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Résumé

Une inégalité systolique sur une variété fermée M de dimension n est une inégalité
de la forme

sysn(M, g) ≤ C · vol(M, g)

valable pour toute métrique riemannienne g sur M , où sys(M, g) désigne la systole
et C = C(M) est une constante indépendante de g. Les inégalités systoliques les
plus célèbres ont été démontrées sur le tore T2 par C. Loewner, sur le plan projectif
réel RP 2 par P. Pu et sur la bouteille de Klein K2 par C. Bavard. On établit dans
cette thèse de nouvelles inégalités systoliques optimales sur des surfaces.

Dans un premier travail, on démontre l’existence d’une borne supérieure optimale
pour la longueur de la plus courte géodésique fermée sur la sphère trouée avec trois
ou quatre bouts munie d’une métrique riemannienne complète d’aire finie. Cette
borne ne dépend pas de la courbure mais de l’aire de la sphère trouée. On décrit,
dans les deux cas, les métriques extrémales. On établit ensuite des bornes pour les
sphères trouées munies d’une métrique finslérienne réversible ou non-nécessairement
réversible. Ces bornes sont exprimées en fonction de l’aire de Holmes-Thompson
de la sphère trouée. On représente aussi une borne supérieure asymptotique sur la
longueur de la plus courte géodésique pour des sphères avec un grand nombre de
bouts.

Dans un deuxième travail, on démontre que le supremum local de la systole sur
l’espace des surfaces d’Alexandrov à courbure au plus −1 est atteint par une surface
hyperbolique. Ceci sans aucune hypothèse sur l’aire. On termine par une extension
de ce résultat pour des variétés de dimension 3.

Mots-clés : Systole, espace métrique extrémale, sphère trouée, surface à cour-
bure négative.
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Optimal systolic inequalities on
surfaces





Abstract

A systolic inequality on a closed manifold M of dimension n is an inequality of the
form

sysn(M, g) ≤ C · vol(M, g)

true for any Riemannian metric g on M , where sys(M, g) is the systole and C = C(M)
is a constant independent of g. The most famous systolic inequalities have been
demonstrated on the torus T2 by C. Loewner, on the real projective plane RP 2 by P.
Pu and on the Klein bottle K2 by C. Bavard. We establish in this thesis new optimal
systolic inequalities on surfaces.

In a first work, we prove the existence of an optimal upper bound on the length
of the shortest closed geodesic on punctured sphere with three or four ends endowed
with a complete Riemannian metric of finite area. This bound does not depend
on the curvature but only on the area of the punctured sphere. In both cases, we
describe the extremal metrics. Then, we establish upper bounds for the punctured
spheres endowed with a reversible or not necessarily reversible Finsler metrics. These
bounds are expressed in term of the Holmes-Thompson area of the punctured sphere.
We also represent a roughly asymptotically optimal upper bound on the length of
the shortest closed geodesic for spheres with a large number of ends.

In a second work, we show that the local supremum of the systole on the space of
Alexandrov surfaces with curvature at most −1 is reached by a hyperbolic surface,
without any area assumption. We end with an extension of this result for manifolds
of dimension 3.

Keywords: Systole, extremal metric space, punctured sphere, surface with neg-
ative curvature.
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The present thesis is divided into two independent parts. In the first part, which
corresponds to Chapters 1 and 2, we study geometric inequalities of surfaces related
to an active research subject classically called the systolic geometry of surfaces. In
the second part, which consists of Chapter 3, we study an analytical problem about
the solutions of the generalized resolvent problem.

We introduce first the part one of the thesis and our related results. The systole
of a non-simply connected manifold M with a Riemannian metric is the smallest
length of a non-contractible loop on M . It is denoted by

sys(M, g) = inf{length(γ) | γ is a non-contractible loop of M}.

The term systole was coined by M. Berger in 1972, see [16]. If M is closed, this
quantity is always attained by a closed non-homotopically trivial geodesic.

The existence of closed geodesics on a non-simply connected closed surface fol-
lows from a minimization process relying on Ascoli’s theorem, while it follows from
Birkhoff’s minmax principle in the simply connected case. For surfaces with a com-
plete Riemannian metric of finite area with one or two ends, the existence of closed
geodesics was proved by V. Bangert [12], while this was proved by G. Thorbergs-
son [69] for surfaces of finite area with at least three ends.

A systolic inequality on a closed manifold M of dimension n is an inequality of the
form

sysn(M, g) ≤ C · vol(M, g)

which holds for any Riemannian metric g on M , where C = C(M) is a constant
independent of g . The first systolic inequality was established by C. Loewner on the
two-torus in 1949 : for any Riemannian metric g on T2, we have

sys2(T2, g) ≤ 2√
3

area(T2, g). (1)

Furthermore, the equality is sharp and is attained if and only if the torus is flat
hexagonal. In 1952, his student P. Pu [56] established the following sharp systolic
inequality on the real projective plane : for any Riemannian metric g on RP 2, we
have

sys2(RP 2, g) ≤ π

2 area(RP 2, g).

The equality is attained precisely by round metrics. More than thirty years later,
C. Bavard [13] proved a sharp systolic inequality on the Klein bottle : for any
Riemannian metric g on the Klein bottle K, we have

sys2(K, g) ≤ π · 2− 3
2 area(K, g).
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In this case, the extremal metric is not smooth : it is spherical outside a singular
curve.

The remaining closed surfaces, i.e., closed surfaces of genus ≥ 2, also satisfy a systolic
inequality but an optimal constant is still unknown for genus ≥ 2 (see for example [40]
and [23]). Some sharp inequalities are known if we consider only metrics of constant
curvature, of nonpositive curvature or in a given conformal class (see also [62] for a
“local" inequality in genus 3). Higher dimensional systolic inequalities are known to
exist for a large class of manifolds namely, esssential manifolds (including real pro-
jective spaces and aspherical manifolds) by a fundamental result of M. Gromov [36].

In Chapter 1, we present a joint project with S. Sabourau. We investigate a
geometric problem in the same spirit as the systolic inequality by replacing the
systole by the length of shortest closed geodesic denoted by

scg(M, g) = inf{length(γ) | γ is a closed geodesic of M}.

In this case, we do not need to eliminate the case of simply connected surfaces, i.e.,
the sphere. In 1982, C. Croke [25] showed that for every Riemannian metric g on
the two-sphere S2, we have

scg(S2, g) ≤ 31
»

area(S2, g). (2)

This bound was improved in [53], [60] and [58]. A classical conjecture (see [25]
and [26]) asserts that the piecewise flat sphere with three conical singularities ob-
tained by gluing two equilateral triangles along their sides (called the Calabi-Croke
sphere) is the global maximum for the length of the shortest closed geodesic among
Riemannian metrics with fixed area on the sphere. We note that a result of “lo-
cal" maximality of the Calabi-Croke sphere was proved by F. Balacheff in [10] (see
also [61]).

Inequality (2) holds for noncompact surfaces Σ with any complete Riemannian met-
ric of finite area (see C. Croke [25]). The bound 31 in the inequality has recently
been improved by Beach and Rotman in [18], where it was replaced by 4

√
2 for sur-

faces with one puncture and by 2
√

2 for surfaces with at least two punctures. The
authors also conjectured that the optimal bound for a punctured sphere with at most
three punctures is the same as the one for the sphere. That would imply that the
optimal bound is equal to 2 1

2 · 3 1
4 . This conjecture is established in Chapter 1 where

we prove an optimal inequality for spheres with three or four punctures, as well as
non-optimal inequalities for spheres with k-punctures, where k > 4. We also prove
other optimal and non-optimal inequalities of the same nature for punctured spheres
with complete reversible and non reversible Finsler metrics of finite area.
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The proofs of our optimal bounds do not rely on the conformal length method used
in [45], [56] and [13]. Instead, we use ramified covers from the torus to the sphere.
This technique was introduced by S. Sabourau in [59] in a similar context. Those
ramified covers are useful because they allow us to apply Loewner’s systolic inequal-
ity (1) after connecting the punctured two-spheres to the two-torus.

In the Riemannian case, we have the following theorem.

Theorem. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
Riemannian metric of finite area. Then the following holds.

1. If k = 3 then there exists a noncontractible figure-eight geodesic γ on Σ such
that

length(γ) < 2
1
2 · 3

1
4
»

area(Σ).

Furthermore, this inequality is optimal.

2. If k ≥ 4 then there exists a noncontractible closed geodesic γ on Σ such that

length(γ) < 2 · 3− 1
4
»

area(Σ).

Furthermore, this inequality is optimal when k = 4.

The extremal metric on the three-punctured sphere is modelled on the Calabi-Croke
sphere by attaching three cusps of arbitrarily small area around its singularities.
This can be done by keeping the metric non-positively curved.

The extremal metric on the four-punctured sphere is modelled on the tetrahedral
sphere by attaching four cusps of arbitrarily small area around its singularities. Here,
the tetrahedral sphere is defined as the piecewise flat sphere with four conical singu-
larities of angle π given by the regular tetrahedron. This can also be done by keeping
the metric non-positively curved.

Then, we prove a Finsler version of the previous theorem, that is, for complete punc-
tured spheres equipped with a reversible Finsler metric of finite Holmes-Thompson
area. More precisely, we have

Theorem. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
reversible Finsler metric of finite area. Then the following holds.

1. If k = 3 then there exists a noncontractible figure-eight geodesic γ on Σ such
that

length(γ) < 2− 1
2 · 3

1
2 · π

1
2
»

area(Σ).
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2. If k ≥ 4 then there exists a noncontractible closed geodesic γ on Σ such that

length(γ) < π
1
2
»

area(Σ).

Furthermore, this inequality is optimal when k ∈ {4, . . . , 6}.

We note that the inequality on the three-punctured sphere is not necessarily optimal,
i.e. it may exist a better constant less than 2− 1

2 · 3 1
2 · π

1
2 . The extremal metric on

the four-punctured sphere is modelled on the sphere obtained by gluing two copies
of the square [0, 1] × [0, 1] endowed with the ℓ1-metric along their boundary, with
four cusps of arbitrarily small area attached around the four vertices of the squares.
Also, we attach respectively one or two extra cusps of arbitrarily small area around
the centers of the squares for the five-punctured and six-punctured spheres.

For punctured spheres equipped with non-necessarily reversible Finsler metrics, we
prove the following non-optimal inequalities.

Theorem. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
non-necessarily reversible Finsler metric of finite area. Then the following holds.

1. If k = 3 then there exists a noncontractible figure-eight geodesic γ on Σ such
that

length(γ) < 2
1
2 · π

1
2
»

area(Σ).

2. If k ≥ 4 then there exists a non-contractible closed geodesic γ on Σ such that

length(γ) < 2 · 3− 1
2 · π

1
2
»

area(Σ).

We conclude by proving the following result for spheres with a large number of
punctures.

Theorem. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
Riemannian metric of finite area, where k ≥ 3. Then there exists a noncontractible
closed geodesic γ on Σ such that

length(γ) ≤ 4
√

2

 
area(Σ)

k
.

Furthermore, the upper bound is roughly asymptotically optimal in k.
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In Chapter 2, we present a joint project with S. Sabourau. We study the maxi-
mum of the systole on surfaces of genus g ≥ 2 with a Riemannian metric of curvature
at most −1. With this curvature restriction condition, we prove that the extremal
metrics are hyperbolic and we present some examples in dimension three.

An Alexandrov surface M is a surface endowed with a metric which is the limit of a
sequence of Riemannian metrics with uniformly bounded absolute integral curvature.
Such a surface is of curvature at most -1 if every small enough geodesic triangle in M
has a comparison triangle in the hyperbolic plane (the sides are of same length) ver-
ifying the following condition: the distances between points in the boundary of the
triangle in M are less or equal to the distances between the corresponding points in
the hyperbolic triangle. For instance, our result holds true in the more general set-
ting of Alexandrov curvature at most −1. A closed piecewise hyperbolic surface with
conical singularities of total angle at least 2π is an Alexandrov surface of curvature
at most -1. We refer the reader to Section 2.2 for further details about Alexandrov
surfaces.

Alexandrov surfaces are interesting because of their compactness properties. Indeed,
we know that the space of Alexandrov surfaces of curvature at most -1 homeomorphic
to a non-simply connected closed surface with uniformly bounded systole is compact
for the uniform distance topology; see [27]. Hence, the supremum of the systole
over the space of Alexandrov surfaces with curvature at most −1 is attained by an
Alexandrov surface.

If we only consider non-positively curved metrics of unit area, similar sharp in-
equalities have already been established for genus 2 surfaces (see [46]) and for the
connected sum of three projective planes (see [47]). The extremal metrics are flat
with conical singularities in both cases. Recently, this was generalized by M. Katz
and S. Sabourau to all genus g surfaces (see [48]).

The main tool in the proofs given by Katz and Sabourau in [48] is the kite excision
trick. The method consists of moving two conical singularities closer and closer until
they merge together. We use the same technique in Chapter 2 to derive the following
intermediate result.

Proposition. Let Σ be a non-simply connected closed surface. Let U ⊆ AΣ be an
open set in the space AΣ of Alexandrov surfaces of curvature at most −1 defining a
local supremum of the systole. Then there exists a piecewise hyperbolic surface M0 ∈
U with at most N0 conical singularities such that

sys(M0) ≥ sys(M)

for every M ∈ U , where N0 is an integer depending only on the topology of Σ.
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In order to eliminate the conical singularities and prove that the extremal metric
is hyperbolic, we introduce the opposite technique, namely the kite insertion trick.
The goal is to add as much area as possible to the piecewise hyperbolic surface
with conical singularities with Alexandrov curvature at most -1 to obtain the desired
hyperbolic surface. Hence, we have the following result.

Theorem. Let Σ be a nonsimply connected closed surface. Let U ⊆ AΣ be an open
set in the space AΣ of Alexandrov surfaces of curvature at most −1 defining a local
supremum of the systole. Then there exists a hyperbolic surface M ∈ U such that

sys(M) ≥ sys(M ′)

for every M ′ ∈ U .

Since, see [14], the maximum of the systole among closed genus two hyperbolic sur-
faces is known and is attained by the Bolza surface, which is the smooth completion
of the affine algebraic curve

y2 = x5 − x,

we obtain then the following corollary for closed surfaces of genus two.

Corollary. The maximal systole of a closed genus two surface M with a Riemannian
metric of curvature KM at most −1 is attained by the hyperbolic metric conformal
to the Bolza surface and is equal to

max
KM ≤−1

sys(M) = 2 arccosh(1 +
√

2).

Finally, we extend our work to higher dimension and obtain the following result for
closed hyperbolic 3-manifolds. By definition, a maximal hyperbolic surface is a closed
hyperbolic surface with maximal systole among all hyperbolic metrics of fixed genus.

Corollary. Let N be a closed hyperbolic 3-manifold admitting a totally geodesic
immersion of a maximal hyperbolic surface M with sys(M) = sys(N). Then the
hyperbolic metric on N has maximal systole among all Riemannian metrics of (sec-
tional) curvature at most −1.

A concrete example can be found in Example 2.13.3.

In Chapter 3, we present a work in the analysis of PDE done in collaboration
with H. Al Baba and published in a conference paper [5]. It is unrelated to the first
two chapters of this thesis.
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We consider in a bounded cylindrical domain Ω × (0, T ) the following problemß
λu− ∆u+ ∇π = f , divu = 0 in Ω × (0, T )

u(0) = u0 in Ω

where the unknows u and π stand respectively for the velocity field and the pressure
of a fluid occupying a domain Ω . The given data are the external force f and the
initial velocity u0. In other terms, we consider the resolvent of the Stokes operator.

There exist several results for this problem with Dirichlet boundary conditions. For
example, the reader can refer to the work of V. Solonnikov in [68] and its extended
version by Y. Giga in [33]. The case where divu ̸= 0 has important applications,
especially in treating more general boundary value problems. It was studied by R.
Farwig and H. Sohr [30]. The general problem is also studied with Robin boundary
conditions by J. Saal [64], Y. Shibata and R. Shimada [67]. However, this type of
boundary conditions is not always realistic since it does not necessarily reflect the
behavior of the fluid on or near the boundary.

In 1824, H. Navier [55] suggested a type of boundary conditions based on a propor-
tionality between the tangential components of the normal dynamic tensor and the
velocity

u · n = 0, 2ν[Du · n]τ + αuτ = 0 on Γ × (0, T )

where ν is the viscosity, α ⩾ 0 is the coefficient of friction and

Du = 1
2(∇u+ ∇uT )

denotes the deformation tensor associated to the velocity field u. The Navier bound-
ary conditions defined above are often used to simulate the flows near rough walls
as well as perforated walls. We also mention that such slip boundary conditions are
used in the simulation of turbulent flows. Making use of the vorticity field w = curl
u, and using classical identities, one can observe that in the case of a flat boundary
and when α = 0, the Navier boundary conditions may be replaced by

u · n = 0, curlu× n = 0 on Γ × (0, T ).

We call them Navier-type boundary conditions.

Hence, one can study the resolvent of the Stokes operator with homogeneous Navier
type boundary conditions by studying the following problem.ß

λu− ∆u+ ∇π = f , divu = 0 in Ω × (0, T )
u · n = 0, curlu× n = 0 on Γ × (0, T ) (3)
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In [52], T. Miyakawa shows that the Laplacian operator with homogeneous Navier-
type boundary conditions generates a holomorphic semi-group on Lp-spaces when the
domain Ω is of class C∞. M. Mitrea and S. Monniaux [51] considered the problem
in Lipschitz domains using differential forms on Lipschitz sub-domains of a smooth
compact Riemannian manifold. In [2] and [3], H. Al Baba, C. Amrouche and M. Es-
cobedo prove the existence of weak, strong and very weak solutions to this problem.

In this last part of the thesis, we study the Stokes operator with non-homegeneous
Navier-type boundary conditionsß

λu− ∆u+ ∇π = f , divu = χ in Ω × (0, T )
u · n = g, curlu× n = h× n on Γ × (0, T ) (4)

and we prove the existence of weak, strong and very weak solutions to the problem 4.
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La présente thèse est divisée en deux parties indépendantes. Dans la première
partie, qui correspond aux chapitres 1 et 2, on étudie des inégalités géométriques
des surfaces liées à un sujet de recherche actif classiquement appelé la géométrie sys-
tolique. Dans la deuxième partie, constituée du chapitre 3, on étudie un problème
analytique concernant les solutions du problème généralisé de la resolvante.

On présente tout d’abord les résultats de la première partie de la thèse. La systole
d’une variété non-simplement connexe M munie d’une métrique riemannienne est
l’infimum des longueurs des lacets non-contractiles de M , définit par

sys(M, g) = inf{longueur(γ) | γ est un lacet non-contractile de M}.

Le terme systole a été inventé par M. Berger en 1972, voir [16]. Si M est fermée,
cette quantité est toujours atteinte par une géodésique fermée non-homotopiquement
triviale.

L’existence de géodésiques fermées sur une surface fermée non-simplement connexe
découle d’un processus de minimisation reposant sur le théorème d’Ascoli, alors
qu’elle découle du principe de minmax de Birkhoff dans le cas simplement connexe.
Pour les surfaces munies d’une métrique riemannienne complète d’aire finie à un ou
deux bouts, l’existence des géodésiques fermées a été prouvée par V. Bangert [12],
tandis que celle-ci a été prouvée par G. Thorbergsson [69] pour les surfaces d’aire
finie à au moins trois bouts.

Une inégalité systolique sur une variété fermée M de dimension n est une inégalité
de la forme

sysn(M, g) ≤ C · vol(M, g)

valable pour toute métrique riemannienne g sur M , où sys(M, g) désigne la systole et
C = C(M) est une constante indépendante de g. La première inégalité systolique a
été établie par C. Loewner sur le 2-tore en 1949 : pour toute métrique riemannienne g
sur T2, on a

sys2(T2, g) ≤ 2√
3

aire(T2, g). (5)

De plus, l’égalité est atteinte si et seulement si le tore est hexagonal plat. En 1952,
son étudiant P. Pu [56] a établit l’inégalité systolique suivante sur le plan projectif
réel : pour toute métrique riemannienne g sur RP 2, on a

sys2(RP 2, g) ≤ π

2 aire(RP 2, g).

L’égalité est atteinte précisement par les métriques rondes. Après plus que trente
ans, C. Bavard [13] a démontré une inégalité systolique sur la bouteille de Klein :
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pour toute métrique riemannienne g sur la bouteille de Klein K, on a

sys2(K, g) ≤ π

2
√

2
aire(K, g).

Dans ce cas, la métrique extrémale n’est pas lisse : elle est sphérique en dehors d’une
courbe singulière.

Le reste des surfaces fermées, i.e., les surfaces fermées de genre ≥ 2, satisfont égale-
ment une inégalité systolique mais la constante optimale connue pour aucun genre
≥ 2 (voir par exemple [40] et [23]). Des inégalités optimales sont connues si on con-
sidère juste les métriques à courbure constante, à courbure négative ou appartenant
à une classse conforme donnée (voir [62] pour une inégalité “locale” en genre 3).
Les inégalités systoliques de dimension supérieure existent d’après un résultat fon-
damental de M. Gromov [36] pour une grande classe de variétés, celles des variétés
essentielles (comprenant les espaces projectifs et les variétés asphériques) .

Dans le chapitre 1, on présente un travail en collaboration avec S. Sabourau. On
étudie un problème géométrique dans le même esprit que l’inégalité systolique en
remplaçant la systole par la longueur de la plus courte géodésique fermée notée

scg(M, g) = inf{longueur(γ) | γ est une géodésique fermée de M}.

Dans ce cas, on n’élimine pas le cas des surfaces simplement connexe, i.e., la sphère.
En 1982, C. Croke [25] a démontré que pour toute métrique riemannienne sur g la
2-sphère S2, on a

scg(S2, g) ≤ 31
»

aire(S2, g). (6)

Cette borne a été améliorée dans [53], [60] et [58]. Une conjecture classique (voir [25]
and [26]) affirme que la sphère plate par morceaux avec trois singularités coniques
obtenue en collant deux triangles équilatéraux le long de leurs côtés (appelée sphère
de Calabi-Croke) est le maximum global pour la longueur de la plus courte géodésique
fermée parmi les métriques riemanniennes sur la sphère d’aire fixe. On note qu’un
résultat de maximalité “locale” de la sphère de Calabi-Croke a été démontré par
F. Balacheff dans [10] (voir aussi [61]).

L’inégalité (6) reste vraie pour les surfaces Σ non-compactes munies d’une métrique
riemannienne complète d’aire finie (voir C. Croke [25]). La constante 31 dans
l’inégalité a été améliorée par Beach et Rotman dans [18], où elle a été remplacée par
4
√

2 pour les surfaces avec un bout et par 2
√

2 pour les surfaces avec au moins deux
bouts. Les auteurs ont également conjecturé que la borne optimale pour une sphère
trouée avec au plus trois bouts est la même que celle de la sphère, c’est-à-dire que la
borne optimale est égale à 2 1

2 · 3 1
4 . Cette conjecture est établie dans le chapitre 1 où

on prouve une inégalité optimale pour les sphères à trois ou quatre bouts, ainsi que



0.0 0. 15

des inégalités non-optimales pour les sphères avec k bouts, avec k > 4. On prouve
également d’autres inégalités optimales et non-optimales de même nature pour des
sphères trouées munies d’une métrique finslérienne réversible ou non-nécessairement
réversible complète d’aire finie.

Les preuves de nos bornes optimales ne reposent pas sur la méthode de longueur
conforme utilisée dans [45], [56] et [13]. Au lieu de cela, on utilise des revêtements
ramifiés du tore sur la sphère. Cette technique a été introduite par S. Sabourau [59]
dans un contexte similaire. Ces revêtements ramifiés sont utiles car ils permettent
d’appliquer l’inégalité systolique de Loewner (5) après avoir relié les 2-sphères trouées
aux 2-tores.

Dans le cas riemannien, on a le théorème suivant.

Théorème. Soit Σ = S2\{x1, . . . , xk} une sphère avec k bouts munie d’une métrique
riemannienne complète d’aire finie.

1. Si k = 3 alors il existe une géodésique en huit γ non-contractile sur Σ telle que

longueur(γ) < 2
1
2 · 3

1
4
»

aire(Σ).

De plus, cette inégalité est optimale.

2. Si k ≥ 4 alors il existe une géodésique fermée γ non-contractile sur Σ telle que

longueur(γ) < 2 · 3− 1
4
»

aire(Σ).

De plus, cette inégalité est optimale lorsque k = 4.

La métrique extrémale sur la sphère à trois bouts est modelée par la sphère de Calabi-
Croke en attachant trois cusps d’aire arbitrairement petite autour de ses singularités.
Cela peut être fait en gardant la métrique à courbure négative.

La métrique extrémale sur la sphère à quatre bouts est modelée par la sphère tétraé-
drique en attachant quatre cusps d’aire arbitrairement petite autour de ses singular-
ités. Ici, la sphère tétraédrique est définie comme la sphère plate par morceaux avec
quatre singularités coniques d’angle π donnée par le tétraèdre régulier. Cela peut
également être fait en gardant la métrique à courbure négative.

Ensuite, on démontre une version finslérienne du théorème précédent, c’est-à-dire
pour les sphères trouées complètes équipées d’une métrique finslérienne réversible
d’aire Holmes-Thompson finie. Plus précisément, nous avons

Théorème. Soit Σ = S2\{x1, . . . , xk} une sphère avec k bouts munie d’une métrique
finslérienne réversible complète d’aire finie.
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1. Si k = 3 alors il existe une géodésique en huit γ non-contractile sur Σ telle que

longueur(γ) < 2− 1
2 · 3

1
2 · π

1
2
»

aire(Σ).

2. Si k ≥ 4 alors il existe une géodésique fermée γ non-contractile sur Σ telle que

longueur(γ) < π
1
2
»

aire(Σ).

De plus, cette inégalité est optimale lorsque k ∈ {4, . . . , 6}.

Notons que l’inégalité sur la sphère à trois bouts n’est pas nécessairement optimale.
La métrique extrémale sur la sphère avec quatre bouts est modelée par la sphère
obtenue en collant deux copies du carré [0, 1] × [0, 1] muni de la métrique ℓ1 le long
de leurs frontières, avec quatre cusps d’aire arbitrairement petite attachés autour des
quatre sommets des carrés. De plus, on attache respectivement un ou deux cusps
supplémentaires d’aire arbitrairement petite autour des centres des carrés pour les
sphères avec cinq et six bouts.

Pour les sphères trouées munies d’une métrique finslérienne non-nécessairement réversible,
on démontre les inégalités non-optimales suivantes.

Théorème. Soit Σ = S2\{x1, . . . , xk} une sphère avec k bouts munie d’une métrique
finslérienne non-nécessairement réversible complète d’aire finie.

1. Si k = 3 alors il existe une géodésique en huit γ non-contractile sur Σ telle que

longueur(γ) < 2
1
2 · π

1
2
»

aire(Σ).

2. Si k ≥ 4 alors il existe une géodésique fermée γ non-contractile sur Σ telle que

longueur(γ) < 2 · 3− 1
2 · π

1
2
»

aire(Σ).

On conclut en démontrant le résultat suivant pour des sphères avec un grand nombre
de bouts.

Théorème. Soit Σ = S2\{x1, . . . , xk} une sphère avec k bouts munie d’une métrique
riemannienne complète d’aire finie, où k ≥ 3. Alors il existe une géodésique fermée
non contractile γ sur Σ telle que

longueur(γ) ≤ 4
√

2

 
aire(Σ)

k
.

De plus, la borne supérieure est à peu près asymptotiquement optimale en k.
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Dans le chapitre 2, on présente un travail en collaboration avec S. Sabourau.
On étudie le maximum de la systole sur les surfaces de genre g ≥ 2 munies d’une
métrique riemannienne de courbure au plus −1. Avec cette condition sur la cour-
bure, on prouve que les métriques extrémales sont hyperboliques et on présente des
exemples en dimension trois.

Une surface d’Alexandrov M est une surface munie d’une métrique qui est la limite
d’une suite de métriques riemanniennes à courbure intégrale absolue uniformément
bornée. Une telle surface est de courbure au plus -1 si tout triangle géodésique assez
petit dans M possède un triangle de comparaison dans le plan hyperbolique (les
côtés sont de même longueur) vérifiant la condition suivante: les distances entre les
points du bord du triangle dans M sont inférieures ou égales aux distances entre les
points correspondants dans le triangle hyperbolique. Par exemple, notre résultat est
vrai dans le cadre plus général de la courbure d’Alexandrov au plus −1. Une surface
fermée hyperbolique par morceaux avec des singularités coniques d’angle total au
moins 2π est une surface d’Alexandrov à courbure au plus −1. On renvoie le lecteur
à la section 2.2 pour plus de détails sur les surfaces d’Alexandrov.

Les surfaces d’Alexandrov sont intéressantes à cause de leurs propriétés de compac-
ité. En effet, on sait que l’espace des surfaces d’Alexandrov de courbure au plus −1
homéomorphes à une surface fermée non simplement connexe de systole uniformé-
ment bornée est compact pour la topologie de la distance uniforme; voir [27]. Ainsi,
le supremum de la systole sur l’espace des surfaces d’Alexandrov de courbure au plus
−1 est atteint par une surface d’Alexandrov.

Si on ne considère que des métriques à courbure négative d’aire unitaire, des inégal-
ités optimales similaires ont déjà été établies pour les surfaces de genre 2 (voir [46]) et
pour la somme connexe de trois plans projectifs (voir [47]). Les métriques extrémales
sont plates avec des singularités coniques dans les deux cas. Récemment, cela a été
généralisé par M. Katz et S. Sabourau pour toutes les surfaces de genre g (voir [48]).

L’outil principal dans les preuves données par Katz et Sabourau dans [48] est l’astuce
d’excision de cerfs-volants. La méthode consiste à rapprocher de plus en plus deux
singularités coniques jusqu’à ce qu’elles se fusionnent. Nous utilisons la même tech-
nique dans le chapitre 2 pour obtenir le résultat intermédiaire suivant.

Proposition. Soit Σ une surface fermée non-simplement connexe. Soit U ⊆ AΣ un
ouvert dans l’espace AΣ des surfaces d’Alexandrov de courbure au plus −1 définis-
sant un supremum local de la systole. Alors il existe une surface hyperbolique par
morceaux M0 ∈ U avec au plus N0 singularités coniques telle que

sys(M0) ≥ sys(M)
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pour toute surface M ∈ U , où N0 est un entier dépendant uniquement de la topologie
de Σ.

Afin d’éliminer les singularités coniques et de prouver que la métrique extrémale est
hyperbolique, nous introduisons la technique inverse, à savoir l’astuce d’insertion de
cerfs-volants et non plus d’excision. Le but est d’ajouter autant d’aire que possi-
ble à la surface hyperbolique par morceaux avec singularités coniques de courbure
d’Alexandrov au plus -1 pour obtenir la surface hyperbolique souhaitée. Ceci permet
de montrer le résultat suivant.

Théorème. Soit Σ une surface fermée non-simplement connexe. Soit U ⊆ AΣ un
ouvert dans l’espace AΣ des surfaces d’Alexandrov de courbure au plus −1 définissant
un supremum local de la systole. Alors il existe une surface hyperbolique M ∈ U
telle que

sys(M) ≥ sys(M ′)

pour toute surface M ′ ∈ U .

Puisque le maximum de la systole parmi les surfaces hyperboliques fermées de genre
deux est connu et est atteint par la surface de Bolza, qui est la surface de Riemann
associée à la courbe algébrique affine

y2 = x5 − x,

on obtient alors le corollaire suivant pour les surfaces fermées de genre deux.

Corollaire. La systole maximale d’une surface fermée M de genre deux munie d’une
métrique riemannienne de courbure KM au plus −1 est atteinte par la métrique
hyperbolique conforme à la surface de Bolza et est égale à

max
KM ≤−1

sys(M) = 2 arccosh(1 +
√

2).

Enfin, on étend notre travail en dimension supérieure et on obtient le résultat suivant
pour une variété hyperbolique fermée de dimension 3. Par définition, une surface
hyperbolique maximale est une surface hyperbolique fermée avec une systole maximale
parmi toutes les métriques hyperboliques d’un genre fixe.

Corollaire. Soit N une variété hyperbolique fermée de dimension 3 admettant
une immersion totalement géodésique d’une surface hyperbolique maximale M avec
sys(M) = sys(N). Alors la métrique hyperbolique sur N a une systole maximale
parmi toutes les métriques riemanniennes de courbure (sectionnelle) au plus −1.

Un exemple concret peut être trouvé dans Exemple 2.13.3.
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Dans le chapitre 3, on présente un travail d’analyse d’EDP réalisé en collabo-
ration avec H. Al Baba et publié dans un article de conférence [5]. Il n’est pas en
rapport avec les deux premiers chapitres de cette thèse.

On considère le problème suivant dans un domaine cylindrique borné Ω × (0, T )ß
λu− ∆u+ ∇π = f , divu = 0 dans Ω × (0, T )

u(0) = u0 dans Ω

où les inconnues u et π représentent respectivement le champ de vitesse et la pression
d’un fluide occupant un domaine Ω . Les données fournies sont la force externe f et
la vitesse initiale u0. En d’autres termes, on considère la résolvante de l’opérateur
de Stokes.

Il existe plusieurs résultats pour ce problème avec des conditions aux limites de
Dirichlet. Par exemple, le lecteur pourra se référer au travail de V. Solonnikov dans
[68] et sa version étendue par Y. Giga dans [33]. Le cas où divu ̸= 0 a des applica-
tions importantes, en particulier dans le traitement des problèmes avec des valeurs
aux limites plus générales. Il a été étudié par R. Farwig et H. Sohr [30]. Le problème
général est également étudié avec les conditions aux limites de Robin par J. Saal [64],
Y. Shibata et R. Shimada [67]. Cependant, ce type de conditions aux limites n’est
pas toujours réaliste car il ne reflète pas nécessairement le comportement du fluide
sur ou près de la frontière.

En 1824, H. Navier [55] propose un type de conditions aux limites basé sur une
proportionnalité entre les composantes tangentielles du tenseur dynamique normal
et la vitesse

u · n = 0, 2ν[Du · n]τ + αuτ = 0 sur Γ × (0, T )

où ν est la viscosité, α ⩾ 0 est le coefficient de frottement et

Du = 1
2(∇u+ ∇uT )

désigne le tenseur de déformation associé au champ de vitesse u. Les conditions aux
limites de Navier définies ci-dessus sont souvent utilisées pour simuler l’écoulement
à proximité des murs rugueux ainsi que des murs perforés. On mentionne également
que de telles conditions aux limites sont utilisées dans la simulation des écoulements
turbulents. En utilisant le champ de vorticité w = curl u, et quelques identités
classiques, on peut observer que dans le cas d’une frontière plate et lorsque α = 0,
les conditions aux limites de Navier peuvent être remplacées par

u · n = 0, curlu× n = 0 on Γ × (0, T ).
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On les appelle conditions aux limites de type Navier.

Ainsi, on peut étudier la résolvante de l’opérateur de Stokes avec des conditions aux
limites homogènes de type Navier en étudiant le problème suivant.ß

λu− ∆u+ ∇π = f , divu = 0 dans Ω × (0, T )
u · n = 0, curlu× n = 0 sur Γ × (0, T ) (7)

Dans [52], T. Miyakawa montre que l’opérateur de Laplace avec des conditions aux
limites homogènes de type Navier génère un semi-groupe holomorphe sur les Lp-
espaces lorsque le domaine Ω est de classe C∞. M. Mitrea et S. Monniaux [51]
ont considéré le problème dans les domaines lipschtiziens en utilisant les formes dif-
férentielles sur les sous-domaines lipschitziens d’une variété riemannienne lisse et
compacte. Dans [2] et [3], H. Al Baba, C. Amrouche et M. Escobedo prouvent
l’existence de solutions faibles, fortes et très faibles à ce problème.

Dans cette dernière partie de la thèse, on étudie l’opérateur de Stokes avec des
conditions aux limites de type Navier non homogènesß

λu− ∆u+ ∇π = f , divu = χ dans Ω × (0, T )
u · n = g, curlu× n = h× n sur Γ × (0, T ) (8)

et on démontre l’existence de solutions faibles, fortes et très faibles au problème (8).



Chapter 1

Sharp bounds on the length of
the shortest closed geodesic

We establish sharp universal upper bounds on the length of the shortest closed
geodesic on a punctured sphere with three or four ends endowed with a complete
Riemannian metric of finite area. These sharp curvature-free upper bounds are
expressed in terms of the area of the punctured sphere. In both cases, we describe
the extremal metrics, which are modeled on the Calabi-Croke sphere or the
tetrahedral sphere. We also extend these optimal inequalities for reversible and
non-necessarily reversible Finsler metrics. In this setting, we obtain optimal bounds
for spheres with a larger number of punctures. Finally, we present a roughly
asymptotically optimal upper bound on the length of the shortest closed geodesic
for spheres/surfaces with a large number of punctures in terms of the area. This is
joint work with S. Sabourau.
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1.1 Introduction
This work deals with universal upper bounds on the length of the shortest closed
geodesic on surfaces with a complete Riemannian metric of finite area. The exis-
tence of a closed geodesic on a closed surface with a Riemannian metric follows from
a minimization process using Ascoli’s theorem in the nonsimply connected case and
from Birkhoff’s minmax principle in the simply connected case. For noncompact
surfaces with a complete Riemannian metric, closed geodesics may not exist (the
Euclidean plane yields an obvious example). However, it was proved by Thorbergs-
son [69] for surfaces with at least three ends and by Bangert [12] for surfaces with one
or two ends that every noncompact surface Σ with a complete Riemannian metric of
finite area has a closed geodesic. This allows us to introduce

scg(Σ) = inf{length(γ) | γ is a closed geodesic of Σ}.

Note that in higher dimension the existence of a closed geodesic on a closed Rie-
mannian manifold has been established by Fet and Lyusternik, but whether closed
geodesics exist or not on any complete noncompact Riemannian n-manifold of finite
volume with n ≥ 3 is an open question; see [21, Question 2.3.1].

In this article, we are interested in finding good (if possible optimal) curvature-
free upper bounds on scg(Σ) for every surface Σ with a complete Riemannian metric
of finite area A. For every nonsimply connected closed surface, it was independently
proved by Hebda [40] and Burago-Zalgaller [20] that scg(Σ) ≤

√
2
√

area(Σ). In
this case, optimal bounds are only known for the torus (Loewner 1949, unpublished,
see [45]), the projective plane (Pu 1952, [56]) and the Klein bottle (Bavard 1986,
[13]); see also Section 1.5 and Section 1.6 for a brief presentation of the extremal
inequalities. For the sphere, it was proved by Croke [25] that scg(Σ) ≤ 31

√
area(Σ).

This bound was subsequently improved in [53], [60] and [58], where the current best
bound with 31 replaced with 4

√
2 is due to Rotman [58]. It is conjectured that the

global maximum for the length of the shortest closed geodesic among Riemannian
metrics with fixed area on the sphere is attained by the Calabi-Croke sphere (see [25]
and [26]), which would yield

scg(S2) ≤ 2
1
2 3

1
4

»
area(S2). (1.1)

Recall that the Calabi-Croke sphere is defined as the piecewise flat sphere with three
conical singularities of angle 2π

3 obtained by gluing two copies of an equilateral trian-
gle along their boundaries. Though this conjecture remains wide open, it was proved
by Balacheff [10] that the Calabi-Croke sphere is a local maximum (see also [61] for
an alternative proof extending to the Lipschitz distance topology). No conjecture
is available for other surfaces, except in genus 3, where Calabi constructed nonposi-
tively curved piecewise flat metrics with systolically extremal-like properties; see [23]
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and [62] (and [63] for related systolic-like properties in genus 2). Under a non-
positive curvature assumption, extremal systolic inequalities have been established
for the genus 2 surface and the connected sum of three projective planes; see [46]
and [47]. In both cases, the extremal nonpositively curved metrics are piecewise
flat with conical singularities. It was later proved that this structure is common to
all extremal nonpositively curved surfaces; see [48]. Extremal systolic inequalities
in a fixed conformal class have been investigated in relation with closed string field
theory; see [38], [39], [54] for the most recent contributions and the references therein.

For noncompact surfaces Σ with a complete Riemannian metric of finite area, it
was also shown by Croke [25] that scg(Σ) ≤ 31

√
area(Σ) (without any curvature

assumption). This bound has recently been improved by Beach and Rotman [18],
where the constant 31 is replaced with 4

√
2 for surfaces with one puncture and with

2
√

2 for surfaces with at least two punctures. The authors also conjectured that the
optimal bound for a punctured sphere with at most three punctures is the same as
that for the sphere; see (1.1).

In this article, we show that this conjecture is true for spheres with exactly three
punctures and prove an optimal bound for spheres with four punctures. These are
the only new optimal universal upper bounds on the length of the shortest closed
geodesic obtained during the almost 35 years since Bavard’s inequality on the Klein
bottle [13]. We also improve the best known upper bounds for spheres with a higher
number of punctures. More precisely, we have the following.

Theorem 1.1.1. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
Riemannian metric of finite area. Then the following holds.

1. If k = 3 then there exists a noncontractible figure-eight geodesic γ on Σ such
that

length(γ) < 2
1
2 · 3

1
4
»

area(Σ). (1.2)

Furthermore, this inequality is optimal.

2. If k ≥ 4 then there exists a noncontractible closed geodesic γ on Σ such that

length(γ) < 2 · 3− 1
4
»

area(Σ). (1.3)

Furthermore, this inequality is optimal when k = 4.

The extremal metric on the three-punctured sphere in (1.2) is modelled on the
Calabi-Croke sphere by attaching three cusps of arbitrarily small area around its
singularities. This can be done keeping the curvature nonpositively curved.

The extremal metric on the four-punctured sphere in (1.3) is modelled on the
tetrahedral sphere by attaching four cusps of arbitrarily small area around its sin-
gularities. Here, the tetrahedral sphere is defined as the piecewise flat sphere with
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four conical singularities of angle π given by the regular tetrahedron. This can also
be done keeping the curvature nonpositively curved.

A version of this theorem holds true for complete Finsler punctured spheres of
finite Holmes-Thompson area; see Section 1.2 for a brief account on reversible and
non-necessarily reversible Finsler metrics and the Holmes-Thompson volume.

For reversible Finsler metrics, we have the following.

Theorem 1.1.2. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
reversible Finsler metric of finite area. Then the following holds.

1. If k = 3 then there exists a noncontractible figure-eight geodesic γ on Σ such
that

length(γ) < 2− 1
2 · 3

1
2 · π

1
2
»

area(Σ). (1.4)

2. If k ≥ 4 then there exists a noncontractible closed geodesic γ on Σ such that

length(γ) < π
1
2
»

area(Σ). (1.5)

Furthermore, this inequality is optimal when k ∈ {4, . . . , 6}.

In contrast to (1.2), the inequality (1.4) on the three-punctured sphere is not
necessarily optimal which means that it is possible to find a constant less than the
one in the inequality (1.4). The extremal metric on the four-punctured sphere in (1.5)
is modelled on the sphere S2 obtained by gluing two copies of the square [0, 1]× [0, 1]
endowed with the ℓ1-metric along their boundary, with four cusps of arbitrarily small
area attached around the four vertices of the squares. Note that the four vertices of
the squares and the two centers of the squares are at distance 1

2 scg(S2) = 1 from
each other. Similarly, the extremal metrics on the five- and six-punctured spheres
in (1.5) are obtained by attaching one or two extra cusps of arbitrarily small area
around the centers of the squares.

For non-necessarily reversible Finsler metrics, we have the following.

Theorem 1.1.3. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
non-necessarily reversible Finsler metric of finite area. Then the following holds.

1. If k = 3 then there exists a noncontractible figure-eight geodesic γ on Σ such
that

length(γ) < 2
1
2 · π

1
2
»

area(Σ). (1.6)

2. If k ≥ 4 then there exists a noncontractible closed geodesic γ on Σ such that

length(γ) < 2 · 3− 1
2 · π

1
2
»

area(Σ).
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In contrast to Theorem 1.1.1 and Theorem 1.1.2, the inequalities in this theorem
are not necessarily optimal. In Section 1.6, we present further optimal inequalities on
punctured tori, punctured projective planes and punctured Klein bottle with a few
ends, where the number of ends (interestingly) depends whether the metric is Rie-
mannian, reversible Finsler or non-reversible Finsler. These inequalities immediately
follow from the corresponding optimal bounds for the underlying closed surfaces.

The following table gives an approximation of the constant c# (optimal in some
cases) for the inequality

scg(Σ) ≤ c#
»

area(Σ)

where Σ is a k-punctured sphere with a complete metric of finite area in the Rie-
mannian, reversible Finsler and non-necessarily reversible Finsler cases when k = 3
or 4.

c# Riemannian reversible Finsler non-reversible Finsler

k=3 2 1
2 · 3 1

4 ≃ 1.861... 2− 1
2 · 3 1

2 · π
1
2 ≃ 2.170... 2 1

2 · π
1
2 ≃ 2.506...

k=4 2 · 3− 1
4 ≃ 1.519... π

1
2 ≃ 1.772... 2 · 3− 1

2 · π
1
2 ≃ 2.046...

We conclude by proving a roughly asymptotically optimal upper bound on the
length of the shortest noncontractible closed geodesic on spheres with a large number
of punctures, i.e., there exist a constant c > 0 and a sequence (gkn) of complete
Riemannian metrics of finite area on the kn-punctured sphere where kn tends to
infinity, such that

sys(gkn)√
area(gkn)/kn

≥ c > 0.

In Theorem 1.7.2, we present a more general statement for genus g surfaces with k
punctures.

Theorem 1.1.4. Let Σ = S2 \ {x1, . . . , xk} be a k-punctured sphere with a complete
Riemannian metric of finite area, where k ≥ 3. Then there exists a noncontractible
closed geodesic γ on Σ such that

length(γ) ≤ 4
√

2

 
area(Σ)

k
.

Furthermore, the upper bound is roughly asymptotically optimal in k.

Similar upper bounds hold true both in the reversible and non-necessarily re-
versible Finsler cases (albeit with a different multiplicative constant).

The proofs of our optimal bounds, namely Theorem 1.1.1, Theorem 1.1.2 and
Theorem 1.1.3, do not rely on the conformal length method used in [45], [56] and [13]
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to establish optimal systolic inequalities. Instead, we exploit ramified covers by the
torus to the sphere (the first one was introduced in [59] and used in [9] and [61] in
the same context) to connect the extremal properties of the punctured spheres with
the extremal equilateral flat torus in Loewner’s systolic inequality; see Theorem 1.5.3.

1.2 Finsler metrics and Holmes-Thompson volume
This section aims at introducing the notions of Finsler metrics and Holmes-Thompson
volume.

Let us recall the definition of a Finsler metric.

Definition 1.2.1. A Finsler metric on a manifold M is a continuous function F :
TM → [0, ∞) on the tangent bundle TM of M which is smooth outside the zero
section of TM and whose restriction Fx := F|TxM to each tangent space TxM is a
(possibly asymmetric) norm, that is,

1. Subadditivity: Fx(u + v) ≤ Fx(u) + Fx(v) for every u, v ∈ TxM ;

2. Homogeneity: Fx(tu) = tFx(u) for every u ∈ TxM ;

3. Positive definiteness: Fx(u) > 0 for every nonzero u ∈ TxM .

A Finsler metric is reversible if Fx(−u) = Fx(u) for every x ∈ M and u ∈ TxM .
The length of a piecewise smooth curve γ : [0, 1] → M is defined as

length(γ) =
∫ 1

0
F (γ′(t)) dt

and the distance between two points x and y in M is the infimal length of a curve γ
in M joining x to y.

We will consider the following notion of volume.

Definition 1.2.2. The Holmes-Thompson volume of an n-dimensional Finsler man-
ifold M is defined as the symplectic volume of its unit co-ball bundle B∗M ⊆ T ∗M
divided by the volume ϵn of the Euclidean unit ball in Rn. That is,

vol(M) = 1
ϵn

∫
B∗M

1
n! ωn

M

where ωM is the standard symplectic form on T ∗M .

The Holmes-Thompson volume of a Finsler manifold is bounded from above by
its Hausdorff measure, with equality if and only if the metric is Riemannian. This
is a consequence of the Blaschke-Santaló inequality, see [29]. Note also that the
Holmes-Thompson volume of a Riemannian manifold agrees with its Riemannian
volume.
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1.3 Degree-three ramified cover from the torus onto
the Calabi-Croke sphere

Consider the piecewise flat sphere (S2, g0) with three conical singularities x1, x2,
x3 obtained by gluing two copies of a flat unit-side equilateral triangle along their
boundaries. The sphere (S2, g0) is referred to as the Calabi-Croke sphere.

By the standard covering theory [28], there exists a degree-three cover π0 : T2 → S2

ramified over the three vertices x1, x2, x3 of S2, and a deck transformation map
ρ0 : T2 → T2 fixing only the ramification points of π0 : T2 → S2 with ρ3

0 = idT2 and
π0 ◦ ρ0 = π0.

The ramified cover π0 : T2 → S2 can also be constructed in a more geometric
way as follows. First, cut the sphere along the two minimizing arcs of g0 joining x1
to x2 and x1 to x3. This yields a parallelogram with all sides of unit length. Then,
glue three copies of this parallelogram along the two sides between x3 and the two
copies of x1 to form a hexagon; see Figure 1.1. By identifying the opposite sides of
this parallelogram, we obtain an equilateral flat torus T2. The isometric rotation,
defined on the hexagon, centered at x3 and permuting the parallelograms, passes to
the quotient and induces a map ρ0 : T2 → T2. This map gives rise to a degree-three
ramified cover π0 : T2 → S2.

x3

x1x1

x1

x2 x2

x2

Figure 1.1: Degree-three ramified cover of the Calabi-Croke sphere

Thus, the Calabi-Croke sphere can be described as the quotient of an equilateral
flat torus by the deck transformation map ρ0 : T2 → T2.

Given a Riemannian metric with conical singularities on S2, we will endow T2

with the metric pulled back by π0 : T2 → S2 and its universal cover R2 with the
metric pulled back by the composite map

R2 → T2 → S2.
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Since the degree of the Riemannian ramified cover π0 : T2 → S2 is equal to three,
we have

area(T2) = 3 area(S2). (1.7)

Remark 1.3.1. The degree-three ramified cover π0 : T2 → S2 was first used in this
type of setting in [59] in relation with extremal properties of the Calabi-Croke sphere
regarding the length of the shortest closed geodesic. It was later used in [10] to show
that the Calabi-Croke sphere is a local extremum for the length of the shortest closed
geodesic among metrics with fixed area. A different proof which does not require
the uniformization theorem, but still makes use of the degree-three ramified cover
π0 : T2 → S2, can be found in [61].

1.4 Degree-two ramified cover from the torus onto the
tetrahedral sphere

Consider the piecewise flat sphere (S2, g1) with four conical singularities x1, x2, x3,
x4 given by the unit-side regular tetrahedron. The sphere (S2, g1) is referred to as
the tetrahedral sphere.

By the standard covering theory, there exists a degree-two cover π1 : T2 → S2

ramified over the four vertices x1, x2, x3, x4 of S2, and a deck transformation map
ρ1 : T2 → T2 fixing only the ramification points of π1 : T2 → S2 with ρ2

1 = idT2 and
π1 ◦ ρ1 = π1.

The ramified cover π1 : T2 → S2 can also be constructed in a more geometric
way as follows. First, cut the sphere along the three minimizing arcs of g1 joining x1
to x2, x1 to x3 and x1 to x4. This yields an equilateral triangle with side length two.
Then, glue two copies of this triangle along the side passing through x4 to form a
parallelogram; see Figure 1.2. By identifying the opposite sides of this parallelogram,
we obtain an equilateral flat torus T2. The symmetry, defined on the parallelogram,
centered at x4 and switching the two equilateral triangles, passes to the quotient and
induces a map ρ1 : T2 → T2. This map gives rise to a degree-two ramified cover
π1 : T2 → S2.

Thus, the tetrahedral sphere (S2, g1) can be described as the quotient of an
equilateral flat torus by the deck transformation map ρ1 : T2 → T2.

Given a Riemannian metric with conical singularities on S2, we will endow T2

with the metric pulled back by π1 : T2 → S2 and its universal cover R2 with the
metric pulled back by the composite map

R2 → T2 → S2.

Since the degree of the Riemannian ramified cover π1 : T2 → S2 is equal to two,
we have

area(T2) = 2 area(S2). (1.8)
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x4

x1

x1 x1

x1
x2

x2

x3x3

Figure 1.2: Degree-two ramified cover of the tetrahedral sphere

1.5 Proof of the main theorem
In this section, we recall some basic results in systolic geometry and prove the main
theorem of this article, both in the Riemannian case and in the Finsler case.

Definition 1.5.1. Let M be a surface with a complete (Riemannian or Finsler)
metric. The systole of M is defined as

sys(M) = inf{length(γ) | γ is a noncontractible loop of M}.

When M is closed, the systole is attained by the length of a noncontractible closed
geodesic referred to as a systolic loop of M .

We will also need the following extension of the notion of systole.

Definition 1.5.2. Let M be a surface with k punctures and p marked points
x1, . . . , xp, endowed with a complete (Riemannian or Finsler) metric. A loop of M is
admissible if it lies in M ′ = M \ {x1, . . . , xp} and is not homotopic in M ′ to a point,
a multiple of a noncontractible simple loop of a cusp, or a multiple of a simple loop
of M ′ surrounding a single marked point xi. The marked homotopy systole of M is
the infimal length of admissible loops of M . It is denoted by sys∗(M).

Let us recall Loewner’s systolic inequality in the Riemannian case (unpublished),
see [45], in the reversible Finsler case, see [61], and in the non-necessarily reversible
case, see [1].

Theorem 1.5.3 ([45], [61], [1]). Let T2 be a torus. Then the following statements
hold true.

1. For every Riemannian metric on T2,

sys(T2) ≤ 2
1
2 · 3− 1

4

»
area(T2) (1.9)

with equality if and only if T2 is an equilateral flat torus.
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2. For every reversible Finsler metric on T2,

sys(T2) ≤ 2− 1
2 · π

1
2

»
area(T2) (1.10)

with equality if T2 is a square flat torus endowed with the ℓ1- or ℓ∞-metric.

3. For every non-necessarily reversible Finsler metric on T2,

sys(T2) ≤ 2
1
2 · 3− 1

2 · π
1
2

»
area(T2) (1.11)

with equality if T2 is homothetic to the quotient of R2, endowed with the non-
symmetric norm whose unit disk is the triangle with vertices (1, 0), (0, 1) and
(−1, −1), by the lattice Z2.

We can now proceed to the proof of the main theorem.

Proof of Theorem 1.1.1. Consider case (1). Let Σ be a 3-punctured sphere with a
complete Riemannian metric of finite area. Take three cylindrical ends C̄1, C̄2, C̄3
of Σ. For every i = 1, . . . , 3, take a cylindrical end Ci ⊆ C̄i with

d(Ci, ∂C̄i) > 2
1
2 · 3

1
4
»

area(Σ). (1.12)

Figure 1.3: Collapsing Ci to a point xi

Collapse every end Ci to a point xi; see Figure 1.3. This gives rise to a sphere S2

with a Riemannian metric with three singularities x1, x2, x3. Note that area(S2) <
area(Σ).

Consider the degree-three ramified cover π0 : T2 → S2 with branched points x1,
x2, x3 described in Section 1.3. Denote by pi the preimage of xi under π0 : T2 → S2

for i = 1, . . . , 3. Endow T2 with the singular pullback Riemannian metric. The
metric on T2 can be smoothed out in the neighborhood of its singularities, keeping
the area and the systole fixed. By Loewner’s inequality (1.9) and the relation (1.7),
there exists a noncontractible closed geodesic γ on T2 with

length(γ) ≤ 2
1
2 · 3

1
4

»
area(S2). (1.13)
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The loop γ does not pass through any singularity pi. Otherwise, by the length upper
bound (1.13) and the distance lower bound (1.12), it would lie in the topological
disk of T2 given by the quotient C̄i/Ci. This would contradict the noncontractibility
of γ in T2. To end the proof of the case (1) in Theorem 1.1.1, we need to prove the
following Claim 1.5.4, similar to [61, Lemma 7.1].

Claim 1.5.4. The systolic loop γ of T2 projects to a figure-eight geodesic of S2.
Furthermore, this figure-eight geodesic decomposes S2 into three domains with exactly
one vertex in each of them.

Proof. Recall that γ does not pass through a ramification point of π. The projection
of γ on S2 forms a graph α with geodesic edges. Consider the shortest simple loop c1
of α which seperates one vertex of S2, say x1 after renumbering, from the other two.
This loop exists, otherwise the lift γ of α in T2 would be contractible. Consider also
the shortest simple loop c2 lying in the closure of α \ c1 which separates x2 from x3.
This loop exists for the same reason as above. Switching the roles of x2 and x3 if
necessary, we can assume the winding number of ci around the vertex xj in S2 \{x3}
is equal to 1 if i = j and 0 otherwise, where i, j ∈ {1, 2}.
Let c3 be the shortest arc of α connecting c1 to c2. We can construct a loop c made
of c1, c2 and two copies of c3 with winding numbers 1 and −1 around x1 and x2 in
S2 \ {x3}. Clearly,

length(c) ≤ length(α) = length(γ). (1.14)
The loop c lifts to a noncontractible loop of T2. From (1.14), we conclude that c is
the projection of a systolic loop of T2 like α. Thus, c is a geodesic loop of the same
length as α. This implies that c is a figure-eight geodesic loop (with c3 reduced to a
point) which agrees with α. Hence the claim.

In the case (2), the proof is similar. Start with a 4-punctured sphere Σ with a
complete Riemannian metric of finite area. Take four cylindrical ends C1, C2, C3,
C4 of Σ of small area located far away from the core of the surface. Collapse the
cylindrical ends into points xi. This gives rise to a sphere S2 with a Riemannian
metric with four singularities xi. Consider the degree-two ramified cover π1 : T2 → S2

with branched points xi described in Section 1.4. By Loewner’s inequality (1.9) and
the relation (1.8), there exists a noncontractible closed geodesic γ on T2 with

length(γ) ≤ 2 · 3− 1
4

»
area(S2).

As previously, the systolic loop γ does not pass through a ramification point of
π1 : T2 → S2 and projects to a closed geodesic1 of S2 \ {x1, x2, x3, x4} ⊆ Σ. This

1Arguing as in [61, Lemma 7.1], one can show that the systolic loop γ of T2 projects either
to a simple closed geodesic surrounding exactly two branched points of S2 on each side, or to a
figure-eight geodesic with exactly one or two branched points in each of the three domains of S2 it
bounds.
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concludes the proof of the case (2) in Theorem 1.1.1.
Both inequalities are optimal since the extremal metric on T2 passes to the quo-

tient by the transformation groups of the ramified covers π0 and π1. The extremal
metrics on the punctured spheres thus-obtained are described in the introduction
right after Theorem 1.1.1.

Remark 1.5.5. In the Finsler case, we simply need to replace Loewner’s inequal-
ity (1.9) with (1.10) for reversible Finsler metrics, and with (1.11) for non-necessarily
reversible Finsler metrics. This leads to the Finsler version of the main theorem given
by Theorem 1.1.2 and Theorem 1.1.3. The only minor novelty is when k = 5 or 6.
In this case, we take k cylindrical ends Ci of Σ of small area located far away from
the core of the surface, and collapse the cylindrical ends into points xi. Consider the
degree-two ramified cover π1 : T2 → S2 branched only at four points x1, . . . , x4 as
previously. Apply the Finsler version of Loewner’s inequality and observe that the
systolic loops of T2 do not pass through the preimages π−1

1 (xi) of the singularities
of S2 and project to closed geodesics of S2 \ {x1, . . . , xk} ⊆ Σ as required.

Remark 1.5.6. In contrast to the Riemannian case, the extremal (reversible or
non-reversible) Finsler metric on T2 does not pass to the quotient under the deck
transformation groups of π0 : T2 → S2, which explains why the inequalities (1.4)
and (1.6) may not be optimal. The same occurs for the extremal non-reversible
Finsler metric on T2 with the deck transformation group of π1 : T2 → S2. However,
the extremal reversible Finsler metric on T2 does pass to the quotient under the
deck transformation group of π1 : T2 → S2. In this case, the inequality (1.5) is
optimal and the approximating metrics are described in the introduction right after
Theorem 1.1.2.

Remark 1.5.7. One may wonder if our technique can be applied to other ramified
covers T2 → S2 in order to derive sharp upper bounds on the length of the shortest
closed geodesics on other Riemannian punctured spheres Σ. At the heart of the
matter is the property that the extremal equilateral flat metric on T2 should induce
an extremal Riemannian metric on Σ but also on S2 with marked points/branched
points xi corresponding to the ends of Σ. In particular, the marked homotopy systole
of S2 should be greater or equal to the systole of T2. This implies that the ramifi-
cation points pi of T2 must be at distance at least 1

2 sys(T2) from each other. Thus,
the open disks D(pi,

1
4 sys(T2)) must be disjoint. Since the area of each of these flat

disks is equal to π
16 sys(T2)2, we deduce that the number of ramification points of T2

does not exceed
area(T2)

π
16 sys(T2)2 = 8

π

√
3 = 4.4...

Therefore, the number of ramification points is at most 4. In conclusion, our method
to find extremal Riemannian metrics based on Loewner’s inequality on the torus
cannot apply to punctured spheres with more than 4 ends.
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1.6 Extremal metrics on noncompact surfaces
In this section, we present other examples of noncompact surfaces admitting sharp
upper bounds on the length of their shortest closed geodesic.

Proposition 1.6.1. Let M be a closed surface with a systolically extremal (Rie-
mannian or Finsler) metric. Denote by Σ = M \ {x1, . . . , xk} the surface M with k
punctures. Then every complete (Riemannian or Finsler) metric on Σ satisfies

sys∗(Σ) ≤ c(M)
»

area(Σ) (1.15)

where c(M) = sys(M)√
area(M)

.

Proof. To prove this upper bound on sys∗(Σ), simply collapse small enough and
far enough cylindrical ends Ci of Σ. The resulting surface M ′ (where the metric is
smoothed out) is homeomophic to M and satisfies sys∗(Σ) ≤ sys(M ′) and area(M ′) ≤
area(Σ). Since the metric on M is systolically extremal, we clearly have c(M ′) ≤
c(M) and the desired result immediately follows.

The inequality (1.15) is not optimal when k is large, see Theorem 1.7.2, but it
is for small values of k. For this, one needs to find k points on M at distance at
least 1

2 sys(M) from each other. Compare with Remark 1.5.7.
For instance, we can consider the extremal (Riemannian or Finsler) metrics on the

torus as follows; see Theorem 1.5.3. The equilateral flat torus (see Theorem 1.5.3.(1))
admits 4 such points; see Figure 1.4a. Attaching cusps of arbitrarily small area
around these 4 points, we construct an almost extremal Riemannian metric on the
torus with k punctures, where k ≤ 4. Similarly, the square flat torus with the ℓ1-
metric (see Theorem 1.5.3.(2)) admits 8 such points; see Figure 1.4b. As previously,
we can construct an almost extremal reversible Finsler metric on the torus with k
punctures, where k ≤ 8. Finally, the square torus with the extremal non-reversible
Finsler metric (see Theorem 1.5.3.(3)) admits 9 points whose distance, back and
forth, between any pair of them is at least sys(T2); see Figure 1.4c. (Note that the
asymmetric distance between two of these points might be less than 1

2 sys(T2) but the
distance in the opposite direction makes up for it and their sum is at least sys(T2).)
As previously, we can construct an almost extremal non-reversible Finsler metric on
the torus with k punctures, where k ≤ 9.

The same construction applies to the projective plane where the extremal metric
is given by the canonical metric both in the Riemannian and Finsler cases; see [56]
and [41]. More precisely, we can construct an almost extremal metric on the projec-
tive plane with k punctures, where k ≤ 3.

This construction also applies to the Klein bottle where the extremal metric
is known both in the Riemannian and reversible Finsler settings. Specifically, the
extremal Riemannian Klein bottle is obtained by attaching along their boundary
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(a) Riemannian (b) reversible Finsler (c) non-reversible Finsler

Figure 1.4: Separated points on the torus

two copies of the Mobius band defined as the quotient of the π
4 -neighborhood of the

equator on the standard sphere by the antipodal map; see [13]. While the extremal
Finsler Klein bottle is the square flat Klein bottle with the ℓ1-metric; see [24]. Thus,
we can construct an almost extremal metric on the Klein bottle with k punctures,
where k ≤ 4 in the Riemannian case and k ≤ 8 in the reversible Finsler case.

1.7 Surfaces with many punctures

In this section, we show a roughly asymptotically optimal upper bound on the length
of the shortest closed geodesic on a surface with a large number of punctures.

We will need the following result, which can be found in [11, Lemma 6.5].

Lemma 1.7.1. Let M be a closed surface with a Riemannian metric and k marked
points x1, . . . , xk, with k ≥ 3. Fix R ∈ (0, 1

4 sys∗(M)]. Then there exists a closed
Riemannian surface M̄ such that

area(M̄) ≤ area(M) (1.16)
sys∗(M̄) = sys∗(M) (1.17)

area D̄(R) ≥ 1
2R2 (1.18)

for every disk D̄(R) of radius R in M̄ .

The following result implies Theorem 1.1.4 when g = 0.

Theorem 1.7.2. Let Σ be a surface of genus g with k punctures, endowed with a
complete Riemannian metric of finite area. Then

sys∗(Σ) ≤ C
log(g + 2)√

g + k + 1

»
area(Σ)

where C is an explicit universal constant.
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Proof. Take k cylindrical ends Ci ⊆ Σ far away from the core of Σ so that

d(Ci, Cj) > sys∗(Σ) (1.19)

for every i ̸= j, and
length(α) > sys∗(Σ) (1.20)

for every arc α of Σ with endpoints in Ci inducing a nontrivial class in π1(Σ, Ci).
Collapse every end Ci to a point xi. Denote by M the resulting closed surface

with k marked points x1, . . . , xk. The Riemannian metric on Σ induces a metric
on M that can be smoothed out in the neighborhood of the singularities xi, keeping
the area and the marked homotopy systole fixed. Note that area(M) ≤ area(Σ).

Claim 1.7.3. We have
sys∗(Σ) ≤ sys(M).

Proof. Let us show that length(γ) ≥ sys∗(Σ) for every noncontractible loop γ of M .
By (1.19), we can assume that the loop γ passes through at most one singularity
of M , otherwise we are done. We can further assume that the loop γ does not pass
through any singularity xi of M . Otherwise, it would admit an arc α ⊆ Σ with
endpoints in Ci inducing a nontrivial class in π1(Σ, Ci) as a lift under the quotient
map Σ → M . By (1.20), we would be done. Thus, the loop γ of M also lies in Σ.
Furthermore, the loop γ is noncontractible in Σ, even after collapsing the ends of Σ.
It follows that γ is an admissible loop of Σ. Therefore, length(γ) ≥ sys∗(Σ).

The roughly asymptotically optimal systolic inequality for closed surfaces of large
genus [36] [37] (see also [9] and [49] for alternate proofs) applied to M , combined
with the relations sys∗(Σ) ≤ sys(M) and area(M) ≤ area(Σ), shows that

sys∗(Σ) ≤ C ′ log(g + 2)√
g + 1

»
area(Σ) (1.21)

for some explicit universal constant C ′. This proves the theorem when k = 0.
Now, consider the closed surface M̄ obtained by applying Lemma 1.7.1 to the

closed surface M with its k marked points, with R = 1
4 sys∗(M). Observe that

dM̄ (xi, xj) ≥ 1
2 sys∗(M).

Otherwise we could find a figure-eight curve on M̄ of length less than sys∗(M), in
the neighborhood of the segment [xi, xj ], surrounding both xi and xj . This would
contradict the relation (1.17).

It follows that the open disks D̄(xi,
1
4 sys∗(M)) of M̄ are disjoint. Combined

with (1.16), we derive

area(Σ) ≥ area(M̄) ≥
k∑

i=1
area D̄(xi,

1
4 sys∗(M)).
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Now, by (1.18), we have

area D̄(xi,
1
4 sys∗(M)) ≥ 1

32 sys∗(M)2.

Hence,

sys∗(Σ) ≤ 4
√

2√
k

»
area(Σ). (1.22)

Now, if k ≥ 10 g + 1
log(g + 2)2 , then k ≥ 1

10
g + k + 1

log(g + 2)2 and the desired upper bound

on sys∗(Σ) follows from (1.22). Otherwise, if k ≤ 10 g + 1
log(g + 2)2 , then

√
g + 1 ≥

1
10

√
g + k + 1 and the desired upper bound follows from (1.21).

Remark 1.7.4. Theorem 1.7.2 extends to Finsler metrics. Indeed, given a non-
necessarily reversible Finsler metric F on Σ, we can replace F with a reversible
Finsler metric F ′ defined by F ′(v) = F (v) + F (−v). Then we replace F ′ with the
continuous Riemannian metric g whose unit disk agrees with the inner Loewner
ellipsoid associated to the unit tangent disk of F ′. By construction, sys∗(Σ, F ) ≤
sys∗(Σ, g) and area(Σ, g) ≤ λ area(Σ, F ) for some explicit universal constant λ. (We
refer to the proofs of Corollary 4.12 and Theorem 4.13 in [1] for the details.) Thus,
we can apply Theorem 1.7.2 to the Riemannian metric g and immediately derive a
similar upper bound on the length of the shortest closed geodesic of F in terms of
the Holmes-Thompson area of F (with a different multiplicative constant).



Chapter 2

Sharp systolic bounds on
negatively curved surfaces

We show that every local supremum of the systole over the space of Riemannian
metrics of curvature at most −1 on a given nonsimply connected closed surface
is attained by a hyperbolic metric. As an application, we also present a partial
extension of this result to 3-manifolds. This is joint work with S. Sabourau.
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2.1 Introduction
Sharp upper bounds on the length of the shortest closed geodesic have been es-
tablished only in a few instances, namely on the torus (see [45]), the projective
plane [56], the Klein bottle [13] and the three and four punctured spheres [42], for
complete Riemannian metrics of unit area, without any curvature assumption. For
metrics of unit area and nonpositive curvature, sharp upper bounds are known for
the genus two surface [46] and the connected sum of three projective planes [47],
also called Dyck’s surface. In these last two cases, the extremal metrics are flat
with conical singularities. This has recently been generalized to surfaces of higher
genus; see [48]. Namely, the supremum of the systole over the space of nonpositively
curved Riemannian metrics of unit area on a given closed surface of nonzero genus is
attained by a piecewise flat metric. Systolic inequalities have also been studied for
hyperbolic surfaces, where the area is fixed depending only on the topology of the
surface; see [65] [15], [22] for some foundational works.

In this article, we replace the normalization of the metric by the area with an
upper bound on the curvature. More precisely, we study the supremum of the systole
over the space of Riemannian metrics with curvature at most −1 on a given closed
surface. It follows from the Gauss-Bonnet formula that the area of such metrics is
bounded and from general (nonsharp) systolic inequalities on surfaces (see [45]) that
the systole is also bounded.

We establish the following result regarding the existence of systolically extremal
metrics of curvature at most −1.

Theorem 2.1.1. Let Σ be a nonsimply connected closed surface. Then the maxi-
mal systole of a Riemannian metric of curvature at most −1 on Σ is attained by a
hyperbolic metric.

In fact, we prove a more general version dealing with local maxima and singular
metrics; see our main result, namely Theorem 2.1.4.

Since the maximum of the systole among closed genus two hyperbolic surfaces is
known (see [43], [14], [65, Theorem 5.2]), we immediately derive the following result.

Corollary 2.1.2. The maximal systole of a closed genus two surface M with a
Riemannian metric of curvature KM at most −1 is attained by the hyperbolic metric
conformal to the Bolza surface and is equal to

max
KM ≤−1

sys(M) = 2 arccosh(1 +
√

2).

Recall that the Bolza surface is the unique Riemann surface of genus two with
a group of holomorphic automorphisms of order 48 and is defined as the smooth
completion of the affine algebraic curve

y2 = x5 − x.
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In view of their geometric and compactness properties, it is natural to consider
Alexandrov surfaces (i.e., surfaces with an intrinsic metric for which there exists a
natural notion of curvature defined as a Radon measure) instead of surfaces with a
Riemannian metric; see Section 2.2. Indeed, given a nonsimply connected closed sur-
face Σ, the space of Alexandrov surfaces of curvature at most −1 homeomorphic to Σ
with systole uniformly bounded away from zero is compact for the uniform distance
topology (and the Gromov-Hausdorff topology); see [27] for a general compactness
result. By continuity of the systole over the space of Alexandrov surfaces endowed
with the uniform distance topology, the supremum of the systole over the space AΣ
of Alexandrov surfaces of curvature at most −1 homeomorphic to Σ is attained by
an Alexandrov surface in AΣ. This shows it is natural to work within the class of
Alexandrov surfaces.

Actually, we obtain a version of Theorem 2.1.1 which holds for local suprema of
the systole (and not only for its global supremum). Before stating our result, we
need to introduce the following definition.

Definition 2.1.3. Consider one of the three natural topologies on the space AΣ of
Alexandrov surfaces of curvature at most −1 homeomorphic to Σ, namely the bilip-
schitz distance topology, the uniform distance topology and the Gromov-Hausdorff
topology; see Section 2.2 for a more detailed presentation.

A local supremum of the systole on AΣ is a real number µ > 0 such that there
exists an open set U ⊆ AΣ satisfying a strict inequality

µ = sup
M∈ U

sys(M) > sup
M∈ ∂U

sys(M).

Note that this definition is not entirely local. Indeed, the strict inequality may hold
for some open set U , but fail for arbitrarily small ones.

An Alexandrov surface M ∈ AΣ of curvature at most −1 is locally extremal for
the systole if there exists an open set U ⊆ AΣ containing M such that

sys(M) = sup
M ′∈ U

sys(M ′) > sup
M ′∈ ∂U

sys(M ′).

In this case, we say that the local supremum µ = sup
M∈ U

sys(M) is attained by M .
The notions of local supremum and locally extremal surface depend a priori on

the chosen topology on AΣ.

We can now state our main result.

Theorem 2.1.4. Let Σ be a nonsimply connected closed surface. Let U ⊆ AΣ be an
open set in the space AΣ of Alexandrov surfaces of curvature at most −1 defining a
local supremum of the systole (for any of the natural topologies on AΣ considered in
Definition 2.1.3). Then there exists a hyperbolic surface M ∈ U such that

sys(M) ≥ sys(M ′)
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for every M ′ ∈ U .

Since the systole has only finitely many local maxima on the moduli space of
hyperbolic metric on Σ, see [65, Theorem 2.6], we immediately derive the following
corollary.

Corollary 2.1.5. Let Σ be a nonsimply connected closed surface. Then the systole
has only finitely many local suprema on the space AΣ of Alexandrov surfaces of cur-
vature at most −1 (for any of the natural topologies considered in Definition 2.1.3).

A natural problem would be to extend our main result to higher dimension (recall
that in higher dimension, a closed hyperbolic n-manifold has a unique hyperbolic
metric, up to isometry, by Mostow’s rigidity theorem). More specifically, given a
closed hyperbolic n-manifold M with n ≥ 3, is the systole of a Riemannian metric
of curvature at most −1 on M always bounded by the systole of the hyperbolic
metric on M? In the last section of this article, we present a partial result in
this direction and give specific examples of closed hyperbolic 3-manifolds where the
answer is affirmative.

Corollary 2.1.6. There exist (explicit) closed hyperbolic 3-manifolds M whose sys-
tole is maximal among all Riemannian metrics of (sectional) curvature at most −1
on M .

The strategy of the proof of the main result decomposes into two parts. First,
we show that every local supremum of the systole on AΣ is attained by a piecewise
hyperbolic surface M of Alexandrov curvature at most −1 with finitely many conical
singularities. The argument closely follows [48] and relies on the kite excision trick.
This trick has the effect of moving a pair of singularities lying in the same systolic
domain closer and closer until they merge, keeping the same curvature upper bound,
while not decreasing the systole and strictly decreasing the area. Second, we eliminate
the conical singularities. For this purpose, observe that the area of an Alexandrov
surface of curvature at most −1 satisfies a sharp upper bound given by the Gauss-
Bonnet formula and is maximal exactly when the metric is hyperbolic. Thus, to
prove that the locally extremal piecewise hyperbolic surface M is hyperbolic, we
would like to add as much area as possible to it without changing the systole or
the curvature upper bound. Though the argument is actually slightly different, this
captures the motivation. Thus, in order to remove the conical singularities, we apply
the kite insertion trick, introduced for the occasion, which has the opposite effect to
the kite excision trick: it still does not decrease the systole but increases the area
while keeping the same curvature upper bound.

Concretely, we start by taking a surface of Alexandrov curvature at most −1 in an
open set U ⊆ AΣ defining a local supremum of the systole. In Section 2.3, we recall
that every surface of AΣ can be bilipschitz approximated by a piecewise hyperbolic
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surface of Alexandrov curvature at most −1 with N conical singularities. In Sec-
tion 2.4, we state a compactness result on the space of piecewise hyperbolic surfaces
of Alexandrov curvature at most −1 with at most N conical singularities and a sys-
tole bounded away from zero. This compactness result allows us to take a piecewise
hyperbolic surface M in U with at most N conical singularities of maximal systole.
In Section 2.5, we introduce the kite excision trick. In Section 2.6, we decompose
every negatively curved Alexandrov surface along its systolic loops into polygonal
systolic domains and show that the kite excision trick does not decrease the systole
for small kites in a systolic domain. In Section 2.7, we relate the number of edges and
vertices in the systolic decomposition to the number of pairwise nonhomotopic (sys-
tolic) loops intersecting at most twice. This yields an a priori upper bound on the
complexity of the systolic decomposition of a negatively curved Alexandrov surface
in terms of its Euler characteristic. In Section 2.8, we exploit the kite excision trick
as in [48] to show that every systolic domain and every edge of a systolic domain
of the surface M contains at most one small conical singularity. This yields an a
priori upper bound on the number of conical singularities of M . We deduce that
the surface M is extremal not only among piecewise hyperbolic surfaces of U with at
most N conical singularities, but among all Alexandrov surfaces of U . Thus, every
local supremum of the systole on AΣ is attained by a piecewise hyperbolic surface
with finitely many conical singularities. Then, we consider an extremal piecewise
hyperbolic surface M in AΣ with a minimal number of systolic loops and show that
the surface M has no conical singularity. For this purpose, we introduce the kite
insertion trick which consists of cutting open a piecewise hyperbolic surface of AΣ
along a geodesic segment passing through a conical singularity and pasting a kite
along its boundary; see Section 2.9. When done properly, the kite insertion trick has
the effect of never decreasing the length of a minimizing loop in a given homotopy
class keeping the same curvature upper bound; see Section 2.10. Applying the kite
insertion trick to a piecewise hyperbolic surface of AΣ either increases the systole
or keeps the systole fixed decreasing its number of systolic loops; see Section 2.11.
Since the surface M has a minimal number of systolic loops, we deduce that it has no
conical singularities, otherwise we could derive a contradiction by applying the kite
insertion trick around one of its conical singularities; see Section 2.12. Therefore, the
local supremum of the systole among all Alexandrov metrics of curvature at most −1
is attained by a hyperbolic metric.

2.2 Alexandrov surfaces

We start by recalling that the systole of a nonsimply connected closed surface M
with a length metric (e.g., a piecewise Riemannian metric), denoted by sys(M), is
the least length of a noncontractible loop in M .

We also need to introduce some definitions related to the metrics we consider in
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this article.

Definition 2.2.1. A closed surface M with a Riemannian metric with conical sin-
gularities is locally isometric to the complex plane endowed with the metric

ds2 = e2u(z)|z|2β|dz|2

where β > −1 and u : C → R is a continuous function, smooth everywhere except
possibly at the origin. The total angle of the conical singularity corresponding to the
origin of C is equal to θ = 2π(β + 1). See [70] for a detailed description.

Alexandrov surfaces (or surfaces with bounded integral curvature) are surfaces
endowed with a singular metric. They include polyhedral surfaces and surfaces en-
dowed with a Riemannian metric with conical singularities. Geometrically, they can
be defined as follows; see [8], [57], [71] and [27] for a detailed account on the subject.

Definition 2.2.2. A closed surface M with an intrinsic metric compatible with
the topology of M is an Alexandrov surface if for every point of M there exists a
neighborhood U homeomorphic to an open disk such that the sum of the (upper)
excesses of the geodesic triangles of any finite system of non-overlapping simple
triangles in U is bounded from above by a constant depending only on U . Recall
that the (upper) excess of a geodesic triangle T is the sum of the upper angles of T
minus π and that a geodesic triangle is simple if it is homeomorphic to a disk and
convex.

Alexandrov surfaces can also be characterized by metric approximation as follows.
A closed surface M with an intrinsic metric compatible with the topology of M is
an Alexandrov surface if and only if the metric is the uniform limit of a sequence of
Riemannian metrics with uniformly bounded absolute integral curvature.

On an Alexandrov surface M , there is no need to distinguished upper angles and
lower angles since the angle between two geodesics always exists and for a geodesic
triangle T with angles a, b, c, the excess of T is defined as δ(T ) := a + b + c − π.

The curvature measure ω = ω+ − ω− of M is defined by two non-negative Radon
measures ω+ and ω− as follows. For every open subset U ⊆ M , let

ω±(U) = sup
n∑

i=1
δ(Ti)±

where the supremum is taken over all finite systems (Ti)1≤i≤n of non-overlapping
simple triangles contained in U . Note that δ+ = max{δ, 0} and δ− = − min{δ, 0}.
Then for every Borel set A ⊆ M , we set

ω±(A) = inf
U⊇A

ω±(U)

where the infimum is taken over all open subsets U containing A. It can be shown
that the curvature measure has locally finite total variation on M , see [8, Chapter 5].



2.2 2.Alexandrov surfaces 43

By definition, a peak point of a closed Alexandrov surface is a point where the
curvature measure is atomic of mass 2π. Note that closed Riemannian surfaces
(possibly with conical singularities) do not have any peak points.

Upper bounds on the curvature can be introduced as follows.

Definition 2.2.3. An Alexandrov surface M is of (Alexandrov) curvature at most −1
if every small enough geodesic triangle ∆ ⊆ M has a comparison triangle ∆̄ ⊆ H2

in the hyperbolic plane, with sides of the same length as the sides of ∆, such that
the distances between points in ∂∆ are less or equal to the distances between corre-
sponding points in ∂∆̄.

For instance, a closed piecewise hyperbolic surface with conical singularities of
total angle at least 2π is an Alexandrov surface of curvature at most −1.

Alexandrov surfaces satisfy a Gauss-Bonnet formula, namely

ω(M) = 2πχ(M).

For closed Riemannian surfaces M of curvature K with N conical singularities of
total angles θi, this formula can be written

∫
M

K dA −
N∑

i=1
(θi − 2π) = 2πχ(M) (2.1)

where χ(M) is the Euler characteristic of M . When the surface M is of Alexandrov
curvature at most −1 (i.e., when K ≤ −1 and θi ≥ 2π), we obtain

area(M) ≤ 2π|χ(M)|. (2.2)

We can consider several topologies on the space of Alexandrov surfaces.

Definition 2.2.4. Let Σ be a closed surface. There are three natural topologies on
the space AΣ of Alexandrov surfaces of curvature at most −1 homeomorphic to Σ,
namely the bilipschitz distance topology, the uniform distance topology and the
Gromov-Hausdorff distance topology, which are induced by the following distances.

Let M and M ′ be two closed Alexandrov surfaces homeomorphic to Σ. Define

1. the bilipschitz distance as

dLip(M, M ′) = inf
f

max{log dil(f), log dil(f−1)}

where the infimum is taken over all bilipschitz homeomorphisms f : M → M ′

and dil(f) is the dilatation/Lipschitz constant of f .
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2. the uniform distance as

dunif(M, M ′) = sup
x,y∈M

inf
φ

|dM ′(φ(x), φ(y)) − dM (x, y)|

where the infimum is taken over all homeomorphisms φ : M → M ′.

3. the Gromov-Hausdorff distance as

dGH(M, M ′) = inf
f, f ′

sup
x,x′∈Σ

max{dX(f(x), f ′(M ′)), dX(f ′(x′), f(M))}

where the infimum is taken over all isometric embeddings f : M ↪→ X and
f ′ : M ′ ↪→ X into a metric space X = (X, dX).

In [19], it is shown that the bilipschitz distance between two closed Alexandrov
surfaces is always finite and so are the other two distances.

Remark 2.2.5. The bilipschitz distance topology is finer than the uniform dis-
tance topology, which is finer than the Gromov-Hausdorff distance topology. Note
also that the compactness result on the space of Alexandrov surfaces of curvature
at most −1 homeomorphic to Σ with systole bounded away from zero, mentioned
in the introduction, see [27], holds for the uniform distance topology (and so for
the Gromov-Hausdorff distance topology), but not for the bilipschitz distance topol-
ogy. Indeed, we can construct a deformation of a piecewise hyperbolic surface with
conical singularities and Alexandrov curvature at most −1 by merging two conical
singularities adding their total angles (and keeping the systole bounded away from
zero). This deformation is continuous for the uniform distance topology, but it is not
continuous for the bilipschitz distance topology because of the merging of the singu-
larities. As a consequence, we can derive that every local supremum of the systole on
the space AΣ endowed with the uniform distance topology or the Gromov-Hausdorff
distance topology is attained by an Alexandrov metric, but this result does not nec-
essarily hold when AΣ is endowed with the bilipschitz distance topology, except for
the global supremum since the topology of the space of metrics does not play any
role in this case.

2.3 Lipschitz approximation
The following Lipschitz approximation result of Alexandrov surfaces by piecewise
hyperbolic surfaces essentially follows from [19, Lemma 6].

Proposition 2.3.1. Every closed Alexandrov surface M without peak point is bilip-
schitz close to a piecewise hyperbolic surface M ′ with conical singularities. In par-
ticular, the systoles of the two surfaces are close.

In addition, if the initial Alexandrov surface M is of curvature at most −1 then
the piecewise hyperbolic surface M ′ can be assumed to be of Alexandrov curvature at
most −1.
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Proof. By [19, Lemma 6], the Alexandrov surface M admits a partition T into arbi-
trarily small geodesic triangles where each triangle ∆ of T is bilipschitz close to its
Euclidean comparison triangle ∆0 with the same side lengths. Now, if the size of the
triangles of T is sufficiently small, the Euclidean comparison triangles ∆0 are bilips-
chitz close to their hyperbolic comparison triangle ∆−1. Replacing every triangle ∆
of T with its hyperbolic comparison triangle ∆−1 gives rise to a piecewise hyperbolic
surface M ′ with conical singularities. Putting together the bilipschitz maps between
the triangles ∆ and ∆−1 yields a bilipschitz map between the two surfaces M and M ′

with bilipschitz constant close to 1.
By the Alexandrov–Toponogov comparison theorem, the angles of every trian-

gle ∆ in the partition T are less or equal to the corresponding angles in the hyperbolic
comparison triangle ∆−1. Thus, the total angles of the conical singularities of the as-
sociated piecewise hyperbolic surface M ′ are at least 2π, otherwise there would exist
a point of M corresponding to a conical singularity of M ′ of total angle less than 2π
through which passes no geodesic. Therefore, the piecewise hyperbolic surface M ′

has Alexandrov curvature at most −1.

2.4 Metric compactness

Let us prove the following compactness result for closed piecewise hyperbolic surfaces,
which is the equivalent of [48, Proposition 3.7] for piecewise flat nonpositively curved
surfaces.

Proposition 2.4.1. Fix a nonnegative integer N0 and a positive real number s0.
Let Σ be a nonsimply connected closed surface. Then the space of piecewise hyper-
bolic surfaces M ≃ Σ of Alexandrov curvature at most −1 with at most N0 conical
singularities and systole at least s0 is compact.

Proof. By assumption, the systole of M is at least s0 and, by the Gauss-Bonnet
formula (2.2), the area of M is at most 2π|χ(Σ)|. Thus, the systolic area

σ(M) = area(M)
sys(M)2

of M is uniformly bounded. By [36, §5] (see [48, Proposition 3.6] for a detailed proof),
this implies that the space of conformal classes of Riemannian metrics (possibly with
conical singularities) on Σ with uniformly bounded systolic area is a compact set K
in the conformal moduli space MΣ.

By [20, Theorem 5.3.1], every nonsimply connected closed surface satisfies the
systolic inequality

area(M) ≥ 1
2 sys(M)2.
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Since the Alexandrov curvature of M is at most −1 and its systole is at least s0, we
derive from the Gauss-Bonnet relation (2.1) that

1
2s2

0 ≤ 1
2 sys(M)2 ≤ area(M) ≤ 2π|χ(Σ)| −

N0∑
i=1

(θi − 2π).

Conversely, by [70, Theorem A], every conformal class of Σ carries a unique piece-
wise hyperbolic conformal metric with at most N0 prescribed conical singularities pi

of given total angles θi, provided that the following relation

N0∑
i=1

(θi − 2π) ≤ 2π|χ(Σ)| − 1
2s2

0 (2.3)

is satisfied. Furthermore, the dependence on the parameters is continuous.
As the Alexandrov curvature of M is nonpositive, the total angles θi of the conical

singularities are at least 2π and so lie in the interval [2π, 2π(1 − χ(Σ))]. Since the
relation (2.3) and the conditions on the Alexandrov curvature and the number of
conical singularities of M are closed, the N0−tuple (θ1, ..., θN0) ranges through a
compact set L ⊆ RN0 . Thus, the space of piecewise hyperbolic surfaces M ≃ Σ of
Alexandrov curvature at most −1 with at most N0 conical singularities and systole at
least s0 is homeomorphic to a compact subset of K×MN0 ×L ⊆ MΣ×MN0 ×RN0 .

2.5 Kite excision trick
In this section, we present the kite excision trick for piecewise hyperbolic surfaces.
Such a tool was recently introduced in [48] for nonpositively curved piecewise flat
surfaces. We also establish two basic results by adapting the arguments developed
in [48] to the piecewise hyperbolic case.

Consider a closed piecewise hyperbolic surface M of Alexandrov curvature at
most −1.

Definition 2.5.1. A conical singularity p ∈ M is said to be large if the total angle
at p is at least 3π, and small otherwise. Observe that since M has nonpositive
Alexandrov curvature, the total angles of its conical singularities are greater than 2π.

Let us introduce the definition of an (exact) kite.

Definition 2.5.2 (Kite). Let p, q ∈ M be two conical singularities connected by a
geodesic arc [p, q] with no conical singularity lying in the interior (p, q). Let r ∈ M
(not on [p, q]) be a point such that the triangle pqr is hyperbolic with acute angle
at p and q. Consider the reflection pqr′ of the hyperbolic triangle pqr with respect
to [p, q]. Define the kite K = prqr′ as the union of the two symmetric hyperbolic
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triangles; see Figure 2.1. The two opposite vertices p and q of K are referred to
as the main vertices of the kite. The width w of K is the length of the diagonal
[r, r′] ⊆ K. Note that all the angles of K are less than π.

Assume that p is a small singularity. The kite K is exact at p if its angles at the
main vertices p and q are related to the angle excesses of the conical singularities p
and q as follows:

∡rpr′ = θp − 2π < π

∡rqr′ ≤ min{θq − 2π, π}

where θp and θq are the total angles at p and q.

Notice that the angle of the exact Kite K at p is exactly the angle excess of the
conical singularity p, hence the name.

p q

r

r′

w

Figure 2.1: The hyperbolic kite K of width w.

We can now present the kite excision process.

Definition 2.5.3 (Excised surface Mw). Let Kw ⊆ M be a kite of width w. We
excise the kite Kw ⊆ M and introduce identifications on the boundary of M \ Kw by
setting [p, r] ∼ [p, r′] and [q, r] ∼ [q, r′]. The result is a closed piecewise hyperbolic
surface

Mw = (M \ Kw)/∼

with conical singularities homeomorphic to M .
The quotient map

πw : M → Mw (2.4)

is obtained by collapsing each segment of Kw parallel to the diagonal [r, r′] to a point.
The map πw is a homotopy equivalence.

The excised surface Mw of a closed piecewise hyperbolic surface M of Alexandrov
curvature at most −1 satisfies the two following propositions; see [48, Propositions 6.7
and 6.8] for similar versions in the case of nonpositively curved piecewise flat surfaces.
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Proposition 2.5.4. If Kw is an exact kite (at one of its main vertices) then the
excised surface Mw is piecewise hyperbolic of Alexandrov curvature at most −1 with
at most as many conical singularities as M .

Proof. Clearly, the excised surface Mw is a closed piecewise hyperbolic surface. The
kite excision creates a new conical singularity at the point r = r′ ∈ Mw of total angle
4π − ∡prq − ∡qr′p > 2π. Similarly, the total angles at the points p and q in the
excised surface Mw are θp − ∡r′pr = 2π and θq − ∡rqr′ ≥ 2π. Thus, the point p of
total angle 2π is no longer a singularity in the new surface Mw. The other conical
singularities of M remain unchanged in Mw. Therefore, the excised surface has at
most as many conical singularities as M and their total angles are at least 2π, which
implies that the Alexandrov curvature of Mw is at most −1.

We also have the following convergence result.

Proposition 2.5.5. Consider an exact kite Kw at p with main diagonal [p, q] and
width w. Then the excised surface Mw converges to M for the Lipschitz distance
(and the uniform/Gromov-Hausdorff distances) as w tends to zero.

Proof. Fix a kite KE = pr0qr
′
0 exact at p. Consider a point p∗ close to p such

that p∗ is on a geodesic extension p∗q of [p, q] so that the rotation angle of p∗q at
p is equal to θp

2 ≥ π on either side of the segment p∗q. Since the kite KE is exact
at p, we have p ∈ [p∗, r0]. Fix a circular arc p̄∗r0 ⊆ M \ KE bounding a hyperbolic
region H together with the segment [p∗, r0] containing p. Consider a smaller kite
Kw = prqr′ ⊆ KE of width w, exact at p, where r ∈ (p, r0). Let pr ∈ [p∗, p] with
|ppr| = |pr|. There exists a (1 + ϵ)-bilipschitz homeomorphism

hH : H → H

which fixes the circular arc p̄∗r0 pointwise and linearly maps [r0, r], [r, p], and [p, p∗]
to [r0, p], [p, pr], and [pr, p∗], respectively, where ϵ tends to 0 as r approches p. We
combine the map hH with (1 + ϵ)-bilipschitz map from rr0q to pr0q fixing [r0, q],
and perfom a symmetric construction on the other half of the kite. This produces a
bilipschitz map ϕw : Mw → M which agrees with the identity map on the complement
of H ∪ H′ ∪ KE \ Kw in Mw = (M \ Kw)/ ∼, where H′ is the symmetric of H and
the bilipschitz constant of ϕw tends to 1 as w goes to zero.

2.6 Systole comparison

In this section, we introduce the systolic decomposition of a surface and show that
the kite excision trick does not decrease the systole for small kites chosen within a
systolic domain.
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Consider a closed piecewise hyperbolic surface M of Alexandrov curvature at
most −1. In the following proposition, we will prove that every pair of intersecting
systolic loops of M meet exactly at one or two points, or along a segment; see [48,
Proposition 4.6] for similar proof.

Proposition 2.6.1. Let M be a closed Alexandrov surface of curvature at most −1
of genus g ≥ 2 with finitely many conical singularities. Then each pair of intersecting
systolic loops of M meet exactly at one or two points, or along an arc.

Proof. Let α and β be two systolic loops that meet in a single connected component,
then they meet either in one point or along an arc.
Suppose now that their intersection α ∩ β has at least two connected components.
Then there exist two subarcs β1 ⊆ β and β2 ⊆ β in the complement of α ∩ β with
disjoint interior meeting α only at their endpoints. The endpoints of the arc βi

decompose α into two arcs denoted α′
i and α′′

i . Observe that none of the four loops
α′

1∪β1, α′′
1 ∪β1, α′

2∪β2 and α′′
2 ∪β2 is contractible, otherwise two distinct geodesic arcs

with the same endpoints would be homotopic, which is impossible on a nonpositively
curved surface. Thus, each of these four loops is of length at least sys(M). The sum
of their lengths is at least 4 sys(M) and at most twice the total length of α and β:

4 sys(M) ≤ |α′
1| + |α′′

1| + |α′
2| + |α′′

2| + 2|β1| + 2|β2| ≤ 2|α| + 2|β|. (2.5)

Hence both inequalities in (2.5) are equalities and the same holds for the four in-
equalities involved in the sum. It follows that each of the arcs α′

i, α′′
i and βi is of

length 1
2sys(M). Therefore, the loops α and β have exactly two intersection points,

which are antipodal along each loop.

Definition 2.6.2. The systolic decomposition of M is the collection of open domains
defined as the connected components of the complementary set in M of the systolic
loops of M . The systolic decomposition of M induces a geodesic polygonal structure
described as follows.

The vertices of this geodesic polygonal structure are of two types:

1. the intersection points between pairs of systolic loops when they meet at one
or two points.

2. if systolic loops meet along a segment I ⊆ M then the endpoints of I are also
taken to be vertices.

The edges of this geodesic polygonal structure are the geodesic arcs given by the
connected components of ∂D minus the vertices of ∂D, where D is a domain of the
systolic decomposition of M .

We will consider three positions for a kite within a systolic domain.
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Definition 2.6.3. Consider a domain D ⊆ M in the systolic decomposition of M .
Let p and q be two conical singularities in the closure D of D, joined by a geodesic
arc [p, q] ⊆ D such that no conical singularity of M lies in the interior (p, q) of the
segment. Assume also that p is a small singularity. Choose an exact kite Kw ⊆ M at p
of width w with main diagonal [p, q] according to the following cases (see Figure 2.2):

(E1) if [p, q] ⊆ D, take Kw exact at p of sufficiently small width so that it lies in the
open domain D;

(E2) if [p, q) ⊆ D with q ∈ ∂D, and the angle of D at q is greater than π, take Kw

exact at p of sufficiently small width so that Kw \ q lies in the open domain D;

(E3) if [p, q] is contained in (the interior of) an edge ∂D, take Kw exact at p.

p

q

D

Case (E1)

p

q

D

Case (E2)

p q

D

Case (E3)

Figure 2.2: Three exact kite configurations.

Let us establish the following comparison result between the systoles of a surface
and its excised surface. A similar result was obtained in [48] where further cases
were also considered. Here, we streamline the argument, correcting a false claim1,
to what is really required in our case.

Theorem 2.6.4. Let M be a closed piecewise hyperbolic surface of Alexandrov cur-
vature at most −1. Consider a kite Kw ⊆ M with main diagonal [p, q], exact at p,
of width w satisfying one of the three cases (E1), (E2) or (E3). If the width w of Kw

is sufficiently small, then
sys(Mw) ≥ sys(M).

We will prove this result by analyzing the three cases (E1), (E2) and (E3) sepa-
rately. Observe that since the interior of Kw does not intersect any systolic loop
of M in the cases (E1) and (E2), we immediately derive the reverse inequality
sys(Mw) ≤ sys(M) in these two cases.

1It is incorrectly stated that πw : Mw → M is nonexpanding at the end of the introduction of [48,
§7]. As a consequence, we only have the inequality sys(Mw) ≥ sys(M) in [48, Proposition 7.3], which
is enough to conclude.
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Proposition 2.6.5 (Cases (E1) and (E2)). Consider a kite Kw with main diago-
nal [p, q], exact at p, of width w satisfying (E1) or (E2). If the width w of Kw is
sufficiently small, then

sys(Mw) = sys(M).

Proof. Consider a sequence of surfaces Mw with sys(Mw) going to its infimum limit
as w goes to zero. Let γw be a systolic loop of Mw. Since the surfaces Mw converge
to M for the Lipschitz distance as w goes to zero, see Proposition 2.5.5, we can
extract from the systolic loop γw of Mw a sequence converging to a noncontractible
loop γ in M by the Arzela-Ascoli theorem. We can assume that γ is a systolic loop
of M , otherwise we derive that

sys(Mw) = |γw| ≥ |γ| − ε > sys(M)

for some ε > 0 and every sufficiently small w, contradicting a previous inequality.
By taking w small enough, we can further assume that γw and γ lie in the same
nontrivial free homotopy class C in Mw ≃ M .

Suppose that γ is disjoint from Kw, which occurs in the case (E1) and in the
case (E2) if γ does not pass through the singularity q ∈ ∂D. Then the projected
loop πw(γ) remains a closed geodesic in Mw and |πw(γ)| = |γ| for w small enough,
where πw : M → Mw is the quotient map (2.4). Thus, the geodesic loops γw

and πw(γ) of Mw agree (up to reparametrization) since they represent the same free
homotopy class C and the surface Mw is negatively curved. That is, πw(γ) = γw.
Therefore,

sys(Mw) = |γw| = |πw(γ)| = |γ| = sys(M).

Suppose that γ passes through Kw. Then the loop γ intersects Kw only at q ∈ ∂D
(corresponding to the case (E2)) and |πw(γ)| = |γ|. Since the angle of D at q is greater
than π, the rotation angle Rq of γ at q from the side of D is also greater than π. Since
the angle ∡r′qr at q of the kite Kw tends to zero as w goes to zero, we can assume
that ∡r′qr < Rq − π. This ensures that the rotation angle at q of the projected
loop πw(γ) in Mw is still greater than π. By the local characterisation of geodesics,
the projected loop πw(γ) is still a closed geodesic of Mw. As previously the geodesic
loops γw and πw(γ) of Mw agree, that is, πw(γ) = γw. Therefore, sys(Mw) = sys(M)
in this case too.

Proposition 2.6.6 (Case (E3)). Consider a kite Kw with main diagonal [p, q], exact
at p, of width w satisfying (E3). If the width w of Kw is sufficiently small, then

sys(Mw) ≥ sys(M).

Proof. Consider a sequence of systolic loops γw of Mw converging to a systolic loop γ
of M and lying in the same free homotopy class C as at the beginning of the proof
of Proposition 2.6.5. If γ is disjoint from [p, q] (and then from Kw if w sufficiently
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small), we argue as in the first case of the proof of Proposition 2.6.5 and conclude that
sys(Mw) = sys(M). Thus, we can assume that γ meets [p, q]. By the condition (E3),
the systolic loop γ contains [p, q]. Denote by Iw = πw(Kw) the segment of Mw given
by the image of the kite Kw. Arguing as in the proof of [48, Lemma 7.4], we derive
that cw = γw \ Iw is made of a single open geodesic arc of Mw. Denote by σw ⊆ M
the closure of the inverse image π−1

w (cw) of cw in M . Note that σw is a geodesic arc
of M with endpoints in ∂Kw, which possibly closes up.

Suppose one of the endpoints of σw is one of the main vertices of the kite Kw,
say p. Let y be the other endpoint of σw. The segment [p, y] ⊆ Kw projects to the
path of Iw ⊆ Mw connecting πw(p) and πw(y). Then the loop γ̄w = σw ∪[p, y] ⊆ M in
the nontrivial free homotopy class C satisfies |γ̄w| ≤ |γw|. Thus, sys(M) ≤ sys(Mw)
as required. Therefore, we can assume that the endpoints of σw are disjoint from p
and q.

Suppose one of the endpoints of the segment σw is a point other than r and r′.
In such case, the minimizing loop γw ⊆ Mw meets the interval Iw transversely at a
regular (i.e., non-singular) point of Mw. It follows that the endpoints of σw project
to the same point on the closed geodesic γ ⊆ M . Hence the nearest-point projection
of σw to γ closes up. By the assumption of nonpositive curvature, the projection
map is distance-nonincreasing. Therefore, sys(Mw) = |γw| ≥ |σw| ≥ |γ| = sys(M) in
this case, as well.

Thus, we can assume that the endpoints of σw are the points r, r′ ∈ M . In this
case also the nearest-point projection of σw to the loop γ ⊆ M closes up. Hence,
sys(Mw) = |γw| ≥ |σw| ≥ |γ| = sys(M), proving the proposition.

2.7 Topological bounds on systolic decompositions

In this section, we establish topological bounds on the elements of the systolic de-
composition of a closed piecewise hyperbolic surface.

Let us first bound the number of large conical singularities. Recall that a conical
singularity of a closed piecewise hyperbolic surface is large if its total angle is at least
3π.

Proposition 2.7.1. Let M be a closed piecewise hyperbolic surface of Alexandrov
curvature at most −1. Then there are less than 2|χ(M)| large conical singularities
on M .

Proof. Since M has nonpositive Alexandrov curvature, the total angles θi of its
conical singularities are greater than 2π. Now, the result immediately follows from
the Gauss–Bonnet formula (2.1) using the fact that the surface M is negatively curved
with small and large conical singularities satisfying θi − 2π > 0 and θi − 2π ≥ π.
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The following result follows from a bound on the number of pairwise nonho-
motopic simple loops intersecting each other at most once/twice; see [48, Proposi-
tion 5.7].

Proposition 2.7.2. Let M be a closed piecewise hyperbolic surface of Alexandrov
curvature at most −1. Then the number of domains, edges and vertices in the systolic
decomposition of M is at most N , where N is an integer depending only on the
topology of M .

Proof. Systolic loops are simple closed geodesics and, since the surface is negatively
curved, are unique in their free homotopy classes. Furthermore, every pair of in-
tersecting systolic loops of M meet exactly at one or two points, or along an arc;
see [48, Proposition 4.5]. Thus, the number of systolic loops of M is bounded by
the number of pairwise nonhomotopic simple loops on M intersecting at most twice.
By [44], this number of pairwise nonhomotopic simple loops is finite and bounded
by a number Q depending only on the topology of M . (The best estimate of Q can
be found in [35], but we will not need a quantitative expression of Q.)

Now, the corners of any domain D of the systolic decomposition of M correspond
to the intersection of two systolic loops, giving rise to at most eight corners. Since
there are at most Q systolic loops, this yields at most N = 8

(Q
2
)

corners and so at
most as many domains, edges and vertices in the systolic decomposition of M .

2.8 Exploiting the kite excision trick

The goal of this section is to prove the following result on the existence of piecewise
hyperbolic surfaces with conical singularities locally maximal for the systole by ex-
ploiting the kite excision trick. This is the analogue of the main theorem of [48] in
our context.

Theorem 2.8.1. Let Σ be a nonsimply connected closed surface. Let U ⊆ AΣ be an
open set in the space AΣ of Alexandrov surfaces of curvature at most −1 defining
a local supremum of the systole; see Definition 2.1.3. Then there exists a piecewise
hyperbolic surface M0 ∈ U with at most N0 conical singularities such that

sys(M0) ≥ sys(M)

for every M ∈ U , where N0 is an integer depending only on the topology of Σ.

Proof. By definition of U , for every ε > 0 small enough, there exists an Alexandrov
surface M ∈ U of curvature at most −1, homeomorphic to Σ, such that

sys(M) > max
M ′∈ U

sys(M ′) − ε > max
M ′∈ ∂U

sys(M ′). (2.6)



54 Negatively curved surfaces

By metric approximation, see Proposition 2.3.1, we can assume that the surface M is
piecewise hyperbolic with conical singularities (of Alexandrov curvature at most −1).
Denote by N the number of conical singularities of M . By compactness (see Propo-
sition 2.4.1) and the strict inequalities (2.6), there exists a surface M1 ∈ U with
maximal systole among all piecewise hyperbolic surfaces in U with at most N coni-
cal singularities. Take M1 with minimal area. Note that sys(M1) ≥ sys(M).

We will use the kite excision trick in the two following lemmas to obtain an a
priori upper bound on the number of (small) conical singularities of M1.

Lemma 2.8.2. Every domain D of the systolic decomposition of M1 contains at
most one small conical singularity.

Proof. We argue by contradiction. Suppose p and q′ are two conical singularities in
the open domain D with p small. Let [p, q′] be a length-minimizing arc in the closure
of D joining the two points. We consider the following two cases.

1. If [p, q′] lies in the open domain D, we denote by q the first conical singularity
along (p, q′] from p.

2. Otherwise, the arc [p, q′] meets ∂D, and the first point of intersection of [p, q′]
with ∂D from p is a point, denoted q, at which D is strictly concave. We can
further assume that no conical singularity of M lies in (p, q), otherwise we refer
to the case (1).

In the second case, the angle of D at q is greater than π, which shows that the point q
is a conical singularity.

In either case, we apply the kite excision trick with a kite Kw of main diago-
nal [p, q], exact at p, of width w small enough to satisfy (E1) in the first case (when
q lies in D) and (E2) in the second case (when q lies in ∂D); see Definition 2.6.3.
We also choose w small enough to ensure that the resulting piecewise hyperbolic
surface Mw = (M1 \ Kw)/∼ lies in U ; see Proposition 2.5.5. By Proposition 2.5.4,
the surface Mw has at most N conical singularities as M1. By Proposition 2.6.5, the
systole of Mw is equal to the systole of M1. (Note that sys(Mw) ≥ sys(M) is enough.)
Since the area of Mw is less than the area of M1, this contradicts the assumption on
the area of M1.

Lemma 2.8.3. The interior of every edge E of a domain D of the systolic decom-
position of M1 contains at most one small conical singularity.

Proof. We argue by contradiction. Let p be a small conical singularity in the in-
terior of the edge E . Let q be a conical singularity in the interior of E adjacent
to p. Apply the kite excision trick with a kite Kw of main diagonal [p, q], exact
at p, of width w small enough to satisfy (E3) (see Definition 2.6.3) and to ensure
that the resulting piecewise hyperbolic surface Mw lies in U ; see Proposition 2.5.5.
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We obtain a contradiction by arguing as in the proof of Lemma 2.8.2 by applying
Proposition 2.6.6.

Let us continue with the proof of Theorem 2.8.1. By Proposition 2.7.2, the
number of domains, edges and vertices in the systolic decomposition of M1 is at
most NΣ. (Without loss of generality, we can assume that NΣ ≥ 2|χ(Σ)|.) Com-
bined with Lemma 2.8.2 and Lemma 2.8.3, this shows that the piecewise hyperbolic
surface M1 has at most 3NΣ small conical singularities. By Proposition 2.7.1, the
surface M1 has at most 2|χ(M1)| ≤ NΣ large conical singularities. Thus, we derive an
a priori bound on the number of conical singularities of M1. Namely, the piecewise
hyperbolic surface M1 has at most N0 = 4NΣ conical singularities.

By compactness (see Proposition 2.3.1), and since the systole of M1 is greater
than maxM ′∈ ∂U sys(M ′), there exists a surface M0 ∈ U with maximal systole among
all piecewise hyperbolic surfaces in U with at most N0 conical singularities. Note
that the surface M0 does not depend- on ε, M or M1 (only on the topology of Σ).
By construction, the surface M0 satisfies

sys(M0) ≥ sys(M1) ≥ sys(M) ≥ max
M ′∈ U

sys(M ′) − ε

for every ε > 0 small enough. Hence, sys(M0) = maxM ′∈ U sys(M ′).

Remark 2.8.4. It is not necessary to present an explicit estimate of N0 since we
will eventually show that the surface M0 can be chosen hyperbolic (with N0 = 0);
see Theorem 2.12.1.

2.9 Kite insertion trick
In this section, we describe the kite insertion trick, which has the opposite effect to
the kite excision trick and plays a key role in the proof of the main theorem.

Consider a piecewise hyperbolic surface M ∈ AΣ of Alexandrov curvature at
most −1 with conical singularities homeomorphic to a closed surface Σ.

Definition 2.9.1. Let m ∈ M be a conical singularity of M of total angle θm > 2π.
Let (p, q) be a geodesic arc passing through m with angle π on one side of m and
θm − π on the other side of m, such that m is the only conical singularity of M lying
on [p, q].

Fix α > 0 with α < 1
2(θm − 2π). Let qα ∈ M with |mqα| = |mq| such that

∡pmqα = π + α ∈ (π, θm
2 ); see Figure 2.3. Denote by M ′

α the surface with boundary
obtained by cutting open the surface M along [p, qα] = [p, m] ∪ [m, qα]. The bound-
ary ∂M ′

α of M ′
α is the geodesic quadrilateral pm1qαm2. Let Kα = p̄m̄1q̄αm̄2 be a

kite in the hyperbolic plane with |p̄m̄i| = |pmi| and |q̄αm̄i| = |qαmi| forming an an-
gle π −α at m̄1 and m̄2, i.e., ∡p̄ m̄iq̄α = π −α. Attach Kα along the boundary of M ′

α
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by identifying [p̄, m̄i] to [p, mi] and [q̄α, m̄i] to [qα, mi]. The resulting surface Mα is a
piecewise hyperbolic surface with conical singularities homeomorphic to M ; see Fig-
ure 2.3. The conical singularities of M different from m are also conical singularities
of Mα (with the same total angles). In addition, there exist three conical singularities
in Mα at p, qα and m2 of total angles θα

p = 2π +∡m̄1p̄ m̄2, θα
qα

= 2π +∡m̄1q̄αm̄2 and
θα

m2 = θm − 2α > 2π. Note that there is no conical singularity at m1. Therefore, the
total angles of the conical singularities of Mα are greater than 2π. This shows that
the piecewise hyperbolic surface Mα is of Alexandrov curvature at most −1, that is,
Mα ∈ AΣ.

p

m

q
qα

α

π

M

p

m1

q
qα

m2

Kα

Mα

Figure 2.3: Inserting the kite Kα along [p, qα].

Define πα : Mα → M as the map collapsing every segment of the kite Kα parallel
to [m̄1, m̄2] to a point. This map is (1 + ε(α))-Lipschitz with ε(α) tending to zero as
α goes to zero, and is a homotopy equivalence.

We have the following convergence result.

Proposition 2.9.2. The surface Mα converges to M for the Lipschitz distance (and
the uniform/Gromov-Hausdorff distances) as α goes to zero.

Proof. Fix m′ ∈ M close to m on the side of (p, q) with an angle π at m (say,
∡pmm′ = ∡qmm′ = π

2 ); see Figure 2.4. Consider the hyperbolic quadrilateral
pmqαm′ ⊆ M and the hyperbolic quadrilateral pm2qαm′ ⊆ Mα obtained by attaching
the kite Kα to the first quadrilateral pmqαm′ identifying [p, m] with [p, m1] and
[qα, m] with [qα, m1]. There exists a (1 + ε(α))-bilipschitz homeomorphism

pmqαm′ → pm2qαm′

between the two hyperbolic quadrilaterals of M and Mα, fixing p, qα and m′,
and sending isometrically each side of pmqαm′ ⊆ M to their corresponding side
in pm2qαm′ ⊆ Mα, where ε(α) tends to zero as α goes to zero; see Figure 2.4.

Combining this map with the identity map

M \ pmqαm′ → Mα \ pm2qαm′
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m′
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qαM

m′
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q
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m2

Kα

Mα

Figure 2.4: Lipschitz deformation of Mα.

off the quadrilaterals, we obtain a (1 + ε(α))-bilipschitz homeomorphism M → Mα

between M and Mα.

2.10 Deforming systolic homotopy classes

In this section, we study the effect of the kite insertion trick on the length of a systolic
loop in a given free homotopy class.

Let us introduce the following definition.

Definition 2.10.1. Let M be a negatively curved closed Alexandrov surface. Given
a free homotopy class C of M , define LM (C) as the minimal length of a loop rep-
resenting C. This minimal length is attained by the length of the unique closed
geodesic representing C in M .

Let M be a closed piecewise hyperbolic surface of Alexandrov curvature at
most −1 with at least one conical singularity m of total angle θm > 2π. Fix a
geodesic arc (p, q) of M passing through m, with angle π at m on one side of (p, q)
and angle θm − π on the other side, such that m is the only conical singularity of M
lying in [p, q], as in Definition 2.9.1. By choosing the geodesic arc (p, q) carefully, we
can further assume that at least one systolic loop of M transversely intersects (p, q)
and that all the systolic loops of M meeting [p, q] intersect the segment [p, q] at a
unique point x ∈ (p, m].

Consider the surface Mα obtained from M by inserting a kite Kα along a seg-
ment [p, qα] close to [p, q] as in Definition 2.9.1. Recall that ∡pmq = π and ∡pmqα =
π + α ∈ (π, θm

2 ).

The free homotopy class of a systolic loop of M satisfies one of the two following
propositions, namely Proposition 2.10.2 and Proposition 2.10.3.
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Proposition 2.10.2. Let C be the free homotopy class of a systolic loop γ of M
which does not transversely intersect [p, q]. Then,

LMα(C) = LM (C) = sys(M)

for every α > 0 small enough.

Proof. If γ does not intersect [p, q], the loop γ does not intersect [p, qα] either for
every α > 0 small enough. Thus, the loop γ is still geodesic in Mα after inserting
the kite Kα along [p, qα] and its length remains unchanged. Since the surface Mα

has nonpositive curvature, it follows that

LMα(C) = |γ|Mα = |γ|M = LM (C)

as desired.
If γ meets [p, q], the intersection occurs at a conical singularity, namely at m,

since the intersection is non-transverse by assumption. Furthermore, the geodesic
curve γ lies on the side of [p, q] where the angle at m is greater than π. In this case,
the angle of γ at m on the side where the geodesic arc (p, q) lies is at least π + 2ν,
where ν is the minimal angle between (p, q) and γ. Similarly, the angle of γ at m
on the side opposite to (p, q) is at least π. Moreover, the geodesic loop γ does not
transversely intersect [p, qα] for α < ν. Thus, after inserting a kite Kα along [p, qα]
with α < ν, the loop γ ⊆ Mα passes through m2. Its angle in Mα at m2 is at least
π + 2ν − α ≥ π on the side of Kα and remains unchanged ≥ π on the side opposite
to Kα. Thus, the loop γ is still a geodesic in Mα and its length remains unchanged.
As previously, it follows that

LMα(C) = |γ|Mα = |γ|M = LM (C).

The alternative case is covered by the following proposition.

Proposition 2.10.3. Let C be the free homotopy class of a systolic loop γ of M
which transversely intersects [p, q]. Then,

LMα(C) > LM (C) = sys(M)

for every α > 0 small enough.

Proof. For every α > 0 small enough, the geodesic loop γ transversely intersects [p, qα].
Let ηα be the geodesic loop of Mα representing the same free homotopy class C as γ
under the homotopy equivalence πα : Mα → M of Definition 2.9.1; see Figure 2.5.

Claim 2.10.4. The image η̄α of ηα under the map πα : Mα → M uniformly converges
to γ in M , up to reparametrization.

Furthermore, the loops ηα and η̄α decompose as follows.
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• The geodesic loop ηα of Mα decomposes as a geodesic arc η′
α lying in M ′

α ⊆ Mα

with endpoints x1, x2 ∈ ∂M ′
α (i.e., xi ∈ [p, mi]∪ [mi, qα]) and a segment [x1, x2]

lying in Kα. That is,
ηα = η′

α ∪ [x1, x2].

• The loop η̄α of M decomposes into a geodesic arc with endpoints x̄1 = πα(x1)
and x̄2 = πα(x2) which identifies with η′

α, except at its endpoints, and a seg-
ment [x̄1, x̄2] lying in [p, qα] = [p, m] ∪ [m, qα]. That is,

η̄α = η′
α ∪ [x̄1, x̄2].

See Figure 2.5.

p

m

q
qα

γ

η̄α

x̄1
x̄2

M

γ′
α

a1 a2

x1

ηα

m1

q
qα

x2

Mα

Figure 2.5: Decompositions of ηα and η̄α in Mα and M .

Proof. Since the image η̄α of ηα under the (1 + ε(α))-Lipschitz map πα : Mα → M
lies in the same homotopy class as the geodesic loop γ, it follows that |γ| ≤ |η̄α| ≤
(1 + ε(α)) |ηα|. On the other hand, denote by γ′

α the geodesic arc of M ′
α with

endpoints a1, a2 ∈ ∂M ′
α obtained from γ by cutting open the surface M along [p, qα];

see Figure 2.5. Since the loop γ′
α ∪ [a1, a2] is homotopic to the geodesic loop ηα

of Mα, where [a1, a2] is the segment of Kα connecting a1 and a2, we derive that
|ηα| ≤ |γ| + ε1(α), where ε1(α) = |a1a2|Kα tends to zero as α goes to zero. Hence,

|γ| ≤ |η̄α| ≤ (1 + ε2(α)) |γ|

where ε2(α) tends to zero as α goes to zero. Since the loop γ is uniquely mini-
mizing in its homotopy class, the loop η̄α uniformly converges to γ in M , up to
reparametrization.

Denote by η′
α = ηα ∩ M ′

α the part of ηα lying outside Kα in Mα. This part is
made of geodesic subarcs of M ′

α with endpoints lying in ∂M ′
α. Since the loop η̄α

converges to γ and agrees with ηα on M ′
α, one of these geodesic subarcs, denoted
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by η′′
α, converges to γ away from [p, q]. Since Kα is convex in the nonpositively curved

surface Mα, the other geodesic subarcs of η′
α, which lie in the intersection of M ′

α with
a small neighborhood of Kα, in fact lie in ∂M ′

α and so are trivial. Therefore, η′
α = η′′

α

is a geodesic arc of M ′
α ⊆ Mα with endpoints x1 and x2 lying in M ′

α. The other
part of ηα with endpoints x1 and x2 lies in Kα and agrees with the segment [x1, x2]
of Kα; see Figure 2.5. Hence the decomposition ηα = η′

α ∪ [x1, x2].
The restriction of the map πα : Mα → M to Mα \ Kα is the identity map.

Thus, the image of η′
α under the map πα identifies with η′

α (except at its endpoints).
Collapsing Kα to [p, qα] under the map πα takes the segment [x1, x2] to the segment
of [p, qα] with endpoints x̄1 and x̄2; see Figure 2.5. Hence the decomposition η̄α =
η′

α ∪ [x̄1, x̄2].

For every α > 0 small enough, the endpoints x1 and x2 of the geodesic arc η′
α

satisfy the following alternative:

(A1) either they lie in (p, m1] and (p, m2], or in (qα, m1] and (qα, m2];

(A2) or they lie in (p, m1) and (qα, m2), or in (qα, m1) and (p, m2).

We write α ∈ Λ′ in the first case and α ∈ Λ′′ in the second case.
The first case is covered by the following lemma.

Lemma 2.10.5. For every α ∈ Λ′ small enough, we have

|γ| < |ηα|.

Proof. Suppose that x1 ∈ (p, m1] and x2 ∈ (p, m2]. The alternative case, where
x1 ∈ (qα, m1] and x2 ∈ (qα, m2], is treated similarly. Recall that η̄α is the image
of ηα in M under the map πα : Mα → M . Since γ is length-minimizing in its
homotopy class and the loop η̄α is freely homotopic to γ in M , we obtain |γ| ≤ |η̄α|.

Now, by Claim 2.10.4, we have ηα = η′
α ∪ [x1, x2] and η̄α = η′

α ∪ [x̄1, x̄2]. Thus, to
prove that |η̄α| < |ηα|, it is enough to show that |x̄1x̄2| < |x1x2|. Assume that |px1| ≤
|px2|. The other case is treated similarly. Let y1 ∈ (p, m1) such that |py1| = |px2|; see
Figure 2.6. Consider the three points x1, y1 and x2 in the hyperbolic kite Kα. Note
that |x̄1x̄2| = |x1y1|. The disk Dp centered at p of radius |px2| contains the disk Dx1

centered at x1 of radius |x1y1| since y1 ∈ ∂Dp and the surface is nonpositively curved;
see Figure 2.6. Since x2 does not lie in Dx1 , the circle ∂Dx1 intersects (x1, x2) at a
point x′

2. Thus, |x1y1| = |x1x′
2| < |x1x2|. Hence, |x̄1x̄2| < |x1x2|.

As a result, we derive that

|γ| ≤ |η̄α| < |ηα|.

The second case is covered by the following lemma.
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m1 m2

p

Kα

x1 Dp

Dx1

y1 x2

x′
2

Figure 2.6: Collapsing Kα decreases distances between x1 and x2 when they lie on
adjacent sides.

Lemma 2.10.6. For every α ∈ Λ′′ small enough, we have

|γ| < |ηα|.

Proof. Recall that γ′
α is the geodesic arc of M ′

α obtained from γ by cutting open the
surface M along [p, qα]. By Claim 2.10.4, the endpoints x1 and x2 of the geodesic
arc η′

α converge to the intersection point of γ with [p, q]. Since x1 and x2 lie in two
opposite sides of Kα, the intersection point is given by [p, m] ∩ [q, m] = {m}. Thus,
the endpoints of γ′

α agree with m1 and m2; see Figure 2.7.
Suppose that x1 ∈ (p, m1) and x2 ∈ (qα, m2). The other case is treated similarly.

Observe that the angle να
1 between γ′

α and [m1, p) at m1 is less than π
2 + ε for every

α ∈ Λ′′ small enough, where ε > 0 is fixed. (The angle να
1 does not depend on α, but

we keep the index α by symmetry with the angle να
2 between γ′

α and [m2, qα] at m2
which does depend on α.) Otherwise, there would exist a sequence of α’s going to
zero with να

1 ≥ π
2 + ε. Since the loop η̄α = η′

α ∪ [x̄1, x̄2] uniformly converges to γ
in M , up to reparametrization, see Claim 2.10.4, the angle of the geodesic arc η′

α

with [x1, p) at x1 would be uniformly bounded away from below by π
2 for these α > 0

small enough. (Note that the topology considered in Claim 2.10.4 is not the C1-
topology and therefore it does not lead to the convergence of angles for general arcs.
However, in our situation, the arcs are geodesic, which is enough for our purpose.) In
this case, the geodesic ηα entering the kite Kα at x1 would leave it through (p, m2)
for these α > 0 small enough. Hence a contradiction since the point x2 where ηα

leaves Kα lies in (qα, m2). Similarly, the angle να
2 between γ′

α and [m2, qα) at m2 is
less than π

2 + ε for every α ∈ Λ′′ small enough.
In order to deal with the extra ε, we slightly extend the kite Kα = p m1qαm2

of Mα into a new kite K+
α = p+m1q+

α m2 by taking p+ and q+
α close to p and qα

on geodesic extensions of [m2, p] and [m1, qα] (where the closeness depends on how
small ε is) so that the unit tangent vectors u1 and u2 orthogonal to γ′

α at m1 and m2
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point inward K+
α and the geodesic arcs c1 and c2 of K+

α they generate exit K+
α

through (p+, m2) and (q+
α , m1) at t1 and t2 ; see Figure 2.7. We can choose p+

and q+
α such that ∡p m1p+ = ε and ∡qαm2q+

α = ε with ε > 0 small enough. Since
t1 ∈ (m2, p+) and t2 ∈ (q+

α , m1), the segments [m1, t1] and [m2, t2] of K+
α lying in c1

and c2 do not intersect each other.

m1 m2

p

qα

p+

q+
α

γ′
α

γ′
α

t1

t2t2

ηα

y1

x1

y2

x2

Figure 2.7: Positions of γ′
α and ηα around the kite Kα.

As previously, the geodesic ηα enters/leaves the new kite K+
α through the sides

(p+, m1) and (q+
α , m2). Therefore, the geodesic loop ηα intersects [m1, t1] and [m2, t2]

at two points y1, y2 ∈ K+
α . Let ȳ1y2 be the subarc of ηα joining y1 to y2 and

going through Mα \ K+
α . By the convergence result of Claim 2.10.4, we deduce

that the arcs γ′
α and ȳ1y2 are homotopic in Mα through arcs with endpoints lying

in [m1, t1] and [m2, t2]; see Figure 2.8. Since the geodesic arc γ′
α is orthogonal to

the segments [m1, t1] and [m2, t2], and the surface Mα has nonpositive curvature, it
follows that

|γ| = |γ′
α| ≤ |ȳ1y2| < |ηα|.

Let us conclude the proof of Proposition 2.10.3. Whether the endpoints of the
geodesic arc η′

α satisfy the alternative (A1) or (A2), we deduce from Lemma 2.10.5
and Lemma 2.10.6 that

sys(M) = |γ| < |ηα| = LMα(C)

for every α > 0 small enough.
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t1

t2

m1 m2

y1

y2

γ′
α

Figure 2.8: Comparing γ′
α and ȳ1y2.

2.11 Systole comparison and the number of systolic
loops

In this section, we examine the effect of the kite insertion trick on the systole and
on the number of systolic loops.

Definition 2.11.1. Let M be a negatively curved closed Alexandrov surface. De-
fine ♯s(M) as the number of systolic loops of M .

We have the following result about the deformation of piecewise hyperbolic sur-
faces with conical singularities.

Theorem 2.11.2. Let M be a closed piecewise hyperbolic surface of Alexandrov
curvature at most −1 with at least one conical singularity m. Then the surface M
can be deformed into a piecewise hyperbolic surface Mα with conical singularities of
Alexandrov curvature at most −1 by inserting a kite Kα around m such that for every
α > 0 small enough, one of the following conditions is satisfied:

(i) sys(Mα) > sys(M);

(ii) sys(Mα) = sys(M) and ♯s(Mα) < ♯s(M).

Proof. Choose a geodesic arc (p, q) of M passing through m as in Section 2.10
and consider the surface Mα obtained from M by inserting a kite Kα along a seg-
ment [p, qα] close to [p, q] as in Definition 2.9.1; see the beginning of Section 2.10.
Let C be a free homotopy class of M . Three cases may occur:

1. If C is not represented by a systolic loop of M , then

LMα(C) > sys(M) + ε

for every α > 0 small enough, where ε > 0 does not depend on C; see Propo-
sition 2.9.2.
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2. If C is represented by a systolic loop of M which does not transversely inter-
sect [p, q], then

LMα(C) = LM (C) = sys(M)
for every α > 0 small enough; see Proposition 2.10.2.

3. If C is represented by a systolic loop of M which transversely intersects [p, q],
then

LMα(C) > sys(M)
for every α > 0 small enough; see Proposition 2.10.3.

It follows that sys(Mα) ≥ sys(M). Furthermore, we derive the following.
Suppose that all the systolic loops of M meeting [p, q] transversely intersect [p, q].

Then sys(Mα) > sys(M) for every α > 0 small enough, since the case (2) does not
occur (using also the fact that there are finitely many systolic loops in M). This
yields the case (i) of Theorem 2.11.2.

Suppose now that a systolic loop of M does not transversely intersect [p, q]. Then
sys(Mα) = sys(M) for every α > 0 small enough from the case (2). Take a systolic
loop of M transversely intersecting [p, q]. (This systolic loop exists by our choice
of [p, q].) By (3), the free homotopy class of this systolic loop is not represented
by a systolic loop of Mα. Since every free homotopy class not represented by a
systolic loop of M is not represented by a systolic loop of Mα either, we conclude
that ♯s(Mα) < ♯s(M). This yields the case (ii) of Theorem 2.11.2.

2.12 Extremality of hyperbolic surfaces
Let us show the main theorem of this article, namely, every local supremum of the
systole among all Alexandrov metrics of curvature at most −1 on a closed surface is
attained by a hyperbolic metric.
Theorem 2.12.1. Let Σ be a nonsimply connected closed surface. Let U ⊆ AΣ be
an open set in the space AΣ of Alexandrov surfaces of curvature at most −1 defining
a local supremum of the systole; see Definition 2.1.3. Then there exists a hyperbolic
surface M ∈ U such that

sys(M) ≥ sys(M ′)
for every M ′ ∈ U .

Proof. By Theorem 2.8.1, a local supremum of the systole on U is attained by a
piecewise hyperbolic surface M ∈ U with conical singularities. Among these, take M
with a minimal number of systolic loops ♯s(M).

Assume that the piecewise hyperbolic surface M has a conical singularity m. By
Theorem 2.11.2, we can deform M into a piecewise hyperbolic surface with conical
singularities Mα ∈ AΣ of Alexandrov curvature at most −1 satisfying one of the
following assertions:
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(i) sys(Mα) > sys(M);

(ii) sys(Mα) = sys(M) and ♯s(Mα) < ♯s(M).

Furthermore, the surface Mα lies in U for every α > 0 small enough; see Proposi-
tion 2.9.2. Now, since the systole of M is maximal among all Alexandrov surfaces
of U , only the assertion (ii) may occur. In this case, we obtain a contradiction since
the surface M has a minimal number of systolic loops among all piecewise hyperbolic
surfaces of U with maximal systole. As a result, the piecewise hyperbolic surface M
has no conical singularity and is therefore hyperbolic. Thus, every local supremum
of the systole among all Alexandrov metrics of curvature at most −1 on a closed
surface is attained by a hyperbolic metric.

2.13 Application to hyperbolic 3-manifolds
In this section, we obtain a partial extension of our sharp systolic bounds on surfaces
to higher dimension.

Definition 2.13.1. A maximal hyperbolic surface is a closed hyperbolic surface with
maximal systole among all hyperbolic metrics of fixed genus.

Theorem 2.12.1 immediately yields the following result about the systole of hy-
perbolic 3-manifolds.

Corollary 2.13.2. Let N be a closed hyperbolic 3-manifold admitting a totally
geodesic immersion of a maximal hyperbolic surface M with sys(M) = sys(N). Then
the hyperbolic metric on N has maximal systole among all Riemannian metrics of
(sectional) curvature at most −1.

Proof. Let N ′ be the manifold N endowed with a Riemannian metric of curvature
at most −1. Since the immersion Σ ≃ M → N ′ is π1-injective, there exists a
minimal immersion Σ → N ′ into N ′; see [66]. Denote by M ′ the surface Σ with the
metric induced by the minimal immersion Σ → N ′ into N ′. By the Gauss equation,
see [32, Theorem 5.5], the curvature of a minimal immersion is bounded from above
by the curvature of the ambient space. Thus, the surface M ′ has curvature at
most −1. Since the immersion M ′ → N ′ is π1-injective and the hyperbolic surface M
is maximal, we deduce from Theorem 2.12.1 that

sys(N ′) ≤ sys(M ′) ≤ sys(M) = sys(N).

Concrete examples of closed hyperbolic 3-manifolds satisfying the assumption of
Corollary 2.13.2 can be obtained as follows.
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Example 2.13.3. Consider a hyperbolic truncated tetrahedron T , whose four bound-
ary hexagons are right-angled, such that the dihedral angles along the edges between
a boundary triangle and a boundary hexagon are π

2 and the dihedral angles along
the main edges e1, . . . , e6 between two boundary hexagons are π

4 , π
8 , . . . , π

8 , π
2 , where

e1 and e6 are opposite edges; see Figure 2.9. The existence of such a hyperbolic trun-
cated tetrahedron follows from [31, Proposition 2.1] since the sum of the dihedral
angles along the main edges coming from every boundary triangle is less than π. Note
that the angles of each boundary triangle are given by the corresponding dihedral
angles (and their sum is less than π).

e1

e2

e3

e4

e5

e6

Figure 2.9: The hyperbolic truncated tetrahedron T .

Denote by H(ei, ej , ek) the boundary hexagon of T containing the main edges
ei, ej , ek. Take eight copies T1, . . . , T8 of T and glue them in cyclic order along their
main edge e1. More precisely, identify the boundary hexagon Hi(e1, e2, e3) of Ti with
the boundary hexagon Hi+1(e1, e5, e4) of Ti+1, where the index i is taken modulo 8.
The resulting space is a compact hyperbolic polyhedron P with two opposite faces OT

and OB (T for top and B for bottom) centered at the endpoints of e1 and isometric
to the regular hyperbolic octagon with angles π

4 . The other faces of P are either
hyperbolic hexagons or hyperbolic quadrilaterals. Identify the boundary hexagons
adjacent to the opposite sides of the faces of the octagons OT and OB. By our choice
of the dihedral angles, we obtain a compact singular hyperbolic 3-manifold Q with
boundary and eight singular geodesic lines of dihedral angles π given by the main
edges opposite to the axis e1. Furthermore, the two connected boundary compo-
nents of Q containing the endpoints of e1 are isometric to the Bolza surface. These
connected boundary components can be attached to form a new compact singu-
lar hyperbolic 3-manifold Q+ with a single boundary component and eight singular
geodesic lines of dihedral angles π, which contains a totally geodesic embedding of
the Bolza surface. Attach two copies of Q+ along their boundary component. The re-
sulting space N ′ is a closed hyperbolic 3-manifold with eight singular closed geodesics
of dihedral angles π disjoint from the Bolza surfaces. To eliminate the singularities
of N ′, take a degree-two ramified cover N ′′ of N ′ with branching locus the eight
singular closed geodesics of N ′. By construction, the cover N ′′ is a closed hyperbolic
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3-manifold containing a totally geodesic embedding of the Bolza surface. However,
the systole of M ′′ is less than the systole of the Bolza surface. For the systole to
attain the value of the systole of the Bolza surface, we can consider finite covers using
the notion of subgroup separability. By [50], the surface subgroup H of G = π1(N ′′)
corresponding to a totally geodesic Bolza surface M of N ′′ is separable. That is,
for every x ∈ G \ H, there exists a finite-index subgroup K ⩽ G containing H but
not x. (More generally, we can use the fact that the fundamental group of every hy-
perbolic 3-manifold is subgroup separable; see [4, Corollary 4.2.3].) This implies that
there exists a finite cover N of N ′′ (relative to H) containing the Bolza surface M
with sys(N ′′) = sys(M). Since the Bolza surface is maximal, we observe that the
closed hyperbolic 3-manifold N satisfies the assumption of Corollary 2.13.2.
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Chapter 3

Generalized resolvent of the
Stokes Problem with
Navier-type boundary
conditions.

We study in this paper the generalized resolvent of the Stokes problem with Navier-
type boundary conditions. Joint work with H. Al Baba published in [5].
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3.1 Introduction

This paper is devoted to the existence and uniqueness of weak, strong and very weak
solutions to the problemß

λu− ∆u+ ∇π = f , divu = χ in Ω × (0, T )
u · n = g, curlu× n = h× n on Γ × (0, T ) (3.1)

where we study the generalized resolvent of the Stokes operator with nonstandard
Navier-type boundary conditions. Up to now, most research concerns the homoge-
neous boundary conditions and the case χ=0. Although the case χ ̸=0 has many
important applications, specially in treating more general boundary value problems
and using cut-off procedure.

There exist several references on (3.1) when χ = 0 in Ω. This question was already
studied by Solonnikov in [68] for the homogeneous Dirichlet boundary condition
(i.e., u = 0 on Γ). In this work, the author considered the resolvent problem when
| arg λ| ≤ δ +π/2 where δ ≥ 0 is small. Later on, the resolvent of the Stokes operator
with Dirichlet boundary condition in bounded domains has been studied by Giga
in [33] using the theory of pseudo-differential operators. The results in [33] extends
those in [68] in two directions. First, he considers larger set of values of λ. More
precisely, λ lies in the sector | arg λ| ≤ π−ε, for any ε > 0. Second, the resolvent of the
Stokes operator is obtained explicitly and this enables him to describe the domains
of fractional powers of the Stokes operator with Dirichlet boundary condition.

In exterior domains, Giga and Sohr [34] approximate the resolvent of the Stokes
operator with Dirichlet boundary condition with the resolvent of the Stokes operator
in the entire space.

Farwig and Sohr [30] investigate Problem (3.1) when divu ̸= 0 in Ω and u = 0
on Γ. Their results include bounded and unbounded domains. For the whole and the
half space, the proof relies on multiplier technique. The problem is also investigated
for bended half spaces and for cones by using perturbation criterion and referring to
the half space problem.

Problem (3.1) is also studied with Robin boundary conditions by Saal [68], Shi-
bata and Shimada [67]. In [68], Saal proves that the Stokes operator with homo-
geneous Robin boundary conditions is sectorial and admits an H∞-calculus on Lp-
spaces. Shibata and Shimada proved in [67] a generalized resolvent estimate for
the Stokes equations with non-homogeneous Robin boundary conditions and diver-
gence condition in Lp-framework in a bounded or exterior domain by extending the
argument of Farwig and Shor [30].

Concerning the Navier-type boundary conditions, Miyakawa [52] shows that the
Laplacian operator with homogeneous Navier-type boundary conditions generates a
holomorphic semi-group on Lp-spaces when the domain Ω is of class C∞. Mitrea
and Monniaux [51] consider the resolvent of the Stokes operator with homogeneous
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Navier-type boundary conditions in Lipschitz domains using differential forms on
Lipschitz sub-domains of a smooth compact Riemannian manifold. In [2] and [3], Al
Baba et al. consider Problem (3.1) when χ = 0 in Ω and g = 0, h = 0 on Γ, and
prove the existence of weak, strong and very weak solutions to this problem.

This paper is organized as follows. In Section 3.2, we give the functional frame-
work and some preliminary results at the basis of our proofs. In Section 3.3, we
prove our main results on the existence of weak, strong and very weak solutions to
Problem (3.1).

3.2 Preliminaries
In this section we review some basic notations, definitions and functional framework
which are essential in our work.

In what follows, unless stated otherwise, Ω will be considered as an open bounded
domain of R3 of class C2,1. The unit normal vector to the boundary, denoted by n,
is defined everywhere because n is C1,1. A generic point in Ω is denoted by x =
(x1, x2, x3). The domain Ω is not necessarily simply-connected and the boundary Γ
is not necessarily connected.

Let us introduce some functional spaces.
Let Lp(Ω) denote the usual vector valued Lp-space over Ω. Let us define the spaces:

Hp(curl, Ω) ={v ∈ Lp(Ω); curl v ∈ Lp(Ω)},
Hp(div, Ω) ={v ∈ Lp(Ω); div v ∈ Lp(Ω)},
Xp(Ω) = Hp(curl, Ω) ∩Hp(div, Ω),

equipped with their graph norms. Thanks to [6] and [7], we know that D(Ω) is dense
in Hp(curl, Ω), Hp(div, Ω) and Xp(Ω). We also define the subspaces:

Hp
0(curl, Ω) = {v ∈ Hp(curl, Ω); v × n = 0 on Γ},
Hp

0(div, Ω) = {v ∈ Hp(div, Ω); v · n = 0 on Γ},
Xp

N (Ω) = {v ∈ Xp(Ω); v × n = 0 on Γ},
Xp

T (Ω) = {v ∈ Xp(Ω); v · n = 0 on Γ}.

We recall that for every function v ∈ Hp(curl, Ω) (respectively, v ∈ Hp(div, Ω)),
the tangential trace v × n (respectively, the normal trace v · n) exists and belongs
to W−1/p,p(Γ) (respectively, to W −1/p,p(Γ)). Thanks to [6], we know that D(Ω) is
dense in Hp

0(curl, Ω) and in Hp
0(div, Ω). Finally, we denote by [Hp

0(curl, Ω)]’ and
[Hp

0(div, Ω)]’ the dual spaces of Hp
0(curl, Ω) and Hp

0(div, Ω) respectively.
Next, we review some known results which are essential in our work. First,

we recall that the vector-valued Laplace operator of a vector field v= (v1, v2, v3) is
equivalently defined by

∆ v = grad (div v) - curl curl v.
We have the following lemmas; see [6].

Lemma 3.2.1. The spacesXp
N (Ω) andXp

T (Ω) are continuously embedded inW 1,p(Ω).
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In order to consider the case of nonhomogeneous boundary conditions, we intro-
duce the following spaces:

X1,p(Ω) = {v ∈ Lp(Ω); divv ∈ Lp(Ω), curlv ∈ Lp(Ω) andv · n ∈ W 1−1/p,p(Γ)},

Y 1,p(Ω) = {v ∈ Lp(Ω); divv ∈ Lp(Ω), curlv ∈ Lp(Ω) andv × n ∈ W 1−1/p,p(Γ)}.

Lemma 3.2.2. The spaces X1,p(Ω) and Y 1,p(Ω) are continuously embedded in
W 1,p(Ω).

Consider as well the spaces:

X2,p(Ω) = {v ∈ Lp(Ω); divv ∈ W 1,p(Ω), curlv ∈ W 1,p(Ω) andv ·n ∈ W 2−1/p,p(Γ)},

Y 2,p(Ω) = {v ∈ Lp(Ω); divv ∈ W 1,p(Ω), curlv ∈ W 1,p(Ω) andv×n ∈ W 2−1/p,p(Γ)}.

We have the following theorem, see [7].

Theorem 3.2.3. Assume that Ω is of class C2,1. Then the spaces X2,p(Ω) and
Y 2,p(Ω) are continuously embedded in W 2,p(Ω).

Consider now the space

Ep(Ω) = {v ∈ W 1,p(Ω); ∆v ∈ [Hp′

0 (div, Ω)]′},

which is a Banach space for the norm ∥v∥Ep(Ω) = ∥v∥W 1,p(Ω) + ∥∆v∥[Hp′
o (div,Ω)]′ .

Thanks to [7, Lemma 4.1], we know that D(Ω) is dense in Ep(Ω). Moreover, (see
[7, Corollary 4.2]), the linear mapping γ : v 7−→ curlv × n defined on D(Ω) can be
extended to a linear and continuous mapping γ : Ep(Ω) 7−→ W−1/p,p(Ω). Moreover,
we have the Green formula: for any v ∈ Ep(Ω) and φ ∈ Xp′

τ (Ω) such that div φ= 0
in Ω,

−⟨∆v,φ⟩[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) =
∫

Ω
curlv · curlφ dx − ⟨curlv × n,φ⟩Γ,

where ⟨·, ·⟩Γ = ⟨·, ·⟩
W−1/p,p(Γ)×W 1/p,p′ (Γ).

Next, we introduce the following space

T p(Ω) = {ϕ ∈ Hp
0(div, Ω); divϕ ∈ W 1,p

0 (Ω)}.

The space D(Ω) is dense in T p(Ω) and for all χ ∈ W −1,p(Ω) and ϕ ∈ T p′(Ω), we
have:

⟨∇χ,ϕ⟩(T p′ (Ω))′×T p′ (Ω) = −⟨χ, divϕ⟩
W −1,p(Ω)×W 1,p′

0 (Ω). (3.2)

A distribution f belongs to (T p(Ω))′ if and only if there exist ψ ∈ Lp′(Ω) and f0 ∈
W −1,p′(Ω), such that f = ψ + ∇f0. Moreover, we have the estimate

∥ψ∥
Lp′ (Ω) + ∥f0∥W −1,p′ (Ω) ≤ C∥f∥(T p(Ω))′ .
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We will need also the following space

Hp(∆; Ω) = {v ∈ Lp(Ω); ∆v ∈ (T p′(Ω))′},

which is a Banach space for the norm ∥v∥Hp(∆;Ω) = ∥v∥Lp(Ω) + ∥∆v∥(T p′ (Ω))′ . The
space D(Ω) is dense in Hp(∆; Ω) and the mapping γ: v 7−→ curlv × n defined
on D(Ω) can be extended by continuity to a linear and continuous mapping γ :
Hp(∆; Ω) 7−→ W−1−1/p,p(Ω). Moreover, we have the Green formula: for any v ∈
Hp(∆; Ω) and ϕ ∈ Y p′

τ (Ω),

⟨∆v,ϕ⟩(T p′ (Ω))′×T p′ (Ω) =
∫

Ω
v · ∆ϕ dx + ⟨curlv × n,ϕ⟩Γ, (3.3)

where ⟨·, ·⟩Γ = ⟨·, ·⟩
W−1−1/p,p(Γ)×W 1+1/p,p′ (Γ) and

Y p
τ (Ω) = {ϕ ∈ W 2,p(Ω); ϕ · n = 0, divϕ = 0, curlϕ× n = 0 on Γ}.

3.3 Generalized resolvent problem

In this section, we consider the generalized resolvent problem (3.1) and we prove the
existence and uniqueness of weak, strong and very weak solution to this problem.

3.3.1 Weak solution

Consider the problemß
λu− ∆u+ ∇π = f , divu = 0 in Ω × (0, T )

u · n = 0, curlu× n = h× n on Γ × (0, T ) (3.4)

We start by the existence and uniqueness of weak solutions to (3.4).

Theorem 3.3.1. Let ε ∈]0, π[ be fixed and λ ∈ Σε. Let p ≥ 2, f ∈ (Hp′

0 (div, Ω))′

and h × n ∈ W−1/p,p(Γ). Then the problem (3.4) has a unique solution (u, π) ∈
W 1,p(Ω) × Lp(Ω)/R satisfying the following estimate

∥u∥W 1,p(Ω) ≤ C(Ω, p)
(

∥f∥(Hp′
0 (div,Ω))′ + ∥h× n∥W−1/p,p(Γ)

)
. (3.5)

Proof. Step 1 : Existence and uniqueness. We can easily verify that problem
(3.4) is equivalent to the variational problem: Find u ∈ V p

τ (Ω) such that for all v ∈
V p′

τ (Ω)

λ

∫
Ω
u · v dx +

∫
Ω

curl u · curl v dx = ⟨f ,v⟩Ω + ⟨h× n,v⟩Γ, (3.6)

where ⟨·, ·⟩Ω = ⟨·, ·⟩[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) and ⟨·, ·⟩Γ = ⟨·, ·⟩
W−1/p,p(Γ)×W−1/p,p′ (Γ).

The proof is done in two steps:
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i) Case 2 ≤ p ≤ 6. The case p = 2 can be directly obtained using Lax-Milgram
theorem. Suppose that 2 < p ≤ 6, then Problem (3.4) has a unique solution
(u, π) ∈ H1(Ω) × L2(Ω)/R. We write (3.4) in the form:ß

−∆u+ ∇π = f − λu = F , div u = 0 in Ω
u · n = 0, curl u× n = h× n on Γ . (3.7)

As H1(Ω) ↪→ Lp(Ω), we have F ∈ (Hp′

0 (div; Ω))′ and

∀v ∈ Kp′
τ (Ω), ⟨F ,v⟩Ω + ⟨h× n,v⟩Γ = 0. (3.8)

Theorem 4.4 of [7] implies that u ∈ W 1,p(Ω) and π ∈ Lp(Ω).
Let v ∈ Kp′

τ (Ω). Using the variational formulation, we have

⟨F ,v⟩Ω + ⟨h× n,v⟩Γ = 0.

Then our solution (u, π) belongs to W 1,p(Ω) × Lp(Ω)/R.

ii) Case p ≥ 6. Observe that (Hp′

0 (div, Ω))′ ↪→ (H6/5
0 (div, Ω))′ and W−1/p,p(Γ) ↪→

W−1/6,6(Γ). Then Problem (3.7) has a unique solution (u, π) ∈ W 1,6(Ω) ×
L6(Ω)/R. Thanks to the embedding W 1,6(Ω) ↪→ L∞(Ω), we deduce that
F = f − λu ∈ (Hp′

0 (div, Ω))′. Moreover, F satisfies the compatibility condi-
tion (3.8). We conclude that (u, π) belongs to W 1,p(Ω) × Lp(Ω)/R.

Step 2: Estimate. Let B ∈ L(V p
τ (Ω), (V p′

τ (Ω))′) be the operator defined by

∀u ∈ V p
τ (Ω), ∀v ∈ V p′

τ (Ω), ⟨Bu,v⟩(V p′
τ (Ω))′×V p

τ (Ω) = λ

∫
Ω
u·v dx+

∫
Ω

curl u·curl v dx.

For all p ≥ 2, the operator B is an isomorphism from V p
τ (Ω) into (V p′

τ (Ω))′ and
∥u∥Xp

τ
≈ ∥Bu∥(V p′

τ (Ω))′ for all u ∈ V p
τ (Ω). Moreover, using the continuous embed-

ding Xp
τ (Ω) ↪→ W 1,p(Ω), we have for every u ∈ V p

τ (Ω) solution of problem (3.6),

∥u∥W 1,p(Ω) ≤ C(Ω, p)∥u∥Xp
τ (Ω) ≤ C(Ω, p)∥Bu∥(V p′

τ (Ω))′

and

∥Bu∥(V p′
τ (Ω))′ = sup

v∈V p′
τ (Ω)

v ̸=0

|⟨Bu,v⟩|
∥v∥

Xp′
τ (Ω)

= sup
v∈V p′

τ (Ω)
v ̸=0

|⟨f ,v⟩Ω + ⟨h× n,v⟩Γ|
∥v∥

Xp′
τ (Ω)

≤ C(Ω, p)
(

∥f∥(Hp′
0 (div,Ω))′ + ∥h× n∥W−1/p,p(Γ)

)
,

which is the estimate (3.5).
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Theorem 3.3.2. Let λ ∈ Σε. Let p ≥ 2. Let f ∈ (Hp′

0 (div, Ω))′ , h×n ∈W−1/p,p(Γ),
g ∈ W 1−1/p,p(Γ) and χ ∈ Lp(Ω) verifying the following compatibility condition∫

Ω
χ dx =

∫
Γ

g dσ. (3.9)

Then Problem (3.1) has a unique solution (u, π) ∈ W 1,p(Ω) × Lp(Ω)/R satisfying
the following estimate

∥u∥W 1,p(Ω) + ∥π∥Lp(Ω)/R ≤ C(Ω, p, λ)(∥f∥(Hp′
0 (div,Ω))′ + ∥χ∥Lp(Ω) + ∥g∥W 1−1/p,p(Γ)

+ ∥h× n∥W−1/p,p(Γ)). (3.10)

Proof. i) Existence and uniqueness. Consider the following Neumann problem

∆θ = χ in Ω and ∂θ

∂n
= g on Γ. (3.11)

Since g ∈ W 1−1/p,p(Γ) and χ ∈ Lp(Ω) verifying the compatibility condition (3.9),
this problem has a unique solution θ ∈ W 2,p(Ω)/R such that

∥θ∥W 2,p(Ω)/R ≤ C
Ä
∥g∥W 1−1/p,p(Γ) + ∥χ∥Lp(Ω)

ä
. (3.12)

Set F = f − λ∇θ + ∇χ and observe that F ∈ (Hp′

0 (div, Ω))′. Using Theo-
rem 3.3.1, we deduce that the problemß

λz − ∆z + ∇π = F , divz = 0 in Ω
z · n = 0, curlz × n = h× n on Γ (3.13)

has a unique solution (z, π) ∈ W 1,p(Ω) × Lp(Ω)/R satisfying the following
estimate

∥z∥W 1,p(Ω) ≤ C(Ω, p)
(

∥F ∥(Hp′
0 (div,Ω))′ + ∥h× n∥W−1/p,p(Γ)

)
. (3.14)

Set u = z + ∇θ. Then (u, π) solves (3.1).

ii) Estimate. Observe that

∥u∥W 1,p(Ω) ≤ C(Ω, p)(∥f∥(Hp′
0 (div,Ω))′+|λ|∥∇θ∥(Hp′

0 (div,Ω))′+∥∇χ∥(Hp′
0 (div,Ω))′

+ ∥h× n∥W−1/p,p(Γ)) + ∥∇θ∥W 1,p(Ω).

Using estimate (3.12), one gets

∥u∥W 1,p(Ω) ≤ C(Ω, p, λ)(∥f∥(Hp′
0 (div,Ω))′ + ∥χ∥Lp(Ω) + ∥g∥W 1−1/p,p(Γ)

+ ∥h× n∥W−1/p,p(Γ)). (3.15)
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Moreover, ∥π∥Lp(Ω)/R ≤ C(Ω, p) ∥∇π∥(Hp′
0 (div,Ω))′ = ∥f −λu+∆u∥(Hp′

0 (div,Ω))′ .
Thus,

∥π∥Lp(Ω)/R ≤ C(Ω, p, λ)(∥f∥(Hp′
0 (div,Ω))′+∥χ∥Lp(Ω)+∥g∥W 1−1/p,p(Γ)+∥h×n∥W−1/p,p(Γ)).

(3.16)
Combining (3.15) together with (3.16), we obtain the estimate (3.10).

Theorem 3.3.3. Let 1 < p < 2, f ∈ (Hp′

0 (div, Ω))′, h×n ∈W−1/p,p(Γ), g ∈ W 1−1/p,p(Γ)
and χ ∈ Lp(Ω) verifying the following compatibility condition (3.9). Then Problem
(3.1) has a unique solution (u, π) ∈ W 1,p(Ω) × Lp(Ω)/R.

Proof. Step 1: We suppose that g = 0. The problemß
λu− ∆u+ ∇π = f , divu = χ, in Ω

u · n = 0, curlu× n = h× n, on Γ (3.17)

has the following equivalent variational formulation: Find (u, π) ∈W 1,p(Ω)×Lp(Ω)/R
satisfying u · n = 0 on Γ such that for every w ∈ W 1,p′ satisfying w · n = 0 and
curl w × n=0 on Γ, we have

λ

∫
Ω
u ·w dx+

∫
Ω

curlu ·curlw dx−
∫

Ω
π ·divw dx = ⟨f ,w⟩[Hp′

0 (div,Ω)]′×Hp′
0 (div,Ω)

+ ⟨h× n,w⟩
W−1/p,p(Γ)×W−1/p,p′ (Γ) −

∫
Ω

χ · divw dx.

According to theorem 3.3.2, for any (F , φ) in (Hp
0(div, Ω))′ × Lp′

0 (Ω), there exists a
unique solution (w, η) ∈ W 1,p′(Ω) × Lp′(Ω)/R solution toß

λw − ∆w + ∇η = F , divw = φ, in Ω
w · n = 0, curlw × n = 0, on Γ (3.18)

and satisfying

∥w∥
W 1,p′ (Ω) + ∥η∥Lp′ (Ω)/R ≤ C(Ω, p′, λ)(∥F ∥(Hp

0(div,Ω))′ + ∥φ∥
Lp′ (Ω)).

Let T : (Hp
0(div, Ω))′ × Lp′

0 (Ω) → C be a linear form defined by

T (F , φ) = ⟨f ,w⟩[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) + ⟨h× n,w⟩Γ −
∫

Ω
χ · η dx.

Observe that

|T (F , φ)| ≤ ∥f∥(Hp′
0 (div,Ω))′∥w∥

Hp′
0 (div,Ω))′+∥h×n∥W−1/p,p(Γ)∥w∥

W 1/p,p′ (Γ)+∥φ∥Lp′ (Ω).
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Then T is continuous on (Hp
0(div, Ω))′ × Lp′(Ω) and we deduce that there exists a

unique (u, π) ∈ Hp
0(div, Ω) × Lp(Ω)/R such that

T (F , φ) = ⟨u,F ⟩Hp
0(div,Ω)×(Hp

0(div,Ω))′ −
∫

Ω
π · φ dx.

As a result,

λ

∫
Ω
u ·w dx +

∫
Ω

curlu · curlw dx −
∫

Ω
π · divw dx

= ⟨f ,w⟩[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) + ⟨h×n,w⟩
W−1/p,p(Γ)×W−1/p,p′ (Γ) −

∫
Ω

χ · divw dx.

To finish, we shall prove that u belongs to W 1,p(Ω). To this end, we write our prob-
lem in the form (3.7), where F = f−λu belongs to (Hp′

0 (div, Ω))′ and satisfies (3.8).
Then, using [7, Remark 4.6], our solution (u, π) ∈ W 1,p(Ω) × Lp(Ω).
Step 2 : g ̸= 0. Let θ ∈ W 2,p(Ω)/R be the unique solution of the Neumann
problem (3.11) with χ ∈ Lp(Ω) and g ∈ W 1−1/p,p(Γ) satisfying (3.9). Let F =
f + ∇χ − λ∇θ ∈ (Hp′

0 (div, Ω))′. Then there exists (z, π) ∈ W 1,p(Ω) × Lp(Ω)/R
solution of (3.13). Set u=z + ∇θ. We can easily verify that (u, π) solves (3.1).

3.3.2 Strong solution

Theorem 3.3.4. Let 1 < p < ∞. Let f ∈ Lp(Ω) and h × n ∈ W 1−1/p,p(Γ). Then
the problem (3.4) has a unique solution (u, π) ∈ W 2,p(Ω)×W 1,p(Ω)/R satisfying the
following estimate

∥u∥W 2,p(Ω) + ∥π∥W 1,p(Ω)/R ≤ C(λ, p, Ω)(∥f∥Lp(Ω) + ∥h× n∥W 1−1/p,p(Γ)). (3.19)

Proof. We know that the problem (3.4) has a unique solution (u, π) ∈ W 1,p(Ω) ×
Lp(Ω)/R .
Moreover, the map π satisfies

div(∇π − f) = 0 in Ω, (∇π − f) · n = −divΓ(h× n) on Γ.

Since h× n ∈ W 1−1/p,p(Γ), we deduce that π ∈ W 1,p(Ω).
Set z = curlu. Notice that z verifies the following problem:ß

λz − ∆z = curlf , divz = 0, in Ω
z × n = h× n, on Γ (3.20)

where curlf ∈ (Hp′

0 (curl, Ω))′ and h× n ∈ W 1−1/p,p(Γ). Then, z ∈ W 1,p(Ω) and
satisfies

∥z∥W 1,p(Ω) ≤ C(Ω)(∥f∥Lp(Ω) + ∥h× n∥W 1−1/p,p(Γ)).
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Thus, u ∈ Lp(Ω), div u =0 ∈ W 1,p(Ω), curl u = z ∈ W 1,p(Ω) and u · n = 0 ∈
W 1−1/p,p(Γ). Then, u ∈ W 2,p(Ω) and

∥u∥W 2,p(Ω) ≤ C(λ, p, Ω)(∥f∥Lp(Ω) + ∥h× n∥W 1−1/p,p(Γ)).

Finally, proceeding as in Step 2 of the proof of Theorem 3.3.2, we obtain that the
solution (u, π) satisfies the estimation (3.19), which ends the proof.

Corollary 3.3.5. Let 1 < p < ∞. Let f ∈ Lp(Ω) , h × n ∈ W 1−1/p,p(Γ), g ∈
W 2−1/p,p(Γ) and χ ∈ W 1,p(Ω) verifying the following compatibility condition (3.9).
Then Problem (3.1) has a unique solution (u, π) ∈ W 2,p(Ω) × W 1,p(Ω)/R satisfying

∥u∥W 2,p(Ω) + ∥π∥W 1,p(Ω)/R ≤ C(Ω, p, λ)(∥f∥Lp(Ω) + ∥χ∥W 1,p(Ω) + ∥g∥W 2−1/p,p(Γ)

+ ∥h× n∥W 1−1/p,p(Γ)). (3.21)

Proof. Let θ ∈ W 2,p(Ω) be the unique solution of the Neumann problem (3.11).
Set F = f − λ∇θ + ∇χ and observe that F ∈ Lp(Ω). Thanks to Theorem 3.3.4, the
problem (3.13) has a unique solution (z, π) ∈ W 2,p(Ω) × W 1,p(Ω)/R satisfying

∥u∥W 2,p(Ω) + ∥π∥W 1,p(Ω)/R ≤ C(Ω, p, λ)(∥f∥Lp(Ω) + ∥h× n∥W 1−1/p,p(Γ)).

By setting u = z + ∇θ, we can easily verify that (u, π) solves (3.1) and verifies
(3.21).

3.3.3 Very weak solution

In this section, we prove the existence of very week solution to Problem (3.1).

Theorem 3.3.6. Let f ∈ (T p′(Ω))′, χ ∈ Lp(Ω), g ∈ W −1/p,p(Γ) and h × n ∈
W−1−1/p,p(Γ) verifying the compatibility condition (3.9). Then Problem (3.1) has
a unique solution (u, π) ∈ Lp(Ω) × W −1,p(Ω)/R. Moreover, the following estimate
holds

∥u∥Lp(Ω) + ∥π∥W −1,p(Ω)/R ≤ C(Ω, p, λ)(∥f∥(T p′ (Ω))′ + ∥χ∥Lp(Ω) + ∥g∥W −1/p,p(Γ)

+ ∥h× n∥W−1−1/p,p(Γ)). (3.22)

Proof. Step 1. Problem (3.1) is equivalent to the variational formulation: find (u, π)
∈ Lp(Ω) × W −1,p(Ω)/R such that for any ϕ ∈ Y p′

τ (Ω) and for any q ∈ W 1,p′(Ω),

λ

∫
Ω
u·ϕ dx−

∫
Ω
u·∆ϕ dx−⟨π, divϕ⟩

W −1,p(Ω)×W 1,p′
0 (Ω) = ⟨f ,ϕ⟩Ω+⟨h×n,ϕ⟩Γ (3.23)

∫
Ω
u · ∇q dx = −

∫
Ω

χq dx + ⟨g, q⟩W −1/p,p(Γ)×W 1/p,p′ (Γ), (3.24)
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where ⟨·, ·⟩Ω = ⟨·, ·⟩(T p′ (Ω))′×T p′ (Ω) and ⟨·, ·⟩Γ = ⟨·, ·⟩
W−1−1/p,p(Γ)×W 1+1/p,p′ (Γ).

Indeed, using the Green formula (3.3), we can verify that every (u, π) ∈ Lp(Ω) ×
W −1,p(Ω) solution to (3.1) solves (3.23)-(3.24). Conversely, let (u, π) ∈ Lp(Ω) ×
W −1,p(Ω) be a solution to (3.23)-(3.24). Clearly, −∆u+∇π = f and divu = χ in Ω.
Consequently, u ∈ Lp(Ω) and since ∇π ∈ (T p′(Ω))′, we have ∆u = −f +λu+∇π ∈
(T p′(Ω))′. Then u ∈ Hp(∆, Ω). Using (3.2) and (3.3), we obtain that for any ϕ ∈
Y p′

τ (Ω):

λ

∫
Ω
u ·ϕ dx−

∫
Ω
u ·∆ϕ dx−⟨curlu×n,ϕ⟩Γ −⟨π, divϕ⟩

W −1,p(Ω)×W 1,p′
0 (Ω) = ⟨f ,ϕ⟩Ω.

Thus, ⟨curlu×n,ϕ⟩Γ = ⟨h×n,ϕ⟩Γ. Let µ ∈ W 1+1/p,p′(Γ), there exists a function
ϕ ∈ W 2,p(Ω) satisfying

ϕτ = µτ and ∂ϕ

∂n
= −ndivΓµτ +

2∑
j=1

(∂µτ
∂sj

× T j

)
× n on Γ.

It is clear that ϕ ∈ Y p′
τ (Ω) and

⟨curlu× n,µ⟩Γ − ⟨h× n,µ⟩Γ = ⟨curlu× n,ϕτ ⟩Γ − ⟨h× n,ϕτ ⟩Γ = 0.

Thus, curlu× n = h× n on Γ. Next using that divu=χ in Ω, we deduce that for
any q ∈ W 1,p′(Ω), we have

⟨u · n, q⟩W −1/p,p(Γ)×W 1/p,p′ (Γ) = ⟨g, q⟩W −1/p,p(Γ)×W 1/p,p′ (Γ).

Consequently, u · n = g ∈ W −1/p,p(Γ).

Step 2. Let us now solve Problem (3.23)-(3.24). We suppose that

g = 0 on Γ and
∫

Ω
χ dx = 0.

Thanks to Theorem 3.3.5, for any pair (F , ξ) ∈ Lp′(Ω) × (W 1,p′

0 (Ω) ∩ Lp′

0 (Ω)), there
exists a unique (ϕ, q) ∈ W 2,p′(Ω) × W 1,p′(Ω)/R satisfying:ß

λϕ− ∆ϕ+ ∇q = F , divϕ = ξ, in Ω,
ϕ · n = 0, curlϕ× n = 0, on Γ,

(3.25)

with the estimate

∥ϕ∥
W 2,p′ (Ω) + ∥q∥

W 1,p′ (Ω)/R ≤ C(λ, Ω, p′)(∥F ∥
Lp′ (Ω) + ∥ξ∥W 1,p′ (Ω)).

Let T be a linear form defined from Lp′(Ω) × (W 1,p′

0 (Ω) ∩ Lp′

0 (Ω)) onto C by

T : (F , ξ) 7−→ ⟨f ,ϕ⟩Ω + ⟨h× n,ϕ⟩Γ −
∫

Ω
χq dx.
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An easy computation shows that

|T (F , ξ)| ≤ C(Ω, p′, λ)(∥f∥(T p′ (Ω))′+∥h×n∥W−1−1/p,p(Γ)+∥χ∥Lp(Ω))(∥F ∥
Lp′ (Ω)+∥ξ∥W 1,p′ (Ω)).

This means that T defines an element of the dual space of Lp′(Ω)×(W 1,p′

0 (Ω)∩Lp′

0 (Ω))
and according to the Riesz’s representation theorem, there exists a unique (u, π) ∈
Lp(Ω) × W −1,p(Ω)/R such that

T (F , ξ) = ⟨u,F ⟩
T p′ (Ω)×(T p′ (Ω))′ −

∫
Ω

πξ dx.

Thus, (u, π) is a solution to (3.23)-(3.24) and satisfies (3.22).
Step 3. Suppose that g ̸= 0 and the compatibility condition (3.9) holds. The Neu-
mann problem (3.11) has a unique solution θ ∈ W 1,p(Ω)/R satisfying the estimate:

∥θ∥W 1,p(Ω)/R ≤ C(∥χ∥Lp(Ω) + ∥g∥W −1/p,p(Γ)).

Set F = f − λ∇θ + ∇χ. Then F ∈ (T p′(Ω))′ and Problem (3.13) has a unique
solution (z, π) ∈ Lp(Ω) × W −1,p(Ω)/R satisfying the following estimate

∥z∥Lp(Ω) +∥π∥W −1,p(Ω)/R ≤ C(λ, Ω, p)
Ä
∥F ∥(T p′ (Ω))′ + ∥h× n∥W−1−1/p,p(Γ)

ä
. (3.26)

Thus, (u, π) with u = z + ∇θ solves (3.1) and satisfies (3.22).

Remark 3.3.7. i) Consider the problem (3.1) with χ ∈ W 1,p(Ω) such that
∫

Ω χ d x = 0,
g = 0 and h = 0 on Γ. As in [34], we can prove that the solution (u, π) satisfies the
following estimate

|λ| ∥u∥Lp(Ω) + ∥∇π∥Lp(Ω) ≤ C (∥f∥Lp(Ω) + ∥∇χ∥Lp(Ω) + |λ| ∥χ∥W −1,p(Ω)). (3.27)

Indeed, let θ ∈ W 2,p(Ω)/R solution to ∆ θ = χ in Ω, ∂θ
∂n = 0 on Γ and satisfying

∥θ∥W 2,p(Ω) ≤ C ∥χ∥W 1,p(Ω). Set F = f − λ∇θ + ∇χ. Then, F ∈ Lp(Ω)) and the
problem ß

λz − ∆z + ∇π = F , divz = 0 in Ω
z · n = 0, curlz × n = 0 on Γ

has a unique solution (z, π) ∈ W 1,p(Ω) × Lp(Ω)/R satisfying the following estimate

|λ| ∥z∥W 1,p(Ω) + ∥∇π∥Lp(Ω) ≤ C(Ω, p)
(

∥f∥Lp(Ω)) + ∥∇χ∥Lp(Ω)) + |λ|∥∇θ∥Lp(Ω))

)
Set u = z + ∇θ. Then (u, π) is a solution to (3.1) and satisfies (3.27).
ii) Notice that when χ = 0, we recover the resolvent estimate established in [2] and [3].
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