pressure

forecast in WDN are out of the scope of this work. However, it can be assumed that a demand

forecast method is calibrated using historical data of the WDN is available as in the previous

section and that leak-free pressure estimations can be computed through historical leak-free

available data.

The first step of leak identification, LI-1, is the development of the fusion of flow and pres-
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sure data. This step transforms each hour of the day into different features, having 24 features,

and their fusion improves leak detection thanks to reducing the uncertainties and noise in the

measurement. The first fusion data addressed will be the flow measurement seen in the previous

section, using Equation (4.9) to obtain the virtual fused estimate measurement and apply the leak

detection method defined in Equation (4.12).

Furthermore, once l̂(k) is above∆W is considered a disturbance in the system alarming to a

probable presence of a leak that needs to be validated with the study of data fusion of pressure

measurements, which will be explained in the next topic.

Data fusion of pressuremeasurements is performed by analyzing pressure residues generated

by comparing internal pressuremeasurements and leak-free pressure estimations for each sensor,

installed in the WDN, computed such as:

ri(k) = p̂i(c(k))− pi(c(k)), ∀i = 1, . . ., ns, (4.15)

where ri(k), p̂i(c(k)) and pi(c(k)) are the residual, leak-free pressure estimation, and pressure

measurement at inner node i, c(k) is the operating condition at given instant k defined by inlet

measurements and ns is the number of inner sensors installed in the WDN. In the same way

as Equation (4.6), it is possible to generate ns residuals analyses using a time window,W , (the

same value of the leak estimations) considering the current residual pressure value and the pre-

vious values. The average of pressure residuals ri(k) can be computed at instant k applying the

maximum Likelihood estimation method to the joint probability distribution of theW residuals

analyses fused in:

ri(k) =

∑W−1
j=0

rj(k−j)

σ2
j (k−j)∑W−1

j=0
1

σ2
j (k−j)

, ∀i = 1, . . ., ns (4.16)

The finite differencewill be applied to restrict the beginning and end of a leak in the system to
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the daily data of residuals fused ri(k). The finite difference corresponds to differential operation,

an important concept in calculus commonly used to smooth non-stationary time series [28]. The

backward difference has the expression of the form∇h[f ](k) = f(k)− f(k− h). In this study,

the finite difference is applied to Equation (4.16) calculated as follows:

∇1ri(kday) = ri
max(kday)− ri

max(kday − 1), ∀i = 1, . . ., ns (4.17)

where rimax(kday) is the maximum value of fused residuals provided by Equation (4.16) in the

day kday: i.e. maximum of the 24 hourly values computed by means (4.16) in the day kday.

When a leak occurs in the WDN, all the measurements of the pressure sensors will be af-

fected, nevertheless, the sensors closer to the leak will show more disturbance; taking into

account the network can be divided into α groups C= {C1,…, Cα}, with the region and the

neighboring sensors as a parameter. To analyze the ∇1ri(kday) by group the index ∆rgi(kday)

i = 1, ..., α can be calculated as the sum of the values provided by Equation (4.17) for the

sensors that belong to the group Ci :

∆rCi(kday) =
α∑

∀j∈Ci

∇1rj(kday)

∇1rj
max (4.18)

where rjmax is the maximum value provided by Equation (4.17) for sensor j in leak-free his-

torical data. In these analyses, a peak is produced in the signal when has a disturbance in the

sensors, for example, when a leak starts or when it is fixed. To proceed with the leak detection

method, a threshold ∆Ci
is computed for every group i in order to distinguish residual errors

from leaks. Then, for each group Ci the leak detection method can be computed by:

∆rCi(kday) =

 ∆rCi(kday) ∆rCi(kday) > ∆Ci

0 Otherwise
, ∀i = 1, . . ., α (4.19)
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The∆rCi(kday) in Equation (4.19) is set to only present disturbances when a failure is similar

to a leak in the system. To set the analysis for disturbances like a leak repair signature, the

threshold of the first line must be set to ∆rCi(kday) < −∆Ci
.

With the study of Equation (4.9), it is possible to analyse whether there is a leak, but it is

limited to when there is only one leak in the system or when there are more leaks with time

spaces of more than time windowW . In other words, if multiple leaks co-occur or with a period

smaller thanW , the information from Equation (4.9) will only show the sum of the magnitude of

all leaks. However, with the validation of the information with the Equation (4.19), it is possible

to know when multiple leaks happen because it will present a peak in the analysis data, having

a better result if the locations of the leaks are in different groups.

4.3.1 Case study

The Battle of the Leakage Detection and Isolation Methods is a challenge was provided by the

organizers of the BattLeDIM [101], seen Chapter 2.7. The aim is to detect and locate several

leaks in a hypothetical city created to this intent, as depicted in Figure 2.4.

In this challenge, the network can be divided into two distinct parts with different challenges:

the first, Area A and Area B containing simultaneous leakage, and the second, Area C containing

the AMR devices.

The leaks in Area A and B of the 2018 year will be addressed in this work. The data set

of the BattLeDIM for this year contains the time and repair location of 9 pipe bursts that were

fixed. Three types of leaks exist:

• Small background leaks with 1%–5% of the average inflow

• Medium pipe breaks with 5%–10%

• Large pipe bursts with leakage flow of more than 10% of the average system inflow

(≈50l/s)

The water utility corrects significant leaks with a flow rate above 4.5l/s after a reasonable
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time within two months. The leakages have two different time profiles: either abrupt bursts with

constant leak flow rates or incipient leaks that evolve until significant outflow rates at which they

remain constant. In [100] was presented the result of the leakage evolution historical Data-set in

2018, Figure 4.7 shows the 12 leaks in 2018, with outflow rates between 1.4 and 9.7l/s (5 and

35m³/h). Three leaks are not fixed, and nine leaks are repaired throughout the year that will be

analyzed in this section in the highlighted order of n.1 to n.9.

Figure 4.7: Evolution of leaks in [m3/h] in Area A and B during 2018, Source: [100]

To analyse the first step of the leak detection proposed in the Section 4.2 it necessary to do

data manipulation to create a leak-free history data to calculate Equation (4.4). To perform this,

it has been necessary to visually identify the beginning of the leak and remove the days that

potentially contained the leak, then replace those days with days without leakage. The time and

days of the week were taken into account to be modified the data, trying to make them as close

as possible to a real free historical leak.

Figure 4.8 shows the manipulation done on the data. In Figure 4.8.(a), the red “x” indica-

tors are the time when the leak was fixed, regarding that in March, May, and June there are

simultaneous leaks. Figure 4.8.(b) is the manipulation done to generate a history of free-leak.

Measured data is available every 10 minutes, but it has been filtered every hour in order to

obtain an hourly demand prediction (Ts=1 hour). In addition, daily periodicity has been consider
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(b) Adaptation for a leak free scenario

Figure 4.8: Flow inlet in Area A and Area B

i.e. T = 24. A polynomial has calibrated every hourly flow prediction (feature) variation

throughout the year, to obtain the demand forecast more accurately, taking into account the

variation in the behavior during the year, which can reach more than 5 l / s on the time of the

day analyzed. In this step, it is possible to analyze the manipulation of data created, if any data

replacement was done incorrectly, it could be seen. The following Equation represents the flow

estimation:

ŷh,day =

np∑
n=0

ahnday
n (4.20)

where ŷh,day is the demand estimation at hour h = 1, ..., 24 (first 1 AM and the last 00 AM) of

day day, ahn are the coefficients of polynomial at hour h and np is the order of the polynomial.

An example of the demand forecast at 1 AM is presented in the Figure 4.9, the polynomial is

not precisely in the middle because the water consumption is more constant during the week,

having only the periodic peaks that are the weekends with the highest water consumption.

The leak detection has been done according to the presented method, consideringW = 24,

using the history of free leak data to calculate the maximum possible error and therefore create

a threshold ∆W = 2.5. However, it is necessary to adapt the detection method to be able

to identify several leaks, being essential information about the days of leak fixing; therefore,

whenever a leak is corrected, the leak detection function can be restarted. In addition, it could

create a delay in each leak fix information according to the window W chosen to restart the
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Figure 4.9: Filtered data by 1 AM and the new estimation P̂1|24

leak detection, consequently creating the prevention of false alarms. Figure 4.11. (a) shows the

result obtained, from the leak estimation computation provided by Equation (4.9). As it can be

see all leaks have been correctly detected, with the red markers “o” being the time of detection

and the black markers “x” being the leak fix.

In Figure 4.11.(a) it is only possible to accomplish a multi-leak detection if the first leak is

fixed; to proceed with the multi-leak detection, the approach’s second step was proposed. It

is necessary to develop a group of the ns sensors in α groups. In this work, five groups were

obtained by the heuristic approach considering the neighboring sensors and the distance between

them. Figure 4.10 show the result of the grouping process. As it can be seen, the groups do not

have the same number of sensors since group C1 has more sensors concentrated in the same

area. Another factor is using the pressure sensor data in more than one group because if a leak

happens in the border zone between groups, the fault will be identified in more than one group

analysis.

The five-group signal ∆rCi is calculated with the pressure data using Equation (4.19) with

the threshold value∆Ci
equal of the number of sensor average of each groupα . Figures 4.11.(b)-

(f) presents the results of these five signals. A red circle is highlight for every time k that the leak

detection of Equation (4.12) detect a leak in the system with a red line limited in the pressure

analysis ∆rCi, Figures 4.11(b-f).

When these flow detections happen, it is necessary to validate with the∆rCi study of Equa-

tion (4.19). When abrupt burst faults begin in the WDN, it is possible to remark a peak in
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Figure 4.10: Division of sensors into α groups

the∆rCi analysis in the group more affected by the leak. This is the case of leaks n.1 and n.7,

and it is possible to point out that leak number 7 started hours before the analysis of the l̂ alarm

the fault. A careful analysis needs to be made in cases where a multi-leak exists, that is, leaks

number 2-3, leaks number 4-6, e leaks number 8-9.

In leaks number 2-3, and an incipient leak begins in the pipe p427, which was not repaired,

but the size magnitude is smaller than the other two, and it is impossible to detect it. The other

two are the types of incipient and bursts. The bursts occur in Area B of the network and affect all

∆rCi signal groups. However, this zone is an isolated area with just one sensor, and a study of it

can be done, see [80]. A second peak can be detected that happens only in Group 1, indicating

a probable second fault in this area: the incipient leak.

Leaks number 4-6 have an extra incipient leak in the pipe p427 that saturates in the mean-

while. The study of ∆rCi of these times instant needs to have more attention because the leaks

4 and 5 are situated near each other in groups 1 and 3, and the leak in the pipe p427 is in group

2. Group 1 has five peaks at this period, with the two most prominent peaks identifying leaks 4

and 5. The other peaks are due to saturation in the pipe p427 and the proximity in the time when

leaks start. Leak number 6 is in group 5, and it is easy to identify the start time because it only
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Figure 4.11: Result of leak detection, with a red line delimiting when l̂ exceeds the defined
thresholdW (a) leak estimation l̂ computation provided by Equation (4.9) (b-f) five-group signal
∆rCi calculated with the pressure data using Equation (4.19)
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affects groups 5 and 4.

The leaks 8-9 are not occurring together. However, the system has three saturated leaks in

pipes p427, p654, and p610 that achieve the saturation moment during the leak 9. In the analysis

of l̂ in this instant is possible only to identify the leaks 8 and 9. In the∆rCi examination, group

1 is the more affected, having five peaks, not making it clear at which time leaks 8 and 9 started

but indicating a fault in the WDN.

The same analysis can be done when a leak is fixed. Figure 4.12 shows these results. Figure

4.12(a) is the same study as l̂ of Figure 4.11(a) but the black line that propagation to the other

∆rCi signal is when a leak is fixed in the zone. In all analyses, a peak negative occurs due

to a leak repair; the signal has more than 4 negative peaks caused by some uncertainties of

measurements and their estimations.

4.4 Summary

This chapter has presented two complementary methods to leak detection and leak size estima-

tion. The first is only using the information of inlet flow measurement, which is obtained with

the flow sensors usually installed in the system, making possible the method implementation

in most WDNs. And the second uses information on flow and pressure measurements and it is

able to tackle the multi-leak problem.

The first method uses historical leak free data of the network to calculate a demand forecast

combined with the sensor fusion theory to develop a leak detection that can analyze all mea-

surements collected during the day, being an improvement due to most leak detection methods

only using the analysis of the night flow. The leak detection method can be divided into two-

phase, online and offline. The offline phase uses the historical data to generate a threshold that

defines the regular operation of the system. In the online phase, the information of inlet flow

measurement is processed and classified into normal or fault operations.

The case study presented was a real DMA of the Barcelona WDN with three months of

free historical data. First, two analyses were carried out: a study of the demand forecast and
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Figure 4.12: Result of leak detection, with a black line delimiting a leak fix report (a) leak
estimation l̂ computation provided by Equation (4.9) (b-f) five-group signal ∆rCi calculated
with the pressure data using Equation (4.19) and the threshold equal a ∆rCi(kday) < −∆Ci
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its variance in the respective hours of the day and the evolution of the threshold regarding the

number of features. Then, different scenarios were generated with different magnitudes of leak-

age, ranging from 0.5 to 2 l/s, and the True Positive Rate, False Positive Rate, and Difference

Time Detection were analyzed. In two scenarios, one using only nighttime measurements and

the other using all available features, it is noted that when the leak is small, with the leak size

value being similar to the threshold, it is not possible to detect 100%, still having a better result

when it is used all available measurements.

The leak detection method capable of locating a single leak in the system is recommended

for WDN with a small leak rate throughout the year, as the technique will help maintain a good

network over time. The study can consider each leak unique if a network has leaked at long

intervals. However, the method presented will not be effective for a WDN that has many leaks

over a short period. This weakness encouraged us to develop the second leak detection method.

The second leak detection method is a multi-validate problem that starts with a study of

the fused average flow and validates with the analysis of the fused average residual pressure

divided by groups made by neighbors’ sensors and the area of the WDN. The L-town network

utilized in the Battle of the Leakage Detection and Isolation Methods has been used as a case

study. The data studied were from the year 2018 with 12 leaks and only 9 repaired, having two

different temporal profiles: burst pipe and incipient leaks that saturate in some instant. The data

was open data published to the first phase of the challenge BatlleDIM [100]. The result of the

leak detection demonstrates a good result when the leak is of the bursts type leak. On the other

hand, detecting when the leak is incipient with a low growth rate is difficult because the method

evolves with the data. Moreover, the method can detect simultaneous leaks.

A weak point of the proposed methods is using the threshold with a study of historical data

to choose it. Although, for future work, a survey that replaces the threshold model would be

ideal. It is possible the development of leak detection methods that provide a scale supporting

the decision to classify the data in regular operation or fault. A study with the performance index

ROC (Receiver Operating Characteristic curve), a graphical plot that illustrates the diagnostic

ability of a binary classifier system as its discrimination threshold is varied, can be applied to

analyze the performance of the chosen threshold.



CHAPTER 5

LEAK LOCALIZATION

5.1 Introduction

This chapter presents the approaches for leak localization in WDNs using pressure and flow

measures. As seen in the flowchart Figure 4.1, this methodology is intended to be used after the

leak has been detected, employing the method proposed in Chapter 4.

The chapter is divided into model-based and data-driven strategies. The first method is

recommended to be implemented when the WDN has a reliable model, and in the developed

approach, AMR is installed in the system, making it more accurate. The method also analyzes

when the network has a multi-faults. Finally, the technique is validated using L-Town, presented

in Chapter 2.7 in Areas A, B, and C, showing the importance of an accurate model.

Then the methods developed based on the data-driven will be presented having three tech-

niques. The first method of leak localization is based on the unsupervised clustering techniques

with the goal of leak localization in a group, and the method is validated using Modena WDN.

The second approach studies the effect of the extra flow that the leak will generate in the WDN

and how it affects the pressure sensors by analyzing the extra flow effect at a node level; the

technique is validated using the Hanoi and Modena networks. Finally, the last leak localiza-

83
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tion approach presented aims to locate a leak in a system that has simultaneous leaks, and it is

validated using the Zone A and B of the L-Town network.

The contributions of this chapter have been submitted in:

• [80] Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig, V., andDuviella, E. (2022)

“Leak Localization in Water Distribution Networks Using Data-Driven and Model-Based

Approaches”. In: Journal of Water Resources Planning and Management 148.5 (2022),

p. 04022016.

• [6] Alves, D., Blesa, J., Duviella, E.,and Rajaoarisoa, L. (2021). Robust data-driven leak

localization in water distribution networks using pressure measurements and topological

information. Sensors, 21(22), 7551.

• Alves, D., Blesa, J., Duviella, E.,and Rajaoarisoa, L. (2022). Data-driven leak localiza-

tion in WDN using pressure sensor and hydraulic information. Integrated Assessment

Modelling for Environmental Systems - 2nd IAMES 2022.(to appear)

• Alves, D., Blesa, J., Duviella, E.,and Rajaoarisoa, L. (2022) Multi-leak detection and

isolation in water distribution networks 2nd WDSA/CCWI Joint Conference.(to appear)

• Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig, V., and Duviella, E. - Leak

detection and localization in water distribution networks: review and perspective. (to be

submitted)

5.2 Leak localization based on Model-based

The proposed model-based leak localization method uses a hydraulic simulator to simulate the-

oretical pressure values caused by all potential leaks once a leak has been detected and its mag-

nitude has been estimated. Simulated pressure values at different leak locations (hypothesis) are

compared with the DMA measured pressure values to determine the most probable leak loca-

tion. After the leak localization procedure, the hydraulic simulator is updated with the new extra
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demand at the leak location, whose magnitude is the leak estimation value at the leak localiza-

tion. This section aims to demonstrate the proposed leak localization method using model-based

approaches associated with AMR devices. The methodology is applied to locate leaks at inner

nodes of the network, but it can be extended to find pipe leakages by assuming the leak to be

located in the pipe that connects the best node candidates.

Figure 5.1: Leak localization scheme.

Themodel-based approaches use a simulating hydraulic network to simulate theoretical pres-

sure values caused by all potential leaks and compare them with the DMA’s measured pressure

values.

The leak localization method relies on the scheme depicted in Figure 5.1. This scheme

focuses on a solution with Automated Metered Readings (AMR) that provide the demand con-

sumption of some users in the network, although nothing restricts using the method only with

reliable forecast demands. The proposed method takes into account scenarios where the system

has multiple leaks.
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The model is fed with all available AMR measurement vector qAMR(k) whose components

are the measurements of user demands in some nodes at time instant k: d1(k), ..., dnm(k) with

0 ≤ nm ≤ no being no the number of inner nodes in the network (i.e. the number of node minus

the number of inlets, no = n− nI). In addition it is necessary also an estimation of the demand

in the rest of the nodes (q̂nm+1(k), ..., q̂no(k)). This method is capable of analyzing data with

multi-leaks (f 1
j1
, f 2

j2
, . . . , f

Nf

jNf
) that appear at time instants k1 < k2 < .. < kNf

, i.e. sequentially,

in nodes j1, j2, . . . , jNf
. At a time instant k ≥ kNf

when leak detection algorithm detects the leak

fNf and provides an estimation of its magnitude, it is necessary to have detected, estimated and

localized the previous leaks (f̂ 1
j1
, . . . , f̂

Nf−1
jNf−1

)with some degree of accuracy to proceed to the leak

localization ĵNf
as it is described in Figure 5.1. For each past leak the leak estimation magnitude

is added to the corresponding node demand according to past leaks localization (ĵ1, . . . , ĵNf−1).

The WDN model is run, considering boundary conditions c̄(k) (for instance the position of

internal valves and reservoir heads and flows), no times. At every simulation iwith an additional

demand equal to the current leak estimation fi
Nf in a different node i = 1, . . . , no providing a

pressure vector p̂i(k) ∈ Rns with the theoretical pressure values in the ns nodes where sensors

are installed considering leak scenario i. The leak localization method consist in comparing the

different theoretical pressures with the actual pressure measurements p(k) ∈ Rns that are also

subject to the effect of sensor noise v(k). In order to increase the accuracy of the leak localization

methods estimations and measurements are considered in a sliding window of lengthW .

For this purpose the theoretical pressure values in the time window W are stored in the

pressure estimated matrices, P̂ i(k) ∈ Rns×W i = 1, ..., no defined as

P̂ i(k) =
(
p̂i(k −W + 1) . . . p̂i(k)

)
, i = 1, ..., no (5.1)

On the other hand, a matrix P (k) ∈ Rns×W with the pressure measurement values in the

time windowW is built

P (k) =
(
p(k −W + 1) . . . p(k)

)
(5.2)
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Then, the leak location method is based on comparing the matrix P (k) with matrices P̂ i(k)

i = 1, ..., no to find the most probable leak scenario. This comparison is made by applying:

ĵNf
(k) = argimin

W−1∑
j=0

||p(k − j)− p̂i(k − j)||2 i = 1, ..., no (5.3)

5.2.1 Case study

The proposed method was applied to the L-Town network, seen in Chapter 2.7. As explained,

the network can be divided into three-zone: Zone C has AMRs installed in 89% of nodes being

possible to generate an accurate hydraulic model. Zone B is connected to Area A by a pres-

sure reduction valve (PRV), and there is only one pressure meter in the area, making it more

challenging to locate the leak. And Zone A has a high density of pressure sensors (29 in total)

distributed through the area, and the hydraulic model during the year is losing accuracy since

the behavior of demand in the node change.

The proposed method was developed considering the extra information of the AMRs. Still,

it is not limited by the same if the hydraulic model has high accuracy, the results of locating

the leak will be satisfactory. The case study will analyze the three zones, starting with Zone C,

which has the AMRs, and following with Zone A and B, which contains more uncertainties in

the hydraulic model.

Area C

As seen in Chapter 2.7 the Zone C in the L-Town network has 92 nodes among these 82 with

AMR devices, and three pressure sensor (see Figure 2.6). The information of the year 2018 it

will be used in this case study. The first step that need to be done is the leak detection during

the year.

The following information has been provided for 2018: the inlet water flow, the AMR mea-

surements for 82 residences during the year, and the time for the leak fix on 12th August. The

AMRs measurement corresponding to 89% of the residences, them a more accurate forecast de-
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Figure 5.2: Analyze inlet flow Area C

mand, can be created. The leak detection seen in Chapter 4 is used to detect the moment of start

leaking. Using the first week of the inlet flow and the measurements of the AMRs, a constant

K has been created, being the percentage value between both flows. The following Equation

shows the demand forecast for this area:

ŷ(k) = K
nm∑
i=1

AMRi(k) (5.4)

whereAMRn(k) n = 1, ..., nm are the flowmeasurements at instant k of the nm AMRs installed

in Area C. The leak detection method has been applied considering Ts = 1h, T = 24h and

W = 24h, the estimated threshold ∆W = 0.3 l / s that is much lower than the leaks present in

Area C. Using the proposed method furnished the results shown in Figure 5.2: a leak of 2l/s at

the beginning of the year, which was not fixed. And another leak at the beginning of July with

a magnitude of 4.5l/s and fixed in August.
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(a) First leak localization estimation
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(b) Second leak localization estimation

Figure 5.3: Leak localization candidates in Zone C

Individual analysis of each leak must always be performed, starting with the first leak de-

tected. For the analysis made in the first leak, the interval between February 14th and March

13th was used, with the leak magnitude of 2l/s. Figure 5.3.(a) shows the probability of leak

location for each node by means of the index value γi(k) defined as

γi(k) =
||P (k)− P̂ i(k)||2 −∇Pmin(k)

∇Pmax(k)−∇Pmin(k)
(5.5)

where the∇Pmax(k) is themaximum value of the comparing betweenmatrixP (k) andmatrices

P̂ i(k), i = 1, ..., no:

∇Pmax(k) = max ||P (k)− P̂ i(k)||2 i = 1, ..., no (5.6)

and∇Pmin(k) is the minimum value, computed as:

∇Pmin(k) = min ||P (k)− P̂ i(k)||2 i = 1, ..., no (5.7)

The greener is the lower γi(k), and the redder is, the higher γi(k) which is the increased

chance of leaking. For the Figure 5.3.(a) leak, the most significant index of leak location is
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between nodes 350 and 351; the two nodes connected with the pipe that has the leak.

Continuing to analyze the second leak detected, with an estimated leak magnitude of 4.5l/s.

Only a few days of analysis have been chosen between 14th to August 18th because the more

constant the leak is more accurate the result will be; in this case, a visual selection has been used

utilizing the Figure 5.2. As explained, it is necessary to add the previous non-fixed leaks in the

estimated nodes; then, using the first analysis, the node 351 has been chosen to be added 2l/s to

its demand. Figure 5.3.(b) shows the leakage index γi(k) for the second leak. Pipe number 31

is indicated in red, which is the exact location of the leak; the most probable nodes are 40 and

42 with red color, which is the right position between pipe 31. In conclusion, the method had a

satisfactory result for Zone C, which has an accurate hydraulic model.

Area A and B

1500 1550 1600 1650 1700 1750 1800 1850

X Coordinate [m]

350

400

450

500

550

600

650

700

Y
 C

o
o
rd

in
a
te

 [
m

]

Leak n.2

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.4: Leak localization in Zone B on pipe p673

Zone A and B are larger areas with 30 pressure sensors in total (one is located in zone B).

The two water inlets to the network are located within this zone A, and a tank is filled from this

area to provide water to Area C. The history of leak detection and estimation in these zones is

shown in Figure 4.7, already studied in Chapter 4 on leak detection techniques. The proposed

method will investigate the nine reported leaks to analyze the location. As there are no AMRs in

these zones, the normalized proportional outflows in nodes throughout the year will not change;
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Figure 5.5: The result of the leak localization for the six first leaks referring to the year 2018 in
Zone A and B
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using the information from the first week to estimate the these parameters for each node. The

leak detection is studied in Chapter 4.3; the procedure of the leak localization is realized after

the leak detection shown in Figure 4.11. Figure 5.5 shows the leak localization results using the

proposed method. The blue squares indicate the location of the leak in Zone B (Figure 5.4) and

Zone A (Figure 5.5), a highlighted red pipe represents the location of the leak.

Among all the leaks studied, the leak of Zone B has the best result represented in Figure 5.4,

with the node most likely to leak the node connected to the fault pipe. Leaks occurring in Zone

A have a larger node area with a probability of leaking because of the node demand uncertainty.

Figure 5.5.(a) shows the leak n.1 with a fault in the pipe p232, the result presents a node area

around the pipe that has the probability of leaking, but the most highlighted node is located one

zone above the leak.

Figure 5.5.(b) refers to leak n.3 having few nodes with a high probability of being the leak’s

location, all in an area close to the failed pipe. Leaks n.4 and.5 are happening practically simul-

taneously; it is challenging to isolate the two. The result of Figure 5.5.(c)(d) shows that the leak

in the p538 pipe affects the analysis more than the leak n.4, the worst outcome since the result

was in a different area. The leak n.6 occurs in the p866 pipe display in Figure 5.5.(e), having

a good result since the nodes with the highest chance of leaking are close to the defective pipe.

The last six leaks are of burst type, depicted in Figure 5.5.(c-h), these leaks have small simulta-

neous leaks occurring in the same instant. Due to the difficulty of detecting and locating these

small leaks, an additional error was added to the hydraulic model affecting the leak localization

result, as seen in Figure 5.5.(f) that has the biggest red area.

The model-based leak location method has a weak point: if a leak is not detected and located

correctly, the error will be propagated to the subsequent leaks, making the method less reliable.

5.3 Data-driven Leak Localization

The leak localization method based on a data-driven technique is formulated for the networks

that do not have a hydraulic model, or despite having a hydraulic model, this is not accurate. As

seen in the previous result, Zone A is a network with a large size and has uncertainty in demand
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nodes. The accumulation of uncertainties in the hydraulic model causes the leak localization not

to be satisfactory. For example, another type of uncertainty happens when the WDN has multi-

leaks, and the analysis of leaks is not done in chronological order, or if previous leak locations

and estimations are not provided with reasonable accuracy, the hydraulic model will accumulate

these errors making the result of future leaks more doubtful.

For the reasons mentioned above, this section focuses on leak localization based on data-

driven techniques using the information of the flow and pressure measurements and topological

information of the WDN. The leak localization is done when a leak is detected, as seen in the

flowchart in Figure 1.2. In addition, it is assumed that the leaks can only happen in the nodes

of the network (as considered in [91], [72], or [16]), making the number of nodes equal to the

number of a potential leak. The nodes correspond to water users, pipe junctions, and other

structures like hydrants. However, if the number of nodes will not provide a representative

discretization of the network, some artificial nodes could be considered. In this Section three

data-driven method to leak localization are presented.

5.3.1 Leak localization based on cluster technique

The first data-driven leak localization method was developed to reduce the leak location area,

which aims to select pre-defined zones with the highest chance of leaking. It requires hydraulic

information such as pipe diameter and length, measurements from pressure sensors installed in

the system, and some pressure sensors measurement obtained from leak events simulated in the

field by the water utilities. The leak localization proposed in this section is divided into two

parts: The first part focus on the generation of the clustering zone in the WDN. And the second

part analyzes an index correlation calculated using sensor pressure measurements.

The WDN is represented by applying the Graph theory, as explained in Chapter 2.2.2. And

the number of clustering will interfere with the result of the leak localization problem; if the

WDN has more clustering, the best split will be the system nodes. Thus, the leak localization

method presents two options for the cluster number. The first is the number of clusters equal to

the number of pressure sensors ns, C = {C1, C2,…, Cns}. The second is a additional ρ clusters,

in this way the number of cluster are ns + ρ, C = {C1, C2,…, Cs, C(ns+1),…, C(ns+ρ)}. The
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contributions of this work are:

The proposed method has the following features:

• It is applicable to measurements temporal information using Bayesian time reasoning.

• Leak-free information can be obtained using historical data provided by the water com-

pany. In addition, nominal information can be used from the days prior to the appearance

of the leak to deal with the uncertainty of water demand between different scenarios.

• It provides the cluster most likely where a leak is identified. It makes it easy to locate the

leak in the real network.

Clustering

A water distribution network can be described by a directed graph G = {V , E}, as seen in

Chapter 2.2.2. The edge eij is associated with a cost value related to the diameter and length of

the pipe, as seen in work [88]:

wij =
Lij

D5
ij

(5.8)

where wij is the cost associated to edge eij , Lij andDij are the length and diameter of the pipe,

connecting nodes i and j, both in meters [m].

The network clustering process is divided into two phases: The first cluster has the objective

to divide the n (nodes) observations into ns(≤ no) sets C = {C1, C2,…, Cns} concerning the

hydraulic distance of the sensors. For this, the set of data points x = [x1, ..., xns ] is generated

for each node with the minimum distance from the node to the sensors:

xj = dW (i, j) (5.9)

where i = 1, ..., no and j = 1, ..., ns and the distance dW (i, j) is the minimum sum of weights
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across all the paths connecting i and j.

The main objective of the clustering algorithm is to minimize the sum of distances between

the points and their respective cluster centroid. The objective function is:

argmin
C

ns∑
j

∑
x∈Cj

||x− µj||2 (5.10)

where µj is the center of the clustering, which is the value of the distance from a sensor to the

other sensors

µj = [dW (j, 1), ..., dW (j, ns)], j = 1, ..., ns (5.11)

This first clustering makes it possible to analyze how many nodes there are in each zone.

Of course, the ideal is to have clusters with homogeneous numbers of nodes. However, in real

cases where pressure sensors are already installed in the network, similar numbers of nodes in

the clustering may not be satisfied.

The second phase of clustering is designed to solve this problem. More ρ numbers of nodes

are chosen to be a clustering center. So the goal is to divide no (inner nodes) observations into

ns+ρ(≤ no) sets C = {C1, C2,…, Cs, C(ns+1),…, C(ns+ρ)}. The extra ρ nodes are chosen on the

frontier between clusters obtained in the first phase. The number of ρ nodes chosen has to be

analyzed with the water company because the ρ selected in the most node containing sensors will

need extra experiments information in the real network of events with leakage. Consequently,

the exact number of ρ chosen will vary according to the water company’s objective, as a previous

cost-benefit study must be carried out, which will be explained better in the next section. The

second clustering will be the same as Equation (5.10) with the new center:

µj = [dW (j, 1), ..., dW (j, ns + ρ)], ∀j = 1, ..., ns + ρ (5.12)
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Leak localization

The proposed leak location method aims to reduce the network area to the pre-defined regions

with the highest chance of leaking. The method analyzes residuals from the pressure sensors

already installed in the network. This process has an important role in maintaining easily the

network and supporting the operator in its maintenance task.

The estimation pressure considering a leak-free scenario is done with the historical data

analysis so that the network boundary conditions c are similar (e.g., reservoir pressures, flow,

and consumer demands). A study of the pressure measurement of previous days or weeks where

the system was considered without failures can be done. In this way, it can guarantee a better

precision of the estimated measure of pressure. The residual pressure in internal nodes that

contain a sensor, defined in (2.15), can be adapted as

ri = p̂i(c)− pi(c
lj), ∀i = 1, ..., ns (5.13)

where p̂i(c) is the pressure estimation considering boundary conditions c in a leak-free scenario.

On the other hand, pi(clj) is the pressure value measured by the inner pressure sensor i under

boundary conditions clj (the same heads and inflows in inlets as in c but with a leak in node j).

Following the ideas in [89] positive residuals can be obtained from the following transfor-

mation:

r̄i = ri −min(r1, ..., rns) ∀i = 1, ..., ns (5.14)

Then, the likelihood index ∂i is calculated as the normalization of the r̄i:

∂i =
r̄i∑ns

j=1 r̄j
∀i = 1, ..., ns (5.15)

A simple leak localization method can be defined only with residual analysis of Equation
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(5.14) (see [48, 79]). In this case, only the first phase of clustering is utilized, with the center

of the clustering expressed in Equation (5.10). The selected area with the leak is the one that

presents the component with the maximum size, i.e.,

Ĉ = argmax
i∈1,...,ns

r̄i (5.16)

This simple method only needs the information from the pressure sensors being a good ref-

erence point to analyze the improvement of the method. The dependency on the sensor’s avail-

ability and its positioning in the network is a limitation to this simple method. For example, if

the sensors are not well distributed in the system, a clustering one area may contain many nodes

and others few. With that in mind, extra data information can balance the number of nodes in

each cluster.

The effect of a leak on a node causes correlation factor between sensors (see. [96]), making

it possible for objects within the same cluster to be as similar as possible (i.e., high intra-class

similarity), while objects from different clusters are as different as possible (i.e., low inter-class

similarity). Knowing this, it is possible to select ρ strategic points in the network (nodes) to

be a new clustering center and thus balance the number of nodes in the cluster. Therefore, it is

necessary to have leak-data scenarios in each node with sensors and selected centroids.

The experiment of leak-data scenarios produced in each node with sensors and selected cen-

troids is called a leak event, and a signature vector of events νe can be generated for each event

e ∈ 1, ..., ns + ρ. Figure 5.6 shows the sensor correlation scheme for each leak event generated

with the signature vector of events νe ∈ Rns . Being νe = [νe
1, ..., ν

e
ns
] with νe

i normalized

likelihood index ∂i of Equation (5.15).

For a given measured residual r1, . . . , rns computed by Equation (5.13), the vector ∂ =

[∂1, ..., ∂ns ] is computed and the Euclidean distance is used to analyze the distance between the

measurement and the centroids of each clustering:
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Figure 5.6: Schema of the correlation between the sensor and the leak events

θe =
√

(∂1 − νe
1)

2 + ...+ (∂ns − νe
ns
)2 (5.17)

The most probable cluster is determined as the one that provided the minimum distance of

Equation (5.17)

Ĉ = argmin
e∈1,...,ns+ρ

θe (5.18)

Until now, only the single time instant analysis was studied, to improve the performance

of the method and make it possible to analyze in time series the normalized θe information at

different time instants k can be considered by applying Bayes’ rule as:

P e(k) =
P e(k − 1)θe(k)∑ns+ρ
l=1 P l(k − 1)θl(k)

(5.19)
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where P e(k − 1) is the prior probability whose initial value has to be determined (for example

P e(0) = 1/(ρ+ ns)). Then, the leak node localization can be estimated by using posterior leak

correlation by:

Ĉ(k) = argmax
e∈{1,...,s+ρ}

{P e(k)} (5.20)

5.3.1.1 Case Study

The Modena Network simplified version of the real WDN from the Italian city Modena is rep-

resented in Figure 2.4 in Chapter 2.7. This large-scale network comprises 268 junctions (nodes)

connected through 317 pipes and served by four reservoirs.

To test the evaluation of the proposed leak location method, artificial data were generated

under different conditions using a hydraulic simulator Epanet 2.

Using the hydraulic simulator, data was generated with uncertainties related to the con-

sumer’s nodal demand created by applying a random value uniformly of 10[%] of the nominal

demand value in the default value of the Modena benchmark in the Epanet repository and con-

sidering that the exact size of the leak is unknown, but is contained in the range of 5 and 50[l/s],

representing 2% to 20% of the network consumption.

For each leak scenario, of the 268 nodes, a leak is simulated lasting 72h. The sampling

rate is 10 min, but measurements are filtered hourly to reduce the impact of uncertainties in the

diagnostic phase.

Six scenarios were generated with different sensors number to analyze the previously ex-

plained method. The first column of Table 5.1 displays the scenarios only with sensor infor-

mation installed on the network. The second column is the information of the corresponding

number of nodes that comprise the cluster clustering. Equation (5.10) and (5.11) were used to

generate the clustering. The number of sensors installed in the network is 3, 5, and 8, with two

different cases demonstrating the effect on the result concerning the positioning of the pressure

sensors.
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Table 5.1: Scenarios using only pressure sensors

Case Nodes with sensors Number of nodes in the
clustering

1 11 50 80 64 109 95
2 10 44 93 83 74 111
3 9 65 94 109 247 63 103 45 23 34
4 10 63 113 247 250 55 45 90 45 33

5 10 23 45 62 64 94
119 259

19 24 48 28
25 53 47 24

6 18 35 63 100 153
158 248 236

45 32 31 27
30 30 34 39

Table 5.2 shows the scenarios demonstrated in Table 5.1 plus the extra nodes, ρ, which will

be the additional center of clustering. The centroids are the ns values of sensors installed in

the ns network, highlighted with the text in bold, and the ρ selected nodes are listed after the

sensors, with ρ + ns being the centroids referred to in Equation (5.12). The value of ρ varies

from one scenario to another to analyze how ρ affects the leak localization result. In addition,

the second column represents the number of nodes of each cluster after applying Equation 5.10

and (5.11). It is not always possible to balance the number of nodes in the areas, but the number

of nodes in the areas is smaller.

Table 5.2: Scenarios using ns + ρ centroids

Case Node set to be the
cluster center

Number of nodes in the
clustering

1 11 50 80 120 160 69 44 88 34 33

2 10 44 93
37 111 151 224

63 41 48
12 14 56 34

3 9 65 94 109 247
196 246

55 49 41 43 25
22 33

4 10 63 113 247 250
130 189 231 267

38 34 41 29 21
28 30 17 30

5 10 23 45 62 64 94 119
259 113 139 245 222

19 20 22 22 26 17 18
26 33 28 20 17

6 18 35 63 100 153 158 248
236 85 113 178 166 214 232

20 25 25 22 16 14 21
17 17 21 11 20 25 14

As noted before, the leak location method using the maximum residual variance seen in
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Equation (5.13) is a good point of comparison of method improvement. Therefore, the ATD

was calculated applying the maximum residual method with the scenarios of Table 5.1. Then,

the proposed leak localization method was applied to the scenarios in Table 5.2.

In the simplifiedWDNofModena, in the example of Case 2 of Table 5.1where three pressure

sensors are considered, the computed clusters are depicted in Figure 5.7.(a). Following the

clustering of the network in Case 2 of Table 5.2 contains the same pressure sensor position with

four additional centroids. It is depicted in 5.7.(b). The nodes containing pressure sensors are

highlighted with a red circle, and the ρ extra centroid is highlighted with a black circle. The

clustering area with sensors is reduced by up to 56%, allowing a more homogeneous division of

areas in the WDN.

Figure 5.8 shows the result of the ATD (node) of the two analyses, using the Bayes temporal

reasoning in both cases with evolution of 48h. Figure 5.8.(a) is the result of the scenarios of

Table 5.1 using the maximum residual approach, and Figure 5.8.(b) is the result of Table 5.2

scenarios applying the proposed method.

The analysis of the cases pairs that contain the same number of sensors in Table 5.2, Cases

{1, 2}, {3, 4}, and {5, 6}, (results in Figure 5.8.(a)) demonstrates the importance of a previous

study for sensor placement. The ATD result improves with the same number of sensors in the

network, which can reach up to one node difference. Moreover, cases {2, 3} have a similar result

even though the two have a difference of 2 sensors installed in the network.

The results in Figure 5.8.(b) display the evolution of the ATD of the presented method.

Comparing the correspondent Case in Figure 5.8. (a) an improvement in the ATD index is

noticed in almost all cases. Only Case 1 presents better results using the maximum residual

method due to the sensor placements on the network. Cases {1, 2}, {3, 4}, {5, 6} have the same

number of sensors with only varying values of ρ. It is shown it is possible to obtain better results

by increasing the value of ρ.

The same analysis was made analyzing the ATD with the distance in kilometers. This study

is critical because as the distances between the pipes are not uniform, the variation of the ATD

in the node may not indicate the actual improvement. Figure 5.9.(a) shows the result of the
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Figure 5.7: Clustering of Case 2: (a) Table 2, with only pressure sensors highlighted with a red
circle (b) Table 3, with sensors and 4 extra centroids, highlighted with a red and black circle

scenarios of Table 5.1 using the maximum residual approach. It demonstrates the importance

of comparing the ATD in nodes and kilometers. The cases 5, 6 have a similar value when they

are compared in kilometers and in nodes, the case 6 has a slight improvement. Figure 5.9.(b) is

the result of Table 5.2 scenarios applying the proposed method. This result shows that in Case
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Figure 5.8: Evolution of ATD (node) when using the Bayes temporal reasoning (a) scenarios
of Table 2 using the maximum residual approach (b) scenarios of Table 3 using the proposed
method

1, even with similar results compared to the maximum residual, it remains more constant with a

better result in the time series. In the cases {2, 3} that has an improvement in kilometers distance

present a similar value in the comparison of the ATD in node.

As remarked, the positioning of the pressure sensors in the network affects the results dra-

matically. Therefore, a pre-analysis of the sensor placement, setting the best nodes to contain

sensors and the best node to be the clustering centroids, can improve the results illustrated.

5.3.2 Leak Localization the common path study

The second leak location methodology aims to move from the cluster study to a node selec-

tion with more probability of leaking. This section presents a data-driven leak location using
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Figure 5.9: Evolution of ATD (km) when using the Bayes temporal reasoning (a) scenarios of
Table 5.1 using the maximum residual approach (b) scenarios of Table 5.2 using the proposed
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topological information that provides the most likely paths for extra flows produced by leaks.

A new incidence factor from every combination of nodes and sensors is computed with this

information. Every incidence factor determines how a leak in a particular node affects a spe-

cific pressure sensor. On the other hand, historical data is used to calculate non-leak pressure

estimations at sensed inner nodes. Residuals are generated using the comparison between these

estimations and leak pressure measurements. Incidence factors are integrated with residuals in

likelihood indexes to give the most probable leak node in a leak scenario.

The network can be represented as a directed graph G = {V , E} explained in Chapter 2.2.2

with V = {v1, . . . , vn} is the set of vertices that represents connections between the components

of the network, additionally the last {vno+1, ..., vn}, represent the vertices of the system’s input,

being nI the number of the inlets, with nI ≥ 1. The elements of the set E = {e1, . . . , em} are
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the edges, which represent the m pipes in the network. Two leak localization methods will be

proposed. The first one will only use available measurements, and its diagnosis will point out

to one of the inner pressure sensors installed in the WDN. Therefore, the detected leak should

be in an area around this sensor (cluster). The second method will combine the information of

the first method with the topological information: characteristics of the pipes and connections

between the nodes of the WDN, in a likelihood index that will allow the leak localization at the

node level.

Leak localization at cluster level

As stated before, the proposed leak localization is applied after the leak detection. In addition to

inlet pressure and flow sensors, it is assumed that ns pressure sensors are installed at different

inner nodes. Consider a leak lj acting on the node j of the network, and the used measurements

are assumed to be captured under a leaky situation. Also, admitting leak-free historical data of

all the sensors is available. The residual pressure in internal nodes that contain a sensor, can be

defined as Equation (5.13) and the positive residuals can be obtained applying Equation (5.14),

as seen in the previous section.

Then, as the leak localization can be achieved by determining the residual pressure compo-

nent with maximum size (see [48, 79]), leak localization can be formulated, similar to Equation

(5.3.1) defined in previous section, as:

ȷ̂ = argmax
i∈{1,...,s}

{r̄i} (5.21)

Notice that the result of leak localizationmethod (5.21) is one of the ns pressure sensor locations.

Then, the leak localization results in ȷ̂ point out not only to sensor location j but also to the

nodes that produce a higher incidence to this sensor than the other sensors (cluster j).
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Leak localization at node level

Considering Hazen-Willians Equation (2.11) for every pipe (edge ez) it can be defined a resis-

tance Rz:

Rz =
10.7 · Lz

ρ1.852z ·D4.87
z

(5.22)

Among the multiple pipe path that can connect every pair of nodes ij, it can be computed a

path Pmin
ij with a minimum total resistance Rij by means of :

Pmin
ij = argmin

P(k)
ij ∈Pij

∑
ez∈P(k)

ij

Rz (5.23)

where Pij = {P (r)
ij , . . . ,P (e)

ij } denotes the set of paths connecting nodes i and j.

On the other hand, the minimum path from the nI inlets to a node j , Imin
j , can be obtained

by applying the computation of the minimum paths from the nI inlets to node j by means of

(5.23) and determine what is the one with the minimum resistance among the nI paths.

When a leak is produced in node j, Imin
j is themost probable path for the extra flow produced

by the leak. So the effect of a leak in node j to sensor nsi depends on the intersection of the

paths from inlets to node j and the node where the sensor is located nsi: Imin
j and Imin

nsi
. To

quantify the degree of incidence of the leak to the sensor, an incidence factor gj,nsi
is defined as:

gj,nsi
= Rc

j,nsi
ḡj,nsi

(5.24)

where Rc
j,nsi

is the resistance of the path defined by Imin
j ∩ Imin

nsi
, the superscript c refers to

the common path between node and sensors, and ḡj,nsi
is a normalization factor that takes into

account the inverse of the resistance from the node j to the different sensors:
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ḡj,nsi
=


1

Rj,nsi∑s
l=1

1
Rj,nsi

if j ̸= nsi

1 if j = nsi

The ns incidence factors associated to a leak in node j, gj,nsi
, i = 1, ..., ns can be normalized:

λj,nsi
=

gj,nsi∑ns

l=1 gj,nsi

(5.25)

where coefficient λj,nsi
determines the relative incidence of a leak in node j to sensor nsi re-

garding all the ns sensors and need to fulfill:

s∑
i=1

λj,nsi
= 1 ∀j = 1, . . . , no (5.26)

For every node j = 1, ..., no the most sensitive sensor to a leak in this node can be computed

as:

ȷ̂ = argmax
i∈{1,...,ns}

{λj,nsi
} (5.27)

The ns clusters used in leak localization defined in (5.21) can be computed using the set of

nodes that provide the same value of ȷ̂. The following equation is the definition of the cluster

associated with the sensed node l:

Cl = {vj ∈ V| argmax
i∈1,...,ns

{λj,nsi
} = l} (5.28)

where l = 1, ..., ns. Topological information of λj,nsi
and the measurement information of

residuals r̄nsi
can be integrated in a parameter θj defined as:
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θj =
1

θ̄

ns∑
i=1

λj,nsi
r̄nsi

(5.29)

where θ̄ is a normalization factor. Then, θj can be interpreted as a likelihood index, and the leak

localization at cluster level defined in (5.21) can be formulated at node level as:

ȷ̂ = argmax
j∈{1,...,no}

{θj} (5.30)

In order to improve the performance of the leak localization method, the information of the

residuals at different time instants k can be taken into account applying the Bayes rule as:

Pj(k) =
Pj(k − 1)θj(k)∑no

l=1 Pl(k − 1)θl(k)
(5.31)

where Pj(k− 1) is the prior probability whose initial value Pj(k− 1) has to be determined (for

example Pj(0) = 1/(no)). Then, the leak node localization can be estimated by using posterior

leak probabilities by:

ȷ̂(k) = argmax
j∈{1,...,no}

{Pj(k)} (5.32)

5.3.2.1 Case Study

Hanoi WDN

The Network used for the case study is a reduced city’s network model from Hanoi’s WDN. It

is composed of one inlet (reservoir), 34 pipes, and 31 nodes, represented by Figure 2.3.

To analyze the performance of the proposed approach, data with different conditions have

been generated artificially using the EPANET hydraulic simulator. In order to consider realistic

scenarios, some uncertainty has been added to the data [10]: the magnitude of the leak is random

with a range of 25 to 75[l/s], i.e., between 1% to 2.5% of the average inlet flow of the WDN.



CHAPTER 5. LEAK LOCALIZATION 109

Furthermore, white noise has been combined to emulate the noise present in real measurements,

and uncertainty of 10% (uniform distribution) was added in the nominal demand value.

The daily water consumption pattern used for the calibration of Equation (2.14) is shown in

Figure 5.10, having four days of operation.

The sample rate is 10 min, but average hourly measurements are calculated to reduce uncer-

tainties on the diagnostic stage.
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Figure 5.10: Flow consumption.

The evaluation of the performance of the proposed leak localization method at node level

defined in Equation (5.32) will be analyzed utilizing Average Topological Distance (ATD), pre-

sented in Chapter 2.6.

Four cases have been consideredwith different quantities of sensors in the network to analyze

how this affects the final result. Table 5.3 presents the distribution of the selected nodes to

contain a sensor. As seen in [92], the positioning of the sensors produces different results. In

this section we will not discuss the adequate sensors arrangement, they were chosen to consider

an improvement in the results regarding the number of sensors.

Using the inlet flow data and non-leak historical pressure measurements of the selected sen-

sors, the βi and the αi with i = 1, ..., 31 in (2.14) have been identified (notice that nI = 1).
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Table 5.3: Nodes with Sensors

Case Nodes with sensors
1 12, 17, 23, 29
2 6, 12, 17, 23, 29, 21
3 6, 12, 15, 17, 23, 21, 27, 30
4 6, 9, 12, 15, 17, 24, 21, 22, 28, 29, 31

With these parameters, the pressure estimations under a non-leak condition in the network can

be calculated considering inlet measurements using Equation (2.14) and posteriorly applied

to calculate the residuals (4.15) with measured pressures in leak scenarios. In addition, non-

leak pressure measurements and estimations are used to generate fault-free pressure residuals

rsi(k) and bounds σi, σ̄i i = 1, ..., ns as well as spatial residuals Srsi,sj(k) and bounds εi,j , ε̄i,j

∀i = 1, ..., ns − 1 and j = i+ 1, ..., ns.

For every sensor configuration, normalized incidence factors (5.25) have been computed

with topological information: node connections and pipe characteristics (length, diameter, and

roughness). Figure 5.11 compares the information on the incidence of single leaks to pressure

sensors obtained by a hydraulic model with the one obtained by topological information. The

nodes selected to have sensors are defined in the first case in Table 5.3. The colors symbolize the

clustering referring to the sensor: the yellow color represents the sensor n. 12, the violet color

the sensor n. 17, the red sensor n. 23, the green sensor n. 29, and the black is the undefined

nodes. Figure 5.11. (c) shows the clustering that groups the nodes that produce the produces a

maximum pressure deviation in a specific pressure sensor. The black nodes produce a similar

variation of pressure (difference of variation less than 0.1 [mwc]) in at least two different pres-

sure sensors. A hydraulic model to compute the difference between non-leak and leak pressures

in all the nodes for the different leaks is required to obtain this information. On the other hand,

Figure 5.11. (a) shows the clustering that takes into account the shortest weighted pipe length

(hydraulic distance), that is, the sum of (Lz/D
4.87
z ) for all edge ez in the path to the sensors,

being the smallest one used to define the most resemblance to the sensor, used in work [89].

Finally, clustering depicted in Figure 5.11.(b) is the one defined by Equation (5.28) that is based

on the common resistance path. These two last clusters that only require topological information

could be used in the leak localization method at the cluster level defined in Equation (5.21). It is
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important to emphasize that the clustering is based on the common resistance path proposed in

this paper and depicted in Figure 5.11. (b), resembles much more than the clustering based on

the actual leak effect in the network (given by the model) depicted in Figure 5.11. (c) then the

clustering is based on the hydraulic distance depicted in Figure 5.11. (a). Therefore, the clus-

tering proposed in this paper provides more accurate information for leak localization purposes

than the one based on the hydraulic distance. For example, as shown in Figure 5.11. (c), when

a leak is present in nodes 3,4,5,6,7,8, or 9, the most affected sensor by the leak is the sensor in

node 12. This information is the same as the one provided by the clustering depicted in Figure

5.11. (b) and computed only with topological information. However, using the clustering of

Figure 5.11. (a) based on the hydraulic distance between nodes and sensors, the closest sensor

to these nodes is the sensor in node 17.
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Figure 5.12 shows the correlation analyses of the relative incidence index λj,si defined in

Equation (5.25) for all the nodes j = 1, .., 31 depicted in every subplot for every sensor si

i = 1, ..., 4. As this index is normalized, its values are in the range [0,1). The nodes with the

higher index (more brown color) are the ones that produce a higher effect in the pressure sensor

si.
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Figure 5.12: Relative incidence index λj,si for all the nodes (j = 1, ..., 31 ), corresponding to:
(a) 1st sensor (i = 1), (b) 2nd sensor (i = 2), (c) 3rd sensor (i = 3), and (d) 4th sensor (i = 4).

Figure 5.13.(a) displays the evolution of the ATD (in nodes) obtained by the leak localization

method based in Kriging spatial interpolation methodology presented in [89] with the time hori-

zon (in hours) used recursively by the Bayes rule in (5.31). Four different sensor configurations

are considered with 4, 6, 8, and 10 sensors placed in an optimal way in order to maximize the

performance of the leak localization proposed [89]. The performance can be compared with the

one obtained by the new leak localization method proposed in this paper at node level defined in

Equation (5.30) with the same data set and the same sensor configurations as in [89], depicted

in 5.13.(b) and with the sensor configurations shown in Table 5.3, depicted in 5.13.(c).

Figure 5.13.(a) shows that the leak detection performance of the Kriging method improves
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significantly from four to eight sensors and more moderately compared to ten sensors, still hav-

ing a good result since even with noise data managing to reach an ATD equal to 2.5 node. When

compared to the new proposed leak localization method as it can be seen in Figures 5.13.(b) and

5.13.(c), the new leak localization method always over performs the Krigring method. Even

in the case of using the sensor configurations proposed in [89] that were computed to optimize

the performance of the Kriging method. Figure 5.13.(c) shows that the sensor configurations

proposed in [89] are not optimal for the proposed method but the performance can be improved

changing the sensor configurations, in this case manually.
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Figure 5.13: Evolution of the ATD between the methods:(a) using the Kriging interpolation
method presented in [89], (b) using the new leak localization method with the same sensor
configurations as in [89] and (c) using the new localization method with sensor configurations
of Table 5.3.

Modena WDN

The second case study selected to test the performance is the reduced model of the real water

distribution network of the Italian city Modena. This large-scale network comprises 268 junc-

tions (nodes) connected through 317 pipes and served by four reservoirs. Displayed in Chapter
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2.7.

EPANET hydraulic simulator was used to generate artificial data to analyze the performance

of the proposed method. The following simulation conditions were considered:

• The leak scenario consists of data samples collected every 10 minutes and filtered to

hourly values to reduce the uncertainty in the data.

• The uncertainty of demand is considered by introducing the uncertainty of 10[%] (normal

distribution) of the nominal demand value. In addition, white noise is deemed to emulate

the noise in the measurements.

• The leak size is randomly selected with a range of 3 to 6[l/s], representing 1 to 2.5% of

the network consumption.

As applied in the previous case study, the Average Topological Distance (ATD) was used to

assess the performance of the proposed leak localization method at node level defined in (5.30).

Two scenarios have been considered with five and ten pressure sensors that are presented in

Figure 5.14.(a) and 5.14.(b) respectively. As emphasized in the last section, performance in the

leak localization task is highly dependent on the number of sensors installed in the network.

Figure 5.15 shows the result of ATD evolution as defined in (2.22) applied with Bayes pos-

terior time reasoning (5.31) to represent the leak location performance of the proposed method.

This figure shows that leak localization performance reach an ATD of 8 and 5.5 nodes with 5 and

10 inner pressure sensors installed in the network respectively. Considering that the proposed

leak localization method only requires topological information and non-leak historical data in

available measurements, the obtained performance is reasonably good.

5.3.3 Leak localization based on interpolation method

The last data-driven leak localization aims to study the multi-leak problem. This section com-

plements the technique seen in Chapter 4.3 of leak detection that will focus on the leak detection

part, seen in Figure 5.16. The leak location method is based on creating leak probability zones

in the WDN capable of performing the multi-leak study in the WDN.
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Figure 5.14: Configuration of pressure sensors in Modena WDN: (a) 5 sensors, (b) 10 sensors.

The method is based on the interpolation of data for the WDN. It has already been studied

in other works [45, 96]. Still, as questioned in work [96], the interpolation of measured pressure

to the nodes that do not have sensors trying to identify the fault at a node-level still has a long

way to develop. However, the interpolation of leak indicators to determine the zone close to the

sensors that have a leak is of great help for water companies as it will reduce the system zone

for the leak’s location.

To predict zones with unmeasured nodes the method will use the following information:
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Figure 5.15: Evolution of the ATD

• (i) the average pressure residuals ri(k) of Equation (4.16) available from the installed

sensors i = 1, ..., ns, which is developed in more detail in the Chapter 4.3:

• (ii) the topological information of the nodes in the network, and

• (iii) the Radial basis function (RBF) interpolation technique, see in Chapter 2. The RBF

interpolation can be used in any dimension; in this work, the dimensions used are the

latitude, longitude, and elevation of each node in the WDN, and the average pressure

residuals of Equation (4.16) are the values to be interpolated.

In particular, interpolated residuals ℧i(k) at every inner node i = 1, ..., n0 are computed

from average pressure residuals ri(k) of sensors i = 1, ..., ns as:

℧i(k) =
ns∑
j=1

λj(k)ϕ(||xi − xj||) (5.33)



CHAPTER 5. LEAK LOCALIZATION 117

Data measurements

Leak identification

Leak localization zone

Performed leak indicators

Leak zone

LI.1: Data fusion

LI.2:Flow error 
analysis

LI.3: Validation in the 
pressure error analysis

Flow

Pressure

Leak time start 
detection

Pressure error fused

LLZ.2: Node 
probability leak

LLZ.1: Radial base 
function interpolation

Figure 5.16: Flowchart of the leak detection and localization proposed method, highlighted the
localization method

where xi ∈ R3 is the coordinate (latitude, longitude and elevation) of inner node i (i = 1, ..., n0)

and xj ∈ R3 is the coordinate of sensor j (j = 1, ..., ns) (center points for the RBFs), λj(k) are

coefficients determined by the ns average pressure residuals at instant k and sensor coordinates

and ϕ(r) is a radial basis function, set as :

ϕ(r) =
√
1 + 4r2 (5.34)

Once interpolated residuals ℧i, i = 1, ..., n0 have been compute, a probability index γi(k)

similar to the one defined in (5.35) can be defined as

γi(k) =
℧i(k)− ℧min(k)

℧max(k)− ℧min(k)
(5.35)

where ℧max(k) and ℧min(k) are the maximum and minimum values of (5.33) computed for all

the nodes i = 1, ..., n0.
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5.3.3.1 Case study

The case study will be the continuation of the case study in Chapter 2.7, the L-Town network.

As explained before, the leaks in Area A and B of the 2018 year will be addressed in this work.

The data set of the BattLeDIM for this year contains the time and repair location of 9 pipe bursts.

Three types of leaks exist:

• Small background leaks with 1%–5% of the average inflow

• Medium pipe breaks with 5%–10%

• Large pipe bursts with leakage flow of more than 10% of the average system inflow

(≈50l/s)

The water utility corrects significant leaks with a flow rate above 4.5l/s after a reasonable

time within two months. The leakages have two different time profiles: either abrupt bursts

with constant leak flow rates or incipient leaks that evolve until significant outflow rates at

which they remain constant. Figure 4.7 shows the 12 leaks in 2018, with outflow rates between

1.4 and 9.7l/s (5 and 35m³/h). Thee leaks are not fixed, and nine are repaired throughout the

year, which will be analyzed in this paper in the highlighted order of n.1 to n.9.

To perform the step of the proposed leak localization approach, the time instant of each leak

begins in addition to the time they are repaired was used to calculate an average of the residues

in Equation (4.15) to apply the RBF interpolation method. Figure 5.17 shows the results of the

nine fixed leaks. The zones quoted to leak vary according to the location of the fault and how

it affects the surrounding sensors, but for all leaks retaining the apex in red in the leak region,

calculated with Equation 5.35. Leaks reference has a large leak probability zone since the WDN

occurs in multiple leaks in different positions. These leaks will affect the pressure sensors, thus

increasing the red area at risk of leaking.

The result of Figure 5.17 can be compared with Figures 5.4 and 5.5 that, are the result of the

model based approach on the same case study presented in this section.
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Figure 5.17: Graphical comparison of the interpolated states for the nine leaks in the WDN

The first possible comparison is in Zone B with leak number 2 (n.2), where it is delimited

with a PRV and has only one pressure sensor installed in the area. The limited number of sensors

complicates the result of leak location methods. Figure 5.18 shows the comparison of results

using the based on model-based approach (Figure 5.18.(a)) and the result applying the method

presented in this section, with a zoom in Zone B (Figure 5.18.(b)). As seen in Figure 5.18.(b),

the result using the hydraulic model has a better effect; even though the nodes most affected by

the leak in Zone B are the nodes present in Zone A in the border of the two zones.
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When applying the data-driven method, leaks that occur in Zone A are better located. For

example, leaks number 4 and 5 (n.4 and n.5) that appear at the same time has a more significant

difference comparing the model-based results (Figure 5.5) and data-driven results (Figure 5.17).

Since the results of the model-based approach of locating leaks point to the nodes that do not

have leakage, as seen in Figure 5.5.(c-d) and the result using the data-driven method in Figure

5.17 shows the highest leakage rate γi at the location where the leakage is, thus having the best

result.
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Figure 5.18: Leak localization in Zone B on pipe p673

5.4 Summary

This Chapter has presented different methodologies to leak localization; one focuses on amodel-

based approach, and three are based on a data-driven approach. The leak localization method

based on the model-based approach uses the hydraulic model to compare the different leak sce-

narios to select the scenario with more similar pressure results to the actual pressure measure-

ments. The method covers the multi-leak problem by studying each leak chronologically and

updating the model with the leak location estimation. The case study presented was the L-Town

network with the 2018 data; the analysis has been divided into two areas: Zone C has the AMRs

devices providing an accurate hydraulic model with good results. And Zone A and B have un-

certainties in the node demand forecast and the leak position during the year. The development

in Zone B has a better result because the area is small and has only a single leak; however, in
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Zone A, the result worsens as the year goes on because the uncertainty keeps increasing. If

one has to point out the weakness of this method, one can say that if the leaks are not correctly

introduced in the hydraulic model, errors will accumulate in the model, making the results less

reliable.

In the leak localization using a data-driven technique, the goal is to locate the leak using the

topological information, flow, and pressure measurements. This Chapter has presented three

different approaches full data-driven methods to leak localization problems and the method is

triggered when a leak is detected.

The first technique in WDN based on distance clustering in association with the residual

analysis distance of the pressure sensor. The proposed approach has been explained, and an

example is shown using the Modena Network simplified version of the real WDN as a case

study. The distance clustering approach has been introduced using the Euclidean distance with

the centroids set to be the pressure sensor’s location and additional ρ strategical nodes in the

network. An extra data collection needs to be done in the real WDN, simulating a leak event in

the network in each location to be a cluster center.

The second technique aims to move from a cluster study to an node analysis. The leak

localization in WDN is based on historical non-leak data, and the topological information of

the network is proposed. The method is based on the evaluation of residuals generated by leak

pressure measurements in some inner nodes and the estimation of leak-free pressures in these

nodes utilizing a reduced-order model and historical data. Topological information is used to

compute a new incidence factor that considers the most probable path of water from reservoirs

to pressure sensors and potential leak nodes. The proposed incidence factor combined with

residual information generates a likelihood index that allows the leak localization at the node

level. The proposed method’s general performance for leak location is evaluated in reduced

models of the Hanoi and Modena water distribution networks.

The last approach to leak localization is a complementary study of leak detection introduced

in the Chapter with a two-phase methodology: the first is leak detection, and the second is leak

localization presented in the Chapter 4.3. The second phase is the leak localization zone that
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applies the Radial basis function to interpolate the average residual pressure for each sensor to

all the nodes in the network, resulting in the zone most likely to have the fault. The L-Town

network utilized in the Battle of the Leakage Detection and Isolation Methods has been used

as a case study. The data studied were from the year 2018 with 12 leaks and only 9 repaired,

having two different temporal profiles: burst pipe and incipient leaks that stature in some instant.

The result is good because for all leaks studied, the leak probability area is always around the

defective tube, and the size of the area varies from leak to leak and depends on whether there

are simultaneous leaks in the WDN.



CHAPTER 6

CONCLUDING REMARKS

6.1 Conclusions

In this thesis, several theoretical contributions and application results on leak detection, leak

localization, sensor placement and sensor validation have been presented. Specifically, the con-

clusions are summarized concerning the envisaged thesis objectives as follows:

• Objective 1 Propose leak detection and estimation methods able to detect incipient leaks

and distinguish multi-leak scenarios in WDNs

It has been shown in Chapter 4 that two studies of leak detection have been proposed. The

first study uses information from flow sensors installed in the WDN inlets. The method

uses the fusion sensor base to create a virtual measurement that will be used to detect

and estimate the leaks magnitude in the system. The second study is a complementary

analysis to the first method to analyze multi-leak problems using information from inlet

flow and pressure sensors. The first method can obtain the data of the sum of the leaks

happening simultaneously in the system. The second method uses the information of the

pressure sensors to define the moment of the beginning of the leak.

• Objective 2 Develop a leak localization scheme that combines hydraulic models and leak

123
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detection analysis to tackle the multi-leak problem.

The method presented in Chapter 5.2 shows the study of the multi-leak localization in

the WDN using a hydraulic model. The hydraulic model has to be well-calibrated with a

minimum of uncertainty. The method introduces the use of the automatic meter reading

devices installed on some nodes to know the exact demand consumed in these nodes, thus

making themodel more accurate. Themethod proposes to study the leaks in chronological

order, and for each leak, an update is necessary with the information on the estimated

magnitude and location of the leak in the hydraulic model. The study of multi-leaks in the

WDN is a challenge when applied to model-based because any uncertainty applied to the

hydraulic model can affect the localization result, which was shown in the T-town case

study.

• Objective 3 Propose new data-driven approaches that tackle the problem of leak local-

ization at cluster and node level in WDN.

Two strategies have been shown in Chapter 5.3 to obtain the full data-driven leak location

developed for the unique leak problem. The first method introduced aims to reduce the

area of the WDN in clustering to facilitate the search for the leak in the field. The second

leak localization technique seeks to move from the cluster study to the node study. Both

methods use topological information to generate theWDN representation using the Graph

theory.

• Objective 4 Develop a new data-driven approach that tackles the multi-leak problem.

Amethod has been presented in the Chapter 5.3 to tackle the problem of multi-leak using a

data-driven technique. The method uses Radial basis function interpolation to interpolate

a leak index for all WDN nodes resulting in an area with a leak probability. The technique

had a better result than the model-based method because when theWDN has several leaks

happening simultaneously, it is challenging to develop an accurate hydraulic model.

• Objective 5 Tackle practical problems of using pressure sensors: Sensor validation and

optimal sensor placement.

Regarding leak supervision in WDN, it is necessary to carry out more studies than leak
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detection and location, such as sensor placement and sensor validation. In the study of

sensor placement, it is important to guarantee the optimal leak localization result since

sensor placement affects the outcome of the leak location analysis. And the sensor val-

idation is crucial to ensure the leak localization robustness. A new technique for sensor

placement and sensor position has been presented in Chapter 3, demonstrating the impor-

tance of these two steps to improve the results of leak localization methods.

6.2 Findings & Contributions

As mentioned in the objectives, the main contribution of these theses was methods focused on

model-based and data-driven leak detection and localization for better monitoring of leaks in

the WDN, in contrast to using flow and pressure sensors. And the validated sensor and optimal

sensor position methods help the leak localization method to obtain an optimal result. Following

are the contributions and findings of this thesis:

• In chapter 3, new sensor validation methods and position methods were introduced. The

contribution of the sensor validation is its easy application in WDN that have pressure

sensors to guarantee the good functioning of the sensors, ensuring robustness for the leak

supervision methods that use the pressure sensors. The method develops a correlation be-

tween pressure sensor measurements. The optimal sensor position method was developed

to support the leak localization methods that use the pressure residue study; two methods

were presented, the first one focused on model-based, being an excellent option when the

hydraulic model is reliable but requires a long process time.

The second method presents three centroid models contributed to the analysis when the

WDN has only hydraulic information, such as node positioning and pipe information.

• Chapter 4 presented the leak detection methods; the two methods presented are based on

data-driven, being easy to implement in the WDN as they use flow and pressure informa-

tion obtained from sensors already installed in the network. The objective of the methods

was to detect leaks in the order of 2% to 5% of the average network inflow. The first

method contributes to the analysis of single leaks, having good results when the demand
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forecast is well-calibrated. However, this method must be adapted for WDN that have

multiple leaks in the system in a short period of time.

The second method uses flow and pressure information, contributes to the analysis of

multi leaks problems, providing information on which pressure sensor is most affected by

a given leak, and assisting the water company in starting the tracking for the leak in the

surroundings of the most affected sensor.

• In Chapter 5, four methods of leak localization were presented. The main objective of

these methods was to use only flow and pressure information and possibly use ATD equip-

ment. The first method is model-based, contributing to the analysis of multiple leaks in

the system and the option of using the ATD to complement the study. This method has

the same weak point as the methods that use the model-based base, which is the high sen-

sitivity to the hydraulic model; however, it is an excellent option for WDN that have ATD

and a reliable hydraulic model, presenting excellent results.

The three data-driven methods contribute to the study of leakage that does not have a

hydraulic model. The first two methods contribute to the analysis of single leaks, or when

leaks occur with a large gap. The Leak localization based on the cluster technique method

uses extra pressure data from several nodes, contributing to the reduction of clusterings to

pinpoint the leak’s location. Leak Localization of the common path contributes to a new

cluster analogy relating to the path that the water travels to reach the sensors; it is more

indicated in the WDN that has only one inlet, requiring information from pressure sensors

and hydraulic information. The Leak localization based on the interpolation method has

as an innovation the study of multi-leaks with a new interpolation model of the beginning

of pressure sensor data to start an area with more chances of leaking.

6.3 Future Work

There are still some open issues regarding the presented problems in Chapters 3-5. From the

summary of each chapter, several improvements have been introduced. Generally speaking,

some interesting ideas for future directions derived from this thesis are suggested as follows:
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• A comparative study between the developed leak localization/ detectionmethods and liter-

ature methods. In addition, complementary research focuses on the BattleDIM challenge

[100] as a basis for comparison of the multi-leakage methods.

• Applications of all the presented methods to real WDN are interesting. Among them, new

challenges in the implementations of these approaches could be met and useful solutions

could be demonstrated.

• The leak detection study could be extended to deal with the validation of the water con-

sumption forecast. For example, the seasonal effect can cause drifts in the total water

consumption and can lead to false positives if the drift has a positive slope.

• A study to estimate the node demand throughout the year could be developed to im-

prove the techniques that use the hydraulic model. This study can reduce the uncertainties

present in the hydraulic model and thus improve the results of techniques that use model-

based

• A detailed study of the interpolation methods could be done with the main objective of

knowing which one best adapts to the WDN, and can be implemented in the leak local-

ization methodology focused on data-driven.
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