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Résumé en Français

La perception de l’environnement est un aspect critique de la vision par ordinateur, car elle s’efforce d’extraire des
caractéristiques et de déduire des informations à partir des entrées, facilitant ainsi une compréhension globale des
environs d’un système. Cependant, les environnements du monde réel sont souvent dynamiques et complexes, et
un seul capteur est généralement insuffisant pour capturer toutes les informations nécessaires pour les décrire avec
précision.

La fusion de données visuelles multimodales, comparée au traitement de données unimodales, peut fournir une
compréhension plus complète et précise de l’environnement en intégrant des informations provenant de divers cap-
teurs. Cette stratégie aide à améliorer la perception de l’environnement dans des scénarios dynamiques. Cependant,
l’utilisation de données multimodales pose de nouvelles questions :

• Comment pouvons-nous identifier la représentation conjointe optimale pour résoudre la redondance parmi
plusieurs entrées ?

• Comment pouvons-nous intégrer et interpréter efficacement les données pour exploiter pleinement la com-
plémentarité inhérente entre différentes modalités ?

• Comment pouvons-nous développer des modèles de fusion efficaces pour satisfaire le besoin de traitement
en temps réel ?

Pour répondre à ces questions, plusieurs stratégies de fusion, telles que la fusion précoce, tardive et intermé-
diaire, ont été étudiées. La fusion précoce, en particulier, fusionne les données d’entrée de plusieurs capteurs au
niveau du pixel, permettant au modèle de Deep Learning (DL) d’apprendre des représentations conjointes directe-
ment à partir des données fusionnées. En revanche, la fusion tardive traite chaque modalité indépendamment et
fusionne les décisions ou prédictions qui en découlent, permettant ainsi au modèle de préserver les informations
spécifiques à chaque modalité. La fusion intermédiaire se situe entre les deux, combinant des caractéristiques à
différents stades du processus de traitement. Comparées aux approches unimodales, ces stratégies de fusion mul-
timodales ont démontré des performances supérieures dans diverses tâches de vision par ordinateur, s’avérant
particulièrement efficaces dans des conditions météorologiques difficiles.
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D’autre part, l’adaptation de domaine (DA) vise à transférer les connaissances acquises dans un domaine vers un

domaine différent mais connexe, améliorant ainsi les capacités de généralisation des modèles DL. Dans ce scénario,
le modèle DL est capable d’exploiter un grand nombre de jeux de données synthétiques correctement annotés, au
lieu de compter sur des données largement étiquetées à la main, ce qui réduit considérablement le temps et l’effort
nécessaires pour le processus d’annotation des données. De plus, l’utilisation de signaux de supervision provenant
de modalités auxiliaires, présente une approche prometteuse pour atténuer les défis associés au décalage de dis-
tribution et à l’incertitude des motifs à travers différents domaines.

Par conséquent, cette thèse se concentre sur les problèmes de l’apprentissage multimodal basé sur la modalité
de couleur, c’est-à-dire le RGB, en conjonction avec la modalité de profondeur ou d’infrarouge thermique. Plus
précisément, nous nous concentrons sur la recherche de stratégies de fusion multimodales efficaces qui exploitent
les caractéristiques uniques des différentes modalités pour faire face aux défis posés par les scènes dynamiques,
puis sur l’exploration du potentiel des informationsmultimodales pour bénéficier auxmodèles dans l’apprentissage
de représentations cohérentes entre les domaines. À cette fin, pendant le développement de cette thèse, nous
passons de domaines unimodaux à des domaines multimodaux et explorons des objectifs d’apprentissage plus
généralisés. Par la suite, nous avons utilisé des tâches en aval telles que la segmentation sémantique ou la détection
d’objets pour évaluer la capacité à interpréter divers scénarios. Les principales contributions sont résumées comme
suit :

1. Dans la première contribution, nous nous concentrons sur un cadre populaire de segmentation sémantique
connu sous le nom d’encodeur-décodeur et soulignons que les décodeurs existants ne parviennent pas à ex-
ploiter de manière exhaustive les informations extraites par l’encodeur. Par conséquent, nous proposons
un paradigme composé de deux branches, c’est-à-dire les branches principales et auxiliaires, avec presque
aucun paramètre supplémentaire. De plus, nous concevons une stratégie de calcul de fonction de perte en
tenant compte des informations de contours. Notre approche permet à différentes branches d’apprendre
de manière adaptative des informations complémentaires. Les résultats de nos expériences montrent une
amélioration constante des performances des modèles originaux d’encodeur-décodeur sur les scénarios ex-
térieurs, et l’apprentissage d’informations complémentaires peut amener les deux branches à se concurrencer
dans une certainemesure pendant le processus d’apprentissage, ce qui améliore encore les performances (voir
Chapitre 3). Les résultats de ce travail ont été présentés lors de la conférence VISAPP 2022 [1].

2. Dans la deuxième contribution, nous ciblons l’analyse de scène multimodale et explorons des stratégies de
fusion de données RGB et de profondeur (D). Bien que les méthodes basées sur l’auto-attention aient dé-
montré l’efficacité de la capture des dépendances à longue portée, le coût énorme limite considérablement
l’application de cette idée dans la fusion multimodale. À cette fin, nous concevons un bloc de fusion trans-
modale et sa variante efficacebasée sur unmécanismed’attention additive pour capter efficacement l’information
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globale parmi les différentes modalités. Ensuite, nous présentons un bloc de trans-contexte simple mais ef-
ficace basé sur un transformeur pour connecter les informations contextuelles. Avec ces conceptions, nous
proposons lemodèleHCFNet, qui peut explorer les dépendances à longue portée de l’informationmultimodale
tout en conservant les détails locaux. Les expériences montrent que notre mécanisme d’attention aide à for-
mer une compréhension globale inter- et intra-modalités. De plus, nos méthodes surpassent les méthodes
multimodales actuelles (voir Chapitre 4). Les résultats de ce travail ont été présentés lors de la conférence
ICPR 2022 [2].

3. Dans la troisième contribution, ciblant le problème de la détection d’objets dans des conditions de faible lu-
minosité, nous étudions de manière approfondie les stratégies de fusion d’images RGB et thermiques pour
améliorer la capacité de perception d’un modèle en utilisant des indices d’imagerie thermique. Pour la fu-
sion RGB-T, nous proposons un module de fusion croisée de patchs (CPCF) pour extraire des caractéristiques
multimodales à la fois dans les dimensions spatiales et de canal, au cours duquel le module CPCF exploite
de manière adaptative les propriétés spécifiques à une modalité pour calibrer les caractéristiques de l’autre
modalité, modélisant ainsi efficacement les propriétés complémentaires entre les modalités et optimisant la
représentabilité des caractéristiques dans le flux de données. De plus, nous concevons un cadre de fusion
intermédiaire basé sur CPCF, qui peut être intégré de manière flexible dans diverses méthodes de détection
d’objets pour exploiter efficacement les indices multimodaux afin d’améliorer les performances des modèles.
Les expériences démontrent que notre méthode proposée surpasse d’autres techniques sur une variété de
bases de données de référence. De plus, nousmontrons qu’il peut être étendu à différents types de détecteurs,
illustrant ainsi davantage sa robustesse et son universalité (voir Chapitre 5).

4. Dans la quatrième contribution, nous étudions l’adaptation de domaine non supervisée (UDA) basée sur des
données multimodales. Récemment, la profondeur s’est avérée être une propriété pertinente pour fournir
des indices géométriques pour améliorer la représentation RGB. Cependant, les méthodes UDA existantes
traitent uniquement les images RGB ou exploitent la profondeur avec une tâche auxiliaire d’estimation de la
profondeur. Ainsi, nous proposons une nouvelle méthode UDA multimodale nommée MMADT, qui repose
sur les images RGB et de profondeur comme entrée pour améliorer la capacité d’adaptation en exploitant les
indices géométriques dans la modalité de profondeur. Pour ce faire, nous concevons un simple bloc de fusion
de profondeur (DFB) pour recalibrer la profondeur d’entrée et l’aligner avec les caractéristiques RGB. Ensuite,
nous alignons explicitement la distribution des caractéristiques de profondeur par un entraînement adver-
sarial. De plus, nous présentons un réseau assistant d’estimation de profondeur multimodal auto-supervisé
nommé Geo-Assistant pour transférer l’attention géométrique à notre modèle UDA. Ces stratégies UDA per-
mettent au modèle d’apprendre des représentations plus cohérentes entre les modalités et les domaines.
En conséquence, notre méthode améliore considérablement les performances d’adaptation et surpasse les
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méthodes basées uniquement sur le RGB (voir Chapitre 6). Les résultats de ce travail ont été publiés dans la
revue Pattern recognition [3].

Ce manuscript de thèse est organisé en sept chapitres.

Chapitre 1: Introduction Ce chapitre présente le contexte de la thèse et les pistes de travail envisagées.

Chapitre 2: Etat de l’art Dans ce chapitre, nous avons d’abord passé en revue la progression des techniques de
perception de scène basées sur le DL, enmettant particulièrement l’accent sur les tâches impliquant la segmentation
sémantique et la détection d’objets. Par la suite, nous avons réfléchi aux stratégies liées à la fusion multimodale,
incluant la fusion précoce, tardive et intermédiaire. Cette discussion a principalement englobé les méthodes pour
la fusion des images RGB avec des cartes de profondeur, ainsi que la fusion des images RGB avec des images ther-
miques. Enfin, nous nous sommes plongés dans les travaux liés à l’UDA et avons passé en revue lesméthodes basées
sur la divergence, l’étiquetage pseudo-label, l’adversarial, et les modalités auxiliaires. Nous avons observé que les
approches multimodales pouvaient fournir des informations complémentaires et spécifiques à la scène, renforçant
ainsi la stabilité et la précision de la perception de l’environnement. De plus, les techniques liées à la multimodalité
peuvent être largement employées dans un ensemble diversifié de tâches pour aider à développer des modèles
plus adaptatifs et complets.

Chapitre 3: Une architecture générale dedécodeur à deuxbranches pour la segmentation sémantique Dans
ce chapitre, nous nous penchons sur les modèles de segmentation sémantique basés sur les images RGB. L’un de
nos objectifs est d’améliorer la sensibilité du modèle aux contours. Pour y parvenir, nous utilisons des signaux de
contours sémantiques dans la fonction de coût, qui fournit un signal de supervision supplémentaire pour fournir
une segmentation plus précise et efficace. De plus, nous nous concentrons également sur la structure du décodeur
et concevons un décodeur générique à deux branches qui pourrait être appliqué de manière flexible aux modèles
existants basés sur lemodèle encodeur-décodeur et obtenir des gains de performance cohérents. Plus précisément,
nous présentons un paradigme général de décodeur à deux branches composé d’une branche principale et d’une
branche auxiliaire pour la segmentation de scènes. Ce paradigme de décodeur peut être directement appliqué
dans un cadre d’encodeur-décodeur pour affiner et intégrer efficacement l’information extraite par l’encodeur.
Avec ce décodeur à deux branches, nous proposons en outre une fonction de perte complémentaire renforcée
par l’information de contour appelée BECLoss pour guider les deux branches à apprendre des informations com-
plémentaires. Les expériences comparatives montrent que le paradigme de décodeur à deux branches proposé
et BECLoss peuvent améliorer de manière significative les performances du modèle original d’encodeur-décodeur
de manière cohérente sur des ensembles de données extérieurs difficiles. De plus, bien que nous ajoutions une
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branche au décodeur, cela n’augmente pas de manière significative le nombre de paramètres, et la branche ajoutée
peut être supprimée dans le processus d’inférence tout en obtenant des performances bien supérieures à l’original.

Chapitre 4: Un réseau hybride RGB-D Cross Fusion pour la segmentation sémantique Dans ce chapitre, nous
approfondissons l’exploration de l’exploitation des images de profondeur pour fournir des indices géométriques
supplémentaires dans le cadre d’un framework multimodal. L’objectif est d’améliorer les capacités perceptuelles
des modèles de segmentation sémantique, dans lesquels nous utilisons des mécanismes d’attention croisée pour
se concentrer sélectivement sur les caractéristiques saillantes d’une modalité tout en minimisant celles qui sont
moins informatives. Plus précisément, nous concevons une nouvelle méthode de fusion de données visuelles mul-
timodales, qui peut intégrer efficacement des données provenant de différentes modalités. Elle garantit également
que le modèle conserve des détails locaux précieux après la fusion tout en ayant un champ réceptif global. Pré-
cisément, nous personnalisons un bloc de fusion multimodal nommé bloc AC basé sur le mécanisme d’attention
additive, qui aide à acquérir une information globale inter-modalités et intra-modalités. Ensuite, nous proposons
le bloc EAC, une variante efficace du bloc AC, pour construire efficacement une attention globale et conserver des
détails dans une entrée haute résolution. D’autre part, sur la base des modèles transformeurs, nous proposons un
bloc de fusion de contexte simple mais efficace appelé bloc de contexte (TC) pour connecter davantage la sortie de
contexte de l’encodeur. Enfin, avec les composants bien conçus que nous proposons, nous présentons la méthode
HCFNet pour la segmentation sémantique des scènes intérieures et extérieures. Des expériences complètes et des
études d’ablation vérifient l’efficacité de notre réseau et de ses différents composants.

Chapitre 5: Fusion de données croisées Channel-Patch pour la détection d’objets RGB-T Dans ce chapitre,
nous présentons une méthode de fusion multimodale appelée CPCF pour la détection d’objets multispectraux, qui
comprend une attention croisée canal-par-canal (CCA), une attention croisée patch-par-patch (PCA) et unmodule de
réglage adaptatif (GA). La CCA et la PCA sont conçues pour affiner les indices précieux provenant des dimensions spa-
tiales et des canaux, respectivement, et exploitent les caractéristiques d’une modalité pour calibrer l’autre modalité,
intégrant ainsimieux l’information de différentesmodalités. De plus, nous soutenons que l’informationmultimodale
utile contenue dans les dimensions spatiales et les canaux peut varier pendant le processus de propagation dans
le réseau de neurones. Pour tenir compte de cela, nous concevons le module GA pour ajuster adaptativement les
poids d’attention dans les dimensions spatiales et des canaux. Par la suite, sur la base de la CPCF, nous concevons
une architecture de fusion intermédiaire universelle qui permet une extension à divers types de détecteurs, facili-
tant l’exploitation de l’information multimodale pour améliorer les performances du modèle. Enfin, nous menons
des expériences approfondies avec divers cadres de détection d’objets sur des jeux de données publiques. Les ré-
sultats démontrent que notre méthode est capable de capturer efficacement l’information provenant de différentes
modalités et de surpasser constamment d’autres méthodes multimodales avancées. De plus, grâce à sa conception
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légère, notre méthode peut être intégrée dans des modèles de détection d’objets légers, permettant une détection
d’objets en temps réel.

Chapitre 6: Adaptation de domaine multimodale non supervisée Dans ce chapitre, nous présentons un nou-
veau cadre UDA multimodal pour la segmentation sémantique, qui vise à exploiter des informations supplémen-
taires pour améliorer les performances d’adaptation. Pour ce faire, nous traitons l’image de profondeur comme
une entrée auxiliaire et entraînons le modèle dans un paradigme d’apprentissage multimodal, dans lequel nous
rencontrons deux défis. Premièrement, les divergences entre les domaines de la modalité auxiliaire exacerbent
encore le fossé entre les domaines. Deuxièmement, les caractéristiques entre différentes modalités ne sont pas
nécessairement parfaitement alignées, surtout dans le domaine cible. Pour relever ces défis, nous proposons un
réseaumultimodal appeléMMADT, composéde trois conceptions clés, à savoir le bloc de fusion deprofondeur (DFB),
l’entraînement adversarial de profondeur (DAT), et l’assistant Géo (GA). L’application appropriée de ces composants
dans un réseau multimodal aide le modèle à atténuer les divergences entre les mêmes modalités dans différents
domaines et l’alignement entre différentesmodalités dans lesmêmes domaines. De plus, l’ajout d’informations spé-
cifiques à la modalité facilite l’apprentissage du modèle UDA d’une représentation de caractéristiques cohérente,
améliorant ainsi la capacité de généralisation du modèle sur différents domaines. À notre connaissance, il s’agit
du premier travail proposé pour résoudre le problème UDA dans le paradigme d’apprentissage multimodal. De
plus, notre stratégie d’entraînement UDA multimodal peut également être librement portée sur les modèles UDA
existants. Des expériences approfondies montrent que la modalité supplémentaire peut efficacement améliorer
la capacité d’analyse du modèle et résister aux changements de domaine. Nos résultats dépassent largement les
bases de référence et les méthodes UDA de l’état de l’art.

Chapitre 7: Conclusion Ce chapitre conclut la thèse par un résumé des principales contributions, et fournit des
pistes d’améliorations.
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Chapter 1

Introduction

1.1 Context and Motivation

The pursuit of computer vision is to equip computers and machines with the ability to interpret, analyze, and un-
derstand visual information from the surrounding world. Accordingly, environment perception is a critical aspect
in computer vision, as it endeavors to extract features and deduce information from inputs, thereby facilitating a
comprehensive awareness of a system’s surroundings. To this end, several hand-designed operators, such as Sobel
[4] and SIFT [5], have been developed to extract boundary information and key features from images. However,
these operators, which are tailored to address specific patterns like boundaries or corners, lack efficacy in recog-
nizing and processing more complex features and intricate patterns. Consequently, they fail to adequately address
environmental perception’s challenge in complex scenarios. In response to these challenges, modern computer
vision methods attempt to emulate the way humans garner information from their surroundings. They leverage
neural networks to learn intricate patterns and representations from vast amounts of visual data, thereby enhanc-
ing the system’s capability to extract valuable insights from visual inputs. This progression empowers computer
vision systems to interact with and make decisions based on the observed environment, effectively surmounting
the challenges posed by conventional image processing methods.

In the past decade, deep learning (DL) techniques based on deep neural networks (DNNs) have foundwidespread
application in the field of computer vision. The emergence and development of these deep models have not only
transformed the landscape of computer vision but also enhanced the system’s ability to perceive and understand the
environment in a broader array of application scenarios, such as faces and emotion recognition, object detection and
tracking, and scene reconstruction. Furthermore, to facilitate advancements in DL models and assess their perfor-
mance effectively, various large-scale datasets have been proposed, such as ImageNet [6], COCO [7], and Pascal VOC
[8]. These datasets serve as crucial benchmarks in the field, offering diverse and substantial volumes of data that
aid in training models to handle intricate patterns and learning more robust features, which significantly advance

1
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Figure 1.1: General paradigm for semantic segmentation.

Figure 1.2: General paradigm for object detection.

our ability to perform complex visual tasks. Such tasks include not only basic classification [9] but also higher-level
understanding, such as semantic segmentation [10] and object detection [11]. More concretely, semantic segmen-
tation involves assigning a class label to each pixel in an image, as shown in Figure 1.1, while object detection aims
to identify and localize specific objects within the scene, as shown in Figure 1.2. By evaluating the performance of DL
models on these tasks, researchers can assess their effectiveness in capturing meaningful features and generalizing
across various visual scenarios.

On the other hand, breakthroughs in AI algorithms and advancements in hardware technology have led to the
widespread application of DL-based visual algorithms in autonomous systems [12]. These systems have achieved
considerable success in controlled and ideal conditions, like sunny and well-lit environments. However, such perfor-
mance tends to diminish when faced with the complexities of real-world scenarios. In fact, real-world environments
are frequently open and dynamic, necessitating systems to cope with various challenges stemming from their open-
ness, such as severe performance degradation caused by adverse weather conditions [13].

Recognizing that unimodal data might fall short in providing adequate information for systems to adeptly han-
dle complex and dynamic environments, research has turned towards exploring the potential of multi-modal data.
As depicted in Figure 1.3, visible light cameras capture images in the visible spectrum, offering rich color and tex-
ture information. However, their performance can diminish in low-light conditions. In contrast, thermal cameras,
which are designed to detect infrared radiation, can reveal temperature-based data and excel in dark conditions, yet
struggle when tasked with differentiating objects with similar thermal profiles. Furthermore, depth cameras, while
contributing valuable distance and geometric information, often underperform in detailing background information
or identifying small objects situated at long distances. Consequently, recent scholarly pursuits have sought to utilize
multi-modal visual data fusion techniques, aiming to bolster the robustness and adaptability of DL models when
faced with diverse and challenging conditions.

Specifically, multi-modal visual data fusion can offer a more comprehensive and accurate understanding of the
environment by integrating information from different sensors. For instance, color and texture information from
visible light cameras can be combined with temperature data from thermal imagers to better identify and track
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Figure 1.3: Image captured in different cameras. (a), (b) were captured by visible light cameras, (c) was captured bythermal camera and (d) was produced by stereo camera (depth).

objects in adverseweather conditions. Simultaneously, distance and geometric information fromdepth cameras can
be used to improve object localization and navigation. This multi-sensor approach leverages the unique capabilities
of each device to provide amore robust and nuanced perception of the environment. Therefore, multi-modal-based
DL models can better handle the complexities and uncertainties associated with real-world scenarios, allowing for
improved performance in various conditions. Nonetheless, utilizing multi-modal data introduces new questions:
How canwe identify the optimal joint representation to address the redundancy amongmultiple inputs? How canwe
effectively integrate and interpret data to fully exploit the inherent complementarity between different modalities?
Additionally, how can we develop efficient fusion models to satisfy the need for real-time processing?

To answer these questions, several fusion strategies, such as early, late, and intermediate fusion, have been
investigated by researchers [14]. Early fusion, specifically, merges input data from multiple sensors at the pixel
level, enabling the DL model to learn joint representations directly from the fused data. In contrast, late fusion
treats each modality independently and fuses the ensuing decisions or predictions, thereby permitting the model to
preserve modality-specific information. Intermediate fusion falls in between, combining features at different stages
of the processing pipeline. Thereby, compared with unimodal approaches, thesemulti-modal fusion strategies have
demonstrated superior performance in various computer vision tasks, proving particularly in challenging weather
conditions.

On the other hand, domain adaptation (DA), as a branch of transfer learning, aims to transfer knowledge learned
from one domain to a different but related domain, enhancing the generalization capabilities of DL models [15].
In contrast to standard deep learning techniques, DA focuses on enabling models to learn general representations
across domains, thereby facilitating the acquisition of consistent information fromoutdoor scenarios under dynamic
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conditions. Furthermore, another motivation behind domain adaptation is to deploy models trained on a specific
domain with annotated data in new domains where annotations are limited or unavailable. In this scenario, the DL
model is able to leverage a large number of accurately annotated synthetic datasets, such as GTA5 [16] and SYN-
THIA [17], instead of relying on extensive hand-labeled data, which, in turn, significantly reduces the time and effort
required for the data annotation process. In addition, utilizing supervisory signals from auxiliary modalities in DA
presents a promising approach to alleviate the challenges associated with distribution shift and pattern uncertainty
across different domains [18, 19, 20]. These auxiliary modalities, which can function as guiding signals during the
adaptation process, offer essential contextual clues that aid in achieving more precise feature alignment between
the domains.

Motivatedby these observations, this thesis seeks to investigate efficientmulti-modal visual data fusion strategies
anddelve into leveragingmulti-modal information to enhance themodel’s generalization capabilities across different
domains, ensuring a robust performance of DLmodels in outdoor scene understanding scenarios under challenging
weather conditions.

1.2 Background

The concept of multi-modal visual data fusion has been extensively explored in semantic segmentation and object
detection tasks, which involves the integration of homogeneous data inputs - such as RGB images, infrared images,
and depthmaps - into a single analysis framework. Technically, the term "modality" refers to each sensor or detector
capturing information about the same scene [21]. For instance, in robotics, primary modalities commonly encom-
pass devices such as color cameras, near-infrared cameras, depth cameras, and Event cameras [22]. Meanwhile, in
autonomous driving, available sensors also include LiDAR and Radar. Moreover, audio and text modalities in multi-
media applications provide valuable information specific to certain scenarios [23]. In this context, the fusion process
is intended to harness the unique strengths and perspectives provided by each data modality, thereby providing a
more comprehensive understanding of the scene or object under investigation. Typically, for semantic segmenta-
tion, deep multi-modal fusion methods strive to automatically learn optimal semantic mappings, where they take
advantage of the complementary information derived from the same scene [24, 17, 25]. As for object detection,
these methods employ multi-modal data to enhance the model’s ability to identify and locate objects of interest,
while simultaneously reducing its sensitivity to the background [26, 27].
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1.3 Open Research Questions

1.3.1 Multi-modal Visual Data Fusion

Multi-modal visual data fusion targets integrating information from various visual sensors to form a comprehensive
understanding of a given scenario. Generally, each modality contributes some additional information to the overall
system, which helps to constrain the degrees of freedom for environmental variables within dynamic scenes [28].
Moreover, it offers diverse perspectives for a unified scene, which provides supplementary cues to reveal specific
patterns within the given observations. Therefore, learning from multiple modalities is beneficial. However, differ-
ent modalities represent data types in distinct sampling spaces, such as color images are captured by measuring
the intensity of light reflected off objects within the visible spectrum, whereas thermal infrared images sample the
thermal infrared radiation emitted from the surface of objects [29]. Although the primary intention of using multi-
modal data is to leverage the complementarity of different modalities, the information redundancy that comes with
multi-modality can also pose challenges in learning optimal feature representation of multi-modal data fusion [30].

In this context, the main challenges involve multi-modal fusion, feature alignment, and collaborative learning. To
be more specific, multi-modality employs various data forms for depicting the same scene, and thus extracting gen-
eralized feature expressions frommixed representations is crucial in enhancing the model’s perceptual capabilities.
Then, the primary concern during the fusion process is extracting valuable information fromdifferentmodalities and
integrating it into a unified multi-modal representation. On the other hand, feature alignment efforts to model the
correspondence between different modalities, which encompass both semantic and spatial alignment. Commonly,
the spatial alignment of visual modalities can be simplified through the calibration of sensors, whereas semantic
alignment largely depends on the model’s knowledge to extract details from different modalities. Furthermore,
since the alignment is not explicitly specified in the data, there may not exist a one-to-one correspondence between
features of different modalities. For instance, due to limitations in detection range, some objects present in color
images might not have corresponding representations in depth images. Collaborative learning poses its own dif-
ficulties, as it involves the joint learning of the underlying interdependencies between modalities, which typically
requires models to learn how to share and transfer knowledge across modalities. Furthermore, leveraging knowl-
edge transfer between modalities to mitigate the impact of modality noise and missing modalities also presents
challenges.

1.3.2 Domain Adaptation

Domain adaptation (DA) is a technique employed to learn consistent and transferable feature representations by
incorporating DA methods into traditional DL pipelines [15]. In many real-world applications, the majority of su-
pervised learning assumes that training and testing data come from the same distribution. However, this is not
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always the case, and thus the performance of the model might experience a significant decline. As a particular case
of transfer learning, DA is designed to address situations where a model is trained on one or more labeled source
domains and is expected to perform competitively when working on a related but distinct target domain. This is es-
pecially applicable for handling scenarios in which there are substantial differences between the training and testing
environments due to factors such as weather conditions in practical applications.

However, DA also introduces challenges stemming from data distribution mismatches, label discrepancies, and
data imbalance. In more specific terms, distribution mismatches can be attributed to various factors. For instance,
differences in data acquisition devices and environments inevitably lead to discrepancies in the feature distributions
between the source and target domains. Moreover, underlying patterns within the data might also exhibit differ-
ences, such as data in the source domain is generated by a simulator [17]. Although the simulated data is derived
from real-world scenarios, substantial differences still exist in higher-order features, such as the specific presentation
of instances and the style of scenes. On the other hand, due to differences in task types or annotation strategies,
the label spaces of the source and target domains are only partially congruent. For instance, in object detection
tasks, the labels in the source domain may encompass bounding boxes for multiple classes of objects, whereas the
target domain may focus exclusively on detecting a specific type of object. This discrepancy leads to inconsistent
feature transfer and feature redundancy, which can ultimately impair themodel’s adaptability. Additionally, another
challenge in DA is data imbalance, which is quite prevalent in DL since collecting and annotating large amounts of
high-quality data can be both difficult and costly, e.g., the annotation of each real image in the Cityscapes dataset
requires approximately 1.5 hours for semantic segmentation tasks [31]. In this context, the source domain is char-
acterized by an abundance of labeled data, whereas the target domain may have only a limited amount of labeled
data or none at all, which we refer to the former case as semi-supervised DA [32] and the latter as unsupervised DA
[33]. Besides, the complexities of training strategies and multi-source domain adaptation add another layer to the
challenges.

1.4 Contributions

As we previously mentioned, enhancing the perceptual capabilities of a model through multi-modal visual data fu-
sion involves a series of challenges and applications. In this thesis, we mainly focus on the issues of multi-modal
learning based on regular color modality, i.e., RGB, in conjunction with depth or thermal infrared modality. Our pri-
mary objective is to leverage multi-modal visual data to augment the perceptive capacity of DL models in outdoor
scenarios. More specifically, we concentrate on researching effective multi-modal fusion strategies that exploit the
unique characteristics of different modalities to deal with the challenges posed by dynamic scenes and then explor-
ing the potential of multi-modal information to benefit models in learning consistent cross-domain representations.

To this end, during the development of this thesis, we transition from uni-modal to multi-modal domains and
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explore more generalized DL objectives. Subsequently, we employed downstream tasks such as semantic segmen-
tation or object detection to evaluate the capability to interpret various scenarios. The major contributions are
outlined as follows:

1. In the first contribution, we focus on a popular semantic segmentation framework known as encoder-decoder
and point out that existing decoders fail to parse the information extracted by the encoder comprehensively.
Therefore, we propose a two-branch paradigm composed of two branches, i.e., main and auxiliary branches,
with almost no additional parameters. In addition, we design a boundary-enhanced loss computation strat-
egy. Our designs allow different branches to learn complementary information adaptively instead of explicitly
indicating the specific learning element. The results of our experiments show that these designs improved the
performance of the original encoder-decoder models consistently on outdoor scenarios, and learning com-
plementary information can make the two branches compete with each other to a certain extent during the
learning process, which further improves performance (see Chapter 3). The results of this workwere presented
in the conference VISAPP 2022 [1].

2. In the second contribution, we target multi-modal scene parsing and explore multi-modal cross-fusion strate-
gies based on RGB-D. Although self-attention-based methods have demonstrated the effectiveness of cap-
turing long-range dependencies, the tremendous cost dramatically limits the application of this idea in multi-
modal fusion. To this end, we design a multi-modal cross-fusion block and its efficient variant based on an
additive attention mechanism to efficiently capture global awareness among different modalities. Then, we
present a simple yet efficient transformer-based trans-context block to connect the contextual information.
With these designs, we propose light HCFNet, which can explore long-range dependencies of multi-modal in-
formation while keeping local details. The experiments show that our attention mechanism assisted in form-
ing global awareness inter- and inner-modalities. In addition, our methods outperformed current multi-modal
methods (see Chapter 4). The results of this work were presented in the conference ICPR 2022 [2].

3. In the third contribution, targeting the problem of object detection under low light conditions, we extensively
investigate RGB and thermal image fusion strategies to enhance the perception capability of a model to its
surroundings by using thermal imaging cues. For RGB-T fusion, we propose a lightweight channel-patch cross
fusion (CPCF) module to construct cross-modal features in both channel and spatial dimensions, during which
the CPCF module adaptively leverages the properties specific to one modality to calibrate the features of an-
other, thus effectively modeling the complementary properties between modalities and optimizing the repre-
sentability of features in the data stream. Furthermore, we design an intermediate fusion framework based
on CPCF, which can be flexibly integrated into various object detection frameworks to efficiently exploit multi-
modal cues to boost the performance of models. Experiments demonstrate that our proposed method out-
performs other techniques in a variety of multi-modal benchmarks. Besides, we show that it can be extended
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to different types of detectors, thereby further illustrating its robustness and universality (see Chapter 5).
4. In the fourth contribution, we investigatemulti-modal-based unsupervised domain adaptation (UDA). Recently,

depth has proven to be a relevant property for providing geometric cues to enhance the RGB representation.
However, existing UDA methods solely process RGB images or additionally cultivate depth-awareness with an
auxiliary depth estimation task. Thus, we propose a novel multi-modal UDAmethod namedMMADT, which re-
lies on both RGB and depth images as input to improve the adaptive capability by leveraging geometric cues in
depthmodality. To do so, we design a simple Depth Fusion Block (DFB) to recalibrate the input depth and align
it with the RGB features. Then, we explicitly align the feature distribution of depth by Depth Adversarial Train-
ing (DAT). In addition, we present a self-supervised multi-modal depth estimation assistant network named
Geo-Assistant to transfer the geometric attention to our UDA model. These UDA strategies enable the model
to learn more consistent representations across modalities and domains. As a result, our method significantly
improves adaptation performance and performs favorably against RGB-only-based methods (see Chapter 6).
The results of this work are presented in a journal paper [3].

1.4.1 Publications

The thesis main contributions have been published in various scientific papers as given in the following list:

• Journal papers

1. Sijie Hu, Fabien Bonardi, Samia Bouchafa, Désiré Sidibé, "Multi-modal unsupervised domain adaptation for
semantic image segmentation", Pattern Recognition, 137, 109299, 2023.

2. Sijie Hu, Fabien Bonardi, Samia Bouchafa, Désiré Sidibé, "Rethinking Self-Attention for Multispectral Object
Detection", IEEE Trans. on Intelligent Transportation Systems, Under submission, 2023

• International conferences

1. Sijie Hu, Fabien Bonardi, Samia Bouchafa, Désiré Sidibé, "A hybrid multi-modal visual data cross fusion

network for indoor and outdoor scene segmentation", ICPR, 2022.
2. Sijie Hu, Fabien Bonardi, Samia Bouchafa, Désiré Sidibé, "A General Two-branch Decoder Architecture for

Improving Encoder-decoder Image Segmentation Models", VISAPP, 2022.

1.5 Organization

This thesis is organized as follows.
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• Chapter 2 encompasses an extensive literature review. Among them, we first present the classic works and
advancements in the field of deep learning with regard to semantic segmentation and object detection tasks.
Subsequently, we delve into the fundamental forms and strategies of multi-modal visual data fusion tech-
niques, discussing the associated works in depth. Lastly, we explore techniques related to unsupervised do-
main adaptation, with a particular focus on the application of multi-modal data within this context.

• Chapter 3 primarily focuses on RGB-based semantic segmentation methods and proposes an improved two-
branch decoder paradigm grounded in the encoder-decoder framework, along with a novel loss function,
which aims to improve the training efficiency and segmentation accuracy of the models.

• Chapter 4 explores how to optimize the feature representation of RGB-D data using fusion strategies to en-
hance the accuracy and efficiency of semantic segmentation models. A multi-modal cross-fusion module,
based on the additive attentionmechanism, is proposed to capture global awareness between differentmodal-
ities while preserving local details.

• Chapter 5 investigates the data fusion strategies based on RGB-T data to enhance the model’s environmental
perception under low-light conditions and proposes a lightweight cross-fusionmodule to facilitate inter-modal
rectification between different modes.

• Chapter 6 focuses on exploring how to leveragemulti-modal information to enhance the transfer performance
of models in a UDA setting and proposes an RGB-D-basedmulti-modal UDAmethod to enhance the geometric
cues for semantic segmentation.

• Chapter 7 concludes with the developments and discoveries of this thesis and suggestions for future re-
searches.
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Chapter 2

Literature Review

DL-based multi-modal visual data fusion is a broad topic, extensively investigated in various task contexts, encom-
passing a range of deep learning techniques. It involves the integration of multiple sources of visual data, each
providing unique and complementary information, to enhance the learning and decision-making capabilities of the
model. In this chapter, we initially introduce two popular tasks within the realm of deep learning-based scene un-
derstanding: semantic segmentation and object detection. We briefly review the basic approaches and distinctive
works addressing these tasks. Following, we systematically introduce the fundamental frameworks for multi-modal
visual data fusion based on the position where the data is integrated within deep models. These positions include
early fusion, late fusion, and intermediate fusion. In this context, we review typical works in the application of these
methods to the tasks of semantic segmentation and object detection. Finally, we briefly review pertinent works re-
lated to unsupervised domain adaptation (UDA) to address the challenges associated with the performance transfer
of models across domains.

2.1 Semantic Segmentation

Semantic segmentation is a process where each pixel in the image is categorized into one of the predefined classes,
providing a comprehensive understanding of the scene’s composition. It is particularly valuable in many real-world
applications, such as autonomous driving [34], medical image diagnosis [35], and defect detection [36]. Technically,
DL-based semantic segmentation involves training a deep neural network to establish a semantic correspondence
between semantic labels and dynamic scene images [37]. As depicted in Figure 2.1, the foundational structure of
semantic segmentation entails an encoder-decoder [38] architecture. The encoder, responsible for abstracting high-
dimensional features from input images, works in tandem with the decoder, which reconstructs the abstracted
features back to the original input resolution while retaining high-level semantic information.

Within this framework, a series of advanced semantic segmentation methods have been developed. On the one
11
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Figure 2.1: Illustration of the encoder-decoder-based SegNet architecture.The image is from [38]

Figure 2.2: Illustration of the dilated convolution kernels with different dilated rates.The image is from [40]

hand, these methods exploit well-designed backbones, such as VGG [39] and ResNet [9], as feature extractors to
encode meaningful information. In addition, DilatedNet [40] employs dilated convolutions for dense predictions,
allowing the model to maintain image resolution while capturing multi-scale contextual information, thereby en-
dowing the extracted features with an expanded receptive field. Figure 2.2 illustrate the dilated convolution kernels
principle with different dilated rates. Moreover, PSPNet [41] incorporates a pyramid poolingmodule that aggregates
contextual information from varying regions, enhancing its capacity to understand both the global context and local
details in a scene. Then, DeeplabV3 [42] integrates atrous convolutions with pyramid poolingmodule and introduces
amodule known as the atrous spatial pyramid pooling, which empowers themodel to efficiently discern finer details
while maintaining a broader contextual understanding.

On the other hand, additional strategies and techniques, such as attentionmechanisms [43] and skip-connections
[44], are employed to further augment both the performance and efficiency of the segmentation process. For in-
stance, PAN [45] merges the attention mechanism with spatial pyramid structure to extract superior pixel-level fea-
ture representations and incorporates a global attention upsampling module at decoder layers to further refine
detailed features. Attention U-Net [46] employs an attention gate module to concentrate on task-relevant salient
features and inhibit irrelevant areas in the input image, enhancing model focus and performance. Moreover, Re-
fineNet [47] effectively integrates information obtained during the downsampling process via skip connections, en-
abling high-resolution predictions. Similarly, DeepLabV3Plus [48] incorporate shallow layer information from the
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Figure 2.3: Illustration of the two-stage-based object detection system.The image is from [50]

encoder into the decoder to improve fine-grained features. Besides, SegFix [49] proposes a model-agnostic post-
processing solution that improves the quality of segmentation boundaries by learning to establish a relationship
between boundary pixels and internal pixels.

2.2 Object Detection

Object detection is a prevalent topic in scene perception, which entails identifying and localizing multiple objects
within an image. Typically, object detection models can be grouped into two-stage and single-stage based methods.
As shown in Figure 2.3, a two-stage-based method divide the detection process into two distinct phases: 1) the
region proposal phase, where potential regions of interest within the image are identified, and 2) object classification
and bounding box regression phase, where the proposed regions are further abstracted and classified into specific
categories and predicting the bounding boxes to encompass the identified objects. As a trailblazing effort, RCNN
[50] leverages the selective search algorithm [51] to generate numerous potential regions, then employs SVM and
a regressor for classification and bounding box prediction tasks, respectively. After that, Fast-RCNN [11] enhances
efficiency by directly extracting the features of the entire image andmapping each candidate region to the extracted
feature map, thereby sidestepping the substantial computational burden of individually extracting features for each
candidate region, and utilizes a multi-task loss to simplify the multi-stage training process in R-CNN. Faster-R-CNN
[52] implements a CNN-based region proposal network, bypassing the need for a selective search algorithm, which
enhances the inference speed. Furthermore, FPN [53] introduces a top-down architecturewith lateral connections to
foster high-level semantics at all scales, thereby significantly enhancing object detection across various scales. While
two-stage-based methods demonstrate high performance, their computational complexity and potential slowdown
due to multi-stage processing can limit their suitability for real-time or low-latency applications.

Single-stage-based methods endeavor to retrieve all objects in one-step inference. As illustrated in Figure 2.4,
the first one-stage-based work is YOLO [54], which applies a single neural network to predict bounding boxes and
class probabilities for each grid in an image simultaneously, thereby achieving real-time detection with a reasonable
trade-off between speed and accuracy. Following this, a succession of subsequent studies [55, 56, 57] have put
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Figure 2.4: Illustration of the one-stage-based object detection system.The image is from [54]

forward to further improve performance by leveraging various tricks, such as feature pyramid architecture and data
augmentation, to strike a balance between detection accuracy and operational speed. Besides, SSD [58] explicitly
combines multiple feature maps at different resolutions and produces predictions at different scales, effectively
improving the detection performance on small targets. Moreover, RetinaNet [59] targets the problemof foreground-
background class imbalance that arises during the training and introduces a novel loss function, i.e., focal loss, which
puts more emphasis on hard-to-classify instances. Recently, YOLOv7 [60] incorporates an efficient model structure
and introduces a dynamic label assignment strategy, thereby elevating the performance of single-stage models.

Contrary to detectors that depend on hand-designed anchors, recent studies have turned to exploring anchor-
free-based methods. This shift has been driven by the recognition that the hand-designed anchor set, which intro-
duces additional degrees of freedom, consequently increases the complexity of model learning. To this end, Corner-
Net [61] presents a novel approach to representing bounding boxes as a pair of keypoints, namely, the top-left and
bottom-right corners, which avoids setting the anchor set manually. Then, FCOS [62] eliminates the predefined set
of anchor boxes and directly outputs multi-scale, pixel-level feature abstractions for classifying and bounding boxes
regressing, thereby successfully sidestepping the complex computations typically associated with anchor boxes.
Recently, YOLOX [63] transforms the YOLO detector into an anchor-free style, which results in enhanced process-
ing speed, and then it capitalizes on strong data augmentation and advanced label assignment strategies to attain
superior performance.

Nevertheless, while effective in many scenarios, standard object detection techniques have limitations in han-
dling objects that are not aligned horizontally, as they typically rely on axis-aligned bounding boxes. Figure 2.5 shows
that the dense oriented objects fail to be represented with the standard horizontal bounding boxes. To address this
challenge, a line of research has been devoted to oriented object detection, where the aim is to predict tight bound-
ing boxes that align closely with the actual orientation of the objects. DRBox [65] presents a novel rotatable bounding
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Figure 2.5: Illustration of annotations with oriented bounding boxes and corresponding failure cases with horizontalrectangle annotations. The image is from [64]

Figure 2.6: Illustration of different multi-modal fusion strategies.

box, which extends the traditional bounding box by incorporating an extra angle parameter, and then predefines
a set of anchor sets at different angles for fitting the rotated targets. Moreover, S2A-Net [66] introduces a feature
alignmentmodule and an oriented detectionmodule formitigating themisalignment between oriented anchors and
axis-aligned convolutional features. DRN [67] introduces a feature selection module, which empowers neurons to
adapt their receptive fields based on the present state and orientation of the detected object, thus providing robust
features to the detection head.

2.3 Deep Multi-modal Visual Data Fusion

Multi-modal visual data fusion is an approach that capitalizes on information from diverse visual modalities to en-
hance the robustness and accuracy of DL models. This fusion process can be classified into early fusion, late fusion,
and intermediate fusion, depending on where the fusion takes place in the model architecture [68]. As illustrated in
Figure 2.6, DL architectures offer the flexibility of implementing multi-modal fusion.

Early fusion incorporatesmultiplemodality input features into a singlemodel to learn a unified representation. In
situations where multi-modal inputs are spatially aligned, the most straightforward approach is to concatenate data
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Figure 2.7: Illustration of the ShapeConv-based semantic segmentation network architecture.The image is from [70]

from various modalities into a unified input prior to end-to-end training or utilize learnable parameters to encode
multi-modal data and align them at the low-level features. As an initial attempt at multi-modal fusion, early fusion
can be simply described as:

p = f([m1, . . . ,mn]), (2.1)
where f denotes the DL model,mi denotes a specific modality and [.] refers to the concatenation operation.

In the late fusion approach, also referred to as decision-level fusion, each modality is processed independently
through separate models and the results are fused with a fusion mechanism, such as averaging, voting, or a learned
model, at the decision level [69]. We denote fi as the model to process a specific modalitymi, F as a fusion mecha-
nism to merge the output of each model. Then, the final prediction of late fusion can be formulated as:

p = F(f1(m1), . . . , fn(mn)). (2.2)

During this process, features from various modalities are handled independently, which consequently leads to in-
adequate modeling of intermodal features interactions.

On the other hand, leveraging the flexibility inherent in DL architectures, intermediate fusion was proposed to
integrate the advantages of both early and late fusion strategies, in which features from different modalities interact
with each other while still preserving their individuality. The intermediate fusion-based model can be described as:

p = f(g1(m1), . . . ,gn(mn)), (2.3)

where gi denotes the sub-network used to process modality mi. Furthermore, intermediate fusion strategies are
often employed in conjunction with a variety of deep learning techniques, such as attention mechanisms [43], to
create a rich and versatile feature space where complementary information or noise in different modalities are
adaptively highlighted or attenuated.
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Figure 2.8: Illustration of the late fusion-based LSD-GF model for semantic segmentation.The image is from [73]
2.3.1 Early Fusion

As an initial exploration of early fusion, [71] combines RGB and depth maps into a four-channel input and employs
a multiscale convolutional network for multi-modal feature extraction, which, while promising, fails to fully exploit
the potential of multi-modal fusion due to inherent limitations of the original DL network. For instance, previous
work [72] has revealed that fusing different modalities at the pixel level overlook features specific to each modality,
thereby compromising the accuracy of detection. Moreover, [72] applies a strategy that concatenates RGB and
thermal images after processing them through one convolutional layer and operates them in conjunction with a pre-
trained backbone network for feature extraction. The aim is to leverage early fusion techniques to capture lower-
level visual features such as corners and line segments. Besides, ShapeConv [70] is a recently proposed method
that employs a model-agnostic shape-aware convolutional layer to decompose features of depth maps and then
uses reparameterization techniques to reorganize learned weights into the standard convolution operation during
inference, as illustrated in Figure 2.7.

2.3.2 Late Fusion

To extract modality-specific features from the input, the LFC [75] first trains segmentation expert networks for dif-
ferent modalities and perform element-wise summation of the feature maps produced by these networks, followed
by a series of convolution, pooling, and up-convolution operated to tune the final output. Subsequently, CMoDE
[76] improves the architecture of expert networks and designs class-specific gate networks and fused convolutions,
and then during training, it freezes the parameters of expert networks to compel the gate network to utilize repre-
sentations learned by the experts, thereby leveraging the complementary features of the experts. Similarly, LSD-GF
[73] employs a learnable gating network to automatically learn the varying contributions of each modality in differ-
ent scenes for classifying different categories, thereby more effectively combining RGB and depth cues, as shown
in Figure 2.8. In addition, IAF-R-CNN [77] utilizes two separate subnetworks to process RGB and thermal images,
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Figure 2.9: Illustration of the statistical fusion methods for combining different experts.The image is from [74]

respectively, with an additional branch network to estimate fusion weights for an optimized combination of outputs
from both subnetworks. Besides, [74] proposes a statistical-based post-processing method that utilizes Bayesian or
Dirichlet fusion for statistical merging, enabling individual experts to be trained on different datasets without the
need for additional training to integrate their outputs, as shown in Figure 2.9.

2.3.3 Intermediate Fusion

A representative work is FuseNet [78], as illustrated in Figure 2.10. It employs an auxiliary encoder to extract depth-
related features, which are then fused with color information and passed through a decoder network to restore
semantic information. Building upon the foundations of FuseNet, the LDFNet [79] advances the structure of the
auxiliary encoder and introduces luminance information to calibrate depth images. Moreover, RFBNet [80] pro-
poses residual fusion block, which serves to model the interdependencies among various encoders, thereby pro-
gressively aggregating modality-specific features and cross-modal features from these encoders. In addition, [81]
proposes a fusion mechanism known as self-supervised model adaptation (SSMA) to establish correlations between
two modality-specific feature maps, which enables the network to emphasize more informative features selectively
within one modality while suppressing less informative features in another. Then, a skip-connection is employed to
integrate multi-scale fused features into the decoder, as shown in Figure 2.11.

More recently, a series of multi-modal fusion strategies based on the attention mechanism have been proposed
to steer the alignment of cross-modal features. For instance, ACNet [82] introduces an attention complementary
module that extracts weighted features from RGB and depth branches based on channel attention and utilizes an
additional encoder structure to handle the fused features. Sharing a similar idea, [83] develops the separation-
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Figure 2.10: Illustration of FuseNet architecture with RGB-D input.The image is from [78]

Figure 2.11: Illustration of fusion architecture with SSMA block.The image is from [81]
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Figure 2.12: Illustration of SA-Gate.The image is from [83]

and-aggregation gate (SA-Gate) to suppress depth data noise and recalibrate corresponding RGB features, and then
through a gated module to blend the cross-modal information. The fusion pipeline is shown in Figure 2.12. Alterna-
tively, AFNet [84] incorporates a co-attention mechanism into an attention fusion module, enhancing the contextual
correlation between RGB and IR feature maps by considering their cross-spectral complementarity at the final stage
of the encoder. Recently, CMAFF [85] developed a lightweight multispectral feature fusion technique to infer shared
and differential information from the intermediate feature maps of RGB and thermal IR modalities, which is then
used to calibrate multi-modal features.

2.4 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) is a branch of transfer learning that concentrates on situations where
source data is labeled during training, but the target data is not. In practice, however, a domain discrepancy often
exists between source and target domains. This discrepancy can lead to less-than-optimal performance in model
transferability. Formally, in UDA setup, given a source domain DS = {XS ,XS}NS

i=1 with NS labeled samples and a
target domain DT = {XT }NT

i=1 withNT samples without any labels, the primary objective is to minimize the domain
gap between the labeled source data and unlabeled target data and learn domain-invariant representations. Figure
2.13 depicts the process of UDA, where supervised training using semantic annotations occurs in the source domain
with a loss function denoted as L. At the same time, unsupervised adaptation is applied on the unlabeled target do-
main with diverse strategies at the input, feature, or output levels. In this context, commonly employed adaptation
strategies encompass discrepancy-based method, pseudo-labeling-based method, adversarial-based method, and
auxiliary-modality-based Method.
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Figure 2.13: Illustration of UDA process.The image is from [86]

2.4.1 Discrepancy-based Methods

Discrepancy-based methods strive to align the data distributions between two domains. For instance, Maximum
Mean Discrepancy (MMD) [87] defines a distance function in the reproducing kernel Hilbert space, which serves to
measure the disparity between two distributions. In the context of UDA, this distance can be minimized to align the
data distributions of two distinct domains, which can be formulated as:

MMD (DS ,DT ) =

∥∥∥∥∥∥ 1

NS

NS∑
i=1

ϕ
(
XS

i
)
− 1

NT

NT∑
j=1

ϕ
(
XT

j
)∥∥∥∥∥∥

2

H

, (2.4)

where NS and NT are number of samples in the source and target domain, ϕ(.) is the feature mapping and H
denotes the Reproducing Kernel Hilbert Space (RKHS). [88] integrates MMD-based domain confusion loss with clas-
sification loss, thereby optimizing the classifier while minimizing domain distribution distances, ultimately enabling
the model to learn domain-invariant representations. Building upon this, DAN [89] leverages the multi-kernel MMD
method to align feature distributions across different modalities within each fully-connected layer of the model,
thereby further diminishing domain differences. Alternatively, [90] defines the CORAL loss as the distance between
the second-order statistics of the source and target features, which in conjunction with classification loss, to learn
features that work well on the target domain. In this context, [88] integrates MMD-based domain confusion loss
with classification loss, thereby optimizing the classifier while minimizing domain distribution distances, ultimately
enabling the model to learn domain-invariant representations. Building upon this, DAN [89] leverages the multi-
kernel MMD method to align feature distributions across different modalities within each fully-connected layer of
the model, thereby further diminishing domain differences. Alternatively, [90] defines the CORAL loss as the dis-
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Figure 2.14: Illustration of adversarial training scheme.The image is from [95]

tance between the second-order statistics of the source and target features, which in conjunction with classification
loss, to learn features that work well on the target domain.

2.4.2 Pseudo-labeling-based Methods

Pseudo-labeling-basedmethods generate pseudo labels for the target domain by predicting the probability distribu-
tion of input data on related tasks. In this context, models trained on source domain are often considered pseudo-
label generators. For instance, [91] concurrently trains three classifiers, two of which generate pseudo labels on
the target domain, and the third leverages these pseudo labels to conduct supervised training. Then, [92] further
proposes a progressive feature alignment network, which applies an easy-to-hard transfer strategy and adaptive
prototype alignment strategy to select reliable pseudo labels. Furthermore, [93] introduces a new contrastive do-
main discrepancy objective to minimize the domain discrepancy within the same class and maximize the domain
discrepancy between different classes. Additionally, [94] proposes a domain-specific batch normalization layer that
assigns different batch normalization parameters to different domains, thus capturing domain-specific information
and transforming it into domain-invariant representations and producing more accurate pseudo labels.

2.4.3 Adversarial-based Methods

Adversarial-based methods, inspired by generative adversarial networks (GANs), mitigate differences between do-
mains by integrating an additional adversarial objective and introducing an auxiliary domain discriminator to dif-
ferentiate between source and target domains. More specifically, During training, a domain discriminator is first
optimized using a standard classification loss to make the source and target domains distinguishable. Thus, given a
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discriminatorD the loss function can be formulated as follows:

min
θD
Lcls = EXS [logD(XS))] + EXT [log(1−D(XT )))]. (2.5)

where θD is the parameters of discriminator. Subsequently, the parameters of the model, θE , is updated following
the adversarial optimization process to fool the discriminator, which can be summarized as a min-max criterion:

min
θE

max
θD
Ladv(XS ,XT , D) = EXT [log(D(XT ))]. (2.6)

In early explorations, [95] integrated a gradient reversal layer that inverted the gradient generated by domain
classification loss during backpropagation, aiming to force feature distributions across different domains indistin-
guishable, as shown in Figure 2.14. Following this, [96] incorporated adversarial training strategies with Maximum
Mean Discrepancy (MMD) and proposed a joint maximummean discrepancy criterion to align the joint distributions
of activations across multiple task-specific layers. Then, [97] proposed adversarial discriminative domain adapta-
tion, a simple way that explicitly uses domain adversarial loss to project data from diverse domains into a shared
feature space. Moreover, to eliminate low-level disparities between domains, [98] applied pixel-level adaptations
and introduced cycle-consistent adversarial domain adaptation, known as CyCADA, which directly remaps the source
training data to the target domain, subsequently utilizing the remapped data for adversarial training. Besides, [99]
introduced a hybrid adversarial network (HAN) that integrates the adversarial training process based on domain
discrimination with feature distribution alignment strategy with CORAL loss, offering a solution for joint adversarial
learning with class information and domain alignment.

2.4.4 Auxiliary-modality-based Methods

Recently, several efforts have been made to bridge the domain gap by capitalizing on the complementary informa-
tion provided by additional modalities, e.g., depth maps. For example, [19] introduced a unified depth-aware UDA
(DADA) framework, as shown in Figure 2.15. In this framework, depth information is incorporated into the semantic
segmentation model through an auxiliary depth regression task, which in turn provides additional privileged infor-
mation during the training process. Furthermore, from the perspective of multi-task complementarity, [20] delved
deeper into UDA within the framework of multi-task learning and proposed a cross-task relation layer (CTRL), which
encodes the task dependencies between semantic segmentation and depth estimation to improve performance in
these tasks. In addition, [18] proposed a correlation-aware domain adaptation (CorDA) approach, which employs
a domain-shared multi-modal distillation module to model and leverages the correlation between semantics and
depth features, thereby guiding the refinement of pseudo labels in the target domain.

Diverging from the methods above, [100] developed geometrically guided input-output adaptation, known as
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Figure 2.15: Illustration of DADA architecture (top) and DADA learning scheme (bottom).The image is from [19]

Figure 2.16: Illustration of GIO-Ada architecture.The image is from [100]
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GIO-Ada, which integrates adaptations on both input and output levels. As illustrated in Figure 2.16 this approach
leverages color, semantic, and geometric cues from the source domain at the input level to establish correlations
among RGB images, semantics, and geometry, while also performing depth estimation during domain adaptation.

2.5 Summary

In this chapter, we initially reviewed the progression of DL-based scene perception techniques, with a particular
focus on tasks involving semantic segmentation and object detection. Subsequently, we reflected on the strategies
related to multi-modal fusion, including early fusion, late fusion, and intermediate fusion. This discussion mainly
encompassed methods for the fusion of RGB images with depth maps, as well as the fusion of RGB images with
thermal images. Finally, we delved into UDA-related works and reviewed the discrepancy-based, pseudo-labeling-
based, adversarial-based, and auxiliary-modality-based Methods. We observed that multi-modal approaches could
provide complementary, scene-specific information, thereby bolstering the stability and precision of environmental
perception. Furthermore, multi-modal related techniques can be broadly employed in a diverse set of tasks to assist
in developing more adaptive and comprehensive models.
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Chapter 3

A General Two-Branch Decoder

Architecture for Semantic Segmentation

Semantic segmentation is a fundamental task in computer vision that allows a comprehensive assessment of a
model’s ability to parse a scene. We observed that most multi-modal semantic segmentation approaches are ex-
tensions of single-modality-based counterparts. Therefore, to obtain a more thorough understanding of semantic
segmentation models, this chapter embarks from a general encoder-decoder architecture and places particular
emphasis on exploring single-modality-based, i.e., RGB image, semantic segmentation methods. Subsequently, we
attempt to enhance the performance of existing methods by optimizing both the training strategies and the archi-
tecture of the models. Specifically, the research conducted in this chapter covers two branches. The first branch
seeks to explore the potential of enhancing model segmentation accuracy by leveraging the additional supervisory
cues offered by semantic boundaries. The second branch delves into the possibility of enhancing performance by
optimizing the structure of the decoder.

3.1 Abstract

Recently, many methods with complex structures were proposed to address image parsing tasks such as image
segmentation. These well-designed structures are hardly to be used flexibly and require a heavy footprint. In this
chapter we focuse on a popular semantic segmentation framework known as encoder-decoder, and points out a
phenomenon that existing decoders do not fully integrate the information extracted by the encoder. To alleviate
this issue, we propose a more general two-branch paradigm, composed of a main branch and an auxiliary branch,
without increasing the number of parameters, and a boundary enhanced loss computation strategy to make two-
branch decoders learn complementary information adaptively instead of explicitly indicating the specific learning

27
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element. In addition, one branch learn pixels that are difficult to resolve in another branch making a competition
between them, which promotes the model to learn more efficiently. We evaluate our approach on two challenging
image segmentation datasets and show its superior performance in different baseline models. We also perform
an ablation study to tease apart the effects of different settings. Finally, we show our two-branch paradigm can
achieve satisfactory results when we remove the auxiliary branch in the inference stage, so that it can be applied to
low-resource systems.

3.2 Introduction

Semantic segmentation can be formulated as the task of labeling all pixels in an image with semantic classes.
Most state-of-the-art semantic segmentation models are based on the encoder-decoder architecture or its vari-
ants. Specifically, the encoder extracts information from the original input, and the decoder integrates previously
extracted information and recovers semantic information from it. In recent years, researchers commit to exploring
different network architecture [39, 9] to learn a more general representation, then deployed to the image segmen-
tation task [48, 101]. However, a general representation extracted by the encoder means that the decoder need to
decrease the gap between task free representation and task-dependent information.

In order to improve the parsing ability of the decoder, DeeplabV3+ [48] through pyramid pooling integrate the
contextual information at multiple scales. FCN [102] use skip-connection to fuse feature maps of different layers.
[103, 45] try to explore the interrelationships between features through attention mechanisms. It is worth noting
that some recent works start exploring the two-branch structure in the decoder [104, 49]. They capture meaningful
information by carefully designing different branches. Unfortunately, existing two-branch structures were elabo-
rately designed, thus hard to port to other types of decoders, and the degradation of model performance caused by
removing a branch is also unacceptable. Or they were just designed for post-processing and are challenging to train
end-to-end. On the other hand, with the continuous improvement of the encoder’s representation ability, making
full use of the information extracted by the encoder is still an open question. Therefore, we have reason to suspect
that the existing encoder-decoder-based models do not fully integrate the information extracted by the encoder.
We verified this view through experiments.

To alleviate these problems, we propose a more general two-branch paradigm, composed of a main branch and
an auxiliary branch for improving the structure of the decoder. At the same time, we design a simple yet efficient
branch that can be flexibly integrated into existing encoder-decoder semantic segmentation systems to verify the
effectiveness of the proposed two-branch structure. In order to enable two branches to learn complementary infor-
mation, we customize a loss calculation method to supervise the learning process of each branch. With these ideas,
different branches can learn complementary information adaptively instead of explicitly indicating the specific learn-
ing elements of different branches. In addition, learning complementary information can make the two branches



3.3. RELATED WORKS 29
compete with each other to a certain extent during the learning process, which can further improve performance.
Moreover, compared with the counterpart of the original model, the ameliorated two-branch version reduces or
maintains the number of parameters while improving performance.

Our main contributions can be summarized as follows:
• We propose a general two-branch paradigm to enhance the capability of the decoder to parse the information
extracted by the encoder without increasing the number of parameters.

• We propose the BECLoss that can supervise two-branch decoders to learn complementary information adap-
tively instead of explicitly indicating the specific learning elements to each branch.

• Wedesign a simple yet efficient branch that can be flexibly integrated into the existing encoder-decoder frame-
work to form a two-branch structure.

3.3 Related Works

3.3.1 Encoder-decoder and Variants

As a general structural paradigm, encoder-decoder is widely used in the field of image segmentation. Such a struc-
ture usually first encode features from the input to a latent feature space, then gradually recover the information in
the decoder. U-Net [44] explored the potential relationship between the features of the encoding phase and their
counterpart in the decoding phase through multiple skip-connections. SEMEDA [105] first learned to convert the
label to an embedding space under the guidance of the boundary information, and then supervised the encoder-
decoder structure under the learned subspace. PSPNet [41] and Deeplab family [48, 42] introduced dilated convo-
lution in encoder for increasing the receptive field while maintaining the resolution, then several parallel pyramid
pooling were followed to integrate information at different scales. Inspired by [43, 106], attention mechanism and
its variants are adopted in encoders or decoders [103, 107] to improve performance. In [45], attention was deployed
in the decoding stage for re-calibrating the feature maps with learnable weights. In addition, the application of self-
attention [108] in encoder has gradually become popular due to its capability of encoding distant dependencies for
better feature extraction. SETR [109] adapted a pure transformer encoder to extract features from an image seen
as a sequence of patches then followed a decoder to restore the semantic information.

3.3.2 Multi-branch

Learning different information throughmultiple parallel data streams has been proved to havemore advantages for
representation and generalization. Specifically, HRNet [101] repeatedly exchanged the information across different
resolutions by a series of parallel feature extraction streams in the encoding process to maintain high-resolution
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representations. Based on HRNet, [110] proposed a hierarchical multi-scale attention approach in which each data
stream learned a specific image scale so that the model can consider the information of multiple input image scales
when predicting. GSCNN [111] designed a two-stream structure, one for context information extraction, another
one for boundary-related information extraction. Combined with attention, RAN [112] proposed a three-branch
structure that performs the forward and backward attention learning processes simultaneously. Similarly, DANet
[104] used a two-branch encoder to learn the semantic relevance in spatial and channel feature spaces respectively.
Unlike above works, SegFix [49] proposed a post-processing scheme that predicted boundary and direction maps
employing a two-branch decoder supervised by two boundary-related losses.

Encouraged by multi-branch learning, we propose a more general and easy-to-deploy two-branch paradigm, in
which a new branch can be easily inserted into the original decoder to form a two-branch decoder and, as a re-
sult, improve the discriminating ability. Unlike previous works, we design a general paradigm and enable different
branches to learn complementary information adaptively instead of explicitly indicating the specific learning ele-
ments of different branches.

3.4 Methodology

In this section, we first systematically describe the two-branch decoder paradigm, then design a simple yet efficient
branch that can be applied as a plug-in to existing encoder-decoder frameworks to turn them into our proposed
two-branch architecture. Finally, we introduced a new loss calculation method that can be used to supervise branch
learning complementary information.

3.4.1 Two-Branch Structure Prototype

In an image segmentation model, existing encoder-decoder architectures can be simply represented in Figure 1.1.
Our proposed encoder-decoder based two-branch variant is depicted in Figure 3.1. As shown in Figure 3.1 (a), raw
data is first input into the encoder for feature extraction, then encoded features are input to twobranches separately,
followed by a residual-liked module to integrate information from different branches adaptively. For the fusion of
two branch features, we use the output of the penultimate layer of each decoder instead of the last layer to retain
more information. Specifically, in the residual path, we first concatenate the output features of two branches, next
follow a 1 × 1 convolution to reduce the channels. Then features are combined with the output of the first branch
by an element-wise addition operation. The final output is up-sampled to recover resolution if needed.
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Figure 2. Overview of our proposed two-branch architecture. 

(b) Second branch (Decoder2)

(a) Two-branch structure paradigm

Figure 3.1: Overview of our proposed two-branch architecture. The output of the encoder is divided into two groups,which are represented by two ‘half arrows’. Then each group is input to each branch separately and followed by aresidual-liked module to fuse the outputs of two branches.

3.4.2 Additional Branch Setting

In this part, we design a simple branch that can be deployed into an encoder-decoder framework to form a two-
branch decoder architecture. As shown in Figure 3.1 (b), the branch takes the encoded features as input. Similarly
to [41], we utilize a parallel average pooling module, each path consisting of an average pooling operator and a
1× 1 convolution operator. We concatenate the output of each path to get a multi-scale feature representation and
followed by another 1 × 1 convolution. Then, we get the output of this branch through an up-sampling operation
and a 1 × 1 convolution operation. Finally, we divide the encoded features into two groups along the channel axis,
and each grouped feature is entered into a specific branch.

3.4.3 BECLoss

In supervised learning, loss function plays a crucial role in the optimization of the network. Thus, we further propose
a novel loss computation strategy that can efficiently optimize this two-branch structure. Moreover, [105, 111] have
proved that introducing boundary information in the loss helps to improve the inherent sensitivity of the network to
boundary pixels. Thus, we introduce boundary information in the proposed loss to help the model learn boundary
features during the training stage, which is verified in ablation experiments.

We name this well-designed loss BECLoss. Specifically, BECLoss takes three inputs: outputs of the first branchX1

and the second branchX2 and ground-truth mapGT . We assume batch size as 1, thus the shape ofXk(k = 1, 2) is
C ×H ×W and C, H and W indicate the number of predicted classes, high and width of input images, respectively.
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First, we get the probability distribution Sk ∈ RH·W×C which can be computed as:

Ski =
exp(Xk

i )∑C
j exp(Xk

i [j])
, (3.1)

where i = 0 . . . H ×W − 1 denotes the index of pixels, j = 0 . . . C − 1 denotes the index of channels. Then, we
compute the probability map of ground truth label P k ∈ RH·W×1 as:

pki = Ski [gti] (3.2)

where gti is the ith pixel in GT . Following, we define a maskM1 for indicating all the pixels whose probability in P 1

is less than a threshold τ . M1 indicates the pixels that are difficult to predict in the first branch. With the computed
M1 and P 2, we filter out all pixels inX2 whose probability is less than a threshold τ :

M1
i =


1 if P 1

i < τ

0 otherwise
, (3.3)

where i = 0 . . . H ×W − 1 denotes the index of pixels.
In order to standardize the loss definition, we use L1 to indicate the boundary enhanced loss computed from

X1, and L2 to indicate a partial loss that we get from X2. In L1 and L2 we only consider the pixels which are hard
to predict in the first branch in order to utilize the additional branch to assist in the prediction of these pixels. In
addition, we use a hyperparameter γ to control the influence of boundary informationB ∈ RW×H (detailed in 3.4.4)
to the loss of the first branch, we get L1 ∈ RH·W×1:

L1
i = −log(P 1

i )× (1 + γ ·Bi)×M1
i (3.4)

where i = 0 . . . H ×W − 1 denotes the index of pixels. Following, we compute the partial loss L2 ∈ RH·W×1:

L2
i = − log(P 2

i )×M1
i (3.5)

Finally, the BECLoss can be written as a weighted average sum of L1 and L2:

LBEC =

∑
i(L1

i + η · L2
i )∑

M1
i

(3.6)

where η is a hyperparameter used to control the ratio of L2 in LBEC .
The two branches can automatically learn complementary information which helps the proposed model to fur-

ther learn a more appropriate way to combine the outputs of the two branches.
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3.4.4 Ground-Truth Boundary

In this part, we explain how we get a ground-truth boundary map from a ground-truth label map. Introducing
approximate boundary information in the loss can improve the model’s sensitivity to physical boundaries, which
improves the prediction accuracy in the boundary area. However, there are always labeled error pixels in the hand-
labeled ground truth map, which are especially obvious at the boundary region, as shown in Figure 3.2(a). In order
to alleviate this problem, Figure 3.3 illustrates the inner boundary extraction process. Concretely, we first extract
the boundary map B∗ from the original ground-truth label map by a filter f that sets all pixels that do not have
8 identically-labeled neighbor pixels as 1, and other pixels as 0. Then we thicken the boundary by a 7 × 7 dilation
operator and get boundarymapB∗

t . Finally, we get the inner boundaryB∗
in by applying the same filter f onB∗

t again
and followed by another 3× 3 dilation operator, as shown in Figure 3.2(b).

(a) (b)

Figure. (a) Mis-labeled boundary pixels and (b) Extracted inner boundary.

Figure 3.2: (a) Mis-labeled boundary pixels and (b) Extracted inner boundary.

3.4.5 Joint Loss

The proposed BECLoss is designed for optimizing the network with two branches. The purpose is to guide the two
branches to learn complementary information. It can naturally be combined with other losses for training the whole
network. Therefore, the network is trained to minimize a joint loss function:

L = LCE + α · LBEC1 + β · LBEC2 (3.7)
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Figure 3.3: Ground-truth inner boundary extraction process.

Specifically, LCE is cross-entropy loss, LBEC1 andLBEC2 are proposed BECLoss for first and second branch, respec-
tively. α and β are weights parameters of the two BECLoss.

3.5 Experiments

In this section, we conduct experiments on Cityscapes dataset [31] and Freiburg Forest dataset [113]. In the fol-
lowing, we first modify some classic image semantic segmentation algorithms to build their two-branch decoder
counterpart, then compare the proposed two-branch architecture with the original network. Finally, we carry out a
series of ablation experiments on Freiburg Forest dataset. Our models are trained on one Nvidia Tesla P100 GPU
with mixed precision settings.

3.5.1 Datasets

Cityscapes. The Cityscapes dataset is a large-scale database for urban street scene parsing. It contains 5000 finely
annotated images captured from 50 cities with 19 semantic object categories, in which 2875 images are used for
training, 500 and 1525 images are used for validation and testing separately. All images are provided with a resolu-
tion of 2048× 1024. We followed [81] and report results on the reduced 11 class label set.
Freiburg Forest. The Freiburg Forest dataset is an unstructured forested environments dataset. It contains 6 seg-
mentation classes, i.e., sky, trail, grass, vegetation, obstacle, and void. The dataset contains 325 images with pixel
level hand-annotated ground truth map. We follow [81] and use the same train and test splits provided by the
dataset.

3.5.2 Implementation Details

In order to comprehensively test, we deploy proposed two-branch decoder on three classic baseline networks,
namely, SegNet [38], DeeplabV3+ [48], and HRNet [101]. Two-branch SegNet is shown in Figure 3.4. We divide
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Figure 3.4: Architecture of modified SegNet with two decoders (SegNetT).

the output of the encoder into two groups, one of which is input to the original data stream, and another is input to
the additional data stream. In our two-branch implementation, we denote the upper branch in the decoder as the
original data stream, the lower branch as the additional data stream. Next, we follow the residual-liked module to
fuse the two outputs while deploying the BECLoss and cross-entropy loss during the training. More concretely, we
supervise the learning process of the two branches through LBEC1 and LBEC2, and the combination of two outputs
are guided by LCE . We follow the same way to implement the counterpart of DeeplabV3+ and HRNet. Note that
we only take the backbone in the original model as an encoder, and the rest as the decoder. In practice, we use
Resnet50, Vgg16 and HRNet-W18 as backbones.

We initialize encoder with the weights pre-trained on ImageNet, this is totally the same as its original implemen-
tations [38, 48, 101]. We employ a cyclical exponent learning rate policy [114] where the min_lr and max_lr are set
to 1e− 5 and 1e− 2, and cycle_length and step_size are set to 40 and 5 epochs respectively. Momentum and weight
decay coefficients are set to 0.9 and 0.0005. If not specified, all models are trained with a mini batch size of 8. Fur-
thermore, we configure the hyperparameter γ and η in BECLoss as 10.0 and 0.3. The scaleα and β in Equation 3.7 are
set to 2.0. For Cityscapes dataset, we set input image size to 384× 768, thus random cropping (cropsize 384× 768) is
applied during training, and during testing, we use the original resolution of 1024×2048. For Freiburg Forest dataset,
we resize the image to 384×768 during training and testing. All training images are augmented by random left-right
flipping. We set 160 and 120 training epochs to Cityscapes datasets and Freiburg Forest dataset. In addition, as we
compare the original models with their two-branch encoder counterpart, so we perform the same settings for each
comparison pair to ensure fairness.
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Table 3.1: Improvements with two-branch decoder on Cityscapes val set with 11 semantic class labels.
Methods BaseNet Mean IoU (%) Parms. (M)

SegNet 75.82 29.4

SegNetT (ours) 80.64 (+4.82) 18.6

DeepLabv3+ 80.31 26.6

DeepLabv3+T (ours) 82.45 (+2.14) 27.5

HRNet-W18 82.34 9.6

HRNet-W18T (ours) 83.9 (+1.56) 9.6

Res50

Hrnet-W18

Vgg16

Table 3.2: Comparison in terms of IoU vs different baselines on the cityscapes val set with 11 semantic class labels.
Methods sky building road sidewalk fence vegetation pole vehicle traffic sign person bicycle
SegNet 91.83 88.47 95.52 72.76 40.02 91.22 52.95 89.45 65.57 77.2 68.98
SegNetT (ours) 93.35 (+1.52)90.89 (+2.42)96.65 (+1.13)77.28 (+4.52) 49.72 (+9.7) 92.37 (+1.15)61.54 (+8.59)92.86 (+3.41)75.64 (+10.07)81.61 (+4.41)75.06 (+6.08)
DeepLabv3+ 93.99 90.9 97.29 80.47 54.73 91.92 56.56 93.05 71.78 78.9 73.79
DeepLabv3+T (ours) 93.95 91.99 (+1.09)97.62 (+0.33)82.31 (+1.84)54.85 (+0.12)92.55 (+0.63)62.69 (+6.13)94.17 (+1.12) 77.87 (+6.09) 82.4 (+3.5) 76.59 (+2.8)
HRNet 94.31 92.06 97.67 82.31 54.94 92.59 63.31 94.34 76.37 82.27 75.4
HRNet-T (ours) 94.83 (+0.52)92.68 (+0.62)97.98 (+0.31) 84.3 (+1.99) 56.28 (+1.34)93.06 (+0.47)67.17 (+3.86)94.83 (+0.49) 79.98 (+3.61) 84.35 (+2.08)77.09 (+1.69)

3.6 Results

In this section, we provide an extensive evaluation of each component of our framework on two challenging outdoor
datasets, namely Cityscapes dataset and Freiburg Forest dataset. We use the widely used intersection over union
(IoU) to evaluate the performance of our approach.

3.6.1 Results on Cityscapes Dataset

Table 3.1 summarizes the results of our two-branch decoder with different baselines. We can see that our ap-
proach significantly improves the mean IoU. Specifically, our approach improves the mean IoU of original encoder-
decoder frameworks, namely SegNet, Deeplabv3+, and HRNet, by 4.81, 2.14, and 1.56, respectively. In particular,
our two-branch implementation of SegNet (SegNetT) dramatically reduces the number of parameters while signif-
icantly improving the performance. DeepLabv3+T and HRNet only slightly increase the parameters (0.9M) or keep
the number of parameters while improving the model’s performance. Our results also reflect that the original de-
coder does not fully use the information extracted by the encoder. In addition, table 3.2 illustrates the category-wise
comparison between various baselines and their two-branch variants. We surprisingly find that our method has
a significant improvement in the prediction accuracy of small-scale targets, like "pole", "traffic sign" and "person".
Several segmentation results are shown in Figure 3.5, we can see that our two-branch variants perform better on
those small-size-object classes in the images than the baseline models.
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Figure 3.5: Qualitative results on the Cityscapes val set with 11 semantic class labels.

3.6.2 Results On Freiburg Forest Dataset

We carry out experiments on the Freiburg Forest dataset to further evaluate the effectiveness of our method. Quan-
titative results of Freiburg Forest are shown in Table 3.3. The baselines (SegNet, DeepLabv3+, HRNet) yield mean IoU
69.99%, 77.48%, and 78.29%. Our two-branch counterpart boosts the performance to 81.79%, 82.73%, and 83%. We
can see that our methods outperform their baselines with notable advantage, especially for the class of "obstacle",
which is hardest to segment because of its severe class imbalance. Several examples are shown in Figure. 3.6.

3.6.3 Ablation Study

3.6.4 BECLoss and Boundary

All two-branch variants are implemented by replacing the decoder of the original network with our proposed two-
branchdecoder, and throughourwell-designedBECLoss to explicitly supervise the learning process of themodel, the
two branches can learn complementary information. In addition, we introduce boundary information into BECLoss
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Table 3.3: Improvements with two-branch decoder on Freiburg Forest val set.
Methods BaseNet Trail Grass Veg. Sky Obst. Mean IoU (%) Parms. (M)
SegNet 84.15 85.55 88.97 91.28 0 69.99 29.4
SegNetT (ours) 88.55 (+4.4) 88.96 (+3.41) 0.91 (+1.94) 2.63 (+1.35) 47.93 (+47.93) 81.79 (+11.8) 18.6
DeepLabv3+ 83.03 86.11 89.96 92.16 36.1 77.48 26.6
DeepLabv3+T (ours) 88.02 (+4.99) 88.93 (+2.82) 91.02 (1.06) 2.83 (+0.67) 52.87 (+16.77) 82.73 (+5.25) 27.5
HRNet 84.79 86.49 89.79 91.96 38.44 78.29 9.6
HRNet-T (ours) 88.74 (+3.95) 89.35 (+2.86) 91.14 (+1.35) 92.6 (+0.64) 53.17 (+14.73) 83 (+4.71) 9.6

Res50

Hrnet-W18

Vgg16

Figure 3.6: Qualitative results on the Freiburg Forest test set.

to improve the inherent sensitivity of ourmodels to boundary pixels. To verify the validity of ourmethod, we conduct
a group of ablations to analyze the influence of various factors within our method. We report the results over the
segmentation baseline SegNet on Cityscapes and Freiburg Forest dataset in Table 3.4.

As shown in Table 3.4, two-branch decoder improves the performance remarkably. Compared with the baseline
SegNet, employing two-branch decoder yields a result of 78.54% mean IoU on Cityscapes dataset and 78.9% mean
IoUon Freiburg Forest dataset, which brings 2.72%and 8.91% improvement. In addition, whenwe gradually replaced
the cross-entropy loss CELoss of loss1 and loss2 with the BECLoss we designed, the performance further improved
to 79.5% and 81.43%. Furthermore, we notice that when we use only one BECLoss, the result very slightly exceeds
the result of using two BECLoss, as shown in the third row and the fifth row, the result from 79.54% goes to 79.5% on
Cityscapes dataset. After introducing boundary information to BECLoss, performance further increased to 80.64%.
Results show that our proposed two-branch decoder and boundary enhanced BECLoss bring great benefit to scene
parsing.
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Table 3.4: Ablation study on Cityscapes val set and Freiburg Forest test set. Loss1-Loss3 represent deployed loss inFigure 3.1, B indicates BECLoss enhanced by boundary information.

Cityscapes Freiburg
SegNet \ \ CE \ 75.82 69.99
SegNetT CE CE CE \ 78.54 (+2.72) 78.9 (+8.91)
SegNetT BEC CE CE N 79.54 (+3.72) 80.48 (+10.49)
SegNetT CE BEC CE N 79.07 (+3.25) 79.9 (+9.91)
SegNetT BEC BEC CE N 79.5 (+3.68) 81.43 (+11.44)
SegNetT BEC BEC CE Y 80.64 (+4.82) 81.79 (+11.8)

Methods Loss1 Loss2 Loss3 B
Mean IoU (%)

Table 3.5: Single branch test on Cityscapes val set with 11 semantic class labels. ’Enc.’ represent encoder, ’Dec.’represent decoder. ’O’ indicates the decoder deployed in the original model. ’D’ the decoder in Figure 3.1(b), ’T ’indicates our two-branch decoder. ’O∗ ’, ’D∗ ’ and ’O&D’ mean the result from upper branch, lower branch and finalbranch separately.
Methods Enc. Dec.
SegNet O
ED D

80.49 67.34 80.64 18.4 14.9 18.6
DeepLabv3+ O
ED D

82.35 77.3 82.61 25.3 25.7 27.5
HRNet O
ED D

83.87 76.83 83.9 9.6 9.6 9.6HRNet-T (ours) T
Res50

82.34 9.6
81.25 9.7

32.2

75.82
65.34

29.4
15.3

80.31 26.6

DeepLabv3+ (ours)
Res50

T

T

76.67

Mean IoU (%) Parms. (M)

SegNetT (ours)
Vgg16

𝑂∗ 𝐷∗ O&D

𝐷∗ 𝐷∗

𝐷∗

𝑂∗ 𝑂∗

𝑂∗ O&D

O&D O&D

𝐷∗ 𝐷∗𝑂∗ 𝑂∗O&D O&D

3.6.5 Single Branch

As mentioned in section1, the proposed two branches can compete during the training process, which prioritizes
each branch to learn complementary knowledge that can boost the parsing ability and improve learning efficiency.
Thanks to this property, the results are still far better than the original encoder-decoder structure even if we remove
a branch during the inference process. Moreover, the number of parameters is less than the original one, which alle-
viates the challenging to deploy complex models into practical applications in many real scenarios due to computer
resources and run-time limitations. As shown in Table 3.5, we use an extremely simple branch, illustrated in Figure
3.1(b), retraining on the Cityscapes dataset, and we named the trained model ‘ED’. Moreover, we test the output
results of each branch separately on the trained two-branch decoder model. Specifically, we take SegNet as an ex-
ample. In the inference process, we only keep the upper branch of the model in Figure 3.4, and the output result
obtained corresponds to ’O∗ ’. ’D∗ ’ corresponds to the result of only keep the lower branch. ’O&D’ goes to the result
of original two-branch model. The results of the upper branch in our trained two-branch model are 80.49%, 82.35%,
and 83.87%, which significantly exceeds the counterparts of original encoder-decoder models (75.82%, 80.31%, and
82.34%). The results of lower branch trained in two-branch model are also better than correspond one-branch
trained model. At the same time, the number of parameters used dropped remarkably. In addition, we find that
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the residual-like module can effectively combine the outputs of the two branches to further improve the final result
to 80.64%, 82.61%, and 83.9%, as shown in ’O&D’ columns, which means that the final results are not adversely
affected. The results once again show that our method can make each branch learns complementary information.

3.7 Summary

In that chapter, we delve into the RGB-based semantic segmentation models. One of our focuses is enhancing the
model’s sensitivity towards boundaries. To achieve this, we utilize semantic boundary cues within the loss function,
which provides an additional supervisory signal to deliver more precise and effective segmentation. In addition, we
also focus on the structure of the decoder and design a generic two-branch decoder that could be flexibly applied
to existing encoder-decoder-based models and obtain consistent performance gains.

Specifically, we present a general two-branch decoder paradigm composed of a main branch and an auxiliary
branch for scene segmentation. This decoder paradigm can be directly applied in an encoder-decoder framework to
efficiently refine and integrate the information extracted by the encoder. With this two-branch decoder, we further
propose a boundary enhanced complementary loss named BECLoss to guide two branches to learn complementary
information. Moreover, we design a simple yet efficient branch deployed as the auxiliary branch in our two-branch
decoder. The comparative experiments show that the proposed two-branch decoder paradigm and BECLoss can
significantly improve the performance of the original encoder-decoder model consistently on challenging outdoor
datasets. In addition, although we add a branch to the decoder, it does not significantly increase the number of
parameters, and the added branch can be removed in the inference process while still getting performance far
beyond the original counterpart.



Chapter 4

A Hybrid RGB-D Cross Fusion Network for

semantic segmentation

In the previous chapter, we delved into the working paradigm of single-modality semantic segmentationmodels, i.e.,
encoder-decoder-based models. Furthermore, in Chapter 2, we provided an overview of methods based on multi-
modal fusion, introducing the commonly employed fusion strategies: early fusion, late fusion, and intermediate
fusion. Empirical evidence has demonstrated that fusion systems can enhance feature representations of the same
scene input data by leveraging the information of different modalities. However, the challenge of how to utilize
auxiliary modalities to augment the scene understanding capabilities of DLmodels remains a complex issue. On the
other hand, gradient backpropagation-based DL models are inherently flexible in terms of structural design, which
allows us to explore the impact of various fusion strategies on multi-modal inputs.

In this context, this chapter delves into the intricacies of different fusion methods and focuses extensively on
how to leverage various intermediate fusion strategies to optimize the feature representations of multi-modal data
and subsequently enhance the accuracy and efficiency of semantic segmentation models.

4.1 Abstract

Multi-modal scene parsing is a prevalent topic in robotics and autonomous driving since the knowledge of different
modalities can complement each other. Recently, the success of self-attention-based methods has demonstrated
the effectiveness of capturing long-range dependencies. However, the tremendous cost dramatically limits the appli-
cation of this idea in multi-modal fusion. To alleviate this problem, this chapter designs a multi-modal cross-fusion
block (AC) and its elegant variant (EAC) based on an additive attention mechanism to capture global awareness
among different modalities efficiently. Moreover, a simple yet efficient transformer-based trans-context block (TC)

41
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is also presented to connect the contextual information. Based on the above components, we propose light HCFNet,
which can explore long-range dependencies of multi-modal information while keeping local details. Finally, we con-
duct comprehensive experiments and analyses onboth indoor (NYUv2-13, -40) andoutdoor (Cityscapes-11) datasets.
Experiment results show that the proposed HCFNet achieved 66.9% and 51.5% mIoU on NYUv2-13 and -40 classes
settings, which outperform current start-of-the-artmulti-modelmethods. Ourmodel also shows a competitivemIoU
of 80.6% on the Cityscapes-11 dataset.

4.2 Introduction

As a fundamental task, semantic segmentation has received a broad range of attention in the computer vision com-
munity and industry. Depth information as an auxiliary provides shape and geometry cues of the surroundings that
complement the RGB data, thus introducing depth information to improve the model’s performance has become a
trend in robotics and autonomous driving. To this end, a series of networks with RGB-D as input appeared. These
methods directly concatenate RGB and Depth images [71, 115, 70] or treat them in two branches [116, 117, 118, 82].

Recently, self-attention-based transformer architecture has attracted attention in the computer vision commu-
nity due to its flexibility in long-range modeling dependencies and its remarkable success in natural language pro-
cessing (NLP). Therefore, well-designed transformer block (TB) or their variants are introduced to replace the region-
wise convolution structure [119, 120], and their results have shown that a global view brought by self-attention helps
draw a better performance. However, the tremendous computation severely restricts its application in computer vi-
sion, especially on some resource-limited and low-latency systems. To alleviate this shortcoming, some works were
designed to process images at a low resolution [121, 119] or using a sliding window [120, 122]; others borrowed the
idea from CNN-like architecture and introduce pyramid structure [123, 124]. Although various solutions for building
long-range dependencies of individual RGB image reasoning emerged, the exploration of fusing RGB andDepth data
for scene parsing is very limited. Existing multi-modal methods mainly deploy TB in a hybrid structure, i.e., mixing
CNN and transformer, to ingest the advancement of both convolution and TB. The mainstream combinations of
CNN and TB operations are (1) cascade: convolution operations are used to process high-resolution data and then
followed by TBs to process low-resolution data. (2) parallel: CNNs are used as the backbone network for feature ex-
traction, while TBs are independentmodules to address the data fusion and exchange between different modalities.
For example, [125] introduces the TB into the last two layers of the encoder in U-Net [44], reducing the calculation
amount. [126] treat TB as an independent part and stack multiple self-attention modules to incorporate the global
attention of the 3D scene. Compared with parallel structure, cascade structure fails to capture a larger context at
the shallow level, and all existing methods rudely use the TB, so they inevitably bear the burden of the TB, i.e., the
tremendous calculation.

We argue that the global attention founded by TB is the crucial reason for the success of Transformer. Recently,
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[127] proposed an efficient Transformer variant based on additive attention to achieve global attention modeling
in linear complexity. Inspired by this, we propose a well-designed additive-attention-based cross-fusion block (AC)
to incorporate depth information into RGB and form long-range dependencies between depth and RGB features.
Besides, we present EAC block, an efficient variant of AC, which efficiently builds global contexts while maintaining
fine-grained shape details. On the other hand, we offer a simple yet efficient trans-context module (TC) to enrich
contextual information and capture a global context from fused features. Based on the above modules, we design a
hybrid cross fusion network (HCFNet), as shown in Figure 4.1. With all the ideas, our method benefits from building
global awareness while significantly reducing computational consumption. The formed global awareness crosses
RGB and depth, bringing integrated information from different modalities. We report the experimental results on
two commonly used datasets, namely NYUv2(-13, -40) [128] and Cityscapes-11 [31], to verify the effectiveness of the
proposed method in both indoor and outdoor scenarios.

The main contributions of this chapter are summarized as follows:
• We propose an efficient hybrid RGB-D data fusion network called HCFNet for semantic segmentation.
• We propose a light data fusion block named additive attention cross fusion block (AC), and its variant (EAC),
to form long-range dependencies cross depth and RGB features. Moreover, we offer a simple yet efficient
trans-context module (TC) based on TB to build a global view of fused features.

• We experimentally validate the proposed HCFNet on indoor and outdoor datasets, including NYUv2(-13, -40)
and Cityscapes-11. Results show that our method achieves 66.9% mIoU on NYUv2-13, 51.5% mIoU on NYUv2-
40, and 80.6%mIoU on Cityscapes-11 dataset, which is quite competitive comparedwith state-of-the-art RGB-D
fusion methods.

4.3 Related Works

4.3.1 Global Attention and Transformer

Transformer was firstly proposed by [108] for NLP tasks. The core component is built uponmulti-head self-attention,
which canmodel the long-range dependencieswithin a sequence. A similar ideawas introduced by [129] in computer
vision to design a non-local block to build the global relationship between pixels. [130] proposed a full attention
block based on a non-local block that computes global attention along both channel and spatial dimensions. As a
pioneer of visual Transformer, [121] used pure Transformer structure to classify images and achieved promising
results. [119] extended the work in [121] to semantic segmentation. Then, [120, 122] calculate self-attention in sub-
windows to alleviate the resolution disaster, and apply Transformer structure to dense segmentation. [123, 124, 131]
employed a pyramid or hierarchical Transformer structure to improve the computational efficiency of the model
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for segmentation. Moreover, [132] proposed a ‘transposed’ self-attention that computes global attention across
feature channels so that the computational complexity is linear. Recently, [127] offered a variant of Transformer, in
which additive attention replaces self-attention to establish global awareness. Compared with other global attention
mechanisms, the calculation of additive attention is more efficient, so this article establishes a more general cross-
modal fusion attention mechanism based on additive attention.

4.3.2 RGB-D Semantic Segmentation

With a more affordable depth sensor, semantic segmentation leveraged by the complementary geometric informa-
tion of depth has drawn attention. However, the large noise in depth and the asymmetry between RGB and depth
data make it challenging to integrate RGB and depth features effectively. In general, existing semantic segmentation
structures include two stages: encoding and decoding. Concretely, input data are first encoded to form contextual
feature embeddings then decoded to recover semantic information [14]. Some work [133, 134, 70] redesigned the
convolution operation based on the characteristics of RGD-D data. [135] presented depth-aware operations to lever-
age depth similarity between pixels. [70] proposed a shape-aware convolutional layer. This convolutional layer is
composed of two independent learnable components in the learning phase, and all the learnable parameters in the
inference phase can be re-weight into a standard convolution operation. [133] introduced malleable 2.5D convolu-
tion to learn the receptive field along the depth axis. In contrast, most approaches are proposed to feed RGB and
depth to two parallel branches [78, 117, 82, 116, 136]. For example, [137] employed two separate encoder-decoders
to process RGB and depth, respectively, during which the manually designed gated fusion layer is used to fuse in-
formation from different streams. [138] used skip-connection to transmit the encoded multi-modal information to
the decoder. [118, 117, 82] fuse the features at different stages of the encoding process. Recently, [136] applied a
shallow encoder and factorized convolutions to create a lightweight model for real-time operations.

Unlike the above methods, we design a hybrid cross fusion network that takes advantage of long-range depen-
dencies in the Transformer while maintaining the model’s efficiency.

4.4 Methodology

4.4.1 Overview

An overview of our hybrid cross fusion network (HCFNet) is presented in Figure 4.1. The structure is derived from a
general and classical multi-modal semantic segmentation paradigm, i.e., two encoders for extracting features from
RGBandDepth andonedecoder for reconstructing features fromembeddings. Similar to [117, 136], weuse indepen-
dent modules to achieve data fusion of different modalities and pass features to the decoder via skip-connections.
The decoder is divided intomultiple stages. In each stage, featuremaps are first treated by a series of residual blocks
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Figure 4.1: Structure of HCFNet. This network takes two inputs, i.e., RGB and Depth. 7 × 7, S2 means convolutionwith kernel size 7 and stride 2, and BN denotes batch normalization.

[9] and then upsampled by a factor of 2. The final output of the decoder is upsampled by the factor of 4 to recover
the original resolution. Our network uses shallow encoders (i.e., ResNet-34 [9]) as the backbone for feature extrac-
tion of both RGB and Depth streams to reduce the footprint at runtime. In addition, we introduce additive attention
cross fusion blocks (AC) and EAC to fuse valuable information efficiently during encoding and trans-context block
(TC) to enrich contextual features at the end of the encoder.

4.4.2 Additive Attention

Additive attention was first introduced in [127], which brings an effective global attention mechanism to recalibrate
the features within a sequence. A basic form of additive attention is depicted in Figure 4.2. We first summarize each
token (Ti, i ∈ [1 . . . N ]) into an attention scores by a linear transformation and a scale factor of √d, where d is the
number of channels in a token. Then each obtained attention score is normalized by a softmax operation to get Asi .
The process can be formulated as:

Asi =
exp(Wa

TTi/
√
d)∑N

j=1 exp(Wa
TTj/

√
d)

, (4.1)

where N refers to the number of tokens and i ∈ [1 . . . N ], Wa ∈ Rd is learnable weights of linear transformation.
The final global attention is obtained by weighted sum:

Ag = f(T ) =

N∑
i=1

Asi · Ti. (4.2)
Note that additive attention has multiple heads as in the standard self-attention.
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Figure 4.2: Structure of the additive attention block

4.4.3 AC Block

As shown in Figure 4.3, theAdditive attentionCross fusion block (AC) adopts a symmetrical structure.Mi ∈ Rd×N , i ∈
[1, 2] denote the inputs from two encoders. Concretely,M1 andM2 are first processed by four linear transformation
(LT) units, respectively:

M
tj
i = Wj

i

T
Mi, (4.3)

where Wj
i ∈ Rd×d refers to learnable parameters in LT, i ∈ [1, 2], j ∈ [1, 2, 3, 4]. For the left part, M t1

1 is fed into
additive attention blocks to get a global attention score Ag11 ∈ Rd and then element-wise multiplied by M t2

2 to
integrate attention score ofM1 to the feature map ofM2. Then, in the same way, we build attention scoresAg21 , and
Ag31 while only considering the feature map ofM1. For the right part, we use the same way to getAg32 . Meantime, we
also introduce the information fromM1 as an additional reference. Note that we use the knowledge from another
modality to calibrate the long-range dependencies building process in the current modality. This strategy makes it
easier for AC block to establish cross attention from one modality to another. This process can be formalized as:

Ag3i = f
(
f
(
f(M t1

i )⊗M t2
3−i

)
⊗M t3

i

)
, (4.4)

where i ∈ [1, 2], f denotes additive attention operation (see equation 4.2) and⊗ denotes element-wisemultiplication
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Figure 4.3: Structure of the proposed AC block in Figure. Add-Attn is the additive attention shown in Figure 4.2
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operation.
At the same time, M t1

1 and M t1
2 are respectively transferred into two bypass branch modules to get M c

1 and
M c

2 . The bypass branch module is designed similar to the classical channel attention (CA) mechanism, which can be
described as:

M c
i = Softmax(M t

i )⊗M t1
i

M t
i = Wc

i
TMa

i

Ma
i = AvePooling(M t1

i ),

(4.5)

where i ∈ [1, 2],Wc
i ∈ Rd×d are the parameters of LT,AvePooling is average pooling operation along tokens.

Next, the generated Ag31 and Ag32 are respectively element-wise multiplied by M t4
1 and M t4

2 , and then concate-
nated along channel axis to getMrc

f . Finally, after a linear transformation,Mrc
f is element-wise added withM c

1 and
M c

2 to get the final outputMf :

Mf = M c
1 +M c

2 +Mrc
t

Mrc
t = WrcTMrc

f ,

(4.6)

whereWrc ∈ R2d×d are parameters of LT and + refers to element-wise addition operation.
The idea behind this design is very intuitive. We use the global attention fromM1 to calibrate the features inM2.

Then the calibrated feature map of M2 regenerates new global attention, which is further used to re-calibrate the
features inM1, and vice versa. Therefore, the block fully evaluates the interrelationship between differentmodalities
to achieve a better efficient fusion. Note that ACblock can also perform cross-feature fusion in sub-windows formore
flexible analysis of local features.

4.4.4 EAC Block

Efficient Additive attention Cross fusion block (EAC) is a variant of AC (section 4.4.3), designed to puzzle out the
excessive consumption of building long-range dependencies under large resolution input. We consider that estab-
lishing global context information under full-resolution input will introduce redundancy, which leads to unnecessary
calculations. In addition, fine-grained shape information is essential for establishing target contours. Accordingly,
we decouple the process of establishing global context information and contour information. To do so, we design
a shape extraction module in EAC block. An example for demonstrating the shape extraction module is shown in
Figure 4.5. For each input, briefly, we compute the mean value of each local area by a sliding window with a certain
stride which is equal to the size of the sliding window, to obtain the mean map. Then, the mean value in each local
window is removed to obtain the shape map. Thanks to the parallel computing of Pytorch [139], this process can be
implemented very efficiently.
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Figure 4.4: Structure of the proposed EAC block

EAC block is shown in Figure 4.4, we first build themeanmapMm and the shapemapMs of the inputM1 andM2

through a shape extraction module. The extracted mean informationMm
1 andMm

2 are input to the AC block to get
the global context attention, and then followed by an upsampling operation to recover the resolution. The extracted
shape information is processed by a pixel-wise convolution. Finally, mean information and shape information are
integrated by element-wise addition. Table 4.1 shows the configuration of AC or EAC blocks at every encoding stage.
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Table 4.1: Configuration of AC or EAC blocks in Figure 4.1
block (c1, c2) im_scale sw sub_w headsEAC (64, 64) 1/2 (8, 8) (2, 2) 8EAC (64, 64) 1/4 (4, 4) (2, 2) 8AC (128, 128) 1/8 - (4, 4) 16AC (256, 256) 1/16 - (h/16, w/16) 32AC (512, 512) 1/32 - (h/32, w/32) 64
h and w refer to the height and width of original resolution, c1and c2 denote channels of each modality, im_scale denotesthe ratio of the current input size to the original image size,
sw denotes the size of sliding window in EAC block, sub_w de-notes the size of sub-windows in AC block, and heads denotesthe number of head in additive attention.

4.4.5 TC Block

As shown in Figure 4.6, the Trans-Context block is composed of convolution and transformer blocks. Specifically,
we first project the input channels through a 1× 1 convolution, and then several TBs are applied to obtain complex
context. Finally, we restore the number of input channels through another 1 × 1 convolution. The whole process
is straightforward but very convenient. Note that the TB in our TC block can utilize existing well-designed methods,
such as [121, 122]. We reimplement and employ TB of [127] in our TC block.
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Figure 4.6: Structure of the proposed TC block in Figure 4.1

4.5 Experiments

4.5.1 Datasets

NYUv2. NYUv2 is a popular dataset for indoor scene analysis. It contains 1449 indoor finely annotated RGB-D
images, in which 795 are used for training and 654 for testing. All images are provided with a resolution of 640×480.
We follow [70] using the train/test splits as provided by the dataset and report results on the 13 and 40 classes [128]
settings.
Cityscapes. The Cityscapes dataset is a large-scale database for urban street scene parsing. It contains 5000 finely
annotated images captured from 50 cities with 19 semantic object categories, in which 2875 images are used for
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training, 500 images and 1525 images are used for validation and testing separately. All images are provided with a
resolution of 2048× 1024. We report results on the reduced 11 classes [116] setting.

4.5.2 Implementation Details

We implement our network based on Pytorch [139], and all experiments are run on a Nvidia RTX3090 GPU with
24GB memory. For the network, we take Resnet-34 initialized with the pre-trained weight on ImageNet [6] as the
backbone of both encoders. We train our model for 500 epochs with a mini-batch size of 8 for the NYUv2 dataset
and 300 epochs with a mini-batch size of 16 for the Cityscapes dataset. As for optimization, NYUv2 dataset is trained
on SGD optimizer with a initial learning rate of 0.015 and Cityscapes dataset is trained on Adam optimizer with an
initial learning of 0.0001. Following [136], we employ a one-cycle learning rate policy. Moreover, we set the number
of TB in TC block (N ) as 3. The image input size is set to 640 × 480 on the NYUv2 dataset and 768 × 384 on the
Cityscapes dataset. If not otherwise noted, the inputs of all models are RGB and depth images. Note that before
training on the Cityscapes dataset, we follow the official guide to generate a depth map from the original disparity
data [31]. Random scaling, cropping, and flipping are applied for data augmentation to increase the number of
training samples further. We evaluate our model based onmean intersection over union (mIoU). In addition, we still
care for the frame per second (FPS) rate because of the computational burden.

4.6 Results

4.6.1 Results on NYUv2

Table 4.2 compares the performance of our proposed methods with start-of-the-art methods. For a comprehen-
sive comparison, we re-implement the prevalent multi-modal fusion methods based on their official repository and
report the results on NYUv2-13 setting. Besides, we report our results on the commonly used NYUv2-40 setting.
For the methods tested in the original paper, we use the reported results directly. We then follow [136] to modify
our model by replacing BasicBlock with Non-Bottleneck-1D-Block (NBt1D) [140]. In our experiments, we also pay
attention to FPS since they reflect the actual operating efficiency of the model. All FPS are executed at the input
resolution of 640× 480 on a laptop with Intel i7-9750 CPU and Nvidia RTX 2080 8G GPU. We noticed that the model
based on NBt1D runs slower than the original model, which is inconsistent with the report in [136]. We consider
this is because the 3 × 3 convolution is fully optimized in the computer environment. In table 4.2 we can see that
our model outperforms current state-of-the-art methods on both NYUv2-13 and -40 classes settings while keeping
a fast inference time. In addition, we found that our method is capable of capturing overall contextual information
while extracting valuable details. Please refer to the supplementary material for some qualitative results.
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Table 4.2: Performance of different methods on NYUv2 test set.
Model BackBone

mIoU (%)
FPSNYUv2-13 NYUv2-40

FuseNet[78] Vgg-16 54.6 - 15.1
RedNet[117] ResNet-50 64.0 - 24.2
ACNet[82] ResNet-50 64.8 48.3∗ 17.9
ESANet†[136] ResNet-34 65.1 50.3∗ 39.7
ESANet[136] ResNet-50 65.9 50.5∗ 44.6
ShapeConv[70] ResNext-101 65.1∗ 51.3∗⋄ 12.3
HCFNet(Ours) ResNet-34 65.8 49.9 36.2
HCFNet†(Ours) ResNet-34 66.7 50.7 31.7
HCFNet(Ours) ResNet-50 66.9 51.5 22.5
∗ denotes that we report the result from the original paper, †denotes that the BasicBlock is replaced by NBt1D [140], and ⋄refers to multi-scale testing strategy.

Table 4.3: Performance of different methods on Cityscapes-11 val set.
Model BackBone mIoU (%) FPS Latency
RedNet[117] ResNet-50 79.6 26.1 0.038
ACNet[82] ResNet-50 80.0 19.6 0.051
ESANet[136] ResNet-34 77.8 47.6 0.021
ESANet†[136] ResNet-34 78.5 42.1 0.024
HCFNet (Ours) ResNet-34 78.4 39.0 0.025
HCFNet† (Ours) ResNet-34 78.9 35.2 0.028
HCFNet (Ours) ResNet-50 80.6 25.3 0.039
∗ denotes that we report the result from the original pa-per and † denotes that the BasicBlock is replaced by NBt1D[140].

4.6.2 Results on Cityscapes

To exhibit the capabilities of our model in outdoor scenarios, we evaluate our model on the Cityscapes-11 dataset.
Specifically, we resize the input image to a resolution of 768× 384. All models are trained and evaluated at the same
resolution. Note that all models are configured to the same training strategy, unless a different setting is provided in
the original implementation. We observed that the Cityscapes dataset is very sensitive to the backbone, and a well
pre-trained backbone can significantly improve the performance. As shown in Table 4.3, our model yielded a very
comparable result when using ResNet34 as backbone, and improved the segmentation results when using ResNet50
as backbone.
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4.6.3 Ablation Analysis

To verify the functionality of the components of our model, we conduct an ablation study on the NYUv2-13 dataset.
We use the network architecture in Figure 4.1 as the basic structure. For a fair comparison, network architecture and
hyper-parameters in different experiments are fixed. In ablations, we first evaluate the influence of different fusion
methods, namely Add, ACM, SE, which have been used in recent start-of-the-art models. Specifically, Add [78, 117]
simply adds the data of different modalities directly. ACM [82] and SE [136] calculate each modality’s attention
through the Attention Complementary module (ACM) and Squeeze-and-Excitation module (SE) before fusion. Then
we estimate the impact of the TC block on performance. Table 4.4 summarizes the results of this ablation study on
HCFNet.

From Experiment 1 to Experiment 3, we use different fusionmethods to replace AC and EAC blocks of the original
HCFNet while removing the TC block. As we can see, the proposed ACmethod is superior to other fusionmethods by
a large margin. Figure 4.7 visualized the feature maps of the output of different fusion methods at different stages
in HCFNet. Specifically, in B1 and B2, we use the EAC blocks. We can see that EAC can remove redundant facts in
the scene without losing valuable information. In B3-B5, AC blocks are deployed. It can be seen that the targets of
interest are effectively activated, and it has a more extensive range and more accurate position than other fusion
methods. This further verifies that the global awareness obtained in the AC module helps the model understand
the scene. Please refer to the supplementary material for additional analysis of the AC/EAC block.

In addition, after deploying the TC block, the performance of our model is significantly improved (+0.6%), which
reveals that it is practical to further establish long-range dependencies in the fused features. In the final experi-
ment, we replaced the EAC block in Table 4.1 with the AC block, which caused a decrease in model performance.
This echoes our previous argument that the context contains much redundant information under large-resolution
input, which will lead to unnecessary calculations and confusion. In contrast, our proposed AC block can efficiently
establish long-range awareness, and with the help of the EAC block, redundant information can be eliminated with-
out destroying local details while significantly reducing the amount of calculation. Finally, the proposed TC block can
further coordinate information fusion and establish a more significant receptive field.

4.7 Summary

In this chapter, we delve into the exploration of harnessing depth images to provide additional geometric cues under
amulti-modal framework. The aim is to enhance the perceptual abilities of semantic segmentationmodels, in which
we employ cross-attentionmechanisms to selectively focus on salient features fromonemodality while downplaying
less informative ones from another.

Specifically, we design a novel multi-modal visual data fusion method, which can efficiently integrate data from
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Table 4.4: Comparison of different fusion methods and components.
Model Fusion Context mIoU (%)

1

HCFNet

Add[117] None 63.3
2 ACM[82] None 64.1
3 SE[136] None 63.9
4 AC⋆ (Ours) None 65.2
5 AC⋆ (Ours) TC 65.8
6 AC (Ours) TC 65.1
⋆ denotes we follow Table 4.1 to configure ACand EAC blocks.

Add SE AC (ours)ACM

B2

B3

B4

B1

B5

Input

Figure 4.7: Visualization of feature maps of different fusion methods. B1-B5 refers to the output of different fusionblocks in the encoding part of Figure 4.1. Note that the sample comes from the NYUv2 test set, and all outputs areresized to a resolution of 640×480 for a best of view.
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different modalities. It also ensures that the model retains valuable local details after fusion while having a global
receptive field. Precisely, we customize a multi-modal fusion block named AC block based on the additive attention
mechanism, which assists in forming global awareness inter- and inner-modalities. Then, we propose the EAC block,
an efficient variant of the AC block, to efficiently build global attention and keep details under high-resolution input.
On the other hand, based on the transformer block, we offer a simple yet effective context fusion block called trans-
context (TC) block for further connecting the context output from the encoder. Together with the proposed well-
designed components, we present HCFNet for semantic segmentation of indoor and outdoor scenarios. Finally,
comprehensive experiments and ablation studies verify the effectiveness of our network and different components.
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Chapter 5

Channel-Patch Cross feature fusion for

RGB-T Object Detection

We have already established that complementary information from various modalities can enhance the perception
capability of a system to its environment. Chapter 3 and Chapter 4 have explored methods for fusing RGB and
Depth images, effectively incorporating spatial context and depth information to create a more holistic understand-
ing. However, some sensorsmight fail to function under adverse weather conditions. For instance, traditional visible
light sensors struggle to capture sufficient information to accurately represent the environment in low-light condi-
tions. On the other hand, thermal infrared sensing, with its consistent imaging performance full-time, is widely used
in low-light conditions, such as at night. Therefore, effectively combining thermal infrared images with RGB images
can enhance the system’s accuracy and robustness under varying lighting conditions. Nevertheless, unlike RGB-D
data fusion, where RGB acts as the primary signal and depth serves as an auxiliary, the fusion of RGB and thermal
infrared images is more flexible. Under low-light conditions, thermal infrared images contain more valuable infor-
mation, while RGB images offer more abundant background and texture details under ample illumination. Given
this context, at the core of fusion lies how to mutually rectify features across different modalities rather than merely
using one modality as a supplement to another. To this end, this chapter is devoted to designing an effective RGB-T
fusion method. While exploring the complementarity of different modalities, it also promotes the inter-calibration
of various modal features, thereby allowing the system to form a more comprehensive and nuanced interpretation
of the surrounding context.

57



58 CHAPTER 5. CHANNEL-PATCH CROSS FEATURE FUSION FOR RGB-T OBJECT DETECTION

5.1 Abstract

Data from different modalities, such as infrared and visible light images, can offer complementary information, and
integrating such information can significantly enhance the perceptual capabilities of a system to the surroundings.
Thus, multi-modal object detection has widespread applications, particularly in challenging weather conditions like
low-light scenarios. The core of multi-modal fusion lies in developing a reasonable fusion strategy, which can fully
exploit the complementary features of different modalities while preventing a significant increase in model com-
plexity. To this end, this chapter proposes a novel lightweight cross-fusion module named Channel-Patch Cross
Fusion (CPCF), which leverages Channel-wise Cross-Attention (CCA) and Patch-wise Cross-Attention (PCA) to encour-
age mutual rectification among different modalities. This process simultaneously explores commonalities across
modalities while maintaining the uniqueness of each modality. Furthermore, we design a versatile intermediate fu-
sion framework that can leverage CPCF to enhance the performance of multi-modal target detection. The proposed
method is extensively evaluated onmultiple public multi-modal datasets, namely FLIR, LLVIP, and DroneVehicle. The
experiments indicate that our method yields consistent performance gains across various benchmarks and can be
extended to different types of detectors, further demonstrating its robustness and generalizability. Our codes are
available at http://github.com/

5.2 Introduction

Object detection involves extracting items of interest from input data and locating their positions, which has a wide
range of applications in the real world, such as autonomous driving [141], security surveillance [142], and disaster
relief [143]. In recent years, numerous advanced object detection methods have emerged [63, 52, 62], demonstrat-
ing outstanding performance on various tasks with color images, i.e., RGB, as inputs [7, 64]. However, real-world
scenarios are often dynamically changing, and it is impossible to gather sufficient clues to detect all objects in a
scene merely through the color modality. For instance, the image quality captured by visible light cameras at night
typically deteriorates significantly, substantially reducing the accuracy and robustness of detection results.

On the other hand, due to the stability in imaging under different lighting conditions, thermal infrared cameras
are frequently employed in low-light situations to enhance the system’s capability to capture scene information.
More concretely, thermal images are used to provide full-time geometric characteristics of objects, such as shape
and contour, while color images provide rich texture information when light is sufficient. Therefore, an effective
fusion strategy is needed to fully exploit the complementary features among these different modalities. In this
context, several studies [144] seek to leverage different fusion strategies to explore the optimal joint representation
of RGB and thermal images, which in turn improves the model’s capability to perceive the surroundings under low-
light conditions. According to the location of fusion occurrence, multi-modal fusion can be categorized into early
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Figure 5.1: Framework of intermediate multi-modal visual data fusion.

fusion, late fusion, and intermediate fusion as discussed in chapter 2, section 2.3.
Specifically, early fusion directly concatenates multi-modal data into a unified multi-channel input, which is then

fed into a general object detection network. Conversely, late fusion independently processes data from different
modalities and integrates the outputs at the point of decision-making by an additional fusion operation. Recent
studies [145, 84] have revealed some limitations of early fusion and late fusion, such as early fusion struggles to
effectively integrate specific modality features while late fusion suffers from a lack of feature interaction between
different modalities. Therefore, between early and late fusion, intermediate fusion incrementally merges features
of different modalities through a flexible structure design, allowing the features to maintain their independence
while interacting. The typical intermediate fusion framework is illustrated in Figure 5.1, where multi-modal data is
processed through two feature extraction networks, known as backbones, to refine crucial features. Meanwhile,
the fusion module integrates multi-modal information and redistributes it back into the original data streams. Al-
though intermediate fusion presents advantages, the design of efficient fusion modules to accurately integrate di-
verse features and maintain the integrity of original data still poses a significant challenge. To this end, some works
[146, 147, 148] have attempted to dig latent relationships among different modalities through attention mecha-
nisms and achieved promising results. In addition, self-attention [108, 149] has been shown to be an effective way
for establishing long-range connections, which can effectively leverage the complementary characteristics between
different modalities by constructing associations among their contexts. Yet, the extensive computation required by
attention mechanisms significantly constrains its potential in multi-modal fusion.

We argue that at the core of fusion lies the question: "how to mutually rectify features across different modalities

rather than merely using one modality as a supplement to another?". Thereby, this chapter focuses on harnessing
self-attention to fully explore the inherent complementarity between different modalities to facilitate the efficiency
of mutual fusion and rectification. To this end, we propose a lightweight cross-attention fusion module, termed
channel-patch cross fusion (CPCF), which is composed of channel-wise cross-attention (CCA) and patch-wise cross-
attention (PCA). Specifically, we employ parametric-free operations such as average pooling and max pooling to
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model the characteristics of each modality and incorporate cross-attention to reconstruct complementary aware-
ness across different modalities in terms of channels and spatial dimensions, thus ensuring the complementarity of
different modalities while maintaining their independence. Note that the features of different modalities are com-
pressed by basic operations such as pooling, which makes the additional complexity generated by the following
cross-attention can be negligible. Consequently, it allows the module to significantly enhance the performance of
multi-modal object detection whileminimizing the impact of cross-attention on computational efficiency. To demon-
strate the efficacy of CPCF, we design a general intermediate fusion architecture, as depicted in Figure 5.2, which can
be extended to various detectors. Besides, we conduct extensive experiments on the generic multispectral dataset
named FLIR [150] and LLVIP [151] and a more challenging oriented object detection dataset called DroneVehicle
[146]. Our results demonstrate that our proposed approach can remarkably improve the performance of object
detection without significantly increasing the complexity of the model.

The contributions of this chapter are summarized as follows:
• We propose a lightweight channel-patch cross fusion (CPCF) module to construct cross-modal features in both
channel and spatial dimensions, during which the CPCFmodule leverages the properties specific to onemodal-
ity to calibrate the features of another, thus effectively modeling the complementary properties between
modalities and optimizing the representability of features in the data stream.

• We design an intermediate fusion framework based on CPCF, which can be flexibly integrated into various
object detection frameworks to efficiently exploit multi-modal cues to boost the performance of models.

• We conduct extensive experiments on different types of multi-modal datasets and obtain optimal results. Si-
multaneously, we validate the generalization ability of our method on different detectors, which further shows
its robustness and versatility.

The rest of this chapter is organized as follows: Section 5.3 reviews the existing works related to our method.
The overall framework is presented in section 5.4 with the details of channel-wise cross-attention and patch-wise
cross-attention. The experimental setup and the results are presented and discussed in section 5.5. Finally, Section
5.6 ends this paper with a conclusion and discussion.

5.3 Related Work

5.3.1 Unimodal Object Detection

Unimodal object detection typically employs RGB images as input, which can be categorized into two- and single-
stage approaches. Two-stage approaches divide object detection into two distinct phases, i.e., the regional proposal
phase and the target classification and bounding box regression phases. As a trailblazing effort, RCNN [50] leverages
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the selective search algorithm [51] to generate numerous potential regions, then employs SVM and a regressor for
classification and bounding box prediction tasks. Next, FastRCNN [11] and FasterRCNN [52] upgrade this idea within
a deep learning framework, further improving training efficiency andmodel performance. On the other hand, single-
stage object detection frameworks, represented by YOLO [54], directly predict the category and location of objects
in a single forward propagation, eliminating the need for a region proposal stage, thereby greatly enhancing the
detection speed. Especially some variants [56, 57, 60] of YOLO are gradually catching up with the two-stage detector
in terms of detection accuracy while maintaining high operating speed. Recently, YOLOX [63] has transformed the
YOLO detector into an anchor-free style, further enhancing processing speed. Meanwhile, it capitalizes on strong
data augmentation and advanced label assignment strategies for superior performance.

Moreover, in some special scenarios, such as remote sensing images, traditional axis-aligned bounding boxes
cannot accurately describe the state of objects. For this reason, oriented object detectors [65, 67] are designed
to align the bounding boxes with the orientation of the targets. These detectors rely on existing object detection
frameworks and predict the direction of bounding boxes through additional modules. For instance, S2A-Net [66]
introduces a feature alignment module and an oriented detection module for mitigating the misalignment between
oriented anchors and axis-aligned convolutional features. Then, the PSC [152] utilizes an additional phase shift
encoder to achieve an accurate prediction of the orientation.

In this work, we implement our method within different detectors and conduct extensive experiments on differ-
ent types of datasets to tackle multi-modal object detection tasks under various scenarios.

5.3.2 Multi-modal Object Detection

Multi-modal object detection, which merges various types of data to bolster the robustness and accuracy of object
detection tasks, is a vibrant research field in the computer vision community. It typically blends multi-modal data
through early fusion, late fusion, or intermediate fusion strategies. In early fusion, RGB and IR images are con-
catenated at pixel level to form a 4-channel input, and then features are extracted with a regular object detection
framework. However, early fusion forgets modality-specific properties during feature forward propagation, which
can lead to suboptimal results [72, 153]. Conversely, late fusion process each modality independently through sep-
arate models and the results are merged at the decision level [154]. For instance, ProbEn [155] utilizes the Bayesian
rule to find the optimal fusion strategy to ensemble the results of RGB and IR data streams. However, assembling
multiple detectors results in more false positive cases and slower detection speeds [148]. On the other hand, inter-
mediate fusion lies between the two, in which features from different modalities interact with each other while still
preserving their individuality [156, 146, 157, 158, 148]. For instance, GFD-SSD [156] employs two encoders to handle
RGB and thermal images and utilizes a gating unit to merge features from the intermediate layers in a single-stage
detector framework. UA-CMDet [146] proposes an uncertainty-aware module to reduce the detection bias caused
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Figure 5.2: Overview of CPCF-based Object Detection Framework.

by high-uncertainty objects. Moreover, inspired by the attention mechanism, GAFF [157] and ECISNet [158] lever-
age spatial attention to learn the adaptive weighting and fusion of different modalities. Then, BAANet [159] design
a bi-directional adaptive attention gate to recalibrate and fuse multi-modal information in both channel and spa-
tial dimensions. Recently, CMAFF [147] proposes a lightweight attention module to extract shared features across
modalities while emphasizing inter-modal differences. At the same time, CSAA [148] utilizes a channel switching
strategy in the attention module which also reduce the computational conplexity of the fusion process.

In this work, inspired by self-attention [108], we employ parameter-free operations to condense features and
calculate cross-modal attention separately from both channel and spatial dimensions, which significantly reduces
the computational load of CPCF. Besides, we leverage the learnable gating units to adaptively integrate different
attention at different levels rather than treating them equally.

5.4 Method

In this section, we propose a lightweight cross-fusion module named CPCF, which can efficiently build long-range
dependencies from onemodality to another in both channel and spatial axes. Building upon CPCF, we further design
a generalized intermediate fusion object detection framework to effectively exploit multi-modal information. In the
following, we will detail the proposed intermediate fusion framework and the associated modules.

5.4.1 Framework Overview

As shown in Figure 5.2, the overall multi-modal object detection framework is composed of two part. The first part
is a general multi-modal backbone, an intermediate fusion-based feature extractor for refining and fusing multi-
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modal information. The second part is the detection related components, which provide modules, such as skip
connections and detection heads, for different types of detectors. Basically, the multi-modal backbone originates
from prevalent single-modality backbones, such as ResNet [9] and CSPDarknet [160], which are typically composed
of several convolution stages, enabling amore efficient and comprehensive encoding of information from inputs. As
illustrated in the upper half of Figure 5.2, we employ a symmetrical structure to separately process information from
different modalities. Meanwhile, the proposed CPCF module is deployed subsequent to each convolution stage to
calculate the cross-attention across different modalities and recalibrating the features accordingly. Afterward, the
calibrated features are propagated to the components specific to the object detection tasks, as shown in the lower
right of Figure 5.2. Taking YOLOX [63] as an example, the fused features fromdifferent CPCFmodules are aggregated
via a feature pyramid module to multiple object detection heads for multi-scale prediction. In addition, for the two-
stage detector, like RCNN [50], a region proposal module is operated to receive the outputs from the last CPCF
module.

5.4.2 Multi-modal Cross-Attention

While different visual modalities carry complementary information valuable for perception tasks, they also contain
a considerable amount of redundant data and noise, factors that can potentially influence the efficiency of data
analysis and interpretation. In this context, we propose a multi-modal cross-attention mechanism that calibrates
one modality with the features of another. This structure amplifies the complementary characteristics between
modalities while diminishing redundant information, thereby fostering a more effective and integrated multi-modal
representation. Basically, the feature representation of a modality can be reflected in both channel and spatial di-
mensions. Accordingly, we create channel-wise cross-attention (CCA) and patch-wise cross-attention modules (PCA)
among differentmodalities, in which CCA is designed to establish channel relationships, and PCA is expected to build
spatial relationships during the feature extraction process. This strategic design enables cross-modality feature re-
calibration, ensuring a more cohesive and effective multi-modal data integration.

5.4.2.1 Channel-wise Cross-Attention

In a feature map, a channel is usually treated as a feature detector [106], thus channel-wise cross-attention (CCA)
is designed to highlight beneficial channels across different modalities and suppress noise-included ones. To this
purpose, CCA considers feature channels of two modalities parallelly and associates different attention weights to
different channels. The overall architecture of CCA is shwon in Figure 5.3.

Specifically, given the intermediate feature maps fRGB ∈ RC×H×W and fT ∈ RC×H×W of two modalities,
average-pooling (AP) and max-pooling (MP) are applied to compress spatial information, followed by a series of
subtraction operation to obtain the cross-modal differential signals. These are then concatenated into compact
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expressions fCRGB ∈ RC×4 and fCT ∈ RC×4, as expressed as follows:

fAPdiff = |AP(fRGB)−AP(fT )|,

fMP
diff = |MP(fRGB)−MP(fT )|,

fCRGB = Concat
(
[AP(fRGB),MP(fRGB), f

AP
diff , f

AP
diff ]

)
,

fCT = Concat
(
[AP(fT ),MP(fT ),−fAPdiff ,−fAPdiff ]

)
.

(5.1)

Inspired by traditional self-attention [108], we seek to construct long-range dependencies of each channel. Basi-
cally, the original self-attention encodes the inputs into a set of vectors, i.e., Query (Q), Key (K), and Value (V). Then, the
self-attention map is computed via a matrix multiplication QKT . After that, the output of self-attention is obtained
by another matrix multiplication between the attention map and V , which can be described as follows:

fSA = SA (Q,K, V ) = softmax

(
QKT

√
Dk

)
V. (5.2)

where 1√
DK

is a scaling factor. In this manner, the module can construct global attention across tokens.
In contrast, the compressed channel features are expressed in vector form, making them inherently compatible

with self-attention. To be specific, we regard each channel as a token and project them into vectors designated as
Q ∈ RC×1,K ∈ RC×1, and V ∈ RC×1 through a straightforward linear transformation:

Q = fCXWQ,

K = fCXWK ,

V = fCXWV ,

(5.3)

whereWQ ∈ R4×1,WK ∈ R4×1, andWV ∈ R4×1 are weight matrices of linear transformation, and the subscript X
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is either RGB or Thermal. When computing self-attention, we swap theQ vector of the twomodalities rather than di-
rectly using them for the attention calculation, thus forming cross-attention. As illustrated in the SAmodule in Figure
5.3, considering that the computational cost of self-attention is quadratic to the vector length, two linear transforma-
tions are employed to compress vectors K and V to reduce the computational burden. The cross-attention scores
SCARGB ∈ RC×1 and SCAT ∈ RC×1 can be formulated as follows:

SCARGB = SA(QT ,KRGB , VRGB),

SCAT = SA(QRGB ,KT , VT ).

(5.4)

Finally, the attention scores from different modalities are normalized to the range [0, 1] through a sigmoid func-
tion, and the channel-wise recalibrated features fRCRGB and fRCT can be described as:

fRCRGB = σ
(
SCARGB

)
⊗ fRGB ,

fRCT = σ
(
SCAT

)
⊗ fT ,

(5.5)

where σ(·) indicates the sigmoid function, and ⊗ indicates element-wise multiplication.

5.4.2.2 Patch-wise Cross-Attention

Contrary to the aforementioned CCA, which attempts to establish long-range attention across channels, patch-wise
cross-attention (PCA) aims tomodel inter-patch connections of different modalities and leverage this to calibrate the
multi-modal features across spatial. To achieve this goal, given the intermediate featuremaps fRGB ∈ RC×H×W and
fT ∈ RC×H×W and patch size h × w, we first apply patch average pooling (PAP) and patch max pooling operations
(PMP) to condense local information and reduce the spatial resolution of the features. Then, following the same
approach as described in Section 5.4.2.1, we obtain compact expressions along the spatial dimension. The procedure
can be precisely described as:

fPAPdiff = |PAP(fRGB)−PAP(fT )|,

fPMP
diff = |PMP(fRGB)−PMP(fT )|,

fCRGB = Concat
(
[PAP(fRGB),PMP(fRGB), f

PAP
diff , fPAPdiff ]

)
,

fCT = Concat
(
[PAP(fT ),PMP(fT ),−fPAPdiff ,−fPAPdiff ]

)
,

(5.6)

where fCRGB ∈ RC×N×4 and fCT ∈ RC×N×4 denote the compact RGB and Thermal features, N = hw denotes patch
numbers.

Next, we utilize two separate linear transformation blocks to encode fCRGB and fCT into their corresponding
Q ∈ RN×C , K ∈ RN×C , and V ∈ RN×C vectors. We can then compute the cross-attention scores SCARGB ∈ RN×1

and SCAT ∈ RN×1 using Equation 5.4. Finally, the patch-wise recalibrated features fRPRGB and fRPT can be formulated
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as:

fRPRGB = σ
(
UPS

(
SCARGB

))
⊗ fRGB ,

fRPT = σ
(
UPS

(
SCAT

))
⊗ fT ,

(5.7)

where UPS (·) denotes up-sampling the size of attention scores to the input resolution. The details of PCA are
depicted in Figure 5.4.

5.4.3 Channel-Patch Cross Fusion

The architecture of channel-patch cross fusion (CPCF) is shown in the lower left of Figure 5.2. In CPCF, we integrate
the proposed CCA and PCA into the fusion process, thus allowing for the effective utilization of multi-modal cues
and enhancing the representative capability of the fused features, further drawing out valuable information. How-
ever, treating channel and spatial attention equally during this process may lead to suboptimal results. The feature
extraction process is characterized by the continuous compression of spatial resolution and expansion of channel
dimensions. Throughout this process, the quantity of information across different dimensions does not remain
constant.

In response to this situation, we design an adaptive gating (AG) strategy that dynamically allocates weights to dif-
ferent attention mechanisms, which allows a more responsive and adaptive fusion. More specifically, two learnable
scaling factors, denoted as α1 and α2, are defined to dynamically adjust the weights of CCA and PCA during training.
Then, the corresponding weights s1 and s2 can be computed as:



5.5. EXPERIMENTS 67
Table 5.1: Dataset Setup.

Setup FLIR LLVIP DroneVehicle
Class Num. 3 1 5
Modality RGB&Thermal RGB&IR RGB&IR
Box Type Horizontal Box Horizontal Box Oriented Box
Img Size (original) 640× 512 1280× 1024 640× 512

Img Size (train) 640× 512 640× 512 640× 512

Epoches 13 13 36
Leraning Rate 2e-3 2e-3 2.5e-3
Batch Size 8 8 2
Train/Val/Test (pairs) 4139/1013/- 12025/-/3463 17990/1469/8980

s1 =
σ(α1/T )

σ(α1/T ) + σ(α2/T )
,

s2 =
σ(α2/T )

σ(α1/T ) + σ(α2/T )
,

(5.8)

where the σ(·) denotes the sigmoid function, T is a temperature coefficient used to smooth the scaling weights. In
short, given the input feature maps fRGB and fT and recalibrated feature maps fCRRGB , fCRT , fPRRGB , and fPRT , the
formulation of the fused feature can be summarized as:

fFuseRGB = fRGB + s1 · fCRT + s2 · fPRT ,

fFuseT = fT + s1 · fCRRGB + s2 · fPRRGB .
(5.9)

5.5 Experiments

In this section, we initially perform experiments on the general-purpose object detection benchmarks, specifically
FLIR [150] and LLVIP [151], to assess the efficacy of our proposedmethods. Subsequently, we extend our testing to a
more challenging DroneVehicle [146] dataset, which targets oriented object detection. Finally, we illustrate a series
of studies to ablate different components and analyze the effectiveness of our designs.

5.5.1 Datasets

FLIR The FLIR dataset is a benchmark extensively used for evaluating multi-modal object detection, comprising
a substantial number of paired RGB and thermal infrared images. In our experiments, we utilize the aligned-FLIR
dataset [150], wherein RGB-Thermal image pairs are correctly aligned. This dataset features 5142 RGB-Thermal im-
age pairs, spanning three object categories: ’person’, ’car’, and ’bicycle’, gathered from daytime to nighttime. Among
these, 4139 pairs are for training, while the remaining 1013 pairs are allocated for testing.
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LLVIP The LLVIP [151] is a recently introduced, large-scale dataset explicitly designed for pedestrian detection in
visible-infrared contexts. It contains 15488 image pairs, with 12,025 pairs for training and 3,463 pairs for testing. A
notable characteristic of this dataset is that a majority of the images are captured under extremely low light condi-
tions. Furthermore, all images within the dataset are stringently aligned in terms of time and space.

DroneVehicle The DroneVehicle dataset [146] is a new released multi-modal benchmark specifically designed for
oriented vehicle detection from a drone’s perspective. It encompasses five distinct vehicle categories, namely ’car’,
’truck’, ’bus’, ’van’, and ’freight car’. This dataset comprises 28,439 RGB-Infrared image pairs that capture a variety of
settings, including urban roads, residential areas, and parking lots, from day to night with a resolution of 640×512.
The dataset is composed of 17,990 image pairs for training, 1,469 for validation, and 8980 pairs reserved for testing.

5.5.2 Implementation Details

Utilizing the proposed CPCF, we design an intermediate fusion architecture that can be seamlessly integrated into
a range of object detection frameworks. For the practical implementation, we build our model based on a popular
object detection codebase MMDetection [161], and train our models on a single NVIDIA RTX3090 GPU. In all exper-
iments, we initialize the backbone networks using the weights pre-trained on COCO [7] for general-purpose object
detection. For oriented object detection tasks, the backbone networks are initialized with weights pre-trained on the
ImageNet [6]. To train the models, we employ the SGD optimizer with an initial learning rate of 2e-3 and a momen-
tum of 0.9. For data augmentation, we apply random flipping and scale the images to a resolution of 640×512. In
the case of the FLIR dataset, we additionally leverage the Mosaic data augmentation technique [63] to further enrich
the data for methods within the YOLO family. Subsequently, all models are trained in 13 epochs with a batch size of
8. For the DroneVehicle dataset, we set the batch size to 2 and train themodel for 36 epochs. The setups of different
datasets are shown in Table 5.1. For all experiments, the hyper-parameter T mentioned in Equation 5.8 is set to 1.0.

Baselines To comprehensively evaluate our method, we first implement two fusion strategies, namely Concate-
nate andMulti-level Sum (MLSum), formulti-modal data fusion. Specifically, Concatenatemeans thatwe concatenate
RGB and Thermal images along the channel dimension, exemplifying an early fusion method. While MLSum repre-
sents an intermediate fusion method, maintaining the same structure as depicted in Figure 5.2, we substitute the
CPCF with a summation operation at each stage. Furthermore, we take into account detectors that utilize either RGB
or Thermal inputs, serving as uni-modal baselines for comparison.

Note that our design pertains only to the encoding part of the model, which allows us to evaluate our method
across various detectors such as Fcos [62], YOLOX [63], and S2A-Net [66]. For each detector, we conduct experiments
based on the aforementioned baselines to assess the generalization capability of our proposals.
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5.5.3 Evaluation Metrics

In our evaluation, we adopt three standard COCOmetrics, namelymeanAverage Precision (mAP),mAP50, andmAP75,
to quantify the effectiveness of the proposed method. During this process, the Intersection over Union (IoU) is
employed as a criterion to classify positive and negative samples. More concretely, a detected instance is deemed
a positive sample only when the IoU between the predicted bounding box and the ground truth bounding box
surpasses a designated threshold, denoted as τ . Consequently, for mAP50 and mAP75, the threshold τ is set at 0.5
and 0.75, respectively. The mAP, on the other hand, is computed with the threshold τ ranging from 0.5 to 0.95 in
increments of 0.05.

5.5.4 Comparative Studies

5.5.4.1 Quantitative Results

We compare the proposed fusion methods with our baselines and other state-of-the-art methods on FLIR, LLVIP,
and DroneVehicle datasets. The experimental results on the FLIR dataset are illustrated in Table 5.2. Among them,
Fcos [62], YOLOv5 [162], and YOLOX [162] are initially designed for RGB-based object detection, while GAFF [157], CFT
[149], YOLOFusion [147], andUA-CMDet [146] aremulti-modal-based object detectionmethods. Then, we extend the
unimodal methods to multi-modal based on Concatenate and MLSum and present them as our multi-modal base-
lines, detailed in Section 5.5.2. The results show thatmulti-modal-basedmethods significantly outperformunimodal-
basedmethods, illustrating that themodel can obtain more task-relevant cues from themulti-modal inputs. In addi-
tion, our proposed CPCF achieves remarkable performance gains on different detectors, and our methods surpass
our baselines and other state-of-the-art methods by a largemargin. For example, our YOLOXCPCF outperforms RGB
and Thermal-based YOLOX by 19.3% and 5.7% onmAP50. Also, compared to our multi-modal baselines, the method
exceeds the Concatenate and MLSum-based fusion methods by 4.7% and 5.4% on mAP50, 3.6% and 3.4% on mAP
which shows the advancement and efficiency of our CPCF. Notably, in ourmulti-modal baselines, themethods based
onMLSum outperform those based on concatenation on nearly all metrics. This further illustrates that compared to
directly concatenating inputs from different modalities, using an intermediate fusion strategy is more effective in ex-
tracting multi-modal information, thereby enhancing the performance of themodel. We also observe the consistent
performance boosts of our method on other types of detectors, which reflects the effectiveness of our method as
well as its strong generalization capability. In addition, our YOLOv5CPCF and YOLOXCPCF also outperform existing
multi-modal methods.

Table 5.3 presents the results of our methods and the competing methods on the LLVIP dataset. As we can see, a
good result can be achieved even if only onemodality is used. For example, YOLOX using only thermal data achieves
a mAP of 60.6. This is due to the relatively simple nature of the dataset scenarios, which does not necessitate differ-
entiating among various categories within the detection targets. Compared to unimodal methods, it is evident that
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Table 5.2: Comparison with the state-of-the-art RGB-T fusion methods and our baselines on FLIR dataset by mAP inpercentage.
Method Backbonne Fusion Modality mAP50 mAP75 mAP Param. (M)
Fcos [62] ResNet50 - RGB 59.3 20.2 26.7 32.12
Fcos [62] ResNet50 - Thermal 69.4 28.3 33.7 32.12
YOLOv5 [162] Darknet53 - RGB 65.2 21.9 29.3 7.03
YOLOv5 [162] Darknet53 - Thermal 78.9 32.9 39.2 7.03
YOLOX [63] Darknet53 - RGB 62.8 22.2 28.9 8.94
YOLOX [63] Darknet53 - Thermal 76.4 36.3 40.2 8.94

Multi-modal methods
GAFF [157] ResNet18 GAFF RGB-T 72.9 32.9 37.5 23.75
CFT [149] CFB CFT RGB-T 78.7 35.5 40.2 206.03
YOLOFusion [147] Darknet53 CMAFF RGB-T 76.6 - 39.8 12.52
UA-CMDet [146] Darknet53 UA-CM RGB-T 78.6 - - -
CSAA [148] ResNet50 CSAA RGB-T 79.2 37.4 41.3 -

Our baselines
FcosCAT ResNet50 Concatenate RGB-T 68.0 25.5 32.1 32.13
FcosSUM ResNet50 MLSum RGB-T 70.4 28.9 34.5 55.63
YOLOv5CAT Darknet53 Concatenate RGB-T 77.0 31.5 38.1 7.03
YOLOv5SUM Darknet53 MLSum RGB-T 79.2 34.6 40.2 11.2
YOLOXCAT Darknet53 Concatenate RGB-T 77.4 36.9 41.0 8.94
YOLOXSUM Darknet53 MLSum RGB-T 76.7 37.7 41.2 13.15

Our implementation with CPCF
FcosCPCF ResNet50 CPCF RGB-T 73.4 32.0 37.0 61.28
YOLOV5CPCF Darknet53 CPCF RGB-T 81.6 37.0 41.8 12.67
YOLOXCPCF Darknet53 CPCF RGB-T 82.1 41.2 44.6 14.61
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Table 5.3: Comparison with the state-of-the-art RGB-T fusion methods and our baselines on LLVIP dataset by mAPin percentage.
Method Backbonne Fusion Modality mAP50 mAP75 mAP
Fcos [62] ResNet50 - RGB 86.8 45.2 46.5
Fcos [62] ResNet50 - Thermal 94.2 62.1 57.4
YOLOv5 [162] Darknet53 - RGB 88.0 47.8 48.0
YOLOv5 [162] Darknet53 - Thermal 94.7 62.4 58.2
YOLOX [63] Darknet53 - RGB 89.3 48.3 48.6
YOLOX [63] Darknet53 - Thermal 94.4 67.3 60.6

Multi-modal methods
ECISNet [158] ResNet50 ECIS RGB-T 95.7 - -
UA-CMDet [146] Darknet53 UA-CM RGB-T 96.3 - -
CSAA [148] ResNet50 CSAA RGB-T 94.3 66.6 59.2
CFT [149] CFB CFT RGB-T 97.5 72.9 63.6

Our baselines
FcosCAT ResNet50 Concatenate RGB-T 94.5 61.6 57.9
FcosSUM ResNet50 MLSum RGB-T 95.1 64.8 58.5
YOLOv5CAT Darknet53 Concatenate RGB-T 95.1 62.7 58.2
YOLOv5SUM Darknet53 MLSum RGB-T 95.6 65.8 59.4
YOLOXCAT Darknet53 Concatenate RGB-T 93.4 65.8 58.1
YOLOXSUM Darknet53 MLSum RGB-T 93.4 69.0 61.0

Our implementation with CPCF
FcosCPCF ResNet50 CPCF RGB-T 96.0 69.5 60.6
YOLOv5CPCF Darknet53 CPCF RGB-T 96.1 70.1 62.0
YOLOXCPCF Darknet53 CPCF RGB-T 96.4 75.4 65.0
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Table 5.4: Comparison with the state-of-the-art RGB-T fusion methods and our baselines on DroneVehicle datasetby mAP in percentage.
Method Modality Fusion mAP50 mAP75 mAP
FasterRCNN [52] RGB - 63.0 28.6 31.4
FasterRCNN [52] Thermal - 71.9 49.6 43.6
RetinaNet [163] RGB - 58.0 26.9 29.5
RetinaNet [163] Thermal - 66.6 48.2 41.4
S2A-Net [66] RGB - 64.1 29.4 32.3
S2A-Net [66] Thermal - 74.4 52.5 45.9
PSC [152] RGB - 66.9 32.0 33.8
PSC [152] Thermal - 75.3 54.8 46.9

Multi-modal methods
UA-CMDet [146] RGB-T UA-CM 63.3 - -
ECISNet [158] RGB-T ECIS 76.0 - -

Our baselines
FasterRCNNCAT RGB-T Concatenate 74.1 49.5 44.4
FasterRCNNSUM RGB-T MLSum 74.7 52.0 45.7
RetinaNetCAT RGB-T Concatenate 69.7 49.3 43.1
RetinaNetSUM RGB-T MLSum 70.1 51.0 43.8
S2A-NetCAT RGB-T Concatenate 75.7 53.2 46.6
S2A-NetSUM RGB-T MLSum 76.1 55.8 47.8
PSCCAT RGB-T Concatenate 75.6 55.4 47.2
PSCSUM RGB-T MLSum 77.3 58.0 48.8

Our implementation with CPCF
FasterRCNNCPCF RGB-T CPCF 76.1 52.8 46.6
RetinaNetCPCF RGB-T CPCF 72.9 53.01 45.7
PSCCPCF RGB-T CPCF 77.8 58.1 49.4
S2A-NetCPCF RGB-T CPCF 79.2 57.9 49.7

multi-modal methods significantly improve the regression accuracy of bounding boxes. For instance, our YOLOX-
CPCF shows a marked increase on the mAP75 metric, improving by 26.6% over YOLOX (RGB) and 7.6% over YOLOX
(Thermal). Moreover, our methods achieve superior performance than our baselines and other existing methods.
In addition, we obtain a consistent performance improvement even with other types of detectors.

Different from FLIR and LLVIP datasets, DroneVehicle is a more challenging large-scale dataset targeting ori-
ented object detection in low-light conditions. We compare our methods with the state-of-the-art oriented object
detectors on the DroneVehicle dataset and report the experimental results in Table 5.4. Specifically, we modify our
detection heads to support detection with orientation for general-purpose object detectors, such as FasterRCNN
[52] and RetinaNet [163]. Moreover, we modify their feature extraction architectures for state-of-the-art oriented
object detection methods, such as S2A-Net [66] and PSC [152], to accommodate multi-modal inputs. It can be seen
that the multi-modal-based methods are considerably better than the unimodal-based methods. For instance, our
S2A-NetCPCF demonstrates a significant improvement overmethods based on RGB and thermal images, with perfor-
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mance increases of 12.3% and 3.9%, respectively. In addition, our multi-modal baselines achieve competitive results
compared to existing multi-modal-based state-of-the-art methods, and themodel results are further enhanced with
the benefit of our proposed CPCF strategy. All the experiments conducted on this dataset validate the versatility of
our approach across different types of detectors and its generalizability in various scenarios.

5.5.4.2 Qualitative Results

In Figure 5.5, we compare the detection results of our proposed CPCF with different baselines on the FLIR validation
set. In the experiment, we use YOLOX [63] as the base detector to generate single-modality detection results, i.e.,
RGB-Only and Thermal-Only. Then, for multi-modal fusion, we generated detection results based on Concatenate
and MLSum, refer to Section 5.5.2. As shown in the second and third rows of the figure, the RGB images provide
rich texture information under clear weather conditions, while thermal images offer more object clues under low-
light conditions. It can be seen that the results generated utilizing RGB images are superior to those generated
by thermal images under clear weather conditions, which could be attributed to the lack of texture information in
thermal images making it difficult to distinguish different individuals in dense objects. This phenomenon is reversed
under low-light conditions, illustrating the complementarity between RGB and thermal images. On the other hand,
multi-modalmethods attempt to leverage this complementarity. As can be seen from the fourth andfifth rows,multi-
modal methods clearly outperform unimodal ones. More specifically, a simple concatenation of RGB and thermal
images at the input stage can combine information from different modalities to a certain extent, but it falls short
when it comes to detecting targets that are unclear in appearance or partially obscured. The use of intermediate
fusion strategies can alleviate this issue, but still struggles to handle complex scenarios. CPCF, by employing channel
and spatially correlated attention during the intermediate fusion process, effectively utilizes clues from different
modalities, achieving the best detection results, as shown in the last row.

Figure 5.6 illustrates the detection results on the DroneVehicle validation set. We use S2A-Net [66] as our foun-
dational oriented object detection framework. On the other hand, although our multi-modal baseline improves
detection results, it still falls short in detecting obscured or densely clustered objects. For instance, the baseline
methods lose the obscured vehicle in the first column scenario and fail to identify the densely packed objects in the
upper right corner of the scene in the last column. In contrast, our proposed method demonstrates stable results
under these scenarios, further attesting to the effectiveness of our approach.

5.5.4.3 Ablation Study

In this section, we conduct ablation experiments on the FLIR dataset for a detailed analysis of our designs. The
CPCF consists of three modules: channel-wise cross-attention (CCA), patch-wise cross-attention (PCA), and adaptive
gating (AG) module. As presented in Table 5.6, we use YOLOX as a case study and progressively incorporate these
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Figure 5.5: Qualitative comparison of four baselines and our proposedmethod on FLIR validation set. Only boundingboxes with a confidence greater than 0.7 are displayed.
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Figure 5.6: Qualitative comparison of four baselines and our proposedmethod on DroneVehicle validation set. Onlybounding boxes with a confidence greater than 0.7 are displayed.
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Table 5.5: Comparision of model parameters and flops and fps.
Detector Modality Param. (M)↓ FLOPs (G)↓ Runtime (ms)↓
YOLOv5 RGB/T 7.03 (-4.17) 6.35 (-4.17) 20.3 (-3.2)
YOLOv5SUM RGB-T 11.20 (±0.0) 10.52 (±0.0) 23.5 (±0.0)
YOLOv5CCA RGB-T 11.26 (+0.06) 10.53 (+0.01) 27.1 (+3.6)
YOLOv5PCA RGB-T 12.60 (+1.40) 10.60 (+0.08) 29.1 (+5.6)
YOLOv5CPCF RGB-T 12.66 (+1.46) 10.61 (+0.09) 35.1 (+11.6)
YOLOX RGB/T 8.94 (-4.21) 10.66 (-4.38) 11.6 (-4.3)
YOLOXSUM RGB-T 13.15 (±0.0) 15.04 (±0.0) 15.9 (±0.0)
YOLOXCCA RGB-T 13.22 (+0.07) 15.05 (+0.01) 18.9 (+3.0)
YOLOXPCA RGB-T 14.55 (+1.40) 15.12 (+0.08) 21.5 (+5.6)
YOLOXCPCF RGB-T 14.61 (+1.46) 15.13 (+0.09) 26.7 (+10.8)

Table 5.6: Ablation study of the components of our CPCF on FLIR dataset. • and ◦ indicate activated and inactivatedcomponents, respectively.
Method CCA PCA AG mAP50 mAP75 mAP
YOLOXSUM ◦ ◦ ◦ 76.7 37.7 41.2
YOLOXCCA • ◦ ◦ 80.7 (+4.0) 38.6 (+0.9) 43.0 (+1.8)
YOLOXPCA ◦ • ◦ 80.8 (+4.1) 39.8 (+2.1) 43.1 (+1.9)
YOLOXCPCF • • ◦ 81.1 (+4.4) 39.9 (+2.2) 43.4 (+2.2)
YOLOXCPCF • • • 82.1 (+5.4) 41.2 (+3.5) 44.6 (+3.4)

modules into the model to investigate their individual contributions to the overall performance. Specifically, we em-
ploy YOLOXSUM as our multi-modal baseline for a fair comparison, as shown in the first row of the table. We then
replace the summation operation in YOLOXSUM with CCA and PCA respectively. The results from the second and
third rows show that the model’s performance in terms of mAP improved by 1.8% and 1.9% with the application
of CCA and PCA, respectively. Finally, to illustrate the role of AG, we conduct experiments using fixed weights of
0.5 and dynamic weights with AG and obtain performance boosts of 2.2% and 3.4%, respectively, as shown in the
last two rows of the table. The results reveal that compared to manually setting fixed weights, employing AG can
greatly enhance the model’s performance. This further suggests that different weights should be assigned to dif-
ferent attention mechanisms at various stages of the model to adapt to the changes in information volume in the
channel and spatial dimensions. Therefore, we conclude that the introduction of CCA and PCA can provide more
efficient feature extraction capabilities for intermediate fusion from both channel and spatial dimensions, thereby
enhancing model performance. Moreover, the dynamic weight allocation mechanism of AG can further optimize fu-
sion efficiency according to changes of information in channel and spatial dimensions, thereby dealing with complex
multi-modal data more effectively.
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Table 5.7: Comparison of MLP-based cross-attention and our self-attetnion-based cross-attention on FILR, LLVIP,and DroneVehicle datasets.

Method Dataset Cross Attention mAP50 mAP75 mAP Param. (M)

YOLOXCPCF FLIR MLP-Based 79.7 38.9 42.3 6.50
Ours 82.1 41.2 44.6 1.03

YOLOXCPCF LLVIP MLP-Based 94.8 71.7 62.8 6.50
Ours 96.4 75.4 65.0 1.03

S2A-NetCPCF DroneVehicle MLP-Based 78.0 57.1 48.8 6.50
Ours 79.2 57.9 49.7 1.03
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Figure 5.7: Comparison of information entropy distributions of top and bottom 16 channels of RGB and Thermalfeature maps at different levels. † denotes MLP-based cross-attention.
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Figure 5.9: Comparison of spatial attentions of RGB and Thermal feature maps at different levels. † denotes MLP-based cross-attention.

5.5.5 Attention Analysis

To further illustrate the effectiveness of the proposed cross-attention mechanism, we employ MLP-based channel
and spatial attention to replace our CCA and PCA modules. Notably, the MLP, which projects concatenated feature
maps into 1-D attention maps [106], is widely used in various attention mechanisms, such as [147, 158]. As shown in
Table 5.7, our proposed self-attention-based CCA and PCA significantly outperform the MLP-based attention mech-
anisms on different datasets. Moreover, we also quantify the parameters of a single standalone cross-attention
module, which takes a feature map of size 128 × 168 with 512 channels as input. As shown in the last column of
the table, compared to the MLP-based cross-attention, our method saves approximately 85% of the parameters,
proving its higher efficiency.

In Figure 5.7, we compare the information entropy of different feature channels at different stages depicted in
Figure 5.1. Specifically, we first rank the channels in the feature map according to the channel attention scores, and
then calculate the information entropy of the top 16 feature channels and the bottom 16 feature channels, termed
top_k and bottom_k, respectively. In the figure, the green distribution describes the information entropy of top_k,
while the gray corresponds to bottom_k. We observe that, in the MLP-based channel attention, the information
entropy distribution of top_k and bottom_k is strikingly similar. This suggests that the amount of information in top_k
and bottom_k is consistent. Therefore, when the attention score of bottom_k is very low, many channels containing
valuable information might be suppressed. Our method, on the other hand, concentrates valuable information into
a subset of channels and better recognizes these channels with the CCA module, thereby suppressing redundant
information while allocating more attention to channels with more information. Besides, it is evident that top_k
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always contains more information. Particularly in the final stage, as illustrated in the column of L5, the discrepancy
between the information distribution of top_k and bottom_k in high-level semantic featuremaps is further amplified,
demonstrating the effectiveness of our CCA in channel awareness. More details can be seen in Figure 5.8.

Additionally, Figure 5.9 demonstrates the spatial attention maps in different cross-attention mechanisms. It is
noticeable that, compared to MLP-based spatial attention, our PCA pays more attention to the areas of interest, and
the attentions of different modalities complement each other to a certain extent, which indicates that our method
is able to utilize the complementarity between modalities more efficiently while forming spatial awareness.

5.5.6 Speed and Parameter Analysis

To further assess the practicality of our proposed fusion method, we choose the widely used single-stage detectors
YOLOv5 and YOLOX as benchmarks and conduct tests to measure the execution speed of our method. In Table
5.5, we report the total number of learnable parameters, the number of floating-point operations (FLOPs), and the
runtime. All models in the experiments are implemented based on MMDetection [161], and running on a laptop
equipped with an RTX2080 GPU. It can be observed that multi-modal methods show a decrease in speed compared
to unimodal methods. For instance, the runtime of YOLOv5SUM and YOLOXSUM increased by approximately 3ms
compared to the single-modality counterparts. This is due to the fact that intermediate fusion introduces addi-
tional feature extraction branches, leading to an increase in computational complexity. Additionally, the use of our
lightweight fusion module results in a minor increase in runtime. Specifically, CCA adds approximately 3ms, while
PCA contributes an extra 5ms. When combining both CCA and PCA, i.e., our CPCF, the runtime increases by around
10ms. Furthermore, compared to our multi-modal baseline, our fusion strategy adds virtually no extra parameters
or floating-point operations. In addition, in the last row of Table 5.2, we list the number of parameters for different
models. It is evident that our method manages to achieve state-of-the-art performance while ensuring the model
remains lightweight.

5.6 Summary

In this Chapter, we present a lightweight multi-modal cross-fusion method termed CPCF for visible-infrared object
detection, which consists of channel-wise cross-attention (CCA), patch-wise cross-attention (PCA), and an adaptive
gating (GA) module. The CCA and PCA are designed to refine valuable cues from the channel and spatial dimensions,
respectively, and operate the features of one modality to calibrate another, thereby better integrating the informa-
tion of different modalities. Moreover, we argue that the useful multi-modal information contained within channel
and spatial dimensions can vary during the forward propagation process. To account for this, we design the AGmod-
ule to adaptively adjust the attention weights in the channel and spatial dimensions. Subsequently, based on the
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CPCF, we design a universal intermediate fusion architecture that allows for extension to various types of detectors,
facilitating the harnessing of multi-modal information to enhance the model’s performance. Finally, we conduct ex-
tensive experiments with various object detection frameworks on standard and oriented object detection datasets.
The results demonstrate that our method is able to effectively capture information from different modalities and
consistently outperform other advanced multi-modal methods. Additionally, thanks to its lightweight design, our
method can be incorporated into lightweight object detection models, enabling real-time object detection.



Chapter 6

Multi-modal Unsupervised Domain

Adaptation

In the preceding chapters, we have thoroughly explored the performance of deep perceptualmodels based onmulti-
modal visual fusion in the context of semantic segmentation and object detection tasks. However, in real-world
applications, it is often challenging to fully exploit the available data, especially the unlabeled ones, due to the lack
of sufficient annotated data to support fully supervised learning. Hence, in this chapter, we shift our focus toward a
more challenging scenario, where there is no labeled data on the target dataset, and explore how to train amodel on
it. In Chapter 2, we conducted a review of unsupervised learning methods based on domain adaptation techniques
and observed that such practices could effectively leverage the supervisory signals provided by the related domains
to establish valuable decision priors for the target domain. In this context, this chapter mainly investigates how to
leverage multi-modal information to facilitate the model in learning domain-independent feature representations
in the domain adaptation process, and to increase the inter-classes distance in the semantic feature space while
closing the gap between domains. In addition, given that a simulator can generate an arbitrary amount of accurately
labeled data, this chapter regards the synthetic dataset with its precise labels as the source domain. Conversely, the
real-world dataset without labels is considered the target domain.

6.1 Abstract

Wepropose a novelmulti-modal-basedUnsupervisedDomain Adaptation (UDA)method for semantic segmentation.
Recently, depth has proven to be a relevent property for providing geometric cues to enhance the RGB representa-
tion. However, existing UDA methods solely process RGB images or additionally cultivate depth-awareness with an
auxiliary depth estimation task. We argue that geometric cues that are crucial to semantic segmentation, such as

81
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local shape and relative position, are challenging to recover from an auxiliary depth estimation task with mere color
(RGB) information. In this paper, we propose a novel multi-modal UDAmethod namedMMADT, which relies on both
RGB and depth images as input. In particular, we design a Depth Fusion Block (DFB) to recalibrate depth information
and leverage Depth Adversarial Training (DAT) to bridge the depth discrepancy between the source and target do-
main. Besides, we propose a self-supervised multi-modal depth estimation assistant network named Geo-Assistant
(GA) to align the feature space of RGB and depth and shape the sensitivity of our MMADT to depth information.
We experimentally observed significant performance improvement in multiple synthetic to real adaptation bench-
marks, i.e., SYNTHIA-to-Cityscapes, GTA5-to-Cityscapes and SELMA-to-Cityscapes. Additionally, ourmulti-modal UDA
scheme is easy to port to other UDA methods with a consistent performance boost.

6.2 Introduction

Semantic segmentation is a fundamental task in computer vision which aims to assign a label to each pixel in an
image. The past few years have witnessed a significant progress of fully supervised approaches because of the
advent of advanced deep networks, e.g.,[164] and large-scale, well-annotated datasets, e.g., [31]. However, the
performance of these methods in real world scenarios highly depends on the similarity of the test scene to the
training images, which is improper in practical applications. Besides, collecting enough images with fine-grained
annotations is hugely labor-intensive, e.g., building a single densely annotated image in the Cityscapes dataset [31]
takes around 1.5 hours. The common practice to circumvent such problems is to fit a model on readily-accessible
synthetic data with annotations, then adapt it to the target-specific data, referred to as domain adaptation.

Unsupervised domain adaptation (UDA) strives to optimize a model under the supervision of the source domain
while obtaining the lowest prediction error on the target domain, in which no annotated data is available. In recent
years, thanks to adversarial training and self-training strategies, UDA has made considerable progress. Inspired by
multi-task learning (MTL) [165], several works have turned to consider the use of auxiliary tasks to assist adaptation.
Typically, the depth image is employed as privileged information to train an auxiliary task of depth estimation [166],
as depth information is easy-to-access and tightly coupled with semantic information. Consequently, leveraging
depth information is shown to be an effective way to address the UDA challenge. Yet, previous depth awaremethods
define depth under the MTL paradigm, i.e., learning and inferring depth hints from color images with the usage of a
depth estimation auxiliary task. We argue that depth clues that complement colors are hard to deduce from color
images alone, thus existing methods fail to capture valid geometric information.

Multi-modal learning (MML) refers to combining the related information of different modalities to improve the
model’s representation. For multi-modal semantic segmentation, RGB-D data are commonly used to explore com-
plementary cues of color and geometry and has achieved superior results than RGB-only data . Thus, it is of practical
value to investigate the use of additionalmodalities to lift theUDAmethod under theMMLparadigm. However, exist-
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Figure 6.1: Multi-Modal UDA input data. The upper part shows general UDA training and testing input. The lowerpart shows our multi-modal UDA training and testing input.

ingUDA-based semantic segmentationmodels process RGB images solely and adaptations under theMMLparadigm
are still underestimated. To this end, this work focuses on improving the adaptive capability with multi-modal visual
data. Practically, our UDA scheme relies on both RGB and depth images as input, as illustrated in Figure 6.1. We view
the depth image from the source and target domain as an additional modality and explore valuable geometric cues
directly from the raw depth to guide and constrain the adaptation process. In addition, as the raw depth of the target
domain is captured with considerable noise and has a different depth range from the source domain, introducing
depth input will carry a vast discrepancy in depth images of different domains, as shown in Figure 6.1, which further
exacerbates domain shift. To address this problem, we propose to bridge such discrepancy in three ways: 1) We
design an efficient Depth Fusion Block (DFB) to recalibrate the input depth and align it with the RGB features. 2) We
explicitly align the feature distribution of depth by Depth Adversarial Training (DAT). 3) We present a self-supervised
multi-modal depth estimation assistant network named Geo-Assistant (GA) to transfer the geometric attention to
our UDA model. Concretely, we design a data augmentation strategy named Complementary Random Cutout (CRC)
for training GA, which is then used to align RGB and depth features and improve the sensitivity of our UDA models
to depth information. Equipped with these designs, we propose a novel multi-modal UDA training scheme and a
multi-modal UDAmodel namedMMADT. To the best of our knowledge, this is the first work to focus onmulti-modal
UDA for semantic segmentation tasks.

In addition, with its elegant design, our MMADT is capable of being well aware of the geometric clues and binding
them to the RGB features, thus decreasing the domain shift existing in both modalities. As a result, our method sig-
nificantly improves adaptation performance and performs favorably against RGB-only based methods on SYNTHIA-
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to-Cityscapes, GTA5-to-Cityscapes, and SELMA-to-Cityscapes UDA settings. Our contributions can be summarized as
follows:

• We offer amulti-modal UDAmethod for semantic segmentation and train amulti-modal UDAmodel (MMADT),
which takes both RGB and depth images as input to improve the performance of the UDA network.

• We propose Depth Fusion Block (DFB) and Depth Adversarial Training (DAT) to bridge the discrepancy of depth
between the source and target domain while fusing depth cues into RGB features.

• We propose a Complementary Random Cutout (CRC) data augmentation method tailored for self-supervised
multi-modal Geo-Assistant (GA), which can help align features and learn complementary information from
different modalities.

This paper is organized as follows. Section 6.3 reviews the existing works related to our method. The overall
framework is presented in section 6.4 with the details of DFB, DAT and GA. The experimental set up and the results
are presented and discussed in section 6.5. Finally, Section 6.7 ends this paper with conclusion and discussion.

6.3 Related Works

6.3.1 UDA-based semantic segmentation

Unsupervised semantic segmentation can be seen as a branch of the UDA problem, which aims at pixel-wise classifi-
cation in the UDA setting. Generally, UDA-based segmentation methods can be categorized into adversarial training
and self-training. Adversarial training aims to align the domain distribution by optimizing a discriminator to grow the
domain confusion, which can be performed in several ways. Hoffman et al. [167] studied to align domains at the fea-
ture level, which is the first work to pay attention to urban scene UDA semantic segmentation. Then, Vu et al. [168]
investigated boosting the performance at the output or patch level. Rui et al. [169] proposed to transfer the domain
appearance style from the source to the target via image translation to increase domain confusion. Dayan et al.
[170] introduced multi-scale consistency regularization to improve the stability of model predictions. On the other
hand, self-training seeks to optimize the UDAmodel by considering pseudo-labels of the target domain. As a pioneer
work, Zou et al. [171] recursively refined the pseudo-labels by solving class imbalance and introducing spatial priors.
Then, Zheng et al. [172] picked high confidence predictions to improve the accuracy of pseudo-labels, while Zou et
al. [173] further applied model regularization to mitigate the impact induced by incorrect pseudo-labels. Moreover,
Wilhelm et al. [174] mixed images from two domains according to their corresponding labels and pseudo-labels to
stabilize the training procedure.

Due to the high correlation between geometric and semantic information, some recent work advocates implicitly
learning geometry-related information through auxiliary tasks. Lee et al. [166] proposed a method named SPIGAN
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that treated depth as the privileged information and defines an auxiliary task for depth estimation, which was jointly
optimized with the segmentation task. Moreover, Chen et al. [100] considered depth estimation as an auxiliary
task while training the style transfer network with the help of depth information at the input level. The method
named DADA [19] further integrated the predicted depth into the segmentation network at the output level and
leveraged adversarial training to bridge the performance gap. Wang et al. [18] proposed CorDA which considers
depth information of both source and target domain, in which the depth of target domain was prepared off-line by
an off-the-shelf approach. Unlike existing depth-awaremethods, our MMADT takes both RGB and raw depth images
as input in both the training and testing phases and is optimized in a multi-modal learning manner rather than a
multi-task learning manner.

6.3.2 RGB-D semantic segmentation

RGB-D semantic segmentation refers to the use of RGB and depth images as multi-modal input and optimize a
semantic segmentation task by leveraging the privileged information of different modalities. Basically, according to
the stages of multi-modal information fusion, the RGB-D semantic segmentation methods can be divided into three
groups: early fusion, intermediate fusion, and late fusion methods [14]. In particular, the early fusion practices try
to combine RGB and depth information at the input level. For example, Xing et al. [175] took the concatenated
RGB-D as an input and re-customize the convolution operation to efficiently extract semantically relevant geometric
clues from the input. The intermediate fusion strategies tend to encode geometric features through a depth feature
extractor and integrate multi-modal information at the feature level. Seichter et al. [176] fused the features at
multiple encoding stages and utilizes factorized convolutions to create a lightweight model for real-time operations.
Zhou et al. [177] proposed to find better interaction patterns for RGB and depth information through customized
attention mechanisms. Finally, late fusion approaches feed RGB and depth into two parallel networks and merge
the information at the output level. Valada et al. [76] proposed deep expert fusion techniques to fuse multiple
decision information in the output stage, while Cheng et al. [73] leveraged gated fusion layer to estimate the weight
of multiple experts on decisions.

Empirically, fusing features at the intermediate level allows both flexible control of the fusion process and compu-
tational reduction of forward-pass [14]. Accordingly, our method combines the information of different modalities
at the feature level.

6.3.3 Self-supervised learning

Self-supervised learning (SSL) aims to learn a generalized and semantically meaningful representation with the guid-
ance of the data itself. An intuition behind SSL is to artificially define a pretext task and supervise the model by the
pretext-related ground truth. In recent years, a wide range of pretext tasks have been investigated, such as image
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inpainting [178]. Another intuition is to learn consistent representations from distorted input [179]. For example,
contrastive learning approach [180] optimized a useful embedding space in which similar sample pairs stay close
while dissimilar ones are far apart. Further, Zhu et al. [181] introduced contrastive learning into the episode training
process to learn category-independent discriminative patterns and stable feature representations. And recently, Liu
et al. [182] proposed to learn better transferable visual representation by regarding image rotation prediction as
an auxiliary task. In this work, we consider the depth estimation as a pretext task and design a multi-modal data
augmentation method to encourage our model to explicitly capture intricate dependencies of RGB-D data.

6.3.4 Knowledge transfer

Knowledge transfer refers to passing knowledge from a complex teacher pretrained on the same or a similar task to
a simpler student. Hinton et al. [183] proposed to learn the consistency of output distributions through soft-target.
Heo et al. [184] tried to construct a deeper expert and then distilled knowledge to a smaller student by mimicking
the intermediate features. Zhang et al. [185] allowed an ensemble of students to learn simultaneously and teach
each other throughout the learning procedure. Motivated by attention transfer, we propose a multi-modal network
namedGeo-Assistant (GA) to efficiently align information of RGBanddepth images and integrate color and geometric
features. In addition, the GA uses the same encoder architecture as the student network to facilitate the transfer of
geometric attention.

6.4 Methodology

In this work, we aim to train a multi-modal semantic segmentation model by leveraging diverse clues of RGB and
depth under the UDA setup. To this end, we define the synthetic data as the source domain XS ∈ S and the
real-world data as the target domain X T ∈ T , where the source and target domain share the same label space.
In the following, Section 6.4.1 illustrates the overview of the proposed multi-modal UDA scheme and details the
Depth Fusion Block (DFB) and Depth Adversarial Training (DAT) components. Then, we present the Complementary
Random Cutout (CRC) data augmentationmethod and self-supervised Geo-Assistant (GA) in Section 6.4.2. In Section
6.4.3, we combine all components and describe our MMADT training protocol.

6.4.1 Multi-modal UDA Overview

Previous UDAmethods take a single modality as input, i.e., RGB image, or consider auxiliary modality, such as depth,
only at the training stage. In multi-modal UDA setup, we consider depth as an extra modality in both source and
target domains, which is always available during training and testing. Formally, given the source dataset XS =

{xSrgb, xSd }
NS
i=1 and one-hot labels YS = {yS}NS

i=1, we aim to optimize a function to minimize the prediction error on
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Figure 6.2: Overview of multi-modal UDA scheme. In the top part, we illustrate the self-supervised Geo-Assistanttraining scheme. In the lower part, we detail the UDA training scheme. Note that both of them take multi-modal,i.e., RGB and depth, as input.

the target dataset X T = {xTrgb, xTd }
NT
i=1 where ground truth labels YT are not accessible. To do so, we propose a

novel multi-modal UDA training scheme that can benefit from three designs, namely DFB, DAT, and GA, as shown in
the lower part in Figure 6.2. Note that our UDA scheme takes both RGB and depth as input.

6.4.1.1 Self-training for UDA

Given a semantic segmentation network U parameterized by θU , our UDA training scheme follows the self-training
protocol. Naively, we first optimize U with cross-entropy loss on the source domain:

min
θU
LSseg(U) = E(xS

rgb,x
S
d ,y

S)∼(XS ,YS)H[U(xSrgb, x
S
d |θU ), yS ], (6.1)

where H(·, ·) refers to cross entropy loss, U(·, ·) ∈ R(C,H,W ) indicates the output of network U, C is the number
of semantic classes, H and W are the height and width of input images. Then, in order to adapt the knowledge
from the source to the target domain, a network, called Teacher-Net, parameterized by θMT is defined to generate
pseudo-labels YT ∈ R(C,H,W ) of the target domain:
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ỹT (c,i,j) = [c = argmax
c′

U(xTrgb, x
T
d |θMT )

(c′,i,j)],

min
θU
LTseg(U) = E(xT

rgb,x
T
d )∼XTH[U(xTrgb, x

T
d |θU ), ỹT ],

(6.2)

where the label of each pixel is a discrete one-hot vector and the Teacher-Net is a twin of network U . Thus, the
output of Teacher-Net can be described as U(xTrgb, x

T
d |θMT ). At training step t, the parameters of Teacher-Net (θMT )

are successively updated by the exponential moving average (EMA) [186] of θU :

θMTt = ηθMTt−1 + (1− η)θUt−1 , (6.3)
where η is a hyper-parameter to smooth the update process, which we set to η = 0.999. In addition, we adopt
ClassMix [187], color jitter, and Gaussian blur as data augmentation during the self-training phase as in [174, 18] to
stabilize the training procedure.

6.4.1.2 Depth Fusion Block

To elicit the geometric clues, DFB takes depth as input. As illustrated in Figure 6.2, DFB consists of a depth stream
and a RGB stream. For the depth stream, the depth input xd is first encoded by the convolutional operators. Then,
the extracted depth features are fed into an attention block to disentangle semantic-meaningful information from
noisy features in a process which is called calibration. Following, the calibrated depth features are merged with
features from the RGB branch by an element-wise sum. The RGB stream adopts a symmetrical structure with the
depth stream, without the attention block. The whole process can be formulated as:

Fd = fs(xd|θϕ),

Frgb = fs(xrgb|θψ),

Ffuse = Frgb ⊕ Fd,

(6.4)

where fs(·) denotes a sub-network containing part modules of the network U , {θϕ, θψ} ∈ θU stand for the parame-
ters of the depth stream and RGB stream, respectively. The fusion process of RGB and depth is simple yet efficient,
thus avoiding the notable increase in the running burden of the network due to the additional depth branch.

6.4.1.3 Depth Adversarial Training Scheme

DAT is designed to align the distributions of xSd and xTd . To do so, a discriminatorD and an adversarial loss Ladv are
defined. Formally, given a depth input xd, we feed-forward the output of the depth stream (parameterized by θϕ) as
input and train the discriminator to make xSd and xTd distinguishable (source vs. target).
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min
θD
Lcls(D) = ExS

d∼XS [logD(fs(x
S
d |θϕa))]

+ ExT
d ∼XT [log(1−D(fs(x

T
d |θϕa)))],

(6.5)

where θϕa
∈ θϕ is the parameters before the attention block in the depth stream. Then θϕa

is updated following the
adversarial optimization process to fool the discriminator, which can be summarized as a min-max criterion:

min
θϕa

max
θD
Ladv(XS ,X T , D, fs) = ExT

d ∼XT [log(D(fs(x
T
d |θϕa)))]. (6.6)

Once the depth features are aligned, the discriminator would no longer be able to distinguish whether the input
depth image comes form the source or the target domain. In this way, the distributions of depth features yielded
by the depth stream from the source and target domains are brought closer together. In addition, DAT can be
seamlessly integrated into the self-training process to enable end-to-end training of the entire network.

6.4.2 Self-Supervised Multi-Modal Geo-Assistant

For self-supervised learning, we consider depth estimation as a proxy task. Ideally, we expect a network to be able to
perceive geometric cues from input data and bemore concerned with relative relationships of objects than absolute
depth value. Thus, instead of estimating the real depth value, we normalize the depth value into the range of [0, 1],
which also attenuates the depth bias of different domains.

6.4.2.1 Complementary Random Cutout (CRC)

The main motivation of CRC comes from the fact that color and depth information are complementary, e.g., the
geometric cues of depth information can be seen as additional hints to extract semantic boundaries from the fine-
grained color information. Thereby, we propose the CRC data augmentation strategy for training self-supervised
multi-modal GA. Specifically, CRC first divides RGB and depth images into regular non-overlapping patches. Then,
we define two complementary masks,Mrgb andMd, to ensure only one modality can be seen for each patch during
training, as shown in the CRC part of Figure 6.2. Note that themask areas are randomly selected along the patch, and
the sampling strategy is straightforward: we perform non-repeated sampling according to a uniform distribution. To
train a more generalized GA, we use a stronger random regularization to increase the diversity of the samples. They
are i) randomly choosing the masking ratio from 0.4 to 1.0 on the fly. ii) setting 40% probability and 20% probability
of using unmarked RGB and depth, respectively.

Overall, the advantages brought by CRC is threefold i) depth inputs from different domains are unified into the
same output space; ii) features from different modalities can be aligned at multiple levels; iii) network is more sen-
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sitive to geometric cues.

6.4.2.2 Geo-Assistant Training

As shown in the toppart of Figure 6.2, GA takes RGBanddepth images as input and is supervisedbynormalizeddepth
values. The self-supervised GA reconstructs the depth map by predicting relative depth values for each masked and
unmasked patch. We optimize the depth estimation by the reverse Huber loss [19]:

LberHu(ŷ, y) =


|y − ŷ|, if |y − ŷ| ≤ τ,

(y−ŷ)2+τ2

2τ otherwise,
(6.7)

where τ refers to a threshold and is set to 1
5 of the maximum depth residual by default, y and ŷ denote the ground

truth depth value and the estimated depth value, respectively. We assign different weights to the data from the
source and target domains, thus the objective function can be formulated as follows:

min
θGA

Lreg(GA) = α1 · LberHu(ŷdS , xSd ) + α2 · LberHu(ŷdT , xTd ), (6.8)
where α1 and α2 balance the weight of loss in different domains, θGA denotes the parameters of GA, ŷd and xd

refer to the predicted depth value and raw normalized depth value, respectively. Note that during the training,
the GA learns to infer the depth information of masked patches from the corresponding color hints, and remove
the depth bias of unmasked patches from the raw depth while retaining the geometric information. Consequently,
introducing raw depth as a geometric prior contributes to reducing learning difficulty and allowing the model to
focus more on the mapping between different modalities, refer to Section 6.6.1 for more discussions. The detailed
training procedure of self-supervised multi-modal GA is summarized in Algorithm 1.

6.4.3 MMADT Training Protocol

Given the multi-modal UDA network MMADT and the pretrained GA, we expect that the MMADT learns to mimic GA,
and thus is more sensitive to depth signals. To this end, we distill the geometric cues from GA to our multi-modal
UDAmodel. In addition, we observe that the attentionmaps can be seen as an abstract representation of the critical
clues w.r.t the specific input. Thus, we regard GA as the teacher and MMADT as the student and transfer knowledge
through activation-based attention distillation. Concretely, the attentionmaps are derived from the activated tensor
of each encoding stage during training. We train the student to have similar geometric-aware behavior to the teacher
network by minimizing the attention distance. Note that we use the same encoder structure for feature extraction
to simplify the transfer procedure. Thus, the optimization objective can be defined as:
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Algorithm 1: Self-Supervised Multi-Modal Geo-Assistant Scheme
input :Max iterations N , batch size B, hyper-parameters α1 and α2;
XS : source dataset;
X T : target dataset;
GA: initialized Geo-Assistant parameterized by θGA
output: θGA

1 training:
2 for iter ← 1 to N do

// multi-modal sampling
3 Randomly sample {xSrgb, xSd }Bi=1 from XS ;
4 Randomly sample {xTrgb, xTd }Bi=1 from X T ;
5 for each mini-batch do
6 Generate complimentary masks from RGB-D input pairs by CRC data augmentation:
7 (Maskrgb,Maskd)

S(T ) ← CRC((xrgb, xd)S(T ))
8 Generate training data by applyingMask to image pair:
9 (xrgb, xd)

S(T )
in = (xrgb ⊗Maskrgb, xd ⊗Maskd)

S(T )

10 Estimate relative depth value:
11 ŷd

S(T ) ← GA((xrgb, xd)
S(T )
in )

12 Collect gradients of GA:
13 ∇ga ←BackProp(α1 · LberHu(ŷdS , xSd ) + α2 · LberHu(ŷdT , xTd ))
14 Update θGA of GA with Adam [188]:
15 θGA ← Adam(∇ga, θGA)

min
θT
Lkt(T ) =

∑
j∈J
||φ((ASUDA)j)− φ((ASGA)

j)||2

+ γ ·
∑
j∈J
||φ((ATUDA)j)− φ((ATGA)

j)||2,

with, φ((A)j) =

∑Cj

i=1 |A
j
i |2

||
∑Cj

i=1 |A
j
i |2||2

,

(6.9)

where J indicates the indices of the selected activation layer pairs of GA and MMADT for knowledge transfer,
(A

S(T )
UDA)

j and (A
S(T )
GA )j are 3D activated tensor pairs derived from j-th stage of corresponding encoders, Cj de-

notes the number of feature channels of j-th activated tensor, φ(·) is developed to compute spatial attention map
from activated tensor along the feature channel.

Combining the segmentation loss Lseg , the depth adversarial training loss Ladv , and the knowledge transfer loss
Lkt, the whole optimization objective of MMADT can be defined as:

min
θU
L = Lseg + λ1 · Ladv + λ2 · Lkt, (6.10)

where λ1 and λ2 are loss weighting factors. Integrating all components together, our multi-modal UDA scheme is
outlined in Algorithm 2.
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Algorithm 2:Multi-modal UDA Scheme
input :Max iterations N , batch size B, hyper-parameters λ1 and λ2;
[XS ,YS ]: source dataset;
[X T ]: target dataset;
T : initialized semantic segmenter parameterized by θU ;
D: initialized depth domain discriminator parameterized by θD;
GA: pretrained geo-assistant parameterized by θGA;
output: θU

1 training:
2 for iter ← 1 to N do

// multi-modal sampling
3 Randomly sample {xSrgb, xSd , yS}Bi=1 from [XS ,YS ];
4 Randomly sample {xTrgb, xTd }Bi=1 from [X T ];
5 for each mini-batch do
6 Update θD ofD supervised by Lcls with Adam:
7 θD ← Adam(BackProp(Lcls| θU), θD)
8 Collect gradients of T supervised by Lseg , Ladv , Lkt:
9 ∇segT ← BackProp(Lseg|θU)
10 ∇advT ← BackProp(Ladv|θD)
11 ∇ktT ← BackProp(Lkt|θGA)
12 Update θU of T with Adam:
13 θU ← Adam(∇segT + λ1 · ∇advT + λ2 · ∇ktT , θU)

14 testing:
15 for idx← 1 to Len(test_set) do

// multi-modal forward pass
16 Get testing sample {xrgb, xd}i=idx and forward pass it to obtain segmentation map;
17 Mseg ← T ((xrgb, xd)| θU )
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6.5 Experiments

In this section, we first evaluate the performance of our proposed methods on two benchmark tasks: SYNTHIA-to-
Cityscapes and GTA5-to-Cityscapes, and also compare ourmethod with other state-of-the-art methods on these two
tasks. Then, we conduct adaptation with a recently published synthetic dataset SELMA [189]. Finally, we illustrate a
series of studies to ablate different components and analyze the effectiveness of our multi-modal UDA scheme on
different approaches.

6.5.1 Datasets

Cityscapes. The Cityscapes dataset [31] is a large-scale real-world dataset for urban street scene parsing. It contains
5000 finely annotated images captured from 50 cities with 19 semantic object categories, in which 2975 images are
used for training, 500 images and 1525 images are used for validation and testing separately. All images are provided
with a resolution of 2048 × 1024. For our multi-modal UDA settings, we use the raw public-available disparity as
additional modality and regard the training set without labels as target domain.
SYNTHIA. The SYNTHIA dataset [190] consists of 9400 synthetic image and depth pairs with resolution 1280×760. It
adopts the Cityscapes style annotations which share 16 common pixel categories. We regard it as the source domain
in SYHTHIA-to-Cityscapes settings.
GTA5. The GTA5 dataset [16] contains 24966 synthetic images with resolution 1280 × 1052. To accommodate our
multi-modal UDA settings, we follow [18] to render the depth map of GTA5 dataset with a pretrained Monodepth2
model [191]. We consider it as the source domain in GTA5-to-Cityscapes settings.
SELMA. The SELMA dataset [189] is a large-scale synthetic dataset, including multiple cameras, and each camera
captures 30909 images. In our experiment, we collect the data from desk camera with a resolution of 1280 × 640

under clear noon weather as the source domain in SELMA-to-Cityscapes settings.

6.5.2 Implementation Details

In all the experiments, we follow a common practice in UDA and resize the resolution of images to 1024 × 512 for
Cityscapes and to 1280×720 for GTA5, and all depth values are normalized into [0,1]. For the segmentation network,
we use DeeplabV2 [10] and apply Atrous Spatial Pyramid Pooling (ASPP) with dilated rates of {6, 12}. Note that we
utilize ResNet-50 [9] as the feature extractor. For depth adversarial training (ADT), we apply fully-convolutional layers
to retain the spatial information, whereas only 4 convolutional layers with kernel 4×4 and a stride of 2 are deployed,
in which the channel numbers are {128,256,512,1}, respectively. In addition, we use a max-pooling operator with
kernel 2×2 and a stride of 2 to down-sample the featuremap before the convolutional layers. For Geo-Assistant (GA),
we adopt the same encoder structure as in the segmentation network for feature embedding and a straightforward
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depth decoder structure for depth reconstruction. Specifically, the depth decoder consists of 3 convolutional groups
plus a regression head. Each convolutional group contains 2 convolutional layers with kernel 3 × 3 and a stride of
1. The channel numbers of each group are {2048, 256, 128}, respectively. After each convolution group, the feature
map is interpolated by a sampling rate of 2 until the output size is consistent with the original image.

All experiments are run on a single RTX3090 GPU with 24GBmemory. We optimize the whole networks by Adam
[188] with aweight decay of 5×10−4. We empirically set an initial learning rate of 6×10−5 for encoder and 6×10−4 for
all decoders. We linearly warm up the learning rate with 1500 iterations during training, then linear decay afterward.
For self-supervised GA, we experimentally set α1 and α2 to 1.0. For UDA training, the hyper-parameters λ1 is set to
1.0 for SYNTHIA and GTA5 to Cityscapes adaptation and set to 1.5 for SELMA to Cityscapes adaptation. Then, γ is set
to 1.0, and λ2 is set to 0.001. In addition, all experiments adopt Rare Class Sampling (RCS) and Thing-Class ImageNet
Feature Distance (FD) strategies, as described in [192], to stabilize and speed up the convergence. During training,
the inputs are randomly cropped to 512 × 512 with a mini-batch size of 2 for both source and target domains. We
train self-supervised multi-modal GA and MMADT for 40k iterations for SYNTHIA-to-Cityscapes setup, and for 80k
iterations for GTA5-to-Cityscapes and SELMA-to-Cityscapes setup.
Baselines. To comprehensively evaluate our method, we implement two baseline models, namely Baseline and
Baseline-MM. More concretely, the Baseline only takes RGB images as input, while the Baseline-MM holds concate-
nated RGB and depth pairs as input. Thus, the Baseline-MM can be seen as a multi-modal version of the Baseline.
The two baseline models use the same segmentation network as our MMADT, i.e., DeeplabV2 with ResNet-50, and
follow the same training strategy.

6.6 Results

We first evaluate the semantic segmentation performance in terms of mean intersection over union (mIoU) over
two commonly studied UDA tasks. In table 6.1, we compare our approach with the state-of-the-art methods over
16 classes on SYNTHIA-to-Cityscapes setup, ’√’ and ’×’ reflect whether multi-modal data, i.e., RGB-D, is used during
training or testing. Compared with those methods that only utilize RGB information, our MMADT achieves better
results. Referring to the results of Baseline-MM, using concatenated RGB-D data directly in both training and testing
drives performance degradation. It reflects that introducing depth input will raise an additional domain gap which
offsets the benefits of geometric clues and increases the difficulty of the UDA task. Then, thanks to the proposed
DFB, DAT, and self-supervised multi-modal GA, MMADT can mitigate the adverse effects of raw depth input and
explore the additional geometric cues. As shown in table 6.1, MMADT far surpasses the Baseline and Baseline-MM
by 3.7% and 5.0% over 16 classes, 4.0% and 5.5% over 13 classes.

We also report the mIoU over 6 moving objects classes, namely ’person’, ’ rider’, ’car’, ’bus’, ’moto.’, ’bike’, marked
with ⋄ in table 6.1, which aremore salient in the depth image. The Baseline-MM yields 50.6%mIoU, while ourMMADT
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Table6.2:ComparisonsofourMMADTwiththestate-of-the-artUDAmethodsoverGTA5-to-Cityscapessetup.OurmethodoutperformsotherUDA
methodsbyalargemargin.mIoU

⋄denotesperformanceover6movingclassesmarkedwith
⋄.

Method
RGB-D
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s.walk
build.

wall
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pole
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sign
veget.

Train
Test

ADVENT[168]
×

×
Res101
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21.4

82.0
34.8

26.2
28.5

35.6
23.0

84.5
CBST[171]

×
×

Res101
91.8

53.5
80.5

32.7
21.0

34.0
28.9

20.4
83.9

DACS[174]
×

×
Res101

89.9
39.7

87.9
30.7

39.5
38.5

46.4
52.8

88.0
ProDA[193]

×
×

Res101
87.8

56.0
79.7

46.3
44.8

45.6
53.5

53.5
88.6

CorDA[18]
√

×
Res101

94.7
63.1

87.6
30.7

40.6
40.2

47.8
51.6

87.6
Baseline[192]

×
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66.1
86.8

31.9
30.3

35.6
45.3

53.3
87.1
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√

√
Res50

92.8
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53.7
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MMADT(Ours)
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⋄
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43.4
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53.1
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88.8
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59.4

1.0
48.9

56.4
51.2

57.5
47.0

89.7
66.7

35.9
90.2

48.9
57.5

0.
39.8

56.0
49.4

56.6
43.8

89.2
67.6

38.7
86.0

45.2
46.3

0.2
43.9

56.4
48.0

55.2
44.3

90.8
63.9

37.6
81.7

42.0
48.3

0.
37.5

57.2
46.0

54.3
45.9

91.6
67.9

41.4
88.8

48.4
58.3

0.4
52.5

61.7
52.4

59.6
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(a) Images (b) Depth (c) Our MMADT (d) Baseline (f) Ground Truth

Semantic segmentation qualitative results on SYNTHIA-to-Cityscapes set up. Column (a) and (b) show the RGB and depth inputs, segmentation map of our MMADT, 
Baseline and Baseline-MM are illustrated in column (c) - (e), column (f) presents the ground truth segmentation map with void class (black pixels).

(e) Baseline-MM

Figure 6.3: Semantic segmentation qualitative results on SYNTHIA-to-Cityscapes set up. Column (a) and (b) show theRGB and depth inputs, segmentation map of MMADT, Baseline and Baseline-MM are illustrated in column (c) - (e),column (f) presents the ground truth segmentation map with void class (black pixels).

yields 59.0% mIoU, which achieves a large margin of 8.4% absolute improvement. This further demonstrates the
effectiveness of our approach when dealing with multi-modal data, i.e., RGB-D. In addition, our method yields a
2.1% mIoU improvement over the current best depth-aware method [18] on 16 classes and a 5.3% mIoU raise on
the 6 moving objects categories.

For the GTA5-to-Cityscapes setup, we observe a consistent improvement of mIoU over 19 classes, as reported in
Table 6.2. Note thatweuse a coarse depth image inferred fromRGBas input, whichwill affect the performanfourthce
of our MMADT to some extent. But our method still outperforms other state-of-the-art methods and its baselines.
Specifically, our approach obtains 59.6%mIoU, better than the 54.3% and 55.2%mIoUof our baselines and the 57.5%
mIoU of the state-of-the-art method [193]. Then, to further illustrate the effectiveness of our method, we perform
an adaptation from the lately published SELMA synthetic dataset. As shown in Table 6.3, our method significantly
outperforms the RGB-based baseline, as well as the simple RGB-D-based baseline.

In addition, we provide some visual examples of segmentation results in Figure 6.3. We can see that facilitated by
the geometric prior contained in the depth image, the prediction quality is highly improved on easily twisted classes
and small-scale objects, such as road vs. sidewalk and bike vs. rider.

To better explain the intuition of the proposed multi-modal UDA scheme, we compare the features learned by
our baselines and MMADT. Specifically, we map the feature space of the last hidden layer to 2D space by t-SNE
[194] under SYNTHIA-to-Cityscapes adaptation setup. As shown in Figure 6.4, the upper and lower parts present
the features space of 16 classes and 6 moving object classes in the Cityscapes validation dataset, respectively. We
can see that for the object classes visible in the depth map, the multi-modal information helps feature clustering.
Yet, directly using the raw depth produces a large clustering radius, which leads to confusion about decision bound-
aries. It further explains the reason for the performance degradation of Baseline-MM. Compared with the baselines,
our MMADT yields a smaller clustering radius as well as more distinct category boundaries, which reflects that our
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road s.walk build. wall fence pole light sign 

veget. sky person rider car bus moto. bike 

Baseline MMADT (Ours)Baseline-MM

Figure 6.4: t-SNE visualization of feature space on Cityscapes validation set. Upper: visualization of 16 classes. Lower:visualization of 6 moving object classes, i.e. ’person’, ’rider’, ’car’, ’bus’, ’motocycle’, ’bike’. Each color represents onespecific semantic class.
Table 6.4: The effects of loss weight factors in self-supervised multi-modal GA on MMADT. Here we only report themIoU over 16 classes on SYNTHIA-to-Cityscapes setup.

α2 0.01 0.1 0.5 1.0 1.5 2.0 3.0
mIoU 55.6 56.1 56.5 57.1 56.2 55.8 55.6

proposed method can effectively take advantage of different modalities to enhance the performance of the UDA
model.

6.6.1 Geo-Assistant Analysis

Self-supervisedmulti-modal GA is a key component of ourMMADT, thus we study the impact of the weight factorsα1

and α2 in Algorithm 1. Basically, α1 and α2 are specified to balance the contribution of the source and target domain.
Particularly, we set α1 as 1.0 and produce experiments with different α2 values. When α2 < 1.0, GA is dominated
by the source data, while when α2 > 1.0 the target data dominates. As shown in Table 6.4, the best performance is
achieved when α2 equals 1.0. This result is very intuitive because in terms of adapting data from the source domain
to the target domain, we expect the GA to generalize well on the target domain, so it makes sense to let the target
domain dominate the GA, while an overweight of the target domain would cause the noise of raw depth to mislead
the learning process. Hence, we empirically set α1 = 1.0 and α2 = 1.0 in our experiments.



100 CHAPTER 6. MULTI-MODAL UNSUPERVISED DOMAIN ADAPTATION

Raw RGB-D Inputs

CRC

Raw

CRC

Raw

Visualization of depth estimation results of self-supervised Geo-Assistant on Cityscapes validation set. CRC and Raw mean the input data processed w/ or w/o CRC data augmentation.

Augmented Output

Figure 6.5: Visualization of depth estimation results of self-supervised Geo-Assistant on Cityscapes validation set.CRC and Raw mean the input data processed w/ and w/o CRC data augmentation.
Table 6.5: Ablation study of the components of our MMADT on SYNTHIA-to-Cityscapes set up. • and ◦ indicateactivated and inactivated components, respectively. •̂means pre-training GA without CRC strategy.

Method DFB DAT GA mIoU⋄ mIoU⋆ mIoU
Baseline-MM ◦ ◦ ◦ 50.1 58.6 51.4
MMADT • ◦ ◦ 55.3 60.5 53.2
MMADT • • ◦ 57.0 64.1 55.8
MMADT • • • 59.0 65.1 57.1
MMADT • • •̂ 57.2 63.9 56.2

In addition, as we can see in Figure 6.5, the trained GA is capable of reconstructing depth from CRC augmented
or raw data, which demonstrates that our GA can be aware of the depth clues and fuse them with the RGB features.
Moreover, we observe that the trained GA is robust to noise, and the depth maps reconstructed from the target
domain are closer in style to the source domain, which is helpful in reducing the domain gap for UDA tasks.

6.6.2 Ablation Studies

6.6.2.1 The effectiveness of DFB and DAT

For a fair comparison, we implement a multi-modal baseline named Baseline-MM. As described in Section 6.6,
Baseline-MM blends RGB and depth images by direct concatenation. Instead of fusing all depth information in-
discriminately, our DFB combines the calibrated depth features, thus eliminating the side effect of directly using raw
depth to some extent. Moreover, applying DAT to bridge the appearance gap of depth images between the source
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Table 6.6: The effect of distilled layers of GA to MMADT. l1 to l4 refer to the different encoding layers in the encoder.
• and ◦ indicate activated and inactivated distilled layers, respectively.

Method l1 l2 l3 l4 mIoU
MMADT • • • • 55.9
MMADT • • • ◦ 57.1
MMADT • • ◦ • 55.8
MMADT • ◦ • • 56.3
MMADT ◦ • • • 55.5

and target domain can further enhance the performance of our model, as shown in the top three rows of Table 6.5.
As shown in Table 6.5, the different components of our method gradually improve the segmentation performance.

In figure 6.6, we visualize the depth features before and after calibration as detailed in Section 6.4.1. We can see
that the calibrated depth features focus more on meaningful things such as people, cars, plants, etc., which can be
used as a complement to the RGB features. Therefore, DFB and DAT are critical to executing effective multi-modal
fusion.

6.6.2.2 The effect of CRC and distilled layers in Geo-Assistant

The fourth rowof Table 6.5 shows that knowledge transfer fromGA toMMADT can further improve the performance.
Then, to show the effectiveness of CRC strategy, we explicitly bypass CRC module during pre-training GA and keep
the rest of our designs unchanged. We obtained 56.2% of mIoU, a decrease of 0.9 % compared to our result with
CRC. Furthermore, we observe a drop of 1.8% mIoU for those moving categories salient in the depth images. It
further highlights that using CRC allows the model to identify valid features in the depth image to complement RGB
information, while these features are typically prone to be overlooked in model training without CRC. The results
are shown in the last row of Table 6.5.
We additionally compare the impact of the choice of distilled layers. As listed in Table 6.6, we perform extensive
experiments with different layer choices in the SYNTHIA-to-Cityscapes setup. Since it is expected to narrow the
attention distribution by transferring task-independent functionalities from the GA network to theMMADT, we select
at least three feature extraction layers for knowledge transfer in order to ensure that ourMMADT can learn universal
and valuable attributes from pretrained GA. In table 6.6, l1 to l4 denote the four Res-layers in ResNet [9]. We can see
that distilling the knowledge of l4 leads to severe performance degradation, suggesting that l4 may contain more
task-specific knowledge, which will hinder the optimization of our model. Therefore, we empirically determine to
transfer the features of l1 to l3 from GA to MMADT.
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frankfurt_000000_011074_
disparity

frankfurt_000000_000576_
disparity

frankfurt_000000_003025_
disparity

(a) Images (b) Depth (c) DF (d) DF Calibrated

Visualization of depth features (DF) before vs. after calibration of depth branch. Column (a) and (b) present the original color and depth input. Column(c) 
illustrates the depth features w/o calibration of depth fusion block (DFB), and column (d) presents the calibrated depth features that will be combined with 
color features.

Figure 6.6: Visualization of depth features (DF) before vs. after calibration of DFB. Column (a) and (b) present theoriginal RGB and depth input. Column(c) illustrates the depth features w/o calibration, and column (d) presents thecalibrated depth features that will be combined with color features.

Table 6.7: Flexibility analysis on SYNTHIA-to-Cityscapes setup. Ourmulti-modal UDAmethod can be smoothly portedto existing UDA models with consistent performance progress.
Method RGD-D Backbone mIoU* mIoUTrain Test
DACS [174] × × Res50 54.1 47.3
DACS-MM (Ours) √ √ Res50 59.6 52.2
ADVENT [168] × × Res50 48.0 41.7
ADVENT-MM (Ours) √ √ Res50 50.6 44.1

6.6.3 Flexibility Analysis

Our multi-modal UDAmethod is equipped with three designs, namely DFB, DAT, and GA, which can be easily ported
to existing UDA methods as a plug-in. We adapt two representative works, namely DACS [174] and ADVENT [168],
to evaluate the flexibility, in which DACS is a self-training-related approach and ADVENT is an adversarial-training-
related approach. To this end, a multi-modal version of DACS and ADVENT are implemented, namely DACS-MM and
ADVENT-MM, respectively. Specifically, we plug the DFB in the encoder for connecting depth information and insert
DAT (Ladv) and GA (Lkt) to optimize the multi-modal UDAmodel. In addition, we leave the hyper-parameter settings
unchanged and train themodel exactly as the original implementation. Note that we use ResNet-50 as the backbone
of all models for a fair comparison. As shown in Table 6.7, our multi-modal method can be seamlessly applied to
existing UDA methods and achieves significant performance gains on both self-training-related and adversarial-
training-related methods.
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6.7 Summary

In this chapter, we present a novel multi-modal UDA framework for semantic segmentation, which aims at leverag-
ing additional information to boost adaptation performance. To do this, we treat the depth image as an auxiliary
input and train the model under a multi-modal learning paradigm, in which we encounter two challenges. Firstly,
discrepancies among the domains of auxiliary modality further exacerbate the domain gap. Secondly, the features
between different modalities are not necessarily perfectly aligned, especially in the target domain. To address these
challenges, we propose a multi-modal network named MMADT, composed of three key designs, i.e., Depth fusion
block (DFB), Depth adversarial training (DAT), and Geo-assistant (GA). The proper application of these components in
amulti-modal network helps themodelmitigate the discrepancies between the samemodalities in different domains
and the alignment between different modalities in same domains. Additionally, the accretion of modality-specific
information facilitates the UDA model to learn consistent feature representation, thereby improving the general-
ization ability of the model over different domains. To the best of our knowledge, this is the first proposed work
to solve the UDA problem under the multi-modal learning paradigm. Besides, our multi-modal UDA training strat-
egy can also be freely ported to existing UDA models. Extensive experiments illustrate that additional modality can
effectively enhance the model’s parsing ability and resist domain shifts. Our results far exceed the baselines and
start-of-the-art UDA methods.

In this work, we formulate a UDA learning strategy under the multi-modal learning paradigm. We find that the
performance of UDA can be remarkably enhanced by utilizing multi-modal information by exploring the comple-
mentary nature of different modality information, as well as developing more efficient fusion methods to improve
performance.
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Chapter 7

Conclusion and perspective

7.1 Conclusion

In this thesis, we are interested in exploringmulti-modal visual data fusionmethods to enhance the accuracy and ef-
ficiency of outdoor scene analysis. Our primary concern is how to effectively utilize multi-modal visual data, such as
color images, infrared images, and depth images, as well as how to fuse these visual data to provide amore compre-
hensive understanding of the environment. We select two representative computer vision tasks, namely semantic
segmentation and object detection, as our points of entry for investigating and validating various multi-modal visual
data fusion methods. To this end, in Chapter 2, we initially introduce the fundamental concepts and existing main-
streammethods for semantic segmentation and object detection and then elaborate on themulti-modal vision data
fusion framework and techniques. Furthermore, we investigate unsupervised domain adaptation as a strategy to
address changes in data distribution, specifically in scenarios where training data is scarce in real-world settings. At
the end of Chapter 2, we provide a comprehensive review and analysis of methods related to unsupervised domain
adaptation with a particular focus on the application ofmultiplemodalities in it. In Chapters 3 and 4, we explore both
single-modal and multi-modal semantic segmentation models within the encoder-decoder framework. In Chapter
5, we delve further into how to tackle object detection issues under challenging weather conditions, specifically low
lighting, usingmulti-modal fusion techniques. Lastly, we shift our focus to unsupervised domain adaptation research
in Chapter 6 and discuss how to leverage multi-modal data fusion to minimize distribution discrepancies between
domains. Our primary efforts can be summarized as follows:

In our research, we initially study semantic segmentation methods based on a single modality, i.e., RGB images,
and seek to enhance the performance of existingmethods by optimizing training strategies andmodel architectures.
To achieve this, we proposed a general two-branch decoder paradigmalongwith a boundary-enhanced loss strategy.
The two decoders can adaptively learn complementary information without explicitly designating specific learning
elements. Experiments suggest that introducing additional boundary information in the loss function and making

105
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two branches compete during training can improve the training efficiency of the model to some extent.
Subsequently, we propose an RGB-D fusion scheme based on additive attention, where the Depth map is re-

garded as an auxiliary modality supplying additional geometric cues. Our goal is to utilize additive attention to
replace the complex matrix computation process in the original self-attention and thus solve the prohibitive cost
issues linked to self-attention-related multi-modal fusion methods. To this end, we introduce a lightweight fusion
network called HCFNet. This network is capable of retaining local details while probing the long-range dependencies
of multi-modal information, thereby extracting complementary information from different modalities. The efficacy
of our proposed method is confirmed through testing on both indoor and outdoor datasets.

In addition, considering the complexity of scene perception under low light conditions, we capitalize on the com-
plementary information between thermal infrared and visible light images to enhance the perceptual capability of
the system to its surroundings. Given the flexibility of RGB-T fusion, we introduce a lightweight cross-fusion module
named Channel-Patch Cross Fusion (CPCF). This module leverages cross-attention at both the channel and patch
levels to encourage mutual correction between different modalities while maintaining their unique properties. Ex-
tensive experiments demonstrate that the proposedmethod outperforms others on several publicly availablemulti-
modal datasets. Besides, it can be extended to different types of detectors, further showcasing its robustness and
generalizability.

Finally, we explore how to leveragemulti-modal information to assist themodel in learning domain-independent
feature representations in the unsupervised domain adaptation setup, thereby reducing the gap between different
domains while expanding the inter-class distance in the semantic feature space. In line with this, we propose a new
multi-modal-based unsupervised domain adaptation method called MMADT, which aims to fully utilize the input
RGB and depth information in semantic segmentation tasks. We design a Depth Fusion Block (DFB) and a Depth
Adversarial Training (DAT) strategy to narrow the depth discrepancy between the source and target domains. Then,
we propose a self-supervised multi-modal depth estimation assistant network called Geo-Assistant (GA) to align the
RGB and depth at the feature spaces. We observe significant performance improvements in multiple synthetic-to-
real adaptation benchmarks.

7.2 Perspective

In this thesis, we aim to harnessmulti-modal information to bolster the perception capabilities ofmodels. To achieve
this goal, we have introduced a suite of multi-modal fusion schemes designed to address various computer vision
tasks, with a focus on fusion efficiency and model complexity. Despite some positive progress, many technical
challenges and unexplored areas in multi-modal learning still need to be explored. In light of the contributions of
this thesis, we will discuss potential future research directions and provide a projection on the evolution of multi-
modal learning based on our current knowledge and understanding.
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We have proposed two lightweight fusion schemes based on different attention mechanisms for RGB-D and

RGB-T data fusion and exhibited impressive performance across multiple public datasets. However, our model was
trained and tested on strictly aligned image pairs, which limits its applicability in real-world scenarios to a certain
extent. For instance, in autonomous driving or drone systems, RGB and depth or infrared images are captured by
different cameras, which may suffer from issues of camera displacement and rotation, making image alignment
challenging. Therefore, multi-modal fusion on non-aligned image pairs represents a promising avenue for future
research. Furthermore, another challenge brought about by multimodality is the issue of missing modalities and
signal noise. Future research needs to consider how to ensure the stability and robustness of themodel under these
circumstances. For diverse weather conditions, we have explored using multi-modal cues to enhance the model’s
performance under low-light conditions. Nevertheless, we have yet to delve into other challenging environmental
conditions like fog, rain, and snow. In addition, viewing from a broader perspective, with the advent of a wider variety
of sensor technologies and data collection methods, richer multi-modal data, such as sonar, radar, and event, will
provide signal attributes different from traditional visual sensors. Consequently, how to integrate these signals to
meet the challenges posed by various weather conditions is also a direction to be explored. On the other hand,
in unsupervised domain adaptation, we have attempted to minimize the distribution difference between domains
by employing RGB-D data. While we have achieved significant performance improvements in some benchmark
tests, the efficacy of this method in real-world scenarios remains insufficiently verified. Especially when there is
a significant discrepancy in data distributions, or the model needs to transfer between multiple source and target
domains, the effective use ofmulti-modal data to bridge inter-domain gaps still requires further exploration. Besides,
the effects of different modalities on model adaptation may vary in different scenarios.

The potential of multi-modal data fusion is huge, and the overarching goal in this field is to design a universal
framework that can accommodate various modalities while gracefully handling issues related to modality absence
and noise. Although recent research [195] has proposed a Transformer-based fusion architecture, which fused RGB
images with Depth, Thermal, or Event images, has demonstrated promising results across differentmodalities, it still
relies on aligned data, and the mechanics of fusion remain in the exploratory phase. Hence, there is still significant
research space in exploring general representations of different modalities and feature fusion approaches based on
different attentionmechanisms. In addition, with the innovation of deepmodel architectures and the improvements
in hardware computational power, another promising research direction is the knowledge transfer from large-scale
language pre-training model [196] or language-image pre-training model [197] to downstream multi-modal data
fusion frameworks. Recently, several studies [198, 199] have demonstrated the advantages of language pre-training
models in understanding and generating latent semantic relations in language, which provides new perspectives
for improving the comprehension of multi-modal systems. For instance, using language pre-training models for
correlating and reasoning the visual and textual information in multi-modal data could potentially contribute to
improving multi-modal fusion results and scene analysis capabilities.
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To conclude, the multi-modal visual data fusion methods involved in this study merely represent the tip of the
iceberg. Future research is anticipated to encompass broader and deeper content, with the aim of achieving greater
breakthroughs in the fields of computer vision and machine learning.
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Résumé: Les données visuelles multimodales peu-vent fournir des informations différentes sur la mêmescène, améliorant ainsi la précision et la robustessede l’analyse de scènes. Cette thèse se concentreprincipalement sur la façon d’utiliser efficacement lesdonnées visuelles multimodales telles que les im-ages en couleur, les images infrarouges et les im-ages de profondeur, et sur la façon de fusionnerces données visuelles pour une compréhension pluscomplète de l’environnement. Nous avons choisi lasegmentation sémantique et la détection d’objets,deux tâches représentatives de la vision par ordina-teur, pour évaluer et valider différentes méthodesde fusion de données visuelles multimodales. En-suite, nous proposons un schéma de fusion RGB-D basé sur l’attention additive, considérant la cartede profondeur comme une modalité auxiliaire pourfournir des indices géométriques supplémentaires,et résolvant le coût élevé associé à l’auto-attention.Compte tenu de la complexité de la perception

de scènes en conditions de faible luminosité, nousavons conçu un module de fusion croisée qui utilisel’attention de canal et spatiale pour explorer lesinformations complémentaires des paires d’imagesvisible-infrarouge, améliorant ainsi la perception del’environnement par le système. En fin, nous avonségalement abordé l’application des données visuellesmultimodales dans l’adaptation de domaine non su-pervisée. Nous proposons d’utiliser des indices deprofondeur pour guider le modèle à apprendre lareprésentation de caractéristiques invariables au do-maine. Les nombreux résultats expérimentaux in-diquent que les méthodes proposées surpassent lesautres méthodes sur plusieurs bases de donnéesmultimodales disponibles publiquement et peuventêtre étendues à différents types de modèles, démon-trant ainsi davantage la robustesse et les capacités degénéralisation de nos méthodes dans les tâches deperception de scènes en extérieur.

Title: Deep Multimodal Visual Data Fusion for Outdoor Scenes Analysis in Challenging Weather Conditions
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Abstract: Multi-modal visual data can provide differ-ent information about the same scene, thus enhanc-ing the accuracy and robustness of scene analysis.This thesis mainly focuses on how to effectively uti-lize multi-modal visual data such as color images, in-frared images, and depth images, and how to fusethese visual data for a more comprehensive under-standing of the environment. Semantic segmentationand object detection, two representative computer vi-sion tasks, were selected for investigating and veri-fying different multi-modal visual data fusion meth-ods. Then, we propose an additive-attention-basedRGB-D fusion scheme, considering the depth map asan auxiliary modality to provide additional geomet-ric clues, and solving the high cost associated withself-attention. Considering the complexity of scene

perception under low-light conditions, we designeda cross-fusion module that uses channel and spa-tial attention to explore the complementary informa-tion of visible-infrared image pairs, enhancing the sys-tem’s perception of the environment. Additionally,we also researched the application of multi-modal vi-sual data in unsupervised domain adaptation. Weproposed to leverage depth cues to guide the modelto learn domain-invariant feature representation. Ex-tensive research results indicate that the proposedmethods outperformothers onmultiple publicly avail-able multi-modal datasets and can be extended to dif-ferent types of models, which further demonstratingthe robustness and generalization capabilities of ourmethods in outdoor scene perception tasks.
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