
HAL Id: tel-04298271
https://theses.hal.science/tel-04298271v1

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Obtaining tilings by self-assembly and self-stabilization
Damien Regnault

To cite this version:
Damien Regnault. Obtaining tilings by self-assembly and self-stabilization. Computer Science [cs].
université Paris-Saclay, 2023. �tel-04298271�

https://theses.hal.science/tel-04298271v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr
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Chapter 1

Introduction

This document presents my works since I obtained a PhD in 2008 (my cur-
riculum vitae is available in appendix A). Only the bibliographies, key ideas,
main results and theirs implications and perspectives are presented here.
Detailed proofs are available in the different published articles.

This document mainly focusses on two series of articles about models of
computation based on sets of dominoes. These models are of interest into
two different domains of nano-technology: self-assembly and crystallogra-
phy. The introduction summarizes some fundamental notions, introduces
the different models, theirs similarities and differences. Then, Chapter 2 is
dedicated to self-assembly while Chapter 3 deals with crystallography. Fi-
nally, Chapter 4 is an activity report about my other works (algorithmics,
cellular automata and boolean automata networks) and perspectives.

1.1 Models of computation

In language theory, a specific finite set Σ is called an alphabet whose elements
are called letter. A word is a finite sequence of letters and Σ∗ is the set of all
finite words. A language L is a subset of Σ∗ (possibly finite or infinite). The
language L can also be interpreted as a function f : Σ∗ → {0, 1} such that
L = {w ∈ Σ∗ : f(w) = 1} and a model of computation aims to describe f as
a finite composition of several simple functions. These simple functions aim
to be easily implementable by real life mechanisms: for example any boolean
function {0, 1}n → {0, 1} with n ≥ 0 can be decomposed into a finite amount
of And and Not gates and such gates can be implemented in real life using
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diodes and transistors. A model of computation defines the simple functions
and the rules of composition, i.e. how to do a computation and how to link
them. A program describes how to use these functions and rules in order to
recognize one specific language L. A run of the program on a given word x is
the sequence of computations done to determine if x belongs to L 1. Finally,
implementing a program by a real-life mechanism provides a machine which
recognizes the language L, i.e. which is able to test if a word x belongs to L
automatically.

Nevertheless, this approach has some limits. By definition, a language is
a countable set but for some countable sets, there is no program to recog-
nize them. Indeed, the Church–Turing thesis defines a limit of what can be
achieved by a “real-life” machine, called the class of decidable languages. Sev-
eral models of computation are able to recognize the languages of this class:
Turing machines, Ram machines, cellular automata, boolean automata net-
works, Wang tiles, abstract Tile Assembly Model, . . . 2 It is possible to build
real-life mechanisms which are able to simulate a computation done by these
models but two limits appear during the run of a program: the time con-
straint (the number of successive computations needed to obtain the result)
and the space constraint (the number of mechanisms needed to simulate the
computation). After running for millions of years, some program may stop
since the memory space of the computer is not large enough to finish the
computation. Thus modern computers are weaker than their mathematical
abstraction. Even if computers become faster and if the size of their mem-
ory storages increases, their theoretical limit stays the same: they are only
able to compute decidable languages. Note that building a stronger model
of computation is possible theoretically but its implementation in real life
would fall under science fiction.

A language which is not decidable is undecidable and Rice’s theorem
stipulates that any non trivial question about programs of a model of com-
putation which recognizes the decidable languages is undecidable. There is
no program to determine if another program will stop, if another program is
optimal, if two other programs compute the same language, . . .

1For a Turing Machine, one of the most well-known model of computation, a program
is called a transition function and a run is the sequence of configurations (internal state
and tapes).

2Among these models of computation, Turing machines are often used in theoretical
works to study decidable languages whereas Ram machines is an abstraction of modern
computers.
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The field of complexity focus on some sub-classes of the decidable lan-
guage such as P, NP, PSPACE, . . . Here, we are interested in a class called
the regular languages. These languages are recognized by finite automata,
a model of computation which is weaker than the ones previously cited. In-
terestingly, non-trivial questions about finite automata are decidable: there
exist programs which are able to test if two finite automata recognize the
same language, which are able to optimize a finite automaton (to minimize
its number of states, to determinize it, . . .). Moreover, a regular language
admits other representations besides a finite automaton: regular expression,
regular grammar. These representations are useful depending on the context
of use: finite automata provide an easy test to determine if a word belongs
to a language, regular expressions provide a more readable and easy way to
define a regular language, grammars provide a parse tree which is useful for
further analysis of the word. Programs are also able to transform one of these
representations into another one. Then, depending on the context, programs
are able to compute the best and optimal representation of a regular lan-
guage. Thus, this weaker model of computation is still commonly used since
it is possible to optimize automatically its programs.

More formally, the finite automata are defined as follows (see Figure 1.1):
consider a quintuplet A = (Q,Σ, δ, q0, qf ) where Q is a finite set of states,
Σ is the alphabet, δ : (Q × Σ) → Q is the transition function and q0 and
qf are two states of Q. For a word w ∈ Σ∗ and a letter a ∈ Σ, we define
δ(q, wa) as δ(δ(q, w), a) and w is accepted by the finite automata if and only
if δ(q0, w) = qf . As stated before, finite automata are not able to recognize
all decidable languages. For example, the decidable language {0n1n : n ≥ 0}
defined over the alphabet {0, 1} cannot be recognized by a finite automaton.
By contradiction, if a finite automaton (Q,Σ, δ, q0, qf ) recognizes {0n1n : n ≥
0}, then it must accept 0n1n for some n > |Q| and the finite automaton will
loop along its run: there exist 0 ≤ i < j ≤ n such that δ(q0, 0

i) = δ(q0, 0
j)

and for all k ≥ −1, the words 0n+k(j−i)1n should be accepted by the finite
automaton which is a contradiction. This reasoning was generalized into a
result known as the pumping lemma: any word long enough accepted by a
finite automaton will generate an infinity of “pumped” words which are also
accepted by the finite automaton (see Figure 1.1). The pumping lemma is a
strong tool used to prove that some decidable languages are not regular and
its proof relies only on a simple combinatorial argument.
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q0 q1 q2 q3

b

q4 qf

q5 q6 q7

a b a b a

a

b

b

a
b

Figure 1.1: A finite automaton made of nine states and eleven transitions
over the alphabet Σ = {a, b}. Note that δ(ab) = δ(ababb) = q2, there is a
loop and the two words ab and ababb end in the same states. This finite
automaton recognizes the regular language {abab(bab)∗a + ab(bb)∗ab}

1.2 Dominoes

A domino is a square characterized by glues, on each of its four sides. Any
regular language L can be transformed into an equivalent set of dominoes
(see Figure 1.2). Indeed, consider a finite automaton A = (Q,Σ, δ, q0, qf )
which recognizes L. Each transition δ(qi, a) = qj of A is transformed into a
domino labeled by the letter a where the left (resp. right) glue is qi (resp.
qj). Then two specials dominoes are added: one, called the seed, with only
one glue q0 on its right side and one with only one glue qf on its left side.
Initially, only the seed is put on the 2D grid and then copies of dominoes are
placed on the 2D grid to the right of the previous one such that the glues on
their abuttal sides are identical. The dominoes on the grid form an assembly
which grows each time another one is added, we say that the new domino
binds with the assembly. At all times, only the right glue of the rightmost
domino of the assembly is free, i.e. this glue does not bind with a glue of
another domino. Consider a word w ∈ L, the sequence of transitions of A
which leads from the state q0 to qf can be simulated by the dominoes: for
each transition of the sequence, the corresponding domino binds with the
assembly. Along the simulation, the free glue of the assembly corresponds to
the state of the automata. At the end, the glue qf is free and the last domino
with only qf on its left side binds with the assembly. Then, there is no more
free glue and the assembly becomes terminal. The dominoes of the terminal
assembly are labelled by the word w. Thus, there is an equivalence between
the words of L and the labels of the finite terminal assemblies obtained with
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The set of tile types:

q0
a

q0 q1
b

q1 q2
a

q2 q3
b

q3 q4
b

q4 q2

a
q4 qf

a
q0 q5

b
q5 q6

b
q6 q5

a
q6 q7

b
q7 qf

qf

The terminal assembly associated to the word ababa:

a
q0

b
q1

a
q2

b
q3

a
q4 qf

The terminal assembly associated to the word ababbaba:

a
q0

b
q1

a
q2

b
q3

b
q4

a
q2

b
q3

a
q4 qf

Figure 1.2: A set of dominos generated from the finite automaton of Figure
1.1. We represent the terminal assemblies corresponding to the words ababa
and ababbaba. Note that for the second terminal assembly, the glue q2 (in
red) appears two times and the tiles between these two glues can be pumped.

this set of dominoes.
Dominoes are able to simulate finite automata but they can do more.

Indeed, in this transformation the dominoes form a line and by adding glues
on the north and south sides we obtain a new 2D model of computation.
Introduced by H. Wang in [47], dominoes were initially defined with a glue
on each of their four sides. In this case, the assembly grows until it covers
the whole 2D grid. Nevertheless, while growing the assembly can create
mismatch: a new domino can bind with a domino of the assembly while, at
the same time, one of its glue is different from the glue of a neighboring tile of
the assembly. Initially, H. Wang was interested in solving a logical problem
and he needed to avoid any mismatch. In this case, a terminal assemblies
covers the 2D grid without any mismatch and is called a tiling. This model
became known as Wang tiles.

A natural question known as the domino problem was to determine if
a finite set of dominoes is able to assemble at least one tiling. Initially,
H. Wang conjectured that this problem was simple, i.e. decidable. Indeed,
a first intuition was to do a reasoning similar to the pumping lemma. By
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starting from a single domino, new dominoes can bind on a line until the
same glue appears two times. Then, the pattern between the two glues can
be extended into a periodic horizontal line. By doing the same reasoning
on columns, either we obtain a mismatch or we found one bi-periodic tiling
which can be described by a finite rectangle. Nevertheless in [2], R. Berger
has shown that this conjecture was false and that the domino problem is
undecidable.

One of the key step to prove this result was to encode a Turing machine
into a set of Wang tiles. Then, Wang tiles is a model of computation which
can compute the class of decidable language. A set of dominoes can be seen
as a program and binding the dominoes together is a run of this program.
Nevertheless, there is a major problem with this interpretation. Indeed, the
previous reasoning and the result of R. Berger imply that some tilings cannot
be assembled carelessly otherwise a mismatch may appear. In other words,
there exist tilings such that the local constraints imposed by the glues are
not sufficient to encode how to assemble them. This was not a problem
for H. Wang which introduced this model to solve a theoretical problem.
However, this remark became problematic when practical applications of
Wang tiles appeared in crystallography and self-assembly.

1.3 Self-assembly and aTam

E. Winfree introduced in [48] a computation model called abstract tile as-
sembly model (aTAM)3. This model adds several modifications to Wang tiles.
Firstly, the notion of assembly and binding are formally defined in aTAM in
order to model the computations done during a run of a program. Secondly,
mismatches are authorized. Thirdly, some dominoes may not have glues on
some of their sides which implies that a terminal assembly may be finite.
Fourthly, some tiles are initially puts on the 2D grid before computations
(i.e. bindings) start, these tiles form an assembly called the seed. By con-
sidering these modifications, we obtain the model of non-cooperative aTAM
or aTAM at temperature 1. The temperature is a parameter introduced
by E. Winfree. When it is greater than 2, the model is called cooperative
aTAM and is able to simulate Turing machine similarly as Wang tiles. This
document focuses on non-cooperative aTAM and investigates which kind of

3Formal definition of aTAM is available in chapter 2.1
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Figure 1.3: An assembly where the seed is in black. The start of the assembly
is in white. We suppose that the two glues in red are identical. Thus it is
possible to try to pump the blue tiles between them. In this example, this
pumping fails since a collision occurs with the start of the assembly. Here,
this collision creates a mismatch: two neighboring tiles do not have the same
glue on their abuttal side.

computation this model can achieve.
At first glance, non-cooperative aTAM does not seems far more expres-

sive than its 1D counterpart. One key question is to develop a formalism
to describe efficiently the set of 2D shapes assembled by a set of dominoes.
Then, the same kind of results could be expected as for finite automata: de-
veloping programs which are able to find a set of dominoes whose terminal
assemblies are the 2D shapes described by this formalism (or conversely), de-
veloping a program which is able to optimize the number of dominoes, . . . To
show that such questions are decidable, a reasonable approach is to proceed
like the reasoning done for finite automata: to prove a kind of 2D pumping
lemma and to use it to show that some 2D shapes cannot be assembled by
aTAM. Surprisingly, all the attempts to show a 2D pumping lemma relying
on a simple combinatorial arguments have failed. A new phenomenon, called
collision, appears due to the 2D grid: some previous dominoes may block
the growth of an infinite periodic path as shown in Figure 1.3.

Until recently, few results were known about noncooperative aTAM. In
chapter 2, we present three recent developments about the limits and pos-
sibilities of this model of computation. Firstly, about the decidabillity of
this model, we present a 2D pumping lemma which strongly hints that this
model cannot simulate Turing machine. Secondly, this result allows to con-
clude that directed non cooperative aTAM (a special case where there is only
one terminal assembly) is decidable. Thirdly, about the complexity of this
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model, we exhibit a set of dominoes of size n whose terminal assemblies are
all finite, bounded and always contain the same path of length Ω(n log n).
Such a path is called efficient and its existence implies that noncooperative
aTAM is able to achieve computations relying on collision which cannot be
done by finite automata. This result also hints that the non-directed case of
non-cooperative aTAM may be more powerful than the directed one.

E. Winfree introduced aTAM for practical application in self-assembly.
Indeed, it is possible to build DNA tiles which are expected to behave as the
dominoes of cooperative aTAM. These experiments (see Chapter 2.1) were
successful and were followed by theoretical and/or experimental studies. For
non-cooperative aTAM, collisions are challenging to reproduce experimen-
tally.

1.4 Crystallography and flip

In order to solve the domino problem, R. Berger had to encode computations
done by a Turing machine using Wang tiles. The classical transformation of
a run of a Turing machine into in a set of Wang tiles relies on the following
idea: the column t of the tiling is used to represent the configuration of the
Turing machine after t time steps. Nevertheless, the Turing machine uses
only a finite amount of its available space (which is infinite). Then, one
domino should be able to fill the space which is unused by the simulation,
i.e. this domino is able to tile an infinite part of the 2D grid. Then, such a
domino is also capable to tile the whole grid to create a biperiodic tiling. In
such a case, the simulation does not start 4 and this transformation is not
sufficient to conclude: this set of dominoes allows to assemble a non-periodic
tiling but also a biperiodic one.

R. Berger had to encode a mechanism into his set of Wangs tile to force the
simulation to start whatever the seed is. In other words, no finite assembly is
able to tile an arbitrarily large area of the 2D grid periodically. Such a tiling
is called aperiodic. Following the work of R. Berger, aperiodicity became a
subject of research of its own with the aim to simplify the construction of
R. Berger. This result was achieved in 2015 with a set of eleven Wang tiles
and four glues developed by E. Jeandel and M. Rao [23]. Aperiodicity was
also studied when dominoes are not restricted to square, the most famous

4In aTAM, the introduction of the seed allows to avoid this problem.
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one is the Penrose tilings.
Several years after the work of R. Berger, aperiodicity became relevant

in crystallography. In physics, a crystal is a periodic structure of organized
atoms. Physicists believed that any organized structure had to be peri-
odic. In 1982, D. Shechtman et al [45] exhibited a structure where atoms
are organized without any symmetries: a quasi-crystal. Tilings became an
abstract model of crystallography: dominoes represent the atoms and the
glues represent the interactions between the atoms. Aperiodic tilings explain
the existence of quasi-crystals. Therefore, understanding how to assemble an
aperiodic tiling using only local constraints gained a new interest.

Manufacturing a quasi-crystal is challenging and is generally done by
cooling: at high temperature the interactions between the atoms are neg-
ligible but they become progressively more important as the temperature
decreases. In chapter 3, we present a stochastic process using flips (permuta-
tion of neighboring dominoes) to model the cooling of a crystal and analyze
it. We show that our model manage to explain the formation of a crystal
but it fails to model the formation of quasi-crystal if the parameters are too
simple. Finding a model which can explain the formation of a quasi-crystal
is still open.
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Chapter 2

Self-assembly

This chapter is a summary of three articles [30, 31, 32]. The bibliography,
definitions and theorems come from these articles and no new result is pre-
sented here. This document aims to harmonize notation, to regroup the
results, to present the open questions and to sketch the main proofs and
their key ideas.

2.1 Introduction

Self-assembly is the process by which independent, unsynchronised compo-
nents coalesce into complex forms and patterns, using geometry and local
constraints to exchange information, and perform different sorts of computa-
tions. In particular, self-assembly is the process by which molecules, and in
particular biomolecules, acquire their shape (and therefore their function).

A computational theory of self-assembly has a wealth of applications
in a large range of fields and scales. At the molecular level, program-
ming molecules would enable us to interact with living organisms, poten-
tially defeating the geometric strategies used by nasty viruses to penetrate
cells. Smart materials with new properties such as self-reproduction and self-
repairing are another example. At a much larger scale, industrial processes
could also benefit from a better understanding of self-assembly, as it could
streamline processes and make industrial robots simpler.

This theory has already yielded experimental realisations such as DNA
Origami [41], allowing anyone to make their own molecules of any prescribed
shape of a diameter between 10nm and 500nm. DNA Self-Assembly has
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also been used to build fractal shapes [43], information retrieval circuits [36],
cyclic machines using DNA as machine material and as fuel [49]. Another
recent application has been the amplification of minuscule concentrations of
a molecular compound in solution, by using it as a “seed” for self-assembling
large structures [34]. DNA storage [6] has also been proposed and imple-
mented as a technique to store a tremendous amount of information in a tiny
space, with millions of years of potential durability.

These developments have happened in parallel to, and with interactions
with work on the computer science theory of tile assembly. The most stud-
ied model in that direction is the abstract Tile Assembly Model (aTAM),
created by Winfree [48, 42] with inspiration from Wang tilings [47]. This
model studies assemblies made of square tiles with colours on their borders.
Using a finite set of tile types, and an assumed infinite supply of each type,
the assembly process starts with an initial “seed” assembly, and proceeds
nondeterministically and asynchronously, one tile at a time. Unlike Wang
tilings, which is mostly concerned with (potentially undecidable) full covers
of the plane, the abstract Tile Assembly Model studies the assembly sequence
of an assembly, which is the sequence of binding events necessary to build a
shape.

In the fully general abstract Tile Assembly Model, tile borders have a
glue strength on their border, and the model has a global assembly threshold
called the “temperature”: in order to remain stably attached, the sum of
glue strengths on the attached borders of a tile must be at least equal to the
temperature. One of the key complexity measures of this model is program-
size complexity, meaning the number of tile types in the tileset. The fact that
this model can simulate Turing machines has been used to encode complex
shapes with a number of tile types logarithmic in the Kolmogorov complexity
of the shapes [46]. Moreover, the aTAM model is also intrinsically universal,
meaning that there is a single finite “universal” tileset capable of simulating
any other tileset up to a constant scaling factor [11]. Over the years, a number
of consequences and extensions of that result have also been studied [12, 9,
10], and intrinsic universality has also been used to classify models according
to their simulation power [28].

2.1.1 Noncooperative self-assembly

Noncooperative self-assembly is a restriction of the aTAM to a temperature
of 1, meaning that tiles always attach to an existing assembly as soon as
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at least one side has its colour matching the colour of the current assembly.
In other words, the assembly cannot “wait” for two different “branches”
to meet at a point in the plane before growing further (see section 2.2 for
detailed definitions). The restriction of this model to one-dimension is exactly
equivalent to finite automata, where tiles map to the edges of the automaton,
and border colours to states (see Figure 1.2).

The only form of synchronisation in this model is by geometric “block-
ing”, where two branches compete for a position in the plane, and the first
one to get there can continue to grow. The fundamental question of nonco-
operative self-assembly is whether this rather weak form of communication
is sufficient to achieve synchronisation. This has been an open problem since
the early days of the field, and research in variants of the model has shown
surprising results, in that every variation of the noncooperative model, how-
ever minor, seems to endow it with arbitrary computational capabilities. In
the three-dimensional extension, for example, one can arrange little “bridges”
and “tunnels” to block one branch of a test while allowing the other one to
continue, which allows one to read and write bits [7]. In two dimensions, using
random assembly sequences rather than asynchronous ones yields the same
result [7], and so do negative glues [35], polyomino tiles (2×1 is enough) [17],
polygonal tiles, provided they have at least seven sides [21]. Separating the
assembly process into stages with different sets of tiles available at each stage
also makes the model Turing-universal [1], which is also the case for a model
with detachable tiles [24].

On the negative side, no tile set is intrinsically universal at tempera-
ture 1 [33], meaning that no tile set can simulate all temperature 1 tile
assembly systems, even when rescaled. This result strongly hints that 2D
noncooperative tile assembly is not capable of performing Turing computa-
tion, since it is in particular not capable of simulating Turing machines inside
a rectangle [33], which is the only known form of Turing computation in tile
assembly. Moreover, we have recently shown that long enough paths built by
a temperature-1 tile assembly system are pumpable or fragile, meaning that
their growth can only be controlled within a finite radius, after which they
degenerate into simple periodic paths or their growth can be stoped [32], we
present this result and the roadmap of its proof in section 2.3. Combining
this result with [13] allowed us to conclude that directed temperature-1 tile
assembly system are decidable in [31] (see section 2.4) and to give a classifi-
cation of the different kinds of terminal assemblies (see section 2.5.1).

One particularly puzzling fact about 2D noncooperative self-assembly is
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that even though it seems computationally weak, a handful of nontrivial
algorithms have been designed, including assemblies of diameter Ω(n log n),
produced by a tileset of size n [27, 30], we present one this construction in
section 2.5.2. In three-dimensions, recent results have also shown how to
build thin rectangles [20, 19] with almost matching upper and lower bounds.

2.2 Definitions

As usual, let R be the set of real numbers, let Z be the set of all integers,
let N be the set of all natural numbers including 0, and let N∗ be the set
of all natural numbers excluding 0. The domain of a function f is denoted
dom(f), and its range (or image) is denoted f(dom(f)).

2.2.1 Abstract tile assembly model

A tile type is a unit square with four sides, each consisting of a glue type and
a nonnegative integer strength. Let T be a a finite set of tile types. The sides
of a tile type are respectively called north, east, south, and west.

An assembly is a partial function α : Z2 99K T where T is a set of
tile types and the domain of α (denoted dom(α)) is connected.1 Two tile
types in an assembly are said to bind (or interact, or are stably attached),
if the glue types on their abutting sides are equal, and have strength ≥ 1.
An assembly α induces an undirected weighted binding graph Gα = (V,E),
where V = dom(α), and there is an edge {a, b} ∈ E if and only if the tiles at
positions a and b interact, and this edge is weighted by the glue strength of
that interaction. The assembly is said to be τ -stable if every cut of Gα has
weight at least τ .

A tile assembly system is a triple T = (T, σ, τ), where T is a finite set
of tile types, σ is a τ -stable assembly called the seed, and τ ∈ N is the
temperature. Throughout this chapter, τ = 1.

Given two τ -stable assemblies α and β, we say that α is a subassembly of
β, and write α ⊑ β, if dom(α) ⊆ dom(β) and for all p ∈ dom(α), α(p) = β(p).
We also write α →T

1 β if we can obtain β from α by the binding of a single
tile type, that is: α ⊑ β, |dom(β) \ dom(α)| = 1 and the tile type at the

1Intuitively, an assembly is a positioning of unit-sized tiles, each from some set of tile
types T , so that their centers are placed on (some of) the elements of the discrete plane
Z2 and such that those elements of Z2 form a connected set of points.
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position dom(β)\dom(α) stably binds to α at that position. We say that γ is
producible from α if there is a (possibly empty) sequence α1, α2, . . . , αn where
n ∈ N ∪ {∞}, α = α1 and αn = γ, such that α1 →T

1 α2 →T
1 . . . →T

1 αn.
The set of productions, or producible assemblies, of a tile assembly system

T = (T, σ, τ) is the set of all assemblies producible from the seed assembly σ
and is written A[T ]. An assembly α is called terminal if there is no β such
that α →T

1 β. The set of all terminal assemblies of T is denoted A□[T ]. If
there is a unique terminal assembly, i.e. |A□[T ]| = 1, then T is directed and
in this case, this unique terminal assembly is denoted γ.

Given two τ -stable assemblies α and β, the union of α and β, write
α∪ β, is an assembly defined if and only if and for all p ∈ dom(α)∩ dom(β),
α(p) = β(p) and either at least one tile of α binds with a tile of β or dom(α)∩
dom(β) ̸= ∅. Then, for all p ∈ dom(α), we have (α ∪ β)(p) = α(p) and for
all p ∈ dom(β), we have (α ∪ β)(p) = β(p).

2.2.2 Paths

Let T be a set of tile types. A tile is a pair ((x, y), t) where (x, y) ∈ Z2 is
a position and t ∈ T is a tile type. Intuitively, a path is a finite, one-way-
infinite or two-ways-infinite simple (non-self-intersecting) sequence of tiles
placed on points of Z2 so that each tile in the sequence interacts with the
previous one, or more precisely:

Definition 1 (Path). A path is a (finite or infinite) sequence P = P0P1P2 . . .
of tiles Pi = ((xi, yi), ti) ∈ Z2 × T , such that:

• for all Pj and Pj+1 defined on P it is the case that tj and tj+1 interact,
and

• for all Pj, Pk such that j ̸= k it is the case that (xj, yj) ̸= (xk, yk).

By definition, paths are simple (or self-avoiding). For a tile Pi on some
path P , its x-coordinate is denoted xPi

and its y-coordinate is denoted yPi
.

Then, the position of Pi is pos(Pi) = (xPi
, yPi

), and we denote type(Pi) its
tile type. Hence if Pi = ((xi, yi), ti) then pos(Pi) = (xPi

, yPi
) = (xi, yi) and

type(Pi) = ti. A “position of P” is an element of Z2 that appears in P (and
therefore appears exactly once).

Whenever P is finite, i.e. P = P0P1P2 . . . Pn−1 for some n ∈ N, n is
termed the length of P and denoted by |P |. An index i of a finite path P is a
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natural number i ∈ {0, 1, . . . , |P | − 1}. The vertical height of a finite path P
is defined as max{|yPi

− yPj
| : 0 ≤ i ≤ j ≤ |P | − 1} and its horizontal width

is max{|xPi
− xPj

| : 0 ≤ i ≤ j ≤ |P | − 1}.
The concatenation of a finite path P with a path Q is the concatenation

PQ of these two paths as sequences, and is a path if and only if (1) the last
tile of P interacts with the first tile of Q and (2) P and Q do not intersect
each other. For a path P = P0 . . . PiPi+1 . . . Pj . . ., we define the notation
Pi,i+1,...,j = PiPi+1 . . . Pj, i.e. “the subpath of P between indices i and j,
inclusive”. In the special case of a subpath where i = 0, we say that P0,1,...,j

is a prefix of P . When P is finite and j = |P | − 1, we say that Pi,...,|P |−1 is a
suffix of P .

Although a path is not an assembly, we know that each adjacent pair of
tiles in the path sequence interact implying that every path uniquely repre-
sents an assembly containing exactly the tiles of the path, more formally: for
a path P = P0P1P2 . . . we define the set of tiles asm(P ) = {P0, P1, P2, . . .}
which we observe is an assembly2 and we call asm(P ) a path assembly. Given
a tile assembly system T = (T, σ, 1) the path P is a producible path of T
if asm(P ) does not intersect3 the seed σ and the assembly (asm(P ) ∪ σ) is
producible by T , i.e. (asm(P )∪ σ) ∈ A[T ], and P0 interacts with a tile of σ.
Consider an assembly α (resp. a path Q), as a convenient abuse of notation
we sometimes write σ∪P (resp. P ∪Q) as a shorthand for σ∪asm(P ) (resp.
asm(P )∪asm(Q)). Intuitively, although producible paths are not assemblies,
any producible path P has the nice property that it encodes an unambiguous
description of how to grow asm(P ) from the seed σ to produce the assembly
asm(P ) ∪ σ. Given a tile assembly system T = (T, σ, 1), we define the set
of producible paths of T to be P[T ]. Given a directed tile assembly system
T = (T, σ, 1) and its unique terminal assembly γ, the path P is a path of γ
if asm(P ) is a subassembly of γ. We define the set of paths of γ to be:

P[γ] = {P | P is a path and asm(P ) is a subassembly of γ}
2I.e. asm(P ) is a partial function from Z2 to tile types, and is defined on a connected

set.
3Formally, non-intersection of a path P = P0P1, . . . and a seed assembly σ is defined

as: ∀t such that t ∈ σ, ∄i such that pos(Pi) = pos(t).
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2.2.3 Intersections

If two paths, or two assemblies, or a path and an assembly, share a common
position we say that they intersect at that position. Furthermore, we say
that two paths, or two assemblies, or a path and an assembly, agree on a
position if they both place the same tile type at that position and conflict
if they place a different tile type at that position. We say that a path P is
fragile to mean that there is a producible assembly α that conflicts with P .
Intuitively, if we grow α first, then there is at least one tile that P cannot
place.

Definition 2 (Fragile). Let T = (T, σ, 1) be a tile assembly system and
P ∈ P[T ]. We say that P is fragile if there exists a producible assembly α ∈
A[T ] and a position (x, y) ∈ (dom(α) ∩ dom(asm(P ))) such that α((x, y)) ̸=
asm(P )((x, y)).4

For the special case of directed tile assembly systems, since the terminal
assembly is unique there are no fragile paths in P[γ].

Let P and Q be two paths. We say that Q grows from P at index i, if
the only intersection between Q and P occurs at pos(Q0) = pos(Pi) and is
an agreement.

2.2.4 Periodicity and pumpability

The translation of an assembly α by a vector −→v ∈ Z2, written α +−→v , is the
assembly β defined for all (x, y) ∈ (dom(α) +−→v ) as β(x, y) = α((x, y)−−→v ).
Translations of tiles and paths are defined similarly. For A,B ∈ Z2, we define−→
AB = B−A to be the vector from A to B, and for two tiles Pi = ((xi, yi), ti)

and Pj = ((xj, yj), tj), we define
−−→
PiPj = pos(Pj)−pos(Pi) to mean the vector

from pos(Pi) = (xi, yi) to pos(Pj) = (xj, yj).
An infinite (resp. bi-infinite) path P is periodic (resp. bi-periodic) if and

only if there exists j ≥ 0 such that for all i ≥ 0 (resp. i ∈ N), we have

Pi+j = Pi +
−−→
P0Pj. In this case, we call Q = P0,...,j a period of the path P and

we denote this path by (Q)∗ (resp. ∗(Q)∗).

4Here, it might be the case that α and P conflict at only one position by placing two
different tile types t and t′, but that t and t′ may place the same glues along P . In this
case P is not producible when starting from the assembly α because one of the tiles along
the positions of P is of the wrong type.
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An infinite path P is ultimately periodic if and only if it can be written
as R(Q)∗ where R is a finite path called the transient part of P and (Q)∗ is
the periodic path of period Q called the periodic part of P .

A producible path P is pumpable if and only if there exists a producible
ultimately periodic path R(Q)∗ such that RQ is a prefix of P . In this case,
Q is a subpath of P and we say that Q is pumpable5 in P .

2.2.5 Glues and columns

For 0 ≤ i ≤ |P | − 2, the glue used to bind tiles Pi and Pi+1 is designed by
glue(PiPi+1). This glue is horizontal if yPi

= yPi+1
and vertical otherwise.

An horizontal glue points to the east if xPi
< xPi+1

(pointing to the west,
north or south is defined similarly). An horizontal glue is located at column
c = min{xPi

, xPi+1
} and we say that P crosses trough column c. Without

loss of generality, the path P crosses trough the columns 0 to w− 1 where w
is the horizontal width of P .

2.3 A 2D Pumping Lemma

The aim of this section is to sketch the proof the following result.

Theorem 1 (2D Pumping lemma). Let T = (T, σ, 1) be any tile assembly
system in the non-cooperative abstract Tile Assembly Model (aTAM), and let
P be a path producible by T . If P has vertical height or horizontal width at
least (8|T |)4|T |+1(5|σ| + 6), then P is pumpable or fragile.

The sketch proof is divided in four subsections, each dedicated to different
key tools. Roughly, spans introduced in subsection 2.3.1 are needed to em-
ulate the combinatorial aspect of the proof of the pumping lemma for finite
automata. Subsection 2.3.2 is about visible glues which are used as the start-
ing point of any geometrical reasoning of this section. In subsection 2.3.3,
we explain how a sequence of three visible glues forming a pattern called
shield can be found in any large enough path. This result combines some ge-
ometrical arguments about visible glues and combinatorial arguments about
spans. Finally, we conclude in subsection 2.3.4 with the shield lemma: any

5Note that, if a producible path P can be written as P = RQS then it is logical to
define P is pumpable as for all n ∈ N, P = RQnS is producible. Nevertheless, the suffix
S of P is dealt later separately in section 2.4 as a 2D artefact called a comb.
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column 5 column 10

a) A path with two glues of the same
type on columns 5 and 10.

column 5 column 10

b) The subpath between the two
columns can be pumped.

Figure 2.1: A case where each column crossed by the path is crossed exactly
one time. Here, the glues on columns 5 and 10 are identical and the subpath
between the two columns can be pumped into an infinite periodic path.

producible path with a shield is pumpable or fragile. This last part of the
proof is the most difficult one and relies on complex geometrical arguments.
Along this section, we consider a fixed tile assembly system T = (T, σ, 1).

2.3.1 Span and visible glues

Consider a producible path P whose last tile is the unique easternmost one.
Foremost, let’s try to emulate the reasoning of the pumping lemma for finite
automata in the simple example shown in Figure 2.1 where the path P grows
horizontally. In this case, for each index i of P , glue(PiPi+1) points to the
east and is the only glue located at column i + 1. The path is pumpable as
soon as two of its glues have the same type. Now, consider a more complex
example as the one shown in Figure 2.2. Here, P goes back and forth several
times trough the same column. Having two glues of the same type is not
sufficient anymore to be pumpable.

A first result towards a kind of pumping lemma was achieved by Meunier
et al [28], this result known as the windows movie lemma relies on the key
notion of movie. In our context 6, the movie of P through column i is the
ordered sequence of glues of P which are located on column i. The glues
of a movie are ordered by their order of appearance in P and each glue is
characterized by its type, its position and the direction pointed by the glue.
The windows movie lemma claims that if two movies are identical up to some
translation then it is possible to copy and paste the tiles between the two
movies to obtain an ultimately periodic path, see Figure 2.3. It is a first step
toward a pumping lemma but it is not sufficient by itself. Indeed, movies

6Note that, the result of [28] is more general than the simplified version used here.
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column 5 column 10

a) A path crossing several times
columns 5. The two glues in red
have the same type.

column 5 column 10

b) The subpath between the two
glues cannot be pumped.

Figure 2.2: A case where a column is crossed several times by a path. Here,
finding two identical glues is not sufficient: the subpath between the two
glues cannot be used to generate a bi-periodic path.

can become larger and larger as P grows to the east and thus two identical
movies up to some translation cannot be found by a simple combinatorial
argument.

In fact, a movie memorizes too much information for each column. Indeed,
we will conclude by keeping only two glues per column. We simplified the
notion of windows by introducing the notion of of span (see Figure 2.4).

Definition 3. Consider a path P and c ∈ Z, the span of P trough col-
umn c is defined as a couple of indices (s, n) such that glue(PsPs+1) (resp.
glue(PnPn+1)) is the southernmost (resp. northernmost) glue among the glues
of P located at column c.

The glue(PsPs+1) and the glue(PnPn+1) are called visible glues. Moreover,
glue(PsPs+1) (resp. glue(PnPn+1)) is said to be visible from the south (resp.
from the north). The glue ray ls (resp. ln) associated to glue(PsPs+1) (resp.
glue(PnPn+1)) is the ray going south (resp. north) and starting at the midway
point of Ps and Ps+1 (resp. Pn and Pn+1), see Figure 2.4. By definition of
a visible glue, the path P crosses a glue ray only one time at its start-point
and can go back and forth trough column i only between the start-points of
ls and ln. The size of this gap is called the width of the span defined formally
by xPn − xPs .

Now, if s < n then glue(PsPs+1) is before glue(PnPn+1) according to their
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column 5 column 10

a) The windows of columns 5 and 10
are identical up to some translation.

b) The part between the two
columns can be pumped.

Figure 2.3: A case where two columns have the same windows up to some
translation. The part of the path between the two columns can be used to
generate a bi-periodic path.
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column 5 column 10

Figure 2.4: The orientation of the span though column 5 is up (the blue glue
comes before the red one), it is directed to the east and its width is 8. The
orientation of the span though column 10 is down (the red glue comes before
the blue one), it is directed to the east and its width is 4. The red glues are
visible from the north while the blue ones are visible from the south.

order of appearance in P . In this case, the orientation of the span is up,
otherwise the orientation of the span is down. If the orientation of the span
is up (resp. down), the type of the span is the type of glue(PsPs+1) (resp.
glue(PnPn+1)) and the span points in the same direction as glue(PsPs+1)
(resp. glue(PnPn+1)).

There exist 4|T | kinds of span when taking into account the orientation,
the direction pointed by the span and the type of the span.

2.3.2 Distribution of visible glues

Consider a producible path P whose last tile is the unique easternmost one,
then the distribution of its visible glues is in fact heavily constrained by three
rules which were initially proven in [33], see Figure 2.5. Firstly, the order of
the visible glues is coherent with the order the columns.

Lemma 1. Consider a producible path P whose last tile is the unique east-
ernmost one and 0 ≤ i < j < |P | − 1 and c, c′ ∈ Z such that glue(PiPi+1) is
located at column c, glue(PjPj+1) is located at column c′, both glues point to
the east (resp. west) and are both visible from the same direction then c < c′

(resp. c > c′).

Secondly, either all glues visible from the north point to the east or all
glues visible from the south point to the east. Up to some horizontal sym-
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column 1

column 4

column 10 column 17

column 25

Figure 2.5: The last tile of the path is its easternmost one (the only one east
of column 25). All glues visible from the south from columns 0 to 4 (resp. 5
to 25) point to the west (resp. to the east). All glues visible from the north
points to the east. Among these glues, the ones of column 1 (green), column
10 (red) and column 17 (blue) appear in the following order along the path:
green, red and blue.

metry, we can consider that all glues visible from the north points to the
east.

Lemma 2. Consider a producible path P whose last tile is the unique east-
ernmost one then, up to some symmetry, all glues of P visible from the north
point to the east.

Thirdly, for the glues visible from the south, the ones pointing west are
all gathered on the left side of P while the ones pointing east are all gathered
on the right side of P . More formally,

Lemma 3. Consider a producible path P whose last tile is the unique east-
ernmost one then, there exists a column c such that all glues visible from the
south on column c′ < c (resp. c′ ≥ c) points to the west (resp. east).

The proofs of these lemmas all rely on cutting the 2D plane by using the
glue rays of two different visible glues. Indeed, a bi-infiinite simple curve can
be obtained by combining two glue rays and the subpath of P between the
two visible glues. By the Jordan curve theorem, this curve cuts the plane in
two parts, its right side and its left side (we consider that the orientation of
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column 5

column 17

Figure 2.6: How to use visible glues: the glue in red (resp. blue) is visible
from the south (resp. north) and points west. The two visible glues delimit
a green area. The last tile of the path is the easternmost one and must be
in the right side of the cut (in green). Since the glue in blue points west, the
end of the path is in the left side of the cut which is a contradiction.

the curve is the same as P ). For an example of such a reasoning, we sketch
the proof of lemma 2, see Figure 2.6. By contradiction, consider glue(PsPs+1)
visible from the south and pointing west and glue(PnPn+1) visible from the
north and also pointing west. Without loss of generality suppose that s < n
and then the right side of the cut defined by the two glue rays contains
the last tile of P since it is the unique easternmost one. Moreover, the
left side of the cut contains the tile Pn+1 since glue(PnPn+1) points to the
west. Then Pn+1,...,|P |−1 must reach P|P |−1 by crossing either one of two glue
rays or by intersecting Ps+1,...,n. This is contradicting either the visibility of
glue(PsPs+1), the visibility of glue(PnPn+1) or the fact that P is simple.

2.3.3 Shield

In this subsection, we explain how to find a pattern called shield in any
path P large enough. In the next subsection, we conclude by showing that a
path with a shield is fragile or pumpable (see Lemma 5). Figure 2.7 illustrates
this definition.

Definition 4 (A shield (i, j, k) for P ). Let P be a path producible by some
tile assembly system T = (T, σ, 1). We say that the triple (i, j, k) of indices is
a shield for P if 0 ≤ i < j ≤ k < |P | − 1, and the following three conditions
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Pi

Pj

Pk

li

lk

lj

Figure 2.7: A shield (i, j, k): the two glues in red have the same type and
are visible from the south. The glue in blue is visible from the north. In this
example, the translation of lk does not cross the path.

hold:

1. glue(PiPi+1) and glue(PjPj+1) are both of the same type, visible from
the south and pointing in the same direction; and

2. glue(PkPk+1) is visible from the north, for notation let lk be its glue
ray; and

3. If lk+
−−→
PjPi intersects with Pi,i+1,...,k (which may not be the case), there is

exactly one intersection, which is at the start-point of the ray lk +
−−→
PjPi.

Throughout the paper, li, lj and lk denote the glue rays of glue(PiPi+1),
glue(PjPj+1) and glue(PkPk+1), respectively.

Lemma 4. If P has vertical height or horizontal width at least

(8|T |)4|T |+1(5|σ| + 6),

then there is a shield in P or in a prefix of P .

Proof. Consider a path P of horizontal width L, for the first part of the
proof see Figure 2.8. Without loss of generality, we consider that the glues
of P are located between columns 0 and L − 1 and that the last tile of P
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ls

ln

ln
′

ls
′

lilj

lk

Figure 2.8: This path contains two shields. The first one is (i, j, k) where i
and j are pointing to the west and k is the easternmost glue of the path. The
second one (s, s′, n′) is obtained with two spans (s, n) and (s, n′) of decreasing
width.

is the easternmost one. To avoid interaction with the seed, we do not take
into account the columns which are crossed by the seed. Then, there are
L− |σ| spans to consider. By lemma 2, we suppose that all the glues visible
from the north are pointing east. Now, suppose that there is two indices
0 ≤ i < j ≤ |P |−1, such that glue(PiPi+1) and glue(PjPj+1) are visible from
the south, of the same type and are pointing west. In this case, we claim that
(i, j, |P | − 1) is a shield, see Figure 2.8. Indeed, condition 1 of definition 4
is satisfied by hypothesis and condition 2 of definition 4 is satisfied since the
last tile of P is the unique easternmost one. For condition 3 of definition 4,

by lemma 1, we have x−−→
PjPi

> 0 and thus lk +
−−→
PjPi is east of column L and

cannot intersect with P and |σ|.
Now consider that there are less than |T | glues of P which are visible from

the south and pointing west. By lemma 3, any span of column c ≥ |T | + |σ|
is pointing east whatever its orientation is (since the two visible glues point
to the east). Consider the first column c ≤ |T | + |σ| where such a span
appears. This span is called (s, n), its width is w and w.l.o.g. we suppose
that its orientation is up. We claim that if more than w spans share the same
orientation and type with (s, n) then there is a shield in P . Indeed consider
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ls

ln

li lj ls

ln
L′

w

Figure 2.9: Consider the path P0,...,n+1 and (s, n), its span trough column c.
In the left case, the horizontal width L′ of P0,...,n+1 is far larger than c. In
this case, there are enough visible glue of the same type (in green) to find a
shield (i, j, n). In the right case, the width of the span w is far larger than L′.
By switching the x and y axis, we obtain a path of horizontal width w and
the widths of its spans are bounded by L′.

another span (s′, n′) of width w′ with the same type and orientation than
(s, n), see Figure 2.8. If w′ ≥ w, we claim that (s, s′, n′) is a shield. Indeed,
(s′, n′) is east of (s, n) and then by lemma 1, s < s′. Since the orientation of
(s′, n′) is up, then s′ ≤ n′. By definition of a span, glue(Pn′Pn′+1) is visible
from the north while glue(PsPs+1) and glue(Ps′Ps′+1) are visible from the
south. Since glue(Ps′Ps′+1) and glue(Pn′Pn′+1) are on the same column then

ln
′
+
−−−→
Ps′Ps and ln are on the same column. Since w′ ≥ w then the start-point

of ln
′
+

−−−→
Ps′Ps is north of the start-point of ln then ln

′
+

−−−→
Ps′Ps can intersect

with Ps+1,...,n′ only at its start-point. Thus (s, s′, n′) is a shield. To conclude
this second part, either there is a shield in P or the widths of spans sharing
the same orientation and type are strictly decreasing.

Now, suppose that there are less than w spans which share the same
orientation and type than (s, n). In order to bound w, consider the prefix
Q = P0,...,n+1. If the horizontal width of Q is greater than |T |(c+1)+ |σ|+ |T |
then there are at least c+ 1 glues visible from the south pointing east of the
same type in Q, see Figure 2.9. Let glue(PiPi+1) (resp. glue(PjPj+1)) be
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the first (resp. last) of these visible glues. Since
−−−→
QjQi < −c, by a reasoning

similar to the one of the first paragraph (i, j, n + 1) is a shield of Q. Now, if
the horizontal width of Q is bounded by |T |(c + 1) + |σ| + |T |, we rotate Q
such that its horizontal span is w and the widths of its spans are bounded
by |T |(c + 1) + |σ| + |T | (see Figure 2.9). If w is large enough, two identical
spans of increasing width can be found and it is possible to conclude as in
the second paragraph of the proof.

To conclude, we iterate this reasoning for the 2|T | kinds of span to obtain
the bound stated in the lemma. The detailed computations are available
in [32].

2.3.4 Proving the shield lemma: right priority path
and dominant tiles

In this subsection, we present a roadmap of the shield lemma 5. Note that,
the whole proof is long, complicated and available in [32]. Here, many special
and technical cases are omitted.

Lemma 5 (Shield Lemma). Let P be a path producible by some tile assembly
system T = (T, σ, 1). If there exists a shield (i, j, k) in P then P is pumpable
or fragile.

Consider a path P with a shield (i, j, k). First of all, we are looking for
an area of the 2D grid devoided of any obstacles. It will be used to assemble
paths which are either periodic or conflicting with P . This area is the right
side of the cut delimited by the two glue rays li and lk and it is called the
workspace C (see Figure 2.10). Indeed, since glue(PiPi+1) points to the east,
σ and P0,...,i are in the left side of the cut. Then, workspace C may contain
only the tiles Pi+1,...,|P |−1. Therefore, for any path Q whose first tile binds
with Pi and which is inside C, the path P0,...,iQ is a producible path.

By property 1 of a shield, glue(PiPi+1) and glue(PjPj+1) have the same

type. We denote by R the path Pj+1,...,|P |−1 +
−−→
PjPi, we start by assembling

P0,...,i first and then we try to assemble R, see Figure 2.11. Of course, R may
not fully grow but in this case, it must leave C. To do so, R cannot intersect
with li otherwise Pj+1,...,|P |−1 would intersect lj (contradicting property 1 of a
shield). If R leaves C by crossing Pi+1,...,k then either R conflicts with Pi+1,...,k

(and P is fragile and the proof ends) or we can modify R by connecting it
with Pi+1,...,k as shown in Figure 2.11. Now, let’s start again by assembling
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li lj

lk

C

Figure 2.10: A path P with a shield (i, j, k). The beginning of the path P0,...,i

is in green, its middle Pi+1,...,j is in yellow and its end Pj+1,...,|P |−1 is in blue.
Its workspace is in red and the translation of lk is not in the workspace.

P0,...,j first and then let’s try to assemble R +
−−→
PiPj, see Figure 2.12. By a

similar reasoning, we can connect R +
−−→
PiPj and Pj+1,...,k. By iterating this

reasoning, either P is fragile or the path R is modified until it obtains the
following properties (see Figure 2.13):

1. R and R +
−−→
PiPj are in C and R0 = Pj+1 +

−−→
PjPi;

2. R|R|−1 is “near” lk;

3. R is a patchwork made of subpaths of Pi,...,k and Pj,...,k +
−−→
PjPi.

We omitted several details in the construction of path R but note that

the hypothesis 3 of the shield lemma is required to avoid that Pj,...,k +
−−→
PjPi

ends inside C without intersecting with lk or Pi+1,...,k. In such a case, R would
not end near lk (property 2 of R would be false) and R would not be long
enough for the next steps. Also, our example represents a simple case where
the intersection between R and Pi,...,k is reduced to a single position. In a
more general context, there may be several intersections between the two
paths and choosing the good one must be done carefully. This problem is
solved in [32] by using an order introduced in [33]:
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li

lj

lk

C
li

lk

C

Figure 2.11: On the left side, segment Pi+1,...,j of Figure 2.10 is removed. The
translation of the end of the path, called R, is glued directly at the end of
P0,...,i. Note that, R must leave the workspace to reach the translation of lk.
On the the right side, R is modified and connected with the original path
before leaving the workspace.

lj

lk

C
lj

lk

C

Figure 2.12: On the left side, the path R obtained at the end of Figure 2.11 is
translated and glued at the end of the yellow segment of P , see Figure 2.10.
If the translation of R leaves the workspace then it is modified as previously
by connecting it with the end of P as shown on the right side.
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li

lj

lk

C
lj

lk

C

Figure 2.13: By iterating the reasoning of Figure 2.11 and 2.12, we obtain
this path R. When R is glued at the end of P0,...,i (on the left side) then it
stays inside the workspace and ends near ends lk. When R is glued at the
end of P0,...,j (on the right side) then it stays inside the workspace.

Definition 5 (The right priority path of a set of paths). Let P and Q be
two paths, where P ̸= Q and moreover neither is a prefix of the other, and
with pos(P0) = pos(Q0) and pos(P1) = pos(Q1). Let i be the smallest index
such that i ≥ 0 and Pi ̸= Qi. We say that P is the right priority path of P
and Q if either (a) P0,1,...,i is a right turn from Q or (b) pos(Pi) = pos(Qi)
and the type of Pi is smaller than the type of Qi in the canonical ordering of
tile types.

For any finite set S of paths, we extend this definition as follows: let
p0 ∈ Z2, p1 ∈ Z2 be two adjacent positions. If for all P ∈ S, we have
pos(P0) = p0 and pos(P1) = p1, we call the right-priority path of S the path
that is the right-priority path of all other paths in S.

The path R is the right priority path among all the paths which start by

Pi and Pi+1, use tiles of Pi,...,k and Pj,...,k +
−−→
PjPi and end near lk. The notion

of right priority is key in most recent results about temperature 1.
Now, we aim to show that P is pumpable. Remind that we want to

work inside the workspace C, then we start by looking for a tile Pd such that

Pd + a
−−→
PiPj belongs to C for all a ∈ N. Finding such a tile can be done by

drawing the tangent to Pi+1,...,k of direction
−−→
PiPj, see Figure 2.14. This tile

Pd is called a dominant tile and it has the following properties, see Figure
2.14:
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li
lj

lk

Pd C
li

lk

C−

C+

Pu

Pd

Pv

Figure 2.14: On the left side, the dominant tile Pd is found by drawing the
tangent to Pi+1,...,k. There exist two indices u ≤ d ≤ v such that Pu =

Pv +
−−→
PjPi and Pd,...,v +

−−→
PjPi is a subpath of R. Then, R and its translation

can be used to assemble the path on the right side which is the beginning of
a periodic path.

1. The ray ld starting at pos(Pd) and going south intersects R only at
pos(Pd);

2. This ray ld cuts C in two parts: C− (resp. C+) which contains li and
Pi+1,...,d (resp. Pd,...,k and lk);

3. If d > j, pos(Pd) +
−−→
PjPi is in C− and for all a ∈ N, Pd + a

−−→
PiPj is in C+.

For property 1 of a dominant tile, remark that the path R starts in
pos(Pi+1) which is in C− and ends near lk (by property 2 of path R) which is
in C+ thus it must cross ld. By definition of d and property 3 of path R, the
only possible intersection between R and ld is at pos(Pd). For property 3 of
a dominant tile, the special case d ≤ j is omitted here.

Now, the definition of a right priority path and property 3 of the dominant

tile imply that Pd +
−−→
PjPi is a tile of R which belongs to C−, see Figure

2.14. Thus, R must intersect with Pi+1,...,d after passing by Pd +
−−→
PjPi. This

intersection implies that there exist u ≤ d ≤ v such that Pu = Pv +
−−→
PjPi. If

Pu,...,v is pumpable, then the proof ends.
Otherwise, we claim that there exists another dominant tile Pd′ with

d′ > d. To find this tile, consider the shortest suffix of Pu,...,d such that
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li

lk

C−

C+

Pu

Pd

Pv

Figure 2.15: If the subpath Pu,...,v of Figure 2.14 is used to generate a periodic
path then it leaves the workspace. In this case, we will find a new dominant
tile Pd′ where the red dot is (see Figure 2.16).

Pu,...,d + a
−−→
PiPj intersects with Pd+1,...,k for some a > 1 (see Figure 2.15), this

intersection occurs at Pd′ . We claim that Pd′ is a dominant tile. Indeed, by

concatenating Pu,...,d + a
−−→
PiPj and ld + a

−−→
PiPj we obtain a curve which cuts C

into two parts and which satisfies the three properties of a dominant tile, see
Figure 2.16. By iterating this reasoning, the last dominant tile of P belongs
to a pumpable subpath.

2.3.5 Discussion

The bound of the pumping lemma 1 seems obviously unconventional and
we conjecture that a polynomial bound is achievable. One way to proceed
would be to upgrade the shield lemma. Indeed, in a previous unpublished
version [29], we relied on a weaker version of the shield lemma called the U-
turn lemma. This lemma required far more complex combinatorial arguments
to produce a bound which is tower exponential. Combining the shield lemma
and the window movie lemma may produce interesting results. Indeed, glue
ray are straight line while we could use more complex curve (which is done
in the recurrence of the proof of the shield lemma) or by including horizontal
glue in the reasoning. This upgraded shield lemma may allow more efficient
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li

lk

C− C+

Pu′

Pd′

Pv′

Figure 2.16: Following the failed attempt of Figure 2.15, we find a new
dominant tile Pd′ and a new subpath Pu′,...,v′ by iterating the same reasoning.
This time, the subpath is pumpable.

combinatorial arguments.
Also, in subsection 2.5.2, we show a construction which implies a lower

bound of Ω(|T | log |T |) for the pumping lemma. We discuss more about
these questions later since they concern the complexity and not the decid-
ability of non-cooperative aTAM. Concluding about the decidability of non-
cooperative aTAM was the main motivation to find a pumping lemma.

2.4 Decidability

Unfortunately the pumping lemma 1 is not enough to conclude about the
decidability of non-cooperative aTAM. Indeed, there are still two problems to
address. For the first problem, see Figure 2.17 where we consider a producible
path P . If P is large enough then the pumping lemma may conclude that P is
fragile by finding a producible path Q which conflicts with P . Nevertheless,
Q may be the prefix of a large path and the pumping lemma is required
again. We may end up in a case where a producible path R is assembled first
in order to block the path Q and then P is allowed to growth. Dealing with a
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path was hard but dealing with all the paths at the same time is even harder7.
The second problem occurs when the pumping lemma produces an ultimately
periodic path P . Then, another ultimately periodic path Q may grow on the
periodic part of P , see Figure 2.18. We say that Q is a comb of P (a notion
introduced by Doty et al [13]). By continuing this reasoning, it may be
possible to assemble an infinite sequence of ultimately periodic paths which
are able to achieve some complex computation together. Moreover, it should
noted that Cook et al [7] have shown that non-cooperative aTAM is able to
simulate almost surely a Turing machine if probabilities are introduced in
the model. Then we aim to show that any tile assembly system has a simple
(easy to describe) terminal assembly.

Nevertheless, the pumping lemma allows to conclude in the directed sub-
case. Indeed, the first problem does not exist anymore since fragility is not
possible. The second problem was solved by Doty et al in [13]. A comb Q
may grow on an ultimately periodic path P but no other comb can grow
on Q. Indeed, the intersections of the different combs will form a cycle and
copies of this cycle will invade the whole 2D grid, see Figure 2.19. The ter-
minal assembly becomes bi-periodic and is easily described by two vectors
and a finite pattern.

Note that, the bibliography is confusing on this point. Indeed, the result
of Doty et al [13] was published before ours [32] and relied on a different
version of the 2D pumping lemma. This version is stronger than the version
presented in Theorem 1 and published in [32]. Nevertheless, as stated in [32],
the proof of [13] still holds with our version of the 2D pumping lemma. Only
one remark is needed to deal with a comb Q growing on a periodic path P .
Indeed, the comb Q is not producible since its first tile does not bind with σ.
The trick is to consider a “new” seed made of σ and P as shown in Figure
2.20. To end any confusion, this patch was published in [31] with several
improvements concerning the complexity of the terminal assembly.

7Note that, a similar problem was solved in [33] in an other context.
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Figure 2.17: The first problem: (Top) A producible path P is able to perform
some “computation”. (Middle) Using the pumping lemma, a path R blocks
P but R is also able to do some “computation”. (Bottom) Similarly, a path
Q blocks R, allowing P to grow again.
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Figure 2.18: The second problem: an ultimately periodic path (in green)
grows from the seed (in black). Then, another ultimately periodic path (in
yellow) grows on the periodic part of the green path. This path is called a
comb. This sequence of combs may be infinite, hard to describe and may
encode complex computation.

Figure 2.19: The solution of the second problem in the directed case: the
intersections of the different combs create a cycle which delimits a red area.
In fact, this area is enough to describe the terminal assembly since the cycle
is able to invade the whole 2D grid and the configuration is bi-periodic.
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Figure 2.20: The pumping lemma should be applied on a producible path.
In order to pump a comb (here in yellow), we “cheat” as follow: the path
(in green in Figure 2.19) growing from the seed (in black) to the comb is
considered as part of the seed.

2.5 Complexity

2.5.1 The unique terminal assembly in the directed
case

In [31], we investigate the complexity of the unique terminal assembly in
directed non-cooperative aTAM. The previous study of Doty et [13] implies
that there exist four kinds of terminal assembly, see Figure 2.21:

• type (i): finite terminal assembly whose size is bounded by the 2D
pumping lemma;

• type (ii): non-periodic infinite terminal assembly characterized by a
finite number of finite paths, ultimately periodic paths and combs;

• type (iii): periodic terminal assembly characterized by a finite assembly,
one vector and a finite number of finite paths and combs;

• type (iv): bi-periodic terminal assembly characterized by a finite as-
sembly and two vectors.
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Since type(iii) is an hybrid case between type(ii) and type(iv), these terminal
assemblies are made of three different kinds of structures: non-periodic finite
assembly, ultimately periodic paths/comb and periodic/bi-periodic assembly.
In [31], we give an optimal characterization of the periodic/bi-periodic assem-
blies: they can be described with one/two vectors and a finite path where
each tile type appears at most one time. In other words, the periodic/bi-
periodic structures have to be hardcoded and there is no clever way to reuse
any tile type. The other improvements of [31] are more technical: we bound
where a comb appears for the first time on an ultimately periodic path, we
use the pumping lemma only two times to conclude by using a combinato-
rial argument to deal with the combs (instead of three times in [13]). Note
that finding the maximum length of the finite assembly/ultimately periodic
path/comb is still open. Among these questions, we are currently investi-
gating the maximum size of a finite path and we hope to obtain a linear
bound soon. This result may lead to new tools in order to improve several
other bounds. Moreover, it would also prove that the directed case is not
equivalent to the non-directed one. Indeed, this chapter ends by showing a
positive result about non-cooperative aTAM.

2.5.2 Efficient path for non-cooperative aTAM

In this section, we present the positive result of [30] which exhibits a non-
trivial program relying on collisions.

Definition 6. Consider a tile assembly system T = (T, σ, 1), a path P is
efficient for T if and only if all assemblies of A□[T ] contain the path P .

Theorem 2. For all t ≥ 0, there is a tile assembly system T = (T, σ, 1)
with an efficient path of horizontal width w = Θ(|T | log |T |), where |σ| = 1,
|T | ≥ t, and all assemblies of A□[T ] are of horizontal width w and vertical
height less than |T |.

The seed is always made of a unique tile type. The tile assembly systems
are defined using two parameters n and k and two functions h : N → N
and s : N → N whose values are available in [30]. Figure 2.22 shows a
producible path P using each tile type of such a tile assembly system exactly
one time. The path P can be decomposed as P = GY BR and each of these
four subpaths of P will be used as follows:
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(i)
a finite terminal assembly (ii) a non-periodic infinite one

(iii)
a periodic terminal assembly (iv) a bi-periodic one

Figure 2.21: The four different kinds of terminal assembly of a directed tile
assembly system.
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h(1)

h(2)

h(3)

h(4)

n 2n− 1 3n− 1 4n− 1 5n− 1

Figure 2.22: In our examples, we consider k = 4 and n = 10. The seed (in
black) is at position (0, 0) and we represent the producible path P = GY BR.
This figure contains exactly one occurrence of each tile type. The height of
P is h(4) and its width is 2n− 1. The tiles of Y and R with a glue on their
east side are marked by a black dot.
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h(1)

h(2)

h(3)

h(4)

n 2n− 1 3n− 1 4n− 1 5n− 1

Figure 2.23: The efficient path E of horizontal width (n + 1)k − 1 which
appears in any terminal assembly. Several smaller replicas of P are glued
together.
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Figure 2.24: One the possible terminal assembly.
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• the path G (in green in Figure 2.22) grows from the seed by n steps in
direction of the east. A small “hook” grows at the end of G and the
only free glue of G is at its end. The hook and the tile set are designed
such that any assembly growing on the free glue at the end of G will
stay to the north-east of G.

• the path Y (in yellow in Figure 2.22) grows from the free glue of G
in direction of the north. Its length is h(k) and there are k free glues
on the east sides of the h(1)th, h(2)th, . . . and h(k)th tiles of G. The
tile set is designed such that any assembly growing on one of these free
glues will stay to the east of Y .

• the path B (in blue in Figure 2.22) grows from the kth free glue at
the end of path Y . This path is a large “hook” and the only free glue
of B is at its end. This hook and the tile set are designed such that
any assembly growing on the free glue at the end of B will stay to the
south-east of B.

• the path R (in red in Figure 2.22) grows from the free glue of B in
direction of the south. Its length is s(k − 1) and there are k − 1 free
glues on the east sides of the s(1)th, s(2)th, . . . and s(k − 1)th tiles of
R. The tile set is designed such that any assembly growing on one of
these free glues will stay to the east of R.

Now, a smaller replica of P (where the length of Y is only h(k−1) and the
length of R is only s(k−2)) can grow from the free glue at the end of P (the
(k− 1)th free glue of R). Then an even smaller replica of P can grow at the
end of the first replica and this operation can be repeated k−1 times in total
creating a path E of horizontal width (n+1)k−1 (see Figure 2.23). Moreover
E is efficient. Indeed, when an assembly grows on the ith free glue of Y or
of one of its replica, then the assembly has to start by growing a replica of
B protecting the efficient path (functions h and s are designed such that
the efficient path is over this free glue). A similar reasoning can be done for
the free glues of R. Figure 2.24 shows one of the terminal assemblies which
contains E. When choosing the parameters n and k wisely, the efficient path
has horizontal width Θ(|T | log |T |) (see [30], for the details of the calculus).

50



2.5.3 Conclusion and ongoing work

Collisions allow a kind of computation which cannot be done by finite au-
tomata. Currently, we did not manage to obtain a similar result for the
directed case. In fact, we are almost sure that there exists no finite assembly
of horizontal width Θ(|T | log |T |) in the directed case. We hope to prove
this result soon. The tool developed for this upcoming result may lead to an
improvement of the upper bound for the pumping lemma in the non-directed
case. Ultimately, we aim to prove that there exists an “easy to describe” ter-
minal assembly for any non-directed tile assembly system at temperature 1.

51



Chapter 3

Self-Stabilization

This chapter is a summary of four articles [4, 5, 18, 38]. This document aims
to regroup their results and to present the open questions. Details of the
proof are omitted since the papers are self-content.

3.1 Introduction

Crystallography focusses on periodic and organized structures made of atoms.
An important breakthrough occurred in this domain when non-periodic or-
ganized structures where observed, see [45]. Aperiodic tilings became a the-
oretical model of these objects called quasi-crystals. A classical example of
such an aperiodic tiling is the Penrose tiling whose tiles are rhombus. Unfor-
tunately, it is not possible to grow efficiently a Penrose tiling by self-assembly.
Indeed, when the tiles are assembled carelessly a mismatch may occur.

We proposed in [4] another approach based on self-stabilization. Inspired
by C. Janot [22], the aim is to model a cooling process where at ”high temper-
ature”, the constraints imposed by the glues are negligible. In this case, only
the shapes of the tiles are relevant. When the temperature decreases, the
glues start to influence the interactions and the tiles move in order to mini-
mize the number of mismatches in their neighborhood. These movements are
called flips. The aim of this section is to present a stochastic process which
at each time step, selects randomly a flip in order to erase the mismatches
after a reasonable time. More details about this approach are available in
[4].

This cooling process relies on the Minority Rule, previously studied on
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stochastic cellular automata (some of these results are quickly summarized
in section 3.2). Instead of directly studying the Penrose tiling, we started by
studying simpler tilings which belong to the family of tilings by cut and pro-
jection. In [8], N. G. de Bruijn interpreted the Penrose tiling as a projection
of a space of dimension 5 on a plane of dimension 2. This reasoning can be
extended for any n > d to obtain a tiling called n → d which is the projection
of a space of dimension n onto a surface of dimension n. Depending on n and
d, these tilings can be either periodic or aperiodic, more details are available
in [4]. We present the analysis of the Minority rule on the tiling 3 → 2, called
the dimer tiling, in section 3.3. In this first example, the cooling process is
able to obtain a periodic tiling after erasing the mismatches in polynomial
time according to the number of tiles. In section 3.4, we present the analysis
of the tiling 2 → 1. This tiling is simple but we study it in a more general
setting where the different kinds of tiles have different densities. In section
3.5, we conclude by presenting the perspectives of these studies.

3.2 Minority Rule

The 2D Minority rule on cellular automata with von Neumann neighborhood
and asynchronous updates was studied in [39]. Consider n,m ∈ N and a grid
of automata of size n×m with periodic boundary conditions: an automaton is
a couple (i, j) with 0 ≤ i ≤ n−1 and 0 ≤ j ≤ m−1 and its five neighbors are
the automaton itself and (i+1 mod n, j), (i, j+1 mod m), (i−1 mod n, j)
and (i, j− 1 mod m). Each automaton is characterized by a state 0 (white)
or 1 (blue) and a configuration associated a state to each automata, see
Figure 3.1. Time is discrete and at each time step, an automaton is selected
randomly and uniformly. This automaton is updated and its state switches
to the minority state in its neighborhood. An automaton is active if and only
if its state changes when it is updated otherwise the automaton is inactive.
A configuration is stable if all automata are inactive.

Starting from some initial random configuration, the simulations show
two successive behaviors, see Figure 3.2. Firstly, some different regions made
of checkerboard patterns quickly appear and spread, erasing the initial con-
figuration. All the automata inside these regions are inactive. The only
active automata are on the borders between these regions. Secondly, these
borders will move until the configuration becomes stable. This event occurs
when either the borders manage to stabilize or a unique region absorbs all
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(a) initial configuration (b) Von Neumann neighborhood

Number of neighbors in state 1 0 1 2 3 4 5
State 1 1 1 0 0 0

(c) the transition function of the Minority rule.

Figure 3.1: The definition of the Minority rule on a two dimensional grid
with the Von Neumann neighborhood. Each automaton of the initial con-
figuration (a) has a probability 1

2
to be in the state 0 (white) and 1

2
to be

in the state 1 (blue). The Von Neumann neighborhood (b) of an automaton
includes the automaton itself and its four nearest neighbors. When updated,
an automaton follows the transition table (c): its new state depends on the
number of automata in its neighborhood in the state 1. For the example,
the neighborhood (b) has two automata in the state 1 and then its central
automaton is inactive: when updated its state will not change.

t = 3 t = 10 t = 30 t = 100 t = 218 t = 247

Figure 3.2: The evolution of the initial configuration of Figure 3.1(a) for the
Minority rule when only one random automaton is updated as each time
step. The configurations are obtained after t iterations (one iteration is 2500
time steps). After 247 iterations, the configuration is stable. These figures
were obtained with the software FiatLux [16].
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(a) (b) (c)

Figure 3.3: Three stable configurations. Configurations (a) and (b) have an
energy of 0 and are made of a checkerboard pattern. Configuration (c) is
made of vertical stripes of checkerboard patterns.

the other ones.
Among the stable configurations, two of them of them are special. They

are the configurations made of a checkerboard pattern: the one where the
state of automaton (i, j) is 0 if and only if i + j = 0 mod 2 and the one
where the state of automaton (i, j) is 1 if and only if i + j = 0 mod 2,
see Figure 3.3. For these two configurations, the state of each automaton
is different from the state of the four others automata in its neighborhood.
The other stable configurations are made of vertical or horizontal stripes of
checkerboard patterns.

The dynamics of the random process can be explained by introducing an
energy function defined as follow: each automaton receives a potential equals
to the number of automata in its neighborhood (excluding itself) with the
same state as itself. The energy of a configuration is the sum of the potential
of all its automata. Since the potential of an automata is between 0 and 4, the
energy of a configuration is between 0 and 4nm. The two configurations of en-
ergy 0 are the two stable configurations made of an unique checkerboard pat-
tern. The two configurations of energy 4nm are the one where all automata
are in the state 0 and the one where all automata are in the state 1. Moreover,
the energy is non-increasing along time. Indeed, the transition function of the
Minority rule, see Figure 3.1(c), can be rewritten using the potential as fol-
lows:

Potential of the automaton 0 1 2 3 4
Automaton is active? No Yes

Variation of energy when updated 0 0 0 -4 -8

Then, automata with a potential of 0 or 1 are inactive and updating such
automata does not change the energy. When an automaton with a potential 3
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Figure 3.4: A zoom on the surrounded region of Figure 3.2 at t = 218 after
switching the states of half of the automata. Now, this region appears as a
blue convex polyomino. The + (resp. −) denote the active automata which
increase (resp. decrease) the size of the blue region when updated.

or 4 is updated then the energy drops and when an automaton of potential 2
is updated then the energy does not change (the automaton is still active
after such an update and the transition is reversible). The emergence of the
checkerboard patterns is explained by local arguments, see [37]: the energy
quickly drops when automata of potential 3 and 4 of the initial configuration
are updated. Later, generally all automata have a potential of 2 or less and
then the energy cannot decrease in one time step. Here, the borders between
the different regions must move in order to create an automaton of potential
3 or 4, allowing the energy to drop.

When a region is surrounded by another one, as in Figure 3.2 at t = 218,
it quickly shrinks and disappears. To understand this special case, consider
Figure 3.4 which is obtained by switching the state of all automata (i, j)
where i + j = 1 mod 2 in Figure 3.2 at t = 218. The surrounded region
becomes a finite blue polyomino of size A which is convex in this example. In
such a case, the automata of potential 2 are in the angles of this polyomino.
Updating an automaton in a reflex (resp. salient) angle increases (resp.
decreases) the size of the polyomino. Since along a polyomino, there are four
more salient angles than reflex angles, then its size tends to decrease. This
reasoning can be generalized for any number of surrounded regions, see [39].
Thus, the size of the surrounded region can be coupled with a biased random
walk and it will reach 0 after updating Θ(A) active automata on expectation.

We studied the Minority rule with different topologies and generally the
dynamics tends to converge quickly to a stable configuration made of an
uniform pattern [40]. Nevertheless, in some cases, the convergence time can
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be exponentiel on expectation [44].

3.3 A periodic tiling via self-stabilization

A dimer tiling is the projection of a space of dimension 3 on a 2D plane. It
is made of three tile types which represent the three visible sides of a cube
in side view, see Figure 3.5. These three tile types can assemble the tiling of
Figure 3.5(d) which can be interpreted as the 2D plane covered by a layer of
cubes aligned one next to each other. Note that this tiling is periodic and in
[18], we used it as a first step to develop our process before considering more
complex cases.

(a) (b) (c)

(d) A dimer tiling with no mismatch

Figure 3.5: The three tile types of a dimer tiling (a) can assemble the three
visible sides of a cube (b). At high temperature the glues become negligi-
ble (c).

At high temperature, only the shapes of the tiles matter. Then, other
tilings may be assemble such as the one in Figure 3.6 (a). This tiling is, in
fact, made of several layers of cubes (see Figure 3.6(b), where a color is as-
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signed to each layer). Intuitively, some cubes are missing, creating some holes
while some other cubes are stacked creating some islands. In our study, we
consider an area made of A tiles where the holes and islands are surrounded
by tiles of the same layer. We consider that this layer has a height of 0. Then,
the maximum (resp. minimum) height of an island (resp. hole) is bounded
by

√
A (resp. −

√
A).

(a) (b)

Figure 3.6: A dimer tiling with mismatches (a). For each tile type, this tiling
has the same number of tiles as the one of Figure 3.5(d). In (b), the colors
have been modified to show the different layers: the layer of height 0 is in
yellow, height 1 is orange, height 2 is in red, height −1 is in blue and height
−2 is in purple.

For a dimer tiling, a flip permutes three tiles, as shown in Figure 3.7,
and it is active if and only if it does not increase the number of mismatches
(the Minority rule). Intuitively, when a flip is done, a cube is either removed
or put over the others. Then, these flips can be used to remove the islands
and fill the holes. The dynamics of the Minority rule selects randomly and
uniformly at each time step a flip in the area, the flip is done if and only if
it is active. Experimentally, this dynamics seems to correct all mismatches
in reasonable time.

The analysis is similar to the one on the 2D grid (see section 3.2) except
that there are now several layers. Note that the active flips of Figure 3.7 can-
not increase (resp. decrease) the maximum (resp. minimum) height. Then,
we just need to focus on the layers of maximum and minimum height. The
islands and holes of these layers can be formally defined by introducing a
border between the tiles with a mismatch (see Figure 3.8). Here, instead of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: The different active flips up to some symmetries. There is a
mismatch between two tiles if and only if one is orange and the other one
is yellow. Note that flip (a) corresponds to the case where the last cube of
an island of size 1 is removed. For all the other active flips, the cube is in
contact with two layers of height i and i + 1. Thus, it is not possible to
increase (resp. descrease) the maximum (resp. minimum) height with an
active flip.

a polyomino made of squares, the top islands and bottom holes are made of
hexagons. As previously, the only active flips of the top islands and bottom
holes are near their borders, their interiors are stable. Consider the example
of Figure 3.8 where there is one convex island. In this simple case, there are
more flips decreasing the size of the island than flips increasing it. This rea-
soning can be generalized for any kind and number of top islands or bottom
holes, see [18]. Then, the top islands (resp. the bottom holes) tend to shrink
and they will disappear after updating Θ(A) active flips on expectation in
the top islands (resp. bottom holes)1. When such an event occurs either the
maximum height decreases or the minimum height increases. Then after up-
dating Θ(A

5
2 ) active flips on expectation, there is only one layer of height 0

left. This layer is the dimer tiling with no mismatch of figure 3.5(d).

3.4 Two-letters words

A tiling 2 → 1 is the projection of a two dimensional space on a line. In
other words, it is the discretization of a continuous line, see Figure 3.9(a).
Consider a two dimensional grid, a line ℓ of slope α and an alphabet {a, b}

1Note that in the worst case, there is a probability 1
A to select a flip in the top islands

or in the bottom holes
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+ - - +

- -
- -
- -

Figure 3.8: A zoom on the large island of layer 1 of Figure 3.6. On the one
hand, two active flips (in red) will increase the size of the island by one if
selected. On the other hand, eight active flips (in blue) will decrease the size
of the island by one if selected. Then the size of the island tends to decrease.

such that the letter a (resp. b) encodes an intersection between ℓ and an
horizontal line (resp. vertical line) of the grid. Then, ℓ can be transformed
into a bi-infinite two-letters word w representing the sequence of intersections
between ℓ and the grid. Moreover, if the letter a (resp. b) is transformed into
a vertical (resp. horizontal) segment then the word w becomes a path of the
grid which is a good approximation of ℓ, see Figure 3.9(b). If the slope α is
rational then the word w is periodic and called a Christoffel word otherwise
it is a Sturmian word [3].

In our context, letters a and b are also seen as tiles with glues on their
left and right sides which assemble a tiling. This can be achieved only when
the slope of the line is 1: consider the two tile types of Figure 3.9(c). In [5],
we have analyze the cooling process on such a tiling. Nevertheless, in [38]
we have generalized this process for any Christoffel word and we obtained a
negative result for Sturmian words.

Consider a n × n grid, a configuration is a word w of length 2n with
|w|a = |w|b = n. This word is equivalent to a path P of the grid from (0, 0)
to (n, n) of length 2n, see Figure 3.10(b). A flip switches two consecutive
letters: ab → ba and it is active if and only if it decreases the number of
mismatches. Here, there are two kinds of active flip up to some symmetries:
aabb → abab which removes two mismatches and aaba → abaa which does
not change the number of mismatches, see Figure 3.10(a). Simulations show
that this dynamics efficiently removes the mismatches. To analyze it, remark
that the path P is inside an area delimited by two lines ℓ and ℓ′ of slope 1, see
Figure 3.10(b). The thickness of P (and w) is defined as the distance between
ℓ and ℓ′. The thickness is non-increasing over time and the configuration
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a

b

(a) (b) (c)

Figure 3.9: In (a), we consider a line ℓ (resp. ℓ′) of slope 1 in green (resp.
1
4

in purple) and a 2D grid. The intersections between these two lines and
an horizontal (resp. vertical) line of the grid are indicated by a red (resp.
blue) dot. For ℓ (resp. ℓ′), the sequence of dots along ℓ (resp. ℓ′) is a word
w = . . . abababababababababab . . . (resp. w′ = . . . babbbbabbbbab . . .) on a two-
letters alphabet {a, b} with a for a red dot and b for a blue dot. In (b), the
words w and w′ are transformed into a path of the grid where a (resp. b)
is a vertical (resp. horizontal) segment. These paths are a good discrete
approximation of the continuous line. The word w can be interpreted as a
tiling made of the two tiles type of (c).

with minimum thickness is the stable configuration with no mismatch, i.e.
the Christoffel word associated to a line of slope 1. In the simple case of
Figure 3.10(b), the number of intersections between P and ℓ can be coupled
with a random walk 2. Then after O(n3) updates on expectation, there is
no more intersection between the configuration and ℓ, thus the thickness has
decreased. Since the thickness of a configuration can decrease at most O(n)
times, the process converges after O(n4) updates on expectation.

This cooling process can be extended to any Christoffel word. Indeed,
consider ta, tb two relatively prime numbers, n ∈ N and m = n(ta + tb),
a configuration is either a word w of length m such that |w|a = nta and
|w|b = ntb or a path P of the grid from (0, 0) to (ntb, nta) of length m. In
this case, we cannot consider anymore that a configuration is a tiling using
the tiles type of Figure 3.9(c). The thickness of a configuration can be defined
similarly, see Figure 3.11 and an active flip should not be able to increase it.

2Note that the reasoning presented here is inspired by [38], the one done in [5] is
different and provides a better bound but it is also more complicated.
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ℓ′
ℓ

(a) (b)

Figure 3.10: The active flips are listed in (a). The configuration of (b) is
included between the two lines ℓ and ℓ′. Active flips are marked by an arrow
and the intersections between the configuration and ℓ (resp. ℓ′) are marked
by red (resp. blue) dots. The stable configuration is in dark green.

To achieve this goal, we need more information. Consider an integer s ∈ N
and two words w′, w′′ of length s, we define a test δ(w′, w′′), explained in
Figure 3.12(a). To determine if a flip ab is active, we compute δ(wl, wr) and
δ(wr, wl) where wl (resp. wr) is the left (resp. right) neighborhood of size s
of the flip, see Figure 3.12(b). If one of these two tests is positive then the
flip is active. If the size s of the neighborhood is greater than ta + tb then
an active flip cannot increase the thickness of the configuration, see Figure
3.13. For the case where s = 2 and ta = tb = 1, we obtain the active flips
and the process of Figure 3.10. A similar analysis shows that the cooling
process converges towards the Christoffel configuration in O(m4) updates on
expectation, see [38] for the details.

To conclude, we have also shown in [38] that s should be at least ta+tb−1
to develop such a cooling process. Otherwise either the Christoffel word is not
stable or there are other stable configurations. Then, this approach cannot
be extended to Sturmian words. Also, we were initially trying to develop a
cooling process to explain the formation of a crystal but the process described
here is linked to two other problems in distributed computing. The first one is
to maintain a chain of relays between an explorer and a base camp [25] where
several agents aim to align on a line. Defined in the continuous case, the Go-
To-The-Middle strategy [14] allows the agents to reach their objective by
communicating with only their two nearest neighbors. Our result can be
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ℓ′

ℓ

Figure 3.11: A case with ta = 2, tb = 3 and n = 10, the configuration is
included between the two lines ℓ and ℓ′ of slope 2

3
. The stable configuration

is in dark green. Active flips are computed for s = 5 and are marked by
an arrow. The intersections between the configuration and ℓ (resp. ℓ′) are
marked by red (resp. blue) dots. The Figure 3.12(b) is a detailed analysis of
the flip pointed by an arrow.

seen as a discretization of this strategy. Secondly, this result is linked to the
density classification problem [15]. This problem consider a line of agents
which can only memorized one bit of information. They must determine if
there is a majority of agents with the bit 0 or with the bit 1 in the initial
configuration. Our result can be seen as a generalization of this problem for
an arbitrary density. Indeed, for a given s, the cooling process will converge
for any relatively prime numbers ta and tb such that ta + tb ≤ s. Since a
Christoffel word is periodic of period ta + tb then after the convergence, the
periodic pattern can be read locally by the agents to determine ta and tb.
For the example of Figure 3.11 with ta = 2 and tb = 3, the configuration is
the Christoffel word (babab)n when the cooling process has converged. The
agents are then able to determine that the periodic pattern is babab and that
ta = 2 and tb = 3.
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I

II

III
ℓ′

(a) (b)

Figure 3.12: In Figure (a), the flip moves the site in yellow to the position
in orange. In this example, s = 8 and the right (resp. left) neighborhood is
in red (resp. blue). Firstly, the line (in gray) passing by the yellow site and
tangent to the right neighborhood is drawn. Here, this line passes by the
purple site and its slope is 1

2
. Secondly, a line (in gray) passing by the orange

site and parallel to the previous one is drawn. Thirdly, the flip is active if
there exists at least one site in the left neighborhood which is on or over
the second line (as the green one in this example). The test is also applied
similarly by switching the right and left neighborhoods. In Figure (b), this
test is applied to the flip pointed by an arrow in Figure 3.11. Here, s = 5
and the tangent passes by two sites (in blue) which are on ℓ′ then its slope is
2
3

= ta
tb

. On the left neighborhood, the site at distance 5 = ta + tb (in green)

is not on ℓ′ (the white position is empty) then this site will allow the flip to
be active.

3.5 Conclusion

These results show that it is possible to obtain periodic tilings via self-
stabilization. For the aperiodic case, it is not possible to obtain such a
result via a generalization of the tiling 2 → 1. For the Penrose tiling, the
simulations are not conclusive. Currently, we are not able to determine if the
Minority rule on a Penrose tiling does not converge, converges in exponentiel
time or in polynomial time (with a bound larger than in the previous cases).
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(a) (b)

Figure 3.13: An active flip cannot increase the thickness of a configuration.
In the example of Figure 3.12(a), the slope of the tangent (in gray) is 1

2
. If

ta
tb
≥ 1

2
, see the case shown in Figure (a): the orange dot is between the two

lines of slope ta
tb

(in red) passing by the purple and green dots. If ta
tb
< 1

2
, see

the case shown in Figure (b): on the one hand, the orange dot is on the line
of slope ta

tb
(in red) passing by the gray site. The white site at distance ta + tb

is under the tangent thus the configuration must pass by one of the sites in
gray or black. This means that ℓ is parallel and over the line in red passing
by the gray dot. On the other hand, ℓ′ is under the line in red passing by
the yellow dot. Thus, the thickness cannot increase in both cases.
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Chapter 4

Activity Report and
Perspectives

My research mainly focuses on unconventionnel computational models. My
list of publications is available in the annex A. I have published six articles in
international peer-reviewed journals, one in a national peer-reviewed journal,
twenty-two in international peer-reviewed conferences and two in national
peer-reviewed conferences.

In 2006, I started my PhD by studying cellular automata under the su-
pervision of Nicolas Schabanel and Éric Thierry at ENS Lyon. This model of
computation is made of automata disposed on a d-dimensional grid such that
all automata share the same neighborhood. Each automaton is characterized
by a state. Time is discrete and at each time step, automata update their
state according to the same transition function which takes as input the states
in the neighborhood of the automaton. Usually, the grid is infinite and all
automata are updated at each time step, this update mode is called parallel.
In our case, we consider a finite grid with periodic boundary condition, the
state is either 0 (white) or 1 (blue) and the update mode is α-asynchronism
where each automaton has a probablity 0 < α < 1 to be updated and 1−α to
keep its current state. When α = 0, this update mode is called totally asyn-
chronous, only one automaton chosen at random is updated. We developed
tools in order to study the Elementary Cellular Automata (ECA), a class of
256 one-dimensional cellular automata, and we were able to classify different
kinds of behavior. The most interesting ones are phase transitions where two
different behaviors are exhibited depending on the value of α. In some cases,
we were able to prove the existence of these two phases but determining the
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(a) initial configuration (b) Moore neighborhood

Number of neighbors in state 1 0 1 2 3 4 5 6 7 8 9
State 0 1 0 0 0 1 0 0 0 0
(c) the transition function of TotM34.

Figure 4.1: The definition of a two dimensional cellular automaton, called
totalistic 34 with Moore neighborhood (TotM34). Each automaton of the
initial configuration (a) has a probability 1

2
to be in the state 0 (white) and

1
2

to be in the state 1 (blue). The Moore neighborhood (b) of an automaton
includes the automaton itself and its eight nearest neighbors. When updated,
an automaton follows the transition table (c): its new state depends on the
number of automata in its neighborhood in the state 1. For the example,
the neighborhood (b) has five automata in the state 1 and then its central
automaton is active: it will switch from state 0 to state 1 when updated.

exact value of the transition is an open question linked to directed percola-
tion. Following these studies, we looked for 2D cellular automata to study.
The Minority rule caught our attention, see section 3. I was active on this
topic from 2006 to 2013. I tried to relaunch these studies with the analysis of
a 2D cellular automaton, called TotM34, which presents a behavior similar
to the Minority rule (see Figures 4.1, 4.2 and 4.3). Three students worked
under my supervision on this cellular automaton during their internships
for bachelor’s degree or Master’s degree. They made some progress but not
enough for a publication. The analysis of this cellular automaton seems to
require more sophisticated combinatorial and probabilistic tools. I am the
co-author of three articles in international peer-reviewed journals and seven
articles in international peer-reviewed conferences on this topic.

At the end of my PhD thesis, I encountered Thomas Fernique who was
aiming to obtain tilings via self-stabilisation. The Minority rule seemed effi-
cient to achieve this goal and for one year I joined his team at Université de
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α = 5 α = 10 α = 20 α = 50 α = 100

Figure 4.2: The evolution of the initial configuration of Figure 4.1(a) for
cellular automaton TotM34 after 10000 time steps under α-asynchronous
dynamics for different values of α. There is a phase transition between two
different behaviors depending on the values of α. These figures were obtained
with the software FiatLux [16].

t = 1 t = 3 t = 100 t = 500 t = 1400

Figure 4.3: The evolution of the initial configuration of Figure 4.1(a) for
cellular automaton TotM34 under the totally asynchronous dynamics where
only one random automaton is updated as each time step. The configurations
are obtained after t iterations (one iteration is 2500 time steps). After 1400
iterations, the configuration is stable. These figures were obtained with the
software FiatLux [16].
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Provence as an ATER to work on this model. Later, I was recruited as an
assistant professor at Université d’Évry-Val-d’Essonne joining the Arobas
team of the Ibisc laboratory. Meanwhile T. Fernique obtained an ANR je-
une chercheur funding (called Quasicool) to develop his thematic. My work
among this community is described in section 3. We were able to model
the formation of some periodic tilings by self-stabilisation. On dimension
1, we have negative results on two-letter words. The next step would be
to investigate the Minority rule on an aperiodic tilings (such as Penrose
Tiling). Concerning this topic, I was active from 2009 to 2018 but I am
currently inactive due to time constraint. I am the co-author of one article
in an international peer-reviewed journal and four articles in international
peer-reviewed conferences or workshops on this topic.

While working on self-stabilisation, I met Pierre-Étienne Meunier and
Damien Woods who were studying non-cooperative Atam. From 2013 to
2021, I worked with them until we solved the main temperature 1 conjecture
by showing a 2D pumping lemma, details of this collaboration are avail-
able in section 2. Combining this lemma with the previous result of Doty
et al [13] implies that the directed non-cooperative Atam is not able to do
computations as complex as the ones done by a Turing Machine. More-
over, we have also built a non-directed non-cooperative tile assembly system
which is able to build finite terminal assembly, called efficient path, of width
Θ(n log(n)) where n is the size of the tile assembly system. Unfortunately,
after publishing three articles in international peer-reviewed conferences, this
collaboration ended due to practical constraints. Pierre-Étienne Meunier left
the scientific community and Damien Woods moved from INRIA Paris to
Maynooth University. To keep working on this topic, I have started a new
local collaboration with Sergiu Ivanov from Ibisc at UEVE. On the one
hand, we are currently writing an article showing that the maximal width
of a terminal assembly of a directed non-cooperative tile assembly system is
bounded by Θ(n). This result would imply that the technique used for the
efficient paths cannot be generalized to the directed case. Moreover, we hope
that the new techniques developed for this result will lead to new results for
the non-directed case. On the other hand, we are trying to develop a site of
experimental manipulations in Évry. To achieve this goal, we were trained
in May 2022 by Nicolas Schabanel and his PhD students who developed such
a site at ENS Lyon. We used this experience to create a M2 lecture about
self-assembly and the software ENSnano [26] in the Master Geniomhe for
students in bio-informatics. In Évry, we contacted Marco Mendoza to have
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access to his wet lab at Télécom Sud Paris and Guillaume Lamour from the
laboratory Lambe of UEVE trained us on their AFM. We hope to start
a first round of manipulations soon in order to show the viability of this
project.

When I was recruited at UEVE in 2010, I joined the Arobas team spe-
cialized in algorithmic and I started working with Éric Angel. We study
approximation algorithms and together we published one article in an inter-
national peer-reviewed journal, three articles in international peer-reviewed
conferences or workshops and two articles in national peer-reviewed confer-
ences. We supervised with Franck Ledoux the PhD thesis of Sébastien Morais
on mesh partioning with memory constraints. In September 2022, we start
supervising the PhD thesis of Xiechen Zhang with Feng Chu on multi-criteria
and stochastic optimization for partitioning. I did not developed this axis in
this document since it is not linked with my work on computation models.

Finally, I have worked with Sylvain Sené and Tarek Melliti from the
Cosmo team of Ibisc on the dynamics of boolean automata networks (BANs).
This model of computation is a generalization of cellular automata where the
automata are disposed on a arbitrary graph instead of a grid. Moreover, each
automata has its own neighborhood and transition function. BANs are used
to model gene regulation networks. Similarly as cellular automata, this model
is usually considered under the parallel dynamics. Recently other dynamics
where studied such as the sequential one where automata are updated one
after the other according to a predetermined order. I am the co-author of
one article in an international peer-reviewed journal, five articles in interna-
tional peer-reviewed conferences or workshops and one article in a national
peer-reviewed journal. I did not developed this topic in this document since
this model does not rely on dominoes. I was active on this topic from 2011 to
2016. Currently, these studies are on hold since Sylvain Sené leaved UEVE
to become a full professor at Aix-Marseille Université where he founded the
Cana team in the laboratory Lif. We hope to start this collaboration again
soon. In 2021, we supervised Lucas Venturini during its internship for his
Master’s degree. Unfortunately due to Covid, it was not followed by a PhD
thesis.
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honor of the 60 years of Éric Rémila at ENS-Lyon in May 2019.

79



Supervision (internship)

2020-2021 L. Venturini (Internship during 4th year of ENS-Lyon)
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synchronism sensitivity and XOR circulant networks convergence time.

85



In AUTOMATA & JAC: Proceedings of 18th international workshop
on Cellular Automata and Discrete Complex Systems and 3rd inter-
national symposium Journées Automates Cellulaires, EPTCS 90, page
37-52, Open Publishing Association, 2012.

[14] Thomas Fernique and Damien Regnault. Stochastic flips on dimer
Tilings. In AofA: Proceedings of the 21st International Meeting on
Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis
of Algorithms, DMTCS proceedings, volume (AM), page 207-220, on-
line publication, 2010.

[15] Olivier Bodini, Thomas Fernique and Damien Regnault. Stochastic flips
on two-letter words. In ANALCO: Proceedings of the 7th Workshop on
Analytic Algorithmics and Combinatorics, page 48-55, SIAM, 2010.

[16] Olivier Bodini, Thomas Fernique and Damien Regnault. Cristalliza-
tion by stochastic flips. In Proceedings of Aperiodics 2009, Journal of
Physics: Conference Series, volume 226(012022):131-136, 2010.

[17] Damien Regnault. Quick energy drop in stochastic 2D Minority. In
ACRI: Proceedings of the 8th International Conference on Cellular Au-
tomata for Reseach and Industry, volume 5191 of LNCS, pages 307–314.
Springer, 2008.

[18] Damien Regnault. Directed percolation arising in stochastic cellular au-
tomata. In MFCS: Proceedings of the 33rd International Symposium on
Mathematical Foundations of Computer Science, volume 5162 of LNCS,
pages 563–574. Springer, 2008.

[19] Damien Regnault, Nicolas Schabanel, and Éric Thierry. On the anal-
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Résumé: Cette habilitation à diriger des recherches est consacrée aux
pavages, un modèle de calcul utilisant des tuiles pour former des assem-
blages capables de faire des calculs d’une complexité équivalente à ceux d’une
machine de Turing. En tant que modèle de calcul, les pavages présentent
néanmoins un défaut majeur: les tuiles doivent être placées minutieuse-
ment pour obtenir l’assemblage souhaité. Les pavages étant utilisés pour
étudier des structures nanoscopiques en cristallographie ou pour modéliser
l’interaction de brins d’ADN, il est nécessaire d’envisager que l’assemblage
du pavage ne se déroule pas parfaitement. Nous nous intéressons ici à deux
approches pour gérer ce problème: l’auto-assemblage où les différentes pos-
sibilités de placement des tuiles lors de l’assemblage sont prises en compte
et l’auto-stabilisation où les tuiles peuvent se réorganiser localement pour
corriger d’éventuelles erreurs survenues lors de leur placement.

Mots-clés: modèles de calcul, pavages, auto-assemblage, auto-stabilisation.

Abstract: This habilitation à diriger des recherches deals with tilings, a
computational model where tiles are bound together in order to do computa-
tion as complex as the ones done by Turing Machines. Nevertheless, tilings
have a major flaw as a computational model: the tiles should be carefully
assembled in order to produce the desired result. Since tilings are used for
studying nanoscopic structures such as crystals or for modeling interactions
of DNA strands, errors appearing during the assembly should be taken in
consideration. We are focusing here on two ways to deal with this problem:
self-assembly where all possibilities are taken into account during the as-
sembly and self-stabilization where tiles can locally move in order to correct
faults done during the assembly.

Keywords: Computational model, tilings, self-assembly, self-stabilization.
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