
HAL Id: tel-04296304
https://theses.hal.science/tel-04296304v1

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Radiation reliability analysis of FPGA-based systems :
testing methodologies and analytical approaches

Gaëtan Bricas

To cite this version:
Gaëtan Bricas. Radiation reliability analysis of FPGA-based systems : testing methodologies and an-
alytical approaches. Electronics. Université de Montpellier, 2022. English. �NNT : 2022UMONS070�.
�tel-04296304�

https://theses.hal.science/tel-04296304v1
https://hal.archives-ouvertes.fr

1

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En Electronique

École doctorale I2S ─ Information Structures et Systèmes

IES ─ Institut d’Electronique et des Systèmes (UMR 5214)

Présentée par Gaëtan BRICAS

Le 25 novembre 2022

Sous la direction de Jérôme BOCH

 Devant le jury composé de

M. Luca STERPONE, Professeur, École polytechnique de Turin

M. Luis ENTRENA, Professeur, Université de Madrid

M. Jérôme BOCH, Professeur, Université de Montpellier

M. Georgios TSILIGIANNIS, Dr., Ingénieur, Think Silicon

M. Charles DETEMMERMAN, Ingénieur, Thales Alenia Space

M. Luigi DILILLO, Chercheur, Université de Montpellier

M. Philippe CHRISTOL, Professeur, Université de Montpellier

Rapporteur

Rapporteur

Directeur de thèse

Examinateur et co-encadrant

Examinateur

Examinateur

Examinateur

Radiation reliability analysis of FPGA-based systems:

testing methodologies and analytical approaches

1

ACKNOWLEDGMENT

This thesis project has been an incredible adventure, full of pitfalls and unforeseen events, but

above all it has been an exciting exploration in the world of electronics and radiation, full of great

encounters and enriching experiences. This project would never have been possible without the

support of my supervisors, my colleagues, my friends and my family.

I would like to thank Antoine Touboul, who initiated this project, for his guidance, support and

advice, without which I would not have reached this point today. Always with humor, Antoine

transmitted his passions to me and brought me a lot on a scientific and human level.

Unfortunately, our adventure together has been far too short. I hope that he would have been

proud of the outcome of the project he gave birth to.

Thanks to Georgios Tsilligiannis, for his unconditional support and the time he gave me despite

the distance and his obligations. I thank him for never letting me down and for sharing his

experience and expertise that served as a compass throughout the project.

I would like to acknowledge my supervisor Jérôme Boch, for his commitment, his confidence and

his support at all levels. His advice proved to be essential to improve the presentation and the

valorization of our work.

Thank you to Alain Michez for his teachings and for putting me on the path of electronics and

radiation. Our meeting seven years ago was a major turning point in my professional life.

I would like to thank Tadec Maraine for his continuous support, for his precious help during the

X-ray experiments in the PRESERVE facility and for his solutions to all problems. Many thanks to

the rest of the Radiac team for welcoming me and sharing their expertise on the effects of

radiation, especially Frederic Saigné and Frederic Wrobel. Thanks to Julie, Daylet and Jean-

Francois for their administrative support.

Thanks to all my colleagues, Kimmo, Salvator, Israel, Catherine, Ygor, Hoang, Arthur, Samir,

Thibaut, Alain, Vincent, Hiba, Cleiton, Matthieu, Alejandro, Ismaël, Lucas, Douglas, and André for

their presence and their good mood.

Thanks to my brother Samuel, for the time he spent helping me with all the programming aspects

of this project. His teachings and expertise in Java code were crucial to the success of this project.

Thank you to my sweet Roxane, for her love and her daily presence that have brightened my steps

since high school.

Thank you to my long-time friends for accompanying me and entertaining me during these last

fifteen years.

Finally, I would like to thank my family, my grandmother, my two brothers, Alexandre and Samuel,

and my parents Nicolas and Elisabeth for giving me the most beautiful childhood that one can

dream of and for having transmitted to me their values which made me what I am today.

2

RESUME

Au cours du dernier siècle, l’utilisation de l’électronique dans les sociétés modernes n’a cessé

d’augmenter. Durant ces dernières décennies, la croissance du secteur de l’électronique s’est

accélérée ; l’électronique affecte maintenant quasiment tous les secteurs de la société. Les

systèmes de contrôle, traditionnellement mécaniques, sont peu à peu remplacés par des systèmes

électrifiés dans de nombreuses applications industrielles, notamment celles liées au transport, à

l’automobile et à l’aviation. D’autre part, l’humanité s’est rendue de plus en plus dépendante de

systèmes informatiques tels que le système bancaire, les systèmes de télécommunication et de

contrôle du réseau électrique, qui s’appuie essentiellement sur des datacenters et sur des

systèmes décentralisés tels que les satellites. La question de la fiabilité des systèmes électroniques

est alors devenue un enjeu essentiel de notre ère.

En 1962, la première étude prédisant le fait que les radiations pouvaient générer des anomalies

dans les composants à base de semi-conducteur fut publiée. Depuis, deux principaux types d’effets

ont été identifiés. D’un côté, les effets de dose totale ionisante, causés par l’interaction avec de

multiples particules chargés (protons, particule alpha, ions lourds) ou des photons de hautes

énergies (rayons X, rayons Gamma) qui induisent une dégradation progressive des propriétés

électrique du composant. De l’autre, les effets singuliers (SEE), générés par l’interaction avec une

particule unique, déposant suffisamment d’énergie dans le volume de silicium pour inverser l’état

d’un transistor, pouvant engendrer différents types de défaillances. Initialement, ces sources de

défaillances étaient uniquement prises en compte pour le domaine du spatial et pour les

équipements militaires. En effet, les niveaux de radiation dans l’espace sont beaucoup plus hauts

que sur terre à cause des particules émises par le soleil et le reste de l’univers, tandis que

l’environnement terrestre est en grande partie protégé par la magnétosphère (répulsion des

particules chargées) et de l’atmosphère terrestre (interactions avec les particules d’air). À partir

des années 90, ces considérations se sont étendues aux altitudes de l’avionique et enfin au niveau

du sol. En effet, les particules venant de l’espace qui parviennent à pénétrer le bouclier

magnétique de la terre, entrent en collision avec les atomes de l’atmosphère et créent une pluie

de particules secondaires qui peuvent également provoquer des défaillances dans les systèmes

électroniques, notamment à hautes altitudes. Aujourd’hui, les progrès technologiques réalisés en

physique des semi-conducteurs ont permis d’atteindre des niveaux d’intégration jusqu’à l’échelle

nanométrique. De par cette réduction d’échelle technologique et de par la complexité croissante

des systèmes électroniques, la contrainte radiative est maintenant prise en compte, non

seulement pour les applications liées à des forts niveaux de radiations (satellites, aviations,

centrale nucléaire) mais également pour tous les systèmes électroniques mettant en jeu la

sécurité des êtres humains (automobile, transport, médical).

Les progrès réalisés dans le domaine de la microélectronique ont également entraîné une large

digitalisation du secteur de l’électronique. De nombreuses fonctions, historiquement gérées par

des circuits analogiques, sont progressivement implémentées sur des circuits intégrés

numériques, souvent plus performant et plus flexibles que leurs homologues analogiques. Dans

l’industrie spatiale par exemple, de nombreuses fonctions autour du traitement du signal, du

filtrage et de la formation de faisceau, sont désormais réalisées par des calculateurs numériques.

3

Pour répondre à la demande croissante de bande passante, de nombreux systèmes digitaux

requièrent à la fois un haut niveau de parallélisation des opérations et un certain niveau de

spécialisation auxquels les CPU et GPU standards ne peuvent répondre. Traditionnellement, des

circuits intégrés pour application spécifiques (ASIC) sont conçus dans ce but. Cependant, les coûts

non-récurrents d’ingénierie impliqués dans le développement et la fabrication d’un nouveau

circuit intégré sont considérables et tendent à augmenter avec la réduction d’échelle

technologique.

En 1985, un nouveau type de composant fut créé, les Field Programmable Gate Array (FPGA). Les

FPGAs sont des circuits intégrés qui peuvent être reprogrammés après fabrication pour

implémenter tout type de circuits numériques. Leur principe de fonctionnement repose sur une

matrice de blocs logiques programmables et d’un réseau d’interconnexions configurables utilisé

pour relier les blocs logiques entre eux. La fonctionnalité du FPGA est spécifiée en téléversant un

fichier binaire dans une mémoire spécifique du composant. Chaque cellule de cette mémoire sert

alors à définir la fonctionnalité d’un des blocs logiques ou à activer l’une des interconnexions de

la matrice de routage. Malgré des performances généralement plus faibles, les FPGAs représentent

aujourd’hui une réelle alternative aux ASICs grâce à leur coût réduit pour les faibles volumes de

production, leur faible délai de mise sur le marché et leur reprogrammabilité. Cependant, cette

reprogrammabilité s’accompagne d’une sensibilité accrue aux radiations. En effet, les cellules

mémoire utilisées pour stocker la configuration du composant peuvent être affectées par des

événements singuliers ou être dégradées par des effets de dose ionisante selon le type de

technologie utilisé. La corruption de cette mémoire de configuration peut alors entraîner une

modification de la topologie du circuit implémenté et impacter sévèrement la fiabilité du système.

Des techniques de durcissement au niveau du processus de fabrication ou au niveau du layout

peuvent être appliquées pour surmonter cet inconvénient, mais les composants durcis aux

radiations souffrent généralement d’un retard technologique significatif et de coûts beaucoup

plus élevés par rapport aux composants commerciaux (COTS). Les FPGA COTS restent alors une

alternative viable, même pour une utilisation dans des environnements à haute contrainte

radiative. Des techniques de mitigation au niveau du design du circuit doivent alors être

adéquatement appliquées pour renforcer la fiabilité du système. La fiabilité du composant face

aux radiations doit alors être évaluée à travers des campagnes de tests radiations utilisant des

faisceaux de particules accélérées ou des sources radiatives dans des installations spécialisées.

Dans ce contexte, ce travail de thèse se focalise sur des méthodologies de test pour analyser la

sensibilité aux radiations des systèmes basés sur FPGA. De par leur flexibilité, l’analyse de fiabilité

sur ces composants est particulièrement complexe, car leur sensibilité aux radiations est

entièrement conditionnée par le circuit qui y est implémenté. En effet, elle dépend d’une part de

la sensibilité intrinsèque des ressources du composant (à la fois aux effets de dose ionisante et

aux effets singuliers) et d’autre part à la manière dont les différentes perturbations induites

peuvent impacter la fonctionnalité du système. Les méthodologies présentes dans l’état de l’art

ont montré un certain nombre de limitations pour faire le lien entre la sensibilité intrinsèque du

FPGA et celle du design implémenté. L’objectif de cette thèse est d’améliorer les méthodologies de

tests radiations pour surmonter ces difficultés. Les méthodologies proposées se basent sur une

approche benchmark : des structures de test spécifiques sont développées et implémentées sur le

composant pendant les tests radiations. Cette approche fournit alors à la fois une bonne visibilité

sur les mécanismes de défaillances internes et des moyens de comparer quantitativement la

4

sensibilité aux radiations entre FPGA de différents fabricants et de différentes familles. Cette

approche fournit également aux concepteurs, des outils essentiels pour analyser la sensibilité de

leurs circuits et pour améliorer leur fiabilité. L’approche benchmark proposée est également

complétée par une méthodologie, basée sur un outil logiciel, permettant de prédire la sensibilité

aux effets singuliers sur un circuit arbitraire à travers une analyse en profondeur de la netlist du

circuit.

La première méthodologie proposée dans cette étude se focalise sur l’analyse de la dérive des

propriétés électriques des FPGA en fonction du niveau de dose ionisante absorbé. Ces effets de

doses sont en fait causés par les charges électriques libres générées dans les matériaux lors de

l’interaction avec un photon de haute énergie ou une particule chargée. Une partie des charges

générées se retrouve piégée dans les oxydes du composant, venant ainsi altérer les champs

électriques et la mobilité des porteurs dans le canal des transistors. L’accumulation de ces charges

(dominée par les charges positives) vient donc modifier les caractéristiques électriques du

transistor (tension de seuil et transconductance). Ces effets se traduisent au niveau du FPGA par

une augmentation de la consommation globale du composant, mais également par une

dégradation des temps de propagation des portes logiques. Pour caractériser ces dégradations du

temps de propagation, la méthodologie proposée emploie des structures de tests spécifiques

permettant de mesurer indépendamment la dégradation en temps de propagation pour chaque

type de ressource du FPGA (LUT, CARRY, DSP, PIPs). Le temps de propagation à travers ces

structures est évalué grâce à une structure de test interne, utilisant les oscillateurs

programmables du FPGA, permettant une implémentation rapide, précise et peu coûteuse. Cette

méthode de test est appliquée à trois familles de FPGA lors de test sous faisceau de rayons X pour

démontrer les bénéfices apportés. L’extraction de la dégradation des temps de propagation,

indépendamment pour chaque type de ressource, permet d’une part une meilleure

standardisation des résultats (en s’affranchissant de l’influence des paramètres d’implémentation

sur les résultats de test) et une meilleur réutilisabilité : en combinant les dérives individuelles, un

designer peut estimer la dérive de temps de propagation subit par les chemins critiques de son

design en se basant uniquement sur le nombre et le type de ressources qui les composent.

L’autre méthodologie proposée s’intéresse à l’impact des effets singuliers sur la fiabilité des

systèmes implémentés sur FPGA. Sur les technologies FPGA, on recense principalement trois

mécanismes de défaillances :

• Les SET : des impulsions de courant générées dans la logique combinatoire ou sur les

arbres de distribution de signaux, qui peuvent se propager sous la forme d’impulsions de

tension à travers les portes logiques et potentiellement corrompre l’état d’une ou

plusieurs bascules.

• Les SEU : le contenu d’une cellule mémoire est inversé, pouvant corrompre les données

stockées. Les SEU peuvent également affecter la mémoire de configuration du FPGA

lorsque celle-ci est basée sur une technologie SRAM. De tels événements peuvent alors

entraîner une modification structurelle du circuit implémenté, en désactivant une piste

utilisée, en activant une connexion indésirable entre deux nœuds distincts ou encore en

modifiant l’équation logique réalisée par les LUT ou les autres blocs spécialisés.

5

• Les SEL : un chemin de conduction est créé entre la source d’alimentation et la masse,

entrainant une élévation de la consommation, un échauffement et généralement une

interruption de la fonctionnalité de toute une partie du FPGA.

La fiabilité d’un circuit implémenté sur FPGA est donc particulièrement difficile à analyser, car

celle-ci nécessite à la fois de bien identifier la sensibilité intrinsèque pour chaque type de

ressource du FPGA, de comprendre l’influence de différents paramètres du circuit sur la

sensibilité relative à ces différents effets, sur la propagation des effets transitoires et sur le

masquage logique des erreurs. L’analyse de cette sensibilité aux effets singuliers repose

aujourd’hui essentiellement sur des tests sous faisceau de particules accélérées (neutrons,

protons, ou ions lourds). Face à la complexité des phénomènes mis en jeu, deux principales

approches ont émergé. La première consiste à utiliser des structures de test monomorphiques

pour extraire la sensibilité intrinsèque de chaque ressource. Cependant, ces structures de tests

offrent généralement une diversité très faible dans les paramètres de circuits, masquant ainsi des

mécanismes essentiels mis en jeu dans des circuits beaucoup plus complexe. La deuxième

approche, souvent utilisée dans un but de validation, consiste à réaliser ces tests en implémentant

directement le circuit utilisé par l’application finale. Cette approche peut néanmoins présenter

différents inconvénients de par la complexité des circuits testés. En effet, lorsque le nombre d’état

du circuit est trop important, chaque état de circuit ne peut être suffisamment exposé au cours

d’une campagne de tests pour être suffisamment représentatif des toutes les potentielles

défaillances qui peuvent apparaître au cours de la mission. De plus, la complexité du circuit tend

à réduire la proportion des erreurs qui peuvent être effectivement observées depuis l’extérieur

du composant, réduisant alors drastiquement la statistique obtenue avec ce type de test. La

méthodologie proposée dans cette étude cherche alors à venir compléter ces deux approches en

proposant de nouvelles structures et de nouvelles techniques de tests pour améliorer à la fois la

compréhension des mécanismes de défaillance mis en jeu et la capacité à estimer la fiabilité d’un

circuit. Cette méthodologie s’appuie sur le principe du benchmark : un jeu de circuits,

représentatif des applications réelles, est spécifiquement développé pour les tests radiations. Ce

jeu de circuit peut alors être implémenté sur différentes familles de FPGA pour comparer leur

sensibilité aux radiations dans des conditions réelles d’utilisation tout en fournissant des

métriques permettant d’appréhender la sensibilité relative entre les différents types de

ressources. Le benchmark développé dans cette étude s’articule autour des opérateurs

arithmétiques. Les opérateurs arithmétiques sont des structures très largement utilisées dans

tous les systèmes liés au traitement du signal, au traitement de l’image, à la cryptographie, ou à

l’intelligence artificielle. Ces opérateurs peuvent alors être implémentés de manières très

différentes, utilisant différents types de ressources ou différentes topologies de circuits amenant

à plusieurs compromis entre performance et consommation. En constituant un benchmark de

différentes implémentations d’un opérateur arithmétique, la sensibilité relative aux radiations

peut être analysée pour chaque implémentation pour identifier l’influence des paramètres de

design sur la sensibilité aux radiations. Ainsi, des recommandations pour améliorer la tenue aux

radiations peuvent être identifiés et étendues à des circuits plus complexes. La sensibilité aux

radiations apparaît alors comme un nouveau facteur pouvant amener les designers à reconsidérer

le choix d’implémentations de leurs circuits. Pour contrôler la fonctionnalité de ces opérateurs

lors des tests radiations, une structure interne d’auto-test est utilisée. Celle-ci permet de conduire

les tests radiations avec des cartes de développement du commerce et une instrumentation

6

limitée, simplifiant et réduisant ainsi les coûts de l’installation de test. Pour évaluer l’efficacité et

les avantages apportés par cette méthodologie, différentes campagnes de tests sous faisceau de

particules accélérées (neutrons et protons) ont été conduites sur différentes familles de FPGA. Les

résultats de ces expériences montrent notamment que la sensibilité relative entre les différentes

composantes du benchmark peut être très différents entre les différentes technologies testées,

renforçant ainsi l’idée que les recommandations visant à améliorer la fiabilité des circuits doivent

être adaptés à chaque type de FPGA. Pour les FPGA SRAM, une forte dominance des défaillances

liées aux corruptions de la mémoire de configuration a pu être observée. De par la complexité du

réseau de routage programmable, la susceptibilité d’un circuit à ce type d’erreur est très difficile

à prédire. Face à cette difficulté, de nouveaux outils d’analyse ont émergé tel que l’injection de

faute. L’injection de faute consiste à reproduire artificiellement l’effet d’un SEU sur la mémoire de

configuration en introduisant des erreurs dans le bitstream programmé sur le FPGA. En injectant

indépendamment un nombre significatif de fautes dans la mémoire de configuration tout en

contrôlant la fonctionnalité du circuit, le nombre de bits de configuration susceptibles de

perturber le fonctionnement d’un circuit donné peut être identifié. En multipliant ensuite ce

nombre par la section efficace d’une cellule mémoire, la sensibilité du circuit à ce type

d’événement peut être estimée. Des campagnes d’injection de faute ont été systématiquement

menées pour chaque composante du benchmark et les résultats comparés à ceux issues des tests

sous faisceau de particules. Une très bonne corrélation des résultats a pu être observée,

confirmant ainsi la capacité de l’approche proposée à estimer la sensibilité d’un circuit arbitraire

aux corruptions de la mémoire de configuration. Néanmoins, le processus d’injection de fautes

présente certains inconvénients. D’une part, la durée d’une campagne de test peut prendre

plusieurs jours ou semaines pour obtenir des résultats statistiquement significatifs. D’autre part,

ce type d’approche, tout comme les tests sous faisceau de particules, ne fournit qu’une estimation

de la sensibilité globale du circuit et ne permet pas de gagner en visibilité sur les zones les plus

sensibles du circuit et sur les potentielles modifications qui peuvent être apportés pour améliorer

sa fiabilité.

Dans la dernière partie de cette étude, une nouvelle méthodologie d’analyse de fiabilité des

circuits implémentés sur FPGA SRAM a été explorée. Cette méthodologie s’appuie sur l’analyse

détaillée de la netlist du circuit. Un logiciel est développé, permettant de parcourir la netlist du

circuit pour extraire l’ensemble des bits de configuration susceptibles de modifier son

comportement. En se basant sur les résultats d’ingénierie inverse du bitstream d’un FPGA et sur

des tests d’injection de fautes localisés, le modèle de défaillance du composant a pu être établie.

Celui-ci identifie pour chaque bit de configuration, le type de modifications architecturales

engendrés par son inversion ainsi que les conditions dans lesquelles cette inversion résulte

effectivement en une modification d’un ou plusieurs signaux du circuit. En se basant sur ce modèle

de défaillance, le logiciel développé parcourt l’ensemble des branches du circuit pour identifier

les bits de configuration critiques pour le système. Une des contributions majeures apportée par

l’approche développée est la prise en compte de la charge de travail du circuit pour évaluer la

criticité de chacun des bits de configuration. L’état de l’ensemble des signaux du circuit et leur

évolution au cours d’un scénario définie par l’utilisateur est extrait par simulation

comportementale. Ces données sont utilisées d’une part pour identifier, pour chaque bit de

configuration, les instants dans la simulation où la modification structurelle engendrée génère

effectivement une erreur sur l’un des signaux du circuit et d’autre part, pour identifier les instants

7

où ces erreurs se propagent à travers le circuit pour atteindre l’une des sorties primaires du

circuit. Cette méthode a été appliquée à l’ensemble des composantes du benchmark testé par

injection de fautes et sous faisceau de particules. Les résultats montrent alors que le logiciel et

non seulement capable d’estimer rapidement et précisément la sensibilité du circuit, mais

également d’identifier ses zones sensibles. Ce logiciel pourrait alors fournir au designer, des outils

précieux pour évaluer, dès les premières phases de design, la sensibilité globale de leurs circuits

et leurs principales vulnérabilités permettant alors de sélectionner judicieusement les techniques

de mitigation à appliquer et les mesures à prendre pour améliorer la fiabilité.

8

ACRONYMS AND DEFINITIONS

ADC- Analog to Digital Converter

API- Application Programming Interface

ASIC- Application Specific Integrated Circuit

ATMR- Approximate Triple Module

Redundancy

ATPG- Automatic Test Pattern Generation

BEL- Basic Element of Logic

BIST- Built-In Self-Test

BRAM- Block RAM

BTMR- Block Triple Module Redundancy

CAD- Computer Aided Design

CED- Current Error Detection

CME- Coronal Mass Ejections

CMIC- Configuration Memory Integrity

Check

CMOS- Complementary Metal Oxide Silicon

COTS- Commercial Off The Shelf

CRAM- Configuration Memory

CRC- Cyclic Redundancy Check

DA- Distributed Arithmetic

DAC- Digital to Analog Converter

DD- Displacement Damage

DICE- Dual Inter-Locked Cell

DRAM- Dynamic Random-Access Memory

DSP- Digital Signal Processing

DTMR- Distributed Triple Module

Redundancy

DUT- Device Under Test

DWC- Duplication With Comparison

ECC- Error Correction Code

EDA- Electronic Design Automation

EDAC- Error Detection and Correction Code

EEPROM- Electrically-Erasable

Programmable Read-Only Memory

ELT- Enclosed Layout Transistors

FF- Flip-flop

FI- Fault Injection

FIR- Finite Impulse Response

FIT- Failure In Time

FPGA- Field Programmable Gate Array

FSM- Finite State Machine

GCR- Galactic Cosmic Rays

GEO- Geosynchronous orbit

GTMR- Global Triple Module Redundancy

HDL- Hardware Description Language

ICAP- Internal Configuration Access Port

IP- Intellectual Property

JTAG- Joint Test Action Group

LEO- Low Earth Orbit

LET- Linear Energy Transfer

LFA- Linear Frame Address

LHC- Large Hadrons Collider

LSB- Least Significant Bit

LTMR- Local Triple Module Redundancy

LUT- Look-Up Table

LVTTL- Low Voltage Transistor-Transistor

Logic

9

MBU- Multiple Bit Upset

MEO- Medium Earth Orbit

MMCM- Mixed Mode Clock Manager

MOSFET- Metal Oxide Silicon Field Effect

Transistor

MSB- Most Significant Bit

MTTF- Mean Time To Failure

MUX- Multiplexer

NCD- Native Circuit Description

NRC- Non-Recurring Costs

NRE- Non-Recurring Engineering

PCB- Printed Circuit Board

PFA- Physical Frame Address

PLD- Programmable Logic Devices

PLL- Phase Locked Loop

RAM- Random-Access Memory

RILC- Radiation Induced Leakage Current

ROM- Read Only Memory

RTL - Register Transfer Level

SAA- South Atlantic Anomaly

SBU- Single Bit Upset

SEB- Single Event Burnout

SEC-DEC- Single Error Correction and

Double Error Detection

SEE- Single Event Effects

SEFI- Single Event Functional Interrupt

SEGR- Single Event Gate Rupture

SEL- Single Event Latchup

SEM- Soft Error Mitigation

SEP- Solar Energetic Particles

SET- Single Event Transient

SEU- Single Event Upset

SoC- System on Chip

SOI- Silicon-On-Insulator

SRAM- Static Random-Access Memory

STA- Static Timing Analysis

STI- Shallow Trench Isolation

STMR- Selective Triple Module Redundancy

TID- Total Ionizing Dose

TMR- Triple Module Redundancy

TNID- Total Non-Ionizing Dose

UART- Universal Asynchronous

Receiver/Transmitter

AXI- Advanced eXtensible Interconnect

CERN- European Organization for Nuclear

Research

FPGA architecture terminology (Xilinx 7 series):

Fabric: the internal configurable structure of the FPGA. It refers to the interconnection matrix and

the configurable logic blocks, often used in contrast to specialized blocks (PLL, BRAM, DSP, etc.).

Tile: this is the elementary building blocks into which the FPGA structure is divided. There are

several tile types depending on the resources it contains. The most common tile contains two

configurable logic blocks.

Configurable Logic Block (CLB): a collection of two slices.

10

Slices: a collection of 4 LUTs, 1 CARRY4, 8 flip-flops, 3 logic multiplexers and 25 routing

multiplexers. There are two types of slices, SLICEL and SLICEM. SLICEM type is supplemented

with additional features: LUT used as dual port memory (LUTRAM) or as shift-register (SRL).

Site: A group of related elements and their connectivity. Regular sites contain one slice and other

site type may contain specialized blocks such as PLL, DSP, BRAM, IOs, etc.

BEL: Basic Elements. BELs are the smallest, indivisible, representable component in the fabric of

an FPGA. There are two kinds of BELs, Logic BELs (LUT, flip-flop, Carry4, DSP etc.) and Routing

BELs (intra-slice multiplexers).

Extra-slice routing resource: used to drive signals from site to site, mainly composed of nodes

and PIPs.

Intra-slice routing resource: used to drive signals inside a slice. Also called routing multiplexers.

Nodes: Physical representation of metal tracks separating two PIPs or site pins. They are

composed of wires.

Wire: a segment of metal connection.

PIP: programmable interconnection point. Configurable connection contains in switchboxes.

Switchbox: A configurable routing matrix used to connect different extra-slice nodes together.

11

TABLE OF CONTENT

ACKNOWLEDGMENT .. 1

RESUME .. 2

ACRONYMS AND DEFINITIONS ... 8

TABLE OF CONTENT .. 11

INTRODUCTION ... 16

1. RADIATION: ENVIRONMENTS AND EFFECTS ON ELECTRONICS .. 19

1.1. Radiation environment .. 19

1.1.1. Space radiation environment .. 19

1.1.1.1. Galactic cosmic rays ... 19

1.1.1.2. Solar energetic particles .. 20

1.1.1.3. Trapped radiations .. 21

1.1.1.4. Radiation environment modeling tools ... 22

1.1.2. Atmospheric and terrestrial radiation environments ... 23

1.1.3. Artificial radiation environments .. 24

1.1.3.1. Nuclear power plants .. 24

1.1.3.2. Medical radiation environments .. 24

1.1.3.3. Particle accelerators .. 25

1.1.3.4. Radiation sources ... 26

1.2. Radiation effects on electronics ... 27

1.2.1. Radiation-matter interactions ... 27

1.2.1.1. Photon-matter interactions .. 27

1.2.1.2. Nuclear interactions .. 28

1.2.1.3. Coulombic interactions .. 29

1.2.1.4. Energy transfers in matter .. 30

1.2.2. Cumulative effects .. 31

1.2.2.1. Total Ionizing Dose .. 31

1.2.2.2. Total Non-Ionizing Dose .. 34

1.2.3. Single event effects .. 35

1.2.3.1. Single Event Transient .. 36

1.2.3.2. Single Event Upset .. 36

1.2.3.3. Single Event Latch-up ... 37

12

1.2.3.4. SEE sensitivity metrics ... 38

1.3. Conclusion ... 39

2. FPGA ARCHITECTURE ... 40

2.1. Definition and principle ... 40

2.1.1. Advantages and drawbacks .. 40

2.1.2. Development workflow ... 41

2.2. Architecture description ... 43

2.2.1. Overview .. 43

2.2.2. Configurable logic blocks .. 44

2.2.3. Configurable Routing matrix ... 45

2.2.4. Specialized Blocks .. 46

2.2.5. Configuration memory cell technologies .. 47

2.2.5.1. Static RAM .. 47

2.2.5.2. Flash memory ... 48

2.2.5.3. Antifuse ... 49

2.3. Radiation effects on FPGAs ... 49

2.3.1. Radiation effects on configuration memory cells .. 49

2.3.1.1. SRAM .. 49

2.3.1.2. Flash ... 50

2.3.1.3. Antifuse ... 51

2.3.1.4. Summary .. 51

2.3.2. Total Ionizing Dose effect – Parametric degradation .. 51

2.3.3. Single event effects .. 52

2.3.4. Summary of radiation effect on FPGAs .. 55

2.4. Radiation hardening .. 57

2.4.1. Process based hardening ... 58

2.4.2. Layout based hardening .. 58

2.4.3. Circuit based hardening ... 60

2.4.4. Memory hardening... 62

2.5. Conclusion ... 64

3. FPGA TESTING METHODOLOGIES FOR TID EFFECTS ASSESSMENT .. 65

3.1. From testing methodologies to Benchmarking .. 65

3.1.1. State of the art of testing methodologies .. 65

3.1.2. Extension of degradation evaluation to all resources ... 66

13

3.1.3. Benchmarking structures .. 67

3.2. Test setup .. 68

3.2.1. Propagation delay measurement ... 68

3.2.2. Device selection ... 70

3.2.3. X-ray Generator and parameters ... 72

3.3. Radiation test results .. 73

3.3.1. Propagation delay degradation results ... 73

3.3.2. Thermal effect consideration... 79

3.3.3. Power consumption... 82

3.3.4. Design margins consideration ... 84

3.4. Conclusion ... 84

4. FPGA TESTING METHODOLOGIES FOR SEE ASSESSMENT ... 86

4.1. State of the art methodologies .. 86

4.1.1. SEE testing challenges .. 86

4.1.2. Configuration memory sensitivity evaluation .. 87

4.1.3. Primitive level sensitivity evaluation ... 89

4.1.4. Final application testing .. 92

4.1.5. Radiation test benchmarking .. 93

4.2. Benchmarking requirements ... 93

4.3. Benchmark selection ... 94

4.3.1. Hardware implementation of arithmetic operators .. 95

4.3.1.1. Binary addition .. 95

4.3.1.2. Ternary adder .. 96

4.3.1.3. Binary multiplier principle ... 97

4.3.1.4. Carry-Save Multiplier .. 97

4.3.1.5. Speed optimized multiplier .. 98

4.3.1.6. Area optimized multiplier .. 100

4.3.1.7. Booth encoding optimization ... 100

4.3.1.8. Constant multiplier optimization .. 101

4.3.1.9. Selected multiplier implementations .. 101

4.3.1.10. Finite Impulse Response filter ... 102

4.3.1.11. Distributed arithmetic .. 104

4.4. Built-in self-test .. 105

4.4.1. Test pattern selection .. 105

14

4.4.2. BIST architecture ... 106

4.4.3. Error formatting... 107

4.4.4. Test setup and procedure .. 108

4.5. Experimental results .. 109

4.5.1. First campaign: influence of timing constraints ... 110

4.5.1.1. Setup details... 110

4.5.1.2. Results .. 111

4.5.2. Second campaign: improvements and extensions ... 116

4.5.2.1. Test setup modifications .. 116

4.5.2.2. Results .. 117

4.5.3. Third campaign: filter’s structural parameters... 121

4.5.3.1. Test setup .. 121

4.5.3.2. Results .. 123

4.6. Fault injection ... 127

4.6.1. State of the art methodologies ... 127

4.6.2. Fault injection procedure ... 128

4.6.3. Experimental results .. 130

4.6.3.1. Statistical analysis ... 130

4.6.3.2. Application to the second test campaign benchmark ... 131

4.6.3.3. Application to the third test campaign ... 132

4.7. Conclusion .. 133

5. SEE SUSCEPTIBILITY EVALUATION TOOL ... 136

5.1. State of the art SEE susceptibility prediction tools ... 137

5.1.1. Bitstream reverse engineering .. 137

5.1.2. Vulnerability analysis .. 138

5.1.3. SEE susceptibility prediction tools ... 139

5.1.4. CAD tools and APIs for fine-grained circuit manipulation and analysis 140

5.2. Failure model establishment .. 143

5.2.1. Decoded bitstream database .. 143

5.2.2. Localized fault injection .. 144

5.2.3. Switchboxes ... 145

5.2.3.1. Failure model .. 145

5.2.3.2. Activation conditions ... 148

5.2.4. Intra-slice routing multiplexers... 148

15

5.2.4.1. Failure model .. 149

5.2.4.2. Activation conditions ... 150

5.2.5. Logic multiplexer ... 151

5.2.6. Carry Logic ... 152

5.2.7. Look Up Tables ... 152

5.2.7.1. Activation conditions ... 153

5.2.7.2. Propagation conditions ... 155

5.2.8. Flip-flops ... 157

5.2.9. Shift Register LUT .. 157

5.2.9.1. Failure modes .. 158

5.2.9.2. Propagation conditions ... 158

5.2.10. Block RAM .. 158

5.2.10.1. Failure modes ... 158

5.2.10.2. Activation conditions... 159

5.2.10.3. Propagation conditions .. 159

5.2.11. Unsupported primitives ... 159

5.3. Netlist analysis and critical bits extraction ... 160

5.3.1. Data structures ... 160

5.3.2. Workload extraction .. 163

5.3.3. Circuit navigation algorithms ... 164

5.4. Evaluation of the tool capacities ... 169

5.4.1. Exhaustive fault injection ... 169

5.4.2. Comparison with experimental results .. 171

5.4.3. Execution time .. 175

5.5. Conclusion .. 176

GENERAL CONCLUSION ... 178

PUBLICATIONS .. 181

REFERENCES .. 182

16

INTRODUCTION

During the last century, the use of electronics has been increasing in modern societies. In the

last decade, this growth of the electronics sector has greatly accelerated and now affects almost

all sectors of societies. The replacement of traditional mechanical controls by electrified systems

is taking place in many sectors of industry and transportation, especially in the automotive and

avionics industries. The human being, is also more and more dependent on computer systems,

such as the banking systems, the telecommunication systems, the electrical network, etc. which

rely on data centers and decentralized computers such as satellites. The question of the reliability

of electronic systems has thus become one major issue of our era.

In 1962, the first study predicting that radiation could cause anomalies in semiconductor-based

components was published [1]. Since then, two main types of effects have been identified. Total

Ionizing Dose (TID) effects, caused by the interaction with multiple charged particles or high

energy photons, inducing a progressive degradation of the component parameters, and Single

Event Effects (SEE), generated by the interaction with a single particle depositing enough energy

to corrupt the content of a memory elements. At first, these sources of failure were considered

only in the military field and for space systems. Indeed, the radiation levels in space are much

higher than on earth due to the particles emitted by the sun and the rest of the universe, while the

ground environment is relatively protected by the earth magnetosphere and atmosphere. From

the 90's, these considerations have been extended to the avionic altitudes and then to the ground

level. Particles coming from space that manage to penetrate the magnetic shield of the earth,

collide with the atoms of the atmosphere and create a shower of secondary particles that can also

cause failures in electronic systems, especially at high altitudes. Today, advances in

semiconductor physics have enabled integration levels of transistors down to the nanoscale. Due

to this technological scaling and to the increasing complexity of electronic systems, the radiative

constraint is now considered, not only for applications with high radiation levels such as space,

avionics and nuclear facilities, but also for applications where the human life is involved.

The progress in the field of microelectronics has also led to a wide digitalization of the electronics

sector. Many functions, historically carried by analog circuits are progressively being

implemented in digital integrated circuits, often more powerful and flexible than their analog

counterparts. In the space industry for example, many functions around signal processing,

filtering and beam forming are now carried by digital processors. To meet the growing demand in

the telecommunication bandwidth, many digital systems require both a high level of

parallelization and a certain level of specialization that standard CPUs and GPUs cannot meet.

Traditionally, Application Specific Integrated Circuits (ASICs) have been designed for this

purpose. However, the Non-Recurring Costs (NRC) involved in developing and manufacturing a

new IC are considerable and tend to increase with technology scaling [2].

In 1985, a new type of component was created, the Field Programmable Gate Array (FPGA). FPGAs

are integrated circuits that can be reprogrammed after manufacture, to implement an arbitrary

digital circuit. Their main principle of operation lies in an array of programmable logic blocks and

a network of reconfigurable interconnects used to map the logic blocks together. The FPGA

functionality is specified by loading a binary file in a specific internal memory. While generally

17

having lower performances, FPGAs provide a real alternative to ASICs, due to their low NRC, short

time-to-market, and reprogrammability. However, this reprogrammability comes at the cost of a

higher sensitivity to radiation. Indeed, the memory cells storing the component configuration can

be affected by single event effects or dose effects depending on the type of used technology.

Corruptions of this configuration memory can then lead to modifications of the implemented

circuit topology and severely impact the system reliability. Process and layout-based radiation

hardening techniques can be applied to overcome this drawback, but radiation hardened

components generally suffer from a significant technological time lag and higher prices with

respect to Commercial Off The Shelf (COTS) components. COTS FPGAs then remain a viable option

even for highly radiative environments, provided that circuit level mitigation techniques are

properly applied. The reliability of these components must then be evaluated through extensive

radiation tests.

In this context, the work of the thesis focuses on testing methodologies to analyze the radiation

sensitivity of FPGA-based systems. Due to their flexibility, the reliability analysis on these

components is a challenging task as the radiation sensitivity is entirely conditioned by the

implemented system. Indeed, it depends on the one hand on the intrinsic sensitivity of the

component (to both TID and SEEs) and, on the other hand, on the way the different induced

perturbations can impact the operation of the system. State-of-the-art methodologies have shown

a number of limitations in bridging the intrinsic sensitivity of the FPGA and the one of the

implemented designs. The objective of this thesis is to improve radiation testing methodologies

to overcome these limitations. The proposed methodologies are based on a benchmarking

approach: specific test structures are developed and implemented on the component during

radiation tests. This benchmarking approach provides at the same time a good visibility on the

internal failure mechanisms and quantitative comparisons of the radiation sensitivity across

FPGAs from different vendors or families. It also provides designers with tools to assess the

sensitivity of their design and improve their reliability. This benchmarking approach is also

supplemented with a software-based methodology developed to predict the SEE susceptibility of

an arbitrary circuit through an in-depth analysis of the circuit netlist.

In a first chapter, the different radiation environments are presented with a general description

of the radiation effects on electronics.

In the second chapter, the FPGA architecture is detailed along with a more in-depth description of

radiation effects and failure mechanisms specific to these components.

In the third chapter, a test methodology to assess the TID-induced degradations is proposed. Its

main contribution is to extend the evaluation of parametric degradations to all logical and routing

resources of the component. For this purpose, specific benchmarking structures have been

developed. A new technique to measure the propagation delay in real time and with limited

external instrumentation is also proposed. This technique is based on the reprogrammable

feature of the clock generators embedded in the device. X-ray radiation tests have been performed

on three FPGA families to highlight the benefits of this methodology.

In the fourth chapter, a test methodology to assess the sensitivity to single event effects is

proposed. This methodology lies between the two traditional accelerated particle beam testing

approaches (primitive level testing and final application testing) by proposing a sensitivity

18

evaluation at a higher level of granularity. The basic idea is to instantiate a set of dedicated

benchmarking structures, simple enough to provide a good testability while sufficiently complex

to provide a good representativity of the circuits effectively implemented on FPGAs, in particular

by instantiating all types of logic resources of the component with a wide diversity in the circuit’s

architecture. The benchmarks selected in this study are based on arithmetic operators. By using

different implementations of the same arithmetic functions with a large diversity in the circuit

parameters (fan-in and fan-out of logic gates, logic levels between flip-flops), and in the use of

resources (LUTs, flip-flops, carry logic, DSPs), the radiation tests fulfill a multifaceted purpose.

First, the test results provide extensive information to identify and understand the different

failure mechanisms and their predominance; second, it allows to qualitatively evaluate the impact

of different types of resources on the system sensitivity. In addition, test results can be used to

quantitatively compare the sensitivity of different implementations of the same logic function and

to evaluate the effectiveness of mitigation solutions. Finally, it provides a set of guidelines for

designers to improve the reliability of FPGA-based systems. Neutron and proton beam tests have

been performed, as well as emulation-based fault injections, to demonstrate the advantages of this

approach.

The main limitation of radiation testing lies with the difficulty to extrapolate the results of tests

performed with a given implemented circuit to estimate the sensitivity of any other circuit. The

last chapter addresses these limitations by proposing a new software-based approach to predict

the susceptibility of circuits implemented on SRAM based FPGA. This analytical approach parses

the physical netlist of the circuit and explores the different nets and logical resources that

compose it to extract all the configuration bits that are critical for the system operation. The main

contribution of the proposed methodology is to integrate the workload of the circuit, extracted

from logic simulation, to analyze the propagation of errors and thus filter among the set of

potentially critical configuration bits, those that actually modify the output signals of the system.

The approach is validated by confronting its results with those obtained with fault injection and

proton tests.

19

1. RADIATION: ENVIRONMENTS AND EFFECTS ON ELECTRONICS

Ionizing radiations are present everywhere on earth and in our solar system. These radiations

can be of natural origin, coming from the radioactivity of the earth's soils, from the nuclear fusion

processes within the sun or from the star’s implosion at the other end of the cosmos, but they can

also be of artificial origin when used for medical purposes, scientific experiments or energy

production. The increasing use of electronics in critical systems is forcing more and more

electronics engineers to consider the radiation effects on the equipment they develop. To ensure

their reliability, a good knowledge is required regarding the nature of these phenomena: the

composition of the different radiative environments, the physical interactions between particles

and matter and the effects that these interactions can have on electronic components. This section

presents the fundamental elements to apprehend these topics with an emphasis on dimensions

related to FPGA technologies (subject of this study).

1.1. RADIATION ENVIRONMENT

Radiation is a form of energy released by atoms that propagates through electromagnetic

waves or particles. For electromagnetic waves, when interacting with matter, their short

wavelength, vector of the quantity of energy they carry, defines their capacity to ionize the atoms.

There are two types of ionizing electromagnetic waves, X-rays for energies between 40eV and

400keV and Gamma rays for energies over 400keV. As for particles, protons, electrons, neutrons,

alpha particles and heavier ions are mainly considered for their interaction with electronics. All

these types of radiation can be generated naturally or artificially and their relative density and

energy can vary significantly from one environment to another. Reliability considerations for

electronics are therefore highly dependent on the type of environment in which the system being

developed will operate. In this section are presented the most constraining radiative

environments for electronics: space, terrestrial atmosphere and artificial radiation environments

(nuclear power plant and particle accelerators).

1.1.1. SPACE RADIATION ENVIRONMENT

In our solar system, spacecrafts are exposed to a complex radiative environment with three

main sources: Galactic and extragalactic Cosmic Rays (GCR), Solar Energetic Particles (SEP) and

trapped particles.

1.1.1.1. GALACTIC COSMIC RAYS

According to the hypothesis emitted in 1949 by the Italian physicist Enrico Fermi, galactic

radiations are mainly generated and accelerated from supernovas. These radiations are composed

of charged particles with 87% of protons, 12% of alpha particles and 1% of heavier ions [3]. As

shown in Figure 1, the GCR flux perceived in our solar system is modulated by the activity of the

sun. When the sun is the most active, the GCR flux received is the lowest. The energy of these

particles can reach several millions of GeV. The density of heavy ions decreases with their weight

as described in Figure 2 but even the heaviest ions remain a concern for spacecraft reliability as

they can have a more dramatic effect on electronics

20

Figure 1: GCR energy spectra during solar

minimum and maximum, from [3].

Figure 2: Relative abundance of heavy ions in

perceived GCR, from [4].

1.1.1.2. SOLAR ENERGETIC PARTICLES

Solar energetic particles are continuously released by the sun through its activity. SEPs include

protons, heavy ions, electrons, neutrons, gamma rays and X-rays. The three main phenomena of

particle ejections from the sun are: solar winds, solar flares, and Coronal Mass Ejections (CME).

The solar wind is a continuous flow of plasma of electrons and protons. Most of the particles

emitted by solar winds are of relatively low energy and are mostly deflected or trapped by the

Earth's magnetic field. Solar flares and Coronal Mass ejections are random events due to the

reconfiguration of the solar magnetic field and their frequency is strongly linked to the activity of

the sun which follows a cycle of about 11 years as shown in Figure 3.

Figure 3: Solar activity from 1749 to 2022, from [5].

Solar flares mostly release electrons but also protons, alpha particles heavier ions and

electromagnetic radiation. CMEs are larger events that release more protons but less heavy ions

with respect to solar flares. The energy of the particles emitted by the sun remains generally of

lower energies than the GCR and their presence in the Earth's orbital environment is therefore

greatly impacted by the Earth's magnetic field.

21

1.1.1.3. TRAPPED RADIATIONS

The earth has a magnetosphere that results mainly from the interaction of the solar wind with

the earth's geomagnetic field. Charged particles of cosmic or solar origin interact with the

magnetic field lines near the earth and tend to follow them. These deviated particles get trapped

in what is called the Van Allen belts. The ability of the magnetic field to deflect the charged particle

is directly related to their mass and energy. These radiation belts are therefore composed mainly

of protons and electrons. The particles trapped in these radiation belts are clearly separated into

two different belts: the outer belt, mainly composed of electrons and the inner belt mainly

composed of protons [6]. The density of these particles in the terrestrial orbital environment is

described in Figure 4.

Figure 4: Time averaged radiation belt omnidirectional fluxes (cm-2) for protons (left) and electrons
(right) as a function of the distance from earth, from [6].

As the Earth’s magnetic field is tilted around 11 degrees from the rotation axis, the radiation belts

do not align exactly with the Earth’s surface. As a result, the altitude of the inner belt drops

significantly (around 200-800km) in a specific region located over South America off the coast of

Brazil as shown in Figure 5. This phenomenon, called the South Atlantic Anomaly (SAA), induce a

level of radiation significantly higher than anywhere else on Earth orbit for this altitude.

Spacecraft paths are therefore specifically tailored to minimize the exposure time to these

radiation belts.

Figure 5: Inner radiation belt ingress at the South Atlantic Anomaly, from [7].

22

1.1.1.4. RADIATION ENVIRONMENT MODELING TOOLS

To evaluate the reliability of the electronics embedded in space systems, it is necessary to

consider the flux and energy spectrum of each type of radiation that will be received by the

spacecraft during the entire mission. The radiation received by a spacecraft is very dependent on

its position and trajectory in the solar system. For a satellite, it is necessary to consider the entire

trajectory followed from the launch to the final orbit. Traditionally, there are three main near-

earth space mission orbits classified by the altitude:

• Low Earth Orbit (LEO) for altitudes up to 2000km from the Earth’s surface. It includes Earth

observation satellites (meteorology, climate studies, disaster management, crop

monitoring, oceanography), some telecommunication satellites (more and more with

recent large constellations like Starlink and OneWeb) but also the international space

station.

• Medium Earth Orbit (MEO) covers altitudes from 2000km to 35 780km. This orbit is mainly

used for navigation satellites (GLONASS, GPS, Galileo) but also for some telecommunication

satellites.

• Geosynchronous orbit (GEO) is at 35 780km on which the satellite moves around earth in

24 hours. They can be used for telecommunication and weather monitoring.

Due to the complex influence of earth magnetic field and the sun activity on the radiation fluxes

in our solar system, computer tools are required to properly estimate the type and the fluxes of

radiation that the spacecraft will undergo. During the last decades, a lot of models such as AE9,

AP9, ESP, CREME96 and GCR ISO have been developed to model the radiation environment for

each type of radiation source. Today, software such as OMERE (TRAD [8]) are gathering the main

state-of-the-art radiation environment models and allowing, among other things, to compute the

radiation flux and energies received by a spacecraft for a given orbit or trajectory (Figure 6).

Figure 6: Screen shot of OMERE software modeling the trapped protons environment for a given mission
profile [8].

23

1.1.2. ATMOSPHERIC AND TERRESTRIAL RADIATION ENVIRONMENTS

High energy galactic and solar particles that are not blocked by the Earth’s magnetosphere

interact with the molecules in the atmosphere resulting in a shower of secondary, lower-energy

particles such as protons and neutrons [9] as shown in Figure 7. Similarly, these secondary

particles can also interact with the molecules of the atmosphere. The energetic spectrum of these

particles as a function of the altitude is described in Figure 8. The flux of these secondary particles

increases with the altitude reaching a maximum at an altitude around 20km while the flux at

ground level is attenuated by a factor of 500 compare to the peak flux. These secondary particles

are therefore a major concern for on-board electronic systems in aircrafts [10], but even if the

probability of failure induced by these secondary particles is much lower at ground level, it

remains a major concern for all systems that are safety critical. With the massive deployment of

electronic devices in most sectors of daily life, more and more electronic systems have to deal with

the radiative constraints. In automotive, for example, more and more crucial functions are

handled by electronics system, from the engine control unit to the brake control module, and this

digitalization is expected to grow as human handled functions are gradually being replaced by

autonomous systems. The concern for radiation is reflected in many areas of transportation, but

also in the medical industry, in the military field and even in data centers where the large number

of electronic components used in parallel drastically increases the probability of observing a

radiation-induced error.

Another significant source of ionizing radiation in microelectronics comes from radioactive

impurities present in the package materials. Mainly, uranium and thorium and their associated

daughter isotopes can emit alpha particles as a result of spontaneous breakdown of the nuclei

[11]. On the same principle, Boron atoms used as P dopants in many components can be another

source of radiation induced failures. Indeed, during the doping process with Boron atoms, even if

the major part of the implanted atoms are 11B isotopes, a small portion of 10B isotopes can be

implanted. When exposed to low energy neutrons, this isotope is unstable and its nucleus can

break apart releasing alpha particles and gamma photons [12]. These emitted particles can

potentially induce failures to electronics due to their proximity to the active silicon area.

Figure 7: Cosmic particles (GCR) interacting with atmosphere molecules resulting in a shower of
secondary particles.

24

1.1.3. ARTIFICIAL RADIATION ENVIRONMENTS

As mentioned earlier, radiations are not only generated naturally, humanity has also exploited

radioactive phenomena in many sectors ranging from energy production (nuclear power plants),

to medical (imaging, radiotherapy), military (nuclear-powered submarines and aircraft carriers)

and scientific research (particle accelerators). The electronic systems used in these domains may

also be subject to high levels of radiation. The radiation environments, specific to each type of

facility must thus be carefully defined.

1.1.3.1. NUCLEAR POWER PLANTS

The reliability of electronic systems in nuclear power plants is a major issue for the proper

functioning of the plant and for the safety of the operators. Indeed, a strong radiative constraint is

present not only during the normal operation of the plant but also during the creation of fuels, the

treatment and storage of radioactive waste and during the dismantling of the plant. During normal

operation of a nuclear power plant, the radiation present in the nuclear reactor and the spent fuel

containment area are mainly gamma rays and neutrons [14]. The dose rate can reach up to 1

Grad/h and the flux up to 1014 neutrons.cm-2.s-1 for energies below 1 MeV. The level of hardening

of electronic systems is therefore strongly dependent on the criticality of the system function and

its position in the plant. Microelectronics used in detection and monitoring equipment installed

inside the high radiation areas are exposed to high level of gamma rays and neutrons. For the most

critical systems, radiation hardened devices might be required and/or periodically replaced.

1.1.3.2. MEDICAL RADIATION ENVIRONMENTS

In the medical field, ionizing radiations are used mainly for three functions. X-ray imaging,

proton therapy and radiation sterilization (e-beam, RX, or gamma ray). For X-ray imaging, the

maximum dose that a patient could absorb for a full body scan does not exceed 2rad(SiO2)[7].

Likewise, proton therapy, used for cancer treatment, uses very localized proton beams and

therefore represents very low equivalent dose levels. Electronic devices implanted in the human

Figure 8: Simulated spectrum of secondary particles in the earth atmosphere from [13].

25

body are not sensitive to such low dose levels. However, repeated use of the equipment on many

patients can cause long-term accumulation of high dose levels to the internal electronics. Most

electronics components are usually protected by a sufficiently thick layer of metal to prevent their

degradation, but image sensors are necessarily exposed to a significant dose level over time. In

this case, even radiation-hardened imagers will need to be occasionally replaced. On the other

hand, sterilization of surgical instruments, radiation is commonly used to degrade the DNA of

potential bacteria and viruses. The doses used to completely sterilize a sample can reach

5Mrad(SiO2), a particularly high dose level for most electronic systems. Irradiated components

can then be deactivated during irradiation to limit charge trapping and thus mitigate Total

Ionizing Dose (TID) effects.

1.1.3.3. PARTICLE ACCELERATORS

To investigate radiation effects on electronics, a common approach is to expose the electronic

devices to the expected radiation source in an accelerated manner using radiation test facilities.

Several such facilities exist across the world offering different types of particles, flux and energies.

A frequently used example to illustrate the radiation environments in a radiation facility is the one

around the Large Hadrons Collider (LHC) at CERN. The radiation environment of the LHC and its

injection lines is composed of different particles over a wide energy spectrum. The ionizing dose

levels around the LHC can be very high, up to tens of krad(SiO2) per year in the most radiative

areas. These radiation levels are mainly due to the generation of secondary particles by collision

debris from proton collisions and from the interaction of the particle beam with the residual gas

inside the vacuum pipes. As an example, the energy spectra in the tunnel area are presented in

Figure 9. As a result, electronic devices installed in the accelerator complex are exposed to a mixed-

particle radiation environment.

Figure 9: Simulated particle energy spectra of the tunnel areas for nominal LHC operation (normalized to

one proton-proton collision), from [15].

26

In this study, the radiation tests have been performed in two different facilities. The first tests

were performed with neutrons at the ChipIr neutron beam line at ISIS facility (UK). To generate

neutrons, a high-energy proton beam (800MeV) accelerated in a synchrotron is blasted on a

Tungsten target as shown in Figure 10. The collisions generate neutrons with an atmospheric-like

energy spectrum as shown in Figure 11.

The second set of tests were performed with protons at PARTREC facility from the University of

Groningen (the Netherlands). This facility uses a large superconducting cyclotron to generate

beams of ions ranging from protons to oxygen with proton energies up to 184MeV and providing

flux up to 1.108 protons.cm-2. The energy of the particle in this type of facility can be controlled by

using degraders; materials of different thickness that can be inserted into the beam to reduce the

beam energy.

1.1.3.4. RADIATION SOURCES

To analyze the dose effects, high-energy photons (X-rays and Gamma rays) are commonly used.

In this study, the X-ray generator from PRESERVE Platform [17] at the Montpellier University was

used. To generate X-rays, this type of generator (described in Figure 12) uses a filament, heated by

injecting a strong electric current. The heated wire emits electrons from its surface which are then

accelerated by a strong electric field generated by the high voltage anode (around 320kV) in a

vacuum chamber. The accelerated electrons collide with the anode, usually made of high-z metal

such as Tungsten. The collision between the electrons and the metal atoms generates X-rays that

pass through the wall of the vacuum chamber. The X-ray beam then pass through a collimator to

control the beam size before interacting with the devices under tests. The generator used in this

study can generate up to 12 rad(SiO2)/s.

Figure 10: Schematic of atmospheric neutrons

beam production principle, from [16].

Figure 11: Neutron energy spectrum generated

by the ChipIr beam line, from [16].

27

Figure 12 : Schematic description of an X-ray generator.

1.2. RADIATION EFFECTS ON ELECTRONICS

In this part, an introduction to radiation effects on electronics will be presented with an

emphasis on effects affecting digital CMOS technologies, as it is used by all modern FPGAs (subject

of this study). Radiation effects can be divided into two main types: cumulative effects which

describe the progressive degradation of component parameters induced by successive interaction

with a large number of ionizing particles, and Single Event Effects (SEE) which are generated by

interaction with a single particle.

Before diving into the radiation effects on electronics, it is important to briefly present the main

physical phenomena involved in the interaction between radiation and matter.

1.2.1. RADIATION-MATTER INTERACTIONS

The interactions between radiation and matter are strongly dependent on the type of particles,

their mass and their energy. Based on the type of interactions with matter, radiations can be

divided into three groups: photons, which can ionize atoms, neutrons, which, due to their

electrical neutrality, interact with atoms only via nuclear interactions, and charged particles

which can have nuclear interactions but also coulombic interactions due to their electrical charge.

1.2.1.1. PHOTON-MATTER INTERACTIONS

Four main types of interactions are induced by photons:

Figure 13: Main photon induced ionizations of atoms.

28

• Coherent scattering (Rayleigh): the photon is scattered by atomic electrons without

excitation of the impacted atom. The energy of the photon is conserved, and only its

direction is modified.

• Photoelectric effect: the photon transfers all of its energy to an electron of the atom.

The electron is pulled out from its orbital with a kinetic energy equal to the difference

between the energy of the incident photon and the binding energy of the electron.

• Compton effect: this effect occurs when the energy of the photon is much greater than

the binding energy. In that case, the photon loses part of its energy and gets scattered

to pull out the electron from its orbital.

• Pair production: for even higher energies, when the photon passes close to the atom

nucleus, its energy can be transformed into a pair of electron and positron. This pair

production process can be accompanied by the ejection of an electron from the atom if

the photon passes in its field (triplet production).

The relative dominance between these four effects depends on the incident energy of the photons

as shown in Figure 14. In silicon, at low energy, photoelectric effects dominate. Between 60keV and

15MeV Compton effects dominate and pair production dominates for photon energy above

15MeV. As an example, gamma rays emitted by cobalt 60 (extensively used for TID testing) are

found almost exclusively on two energy peaks at 1.17MeV and 1.33MeV, which corresponds to the

Compton effect. As described in the rest of the manuscript, X-ray irradiations have been

performed in this study, for which the photoelectric effect dominates.

1.2.1.2. NUCLEAR INTERACTIONS

Particles with sufficient energies can interact with the atom’s nucleus through four main types

of interactions as shown in Figure 15:

• Absorption: this interaction can occur for thermal neutrons. The nucleus absorbs the

neutron without disintegrating and emits a photon to release excess energy.

Figure 14: Relative proportion of photoelectric effects in silicon as a function of photon energy, from [18].

29

• Elastic scattering: the particle is scattered by collision with the nucleus. The kinetic

energy lost in the collision is transferred to the nucleus that gets in motion. The global

kinetic energy is conserved.

• Inelastic scattering: Beyond transferring part of its energy to the nucleus to get it in

motion (recoil), part of the particle energy is also lost to excite or ionize an electron of the

atom. The global kinetic energy is not conserved.

• Non-elastic scattering: the collision fractures the nucleus into smaller nuclei. This

reaction can also be accompanied by the emission of one or more photons and neutrons.

1.2.1.3. COULOMBIC INTERACTIONS

Charged particles can also interact with matter through three types of Coulombic interactions:

• Bremsstrahlung: (or braking radiation) when an electron passes near the nucleus of an

atom, the electron loses kinetic energy due to the attraction of the nucleus electric field.

This loss of kinetic energy is converted into photons.

• Ionization: when a charged particle passes near an orbital electron, the electric field of

the particle can pull out the electron from its orbit thus generating an electron-hole pair.

• Excitation: Similarly, the charged particle passing near an electron can attract the

electron on an orbital of higher energy. By returning to its initial orbital, the electron

releases a photon.

Figure 15: Nuclear interactions.

Figure 16: Coulombic interactions.

30

1.2.1.4. ENERGY TRANSFERS IN MATTER

When a particle (other than photons) penetrates a material, it gradually transfers its energy to

the surrounding matter through the various interactions mentioned above. The type of

interactions involved will depend on the energy and the charge of the particle. When entering a

material, a charged particle such as a proton or a heavy ion will first transfer energy by direct

ionization of the surrounding matter. To quantify this energy transfer, the Linear Energy Transfer

(LET) is used. This variable is defined by equation (1).

𝐿𝐸𝑇 = −
1

𝜌

𝑑𝐸

𝑑𝑥
 (1)

Where 𝜌 is the density of the material, 𝑑𝐸 is the energy loss is the material and 𝑑𝑥 is the unit of

path length. The LET is usually given in 𝑀𝑒𝑉. 𝑐𝑚2. 𝑚𝑔−1.

As the particle slow down, its energy gets closer to the binding energy of the surrounding

electrons, the probability of interaction by ionization increases, thus increasing the linear energy

transfer until it reaches the Bragg peak as shown in Figure 17. This Bragg peak corresponds to the

maximum linear energy deposition before the particles come to rest. As the particle continues to

slow down, the nuclear interaction probability increases and becomes predominant at low

energies. The nuclear interactions can generate secondary particles which can in turn continue to

ionize the matter as described in Figure 19. The primary particle will continue its path until the

total loss of its energy. Figure 18 shows the proportion of energy deposition between ionization

and nuclear interaction as a function of the particle energy.

Figure 17: Evolution of linear energy transfer in

the path length.

Figure 18: Energy deposition of Xenon ion in

silicon according to SRIM [19].

31

Figure 19: Energy deposition by a charged particle.

To be noted that the heavier the particle, the higher the LET. With the same initial energy, the path

length in the material is thus longer for the lightest ions. When performing radiation tests with

heavy ions, the penetration through the component package and silicon layers (for flip-chip

packages) or through the back end of line (contacts, insulating layers, bonding sites) must be

considered to ensure that the particle can reach the active zone of the component at a given

energy. Regarding neutrons, as they cannot perform direct ionization, they transfer their energy

to the material only through nuclear interactions and indirect ionization.

Photons that penetrate a material interact with the atoms through one of the different interactions

mentioned above (photoelectric, Compton, pair production) depending on their energy. The

higher the energy of the photon, the lower the probability of interaction and therefore the greater

the penetration. The penetration of a beam of photons of intensity I in matter is defined by the

Beer-Lamber law (2).

I

I0
= B. exp (−

μ

ρ
x) (2)

With I0 the incident intensity, μ the attenuation coefficient of the material, 𝜌 the density of the

material, x the depth of penetration into the material and B a factor that takes into account the

photon scattering when the material thickness to be penetrated is important.

1.2.2. CUMULATIVE EFFECTS

The cumulative effects caused by radiation on electronic components can be divided into two

subcategories, Total Ionizing Dose effects (TID) and Total Non-Ionizing Dose effects (TNID).

1.2.2.1. TOTAL IONIZING DOSE

Ionizing dose effects are caused by the interaction of charged particles or high-energy photons

with dielectric materials contained in electronic components such as SiO2. The total ionizing dose

(TID) is defined as the total energy deposited by ionization per unit mass. When a high-energy

photon or charged particle passes through the component, the ionization process generates

electron-hole pairs. A part of the generated pairs recombines almost instantaneously but a certain

ratio of these generated pairs will survive the initial recombination due to the local electric field

that tends to separate opposing charges. The non-recombined pairs then migrate in opposite

directions according to the electric field. In an electrical insulator such as SiO2, there are

intermediate energy levels located within the band gap that are due to defects in the crystal lattice.

32

These energy levels are called traps. Indeed, part of the electrons and holes generated by

ionization, migrating by the action of the electric field can get blocked in these energy levels. The

energy depth of the trap and the temperature of the component define the probability that the

trapped electron or hole releases through thermal agitation [20]. The electron-hole pair

generation, charge trapping and thermal reemission phenomenon are illustrated in Figure 20. As

the mobility of holes is lower in SiO2 than the one of electrons, the number of holes trapped inside

the oxide overwhelms the number of trapped electrons which results in an accumulation of

positive charges in the oxide. On a MOSFET device, this charge accumulation in the isolation oxides

acts directly on the electrostatic field inside the transistor channel and will thus directly impact

the threshold voltage of the transistor. Due to the difference in the mesh size between SiO2 and Si,

defects in the crystal lattice are more important near the Si/SiO2 interface.

The majority of the trapped charges will be located close to this interface and therefore have a

greater impact on the electrostatic field in the channel. Note that the polarization of the transistor

during the irradiation also plays an important role as it defines the direction and the intensity of

the electric field in the SiO2. Beside its influence on the initial recombination rate, a positive

Figure 20: Band diagram representing the trapping and release mechanisms in a dielectric material.

Figure 21: Parasitic conduction path on transistor edges, from [33].

33

polarization tends to push the holes towards the interface which tend to amplify the trapping

phenomenon. A second phenomenon comes in addition when the generated free holes react with

the Si-H bonds at the Si/SiO2 interface. By breaking this bond, new interface defects are generated

which translate in additional energy levels in the band gap. In the drain-source channel, the

charges will move intermittently on these newly created energy levels leading to a decrease in the

overall mobility of charges. Finally, a third TID effect appears on the recent CMOS technologies:

the radiation induced leakage current (RILC). Shallow Trench Isolation Oxides (STI) used to

prevent electric current leakage between adjacent semiconductor device are much thicker and

poorer quality oxide than gate oxides. Holes trapped in STI oxides can create a parasitic

conduction path on the transistor edges as shown in Figure 21 as well as a leakage path between

the n+ source/drain regions of adjacent NMOS transistors, resulting in an increased source-drain

current in the transistor off state (VG=0V) and mitigating the intended inter-device isolation [21].

In summary, there are three TID phenomena affecting the MOSFET characteristics: the

accumulation of trapped holes in the insulation oxide inducing a negative threshold voltage drift

(on both NMOS and PMOS transistors), the generation of new interface states inducing a decrease

of the transconductance as described in Figure 22, and the increase of the leakage current induced

by trapped holes in the STI.

The radiation induced parametric drift at transistor level can be translated in many different ways

depending on the type of systems considered. For example, on a CMOS image sensor, the increase

in leakage current will be predominant and will cause a whitening of the recorded image; analog

circuits may suffer a distortion of their spectral response and a decrease in performance. Memory

elements may also suffer from TID induced degradations. For instance, Dynamic Random-Access

Figure 22: Main TID effects on NMOS (left) and PMOS (right) transistors: negative threshold voltage
drift induced by accumulation of holes in the SiO2 layer (A), decrease of the transconductance due to

interface states (B).

34

Memory cells (DRAM), are usually composed of a tiny capacitor, which retains the binary

information by storing or not a certain amount of electrical charge and an access transistor, used

for the read and write operations as shown in Figure 23. This volatile memory cell type needs to

be refreshed periodically to overcome the charge leakage. TID induced degradation on the access

transistor can result in an increase of the leakage current, translated by a reduction of the

retention time of the cell as shown in Figure 24 [22]. If the retention time gets lower than the

refresh rate, data corruption may appear. Similarly, Flash memory cells and the associated

peripheral circuitry (charge pump) can be corrupted by TID. This effect will be described in

section 2.3.1.

Figure 23: DRAM cell structure. The storage

capacitor can either be charged or discharged to
represent a logical 1 and 0 respectively.

Figure 24: Probability density function of

retention time before and after radiation exposure
(Co60) of a commercial 0.14μm SDRAM, from [22]

As for digital circuits, these transistor level effects will be mainly translated by a drift of the

propagation delay of the logic gates and by an increase of the power consumption. In another note,

for flash memory cells, the threshold voltage drift of the floating gate can be translated in a

permanent corruption of the stored information. The effects typically FPGAs are concerned (the

components studied in this work) and the consequence on system reliability will be described in

a chapter 2.

1.2.2.2. TOTAL NON-IONIZING DOSE

TNID effects (also called displacement damage) are caused by high-energy particles that, when

penetrating a component, can collide with atoms of the crystal lattice and displace the nucleus of

the impacted atom. These atomic displacements will break the regularity of the crystal lattice by

Figure 25: Crystal lattice defects.

35

creating vacancies (missing atom from its normal lattice position) and interstitial (atom located

in a non-lattice position) as shown in Figure 25.

The defects generated in the crystal lattice result in the creation of intermediate energy levels in

the band gap. For MOS devices, these energy levels will mainly cause a decrease in carrier mobility

and an increase in leakage current. The effects induced by the displacement damage will not be

further discussed in this manuscript.

1.2.3. SINGLE EVENT EFFECTS

As explained in the previous sections, the passage of a high-energy particle in silicon produces

a localized ionizing track. The electric field and the local density of charges in the component

determine the displacement of these charges which will locally modify the electric currents

through two main phenomena, drift and diffusion, as shown in Figure 26.

The carriers of the ionizing track are firstly dragged by the electric field extending the depletion

region deeper in the semiconductor with a funnel shape. The remaining charges then diffuse

inside the semiconductor to equilibrate the charge density. This charge collection phenomenon

generates current pulses in the surrounding transistors. The critical charge QCRIT defines the

amount of collected charge required to change the state of the transistor. With technology scaling,

this critical charge tends to decrease, and the transistors are also closer to each other, the charges

generated by the passage of a single particle thus have an increased probability to upset several

transistors simultaneously.

Single Event Effects (SEE) are classified into subcategories depending on the type of circuit and

the way they can be affected. This classification can vary depending on the type of electronic

component considered. The main categories for CMOS digital devices are described below.

Figure 26: Charge collection phenomenon in a reverse-biased junction, from [23].

36

1.2.3.1. SINGLE EVENT TRANSIENT

Single Event Transients (SET) are characterized by the generation of a current spike in the

node of a circuit. Depending on its amplitude and width, this current spike can then propagate

across the nets and the logic gates of the circuit. The logic gates crossed can have a broadening or

narrowing effect on the propagation of the current pulse as well as an amplifying or decreasing

effect depending on the type of gate and the design parameters. The SET can potentially impact

the circuit functionality if it is captured by a sequential element. In others words, if the SET reaches

the input of a latch or flip-flop with sufficient amplitude during the rising edge of the clock signal,

an erroneous logic value is stored by the latch until the next clock cycle as described in Figure 27.

The SET can propagate through several nets and can eventually generate logic error in different

latch elements at the same time. The number of affected sequential elements can increase

drastically when the affected nodes impact global nets like the clock or reset signal. To be noted

that the SETs generated in the combinatorial logic are asynchronous, so the probability to get

captured by a sequential element increases linearly with the frequency of the clock signal (i.e. the

number of rising edges per second).

1.2.3.2. SINGLE EVENT UPSET

Single Event Upset (SEU) is a soft error generated in a latch or a memory cell. A SEU is created

when a radiation-induced current pulse is generated inside the latch or memory cell circuit. For

instance, the content of DRAM memory cells (described in section 1.2.2.1) can be corrupted by

single-event upset in or near either the storage capacitor or the source of the access transistor

[24]. Another example of the upset mechanism of the content of a Static Random-Access Memory

(SRAM) memory cell is described in Figure 28. If the current pulse is strong enough to flip the state

of one of the inverters during a certain amount of time, the mirror inverter will feed the erroneous

value back to the input of the affected inverter thus sustaining the error until the next write

operation.

Figure 27: The generated SET electrically propagates through the logic gates before reaching the end-
point flip-flops. If the SET reach the flip-flop at the rising edge of the clock, the error is captured and

maintained until the next clock cycle.

Figure 28: SRAM cell upset. If sufficient charges are generated along the particle track, the resulting
current pulse can temporarily charge or discharge one of the inverters and propagate to the cross-

coupled inverter thus latching the erroneous stored value.

37

The mechanism is quite similar for edge-triggered D-flip-flops. Figure 29 shows the behavior of

this type of latch element. When the clock signal is low, the input signal is transferred and stored

in the master cell while the output value is maintained in the slave cell. When the clock signal goes

high, the value previously stored in the master cell is transferred to the slave cell.

Depending on the time at which the current spike is generated and the transistor affected, the

error signature may be different. Current spikes occurring during the rising edge of the clock

signal will force a change state of the flip-flop that will necessarily be transferred to the rest of the

circuit. Current spikes generated in the master cell when the clock is at logic level 1 and the one

affecting the slave cell when the clock is at logic level 0 also generate an error that is maintained

until the next clock cycle [25]. However, as the error is generated after the rising edge of the clock,

it can be temporally masked if it doesn’t reach the end point flip-flops before the next rising edge.

The probability that this type of error propagates depends on the moment at which the error is

generated and the timing margins on the path that separates it from the end point flip-flop. To be

noted that with recent CMOS technologies, a single particle can generate SEU on more than one

bit at the same time. This phenomenon is called Multiple Bit Upset (MBU) as opposed to Single Bit

Upset (SBU).

1.2.3.3. SINGLE EVENT LATCH-UP

Single Event Latchup (SEL) occurs when a particle deposits enough energy to trigger the

parasitic thyristor formed by the arrangement of an NMOS and PMOS transistor (in a CMOS

technology) as shown in Figure 30.

When the thyristor is triggered, it forms a regenerative feedback loop producing a low-impedance

path between the power supply rail and the ground [26]. This regenerative feedback maintains

the high current state and can only be removed by powering down the device. The severity of the

Figure 29: Edge triggered D-flip-flop behavior.

Figure 30: Parasitic thyristor in CMOS technology.

38

consequences of an SEL can vary from a simple interruption of the component's operation

(recovered after power cycle) to the total destruction of the component due to an important heat

generation by the induced short circuit. To mitigate the effects of SELs on an integrated circuit,

the basic solution is to monitor externally the supply current of the circuit and to perform a power

cycle when a significant current peak is detected.

High-energy particles can cause other types of permanent damage such as Single Event Gate

Rupture (SEGR) and Single Event Burnout (SEB) in high voltage devices, however, these effects

are out of the scope of this work.

In another hand, Single Event Functional Interrupt (SEFI) is a widely used terminology to define

a soft error, caused by a single particle, that causes the component to reset, lock-up, or otherwise

malfunction in a detectable way. This type of event does not correspond to a physical phenomenon

but is often associated with an SEU or an SET capture in a control bit or register or SET in global

routes (global reset). The nature of SEFIs is specific to the type of component considered.

1.2.3.4. SEE SENSITIVITY METRICS

To characterize the SEE sensitivity of a circuit, a memory cell, or a component, the cross section

concept is generally used. The cross section (σ) corresponds to the probability that an

interaction occurs between a particle and the investigated device. Cross section can be seen as the

effective area that a device represents to a particle. Based on accelerated particles experiments,

the cross section of a given device can be computed by dividing the total number of observed

events by the total fluence of particles it has been exposed to (3).

𝜎 =
𝑁𝑒𝑣𝑒𝑛𝑡

𝛩

(3)

Other metrics, providing a quantitative measure of a device reliability over time in a given

environment can be used, such as the Mean Time To Failure (MTTF) or Failure In Time (FIT). To

compute these metrics, the cross section of the device has to be evaluated for each particle type

and energies to which it will be exposed in real operation conditions. For terrestrial or avionics

applications, facilities providing a neutron flux with an atmospheric like spectrum are generally

used. As the energy spectrum is similar to the real conditions one, the MTTF can be estimated by

simply dividing the obtained cross section by the expected neutron flux in real operation

conditions (4).

𝑀𝑇𝑇𝐹 =
𝜎

𝜃
 (4)

This MTTF (often expressed in hours) then represent the average time that would be expected

between each failure. The FIT, representing the number of expected failures per billion hours of

execution is then obtained using equation (5).

𝐹𝐼𝑇 =
1

𝑀𝑇𝑇𝐹
× 109 = 𝜎 × 𝜃 × 109

(5)

However, for spatial applications, the flux and energy spectrum of protons and heavy ions strongly

vary according to the considered orbit. To get an estimation of the failure contribution of protons,

the cross section of the device must be evaluated for a representative part of the proton energy

spectrum. The proton cross section evolution as a function of the energy is generally correlated to

39

a reliability model such as a Weibull distribution. Similarly, the SEE contributions of heavy ions is

analyzed by computing the cross section with ions of different LET.

To compute the FIT contribution for both particle types, the obtained cross sections must be

integrated with the expected proton spectra (6) and heavy ions spectra (7) of the considered

environment.

𝐹𝐼𝑇 = ∫ 𝜎(𝐸) ∙ 𝜃(𝐸) ∙ 𝑑𝐸 × 109 (6)

𝐹𝐼𝑇 = ∫ 𝜎(𝐿𝐸𝑇) ∙ 𝜃(𝐿𝐸𝑇) ∙ 𝑑𝐿𝐸𝑇 × 109 (7)

1.3. CONCLUSION

Radiation can induce different types of effects on microelectronics devices ranging from the

progressive degradation of its performance, the corruption of the data passing through and stored

in the component and the complete destruction of the component. The type of effects induced is

determined probabilistically by the type of particle and its energy as shown in Figure 28. In a

simplified way, and considering only natural radiations, protons and electrons produce TID effects

and displacement damage while high-energy protons can also generate SEEs. Atmospheric

neutrons generate SEEs through nuclear interactions. Heavy Ions, due to their high LET, are

mainly considered for SEE which, although being less frequent in the space environment, can have

much more severe effects (MBU, SEL). For space systems, the dose effects are mainly caused by

protons and electrons, but X-rays and Gamma rays artificially generated on earth are extensively

used to investigate TID effects on electronic components.

Figure 31: Simplified classification of radiation effects per type of natural radiation as a function of
incident energy, inspired from [27].

TID effects affect, in a roughly uniform way, the whole component (any device containing oxides)

and progressively degrade its electrical properties, while SEEs occur in a unique way and on a

specific location, randomly on the chip and potentially generate soft errors. On complex

components such as FPGAs (the subject of this study), these soft errors can propagate throughout

the circuit potentially leading to a system failure. The structure, operation and radiation behavior

of these components are described in the next chapter.

40

2. FPGA ARCHITECTURE

The work presented in this manuscript focuses on the reliability of programmable electronic

components in radiative environments. In the previous section, different radiative environments

have been described. In this section, the components studied in this work are introduced: Field

Programmable Gate Array (FPGA). In a first instance, their principle of operation and their

architecture will be described. Then, the different failure mechanisms induced by radiation on

these components will be presented, along with a presentation of the main hardening techniques

used to improve their reliability.

2.1. DEFINITION AND PRINCIPLE

Field Programmable Gate Arrays (FPGA) are integrated circuits that can be reprogrammed

after being manufactured, to implement an arbitrary digital circuit. Their main principle of

operation lies in an array of programmable logic blocks and a network of reconfigurable

interconnects that allows the mapping of the logic blocks together. The FPGA functionality is

specified by loading a binary file in a specific internal memory. Each bit of this memory is used

either to define the functionality of a logic block or to activate a specific connection between

routing tracks. In contrast to standard microprocessors, which can only execute logical operations

in a sequential manner, FPGAs can implement digital functions with a high level of parallelization

just like Application Specific Integrated Circuits (ASIC), with the difference that their functionality

is not permanently defined in production stages but can be reprogrammed on the field.

2.1.1. ADVANTAGES AND DRAWBACKS

Inheriting from PLDs (Programmable Logic Devices), the first FPGA was invented in 1985 by

the co-founders of Xilinx. Since their introduction, the capacity, speed, complexity and flexibility

of these components have been steadily increasing. Although the performance of FPGAs is

generally lower than their ASIC counterparts, FPGAs are increasingly being used, not only for

prototyping but also to replace ASICs in a wide range of applications. This growing use is due, on

one hand, to their increasing performance and capacity and on the other hand to their low Non-

Recurring Costs (NRC), short time-to-market, and their reprogrammability. Indeed, the possibility

to reprogram the component "on the field", provides the opportunity to modify, correct and

update the system functionality after its deployment. By bypassing all the engineering steps

related to the IC layout and to the manufacturing process (masks creation, calibration, etc.), most

of the Non-Recurring Engineering (NRE) costs and production delays are eliminated. However,

the unit cost of an FPGA component becomes higher than an ASIC once the production volume

reaches a certain threshold, as illustrated in Figure 32.

In recent years, the use of FPGAs is growing, especially for real-time systems where response time

plays a crucial role: telecommunications, automotive industry, aerospace, medicine, audio,

finance, computer science, video, security but also more recently in specific computer

applications, such as cryptocurrency mining and deep learning algorithms. In the space industry,

the use of FPGA in satellite payload is becoming more and more attractive due to the low

production volume and to the extension of the payload lifetime it provides by updating its

functionalities to follow the evolution of telecommunication protocols.

41

The sensitivity of commercial FPGAs to radiation effects and the high cost of radiation-hardened

FPGAs are the main obstacles to their widespread use. The comprehension of degradation and

failure mechanisms induced by radiation, the development of test methodologies and mitigation

techniques are key factors that play an important role for the wide use of FPGAs in the space

industry among others that are concerned by radiation effects.

2.1.2. DEVELOPMENT WORKFLOW

To configure an FPGA, the user must follow a multi-step development flow, comparable to the

digital ASICs development flow, as described in Figure 33.

The first step to design a digital circuit with an FPGA is to describe the intended functionality using

a Register Transfer Level format (RTL) via a hardware description language such as VHDL or

Verilog. The concept of RTL design is to describe the behavior of a circuit in terms of signals sent

or data transferred between registers and the logical operations performed on these signals. With

the increasing complexity of digital systems, new design methodologies, called High Level

Synthesis (HLS) have appeared to describe the system functionality with a higher level of

abstraction by using programming languages such as C/C++. This high-level description is then

automatically translated into RTL.

Next comes the synthesis process in which the design tool interprets the provided RTL

description and translates it into a logic circuit that matches the described functionality. The

resulting logic circuit is built by instantiating the lowest level elements of logic that compose the

FPGA fabric (called primitives). The synthesis result is thus entirely dependent on the targeted

FPGA architecture. The development flow of digital ASICs uses a similar process although the

design of the circuit is done by instantiating standard cells. These standard cells, generally

provided by the foundry libraries, are logic gates of varying degrees of complexity, provided with

a physical layout (at transistor level) tailored to the technological process used.

The development workflow continues with the placement step where each primitive element of

the previously synthesized logic circuit is assigned a precise position in the FPGA matrix. Since an

FPGA chip contains many replicas of each type of primitive, the placement process is driven to

Figure 32: FPGA vs ASIC cost analysis, from [28].

42

limit as much as possible the area overhead and the physical distance between logic gates linked

by a common net.

The placement step is followed by the routing step which consists in physically linking the logic

gates together. To do this, specific routing tracks of the routing matrix are selected and activated

to build the physical connections. This part of the flow is driven to minimize the propagation delay

of each net. For ASIC counterparts, the placing and routing stages are replaced by a physical layout

stage of the IC: standard cells are physically placed and routing tracks are drawn on the dedicated

chip area.

Finally, the binary configuration file (bitstream) is generated by setting all the configuration bits

that must be activated in the FPGA configuration memory to match the circuit architecture

implemented in previous steps. This bitstream is then programmed in the FPGA configuration

memory.

Figure 33: Development workflow for FPGA-based design.

Each step of this development flow can be customized and driven by the designers by using

constraints and directives. The development workflow also integrates simulation and verification

tools that allow to validate the functionality of the design at each step. The simulation can be

performed on the RTL description, on the post synthesis circuit and on the implemented circuit.

43

Each type of simulation grants access to different levels of circuit analysis: RTL simulation simply

provides insight on the functionality of the circuit while physical simulation, based on Static

Timing Analysis (STA), can consider all the timing constraints that can alter the behavioral

operation of the circuit.

2.2. ARCHITECTURE DESCRIPTION

2.2.1. OVERVIEW

The flexibility of FPGAs is achieved thanks to the combination of Configurable Logic Blocks

(CLB) and a routing matrix as shown in Figure 34. These logic blocks, designed to handle a wide

diversity of Boolean and sequential functions, are replicated on the entire chip area. By combining

several blocks together via the programmable routing matrix, any type of digital function can be

implemented.

Figure 34: FPGA architecture overview: Configurable Logic Block (CLB), Input/output (IO) pads, block
RAM (BRAM) and other specialized blocks such as Digital Signal Processing blocks (DSP) are connected

together through a programmable routing matrix.

The structure of the logic blocks and the routing matrix have significantly evolved since the

invention of the first FPGA and there are still notable differences between the FPGAs of different

families and different vendors. The level of granularity of the elementary logical resources used

in the CLBs is a main criterion defining the trade-off between area, performance and power

consumption of the component. Even if the choice of this trade-off (LUT size, number of LUT per

CLB, global routing scheme) significantly evolved in the last decades, the main CLB structures and

concepts are now closely shared between all modern FPGAs. The flexibility brought by a low-level

granularity in the CLB comes at the cost of a strong decrease in performance compared to ASIC

44

counterparts. To limit this performance gap, most modern FPGAs now integrate a higher level of

granularity by integrating specialized blocks to efficiently implement commonly used functions

such as memory blocks and arithmetic operators.

The detailed architecture description below and the used terminology are based on the

architecture of Xilinx FPGAs. With certain differentiations the described architectures are very

close to what other vendors implement as well.

2.2.2. CONFIGURABLE LOGIC BLOCKS

The purpose of a CLB is to provide the basic computation and storage elements used in digital

logic systems with a relatively low level of granularity. In Xilinx 7 series FPGAs, a CLB is a pair of

slices, and each slice is composed of Look-Up Tables (LUT), Multiplexers (MUX) and D-type flip-

flops (FF).

Figure 35: Schematic representation of a slice inspired by the one use by Xilinx 7 series FPGAs.

A Look-up table is a combinatorial logic cell that can be configured to generate the desired output

for each input value. LUT is the core of the configurable logic as it can be programmed to emulate

the function of any logic gate. An LUT is actually a Read Only Memory (ROM) which is initialized

with the results of the truth table of the intended logical function. The address bus is used as the

gate input and the contents of the ROM are multiplexed to the output. A basic LUT architecture

with 4-inputs is described in Figure 36.

Any N-input LUT requires 2N configuration memory bits to store its functionality. The FPGA

market is now dominated by FPGAs with LUT size ranging from four to six inputs as these LUT

sizes have shown the best trade-off between area and routing [29]. Several optimization features

have been added over the years, like combining two LUTs that share the same inputs to either

operate as a logic gate with two outputs or as a bigger LUT. Some FPGA technologies also integrate

LUTs that can be dynamically reconfigured to operate as a dual port RAM (LUTRAM) or shift

registers (SRL) [30].

As shown on Figure 35, slices integrate multiplexers in order to create wider logic operators by

combining the LUTs’ outputs. However, arithmetic operations (additions, multiplication, etc.)

45

cannot be implemented efficiently using only LUTs and such multiplexers. Indeed, to compute any

type of arithmetic operation, a carry bit must be propagated between the bits of increasing weight

which requires a significant overuse of routing resources and high propagation delays. To

improve the implementation of this type of application, slices now integrate dedicated logic gates

and routing paths to efficiently propagate the carries across bit weights and across slices.

Figure 36: 4-inputs Look-up table architecture.

Finally, slices integrate D-type flip-flops to register the results the combinatorial functions. These

flip-flops can be configured to define the type of clock edge it is referring to, the polarity of the

reset signal, the use or not of clock enable signals as well as the initial value.

2.2.3. CONFIGURABLE ROUTING MATRIX

One key issue for FPGA performance is the organization of the global routing architecture,

which is the macroscopic allocation of routing segments to link all the logical resources together,

minimizing the propagation time and maximizing the flexibility of the network. Two main types

of global routing architectures are used in modern FPGAs: hierarchical and island-style.

Figure 37: Global routing architectures, from [31].

46

Hierarchical routing architecture separate FPGA logic block into distinct groups. Connections

between blocks within the same group can be made using the lowest level of wire segments, but

connections with blocks in other groups require the traversal of one or more hierarchical level of

routing segment. Even if this architecture offers more predictable routing delays, its lack of

flexibility can lead to many disadvantages for some applications. Indeed, if the hierarchy of the

design does not match the one of the routing architectures, it may suffer from large timing

penalties. For this reason, most recent commercial FPGA use island-style global routing

architecture. In island-style FPGAs, logic blocks are arranged in two-dimensional grids with

routing resource evenly distributed throughout the mesh. Vertical and horizontal wire segments

of different length are employed and connected through programmable switchboxes offering a

higher flexibility and a better average timing performance.

Figure 38: Subset type switch box (left) using routing multiplexer (right).

Switchboxes are built to connect wire segments together using Programmable Interconnexion

Points (PIP). To reduce their footprint, only a subset of all the possible connection between wires

of the same switchbox are typically available as represented on Figure 38. For each wire, a certain

set of the other wires can be connected to it through a routing multiplexer. These routing

multiplexers (Figure 38) are built by pass-transistors activated by configuration memory bits. The

detailed structure of a routing multiplexer is usually not accessible by users but more information

on this structure for Xilinx 7 Series FPGA is provided in chapter 5.

Another important element of the routing matrix is the buffer, either used to route high fanout

and global signal such as clocks, reset and clock-enable signals. Most FPGAs also use specific

routing tracks for global signals to limit the time skew across the chip. To communicate with the

outside world, FPGAs use input/output banks whose parameters can be configured: direction

(input/output/bidirectional), voltage, logic level standards (LVCMOS/LVTTL), impedance

(digitally controlled impedance), slew rate, termination type (Single-ended/differential) etc.

2.2.4. SPECIALIZED BLOCKS

As mentioned earlier, to overcome the timing and consumption penalty induced by the FPGA

fabric flexibility, many coarse grain resources have been added to efficiently implement widely

used Intellectual Properties (IPs):

• Block RAM (BRAM): a memory array which can be accessed with different data size and

depth, as single port memory or double port memory. Some FPGA families even integrate a

47

dedicated logic to use the BRAM as FIFO while providing the required synchronization logic for

asynchronous use.

• Digital Signal Processing blocks (DSP): a computing unit allowing to implement a certain

set of arithmetic operations. The most advanced FPGAs integrate DSPs allowing to perform

addition, multiplication, division, subtraction, accumulation, and various bitwise operations with

several configurable levels of pipelining as shown in Figure 39.

Figure 39: Digital signal processing block in Xilinx FPGAs (7series and later) from [32].

• Phased Locked Loop (PLL) for clock generation and synchronization.

• Analog to Digital Converters (ADC) and Digital to Analog Converters (DAC).

• AES Encryption/Decryption modules.

• High-speed transceivers.

• Ethernet MAC, PCIe Gen4 among others.

Each generation of FPGA integrates new dedicated modules to enable higher performance

interfaces through a wide diversity of communication protocols. In addition, System on Chip (SoC)

FPGAs integrate microprocessors tightly coupled with the FPGA fabric through high speed buses,

further advancing the capabilities of these devices.

2.2.5. CONFIGURATION MEMORY CELL TECHNOLOGIES

As explained previously, all programmable logic resources and programmable routing points

are configured by memory elements that define their functionality. Depending on the technology

of these memory elements FPGAs are divided in three categories: Static Random Access Memory

(SRAM), Flash and Antifuse. Each type of technology brings its own advantages and drawbacks,

whether in terms of manufacturing process, performance, power consumption and component

flexibility.

2.2.5.1. STATIC RAM

SRAM cells uses latching circuitry to store the information bit as a voltage level (GND or VCC).

The most common SRAM structure uses six MOS transistors as shown in Figure 40. Four transistors

form two cross-coupled CMOS inverters and two transistors are used to control the access to the

cell content during read and write operations.

48

Figure 40: SRAM cell using six transistors (6T) by forming a latch with two interleaved CMOS inverters.

SRAM offers a simple and very fast data access and does not require a refresh circuit to maintain

the data. However, SRAM cells are volatile, meaning that the data is lost when power is removed.

SRAM based FPGAs thus require an external memory to store the bitstream and load it in the FPGA

configuration memory at power up. Thanks to this simple and fast access to data content, SRAM

based FPGA benefit from additional features like using the LUT content as user writeable

memories [33], BRAM content initialization through bitstream and partial reconfiguration [34] in

which only a part of the implemented design can be reconfigured while the rest of the design can

continue running.

2.2.5.2. FLASH MEMORY

Flash memory cells are a type of Electrically-Erasable Programmable Read-Only Memory

(EEPROM) that use a floating-gate transistor. Floating-gate transistor, described in Figure 41, are

N-type transistors with an additional floating gate buried in the middle of an oxide, between the

channel and the grid. The data is stored by trapping electrons on this floating gate through a

tunneling effect by applying high voltage on the control gate or through hot carrier injection.

Electrons trapped in the floating gate repel the electrons in the channel preventing the current

from passing from source to drain even when the control gate is ON, which will be detected as a

logic ‘0’. If the floating gate is not charged, the current may flow between source and drain, which

will be detected a logic ‘1’.

Figure 41: Cross section view of a flash cell: a floating gate is buried in the middle of the oxide. Data is
stored by trapping or releasing electrons in the floating gate.

49

This memory cell technology is non-volatile, which implies that the information is kept after

power down. This means that flash-based FPGAs does not need external memory to store the

bitstream, thus reducing the required printed-circuit board area and canceling the bitstream

loading latencies and energy overheads at power up. Unlike SRAM cells, the nature of this memory

cell technology prevents them to be used dynamically by the implemented system. Therefore,

LUTs cannot host writable memory functions, and BRAM must be implemented with SRAM cells,

thus requiring additional stages to initialize their content from the flash memory. Nonetheless,

flash-based devices benefit from many power-saving advantages with lower static and dynamic

power consumption as well as advanced sleeping modes [35].

2.2.5.3. ANTIFUSE

An antifuse is a normally open circuit dipole that can be permanently converted into an

electrically conductive path by applying a certain voltage level. Antifuse can be built using either

a very thin oxide barrier that can be converted into conductive channel by dielectric breakdown

or amorphous silicon (low conductivity) that can be turned into polycrystalline silicon (high

conductivity) through the action of a strong electric field. By nature, antifuse based FPGAs are one-

time programmable: once programmed, the antifuse state is permanent. As a result, they do not

benefit from all the advantages brought by reprogrammability. In return, they provide some

benefits: lower power consumption and shorter propagation delays for programmable routing

points.

2.3. RADIATION EFFECTS ON FPGAS

In section 1.2, general radiation effects on electronics have been presented. In this section, the

radiation effects and failure mechanisms specific to FPGA based systems are further discussed.

The physical radiation effects related to the configuration memory will be first presented before

describing the effects on the rest of the component for both TID and SEEs along with a description

of the associated failure mechanisms.

2.3.1. RADIATION EFFECTS ON CONFIGURATION MEMORY CELLS

When it comes to radiation tolerance, the key difference between FPGAs and ASICs lies in the

sensitivity of the configuration memory to both TID and SEEs. Indeed, the type of technology used

to store the FPGA configuration has a major impact on the radiation tolerance of the component.

2.3.1.1. SRAM

For SRAM technologies, the main reliability issue lies with their high sensitivity to SEU [36].

Indeed, as described in section 1.2.3, when an SRAM cell holds a value, two transistors from the

inverter pair are ON while the two remaining are OFF. This means that there are always two SEU

sensitive nodes in the cell: if a particle strikes one of these nodes, transistors in the “off” state can

be switched “on”, thus flipping the stored value. As for TID, even if SRAM cells can be theoretically

corrupted by an excessive TID induced standby current increase or by a reduced read and write

voltage margins [37], SRAM cells are generally considered as incorruptible by TID as most modern

SRAM devices can reach TID tolerance over 1Mrad(Si) [37]–[39]. This is particularly true for

FPGAs for which other on chip circuitry such as the programming or power-on reset circuitry have

a much lower TID tolerance [40], [41]. Nevertheless, some studies have demonstrated that the

50

accumulated dose on SRAM cells can cause an important increase of their SEU sensitivity [42]–

[44].

2.3.1.2. FLASH

As opposed to SRAM-based FPGAs, flash cells are known to be strongly sensitive to TID. Indeed,

as described in section 2.2.5.2, the data retention in flash cells is carried out through the

accumulation of electric charges in the floating gate, locally modifying the threshold voltage of the

transistor to prevent or not the current from passing from source to drain. According to [45], [46],

three basic mechanisms are responsible for the TID-induced corruption of the flash cell:

1) Electric charges generated in the surrounding oxides and injected into the floating gate

through the action of the local electric field. This effect decreases the number of charges in

the floating gate as the charges attracted by the electric field (holes) are opposed to the one

stored on the grid (electrons) and will therefore recombine.

2) Electric charges generated and trapped in the surrounding oxides. As for any MOS device,

this phenomenon results in an accumulation of positive charges (due to their lower

mobility).

3) Carriers in the floating gate received sufficient energy from the radiation to escape the

potential well through photoemission, thus reducing the number of charges in the floating

gate.

These mechanisms will alter the local threshold voltage drift of the floating gate transistor, thus

potentially corrupting the stored information. Beside these floating gate related effects, the

weakest point of the flash-based devices generally come from the peripheral circuitry including

decoders and buffers but mostly from voltage multiplications circuitry (charge pumps) providing

the high voltages required for carrier injection in the floating gate (write operation). In several

studies [47], [48], this charge pump circuitry has been reported to be the first cause of failure due

to inability to perform write operations.

Regarding single event effects, the main observed phenomenon on floating gate cells is a drift of

the threshold voltage induced by a particle passing through or near the cell. Generally, this drift is

observed only on programmed cells (floating gate storing electrons) but not on erased cells (no

charge stored)[49]. The observed VTH drift, due to a charge loss in the floating gate is linearly

proportional to the particle LET [45]. Two mechanisms have been proposed in the literature to

explain this SEE induced charge loss. The first one assumes the creation of a transient conductive

path through the tunnel oxide that discharge the floating gate [49], [50]. The second model

considers the generation of energetic carriers by the impinging radiation that fluxes in and out the

floating gate through tunneling currents [51]. Anyway, if the threshold voltage drift exceeds the

reading voltage of the reading circuitry, the stored information is corrupted. To be noted that the

cell is still functional and can be reprogrammed, only the stored data is lost. For most flash

technologies, low LET particles such as protons have a very low probability of generating an upset,

flash cells are considered immune to SEU for these particles [52], [53]. For heavy ions, the upset

probability is not negligible and increases with the ion LET. As the natural presence of these ions

is much lower, the SEUs in the configuration memory of a flash-based FPGAs are generally not

considered in their reliability studies.

51

2.3.1.3. ANTIFUSE

Antifuse offer the best resistance to the radiation effects as these memory cell are fairly

considered as immune to both TID [54] and SEE.

2.3.1.4. SUMMARY

The main radiation effects for each type of memory cell are summarized in TABLE I. In a

simplified way: SRAM are sensitive to SEU but not to TID while Flash are sensitive to TID and not

to SEU. The failure mechanisms associated with radiation effects on configuration memory cells

are described in the next section.

TABLE I: MAIN RADIATION EFFECTS ON THE THREE MEMORY CELL TYPES USED BY FPGAS

Memory cell SRAM Flash Antifuse

TID • No data corruption

• Increased power

consumption

• Increased SEU

sensitivity

• High sensitivity

leading to

permanent cell

corruption

• Sensitive charge

pumps circuitry

• Not sensitive

SEE • High SEU sensitivity • Low SEU sensitivity • Not sensitive

2.3.2. TOTAL IONIZING DOSE EFFECT – PARAMETRIC DEGRADATION

Beyond the intrinsic sensitivity of the configuration memory, the rest of the FPGA fabric also

exhibits TID induced effects. As introduced in section 2.2.2, TID effects induce 3 main types of

degradation on CMOS transistors parameters:

• Negative threshold voltage drift induced by the accumulation of holes in the gate oxide.

• Decrease of the transconductance due to interface states in the Si/SiO2 interface.

• Increase of the leakage current due to the creation of parasitic conduction paths on the

transistor edges.

These effects at the transistor level result mainly, at the system (entire FPGA) level, in an increase

of the power consumption and a degradation of the propagation delay of the logic gates.

This degradation of the propagation delay is even more pronounced for programmable pass

transistors controlled by a floating gate (flash memory cells). Indeed, the TID induced threshold

voltage drift on these flash cells (described in the previous section) decrease the conductivity of

the pass transistor thus increasing its propagation delay [55]. These transistors degradations can

also influence the shape of the signals that pass through the logic gates, whether in terms of rise

time, fall time or duty cycle. These timing degradations can result in system failure if the drifts

exceed the timing margins taken during design stages. Indeed, during Static Timing Analysis

(STA), the propagation delays of each net is analyzed to ensure that the propagated signal is

correctly stabilized before the next clock rising edge when reaching the end-point flip-flop. This

timing analysis takes into account the influence of manufacturing process variations, clock skew,

and temperature variations to ensure that the timing margins applied are sufficient to ensure the

52

circuit functionality in all conditions. Timing degradations induced by TID effects can override

these margins on the most critical paths of the design and cause system failures due to faulty signal

capture by the flip-flops. When the parametric degradation of transistors reaches a certain point,

their ability to commutate can be compromised, potentially leading to complete failure of the

device.

2.3.3. SINGLE EVENT EFFECTS

A key point to understand and study the radiation sensitivity of FPGA based systems is to

distinguish the intrinsic sensitivity of the component and the one of the systems implemented on

it. Each primitive resource that composes the FPGA fabric has its own sensitivity to SEE and the

reliability of the implemented design results from a complex combination of the individual

sensitivities of each primitive instantiated and their manifestation on the system operation.

The first step is to define the type of SEE each type of basic resource (primitives) are sensitive to.

SEE can be classified in five main groups:

• SEUs in the configuration memory (described in section 2.3.1)

• SEUs in the user flip-flops and other memory elements (BRAM)

• SETs mainly generated and propagated in the combinatorial logic (but more generally any

resource that uses transistors)

• SEL, that can be generated anywhere in the device

• SEFI, mainly related to global resets and configuration capabilities

The second step is to identify how each type of errors can alter the behavior of the system.

A bitflip in the configuration memory can have a wide range of effects on the system behavior

depending on the type of primitive it is linked to and its contribution to define its functionality.

The main effects are illustrated in Figure 42: configuration bits related to programmable routing

point can create open faults on an existing net or bridges between two distinct nets. Routing

multiplexer can also modify the originally routed input for another one. The bits defining the LUT

logic equation can alter the intended function when flipped, but the error is propagated to the

output only if the corresponding input combination is applied. There are many other types of

failures due to SEU in the configuration memory, such as bitflips on bits defining the functionality

of specialized blocks (PLL, DSP, SerDes etc.). However, these are very specific to each FPGA family

and all FPGA families have their own programmable architecture whose exact bitstream

composition is proprietary information. As a result, without reverse engineering of the bitstream

composition, the real effect of each configuration bit cannot be identified and precise failure

models cannot be established. A more detailed description of the failure model for Xilinx 7 series

FPGA is described in a chapter 5.

53

Figure 42: Possible Effects of SEUs on configuration memory.

Note that the SEUs on the configuration memory are permanent effects. The bitflip persists until

the configuration memory is rewritten. These errors are therefore very important to consider as

they can cause long downtime and thus greatly reduce the availability of the system.

On the contrary, the state of flip-flops affected by an SEU is restored at the next clock cycle. The

error can nevertheless spread to the rest of the circuit and cause similar system failures. On the

other hand, SEUs in the user memory blocks are revealed when the affected memory point is read

and the error persist until the memory point is rewritten.

Single Event Transient are much more complex to consider. They can be generated on any logic

gate or pass transistor in the device and their propagation cannot be predicted accurately without

proprietary information of the electrical properties of the FPGA primitives or extensive SET

propagation tests. Indeed, when the SET propagates through logic gates, the current pulse, a

double-sided function, can be subject to narrowing or broadening effects as well as amplifying or

attenuating effect depending on the electrical properties of the logic gates through which it

propagates [25], [56]–[58]. These effects have a direct impact on their probability of being

captured by a flip-flop and therefore on the potential failures that this may cause.

To analyze the impact of SEUs and SETs on the functionality of the system, it is necessary to

understand how and when the errors can propagate to the outputs or critical nodes of the system.

Indeed, logical errors are subject to logical masking and temporal masking effects during their

propagation. Logic masking occurs when an error at the input of a logic gate does not alter the

output logic state. Figure 43 shows the logic masking conditions for an AND gate.

Figure 43: Logical error masking on AND gate. Error on input B is masked when input A is low as B state
has no impact on the output value for this input combination.

Time masking occurs when a logic error propagates to the input of a flip-flop outside the capture

window. The capture window of a flip-flop corresponds to the time interval around the rising edge

of the clock where the input signal is acquired, latched and transferred to the output. To design a

54

reliable synchronous circuit, one must ensure that the input signal is stable for a small amount of

time prior (setup time) and after (hold time) the rising edge of the clock. If the input signal state

changes during this capture window, the flip-flop may enter a metastable state, during which the

value and settling time of its output state cannot be predicted. If an error propagates to the input

of a flip-flop, the error will only be captured if the erroneous value reaches the flip-flop input pin

with a sufficient width and amplitude during the capture window.

Figure 44: Propagation and capture of SEU generated on a flip-flop. SEUs generated early enough after the
clock rising edge (A) are captured while SEU generated later (B) are temporally masked.

As mentioned in section 1.2.3.2, SEU affecting flip-flops can be generated at any time. Once

generated, the output value is corrupted until the next rising edge of the clock. If not logically

masked, the error propagates to the next flip-flop as described in Figure 44. Depending on the time

at which the SEU is generated, the error can reach the next flip-flop before or after the next clock

cycle. If the error arrives before the rising edge of the clock, the error fall inside the capture

window and is captured. On the other side, if the error reaches the flip-flop after the rising edge

of the next clock cycle the error is temporally masked. Only SEUs generated in the time interval

𝑇𝑐𝑙𝑘 − 𝜏𝑝 after each clock rising edge (with 𝑇𝑐𝑙𝑘, the clock period and 𝜏𝑝 the propagation delay

between the two flip-flops) are captured. The probability of capture is thus defined by (8):

𝑃𝐹𝐹−>𝐹𝐹
𝑐𝑎𝑝𝑡𝑢𝑟𝑒

= (𝑇𝑐𝑙𝑘 − 𝜏𝑝)/𝑇𝑐𝑙𝑘
(8)

This means that for a given propagation delay, the higher the clock frequency and the closer to the

maximum operational frequency, the lower the capture probability [25].

On the opposite, the capture probability of SETs is proportional to the clock frequency. Indeed,

the current pulses can be generated at any time with an amplitude and width that are independent

from the clock frequency, the probability that they reach the input of a flip-flop at a rising edge of

55

the clock is increased as the number of rising edges per second is higher. Figure 45 shows an

example of SET generated in an LUT and broadened during its propagation.

Figure 45: Propagation and capture of SETs generated in a LUT. The SET must reach the input of the
flip-flop with sufficient amplitude during the capture window to be captured (B).

Once captured, flip-flops SEUs and SETs generate a synchronous error that can no longer be

temporally masked, only logical masking can prevent their propagation.

Regarding Single Event Functional Interrupt (SEFI) for FPGAs, there is a wide diversity of

symptoms generally associated with the configuration functionalities of the component. These

symptoms depend on configuration logic architecture of the FPGA considered, but SEFI are

commonly induced by SEU or SET affecting the configuration logic or global signals. For instance,

in [59], a list of potential SEFI symptoms for Xilinx FPGAs are described. These SEFIs can affect

either the capacity to read or write the configuration memory through one of the configuration

interfaces or the reset of all internal storage cells. These types of events generally require a

complete reconfiguration or power-cycle of the device to return normal operation.

In the other hand, Single Event Latchup (SEL) are due to a particle triggering the parasitic thyristor

formed by the arrangement of an NMOS and PMOS transistor (see section 1.2.3.3). SEL behaves in

a similar way on FPGAs as on other digital devices: a sudden increase in the supply current is

observed, potentially accompanied by loss of functionality, which must be corrected by power-

cycling the device to avoid the risk of damaging the component permanently. Given the severity

of such events, the SEL sensitivity of an FPGA may be a prohibitive feature for its use in radiative

environments. SEL tolerance is generally characterized by the LET threshold at which SELs are

observed.

2.3.4. SUMMARY OF RADIATION EFFECT ON FPGAS

Given the complexity of FPGA, an exhaustive list of all radiation-induced failure mechanisms

cannot be established. The predominant effects can nevertheless be retained. Regarding TID, the

main concern are a progressive degradation of the propagation delay and the power consumption.

Flash based FPGA are also prone to the configuration memory corruption and a loss of the

56

configuration capacity. As for SEE, the main effects are SEUs affecting the user memory blocks and

flip-flops, and SET generated and propagated in the combinatorial logic. SRAM-based FPGA are

also subject to configuration memory (CRAM) upset that may modify the design topology until

reconfiguration. As explained in section 1.2.3.4, the SEE sensitivity of a device is usually

characterized using the cross section (σ) concept, corresponding to the probability that an

interaction occurs between a particle and the investigated device.

To illustrate the sensitivity of FPGAs to radiation, TABLE II, provide some examples of COTS and

radiation hardened FPGAs from different vendors with qualitative radiation test results for TID,

SEL or SEU.

TABLE II:
RADIATION TEST RESULTS SUMMARY OF COTS AND RADIATION HARDENED FPGAS FROM DIFFERENT VENDORS*

Xilinx (AMD)

FPGA Tech.
Configuration memory cross section

(cm²/bit)
TID

krad(Si)
SEL LETTH

Mev.cm²/mg
Refs.

Virtex4
(SRAM)

COTS
90nm

Neutrons (atm)
Heavy Ions (LET=20MeV.cm²/mg)

1.5e-14
6.5e-09

[60],
[61]

Virtex-4QV
(SRAM)

Rad-
hard
90nm

Heavy Ions (LET=100MeV.cm²/mg)
Heavy Ions (LET=20MeV.cm²/mg)
Protons (Energy=100MeV)
Protons (Energy=20MeV)

5.0e-08
1.0e-08
3.0e-14
1.5e-14

>300 100 [62]–
[64]

Virtex5
(SRAM)

COTS
65nm

Neutrons (atm)
Heavy Ions (LET=60MeV.cm²/mg)
Heavy Ions (LET=20MeV.cm²/mg)
Protons (Energy=200MeV)
Protons (Energy=65MeV)

6.7e-14
9.0e-08
4.0e-08
8.6e-14
6.4e-14

[61],
[65]

Virtex-5QV
(SRAM)

Rad-
hard
65nm

Heavy Ions
(@LET=60MeV.cm²/mg)
Heavy Ions
(@LET=20MeV.cm²/mg)

5.5e-10
2.5e-12

>1000 100 [62],
[66]

Virtex6
(SRAM)

COTS
40nm

Neutrons (atm)
Protons (Energy=120MeV)

1.3e-14
9.7e-15

[61],
[67]

Artix7
Spartan7
(SRAM)

COTS
28nm

Neutrons (atm)
Protons (Energy=200MeV)

7.0e-15
9.4e-15

>356 [61],
[68],
Chap.
4

Kintex7
Virtex7
(SRAM)

COTS
28nm

Neutrons (atm)
Heavy Ions (LET=20MeV.cm²/mg)
Heavy Ions (LET=100MeV.cm²/mg)
Protons (Energy=180Mev)

5.7e-15
2.8e-09
8.0e-09
4.1e-15

<15
(micro SEL)

[61],
[69]–
[71]
Chap.4

Virtex Kintex
Ultrascale
(SRAM)

COTS
20nm

Neutrons (atm)
Heavy Ions (LET=80MeV.cm²/mg)
Heavy Ions (LET=20MeV.cm²/mg)
Protons (Energy=20mEV)
Protons (Energy=100MeV)

2.5e-15
3.0e-09
1.0e-09
5.0e-16

>620 80 [39],
[61],
[72]

RT Kintex
Ultrascale
(SRAM)

Rad-Tol
20nm

Heavy Ion (saturation, LETTH=0.5) 8.0e-10 >100 >80 [73]

Virtex
Kintex
Ultrascale+
(SRAM)

COTS
16nm
FinFET

Neutrons (atm)
Protons (Energy=64Mev)
Heavy Ions (LET=20MeV.cm²/mg)

2.7e-16
2.8e-16
3.0e-10

>340 Sensitive
-neutrons
-proton
-HI (LETTH= 5.7)

[61],
[74]–
[76]

57

Versal
(SRAM)

COTS
7nm
FinFET

Neutrons (atm)
Protons (Energy=64MeV)

2.6e-17
2.8e-17

Insensitive to
-neutrons
-64MeV
protons

[61],
[77]

Intel / Altera

FPGA Tech. CRAM cross section (cm²/bit)
TID

krad(Si)
SEL LETTH

Mev.cm²/mg
Refs.

Cyclone
(SRAM)

COTS
130nm

Protons (Energy=60MeV) 1.6e-12 >1000 <35 [78],
[79]

Stratix
(SRAM)

COTS
130nm

 2.8 [80]

Stratix II
(SRAM)

COTS
90nm

 0.87 [81]

Aria GX
(SRAM)

COTS
90nm

Protons (Energy=20MeV) 1.6e-16 [82]

Stratix IV
(SRAM)

COTS
40nm

 112 [83]

Stratix V
(SRAM)

COTS
28nm

Neutron (atm) 4.8e-15 [71]

Microsemi (Microchip) / Actel

FPGA Tech. Flip-flop SEU cross section (cm²/bit) TID
krad(Si)

SEL LETTH

Mev.cm²/mg
Refs.

ProASIC3
(Flash)

COTS
130nm

Heavy Ions (LET=80MeV.cm²/mg)
Heavy Ions (LET=20MeV.cm²/mg)

3.0e-07
6.0e-08

59 55 [84]

RT-ProASIC3
(Flash)

RadTol
130nm

Heavy Ions (LETTh=6MeV.cm²/mg)
σSAT

Protons (Energy=63.5MeV)

2.0e-07
5.0e-14

>25 >70 [85]

SmartFusion2
(Flash)

COTS
65nm

Protons (Energy=200MeV) 1.1e-14 40 [68]

RTG4
(Flash)

RadTol
65nm

Protons (Energy=200MeV) 2.0e-15 >160 >103 [86],
[87]

RT PolarFire
(Flash)

RadTol
28nm

Heavy Ions (LET=30MeV.cm²/mg)

8.0e-08 >300 >63 [88]

NanoXplore

FPGA Tech. CRAM cross section (cm²/bit) TID
krad(Si)

SEL LETTH

Mev.cm²/mg
Refs.

NG-Medium
(SRAM)

Rad-
hard
65nm

Heavy Ions (LET=62MeV.cm²/mg)
Heavy Ions (LET=20MeV.cm²/mg)
Protons (Energy=230MeV)
Protons (Energy=30MeV)

5.2e-09
5.9e-10
5.0e-16
4.2e-17

100 60 [89]

* To be noted that the test results provided above are quantitative and affected by test condition.

For more accurate data and for further comparison, please consult the provided reference.

2.4. RADIATION HARDENING

To mitigate the radiation effects, there are different radiation hardening techniques that can

be applied at different levels. During the design and manufacturing of the FPGA, techniques can

be applied at the process and layout level to decrease the cross section and/or the sensitivity to

dose effects of the different FPGA elements. On the user side, hardening techniques can be applied

to the implemented design to prevent the manifestations of errors and reduce the system failure

probability.

58

2.4.1. PROCESS BASED HARDENING

Many process modifications have been explored in the last decade to reduce the radiation

sensitivity of electronic components. They usually relate to the application of different materials,

variation of doping profiles and substrate technology. For instance, boron purification process can

be introduced into the manufacturing process to reduce the abundance of 10B and thus reduce the

susceptibility to thermal neutrons. Another example is the use of the Silicon-On-Insulator (SOI)

technology (not limited to rad hard components). This technology uses an additional buried layer

of insulator such as sapphire or SiO2 as shown in Figure 46.

Figure 46: Energy deposition of a charged particle in SOI (A) and bulk (B) technologies.

Besides the reduction of parasitic capacitance allowing performance improvements, the use of SOI

technology tends to increase the radiation robustness versus bulk counterparts as the charge

collection volume is limited by the buried silicon oxide. In addition, this layer prevents the charge

sharing effect between adjacent nodes by cancelling the charge diffusion process. The parasitic

thyristor present between bulk CMOS transistors is also eliminated by the buried oxide layer thus

immunizing the component from SELs [90].

Due to the complexity and cost of additional manufacturing steps required to achieve radiation

hardening and due to the usually low-volume production, radiation hardened technologies

usually experience a technological time-lag with regard to the state-of-the-art transistor scaling

trend while providing lower performance than COTS counterparts.

2.4.2. LAYOUT BASED HARDENING

Part of layout-based techniques rely on geometrical modifications of transistors and gates

layout. For instance, to minimize the extent of radiation-induced leakage currents (RILC), a well-

established technique is to use Enclosed Layout Transistors (ELT) as shown in Figure 47. As

described in section 1.2.2.1, holes trapped in STI oxides due to TID can create a parasitic

conduction path on the transistor edges resulting in an increased source-drain current in the

transistor off state. The use of ELT removes the connection between the transistor junction and

the trench oxides thus reducing the RILC.

59

Figure 47: Comparison between classical finger layout (A) and ELT (B), from [91].

On another note, the TID induced propagation delay degradation of programmable

interconnexions point held by Flash cells can be overcome by using a conventional pass-transistor

held by a pair of Flash transistors in push-pull configuration. This technique has been applied in

Microsemi’s RTG4 radiation-tolerant FPGA [92] extending its TID tolerance above 100 krad (SiO2)

[93].

As for SEE, considering the example of SRAM cells, a first mitigation approach is to increase the

LET threshold by increasing the width of the transistors to increase their capacity and

conductance. Another widely used technique is to insert resistors between the cross-coupled

inverters of the SRAM cell [94] as shown in Figure 48.

The inserted resistors increase the propagation delay between the two inverters allowing enough

time to recover from the collapsed node voltage. Similarly, radiation tolerant flip-flops can be built

by adding redundant transistors to the cell. A well-established example used in NanoXplore FPGAs

is the Dual Inter-locked CEll (DICE) [95] shown in Figure 49. The DICE cell uses four CMOS

inverters (N1-P1, N2-P2, N3-P3, N4-P4) where each inverter has its N-transistor and P-transistor

controlled separately by two adjacent nodes storing the same state (A and C or B and D). The four

nodes thus store the data as two pairs of complementary values. As each node is driven by

separate transistors, two nodes must be simultaneously upset to change the stored value thus

greatly improving the overall SEU tolerance.

60

These layout mitigation techniques inevitably translate into an increase of area and power

consumption as well as a decrease in timing performances thus preventing their integration in

COTS components. Designers who, for financial or performance constraints, are considering COTS

FPGAs must therefore rely on mitigation techniques based on design modifications.

2.4.3. CIRCUIT BASED HARDENING

Mitigation techniques based on circuit modification are intended to prevent errors from

manifesting and cause system failures. They are generally based on spatial or data redundancy.

The most straightforward and widely used mitigation technique is the Triple Module Redundancy

(TMR). This technique may be found in different flavors, but the principle remains the same:

instantiation of three identical copies of a circuit and linking of their outputs to a majority voter.

During normal operation, the three circuits output the same value but when one of the three

replicas is affected by a SEU, its output value differs from the other two. The majority voter then

logically masks the erroneous value by transmitting only the majority value. To propagate an error

across the majority voter, two circuit instances must be erroneous at the same time. This

technique thus leads to a strong decrease in overall system susceptibility. The TMR scheme can

be applied at different levels of granularity as shown in Figure 50.

The simplest and most economical implementation of the TMR scheme is the Local TMR (LTMR),

which consists in triplicating only the flip-flops of the design. Combinatorial Logic and voters are

not protected by LTMR; SETs generated in the combinatorial logic can propagate to the different

flip-flop replicas and generate soft errors. As SEUs in the configuration memory can alter the

behavior of combinatorial paths, the implementation of this scheme in SRAM FPGAs is ineffective.

Distributed TMR (DTMR) offers a stronger protection by triplicating all combinatorial paths, flip-

flops and voters. However, global signals that are shared between the three replicated data paths

(reset and clock signals) remain single points of failure. This issued can be tackled by using Global

TMR (GTMR) where global signals are also triplicated. This requires the use of three independent

and synchronized clock signals.

Figure 48: SRAM cell radiation hardened by
inserting resistors between the cross-coupled

inverters.

Figure 49: DICE cell formed by four cross-
coupled inverters where each pair of transistors

is driven by separated nodes.

61

Figure 50: TMR scheme applied at different level. Local TMR (A) only triplicated flip-flops; Distributed
TMR (B) triplicated combinatorial logic, voters and flip-flops; Global TMR (C)add triplicated global signals;

Block TMR (D) triplicates entire blocks, from [96].

To be noted that the area overhead induced by DTMR and GTMR schemes can easily exceed 200%

due to the insertion of majority voters after each flip-flop. In addition, timing issues arise as the

results of the redundant subsystems need to arrive at the same time at the voters, leading to a

great reduction of the maximum speed the design may reach. A great effort has been made in the

last decades to find efficient mitigation solutions with reduced area overhead. In [97], a

methodology to reduce the number of voters called partial TMR is proposed. The main concept is

to identify the most sensitive nodes of the design using fault injections tools (described in section

4.6) and to insert voters in specific locations (such as feedback loops) to prevent errors to persist

after the configuration memory upset is repaired. Selective TMR (STMR) [98] is another approach

that propose to identify sensitive subcircuits based on their input signal probabilities. TMR is then

selectively inserted in the most sensitive parts of the design to reduce the area overhead with a

small loss of SEU immunity. Similarly, Approximate TMR (ATMR) [99] use approximate versions

of the circuit to be triplicated as redundant copies. These approximate copies are functions that

match the original function only to a fraction of its input space. Two different approximate

versions are used as redundant replicas so that at least two out of the three replicas respect the

intended functionality for all input possibilities. By efficiently exploiting the FPGA architecture,

the use of ATMR have shown to be effective in reducing the area overhead with respect to DTMR

while being able to provide a similar or even greater SEU immunity in some cases.

As these fine-grain implementations of the TMR scheme can be challenging to implement

manually, development tools have been developed to automatically generate TMR scheme from

RTL design. For example, XTMR, an automated tool by Xilinx provide features to insert TMR in

62

Virtex-5QV and Virtex-4QV based designs. Synopsys and Mentor also provide TMR insertion

capabilities in their FPGA synthesizer (Synopsys Synplify [100] and Mentor Graphics Precision Hi-

Rel [101]). HDL templates can also be used to facilitate the manual instantiation of triplicated

structures directly in the RTL description [102].

On another note, Block TMR applies the TMR scheme at a higher level of granularity, by triplicating

entire blocks and using a majority voter only at the output of these blocks. This approach benefits

from a reduction of instantiated voters and can be applied with encrypted IP cores.

Some system can handle errors as long as they are detected and reported. In that case, there are

more area-efficient methods to simply detect errors such as Duplication With Comparison (DWC).

Two replicas of the same module are instantiated and compared. The output error detector can

be used to rise error flags that must be handled by the system to ensure proper decision making

and recovery procedures. The DWC can be supplemented with error recovery structures such as

adding AND/OR voters to mask part of the errors with reduced overhead as proposed in [103] or

by combining DWC with Current Error Detection (CED) as proposed in [104]. In the latter case,

each module replica is supplemented with an encoding/decoding structure as a self-checking

feature based on time redundancy. When a mismatch is detected between the two redundant

modules, the CED block detects which of the two modules is faulty, the module outputs can then

be multiplexed accordingly to mask the faulty circuit.

2.4.4. MEMORY HARDENING

To prevent the manifestation of error generated in user memory blocks, methods based on

Error Detection and Correction Codes (EDAC), can be implemented. These methods, extensively

used in telecommunications protocols, rely on data redundancy brought by Error Correction

Codes (ECC). The idea is to encode the data to be stored with redundant information. This

redundancy is used to detect and correct a limited number of errors that may have affected the

data. For example, Hamming(7,4) code adds three parity bits to four bits of data as shown in Figure

51.

Figure 51:Hamming encoder and decoder.

63

To encode the data, each redundant bit computes the parity of three out of the four data bits. On

the decoding side, the parity bits are recomputed and compared with the redundant bits. When a

mismatch is detected, the error position is identified and the corresponding data bit is flipped.

However, if two bits have been corrupted between encoding and decoding, the decoder is no

longer able to restore the original data. There is a wide diversity of ECCs with different error

correction capabilities. These ECCs can be used to protect the memory block content by encoding

the data at writing and decoding at reading. To be noted that some recent FPGAs include hard-

wired encoder/decoder in the BRAM interfaces. Interleaving schemes can also be applied to these

memory blocks to reduce the probability that an MBU affects several bits on the same data word.

The principle of EDAC can also be applied to the Finite State Machine (FSM) to increase their

reliability. Fault tolerant FSMs can be built by encoding the state vector with ECC, invalid state

transitions can then be detected and recovered.

Identifying the effectiveness of the different mitigation methods presented is not a simple task.

Indeed, the methods based on hardware redundancy can be cancelled by the presence of single

points of failure. Especially for SRAM-based FPGAs, some memory points of the configuration RAM

control the behavior of several resources and thus potentially affect two replicas of a triplicated

system from a single bit upset. The presence of MBUs can also compromise the efficiency of TMR

by simultaneously affecting multiple replicas of the TMR scheme. For example, it has been shown

that the efficiency of TMR on SRAM technologies such as Xilinx, can be greatly reduced by these

single points of failure [105], [106]. One method to overcome this issue is to impose a physical

separation between the different replicated blocks to avoid sharing resources and logical blocks,

thus decreasing the number of single points of failure and the probability of MBUs affecting

several blocks simultaneously.

On the other hand, the effectiveness of the TMR scheme in SRAM FPGAs relies on the fact that

errors do not accumulate in the configuration memory. The probability of defeating the protection

provided by TMR increases greatly with the number of bitflips accumulated in the configuration

memory. To avoid this accumulation, a common practice is to use memory scrubbing [107]. This

scrubbing technique can be applied by using an external controller that will periodically readback

the content of the configuration memory and compare it to the original bitstream. When a

mismatch is detected, the bitstream is reloaded on the FPGA to correct the upsets. Comparing the

two bitstreams and writing the whole bitstream again introduces a significant delay. To reduce

the duration of the SEU induced errors, Cyclic Redundancy Check (CRC) can be used to localize the

errors and reload only the affected frames through partial reconfiguration. To reduce the

complexity of the off-chip scrubbing system, the bitstream can be reloaded periodically without

readback check (blind scrubbing). The scrubbing period for both blind and readback scrubbing

must be adapted to the estimated error rate to reduce the probability of several SEUs occurring

between two scrubbing period. To overcome the need for an external scrubber, FPGA

manufacturers have developed internal memory scrubbers: Xilinx (Soft Error Mitigation

Controller -SEM IP) [108]), NanoXplore (Configuration Memory Integrity Check -CMIC [109]) and

Intel [110]. These internal scrubbers use the internal configuration access port to continuously

check for error using CRC and localize and correct the potential bitflips using ECC. The

effectiveness of such solutions will be evaluated and discussed in chapter 4.

64

2.5. CONCLUSION

In this chapter, the operating principle and architecture of FPGAs have been presented along

with a description of the main radiation effects and the associated failure mechanisms. As

described, the radiation behavior of FPGAs is complex and difficult to characterize. Depending on

the technology they are based on, different types of radiation effects must be considered.

On the one hand, TID induce a degradation of the propagation delay in the combinatorial logic and

an increase of the power consumption. Moreover, they represent a major risk of premature end-

of-life for flash-based FPGAs due to the high sensitivity of their configuration cells and associated

circuitry.

On the other hand, a wide range of Single Event Effect can disrupt the functioning of the system.

SEL, the most critical, can cause a complete shutdown of the component, requiring a power cycle

to avoid permanent damages. SET and SEU in the user flip-flops can cause system failures by

momentarily altering the state of the logic signals. The effects of SEU are even more important for

SRAM components for which the configuration memory can be corrupted, potentially leading to a

modification of the implemented circuit topology.

Several techniques have been developed to reduce the sensitivity of these components, notably

by adjusting the manufacturing process parameters or by using specific logic cell geometries.

These hardening techniques have contributed to the emergence of a small range of radiation-

hardened FPGAs. However, in a context of decreasing costs of spacecraft payload and the demand

of increasing performances, the technological time-lag imposed by the application of these

hardening techniques and the high cost of these rad-hard components pushes the space industry

among others to consider the use of COTS FPGAs.

Due to their flexible nature and the particularity of their behavior under radiation, FPGAs require

unique methodologies to test them, to estimate the reliability and protect the implemented

systems. Two key points in the development of radiation testing methodologies for FPGAs is to

improve the tests standardization for comparison purposes and to improve the genericity of the

test results so that they can be reuse to estimate the reliability of any implemented design. The

next chapters will describe the proposed test methodology for both TID (chapter 3) and single

event effects (chapter 4 and 5).

65

3. FPGA TESTING METHODOLOGIES FOR TID EFFECTS ASSESSMENT

To ensure the reliability of FPGA-based systems in high radiation environments, a first crucial

step is to evaluate the tolerance of the component to dose effects. From the mission profile and

the radiative environments to which the system is exposed, the dose level and dose rate received

by the system over its entire mission can be calculated. The next step is to select FPGA components

that can withstand the required ionizing dose level and to evaluate the parametric degradation

suffered as a function of the absorbed dose. These steps rely on radiation testing for TID effects

assessment: the components under test are exposed to high levels of artificially generated ionizing

radiation like X-ray or γ-ray. The objective is not only about measuring the total dose they can

absorb before loss of functionality, but also to evaluate the degradation of the component’s

performance versus the absorbed TID, to ensure that the component will meet its specifications

and respect the system constraints during the entire mission. The observed performance

degradation, namely, a degradation of the propagation delay of logic gates and an increase in

power consumption, can lead to reconsider the choice of components or to implement mitigation

strategies. The heterogeneity and reprogrammability of FPGAs makes them a particularly

complex component to test since the performance degradation is strongly dependent on the

resources mobilized and the architecture used by the implemented circuit. FPGAs thus requires

dedicated testing methodologies and dedicated benchmarking structures to precisely evaluate

timing and power consumption degradation.

This chapter focuses on the evaluation of parametric degradations: propagation delay drift and

power consumption increase. The state of the art of test methodologies for the evaluation of TID

effects will be firstly described, then a new test methodology will be proposed, based on the

development of dedicated benchmarking structures allowing the extension of the timing

degradation evaluation to all the logic and routing resources of the device. A new cost-effective

technique of in-situ delay measurement is also proposed, based on the reprogrammable feature

of embedded PLLs. The effectiveness and benefits of this methodology are demonstrated through

X-ray radiation tests. Test results on three FPGA families, Xilinx Spartan7, Artix7 and Intel

Cyclone10LP are presented, compared and discussed.

3.1. FROM TESTING METHODOLOGIES TO BENCHMARKING

3.1.1. STATE OF THE ART OF TESTING METHODOLOGIES

Several methodologies have been developed in the past to address the challenge of TID testing

of FPGAs. Some of those, particularly adapted to the most sensitive FPGAs, focus on the

identification of the failure mechanisms and on the measurement of the maximum dose before

functional failure [111]. Focused synchrotron X-ray irradiation can be used to identify the most

vulnerable inner circuit in the component by locally irradiating different sub circuits with a fine

beam resolution. Other studies focus on the evaluation of parametric degradation. To measure the

propagation delay drift, several approaches are proposed in the literature. In [112]–[114],

methods based on external instrumentation are described. An external signal generator and/or a

signal analyzer are used to measure the time taken for the signal to pass through a certain number

of logic elements of the FPGA as shown in Figure 52.However, this approach can be challenging to

66

deploy, especially when using commercial development boards where signal integrity issues arise

and PCB tracks may exhibit frequency limitations.

In [115]–[118], ring oscillator structures are used to internally measure the propagation delay

drift of Look Up Tables (LUT) with a good time resolution. Ring oscillators are formed by looping

an odd number of LUTs configured as inverters as shown in Figure 53. The resonance frequency of

the structure is thus inversely proportional to the signal propagation delay along the structure.

However, these test structures are limited to the LUT’s propagation delay evaluation while the

propagation delay evolution of the other resources is not examined.

3.1.2. EXTENSION OF DEGRADATION EVALUATION TO ALL RESOURCES

The main contribution of the developed methodology proposed in this work is to extend the

propagation delay degradation evaluation to all the logical and routing resources inside the FPGA.

Indeed, most state-of-the-art methodologies focus only on propagation delay degradation of LUTs

while the degradation of the other resources might be different. In a real design, logic paths are

made up of different types of resources: LUT, carry logic, DSP, routing segments, programmable

interconnection points (PIP) etc. The assumption that the timing degradation observed on the

LUTs is the same for all the FPGA resources can lead to a bad estimation of the timing degradation

and thus to a misguided application of the timing constraints.

Figure 52: Propagation delay measure with external signal generator and oscilloscope.

Figure 53: Ring oscillator structure use to measure the LUT propagation delay by monitoring its oscillating
frequency.

67

3.1.3. BENCHMARKING STRUCTURES

In this study, the focus is on the most abundant resources that can possibly suffer TID-induced

degradation, namely: LUT, DSP, Carry propagation circuits (CARRY) and programmable

interconnexion points (PIP). For each type of resource, dedicated benchmarking structures

similar to the ones propose in [119] have been developed. The term "benchmarking" implies that

these structures can be implemented on any FPGA family in order to compare their performance

degradation on a common basis. These monomorphic structures are built using long chains of

cascaded elements as shown in Figure 54.

The propagation delay of these long chains of cascaded elements is the sum of the individual

contribution of each element. The propagation delay measure of such structures thus provides the

average propagation delay over all the instantiated elements. By adjusting the length of the chains

and the number of chain replicas, the statistics can be improved and the timing dispersion

between the elements can be smoothed. For each structure and for each FPGA component, a

manual placement of the primitives has been performed as shown in Figure 55.

Figure 54: (A) LUT are configured as inverter; (B) Carry chain uses an adder like structure; (C) DSP,
configured as multiply-adder, are cascaded by connecting the DSP's output to one of the two input

multiplicands; (D) an increased number of PIPs are inserted between each LUT.

68

For the LUT chain (A), the cells were placed with the minimum physical separation between each

consecutive LUT to reduce the number of instantiated PIP. On the contrary, the PIP chain (D) was

built using LUTs manually placed with a large physical separation to increase the number of PIPs

instantiated by the routing tools. Hereafter, the benchmarks A and D will be referred to as “LUT

close” and “LUT spread” respectively (referring to their placement). CARRY and DSP chains were

also carefully placed contiguously to force the use of dedicated hard-wired paths thus preventing

any PIP instantiation in these chains. In addition, this manual placement provides a perfect

symmetry between the different chain replicas.

3.2. TEST SETUP

3.2.1. PROPAGATION DELAY MEASUREMENT

As previously mentioned, ring oscillators provide an efficient way to measure the propagation

delay of inverting logic gates. However, they are not suited for logic gates that have a non-

inversing behavior such as multiplexer and arithmetic operators. Moreover, their loop shape

necessarily involves the instantiation of a large number of PIP to link the last and first primitives

of the chain.

The propagation delay measurement technique proposed in this work can be used internally

without any constraints on the structure shape. It is based on the evaluation of the maximum clock

frequency that can be used by the chain before violating the setup time of the end point flip-flop.

In practice, a square signal that toggles at each rising edge of the clock signal is injected at the

input of the chains presented in Figure 54. A flip-flop captures the propagated signal on the output

Figure 55: Device view of the manually placed benchmarking structures implemented on Xilinx Artix7.
In (A), LUTs are placed with the minimum physical separation to reduce the number of PIP between each
gate. In (B) and (C) Carry logic and DSP respectively are placed in adjacent logic blocks to avoid any PIP
usage. In (D), LUT are placed with a large physical separation to instantiate a large number of PIPs between
each gate.

69

of the chain. The captured signal is compared to the input signal delayed by one clock cycle as

shown in Figure 56.

Whenever the clock period (TCLK) gets lower than the propagation delay of the chain (τDLY), the

output flip-flop captures the previous signal value or enters a metastable state. The lowest

frequency for which a mismatch is detected on the output comparator has, therefore, a period

equal to the propagation delay of the chain (neglecting the delays on the clock path). The

measurement is carried out by performing an increasing frequency sweep of the clock signal until

a mismatch is detected at the comparator. The comparator output is accumulated, formatted and

transmitted to a host computer to report setup time violations. To achieve the frequency sweep

with reduced instrumentation, the reprogrammable PLL feature is used. Most modern FPGAs now

integrate PLLs whose parameters of the synthesized clock signal (clock multiplier and divider,

phase delay, etc.) are handled by reprogrammable registers. These registers can be dynamically

reprogrammed through user-accessible configuration interfaces. For each FPGA type (Xilinx

Figure 56: Propagation delay measure principle: a varying frequency square signal (DIN) propagates

through the chain under test and the output signal (DOUT) is registered (C0) and compared to the input signal

delayed by one clock cycle (C1). The highest clock period (TCLK) for which a mismatch is detected

corresponds to the propagation delay of the chain (τDLY).

70

Spartan7, Artix7 and Intel Cyclone10LP), a reconfiguration system linking the PLLs configuration

port to a serial interface has been developed. A python script is used to periodically perform a

frequency sweep of the clock signal from a remote computer while continuously checking for

errors in the output comparator. When an error is detected, the affected chain ID and the

corresponding frequency are recorded.

As the measurement circuit is integrated in the DUTs, it can suffer from the same TID induced

degradation during the experiment. A particular attention must be paid to ensure that the

degradation induced to the measurement system does not impact the propagation delay

measurements. Large margins on the setup and hold time must be been taken for the path used to

delay the input signal in order to avoid any false mismatch detection on the output comparator.

On the other hand, the propagation delay of the clock signal between the input flip-flop and the

output flip-flops (clock skew) directly impacts the measurement as this clock delay is directly

subtracted from the one of the chains under test. The composition of the clock path must be

carefully considered. Here, the section connecting the input and output registers is composed by

only two programmable interconnexion points. The delay drift of these two PIPs is thus directly

subtracted to the one of the chains under test. As experimental results will demonstrate, the drift

of two PIPs can be fairly neglected with respect to the drift suffered by the chains under test.

The timing measurement precision is limited by the frequency resolution of the reprogrammable

PLLs. For Xilinx FPGAs, the Mixed Mode Clock Manager (MMCM) have been used that allow to

synthesize clock signals with a frequency resolution of 125kHz. The content of the configuration

registers corresponding to each frequency in the swept frequency range where extracted and

stored in advance. The configuration bytes sent by the host PC are received in the FPGA part by a

softcore processor that manages the MMCM reconfiguration through an AXI bus. The softcore also

allows to record the FPGA junction temperature and the fabric supply voltage through the internal

ADC. For the Intel FPGAs, the frequency resolution of PLL being 500kHz, a second PLL with a

division factor of 4 was cascaded with a first one to reach the same frequency resolution as Xilinx

MMCMs. The softcore microprocessor was replaced by a dedicated hardware design to receive the

configuration bytes from the serial link and reconfigure the PLLs.

To ensure that the delay measurement is not affected by possible deviation of the synthesized

clock signal frequency, the clock signal has been continuously monitored by an external

oscilloscope. During the whole experiment, no deviation has been observed neither on the clock

frequency nor its duty cycle.

3.2.2. DEVICE SELECTION

As TID experiments are destructive tests, one of the objectives of the experiment was to show

that the proposed methodology can be applied with low cost development boards without specific

connectors for high frequency analog signals. For this experiment, four types of SRAM FPGAs have

been initially selected as shown in TABLE III and Figure 57.

During the first tests, the TE0722 board (Zynq7) showed premature failures around 50krad. This

system failure was caused by the presence of a programmable oscillator on the backside of the

PCB, at the FPGA chip level. This programmable oscillator seems to have a high sensitivity to dose

effects, preventing its use for this experiment. This board was therefore removed from the set of

components under test.

71

TABLE III
LIST OF SELECTED COMPONENTS WITH TECHNOLOGICAL INFORMATION

Manufacturer Family Node size Process Foundry Board

Xilinx Spartan7

(XC7S25)

28nm high-κ metal

gate, HPL

TSMC CMOD A7

[120]

Xilinx Artix7

(A7-35T)

28nm high-κ metal

gate, HPL

TSMC CMOD S7

[121]

Xilinx Zynq7

(Z-7010)

28nm high-κ metal

gate, HPL

TSMC TE0722

[122]

Intel Cyclone10LP

(10CL025)

60nm low-κ

dielectrics

TSMC CYC1000

[123]

The four test structures presented in Figure 54 were divided in two components (two benchmarks

on each component) and implemented on the three FPGA families for a total of 6 tested

components. For each FPGA type, the length of the chains has been adapted either to obtain logical

chains that cross the entire chip or to fit into frequency ranges where the PLL can provide the best

frequency resolution. Each chain was replicated 16 times on the chip to maximize the statistics.

The chain length for each DUT is summarized in TABLE IV.

TABLE IV
BENCHMARK PARAMETERS: CHAIN LENGTH AND COMPOSITION

 LUT chain (A) PIP chain (D) Carry chain (B) DSP chain (C)

Artix7 160 LUTs

180 PIPs

80 LUTs

640 PIPs

100 Carry4

10 DSP

Spartan7 160 LUTs

180 PIPs

80 LUTs

640 PIPs

100 Carry4

10 DSP

Cyclone10LP 100 LUTs 25 LUTs 500 Carry1 8 Multipliers

To be noted that the Cyclone10LP has a different logic block and routing architecture compared

to Xilinx FPGAs, the carry propagation circuit are 1-bit wide instead of 4-bits wide and the DSP

blocks are replaced by simple multipliers. The benchmarking structures have been adapted

Figure 57: Selected boards for X-ray irradiation

72

accordingly as described in TABLE IV. In addition, the number of programmable interconnexion

points used by a specific net cannot be clearly identified through the Intel FPGA development tool

(Quartus), and as a result, their propagation delay cannot be properly identified.

3.2.3. X-RAY GENERATOR AND PARAMETERS

The six DUTs were irradiated with the X-ray generator from PRESERVE Platform [17] at the

Montpellier University at a dose rate of 11.63 rad(air)/s. A correction factor of 2.5 can be applied

to obtain an equivalent dose in krad(SiO2). The photons beam was collimated to the chip

dimension and the rest of the onboard components were shielded with lead layers to reduce the

exposure of components other than FPGAs. Power consumption at the board level was also

recorded during the entire experiment.

Figure 58: X-ray generator from PRESERVE Platform at the Montpellier University.

Figure 59: Experimental setup description. An external oscilloscope is used to monitor the clock signal.
An external thermometer is used to ensure that the junction temperature recorded by the internal A DC is
not affected by TID. A host PC with a python script running is used to send the command to the internal
softcore processor (clock frequency selection) and record all the data sent by the FPGA (junction
temperature, fabric supply voltage and output comparator results). The board supply voltage and current
measured by the power supply are also sent to the host PC to record the power consumption.

73

A cooling system, made with a lead tunnel (drilled on the top to let the beam pass) with two fans

on both ends, has been added inside the X-Ray radiation chamber to reduce the impact of

temperature variation. Indeed, the increased power consumption caused by TID induced

degradation, leads to an increased chip temperature. This temperature increase generates

parametric deviation competing with the TID effect itself. By increasing the heat dissipation

power with a cooling system, the impact of this side effect is reduced. The entire experiment was

conducted with a junction temperature between 40°C and 55°C. As the transistor voltage also has

a major influence on the propagation delay, the fabric voltage was monitored through the

experiments. No voltage variation was observed. Figure 58 and Figure 59 show the experimental

setup.

3.3. RADIATION TEST RESULTS

All components have been irradiated during 8 hours and 30 minutes at 11.63 rad(air)/s for

a total dose of 356krad(air) without any functional failure. After 48 hours of annealing at around

40°C (close to the irradiation temperature), the components were tested again to analyze the

annealing and time dependent effects.

3.3.1. PROPAGATION DELAY DEGRADATION RESULTS

Propagation delay degradation evolution of the three FPGA types is shown in Figure 60, Figure

61 and Figure 62 for Artix7, Spartan7 and Cyclone10LP respectively.

The first result that can be observed is a large difference in the evolution of the propagation delay

between the different tested resources. For Xilinx FPGAs, the LUT chain with close placement (A)

is the most affected, followed by the chain of DSPs (C), the LUT chain with Spread Placement (D)

and the Carry Logic chain (B). On the contrary, for the Cyclone10LP, the DSPs are the ones with

the highest deviation.

Figure 60: TID induced relative propagation delay drift on Xilinx Artix7.

74

The second noticeable result for the three FPGAs is a decrease of the propagation delay with the

absorbed TID instead of increasing as it is mainly observed on most FPGAs [39], [78], [112], [113],

[117], [124].

The lack of information on the parametric degradation induced by dose effects at the transistor

level does not allow to explicitly justify this behavior. This reduction in propagation delay can

nevertheless be explained by different phenomena. Indeed, when the threshold voltage decreases

due to charge trapping in the oxides, the drain-source resistance of the NMOS transistors in the

saturated state is reduced but the drain-source resistance in the blocked state also. The

phenomenon is the opposite for the PMOS transistors since the threshold voltage shift is always

negative. Decreasing the drain-source resistance of the transistor in the saturated state tends to

reduce the switching time while decreasing the drain-source resistance of the transistor in the

blocked state tends to increase it. The switching time of a CMOS gate can therefore be affected

positively or negatively depending on the parametric drift that dominates. The initial trend can

then be reversed when the threshold voltage exceeds a certain point. As for the reduction of the

Figure 61: TID induced relative propagation delay drift on Xilinx Spartan7.

Figure 62: TID induced relative propagation delay drift on Intel Cyclone10LP.

75

transconductance induced by interface states, it always induces an increase of the switching time

of the CMOS cell, which comes in addition to the effects of the threshold voltage shift. The relative

predominance of these different phenomena (shown in Figure 63) could explain the trends

observed on the deviation of the propagation time.

This type of behavior had already been observed on FPGAs from the Xilinx 7 Series family in [115],

[117], [118]. In [115], LUT-based ring oscillators implemented on a Zynq7 were irradiated with a
90Sr/90Y electron source and a decrease of 1.7%of the propagation delay was observed after 350

krad(SiO2). In [117], LUT-based ring oscillators also implemented on a Zynq7 were irradiated with

the same X-ray generator than this study. A decrease of 2% of the propagation delay was observed

after 350 krad(air). In the current study, after 350 krad(air), a decrease of 7,2% is obtained on the

LUT chains (close placement) for the Artix7 (5.2% after annealing) and 6.2% (4.9% after

annealing) for the Spartan7. In [118], 4 LUTs-long ring oscillators densely implemented on Zynq7

exhibit an average decrease of propagation delay around 5.3% after 40krad(SiO2) while a

decrease of around 1.2% on both Artix7 and Spartan7 for the same absorbed TID (16krad(air))

has been observed in this experiment. The differences in results with [115], [117], [118] can be

explained by different experimental conditions (power supply, voltage, biasing conditions,

temperature, annealing time), lot to lot variations and by different LUT chain composition. Indeed,

the number of PIP instantiated between each LUT can greatly vary depending on the placement

constraints imposed at implementation stages. In this study, the side by side manually placed

LUTs, allowed to greatly reduce the number of inserted PIPs with respect to a chain implemented

Figure 63: Simplified TID effects on rising and falling time of a CMOS inverter. The drain source
resistance on the ON state for the NMOS (𝑅𝐷𝑆

𝑁) and PMOS (𝑅𝐷𝑆
𝑃) are directly affected by the threshold voltage

(VTH) shift and the carrier mobility (μ0) degradation. The rising and falling time are conditioned by the drain
source current of the activated transistor and are thus affected positively or negatively depending on the
predominant influence between VTH shift and carrier mobility degradation. To be noted that this model does
not consider the RILC that may influence the drain source impedance in the OFF state.

76

with automatic placement. This hypothesis is confirmed by our results on the two LUT chains.

Indeed, for both Xilinx FPGAs, the LUT chain with close placement (A) uses twice as many LUTs as

the chain with spread placement (D), yet the observed drift of the propagation delay of chain A is

more than six times higher than for chain D, which suggests that the number of instantiated PIPs

clearly influences the observed drift.

From these experimental results, the individual deviations of each resource type can be extracted.

For Carry Logic and DSP benchmarks, as the chains are monomorphic, the individual deviations

are obtained by dividing the total deviation observed on the chain by the number of elements it is

composed of. Results for CARRY and DSP are shown in Figure 64 and Figure 65 respectively.

Figure 64: 4bits CARRY propagation delay degradation for the three tested FPGAs. These values are
obtained by dividing the total degradation of the chain by the number of 4bits-CARRY logic resources.

Figure 65: DSP propagation delay degradation for the three tested FPGAs. These values are obtained by
dividing the total delay degradation of the chain by the number of DSP(Spartan7/Artix7)/Multiplier
(Cyclone).

77

Regarding the propagation delay of LUTs and PIPs, for the Xilinx FPGAs, the two LUT chains have

been used: the one with close placement (ΔtA) and the one with spread placement (ΔtD). As the

two chains have a different ratio of PIPs and LUTs, as described in TABLE V (data extracted from

TABLE IV), and considering the global chain delay drift can be fairly approximated by the sum of

the delay drift of all individual elements that compose it, the delay drift of one LUT (ΔtLUT) and one

PIP (ΔtPIP) can be computed separately using a system of two equations with two unknowns (9).

TABLE V
LUT CHAINS COMPOSITION

 LUT close placement (A) LUT spread placement (D)

#LUT/chain 𝑁𝐿𝑈𝑇
𝐴 = 160 𝑁𝐿𝑈𝑇

𝐷 = 80

#PIP/chain 𝑁𝑃𝐼𝑃
𝐴 = 180 𝑁𝑃𝐼𝑃

𝐷 = 640

{
𝛥𝑡𝐴 = 𝑁𝐿𝑈𝑇

𝐴 ∙ 𝛥𝑡𝐿𝑈𝑇 + 𝑁𝑃𝐼𝑃
𝐴 ∙ 𝛥𝑡𝑃𝐼𝑃

𝛥𝑡𝐷 = 𝑁𝐿𝑈𝑇
𝐷 ∙ 𝛥𝑡𝐿𝑈𝑇 + 𝑁𝑃𝐼𝑃

𝐷 ∙ 𝛥𝑡𝑃𝐼𝑃

 (9)

The average individual propagation delay of LUTs and PIPs have been extracted for both Xilinx

FPGAs as shown in Figure 66.

This result shows that the propagation delay drift of PIPs is positive while the one of LUTs is

negative. This means that the degradation of PIPs partially compensates the one of LUTs. The

more PIPs are used, the lower the observed degradation. This result is consistent with the

hypothesis made to (partially) explain the drift difference observed with [115], [117], [118].

Indeed, as the PIPs have an obvious influence on the total propagation delay of the LUT chains, the

number of PIP instantiated influence the test results and can partially explain the result

differences. This outcome reinforces the benefits of the manual primitive placement and of the

extraction of the individual primitive degradation in order to standardize TID test results.

Figure 66: Extraction of TID induced propagation delay drift of PIPs and LUTs on Xilinx Spartan7 and
Artix7.

78

For the Cyclone10LP, the number of PIPs cannot be clearly identified. The methodology presented

above could not be strictly applied to this component to extract the individual propagation delay

drift of PIPs and LUTs. However, the difference between the two LUT chains lies in the use of an

additional 26 logic blocks-wide extra routing segment between each LUT for the chain with spread

placement. Thus, using a similar approach (system of two equations with two unknowns) the

delay drift of one LUT and associated internal routing segment (routing points internally

contained inside a logic block) and the one of the extra routing segments (26 logic blocks-wide)

can be extracted separately as shown in Figure 67.

Figure 67: Extraction of TID induced propagation delay drift of one extra routing segment and combined
intra routing segment and LUT (Intel Cyclone10LP).

In contrast to what was observed for Xilinx FPGAs, extra-slice routing segment show a negative

delay degradation almost twice as important as the one of a LUT and its associated internal

routing segment.

TABLE VI: SUMMARY OF THE PROPAGATION DELAY DRIFT FOR EACH TYPE OF LOGIC AND ROUTING RESOURCE

 50 krad(air) 100 krad(air) 356 krad(air) annealed

 min mean max min mean max min mean max min mean max

 Spartan7

ΔtLUT(ps) -7.93 -13.5 -17.1 -12.8

ΔtPIP(ps) +0.89 +1.40 +1.82 +1.33

ΔtCARRY4(ps) 0.00 -0.25 -0.52 -0.17 -0.39 -0.70 -0.26 -0.52 -0.88 0.17 -0.11 -0.35

ΔtDSP(ps) -29.7 -31.0 -34.9 -40.6 -45.0 -49.9 -51.4 -55.0 -60.2 -33.4 -36.2 -38.6

 Artix7

ΔtLUT(ps) -8.92 -14.8 -19.3 -13.9

ΔtPIP(ps) +0.67 +1.09 +1.57 +1.12

ΔtCARRY4(ps) 0.00 -0.30 -0.51 -0.36 -0.51 -0.66 -0.29 -0.52 -0.81 -0.07 -0.30 -0.51

ΔtDSP(ps) -18.6 -21.4 -25.0 -27.5 -30.9 -35.4 -36.6 -38.7 -41.9 -25.0 -27.4 -29.7

 Cyclone10LP

ΔtLUT+INTRA(ps) -1.06 -1.27 -1.27 -1.59

ΔtEXTRA(ps) -1.75 -2.20 -2.04 -2.47

ΔtCARRY4(ps) -0.12 -0.25 -0.35 -0.12 -0.25 -0.35 0.00 -0.08 -0.14 -0.34 -0.48 -0.58

ΔtDSP(ps) -10.6 -12.2 -13.6 -12.7 -14.3 -15.5 -12.7 -14.7 -15.8 -14.8 -19.0 -25.8

79

The propagation delay drifts for each primitive type and for the three tested FPGA families are

summarized in TABLE VI. To illustrate the dispersion of the results among the different chain

replicas, the data are provided with the minimum and maximum drifts observed on an individual

chain for the DSPs and CARRY. For LUTs and PIPs, as the calculation depends on a combination of

results from several chain, these minimum and maximum cannot be provided.

All the TID results presented above reveal that the TID induced degradation can greatly vary

between the different primitive types. These differences can be explained by several factors. On

the one hand, each primitive type probably has variations in transistor layout and architectural

differences in CMOS logic; for example, the propagation delay between drain and source of a pass-

transistor (multiplexers) is probably affected differently than for a logic gate where the signal

propagates through the transistor gate. On the other hand, the relative degradation is affected by

the ratio between the routing track (metal tracks being immune to TID effects) and CMOS logic

(number of transistors in the logic path) in terms of propagation delay. Indeed, the propagation

delay along the metal track contributes to the total delay but not to its TID induce degradation.

When dividing the delay drift by the initial delay, the bigger the contribution of metal tracks to the

total delay, the lower the relative degradation is.

Comparing the responses of the different devices, it can be noticed that the Artix7 has a higher

maximum delay drift (7,7%), followed by the Spartan7 (6,7%) and finally the Cyclone10LP (2,2%).

In addition, after 48h of annealing, the drift decreases for the two Xilinx FPGAs while it increases

for the Intel component. This opposite annealing effect can be explained by the same assumption

made earlier. The propagation delay is affected by a competition of the threshold voltage drift and

the decrease of transconductance between NMOS and PMOS transistors. During annealing, the

rate at which charges are trapped and released in the isolation oxides as well as their impact on

the propagation delay can differ between the two types of transistors. The annealing can thus have

a stacking or enhancing impact on the propagation delay depending on the technological and

architectural parameters of the device.

These time dependent effects suggest that in real conditions, with lower dose rates (and thus more

time to anneal), a higher drift for the Cyclone10LP and a lower one for the two Xilinx FPGAs could

be expected.

3.3.2. THERMAL EFFECT CONSIDERATION

To go further in the standardization of the test results, the FPGA temperature influence must

be minimized. As explained previously, the increase in consumption induced by TID tends to raise

the junction temperature. This temperature increase in turn impacts the propagation delay in

competition with the TID effect itself. Even if the cooling system integrated in the test setup

allowed to maintain the temperature of the tested chips between 40°C and 55°C, the temperature

variation influence must be evaluated. To quantify this influence, a new experiment was

conducted consisting in measuring the propagation delay as a function of temperature. New non-

irradiated DUTs were configured with the same benchmarks and run with the same voltage

condition in an oven by varying the temperature from 40°C to 100°C. As performed during

irradiation, the propagation delay of each chain was continuously monitored. The results of these

tests for Spartan7 and Cyclone10LP are presented in Figure 69 and Figure 68 respectively.

80

Figure 68: Thermal effects on timing performance on Intel Cyclone10LP.

On both tested components, the relative propagation delay behavior is very different from what

was observed with TID. To be noted that the temperature not only influences the propagation

delay of CMOS logic but also the one of routing tracks by altering the electrical conductivity of the

routing materials.

In a first approach, it can be considered that the degradation observed during the X-ray

experiment can be approximated by the linear combination of the temperature induced delay drift

and the TID induced delay drift at constant temperature. Under this assumption, the data from

this experiment can be used to subtract the effect of the temperature variation undergone during

the test to isolate the TID-induced delay drift. For each measurement point, the delay drift

corresponding to the temperature variation from the initial value is deduced.

Figure 69: Thermal effects on timing performance on Xilinx Spartan7.

81

As an example, this compensation has been applied to the previously presented results on

Spartan7. Figure 70 shows the DUTs’ temperature evolution during X-ray irradiation used to apply

for the compensation.

Figure 70: Temperature evolution of Spartan7 FPGAs during X-ray irradiation recorded by the internal
ADC.

To be noted that this temperature evolution is not only impacted by the TID induced power

consumption increase but also by the propagation delay reduction: as the propagation delay

decrease, the operating frequency of the circuit increases, thus, increasing the dynamic power

consumption and, consequently, the chip temperature. It should also be noted that the

temperature after annealing is lower than the initial temperature due to the fact that the X-ray

generator was powered off during the annealing process; the heat generated by the X-ray

generator being canceled, the ambient temperature was therefore lower for these measurement

points.

Figure 71: Thermal effects compensation on the Carry chain on Xilinx Spartan7.

82

The compensation has shown a negligible influence on the “DSP” (C) and “LUT close” (A) results

as the temperature dependent deviation is much lower than the TID induced deviation. However,

for the “Carry”(B) and “LUT spread”(D), the thermal effect compensation (applied to results

presented in Figure 61) significantly changes the results (up to 30%) as shown in Figure 71 and

Figure 72 respectively.

Figure 72: Thermal effects compensation on the LUT chain (spread) on Xilinx Spartan7.

These results clearly show the importance of taking thermal effects into account and to limit the

temperature variation during the experiments. Indeed, without using any cooling system, the

temperature could have reached over 70°C and the temperature influence could have been even

higher. Nevertheless, it should be noted that TID and thermal effects have a much more complex

mutual influence. Indeed, the irradiation temperature has a major impact on the holes trapping

phenomenon in the insulating oxides and thus on the induced threshold voltage drift [125].

Further studies using parametric drift measurements at different irradiation temperatures would

be necessary to more accurately relate the intricacy of these two parameters.

3.3.3. POWER CONSUMPTION

After studying the propagation delay drift, this section focuses on the deviation of the power

consumption. With the setup used for the experiment, only the global consumption of the board

could be analyzed based on the voltage and current delivered by the power supply. The evolution

of the power consumption as a function of the dose for all the tested DUTs is presented on Figure

73. From these results, the relative power consumption increase has been computed as shown on

Figure 74.

These results show that the relative power consumption increase is very different among the

three tested components. Artix7 showed a strong power increase (up to 71%), while the power

increase of Spartan7 and Cyclone10LP is apparently much lower (25% and 10% respectively).

83

Figure 73: Power consumption (U*I) evolution during TID experiment for the 6 tested DUTs. For each
FPGA type, the four benchmarks are split on two DUTs (A and D on one side and B and C on the other).

Figure 74: Relative TID induced power increase in the 3 FPGA types. For each FPGA type, the four
benchmarks are split on two DUTs (A and D on one side and B and C on the other).

Likewise, for both Xilinx FPGAs, the power increase is higher for the DUTs embedding the LUT

chains benchmarks (dark red and dark green on Figure 74). This result suggests that the nature of

the instantiated primitives influences the power consumption increase. However, as mentioned

in the previous section, the power consumption evolution can be directly influenced by the

propagation delay reduction. Indeed, during the testing procedure, the range of the frequency

sweep performed on the clock signal to measure the propagation delay is continuously adapted

to the actual propagation delays of the chains. When the propagation delay is reduced, the mean

operating frequency increase thus increasing the global power consumption. As the LUT chain (A)

is the one that undergoes the strongest deviation of the propagation delay (Figure 60 and Figure

61), this could explain (at least partially) these current increase differences. This side effect could

be canceled by modifying the testing procedure to impose a fixed operating frequency during the

power consumption measurement.

84

This increased consumption must also be attributed to the parametric drift of the transistors in

the user logic and in particular to the increase of the leakage current in the off state. The possible

presence of internal voltage regulation circuits could also contribute to this effect as they could

consume an increased current when exposed to radiation.

3.3.4. DESIGN MARGINS CONSIDERATION

By providing TID induced timing degradation data for each FPGA resource individually (TABLE

VI), the test results can be reused to estimate the degradation that will be experienced for a

specific design. For each design path, based on its composition (number and type of resource

used), the timing degradation suffered after a certain dose level can be estimated by linearly

combining the individual degradation extracted previously. This estimation can therefore be used

to define timing margins tailored to each critical path of the design and to provide designers with

tools to improve their design to meet their timing specification. As an example, most of the designs

integrating long arithmetic operators will be limited in frequency by the critical path of the carry

propagation. Knowing that the Carry logic or DSP resources do not have the same sensitivity than

the LUTs, prevents from over or under constraining the design and may help to reconsider the

implementation.

In the specific case of the components tested in this study, a decrease of the propagation delay has

been observed. This means that precautions must be taken, not on the setup time of the flip-flops

(the signal must arrive before the rising edge of the clock) but on the hold time (the signal must

be maintained for a certain time after the rising edge to ensure that it is properly captured). For

these components, the observed drift remains nevertheless relatively low. The focus should be

mainly on the power consumption drift, specifically on the Xilinx FPGAs, by ensuring that the

entire system (converters, regulators, battery and other power sources) can handle such an

increase in power demand.

3.4. CONCLUSION

In this chapter the state of the art of test methodologies for the evaluation of TID effects on

FPGA has been described. To overcome their limitation and to improve the TID testing results

standardization, a new test methodology based on the development of dedicated benchmarking

structures allowing the extension of the timing degradation evaluation to all the logic and routing

resources of the device have been presented. In addition, a new cost-effective technique for in-

situ delay measurement has been proposed.

The presented test methodology, referred to as benchmarking can be implemented on commercial

boards and tested with reduced external instrumentation. The test structures, evaluating different

types of resources have been irradiated with X-Rays over three types of FPGAs. The results

presented here show the ability of the methodology to highlight the most sensitive resources by

providing detailed measurements of their degradation and to provide quantitative comparison of

the FPGA families between them. The results thus provide essential information for the

consideration of TID effects in circuit design. Depending on the component used and the logic

resources that dominate the critical paths of the design, timing and power margins can be

carefully chosen to ensure the proper operation of the system over the entire duration of the

mission with maximum performance. The use of a cooling system and the temperature

experiments performed allowed the proper decoupling of TID effects from thermal effects. This

85

thermal effect decoupling along with the individual timing degradation evaluation for each

primitive type, enabled by manual placement of the logic gates, provide a step forward in the

standardization of TID test results.

In a more pragmatic way, all three components showed a strong resistance to dose effects up to

356krad(air). As the propagation time decreased with the dose, additional consideration should

be taken into account for the hold times in the static timing analysis.

86

4. FPGA TESTING METHODOLOGIES FOR SEE ASSESSMENT

Due to their heterogeneity, flexibility and increasing complexity, the behavior of FPGAs to SEEs

is difficult to analyze. In chapter 2, the different SEE types that may disturb the operation of FPGA

based systems have been discussed. Namely:

• Single Event Latchup, a sudden increase in power consumption until the component is

power cycled.

• Single Event Upset on the flip-flops: corruption of flip-flop state until next clock cycle.

• Single Event Upset on the user memory blocks: the data contained in a memory block

is corrupted.

• Single Event Upset on the configuration memory: alteration of the topology of the

implemented circuit until next configuration (main concern for SRAM based FPGAs).

• Single Event Transient generated in the combinatorial logic.

To address these reliability constraints, the main point is to understand how to analyze the

sensitivity of an FPGA to these different SEE types and the associated failure mechanisms. This

type of investigation may need to be applied to several components, coming from different

families or different vendors, in order to compare their sensitivity and to choose the most suitable

component for the mission profile, considering the other constraints of the system (cost, capacity,

consumption, performance). Once the component has been selected, the reliability of the circuit

to be implemented must be estimated. Namely, to determine the expected error rate on the

different parts of the circuit for a given radiative environment. If the reliability of the system does

not meet the constraints of the mission profile, the implementation of mitigation techniques must

be considered and their effectiveness evaluated. Radiation tests are commonly performed for

these last two steps.

In this chapter, state-of-the-art testing methodologies are firstly discussed. Then, a new testing

methodology will be presented, based on the development of specific benchmarks for SEE

sensitivity testing. The efficiency and the advantages brought by this methodology are finally

evaluated through different test campaigns under accelerated particles and through fault

injection.

4.1. STATE OF THE ART METHODOLOGIES

In this section, the main challenges of SEE testing are firstly discussed. Different methodologies

used to evaluate the sensitivity of the configuration memory and the different primitive resources

are then presented. Finally, the test methodologies used to evaluate the sensitivity of a design

through application specific testing or through the use of benchmarks are introduced.

4.1.1. SEE TESTING CHALLENGES

The main difficulty with SEE testing comes from the very nature of FPGAs. Given, the

complexity of these components, many questions arise. How to test a component whose radiation

sensitivity entirely depends on the way it is configured? Should one perform new tests for each

implemented circuit? Or is it better to find dedicated testing structures to evaluate the intrinsic

sensitivity of each primitive? How to reuse these results to estimate the reliability of the final

application in that case?

87

In addition to this main challenge, come many technical limitations related to the tests under beam

of accelerated particles. On the one hand, the experimentation time is limited by the high cost of

the beam time in radiation test facilities (500-900€ per hour). On the other hand, even when using

a focused beam, the radiation level in the rest of the room can impact the other components of the

PCB and limits the proximity between the DUT and external instrumentation. The acquisition

systems can usually be installed in a nearby radiation-free room, implying a significant cable

length to reach the DUTs and therefore some limitation in the external interfaces. These technical

difficulties limit the test complexity, the insight view on the internal state of the system and the

error statistics generated during the campaign.

Any SEE testing methodologies must consider these technical limitations.

4.1.2. CONFIGURATION MEMORY SENSITIVITY EVALUATION

For SRAM-based FPGAs, the main SEE induced failure generally comes from SEU in the

configuration memory. Its sensitivity can be evaluated through static test [36], [77], [126]–[128].

These tests are similar to those performed on regular SRAM or DRAM memories: the FPGA is

programmed and irradiated in static mode (clock signal off, no read nor write operations) with a

certain fluence. Once the beam is off, the content of the configuration memory is read back and

compared to the initial content. This test procedure is described in Figure 75.

Figure 75: Static test of the FPGA configuration memory.

The device cross section can be obtained by dividing the number of SEUs by the fluence (10).

𝜎𝑑𝑒𝑣𝑖𝑐𝑒 =
𝑁𝑆𝐸𝑈

𝛷

(10)

The cross section per bit can then be obtained by dividing the device cross section by the total

number of bits in the configuration memory (11).

88

𝜎𝑏𝑖𝑡 =
𝜎𝑑𝑒𝑣𝑖𝑐𝑒

𝑁𝑏𝑖𝑡
 =

𝑁𝑆𝐸𝑈

𝛷 × 𝑁𝑏𝑖𝑡

(11)

Static tests allow to clearly identify the cross section of the configuration memory as well as the

proportion and the size of the multiple bit upsets. For example, in [127], the percentage of Multiple

Bit Upset have been measured as a function of the heavy ion LET (Figure 76) and as a function of

the angle of incidence (Figure 77) for Xilinx Virtex-5 FPGA.

The fluence used in static tests must be carefully selected based on a pre-test estimate of the bit

cross section to avoid an excessive accumulation of errors. Indeed, the probability of two SEUs

affecting two neighbor bits (that can result in a false MBU detection) must be minimized.

With Xilinx FPGAs, the configuration memory cross section can also be measured dynamically by

taking advantage of the error detection reports provided by the integrated soft error mitigation

(SEM) controllers mentioned in section 2.4.4. Indeed, modern Xilinx FPGAs now integrate a

dedicated hardwired circuitry originally designed to prevent the accumulation of errors in the

configuration memory [129]. In the background of the user design, the dedicated logic

continuously reads back the configuration and computes a CRC (Cyclic Redundancy Check) code

for each frame. The computed CRC is compared to the one computed at device initialization. When

a CRC mismatch is detected, the frame error is read back again and the error is localized and

corrected by using the pre-computed syndrome (at startup or at bitstream generation) from

another layer of Error Detection And Correction codes (EDAC). This integrated mitigation engine

can be supplemented by a soft controller, the SEM IP [130], implemented on the user fabric and

connected to the internal configuration ports. This controller can be used with an external

interface (UART) to report the status of the mitigation engine, the detection of events and the

corresponding addresses in the configuration memory and the potential failure to correct the

memory corruption (multiple bit upsets in the same frame). By exploiting this SEM controller

feature during dynamic SEE testing, the configuration memory sensitivity can be evaluated by

counting the number of reported events. This technique has been used in [72], [131] and the

resulting configuration memory cross section showed good agreement with the one obtained by

static tests. To be noted that this approach has one main limitation: the configuration frames

associated to user memory elements (BRAM, LUTRAM, SRL) are masked to the mitigation

controller to avoid any interference with the user design. Therefore, the errors occurring in these

frames are not detected. Even though the effects on the configuration memory (CRAM) are

generally predominant on SRAM FPGAs, the evaluation of its cross section does not allow to

Figure 76: Distribution of MBU in the

configuration memory of Virtex-5 as a function of
LET, from [127].

Figure 77: Distribution of MBU in the

configuration memory of Virtex-5 as a function of
the angle of incidence, from [127].

89

estimate the reliability of the implemented system. For this purpose, it is necessary to estimate

the susceptibility of the design to CRAM corruptions, by evaluating the number of configuration

bits that can cause failures when corrupted (defined as “critical bits”). It is also essential to

evaluate the sensitivity to other types of phenomena, especially for Flash and antifuse FPGAs.

4.1.3. PRIMITIVE LEVEL SENSITIVITY EVALUATION

A first approach, widely used for FPGA SEE testing, consists in measuring the intrinsic

sensitivity to SEU for each type of primitives. For each primitive type, dedicated test methods or

specific testing structures must be developed. They are generally made up of long monomorphic

chains of cascaded elements. For example, a widely used testing structure to measure the SEU

susceptibility of flip-flops is the shift-register [25] as shown in Figure 78.

Figure 78: Shift-register: flip-flops are cascaded to form a long chain.

By injecting a pattern in the first flip-flop, the values propagate from flip-flop to flip-flop at each

clock cycle. The output signal is monitored and compared to the input signal to check for potential

errors. The flip-flop SEU cross section can then be extracted based on the number of events

observed for a given fluence. This widely used structure can be supplemented by inserting one or

more LUTs between each flip-flop, as shown in Figure 79.

Figure 79: Shift register supplemented by inserting an LUT between each register.

By repeating dynamic tests with these structures at different clock frequencies, the SEU and SET

rates can be extracted. Indeed, as explained in section 2.3.3, the SET capture rate is proportional

to the clock frequency while the SEU generated on a flip-flop has a lower probability to propagate

to the next flip-flop when the clock frequency increases. This technique can be further improved

by implementing LTMR on the flip-flops as shown in Figure 80.

90

Figure 80: Shift register with LUT inserted between each triplicated flip-flop.

By triplicating the flip-flops, the SEUs on flip-flops are totally masked and their contribution to the

global shift-register cross section is theoretically removed. The event recorded with such

structure are then the result only of the capture of SETs as shown in Figure 81. In is worth

mentioning that, in some technologies, the insertion of majority voters can increase the SET

sensitivity.

Figure 81: Heavy ion test results on proASIC3 FPGA performed with 6 different shift-register test
structures. WSR0 refer to shift register with no LUT inserted. WSR8 refer to shift-register with 8 LUTs

inserted between each flip-flop. WSR16 refer to shift-register with 16 LUTs between each flip-flop, from
[132].

As shown in this figure, the test structures with flip-flop protected by LTRM have an increase SEE

sensitivity when the operating frequency increases. This corresponds to the SET capture

91

phenomenon. On the contrary, the cross section of the test structures without LTMR decreases

when the frequency increases. This mainly corresponds to SEUs in the flip-flops.

Other test structures have been developed to extend the evaluation of SEU sensitivity to the other

FPGA primitives:

• BRAM: Their sensitivity evaluation can be performed through static tests described

earlier as their content is part of the configuration memory. Other approaches have also

been proposed to dynamically test these memory blocks. In [133], an ECC encoder is used

to write data into the memory through the writing port, and an ECC decoder is used in the

reading port to detect the presence of memory corruption as shown in Figure 82.

• DSP: Their sensitivity can be evaluated by different test structures. In [67], DSPs

configured as multipliers are simply used in tandem by comparing their output signals at

each clock cycle to detect the presence of errors. More complex testing structures may also

be used such as matrix multiplication circuits and digital filters [132].

• Transceivers: In [134], a test structure is proposed to evaluate the sensitivity of GTX

transceivers. It uses two FPGAs, one under test and one used as mirrored responder. Data

frames are internally generated and send through the TX line. The mirrored FPGA received

the transmitted data frames through the RX line and checked for data consistency. Both

TX and RX lines are concurrently tested as shown in Figure 83.

Figure 82: BRAM test structure. Error

monitoring is performed by writing ECC encoded
data and decoding the read output, from [133] .

Figure 83: Transceivers test structure. Two
mirrored FPGA are used to transmit and

received data frame between themselves, from
[134].

To test the functionality and detect errors in these different structures, different approaches exist.

The first one consists in injecting the signals and monitoring the output signals externally, either

using specific measurement instruments (digital signal generator/analyzer) or using another

FPGA, outside the particle beam, usually integrating error detection and processing as shown in

Figure 84. However, this test setup can be challenging to deploy due to the signal frequency

limitations of the board-to-board connectors.

The second approach, called Built-In Self-Test (BIST) consists in managing the generation of input

data, the detection and processing of errors as well as the transmission of error logs to the external

computer directly inside the FPGA under test. The obvious limitation of this approach is the

92

sensitivity of the testing structure itself. Errors generated in this circuit part can be erroneously

identified as events happening in the test structure. It is then necessary to ensure that the

sensitivity of the BIST circuit can be neglected with respect to the sensitivity of the test structure

itself. The BIST circuitry is ideally hardened by integrating mitigation techniques and the way

errors are handled should be done carefully so that errors appearing in the BIST circuitry can be

differentiated from errors generated in the test structure.

Figure 84: Test setup with stimulus generation and output monitoring performed external by another
FPGA. Error detection and processing can be performed by the FPGA tester and reported to an external

computer.

The general approach described in this section provides useful information about the sensitivity

of the different FPGA resources. Nevertheless, this approach faces many difficulties regarding the

reliability estimation of real designs. These test structures are often monomorphic and offer very

little diversity in the arrangement of resources. For the example, with structures like shift-

registers, all the cells have a fan-in (number of input connections) and a fan-out (number of output

connections) of one. The number of logic levels between each flip-flop is also uniform. This lack of

diversity in the circuit parameters prevents the extrapolation of the radiation test results to

estimate the sensitivity of real application designs since the types of interactions between

resources are highly dependent on the topology of the implemented circuit.

4.1.4. FINAL APPLICATION TESTING

Due to the limitations of the previously presented test methodologies to estimate the

sensitivity of real application designs, designers might consider another approach which consists

in directly testing the FPGA with their final design implemented as done in [135], [136]. This

approach can be valuable for validation purposes, to ensure, during the final design stages, that

the implemented system complies with the reliability constraints imposed by the mission profile.

However, one must be aware of the various limitations of this approach. Real designs

implemented on FPGAs are generally very complex. Logical error masking, especially for circuits

where mitigation strategies have already been applied, implies a low error rate and therefore a

low statistical significance for reliability assessment. Also, since the state space is generally very

large, not all circuit states can be sufficiently exposed during a single radiation test to be

representative enough of the failures that may occur during real operation conditions. Finally, the

low visibility provided by these tests does not allow neither to identify properly the most sensitive

areas of the design nor to identify the predominant failure mechanisms.

93

4.1.5. RADIATION TEST BENCHMARKING

The other approach to SEE testing that will be developed in this study is based on the use of

hardware benchmark as proposed in [137]. In the referenced study, the use of the I99T portion of

the ITC'99 benchmark [138], [139] (originally developed to improve automatic test pattern

generation tools) is proposed as a universal reference for radiation testing to allow researchers

and designers to compare on a common basis their test results on different components and to

compare the effectiveness of their mitigation solutions. These benchmarks, implemented in a

common HDL, are composed of different functions from finite state machines to soft-core

microprocessors.

However, the ITC’99 benchmark may not be perfectly adapted to radiation testing as it is limited

in the diversity of used resources and circuit topologies with a major shortcoming with regards to

arithmetic operators, a structure widely used in all computationally intensive applications.

In this thesis, a new test methodology is proposed based on the development of a dedicated

benchmark adapted to radiation testing. This new benchmark brings different improvements

regarding the diversity of the circuit architectures in order to increase the visibility on the

sensitivity of the FPGA resources and on the predominant failure mechanisms.

4.2. BENCHMARKING REQUIREMENTS

The benchmark approach lies in the middle of the two approaches mentioned above:

sensitivity testing at the primitive level and testing of the final application. It is intended to

reproduce the diversity and complexity of interactions found in a real circuit while providing good

visibility on the predominant failure mechanisms and potential vulnerabilities. In an analogous

way to the testing methodologies used at system level (e.g. an electronic board), where one would

seek to test each of the sub-assemblies that compose it (e.g. each component) to estimate the

reliability of the complete system, the benchmark approach must propose test structures

corresponding to subsets of circuits used in real applications. That way, the test results can be

used in a generic way by designers to estimate the sensitivity of the different modules that

compose their designs. Another key point of the benchmarking approach lies in its ability to be

used to compare the radiation sensitivity of different components and identify for each of them

the main vulnerabilities and to provide recommendations regarding the mitigation techniques to

be applied.

To build an effective benchmark for SEE testing, it is necessary to identify the criteria that define

its quality and its ability to meet the expectations mentioned above:

• Portability: For comparison purposes, the benchmark should be provided in generic HDL

so that it can be implemented on FPGAs from different families and different vendors. In

the case where code structures specific to the FPGA architecture (e.g. primitive level

instantiation) are used, the benchmark must be derived in different versions by proposing

a solution for each architecture type.

• Scalability: In order to compare test results on FPGAs of different sizes or to analyze the

effect of data vector size on the sensitivity of a specific function, it is required that the

benchmarking structures can be repeated and implemented at different scales. For this

purpose, emphasis should be placed on the use of generics (an HDL object used to

94

customize a module) to define the dimensions of the circuit (size of data vectors, number

of replicas, etc.).

• Heterogeneity: To ensure representativity of all the designs implemented on FPGAs, a

wide diversity of circuits parameters must be proposed, regarding the number and type

of instantiated resources, the fan-in and fan-out of each cell, the number of logic stages

and the propagation delay between flip-flops.

• Testability: A low error masking rate is recommended to increase the number of

observed errors and consequently the statistical significance. A reduced state space

should also be considered so that each system state is sufficiently exposed. The state space

refers to the set of possible states that the circuit can have, a state being defined by the

values carried by all the signals of the circuit. This criterion ensures that test results are

representative enough of the failures that may occur during real operation conditions.

4.3. BENCHMARK SELECTION

In order to respect the criteria mentioned above, it was decided to develop several test

structures around arithmetic operators and particularly around parallel multipliers.

Achieving an efficient and performant multiplier implementation is a critical challenge to

hardware designers. As described in [140], this operator can be implemented in various ways,

leading to different compromises in terms of resource utilization, power consumption and

performance, and as a consequence, impact the radiation performance of the system. Moreover,

the same compromises are met in larger systems and thus, lessons learned from the

benchmarking structures could be scaled to larger designs. In addition to the above-mentioned

criteria, the multiplier has been chosen as a test structure for the following reasons:

• Multipliers are widely used functions in all computationally intensive applications (digital

signal and image processing, cryptography, artificial intelligence, etc.). The utilization of

logic functions close to those actually implemented improves the representativity and

facilitates the interpretation and reuse of the results.

• Multiplication functions can be implemented using different resources (DSP Blocks, Carry

Logic, LUT, Flip-flop) and different arrangements between those basic elements. This

allows, through the same logic function, to mobilize the most abundant resources of the

FPGA and to use a great diversity in the circuit parameters (number of logic stages

between the flip-flops, fan-in and fan-out of each element, LUT utilization, etc.).

• Multiplication is an operator that offers a great visibility of errors. With a careful choice of

input test vectors, the very nature of the operation allows to reveal most of the errors

generated in the circuitry by monitoring only the output of the operator. By using different

implementations of the multiplier, a dual objective can thus be achieved: the comparison

of the susceptibility of the operator on its different implementations can serve directly as

a guideline for the designer while efficiently evaluates the sensitivity of the most abundant

logic resources.

In this section, a brief reminder is given about binary arithmetic and its implementation. The

architecture of the different implementations of multipliers used in the benchmark are then

detailed and the structure of the finite impulse response filter, used to group and efficiently test

the multipliers will be presented.

95

4.3.1. HARDWARE IMPLEMENTATION OF ARITHMETIC OPERATORS

4.3.1.1. BINARY ADDITION

The binary adder is the backbone of all other arithmetic operators. The addition of two bits can

be implemented by an XOR gate for the sum bit and an AND gate for the carry bit. This structure,

depicted in Figure 85, is called "half-adder".

To add two binary numbers, this operation must be performed bit by bit between the bits of the

same weight. For each weight, except the Lowest Significant Bit (LSB), the operator has to consider

the carry bit resulting from the addition of the two lower weight bits. The carry is integrated in

the calculation using a full-adder, the structure of which is presented in Figure 86. A binary adder

is thus composed by cascading a half-adder for the LSB with a series of full-adders for the other

bit weights. This structure called ripple-carry adder is shown in Figure 87.

Figure 87: Ripple-carry adder structure composed of full-adders and one half-adder for LSBs.

The critical path of such structure is imposed by the propagation of the carry from the LSB to MSB.

The carry propagating through one full adder passes through two logic gates (one AND gate and

one OR gate as depicted in Figure 86). The addition of long binary vectors can thus suffer from

heavy timing penalties. Pipelining can be realized by inserting registers in the carry propagation

path to increase the maximum operating frequency. In that case, registers must also be added in

the input bits and sum bits to synchronize the data flow.

On FPGA, a ripple-carry adder could be implemented using a 2-output LUT for each full adder.

However, the structure of the logical blocks would make this implementation very inefficient

because the propagation of carries between each full-adder would have to go through the extra-

slice routing network, inducing long propagation delays.

Figure 85: Half-adder circuit. Sum (S) is

computed by a XOR gate between the two bits
(A & B) and the Carry (C) is computer by an
AND gate.

Figure 86: Full-adder circuit. Supplement the half-

adder by integrating an input carry bit (CIN) to compute
the Sum (S) and the output Carry (COUT).

96

To overcome this limitation, modern FPGAs integrate a Carry propagation circuit in each slice

(definition in section 2.2.2). This solution is based on the Carry Look-Ahead (CLA) arithmetic

described in Figure 88.

Figure 88: Carry Look-Ahead adder implemented on Xilinx FPGA logic bloc. Each LUT implements a half-
adder while the CARRY4 gate computes the adder output through a XOR gate (integrating the carry bit from
the lower weight bit) and compute the output carry bit through a multiplexer. This multiplexer propagates
the value of the previous carry when the two inputs are of different value (S=0) or the results of A&B (D)
when the two input have the same value (S=1).

This adder structure computes the addition in two stages. In the first stage, the two bits of the

same weight are fed to a half adder implemented on a two-outputs LUT. In the second stage, the

CARRY logic cell integrates the carry from the lower weight bits to compute the output sum and

the output carry. Formally, given S the output of the XOR between the two input bits (A and B),

the output results (O) can be computed with a XOR gate between S and the input carry (CIN). If S

is equal to ‘0’, this means that the two input bits are of the same value. In this case, the output

carry is equal to A AND B whatever the input carry state is. Otherwise, the output carry is equal to

the input carry. This structure, implemented on FPGA, provides better timing performances as the

carry propagate through only one multiplexer per bit and using delay-optimized intra-slice

routing segment.

4.3.1.2. TERNARY ADDER

FPGAs with 6 inputs, 2 outputs LUT architecture can integrate in the same logic block the

addition of 3 binary vectors using an architecture similar to the binary adder as described on

Figure 89. The result of an addition of 4 bits (three data bits plus carry bit from lower weight

addition) must be stored on 3 bits. The lowest significant bit is directly propagated to the output

result, the second bit is propagated to the next addition using the dedicated carry chain logic while

the Most Significant Bit (MSB) must be returned to the input of the higher order LUT. To do this,

the MSB must exit the logic block and re-enter it using the extra-slice routing matrix, which implies

delay penalties.

97

Figure 89: Ternary adder implemented on Xilinx FPGAs. Each LUT computes the 3 bits of the same weight
and integrates the carry from the previous sum. This carry bit must propagate outside the slice to meet the
LUT to LUT connection, from [141].

4.3.1.3. BINARY MULTIPLIER PRINCIPLE

A binary multiplier computes a set of partial products and then sums the bit-shifted partial

products together. The partial product computation is done by AND-gating the first operand with

one bit of the second operand as shown in Figure 90. The multiplier result is obtained by adding

the partial product set using a process called "partial product reduction”. The main differences in

the implementation of multipliers lie in this reduction of partial products that can be implemented

in many different ways. This reduction process is the multiplier part that contributes the most to

the to its delay, power and area.

Figure 90: Binary multiplication principle. For each bit in the second operand (in red), a partial product
is computed by AND-gating the first operand (in blue) with the bit from the second operand and shifting the
result according to the bit weight. All partial product generated must be added together to obtain the
multiplication result.

4.3.1.4. CARRY-SAVE MULTIPLIER

A first implementation of this partial product reduction tree uses the Carry-Save arithmetic as

shown in Figure 91. With this structure, the carry bits resulting from each partial product are

propagated vertically along with the sum bits to the next partial product stage. Each partial

product stage thus receives the results of the sum of all previous partial product stages and adds

its own partial product result to it, before propagating it to the next stage. The final partial product

98

is then added to the resulting sum of the previous stages, by using a ripple carry adder. This

structure offers many advantages in terms of timing by reducing the length of the critical paths. It

can also be efficiently pipelined to increase the maximum operating frequency. However, while

this structure can be efficiently implemented on ASIC, its implementation on FPGA will results in

poor timing performances as it cannot benefit from the dedicated carry propagation circuitry

embedded in the logic blocks. To improve timing performances, pipeline stages can be inserted.

Pipelining consists in inserting flip-flops on the signal propagation path to decrease the

propagation delays and thus increase the maximum operating frequency at the expense of an

additional clock cycle latency. The insertion of pipeline stages imposes a delay of one clock cycle

on the signals, the flip-flops must then be inserted on all the signals used in the calculation to

synchronize the data coming from the same input vector. Adding a pipeline stage induce a clock

latency between the input and output of the circuit.

Figure 91: Carry-Save Multiplier (CSM) architecture. The carry and sum results of each partial product
are propagated vertically to the next partial product and integrated in the computation of their own sum
and carry bits. This structure can benefit from efficient pipelining by inserting register in the middle of the
critical path.

4.3.1.5. SPEED OPTIMIZED MULTIPLIER

To efficiently use of the resources dedicated to the carry propagation, the most direct

implementation of the multiplier consists in reducing the partial products by a series of binary

carry look-ahead adders as shown in Figure 92. The adjacent partial products are first combined

two by two, and then the resulting sums are combined again two by two. This process is repeated

until the final result is obtained. The first adder stage can take advantage of the LUTs structure by

integrating the calculation of the two partial products (AND gates) to be added and thus

mobilizing 4 inputs. This partial product reduction tree is the most efficient in terms of timing,

considering that pipeline stages can also be inserted between the different addition stages to

further increase the maximum operating frequency. However, this implementation consumes a

large number of logical resources.

99

Figure 92:Dot diagram of a speed optimized 8x8 Carry Look Ahead Multiplier. The 1st addition stage
integrates the computation of the partial products and their addition two by two. The results of these
additions are then added two by two until the final result is obtained.

Figure 93: Dot diagram example of area optimized 9×9 multiplier partial product reduction tree.

100

4.3.1.6. AREA OPTIMIZED MULTIPLIER

For FPGA architectures with six input LUTs, the number of resources used by the multiplier

can be reduced by using an implementation that takes advantage of the six inputs. With this

architecture, the bits of the partial products are first reduced with a stage of optimally arranged

LUTs as depicted in Figure 93. One part of LUTs (Type A) only computes the SUM bits of partial

product over 1, 2 or 3 bits of the same weight ignoring the carry bit. The other part of LUTs (type

B) compute the SUM and CARRY bits of 1 or 2 bits of the same weight while integrating the carry

bit from the sum of the lower weight bits sharing the same input bits. The vectors extracted

diagonally from this compression stage are then added 3 by 3 using ternary adders taking

advantage of the carry chain architecture until the final result is obtained. To be noted that this

architecture cannot be implemented on FPGAs that only integrate 4-inputs LUT such as the Igloo2

FPGA (Microsemi) tested in this study.

4.3.1.7. BOOTH ENCODING OPTIMIZATION

A well-established algorithm to reduce of the number of partial products called “Booth

encoding” is presented in [142]. In a first step, the multiplier LSB is padded with one zero and its

MSB with 2 zeros. The multiplier is then divided into overlapping groups of 3-bits as shown in

Figure 94. For each group, a partial product scale factor is applied based on the booth encoding

table (TABLE VII).

Figure 94: Multiplier padded with one 0 at LSB and two 0 at MSB and divided into overlapping groups of
3bits.

TABLE VII: BOOTH ENCODING TABLE

Bi+1 Bi Bi-1 Scale Factor

0 0 0 +0

0 0 1 +A

0 1 0 +A

0 1 1 +2A (A<<1)

1 0 0 -2A (-A<<1)

1 0 1 -A

1 1 0 -A

1 1 1 -0

Figure 95: Modified Booth multiplier.

Only one product table is generated for each group with the corresponding scale factor (in this

example, five partial products are generated instead of eight). Each partial product bit PPi,j can be

computed using a five-input gate as shown in Figure 95.

Base on this approach, a multiplier merging the booth recoding scheme of a booth multiplier and

the summation of the partial products in a single stage of LUTs and Carry chains association was

101

proposed in [140]. This implementation can be used on FPGA architectures with 6 inputs LUT,

showing a significant reduction in the number of instantiated resources and an improvement in

performance.

4.3.1.8. CONSTANT MULTIPLIER OPTIMIZATION

Some applications use multiplications with a constant number that does not need to be

updated during execution. The hardware implementation of such multiplier can then benefit from

optimization to reduce resource usage and increase performances. Indeed, considering a

multiplication of a multiplicand A by a constant multiplier B, the result is simply obtained by

adding, for each nonzero digit of B, a copy of A bit-shifted according to the index of the digit. All

partial products corresponding to zero digits in B are simply omitted. When B contains only a few

nonzero digits, the number of additions is thus greatly reduced as shown in Figure 96.

Figure 96: Example of constant multiplier optimization. A is multiplied by 5, which correspond to the
addition between A and 2bits-shifted A. This multiplication can be efficiently implemented using only two
LUTs and a CARRY4 gate.

Depending on the multiplier value, the implementation of constant multiplication can be further

reduced by combining additions and subtractions. For example, if a 4-bit coded multiplier B is

equal to 7 (=b"0111"), instead of using 2 additions of A bit-shifted by 0,1 and 2 bits, the result can

be computed with a single subtraction between A bit-shifted by 4 bits and A. This optimization is

illustrated in Figure 97.

Figure 97: Example of constant multiplier optimization replacing 2 additions by one subtraction. This
subtraction is implemented using two’s complement representation and efficiently implemented using 7
LUTs and 2 CARRY4 gates.

4.3.1.9. SELECTED MULTIPLIER IMPLEMENTATIONS

Many other approaches have been developed to optimize the implementation of arithmetic

operators on FPGA [143]–[146]. However, the performance criteria used to compare these

implementations are essentially focused on the maximum operating frequency and the number of

instantiated logical resources while the susceptibility to SEEs is not investigated. By integrating

several implementations of the same arithmetic function in the benchmark and comparing their

102

sensitivity, the test methodology fulfills an additional objective providing designers with

quantitative information to choose the type of implementation adapted to their needs.

In this study, a total of seven multiplier structures is selected to be included in the benchmark:

• CSM: Carry save multiplier (section 4.3.1.4)

• SOM: Speed optimized multiplier (section 0)

• AOM: Area optimized multiplier (section 4.3.1.6)

• KUM: implementation proposed by M. Kumm in [140]

• PAA: implementation proposed by H. Parandeh-Afshar in [143]

• DSP: instantiation in hardcoded digital signal processing blocks (section 2.2.4)

• CST: Multiplier taking advantage of constant multiplication optimization

This group of multipliers was chosen to maximize the diversity in the circuit’s architecture

regarding the type of instantiated resources (LUTs of different sizes, DSP, CARRY, flip-flops) as

well as the structure (fan-in and fan-out of the logic gates, number of logic stages, propagation

time between the flip-flops, routing scheme). For instance, CSM use mainly 4-inputs LUTs with a

vertical propagation of carry and no use of the dedicated carry logic; SOM and CST uses a sequence

of binary carry look-ahead adders (horizontal propagation of carries) benefiting from dedicated

carry logic; AOM use a first stage of LUT-based compressors and a second stage of ternary adders;

KUM and PAA tries to exploit the resources of each logic block to the maximum by compressing

the number of partial products calculated in the same stage while DSP use specific logic resource

dedicated to arithmetic operations.

So that the differences between these implementations are clearly revealed while still providing

high maximum operating frequencies, 16x16bits multipliers are selected in this study.

4.3.1.10. FINITE IMPULSE RESPONSE FILTER

The difficulty in monitoring the operation of a multiplier and detect the presence of errors lies

in the size of the signals to be analyzed. The multiplication of two N bits long numbers provides a

result coded on 2N bits (multiplication without truncation). The size of the circuitry required to

monitor each multiplier independently would be prohibitive as it could compromise the results

of the experiment by an excessive false error detection rate. To overcome this issue, a Finite

Impulse Response (FIR) filter structure has been adopted.

A FIR filter is a digital filter characterized by a response based only on a finite number of values

of the input signal. As shown in equation (12), the output 𝑦[𝑛] is calculated by performing a

discrete convolution between the input signal 𝑥[𝑛] and a function represented by the coefficients

𝑏𝑘 corresponding to the discrete impulse response of the filter.

𝑦[𝑛] = ∑ 𝑏𝑘 ∙ 𝑥[𝑛 − 𝑘]

𝑁−1

𝑘=0

(12)

This convolution can be implemented mainly in two different ways, the direct form (Figure 98) and

the transposed (Figure 99).

103

Figure 98: Direct form of an FIR filter. The input signal 𝑥[𝑛] pass through a sequence of register. Each
delayed input signals (𝑥[𝑛 − 𝑘]) is multiplied to the corresponding coefficient 𝑏𝑘 . All the multiplication

results are then added simultaneously to produce the output result.

Figure 99: Transposed form of an FIR filter. The input signal 𝑥[𝑛] is simultaneously multiplied to each
coefficient 𝑏𝑘 . The output of each multiplier is then summed with the higher order multiplication result

delayed by one clock cycle.

Each implementation brings its own pros and cons. The direct implementation allows to limit the

fan-out of the input signals because the signal is only distributed to one multiplier and to the flip-

flop stage. However, this implementation may suffer from timing penalties in the adder sequence

because all multiplier outputs are added simultaneously. The addition of multiple vectors in

parallel can be optimized with one of the reduction tree techniques described in previous sections,

and pipelining can be inserted to further reduce the delay of the critical paths at the expense of an

increased latency. On the other hand, the transposed form does not suffer from timing penalties

on the adder sequence because each addition is separated by a flip-flop stage. However, the input

signal is distributed simultaneously to each of the multipliers which introduces a very large fan-

out. Indeed, at the multiplier level, the input signal is distributed to a large number of cells to

perform the calculation of each partial product. If the input of the multipliers is not registered, the

fan-out on this signal can be penalizing in terms of timing and routing capabilities.

The FIR filter structure offers many advantages for SEE testing. First, the forward propagation of

signals without feedback loops avoids the presence of persistent errors. Once the source of the

error is corrected, the output of the filter returns to its theoretical value after a maximum number

of clock cycles defined by the number of register stages separating the input and output of the

filter. This characteristic is very valuable because it allows to determine the error duration and

thus to identify the involved failure mechanism. Second, the FIR filter structure allows multiple

multipliers to be combined together with the low error masking rate provided by adders. The vast

majority of errors generated within the structure can thus be detected by monitoring only the

output of the filter. Finally, this circuit is perfectly in line with the benchmark concept as this type

of architecture (convolution) is commonly used in a wide range of applications (digital signal

processing, neural networks, etc.).

104

The benchmark proposed in this study not only deal with testing the different multiplier

implementations using a single filter structure but is also supplemented with more FIR filter

variants to evaluate the influence of structural parameters on the circuit sensitivity. In particular,

a filter version using distributed arithmetic is considered.

4.3.1.11. DISTRIBUTED ARITHMETIC

Distributed arithmetic (DA) is a computation algorithm that performs multiplication using

precomputed lookup tables instead of logic [147]. DA targets the sum-of-products operation such

as filter implementation and matrix multiplication. DA can be particularly well suited to

implement FIR filters when constant (non-updatable) coefficients are used.

When applied to FIR filter and considering a fully parallel implementation, the main idea behind

distributed arithmetic is to decompose the computation of the sum-of-product into different

computation units carrying the computation for a single bit of the input signal.

Formally, considering a fixed-point positive integer, the input signal 𝑥[𝑛], a binary vector of W bits

can be represented as shown in equation (13).

𝑥[𝑛] = ∑ 𝑥𝑖[𝑛] ∙ 2𝑖

𝑊−1

𝑖=0

 (13)

The equation of an FIR filter with N coefficients can be thus be decomposed in a sum of bit-shifted

sums of 1 by N products as described in (14).

𝑦[𝑛] = ∑ 𝑏𝑘 ∙ 𝑥[𝑛 − 𝑘]

𝑁−1

𝑘=0

= ∑ 2𝑖 ∙

𝑊−1

𝑖=0

(∑ 𝑏𝑘 ∙ 𝑥𝑖[𝑛 − 𝑘]

𝑁−1

𝑘=0

) (14)

Figure 100: Example of one input bit computation. The input signal bit is delayed in a shift-register and
transmitted to a set of LUTs carrying the precomputed addition of the input coefficients.

The calculations inside the brackets of equation (14) can be computed independently using look-

up tables. Indeed, the coefficients being constant, this result is computed by adding the coefficients

for which the input signal bit is at ‘1’. Considering the example of an FIR filter with 6 coefficients

and an 8bits input signal and coefficients, a total of 64 possible combinations of coefficients must

be precomputed. The precomputed results are then stored on 8 LUTs with 6 inputs as shown in

Figure 100.

105

This structure is replicated for each input signal bit and the results are finally bit shifted according

to the input bit position and summed together as shown in Figure 101.

Figure 101: Distributed arithmetic implementation. The computation results for each input bit are bit
shifted and added.

4.4. BUILT-IN SELF-TEST

As mentioned earlier, particle beam testing imposes many technical constraints related to the

radiation exposure of all the equipment installed in the irradiation room and to the length of the

cables that usually connect the DUTs and the equipment installed in a radiation-free area. Test

setups based on an auxiliary system for injecting stimuli and monitoring FPGA output signals

[148] require additional engineering time (especially when using a custom PCB) while their

reliability is not guaranteed when placed close to the DUTs. For these reasons, a Built-In Self-Test

(BIST) approach was adopted in this study. However, its design imposes other types of

constraints. In one hand, the circuitry used to inject the test signals and to monitor the output

signals of the circuit under test must be sufficiently reliable with respect to the sensitivity of the

circuit under test itself to limit the false error rate (error detection induced by a SEE on the test

circuitry). This testing circuitry must therefore be as SEE immune as possible by limiting the

number of instantiated resources and preferably hardened with mitigation schemes. On the other

hand, the data rate sent by the component is limited by the type of interface and the length of the

cables connecting the irradiation room and the radiation-free area. Therefore, the error detection

should be carried out internally and the error reports sent to the control computer must be

judiciously formatted.

As mentioned previously, in order to group several instances of multipliers in a single structure

and limit the number of signals to be monitored, a FIR filter structure is used. In this section, the

choice of the test patterns injected in the structure are first discussed. Then, the architecture used

around the filter to inject the input signals, monitor the output signals, detect, format and transmit

the errors are detailed. Finally, the test setup and procedures used during the experiments are

presented.

4.4.1. TEST PATTERN SELECTION

To detect the presence of errors in a circuit, the standard approach is to inject a set of test

patterns into the input and check that the outputs respect the expected theoretical values. The

106

choice of test patterns to be injected into the circuit has a major impact on fault coverage, namely

the percentage of faults that can be detected during the test. Many tools have been developed for

Automatic Test Pattern Generation (ATPG) [149], [150]. These tools aim at automatically generate

the shortest possible test patterns for a given fault coverage. Based on circuit analysis, the fault

model used by these tools is generally focused on hardware structural defects such as stuck-at-

fault (one net is stuck either at logical ‘0’ or ‘1’) or bridge faults (a short circuit between two signal

lines). Thus, these test techniques, devised for ASICs, are not effective in detecting SEEs in FPGA

based system, especially regarding SEUs in the configuration memory [151], [152]. A test pattern

generator dedicated to SEU’s in the configuration memory of FPGA have been proposed in [153]

based on a fault model developed by the same authors [154] targeting Xilinx Virtex II FPGA. The

detailed fault model (discussed in chapter 5) is specific to each FPGA architecture and has not

been established for the FPGAs tested in this study. Therefore, in this study, ATPG tools are not

used for test pattern selection. Instead, the test patterns are chosen using a simpler and more

intuitive approach applicable to FIR filters. The test vectors for the input signal must propose a

large diversity of values over the entire signal amplitude while trying to maximize the alternation

and balance of the number of bits in the '0' and '1' logic states. According to this concept, a test

pattern composed of 128 test vectors representing a complete period of a sinusoidal signal with

the maximal amplitude has been chosen as illustrated in Figure 102. The filter coefficients have

been selected to implement the behavior of a low-pass filter. Improvements have been made

through the different test campaigns by removing for example the coefficients equal to 0 (which

are usually removed on a real application) or by normalizing the sum of the coefficients to 1 (sum

of the coefficients = 2N-1, N being the number of bits of the input vector) to avoid the bit growth

on the addition stages.

Figure 102: Input test pattern. 128 samples of 16bits representing one period of a sinusoidal signal.

4.4.2. BIST ARCHITECTURE

To detect the presence of errors in the FIR filter, the output signal is continuously compared to

a golden reference previously extracted from a behavioral simulation. The architecture used for

the built-in self-test is presented in Figure 103.

107

Figure 103: Built-in self-test structure implementation. Memory blocks protected by ECC are used to
generated input stimulus and output golden signals. The FIR output is compared with the golden signal to
detect the presence of errors. The error flags raised by the comparator are transmitted to an error report
formatter which generates and transmit the error reports to an external computer through a serial interface
(these last modules are duplicated with two different types of formatting).

The input test pattern and the output golden reference are stored in BRAMs configured as Read

Only Memory (ROM). A counter ranging from 0 to 127 is used as an address generator for the two

memory blocks. To avoid false error detection induced by bitflips in these memory blocks, the

stored data have been previously encoded with ECC (Hamming) and the output of the memory

blocks are protected by an ECC decoder with Single Error Correction and Double Error Detection

(SEC-DED) capability. The filter output is compared to the golden signal to detect the presence of

errors. When an error is detected, an error flag is raised which triggers the sending of an error

report to a control computer through a serial link (UART protocol). To avoid false error detections

induced by SEE in the report formatter and UART transmission link, these modules are duplicated

while using two different types of formatting. Hence, error induced in one of the duplicated

modules can be detected and eliminated on the control computer side.

4.4.3. ERROR FORMATTING

The bandwidth of a the UART links is limited by the length of the cables and by the data

acquisition and processing capacity of the control computer, the error reports must then be

formatted carefully to limit the number of bytes to transmit while providing enough information

to identify the affected filter and the type of error mechanism involved. Two distinct error

formatting mechanisms have been developed. The first consists of concatenating a byte containing

the indexes of the affected filters and a byte representing the temporal position of the error (value

of the counter). During the first experiment, this formatting showed some limitations. Indeed,

when the error duration was too important, the number of bytes sent per second could not be

managed and an important loss of data was observed. This loss apparently originates from an

overflow of the buffer at the USB controller level. This error formatting thus prevents the

appropriate measuring of the error duration. To overcome this limitation, a second formatting

system was added. This formatting system accumulates the number of errors detected for each

filter during one second and then transmits for each one of them the content of the accumulator

along with the index of the affected filter.

108

In the absence of errors, a dedicated frame is sent periodically to ensure that the circuitry

dedicated to error formatting and data transmission by UART is still operating and has not been

interrupted by a SEE.

4.4.4. TEST SETUP AND PROCEDURE

In this chapter, three Xilinx FPGAs (Spartan7, Artix7 and Kintex7) and one Flash FPGA from

Microsemi (Igloo2) are tested. When performing SEE tests on Xilinx FPGAs, the SEM controller

(Soft Error Mitigation presented in section 4.1.2) is systematically integrated into the

implemented design. This system enables the correction of the majority of the SEUs in the

configuration memory and thus prevents the accumulation of errors. If the event is corrected, the

test can continue without having to reconfigure the component. On the other hand, from the SEU

detection messages reported through the SEM controller serial interface (UART), the cross section

of the configuration memory can be calculated. By cross-checking the information reported by the

SEM controller with the error reports from the BIST structure, the type of failure mechanism can

also be identified.

Figure 104: Test setup. Three serial links are reported to the control PC through TTL adapters and USB
expanders over Ethernet. The supply voltage is provided through a BNC cable by a power supply remotely
controlled by the host computer.

A total of three serial links per device are reported to the control computer (two from the Built-in

self-test structure and one from the SEM controller). The UART signals from the FPGA are

converted to USB using one TTL adapter for each serial link. Due to the length of the cables

connecting the irradiation room and the control room (~30m), the USB bus cannot be used

directly. A USB expander over Ethernet is used to transmit the data through an RJ45 cable. This

expander is composed of two modules, one installed in the irradiation room receives the data from

three USB links provided by the TTL converters and transmits them on the ethernet link. The other

one, installed in the control room, transfers the data sent on the Ethernet back to a USB which can

be directly connected to the control PC as shown in Figure 104. This system acts transparently to

the user and everything behaves as if the three USB cables were directly connected to the

computer.

The USB expander module and TTL adapters located in the irradiation room are placed as far as

possible from the DUTs to limit their exposure to radiation. These elements are also placed behind

thick paraffin bricks (for neutron tests) or lead bricks (for proton tests) to further limit their

exposure.

109

The supply voltage is provided through a BNC cable and is generated by a power supply remotely

controllable by the control PC through Ethernet. The remote control allows the PC to

automatically perform power cycles to force the FPGA reconfiguration. The power supply also has

a current limiter to avoid potential damage caused by SEL.

The experiment is fully controlled and automated through a python script. Data acquisition from

each serial link is managed in an independent process using a different processor thread. These

processes take care of the recording of the data sent in a text file for further processing of the data.

These processes also check that the communication is still established (via specific frames sent

periodically and with a 5s stopwatch) and detect the presence of permanent errors (when the

error report flow is continuous during more than 5 seconds). When one of these two events

occurs, a power cycle is triggered to force the FPGA reconfiguration as shown in Figure 105.

Figure 105: Process of UART frame acquisition and detection of permanent errors and link interruptions.
When the error flaw is continuous or no message is received during more than 5 seconds, a power cycle is
triggered to force the FPGA reconfiguration.

4.5. EXPERIMENTAL RESULTS

A total of three SEE test campaigns has been performed in this study. Each new campaign

completes the benchmark with new structures, whether by proposing new multiplier structures,

new placement and routing strategies, or by experimenting different design parameters in the FIR

filter architecture. In addition, each campaign has benefited from the lessons learned in previous

campaigns by making different improvements to the BIST architecture and test setup as described

earlier.

In this chapter, the results of the three SEE test campaigns are presented successively. The two

first campaigns are performed in the ChipIR facility (UK) presented in section 1.1.3.3. As a

reminder, this facility provides a neutron beam with an atmospheric like spectrum and with a

neutron flux of 5 ∙ 106 𝑐𝑚−2𝑠−1 (for neutron energy higher than 10MeV). The third campaign is

110

performed at PARTREC facility (Netherlands) providing a proton beam with energy up to 180MeV

at DUT position and a controllable flux up to 1 ∙ 108𝑐𝑚−2𝑠−1.

4.5.1. FIRST CAMPAIGN: INFLUENCE OF TIMING CONSTRAINTS

This first campaign aims to evaluate the predominance of the different failure mechanisms as

well as to evaluate the influence of the operating frequency imposed during the design phase on

the radiation sensitivity of different multiplier implementations.

Indeed, the synthesis, placement and routing algorithms are driven by the user defined timing

constraints. To respect these constraints, these algorithms use different optimization techniques:

for example, when the user imposes a high operating frequency, the placement algorithm tries

more aggressively to physically place the connected cells closer together and the routing

algorithm further explore several PIP associations to find the one that minimizes the delay of each

net. Conversely, by imposing a low operating frequency, the algorithm tries to minimize the

number of logical blocks to be used which may result in a more compact implementation but with

longer propagation delays. One of the objectives is thus to analyze whether these differences in

implementation have an impact on the radiation sensitivity.

Figure 106: Test setup at ChipIR facility. The two FPGA boards are mounted on a plexiglass board and
positioned vertically in the neutron beam spot.

4.5.1.1. SETUP DETAILS

Tests are performed on two Spartan7 (SRAM - 28nm) from Xilinx embedded on commercial

development boards Arty S7-50 from Digilent. The test setup in the irradiation room is depicted

in Figure 106.

Three multiplier implementations presented in section 4.3 are evaluated:

• CSM: Carry Save Multiplier

• SOM: Speed optimized Multiplier

111

• DSP: instantiation in hardcoded Digital Signal Processing blocks

Each multiplier is fully pipelined and integrated in a FIR filter in transposed form with 9

coefficients, 16 bits width vector for data input and coefficients. As the coefficients are not

normalized in this setup, the full precision along the filter calculations was maintained resulting

to a 40-bits width output vector. These filter dimensions were chosen to offer a good compromise

between the number of resources instantiated to verify correct operation of the filter and the

number of replicas of the circuit that can be integrated in the chip (3 replicas for CSM and SOM, 8

replicas for DSP). Each structure is tested with four different operating frequencies: 10MHz,

50MHz, 100MHz and 200MHz. This results in a total of 8 designs to be tested as depicted in

TABLE VIII.

TABLE VIII
SUMMARY OF THE DIFFERENT TESTED DESIGNS

Run Composition Operating frequency

n°1 3 CSM filters 8 DSP filters 10 MHz

n°2 3 CSM filters 8 DSP filters 50 MHz

n°3 3 CSM filters 8 DSP filters 100 MHz

n°4 3 CSM filters 8 DSP filters 200 MHz

n°5 3 SOM filters 8 DSP filters 10 MHz

n°6 3 SOM filters 8 DSP filters 50 MHz

n°7 3 SOM filters 8 DSP filters 100 MHz

n°8 3 SOM filters 8 DSP filters 200 MHz

By carrying test at different frequencies, the SET capture phenomena and SEU propagation

between registers can also be analyzed. In this first BIST implementation, the BRAM storing the

input signal and output signal where common to all FIR filters. As the input signals are distributed

to all the multipliers of every filter, these nets had to be duplicated and registered to reach the

highest operating frequency.

To be noted that due to technical issues, the SEM controller reports could not be recorded during

this campaign, so the bit cross section of the configuration memory could not be extracted. This

cross section is extracted through the next irradiation campaigns.

4.5.1.2. RESULTS

During this campaign, the FPGA are irradiated for 27 hours with an average neutron flux of

 5.6 ∙ 106𝑐𝑚−2. 𝑠−1obtaining a total fluence of 5.5 ∙ 1011𝑐𝑚−2. 𝑠−1. Over the entire irradiation

period, a total of 1105 errors is observed. Based on error reports send by the BIST structure, the

exact timing of the errors in the data stream passing through the filter can be determined. The

resulting errors are classified into three categories based on their footprint as demonstrated in

Figure 107.

Non-persistent upsets are due to the corruption of one or more configuration bits related to the

configuration of the implemented circuits (affecting either the routing resources, the

configuration of LUTs, or DSPs). These bit flips are corrected by the SEM IP after a certain amount

of time directly linked to the detection and correction latency of the scrubbing system. These

configuration memory related failure modes are further discussed in chapter 5.

112

Persistent upsets show a similar behavior to the non-persistent ones, with the difference of not

recovering until the FPGA is fully reconfigured. Since the test structure does not contain any

feedback loops, the structure should resume normal operation after the configuration bit

responsible for the error has been corrected. The persistence of these errors is caused by different

mechanisms related to the proper functioning of the SEM controller.

During the experiment, the SEM IP was configured in "enhanced repair" mode allowing the

correction of a single bitflip per frame or double adjacent bitflips. However, non-consecutive

multiple errors per frame cannot be corrected. Likewise, some configuration bits can generate

multiple errors that cannot be corrected by the SEM controller. When the SEM controller is unable

to correct an error, it goes back to an IDLE state, thus preventing the correction of subsequently

generated errors. As the SEM IP is also sensitive to SEUs, its operation can be compromised thus

preventing the correction of subsequent SEUs impacting the design. All these mechanisms leading

to persistent errors are further studied through fault injection in section 4.6.

Single errors, although very few, are the result of flip-flop SEUs or SET capturing. This

assumption is supported by the frequency dependency of the cross section for all filter types. As

the number of single errors observed is rather low and overwhelmed by the event induced in the

configuration memory (98%), it is difficult to take advantage of the benchmark properties to

clearly identify the predominant phenomena between the capture of SETs and the generation of

flip-flop SEUs.

Figure 107: Classification of the detected errors. Single error: only one error is reported; Non-persistent
upset: long frames of errors that recover automatically; Persistent upsets: long frames of errors that stop
only after complete reconfiguration.

For each error type, the cross section for a single FIR filter is calculated as shown in TABLE IX. The

cross sections for each multiplier implementation type as a function of the operating frequency

are displayed in Figure 108, Figure 109, Figure 110 for each type of error (Non-persistent, Persistent

and Single errors respectively).

113

TABLE IX
FIR FILTER CROSS SECTION RESULTS

Frequency
(MHz)

Cross section
Fluence
(cm-2)

Non-persistent Persistent Single error Total

cm² % cm² % cm² % cm²

SOM

10 1.5∙10-10 39.2 2.3∙10-10 58.8 7.6∙10-12 2.0 3.9∙10-10 4.4∙10-10

50 2.5∙10-10 60.3 1.6∙10-10 38.1 6.5∙10-12 1.6 4.1∙10-10 5.1∙10-10

100 2.0∙10-10 50.0 2.0∙10-10 50.0 0 0.0 4.0∙10-10 6.6∙10-10

200 2.6∙10-10 56.1 1.7∙10-10 36.4 3.5∙10-11 7.6 4.6∙10-10 4.8∙10-10

CSM

10 5.4∙10-10 65.3 2.9∙10-10 34.7 0 0.0 8.3∙10-10 4.9∙10-10

50 5.2∙10-10 74.4 1.7∙10-10 24.8 5.3∙10-12 0.8 7.0∙10-10 6.3∙10-10

100 4.0∙10-10 60.3 2.2∙10-10 33.3 4.2∙10-11 6.3 6.7∙10-10 8.7∙10-10

200 6.5∙10-10 79.5 1.6∙10-10 19.3 9.7∙10-12 1.2 8.2∙10-10 1.4∙10-11

DSP

10 1.4∙10-12 50.0 1.4∙10-12 50.0 0 0.0 2.7∙10-12 9.3∙10-10

50 2.1∙10-12 66.7 1.1∙10-12 33.3 0 0.0 3.2∙10-12 1.2∙10-11

100 3.3∙10-12 36.4 4.1∙10-12 45.5 1.6∙10-12 18.2 9.0∙10-12 1.5∙10-11

200 5.4∙10-12 47.1 3.4∙10-12 29.4 2.7∙10-12 23.5 1.2∙10-11 1.8∙10-11

TOTAL 64% 34% 2%

Figure 108: Cross section for non-persistent errors of FIR filters tested at different frequencies,
displayed with the 95% confidence interval.

114

Figure 109: Cross section for persistent errors of FIR filter implementations tested at different
frequencies, displayed with the 95% confidence interval.

Figure 110: Cross section for single errors of FIR filter implementations tested at different frequencies,
displayed with the 95% confidence interval.

The first result that stands out when comparing the cross section for the different types of errors

(TABLE IX) is that the errors related to the SEU in the configuration memory (persistent and non-

persistent) are largely predominant (98%) over errors related to flip-flop SEUs and SETs (single

errors). This observation is however less valid for DSP-based filters for which the sensitivity to

the different types of errors are of the same order of magnitude. This can be attributed to the fact

that DSP blocks are resources with low flexibility that require a reduced number of configuration

bits to define their functionality. This effectively translates into a large reduction in overall

sensitivity (considering all error types) compared to fabric-based filters (CSM and SOM). Indeed,

as shown on Figure 108 and Figure 109, the cross section of DSP-based filters is two orders of

magnitude lower than the other filters.

115

Regarding the two distributed multipliers (CSM and SOM), considering all types of events, the CSM

filter turned out to be twice more sensitive than the SOM based filter. This result is particularly

evident in the non-persistent (Figure 108) and persistent events (Figure 109). This increased

sensitivity can be correlated to the number and type of used resources shown in TABLE X. It can be

noticed that CSM filter use half as much flip-flops than SOM filter while it requires twice more

pipeline stages to reach equivalent timing performances. This flip-flop reduction is enabled by the

instantiation of LUT-based shift registers (SRL) to add clock cycles delay on the data paths. Indeed,

the CSM multiplier has been instantiated with 16 pipeline stages to reach a maximum frequency

of 200MHz. The clock cycle delays required to synchronize all the signal propagated in the

multiplier can be automatically implemented into one shift-register LUT (instead of multiple flip-

flops) when the number of clock cycles to be delayed reach a certain threshold. However, the

reduction of the number of flip-flops is highly compensated by a higher use of LUTs (CSM use 73%

more LUT than SOM). The fact that the sensitivity of the CSM is twice as high as the one of SOM

shows that the flip-flops utilization has a very small impact on the sensitivity while the one of

LUTs has a strong impact. The increased sensitivity of the CSM structure also seems to be impacted

by an increased number of instantiated programmable interconnexion points (PIPs). Indeed, the

vertical propagation of carry bits (architecture detailed in section 4.3.1.4) prevents the usage of

CARRY4 resource and the LUT-to-LUT connections force the activation of extra-slice routing

programmable interconnexion points (PIPs). CARRY4 are hardwired primitives that do not

require any configuration bit contrary to PIPs. This means that the usage of CARRY4 not only

improves the multiplier performances but also tends to reduce their susceptibility to SEU in the

configuration memory.

TABLE X
FILTER RESOURCE UTILIZATION, POWER AND PERFORMANCE COMPARISON BETWEEN THE THREE MULTIPLIER

IMPLEMENTATION TYPES

LUT Flip-flop CARRY4 DSP Power

(mW)
Pipelining

(multiplier)
Max. frequency

(MHz)

CSM
4468

(694 as SRL) 1847 0 0 326 16 stages 250

SOM 2577 3688 829 0 181 8 stages 300

DSP 0 0 0 9 93 1 stage 454

From Figure 108 and Figure 109, no clear trend can be identified on the influence of the operating

frequency regarding the filter’s sensitivity to SEUs in the configuration memory. However, for

single errors (Figure 110), despite the high uncertainty of the results due to a low number of events

(43 events across all designs), an increased sensitivity with operating frequency can be identified,

which can be attributed to the increased probability of SET capture. This phenomenon is more

pronounced on the DSP filter which has a fixed implementation, while the implementation of the

other two filters is influenced by the user defined frequency.

Some rare events were observed during the test campaign. For example, the failure of several

filters simultaneously was observed (56 events). This type of event could be caused by SEUs

affecting input signal PIPs (common to all filters). Indeed, in the current BIST version, all filters of

the same type share the same BRAM to store the input signal. A large routing tree is then

instantiated to propagate the input signal to every filter replica thus requiring a large number of

116

PIPs to build this routing tree. Some of this PIPs are shared by routing segments feeding different

filter replicas and therefore affect several filters simultaneously when affected by SEUs. Some

failures or interruptions of the UART communication were also observed (124 events), probably

due to SEL, SEFI or persistent SEUs affecting either the PLL and routing network, the UART

transmission block or the error report formatter and the associated FIFO.

In summary, different trends can be identified from these test results:

• Failures related to configuration memory corruption are highly predominant (98%).

• DSPs are much less sensitive than distributed operators (by two orders of magnitude).

• The number of instantiated flip-flops has little influence on the sensitivity.

• The number of instantiated LUTs has a major impact on the sensitivity.

• The use of CARRY4s reduces sensitivity by limiting the number of PIPs used.

• The operating frequency has no significant influence on the configuration related failures.

4.5.2. SECOND CAMPAIGN: IMPROVEMENTS AND EXTENSIONS

4.5.2.1. TEST SETUP MODIFICATIONS

This second experiment is performed in the same facility using the same neutron beam. The

test setup, however, receives different types of modifications:

• The DUT selection is supplemented with two additional FPGA families:

-Artix7 (SRAM – 28nm) from Xilinx

-IGLOO2 (Flash – 65nm) from Microsemi.

The test setup with the three FPGA boards simultaneously positioned on the neutron beam spots

is shown in Figure 111.

Figure 111: Neutron test setup. The three FPGA boards are mounted on a plexiglass board and aligned
with the neutron beam spot. IGLOO2 board on the left, Spartan7 board in the middle and Artix7 on the

right.

117

• For both Xilinx FPGAs, the benchmark is extended with an additional benchmarking

structure: an FIR filter with the same parameters (16 bits width inputs and coefficients, 9

coefficients in transposed form and full precision) using the Area Optimized Multiplier

(AOM) presented in section 4.3.1.6. The AOM could not be implemented on the Flash based

device as its architecture use 4-inputs LUTs (AOM requires 6-inputs LUTs).

• Based on the results obtained in the first test campaign, the benchmark was simplified by

using only the implementation with a working frequency of 200MHz for all structures of the

benchmark.

• DSP based FIR filter is implemented in direct form instead of transposed form.

• The BRAM storing the input signal and output signal where fully replicated along with their

ECC decoders for each replica of the FIR filters under test. Indeed, the analysis of the

physical implementation of the previously used benchmarks revealed that by sharing the

BRAM for all filters, a great amount of routing resources was instantiated to propagate the

input signal across the chip that can lead to multiple filters affected by the same event.

• SEU detection reports sent by the SEM controller are correctly recorded.

4.5.2.2. RESULTS

During this campaign, the three FPGAs are irradiated for 67 hours with an average neutron flux

of 5.3 ∙ 106𝑐𝑚−2. 𝑠−1obtaining a total fluence of 1.3 ∙ 1012𝑐𝑚−2. 𝑠−1. Over the entire irradiation

period, a total of 4254 errors was observed, distributed between the different filter types and the

different FPGAs as shown in TABLE XI.

TABLE XI
NUMBER OF DETECTED EVENTS AMONG THE THREE TESTED FPGAS

 Filter
Type

Number of events

 Non-persistent Persistent Single Fluence (cm-2)

Spartan7

CSM 522 187 51 2.59E+11

SOM 410 295 44 5.44E+11

AOM 314 184 44 2.90E+11

DSP 86 55 64 1.28E+12

Artix7

CSM 478 196 50 2.70E+11

SOM 184 121 20 3.20E+11

AOM 339 160 34 2.79E+11

DSP 48 31 52 9.25E+11

Igloo2

CSM 0 0 35 3.47E+11

SOM 0 0 19 2.65E+11

DSP 0 0 231 8.94E+11

Based on the number of events recorded for each type of failure mechanism, the cross section of

the different benchmarking structures is computed for each FPGA family as shown in Figure 112.

The first result that stands out from Figure 112 is the sensitivity contrast between the different

FPGAs. The global sensitivities (considering all error types) of both SRAM devices (Artix7 and

Spartan7) are almost equivalent (Spartan7 ~9% higher than Artix7) while the sensitivity of the

flash FPGA (Igloo2) is one order of magnitude lower. This difference in sensitivity between the

118

two types of FPGA is explained by the absence of persistent and non-persistent errors on the Flash

technology, which also confirms the immunity of its configuration memory to atmospheric

neutrons.

Figure 112: Neutron cross section of FIR filter for each multiplier implementation type and for the three
tested FPGA families.

The comparison of sensitivity between the different filters must be put in perspective with their

resource utilization detailed in TABLE XII.

TABLE XII
RESOURCE UTILIZATION PER FIR FILTER

 Spartan7 and Artix7

LUT Flip-Flop CARRY4 Shift-register LUT

CSM 4734 1982 4 694

SOM 2607 3919 842 66

AOM 2355 4009 469 279

 Igloo2

 LUT Flip-Flop 1bit-CARRY

CSM 6569 6297 0

SOM 3183 4246 2669

First of all, as shown in Figure 112, the relative sensitivity between the different filter types is not

the same between SRAM-based FPGAs and the Flash-based FPGA. Indeed, the DSP filters are much

less sensitive than the fabric-based filters (CSM, SOM, AOM) on both SRAM devices while on the

Flash FPGA, the DSP filter is the most sensitive filter which even exceeds the sensitivity of the DSP

filters implemented on the two SRAM devices. This last result demonstrates that the reliability

oriented designing guidelines must be adapted to each device, reinforcing the importance of a

tailored benchmark for radiation qualification.

Secondly, regarding the sensitivity of the three fabric-based filters implemented on the SRAM-

based FPGAs, the CSM turn out to be the most sensitive filter. This increased sensitivity has been

discussed in the previous campaign and has been attributed to an increase number of LUTs and

119

extra-slice routing connections. However, the AOM filter appears to be more sensitive than the

SOM filter (+88%) while using fewer logical resources (LUT, flip-flops, CARRY4, SRL). This show

the complexity of modelling the susceptibility of circuits implemented on SRAM-based FPGAs and

that the number of used resources is not a sufficient parameter to estimate it. Indeed, the

functionality of the design itself can be modified (routing, LUT configuration) by the configuration

memory corruptions, the architecture of the circuit, the type of LUT configuration, and the

placement and routing parameters have then a major impact on radiation sensitivity. The increase

sensitivity of AOM over SOM while using fewer resources can be explained by further analyzing

their respective topologies (section 4.3.1). A first factor that explain this increased sensitivity is

the replication of input data nets: with the AOM multiplier, some of the sum bits and carry bits of

the partial products are computed by separated LUTs, the input signal bits are therefore

distributed to an increased number of LUTs thus increasing the number of used programmable

interconnection points (PIP). When analyzing the resource utilization, especially for LUTs, the size

of the LUTs that are mobilized (the number of inputs used) should be considered. Using an

additional input in a LUT actually double the number of configuration bits required to define its

functionality thus increasing its susceptibility to configuration memory corruptions. The detailed

LUT utilization analysis for SOM and AOM multiplier is detailed in Figure 113.

Figure 113: Comparison of LUT utilization per multiplier between SOM and AOM for different input sizes.

Figure 113 reveals that the partial product reduction tree used in AOM use fewer LUTs than SOM

but with an increased number of used inputs, thus contributing to an increased susceptibility.

Furthermore, the implementation of ternary adders on Xilinx FPGAs cannot simply use the

LUT/CARRY4 combination contained in a logic block. Indeed, the output from the LUTs must be

reused for the calculation of the higher order bit, forcing the use of extra-slice routing (see section

4.3.1.2). Since extra-slice routing resources are enabled by several PIPs, they bring an extra

sensitivity that could counteract the reduction of used resources over binary adders.

Additional observations can be made by comparing the resource utilization (TABLE XII) and the

filter cross section (Figure 113). The use of CARRY4 cells to propagate the carry bits appears to be

an efficient way to reduce the configuration memory related error as no configuration bits are

required to define their functionality (as opposed to extra-slice routing). In addition, the number

of single errors tends to show that the use of carry logic blocks does not significantly increase the

number of captured SETs.

120

From these results, some guidelines for the implementation of arithmetic operators can be

extracted. For SRAM FPGAs, the flexibility of the instantiated resources comes at the cost of an

increase in the susceptibility to SEUs in the configuration memory which are predominant in this

technology (91% of all events). The use of specialized blocks with a reduced flexibility is therefore

recommended, DSP blocks are thus advised when available and the use of structures employing

Carry Logic blocks should be favored over structures employing only LUTs.

On the contrary, for FPGAs with an immune configuration memory, irradiation tests are required

to determine the relative sensitivity of the different resources. In the specific case of the Igloo2

FPGA, fabric-based operators are less sensitive to SEUs than DSP blocks but the penalty in power

consumption and area may counterbalance this advantage.

On another note, the strong presence of persistent errors (~one-third of all failures as shown in

TABLE XI) questions the correction capacity of the SEM IP. The analysis of the reports sent by the

SEM controller during the irradiation provides an insight into these failure mechanisms and their

prevalence. Based on these reports, the number of events detected in the configuration memory

can be counted. For each event, the report indicates the position of the affected memory bit and

whether the bitflip was corrected or not. Based on the number of detected bitflips, the cross

section of the configuration memory for Spartan7 and Artix7 FPGAs can be calculated

(5.0∙10-15cm2/bit and 4.9∙10-15cm2/bit respectively) which is lower than the one measured at

LANSCE (7.0∙10-15cm2/bit) according to [61]. This discrepancy can be explained by the difference

between the neutron spectrum of both facilities as shown in [155].

By crossing the data extracted from the SEM controller reports with the data from the comparator

at the output of the filters, the assumption made during the first test campaign could be confirmed.

It clearly appears that each non-persistent error coincides with the detection and correction of a

bitflip in the configuration memory. The delay between the occurrence of the bitflip and its

correction can be calculated based on the number of clock cycles where the filter is reported as

being faulty. An average detection time of 2.7ms has been measured which matches the one

provided by the manufacturer (2.9ms) in [130].

Regarding the presence of persistent errors, the cross-referencing of data also reveals that each

persistent error recorded is preceded by the failure of the SEM controller itself or by the detection

of an uncorrectable error, forcing the mitigation system to leave its detection mode. These

observations confirm the assumption made on the failure mechanisms involved in this

experiment. According to the SEM IP documentation [130], when using the "enhanced mode" of

the controller as done in this experiment, the system is unable to correct the multiple non-

adjacent errors in the same memory frame. The probability of two particles interacting with two

bits of the same frame between two readbacks (4.6ms) being extremely low, the detected

uncorrectable errors must originate from Multiple Bit Upsets (MBU) or from particular

configuration bits whose corruption would be considered as uncorrectable. This aspect is further

studied through the fault injection campaign. Nevertheless, this tool remains a very effective

solution to avoid the accumulation of errors in the configuration memory as 98.4% of the events

could be corrected.

The main results from this campaign can be summarized by the following statements:

121

• Flash-based FPGAs are globally less sensitive that SRAM-based FPGAs thanks to the SEU

immunity of their configuration memory.

• The reliability-oriented design guidelines must be adapted to each device type.

• DSP blocks are more sensitive than fabric-based multipliers for Igloo2 FPGA.

For Xilinx FPGA:

• DSP blocks are far less sensitive than fabric-based multipliers.

• 91% of errors are due to configuration memory corruptions.

• The flexibility of a resource comes at the cost of an increased sensitivity.

• CARRY4 does not significantly impact the SET generation rate.

• The number of instantiated cells is not a reliable parameter to estimate the circuit

sensitivity.

• The size of used LUTs and the number of extra-slice connections have to be considered.

• Uncorrectable errors are caused by prior failures of the SEM controller or deactivation of

the associated scrubbing engine (probably due to MBU detection).

4.5.3. THIRD CAMPAIGN: FILTER’S STRUCTURAL PARAMETERS

This campaign is performed with a 180MeV proton beam at the PARTREC facility. The

benchmark is supplemented with new structures allowing to analyze the influence of different

structural parameters of the FIR filter over its radiation sensitivity. Namely, the use of flip-flop

control signals (reset and clock enable), of the number of pipeline stages inserted and of the shape

of the FIR filter. A Triple Module Redundancy (TMR) version of the filter is also added to the

benchmark to evaluate the effectiveness of this mitigation scheme. On the other hand, two types

of constant coefficient filters (non-reloadable) implementations are also evaluated to analyze how

the enabled optimizations can improve the radiation tolerance. Finally, a new implementation of

multiplier is integrated to the benchmark.

4.5.3.1. TEST SETUP

To evaluate the influence of different parameters on the sensitivity of the filter, the benchmark

is derived in 6 structures, each structure varying a single parameter.

• DIR: FIR filter in direct form with 9 SOM 16x16 fully pipelined multipliers: already tested

in previous experiments and used as a reference.

• TRA: FIR filter in transposed form with 9 SOM 16x16 fully pipelined multipliers. used to

compare direct and transposed FIR filter form.

• COM: FIR filter in direct form with 9 SOM 16x16 combinatorial multiplier (no pipeline

stages): use to analyze the effect of pipeline stages.

• RCE: FIR filter in direct form with 9 SOM 16x16 fully pipelined multipliers. Each flip-flop

is supplemented with asynchronous reset and clock enable signals: used to quantify the

influence on the filter sensitivity induced by the use of control signals.

• TMR: FIR filter in direct form with 9 SOM 16x16 fully pipelined multipliers. The filter is

implemented three times with physical separation, and majority voters are inserted on

the triplicated filter output: evaluate the hardening capacity of this block-TMR scheme.

• PAA: FIR filter in direct form with 9 Parandeh-Afshar ([143]) 16x16 fully pipelined

multipliers: another type of multiplier with different architectural parameters.

122

Two additional structures are used to compare different implementation of constant coefficients

FIR filters:

• CST: use a transposed form FIR filter by replacing SOM parallel multipliers by constant

multipliers benefiting from further optimizations as explained in 4.3.1.8.

• DAF: distributed arithmetic FIR filter (presented in 4.3.1.11) with 16bits data width and

6 coefficients.

The test campaign is performed on a much larger component, the Kintex7-325T (Xilinx 28nm)

embedding more than six times as many logic cells than previously tested FPGAs. Radiation testing

on components of this scale enables new test plan possibilities but also imposes additional

constraints. Instead of testing each test structure successively by reconfiguring the component

between each run, all test structures are implemented simultaneously on the same chip. The

entire duration of the campaign can thus be appreciated by executing a single continuous run. The

test setup can also be lightened by removing the connections required to reprogram the

component. However, implementing and testing multiple circuits on the same chip require

particular attention to the placement of these circuits. Ideally, each benchmarking structure

should be placed in an exclusive and physically delimited area of the chip (called PBlock for Xilinx

components). This constrained placement ensures that the sensitivity of each part is not

influenced by the other part of the circuit. In this experiment, each structure is replicated up to

four times on the chip. To ensure a good homogeneity of the physical implementation between

the replicas, the same PBlock size and structure is used for each of them. The physical layout of

the different resourced is shown in Figure 114.

Figure 114: Physical layout of the benchmarking replicas on the Kintex7-325T. Each replica is
implemented and self-contained in a dedicated PBlock.

To be noted that for the TMR structure, each block of the TMR scheme is implemented in a

separated sub-PBlock to minimize the number of single of points of failures.

123

The BIST structure and testing procedures used in previous experiment are reused identically. A

total of three DUTs programmed with the same design are simultaneously irradiated during the

experiment. When performing radiation experiments with protons, one must ensure that the

protons can reach the active zone of the DUT with sufficient energy after crossing the eventual

package and silicon layers. SRIM simulator [19] can be used to evaluate the penetration of proton

inside the different layers. The components used in this campaign are delided flip-chip

components. The active zone lies behind a 700𝜇m layer of silicon, requiring protons of at least

10MeV to reach the active zone. In the PARTREC facility, the maximum proton energy (180MeV)

is used. In the first instance, the flux of proton is tuned to maximize the event rate while limiting

the time spent reconfiguring the component when an uncorrectable error is detected. The best

compromise is reached with a flux of 5ꞏ106 s-1cm-2 corresponding to almost one event in the

configuration memory every second and a reconfiguration (uncorrectable error) every 15

seconds. A total fluence of 5.9ꞏ1011 cm-2 is reached considering all DUTs.

4.5.3.2. RESULTS

Now that the origin of persistent and non-persistent error has been identified, the detected

events are grouped considering events related to configuration memory upsets (persistent and

non-persistent errors) on one side and events related to flip-flops upset and SET capture on the

other side (single errors) as shown in TABLE XIII. As performed in previous experiment, the cross

section for each type of benchmarking structure is computed. These results are displayed on

Figure 115 and Figure 116 respectively.

TABLE XIII
NUMBER OF DETECTED EVENTS ACROSS THE DIFFERENT FILTER TYPES

 Number of events

 DIR TRA COM RCE TMR PAA DAF CST
Persistent & non-
persistent errors 1072 1572 846 762 77 2141 732 702

Single errors 65 105 32 29 1 71 30 27

Number of replicas 3 4 3 2 2 4 4 4

The first observation that can be made on Figure 115 and Figure 116 is that the proportion of

transient errors is as low as the one observed with neutron tests (between 1% and 7% depending

on the type of filter).

To investigate the influence of the different filter parameters under test, the cross section of each

filter is compared to the reference filter (DIR). By putting these results in perspective with the

resource utilization (detailed in TABLE XIV), an explanation will be proposed to justify one by one

the differences in sensitivity induced by each type of architectural modification. In a second step,

the analysis of filters with constant coefficients (DAF and CST) will be performed by comparing

them with each other.

124

Figure 115: Proton cross section of different FIR filter structures for persistent and non-persistent
errors (configuration memory upset related failures).

Figure 116: Proton cross section of different FIR filter structures for single errors (flip-flop upsets and
SET capture related failures).

TABLE XIV
RESOURCE UTILIZATION OF THE DIFFERENT FIR FILTERS

 DIR TRA COM RCE TMR PAA DAF CST

Flip-flop 3149 4175 522 3149 9447 2413 615 1155

LUT 2683 2648 2652 2676 8151 3813 759 739

CARRY4 705 760 705 705 2115 57 10 155

Filter form: the transposed form (TRA) is significantly more sensitive than the direct form (DIR)

(+10%). The main assumption is that this increased sensitivity can be attributed to the large

fanout nets used to propagate the input signal to each multiplier. High fanout nets require a lot of

PIPs while a large proportion of these PIPs, those located on the first stages of the distribution

125

tree, can alter the propagated values of several multipliers simultaneously, thus increasing the

actual probability of creating failures.

Number of pipeline stages: by using combinatorial multipliers (COM) a 20% reduction of the

sensitivity is granted over the fully pipelined version (DIR). This reduction is attributed to the

large reduction of flip-flop usage (-83%) and the configuration bits used to define their

functionality and those used by intra-slice routing multiplexers driving the LUT’s output to the

flip-flop inputs. It is worth mentioning that the operating frequency used in this experiment is

10MHz for all designs. The fully pipelined versions are obviously over-designed for this operating

frequency. However, the implementation of combinatorial 16 bits multipliers might be more

challenging for the routing tool, forcing a reduction of the net lengths, thus reducing the number

of instantiated PIPs. The sensitivity reduction is even higher when considering single errors

(50%) that can be directly correlated to the number of used flip-flops.

Usage of control signals: the usage of reset and clock enable signals (RCE) has a non-negligible

impact on the filter cross section (+7%). This sensitivity increase can be attributed to the PIPs

used to drive the control signal to each flip-flop. The usage of these signals also influences the

number of single errors (+20%) that can be attributed to the generation of SETs in the propagation

tree of these control signals.

Triplication: the block TMR scheme effectively grant a good reduction of the filter sensitivity (by

one order of magnitude). The sensitivity remains nonetheless significant, considering that the

number of resources is more than tripled to provide this protection. The physical separation

constrained between the structure replicas theoretically removes the presence of single points of

failure (configuration bits that can impact several versions of the TMR scheme). However, the

clock signals are driven by the same buffer and propagate to the flip-flops with routing trees

sharing a few PIPs. The resulting sensitivity of the triplicated structure can be partially attributed

to the clock routing network and to the majority voter. However, this majority voter handles three

32 bits output vectors and is implemented with no more than 12 LUTs and one CARRY4 cell,

suggesting that other sources of failure are involved. The output signal of the majority voter is

compared to the golden reference stored in a BRAM protected by ECC in compliance with the BIST

structure presented in section 4.4.2. This ECC decoder can be another source of reported failures.

Finally, the observed failures can also be attributed the presence of Multiple Bit Upset (MBU)

affecting simultaneously several configuration bits related to different filter replicas.

Multiplier architecture: the multiplier proposed by Parandeh-Afshar in [144] offers better

timing performances while reducing the number of instantiated flip-flops. However, for 16bits

multiplier, the number of instantiated LUTs is much higher than the SOM multiplier. This

increased LUT usage is particularly noticeable in the filter sensitivity (+50%). This increase

sensitivity can also be attributed to the usage of LUT with higher input counts as discussed in

section 4.5.2.2.

CST and DAF: Regarding the two constant coefficients filters (CST and DAF), the optimization

features enabled by constant multiplications on one side and the use of distributed arithmetic on

the other side provides a clear reduction of the radiation sensitivity (~50%). Both

implementations have a similar sensitivity while having very different structures. The sensitivity

of distributed arithmetic could be mainly attributed to a wide use of 6-inputs LUT to store the

126

precomputed combinations of coefficients while the one of constant multiplications can be

attributed to higher number of PIPs to route an increased number of connections.

The assumptions made on the predominant source of failures are further explored through fault

injection in section 4.6.3 and through detailed netlist analysis in section 5.4.2.

On the other hand, as performed in previous campaign, the bit cross section of the configuration

memory is extracted based on the bitflip detections reported by the SEM controller. Using the

timing and physical address of the error reports, the presence of MBUs can be identified. For each

MBU size, the proportion among all events are computed as shown in Figure 117.

Figure 117: Proportion of SBUs, DBUs and MBUs in the configuration memory of Kintex7 FPGA
irradiated with 180MeV protons.

This result reveals that the number of Double Bit Upsets is significant, representing 28% of the

total number of events. Only 6% of the total number of events are affecting more than two bits

simultaneously. Two types of bit cross section are then defined for the configuration memory. The

first one is computed by considering the total number of events, all error sizes included, divided

by the fluence and the number of configuration bit (BRAM bits removed) as shown in (15) . The

second one, weights each type of event by their respective size to account for the real number of

corrupted bits as shown in (16).

𝜎𝑏𝑖𝑡
𝑒𝑣𝑒𝑛𝑡 =

𝑁1𝐵𝑈 + 𝑁2𝐵𝑈 + 𝑁3𝐵𝑈+. . .

𝛷 × 𝑁𝐶𝑅𝐴𝑀 𝐵𝑖𝑡
= 4.1 ∙ 10−15 𝑐𝑚−2/𝑏𝑖𝑡 (15)

𝜎𝑏𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

=
𝟏 × 𝑁1𝐵𝑈 + 𝟐 × 𝑁2𝐵𝑈 + 𝟑 × 𝑁3𝐵𝑈+. . .

𝛷 × 𝑁𝐶𝑅𝐴𝑀 𝐵𝑖𝑡
= 5.7 ∙ 10−15 𝑐𝑚−2/𝑏𝑖𝑡 (16)

Both calculations are not formally correct, the first one assumes that each event is an SBU (while

only representing 66% of all events) and the second one considers MBUs as being equal to several

SBUs while they are not equivalent. Indeed, as opposed to multiple SBUs, MBUs affect several bits

that are necessarily around the same physical location. On the other hand, when considering

several SBUs, each SBU can be corrected before the next one appears, unlike MBUs that affect

several bits simultaneously and can create failures that would not occur if the bits were affected

independently. In addition, the MBU detection capability of the SEM controller has not yet been

127

validated by comparison with static testing. For these reasons, these two cross sections will be

used as lower and upper bounds respectively for the sensitivity calculations used by the fault

injection and detailed netlist analysis methods (chapter 5).

4.6. FAULT INJECTION

Fault injection is a well-known complementary methodology to characterize the reliability of

a circuit against soft errors. The concept of fault injection is to artificially reproduce the effect of a

soft error to analyze the behavior of the system in response to the perturbation without using

particle beam testing. In this section, different fault injection techniques are presented. A fault

injection procedure for Xilinx FPGAs using the SEM controller is then presented. The technique is

finally applied to the benchmark implemented during the second and third test campaigns and

compared to the experimental test results.

4.6.1. STATE OF THE ART METHODOLOGIES

One of the main objectives of fault injection methodologies is to identify and enumerate the

number of specific circuit locations where soft error can induce system failures, in other words,

which modifies the circuit outputs. When applied to FPGAs, different techniques can be used,

targeting different error mechanisms.

Laser testing [156] reproduces the charge deposition mechanism induced by high energy

particles by applying a focused laser beam directly on the FPGA chip where the circuit is

implemented. In this way, the different types of radiation induced failure mechanisms can be

reproduced (SEU on flip-flop, SET, SEU on configuration memory).

Simulation based fault injection [157] uses RTL simulation tools. The purpose is to force the

value of one of the logical nets of the design during the simulation to observe the response of the

system to the upset. This approach can be implemented with different techniques. In [158], a

technique base on HDL code modification introduces multiplexer structures called saboteurs on

the data paths selected for fault injection. These multiplexers can be activated to alter the net state

with different types of error model (bitflip, stuck-at-0, stuck-at-1). In [159], the fault injection

relies on the use of built-in simulator TCL commands to force the value of a given net. This

technique can be applied during simulation without HDL code modification. However, the

simulation time might be prohibitive when a large number of faults has to be injected. As these

techniques rely on behavioral simulation, the failure model of the specific FPGA architecture must

be properly assessed and artificially recreated. The lack of low-level schematics available to the

end user makes it difficult to reproduce the behavior of errors in the configuration memory. It

may also fail to identify complex faulty behaviors, especially when simulations are done at high

abstraction levels.

Emulation-based fault injection is achieved by artificially reproducing different types of errors

directly on the FPGA where the design is implemented. SEUs on the user flip-flops can be

reproduced with different techniques. Instrumentation-based approaches use extra logic (added

on the HDL code) in the flip-flop input path. This extra logic can then be activated during run-time

for bitflip insertion. Reconfiguration-based approach [148], [160], applicable to SRAM-based

FPGAs, use the reconfiguration capabilities of the component to modify the content of the flip-flop

while the clock is stopped. The injection of errors on specific registers is enabled thanks to a map

128

provided by the EDA tools [161] linking the different flip-flops of the design to their configuration

memory address. This injection process can be accelerated by using the partial reconfiguration

capabilities of the component as demonstrated in [162]. This reconfiguration approach can be

extended to every bit of the configuration memory. However, without a deep knowledge of the

bitstream composition, the function of the bits and their position on the FPGA fabric cannot be

determined. The faults are therefore “blindly” injected. The baseline concept is to inject a fault on

each of the configuration bits and count the number of bits that alter the operation of the system.

The size of the configuration memory of the largest FPGAs can reach several hundreds of million

bits. The duration of the campaign can therefore be excessively long. To reduce this duration, the

list of faults to be injected can be reduced. For Xilinx FPGAs, the EDA tool can provide a file

indicating the position of all configuration bits called "essential". This terminology refers to all the

configuration bits that can potentially affect the architecture of the implemented circuit. Among

these bits, the set of bits that actually create a failure by impacting the output signals are defined

as “critical”. To reduce the duration of the campaign, the fault list can be restricted to the essential

bit list. It is then about identifying the proportion of critical bits in this set. An exhaustive injection

is not always required to determine this proportion, by injecting only a statistically significant

number of faults, the campaign length can be further reduced. On the other hand, the injection

time per fault is a crucial point for the duration of the campaign. The type of configuration

interface used to inject errors (JTAG, SelectMAP, ICAP) and the error detection technique have a

major impact on the fault injection time. A fast error detection approach, proposed in [148], [160],

relies on the use of a dedicated hardware platform using two FPGAs with the same configuration,

one where the fault is injected, the other one is used as a golden reference to detect faults by

comparing the outputs of the two FPGAs. However, its use relies on a custom PCB which limits its

extension to commercial development boards.

In this study, an emulation-based fault injection campaign focusing on the effects on configuration

memory is presented and applied to Xilinx FPGAs. Using an approach similar to the one proposed

in [163], faults are injected via the Internal Configuration Access Port (ICAP) using the SEM

controllers. The BIST structure used during the neutron test campaigns is reused to detect the

errors. This approach, fast and easy to implement, can use exactly the same configurations and

test setups as the one used for the SEE tests.

4.6.2. FAULT INJECTION PROCEDURE

The SEM controller provides a simple way to create and correct bitflip in the configuration

memory through its serial interface. For error injection a specific command must be sent

providing the memory location of the bit to be flipped as shown in Figure 118.

Figure 118: SEM controller error injection command. The memory location of the bit to be flipped is
defines by its frame address (LA), its word address (WD) and its bit address (BT).

129

The Xilinx EDA tools (Vivado) can provide the position of all the essential bits of the implemented

design by using the following commands in the constraints file.

set_property BITSTREAM.SEU.ESSENTIALBITS yes [current_design]

This property will induce the creation of the EBD file at bitstream generation step. This EBD file is

an ASCII text file that has an informational header, followed by a number of lines, where each line

has 32 characters that are either 0 (non-essential) or 1 (essential). Each line represents a word of

the configuration memory with LSB on the right. In the 7 series FPGA family, each frame consists

of 101 words. The first 101 line in the EBD description correspond to a dummy frame that should

not be accounted to compute the frame address. For each essential bit in this EBD file, based on

the position in the file (line and character position in the line), the corresponding SEM injection

command can be determined through equations (17)(18)(19).

𝑊𝐷 = 𝑙𝑖𝑛𝑒 mod 101

(17)

𝐿𝐴 =
𝑙𝑖𝑛𝑒 − WD

101
− 1

(18)

𝐵𝑇 = 31 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(19)

A python script is used to read the EBD file and generate the list of injection commands in

hexadecimal format for each essential bit. This list is randomly shuffled to ensure the homogeneity

of the bit positions when the fault injection is not exhaustive. When performing statistical

injections, only a subset of the essential bits is injected. Given NINJ the number of bits injected, NESS

the total number of essential bits and NCRIT the number of observed critical bits among NINJ, the

total number of critical bits NCRIT
TOTAL can be extrapolated with equation (20).

NCRIT
TOTAL =

𝑁𝐶𝑅𝐼𝑇

𝑁𝐼𝑁𝐽
× 𝑁𝐸𝑆𝑆

(20)

According to [164], to evaluate the proportion of critical bits among essential bit through

statistical injections, the total number of bits NINJ to be injected is defined by equation (21).

𝑁𝐼𝑁𝐽 =
𝑁𝐸𝑆𝑆

1 + 𝑒² ×
𝑁𝐸𝑆𝑆 − 1

𝑡² × 𝑝 × (1 − 𝑝)

(21)

e: error margin on the extrapolated proportion

t: confidence level factor with respect to normal distribution (t=1.96 and t=2.58 for a confidence

level of 95% and 99% respectively). This level is the probability that the exact value is actually

within the error interval.

p: the estimated proportion of critical bits

The fault injection campaign is performed with the same test setup as for the neutron tests. A

specific python script is developed to automate the fault injection, detection, correction and

classification of errors according to the procedure described in Figure 119.

130

Figure 119: Automated fault injection procedure. The different steps of the procedure are described on
the left part and the corresponding SEM logs are detailed on the right side.

Following this procedure, the accumulation of faults is prevented in order to test the criticality of

each bit independently. For each injected fault, the error reports from the BIST structure must be

acquired and one must ensure that no error is reported any longer after the correction of the fault

before proceeding to the next injection. The latency between injection and error correction can be

up to 10ms for the FPGA used. The error reporter being based on an error accumulation for half a

second, each fault can potentially induce an error accumulation on two successive counts, thus

limiting the minimum latency for each injection at approximately 1 sec. This latency could have

been greatly reduced by changing the formatting of the error reports to send only one short report

immediately after error detection.

4.6.3. EXPERIMENTAL RESULTS

4.6.3.1. STATISTICAL ANALYSIS

To assess the statistical influence of the number of injected faults on the critical bit percentage,

an exhaustive fault injection is performed on a simple design containing a single FIR filter and an

improved error formatting to speed up the fault injection process. The number of essential bits

for this design is 467,526. The ratio of critical bits is computed while using different batch sizes of

randomly selected bits among the total number of injected faults. For each batch, the critical bit

percentage is compared to the one obtained with exhaustive fault injection (24%). This operation

is repeated one hundred times. For each batch size, the mean relative error on critical bit

proportion estimation and associated standard deviation are computed. The errors on critical bit

percentage estimation are compared to the theoretical error value computed by reversing

equation (21) as shown in equation (22) with p=0.24; t=2.58 (99% confidence level) and

NESS=467,526. Results are shown in Figure 120.

131

𝑒 = 𝑡 × √
𝑝 × (1 − 𝑝)

𝑛
×

𝑁𝐸𝑆𝑆 − 𝑁𝐼𝑁𝐽

𝑁𝐸𝑆𝑆 − 1
 (22)

Figure 120: Absolute relative error of critical bit proportion estimation. Comparing theoretical
error value with the statistical error obtained with 100 batches of randomly selected bits for each
batch size. Values in dark blue represent the mean error between the 100 batches and the blue
area represents the mean plus three standard deviation (equivalent to 99,73% of values for
normal distribution) to represent the worst-case scenario.

This statistical analysis shows that the error made on critical bit proportion estimation quickly

decreases under 1% after 25,000 faults injected (5% of essential bits) in average but the worst-

case scenario requires up to 140,000 faults injected (30%) to reach the same precision.

4.6.3.2. APPLICATION TO THE SECOND TEST CAMPAIGN BENCHMARK

The three designs used during the second SEE test campaign contain a maximum of 3 million

essential bits. Each design contains 3 fabric-based filters (CSM, SOM or AOM) and 8 DSP-based

filters. According to the equation (21), the minimum number of faults to inject so that the true

critical bits proportion is between ±1% around the estimated proportion with a confidence

interval of 99% is 16,500 considering the worst-case proportion (50%). To ensure that the

estimation error can be neglected, this value was multiplied by 10, for a total of 165,000 faults

injected for each design, equivalent to 45 hours of fault injection per design.

Using the Spartan7 cross section per bit measured in section 4.5.2.2 (𝜎𝑏𝑖𝑡 = 4.97 ∙ 10−15 cm²/bit),

the cross section of each filter is calculated by multiplying the extrapolated number of critical bits

to the bit cross section. In Figure 121, these results are compared to those from the irradiation

campaign considering only the configuration memory corruption event (persistent and non-

persistent).

132

Figure 121: Comparison of filters cross sections between the radiation tests (single error excluded)
and the fault injection campaign (Spartan7).

As shown in this figure, the results from the two approaches are in very good agreement: for each

multiplier implementation, the cross section computed from fault injection results fall inside the

error margins of the radiation test results. This observation confirms the origin of the persistent

and non-persistent errors observed during the campaign. It also shows that the extraction of the

bit cross section through the SEM controller reports can be reused along with a fault injection

campaign to evaluate the susceptibility of another design without the need for further irradiation

experiments. However, the fault injection approach does not assess the single errors due to SEUs

in flip-flop or SETs in the combinatorial logic (<10% of errors) nor certain categories of SEFIs.

Concerning the uncorrectable errors, a number of bits were detected as uncorrectable after their

injection or caused the failure of the SEM IP. As realized in section 4.5.2.2, the cross section

corresponding to all these bits has been calculated: σSEM,FI = 5∙10−11cm². This cross section

represents only 17% of the cross section evaluated during the irradiation campaign. This result

suggests that a large part of the uncorrectable errors observed during the irradiation campaign

are due to MBUs or configuration bits that are not accessible for error injection by the SEM IP

(internal device control registers and state elements). In the other hand, a fault injection was

performed on the non-essential bits to verify that none of these bits could generate uncorrectable

errors, this was confirmed: over 100 thousand bits randomly injected in non-essential bits, none

had any effect.

4.6.3.3. APPLICATION TO THE THIRD TEST CAMPAIGN

The fault injection procedure is applied to design used during the third SEE test campaign. This

design contains more than 14.5 billion of essential bits among which 2.4 billion of faults have been

injected over a period of 2 weeks. For each type of filter, the number of detected critical bits is

multiplied to the 180MeV proton bit cross section considering the lower and upper bounds

defined in section 4.5.3.2 (σMIN = 4.1ꞏ10-15cm-2/bit and σMAX =5.7ꞏ10-15cm-2/bit). The resulting cross

sections are compared to the one obtained during the SEE test campaign considering only

configuration memory related failure as shown in Figure 122.

133

Figure 122: Comparison of the filter cross sections between the proton experiment and the fault injection
considering lower and upper bound of the bit CRAM bit cross section (Kintex7).

As shown in this figure, the results of both approaches are in good agreement, for all filter

implementations, the radiation test result are contained between the lower and upper bound of

the fault injection estimation, excepted for the TMR version. This result suggests that the TMR

related failures observed during the proton experiment are mainly related to multiple errors in

the configuration memory. This assumption is further investigated by checking the SEM report

logs in instants when errors on the TMR circuit are reported. This analysis revealed that the vast

majority of TMR circuit failures occurred because of MBUs (mainly double bit upsets) or when the

SEM controller is out of service. This can happen either because of a previous detection of an

uncorrectable error or because the controller is being initialized. Indeed, when the component is

power cycled, the bitstream is loaded in less than 2 secs but the SEM controller is operational only

8sec later. During these times when the scrubbing system is not operational, errors can

accumulate in the configuration memory and alter different replicas of the TMR scheme. This

phenomenon is then due to the high fluxes used during accelerated radiations experiment. It

should not be considered for the real operation of the component (when the radiation flux is much

lower) if a scrubbing system preventing the accumulation of faults is correctly implemented.

However, TMR failures related to MBU are a real concern for the reliability of systems protected

by this type of hardening technique. Indeed, the physical separation of replicas is not entirely

sufficient to prevent MBU from defeating the TMR protection. A study of the spatial distribution

of the configuration memory bits could allow to define implementation rules to avoid that

configuration bits linked to two replicas of the same circuit are not positioned too close to each

other.

4.7. CONCLUSION

In this chapter, the state-of-the-art of SEE test methodologies for FPGAs has been established.

Given the limitations of primitive level testing techniques and application-level testing techniques,

the benchmark approach appears to be an efficient technique to reproduce the diversity and

complexity of interactions found in a real circuit while providing good visibility on the resource

sensitivity and the predominant failure mechanisms. Another key point of the benchmarking

134

approach lies in its ability to be used to compare the radiation sensitivity of different components,

to identify for their main vulnerabilities and to provide recommendation regarding the mitigation

techniques to be applied. In this chapter, a new benchmark specific to radiation testing has been

developed based on parallel multipliers. By proposing several types of implementation of the

same arithmetic function, these test structures allow to test circuits with a large architectural

diversity and to evaluate the influence of different parameters on the SEE sensitivity: the number

and type of instantiated resources, the number and type of connections, etc. To effectively test

these arithmetic operators while limiting the number of false error detections, these multipliers

have been grouped together in the form of a FIR filter, limiting the number of signals to be

monitored. The detection is realized thanks to the development of a dedicated BIST architecture

which allows to inject test patterns into the structure and to monitor the output signals internally

before transmitting the detected errors to an external system. This BIST architecture can be used

without constraints on the external interfaces available on the PCB used during the tests and on

the data exchanged with external monitoring systems. This approach has been tested on three

experimental campaigns under neutron beam and proton beam and has been confronted with

fault injection experiments.

Results have shown the ability of the proposed approach to address the different requirements of

radiation testing of FPGAs. The diversity of benchmarks regarding resource utilization and circuit

topology allows to assess the sensitivity of the basic elements composing the FPGA fabric while

providing useful guidelines for the reliability of computationally intensive designs. The test results

provided a clear characterization of failure and recovery mechanisms on SRAM-based FPGAs

equipped with an internal scrubbing system. The use of this scrubbing system also offered an

efficient way to estimate the cross section of the configuration memory bits that can be used

without interruption of the circuit operation, unlike other methods based on external readback of

the configuration memory. This scrubbing system can also be used as a fault injection system

based on error emulation in the configuration memory. This fault injection process allows to

determine the number of critical bits for a given circuit. The cross section from radiation tests can

be then be reused jointly with a fault injection campaign to estimate the radiation sensitivity of

other designs without further radiation tests. The fault injection campaign based on the use of the

SEM controller also allowed to confirm the experimental results and to explain more precisely the

origin of observed failure mechanisms. Beyond this feature, experimental results have confirmed

the SEM IP controller as a convenient and a very efficient way to avoid the accumulation of errors

in the configuration memory as 98.4% of the errors are corrected. Nevertheless, uncorrectable

errors can compromise this mitigation system. Specific actions will have to be taken to manage

this type of events (reconfiguration, external scrubbing, etc.). The comparative results of the

different benchmarking structures and the different components have highlighted some FPGA

specific design rules encouraging the use of the least flexible logic resources (DSP and Carry logic)

for configuration sensitive FPGAs and to avoid the use of ternary adders in partial product

reduction trees. Finally, the benchmark has shown that for Flash-based FPGAs, even if the

sensitivity to single errors is of the same order of magnitude as SRAM based FPGAs, the immunity

of the configuration memory to SEUs makes them much more tolerant to SEEs except for DSP

based circuits.

The different test campaigns performed in this study confirmed the predominance of the effects

of configuration memory corruption on the reliability of systems based on Xilinx SRAM FPGAs.

135

Due to the complexity of the error model induced by the architectural modifications of the circuit

when the configuration memory is impacted, fault injection appears to be an essential and

complementary tool to extrapolate the results of SEE tests for the reliability assessment of other

circuits. However, emulation-based fault injection has some limitations. Due to the lack of

information on the composition of the bitstream and due to the limited internal visibility of the

circuit, the detailed processes linking the CRAM corruptions to the failure cannot be precisely

evaluated. To understand these processes more precisely, it may be interesting to identify for each

configuration bit, its position in the FPGA fabric, the type of resources impacted, the conditions of

the fault activation and their propagation in the rest of the circuit. In the next chapter, a new

analytical approach is developed to model and analyze these processes. By analyzing the physical

netlist of the implemented circuit, this approach can identify the different configuration bits that

can affect the behavior of the circuit and for each of these bits, to evaluate its criticality by

identifying the conditions of fault activation and propagation.

136

5. SEE SUSCEPTIBILITY EVALUATION TOOL

In this chapter, a new software, based on an analytical approach is proposed to estimate the

impact of SEUs in the configuration memory on the reliability of circuits implemented on Xilinx 7

series FPGAs. This approach is based on the identification of the configuration bits likely to modify

the topology of the circuit (the sensitive bits). The criticality of each sensitive bit is then evaluated

by determining the conditions of the fault activation and propagation. Activation conditions refer

to the conditions applied to the input signals of the affected resource that reveal the fault through

an alteration of its output value. As for propagation conditions, they refer to the conditions,

applied to the input signals of the different logic gates crossed to reach the system’s outputs,

enabling the propagation of the error over the logic gate (not logically masked). These conditions

are confronted with the actual values of the design signals, extracted from behavioral simulation,

to determine if the fault is critical (propagated to the outputs) or transparent (logically masked).

As a result, this approach allows both to identify the number of critical bits for any circuit but also

to identify the predominant sources of failures and the sensitive points of the design. This tool can

then be used to assess the reliability of a design (its cross section) by multiplying the number of

critical bits to the bit cross section (as performed with fault injection) and to evaluate the

effectiveness of hardening techniques based on error masking.

One of the contributions of this study is to establish a complete CRAM related failure model of the

7 series FPGA architecture. This failure model has been established and detailed thanks to reverse

engineering results of the bitstream composition realized within the framework of the Project X-

Ray [165] as well as to the use of localized fault injection. Localized fault injection refers to

emulation-based fault injection targeting specific configuration bits of known functionality

(thanks to decoded bitstream information). The other major contribution of this this work is the

integration of the circuit's workload in the evaluation of the criticality of the bits. The circuit’s

workload refers to the set of input signals injected into the circuit in real conditions. Based on

behavioral simulation and user-defined testbenches, the state of each net of the circuit and their

evolution are extracted and integrated in the analysis to determine if the activation and

propagation conditions are respected. Given the increasing complexity and size of circuits

implemented on FPGAs, reliability analysis must rely on software tools to automate the netlist

parsing, the analysis of the circuit and the subsequent reliability calculations. The approach

presented in this study is based on the RAPIDWRIGHT Application Programming Interface (API)

[166], an open-source platform developed by the Xilinx Research Labs. The workflow of this

software is described in Figure 123.

Firstly, the state-of-the-art bitstream reverse engineering techniques and SEE susceptibility

analysis tools are presented as well as Computed Aided Design (CAD) tools and APIs. Then, the

methodology used to determine the failure model based on the results of bitstream reverse

engineering and those from localized fault injection are presented while detailing the established

failure model for each resource type. Then the structure of the developed software and the

algorithms used to browse the circuit netlist and extract the critical bits are presented. Finally, the

efficiency of the methodology is evaluated by comparing its results with those of SEEs testing and

fault injection campaigns presented in chapter 4.

137

Figure 123: Workflow of the susceptibility analysis software. The circuit description files and its
workload are extracted from the Xilinx EDA tool (Vivado) and imported in the software. The susceptibility
analysis is based on a failure model defined thanks to the decoded bitstream database from [165] and
thanks to localized fault injection. Based on this failure model, the software (that use the RAPIDWRIGHT API
[166]), navigate through the circuit netlist and extract the set of critical bits of the design.

5.1. STATE OF THE ART SEE SUSCEPTIBILITY PREDICTION TOOLS

5.1.1. BITSTREAM REVERSE ENGINEERING

The knowledge of the bitstream composition is a key point to understand how the corruption

of the configuration memory can alter the topology of any implemented circuit. For confidentiality

and security reasons, the composition of the bitstream is not shared with the end user, nor is the

detailed composition of the various primitives (transistor-level schematics, layout, etc.). The in-

depth study of CRAM related failures must therefore rely on reverse engineering techniques to

decode the bitstream. This involves determining the role of each of the configuration bits: the type

of resource concerned, their position in the FPGA fabric and their contribution to the definition of

the resource's functionality. Each FPGA having its own configuration memory architecture, this

reverse engineering process must be renewed for each FPGA. However, FPGAs of the same family

share a common logic block structure. Even if the number of logic blocks and their arrangement

within the fabric differ, reverse engineering results for one device of the family can provide insight

into how the different resources are configured. The establishment of a valid failure model is thus

enabled, and it can be applied to all other devices of the family. However, for non-decoded devices,

the exact memory address of a particular configuration point cannot be identified.

All bitstream decoding techniques [165], [167]–[173] are based on the same principle. A set of

simple designs are generated by varying different parameters such as the type of resources

instantiated, the way they are configured, their position in the FPGA fabric, the routing points

utilized, etc. The bitstream of each design is generated and the resulting binary files are compared

to make the links between the resources present or absent and the bits activated in the bitstream.

Assuming that the configuration data layout is highly regular, in accordance with the regular

structure of the fabric (the relationship between the configuration bits and corresponding

hardware resource is coherent across the different logic blocks.) the information gathered from

different sites can be cross-correlated and the results obtained can be extrapolated to rest of the

fabric.

138

The detailed algorithms used to identify the relationship between the configuration bits and the

corresponding hardware functionality are out of the scope of this study. Nevertheless, their basic

working principle can be briefly illustrated by taking the example of LUT content identification

[172]. A set of simple design integrating one LUT is generated while using a different LUT truth

table for each design. The bitstreams are generated, and the bits that differs across the different

design are identified. The relationship between LUT content and bitstream be established by

comparing the LUT content patterns and the values of these configuration bits.

Different bitstream decoding algorithms have been proposed in the literature, targeting different

FPGA families. In this study, the failure model has been established thanks to the results from

PROJECT X-RAY [165] focused on Xilinx 7 Series FPGAs.

At a higher level of granularity, different software tools have been developed to facilitate the

manipulation of the bitstream content such as JBITS [174], BITMAN[175], COMET [176] and PYXEL

[177]. These tools rely on a partial knowledge of the bitstream but allow to establish the

relationship between the physical blocks of the FPGA fabric and the associated memory areas.

These tools not only contribute to the bitstream decoding progress but also allow to inject faults

by targeting some physical areas of the component or even to modify the content of the LUTs or

the memory blocks without repeating the whole synthesis and routing process.

5.1.2. VULNERABILITY ANALYSIS

To build an efficient SEE susceptibility prediction tool, the vulnerability model of the studied

FPGA must be clearly identified. This involves analyzing the type of architectural modification that

can be caused by an error on each type of configuration bit. Some configuration bits, for example

the LUTs contents, have a relatively obvious functionality whose effect on the circuit can be

deduced simply from the bitstream decoding and the manufacturer's documentation. Others,

however, may exhibit behavior when corrupted which is much more difficult to predict, especially

those related to routing resources.

Different approaches can be used to study the architectural modification induced by CRAM

corruption. In [178], a combination of radiation testing and simulation-based fault injection are

proposed. During the radiation test, the implemented structure is continuously monitored. When

a permanent error is detected, the configuration memory is readback to identify the position of

the corrupted bits. For each recorded SEU, the bitflip is reproduced by injecting a fault in the

Native Circuit Description file (NCD). With the component used in this study (Virtex XCV300), a

tool was provided to convert the NCD file into a behavioral description of the circuit. The

erroneous circuit could then be simulated to evaluate the effect of the bitflip on the circuit

behavior. Modern FPGAs can no longer rely on this type of bitstream to HDL converters and other

approaches must be considered. In [154], the E²STAR tool, an extended version of STAR [179], is

used to identify the electrical effects of PIP’s configuration bit corruption. Emulation-based Fault

Injection (FI) is performed targeting specific PIPs instantiated in the design (localized FI) and the

corresponding outputs are monitored. Local faults are then simulated in a behavioral model of the

same application and the simulated outputs are compared to the one extracted from emulation to

identify the logical behavior of the routing faults. Similarly, in [177], the PyXEL tool is used to

identify the electrical effect of PIP open faults (the PIP is disabled) and conflict/bridge faults (a

PIP is enabled creating a new connection between two distinct nodes). Conflict faults effects were

139

identified by using a design with two cascading 8-bit registers driven by a UART receiver and

feeding a UART transmitter. The first two bits signal between the cascaded registers are routed

through a target switch matrix using two specific PIPs. A conflict fault is emulated through

localized fault injection by enabling a PIP that connects the two nets. By injecting different

stimulus and monitoring the output signal through UART, the electrical behavior of the conflict

fault could be identified.

An approach similar to the one proposed in [177] will be used in this study with the objective of

establishing a more comprehensive model of the PIPs.

5.1.3. SEE SUSCEPTIBILITY PREDICTION TOOLS

Once the failure model is clearly established, the challenge of these prediction tools is to

identify, for a given circuit, all the faults that can alter its functionality. Several approaches are

proposed in the literature [167], [179]–[184].

The most straightforward approach, as proposed in [167] and [184], is to simply consider as

critical, any configuration bit that either enables a PIP used by one of the circuit’s net, or enables

a PIP creating a bridge between two existing nets or defines the content of LUTs instantiated in

the circuit. However, this approach does not take into account the fault activation and propagation

which can mask a large proportion of errors. It can therefore suffer from a strong overestimation

of the number of critical bits, especially for circuits hardened by TMR-type logic masking

techniques.

STAR [179] and VERI-PLACE [181] are tools aimed to assess the impact of SEU faults in configuration

memory using a static analysis with an emphasis on TMR protected circuits. The algorithm uses

the circuit and layout description files of the mapped design and translates it into a graph-based

representation. The vertices of this graph representation correspond to logic blocks and

input/output ports of switchboxes while the edges correspond to wires and PIPs. The graph is

then colored with a different color for each TMR partition and for majority voters. All possible

SEUs affecting the graph’s vertices (logic resources) are propagated to the circuit’s outputs

vertices. If the propagation tree affects more than one graph coloring, the fault is considered as a

potential violation of the TMR scheme. By exploiting the relationship between configuration-

memory’s bits controlling the routing resources and the routing-graph’s edges, a new routing

graph is computed for each possible SEU affecting routing resources. A propagation tree is

computed for each vertex of the new graph to check if two partitions of the TMR schema are

somehow included in a common propagation tree. These tools have been validated experimentally

as an efficient way to identify single points of failures in a TMR hardened circuit. The VERI-PLACE

tool, developed by the same authors, is also supplemented with additional features by analyzing

the effect of SEU accumulation in the CRAM. The tool performs a similar topological analysis

considering all the possible configuration memory modification with a given number of bit flips

accumulated. This procedure can be repeated with a large number of different bitflips

combination. The error rate for a particular number of accumulated bitflips can thus be computed

by dividing the number of errors (according to the topological analysis) by the number of

accumulations performed. By repeating this error rate estimation with different number of bitflips

accumulation, an optimal scrubbing rate can be defined. However, to the best of the writer’s

understanding, beside the TMR related considerations, no error masking mechanism is taken into

140

account to ensure that the SEU-induced topological modification actually results in alteration of

the output signals. Without these considerations, the number of critical bits can commonly be

overestimated. Furthermore, the effectiveness of mitigation techniques that were not specifically

addressed in the analysis cannot be evaluated.

To take into account the logical masking in the evaluation of the criticality of bits, a statistical

approach is proposed in [183], [185], [186] based on error propagation probabilities. For each

node in the design, the signal probability SP is computed using the synthesized netlist. The signal

probability is defined as the probability that this particular net is at ‘1’ state. By considering that

all primary inputs have an equal probability of being ‘1’ or ‘0’ (SP=0.5), the signal probabilities can

be propagated to internal nets using the propagation probabilities of the crossed logic gates. For

example, the output of an AND gate is ‘1’ only when both inputs are ‘1’ simultaneously. Therefore,

the output of an AND gate with two inputs with a signal probability of 0.5 have a signal probability

of 0.25 (0.5×0.5). The signal probability is thus computed for every node in the design. Each node

in the circuit is then weighted by a failure probability based on the number of configuration bits

controlling that node (e.g. number of PIPs likely to create an opening or short fault). Similarly, the

failure probability of LUT outputs is computed as the sum of each LUT content configuration bits

error rate weighed by its activation probability (based on input signal probabilities). The

structural paths from each error site to all reachable outputs are then extracted and the associated

propagation probabilities are computed. These propagation probabilities used the signal

probability of the inputs of every crossed logic gate in the structural path to statistically asses the

probability that the error generated in this particular node reach one of the primary outputs. The

global system failure rate is finally calculated by integrating the failure probabilities of each node

weighted by the associated error propagation probabilities. This technique could be effective in

estimating an average error rate without considering a specific workload of the circuit (set of

input vectors used). However, beyond the fact that this technique has not yet been extended to

more recent FPGAs, a more accurate estimation of the reliability of the circuit under real operating

conditions could be obtained by considering user-defined usage scenarios. This would allow to

check if a failure on a particular node in the circuit actually (not statistically) propagates to one of

the outputs for this particular usage scenario. Indeed, the proportion of topological modifications

of the circuit that actually cause an alteration of the output signals is very dependent on the

circuit’s workload.

5.1.4. CAD TOOLS AND APIS FOR FINE-GRAINED CIRCUIT MANIPULATION AND ANALYSIS

The analytical approach developed in this study would never have been possible without CAD

tools to parse and manipulate the netlist files generated by the design software (Vivado for Xilinx

FPGAs). Different tools have been developed in this sense [166], [187]–[190], targeting different

FPGA families and different functionalities. The most comprehensive for Xilinx new generation

FPGAs (the one used in this study) is called RAPIDWRIGHT [166]. It is a Java API developed by Xilinx

Research Labs that enables logical and physical netlist manipulation. The checkpoints files

generated by Vivado can be directly parsed using built in functions of the API. Java being an object-

oriented programming language, all the elements that compose the FPGA fabric and the different

instances of elements used by the imported design, both at the logic and physical level, are

represented by objects using a terminology and a hierarchical representation similar to the one

used by Vivado [191]. This API offers many features for modifying imported designs such as

141

automatic routing tools, possibilities to modify user data as well as features for relocating partial

bitstreams to other locations. The terminology and structure of this API is be briefly presented

here, focusing on 7 series FPGA architecture and the classes used to develop the proposed

analytical approach.

The RAPIDWRIGHT API is based on three main packages of cross-connected objects. The Device

package contains all the classes to represent the hardware construct of the FPGA fabric at different

level of hierarchy as shown in Figure 124. Among the class used, the Device class itself is the

higher-level representation that contains all the hardware information of a particular FPGA chip.

Each device is made of a grid of different tiles which can be composed either of two BRAM, two

DSP blocks, two regular sites or a switchbox. A site is a collection of Basic Element of Logic

(BEL). A regular site directly corresponds to a slice (4 LUTs, 1 CARRY4, 8 flip-flops, 3 logic

multiplexers). The BEL is the lowest level description of the resources (primitives) of the FPGA.

This class is used to represent logic elements (LUT, CARRY, multiplexers, flip-flops, buffers, IO,

DSP, BRAM etc.), routing elements (static intra-site multiplexers) and sitePorts. The routing

structure is described with Wire, SiteWire, Node, and PIP objects as well as SitePin and

BelPin objects as shown in Figure 125.

Figure 124: Hierarchical representation of the Xilinx FPGA Fabric, from [192]

The EDIF package contains all the information related to the logical netlist of the circuit. Every

logic element and hierarchical modules are represented by cells through the EDIFCell class. The

cell input and output ports are represented by the EDIFPort class while the net used to connect

these ports together are represented by EDIFNet. The Design package is used to describe how

the logical netlist maps to the physical device netlist. The Net class is the physical representation

of EDIFNet from which the list of Wires, Nodes, Pips or SitePin can be extracted. The Cell

class links the logical EDIFCell to their physical representation (BEL). Additional information on

the Xilinx FPGA terminology and the RAPIDWRIGHT hierarchical organization can be found at [191],

[192].

142

Figure 125: Routing architecture and terminology. Wires are portion of metallic tracks. Nodes are
collections of wires that are electrically connected together. PIPs are programmable routing segments
contained in switchboxes, SitePin represent the interface pin between a siteWire and an extra-slice Wire
and BELPin represent the physical pin of a BEL. From [192].

A summary of all the previously mentioned tools for bitstream decoding, bitstream manipulation,

vulnerability analysis and SEE susceptibility estimation as well as the CAD tools and APIs for low-

level manipulation of netlist is shown in Figure 126.

Figure 126: Review of the various third-party tools for bitstream decoding or manipulation, vulnerability
analysis and software error susceptibility estimation as well as CAD tools and APIs for fine-grained circuit
manipulation and analysis. These tools are categorized according to the FPGA architecture on which they
have been evaluated (here only on Xilinx FPGAs) but most of these methods can be extended to other FPGA
architectures. References: (1)→[187]; (2)→[188]; (3)→[189]; (4)→[190]; (5)→[166]; (6)→[179], [193];
(7)→[181]; (8)→[167]; (9)→[182], [185], [186]; (10)→[184]; (11)→[178]; (12)→[154]; (13)→[177];
(14)→[174]; (15)→[175]; (16)→[173]; (17)→[169]; (18)→[176]; (19)→[168]; (20)→[171]; (21)→[165];
(22)→ [170]; (23)→[172].

143

5.2. FAILURE MODEL ESTABLISHMENT

Failure models related to configuration memory corruptions have been widely documented for

older FPGA architectures. However, the innovations introduced with the new generations of

FPGAs have significantly modified the structure of the configuration memory. No failure model is

exhaustively described in the literature for the Xilinx 7 Series FPGAs to the best of the author’s

knowledge. To build an SEE susceptibility analysis tool, the failure model must be completed. In

this study, the Xilinx documentation crossed with the results of the bitstream decoding of the

Artix7 FPGA performed in the framework of the PROJECT X-RAY is used to identify the role of each

of the configuration bits and to understand the type of faults that can be induced when they are

corrupted. For some configuration bits, especially those related to PIPs, the effect of the SEU on

the functionality of the circuit is difficult to predict. Thanks to bitstream decoding results, the

memory address of each configuration bit can be extracted. Localized fault injections can then be

performed to identify these specific effects as well as to validate the overall failure model.

In this section, a description of the configuration memory of the 7 series FPGAs is made at first,

outlining how to extract the address of the different memory points. Then, the procedure used to

inject faults targeting specific memory location to identify the electrical behavior of the errors

related to the routing resources is described. All the elements of the FPGA fabric (switchbox, intra-

slice routing multiplexers, logic multiplexer, CARRY4, LUTs, flip-flops, SRL, BRAM) are finally

reviewed to identify their respective failure model and their error propagation conditions.

5.2.1. DECODED BITSTREAM DATABASE

The configuration memory of 7 Series FPGAs is composed of frames of 101 words of 32 bits.

The configuration bits defining the functionality of a specific tile are contained in words

distributed over consecutive frames (with one or two words per frame). Two main file types from

the PROJECT X-RAY database are used to extract the address of a specific configuration bit.

A device specific file named tilegrid.json provides addressing information of every tile in the fabric:

• Base address: correspond to the physical address (in hexadecimal) of the first frame that

contains configuration bits related to the tile.

• Offset: correspond to the number of words to be skipped before reaching tile-related

configuration bits.

• Words: the number of words used to define the tile functionality.

A set of generic files for every Artix7 FPGAs, named segbits_*tile_type*.db that provide the detailed

content of each tile type. Each bit is provided with two address information:

• Frame index: correspond to the number of frames to skip, starting from the base address,

to reach the configuration bit.

• Bit Position: correspond to the index of the bit in the word. For some tiles, the bit position

is contained between 0 and 63. As each word contains only 32 bits, for bit positions higher

than 31, the frame index should be incremented and 32 should be subtracted to obtain the

real bit index.

144

Based on this information the Physical Frame Address (PFA) of each bit can be determined as

shown in Figure 127. This PFA can be fed to the SEM controller for fault injection purposes.

Figure 127: Physical Frame Address (PFA) composition. The base address, frame index, offset and bit
position from the decoded bitstream database can be used to determine the PFA of each configuration bit.

5.2.2. LOCALIZED FAULT INJECTION

To analyze the effects of bitflips in the PIPs configuration bits, a dedicated design based on the

same principle as the one proposed in [177] is used. A set of LUTs, hosting two buffers per LUT,

are manually placed on the same tile (a pair of slices, as defined in section 2.2.2). With 4 LUTs per

slice, a total of 16 buffers is instantiated in the same tile. The input and output signals are all routed

through the same switchbox thus maximizing the switchbox occupation and the bridge

possibilities as shown in Figure 128.

Figure 128: PIP open and bridge fault testing structure. The two sites associated with a switchbox are fully
populated with LUTs configured as buffers, with two buffers per LUT. All 16 input and output signals are

routed through the same switchbox.

To test the bitflip effects, all possible combinations with two bits activated simultaneously (120

combinations) are sent sequentially to the input of the structure. The injection flag of the SEM

controller is used to trigger the beginning of the test. The output signals of the structure are

continuously compared to the input signals. When a mismatch is observed, the corresponding

input signal is sent to the control computer via UART as shown in Figure 129. Faults are injected

independently one after the other on all the configuration bits of the switchbox. For each injected

fault, the input vectors for which a mismatch is detected are recorded and analyzed to determine

the logical effect of the bitflips.

145

Figure 129: BIST test structure for PIP open and bridge fault analysis.

5.2.3. SWITCHBOXES

The switchboxes are the core of the FPGA signal routing network. These routing boxes link 588

different nodes including 172 sink nodes.

5.2.3.1. FAILURE MODEL

By crossing the results from the bitstream decoding and from the localized fault injection, an

equivalent model of the switchbox is built. It appears that every sink node can be connected to 16,

20 or 24 input nodes using static multiplexers (driven by configuration memory bits). These

multiplexers are totally independent in the sense that all multiplexers are driven by distinct sets

of memory bits and in the sense that the state of a multiplexer cannot impact the state of other

multiplexers even if they share common nodes. For example, when two input nodes of a

multiplexer are connected to each other by a bridge fault, the conflict does not propagate back to

the input nodes but only appears on the output of the multiplexer. This means that a single bit

upset (SBU) cannot corrupt two distinct nets simultaneously (no domain crossing possibilities on

TMR circuits).

Through this fault injection and the bitstream analysis, two types of multiplexers have been

identified based on the way they are controlled by CRAM bits. An equivalent model of these

multiplexers is then built as shown in Figure 130 and Figure 131.

Multiplexers are driven by either 8 bits (16 input nodes), 9 bits (20 input nodes) or 10 bits (24

input nodes). This set of configuration bits is divided in two stages, and the set of input nodes are

divided in 4 or 5 groups of equal size. In the first stage, each configuration bit drives a pass-

transistor for one of the input nodes of each group. All the nodes of the same group are driven by

different configuration bits and are then electrically connected together resulting in one junction

per group. The resulting junctions are then multiplexed to the output through a second stage of

configuration bits. In the first multiplexer type, each junction goes through another layer of pass-

transistor directly driven by a different configuration bit. As for the second multiplexer type, the

way the pass transistors are driven by configuration bits is slightly different. This behavior is

identified by extending the localized fault injection campaign by accumulating several bitflips on

this set of configuration bits to test all possibilities.

146

Figure 130: Truth table (left) and equivalent model (right) of configuration memory control over
switchbox’s multiplexers (first type).

Figure 131: Truth table (left) and equivalent model (right) of configuration memory control over
switchbox’s multiplexers (second type).

The equivalent model that provides the best representation of the observed behavior for most

combinations is given in Figure 132. Apparently, the configuration bits are simply reversed while

two of them are inverted. This behavior is equivalent to a similar pass-transistor structure as the

one used by first multiplexer type with the only difference of using two PMOS pass-transistors

instead of NMOS. However, for some rare PIP junctions, the observed behavior for certain

combinations does not match the proposed model. Further investigation should be conducted to

define a more representative model for all cases.

147

Figure 132: Configuration memory logic driving the pass transistors of the second multiplexing stage.

These multiplexer equivalent models reveal the different failure modes induced by SBU. Firstly,

for each connection, the two configuration bits controlling the activated pass transistors are prone

to open faults. Secondly, the bridge possibilities are limited to the nodes within the same groups

(by activating one of the other configuration bits in the first stage) and to one node of each other

group (the one that shares the same configuration bits in the first stage) by activating one of the

other configuration bits in the second stage. For example, in Figure 130, if the first node is the one

selected (I0), configuration bits B0 and B5 are the only bits activated. These bits are prone to open

faults. In addition, B1, B2, B3, B4, B6, B7 and B8 can create bridge faults with nodes I1, I2, I3, I4, I5, I10

and I15 respectively.

By injecting faults, one by one, on all the configuration bits on 50 different PIP junctions, the

electrical effects are identified by analyzing the reported erroneous input vector as described in

section 5.2.2. The observed electrical effect of open faults is a stuck-at-0 (~75% of cases) and

stuck-at-1 (~25% of cases). Regarding bridge faults, when the bridged node is not occupied by

any net of the design, no fault is observed. When the node is occupied by another net, the main

electrical effect observed is a wired-AND between the two nets (>95% of cases). On some rare

cases, a forced-by behavior is also observed (the output value is forced by the bridged node value).

These observed behaviors are different from the one observed in [177] on the same component

where only stuck-at-1 effects are reported for open faults and 57% of wired-AND, 40% of wired-

OR, and 3% of forced-by effects are reported for bridge faults. This discrepancy is probably due to

the fact that the technique used in [177] consists in modifying simultaneously several

configuration bits to activate or deactivate the different connections while in this study, the faults

are generated by the single error injection.

By default (all configuration bits set to 0), the second type of multiplexers are connected to VCC.

When this is the intended configuration, no "open" faults are possible (VCC is equivalent to stuck-

at-1), however, bridge faults are possible with the nodes of the first and second group by

activating one of the pass-transistors of the first multiplexing stage.

Localized fault injection could be extended by using different designs to cover all connections and

bridge possibilities, and by repeating the operation on switchboxes located at different places or

even on components from different batches. This analysis would define if the fault behavior is

deterministic for each type of connection or if the electrical effect depends on the variability of the

manufacturing process, the supply voltage, the temperature, etc.

148

5.2.3.2. ACTIVATION CONDITIONS

At the level of the SEE susceptibility analysis software, for each PIP, a list of sensitive bits is

created. Two sensitive bits are added for open faults (except for VCC nets) and the set of input

nodes likely to create a bridge fault (the neighboring nodes) is browsed to check whether they

belong to a net of the design or not. For each neighboring node actually involved in one of the

design nets, a bridge type fault is added to the list of sensitive bits. From the database of the

decoded bitstream, a text file is created describing for each possible connection in the

switchboxes, all the neighboring nodes. At program initialization, this text file is parsed to create

a map linking the name of each PIP to a list of neighboring nodes. This map is used during the

analysis of the PIPs to extract the number of bridge faults.

At creation, every sensitive bit is associated with an activation condition. These are defined by the

conditions on the input signal and eventually on the bridged net for which the output value is

different from the one expected with the fault-free version of the PIP. The activation conditions

for each failure mode are described in Figure 133.

Figure 133: Activation conditions of PIP faults. Stuck-at-0 faults are activated when the input state is “1”;
Stuck-at-1 faults are activated when the input state is “0”; wired-AND faults are activated when the input
state is “1” and the bridged input state is “0”; forced-by faults are activated when the input net and the
bridged net are in a different state.

As the fault behavior is not identical for all PIPs and not all fault possibilities could be tested, a

conservative approach is currently implemented: open faults are activated unconditionally

(regardless of the input state) while the bridge faults are activated when the input net and bridged

net are in a different state. The real activation conditions can be implemented later if the fault

behavior is exhaustively determined for all possibilities and if it turns out to be deterministic.

5.2.4. INTRA-SLICE ROUTING MULTIPLEXERS

Each slice of the FPGA fabric contains 25 routing multiplexers. These routing multiplexers are

statically controlled by configuration bits to drive the different intra-slice signals to the different

logic gates or slice outputs. These routing (static) multiplexers are to be distinguished from the

logic multiplexers which are controlled by user signals as shown in Figure 134.

149

Figure 134: Routing multiplexers (red) and logic multiplexers (blue) in a slice of Xilinx 7 Series FPGA.

Among these routing multiplexers, some are used to configure the flip-flop control signals (clock,

reset and clock enable). These signals are global for the whole slice, the corruption of these

multiplexers induces a failure on all the flip-flops of the slice. This highlights the importance of

not placing elements of distinct TMR partitions within the same slice to avoid the presence of

single points of failure. The other multiplexers are used to drive the input signals of the CARRY4

logic gate from the output signals of the LUTs or to drive the flip-flop inputs and the slice outputs.

5.2.4.1. FAILURE MODEL

Different behaviors can be observed depending on the type of signals the multiplexer is driving

as shown in Figure 135. Multiplexers associated with control signals and CARRY4 inputs use only

one configuration bit while 2:1 multiplexers used to drive the input of part of the flip-flops use

two configuration bits. The fault behavior depends on the type of multiplexer: for muxes driven

by one configuration bit, the bitflip simply results in the exchange of the selected input, which can

then be characterized as an inversion fault, a stuck-at-0, a stuck-at-1, or a forced-by bridge. Muxes

driven by two configuration bits have two failure modes, open faults and bridge faults with the

same behavior as switchbox pips.

150

Figure 135: Failure model of intra-slice routing multiplexers. Multiplexers driven by one configuration
bit are used to either inverse the clock polarity, drive a constant state (0 or 1) or multiplex two input signals.
Multiplexers driven by two configuration bits are also used to multiplex two input signals.

Multiplexers 6:1 driving the combinatorial outputs and the input of flip-flops use a similar

structure as the one used in switchboxes as shown in Figure 136.

Figure 136: 6:1 multiplexers use 4 configuration bits, three of them (B3, B2, B1) are used to select one of
the 3 nodes in each group and the last configuration bit (B0) is used to select one of the group junctions.

A main difference lies in the second multiplexing stage that uses a single configuration bit with a

NMOS and PMOS pass-transistors to select one of the group junctions. This results in a slightly

different failure model: whatever the selected input node, the activated pass transistor in the first

stage can cause open faults and the other two configuration bits potentially induce bridge faults

(wired-and) with the nodes from the same group.

The configuration bit of the second stage is always sensitive: it either results in a bridge “forced-

by” fault with a node of the other group driven by the same configuration bit or an open fault

(stuck-at-1) when this node is unused.

5.2.4.2. ACTIVATION CONDITIONS

The activation conditions depend on the type of the driven signal:

• Clock: the inversion of the polarity of the clock signal corresponds to a 180° phase shift for

all the flip-flops in the slice, this will result to corruption of the latched data because the

151

flip-flops are not synchronized with the rest of the circuit. This fault is thus considered

activated as soon as the clock signal is toggling and the clock enable is high.

• Clock Enable: a stuck-at-1 on the clock enable signal is activated when the input clock

enable is at “0” state.

• Reset: similarly, stuck-at-0 on the reset signal is activated when the input reset is at “1”

state.

• Data: like for switchbox pips, open faults are activated unconditionally while bridge faults

(forced-by and wired-AND) are considered active when the input net state and the bridged

net state are different.

5.2.5. LOGIC MULTIPLEXER

Each slice contains three logic multiplexers driving the LUT’s output and controlled by extra-

slice signal to build larger logic functions as shown in Figure 134. These multiplexers are not

configurable, they do not add any configuration bit to the list of sensitivities but they can

potentially mask the error propagated to their inputs.

Propagation conditions are defined as the conditions on the input signals for which an error on a

particular input node modifies the output state. Considering A and B, the two data signals and S

the control signal, the error on A can only propagate when A is driven to the output (S=0) and

error on B when S=1. The error on S input induces a swap of the driven signal that can only

propagate to the output when the two input signals are different.

The propagation conditions in the presence of error on multiple inputs must also be considered

as they do not result from the combination of the single error propagation conditions. These

propagation conditions are defined using the truth table of the logic gate. For each combination of

inputs (A.B, S.A, S.B, S.A.B), every line of the truth table is paired with the line in which the values

of the considered inputs are inverted. For example, if an error on A and B are considered, the line

000 is paired with 011; 001 with 010; 100 with 111 and 101 with 110. If the output values of the

paired lines are different, both input values are added to the propagation condition. The

propagation conditions are then simplified using Boolean minimization techniques. Propagation

conditions for both single input error and multiple input error are presented in Figure 137.

Figure 137: Propagation conditions of logic multiplexers. Double arrows represent the paired lines for a
given erroneous input combination. Green stand for A and B affected simultaneously, blue for S and B, red
for S and A and purple for all three inputs affected simultaneously. When the output values of the paired
lines are different, the two corresponding input values are added to the propagation condition.

152

5.2.6. CARRY LOGIC

Just like logic multiplexer, the CARRY4 logic gate is non-configurable. No configuration bits are

added to the sensitivity list but its logical masking capabilities must be considered in the

propagation conditions.

CARRY4 cells use 9 inputs and 8 outputs. The number of possible combinations of errors on

multiple inputs is too large to manually determine the propagation conditions for all cases. The

regularity of the structure is then used to decompose the resource into subparts corresponding to

the propagation of a single carry bit as shown in Figure 138.

Figure 138: CARRY4 decomposition in four identical CARRY1 cells composed of one XOR gate and one
multiplexer.

The propagation conditions of these sub circuits are much simpler to define. Those of the

multiplexer have been previously defined, and those of the XOR gate are straightforward: errors

present in only one of the inputs propagate unconditionally while errors present in both inputs

never propagate. The propagation conditions of the CARRY1 cell are detailed in Figure 139.

Figure 139: CARRY1 propagation conditions.

Instead of computing the propagation conditions for the full CARRY4 chain, these conditions are

computed bit by bit, starting from LSB and transmitting those resulting from the COUT port to the

CIN port of the higher order CARRY1.

5.2.7. LOOK UP TABLES

Slices in 7 Series Xilinx FPGAs are equipped with 4 LUTs with 6 inputs and 2 outputs. These

LUTs are configured by 64 configuration bits, allowing the generation of any arbitrary 6-inputs

153

logic functions when using only one output (O6). These LUTs can also be configured as two 5-

inputs LUTs (or smaller) sharing the same inputs as shown in Figure 140 and Figure 141. LUTs are

the core of the logic operations performed within an FPGA. They must be considered both for their

intrinsic sensitivity and for the logical masking of errors.

Figure 140: LUT6 structure inside 7 series Xilinx FPGA. These LUT are actually composed of two 5-inputs
LUTs configured by 32 distinct configuration bits. These LUT can be used to generate a 6-input LUT using
only O6 output or as two 5-inputs LUT sharing the same inputs.

Figure 141: LUT5 structure: a multiplexer tree driven by the input signal is used to drive the
content of one of the configuration bits to the output.

5.2.7.1. ACTIVATION CONDITIONS

Depending on the way LUTs are configured, the fault activation conditions must be handled

differently. The following configuration types must be distinguished:

• A single LUT is implemented using up to 6 inputs (using O6)

• Two LUTs are implemented (1 to 5 inputs) sharing some, all or none of their inputs (A6 is

tied to VCC).

• One of the outputs is configured as “route-through” while the remaining output is unused.

This configuration allows external signals to be routed inside the slice by passing through

the LUT (configured as driver).

• One LUT is used (1 to 5 inputs) while the remaining output is used as route-through.

154

When used as single LUT, the number of sensitive bits to be accounted is directly related to the

number of inputs (NBIT=2Ninputs). The activation conditions of these bits are straightforward. Each

configuration bit is driven to the output only when the corresponding input value in the truth

table are presented on the input nets. Thus, the activation conditions of the configuration bit in a

given position are defined by the input values in the truth table in this position as described in

Figure 142.

Figure 142: single LUT activation conditions of configuration bit defining its functionality.

From the software perspective, the logical cell (in the EDIF package) instantiated in LUTs use I0,

I1 … I5 to name the input ports. The associated INIT property (defining the LUT content) is

provided referring to this logical input port ordering. However, the actual content of the LUTs

refers to the physical routing of nets to the input pins of the BEL (A1, A2 … A6) given that all

unused ports are tied to VCC. In the algorithms developed in this study, the logical INIT property

is systematically converted into the physical content of the LUT. For example, considering a LUT

using two inputs I0 and I1 mapped to A5 and A4 respectively and configured as an AND gate; the

logical INIT property is b”1000” (LSB represent the LUT’s output for {I1,I0}=”00”) but these four

configuration bits used to define the functionality are actually mapped to B31, B23, B15 and B7

respectively if using the O5 output or mapped to B63, B55, B47 and B39 respectively if using the O6

output. As it will be presented in section 5.3.1, the sensitive configuration bits are distinguished

by a name (a string variable) which includes the BEL type from which the failure is generated, its

position in the fabric as well as a property to differentiate the configuration bits associated with

the same BEL. The names of the LUT sensitive bits are defined by their index in the LUT truth

table. The conversion of the "logical" content of the LUT into its actual content is thus necessary

to avoid that two cells instantiated in the same physical LUT generate two sensitive bits with the

same name while being physically stored in different locations.

When two cells are instantiated in the same LUT BEL, the two sensitive bit lists cannot be built

independently. If one or more inputs are not shared between the two cells, the input of both cells

should be considered to extract the number of sensitive bits. Indeed, even if one input is not

logically used by one of the LUT5, this LUT is still affected by the state of this input. The logical

function handled by this LUT must remain valid whatever the unused port state is. This means

that the configuration bits of the LUT must reflect the intended functionality for all possible

combinations of states on unused ports as shown in Figure 143. As a result, the number of sensitive

bits to be accounted can be greater than 2#inputs, the inputs used by both cells are considered to

determine the number of sensitive bits and their associated propagation conditions.

155

Figure 143: Two AND gates instantiated in the same LUT BEL. The AND functionality on both LUTs must
be replicated in the truth table for every unused input state combination. For example, bottom LUT must
have B0=B4=B8=B12=B16=B20=B24=B28; B1=B5=B9=B13=B17=B21=B25=B29 etc. so that the AND logic is respected
whatever the state of port A5, A4 and A3.

When the LUT is configured as route-through on one output while the remaining output is unused,

two sensitive bits are accounted, one for each input state; their physical position in the truth table

being defined by the used input and output ports. However, when the remaining output is used by

another cell, the inputs of this cell are also considered to extract the number of sensitive bits and

the associated propagation conditions.

To be noted that LUTs included in part of the FPGA slices (SLICEM) use two additional

configuration bits, one to activate the “shift-register” feature (SRL) and another one used to

activate their “distributed memory” feature (LUT used as dual port memory). The exact behavior

of these two bits could not be clearly identified. Further investigation would be required to

understand in which condition the corruption of these bits can alter the output state when the

LUT is not using these features. At the moment, these bits are considered as sensitive and activated

unconditionally.

5.2.7.2. PROPAGATION CONDITIONS

Propagation conditions can be defined using only the logical behavior of the LUT cell (its INIT

property). Error masking on a LUT is entirely dependent on its configuration. As there are more

than 1019 possible configurations with 64 configuration bits, the propagation conditions are

calculated for each cell during the execution.

The propagation conditions calculation is based on the LUT truth table using the same principle

as the one used in Figure 137. When an error is present in one of the inputs, each line of the truth

table is paired with the line for which the state of the considered input is inversed as shown in

Figure 144. For example, considering errors in the 1st input port (I0), the 1st line is paired with the

2nd one, the 3rd with the 4th, the 5th with the 6th etc. When multiple inputs are affected by the same

error, every line of the truth table is paired based on the same principle (i.e. with the line for which

the state of the considered inputs is inversed) as shown in Figure 145.

156

Figure 144: Truth table lines pairing to determine single input error propagation conditions. For each
input, the lines are paired with the lines for which the considered input state is inversed (double arrow).

Figure 145: Truth table lines pairing to determine multiple inputs error propagation conditions. For each
multiple input combination, the lines are paired with the lines for which the states of the considered

inputs are inversed.

For each line pair, if the result of the truth table is different, both corresponding input values are

added to the propagation conditions. The resulting conditions are then optimized using a logic

minimization algorithm.

157

5.2.8. FLIP-FLOPS

Each slice of the Xilinx 7 series FPGAs embeds eight flip-flops. These flip-flops can be configured

with different clock, reset and clock enable polarities using the previously mentioned static

multiplexers. Two additional configuration bits, at the slice level (common to all 8 flip-flops) allow

to define if the reset is synchronous or asynchronous and to define if the BEL is used as latch or

flip-flop. To evaluate the criticality of this first bit, the timing information of the clock and reset

paths should be taken into account to find whether the corruption of the bit can lead to an

alteration of the flip-flop output when the reset signal is asserted. The current version of the

proposed software does not consider this configuration bit as critical. The functionality of the

second configuration bit has not been clearly identified, at the moment this bit is considered as

sensitive and is activated unconditionally. In addition, each flip-flop is supplemented by two

configuration bits to define the state of the flip-flop at initialization and after a reset. The bit

defining the state at initialization is not considered critical given the low probability of error

occurring between the component configuration and the global reset signal assertion. On the

other hand, the configuration bit defining the state of the flip-flop after a reset is considered

sensitive and is activated when the reset signal is asserted.

Regarding the propagation conditions, errors on CE and CLK ports propagate as soon as the input

value is not constant and errors on the reset port propagate when the reset state of the flip-flop is

different from the input value. As for the errors on the D port, they can propagate to the output

when the clock enable signal is activated and the reset port is not asserted. As it will be explained

in section 5.3.3, the propagation conditions for errors propagating from the D port are temporally

incremented to account for the one clock cycle delay introduced by the flip-flop.

5.2.9. SHIFT REGISTER LUT

To reduce the flip-flops utilization, part of the FPGA slices (SLICEM type) integrates LUTs that

can be configured as addressable shift registers (SRL). These LUTs integrate additional ports:

clock (CLK), clock enable (CE) and data in (DIN) and the configuration bits of the LUT are then

used as dynamic user bits as shown in Figure 146. At each clock cycle, the value on the DIN input

is copied to the LSB of the LUT content (B0) and all configuration bits are shifted toward the MSB

(B0→B1; B1→B2; B2→ B3 etc.). The standard LUT inputs (A[3:0]) are used to multiplex one of the

stages of the shift register to the output in order to define the actual size of the of shift register.

These SRL can be cascaded inside and across slices to form longer shift register.

Figure 146: Shift Register LUTs uses the LUT configuration bits to delay a signal by up to 16 clock cycles.
The A[3:0] input are used to select the number of clock cycles of delay using the multiplexing structure of

LUTs, from [194].

158

5.2.9.1. FAILURE MODES

The configuration bits of the LUT content being shifted and gradually replaced by the DIN input

values, their corruption does not create permanent fault, the effect would be similar to flip-flop

SEUs which are not considered in this analytical approach. However, one configuration bit is

activated to configure the LUT as SRL, this bit is considered as sensitive and activated

unconditionally on the output port.

5.2.9.2. PROPAGATION CONDITIONS

Errors on CE and CLK ports propagate as soon as the input value is not constant. Errors on the

DIN port propagate when the clock enable is activated. The propagation conditions for error from

DIN ports are also incremented according to the size of the shift registers defined by the value on

A[3:0] ports (only static size shift registers are currently supported). Errors on the A3, A2, A1 and

A0 actually modify the length of the shift register by 8, 4, 2 and 1 respectively. The propagation of

errors on these ports is defined by comparing the current output state with its previous or future

values. For example, if the input A0, normally in state 1, is corrupted by a stuck-at-0 fault, the shift

register is shortened by 1 bit. Consequently, the output of the SRL is erroneous only when the

previous state is different from the current state. If A0 is normally in state 0 and corrupted by a

stuck-at-1 fault, the shift register is lengthened by 1 bit, the output is thus erroneous only when

the current output state is different from the next output state. The way in which the timing of the

signal states and the propagation conditions are managed in the proposed software is described

in section 5.3.1.

5.2.10. BLOCK RAM

Memory blocks in Xilinx 7 series FPGAs store up to 36Kbits of data and can be configured as

either two independent 16Kb RAM, or one 36Kb RAM. The memory width and length can be freely

configured from 1x32K to 72x512 in dual port mode. The content of the memory block is directly

integrated in the configuration memory for content initialization and modification purposes.

5.2.10.1. FAILURE MODES

The content of the BRAM is user writable. This implies that the corruption of the BRAM content

is only visible when the affected data word is read and that the error is corrected when its

overwritten. The probability that the error is activated (revealed in the outputs) depends on the

time at which the error is generated. If the error happens after the last write operation on the

affected word and before the next read operation, the error will propagate to the output when it

will be read. However, if a write operation is performed on the affected word before it is read, the

error will be erased. The time window during which the error can be activated must be considered

to estimate the activation probability of the error. This mechanism is not supported yet by the

proposed software, so read-only memories are only considered. In another hand, the bitstream

decoding of BRAM slices is not completely achieved, thus, particular configuration bits used to

define the data length and width and the different BRAM operating modes (ECC, registering etc.)

are not considered at the moment.

159

5.2.10.2. ACTIVATION CONDITIONS

When configured as read-only memory, errors on the memory bits of the BRAM are activated

when the address of the affected word is applied to the address input port. A cycle delay should

also be considered when the output data are registered. The error is then activated only on the

output port corresponding to the position of the configuration bit in the data word. For example,

a bitflip on the first bit of the first word is activated on the output data LSB when the input address

value is 0, or one clock cycle later if the output is registered.

5.2.10.3. PROPAGATION CONDITIONS

The propagation conditions depend on the type of affected input. Errors on the address bus

trigger the transmission of the wrong data word to the output. The current address value and the

index of the error define the index of the word that is replaced and the index of the word that

replaces it. By comparing both words, the indexes of the affected output ports are determined. For

example, considering a stuck-at-1 fault on the address LSB, when the address value is 0, the output

data, theoretically equal to the first word stored in the memory, is replaced by the second word.

If the first and second word stored in the BRAM are 0xFF and 0xF0 respectively, the fault only

propagates to the first four output bits. When the address value is 1, the fault does not propagate

(the LSB is already stuck-at-1), when the address value is 2, the process is repeated by comparing

the 2nd and the 3rd words, etc.

Stuck-at fault errors on the clock and clock enable ports actually freeze the output value. The

activation conditions are thus conditioned by the actual address value when the error is

generated. This mechanism is not yet supported so these errors are currently propagated to every

output port unconditionally.

5.2.11. UNSUPPORTED PRIMITIVES

The following primitives are currently unsupported by our software:

• Digital Signal Processing Blocks

• Latches (LDCE and LDPE)

• Distributed memory elements (LUTRAM)

• Dual port BRAM

• Phase-Locked Loops (PLL) and Mixed-Mode Clock Manager (MMCM)

• Input/Outputs buffers

• GTX transceivers

• Dual Data-Rate registers (DDR)

• Analog to digital converters (XADC)

• Internal configuration control elements (ICAP, BSCAN, FRAME_ECC, STARTUPE etc.)

Design integrating these resources can be analyzed, but the sensitivity of these resources will not

be addressed. Further studies on bitstream composition and extensive localized fault injections

would be required to analyze the different failures modes of these resources and integrate them

in the proposed analytical approach.

160

5.3. NETLIST ANALYSIS AND CRITICAL BITS EXTRACTION

Once the failure model has been established, the different algorithms must be developed to

analyze the circuit netlist, navigate through the different logic gates and routing paths to extract

all the sensitive bits and compute their activation and propagation conditions until reaching the

circuits outputs.

In this section, the different data structures used by the software will be firstly presented. Then,

the procedure used to extract the states of all nets in the circuit and affect them to the

corresponding Java objected is described. Finally, a detailed description is provided of the

different algorithms used to navigate through the netlist, extract the sensitive bits and compute

their activation and propagation conditions.

5.3.1. DATA STRUCTURES

When dealing with large circuits with hundreds of thousands of logic gates and nets, the choice

of data structures used to store and manipulate the different types of circuit information has a

major impact on the execution time and memory usage of the program.

The number of sensitive bits in large designs can easily reach over one million. Each sensitive bit

can cross several hundreds of logic gates before reaching one of the circuit primary outputs. Each

time the error propagates through a logic gate, a new propagation condition is added serially,

when the error has propagated to two or more inputs of the same logic gates, new propagation

conditions should be added. The single input propagation condition should be added in parallel

while multiple-inputs propagation conditions are also considered for the timestamps where the

error did propagate to multiple inputs simultaneously. In this study, timestamps refer to the

different time instants in the simulation where the signals value are extracted, namely, at each

clock cycle. Different data structure solutions have been tested to represent these propagation

conditions combinations.

The first attempt was to combine and minimize the conditions after each crossed logic gate to get

one single set of conditions, defined by a list of net names and a list of possible values that enables

the propagation. This approach resulted in endless computation when dealing with large circuits

due to the heavy workload of the minimization algorithm.

The second approach was to use a dedicated data structure to store each individual propagation

condition (the one from each logic gate the error has been through) and to record the history of

how these conditions combined (serial vs parallel). The idea was to wait until each fault reaches

one of the primary outputs to combine and minimize the different conditions. This approach also

resulted in endless computation due to the large number of sensitive bits and the number of

conditions to be stored for each one of them.

The solution finally adopted consists in directly assigning to each net object of the design, the

different values they have throughout the simulation. The activation and propagation conditions

can then be directly computed and verified on the fly for each logic gate the error passes through.

Instead of storing the propagation conditions as a list of nets and the associated values, a list of

timestamps at which the error propagates is stored. Using this representation, the timestamps

where the error is present on one input only or on several inputs simultaneously can be easily

extracted by comparing the lists of timestamps on each input. For each erroneous input

161

combination (single input only, double inputs, etc.), the corresponding propagation conditions are

computed and the timestamps at which these conditions are verified are computed based on the

values of the input nets. The common timestamps to both timestamp lists are then extracted. Once

this process has been repeated for each erroneous input combination, the resulting timestamp

lists are merged to define the timestamps where the error is propagated to the output. An example

of this procedure applied to an AND gate is described in Figure 147.

Figure 147: Error propagation evaluation procedure applied to an AND gate. First, the list of values at
each timestamp (from behavioral simulation) is extracted for all input nets. Secondly, the timestamps at
which the considered error has actually propagated to the inputs (from previous stages) are extracted for
the different cases: error in 1st net only, error in 2nd only and error on both inputs. Thirdly, the propagation
condition for each erroneous input combination are computed. Fourth, for each propagation condition, the
timestamps at which the condition is verified is extracted based on the input value lists. Fifth, the confirmed
propagation timestamps are filtered among those present on the error time stamps from step 2. Finally, the
resulting timestamp lists are merged to define the timestamps where the error is propagated to the output.

To clarify, error timestamps refer to the time instants (referring to the simulation time base) at

which the error generated by a given sensitive bit is actually able to propagate to the considered

net. When coupled with an erroneous input combination, the error timestamps refer to the time

instant at which the error generated by the same sensitive bit is only present on one input (single

input error) or to the timestamps that are common to several inputs (multiple input error).

Finally, confirmed propagation condition timestamps refer to the timestamps at which a given

propagation condition is met.

162

This propagation procedure is renewed for all sensitive bits propagated to the inputs of the logic

gates. The computation steps related to the propagation conditions establishment and the

associated timestamps can be reused for all sensitive bits to be propagated to reduce the execution

time.

Two types of data structures are used to represent the value list of each net and the error

timestamp list. The first data type is a simple ordered list of Booleans for value list and an ordered

list of integers for timestamps. These list structures provide a good flexibility for manipulation

but use a lot of memory space and require a lot of iterations when dealing with comparison,

sorting, incrementing, extraction of common elements from two lists, etc. For these reasons a

more efficient data structure is used to store both value list and timestamp list: the BigInteger.

This data structure can store any integer with an arbitrary number of bits. Value lists can thus be

stored by representing values at each timestamp as one bit of a BigInteger, considering that the

LSB is the first timestamp and MSB the last one. Similarly, the timestamp lists are stored by

initializing a BigInteger to 0 and setting to 1 each bit in the positions contained in the timestamp

list as shown in Figure 148.

Figure 148: Example of BigInteger variables used to represent list of Boolean and list of integers.

The length of BigInteger being scalable, it can be used whatever the number of timestamps

analyzed during the behavioral simulation. Additionally, thanks to the use of bitwise operators,

this structure is much more efficient for common operations:

• Incrementing: bit shifting towards left

• Extracting common elements of two lists: bitwise AND

• Extracting elements contained in at least one of the lists: bitwise OR

• Extracting elements that are exclusives between two list: bitwise XOR

• Extracting elements that are contained in 1st list but not in a 2nd list: bitwise AND NOT

These common operations are widely used for computing propagation conditions and associated

timestamps while further benefits are provided by the fact that values and timestamps share the

same data structure. For example, in the previous example of propagation conditions computation

applied to an AND gate (Figure 147), the error timestamps that are exclusive to one port are

computed with a bitwise AND NOT between the error timestamps from the two ports, the error

timestamps that are common to both inputs are computed with a bitwise AND. The propagation

conditions timestamps for B=1 are a simple copy of the BigInteger holding the value of net B,

for A=1, a copy of the BigInteger holding the value of net B. As for AB=”00”or”11”, a bitwise

NOT XOR is applied between values of net A and B. Similarly, to check the timestamps at which

the error actually propagates, a bitwise AND is applied between the propagation condition

timestamps and the corresponding error time stamps. The final result is obtained by applying a

bitwise OR between the resulting BigIntegers. This procedure, adapted using BigIntegers

variables, is illustrated by the pseudo code shown in Figure 149.

163

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

BigInteger A,B,tsA,tsB,tsAonly,tsBonly,tsAandB,tsPcA,tsPcB,tsPcAB,tsOfromA,tsOfromB,tsOfromAB,tsO
//step1: net values
A = 172 // b”10101010”
B = 314 // b”11001100”
//step2: error
tsA = 219 // b”11011011”
tsB = 182 // b”01101101”
tsAonly = A.andNot(B)
tsBonly = B.andNot(A)
tsPcAB = A.and(B)
//step3&4: propagation condition
tsPcA = A
tsPcB = B
tsPcAB = not(A.xor(B))
//step5: output confirmed error propagation
tsOfromA = tsAonly.and(tsPcA)
tsOfromB = tsBonly.and(tsPcB)
tsOfromAB = tsPcAB.and(tsPcAB)
//step6 output error
tsO = tsOfromA.or(tsOfromB).or(tsOfromAB)

Figure 149: Pseudo code of the procedure to compute the propagation timestamps of an AND gate using
BigIntegers and associated bitwise operators.

The bit shifting is also a convenient operation to increment all error timestamps simultaneously

when propagation through flip-flops or SRL. Indeed, as the BigInteger storing the values of each

net are based on the same time scale, the error timestamps on a net must be incremented when

delayed by one clock cycle. That way, the output propagation timestamps are synchronized with

the net values when further propagating through the next logic gates. A cyclic bit shifting can also

be performed when dealing with cyclic net values (the values repeat periodically with a cycle

equal to the number of values extracted from the simulation).

The sensitive bits extracted from each logical and routing resource are stored in a dedicated Java

object. This object contains different types of arguments to define its origin: the configuration bit

type, the slice coordinates and the name of the BEL or PIP the configuration bit is related to. These

arguments are used to build a string argument to differentiate all potential sensitive bits of the

design. Each sensitive bit object is supplemented with a BigInteger to define the current error

conditions. When dealing with multiple outputs cells or nets, the sensitive bit objects are cloned

for each output. Each cloned object can carry its own error timestamps that will evolve by

propagating through the different logic gates. When the cloned sensitive bits are propagated to

the inputs of the same cell, their string arguments are used to combine them using the error

propagation procedure for multiple erroneous inputs described earlier.

5.3.2. WORKLOAD EXTRACTION

To compute the activation and propagation conditions, the values of every net in the design

must be extracted and associated with the corresponding net object. As explained earlier, these

net values are stored as BigInteger where each bit correspond to the state of the net at a given

timestamp of the simulation. The length of the simulation (i.e. the number of extracted

timestamps) is user defined. The extraction of these values and their association with the right

java object is constrained by different elements. Indeed, unlike other commercial simulation tools,

the behavioral simulator integrated in Vivado does not support hierarchical referencing of the

circuit nets through the HDL testbench file nor through the TCL commands. This constraint

therefore prevents the extraction of signal values from being fully automated. The following

procedure is then used:

164

1- The design is exported into design checkpoint file (.dcp) and imported in the java

software.

2- The design is flattened into one single VHDL file using the write_vhdl -cell

top_cell TCL command. This command generates a VHDL file describing a design

with the same behavior as the original design while removing all level of hierarchy.

Every net can then be referred to through TCL commands.

3- From the software side, all nets of the design are extracted, and a TCL script is

automatically generated. This script, aimed to be launch during the simulation, is

composed of a set of command that extract the current state of every listed net and

write it into a text file as a binary string. This extraction is repeated by systematically

incrementing the simulation time by one clock period until the number of timestamps

defined by the user is reached.

4- The binary strings are transposed and formatted to obtain an integer value for each net

where each bit of the integer represent the net value at a different timestamp.

5- The resulting file is finally imported back into the software and the integer values are

associated to each net. In this purpose, the EDIFNet object from the RAPIDWRIGHT API

was supplemented with a BigInteger attribute to store the net values.

5.3.3. CIRCUIT NAVIGATION ALGORITHMS

The analysis of the number of critical bits is based on the extraction of the sensitive bits of each

logic gate and each net of the circuit and on the calculation of their propagation from their origin

to one of the primary outputs. The objective of the navigation algorithm, the core of the critical bit

extraction process, is then to traverse the whole circuit, to extract the sensitive bits of each crossed

resource by applying their activation conditions and to propagate the set of sensitive bits coming

from the downstream resources towards the outputs. The difficulty of the algorithm development

process is to ensure that all the resources that can alter one of the considered outputs are

traversed and computed while ensuring that each resource is computed only once. The algorithm

is therefore based on the following principles:

• The output of a logical gate can only be computed when all its inputs have been

computed.

• The sink port(s) of a net can only be computed if its source port has been computed.

To this end, the Java object EDIFPortInst (materializing the ports of the logical cells) of the

RAPIDWRIGHT API, is supplemented with two arguments: a list of sensitive bits to hold the set of

downstream sensitive bits propagated up to this port and a Boolean used to indicate if the port

has already been computed. For an input port, this implies that all downstream resources and nets

have been computed and their sensitive bits propagated to that port. For an output port, this

implies that all input ports have been computed, their critical bits have been propagated to the

output port and the intrinsic sensitive bits of the resource have also been added with their

activation conditions.

The navigation algorithm is based on the recursion of two types of functions that mutually call

each other: the backwardScan and the forwardPropagate function types. Starting from the user

defined output ports of the circuit, the corresponding cells are checked, if the output port is not

already computed (which is obviously the case at program startup), the backwardScanCell

165

function, detailed in Figure 150, is called. This function checks sequentially every input port of the

cell. If a port is not already computed, the backwardScanNet function, detailed in Figure 151, is

called for the corresponding net. Similarly, this function checks the source port of the net and calls

another instance of the backwardScanCell function for the corresponding cell if this port is not

already computed. This process of scanning backwards by alternating these two functions is

repeated until an already calculated port or a primary input of the circuit is detected. When a

computed port is detected during the backwardScanNet function, the list of sensitive bits is

propagated to all the sink ports of the net while adding the sensitive bits of the different PIPs

encountered on the routing path. This forward propagation is performed through the

forwardPropagateNet function detailed in Figure 153. The sink ports of the net are finally set as

computed to prevent the net and the upstream resources from being recalculated. On leaving this

last function, the program falls back into the backwardScanCell function which will check the

next input port. Once all the input ports have been calculated, all their sensitive bits are

propagated to the output(s) of the cell through the forwardPropagateCell function. This

function is available in different versions depending on the type of cell considered in order to

apply its own error propagation rules while benefiting from different optimizations (particularly

for logic multiplexer, flip-flops or CARRY4 cells). A generic version of this function is detailed in

Figure 152. Once all the sensitive bits are propagated, the intrinsic sensitive bits of the resource

are added to the output port(s) with their activation condition and the output port is set as

computed. This back and forth between the backward scan functions and the forward propagation

functions continues until all cells and nets have been calculated and propagated to the user

defined outputs.

1
2
3
4
5
6
7
8
9
10
11

backwardScanCell(Cell cell):
// iterating through the input ports of the cell
FOR inPort IN cell.getInputPorts():
 IF !inPort.isComputed():
 Net net = inPort.getNet()
 // collect the SBs from the net source port
 backwardScanNet(net)
 // propagate the source port SBs to each sink port
 // by integrating the intrinsic net SBs
 forwardPropagateNet(net)
RETURN

Figure 150: Pseudo code of the backwardScanCell function. Each input port of the cell is
sequentially checked. For ports which are not already computed, the corresponding net is checked
through the call of the backawardScanNet function. The sensitive bits of its source ports are propagated
to every sink port while adding the sensitive bits of the PIP crossed during propagation through the
forwardPropagateNet function.

166

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

forwardPropagateCell(cell):
EDIFPort outputPort = cell.getOutputPort()
// gather all sensitive bits (SBs) present on the input ports
List<Sb> inputSBs = NEW List<>()
FOR inPort IN cell.getInputPorts():
 inputSBs.addAll(inPort.getSensitiveBitList)
// iterating through the SBs
FOR sb IN inputSBs:
 // determine which ports are affected by the error
 List<EDIFPort> errInputPort = NEW List<>()
 FOR inPort IN cell.getInputPorts():
 IF(inPort.getSBList.contains(sb):
 errInputPort.add(inPort)
 // create a list of inputPort list to represent allpossible input combination
 List<List<inPort>> inputPortCombinations = getPortComb(erroneousInputPort)
 // use BigInteger to store the output propagation timestamps for this error
 BigInteger finalOutTS = 0
 //iterate through each combination
 FOR inPortList IN inputPortCombinations:
 //get error timestamps (TS) for this combination
 BigInteger errTS = getErrTS(inPortList,errInputPort)
 //get propagation conditions (PC)
 Map<List<Net>,List<List<Boolean>>> pCs = getPCs(inPortList,cell)
 //get validated propagation condition timestamps
 BigInteger validPcTs = getTimestamps(pCs)
 //combine error TS and validated PC timestamps
 BigInteger outTS = errTS.and(validPcTs)
 // add it to the final output timestamps
 finalOutTS = finalOutTS.or(outTS)
 // if the propagation TS list is not empty, add the SB to the output SB list
 IF finalOutTS!=0:
 Sb outSB = NEW Sb(sb)
 outSB.setErrorTS(finalOutTimestamps)
 outPort.addSB(outSensitiveBit)
 // compute and add all the intrinsic SB from the cell for the considered output
List<Sb> intrinsicSBs = getSBsFromCell(cell,outPort)
outPort.addSbs(intrinsicSBs)
outPort.setIsComputed(True)
RETURN

Figure 152: Pseudo code of the forwardPropagateCell function. In a first step all sensitive bits are
gathered in a single list. Then, by iterating through each sensitive bit, the input ports that contain this
bit are listed. From this list, all possible erroneous input combinations are generated (single and
multiple). For each combination, the corresponding error timestamps are extracted. The propagation
conditions for this input combination and the corresponding timestamps are computed and combined
with the error timestamp list. The resulting timestamp list is accumulated in the final output timestamp
for this sensitive bit. If this timestamp list is not empty, the sensitive bit is added to the output port.
Once all sensitive bits have been propagated, the output port is set as computed.

1
2
3
4
5
6
7
8
9

backwardScanNet(Net net):
// get Net source port
EDIFPort srcPort = net.getSourcePort()
IF !srcPort.isComputed():
 // scan the cell inputs
 backwardScanCell(srcPort.getCell())
 // propagate the input sensitive bits (SBs)
 forwardPropagateCell(cell)
RETURN

Figure 151: Pseudo code of the backwardScanNet function. The source port of the net is checked. If
not already computed, the cells inputs are checked through the call of the backwardScanCell function
and the cells input sensitive bits are propagated to the output through the call of the
forwardPropagateCell function.

167

Figure 153: Pseudo code of the forwardPropagateNet function. The sensitive bits of the source port
and the list of PIPs the net is composed of, are firstly extracted. From the list of PIPs, a Java Map is generated
to link each node of the net to the list of downstream PIPs. Starting from the source node, the sensitive bits
are propagated to each sink port through the call of the forwardPropagateNode function.

A net is a connection between one source port and one or several sink ports. A net is composed of

node and PIPs. To extract the sensitive bits of the PIPs that compose a net and propagate those

from its source port, the forwardPropagateNode detailed in Figure 154 is used. This function is

also based on recursion: each time a new PIP is crossed, a new instance of the function is called by

passing the next node and a clone of the current sensitive bits list as parameters. If the node has a

single downstream PIP, the sensitive bits from the PIP are computed and simply added to the

current list before calling the next instance of the function with the next node. When the node has

several downhill PIPs (the net splits into several branches), a different instance is called for each

branch. Once a sink port is reached, the current sensitive bit list is assigned to it and the port is

set as computed. This process ensures that each sink node is only supplemented with the bits from

the PIPs that are actually used between itself and the source port. It also ensures that each PIP is

only computed once. An example of this process applied to a multiple branch net is shown in

Figure 155.

Figure 154: Pseudo code of the forwardPropagateNode function. Each time a PIP is crossed a new
instance of the function is called. When a node has multiple downstream PIPs, the function is called one
time for each PIP based on the same level of function instance.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

forwardPropagateNet(Net net):
// get Net source port
EDIFPort srcPort = net.getSourcePort()
// get the SB list from sourcePort
List<Sb> srcSBList = srcPort.getSBList()
// get all net PIPs
List<PIP> pipList = net.getPIPs()
// create a Map linking each node to its downstream PIPs
Map<Node,List<PIP>> node2PipMap = getNode2PipMap(net)
// get the source node of the net
Node srcNode = srcPort.getNode()
// propagate the SB list through the node and extract PIP SBs
forwardPropagateNode(net,node2PipMap,srcNode,srcSBList)
RETURN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

forwardPropagateNode(Net net, Map<Node,List<PIP>> node2PipMap,
 Node currNode, List<Sb> currSBList):
// clone the current SB list
List<Sb> newSBList = new List<Sb>(currSBList)
// when a sinkPort is reached, affect the cloned SB list to it
IF node2PipMap.get(currNode)==null:
 EDIFPort sinkPort = currNode.getSinkPort()
 sinkPort.setSensitiveBit(newSBList)
 sinkPort.setIsComputed(True)
// else, for each sink PIP, add the PIP SBs & continue propagation
ELSE:
 FOR pip IN node2PipMap.get(currNode):
 newSBList.addAll(getSBfromPIP(pip))
 Node nextNode = pip.getEndNode()
 forwardPropagateNode(net,node2PipMap,nextNode,newSBList)
RETURN

168

Figure 155: Example of forward propagation of critical bit through net with multiple sink ports using a
recursive function. Each node that composes the net can have a single downhill PIP or several downhill PIPs
when the net splits. For each PIP (blue crosses), a new instance of the function is called. When the net splits,
different recursive branches are instantiated (one for each downhill PIP) to ensure that each sink port is
only supplemented with the bits from the PIPs that are actually used to reach them. Numbers in red define
the order in which the different net branches are computed.

An example of the full navigation procedure is illustrated in Figure 156. Once all primary outputs

have been computed, the sensitive bits are gathered while removing the duplicates. Every

sensitive bit that reached one of the primary outputs can be considered as critical. Indeed, during

the forward propagation of sensitive bits across logic gates, the sensitive bits that have an empty

timestamp list are removed to ensure that any error logically masked is filtered out.

Figure 156: Example of the navigation process applied to a basic 6-cells circuit. Starting from the 1st
output cell, the backward scan procedure goes through the FFA and LUTA cells before reaching the primary
inputs. Once every input ports of the LUTA cell have been computed, their sensitive bits are propagated to
the output of the cell. These sensitive bits are then propagated to the LUTC, LUTB and FFA cells while
extracting and propagating the PIPs sensitive bits of the net. The input of FFA being computed, the sensitive
bits can finally be propagated to the first primary output. The process is repeated with the two remaining
primary outputs taking advantage of the already computed ports.

The Java code is supplemented with different functionalities to deal with different types of

exception and different optimizations have been implemented to reduce the memory usage of the

program. For example, once the output of a cell has been computed, the list sensitive bits of its

input port can be removed and once the sink port of a net has been computed, the sensitive bits

of its source port can be deleted. This provides a good reduction on the memory usage when

dealing with large circuits by avoiding the memory over-duplication of sensitive bits.

When dealing with circuits integrating feedback loops, the previously detailed code would result

in endless loops of backward propagation. To overcome this issue, a list of cells under test is

created at program initialization. When a backward scan function is called, the corresponding cell

name is added to this list. Once the cell has been computed, the cell is removed from the list. When

169

checking if a source port of a net is already computed, if the cell is already contained in the list of

cells under test, the port is considered as computed and the forward propagation is triggered.

To be noted that the propagation conditions in feedback loops structure cannot be formally

determined as easily as with forward propagation circuits. Indeed, the modification of any net

state in such structure can alter the state of the input values in the subsequent clock cycles. This

input values being used to determine the propagation conditions, the exact time at which the error

occurs can affect its propagation probabilities. These considerations are not supported by the

proposed software at the moment. The application of this analytical approach on Finite State

Machines, counters, and recursive arithmetical circuits can results in an overestimated number of

critical bits. In the meantime, the results of the proposed analysis can be coupled with simulation-

based fault injection to determine the failure propagation and recovery mechanisms in such

circuits.

5.4. EVALUATION OF THE TOOL CAPACITIES

The software developed in this study allows to evaluate the number of critical bits of any design

implemented on a Xilinx 7 Series FPGA by considering the workload of the circuit in the error

propagation calculation. Beyond the drastic reduction of the execution time (discussed in section

5.4.3), this approach brings many advantages over emulation-based fault injection. Firstly, it can

be applied to any type of circuit without requiring any built-in nor external testing system.

Different input stimulus can be experienced without any modification of the design to evaluate

the workload impact on the system reliability. In addition, this approach provides a great visibility

over the predominant failure mechanisms. Based on their attributes, the type and the position in

the FPGA fabric of every critical bit can be extracted. For each critical bit, the corresponding

resource in the logical netlist can be identified. The software automatically generates a report

providing the detailed number of critical bits for each type of configuration bit. Last but not least,

this approach provides a great internal visibility over the reliability of each node. Indeed, the

number of critical bits associated with each internal net of the device can be extracted. This feature

can be used by designers to identify the most critical points of their designs and help them to

wisely apply selective triplication schemes.

To validate this software, the results obtained on different circuits are compared with those from

fault injection and proton experiments presented in section 4.5.3. Firstly, the results of the

analysis are formally validated by comparing the results on a test circuit with an exhaustive fault

injection performed on a component whose exact bitstream composition is known (Artix7-50T).

The fault injection results are processed to identify, for each critical bit detected, the type and

position of the affected resource as well as the role of the configuration bit. The same procedure

is applied on the software side and the resulting critical bit lists are compared to study the missing

or excess bits. The analytical approach performances are finally evaluated on wide panel of

circuits, by confronting the results to those obtained through fault injection and proton beam

testing presented in section 4.5.3.

5.4.1. EXHAUSTIVE FAULT INJECTION

The objective of this fault injection campaign is to verify that all critical configuration bits

detected by fault injection for a given circuit can been detected with the proposed software.

Conversely, the goal is also to ensure that the proposed software does not overestimate the

170

number of critical bits by verifying that all the critical bits extracted by this software are also

detected through fault injection.

To identify the function of the critical bit extracted with fault injection, this experiment requires a

complete knowledge of the bitstream composition of the FPGA used, at least on the types of

resources used by the targeted design. The PROJECT X-RAY database currently provides the

bitstream composition for all Artix7 devices but only one device for Spartan7, Zynq7 and Kintex7.

The bitstream global architecture is identical for other devices but the memory address

corresponding to a given slice cannot be determined and therefore conversely, the function of a

configuration bit at a given address cannot be identified.

The circuit used for this experiment is a FIR filter with SOM multipliers previously used in the

radiation tests described in chapter 4. The same BIST structure is used while simply replacing the

RAM blocks with distributed memory (LUT configured as read-only memory). The fault injection

procedure is also identical to the one use in previous experiments. However, as the SEM controller

is provided as encrypted netlist, it cannot be analyzed by the developed software. The SEM

controller and the structure under test are then implemented on two different parts of the fabric

with a large physical separation to avoid that nodes of the SEM controller cross the part where the

circuit under test is implemented. Additionally, the list of essential bits used to generate the

memory addresses is filtered to remove all the configuration bits related to the part where the

SEM controller is implemented.

On the fault injection side, a total of 467,524 bits has been injected (all essential bits after

removing the SEM controller related part). For each critical bit detected, the Physical Frame

Address (PFA), returned by the SEM controller, is used to determine the bit functionality and the

coordinate of the slice to which it is linked. A common configuration bit naming is used between

the fault injection reports and the reports from the developed software so that the critical bit list

can be compared to identify the missing bits.

On each side, the critical bits have divided into different categories depending on their

functionality:

• LUT content: the bits defining the LUT truth table.

• Switchbox multiplexers: bits driving the pass transistors of extra slice PIPs. For the

analytical approach result, these bits are further divided into open faults and bridge faults.

• Intra-slice routing multiplexers: bits driving the pass transistors of intra-slice routing

multiplexers.

• Flip-flop Latch: bit defining if the flip-flops are used as latch or as a regular flip-flop.

• LUT parameter: contain the LUT SRL and LUT RAM configuration bits, respectively used

to activate the shift-register LUT and Distributed memory features of LUTs contained is

SLICEM.

The comparison of the critical bit lists applied to this circuit is used to highlight and correct some

defects in the program and to adjust the failure model presented previously. For example, when a

missing critical bit is detected, the corresponding source cell is checked once the program is

finished to verify that this sensitive bit has actually been generated. If the bit is not generated, the

failure model is adjusted accordingly. If the sensitive bit is properly added to the cell’s output, the

different propagation paths of the error are monitored to detect the eventual presence of incorrect

error masking in one of the downstream logic gates. After this adjustment phase, the current

171

version of the program allowed to obtain a very good agreement with the result from the fault

injection as shown in Figure 157. Indeed, for each category, the number of estimated critical bit is

very close to the one extracted from fault injection (1.0%, 0.3%, 3.9% of error for the three first

categories respectively).

Figure 157:Comparison of the number of critical bits detected between exhaustive fault injection and
the proposed analytical approach. Critical bits are divided into different categories related to their
functionality.

Nevertheless, significant overestimation can be observed in the “Flip-flop Latch” and “LUT

parameters” categories (+36% and +18% respectively). This can be explained by the fact that

these errors are activated unconditionally while in some cases the corruption of these bits might

not impact the state of the concerned signals. These categories of bits have nevertheless a very

limited impact on the global critical bit count.

Further comparisons with fault injection results could be performed to continue improving the

current failure model. The error level on the total number of estimated critical bits having reached

a satisfactory level (<1%), the evaluation of the software performance is carried to the next step.

Its results must then be confronted with the results of radiation experiments and fault injection

on circuits that were not used to improve it.

5.4.2. COMPARISON WITH EXPERIMENTAL RESULTS

In section 4.5.3, a radiation experiment was carried with 180MeV protons on Kintex7

embedding eight types of FIR filter with different structures and parameters. The different

structures are recalled below:

• DIR: Direct form

• TRA: Transposed form

• COM: Combinatorial multiplier (no pipeline stages)

• RCE: Reset and clock enable signals added

• TMR: Triplicated and majority voted

• PAA: Parandeh-Afshar [143] multiplier

172

Through this radiation experiment, the cross section of each filter was extracted. The reports sent

by the SEM controller were also used to extract the bit cross section of the configuration memory.

As the proportion of multibit upsets was not negligible (34%), two types of bit cross sections were

computed to represent the lower and upper bound of an equivalent single bit upset cross section

(as explained in section 4.5.3.2). The lower bound only accounts for the total number of events

whatever the number of corrupted configuration bits per event. The upper bound considers the

number of corrupted bits of each event to represent the total number of affected bits. By carrying

a fault injection campaign on the same design, the number of critical bits for each filter structure

was extracted. The number of critical bits was finally multiplied to the bit cross section and

compared to the experimental results.

The proposed software is now used to extract the number of critical bits for every filter structure

used in this experiment and compute their cross section using the lower and upper bound of the

configuration memory bit cross section. Results are compared to experimental and fault injections

results in Figure 158.

Figure 158: Comparison of the cross section of different FIR filter structures between proton tests, fault
injection and the proposed software approach.

The results obtained with the software approach are in a good agreement with those obtained

with fault injection and proton experiment. Except for the TMR structure, the lower and upper

bounds of the cross section estimate actually surround the value obtained through proton testing.

A slight overestimation of the sensitivity can nevertheless be observed over fault injection,

excepted for DAF and CST structures. This overestimation can be attributed to the unconditional

activation of certain type of faults.

Indeed, the fault activation mechanisms for configuration bits related to routing resources could

not be clearly identified for every switchbox PIP. The tool currently considers that open faults are

activated unconditionally and that bridge faults are activated when both nets carry different

173

values. A better agreement with fault injection results could be obtained by further investigating

these effects and properly implementing their real behavior in the software.

The mismatch with TMR results has been discussed in section 4.6.3.3. It was partially attributed

to bitflips accumulation related to high radiation flux experiments. However, the TMR failures

related to MBUs are not addressed at the moment by the software. The knowledge of the bitstream

composition could be exploited to identify among the configuration bits belonging to different

replicas of the TMR scheme those sharing the same physical location.

Beyond providing the total number of critical bits, the analysis tool allows to differentiate the

number of critical bits for each configuration bit category as shown in Figure 159. The proportions

are extracted for each FIR filter structure type and shown in Figure 160. These two representations

provide an insight view of the main sources of failures for each filter structure and allows to

confirm and further investigate the assumption made in section 4.5.3 to explain the difference in

sensitivity induced by the various structural parameters of the filters.

Figure 159: Number of critical bits among the different configuration bit categories, applied to eight FIR
filter structures.

Transposed form (TRA) over direct form (DIR): the main difference lies in the high fanout nets

used to distribute the input signals to the multipliers and to the adder tree carrying the addition

of the multiplier output. The transposed form uses a set of binary adders separated by register

stages while the direct form uses a multiple input adder to add all multipliers outputs at the same

time. The critical bit proportion analysis reveals that the transposed form benefits from a

reduction of the critical bits related to the LUT content as binary adder use only two input LUTs

while the direct form uses bigger LUTs to carry the multiple input addition stage. However, this

reduction is totally overwhelmed by an increase of the routing resources susceptibility due to the

increased number of connections in the adder stage and in the input signal distribution network.

174

Figure 160: Proportion of critical bit among the different configuration bit categories, applied to eight FIR
filter structures.

Combinatorial (COM) multiplier over pipelined multiplier (DIR): as expected, the number of

critical bits related to intra-slice multiplexers and flip-flops is reduced but the main sensitivity

reduction lies in the PIP saving due to the shortening of the net’s lengths imposed by higher timing

constraints.

Flip-flop control signals usage: results confirm that the increased sensitivity is due to the

additional PIP required to distributed these control signals.

Triplication: an in-depth analysis of the location of fault inside the circuit was performed and

reveled that most critical bits are related to the majority voter resources and to the clock

distribution network.

PAA multiplier: the number of critical bits is increased for LUT content and switchbox PIP

categories. This is simply explained by the increase number of LUT and the increased size of the

LUTs.

Regarding the filter with constant coefficients, the assumption made previously are confirmed.

The distributed arithmetic filter (DAF), while using less LUT than the constant multiplier filter

(CST), has more critical bits related to the LUT content. This is due to the utilization of bigger LUT

(mostly 6-inputs LUTs) to hold the precomputed coefficient combination while the constant

multipliers use mainly 2-inputs LUTs. However, this high LUT count (for CST filter) comes at the

expense of a higher routing network sensitivity due to and increase number of nets to be

propagated.

More generally, the susceptibility to configuration memory upsets of arithmetic circuits is driven

by two main trends. In one hand, the more compact the calculations are (by exploiting the 6 inputs

of the instantiated LUTs), the more the sensitivity related to the contents of the LUT will be

important. In another hand, the more we try to spread the calculation on a higher LUT count of

small size, the more PIPs related CRAM bits are required to propagated this increased net count.

As a general observation, the routing resources represent between 66% and 91% percent of the

critical bits and close to 99% when including the LUT content bits. However, the remaining bits

175

should not be omitted as they can be the source of single point of failures on TMR protected

circuits.

5.4.3. EXECUTION TIME

The execution time of the program has been measured for all the filter circuits tested

previously executed on a desktop computer with an Intel Xeon Bronze 3204 and 64Go of RAM.

This execution time is then correlated to the number of cells contained in each design as shown in

Figure 161.

A linear trend in execution time as a function of the number of cells can be observed. However,

strong variations of the execution time can be noted for designs having approximately the same

number of cells. The execution time is indeed impacted by many factors related to the number of

critical bits to propagate. The computational load is dominated by the propagation of errors from

the inputs to the outputs of the logic gates because the calculation of timestamps for each input

combination must be calculated for each sensitive bit present on the inputs. The number of logic

stages that separate the inputs and outputs of the circuit as well as the error masking rate are

therefore predominant factors for the execution time.

Figure 161: Execution time of the program to extract the number of critical bits of the different filter
structures.

To be noted that in this study, a simulation length of 128 timestamps was chosen. No investigation

on the influence of the number of timestamps over the execution time have been carried but the

simulation length is expected to have a major influence on the execution time of the program.

Indeed, it has been observed that the calculation time is highly impacted by the propagation of

errors across LUTs. Unlike multiplexers, flip-flops and CARRY4 gates (which have a fixed logic

function and can thus benefit from important optimization in error propagation calculation

thanks to the use of BigInteger and bitwise operators) the propagation condition of LUT must

be computed “on-the-fly”. Therefore, the BigInteger data structure cannot be used to optimize

the propagation timestamps computations. The timestamps are then represented by list of

integers for which the computation is expected to be proportional to the simulation length. The

propagation across LUT algorithm (described in section 5.3.3) could be further optimized by pre-

176

computing BigInteger to represent the timestamps for each possible input combination.

Parallelization could also be implemented to compute the propagation of several sensitive bits

simultaneously.

Nevertheless, the computation time of the program remains very limited confirming a clear

advantage over fault injection.

5.5. CONCLUSION

In this chapter, a new software, based on an analytical approach, has been proposed to estimate

the susceptibility to SEU on the configuration memory of circuits implemented on Xilinx 7 series

SRAM-based FPGAs.

First, the state of the art on bitstream reverse engineering techniques, on failure analysis for

configuration memory related errors and on susceptibility analysis tools has been described.

Then, based on the decoding of the 7 series FPGA bitstream and by performing localized fault

injections on specific memory locations, a failure model has been established for the majority of

the logic and routing resources that compose the fabric of these FPGAs. For each type of resource,

the configuration bits that can possibly induce an error have been identified along with the

conditions in which the error can be activated. Additionally, for each logic gate, the conditions for

the propagation of errors on the inputs to the output have been defined.

Based on this failure model, a navigation algorithm was developed to parse the circuit netlist file,

navigate through all the logic gates and nets of the circuit to extract the associated sensitive

configuration bits. Based on the user-defined workload of the circuit, extracted from behavioral

simulation, the criticality of each sensitive bit is then evaluated by identifying the conditions that

allow errors to propagate to the primary outputs of the circuit.

As a result, this approach allows to identify and count the number of critical bits of any circuit.

The tools performances have been validated by confronting its results with those obtained

through fault injections and through radiation experiments over a wide panel of arithmetic

circuits. These validation steps have proven the ability of the proposed tool to predict the

sensitivity of these design while providing the following advantages:

• It provides a drastic reduction of the execution time over fault injection (max 84 mins for

20.000 logic gates).

• It can be applied to any type of (unencrypted) circuits without requiring any built-in nor

external testing system.

• Different input stimulus can be experienced without circuit modification to evaluate the

workload impact on the system reliability (this feature could also be useful to evaluate

ATPG tool performances).

• The type and the position in the FPGA fabric of every critical bit can be extracted along

with the associated resource.

• It automatically provides a report with the detailed number of critical bits for each type of

configuration bits.

• It provides a great visibility over the reliability of each node as the number of critical bits

associated with each internal net of the device can be extracted. This feature can be used

177

to identify the most critical points of their designs and selectively apply a triplication

scheme.

This tool could be very useful to all FPGA designers who want to quickly evaluate the reliability of

their circuits, compare the sensitivity of different implementations, identify critical points in their

design and evaluate the effectiveness of the applied fault-tolerance strategy.

Several improvements could be made to improve the results accuracy and the range of application

that can be analyzed. For example, the real activation conditions of PIPs could be properly

considered by further investigating the routing faults behavior. Similarly, by extending the

localized fault injection on hardcoded blocks such as PLL, DSP and IOs, their failure model could

be completed and fully integrated is the analysis. The error propagation model could also be

improved to relate the real behavior of errors propagation in feedback loops structures. In

addition, new features could be enabled such as the detection of possible MBU sensitivities of

circuits protected by triplication schemes.

The extension of this tool to more recent Xilinx FPGA series (Ultrascale and Ultrasacale+) could be

easily implemented as these FPGAs are already supported by the RAPIDWRIGHT API. However, even

if the configuration memory architectures are apparently close to the one of 7 series FPGAs, the

exact failure model of these new series cannot be updated at the moment due to lack of

information on the bitstream composition. While the 7 series FPGAs failure model could be

identically applied to these new components, the analytical results might be inaccurate. The

establishment of the failure model of Ultrascale and Ultrascale+ FPGAs could be enabled in the

future by the currently ongoing bitstream decoding within the framework of the PROJECT U-RAY

[195].

178

GENERAL CONCLUSION

In this study, several methodologies to assess the reliability of FPGA-based systems against

radiation have been proposed. The test methodologies provide various advantages in terms of

standardization of test results, visibility on degradation and failure mechanisms, and how test

results can be exploited to provide designers with the insight needed to address the radiation

reliability constraint.

In the first chapter, the different environments in which the radiative constraints must be

considered to ensure the reliability of electronic systems have been described. The interactions of

particles and photons with matter have been discussed along with a general overview of the

radiation effects on electronic components. Two main types of effects are to be considered: the

cumulative effects (TID and TNID) resulting in a progressive degradation of the component

parameters, mainly translated at system level by a propagation delay drift and an increase of the

power consumption. The Single Event Effects (SEE) that are generated by the interaction with a

single particle are subdivided in different categories depending on the type of effect and the

affected resources. For digital devices, the predominant SEEs are Single Event Upset (SEU),

corrupting the content of memory elements, Single Event Transient (SET) generating current

pulses in the combinatorial logic and Single Event Latchup (SEL), characterized by a sudden

increase in power consumption that can lead to a deactivation of all or parts of the component.

In the second chapter, the architecture of FPGAs has been detailed along with a description of the

main radiation effects and the associated failure mechanisms on these components. Depending on

the type of technology used to store the configuration memory, the behavior under radiation can

be very different. Flash-based FPGAs are particularly sensitive to dose effects that can easily

compromise the contents of memory cells and the associated programming circuitry. As for

SRAM-based FPGAs, the main concern is the sensitivity of the SRAM cells to SEU. The configuration

memory corruption can result in a modification of the implemented circuit topology. Different

state-of-the-art hardening technique at process, layout and design level have also been discussed.

In the third chapter, a new testing methodology has been proposed to assess the TID-induced

parametric degradation in FPGAs. This approach is based on the development of dedicated

benchmarking structures allowing the extension of the timing degradation evaluation to all the

logical and routing resources of the device. In addition, a new cost-effective technique for in-situ

delay measurement have been proposed based on the use of reprogrammable PLLs embedded in

the device. The proposed approach brings a step forward towards the standardization of TID test

results by extracting the individual degradation of each type of resource independently from the

test structure in which they are integrated. The standardization of the results is pushed even

further by proposing a method to reduce the impact of thermal experimental conditions on the

test results. The proposed methodology has been validated through X-ray testing on different

FPGA families.

In the fourth chapter, an FPGA SEE testing methodology based on a benchmarking approach has

been proposed. This methodology allows to reproduce the diversity and complexity of

interactions found in real circuits while providing good visibility on the predominant failure

179

mechanisms. Additionally, the benchmarking approach can be used to compare the radiation

sensitivity of different components and to identify their main vulnerabilities while providing

device specific recommendation regarding the mitigation techniques to be applied. Dedicated

structures have been developed around multipliers. By proposing several types of

implementation of the same arithmetic function, these test structures allow to test circuits with a

large architectural diversity and to evaluate the influence of different parameters on the SEE

sensitivity: the number and type of instantiated resources, the number and type of connections,

etc. This methodology has been applied to different FPGA components across three irradiation

campaigns with neutrons beam and protons beam. For each experiment, the benchmark was

supplemented with additional test structures to improve its diversity and identify the influence of

new implementation parameters. The experimental results revealed different trends on the

sensitivities of circuits implemented on FPGA. First, the sensitivity on SRAM-based FPGAs are

largely dominated by SEUs on the configuration memory making them much more sensitive than

their flash-based counterparts. The susceptibility characterization of a circuit to SEUs in

configuration memory turned out to be a complex task: the type, the size and number of resources

used, their flexibility and the way they are configured must be considered. The number of used

extra-slice routing segments also appears to be an important factor due to the possibility of errors

on the programmable interconnection points. This susceptibility to SEUs in the configuration

memory has also been addressed through fault injections. Indeed, for the Xilinx FPGAs, the use of

the soft error mitigation (SEM) controller during the test campaigns allowed not only to limit the

accumulation of bitflips in the configuration memory but also to extract its cross section. Fault

emulation in the configuration memory can then be performed with this same controller to extract

the number of critical bits and estimate the susceptibility of the circuit using the cross section

extracted during radiation tests. The correlation of the fault injection results with those from the

radiation experiments has also contributed to a better understanding of the involved failure

mechanisms.

To go further in the analysis of SEU susceptibility in the configuration memory of FPGA-based

system, a new software has been developed to analyze the netlist of circuits implemented on FPGA

and identify its configuration memory related vulnerabilities. First, a detailed failure model has

been established based on bitstream composition analysis and localized fault injections. For each

type of resource, the different configuration bits likely to generate errors have been identified and

the conditions of activation and propagation of these errors have been established. Based on this

failure model, an algorithm was developed to scan all the nets and logic gates of the circuit and

identify for each resource encountered, the type and number of sensitive configuration bits. By

integrating the workload of the circuit (extracted from the behavioral simulation), the activation

and propagation conditions are checked on-the-fly to determine which of the detected sensitive

bits may actually generate errors that propagate to the system outputs (critical bits). The results

of the proposed methodology have been confronted with proton tests and fault injection results

from previous experiments to prove its effectiveness. This approach allows a drastic reduction of

the execution time (83 minutes for a 20.000 cells circuit) compared to fault injection (days to

weeks) and gives a better visibility on the most sensitive area of the design and on the

predominance of the different failure mechanisms. The developed software could then provide

FPGA designers with the necessary tools to measure, from the early design phases, the sensitivity

180

of their circuit, identify the most sensitive areas (potentially usable to apply a selective

triplication) and evaluate the effectiveness of the implemented soft error mitigation techniques.

This software is currently based on Xilinx 7 series FPGAs but the proposed methodology could be

extended to other FPGA families. It currently focuses on the effects on the configuration memory

which are predominant for SRAM FPGAs but the algorithms developed to explore a circuit and

determine the conditions of activation and propagation of errors could be used more widely to

evaluate the influence of the other types of radiation effects. For example, the failures related to

SEUs on flip-flops could be addressed statistically: the probability of a SEU on a given flip-flop can

be determined by counting the number of timestamps where the generated error can propagate

to the outputs of the system and dividing it by the total number of timestamps used in the

simulation. Based on the propagation delay information contained in the checkpoint file, the

probabilities of SEU captures and temporal masking phenomena could also be integrated into the

failure probability calculation. Concerning the SETs, further investigations could be conducted

through radiation tests to analyze the effects of generation, broadening/narrowing and

amplification/attenuation of electrical pulses for each type of logic gate of the FPGA. Based on

these experimental results, an equivalent model for each element could be built and integrated

into the software to estimate the overall sensitivity of the circuit to SET. Such a failure model

taking into account SEUs on user flip-flops and SETs in the combinatorial logic could thus

complete the reliability analysis on SRAM FPGAs but also extend the use of this type of analytical

tool to Flash FPGAs and digital ASICs.

More generally, this work proposes several improvements to the standard FPGA radiation test

methodologies to overcome the dependency of the test results on the component configuration. A

step forward is made regarding the standardization of the test results and their reusability to

estimate the reliability of final applications. The radiation sensitivity, accurately estimated on a

large panel of representative circuits, supplements the timing and power constraints to provide

designers with all the information required to carefully select the types of implementations

tailored to their mission profiles. Finally, the analytical approach is proposed as a complementary

tool to improve the insight on the error generation and propagation mechanisms and allows to

gain precision on the reliability estimation of any circuit in the early design phases. Designers can

use this tool to quickly and easily understand the sources of failure within their circuits and thus

improve their reliability.

Whatever the maturity of these analysis tools, radiation testing will probably remain mandatory

and will continue to evolve in the upcoming years to study the reliability of new components put

on the market and to identify the failure mechanisms and their predominance. The benchmarking

approach proposed in this study could then be extended by integrating other types of test

structures to follow the rapid evolution and increasing complexity of FPGA components. The

extensive use of system-on-chip will also require new test methodologies to take into account the

new integrated features and the on-chip coupling of the FPGA fabric with hardwired processing

units (CPU, GPU, DSP, artificial intelligence engines, etc.).

181

PUBLICATIONS

International Conferences:

- G. Tsiligiannis, Antoine Touboul, Gaetan Bricas, Tadec Maraine, Jerome Boch, Frederic Wrobel,

Alain Michez, Frederic Saigne, Alain Godot, Asenath Etile, Thibaud Durand, Romain Sueur, Didier

Farigoule, Philippe Girones., “Evaluation and Analysis of Technologies for Robotic Platforms for

the Nuclear Decommissioning,” in 2020 15th Design & Technology of Integrated Systems in

Nanoscale Era (DTIS)

- G. Bricas, G. Tsiligiannis, A. Touboul, J. Boch, M. Kastriotou, and C. Cazzaniga, “Novel FPGA

Radiation Benchmarking Structures”, RADECS 2020

- G. Bricas, G. Tsiligiannis, A. Touboul, J. Boch, M. Kastriotou, C. Cazzaniga, C.D. Frost, L. Dilillo, L.

Matana Luza., “On the evaluation of FPGA radiation benchmarks,” ESREF 2021

- G. Bricas, G. Tsiligiannis, A. Touboul, J. Boch, and T. Maraine, “FPGA Benchmarking structures

dedicated to TID parametric degradation evaluation,” RADECS 2021

Journal Papers:

- G. Bricas G. Tsiligiannis, A. Touboul, J. Boch, M. Kastriotou, C. Cazzaniga, C.D. Frost, L. Dilillo, L.

Matana Luza, “On the evaluation of FPGA radiation benchmarks,” Microelectronics Reliability, vol.

126, p. 114276, Nov. 2021, doi: 10.1016/j.microrel.2021.114276.

- G. Bricas, G. Tsiligiannis, A. Touboul, J. Boch, T. Maraine and F. Saigné, "FPGA Benchmarking

structures dedicated to TID parametric degradation evaluation," in IEEE Transactions on Nuclear

Science, doi: 10.1109/TNS.2022.3180107.

182

REFERENCES

[1] J. T. Wallmark and S. M. Marcus, “Minimum Size and Maximum Packing Density of
Nonredundant Semiconductor Devices,” Proceedings of the IRE, vol. 50, no. 3, pp. 286–298,
Mar. 1962, doi: 10.1109/JRPROC.1962.288321.

[2] “White Paper: Is an ASIC Right for Your Next IoT Product?,” AnySilicon, Jun. 27, 2017.
https://anysilicon.com/asic-right-next-iot-product/ (accessed Sep. 08, 2022).

[3] Sé. Bourdarie and M. Xapsos, “The Near-Earth Space Radiation Environment,” IEEE Trans.
Nucl. Sci., vol. 55, no. 4, pp. 1810–1832, Aug. 2008, doi: 10.1109/TNS.2008.2001409.

[4] H. Schlaepfer, “Cosmic rays,” Spatium, 11, 2003. Accessed: Feb. 09, 2022. [Online]. Available:
http://www.issibern.ch/PDF-Files/Spatium_11.pdf

[5] “Monthly and smoothed sunspot number | SILSO.”
https://wwwbis.sidc.be/silso/monthlyssnplot (accessed Feb. 09, 2022).

[6] B. H. Mauk, N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy, “Science
Objectives and Rationale for the Radiation Belt Storm Probes Mission,” Space Sci Rev, vol. 179,
no. 1–4, pp. 3–27, Nov. 2013, doi: 10.1007/s11214-012-9908-y.

[7] K. K. Robert Baumann, “Radiation Handbook for Electronics,” p. 118.
[8] “Our Radiation Software,” TRAD. https://www.trad.fr/en/space/omere-software/ (accessed

Mar. 18, 2022).
[9] J. F. Ziegler, “Terrestrial cosmic ray intensities,” IBM J. Res. & Dev., vol. 42, no. 1, pp. 117–140,

Jan. 1998, doi: 10.1147/rd.421.0117.
[10] E. Normand, “Single-event effects in avionics,” IEEE Transactions on Nuclear Science, vol.

43, no. 2, pp. 461–474, Apr. 1996, doi: 10.1109/23.490893.
[11] T. C. May and M. H. Woods, “A New Physical Mechanism for Soft Errors in Dynamic

Memories,” in 16th International Reliability Physics Symposium, Apr. 1978, pp. 33–40. doi:
10.1109/IRPS.1978.362815.

[12] R. C. Baumann and E. B. Smith, “Neutron-induced boron fission as a major source of soft
errors in deep submicron SRAM devices,” in 2000 IEEE International Reliability Physics
Symposium Proceedings. 38th Annual (Cat. No.00CH37059), Apr. 2000, pp. 152–157. doi:
10.1109/RELPHY.2000.843906.

[13] G. Santin, P. Truscott, R. Gaillard, and R. G. Alía, “Radiation environments: space, avionics,
ground and below,” p. 142.

[14] D. J. Fitzgerald and E. H. Snow, “Comparison of surface and bulk effects of nuclear reactor
radiation on planar devices,” IEEE Transactions on Electron Devices, vol. 15, no. 3, pp. 160–
163, Mar. 1968, doi: 10.1109/T-ED.1968.16154.

[15] K. Roeed et al., “Method for Measuring Mixed Field Radiation Levels Relevant for SEEs at
the LHC,” IEEE Transactions on Nuclear Science, vol. 59, no. 4, pp. 1040–1047, Aug. 2012, doi:
10.1109/TNS.2012.2183677.

[16] “ISIS ChipIr.” https://www.isis.stfc.ac.uk/Pages/Chipir.aspx (accessed May 18, 2022).
[17] “Plateforme Technologique PRESERVE,” IES - Institut d’Electronique et des Systèmes.

https://www.ies.umontpellier.fr/la-recherche-et-linnovation/equipements-et-
plateformes/plateforme-technologique-preserve/ (accessed Sep. 08, 2022).

[18] F. Wrobel, “Fundamentals on Radiation-Matter Interaction,” IEEE RADECS 2005, Cap
d’Agde, France, 19-23 septembre 2005.

[19] J. F. Ziegler, “SRIM-2003,” Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, vol. 219–220, pp. 1027–1036, Jun. 2004, doi:
10.1016/j.nimb.2004.01.208.

[20] T. R. Oldham and F. B. McLean, “Total ionizing dose effects in MOS oxides and devices,”
IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 483–499, Jun. 2003, doi:
10.1109/TNS.2003.812927.

[21] R. C. Lacoe, “Improving Integrated Circuit Performance Through the Application of
Hardness-by-Design Methodology,” Nuclear Science, IEEE Transactions on, vol. 55, pp. 1903–
1925, Sep. 2008, doi: 10.1109/TNS.2008.2000480.

183

[22] A. Bacchini, G. Furano, M. Rovatti, and M. Ottavi, “Total Ionizing Dose Effects on DRAM Data
Retention Time,” IEEE Transactions on Nuclear Science, vol. 61, no. 6, pp. 3690–3693, Dec.
2014, doi: 10.1109/TNS.2014.2365532.

[23] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,”
IEEE Trans. Device Mater. Relib., vol. 5, no. 3, pp. 305–316, Sep. 2005, doi:
10.1109/TDMR.2005.853449.

[24] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-event upset in
digital microelectronics,” IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 583–602,
Jun. 2003, doi: 10.1109/TNS.2003.813129.

[25] M. Berg, “Field Programmable Gate Array (FPGA) Single Event Effect (SEE) Radiation
Testing,” p. 54.

[26] N. A. Dodds et al., “Selection of Well Contact Densities for Latchup-Immune Minimal-Area
ICs,” IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp. 3575–3581, Dec. 2010, doi:
10.1109/TNS.2010.2082562.

[27] R. Ecoffet, “Overview of In-Orbit Radiation Induced Spacecraft Anomalies,” IEEE
Transactions on Nuclear Science, vol. 60, no. 3, pp. 1791–1815, Jun. 2013, doi:
10.1109/TNS.2013.2262002.

[28] R. Singh, “FPGA vs ASIC: Differences between them and which one to use?,” Numato Lab
Help Center. https://numato.com/blog/differences-between-fpga-and-asics/ (accessed Mar.
24, 2022).

[29] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA
performance and density,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 12, no. 3, pp. 288–298, Mar. 2004, doi: 10.1109/TVLSI.2004.824300.

[30] “7 Series FPGAs Configurable Logic Block User Guide (UG474),” p. 74, 2016.
[31] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,” FNT in

Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2007, doi: 10.1561/1000000005.
[32] “7 Series DSP48E1 Slice User Guide (UG479),” p. 58, 2018.
[33] “7 Series FPGAs Memory Resources User Guide,” p. 88, 2019.
[34] “Vivado Design Suite User Guide: Partial Reconfiguration (UG909),” p. 147, 2018.
[35] “Flash*Freeze Control Using JTAG,” p. 7.
[36] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The rosetta experiment:

atmospheric soft error rate testing in differing technology FPGAs,” IEEE Trans. Device Mater.
Relib., vol. 5, no. 3, pp. 317–328, Sep. 2005, doi: 10.1109/TDMR.2005.854207.

[37] X. Yao, N. Hindman, L. T. Clark, K. E. Holbert, D. R. Alexander, and W. M. Shedd, “The Impact
of Total Ionizing Dose on Unhardened SRAM Cell Margins,” IEEE Transactions on Nuclear
Science, vol. 55, no. 6, pp. 3280–3287, Dec. 2008, doi: 10.1109/TNS.2008.2007122.

[38] M. S. Gorbunov et al., “Design of 65 nm CMOS SRAM for Space Applications: A Comparative
Study,” IEEE Transactions on Nuclear Science, vol. 61, no. 4, pp. 1575–1582, Aug. 2014, doi:
10.1109/TNS.2014.2319154.

[39] S. Vartanian, G. R. Allen, and D. Thorbourn, “SRAM-Based FPGA: High Dose Test Methods
Using Evaluation Boards,” p. 6.

[40] L. Ding et al., “Analysis of TID Failure Modes in SRAM-Based FPGA Under Gamma-Ray and
Focused Synchrotron X-Ray Irradiation,” IEEE Transactions on Nuclear Science, vol. 61, no. 4,
pp. 1777–1784, Aug. 2014, doi: 10.1109/TNS.2014.2314530.

[41] H. Ito and M. Watanabe, “Total ionizing dose tolerance of the serial configuration on
cyclone II FPGA,” in 2015 IEEE International Conference on Space Optical Systems and
Applications (ICSOS), Oct. 2015, pp. 1–4. doi: 10.1109/ICSOS.2015.7425067.

[42] E. G. Stassinopoulos, G. J. Brucker, O. Van Gunten, and H. S. Kim, “Variation in SEU
sensitivity of dose-imprinted CMOS SRAMs,” IEEE Transactions on Nuclear Science, vol. 36, no.
6, pp. 2330–2338, Dec. 1989, doi: 10.1109/23.45444.

[43] L. A. Tambara et al., “Soft error rate in SRAM-based FPGAs under neutron-induced and TID
effects,” in 2014 15th Latin American Test Workshop - LATW, Mar. 2014, pp. 1–6. doi:
10.1109/LATW.2014.6841920.

[44] J. Benfica et al., “Analysis of SRAM-Based FPGA SEU Sensitivity to Combined EMI and TID-
Imprinted Effects,” IEEE Transactions on Nuclear Science, vol. 63, no. 2, pp. 1294–1300, Apr.
2016, doi: 10.1109/TNS.2016.2523458.

184

[45] S. Gerardin et al., “Radiation Effects in Flash Memories,” IEEE Transactions on Nuclear
Science, vol. 60, no. 3, pp. 1953–1969, Jun. 2013, doi: 10.1109/TNS.2013.2254497.

[46] E. S. Snyder, P. J. McWhorter, T. A. Dellin, and J. D. Sweetman, “Radiation response of
floating gate EEPROM memory cells,” IEEE Transactions on Nuclear Science, vol. 36, no. 6, pp.
2131–2139, Dec. 1989, doi: 10.1109/23.45415.

[47] T. R. Oldham et al., “SEE and TID Characterization of an Advanced Commercial 2Gbit NAND
Flash Nonvolatile Memory,” IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3217–
3222, Dec. 2006, doi: 10.1109/TNS.2006.885843.

[48] D. N. Nguyen, S. M. Guertin, G. M. Swift, and A. H. Johnston, “Radiation effects on advanced
flash memories,” IEEE Transactions on Nuclear Science, vol. 46, no. 6, pp. 1744–1750, Dec.
1999, doi: 10.1109/23.819148.

[49] G. Cellere et al., “Radiation effects on floating-gate memory cells,” IEEE Transactions on
Nuclear Science, vol. 48, no. 6, pp. 2222–2228, Dec. 2001, doi: 10.1109/23.983199.

[50] G. Cellere, A. Paccagnella, A. Visconti, and M. Bonanomi, “Transient conductive path
induced in floating gate memories by single ions,” in 2005 International Conference on
Integrated Circuit Design and Technology, 2005. ICICDT 2005., May 2005, pp. 29–32. doi:
10.1109/ICICDT.2005.1502583.

[51] N. Z. Butt and M. Alam, “Modeling single event upsets in Floating Gate memory cells,” in
2008 IEEE International Reliability Physics Symposium, Apr. 2008, pp. 547–555. doi:
10.1109/RELPHY.2008.4558944.

[52] A. V. Microsemi CA, USA, “Single Event Effects - A Comparison of Configuration Upsets and
Data Upsets.” Nov. 2015.

[53] N. Rezzak, D. Dsilva, J.-J. Wang, and N. Jat, “SET and SEFI Characterization of the 65 nm
SmartFusion2 Flash-Based FPGA under Heavy Ion Irradiation,” in 2015 IEEE Radiation Effects
Data Workshop (REDW), Boston, MA, USA, Jul. 2015, pp. 1–4. doi:
10.1109/REDW.2015.7336733.

[54] J. M. Benedetto and C. C. Hafer, “Ionizing radiation response of an amorphous silicon based
antifuse,” in 1997 IEEE Radiation Effects Data Workshop NSREC Snowmass 1997. Workshop
Record Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference, Jul. 1997,
pp. 101–104. doi: 10.1109/REDW.1997.629806.

[55] J.-J. Wang et al., “A Novel 65 nm Radiation Tolerant Flash Configuration Cell Used in RTG4
Field Programmable Gate Array,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, Dec.
2015, doi: 10.1109/TNS.2015.2495262.

[56] M. Berg et al., “Characterizing the Effects of Single Event Upsets on Synchronous Data
Paths,” IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp. 2697–2703, Aug. 2013, doi:
10.1109/TNS.2013.2273938.

[57] E. Keren, S. Greenberg, N. M. Yitzhak, D. David, N. Refaeli, and A. Haran, “Characterization
and Mitigation of Single-Event Transients in Xilinx 45-nm SRAM-Based FPGA,” IEEE
Transactions on Nuclear Science, vol. 66, no. 6, pp. 946–954, Jun. 2019, doi:
10.1109/TNS.2019.2916151.

[58] V. Ferlet-Cavrois, L. W. Massengill, and P. Gouker, “Single Event Transients in Digital
CMOS—A Review,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1767–1790, Jun.
2013, doi: 10.1109/TNS.2013.2255624.

[59] P. Adell and G. Allen, “Assessing and Mitigating Radiation Effects in Xilinx FPGAs,” p. 36.
[60] L. Ding, Z. Wang, W. Chen, Y. Li, Q. Zhang, and D. Yu, “Bitstream-based simulation for

configuration SEUs in Xilinx Virtex-4 FPGAs,” in 2016 16th European Conference on Radiation
and Its Effects on Components and Systems (RADECS), Sep. 2016, pp. 1–4. doi:
10.1109/RADECS.2016.8093217.

[61] “Device Reliability Report Second Half 2021,” p. 90, 2022.
[62] Xilinx, “virtex5qv-product-table.”

https://www.xilinx.com/content/dam/xilinx/publications/prod_mktg/virtex5qv-product-
table.pdf (accessed Jul. 12, 2022).

[63] “Space-Grade Virtex-4QV Family Overview (DS653),” p. 8, 2014.
[64] G. Allen, G. Swift, and C. Carmichael, “Virtex-4VQ Static SEU Characterization Summary,” p.

22.

185

[65] H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey, “Static Proton and Heavy Ion
Testing of the Xilinx Virtex-5 Device,” in 2007 IEEE Radiation Effects Data Workshop, Jul. 2007,
pp. 177–184. doi: 10.1109/REDW.2007.4342561.

[66] J. Pellish, “Xilinx Virtex-5QV (V5QV) Independent SEU Data,” p. 76.
[67] D. M. Hiemstra and V. Kirischian, “Single Event Upset Characterization of the Virtex-6 Field

Programmable Gate Array Using Proton Irradiation,” in 2012 IEEE Radiation Effects Data
Workshop, Jul. 2012, pp. 1–4. doi: 10.1109/REDW.2012.6353716.

[68] G. Tsiligiannis and S. Danzeca, “SmartFusion2 and Artix 7 radiation test results for the new
developments.” https://slideplayer.com/slide/13055387/ (accessed Jul. 13, 2022).

[69] D. S. Lee, M. Wirthlin, G. Swift, and A. C. Le, “Single-Event Characterization of the 28 nm
Xilinx Kintex-7 Field-Programmable Gate Array under Heavy Ion Irradiation,” in 2014 IEEE
Radiation Effects Data Workshop (REDW), Paris, France, Jul. 2014, pp. 1–5. doi:
10.1109/REDW.2014.7004595.

[70] G. M. Swift and S. Engineering, “Overview of the XRTC Single-Event Test Results on the
Xilinx 7-Series FPGAs,” p. 22.

[71] A. M. Keller, T. A. Whiting, K. B. Sawyer, and M. J. Wirthlin, “Dynamic SEU Sensitivity of
Designs on Two 28-nm SRAM-Based FPGA Architectures,” IEEE Transactions on Nuclear
Science, vol. 65, no. 1, pp. 280–287, Jan. 2018, doi: 10.1109/TNS.2017.2772288.

[72] P. Maillard, “Total Ionizing Dose and Single-Events characterization of Xilinx 20nm Kintex
UltraScaleTM,” p. 4, 2019.

[73] “Radiation Tolerant Kintex UltraScale XQRKU060 FPGA Data Sheet,” p. 101, 2022.
[74] C. Johansson and T. Månefjord, “Characterization and Considerations for Upset in FPGA,”

in 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), Oct. 2018, pp. 1–4. doi:
10.1109/NORCHIP.2018.8573506.

[75] M. Glorieux et al., “Single-Event Characterization of Xilinx UltraScale+® MPSOC under
Standard and Ultra-High Energy Heavy-Ion Irradiation,” in 2018 IEEE Radiation Effects Data
Workshop (REDW), Jul. 2018, pp. 1–5. doi: 10.1109/NSREC.2018.8584296.

[76] P. Maillard, M. Hart, J. Barton, J. Arver, and C. Smith, “Neutron, 64 MeV Proton & Alpha
Single-event Characterization of Xilinx 16nm FinFET Zynq® UltraScale+TM MPSoC,” in 2017
IEEE Radiation Effects Data Workshop (REDW), Jul. 2017, pp. 1–5. doi:
10.1109/NSREC.2017.8115449.

[77] P. Maillard, Y. P. Chen, J. Barton, and M. L. Voogel, “Single Event Latchup (SEL) and Single
Event Upset (SEU) Evaluation of Xilinx 7nm VersalTM ACAP programmable logic (PL),” in 2021
IEEE Radiation Effects Data Workshop (REDW), Jul. 2021, pp. 1–6. doi:
10.1109/NSREC45046.2021.9679343.

[78] S. L. Clark, K. Avery, and R. Parker, “TID and SEE testing results of Altera Cyclone field
programmable gate array,” in 2004 IEEE Radiation Effects Data Workshop (IEEE Cat.
No.04TH8774), Jul. 2004, pp. 88–90. doi: 10.1109/REDW.2004.1352911.

[79] B. Cheynis and L. Ducroux, “Radiation effects on V0 detector elements,” p. 15.
[80] A. B. Sanders, K. A. LaBel, C. Poivey, and J. A. Seely, “ALTERA STRATIXTM EP1S25 FIELD-

PROGRAMMABLE GATE ARRAY (FPGA),” p. 9, 2005.
[81] G. R. Allen and G. M. Swift, “Single Event Effects Test Results for Advanced Field

Programmable Gate Arrays,” in 2006 IEEE Radiation Effects Data Workshop, Jul. 2006, pp. 115–
120. doi: 10.1109/REDW.2006.295478.

[82] C. Färber, U. Uwer, D. Wiedner, B. Leverington, and R. Ekelhof, “Radiation tolerance tests
of SRAM-based FPGAs for the potential usage in the readout electronics for the LHCb
experiment,” J. Inst., vol. 9, no. 02, pp. C02028–C02028, Feb. 2014, doi: 10.1088/1748-
0221/9/02/C02028.

[83] G. R. Allen, G. Madias, E. Miller, and G. Swift, “Recent Single Event Effects Results in
Advanced Reconfigurable Field Programmable Gate Arrays,” in 2011 IEEE Radiation Effects
Data Workshop, Jul. 2011, pp. 1–6. doi: 10.1109/REDW.2010.6062511.

[84] C. Poivey, M. Grandjean, and F. X. Guerre, “Radiation Characterization of Microsemi
ProASIC3 Flash FPGA Family,” in 2011 IEEE Radiation Effects Data Workshop, Jul. 2011, pp. 1–
5. doi: 10.1109/REDW.2010.6062510.

[85] “Radiation-Tolerant ProASIC3 FPGAs Radiation Effects”.

186

[86] N. Rezzak, J.-J. Wang, D. Dsilva, and N. Jat, “TID and SEE Characterization of Microsemi’s
4th Generation Radiation Tolerant RTG4 Flash-Based FPGA,” presented at the 2015 IEEE
Radiation Effects Data Workshop (REDW), Boston, MA, USA, Jul. 2015. doi:
10.1109/REDW.2015.7336739.

[87] “RTG4_Proton_Test_Report,” p. 12.
[88] J. J. Wang, N. Rezzak, F. Hawley, G. Bakker, J. McCollum, and E. Hamdy, “Radiation

Characteristics Of Field Programmable Gate Array Using Complementary-Sonos
Configuration Cell,” p. 6.

[89] “NanoXplore Radiative test Brave-FPGA.”
[90] O. Musseau, “Single-event effects in SOI technologies and devices,” IEEE Transactions on

Nuclear Science, vol. 43, no. 2, pp. 603–613, Apr. 1996, doi: 10.1109/23.490904.
[91] J. Verbeeck, P. Leroux, and M. Steyaert, “Radiation effects upon the mismatch of identically

laid out transistor pairs,” in 2011 IEEE ICMTS International Conference on Microelectronic Test
Structures, Apr. 2011, pp. 194–197. doi: 10.1109/ICMTS.2011.5976845.

[92] “Mitigation of Radiation Effects in RTG4 Radiation-Tolerant Flash FPGAs WP0191 White
Paper,” p. 10.

[93] J.-J. Wang et al., “A Novel 65 nm Radiation Tolerant Flash Configuration Cell Used in RTG4
Field Programmable Gate Array,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp.
3072–3079, Dec. 2015, doi: 10.1109/TNS.2015.2495262.

[94] J. L. Andrews, J. E. Schroeder, B. L. Gingerich, W. A. Kolasinski, R. Koga, and S. E. Diehl,
“Single Event Error Immune CMOS RAM,” IEEE Transactions on Nuclear Science, vol. 29, no. 6,
pp. 2040–2043, Dec. 1982, doi: 10.1109/TNS.1982.4336492.

[95] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design for submicron
CMOS technology,” IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 2874–2878, Dec.
1996, doi: 10.1109/23.556880.

[96] F. Wrobel, “Prepare for the next decade!,” p. 204.
[97] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving FPGA Design

Robustness with Partial TMR,” in 2006 IEEE International Reliability Physics Symposium
Proceedings, San Jose, CA, USA, 2006, pp. 226–232. doi: 10.1109/RELPHY.2006.251221.

[98] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple Modular redundancy (STMR)
based single-event upset (SEU) tolerant synthesis for FPGAs,” IEEE Transactions on Nuclear
Science, vol. 51, no. 5, pp. 2957–2969, Oct. 2004, doi: 10.1109/TNS.2004.834955.

[99] A. Sánchez, L. Entrena, and F. Kastensmidt, “Approximate TMR for selective error
mitigation in FPGAs based on testability analysis,” in 2018 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), Aug. 2018, pp. 112–119. doi: 10.1109/AHS.2018.8541485.

[100] “FPGA Design Solution for High-Reliability Applications,” p. 4.
[101] “Precision® Hi-Rel Advanced FPGA Synthesis Datasheet,” Mentor Graphics Corp., 2018.
[102] “Functional Triple Modular Redundancy (FTMR),” p. 56.
[103] M. Zheng, Z. Wang, and L. Li, “DAO: Dual module redundancy with AND/OR logic voter for

FPGA hardening,” in 2015 First International Conference on Reliability Systems Engineering
(ICRSE), Beijing, China, Oct. 2015, pp. 1–5. doi: 10.1109/ICRSE.2015.7366414.

[104] F. G. de Lima Kastensmidt, G. Neuberger, R. F. Hentschke, L. Carro, and R. Reis, “Designing
fault-tolerant techniques for SRAM-based FPGAs,” IEEE Design Test of Computers, vol. 21, no.
6, pp. 552–562, Nov. 2004, doi: 10.1109/MDT.2004.85.

[105] M. Berg, N. Program, and M. D. Berg, “Single Event Effects in FPGA Devices,” p. 49.
[106] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lundgreen, “Domain Crossing

Errors: Limitations on Single Device Triple-Modular Redundancy Circuits in Xilinx FPGAs,”
IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2037–2043, Dec. 2007, doi:
10.1109/TNS.2007.910870.

[107] T. Bates and C. P. Bridges, “Single event mitigation for Xilinx 7-series FPGAs,” in 2018 IEEE
Aerospace Conference, Mar. 2018, pp. 1–12. doi: 10.1109/AERO.2018.8396520.

[108] “pg036_sem.pdf • Viewer • Documentation Portal.” https://docs.xilinx.com/v/u/en-
US/pg036_sem (accessed Apr. 29, 2022).

[109] NanoXplore, “Configuration Memory Integrity Check (CMIC) Application Note for NG-
MEDIUM,” Feb. 2021.

[110] “Intel® Stratix® 10 SEU Mitigation User Guide,” p. 45.

187

[111] L. Ding et al., “Analysis of TID Failure Modes in SRAM-Based FPGA Under Gamma-Ray and
Focused Synchrotron X-Ray Irradiation,” IEEE Transactions on Nuclear Science, vol. 61, no. 4,
Art. no. 4, Aug. 2014, doi: 10.1109/TNS.2014.2314530.

[112] J. J. Wang et al., “Total ionizing dose effects on flash-based field programmable gate array,”
IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp. 3759–3766, Dec. 2004, doi:
10.1109/TNS.2004.839255.

[113] F. L. Kastensmidt, E. C. P. Fonseca, R. G. Vaz, O. L. Goncalez, R. Chipana, and G. I. Wirth, “TID
in Flash-Based FPGA: Power Supply-Current Rise and Logic Function Mapping Effects in
Propagation-Delay Degradation,” IEEE Transactions on Nuclear Science, vol. 58, no. 4, pp.
1927–1934, Aug. 2011, doi: 10.1109/TNS.2011.2128881.

[114] S. Rezgui et al., “Investigation of Low Dose Rate and Bias Conditions on the Total Dose
Tolerance of a CMOS Flash-Based FPGA,” IEEE Transactions on Nuclear Science, vol. 59, no. 1,
pp. 134–143, Feb. 2012, doi: 10.1109/TNS.2011.2179316.

[115] G. Lentaris et al., “TID Evaluation System With On-Chip Electron Source and
Programmable Sensing Mechanisms on FPGA,” IEEE Transactions on Nuclear Science, vol. 66,
no. 1, pp. 312–319, Jan. 2019, doi: 10.1109/TNS.2018.2885713.

[116] R. Ichimiya et al., “Radiation qualification of electronics components used for the ATLAS
level-1 muon endcap trigger system,” in IEEE Symposium Conference Record Nuclear Science
2004., Oct. 2004, vol. 2, pp. 779-783 Vol. 2. doi: 10.1109/NSSMIC.2004.1462325.

[117] I. C. Lopes et al., “Comparison of TID-induced Degradation of Programmable Logic Timings
in Bulk 28nm and 16nm FinFET System-on- Chips under Local X-ray Irradiation,” p. 5.

[118] N. Ma, S. Wang, D. Liu, and Y. Peng, “A run-time built-in approach of TID test in SRAM based
FPGAs,” Microelectronics Reliability, vol. 64, pp. 42–47, Sep. 2016, doi:
10.1016/j.microrel.2016.07.128.

[119] M. A. Kacou, F. Ghaffari, O. Romain, and B. Condamin, “FPGA static timing analysis
enhancement based on real operating conditions,” in IECON 2017 - 43rd Annual Conference of
the IEEE Industrial Electronics Society, Beijing, Oct. 2017, pp. 3556–3561. doi:
10.1109/IECON.2017.8216602.

[120] “Cmod S7 Reference Manual - Digilent Reference.”
https://digilent.com/reference/programmable-logic/cmod-s7/reference-
manual?redirect=1 (accessed May 05, 2022).

[121] “Cmod A7 - Digilent Reference.” https://digilent.com/reference/programmable-
logic/cmod-a7/start (accessed May 05, 2022).

[122] “DIPFORTy1 ‘Soft-Propeller’ - Open Source Hardware - Trenz Electronic Wiki.”
https://wiki.trenz-electronic.de/pages/viewpage.action?pageId=20612010 (accessed May
05, 2022).

[123] “TEI0003 Resources - Public Docs - Trenz Electronic Wiki.” https://wiki.trenz-
electronic.de/display/PD/TEI0003+Resources (accessed May 05, 2022).

[124] N. Rezzak, J.-J. Wang, C.-K. Huang, V. Nguyen, and G. Bakker, “Total Ionizing Dose
Characterization of 65 nm Flash-Based FPGA,” in 2014 IEEE Radiation Effects Data Workshop
(REDW), Paris, France, Jul. 2014, pp. 1–5. doi: 10.1109/REDW.2014.7004606.

[125] A. Michez et al., “TCAD prediction of dose effects on MOSFETs with ECORCE,” in 2017 17th
European Conference on Radiation and Its Effects on Components and Systems (RADECS), Oct.
2017, pp. 1–4. doi: 10.1109/RADECS.2017.8696230.

[126] A. Manuzzato, S. Gerardin, A. Paccagnella, L. Sterpone, and M. Violante, “On the Static Cross
Section of SRAM-Based FPGAs,” in 2008 IEEE Radiation Effects Data Workshop, Jul. 2008, pp.
94–97. doi: 10.1109/REDW.2008.24.

[127] H. M. Quinn et al., “A Test Methodology for Determining Space Readiness of Xilinx SRAM-
Based FPGA Devices and Designs,” IEEE Transactions on Instrumentation and Measurement,
vol. 58, no. 10, pp. 3380–3395, Oct. 2009, doi: 10.1109/TIM.2009.2025469.

[128] L. Bozzoli, C. De Sio, B. Du, and L. Sterpone, “A Neutron Generator Testing Platform for the
Radiation Analysis of SRAM-based FPGAs,” in 2021 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), May 2021, pp. 1–5. doi:
10.1109/I2MTC50364.2021.9459804.

[129] “7 Series FPGAs Configuration User Guide (UG470),” p. 180, 2018.

188

[130] “Soft Error Mitigation Controller v4.1 LogiCORE IP Product Guide • Soft Error Mitigation
Controller Product Guide (PG036) • Reader • Documentation Portal.”
https://docs.xilinx.com/r/en-US/pg036_sem (accessed Jul. 19, 2022).

[131] P. Maillard et al., “Single-Event Upsets Characterization Evaluation of Xilinx UltraScaleTM
Soft Error Mitigation (SEM IP) Tool,” in 2016 IEEE Radiation Effects Data Workshop (REDW),
Jul. 2016, pp. 1–4. doi: 10.1109/NSREC.2016.7891745.

[132] M. Berg, H. Kim, M. Friendlich, C. Perez, C. Seidlick, and K. Label, “Actel ProASIC
A3PE3000L-PQ208 Field Programmable Gate Array Single Event Effects (SEE) High-Speed
Test Plan- Phase II,” p. 96.

[133] C. Leong et al., “Fast radiation monitoring in FPGA-based designs,” in 2015 Conference on
Design of Circuits and Integrated Systems (DCIS), Nov. 2015, pp. 1–6. doi:
10.1109/DCIS.2015.7388590.

[134] M. Cannon, M. Wirthlin, A. Camplani, M. Citterio, and C. Meroni, “Evaluating Xilinx 7 Series
GTX Transceivers for Use in High Energy Physics Experiments Through Proton Irradiation,”
IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2695–2702, Dec. 2015, doi:
10.1109/TNS.2015.2497216.

[135] E. Gousiou, G. F. Penacoba, J. C. Cubillos, and E. Gousiou, “Radiation tests on the complete
system of the instrumentation of the LHC cryogenics at the CERN Neutrinos to Gran Sasso
(CNGS) test facility.,” p. 4.

[136] N. J. Buchanan and D. M. Gingrich, “Proton Induced Radiation E ects on a Xilinx FPGA and
Estimates of SEE in the ATLAS Environment.” http://cds.cern.ch/record/684188/files/larg-
2001-011.pdf?version=1 (accessed Jul. 22, 2022).

[137] H. Quinn et al., “Using Benchmarks for Radiation Testing of Microprocessors and FPGAs,”
IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2547–2554, Dec. 2015, doi:
10.1109/TNS.2015.2498313.

[138] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks and first ATPG
results,” IEEE Design & Test of Computers, vol. 17, no. 3, pp. 44–53, Jul. 2000, doi:
10.1109/54.867894.

[139] G. Squillero, “PoliTo ITC99 (I99T).” Jun. 27, 2022. Accessed: Aug. 29, 2022. [Online].
Available: https://github.com/squillero/itc99-poli

[140] M. Kumm, S. Abbas, and P. Zipf, “An Efficient Softcore Multiplier Architecture for Xilinx
FPGAs,” in 2015 IEEE 22nd Symposium on Computer Arithmetic, Lyon, France, Jun. 2015, pp.
18–25. doi: 10.1109/ARITH.2015.17.

[141] M. Kumm and J. Wilkomm, “Ternary Adder IP Cores.” http://www.martin-
kumm.de/wiki/lib/exe/fetch.php?media=FPGA_Cores:ternary_adder.pdf (accessed Jul. 22,
2022).

[142] A. Booth, “A signed binary multiplcation technique,” The Quarterly Journal of Mechanics
and Applied Mathematics, pp. 236–240, 1951.

[143] H. Parandeh-Afshar and P. Ienne, “Measuring and Reducing the Performance Gap between
Embedded and Soft Multipliers on FPGAs,” in 2011 21st International Conference on Field
Programmable Logic and Applications, Sep. 2011, pp. 225–231. doi: 10.1109/FPL.2011.48.

[144] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Exploiting fast carry-chains of FPGAs for
designing compressor trees,” in 2009 International Conference on Field Programmable Logic
and Applications, Aug. 2009, pp. 242–249. doi: 10.1109/FPL.2009.5272301.

[145] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and B. Popa, “Arithmetic core
generation using bit heaps,” in 2013 23rd International Conference on Field programmable
Logic and Applications, Sep. 2013, pp. 1–8. doi: 10.1109/FPL.2013.6645544.

[146] M. Kumm and J. Kappauf, “Advanced Compressor Tree Synthesis for FPGAs,” IEEE
Transactions on Computers, vol. 67, no. 8, pp. 1078–1091, Aug. 2018, doi:
10.1109/TC.2018.2795611.

[147] R. Amirtharajah, “Chapter 24 - Distributed Arithmetic,” in Reconfigurable Computing, S.
Hauck and A. Dehon, Eds. Burlington: Morgan Kaufmann, 2008, pp. 503–512. doi:
10.1016/B978-012370522-8.50032-7.

[148] J. M. Mogollon, H. Guzmán-Miranda, J. Nápoles, J. Barrientos, and M. A. Aguirre,
“FTUNSHADES2: A novel platform for early evaluation of robustness against SEE,” in 2011

189

12th European Conference on Radiation and Its Effects on Components and Systems, Sep. 2011,
pp. 169–174. doi: 10.1109/RADECS.2011.6131392.

[149] A. Miczo, Digital Logic Testing and Simulation, Wiley. 2003.
[150] “Digital Systems Testing and Testable Design | IEEE eBooks | IEEE Xplore.”

https://ieeexplore.ieee.org/book/5266057 (accessed Jul. 26, 2022).
[151] M. Renovell, J. M. Portal, P. Faure, J. Figueras, and Y. Zorian, “Analyzing the test generation

problem for an application-oriented test of FPGAs,” in Proceedings IEEE European Test
Workshop, May 2000, pp. 75–80. doi: 10.1109/ETW.2000.873782.

[152] M. Rebaudengo, M. S. Reorda, and M. Violante, “A new functional fault model for FPGA
application-oriented testing,” in 17th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2002. DFT 2002. Proceedings., Nov. 2002, pp. 372–380. doi:
10.1109/DFTVS.2002.1173534.

[153] C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone, “UA2TPG: An untestability
analyzer and test pattern generator for SEUs in the configuration memory of SRAM-based
FPGAs,” Integration, vol. 55, pp. 85–97, Sep. 2016, doi: 10.1016/j.vlsi.2016.03.004.

[154] C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone, “Accurate simulation of SEUs in
the configuration memory of SRAM-based FPGAs,” in 2012 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct. 2012, pp. 115–120.
doi: 10.1109/DFT.2012.6378210.

[155] C. Cazzaniga and C. D. Frost, “Progress of the Scientific Commissioning of a fast neutron
beamline for Chip Irradiation,” J. Phys.: Conf. Ser., vol. 1021, p. 012037, May 2018, doi:
10.1088/1742-6596/1021/1/012037.

[156] I. da Costa Lopes, “Méthodologie d’évaluation d’effets des radiations dans les systèmes
numériques : du niveau composant au niveau système,” University of Montpellier,
Montpellier, 2020.

[157] M. Rimén, J. Ohlsson, J. Karlsson, E. Jenn, and J. Arlat, “Design Guidelines of a VHDL-based
Simulation Tool for the Validation of Fault Tolerance,” p. 23.

[158] L. A. B. Naviner, J.-F. Naviner, G. G. dos Santos, E. C. Marques, and N. M. Paiva, “FIFA: A fault-
injection–fault-analysis-based tool for reliability assessment at RTL level,” Microelectronics
Reliability, vol. 51, no. 9–11, pp. 1459–1463, Sep. 2011, doi: 10.1016/j.microrel.2011.06.017.

[159] R. Travessini, P. R. C. Villa, F. L. Vargas, and E. A. Bezerra, “Processor core profiling for SEU
effect analysis,” in 2018 IEEE 19th Latin-American Test Symposium (LATS), Mar. 2018, pp. 1–
6. doi: 10.1109/LATW.2018.8347235.

[160] M. A. Aguirre, J. N. Tombs, A. Torralba, and L. G. Franquelo, “UNSHADES-1: An Advanced
Tool for In-System Run-Time Hardware Debugging,” in Field Programmable Logic and
Application, vol. 2778, P. Y. K. Cheung and G. A. Constantinides, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 1170–1173. doi: 10.1007/978-3-540-45234-8_146.

[161] “Vivado Design Suite User Guide: Programming and Debugging (UG908),” p. 353, 2017.
[162] A. Ullah, P. Reviriego, and J. A. Maestro, “An Efficient Methodology for On-Chip SEU

Injection in Flip-Flops for Xilinx FPGAs,” IEEE Transactions on Nuclear Science, vol. 65, no. 4,
Apr. 2018, doi: 10.1109/TNS.2018.2812719.

[163] L. A. Aranda, A. Sánchez-Macián, and J. A. Maestro, “ACME: A Tool to Improve Configuration
Memory Fault Injection in SRAM-Based FPGAs,” IEEE Access, vol. 7, pp. 128153–128161, 2019,
doi: 10.1109/ACCESS.2019.2939858.

[164] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection:
Quantified error and confidence,” in Automation & Test in Europe Conference & Exhibition 2009
Design, Apr. 2009, pp. 502–506. doi: 10.1109/DATE.2009.5090716.

[165] “Project X-Ray Documentation,” p. 111.
[166] C. Lavin and A. Kaviani, “RapidWright: Enabling Custom Crafted Implementations for

FPGAs,” in 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), Boulder, CO, USA, Apr. 2018, pp. 133–140. doi:
10.1109/FCCM.2018.00030.

[167] Z. Wang, Z. Yao, H. Guo, and M. Lu, “A software solution to estimate the SEU-induced soft
error rate for systems implemented on SRAM-based FPGAs,” J. Semicond., vol. 32, no. 5, p.
055008, May 2011, doi: 10.1088/1674-4926/32/5/055008.

190

[168] J.-B. Note and É. Rannaud, “From the bitstream to the netlist,” in Proceedings of the 16th
international ACM/SIGDA symposium on Field programmable gate arrays - FPGA ’08, Monterey,
California, USA, 2008, p. 264. doi: 10.1145/1344671.1344729.

[169] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream reverse-engineering,” in
22nd International Conference on Field Programmable Logic and Applications (FPL), Oslo,
Norway, Aug. 2012, pp. 735–738. doi: 10.1109/FPL.2012.6339165.

[170] R. Le Roux, G. Van Schoor, and P. Van Vuuren, “Parsing and analysis of a Xilinx FPGA
bitstream for generating new hardware by direct bit manipulation in real-time,” SACJ, vol. 31,
no. 1, Jul. 2019, doi: 10.18489/sacj.v31i1.620.

[171] Wolfgang-Spraul, “Wolfgang-Spraul/fpgatools.” Apr. 27, 2022. Accessed: Aug. 05, 2022.
[Online]. Available: https://github.com/Wolfgang-Spraul/fpgatools

[172] M. Jeong, J. Lee, E. Jung, Y. H. Kim, and K. Cho, “Extract LUT Logics from a Downloaded
Bitstream Data in FPGA,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), May 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8350950.

[173] Z. Wang, Z. Yao, H. Guo, and M. Lv, “Bitstream decoding and SEU-induced failure analysis
in SRAM-based FPGAs,” Sci. China Inf. Sci., vol. 55, no. 4, pp. 971–982, Apr. 2012, doi:
10.1007/s11432-011-4396-3.

[174] S. A. Guccione, D. Levi, S. Guccione, and D. Levi, “JBits: A Java-Based Interface to FPGA
Hardware,” p. 9.

[175] K. Dang Pham, E. Horta, and D. Koch, “BITMAN: A tool and API for FPGA bitstream
manipulations,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2017, Mar.
2017, pp. 894–897. doi: 10.23919/DATE.2017.7927114.

[176] L. Bozzoli and L. Sterpone, “COMET: a Configuration Memory Tool to Analyze, Visualize
and Manipulate FPGAs Bitstream,” in ARCS Workshop 2018; 31th International Conference on
Architecture of Computing Systems, Apr. 2018, pp. 1–4.

[177] L. Bozzoli, C. De Sio, L. Sterpone, and C. Bernardeschi, “PyXEL: An Integrated Environment
for the Analysis of Fault Effects in SRAM-Based FPGA Routing,” in 2018 International
Symposium on Rapid System Prototyping (RSP), Oct. 2018, pp. 70–75. doi:
10.1109/RSP.2018.8632000.

[178] M. Ceschia et al., “Identification and classification of single-event upsets in the
configuration memory of SRAM-based FPGAs,” IEEE Transactions on Nuclear Science, vol. 50,
no. 6, pp. 2088–2094, Dec. 2003, doi: 10.1109/TNS.2003.821411.

[179] L. Sterpone and M. Violante, “A new analytical approach to estimate the effects of SEUs in
TMR architectures implemented through SRAM-based FPGAs,” IEEE Transactions on Nuclear
Science, vol. 52, no. 6, pp. 2217–2223, Dec. 2005, doi: 10.1109/TNS.2005.860745.

[180] M. Sonza Reorda, L. Sterpone, and M. Violante, “Efficient estimation of SEU effects in SRAM-
based FPGAs,” in 11th IEEE International On-Line Testing Symposium, Jul. 2005, pp. 54–59. doi:
10.1109/IOLTS.2005.26.

[181] M. Desogus, L. Sterpone, and D. M. Codinachs, “Validation of a tool for estimating the effects
of soft-errors on modern SRAM-based FPGAs,” in 2014 IEEE 20th International On-Line Testing
Symposium (IOLTS), Jul. 2014, pp. 111–115. doi: 10.1109/IOLTS.2014.6873681.

[182] G. Asadi and M. B. Tahoori, “An Analytical Approach for Soft Error Rate Estimation of
SRAM-Based FPGAs,” p. 8.

[183] H. Asadi, M. B. Tahoori, B. Mullins, D. Kaeli, and K. Granlund, “Soft Error Susceptibility
Analysis of SRAM-Based FPGAs in High-Performance Information Systems,” IEEE
Transactions on Nuclear Science, vol. 54, no. 6, pp. 2714–2726, Dec. 2007, doi:
10.1109/TNS.2007.910426.

[184] A. Sari, D. Agiakatsikas, and M. Psarakis, “A soft error vulnerability analysis framework for
Xilinx FPGAs,” in Proceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays, Monterey California USA, Feb. 2014, pp. 237–240. doi:
10.1145/2554688.2554767.

[185] G. Asadi and M. B. Tahoori, “An accurate SER estimation method based on propagation
probability [soft error rate],” in Design, Automation and Test in Europe, Mar. 2005, pp. 306-
307 Vol. 1. doi: 10.1109/DATE.2005.49.

[186] G. Asadi and M. B. Tahoori, “Soft error rate estimation and mitigation for SRAM-based
FPGAs,” in Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-

191

programmable gate arrays - FPGA ’05, Monterey, California, USA, 2005, p. 149. doi:
10.1145/1046192.1046212.

[187] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder — A novel tool and technique to build
statically and dynamically reconfigurable systems for FPGAS,” in 2008 International
Conference on Field Programmable Logic and Applications, Sep. 2008, pp. 119–124. doi:
10.1109/FPL.2008.4629918.

[188] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc: towards an open-
source tool flow,” in Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays - FPGA ’11, Monterey, CA, USA, 2011, p. 41. doi:
10.1145/1950413.1950425.

[189] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings, “RapidSmith:
Do-It-Yourself CAD Tools for Xilinx FPGAs,” in 2011 21st International Conference on Field
Programmable Logic and Applications, Sep. 2011, pp. 349–355. doi: 10.1109/FPL.2011.69.

[190] T. Haroldsen, B. Nelson, and B. Hutchings, “RapidSmith 2: A Framework for BEL-level CAD
Exploration on Xilinx FPGAs,” in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Monterey California USA, Feb. 2015, pp. 66–69. doi:
10.1145/2684746.2689085.

[191] Xilinx, “Vivado Design Suite Properties Reference Guide (UG912),” Jun. 06, 2018.
https://docs.xilinx.com/api/khub/documents/XwCw4k_rU1QQyWHEvp0lKA/content?Ft-
Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=3.11.45&filename=ug912-
vivado-properties.pdf (accessed Aug. 08, 2022).

[192] “RapidWright Overview — RapidWright 2022.1.2-beta documentation.”
https://www.rapidwright.io/docs/RapidWright_Overview.html (accessed Aug. 08, 2022).

[193] L. Sterpone et al., “Experimental Validation of a Tool for Predicting the Effects of Soft
Errors in SRAM-Based FPGAs,” IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2576–
2583, Dec. 2007, doi: 10.1109/TNS.2007.910122.

[194] “xapp465.pdf • Viewer • Documentation Portal.” https://docs.xilinx.com/v/u/en-
US/xapp465 (accessed Aug. 15, 2022).

[195] “Project U-Ray.” F4PGA, Jul. 24, 2022. Accessed: Aug. 26, 2022. [Online]. Available:
https://github.com/f4pga/prjuray

	Acknowledgment
	Résumé
	Acronyms and definitions
	Table of content
	Introduction
	1. Radiation: environments and effects on electronics
	1.1. Radiation environment
	1.1.1. Space radiation environment
	1.1.1.1. Galactic cosmic rays
	1.1.1.2. Solar energetic particles
	1.1.1.3. Trapped radiations
	1.1.1.4. Radiation environment modeling tools

	1.1.2. Atmospheric and terrestrial radiation environments
	1.1.3. Artificial radiation environments
	1.1.3.1. Nuclear power plants
	1.1.3.2. Medical radiation environments
	1.1.3.3. Particle accelerators
	1.1.3.4. Radiation sources

	1.2. Radiation effects on electronics
	1.2.1. Radiation-matter interactions
	1.2.1.1. Photon-matter interactions
	1.2.1.2. Nuclear interactions
	1.2.1.3. Coulombic interactions
	1.2.1.4. Energy transfers in matter

	1.2.2. Cumulative effects
	1.2.2.1. Total Ionizing Dose
	1.2.2.2. Total Non-Ionizing Dose

	1.2.3. Single event effects
	1.2.3.1. Single Event Transient
	1.2.3.2. Single Event Upset
	1.2.3.3. Single Event Latch-up
	1.2.3.4. SEE sensitivity metrics

	1.3. Conclusion

	2. FPGA Architecture
	2.1. Definition and principle
	2.1.1. Advantages and drawbacks
	2.1.2. Development workflow

	2.2. Architecture description
	2.2.1. Overview
	2.2.2. Configurable logic blocks
	2.2.3. Configurable Routing matrix
	2.2.4. Specialized Blocks
	2.2.5. Configuration memory cell technologies
	2.2.5.1. Static RAM
	2.2.5.2. Flash memory
	2.2.5.3. Antifuse

	2.3. Radiation effects on FPGAs
	2.3.1. Radiation effects on configuration memory cells
	2.3.1.1. SRAM
	2.3.1.2. Flash
	2.3.1.3. Antifuse
	2.3.1.4. Summary

	2.3.2. Total Ionizing Dose effect – Parametric degradation
	2.3.3. Single event effects
	2.3.4. Summary of radiation effect on FPGAs

	2.4. Radiation hardening
	2.4.1. Process based hardening
	2.4.2. Layout based hardening
	2.4.3. Circuit based hardening
	2.4.4. Memory hardening

	2.5. Conclusion

	3. FPGA testing methodologies for TID effects assessment
	3.1. From testing methodologies to Benchmarking
	3.1.1. State of the art of testing methodologies
	3.1.2. Extension of degradation evaluation to all resources
	3.1.3. Benchmarking structures

	3.2. Test setup
	3.2.1. Propagation delay measurement
	3.2.2. Device selection
	3.2.3. X-ray Generator and parameters

	3.3. Radiation test results
	3.3.1. Propagation delay degradation results
	3.3.2. Thermal effect consideration
	3.3.3. Power consumption
	3.3.4. Design margins consideration

	3.4. Conclusion

	4. FPGA testing methodologies for SEE assessment
	4.1. State of the art methodologies
	4.1.1. SEE testing challenges
	4.1.2. Configuration memory sensitivity evaluation
	4.1.3. Primitive level sensitivity evaluation
	4.1.4. Final application testing
	4.1.5. Radiation test benchmarking

	4.2. Benchmarking requirements
	4.3. Benchmark selection
	4.3.1. Hardware implementation of arithmetic operators
	4.3.1.1. Binary addition
	4.3.1.2. Ternary adder
	4.3.1.3. Binary multiplier principle
	4.3.1.4. Carry-Save Multiplier
	4.3.1.5. Speed optimized multiplier
	4.3.1.6. Area optimized multiplier
	4.3.1.7. Booth encoding optimization
	4.3.1.8. Constant multiplier optimization
	4.3.1.9. Selected multiplier implementations
	4.3.1.10. Finite Impulse Response filter
	4.3.1.11. Distributed arithmetic

	4.4. Built-in self-test
	4.4.1. Test pattern selection
	4.4.2. BIST architecture
	4.4.3. Error formatting
	4.4.4. Test setup and procedure

	4.5. Experimental results
	4.5.1. First campaign: influence of timing constraints
	4.5.1.1. Setup details
	4.5.1.2. Results

	4.5.2. Second campaign: improvements and extensions
	4.5.2.1. Test setup modifications
	4.5.2.2. Results

	4.5.3. Third campaign: filter’s structural parameters
	4.5.3.1. Test setup
	4.5.3.2. Results

	4.6. Fault injection
	4.6.1. State of the art methodologies
	4.6.2. Fault injection procedure
	4.6.3. Experimental results
	4.6.3.1. Statistical analysis
	4.6.3.2. Application to the second test campaign benchmark
	4.6.3.3. Application to the third test campaign

	4.7. Conclusion

	5. SEE susceptibility evaluation tool
	5.1. State of the art SEE susceptibility prediction tools
	5.1.1. Bitstream reverse engineering
	5.1.2. Vulnerability analysis
	5.1.3. SEE susceptibility prediction tools
	5.1.4. CAD tools and APIs for fine-grained circuit manipulation and analysis

	5.2. Failure model establishment
	5.2.1. Decoded bitstream database
	5.2.2. Localized fault injection
	5.2.3. Switchboxes
	5.2.3.1. Failure model
	5.2.3.2. Activation conditions

	5.2.4. Intra-slice routing multiplexers
	5.2.4.1. Failure model
	5.2.4.2. Activation conditions

	5.2.5. Logic multiplexer
	5.2.6. Carry Logic
	5.2.7. Look Up Tables
	5.2.7.1. Activation conditions
	5.2.7.2. Propagation conditions

	5.2.8. Flip-flops
	5.2.9. Shift Register LUT
	5.2.9.1. Failure modes
	5.2.9.2. Propagation conditions

	5.2.10. Block RAM
	5.2.10.1. Failure modes
	5.2.10.2. Activation conditions
	5.2.10.3. Propagation conditions

	5.2.11. Unsupported primitives

	5.3. Netlist analysis and critical bits extraction
	5.3.1. Data structures
	5.3.2. Workload extraction
	5.3.3. Circuit navigation algorithms

	5.4. Evaluation of the tool capacities
	5.4.1. Exhaustive fault injection
	5.4.2. Comparison with experimental results
	5.4.3. Execution time

	5.5. Conclusion

	General Conclusion
	Publications
	References

