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Il consiste à extraire de données hyperspectrales (ici d'une image), les composantes spectrales des composants macroscopiques purs contenus dans les données et appelées endmembers et à identier leurs interactions appelés mélanges. Le démélange spectral, comme la plupart des problèmes de séparation de sources, est un problème dicile et mal-posé. Pour réduire la complexité du problème, la plupart des travaux de la litérature sont basés sur un modèle de mélange linéaire (LMM pour linear mixing model), considéré comme une première approximation du modèle de mélange réel. Ce modèle est dit linéaire dans le sens où le spectre observé d'un pixel mélangé résulte d'une combinaison linéaire des endmembers. Cependant, cette approximation peut être trop éloignée du modèle réel pour certaines images et des modèles plus complexes doivent être utilisés pour dépasser les limitations intrinsèques du LMM. Plusieurs modèles de mélanges non-linéaires (NLMMs pour nonlinear mixing models) pour le démélange spectral ont été proposés pour caractériser les eets non-linéaires qui peuvent apparaitre dans les images hyperspectrales. A cause de la grande diversité de ces eets, la conception et/ou le choix d'un modèle approprié au problème de démélange est dicile. Les récents travaux de la litérature se concentrent sur de nouveaux modèles non-linéaires et algorithmes de démélange associés.

Structure du manuscrit

Le premier chapitre de ce manuscrit présente un modèle post-non-linéaire pour le démélange spectral non-linéaire.

Le modèle post-non-linéaire polynomial (PPNMM) étudié permet de modéliser des non-linéarités qui peuvent différer d'un pixel à l'autre. Une propriété importante de ce modèle est que la non-linéarité de chaque pixel est caractérisée par un seul paramètre. De plus, ce paramètre est nul si le modèle de mélange sous-jacent est linéaire.

La première partie de ce chapitre se concentre sur le problème de démélange dans le cas où les signatures spectrales des composants purs de l'image sont connues. Le premier algorithme développé est constitué d'un modèle bayésien hiérarchique couplé à des méthodes de simulation MCMC (Markov chain Monte Carlo). Deux autres algorithmes d'optimisation sont également proposés pour résoudre le problème avec un coût calculatoire réduit par rapport à l'algorithme bayésien. La exibilité du modèle PPNMM et les performances des trois méthodes sont analysées à l'aide de simulations réalisées sur des données synthétiques et réelles. La seconde partie du premier chapitre étudie un nouveau modèle bayésien pour résoudre le problème de démélange à l'aide du modèle PPNMM dans le cas où les signatures spectrales sont inconnues et doivent être estimées. Des lois a priori sont associées à tous les paramètres inconnus du modèle. L'estimation conjointe des signatures spectrales et des coecients de mélange induit un grand nombre de paramètres à simuler. Pour améliorer l'ecacité de l'échantillonneur, des méthodes de Monte Carlo à base de dynamiques hamiltoniennes contraintes sont utilisées.

Le second chapitre de ce manuscrit étudie une nouvelle méthode à base de noyaux pour le démélange spectral non-linéaire. Cette méthode est étroitement liée à une récente méthode de réduction de dimension non-linéaire utilisant un modèle à variables latentes et des processus gaussiens (Gaussian process latent variable model (GPLVM)) [START_REF] Lawrence | Gaussian process latent variable models for visualisation of high dimensional data[END_REF]. Les GPLVMs, qui succitent de plus en plus d'intérêt dans le domaine de l'apprentissage automatique, ont la propriété intéressante de pouvoir approcher de nombreuses relations non-linéaires entre un espace dit latent (de dimension faible) et l'espace des observations (de dimension plus importante). Les relations non-linéaires et souvent complexes peuvent être approchées par des fonctions à base de noyaux [START_REF] Perez-Cruz | Gaussian processes for nonlinear signal processing: An overview of recent advances[END_REF]. Par conséquent, ces modèles sont particulièrement adaptés pour analyser des images hyperspectrales et potentiellement pour résoudre le problème de démélange. Dans ce chapitre, nous proposons d'utiliser une forme particulière de noyau basé sur les modèles bilinéaires existants, ce qui permet à l'algorithme de démélange proposé d'être bien adapté lorsque le modèle de mélange sous-jacent est bilinéaire. La première étape de l'algorithme bayésien proposé consiste à estimer les abondances des pixels de l'image. Des lois a priori choisies avec soin sont aectées aux paramètres inconnus du modèle GPLVM (y compris les variables latentes liées aux abondances) à estimer. La distribution a posteriori de ces paramètres est obtenue en utilisant l'inférence bayésienne. Les estimateurs du maximum a posteriori (MAP) des paramètres sont obtenus en utilisant une méthode de gradient et les abondances sont estimées à partir des variables latentes estimées. Une fois les abondances estimées, les signatures spectrales des composants purs de l'image sont estimées à l'aide de la capacité de prédiction des processus gaussiens. L'algorithme de démélange proposé brise le paradigme habituel du démélange spectral en estimant d'abord les abondances et en prédisant ensuite les signatures spectrales. Les simulations réalisées sur des images synthétiques et réelles illustrent la exibilité du modèle proposé pour le démélange spectral linéaire et non linéaire et donnent des résultats prometteurs concernant l'estimation des abondances et des spectres d'intérêt, même en l'absence de pixels purs dans l'image.

Le troisième chapitre de ce manuscrit est dédié à la détection de non-linéarités dans les images hyperspectrales.

Ce chapitre se concentre sur des procédures de détection supervisées, c'est-à-dire quand les signatures spectrales des composants purs de l'image sont a priori connues. Le premier détecteur supervisé est basé sur le modèle PPNMM étudié dans le premier chapitre. Plus précisément, le test associé est basé sur les propriétés statistiques des paramètres de ce modèle et permet de décider si un pixel donné résulte d'un mélange linéaire ou non linéaire.

Inversement, le deuxième détecteur supervisé ne suppose aucun modèle non-linéaire particulier et repose uniquement sur le modèle de mélange linéaire. Les deux détecteurs sont comparés en utilisant des simulations eectuées sur des données synthétiques et réelles.

Le détecteur de non-linéarités basé sur le modèle PPNMM et étudié dans le troisième chapitre est utilisé après une procédure de délémange basée sur ce même modèle. D'un autre côté, le détecteur de non-linéarité basé sur le modèle LMM ne nécessite pas explicitement une étape de démélage. Cependant, il serait intéressant de proposer des algorithmes qui permettent d'eectuer simultanément le démélange spectral (linéaire/non-linéaire) et la détection de non-linéarités. Le dernier chapitre de ce manuscrit présente un modèle de mélange non-linéaire pour eectuer conjointement le démélange et la détection de non-linéarités. Le modèle non-linéaire proposé suppose que les réectances des pixels sont des combinaisons linéaires des composantes spectrales pures connus, aectées par un terme additive qui dépend de ces signatures spectrales et contaminées par un bruit additif. Un champ de Markov est considéré pour la détection de non-linéarités an de prendre en compte la structure spatiale des termes non-linéaires.

L'image observée est alors segmentée en régions où ces termes non-linéaires, s'ils sont présents, partagent les mêmes propriétés statistiques. Un algorithme bayésien est proposé pour estimer les paramètres du modèle, ce qui permet d'eectuer simultanément le démélange spectral et la détection de non-linéarités. Les performances de l'algorithme sont d'abord évaluées sur des données synthétiques et les simulations eectuées avec des données réelles donnent des résultats intéressants et prometteurs.

• Premier chapitre. Un nouveau modèle non-linéaire à base de mélanges post-non-linéaires est proposé pour le démélange linéaire/non-linéaire. La non-linéarité de chaque pixel est caractérisée par un paramètre d'amplitude unique, ce qui permettra de proposer des détecteurs de non-linéarités simples dans le troisième chapitre de cette thèse. Des méthodes ecaces sont proposées pour résoudre les problèmes de démélange supervisé et non-supervisé. Des algorithmes d'échantillonnage basés sur des méthodes MCMC à dynamiques hamiltoniennes sont également utilisés pour améliorer les propriétés de mélange de l'échantillonneur lorsque les composantes spectrales pures de l'image sont inconnues (et doivent être estimées).

• Deuxième chapitre. Un nouveau modèle de mélange non-linéaire et non-paramétrique est proposé. L'algorithme de démélange associé brise le paradigme habituel du démélange spectral en estimant d'abord les abondances et en prédisant ensuite les signatures spectrales, ce qui se révèle ecace en cas d'absence de pixels purs dans l'image.

• Troisième chapitre. Des tests statistiques sont proposés pour la détection de non-linéarités aectant les pixels d'une image hyperspectrale, lorsque les composants de cette image sont connus. Les tests proposés sont simples à mettre en oeuvre, avec un coût calculatoire faible pour pouvoir être appliqués en pratique.

Les résultats de détection peuvent alors être utilisés comme une étape de pré-traitement pour sélectionner des pixels ou des régions où des modèles plus complexes doivent être utilisés à la place du modèle linéaire classique pour le démélange spectral.

Introduction Context and objectives of the thesis

This thesis has been achieved in the Institut de Recherche en Informatique de Toulouse (IRIT), within the Signal and Communication group. This group has a strong experience in developing hyperspectral image processing methods. The work presented herein follows naturally previous works conducted by Nicolas Dobigeon and Olivier

Eches on linear spectral unmixing. This thesis has been funded by Direction Générale de l'Armement (DGA),

French Ministry of defence, for a three-year period. This manuscript presents new nonlinear models and associated algorithms for spectral unmixing of hyperspectral images. Spectral unmixing (SU) is a source separation problem that has received intensive interest over the few last decades in signal and image processing [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF][START_REF] Craig | Minimum volume transforms for remotely sensed data[END_REF][START_REF] Keshava | Spectral unmixing[END_REF]. It consists of extracting from a hyperspectral image, the spectra of the pure macroscopic components present in the image, referred to as endmembers, and of identifying their interactions or mixtures. SU of hyperspectral images, as most of the source separation tasks, is a challenging ill-posed problem. To reduce the problem complexity, most works of the literature rely on a linear mixing model (LMM), often considered as a rst approximation of the actual mixture. This model is referred to as linear in the sense that the reectance spectrum of a mixed pixel is assumed to be a linear combination of the endmembers.

However, this approximation can be inaccurate to describe some scenes, requiring more complex mixing models to be considered (to overcome the inherent limitations of the LMM). Few studies have addressed the problem of nonlinear SU to characterize nonlinear eects aecting hyperspectral images. Designing and/or choosing an appropriate nonlinear mixing model (NLMM) for SU is a challenging problem because of the diversity of nonlinear eects.

Second, introducing nonlinear terms in the observation model complicates the derivation of ecient nonlinear SU procedures relying on NLMMs. The aim of this work is to propose ecient image analysis and nonlinear SU methods based on exible NLMMs.

Linear spectral unmixing of hyperspectral images

Hyperspectral images are 3-dimensional data cubes. These cubes consist of two spatial and one spectral dimensions.

The spectral dimension corresponds to the dierent wavelengths at which the scene is observed. Each pixel of a multidimensional image corresponds to an elementary surface of the observed scene and is represented by a vector of values, whose length is given by the number of spectral bands considered. Classical colored images can be seen as particular multiband images where the number of spectral bands reduces to three (red, green and blue).

When the number of spectral bands increases, the images are called multispectral (up to about 10 bands) and hyperspectral images composed of several hundreds of bands. Multispectral and thus hyperspectral images oer a better spectral resolution when compared to classical RGB images. These images allow elements in a scene to be easily distinguished using more spectral information available, which could be dicult or even impossible when using other kinds of images. The hyperspectral images analyzed in this manuscript are reectance images, i.e., the vector of values associated with each pixel is the reectance vector (or spectrum) of the corresponding surface in the scene. Consequently, the spectrum of a pixel composed of a sole material (such as soil vegetation or water) is characteristic of this endmember (see Fig. 1). Based on this observation, many works have been conducted to segment hyperspectral images and to classify the image pixels into groups sharing similar spectral properties. This classication problem has received intensive interest and provided interesting results in terms of scene understanding [START_REF] Fauvel | Advances in spectral -spatial classication of hyperspectral images[END_REF][START_REF] Tarabalka | Svm-and mrf-based method for accurate classication of hyperspectral images[END_REF]. proposed for a more precise scene characterization which can be considered as a soft classication [START_REF] Kent | Spatial classication using fuzzy membership models[END_REF]. The next section recalls the classical linear mixing model used to address the problem of hyperspectral image SU.

Linear mixing model

As mentioned above, hyperspectral images have two spatial dimensions and thus the pixel positions are characterized by two spatial coordinates, i.e., a row and a column index. However, a single position index is preferred in this manuscript for ease of reading. Let N row (resp. N col and L) denote the number of rows (resp. columns and spectral bands) of the observed image. The image contains N = N row × N col pixels y n (n = 1, . . . , N ) observed at L dierent wavelengths. When each photon reaching the sensor has interacted with a sole macroscopic component of the observed scene, the nth measured reectance spectrum y n ∈ R L can be accurately described by the following LMM

y n = R r=1 a r,n m r + e n (1) 
where R is the number of endmembers in the image, m r = [m r,1 , . . . , m r,L ] T is the spectrum of the rth endmember, a r,n is its corresponding proportion (or abundance) in the nth pixel and e n is an additive noise sequence associated with the noise measurement and the model error. This photon behavior typically occurs when the observed scene is at and when the macroscopic elements sit side-by-side in the scene, as a checker board structure (see example in Fig. 2). In this case, the abundances can be seen as relative surfaces occupied by each component in each pixel.

Thus, it is reasonable to consider the following constraints

   a r,n > 0, ∀r, ∀n R r=1 a r,n = 1, ∀n (2) 
for the abundances. These constraints are referred to as positivity and sum-to-one constraints. Most dimensionality reduction techniques and SU algorithms rely on these constraints for the abundances. However, the sum-to-one constraint is sometimes neglected. In this manuscript, both constraints are used when considering the LMM.

Unmixing strategies SU (even when assuming the LMM) is a challenging blind source separation problem often split into two steps.

• Endmember estimation:

Endmember estimation is a crucial step which is the rst step for the analysis of a hyperspectral image. Many geometrical LMM-based endmember extraction algorithms (EEA) have been proposed in the literature and can be classied into two groups. The rst group consists of methods looking for purest pixels in the data set.

This group includes the pixel purity index (PPI) [START_REF] Chaudhry | Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery[END_REF], vertex component analysis (VCA) Introduction [START_REF] Nascimento | Vertex component analysis: A fast algorithm to unmix hyperspectral data[END_REF] and N-FINDR [START_REF] Winter | Fast autonomous spectral end-member determination in hyperspectral data[END_REF] algorithms. The second group estimates sets of smallest volumes embedding the data, such as the minimum volume simplex analysis (MVSA) [START_REF] Li | Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data[END_REF] algorithm.

• Inversion:

Once the endmembers have been extracted from the data or from a spectral library, the second step, referred to as inversion, estimates the abundance vectors of the image pixels. The most popular inversion algorithm is probably the fully constrained least squares (FCLS) algorithm [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF] which has shown excellent performance in many practical applications. Bayesian methods have also be proposed to achieve the inversion step [START_REF] Dobigeon | Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery[END_REF]. The Bayesian framework is particularly well adapted to include uncertainties about the endmembers estimated during the previous step [START_REF] Eches | Bayesian estimation of linear mixtures using the normal compositional model[END_REF] and spatial correlations [START_REF] Eches | Enhancing hyperspectral image unmixing with spatial correlations[END_REF] within the abundance estimation step.

More recently, methods have been proposed for jointly estimating the pure spectral signatures and the abundances.

• Joint endmember and abundance estimation approaches:

These methods generally overcome the methods decomposed into two successive steps in terms of endmember and abundance estimation. Thus, they can be more robust when they are too few pure pixels in the image (absence of endmembers) and in the presence of outliers (measurement errors,. . . ). Joint endmember and abundance estimation can be expressed as a nonnegative matrix factorization (NMF) problem. The main works studying joint endmember and abundance estimation include the iterative constrained endmembers (ICE) [START_REF] Berman | ICE: A statistical approach to identifying endmembers in hyperspectral images[END_REF] algorithm, the minimum volume constrained NMF (MVC-NMF) [START_REF] Miao | Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[END_REF] and Bayesian algorithms (Dobigeon et al., 2009a,b) A more detailed review on LMM-based SU procedures has been recently proposed by [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. It is important to distinguish two kinds of unmixing strategies depending on the prior knowledge about the observed image. Supervised methods assume that the endmembers present in the image are a priori known. In this case, the SU procedures reduce to the inversion step. Conversely, unsupervised methods rst estimate the endmembers (number and spectra) and then consider the inversion step. When the endmembers are partially known (number of components known for instance), the associated methods are sometimes called semi-supervised. However, these methods are considered as unsupervised in this manuscript, for clarity.

Nonlinear unmixing procedures

Due to their relative simplicity, SU procedures assuming the LMM have been widely used for the analysis of hyperspectral image. However, it has been pointed out that the LMM can be inaccurate in particular situations [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF][START_REF] Keshava | Spectral unmixing[END_REF]. For these cases, more complex models must be used.

Several approximations based on the radiative transfer theory have been proposed such as the bidirectional model proposed by [START_REF] Hapke | Bidirectional reectance spectroscopy. I. Theory[END_REF]. However, these approximations require highly nonlinear formulations which complicate the derivation of unmixing strategies. Alternative approximations have been proposed for handling nonlinear eects leading to exploitable physics-based nonlinear mixing models. Bilinear models have received growing interest over the last few years for their ability to capture multiple scattering eects in hyperspectral images. Such phenomena may occur when the light scattered by a given material reects o other surfaces before reaching the sensor. This is typically the case when the observed scene contains forested or urban areas, where interactions occur between the ground and the canopy or buildings as illustrated in Fig. 3.

Bilinear mixing models

Most bilinear models proposed in the literature (to address the multiple reection problem) can be expressed as

y n = R r=1 a r,n m r + R-1 i=1 R j=i+1 β i,j,n m i m j + e n (3) 
where denotes the Hadamard (termwise) product. The rst term in the right-hand side of (3) contains the linear part of the mixture while the double sum models the nonlinear eects. The additional parameter β i,j,n is an amplitude coecient that tunes the contribution of the nonlinear interactions between the endmembers m i and m j .

The proposed bilinear models assuming (3) dier by constraints satised by the model parameters. [START_REF] Nascimento | Nonlinear mixture model for hyperspectral unmixing[END_REF] proposed to enforce the following constraints

       a r,n ≥ 0, ∀r, ∀n a r,n ≥ 0, ∀r, ∀n R r=1 a r,n + R-1 i=1 R j=i+1 β i,j,n = 1. (4) 
The resulting model, referred to as Nascimento model (NM) can be seen as a linear model with additional virtual endmembers. Precisely, by considering the spectrum m i m j as an endmember with associated abundance β i,j,n instead of a nonlinear mixture component, the model (3) subject to (4) can be reexpressed as where

   ãr,n a r,n , mr m r , r = 1, . . . , R ãr,n β i,j,n , mr m i m j , r = R + 1, . . . , R (6) 
and R = R(R + 1)/2. Thus the inversion step can be achieved using classical LMM-based techniques. Note that this model reduces to the LMM for a r,n = 0, ∀r ∈ {R + 1, . . . , R}.

A second bilinear model has been proposed by [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF]. This model referred to as Fan model (FM) assumes β i,j,n = a i,n a j,n yielding

y n = R r=1 a r,n m r + R-1 i=1 R j=i+1 a i,n a j,n m i m j + e n (7) 
subject to the constraints ( 2). This model is mainly motivated by the observation that if the ith component is absent in a given pixel, i.e., a i,n = 0, there should not be nonlinear eects involving this component in the pixel, i.e., β i,j,n = 0, ∀j = i. Moreover, if the ith component is present, the amplitudes of the nonlinear terms involving m i are proportional to its abundance a i,n . It is important to note that the FM does not generalize the LMM, contrary to the NM. More recently, Halimi et al. (2011a) proposed an FM-based bilinear model that generalizes the LMM by assuming β i,j,n = γ i,j,n a i,n a j,n , leading to

y n = R r=1 a r,n m r + R-1 i=1 R j=i+1 γ i,j,n a i,n a j,n m i m j + e n (8) 
where the nonlinearity coecients γ i,j,n ∈ (0, 1) allow each nonlinear eect to be quantied independently. The resulting generalized bilinear model (GBM) [START_REF] Altmann | Bilinear models for nonlinear unmixing of hyperspectral images[END_REF] generalizes both the LMM and the FM.

Other physics-based nonlinear mixing models

Bilinear models have been introduced to model multiple reections between dierent materials. However, these models do not consider potential multiple reections involving a single component (such as reections occurring in tree canopy for instance). Based on a thorough physical analysis of a canyon-like situation, [START_REF] Meganem | Linear-quadratic mixing model for reectances in urban environments[END_REF] proposed the following linear-quadratic mixing model (LQMM)

y n = R r=1 a r,n m r + R i=1 R j=1 β i,j,n m i m j + e n (9) 
subject to the constraints (2) and β i,j,n ∈ (0, 1). The main dierence between the LQMM and the bilinear models presented above is the consideration of the quadratic terms m r m r , r = 1, . . . , R.

To address the modeling problem of macroscopic and microscopic mixtures, the following model has been proposed

by [START_REF] Close | Using physics-based macroscopic and microscopic mixture models for hyperspectral pixel unmixing[END_REF] 

y n = R r=1 a r,n m r + a r+1,n R R r=1 f r,n w r + e n (10) 
where the rst term of the right-hand side of ( 10) is LMM-based while the second is an additional endmember weighted by the abundance a r+1,n . This additional endmember models intimate mixtures using the average singlescattering albedo expressed in the reectance domain through the mapping R(•). It is worth noting that all models presented here to model nonlinear eects do not consider dependencies between neighbor pixel, i.e, nonlinearities induced by materials in closed pixels are neglected. This assumption can seem rough but leads to simpler SU problems since the inversion step can be performed pixelwise. Recently, adjacency eects have been considered by [START_REF] Burazerovic | Detecting the adjacency eect in hyperspectral imagery with spectral unmixing techniques[END_REF] to address the problem of nonlinear SU assuming a bilinear model.

Model-based parametric nonlinear SU algorithms

Once a parametric model has been chosen, SU can be seen as a constrained nonlinear regression problem in the supervised case (endmembers known) or as a nonlinear blind source separation problem in the unsupervised case.

Supervised nonlinear unmixing

When the endmembers are known, most parametric model-based SU methods consist of a nonlinear regression problem that can be expressed as

min θn∈Θ y n -ψ M (θ n ) 2 (11)
for the nth observed pixel y n , where M = [m 1 , . . . , m R ] is the L × R endmember matrix, θ n is the parameter vector of interest of the nth pixel to be estimated and ψ M (•) is a nonlinear function associated with the underlying NLMM and parameterized by M. Moreover Θ is the admissible set for θ n dened to satisfy the parameter constraints (additivity and/or positivity). The problem ( 11) is often tricky because it consists of a constrained nonlinear optimization problem. For the NM, it has been shown that LMM-based methods can be used to estimate the parameters of interest. For the FM and the GBM, linearization methods based on Taylor-series expansions have been proposed by [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF] and [START_REF] Halimi | Unmixing hyperspectral images using a generalized bilinear model[END_REF]. The GBM has received a deeper analysis since an alternative gradient-based method has also been investigated to recover the abundances and the nonlinearity parameters [START_REF] Halimi | Unmixing hyperspectral images using a generalized bilinear model[END_REF]. To tackle convergence issues (convergence toward local optima), Halimi et al. (2011a) proposed a Bayesian algorithm based on Markov chain Monte Carlo (MCMC) methods. The Bayesian framework has the advantage of easily handling the constraints within the estimation procedure using appropriate prior distributions.

Unsupervised nonlinear unmixing

The supervised SU methods presented in the previous section assume that the endmembers are known. Geometric LMM-based EEAs have rst been used to extract the endmember spectra from the nonlinearly mixed pixels. Such

EEAs look for extreme points of the data clusters which often are endmembers even when nonlinear mixtures occur.

However, these EEAs can suer from the absence of pure pixels and nonlinear EEAs based on bilinear models have been studied. [START_REF] Gader | A sparsity promoting bilinear unmixing model[END_REF] generalize the iterative SPICE algorithm [START_REF] Zare | Sparsity promoting iterated constrained endmember detection in hyperspectral imagery[END_REF] proposed for linear SU to the NM (BISPICE algorithm). Based on nonnegative matrix factorization (NMF) methods, fully unsupervised SU algorithms have also been proposed for the GBM [START_REF] Yokoya | Generalized bilinear model based nonlinear unmixing using semi-nonnegative matrix factorization[END_REF] and the LQMM [START_REF] Meganem | Linear-quadratic mixing model for reectances in urban environments[END_REF]. Conversely, [START_REF] Heylen | Calculation of geodesic distances in nonlinear mixing models: Application to the generalized bilinear model[END_REF] derive a GBM-based EEA using geodesic distances. This recent algorithm computes distances on the manifold described by the GBM to nd endmembers as extreme points of that manifold.

Model-free nonlinear SU algorithms

Nonlinear SU becomes even more challenging when the nonlinearities are unknown. Several methods have been proposed to address this problem, including approximation of geodesic distances [START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF] and manifold leaning techniques [START_REF] Licciardi | Unsupervised nonlinear spectral unmixing by means of NLPCA applied to hyperspectral imagery[END_REF][START_REF] Nguyen | Hyperspectral image unmixing using manifold learning methods derivations and comparative tests[END_REF]. Kernel-based methods have also received growing interest over the last few years for their ability to approximate complex nonlinearities. However, if these nonparametric methods have been widely used for classication problems, their use in the unmixing context is still limited.

Broadwater and Banerjee (2009); [START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF] proposed methods that mainly consist of replacing the classical inner products by kernel functions. The resulting methods rely on the projection of the observed spectra onto a higher dimensional space in which the mixtures are assumed to be linear. Even if such data transformation can be very accurate for nonlinear dimensionality reduction, classication and detection, their physical interpretation is limited to address SU. More recently, nonlinear supervised algorithms based on reproducing kernel Hilbert spaces (RKHSs) have been studied to model nonlinearities resulting from interactions between endmember spectra [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF]. In this scenario, the observed pixels are described by basis vectors nonlinearly related to the endmember matrix. Finally, the RKHSs have shown interesting properties for modeling various nonlinearities for supervised nonlinear unmixing, which is encouraging to move to unsupervised scenarios.

Toward nonlinearity detection in hyperspectral images

The recent contributions addressing the problem of nonlinear SU have provided interesting results in terms of mixture characterization. However, the price to pay for considering possible nonlinear eects is 1) the computational complexity that generally increases with the model complexity and 2) the degradation of the endmember and abundance estimation when assuming NLMMs in the case where the LMM is sucient to accurately describe the mixtures. Since the LMM is often sucient to describe most observed pixels, one possible solution consists of detecting nonlinearly from linearly mixed pixels in a pre-processing step. The pixels detected as linearly mixed could be handled subsequentially using fast and eective LMM-based methods while nonlinearly mixed pixels could be subjected to a deeper analysis. Nonlinearity detection in hyperspectral images has already been addressed by [START_REF] Han | Investigation of nonlinearity in hyperspectral imagery using surrogate data methods[END_REF] and the detection-oriented unmixing algorithm recently proposed by [START_REF] Dobigeon | Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images[END_REF] has provided encouraging results.

On the endmember denition

As mentioned above, an endmember is assumed to be a pure spectral component to be identied in the observed image. Of course, the concept of component purity depends on the observation scale as well as the application itself. More generally, an endmember is assumed to be a component of interest. As an example, a tree can be seen either as a single endmember or as a mixture of endmembers (namely leaves and wood). Consequently, the number of endmembers and their characterization in a given scene may vary depending on the application. One of the main problems that follows from the endmember denition is the endmember variability. More precisely, two pixels composed of the same single endmember of interest can have dierent spectra when they do not contain the same version of this component. For the simple example mentioned above, the tree spectrum depends on the amount of wood and leaves contained in this component. In many applications, the endmember variability can be neglected and included in the noise modeling the model error. This assumption has been widely used in linear unmixing, which has motivated the consideration of unique endmembers in this work. However, taking endmember variability into consideration is also an important problem, depending on the observation conditions and the observed scene [START_REF] Eches | Bayesian estimation of linear mixtures using the normal compositional model[END_REF][START_REF] Somers | Endmember variability in spectral mixture analysis: A review[END_REF][START_REF] Zare | Bootstrapping for piece-wise convex endmember distribution detection[END_REF]. Even if this endmember variability has not been considered in this thesis, we think that it would deserve to be studied in future work related to nonlinear unmixing.

Structure of the manuscript

The rst chapter studies a post-nonlinear mixing model (PNMM) for nonlinear SU. The proposed polynomial PNMM (PPNMM) investigated in this chapter allows nonlinearities to dier for each pixel, leading to a exible mixture characterization. It is important to note that the nonlinearity of each pixel is characterized by a single parameter which is zero when the pixel is linearly mixed. First, supervised SU methods based on the PPNMM are considered.

The rst proposed algorithm is a hierarchical Bayesian algorithm coupled with MCMC methods. Two alternative optimization methods are also introduced to reduce the computational complexity of the sampling algorithm. The exibility of the PPNMM and the performance of the three methods are then evaluated using simulations conducted on synthetic and real data. The second part of this chapter presents a new Bayesian model for unsupervised SU based on the PPNMM. In the unsupervised case, appropriate priors are assigned to the unknown endmembers to be sampled. The joint estimation of the abundances and endmembers requires a large number of parameters to be sampled. To improve the mixing properties of the sampler, constrained Hamiltonian Monte Carlo methods are investigated.

The second chapter of this manuscript considers a kernel-based approach for nonlinear SU based on a nonlinear dimensionality reduction using a Gaussian process latent variable model (GPLVM) [START_REF] Lawrence | Gaussian process latent variable models for visualisation of high dimensional data[END_REF]. GPLVMs have received growing interest in the machine learning community. They have the ability to approximate various nonlinear mappings from a low-dimensional space (latent space) to a higher dimensional observation space through the use of kernel functions [START_REF] Perez-Cruz | Gaussian processes for nonlinear signal processing: An overview of recent advances[END_REF], which makes them particularly well adapted for hyperspectral analysis and thus for SU. In this chapter, we propose to use a particular form of kernels based on the existing bilinear models, which allows the proposed unmixing strategy to be accurate when the underlying mixing model is bilinear. The rst step of the proposed Bayesian algorithm performs abundance estimation. Appropriate prior distributions are assigned to the GPLVM parameters (including the latent variables related to the abundances) to be estimated and the joint posterior distribution is derived using the Bayesian inference. The maximum a posteriori (MAP) estimator of the resulting posterior is obtained using a gradient-based method and the abundance estimates are then computed. Once the abundances have been estimated, the endmembers are predicted subsequently using Gaussian process regression. The proposed unmixing algorithm breaks the usual paradigm of spectral unmixing by rst estimating the abundances and then predicting the endmembers using the properties of Gaussian process (GP). Simulations conducted on synthetic and real images illustrate the exibility of the proposed model for linear and nonlinear spectral unmixing and provide promising results for abundance and endmember estimations in spite of the absence of pure pixels in the image.

The third chapter of this manuscript is dedicated to the detection of nonlinearities in hyperspectral images. This chapter focuses on supervised detection procedures, i.e., the endmembers are assumed to be a priori known. The rst supervised detector is based on the PPNMM studied in the rst chapter. More precisely, the associated test is based on the statistical properties of the PPNMM parameters to decide whether a given pixel is linearly or Introduction nonlinearly mixed. Conversely, the second supervised test does not assume any particular NLMM and relies on the LMM properties only. The two detectors are compared using simulations conducted on synthetic and real data.

The PPNMM-based nonlinearity detector studied in the third chapter is performed after a PPNMM-based unmixing procedure and the LMM-based nonlinearity detector does not explicitly rely on an unmixing step. However, it would be interesting to derive algorithms which achieve simultaneously spectral unmixing and nonlinearity detection. 

Main contributions

• First chapter. A new nonlinear model based on post-nonlinear mixtures is proposed for linear/nonlinear SU. The nonlinearity in each pixel is characterized by a single amplitude parameter which will allow simple nonlinearity detectors to be derived in the third chapter. SU methods are proposed to address the problems of supervised and unsupervised unmixing. Ecient sampling algorithms based on Hamiltonian MCMC methods are also used to improve the mixing properties of the sampler when the endmembers are unknown (and have to be estimated).

• Second chapter. A new nonparametric nonlinear SU algorithm is proposed for unsupervised SU. The proposed unmixing algorithm breaks the usual paradigm of spectral unmixing by rst estimating the abundances and then predicting the endmembers in spite of the absence of pure pixel in the image.

• Third chapter. Statistical tests are derived for pixel-by-pixel nonlinearity detection when the endmembers are known. The proposed tests are computationally ecient and thus can be implemented in practical applications. The detection results can then be used as a pre-processing step to select pixels or regions where more complex models should be used instead of the classical LMM for SU. 

y n = g n R r=1 a r,n m r + e n = g n (Ma n ) + e n (1.1)
where m r = [m r,1 , . . . , m r,L ] T is the spectrum of the rth material present in the scene, a r,n is its corresponding proportion in the nth pixel of the image, R is the number of endmembers contained in the image, g n (•) is an appropriate nonlinear function depending on the nth pixel and e n is an additive noise sequence. Note that the usual matrix and vector notations M = [m 1 , . . . , m R ] and a n = [a 1,n , . . . , a R,n ] T have been used in the right hand side of (1.1).

The choice of the nonlinearity g n deserves a specic attention. Polynomials, sigmoidal functions and combinations of polynomial and sigmoidal nonlinearities have shown interesting properties for source separation [START_REF] Babaie-Zadeh | Separating convolutive post non-linear mixtures[END_REF][START_REF] Jutten | Advances in nonlinear blind source separation[END_REF]. This chapter focuses on second order polynomial nonlinearities dened by

g n : [0, 1] L → R L s →      s 1 + b n s 2 1 . . . s L + b n s 2 L      (1.2)
with s = [s 1 , . . . , s L ] T . An interesting property of the resulting nonlinear model referred to as PPNMM is that it reduces to the classical LMM for b n = 0. Thus, we can expect unmixing results at least as good as those presented by [START_REF] Dobigeon | Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery[END_REF] and [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF] where Bayesian and least-squares (LS) methods were investigated for SU assuming the LMM. Another motivation for using the PPNMM is the Weierstrass approximation theorem which states that any continuous function dened on a bounded interval can be uniformly approximated by a polynomial with any desired precision (Mathews and Sicuranza, 2000, p. 15). As explained by [START_REF] Nascimento | Nonlinear mixture model for hyperspectral unmixing[END_REF], it is reasonable to consider polynomials with rst and second order terms (since higher order terms can generally be neglected) which leads to (1.2). Higher order terms could be considered in the presence of more than two reections (bilinear models also consider only at most two reections). However, the resulting interaction spectra are in practice of low amplitude and are hardly distinguishable from the noise. Straightforward computations allow the PPNMM observation vector (for a given pixel of the image) to be expressed as follows (2009) and Halimi et al. (2011a). Note that the endmember m r (contained in the matrix M) can be obtained from (1.3) in the noise free case (e n = 0 L ) by setting b n = 0 and a n = [0 r-1 , 1, 0 R-r ] T in (1.3).

y n = g n (Ma n ) + e n = Ma n + b n (Ma n ) (Ma n ) + e n ( 
Due to physical considerations, each abundance vector a n , n ∈ {1, . . . , N } satises the following positivity and sum-to-one constraints    a r,n ≥ 0, ∀r ∈ {1, . . . , R} R r=1 a r,n = 1.

( 1.4) In this study we consider the sum-to-one constraints for the abundances. However they could be omitted as in [START_REF] Meganem | Linear-quadratic mixing model for reectances in urban environments[END_REF]. Moreover, each endmember m r = [m r,1 , . . . , m r,L ] T , r ∈ {1, . . . , R} is a reectance vector satisfying the following constraints 0 ≤ m r, ≤ 1, ∀ ∈ {1, . . . , L} .

(1.5)

Supervised PPNMM-based unmixing

In this rst scenario, we assume that the endmembers contained in the hyperspectral image are known. The three PPNMM-based supervised SU algorithms presented in this manuscript allow the image pixels to be unmixed independently. Thus, for ease of reading, all subscripts referring to pixel indexes will be omitted in this section. Let y be the L × 1 observed pixel satisfying y = Ma + b(Ma) (Ma) + e.

(1.6)

The noise sequence e is an additive independent and identically distributed (i.i.d) zero-mean Gaussian noise sequence with variance σ 2 , denoted as e ∼ N 0 L , σ 2 I L , where I L is the L × L identity matrix. Since the endmember matrix M is assumed to be known, the only parameters to be estimated are the abundance vector a, the nonlinearity parameter b and the noise variance σ 2 .

The supervised unmixing problem is identiable since the application

g : R R × R → R L (1.7) (a, b) → Ma + b(Ma) (Ma) (1.8)
is injective under specic conditions related to the pure component spectra. Note however that the function s → g(s)

in (1.2) (where the variable b is xed) is non-injective (see Appendix A for details).

Bayesian estimation

The rst proposed algorithm for supervised SU using the PPNMM consists of a Bayesian model coupled with MCMC methods. This model generalizes the hierarchical Bayesian model introduced by [START_REF] Dobigeon | Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery[END_REF] for linear SU to the PPNMM. The unknown parameter vector associated with the PPNMM contains the pixel abundances a, the nonlinearity parameter b and the additive noise variance σ 2 . In the Bayesian framework, appropriate prior distributions are chosen for the unknown parameters. The joint posterior distribution of these parameters is then derived. However, the classical Bayesian estimators cannot be easily computed from this joint posterior. To alleviate this problem, an MCMC method is used to generate samples according to the posterior of interest. The generated samples are then used to approximate the Bayesian estimators. As in any Bayesian algorithm, the joint posterior distribution can also be used to compute condence intervals for the parameter estimates.

Likelihood

Equation (1.6) shows that y|a, b, σ 2 is distributed according to a Gaussian distribution with mean g (Ma) and covariance matrix σ 2 I L , denoted as y|a, b, σ 2 ∼ N g (Ma) , σ 2 I L . As a consequence, the likelihood function of the observation vector y can be expressed as

f (y|a, b, σ 2 ) = 1 2πσ 2 L 2 exp - y -g (Ma) 2 2σ 2
(1.9) where x = √

x T x is the standard 2 norm.

Parameter priors

In order to satisfy the sum-to-one constraint, the abundance vector can be rewritten

1 a = [c, a R ] T where c = [a 1 , . . . , a R-1 ] T , a R = 1 - R-1
r=1 a r . The positivity constraints in (1.4) impose that c belongs to the following simplex S

S = c = [c 1 , . . . , c R-1 ] T c r ≥ 0, ∀r < R, R-1 r=1 c r ≤ 1 .
(1.10) A uniform prior distribution on S is chosen for c to reect the absence of prior knowledge about the abundance vector.

Note that choosing this prior for c is equivalent to choosing a Dirichlet prior distribution with all hyperparameters set to 1.

A Jereys' prior is chosen for σ 2 f (σ 2 ) ∝ 1

σ 2 I R + (σ 2 ) (1.11)
which also reects the absence of knowledge for this parameter (see [START_REF] Punskaya | Bayesian curve tting using MCMC with applications to signal segmentation[END_REF] for details).

A conjugate Gaussian prior is nally chosen for the nonlinearity parameter b b σ 2 b ∼ N 0, σ 2 b .

(1.12)

The Gaussian prior is zero-mean since the value of b can be equally likely positive or negative. Moreover, it favors small values of b and is a conjugate prior for the parameter b which will simplify the computations.

Hyperparameter prior

The performance of the proposed Bayesian model for spectral unmixing depends on the values of the hyperparameter σ 2

b . When hyperparameters are dicult to adjust, it is classical to include them in the unknown parameter vector, resulting in a hierarchical Bayesian model [START_REF] Robert | The Bayesian Choice: from Decision-Theoretic Motivations to Computational Implementation[END_REF]. This strategy requires to dene a prior distribution for the hyperparameter σ 2 b . A conjugate inverse-gamma prior is assigned to

σ 2 b σ 2 b ∼ IG (γ, ν) (1.13)
where (γ, ν) are real parameters xed to obtain a at prior, reecting the absence of knowledge about the variance σ 2 b ((γ, ν) will be set to (1, 10 -2 ) in the simulation section). The resulting directed acyclic graph (DAG) is depicted in Fig. 1.1. 

Joint posterior distribution

The joint posterior distribution of the unknown parameter/hyperparameter vector θ, σ 2 b , where θ = c, b, σ 2 can be computed using the following hierarchical structure

f (θ, σ 2 b |y) ∝ f (y|θ)f (θ|σ 2 b )f (σ 2 b ) (1.14)
where ∝ means proportional to and f (y|θ) is dened in (1.9). By assuming the parameters σ 2 , b and a \R are a priori independent, the joint prior distribution of the unknown parameter vector can be expressed as

f (θ|σ 2 b ) = f (c)f (σ 2 )f (b|σ 2 b ).
(1.15)

The joint posterior distribution f (θ, σ 2 b |y) can then be computed up to a multiplicative constant

f (θ, σ 2 b |y) ∝ 1 σ 2 1 σ 2 b 3 2 +γ exp - b 2 + 2ν 2σ 2 b f (y|c, σ 2 , b)1 S (c).
(1.16)

Unfortunately, it is dicult to obtain closed form expressions of the standard Bayesian estimators (including the maximum a posteriori (MAP) and the minimum mean square error (MMSE) estimators) associated with (1.16).

The last part of this section studies a Markov chain Monte Carlo (MCMC) method which can be used to generate samples asymptotically distributed according to (1.16). These generated samples are then used to compute the MAP or MMSE estimators of the unknown parameters {θ, σ 2 b }.

Metropolis-within-Gibbs sampler

The principle of the Gibbs sampler is to sample according to the conditional distributions of the posterior of interest (Robert and Casella, 2004, Chap. 10). The conditional distributions associated with the posterior (1.16) are studied below.

Sampling from f (c r |y,

θ \cr , σ 2 b ) Straightforward computations lead to f (c r |y, θ \cr , σ 2 b ) ∝ exp - y -g (Ma) 2 2σ 2 1 S (c) (1.17) 
where r = 1, . . . , R -1 and where the notation θ \cr indicates that c r has been removed from the vector θ. Mainly because of the indicator function 1 S (c) and the nonlinear function g(•), it is not easy to sample according to (1.17).

Thus, we propose to update the coecient c r thanks to a Metropolis-Hasting move. More precisely, a new abundance coecient is proposed following a truncated Gaussian random walk procedure to satisfy the constraints (1.4) (the variance of the proposal distribution has been adjusted to obtain an acceptance rate close to 0.5, as recommended in (Robert and Cellier, 1998, p. 8)). The generated sampler is accepted or rejected with an appropriate probability ρ provided in Algo. 1.1.

Sampling from f (b|y, θ \b , σ 2 b ) Using (1.16), it can be easily shown that b is distributed according to the following Gaussian distribution b|y,

θ \b , σ 2 b ∼ N m b , s 2 b (1.18)
where

m b = σ 2 b (y -Ma) T h(a) σ 2 b h(a) T h(a) + σ 2 , s 2 b = σ 2 b σ 2 σ 2 b h(a) T h(a) + σ 2
and h(a) = (Ma) (Ma). As a consequence, sampling according to (1.18) is straightforward.

Sampling from f (σ 2 |y, θ \σ 2 , σ 2 b ) By considering the posterior distribution (1.16), it can be shown that

σ 2 |y, θ \σ 2 , σ 2 
b is distributed according to the following inverse-gamma distribution

σ 2 |y, θ \σ 2 , σ 2 b ∼ IG L 2 , y -g(Ma) 2 2 (1.19)
from which it is easy to sample.

1: Initialization (t = 0)

• a (0) , b (0) , σ2(0) , σ 1) 4: for r = 1 : R -1 do 5:

2(0) b . 2: Iterations (t ≥ 1) 3: Set c = [c 1 , . . . , cR-1 ] T = c (t-
• Sample a candidate ζ r using a Gaussian proposal distribution N 0,1-c T

\r 1 R-2 cr , σ 2 r . • Compute ρ = min    f (ζ r |y, b, c\r , σ 2 , σ 2 b ) f (c r |y, b, c\r , σ 2 , σ 2 b ) Φ (1 -cT \r 1 R-2 -ζ r )/σ r -Φ (-ζ r /σ r ) Φ (1 -cT \r 1 R-2 -cr )/σ r -Φ (-c r /σ r ) , 1    • Set cr = ζ r with probability ρ cr with probability 1 -ρ 6: end for 7: Set c (t) = [c 1 , . . . , cR-1 ] T 8: Set a (t) R = 1 -R-1 r=1 a (t) r 
9: Sample b (t) from the pdf in (1.18) 10: Sample σ 2(t) from the pdf in (1.19) 11: Sample σ 2(t) b from the pdf in (1.20) 12: Set t = t + 1. (1.20)

The resulting Metropolis-within-Gibbs sampler used to sample according to the posterior (1.16) is summarized in Algo. 1.1.

After generating samples using the procedures detailed above, the MMSE estimator of the unknown parameters can be approximated by computing the empirical averages of these samples, after an appropriate burn-in period 2 .

Even if the sampling strategy has been observed to converge very fast, its computational complexity can be heavy for some practical applications. The next section studies least squares estimators which allow this computational complexity to be signicantly reduced.

Least squares methods

Least squares (LS) methods have been used successfully for linear unmixing [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF]. The LS methods associated with the observation equation (1.6) consist of minimizing the following criterion

J(a, b) = 1 2 y -g(Ma) 2 = 1 2 y -Ma -b(Ma) (Ma) 2 (1.21)
under the positivity and sum-to-one constraints (1.4) for the abundance vector. This optimization problem is not easy to handle mainly because of the constraints (1.4). However, the cost function J(a, b) is quadratic with respect to the parameter b. (1.24)

We introduce below two strategies to compute the optimal abundance vector â = arg min a J(a)

under the constraints (1.4). Note that once â has been computed, the nonlinearity parameter b can be estimated as follows b = b (â) , (1.25) and the noise variance can be subsequently estimated using

σ2 = 1 L y -Mâ -b(Mâ) (Mâ) 2 .
(1.26)

Taylor approximation

Motivated by the method introduced by [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF], we propose to approximate the function y(•) dened in (1.24) using a Taylor series expansion where only rst-order terms are considered. Let a (t) denotes the estimated abundance vector estimate at the tth step of the proposed iterative algorithm, and its corresponding estimated spectrum y(a (t) ) following (1.24). The Taylor approximation of y(•) at a (t) can be written y(a) ≈ y a (t) + ∇y a (t) aa (t)

(1.27)
where ∇y(a (t) ) is the gradient matrix of y(a (t) ) of size L × R and a is the unknown parameter vector to be estimated. The rth column of the gradient matrix ∇y(a 

a (t+1) = arg min a s (t) -M(t) a 2 + η(1 -1 T R a)

Subgradient-based optimization

A classical gradient approach could be used to solve the cost function dened in (1.23) in absence of constraints.

However, the problem is more complicated when the constraints (1.4) have to be considered. The estimation method studied in this section is based on a subgradient optimization (SO) algorithm (Bazaraa et al., 1993, p. 339) that is appropriate for constrained problems. More precisely, subgradient-based optimization allows each abundance a 1 , . . . , a r to be updated independently. Thanks to the sum-to-one constraint of the abundance vector, the cost function (1.23) can be expressed as a function of c = [a 1 , . . . , a R-1 ] T by setting a R = 1 -R-1 r=1 a r . In that case, the cost function (1.23) can be rewritten

J * (c) = 1 2 y -y * (a \R ) 2 (1.32)
where

J * (c) = J a 1 , . . . , a R-1 , 1 - R-1 r=1 a r (1.33) y * (c) = y a 1 , . . . , a R-1 , 1 - R-1 r=1 a r .
(1.34)

1: Initialization (t = 0)

• Set a (0)

2: Iterations (t ≥ 1)

3: Set c = [c 1 , . . . , cr-1 ] T = c (t-1) = [a (t-1) 1 , . . . , a (t-1) R-1 ] T
4: for r = 1 : R -1 do 5:

• Compute d r = -∂J * (c) ∂cr • Compute λ r,M from (1.36)
• Compute λr from (1.35)

• Set cr = cr -λr d r 6: end for where u r = [0, . . . , sign(d r ), 0, . . . , 0] T is a direction vector of size (R -1) × 1, 0 ≤ λ r ≤ λ r,M and λ r,M ∈ R + (for r = 1, . . . , R -1) are upper bounds for the line search parameters. More precisely, upper bounding λ r according to the following rule

λ r,M =        0, if d r = 0 c r , if d r > 0 c r - R-1 i=1,i =r c i , if d r < 0
ensures the constraints (1.4) are satised. The problem (1.35) can be solved using the golden section method (Bazaraa et al., 1993, p. 270) 

SNR = L -1 σ -2 g (a)
2 15dB. The nonlinearity coecients are uniformly drawn in the set (0, 1)

for the GBM and the parameter b has been generated uniformly in the set (-0.3, 0.3) for the PPNMM. Dierent estimation procedures have been considered for the four mixing models. More precisely,

• for the LMM, we have considered the standard FCLS algorithm [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF]) and the Bayesian algorithm by [START_REF] Dobigeon | Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery[END_REF],

• the FM has been unmixed using the LS method introduced by [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF] and a Bayesian algorithm similar to the one derived by Halimi et al. (2011a) but assuming all the nonlinearity coecients are equal to 1,

• the unmixing strategies used for the GBM are the three algorithms presented in [START_REF] Halimi | Unmixing hyperspectral images using a generalized bilinear model[END_REF], i.e., a Bayesian algorithm and two LS methods,

• the Bayesian and LS algorithms presented in this chapter have been used for unmixing the proposed PPNMM.

Note that all results presented in this study have been obtained using the Bayesian MMSE estimator.

The quality of the unmixing procedures can be measured by comparing the estimated and actual abundance vector using the root normalized mean square error (RNMSE) dened by

RNMSE = 1 N R N n=1 ân -a n 2 (1.36)
where a n is the nth actual abundance vector and ân its estimate. Table 1.1 shows the RNMSEs associated with the images I 1 , . . . , I 4 for the dierent estimation procedures. Note that the best results (in term of RNMSE) for each image have been represented in bold and blue whereas the second best results have been depicted in bold. Taylor [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF] 13.09 1.1 shows that the abundances estimated by the Bayesian algorithm and the LS methods are similar for the PPNMM. Moreover, for these 4 images, the PPNMM seems to be more robust than the other mixing models to deviations from the actual model.

The unmixing quality can also be evaluated by the average reconstruction error (ARE) dened by

ARE = 1 LN N n=1 ŷn -y n 2 (1.37)
where y n is the nth observed pixel and ŷn its estimate. Table 1.2 compares the AREs obtained for the dierent synthetic images. These results show that the AREs are close for the dierent unmixing algorithms even if the estimated abundances can vary more signicantly. Again, the proposed PPNMM seems to be more robust than the other mixing models to deviations from the actual model in term of ARE. Taylor [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF] 5.61 Table 1.3 shows the execution times of MATLAB implementations on a 1.66GHz Dual-Core of the proposed algorithms for unmixing the proposed images (2500 pixels for each image). The linearization-based algorithm has the lowest computational cost and also provides accurate estimations. Note that the computational cost of the Bayesian algorithm (which allows prior knowledge to be included in the unmixing procedure) can be prohibitive for larger images and a high number of endmembers. However, the computational cost of the two proposed optimization methods (linearization and gradient-based) is very reasonable which make them very useful for practical applications.

Table 1.3: Computational times of the unmixing algorithms for 2500 pixels (in second).

I1 I2 I3 I4
Bayesian 5960 6200 6600 5970 The next set of simulations analyzes the performance of the proposed nonlinear SU algorithms for dierent numbers of endmembers (R ∈ {3, 6, 9, 12}) by unmixing 4 synthetic images of 500 pixels. The endmembers contained in these images have been randomly selected from the fourteen endmembers extracted by VCA from the full Cuprite scene described by [START_REF] Clark | Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems[END_REF]. For each image, the abundance vectors a n , (n = 1, . . . , 500) have been randomly generated according to a uniform distribution over the admissible set dened by the positivity and sum-to-one constraints. All images have been corrupted by an additive white Gaussian noise corresponding to a signal-to-noise ratio SNR = 20dB. The nonlinearity coecients b are uniformly drawn in the set (-0.3, 0.3). Table 1.4 compares the performance of the three proposed methods in term of abundance estimation and reconstruction error. These results show that the three methods perform similarly in term of reconstruction error. The Bayesian estimators tend to provide more accurate abundance estimations (i.e., smaller RNMSEs) for large values of R. Indeed, the

Taylor and gradient algorithms may be trapped in local minima of the LS criterion (1.21) for large values of R. 

Real data

The rst real image considered in this section is composed of L = 189 spectral bands and was acquired in 1997 by the airborne visible infrared imaging spectrometer (AVIRIS) over the Cuprite mining site in Nevada. A sub-image of size 50 × 50 pixels has been chosen here to evaluate the proposed unmixing procedures. The scene is mainly composed of muscovite, alunite and kaolinite, as explained by Dobigeon et al. (2009a). The endmembers extracted by VCA [START_REF] Nascimento | Vertex component analysis: A fast algorithm to unmix hyperspectral data[END_REF] The quality of unmixing is nally evaluated using the AREs for both real images. These AREs are compared in Table 1.5 with those obtained by assuming other mixing models. The proposed PPNMM provides smaller AREs when compared to other models which is a very encouraging result. 

Intermediate conclusion

A Bayesian and two least squares algorithms were presented for supervised nonlinear SU of hyperspectral images.

These algorithms assumed that the hyperspectral image pixels are related to the endmembers by a polynomial post-nonlinear mixing model. In the Bayesian framework, the constraints related to the unknown parameters were ensured by using appropriate prior distributions. The posterior distribution of the unknown parameter vector was then derived. The corresponding minimum mean square error estimator was approximated from samples generated using Markov chain Monte Carlo methods. Least squares methods were also investigated for unmixing the polynomial post-nonlinear model. These methods provided results similar to the Bayesian algorithm with a reduced computational cost, making them very attractive for hyperspectral image unmixing. Results obtained on synthetic and real images illustrated the accuracy of the polynomial post-nonlinear model and the performance of the corresponding estimation algorithms for supervised unmixing. In this study, we assumed that the endmembers were known (either coming from a priori or extracted from the data using a EEA). However, as it has been shown

for linear SU, a joint estimation of the endmembers and mixing coecients can provide more accurate mixture characterization, especially when there is not enough pure pixels in the observed image. This joint estimation is the aim of the last part of this chapter which addresses the problem of unsupervised SU using the PPNMM. The next section generalizes the Bayesian model proposed for supervised nonlinear unmixing to the case where the endmembers are unknown and to be estimated. Least-squares methods could also have been investigated. However, their convergence is dicult to prove and the proposed Bayesian algorithm provides accurate results in practice.

Including the endmembers in the estimation procedure complicates the unmixing procedure and estimating more parameters usually requires a higher computational cost. To improve the mixing properties and the complexity of the sampler, Hamiltonian Monte Carlo methods are investigated.

Unsupervised PPNMM-based unmixing

In this second scenario, the spectral signatures of the endmembers contained in the hyperspectral image are unknown and thus to be estimated. Only the number of endmembers is assumed to be known. Consider a hyperspectral image consisting of N pixels distributed according to (1.3). The PPNMM dened in (1.3) allows the L × N observation matrix Y = [y 1 , . . . , y N ] to be expressed as follows

Y = MA + [(MA) (MA)] diag (b) + E (1.38) where A = [a 1 , . . . , a N ] is an R × N matrix, E = [e 1 , . . . , e N ] is an L × N matrix, b = [b 1 , . . . , b N ] T is an N × 1
vector containing the nonlinearity parameters. In this scenario, the noise sequences e n , ∀n ∈ {1, . . . , N } are additive independently distributed zero-mean Gaussian vectors with diagonal covariance matrix Σ = diag σ 2 , denoted as

e n ∼ N (0 L , Σ), where σ 2 = [σ 2 1 , . . . , σ 2 L ]
T is the vector of the L noise variances and diag σ 2 is an L × L diagonal matrix containing the elements of the vector σ 2 . Note that this noise characterization is more general than the one considered in the supervised SU scenario presented above. Precisely, the N noise vectors associated with the N pixels have noise variances diering from one spectral band to another, which is in agreement with real noise measurements. The abundance vectors in A satisfy the positivity and sum-to-one constraints (1.4) and the endmembers to be estimated are subject to the constraints (1.5).

Bayesian estimation

This section generalizes the hierarchical Bayesian model introduced in Section 1.4 in order to jointly estimate the abundances and endmembers, leading to a fully unsupervised hyperspectral unmixing algorithm. To handle abundance constraints, we propose to reparameterize the abundance vectors using the following transformation .39) This transformation has been recently suggested by [START_REF] Betancourt | Cruising The Simplex: Hamiltonian Monte Carlo and the Dirichlet Distribution[END_REF]. One motivation for using the latent variables z r,n instead of a r,n is the fact that the constraints (1.4) for the nth abundance vector a n express as

a r,n = r-1 k=1 z k,n ×    1 -z r,n if r < R 1 if r = R . ( 1 
0 < z r,n < 1, ∀r ∈ {1, . . . , R -1} (1.40) for the nth coecient vector z n = [z 1,n , . . . , z R-1,n ] T .
As a consequence, the constraints (1.40) are much easier to handle for the sampling procedure than (1.4) (as will be shown in the next sections). The next section presents the Bayesian model associated with the unsupervised PPNMM (1.38) for SU.

Bayesian model

The unknown parameter vector associated with the PPNMM contains the reparameterized abundances Z = [z 1 , . . . , z N ] (satisfying the constraints (1.40)), the endmember matrix M, the nonlinearity parameter vector b and the additive noise variance vector σ 2 . This section summarizes the likelihood and the parameter priors (associated with the proposed hierarchical Bayesian PPNMM) introduced to perform nonlinear unsupervised hyperspectral unmixing.

Likelihood Equation (1.38) shows that y n |M, z n , b n , σ 2 is distributed according to a Gaussian distribution with mean g n (Ma n ) and covariance matrix Σ, denoted as y n |M, z n , b n , σ 2 ∼ N (g n (Ma n ) , Σ). Note that the abundance vector a n should be denoted as a n (z n ). However, the argument z n has been omitted for brevity.

Assuming independence between the observed pixels, the joint likelihood of the observation matrix Y can be expressed as

f (Y|M, Z, b, σ 2 ) ∝ |Σ| -N/2 etr - (Y -X) T Σ -1 (Y -X) 2 (1.41)
where ∝ means proportional to, etr(•) denotes the exponential trace and

X = MA + [(MA) (MA)] diag (b) (1.42) is an L × N matrix.
Parameter priors To reect the lack of prior knowledge about the abundances, we propose to assign prior distributions for the coecient vector z n that correspond to noninformative prior distributions for a n . More precisely, assigning the following beta priors 1.43) and assuming prior independence between the elements of z n yield an abundance vector a \R,n uniformly distributed in the set dened in (1.10) (see [START_REF] Betancourt | Cruising The Simplex: Hamiltonian Monte Carlo and the Dirichlet Distribution[END_REF] for details). Assuming prior independence between the coecient vectors {z n } n=1,...,N leads to 1.44) where B(•, •) is the Beta function.

z n,r ∼ Be(R -r, 1) r ∈ {1, . . . , R -1} ( 
f (Z) = R-1 r=1 1 B(R -r, 1) N N n=1 z R-r-1 n,r ( 
For each endmember m r , we propose to use a Gaussian prior m r ∼ N [0,1] L ( mr , s 2 I L ), (1.45) truncated on [0, 1] L to satisfy the constraints (1.5). In this study, we propose to select the mean vectors mr as the pure components previously identied by the nonlinear EEA studied in [START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF] and referred to as Heylen. The variance s 2 reects the degree of condence given to this prior information. When no additional knowledge is available, this variance is xed to a large value (s 2 = 50 in our simulations). Note that any EEA could be used to dene the vectors m1 , . . . , mR . Without additional information, the unmixing problem assuming the PPNMM (1.38) may have an innite set of solutions. However, considering the constraints (1.4) and (1.5) and enforcing m r to be close to mr , ∀r removes this ambiguity.

It is interesting to note that the PPNMM reduces to the LMM for b n = 0. Since the LMM is relevant for most observed pixels, it makes sense to assign prior distributions to the nonlinearity parameters that enforce sparsity for the vector b. To detect linear and nonlinear mixtures of the pure spectral signatures in the image, the following conjugate Bernoulli-Gaussian prior is assigned to the nonlinearity parameter b n

f (b n |w, σ 2 b ) = (1 -w)δ(b n ) + w 1 2πσ 2 b exp - b 2 n 2σ 2 b (1.46)
where δ(•) denotes the Dirac delta function. Note that the prior distributions for the nonlinearity parameters {b n } n=1,...,N share the same hyperparameters w ∈ [0, 1] and σ 2 b ∈ R + . More precisely, the weight w is the prior probability of having a nonlinearly mixed pixel in the image. Assuming prior independence between the nonlinearity parameters {b n } n=1,...,N , the joint prior distribution of the nonlinearity parameter vector b can be expressed as follows

f (b|w, σ 2 b ) = N n=1 f (b n |w, σ 2 b ).
(1.47)

A Jereys' prior is chosen for the noise variance of each spectral band σ 2

f (σ 2 ) ∝ 1 σ 2 1 R + σ 2 (1.48)
which reects the absence of knowledge for this parameter (see [START_REF] Bernardo | Bayesian Theory[END_REF] for motivations).

Assuming prior independence between the noise variances, we obtain

f (σ 2 ) = L =1 f (σ 2 ).
(1.49)

Hyperparameter priors The performance of the proposed Bayesian model for spectral unmixing depends on the values of the hyperparameters σ 2 b and w. When the hyperparameters are dicult to adjust, it is classical to include them in the unknown parameter vector, resulting in a hierarchical Bayesian model [START_REF] Altmann | Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[END_REF]Dobigeon et al., 2009a;[START_REF] Robert | The Bayesian Choice: from Decision-Theoretic Motivations to Computational Implementation[END_REF]. This strategy requires to dene prior distributions for the hyperparameters.

A conjugate inverse-Gamma prior is assigned to

σ 2 b σ 2 b ∼ IG (γ, ν) (1.50)
where (γ, ν) are real parameters xed to obtain a at prior, reecting the absence of knowledge about the variance σ 2 b ((γ, ν) will be set to (10 -1 , 10 -1 ) in the simulation section). A uniform prior distribution is assigned to the hyperparameter w w ∼ U [0,1] (w) (1.51) since there is no a priori information regarding the proportions of linearly and nonlinearly mixed pixels in the image.

The resulting directed acyclic graph (DAG) associated with the proposed Bayesian model is depicted in Fig. 1.9.

Joint posterior distribution The joint posterior distribution of the unknown parameters {θ, Φ} where θ = Z, M, b, σ 2 and Φ = σ 2 b , w can be computed using the following hierarchical structure

f (θ, Φ|Y) ∝ f (Y|θ, Φ)f (θ, Φ) (1.52)
where f (Y|θ) has been dened in (4.3). By assuming a priori independence between the parameters Z, M, b and σ 2 and between the hyperparameters σ 2 b and w, the joint prior distribution of the unknown parameter vector can be expressed as

f (θ, Φ) = f (θ|Φ)f (Φ) = f (Z)f (M)f (σ 2 )f (b|σ 2 b , w)f (σ 2 b )f (w). (1.53) ν γ y y s 2 & & M Ù Ù σ 2 b ! ! w Ö Ö Z A A M Ù Ù b u u σ 2 r r Y Figure 1
.9: DAG for the parameter and hyperparameter priors (the xed parameters appear in boxes).

The joint posterior distribution f (θ, Φ|Y) can then be computed up to a multiplicative constant after replacing (1.53) and ( 4.3) in (4.17). Unfortunately, it is dicult to obtain closed form expressions for the standard Bayesian estimators (including the maximum a posteriori (MAP) and the minimum mean square error (MMSE) estimators) associated with (4.17). In this study, we propose to use ecient Markov Chain Monte Carlo (MCMC) methods to generate samples asymptotically distributed according to (4.17). Due to the large number of parameters to be sampled, we use an HMC algorithm which allows the number of sampling steps to be reduced and which improves the mixing properties of the sampler. The generated samples are then used to compute the MMSE estimator of the unknown parameter vector (θ, Φ). The next section summarizes the basic principles of the HMC methods that will be used to sample asymptotically from (4.17).

Constrained Hamiltonian Monte Carlo method

HMCs are powerful methods for sampling continuous distributions by introducing ctitious momentum variables.

Let q ∈ R D be the parameter of interest and π(q) its corresponding distribution to be sampled from. From statistical mechanics, the distribution π(q) can be related to a potential energy function

U (q) = -log [π(q)] + c
where c is a positive constant such that exp (-U (q) + c) dq = 1. The Hamiltonian of π(q) is a function of the energy U (q) and of an additional momentum vector p ∈ R D dened as

H(q, p) = U (q) + K(p) (1.54)
where K(p) is an arbitrary kinetic energy function. Usually, a quadratic kinetic energy is chosen and we propose to use K(p) = p T p/2 in this study (for reasons explained later). The Hamiltonian (1.54) denes the following distribution for (q, p)

f (q, p) ∝ exp [-H(q, p)] ∝ π(q) exp - 1 2 p T p (1.55)
which shows that q and p are independent and that the marginal distribution of p is the N (0 D , I D ) distribution.

The HMC algorithm allows samples to be asymptotically generated according to (1.55). The ith HMC iteration uses the pair of vectors (q (i) , p (i) ) and consists of two steps. The rst step resamples the initial momentum p(i)

according to the standard multivariate Gaussian distribution. The second step uses Hamiltonian dynamics to propose a candidate (q * , p * ) which is accepted with the following probability ρ = min exp -H(q * , p * ) + H(q (i) , p(i) ) , 1 .

(1.56)

Generation of the candidate (q * , p * ): Hamiltonian dynamics are usually simulated by discretization methods such as Euler or leapfrog methods. The classical leapfrog method is a discretization scheme composed of N LF steps with a discretization stepsize . The nth leapfrog step can be expressed as

p (i,n + /2) = p (i,n ) - 2 ∂U ∂q T q (i,n ) (1.57a) q (i,(n+1) ) = q (i,n ) + p (i,n + /2) (1.57b) p (i,(n+1) ) = p (i,n + /2) - 2 ∂U ∂q T q (i,(n+1) )
.

(1.57c)

The leapfrog method starts with (q (i,0) , p(i) ) = (q (i) , p(i) ) and the candidate is set after N LF steps to (q * , p * ) = (q (i, N LF ) , p(i, N LF ) ).

However, if q is subject to constraints, more sophisticated discretization methods must be used. Assume that the vector of interest q = [q 1 , . . . , q D ] T satises the following constraints

q l < q d < q u , d ∈ {1, . . . , D} (1.58) 
where q l (resp. q u ) is the lower (resp. upper) bound for q d (such kind of constraints need to be satised by the elements of Z and the endmembers in M). In this study we propose to use the constrained leapfrog scheme studied in (Brooks, 2011, Chap. 5), consisting of N LF steps, with a discretization stepsize q . Each constrained HMC (CHMC) iteration starts in a similar way to the classical leapfrog method, with the sequential sampling of the momentum p

(1.57a) and the vector q (1.57b). However, if the generated vector q violates the constraints (1.58), it is modied depending on the violated constraints and the momentum is negated (see (Brooks, 2011, Chap. 5) for more details).

This step is repeated until each component of the generated q satises the constraints. The CHMC ends with the update of the momentum p (1.57c). One iteration of the resulting constrained HMC algorithm (CHMC) is summarized in Algo. 1.4. As mentioned above, one might think of using a more sophisticated kinetic energy for p to improve the performance of the HMC algorithm. However, the kinetic energy K(p) = p T p/2 allows the discretization method handling the constraints to be simple and will provide good performance for our application (as will be shown in Section 4.7). The performance of the HMC mainly relies on the values of the parameters N LF and q . Fortunately, the choice of q is almost independent of N LF such that these two parameters can be tuned sequentially. The procedures used in this study to adjust N LF and q are detailed in the next paragraphs.

1: %Initialization of the ith iteration(n = 0)

• q (i,0) = q (i) satisfying the constraints (1.58)

• Sample p (i,0) = p(i) ) ∼ N (0 D , I D )
2: %Modied leapfrog steps 3: for n = 0 : N LF -1 do 4: %Standard leapfrog steps

• Compute p (i,n + /2) = p (i,n ) - 2 ∂U ∂q T q (i,n ) • Compute q (i,(n+1) ) = q (i,n ) + p (i,n + /2)
5: %Steps required to ensure q (i,(n+1) ) satises (1.58) 6: while q (i,(n+1) ) does not satisfy (1.58) do 7:

for d = 1 : D do 8: if q (i,(n+1) ) d < q l then 9: Set q (i,(n+1) ) d = 2q l -q (i,(n+1) ) d (replace q (i,(n+1) ) d
by its symmetric with respect to q l ) 10:

Set p

(i,n + /2) d = -p (i,n + /2) d 11: end if 12: if q (t+ ) d > q u then 13: Set q (i,(n+1) ) d = 2q u -q (i,(n+1) ) d (replace q (i,(n+1) ) d
by its symmetric with respect to q u ) 14:

Set p

(i,n + /2) d = -p (i,n + /2) d 15:
end if 16:

end for 17: end while 18: %Standard leapfrog step 19: Compute p (i,(n+1) ) = p (i,n + /2) -2 ∂U ∂q T q (i,(n+1) ) 20: end for 21: %Accept-reject procedure 22: Set p * = p (i, N LF ) and q * = q (i, N LF ) 23: Compute ρ using (1.56) 24: Set (q (i+1) , p (i+1) ) = (q * , p * ) with probability ρ 25: Else set (q (i+1) , p (i+1) ) = (q (i) , p(i) ).

Algo. 1.4: Constrained Hamiltonian Monte Carlo iteration

Tuning the stepsize q : The step size q is related to the accuracy of the leapfrog method to approximate the Hamiltonian dynamics. When q is small, the approximation of the Hamiltonian dynamic is accurate and the acceptance rate (1.56) is high. However, the exploration of the distribution support is slow (for a given N LF ). In this study, we propose to tune the stepsize during the burn-in period of the sampler. More precisely, the stepsize is decreased (resp. increased) by 25% if the average acceptance rate over the last 50 iterations is smaller than 0.5 (resp. higher than 0.8). Note that the stepsize update only happens during the burn-in period to ensure the Markov chain is homogeneous after the burn-in period.

Tuning the number of leapfrog steps N LF : Assume q has been correctly adjusted. Too small values of N LF lead to a slow exploration of the distribution (random walk behavior) whereas too high values of N LF require high computational time. Similarly to the stepsize q , the optimal choice of N LF depends on the distribution to be sampled. The sampling procedure proposed in this study consists of several HMC updates included in a Gibbs sampler (as will be shown in the next section). The number of leapfrog steps required for each of these CHMC updates has been adjusted by cross-validation. From preliminary runs, we have observed that setting the number of leapfrog steps for each HMC update close to N LF = 50 provides a reasonable tradeo ensuring a good exploration of the target distribution and a reasonable computational complexity. To avoid possible periodic trajectories, it is recommended to let N LF random (Brooks, 2011, Chap. 5). In this study, we have assumed that N LF is uniformly drawn in the interval [45,55] at each iteration of the Gibbs sampler. The next section presents the Gibbs sampler (including CHMC steps) which is proposed to sample according to (4.17).

Gibbs Sampler

The principle of the Gibbs sampler is to sample according to the conditional distributions of the posterior of interest (Robert and Casella, 2004, Chap. 10). Due to the large number of parameters to be estimated, it makes sense to use a block Gibbs sampler to improve the convergence of the sampling procedure. More precisely, we propose to sample sequentially M, Z, b, σ 2 , σ 2 b and w using six moves that are detailed in the next sections.

Sampling the coecient matrix Z Sampling from f (Z|Y, M, b, σ 2 , σ 2 b , w) is dicult due to the complexity of this distribution. In this case, it is classical to use an accept/reject procedure to update the coecient matrix Z (hybrid Metropolis-Within-Gibbs sampler). Since the elements of Z satisfy the constraints (1.40), the CHMC studied in Section 1.5.1 could be used to sample according to the conditional distribution f (Z|Y, M, b, σ 2 , σ b , w). However, as for Metropolis-Hastings updates, the convergence of HMCs generally slows down when the dimensionality of the vector to be sampled increases. Consequently, sampling an N (R -1)-dimensional vector using the proposed CHMC can be inecient when the number of pixels is very large. It can be shown that (1.59) i.e., the N coecients vectors {z n } n=1,...,N are a posteriori independent and can be sampled independently in a parallel manner. Moreover, straightforward computations lead to

f (Z|Y, M, b, σ 2 , σ b , w) = N n=1 f (z n |y n , M, b n , σ 2 ),
f (z n |y n , M, b n , σ 2 ) ∝ exp - (y n -x n ) T Σ -1 (y n -x n ) 2 1 (0,1) R-1 (z n ) R-1 r z R-r-1 n,r (1.60) 
where

x n = g n (Ma n ), 1 (0,1) R-1 (•) denotes the indicator function over (0, 1) R-1 . The distribution (1.60) is related to the following potential energy U (z n ) = (y n -x n ) T Σ -1 (y n -x n ) 2 - R-1 r=1 log z R-r-1 n,r (1.61) 
where we note that f (z Sampling the endmember matrix M From (4.17) and ( 1.53), it can be seen that

n |y n , M, b n , σ 2 ) ∝ exp [-U (z n )]. N momentum
f (M|Y, Z, b, σ 2 , s 2 , M) = L =1 f (m ,: |y ,: , Z, b, σ 2 , s 2 , m ,: )
where m ,: (resp. m ,: and y ,: ) is the th row of M (resp. of M and Y) and

f (m ,: |y ,: , Z, b, σ 2 , s 2 , m ,: ) ∝ exp - y ,: -t 2 2σ 2 exp - m ,: -m ,: 2 2s 2 1 (0,1) R (m ,: ) (1.62) with t = A T m ,: + diag (b) A T m ,:
A T m ,: . Consequently, the rows of the endmember matrix M can be sampled independently similarly to the procedure described in the previous section (to sample Z). More precisely, we introduce a potential energy V (m ,: ) associated with m ,: dened by Sampling the nonlinearity parameter vector b Using (4.17) and ( 1.53), it can be easily shown that the

V (m ,: ) = y ,: -t 2 2σ 2 + m ,: -m ,: 2 2s 2 
conditional distribution of b n |y n , Mz n , σ 2 , w, σ 2 b is the following Bernoulli-Gaussian distribution b n |y n , M, z n , σ 2 , w, σ 2 b ∼ (1 -w * n )δ(b n ) + w * n N µ n , s 2 n (1.64)
where

µ n = σ 2 b (y n -Ma n ) T Σ -1 h n σ 2 b h T n Σ -1 h n + 1 , s 2 n = σ 2 b σ 2 b h T n Σ -1 h n + 1 and h n = (Ma n ) (Ma n ). Moreover, w * n = w β n + w(1 -β n ) β n = σ b s n exp - µ 2 n 2s 2 n . (1.65)
For each b n , the conditional distribution (1.64) does not depend on {b k } k =n . Consequently, the nonlinearity parameters {b n } n=1,...,N can be sampled independently in a parallel manner.

Sampling the noise variance vector σ 2 By considering the posterior distribution (4.17), it can be shown that

f (σ 2 |Y, M, Z, b) = L =1 f (σ 2 |y ,: , m :, , Z, b) (1.66)
and that σ 2 |y ,: , m :, , Z, b is distributed according to the following inverse-gamma distribution

σ 2 |y ,: , m :, , Z, b ∼ IG N 2 , (y ,: -x ,: ) T (y ,: -x ,: ) 2 (1.67)
where X = [x 1,: , . . . , x L,: ] T . Thus the noise variances can be sampled easily and independently.

1: Initialization t = 0 Sample Z (t) from the pdfs (1.60) using a CHMC procedure. Sample M (t) from the pdfs (1.62) using a CHMC procedure. Sample b (t) from the pdfs (1.64).

• Z (0) , M (0) , b (0) , σ 2(0) , w (0) , σ 2 
8:

Sample σ 2(t) from the pdfs (1.67).

9:

Hyperparameter update 10:

Sample σ 2(t)
b from the pdf (1.68).

11:

Sample w (t) from the pdf (1.69).

12: end for Algo. 1.5: Gibbs Sampling Algorithm Sampling the hyperparameters σ 2 b and w Looking carefully at the posterior distribution (4.17), it can be seen that σ 2 b |b, γ, ν is distributed according to the following inverse-gamma distribution

σ 2 b |b, γ, ν ∼ IG n 1 2 + γ, n∈I1 b 2 n 2 + ν (1.68)
with I 1 = {n|b n = 0}, n 0 = b 0 (where • 0 is the 0 norm, i.e., the number of elements of b that are dierent from zero) and n 1 = N -n 0 , from which it is easy to sample. Similarly, we obtain w|b ∼ Be(n 1 + 1, n 0 + 1).

(1.69)

Finally, the Gibbs sampler (including HMC procedures) used to sample according to the posterior (4.17) consists of the six steps summarized in Algo. 1.5. The small number of sampling steps is due to the high parallelization properties of the proposed sampling procedure, i.e., the generation of the N coecient vectors {z n } n=1,...,N , the N nonlinearity parameters {b n } n=1,...,N and the L reectance vectors {m ,: } =1,...,L . After generating N MC samples using the procedures detailed above, the MMSE estimator of the unknown parameters can be approximated by computing the empirical averages of these samples, after an appropriate burn-in period 4 . The next section studies the performance of the proposed algorithm for synthetic hyperspectral images.

Simulations

Simulations on synthetic data

The performance of the proposed nonlinear SU algorithm is rst evaluated by unmixing 3 synthetic images of size 50 × 50 pixels. The R = 3 endmembers observed at L = 207 dierent spectral bands and contained in these images have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems Inc.), 2003) (i.e., green grass, olive green paint and galvanized steel metal). The rst synthetic image I 1 has been generated using the standard linear mixing model (LMM). A second image I 2 has been generated according to the PPNMM and a third image I 3 has been generated according to the generalized bilinear mixing model (GBM) presented in (Halimi et al., 2011a). For each image, the abundance vectors a n , n = 1, . . . , 2500 have been randomly generated according to a uniform distribution in the admissible set dened by S t = a 0 < a r < 0.9, R r=1 a r = 1 .

(1.70)

Note that the conditions a r < 0.9 ensure that there is no pure pixel in the images, which makes the unmixing problem more challenging. All images have been corrupted by an additive independent and identically distributed (i.i.d) Gaussian noise of variance σ 2 = 10 -4 , corresponding to an average signal-to-noise ratio SNR 21dB for the three images. The noise is assumed to be i. Dierent estimation procedures have been considered for the three mixing models. More precisely,

• Two unmixing algorithms have been considered for the LMM. The rst strategy extracts the endmembers from the whole image using the N-FINDR algorithm [START_REF] Winter | Fast autonomous spectral end-member determination in hyperspectral data[END_REF] and estimates the abundances using the FCLS algorithm [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF] (it is referred to as SLMM for supervised LMM). The second strategy is a Bayesian algorithm which jointly estimates the endmembers and the abundance matrix (Dobigeon et al., 2009a) (it is referred to as ULMM for unsupervised LMM).

• Two approaches have been considered for the PPNMM. The rst strategy uses the nonlinear EEA studied by [START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF] and the gradient-based approach based on the PPNMM studied in Section 1.4 for estimating the abundances and the nonlinearity parameter. This strategy is referred to as SPPNMM (supervised PPNMM). The second strategy is the proposed unmixing procedure referred to as UPPNMM (unsupervised PPNMM).

• The unmixing strategy used for the GBM is the nonlinear EEA studied in [START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF] and the gradient-based algorithm presented in [START_REF] Halimi | Unmixing hyperspectral images using a generalized bilinear model[END_REF] for abundance estimation.

Table 1.6 shows the RNMSEs associated with the images I 1 , . . . , I 3 for the dierent estimation procedures. These results show that the proposed UPPNMM performs better (in term of RNMSE) than the other considered unmixing methods for the three images. Moreover, the proposed method provides similar results when compared with the ULMM for the linearly mixed image I 1 . where m r is the rth actual endmember and mr its estimate. The smaller |SAM|, the closer the estimated endmembers to their actual values. Table 1.7 compares the performance of the dierent endmember estimation algorithms.

This table shows that the proposed UPPNMM generally provides more accurate endmember estimates than the other methods. Moreover, these results illustrate the robustness of the PPNMM regarding model mis-specication.

Note that the ULMM and the UPPNMM provide similar results (in term of SAMs) for the image I 1 generated according to the LMM. As mentioned above, one of the major properties of the PPNMM is its ability to characterize the linearity/nonlinearity of the underlying mixing model for each pixel of the image via the nonlinearity parameter b n . Fig. 1.11 shows the nonlinearity parameter distribution estimated for the three images I 1 to I 3 using the UPPNMM. This gure shows that the UPPNMM clearly identies the linear mixtures of the image I 1 whereas more nonlinearly mixed pixels can be identied in the images I 2 and I 3 . The analysis of Fig. 1.11 also shows that the nonlinearities contained in the image I 3 (GBM) are generally less signicant than the nonlinearities aecting I 2 (PPNMM) for a same signal-to-noise ratio (SNR 21dB).

The next set of simulations analyzes the performance of the proposed UPPNMM algorithm for dierent numbers These results show a general degradation of the abundance and endmember estimations when R is increasing (this is intuitive since the estimator variances usually increase with the number of parameters to be estimated). However, this degradation is reasonable when compared to the Heylen's method coupled with the PPNMM-based inversion algorithm introduced in Section 1.4. The proposed algorithm still provides accurate estimates, as illustrated in Fig. 1.12 which compares the actual and estimated endmembers associated with the image containing R = 6

endmembers.

Table 1.9: Unmixing performance:synthetic images.

R = 4 R = 5 R = 6
Average SAMs (×10 -2 ) SPPNMM Simulations on real data The real image considered in this section was acquired in 2010 by the Hyspex hyperspectral scanner over Villelongue, France (00

• 03'W and 42 • 57'N). L = 160 spectral bands were recorded from the visible to near infrared with a spatial resolution of 0.5m. This dataset has already been studied in [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] and is mainly composed of forested and urban areas. More details about the data acquisition and pre-processing steps are available in [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF]. Two sub-images denoted as scene #1 and scene #2 (of size 31 × 30 and 50 × 50 pixels) are chosen here to evaluate the proposed unmixing procedure and are depicted in Fig. 1.13 (bottom images). The scene #1 is mainly composed of road, ditch and grass pixels. The scene #2 is more complex since it includes shadowed pixels. For this image, shadow is considered as an additional endmember, resulting in R = 4 endmembers, i.e., tree, grass, soil and shadow.

The endmembers extracted by N-FINDR, the ULMM algorithm (Dobigeon et al., 2009a) and Heylen's method [START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF] with R = 3 (resp. R = 4) for the scene #1 (resp. scene #2) are compared with the endmembers estimated by the UPPNMM in Fig. 1.14 (resp. Fig. 1.15). For the scene #1, the four algorithms provide similar endmember estimates whereas the estimated shadow spectra are dierent for the scene #2. The N-FINDR algorithm and Heylen's method estimate endmembers as the purest pixels of the observed image, which can be problematic when there is no pure pixel in the image (as it occurs with shadowed pixels in the scene #2).

Conversely, the ULMM and UPPNMM methods, which jointly estimate the endmembers and the abundances seem to provide more relevant shadow spectra (of lower amplitude). Examples of abundance maps for the scene #1 (resp. scene #2), estimated by the ULMM and the UPPNMM algorithms are presented in Fig. 1.16 (resp. Fig. 1.17). The abundance maps obtained by the UPPNMM are similar to the abundance maps obtained with ULMM. The performance of the proposed algorithm is nally evaluated by computing the AREs associated with the two real images. These AREs are compared in Table 4.6 with those obtained by assuming other mixing models. The two unsupervised algorithms (ULMM and UPPNMM) provide smaller AREs than the SU procedures decomposed into two steps. This observation motivates the use of joint abundance and endmember estimation algorithms. 

Conclusion

In this chapter, we derived a polynomial post-nonlinear mixing model for nonlinear SU of hyperspectral images. Two scenarios have been presented, depending on the prior knowledge about the endmembers. When the endmembers are known, we proposed three unmixing algorithms for the inversion step. The proposed Bayesian model coupled with MCMC methods allowed samples to be generated according to the posterior of interest. These samples were then used to compute the classical Bayesian estimators, while providing measures of uncertainty about the parameter estimates. To overcome the computational complexity induced by the sampling procedure, two LS methods were also proposed, providing unmixing performance similar to those obtained with the Bayesian algorithm.

Estimating the endmembers associated with nonlinear mixtures is a challenging issue. In this chapter, we nally proposed a fully unsupervised unmixing strategy based on the proposed PPNMM model. This Bayesian algorithm estimated jointly the endmembers and the mixing coecients even when there is no pure pixel in the observed image.

The joint endmember and abundance estimation increases the number of parameters to be estimated which can be problematic when using standard MCMC methods such as the Gibbs sampler. To improve mixing properties of the Markov chains, ecient constrained Hamiltonian Monte Carlo methods were investigated. Simulations conducted on real data showed the accuracy of the proposed model to quantify possible nonlinear eects in each image pixel using a single parameter.

It was shown that the proposed model reduces to the classical LMM when the nonlinearity parameter equals zero.

Consequently, it makes sense to use this nonlinear model for nonlinearity detection. Identifying nonlinearly from linearly mixed pixel is an interesting issue for a deeper scene understanding. This problem, in particular using the PPNMM, will be addressed in the last chapter of this manuscript.

The nonlinear SU algorithms presented in this chapter were based on a parametric model involving explicitly the abundances and the endmember matrix. This model assumes that the observations are post-nonlinear mixtures of endmembers and that the nonlinear transformation can be approximated using a second order polynomial function.

For applications where the observed pixels cannot be modeled by post-nonlinear mixtures, other nonlinear models should be used. Nonparametric models have the interesting property of being highly exible to model dierent nonlinearities and have already provided interesting results for SU [START_REF] Broadwater | A comparison of kernel functions for intimate mixture models[END_REF][START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF] where ϕ M (•) is a nonlinear transformation parameterized by the endmember matrix M that is approximated using kernel functions. Physically, modeling nonlinearities by setting a nonlinear mapping from the observations to the abundances is not intuitive. Conversely, it seems more natural to assume a nonlinear mapping from the pixel compositions (i.e., the abundances and endmembers) to the observations. Such mappings can be expressed as

y n ≈ ϕ M (a n , θ n ) (2.2)
where θ n contains possible additional parameters associated with the nth pixel. It is important to note that the generative models presented in the introduction of this manuscript (such as the bilinear models) can be expressed as (2.2) where θ n contains nonlinearity parameters. For linearly mixed pixels composed of R materials (in the noise-free case), the observed pixels belong to an (R -1)dimensional subspace that can be identied using principal subspace methods (such as principal component analysis (PCA)) (see Fig. 2.2 (left)). Conversely, when nonlinear mixtures occur, the dimension of the principal subspace containing the data increases with the nonlinearity complexity. In this chapter, we assume however that mixed pixels still belong to an (R -1)-dimensional manifold when R endmembers are involved in the mixtures. This manifold is characterized by the mixture compositions (abundances) and can be either linear (for linearly mixed pixels) or nonlinear and included within a higher dimensional subspace. This is typically the case for intimate mixtures models and the bilinear FM [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF]) (see Fig. 2.2 (right)). Based on this assumption, the mapping (2.2) reduces to y n ≈ g(a n ).

( .3) where g(•) is a linear/nonlinear transformation that implicitly relies on the endmember matrix M. The resulting latent variable model (LVM) approximates the observed data using a nonlinear transformation of the abundance, contrary to KPCA-based methods which approximate the abundances using nonlinear transformations of the observations (Fig. 2.3). Conversely to the K-FCLS algorithm, this chapter addresses the problem of unsupervised unmixing, i.e., the endmembers are assumed to be unknown. Precisely, only the number of components is known.

Consequently, the nonlinear mapping g(•) and the abundances in (2.3) is dened as a transformation of its corresponding abundance vector a n = [a 1,n , . . . , a R,n ] T as follows

y n = g (a n ) + e n , n = 1, . . . , N (2.4) 
where g : R R → R L is a linear or nonlinear unknown function. The noise vector e n is an i.i.d. white Gaussian noise sequence with variance σ 2 , i.e., e n ∼ N e n |0 L , σ 2 I L , n = 1, . . . , N . Without loss of generality, the nonlinear mapping (2.4) from the abundance space to the observation space can be rewritten

y n = W 0 ψ [a n ] + e n , n = 1, . . . , N (2.5) 
where ψ : R R → R D , W 0 is an L × D matrix and the dimension D is the dimension of the subspace spanned by the transformed abundance vectors ψ [a n ] , n = 1, . . . , N . Of course, the performance of the unmixing strategy relies on the choice of the nonlinear function ψ. In this study, we will use the following nonlinearity

ψ : R R → R D a → ψ [a] = [a 1 , . . . , a R , a 1 a 2 . . . , a R-1 a R ] T , (2.6) 
with D = R(R+1)/2. It is important to note from (2.5) and (2.6) that W 0 contains the R spectra m 1 , . . . , m R of the pure components present in the image and R(R -1)/2 interaction spectra t R+1 , . . . , t D between these components, i.e., W 0 = [m 1 , . . . , m R , t R+1 , . . . , t D ]. The primary motivation for considering this particular kind of nonlinearity is the fact that the resulting mixing model is a bilinear model with respect to each abundance a r , r = 1, . . . , R.

More precisely, this mixing model reduces to the generalized bilinear model proposed in (Halimi et al., 2011a) for

t i+j = γ i,j m i m j , ∀j > i, (2.7) 
and thus the LMM. Note also that the analysis in this chapter could be applied to any other nonlinearity ψ.

Due to physical constraints, the abundance vector a n satises the following positivity and sum-to-one constraints R r=1 a r,n = 1, a r,n ≥ 0, ∀r ∈ {1, . . . , R} . Unfortunately, it is well known that the unmixing problem is ill-posed and that the solution of this constrained problem is not unique even when considering the constraints (2.8) for the abundances. In the noise-free linear case, it is well known that the data are contained in a simplex whose vertices are the endmembers. unmixing is challenging. Note that it has been shown in (Dobigeon et al., 2009a) that for linear unmixing, assigning a uniform distribution on the simplex dened by (2.8) for the abundances favors the abundances to occupy a large volume in (2.8). However, such prior can be too uninformative for nonlinear unmixing.

To tackle this problem, we rst propose to relax the positivity constraints for the elements of the matrix A and to consider only the sum-to-one constraint. For ease of understanding, we introduce R × 1 vectors satisfying the sum-to-one constraint R r=1

x r,n = 1, n = 1, . . . , N

(2.9) referred to as latent variables and denoted as x n = [x 1,n , . . . , x R,n ] T , n = 1, . . . , N . Relaxing the positivity constraints allows the problem complexity to be reduced by 1) estimating the latent variables introduced articially and

2) scaling subsequentially these variables to recover abundances occupying the largest volume in the domain dened by (2.8). The scaling procedure will be discussed in paragraph 2.5. The next paragraph presents the Bayesian model for latent variable estimation using GPLVMs.

Bayesian model

GPLVMs [START_REF] Lawrence | Gaussian process latent variable models for visualisation of high dimensional data[END_REF] are powerful tools for probabilistic nonlinear dimensionality reduction that rewrite the nonlinear model (2.4) as a nonlinear mapping from a latent space to the observation space as follows Assuming independence between the observations, the statistical properties of the noise lead to the following like-

y n = Wψ [x n ] + e n , n = 1, . . . , N ( 
lihood of the L × N observation matrix Y = [y 1 , . . . , y N ] Y|W, X, σ 2 ∼ N n=1 N y n |Wψ x (n), σ 2 I L (2.11)
where X = [x 1 , . . . , x N ] is the R × N latent variable matrix. Note that the likelihood can be rewritten as a product of Gaussian distributions over the spectral bands as follows Y|W, X,

σ 2 ∼ L =1 N y ,: |Ψ x w , σ 2 I L (2.12)
where Y = [y 1,: , . . . , y L,: ] T (y ,: denotes the th row of Y) and Ψ x = [ψ x (1), . . . , ψ x (N )] T is an N × D matrix. The idea of GPLVMs is to consider W as a nuisance parameter, to assign a Gaussian prior to W and to marginalize the joint likelihood (2.11) over W, i.e.,

f (Y|X, σ 2 ) = f (Y|W, X, σ 2 )f (W)dW (2.13)
where f (W) is the prior distribution of W. The estimation of X and σ 2 can then be achieved by maximizing (2.13) following the maximum likelihood estimator (MLE) principle. An alternative consists of using an appropriate prior distribution f (X, σ 2 ), assuming prior independence between W and (X, σ 2 ), and maximizing the joint posterior

distribution f (X, σ 2 |Y) ∝ f (Y|W, X, σ 2 )f (W)f (X, σ 2 )dW ∝ f (X, σ 2 ) f (Y|W, X, σ 2 )f (W)dW ∝ f (Y|X, σ 2 )f (X, σ 2 ) (2.14)
with respect to (w.r.t.) (X, σ 2 ), yielding the maximum a posteriori (MAP) estimator of (X, σ 2 ). The next paragraph discusses dierent possibilities for marginalizing the joint likelihood (2.12) w.r.t. W.

Marginalizing W

It can be seen from ( 2.13) that the marginalized likelihood and thus the associated latent variables depend on the choice of the prior f (W). More precisely, assigning a given prior for W favors particular representations of the data, i.e., particular solutions for the latent variable matrix X maximizing the posterior (2.14). When using GPLVMs for dimensionality reduction, a classical choice [START_REF] Lawrence | Gaussian process latent variable models for visualisation of high dimensional data[END_REF] consists of assigning independent Gaussian priors for w 1 , . . . , w L , leading to

f (W) = 1 2π DL 2 L =1 exp - 1 2 w 2 .
(2.15)

However, this choice can be inappropriate for SU. First, Eq. ( 2.15) can be incompatible with the admissible latent space, constrained by (2.9). Second, the prior (2.15) assumes the columns of W (linear combinations of the spectra of interest) are a priori Gaussian, which is not relevant for real spectra in most applications. A more sophisticated choice consists of considering a priori correlation between the columns (inter-spectra correlation) and rows (inter-bands correlation) of W using a structured covariance matrix to be xed or estimated. In particular, introducing correlation between close spectral bands is of particular interest in hyperspectral imagery. Structured covariance matrices have already been considered in the GP literature for vector-valued kernels [START_REF] Bonilla | Kernel multi-task learning using task-specic features[END_REF] (see (Álvarez et al., 2012) for a recent review). However, computing the resulting marginalized likelihood usually requires the estimation of the structured covariance matrix and the inversion of an N L × N L covariance matrix 1 , which is prohibitive for SU of hyperspectral images since several hundreds of spectral bands are usually considered when analyzing real data. Sparse approximation techniques might be used to reduce this computational complexity (see [START_REF] Quiñonero-Candela | A unifying view of sparse approximate Gaussian process regression[END_REF] for a recent review). However, to our knowledge, these techniques rely on the inversion of matrices bigger than N × N matrices. The next paragraph presents an alternative that only requires the inversion of an D × D covariance matrix without any approximation.

Subspace identication

It can be seen from ( 2.10) that in the noise-free case, the data belong to a D-dimensional subspace that is spanned by the columns of W. To reduce the computational complexity induced by the marginalization of the matrix W while considering correlations between spectral bands, we propose to marginalize a basis of the subspace spanned by W instead of W itself. More precisely, W can be decomposed as follows

W = PU T (2.16)
where P = [p 1 , . . . , p L ] T is an L × D matrix (p is D × 1 vector) whose columns are arbitrary basis vectors of the D-dimensional subspace that contains the subspace spanned by the columns of W and U = [u 1 , . . . , u D ] T is a D × D matrix that scales the columns of P. Note that the subspaces spanned by P and W are the same when W is full rank, resulting in a full rank matrix U. The joint likelihood (2.12) can be rewritten as

Y|P, U, X, σ 2 ∼ L =1 N y ,: |Cp , σ 2 I L (2.17)
where C = Ψ x U is an N × D matrix. The proposed subspace estimation procedure consists of assigning an appropriate prior distribution to P (denoted as f (P)) and to marginalize P from the joint posterior of interest. 1 See Appendix E for further details.

It is easier to choose an informative prior distribution f (P) that accounts for correlation between spectral bands than choosing an informative prior f (W) since P is an arbitrary basis of the subspace spanned by W, which can be easily estimated (as will be shown in the next paragraph).

Parameter priors

GPLVMs construct a smooth mapping from the latent space to the observation space that preserves dissimilarities [START_REF] Lawrence | Local distance preservation in the gp-lvm through back constraints[END_REF]. In the SU context, it means that pixels that are spectrally dierent have dierent latent variables and thus dierent abundance vectors. However, preserving local distances is also interesting: spectrally close pixels are expected to have similar abundance vectors and thus similar latent variables.

Several approaches have been proposed to preserve similarities, including back-constraints [START_REF] Lawrence | Local distance preservation in the gp-lvm through back constraints[END_REF], dynamical models [START_REF] Wang | Applications of independent component analysis in endmember extraction and abundance quantication for hyperspectral imagery[END_REF] and locally linear embedding (LLE) [START_REF] Urtasun | Modeling human locomotion with topologically constrained latent variable models[END_REF]. In this study, we use LLE to assign an appropriate prior to X. First, the K nearest neighbors {y j } j∈νi of each observation vector y i are computed using the Euclidian distance (ν i is the set of integers j such that y j is a neighbor of y i ). The weight matrix Λ LLE = [λ i,j ] of size N × N providing the best reconstruction of y i from its neighbors is then estimated as

Λ LLE = arg min Λ N i=1 y i - j∈νi λ i,j y j 2 .
(2.18)

Note that the solution of (2.18) is easy to obtain in closed form since the criterion to optimize is a quadratic function of Λ. Note also that the matrix Λ is sparse since each pixel is only described by its K nearest neighbors. The locally linear patches obtained by the LLE can then be used to set the following prior for the latent variable matrix

f (X|Λ LLE , γ) ∝ exp   - γ 2 N i=1 x i - j∈νi λ i,j x j 2    N n=1 1 D [x n ] (2.19)
where γ is a xed hyperparameter to be adjusted and 1 D (•) is the indicator function over the set D dened by the constraints (2.9).

In this study, we propose to assign a prior to P using the standard principal component analysis (PCA) (note again that the data have been centered). Assuming prior independence between p 1 , . . . , p L , the following prior is considered for the matrix P

f P|P, s 2 = 1 2πs 2 N L 2 L =1 exp - 1 2s 2 p -p 2
(2.20)

where P = [p 1 , . . . , pL ] T is an L × D projection matrix containing the rst D eigenvectors of the sample covariance matrix of the observations (provided by PCA) and s 2 is a dispersion parameter that controls the dispersion of the prior. Note that the correlation between spectral bands is implicitly introduced through P. It is interesting to mention that the use of principal subspace identication methods for SU has already been investigated by Dobigeon et al. (2009a) where the projections of the endmembers onto the principal data subspace were estimated instead of the endmembers themselves.

Non-informative priors are assigned to the noise variance σ 2 and the matrix U, i.e,

f (σ 2 ) ∝ 1 (0,δ σ 2 ) (σ 2 ) f (u i,j ) ∝ 1 (-δ U ,δ U ) (u i,j ) (2.21)
where the intervals (0, δ σ 2 ) and (-δ U , δ U ) cover the possible values of the parameters σ 2 and U. Similarly, the following non-informative prior is assigned to the hyperparameter s 2 f (s 2 ) ∝ 1 (0,δ s 2 ) (s 2 ) 

Marginalized posterior distribution

Assuming prior independence between P, X, U, s 2 and σ 2 , the marginalized posterior distribution of θ = (X, U, s 2 , σ 2 ) can be expressed as

f θ|Y, Λ LLE , P, γ ∝ f (θ|Λ LLE , γ) f (Y|P, θ)f P|P, s 2 dP ∝ f (Y|θ, P)f (θ|Λ LLE , γ) (2.23) where f (θ|Λ LLE , γ) = f (X|Λ LLE , γ)f (U)f (s 2 )f (σ 2 ). Straightforward computations leads to f (Y|θ, P) = f (Y|P, θ)f P|P, s 2 dP ∝ L =1 1 |Σ| 1 2 exp - 1 2 ȳT ,: Σ -1 ȳ ,: ∝ |Σ| -L 2 exp - 1 2 tr(Σ -1 ȲT Ȳ) (2.24) where Σ = s 2 CC T + σ 2 I N , ȳ ,: = y ,: -Cp is an N × 1 vector, Ȳ = [ȳ 1,: , . . . , ȳL,: ] = Y -PC T is an L × N matrix
and tr(•) denotes the matrix trace.

Mainly due to the nonlinearity introduced through the nonlinear mapping, a closed form expression for the parameters maximizing the joint posterior distribution (2.23) is impossible to obtain. We propose to use a scaled conjugate gradient (SCG) method [START_REF] Møller | A scaled conjugate gradient algorithm for fast supervised learning[END_REF] to maximize the marginalized log-posterior. To ensure the sum-to-one constraint for X, the following arbitrary reparametrization

x R,n = 1 - R-1 r=1
x r,n , n = 1, . . . , N is used and the marginalized posterior distribution is optimized w.r.t. the rst (R-1) rows of X denoted X \R . Note that the sum-to-one constraints for the latent variables could be relaxed since we only expect the abundances of interest to satisfy these constraints. However, these constraints ensure that the dimension of the estimated manifold on which the data lie is R -1. The partial derivatives of the log-posterior w.r.t. X \R , U, s 2 and σ 2 are obtained using partial derivatives w.r.t. Σ and Ȳ and the classical chain rules (see Appendix F for further details). The resulting latent variable estimation procedure is referred to as locally linear GPLVM (LL-GPLVM).

Note that the marginalized likelihood reduces to the product of L independent Gaussian probability density functions since y ,: |p , U, X, σ 2 , s 2 ∼ N Cp , s 2 CC T + σ 2 I N (2.25) and = 1, . . . , L. Note also that the covariance matrix Σ = s 2 CC T + σ 2 I N is related to the covariance matrix of the 2nd order polynomial kernel (Rasmussen and Williams, 2005, p. 89). More precisely, the proposed nonlinear mapping corresponds to a particular polynomial kernel whose metric is induced by the matrix U. Finally, note that the evaluation of the marginalized likelihood (2.24) only requires the inversion of the N × N covariance matrix Σ.

It can been seen from the following Woodbury matrix identity [START_REF] Brookes | The Matrix Reference Manual[END_REF])

Σ -1 = σ -2 I N -C σ 2 s -2 I D + C T C -1 C T (2.26)
that the computation of Σ -1 mainly relies on the inversion of a D × D matrix. Similarly, the computation of |Σ| = 1/|Σ -1 | mainly consists of computing the determinant of a D × D matrix, which reduces the computational cost when compared to the structured covariance matrix based approach presented in paragraph 2.4.1.

Estimation of P

Let us denote as θ = ( X, U, ŝ2 , σ2 ) the maximum a posteriori (MAP) estimator of θ = (X, U, s 2 , σ 2 ) obtained by maximizing (2.23). Using the likelihood (2.17), the prior distribution (2.20) and Bayes' rule, we obtain the posterior distribution of P conditioned upon θ, i.e., P|Y, θ, P ∼

L =1 N (p |p S) (2.27)
where S -1 = σ -2 C T C + s -2 I D and p = S(C T y ,: -p ). Since the conditional posterior distribution of P is the product of L independent Gaussian distributions, the MAP estimator of P conditioned upon θ is given by . . . , xN ]. The MAP estimator P of P can be used to reconstruct the nth estimated observed pixels ŷn using the LL-GPLVM as follows

P = Y C -P S (2.28) where S -1 = σ-2 C T C + ŝ-2 I D , C = Ψ x U, Ψ x = [ψ x(1), . . . , ψ x(N )] T and X = [x 1 ,
ŷn = P U T ψ [x(n)] .
(2.29)

The next paragraph studies a scaling procedure that estimates the abundance matrix using the estimated latent variables resulting from the maximization of (2.23).

Scaling procedure

The optimization procedure presented in paragraph 2.4.4 provides a set of latent variables that represent the data but can dier from the abundance vectors of interest. Consider

X =   X \R 1 T N -1 T R-1 X \R   (2.30)
obtained after maximization of the posterior (2.23). The purpose of this paragraph is to estimate an R × N

abundance matrix A = [a 1 , . . . , a N ] such that X \R = V R-1 A + E (2.31)
where a 1 , . . . , a N occupy the maximal volume in the simplex dened by (2.8)

, V R-1 = [v 1 , . . . , v R ] is an (R -1)×R
matrix and E is an (R -1) × N standard i.i.d Gaussian noise matrix which models the scaling errors. Since X satisfy the sum-to-one constraint (2.9), estimating the relation between X \R and A is equivalent to estimating the relation between X and A. However, when considering the mapping between X and A, non-isotropic noise has to be considered since the rows of X and A satisfy the sum-to-one constraint, i.e., they belong to the same (R -1)-dimensional subspace.

Eq. ( 2.31) corresponds to an LMM whose noisy observations are the columns of X \R . Since A is assumed to occupy the largest volume in the simplex dened by (2.8), the columns of V R-1 are the vertices of the simplex of minimum volume that contains X \R . As a consequence, it seems reasonable to use a linear unmixing strategy for the set of vectors x \R,1 , . . . , x\R,N to estimate A and V R-1 . In this study, we propose to estimate jointly A and V R-1 using the Bayesian algorithm presented in (Dobigeon et al., 2009a) for unsupervised SU assuming the LMM. Note that the algorithm in (Dobigeon et al., 2009a) assumed positivity constraints for the estimated endmembers. Since these constraints for V R-1 are unjustied, the original algorithm has slightly been modied by removing the truncations in the projected endmember priors (see (Dobigeon et al., 2009a) for details). Once the estimator ( A, V R-1 ) of (A, V R-1 ) has been obtained by the proposed scaling procedure, we introduce constrained latent variables denoted as

X (c) = [x (c) 1 , . . . , x (c) 
N ] T and dened as follows

X (c) =   X (c) \R 1 T N -1 T R-1 X (c) \R   (2.32) with X (c) \R = V R-1 A.
These constrained latent variables will be used to compute the estimated observed pixels resulting from the unmixing procedure. Using the sum-to-one constraint A T 1 R = 1 N , we obtain

X (c) =   V R-1 A 1 T R A -1 T R-1 V R-1 A   =   V R-1 1 T R -1 T R-1 V R-1   A = V R A (2.33) where V R = [ V T R-1 , 1 R -V T R-1 1 R-1 ] T is an R × R matrix.
The nal abundance estimation procedure, including the LL-GPLVM presented in paragraph 2.4 and the scaling procedure investigated in this paragraph is referred to as fully constrained LL-GPVLM (FCLL-GPLVM). The detailed algorithm is summarized in Algo. 2.1. The MAP estimator P in (2.28) and the estimated constrained latent variables are used to reconstruct the nth estimated observed pixels ŷn using the FCLL-GPLVM as follows ŷn = P U T ψ x(c) (n) = P U T ψ VR ân .

(2.34)

Once the nal abundance matrix A and the matrix V R have been estimated, we propose an endmember extraction procedure based on GP regression. This method is discussed in the next paragraph.

1: Input parameters

• Number of endmembers R.

• Matrices Λ LLE and P.

• Number of neighbors for LLE K = R.

• Hyperparameter γ = 10 4 .

2: Estimation

• Optimize the marginalized posterior in (2.23) using a scaled conjugate gradient algorithm to form θ = ( X, U, ŝ2 , σ2 ).

3: Scaling

• Run a linear spectral unmixing algorithm on X \R to form the estimators A and V (R-1) (and compute the constrained latent variables according to (2.32)).

4: Endmember prediction

• Set a = [0 T r-1 , 1, 0 T R-r ]
T and estimate the rth endmember using (2.39).

5: Output parameters

• Estimated abundance matrix A.

• Estimated endmembers.

Algo. 2.1: FCLL-GPLVM algorithm.

Gaussian process regression

Endmember estimation is one of the main issues in SU. Most of the existing EEAs intend to estimate the endmembers from the data, i.e., selecting the most pure pixels in the observed image [START_REF] Chaudhry | Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery[END_REF][START_REF] Nascimento | Vertex component analysis: A fast algorithm to unmix hyperspectral data[END_REF][START_REF] Winter | Fast autonomous spectral end-member determination in hyperspectral data[END_REF]. However, these approaches can be inecient when the image does not contain enough pure pixels. Some other EEAs based on the minimization of the volume containing the data (such as the minimum volume simplex analysis [START_REF] Li | Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data[END_REF])) can mitigate the absence of pure pixels in the image.

This paragraph studies a new endmember estimation strategy based on GP regression for nonlinear mixtures. This strategy can be used even when the scene does not contain pure pixels. It assumes that all the image abundances have been estimated using the algorithm described in paragraph 2.5. Consider the set of pixels {y n } n=1,...,N and corresponding estimated abundance vectors {â n } n=1,...,N . GP regression rst allows the nonlinear mapping g(•) in (2.4) (from the abundance space to the observation space) to be estimated. The estimated mapping is denoted as ĝ(•). Then, it is possible to use the prediction capacity of GPs to predict the spectrum ĝ(a) corresponding to any new abundance vector a. In particular, the predicted spectra associated with pure pixels, i.e., the endmembers, correspond to abundance vectors that are the vertices of the simplex dened by (2.8). This paragraph provides more details about GP prediction for endmember estimation.

It can be seen from the marginalized likelihood (2.24) that f (Y|X, P, U, s2 , σ 2 ) is the product of L independent GPs associated with each spectral band of the data space (2.25). Looking carefully at the covariance matrix of y ,:

(i.e., Σ = s 2 CC T + σ 2 I N ), we can write

y ,: = z + e ,: (2.35) 
where e ,: is the N × 1 white Gaussian noise vector associated with the th spectral band (having covariance matrix

σ 2 I N ) and 2 z ∼ N (z |Ψ x Up , K) (2.36) with K = s 2 Ψ x UU T Ψ T
x the N × N covariance matrix of z . The N × 1 vector z is referred to as hidden vector associated with the observation y ,: . Consider now an L × 1 test data with hidden vector z

* = [z * 1 , ..., z * L ] T , abundance vector a * = [a * 1 , ..., a * R ] T and ψ * x = ψ [V R a * ].
We assume that the test data share the same statistical properties as the training data y 1,: , ..., y L,: in the sense that [z T , z * ] is a Gaussian vector such that

  z z *   ∼ N     z z *     Ψ x Up ψ * T x Up   ,   K κ(a * ) κ(a * ) T σ 2 a *     (2.37)
where σ 2 a * = s 2 ψ * T x UU T ψ * x is the variance of z * and κ(a * ) contains the covariances between the training inputs and the test inputs, i.e., κ(a * ) = s 2 ψ * T x UU T Ψ x .

(2.38)

Straightforward computations leads to

z * |y ,: ∼ N z * |µ , s 2 l (2.39) with µ = ψ * T x Up + κ(a * ) T (K + σ 2 I N ) -1 (y :, -Ψ x Up ) s 2 l = σ 2 a * -κ(a * ) T (K + σ 2 I N ) -1 κ(a * ).
Since the posterior distribution (2.39) is Gaussian, the MAP and MMSE estimators of z * equal the posterior mean µ = (µ 1 , ..., µ L ) T .

In order to estimate the endmembers, we propose to replace the parameters X, U, s 2 and σ 2 by their estimates X (c) , U, ŝ2 and σ2 and to compute the estimated hidden vectors associated with the abundance vectors a * = [0 T r-1 , 1, 0 T R-r ] T for r = 1, . . . , R. For each value of r, the rth estimated hidden vector will be the rth estimated endmember 3 . Indeed, for the LMM and the bilinear models considered in this study, the endmembers are obtained by setting a = a * = [0 T r-1 , 1, 0 T R-r ] T in the model (2.5) relating the observations to the abundances. Note that the proposed endmember estimation procedure provides the posterior distribution of each endmember via (2.39) which can be used to derive condence intervals for the estimates. The next paragraph presents some simulation results obtained for synthetic and real data.

2.7 Simulations on synthetic data

Subspace identication

The performance of the proposed GPLVM for dimensionality reduction is rst evaluated on three synthetic images of N = 2500 pixels. The R = 3 endmembers contained in these images have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems Inc.), 2003) (i.e., green grass, olive green paint and galvanized steel metal).The rst image I 1 has been generated according to the linear mixing model (LMM).

The second image I 2 is distributed according to the bilinear mixing model introduced in [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF], referred to as the Fan model (FM). The third image I 3 has been generated according to the generalized bilinear model (GBM) studied in (Halimi et al., 2011a) with the following nonlinearity parameters γ 1,2 = 0.9, γ 1,3 = 0.5, γ 2,3 = 0.3.

The abundance vectors a n , n = 1, . . . , N have been randomly generated according to a uniform distribution on the admissible set dened by the positivity and sum-to-one constraints (2.8). The noise variance has been xed

to σ 2 = 10 -4 , which corresponds to a signal-to-noise ratio SNR ≈ 30dB which corresponds to the worst case for current spectrometers. The hyperparameter γ of the latent variable prior (2.19) has been xed to γ = 103 and the number of neighbors for the LLE is K = R for all the results presented in this study. The quality of dimensionality reduction of the GPLVM can be measured by the ARE dened in (4.31). LL-GPLVM 0.99 0.99 1.00

Table 2.1 compares the AREs obtained by the proposed LL-GPLVM and the projection onto the rst (R-1) principal vectors provided by the principal component analysis (PCA). The proposed LL-GPLVM slightly outperforms PCA for nonlinear mixtures in term of ARE. More precisely, the AREs of the LL-GPLVM mainly consist of the noise errors (σ 2 = 10 -4 ), whereas model errors are added when applying PCA to nonlinear mixtures. Fig. 2.8 compares the latent variables obtained after maximization of (2.24) for the three images I 1 to I 3 with the projections obtained by projecting the data onto the R -1 principal vectors provided by PCA. Note that only R -1 dimensions are needed to represent the latent variables (because of the sum-to-one constraint). From this gure, it can be seen that the latent variables of the LL-GPLVM describe a noisy simplex for the three images. It is not the case when using PCA for the nonlinear images. Fig. 2.9 shows the manifolds estimated by the LL-GPLVM for the three images I 1 to I 3 . This gure shows that the proposed LL-GPLVM can model the manifolds associated with the image pixels with good accuracy. 

Abundance and endmember estimation

The quality of unmixing procedures can be measured by comparing the estimated and actual abundances using the RNMSE dened in (1.36). Table 2.2 compares the RNMSEs obtained with dierent unmixing strategies. The endmembers have been estimated by the VCA algorithm in all simulations. The algorithms used for abundance estimation are the FCLS algorithm proposed in [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF] for I 1 , the LS method proposed in [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF] for I 2 and the gradient-based method proposed in (Halimi et al., 2011a) for I 3 . These procedures are referred to as SU in the table. These strategies are compared with the proposed FCLL-GPLVM. As mentioned above, the Bayesian algorithm for joint estimation of A and V under positivity and sum-to-one constraints for A (introduced by Dobigeon et al. (2009a)) is used in this paragraph for the scaling step. It can be seen that the proposed FCLL-GPLVM is general enough to accurately approximate the considered mixing models since it provides the best results in term of abundance estimation. FCLL-GPLVM 3.9 4.2 5.4

The quality of reconstruction of the unmixing procedure is also evaluated by the ARE. FCLL-GPLVM 0.99 0.99 1.00

Finally, the performance of the FCLL-GPLVM for endmember estimation is evaluated by comparing the estimated endmembers with the actual spectra. The quality of endmember estimation is evaluated by the SAM dened in (1.71). Table 2.4 compares the SAMs obtained for each endmember using the VCA algorithm, the nonlinear EEA presented in [START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF] (referred to as Heylen) and the FCLL-GPLVM for the three images I 1 to I 3 .

These results show that the FCLL-GPLVM provides accurate endmember estimates for both linear and nonlinear mixtures.

Performance in absence of pure pixels

The performance of the proposed unmixing algorithm is also tested in scenarios where pure pixels are not present in the observed scene. More precisely, the simulation parameters remain the same for the three images I 1 to I 3 a r = 1, 0.9 ≥ a r (n) ≥ 0, ∀r ∈ {1, . . . , R} .

(2.40)

The three resulting images are denoted as I * 1 , I * 2 and I * 3 . Table 2.5 shows that the absence of pure pixels does not signicantly change the AREs of the FCLL-GPLVM when they are compared with those obtained with the images I 1 to I 3 (see Tables 2.1 and2.3). Moreover, FCLL-GPLVM is more robust to the absence of pure pixels than the dierent SU methods. The good performance of FCLL-GPVLM is due in part to the scaling procedure.

Table 2.6 shows that the performance of the FCLL-GPLVM in term of RNMSE is not degraded signicantly when there is no pure pixel in the image (see Table 2.2 for comparison). Note that the situation is dierent when the endmembers are estimated using VCA. Table 2.7 shows the performance of the FCLL-GPLVM for endmember estimation when there is no pure pixel in the image. The results of the FCLL-GPLVM do not change signicantly when they are compared with those obtained with images I 1 to I 3 , which is not the case for the two other EEAs.

The accuracy of the endmember estimation is illustrated in Fig. 2.10 which compares the endmembers estimated by the FCLL-GPLVM (blue lines) to the actual endmember (red dots) and the VCA estimates (black line) for the image I * 2 . Similar endmember estimates have been obtained for the images I * 1 and I * 3 (same components involved in the mixtures).

Table 2.5: AREs: synthetic images (absence of pure pixels, ×10 -2 ).

PCA LL-GPLVM SU FCLL-GPLVM 

Performance with respect to endmember variability

The proposed method assumes that the spectrum characterizing a given material (i.e., an endmember) is unique for all the image pixels. This assumption has been widely used in linear unmixing, which has motivated the consideration of unique endmembers. However, taking endmember variability into consideration is also an important problem, depending on the observation conditions and the observed scene [START_REF] Eches | Bayesian estimation of linear mixtures using the normal compositional model[END_REF][START_REF] Somers | Endmember variability in spectral mixture analysis: A review[END_REF][START_REF] Zare | Bootstrapping for piece-wise convex endmember distribution detection[END_REF]. To evaluate the robustness of the proposed method to endmember variability, additional experiments have been performed. More precisely, sets of N = 2500 synthetic pixels have been generated according to the following nonlinear model

y(n) = R r=1 m r (n)a r (n) + R-1 i=1 R j=i+1 a i (n)a j (n)m i (n) m j (n) + e(n),
where a(n) = [a 1 (n), . . . , a R (n)] T has been generated uniformly in the simplex dened by the positivity and sumto-one constraints and endmember variability has been considered by using random endmembers, i.e., m r (n) ∼ N m 0 r , σ 2

M I where m 0 r , r = 1, . . . , R are the actual endmembers extracted from the spectral library and σ 2 M is the endmember variance. Note that this model is similar to the Fan model studied by [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF] except the fact that the endmembers are random. Table 2.8 compares the performance of the proposed method with the performance of an unmixing strategy based on VCA (for endmember extraction) and the least squares method by [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF] (for abundance estimation). This procedure is referred to as SU in the table. Four values of σ 2 M have been considered. The higher σ 2 M , the higher the endmember variability. For each row, the best result has been highlighted in blue. The spectral angle mappers (SAMs) presented in Table 2.8 represent the angles between the estimated endmembers and the actual endmembers m 0 r , r = 1, . . . , R. From this table, it can be seen that for each value of σ 2 M , the proposed method provides more accurate abundance and endmember estimates (in term of RNMSE and SAM, respectively), when compared with the SU approach. In particular, the performance of the proposed method is not signicantly degraded for weak endmember variability. Table 2.8: Endmember variability: synthetic images. The next paragraph presents simulation results obtained for real data.

σ 2 M = 0 σ 2 M = 10 -5 σ 2 M = 10 -4 σ 2 M = 10 -3

Application to a real dataset

The real image considered in this paragraph is a part of the image acquired over Villelongue, France and introduced in Chapter 1. This dataset has already been studied by [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] and is composed of a forested area containing 12 identied vegetation species (ash tree, oak tree, hazel tree, locust tree, chestnut tree, lime tree, maple tree, beech tree, birch tree, willow tree, walnut tree and fern). The sub-image of size 50 × 50 pixels chosen here to evaluate the proposed unmixing procedure is depicted in Fig. 4.6. A reasonably small image is considered here to ease the explanation of the results and to keep the processing overhead quite low.

This image contains vegetation species of varying spatial density such that some pixels do not contain identied tree species. More precisely, the scene is mainly composed of three components since the data belong to a twodimensional manifold (see black dots of Fig. 2.12 (a)). Consequently, we assume that the scene is composed of R = 3 endmembers. We propose to use the set of 32224 label spectra used by [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] for the learning step of the classication method presented herein to identify the components present in the area of interest. More precisely, Fig. 2.12 (a) shows the reference clusters corresponding to oak trees (red dots) and chestnut trees (blue dots) projected in a 3-dimensional subspace (dened by the rst three principal components of a PCA applied to the image of Fig. 4.6). These two clusters are the two closest sets of pixels to vertices of the data cloud. Consequently, oak and chestnut trees are identied as endmembers present in the image. Moreover, the new identied endmember is associated with the non-vegetation area (the strategy conducted in [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] was restricted to vegetation species). In the sequel, this endmember will be referred to as Endmember 3.

The simulation parameters have been xed to γ = 10 3 and K = R. The latent variables obtained by maximizing the marginalized posterior distribution (2.14) are depicted in Fig. 2.13 (blue dots).

It can be seen from this gure that the latent variables seem to describe a noisy simplex. Fig. 2.12 (b) shows the manifold estimated by the proposed LL-GPLVM. This gure illustrates the capacity of the LL-GPLVM for modeling the nonlinear manifold. Table 2.9 (left) compares the AREs obtained by the proposed LL-GPLVM and [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] for the region of interest. The labeled pixels are classied as Oak tree (red), Chestnut tree (blue), Ash tree (green) and non-planted-tree pixels (white).

the projection onto the rst R -1 = 2 principal vectors provided by PCA. The proposed LL-GPLVM slightly outperforms PCA for the real data of interest, which shows that the proposed nonlinear dimensionality reduction method is more accurate than PCA (linear dimensionality reduction) in representing the data.

Table 2.9: AREs: real image (×10 -2 ).

PCA LL-GPLVM VCA+FCLS FCLL-GPLVM 0.84 0.79 1.30

1.11

The scaling step presented in paragraph 2.5 is then applied to the estimated latent variables. The estimated simplex dened by the latent variables is depicted in Fig. 2.13 (red lines). Fig. 2.12 (c) compares the boundaries of the estimated transformed simplex with the image pixels. The abundance maps obtained after the scaling step are shown in Fig. 2.14 (top). The results of the unmixing procedure using the FCLL-GPLVM are compared to an unmixing strategy assuming the LMM. More precisely, we use VCA to extract the endmembers from the data and use the FCLS algorithm for abundance estimation. The estimated abundance maps are depicted in Fig. 2.14 (bottom). The abundance maps obtained by the two methods are similar which shows the accuracy of the proposed unmixing strategy when considering the LMM as a rst order approximation of the mixing model. Moreover, Fig.

(bottom left)

shows the classication map obtained by [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] for the region of interest.

The white pixels correspond to areas where the classication method by [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] has not been performed.

Since the aim of the work presented by [START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] was to locate tree species, a non-planted-tree reference mask was used to classify only planted-tree pixels. Even if lots of pixels are not classied, the classied pixels can be compared with the estimated abundance maps. First, we can note the presence of the same tree species in the classication and abundance maps, i.e., oak and chestnut. We can also see that the pixels composed of chestnut trees and Endmember 3 are mainly located in the unclassied regions, which explains why they do not appear clearly in the classication map. Only one pixel is classied as being composed of ash trees in the region of interest.

If unclassied pixels also contain ash trees, they are either too few or too mixed to be considered as mixtures of an additional endmember in the image. Finally, it can be seen from Figs. 2.14 and 4.6 (bottom left) that oak trees are located within similar regions (left corners and top right corner) for the abundance and classication maps.

Evaluating the performance of endmember estimation on real data is an interesting problem. However, comparison of the estimated endmembers with the ground truth is dicult here. First, since the nature of Endmember 3 is unknown, no ground truth is available for this endmember. Second, because of the variability of the ground truth spectra associated with each tree species, it is dicult to show whether VCA or the proposed FCLL-GPLVM provides the best endmember estimates. However, the AREs obtained for both methods (Table 2.9, right) show that the FCLL-GPLVM ts the data better than the linear SU strategy, which conrms the importance of the proposed algorithm for nonlinear spectral unmixing.

In this chapter, the number of pure spectral components is assumed to be known. When using linear mixing models, algorithms such as the HySime algorithm (Bioucas-Dias and [START_REF] Bioucas-Dias | Hyperspectral subspace identication[END_REF] are able to identify the number of endmembers in the scene, based on the estimation of the data subspace. However, there is no equivalent algorithm developed for images dened by nonlinear mixtures. Of course, if we assume that the model nonlinearities are weak (compared to the linear part), the HySime algorithm can be used to approximate the number of endmembers. For the considered real image, the dimension of the subspace spanned by the data estimated by HySime is R = 6. This value can be used to upperbound the number of endmembers since the estimated signal subspace possibly includes nonlinearities. Another possibility is to run the proposed algorithm for dierent values of R and compare the results. The proposed unmixing procedure has been applied to the studied real image for dierent values of R (i.e., R = 2, 3, 4, 5). Table 2.10 compares the AREs of the LL-GPLVM and the FCLL-GPLVM for this image. From this table, it can be seen that the higher R, the lower the AREs for the dimensionality reduction method and the FCLL-GPLVM algorithm, as expected. However, the decrease of ARE for the LL-GPLVM is less signicant when the number of components has been overestimated. Conversely, the value of ARE is increasing signicantly when the number of endmembers has been underestimated. This strategy can be used for estimating the value of R. Note that a similar method was proposed by [START_REF] Quirion | Comparing GPLVM approaches for dimensionality reduction in character animation[END_REF] for estimating the dimension of the latent variable subspace.

Finally, Fig. 2.15 shows the abundance maps estimated by the FCLL-GPLVM (on the real image) for dierent values of R (i.e., R = 2, 3, 4, 5). From this gure, it can be seen that the two vegetation species (i.e., chestnut tree and oak tree) are merged when R is underestimated, mainly due to the high correlation between these two components.

When the number of endmembers is overestimated, the locations of oak trees and of the third endmember are estimated similarly. However, the abundance maps of the chestnut tree are less structured for R = 4 and R = 5

than for R = 3. It can also be observed that the abundances maps of the fourth and fth endmembers do not correspond to homogeneous regions. The analysis of the estimated endmembers for R = 5 shows that the estimated endmembers 2, 4 and 5 are similar (see Fig. 2.16). These considerations could be used to make sure the value of R has been designed correctly. 

Conclusion

We proposed a new algorithm for nonlinear spectral unmixing based on a Gaussian process latent variable model.

The unmixing procedure assumed a nonlinear mapping from the abundance space to the observed pixels. It also considered the physical constraints for the abundance vectors. The abundance estimation was decomposed into two steps. Dimensionality reduction was rst achieved using latent variables. A scaling procedure was then proposed to estimate the abundances. After estimating the abundance vectors of the image, a new endmember estimator based on Gaussian process regression was investigated. This decomposition of the unmixing procedure, consisting of rst estimating the abundance vectors and subsequently the endmembers, breaks the usual paradigm of spectral unmixing. Simulations conducted on synthetic data illustrated the exibility of the proposed model for linear and nonlinear spectral unmixing and provided promising results for abundance and endmember estimations even when there are few pure pixels in the image. It was shown in this chapter that the proposed unmixing procedure provides better or comparable performance (in terms of abundance and endmember estimation) than state of the art unmixing strategies assuming specic mixing models.

The proposed abundance estimation procedure presented in this chapter was split into two steps. Thus, the abundance estimates (and consequently the predicted endmembers) mainly rely on the scaling step. It could be interesting to assign more accurate priors for the latent variables to get rid of that scaling step. In that case, the latent variables would be the abundances. Additional spectral information was included within the LL-GPLVM by assuming that spectrally closed pixels should have closed latent variables. From a strict Bayesian point of view, such information should be included in the observation model, i.e., in the likelihood, to set prior distributions independent of the observations. The nonlinear dimensionality reduction presented in this chapter relies on the maximization of an appropriate posterior distribution using a gradient-based method. To avoid possible convergence issues, such as being trapped in local maxima and setting a stopping rule for the iterative process, it could be interesting to couple the proposed Bayesian model with ecient simulation methods such as Markov chain Monte Carlo methods.

Finally, the choice of the nonlinear mapping used for the GP model is an important issue to ensure that the LL-GPLVM is general enough to handle dierent nonlinearities. In particular, dierent mappings could be used for intimate mixtures. However, the tradeo between model exibility and estimation performance is dicult to nd, especially when addressing the unsupervised unmixing problem. Fitting the data manifold can be accurately achieved using dierent kernel functions. However, the associated latent variables may be not obviously related to the abundances.

The proposed FCLL-GPVLM assumed the observed pixels resulting from mixtures of R materials to belong to an (R -1)-dimensional manifold. Of course this assumption holds only for a single mixing process fully parameterized 

Introduction

This chapter addresses the problem of determining whether an observed pixel of a hyperspectral image results from a linear or nonlinear mixture of endmembers. In this chapter, the endmembers (number and spectra) are assumed to be known. Endmember estimation issues for nonlinearity detection will be discussed in the conclusion of this chapter. The rst proposed nonlinearity detector is based on the PPNMM studied for nonlinear SU in Chapter 1.

One of the most interesting properties of the PPNMM is that it generalizes the LMM thanks to a unique nonlinearity parameter whose value characterizes the nonlinearity in the considered pixel. In particular, when the nonlinearity parameter equals zero, the resulting mixing model is linear. Consequently, it seems natural to use this parameter for deriving new nonlinearity detectors. The second nonlinearity detector studied in this chapter only relies on the LMM, i.e., does not assume any particular nonlinearity characterization which makes it more robust to various kinds of nonlinearities. The noise sequence e is an additive independent and identically distributed (i.i.d) zero-mean Gaussian noise sequence with variance σ 2 , denoted as e ∼ N 0 L , σ 2 I L . In this paragraph, the endmember matrix M is assumed to be known. Consequently, the only unknown parameters are the abundance vector a, the nonlinearity parameter b and the noise variance σ 2 .

Supervised PPNMM-based nonlinearity detection

The abundance vector a satises the following positivity and sum-to-one constraints R r=1 a r = 1, a r ≥ 0, ∀r ∈ {1, . . . , R} .

(3.2)

In Chapter 1, it has been shown that the PPNMM is general enough to handle a wide class of nonlinear models, which is interesting for nonlinearity detection. Moreover, it has also been shown that the PPNMM parameters can be estimated by minimizing the following LS criterion

J(a, b) = 1 2 y -g(Ma) 2 = 1 2 y -Ma -b(Ma) (Ma) 2 (3.3)
subject to the constraints (3.2). After estimating a and b, the noise variance σ 2 can be estimated as follows

σ2 = 1 L y -Mâ -b(Mâ) (Mâ) 2 . (3.4)
Since the additive noise vector e is assumed to be an i.i.d zero-mean Gaussian noise, the resulting estimator of θ = [a T , b, σ 2 ] T is the maximum likelihood estimator (MLE) of θ, denoted as θ. Consequently, the estimator θ = [â T , b, σ2 ] T is asymptotically ecient and asymptotically distributed according to a Gaussian distribution (Kay, 1993, Chap. 7) . Note that the asymptotic region corresponds here to L → ∞. Since L is very large (some hundreds of spectral bands) for hyperspectral images, the asymptotic region will be reached in most practical applications 1 .

The two LS algorithms considered in Chapter 1 (i.e., based on linearization and subgradient methods) for minimizing (3.3) subject to the constraints (3.2) have provided very similar performance. As a consequence, this study will concentrate on one estimator only, namely the subgradient-based estimator. The Bayesian algorithm introduced in paragraph 1.4.1 could also be considered. However, it should be slightly modied by assigning uniform prior distributions over suitable sets for all the unknown parameters, such that the MAP and MLE estimators coincide.

The next paragraph derives a nonlinearity detector based on the MLE of the nonlinearity parameter.

Nonlinearity detection

As shown in Chapter 1, the PPNMM allows the nonlinearity to be characterized by the parameter b for each pixel of the scene. An arbitrary threshold could be used to decide if the observed pixel is better modeled by the LMM or by a general nonlinear model dened by (3.1). However, it would be dicult to choose the appropriate threshold in order to guarantee a given probability of false alarm (PFA) or a given probability of detection (PD). In this paragraph, 

   H 0 : b ∼ N 0, s 2 0 H 1 : b ∼ N b, s 2 1 (3.8)
where s 2 1 = s 2 (a, b, σ 2 ) and b = 0. Estimating the variance s 2 (a, b, σ 2 ) will be discussed in paragraph 3.3.3. 1 The asymptotic behavior of the considered MLEs will be discussed in paragraph 3.3.4. 2 This assumption will be validated in the simulation results.

Known parameters a and σ 2

For a given observation vector y and its corresponding estimated nonlinearity parameter b, we propose to decide between hypotheses H 0 and H 1 using a classical generalized likelihood ratio test (GLRT) for (3.8). Using (3.5) and (3.6), the probability density functions of the test statistic b under the two hypothesis can be written where η is a threshold that is related to the test PFA as follows

p( b|H 0 ) = 1 2πs 2 0 1 2 exp - b2 2s 2 0 (3.9) p( b|H 1 ) = 1 2πs 2 1 1 2 exp - ( b -b) 2
P FA = P b2 s 2 0 > η H 0 = 2P b s 0 < - √ η H 0 = 2φ(- √ η) (3.13)
where φ(•) is the cumulative distribution function of the normalized Gaussian distribution. It is interesting to note that the test (3.12) does not depend on s 2 1 and only relies on the variance s 2 0 under hypothesis H 0 . For a given value of b, the power of the test P D (b) can be computed as follows

P D (b) = P b2 s 2 0 > η H 1 = P b2 s 2 0 > η b = 0 . (3.14) Straightforward computations lead to P D (b) = P b -b s 1 < -s 0 √ η -b s 1 H 1 + P b -b s 1 > s 0 √ η -b s 1 H 1 = 1 + φ -s 0 √ η -b s 1 -φ s 0 √ η -b s 1 . (3.15)
It can be observed that for a given value of the threshold η, the probability of detection P D (b) is an increasing function of |b|, which is an intuitive result. In order to apply the detection strategy (3.12) and to compute the corresponding P FA and P D (b), we need to know the parameters s 0 and s 1 whose determination is the objective of the next paragraph.

Unknown parameters a and σ 2

The test (3.12) assumes known parameters a and σ 2 to compute s 2 0 = s 2 (a, 0, σ 2 ). However, these parameters are unknown in practical applications. To alleviate this problem, we propose to approximate the variance of b under H 0 by an appropriate estimator ŝ2 

Constrained Cramér-Rao bound

This paragraph studies the constrained Cramér-Rao lower bound associated with any unbiased estimator θ of the parameter vector θ involved in the PPNMM. Eq. (3.1) shows that y|a, b, σ 2 ∼ N g (Ma) , σ 2 I L . As a consequence, the likelihood function of y is dened as

f (y|a, b, σ 2 ) = 1 2πσ 2 L 2 exp - y -g (Ma) 2 2σ 2 .
(3.17)

The corresponding unconstrained CRLB for any unbiased estimator of θ constructed from y is given by

CRLB(θ) = J -1 F (3.18)
where J F is the Fisher information matrix whose elements are 3

[J F ] i,j = -E y|θ ∂ 2 ln f (y|θ) ∂θ i ∂θ j i, j = 1, . . . , R + 2.
However, the positivity and sum-to-one constraints (3.2) are not considered in this expression. Particularly, the sum-to-one constraint in (3.2) enforces the R-dimensional abundance vector a to belong to an (R -1)-dimensional subspace. This constraint can be considered by computing a reduced-rank Fisher matrix yielding a constrained Cramér-Rao lower bound (CCRLB). The CCRLB principles have been introduced by [START_REF] Gorman | Lower bounds for parametric estimation with constraints[END_REF] for parameters satisfying equality and/or inequality constraints. The constraints for the abundance vector in (3.2) can be rewritten [START_REF] Gorman | Lower bounds for parametric estimation with constraints[END_REF] for details) and denotes the termwise inequality. Since the set of admissible θ is an (R + 1)-dimensional subset of R R+2 , the CCRLB 3 The Fisher information matrix JF is derived in Appendix G. associated with the covariance matrix of any constrained unbiased estimator of θ is given by [START_REF] Gorman | Lower bounds for parametric estimation with constraints[END_REF])

u θ = 1 T R 0 0     a b σ 2     -1 = c T θ -1 = 0 (3.19) and v θ = -I R 0 R 0 R     a b σ 2     = Aθ 0 R (3.20) where 1 R is an R × 1 vector of ones, c = [1 T R , 0, 0] T is an (R + 2) × 1 vector, A is an R × (R + 2) matrix, u θ is the equality constraint, v θ is an R × 1 pure inequality vector (see
CCRLB(θ) = QJ -1 F (3.21) with Q = I R+2 -J -1 F ∇u θ ∇u T θ J -1 F ∇u θ ∇u T θ
where, from (3.19), ∇u θ = c is the gradient of u θ . It is interesting to note that the CCRLB can be easily computed since this matrix results from simple operations applied on the unconstraint CRLB J -1 F and the vector c. Moreover, no arbitrary reparametrization of the problem is needed. The CCRLB of b is then given by the (R + 1)th diagonal element of CCRLB(θ) denoted as CCRLB(b; a, σ 2 ). An estimator of the variance of b under hypothesis H 0 is required to compute the test statistic (3.16). In this study, we propose to estimate s 2 0 as follows ŝ2 0 = CCRLB(0; â, σ2 )

(3.22)
where â and σ2 are the MLEs of a and σ 2 . The next paragraphs study the performance of the nonlinearity detector dened by (3.16), where ŝ2 0 is dened in (3.22), for synthetic and real hyperspectral data.

Synthetic data

Estimation

The statistical test proposed in (3.16) assumes the eciency and normality of the estimator b resulting from the unmixing procedure. We rst propose to show that the asymptotic region in term of MLE eciency is usually reached in the hyperspectral imagery context (i.e., for large L and high signal to-noise ratio (SNR)). Four dierent mixtures are considered to illustrate the estimator eciency. These mixtures are composed of R = 3 materials (i.e., green grass, olive green paint and galvanized steel metal) whose endmember spectra, composed of L = 826 bands, have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems Inc.),

2003

). The synthetic mixtures have been obtained using the following parameters 4

Mixture

M 0 → a = [0.3, 0.6, 0.1] T , b = 0, σ 2 = 3 × 10 -3 Mixture M 1 → a = [0.5, 0.1, 0.4] T , b = 0, σ 2 = 3 × 10 -3 Mixture M 2 → a = [0.3, 0.6, 0.1] T , b = 0.2, σ 2 = 3 × 10 -3 Mixture M 3 → a = [0.3, 0.6, 0.1] T , b = 0, σ 2 = 1 × 10 -3 .
The eciency of the proposed unmixing algorithm is evaluated by comparing the CCRLB with the mean square errors (MSEs)

MSE( b) = 1 N N n=1 bn -b n 2 , i = 1, . . . , R + 2 (3.23)
associated with the nonlinearity parameter b, where N is the number of pixels to be unmixed and bn is the estimated value of the nth actual parameter b n . 5 Similar results have been obtained using the linearization-based estimator and are reported in [START_REF] Altmann | Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model[END_REF].

by approximating the CCRLB

P app FA (η) = 1 N N n=1
dn (η) (3.26) where Right: Associated detection map using the subgradient-based algorithm. Black (resp. white) pixels correspond to pixels detected as linearly (resp. nonlinearly) mixed. 3.8 (right) shows the detection maps obtained with the GLRT for P FA = 0.05. From this gure, it can be seen that the location of the nonlinear mixtures on the detection maps is straightforward. Note that for the GBM and the PPNMM, mixed pixels can be close to the simplex corresponding to the noise-free LMM and can be detected as linearly distributed pixels. Conversely, for the FM, only almost pure pixels are close to that simplex, leading to a larger number of pixels detected as nonlinear. This remark is illustrated in Fig. 3.9 which shows the location of the pixels detected as nonlinear in the 3-dimensional subspace spanned by the three dominant axes resulting from a principal component analysis.

dn (η) =    0, if Tn < η 1, if Tn > η.

Analysis of real data

The performance of the proposed nonlinearity detector has been evaluated on a real hyperspectral image composed of L = 189 spectral bands. The selected scene has been extracted from the AVIRIS Cuprite image, acquired over been used to estimate the parameters of the PPNMM related to the analyzed image, i.e., the abundance vectors, the nonlinearity parameters and the noise variances associated with all image pixels. Fig. 3.11 shows the abundance maps corresponding to the R = 14 components. The proportions of pure materials obtained with the PPNMM are in good agreement with those obtained with the FCLS algorithm and depicted in Fig. 3.12.

However, the PPNMM has the advantage of providing additional information regarding the linearity or nonlinearity are also depicted in this gure. These decision maps have been obtained by applying the test (3.16) for all pixels of the image for two PFAs. Fig. 3.13 highlights some structures, e.g., the road is clearly identied at the top right corner, especially for P FA = 10 -2 . A spread nonlinear area is also detected (at the bottom left corner of the image).

It can be noted from the classication map of [START_REF] Clark | Mapping minerals with imaging spectroscopy[END_REF]) that this area is mainly composed of several kinds of Kaolinite. The proposed nonlinearity detector shows that nonlinear eects occur between the dierent kinds of Kaolinite in this area.

Figure 3.13: Left: map of b for the Cuprite scene. Associated detection map for P FA = 10 -2 (middle) and for P FA = 10 -6 (right). Black (resp. white) pixels correspond to pixels detected as linearly (resp. nonlinearly) mixed.

Intermediate conclusion

A rst nonlinearity detector was presented for hyperspectral image analysis. This detector decided if a pixel of a hyperspectral image is a linear combination of endmembers or results from a general nonlinear mixture. It assumed that the hyperspectral image pixels are related to the endmembers by a polynomial post-nonlinear mixing model generalizing the widely used linear mixing model. A subgradient-based algorithm was used to estimate the model parameters. Constrained Cramér-Rao lower bounds were also derived for the PPNMM parameters. These bounds provide a reference in term of estimation variance for estimators satisfying the positivity and sum-to-one constraints of the abundances. The bound for the nonlinearity parameter was also used to approximate the variance of the its maximum likelihood estimator and to build a nonlinearity detector for hyperspectral images. Results obtained on synthetic and real images illustrated the accuracy of the polynomial post-nonlinear model for detecting nonlinearities in hyperspectral images. When a material is too rarely represented or too mixed in the image, it becomes dicult or even impossible to identify its spectrum using an EEA. Simulations conducted on a real image have shown that the proposed nonlinearity detector allows such materials to be identied (such as the road in the Cuprite image).

As mentioned above, the proposed nonlinearity detector relies on an explicit characterization of the nonlinearities, through the consideration of a post-nonlinear model. Even if this algorithm can detect unidentied endmembers, it is not dedicated to this purpose. The next part of this chapter studies a nonlinearity detector for hyperspectral image analysis which does not enforce any particular form of nonlinearities in order to detect more general nonlinearities.

Supervised LMM-based nonlinearity detection

Similarly to the nonlinearity detector studied in the previous paragraph, this paragraph addresses the problem of determining whether an observed pixel of a hyperspectral image is a linear function of endmembers or results from a generic nonlinear mixing. Dierently from paragraph 3.3, the proposed nonlinearity detector is based only on the LMM associated with the null hypothesis. This makes the detector more robust to the nonlinearity that denes the alternative hypothesis. Under the null hypothesis, the linear mixture of the endmembers belongs to a low-dimensional hyperplane. Hence, we propose to design a statistical test based on the distance between the observed pixel and that hyperplane for deciding between the null and alternative hypotheses. As in paragraph 3.3, we assume that the endmembers contained in the image are known.

Mixing models

Let y be the L × 1 pixel observed in L dierent spectral bands. The LMM assumes that y results from a mixture of R known endmembers m 1 , . . . , m R as follows y = Ma + e (3.30) where M = [m 1 , . . . , m R ] is the L × R endmember matrix, the elements a r of a = [a 1 , . . . , a R ] T are the proportions of each endmember in the mixture and e is an L×1 independent white Gaussian vector such that e ∼ N 0 L , σ 2 I L .

The elements of the abundance vector a satisfy the physical positivity and sum-to-one constraints R r=1 a r = 1, a r ≥ 0, ∀r ∈ {1, . . . , R} . (3.32)

In the noise-free case, H lies in an (R -1)-dimensional subspace embedding all observations distributed according to the LMM.

As in [START_REF] Dobigeon | Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images[END_REF], we also consider a general nonlinear mixing model as follows

y = Ma + µ + e (3.33)
where µ is an L × 1 deterministic vector that does not belong to H, i.e., µ / ∈ H and a satises the constraints (4.2).

Note that µ can be a nonlinear function of the endmember matrix M and/or the abundance vector a and should be denoted as µ(M, a). However, the arguments M and a are omitted in this study for brevity.

Given an observation vector y, we formulate the detection of nonlinear mixtures as the following binary hypothesis testing problem:

   H 0 : y is distributed according to (3.30)
H 1 : y is distributed according to (3.33). We now design a statistical test for hypotheses H 0 and H 1 by studying the distribution of δ 2 (y) under each hypothesis. Given the sum-to-one constraint on the abundance vector, the mixing model (3.33) can be rewritten as

ỹ = y -m R = Kc + µ + e (3.36) where c = [a 1 , . . . , a R-1 ] T is (R -1) × 1 and K = [m 1 -m R , . . . , m R-1 -m R ] is L × (R -1)
. Hence, δ 2 (y) can be computed by solving the unconstrained least squares (LS) problem

δ 2 (y) = min c∈R (R-1)
ỹ -Kc 2 .

(3.37)

It is well known that the solution to this problem is given by

ĉLS = K T K -1 K T ỹ (3.38) yielding the following L × 1 residual vector ê ê = ỹ -Kĉ LS = I L -K K T K -1 K T ỹ = H (µ + e) (3.39) 
where

H = I L -K K T K -1 K T is an L × L projection matrix of rank K = L -R + 1. Using δ 2 (y) = êT ê and ê ∼ N Hµ, σ 2 H , straightforward computations lead to (Papoulis, 1991) 1 σ 2 δ 2 (y)|H 1 ∼ χ 2 K µ T Hµ σ 2 (3.40)
where χ 2 K (λ) denotes the noncentral χ 2 distribution with K degrees of freedom and noncentrality parameter λ. The distribution of δ 2 (y) under H 0 can be obtained by setting µ = 0 in (3.40), yielding

1 σ 2 δ 2 (y)|H 0 ∼ χ 2 K (0) = χ 2 K (3.41)
where χ 2 K is the χ 2 distribution with K degrees of freedom. Notice that the distributions of δ 2 (y) under H 0 and H 1 depend on the known matrix M but also on the usually unknown noise variance σ 2 and nonlinearity vector µ.

In the following we study nonlinearity detectors constructed for known and unknown noise variance σ 2 .

Nonlinearity detection

As mentioned above, the distributions of δ 2 (y) under hypotheses H 0 and H 1 depend on σ 2 and on µ, which are usually unknown. We address rst the scenario in which the noise variance is known but the nonlinearity µ (under H 1 ) is unknown.

Known σ 2 , unknown µ

For known σ 2 , the distribution of δ 2 (y) is perfectly known under H 0 and partially known under H 1 . Thus, we use a statistical test that does not depend on the unknown nonlinearity µ to decide between H 0 and H 1 . Here we propose to use the following statistical test

T = δ 2 (y) σ 2 H1 ≷ H0 η (3.42)
where η is a threshold related to the probability of false alarm (PFA) of the test

P FA = P T > η H 0 (3.43)
or equivalently,

η = F -1 χ 2 K (1 -P FA ) (3.44)
where F -1

χ 2 K
is the inverse cumulative distribution function of the χ 2 K -distribution. For a given µ, the power P D (µ)

of the test is

P D (µ) = 1 -F χ 2 K (λ) (η) (3.45)
where F χ 2 K (λ) is the cumulative distribution function of the χ 2 K (λ)-distribution and λ = σ -2 µ T Hµ. Note that the probability of detection (PD) P D (µ) is an increasing function of λ for a xed threshold η. This makes sense, as the higher the power µ T Hµ of the nonlinearity orthogonal to H, the better the detection performance. Moreover, the lower the noise variance, the better the nonlinearity detection. Unfortunately, the noise variance is unknown in most practical applications. In these cases, the test (3.42) cannot be used. We study a nonlinearity detector for unknown σ 2 in the next paragraph.

Unknown σ 2 , unknown µ When σ 2 is unknown, a simple solution is to replace the actual noise variance in (3.42) by its estimate σ2 . This yields the following test

T * = δ 2 (y) σ2 H1 ≷ H0 η (3.46)
where η is the threshold dened in (3.44). The PFA and PD of the test (3.46) are then given by

P * FA = P T * > η H 0 = P T > σ2 σ 2 η H 0 P * D (µ) = P T * > η H 1 = P T > σ2 σ 2 η H 1 .
(3.47)

The better the estimation of σ 2 , the closer the distributions of T and T * and thus the closer the performances of the tests (3.42) and (3.46). Unfortunately, considering the maximum likelihood estimator of σ 2 under H 0

(σ 2 MLE = δ 2 (y)/L) lead to a constant test in (3.46) (i.e., T * = L).
Here we propose to estimate σ 2 through an eigenanalysis of the sample covariance matrix of a set of N pixels assumed to share the same noise variance. The estimate σ2 is then determined as the average of the p ≤ L smallest eigenvalues of the sample covariance matrix.

The accuracy of the estimator will depend on the choice of p, which will be discussed in the simulation paragraph.

For a given P FA and associated threshold η given by (3.43), the distribution of T * is shifted to the left if σ 2 is overestimated, i.e., if σ2 > σ 2 . This will lead to a P * FA of the test (3.46) that is lower than the P FA of the test (3.42). Conversely, if σ2 < σ 2 , the distribution of T * is shifted to the right leading to P * FA ≥ P FA . Thus, it seems reasonable to overestimate σ 2 to ensure P * FA is upper bounded by a P FA xed by the user. This observation will be used in paragraph 3.4.4 to adjust the value of p. It is interesting to mention that, similarly to the detector studied in paragraph 3.3, one might think of assuming the eciency of the MLE of σ 2 and of approximating its variance using the corresponding CRLB to derive a nonlinearity detector (similarly to the MLE of b in paragraph 3.3). Straightforward computations would lead to

σ2 MLE ∼ N σ 2 , 2σ 4 L (3.48)
However, since σ 2 is unknown, it should be replaced by its estimator in the CRLB expression and in the mean of the asymptotic Gaussian distribution (3.48), leading to a constant (null) test statistic.

Simulations

Synthetic data: known σ 2 , unknown µ

We rst investigate the performance of the test (3.42), which assumes σ 2 known. We consider a mixture of R = 3 materials (green grass, olive green paint and galvanized steel metal) whose spectral signatures m r composed of L = 826 bands have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems Inc.), 2003). The abundance vector is xed to a = [0.3, 0.6, 0.1] T and the noise variance to σ 2 = 10 -3 . The nonlinearity µ is set as follows

µ = ν R-1 i=1 R j=i+1 a i a j m i m j (3.49)
where ν is a scaling factor selected from the set {0.4, 0.5, 0.6, 0.7}. This nonlinearity corresponds to the generalized bilinear model (GBM) studied in (Halimi et al., 2011a) with γ i,j = ν for all (i, j). The specic form in (3.49) was chosen so that the impact of the nonlinearity is governed by a single parameter ν. Fig. 3.14 shows the theoretical and empirical (N = 20000 noise realizations) receiver operating characteristics (ROCs) (Kay, 1998, p. 74-75) for the test (3.42). Each value of ν corresponds to a dierent noncentrality parameter λ = σ -2 µ T Hµ for the noncentral χ 2 distribution, ranging from λ ≈ 49 to λ ≈ 150. These results conrm that the performance of test (3.42) improves for larger values of λ (or ν).

Synthetic data: unknown σ 2 , unknown µ

We now study the performance of the nonlinearity detector when σ 2 is replaced by its estimate σ2 . Fig. 3.15 shows the ROCs of test (3.46) for λ = 70 and for three values of σ2 : 0.95σ 2 , σ 2 and 1.05σ 2 . Note that all ROCs coincide. However, dierent estimates σ2 correspond to dierent points on the curve for a xed PFA. For instance, if the PFA is xed to P F A = 0.1 and the noise variance is correctly estimated, the corresponding P D is around P D ≈ 0.65 (see Fig. 3.15 (middle)). If σ2 = 0.95σ 2 , the PFA of test (3.46) rises to P * FA ≈ 0.41, leading to P * D ≈ 0.92. Conversely, if σ2 = 1.05σ 2 , the PFA of test (3.46) falls to P * FA ≈ 0.01, leading to P * D ≈ 0.27.

To investigate the ability of the proposed nonlinearity detector to detect dierent types of nonlinearities, we unmixed a synthetic image composed of N = 10 4 pixels generated according to four dierent mixing models. The R = 3 endmembers contained in this image are the same as in paragraph 3.4.4. We considered the following nonlinear mixing model

y(n) = Ma(n) + cos(θ)µ 1 (n) + sin(θ)µ 2 (n) + e n (3.50) 
for n = 1, . . . , N , where e n is a Gaussian noise vector such that e n ∼ N 0 L , σ 2 I L and 

µ 1 (n) = b [(Ma(n)) (Ma(n))]
µ 2 (n) is built to ensure that µ 2 (n) is orthogonal to the columns of M and to µ 1 (n) with µ 1 (n) = µ 2 (n) ( • denoting the 2 norm). The angle θ ∈ [0, π/2] is chosen to tune the contributions of µ 1 (n) and µ 2 (n) while ensuring cos(θ)µ 1 (n) + sin(θ)µ 2 (n) 2 = µ 1 (n) 2
for any value of θ. The main motivation for splitting the nonlinearities into two terms relies on the fact that the PPNMM-based nonlinearity detector cannot identify nonlinearities that are orthogonal to µ 1 since this detector estimates the projection of the each nonlinearity onto µ 1 .

The considered set of pixels was divided into four 50 × 50 sub-images as follows. The rst synthetic sub-image S 1 was generated using the standard linear mixing model (LMM) whereas the sub-images S 2 , S 3 and S 4 were generated according to the nonlinear mixing model (3.50) with b = 0.1 and θ ∈ {π/4, 3π/8, π/2}. For each sub-image, the abundance vectors a n , n = 1, . . . , 2500, were generated uniformly in the admissible set dened by the positivity and sum-to-one constraints. All sub-images were corrupted by an additive white Gaussian noise of variance σ 2 = 10 -3 corresponding to an average SNR ≈ 21dB. 

p = L -(R -1)
provides accurate estimates of σ 2 for these examples. These results can be explained by the fact that the dimension of the subspace spanned by pixels resulting from linear mixtures of R endmembers is (R -1). Moreover, these two tests seem to be more robust to the type of nonlinearity. Finally, the proposed tests (3.42) and (3.46) only require one projection (3.39) of each pixel (and eventually the noise variance estimation procedure)

while the test studied in paragraph 3.3 requires the minimization of a more complex cost function and the derivation of Cramèr-Rao bounds, leading to higher computation costs when compared to the proposed method.

S1 S2 S3 S4

L -p = 1 -4 ) for dierent values of p (σ 2 = 10 -3 ). 

Real data

The performance of the proposed LMM-based nonlinearity detector has been compared to the PPNMM-based detector studied in paragraph 3.3 using simulations conducted on the 190 × 250 pixels Cuprite image introduced in paragraph 3.3. The R = 14 endmembers have been extracted by VCA. Fig. 3.17 compares the detection maps obtained with the two nonlinearity detectors for P F A = 10 -2 (left) and P F A = 10 -6 (right). This gures rst

shows that the two detectors provide dierent detection results. The nonlinearly mixed regions identied by the LMM-based detection diers from those obtained with the PPNMM-based detector. Moreover, for a given PFA, the LMM-based detection detects more nonlinearly mixed pixels. Because of the lack of ground truth information about the linear/nonlinear properties of the actual mixtures, it is dicult to decide if one test outperforms the others. However, the two proposed test can be complementary. The LMM-based detector is a general test which does not assume any particular form of nonlinearities while the PPNMM-based detector is more specic and is mainly dedicated to the identication of post-nonlinear mixtures.

Intermediate conclusion

The second nonlinearity detector studied in this chapter was based on the distance between each observed pixel and the low dimensional subspace spanned by the endmembers when the noise variance is known. For an unknown noise variance, a similar detector was proposed by replacing the actual noise variance by an accurate estimator resulting from the eigenanalysis of the sample covariance matrix of a set of image pixels. The main advantages of this method are the absence of prior knowledge about the type of the nonlinearity and its low computational cost.

Simulations on synthetic data illustrated the robustness of this method to detect various nonlinearities.

Figure 3.17: Cuprite detection maps obtained with the PPNMM-based (top) and LMM-based (bottom) nonlinearity detectors for P F A = 10 -2 (left) and P F A = 10 -6 (right). Black (resp. white) pixels correspond to pixels detected as linearly (resp. nonlinearly) mixed.

Conclusion

In this chapter, we proposed nonlinearity detectors for applications where the endmembers are known. The rst detector was based on the estimated nonlinearity parameter of a polynomial post-nonlinear model. A subgradientbased algorithm was used to estimate the nonlinearity parameter as well as the other model parameters. The variances of these parameter estimators were approximated by the corresponding constrained Cramér-Rao lower bounds allowing to adjust the test threshold as a function of the probability of false alarm, and to compute the probability of detection of the detector.

The second detector was based on the distance between each observed pixel and the subspace spanned by the linear combinations of the endmembers. This detector required to known the noise variance. When this variance was unknown, we proposed to estimate it from the eigenanalysis of the sample covariance matrix of a set of image pixels.

The main advantages of the second nonlinearity detector are the absence of prior knowledge about the type of the nonlinearity and its low computational cost. Simulations on synthetic data illustrated the robustness of this method to detect various nonlinearities.

The two proposed detectors have provided promising results in term of detection performance. However, it has been shown that the two detectors can provide dierent detection results depending on the underlying nonlinearities. It would be interesting to study more complex tests depending on the prior knowledge about the nonlinear eects to be detected. Deviations from the LMM can be explained for instance by colored noise (the noise vectors were assumed to be i.i.d. in this study), endmember estimation errors (when extracted from the data), nonlinear eects resulting from interactions between the materials of the scene and unidentied endmembers (rarely represented materials). The consideration of such model mis-specications could provide more specic tests as those developed by [START_REF] Ramsey | Tests for specication errors in classical linear least-squares regression analysis[END_REF]. To improve the robustness of the detection procedure, several detectors could also be fused.

The two proposed nonlinearity detectors (i.e., the PPNMM-based and the LMM-based) assume the endmembers are known in order to derive a test statistic. However, in practice the spectral signatures are often unknown and must be estimated from the data. When pure pixels are present in the image, EEA can be used before applying the proposed nonlinearity detectors. If the image pixels are too highly mixed (no pure pixel in the image), unsupervised nonlinearity detectors (assuming that the endmembers are unknown) should be used. Precisely, it would interesting to propose joint unmixing and nonlinearity detection algorithms.

Finally, the two proposed nonlinearity detectors were based on pixel-by-pixel spectral analysis. However, it makes sense to consider that nonlinearities occurring in a given pixel can be related to the nonlinearities in neighboring pixels. Consideration of spatial correlation for nonlinearity detection could provide smoother detection results by removing isolated pixels detected as linearly (resp. nonlinearly) mixed, surrounded by pixels detected as nonlinearly Main contributions. Statistical tests were derived for pixel-by-pixel nonlinearity detection when the endmembers are known. The proposed tests were computationally ecient and thus can be implemented in practical applications.

The detection results can be used as a pre-processing step to select pixels or regions where more complex models should be used instead of the classical LMM for SU.

Conclusion (in French)

Dans ce chapitre, nous avons proposé des détecteurs de non-linéarité pixel par pixel pour des applications où les composants sont connus (nombre et spectres). Le premier détecteur est basé sur le paramètre de non-linéarité estimé du modèle PPNMM. Une méthode de gradient a été utilisée pour estimer le paramètre de non-linéarité ainsi que les autres paramètres du modèle (estimation au sens du maximum de vraisemblance). Les variances de ces estimateurs ont été approchées par des bornes de Cramér-Rao contraintes (associées au modèle PPNMM) permettant d'ajuster le seuil du test en fonction de la probabilité de fausse alarme et de calculer la probabilité de détection du détecteur.

Le deuxième détecteur est basé sur la distance de chaque pixel observé à l'hyperplan déni par les spectres des composants purs de l'image et la contrainte de somme-à-un des abondances. 

Introduction

In the previous chapter, a pixel-by-pixel nonlinearity detector based on the PPNMM has been proposed and has provided interesting results. This detector has been constructed using a PPNMM-based SU procedure. The statistical properties of the nonlinearity parameter estimator of this model were used to subsequently derive an accurate test statistic. Conversely, in this chapter we propose to simultaneously achieve the SU and nonlinearity detection.

We have noted that the consideration of spatial structures in the image, already used by [START_REF] Eches | Enhancing hyperspectral image unmixing with spatial correlations[END_REF] for linear SU, could also be used to infer the locations where nonlinear eects occur. This study presents a new supervised Bayesian algorithm for joint nonlinear SU and nonlinearity detection. This algorithm is supervised in the sense that the endmembers contained in the image are assumed to be known (chosen from a spectral library or extracted from the data by an endmember extraction algorithm (EEA)). This algorithm is based on a nonlinear mixing model inspired from residual component analysis (RCA) [START_REF] Kalaitzis | Residual components analysis[END_REF]. In the context of SU of hyperspectral images, the nonlinear eects are modeled by additive perturbation terms characterized by Gaussian processes (GPs). This allows the nonlinear terms to be marginalized, yielding a exible model depending only on the nonlinearity energies. Contrary to the PPNMM-based and LMM-based nonlinearity detectors introduced in Chapter 3, the nonlinearities are assumed to be random. The hyperspectral image to be analyzed is partitioned into homogeneous regions in which the nonlinearities share the same GP. This algorithm relies on an explicit image classication, modeled by labels whose spatial dependencies are modeled using a Potts-Markov random eld. Consideration of two classes (linear vs. nonlinear mixtures) would lead to binary detection maps. However, this study allows for dierent nonlinearly mixed regions to be also identied, based on the energy of the nonlinear eects.

More precisely, the proposed algorithm can identify regions with dierent levels of nonlinearity and characterized by dierent GPs. The nonlinearity detectors studied in Chapter 3 and most SU algorithms assume additive, independent and identically distributed (i.i.d.) noise sequences. However, based on previous work conducted on real hyperspectral images, non i.i.d. noise vectors are considered in this study to improve the unmixing and nonlinearity detection performances.

In the Bayesian framework, appropriate prior distributions are chosen for the unknown parameters of the proposed RCA model, i.e., the mixing coecients, the GP hyperparameters, the class labels and the noise covariance matrix.

The joint posterior distribution of these parameters is then derived. However, the classical Bayesian estimators cannot be easily computed from this joint posterior. To alleviate this problem, a Markov chain Monte Carlo (MCMC) method is used to generate samples according to the posterior of interest. Finally, the generated samples are used to compute Bayesian estimators as well as measures of uncertainties such as condence intervals.

Problem formulation

We consider a set of N observed pixel spectra y n = [y n,1 , . . . , y n,L ] T , n ∈ {1, . . . , N } where L is the number of spectral bands. Each of these spectra is dened as a linear combination of R known endmembers m r , contaminated by an additional spectrum φ n and additive noise

y n = R r=1 a r,n m r + φ n + e n = Ma n + φ n + e n , n = 1, . . . , N (4.1) 
where m r = [m r,1 , . . . , m r,L ] T is the spectrum of the rth material present in the scene, a r,n is its corresponding proportion in the nth pixel and e n is an additive independently and non identically distributed zero-mean Gaussian noise sequence with diagonal covariance matrix Σ 0 = diag σ 2 , denoted as e n ∼ N (0 L , Σ 0 ), where σ 2 = [σ 2 1 , . . . , σ 2 L ] T is the vector of the L noise variances and diag σ 2 is an L × L diagonal matrix containing the elements of the vector σ 2 . Moreover, the term φ n = [φ 1,n , . . . , φ L,n ] T in (4.1) is an unknown L × 1 additive perturbation vector modeling nonlinear eects occurring in the nth pixel. Note that the usual matrix and vector notations M = [m 1 , . . . , m R ] and a n = [a 1,n , . . . , a R,n ] T have been used in the second row of Eq. (4.1). There are several motivations for considering the mixing model (4.1): 1) this model reduces to the classical linear mixing model (LMM) for φ n = 0 L , 2) the model (4.1) is general enough to handle dierent of kinds of nonlinearities such as the bilinear model studied by Fan et al. (2009) (FM), the generalized bilinear model (GBM) (Halimi et al., 2011a), and the PPNMM studied for nonlinear spectral unmixing in Chapter 1 and nonlinearity detection in Chapter 3.

These models assume that the mixing model consists of a linear contribution of the endmembers, corrupted by at least one additive term characterizing the nonlinear eects. In the proposed model (4.1), all additive terms are gathered in the vector φ n . Note that this model is similar to the one introduced by [START_REF] Dobigeon | Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images[END_REF] and called robust LMM, and to the nonlinear mixing model proposed by [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF].

The abundance vectors a n satisfy the following positivity and sum-to-one constraints R r=1 a r,n = 1, a r,n > 0, ∀r ∈ {1, . . . , R} . The problem addressed in this chapter consists of the joint estimation of the abundance vectors and the detection of nonlinearly mixed pixels (characterized by φ n = 0 L ). The two next paragraphs present the proposed Bayesian model for joint unmixing and nonlinearity detection.

Bayesian model

The unknown parameter vector associated with the proposed model (4.1) contains the abundances A = [a 1 , . . . , a N ] (satisfying the constraints (4.2)), the nonlinear terms of each pixel {φ n } n=1,...,N , and the noise variance vector σ 2 . This section summarizes the likelihood and the parameter priors associated with the parameters of the linear part of the model, i.e., A = [a 1 , . . . , a N ] and σ 2 . The prior model for the nonlinearities {φ n } n=1,...,N will be introduced in paragraph 4.5.

Likelihood

Equation (4.1) shows that y n |M, a n , φ n , σ 2 is distributed according to a Gaussian distribution with mean Ma n +φ n and covariance matrix Σ 0 , denoted as y n |M, a n , φ n , σ 2 ∼ N (Ma n + φ n , Σ 0 ). Assuming independence between the observed pixels, the joint likelihood of the observation matrix Y can be expressed as

f (Y|M, A, Φ, σ 2 ) ∝ |Σ 0 | -N/2 etr - (Y -X) T Σ -1 0 (Y -X) 2 (4.3)
where Φ = [φ 1 , . . . , φ N ] T is an L × N nonlinearity matrix, etr(•) denotes the exponential trace and X = MA + Φ is an L × N matrix.

Prior for the abundance matrix A

Using the LMM constraints (4.2), each abundance vector can be written as a n = [c T n , a R,n ] T with c n = [a 1,n , . . . , a R-1,n ] T and a R,n = 1 -R-1 r=1 a r,n . Moreover, these constraints impose that c n belongs to the simplex

S = c c r > 0, ∀r ∈ 1, . . . , R -1, R-1 r=1 c r < 1 (4.4)
To reect the lack of prior knowledge about the abundances, we propose to assign noninformative prior distributions to the N vectors c n . More precisely, the following uniform prior

f (c n ) ∝ 1 S (c n ) , n ∈ {1, . . . , N } (4.5)
is assigned to each vector c n . Assuming prior independence between the N abundance vectors {a n } n=1,...,N leads to the following joint prior distribution

f (C) = N n=1 f (c n ) (4.6) where C = [c 1 , . . . , c N ] is an (R -1) × N matrix.

Prior for the noise variances

A Jereys' prior is chosen for the noise variance of each spectral band σ 2 f (σ 2 ) ∝ 1

σ 2 1 R + σ 2 (4.7)
which reects the absence of knowledge for this parameter (see [START_REF] Bernardo | Bayesian Theory[END_REF] for motivation). Assuming prior independence between the noise variances, we obtain

f (σ 2 ) = L =1 f (σ 2 ).
(4.8)

Modeling the nonlinearities

We propose in this study to exploit spatial correlations between the pixels of the hyperspectral image to be analyzed.

It seems reasonable to assume that nonlinear eects occurring in a given pixel are related to the nonlinear eects present in neighboring pixels. Formally, the hyperspectral image is assumed to be partitioned into K classes denoted as C 0 , . . . , C K-1 . Let I k ⊂ 1, . . . , N denote the subset of pixel indexes belonging to the kth class (k = 0, . . . , K -1).

An N × 1 label vector z = [z 1 , . . . , z N ] T with z n ∈ {0, . . . , K -1} is introduced to identify the class of each image pixel, i.e.,

y n ∈ C k ⇔ n ∈ I k ⇔ z n = k. (4.9)
In each class, nonlinearity vectors to be estimated are assumed to share the same statistical properties, as will be shown in the sequel. The nonlinearities (of nonlinearly mixed pixels) are assumed to be random. Assume y n belongs to the kth class.

The prior distribution of the corresponding nonlinear term φ n is given by the following GP (k = 1, . . . , K -1)

φ n |M, z n = k, s 2 k ∼ N 0 L , s 2 k K M , (4.11) 
where K M is an L × L covariance matrix parameterized by the endmember matrix M and s 2 k is a scaling hyperpa- rameter that tunes the energy of the nonlinearities in the kth class. Note that all nonlinearity vectors within the same class share the same prior. The performance of the unmixing procedure depends on the choice of K M , more precisely on the similarity measure associated with the covariance matrix. In this work, we consider the symmetric second order polynomial kernel, which has received considerable interest in the machine learning community [START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF]. This kernel is dened as follows

[K M ] i,j = m T i,: m j,: 2 , i, j ∈ {1, . . . , L} , (4.12) 
where denotes the Hadamard (termwise) product and m i,: denotes the ith row of M. Polynomial kernels are particularly well adapted to characterize multiple scattering eects (modeled by polynomial functions of the endmembers). Note that the parametrization of the matrix K M in (4.12) only involves bilinear and quadratic terms with respect to the endmembers m r , r = 1, . . . , R. More, precisely, the matrix K M can be rewritten as

K M = QQ T where Q = [m 1 m 1 , . . . , m R m R , √ 2m 1 m 2 , . . . , √ 2m R-1 m R ] is an L × R(R + 1)/2 matrix. It can be
shown that (4.11) and (4.12) can be obtained by dening φ n as a linear combination of terms m i m j (as in (Halimi et al., 2011a)) and by marginalizing the corresponding coecients using a Gaussian prior parameterized by s 2 k . Marginalizing these coecients allows the number of unknown parameters to be signicantly reduced, leading to the nonlinearities being characterized by a single parameter s 2 k (see Appendix H for details). Note also that a polynomial kernel similar to (4.12) has been recently considered by [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF] and that other kernels such as the Gaussian kernel could be investigated to model other nonlinearities [START_REF] Kalaitzis | Residual components analysis[END_REF].

Prior distribution for the label vector z

In the context of hyperspectral image analysis, the labels z 1 , . . . , z N indicate the pixel classes and take values in {0, . . . , K -1} where K is the number of classes and the set {z n } n=1,...,N forms a random eld. To exploit the correlation between pixels, a Markov random eld is introduced as a prior distribution for z n given its neighbors z V(n) , i.e.,

f (z n |z \n ) = f (z n |z V(n) ) (4.13)
where V(n) is the neighborhood of the nth pixel and z \n = {z n } n =n . More precisely, this study focuses on the Potts-Markov model since it is very appropriate for hyperspectral image segmentation [START_REF] Eches | Enhancing hyperspectral image unmixing with spatial correlations[END_REF]. Given a discrete random eld z attached to an image with N pixels, the Hammersley-Cliord theorem yields

f (z) = 1 G(β) exp   β N n=1 n ∈V(n) δ(z n -z n )   (4.14)
where β > 0 is the granularity coecient, G(β) is a normalizing (or partition) constant and δ(•) is the Dirac delta function. Several neighborhood structures can be employed to dene V(n). regions. In this study, the granularity coecient is assumed to be known. Note however that it could be also included within the Bayesian model and estimated using the strategy described by [START_REF] Pereyra | Estimating the granularity coecient of a Potts-Markov random eld within an MCMC algorithm[END_REF].

Hyperparameter priors

The performance of the proposed Bayesian model for spectral unmixing mainly depends on the values of the hyperparameters s 2 k k=1,...,K

. When the hyperparameters are dicult to adjust, it is the norm to include them in the unknown parameter vector, resulting in a hierarchical Bayesian model [START_REF] Robert | The Bayesian Choice: from Decision-Theoretic Motivations to Computational Implementation[END_REF]. This strategy requires the denition of prior distributions for the hyperparameters.

The following inverse-gamma prior distribution s 2 k |γ, ν ∼ IG(γ, ν), ∀k ∈ {1, . . . , K} (4.15) is assigned to the nonlinearity hyperparameters, where (γ, ν) are additional parameters that will be xed to ensure a noninformative prior for s 2 k ((γ, ν) = (1, 1/4) in all simulations presented in this chapter). Assuming prior independence between the hyperparameters, we obtain Assuming prior independence between A, (Φ, z) and σ 2 , the posterior distribution of (Φ, θ) where θ = (C, z, σ 2 , s 2 ) can be expressed as

f (s 2 |γ, ν) = K-1 k=1 f (s 2 k |γ, ν).
f (θ, Φ|Y, M) ∝ f (Y|M, θ, Φ)f (Φ|M, z, s 2 )f (θ), where f (θ) = f (C)f (σ 2 )f (z)f (s 2
). This distribution can be marginalized with respect to Φ as follows 1) and ȳn = y n -Ma n . The advantage of this marginalization is to avoid sampling the nonlinearity matrix Φ. Thus, the nonlinearities are fully characterized by the known endmember matrix, the class labels and the values of the hyperparameters in s 2 = [s 2 1 , . . . , s 2 K ] T . Note that the alternative interpretation of the proposed RCA-based model provided in Appendix H also leads to the likelihood marginalized over Φ in (4.18).

f (θ|Y, M) ∝ f (θ) f (Y|M, θ, Φ)f (Φ|M, z, s 2 )dΦ ∝ f (θ)f (Y|M, θ) (4.17) where f (Y|M, θ) = f (Y|M, θ, Φ)f (Φ|M, z, s 2 )dΦ (4.18) ∝ K-1 k=0 n∈I k 1 |Σ k | 1 2 exp - 1 2 ȳT n Σ -1 k ȳn with Σ 0 = diag σ 2 , Σ k = s 2 k K M + Σ 0 (k = 1, . . . , K - 
Unfortunately, it is dicult to obtain closed form expressions for standard Bayesian estimators associated with (4.17). In this study, we propose to use ecient Markov Chain Monte Carlo (MCMC) methods to generate samples asymptotically distributed according to (4.17). The next part of this section presents the Gibbs sampler which is proposed to sample according to (4.17). The principle of the Gibbs sampler is to sample according to the conditional distributions of the posterior of interest (Robert and Casella, 2004, Chap. 10). Due to the large number of parameters to be estimated, it makes sense to use a block Gibbs sampler to improve the convergence of the sampling procedure. More precisely, we propose to sample sequentially the N labels in z, the abundance matrix A, the noise variances σ 2 and s 2 using moves that are detailed in the next paragraphs.

Sampling the labels

For the nth pixel (n ∈ {1, . . . , N }), the label z n is a discrete random variable whose conditional distribution is fully characterized by the probabilities

P (z n = k|y n , M, θ \zn ) ∝ f (y n |M, s 2 , z n = k, a n )f (z n |z \n ), (4.19) 
where θ \zn denotes θ without z n , k = 0, . . . , K -1 (for K classes). These posterior probabilities are

P (z n = k|y n , M, θ \zn ) ∝ 1 |Σ k | 1 2 exp   β N p=1 p ∈V(p) δ(z p -z p )   exp - 1 2 ȳT n Σ -1 k ȳn . (4.20)
Consequently, sampling z n from its conditional distribution can be achieved by drawing a discrete value in the nite set {0, . . . , K -1} with the probabilities dened in (4.20).

Sampling the abundance matrix A

Sampling from f (C|Y, M, z, σ 2 , s 2 ) seems dicult due to the complexity of this distribution. However, it can be shown that

f (C|Y, M, z, σ 2 , s 2 ) = N n=1 f (c n |y n , M, z n , σ 2 , s 2 ), (4.21) 
i.e., the N abundance vectors {a n } n=1,...,N are a posteriori independent and can be sampled independently in a parallel manner. Straightforward computations lead to

c n |y n , M, z n = k, σ 2 , s 2 ∼ N S (c n , Ψ n ) (4.22)
where

Ψ n = M T Σ -1 k M -1 cn = Ψ n M T Σ -1 k ỹn M = [m 1 -m R , . . . , m R-1 -m R ] (4.23)
and ỹn = y n -m R . Moreover, N S (c n , Ψ n ) denotes the truncated multivariate Gaussian distribution dened on the simplex S with hidden mean cn and hidden covariance matrix Ψ n . Sampling from (4.22) can be achieved eciently using the method recently proposed by [START_REF] Pakman | Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians[END_REF]. 4.6.4 Sampling the noise variance σ 2

It can be shown from (4.17) that

f (σ 2 |Y, M, A, z, s 2 ) = L =1 f (σ 2 |Y, M, A, z, s 2 ), (4.24) where f (σ 2 |Y, M, A, z, s 2 ) ∝ 1 σ 2 K-1 k=0 n∈I k 1 |Σ k | 1 2 exp - 1 2 ȳT n Σ -1 k ȳn 1 R + σ 2 .
(4.25)

Sampling from (4.25) is not straightforward. In this case, an accept/reject procedure can be used to update σ 2 , leading to a hybrid Metropolis-within-Gibbs sampler. In this study, we introduce the standard change of variables δ = log(σ 2 ), δ ∈ R. A Gaussian random walk for δ is used to update the variance σ 2 . This change of variables allows the proposals to be symmetric, conversely to the truncated Gaussian distribution. Note that the noise variances σ 2 are a posteriori independent. Thus they can be updated in a parallel manner. The variances of the L parallel Gaussian random walk procedures have been adjusted during the burn-in period of the sampler to obtain an acceptance rate close to 0.5, as recommended in (Robert and Cellier, 1998, p. 8).

Sampling the vector s 2

It can be shown from (4.17) that

f (s 2 |Y, M, A, z, σ 2 , γ, ν) = K-1 k=1 f (s 2 k |Y, M, A, σ 2 , γ, ν), where f (s 2 k |Y, M, A, σ 2 , γ, ν) ∝ f (s 2 k |γ, ν) n∈I k 1 |Σ k | 1 2 exp - 1 2 ȳT n Σ -1 k ȳn . (4.26)
Due to the complexity of the conditional distribution (4.26), Gaussian random walk procedures are used in the logspace to update the hyperparameters {s 2 k } k=1,...,K-1 in a parallel manner (similarly to the noise variance updates).

Again, the proposal variances are adjusted during the burn-in period of the sampler.

After generating N MC samples using the procedures detailed above and removing N bi iterations associated with the burn-in period of the sampler (N bi has been set from preliminary runs), the marginal maximum a posteriori (MAP) estimator of the label vector, denoted as ẑMAP , can be computed. The label vector estimator is then used to compute the minimum mean square error (MMSE) of A conditioned upon z = ẑMAP . Finally, the noise variances and the hyperparameters {s 2 k } k=1,...,K-1 are estimated using the empirical averages of the generated samples (MMSE estimates). The next section studies the performance of the proposed algorithm for synthetic hyperspectral images. 4.1 illustrate the performance of the RCA-SU in term of pixel classication. Table 4.2

shows that the RCA-SU provides accurate hyperparameter estimates and thus can be used to obtain information about the importance of nonlinearities in the dierent regions. Note that the estimation error is computed using with N k = card(I k ) and where a n and ân are the actual and estimated abundance vectors for the nth pixel of the image. For this scenario, the proposed algorithm is compared with the classical FCLS algorithm [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF] assuming the LMM. Comparisons to nonlinear SU methods will be addressed in the next paragraph (scenario 2). Table 4.3 shows the RNMSEs obtained with the proposed and the FLCS algorithms for this rst data set. These results show that the two algorithms provide similar abundance estimates for the rst class, corresponding to linearly mixed pixels. For the three nonlinear classes, the proposed algorithm provides better results than the FCLS algorithm that does not handle nonlinear eects. 

Data set

The performance of the proposed joint nonlinear SU and nonlinearity detection algorithm is then evaluated on a second synthetic image of 60×60 pixels containing the R = 3 spectral components presented in the previous section.

In this scenario, the image consists of pixels generated according to four dierent mixing models associated with four classes (K = 4). The label map generated using β = 1.2 is shown in Fig. 4.5 (a). The class C 0 is associated with the LMM. The pixels of class C 1 have been generated according to the GBM (Halimi et al., 2011a) Unmixing Dierent estimation procedures have been considered for the four dierent mixing models:

y n = R r=1 a r,n m r + R-1 i=1 R j=i+1 γ i,j a i,n a j,n m i m j + e n
• The FCLS algorithm [START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF] which is known to have good performance for linear mixtures.

• The GBM-based approach [START_REF] Halimi | Unmixing hyperspectral images using a generalized bilinear model[END_REF] which is particularly adapted for bilinear nonlinearities. • The gradient-based approach introduced in Chapter 1 which is based on a PPNMM.

• The proposed RCA-SU algorithm which has been designed for the model in (4.1). It has been applied to this data set with N MC = 3000, N bi = 2000, K = 4 and β = 1.2.

• Finally, we consider the K-Hype method studied by [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF] to compare our algorithm with state-of-the art kernel based unmixing methods. The kernel used in this study is the polynomial, second order symmetric kernel whose Gram matrix is dened by (4.12). This kernel provides better performance on this data set than the kernels studied by [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF] (namely the Gaussian and the polynomial, second order asymmetric kernels). All hyperparameters of the K-Hype algorithm have been optimized using preliminary runs. The unmixing quality is also evaluated by the reconstruction error (RE) dened as

RE k = 1 N k L n∈I k ŷn -y n 2 (4.31)
where y n is the nth observation vector and ŷn its estimate. Table 4.5 compares the REs obtained for the dierent classes. This table shows the accuracy of the proposed model for tting the observations. The REs obtained with the RCA-SU are similar for the four pixel classes. Moreover, the performance in terms of RE of the proposed algorithm are similar to the performance of the K-Hype algorithm. From a reconstruction point of view, the K-Hype and RCA-SU algorithms provides similar results. However, the proposed algorithm also provides nonlinearity detection maps. The PPNMM and RCA-SU algorithms perform similarly in term of abundance estimation and allow both nonlinearities to be detected in each pixel. However, the nonlinearities can be analyzed more deeply using the RCA-SU, as will be shown in the next part.

Nonlinearity detection

The performance of the proposed algorithm for nonlinearity detection is compared to the detector studied in Chapter 3, which is coupled with the PPNMM-based SU procedure mentioned above. The probability of false alarm of the PPNMM-based detection has been set to PFA = 0.05. Figs. 4.5 (c) and (d) show the detection maps obtained with the two detectors. Both detectors are able to locate the nonlinearly mixed regions. However, the RCA-SU provides more homogeneous regions, due to the consideration of spatial structure through the MRF.

Moreover, the proposed algorithm provides information about the dierent levels of nonlinearity in the image thanks to the estimation of the hyperparameters s 2 k associated with the dierent classes. In this simulation, we obtain [ŝ 

Spectral unmixing

The proposed algorithm has been applied to this data set with N MC = 3000 and N bi = 1000. The number of classes has been set to K = 4 (one linear class and three nonlinear classes). The granularity parameter of the prior (4.14) has been xed to β = 0.7. Fig. 4.8 shows examples of abundance maps estimated by the FCLS algorithm, the gradient-based method assuming the GBM, the PPNMM and the K-Hype [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF] algorithms and the proposed method. The abundance maps estimated by the RCA-SU algorithm are in good agreement with the state-of-the art algorithms. However, Table 4.6 shows that K-Hype and the proposed algorithm provide a lower reconstruction error. Fig. 4.9 compares the noise variances estimated by the RCA-SU for the real image with the noise variances estimated by the HySime algorithm [START_REF] Bioucas-Dias | Hyperspectral subspace identication[END_REF]. The HySime algorithm assumes additive noise and estimates the noise covariance matrix of the image using multiple regression. Fig. 4.9

shows that the two algorithms provide similar noise variance estimates. These results motivate the consideration of non i.i.d. noise for hyperspectral image analysis since the noise variances increase for the highest wavelengths.

The simulations conducted on this real dataset show the accuracy of the proposed RCA-SU in terms of abundance estimation and reconstruction error, especially for applications where the noise variances vary depending on the wavelength. Moreover, it also provides information about the nonlinearities of the scene. can probably be explained by the endmember variability and/or the endmember estimation error. It is interesting to note that the RCA-SU identies two rather linear classes associated with homogeneous regions mainly composed of a single parameter (classes C 0 and C 1 ). The two latter classes (classes C 2 and C 3 ) correspond to rather nonlinear regions where the pixels are mixed and shadowing eects occur.

Conclusion

We have proposed a new hierarchical Bayesian algorithm for joint linear/nonlinear spectral unmixing of hyperspectral images and nonlinearity detection. This algorithm assumed that each pixel of the image is a linear or nonlinear mixture of endmembers contaminated by additive Gaussian noise. The nonlinear mixtures are decomposed into a linear combination of the endmembers and an additive term representing the nonlinear eects. A Markov random eld was introduced to promote spatial structures in the image. The image was decomposed into regions or classes where the nonlinearities share the same statistical properties, each class being associated with a level of nonlinearity.

Nonlinearities within a same class were modeled using a Gaussian process parameterized by the endmembers and the nonlinearity level. Note nally that the physical constraints for the abundances were included in the Bayesian framework through appropriate prior distributions. Due to the complexity of the resulting joint posterior distribution, a Markov chain Monte Carlo method was investigated to compute Bayesian estimators of the unknown model parameters.

Simulations conducted on synthetic data illustrated the performance of the proposed algorithm for linear and nonlinear spectral unmixing. An important advantage of the proposed algorithm is its robustness regarding the actual underlying mixing model. Another interesting property resulting from the nonlinear mixing model considered is the possibility of detecting several kinds of linearly and nonlinearly mixed pixels. This detection can be used to identify the image regions aected by nonlinearities in order to characterize the nonlinear eects more deeply.

Finally, simulations conducted with real data showed the accuracy of the proposed unmixing and nonlinearity detection strategy for the analysis of real hyperspectral images.

As in Chapter 3, the endmembers contained in the hyperspectral image were assumed to be known in this work. Of course, the performance of the algorithm relies on this endmember knowledge. We think that estimating the pure component spectra present in the image, jointly with the abundance estimation and the nonlinearity detection is an important issue that should be considered in future work. Finally, the number of classes and the granularity of the scene were assumed to be known in this study. Estimating these parameters is clearly a challenging issue that should be investigated. 

Conclusion and future work

The aim of this thesis was to study new nonlinear mixing models and to propose associated unmixing algorithms for hyperspectral image analysis. Spectral unmixing consists of extracting from a hyperspectral image, the spectra of the pure macroscopic components present in the image, referred to as endmembers, and of identifying their interactions referred to as mixtures. To reduce the problem complexity, most works of the literature rely on a linear mixing model, often considered as a rst approximation of the actual mixture. However, this approximation can be inaccurate to describe some scenes, requiring more complex mixing models to be considered (to overcome the inherent limitations of the linear model). Designing and/or choosing an appropriate nonlinear mixing model for spectral unmixing is a challenging problem because of the diversity of nonlinear eects. Moreover, introducing nonlinear terms in the observation model complicates the derivation of ecient nonlinear unmixing procedures relying on nonlinear models. Considering nonlinear eects in hyperspectral images usually require more complex unmixing strategies than those assuming linear mixtures. Since the linear mixing model is often sucient to approximate accurately most actual mixtures, it is also interesting to detect pixels or regions where the linear model is accurate.

Conclusion

The rst chapter studied a post-nonlinear mixing model (PNMM) for nonlinear SU. The proposed polynomial PNMM (PPNMM) investigated in this chapter allowed nonlinearities to dier for each pixel, leading to a exible mixture characterization. The nonlinearity of each pixel was characterized by a single parameter which is zero when the pixel is linearly mixed. First, supervised SU methods based on the PPNMM were considered. The rst proposed algorithm was a hierarchical Bayesian algorithm coupled with MCMC methods. Two alternative optimization methods were also introduced to reduce the computational complexity of the sampling algorithm. The exibility of the PPNMM and the performance of the three methods were evaluated using simulations conducted on synthetic and real data. The second part of this chapter presented a new Bayesian model for unsupervised SU based on the PPNMM. Appropriate priors were also assigned to the unknown endmembers to be sampled. The joint estimation of the abundances and endmembers required a large number of parameters to be sampled. To improve the mixing properties of the sampler, constrained Hamiltonian Monte Carlo methods were investigated.

The second chapter of this manuscript considered a kernel-based approach for nonlinear SU based on a nonlinear dimensionality reduction using a GPLVM. GPLVMs, which have received growing interest in the machine learning community, have the ability to approximate various nonlinear mappings from a low-dimensional space (latent space) to a higher dimensional observation space through the use of kernel functions, which makes them particularly well adapted for hyperspectral image analysis and thus unmixing. In this chapter, we proposed to use a particular form of kernel based on existing bilinear models, which allowed the proposed unmixing strategy to be accurate when the underlying mixing model is bilinear. The proposed unmixing algorithm breaks the usual paradigm of spectral unmixing by rst estimating the abundances and then predicting the endmembers using GPs. Simulations conducted on synthetic and real images illustrated the exibility of the proposed model for linear and nonlinear spectral unmixing and provided promising results for abundance and endmember estimations even in the absence of pure pixels in the image.

The third chapter of this manuscript was dedicated to the detection of nonlinearities in hyperspectral images. This chapter focused on supervised detection procedures, i.e., the endmembers were assumed to be a priori known. The rst detector was based on the PPNMM studied in the rst chapter. More precisely, the associated test was based on the statistical properties of the PPNMM parameters to decide whether a given pixel is linearly or nonlinearly mixed. Conversely, the second test proposed did not assume any particular NLMM, i.e., only relied on the LMM.

The two detectors were compared using simulations conducted on synthetic and real data.

In the last chapter of this manuscript, a new nonlinear mixing model for joint hyperspectral image unmixing and nonlinearity detection was proposed. The observed image was segmented into regions where nonlinear terms, if present, shared similar statistical properties. The resulting algorithm provided accurate abundance estimates for linear and nonlinear mixtures. Thus, it generalized the binary nonlinearity detectors proposed in the third chapter by considering dierent classes (levels) of nonlinearities.

In this manuscript, it was shown that nonlinear unmixing algorithms can improve the characterization of hyperspectral images compared to methods based on a linear model. These methods allowed the reconstruction errors to be reduced. Moreover, these methods provided better spectral signature and abundance estimates when the observed pixels result from nonlinear mixtures. The simulation results conducted on synthetic and real images illustrated the advantage of using nonlinearity detectors for hyperspectral image analysis. In particular, the proposed detectors can identify components which are present in few pixels (and hardly distinguishable) and can locate areas where signicant nonlinear eects occur (shadow, relief, ...).

Future work

In this manuscript, we proposed nonlinear unmixing and nonlinearity detection algorithms using a polynomial post-nonlinear model. The exibility of the Bayesian framework allowed the model complexity to be handled and prior information about the model parameters to be easily included within the estimation procedure. It would be interesting to extend this work to physics-based nonlinear models of the literature such as polynomial (bilinear) (Halimi et al., 2011a;[START_REF] Meganem | Linear-quadratic mixing model for reectances in urban environments[END_REF] and intimate mixture models [START_REF] Hapke | Bidirectional reectance spectroscopy. I. Theory[END_REF].

Consider the following bilinear model dened in (3). As mentioned in Chapter 4, the interaction spectra m i m j are highly correlated which complicates the estimation of the nonlinearity parameters β i,j,n , especially for large numbers of endmembers R. In Chapter 4, we considered such parameters as nuisance parameters which were marginalized. However, if one is particularly interested in these parameters (to quantify the inuence of each interaction), additional information should be included in the estimation procedure. As mentioned by [START_REF] Gader | A sparsity promoting bilinear unmixing model[END_REF], most of the β i,j,n parameters are expected to be small (or even null). Consequently, it is interesting to enforce small values and/or sparsity for these unknown parameters. In the Bayesian framework, sparsity promoting prior distributions (such as Laplace, Bernoulli-Gaussian or Bernoulli-Laplace distributions) could be used to infer the nonlinearity parameters.

Even if the consideration of nonlinear terms increases the unmixing complexity, the recent advances in ecient simulation methods (including Hamiltonian Monte Carlo methods) for high dimensional problems are promising and their application to hyperspectral analysis is an interesting prospect.

The second chapter of this manuscript focused on a kernel-based nonlinear dimensionality reduction technique initially studied in the machine learning community. A particular nonlinear mapping adapted for modeling bilinear nonlinearities was used and provided encouraging results. Moreover, the fourth chapter of this manuscript focused on a kernel-based model for joint unmixing and nonlinearity detection. Kernel-based methods for hyperspectral unmixing have recently received growing interest [START_REF] Broadwater | A comparison of kernel functions for intimate mixture models[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF] for their exibility. However, further eorts should be achieved for proposing more general but accurate kernel functions. In the fourth chapter of this manuscript, the nonlinearity of each pixel was characterized by a kernel function which only depends on the endmember matrix. However, it makes sense to assume that the nonlinearity may also depend on the pixel composition, i.e., on its abundances. Kernels depending on the endmembers and the abundances, such as in the kernel-based method recently proposed by Chen et al. (2013a), should be investigated.

In the two last chapters of the manuscript, the endmembers were assumed to be known to perform the nonlinearity detection and the joint unmixing and nonlinearity detection. However, if the endmembers are unknown, they have to be extracted from the data, which can be dicult when nonlinearly mixed pixels are present in the scene.

It would be interesting to apply nonlinearity detectors before the endmember extraction (and then using linear EEAs to identify the pure spectral signatures) or to propose joint nonlinearity detection and endmember estimation methods. Thus, it would be interesting to extend the RCA-based Bayesian model proposed in Chapter 4 to the case where the endmembers are included in the estimation procedure.

In this manuscript, we considered linear and nonlinear mixing models whose parameters were estimated using Bayesian inference. Thus, the dimension of the unknown parameter vectors was known and thus their admissible sets were assumed to be unique. In particular, the number of endmembers R was xed from a priori knowledge.

In the RCA-based model, the number of classes was also xed. If the dimension of the unknown parameter vector is unknown, a simple solution consists of running the proposed algorithms with dierent numbers of endmembers and/or classes. However, the computational complexity of this approach can be prohibitive when the number of parameters to be tuned is large. A more elegant approach consists of including the dimension of the unknown parameter vector within the parameter estimation using the Bayesian framework. Sampling from the resulting posterior distribution can be achieved using reversible jump MCMC (RJ-MCMC) methods [START_REF] Green | Reversible jump MCMC computation and Bayesian model determination[END_REF]. RJ-MCMC methods can be used for model order selection but also to sample variables that can live in disjoint sets, which is particularly interesting for hyperspectral image analysis. For instance, prior distributions dened on a set of (disjoint) domains could be assigned to unknown endmembers and/or abundances. As a toy example, consider the problem of semi-supervised unmixing of a hyperspectral image that consists of urban and forested areas. The problem is semi-supervised in the sense that the endmembers present in the image belong to a spectral library which contains spectra of both urban and forested areas. Instead of searching the active endmembers in the whole library, it would be interesting to identify the urban and forested areas in the scene and to estimate the endmembers out of subsets of the library. For this problem, prior distributions for the unknown endmembers could be dened on dierent subsets of the library and RJ-MCMCs could be used to sample for the resulting posterior.

This example is highly related to the sparse linear unmixing problem that have received intensive interest over the last few years in the hyperspectral community [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF] and references therein). This sparse linear regression problem has strong relations with compressed sensing and basis pursuit. It consists of solving the inversion step given a large spectral library by enforcing the abundances to be sparse. Optimization algorithms are mainly used to solve this problem and the 1 norm penalization is often preferred ( 1 relaxation) rather than the 0 norm, which is more challenging to handle. Conversely, the Bayesian framework is exible enough to handle penalizations based on the 0 norm, using RJ-MCMCs for instance. Moreover, this framework allows also for structured sparsity to be considered, such as in [START_REF] Dobigeon | Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images[END_REF][START_REF] Iordache | MUSIC-CSR: hyperspectral unmixing via multiple signal classication and collaborative sparse regression[END_REF]. Proposing

Bayesian sparse unmixing procedures is a very interesting prospect. However, ecient sampling procedures must be proposed to handle the complexity induced by the consideration of prior sparsity information.

Finally, consideration of endmember variability for spectral unmixing is also interesting. In this manuscript, the spectral signatures of the materials of the scene were assumed to be unique. However, the spectral variability of these signatures cannot be neglected in some images. Solving the unmixing problem in such cases is challenging and should deserve deeper attention in future work. Le troisième chapitre de ce manuscrit a été consacrée à la détection de non-linéarités dans les images hyperspectrales.

Conclusion et perspectives (in

Ce chapitre s'est concentré sur des procédures de détection supervisées dans le sens où les spectres des composants présents dans l'image étaient supposés connus. Le premier détecteur était fondé sur le modèle PPNMM étudié dans le premier chapitre. Plus précisément, le test proposé était basé sur les propriétés statistiques de l'estimateur du maximum de vraisemblance des paramètres du modèle PPNMM an de décider si un pixel résulte d'un mélange linéaire où non-linéaire. A contrario, le deuxième détecteur proposé ne supposait pas de formes de non-linéarités particulière, c'est-à-dire, ne reposait que sur le modèle de mélange linéaire. Les deux détecteurs ont été comparés les modèles polynômiaux (Halimi et al., 2011a;[START_REF] Meganem | Linear-quadratic mixing model for reectances in urban environments[END_REF] et les modèles de mélanges intimes [START_REF] Hapke | Bidirectional reectance spectroscopy. I. Theory[END_REF]).

Considérons le modèle bilinéaire suivant déni par l'Eq. ( 3). Comme noté dans le chapitre 4, les spectres d'interactions m i m j sont fortement corrélés, ce qui complique l'estimation des paramètres de non-linéarité β i,j,n , en particulier pour un grand nombre de composants R.

Dans le chapitre 4, nous avons considéré ces paramètres comme des paramètres de nuisance qui ont été marginalisés.

Toutefois, si l'on est particulièrement intéressé par les valeurs de ces paramètres (si l'on veut quantier l'inuence de chaque interaction), de l'information supplémentaire doit être incluse dans la procédure d'estimation. Comme V 1 (t ) = y ,: -t 2 2σ 2

V 2 (m ,: ) = m ,: -m ,:

2 2s 2 .
The partial derivatives of the potential energy (1.63) To prove that f a is a basis of F a , we will show that F a = G a . We rst prove that each basis element of g a belongs to F a . Then, for r = r 0 , x r must be a constant to ensure that x r0 x r ∈ F a , which is impossible since 1 already belongs to F a . Consequently, 

∂L ∂Σ = - L 2 Σ -1 + 1 2 Σ -1 ȲT ȲΣ -1 .
The partial derivative of L with respect to the covariance matrix Ȳ is given by ∂L ∂ Ȳ = -Σ -1 ȲT .

Using the classical chain rules, we obtain 

N

  column of the matrix X x n,: column vector consisting of the nth row of the matrix X trMC length of the Markov chain N bi length of the burn-in period of the Markov chain N LF number of leap-frog steps
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 1 Figure 1: Example of hyperspectral imaging concept.
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 2 Figure 2: Linear mixing model: the area of interest is at and is composed of components sitting side-byside.
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 3 Figure 3: Nonlinear mixtures: example of multiple reections occurring in forested areas.
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 11 Figure 1.1: DAG for the parameter priors and hyperpriors (the xed parameters appear in dashed boxes).
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 11 Gibbs Sampling Algorithm Sampling from f (σ 2 b |y, θ) Finally, by looking at the posterior distribution (1.16), it can be seen that σ 2 b |y, θ is distributed according to the following inverse-gamma distribution

  As a consequence, by dierentiating J(a, b) with respect to b, the following closed-form expression for b can be obtained b = (y -Ma) T h(a) h(a) T h(a) = b(a).

  1.22) in J(a, b), we obtain 3J(a) = J a, b (a

9 :

 9 Compute b (t) using(1.25) 10: Set t = t + 1.Algo.1.3: Constrained Subgradient Algorithm At a given point c, the SO algorithm performs sequential line searches along the directions d r dened by the partial derivatives with respect to c r (for r = 1, . . . , R -1), i.e., d r = -∂J * (c) ∂c r = [y -y * (c)] T ∂ y * (c) ∂c r where the partial derivatives of y * (a \R ) are provided in Appendix B. Finally, the line search procedure solves the following problem λr = arg min λr J * (c -λ r u r )
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 1 Fig. 1.2 shows the estimated distributions of b for the images I 1 , . . . , I 4 using the three presented algorithms (i.e., Bayesian, linearization and subgradient). This gure shows that the three algorithms perform similarly for the estimation of the nonlinearity parameter b.
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 12 Figure 1.2: Histograms of the estimated nonlinearity parameter b for the four synthetic images estimated by the Bayesian (black), linearization-based (red) and subgradient-based (blue) algorithms.

  and the nonlinear EEA proposed by Heylen et al. (2011) (referred to as Heylen"), with R = 3 are depicted in Fig. 1.3. The endmembers obtained by the two methods have similarshapes. This result conrms the fact that the geometric EEAs (such as VCA) can be used as a rst approximation for endmember estimation[START_REF] Keshava | Spectral unmixing[END_REF].
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 13 Figure 1.3: The R = 3 endmembers estimated by VCA (blue lines) and Heylen (red lines) for the Cuprite scene.
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 14 Figure 1.4: Abundance maps estimated by the Bayesian, linearization and subgradient methods for the Cuprite scene.
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 15 Figure 1.5: Maps of the nonlinearity parameter b estimated by the Bayesian, linearization and subgradient methods for the Cuprite scene.

Figure 1 . 6 :

 16 Figure 1.6: The R = 3 endmembers estimated by VCA (blue lines) and Heylen (red lines) for the Moett scene.
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 17 Figure 1.7: Abundance maps estimated by the Bayesian, linearization and subgradient methods for the Moett scene.
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 18 Figure 1.8: Maps of the nonlinearity parameter b estimated by the Bayesian, linearization and subgradient methods for the Moett scene.

  vectors associated with a canonical kinetic energy are introduced. The CHMC of Section 1.5.1 is then applied independently to the N vectors z n whose dimension (R -1) is relatively small. The partial derivatives of the potential function(1.61) required in Algo.1.4 are derived in Appendix C.

  (1.63) and a momentum vector associated with a canonical kinetic energy. The partial derivatives of the potential function (1.63) required in Algo. 1.4 are derived in Appendix C.

  i.d. to fairly compare unmixing performance with SU algorithms assuming i.i.d. Gaussian noise. The nonlinearity coecients are uniformly drawn in the set [0, 1] for the GBM. The parameters b n , n = 1, . . . , N have been generated uniformly in the set[-0.3, 0.3] for the PPNMM.

3 Figure 1 .

 31 Figure 1.10: Visualization of the N = 2500 pixels (blue dots) of I 1 , I 2 and I 3 using the rst principal components provided by the standard PCA. The green stars correspond to the actual endmembers and the triangles are the simplexes dened by the endmembers estimated by the Heylen's method (black) and the proposed method (red).

Fig. 1 .

 1 Fig.1.10 compares the endmember simplexes estimated by Heylen's method[START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF] (black) (used to build the endmember prior) and by the proposed method (red) to the actual endmembers (green stars). For visualization, the observed pixels and the actual and estimated endmembers have been projected onto the three rst axes provided by the principal component analysis. These gures show that the proposed unmixing procedure provides accurate estimated endmembers for the three images I 1 to I 3 . Due to the absence of pure pixels in the image, the manifold generated by the observed pixels Y is dicult to estimate. This explains the limited performance obtained with Heylen's method. Conversely, the use of the prior(1.45) allows the endmembers m r to depart from the prior estimations mr leading to improved performance.The quality of endmember estimation is also evaluated by the spectral angle mapper (SAM) dened as

Figure 1 .

 1 Figure 1.11: Distributions of the nonlinearity parameters b n for the images I 1 (left), I 2 (middle) and I 3 (right).
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 1 Figure 1.13: Top: real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over Villelongue, France. Bottom: Scene #1 (left) and Scene #2 (right) shown in true colors.
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 1 Figure 1.14: The R = 3 endmembers estimated by N-Findr (blue lines), ULMM (green lines), Heylen's method (black lines) and the UPPNMM (red lines) for the scene #1.

Figure 1 .

 1 Figure 1.15: The R = 4 endmembers estimated by N-Findr (blue lines), ULMM (green lines), Heylen's method (black lines) and the UPPNMM (red lines) for the scene #2.
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 1 Figure 1.16: Abundance maps estimated by the SLMM, the GBM and the UPPNMM algorithms for the scene #1.

Figure 1 .

 1 Figure 1.17: Abundance maps estimated by the SLMM, the GBM and the UPPNMM algorithms for the scene #2.

Fig. 1 .

 1 Fig.1.18 shows the estimated maps of b n for the two considered images. Dierent nonlinear regions can be identied in the scene #1, mainly in the grass-planted region (probably due to endmember variability) and near the ditch (presence of relief ). For the scene #2, nonlinear eects are mainly detected in shadowed pixels.

Fig. 1 .

 1 Fig. 1.19 compares the noise variances estimated by the UPPNMM for the two real images with the noise variances estimated by the HySime algorithm (Bioucas-Dias and Nascimento, 2008). The HySime algorithm assumes additive noise and estimates the noise covariance matrix of the image using multiple regression. Fig. 1.19 rst shows that the two algorithms provides similar noise variance estimates. Moreover, these results motivate the consideration of non i.i.d. noise for hyperspectral image analysis since the noise variances increase for the higher wavelengths for the two images.

Figure 1 .

 1 Figure 1.18: Maps of the nonlinearity parameter b n estimated by the UPPNMM for the real images.

Figure 1 .

 1 Figure 1.19: Noise variances estimated by the UPPNMM (red) and the Hysime algorithm (blue) for the scene #1 (top) and the scene #2 (bottom).
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 2 IntroductionIn this chapter we propose a new kernel-based method for unsupervised nonlinear SU based on a latent variable model. In Chapter 1, we proposed a post-nonlinear model to approximate the nonlinear function relating the endmembers and the abundances to the observed pixels. It has been shown that the unsupervised unmixing problem is dicult because of the large number of unknown parameters to be estimated. As it will be shown later in this chapter, one of the main advantages of the proposed latent variable model is that it does not rely explicitly on the endmember matrix, but on a reduced number of unknown parameters instead. Moreover, conversely to the PPNMM, the nonlinear relation between the abundances and the observations is approximated using a kernel function. Kernel-based methods have been intensively studied in the machine learning community for their ability to model complex nonlinearities.[START_REF] Broadwater | A comparison of kernel functions for intimate mixture models[END_REF];[START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF] propose to replace inner products used for linear SU by kernel functions to generalize the classical FCLS algorithm[START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF], yielding the Kernel-FCLS (K-FCLS) algorithm. The K-FCLS algorithm assumes that the endmembers are known and solves the following constrained problem min an   φ(y n )positivity and sum-to-one constraints for the abundance vectors a n , for n = 1, . . . , N . The nonlinear transformation φ(•) is applied to the L-dimensional observations y n such that the set (φ(y n )) n=1,...,N lies into a subspace whose dimension is (much) larger than L (potentially of innite dimension). Solving (2.1) consists of projecting the transformed observations onto the simplex whose vertices are the transformed endmembers φ(m 1 ), . . . , φ(m R ).

Figure 2 .

 2 Figure 2.1: K-FCLS algorithm principle. The K-FCLS approximates the nonlinear mapping relating the observations to the abundances.

Fig. 2 .

 2 Fig. 2.1 illustrates the K-FCLS method principle for R = 3 endmembers. The K-FCLS algorithm can be interpreted

Figure 2 . 2 :

 22 Figure 2.2: Representation of mixtures composed of R = 3 components distributed according to the LMM (left) and the FM (right), using the rst three principal components provided by the standard PCA.

  are unknown and have to be estimated. The next paragraph presents a new nonlinear mixing model based on LVMs for unsupervised SU.

Figure 2 . 3 :

 23 Figure 2.3: Modeling nonlinear relations between observed pixels and corresponding abundances.

( 2 . 8 )Figure 2 . 4 :

 2824 Figure 2.4: Representation of pixels (blue dots) generated according to the LMM (a) and the FM (b) and admissible endmembers solving the unmixing problem.

Fig. 2 .

 2 4 (left) shows two admissible sets of endmembers (i.e., {m 1 , m 2 , m 3 } and {m * 1 , m * 2 , m * 3 }) which can generate the linearly mixed pixels (blue dots). When estimating the endmembers in the linear case, a simplex of minimum volume embedding the data is expected (i.e., the set {m 1 , m 2 , m 3 } is expected). Equivalently, the estimated abundance vectors are expected to occupy the largest volume in the simplex dened by (2.8). Fig. 2.4 (right) shows a set of pixels distributed according to the FM (Fan et al., 2009) for R = 3 endmembers. The sets {m 1 , m 2 , m 3 } and {m * 1 , m * 2 , m * 3 } (and the two sets of associated abundances) are admissible solutions for the nonlinear SU problem. Similarly to the linear case, the estimated abundance matrix resulting from an unsupervised nonlinear SU strategy is expected to occupy the largest volume in the simplex dened by (2.8) (corresponding to the endmembers m 1 , m 2 andm 3 ). However, assigning an appropriate prior distribution enforcing the abundances to occupy the largest volume for nonlinear

  2.10) where ψ is dened in(2.6), W = [w 1 , . . . , w L ] T is an L×D matrix with w = [w ,1 , . . . , w ,D ] T , and D = R(R+1)/2.Note that from (2.5) and (2.10) the columns of W span the same subspace as the columns of W 0 . Consequently, the columns of W are linear combinations of the spectra of interest, i.e., the columns of W 0 . Note also that when W is full rank, it can be shown that the latent variables are necessarily linear combinations of the abundance vectors of interest (see Appendix D for details). Figs. 2.5 and 2.6 illustrate the mapping from the abundance vectors to the observations that will be used in this study. Note that the linear mapping between the abundances and the latent variables will be explained in details in paragraph 2.5. The D × 1 vectors ψ [x n ] will be denoted as ψ x (n) in the sequel.

Figure 2 . 5 :

 25 Figure 2.5: Nonlinear mapping from the abundances vectors to the observed mixed pixels.

Figure 2 . 6 :

 26 Figure 2.6: Example of mapping decomposition from the abundance vectors to the observed nonlinearly mixed pixels through the latent variables (R = 3).

  (0, δ s 2 ) covers the possible values of the hyperparameter s 2 . The resulting directed acyclic graph (DAG) is depicted in Fig. 2.7.

Figure 2 . 7 :

 27 Figure 2.7: DAG for the parameter priors and hyperpriors (the xed parameters appear in dashed boxes).

Figure 2 . 8 :

 28 Figure 2.8: Top: Representation of the N = 2500 pixels (dots) using the rst two principal components provided by the standard PCA for the three synthetic images I 1 to I 3 . Bottom: Representation using the latent variables estimated by the LL-GPLVM for the three synthetic images I 1 to I 3 .

Figure 2 . 9 :

 29 Figure 2.9: Visualization of the N = 2500 pixels (black dots) of I 1 , I 2 and I 3 using the 3 axis provided by the PCA procedure. The colored surface is the manifold identied by the LL-GPLVM.

Figure 2 .

 2 Figure 2.10: Actual endmembers (red dots) and endmembers estimated by the FCLL-GPLVM (blue lines) and VCA (black line) for the image I * 2 .

Figure 2 .

 2 Figure 2.11: Top: real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over Villelongue, France. Bottom right: the region of interest shown in true colors (right). Bottom left: classication map obtained in[START_REF] Sheeren | Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery[END_REF] for the region of interest. The labeled pixels are classied as Oak tree (red), Chestnut tree (blue), Ash tree (green) and non-planted-tree pixels (white).

Figure 2 .

 2 Figure 2.12: (a): Representation of the N = 2500 pixels (black dots) of the Villelongue image and the reference clusters corresponding to oak trees (red dots) and chestnut trees (blue dots) using the rst three principal components provided by the standard PCA. (b): Representation of the N = 2500 pixels (dots) of the Villelongue data and manifold identied by the LL-GPLVM (colored surface). (c):Representation of the N = 2500 pixels (dots) of the Villelongue data and boundaries of the estimated transformed simplex (blue lines).

Figure 2 .

 2 Figure 2.13: Representation of the N = 2500 latent variables (dots) estimated by the LL-GPLVM and the simplex identied by the scaling step (red lines) for the Villelongue data.

Figure 2 .

 2 Figure 2.14: Top: Abundance maps estimated using the FCLL-GPLVM for the Villelongue image. Bottom: Abundance maps estimated using the VCA algorithm for endmember extraction and the FCLS algorithm for abundance estimation.

Figure 2 .

 2 Figure 2.15: Abundance maps estimated using the FCLL-GPLVM for the Madonna image for R = 2 (bottom) to R = 5 (top).

Figure 2 .

 2 Figure 2.16: Endmembers of the real image estimated by the FCLL-GPLVM for R = 2 (light blue), R = 3 (red), R = 4 (blue) and R = 5 (black).

Figure 2 .

 2 Figure 2.17: Representation of mixed pixels composed of R = 3 endmembers, distributed according to the LMM (red) and the bilinear FM (blue).

2 .

 2 10 Conclusion (in French) Dans ce chapitre, nous avons proposé un nouvel algorithme pour le démélange spectral non-linéaire à l'aide d'un modèle à variables latentes et de processus gaussiens. La procédure de démélange suppose une relation non-linéaire entre l'espace des abondances et celui des observations. Les contraintes physiques qui restreignent les abondances ont également été prises en compte. L'estimation des abondances est décomposée en deux étapes. La première consiste en une étape de réduction de dimension faisant intervenir des variables latentes. Une procédure de mise à l'échelle est alors proposée pour estimer les abondances des composants de l'image pour chaque pixel. Suite à l'estimation des abondances, les spectres des composants purs de l'image sont estimés par régression à base de processus gaussiens. Cette décomposition de la méthode de démélange, constituée de l'estimation des abondances avant l'estimation des signatures spectrales, casse le paradigme habituel du démélange spectral. Les simulations eectuées sur données synthétiques ont illustré la exibilité du modèle proposé pour le démélange linéaire et nonlinéaire. Des résultats prometteurs en termes d'estimation des signatures spectrales ont été obtenus, même s'il y a peu ou pas de pixels purs dans l'image. Il a été montré dans ce chapitre que cette méthode de démélange permet d'obtenir de meilleures performances (en termes d'estimation des abondances et des signatures spectrales) qu'avec des algorithmes récents supposant des modèles de mélange plus spéciques.La procédure d'estimation des abondances présentée dans ce chapitre a été divisée en deux étapes. Les abondances estimées (et par conséquent les spectres estimés) reposent principalement sur l'étape de mise à l'échelle.Il serait intéressant de considérer de l'information a priori plus discriminante pour les variables latentes an de s'aranchir de cette étape de mise à l'échelle. Dans ce cas, les variables latentes seraient directement les abondances. De l'informations spectrale supplémentaire a été incluse dans le LL-GPLVM, en supposant que les pixels spectralement proches ont des variables latentes proches. D'un point de vue strictement bayésien, cette information devrait être incluse dans le modèle d'observation, c'est-à-dire dans la vraisemblance, pour dénir des lois a priori indépendantes des observations. L'étape de réduction de dimension non-linéaire présentée dans ce chapitre repose sur la maximisation d'une loi a posteriori d'intérêt en utilisant une méthode de gradient. Pour éviter d'éventuels problèmes de convergence, il pourrait être intéressant de coupler le modèle bayésien proposé à des méthodes de simulation ecaces telles que des méthodes MCMC.

Figure 2 .

 2 Figure 2.18: Representation de pixels résultant de mélanges de R = 3 composants générés suivant le modèle de mélange linéaire (rouge) et le modèle bilinéaire de Fan (bleu).

  This paragraph recalls the polynomial post-nonlinear mixing model introduced in Chapter 1 for nonlinear unmixing and used in this chapter for nonlinearity detection in hyperspectral images. The associated parameter estimation algorithm is also briey summarized. The statistical test for nonlinearity detection based on the parameter estimators provided by the unmixing procedure is then derived. Constrained Cramér-Rao lower bounds (CCRLBs) of the PPNMM parameter estimators are nally used to approximate the variance of the nonlinearity parameter estimator yielding an approximated test statistics for nonlinearity detection.
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 31 PPNMM model and parameter estimation According to the PPNMM introduced in Chapter 1 the L-spectrum y = [y 1 , . . . , y L ] T of a mixed pixel is dened as a polynomial post-nonlinear transformation of a linear mixture of R endmembers m 1 , . . . , m R contaminated by additive noise y = Ma + b(Ma) (Ma) + e.

2 ( 3 . 5 )

 235 we propose a statistical test for pixel-by-pixel nonlinearity detection based on the distribution of b. Based on the asymptotic properties of the MLE and on the large number of spectral bands available for a hyperspectral image, it makes sense to approximate the distribution of b by the following Gaussian distribution 2 b ∼ N b, s where s 2 s 2 (a, b, σ 2 ) is the variance of the estimator b. It is important to note that the variance of b is a function of the parameters a, b and σ 2 . Obviously, when the observation vector y results from the LMM (i.e., b = 0), then b ∼ N 0, 2 (a, 0, σ 2 ). This interesting property can be used for testing the mixing model appropriate to the observation vector. The resulting nonlinearity detection problem can be considered as a two hypothesis testing problem, where the hypotheses are dened as    H 0 : y is distributed according to the LMM H 1 : y is distributed according to the PPNMM. (3.7) Hypothesis H 0 is characterized by b = 0 whereas nonlinear models (H 1 ) correspond to b = 0. As a consequence, the two hypotheses in (3.7) can be rewritten as

  threshold. Obviously, p( b|H 1 ) is maximized for b = b. Straightforward computations lead to the following test strategy

  in order to build ŝ2 0 , we propose to use the constrained Cramér-Rao lower bound (CRLB) of θ = [a T , b, σ 2 ] T under hypothesis H 0 (i.e., b = 0) as explained in the next paragraph.

Figure 3 . 1 :

 31 Figure 3.1: MSEs of the MLE (blue crosses) for the nonlinearity parameter b versus L compared with the CCRLBs (black lines).

Figure 3 . 2 :

 32 Figure 3.2: MSEs of the MLE (blue crosses) for the nonlinearity parameter b versus σ 2 compared with the CCRLBs (black lines).

Fig. 3 .

 3 Fig. 3.1 compares the MSEs of the subgradient-based estimator 5 , estimated with N = 20000 noise realizations,

Fig. 3 .Figure 3 . 5 :

 335 Fig. 3.5 compares P FA , P emp FA and P appr FA as a function of the threshold η for N = 20000 noisy realizations of the mixture M 0 . These results rst show that the theoretical and empirical PFAs coincide. Moreover, the CCRLB approximation proposed for the nal test does not modify the performance in term of PFA. Fig. 3.6 shows the test performance in term of receiver operating characteristics (ROCs) (Kay, 1998, p. 74-75) for a = [0.3, 0.6, 0.1] T and σ 2 = 3 × 10 -3 (SNR = L -1 σ -2 g b (a) 2 15dB). Four dierent values of b have been assumed under hypothesis H 1 , i.e., b = 5σ 2 , b = 10σ 2 , b = 15σ 2 and b = 20σ 2 . The theoretical ROCs are compared with the empirical and approximated ROCs, where the probabilities of detection are dened as

Figure 3 . 6 :

 36 Figure 3.6: Actual (lines), empirical (plus) and approximated (circles) receiver operating characteristics (ROCs) for b = 5σ 2 (blue), b = 10σ 2 (red), b = 15σ 2 (green) and b = 20σ 2 (black).

Figure 3 . 7 :

 37 Figure 3.7: Actual values of b (left) and detection maps for P FA = 0.01 (middle) and P FA = 0.05 (right) using the subgradient-based algorithm. Black (resp. white) pixels correspond to pixels detected as linearly (resp. nonlinearly) mixed.

Figure 3 . 8 :

 38 Figure 3.8: Left: Actual location of the four sub-images S 1 (LMM), S 2 (FM), S 3 (GBM) and S 4 (PPNMM).Right: Associated detection map using the subgradient-based algorithm. Black (resp. white) pixels correspond to pixels detected as linearly (resp. nonlinearly) mixed.

Fig.

  Fig. 3.8 (right) shows the detection maps obtained with the GLRT for P FA = 0.05. From this gure, it can be seen

Figure 3 . 9 :

 39 Figure3.9: Pixels detected as linear (red crosses) and nonlinear (blue dots) for the four sub-images S 1 (LMM), S 2 (FM), S 3 (GBM) and S 4 (PPNMM). The simplex corresponding to the noise-free case LMM is depicted in black lines.

Figure 3 .

 3 Figure 3.11: Fourteen abundance maps estimated with the subgradient algorithm for the Cuprite scene.

Figure 3 .

 3 Figure 3.12: Fourteen abundance maps estimated with the FCLS algorithm for the Cuprite scene.
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 23 properties of the noise e, we obtain E[y|H 0 ] = Ma ∈ H whereas E[y|H 1 ] = Ma + µ / ∈ H. As a consequence, it makes sense to consider the squared Euclidean distance δ 2 (y) = min z∈H y .35) between the observed pixel y and the hyperplane H to decide which hypothesis (H 0 or H 1 ) is true. The next paragraph studies the distribution of δ 2 (y) under the two hypotheses H 0 and H 1 .

3. 4 . 2

 42 Distributions of δ 2 (y) under hypotheses H 0 and H 1

Figure 3 .

 3 Figure 3.14: Actual (solid lines) and empirical (diamonds) receiver operating characteristics (ROCs) of the rst test (known noise variance) for ν = 0.4 (blue), ν = 0.5 (red), ν = 0.6 (green) and ν = 0.7 (black).

Figure 3 .

 3 Figure 3.15: Theoretical ROCs of the test (3.46) (unknown noise variance) for σ2 = 0.95σ 2 (left), σ2 = σ 2 (middle) and σ2 = 1.05σ 2 (right). The point corresponding with P F A = 0.1 is the intersection of the black lines.

  Fig.3.16 compares the empirical ROCs constructed from the number of pixels detected as linear and nonlinear for the dierent tests (known and unknown noise variance). The empirical ROCs for the test studied in paragraph 3.3 are also displayed in these gures. Fig.3.16 (top left) shows that the three detectors are able to respect the PFA constraint. The three other subgures of Fig.3.16 display the ROCs for the three dierent values of θ. For small values of θ, the norm of the nonlinearity projection onto the vector µ 1 is large. Hence, the nonlinearity detector based on the PPNMM studied in paragraph 3.3 outperforms the tests studied in this paragraph (top right subgure). However, the performance of test in paragraph 3.3 degrades as the portion of the nonlinearity that is orthogonal to µ 1 becomes predominant (bottom subgures). The two proposed tests (known and unknown noise variance) perform similarly.

Figure 3 .

 3 Figure 3.16: Empirical ROCs of the tests (3.42) (red lines), (3.46) (blue crosses) and the test studied in paragraph 3.3 (black lines) for S 1 to S 4 .

(

  resp. linearly) mixed. The next Chapter introduces a new nonlinear mixing model for joint supervised unmixing and nonlinearity detection based on spatial structures consideration.

4. 5 . 1

 51 Prior distribution for the nonlinearity matrix Φ As mentioned above, the mixing model (4.1) reduces to the LMM for φ n = 0 L . For nonlinearity detection, it makes sense to consider a pixel class (referred to as class C 0 ) corresponding to linearly mixed pixels. The resulting prior distribution for φ n conditioned upon z n = 0 is given by f (φ n |z n = 0) = L =1 δ(φ ,n ).

  seen that bilinear models and more generally polynomial models (i.e., model involving polynomials nonlinearities with respect to the endmembers) are particularly well adapted to model scattering eects, mainly observed in vegetation and urban areas. Consequently, it makes sense to assume that the nonlinearities φ n depend on the endmember matrix M. Nonlinear eects can vary, depending on the relief of the scene, the underlying components involved in the mixtures and the observation conditions to name a few factors. This makes the choice of a single informative prior distribution challenging. From a classication point of view, it is interesting to identify regions or classes where similar nonlinearities occur. For these reasons, we propose to divide nonlinearly mixed pixels into K -1 classes and to assign dierent priors for the nonlinearity vectors belonging to the dierent classes.

  Fig. 4.1 shows two examples of neighborhood structures. The eight pixel structure (or 2-order neighborhood) will be considered in the rest of the chapter.

Figure 4 .

 4 Figure 4.1: 4-pixel (left) and 8-pixel (right) neighborhood structures. The considered pixel appear as a black circle whereas its neighbors are depicted in white.

6 Figure 4 . 2 :

 642 Figure 4.2: DAG for the parameter and hyperparameter priors (the xed parameters appear in boxes).

4. 7

 7 Simulations for synthetic data 4.7.1 First scenario: RCA vs. linear unmixing The performance of the proposed joint nonlinear SU and nonlinearity detection algorithm is rst evaluated by unmixing a synthetic image of 60 × 60 pixels generated according to the model (4.1). The R = 3 endmembers contained in these images (i.e., green grass, olive green paint and galvanized steel metal) have L = 207 dierent spectral bands and have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems Inc.), 2003) . The number of classes has been set to K = 4, i.e, K -1 = 3 classes of nonlinearly mixed pixels. The hyperparameters s 2 k k=1,...,3 have been xed as shown in Table4.2, which represents three possible levels of nonlinearity. For each class, the nonlinear terms have been generated according to(4.11). The label map generated with β = 1.2 is shown in Fig.4.3 (left). The abundance vectors a n , n = 1, . . . , 3600 have been randomly generated according to a uniform distribution over the admissible set dened by the positivity and sum-to-one constraints. The noise variance (depicted in Fig.4.4 as a function of the spectral bands) have been arbitrarily xed using σ 2 = 10 -4 2 -sin π L -1 .

  non-i.i.d. (colored) noise. The joint nonlinear SU and nonlinearity detection algorithm, denoted as RCA-SU, has been applied to this data set with N MC = 3000 and N bi = 1000. Fig.4.3 (right) shows that the estimated label map (marginal MAP estimates) is in agreement with the actual label map. Moreover, the confusion matrix depicted in Table

  s 2 k and ŝ2 k are the actual and estimated dispersion parameters for the kth class. The estimated noise variances, depicted in Fig. 4.4 are also in good agreement with the actual values of the variances. The

Figure 4 . 3 :

 43 Figure 4.3: Actual (left) and estimated (right) classication maps of the synthetic image associated with the rst scenario.

Figure 4 . 4 :

 44 Figure 4.4: Actual noise variances (red) and variances estimated by the RCA-SU algorithm (blue) for the synthetic image associated with the rst scenario.

( 4 .φ n 2 for n = 1 ,

 421 29)where n ∈ I 1 and the nonlinearity parameters {γ i,j } have been uniformly drawn in[0.5, 1]. The class C 2 is composed of pixels generated according to the PPNMM introduced in Chapter 1 as follows n m r + e n(4.30) where n ∈ I 2 and b = 0.5 for all pixels in class C 2 . Finally, the class C 3 has been generated according to(4.1) with s 2 = 0.1. For the four classes, the abundance vectors have been randomly generated according to a uniform distribution over the admissible set dened by the positivity and sum-to-one constraints. All pixels have been corrupted by an additive i.i.d Gaussian noise of variance σ 2 = 10 -4 , corresponding to an average signal-to-noise ratio SNR 30dB. The noise is assumed to be i.i.d. for a fair comparison with SU algorithms assuming i.i.d.Gaussian noise. Fig.4.5 (b) shows the log-energy of the nonlinearity parameters for each pixel of the image, i.e., log . . . , 3600. This gure shows that each class corresponds to a dierent level of nonlinearity.

  Detection map (PPNMM). (d) Detection map (RCA-SU).

Figure 4 . 5 :

 45 Figure 4.5: Nonlinearity detection for the scenario #2.

4. 8

 8 Simulations for a real hyperspectral image 4.8.1 Data setThe real image considered in this section is the Villelongue image considered in Chapters 1 and 2. A sub-image (of size 41 × 29 pixels) is chosen here to evaluate the proposed unmixing procedure and is depicted in Fig.4.6. The scene is composed mainly of roof, road and grass pixels, resulting in R = 3 endmembers. The spectral signatures of these components have been extracted from the data using the N-FINDR algorithm[START_REF] Winter | Fast autonomous spectral end-member determination in hyperspectral data[END_REF] and are depicted in Fig.4.7.

Figure 4 . 6 :

 46 Figure 4.6: Real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over Villelongue, France (left) and sub-image of interest (right).

Figure 4 . 7 :

 47 Figure 4.7: The R = 3 endmembers estimated by N-Findr for the real Madonna sub-image.

Fig. 4 .

 4 Fig. 4.10 (b) shows the detection map (map of z n for n = 1, . . . , N ) provided by the proposed RCA-SU detector for the real image considered. Due to the consideration of spatial structures, the proposed detector provides homogeneous regions. Similar structures can be identied in this detection map and the true color image of the scene (Fig. 4.10 (a)). The estimated class C 0 (black pixels) associated with linearly mixed pixels is mainly located in the roof region. The class C 1 (dark grey pixels) can be related to regions where the main component in the pixels are grass or road. Mixed pixels composed of grass and road are gathered in class C 2 (light grey pixels). Finally, shadowed pixels located between the roof and the road are associated with the last class C 3 (white pixels). Moreover, the RCA-SU can identify three levels of nonlinearity, corresponding to [ŝ 2 1 , ŝ2 2 , ŝ2 3 ] = [0.03, 0.50, 29.5]. The most inuent nonlinearity class is class C 3 , where shadowing eects occurs. Mixed pixels of class C 2 contain weaker nonlinearities. Finally, the remaining pixels of class C 1 are associated with the weakest nonlinearities. The nonlinearities of this class

Figure 4 . 8 :

 48 Figure 4.8: The R = 3 abundance maps estimated by the FCLS, PPNMM-based, K-Hype, and RCA-SU algorithms for the Madonna real image (white pixels correspond to large abundances, contrary to black pixels).

Figure 4 . 9 :

 49 Figure 4.9: Noise variances estimated by the RCA-SU (red) and the Hysime algorithm (blue) for the real Madonna image.

Figure 4 .

 4 Figure 4.10: (a) True color image of the scene of interest. (b) Nonlinearity detection map obtained with the RCA-SU detector for the Madonna image.

  French)L'objectif de cette thèse était d'étudier de nouveaux modèles de mélange non-linéaires et de proposer des algorithmes de démélange associés pour l'analyse d'images hyperspectrales. Le problème de démélange spectral consiste à extraire d'une image hyperspectrale, les spectres des composants macroscopiques purs présents dans l'image, et à idener leurs interactions ou mélanges. Pour réduire la complexité du problème, la plupart des travaux de la littérature s'appuient sur un modèle de mélange linéaire, souvent considéré comme une première approximation des mélanges réels. Cependant, cette approximation peut ne pas être appropriée pour décrire certaines scènes qui nécessitent d'utiliser des modèles de mélange plus complexes. Dénir et/ou choisir un modèle de mélange non-linéaire approprié pour le démélange spectral est un problème dicile en raison de la diversité des eets nonlinéaires. De plus, l'introduction de termes non-linéaires dans le modèle d'observation complique la mise en place de procédures de démélange ecaces reposant sur des modèles non-linéaires. Considérer des eets non-linéaires dans les images hyperspectrales exige habituellement des algorithmes de démélange plus complexes que ceux basés sur un modèle linéaire. Étant donné que le modèle de mélange linéaire est souvent susant pour modéliser avec précision la plupart des mélanges réels, il est aussi intéressant de détecter les pixels ou les régions où le modèle linéaire peut sure.4.13 ConclusionDans le premier chapitre, nous avons étudié un modèle de mélange post-non-linéaire (PNMM) pour résoudre le problème de démélange non-linéaire. Le modèle proposé (PPNMM) étudié dans ce chapitre permet de considérer des non-linéarités diérentes pour les diérents pixels de l'image. La non-linéarité de chaque pixel est caractérisée par un paramètre unique qui est égal à zéro lorsque le pixel résulte d'un mélange linéaire. Tout d'abord, des méthodes de démélange supervisé basées sur le PPNMM ont été présentées. Le premier algorithme proposé est un algorithme bayésien hiérarchique couplée avec des méthodes MCMC. Deux méthodes d'optimisation alternatives ont également été introduites an de réduire le coût calculatoire de l'échantillonneur de Gibbs. La souplesse du PPNMM et les performances des trois méthodes ont été évaluées à l'aide de simulations eectuées sur données synthétiques et réelles. La deuxième partie de ce chapitre a présenté un nouveau modèle bayésien pour résoudre le problème de démélange non-supervisé. Des lois a priori appropriées ont été également attribuées aux signatures spectrales inconnues et à échantillonner. L'estimation conjointe des abondances et de ces signatures spectrales implique un grand nombre de paramètres à échantillonner. Pour améliorer les propriétés de mélange de l'échantillonneur, des méthodes de Monte Carlo à dynamiques hamiltoniennes contraintes ont été étudiées.Le second chapitre de ce manuscrit s'est focalisé sur une méthode à noyaux basée sur une réduction de dimension non-linéaire utilisant un modèle à variables latentes et des processus gaussiens (GPLVM). Les GPLVMs, qui ont suscité un intérêt croissant dans la communauté de l'apprentissage automatique ont la capacité d'approcher à grand nombre d'applications non-linéaires d'un espace de faible dimension (espace latent) à un espace d'observation de dimension supérieure grâce à l'utilisation de noyaux, ce qui les rend particulièrement bien adaptés pour l'analyse d'images hyperspectrales et donc pour le démélange spectral. Dans ce chapitre, nous avons proposé d'utiliser une forme particulière de noyau basé sur des modèles bilinéaires existants, ce qui a permis d'obtenir un algorithme de démélange bien adapté lorsque le modèle de mélange sous-jacent est bilinéaire. L'algorithme de démélange proposée rompt le paradigme habituel du démélange spectral en estimant tout d'abord les abondances puis en prédisant les spectres de composants purs à l'aide de processus gaussiens. Les simulations eectuées sur des images synthétiques et réelles ont illustré la exibilité du modèle proposé pour le démélange linéaire et non-linéaire et ont donné des résultats prometteurs, même en l'absence de pixels purs dans l'image observée.
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 14 noté par[START_REF] Gader | A sparsity promoting bilinear unmixing model[END_REF], on peut s'attendre à ce que les paramètres β i,j,n soient faibles (ou même nuls). Par conséquent , il serait intéressant de promouvoir les faibles valeurs (voire la parcimonie) pour ces paramètres. Dans le cadre bayésien, des lois a priori favorisant la parcimonie (par exemple, des lois Laplace, Bernoulli-gaussienne ou Bernoulli-Laplace) pourraient être utilisées pour estimer les paramètres de non-linéarité.Même si la considération de termes non-linéaires augmente la complexité du problème de démélange, les récents progrès dans le domaine des méthodes de simulation (y compris les méthodes de Monte Carlo à dynamiques hamiltoniennes) pour des problèmes de grande dimension sont prometteurs. Leur application à l'analyse d'images hyperspectrales est une perspective intéressante.Le deuxième chapitre de ce manuscrit a porté sur une technique de réduction de dimension à base de noyau étudiée à l'origine par la communauté de l'apprentissage automatique. Un noyau particulier et adapté aux non-linéarités bilinéaires a été utilisé et a fourni des résultats encourageants. De plus, le quatrième chapitre de ce manuscrit s'est focalisé sur un modèle à noyau pour eectuer conjointement le démélange et la détection de non-linéarités.Les méthodes à noyaux pour le démélange spectral ont récemment reçu un intérêt croissant,[START_REF] Broadwater | A comparison of kernel functions for intimate mixture models[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF] motivé par leur grande exibilité. Toutefois, des eorts supplémentaires doivent être réalisés pour proposer des noyaux plus généraux mais toujours adaptés à l'imagerie hyperspectrale. Dans le quatrième chapitre de ce manuscrit, la non-linéarité de chaque pixel était caractérisée par une fonction de noyau qui ne dépendait que de la matrice des signatures spectrales. Toutefois, il est raisonnable de penser que la nonlinéarité peut également dépendre de la composition de pixel, c'est-à-dire, de ses abondances. La modélisation des non-linéarités en utilisant les signatures spectrales pures et les abondances, comme dans la méthode récemment proposé parChen et al. (2013a), est une perspective intéressante.Dans les deux derniers chapitres du manuscrit, les signatures spectrales des composants de l'image étaient supposées connues pour pourvoir eectuer la détection de non-linéarités et le démélange non-linéaire. Toutefois, si ces spectres sont inconnus, ils doivent être extraits des données, ce qui peut être dicile lorsque des pixels résultant de mélanges non-linéaires sont présents dans la scène. Il serait intéressant d'appliquer des détecteurs de non-linéarités avant l'extraction de ces signatures ou de proposer des méthodes réalisant conjointement l'estimation de ces spectres et la détection de non-linéarités. Par exemple, il serait intéressant d'étendre le modèle bayésien basé sur RCA proposé au chapitre 4 pour le cas où les signatures spectrales pures sont incluses dans la procédure d'estimation.Dans ce manuscrit, nous avons examiné des modèles de mélange linéaires et non-linéaires dont les paramètres étaient estimés par inférence bayésienne. De plus, la dimension des vecteurs de paramètres inconnus était connue et leurs ensembles de dénition étaient uniques. En particulier, le nombre de composants R était xé a priori. Dans le modèle inspiré de RCA, le nombre de classes était également xé. Si la dimension du vecteur de paramètres inconnu est inconnue, une solution simple consiste à exécuter les algorithmes proposés avec diérents nombres de composants et/ou de classes. Cependant, le coût calculatoire de cette approche peut être prohibitif lorsque le nombre de paramètres à tester est important. Une approche plus élégante consiste à inclure la dimension du vecteur de paramètres inconnu dans la procédure d'estimation en utilisant le cadre bayésien. L'échantillonnage de la loi a posteriori qui en résulte peut être réalisé en utilisant des MCMC à sauts réversibles (RJ-MCMC) Green(1995). Les méthodes de type RJ-MCMC peuvent être utilisées pour sélectionner l'ordre d'un modèle, mais aussi pour échantillonner des paramètres qui peuvent vivre dans des ensembles disjoints, ce qui est particulièrement intéressant pour l'analyse d'images hyperspectrales. Par exemple, des lois a priori dénies sur un ensemble de domaines (disjoints) peuvent être utilisées pour les signatures spectrales et/ou les abondances à estimer. Un exemple d'application pourrait être le problème de démélange semi-supervisé d'une image hyperspectrale qui se compose de zones urbaines et boisées. Le problème est semi-supervisé dans le sens où les composants présents dans l'image appartiennent à une bibliothèque spectrale qui contient les spectres des deux zones (urbaines et boisées). Au lieu de chercher les signatures spectrales actives dans l'ensemble de la bibliothèque, il serait intéressant d'identier les zones urbaines et boisées de la scène et de rechercher les signatures spectrales dans des sous-ensembles de la bibliothèque. Pour ce problème, des lois a priori pour les signatures spectrales inconnues pourraient être dénies sur diérents sous-ensembles de la bibliothèque et des méthodes de type RJ-MCMC pourraient être utilisées pour échantillonner la loi a posteriori associée au modèle bayésien.Cet exemple est fortement liée au problème de démélange linéaire parcimonieux qui a suscité un fort intérêt au cours des dernières années dans la communauté hyperspectrale[START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. Ce problème consiste à résoudre l'étape d'inversion (estimation des abondances) à partir d'une large bibliothèque spectrale en forçant les abondances à être parcimonieuses. Des algorithmes d'optimisation sont souvent utilisés pour résoudre ce problème et la pénalisation par la norme 1 est souvent préférée (relaxation par norme 1 ) à la norme 0 qui est plus dicile à manipuler. Inversement, le cadre bayésien est susamment souple pour gérer des pénalisations utilisant la norme 0 , en utilisant des méthodes de type RJ-MCMC par exemple. De plus, ce cadre permet également de considérer des parcimonies structurées, comme dans[START_REF] Dobigeon | Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images[END_REF][START_REF] Iordache | MUSIC-CSR: hyperspectral unmixing via multiple signal classication and collaborative sparse regression[END_REF]. Proposer les algorithmes bayésien de démélange parcimonieux est une perspective très intéressante. Toutefois, des échantillonneurs ecaces doivent être proposés pour gérer la complexité induite par la prise en compte de parcimonies.Enn, l'étude de la variabilité de signatures spectrales pour le démélange est également intéressante. Dans ce manuscrit, les signatures spectrales des matériaux de la scène étaient supposées être uniques. Cependant, la variabilité spectrale de ces signatures ne peut pas être négligée dans certaines images. Résoudre le problème de démélange dans de telles situations est dicile et ce cas devrait être approfondi dans le futur. where b * (c) = b a 1 , . . . , a R-1 , = (Mc + m R ) (Mc + m R ). Using the following partial derivatives with respect to c r ∂h(c) ∂c r = 2m r Mc + m R ∂(y -Mcm R ) ∂c r = -m r ∂(y -Mcm R ) T h(c) ∂c r = -m T r h(c) + 2(y -Ma) T m r Mc + m R ∂h(c) T h(c) ∂c r = 2h(c) T ∂h(c) ∂c r and the usual dierentiation rules, we obtain (y -Mcm R ) T h(c) ∂c r h(c) T h(c) -(y -Mcm R ) T h(c) ∂h(c) T h(c) ∂c r .Finally, the partial derivative of the estimated spectrum y * (c) with respect to c r is

  = A T + 2diag (b) A T m ,: the elements of ψ [a] when a ∈ P and F a the space spanned by the elements of f a , i.e., F a = span (f a ) .

(D. 7 ) 1 r=1 δ r ≤ 2 .

 712 We rst want to show that dim(F a ) = D, i.e., that f a is a basis of F a . Note that it is straightforward to see thatdim(F a ) ≤ card(f a ) = D. {1, . . . R -1} , δ r ∈ {0, 1, 2, 3, 4} , 0 ≤ basis of the (R -1)-variate polynomials (in a \R ) such that R-1 r=1 δ r ≤ 4.In other words, the elements of g * a are linearly independent. In particular, the elements of {1, . . . R -1} , δ r ∈ {0, 1, 2} , 0 ≤ , and thus form a basis of the subspace G a = span (g a ) which consists of the (R -1)-variate polynomials such that R-It can be easily shown that dim(G a ) = D.
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 2 a , ∀r ∈ {1, . . . , R -1} . a , ∀i, j ∈ {1, . . . R -1} , i = j. =r a 0 i ∈ G a = a r -a r 1 -=r a r a i ∈ F a , ∀r ∈ {1, . . . , R -1} . (D.13) Finally, we obtain g a ⊂ F a , i.e., G a ⊂ F a and D = dim(G a ) ≤ dim(F a ) ≤ D (D.14) which leads to dim(F a ) = D and shows that f a is a basis of F a . Since rank(W 0 ) = D and dim(F a ) = D, we obtain dim(F y ) = D where F y = span (y) D.2 Existence and rank of WThe existence of the matrix W in (D.5) is straightforward.For W = W 0 , x = I R a is a solution of W 0 ψ [a] = Wψ [x]. In the previous paragraph, we have shown that dim(F y ) = D if rank(W 0 ) = D since dim(F a ) = D. Let W be an L × D matrix such that ∀a ∈ P, ∃x ∈ P, W 0 ψ [a] = Wψ [x] . (D.15)Using the results of the previous paragraph, we obtain dim(F x ) = D, where F x = span (f x ) and , . . . R} , δ r ∈ {0, 1} , 1 ≤ dim(F y ) = D, we obtain rank(W) = rank(W 0 ) = D and F y = span(W) = span(W 0 ).D.3 Relation between a and xThe columns of W 0 and W span the same subspace (F y ). Consequently, there exists an D × D invertible matrix T ∈ GL D (R) such that W 0 = WT, i.e.,∃T ∈ GLD (R)∀a ∈ P, ∃x ∈ P, ψ [a] = T -1 ψ [x] ,(D.17) which means that F a = F x . The aim of this paragraph is to nd all the basis of F a that can be expressed asConsider a ∈ P and x = [x 1 , . . . , x R ] ∈ P such that span(ψ x ) = F a . For r = 1, . . . , (R -1), x r ∈ F a = G a .Consequently, x r can be decomposed onto the basis g a as follows , . . . , D, ∀i = 1, . . . , (R -1), 0 ≤ δ(d) i,d ≤ 2 ∀d = 1, . . . , D, 0 ≤ D.20)and {γ r,d } d=1,...,D are the coecients of the decomposition of x r onto g a . Moreover, for r, r (r = r ) f V latents is a basis of F a , then x r x r ∈ F a , i.e., γ (r,r ),d d=1,...,D are the coecients of the decomposition of x r x r onto g a .Assume there exists r 0 ∈ 1, . . . , (R -1) and d 0 ∈ 1, . . . , D such that
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 1 ,i + γ r,0 )a i + γ r,0 a R = v T r a r = 1, . . . , (R -1)(D.24)where v r = [γ r,1 + γ r,0 , . . . , γ r,R-1 + γ r,0 , γ r,0 ] T is an (R -1) × 1 vector. Straightforward computations lead tox = Va, = [v 1 , . . . , v R-1 ] T is an (R -1) × R matrix.D.4 Scenario where rank(W 0 ) < DIn the previous paragraphs, we have shown that if rank(W 0 ) = D, then F y = span(W) = span(W 0 ). Conversely, if rank(W 0 ) < D, then F y = span(W 0 ) ⊂ span(W), i.e., there still exists a matrix T such that W 0 = WT but the matrix T is not necessarily invertible. In that case, the latent variables are not necessarily linear transformations Appendix F Partial derivatives of the log-posterior distribution of the LL-GPLVMThe joint log-posterior distribution is given by (up to an additive constant)L p (U, X \R , σ 2 , s 2 ) = L -γ 2 tr (I N -Λ LLE )X T \R B ((I N -Λ LLE )X T \R B T on the admissible set for U, X \R , σ 2 , s 2 , where B = [I R-1 , 1 R-1 ] is an (R -1) × R matrix and the log-likelihood L is ȲT Ȳ)with Ȳ = Y -PC T and Σ = s 2 CC T + σ 2 I N . The partial derivatives of L with respect to the covariance matrix Σ is given by
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  The last chapter of this manuscript presents a nonlinear mixing model for joint hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reectances are linear combinations of known pure spectral components corrupted by an additional nonlinear term, aecting the endmembers and contaminated by an additive noise. A Markov random eld is considered for nonlinearity detection based on the spatial structure of the nonlinear terms. The observed image is segmented into regions where nonlinear terms, if present, share similar statistical properties. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint nonlinear unmixing and nonlinearity detection algorithm. The performance of the proposed strategy is rst evaluated on synthetic data. Simulations conducted with real data show the accuracy of the proposed unmixing and nonlinearity detection strategy for the analysis of hyperspectral images.

  Dans une deuxième étape, nous proposons trois procédures de démélange supervisé basées sur le PPNMM, c'està-dire lorsque les signatures spectrales des composants de l'image sont connues. La première approche se compose d'un modèle bayésien couplé avec des méthodes de simulations de Monte Carlo par chaines de Markov (MCMC). section denes the PPNMM used for hyperspectral image SU. Consider a set of N pixels observed at L dierent spectral bands. The spectrum of the nth mixed pixel y n = [y 1,n , . . . , y L,n ] T is dened as a nonlinear transformation g n of a linear mixture of R spectra m r contaminated by additive noise

	Publications related to the PhD thesis 1.2 Introduction
	International journal papers In this chapter, we study a particular nonlinear mixing model for SU referred to as polynomial post-nonlinear mixing
	Deux méthodes d'optimisation basées sur le PPNMM sont ensuite proposées. Ces méthodes permettent d'obtenir model (PPNMM). First, we introduce the PPNMM and compare it to other existing nonlinear models. In a second
	step, we derive three PPNMM-based unmixing procedures for supervised unmixing, i.e., when the endmembers
	des résultats similaires à ceux obtenus à l'aide de l'algorithme bayésien (avec un coût de calcul réduit), ce qui les rend très avantageuses pour le démélange d'images hyperspectrales de grandes tailles. Les trois méthodes de démélange are known. The rst approach consists of a Bayesian model coupled with Markov Chain Monte Carlo (MCMC) Chapter 1 methods. Two PPNMM-based optimization methods are then proposed to reduce the computation complexity of
	supervisé sont ensuite comparées à des algorithmes de démélange linéaires et non-linéaires de la littérature par des
	the sampling procedure associated with the Bayesian algorithm. These optimization methods provide results similar
	simulations sur données synthétiques et réelles. Ces simulations permettent également d'évaluer la pertinence du
	PPNMM pour le démélange d'images hyperspectrales. Dans de nombreuses applications pratiques, les signatures spectrales des composants purs présents dans l'image to the Bayesian algorithm with a reduced computational cost, making them very attractive for hyperspectral image Polynomial post-nonlinear mixing model unmixing. In many practical applications, the endmembers present in the observed image are unknown. The last
	part of this chapter presents a fully unsupervised Bayesian unmixing procedure based on the PPNMM. Due to
	observée ne sont pas connues. La dernière partie de ce chapitre présente une procédure de démélange spectral bayésien totalement non-supervisée basée sur le PPNMM. Seul le nombre de composants purs de l'image est supposé the large number of parameters involved in the unsupervised SU problem, an ecient sampling procedure based for spectral unmixing on Hamiltonian dynamics is proposed, leading to a Hamiltonian Monte Carlo (HMC) simulation method. Results
	connu. En raison du grand nombre de paramètres intervenant dans le problème de démélange non-supervisé, une
	obtained on synthetic and real images illustrate the exibility and accuracy of the PPNMM for supervised and
	méthode d'échantillonnage ecace basée sur des méthodes de Monte Carlo à dynamiques hamiltoniennes (HMC
	pour Hamiltonian Monte Carlo) est proposée pour estimer conjointement les signatures spectrales et les abondances unsupervised SU and the performance of the corresponding estimation algorithms.
	de chaque pixel. Les performances de ce dernier algorithme de démélange sont évaluées sur données synthétiques
	et réelles, de manière similaire à l'étude menée dans le cas supervisé. En particulier, ces simulations montrent les
	avantages de l'estimation conjointe des signatures spectrales et des abondances de chaque pixel. 1.3 Polynomial Post-Nonlinear Mixing Model
	similar statistical properties. The resulting algorithm provides accurate abundance estimates when the actual
	mixtures are linear and nonlinear and it thus generalizes the binary nonlinearity detectors proposed in the
	third chapter by considering dierent levels (classes) of nonlinearities.

• Fourth chapter. A new nonlinear mixing model for joint hyperspectral image unmixing and nonlinearity detection is proposed. The observed image is segmented into regions where nonlinear terms, if present, share This chapter has been adapted from the journal papers Altmann et al. (2012) (published) and Altmann et al. (2013c) (submitted).
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  . The abundances are then updated component by component. Here again, the procedure is repeated until convergence. The nal algorithm is summarized in Algo. 1.3. The next section presents the performance of the proposed algorithms on synthetic and real hyperspectral images.

	1.4.3 Simulations
	Synthetic data
	The performance of the proposed nonlinear SU algorithms is rst evaluated by unmixing 4 synthetic images of size
	50 × 50 pixels. The R = 3 endmembers contained in these images have been extracted from the spectral libraries
	provided with the ENVI software (RSI (Research Systems Inc.), 2003) (i.e., green grass, olive green paint and
	galvanized steel metal). The rst synthetic image I 1 has been generated using the standard linear mixing model
	(LMM). A second image I 2 has been generated according to the bilinear mixing model introduced by Fan et al.
	(2009), referred to as Fan model (FM). A third image I 3 has been generated according to the generalized bilinear
	mixing model (GBM) presented by Halimi et al. (2011a), whereas a fourth image I 4 has been generated according to
	the PPNMM. For each image, the abundance vectors a n , p = 1, . . . , 2500 have been randomly generated according
	to a uniform distribution over the admissible set dened by the positivity and sum-to-one constraints. All images
	have been corrupted by an additive white Gaussian noise of variance σ 2 = 2.8 × 10 -3 , corresponding to a signal-
	to-noise ratio

Table 1 .

 1 1: Abundance RNMSEs (×10 -2 ): synthetic images .

	I1	I2	I3	I4
	(LMM) (FM) (GBM) (PPNMM)

Table 1 .

 1 2: AREs (×10 -2 ): synthetic images .

	I1	I2	I3	I4
	(LMM) (FM) (GBM) (PPNMM)

Table 1 .

 1 

		Average RNMSEs(×10 -2 )		AREs(×10 -2 )	
		Bayesian			Bayesian		
				Taylor	Gradient			Taylor	Gradient
		MMSE	MAP			MMSE	MAP		
	R = 3	7.50	10.42	9.43	9.41	4.18	4.22	4.17	4.17
	R = 6	7.53	11.37 12.65	12.16	4.22	4.24	4.20	4.20
	R = 9	5.69	9.56	11.90	11.41	4.27	4.29	4.24	4.24
	R = 12	4.72	8.08	11.16	10.58	4.18	4.19	4.13	4.13

4: Unmixing performance of the supervised PPNMM-based algorithms for dierent R.
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	VCA	Heylen
	Cuprite Moett Cuprite Moett

5: AREs (×10 -2 ): Cuprite and Moett images

Table 1 .

 1 6: Abundance RNMSEs (×10 -2 ): synthetic images.

			I1	I2	I3
			(LMM) (PPNMM) (GBM)
	LMM	SLMM ULMM	3.78 0.66	13.21 10.87	6.83 4.21
	PPNMM	SPPNMM UPPNMM	4.18 0.37	6.04 0.81	4.13 1.38
	GBM	4.18	11.15	5.02

Table 1 .
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			7: SAMs (×10 -2 ): synthetic images.
			N-Findr ULMM Heylen UPPNMM
		m1	5.68	0.95	6.42	0.27
	I1	m2	5.85	0.32	7.46	0.36
		m3	3.31	0.30	5.26	0.27
		m1	9.27	9.68	6.71	0.59
	I2	m2	8.58	8.67	11.80	0.38
		m3	4.47	6.34	4.98	0.26
		m1	7.35	3.42	6.48	1.50
	I3	m2	10.68	3.13	11.88	3.22
		m3	4.34	7.44	3.20	0.85

Table 1 .
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			I1	I2	I3
			(LMM) (PPNMM) (GBM)
	LMM	SLMM ULMM	1.04 0.99	1.74 1.43	15.16 1.07
	PPNMM	SPPNMM UPPNMM	1.26 0.99	1.27 0.99	1.31 0.99
	GBM	1.27	1.64	1.33

8 compares the AREs obtained for the dierent synthetic images. These results show that the AREs are close for the dierent unmixing algorithms even if the estimated abundances can vary more signicantly (see Table

1

.6). Again, the proposed PPNMM seems to be more robust than the other mixing models to deviations from the actual model in term of ARE. Table 1.8: AREs (×10 -2 ): synthetic images.

Table 1 .

 1 

			Scene #1 Scene #2
	LMM	SLMM ULMM	1.53 1.11	1.04 0.88
	PPNMM	SPPNMM UPPNMM	1.50 1.08	1.17 0.89
	GBM	1.72	1.25

10: AREs (×10 -2 ): Real image.

  Main contributions. A new nonlinear model based on post-nonlinear mixtures was proposed for linear/nonlinear SU. The nonlinearity in each pixel was characterized by a single amplitude parameter which will allow simple nonlinearity detectors to be derived in the third chapter. SU methods were proposed to address the problems of supervised and unsupervised unmixing. Ecient sampling algorithms based on Hamiltonian MCMC methods were also used to improve the mixing properties of the sampler when the endmembers are unknown (and have to be Dans ce chapitre, nous avons étudié un premier modèle de mélange post-non-linéaire polynomial pour le démélange d'images hyperspectrales. Deux scénarios ont été présentés en fonction de la connaissance a priori sur les signatures des composants purs de l'image. Lorsque ces signatures sont connues, nous avons proposé trois algorithmes de démélange pour l'étape d'inversion (l'estimation des abondances et des paramètres des non-linéarités). Le modèle bayésien proposé, couplé avec des méthodes MCMC, permet de générer des échantillons suivant la loi a posteriori d'intérêt. Ces échantillons sont ensuite utilisés pour calculer les estimateurs bayésiens classiques, tout en orant des mesures d'incertitude sur les estimations des paramètres. Pour pallier le coût calculatoire induit par la procédure d'échantillonnage, deux méthodes d'optimisation sous contraintes ont également été proposées, orant des performances de démélange similaires à celles obtenues avec l'algorithme bayésien. Monte Carlo à dynamiques hamiltoniennes ont également été utilisés pour améliorer les propriétés de mélange de l'échantillonneur lorsque les signatures spectrales des composants purs ne sont pas connues (et doivent être estimées). aux pixels observés. Il a également été montré que le problème de démélange non-supervisé est un problème dicile en raison du grand nombre de paramètres inconnus à estimer. Comme il est présenté dans ce chapitre, un des principaux avantages du modèle de variable latente proposé est qu'il ne repose pas explicitement sur la matrice des signatures spectrales, mais sur un nombre réduit de paramètres à estimer. De plus, la relation non-linéaire entre les abondances et les observations est estimée à l'aide d'un noyau, contrairement au modèle PPNMM. Les méthodes à noyaux ont été intensivement étudiées dans la communauté de l'apprentissage automatique pour leur capacité à modéliser des non-linéarités complexes.[START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF] et[START_REF] Broadwater | A comparison of kernel functions for intimate mixture models[END_REF] remplacent les produits scalaires utilisés pour le démélange linéaire par des noyaux an de généraliser l'algorithme classique FCLS[START_REF] Heinz | Fully constrained least-squares linear spectral mixture analysis method for material quantication in hyperspectral imagery[END_REF] en Kernel-FCLS (K-FCLS). L'algorithme K-FCLS suppose que les spectres des composants purs sont connus et résout le problème de démélange non-linéaire en projetant les données dans un espace de grande dimension (généralement supérieure à la dimension des données) et en résolvant le problème de démélange linéaire dans ce nouvel espace. L'algorithme K-FCLS appartient à la même famille de méthode que Dans ce chapitre, on suppose donc que les données (dans le cas sans bruit) vivent sur une variété (caractérisée par les composants de l'image) et que la position des observations sur cette variété dépend seulement des abondances de ces matériaux.L'algorithme de démélange proposé se décompose en trois étapes. La première étape, dite de réduction de dimension, consiste à identier la variété sur laquelle vivent les données et à estimer les coordonnées des pixels observés sur cette variété par l'intermédiaire de variables latentes. La deuxième étape permet d'identier les abondances associées à chaque pixel et reliées aux variables latentes. Enn, la dernière étape consiste à prédire les signatures spectrales des composants de l'image à l'aide de processus gaussiens. L'algorithme de démélange non-supervisé proposé est comparé à des algorithmes de démélange linéaires et non-linéaires de la littérature par des simulations sur données

	1.7 Conclusion (in French)
	modèle non-linéaire à base de noyaux pour le démélange non-linéaire non-supervisé. Ce modèle approche la relation
	non-linéaire entre les abondances et les observations sans dépendre explicitement des spectres des composants purs
	estimated). de l'image, conduisant à un modèle de mélange plus souple.

. The next chapter studies a new kernel-based model for unsupervised nonlinear SU. This model approximates the nonlinear relation between the abundances and the observations without explicit dependency on the unknown endmembers, leading to a more exible mixing model. L'estimation des signatures spectrales des composants purs associées à des mélanges non-linéaires est une question dicile. Dans ce chapitre, nous avons proposé une stratégie de démélange non-supervisée basée sur le modèle PPNMM. Cet algorithme bayésien estime conjointement les spectres des composants purs et les coecients de mélange, même lorsqu'il n'y a pas de pixel pur dans l'image observée. Une telle estimation augmente le nombre de paramètres à générer ce qui peut être problématique lors de l'utilisation des méthodes MCMC standards tels que l'échantillonneur de Gibbs. Pour améliorer les propriétés de mélange des chaînes de Markov, des méthodes de Monte Carlo à dynamiques hamiltoniennes contraintes ecaces ont été étudiées. Les simulations eectuées sur données réelles ont montré la pertinence du modèle proposé pour quantier les eets non-linéaires possibles dans chaque pixel de l'image à l'aide d'un seul paramètre.

Il a été montré que le modèle proposé se réduit au modèle de mélange linéaire classique lorsque le paramètre de non-linéarité est égal à zéro. Par conséquent, il paraît logique d'utiliser ce modèle non-linéaire pour la détection de non-linéarités, sujet qui sera abordé dans les derniers chapitres de ce manuscrit. En eet, l'identication de pixels résultant de mélanges linéaires et non-linéaires est une question intéressante pour une caractérisation plus ne de l'image observée.

Les algorithmes de démélange non-linéaires présentés dans ce chapitre sont fondés sur un modèle paramétrique impliquant explicitement les abondances et la matrice des signatures spectrales des composants de l'image. Ce modèle suppose que les observations sont des mélanges post-non-linéaires des spectres des composants de l'image et que la transformation non-linéaire peut être estimée à l'aide d'un polynôme du second ordre. Pour les applications où les pixels observés ne peuvent pas être modélisés par des mélanges post-non-linéaires, d'autres modèles nonlinéaires devraient être utilisés. Les modèles non-paramétriques ont la propriété intéressante d'être très exible pour modéliser diérentes non-linéarités et ont déjà donné des résultats intéressants pour le démélange spectral

[START_REF] Broadwater | A comparison of kernel functions for intimate mixture models[END_REF][START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linearmixture/nonlinear-uctuation model[END_REF]

. Le chapitre suivant étudie un nouveau Contributions majeures. Un nouveau modèle non-linéaire à base de mélanges post-non-linéaires a été proposé pour le démélange spectral linéaire et non-linéaire. Les non-linéarités dans chaque pixel sont caractérisées par un paramètre d'amplitude unique, ce qui permet de proposer un détecteur de non-linéarités simple qui sera étudié dans le troisième chapitre de ce manuscrit. Des méthodes de démélange spectral ont été proposées pour résoudre les problèmes de démélange supervisé et non-supervisé. Des algorithmes d'échantillonnage ecaces basés sur des méthodes de l'analyse en composantes principales non-linéaire (K-PCA) dans le sens où ces deux méthodes sont basées sur des modèles discriminants. Physiquement, modeliser les eets non-linéaires qui rentrent en jeu dans les processus de mélanges par un modèle discriminant n'est pas intuitif. Au contraire, il parait plus naturel de considérer des modèles génératifs qui relient la composition physique de chaque pixel à leur spectre associé. De tels modèles peuvent s'écrire de la façon suivante

y n ≈ ϕ M (a n , θ n ) où ϕ M (•)

est une transformation (non-linéaire) paramétrée par la matrice M des signatures spectrales des composants de l'image, a n est le vecteur d'abondance du nième pixel et θ n est un vecteur qui contient de possibles paramètres supplémentaires associés au nième pixel. Il est important de noter que les modèles génératifs présentés dans l'introduction de ce manuscrit (comme les modèles bilinéaires) peuvent s'écrire sous cette forme.

Pour de nombreuses images réelles, on observe que les données vivent souvent sur une variété dont la dimension est étroitement liée au nombre de composants présents dans l'image. Plus précisement, due à la contrainte d'égalité (somme-à-un) des abondances, la dimension de cette variété est souvent (R -1), où R est le nombre de composants de l'image. Dans le cas de mélanges linéaires, cette variété est incluse dans un sous-espace de dimension (R -1), ce qui peut être utilisé pour identier le nombre de composants de la scène. Dans le cas de mélanges non-linéaires, cette variété est incluse dans un sous-espace de dimension supérieure. synthétiques et réelles. Ces simulations permettent également de mettre en évidence la exibilité du modèle considéré pour résoudre le problème de démélange non-linéaire quand seul le nombre de composants est connu, même s'il n'y a pas de pixel pur dans l'image.

Table 2 .

 2 

		I1	I2	I3
	PCA	0.99	1.08	1.04

1: AREs: synthetic images (×10 -2 ).

Table 2 .

 2 2: RNMSEs: synthetic images (×10 -3 ).

		I1	I2	I3
	SU	5.7	7.4 22.7

Table 2

 2 

.3 shows the AREs

Table 2 . 3

 23 

		I1	I2	I3
	SU	1.00	1.13	1.06

: AREs: synthetic images (×10 -2 ).

Table 2 .

 2 4: SAMs (×10 -2 ): synthetic images.

			I1			I2			I3	
		m1	m2	m3	m1	m2	m3	m1	m2	m3
	VCA	0.43	0.22	0.22	1.62	2.08	1.15	1.91	1.36	0.88
	Heylen	1.94	0.66	0.78	0.75	1.69	0.42	1.80	0.86	1.38
	FCLL-GPLVM 0.52 0.86 0.15 0.33 0.53 0.34 0.44 0.58 0.30
	except for the N = 2500 abundance vectors, that are drawn from a uniform distribution in the following set
		R								
	a									
		r=1								

Table 2 .

 2 6: RNMSEs: synthetic images (absence of pure pixels, ×10 -3 ).

	I * 1	1.00	1.00	1.14	1.00
	I * 2	1.06	1.00	1.57	1.00
	I * 3	1.03	0.99	1.12	0.99
			I * 1	I * 2	I * 3
		SU	49.3 86.6 47.8
		FCLL-GPLVM 4.8 7.2 7.5

Table 2 . 7

 27 

			I * 1			I * 2			I * 3	
		m1	m2	m3	m1	m2	m3	m1	m2	m3
	VCA	2.87	2.15	2.10	5.22	8.02	7.10	6.89	6.03	3.73
	Heylen	6.38 11.11 2.62	7.53	9.59	2.48	6.59	5.95	2.36
	FCLL-GPLVM 0.38 1.30 0.24 0.67 1.46 0.53 0.61 1.75 0.48

: SAMs (×10 -2 ): synthetic images.

Table 2 .

 2 10: Estimation of R: real image.

			ARE (×10 -2 )	
		R = 2 R = 3 R = 4 R = 5
	LL-GPLVM	1.58	0.79	0.74	0.71
	FCLL-GPLVM 1.58	1.11	1.08	0.86

  Enn, le choix de la relation non-linéaire utilisée pour le modèle proposé est un point important pour assurer un LL-GPLVM assez général. En particulier, des noyaux diérents pourraient être utilisés pour des mélanges dits intimes.Toutefois, le compromis entre la exibilité du modèle et les performances en termes d'estimation des abondances et des signatures spectrales est dicile à trouver, surtout lors de la résolution du problème de démélange non-supervisé. L'approximation de la variété sur laquelle vivent les données peut se faire à l'aide de noyaux diérents. Cependant, la relation entre les variables latentes et les abondances peut ne pas être triviale selon le noyau utilisé.L'algorithme FCLL-GPVLM proposé suppose que les pixels observés résultant de mélanges de R composants appartiennent à une variété de dimension (R -1). Bien sûr, cette hypothèse ne vaut que pour un processus de mélange unique entièrement paramétré par les vecteurs d'abondances. Si diérents types de mélanges avaient lieu dans une même image, le FCLL-GPVLM essaierait d'identier une seule variété alors que plusieurs seraient présentes, comme le montre la Fig.2.18. Pour de telles situations, d'autres méthodes de démélange doivent être utilisées.Pour résoudre le problème de plusieurs types de mélanges dans une même image, il semble naturel d'identier les zones où les dierents types de mélanges sont présents. Des algorithmes de démélange (basés sur des modèles uniques) pourraient ensuite être utilisés dans chaque région de façon indépendante, en fonction de la nature de ces régions. Le chapitre suivant étudie deux classieurs binaires pour identier les pixels résultant de mélanges linéaires et non-linéaires dans les images hyperspectrales.Le premier détecteur de non-linéarités proposé dans ce chapitre est basé sur le modèle PPNMM étudié pour le démélange non-linéaire dans le chapitre 1. Une des propriétés intéressantes du modèle PPNMM est qu'il généralise le modèle de mélange linéaire grâce à un paramètre de non-linéarité unique dont la valeur caractérise la non-linéarité dans le pixel considéré. En particulier, lorsque le paramètre de non-linéarité est égal à zéro, le modèle de mélange résultant est linéaire. Par conséquent, il semble naturel d'utiliser ce paramètre pour construire un détecteur de non-linéarités.Le second détecteur de non-linéarité étudié dans ce chapitre repose uniquement sur le modèle de mélange linéaire. Il ne suppose donc aucune caractérisation particulière de la non-linéarité, ce qui le rend plus robuste aux divers types de non-linéarités. Le test statistique associé à ce détecteur consiste à calculer la distance de chaque pixel observé à l'hyperplan déni par les spectres des composants purs de l'image et la contrainte de somme-à-un des abondances.Cette distance est ensuite comparée à un seuil (liée au niveau de bruit) au delà duquel on décide que le modèle linéaire classique n'est plus capable de modéliser précisement le mélange. Les performances des deux détecteurs sont analysées et comparées à l'aide de simulations menées sur données synthétiques et réelles.

Contributions majeures. Un nouvel algorithme non-paramétrique a été proposé pour le démélange non-linéaire non-supervisé. Cet algorithme brise le paradigme habituel du démélange spectral en estimant d'abord les abondances et en prédisant ensuite les signatures spectrales des composants purs, même s'il n'y a pas de composants purs dans l'image.

  Table 3.1 shows the means and standard deviations of the noise variance estimates obtained for dierent values of p (for 50 Monte Carlo runs). This table shows that xing

Table 3 .

 3 

1: Means and standard deviations (in brackets) of the estimated noise variance (×10

  Ce détecteur suppose que la variance du bruit est connue. Lorsque cette variance est inconnue, nous avons proposé de l'estimer à partir de l' analyse des valeurs propres de la matrice de covariance d'un ensemble de pixels de l'image. Les principaux avantages du second détecteur de non-linéarités sont l'absence de connaissance a priori sur le type de non-linéarités à détecter et son faible coût calculatoire. Les simulations sur données synthétiques ont illustré la robustesse de cette méthode pour détecter diverses non-linéarités.Les deux détecteurs proposés ont donné des résultats prometteurs en termes de performance de détection. Cependant, ils peuvent fournir des résultats de détection diérents en fonction des non-linéarités sous-jacentes. Il serait intéressant d'étudier des tests plus complexes en fonction de la connaissance disponible sur les eets non-linéaires à détecter. Les écarts au modèle linéaire classique peuvent être expliquées par exemple par un bruit coloré (les niveaux de bruit dans les diérentes bandes spectrales ont été supposés être indépendants et identiquement distribués dans cette étude), les erreurs d'estimation des signatures spectrales (si extraites des données), les eets non-linéaires résultant des interactions entre les matériaux de la scène ou par des composants non-identiés (matériaux rarement représentés). L'examen de ces types de deviation au modèle linéaire pourrait fournir des tests plus spéciques, comme ceux développés par[START_REF] Ramsey | Tests for specication errors in classical linear least-squares regression analysis[END_REF]. An d'améliorer la robustesse du procédé de détection, plusieurs détecteurs pourraient également être utilisés en parallèle.Les deux détecteurs de non-linéarités proposés (basés sur le modèle PPNMM et le modèle linéaire) supposent que les signatures spectrales des composants sont connues pour en déduire une statistique de test. Cependant, dans la pratique, les signatures spectrales sont souvent inconnues et doivent être estimées à partir des données. Lorsque des pixels purs sont présents dans l'image, un algorithme d'extraction de signatures spectrales peut être utilisé avant l'application des détecteurs de non-linéarités proposés. Si les pixels de l'image sont trop fortement mélangés (aucun pixel pur dans l'image), des détecteurs de non-linéarités non-supervisés (qui ne nécessitent pas de connaitre parfaitement les signatures spectrales des composants) doivent être utilisés. En particulier, il serait intéressant de proposer des algorithmes permettant d'estimer les signatures spectrales et d'eectuer la détection de non-linéarités conjointement.Enn, les deux détecteurs de non-linéarité proposés sont basés sur une analyse pixel par pixel. Cependant, il est raisonnable de considérer que les non-linéarités qui se produisent dans un pixel donné peuvent être liées aux non-linéarités dans les pixels voisins. Prendre en compte la corrélation spatiale pour la détection de non-linéarités pourrait fournir des résultats de détection plus lisses en enlevant les pixels isolés et détectés comme linéairement (resp. non-linéairement) mélangés, entourés par des pixels détectés comme non-linéairement (resp. linéairement) mélangés. Le chapitre suivant présente un nouveau modèle de mélange non-linéaire pour eectuer conjointement la détection de non-linéarités et le démélange supervisé tout en prenant en compte des corrélations spatiales pour caractériser les non-linéarités.Contributions majeures. Deux tests statistiques ont été proposés pour la détection non-linéarités pixel par pixel lorsque les signatures spectrales des composants purs présents sont connues. Les tests proposés sont rapides à mettre en place et peuvent donc être utilisés facilement pour des applications pratiques. Les résultats de détection peuvent être utilisés comme une étape de pré-traitement pour sélectionner des pixels ou des régions où des modèles plus complexes doivent être utilisés à la place du modèle de mélange linéaire classique pour résoudre le problème Dans le chapitre précédent, un détecteur de non-linéarités pixel par pixel basé sur le modèle PPNMM a été proposé et a donné des résultats intéressants en terme de localisation de régions où des eets non-linéaires apparaissent.Ce détecteur a été construit en utilisant une étape préalable de démélange basée sur le PPNMM. Les propriétés statistiques de l'estimateur du paramètre de non-linéarité de ce modèle ont ensuite été utilisées pour calculer une statistique de test. Dans ce chapitre, nous proposons d'eectuer simultanément le démélange spectral supervisé et la détection de non-linéarités. Nous avons noté dans le chapitre précédent que la prise en compte de structures spatiales dans les images hyperspectrales, déjà considérée par[START_REF] Eches | Enhancing hyperspectral image unmixing with spatial correlations[END_REF] pour le démélange linéaire, pourrait également être utilisée pour déduire les régions où se produisent des eets non-linéaires. Cette étude présente un nouvel algorithme bayésien supervisé pour eectuer conjointement le démélange (estimation des abondances) et la détection de non-linéarités. Cet algorithme est supervisé dans le sens où les signatures spectrales des composants de l'image sont supposés connues (choisies parmi une bibliothèque spectrale ou extraites à partir des données par un algorithme d'extraction de signatures spectrales). Cet algorithme est basé sur un modèle de mélange nonlinéaire inspiré de l'analyse en composantes résiduelles (RCA)[START_REF] Kalaitzis | Residual components analysis[END_REF]. Dans le contexte du démélange d'images hyperspectrales, les eets non-linéaires sont modélisés par des termes de perturbation additifs, caractérisés par des processus gaussiens. Cela permet aux termes non-linéaires d'être marginalisés, ce qui donne un modèle exible dépendant uniquement des énergies des non-linéarités. Contrairement aux détecteurs de nonlinéarités étudiés dans le chapitre 3, les non-linéarités sont supposées aléatoires. L'image hyperspectrale à analyser est partitionnée en régions homogènes dans lesquelles les non-linéarités sont issues d'un même processus gaussien. Par conséquent, le fait que la puissance du bruit peut changer avec les longueurs d'ondes est pris en compte dans ce chapitre pour améliorer les performances du démélange et de la détection de la non-linéarités.Dans le cadre bayésien, des lois a priori appropriées sont choisies pour les paramètres inconnus du modèle RCA proposé, à savoir, les abondances, les hyperparamètres des processus gaussiens, les étiquettes des diérentes classes et la matrice de covariance du bruit. La loi a posteriori jointe de ces paramètres est ensuite calculée. Toutefois, les estimateurs bayésiens classiques ne peuvent être facilement calculés à partir de cette loi a posteriori (principalement à cause des contraintes sur les paramètres à estimer et la non-linéarité du modèle). Pour résoudre ce problème, une méthode de simulation de type MCMC est utilisée pour générer des échantillons distribués suivant la loi a posteriori d'intérêt. Enn, les échantillons générés sont utilisés pour calculer les estimateurs bayésiens ainsi que des mesures d'incertitudes telles que des intervalles de conance.

	4.1 Introduction (in French)
	de démélange spectral.
	Cet algorithme repose sur une classication explicite des pixels de l'image, modélisée par des étiquettes dont les
	dépendances spatiales sont modélisées à l'aide d'un champ aléatoire de Potts-Markov. Si deux classes (ou niveaux)
	étaient utilisées (mélanges linéaires vs non linéaires), la carte de détection serait binaire. Cependant, cette méthode
	permet d'identier diérentes régions où des eets non-linéaires apparaissent, à partir des niveaux d'énergie des
	eets non-linéaires. Plus précisément, l'algorithme proposé permet d'identier des régions avec diérents niveaux
	de non-linéarités et caractérisées par diérents processus gaussiens. Les détecteurs de non-linéarités étudiés dans
	le chapitre 3 et la plupart des algorithmes de démélange spectral supposent un bruit additif gaussien, indépen-
	damment et identiquement distribués (i.i.d.) spectralement. Cependant, les récents travaux menés sur des images
	hyperspectrales réelles ont montré que la variance du bruit peut varier signicativement d'une bande spectrale à
	l'autre.

Table 4 .

 4 1: First scenario: Confusion matrix (N = 3600 pixels).

			Estimated classes
			C0	C1	C2	C3
		C0 659	0	0	0
	Actual classes	C1	1	1274	2	0
		C2	0	4	787	2
		C3	0	0	0	871

Table 4 .

 4 2: First scenario: Hyperparameter estimation.

		s 2 1	s 2 2	s 2 3
	Actual value	0.01	0.1	1
	Estimation error 2.76% 1.12% 0.28%

Table 4 .

 4 3: RNMSEs (×10 -2 ): synthetic images .

		Class #0 Class #1 Class #2 Class #3
	FCLS	0.38	15.23	29.95	42.79
	RCA-SU	0.38	2.83	3.99	4.23
	4.7.2 Second scenario: RCA vs. nonlinear unmixing	

Table 4 .

 4 4 compares the RNMSEs obtained with the SU algorithms for each class of the second scenario. These results show that the proposed algorithm provides abundance estimates similar to those obtained with the LMMbased algorithm (FCLS) for linearly mixed pixels. Moreover, the RCA-SU also provides accurate estimates for the three mixing models considered, which illustrates the robustness of the RCA-based model regarding model mis-specication.

Table 4 .

 4 4: Abundance RNMSEs (×10 -2 ): Scenario #2 .

	Unmixing algo.	Class #0 Class #1 Class #2 Class #3 (LMM) (GBM) (PPNMM) (RCA)
	FCLS	0.35	9.20	19.74	30.73
	GBM	0.36	3.05	15.24	29.53
	PPNMM	0.65	1.37	0.48	23.77
	K-HYPE	3.24	3.28	3.14	3.42
	RCA-SU	0.35	1.58	2.14	3.41

Table 4 .

 4 5: REs (×10 -2 ): Scenario #2.

	Unmixing algo.	Class #0 Class #1 Class #2 Class #3 (LMM) (GBM) (PPNMM) (RCA)
	FCLS	0.99	2.17	1.33	3.10
	GBM	1.00	1.12	4.41	10.98
	PPNMM	0.99	1.01	0.99	3.80
	K-HYPE	0.98	0.98	0.98	0.98
	RCA-SU	1.00	0.98	0.98	0.98

  2 1 , ŝ2 2 , ŝ2 3 ] = [0.2, 1.4, 10] × 10 -2 , showing that nonlinearities of class C 1 are less severe than those of class C 2 that are themselves weaker than those of class C 3 . The next section studies the performance of the proposed algorithm for a real hyperspectral image.

Table 4 .

 4 6: Reconstruction errors: Real image.

	Unmixing algo. RE (×10 -2 )
	FCLS	0.65
	GBM	0.65
	PPNMM	0.54
	K-HYPE	0.48
	RCA-SU	0.48

  Main contributions. A new nonlinear mixing model for joint hyperspectral image unmixing and nonlinearity detection was proposed. The observed image was segmented into regions where nonlinear terms, if present, shared similar statistical properties. The resulting algorithm provided accurate abundance estimates when the actual mixtures are linear and nonlinear and it thus generalized the binary nonlinearity detectors proposed in the third chapter by considering dierent levels (classes) of nonlinearities.4.10 Conclusion (in French)Nous avons proposé un nouvel algorithme bayésien hiérarchique pour eectuer conjointement l'étape d'inversion et la détection de non-linéarités. Cet algorithme suppose que chaque pixel de l'image est un mélange linéaire ou non-linéaire des signatures spectrales des composants purs de l'image, contaminé par un bruit additif gaussien. Les mélanges non-linéaires sont décomposés en une combinaison linéaire des signatures spectrales des composants purs et d'un terme additif représentant les eets non-linéaires. Un champ de Potts-Markov a été introduit an de promouvoir les structures spatiales dans l'image. L'image a été décomposée en régions (ou classes) où les non-linéarités ont les mêmes propriétés statistiques, chaque classe étant associée à un niveau de non-linéarité. Les non-linéarités dans une même classe ont été modélisés en utilisant un processus gaussien paramétré par les composants de l'image et un niveau de non-linéarité. Les contraintes physiques sur les abondances ont également été incluses dans le cadre bayésien à l'aide de lois a priori appropriées. En raison de la complexité de la loi a posteriori jointe résultante, une méthode MCMC a été utilisée pour calculer les estimateurs bayésiens des paramètres inconnus du modèle.Les simulations eectuées sur des données synthétiques ont illustré les performances de l'algorithme proposé pour résoudre le problème de démélange spectral linéaire et non linéaire. Un avantage important de l'algorithme proposé est sa robustesse vis-à-vis du modèle de mélange réel sous-jacent. Une autre propriété intéressante résultant du modèle de mélange non-linéaire considéré est la possibilité de détecter plusieurs types de pixels résultant de mélanges linéaires, le cas échéant, partagent des propriétés statistiques similaires. L'algorithme résultant a fourni des abondances estimées satisfaisantes quand les mélanges réels sont linéaires et non linéaires et permet également de généraliser les détecteurs de non-linéarités binaires proposés dans le troisième chapitre de ce manuscrit en considérant diérents niveaux (classes) de non-linéarités.

non-linéaires. Cette détection peut être utilisée pour identier les régions d'image aectées par des non-linéarités diérentes dans le but de caractériser plus nement les eets non-linéaires. Enn, les simulations eectuées avec des données réelles ont montré la pertinence des méthodes permettant d'eectuer conjointement l'étape d'inversion et la détection de non-linéarités pour l'analyse d'images réelles.

Comme dans le chapitre 3, les composantes spectrales pures contenues dans l'image hyperspectrale ont été supposées connues dans ce chapitre. Bien sûr, les performances de l'algorithme sont liées à la connaissance de ces spectres.

Dans le futur, il serait important de proposer des méthodes permettant de résoudre conjointement le problème de démélange non-supervisé et la détection de non-linéarités. Enn, le nombre de classes et la granularité de la scène ont également été supposés connus dans ce travail. L'estimation de ces paramètres est clairement une question dicile qui devrait être étudiée.

Contributions majeures. Un nouveau modèle de mélange non-linéaire pour eectuer conjointement l'étape d'inversion et la détection de non-linéarités a été proposée. L'image observée a été segmentée en régions où les termes non-

  can be obtained using the chain rule

	∂V (m ,: ) ∂m ,:	=	∂V 1 (t ) ∂t	∂t ∂m ,:	+	∂V 2 (m ,: ) ∂m ,:
	and					
	∂V 1 (t ) ∂t	= -	(y ,: -t ) T σ 2
	∂t					
	∂m ,:					

Note that the proposed parametrization is chosen for notation simplicity. However, the component to be discarded can be randomly chosen.

The length of the burn-in period has been determined using appropriate convergence diagnoses[START_REF] Robert | Convergence control of MCMC algorithms[END_REF].

For brevity, the same notation J is chosen for the criteria depending on a and (a, b).

The length of the burn-in period has been determined using appropriate convergence diagnoses[START_REF] Robert | Convergence control of MCMC algorithms[END_REF].

Note that all known conditional parameters have been omitted for brevity.

Note that the estimated endmembers are centered since the data have previously been centered. The actual endmembers can be obtained by adding the empirical mean of the data to the estimated endmembers.

Note that M1, M2 and M3 have been obtained by changing a, b and σ 2 in M0, respectively.

à l'aide de simulations eectuées sur données synthétiques et réelles.Dans le dernier chapitre de ce manuscrit, un nouveau modèle de mélange non-linéaire pour eectuer conjointement le démélange supervisé et la détection de non-linéarités a été proposé. L'image observée a été segmentée en régions où les termes non-linéaires (lorsqu'ils sont présents) partagent des propriétés statistiques similaires. L'algorithme résultant a montré de bonnes performances en terme d'estimation des abondances lorsque les pixels de l'image résultent de mélange linéaires et non-linéaires. De plus, il généralise les détecteurs de non-linéarités binaires proposés dans le troisième chapitre en considérant diérentes classes (niveaux) de non-linéarités.Dans ce manuscrit, il a été montré que les algorithmes de démélange non-linéaires peuvent permettre d'améliorer la caractérisation des images hyperspectrales par rapport aux méthodes basées sur un modèle linéaire. Ces méthodes non-linéaires ont montré de bonnes performances en termes d'estimation des abondances lorsque les pixels de l'image résultent de mélange non-linéaires. Les résultats de simulations eectuées sur des images synthétiques et réelles ont illustré l'avantage de l'utilisation de détecteurs de non-linéarités pour l'analyse d'images hyperspectrales.En particulier, les détecteurs proposés permettent d'identier des composants très peu représentés (et dicile à détecter) et peuvent localiser des régions où se produisent des eets non-linéaires importants (ombre, relief, . . . ).4.14 PerspectivesDans ce manuscrit, nous avons proposé des algorithmes de détection de non-linéarités et de démélange non-linéaires en utilisant un modèle post-non-linéaire polynômial. La exibilité du cadre bayésien a permis de gérer la complexité du modèle à traiter et a également permis d'inclure facilement l'information disponible sur les paramètres du modèle dans la procédure d'estimation. Il serait intéressant d'étendre ce travail à d'autres modèles non-linéaires de la littérature, en particulier ceux motivés par les phénomènes physiques en jeu dans les processus de mélange (tels que
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Intermediate conclusion

We proposed a new hierarchical Bayesian algorithm for unsupervised nonlinear spectral unmixing of hyperspectral images. This algorithm assumed that each pixel of the image is a post-nonlinear mixture of the endmembers contaminated by additive Gaussian noise. The physical constraints for the abundances and endmembers were included in the Bayesian framework through appropriate prior distributions. Due to the complexity of the resulting joint posterior distribution, a Markov chain Monte Carlo method was used to approximate the MMSE estimator of the unknown model parameters. Because of the large number of parameters to be estimated, Hamiltonian Monte Carlo methods were used to reduce the sampling procedure complexity and to improve the mixing properties of the proposed sampler. Simulations conducted on synthetic data illustrated the performance of the proposed algorithm for linear and nonlinear spectral unmixing. Finally, we would like to mention an important advantage of the proposed algorithm, i.e., its exibility regarding the absence of pure pixels in the image. Chapter 3 

Nonlinearity detection in hyperspectral images

The rst part of this chapter has been adapted from the journal paper (Altmann et al., 2012) (published).

Contents

with the CCRLB versus the number of spectral bands (the number of spectral bands has been adjusted by a regular subsampling of the initial L = 826 bands). These results conrm the eciency of the MLE for these four mixtures since the MSEs (crosses) are very close to the corresponding CCRLBs (continuous lines).

Similarly, Fig. [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection theory[END_REF] with signicance level set to 0.05 have been applied to the four sets of Monte Carlo runs (corresponding to M 0 to M 3 ). The four tests have accepted the null hypothesis (i.e., the distributions of b coincide with their asymptotic distributions) with large p-values (0.93; 0.79; 0.58 and 0.72 for M 0 to M 3 ). These results conrm that the distributions of the subgradient-based algorithm can be approximated by a Gaussian distribution whose mean is the actual parameter b and whose variance is given by the CCRLB. Detection performance The performance of the proposed nonlinearity detection procedure can be measured by comparing the actual PFA (given by (3.13)) with the empirical PFA dened as

where N is the number of noisy realizations of a given mixture under H 0 , η is the theoretical test threshold, T n is the value of the test statistic for the nth noise realization and d n (•) is its corresponding decision (d n (•) = i means hypothesis H i has been accepted with i ∈ {0, 1}). The actual PFA is also compared to its approximation obtained Chapter 4

Joint supervised unmixing and nonlinearity detection using residual component analysis

The rst part of this chapter has been adapted from the journal paper (Altmann et al., 2013b) (submitted).
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Appendices

Appendix A

Identiability of the supervised PPNMM-based SU problem

A.1 Non-injectivity of s → g(s)

The application

which leads to 2 L solutions for the problem g(s 1 ) = g(s 2 )

Let a and a * be two abundance vectors satisfying the positivity and sum-to-one constraints, M the matrix containing the endmembers and

a r a j m r m j where denotes the term by term product operation.

Appendix A. Identiability of the supervised PPNMM-based SU problem

If the columns of the L × R(R+3)

Consequently, the identiability of the unmixing problem assuming the proposed PPNMM is ensured when rank

, which is usually satised when using real pure spectral components. Note that the identiability of the unmixing problem associated with the LMM requires a similar condition, i. The partial derivative of h(•) with respect to a r , (r = 1, . . . , R) is given by ∂h(a) ∂a r = 2 (Ma) m r .

Using the following partial derivatives

and the usual dierentiation rules, we obtain

B.2 Partial derivatives of y * (•)

Thanks to the sum-to-one constraint of the abundance vector, the cost function (1.23) can be expressed as a function

. The spectrum y(c) can then be expressed as

Appendix C

Derivation of the potential functions associated the UPPNMM algorithm C.1 Derivation of the potential function associated with z n

The potential energy (1.61) can be rewritten

where

.

Partial derivatives of U (z n ) with respect to z n is obtained using the classical chain rule

Appendix C. Derivation of the potential functions associated the UPPNMM algorithm C.2 Derivation of the potential functions associated with the endmember matrix

Similarly, the potential energy (1.63) can be rewritten

A T m ,: and Appendix D

On the linear mapping between latent variables and abundances Consider a hyperspectral data set composed of R nonlinearly mixed endmembers. In the noise-free case, we assume that each observed pixel y n can be expressed as

where

as in (2.6). The R × 1 vector a contains the abundances of the R components and satises the following positivity and sum-to one constraints R r=1 a r = 1, a r ≥ 0, ∀r ∈ {1, . . . , R} .

In particular, the abundance vectors belong to the following set

We want to show the following statement

In other words, if we can a matrix W such that y = Wψ [x] for all the pixels of the observed image, there is necessarily a linear relation between the variables x and the abundances a of interest. This demonstration is decomposed into three main steps 1. First, we will show that dim(span(y)) = D, where F y = span(y).

2. Second, we will show that rank(W) = rank(W 0 ) = D.

3. Third, we will conclude that ∃V ∈ M R,R (R) , ∀a ∈ P, x = Va of the abundances of interest. For instance, consider the scenario of R = 3 linear mixed pixels, i.e., W 0

but the latent variables in x are not linear combinations of the abundances of interest.

In practice, we want to apply nonlinear unmixing procedure to hyperspectral images where nonlinearities occur.

Consequently the rank of the matrix W 0 will often be close to D. However, if W 0 is ill-conditioned, the prior distribution for the latent variables, which enforces spectrally close pixels to have close latent variables in (2.19), will also enforce linear relations between abundances and latent variables. ẽ ∼ N 0 N L , σ 2 I N L and ⊗ denotes the Kronecker product. For ease of marginalization of (2.13), a Gaussian prior is usually assigned for w [START_REF] Lawrence | Gaussian process latent variable models for visualisation of high dimensional data[END_REF]. Using centered data, it makes sense to assign a zero-mean prior for w.

Introducing correlation through structured covariance matrix yields the following Gaussian prior for w w ∼ N (0 LD , Φ ⊗ Γ)

where Φ (resp. Γ) is an L × L (resp. a D × D) covariance matrix that reects the correlation between the rows (resp. the columns) of W. More precisely, the covariance matrix Γ reects the prior correlations between the spectra whereas Φ reects prior correlations between the L spectral bands. It makes sense to consider correlations between spectra since the interaction spectrum between the components i and j is likely to be related to the spectra of the components i and j. Consequently, Γ is assumed to be a non-diagonal matrix. Similarly, since the reectances observed at spectrally close bands are highly related, it seems reasonable to assume that Ψ is not diagonal. Let assume that Γ and Φ are symmetric matrices with no particular block structure. Marginalizing out w leads to the following marginalized likelihood

The partial derivatives of the log-likelihood w.r.t. to X \R are obtained using

Finally, the partial derivatives of the log-posterior w.r.t. to X \R are given by

Appendix G

Fisher information matrix associated with the supervised unmixing problem using the PPNMM

The likelihood function of y can be expressed as

where g (Ma) = Ma + b(Ma) (Ma). The corresponding log-likelihood P can be written

The partial derivatives of P with respect to the model parameters are

Straightforward computations lead to

It can be easily shown that

Appendix H

Alternative interpretation of the proposed RCA model

We consider a set of N observed pixel spectra y n = [y n,1 , . . . , y n,L ] T , n ∈ {1, . . . , N } where L is the number of spectral bands. Each of these spectra is dened as a linear combination of R known endmembers m r , contaminated by additional polynomials of the endmember spectra and additive noise

where m r is the spectrum of the rth material present in the scene, a r,n is its corresponding proportion in the nth pixel and e n is an additive independently and non identically distributed zero-mean Gaussian noise sequence with diagonal covariance matrix Σ 0 = diag σ 2 , denoted as e n ∼ N (0 L , Σ 0 ), where σ 2 = [σ 2 1 , . . . , σ 2 L ] T . The parameters γ r,r,n control the amplitude of the nonlinear terms m r m r that model the double reections involving only one material and the parameters γ i,j,n tune the amplitudes of the interactions between dierent endmembers. These parameters are gathered in the vector γ n = [γ 1,1,n , . . . , γ R,R,n , γ 1,2,n , . . . , γ R-1,R,n ] T of size R(R + 1)/2 × 1.

1)/2 matrix (as dened below (4.5.1)). The model (H.1) reduces to the bilinear models [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF]Halimi et al., 2011a;[START_REF] Nascimento | Nonlinear mixture model for hyperspectral unmixing[END_REF] when the coecients γ r,r,n are all null. Moreover, it is similar to the model introduced by [START_REF] Meganem | Linear-quadratic mixing model for reectances in urban environments[END_REF]. Assume that the endmembers are known. The nonlinear SU problem consists then of estimating the abundance vectors {a n } n=1,...,N when the nonlinearity parameters vectors {γ n } n=1,...,N are unknown.

Note that the number of unknown parameters can be very large, especially when the number of endmembers R is large. It has been previously mentioned that the LMM is sucient to model accurately most of the observed pixels.

Consequently, most of the nonlinearity parameters are expected to be small (or even null). It is also interesting to mention that the columns of Q are highly correlated which complicates the estimation of the nonlinearity parameters {γ n } n=1,...,N (large estimation variance). To avoid estimating the large set of nonlinearity parameters, a simple solution consists of assigning a prior distribution to these nuisance parameters and of marginalizing them from the likelihood dened by the observation equation (H.1). Based on the physical considerations mentioned above, it makes sense to assign the following zero-mean Gaussian prior

to the nonlinearity parameter vector associated with the nth pixel, where z n ∈ 1, . . . , K is a label associated with the nth pixel (K is a given number of classes) and D = R(R + 1)/2. The hyperparameter s 2 k , k = 1, . . . , K controls the variance of the nonlinearity parameters associated with the pixels that belong to the kth class. The K classes are characterized by dierent levels of nonlinearity. The main motivation for assigning Gaussian priors for the nonlinearity parameter vectors is that it allows these nuisance to be marginalized, as will be shown in the sequel.

Using (H.1) and the noise statistical properties, the likelihood of the nth observed pixel y n can be expressed as follows

Assume now that the nth pixel belongs to the kth class (k = 1, . . . , K). Marginalizing γ n consists of computing

). In our case, the closed-form expression of this can be computed (Bishop, 1995, App. B), leading to y n |M, a n , σ 2 , z n = k, s 2 k ∼ N Ma n , s 2 k QQ T + Σ 0 . (4.18). Consequently, the proposed RCA-based model can be considered using (4.1) where the nonlinearity vectors φ n have been marginalized or using (H.1) where the nonlinearity parameters {γ n } n=1,...,N have been marginalized. If the rst interpretation has been preferred in the main body of Chapter 4 for its ease of understanding, the second interpretation provided in this Appendix is more rigorous in the sense that the densities involved in the derivation of the marginalized likelihood (H.7) are well dened. Conversely, the prior distributions in (4.11) can be degenerated since the rank of K M is equal to the rank of Q (i.e., rank(K M ) = R(R + 1)/2) which is often smaller than the number of spectral bands L.