
HAL Id: tel-04295965
https://theses.hal.science/tel-04295965v1

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning for Multi-Function Radar
Resource Management

Marc Vincent

To cite this version:
Marc Vincent. Reinforcement Learning for Multi-Function Radar Resource Management. Artificial
Intelligence [cs.AI]. Sorbonne Université, 2023. English. �NNT : 2023SORUS305�. �tel-04295965�

https://theses.hal.science/tel-04295965v1
https://hal.archives-ouvertes.fr


Sorbonne Université
LIP6

Doctoral School École Doctorale Informatique, Télécommunications et Électronique

University Department LIP6

Thesis defended by Marc Vincent

Defended on September 8, 2023

In order to become Doctor from Sorbonne Université

Academic Field Computer Science

Reinforcement Learning for
Multi-Function Radar Resource

Management

Thesis supervised by Amal El Fallah Seghrouchni Supervisor
Vincent Corruble Co-Supervisor

Committee members

Referees Ann Nowé Professor at Vrije Universiteit Brussel
Tristan Cazenave Professor at Université Paris-Dauphine

Examiners Olivier Sigaud Professor at Sorbonne Université Committee President
Gauthier Picard Senior Researcher at Office National

d’Etudes et de Recherches Aérospatiales
Guest Frédéric Barbaresco Segment Leader at Thales LAS France

Supervisors Amal El Fallah Seghrouchni Professor at Sorbonne Université
Vincent Corruble Associate Professor at Sorbonne

Université



Colophon

Doctoral dissertation entitled “Reinforcement Learning for Multi-Function Radar Resource Management”, writ-
ten by Marc Vincent, completed on October 9, 2023, typeset with the document preparation system LATEX

and the yathesis class dedicated to theses prepared in France.



Keywords: reinforcement learning, radar, scheduling, multi-objective
Mots clés : apprentissage par renforcement, radar, ordonnancement, multi-objectif





This thesis has been prepared at

LIP6
Sorbonne Université
Campus Pierre et Marie Curie
4 place Jussieu
75005 Paris
France

Web Site https://www.lip6.fr/





Abstract vii

Reinforcement Learning for Multi-Function Radar Resource Management
Abstract

In the wake of recent advances in the field of machine learning, much progress has been accomplished
in one of its sub-fields, reinforcement learning, whose aim is to solve sequential decision problems under
uncertainty. Radar resource management seems to represent an ideal application case for this type of
technique. Indeed, a radar emits signals, called dwells, whose echoes are used to measure the state
of surrounding objects; these dwells vary according to numerous parameters (duration, beam width...)
and must be executed sequentially. The surveillance strategy of a multi-function radar thus consists
in continuously selecting the dwells to perform, with the aim of searching the surrounding space while
tracking already detected targets. The methods currently used to address this problem are largely
heuristic, and are likely to run into difficulties in a range of complex situations involving hyper-velocity
or hyper-maneuvering targets.
First, we propose applications of reinforcement learning techniques adapted to the current architecture
of multi-function radars. These contributions focus on two aspects : dwell scheduling on the antenna
using model-based methods, and active tracking dwell optimization using model-free methods. Secondly,
we highlight the limitations of current resource management architectures, which leads us to consider an
alternative architecture for which we propose new reinforcement learning algorithms designed to address
the problems it raises. These contributions focus both on the multi-objective aspect, which is useful
in multi-function radars to reflect the trade-offs to be made between different functions, and on the
combinatorial aspect, which is due to the large number of tasks that the radar must carry out in parallel.
Keywords: reinforcement learning, radar, scheduling, multi-objective

Résumé

Dans le sillage des avancées récentes dans le champ de l’apprentissage automatique, de nombreux progrès
ont été réalisés dans l’un de ses sous-domaines, l’apprentissage par renforcement, dont le but est de
résoudre des problèmes de décision séquentielle dans l’incertain. La gestion de ressources radar semble
représenter un cadre d’application propice pour ce type de techniques. En effet, un radar émet des
signaux, appelés pointages, dont l’écho permet de mesurer l’état des objets alentour ; ces pointages varient
selon de nombreux paramètres (durée, largeur de faisceau...) et doivent être exécutés séquentiellement. La
stratégie de surveillance d’un radar multi-fonctions revient ainsi à sélectionner en continu les pointages
à effectuer dans le but de surveiller l’espace environnant tout en pistant les cibles déjà détectées. Les
méthodes utilisées actuellement pour répondre à cette problématique sont en grande partie heuristiques
et risquent d’être mises en difficulté dans une gamme de situations complexes impliquant des cibles
hyper-véloces ou hyper-manœuvrantes.
Dans un premier temps, nous proposons des applications de techniques d’apprentissage par renforcement
adaptées à l’architecture courante des radars multi-fonction. Ces contributions portent sur deux aspects :
l’ordonnancement des pointages sur l’antenne par méthodes model-based et l’optimisation des pointages
de poursuite active par méthodes model-free. Dans un second temps, nous mettons en avant les limites
des architectures de gestion de ressources actuelles, ce qui nous amène à envisager une architecture
alternative pour laquelle nous proposons de nouveaux algorithmes d’apprentissage par renforcement
destinés à répondre aux problèmes qu’elle soulève. Ces contributions portent à la fois sur un aspect multi-
objectif, utile dans les radars multi-fonctions pour refléter les compromis à réaliser entre les différentes
fonctions, et sur l’aspect combinatoire qui est dû au grand nombre de tâches que le radar doit mener à
bien en parallèle.
Mots clés : apprentissage par renforcement, radar, ordonnancement, multi-objectif
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Introduction

Radar, short for "radio detection and ranging," is a technology that uses radio waves to

detect and track objects. From their inception as an air defense system in the early 20th

century, radars have evolved and diversified, finding applications in weather forecasting,

air traffic control, navigation, and various other fields. They have become indispensable

tools due to their ability to provide accurate measurements of distant objects and phe-

nomena and gather valuable information about the surrounding environment. The past

few decades have witnessed remarkable advancements in radar technology, leading to the

development of highly sophisticated and intricate systems with enhanced capabilities.

These significant strides in radar technology can be attributed to the rapid progress

in digitalization and electronic systems. The integration of digital components has paved

the way for a multitude of improvements, enabling radars to perform a diverse range of

missions more efficiently than ever before. One notable advancement is the utilization of

phased array antennas, which use multiple individual radiating elements and controlled

phase shifting to steer and focus the transmitted or received electromagnetic waves with

precision and flexibility. This has brought about the concept of digital beam forming.

Beam forming is the process of shaping and directing the radar’s waves into a specific

pattern or direction to achieve desired coverage and angular resolution. Radars can now

dynamically adjust their beam pattern electronically, freeing it from traditional mechan-

ical constraints. Digital beam forming enhances the radar’s agility and responsiveness

by enabling rapid beam scanning and reconfiguration. This capability is particularly

crucial in scenarios where a radar needs to monitor multiple targets simultaneously or

rapidly switch between different tasks.

In this context, multi-function radars, which are able to manage searching, tracking,

and missile guidance in parallel, have come to represent a key component of air defense

systems. However, the efficient utilization of resources, including power, computation

1



2 INTRODUCTION

time, and antenna time, poses a significant challenge for these systems. The current

resource management strategies, originally designed for earlier generations of radar sys-

tems, often fail to fully exploit the potential of these adaptive radars. Consequently,

several capabilities inherent in these advanced systems remain underutilized. Further-

more, the optimization of these radars’ behavior has become increasingly complex due to

the increased number of degrees of freedom of the systems. With a myriad of parameters

and variables to consider, achieving optimal radar behavior has become a much more

challenging task. In the defense context, the emergence of new threats adds another layer

of urgency to the development of advanced radar systems. Of special concern are hyper-

maneuvering targets, which can change direction exceptionally quickly and frequently,

and hypervelocity targets, which travel at extremely high speeds, typically exceeding

several kilometers per second. These characteristics are a challenge as they allow the

targets to surpass the tracking capabilities of traditional radar systems, underscoring the

critical need for advanced radar systems capable of detecting and tracking such elusive

targets.

In this context, much effort has been devoted to development of "cognitive radars".

The idea is to obtain a system that can learn through interactions with its surrounding

environment and use this feedback to intelligently adapt its illumination of the envi-

ronment, taking target characteristics into account. Analogously to biological systems,

this requires the radar to maintain a "mental model" of its surroundings that it can

update continuously. The adaptivity that the radar should display is necessitated by the

non-stationarity of its environment, whose causes include weather variation and the ap-

pearance of unknown targets. This framework naturally presents a favorable application

case for artificial intelligence techniques.

Artificial intelligence has evolved significantly since its inception, witnessing remark-

able progress in various fields. AI originated in the 1950s with the goal of developing

machines that could simulate human intelligence. Early AI focused on symbolic reason-

ing and rule-based systems, attempting to replicate human decision-making processes

through logical algorithms. However, progress was limited by the complexity of real-

world problems and the lack of computational power. Gradually, a shift occurred with

the rise of machine learning approaches. Machine learning leverages statistical tech-

niques to enable systems to learn from data and improve performance over time. This

marked a turning point in AI development. Initially, machine learning focused on tra-
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ditional algorithms like decision trees and linear regression. However, the emergence of

neural networks and deep learning unlocked new possibilities for AI. Neural networks,

inspired by the structure of the human brain, allowed for the creation of more complex

and layered models. Deep learning algorithms gained popularity due to their ability to

automatically extract hierarchical features from data, leading to breakthroughs in image

recognition, speech processing, and natural language processing. The availability of vast

amounts of data and the increasing computational power fueled the growth of AI. Today,

AI has permeated numerous sectors, including healthcare, finance, transportation, and

more.

Machine learning is traditionally divided into three fields: supervised learning, unsu-

pervised learning, and reinforcement learning. While supervised and unsupervised learn-

ing operate on labeled and unlabeled data, respectively, reinforcement learning takes a

different approach by learning from interaction and feedback received from an environ-

ment. At its core, it involves an agent that takes actions in an environment to maximize

its long-term expected rewards. The agent learns from the consequences of its actions,

receiving feedback in the form of rewards or penalties. Reinforcement learning algorithms

learn through an iterative process of exploration and exploitation, where the agent ex-

plores the environment to gather data and gradually improves its decision-making policy

based on the observed rewards. These principles provide a foundation for developing

intelligent agents capable of autonomously learning and making optimal decisions in

complex and uncertain environments. Initially, reinforcement learning algorithms were

limited by the curse of dimensionality and computational complexity, making practical

applications challenging. However, in recent years, they have made significant strides,

fueled by the breakthroughs in deep learning. The combination of deep neural networks

with reinforcement learning algorithms, known as deep reinforcement learning, has revo-

lutionized the field and led to remarkable success in complex domains, including playing

games like Go and chess at a superhuman level and mastering complex control tasks.

Despite these successes, the application of machine learning techniques to real-world

scenarios remains an ongoing issue, particularly in the case of reinforcement learning.

Ethical considerations and responsible AI development are also gaining prominence to

ensure AI is used ethically and with accountability. One specific challenge is ensuring

safe reinforcement learning, where algorithms are designed to make reliable decisions

without causing harm or engaging in undesirable behavior. A multiplicity of approaches
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have been proposed for safe learning: one of them is to cast the problem as multi-

objective reinforcement learning, where agents need to balance and optimize multiple

conflicting objectives. This allows for the consideration of trade-offs between different

criteria such as performance, fairness, and safety.

In the context of the digitization of radars, machine learning techniques represent

an alternative worth investigating. However, the scarcity of available data for emerg-

ing forms of threat to radar systems constitute an impediment to the application of

supervised learning. The interactive nature of radar resource management rather points

to reinforcement learning. Given reinforcement learning’s ability to handle complex

decision-making tasks and adapt to changing conditions, the management of radar re-

sources seems to represent a favorable application framework for this type of technique.

Indeed, the surveillance strategy of a multi-function radar must answer a sequential de-

cision problem in the face of uncertainty. The uncertainty arises from the radar’s partial

information acquisition mechanism, which can only benefit from localized and noisy ob-

servations, the obtaining of which requires active listening phases (called dwells) that

consumes energy, computing time and, crucially, antenna time. The radar must there-

fore continuously choose the dwells it performs in succession, which vary according to

numerous parameters (duration, beam width, etc.), in order to track the detected tar-

gets while maintaining search over its surveillance space. Reinforcement learning could

therefore provide a framework to address the challenges posed by the increased degrees

of freedom in modern radar systems. It would allow for the development of intelligent

agents that can learn from experience and effectively navigate the complex optimization

landscape, optimizing the radar’s dynamic resource allocation based on environmental

conditions, operational requirements, and mission objectives.

However, the multi-function radar use case is also characterized by the presence of

multiple tasks to be performed in parallel. The balance between these tasks and the con-

sideration of their interaction represent a combinatorial problem. Combinatorial aspects

have been studied in both model-based and model-free reinforcement learning: they rep-

resent a key issue, as their exploitation allows extending reinforcement learning methods

to large-scale systems. In addition, the performance of each task can be evaluated by

a separate criterion, which lends itself to a multi-objective approach. Multi-objective

reinforcement learning addresses these problems by learning from multiple reward func-

tions: this allows the agent to take into account trade-offs between different objectives.
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This combination of combinatorial and multi-objective aspects represents a convincing

perspective for the development of learning agents capable of handling more complex

systems.

In this work, we present the following contributions:

• we propose applications of reinforcement learning techniques adapted to the current

architecture of multi-function radars. These contributions focus on two aspects:

antenna-level scheduling by model-based methods and active tracking optimization

by model-free methods. We also highlight the limitations of current resource man-

agement architectures, which leads us to consider an alternative architecture and

to conclude that current reinforcement learning methods do not immediately solve

the problems raised by these alternatives.

• we investigate new reinforcement learning algorithms to address the problems

raised by this alternative architecture. These contributions concern both the multi-

objective aspect, which is useful in multi-function radars to reflect the trade-offs

to be made between the different functions, and the combinatorial aspect, which

is due to the large number of tasks that the radar must carry out in parallel.

The first contribution is specifically aimed at the conjunction of multi-objective

learning and factorized MDPs, which is a formalism that allows to exploit the in-

ternal structure of complex environments. The second contribution focuses only on

the multi-objective side: it consists in proposing an algorithm allowing to specify

the agent’s objective by a non-linear utility function, which would allow to better

translate the preferences of the radar operators.

The outline of the dissertation is as follows:

• In chapter 1, we give an overview of the aspects of a multi-function radar system

relevant to our work, especially the resource management components.

• In chapter 2, we present the main concepts and algorithms of reinforcement learn-

ing.

• In chapter 3, we present our applications of reinforcement learning techniques to

current multi-function radars for scheduling and active tracking.

• In chapter 4, we propose multi-objective reinforcement learning algorithms, fo-

cusing first on combinatorial environments, and then on stochastic environments
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where the objective is defined by non-linear scalarization.



Chapter 1

An overview of multi-function

radars

A radar (Radio Detection And Ranging) is a type of sensor that uses electromagnetic

wave echoes to detect and locate objects in its environment. While radars have many

applications ranging from flight control to weather forecasting, the use case considered

in this thesis is that of a land or maritime radar dedicated to air surveillance in a

military context. In this context, radars are mainly used to search for objects entering

its surveillance space, to identify them, and to track their movement.

Radars are complex systems involving multiple aspects: high-performance hardware

is required to deliver electromagnetic signals of sufficient power; signal processing is nec-

essary to extract meaningful detections from raw sensor data; data processing uses these

detections to estimate the presence and characteristics of targets in the radar’s environ-

ment. Multi-function radars (MFR) use electronically steered phased array antennas,

which gives them a certain amount of beam agility thanks to which they are able to

carry out several functions in parallel, mainly searching and tracking. This adds a fur-

ther aspect, resource management, as the radar has to balance its resources between each

of its different functions. In this chapter we present an overview of MFRs and discuss

the components relevant to this thesis.

7



8 CHAPTER 1. AN OVERVIEW OF MULTI-FUNCTION RADARS

Figure 1.1: Multi-function radars carry out both search and tracking tasks.

1.1 Radar fundamentals

In our use case, the radar’s main role is to produce position and velocity measurement

of distant objects. These measurements are obtained by catching radio signals emitted

by these objects via a receiving antenna. Passive radars only use a receiving antenna,

while active radars additionally employ an emitting antenna which transmits waves of

electromagnetic energy. The environment scatters the energy, and some of the scattered

energy is subsequently detected by the receiving antenna. In this thesis, we assume an

active monostatic radar, i.e. one that uses the same antenna to transmit and receive

signals.

In this section, we explain how the radar creates its emissions, how these interact

with the environment to determine the signal received by the radar (as modeled by the

radar equation), and what measurements can be obtained from these signals.

1.1.1 Dwell model

The radar’s emissions are organized by dwells. A dwell is the combination of an illumi-

nation law, which dictates the direction and shape of the electromagnetic wave (known

as a beam), and a waveform, which corresponds to the structure of the emitted signal.

The idea is to create waveforms with characteristic patterns, so that when the radar

receives a signal, it tries to find an echo of this pattern to infer the presence of the target

that reflected the signal back. A waveform is composed of one or more bursts; a burst

is in turn a series of pulses. Each burst is parameterized by the number Np, frequency



1.1. RADAR FUNDAMENTALS 9

1/Tp, and duration τ of its pulses and by the frequency f of the carrier wave used (or

alternately, its wavelength λ = c
f ). Tp is known as the pulse repetition interval (PRI)

and τ as the pulse width; together they define the burst’s duty cycle D = τ
Tp

which is the

ratio of time spent emitting. These parameters define the observation time Tobs which

is the effective duration of the emitted signal:

Tobs = TpNpD (1.1)

Varying these parameters from one burst to another also allows limiting the losses and

the ambiguities in the received signal. The accumulation of these pulses (by integration)

makes it possible to obtain a signal strong enough to allow detection. Since this thesis

is focused on the downstream resource management aspect, we do not detail the signal

processing component and only provide an energetic model.

Figure 1.2: Structure of a burst with Np = 3.

1.1.2 Beamforming

An electronically scanned phased-array antenna, like the ones used in multi-function

radars, comprises an array of radiating elements whose phase and amplitude can be con-

trolled. Array control in modern antennas is fast enough to allow for highly-maneuverable

and adaptable beamforming. Thanks to these beamforming capabilities, the antenna can

focus its emitting power P in a given direction. This concentration of power is modeled

by its transmit gain gt:

gt = 4π
Ae
λ2

(1.2)

where Ae = ηAT is the antenna’s effective aperture area, with η the aperture ef-

ficiency and AT the actual aperture area. The sum of the emissions of each element

creates a radiation pattern with a main lobe and several side lobes. The main lobe is

characterized by its half-power beamwidth:
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θ3dB =
0.886λ

l
(1.3)

where l = l̂η is the length of aperture and l̂ is the length efficiency. As we can see,

the wavelength λ and the aperture efficiency η both have opposite effects on the gain

and the beamwidth: therefore we cannot increase the beamwidth without decreasing the

gain. Phased-array antennas also allow steering the pointing angle of the main beam

by applying linear phase increments to each array element. However, when the angle

between the center of the beam and the center of the antenna θb|a increases, this also

increases the deflection loss:

Ls = cos(θb|a)
−1 (1.4)

which affects both the effective transmit gain and the half-power beamwidth. Intu-

itively this makes the beam larger and therefore less "focused", which reduces the gain

at the center of the beam:

g̃t =
gt
Ls

(1.5)

θ̃3dB = Lsθ3dB (1.6)

When the target is offset from the center of the beam by an angle θt|b, the directed

power received by the target P̃ is further decreased relative to the antenna’s peak power

P (Blackman and Popoli, 1999):

P̃ = P exp

(
−Fθt|b

2

θ̃23dB

)
(1.7)

where F is a constant. If the target is offset from the beam by an angle corresponding

to the half-power beamwidth, i.e. θt|b =
θ̃3dB
2 , then by definition P̃ = P

2 , from which we

can deduce the value of the constant F = 4 ln 2 (Blackman and Popoli, 1999).

1.1.3 The radar equation

Assuming the target is situated at range R, we can model the power P̃ emitted by the

antenna as distributed over a sphere of area 4πR2. By factoring in the effective transmit
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gain g̃t, the antenna power that reaches the target is therefore:

P̃ g̃t
4πR2

(1.8)

The "reflectiveness" of a target is characterized by its radar cross section σ. Then,

similarly, the fraction of power reflected back to the antenna by the target is given by:

σ

4πR2
(1.9)

Finally, this signal is intercepted by the antenna’s effective aperture Ae = 4π g̃t
λ2

.

Since the antenna is monostatic, the receive gain gr is equal to the transmit gain gt.

Therefore the deflection loss Ls applies twice. The energy received by the radar combines

these three terms and the observation time Tobs and is expressed by the radar equation

(Skolnik, 2008):

Er =
P̃ g̃t
4πR2

σ

4πR2

λ2g̃r
4π

Tobs (1.10)

The radar equation is a fundamental formula that can be used for radar design

and performance estimation of a given radar system. In particular, it allows reasoning

about the ratio between received signal energy and noise, which determines the radar’s

detection capabilities and is called the signal-to-noise ratio (SNR):

SNR =
2Er
N

(1.11)

where N = N0B is the noise power. Here B = 1
τ represents the radar’s bandwidth

and N0 = kTs is the receiver thermal noise. N0 depends on the Boltzmann constant

k and the effective temperature Ts = FnT0 where Fn is the antenna’s noise factor and

T0 = 290K is the ideal temperature.

The higher the SNR, the simpler the signal will be to detect and provide accurate

information about the target. The radar equation informs us on how we can increase the

SNR, namely by decreasing the beam width θ3dB (which increases the directed power P̃ )

or by increasing the observation time, which both increase the amount of energy emitted

at the center of the beam. On the other hand, the larger the offsets θb|a between the

antenna and the beam on one hand and θt|b between the beam and the target on the

other hand, the lower the returned signal, and thus the SNR, will be (Barton, 2004).
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The radar equation can also be rearranged to express the detection range of a dwell

given a required SNR:

R =
4

√
P̃ g̃t · σ · λ2g̃r · Tobs
(4π)3 ·N · SNR

(1.12)

1.1.4 Position and velocity measurements

When the transmitted signal encounters a target, it is reflected and its echo reaches the

antenna. The distance R between the target and the radar can be inferred from the time

∆t between transmission and reception, during which the signal makes a round trip at

the speed of light c:

∆t =
2R

c
(1.13)

Figure 1.3: Emitted signal at the top, delayed received echo at the bottom.

Targets can only be distinguished from each other if the radial distance separating

them is greater than the radar’s range resolution Rres. The range resolution corresponds

to the distance traveled during the duration of the pulse width τ :

Rres =
cτ

2
(1.14)

Sending several pulses may create range ambiguities if a pulse is received and its

associated original transmit pulse cannot be determined. This can happen for targets

beyond the unambiguous range Runa, which depends on the pulse repetition interval:

Runa =
Tpc

2
(1.15)

The radial velocity vr of the target causes a shift between the frequencies of the

emitted and received signals. This Doppler shift fd can be used to infer vr:
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fd =
2vr
λ

(1.16)

The Doppler resolution is inversely proportional to the duration of the coherent pulse

train. Similarly to range ambiguities, Doppler ambiguities happen at high pulse repeti-

tion intervals when it is unclear how many multiples of the pulse repetition frequency

are contained in the measured Doppler shift.

Figure 1.4: Beamforming at emission (left) and at reception (right).

The angular position of the target is estimated by comparing the amplitude of the

signal received by several simultaneous receiving beams of a single pulse at slightly

different angles. Given two Gaussian receiving beams b1(θ) and b2(θ), the difference

in amplitude between them ∆(θ) = b1(θ) − b2(θ) and the sum of these amplitudes

Σ(θ) = b1(θ) + b2(θ), the error signal response is:

ks(θ) =
∆(θ)

Σ(θ)
(1.17)

The sensitivity of the measurement is determined by the gradient of the discrimina-

tion slope k′s(θ) and is expressed as km = k′s(0), which corresponds to the point where

the measurement slope and the measurement axis intersect.

The beamwidth and signal-to-noise ratio affect the receiver’s thermal noise, which is

reflected in the angular error standard deviation:

σθ =
θ̃3dB

km
√
2SNR

(1.18)

Furthermore, if the target is off the center of the beam by an angle θt|b, then the

effective angular accuracy σ̃θ further decreases as a factor of the beamwidth:
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Figure 1.5: Example of error signal response ks(θ).

σ̃θ = σθ

√
1 +

(
km

θt|b

θ̃3dB

)2

(1.19)

1.2 Data processing

The signal processing components of the radar produce raw measurement data. This

data must however be further processed to distinguish clutter (i.e. false detections) from

real targets and to infer the trajectories of these targets from sequential detections.

1.2.1 Detection

Data obtained in the signal processing phase first goes through a detection phase. The

idea is to test the hypothesis H0 of absence of a target and the hypothesis H1 of presence

of a target in the received echo. This test is not carried out on each pulse of the dwell,

since the pulses are individually too weak to allow detection. Instead, the pulses can be

combined to improve detection in a process known as integration. The two main types

of integration are coherent integration, when the amplitude and phase of the signal are

taken into account, and incoherent integration, when only the amplitude is used.

This process entails a trade-off between the probability of detection Pd, which is

when a real target is correctly detected, and the probability of false alarm Pfa, which is

when noise in the receiver is incorrectly interpreted as a target. For a desired probability

of false alarm, the optimal decision is defined as a threshold T on the likelihood ratio

Λ(x) = p(x | H1)
p(x | H0)

of an observation x, such that H1 is chosen if Λ(x) > T , H0 otherwise; the
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probability of false alarm determines the threshold, as Pfa = p(x > T | H0). Assuming a

square law envelope detector, the probability of false alarm can be written as Pfa = e−T .

For a given detection threshold, the probability of detection depends on the fluctu-

ation model of the target. For example, in Swerling models 1 and 2, complex targets

are modeled as multiple small scatters, and the associated probability of detection is

approximated as a function of SNR and probability of false alarm:

Pd = P
1

1+SNR

fa (1.20)

As a consequence, to increase the probability of detection, one must increase the

detection threshold, yet this will also result in a higher probability of false alarm, so that

a trade-off between missed targets and false alarms must be made.

1.2.2 Tracking

When a detection occurs, the information is transmitted to a tracking module. A tracking

module is composed of a filtering algorithm, a data associator, and a track manager.

The filter’s role is to estimate and predict the trajectory of the detected targets. Data

association establishes correspondences between received detections and existing tracks.

Finally, track management determines the life cycle of tracks, in particular when to

create a track and when to delete it.

Filtering

The most common filtering algorithm for radars is the Kalman filter. Given linear

models with Gaussian perturbation describing the target kinematics and its measurement

function, the Kalman filter provides a closed-form solution to estimate the target state

(position, velocity, possibly acceleration) and the variance of the estimation error (i.e.

the tracking accuracy) from the observations collected by the antenna, and to give a

prediction on the evolution of this state. In this framework, the evolution of the target’s

state in Cartesian coordinates xt = [x, ẋ, y, ẏ]⊤ at time t is described by the linear

equation:

xt = Atxt−1 +wt−1 (1.21)
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where At is the transition matrix and wt−1 is the process noise with covariance Qt,

which together form the transition model. Similarly, measurements zt are represented

as derived from the underlying state by a linear transformation:

zt = Htxt + vt (1.22)

where Ht is the measurement matrix and vt is the measurement noise with covariance

Rt, which together form the measurement model. The value of Rt can be readily derived

from the range and angle accuracy estimations in section 1.1.4.

The filter maintains mean estimates of xt: x̂−
t is the a priori state estimate given zt−1

and x̂t is the a posteriori state estimate given zt. From the estimate errors e−t = xt− x̂−
t

and et = xt−x̂t, we can express the estimate error covariance matrices P−
t = exp[e−t e

−⊤
t ]

and Pt = exp[ete
⊤
t ]. The mean and covariance are estimated iteratively in three phases,

starting with a prediction phase:

x̂−
t = Atx̂t−1 (1.23a)

P−
t = AtPt−1A

⊤
t (1.23b)

This is followed by a measurement phase which uses the measurement zt to determine

the innovation covariance matrix St, the measurement residual δt and the gain Kt:

δt = zt −Htx̂
−
t (1.24a)

St = HtP
−
t H

⊤
t +Rt (1.24b)

Kt = P−
t H

⊤
t S

−1
t (1.24c)

Finally, the update phase corrects the estimates:

x̂t = x̂−
t +Ktδt (1.25a)

Pt = (I−KtHt)P
−
t (1.25b)

Variations of this algorithm such as the extended Kalman filter and the unscented
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Kalman filter allow to take into account non-linear transition models.

Another issue is that most often the target dynamics will evolve over time, which

requires switching between different transition models when the target maneuvers. The

most effective approach is the Interacting Multiple Model (IMM). On a given track,

the IMM applies several filters in parallel, each using a different transition model. The

IMM uses the measurements to evaluate the likelihood of each model and assign them

a probability, taking into account the a priori transition probability matrix between

models. The combined state estimate is a mean over the estimates of the different

models, weighted by their respective probabilities.

More formally, an IMM is parameterized by N models (e.g. Kalman filters), where

each model i has an initial probability µi0 and the probability of transition from model i to

j is pij . The IMM maintains estimated states, covariances, and probabilities (x̂it,P
i
t, µ

i
t)

for each model i. Similarly to the Kalman filter, the IMM goes through three phases,

applied in parallel to each model j. The prediction phase takes the transition probabilities

and the current estimated model probabilities to form a prediction for each model j:

µ̃jt =
N∑
i=1

µ̂it−1p
ij (1.26a)

µ̃ijt =
µ̂it−1p

ij

µ̃jt
(1.26b)

x̂
(j)
t−1, P̂

(j)
t−1 = combination((x̂it−1, P̂

i
t−1, µ̃

ij
t )1⩽i⩽N ) (1.26c)

x̃jt , P̃
j
t = prediction(x̂

(j)
t−1, P̂

(j)
t−1) (1.26d)

where the per-model prediction is that of a Kalman filter as in eq. (1.23) and the

combination forms new estimates of the state and covariance based on the updated model

probabilities:

x =

N∑
i=1

µixi (1.27a)

P =
N∑
i=1

µi[Pi + (xi − x)(xi − x)⊤] (1.27b)

The predicted estimates of each model then go through the measurement phase spe-
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cific to each Kalman filter (cf. eq. (1.24)):

δjt ,S
j
t ,K

j
t = measurement(x̃jt , P̃

j
t , zt) (1.28)

The measurements are used to update the state and covariance according to each

model (cf. eq. (1.25)) and the model probabilities according to their likelihoods Λjt :

x̂jt , P̂
j
t = update(x̃jt , P̃

j
t , δ

j
t ,S

j
t ,K

j
t ) (1.29a)

Λjt =
1√
|2πSjt |

exp(−1

2
(δjt )

⊤(Sjt )
−1(δjt )) (1.29b)

µ̂jt =
Λjt µ̃

j
t∑N

i=1 Λ
i
tµ̃
i
t

(1.29c)

Finally, the aggregated estimates of the state and covariance are obtained through a

combination from each model weighted by their probabilities:

x̂t, P̂t = combination((x̂jt , P̂
j
t , µ̂

j
t )1⩽j⩽N ) (1.30)

Transition models

The definition of adequate transition models is a major problem for radar systems:

different models are needed to cover all the maneuvers that can be performed by a given

type of target. Among the most commonly used models for linear dynamics are constant

nth-derivative models, which describe the evolution of an arbitrary position coordinate x

by assuming that its nth-derivative x(n) remains approximately constant over time while

its (n + 1)th-derivative is represented by a white noise process of strength q. This can

be described in terms of stochastic differential equations as:

dx(n−1) = x(n) · dt (1.31a)

dx(n) = q · dWt with Wt ∼ N (0, q2) (1.31b)

For n = 1, this yields a constant velocity model with white noise acceleration applied

to a state xt = [x, ẋ]⊤ that has the following matrix form:
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At =

1 dt

0 1

 (1.32)

Qt =

dt33 dt2

2

dt2

2 dt

 q (1.33)

Similarly, for n = 2, we obtain a constant acceleration model with white noise jerk

applied to a state xt = [x, ẋ, ẍ]⊤:

At =


1 dt dt2

2

0 1 dt

0 0 1

 (1.34)

Qt =


dt5

20
dt4

8
dt3

6

dt4

8
dt3

3
dt2

2

dt3

6
dt2

2 dt

 q (1.35)

To describe maneuvers, constant turn models can be used. In these, the target is

assumed to move at constant velocity with a constant turn rate ω in an (x, y) plane. For

state xt = [x, ẋ, y, ẏ]⊤ and acceleration noise coefficients qx and qy, the matrix form of a

constant turn model is:

At =


1 sinωdt

ω 0 −1−cosωdt
ω

0 cosωdt 0 − sinωdt

0 1−cosωdt
ω 1 sinωdt

ω

0 sinωdt 0 cosωdt

 (1.36)

Qt =


q2x

dt3

3 q2x
dt2

2 0 0

q2x
dt2

2 q2xdt 0 0

0 0 q2y
dt3

3 q2y
dt2

2

0 0 q2y
dt2

2 q2ydt

 (1.37)

Alternative linear models include nth-derivative decay models, where the nth-

derivative exponentially decays to zero over time. Similarly to before, the (n + 1)th-

derivative is described by a white noise process of strength q:



20 CHAPTER 1. AN OVERVIEW OF MULTI-FUNCTION RADARS

dx(n−1) = x(n) · dt (1.38a)

dx(n) = −Kx(n) · dt+ q · dWt with Wt ∼ N (0, q2) (1.38b)

These are called Ornstein-Uhlenbeck models and Singer models for n = 1 and n = 2

respectively.

Data association

Data association is required to determine if a detection corresponds to one of the existing

tracks before its tracking filter can be updated. This is necessary to avoid updating

tracks with false alarms caused by thermal noise or clutter, or when multiple targets are

present in the environment. The problem is compounded when multiple detections occur

(near-)simultaneously. This involves considering all association hypotheses between each

detection and each track.

The first step is to filter out the most unlikely hypotheses. To do so for a given hy-

pothesis, the gap between the track’s predicted measurement and the detection measure-

ment is evaluated with a chosen measure, and the hypothesis is rejected if the distance

between the two measurements exceeds a predefined threshold. A common measure is

the Mahalanobis distance

√
δtS

−1
t δt (1.39)

where St is the innovation covariance matrix and δt the measurement residual as de-

fined in 1.25. The advantage of this distance is that it takes into account the uncertainty

of the Kalman filter over the actual position of the target.

Once unlikely hypotheses have been excluded, track–detection association can be

performed. The simplest method is global nearest neighbor (GNN), which assigns each

detection to a track in a way that minimizes the sum of distances between the detections

and the track predictions. A more computationally-intensive alternative is probabilistic

data association (PDA), where each hypothesis is assigned a probability and tracks are

updated with the weighted average of their associated hypotheses.
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Track management

The management of a track is generally organized in the form of a life cycle, with logic

rules defining the transitions between the different stages of the cycle: when a new

target is detected, a certain number of confirmation hits are usually required before

initiating the track; the track must then be updated regularly to maintain a desired level

of accuracy; if no detection is made at the expected location of the target, a reacquisition

procedure can be initiated; finally, after a certain number of missed detections or if a

given track metric such as angular covariance exceeds a given threshold, the target is

considered lost and the track is abandoned. More advanced methods make use of Markov

chains or estimate the likelihood of the track to determine its status.

Furthermore, due to constraints on the radar’s angular and radial resolution, targets

that are too close together cannot be distinguished: it may therefore be necessary to

merge or split tracks when targets move closer or further apart.

1.3 Resource management

1.3.1 Multi-function radars

Multi-function radars (MFR) are able to concurrently perform a wide range of functions

by varying parameters related to waveform selection and beamforming, such as the ob-

servation time and the half-power beamwidth. Radar functions center on searching for

new targets and tracking existing ones. Additional functions may include missile guid-

ance, target recognition and calibration. Each function is accomplished by tasks; for

example a tracking task refers to the tracking of a single target. A task is performed by

a number of dwells.
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Figure 1.6: Thales’ GF300, an example of multi-function radar.

Having to perform multiple functions in parallel poses a resource management prob-

lem. Radar resource management (RRM) consists in allocating resources such as time,

power, and processing between functions according to the radar’s mission, which sets the

level of priority of each function. Among these resources, time budget is the most critical:

it includes the transmission time, the waiting time (before the signal returns) and the

reception time associated with each dwell played. The challenge is therefore to generate

dwells that fulfill the various functions assigned to the radar with a limited antenna

time. Using a rotating antenna (with a fixed rotation frequency) creates an additional

constraint on the possible execution dates of the dwells. Since each task is performed by

executing a number of dwells (or tasks), it is necessary to continuously schedule these

dwells by assigning them order and execution times. All dwells have optimal execution

times, and minimizing delays from these is one of the scheduling objectives. More impor-

tantly, it may happen that temporal constraints prevent from executing all dwells, which

leads to an overload situation and forces the scheduler to drop some of them according

to their level of priority.

Resource management also affects dwell optimization. The greater number of degrees

of freedom for beamforming in MFRs means that the space of possible dwell configura-

tions is significantly larger. This makes optimizing waveforms more difficult, especially

for functions like tracking whose tasks must be dynamically adapted (Moo and Ding,
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2015). Moreover, the choice of dwell parameters should aim not only to maximize its

function’s performance, but also to lower resource requirements for the scheduler in order

to avoid overload.

Resource management operates on the representation of the tactical situation around

the radar in terms of tracks resulting from data processing. Radar resource management

is generally divided into three phases, which we detail below: task management, priori-

tization and scheduling.

Figure 1.7: High-level view of a MFR.

1.3.2 Dwell optimization

Task management consists of generating the dwell parameters for the different functions

of the radar.

For the search function, the relevant operational parameters include the detection

threshold, the pattern of beams covering the surveillance space, and the revisit interval

and observation time for each search dwell. Alert-confirm techniques are enabled by beam

agility, where a lowered detection threshold acts as a first stage to produce alerts, followed

by a confirmation dwell. The beam pattern over the surveillance space must take into

account the spacing between the beams and the beam width, since larger beamwidths

create larger losses when the target is offset from the centre of the beam, which can

be compensated by a smaller spacing. Each of these correspond to a transmit beam,

while the electronically scanned antenna allows to use multiple simultaneous receiving
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beams (cf. fig. 1.4), enabling higher angular resolution and faster search. Finally, the

observation time and revisit interval of each dwell are inversely related and need to

be balanced. Heuristic solutions using e.g. triangular search pattern are usually the

nom, yet the need for resource management techniques that can adapt to dynamic and

uncertain scenarios has prompted research into mathematical optimization applications

for search patterns (Briheche, 2017).

Updating a track can be done in two ways: either by a dedicated dwell, which

constitutes active tracking, or by exploiting the detections resulting from search dwells

(Track-While-Scan, TWS). TWS is generally reserved for distant or low-threat targets.

Active tracking dwells are centered on the predicted target position, thus more accurate

than a search dwell. Besides waveform parameters, which can improve range resolution

when dynamically adapted, the critical parameter of active tracking is the track update

rate, which must maintain the necessary track accuracy without using too much resource.

The classic approach to update rate selection is Blackman and Van Keuk’s method,

which selects the next update as the the earliest time after which the filter’s angular

prediction error surpasses a given fraction of the beamwidth. Tracking dwells length are

usually chosen to maintain a desired SNR. Aside these heuristic methods, optimization

approaches exist that include Q-RAM (Quality of Service Resource Allocation Method)

and information-theoretic optimization.

Figure 1.8: Maneuvering targets require higher update rates and may require to adapt
the beam width.
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1.3.3 Task prioritization and scheduling

The request managers corresponding to different radar functions continuously update a

list of requested dwells. These dwells must then be assigned a priority level, which reflects

how critical the dwell in question is to fulfill the radar’s mission. This priority level may

depend on mission parameters (e.g. prioritized search versus prioritized tracking), the

nature of the associated task, or the threat level of a given target. It comes into play

when the radar is overloaded, i.e. not all requested dwells can fit onto the antenna

timeline and the system must select which dwells to postpone or abandon. In practice,

priority assignment is determined by rule-based systems or by ranking dwells according

to heuristically-computed scores.

Finally, the dwell requests and their priorities are transmitted to a scheduler whose

goal is to program the order and the execution dates of the various dwells on the antenna,

and to reject certain dwells if all the requests cannot be satisfied in the allotted time. The

two main approaches are frame-based and best-first schedulers (Blackman and Popoli,

1999). Frame-based methods attempt to fill in a fixed-duration time frame with dwell

requests while a previous frame is being performed by the antenna, whereas best-first

methods maintain a queue of dwell requests ordered by heuristic criteria and repeatedly

retrieve the top dwell to execute it. Frame-based schedulers allow to minimize delays

between the dwells’ requested and effective execution time, while best-first schedulers

are more reactive and ensure greater antenna occupancy.
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Chapter 2

Reinforcement learning background

This chapter is intended to provide an overview of the foundations and main approaches

in the field of reinforcement learning (RL). RL is one of the three main areas of machine

learning, along supervised learning and unsupervised learning. The specificity of RL,

in its basic setting, is that a learning agent interacts with an environment in order to

discover by trial-and-error a behavior that maximizes a certain reward. RL is a very

broad framework for artificial intelligence in general; it is a challenging research field

with numerous promising potential applications.

RL was formalized in its modern form in the 1980s, even though it is built on a

much longer history, notably tracing its origins back to the study of animal learning in

19th-century psychology and to Richard Bellman’s work on optimal control and dynamic

programming in the 1950s (Sutton and Barto, 2018). The deep learning revolution of the

early 2010s allowed RL to tackle problems that had seemed out of range before, and led

to several high-profile successes in game playing that renewed interest in the field (Mnih

et al., 2013; Silver et al., 2016; Vinyals et al., 2019). As a result, over time, a great variety

of approaches have been developed, each with their own strengths and weaknesses.

Given the sequential decision-making problem at the heart of radar resource manage-

ment, RL provides an appealing alternative to existing techniques. The versatility of RL

and the wide range of methods developed for it mean it can be applied in different ways

and to different aspects of the radar problems at hand. Our intent here is to present a

large gamut of RL approaches, so that we can later discuss their applicability to radar

use cases in the context of our work.

First we describe the RL framework, with its formalization, objective and learning

27
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process (section 2.1). We then go over the three main families of algorithms designed

to solve RL problems in their basic setting: value-based, policy-based, and model-based

methods (sections 2.2 to 2.4). We finally discuss a number of specialized techniques,

alternative models and extensions to RL; as RL is a growing field with many research

directions, we only give a short overview of these, but focus especially on multi-objective

RL, as part of our work is dedicated to methods falling in this domain.

2.1 The RL framework

This section describes the basics of RL. RL deals with stochastic sequential decision-

making problems. The learner and decision-maker, called an agent, interacts with an

environment, starting from an initial state; at each time step, when the agent selects an

action to take, it transitions to a new state and receives a reward. The general objective

is to maximize the cumulative sum of rewards (Sutton and Barto, 2018; Francois-Lavet

et al., 2018).

2.1.1 Markov Decision Processes

The basic RL setting is usually formalized as a Markov decision process (MDP). An

MDP is defined as:

• a finite state space S;

• a finite action space A;

• a transition function T : S×A×S → [0, 1], which gives the conditional probability

T (s′ | s, a) of transition to the next state s′ given the previous state s and selected

action a;

• a reward function R : S × A × S → R that gives the expected re-

ward associated with a transition. We may overload this notation with

R(s, a) =
∑

s T (s
′ | s, a)R(s, a, s′). Note that a reward can be negative and

"punish" the agent.

When the agent interacts with the environment, it thus creates a sequence of states,

actions, and rewards: starting from an initial state s0 ∈ S sampled from the distribution

of initial states µ0, it takes an action a0 ∈ A, then transitions to a new state s1 according

to T and receives a reward r1 according to R; this process repeats in every state, yielding

a sequence (s0, a0, r1, s1, a1, r2, s3, ...).
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A distinction is made between continuing and episodic settings. In the episodic

setting, there is a terminal state sT : when this terminal state is reached, the agent is

brought back to the initial state and starts a new episode.

It is also useful to model problems in which the agent does not have a full view of its

environment and may as a consequence be unable to distinguish between similar states.

This property is called partial observability. Partially observable MDPs (POMDPs)

include an additional function O : S ×Ω→ [0, 1] which is a conditional probability over

the observation ω ∈ Ω made by the agent in the current state. Most real-life applications

of RL correspond to POMDPs, which makes partial observability a transversal issue in

the field.

The goal of an RL agent is to find a policy that maximizes the sum of its rewards.

A policy determines the action to take according to the current state. Policies can be

stochastic: π : S ×A → [0, 1] and give a conditional probability over the next action, or

they can be deterministic: π : S → A.

In order to keep the sum of rewards finite, a discount factor γ ∈ [0, 1) is usually

introduced that makes short-term rewards more valuable than long-term ones. We can

then define the state-value function V π, which gives the value of a state s under policy

π, that is, the expected return starting in s if the agent follows π:

V π(s) = Eπ

[ ∞∑
k=0

γkRt+1+k | St = s

]
(2.1)

with Rt = R(St−1, At−1, St) a random variable of the reward at step t. State-value

functions verify a recurrent relationship known as the Bellman equation:

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

T (s′ | s, a)[R(s, a, s′) + γV π(s′)] (2.2)

In control tasks, the goal is to find a policy that yields the optimal state-value func-

tion:

V ∗(s) = maxπ∈ΠV π(s) (2.3)

where Π is the policy space. The policy associated with this optimal value function

is the optimal policy π∗. This optimal state-value function verifies a specific recurrent

relationship known as the Bellman optimality equation:
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V ∗(s) = maxa∈A
∑
s′∈S

T (s′ | s, a)[R(s, a, s′) + γV ∗(s′)] (2.4)

Other value functions are used that are more practical for action selection, namely

the action-value function Q and the advantage function A, which follow similar recurrent

relationships:

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkRt+1+k | St = s,At = a

]
(2.5)

Aπ(s, a) = Qπ(s, a)− V π(s) (2.6)

2.1.2 Classes of algorithms

An RL agent includes one or more of the following components (Francois-Lavet et al.,

2018):

• a representation of a value function that provides a prediction of how good each

state or each state/action pair is (this estimate is denoted by V to distinguish it

from the true value function V π);

• a direct representation of the policy;

• a model of the environment (the estimated transition function and the estimated

reward function).

This allows to distinguish different approaches to RL problems.

Value-based methods (section 2.2) learn a value-function and derive a policy from it,

whereas policy-based methods (section 2.3) directly learn their policy. Actor-critic meth-

ods are an intermediate approach where one component, the actor, directly improves the

current policy while using value-function estimates provided by the second component,

the critic.

Model-free methods are based solely on this kind of learning. Model-based methods

(section 2.4), on the other hand, only learn a model of the environment, then use a

planning algorithm to find an optimal policy. Again, intermediate algorithms may do

both learning and planning. Note that representations of a value function or of the policy

are also fundamentally models of the agent’s knowledge about its environment; however

in the context of RL, "model" usually designates a model of the environment.
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During the learning process, once the agent has started gathering knowledge about its

environment through experience, it faces a choice in every state: it can either select the

action that maximizes the expected return according to current knowledge (the greedy

action), or it can select another, a priori suboptimal action which could potentially lead

to greater rewards. A trade-off has to be made between exploiting the best strategy

found so far, and further exploring the environment to determine if a better strategy is

to be found.

This dilemma between exploration and exploitation is especially important when

the agent faces sparse, delayed rewards (such rewards give rise to the credit assignment

problem). This problem is primarily studied in the context of k-armed bandits, which are

MDPs with only one state: the objective is to determine as fast and reliably as possible

which action yields the highest rewards. The simplest approach to balancing exploration

and exploitation is to choose actions in an ϵ-greedy way: at each step, a random action

is chosen with probability ϵ < 1, otherwise the agent takes the greedy action.

Additionally, RL methods are often classified as on-policy or off-policy. According to

the definition given in Sutton and Barto (2018), on-policy methods attempt to evaluate

or improve the policy that is used to make decisions, whereas off-policy methods evaluate

or improve a policy different from that used to generate the data. On-policy methods

are unbiased and tend to be more stable. Off-policy methods, by leveraging data from

different sources, facilitate exploration, are more data-efficient, and more general: they

can learn from demonstrations, only they can be used in the offline setting. However,

off-policy methods usually necessitate special means to correct the bias that comes from

trying to learn a policy while exploring with another.

2.1.3 Approximation and generalization

The first RL algorithms addressed discrete problems and followed the tabular approach,

storing the value of every state or action-state pair. This proved impractical for most

applications for several reasons: the number of states increases exponentially in the

number of state variables (which is known as the curse of dimensionality), the problem

can be set with a continuous state space or action space, or it can be partially observable.

These shortcomings can be overcome with function approximation. In this approach,

a parameterized function is used to approximate the components of the learning algo-
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rithm (cf. section 2.1.2). Initially, the most common choice for approximation was to

use linear functions. However, in recent years, major breakthroughs were achieved in

high-dimensional problems using non-linear function approximation with deep neural

networks (Goodfellow et al., 2016), giving birth to deep reinforcement learning. Com-

mon neural networks architectures like convolutional neural networks (CNN; LeCun and

Bengio, 1995), recurrent neural networks (RNN; Hochreiter and Schmidhuber, 1997),

and Transformers (Vaswani et al., 2017) have been applied successfully to RL problems

(Mnih et al., 2013; Hausknecht and Stone, 2015; Zambaldi et al., 2018).

Despite empirical success, function approximation creates additional challenges. For

instance, methods employing it in conjunction with bootstrapping and off-policy learning

display increased instability and divergence. Sutton and Barto (2018) call this combina-

tion the deadly triad. Stabilizing off-policy learning remains a key issue in the field.

Function approximation represents a major step towards agents that can generalize

the information obtained about a given state to similar states. One of the main objectives

in RL research remains to design agents that generalize better. Generalization is defined

as the ability of an agent to perform well in an environment about which it knows little,

either because it has gathered limited information in this environment, or because this

environment differs slightly (with regard to transition or reward) from the one used for

learning (Francois-Lavet et al., 2018).

The ability to learn from as little data as possible is also termed sample efficiency.

Sigaud and Stulp (2019) distinguish three aspects of sample efficiency:

• data efficiency consists in extracting as much information as possible from the

available data,

• sample choice consists in collecting the most informative data from the environ-

ment, and

• sample reuse consists in improving the agent’s knowledge several times with the

same sample.

To date, state-of-the-art RL algorithms remain significantly sample-inefficient com-

pared to human learners: deep RL especially requires vast amounts of computational

power to solve complex tasks. Numerous research directions attempt to alleviate this core

difficulty, ranging from multi-task RL (Espeholt et al., 2018; Hessel et al., 2018; Haus-

man et al., 2018) to meta-RL (Duan et al., 2016b; Oh et al., 2020) to data-augmentation

(Kostrikov et al., 2021; Wang et al., 2022a) and pre-training techniques (Parisi et al.,
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2022; Driess et al., 2022).

2.2 Value-based methods

We begin our overview of RL algorithms with the original approach to the field, value-

based methods. Such methods try to estimate a value function from which they can

derive a policy. Under the scheme of generalized policy iteration, the value function

estimated from data generated by the current policy is used to improve this policy until

both value function and policy converge towards optimality. Value-based methods can

be tabular or approximate (Sutton and Barto, 2018). The methods presented in this

section and the next are model-free methods set in the online setting.

2.2.1 Tabular methods

Monte Carlo methods

Monte Carlo methods are the most straightforward way to estimate value functions in

the episodic setting. They are based on averaging complete returns in an incremental

manner. For example, in the prediction task, a full episode is generated by following the

policy π to evaluate; then, the value of every visited state st is updated:

V (st)← V (st) + α[Gt − V (st)], with α =
1

T (st)
,

Gt =

T−t−1∑
k=0

γkrt+1+k = rt+1 + γGt+1, GT = 0

(2.7)

where T (st) is the number of times st was visited across all episodes and Gt is

the discounted return from time step t to episode end T . State values are initialized

arbitrarily (usually 0). The process is repeated until convergence.

Here Gt is the target towards which we correct the estimated value function, and the

parameter α is the step size which defines how much the estimate can change at each

time step. The step size can also be a constant. This update is an instance of the general

update rule used for estimates in RL:

NewEstimator← OldEstimator+ StepSize× [Target−OldEstimate]×Direction (2.8)
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The difference [Target−OldEstimate] is called the error.

In the control task, a similar update is performed for the action-value function esti-

mate of each visited state-action pair Qw(s, a) and a simple policy improvement updates

the policy: π(s) ← argmaxa Qw(s, a) (the policy is also initialized arbitrarily). To

ensure exploration, soft policies must be used, i.e. policies that maintain a non-zero

probability for all actions. The most common choice is ϵ-greedy policies.

The above applies to the on-policy setting. Monte Carlo methods can also be off-

policy, generating information with a behavior policy b to learn a target policy π. The

most common technique for estimating expected values under one policy given samples

from another is importance sampling, whereby returns are weighted by an importance-

sampling ratio:

Gρ
t = ρt:T−1

T−t−1∑
k=0

γkrt+1+k, with ρt:T−1 =

T−1∏
k=t

π(ak|sk)
b(ak|sk)

(2.9)

Such techniques, though, usually increase the variance of the target. There are

variants that limit this increase in variance, such as per-reward importance sampling,

which weights every reward with the adequate ratio, instead of weighting the whole sum

of rewards:

Gρ
t =

T−t−1∑
k=0

ρt:t+kγ
krt+1+k = ρt(rt+1 + γGt+1), ρt = ρt:t (2.10)

Unfortunately, pure Monte Carlo methods are restricted to the episodic setting and

are computationally inefficient. Temporal-difference methods aim to correct these de-

fects.

Pure bootstrapping

Temporal-difference (TD) methods are a blend of Monte Carlo methods and dynamic

programming: they learn from samples of experiences yet bootstrap on previous (action-

)state values. Updates of the estimate are performed at each time step, in an on-line

fashion, which makes TD methods usable in the continuing setting and more sample-

efficient than Monte Carlo methods.

For example, the TD(0) algorithm solves the prediction problem by updating the

state-value function in the following way at each step (st, at, rt+1, st+1) generated by the
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policy being evaluated:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.11)

The update error rt+1 + γV (st+1) − V (st), named the TD error in this context, is

often noted δt.

The update for Sarsa, an on-policy control algorithm, is similar, using the sequence

(st, at, rt+1, st+1, at+1) generated at each step by the policy π being learned; this must

be a soft policy, greedy with regard to the action-state function Q:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.12)

Another algorithm, Q-learning, adapts the approach to off-policy control. The be-

havior policy is still a soft policy derived from Q, but the target policy is deterministically

greedy with regard to Q. This is reflected in the target of the update:

Q(st, at)← Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)] (2.13)

Finally, Expected Sarsa can be either on-policy or off-policy. The target of the

update is expressed as an expectation over the next action according to target policy π.

The soft behavior policy can be identical to π, or it can be derived from Q in another

way. Expected Sarsa includes Q-learning as a special case. The update is:

Q(st, at)← Q(st, at) + α

[
rt+1 + γ

∑
a

π(a|st+1)Q(st+1, a)−Q(st, at)

]
(2.14)

Multi-step bootstrapping

A significant improvement to TD methods is brought by n-step bootstrapping. In this

scheme, updates are delayed by a number n of steps, and the target of the update includes

the (discounted) rewards accumulated during this delay. Multi-step bootstrapping is an

intermediate between one-step bootstrapping and Monte Carlo methods, and usually

performs better than both by propagating rewards faster. As an example, the update

for on-policy n-step Sarsa for time step t becomes:
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Qt+n(st, at)← Qt+n−1(st, at) + α[Gt:t+n −Qt+n−1(st, at)],

Gt:t+n =

t+n−1∑
k=t

γk−trk+1 + γnQt+n−1(st+n, at+n)
(2.15)

where Qt+n refers to the estimate of Q at time step t+ n.

Off-policy n-step bootstrapping can be implemented in two ways. The first one is to

use importance sampling. The second one, put forth in the Tree-Backup algorithm, is

to generalize Expected Sarsa’s target to every step of the delayed update; the resulting

target is defined recursively as:

GTB
t:t+n = rt+1 + γ

∑
a

π(a|st+1)Qt(st+1, a) + γ ct+1 (Gt+1:t+n −Qt(st+1, at+1))

= Qt−1(st, at) +
t+n−1∑
k=t

(
k∏

i=t+1

γci

)(
rk+1 + γ

∑
a

π(a|sk+1)Qk(sk+1, a)−Qk−1(sk, ak)

)
(2.16)

where Gt+1:t+1 = Qt(st+1, at+1), and ci = π(ai|si) is the coefficient that corrects the

off-policy discrepancy.

All these algorithms were designed for the tabular setting. This facilitates theoretical

analysis, especially regarding proofs of convergence. However, approximate methods, de-

spite being less theoretically grounded, allow application in more complex environments

with a large or continuous state space.

2.2.2 Approximate methods

Usually, the goal set for RL algorithms with function approximation is to minimize a

loss function, the mean squared value error:

LV (w) = Es∼µb [(y − Vw(s))
2] (2.17)

where µb(s) is a probability distribution over states, proportional to the time spent in

each state while learning with behavior policy b (known as the on-policy distribution), y

is the target of the update, and Vw(s) (or V (s ; w)) is the value of state s approximated

with weight vector (or parameter vector) w. This loss function is in turn optimized

by gradient descent, which is another instance of the general update rule (eq. (2.8)),
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performed at every step t:

wt+1 ← wt −
1

2
α∇wtLV (wt)

i.e. wt+1 ← wt + αEs∼µb [(yt − Vwt(st))∇wtVwt(st)]

(2.18)

For practical purposes, stochastic gradient descent (SGD) is used, whereby the ex-

pectation is evaluated as a sum over a minibatch of transitions. A similar loss function

LQ(w) can be defined for the action-value function.

However, if the target bootstraps (which is desirable for computational efficiency),

a bias is introduced, since the target then depends on the current value of w. Such

semi-gradient methods have fewer convergence guarantees and are vulnerable to the

deadly triad. Alternatives have been studied, such as gradient-TD methods, that use

true gradients with other loss functions (Sutton and Barto, 2018); however, they do not

extend to non-linear control settings.

Deep Q-Networks

Mnih et al. (2013) created a breakthrough by achieving RL state-of-the-art performance

on Atari games, a reference RL benchmark, with an agent learning only from raw pixels,

without hand-crafted features or game-specific hyperparameter tuning. The proposed

algorithm, DQN, is a variant of Q-learning with a number of improvements:

• to deal with partial observability, states are represented as a sequence of 4 game

frames;

• the SGD minibatch is sampled uniformly from a memory D of the last N transi-

tions, in a process known as experience replay (Lin, 1992). This technique avoids

the correlations that would come from consecutive states (whereas supervised learn-

ing assumes independent samples) and therefore reduces variance; it improves sam-

ple efficiency, as each transition is used several times, which is especially impor-

tant for rare ones; and it avoids risks of divergence or local minima by smoothing

learning. Use of experience replay is made possible by the off-policy nature of

Q-learning;

• in a subsequent article (Mnih et al., 2015), the concept of target network is intro-

duced. Two weight vectors w,w− are maintained: at each step, w− is used for

target evaluation while w is updated and used for action selection; a parameter
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update w− ← w takes place periodically. This further reduces divergence and

oscillations of the Q-values.

• finally, rewards are clipped to [−1,+1] so that their range is the same over all

games.

The loss function for DQN summarizes these changes:

LQ(w) = E(s,a,r,s′)∼U(D)[(r + γmaxa′Q(s′, a′;w−)−Q(s, a;w))2] (2.19)

A CNN serves as function approximator: its input is the current sequence s, its

output is the vector Q(s, ·) of action-state values for all actions. This architecture is

computationally efficient as it allows to determine the greedy action in one forward pass

of the network.

Despite the empirical stability of the algorithm, there are no theoretical guarantees

regarding its convergence. Its success nevertheless prompted a number of proposed

improvements.

Improvements to DQN

A known limitation of Q-learning is that it suffers from positive maximization bias:

using the maximum over estimates of the Q-values as an estimate of the maximum Q-

value causes a positive ("optimistic") bias that can lead the Q-value to diverge, creating

suboptimal policies. This phenomenon is experimentally demonstrated by van Hasselt

et al. (2016) who propose Double DQN to counter it. This technique takes advantage

of the presence of the two weight vectors w,w− to stabilize the target value: w is always

used to determine the maximizing action and w− to give the value of the associated

state-action pair. This reduces overestimation and facilitates convergence:

LQ(w) = E(s,a,r,s′)∼U(D)[(r + γQ(s′, argmaxa′Q(s′, a′;w);w−)−Q(s, a;w))2] (2.20)

Another issue with DQN is that it replays transitions at the same frequency that

they are originally experienced although some transitions may provide more interesting

information than others. Schaul et al. (2016) propose prioritized experience replay

where transitions with high expected learning progress are replayed more frequently. A
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level of priority pt is associated with each transition; it is proportional to the TD error

δt, which is a good proxy for how "surprising" a transition is. In order to avoid always

replaying the same transitions and thus losing diversity, prioritization is made stochastic.

The probability of replaying the transition from step t is then defined as P(t) = pηt∑
k p

η
k

where η determines how much prioritization is used. As the replay distribution doesn’t

match the uniform distribution we are trying to evaluate, the algorithm risks getting

stuck in local optima at the end of the optimization, so there is need for importance

sampling: ρt =
(

1
NP(t)

)β(t)
where N is the replay memory size. ρtδt is then used instead

of δt in the DQN loss function.

Wang et al. (2016) present dueling Q-networks, a network architecture usable

with any deep RL value-based algorithm. The specificity of the dueling architecture

is to estimate both the state value V π(s) and the vector of advantage value Aπ(s, a)

for all actions, which are then combined to output the estimates of action-state values

Qπ(s, a). The weights used to compute V and A are shared until the output layer.

Separating the representations of V and A has several benefits. By learning V , the

network directly learns which states are valuable, and learning is accelerated since V

(and thus Q) is updated at each transition; by contrast, previous architectures learn

each Q(s, a) separately. Furthermore, A is sufficient for action selection, and may be

irrelevant in situations where the action does not affect the outcome, while V is always

important; the values of A also tend to be significantly smaller than the associated V ,

so separating them stabilizes optimization. If the value of Q was simply computed as

Q = V +A, it might result in inaccuracies due to A with regard to the greedy action a∗.

In order to always have Q(s, a∗) = V (s), the preferred upgrade is:

Q(st, at)← V (st) +A(st, at)−maxaA(st, a) (2.21)

However, replacing the max operator with averaging makes the value of Q(s, a) more

stable and gives better experimental results.

Another trend of improvements over DQN consists in distributional methods,

which essentially aim to learn the distribution of the random return (the value distribu-

tion) instead of the expectation of the return (the value). Learning the value distribution

helps in a number of ways: it improves stability, especially in the presence of stochasticity,

by using smoother target and loss function, and provides auxiliary predictions that ease
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learning through inductive bias. Bellemare et al. (2017) proposed the first distributional

method, where the value distribution is represented as a discrete distribution over a set

of atoms whose probabilities are parameterized by Dirac distributions. Other methods

in this direction seek to learn more expressive representations of this distribution, e.g.

via quantile functions (Dabney et al., 2018; Yang et al., 2020; Nguyen-Tang et al., 2020).

The original DQN deals with partial observability by stacking the N most recent

observations. In some environments it may be necessary to give the agent more memory

to understand more fragmented observations. Hausknecht and Stone (2015) propose

replacing the frame-stacking technique of (Mnih et al., 2013) with a recurrent layer after

the convolutional part of the neural network as a more general way to deal with partial

observability. The recurrent layer is an LSTM (Hochreiter and Schmidhuber, 1997).

Training the LSTM is done by storing sequences of transitions in the replay memory

and initializing the recurrent state to zero before each sequence is used for learning.

The resulting algorithm, Deep Recurrent Q-Networks, increases DQN’s resilience to

partial observability.

Standard DQN is limited in applicability with regard to action space: since it outputs

Q(s, a) for every action a, it cannot be used with continuous action spaces or too large

discrete ones. In the continuous case, discretization could be an option, but when applied

to N -dimensional actions, this creates a combinatorial explosion in the number of actions.

Tavakoli et al. (2018) propose Branching dueling Q-networks, an extension of dueling

Q-networks where the advantage value function is predicted independently for each action

dimension. However this solution does not allow coordination between the different sub-

actions. Metz et al. (2017) overcome this limitation by sequentially generating actions,

one dimension at a time. This is done by modifying the original MDP: the original

transitions are broken up into a trajectory of intermediate states that consist of the

current actual state and the sub-actions chosen so far; one 1-dimensional sub-action is

chosen at each step, and the intermediate states do not have rewards or discounting.

The Q-value QL of this modified MDP can be learned with standard DQN. However,

the increase in the number of states makes training harder and more unstable. In order

to mitigate this, the original Q-value QU is also learned with TD(0), and a soft equality

is enforced between QU and QL in the states of the modified MDP where no action

has yet been chosen. The algorithm is robust for the choice of the number of bins for

discretization and ordering of sub-actions. Generating sub-actions one dimension at



2.3. POLICY-BASED METHODS 41

a time also allows better exploration of the action space, especially when faced with

multimodal distributions. Sequential DQN thus manages to outperform DDPG (cf.

section 2.3.3) on several continuous benchmarks.

2.3 Policy-based methods

As an alternative to value-based methods, policy-based methods directly learn a policy

π(a | s ; θ) (also noted πθ(a | s)) parameterized by a weight vector θ. Therefore, they

always use function approximation. Policy-based methods present several advantages.

They can represent stochastic policies, as opposed to deterministic policies in value-based

methods: for example, this means that policy-based methods can deal with continuous

action spaces by expressing π(a | s ; θ) as a probability density function. Additionally,

deterministic policies may not be best suited for certain settings, such as POMDPs,

adversarial settings, and multi-objective problems. Finally, they are usually more stable

than value-based methods, but less sample-efficient.

2.3.1 Policy-gradient methods

Policy-gradient methods attempt to optimize the policy by gradient ascent:

θt+1 ← θt + α∇θtJ(θt) (2.22)

where J(θt) can be defined in two equivalent manners, with a specific definition of

the on-policy distribution µθ in each case (Sutton and Barto, 2018; Silver et al., 2014):
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Option a Option b (continuing setting only)

Ja(θ) = Es0∼µ0 [V πθ(s0)]

= Es∼µaθ , a∼πθ [R(s, a)]

=

∞∑
t=0

Eµ0,πθ
[
γtRt+1

]
Jb(θ) = Es∼µbθ, a∼πθ [R(s, a)]

= (1− γ)Es∼µbθ [V
πθ(s)]

= lim
h→∞

1

h

h∑
t=0

Eµ0,πθ [Rt+1]

expected discounted return average reward

µaθ(s) =
∑∞

t=0 γ
tPr(St = s |π, µ0) µbθ(s) = limt→∞ Pr(St = s |π, µ0)

discounted state distribution stationary state distribution

(2.23)

The issue is that the gradient of the performance depends both on the policy and the

state distribution induced by the policy, and this state distribution is itself dependant

on the usually unknown transition function. Fortunately, the policy gradient theorem

(Sutton and Barto, 2018) conveniently links the gradient of the performance to the

gradient of the policy only:

∇θJ(θ) =
∑
s

µθ(s)
∑
a

QB(s, a)∇θ π(a | s; θ)

= Es∼µθ, a∼πθ

[
QB(s, a)

∇θ π(a | s; θ)
π(a | s; θ)

] (2.24)

with QB(s, a) = Q(s, a) − B(s) where B(s) is an arbitrary baseline, used to reduce

variance. B(s) may be a constant (like 0) but a better choice is to use the estimate of

the state-value function V (s), in which case we obtain the advantage function.

Degris et al. (2012) extend this result to the off-policy setting, by proving that im-

provement to a local optimum of J(θ) is guaranteed by the following approximation,

which differs only by the presence of an importance sampling ratio that compensates the

use of a behavior policy b:

∇θJ(θ) ≈ Est∼µb, at∼b
[
ρtQB(st, at)

∇θ π(at | st; θ)
π(at | st; θ)

]
(2.25)

The ratio ∇θ π(a | s;θ)
π(a | s;θ) is called the likelihood ratio and is usually computed as

∇θ lnπ(a | s; θ). The right-hand side of eq. (2.24) can then be interpreted as the gradient
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of the following objective function:

LPG
QB

(θ) = Es∼µθ, a∼πθ [QB(s, a) lnπ(a | s; θ)] (2.26)

An entropy regularizer Hπ(s) = −
∑

a π(a|s) lnπ(a|s) is often added with a coefficient

c to force the policy to stay stochastic and maintain exploration (O’Donoghue et al., 2017;

Francois-Lavet et al., 2018):

LPG
QB

(θ) = Es∼µθ, a∼πθ [QB(s, a) lnπ(a | s; θ)] + cEs∼µθHπθ(s) (2.27)

From this theorem, a simple policy gradient algorithm, REINFORCE (Williams,

1992) can be derived that updates θ using episodic returns, in a Monte Carlo fashion;

that is, at the end of every episode, the update for each step t of the episode is:

θ ← θ + αγt(Gt −B(st))∇θ lnπ(at | st; θ) (2.28)

REINFORCE is thus an on-policy approximate method with strong convergence

properties. Estimates of the expected return obtained by Monte Carlo sampling are

unbiased, but also display high variance and sample-inefficiency.

2.3.2 Actor-critic methods

Pure policy-gradient methods need to form an estimate of QB at each time step, which

is achieved in the algorithms presented so far by Monte Carlo sampling. A more sample-

efficient approach is to learn a value function parameterized by a vector w, called a critic,

in parallel. The critic is used to estimate QB, at the cost of some bias, while the actor

outputs the policy distribution. This is the concept of actor-critic algorithms (Konda

and Tsitsiklis, 2000).

The first prominent actor-critic algorithm in deep RL was Advantage Actor-Critic

(A2C) (Mnih et al., 2016; Wu et al., 2017). This algorithm also innovated in a number

of other ways: its neural network architecture contained layers that were shared between

the policy and value function; it used multiple actor-learners that ran in parallel on a

multi-threaded CPU, generating their own experience and averaging their gradients to

update common synchronized network parameters; and it used fixed-length segments of

experience to compute estimators of the multi-step returns and advantage function.
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A2C did not use a replay buffer, which came at a cost in sample-efficiency. Later

actor-critic methods improved on this aspect by incorporating experience replay and

importance sampling to enable off-policy learning, like ACER (Wang et al., 2017), or

by using lower-variance estimators of the policy gradient and learning distributional

Q-values, like Reactor (Gruslys et al., 2017).

2.3.3 Deterministic-policy gradient

Silver et al. (2014) adapt policy-gradient methods to the use of a deterministic target

policy π(s; θ) in the presence of a continuous action space. This approach is motivated

by the fact that the gradient of a stochastic policy integrates over both the state space

and the action space, while the gradient of a deterministic policy integrates only over the

state space, which means fewer samples to estimate it and more computational efficiency,

especially with large action spaces. Furthermore, stochastic-policy gradients display high

variance when the stochastic policy converges towards a deterministic policy; using a

deterministic policy from the start prevents this and makes learning more stable.

An analog of the policy gradient theorem is provided for the deterministic-policy

gradient (DPG):

∇θJ(θ) ≈ Es∼µb [∇θπ(s; θ)∇aQ
π(s, a)|a=π(s;θ)] (2.29)

where µb is the state distribution under a policy b. This relation applies to on-policy

and off-policy settings. In the on-policy case (b = π), the relation is an equality. The off-

policy case is of greater practical interest since b can then be a stochastic policy which

encourages exploration; b is often defined by adding noise to the deterministic target

policy so that b(s) ∼ N (π(s; θ), σ2). The fact that the target policy is deterministic

means no importance sampling is needed in eq. (2.29). The authors further prove that

the deterministic policy gradient is the limiting case of stochastic policy gradient, when

the variance of the stochastic policy tends to zero.

The above result can be applied to learn the actor of an actor-critic architecture where

the critic provides an estimate of Qπ(s, a). In particular, Lillicrap et al. (2016) propose

to use DQN’s approach (cf. section 2.2.2) to learn the critic, as a way to apply DQN

to continuous action spaces, yielding deep deterministic-policy gradient (DDPG).

Fujimoto et al. (2018) adapt double learning for actor-critic algorithms and apply it to
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DDPG to obtain the Twin Delayed Deep Deterministic policy-gradient algorithm

(TD3).

2.3.4 Trust-region methods

One issue with policy-gradient methods is that they follow the steepest-ascent direction

∇θJ(θ) in the parameter space. This entails the risk of destructive policy updates, since

small changes in parameter space may result in radically different policies in practice.

One possible improvement to this problem is to try to follow the steepest ascent in the

policy space. To do so, natural policy gradient (Kakade, 2001; Amari, 1998) follows the

corrected direction F−1
θ ∇θJ(θ) where Fθ is the Fisher information matrix. Following

the steepest ascent in policy space improves the optimization’s stability while keeping

vanilla policy gradient’s convergence guarantees; the update in fact moves the policy in

the direction of a greedy policy improvement. However, computing, inverting and storing

the Fisher matrix is very expensive, which makes natural policy gradient unsuitable for

large parameter vectors, such as those of deep neural networks.

Trust-Region Policy Optimization (Schulman et al., 2015) makes this line of thought

more practical by subjecting the gradient of the policy to a constraint on the KL-

divergence between the old policy and the updated policy. While this method exhibits

strong convergence guarantees and is applicable to neural networks, it requires the use

of conjugate gradient descent and line search to enforce the KL constraint. Proximal

Policy Optimization (Schulman et al., 2017b) improves on TRPO by dropping the

KL divergence constraint and clipping the original objective function:

LCLIP (θ) = Es∼µθ̄, a∼πθ̄

[
min

(
ÂGAE

θ̄ (s, a)
π(a|s; θ)
π(a|s; θ̄)

, ÂGAE

θ̄ (s, a)

[
π(a|s; θ)
π(a|s; θ̄)

]1+ϵ
1−ϵ

)]
(2.30)

where [x]ul is the value of x clipped in the interval [l, u] and ϵ is a hyperparameter.

The clipping of the policy ratio ensures that the next policy is not too different from the

current one, which allows to drop the KL constraint. The min operator ensures that the

monotonic improvement guarantees of TRPO are maintained. This new formulation is

simpler and more generally applicable (e.g. it allows parameter sharing, unlike TRPO).

It is also more sample-efficient thanks to the use of Generalized Advantage Estimation

(Schulman et al., 2016) which estimates A with low variance. It adapts a common
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estimator of A, based on n-step returns:

Â(n)(st, at) =
n−1∑
l=0

γlrt+l + γnV (st+n)− V (st) =
n−1∑
l=0

γlδt+l (2.31)

where δt = rt + γV (st+1)− V (st) is the TD error. This estimator is unbiased if V is

the true state-value function. When using an approximation of V , the bias decreases as

n tends to infinity. This motivates the definition of the generalized advantage estimator

as an exponentially weighted sum of estimators Â
(n)
t :

ÂGAE(st, at) = (1− λ)
∞∑
n=1

λn−1Â
(n)
t (st, at) =

∞∑
l=0

(γλ)lδt+l (2.32)

The value of λ ∈ [0, 1] determines a trade-off between variance (higher as λ increases)

and bias (higher as λ decreases).

2.3.5 Maximum-entropy methods

Policy-gradient algorithms often include an entropy regularizer that helps to keep the

policy stochastic so as to maintain exploration. In this case, the objective can be defined

as:

π∗ = argmaxπ
∑
t

Es0∼µ0,a0:t∼π[R(st, at)] + cEs∼µπHπ(s) (2.33)

Another option is to maximize the entropy of the entire trajectory distribution under

policy π. This is the objective of maximum entropy RL:

π∗
H = argmaxπ

∑
t

Es0∼µ0,a0:t∼π[R(st, at) + cHπ(st)] (2.34)

This can be interpreted as trying to learn not a deterministic optimal behavior, but

a stochastic policy that encompasses all quasi-optimal behaviors. This approach can be

justified by framing reinforcement learning as a probabilistic inference problem (Levine,

2018). A discount parameter γ is usually added for variance reduction.

Maximum entropy methods have a number of benefits. They help exploration, es-

pecially in the case of multi-modal objectives (section 2.5.1). They are also robust to

model and estimation errors and in adversarial settings. Finally, they are suited for multi-

task and transfer learning; for example, they can be used to pre-train general-purpose
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stochastic policies that can then be fine-tuned for specific tasks (Haarnoja et al., 2017).

Besides earlier methods (Haarnoja et al., 2017; Nachum et al., 2017, 2018b), the main

maximum-entropy algorithm is Soft actor-critic (Haarnoja et al., 2018). Similarly to

policy iteration, SAC alternates between policy evaluation, which is here given by:

QH(st, at) = rt+1 + γEst+1∼T (st,at)[VH(st+1)]

VH(st) = Eat∼π[QH(st, at)− lnπ(at|st)]
(2.35)

and policy improvement, given for all states s by:

πnew = argminπ′DKL

(
π′(·|s) ||

exp
(
Qπold
H (s, ·)

)
Zπold(s)

)
(2.36)

where Zπold is a partition function that can be ignored in optimization. This process

is approximated with SGD applied to three neural networks Vψ (not indispensable but

improves stability), Qw, and fθ(ϵt; st)→ at (that induces the actual policy πθ).

Interestingly, Schulman et al. (2017a) demonstrate that the gradient for a "soft" ver-

sion of Q-learning is actually the same as the policy gradient for the maximum entropy

objective; that is, their expectation is the same even though their variance can be dif-

ferent. In any case, the learning curves of these two algorithms are empirically similar

given the right hyperparameters.

2.4 Planning and model-based methods

Being able to predict the dynamics of the environment opens a host of opportunities for

the learning agent. The ability to predict the next state and reward are a given when

a perfect model of the environment can be provided, for example in board games like

chess; this case has been extensively studied in the contexts of planning and optimal

control. However, in most RL applications, a model of the environment is not available

beforehand and instead has to be learned by supervised learning before planning can

take place.

The main promise of model-based approaches is to reduce sample complexity, by

favoring model sampling over environment sampling, to the expense of increased compu-

tational requirements. Another advantage would be improved generalization, as planning

methods can reason about previously unseen situations, unlike reactive model-free poli-
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cies. Planning could also potentially help to locally smooth out function approximation

errors associated with value- and policy-based methods, which would result in better

performance, provided the model’s predictions are accurate enough.

2.4.1 Model learning

Model-based methods make use of a model M of the transition function T : S×A×S →

[0, 1] (also called the dynamics of the models). In most cases this model is not initially

available and has to be learned. Learning accurate models for complex environments

can prove a significant challenge. It is vital, however, as planning over poor models

will degrade performance compared to model-free methods, a problem known as model

bias (Deisenroth and Rasmussen, 2011). To limit inaccuracy in predictions, model-

based methods either try to stay close to data, as in guided policy search (Levine et al.,

2016), or directly estimate epistemic uncertainty (i.e. the uncertainty on the model’s

accuracy, as opposed to aleatoric uncertainty, which is synonymous with stochasticity

in the environment). Uncertainty can be evaluated with bootstrapped ensembles or

Bayesian neural networks (Chua et al., 2018; Depeweg et al., 2017), which both amount

to learning separate models of the same environment: the degree of disagreement between

models serves as a measure of model uncertainty.

Learning the dynamics of the environment fundamentally is a supervised learning

problem. For continuous state spaces, the standard practice in model-based RL is to

train the model to predict the change in state ∆s = st+1 − st rather than the next

state st+1, similarly to the concept of residual nets (He et al., 2015): this allows more

accurate predictions in the case of small changes (Deisenroth and Rasmussen, 2011). In

order to scale reasonably, neural networks are the most common approach, even though

iteratively refitted linear models have also given excellent results (Levine et al., 2016).

The most common and obvious issue in model learning is having to deal with a

stochastic environment. A first approach is descriptive models, that capture the entire

probability distribution of all transitions, for example with Gaussian processes (Deisen-

roth and Rasmussen, 2011) or probabilistic neural networks (Chua et al., 2018; Hafner

et al., 2019). A second approach is generative models, that simply produce samples of

the next state (and reward), for example using Bayesian neural networks (Depeweg et al.,

2017; Gal et al., 2016). In this case, a common trick is to reparametrize the model as a
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function of some stochastic noise ξ: st+1 = f(st, at; ξ) (Heess et al., 2015).

In the case of a non-stationary environment, the standard approach is partial models:

the agent learns a different model for every environment mode and switches to the

relevant model when the mode changes (Nagabandi et al., 2019). This is actually a

matter of multi-task learning and meta-learning.

When multi-step prediction is required, the most natural option is to chain one-step

model predictions. However this tends to compound one-step errors. Alternatively, one

can learn n-step predictions for all steps 1 ⩽ n < N to increase accuracy (Hafner et al.,

2019). Mishra et al. (2017) take the idea further and propose to learn temporal-segment

models, which predict the distribution over future state trajectories.

As for partial observability, the same solutions as for model-free methods apply;

that is, the most common are RNNs (Ha and Schmidhuber, 2018) and frame stacking

(Depeweg et al., 2017), although memory-based approaches have also been proposed

(Gemici et al., 2017).

Finally, the difficulty of planning increases in high-dimensional state spaces; many

papers attempt to perform dimensionality reduction in order to plan at the level of the

environment’s latent dynamics, especially by extending VAEs to the temporal setting

(Watter et al., 2015; Krishnan et al., 2015; Karl et al., 2017).

2.4.2 Planning with a learned model

The problem of planning actions in an environment whose model is known has been stud-

ied extensively, for example with dynamic programming. Planning has been given many

definitions. In its strictest sense, it refers to algorithms that solve decision-making prob-

lems without making use of learning. A simple approach to complex decision-making

problems, then, is to learn a model of the environment and apply planning methods

on it. Note that the model may be learned offline (before planning) or online (at the

same time as planning). Discrete actions are suited for look-ahead search methods like

MCTS (Browne et al., 2012). Continuous actions are tackled with trajectory optimiza-

tion methods that range from direct optimal control, where trajectories are optimized

with metaheuristics like random search or CEM (as in Nagabandi et al., 2018; Chua

et al., 2018), to differential planning methods like iLQR, which approximates non-linear

systems with linear dynamics and quadratic rewards (Todorov and Li, 2005).
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These methods can be used for open-loop planning, where a plan is determined at

the beginning of an episode and then executed entirely. However, it is usually preferable

to use closed-loop planning, where feedback is allowed after the plan has started being

executed, especially when the planning is applied to a learned model of a complex,

stochastic environment. Most approaches use model predictive control, meaning that

planning is repeated at each step, and only the first step of each plan is executed.

2.4.3 Model-based RL

In a broader sense, planning refers to any process that takes a model as input and outputs

(or improves) a policy (Sutton and Barto, 2018). Under this definition, planning may

be integrated with model-free RL in what is known as model-based RL.

Given a policy, the most direct way of using a model is to generate fictional transitions

or trajectories that can then be exploited as additional training data for model-free

optimization. This is sometimes termed imagination: the model-free algorithm makes

use of both real and imagined transitions for training. This approach was pioneered

with Dyna-Q (Sutton and Barto, 2018), which applied it to the classic Q-learning,

with a tabular model. Recent approaches often use model ensembles to maintain model

uncertainty (Kurutach et al., 2018; Clavera et al., 2018). Models can also be used to

estimate n-step returns (Feinberg et al., 2018; Buckman et al., 2019).

Model-free methods may also be used in combination with the pure planning algo-

rithms. This can go two ways: we can plan with learned priors, for example by using

value functions and policies learned with model-free RL as the inputs of a planning algo-

rithm, or we can learn with planned targets, by using planning algorithms to determine

targets that drive the updates of the policy or value function of a model-free algorithm.

Both approaches can be combined to form a procedure that alternates between planning

and learning, where both provide information to improve the other (Silver et al., 2017a,

2018; Levine and Koltun, 2013; Levine and Abbeel, 2014; Levine et al., 2016).

2.4.4 Implicit planning

All methods presented so far in this section rest on two fundamental ideas:

• learning a model of the environment’s dynamics, i.e. a module that predicts the

next environment state (or next observation in the case of a POMDP), via super-
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vised learning ;

• exploiting this model to obtain or improve a policy by applying a predefined plan-

ning algorithm: pure planning, imagination, value gradients, etc.

A number of recently proposed algorithms diverge from this process, by training

their model differently or by learning how to plan on their model. These approaches are

sometimes grouped as implicit planning.

Differentiable planning algorithms use a classic supervised model and focus on learn-

ing how to plan. Learning how to plan allows to adapt the planning algorithm to the

problem at hand. This adaptable planning algorithm is implemented as a neural network,

so that the planning module is differentiable and can be trained by backpropagation.

This approach can be considered a form of meta-learning. One approach in learning how

to plan is to learn how to exploit imagination rollouts (Pascanu et al., 2017; Racanière

et al., 2017). However, imagination-based agents do not make use of the very efficient

search schemes of classic planning methods like MCTS, and may be unlikely to redis-

cover them. This is why another line of approach is to use these planning methods, and

attempt to learn subcomponents of it. For instance, Guez et al. (2018) approximate

MCTS with learnable operations for evaluation, selection, backup, and final decision.

Over the years, deep learning techniques have been developed that allow almost per-

fect pixel-level predictions for dynamics models (Oh et al., 2015). However, these pre-

diction models often learn a lot of useless information about the environment state/ob-

servation (like background noise): this information is useless in the sense that it doesn’t

help to predict the value of the next states. A possible solution, then, is to train a value

function with an embedded transition model to predict the value of future states. The

value function is trained with a model-free algorithm, so that the embedded model is

trained indirectly via backpropagation, not with supervised learning. This makes it an

abstract model, since the states it predicts do not have to correspond to real environment

states: only their values must match true state values. This is the origin of the term

value-equivalent model. These ideas were pioneered in the Predictron (Silver et al.,

2017b), which was used for value prediction in Markov reward processes. The exact

output of the Predictron is a compound of imagined n-step returns, which is trained

against real returns. The idea has since been applied to control problems (Oh et al.,

2017; Farquhar et al., 2018; Tamar et al., 2016) and proved its usefulness when applied

to AlphaZero to obtain MuZero (Schrittwieser et al., 2020), that was able to match Al-
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phaZero’s performance on board games without having access to a known environment

model and to beat the state-of-the-art performance on Atari. Despite interesting results,

it remains unclear whether value-equivalent models are able to learn the most complex

environment dynamics accurately without supervised learning.

The most extreme form of implicit planning, proposed by Guez et al. (2019), does

not rely on any form of model of the environment, and uses black-box recurrent net-

works of stacked ConvLSTMs (Shi et al., 2015) instead. Surprisingly, when this ar-

chitecture is trained with the IMPALA actor-critic method, the resulting algorithm

still exhibits typical planning-like characteristics (generalization in combinatorial spaces,

sample-efficiency, improved performance form additional thinking time) and surpasses

other implicit planning algorithms on a benchmark of planning tasks (Sokoban, Pac-

man...). Based on these results, the authors argue in favor of a behaviorist definition of

planning.

2.5 Extensions

2.5.1 Exploration

As mentioned in section 2.1, RL agents must explore their environment during learning

to try and discover greater sources of reward. However most classic algorithms rely

on random exploration, either via an ϵ-greedy strategy like DQN, or by applying a

stochastic policy with Gaussian noise and entropy regularization like most policy-based

methods. Other random exploration methods include Boltzmann exploration (Cesa-

Bianchi et al., 2017), which uses the exponential of the standard Q-function as the

probability of an action (and is closely related to maximum entropy methods), and noisy

networks (Fortunato et al., 2017), which add parametric noise to the network weights.

These techniques hit their limits when applied to environments with sparse and

delayed rewards, which instead require a form of directed exploration. This can take the

form of temporally-extended exploration, for example via Thompson sampling (Osband

et al., 2016) or self-imitation (Ecoffet et al., 2019, 2020; Oh et al., 2018). A lot of

research also focuses on intrinsic motivation (Oudeyer and Kaplan, 2007, 2009), that

is, on mimicking curiosity and "exploration for the sake of exploration". This notably

covers novelty search, which drives the agent towards underexplored states (Bellemare

et al., 2016; Ostrovski et al., 2017; Tang et al., 2017), and prediction-based exploration,
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where the agent focuses on exploring transitions whose dynamics it struggles to predict

(Achiam and Sastry, 2016; Pathak et al., 2017; Burda et al., 2018).

An alternative to advanced exploration methods is to guide the agent with human

input. This can take the form of reward shaping (Ng et al., 1999), that is, crafting a

reward function that doesn’t only reflect the end behavior we want the agent to adapt,

but also provides intermediate rewards that steer it in this direction. When the reward

function is difficult to specify, one can resort to imitation learning, the problem of learning

to perform a task from expert demonstrations. One approach is to recover an expert’s

cost function with inverse reinforcement learning (Ng and Russell, 2000; Abbeel and Ng,

2004). A more direct way to use demonstrations is to perform behavioral cloning (Hester

et al., 2017; Ho and Ermon, 2016) which learns a policy as a supervised learning problem

over state-action pairs from expert trajectories. Behavioral cloning can especially used

to initialize policies (Silver et al., 2016).

2.5.2 Distributed and evolutionary methods

One major impediment to current RL methods is that their training time can be very

long: for example, DQN and its variants are commonly trained for more than a week

on the standard Atari benchmark. Distributed methods allow to scale up computational

resources and speed up learning. Considerable work has also been done to make use of

distributed computation in RL (Babaeizadeh et al., 2017; Clemente et al., 2017; Stooke

and Abbeel, 2018; Horgan et al., 2018; Barth-Maron et al., 2018; Espeholt et al., 2018;

Kapturowski et al., 2018): research focuses on maximizing GPU occupation time for

gradient computation, maximizing multi-threaded CPU usage for experience generation,

and synchronizing actor and learner processes.

This is especially the case for evolutionary methods, an interesting alternative to solve

RL problems. The idea is to apply these techniques to optimize the policy parameters

(e.g. neural network weights), using episodic return as the fitness function; this is known

as direct policy search (Salimans et al., 2017). Several classic evolutionary methods

have been applied to RL, such as the Cross-entropy method (CEM; de Boer et al.,

2005; Szita and Lörincz, 2006), CMA-ES (Hansen, 2016; Duan et al., 2016a), and

genetic algorithms (Petroski Such et al., 2018). Alternatives include neuro-evolution

(Stanley et al., 2009; Kelly and Heywood, 2018) and combinations of gradient-based
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and evolutionary methods (Khadka and Tumer, 2018; Pourchot and Sigaud, 2019). Of

note is the ability of evolutionary methods to perform exploration naturally through

population-based methods (Lehman and Stanley, 2011; Conti et al., 2018).

2.5.3 Learning multiple tasks

In its basic setting, the role of an RL agent is to learn to perform a single task. This

is unlike natural agents, who possess a repertoire of skills which they can put to use

to accomplish a variety of tasks. These temporally-extended behaviors have also been

described in terms of options (Sutton et al., 1999) and goals (Sutton et al., 2011; Schaul

et al., 2015). Mastering several abilities has many advantages.

First, it allows hierarchization, i.e. the composition of low-level skills to perform a

high-level task. Hierarchical RL is long studied approach (Dayan and Hinton, 1992;

Parr and Russell, 1998; Dietterich, 2000). The difficulty of building a hierarchical agent

revolves around the coordination of its high-level and low-level controllers, and around

autonomously learning the subgoals/skills required to solve the top-level task (Vezhnevets

et al., 2017; Bacon et al., 2017; Nachum et al., 2018a).

Second, learning different skills "for the sake of it" can enable generalization to

similar skills, allowing the agent to rapidly adapt to the most relevant aspects of the

actual task. This is the framework of unsupervised (or self-supervised) RL (Jaderberg

et al., 2017; Shelhamer et al., 2017; Andrychowicz et al., 2017), which places emphasis

on autonomous option discovery (Fox et al., 2017; Achiam et al., 2018; Eysenbach et al.,

2018).

Finally, when skills are learned in a sequence, with their complexity and difficulty

increasing at each step, this forms a curriculum which may ease the agent’s learning. The

curriculum can consist in giving increasingly difficult goals to the agent, or exposing it to

environments of increasing complexity. Of interest is the development of methods that

perform automatic curriculum generation, for example via intrinsic motivation (Colas

et al., 2019; Sukhbaatar et al., 2018; Florensa et al., 2018; Jabri et al., 2019).

Unsupervised learning and curriculum learning both rely on a form of transfer learn-

ing. Transfer learning can also occur when the same agent is tasked with learning to

solve several unrelated environments, for example when trying to play different Atari

games with one agent (Espeholt et al., 2018). This multi-task RL can be carried out by
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training simultaneously on all environments (Kelly and Heywood, 2018; Teh et al., 2017;

Hessel et al., 2018), or learning to solve each environment sequentially (Hausman et al.,

2018; Kansky et al., 2017). Variants include online and lifelong learning. Both deal with

a non-stationary task distribution over time: online learning focuses on fast adaptation,

lifelong learning focuses on avoiding catastrophic forgetting (Nagabandi et al., 2019).

Meta-RL pushes the idea of transfer learning even further by attempting to train

a model to be able to quickly learn a new task from a small amount of new data on a

large number of different tasks. This meta-learning ability can involve automating the

discovery of model’s update rules or to train the model’s initial parameters in order to

maximize its few-shot performance on new tasks (Duan et al., 2016b; Finn et al., 2017;

Oh et al., 2020).

Recently, there have been proposals to build upon pre-trained large language models

to train agents that can display combinatorial generalization across different tasks (Li

et al., 2022; Wang et al., 2023).

2.5.4 Multi-objective RL

Most research in RL implicitly follows Sutton’s reward hypothesis, which states that "all

of what we mean by goals and purposes can be well thought of as maximization of the

expected value of the cumulative sum of a received scalar reward" (Sutton). This can

be understood as a statement on the best way for a user to communicate their intent to

the agent. This in turn implies two things: firstly, that the most practical method for a

human to express the desired behavior to the agent is to describe it in terms of a single

scalar reward function; secondly, that a scalar reward always constitutes a sufficient

signal based on which the agent can efficiently optimize its behavior.

Both of these implications can be questioned. The first one, in particular, will prob-

ably run counter to the experience of most RL practitioners, who discover early on that

it is difficult to specify a reward function that matches the desired behavior: RL algo-

rithms have a tendency to exploit their reward, that is, to maximize it in unintended

ways. In many cases, it is more natural to describe a desirable behavior in terms of

multiple objectives which may conflict with each other: in most RL applications, the

reward ends up begin defined as a scalarization of multiple subrewards corresponding to

different criteria. This scalarization, if interpreted as a utility function, must reflect the
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user’s preferences over the criteria; yet in some cases these preferences may be unknown

at training time, or they may vary depending on the situation. The second implication is

contradicted by the fact that even when a task can be easily described by a scalar reward

function, this reward might not prove simple to optimize either because it is sparse or

delayed. This is why practitioners often resort to reward shaping, auxiliary skills learn-

ing, etc. On the other hand, if many criteria/subrewards are involved, subsuming them

into a scalar signal may constitute an information bottleneck: the relationship between

an action and the rewards it leads to is less obvious than if the agent received a signal

that kept all subrewards intact. In other words, it can make credit assignment more

difficult.

These limitations motivate the study of multi-objective RL (MORL) (Roijers et al.,

2013). In MORL, we consider environments with vector-valued reward functions R :

S × A → Rn. Each component of this vector of rewards is associated to one of the

agent’s objectives. As a consequence, we can define the value function in vector form:

Vπ(s) = E
π,T

[
∞∑
k=0

γkR(St+k, At+k) |St = s] (2.37)

Since Vπ is a vector, in contrast to the single-objective case, there doesn’t necessarily

exist a unique optimal value, i.e. a value V that dominates all other values V′ such that

Vi(s) > V ′
i (s) ∀s, i. This can be replaced with the notion of Pareto-optimal values, that

is, values that are not dominated by any other. These form the Pareto front, which

represents the set of potentially optimal solutions depending on the user’s preferences.

The most common way to represent these preferences is in the form of a scalarization

function, which gives a complete ordering over values. Given vector-valued rewards,

there are actually three ways we can adapt the standard RL objective to the use of a

scalarization. First we can scalarize the rewards directly:

max
π∈Π

E
π,T

[

∞∑
t=0

γtu(R(St, At))] (2.38)

This reduces to a scalar reward and is not considered part of MORL. MORL algo-

rithms instead try to solve for either the scalarization of expected returns (SER):

max
π∈Π

u( E
π,T

[
∞∑
t=0

γtR(St, At)]) (2.39)
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or the expected scalarization of returns (ESR):

max
π∈Π

E
π,T

[u(
∞∑
t=0

γtR(St, At))] (2.40)

SER scalarizes the expectation over multiple returns, and is therefore more adequate

when the associated policy is executed many times; conversely, in ESR, returns do not

accumulate across episodes, so that this formulation is a better fit when the policy is run

once per user, for example in medical applications where the treatment of one patient

corresponds to a single episode. In practice, the most commonly adopted criterion is

SER.

Due to its simplicity, the most usual scalarization is the weighted average u(G) =∑
iwiGi, where each objective is attributed a reward weight wi with

∑
iwi = 1. How-

ever, linear scalarization has limited expressive power as it cannot express preferences

for Pareto-optimal solutions outside of the convex hull. As a consequence, non-linear

scalarizations, such as the thresholded lexicographic order, have also been studied, but

they present more challenges as they make the rewards non-additive (Dornheim, 2022;

Vamplew et al., 2022). Note that when using linear scalarization, the three formulations

outlined above are all equivalent. However, in the multi-objective setting, the network

can approximate the vector-valued action-state function

Qπ(s, a,w) = E
πw,T

[

∞∑
k=0

γkR(St+k, At+k) |St = s,At = a] (2.41)

Scalarizing this Q-value vector instead of directly outputting a scalar value typically

yields more accurate estimations of the global Q-value (Tajmajer, 2018). Also, treating

the problem as multi-objective is useful when the value of the reward weights at execution

is not known in advance. The classic approach in this case is to learn a convex coverage

set, which is a subset of undominated policies containing at least one optimal policy

for any reward weight vector: the idea of such algorithms is to separately learn the

optimal policies of a number of corner weights (Mossalam et al., 2016; Nguyen, 2018).

This approach, however, is impractical in the dynamic weights setting, where the reward

weights can change between episodes. In order to generalize over different reward weights,

the agent’s network can be conditioned on the current weights so it can learn and execute

policies corresponding to different overall objectives. This results in an adapted DQN
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loss function to minimize:

E
(s,a,r,s′)∼U(D)

[(r+ γmax
a′

Qθ−(s
′, a′,w)−Qθ(s, a,w))2] (2.42)

Several extensions of DQN have been proposed using this type of conditioning, dealing

in particular with how the reward weights in the above loss function should be chosen.

Abels et al. (2019) modify the loss function and experience replay to avoid forgetting

the policies for weight vectors that haven’t been experienced recently. Yang et al. (2019)

propose a new loss function that lets the agent use information gathered with other

policies to update the policy for the current reward weight vector. Wang et al. (2022b)

propose near on-policy experience replay, which reduces the extrapolation error caused

by data distribution mismatch.

2.6 Conclusion

In this chapter, we gave a tour of reinforcement learning. After presenting the field’s

terminology, we went through a typology of existing algorithms, from value-based and

policy-based methods to model-based methods, which each present their own trade-offs.

We concluded on extensions to the domain’s core framework, notably multi-task and

multi-objective reinforcement learning, which hold the promise of extending the appli-

cability of reinforcement learning by tackling more complex settings that are relevant to

real-world applications. Given this state of the art, in the next chapter we set out to

apply these techniques to radar resource management.



Chapter 3

Applications of reinforcement

learning to multi-function radars

In this chapter, we propose applications of reinforcement learning techniques to current

multi-function radar resource management architectures. We focus on two components:

task scheduling and active tracking dwell optimization. We tackle scheduling with model-

based methods and active tracking with model-free ones. Improvements over existing

resource management methods are highlighted.

3.1 Multi-function radar scheduling

Multi-function radars require efficient resource management strategies to fulfill their

missions. In particular, task scheduling is crucial to mitigate difficult situations such

as when all tasks cannot be accomplished. However, current approaches may prove

insufficient in the face of emerging threats. Reinforcement learning could provide a more

performant alternative to devise future radar schedulers. In the present chapter, we

follow this line of thinking by making several proposals. After an overview of existing

methods, we start by giving the scheduling problem a formulation that allows building

schedules in a flexible way, which facilitates the discovery of high-value solutions. This

opens the way for different resolution methods that we then present: first, a new heuristic

that outclasses existing ones while keeping computational cost low; then, an adaptation

of Monte Carlo Tree Search that is applicable to this new formulation. We show that our

algorithms provide noticeable performance improvement over similar methods proposed

59
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previously.

3.1.1 Literature review

Given that a radar runs under constraints of time, power, and processing, the radar’s

resources must be allocated between its different functions according to the radar’s mis-

sion, which determines the priority level of each function (Moo and Ding, 2015; Charlish

and Katsilieris, 2017). Among these resources, time budget is the most critical, as the

time spent performing a given task closely reflects its importance. Each function con-

sists of one or more tasks, that can be fixed, like search tasks, or assigned dynamically,

for example tracking a specific target; each task is carried out by performing a num-

ber of dwells. Based on the current situation, the radar continuously generates dwell

requests corresponding to its different functions. Dwell requests are characterized by

requirements in desired execution time, duration, and power, and are assigned priority

levels. The resulting list of requests is transmitted to a scheduler, whose role is to decide

which dwells should be executed and at what time. Efficient scheduling is crucial in

overload situations, which happen when temporal constraints prevent from executing all

dwells, forcing the scheduler to drop some of them according to their level of priority.

Prioritization therefore plays a key role in radar schedulers.

As mentioned in chapter 1, radar schedulers fall into two categories. Best-first sched-

ulers execute requests from a heuristically-ordered queue. Common heuristics include

earliest start time first (EST), earliest deadline first (EDF), and highest priority first

(HPF). It is also usual to combine these simple heuristics into more complex rules (But-

ler et al., 1997). The alternative is frame-based schedulers, which pack tasks into fixed-

duration frames. The advantage of this approach is that by considering a frozen list of

tasks to schedule, it allows the problem to be well-defined mathematically, which opens

the possibility of optimization methods. However, exact resolution is computationally

too expensive for the required time frames, so that in practice heuristics are preferred

(Orman et al., 1996; Winter and Baptiste, 2007; Jeauneau et al., 2013). Yet another

advantage of frame-based schedulers over best-first ones is to permit greater control

over the task parameters: for example, the task duration can be modeled as a variable,

which allows for more flexibility and enhanced utilization of the radar timeline (Mir and

Guitouni, 2014). It also enables task interleaving, where during a task’s idle time be-
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tween emission and reception another task may be scheduled, also increasing antenna

utilization (Orman et al., 1996). Frame-based scheduling has also been approached with

tabu-search methods (Abdelaziz and Mir, 2016) and genetic algorithms (Zhang et al.,

2019).

Despite the appeal of heuristics in terms of low computational load, their perfor-

mance is usually far below the optimal solution. This has prompted an interest in

artificial intelligence techniques that could improve scheduling performance while con-

forming to real-time computational constraints. Among the first attempts of this kind

was Izquierdo-Fuente and Casar-Corredera (1994)’s use of Hopfield networks to learn an

interleaving scheduler. More recently, Shaghaghi and Adve (2018) studied the applica-

tion of deep learning to task scheduling on multi-channel radars, i.e. radars that use

different frequencies to execute multiple tasks simultaneously. This kind of radar han-

dles multiple timelines, which improves antenna utilization but makes scheduling harder.

The authors ran a branch-and-bound algorithm on instances of the problem to create a

dataset which they used to train a neural network that estimates the value of the nodes of

the search tree. These evaluations are then used to prune the search tree by eliminating

the least promising nodes, which speeds up the search process. The proportion of pruned

nodes is determined by a scaling factor, which controls how robust the algorithm is to

estimation errors. The resulting combination of deep neural network and branch-and-

bound method produces near-optimal solutions with significantly reduced computation,

even if it remains too slow for real-time radar scheduling and requires a fixed number of

tasks.

To reduce computation, Shaghaghi et al. (2018) address the problem with Monte

Carlo Tree Search (MCTS). Along with branch-and-bound bound and dominance rules,

they use a neural network to guide MCTS’s exploration policy. The network is trained on

a dataset similarly obtained from branch-and-bound solutions. This further cuts down

time complexity compared to branch-and-bound methods while maintaining high-quality

solutions. Their algorithm is applicable to an arbitrary number of active input tasks.

To remove the need for a training dataset generated offline, Shaghaghi et al. (2019)

use a similar solution but train the policy network with data produced by the radar’s

interactions with its environment. The tree search is modified to accommodate several

constraints, such as non-homogeneous channels, blocked channels, and periodic tasks.

Similarly, Gaafar et al. (2019) propose a modified MCTS for single-channel radar
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task scheduling to lower the computational complexity. The modified MCTS notably

does not revisit states where all solutions branching from it have already been visited.

The exploration of the search tree is guided by an earliest start time first heuristic.

The authors also propose an RL variant of their algorithm using a scheme similar to

AlphaZero (Silver et al., 2017a), whereby a value network and a policy network are

trained based on MCTS rollouts and used to guide the exploration.

Figure 3.1: Schema of a frame-based scheduler.

3.1.2 Framework

We formalize the problem of radar task scheduling similarly to Gaafar et al. (2019). As

we mentioned above, our model of an MFR scheduler processes one fixed set of tasks1

at a time. An updated set of tasks is received at regular intervals. In the meantime, no

tasks may be added to the set that is being processed. Each task in a set I = {1, ..., n} is

characterized by its temporal constraints and its priority level. The temporal constraints

of a task i are defined by its length Li, its start time T is and drop time T idr (respectively

the earliest and latest date at which it can start executing), and its due time T idu, which is

the desired execution time. In this work, for any given instance, these constraints are all

held constant over the course of the scheduling process: we do not consider preemptive

tasks (e.g. for dwell interleaving) or variable duration time. Our goal is to determine

for each task i in I whether to schedule it (xi = 1, else 0), and if so at what execution

time ti, or to drop it (yi = 1, else 0). Scheduled tasks must be entirely contained in a

temporal frame [0, Tmax]. In order to arbitrate between tasks in case of conflicts, each

task is ascribed a drop cost Ci
dr and a delay cost Ci

de which reflect its priority level.

1In the rest of this chapter, we will use the standard terminology for scheduling, where "task" refers
to the basic elements of a schedule—in our case, radar dwells. It should not be confused with the radar
tasks mentioned earlier.
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The drop cost is incurred only when the corresponding task is dropped while the delay

cost determines how much the difference between the actual and ideal execution times is

penalized; this difference is an absolute value, unlike in (Gaafar et al., 2019) where due

times were not distinct from start times. How to assign relevant values to these costs

in an operational context is left to future work. We write instances of the problem as

P = {(Li, T is , T idr, T idu, Ci
dr, C

i
de) ∀i ∈ I ;Tmax}, and its (partial) solutions, or schedules,

as s = {(xi, yi, ti) ∀i ∈ I}. The objective is to minimize the sum of costs (or total cost)

CP (s). We summarize the problem below, where ⊕ represents an exclusive or:

min CP (s) =
∑
i∈I

xi
∣∣ti − T idu

∣∣Ci
de + yiCi

dr

s.t.



T is ⩽ ti ⩽ T idr ∀i ∈ I

ti + Li ⩽ Tmax ∀i ∈ I

ti + Li ⩽ tj ⊕ tj + Lj ⩽ ti if xi = xj = 1, ∀(i < j) ∈ I2

ti ∈ R+ ∀i ∈ I

xi, yi ∈ {0, 1} with xi = 1− yi, ∀i ∈ I

(3.1)

This problem can be solved to optimality with mixed-integer programming (MIP). Un-

fortunately, since problem (3.1) is in NP1, the computation time for MIP grows expo-

nentially with the number of tasks, making it prohibitive for radar applications. The

exclusive-or constraint has an interesting implementation in MIP:



ti + Li ⩽ tj +M(nij + oij)

tj + Lj ⩽ ti +M(nij + 1− oij)

 ∀(i < j) ∈ I2

nij ⩽ 2− xi − xj ∀(i < j) ∈ I2

nij , oij ∈ {0, 1} ∀(i < j) ∈ I2

(3.2)

In order to give further insight into the structure of the problem, we offer its detailed

formulation for MIP with pre-processing:

1This can be proven via a polynomial reduction with the knapsack problem by setting T i
s = Ci

de = 0
and T i

dr = Tmax for all i in I.
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min CP (s) =
∑
i∈I

lideC
i
de + (1− xi)Ci

dr

s.t.



T is ⩽ ti ⩽ T idr

ti + Li ⩽ Tmax

lide ⩾ ti − T idu

lide ⩾ T idu − ti


∀i ∈ I

ti + Li ⩽ tj +M(nij + oij)

tj + Lj ⩽ ti +M(nij + 1− oij)

 ∀(i < j) ∈ V

ti + Li ⩽ tj +Mnij ∀(i, j) ∈ U

xi + xj ⩽ 1 ∀(i < j) ∈ X

nij = 2− xi − xj ∀(i < j) ∈ U ∪ V

ti, lide ∈ R+ ∀i ∈ I

nij ∈ R+ ∀(i < j) ∈ U ∪ V

xi ∈ {0, 1} ∀i ∈ I

oij ∈ {0, 1} ∀(i < j) ∈ V

(3.3)

We use the following notations:

• nij : boolean, true if tasks i and j are not both scheduled;

• oij : boolean, true if task j is executed before task i, false if it is the opposite;

• M : an arbitrarily large number such that M ≫ Tmax;

• i → j ≡ T is + Li ⩽ T jdr ∧ T is + Li + Lj ⩽ Tmax ; i can precede j iff i and j can

both be scheduled with i executing before j;

• (i, j) ∈ X ≡ i ↛ j ∧ j ↛ i ; i and j are incompatible (have incompatible

interference) iff it is impossible to schedule both;

• (i, j) ∈ V ≡ i → j ∧ j → i ; i and j are invertible (have bilateral compatible

interference) iff they can be scheduled in both orders;

• (i, j) ∈ U ≡ i→ j ∧ j ↛ i ∧ T js < T idr + Li ; i and j have unilateral compatible

interference iff they can be scheduled in only one order and could overlap.

Of interest in formulation (3.3) is the presence of binary variables oij in addition to

xi (on the other hand, nij is an intermediary variable entirely determined by xi and

xj). The values of oij determine the order in which the scheduled tasks are placed. This

highlights the fact that problem (3.1) can be subdivided in three successive sub-problems:

1. inclusion: determine which tasks to schedule;
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2. ordering : determine the order in which these tasks should be scheduled;

3. time setting : determine the execution times of these ordered scheduled tasks.

Note that problem (3.1) can also be solved with heuristics like earliest start time first

(EST) or earliest deadline first (EDF). These heuristics (and variations thereof) are

common in radar resource management because they are fast and easy to implement.

However they will often produce poor solutions, for two reasons: first, because they

operate on the premise that the schedule must be built by adding tasks in chronological

order; second, because they do not account for task priority.

By contrast, we aim to develop approximate algorithms for radar task scheduling

that can approach optimal solutions while keeping reasonable computation times. Our

first step is to model problem (3.1) as a Markov decision process (MDP), characterized

by its state space S, action space A, transition function T and reward function R. Once

we have defined a suitable MDP, we will need an algorithm that outputs a strategy

for this MDP, which we call the decision algorithm. Following Gaafar et al. (2019), we

define a state as a partial schedule, where a number of tasks have been scheduled at

certain execution times and a number of others dropped while respecting the constraints

of (3.1). The only initial state s0 for a given instance of the problem is the associated

empty schedule, where no tasks are scheduled or dropped. We also define an action as

the choice of one task to schedule in the set of available tasks A = {i ∈ I | xi = yi = 0}.

Terminal states are states where no actions are available, that is, complete schedules,

where all tasks are scheduled or dropped.

Figure 3.2: Example of a partial schedule.

We can define the reward as the cost difference between the two states involved in

a transition, i.e. R(s, a, s′) = CP (s) − CP (s
′). With γ = 1, the value function becomes

V π(s0) = Eπ [CP (s0)− CP (sT )], which corresponds to our initial objective of finding a
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schedule s that minimizes CP (s). In practice, in our algorithms, we reason directly on

costs.

The choice of the transition function is the most crucial aspect of this formalization.

Transitions must deterministically decide what execution times to set and which tasks

to drop when a new task is added to a partial schedule.

The simplest option, used in (Gaafar et al., 2019), is to add tasks chronologically:

any newly added task i is assigned an execution time greater than that of all previously

scheduled tasks, and tasks that cannot be placed after i are dropped. However, this

restricts the range of viable strategies, since the decision algorithm has to solve both the

inclusion and the ordering sub-problems at the same time, while the transition function

only deals with the time setting sub-problem.

Figure 3.3: Example of a chronological transition.

Instead, we propose a transition model that allows building schedules in a more

flexible way. Our idea is to model the transition function such that it solves both the

ordering and the time setting sub-problems at each step. That is, given a set S of

scheduled tasks, the transition determines the order of tasks and their execution times

by minimizing the total delay cost:
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min
∑
i∈S

lideC
i
de

s.t.



T is ⩽ ti ⩽ T idr

ti + Li ⩽ Tmax

lide ⩾ ti − T idu

lide ⩾ T idu − ti


∀i ∈ S

ti + Li ⩽ tj +Moij

tj + Lj ⩽ ti +M(1− oij)

 ∀(i < j) ∈ V ∩ S2

ti + Li ⩽ tj ∀(i, j) ∈ U∩

ti, lide ∈ R+ ∀i ∈ S

oij ∈ {0, 1} ∀(i < j) ∈ V ∩ S2

(3.4)

Given a partial schedule s = {(xi, yi, ti) ∀i ∈ I}, in order to schedule a new task j ∈ I,

we solve sub-problem (3.4) for S = {i ∈ I | xi = 1} ∪ {j}. If there is no solution to the

sub-problem, j has to be dropped. After a task is scheduled, all remaining tasks in A

can be tested for dropping using this procedure.

Sub-problem (3.4) can also be treated with a MIP solver; however this requires finding

the order and execution times of all tasks in S at every transition. This is inefficient,

because with this transition model, when we move from a partial schedule s to a new

one s′ by adding a task i, the execution times in s are already optimal with regard to

the tasks scheduled in s. This means that if for example i can be placed at its desired

execution time without interfering with already scheduled tasks, then there is no need

to recompute the execution times of these tasks. To exploit this and a number of other

optimizations, we implement a custom solver for sub-problem (3.4) which we do not

detail here due to space limitations: the key idea is to recursively generate and evaluate

permutations of the scheduled tasks while limiting the number of generated permutations

by exploiting temporal constraints. Note that this way, we can check the availability of

a task faster, by interrupting the recursion as soon as we find a feasible permutation.

Our transition model allows adding tasks in any order by delegating part of the

optimization—ordering and time setting—to the environment. Crucially, for any sched-

ule s reached through this transition model, the execution times are optimal given the

tasks scheduled in s. (We can also limit the number of generated permutations to lower

the computation time, although we then lose the optimality guarantee.) This opens new
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Figure 3.4: Example of a transition processed by the custom solver.
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Figure 3.5: Solving the time setting and ordering problem.

possibilities for the choice of the decision algorithm, whose role is to solve the hardest

part of the problem: inclusion.

3.1.3 Task selection methods

HCLR

The first decision algorithm we propose is a heuristic that we call highest cost-length

ratio first (HCLR), which is similar to some knapsack problem heuristics. It consists

in sorting tasks by their ratio between drop cost and length, then scheduling them in

decreasing order (if they are still available when their turn comes). Equivalently, at each

step, we choose the following action:

a = argmaxa∈A
Ci
dr

Li

This heuristic empirically performs better than scheduling the task with the highest drop

cost first, because it accounts for situations where for example two shorter, lower-priority

tasks have a higher total drop cost than one longer, higher-priority task which they are

incompatible with. A similar criterion has been proposed for radar resource management

by Qu et al. (2019); however, the authors used the ratio in a task selection phase that

preceded the scheduling itself, which is based on EST. Using our transition model, we

can instead directly select and schedule each task in turn.
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MCTS

Our next decision algorithm is a version of Monte Carlo Tree Search (MCTS) adapted to

task scheduling, which is based in large part on the version of Gaafar et al. (2019). MCTS

uses a search tree where nodes represent MDP states and branches correspond to actions

taken in the parent node (Browne et al., 2012). The tree is constructed by successive

rollouts: starting from the root node, which corresponds to the initial state, we select an

action, apply the transition function to get the next node (which is created if needed),

and repeat. Once a terminal state is reached, we can compute its total cost C, then

backpropagate C up the path we just followed to update the best cost reached from each

state-action pair: C(s, a)← min{C(s, a), C}. This value is then used in the computation

of the upper-confidence bound U(s, a) which determines which actions are chosen in the

selection phase: a = argmaxa′ U(s, a′) with U(s, a) = P (s,a)
C(s,a)τ (1+N(s,a)) where τ is a

temperature, N(s, a) is the number of rollouts where action a was taken in state s, and

P (s, a) is a prior probability function over actions. This selection rule is designed to

balance exploration of the search tree and exploitation around the best solutions found

so far. The prior, especially, plays a prominent role in steering exploration; a simple way

to parameterize it is to sort the m available tasks according to a criterion, then assign

them a respective prior probability of p(1− p)m for m ranging from 0 (for the first task)

to m − 1. For our experiments, we set τ = 2 and p = 0.6, similarly to (Gaafar et al.,

2019), but we diverge by using HCLR as our sorting criterion instead of EST.

Figure 3.6: The steps of MCTS (adapted from Browne et al. (2012)).

One issue is that when using our transition model, since tasks can be scheduled in

any order, it is possible to reach the same terminal state via multiple different rollouts.

In order to prevent this, we structure our search tree similarly to a branch-and-bound
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(B&B) tree : when a new action is taken in node s, leading to a new node s′, all actions

explored in s in previous rollouts are made unavailable in s′ and its descendants. This

makes sure there is only one path to each terminal state in the search tree. However,

it also means that we may reach terminal nodes that are not complete schedules, when

some tasks can still be scheduled, but have all been made unavailable by the previous

rule. To limit the number of such situations, at each visit of a node s, we check if there

exists a terminal node s′ descended from s such that all tasks that are unexplored in s

are scheduled in s′; if so, these tasks are made unavailable in s. Additionally, to avoid

performing the same rollout twice, if a node has no more available actions, the action

that led to it is also made unavailable in the parent node, as in (Gaafar et al., 2019).

We call this algorithm B&B-MCTS.

Figure 3.7: Example of a B&B MCTS execution on the 5-task instance shown on the left.
Node label: 1 if the task is scheduled, 0 if dropped, dash if available, red if disallowed.
Solutions are shown in green. Brown nodes can be pruned based on solutions already
obtained, which restricts the search tree.

Usually, in MCTS, when we reach a new state, we want to know which actions

are available. With B&B-MCTS, this allows making the most effective use of pruning,

according to the above rules. However, with our transition model, it requires partially

solving (3.4) for each a priori available task to check if it has to be dropped. In larger

instances, this involves significant computation, which reduces the number of rollouts

that can be carried out in a given time. We propose two variants of B&B-MCTS: a

"safe" one that checks for unavailable tasks to drop when a new node is created, and a

"rash" one that attempts to schedule tasks without prior verification, and drops them
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Figure 3.8: Cost plotted against instance size for identical start and due times.

only if the attempt fails.

3.1.4 Results

To enable comparisons, we run experiments on instances from the same distribution as in

(Gaafar et al., 2019): Li ∼ U(2, 15), T is ∼ U(0, Tmax−12), T idu = 0, T idr−T is ∼ U(2, 12),

Ci
dr ∼ U(100, 500), Ci

de ∼ U(1, 15), Tmax = 100. The difficulty of an instance mostly

depends on the density of tasks; by keeping Tmax fixed, the difficulty can be controlled

by setting the number of tasks.

We compare our two methods, HCLR and B&B-MCTS, with the EST heuristic and

with the version of MCTS proposed in (Gaafar et al., 2019) (which we term EST-MCTS).

The run time of both versions of MCTS is limited to 1 second. All these algorithms are

implemented in Python. We compute the optimal solution using MIP on instances where

this resolution can be performed in a reasonable amount of time. These five algorithms

are run on the same instances, 1000 per number of tasks. We also compare our results

to those reported by (Gaafar et al., 2019) for a reinforcement learning-based extension

of EST-MCTS inspired by AlphaZero (Silver et al., 2017a).

Our results show that our approach provides a significant performance improvement

over EST-MCTS, and even surpasses the reinforcement learning algorithm of (Gaafar

et al., 2019), which used deep learning in conjunction with MCTS. Strikingly, the per-
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Table 3.1: Detailed statistics on three different instance types.

Algorithm Avg. cost Cost
std. dev.

Dropped
tasks (%)

Optimal
solutions (%)

Avg. runtime
(milliseconds)

Avg. number
of rollouts

Number of tasks = 25, identical start and due times
EST 4658.69 634.65 59.06 0.0 1.93 nan

EST-MCTS 3716.55 506.0 52.15 0.87 1002.88 727.06
HCLR 3390.6 551.68 48.2 21.35 13.12 nan

B&B-MCTS 3299.39 526.16 48.44 57.73 975.32 96.12
MIP-optimal 3268.43 523.85 48.65 100.0 1730.82 nan

Number of tasks = 50, identical start and due times
EST 12031.8 857.18 77.64 nan 2.32 nan

EST-MCTS 10897.03 758.17 73.23 nan 1004.79 587.63
HCLR 9130.98 799.9 63.62 nan 36.7 nan

B&B-MCTS 9080.49 780.86 63.79 nan 991.72 30.1
Number of tasks = 25, distinct start and due times

HCLR 3301.15 550.93 47.53 22.0 19.98 nan
B&B-MCTS 3219.61 524.51 47.61 56.5 994.69 70.96
MIP-optimal 3185.86 520.0 47.88 100.0 2219.44 nan
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Figure 3.9: 50 tasks

formance gain of B&B-MCTS over HCLR proves minimal. Moreover, with our imple-

mentation, HCLR’s run time averages 36 milliseconds on 50-task instances, which would

presumably make it more suitable for radar use cases than MCTS-based methods (Vin-

cent et al., 2021).

Unlike in (Gaafar et al., 2019), our approach allows due times distinct from start

times, thus reflecting radar requirements more closely. We also run experiments on a

similar task distribution but with T idu ∼ U(1, 4) and T idr − T is ∼ U(1, 8); our results

match those of the first distribution very closely.
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3.2 Reinforcement learning for active tracking

Electronically-scanned array antennas give multi-function radars more degrees of freedom

over the parameters of the dwells they can form. In particular, digital beamforming offers

more possibilities to vary the direction and shape of the beam, conferring to the radar

a form of beam agility. Dynamic beamwidth adaptation, especially, could help to track

more challenging targets, for example when hypermaneuverability and hypervelocity are

involved: increasing the beamwidth during maneuvers, for example, would increase the

robustness of the track by making the target less likely to go out of beam and avoid

detection. However, the ability to vary beamwidth from one dwell to another has so

far been underutilized. The reason is that the most common active tracking parameter

selection methods assume a fixed beamwidth in order to determine the required update

rate of the track. Therefore, if we want to perform dynamic beamwidth adaptation, we

also need to make decisions for the update rate. The beamwidth used also has an impact

on the dwell’s signal-to-noise ratio (SNR), which larger beamwidths decrease, lowering

the detection probability and measurement accuracy. To compensate for lower SNR,

the duration of the dwell should be increased. More adaptive active tracking resource

management methods should therefore control these three parameters of beamwidth,

update rate and waveform duration concurrently to optimize track maintenance.

In this chapter we approach this problem through a reinforcement learning lens.

After examining existing methods for active tracking parameter selection, we describe
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the simulator we implemented to train and test our agents. We first apply our method

to single-target tracking, where we do not take into account the radar’s global state. We

then study a more holistic approach to radar resource management, where we attempt

to manage both search and multi-target tracking: in this setting, we uncover limitations

of standard reinforcement learning methods, which motivates the development of new

algorithms in the next chapter.

3.2.1 Existing methods

Track update rate is a crucial part of target tracking. The track update rate can equiva-

lently be expressed as the revisit interval, which is the duration between update attempts.

The problem of setting track update rates is also known in the literature as beam schedul-

ing, not to be confused with task scheduling which is the placement of the dwell requests

on the antenna timeline by the scheduler as studied in section 3.1. Longer revisit in-

tervals mean lower antenna time utilization, but are only suitable for non-maneuvering

targets with predictable trajectories. Maneuvering targets, on the other hand, require

shorter revisit intervals as predictions on their movement must be updated often. Most

algorithms select the update rate based on either the innovation sequence of the tracking

filter (Baek et al., 2010) or on the predicted error covariance matrix (van Keuk and

Blackman, 1993; Daeipour et al., 1994).

These methods are computationally efficient and can be deployed in current radars.

However, they are model-sensitive: they especially depend on target models which can

be unknown or simplified compared to real target dynamics. Additionally, they deter-

mine the update rate on a per-track basis. In practice MFRs may have to track hundreds

of targets in parallel: if the radar is overloaded, the prioritization and scheduling mod-

ules must arbitrate for which tracks the update must be delayed. Yet this limits the

adaptability of track updates and results in a lack of coordination between the different

tracks.

The alternative is to consider performing multi-target resource allocation. This prob-

lem has in particular been studied as a type of restless bandit problem. Restless bandits

are an extension of k-armed bandits where each action is associated to a process that

evolves over time. Processes have a default (or passive) transition function, which dif-

fers from the active transition that takes place when the process is selected. Unlike in
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previous methods, the idea isn’t to set the revisit interval of each target after its up-

date; instead, this revisit interval emerges from the choice of updating or not a target

at each step. Resolution methods for bandit formulations of multi-target tracking use

variants of dynamic programming. Krishnamurthy and Evans (2001) develop optimal

and sub-optimal algorithms for optimal beam scheduling in electronically scanned array

tracking systems, where the problem is formulated as a multi-arm bandit problem with

hidden Markov models. La Scala and Moran (2006) study adaptive beam scheduling

and propose an algorithm to minimize target tracking error with phased array radars.

The bandit formulation can also be adapted to cover the update of both search and

tracking tasks, as proposed in (Wintenby, 2003). This setting removes the requirement

for prioritization and scheduling modules distinct from the dwell generation phase.

Bandit formulations for multi-target resource management is a promising approach

as it could allow joint optimization over all radar tasks, foregoing coordination issues

with common beam scheduling methods. However, current resolution methods for these

formulations use dynamic programming, which is accompanied by high computational

complexity owing to the curse of dimensionality, making it impractical to implement in

real radar systems. They also require to make a number of theoretical assumptions that

do not take into account some of the physical constraints exerted on radar systems.

Given the limitations of current active tracking methods, reinforcement learning pro-

vides an appealing alternative. If applied to single-target tracking, it holds the promise of

increased adaptability in terms of environment models, target models, and simultaneous

optimization of more dwells parameters than previously possible, especially regarding

to beamwidth. If applied to multi-target tracking, deep reinforcement learning would

allow global resource management optimization while lifting the hurdles posed by dy-

namic programming methods proposed previously. Pulkkinen et al. (2021) pioneered the

application of reinforcement learning to adaptive update rate selection for single-target

tracking. Specifically, a tabular Q-learning algorithm with epsilon-greedy exploration

is used to adaptively select the revisit interval of the track after each update, and the

reward to maximise is defined as the negative ratio between the update’s observation

time and previous revisit interval. If the target is lost, a negative track loss cost is given

as reward instead and the episode ends. Different state spaces are tested: they include

either the mode probabilities of the IMM or the innovation, i.e. the change in the fil-

ter’s angular accuracy after the update; either state can be augmented with the revisit
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interval selected at the previous step. The performance of the proposed approach is fa-

vorably benchmarked against the prediction error covariance matrix-based solution from

(Daeipour et al., 1994) in terms of mean and peak tracking loss and position prediction

error values. However, the approach is trained and evaluated on the same data, which is

a set of just six trajectories, which limits the paper’s claims in terms of generalization.

Furthermore, the use of a tabular algorithm limits the scalability of this method to more

informative state spaces or to multi-target scenarios. Finally, this approach is focused

only on update rates, whereas our goal is to allow adaptability in beamwidth as well,

which forces us to select observation time simultaneously.

3.2.2 Radar simulator

In order to train and evaluate RL methods, we need to implement an environment that

simulates the interaction of a radar with its surroundings. This must include trajectory

generation as well as a complete radar pipeline, from detection to track management to

dwell generation. Most importantly, we need an antenna model that reflects the effects

of the dwell parameters we are interested, especially beamwidth and observation time.

We do not aim to maximize physical accuracy as this would severely impact performance

and needlessly slow down the learning process. Instead we need a behavioral simulator

where our experiments can provide a proof of concept. The environment must then wrap

this simulator and provide an interface for reinforcement learning algorithms to interact

with it.

We build our simulator as an extension to the Stone Soup framework. Stone Soup

provides a testbed for tracking and state estimation algorithms. It is written in Python

and focused on flexibility to allow the user to build an environment suited to their

use through the combination of components corresponding to various radar modules.

Standard implementation of various components are provided, which researchers can

substitute for their own to develop new algorithms and compare them with existing ones

according to metrics. To support this modularity, Stone Soup clearly defines the external

interface of each type of components, which gives it the extensibility we need to wrap a

RL environment around it.

The architecture of our simulator is outlined in fig. 3.11. Stone Soup provides

groundtruth simulators, which generate trajectories based on one or more kinematic
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Figure 3.11: Architecture of our simulator based on Stone Soup. Black arrows represent
composition relationships between modules. Red arrows represent the original Stone
Soup data flow. Green arrows represent the feedback loop added to our simulator.

models. A sensor component models the detection probability of target and returns

measurements originating from it based on its measurement model. A detector compo-

nent coordinates groundtruth generation and the detections resulting from them. The

detections are fed to a tracker component that covers the whole management of the

tracks’ life cycles from initialization to deletion. The detections go through a data asso-

ciation phase and are then used to update the associated track via a filtering algorithm;

a Kalman filter and variants thereof are provided. The groundtruth, detections, and

tracks are collected to establish metrics.

We extend Stone Soup’s framework in a number of ways to make it suitable for our

experiments. First, we implement an Interacting Multiple Model (IMM), which is the

type of filtering algorithm most adapted to the tracking of maneuvering targets. We

also develop a sensor component that models an electronically scanned array antenna

along the lines of the description given in chapter 1. Most crucially, we add a resource

management component that establishes a feedback loop between the tracks and the

dwells generated at the next step. Stone Soup only implements a one-way data flow,

from groundtruth to tracks. By contrast, the resource manager takes the current tracks

as input and can generate dwells which are transmitted to the sensor The resource

manager serves as the interface with which the reinforcement learning algorithms can
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interact to receive observations corresponding to the tracks and to take actions which

will be translated into dwells to send to the antenna. These dwells affect the detection

probability and measurement model of the antenna. Finally, we implement an interactive

plotter based on Plotly to analyze the results of runs in terms of tracks and metrics.

Figure 3.12: Example of the rendering of a run in the simulator.

3.2.3 Single-target tracking

We now turn to our objective to optimize the joint selection of beamwidth, update

rate, and observation time for active tracking. We simplify the setting by assuming a

single-target scenario. We also ignore the elevation to consider a 2D simulation. Each

episode starts with the track begin initialized at the target’s initial state; we do not

study the role of the search function in the track’s initialization as it happens in real

systems. The trajectory of the target is generated online with a maneuvering target

kinematic model; the target is constrained to remain in a 40km radius around the radar.

The target’s state consists in its position, velocity, and acceleration in Cartesian coordi-

nates [x, ẋ, ẍ, y, ẏ, ÿ]⊤. The antenna is characterized by a reference signal-to-noise ratio

SNRref = 15dB at 50km for a reference dwell with observation time T refobs = 432µs and

beamwidth θref3dB = 4.12◦, and a probability of false alarm Pfa = 1 × 10−5. The filter

algorithm used for the simulation is an IMM estimator that takes three linear Kalman

filters, one per target kinematic models: these are a constant velocity, a constant turn,

and a constant acceleration models, all with noise coefficient q = 0.01; the constant turn
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rate is ω = 0.3rad. The transition probability matrix between the three models is given

by:

p =


0.6 0.2 0.2

0.3 0.7 0.0

0.2 0.2 0.6

 (3.5)

The IMM’s target model mirrors the one used to generate the trajectories. Finally,

an episode is interrupted if the track is lost, or ends after a time limit of 200s. A track is

considered lost if the IMM’s standard deviation of the estimated target azimuth exceeds

3° or after 5 consecutive missed detections.

In terms of interaction between the environment and the RL agent, the observations

exposed to the agent consist in the state of the target as estimated by the IMM, the

IMM’s current mode probabilities, and the previous action. The target state information

contains the estimated position and velocity in range and azimuth, as well as their

estimated variance. Along the previous action, the observation includes information

about whether a detection occurred at the previous time step and about the accuracy

of this detection in terms of variance in azimuth. We use a discrete action space where

each action corresponds to a combination of an observation time and a beamwidth. The

available observation times are AT = {1, 2, 3, 4} × T refobs while the available beamwidths

are Aθ = {0.25, 0.5, 0.75, 1, 1.25} × θref3dB. The agent’s action is converted to a dwell

according to these parameters. We also include a no-op action for which no dwell is

generated, which gives us a total of 21 possible actions. An environment step corresponds

to 1 second of in-simulation time, to mimic the constraints of a antenna rotating at 60

rotations per minute. The update rate is therefore not considered a settable parameter,

but emerges implicitly from the alternation of no-ops and dwell actions. The transition

function is implemented by the radar simulator based on Stone Soup outlined above. The

reward function takes into account the satisfaction of an accuracy window [σmin, σmax],

defined in terms of angular standard deviation in azimuth σaz as computed by the IMM;

if the agent takes an action other than no-op, it receives a penalty proportional to the

dwell’s observation time Tobs weighted by a coefficient cobs to discourage increased radar

load; in case of track loss, a more significant penalty closs is incurred. The reward can

therefore be described as:
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Figure 3.13: Mean and 95% confidence interval of reward (left) and episode length (right)
over 5 training runs.

r =


−closs if track is lost

1[σmin ⩽ σaz ⩽ σmax]− Tobs
maxAT

otherwise
(3.6)

In our experiments we set σmin = 1◦, σmax = 2◦, cobs = 1, and closs = 50. The

choice of these parameters determines the trade-off between track accuracy, track loss,

and tracking load that the agent is expected to maintain.

We train our agent with PPO. We use two separate neural networks to output the

policy and value function. The policy network is a multi-layer perceptron (MLP) with

2 layers of size 64, while the value network is a 2-layer MLP with size 256; both use

tanh activation functions. The clipping parameter ϵ is set to 0.25, and the generalized

advantage estimation parameter λ to 0.9. Training takes place over 1.5 million steps;

training updates happen every 2000 steps, where each training update is repeated for 10

epochs with minibatch size 256. The learning rate is 3× 10−4.

To evaluate our algorithm, we consider the track loss rate and the mean tracking

load, which is the ratio between the accumulated observation time over all dwells and

the duration of the episode. When evaluated, our RL agent demonstrates a track loss

rate of 12.9% for a mean tracking load of 1.96 × 10−3. As a point of comparison, we

implement the standard update rate selection strategy from (van Keuk and Blackman,

1993). This method uses a fixed beamwidth, and schedules dwells such that the angular

accuracy of the track doesn’t exceed one sixth of this beamwidth. Using the reference

beamwidth θref3dB for the Blackman-van Keuk method, we obtain a track loss rate of 29.1%

for a mean tracking load of 3.02 × 10−3. As we can see, our RL agent greatly reduces
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the risk of track loss all while maintaining lower antenna utilization.

3.2.4 Multi-target tracking

The single-target approach does not provide a satisfactory answer to all the problems

surrounding current resource management systems. The main shortcoming of current

methods is that they optimize each task separately according to its own criteria, before

instructing the scheduler to arbitrate the execution of task requests according to their

respective priorities. This creates two problems in case of overload: on the one hand,

the dwell parameters do not take into account or imperfectly take into account the

global state of the system, which can lead to vicious circles; on the other hand, it

makes the behavior of the system dependent on the prioritization of the tasks while this

prioritization is not necessarily adapted to the objectives of the radar.

These limitations lead us to question the conventional resource management archi-

tecture to address the problem on a larger scale, by applying reinforcement learning

directly at the level of the entire resource management module. The modeling of the

problem would be as follows: the state space would correspond to the list of all radar

search areas and tracks, with associated information (time since last update, estimated

track accuracy); the action would be to choose which of these tasks to update and what

dwell parameters to update it with; the reward could be defined based on the desired

tracking accuracy thresholds and the actual accuracy on all targets present in the system,

including undetected ones, which would encourage maintaining search (alternatively we

could include a term in the reward that is directly related to the quality of the search).

This represents an extension to the restless bandit framework, where the choice of task

to update is further parameterized. Additionally, we note that our problem is better

described as a multi-objective, with one reward function per task: by weighing each

reward, we could reflect the priority level of each task. To our knowledge, no existing

reinforcement learning method combines the combinatorial and multi-objective aspects

required by our use case; this motivates the search for such methods in the next chapter.

We hope, with such an approach, to be able to take full advantage of the flexibility of

MFRs to enable system-wide optimization.
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3.3 Conclusion

In this chapter, We studied two components of radar resource management: scheduling

and active tracking.

Through a reformulation of the problem of radar task scheduling, we were able to im-

plement an efficient framework whose algorithmic applications can return quasi-optimal

solutions in a limited amount of time. We see potential improvements for this frame-

work, both by optimizing its run time to make it usable by real-world radars, and by

increasing its flexibility; for example, being able to remove a task from a partial schedule

could allow exploring the solution space more effectively. Furthermore, our B&B-MCTS

algorithm could be extended with an AlphaZero-style reinforcement learning procedure

which would make it able to adapt to various task distributions.

We apply model-free reinforcement learning to single-target active tracking to learn to

adjust the update rate, beamwidth and duration of dwells dynamically. The extension of

this type of method to multi-target tracking requires the development of multi-objective

algorithms that can deal with combinatorial state spaces, which we approach in th enext

chapter.
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Chapter 4

Challenges in multi-objective

reinforcement learning

The difficulty of resource management in an MFR is to maintain a balance between sev-

eral competing sub-objectives: each function must be able to be carried out while limiting

its use of resources, so as not to interfere with other sub-objectives. These functions are

subdivided into tasks: for the search function, a task can correspond to the surveil-

lance of a given area; for the tracking function, it corresponds to one track. To apply

end-to-end reinforcement learning to the whole radar resource management module, we

therefore need to account for both the multi-objective and the combinatorial aspects of

the problem. More specifically, we need algorithms that can tackle environments where

the number of objectives may vary between episodes. Moreover, some of the radar’s

objectives may have strictly higher priorities over others: for example, it is common to

specify a minimum required total search time ratio, or to have tracks corresponding to

threatening targets take priority over non-threatening ones. These preferences cannot

be readily expressed with a linear scalarization over criteria: therefore we are interested

in non-linear multi-objective reinforcement learning methods.

In this chapter, we address each of these points to open perspectives toward a fully

reinforcement learning-controlled radar resource manager. We review current methods,

detail their limitations, and propose novels algorithms for each case.

85
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4.1 Multi-objective factored MDPs

Many potential applications of reinforcement learning involve complex, structured envi-

ronments. Radar resource management is no exception in this regard, as in our frame-

work, it involves a selection phase where the agent must choose the next radar dwell from

a list where each dwell updates a given task. Some of these problems can be analyzed

as factored MDPs, where the dynamics are decomposed into locally independent state

transitions and the reward is rewritten as the sum of local rewards. However, in some

scenarios, these rewards may represent conflicting objectives, so that the problem is bet-

ter interpreted as a multi-objective one, with a weight associated to each reward. To

deal with such multi-objective factored MDPs, we propose a method which combines the

use of graph neural networks, to process structured representations, and vector-valued

Q-learning. We show that our approach empirically outperforms methods that directly

learn from the scalarized reward and demonstrate its ability to generalize to different

weights and number of entities.

Most research in the field of deep reinforcement learning initially focused on end-to-

end learning, where the agent starts out with no prior on the task, for example having

to learn to play Atari games from pixels (Mnih et al., 2015). Standard RL algorithms

thus make minimal assumptions about the structure of the task: they typically take

monolithic observations as input, which have to be disentangled internally. However, for

complex problems, we often have information about the structure of the environment

at our disposal. This information can be used to inject priors into the learning process.

Before the advent of deep RL, researchers tackled large Markov decision processes (MDP)

by decomposing the states and rewards into locally conditioned elements (Guestrin et al.,

2003b); such factored MDPs were more amenable to tabular approaches, which were

hardly directly applicable to large state spaces. Even though in recent times function

approximation by deep neural networks has alleviated these issues, accounting for the

structure of the state space still helps solving complex environments, for example using

relational learning. Relational deep learning aims to embed inductive biases into deep

learning architectures in order to leverage assumptions on structured representations

composed of entities and their relations (Battaglia et al., 2018). These representations

can be processed by graph neural networks (GNN), which have been successfully applied

to challenging reinforcement learning environments, enabling agents to generalize to
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varying numbers of entities, for example in real-time strategy games like StarCraft and

combinatorial puzzle games like Sokoban (Zambaldi et al., 2018; Vinyals et al., 2019;

Janisch et al., 2021).

In factored MDPs, rewards typically have an additive structure: they represent the

sum of locally-scoped rewards. However, some tasks are better described as striking

a compromise between several possibly contradicting objectives. Multi-objective rein-

forcement learning treats such problems where multiple reward functions are used, each

associated with a different objective (Roijers et al., 2013). The overall goal is given by

a utility function that depends on these rewards and on their associated weights, which

reflect their level of priority. This setting allows easier definitions of the desired com-

promises between the competing objectives; it also makes it possible to train an agent

that adapts to utility functions that may change over time, e.g. when using a linear

scalarization whose weights are not constant. Many promising applications of reinforce-

ment learning benefit from a multi-objective specification. For example, self-driving cars

should minimize travel time and maximize the comfort and safety of passengers as well

as the safety of nearby pedestrians and drivers at the same time (Li and Czarnecki,

2019). Multi-objective reinforcement has also been used to train a video game-playing

agent that can adopt a wide variety of play-styles, opening the way to automated game

testing (Le Pelletier de Woillemont et al., 2021).

In this section, we study the case where the problem combines a structured envi-

ronment with a multi-objective specification. We argue that this is a natural extension

of the concept of factored MDP that holds broad applicative implications, including for

radar systems. The radar must regularly update these tracks and surveillance areas, but

it can only update one of these tasks at a time due to signal processing and antenna

constraints. We can view tracks and surveillance areas as tasks with limited mutual

dependence. These tasks are given priority levels according to the mission and threat

model of the radar. The antenna time and power constraints under which the radar

operates may force the system to make compromises between tasks when under heavy

load. Approaching this problem from a RL perspective requires designing an agent which

can deal with variable state and action spaces (as the number of targets can vary) and

takes into account the priority levels of the different tasks it has to fulfill.

Given the characteristics of this type of problems, we claim that they are best ap-

proached within both the factored MDP and multi-objective paradigms. Although sig-
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nificant work has been carried out in each field, to our knowledge their intersection

has not received scrutiny yet. We therefore term our framework multi-objective factored

MDPs and set out to analyze how to best solve these problems. To do so, we propose

a multi-objective version of DQN (Mnih et al., 2015) that can be applied to structured

observations by making use of recent advances in graph neural networks proposed by

(Janisch et al., 2021). We discuss how our algorithm, factored multi-objective DQN

(FMODQN), can be adapted according to the type of action space and to the char-

acteristics of the factored MDP. We test our approach on a multi-objective version of

SysAdmin, a classic example of factored MDP (Guestrin et al., 2003b), and on a novel

multi-objective task featuring multiple independent entities. Comparisons are made with

(Janisch et al., 2021)’s algorithm, that learns from the scalarized reward. We show that

our algorithm outperforms this baseline, can generalize to different reward weight vectors

and number of entities, and is able to deal with hundreds of objectives.

4.1.1 Structured representations

Factored MDPs

In the default MDP formulation, no information about the structure of the environment

is given, forcing the agent to learn from tabula rasa. Yet there are many problems which

can be decomposed into smaller parts whose evolution is largely independent of each

other: typically when modeling a production line composed of a number of machines,

we would know that the next state of each machine is only influenced by its immediate

neighbors. Priors about this type of environment structure motivate us to define compact

representations that can help learning agents to generalize more easily over complex

states.

Factored MDPs are a notable framework for representing structured MDPs compactly

via the exploitation of the conditional independence structures of transitions and rewards

(Guestrin et al., 2003b; Osband and Van Roy, 2014). More formally, a state s ∈ S is

reinterpreted as a set of n state variables (s1, s2, ..., sn). From there, we can define a

scoped variable as a subset of the state variables, so that for a scope Z ⊆ {1, ..., n},

the corresponding scoped variable is s[Z] = (si)i∈Z . We write s[i] instead of s[{i}] or

si for clarity. Given n scopes Z1, ..., Zn, the transition probability function can then be

factored into n locally-scoped transition functions in the form
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T (s′ | s, a) =
n∏
i=1

Ti(s
′[i] | s[Zi], a) (4.1)

Similarly, the reward function can be factored over m scopes Zr1 , ..., Zrm, for example

as a sum R(s, a) =
∑m

i=1Ri(s[Z
r
i ], a).

SysAdmin (Guestrin et al., 2003b) is a classic example of factored MDP. This problem

is defined by a directed graph between n nodes that represents a network of computers.

Each computer i is characterized by a single state variable si with value 1 if the computer

is online and 0 if it is offline. The scope of each state variable covers the state variable

itself and its parents in the graph. At each time step, the agent can either wait or force

a single computer to go (or stay) online; the other computers may randomly shutdown if

they are online, based on their dependencies, and may reset when offline. The probability

for a computer to be online at the next step if it is not acted on at this step is:

T (st+1[i] = 1) =


0.9

∑
j∈Zi

st[j]

|Zi| if st[i] = 1

0.04 if st[i] = 0

(4.2)

All computers are online at the beginning of an episode. The agent receives a reward

that depends on the number of online computers and includes a penalty p < 0 for

manually rebooting a computer:

R(st, at) =
∑

1⩽i⩽n

st[i] + p · 1(at ̸= noop) (4.3)

Graph neural networks

Factored MDPs provide structured representations of complex environments. The next

question is how an agent can efficiently process such representations. In machine learning,

structured representations generally refer to graph data showing the relations between a

set of entities, for example between the atoms of a molecule or the bodies of a physical

system. These representations have been approached through the prism of graph neural

networks (GNN) (Battaglia et al., 2018; Zhou et al., 2021). GNNs take a tuple (V,E,g)

as input, where V = {vi}i is a set of node attributes, E = {(ek, rk, sk)}k a set of directed

edges characterized by attributes ek and indices of receiver rk and sender sk nodes, and g

represents the global context. The nodes, edges, and context of the graph are updated by
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Figure 4.1: A visualization of a SysAdmin instance. Offline nodes are red, online ones
are blue. The probability of a node going online at the next step (unless it is manually
reset) is shown in each node. The probability of a node going offline increases with the
number of offline parent nodes.

a series of network passes. GNNs impose strong inductive biases, since they can process

arbitrary relations between entities, are invariant to node permutations, and support

combinatorial generalization to different numbers of nodes and edges. They have been

successfully applied to reinforcement learning tasks involving reasoning about interacting

entities (Hamrick et al., 2018; Wang et al., 2018; Zambaldi et al., 2018).

Related work

Structured sequential decision problems have long been studied in the frameworks of

factored MDPs and relational MDPs (Boutilier et al., 2002). In most works on the

subject, the environment is assumed to have known dynamics, so that it can be described

in an influence diagram language like RDDL (Sanner, 2011) or PPDDL (Younes et al.,

2005), for which there is a rich literature of planning methods (Bonet and Geffner, 2003;

Keyder and Geffner, 2008; Kolobov et al., 2009, 2012). Several methods aim to perform

generalized planning by constructing plans that transfer across instances (Fern et al.,

2003; Guestrin et al., 2003a; Natarajan et al., 2011; Bonet et al., 2019). A series of

recent works (Toyer et al., 2017; Bajpai et al., 2018; Garg et al., 2019, 2020; Sharma

et al., 2022) combines planning and neural networks in order to enable transfer learning.

Methods that operate in a pure RL setting without assuming known dynamics are

less studied. GRL (Karia and Srivastava, 2022) uses tabular Q-learning where the Q-

values are initialized by a neural network trained to predict the final Q-values on different
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problem sizes, meaning it cannot deal with continuous state spaces; it also cannot perform

zero-shot adaptation to problems of different sizes without retraining its tabular Q-values.

The method most closely related to ours in the literature is SR-DRL (Janisch et al.,

2021), which combines message-passing neural networks and auto-regressive policies into

a neural network trained with A2C (Mnih et al., 2016) that is applicable to problems

with variable state and action spaces. The method is tested on three domains, including

SysAdmin, and it is shown that the agent is able to generalize to different problem sizes

after training on a single problem size.

In contrast to related work, our method, factored multi-objective DQN (FMODQN),

can solve multi-objective factored MDPs with model-free reinforcement learning. We

hereafter describe it and detail how it can be adapted to different types of multi-objective

factored MDPs.

4.1.2 Problem statement

In the context of factored MDPs, the reward structure is decomposed into a number of

locally-scoped rewards. The overall reward can then be retrieved by an aggregation of

these local rewards, typically through a simple sum. We argue that in many cases how-

ever, each local reward can be interpreted as a different objective. These objectives might

not all be of equal importance, with a notion of priority dictating compromises between

them. For example, it is not a stretch to suppose that some computers in the SysAdmin

scenario might play a more critical role than others in the network’s infrastructure. We

therefore modify the factored MDP formalism to account for this multi-objective com-

ponent. More specifically, we alter the agent’s objective to maximize the scalarization of

expected returns over a vector of locally-scoped rewards R(st, at) = (R(st[Z
r
i ], at))1⩽i⩽m.

In this section, we restrict ourselves to linear scalarizations; therefore, we can rewrite

equation 2.39 to express the agent’s objective as:

max
π∈Π

m∑
i=1

wi E
π,T

[
∞∑
t=0

γtR(St[Z
r
i ], At)] (4.4)

Our focus is on combinatorial generalization, that is, on environments where the

number of state variables and local rewards may vary between episodes, and on agents

that can generalize to these variations: as a consequence, we only consider cases where

the local transitions and rewards are defined the same for all scopes. This is the case
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in SysAdmin for example, where the evolution of each computer follows the same rules,

and where we can associate the same local reward function to each computer, i.e. 1 if

the computer is online and 0 otherwise. This is a key difference compared to most of

the multi-objective reinforcement learning literature, where the number of objectives is

usually a constant of the problem, since each reward corresponds to an objective of a

different kind, like maximizing safety and minimizing travel time for self-driving cars. By

contrast, in the type of multi-objective factored MDP that we focus on, there is actually

a single reward function that gets applied to different local scopes: for example, to reuse

the example of the production line, we would define a single reward function that could

return a measure of performance of any machine to which it is applied. Encoding the

priority of each reward as a weight rather than as the magnitude of the reward has

several advantages: all rewards will by definition have the same scale, allowing the agent

to generalize to any number of rewards, and we will then be able to condition the agent’s

neural network on the current reward weights so that it can learn a policy adapted to

different preferences over rewards. Besides, since the weights of all rewards in an instance

of the problem sum to 1, the reward weights tend to be lower as the number of rewards

increases: this makes the priority levels implicitly linked to the number of rewards.

4.1.3 Algorithm

The general approach in multi-objective value-based methods is to train (using eq. 2.42)

a Q-value estimator that returns a matrix Q(s, ·,w) ∈ R|A|×m from which we can then

retrieve the scalarized action-state value Q(s, a,w) = Q(s, a,w)⊤ · w. The policy is

derived by choosing the action that maximizes this scalarized Q-value. The question is

how to design an agent that can generate this Q-matrix on problems where the number

of rewards m (and possibly the number of actions) may vary from episode to episode.

Feature extraction Inspired by (Janisch et al., 2021), we use GNNs to process fac-

tored state representations. To do so, we need to represent the whole factored MDP

state as a graph. For a given factored MDP decomposed into n state variables and m

rewards, we define a directed graph G with n state nodes (c1, ..., cn), where each state

node’s attribute consists of the associated state variable s[i] and where an edge ci → cj

exists only if i ∈ Zj . This graph, containing only state information, is the input model

proposed by (Janisch et al., 2021) to process the state and retrieve features used to
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compute the action logits and the state value as required by policy-based algorithms.

However, in our case, we need to predict the Q-values for each reward, so we have to

integrate information about the reward structure as well. Therefore, we add m addi-

tional reward nodes (cr1, ..., c
r
m) to the graph such that a reward node attribute contains

the weight linked to this reward and an edge ci → crj exists only if i ∈ Zrj . State and

reward nodes are distinguished by an additional type feature. With this structure, a

GNN is able to predict the influence of each state variable on the rewards that depend

on this state variable. Once this graph has been passed through a GNN, we only need

to retrieve the updated reward nodes from the output so as to use them as features to

compute the Q-value associated with each reward. Using this scheme we can condition

the network on the current reward weights and stay invariant to the number of state

variables and rewards/weights. A special case of interest is when there is one reward per

state variable: in this situation we fuse each pair of state and reward nodes.

Action space Once we have extracted the features of each reward node, we can com-

pute the Q-values. How we do this depends on the action space. If the action space

is fixed and doesn’t vary in size with the number of state variables, then we can ap-

ply a position-wise multi-layer perceptron (MLP) f that maps each reward node out-

put vr′i to the Q-values of all actions for this reward, so that for all i ∈ {1, ...,m},

f(vr′i ) = (Qi(s, a,w))a∈A.

A more difficult case appears when the action space is variable. We focus on the

case where there is one action per state variable, for example when one entity has to be

selected at each time step. In this case we need to obtain Q(s, a,w) for each action a.

To do so, we augment each state node attribute with an action embedding with value

1 if the action corresponding to this state variable is chosen, 0 otherwise. For a given

action a, this augmented graph Ga is passed through a GNN; similarly to before, we

apply a position-wise MLP f to each reward node output vr′i that gives the Q-value

for action a and reward ri, i.e. f(vr′i ) = Qi(s, a, wi). This way for action a we obtain

Q(s, a,w). This operation is applied over n augmented graphs, one for each action, to

compute (Q(s, a,w))a∈A. The processing can be parallelized by batching the augmented

graphs. We call this version of our algorithm Batch-FMODQN. One potential issue with

this approach is its time complexity, which is quadratic in the number of nodes: since

the time complexity of a message-passing step is O(kn) for a graph with n nodes and
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a maximal degree k, repeating the operation over n graphs yields O(kn2) complexity.

This may limit the applicability of our method on large instances.

Complete independence However, we note that this complexity can be improved

depending on the graph topology. In particular, in some environments the state variables

may be entirely independent from each other (i.e. there are no edges in the graph). This

type of structure can be seen for example in some radar scenarios where each surveillance

area is an independent task that remains unaffected by the update of other areas. In

this case, assuming we have one action ai and one reward ri per state variable s[i], we

can process each entity separately by applying a position-wise MLP to the list of state

variables. This MLP has two outputs for each state variable s[i]: the action-state value

relative to reward ri that corresponds to choosing the associated action Qi(s[i], ai, wi),

and the same action-state value corresponding to any other action Qi(s[i], A ̸= ai, wi).

Our reasoning is that since each pair of state variable and reward is independent from

the others, the only relevant information to predict the evolution of a given reward

is whether the corresponding action is chosen at the present time step. We can then

recover the scalarized Q-value of each action via the weighted sum of the local Q-values:

Q(s, ai,w) = wiQi(s[i], ai, wi) +
∑

j ̸=iwjQj(s[j], A ̸= ai, wj). This way we do not have

to directly compute the whole Q-matrix since it would be mostly redundant; instead,

the time complexity of the algorithm is O(n). We call this variant of our algorithm

Split-FMODQN.

Dynamic weights By conditioning the network on the current reward weights, we

aim to make our agent perform well in the dynamic weights setting where the weights

vary between episodes. On this side, we expect to experience fewer issues with reward

weight variation compared to standard multi-objective reinforcement learning. Indeed,

one of the challenges in multi-objective DQN is its tendency to forget the policies it has

learned for other reward weight vectors over the course of training as it tends to overfit

to the current weight vector instead: (Abels et al., 2019) in particular identifies this

issue and proposes to modify the loss function and replay buffer to alleviate it. We argue

that in the context of multi-objective factored MDPs, this problem will be less present,

as there is actually one reward function applied over the different reward scopes. Since

the Q-value associated with each reward will rarely depend on the whole reward weight
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Figure 4.2: High-level view of the Split-FMODQN architecture. The same MLP is
applied in parallel to each state variable: the outputs are recombined to obtain the
scalarized Q-value of each action. For clarity, on this figure, reward weights are omitted
from the input of the MLP and from the scalarization.

vector, our understanding is that the Q-value will generalize more easily to different

weights.

4.1.4 Experiments

To validate our framework, we test it on two environments: we apply Batch-FMODQN

to a multi-objective version of SysAdmin, and Split-FMODQN to a custom environment

where all state variables are independent. Our choice of domains was guided by our

long-term goal of applying these methods to air surveillance radar resource management,

which involves a task maintenance scheduling problem where numerous tasks must be

updated sequentially while accounting for their relative importance. We show that our

algorithms can generalize to different reward weights and different instance sizes (Vincent

et al., 2023).

Training details We train the network on GPU using multi-objective DQN loss (equa-

tion 2.42). To gather experience, we run a batch of 256 environments distributed over

8 CPU cores; training takes place over 5000 iterations, so the amount of experience is
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Algorithm N Score Normalized Time (s)

B-FMODQN

5 76.8 ± 0.5 1.01 0.042
10 58.6 ± 0.5 1.18 0.099
20 42.8 ± 0.4 1.28 0.283
40 33.5 ± 0.2 1.34 0.997
80 27.0 ± 0.4 1.31 3.021

160 22.1 ± 0.2 1.20 12.213

SR-DRL

5 76.0 ± 0.5 1.00 0.019
10 54.3 ± 0.6 1.09 0.025
20 38.9 ± 0.4 1.16 0.030
40 30.0 ± 0.2 1.20 0.042
80 23.6 ± 0.1 1.15 0.069

160 19.9 ± 0.1 1.08 0.130

Table 4.1: Results of evaluation on multi-objective SysAdmin over 1000 runs in the
dynamic weights setting for different problem sizes N . Both algorithms were trained on
instances of size N = 10. Score is the average cumulative reward with 95% confidence
interval. We also normalize the average score against the baseline score. Resolution time
per instance in seconds is shown in the last column.

the same as that used by (Janisch et al., 2021), since at each iteration, we advance one

step in each environment and minimize the loss with one mini-batch of 64 transitions

uniformly sampled from the replay buffer. We limit the maximal gradient norm to 3.

We use a soft update rate of 0.005 for the target network. The replay buffer size is 105;

learning starts once the buffer contains 1000 transitions. We use ϵ-greedy exploration

with ϵ linearly annealed to 0.1 after 4000 iterations. On all the environments we test, we

set the discount factor to 0.99. For Batch-FMODQN, the GNN used to extract features

is identical to that of (Janisch et al., 2021), with 5 message-passing steps and embed-

ding size 32. We use Adam optimizer with a learning rate of 10−4. Our algorithms are

implemented in the SaLinA framework (Denoyer et al., 2021). All tests were performed

with AMD Ryzen 3600X CPU, 16 GB of RAM and nVidia GTX 1660 Ti GPU.

Multi-objective SysAdmin We test our proposal on a multi-objective version of

SysAdmin. The overall reward is defined as a weighted sum of the rewards corresponding

to each computer: the local reward of each computer is 1 if the computer is online and 0

otherwise. Since our focus is on the weighing of the different computers, we remove the

penalty for rebooting a computer and consequently also remove noop from the action

space since it would always be sub-optimal. The scalarized reward is therefore:
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R(st, at) =
∑

1⩽i⩽n

wi · st[i] (4.5)

Similarly to (Janisch et al., 2021), we randomly generate between 1 and 3 dependen-

cies for each computer at the beginning of an episode. Episodes end after 100 steps.

Since in SysAdmin there is one reward per state variable, we model the state as a

graph of n nodes, each of whose attribute contains the state of the corresponding machine

(1 or 0 if online or offline respectively) and the weight for this machine’s reward. There

is one possible action per machine and machines exhibit dependencies, so we will use

Batch-FMODQN. We train a Q-matrix as described above, and reuse the GNN structure

proposed by (Janisch et al., 2021). We compare our approach to the SR-DRL algorithm

of (Janisch et al., 2021), using the same set of hyperparameters as the ones given in

(Janisch et al., 2021); our only modifications to their algorithm are the presence of the

reward weights in the node attributes, so that the network can condition on them, and

the absence of a noop action. We normalize our results with a simple baseline policy

that selects the offline computer with highest reward weight to reboot.

We test our approach in the dynamic weights setting: a new reward weight vector

is generated at the beginning of each episode, both in training and evaluation. The

agents are trained with problems of size 10 and evaluated on other problem sizes. Our

results are presented in table 4.1. We also train agents in the fixed weights settings; each

agent is trained on problems of constant size. This way we test generalization to both

problem size and reward weight; these results are presented in table 4.2. Training times

are 30/35/60/120 minutes for B-FMODQN versus 15/20/30/50 minutes for SR-DRL,

for N=5/10/20/40 respectively.

Our first observation is that we incur no performance loss in the dynamic weights

setting compared to fixed weights, demonstrating our algorithm’s ability to adapt to

different reward weights. Similarly, as was already observed with SR-DRL (Janisch et al.,

2021), agents trained on problems with 10 nodes and evaluated on a different number

of nodes N attain performance levels comparable or even higher than that of agents

trained directly on N nodes. We also see that Batch-FMODQN clearly outperforms

both the baseline and SR-DRL on this task, gaining between 9 and 16 percentage points

in normalized score relative to SR-DRL for N ⩾ 10. This improvement in performance

comes at a cost in computation time, which reflects the time complexity and grows
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Algorithm N Score Normalized

B-FMODQN

5 77.2 ± 0.5 1.02
10 59.1 ± 0.5 1.19
20 42.7 ± 0.4 1.27
40 33.1 ± 0.3 1.32

SR-DRL

5 75.2 ± 0.6 0.99
10 54.2 ± 0.6 1.09
20 35.9 ± 0.3 1.07
40 26.8 ± 0.2 1.07

Table 4.2: Results of evaluation on multi-objective SysAdmin over 1000 runs in the fixed
weights setting for different problem sizes N . N is the problem size used both for training
and evaluation. Score is the average cumulative reward with 95% confidence interval.
We also normalize the average score against the baseline score.

quadratically in the number of nodes, unlike SR-DRL which has linear computation

time. We note however that even on the largest instances tested, the resolution time

for a problem instance remains in the seconds, while alternative algorithms based on

probabilistic planning may require several minutes to solve a single problem (Janisch

et al., 2021).

Figure 4.3: Evolution of average cumulative reward during training on multi-objective
SysAdmin with dynamic weights, N = 10. Mean with standard deviation over 4 runs.

Plate Spinning Next we propose a toy environment where we can study the case

where the agent must process a set of entities that are wholly independent from each

other: in terms of factored MDPs, this is equivalent to the case where the scope of each

state variable is limited to that same state variable, i.e. Zi = {i} for all state variable

indices i. This type of problem is similar to having to maintain a number of plates

spinning on their poles. Let us suppose that the agent can only correct the balance of
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one plate at a time to keep it spinning, and that the plates have different values, as if

some were made of porcelain and others of terracotta. A penalty is inflicted only when

a plate loses its balance and crashes on the ground. When many plates are at risk of

falling off, the agent should prioritize the most valued ones. The presence of numerous

sparse rewards makes this a challenging problem.

More formally, we define the problem as consisting of n plates. Each plate i has two

features: a balance level bi and a degradation rate di. There are n available actions,

one for each plate. At the beginning of an episode, a plate starts with a balance level

of 1; at each time step, this balance level is reduced by di, unless the agent selects this

plate, in which case the balance level is reset to 1. There is one reward per plate: if

the balance level of the plate reaches 0, a reward of −1 is given for this plate, and a

new plate of same value replaces it with initial balance level 1; otherwise the reward is 0.

Again, since we are interested in the multi-objective aspect, we associate a weight to each

reward, so that the global reward is the weighted sum of the local rewards. To facilitate

comparisons between the scores for different problem sizes N , we limit degradation rates

so that
∑

i di = N/10. Degradation rates are uniformly generated with a maximal factor

of 10 between the highest and lowest rates. Episodes last for 100 steps.

Our training procedure is the same as for multi-objective SysAdmin, except that we

use Split-FMODQN to obtain Q-values, since each entity is independent. The network

consists of a single MLP with 5 hidden layers of size 32. The agent’s observation is the

list of state attributes, containing the current level of balance, the degradation rate, and

the weight of the corresponding reward. Again, we compare to SR-DRL, which we train

with the same set of hyperparameters as for SysAdmin. The agents are trained with

problems of size 10 and evaluated on other problem sizes, all in the dynamic weights

setting. Training time with N=10 is 5 minutes for Split-FMODQN and 7 minutes for

SR-DRL. Resolution time per episode reaches 17ms for Split-FMODQN and 42ms for

SR-DRL with N=160.

Our results from table 4.3 show that it is difficult for SR-DRL to learn an effective

policy on this environment: for N ⩾ 20, it performs similarly to a random policy. By con-

trast, our method deals efficiently with this type of problem, with noticeable performance

increase over SR-DRL on all the problem sizes we tested. The adapted architecture also

allows linear scaling in the number of entities, meaning that even the largest instances

can be solved under 0.1 ms, similarly to SR-DRL. Overall, our experiments confirm the
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N Random policy SR-DRL Split-FMODQN

10 -4.85 ± 0.04 -3.52 ± 0.03 -0.43 ± 0.01
20 -6.64 ± 0.03 -6.32 ± 0.03 -3.23 ± 0.02
40 -7.76 ± 0.02 -7.68 ± 0.02 -5.58 ± 0.02
80 -8.37 ± 0.01 -8.37 ± 0.01 -7.17 ± 0.01
160 -8.71 ± 0.01 -8.72 ± 0.01 -8.07 ± 0.01

Table 4.3: Results of evaluation on spinning plates over 1000 runs in the dynamic weights
setting for different problem sizes N . Both algorithms were trained on instances of size
N = 10. Score is the average cumulative reward with 95% confidence interval. We
include results from a random policy as a baseline.

efficiency of our approach on this specific type of problems.

4.1.5 Discussion

In this section, we proposed to study multi-objective factored MDPs, a domain so far left

unexplored, through which many real-world problems can be analyzed. We presented a

family of methods that can solve different types of such problems. We distinguished these

methods according to the characteristics of the target problem, and proposed benchmarks

on which we showed how our approach outperformed existing algorithms.

To extend our approach to more complex domains such as resource management for

air surveillance radars we need to allow parameterization of the selected action, e.g. by

choosing the antenna parameters most adapted to the selected radar task. Two research

directions seem crucial to us in order to develop these applications. The first one is

to make our approach compatible with more complex action spaces of the type seen in

parameterized MDPs (Hausknecht and Stone, 2016). This might be pursued using auto-

regressive policies. Auto-regressive policies represent a relatively minor modification in

policy-based algorithms (Janisch et al., 2021; Vinyals et al., 2019); however we need to

combine it with value-based learning in order to maintain our method’s advantage in deal-

ing with multi-objective problems. Despite having been first proposed as a modification

to DQN by (Metz et al., 2017), auto-regressive policies have seen little use in value-based

methods so far, to the point of being ignored in discussions on auto-regressive structures

(Fu et al., 2022); this may be due to existing auto-regressive adaptations of DQN being

complex to implement properly, which warrants further research into how to simplify

such adaptations. The second direction would rely on advances in multi-objective RL

with non-linear scalarization, for which a few approaches have been proposed (Dornheim,
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2022) even if issues remain on theoretical and practical levels (Vamplew et al., 2022).

4.2 Non-linear scalarization in stochastic multi-objective

MDPs

Many sequential decision problems of interest are best described in relation to multiple,

possibly conflicting objectives. However, most existing multi-objective reinforcement

learning algorithms only apply in cases where the utility over the different criteria is

linear. Yet it is well known in decision theory that in general linear scalarization poorly

reflects users’ preferences. Non-linear scalarization poses a number of issues in reinforce-

ment learning, with so far little study and no definite solution. In particular, current

methods struggle to deal with the most general setting of multi-objective reinforcement

learning, where the environment is stochastic and the scalarization of the objectives is

non-linear under the scalarization of expected returns criterion. This is an impediment

in our case, since radar operators’ preferences are typically better represented with non-

linear utility. We approach this issue from a theoretical side and present a value-based

algorithm that provides encouraging preliminary results for this type of problems.

4.2.1 Issues with non-linear scalarization

Current MORL methods face a number of limitations. Recent research on the subject has

focused on adaptations of DQN where the preferences are given by a linear scalarization

of the vector-valued reward (Abels et al., 2019; Nguyen, 2018; Mossalam et al., 2016).

These methods do provide advantages: their learned Q-values can be scalarized; and

they are off-policy, meaning they can learn the optimal policies for different scalarization

weights over one training. Unfortunately, value-based methods restrict their solutions to

deterministic policies, yet when using non-linear preferences, the optimal solution may

require a stochastic policy (Chatterjee et al., 2006). Such a policy can be obtained by

defining a mixture of deterministic policies; however finding the optimal mixture given

a set of Pareto-optimal policies is a NP problem, which requires the use of heuristics at

execution (Reymond and Nowé, 2019). Multi-objective policy search algorithms either

approximate the Pareto front and suffer from the same limitation or are constrained in

the form of their preferences (Uchibe and Doya, 2007; Shelton, 2001). In addition, when
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the environment is stochastic, multi-objective value-based methods can even fail to find

the optimal deterministic policy, as demonstrated by Vamplew et al. (2022).

Figure 4.4: The Space Traders environment, adapted by Vamplew et al. (2022). Dis-
played next to each transition from a state-action pair to a new state are the reward
vector r and the probability p of the transition.

Vamplew et al. (2022) introduce a new environment, Space Traders, consisting of 3

states, 3 actions, and 2 objectives, as depicted in fig. 4.4. The first objective reflects the

success of the agent’s mission, who must go from state A to state A
′ : the associated

reward is 1 when reaching A
′ , 0 elsewhere. The second objective is to the time spent

to reach the goal state: the associated reward is negative for all transitions. Crucially,

the environment is stochastic: for example, when taking action T in state A, there is

a probability p = 0.85 that the agent reaches state B, and a probability p = 0.15 that

the episode terminates prematurely. Moreover, the agent’s objective is not given by a

linear scalarization. Instead, the thresholded lexicographic order over expected returns

is used, with a threshold of 0.88 over the first objective. This means that a policy whose

expected return for the first objective is above this threshold is always preferred to a

policy where the threshold isn’t reached. If both policies are on the same side of the

threshold, the one which maximizes the last objective is preferred. Under this criterion,

the optimal deterministic policy is DI, where D is the action taken in state A and I is

taken in state B, as shown in fig. 4.5.

The usual idea to apply Q-learning to a non-linear scalarization u is to define the

policy derived from the Q-value as π(st)
.
= argmaxa∈A u(

∑t−1
i=0 γ

ir(si, ai) + Q(st, a)),

that is, to take into account the rewards accumulated since the beginning of the episode

in the scalarization. However, the resulting algorithm does not reflect the SER objec-
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Figure 4.5: Values associated to each objective for every possible deterministic policy.
The gray dotted line represents the convex front. Policies represented as a hollow point
are Pareto-dominated. DI is the optimal deterministic policy when optimizing under
thresholded lexicographic order with threshold 0.88, shown as the red dotted line. (Re-
produced from Vamplew et al. (2022).)

tive when the environment is stochastic, which leads the multi-objective Q-learning to

converge to the sub-optimal policy ID in the Space Traders environment, as shown in

fig. 4.6. In detail, since all transitions from A to B give reward 0 for the first objective,

the choice of action in state B is independent of the previous action and only depends

on the Q-values in B. These Q-values are equal to the mean action values since the next

state A
′ is terminal. D is then preferred as it meets the threshold (unlike T ) and gives a

higher average reward than I on the second objective. From there, since the algorithm

assumes D to be the best action in state B, it then converges to chose action I in state A

as the other two possible actions in A would not allow to meet the threshold. The crux

of the issue is that the algorithm chooses its action in B under the assumption that the

transition from A to B always succeeds, whereas there is actually a possibility that the

episode terminates prematurely, failing to reach the threshold, if T or D are chosen in A.

Therefore, there is need for methods that can account for both non-linear scalarizations

and stochastic environments.
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Figure 4.6: Policy to which multi-objective Q-learning converges on Space Traders. The
Q-value vector learned for each state-action pair is displayed. Red arrows represent the
action taken by the policy in a given state.

4.2.2 K-learning

A new notion of value function for SER

We focus on the most common formulation of MORL, where the general objective is the

scalarization of expected returns (SER):

max
π

u

(
E

µ,π,P

[ ∞∑
i=0

γir(si, ai)

])
(4.6)

where u : Rn → R is the scalarization function and r(s, a) ∈ Rn is a vector-valued

reward, with n the number of objectives. We write µ for the initial state distribution

and P for the transition probability function. When an agent finds itself in a given

state of a stochastic environment, in order to take the action that maximizes SER with

a non-linear scalarization, it needs to take into account the sum of all rewards, both

already received so far and expected on the rest of the episode. Since in SER we apply

the scalarization over the expectation of rewards, intuitively the rewards received so far

in the episode should be re-weighted to reflect the probability of the trajectory followed

so far in the episode. Here we will note a trajectory as τt = ⟨sτ0 , aτ0 , sτ1 , ..., aτt−1, s
τ
t ⟩.

Since we are looking for a value-based method, we only consider deterministic policies

taking trajectories as input π(τ). Let ΠD be the space of trajectory-based deterministic

policies. As usual, we can define the various value functions:
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Vπ .
= E

µ,π,P

[ ∞∑
i=0

γir(si, ai)

]
(4.7)

Vπ(τt)
.
= E

π,P

[ ∞∑
i=t

γir(si, ai)

∣∣∣∣∣ τt
]

(4.8)

Qπ(τt, at)
.
= E

π,P

[ ∞∑
i=t

γir(si, ai)

∣∣∣∣∣ τt, at
]

(4.9)

As shown in section 4.2.1, if we want to find a value-based policy that optimizes for

SER, we need to define an adequate notion of value function. Our insight here is that

Qπ(st, at) is the expected future cumulative reward when following policy π — except in

state st where action at is chosen. This amounts to following a sort of adjusted policy,

which we formally define as:

ρπ(τt; τ̂i, a
τ̂
i )

.
=


aτ̂t if t ⩽ i and τt = τ̂t

π(τt) else
(4.10)

We can then rewrite equivalently Qπ(τt, at) = E
[∑∞

i=t γ
ir(si, ai)

∣∣ τt, ρπ(· ; τt, at)].
Note that if τ̂i ∼ π and aτ̂i = π(τ̂i), then ρπ(τt; τ̂i, a

τ̂
i ) simplifies to π(τt).

In order to take into account the rewards received so far, we modify this formulation

of the Q-value to remove the conditioning on the current trajectory τt and take the

expectation of the sum of rewards over whole episodes. We call this the K-value, which

we formally define given a policy π as:

Kπ(τt, at)
.
= E

µ,P

[ ∞∑
i=0

γir(si, ai)

∣∣∣∣∣ ρπ(· ; τt, at)
]

(4.11)

The greedy policy associated to a K-value K is naturally defined as maximizing the

scalarization of this K-value:

πK
u (τ)

.
= argmax

a∈A
u(K(τ, a)) (4.12)

Furthermore, the optimal K-value for deterministic policies is:

K∗
u(τt, at)

.
= arg

K
max
π∈ΠD

u(Kπ(τt, at)) (4.13)
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Indeed, if we apply π
K∗

u
u (thereafter simplified as π∗

u), then we always have τt ∼ π∗
u,

and at is chosen by π∗
u, so ρπ∗

u
(· ; τt, at) simplifies to π∗

u, so that π∗
u is optimal for the

original objective.

The K-value forms the basis of the K-learning algorithm which we present later in

this chapter. However, it is worth exploring why it is a useful generalization of existing

value function definitions.

Links to existing approaches

We first show that the K-value can be rewritten as a function of Qπ and Vπ. In all our

demonstrations we assume a discrete state space. First we note that Kπ can be separated

into two terms based on the probability that the initial state is the trajectory’s first state

sτ0 :

Kπ(τt, at) =
∑
s ̸=sτ0

µ(s)E
P

[ ∞∑
i=0

γir(si, ai)

∣∣∣∣∣ s0 = s, ρπ(· ; τt, at)

]

+ µ(sτ0)E
P

[ ∞∑
i=0

γir(si, ai)

∣∣∣∣∣ s0 = sτ0 , ρπ(· ; τt, at)

]
(4.14)

In the first term, we can see that since s ̸= sτ0 , then ρπ(· ; τt, at) simplifies to π, so

that this term can be expressed as a function of Vπ:

∑
s ̸=sτ0

µ(s)E
P

[ ∞∑
i=0

γir(si, ai)

∣∣∣∣∣ s0 = s, ρπ(· ; τt, at)

]
=
∑
s̸=sτ0

µ(s)E
P

[ ∞∑
i=0

γir(si, ai)

∣∣∣∣∣ s0 = s, π

]
(4.15)

=
∑
s̸=sτ0

µ(s)Vπ(s) (4.16)

=
∑
s

µ(s)Vπ(s)− µ(sτ0)V
π(sτ0)

(4.17)

= Vπ − µ(sτ0)V
π(sτ0) (4.18)

The second term can be rewritten as µ(sτ0)K
π
0 (τt, at), where for j ⩽ t:
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Kπ
j (τt, a)

.
= E

P

 ∞∑
i=j

γi−jr(si, ai)

∣∣∣∣∣∣ τj , ρπ(· ; τt, a)
 (4.19)

This value can then be written recursively for j < t:

Kπ
j (τt, at) = E[r(sτj , aτj )] + γ

∑
s

P (s|sτj , aτj )E
P

 ∞∑
i=j+1

γi−j−1r(si, ai)

∣∣∣∣∣∣ ⟨τj , aτj , s⟩, ρπ(· ; τt, at)


(4.20)

= E[r(sτj , aτj )] + γ
∑

s ̸=sτj+1

P (s|sτj , aτj )E
P

 ∞∑
i=j+1

γi−j−1r(si, ai)

∣∣∣∣∣∣ ⟨τj , aτj , s⟩, ρπ(· ; τt, at)


+ γP (sτj+1|sτj , aτj )E
P

 ∞∑
i=j+1

γi−j−1r(si, ai)

∣∣∣∣∣∣ ⟨τj , aτj , sτj+1⟩, ρπ(· ; τt, at)


(4.21)

= E[r(sτj , aτj )] + γ
∑

s ̸=sτj+1

P (s|sτj , aτj )Vπ(⟨τj , aτj , s⟩) + γP (sτj+1|sτj , aτj )Kπ
j+1(τt, at)

(4.22)

= E[r(sτj , aτj )] + γ E
s∼P

Vπ(⟨τj , aτj , s⟩) + γP (sτj+1|sτj , aτj )(Kπ
j+1(τt, at)−Vπ(τj+1))

(4.23)

= Qπ(τj , a
τ
j ) + γP (sτj+1|sτj , aτj )(Kπ

j+1(τt, at)−Vπ(τj+1)) (4.24)

Now, noticing that Kπ
t (τt, at) = Qπ(τt, at), we can apply this relation recursively

(replacing at with aτt for notational convenience):

Kπ
0 (τt, a

τ
t ) = Qπ(τ0, a

τ
0) +

t∑
i=1

γiP (τi)(Q
π(τi, a

τ
i )−Vπ(τi)) (4.25)

where P (τi)
.
=
∏i−1
k=0 P (sτk+1|sτk, aτk).

Equations 4.18 and 4.25 can now be used to simplify equation 4.14:
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Kπ(τt, a
τ
t ) = Vπ + µ(sτ0)

(
Qπ(τ0, a

τ
0)−Vπ(τ0) +

t∑
i=1

γiP (τi)(Q
π(τi, a

τ
i )−Vπ(τi))

)
(4.26)

= Vπ +
t∑
i=0

γiPµ(τi)(Q
π(τi, a

τ
i )−Vπ(τi)) (4.27)

where Pµ(τi)
.
= µ(sτ0)P (τi). As we can see, eq. (4.27) shows that Kπ(τt, a

τ
t ) can be

expressed as the sum of the policy value Vπ and of the advantages associated to the

actions taken in the trajectory τt, weighted by the probability of reaching these actions

as dictated by the environment’s stochasticity.

From here, we can establish equivalences between the notion of K-value and the

more common uses of the Q-value in multi-objective settings. These equivalences show

up when either of the conditions that brought us to define the K-value are absent, that

is: when the scalarization is linear or when the environment is deterministic.

First we consider the case where the scalarization u is linear. We can then isolate

the Q-value corresponding to action at when scalarizing Kπ(τt, at):

u(Kπ(τt, at)) = u(Vπ +

t−1∑
i=1

γiPµ(τi)(Q
π(τi, a

τ
i )−Vπ(τi))− γtPµ(τt)V

π(τt))

+ γtPµ(τt)u(Q
π(τt, at)) (4.28)

As a consequence, in this case, maximizing the scalarized K-value is equivalent to

maximizing the scalarized Q-value, as has been done previously (Mossalam et al., 2016;

Abels et al., 2019):

argmax
at

u(Kπ(τt, at)) = argmax
at

u(Qπ(τt, at)) (4.29)

Now we consider the case where the environment is deterministic. If the transitions

are deterministic, since τt has a non-zero probability of occurring, then equation 4.22

simplifies to:

Kπ
j (τt, at) = E[r(sτj , aτj )] + γKπ

j+1(τt, at) (4.30)
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Since µ is also deterministic, sτ0 is the only possible initial state, so Kπ(τt, at) =

Kπ
0 (τt, at). Applying equation 4.30 recursively, we get:

u(Kπ(τt, at)) = u

(
t−1∑
i=0

γi E[r(sτi , aτi )] + γtQπ(τt, at)

)
(4.31)

which is equivalent to the common solution when rewards are deterministic (Vamplew

et al., 2022).

In both cases, if the MDP is fully observable, since the transition function is Marko-

vian, the Q-value depends only on the most recent state, i.e. Qπ(τt, at) = Qπ(st, at).

Optimality operator for the K-value

Equation 4.27 could be used as the basis of a control algorithm, where the K-value

could be approximated based on a learned Q-value and state value. However, this would

require knowing or learning the initialization and transition probabilities of the MDP,

which can be difficult to scale up. Instead, we set out to find an algorithm which learns to

approximate the K-value itself. To do so, we first need to define H(h | τt) the improper

probability of deviating from trajectory τt after h ∈ [0, t] steps while following policy

ρπ(· ; τt, aτt ) (when the trajectory doesn’t deviate, we consider that h = t):

H(h | τt)
.
= prob(∀i < h, si = sτi ∧ (h = t ∨ sh ̸= sτh) | s0 ∼ µ,∀j sj ∼ P (· | sj−1, a

τ
j−1))

(4.32)

Note that we have h = 0 if s0 ̸= sτ0 . The K-value can now be expressed as:

Kπ(τt, a
τ
t ) = E

[ ∞∑
i=0

γir(si, ai)

∣∣∣∣∣ si ∼ (µ, P ), ai = ρπ(· ; τt, aτt )

]
(4.33)

= E

[
h−1∑
i=0

γir(si, ai) +
∞∑
i=h

γir(si, ai)

∣∣∣∣∣h ∼ H(· ; τt), si ∼ (µ, P ), ai = ρπ(· ; τt, aτt )

]
(4.34)

= E

[
h−1∑
i=0

γir(sτi , a
τ
i ) + γhQπ(τ sh , ah)

∣∣∣∣∣h ∼ H(· ; τt), sh ∼ (µ, P ), ah = ρπ(τ
sh ; τt, a

τ
t )

]
(4.35)
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where τ sh = ⟨sτ0 , aτ0 , sτ1 , ..., aτh−1, sh⟩. Note that we have ah = aτt if h = t and sh = sτh

(i.e. there was no deviation), and ah ∼ π otherwise. This way, the probability function

H allows us to rewrite the K-value as an expectation over the sum of rewards up to a

deviation from the trajectory τt at step h, plus the Q-value after this deviation.

Recalling that πK
u is the greedy policy w.r.t. value K and scalarization u, our pro-

posed optimality operator, defined over a value space Q2, where Q =
⋃∞
n=1((Rm)S×A)n,

m is the number of objectives and n the length of the trajectory, is therefore T (K,Q)
.
=

(TK, TQ) for (K,Q) ∈ Q2, where:

TK(τt, a
τ
t )

.
= E

[
h−1∑
i=0

γir(sτi , a
τ
i ) + γhQ(τ sh , ah)

∣∣∣∣∣h ∼ H(· ; τt), sh ∼ (µ, P ), ah = ρπK
u
(τ sh ; τt, a

τ
t )

]
(4.36)

TQ(τt, a
τ
t )

.
= E

[
r(sτt , a

τ
t ) + γQ(τ st+1 , at+1)

∣∣ st+1 ∼ P, at+1 = πK
u (τ st+1)

]
(4.37)

In order to prove the convergence of this operator, we define a value metric:

d((K,Q), (K′,Q′)) = max{∥K−K′∥, ∥Q−Q′∥} (4.38)

where ∥Q∥ = maxτ,a ∥Q(τ, a)∥∞ for Q ∈ Q. We now prove that the operator we

defined is a contraction on the metric space (Q, d). Let K(i) be the value of K for the

ith objective. Then:

∥TK− TK′∥ = max
i,τt,aτt

∣∣∣TK(i)(τt, a
τ
t )− TK ′

(i)(τt, a
τ
t )
∣∣∣ (4.39)

= max
i,τt,aτt

∣∣∣E [γhQ(i)(τ
sh , ah)− γhQ′

(i)(τ
sh , ah)

∣∣∣H,µ, P, ρπK
u
(· ; τt, aτt )

]∣∣∣
(4.40)

⩽ max
i,τt

max
h,sh,ah

∣∣∣γhQ(i)(τ
sh , ah)− γhQ′

(i)(τ
sh , ah)

∣∣∣ (4.41)

⩽ max
i,h,τ,a

∣∣∣γhQ(i)(τ, a)− γhQ′
(i)(τ, a)

∣∣∣ (4.42)

⩽ max
i,τ,a

∣∣∣Q(i)(τ, a)−Q′
(i)(τ, a)

∣∣∣ (4.43)

= ∥Q−Q′∥ (4.44)
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Similarly, we can show that our operator constitutes a contraction over Q:

∥TQ− TQ′∥ = max
i,τt,aτt

∣∣∣T Q(i)(τt, a
τ
t )− T Q′

(i)(τt, a
τ
t )
∣∣∣ (4.45)

= max
i,τt,aτt

∣∣∣E [γQ(i)(τ
st+1 , at+1)− γQ′

(i)(τ
st+1 , at+1)

∣∣∣P, πK
u

]∣∣∣ (4.46)

⩽ γ max
i,τt,aτt

max
st+1,at+1

∣∣∣Q(i)(τ
st+1 , at+1)−Q′

(i)(τ
st+1 , at+1)

∣∣∣ (4.47)

⩽ γmax
i,τ,a

∣∣∣Q(i)(τ, a)−Q′
(i)(τ, a)

∣∣∣ (4.48)

= γ∥Q−Q′∥ (4.49)

By using the two previous inequalities, we see that T 2(K,Q) is a contraction:

d(T 2(K,Q), T 2(K′,Q′)) = max{∥T 2K− T 2K′∥, ∥T 2Q− T 2Q′∥} (4.50)

⩽ max{∥TQ− TQ′∥, γ∥TQ− TQ′∥} (4.51)

⩽ max{γ∥Q−Q′∥, γ2∥Q−Q′∥} (4.52)

= γ∥Q−Q′∥ (4.53)

⩽ γmax{∥K−K′∥, ∥Q−Q′∥} (4.54)

= γd((K,Q), (K′,Q′)) (4.55)

We then show that the fixed point of this operator is the optimal value for (K,Q).

TQ∗
u(τt, a

τ
t ) = E [r(sτt , a

τ
t ) + γQ∗

u(τ
st+1 , at+1) | st+1 ∼ P, at+1 = π∗

u(τ
st+1)] (4.56)

= E

[
r(sτt , a

τ
t ) + γ E

π∗
u,P

[ ∞∑
i=t+1

γir(si, ai)

∣∣∣∣∣ τ st+1 , at+1

] ∣∣∣∣∣ st+1 ∼ P, at+1 = π∗
u(τ

st+1)

]
(4.57)

= E
π∗
u,P

[
r(sτt , a

τ
t ) + γ

∞∑
i=t+1

γir(si, ai)

∣∣∣∣∣ τ t, aτt
]

(4.58)

= E
π∗
u,P

[ ∞∑
i=t

γir(si, ai)

∣∣∣∣∣ τt, aτt
]

(4.59)

= Q∗
u(τt, a

τ
t ) (4.60)
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Similarly, the fixed point for K is K∗
u, which can be shown be replacing Kπ, Qπ, π

by K∗
u, Q∗

u, π∗
u respectively in equation 4.35.

This concludes our proof that T (K,Q) is an optimality operator.

Practical algorithm

Based on our optimality operator, we can define an algorithm that learns both Q and K

concurrently. This method, which we call K-learning, is outlined below. We write 1T (s)

for the characteristic function indicating that state s is terminal.

Algorithm 1 K-learning
Require: learning rate α, exploration probability ϵ

repeat N times
Generate a trajectory τt using an ϵ-greedy policy over u(K)
for i from 0 to t− 2 do
Q(τi, a

τ
i )← (1− α)Q(τi, a

τ
i ) + α(ri + γQ(τi+1, π

K
u (τi+1)))

end for
Q(τt−1, a

τ
t−1)← (1− α)Q(τt−1, a

τ
t−1) + αrt−1

s0 ∼ µ(·)
h← −1
for i from 0 to t− 1 do

if h = −1 and si ̸= sτi then
h← i

end if
if h > −1 then
K(τi, a

τ
i )← (1− α)K(τi, a

τ
i ) + α(

∑h−1
j=0 γ

jrj + γh(1− 1T (sh))Q(τh, π
K
u (τh)))

else
K(τi, a

τ
i )← (1− α)K(τi, a

τ
i ) + α(

∑i−1
j=0 γ

jrj + γiQ(τi, a
τ
i ))

si+1 ∼ P (· | si, aτi )
ri ∼ R(· | si, aτi )

end if
end for

end

Q is learned in a very similar way to Q-learning. K, on the other hand, is learned

via a two-step process. We first generate a reference trajectory τt (which is used to learn

Q). Then, a second trajectory is generated, that attempts to replicate the reference

trajectory by selecting the same actions as it. K is updated based on the rewards

received while on the reference trajectory and the Q-value thereafter. If at any step h

the new trajectory deviates from the reference, only the rewards up to h are considered.

This way we approximate the expectation over H present in the optimality operator.

However, this algorithm has many disadvantages. First, it only applies to discrete
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Figure 4.7: Mean and 95% confidence interval of the returns on both objectives for Space
Traders over 10 training runs of K-learning.

state spaces (even though it could potentially be adapted to continuous state spaces

by using approximate state comparisons). It is also inapplicable in infinite-horizon set-

tings, with no clear equivalent. Moreover, the learned K-value could have high variance,

especially the more stochastic the environment is, which would make it non-trivial to

learn. Additionally, both the K-value and Q-value in this scheme depend on the whole

trajectory instead of the last state: for tabular implementations, their representation

would take memory space exponential in the number of states, while if using neural net-

works for function approximation, we would probably have to use RNNs, which would

make training even more difficult. Finally, one limitation that we had to accept as soon

as restricted ourselves to value-based methods is that we can only obtain deterministic

policies, even though the optimal policy under SER can be stochastic.

4.2.3 Experiments

We test our method on the Space Traders environment. In order to do this, we implement

a tabular version of K-learning, which is possible for this environment given its small

state space. In our experiments, we set the learning rate to 0.001 and epsilon to 0.5

and generate N = 100,000 reference trajectories, which means training lasts for 200,000

episodes. Similarly to Vamplew et al. (2022), we apply the thresholded lexicographic

order on the two objectives, with a threshold of 0.88 on the first one. Therefore, the

optimal deterministic policy we expect to converge to is DI, with a mean return of 0.9
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and −14.5 on the first and second objectives respectively.

The learning curves for each objective are shown in fig. 4.7. As can be seen on the left,

the agent reliably converges to a policy that respects the threshold on the first objective

with a mean return of 0.9. On the other hand, the mean return over 10 episodes for the

second objective is −15.66, slightly offset from the optimal value −14.5, as the agent will

sometimes converge to policy ID instead, whose mean return on the second objective is

−19.9.

Overall, we experimentally confirm that K-learning can converge to the optimal de-

terministic policy in stochastic environments even when the scalarization function is

non-linear.



Perspectives and conclusion

Throughout this dissertation, we have explored a variety of perspectives for future multi-

function radar resource management techniques through the prism of reinforcement

learning.

In chapter 3, we developed practical applications for two components of resource man-

agement: task scheduling and active tracking dwell optimization. In our study of radar

task scheduling, we built upon previous work that applied Monte Carlo Tree Search

(MCTS) to find low-cost schedules. Through a reformulation of the scheduling problem,

we highlighted the crucial role of the choice of transition function when modeling the

problem as an MDP, and implemented an efficient transition function. The use of this

transition function in MCTS required a number of adjustments inspired by branch-and-

bound algorithms. We tested this MCTS variant as well as a new heuristic allowed by

our transition function, and demonstrated improved performance compared to previous

approaches: in particular, our algorithms scale better as the size of the scheduling prob-

lem increases and uncover lower-cost solutions faster than existing methods, even when

these implemented AlphaZero-style learning on top of MCTS.

We see several avenues of improvement on the topic of radar scheduling. In particular,

the problem formulation we studied is actually relatively restricted. For example, it

doesn’t allow for dwell interleaving. During a dwell, the antenna performs an emitting

phase and a receiving phase; between these two phases it has to wait for the signal to

travel to the target and back. Dwell interleaving takes advantage of this idle phase to

schedule the emitting or receiving phase of another dwell in the meantime. This way

antenna utilization can be further increased. Another idea is to consider more variable

parameters for the dwells. In our dissertation, we only attempted to set the execution

time of each dwell, yet the scheduler could also be tasked with dynamically adapting
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more dwell parameters, especially the duration of the dwells, which we considered fixed

in our work. This could attenuate the difficulties posed by the separate optimization

of each track. While these extensions of the problem have already been studied and

heuristics have been developed for them, adapting MCTS techniques to these cases has

the potential to increase the performance and adaptivity of radar schedulers.

There is also room for improvement for radar scheduling in terms of reinforcement

learning techniques. One clear extension is to apply algorithms like AlphaZero, which

combine MCTS with the learning of a value network and a policy network. These net-

works are trained with the experience gathered by execution of the tree search, and are

used to guide the search, which leads to the mutual optimizing of the search process

and the networks. This learning procedure could also help adapt the search to different

distributions of tasks. Although it did not provide improvement for the version of the

scheduling problem we studied, AlphaZero-style methods could prove useful in addressing

more intricate scheduling problems as outlined above. In addition to model-based meth-

ods like AlphaZero, combinatorial optimization problems have also been addressed with

model-free reinforcement learning algorithms coupled with neural encoders like pointer

networks and transformers, with promising results (Mazyavkina et al., 2020). This per-

spective has so far seen little study in the case of radar scheduling, apart from (George

et al., 2022). Yet it is compelling as the resulting algorithms could be able to output

high-quality solutions at a fraction of the run time required by search methods, while

still allowing for adaptation to different task distributions.

However, all methods focused solely on radar scheduling suffer from a more practical

disadvantage in that they require to define the costs associated to each task in order to

evaluate the possible schedules. These costs can be derived from the priority levels of

the dwells as determined in the prioritization phase, yet this prioritization introduces an

intermediate objective that can be difficult to align with the desired radar behavior cor-

rectly in practice. This limitation could be circumvented by adopting holistic approaches

to radar resource management, as we discuss below.

Our second area of study in chapter 3 was active tracking dwell optimization. We

observed that despite the beam agility of electronically scanned array antennae, the

beamwidth parameter was underutilized by current resource management techniques as

it was usually fixed to a constant value on which the algorithm for update rate selection

depended. Given the interplay between beamwidth, revisit interval, and dwell duration
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in determining the quality of the measurements required to maintain tracks, we set out to

apply model-free reinforcement learning to obtain an agent that could dynamically adapt

these parameters. We implemented a simulator that reflected the high-level dynamics

of the interactions between the radar and its environment and that could interface with

reinforcement learning algorithms. Having restricted ourselves to single-target tracking

on radars with rotating antennae, we showed that the agent we trained boasted both a

lower track loss rate and lower antenna time utilization compared to a fixed-beamwidth

method, confirming the benefits for beamwidth adaptivity.

This single-target agent fits into the currently common architectural choice of per-

track dwell optimization. However, a compelling alternative is to develop a multi-target

agent that would manage the allocation of antenna time between the different tracks

established by the system while also adjusting the same dwell parameters as previously,

especially beamwidth. This method could be extended to handle all the radar’s tasks,

that would mainly include tracks and search tasks. Such an extension would represent a

holistic approach, which unlike current architectures would not separate between dwell

parameter selection, task prioritization, and task scheduling, and would therefore avoid

their pitfalls, where a lack of coordination between these different components may lead

to ungraceful degradation in situations of overload. This framework has previously been

studied in terms of restless multi-armed bandits, but was hindered by the computational

limitations of the algorithms used to solve this problem, which were based on dynamic

programming. To apply modern reinforcement techniques, we not only need to deal with

the combinatorial aspect of the problem, as the radar’s tasks routinely number in the

hundreds and the number of tracks varies over time; it is also desirable to introduce

multi-objective learning in order for the agent to be able to adapt to the different levels

of priority between scenarios and between tasks. To develop the tools necessary to this

vision, we had to address more fundamental questions in reinforcement learning.

In chapter 4, we investigated two reinforcement learning topics which hold high po-

tential for radar resource management: the combination of multi-objective learning with

factored MDPs, and the use of non-linear scalarizations in multi-objective reinforcement

learning (MORL).

On the topic of MORL in combinatorial problems, we identified that factored MDPs

as a suitable framework for the optimization of strategies in temporally-extended prob-
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lems with combinatorial state and action spaces, as the ones faced by multi-function

radars. We modified the formulation of factored MDPs to include a multi-objective as-

pect, where each of the problem’s entities have an associated reward and weight, from

which the general objective is derived as a linear, weighted scalarization of these rewards.

We leverage recent advances in the use of graph neural networks (GNN) to deal with

the combinatorial aspect of the problem, and combine this with a multi-objective ver-

sion of DQN. Starting from the most general case, we detail how the structure of the

network can be simplified based on the characteristics of the problem. Finally, on two

custom benchmark environments chosen for their similarity to the our radar use case,

we show that our algorithms can handle problems with variable numbers of entities and

rewards and that they compare favorably to an existing GNN-based method, with better

performance and generalization to dynamic reward weights.

Although encouraging, this approach inherit a number of disadvantages from its

value-based aspect. The most pressing issue is that in the most general case, our method

has to compute the Q-value of each objective for each possible action: when the number

of objectives and the number of actions are both tied to the number of entities in the

problem, our method suffers from a quadratic time complexity at each action selection

step, which limits its scalability to radar resource management problems. Moreover,

unlike the policy-based method against which we made comparisons, our value-based

method cannot handle complex action spaces: in particular, it is not suitable for param-

eterized actions, which policy-based algorithms can manage trivially via auto-regressive

networks. This is especially relevant if we have the multi-target scenario in mind, since

we want our agent to perform both task selection (choosing a track to update at the

present step) and task parameterization (setting the parameters of dwell used to up-

date the track). The last limitation is shared with existing multi-objective value-based

methods: only linear scalarizations can be used, since non-linear scalarizations break

a number of key assumptions in reinforcement learning. Again, this has implications

in terms of applicability to radar systems, as the radar’s mission is often specified via

strict priority levels: for example, it may be required that the proportion of time spent

on search tasks remain above a given threshold to guarantee adequate surveillance even

during overload; a dangerous target may be given absolute priority over all the other less

threatening targets. These preferences can be difficult, sometimes impossible, to encode

using linear scalarizations.
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The limitations of linear scalarizations motivate our last contribution, centered on

the use of MORL with non-linear scalarizations. It had been established previously that

one of the most common approaches to MORL in the scalarization of expected returns

(SER) setting, multi-objective DQN, could fail to converge to the optimal solution in

stochastic environments under a non-linear scalarization. Given the inherently stochastic

nature of the radar’s observations, solving this issue could open new perspectives for

applications of reinforcement learning in radar systems. By virtue of being off-policy,

value-based methods can adapt to varying reward weights and so have been a focus in

MORL. Therefore, we attempt to develop a value-based algorithm adapted to non-linear

scalarization. To do so we extend the classic notion of Q-value: the resulting K-value

can be learned by an algorithm, which we term K-learning, and for which we provide

a proof of convergence showing that it can reach the optimal deterministic policy even

in stochastic environments. We successfully test our method on a toy problem that was

designed to highlight the issues with non-linear scalarizations. Despite its theoretical

guarantees, K-learning suffers from many disadvantages that limit its applicability to

large-scale problems.

In future work, we hope to apply MORL methods such as those investigated in chapter

4 to develop agents that can optimize multi-function radar resource management end-to-

end. With the rewards defined at the task level and expressive, non-linear scalarization to

translate the radar’s intended behavior, we expect to obtain strategies that can efficiently

coordinate dwell optimization and antenna scheduling. We also anticipate that this will

allow better coordination between search and tracking. Search dwells can be used to

update tracks via an process called track-while-scan (TWS). Current systems decide

on a per-track basis whether to update the track by search or active tracking dwells

depending on e.g. the threat level or priority level of the track. This choice could be

delegated to our end-to-end resource management agent, which could decide for each

search dwell it selects whether to use it for track updates as well: this would allow to

adjust TWS more dynamically.

The idea of an end-to-end resource management agent could be taken further still

by giving it control over the beam direction. In our work, we assumed that the role of

the agent would be to select a task to update; whether it corresponds to a track or a

search zone, the update dwell would be given a beam direction beyond the control of the
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agent, as this direction can be determined based on the estimated position of the target

according to the filtering algorithm in the tracking case, or based on a pre-computed

search pattern in the search case. However, we could alternatively remove task selection

from the agent’s action space, and instead make this action space correspond only to the

choice of the dwell’s parameters, including the direction of the beam. The agent would

then have to also optimize its search pattern. Although this formulation would be harder

to solve, it may result in a more versatile agent that would learn new, more agile forms

of coordination between search and tracking.

Throughout our work, we restricted ourselves to the case of a single multi-function

radar with rotating antenna, which is a common use case nowadays. However, future

generations of radar systems will go beyond this model, be it through the use of multiple-

input multiple-output (MIMO) antennae or of radar networks. Yet the capabilities of

these new systems will pose a challenge in terms of resource management. MIMO radars,

for example, will be able to generate several dwells in parallel: this puts into question

methods that assume a linear utilization of antenna time. Radars working in network will

have to apportion tracks among themselves depending on the disposition of the targets

and the load of each radar: the coordination of the radars could be tackled via multi-

agent reinforcement learning, with each radar learning to communicate and adapt to the

behavior of the other radars. Multi-agent reinforcement learning could also be applied

to the tracking of autonomous reactive targets. Although most targets can detect when

they are being illuminated by a radar, so far only human pilots are susceptible to react

and attempt maneuvers to cause the radar to lose their track. In the future, as reactive

unmanned targets are bound to be developed, one way to adapt radar strategies would

be to train radar resource management agents in environments where the target is also

modeled as an agent that learns to escape the radar’s sight. Given the host of evolutions

to come in radar systems, we hope that the insights gained from the application of

reinforcement learning to multi-function radars may be transferred and expanded on to

build adaptive, reliable systems.

Finally, we believe multi-objective methods holds broader implications for reinforce-

ment learning in general. We see MORL as a crucial tool to help with one of the most

common practical impediments to real-life applications of reinforcement learning, which

is reward specification. The expressiveness of non-linear scalarizations opens new possi-

bilities for reward shaping that could feel more intuitive to practitioners. Furthermore,
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we think non-linear scalarizations like the thresholded lexicographic order could be re-

purposed to implement a form of curriculum learning: indeed, with this approach, the

agent would have to start by learning to reach a first threshold on the expected return

for the most important objective, and once this objective is fulfilled, try to reach the

second threshold, etc. If the objectives are ordered by increasing difficulty, this could

help guide the agent’s learning without requiring more complex curriculum methodolo-

gies. One disadvantage for this approach is that under SER, each threshold is checked

against the expectation of the return for this objective, which doesn’t correspond to

the intuitive notion of the threshold as a level that the agent can reach at (almost) all

episodes. In this context, it could be interesting to take inspiration from distributional

reinforcement learning (Dabney et al., 2018). By learning a distributional value function,

we can derive risk-sensitive policies: roughly speaking, we could have the agent consider

not the average return, but the mean of the bottom 10% of returns, which would take us

closer to putting a threshold on the worst cases. In the long term, MORL also represents

a promising perspective towards AI safety and alignment, as it allows practitioners to

express complex preferences over conflicting objectives. We hope further progress on

multi-objective methods will bolster this vision and permit the development of safe AI

systems.
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Reinforcement Learning for Multi-Function Radar Resource Management
Abstract

In the wake of recent advances in the field of machine learning, much progress has been accomplished
in one of its sub-fields, reinforcement learning, whose aim is to solve sequential decision problems under
uncertainty. Radar resource management seems to represent an ideal application case for this type of
technique. Indeed, a radar emits signals, called dwells, whose echoes are used to measure the state
of surrounding objects; these dwells vary according to numerous parameters (duration, beam width...)
and must be executed sequentially. The surveillance strategy of a multi-function radar thus consists
in continuously selecting the dwells to perform, with the aim of searching the surrounding space while
tracking already detected targets. The methods currently used to address this problem are largely
heuristic, and are likely to run into difficulties in a range of complex situations involving hyper-velocity
or hyper-maneuvering targets.
First, we propose applications of reinforcement learning techniques adapted to the current architecture
of multi-function radars. These contributions focus on two aspects : dwell scheduling on the antenna
using model-based methods, and active tracking dwell optimization using model-free methods. Secondly,
we highlight the limitations of current resource management architectures, which leads us to consider an
alternative architecture for which we propose new reinforcement learning algorithms designed to address
the problems it raises. These contributions focus both on the multi-objective aspect, which is useful
in multi-function radars to reflect the trade-offs to be made between different functions, and on the
combinatorial aspect, which is due to the large number of tasks that the radar must carry out in parallel.
Keywords: reinforcement learning, radar, scheduling, multi-objective

Résumé

Dans le sillage des avancées récentes dans le champ de l’apprentissage automatique, de nombreux progrès
ont été réalisés dans l’un de ses sous-domaines, l’apprentissage par renforcement, dont le but est de
résoudre des problèmes de décision séquentielle dans l’incertain. La gestion de ressources radar semble
représenter un cadre d’application propice pour ce type de techniques. En effet, un radar émet des
signaux, appelés pointages, dont l’écho permet de mesurer l’état des objets alentour ; ces pointages varient
selon de nombreux paramètres (durée, largeur de faisceau...) et doivent être exécutés séquentiellement. La
stratégie de surveillance d’un radar multi-fonctions revient ainsi à sélectionner en continu les pointages
à effectuer dans le but de surveiller l’espace environnant tout en pistant les cibles déjà détectées. Les
méthodes utilisées actuellement pour répondre à cette problématique sont en grande partie heuristiques
et risquent d’être mises en difficulté dans une gamme de situations complexes impliquant des cibles
hyper-véloces ou hyper-manœuvrantes.
Dans un premier temps, nous proposons des applications de techniques d’apprentissage par renforcement
adaptées à l’architecture courante des radars multi-fonction. Ces contributions portent sur deux aspects :
l’ordonnancement des pointages sur l’antenne par méthodes model-based et l’optimisation des pointages
de poursuite active par méthodes model-free. Dans un second temps, nous mettons en avant les limites
des architectures de gestion de ressources actuelles, ce qui nous amène à envisager une architecture
alternative pour laquelle nous proposons de nouveaux algorithmes d’apprentissage par renforcement
destinés à répondre aux problèmes qu’elle soulève. Ces contributions portent à la fois sur un aspect multi-
objectif, utile dans les radars multi-fonctions pour refléter les compromis à réaliser entre les différentes
fonctions, et sur l’aspect combinatoire qui est dû au grand nombre de tâches que le radar doit mener à
bien en parallèle.
Mots clés : apprentissage par renforcement, radar, ordonnancement, multi-objectif
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