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RÉSUMÉ 

 

Au cours de chaque division cellulaire, l'ADN est un support important du matériel génétique 

et la réplication de l'ADN génomique est un processus essentiel pour maintenir les traits 

héréditaires et les activités physiologiques. Chez l’homme, chaque cycle cellulaire nécessite 

d'activer des dizaines de milliers d'origines de réplication pour répliquer ~ 6 milliards de paires 

de bases du génome afin d'assurer la transmission précise de l'information génétique. Alors que 

le programme de réplication est fréquemment mis à l'épreuve par le stress endogène et exogène, 

de nombreuses preuves au cours des dernières années ont montré que le stress de réplication 

induit par l'oncogène est un moteur majeur de la progression tumorale.  

Les conflits entre la transcription et la réplication (TRC) surviennent parce que les machineries 

de réplication et de transcription partagent la même matrice d'ADN, ce qui peut se produire de 

manière frontale ou co-directionnelle. Les conflits frontaux sont souvent plus délétères pour 

conduire à l’instabilité génomique. De plus, les fourches de réplication peuvent également 

rencontrer des structures d'acide nucléique à trois brins appelées R-loops, qui consistent en un 

hybride ARN:ADN et un brin d'ADN déplacé. Cependant, le mécanisme sur la façon dont les 

R-loops sont impliquées dans la régulation du TRC et la stabilité génomique est encore mal 

connu. Ces dernières années, notre laboratoire a développé une nouvelle méthode pour mesurer 

directement la directionnalité de la fourche de réplication (RFD) le long du génome humain par 

séquençage de fragments d'Okazaki (OK-seq), qui nous fournit un outil important pour 

comprendre de nombreux processus liés à la réplication de l'ADN, tels que les TRC et la 

formation de R-loops. Pendant ce temps, malgré les protocoles bien améliorés pour OK-seq, à 

ce jour, il n'existe aucun outil bio-informatique disponible pour analyser les données sur RFD 

et détecter avec précision les zones d'initiation et de terminaison de la réplication à l'échelle du 

génome, ce qui rend l'étude TRC difficile à étudier. 

Pour répondre à tous ces problèmes, pendant ma thèse, j'ai développé une boîte à outils bio-

informatique basée sur R (OKseqHMM) pour analyser les profils RFD ainsi que pour 

déterminer les zones d'initiation et de terminaison de la réplication en utilisant le Modèle de 

Markov Caché en 4 états. Je l'ai appliqué avec succès pour analyser un grand nombre de 

données OK-seq et des données connexes parmi divers organismes, de la levure, de la souris 

aux cellules humaines. De plus, en collaboration avec le laboratoire de P. Paséro (IGH, 

Montpellier), nous avons réussi à montrer que les R-loops enrichies au niveau des sites de 

terminaison de la transcription (TTS) des gènes hautement exprimés montrent un niveau plus  
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RÉSUMÉ 

 

élevé de TRC frontal. Fait important, nous avons en outre révélé que les fourches de réplication 

s'arrêtant à ces TTS empêchent le TRC frontal et maintiennent l'intégrité du génome d'une 

manière dépendante de TOP1. A part cela, nos outils et les approches d'analyse développées au 

cours de ma thèse peut être largement appliquée à davantage des domaines de recherche liés à 

la réplication, tels que l'étude de l'impact de la réplication sur la signature mutationnelle 

(mutations ponctuelles, variations de structure, etc.), ce qui peut contribuer une nouvelle 

compréhension mécanistique ainsi que le développement de nouvelles stratégies thérapeutiques 

contre le cancer. 
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ABSTRACT 

 

DNA is an important carrier of genetic material of cells, and the replication of genomic DNA 

is an essential process to maintain hereditary traits and physiological activities. In the human 

body, each cell division requires to activate tens of thousands of replication origins for 

replicating ~ 6 billion base pairs of the genome to ensure the accurate genetic information 

transmission. While replication program is frequently challenged by endogenous and 

exogenous stress, much evidence in recent years has shown that oncogene-induced replication 

stress is a major driver of tumor progression.  

Transcription-replication conflicts (TRCs) arise because replication and transcription 

machineries share the same DNA template, which can occur in a head-on or co-direction 

manner. The head-on conflicts are often more deleterious to lead to genomic instability. In 

addition, replication forks may also encounter triple-stranded nucleic acid structures called R-

loops, which consist of an RNA: DNA hybrid and a displaced DNA strand, that caused fork 

stalling even collapse. However, the mechanism about how R-loops are involved in the 

regulation of TRC and genomic stability is still poor known. In recent years, our laboratory has 

developed a new sequencing method to directly measure the replication fork directionality 

(RFD) along the human genome by sequencing of Okazaki fragments (OK-seq), which provides 

an important tool to understand many DNA replication-related processes, such as TRCs and R-

loop formation. Meanwhile, despite the improved protocols for OK-seq, there was no available 

bioinformatics tool to analyze RFD data and accurately detect genome-wide replication 

initiation and termination zones, which makes the TRC study hard to investigate.  

To address all these problems, during my Ph.D. study, I have developed an R-based 

bioinformatics toolkit (OKseqHMM) to analyze RFD profiles as well as determine replication 

initiation and termination zones with a 4-stage Hidden Markov Model. I have successfully 

applied it to analyze a large number of OK-seq and related data of various organisms from yeast, 

mouse to human cells. In addition, in collaboration with P. Pasero’s lab (IGH, Montpellier), we 

successfully showed that R-loops enriched at the transcription termination sites (TTSs) of 

highly expressed genes showing a higher level of head-on TRC. Importantly, we further 

revealed that replication fork pausing at these TTSs prevents head-on TRC and maintains 

genome integrity in a TOP1-dependent manner. The toolkit and the analyze approaches 

developed during my Ph.D. study can be widely applied to other replication-related research 

field, such as studying the impact of replication on mutational landscape (point mutations,  
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ABSTRACT 

 

structure variations, etc.), which may shed light on novel mechanistical understanding as well 

as the development of new therapeutic strategies for cancer. 
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Chapter 1 Introduction 
 

Across species, an accurate transmission of the genomic information from parental to 

descendant is crucial. At each cell cycle of a human cell, tens of thousands of replication origins 

need to be coordinately activated to ensure the complete duplication of the about 6.4 billion 

base pairs (bp) in its genome. However, the DNA replication program is routinely exposed to 

endogenous and exogenous stresses, which play an important role in many human diseases 1. 

For instance, the deregulation of this process can challenge genome stability and lead to 

mutations, cancers and many other genetic diseases. In particular, replication stress-induced 

genome alterations can represent an important early cause of cancer 2.  

Replication and transcription machineries share the same DNA template then potentially 

interfere with each other then we called transcription-replication conflicts (TRC). They have 

been widely studied to be considered as an indispensable key to induce genomic instability. 

TRC can either be co-directional (CD) or head-on (HO). The latter has been described as more 

deleterious for genome integrity because of its tendency to enhance the formation of a three 

stranded nucleic acid structure called R-loops which consist with an DNA hybrid and a 

displaced DNA strand 3,4. It is now well established that TRCs have a negative impact on 

genome duplication and stability, however, current evidence show that only a fraction of R-

loops induce genomic instability5. The mechanism by which R-loops interfere with TRC 

enhance genome instability in mammalian cells remains poorly understood, mainly due to a 

lack of a comprehensive analysis of replication fork directionality.  

For studying the R-loop-associated transcription-replication conflict and genome instability, we 

aimed to investigate (i) the whole-genome wide TRC distribution by comparing the genomic 

transcription direction and replication direction; (ii) the fraction of R-loop interfered with TRC 

that impact the replication fork progression by comparing the loci of R-loop, TRC and fork 

stalling; (iii) the final subset of toxic R-loops directly linked to DNA damage. 

To address all these questions, the first challenge is to study the DNA replication progress 

especially the direction of replication fork movement. To date, more and more sequencing 

techniques are developed to study the replication fork progression in yeast or mammalian cells, 

such as :Pu-seq6, Fork-seq7, GLOE-seq8, SCAR-seq9, eSPAN10, TrAEL-seq11, etc. Besides, our 

lab has also recently developed a new method to directly measure the genome-wide replication 

fork directionality (RFD) by sequencing Okazaki fragments (OK-seq) 12. In the coming sections, 

I will at first briefly introduce some basic knowledge on DNA replication program and then 
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provide detailed description for all these techniques. Finally, I will further describe the links 

between transcription-replication conflicts, R-loop formation and genome instability and the 

objectives of my Ph.D. study.  

 

1. DNA replication  

1.1. Cell cycle and checkpoints 

 In eukaryotes, cells followed an ordered sequence of events preparing for cell division called 

cell cycle. It’s a four-stage process in which we observe the cell growth in size in G1 phase, 

DNA duplication in S phase (DNA synthesis), preparation for division in G2 phase and final 

cell segregation at mitosis (Fig.1-1). Each stage is under surveillance by the cell cycle 

checkpoints, which faithfully monitor and decide the timepoint to enter the corresponding 

phase13. Many proteins are involved in the 

control the cell cycle progression and the two 

principal ones are called cyclins and cyclin-

dependent kinase (CDK). The kinase activity 

of a CDK depends on the interaction with a 

cyclin partner and that cyclins are tightly 

regulated. In G1 phase, cells begin to grow and 

produce the nutrients and essential elements 

for cell proliferation. Normally somatic cells 

are supposed to have a longer G1 phase (6-12h) 

to ensure replication origin licensing and to 

guarantee complete DNA duplication 14. It should be noted that, if G1 gets shortening in somatic 

cells, for instance, by overexpressing cyclin E, to alter the normal G1-S transition, it will 

deregulate the replication fork progression and induce DNA damage2. Thus, G1 checkpoint is 

the most decisive point for a cell, at which it must choose whether to divide or not depends on 

how the cell cycle goes. Either cell may leave the cell cycle and enter a resting state called G0 

phase waiting for resuming the cell cycle process, or the cell passes the G1 checkpoint, enters S 

phase and it becomes irreversibly committed to cell division. Here Cyclin D-CDK4 and Cyclin 

E-CDK2 complexes are formed to phosphorate protein Rb to promote the cell enter S phase for 

the further DNA replication15.  

Figure 1-1. A typical cell cycle of eukaryotic cells. 
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Once passed the G1 check point, cells enter S phase, Cyclin A is produced and complex with 

CDK2 to activate DNA replication program. To make sure that cell division goes smoothly, 

there is a G2/M checkpoint before mitosis to check the DNA integrity and DNA replication 

completeness 16,17 . If it detects incomplete DNA synthesis or replication errors/damage, the 

cell will pause at the G2/M checkpoint to allow to either complete DNA replication or repair 

the damaged DNA. If the damage is irreparable, the cell may undergo apoptosis to ensure that 

damaged DNA is not passed on to daughter cells and is important in preventing cancer. The 

last step, cell enters mitosis and comes to M checkpoint, also known as the spindle checkpoint, 

to verify if all the sister chromatids are correctly attached to the spindle microtubules to prepare 

anaphase chromosome segregation, which is activated by Cyclin B-CDK1 complex 16,17. 

Each phase of the cell cycle is well controlled and highly surveyed by checkpoints that ensure 

the correct replication and segregation of the genetic information into daughter cells. This is 

extremely important because any replication error will be transmitted to subsequent generations 

where it could contribute to the development of cancer in muti-cellular eukaryotes.  

 

1.2. Replication process 

1.2.1. Initiation 

In each cell cycle of eukaryote cells, replication initiation events are widely activated along the 

genome. The loci from which replication starts are called replication origins. Although the basic 

replication machineries are very conserve in all eukaryotes, replication initiation mechanisms 

are species-specific for the evolutionary adaptation. For instance, in budding yeast 

Saccharomyces cerevisiae, specific short replicator sequences called autonomously replicating 

sequences (ARSs) represent potential origins and it’s the only eukaryote in which the origin 

recognition complex (ORC) can recognize a clear AT-rich consensus sequence around 17 bp 

named ACS (ARS consensus sequence) for DNA replication 18. However, in metazoans, we 

were not yet able to identify clear ARS since much more origins are activated with more 

variable DNA replicating features.  

During the G1 phase, origins are marked by the formation of a pre-replicative complex (pre-

RC). Its assembly starts with the binding of ORC1-6 to DNA and it is followed by the 

recruitment of cell division control protein 6 (CDC6), chromatin licensing and DNA replication 

factor 1 (CDT1) and the minichromosome maintenance (MCM) helicase double hexamer 

complex, which contains the six subunits MCM2–7 19,20. Pre-RC assembly then “licenses” the 



17 

 

origin for potential activation in the subsequent S 

phase. During initiation, the DNA structure is 

made differentially accessible to the proteins and 

enzymes involved in the replication process. As 

CDT1 is recruited by CDC6 while it is bound to 

MCM2-7 and CDK1 can regulate replication by 

inhibiting MCM loading via phosphorylating 

ORC and activating helicase.  When the levels of 

CDK1arise, CDT1 is degraded therefore MCM2-

7 cannot be recruited anymore at the origins. 

Consequently, MCM loading can only occur 

during G1 phase when CDK activity is low, and 

origins can only fire after G1 phase when CDK 

levels rise. CDKs and DBF4-dependent kinases 

(DDKs) also help to recruit corresponding 

proteins, including CDC45 and GINS, at the 

origin sites to form the CDC45/MCM2–7/GINS 

(CMG) helicase complex to initiate DNA 

unwinding, facilitate formation of the replisome, 

and prime DNA synthesis. MCM10 is another key 

helicase activator, which can strongly bind to the 

CMG complex in S phase for unwinding the DNA 

and recruiting the polymerase α 21. SLD2 and 

SLD3 which are the two key CDK substrates, and 

DPB11 are also recruited for helicase activation 

22–25. Furthermore, three DNA polymerases 

mainly participate in eukaryotic replication: Polymerase α, ε, and δ (Pol α, ε, and δ) 

26. Proliferating Cell Nuclear Antigen (PCNA) is recruited to form a homo-trimeric ring-shaped 

sliding clamp for tethering Pol ε and δ (Fig. 1-2).  

Each helicase unwinds and separates the double DNA helix into two single-stranded DNA. As 

the DNA opens up, Y-shaped structures called replication fork are formed. Replication Protein 

A (RPA) binds to both strands to promote replication fork stabilization and DNA repair 27. 

Since two helicases bind, two replication forks are formed and are extended in both directions 

Figure 1-2. Initiation of eukaryotic DNA replication. 

DNA-loaded DHs are phosphorylated by DDK. 

Phospho-Mcm4 and -Mcm6 are recognized by Sld3, 

which exists in complex with homo-dimeric Sld7 and 

recruits Cdc45 onto MCM. CDK targets Sld3 as well as 

Sld2. Phospho-Sld2 and phospho-Sld3 bind to Dpb11, 

which also binds Pol ε and GINS. Sld2, Dpb11, GINS, 

Pol ε, Sld3/7, and Cdc45 binding to a DH forms the 

preinitiation complex. Release of ADP and binding of 

ATP leads to stable CMG formation, concomitant with 

DH interface disruption and origin DNA untwisting. 

Addition of Mcm10 switches on ATPase-powered DNA 

unwinding by MCM, causing two CMG particles to 

cross their paths, which establishes bidirectional 

replication forks. CDK, cyclin dependent kinase; CMG, 

Cdc45–MCM–GINS; DDK, Dbf4 dependent kinase; 

DH, double hexamer; Mcm, minichromosome 

maintenance; Pol ε,DNApolymerase ε. Figure adapted 

from Costa (2022). 
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as replication proceeds creating a replication bubble and we say a replisome is assembled at the 

replication origin. There are multiple origins of replication on the eukaryotic chromosome, 

which allow replication to occur simultaneously in hundreds to thousands of locations along 

each chromosome. Not all of them are activated in each cell division. When the cells are under 

replicative stress, these backup origins can be licensed by the excess MCM2-7 guarantee the 

whole replication program to be completed 28.  

 

1.2.2. Elongation 

DNA polymerase cannot initiate directly new 

strand synthesis and it only adds new DNA 

nucleotides to the 3′ end of the newly 

synthesized polynucleotide strand. All new 

strands must be initiated by a specialized RNA 

polymerase called primase. Primase initiates 

polynucleotide synthesis and by creating a 

short RNA polynucleotide strand 

complementary to template DNA strand, 

which is called the primer. Once RNA primer 

has been synthesized at the template DNA, 

primase exits, and DNA polymerase extends 

the new strand with nucleotides (A, T, C, or G) 

complementary to the template DNA 26. DNA 

polymerase can only synthesize new strands in 

the 5′ to 3′ direction. Therefore, the two newly 

synthesized strands proceed in opposite 

directions because the template strands at each 

replication fork are complementary, which 

lead to as we called the semi-discontinuous 

mechanism of DNA replication. The “leading 

strand” is synthesized continuously in the same 

direction as the growing replication fork whereas the “lagging strand” is synthesized in the 

direction away from the replication fork. This lagging strand is synthesized fragmentarily and 

therefore has to constantly encounter the previously new synthesized DNA sequences. These 

Figure 1-3. Eukaryotic DNA replication process on both 

DNA strands. Helicase opens DNA double strands. The 

primase creates short RNA primers on DNA to initiate the 

synthesis of the and polymerases. The replication is only in the 

5’-3 direction, the leading strand is replicated continuously and 

the lagging strand in a discontinuous way with formation of 

Okazaki fragments. Figure adapted from Wikipedia 

(https://commons.wikimedia.org/wiki/File:Eukaryotic_DNA_r

eplication.svg). 
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new short pieces, each around 150 nucleotides in length in eukaryotes, are called Okazaki 

fragments and each fragment begins with its own RNA primer 29 (Fig. 1-3). During the fork 

progression, unwinding of the parental double DNA helix by DNA helicases locally generate 

compensatory positive torsional stress that 

can result either supercoiling ahead of the fork 

or pre-catenanes between two replicated 

duplexes behind the fork by interlocking the 

DNA molecules at the fork branch. Positive 

supercoils can be removed in eukaryotes by 

Topoisomerase type IB (TOP1) and type IIA 

(TOP2), furthermore TOP2 is required for the 

chromosomal decatenation, which maintain 

all along the progression of the replication 27. 

 

1.2.3. Termination 

Since pairs of replication forks that assemble 

at thousands of replication origins almost 

simultaneously and then move in opposite 

directions, DNA replication finishes when 

converging replication forks meet. DNA 

synthesis is completed and we therefore called 

replication termination. Once all the template 

nucleotides have been replicated, the 

replication process is not yet over. RNA 

primers need to be replaced with DNA 

nucleotides by proteins FEN1 (flap 

endonuclease 1) and RNase H. The enzymes 

FEN1 and RNase H remove RNA primers at 

the start of each leading strand and at the start 

of each Okazaki fragment, leaving gaps of 

unreplicated template DNA then gaps are 

connected rapidly by ligases. Later in S phase, 

replisomes encounter each other when it 

Figure 1-4. Eukaryotic DNA replication termination. (A) In 

late S phase, forks come too close to each other to allow 

formation of supercoils in the unreplicated DNA, leading to the 

onset of convergence. During convergence, which lasts until 

forks encounter each other, topological stress is relieved by the 

formation of pre-catenanes. An end-on view of CMG illustrates 

the presence of single-stranded DNA in its central channel. (B) 

The encounter causes no detectable fork stalling, implying that 

converging CMGs bypass each other. After bypass, CMG 

helicases keep translocating until they reach a downstream 

Okazaki fragment. (C) The CMG helicases pass over the 

ssDNA–dsDNA junction and keep moving on dsDNA (see end-

on view). (D) The leading strand is extended to the downstream 

Okazaki fragment. The last Okazaki fragment is processed, 

possibly by de novo recruitment of DNA Pol δ and by 3’ flap 

processing by flap endonuclease 1 (FEN1). (E) Once CMG 

encircles dsDNA, it undergoes polyubiquitylation on its MCM7 

subunit by SCFDia2 or CRL2Lrr1. The ubiquitylated MCM7 is 

extracted from chromatin by the ATPase p97. (F) Catenanes are 

removed. Figure adapted from Dewar et al. 2017 
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reaches to DNA template that has already been replicated to lead fork convergence. 

The converging CMG complexes encounter each other on different strands since CMG interact 

mainly with leading strand therefore facilitating bypass without pausing 30. The CMG helicase 

dissociation linked with MCM7 ubiquitylation is the following key event in termination process 

which require the E3 ubiquitin ligase SCFDia2 in yeast (Skp, Cullin, F-box containing complex 

associated with Digs Into Agar 2 [Dia2]) or CRL2Lrr1 (Cullin RING Ligase 2 associated with 

Leucine Rich Repeats 1 [Lrr1]) in vertebrates 30. The other proteins without interaction with 

CGM are eventually removed independently of replication termination. Chromosomal 

decatenation is carried out by TOP2 and the replication process is finally completed (Fig. 1-4). 

 

1.3. Replication timing and relative detection techniques 

Not all the replication origins are fired at the same time during S phase but they follow a strict 

temporal program with each chromosome containing segments that are replicated towards the 

beginning of the S phase (early replicated domains) or the end of it (late replicating domains), 

which is referred to as the replication timing (RT) program 31. RT is conserved among 

eukaryotes but also cell-type specific, and correlated with many epigenomic features. Early 

replicating domains are located in the nuclear interior and they are enriched in active histone 

modifications. Late replicating domains are localized at nuclear and nucleolar periphery and 

are enriched in repressive histone markers 32. Recent research has indicated that the RT program 

represents a very stable epigenetic feature of chromosome: most expressed genes generally 

reside in the early-replicating regions while late-replicating loci are mostly transcription 

silencing, less structured and have elevated mutation rates in the human germ line, in somatic 

cells and also in cancer cells 31,33. Aberrant replication program is associated with changes in 

gene expression, changes in epigenetic modifications and an increased frequency of structural 

rearrangements 33.  

Up to now, the RT profile, describing how to derive information from raw experimental data 

of mammalian cells, now is well developed and can be easily measured. One of the primary 

methodologies is to use nucleotide analogs 5-bromo-2-deoxyuridine (BrdU) to pulse-label 

newly synthesized DNA during S phase. Then BrdU-labeled cells are sorted directly into S or 

G1 phase just based on the copy numbers of DNA by fluorescence-activated cell sorter (FACS). 

Another similar method used the same labeling step but FACS sorted into early and late S-

phase populations based on DNA content of each cell then the labeled DNA is immune-

precipitated with an anti-BrdU antibody (BrdU-IP), and DNA synthesized either early or late 
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is determined by microarray or next generation sequencing (NGS) 34 (Fig.1-5A). After mapping 

to genome, we can calculate the read counts of log2(S/G1) or log2(Searly/Slate) in a defined 

window size to get the primary RT profiles 35. However, based the technical limitation, a high 

ratio of noise background effects the results since the log2 strategy cannot really identify the 

true nascent DNA sequences. Ever since, the higher resolutive and well improved technique is 

Repli-seq to determine the accurate genome-wide replication timing in mammalian cells. 

Starting from E/L Repli-seq 36 which only fractionates the early/late replicating domains to 

multi-fraction Repli-seq using 4-6 fractions of S phase 37–39. The primary RT profiles showed 

us large constant timing regions (CTRs) and timing transition regions (TTRs), the resolution of 

these profiles does not allow us to identify initiations and termination events. RT profiles are 

also cell type specific with characteristic replication patterns that reveal a significant replication 

plasticity covering > 50% of the human genome 37 (Fig. 1-5B,C).  

Figure 1-5. Replication timing profiling. (A) Cell-cycle fractionation of newly synthesized DNA. Exponentially growing 

cells are pulse-labeled with BrdU, stained with DAPI, and sorted into different fractions of the cell cycle according to DNA 

content as shown for this normal lymphoblastoid cell line (LCL). Fractionation is continuous across the cell cycle. Antibody-

purified BrdU-labeled DNA is made into sequencing libraries and sequenced on the Illumina platform, and the sequence tags 

are mapped to the human hg18 reference genome. (B) Comparison of replication timing profiles from four cell types across 

chromosome 4, illustrating unique lineage patterns. Lineage-specific early-replication patterns. Cell-lineage-specific early 

patterns are highlighted in expanded chromosome 4 subregions. The lymphoid-specific CENTD1 gene in the 34.6–37.1 Mb 

region is at the apex of an early-replication peak in the GM06990 LCL, whereas this region is uniformly late-replicating in the 

other three lineages. Similar patterns are seen in the other expanded regions: LPHN3 in the 60.9–63.4 Mb region (hESC-

specific), GYPA-GYPB-GYPE in the 143.8–146.3 Mb region (erythroid-specific), and PDGFC in the 156.7–159.2 region 

(fibroblast-specific). (C) Stereotypical replication timing patterns. Shown are major patterns of DNA replication timing 

observed across the genome, including (i) regions of constant early replication across cell lineages; (ii) regions of constant late 

replication; (iii) regions with cell-specific early replication; (iv) regions with lineage-specific late replication (i.e., one cell type 

late, all others early); and (v) complex patterns that vary considerably between lineages. Adapted from Hansen et al. 2009 
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The most recent Repli-seq extends to single-cell level based on the copy number variation 

(CNV) to try to decipher the replication timing variation in cell-to-cell40. Then it further 

improved the accuracy of RT profiling within 16 S phase fractions and is sensitive enough to 

detect replication initiation zones (IZs), termination regions (TZs), late CTRs and TTRs in 50kb 

resolution in mammalian cells 41. However, to investigate the heterogeneous replication 

initiation mechanism with at least 50% tissue-specific variation RT, many approaches, which 

are more specific to the replication initiation and replication fork progression, are developed in 

recent decades. 

 

1.4. Techniques for replication initiation detection 

• DNA combing 

DNA combing is the first single-molecule method applied to replication origin detection since 

1997 42. It is based on the labeling of newly synthesized DNA by two sequential pulse of 5-

iodo-2’-deoxyuridine (IdU) and 5-Chloro-2’-deoxyuridine (CIdU), two thymidine analogs, in 

an asynchronous cell population. DNA fibers are then stained with YOYO-1 and stretched on 

silanized glasses in pH 5.7 can be visualized by immunofluorescence with a conventional 

optical microscope (Fig. 1-6) 43,44. This is a global method to determine the real spacing of 

origins along DNA. However, it is not suitable to identify a given origin DNA sequence due to 

the lack of corresponding genomic reference and the low probability to specifically target the 

region while the replication fork is passing through the origin.  

In practice, this method can work for sequences that are hundred-fold repeated in the genome 

and is able to reflect the variation of velocity of replication fork progression under different 

conditions. In addition, one limitation that DNA combing is restricted to the DNA length which 

it was not able to get molecules longer than 600-800 kb 18, while it has been overcome and 

successfully extend the combing method into megabase level 45. Although mapping of 

replication origins is more challenging, DNA combing and related fiber assay become now a 

golden standard to study replication fork speed in cells under normal growth or under various 

replication stress. 
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• Nanopore sequencing 

The Nanopore sequencing is a single molecule technology. A DNA filament is pushed through 

a membrane channel and the instrument measures the current passing through it. This current 

changes based on the base composition of the segment crossing the nanopore channel allowing 

to reconstruct the DNA sequence of a certain filament 46.  

Based on Nanopore sequencing, D-NAscent technique (Detecting Nucleotide Analogue signal 

currents on extremely long nanopore traces) was developed. This approach is based on the 

possibility to distinguish between thymidine and BrdU in a DNA molecule. BrdU can therefore 

be used to label newly synthetised DNA in synchronized cells to extract information about the 

active replication origins sites, fork direction, termination sites, and fork pausing/stalling events 

46. Based on this approach, the same authors have developed other two techniques:  Fork-seq, 

which applies the nanopore sequencing in yeast to map the replication in 200 nucleotide 

Figure 1-6. protocol of DNA replication profiling by molecular combing. Cells are proceeding the IdU and 

CIdU labeling then get stained with YOYO1 before DNA combing. Figure adapted from Fu et al. 2022. 
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resolution directly from asynchronous growing cells 7 and NanoForkSpeed, which succeeded 

to map and extract the velocity of individual forks in asynchronously growing cells 47. 

 

• SNS-seq   

As described in the previous chapter, when an origins is activated, it produced short RNA:DNA 

hybrids from which replication can proceed bidirectionally. Such RNA:DNA stretches are 

called short nascent strand (SNS) and they are used by the SNS-seq to map origins of replication.  

To isolate SNS we need to remove from our samples genomic DNA that can be intact or 

fragmented and Okazaki fragment. To remove gDNA and Okazaki fragment we run the samples 

on sucrose gradient gels and extract from the gel fragments between 0.5-2.5 kb (gDNA is much 

longer than 2.5kb and Okazaki fragment are usually 150-200 bp long). The recovered fraction 

still contains SNS and fragments of broken gDNA. To get rid of the latter, samples are treated 

with an excess of λ-exonuclease, a 5’->3’ DNA specific exonuclease that will digest the broken 

gDNA but not the SNS that are protected in position 5’ by an RNA primer 48–50. Another 

alternative protocol is to incorporate BrdU to label the nascent DNA and size-fractionate to get 

the BrdU-labeled SNS following by BrdU-immunoprecipitation (BrdU-IP) 51. 

Although SNS-seq should provide a high-resolutive replication initiation mapping, there is 

always a debate about the delicate step of purification of SNS, which needs to precisely control 

the size-fractionation to exclude the background DNA sequences and Okazaki fragments. 

Besides, the two methods all have concerns which the λ-exonuclease needs to be well controlled 

and BrdU-labeled method may generate short DNA sequences by breakage mixed with the real 

SNS. Moreover, this technique, because of its nature, is limited to the identification of very 

efficient, well localized origins of replication. 

 

• Bubble-trap (Bubble-seq)  

Once the replication initiates, DNA helicase unwinds the DNA double helix and form transient   

bubble-shaped structure centered around an origin of replication. Bubble-seq (Bubble-trap) is 

devised for isolating these circular DNA fragments that contain replication initiation sites 

(bubbles) by following steps: DNA is digest using the restriction enzyme EcoRI. Depending on 

relative position of a replication fork and a EcoRI recognition sequence fragment can have 

different shapes: linear, Y-shaped (replication forks) and O-shaped (replication bubble 
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containing the two divergent forks) and the other non-DNA materials 52. Fragments are then 

separated by electrophoresis on an agarose gel. Since the migration in native condition is 

influenced by the shape of the fragment, linear sequences are the fastest to pass through the 

agarose gel, followed by Y-shaped ones while the replication bubbles have relatively the 

slowest speed and after a long electrophoresis are the only ones still present in the gel. Captured 

bubbles can then be recovered and used to make libraries (Fig. 1-7) 35,53. Bubble-seq can detect 

both efficient and inefficient origins with larger initiation size, which make less overlapped (< 

45%) with the initiation sites that SNS-seq detected 50. Besides, the purification of the real 

replication bubbles still needs to be improved since some larger-size Y-shaped fragments can 

also mix into the final filtration with bubbles. 

 

Figure 1-7. Schema of Bubble-trap protocol. Details shown in the figure. Figure adapted from D. Gilbert 2010 
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• OK-seq 

Since Okazaki fragments (discontinuous short nascent fragments) are only generated on lagging 

strand during DNA synthesis, it provides a proper way to get the replication direction 

information and the initiation loci. The enrichment of Okazaki fragments for direct sequencing 

was first achieved in S. cerevisiae through ligase and checkpoint inactivation in 2012 54. Then 

OK-seq is well established to quantify the replication fork directionality (RFD) and accurate 

initiation and termination zones genome wide in mammalian cells 12. Nascent DNA sequences 

are labelled by EdU then fractionated into pieces. Since the average size of RNA-primed 

Okazaki fragments are around 150-200 bp, Only the sequences that are less than 200 

nucleotides are selected. To isolate the EdU-labeled replicated DNA from the RNA sequences 

and the short DNA sequences generated from the size-fraction step, EdU is coupled with biotin 

in click reaction. The biotinylated fragments are captured by streptavidin before PCR 

amplification and sequencing (Fig. 1-8).  

 Okazaki fragments mapping to the Watson (+) and Crick (-) strands are generated by leftward- 

(L) and rightward- (R) moving forks, respectively can be normalized to 𝑅𝐹𝐷 = (𝐶 − 𝑊)/(𝐶 +

𝑊) to get RFD profile (Fig. 1-9A), and the genomic zone associated with a positive slope is 

considered as replication initiation zone (IZ) since the fork direction of two sides is divergent 

(Fig. 1-9B), while the genomic zone associated with a negative slope is referred to as 

termination zone (TZ) since the fork direction of two sides is convergent (Fig. 1-9C). The 

corresponding amplitude indicates the fire efficiency of each IZ/TZ in cell population level. 

With the bioinformatic method I developed, more than 10, 000 IZs can be identified with an 

average length of 20-30 kb for human cells. The concrete bioinformatics analysis is described 

in Chapter 2 OKseqHMM.  

Figure 1-8. OK-seq protocol. Cells are pulsed with EdU labeling then size- fractionated to pick fragments with less than 

200 bp. All the DNA fragments are proceeded with biotinylation and captured the nascent DNAs on Streptavidin beads 

following by sequencing. Figure adapted from Petryk et al 2016. 
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OK-seq is therefore a unique method to detect the replication initiation events by targeting the 

center of two divergent Okazaki fragments movement. However, OK-seq also exists its own 

limitations. As any cell population method, OK-seq averages the cell-to-cell variability. Like 

most of replication-related technology, OK-seq requires an enormous amount of starting 

material to have enough cells in S phase since the half-life of Okazaki fragments is very short 

e.g., GM06990 cells required 8-10 × 108 cells per biological replicate 12. The initiation events 

detection method based on the RFD transition profiles could also be an issue since not all of 

the IZs are efficient enough to generate a positive slope of RFD, such like the late replicating 

regions with much more random initiation origins firing, which make the flatter RFD profile 

and are finally ignored by the detection. 

Please check details with the fork direction information in the next session 1.5. 

 

• ORC/MCM ChIP-seq 

During G1 phase, cells start recruiting the ORC, CDC6, CDT1 and MCM2-7 to form the pre-

replication complex to license the origins or initiate the DNA replication in S phase. Therefore, 

the distribution of ORC/MCM can also effectively reflect the potential replication initiation 

events in a whole genome scale. Since there are excessive MCMs recruited before the 

replication initiation, targeting MCM could detect both efficient active replication origins and 

the dormant or less efficient origins. Researchers have been working on this to identify these 

replication initiators from yeast to high eukaryotic cells and confirmed the colocalization of 

MCM and ORC especially in budding yeast. Hence, basically using the anti-ORC and anti-

MCM antibodies then ChIP-chip (Chromatin immunoprecipitation-microarray) or ChIP-seq 

Figure 1-9. Schema of computing RFD mapped from OK-seq. C: Crick strand; W: Watson strand. Figure adapted from 

Petryk et al. 2016. 
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(Chromatin immunoprecipitation-sequencing) 55 to obtain the ORC-/MCM- binding sites 35,56. 

These sites are then compared with other technologies such as SNS-seq, OK-seq and Repli-seq 

to classify the active initiation sites and dormant origins. A recent evidence also confirmed that 

ORCs/MCMs are abundantly enriched at gene promoters/enhancers and more in early 

replicating domains but they don’t have an obvious role into the regulation of replication 

initiation firing probability in human cells 57. Nevertheless, since the replication initiation event 

is well agreed with a stochastic firing mechanism, the initiation could occur a bit distantly from 

the ORC binding sites. And ORC/MCM sites have less sequence specificity in human cells, 

which means it might bind to different sites in different cells 35. In addition, the detection of 

both active origins and dormant ones is a strength of technique without doubt, but it’s also a 

limitation since there is no functional method to directly distinguish the two clusters to date.  

 

• EdU-seq-HU 

BrdU and EdU are the widest used thymidine analogs to label nascent DNA sequences in most 

of the initiation detection technologies. Low concentration of EdU is sufficient and easier to 

obtain the incorporation signals with nascent DNAs since it can be detected in double-stranded 

DNA and the corresponding fluorescent label is small permeable molecule to access the DNA 

with usage of antibody compared with BrdU which can be only detected in single-stranded 

DNA condition 58. EdU is however toxic to cells to potentially arrest the cell cycle and have to 

proceed the labeling procedure more than one cell cycle. Hydroxyurea (HU) is normally treated 

to cells to slow down the fork progression with a low concentration and it eventually facilitates 

the EdU-incorporation. EdU-seq-HU method is therefore come out to detect the early 

replication initiation events. Cells are firstly synchronized in entry of S phase by flow cytometry 

then are released in EdU and HU contained medium, followed by the biotin click and 

streptavidin capture to obtain the EdU-bind nascent DNA sequences 59. This method restricts 

on the very early stage of S phase with synchronized cell population for which the detection of 

origins is quite limited. Besides, cell synchronization and the treatment of EdU and HU also 

make the procedure more complexed and more potential to get cells contaminated. 

 

• Ini-seq   

Alternatively, ini-seq is another independent sequencing technique to map the human DNA 

replication origins in genome-wide.  Cells are firstly synchronized in late G1 phase of which 
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the replication is initiated by a cell-free DNA replication initiation assay and 

incorporating digoxigenin-11-dUTP for 15 minutes incubation. The newly replicated DNA 

labeled with digoxigenin-11-dUTP are sheared by sonication into 100-1000 bp fragments 

following by immunoprecipitation, PCR and sequencing (Fig. 1-10) 60. More than 25,000 

discrete replication origins are identified by this method with a reasonable consistent with other 

technologies like SNS-seq and OK-seq. The cell-free system used in this method truly 

facilitated the nascent DNA labeling step but the incubation of this specific nucleotide analog 

dUTP might potentially impact the results or decrease the resolution of mapping.  

 

 

Figure 1-10. Schema of ini-seq to get the replication initiation sites. Figure adapted from Langley et al. 2016 
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• ORM (2021)  

As mentioned above, almost every technique has its own advantages and disadvantages. To 

date, more and more novel techniques in single-molecule or single-cell level have been 

developed to optimize the detection of initiation sites and relative replication firing time. 

Optical Replication Mapping (ORM) single-molecule technique using Bionano high-

throughput imaging approach is well established to investigate both spatial and temporal 

distribution of replication origins by mapping the long individual DNA molecules 61. Cells are 

synchronized at G1/S transition using Aphidicolin, then labeling newly synthetized DNA is 

labeled with Aminoallyl-dUTP-ATTO-647N (a red fluorophore) at different timepoints after 

release in S-phase (5, 10, 20, 30, 45, 60, or 90 minutes) to observe the movement of the 

replication forks through ORM signals at the different time points after S phase entrance.  

To identify the genomic position of a fork, ORM relies on the mapping approach of the bionano 

system that is based on the labeling with a green fluorophore of recurrent sequences in order to 

create unique spatial patterns such as NLRS (Nick, Label, Repair, and Stains) or DLS (Direct 

Label and Stain) and the DNA fibers are maked in blue. DNA samples are then loaded on the 

Saphyr chip where they are stretched inside nanochannel arrays through electrophoresis. DNA 

fibers can finally be accurately measured by Bionano imaging method (Fig. 1-11A) 61.   

This technique generates more than 27 million DNA fibers with average length of 300 kb 

allowing identifying the early initiation sites and corresponding firing probability with high 

accuracy. By comparing with different origin-detecting methods, ORM replication tracks 

correlate better with Ini-seq (r = 0.59), followed with OK-seq (r = 0.49), less well with SNS-

seq and Orc1 ChIP-seq (Fig. 1-11B). Their results also confirmed that the replication initiation 

is a stochastic mechanism conserved from yeast to humans. Besides that, ORM can map the 

ongoing replication fork direction in asynchronous cells, which is well corelated with the RFD 

profiles of OK-seq 61. However, ORM also has their own technical limitations on the choice of 

thymidine analogs for the nucleoside-labeling step since neither BrdU nor EdU are compatible 

with Bionano technique. 
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1.5. Detection of replication fork direction techniques 

• N-domains/nucleotide composition skew 

In prokaryote genomes, replication related DNA strand asymmetry patterns (i.e., G ≠ C and T 

≠ A then we called TA and GC skews) or nucleotide compositional asymmetries, which are 

gradually formed along the genomic mutation events in long-term evolution, are discovered 

and established. It brings an original concept to detect not only the origins, but also arise a 

challenge to be able to capture the replication fork orientation genome-wide 62–65.  

TA skew of a defined window (i.e., 1kb) is calculated as 𝑆𝑇𝐴 = (𝑇 − 𝐴)/(𝑇 + 𝐴) and GC skew 

as 𝑆𝐺𝐶 = (𝐺 − 𝐶)/(𝐺 + 𝐶), and the total skew as 𝑆 = 𝑆𝑇𝐴 + 𝑆𝐺𝐶 59. The genome-wide analysis 

of these skew profiles along the human genome brought to the identification of N-shape 

domains (termed N-domains) that correspond to a cascade of replication origins initiated at 

Figure 1-11. DNA fibers detected by ORM and comparison among different techniques. (A). Image of the Bionano data 

with DNA in blue, Nt.BspQI (NLRS motif) restriction sites in green, and incorporated fluo-dUTP-labeled early firing sequences 

in red. The field of view is 750 kb. (B) Comparison of ORM tracks, ORM IZs, OK-seq RFD, OK-seq IZs, SNS-seq, Ini-seq 

and ORC1 ChIP-seq at the TOP1 site. Figure adapted from Wang et al. 2021. 
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highly efficient initiation zones locate at the borders (Fig. 1-11A, the vertical black lines) and 

the replication transition between two neighbor origins resulting in N-shape reflecting the mean 

replication fork direction, which are perfectly matched with the U-shape domains derived from 

replication timing profiles (Fig. 1-11B) 64,65. The overlap between the borders of N-domains 

and the peaks of replication timing profiles also validated the hypothesis that these borders 

zones termed S-jumps (sharp positive slopes mathematically) are associated with replication 

initiation zones 64. The discovery of nucleotide compositional skew concept fundamentally 

inspired the whole replication research field for developing techniques to detect the replication 

origins and fork orientation information.  

 

 

Figure 1-11.  Compositional skew and replication timing profiles. (A) Skew profiles S = STA + SGC calculated in 1-kb 

windows of the repeat-masked sequence. Horizontal black lines mark the replication N-domains. Vertical lines mark the 

corresponding putative replication initiation zones. Black, intergenic regions; red, sense (+) genes; blue, antisense (−) genes. 

(B) Mean replication timing determined in BG02 ESC (green), K562 (red) and GM06990 (blue) cell lines. Figure adapted from 

Hyrien et al. 2013. 
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• PU-seq 

DNA Polymerases are recruited differently on the two replication strands: Pol α-primase 

initiates replication then is rapidly replaced by elongation Pol ε on the leading strand and Pol δ 

on lagging strand. Polymerase usage sequencing (PU-seq, also known as HydEn-seq 66) has 

been developed firstly in yeast to determine the distribution of embedded nucleotides that can 

be able to detect, not only the replication origins sites, but also the origin firing efficiency, 

estimation of replication timing and termination information, as well as the fork progression 

direction 6. Ribonucleotides are alkali-labile so that it can cause strand fragmentation under 

alkali treatment. To map the polymerase usage, two polymerase mutations are generated 

respectively in RnaseH2-deficient (RnaseH2 is the main ribonuclease to remove ribonucleotide 

from duplex DNA by ribonucleotide excision repair) cells with alkali treatment: cdc20-M630F 

(Pol ε) and cdc6-L591G (Pol δ) following by sequencing. The relative ratio of read counts 

from Pol ε and Pol δ datasets was calculated to provide the frequency of both of polymerases 

used on Watson and Crick strand and direct measure of the proportion of replication fork 

movement leftward and right ward across the genome 6. Therefore, the transition of polymerase 

usage is able to determine the initiation sites, termination sites and also the RFD. Meanwhile 

the sharpest changes of ratios reflect the most efficient origins. Recent updated Pu-seq 

technique is successfully extended to human cells 67. 

 

• OK-seq 

Following by the same concept as N-domain theory above-mentioned, OK-seq is established to 

provide the efficiency of origin usage, replication fork progression and termination information 

which fully extend the dimension of the initiation detection approache. Protocol and brief data 

analysis already mentioned in the previous session 1.4. 

By calculating the read counts of Okazaki fragments on Watson and Crick strand respectively 

into RFD profile (normalised range from -1 to 1), it directly demonstrates the replication fork 

direction, initiation zones (IZs, positive slopes) and termination information (negative slopes) 

with corresponding efficiency of origins usage (sharpness or amplitude for each slope) across 

the whole genome (Fig. 1-12). 

OK-seq is the first full-scale and well-developed technique to delineate the high-resolutive 

human replication fork direction landscape in genome-wide with at least 10,000 accurate 

IZs/TZs are detected with corresponding origin usage efficiency by directly sequencing 
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Okazaki fragments to ensure to get the true fork movement information compared with the 

other techniques. With the complete bio-informatic pipeline that I developed, to date we can 

optimise the data analysis up to 1 kb high resolution in human and even up to 500 bp resolution 

in yeast. Details of the tool performance are described in Chapter 2. The abundant replication-

related information contained by OK-seq provides an indispensable source to study the DNA 

replication and genomic instability research.  

  

• GLOE-seq 

The GLOE-seq method is based on genome-wide ligation of 3’-hydroxy (OH) ends followed 

by sequencing, which maps single-strand breaks (SSB) in a strand-specific manner, to reveal 

the distribution of spontaneous SSBs that are distinct from double-strand breaks (DSB) patterns. 

Besides, it can also map Okazaki fragments escaping the size selection step in OK-seq to 

provide fine-resolution RFD profiles in yeast and human cells 8.  

 Genomic DNA sequences isolated from around 

million cells are embedded in agarose. The first 

step consists in the heat-denaturation of the 

samples that brings to the formation of ssDNA 

with/without SSB containing an available 3’-OH. 

A biotinylated adaptor is then ligated to the 

exposed 3’-OH. Samples are then sonicated to 

obtain fragments of 200nt. Biotinylated ssDNA 

fragments can then be captured using streptavidin 

Figure 1-12. Replication fork direction obtained by OK-seq. C: Crick strand (red). W: Watson strand (blue). RFD profile 

calculated in 1kb adjacent binsize. S50: replication timing profile. Red arrows: early replication peaks with S50 < 0.5. Profiles 

are captured in chromosome 2 of GM06990 cell line. Figure adapted from Petryk et al. 2016. 

Figure 1-13. GLOE-seq workflow. green dots: 

ligatable 3'-OH terminus; red dots: biotin. Figure adapted 

from Sriramachandran et al 2020. 
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beads. Using a primer complementary to the biotinylated adaptor the 2nd strand of each ssDNA 

is synthesized with blunt end and a distal adaptor ligation reaction. Libraries are then amplified 

and sequenced (Fig. 1-13) 8.  

This technology can detect Okazaki fragments as well and it has been used on human cells. To 

this purpose the experiment is performed in a depletion of ligase 1 and 3 depleted background, 

therefore impairing the ligation of adjacent fragments 8. 

GLOE-seq, as any method for mapping SSBs, has high background and the the signal-to-noise 

ratio needs to be imporved in the future.  Compared to OK-seq, GLOE-seq truly uses a reduced 

input cell number (~ 700,000 human cells) and avoids the size selection and analog labelling 

step, however, it requires replicative ligases inactivation which might be a potential issue to 

ensure whether the ligation is delicately inhibited and could lead to potential DNA damage 

response that disturb the investigation. 

 

• TrAEL-seq 

Like GLOE-seq, Transferase-Activated End Ligation sequencing (TrAEL-seq) is an alternative 

technique to map DNA 3’ ends at double-strand breaks (DSBs) undergoing the DNA resection 

and indirectly provides RFD information in yeast and human cells.  

Basically, agarose-embedded genomic DNAs are incorporated with a terminal 

deoxynucleotidyl transferase (TdT) that can add 1 to 4 adenosine nucleotides onto single-

stranded DNA 3’ends, forming a substrate for DNA adaptor ligation by RNA ligases. Two 

TrAEL-seq adaptors are constructed: adaptor 1 is a hairpin to convert single-stranded ligation 

products into double-stranded DNA incorporated with biotin for the further purification. Once 

the adaptor 1 is ligated, a thermophilic polymerase with strong strand displacement and reverse 

transcriptase activities (e.g., Bst2.0 polymerase) extends the hairpin to form unnicked double-

stranded DNA, following by sonication into fragments and the biotinylated adaptor-ligated 

fragments are purified on streptavidin beads. During fragmentation, DNA ends are generated 

and are ligated to adaptor 2. Both of adaptors are cleaved before the library amplification and 

sequencing (Fig. 1-14) 11. 
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TrAEL-seq not only accurately mapped the DSBs in genome 

wide, but also detected the stalled replication forks at 

replication fork barrier sites of yeast and human by targeting 

the fork reversal events or the potential cleavage of DNA for 

the replication restart. By calculating the read polarity in 

asynchronous wild-type cells detected by TrAEL-seq, a 

significant strand bias is observed and highly corelated to the 

detected Okazaki fragments distribution indicated that 

TrAEL-seq can also detect the replication fork progression. 

Indeed, TrAEL-seq that avoids the pulse-label incorporation 

and needs fewer cells (less than million human ES cells) to 

generate a high-quality RFD profile compared to OK-seq, 

surely provides an encouraging alternative method to study 

DNA replication and genomic instability in different cell 

types within various stress conditions. Nevertheless, based on 

our comparison, performance in yeast of TrAEL-seq is high-

resolutive but still need to be improved in human cells (see 

Chapter 2-2.3 for more detail). 

 

• eSPAN  

Recently, some new methods developed meant to reduce the quantity of starting materials and 

to detect the relevant protein-associated initiation, for instance, checking the relative epigenetic 

modification during DNA replication. eSPAN (enrichment and sequencing protein-associated 

nascent DNA) performs stranded sequencing of BrdU or EdU labelled nascent replicated DNA 

associated with specific histone modifications 10,68. The original protocol was to ChIP the 

protein of interest then following by the capture of BrdU-labeled nascent DNA 68. Then the 

latest updated version of eSPAN method in mouse cells was using modified CUT&Tag/ACT-

seq, a recently developed technique to digest and tag genomic DNA bound by proteins of 

interest (e.g. H4K20me2, H4K12ac, POLE3/4 ) using protein A-fused transposase Tn5 (pA-

Tn5), followed by enrichment of nascent DNA using BrdU-IP (Fig. 1-15) 10. Using this eSPAN 

method, it successfully profiles histone distributions at leading or lagging strands with much 

fewer starting cells with around 106 for mouse embryonic stem cells (mESCs) and even lower 

Figure 1-14. TrAEL-seq workflow. 

Figure adapted from Neesha et al. 2021. 
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to 50,000 cells for H4K20me2 10. Nevertheless, the resolution of mapping is consequently 

decreased due to the reduction of starting cells. 

 

• SCAR-seq  

SCAR-seq (sister chromatids after replication by DNA sequencing) is a method that uses a 

similar principle to eSPAN. At the latter it also investigates the histone modification during 

DNA replication by tracking H4K20me2 or H4K5ac 9. Cells were labeled with EdU, and 

nascent mononucleosomes carrying H4K20me2 or H4K5ac are immunoprecipitated. EdU is 

coupled with biotin though click reaction and streptavidin beads are used to recover the newly 

synthetized DNA. Captured fragment are denaturated to separated parental and the new strand.  

Strand-specific sequencing is performed and the genome-wide sister chromatid histone 

proportion can be calculated as: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 = (𝐹 − 𝑅)/(𝐹 + 𝑅) which F is the reads counts of 

forward strand and R refers to the reverse strand in a defined genomic binsize (Fig. 1-16). 

MCM2-2A mutants with disruption of histone binding are also generated by gene editing for 

the comparison with wild type. It revealed that MCM2 mutant defective in histone binding in 

mouse ES cells also show defects in the transfer of modified parental histones, indicating a 

conserved role of MCM2 in parental histone transfer 9. 

 

Figure 1-15. Graphic diagram of eSPAN. Figure adapted from Li et al 2020. 

Figure 1-16. Schematic protocol of SCAR-seq. Partition of old and new histones is calculated as the proportion of forward 

(F) (red) and reverse (R) (blue) counts in genomic windows [the range is between −1 (100% reverse strand) and 1 (100% 

forward strand)]. Figure adapted from Petryk et al 2018. 
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2. Coordination between DNA replication and transcription 

2.1. Gene transcription 

The simultaneous expression of thousands of genes in the nucleus of the eukaryote cells is a 

strongly controlled process. Transcription is the first step in gene expression, in which genetic 

information is used to generate a functional product such as a protein. The goal of transcription 

is to make an RNA copy of a gene's DNA sequence. For a protein-coding gene, the RNA copy, 

or transcript, carries the information needed to build a polypeptide (protein). Eukaryotic 

transcripts need to go through some processing steps before translation into proteins. The main 

enzyme involved in transcription is the RNA polymerase, which uses a single-stranded DNA 

template to synthesize a complementary strand of RNA. Specifically, RNA polymerase builds 

an RNA strand in the 5’ to 3’ direction, adding each new nucleotide to the 3’ end of the strand. 

The three main ones are Pol I, Pol II and Pol III. Each is responsible for the expression of 

specific transcripts. Pol I is active in the transcription of ribosomal RNAs (rRNA), Pol II of 

messengers RNA (mRNA) and certain non-coding RNAs (ncRNA), and Pol III of tRNA, rRNA 

and small non-coding RNAs. 

Gene transcription, similarly to DNA replication, also takes place in three stages: initiation, 

elongation, and termination. To initiate the transcription, RNA pol II binds to a CpG-rich 

sequence of DNA called the core promoter, 35-40 bp upstream and downstream of the 

transcription start site (TSS). The most important core promoter element is the TATA box that 

5-20% occupies in mammalian and serves as specific binding site for general transcription 

factors including the pol II and TFIID complex (TBP, TATA-box binding protein) 69. Other 

promoter motifs Inr (initiation element, direct initiation even without TATA box), 

DPE (downstream promoter element) serve for a wide variety of regulatory factors that control 

the expression of individual genes.  

Once recruited on DNA, the RNA polymerase proceeds melting the double helix to provide a 

single-stranded template needed for transcription. As it "reads" this template one base at a time, 

the polymerase builds an RNA molecule out of complementary nucleotides, making a chain 

that grows from 5' to 3'. The RNA transcript carries the same information as the non-template 

(coding) strand of DNA, but it contains the base uracil (U) instead of thymine (T). Once the 

RNA transcript is complete by terminators sequences, they release the transcript from the RNA 

polymerase. In bacteria, RNA transcripts can act directly as messenger RNAs (mRNAs).  
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However, in eukaryotes, this process is much more complicated. The transcript of a protein-

coding gene is called a pre-mRNA and must have their ends modified, by addition of a 5' cap 

(at the beginning) and 3' poly-A tail (at the end). Furthermore, many eukaryotic genes are 

interspersed with non-coding sequences called introns. Such sequences are transcribed in the   

pre-mRNAs but they have to be removed during the RNA maturation. This process is called 

splicing and can be performed either by a ribonucleoprotein complex called spliceosome or by 

intron self-catalytic activity. The gene coding parts (called exons) so joined will form a mature 

mRNA (Fig. 1-17), which is then exported through nuclear pores to cytoplasm were it can be 

translated by  ribosomes 70. Some genes can be alternatively spliced, leading to the production 

of different mature mRNA molecules from the same initial transcript 71. Then RNAP II is 

paused by recruiting terminators and eventually terminates the transcription with the pre-

mRNA cleavage and polyadenylation. 

An aberrant transcription termination can disrupt coordination of replication and transcription 

either by affecting origin firing and/or fork progression, or caused by changing the length of 

the cell cycle phases (shorter G1, longer S phase), resulting in genomic loci being transcribed 

and replicated simultaneously, leading to potential collision between these two processes and 

then induce the genome instability 72. 

 

Figure 1-17. Transcription in eucaryotes. Splicing factors are recruited cotranscriptionally to the intron with the help of the 

RNAPII carboxy-terminal domain. Spliceosomal assembly on the splice sites can facilitate the stabilization of general 

transcription factors (GTFs) at the promoter region of the gene and prime nucleosomes with activation marks (H3-K9 

acetylation and H3-K4 trimethylation) for initiation. The splicing factors can also interact with transcription elongation factors 

and influence nucleosome modifications (H3-K36 trimethylation) to promote elongation. Similarly, splicing factors can 

contribute to enhanced termination of transcription by facilitating the recruitment of termination factors and removal of 

elongation marks that block effective termination. Adapted from Dwyer et al. 2021 
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2.2. Conflict between replication and transcription  

During replication, forks encounter a variety of protein complexes that are acting onto DNA, 

such as the transcriptional machinery. In fact, transcriptional complexes are constantly traveling 

a large part of the genome. On one hand, this has a positive impact on genome stability since 

allows to quickly detect DNA lesions and to repair it by a mechanism, called DNA repair, 

coupled with transcription that can occur across the cell cycle, even in S-phase when actively 

transcribed loci still need to be efficiently duplicated. On the other hand, during the phase S, 

the transcription complexes represent a hidden threat to replication by causing potential 

collisions with replisomes, particular in gene-dense regions, which constitutes a major source 

of endogenous replicative stress leading to genomic instability 63. Another major risk comes 

from extremely long genes, whose transcription takes more than one cell cycle, on these loci, 

the encounter of the replication and transcription machinery is unavoidable. Some of these 

genes are at common fragile sites (CFSs), loci that replicate late in S phase and are hotspots for 

chromosomal instability 73. Transcription-replication conflicts (TRCs) can occur either co-

directional (CD) where the replication fork progress in the same direction as transcription or 

head-on (HO) where the two machineries converge (Fig. 1-18). There are strong evidences 

revealing that the latter is much more detrimental for  genome stability 3,74. Indeed, replication 

forks are fragile structures, the blocking of which can induce DNA double-strand breaks (DSB) 

of DNA and chromosomal rearrangements contributing to the appearance of tumors. 

Figure 1-18. Transcription-replication conflicts. The replication-transcription conflict can occur in a co-directional or a 

head-on manner. Also, the replication fork could encounter the three-stranded nucleic acid structures: R-loops, which could 

cause the replication fork stalling. Figure adapted from Hamperl et al. 2016 
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To avoid these conflicts, various mechanisms have been put in place during evolution. In 

bacteria, which has a circular chromosome and a single replication origin, the transcription of 

the majority of genes is oriented in a co-directional way with replication 74. Eukaryotic cells 

adopt similar mechanism and most genes are replicated codirectionally with transcription 75. 

This organization of the genome makes it possible to reduce the frequency of head-on collisions, 

which are particularly deleterious 76. Though, in eukaryotes the situation is more complex 

because the genome is organized in several linear chromosomes, each carrying a large number 

of replication origins. Not all of these origins are effective and the direction of replication of a 

given region can vary from one cell to another within cell population 12. For instance, some 

long genes that replicate late in S phase can cover with some chromosomal instability loci and 

some highly transcribed short genes are likely close to early replication origins which are called 

early replicating fragile sites, which makes conflicts with the inevitable transcription process 3.  

 

3. R-loop 

Under endogenous or exogenous stress, triplex structures of RNA:DNA hybrids, that are 

normally transient, can be stabilized leading to pathological outcomes. These hybrids are called 

R-loops and it is becoming clear that they are important determinants for genome stability 

during replication 3. 

 

3.1. R-loop discovery and double-edged functions 

R-loops are three-stranded structure preferentially formed in G-rich regions of transcribed 

genes. They are DNA-RNA hybrid with a displaced non-template DNA strand whose length 

can span from 200 bp to several kilobases. The first R-loop structure was discovered in 1976 

using in vitro electron microscopy 77. In the following years, R-loops were identified  in bacteria 

and other organisms 78. Since 2003, year in which the Human Genome Project was completed, 

we have been able to map R-loops on the human genome and infer their functions (Fig. 1-19).  

In physiological conditions, R-loops are involved in the immunoglobulin class switch 

recombination mechanism of stimulated B cells 79.  R-loops are as well enriched at both TSS 

and TTS of highly transcribed genes where they regulate the nearby epigenetic landscape and 

gene expression 80. For instance, on promoters containing CpG island (CGIs), the presentence 

of an R-loops prevent the deposition of de novo methylation keeping these functional elements 
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active 81. Moreover, R-loop localized at promoters can serve as  recruitment platforms to recruit 

histone modifiers 4.  

While R-loops formed on promoters may either stimulate or repress transcription, those formed 

at the 3’ end of gene ensure an efficient and regulated termination of transcription (ref). When 

RNA Pol II elongates near to the downstream of gene poly(A) regions where are G-rich pause 

sites, the formation of an R-loops causes the Pol II to pause, then helicase Senataxin (SETX) is 

recruited to resolve them allowing exonuclease XRN2 to cleave poly(A) sites and so that 

terminate transcription 82.  

R-loops are also detected in mitochondria, where the replication occurs on a circular template 

in a strand-asynchronous fashion. Here R-loops serve as primer for replicative DNA 

polymerase and prevent transcription during replication progress 83. Another beneficial function 

of R-loops is to promote a faithful chromosome segregation in mitosis. Centromeric R-loop 

formation can be coated with RPA to activate the ataxia telangiectasia mutated and Rad3-

related (ATR) kinase leading to Aurora B activation, which is necessary for accurate 

chromosome segregation 84.  

 In spite of these positive functions, it is also evident that R-loops can be a detrimental source 

of DNA damage, particular in S phase, that can lead to genomic instability 85,86. This is the case 

of the R-loop that form at the site of HO TRCs causes DNA damage at collision sites, especially 

in pathological conditions such as perturbations in BRCA1/BRCA2 pathways or in absence of 

resolutive factors such as SETX or RNH where the persistent R-loop might become barrier to 

hinder DNA resection leading to chromosomal rearrangements 87. Therefore, R-loops need to 

be tightly regulated in cells to maintain their functional features and to prevent the toxic R-loop 

accumulation that may lead to human diseases.  

Figure 1-19. The timeline of R-loop research. EM: electron microscopy. Figure adapted from Groh et al. 2014 
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3.2.  R-loop prevention and degradation  

Programmed R-loops facilitate the regulation of gene expression, but their unscheduled 

presence could become a deleterious source of replication stress if they are not resolved 

efficiently. In recent years the pathways involved in regulation of R-loop accumulation have 

been unveiled in eukaryotes (Fig. 1-20):  

i) The most efficient enzymes are ribonucleases including all types of RNases H (H1 

and H2) that bind DNA-RNA hybrids and degrade the RNA. Of these, RNase H1 is 

particularly important and its over expression  has been shown to repress R-loops 

induced replication stress 88.  Other players are the endonucleases of the nucleotide 

excision repair (NER), e.g., XRN2, XPF, XPG, FEN1, that can directly resect the 

DNA-RNA hybrid;  

ii)  Helicases in human, such as SETX, Fanconi anemia group M protein (FANCM), 

Bloom Syndrome RecQ Like Helicase (BLM), DEAD-Box Helicase DDX family 

(DDX1/5/19/21/23), AQR and so on,  can unwind the R-loops in different processes 

2,89  

iii) Topoisomerases 1 and 2A are indispensable to suppress the R-loop formation by 

release the supercoiling stress 87; 

iv) Recent studies have found that RNA methyltransferases METTL3 or TRDMT1 can 

modulate the RNA:DNA hybrids at double strand breaks sites by forming the 

METTL3-m6A-YTHDC1 axis 90.  

v) Based on different biological processes in which R-loops are involved, DNA 

repair/recombination factors such as BRCA1/2, FANCD2, the chromatin modifiers, 

transcription termination factors and also the RNA processing factors such as the 

splicing factor ASF/SRSF1, can also participate the R-loop degradation 89. 
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3.3.  R-loop-dependent genomic instability 

3.3.1. TRC-induced R-loops, replication fork stalling and restart 

 More and more approaches to date revealed that, besides all their beneficial features, R-loops 

may consider as threats to the genomic integrity. The abnormal regulatory factors increase R-

loop accumulation. When they cannot be resolved efficiently, it could cause R-loop-dependent 

genomic instability in eukaryotic cells 87.  Strong evidences suggest that collisions between 

replication and transcription machinery, especially head-on collision, might stabilize the 

formation of R-loops and causing the replication fork to stall and possibly leading to DNA 

damage 3. As mentioned in the previous session, TRC can either occur in co-direction (CD) or 

head-on (HO) manner. Cimprich and colleagues found an increase of R-loops colocalized with 

stalled replication forks in HO collisions while a decrease level of R-loops is observed in CD 

collisions indicating that different types of TRCs may lead to distinct regulating pathways 3.  

During DNA replication, when the forks encounter transcription machinery in an HO way, the 

polymerases might have to pause the progression either within a direct converging conflict or 

an increased positive supercoiling stress between the two machineries. Stable R-loops are 

formed and the increasing torsional stress may fold the G-rich sequences into G-quadruplex 

Figure 1-20. Factors that prevent and resolve R-loops. Factors that prevent the formation of R-loops or play a role in their 

resolution. The black line is parental DNA, blue lines are daughter DNA, and RNA is red lines. The stacked structure on the 

ssDNA strand of the R-loop represents a G-quadruplex. Figure adapted from Brickner et al. 2022 
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(G4) structures, which can also induce the fork stalling 89,91. However, if the two machineries 

meet co-directionally, the replication forks also can be stalled when the RNA polymerase 

backtrack towards replication or again by the R-loops 89.  

 To avoid causing the further DNA damage, forks need to restart efficiently. For the CD TRC 

situation, the restart of the fork requires the CMG complex to either bypass or unwind the hybrid. 

In the first case, the DNA Pol α will be recruited to restart the progression; in the second case 

the hybrid is removed by the CMG complex and DNA replication continues (Fig. 1-21A, B). 

The situation is more complicated if the RNA polymerases is bound to the R-loop. In this case 

the passage of the CMG complex could unwind the R-loop freeing the RNA Pol that would 

proceed transcription in front of the replicative fork, or alternatively, the RNA Pol has to be 

removed or the CMG complex must bypass it.  (Fig. 1-21C, D). 

Figure 1-21. Co-directional restart of replication stalling mechanism. (A) The CMG helicase translocates over and bypasses 

a ‘‘naked’’ hybrid with RNA annealing to DNA and RNA strand can be extended by Pol α. (B) The CMG helicase unwinds a 

hybrid when the 5’ end of the RNA strand is exposed as a flap, allowing fork progression to continue. (C) CMG translocation 

over the hybrid would lead to its arrest at RNAP. Fork progression require CMG to bypass the stalled RNAP or for RNAP to 

be removed. (D) CMG unwinding of a hybrid bound to RNAP allow RNAP to continue and replication fork to progress behind 

transcription. Figure adapted from Brickner et al. 2022 
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The HO restart mechanism is more complicated. If a replication fork only encounters a naked 

R-loop, it can restart in the same way as CD. Though, when the fork encounters RNA 

pol, different pathways can take place. If the CMG helicase can bypass the RNAP, PrimPol 

which has both primase and polymerase activities is employed to restart replication. When the 

replication completed, RAD18 and UBE2B can be recruited to promote the gap filling during 

post-replicative repair 92 (Fig. 1-22A). This, therefore, could potentially induce hybrid 

formation through the gap existence by ssDNA forming behind the fork, which provide a 

pathway for de novo RNA synthesis or post-replicative hybrid formation by recruiting again 

RNAP (Fig. 1-22B). The third potential restart mechanism involves an intermediate replication 

reversal process. In this context, nuclease SLX4, MUS81 and its partner protein EME1 play 

important role to cleave the excessive forks, resolve the R-loops. The recombinase RAD51-

mediated replication fork reversal may occur to stabilize the stalled fork. If it does, the helicases 

RECQ1 is required to reset the reversed fork while RECQ5 removes RAD51 at the R-loop 

stalled fork. To conclude, replication is restart by RAD52 and POLD3 following the elongation 

factor ELL mediated transcriptional restart and LIG4/XRCC4-mediated fork re-ligation 89 (Fig. 

1-22C).   

Figure 1-22. Head-on restart of replication stalling mechanisms. (A) CMG bypass of RNAP would leave ssDNA exposed, 

allowing PrimPol recruitment. Primer synthesis by PrimPol allows the fork to continue, leaving behind ssDNA that can be 

replicated by a gap-filling mechanism once transcription is complete. (B) ssDNA resulting from bypass and repriming or a failure 

to reprime, and which persists behind the replication fork, could serve as a template for the formation of hybrids. Hybrids could 

form through de novo synthesis by RNAP (top) or through the association of nascent RNA resulting from transcription after the 

fork has passed (bottom). (C) Restart of a stalled fork initiated by SLX4 and MUS81-mediated fork cleavage is thought to relieve 

the torsional stress, resulting in resolution of the R-loop formed during a HO conflict. Religation of the fork by XRCC4/LIG4 

and ELL-mediated restart of transcription allows both replication and transcription to continue. Prior to fork cleavage, RAD51 

may promote fork reversal. RECQ1 is needed to reset the fork and RECQ5 promotes removal of RAD51. Figure adapted from 

Brickner et al. 2022. 
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3.3.2. DNA damage response to the R-loop-related TRCs 

Once the R-loops cannot be resolved in time or due to the inefficient regulatory factors under 

replicative stress, DNA damage could be sequentially produced. Cells therefore need to react 

to such damage activating a DNA damage response (DDR) to repair it faithfully. DNA damage 

can occur either on both strands (double-strand breaks, DSB) or on only one strand (single-

strand breaks, SSB). In the first case, the damage is sensed by the MRN complex (MRE11-

RAD50-NBS1) that recruits Ataxia-telangiectasia mutated (ATM) on the damage and activates 

its pathway.  SSB are instead sensed by the accumulation of RPA on ssDNA that causes the 

recruitment of ATM and RAD3-related (ATR) through ATRIP allowing the activation of its 

pathway 93,94. In CD-TRC, an ATM pathway activation can be observed due the production of 

DSBs. This can happen through different mechanism: (i) Damage on the displaced ssDNA of 

an R-loop can promote the formation of DSB at the replication fork passage; (ii) nucleases 

recruited to resolve the R-loops can cut on both strands; (iii) or the RNAP backtracks towards 

the replication fork (Fig. 1-23A). Meanwhile in HO collisions, ATR pathway is initiated by 

SSBs with an accumulation of RPA-coated ssDNA at the stalled forks (Fig. 1-23B) 3,87.  

The DDR can also regulate R-loop resolution pathways, for instance, by promoting the 

recruitment of SETX to the collision site or causing the translocation of DDX from nuclear pore 

in nucleus to unwind the hybrid by ATR activation 87. However, due to the double-edged 

functions of R-loops, how to distinguish the only deleterious ones in the whole genome and the 

precise mechanism about theses R-loop-dependent TRC impact the genomic instability and 

how activate the different DDR pathways are still unclear. 
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4. Objectives of my Ph.D. 

The faithful transmission of genetic information to daughter cells is central to maintaining 

genome stability. In human, at each cell division, tens of thousands of replication origins need 

to be activated to ensure complete duplication of >6 billion nucleotides of the genome. The 

replication program is routinely exposed to endogenous and exogenous stresses, which plays 

an important role in many human diseases. In particular, these alterations can represent an 

important early cause of cancer. Strong evidence in recent years supports that oncogene-

induced replication stress is a major driver of tumor progression. During last decade, gene 

transcription has been discovered, by us and the others, as a major source of endogenous stress 

that can affect the replication forks progression by causing TRCs, leading to fork stalling, DNA 

collapse, and genome instability. Recent evidence revealed that TRCs can be regulated by R-

Figure 1-23. DNA damage response to R-loops. (A) R-loops may cause DSBs and ATM activation through three 

mechanisms: damage to the displaced ssDNA that is converted to a DSB by DNA replication, nucleolytic processing of the 

R-loop or fork stalled by R-loops, or collision of the replication fork with a backtracked RNA polymerase. (B) R-loops may 

activate ATR in head-on collisions by stalling replication forks with accumulation of RPA. Figure adapted from Crossley et 

al. 2019 
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loops but due to the limitation of TRC research both in biology and in informatics analysis, the 

concrete mechanism of R-loop-associated TRC to regulate the genome stability is still unknown. 

The objective of my PhD therefore is to try to fill this gap. In the following Chapter 2 session, 

I will precisely describe the bio-informatics toolkit named OKseqHMM that I developed for 

analyzing the OK-seq related data, which is the first bioinformatics tool available to date to 

analyse the RFD data obtained from various techniques with an accurate prediction for the 

genome-wide replication initiation zones, termination zones and even the flanking replication 

transition regions based on hidden Markov model (HMM). This tool can be applied widely and 

compatibly from yeast to human cells and user-friendly for the usage, which facilitates the 

scientific community in the same research field to deeper investigate the replication-related 

projects. Please noted, the context of Chapter 2 corresponds to my bioinformatics method 

paper is available on bioRxiv (1st author) 95 and is accepted to publish in Nucleic Acid 

Research. In the meanwhile, collaborated with Olivier Hyrien’s lab members, the complete 

protocol with experiment description of OK-seq together our tool usage paper is accepted to 

publish in Nature Protocol (co-1st author, Annex 1).  In tightly collaboration with Philippe 

Pasero’s lab (Institute of Human Genetics, Montpellier) who is expert in R-loop and TRC 

research, I will present in Chapter 3 about our recent results about TOP1 as a guardian to 

prevent TRC-associated R-loops formation and to maintain the genomic stability in human 

cancer cells. Based on the results of analysing multi-omics data, we successfully built our model 

how R-loops impact the replication progression in normal and TOP1-deficient cells. The 

results and methods shown in Chapter 3 are already published in a Nature communications 

paper of which I am the co-1st author 96 and a related author’s view paper is published 

in Molecular and Cellular Oncology 97 (1st author) (Annex 2). The figures which generated 

by our collaborators/colleagues will be indicated in the corresponding figure legends. In 

the Chapter 4, I will mainly discuss the perspectives that our study can be further applied and 

its indispensable role to investigate the replication-related domains. In addition, a scientific 

review about replication and transcription written together with colleagues in our lab was 

published in 2020 (2nd author) 2 (Annex 3). 
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Chapter 2 OKseqHMM 

During each cell division, tens of thousands of DNA replication origins are co-ordinately 

activated to ensure the complete duplication of the entire human genome. However, the 

progression of replication forks can be challenged by numerous factors. One such factor is 

transcription-replication conflicts (TRCs), which can either be co-directional or head-on with 

the latter being revealed as more dangerous for genome integrity. In order to study the direction 

of replication fork movement and TRCs, we developed a bioinformatics toolkit called 

OKseqHMM (https://github.com/CL-CHEN-Lab/OK-Seq) and used it to analyse a large 

number of datasets obtained by Okazaki fragment sequencing (OK-seq) in organisms including 

yeast, mouse and human, to directly measure the genome-wide replication fork directionality 

(RFD) as well as accurately predict the replication initiation and termination at a fine resolution. 

We further successfully applied our analysis to extensive related techniques, which also contain 

RFD information (e.g., eSPAN, TrAEL-seq). Our works, therefore, provide an important tool 

and resource for the community to further study TRCs and genome instability, in a wide range 

of cell line models and growth conditions, which is of prime importance for human health. 

The progression of replication forks can be challenged by numerous factors. One such factor is 

transcription-replication conflicts (TRCs) since the replication and transcription machineries 

share the same DNA template. TRC can either be co-directional (CD) or head-on (HO), and the 

latter has been revealed as more detrimental for genome integrity 3. Previous bioinformatics 

analyses have revealed that, in large numbers of genomes from bacteria 98 to human 63,99, most 

genes are co-directionally oriented with replication forks to avoid the more deleterious HO TRC. 

Recently, a new method to directly measure the genome-wide replication fork directionality 

(RFD) along the human genome by sequencing of Okazaki fragments (OK-Seq) 12, which are 

present only on the lagging replicating strand, allows quantitatively analysing and accurately 

detecting replication initiation and termination. The analysis of OK-seq data of human cells has 

also demonstrated a significant co-direction of replication fork progression with gene 

transcription within active genes  12.  

More and more techniques are now being developed, for instance, Pu-seq 6, eSPAN 10, SCAR-

seq 9, GLOE-seq 8 and TrAEL-seq 11, which also provide genome-wide RFD information. 

Moreover, in recent years, strong evidence shows that replication- and transcription-related 

mutational asymmetries are widespread across cancer development 100. Especially 

(Apolipoprotein B mRNA editing enzyme, catalytic polypeptide) APOBEC-associated 

https://github.com/CL-CHEN-Lab/OK-Seq
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mutations (also called APOBEC mutation signatures) in humans are represented in up to 15% 

of all sequenced tumours and contribute to 50% of all mutations in many tumours. APOBEC-

associated mutations preferentially occur on the lagging-strand template during DNA 

replication, and are also highly associated with mismatch repair and transcription-coupled 

damage repair in cancer 101–105. Furthermore, N6-methyladenosine (m6A) modifications have 

been considered as one of the most prevalent internal modifications in mammalian mRNAs 

and the abnormal m6A modification caused by m6A modulators, e.g., methyltransferase-like 3 

(METTL3), is a common feature of various tumours 106–108. Evidence has shown that METTL3 

and m6A could promote homologous recombination-mediated repair of double-strand breaks 

(DSBs) by modulating RNA:DNA Hybrid (R-loop) accumulation 90. Importantly, R-loops have 

been recently shown, by others and us, to be frequently accumulated at transcription termination 

sites of actively transcribed genes displaying high HO TRCs 96,97. Therefore, systematically 

unveiling the genome-wide DNA replication panorama is essential for human health.  

Despite its importance, to date, there is no published available tool to analyse RFD data and to 

determine the replication initiation and termination positions genome-wide, although several 

methods have been previously described for OK-seq data analysis, such as using the Hidden 

Markov Model (HMM) to analyse human OK-seq data 109 or the origin efficiency metric (OEM) 

to analyse yeast OK-seq data 54,110. It is, therefore, important to have a uniform framework of 

OK-seq data (and related data) analyses. Here, we developed a bioinformatics toolkit, called 

OKseqHMM, to directly obtain the high-resolution RFD profile genome wide. Besides the fork 

direction, the toolkit also deciphers the information of replication initiation/termination zones 

using an algorithm based on HMM, calculates the OEM to visualize the transition of RFD 

profile at multiple scales, and finally generates the average metagene profiles and heatmaps to 

provide RFD/OEM distributions along the regions of interest (Fig. 2-1). We have gathered a 

large number of published available OK-seq data (13 in total) from S. cerevisiae, mouse and 

human cells, and successfully obtained the high-resolutive (~1 kb for mouse and human cells 

and ~50 bp for yeast) RFD profiles and the accurate calling of corresponding replication 

initiation and termination zones genome-wide. 
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1. Material and methods 

OKseqHMM toolkit is an R package for profiling OK-seq data to study the genome-wide 

replication program. This R package contains multi-functions and is served for analysing OK-

seq data from the original mapping bam file(s) to count matrices, RFD calculation, 

initiation/termination zone calling and average metagene profiles/heatmaps.  

 

1.1. HeLa S3 OK-seq data generation and sequencing 

HeLa S3 cells were cultured in DMEM high glucose medium with 10% FBS. Ok-seq Libraries 

were generated starting from exponentially growing cells as previously described 109,111. 

Libraries were sequenced on an Illumina NextSeq system using PE (75 cycles).  The other cell 

lines are indicated in the table.1. 

 

Figure 2-1. Schematic presentation of data analysis pipeline of OKseqHMM toolkit. The raw sequencing data can be pre-

processed into aligned files by corresponding bioinformatics tools indicated in blue (left panel). The middle panel shows the 

major functions of the OKseqHMM toolkit. The first function of OKseqHMM checks the input aligned bam files to determine 

whether they are single- or paired-end sequencing data, then automatically splits the reads into Watson and Crick strands and 

calculates the replication fork directionality (RFD). By default, the calculation is performed within 1 kb adjacent windows 

(recommended for human cells) and then smoothed into 15 kb sliding windows with 1 kb step. These parameters can be easily 

adjusted based on the nature of the data. Different replication features, i.e., initiation zones (IZ), two intermediate states and 

termination zones, are predicted based on an HMM algorithm (See Implementation for detail). The second function 

(OKseqOEM) uses the reads on Watson and Crick strands to generate origin efficiency metrics (OEMs) at multiple scales to 

visualize the RFD transition. And the last function allows users to generate an average metagene profile and heatmap to analyse 

distributions of RFD and OEM around the genes/regions of interest. Results can be visualized in the genomic visualization 

browsers (such as IGV) as shown in the right panel.    
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1.2.  Function OKseqHMM measures RFD and predicts replication 

initiation/termination zones 

OKseqHMM is the main function of the toolkit, which involves several important steps of OK-

seq data analysis. The function transforms OK-seq data into RFD profiles for a primary 

visualization (e.g., with the genomic visualization browsers, such as IGV), then, it can 

accurately identify replication initiation zones (IZs, upward transitions on RFD profile), 

termination zones (TZs, downward transitions on RFD profile) and also the intermediate states 

(flat RFD profile) along the genome by using the HMM. 

For each window, RFD was computed as follows: 

𝑹𝑭𝑫 =
𝑪 − 𝑾

𝑪 + 𝑾
 

where C and W correspond to the number of reads mapped on the Crick and Watson strands, 

which reveal, respectively, the proportions of rightward- and leftward- moving forks within 

each window (e.g., 1 kb window was used for OK-seq data of human cells). Since the total 

amount of replication on both strands should be constant across the genome, we normalized the 

difference between the two strands by the total read count to account for the variations in read-

depth due to copy number, sequence bias and so on. RFD ranges from -1 (100% leftward-

moving forks) to +1 (100% rightward-moving forks), and 0 means equal proportions of 

leftward- and rightward-moving forks. Data obtained from biological replicates produced RFD 

profiles that strongly correlated to each other, for HeLa cells, Pearson R=0.92, p<10-15 (t-test) 

and for GM06990 cells, R=0.93, p<10-15.  

A four-state HMM was used in OKseqHMM to detect within the RFD profiles the ascending 

(AS), descending (DS) and flat (FS) segments representing regions of predominant initiation 

(‘Up’ state), predominant termination (‘Down’ state) and constant RFD (‘Flat1’ and ‘Flat2’ 

states) 109 (Fig. 2-2A). In the HMM segmentation process, the RFD values were computed 

within 15 kb (for human OK-seq data) sliding windows (by default, stepped by 1 kb across the 

autosomes). The HMM used the ∆𝑅𝐹𝐷 values between adjacent windows, in which ∆𝑅𝐹𝐷𝑛 =

𝑅𝐹𝐷𝑛+1−𝑅𝐹𝐷𝑛

2
 for the window n. By default, windows with <30 reads on both strands were 

masked. The ∆𝑅𝐹𝐷 values (also between -1 and 1) were divided into five quantiles and the 

HMM package of R (http://www.r-project.org/) was used to perform the HMM prediction with 

probabilities of transition and emission, which are manually defined by the training dataset (Fig. 

2-2B). The same transition and emission probabilities used in our previous study 109 were set 

http://www.r-project.org/
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as default values and used in all OK-seq data analyses in the current study. Two representative 

examples of human RFD profiles together with the segments of IZs, TZs and two Flat states 

obtained by OKseqHMM were shown in Fig. 2-2C, D. The choice of a 15 kb sliding window 

is based on a compromise between spatial resolution and reproducibility of AS detection among 

biological replicates. Finally, the efficiency of the detected AS (i.e., initiation zones) was 

estimated as: 

∆𝑹𝑭𝑫𝒔𝒆𝒈𝒎𝒆𝒏𝒕 =
𝑹𝑭𝑫𝒆𝒏𝒅 − 𝑹𝑭𝑫𝒔𝒕𝒂𝒓𝒕

𝟐
 

where RFDstart and RFDend correspond, respectively, to the RFD values computed in 5 kb 

windows around the left and right extremities of each segment. 

 

Figure 2-2.  Schematic presentation of HMM algorithm for initiation and termination zone detection. (A) A 4-state HMM 

model used in the segmentation process: Up, regions of predominant initiation (IZ); Down, regions of predominant termination 

(TZ); Flat1 and Flat2, two intermediate transition states. (B) Default state transition probability (between states) and emission 

probabilities (probabilities of each state within five quantiles of ∆RFD values) used in OKseqHMM (see Material and Methods 

for detail). The probability matrixes were colour coded based on their values (higher probability values are closer to red). (C) 

and (D) Examples of RFD profile of human HeLa cells from chromosome 1 with the corresponding IZs, TZs and 2 Flat states 

identified by OKseqHMM. Each point on the RFD profile gives the RFD value calculated within each 1 kb adjacent window, 

and the windows with positive and negative RFD values are shown in red and blue, respectively. 
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1.3.  Function OKseqOEM generates the RFD transition profiles at multi-

scales 

For a further investigation of origin efficiency (i.e., ∆𝑅𝐹𝐷), we provide here a second function 

to visualize it directly at multiple scales. As defined in the previous publication for yeast OK-

seq data analysis 23, the density of Okazaki fragments on the Watson and Crick strands are 

compared within 4 fixed-size sliding bins, which are strand-specific 10 kb quadrant values to 

calculate an Origin Efficiency Metric (OEM), computed as 𝑂𝐸𝑀 =
𝑊𝐿

𝑊𝐿+𝐶𝐿
−

𝑊𝑅

𝑊𝑅+𝐶𝑅
 (WL and 

WR measure, respectively, the read density in the left and right quadrants on the Watson strand, 

while CL and CR  refer to the density on the Crick strand), ranging from -1 to 1 for each base in 

the genome. Maximal values in the OEM scores represent replication origins, while the minimal 

ones are considered as regions of replication termination. In addition, the different amplitudes 

of positive OEMs (from 0 to 1) are referred to as origin-firing efficiency; and the degree of 

termination at each position can be measured from 0 to -1. 

Here, we further extend OEM calculation within a fixed window size into multiple-scales to 

better fit OK-seq data analysis of other organisms, such as human cells.  

𝑶𝑬𝑴𝒊 𝒇𝒐𝒓 𝒍𝒊𝒔𝒕[𝒏] =
(𝑾𝒊+𝒍𝒊𝒔𝒕[𝒏] − 𝑾𝒊)

(𝑾𝒊+𝒍𝒊𝒔𝒕[𝒏] − 𝑾𝒊) + (𝑪𝒊+𝒍𝒊𝒔𝒕[𝒏] − 𝑪𝒊)
 

Where list[n] can be defined by users as a list of windows (e.g. [1,10, 20, 50, 100]), i is from 1 

to the total length of the data – list[n]. C and W correspond to the number of reads mapped on, 

respectively, the Crick and Watson strands within corresponding windows. 

Using the two bam files of reads within, respectively, Watson and Crick strands generated by 

the previous OKseqHMM function and the annotation coordinates, the function OKseqOEM 

can automatically calculate the OEM profiles at a series of defined scales (e.g., from 1 kb to 1 

Mb for human cells), which allows us to directly visualize the transition states of replication 

and to validate the IZs identified by OKseqHMM then to double-check the size and boundary 

of IZs. 

 

1.4.  Average metagene profile/heatmap provides RFD distribution on specific 

genomic regions 

To analyse RFD distributions around and/or among the genomic regions of interest, such as the 

identified IZs or the annotated genes, we developed an additional module for the metadata 
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analysis. With the gene coordinates (or IZs) together with the RFD and/or OEM big wiggle 

files generated from OKseqHMM and/or OKseqOEM functions, we can easily obtain the 

corresponding profiles/heatmaps by using the computeMatrix and plotProfile/plotHeatmap 

functions of deepTools (https://deeptools.readthedocs.io/en/develop/index.html) 112 via 

defining the genomic distances of interest for the upstream and downstream borders. 

 

2.  Results 

2.1. Genome-wide RFD and replication origin detection in yeast 

To evaluate the performance, we first applied our tool to the available yeast OK-seq data 7. 

OKseqHMM was successfully applied to the yeast OK-seq data to generate the RFD profile at 

a fine resolution (50 bp), the OEM profiles at different scales (from 50 bp to 25 kb) and a precise 

IZ/Origin calling (Fig. 2-3A). About 350 robust IZs were finally identified by OKseqHMM, 

which range from 0.5 kb to 5.5 kb with an average length of 1.5 kb (Fig. 2-3B, Table 1). To 

check the accuracy of IZ calling results, we compared OK-seq IZs with the known yeast origins, 

i.e. autonomously replicating sequence (ARS) from OriDB 2.1.0 113, and up to 70% of our 

detected IZs were found at ≤ 2 kb distance (between centres) from a known ARS. As expected, 

the OK-seq IZs are better correlated with the confirmed ones, with 185, 36, and 22 overlapped 

(i.e., distance between centres ≤ 2 kb) with the confirmed (median distance 0.27 kb), likely 

(median distance 0.48 kb) and dubious (median distance 0.69 kb) origins, respectively (Fig. 2-

3C). In case we consider all OriDB origins instead of only the overlapped ones, the distances 

between OK-seq IZ centres to the closest OriDB origins of each class are still significantly 

smaller (median distance 0.41, 1.13 and 1.77 kb for confirmed, likely and dubious origins, 

respectively) than random simulated genomic positions (Fig. 2-3D). 

 

 

 

 

 

 

https://deeptools.readthedocs.io/en/develop/index.html
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Figure 2-3. Analysis of OK-seq data by OKseqHMM in Yeast. (A) Yeast RFD profile was calculated at 50 bp resolution 

with the corresponding IZs identified by OKseqHMM, which are highly correlated with the confirmed origins from OriDB 

(29). RFD profile as in Fig. 2C, but with 50 bp resolution. Below, the OEM profiles calculated from 50 bp to 25 kb scales, and 

the windows with positive and negative OEM values are shown in red and blue, respectively. (B) Length distribution of 

detected OK-seq IZs. (C) Venn diagram showing the overlap numbers of OK-seq IZs compared with all the known origins 

clustered in 3 categories (confirm, likely and dubious) from OriDB, in which overlap means that the closest distance between 

each other’s centres is less than 2 kb. Note that all confirmed OriDB origins are not overlapped with an OK-seq IZ since all 

origins might not active in the culture condition and/or yeast strain used for the OK-seq experiment. Further comparison with 

origins identified by other techniques can be found in Fig. 7B. (D) The boxplot shows the distribution (in red) of distances 

between an IZ centre detected by OkseqHMM and the closest origin centre from OriDB for 3 categories, which is much closer 

compared with the random simulation control (in black) indicated with significance levels of Wilcoxon rank sum test; ** < 

10-2, *** < 10-3, **** < 10-4.   
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2.2. Genome-wide RFD and replication initiation zone detection for different 

human cell lines 

We then further applied the OKseqHMM to analyse the OK-seq data of human cells. In addition 

to the published OK-seq data of HeLa MRL2 cells 109, we also generated new additional OK-

seq data from HeLa S3 cells, a widely used Encode Tier 2 cell line. The RFD profiles of the 

two HeLa cell lines are very similar (R=0.86, p<10-15), suggesting that a similar replication 

program and IZ positions are used (Fig. 2-4A). The correlation between two HeLa cells is 

slightly lower than the correlation between two biological replicates (R=0.92, p<10-15) of HeLa 

MRL2 cells 109, suggesting that the differences between the two HeLa cell lines represent true 

biological differences and not only technical variation. About 10,000 IZs have been identified 

in each HeLa cell line (Table 1), two-thirds of which are common between the two cell lines 

(Fig. 2-4B). The conservation of IZs is even higher in the early-replicating regions, with 80% 

of early IZs being shared between the two HeLa cell lines (Fig. 2-4B). A very striking difference 

of human RFD data compared to those of yeast is that, instead of a sharp 1 kb upward transition 

of RFD at fixed yeast origins, the size of upward transition of RFD, therefore the IZ length, of 

human cells is around 10-50 kb (average ~30 kb, ~20-folds larger than the IZ of yeast) (Fig. 2-

4A, Table 1). The heatmaps of OEM profiles computed around IZs at different scales show the 

strongest positive signals at the corresponding scales, i.e., 10 kb scale for the small IZs (<10 

kb), 20 kb scale for the IZs of mid-size (20-50 kb) and 50 or 100 kb for the large IZs (>50 kb), 

respectively (Fig. 2-4C), confirming that RFD transition is associated with the detected IZ 

length. This further supports the difference between the yeast and human OK-seq pattern and 

the accuracy of IZ detection obtained by OKseqHMM.   

Replication initiation has been previously reported to be enriched within intergenic regions 

between active genes 109. To demonstrate how our toolkit can help in the analysis of the 

association between DNA replication and gene transcription, we analysed the average profiles 

and the corresponding heatmap of expression level (RNA-seq and GRO-seq) for all detected 

IZs sorted by their length and confirm that gene transcription presents immediately surround the 

IZs while with a much lower level within IZs (Fig. 2-5A). To further compare the distribution 

of RFD and gene transcription, we calculated the average RFD profile and the corresponding 

heatmap around TSSs (transcription start sites) and TTSs (transcription termination site) of 

16,336 active genes (RPKM > 1) in HeLa cells with an extension ± 50 kb upstream or 

downstream (Fig. 2-5B). This clearly indicates a frequent replication initiation (upward 

transition of RFD) at both regions upstream of TSS and downstream of TTS, which leads to a 
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co-direction between replication and transcription at TSS while a higher head-on TRC at TTS, 

in agreement with previous publications 96,109.  

Figure 2-4. Analysis of OK-seq data of HeLa cells by OKseqHMM. (A) Replication timing profile obtained by Repli-seq, 

RFD profiles and corresponding detected IZs for published HeLa MRL2 OK-seq data (6) and OK-seq data of HeLa S3 cells 

generated in the current study, the OEM profiles of HeLa S3 cells from 1 kb to 1 Mb scales, and the transcription data provided 

by GRO-seq and RNA-seq along a ~4 Mb region on chromosome 1. (B) Venn diagrams showing that two-third of Ok-seq IZs 

matched between the two HeLa cell lines and the overlap goes up to 80 % for the early IZs (with replication timing S50 < 0.4). 

(C) Mean OEM profiles and heatmaps of OEM (heatmap colour scale is indicated on the right) around the HeLa S3 IZ centers 

at indicated scales (i.e., 10, 20, 50 and 100 kb) sorted by the length of detected IZs. 
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In addition to OK-seq data of HeLa cell lines, we have gathered and reanalysed with 

OKseqHMM, the OK-seq data from previous publications for a large amount of human cell 

lines of different cell types 109,111, such as fibroblast (IMR90), lymphoblastoid (GM06990) and 

lymphoma (Raji, BL79, IARC385), leiomyosarcoma and leukaemia (IB118, TLSE19, K562), 

and erythroblast (TF1) (Table 1, Fig. 2-6). OKseqHMM generated high-quality cell-type-

specific RFD profiles and robust IZ calling for all data analysed. The sizes of IZs in different 

cell types are within the same range (average size between 26 to 36 kb), demonstrating that it is 

a common feature of human cells. Nevertheless, we observed that the RFD profiles of different 

cell lines are quite conservative for some origin-rich regions while they are cell-type specific. 

The data obtained with the cell lines of close cell type or origin show similar pattern of RFD 

profiles (Fig. 2-6B), for instance, Pearson correlation R is up to 0.87 between Raji and BL79 

cells since both are lymphoma cells, and close to GM06990 human lymphoblastoid cells, with 

a Pearson R=0.79. 

Figure 2-5. OKseqHMM reveals the coordination between DNA replication and gene transcription. (A) Mean profiles 

and heatmaps of RNA-seq and GRO-seq around the HeLa S3 OK-seq IZ centres. (B) Mean profile and heatmap of HeLa S3 

RFD between TSS (transcription start site) and TTS (transcription termination site) of active genes with an extension of +/- 

50 kb. The heatmap colour scales are indicated in each panel.  
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Figure 2-6. Genome-wide RFD profiles of different human cell lines show the cell-type-specific replication program. 

(A) Cell-type-specific RFD profiles and the corresponding detected IZs for indicated human cell lines, IMR90, TF1, K562, 

TLSE19, GM06990, Raji and BL79. (B) Pairwise Pearson correlations between OK-seq data (1 kb) of different human cell 

lines. 
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2.3. Extend OKseqHMM to analyse the RFD profiles from other sequencing 

data 

In addition to OK-seq, the OKseqHMM toolkit can be applied to calculate RFD profiles from 

the sequencing data obtained with other related techniques. As a demonstration, we further 

extended our toolkit to analyse the published eSPAN 10 and TrAEL-seq 11 data. The RFD data 

computed from the yeast TrAEL-seq data are very close to those obtained by OK-seq (Fig. 2-

7A, R=0.93, p<10-15), and the RFD profile obtained by TrAEL-seq even shows a higher quality 

with less local noise than the OK-seq RFD profile. This difference does not seem to result from 

the fact that the TrAEL-seq data used in the analysis have higher coverage (contain about two-

fold more reads) compared with the available OK-seq data, because TrAEL-seq data always 

show a less local noise profile after down-sampling to the same coverage as OK-seq.  

To further evaluate the IZs detected in different techniques, we here also integrate the IZs 

identified with FORK-seq 7, a nanopore sequencing based method that allows mapping 

replication initiation within single DNA molecules. The comparison between the TrAEL-seq 

IZs, OK-seq IZs, FORK-seq and yeast ARSs showed that 70% (243/348) of OK-seq IZs and 

up to 84% (321/380) of detected IZs from TrAEL-seq were found within 2kb distance from a 

known ARS. 79% (191/243) of OK-seq IZs associated with ARSs were also detected by 

TrAEL-seq and around 77% (186/243) of them were found in FORK-seq (Fig. 2-7B). Notably, 

a small percentage of initiation sites that are not associated with OriDB origins are robustly 

detected by OK-seq, TrAEL-seq and FORK-seq, supporting the previous observation that 

replication initiation in yeast can also occur, although with low frequency, at loci barely 

enriched in ACS (ARS consensus sequence) motifs 7.  

Finally, we also successfully applied OKseqHMM to the OK-seq and eSPAN data 10 of mouse 

embryonic stem cells (mESC). However, due to the lower amount of reads for the available 

dataset of eSPAN data, although we used a larger window size (e.g., 10 kb smoothing window 

instead of 1 kb window) we still got too noisy RFD profiles to perform a robust IZ calling, 

which reflected that our detection method is read depth dependent. Even so, we still obtained a 

mean RFD profile similar to those of OK-seq around the IZs identified in the mESC OK-seq 

data (Fig. 2-7C).  
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3. Discussion 

Genome-wide replication fork directionality data have become an important key in 

understanding numerous biological processes, such as transcription-replication conflicts, 

replication-associated mutagenesis, replication couple epigenetic maintenance, etc. Here, we 

present OKseqHMM, a comprehensive R package, to analyse OK-seq data from various cell 

types and species to generate and visualize high-resolutive RFD and OEM profiles along the 

genomes, as well as generate the average profiles/heatmaps on the regions/genes of interest. 

The toolkit also allows accurate detection of replication initiation/termination zones with an 

HMM algorithm. To our knowledge, this is the first bioinformatics tool available to date to 

Figure 2-7. Genome-wide RFD profiles obtained from TrAEL-seq and eSPAN data. (A) RFD profiles and the 

corresponding IZs in 50 bp bin size of OK-seq and TrAEL-seq data of yeast (11). The known origins (ARSs) are downloaded 

from OriDB. (B) Venn diagram showing the overlap between OK-seq IZs (n=348), TrAEL-seq IZs (n=380), FORK-seq 

initiation events (n=4964) and published origins (ARSs) from OriDB (n=829), in which overlap means that the closest distance 

between each other’s centre is less than 2 kb. In case origins of one dataset overlap with several origins of other datasets, only 

one number was provided with the following priority order: OK-seq > TrAEL-seq > OriDB > FORK-seq. It should be noted 

that there are more origins unique for FORK-seq, since it’s a single-molecule technique that allows identification of initiation 

events with very low frequency. (C) Metagene average RFD profiles computed from OK-seq of mouse embryonic stem cells 

(mESC) and H4K20me2 eSPAN data of MCM2-2A mutant cells (8). Mean and standard error bands are shown for both data, 

while the standard error bands of OK-seq data are too narrow to be seen. 
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handle and analyse the RFD data obtained from various techniques. The toolkit is based on R, 

which should be easily used for both bioinformatics as well as biologists.  

We successfully applied OKseqHMM to a large amount of available OK-seq data from different 

species, including yeast, mouse cells as well as numerous normal and cancer human cell lines 

(Table 1). This provides an important resource for large research communities, who are 

interested in studying DNA replication programs, transcription-replication conflicts, 

replication-associated chromatin organization, replication-associated mutations, genome 

instability and cancer genomics, among others. Importantly, in addition to OK-seq, more and 

more new techniques have been developed to study DNA replication and are also able to 

provide the replication fork direction information. These include the methods like eSPAN and 

SCAR-seq performing stranded sequencing of BrdU or EdU labelled nascent replicated DNA 

associated with specific histone modifications, or like TrAEL-seq and GLOE-seq based on the 

single-stranded end presented on specific replicative templates. Here, we demonstrated that 

OKseqHMM can be applied to analyse data obtained by both kinds of techniques, i.e., eSPAN 

and TrAEL-seq, and obtained high-quality results (Fig. 2-7).  Notably, techniques like TrAEL-

seq, which do not need to incorporate labels and need fewer cells to generate a high-quality 

RFD profile compared to OK-seq, will provide a good alternative to study DNA replication and 

genomic instability in different cell types within various stress conditions.  

It should be noted that the initiation parameters, such as the transition and emission probabilities, 

are defined based on the OK-seq datasets of human cells. Although we have shown in the 

current study that they are quite robust and can be also applied to OK-seq data of yeast and 

mouse cells to obtain satisfactory results, they might need to be adjusted based on the 

sequencing-depth and data quality of other datasets, to have an optimal IZ/TZ calling. In the 

future, with technical improvement, we might be able to further extend the OKseqHMM to 

study the extrinsic (cell-to-cell) or intrinsic (homolog-to-homolog) variability of DNA 

replication, if we can further extend the relative techniques to obtain data at the single-cell level 

and/or in an allele-specific manner as recently achieved for the replication timing study 40,114.  
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Name Cell type Replicate 

Initiation zones Termination zones 

Accession number 

(Reference) 

Number 
Size (kb) 

Mean  SD 
Number 

Size (kb) 

Mean  SD 

BL79 Burkitt’s lymphoma  7798 2918 7791 211244 ENA: PRJEB25180 111 

GM06990 Lymphoblastoid cells 2* 5684 3319 5715 182166 SRA: SRP065949 109 

HeLa MRL2 
Epithelial cell of 

adenocarcinoma 
2* 9836 3118 9441 141144 SRA: SRP065949 109 

HeLa S3 
Epithelial cell of 

adenocarcinoma 
 9089 3219 9084 223245 

GEO: GSE193547 

(Current study) 

IARC385 
B lymphocytes from 

Burkitt’s lymphoma 
 4465 3619 4455 125164 ENA: PRJEB25180 111 

IB118 Leiomyosarcoma  3645 2616 3640 428440 ENA: PRJEB25180 111 

IMR90 Fibroblast  12482 2617 12468 151147 ENA: PRJEB25180 111 

K562 
Late-stage chronic 

myeloid leukemia 
 6982 2815 6967 136158 ENA: PRJEB25180 111 

mESC E14 
Mouse embryonic stem 

cells 
 3370 2714 3347 483554 GEO: GSE142996 10 

Raji Burkitt’s lymphoma  8096 2916 8080 143135 ENA: PRJEB25180 111 

TF1 
BCR-ABL negative cell 

line from erythroblast 
 8377 2717 8371 196193 ENA: PRJEB25180 111 

TLSE19 Leiomyosarcoma  10500 2717 10492 146144 ENA: PRJEB25180 111 

Yeast S. cerevisiae 2* 348 1.50.7 787 1413 ENA: PRJEB36782 7 

 

Table 1. All OK-seq data analysed by OKseqHMM. * If data of biological replicates are available, the profiles obtained 

with the combined data are used in the figures, and only the segments (i.e., IZs and TZs) reproducibly identified in both 

biological replicates were retained.  
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Chapter 3 TRC-associated R-loop and genome stability 

regulated by TOP1 

 

Replication stress (RS) including a variety of endogenous and exogenous events interfered with 

replication fork progression is a major trigger of genomic instability that has been implicated 

in cancer development. Following with a bidirectional replication mechanism, Replication 

forks stall when they encounter obstacles such as secondary DNA structures, highly transcribed 

genes or tightly bound protein complexes 1. Prolonged fork arrest may lead to fork collapse and 

to gross chromosomal rearrangements 115. Stalled replication forks are detected by the intra-S 

phase checkpoint, a surveillance pathway sensing the presence of excess ssDNA at damaged 

forks. This checkpoint response is initiated with the binding of the ATR kinase and its partner 

ATRIP to the ssDNA-binding protein RPA 94. Once activated by TopBP1, ATR phosphorylates 

multiple targets, including the RPA32 subunit of the RPA complex on S33 (called thereafter p-

RPA). Fork collapse also leads to the phosphorylation of the histone variant H2AX by ATR (-

H2AX). Unlike p-RPA, the -H2AX signal can spread over several hundreds of kilobases 

around broken forks 1. ATR also activates the CHK1 kinase to amplify the checkpoint response, 

repress late replication origins and prevent premature entry into mitosis 116. 

As mentioned in Chapter 1 session, Transcription-replication conflicts (TRCs) represent a 

major source of replication stress in all organisms, from bacteria to human 3,5 in head-on (HO) 

or co-directional (CD) manner and frontal collisions are considered much more deleterious to 

the genomic stability 5. Besides the HO collisions, replication forks can also encounter three-

stranded nucleic acids structure called R-loops, which have been proposed to play both positive 

and negative roles in gene expression and other chromosome functions, and normally they can 

be prevented/removed by Topoisomerase I (TOP1), helicases and endonucleases like RNase H 

4. TOP1, as an enzyme that relaxes DNA supercoiling and prevents R-loop formation, which is 

considered as a safeguard to maintain the genomic stability. Depletion of TOP1 certainly 

increases the RS and leads to a R-loop-enriched transcriptional-related damage 117. In order to 

unveil the mechanism by which R-loops interfere with replication fork progression and provoke 

potentially genomic instability in human cells especially under replicative stress, we are 

collaborating with Philippe Pasero’s lab (IGH, Montpelier) to perform the necessary 

experiments in HeLa wild-type and HeLa TOP1-deficient cells.  
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We have mapped RNA:DNA hybrids, replication stress markers and DNA double strand breaks 

(DSBs) in wild-type and cells depleted TOP1 and R-loops were observed at both transcription 

start sites (TSS) and termination sites (TTS) of highly expressed genes. In contrast, the 

phosphorylation of RPA signals activated by ATR referred to as stalled replication forks were 

only detected at TTS regions where are preferentially replicated in a head-on orientation relative 

to the direction of transcription. In TOP1-depleted cells, DSBs also cumulated at TTS, leading 

to persistent checkpoint activation, spreading of -H2AX on chromatin and leading a global 

replication fork slowdown. These data indicate that fork pausing at the TTS of highly expressed 

genes containing R-loops prevents head-on conflicts between replication and transcription and 

maintains genome integrity in a TOP1-dependent manner 96 . 

 

1. Materials and methods 

1.1.  Cell culture 

HeLa cells (around 5 x 106) are used for investigation. TOP1-deficient cells are treated by 

expressing short hairpin RNAs (shRNA) against TOP1 (i.e., shTOP1 cells). Same experiments 

performed for shSRSF1 cells with expressing shRNA against SRSF1. HeLa, HEK293T and 

AsiSI–ER-U2OS cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal calf serum (FCS) and 100 U ml−1 penicillin/streptomycin at 

37 °C in 5% CO2. 

Production of lentiviral vectors and cell transduction. HIV-1-derived lentiviral vectors were 

produced in HEK293T cells. To this end, cells were seeded on poly- D-lysine coated plates and 

transfected with packaging plasmid (psPAX2, Addgene plasmid #12260): transfer vector 

(pLVX-Tet-on; TRIPZ-shTop1): vesicular stomatitis virus envelop plasmid (pMD2.G, plasmid 

#12259) at a ratio 5:3:2 by the calcium phosphate method. The culture medium was collected 

48 h post-transfection, filtrated using 0.45-μm filters and concentrated at 100 folds by ultra- 

centrifugation at 89,000 × g at 4 °C for 1.5 h. HeLa cells were transduced at a MOI = 10 

(multiplicity of infection) by centrifugation at 1500 × g at 30 °C for 90 min in the presence of 

5 μgml−1 of Polybrene. 

 

1.2.  Related high-throughput sequencing techniques 

DNA fiber spreading  
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To perform DNA fiber spreading, HeLa control and shTop1 HeLa cells were treated with 2 

µgml−1 doxycycline for 24 h and then transfected with the plasmid EGFP-N1 or RNase H1-

EGFP for 48 h in the presence of doxycycline. Subconfluent cells were sequentially labeled 

first with 10 µM 5-iodo-2′-deoxyuridine (IdU) and then with 100 µM 5-chloro-2′-deoxyuridine 

(CldU) for the indicated times. One thousand cells were loaded onto a glass slide (StarFrost) 

and lysed with spreading buffer (200 mM TrisHCl pH 7.5, 50mM EDTA, 0.5% SDS) by gently 

stirring with a pipette tip. The slides were tilted slightly and the surface tension of the drops 

was disrupted with a pipette tip. The drops were allowed to run down the slides slowly, then air 

dried, fixed in methanol/acetic acid 3:1 for 10 min, and allowed to dry. Glass slides were 

processed for immunostaining with mouse anti-BrdU to detect IdU, rat anti-BrdU to detect 

CldU, mouse anti-ssDNA antibodies, and corresponding secondary antibodies conjugated to 

various Alexa Fluor dyes. Nascent DNA fibers were visualized using immunofluorescence 

microscopy (Leica DM6000 or Zeiss ApoTome). The acquired DNA fiber images were 

analyzed by using MetaMorph Microscopy Automation and Image Analysis Software 

(Molecular Devices) and statistical analysis was performed with GraphPad Prism (GraphPad 

Software). The length of at least 150 CldU tracks were measured per sample. 

Detection of pRPA32-S4/S8 foci by immunofluorescence  

Cells growing on coverslips were incubated for 3 min at room temperature with CSK buffer 

(10 mM PIPES, pH 7.0; 100 mM NaCl; 3 mM MgCl2; 300 mM sucrose and 0.3 mg ml−1 RNase 

A) containing 0.7 % Triton X-100 and phosphatase inhibitor cocktail and fixed with 2 % PFA 

for 10 min at room temperature. The coverslips were incubated with an anti-pRPA32-S4/S8 

antibody overnight at 4 °C and then with a secondary antibody conjugated to an Alexa Fluor 

dye for 1 h at 37 °C, followed by DAPI staining and ProlongGold mounting. Images were 

acquired by using a Zeiss LSM780 confocal or a Zeiss ApoTome microscope. The mean 

fluorescence intensity (MFI) in cells was quantified by using CellProfiler 

(www.cellprofiler.org). 

Detection of RNA:DNA hybrids by slot blotting  

Cells were lysed in 0.5% SDS/ TE, pH 8.0 containing Proteinase K overnight at 37 °C. Total 

DNA was isolated with phenol/chloroform/isoamylalcohol extraction followed by standard 

ethanol precipitation and quantified using Nanodrop. Half microgram of total DNA was loaded 

in duplicate onto a Hybond-N+ membrane using slot blot apparatus. The membrane was 

separated in two, one for direct UV crosslinking at 0.12 Joules and the other for DNA 

http://www.cellprofiler.org/
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denaturation. To denature DNA, membrane was incubated with denaturation buffer (0.5 M 

NaOH; 1.5 M NaCl) for 10 min and neutralization buffer (1 M NaCl and 0.5M Tris, pH 7.5) 

for another 10 min prior to UV crosslinking. Membranes were blocked with 5% skim milk in 

PBST (PBS; 0.1% Tween- 20) for 1 h. The RNA:DNA hybrids and ssDNA were detected by 

immunoblotting. 

Chromatin fractionation 

Cells were incubated with CSK-Triton lysis buffer (10 mM PIPES, pH6.8; 100 mM NaCl; 1 

mM MgCl2; 1 mM EGTA; 300 mM Sucrose; 10 mM DTT; 0.2% Triton X-100; protease 

inhibitor; phosphatase inhibitor) on ice for 10 min and harvested by scraping. The supernatant 

was collected after centrifugation at 0.8 × g for 5 min at 4 °C. Pellet was resuspended in CSK- 

Triton buffer and incubated for 10 min on ice. Another round of centrifugation at 0.8 × g for 5 

min at 4 °C was performed to separate nucleoplasm and chromatin fractions, supernatant and 

pellet, respectively. 

DNA/RNA immunoprecipitation sequencing (DRIP-seq) 81 

cells (5 × 106) were lysed in 0.5% SDS/TE, pH 8.0 containing Proteinase K overnight at 37 °C. 

Total DNA was isolated with phenol/chloroform/isoamylalcohol extraction followed by 

standard ethanol precipitation. One-third of total DNA was fragmented by a cocktail of 

restriction enzymes (EcoRI, HindIII, BsrgI, SspI, XbaI) overnight at 37 °C. A negative control 

treated overnight with RNase H was included. Digested DNA was purified by 

phenol/chloroform/isoamylalcohol extraction, ethanol precipitation and quantified by 

Nanodrop. Four micrograms of digested DNA were diluted in binding buffer (10 mM NaPO4, 

pH 7.0; 0.14 M NaCl; 0.05% Triton X-100) and incubated with 10 μg of S9.6 antibody 

overnight at 4 °C on a rotator. DNA/antibody complexes were added for 2 h at 4 °C to Agarose 

Protein-A/G beads prewashed with binding buffer. Immunoprecipitated DNA was eluted by 

incubating with elution buffer (50 mM Tris pH 8.0; 10 mM EDTA; 0.5% SDS) containing 

Proteinase K at 55 °C for 45 min on a rotator. The eluent was precipitated by 

phenol/chloroform/isoamylalcohol extraction and ethanol precipitation. Validation of DRIP 

procedure was performed by qPCR. The pulled down material and input DNA were then 

sonicated, size-selected, and ligated to Illumina barcoded adaptors, using TruSeq ChIP Sample 

Preparation Kit (Illumina) or ThruPLEX® DNA-seq Kit (Rubicon Genomics) for next-

generation sequencing (NGS) on Illumina HiSeq 2500 platform. 

Chromatin immunoprecipitation sequencing (ChIP-seq) 55 



70 

 

For the ChIP-seq of phosphorylation of histone variant H2AX on S139 (-H2AX ChIP-seq) 118, 

formaldehyde was added to the culture medium to a final concentration of 1% for 10 min at 

room temperature. Glycine was added to a final concentration of 0.125 M for 5 min to stop 

crosslinking. Cells were harvested by scraping after PBS wash. Pelleted cells were lysed in lysis 

buffer (50 mM PIPES, pH 8; 85 mM KCl; 0.5% NP-40). The lysates were homogenized with 

a Dounce homogenizer and nuclei were harvested by centrifugation. Nuclei were then incubated 

in nuclear lysis buffer (50 mM Tris, pH 8.1; 10mM EDTA; 1% SDS) and sonicated at 70% 

amplitude for a duration of 3 min and 25 s with 15 s on and 45 s off (Qsonica Q700 sonicator) 

to obtain DNA fragments of about 500-1000 bp. Samples were diluted 10 times in dilution 

buffer (0.01 % SDS; 1.1% Triton X-100; 1.2 mM EDTA; 16.7 mM Tris, pH 8.1; 167 mM NaCl) 

and subjected to a 45 min preclearing with 140 μl of previously blocked protein-A and protein-

G beads. Blocking was achieved by incubating the agarose beads with 500 μg of BSA and 200 

μg of herring sperm DNA for 3 h at 4 °C. Precleared samples were incubated overnight at 4 °C 

with antibodies specific for γ- H2AX (10 μl) or without antibody as negative control. Immune 

complexes were then recovered by incubating the samples with 140 μl of blocked protein-

A/protein-G beads for 2 h at 4 °C on a rotating wheel. Beads were washed once in dialysis 

buffer (2 mM EDTA; 50mM Tris, pH 8; 0.2% Sarkosyl) and four times in wash buffer (100 

mM Tris, pH 8.8; 500 mM LiCl; 1% NP-40; 1% NaDoc). Elution from the beads was achieved 

by incubation in elution buffer (1% SDS; 100mM NaHCO3) for 15 min. Crosslink was reversed 

by adding 0.2% SDS and RNase A to the samples and incubating overnight at 70 °C. After a 2-

h proteinase K treatment, DNA was precipitated by phenol/chloroform extraction and ethanol 

precipitation. The AsiSI–ER-U2OS cells treated with or without 4-hydroxytamoxifen (4-OHT) 

were included as positive control for the validation of experiments. The pulled down material 

and input DNA were then size-selected, and ligated to Illumina barcoded adaptors, using 

TruSeq ChIP Sample Preparation Kit (Illumina) or ThruPLEX® DNA-seq Kit (Rubicon 

Genomics) for next-generation sequencing (NGS) on Illumina HiSeq 2500 and HiSeq 4000 

platforms. For phospho-RPA2-S33 ChIP, similar procedure was performed with minor 

modifications. Cells were resuspended in sonication buffer (50 mM HEPES, pH 8.0; 140 mM 

NaCl; 1 mM EDTA; 1% Triton X-100; 0.1% NaDoc; 0.5% SDS) and proceeded to sonication. 

Immunoprecipitation was performed using 30 μg chromatin and 4 μg anti-phospho-RPA2-S33 

antibody. The pulldown material was eluted using IPure kit (Diagenode) and proceeded to NGS 

as described above. 



71 

 

Immobilized-Breaks Labeling, Enrichment on Streptavidin and next-generation 

Sequencing (i-BLESS)  

Samples for i-BLESS analysis were prepared as described 119 with minor modifications. 

Approximately 10 million of HeLa cells were resuspended in PBS buffer and mixed with 1% 

low melting point agarose in PBS buffer at 40 °C. Cell suspension was mixed with liquid 

paraffin at 40 °C and vigorously shaken by hand for 1 min, until emulsion was formed. The 

emulsion was then poured into ice-cold PBS buffer and the mixture was stirred for several 

minutes. Agarose bead sus- pension was gently centrifuged (200 × g, 10 min), paraffin layer 

was removed and agarose bead pellet was washed 3 times with TE buffer. Beads were washed 

with ES buffer (1% Sarkosyl, 25 mM EDTA, pH 8.0), resuspended in ES with 50 µg ml−1 

Proteinase K and incubated overnight at 50 °C. After incubation, the beads were washed with 

TE + 0.1 mM PMSF and twice with TE. Next, the beads were washed in 1 × Blunting Buffer 

(NEB), followed by DNA ends blunting using Quick Blunting kit (NEB) for 2 h and then 

washed twice with TE. The beads were subsequently washed with dA-Tailing Reaction Buffer 

(NEB) and DNA ends were A-tailed using NEBNext® dA-Tailing Module for 80 min. Next, 

the beads were washed with T4 ligation buffer and then resuspended in T4 ligation buffer with 

100 nM P5 adapter and T4 ligase (NEB) and incubated overnight at 16 °C. After ligation, the 

beads were washed once with TE, and encapsulated DNA was initially. 

RNA-seq 

RNA-seq libraries were prepared using the Illumina TruSeq Stranded mRNA Library Prep Kit. 

Paired-end RNA-seq were performed with an Illumina NextSeq sequencing instrument (Helixio, 

France). 

Comet assay 

DNA breaks were monitored using the OxiSelect Comet Assay Kit (CELL BIOLABS, Inc.) 

according to the manufacturer’s instructions. Slides were visualized using immunofluorescence 

microscopy (Zeiss ApoTome). The acquired comet images were analyzed by using MetaMorph 

Microscopy Automation and Image Analysis Software (Molecular Devices) and statistical 

analysis was performed with GraphPad Prism (GraphPad Software). A total of 200 cells were 

analyzed. 

Available published datasets 
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Global nuclear run-on sequencing (GRO-seq) 120 for detecting the nascent transcripts and OK-

seq 12 for detecting the replication fork direction and initiation/termination zones are obtained 

directly from accession GSE62046 and SRP065949 respectively. 

 

1.3.  Bioinformatics analysis 

The quality of sequencing data was checked with FastQC (http://www.bioinformatics. 

babraham.ac.uk/projects/fastqc). ChIP-seq and DRIP-seq data were aligned to Human genome 

reference (hg19 assembly) with Bowtie2 121 and RNA-seq using STAR 122. Mapping quality 

was assessed with SAMtools 123 and in-house Python scripts. Peak-calling for DRIP-seq data 

was done using MACS2 124 with a q-value of 0.05 and keeping up to five duplicates. Only the 

expressed genes, with the transcription RPKM>0, were selected to determine the impact of 

different gene positions on R-loop formation. Intersection of transcripts annotation (RefSeq, 

hg19) with R-loop signal was done using BEDTools 125. The analyses of replication fork 

directionality and replication initiation zones used the published OK-seq data from HeLa cells. 

DeepTools2 112 was used to compute and draw enrichment heat maps and profiles on positions 

of interest (peaks, TSS, TTS). Further analyses were done in R (http://www.R-project.org), with 

Bioconductor 126 packages and ggplot2 for graphic representation. 

 

2. Results  

2.1. TOP1 depletion increases R-loop levels 

TOP1 is essential for cell growth and an acute depletion of this enzyme leads to a G0/G1 arrest 

127. To monitor the effect of TOP1 depletion on TRCs, we constructed a stable HeLa cell line 

expressing an inducible shRNA against TOP1 (shTOP1). Conditions of depletion were 

optimized to reduce TOP1 levels without arresting cell cycle progression. This is confirmed by 

the fact that the distribution of cells in G1, S and G2 phases of the cell cycle was not affected by 

the reduction of TOP1 levels (Fig. 3-1A, B). To monitor the impact of this depletion on 

replication forks, cells were labeled for 20 minutes with 5-iodo-2’-deoxyuridine (IdU) and for 

20 minutes with 5-chloro-2’-deoxyuridine (CldU). DNA fibers incorporated with halogenated 

thymidine analogs were detected by immunofluorescence using specific antibodies by DNA 

combing technique 43. We observed a 30 to 40% reduction of CldU tracks length in TOP1-

depleted cells relative to control cells, which was largely suppressed by a transient 

overexpression of human RNase H1 (Fig. 3-1C) which highly suggests that the replication 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.r-project.org/
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slowdown observed in shTOP1 cells is caused by RNA:DNA hybrids. To confirm that TOP1-

depleted cells have increased levels of R-loops, we used the S9.6 monoclonal antibody to 

quantify RNA:DNA hybrids in control and shTOP1 cells and observed an 70% increase in R-

loop levels in shTOP1 cells. Importantly, this signal was highly sensitive to RNase H, 

confirming thereby that it corresponds to RNA:DNA hybrids.  

 

2.2.  R-loops form preferentially at TSS and TTS 

To identify regions of the human genome that are prone to form R-loops in the absence of TOP1, 

RNA:DNA hybrids were immunoprecipitated with the S9.6 antibody and were analyzed by 

next generation sequencing (DRIP-seq) as described 81. DRIP-seq profiles showed the 

enrichment of R-loops overlapped with 8726 and 10906 annotated genes (RefSeq annotations, 

hg19) in control and shTOP1 cells, respectively and most of R-loop positive genes (8015) were 

common to both cell types with high transcription level (Fig 3-2A). On average, they are mainly 

enriched at both TSS and TTS (Fig. 3-2B, C), which is consistent with the previous studies 80. 

The validation of R-loop enrichment at TTS of genes was performed by DRIP-qPCR (Fig. 3-

2D). Genes showed similar enrichment patterns of R-loops and expression in both control and 

shTOP1 cells. DRIP signals are further increased at TTS of converging genes in a manner that 

depended both on the distance between converging genes and on their level of expression (Fig. 

3-2E, F). Together, these data indicate that the TSS and TTS of highly expressed genes 

Figure 3-1. Depletion of TOP1 does not impact the cell cycle but slows down the fork progression. (A) Western blot 

analysis of TOP1 levels in HeLa cells expressing shRNA targeting TOP1 (shTOP1) under the control of a doxycycline-

inducible promoter at 72 h post-induction (n = 9). (B) Cell-cycle distribution of control and shTOP1 cells determined by flow 

cytometry after labeling of S-phase cells with EdU. The fraction of cells in the different cell-cycle phases is indicated. (C) 

Doxycycline-treated control and shTOP1 HeLa cells were transfected for 48 h with a mock vector (EGFP-N1) or human RNase 

H1-EGFP (+RNase H1) and were sequentially labeled with IdU and CldU for 20 min. Replication fork progression was 

measured using DNA fiber spreading. The median length of CldU tracks is indicated in red. At least 150 fibers of each sample 

were measured (n = 3). P-values were calculated with the two-sided Mann–Whitney rank-sum test. Figures provided by our 

collaborators Pasero’s lab. 
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represent hotspots of R-loops and that shTOP1 cells show increased R-loop levels and slower 

fork progression.  

 

Figure 3-2. R-loop distribution in genome wide. (A) DRIP-seq expressed in RPKM (Read Per Kilobase per Million reads) 

in control and shTOP1 HeLa cells. A representative region on chromosome 6 is shown. RNA-seq data (RPKM) for HeLa cells 

and gene positions (hg19) are also indicated. (B) Distribution of R-loop peaks relative to gene annotations in control and 

shTOP1 HeLa cells. Peaks were obtained with MACS2 and were analyzed with CEAS (Cis-Regulatory Element Annotation 

System). The expected distribution in CEAS peaks were randomly positioned in the genome is shown for comparison. The 

percentage of DRIP-seq signals present in each annotation class is indicated. TSS: Transcription Start Site (5′-UTR and 3 kb 

upstream). TTS: Transcription Termination Site (3′-UTR and 3 kb downstream). (C) Metaplot of the distribution of S9.6 signals 

(IP/input) along 16,336 active human genes (RPKM > 0) and flanking regions (±10 kb) in control (red) and shTOP1 (blue) 

HeLa cells. Error bars correspond to SEM. (D) DRIP-qPCR analysis of the relative enrichment of RNA:DNA hybrids at the 

TTS of 4 genes and a negative control region (SNPRN) in control and shTOP1 HeLa cells after RNase H1 treatment (+RNH). 

Error bars correspond to three independent experiments. (E, F) Metaplots of DRIP signals at converging genes depending on 

the distance between their TTS in both conditions and at converging genes spaced by less than 5 kb relative to mRNA levels 

in control and shTOP1 HeLa cells. Shadows indicate standard error. Figure D provided from Pasero’s lab. 
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2.3.  Phospho-RPA accumulates at TTS of R-loop containing genes 

To identify RNA:DNA hybrids that may interfere with fork progression, we next used the 

phosphorylation of RPA32 by ATR on S33 (p-RPA) as a surrogate for stalled replication and 

ATR activation. Regions enriched in p-RPA were mapped by ChIP-seq and were positioned 

relative to DRIP signals in untreated control cells (Fig. 3-3A). Same p-RPA patterns are also 

found in shTOP1 cells. The detection of individual DRIP and p-RPA peaks on DRIP-seq and 

ChIP-seq profiles (Fig. 3-3A; underlined in black) revealed that although most genes enriched 

in p-RPA contained R-loops, only a fraction of R loop containing genes were enriched in p-

RPA in control and shTOP1 cells (Fig. 3-3B). 27% of all the R-loops detected in control cells 

and 7% of R-loops detected in shTOP1 cells are overlapped with p-RPA enriched regions 

indicating that most R-loops do not interfere with fork progression. However, up to 90% of 

detected p-RPA signals are also co-enriched with DRIP signals suggesting that R-loops are 

definitely involved in the replication fork stalling process. 

To identify the R-loops that are potentially toxic for replication forks, we compared the 

distribution of DRIP signals and p-RPA at annotated genes. Unlike R-loops, p-RPA was mostly 

present at TTS and not at TSS in control and shTOP1 cells (Fig. 3-3C, D). More precisely, this 

is illustrated with the MED15 gene, which shows a peak of p-RPA downstream of TTS and no 

enrichment at TSS (Fig. 3-3A). These data suggest that forks preferentially pause at the TTS of 

highly expressed genes containing R-loops. 
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Figure 3-3. Phospho-RPA accumulates at TTS in control and shTOP1 cells. (A) Distribution of DNA hybrids (DRIP-seq), 

p-RPA32 S33 (ChIP-seq) and nascent transcription (GRO-seq) signals at a representative region on chromosome 22 in control 

HeLa cells and shTOP1 cells. The positions of TSS and TTS are indicated for the MED15 gene. The positions of DRIP and p-

RPA peaks identified with MACS2 are also indicated. (B) Venn diagram of the percentage of genes overlapping with R-loop 

(red) and p-RPA peaks (black) peaks (MACS2) in control and shTOP1 cells. (C) The distribution of p-RPA peaks was analyzed 

with CEAS as in Fig 1e. The percentage of p-RPA peaks present in each region is indicated. (D) Metaplots of RNA:DNA 

hybrids (DRIP, red), p-RPA (black) and replication fork direction (RFD, blue) at 16336 active genes in control and shTOP1 

cells. (E) Distribution of RNA:DNA hybrids (DRIP-seq), p-RPA32 S33 (ChIP-seq) and nascent transcription (GRO-seq) 

signals at two converging genes KDM1A and LUZP1 on chromosome 1 in control and shTOP1 HeLa cells. The positions of 

DRIP and p-RPA peaks identified with MACS2 are indicated. 
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2.4.  Phospho-RPA accumulates at TTS in a head-on orientation 

HO collisions between replication and transcription are generally considered more harmful than 

CD collisions 3,5. Since highly expressed genes usually contain active replication origins in their 

promoter region and are therefore mostly replicated codirectionally with transcription 12,75, we 

reasoned that the asymmetric distribution of p-RPA at genes could reflect this bias in replication 

fork direction (RFD). To address this possibility, we analyzed the direction of fork movement 

at gene loci using Okazaki fragment sequencing data and the bioinformatics methods developed 

by our lab 12. In Figure 3-4A, the MED15 gene contains a replication origin in its promoter 

region and is mostly replicated by forks progressing co-directionally with transcription. In 

contrast the TTS region of MED15 is preferentially replicated by an origin located downstream 

of the gene. Remarkably, p-RPA enrichment was detected at TTS, where replication and 

transcription converge, and not at TSS, which is replicated in a CD orientation. This p-RPA 

enrichment at TTS regions replicated in a HO orientation (RFD score < 0), but not at TSS 

replicated in a CD orientation (RFD score > 0) was also observed on a metaplot of 16336 active 

genes (Fig. 3-4B), indicating that it is a general feature of the human genome.  

Since the TTS of converging genes are hotspots for RNA:DNA hybrids (Fig. 3-4B), we next 

exanimated whether it is also the case for p-RPA. As illustrated in Fig. 3-3E, p-RPA was 

enriched at the TTS of the converging genes KDM1A and LUZP1 in both control and shTOP1 

cells. Phospho-RPA was also enriched at the TTS of 2118 converging genes separated by less 

than 5 kb, but not for 3974 TTS separated by more than 5 kb (Fig. 3-4C). The amount of p-

RPA depended on the level of expression of converging genes (Fig. 3-4D), as it is the case for 

R-loops (Fig. 3-2F). Interestingly, p-RPA enrichment at TTS was also influenced by the 

presence of a nearby replication origin downstream of the TTS (Fig. 3-4E), similar to what was 

observed for the MED15 gene (Fig. 3-4A). The amount of p-RPA at TTS decreased as the 

distance between TTS and the replication origin increased (Fig. 3-4E), presumably because a 

short distance to the next downstream origin increases the risk of HO collisions at TTS (Fig. 3-

4F; RFD score < 0). Altogether, these data indicate that the accumulation of p-RPA at TTS is 

determined by the direction of replication forks and gene transcription. 
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2.5.  TOP1-depleted cells accumulate 𝛾-H2AX and DSBs 

To further characterize the impact of R-loops on replication stress and chromosome breaks, we 

next analyzed the presence of -H2AX in control and shTOP1 cells. Western blot analyses 

revealed a global increase of -H2AX levels in shTOP1 cells relative to control cells (Fig. 3-

Figure 3-4. phospho-RPA accumulates at TTS in a head-on orientation. (A) Distribution of RNA:DNA hybrids (DRIP-

seq), p-RPA32 S33 (ChIP-seq), Okazaki fragments (OK-seq) and nascent transcription (GRO-seq) signals at a representative 

region on chromosome 22 in control HeLa cells. Replication fork direction (RFD) is derived from OK-seq data. The positions 

of TSS and TTS are indicated for the MED15 gene. The positions of DRIP and p-RPA peaks identified with MACS2 are also 

indicated. (B) Metaplots of RNA:DNA hybrids (DRIP, red), p-RPA (black) and replication fork direction (RFD, blue) at 16336 

active genes in HeLa cells. (C) Metaplots of the distribution of S9.6 signals at converging genes depending on the distance 

between their TTS in control and shTOP1 HeLa cells. (D) Metaplots of the distribution of S9.6 signal at converging genes 

spaced by less than 5 kb relative to mRNA levels in control and shTOP1 HeLa cells. Shadows indicate standard error. (E) 

Metaplots of p-RPA signals at genes in control and shTOP1 cells depending on the distance between TTS and the next 

downstream replication origins, shadows indicate standard error. (F) Impact on replication fork direction (RFD) of the distance 

between genes and downstream origins. 
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5A). This is consistent with an increase of spontaneous DNA breaks in shTOP1 cells relative 

to control cells, as determined by comet assay (Fig. 3-5B) and to an increase of p-RPA32 S4/S8 

foci in shTOP1 cells, which is indicative of DSBs (Fig. 3-5C). To determine whether -H2AX 

accumulates at the TTS of highly expressed genes containing R-loops in the absence of TOP1, 

the 35251 annotated genes were sorted according to their mRNA level (RPKM) and were 

organized in five quintiles (7050 genes) of decreasing gene expression level (Fig. 3-5D). The 

analyses of DRIP-seq and ChIP-seq signals at TTS revealed that although the distribution of R-

loops and p-RPA was nearly identical in control and shTOP1 cells, -H2AX was only detected  

in shTOP1 cells. This signal decreased with gene expression level, which parallels the decrease 

of DRIP-seq and p-RPA ChIP-seq signals in the same quintiles. 

Figure 3-5. TOP1 prevents the accumulation of -H2AX at highly expressed genes. (A) Western blot analysis of g-H2AX 

levels in control and shTOP1 cells. (B) Analysis of DNA breaks in control and shTOP1 cells. Representative images and the 

distribution of comet tail lengths are shown. Bar is 10 µm. ****: p<0.0001, Mann-Whitney rank sum test. (C) Immunodetection 

of phospho-RPA32 S4/S8 in control and shTOP1 cells. Mean fluorescence intensity (MFI) of the p-RPA32 S4/S8 signals is 

shown. ****: p<0.0001, Mann-Whitney rank sum test. (D) Heat map of the intensity of RNA:DNA hybrids (DRIP), p-RPA 

and γ-H2AX at TTS in control and shTOP1 HeLa cells for five groups of genes with decreasing expression levels (RNA-seq). 

In each group, genes were sorted relative to the intensity of DRIP signal. Figure A, B and C are provided from Pasero’s lab. 
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2.6.  SRSF1-deficient cells do not phenocopy shTOP1 cells defects 

The accumulation of DSBs and -H2AX in shTOP1 cells could either be due to R-loops or to 

topological stress. To discriminate between these possibilities, we depleted the splicing factor 

SRSF1 in HeLa cells to increase the formation of R-loops without affecting DNA supercoiling 

128,129. We observed an increased level of R-loops at highly expressed genes in shSRSF1 cells, 

showing the same distribution as in control and shTOP1 cells (Fig. 3-6A, B). Interestingly, 

shSRSF1 cells also showed an accumulation of p-RPA at TTS of highly expressed genes 

containing R-loops (Fig. 3-6C-G), but no increase in -H2AX levels (Fig. 3-6F-I), unlike 

shTOP1 cells (Fig. 3-5D). Altogether, these data suggest that DSBs form more frequently in 

shTOP1 cells than in shSRSF1 and control cells, which revealed that TOP1 prevents breaks by 

resolving topological constraints at TTS and increased R-loops at TTS is necessary but not 

sufficient for DSB induction. 
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2.7.  DSBs form at TTS containing R-loops in shTOP1 cells 

Since the resolution of -H2AX ChIP-seq profiles is not sufficient to position chromosome 

breaks, we next used a next-generation sequencing-based assay called i-BLESS to map DSBs 

at nucleotide resolution. To determine whether shTOP1 cells accumulate DSBs at TTS, we 

measured the intensity of i-BLESS signal for a 2 kb window centered on the TTS of all human 

genes and sorted them according to the intensity of this signal (Fig. 3-7A). Interestingly, the 

TTS of the top 25% genes also showed an increased level of DRIP and p-RPA (Fig. 3-7B). A 

similar result was obtained when we used a hierarchical clustering approach to identify genes 

with increased i-BLESS signal indicating increased frequency of DSBs (DSB+, n=9533) at 

their TTS in shTOP1 cells (Fig. 3-7C, 3-8C). Again, DSB+ genes also showed increased levels 

of R-loops, p-RPA and -H2AX relative to DSB- genes (Fig. 3-7D). When we analyzed DSBs 

at TSS, we also found increased i-BLESS signal at a subset of genes in shTOP1 cells (Fig. 3-

8A), which is consistent with the presence of transcription-dependent DSBs in promoter 

regions. However, these breaks were not associated with increased p-RPA levels (Fig. 3-8B), 

unlike at TTS (Fig.3-7A). 

Finally, we analyzed the incidence of gene orientation on DSB formation. While the percentage 

of genes in converging (HO) or codirectional (CD) orientations was not significantly different 

between DSB+ and DSB- genes (44 vs 45% for HO), DSB+ genes showed increased DRIP and 

p-RPA signals at closely arranged HO genes (<5 kb between TTS) compared to DSB- genes 

(Fig. 3-8D). This difference was less marked for CD genes (Fig. 3-8E). Altogether, these data 

indicate that the increased -H2AX signal observed in shTOP1 cells results from DSBs 

occurring at the TTS of a large number of genes enriched in R-loops and p-RPA.   

Figure 3-6. Depletion of SRSF1 increases R-loop and p-RPA at TTS, but not γ-H2AX. (A) Venn diagram of the number 

of genes enriched in R-loops in control, shSRSF1, and shTOP1 cells. R-loop-positive genes correspond to genes overlapping 

with R-loop peaks identified with MACS2. (B) mRNA level (RPKM) of genes overlapping (R-loop+) or not (R-loop−) with 

S9.6 peaks in shSRSF1 cells. Box: 25th and 75th percentiles; central line: median. (C) Distribution of R-loop peaks in shSRSF1 

cells relative to gene annotations. Peaks were obtained with MACS2 and were analyzed with CEAS (Cis-Regulatory Element 

Annotation System). (D) Venn diagram of the percentage of genes overlapping with R-loop (red) and p-RPA peaks (black) 

peaks (MACS2) in shSRSF1 cells. (E) Distribution of p-RPA (S33) peaks in shSRSF1 cells relative to gene annotations. (F) 

Heatmap of the intensity of RNA:DNA hybrids (DRIP), p-RPA, and γ-H2AX at TTS in shSRSF1 cells for five groups of genes 

with decreasing mRNA levels (RPKM). Within each group, genes were sorted relative to the intensity of DRIP signal. (G) 

Metaplot of RNA:DNA hybrids (DRIP, red) and p-RPA (black) at 16,336 active genes in shSRSF1 cells. Error bars correspond 

to SEM. (H) Scatter plot of the intensity of γ-H2AX signal at all active genes in control, shSRSF1, and shTOP1 cells. (I) 

Western blot analysis of γ-H2AX levels on chromatin in control, shSRSF1, and shTOP1 cells. H2AX used as a loading control 

(n = 3). Figure I provided from Pasero’s lab. 
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Figure 3-7. TOP1 prevents the accumulation of -H2AX and DSBs at TTS. (A) Heatmap of the intensity of i-BLESS signal 

at TTS in control and shTOP1 cells for two groups of genes determined according to the intensity of i-BLESS signal at the TTS 

(+/- 2 kb) in shTOP1 cells. (B) Metaplots of i-BLESS, RNA:DNA hybrids and p-RPA32 S33 signal for the Top25% (red) and 

others (black) genes in control and shTOP1 HeLa cells, shadows indicate standard error. (C) Heatmap of the intensity of i-

BLESS signal at TTS in control and shTOP1 cells for two groups of genes (DSB+ and DSB-) determined by hierarchical 

clustering analysis of i-BLESS signal at the TTS in shTOP1 cells. (D) Metaplots of i-BLESS, RNA:DNA hybrids, p-RPA32 

S33 and -H2AX signal for DSB+ (red) and DSB- (black) genes in control and shTOP1 cells, shadows indicate standard error. 
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Figure 3-8. TOP1 prevents DNA breaks at TTS. (A) Heatmap of the intensity of i-BLESS signal at TSS in control and 

shTOP1 cells for two groups of genes determined according to the intensity of i-BLESS signal at the TSS (+/- 2 kb) in shTOP1 

cells. (B) Metaplots of i-BLESS, RNA:DNA hybrids and p-RPA32 S33 signal for the Top25% (red) and others (black) genes 

in control and shTOP1 HeLa cells, shadows indicate standard error. (C) Distribution of i-BLESS, DRIP, p-RPA, -H2AX 

signal intensities at TTS of DSB+ (white) and DSB- genes (grey) in control and shTOP1 cells. (D, E) Intensity of DRIP and p-

RPA signals at converging (HO) and codirectional (CD) genes from DSB+ and DSB- genes and separated by more or less than 

5 kb in control and shTOP1 cells. 
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3. Discussion 

It is now well established that R-loops have both positive and negative impacts on genome 

activity, but the difference between physiological and pathological R-loops has remained 

unclear. Here, we have compared the distribution of R-loops, replication stress markers (p-RPA 

and -H2AX) and DSBs in HeLa cells to identify R-loops that are detrimental to DNA 

replication and activate ATR. Using DRIP-seq, we have identified hotspots of R-loop formation 

at the promoters and terminators of highly expressed genes, as described earlier 80. Depletion 

of TOP1 further increased R-loop levels at TTS and especially at converging genes, presumably 

because of the accumulation of topological stress 130,131. Interestingly, we found that only 27% 

of R-loop containing genes colocalized with phospho-RPA32 (S33), a mark of ATR activation 

used here as a proxy for stalled replication forks. Yet, 84 to 90% of these p-RPA peaks were 

associated with R-loops. These values are derived from the conservative analysis of a weak 

ChIP signal in a population of unchallenged and asynchronously growing cells, so it could be 

that the actual number of p-RPA peaks is higher. Yet, these data indicate that p-RPA does not 

accumulate at all R-loops and suggest that only a fraction of R-loop containing genes are 

responsible for most of the fork pausing events in unchallenged growth conditions. Incidentally, 

these data indicate that the vast majority of the co-transcriptional R-loops present in the human 

genome do not interfere with DNA replication or at least do not induce a detectable activation 

of ATR. 

One of the most striking differences between the distribution of DRIP and p-RPA signals is that 

R-loops were detected at both TSS and TTS of highly expressed genes whereas p-RPA was 

mostly enriched at TTS. Since promoter regions of highly expressed genes usually contain 

active replication origins 12,75, this asymmetry in p-RPA distribution may reflect an influence 

of fork polarity on transcription-replication conflicts 73,98. A meta-analysis of replication fork 

direction through 16336 active genes (RPKM>1) confirmed that TSS and gene bodies are 

preferentially replicated codirectionally (RFD+), whereas TTS are mostly replicated by head-

on forks (RFD-). Remarkably, p-RPA was enriched at RFD- regions, supporting the view that 

RPA is phosphorylated by ATR upon fork pausing at TTS enriched in R-loops. Our data are 

consistent with a recent study showing that R-loops interfere with fork progression in an 

orientation-dependent manner on a human episomal system 3 and extend this observation to the 

genome-wide level. Interestingly, p-RPA enrichment was further increased at the TTS of 

converging genes, proportionally to the levels of gene expression and to the proximity of the 

nearest HO-orientation gene neighbor. In addition, p-RPA levels at TTS were increased by the 
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proximity of a replication origin. Altogether, these data suggest that transcription terminators 

represent hotspots of R-loops and replication fork arrest in the human genome, acting in a 

context- and orientation-dependent manner.  

TOP1 depletion in HeLa cells increased levels of -H2AX, phospho-RPA32 (S4/S8) and DNA 

breaks relative to control cells. To determine whether chromosome breaks occur at TTS, we 

have analyzed the distribution of DSBs at the nucleotide resolution using i-BLESS 119. DSBs 

were detected downstream of the TTS of a large number of genes that were also enriched in R-

loops and p-RPA, especially in regions of the genome where transcription converges. Since it 

has been recently reported that replication forks blocked by R-loops can be restarted by fork 

cleavage in a MUS81-dependent manner 132, an attractive possibility could be that DSBs 

detected at TTS are generated by this structure-specific endonuclease. Interestingly, DSBs were 

also detected upstream of TSS, which may correspond to the replication independent DSBs 

reported at promoter regions in other studies 133. Recent reports indicate that these DSBs may 

depend on Topoisomerase II β activity and on the proximity of CTCF sites at loop anchors 134. 

These breaks could be distinct from the replication-dependent DSBs occurring at TTS, which 

could be more related to the estrogen-induced DSBs occurring during S phase at R-loop-

containing genes in breast cancer cells 88. 

An important question that remains to be addressed is the mechanism by which R-loops 

interfere with DNA replication in human cells. It is generally proposed that RNA:DNA hybrids 

are intrinsically difficult to replicate and impede fork progression in an orientation-dependent 

manner. However, our DNA fiber analyses revealed that all replication forks were equally 

slowed down by 30 to 40% in shTOP1 cells, which argues against a direct effect of R-loops. 

Indeed, highly expressed genes cover only a small fraction of the human genome and R-loops 

should therefore affect only a subset of forks in shTOP1 cells. This should lead to a bimodal 

distribution of CldU track lengths and not a global reduction of fork speed. We rather favor a 

model in which replication fork pausing at TTS prevents HO collisions with transcription (Fig. 

3-9). TOP1-deficient cells could experience difficulties to stabilize these paused forks, which 

would increase the risk of fork collapse and DSB formation. DSBs would in turn induce a 

chronic activation of S-phase checkpoints and a slowdown of replication forks. This view is 

supported by the fact that cells depleted for the splicing factor SRSF1, which have increased 

R-loop levels but no DNA relaxation problems, have faster replication forks and less -H2AX 

than shTOP1 cells. This model is also consistent with reports showing that ATR downregulates 

elongation at undamaged forks in yeast and human cells 135–137. It is also consistent with data in 
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budding yeast showing that fork arrest does not directly depend on R-loops and is 

mechanistically separable from the induction of DNA damage 138. Yet, the overexpression of 

RNase H1 partially rescued the slow fork phenotype of shTOP1 cells, suggesting that 

RNA:DNA hybrids negatively impact DNA replication in these cells. To explain this apparent 

discrepancy, we propose that RNA:DNA hybrids form at stalled forks as a consequence of fork 

arrest and could impede fork restart. This would be reminiscent of the formation of RNA:DNA 

hybrids at DSBs, which interfere with their HR-mediated repair 139. 

In conclusion, our results suggest that polar fork arrest at TTS is an active process that prevents 

collisions between RNA and DNA polymerases, as previously reported in budding yeast 140,141. 

Transient fork pausing could help cells displace RNA polymerases ahead of the replisome, 

through a process involving Mec1 and INO80 142,143. Since transcription is a discontinuous 

process 144, forks may also pause during transcription bursts and restart after passage of RNA 

polymerase convoys. In this model, TTS could act as traffic lights, arresting forks until road 

blocks have been removed. Alterations of DNA relaxation or pre-mRNA cleavage could 

perturb this coordination, leading to increased DNA breaks and to the chronic activation of 

ATR 128,145, which would reduce in turn the speed of replication forks. Our data are consistent 

with recent models in which initiation of DNA replication upstream of highly expressed genes 

would facilitate the coordination between replication and transcription 12. This is reminiscent 

of the codirectional organization of genes in B. subtilis and other bacteria to avoid head-on 

conflicts with replication 98,146. This organization does not exist in budding yeast, in which 

persistent R-loops were recently shown to cause genomic instability independently of their 

orientation 147. In metazoan, this organization would accommodate extensive changes in gene 

expression profiles occurring during cell differentiation. In other words, the functional coupling 

between strong origins and promoters would represent a simple and flexible mean to limit 

transcription-replication conflicts in differentiating cells. Interestingly, it has been recently 

reported that the deregulation of oncogenic pathways activates intragenic replication origins 

that induce HO conflicts and chromosome breaks 72. It is therefore tempting to speculate that 

the loss of a functional organization restraining replication-transcription conflicts to TTS leads 

to genomic instability in precancerous lesions. 
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Figure 3-9. A two-step model for the regulation of TRCs in the human genome. (A) Highly expressed genes form co-

transcriptional R-loops at TSS, TTS and to a lesser extent in gene bodies. Replication origins are frequently located upstream 

of TSS. (B) Initiation from upstream origins ensures that R-loops at TSS and gene bodies are preferentially replicated co 

directionally, which would limit HO conflicts. Forks progressing in the opposite direction pause when they encounter the TTS 

of highly expressed genes, presumably because of the accumulation of positive supercoiling. Transient fork pausing activates 

ATR and leads to the phosphorylation of RPA32 on S33. ATR may also promote the displacement of RNA polymerases ahead 

of the paused fork. (C) In the absence of TOP1, the accumulation of torsional stress may lead to fork collapse and to the 

sustained activation of ATR/ATM. This would in turn slow down fork progression throughout the genome. 
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Chapter 4 Perspectives 
 

1. R-loop-induced transcription-replication conflicts (TRC) in breast cancer 

Since TRC under replicative stress has been revealed to be a detrimental source in the 

homeostasis of genomic stability, strong evidences in recent decades also suggest that it could 

have a potential role in the tumor progression and cancer development 2. Breast cancer is the 

most frequent malignancy occurring in females, accounting for ~25% of the total diagnosed 

cancer cases and 14% of the cancer deaths 148.  

The estrogen receptor (ER) positive breast cancer accounted for around 75 % of all breast 

cancers, and increasing evidences from epidemiological, in vivo and in vitro studies suggest 

that the hormone estrogen (E2, 17b-estradiol) plays a causal role during carcinogenesis 149. 

Specifically, higher E2 serum concentrations and longer lifetime E2 exposure are both 

positively correlated with an increased incidence of breast cancer. In addition, E2-mediated 

transcription induces DNA double-strand breaks (DSBs) specifically in breast epithelial cells 

that express the estrogen receptor in a cell cycle-dependent manner 150. However, despite strong 

links between estrogen and genomic instability, the molecular mechanism by which E2 causes 

this instability in breast cancer is unclear. 

Recent evidences have shed new light on the E2-dependent carcinogenic mechanism, showing 

that R-loops resulted from the E2 transcriptional response correlate with increased DNA 

damage in E2 dependent breast cancer 88. Stork and colleagues have shown that, in MCF7 ER-

positive breast cancer cells, the E2-induced transcriptional changes promote R-loop formation 

and DSBs. Importantly, it has been shown that such R-loop induced genome instability 

observed in MCF7 cells depends on DNA replication, as DNA damage is only detected in 

replicating cells, but not outside of the S phase (Fig.4-1A). Moreover, these E2-induced DNA 

damages were colocalized with R-loop formation (Fig. 4-1B, C) and could be reduced by R-

loops degradation through RNase H overexpression 88. Thus, one hypothesis to explain E2-

induced genome instability is that the uncontrolled proliferation, due to too high/long E2 

exposure, causes transcription-replication conflicts (TRC) that lead to replication stress and 

DNA damage. 
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To further optimize the identification of TRC loci, it would be interesting to compare replication 

fork progression (OK-seq) with transcription data derived from S-phase ER+ cells in presence 

and absence of E2. It will allow us to be able to identify more accurately the TRC distribution 

genome wide. Based on the previous research in HeLa cells, later combining with the R-loop 

(DRIP-seq), fork stalling (p-RPA) and DNA damage data (-H2AX or i-BLESS) in MCF7 cells 

with or without E2 treatment, it can finally determine the enriched loci and hotspots of gene 

where E2-induced TRC and R-loops in breast cancer that cause genome instability, which might 

favor the cancer prevention/therapy or drug development. 

To further investigate the mechanism of co-transcriptional E2-induced R-loop involved in the 

TRC regulation and genomic stability maintenance in breast cancer, evidence shown that N6-

Figure 4-1. Estrogen induces R-loop formation and DNA damage in a replication dependent manner. (A) 

Immunostaining for EdU and P-H2AX in cells treated with 0 or 100 nM E2 for the indicated time (B) Proximity ligation 

assay (PLA) between S9.6 antibody (against R-loop) and P-H2AX antibody in cells treated with 100 nM E2 or not for 24 

h. (C) Quantification of the percentage of cells with ≥ 1 PLA focus per nucleus. Single-antibody controls from cells treated 

with 100 nM E2 for 24 hr are shown. Error bars represent the SEM from 4 biological replicates. **p<0.01 (Student’s t-

test). Figrues adapted from Stork et al. 2016. 
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methyladenosine (m6A) RNA modification and the main relative methyltransferase-like 3 

(METTL3) could promote the breast cancer progression mediated also via R-loops 90,151,152. 

Recently, as a new regulatory mechanism controlling gene transcription in eukaryotic cells,  

m6A, found in both mRNA and non-coding RNAs, plays a responsible role in almost all the 

bioprocesses including cancer pathogenesis 108. Coincidentally, latest research revealed, m6A-

related METTL3 may mediate R-loop formation connected to the m6A readers, e.g., YTHDC1, 

YTHDF2, around TTS to well regulate the transcription termination process 153 and generally 

promote homologous recombination repair of DSBs 90. Besides, METTL3 is also found in 

breast cancer cells and tissue to potentially regulate the proliferation and apoptosis of cancer 

cells 107. 

Combining the genome wide collected data on R-loops distribution, fork stalling and DNA 

damage together with TRC locations would absolutely shed light on the further study on the 

mechanism underline E2-induced genomic instability in breast cancer and provide new insight 

about possible new chemotherapy. 

 

2. Study of R-loops in other diseases and cancers  

As a genetic threat driving DNA damage and genome instability, the abnormal enrichment of 

R-loops has been well documented in many human diseases, cancers and syndromes. Collected 

data revealed that deregulating or mutating proteins involved in R-loop resolution can lead to 

severe diseases often associated with human neurological disorders 2,78. Mutations in R-loop 

helicase SETX (also involved in DNA repair) is a major cause of  amyotrophic lateral sclerosis 

type 4 (ALS4) and ataxia oculomotor apraxia type 2 (AOA2) (Fig. 4-2A) , two diseases 

characterized by a progressive degeneration of neurons in the brain and the spinal cord as well 

as muscle weakness 154. Based on yeast data 155, it seems that SETX/Sen1 mutation can interfere 

with the regulation of transcription potentially leading to TRC events.  

Other proteins involved in the R-loops resolution such as RNase H2, TREX1 (a ssDNA 3’-5’ 

exonuclease),  ADAR1 (a dsRNA-editing enzyme), and SAMHD1(dNTP triphosphatase) can 

be responsible, if mutated, for another neurological disease: the Aicardi–Goutières syndrome 

(AGS). This syndrome is characterized by an inflammatory disorder that mainly affects the bran 

and the skin (Fig. 4-2B) 156,157. At the molecular level, depletion of RNase H2 or any of the 

other proteins above significantly induced a group of inflammation and immune-related 

mRNAs (IFNGR1, OAS1, TNF, STING, etc.,) with persistent R-loops accumulation and 

downregulation of transcription 158. Other two diseases with the presence of an R-loop are 
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the Friedreich ataxia (FRDA) and the Fragile X syndrome (FXS). These are among 40 diseases 

linked to Triplet repeat expansions (TREs) 159. In the specific case the expanding motif in FRDA 

is GAAn while for the FXS is CGGn. The expansion occurs in intergenic regions and depending 

on the number of repeated triplets the risk of forming a deleterious R-loop that can lead to DNA 

methylation-mediated silencing and disrupt the normal transcription regulation increases (Fig. 

4-2C) 159. Moreover, excluding Breast cancer, et least other four cancer types are linked to R-

loop formation. In the eosinophilic leukemia, an oncogenic translocation inactivates the 

cleavage and polyadenylation factor FIP1L1, which promotes R-loop formation, leading to 

DNA damage and genomic instability (Fig.4-2D) 160. In the Ewing’s sarcoma a dysfunctional 

BRCA1 causes damage-induced transcription with accumulation of R-loops 161. Burkitt’s 

lymphoma and multiple myeloma are characterized by the fusion of the oncogene c-MYC with 

the immunoglobulin (Ig) locus 162–164. Collected data suggesting that besides of the beneficial 

function of R-loops at facilitating the Ig class switch in normal condition 79, the abnormal 

chromosomal translocation might cause the rather detrimental R-loop formation in these cancer 

types. To conclude, understanding the link between R-loop, replication stress and genome 

instability in all these diseases and how to benefit from that to contribute to therapeutic methods 

development, need to be further investigated in future studies. 

Figure 4-2. R-loops and human diseases. Each category shows a potential deregulation schema with loss of wild type protein 

function (by red crosses) or mutagenesis involved in R-loop formation in diverse diseases and cancers. Figure adapted from 

Groh et al. 2014. 
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3. Study of mutation landscape associated with TRC 

As aforementioned, the replication program is routinely exposed to endogenous and exogenous 

stresses 2. Evidences collected in recent years confirm that oncogene-induced replication stress 

is a major driver of mutagenesis and tumor progression 72,165.  

To date, thousands of cancer mutational catalogs have been obtained covering almost all the 

existing cancer types 166. This huge amount of data allows us to extract specific mutational 

patterns (also known as mutation signatures) resulted from processes of diverse cancers, e.g., 

base substitutions, small insertion and deletions (indels), genome rearrangement and 

chromosome copy number variation) 167. These signatures are generally divided into 

transcriptional- and replicative-dependent asymmetric clusters. Transcriptional-related features 

are mainly associated with mutations originating from UV lights and smoking, whereas the 

replication-associated ones are linked to mutations on  the genes encoding polymerase POLE, 

and APOBEC 100. Previously, we have shown that R-loops are preferentially enriched at the 

transcription termination sites (TTS) of highly expressed, convergent genes and that replication 

stress markers are also enriched at these regions suggesting a mechanism of replication-

transcription conflicts that is resolved by topoisomerases (TOP) in normal cells considering that 

double strand breaks form in TOP1-depleted cells 96. Evidence also showed that the mutational 

signature ID4 referenced in somatic mutation cancer database COSMIC is similar to the 

signature they extracted which is associated with the defective activity of TOP1 at sites where 

ribonucleotides were mis-incorporated 168 which consistent with the fact that ribonucleotides 

that get embedded in the DNA sequence can be a source of replicative stress 1. 

Considering the above strong evidence suggests that the replication program and the replication 

stress play a significant role in shaping the mutational landscape of a cancer genome. Hence, 

we hypothesize that there might be mutational signatures specific to replication stress or more 

specifically linked to TRC. Furthermore, there could be an association between the rates at 

which certain mutational processes operates and replication stress occurrence. To that end, 

future study can be to aim at searching for mutational signatures associated with replication 

stress. More specifically, combining these data with our established TRC pipeline, it is possible 

to verify whether there are different mutational signatures at TSS and TTS within potential 

hotspot genes and if there is a mutational asymmetry in this context. 
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4. Study of direct detecting TRCs in genome-wide even in single-cell 

Studying transcription and replication during the same experiment is highly challenging and no 

well-developed technique can identify TRCs. Nevertheless, there is a recent technology 

called transcription-replication immunoprecipitation on nascent DNA sequencing (TRIPn-seq) 

that tries to fill this gap 169. This technique is based on the immunoprecipitation of the RNA 

polymerase 2 phosphorylated at serine 5 (RNAP2s5), phosphorylation present during 

elongation, followed by a second immunoprecipitation of previously BrdU-labeled nascent 

DNA. This technique is very promising to further investigate TRC, but this protocol still needs 

to be tuned and the produce data have to be validated. 

 Other strategies to study TRC could be based on cell-cycle RNA-seq or more specifically the 

S phase GRO-seq which would allow to map the transcription machinery within S phase and 

compare its position with OK-seq data or any other techniques containing fork orientation 

information. However, limiting to S phase does not mean that the replication and transcription 

machineries are simultaneous present on the same allele in the same cell.  

Therefore, one technical possibility is to label these two types of enzymes respectively, or 

theoretically tag the relevant proteins to map the genome-wide polymerases simultaneously, 

which is able to find the colocalization of the transcription and replication in spatial and also in 

temporal dimension even possibly extending to every single cell. The protein-protein 

colocalization could be inspired from some recent techniques such as proximity ligation assay 

(PLA) 170 using specific antibodies to replisome components (e.g., PCNA, ORC, MCM or DNA 

polymerases) and RNAPII following by fluorescent hybridization with PCR which could give 

a first visualization of the colocalization spots in fluorescence microscopy; CUT&RUN 171 and 

CUT&Tag 172 techniques can be considered for establishing the genome-wide transcription-

replication interaction profiles using double ChIP strategy which allows to bind the protein of 

interest in situ by a specific antibody, then tethers by A-fused transposase Tn5. CUT&Tag 

technique has been successfully profiling RNAPII and other transcription factors only low start 

materials needed and also in single-cell level by loading single-cell barcodes on Tn5 

transposase 172, which make this strategy technically feasible in the future.  

Following another approach, we can take advantage of a newly developed techniques such as 

ORM. This would allow us to detect the initiation events and fork progression in single-

molecule level 61 using three fluorescent color which the green fluorophore tag specific motif 

sequences and used for mapping to reference genome while red one used to label the ongoing 
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replication origins. It may possibly apply to map the ongoing RNAPII to get the transcription 

progression in single-molecule level or even further optimize the Bionano technique for adding 

one more fluorophore tag in the proximity of RNAP that could achieve to detect both replication 

and transcription process.   

 

5. Study of R-loop detection in fork stalling and restart 

Another challenge along the previous TRC research is when and where ‘toxic’ R-loops actually 

formed while encountering replication progression. As mentioned in Chapter 1-3.3.1, the real 

mechanism implicated in R-loop related replication fork stalling and restart is still in debate. 

There is no consensus on how to explain the way TRCs, RNA polymerase and R-loops interfere 

block the fork progression.  

The most well-known model suggests that RNAP and/or R-loop interfere confrontationally 

with replication machinery by directly blocking the fork progression, while R-loops are 

supposed to be formed ahead of forks and RNase H is recruited to solve R-loops to prevent fork 

stalling 86,89. In our own research, we also observed a replication speed rescue with 

overexpression of RNase H in both control and shTOP1 cells 96. In this context, R-loop can be 

considered as a cause of fork stalling. However, some more recent studies also suggest that R-

loops could also accumulate behind the forks as a consequence of fork stalling and be involved 

in the fork restart processes, such as fork reversal or resection 92. Hence R-loops could be 

favored by the presence of ssDNA gaps and persist after fork pass by. In this case, RNase H 

would be required to promote fork restart 86 and R-loop accumulation is rather as a consequence 

of fork stalling and restart. 

 It has to be noticed that CMG complex travels on the leading strand while R-loops form 

abundantly on the lagging strand. Therefore, trying to detect the strand-specific R-loops could 

be more informative. Nevertheless, a recent paper compared the most classic RNA:DNA hybrid 

sequencing techniques based on S9.6 antibody approach with a novel dRNase H1 approach, 

which is using defective RNase H1 (catalytically inactive form of RNase H1) that is able to 

recognize but not to process RNA:DNA hybrids 173. Surprisingly the two approaches have 

generally disparate hybrid mapping results and the comparison of specificity/affinity between 

dRNase H1 and S 9.6 to RNA:DNA hybrid is still unclear 173. As the point of views mentioned 

above, RNA:DNA hybrid detecting in single-cell/single-molecule could be the future direction 

to identify the true role of R-loops in fork stalling process and also in the TRC regulation.  
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ABSTRACT  

 

Studying the dynamics of genome replication in mammalian cells has been historically 

challenging. To reveal the location of replication initiation and termination in the human 

genome, we developed OK-seq, a quantitative approach based on the isolation and strand-

specific sequencing of Okazaki fragments, the lagging strand replication intermediates. OK-

seq quantitates the proportion of leftward- and rightward-oriented forks at every genomic 

locus and reveals the location and efficiency of replication initiations and terminations. Here 

we provide the detailed experimental procedures for performing OK-seq in unperturbed 

cultured human cells and budding yeasts and the bioinformatics pipelines for data processing 

and computation of replication fork directionality (RFD). Furthermore, we present the 

analytical approach based on a hidden Markov model (HMM), which allows automated 

mailto:olivier.hyrien@bio.ens.psl.eu
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detection of ascending, descending, and flat RFD segments revealing the zones of replication 

initiation, termination, and unidirectional fork movement across the entire genome. These 

tools are essential for accurate interpretation of human and yeast replication programs. 

Besides revealing the genome replication program in fine detail, OK-seq has been 

instrumental in numerous studies unravelling mechanisms of genome stability, epigenome 

maintenance, and genome evolution. 

 

INTRODUCTION  

DNA fibre autoradiographic studies of mammalian cells showed long ago that eukaryotic 

DNA replication origins are spaced at 20-400 kb intervals and fire at different times in S 

phase 
1
. However, mapping origins in metazoan cells has been historically challenging, due to 

the lack of workable genetic assays and the difficulties in purifying sufficient amounts of 

intact DNA replication initiation intermediates (for reviews 
2-4

). 

In the pre-genomic era, early studies of the highly amplified CHO DHFR locus identified a 

few specific initiation sites downstream of the DHFR gene. However, more extensive studies 

demonstrated that replication could initiate at any of a large number of sites over a broad (55 

kb) zone downstream of the gene, at a global rate lower than one initiation event per cell 

cycle, even in unamplified cells 
2
. Depending on the technique(s) used to purify initiation 

intermediates from cell populations, site-specific or dispersed initiation was also reported at a 

few other model loci 
3
. Direct visualization of replication fork progression at the single DNA 

molecule level using DNA combing 
5
 or SMARD 

6
 in general revealed broad (3-100 kb) 

initiation zones (IZs), although narrower origins were also reported 
7
. It was unclear if these 

variable results reflected the true genomic diversity of replication origins or different 

technical biases. 

The advent of DNA microarrays and high-throughput sequencing has allowed much broader 

and systematic scrutiny of origins. Crucially, different pictures were obtained depending on 

the technique used to purify initiation intermediates. Small nascent strands (SNS) synthesized 

at origins were purified by size selection, followed by λ-exonuclease digestion of the 

contaminating broken DNA strands lacking a protecting 5‟RNA primer (λ-SNS) 
8,9

, or by 

briefly labelling newly synthesized DNA with BrdU (5-bromo-2'-deoxyuridine) with BrdU 

(5-bromo-2'-deoxyuridine) or digoxigenin-dUTP, followed by size selection and 

immunoprecipitation 
10-12

. Replication bubble-containing restriction fragments were purified 



3 
 

by trapping in gelling agarose and electrophoretic elimination of bubble-devoid fragments 

13,14
. These independent approaches to purify initiation intermediates often gave poorly 

concordant origin locations. Furthermore, SNS tended to highlight site-specific origins 

whereas bubbles revealed broad initiation zones. Lastly, no information about fork 

progression and termination could be obtained by these approaches. 

Replication timing (RT) and replication fork direction (RFD) profiling are orthogonal 

approaches to study DNA replication. They do not depend on isolating initiation 

intermediates but on analysis of the replication behaviours of all investigated loci. In Repli-

seq, cells are pulse-labelled with BrdU for 30-120 min, sorted by FACS relying on total DNA 

content into 2-6 fractions of S phase. Next, BrdU-DNA is immunoprecipitated and hybridized 

to microarrays or sequenced, allowing to generate global RT profiles 
15,16

. In a recent 

improvement called high-resolution Repli-seq, up to 16 fractions of S phase were used 
17

. A 

second approach for measuring RT is based on assaying DNA copy number by sequencing 

sorted S and G1 cells, or even unsorted asynchronously proliferating cells 
18

. Importantly, 

Repli-seq and copy number profiles are highly consistent with each other and extremely 

reproducible between laboratories 
19

. They identify peaks and valleys of early- and late- 

replicating DNA, respectively, but unlike in yeast, their spatial and temporal resolution (~2 h 

and ~100 kb) is insufficient to precisely map origins in mammals. In high-resolution Repli-

seq, however, the resolution was improved to 50 kb, allowing the identification of some 

isolated IZs 
17

. 

  

Genome-wide RFD profiles were first obtained by nucleotide compositional skew (S) 

analysis, following the seminal observation of abrupt S sign change signs at bacterial origins 

and termini 
20

. Analysis of mammalian genomes revealed ~1,000 abrupt S upshifts similar to 

those at bacterial origins, separated by megabase-sized segments of progressive S decrease, 

tracing N-shaped domains of S 
21,22

. S accumulates during evolution due to mutational 

asymmetries between the leading and lagging strands 
23

. S amplitude and sign, therefore, 

reflect the average fork direction in the germline. Comparison with RT profiles of somatic 

cells corroborated that replication progresses from the borders to the centres of N-domains, 

suggesting developmental and evolutionary conservation of these replication patterns 
24-26

. 

However, many more origins than S upshifts were found in mammalian genomes; the missing 

origins must therefore be flexible enough or located within regions frequently rearranged to 

leave no evolutionary stable imprint on S profiles. Furthermore, the resolution was limited to 



4 
 

~20 kb and analysis of gene-rich regions was complicated by the added effect of 

transcription-associated mutational asymmetries 
27

. These limitations called for a genome-

wide, direct experimental determination of RFD at high resolution in mammalian genomes, 

which was first achieved by sequencing of purified Okazaki fragments 
28

. 

Development and overview of OK-seq  

At the replication fork, the leading strand is replicated continuously whereas the lagging 

strand is synthesized discontinuously, in the form of ~200 nt RNA-primed fragments 

(Okazaki fragments) that grow in the direction opposite to fork progression. Okazaki 

fragments are joined together one after another to build an elongating lagging strand. Okazaki 

fragments mapping to the Watson and Crick strands are generated by leftward- (L) and 

rightward- (R) moving forks, respectively. Therefore, strand-oriented sequencing of Okazaki 

fragments isolated from a cell population reveals the proportions of R and L forks at any 

locus, allowing quantitative analyses of replication fork initiation, progression, and 

termination. Isolation and sequencing of Okazaki fragments were first achieved in ligase- and 

checkpoint deficient mutants of S. cerevisiae, which allowed continued DNA synthesis 

despite the accumulation of unligated Okazaki fragments behind the forks 
29,30

. We 

independently developed a procedure for isolating and sequencing Okazaki fragments from 

mammalian cells that did not require the introduction of such mutations. In this method, 

asynchronously growing cells are briefly pulsed with 5-ethynyl-deoxyuridine (EdU) to label 

newly-synthesized DNA, total DNA is denatured and fractionated by size, and the < 200 nt 

EdU-labelled single DNA strands are clicked with biotin, captured on streptavidin beads, and 

ligated to sequencing adapters. This procedure was dubbed OK-seq
28

 (Fig. 2). 

The replication fork directionality (RFD = R – L) profiles thus obtained were highly 

resolutive (~1 kb for human cells and ~50 bp for yeast) and informative. RFD at position x is 

mathematically linked to the mean RT (MRT) and to the speed of forks (v), such that 

dMRT/dx = RFD/v 
25,26

. In other words, steep MRT slopes correspond to unidirectionally 

replicating regions, flat MRT zones are replicated equally often in both directions, and 

intermediate MRT slopes are replicated by unequal proportions of R and L forks. Indeed, the 

human OK-seq RFD profiles were found to be extremely consistent with RFD profiles 

derived from skew and MRT data, but more resolutive. In yeast, RFD upshifts, where fork 

direction switches from L to R, span one kb or less, identifying site-specific origins (Fig. 1b 

and 3b) at locations highly consistent with previous origin mapping studies 
30,31

; see below 

for details). However, a completely different RFD pattern is observed along the human 
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genome 
28

. Most loci show a mixture of R and L forks, and changes in RFD are progressive 

rather than abrupt, spanning tens or hundreds of kb (Fig. 1b and 3a). These results imply an 

extensive cell-to-cell variability in replication patterns. An automated procedure based on a 

hidden Markov model (HMM)
28,32

 was developed to objectively detect ascending, descending 

and flat RFD segments across the entire genome. Extended flat segments with extreme RFD 

values (close to ±1), which reveal unidirectionally replicating regions, only cover 5-10% of 

the genome. Segments of ascending RFD, where fork direction progressively shifts from L to 

R (IZs), typically span 10-100 kb. They reveal 4,000 – 10,000 IZs which support a low and 

homogeneous rate of initiations over their entire length. The amplitude of the shift reveals the 

global efficiency of each zone (i.e. the fraction of molecular copies which support an 

initiation event), which ranges from <10% to >90%. Abrupt upshifts such as those found at 

yeast origins are extremely rare. Descending RFD segments between consecutive IZs reveal 

extended (10 – 1000 kb) zones of replication termination (TZs), even broader than the IZs. 

Finally, extended segments of null RFD reveal randomly replicating regions, mostly in late-

replicating heterochromatin 
28. 

Importantly, when OK-seq was adapted to purify EdU-labelled Okazaki fragments from S. 

cerevisiae, very similar profiles to those reported for ligase- and checkpoint-deficient S. 

cerevisiae mutants were obtained, consistent with the site-specific nature of yeast origins 
31

. 

Therefore, the much broader RFD upshifts observed in mammalian genomes reflect the 

different biology of yeast and mammalian cells and not an inability of OK-seq to reveal 

abrupt RFD upshifts, characteristic of site-specific origins (Fig. 1 and 3). 

Given the cell-to-cell variability and dispersed nature of replication initiation and termination 

events, particularly in mammalian cells, caution is required to interpret changes in RFD along 

the profiles. Strictly speaking, the ∆RFD between two genomic positions is equal to twice the 

difference between the number of initiation and termination events in the considered interval. 

For example, a segment across which the RFD continuously decreases from +1.0 to -1.0 may 

simply be invaded by outer forks that merge at variable positions, resulting in a single, 

delocalized termination event (Fig. 1c). However, a similar decreasing RFD segment may 

also arise if one internal, delocalized initiation event emits two diverging forks that meet at 

random positions with the two outer invading forks, resulting in two delocalized termination 

events. More generally, any scenario where n initiation and n+1 termination events take place 

between the two outer invading forks can explain the decreasing RFD pattern, with a 

likeliness that increases with the size of the segment. Similarly, an ascending RFD segment 
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may in principle arise from n initiation events interspersed with n-1 termination events. 

However, ascending RFD segments are markedly smaller than descending ones, so the 

scenario with at most one initiation event and no termination event, as first demonstrated for 

the DHFR initiation zone 
2
, is by far the most likely explanation. Single-molecule replication 

analyses of the yeast genome 
31

 and two chicken chromosome fragile sites 
33

 recently 

confirmed that a minor fraction of initiation and termination events occur in negative and 

positive RFD slopes, respectively. In addition, recent high-throughput single-molecule optical 

replication mapping of early initiation events of human cells 
34

 also confirmed that a minor 

fraction of early initiation events occurs in negative RFD slopes as well as within late 

randomly replicating regions. Therefore, the positive or negative slope of an RFD segment 

reveals whether initiation or termination predominates, but a mixture of both, on different 

molecules or on the same molecule, cannot be excluded. Given that the number of ascending 

RFD segments in mammalian cells (4,000 – 10,000) is lower than the estimated number of 

initiation events per S phase (20,000 – 50,000) and that most IZs support at most one 

initiation event per cell cycle, the simplest model to reconcile these numbers is that many 

initiation and termination events occur within TZs and null RFD regions but in a too 

dispersed manner to leave an imprint on population RFD profiles. Such dispersed events can 

only be detected by single-molecule techniques 
31,33,34

 

 

Applications of OK-seq 

OK-seq was used to obtain high-resolution, genome-wide RFD profiles of many types of 

cultured metazoan cells 
28,33,35-38

 and even of primary B cells stimulated to proliferate in vitro 

39
. With the continuing development of novel origin mapping techniques, it should be noted 

that OK-seq IZs have been recently confirmed by EdU-seq HU 
39

, by high-resolution Repli-

seq 
17

, and by optical replication mapping 
34

.  

The HMM automated analysis of the RFD slope presented here allowed to map IZs and TZs 

and to measure their efficiencies 
28

. Alternatively, IZs and TZs can be automatically detected 

in OK-seq profiles by Wavelet-Transform Analysis (WTA) 
40

. IZs often but not always abut 

active genes, and are seldom if ever transcribed, consistent with reports that licensed origins 

are eliminated from transcribed genes 
2,41-44

. Thus, there is a tight association of gene activity 

with replication initiation in the flanking intergene(s). IZs are often flanked on one or both 

sides by active genes. Due to the different strengths of the 5‟ and 3‟ IZs, however, active 

genes tend to be replicated in the same direction as transcription, as first observed by 
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nucleotide compositional skew analysis 
22

, but this is far from an absolute rule. In particular, 

the RFD tends to invert over long active genes such that their 3‟end is often replicated in the 

direction opposite to transcription 
45,46

. 

Whereas IZs bordering active genes fire in the early S phase, IZs remote from active genes 

fire later. Furthermore, the flat RFD segments found in late-replicating heterochromatin, 

support widespread, delocalized initiation in the absence of stimulating gene activity 
28

. 

Perhaps surprisingly, however, RFD profiles are generally more variable between cell lines in 

the AT-rich, late-replicating, gene-poor isochores than in the GC-rich, early replicating, gene-

rich isochores 
35

. 

Besides replication program characterization of normal and cancer cells 
28,35,36,39

 and of cells 

subjected to replication stress 
37

, OK-seq has become very useful in a broad range of genomic 

studies. First, the inability to initiate replication within transcribed genes has been proposed 

as a mechanism for causing DNA breaks at common chromosomal fragile sites (CFSs) 

harbouring long genes due to delayed replication 
46-48

. The identification of unidirectionally 

replicated regions by OK-seq, combined with MRT analysis, indeed allowed to predict CFSs 

genome-wide 
46

. Second, the high probability of initiating replication between active genes in 

early-replicating domains was confirmed by EdU-seq HU 
39

. This study found that DNA 

double-stranded breaks (DSBs) induced by S-phase entry in the presence of hydroxyurea are 

also confined between active genes, ruling out replication-transcription collisions as their 

cause. Early-replicating fragile sites (ERFs) instead represent zones where forks collapse 

after origin firing in hydroxyurea. Nucleosome-depleted, asymmetrical AT-rich motifs 

bordering initiation sites act as polar barriers to fork progression and trigger DSB 

accumulation. These results suggest a complex interplay between replication initiation and 

chromosome fragility 
39

. Third, OK-seq data have been used to compare the density of MCM 

proteins, which mark potential replication origins, to the probability of initiation along the 

genome. The lack of initiation within transcribed genes was explained by a depletion of 

MCM proteins within gene bodies. However, ascending and descending RFD segments of 

similar RT and transcription status did not show different MCM densities, suggesting that 

additional factors to MCM density act to determine the probability of initiation along the 

genome 
40

. Fourth, OK-seq data revealed that active genes tend to replicate codirectionally 

with transcription 
28

. Later studies employing OK-seq data further revealed that head-on, but 

not codirectional, collisions between replication and transcription lead to the accumulation of 

potentially deleterious RNA-DNA hybrids (R-loops) 
49

, that replication stress markers 
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accumulate at transcription termination sites, where forks progress head-on to transcription, 

but not at transcription start sites, where forks progress codirectionally with transcription 
45

 

and that numerous factors, such as topoisomerase 1 
45,50

, the SAMHD1 ribonuclease 
51

 and 

the SWI/SNF chromatin remodelling complex 
52

 process R-loops and help resolve 

transcription-replication conflicts. Fifth, mapping RFD by OK-seq has contributed to 

revealing that leading and lagging strands are prone to different mutational rates across 

evolution and during cancer transformation, and have helped to deconvolve the strand-

asymmetrical production of mismatches by leading and lagging-strand DNA polymerases 

from their strand-asymmetrical removal by mismatch repair 
28,53-55

. OK-seq data have also 

contributed to reveal the strand-biased integration preferences of LINE-1 retrotransposons 

56,57
. Sixth, combining OK-seq with strand-specific profiling of replicated chromatin 

demonstrated that inheritance of parental modified histones proceeds by distinct mechanisms 

at the leading and the lagging strands 
36,38

, and combining OK-seq with DNA remethylation 

analysis revealed that leading and lagging strands acquire DNA methylation with slightly 

different kinetics 
58

. 

In sum, OK-seq is a quantitative method allowing to reveal the genome replication dynamics 

and the impact of DNA replication on genome and epigenome function and evolution. 

 

Comparison with other methods 

Other direct and indirect methods for measuring replication directionality have been 

developed by different groups. As discussed above, nucleotide compositional skew analysis 

21,22
 and spatial derivation of MRT profiles 

25,26
 gave RFD profiles highly consistent with, but 

less resolutive than OK-seq 
28

. The enrichment of Okazaki fragments for direct sequencing 

was first achieved in S. cerevisiae through ligase and checkpoint inactivation 
29

. While yeast 

RFD profiles obtained by this method and by OK-seq are extremely similar 
31

, the ligase-

inactivation approach predominantly enriches for mature Okazaki fragments while the EdU-

mediated purification enriches for growing Okazaki fragments, which is important to keep in 

mind when analysing Okazaki fragment processing and nucleosome phasing.  

Recent indirect methods to map RFD are based on the fact that the leading (Pol ) and 

lagging (Pols  and ) strand replicative polymerases incorporate ribonucleotides into 
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genomic DNA at different rates. Ribonucleotide excision repair (RER) mutants are viable, 

and polymerase mutants that incorporate ribonucleotides at higher rates than wild-type have 

been obtained. Four methods (dubbed EmRiboSeq 
59

, Pu-Seq 
60

, HydEn-Seq 
61

and Ribose-

Seq 
62

 were reported to determine the genome-wide distribution of embedded 

ribonucleotides, and infer RFD, across the genome of RER and polymerase mutants in S. 

cerevisiae and S. pombe. They also identified regions in which ribonucleotide incorporation 

deviates from lagging/leading strand expectations, such as at replication origins, which were 

proposed to result from leading strand initiation by Pol  followed by an exchange with Pol  

60
, and at termini, suggesting a reciprocal switch from Pol  to Pol  

63
. A recent preprint 

reported the extension of Pu-seq to human cells 
64

. 

A new method for strand-specific sequencing of short nascent strands revealed that SNS are 

distributed with a sharp strand-specific asymmetry around the peak summits 
65

. This finding 

is surprising as, during origin firing, SNS are expected to grow in both directions by leading 

and lagging strand synthesis from two forks.  

Novel methods for mapping DNA breaks were reported to indirectly reveal RFD, suggesting 

that the frequency and/or kinetics of nick repair is distinct between the leading and lagging 

strands. The GLOE-seq method, which maps single-strand breaks in a strand-specific 

manner, also provided high-resolution RFD profiles in mammalian and yeast cells. GLOE-

seq uses a reduced input cell number compared to OK-seq, yet it requires ligase inactivation 

66
. A conceptually similar method that differs in library preparation strategy, TrAEL-seq, 

allows to map the 3‟ ends of double-strand breaks and provides RFD information 
67

.  

Although the OK-seq approach is now well developed, up to date, there is no available 

bioinformatics protocol to fully explore the data. A recently published Nature Protocol paper 

68
, provided a simple approach to profile RFD around aggregate genomic features (such as 

transcription start sites), but no method to call IZ and TZ. Here, we provide a complete 

protocol for using an R-based toolkit, OKseqHMM (https://github.com/CL-CHEN-Lab/OK-

Seq), to process and analyse OK-seq data, along the genomes of different species (human, 

mouse, and yeast). Following the current protocol, we can (1) visualize high-resolution RFD 

profiles (1 kb for human/mouse cells and 50 bp for yeast) and detect the IZs and TZs by using 

https://github.com/CL-CHEN-Lab/OK-Seq
https://github.com/CL-CHEN-Lab/OK-Seq
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a 4-state Hidden Markow Model (HMM), (2) calculate the origin efficiency metric (OEM) 
30

 

and visualize RFD changes at different scales and (3) visualize the RFD and OEM profiles 

over genomic features of interest. This toolkit provides a useful resource for the broad 

scientific community working on DNA replication, genomic instability, and epigenetics. 

 

Limitations 

One limitation of OK-seq is that, as any cell population method, it averages cell-to-cell 

variability. As with other NGS-based origin mapping approaches, rare events cannot be 

directly seen. Although cell-to-cell variability remains visible since most loci show a mixture 

of R and L forks, dispersed initiation and termination events may go undetected even if they 

represent the majority of events. For example, long segments of null RFD can only be 

explained by random initiation and termination, but the density of these events cannot be 

measured. The change in RFD across a segment is equal to twice the difference between the 

number of initiation and termination events within the segment 
69

. Therefore, a minority of 

termination (resp. initiation) events may occur within ascending (resp. descending) RFD 

segments, and only single-molecule methods may directly reveal them 
31,33,70

. The OK-seq 

results thus led us to propose that replication of mammalian genomes combines predominant 

initiation within “master” IZs detected as ascending RFD segments, with more dispersed, less 

efficient initiation elsewhere. 

OK-seq relies on the metabolic labelling with nucleotide analogs (EdU) and we anticipate 

that it may be used in any proliferating cells or even model organisms able to efficiently 

uptake EdU. OK-seq requires a significant amount of starting material since the half-life of 

Okazaki fragments is very short. Furthermore, the library preparation step may benefit from 

future improvements, for example inspired from single-stranded library preparation from 

ancient genomes 
71

, although optimization will be required. 

 

Expertise needed to implement OK-seq 

OK-seq requires strong skills in molecular and cell biology. The protocols are accessible to 

most molecular biology laboratories and rely on common laboratory equipment. 

Bioinformatic analysis with pre-built pipelines requires strong computational skills and 

experience with R. 

Experimental design  
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Here we present some critical considerations and the key steps of the experimental and 

analytical workflows of OK-seq (Fig. 2). 

Cell culture and starting cell number 

Since we purify Okazaki fragments from unperturbed asynchronously growing cells, their 

amount is expected to be tiny, around hundreds of picograms per million asynchronous cells. 

This is why Okazaki fragment isolation requires a large number of input cells (3-10 × 10
8
). 

This consists of large-scale cell cultures which needs to be carefully planned. Cell numbers 

may be optimized depending on genome size and fraction of cells in S phase. For example, a 

lymphoblastoid cell line of nearly normal karyotype with approximately 20% of cells in S 

phase (GM06990) required 8-10 × 10
8
 cells per biological replicate, whereas hyperploid 

cancer cell lines with 30-35 % of cells in S phase, such as HeLa or K562, required 3 × 10
8
 

cells per replicate. Cell cultures should be split 1 or 2 days before the experiment, to ensure 

small colonies and uniform labelling.  

EdU labelling and cell harvesting 

In this step, newly-synthesized DNA strands are briefly labelled with ethynyl-containing 

nucleotide EdU 
72

. The Okazaki fragments are transient and are immediately ligated to the 

elongating nascent lagging strands, with a half-life shorter than 10 seconds 
73,74

. We set the 

EdU pulse for 2 minutes because it was easy to keep consistent between experiments at a 

comfortable working pace. Yet, in theory, the pulse could be shortened since thymidine 

analogs are almost instantly assimilated. In contrast, longer pulses will increase the 

proportion of nascent labelled DNA of higher molecular weight which could contaminate 

Okazaki fragment preparation. In any case, the duration of the pulse needs to be precisely 

controlled and stopped abruptly by adding ice-cold PBS. It is, therefore, preferable to treat a 

small number (2-3) of dishes at the same time. Option A of this section explains how to label 

and harvest adherent cells (HeLa) and option B explains how to treat the cells growing in 

suspension (EBV-immortalized lymphoblastoid GM06690). For labelling, we have also 

previously used a cytidine analog EdC 
75

, which in HeLa cells gave an identical result to EdU 

28
. However, the use of EdC has limitations, as EdC assimilation efficiency varies in different 

cell types and depends on cytidine deaminase activity 
76,77

.  

Nucleic acid extraction Nucleic acids are extracted with the proteinase K / phenol-

chloroform method 
78

, which allows inexpensive milligram-scale preparation of pure high-

molecular-weight genomic DNA. At this step, it is critical to avoid pipetting and vortexing to 

minimize DNA breakage and potential contamination of Okazaki fragment preparation with 
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fragments of elongating nascent strands. After ethanol precipitation, we typically leave the 

DNA pellet in TE buffer during 3-7 days at 4 °C to allow it to dissolve without pipetting. We 

omit RNAse A digestion and use intracellular RNAs as molecular cargo during subsequent 

purification steps.  

Size-fractionation and recovery of small single-stranded fragments 

To release Okazaki fragments, genomic DNA is heat denatured and size-fractionated on 

neutral linear 5-30 % sucrose gradients 
79

. We use one 36 ml gradient to fractionate 500 µg of 

prepared genomic DNA (1-1.5 × 10
8
 of starting cells), which represents 6-10 gradients per 

experiment. Sucrose gradients should be handled with caution. After overnight 

centrifugation, the fractions containing small fragments (< 250 nt) are concentrated and 

buffer-exchanged. 

Biotinylation in click reaction 

For isolation of EdU-labelled replicated DNA, EdU is coupled with biotin-TEG-azide in click 

reaction (Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) click chemistry) 
80-82

. 

Afterwards, cellular RNAs, including the RNA portions of Okazaki fragments are hydrolyzed 

with alkali and 5‟ extremities of DNA fragments are phosphorylated with T4 PNK. 

Sequencing adapter ligation and streptavidin capture of biotinylated fragments  

In OK-seq, it is critical to prepare strand-oriented libraries from single-stranded DNA with a 

minimal technical bias, to achieve uniform coverage of reads over the genome. In library 

preparation, the double-stranded DNA ligation with T4 DNA ligase is used since it has the 

lowest sequence preference compared to single-stranded DNA ligation 
83

. Two different 

double-stranded adapters with a single-stranded random hexanucleotide overhang are 

hybridized to the ends of the purified fragments. To reduce self-complementary interactions 

of 5‟ adapter (A1) and 3‟ adapter (A2), the standard Illumina sequence of 5‟ adapter was 

shortened by 5 bases 
84

. To prevent self-ligation, adapter A2 contains 3‟-terminal dideoxy-

modifications (Table 1). After the ligation step, the library fragments containing nascent 

biotinylated molecules are captured with streptavidin-coated magnetic beads. We perform an 

additional step of hybridization and ligation of adapters on beads to increase the chance of 

successful recovery of Okazaki fragments into the library. Each step is followed by stringent 

high-salt washes to remove the non-specifically bound DNA molecules and unligated 

adapters.  

Library amplification and sequencing 

Libraries are amplified by PCR with indexing primers (Table 1). The template library 
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fragments remain attached to the beads during PCR and may be recovered, washed, and 

reused for an additional round of amplification. In our hands, this additional amplification 

step resulted in a much higher yield of the final amplified library with nearly identical library 

complexity, without a strong increase in PCR duplicates 
28

. PCR products containing > 30 bp 

inserts are size-selected and eluted from agarose gels. Illumina sequencing is performed 

following standard protocols but replacing the sequencing primer of the first read by the 

shortened primer 
84

. 

Data processing 

The raw sequencing data (e.g. fastq files) need to be pre-processed and aligned to a reference 

genome using standard bioinformatics procedures. In our toolkit, the first function 

(OKseqHMM) automatically detects whether the input aligned sequencing data are single-

end or paired-end reads, then splits reads into Watson and Crick strands and calculates the 

RFD values within adjacent windows (by default 1 kb) along the reference genome ;     

   

   
, where C and W correspond to the number of reads mapped on the Crick and the Watson 

strands respectively. Next, HMM algorithm allows segmentation of RFD profile into upward, 

downward and flats segments to predict the location of initiation, termination and 

unidirectional fork movement zones respectively. The second function of the tool kit, 

OKseqOEM, uses the Watson and Crick strand aligned reads to compute the OEM at 

multiple scales defined by a user ;     
  

     
 

  

     
 (where WL and WR are the number 

of reads in the left and right quadrants of the Watson strand while CL and CR refer to the read 

numbers in the left and right quadrants of the Crick strand. And finally, the function 

AveragePlot generates average metagene profiles and heatmaps to analyze the distribution of 

RFD and OEM around genomic features of interests. 

 

MATERIALS  

Biological materials 

CRITICAL For the yeast S. cerevisiae, please refer to the supplementary protocol.   

Human cell lines 

● HeLa MRL2 (a kind gift from Dr Olivier Bensaude, IBENS)  

● Immortalized lymphoblasts GM06990 (Coriell)  
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! CAUTION The cell lines used in your research should be checked regularly to ensure they 

are authentic and mycoplasma-free.  

CRITICAL Use the appropriate medium and supplements for the cell type of interest. 

 

Reagents 

Cell culture reagents for HeLa cells  

● DMEM (Gibco, Cat. No. 31966-021) 

● Fetal bovine serum (FBS) (Sigma-Aldrich, Cat. No. F2442) 

● Penicillin-Streptomycin (10,000 U/mL) (Gibco, Cat. No. 15140-122) ! CAUTION. 

Irritant if contact with skin. Always wear gloves and a lab coat. 

● Trypsin-EDTA (0.25 %) (Gibco, Cat. No. 25200-056) 

 

Cell culture reagents for GM06990  

● 1× PBS (Thermo Fisher, Cat. No. 14200083) 

● Fetal bovine serum (FBS) Sigma-Aldrich, Cat. No. F2442 

● Penicillin-Streptomycin (10,000 U/mL) (Gibco, Cat. No. 15140-122) ! CAUTION. 

Irritant if contact with skin. Always wear gloves and a lab coat. 

● RPMI1640 (Thermo Fisher, Cat. No. 61870127)   

Common reagents 

● 5 M Betaine (Sigma-Aldrich, Cat. No. B0300-5VL) 

● 5-ethynyl-2‟-deoxycytidine (EdC) (Jena Bioscience, Cat. No. CLK-N003-10) 

OPTIONAL (See experimental design).  

● 5-Ethynyl-deoxy-uridine (5-EdU) (Jena Bioscience, Cat. No. CLK-N001-25) 

● 50% PEG8000 (Jena Bioscience, Cat. No. CSS-256) 

● Absolute ethanol (Sigma-Aldrich, Cat. No. 1117272500) ! CAUTION Ethanol is 

flammable and irritative. 

● Acetic acid (Sigma-Aldrich, Cat. No. 33209) ! CAUTION Flammable, volatile, and 

irritative. Work under a chemical hood and wear gloves and a lab coat when handling. 

● Agilent High Sensitivity DNA Kit (Agilent, Cat. No. 5067-4626) 

● Ammonium acetate (VWR, Cat. No. 21200.297).) ! CAUTION Work under a 

chemical hood while wearing a lab coat and disposable gloves. 
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● AMPure beads (Beckman, Cat. No. A63881)  

● ATP (Thermo Fisher, Cat. No. R0441) CRITICAL Aliquot into 20-50 µL aliquots, 

store at -20 °C and avoid multiple freeze-thaw cycles. 

● Biotin-TEG azide (Berry & associates, Cat. No. BT1085) 

● Bromophenol blue (Sigma-Aldrich, Cat. No. 32712-5G) ! CAUTION Work wearing a 

lab coat and disposable gloves. 

● Chloroform (VWR, Cat. No. BDH83627.400) ! CAUTION toxic and corrosive. Work 

under a chemical hood while wearing a lab coat and disposable gloves. 

● Copper (II) sulphate (CuSO4; Jena Bioscience, Cat. No. CLK-MI004-50) ! 

CAUTION. It is irritative to the skin and eyes and is toxic if swallowed. Work 

wearing a lab coat and disposable gloves. 

● Dimethyl sulfoxide (DMSO; Sigma-Aldrich, Cat. No. D2650) ! CAUTION DMSO is 

harmful to the skin and is combustible. Work wearing a lab coat and disposable gloves. 

● Distilled deionized water (ddH2O) or UltraPure DNase/RNase-Free Distilled Water 

(Thermo Fisher, Cat. No. 10977035) 

● dNTPs (Thermo Fisher, Cat. No. R0192) CRITICAL Prepare 5-10 µL aliquots, store 

at -20 °C and avoid freeze-thawing 

● Dynabeads MyOne streptavidin T1 (Thermo Fisher, Cat. No. 65601) 

● EB buffer (Qiagen, Cat. No. 19086) 

● EDTA Ultrapure (0.5 M, pH 8.0; Life Technologies, Cat. No. 15575-038) ! 

CAUTION Toxic if swallowed. Work wearing a lab coat and disposable gloves. 

● Gel loading buffer II (2×, for UREA PAGE) (Thermo Fisher, Cat. No. AM8546G) ! 

CAUTION It contains formamide and is toxic. Work under a chemical hood while 

wearing a lab coat and disposable gloves. 

● Gel Loading Dye, Purple (6×, for PAGE and agarose gels) (NEB, Cat. No. B7024s) 

● KAPA HiFi HotStart DNA Polymerase (Roche, Cat. No. 07958889001) 

● Low Molecular Weight DNA Ladder (NEB, Cat. No. N3233S) 

● Micro Bio-spin columns P30 (Biorad, Cat. No. 732-6250) 

● MinElute Gel extraction Kit (Qiagen, Cat. No. 29604) 

● MinElute PCR Purification Kit (Qiagen, Cat. No. 28004) 

● 1 × PBS (Thermo Fisher, Cat. No. 14200083) 

● 10 × PBS (Thermo Fisher, Cat. No. 70011044) 
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● Phenol chloroform isoamyl alcohol (25:25:1) (Thermo Fisher, Cat. No. 15593-049) ! 

CAUTION Toxic and corrosive. Work under a chemical hood while wearing a lab 

coat and disposable gloves. 

● Potassium Acetate (CH3COOK; Calbiochem, Cat. No. 529553) 

● Primers for sequencing adapters and library construction (Common supplier, Table 1). 

● Proteinase K (Roche, Cat. No. 3115879001) 

● Qubit dsDNA BR Assay Kit (2-1000 ng/µl) (Cat. No. Q32853) 

● Qubit ssDNA HS Assay Kit (0.05-100 ng/µl) (Cat. No. Q10212) 

● Small Fragments Agarose (Eurogentec, Cat. No. EP-0020-10) 

● Sodium acetate (Merck, Cat. No. 1.06268.0250). 

● Sodium ascorbate (Jena Bioscience, Cat. No. CLK-MI005-50)  

● Sodium chloride (NaCl) (Sigma-Aldrich, Cat. No. S7653) 

● Sodium dodecyl sulfate (SDS) solution 20% (wt/vol) (Sigma-Aldrich, Cat. No. 05030-

500ML-F) ! CAUTION SDS is corrosive to the skin and a respiratory irritant. Work 

wearing a lab coat and disposable gloves. Thoroughly wash with water any skin or 

eyes exposed to this chemical. 

● Sodium hydroxide NaOH (Sigma-Aldrich, Cat. No. 1.06469.1000) ! CAUTION 

NaOH is corrosive. Wear gloves and a lab coat when handling. 

● Sucrose (Sigma-Aldrich, Cat. No. 1.07687.5000) 

● SYBR™ Gold Nucleic Acid Gel Stain (10,000 × Concentrate in DMSO) (Thermo 

Fisher, Cat. No. S11494) ! CAUTION It is a potential cancer hazard. Work wearing a 

lab coat and disposable gloves. 

● SYBR™ Green I Nucleic Acid Gel Stain 10,000 × (Thermo Fischer, Cat. No. S7585) ! 

CAUTION It is a potential cancer hazard. Work wearing a lab coat and disposable 

gloves 

● T4 DNA ligase (Thermo Fisher, Cat. No. EL0014) CRITICAL Aliquot the ligase 

buffer into 20-50 µL aliquots. Store at -20 °C and avoid freeze-thaw cycles > 3. 

● T4 polynucleotide kinase, T4 PNK (Thermo Fisher, Cat. No. EK0031) 

● TAE buffer (Thermo Fisher, Cat. No. 15558026) 

● Taq DNA polymerase (NEB, Cat. No. M0273) 

● TBE buffer (Thermo Fisher, Cat. No. B52) ! CAUTION Harmful if swallowed or 

inhaled. Work wearing a lab coat and disposable gloves.  
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● TBE Gels (10%; Thermo Fisher, Cat. No. EC62752BOX) ! CAUTION The 

polyacrylamide gel is a potential cancer hazard. Work wearing a lab coat and 

disposable gloves. 

● TBE-UREA Gels (10%; Thermo Fisher, Cat. No. EC68752BOX) ! CAUTION The 

polyacrylamide gel is a potential cancer hazard. Work wearing a lab coat and 

disposable gloves. 

● Tris-HCl buffer (1 M, pH 7.5; Thermo Fisher Scientific, Cat. No. 15567027) 

● Tris-HCl buffer (1 M, pH 8.0; Thermo Fisher Scientific, Cat. No. 15568025) 

● Tris (3-hydroxypropyl-triazolyl methyl) amine (THPTA) (Sigma-Aldrich, Cat. No. 

762342) ! CAUTION Skin and eye irritant. Work wearing a lab coat and disposable 

gloves.  

● Triton X-100 (Molecular-biology grade; Sigma-Aldrich, Cat. No. T8787-100ml) ! 

CAUTION Skin and eye irritant. Work wearing a lab coat and disposable gloves. 

● Tween 20 (Sigma-Aldrich, Cat. No. P1379) 

● HiSeq 3000/4000 SBS Kit (50 cycles) (Illumina, Cat. No. FC-410-1001) 

 

Equipment 

● 0.2-mL PCR tube (Eppendorf, Cat. No. 0030124332) 

● 1.5-mL Eppendorf tube (Eppendorf, Cat. No. 33290) 

● 2100 Bioanalyzer Instrument (Agilent, Cat. No. G2939BA) 

● Allegra® 64R High-Speed Centrifuge (Beckman, 367588) with fixed angle rotor JLA-

10.500 (Beckman, Cat. No. 369681) 

● Amicon Ultra-15 Centrifugal filter Unit (Millipore, Cat. No. UFC901024) 

● ART™ Wide Bore Filtered Pipette Tips, 1-mL (Thermo Fisher, Cat. No. 2079G) 

● Beckman Coulter 25 × 89mm Ultra clean tube (Beckman, Cat. No. 344058) 

● Benchtop centrifuge, refrigerated fixed angle rotor (Eppendorf, model no. 5424R) 

● Benchtop centrifuge, swing bucket (Eppendorf, model no. 5910) 

● Blades (Sigma-Aldrich, Cat. No. Z290947) 

● Cell culture incubator (37 °C, 5% CO2) 

● Cell scrapers (Duscher, Cat. No. 010155) 

● Counting chambers: KOVA Glasstic Slide 10 With Counting Grids (KOVA 

International, Cat. No. 87144) (or Hemacytometer or cell counter) 

● Falcon® Tissue Culture Dishes 150 mm (VWR, Cat. No.  # 25383-103) 
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● Falcon® Petri Flasks 175 cm2 (Corning, cat. # 353112) 

● Falcon conical tubes 50ml Cellstar® (Greiner bio-one, Cat. No. # 227-261) 

● Falcon conical tubes 15ml Cellstar® (Greiner bio-one, Cat. No. # 188-271) 

● 500-mL centrifuge bottles (Beckman, Cat. No. 361691) 

● DiaMag Rotator (Diagenode, Cat. No. B05000001) 

● DNA LoBind® Tubes, 1.5-mL (Eppendorf, Cat. No. 022431021) 

● DynaMag-2 Magnet (Thermo Fisher, Cat. No. 12321D) 

● Eppendorf ThermoMixer® C (Eppendorf, Cat. No. EP5382000023). 

● Evaporator (Eppendorf, Model No. 5301) 

● Glass Pasteur pipettes (VWR, Cat. No. 14673-043; clean and autoclaved) 

● Gradient maker (Hoefer, Cat. No. SG50) or Gradient Master (Biocomp, Cat. No. 108) 

● Electrophoresis system, vertical (Hoefer, Model No. SE260-10A-1.5) 

● Electrophoresis system, horizontal (Bio-rad, Model No. Sub -Cell Model 96) 

● HiSeq 3000 System (Illumina, Cat. No. SY-401-3001) or equivalent. 

● Integra Biosciences Pipetboy Accu 2 Pipette Controller (Fisher Scientific, Cat. No. 

10798252)  

● Laminar flow hood (ESCO, Model No. LVG-4AG-F8) 

● Safe Imager 2.0 Blue-Light Transilluminator (ThermoFisher, Cat. No. G6600) 

● Phase lock gel light 50-mL (5 Prime, Cat. No. 713-2539) or MaXtract High-Density 

50-mL (Qiagen, Cat. No. 129073) or equivalent. 

● 50-mL plastic pipettes (Corning, Cat. No. 07-200-17) 

● 25-mL plastic pipettes (Corning, Cat. No. 07-200-15) 

● 10-mL plastic pipettes (Corning, Cat. No. 07-200-12) 

● ProFlex PCR System (Thermo Fisher, Cat. No. 4484073) 

● Qubit 4 fluorometer (Thermo Fisher, Cat. No. Q33238) 

● Qubit assay tubes (Thermo Fisher, Cat. No. Q32856) 

● Sorenson low binding aerosol barrier tips, MicroGuard G, maximum volume 10 μL 

(Sigma-Aldrich, Cat. No. Z719374) 

● Sorenson low binding aerosol barrier tips, MultiGuard, maximum volume 200 μL 

(Sigma-Aldrich, Cat. No. Z719447) 

● Sorenson low binding aerosol barrier tips, MultiGuard, maximum volume 20 μL 

(Sigma-Aldrich, Cat. No. Z719412) 
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● Sorenson low binding aerosol barrier tips, MultiGuard, maximum volume 100 μL 

(Sigma-Aldrich, Cat. No. Z719463) 

● SYBR Green I Nucleic Acid Gel Stain - Thermo Fisher (S7593) 

● Optima XE-100-IVD Ultracentrifuge (Beckman, Part No. A99836) with swinging 

rotor SW28 (Beckman, Part No. 369650) or SW32 (Beckman, Part No. 342207) 

● Vortex-Genie 2 (Scientific Industries, Cat. No. SI-A256) 

● 250-mL glass beaker (clean and autoclaved, Fisher Scientific, Cat. No. FB101250) 

● 600-mL glass beaker (clean and autoclaved, Fisher Scientific, Cat. No. FB101600) 

 

Software 

- deepTools (https://deeptools.readthedocs.io/en/develop/index.html) 
85

 

- IGV (https://software.broadinstitute.org/software/igv/) 
86

 

- OKseqHMM (https://github.com/CL-CHEN-Lab/OK-Seq)  

- R (https://www.r-project.org/) 
87

 

- R package “HMM” 
88

 

- R package “Rsamtools” 
89

 

- R package “GenomicAlignments” 
90

 

- Rstudio 
91

 

- wigToBigWig (http://hgdownload.soe.ucsc.edu/admin/exe/) 

 

Reagent setup  

CRITICAL Common stock solutions are prepared following standard molecular biology 

recipes 
78

 and http://cshprotocols.cshlp.org/site/recipes/nav_s.dtl 

Cell culture  

● DMEM-serum media for HeLa cells: 

Mix 500 mL of DMEM medium with 50 mL of FBS, 5 mL of 100 × Penicillin-

Streptomycin. Store at 4 °C for up to 2 weeks. Prewarm to 37° C before use. 

 

● RPMI 1640-serum media for GM06990 cells: 

https://deeptools.readthedocs.io/en/develop/index.html
https://software.broadinstitute.org/software/igv/
https://github.com/CL-CHEN-Lab/OK-Seq
https://www.r-project.org/
http://hgdownload.soe.ucsc.edu/admin/exe/
http://cshprotocols.cshlp.org/site/recipes/nav_s.dtl
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Mix 500 mL of RPMI medium with 75 mL of FBS, 5 mL of 100 × Penicillin-

Streptomycin, and 3.5 µL of ß-mercaptoethanol. Filter to sterilize and store at 4 °C for up 

to 2 weeks. Prewarm to 37° C before use. 

Common reagents 

● 100 mM Biotin-TEG azide  

Dissolve 25 mg in 0.562 mL of DMSO. Store at 4 °C for up to 1 year. 

● 100 mM CuSO4  

Dissolve 100 mg in 6.27 mL of ddH2O. Aliquot and store at 4 °C for up to 1 year 

● 1 M sodium ascorbate 

Dissolve 200 mg in 1.01 mL of ddH2O. Aliquot and store at -20 °C for up to 1 year. 

CRITICAL Discard and prepare fresh if the solution has turned yellow. 

● 20 mM EdU  

Dissolve 25 mg in 4.956 mL of DMSO. Aliquot and store at -20 °C for up to 1 year. 

● 2 × BWT 

Prepare as outlined below. Can be stored at room temperature (RT; 22 °C) for up to 6 

months. 

Reagent Final Stock Volume (mL) for 50 mL 

Tris HCl pH 7.5 10 mM  1 M  0.5 

EDTA pH 8.0 1 mM  0.5 M  0.1 

NaCl 2 M  5 M  20 

Tween 20  0.1 % (vol/vol) 10 % (vol/vol) 0.5 

ddH2O   Up to 50 mL 

 

● 1 X BWT 

Mix 25 mL of 2 × BWT with 25 mL of ddH2O. Can be stored at RT for up to 6 

months. 

● 500 mM THPTA 

Dissolve 100 mg in 460.3 µL of ddH2O. Aliquot and store at 4 °C for up to 1 year. 

● 80 % (vol/vol) ethanol 

Mix 8 mL of absolute ethanol with 2 mL of ddH2O. CRITICAL Prepare freshly each 

time. 

● AMPure XP beads  

Divide bead solution into 2 mL aliquots and store at 4 °C (can be done in advance). 
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CRITICAL It is critical to equilibrate the AMPure XP beads at RT (≥ 22 °C) for at least 30 

min before use for an optimal size selection. 

● DNA lysis buffer 

Prepare as outlined below. Autoclave and store at RT for up to 1 year. 

Reagent Final  Stock Volume (mL) for 500 mL 

Tris-HCl pH 8.0 10 mM  1 M  5 mL 

EDTA pH 8.0 25 mM  0.5 M  25 mL 

NaCl 100 mM  5 M 10 mL 

ddH2O   Up to 500 mL 

 

● 5% TEN-sucrose buffer 

Prepare as outlined below. Autoclave and store at RT for up to 6 months. 

Reagent Final  Stock Volume (mL) for 1 L 

Tris-HCl pH 8.0 10 mM  1 M  10 mL 

EDTA pH 8.0 1 mM  0.5 M  2 mL 

NaCl 100 mM  5 M  20 mL 

Sucrose  5 % (wt/vol) 50 % (wt/vol) 100 mL 

ddH2O   Up to 1000 mL 

 

● 30% TEN-sucrose buffer 

Prepare as outlined below. Add several crystals of bromophenol blue. Autoclave and 

store at RT for up to 6 months. 

CRITICAL The bromophenol blue is optional but is very useful for gradient visualization. 

Reagent Final  Stock Volume (mL) for 1 L 

Tris-HCl pH 8.0 10 mM  1 M  10 mL 

EDTA pH 8.0 1 mM  0.5 M  2 mL 

NaCl 100 mM  5 M  20 mL 

Sucrose  30 % (wt/vol) 50 % (wt/vol) 600 mL 

ddH2O   Up to 1000 mL 

 

 1 × TE-Tween 

Prepare as outlined below. Store at RT for up to 1 year. 
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Reagent Final  Stock  Volume (mL) for 50 mL 

Tris-HCl pH 8.5  10 mM  1 M  0.5 

Tween 20  0.05 % (vol/vol)  10 % (vol/vol) 0.25 

EDTA 1 mM  0.5 M  0.1 

ddH2O   Up to 50 mL 

 Oligonucleotides (Table 1) 

Order the primers listed in table 1 from a standard lab supplier. Adapters should contain the 

indicated modifications and be ordered in HPLC-grade, PCR primers can be ordered in a 

standard purification grade. Dissolve the oligonucleotides in EB buffer to the final 

concertation of 100 µM. Prepare working solutions of PCR primers by further diluting with 

nuclease-free H2O to 10 µM. Store at -20 °C for up to 2 years.   

CRITICAL The index sequences in the TruSeq Primers (lower-cased) can be substituted 

with any other index sequences. Double-indexing can be included in the primer sequences if 

desired. Primer R1 has an identical sequence to A1top but for naming simplicity is listed under 

a separate name. 

 

PROCEDURE 

Cell culture, EdU labelling, and cell harvesting ● TIMING 2-7 days of cell 

culture, 2 hours of labelling and harvesting. 

1. Follow option (A) for adherent cells (Hela) and option (B) for suspension cells 

GM06990 (B).  

CRITICAL For the yeast S. cerevisiae, please refer to the supplementary protocol.  

(A) Cell culture, EdU labelling, and harvesting of adherent cells (HeLa) 

(i) Culture adherent HeLa cells in 15-cm dishes with 20 mL of DMEM 

supplemented with 10% (vol/vol) FBS. 

(ii) Seed 4 × 10
6
 cells in 150-mm dishes with 20 mL of medium and grow them for 

approximately 48 h at 37 °C, 5 % CO2 to reach 70-80% confluency. Prepare 

enough plates to harvest at least 500 million cells per one replicate 

(approximately 20 of 150-mm plates for HeLa cells). 
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CRITICAL It is important to respect the optimal cell culturing conditions and the density to 

maintain exponential cell growth.  

CRITICAL The number of plates will depend on the cell size and seeding density. 

Additionally, the cell number may need to be optimized depending on the fraction of cells 

undergoing S phase in population and the cell ploidy. See Experimental design for the details. 

(iii) Transfer 10 mL of the medium from the plate to a 50-mL tube and add 20 µL of 

20 mM EdU stock solution. Mix by inverting the tube and pouring the EdU-

containing medium back to the plate. The final EdU concentration is 20 µM. 

Incubate plates at 37 °C for exactly 2 minutes.  

CRITICAL To keep the labelling time consistent between the plates, the EdU-containing 

medium has to be added and removed exactly in the same order and at a fixed time interval 

(e.g. 30 sec to 1 min) between plates. For convenience, we do not recommend handling more 

than 2-3 plates at the same time. 

(iv)  Aspirate the medium and immediately add 10 mL of ice-cold 1 × PBS to stop 

the EdU incorporation. Store the plates at 4 °C until all plates are processed. 

(v) Collect the adherent cells by scraping with a clean cell scraper and transfer the 

cell suspension to 50-mL conical centrifuge tubes chilled on ice. To collect the 

remaining cells, rinse each plate with 10 mL of ice-cold 1 × PBS, and transfer to 

the same 50-mL conical tubes. Centrifuge for 10 min at 4 °C, 300 × g. Discard 

the supernatant.  

PAUSE POINT. At this step cell pellets can be snap-frozen in liquid nitrogen and stored at -

80 °C for up to one year. 

(B) Cell culture, EdU-labelling, and harvesting of suspension cells (B-

lymphoblasts GM06990) 

(i) Culture cells in 175-cm
2
 flasks with 50 mL of RPMI1640 media supplemented 

with 15% FBS, Penicillin/Streptomycin, and beta-mercaptoethanol at 0.8-1 

million cells per mL.  

(ii) Seed 2-2.5 × 10
7
 cells in a 175-cm

2
 flask vertically with 100 mL of medium for 

approximately 48 h at 37 °C, 5 % CO2 to reach 0.8-1 million per mL. Prepare 

enough flasks to harvest at least 800 million cells per one replicate (8-10 flasks of 
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175 cm
2
 for GM06990 cells). 

CRITICAL It is important to respect the optimal cell culturing conditions and the density to 

maintain exponential cell growth. Lymphoblastoid cells make clumpy colonies at the bottom 

of the flasks. To maintain healthy cultures, resuspend the clumpy colonies to achieve single-

cell suspension between the passages. 

(iii) Carefully remove 80 mL of medium from the top of the flask using a pipette 

without disturbing cell clumps formed at the bottom of the flask. Save 20 mL of 

the medium in a 50-mL conical tube. 

CRITICAL This step allows reducing the volume of the labelling medium. Lymphoblastoid 

cells form clumpy colonies on the bottom of the flask and the excess of the medium can be 

removed by aspirating from the top. For cell types growing in spinning flasks, cells can be 

centrifuged before the labelling and resuspended in a smaller volume of prewarmed medium. 

(iv) Add 40 µL of 20 mM EdU stock solution to the 20 mL of the medium. Mix by 

inverting the tube and pouring the EdU-containing medium back to the flask 

containing 20 mL of cell suspension. The final EdU concentration is 20 µM. 

Incubate flasks at 37 °C for exactly 2 minutes.  

(v) Cool the flasks by immerging and agitating them in an ice-cold water bath. Add 

40 ml ice-cold 1 × PBS and 250 µL of 0.5 M EDTA, mix well. Store the flasks in 

the ice-cold water bath until all flasks are processed.  

CRITICAL Respect the exact labelling time and immediately cool the flasks to quickly 

terminate the labelling. 

(vi) Transfer cells to 50-mL Falcon tubes and centrifuge for 10 min at 4 °C, 300 × g. 

Discard the supernatant.  

(vii) Resuspend all the pellets with 20 ml ice-cold 1 × PBS in one 50-ml Falcon tube. 

Centrifuge at 300 × g for 10 min at 4 °C. Discard supernatant. 

PAUSE POINT. At this step cell pellets can be snap-frozen in liquid nitrogen and stored at -

80 °C for up to one year. 
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Extraction of the genomic DNA • TIMING 2 hours with overnight incubation 

CRITICAL For S. cerevisiae cells, follow the Extraction of genomic DNA section in the 

supplementary protocol. 

2. Thaw the cell pellets on ice. 

3.  Resuspend cells in Lysis buffer to 1 million cells per mL. Distribute 10 mL aliquots 

of cell suspension to 50-mL tubes. Place the tubes on a rack at room temperature. 

CRITICAL Gently resuspend to minimize cell rupture and DNA shearing. Achieve the 

single-cell suspension to ensure homogeneous lysis and optimal DNA extraction. 

4. Add 250 µL of 20 % SDS to the cell suspension. The final SDS concentration is 0.5 

% (wt/vol). Tightly close the cap and mix by gently inverting the tubes 5-10 times.  

CRITICAL Keep the tubes at room temperature during SDS addition. Invert the tubes gently 

to minimize DNA breaks. 

5. Add 50 µL of proteinase K 20 mg /mL (wt/vol) to the lysate. The final concentration 

of proteinase K is 0.1 mg / mL (wt/vol). Close the cap, and mix by gently inverting 

the tube. 

CRITICAL At this stage the lysates will appear very viscous.  

6. Incubate the tubes at 42 °C for 4 h or overnight (16 h). 

CRITICAL After complete cell lysis the solution should appear homogeneous and 

transparent. 

? TROUBLESHOOTING 

7. In a chemical hood, add to each tube 10 mL of phenol-chloroform isoamyl alcohol 

mix solution pre-equilibrated at RT. Tightly close the cap and mix gently by inverting 

the tube until obtaining an entirely homogeneous mixture. 

CRITICAL Bring the phenol-chloroform isoamyl alcohol solution to RT in advance.  

CRITICAL Gently invert the tubes to allow the liquid to move between the cap and the 

bottom. This step may require up to 10 minutes.  

! CAUTION Perform the DNA extraction inside a chemical hood and wear a lab coat and 

dispensable gloves.  

8. Spin a 50-mL MaXtract High-Density tube at 1500 × g at RT for 2 min, and pour the 

mixture from Step 7 into the tube.  

9. Centrifuge for 4 min at 1500 × g at RT with a swing rotor. This will separate the 

aqueous solution containing DNA while the organic phase will remain locked under 

the solid MaXtract gel phase.  
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CRITICAL Use of MaXtract High-Density tubes (or equivalent) is strongly recommended 

for achieving high-quality DNA preparation. 

10. In a chemical hood, add to each tube 10 mL of phenol-chloroform-isoamyl alcohol 

mix. Tightly close the cap and mix gently by inverting the tube until full 

homogenization. 

CRITICAL It is important that the organic fraction from step 9 remain locked under the 

MaXtract gel phase during this step. 

11. Centrifuge for 4 min at 1500 × g at RT. This will separate the aqueous solution 

containing DNA while the organic phenol phase will remain locked under the solid 

MaXtract gel phase.  

CRITICAL If the aqueous phase after this step is not clear, perform additional phenol-

chloroform extraction by repeating steps 7-9.  

12. In the chemical hood, add to each tube 10 mL of chloroform. Tightly close the cap 

and mix gently by inverting the tube until full homogenization. Centrifuge for 4 min 

at 1500 × g at RT.  

13. Transfer the upper aqueous phase containing genomic DNA from all tubes by pouring 

into a clean 200-mL glass beaker.  

CRITICAL Discard the organic fraction and the tubes to the appropriate chemical waste. 

14. Add 2 mL of 7.5 M ammonium acetate per each 10 mL of lysate and mix gently with a 

Pasteur pipette. 

15. Add 25 mL of absolute ethanol per each 10 mL of lysate, swirl gently with the same glass 

Pasteur pipette until the DNA precipitates. 

16. Twine the precipitated DNA fibres with the Pasteur pipette and carefully transfer all the 

DNA precipitate into a clean 200-mL glass beaker containing 100 mL of 75 % (vol/vol) 

of ethanol. Leave the DNA precipitate immersed for 3~5 min. Repeat this step twice. 

CRITICAL STEP It may be convenient to recover the DNA precipitate using two Pasteur 

pipettes as chopsticks. 

17. Place the DNA precipitate with the Pasteur pipettes inside a new 15-mL falcon.  

18. Remove any residual ethanol with a 1-mL tip. 

CRITICAL STEP It is important to remove as much ethanol as possible.  

19. Transfer the DNA precipitate to a new 15-mL tube, add 6 mL of TE.  

CRITICAL STEP Ensure the entire DNA precipitate is immersed in TE buffer. Do not 

pipette. 
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20. Leave the Falcon open for 30 min at 37 °C in a dry thermostat to allow the 

evaporation of residual ethanol. 

21. Carefully remove the Pasteur pipette and close the cap. 

PAUSING POINT Store the DNA solution at 4 °C for at least 3-7 days to allow the 

complete dissolution of the DNA precipitate. Can be stored for up to 1 month at 4 °C. 

 

Size-fractionation of denatured genomic DNA on neutral sucrose gradients. • 

TIMING 3.5 h of handling and 17 h of centrifugation. 

CRITICAL STEP Because the centrifugation lasts 17 h it is convenient to start this step in 

the late afternoon. 

22. Incubate the DNA solution from step 21 at 37 °C for 1 h to diminish the viscosity.  

23. Measure the DNA concentration with Qubit ds DNA BR Kit according to the 

manufacturer‟s protocol. Typically, a yield of 2~3 mg of total DNA is expected. 

? TROUBLESHOOTING 

24. Split the volume into 6 equal aliquots of approximately 1-1.2 mL into 1.5-mL tubes 

using a 1-mL wide-bore tip.  

CRITICAL STEP If the yield of total DNA is higher than 3 mg it is recommended to scale 

up the number of aliquots and gradient centrifugations accordingly.  

CRITICAL STEP The DNA solution is viscous and hard to pipette at this stage. Pipette 

slowly with a 1-mL wide-bore to minimize DNA shearing.  

25. Prepare 6 linear sucrose gradients in Beckman Coulter Ultra clear tubes 25 × 89 mm 

by mixing 18 mL of 5 % TEN-sucrose and 18 mL of 30 % TEN-sucrose using a 

gradient maker and following the gradient manufacturer‟s instructions. 

26. Place each tube containing the gradients in a centrifuge tube adapter (Beckman Ultra-

high-speed centrifuge, Rotor SW28) and hold it carefully. Proceed immediately to the 

next step.  

CRITICAL STEP Due to the bromophenol blue in 30 % TEN-sucrose, a gradient of blue 

shade from the bottom to the top should be visible in the tube. If the blue gradient is not 

visible, discard the tube. Both Hoefer SG50 Gradient maker and Gradient Master (Rotor: 

SW28; Program: Long_Sucr_05-30%_wv_1St) result in similar and acceptable size-

fractionation. We prefer Gradient Master as up to 6 highly uniform gradients can be 

simultaneously prepared within 15 min. Handle the gradients with caution.  
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27. Heat DNA aliquots from step 24 for 5 min at 94 °C to denature double-stranded DNA 

and chill immediately on an ice-cold water bath for 10 min. 

28. Very carefully layer one aliquot of DNA from step 27 on the surface of one gradient 

from step 26 using a wide-bore tip. Load all gradients. 

29. Adjust the weight of the tubes (with adapter) at symmetric positions on the rotor (1 

and 4; 2 and 5; 3 and 6). Balance the weight by careful dropwise pipetting along the 

inner wall of the tube of the necessary amount of 5 % TEN-sucrose to achieve the 

exact (≤0.1 g) weight balance. 

CRITICAL STEP Any minor imbalance may lead to the tube or the rotor breakage.  

CRITICAL STEP Proceed immediately to the next step to avoid diffusion of the gradient. 

30. Carefully close the caps, attach the adapters to the SW28 rotor and insert the rotor 

inside of the Beckman Ultracentrifuge. Spin under the vacuum for 17 h at 26,000 rpm 

at 20 °C, with acceleration and deceleration speed set on “High”. 

CRITICAL STEP Keep an eye on the centrifuge for about 15 min after the program starts to 

ensure that the desired centrifuge speed has been achieved. 

PAUSE POINT Centrifugation lasts 17 hours. 

31. The next day once the centrifugation is finished, switch off the vacuum and open the 

lid. 

32. Carefully transfer the adapter with the tubes to the rack. Open the adapter lids with 

care. 

CRITICAL Before collecting fractions, check the tube integrity. If the tube was broken 

during centrifugation the gradient should be discarded. 

33. Number 18 of 15-mL Falcon tubes from 1 to 18.  

34. Start collecting 1-mL fractions with a 1-mL wide-bore tip from the top of each gradient 

by slowly aspirating from the surface of the gradient. Combine fractions of the same 

order from all six gradients into a single 15-mL tube. 

CRITICAL To collect the fractions, place a wide-bore tip vertically against the gradient 

surface and pipette slowly. Only pipette up from the surface of the gradient and never pipette 

down. 

CRITICAL Usually the first 8 top 1-mL fractions contain DNA fragments of the desired size 

( ≤ 250 nt), but we suggest collecting more fractions to check the size distribution and 

linearity of the gradient fractionation (Box 1). 
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CRITICAL Observe the colour of the fractions. Because of bromophenol blue in the dense 

sucrose solution, the top fractions should be lighter and the bottom fractions should appear 

progressively more coloured.  

CRITICAL If wide-bore tips are not available, cut the 1-mL tips with clean scissors. Make 

sure the cut end is smooth and flat. 

PAUSE POINT. The fractions can be stored at 4 °C for 1-3 days or frozen at -20 °C for up to 

6 months. 

35. Pool the fractions from step 34 containing fragments smaller than 200-250 nt 

(typically the first 1 to 8 fractions). 

36.  Concentrate the pooled fractions (48-80 ml) on a Millipore Amicon Ultra Centrifugal 

Filter, 15-mL, 10K. 

37. Add 15 ml of fractions to a centrifuging filter and centrifuge at 4000 × g at room 

temperature for 10-15 min. 

38. Discard the flow-through and load the next 15 ml of the sample to the filter. Repeat 

centrifugations until the entire volume of fractions is concentrated to approximately 

300 µl. 

39. Buffer-exchange by adding 5 ml of ultrapure water and centrifuge at 4000 × g for 10 

minutes. Discard the flowthrough. Repeat 2 more times. 

40.  Transfer the concentrated solution from the filter (approximately 300 µl) to a new 

1.5-mL tube. Measure the volume carefully with the pipette tip and note it on the tube. 

PAUSE POINT. The concentrated fractions can be stored at -20 °C for 2 weeks. 

? TROUBLESHOOTING 

  

Click biotinylation • TIMING 2 h 

41. Set up the click reaction by adding the following reagents sequentially to the tubes 

containing purified gradient fractions from step 40. 

CRITICAL STEP If the volume of concentrated fractions from step 40 is > 375µl, scale up 

the volumes of all reagents. 

Reagent Volume (µL) Final  

DNA ≤ 375 µL  

10× Click-it buffer (or 10 × PBS pH 7.4) 50 µL 1 × 

100 mM Biotin -TEG- azide  5 µL 1 mM 
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500 mM THPTA 10 µL 10 mM 

100 mM CuSO4 10 µL 2 mM 

100 mM sodium ascorbate  50 µL 10 mM 

ddH2O Up to 500 µL  

 

42. Mix by pipetting and incubate for 45 min at RT. 

CRITICAL The THPTA and CuSO4 should be premixed and added in a single pipetting 

step.  

CRITICAL Use freshly-prepared sodium ascorbate and respect the optimal reaction 

temperature. If the room temperature is lower than 22 °C, place the reactions in a 

thermoblock at 25 °C without mixing. 

43. Spin briefly and split the 500 µL DNA solution into 2 equal aliqoutes of 250 µL in 2 

1.5-mL Eppendorf tubes. Add 750 µL of absolute ethanol to precipitate DNA, close 

the caps and mix by inverting.  

44. Chill the tubes at -80 °C for 15 min. 

45. Spin for 30 min at ≥ 15,000 g) at 4 °C. Decant the supernatant. 

CRITICAL The pellet can appear coloured in blue or brownish, probably due to the copper 

residue which does not interfere with the experiment.  

46. Add 500 µL of 75% ethanol to the pellet, spin for 5 min at full speed at 4 °C. Decant 

the supernatant. 

47.  Quick spin and carefully remove the residues with a 200-µL tip without disturbing 

the pellet. Keep the tube open and air dry briefly (usually 2-5 min). 

48. Dissolve each pellet in 45 µl of nuclease-free water and combine into a single 1.5-mL 

tube.  

RNA Hydrolysis • TIMING 20 min 

49. Add 10 µL 2.5 M NaOH into the 90 µL DNA from step 47 to a final concentration of 

250 mM, mix by pipetting, quick spin, and incubate for 30 min at 37 °C 

50. Quick spin and add 10 µL 2.5 M Acetic acid to neutralize the pH and mix by 

pipetting. 

51. Purify the DNA with 2 × Biorad Micro Biospin P-30 columns according to the 

manufacturer‟s instructions. 
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52. Combine the purified flow throughs from two columns in one 1.5-mL tube.  

53. Carefully measure the volume of the solution using a 200-µL pipette tip, and place the 

tube on ice. 

CRITICAL Usually 120-150 µL DNA solution is recovered and the volume may slightly 

differ.  

DNA phosphorylation and precipitation • TIMING 1.5 h 

54. Set up the phosphorylation reaction by adding the following reagents sequentially to 

the tubes containing purified DNA from step 53. Mix by pipetting, quick spin, and 

incubate at 37 °C for 20 min. 

Reagent Volume (µL) Final  

DNA ≤ 117 µL  

10 × T4 PNK buffer A 15 µL 1 × 

10 mM ATP  15 µL 1 mM 

T4 PNK (10 U/µL) 3 µL 0.2 U/µL 

ddH2O Up to 150 µL  

CRITICAL STEP If the volume of the DNA from step 53 is > 117 µl, scale up the 

volumes of all reagents accordingly. 

CRITICAL STEP It is important to use a fresh aliquot of ATP and avoid freezing-

thawing cycles. 

55. Incubate the tube for 10 min at 75 °C to inactivate the T4 PNK enzyme. 

56. Quickly spin the tubes and chill on ice.  

57. To precipitate DNA, add 15 µL of 3 M sodium acetate (pH5.2) and 415 µL of -20 °C 

chilled absolute ethanol, mix by inverting. Incubate for 15 minutes at -80 °C. 

58. Centrifuge for 30 min at 4 °C ≥ 17000 × g. Discard the supernatant. 

59. Wash the pellet by adding 500 µL of 75 % ethanol without disturbing the pellet.  

60. Centrifuge for 2 min at 4°C ≥17000 × g. Discard the supernatant. 

61. Quick spin and remove all residual ethanol without disturbing the pellet. 

62. Leave the tube opened for 5 minutes to evaporate the residual ethanol.  

63. Dissolve the pellet in 20 µL of nuclease-free water and transfer to a 200-µL PCR 

tube. Place the tube on ice. 

CRITICAL If the solution appears very viscous, dissolve the pellet in 80 µL of nuclease-free 

water and transfer it to a 0.5-mL PCR tube. Scale up the volumes of all subsequent steps 

accordingly. 
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Hybridization and ligation of adapters, round 1 • TIMING 30 min to 

overnight 

CRITICAL For the adapters reannealing see Box 2. Avoid the freeze-thaw cycles for the 

reannealed adapters. 

64. Set up the reaction by adding the following reagents sequentially to the tube 

containing the purified phosphorylated DNA from step 63. Mix by pipetting and 

perform a quick spin.  

Reagent Volume (µL)  

Phosphorylated DNA (step 63) 20 µL 

40 mM adapter A1 (Table 1 and Box 2) 2 µL 

40 mM adapter A2 (Table 1 and Box 2) 2 µL 

 

65. Incubate in a thermocycler programmed as outlined below: 

Step  Temp  Time  

Hybridization  65 °C  10 min  

 16 °C 5 min  

 

66. Take the tubes out of the thermocycler. Set up the ligation reaction by adding the 

following reagents sequentially to the tube:  

Reagent Volume (µL) Final  

10 × T4 ligase buffer 4 µL 1 × 

50 % PEG 8000 (w /vol) 4 µL 5 % 

5 M betaine 4 µL 0.5 M 

T4 DNA ligase 1 Weiss U / µL  4 µL 0.1 Weiss U / µl  

 

CRITICAL Thaw on ice a fresh aliquot of 10 × T4 ligase buffer. Avoid freeze-thaw the 

aliquots.  

67. Mix by pipetting, quick spin, and incubate at 16 °C in a thermocycler for 16 hours. 

PAUSE POINT. The incubation can last overnight. 

 

Streptavidin capture of biotinylated library fragments ● TIMING 1 h 

68. Resuspend the stock of MyOne T1 streptavidin Dynabeads by gentle vortexing.  

69. Pipette 20 µl of the bead suspension into a 1.5-mL tube. Place the tube on the magnet 
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to capture the beads. Incubate until the liquid is clear.  

70. Remove and discard the supernatant with a 200-µL filter tip. 

71. Remove the tube from the magnet and add 200 µl of 1× BWT buffer, mix by 

pipetting.  

72. Place the tube on the magnet to pellet the beads. Incubate until the liquid is clear.  

73. Carefully remove and discard the supernatant with a 200-µl filter tip without 

disturbing the beads.  

74. Repeat steps 71-73 two more times. 

75. Remove the tube from the magnet and resuspend the beads in 40 µl of 2 × BWT 

buffer.  

76. Add 40 µl of the washed bead suspension into the tube containing the ligation 

reaction from step 67 and mix by pipetting. 

77. Incubate the tube on a rotating platform at room 15-20 rpm for 20 min at RT. 

CRITICAL Ensure the beads remain in suspension during the incubation. Resuspend the 

beads by gently flicking the tube every 5 min. Because of the small volume, sideways 

rotation of the tube is preferred rather than inversion.  

78. Spin the tube briefly in a microcentrifuge and place the tube on the magnet to capture 

the beads. Transfer the supernatant to a new 1.5-mL tube labelled “Supernatant 1” and 

keep it at -20 °C for the library construction quality control (Box 3) 

79. Remove the tubes with the beads from the magnet, add 200 µL of 1× BWT and mix 

thoroughly by pipetting with a 200-µL low-binding filter tip. Transfer the entire 

volume to a new 1.5-mL low-binding tube. 

80. Place the tube on the magnet to capture the beads. Incubate until the liquid is clear. 

Remove and discard the supernatant with a 200-µL tip.  

81. Repeat washing steps (79-80) 2 more times with 200 µL 1 × BWT without 

transferring the beads to a new tube. 

82. Remove the tube from the magnet and add 200 µl 1 × TE + 0.05% Tween 20 and mix 

by pipetting.  

83. Place the tube on the magnet to pellet the beads and remove the supernatant with a 

200-µL pipette tip. Repeat one more time. 

84. Remove the tube from the magnet, add 200 µl of ddH2O and mix by pipetting.  

85. Place the tube on the magnet to pellet the beads and remove the supernatant with a 

200-µL tip. 
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86. Resuspend the beads in 10 µL ddH2O and transfer to a new 200-µL PCR tube. Place 

on ice and proceed immediately to the next step. 

Ligation of adapters, round 2 • TIMING 4 h to overnight 

87.  Set up the second-round ligation reaction by adding the following reagents 

sequentially to the tube:  

Reagent Volume (µL)  

Library bead suspension (Step 86) 10 µL 

40 mM adapter A1 (Table 1 and Box 2) 1 µL 

40 mM adapter A2 (Table 1 and Box 2) 1 µL 

 

88. Mix well by pipetting and incubate in a thermocycler programmed as outlined below: 

Step  Temp  Time  

Hybridization  65 °C  10 min  

 16 °C 5 min  

89. Take the tubes out of the thermocycler. Set up the ligation reaction by adding the 

following reagents sequentially to the tube:  

Reagent 
Volume 

(µL) 
Final  

10 × T4 ligase buffer 2 µL 1 × 

50 % PEG 8000 (wt/vol) 2 µL 5 % 

5 M betaine 2 µL 0.5 M 

T4 DNA ligase 1 Weiss U / µL  2 µL 0.1 Weiss U / µl  

 

90. Mix by pipetting, quick spin. Incubate at 16 °C in a thermocycler for ≥ 2 h or 

overnight. 

91. Prepare 10 µL of fresh ligation mix by adding the following reagents sequentially in a 

tube on ice: 

Reagent Volume (µL)  

ddH2O 7 µL 

10 × T4 ligase buffer 1 µL 

10 mM ATP 1 µL  

T4 DNA ligase 1 Weiss U/µL  1 µL 
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92.  Take the tube (Step 90) from the thermocycler, quick spin, and place it on the magnet 

to capture the beads.  

93. Carefully remove 10 µL of the supernatant without disturbing the beads. Label the 

supernatant as “Supernatant 2” and keep it at -20 °C for the quality control of library 

construction (Box 3). 

94. Take the tube off the magnet and add 10 µL of the fresh ligation mix (step 91). Mix 

by pipetting and perform a quick spin. Incubate in the thermocycler for 1 h at 16 °C. 

95.  Place the tube on the magnet to capture the beads. Carefully remove the supernatant 

without disturbing the beads. 

96. Remove the tubes with the beads from the magnet, add 200 µL of 1 × BWT and mix 

thoroughly by pipetting with a 200-µL low-binding filter tip. Transfer the entire 

volume to a new 1.5-mL low-binding tube. 

97. Place the tube on the magnet to capture the beads. Incubate until the liquid is clear. 

Remove and discard the supernatant with a 200-µL tip.  

98. Repeat washing steps (96-97) 4 more times with 200 µL 1 × BWT without 

transferring the beads to a new tube. 

99. Remove the tube from the magnet and add 200 µl 1 × TE + 0.0 5% Tween 20 and mix 

by pipetting.  

100. Place the tube on the magnet to pellet the beads and remove the supernatant 

with a 200-µL pipette. Repeat one more time. 

101. Remove the tube from the magnet add 200-µl of nuclease-free water and mix 

by pipetting.  

102. Place the tube on the magnet to pellet the beads and remove the supernatant 

with a 200-µL tip. 

103. Resuspend the beads in 20 µL of EB, transfer to a new 200-µL PCR tube and 

proceed to the quality control of library construction (Box 3). 

PAUSE POINT The library on beads can be stored at -20 °C for up to 6 months. 

 

Okazaki fragment library amplification • TIMING 1.5 h 

104. Assemble each library amplification reaction in a low-binding 200-µL PCR 

tube as follows:  

Component  Stock  Volume  Final  

 PEM1 (Table 1)  10 µM 1 μL  0.2 µM 
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Truseq_Index with the desired 

barcode (Table 1)  

10 µM 
 

0.2 µM 

KAPA HiFi Fidelity Buffer  5 × 10 μL  1 × 

Bead suspension with the bound 

adapter-ligated library (Step 103) 

 
5-10 μL  

 

KAPA dNTP Mix 10 mM  1.5 µL 0.3 mM 

Taq Kapa HiFi Hotstart 

Polymerase 

1 U / µL 0.5 µL 0.1 U / µL 

H2O   Up to 50 μL   

 

105. Amplify using the following cycling protocol: 

Step  Temp  Duration  Cycles  

Initial 

denaturation  
98 °C  45 sec  1  

Denaturation  98 °C  15 sec  

10 Annealing 60 °C  30 sec  

Extension  72 °C  30 sec  

Final extension  72 °C  1 min  1  

HOLD  4 °C  ∞  1  

 

CRITICAL STEP It is important to use a minimal number of amplification cycles to 

minimize the generation of PCR duplicates. We do not recommend exceeding 12 cycles in 

total. Usually, a 10-cycle library amplification synthesizes enough material for sequencing.  

106. Take out the tubes from the thermocycler, quick spin, and place on the magnet 

to collect the beads.  

107. Transfer the supernatant containing the amplified library into a new 1.5-mL 

low-binding tube without disturbing the beads. 

108. Wash streptavidin beads once in 200 µL of EB + 0.05 % Tween 20, resuspend 

in 20 µL of EB, and store at -20 °C for up to several months. If necessary, Okazaki 

fragment library amplification (steps 104-107) can be performed one more time using 

the same beads as a template. 

PAUSE POINT The beads can be stored at -20 °C for up to one year and the PCR product 

could be stored at 4 °C for 72 h or at -20 °C for up to 6 months. 
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Post-amplification clean-up • TIMING 1 h 

109. Equilibrate AMPure XP beads at RT for at least 30 min before use. 

110. Perform a 1.5 × SPRI cleanup to the supernatant that contains the amplified 

library (step 107) by combining the following:  

Component  Volume  

PCR reaction product  50 μL  

AMPure XP beads 75 μL  

Total volume  125 μL  

 

111. Mix thoroughly by vortexing. Incubate the tubes at RT for 10 min to bind 

DNA to the beads.  

112. Place the tubes on the magnet to capture the beads. Incubate until the liquid is 

clear. Carefully remove and discard the supernatant with a 200-µL filter tip.  

113. Keeping the tubes on the magnet, add 200 μL of freshly prepared 80 % 

(vol/vol) ethanol. Incubate the tubes on the magnet at RT for at least 30 sec.  

114. Carefully remove and discard the ethanol with a 200-µL filter tip. Repeat steps 

112-113.  

115. Remove all residual ethanol without disturbing the beads.  

CRITICAL STEP Do not let the beads dry as it will result in irreversible DNA binding to 

the beads. 

116. Remove the tubes from the magnet and resuspend the beads in 10.5 μL of EB. 

117. Incubate the open tubes in a thermomixer for 5 min at 37 °C to elute DNA off the 

beads and evaporate the residual ethanol. Cover the thermomixer with a clean lid or a 

piece of aluminium foil to protect the tubes from dust. 

118. Place the tubes on the magnet to capture the beads. Incubate until the liquid is clear. 

119. Carefully transfer 10 µL of the supernatant (containing the library) to a new 1.5-mL 

low-binding tube without taking any beads.  

PAUSE POINT The purified library could be stored at 4 °C overnight or -20 °C for up to 6 

months. 
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Size-selection on agarose gel • TIMING 2 h 

CRITICAL STEP Size selection is a critical step for optimal sequencing results.  

120. Prepare a 4% Agarose gel (15 cm × 15 cm) in 1 × TAE buffer. 

121. Mix 10 µL eluted DNA (step 119) with 2 µL 6 × purple gel loading dye and 1 µL 

SYBR Green (100 ×), and load the mix into the gel. Load DNA ladders between 20 

bp and 1000 bp (like NEB low molecular weight ladder, or equivalent). Run the gel 

until bromophenol blue reaches ¾ of the gel length. 

CRITICAL STEP The electrophoresis tank should be rinsed with deionized water in 

advance, and a fresh 1 × TAE buffer should be applied for electrophoresis. 

CRITICAL STEP Alternatively the SYBR Green could be substituted with ethidium 

bromide or other dyes that do not disturb DNA migration.  

Visualize the gel on a non-UV light bench and cut the bands between 150-400 bp with a 

clean blade.  

CRITICAL STEP Do not use UV light as it damages DNA and may impact the sequencing 

quality. 

CRITICAL STEP A visible gap should be visible between the primer dimer (128 bp) and 

the shortest library fragments (135-140 bp). Do not touch 128 bp band with the blade as it 

may lead to contamination with primer dimers. 

122. Purify the DNA from the gel with the Qiagen Minelute Gel extraction kit 

according to the manufacturer‟s manual, except dissolving the agarose block at RT 

with gently shaking. 

123.  Elute DNA with 10 µL EB buffer and proceed to the quality control of the 

library size selection (Box 4) 

PAUSE POINT The size-selected and purified library could be stored at -20 °C for up to 1 

year. 

? TROUBLESHOOTING 

 

Sequencing • TIMING variable  

124. Pool the libraries for multiplexing according to standard Illumina protocols. 

125. Sequence the pooled libraries on an Illumina next-generation sequencing 

platform in single or paired-end mode. During the run set-up load the custom 
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sequencing primer for the read 1 (Primer R1,Table 1).  

CRITICAL STEP Since the A1 adapter is shortened by 5 bp, the custom read 1 sequencing 

primer has to be loaded to the flowcell (following standard Illumina recommendations). 

Indicate to the sequencer program that a custom primer for read 1 was used before starting to 

run the program. 

 

Data processing • TIMING variable 

CRITICAL Data processing typically takes about 12 hours (tested with a classical desktop 

configuration: 3.5 GHz Intel Core i5 CPU with 4 cores for iMAC and 16 Go DDR4 2400 

MHZ speed memory; for a dataset of ~300 million total reads).  

 

126. Prepare/download the aligned sequencing data in .bam files.  

CRITICAL The current protocol starts from the aligned data, which can be processed 

following standard procedures and are frequently provided by sequencing facilities. 

Briefly, the raw sequencing data (.fastq ) need to be pre-processed into genome 

aligned files with the following major steps: fastqc for checking the quality of reads, 

cutadapt/Trim Galore/Trimmomatic for trimming adapters and low quality reads, 

BWA/Bowtie2 for read alignment, then Picard for marking and deleting the 

duplicates, samtools for sorting and indexing the aligned files. 

127. Download the OKseqHMM toolkit from https://github.com/CL-CHEN-

Lab/OK-Seq containing the necessary R-scripts for the following analysis steps.   

CRITICAL The toolkit will count read matrices from aligned .bam files, calculate 

and output RFD and OEM profiles for a primary visualization (e.g. with IGV).  

OkseqHMM, the R package R defines replication IZs (upward transitions of RFD 

profile), TZs (downward transitions of RFD profile), and two intermediate states (flat 

RFD profiles of low and high values (zones of leftward and rightward unidirectional 

replication, respectively) (Fig. 3) 

 

Generating the output files for visualization of RFD profile and the 

initiation/termination zone calling by a 4-state Hidden Markov Model (HMM) 

 

https://github.com/CL-CHEN-Lab/OK-Seq
https://github.com/CL-CHEN-Lab/OK-Seq
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CRITICAL Besides the aligned .bam files with the corresponding indexed file (.bai), the 

OKseqHMM function requires the annotation coordinates for all chromosomes and their 

lengths.  

128. Download the annotation file containing all chromosomes and their lengths 

from the UCSC server (e.g. hg19.chr.sizes.txt for human hg19) FTP ftp:// 

hgdownload.cse.ucsc.edu/goldenPath/.  

The program identifies automatically if the input .bam file is paired-end or single-end 

sequencing data, then splits the mapped reads within the .bam file into Watson (W) 

and Crick (C) strands, respectively, and calculates the read coverage and RFD along 

the reference genome. The bin size (with bin size parameter) can be defined by users 

depending on the data coverage anf genome size, and based on our experience, 1-kb 

bin size is recommended for OK-seq data of human/mouse cells, and the 50 bp bin 

size is recommended for yeast data. 

After downloading the R scripts from GitHub, run this command line in the terminal: 

source(“PATH/OKseqHMM.R”) 

CRITICAL STEP Before executing this function, make sure that R and the necessary R 

packages HMM, Rsamtools, and Genomic Alignments are installed in your R working 

environment. Then the user can use either the command line as source 

(“PATH/OKseqHMM.R”), in which the PATH provides the PATH in your computer to the 

downloaded R package “OKseqHMM.R”, or the user can load the package directly into 

Rstudio.   

CRITICAL STEP Make sure that the chromosome coordinates within the .bam file match 

the ones provided in chromosome annotation file. Different sources of the reference genome 

having slightly different chromosomes names may cause error. (e.g. sometimes “1-22, MT” 

in the .bam file while the annotation file is “chr1-chr22, chrM” if you use the UCSC 

annotation.). 

129. Run OKseqHMM with the following options:  

(A) For the human data:  

OKseqHMM(bamfile = "my.bam", thresh = 10, chrsizes = "hg19.chr.size.txt", 

binSize=1000, winS=15, fileOut = "my_hmm")) 

 

(B) For the yeast data:  

OKseqHMM(bamfile = "my.bam", thresh = 10, chrsizes = " sacCer3.chrom.sizes.txt", 

binSize=50, winS=15, fileOut = "my_hmm")) 
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CRITICAL STEP Bin size may need to be adjusted relative to the genome size of the 

analyzed species and the coverages of your data.  

CRITICAL STEP  

“My.bam” is your input path of .bam file;  

“thresh” is the threshold to eliminate the low read coverage bins;  

“chrsizes” is your path linked with the annotation file containing the length of each 

chromosome; 

“binSize” is the adjacent bin size in bp to calculate the read coverage and RFD;  

“winS” is the smoothing window size for the HMM calling; 

“fileOut” is the path of storage as well as the prefix of name for your output files. 

? TROUBLESHOOTING 

 

130. The function OKseqHMM will generate automatically a series of output files 

including: 

 (1-4) Two .bam files, and their corresponding index .bai files, for the reads 

generated from the Watson and Crick strands, respectively. 

 (5-6) Two bedgraph files containing RFD values in the adjacent bins of defined 

size. ("_RFD.bedgraph"), with the raw RFD values and the smoothed values in 

adjacent windows (span window size) RFD with the defined bin size and the 

smoothing one with span window size)  

 (7) log file ("_log.txt") that records all of the parameters you use and also the 

default setting information. 

 (8) HMM result in a text file ("_HMM.txt") that records all of the global optimal 

hidden states calculated by HMM Viterbi algorithm. 

 (9) HMM result in a text file ("_HMMpropa.txt") that records all of the previous 

state positions that caused the maximum local probability of a state by HMM 

posterior algorithm. 

 (10-17) 8 text files recording the genomic positions (.bed) and the corresponding 

probabilities (.txt) for the final identified optimal states: 

 "_HMMsegments_IZ.bed/txt" is for the replication initiation zone calling result. 

 "_HMMsegments_TZ. bed/txt" is for the replication termination zone calling result. 

 "_HMMsegments_highFlatZone. bed/txt" and "_HMMsegments_LowFlatZone. 

bed/txt" are the results of two intermediate flat states.  

CRITICAL RFD Bedgraph files can be visualized directly in genomic browsers, e.g. IGV86. 
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CRITICAL You can also further transform the bedgraphs into bigwig by the UCSC tool 

bedGraphToBigWig (http://hgdownload.soe.ucsc.edu/admin/exe/) to get binary compressed 

files. 

CRITICAL Additional details about the parameters are listed in Box 5.  

 

Generating the output files for visualization of the RFD transitions 

CRITICAL OKseqOEM function allows investigating the local origin efficiency metrics 

(i.e. deltaRFD) 30
 at multiple scales. 

131. Download the R scripts from GitHub, run this command line in the terminal: 

source(“PATH/OKseqOEM.R”) with the following options: 

(A) For the human data: 

OKseqOEM(bamInF="path_to_bam_Forward_strand",bamInR="path_to_bam_Rever

se_strand",chrsizes="hg19.chr.size.txt",fileOut="path/name_of_my_OEM",binSize=1

000,binList=c(1,10,20,50,100,250,500,1000)) 

(B) For the yeast data: 

OKseqOEM(bamInF="path_to_bam_Forward_strand",bamInR="path_to_bam_Rever

se_strand",chrsizes="sacCer3.chrom.sizes.txt", fileOut="path/name_of_my_OEM", 

binSize=50, binList=c(1,20,100,200,300,400,500)) 

 

CRITICAL STEP  

“bamInF” and “bamInR” are the paths to the two .bam files of Watson and Crick strand 

respectively, generated by OKseqHMM function;  

“chrsizes” is the path to annotation coordinates containing chromosome length information; 

“fileOut” is the path of storage as well as the prefix of the name given by the user to be used 

(e.g. ~/Desktop/Okseq_results/my_HMM) for the output file,  

“binsize” is to define the adjacent bin size in bp to calculate the read coverage for RFD, 

“binList” is to define a series of window sizes as different visualization scales that you would 

like to output the OEM results (e.g. for yeast cells, you will get 50 bp, 1 kb, 5 kb, 10 kb, 15 

kb, 20 kb, 25 kb window scales OEM files if you set binsize = 50 and binList = c(1, 20, 100, 

200, 300, 400, 500) as indicated in the previous given common line). 

? TROUBLESHOOTING 

132. The OKseqOEM function will generate automatically a series of wiggle (.wig) 

files calculated by using different sliding window sizes defined by “binList”.   
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133. Convert wiggle to bigwig format by using the UCSC tool wigToBigWig 

(http://hgdownload.soe.ucsc.edu/admin/exe/) for the visualization. 

 

Generating the output files for the generation of the average profile and heatmap of 

RFD values around the regions of interest 

The shell-based script "average_profile_heatmap.sh" shows us the template on how to use the 

deepTools to generate the average profile and heatmap around or among the regions of 

interest (such as around the transcription start sites, transcription termination sites, within the 

annotated genes, around the initiation zones, etc.) by using the “computeMatrix” and 

“plotProfile”/ “plotHeatmap” functions, defining the two upstream and downstream border 

sizes and intragenic body size and also the other parameters indicated in the script.  

 

134. Compute the matrix of values by running the command line in terminal or 

Rstudio:  

computeMatrix scale-regions --regionsFileName {your bed file of interested 

regions/genes PATH e.g.codingGenes.bed} --beforeRegionStartLength {e.g. 10000} -

-afterRegionStartLength {e.g. 10000} --regionBodyLength {e.g. 20000} --binSize 

{e.g. 1000} --scoreFileName {RFD bigwig file PATH e.g. 

Hela.EdC.Combined_OkaSeq.RFD.bw} --outFileName {e.g. "OUTPUT.matrix"} --

missingDataAsZero –skipZeros 

135. For obtaining average profile run “plotProfile” function as follows: 

plotProfile --matrixFile {e.g. "OUTPUT.matrix"} --outFileName {e.g. 

"RFD_averageProfile.stGeneLength.png"}  --averageType mean --startLabel {e.g. 

start/TSS} --endLabel {e.g. end/TTS} --plotType se 

136. For obtaining the average profile and the heatmap, proceed following this 

example to plot the OEM around the centre of IZ with the extension of +/-100 kb in 

different scales (from 1 kb to 1 Mb) and the bigwig files used in the example can be 

found at https://github.com/CL-CHEN-Lab/OK-

Seq/tree/master/published_results/HeLa:  

computeMatrix reference-point --regionsFileName {your IZ bed file PATH e.g. 

HeLa_hmm_HMMsegments_IZ.bed} --beforeRegionStartLength {e.g. 100000} --

afterRegionStartLength {e.g. 100000} --binSize {e.g. 1000} --scoreFileName {series 

of OEM bigwig file PATH e.g. 20130819CGM130726.Hela_OEM_10kb.bw 

20130819CGM130726.Hela_OEM_20kb.bw 
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20130819CGM130726.Hela_OEM_50kb.bw 

20130819CGM130726.Hela_OEM_100kb.bw 

20130819CGM130726.Hela_OEM_250kb.bw 

20130819CGM130726.Hela_OEM_500kb.bw  

20130819CGM130726.Hela_OEM_1Mb.bw} --outFileName {e.g. 

"OUTPUT.matrix"} --missingDataAsZero --skipZeros --referencePoint center 

137. To plot the profile and heatmap, use the matrix calculated by 

“computeMatrix”, run “plotHeatmap” to get the figure output: 

plotHeatmap --matrixFile {e.g. "OUTPUT.matrix"} --outFileName {e.g. 

"OEM_sortbyLength.png"} --whatToShow "plot, heatmap and colorbar" --refPointLabel 

center --samplesLabel {e.g. "HeLa 10kb" "HeLa 20kb" "HeLa 50kb" "HeLa 100kb" 

"HeLa 250kb" "HeLa 500kb" "HeLa 1Mb"} --sortUsing region_length --sortRegions 

ascend 

 

CRITICAL STEP Make sure that you already installed the deepTools and the python 

environment (the recommended version is python 3.6.4 or less. The latest python version 

could cause some incompatibility issues with deepTools 
85

. Refer to the DeepTools manual 

for different functions and set up the parameters 

(https://deeptools.readthedocs.io/en/develop/index.html). 

 

• TIMING  

Step 1, Cell culture, EdU labelling, and cell harvesting: 2-7 days of cell culture, 2 hours 

of labelling and harvesting 

Steps 2-21, Extraction of the genomic DNA: 2 hours with overnight incubation 

 

Steps 22-40, Size-fractionation of denatured genomic DNA on neutral sucrose gradients: 

3.5 h of handling and 17 h of centrifugation 

Steps 41-48, Click biotinylation: 2 h 

Steps 49-53, RNA hydrolysis: 20 min  

Steps 54-63, DNA phosphorylation and precipitation: 1.5 h  

Steps 64-67, Hybridization and ligation of adapters, round 1: 30 min to overnight 

Steps 68-86, Streptavidin capture of biotinylated library fragments: 1 h 

Steps 87-103, Hybridization and ligation of adapters, round 2: 4 h to overnight 
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Steps 104-108, Okazaki fragment library amplification: 1.5 h 

Steps 109-119, Post-amplification clean-up: 1 h 

Steps120-124, Library size-selection: 2 h 

Steps 125-126, Sequencing: variable 

Steps 127-128, Data processing: variable 

Steps 129-131, Generating the output files for visualization of RFD profile and the 

initiation/termination zone calling by Hidden Markov Model (HMM): variable 

Steps 132-134, Generating the output files for visualization of the RFD transitions: 

variable 

Steps 135-138, Generating the output files for the generation of the average profile and 

heatmap of RFD values around the regions of interest: variable 

 

TROUBLESHOOTING 

Please find the advice for troubleshooting in Table 2. 

 

ANTICIPATED RESULTS 

DNA size-fractionation 

Genomic DNA preparation from 3-10 x 10
8 
human cells typically yields 2-3 mg DNA, which 

is then denatured and size-fractionated on 4-6 × sucrose gradients. When visualizing the 

DNA in each 1-mL fraction (Box 1), the DNA size linearly increases in the fractions from top 

to bottom (Box 1). Typically, Okazaki fragments (< 200 nt) are present in the top 1mL 

fractions 1 - 8. It is important to avoid contamination from the lower fractions containing 

high molecular weight labelled nascent replicated strands.  

Library size distribution 

The library fragment size should range from 150 to 300 bp. To evaluate if the library 

preparation is successful a PCR control can be performed (Box 3). A smear >140 bp 

containing the library with inserts should be more prominent than the adapter dimer (at 128 

bp) (Box 3). After gel size selection, ideally no or very few adapter dimers should be present 

(Box 4). If the dimer peak is more abundant than the smear this is an indication of a low-

complexity library, which will require repeating the size-selection step and may impact the 

data quality. 
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Sequencing results 

The examples of sequencing results of OK-seq in yeast and human are shown in Fig 3. 

Replication fork directionality (RFD) profiles are calculated based on the proportion of the 

read counts from the Crick and Watson genomic strands and reflect the locus-specific 

average fork direction (Fig. 3). HMM detection of RFD transitions detects the initiation and 

termination zones. Automated approach OKseqHMM efficiently detects site-specific (yeasts) 

and broad zones (human cells) of replication initiation events and the regions of 

predominantly unidirectional fork movement (flat segments). Applying OKseqOEM allows 

to assess local initiation efficiency at different scales (Fig. 3).  

 

REPORTING SUMMARY:  

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article  

DATA AVAILABILITY 

Published available sequencing raw and processed datasets analyzed in this work are 

available in SRA: SRP065949 (human HeLa cells) and ENA: PRJEB36782 (yeasts).  

CODE AVAILABILITY 

The bioinformatics tool and all example datasets underlying this paper are available at the 

following GitHub page: https://github.com/CL-CHEN-Lab/OK-Seq.  

BOXES and TABLES 

 

Box 1 Quality control of DNA size fractionation • TIMING 1 h 

1) Mix 10 µL of each gradient fraction from 2 to 10 with 10 µL Gel loading buffer II 

in a 1.5 m- tube. 

2) Heat the tubes at 94 °C for 5 min. 

3) Chill the tubes on ice for 5 min. 

4) Set up a TBE-Urea gel (10 %, 1 mm) on the vertical electrophoresis system with 1 

× TBE buffer. Flush carefully each well with 1 × TBE buffer. 

5) Prewarm the gel by running empty for 10 minutes at 400 V. 

https://github.com/CL-CHEN-Lab/OK-Seq
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6) Quick spin the samples and load the entire volume to the wells.  

7) Run at 180 V until the bromophenol blue reaches the bottom of the gel (usually 

30-40 min). 

CRITICAL STEP For the homemade gel, run the gel at 400 V until the bromophenol blue 

approaches the bottom (usually 10-12 min). 

8) Stain the gel by immersing in 20 mL of freshly prepared 1 × Sybr Gold stain in 

TBE. 

9) Visualize at a UV transilluminator. 

10) Determine the gradient fractions containing the fragments of interest (≤ 250 nt). 

CRITICAL The DNA size is increasing in the fractions from top to bottom. The tRNA and 

5S rRNA serves as internal size markers. Typically, the 1-mL fractions 1 to 8 are combined 

to collect Okazaki fragments. 

CRITICAL STEP The quality control of gradient fractionation may also be performed using 

3 % neutral agarose gels. 

 

Box 1 Figure legend: Quality control for DNA size-fractionation. Representative 

electrophoresis in 10 % Urea-PAGE. 2-10, 2
nd

 to 10
th

 1-mL gradient fractions; LMW, NEB 

low molecular weight marker.  

 

Box 2 Adapter preparation 

CRITICAL STEP To obtain double-stranded adapters A1 and A2 with single-stranded 

random hexamer overhangs, anneal the Adapter oligonucleotide “top” with the Adapter 

oligonucleotide “bottom”. 

1) Dissolve the adapter oligomers (Table 1) to 100 µM with nuclease-free H2O and 

vortex to achieve complete dissolution. 

2) Prepare two 200-µL PCR tubes labelled A1 and A2 for Adapter 1 and Adapter 2 

respectively. 

3) Assemble each adapter reannealing reaction in a PCR tube on ice by adding in the 

following order: 

Reagent A1 A2  Volume (µL) 

Top strand 100 µM A1top  A2top 20 µL 

Bottom strand 100 µM A1bottom A2bottom 20 µL 
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NaCl 5M   0.5 µL 

Water   9.5 µL 

 

4) Mix well by pipetting, quick spin hybridization reaction in a thermal cycler: cool 

down from 94 °C to 16 °C at 0.1 °C / s.  

5) Chill on ice and aliquot the annealed adapters into 5 µL. 

CRITICAL STEP Keep at -20 °C for up to 6 months. Avoid thaw-freezing to preserve the 

phosphorylation modifications on the oligomers.  

 

Box 3 Quality control of library construction  

1) Assemble 4 amplification reactions in 4 PCR tubes on ice as follows:  

Component  Stock  Volume  Final  

PEM1 (Table 1)  10 µM 0.2 μL  0.1 µM 

Truseq_Index (Table 1)  10 µM 0.2 μL 0.1 µM 

Taq DNA polymerase Buffer  10 × 2 μL  1 × 

Template   1 μL   

dNTP Mix 10 mM  0.4 µL 0.2 mM 

Taq DNA polymerase 5 U / µL 0.2 µL 0.05 U / µL 

H2O   Up to 20 μL   

 

2) Add 1 µL of the following templates to each PCR reaction tube: 1 - 1µl of nuclease-

free H2O (negative control); 2 - 1 µL of the bead suspension with bound adapter-

ligated library (Step 103); tube 3 -  0.2 µL of ligation supernatant 1 (step 80) plus 0.8 

µL nuclease-free H2O; tube 4 - 1 µL ligation supernatant 2 (step 93).  

3) Amplify using the following cycling protocol: 

 

Step  Temp  Duration  Cycles  

Initial denaturation  98 °C  45 sec  1  

Denaturation  98 °C  15 sec  

25-30 Annealing 60 °C  30 sec  

Extension  72 °C  30 sec  

Final extension  72 °C  1 min  1  

HOLD  4 °C  ∞  2  
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4) Prepare a 10% TBE PAGE gel 

5) Mix 10 µL of PCR product (Step 3) with 2 µL of 6 ×purple loading dye, and load the 

mix into the gel. Run the gel until bromophenol blue reaches the bottom of the gel. 

6) Stain the gel by immersing in 20 mL of freshly prepared 1 × SybrGold for 5 min. 

7) Visualize at a UV transilluminator and compare the lanes. 

CRITICAL In the PCR reaction run with the bead-bound adapter-ligated library (lane 2), the 

128 bp band corresponds to the self-ligated adapter dimers and the smear above contains the 

library with inserts. As an indicator of a successful library, the dimer band has to be visible 

but less prominent than the library smear. In PCR reactions run with the supernatants 1 and 2, 

no or very little smear above 128 bp is observed (lanes 3 and 4).  

 

Box 3 Figure legend: Quality control for the library construction. Representative 

electrophoresis in 10 % TBE-PAGE. “LMW” - NEB low molecular weight marker. “H2O”- 

PCR reaction run without template (negative control). “Beads” - PCR reaction run with the 

bead-bound library. “Sup 1” and “Sup2” - PCR reactions run with supernatants 1 and 2.  

 

Box 4 Quality control of the library size-selection 

1) Measure the library concentration of the size-selected and purified libraries using a 

Qubit dsDNA HS Kit following the manufacturer‟s recommendations. 

2) Check the fragment size distribution by running 1 µL on an Agilent Bioanalyzer High 

Sensitivity DNA Chip. A typical size-selected library ranges between 145 bp and 250 

bp. 

Box 4 Figure legend: Quality control for library size-selection Representative profile of 

OK-seq libraries obtained by Agilent Bioanalyzer. An average library size of 145-250 bp is 

desired. 

? TROUBLESHOOTING 

 

Box 5 Additional parameters of the OKseqHMM toolkit  

To run the OKseqHMM function, one needs to pre-define the initial start probabilities for the 

4 states of HMM, including the transition matrix containing the probabilities that the system 

goes from one state to another, the emission probability matrix between states and 

observations, and the 5 quantiles of RFD as following:  

 

st=c("D", "L", "H", "U"), sym=c("V", "W", "X", "Y", "Z"), pstart=rep(1/4, 4), 
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pem=t(matrix(c(0.383886256, 0.255924171, 0.170616114, 0.113744076, 

0.075829384, 

                          .10,.20,.40,.20,.10, 

                          .10,.20,.40,.20,.10, 

                          0.022222222, 0.033333333, 0.066666667, 0.211111111, 

0.666666667), 

                                  ncol=4)), 

ptrans=t(matrix(c(0.9999,0.000020,0,0.000080, 

                             0,0.999,0,0.001, 

                             0.001,0,0.999,0, 

                             0.000080,0,0.000020,0.9999), 

                                     ncol=4)). 

quant=c(-1, -0.0082058939609862, -0.00141890249101162, 0.00103088286465956, 

0.00800467305420799, 1)) 

These parameters and probabilities were validated with the OK-seq dataset of HeLa cells 
28

. 

We have successfully applied them to different human, mouse, and yeast OK-seq datasets, 

which all got satisfactory results with these pre-setting parameters. However, users could 

modify these parameters to optimize the results for their dataset. 

 

Table 1. Oligonucleotides used in the study 

Oligo name Sequences (5‟ to 3‟) 

A1top ACACTCTTTCCCTACACGACGCTCTTCC 

A1bottom NNNNNNGGAAGAGCGTCGTGTAGGGAAAGAGTG 

A2top [Phos]-AGATCGGAAGAGCACACGTCTGAACTCCAGTCA[ddC] 

A2bottom TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN[ddC] 

PEM_1.0 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG

ACGCTCTTCC 

TruSeq_Index 1 CAAGCAGAAGACGGCATACGAGATcgtgatGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 

TruSeq_Index 2 CAAGCAGAAGACGGCATACGAGATacatcgGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 
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TruSeq_Index 3 CAAGCAGAAGACGGCATACGAGATgcctaaGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 

TruSeq_Index 4 CAAGCAGAAGACGGCATACGAGATtggtcaGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 

TruSeq_Index 5 CAAGCAGAAGACGGCATACGAGATcactgtGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 

TruSeq _Index 6 CAAGCAGAAGACGGCATACGAGATattggcGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 

TruSeq_Index 7 CAAGCAGAAGACGGCATACGAGATtcaagtGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 

TruSeq_Index 8 CAAGCAGAAGACGGCATACGAGATctgatcGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCT 

Primer R1 ACACTCTTTCCCTACACGACGCTCTTCC 

Table 2. Troubleshooting 

 

Steps Problems Possible reasons Solutions 

6 Nonhomogeneou

s / non-

transparent 

solution 

Cells aggregation formed 

before cell lysis, and/or 

inadequate proteinase K 

treatment. 

Thoroughly resuspend the cells 

before adding SDS. Add additional 

proteinase K to 0.1 mg/mL, invert 

gently to mix well, and incubate at 

42 °C for an additional 2 h. 

23 Incomplete DNA 

dissolution 

Ethanol residues and/or 

insufficient dissolution 

time. 

Incubate opened tubes with DNA 

solution at 37 °C for1 h. Carefully 

resuspend with a wide-bore tip. 

40 Final volume > 

375 µL 

Insufficient centrifugation 

or/and presence of 

polysaccharides. 

 Spin for an additional 10 min 

in step 39. 

 Scale up the reagents in the 

following steps. 

124 Prominent 

adapter-dimer 

peak 

Low-complexity library 

and/or insufficient gel size 

selection. 

 Amplify the library again with 

the beads from step 108. 

 Perform a double-size selection 

of the library with Ampure 



52 
 

beads, ratio 1:1.25 (if the total 

library amount is >10 ng). 

124 Smear containing 

libraries is absent 

or very weak  

An insufficient number of 

starting cells. 

 Increase starting cell number 

 Ensure the cell are EdU-

labelled using flow cytometry. 

Check the fraction of cells in 

S-phase and EdU-positive 

cells).  

 For cell lines or conditions 

having less than 20% of cells 

in the S-phase, increase the 

number of starting cells.  

 As a control, perform OK-seq 

on a well-proliferating cell line 

in parallel (HeLa). 

130 Function 

execution 

interrupted by 

error 

 The pre-required R 

packages are not 

installed. 

 Incomplete parameters 

Inappropriate „thresh‟ 

 Different annotations 

are used in the aligned 

files and „chrsizes‟. 

 Inappropriate 

„binSize‟. 

 Install all R packages and 

make sure all input fields are 

filled before execution.  

 Check whether the 

chromosome names in your 

aligned files are consistent with 

your input annotation.  

 Set a smaller „thresh‟ or a 

larger „binSize‟ if the 

sequencing depth is low. 

132 Function 

execution was 

interrupted by 

error 

 Incomplete parameters 

 Inappropriate 

„binSize‟ and „binList‟ 

 Complete all the required fields 

before execution.  

 Modify the values of „binSize‟ 

and test the scales of „binList‟ 

based on the data. 

 

 

FIGURE LEGENDS 
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Fig. 1: Detection of replication initiations and terminations by OK-seq. (a) Okazaki 

fragment strandedness indicates the direction of ongoing replication forks. Watson strand 

Okazaki fragments (red) are generated from leftward-oriented forks. Crick strand Okazaki 

fragments (blue) are generated from rightward-oriented forks. RFD, the population-averaged 

fork directionality is computed as a proportion of Okazaki fragment reads from Crick and 

Watson strands. (b) The RFD profile reflects the location, nature and efficiency of replication 

initiation. Site-specific initiation (left and centre panel) results in an abrupt positive shift of 

RFD whereas initiation zone results in a progressive positive shift of RFD (right panel) (IZ). 

The amplitude of the RFD shift reflects the initiation efficiency. (c) Negative shifts of RFD 

reflect the sites and zones of fork merging (predominantly termination zones).  

Fig. 2: Experimental workflow and data processing pipelines of OK-seq. (a) Illustration 

of the key experimental steps. Unreplicated DNA is in black and two replicated DNA strands 

are in red and in blue. Watson and Crick strand Okazaki fragments are shown as red and blue 

arrows; EdU (green dots), biotin (red dots), Streptavidin magnetic beads (black), and double-

stranded adapters (grey and yellow). (b) Flowchart representing data analysis pipeline. 

OKseqHMM allows to split Watson and Crick strand reads and to compute the RFD values at 

defined bin size. Further, the automated detection of zones of replication initiation, 

termination and unidirectional fork movement is achieved by segmentation of the RFD 

profile into upward, downward and flat segments by HMM. OKseqOEM tool computes OEM 

at different genomic scales. Average plot allows creating the heatmaps and linear plots to 

explore RFD patterns around genomic features of interest. 

 

Fig. 3 Representative results for OK-seq Okazaki fragment Watson stand (red) and Crick 

strand (blue) read counts, RFD computed in 1 kb windows and OEM at indicated scales. 

Initiation zones (yellow) and termination zones (teal blue), flat segments of unidirectional 

replication (pink), detected by OKseqHMM. Panels a show data for HeLa cells
28

 and panel b 

shows data for yeast S. cerevisiae 
31

. 
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Scripts in Chapter 2: 
 

OKseqHMM.R 
 
#' OKseqHMM backage 

#' This function allows you to generate the two corresponding strand bam files, to generate the 

RFD profiles and to identify most of the replication initiation/termination zones and also the 

intermediate states which RFD profiles are noramelly flat. 

#' @keywords OK-Seq, RFD, peak calling, HMM 

#' @export 

#' @examples 

#' OKseqHMM() 

 

#     Initialize HMM 4 states, observations, start probability, emission probability, transition 

probability 

 

OKseqHMM <- function(bamfile,chrsizes,fileOut, thresh, winS, binSize, hwinS=winS/2, 

                     st=c("D", "L", "H", "U"), 

                     sym=c("V", "W", "X", "Y", "Z"), 

                     pstart=rep(1/4, 4), 

                     

pem=t(matrix(c(0.383886256,0.255924171,0.170616114,0.113744076,0.075829384, 

                                    .10,.20,.40,.20,.10, 

                                    .10,.20,.40,.20,.10, 

                                    0.022222222, 0.033333333, 0.066666667, 0.211111111, 

0.666666667), 

                                  ncol=4)), 

                     ptrans=t(matrix(c(0.9999,0.000020,0,0.000080, 

                                       0,0.999,0,0.001, 

                                       0.001,0,0.999,0, 

                                       0.000080,0,0.000020,0.9999), 

                                     ncol=4)), 

                     quant=c(-1, -0.0082058939609862, -0.00141890249101162, 

0.00103088286465956, 0.00800467305420799, 1)) 

 

{ 



  require(HMM) 

  require(Rsamtools) 

  require(GenomicAlignments) 

 

  readBAM<- readGAlignments(bamfile) 

  chrom <- as.character(na.omit(unique(seqnames(readBAM)))) 

  print(chrom) 

  paired <- testPairedEndBam(bamfile) 

  # test if the BAM file is pair-end or not 

 

  if (paired) 

  { 

    #Generate forward and reverse strand bam files: 

    print("This bam is pair-end.") 

    print("Seperating the forward strand bam.") 

    # include reads that are 2nd in a pair (128); 

    # exclude reads that are mapped to the reverse strand (16) 

    system(paste0("samtools view -b -f 128 -F 16 ",bamfile," > a.fwd1.bam")) 

 

    # include reads that are mapped to the reverse strand (16) and 

    # first in a pair (64): 64 + 16 = 80 

    system(paste0("samtools view -b -f 80 ",bamfile," > a.fwd2.bam")) 

 

    # combine the temporary files 

    system(paste0("samtools merge -f ",fileOut,"_fwd.bam a.fwd1.bam a.fwd2.bam")) 

    system(paste0("samtools index ",fileOut,"_fwd.bam")) 

 

    # remove the temporary files 

    system(paste0("rm a.fwd*.bam")) 

 

    print("Seperating the reverse strand bam.") 

    # include reads that map to the reverse strand (128) 

    # and are second in a pair (16): 128 + 16 = 144 

    system(paste0("samtools view -b -f 144 ",bamfile," > a.rev1.bam")) 

 

    # include reads that are first in a pair (64), but 

    # exclude those ones that map to the reverse strand (16) 



    system(paste0("samtools view -b -f 64 -F 16 ",bamfile," > a.rev2.bam")) 

 

    # merge the temporary files 

    system(paste0("samtools merge -f ",fileOut,"_rev.bam a.rev1.bam a.rev2.bam")) 

 

    # index the merged, filtered BAM file 

    system(paste0("samtools index ",fileOut,"_rev.bam")) 

    # remove temporary files 

    system(paste0("rm a.rev*.bam")) 

  } 

  else 

  { 

    print("This bam is single-end.") 

 

    print("Seperating the forward strand bam.") 

    # Forward strand. 

    system(paste0("samtools view -bh -f 16 ",bamfile," > ",fileOut,"_fwd.bam")) 

    system(paste0("samtools index ",fileOut,"_fwd.bam")) 

 

    print("Seperating the reverse strand bam.") 

    # Reverse strand 

    system(paste0("samtools view -bh -F 16 ",bamfile," > ",fileOut,"_rev.bam")) 

    system(paste0("samtools index ",fileOut,"_rev.bam")) 

 

  } 

 

  chromNames <-  read.table(chrsizes,header=FALSE,sep="\t",comment.char = 

"#",stringsAsFactors = FALSE) 

  chr.sizes <- data.frame(chr=chromNames[,1],size=chromNames[,2]) 

 

  for (i in c(1:length(chrom))){ 

    chr.name <- chrom[i] 

    print(chr.name) 

    chr.length <- chr.sizes[chr.sizes$chr == chr.name,2] 

    print(chr.length) 

    print(paste0("Calculating ",binSize/1000,"kb binsize coverage for forward strand.")) 

 



    system(paste0("samtools view ",fileOut,"_fwd.bam ",chr.name," > fwd_",chr.name,".sam")) 

    system(paste0("awk '$3~/^", chr.name, "$/ {print $2 \"\t\" $4}' fwd_",chr.name,".sam > 

fwd_",chr.name,".txt")) 

    fileIn <- paste0("fwd_",chr.name,".txt") 

    tmp <- read.table(fileIn, header=F, 

comment.char="",colClasses=c("integer","integer"),fill=TRUE) 

    tags <- tmp[,2] 

    tags[tags<=0] <- 1 

    breaks <- seq(0, chr.length+binSize, by=binSize) 

    h <- hist(tags, breaks=breaks, plot=FALSE) 

    c <- h$counts 

 

    print(paste0("Calculating ",binSize/1000,"kb binsize coverage for reverse strand.")) 

    system(paste0("samtools view ",fileOut,"_rev.bam ",chr.name," > rev_",chr.name,".sam")) 

    system(paste0("awk '$3~/^", chr.name, "$/ {print $2 \"\t\" $4}' rev_",chr.name,".sam > 

rev_",chr.name,".txt")) 

    fileIn <- paste0("rev_",chr.name,".txt") 

    tmp<-

read.table(fileIn,header=F,comment.char="",colClasses=c("integer","integer"),fill=TRUE) 

    tags <- tmp[,2] 

    tags[tags<=0] <- 1 

    breaks <- seq(0, chr.length+binSize, by=binSize) 

    h <- hist(tags, breaks=breaks, plot=FALSE) 

    w <- h$counts 

    system(paste0("rm *.sam")) 

    system(paste0("rm f*.txt")) 

    system(paste0("rm r*.txt")) 

 

    # raw polarity for later 

    polar <- c/(c+w) 

    polar[c<thresh & w<thresh] <- NA 

 

    # 1kb RFD: 

    rfd <- (c-w)/(w+c) 

    rfd[is.na(rfd)] <- 0 

    rfd[w<thresh & c<thresh] <- 0 

    rfd[rfd > 1] <- 1 



    rfd[rfd < -1] <- -1 

 

    start_pos <- as.integer(breaks[1:length(breaks)-1]) 

    end_pos <- as.integer(breaks[2 : length(breaks)]) 

    chrName <- rep(chr.name,length(rfd)) 

    df <-data.frame(chr=chrName,startPos = start_pos,endPos = end_pos,rd_nb=rfd) 

    #restrict the last position is the chr.length, not exceed that. 

    df$endPos[nrow(df)] <- chr.length 

    write.table(df, file = paste0(fileOut,"_RFD_cutoff",thresh,"_bs",binSize/1000,"kb.bedgraph", 

sep=""), append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

    # smoothing RFD 

    print(paste("Smoothing window size :", winS, "kb")) 

    sw <- cumsum(w) 

    lg <- length(w) 

    from <- (-hwinS+2):(lg-hwinS+1) 

    to <- from+winS-1 

    from[from<1] <- 1 

    to[to>lg] <- lg 

 

    print("") 

    print(paste("number of bins :", length(w))) 

    print("") 

 

    win <- matrix(c(from, to), ncol=2) 

    ws <- apply(win ,1, function(x) { (sw[x[2]]-sw[x[1]])/winS } ) 

 

    sc <- cumsum(c) 

    lg <- length(c) 

    cs <- apply(win ,1, function(x) { (sc[x[2]]-sc[x[1]])/winS } ) 

 

    print(paste("cutoff is :",thresh)) 

    rfd <- (cs-ws)/(ws+cs) 

    rfd[is.na(rfd)] <- 0 

    rfd[ws<thresh & cs<thresh] <- 0 

    rfd[rfd > 1] <- 1 

    rfd[rfd < -1] <- -1 



 

    start_pos <- as.integer(breaks[1:length(breaks)-1]) 

    end_pos <- as.integer(breaks[2 : length(breaks)]) 

    chrName <- rep(chr.name,length(rfd)) 

    df <-data.frame(chr=chrName,startPos = start_pos,endPos = end_pos,rd_nb=rfd) 

    #restrict the last position is the chr.length, not exceed that. 

    df$endPos[nrow(df)] <- chr.length 

    write.table(df, file = 

paste0(fileOut,"_RFD_cutoff",thresh,"_bs",binSize/1000,"kb_sm_",winS,"kb.bedgraph", 

sep=""), append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

    # HMM from new deltas ============================= 

 

    # derive 

    bias <- cs/(ws+cs) 

    bias[is.na(bias)] <- 0.5 

    bias[ws<thresh & cs<thresh] <- 0.5 

 

    delta <- c(0,bias[-1]-bias[-length(bias)]) 

    delta[is.na(delta)] <- 0.5 

 

    # affect symbols 

    if (is.na(quant[1])) { quant <- quantile(delta, probs = seq(0, 1, 0.20)) } 

    quant[1] <- -1 

    quant[length(quant)] <- 1 

 

    print("quantile borders :") 

    print(quant) 

    print("") 

    dx  <- unlist(sapply(delta, function(x) { ix <- which(x>=quant); ix[length(ix)] })) 

    dx[dx>5] <- 5 

 

    # write log ================================== 

 

    logFile <- paste(fileOut,"_log.txt", sep="") 

 

    write.table(data.frame(c("fileOut",fileOut)), file = logFile, 



                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(paste("ptrans",chr.name), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(ptrans, file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(paste("pem",chr.name), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(pem, file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(data.frame("pstart",chr.name), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(t(data.frame(pstart)), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(data.frame("st",chr.name), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(t(data.frame(st)), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(data.frame("sym",chr.name), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(t(data.frame(sym)), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(data.frame("quant"), file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

    write.table(quant, file = logFile, 

                append = T, quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

    # HMM  

    hmm1 <- initHMM(States=st, Symbols=sym, startProbs=pstart, transProbs=ptrans, 

emissionProbs=pem) 

    print(hmm1) 

    print("wait, viterbi...") 

    seg <- viterbi(hmm=hmm1, observation=dx) 

 

    # pour affichage du profil des etats 

    prof <- rep(NA, times=length(seg)) 

    prof[seg=="U"] <- 1 

    prof[seg=="H"] <- 0.2 



    prof[seg=="L"] <- -0.2 

    prof[seg=="D"] <- -1 

    prof[is.na(w[-length(w)])] <- -1.1 

    prof[is.na(c[-length(c)])] <- -1.1 

    prof[is.na(prof)] <- -.1 

 

    write.table(prof, file = paste(fileOut,"_HMM.txt", sep=""), append = T, quote = FALSE, sep = 

"\t", col.names=F, row.names=F) 

 

    # adding the probability curve  

    print("wait, probabilities…") 

    post <- posterior(hmm1,dx) 

    prb <- rep(NA, length(seg)) 

    for (i in 1:length(seg)) 

    { 

      prb[i] <- post[seg[i],i] 

    } 

    prb[prb>1] <- 1 

 

    write.table(as.integer(prb*1000), file = paste(fileOut, "_HMMproba.txt", sep=""), append = T, 

                quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

    # calculate the region coordinates by profil viterbi ======================== 

 

    left <- seg[-length(seg)] 

    right <- seg[-1] 

    ix <- which(left!=right) 

    from <- c(1,ix+1) 

    to <- c(ix,length(seg)) 

 

    # for the table, adding states and calculating lengths, slopes and associated probabilities  

    # calculate the slope of the polarity of the states (between the left and right part of the state)) 

 

    states <- meanPol <- ymax <- ymin <- p <- inc <- napc <- corr <- rep(NA, length(from)) 

    states <- seg[from] 

 

    for (i in 1:length(from)) 



    { 

      pos <- from[i]:to[i] 

      lgpos <- length(pos) 

 

      m <- prb[pos[!is.na(prb[pos])]] 

      if (length(m)>0) 

      { 

        p[i] <- mean(m, na.rm=T) 

      } 

      meanPol[i] <- mean(polar[pos], na.rm=T) 

 

      pos2 <- pos[!is.na(polar[pos])] 

      lgpos2 <- length(pos2) 

      napc[i] <- 100-round(lgpos2/lgpos*100) 

      if (lgpos2<2) 

      { 

        res <- data.frame(NA, NA) 

        inc[i] <- ymin[i] <- ymax[i] <- NA 

      } else { 

        realPos <- pos2*binSize 

        res <- lm(polar[pos2] ~ realPos) 

        inc[i] <- res[[1]][2] 

        ymin[i] <-  (inc[i]*realPos[1])+res[[1]][1] 

        ymax[i] <-  (inc[i]*realPos[lgpos2])+res[[1]][1] 

        corr[i] <- cor(x=realPos, y=polar[pos2]) 

      } 

    } 

    ymin[ymin<0] <- 0 

    ymax[ymax<0] <- 0 

    ymin[ymin>1] <- 1 

    ymax[ymax>1] <- 1 

 

    # for display  

 

    inc1 <- round(inc*10^8)  # as a percentage of RFD per megabase 

    p <- round(p*100) 

    chr <- rep(chr.name,length(from)) 



    from1 <- (from-1)*binSize+1 

    to1 <- to*binSize 

    lg1 <- to1-from1+1 

    meanPol1 <- round(meanPol*100) 

    ymin1 <- round(ymin*100) 

    ymax1 <- round(ymax*100) 

    corr1 <- round(corr*100) 

 

    # adjustment of the border polarities by the average and recalculation of the slope 

 

    polL <- ymin1 

    polR <- ymax1 

 

    polD <- polR[-length(polR)] 

    polG <- polL[-1] 

 

    polD[is.na(polD)] <- polG[is.na(polD)] 

    polG[is.na(polG)] <- polD[is.na(polG)] 

 

    polM <- round((polG+polD)/2) 

    polL[-1] <- polR[-length(polR)] <- polM 

 

    # adjusted slope: 10 ^ 6 for clarity of the table display (% by megabase) 

    slope_adj <- round(10^6*(polR-polL)/(to1-from1)) 

 

    # writing  

    dataOut <- data.frame(chr, from=as.integer(from1), to=as.integer(to1), state=states, 

length=lg1, slope=inc1, 

                          p, pol_mean=meanPol1, pol_left=ymin1, pol_right=ymax1, 

                          na=napc, cor=corr1, slope_adj=slope_adj, pol_adj_left=polL, 

pol_adj_right=polR) 

    dataOut_U <- dataOut[dataOut$state == "U",] 

    dataOut_D <- dataOut[dataOut$state == "D",] 

    dataOut_HF <- dataOut[dataOut$state == "H",] 

    dataOut_LF <- dataOut[dataOut$state == "L",] 

 

 



    write.table(dataOut_U, file = paste(fileOut,"_HMMsegments_IZ.txt", sep=""), append = T, 

                quote = FALSE, sep = "\t", col.names=T, row.names=F) 

    write.table(dataOut_U[,1:3], file = paste(fileOut,"_HMMsegments_IZ.bed", sep=""), append 

= T, 

                quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

    write.table(dataOut_D, file = paste(fileOut,"_HMMsegments_TZ.txt", sep=""), append = T, 

                quote = FALSE, sep = "\t", col.names=T, row.names=F) 

    write.table(dataOut_D[,1:3], file = paste(fileOut,"_HMMsegments_TZ.bed", sep=""), append 

= T, 

                quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

    write.table(dataOut_HF, file = paste(fileOut,"_HMMsegments_highFlatZone.txt", sep=""), 

append = T, 

                quote = FALSE, sep = "\t", col.names=T, row.names=F) 

    write.table(dataOut_HF[,1:3], file = paste(fileOut,"_HMMsegments_highFlatZone.bed", 

sep=""), append = T, 

                quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

    write.table(dataOut_LF, file = paste(fileOut,"_HMMsegments_LowFlatZone.txt", sep=""), 

append = T, 

                quote = FALSE, sep = "\t", col.names=T, row.names=F) 

    write.table(dataOut_LF[,1:3], file = paste(fileOut,"_HMMsegments_LowFlatZone.bed", 

sep=""), append = T, 

                quote = FALSE, sep = "\t", col.names=F, row.names=F) 

  } 

 

} 

# end of the function 

 

 

 

 

 

 

 

 



OKseqOEM.R 
 

OKseqOEM <- function(bamInF, bamInR, chrsizes, fileOut, binSize, binList) 

{ 

  chromNames <-  read.table(chrsizes,header=FALSE,sep="\t",comment.char = 

"#",stringsAsFactors = FALSE) 

  chr.sizes <- data.frame(chr=chromNames[,1],size=chromNames[,2]) 

  require(Rsamtools) 

  paired <- testPairedEndBam(bamInF) 

  for (i in c(1:nrow(chr.sizes))){ 

    chr.name <- chr.sizes$chr[i] 

    print(chr.name) 

    chr.length <- chr.sizes$size[i] 

    print(chr.length) 

    if (paired) 

    { 

      print(paste0("It's pair-end. Calculating ",binSize,"bp binsize coverage for forward strand.")) 

      system(paste0("samtools view -q 1 -f 0x42 -F 0x4 ",bamInF," ",chr.name," > 

fwd_",chr.name,".sam")) 

      system(paste0("awk '$3~/^", chr.name, "$/ {print $2 \"\t\" $4}' fwd_",chr.name,".sam > 

fwd_",chr.name,".txt")) 

 

      print(paste0("Calculating ",binSize,"bp binsize coverage for reverse strand.")) 

      system(paste0("samtools view -q 1 -f 0x42 -F 0x4 ",bamInR," ",chr.name," > 

rev_",chr.name,".sam")) 

      system(paste0("awk '$3~/^", chr.name, "$/ {print $2 \"\t\" $4}' rev_",chr.name,".sam > 

rev_",chr.name,".txt")) 

    }else{ 

      print(paste0("It's single-end. Calculating ",binSize,"bp binsize coverage for forward 

strand.")) 

      system(paste0("samtools view ",bamInF," ",chr.name," > fwd_",chr.name,".sam")) 

      system(paste0("awk '$3~/^", chr.name, "$/ {print $2 \"\t\" $4}' fwd_",chr.name,".sam > 

fwd_",chr.name,".txt")) 

 

      print(paste0("Calculating ",binSize,"bp binsize coverage for reverse strand.")) 

      system(paste0("samtools view ",bamInR," ",chr.name," > rev_",chr.name,".sam")) 



      system(paste0("awk '$3~/^", chr.name, "$/ {print $2 \"\t\" $4}' rev_",chr.name,".sam > 

rev_",chr.name,".txt")) 

    } 

    fileIn <- paste0("fwd_",chr.name,".txt") 

    tmp<- read.table(fileIn, header=F, 

comment.char="",colClasses=c("integer","integer"),fill=TRUE) 

    tags <- tmp[,2] 

    tags[tags<3] <- 0 

    breaks <- seq(0, chr.length+binSize, by=binSize) 

    h <- hist(tags, breaks=breaks, plot=FALSE) 

    Temp.chr.F <- h$counts 

    fileIn <- paste0("rev_",chr.name,".txt") 

    tmp <- read.table(fileIn, header=F, 

comment.char="",colClasses=c("integer","integer"),fill=TRUE) 

    tags <- tmp[,2] 

    tags[tags<3] <- 0 

    breaks <- seq(0, chr.length+binSize, by=binSize) 

    h <- hist(tags, breaks=breaks, plot=FALSE) 

    Temp.chr.R <- h$counts 

 

    system(paste0("rm *.sam")) 

    system(paste0("rm f*.txt")) 

    system(paste0("rm r*.txt")) 

 

    Temp.chr.F <- cumsum(Temp.chr.F) 

    Temp.chr.R <- cumsum(Temp.chr.R) 

 

    print("Calculating OEM.") 

    for (n in c(1:length(binList))) 

    { 

 

      print(paste0("The smoothing window size for OEM is ",binList[n]*binSize/1000,"kb.")) 

 

      Data.chr.F <- Temp.chr.F[(binList[n]+1):length(Temp.chr.F)]-

Temp.chr.F[1:(length(Temp.chr.F)-binList[n])] 

      Data.chr.R <- Temp.chr.R[(binList[n]+1):length(Temp.chr.R)]-

Temp.chr.R[1:(length(Temp.chr.R)-binList[n])] 



 

      Data.chr.Smooth <- Data.chr.F/(Data.chr.F+Data.chr.R) 

      Data.chr <- Data.chr.Smooth[(binList[n]+1):length(Data.chr.Smooth)]-

Data.chr.Smooth[1:(length(Data.chr.Smooth)-binList[n])] 

 

      Data.chr <- c(rep(NA,binList[n]-1),Data.chr) 

      Data.chr[which(is.na(Data.chr))] <- 0 

      # Data.chr<- Data.chr[1:chr.length] 

 

      ##Save file in wig format 

      if (i==1) { 

        Title <- paste0("fixedStep chrom=", chr.name, " start=1 step=",binSize," span=",binSize, 

sep="") 

        fileOutWig <- paste0(fileOut,"_OEM_",binList[n]*binSize/1000,"kb.wig") 

        write.table(Data.chr, file=fileOutWig, quote = FALSE, row.names = FALSE, 

col.names=Title, append = FALSE) 

      } else { 

 

        Title <- paste0("fixedStep chrom=", chr.name, " start=1 step=",binSize," span=",binSize, 

sep="") 

        fileOutWig <- paste0(fileOut,"_OEM_",binList[n]*binSize/1000,"kb.wig") 

        write.table(Data.chr, file=fileOutWig, quote = FALSE, row.names = FALSE, 

col.names=Title, append = TRUE) 

 

      } 

    } 

  } 

} 

 

 
 
 
 
 
 
 
 



Average_profile_heatmap.sh 
 

# PLOT average profile of RFD around TSS and TTS 

 

computeMatrix scale-regions --regionsFileName {your bed file of interested regions/genes 

PATH e.g.codingGenes.bed} --beforeRegionStartLength {e.g. 10000} --

afterRegionStartLength {e.g. 10000} --regionBodyLength {e.g. 20000} --binSize {e.g. 1000} --

scoreFileName {RFD bigwig file PATH e.g. Hela.EdC.Combined_OkaSeq.RFD.bw} --

outFileName {e.g. "OUTPUT.matrix"} --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile {e.g. "OUTPUT.matrix"} --outFileName {e.g. 

"RFD_averageProfile.stGeneLength.png"}  --averageType mean --startLabel {e.g. start/TSS} 

--endLabel {e.g. end/TTS} --plotType se 

##########################################################################

# 

 

# PLOT Heatmap of RFD IZ center +/-100kb 

computeMatrix reference-point --regionsFileName {your IZ bed file PATH e.g. 

HeLa_hmm_HMMsegments_IZ.bed} --beforeRegionStartLength {e.g. 100000} --

afterRegionStartLength {e.g. 100000} --binSize {e.g. 1000} --scoreFileName {RFD bigwig file 

PATH e.g. Hela.EdC.Combined_OkaSeq.RFD.bw} --outFileName {e.g. "OUTPUT.matrix"} --

missingDataAsZero --skipZeros --referencePoint center 

plotHeatmap --matrixFile {e.g. "OUTPUT.matrix"} --outFileName {e.g. 

"RFD_sortbyLength.png"} --whatToShow "plot, heatmap and colorbar" --samplesLabel {e.g. 

HeLa} --refPointLabel center --sortUsing region_length --sortRegions ascend 

 

### PLOT Heatmap of OEM IZ center +/-100kb 

computeMatrix reference-point --regionsFileName {your IZ bed file PATH e.g. 

HeLa_hmm_HMMsegments_IZ.bed} --beforeRegionStartLength {e.g. 100000} --

afterRegionStartLength {e.g. 100000} --binSize {e.g. 1000} --scoreFileName {series of OEM 

bigwig file PATH e.g. 20130819CGM130726.Hela_OEM_10kb.bw 

20130819CGM130726.Hela_OEM_20kb.bw 20130819CGM130726.Hela_OEM_50kb.bw 

20130819CGM130726.Hela_OEM_100kb.bw 20130819CGM130726.Hela_OEM_250kb.bw 

20130819CGM130726.Hela_OEM_500kb.bw  20130819CGM130726.Hela_OEM_1Mb.bw} --

outFileName {e.g. "OUTPUT.matrix"} --missingDataAsZero --skipZeros --referencePoint 

center 



plotHeatmap --matrixFile {e.g. "OUTPUT.matrix"} --outFileName {e.g. 

"OEM_sortbyLength.png"} --whatToShow "plot, heatmap and colorbar" --refPointLabel center 

--samplesLabel {e.g. "HeLa 10kb" "HeLa 20kb" "HeLa 50kb" "HeLa 100kb" "HeLa 250kb" 

"HeLa 500kb" "HeLa 1Mb"} --sortUsing region_length --sortRegions ascend 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Scripts for Chapter 3 
 

################### Fig.1f - all coding genes with error band ################## 

in R: 
rf_Data <- read.csv('01_count_RPKM_and_peaks_intersect_on_refSeq_hg19.csv', sep = '\t', 

header = TRUE) 

colnames(rf_Data)[4] <- "mRNA" 

hela_rnaRPKM <- rf_Data[,c(1,2,3,4,6,60,63)] 

mRNA2name <- read.table("mRNA2geneName.txt",header = FALSE,col.names = 

c("mRNA","chr","strand","geneName")) 

mRNA2name <- na.omit(unique(mRNA2name)) 

hela_rnaRPKM$geneName <- 

mRNA2name$geneName[match(hela_rnaRPKM$mRNA,mRNA2name$mRNA)] 

 

Annot.cod$rpkm <- 

hela_rnaRPKM$RNAseq_HeLa_RPKM[match(Annot.cod$geneName,hela_rnaRPKM$gene

Name)] 

Annot.cod$gro_score <- 

hela_rnaRPKM$GROseq_score[match(Annot.cod$geneName,hela_rnaRPKM$geneName)] 

Annot.cod <- na.omit(Annot.cod) 

#selection only the RPKM >0 genes list (16336) 

Annot.cod.rpkm <- subset(Annot.cod,rpkm > 0) 

 

in Shell: 
computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

codingGenesAll.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 20000 --binSize 500 --maxThreshold 1000 --scoreFileName 

DRIP_run1_HeLa.bw DRIP_run1_TOP1.bw --outFileName "drip.allcodinggene.2cells.matrix" 

--missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "drip.allcodinggene.2cells.matrix" --outFileName 

"20191024.drip.allcodinggene.2cells.png" --averageType mean --colors red blue --

samplesLabel HeLa shTOP1 --startLabel TSS --endLabel TTS --yMin 0.25 --yMax 2 --plotType 

se --legendLocation lower-right --perGroup & 

 

 



###### Fig.2d - all coding genes for DRIP & pRPA  + RFD with error band Ctrl ###### 

in Shell: 
computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

codingGenesAll.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 20000 --binSize 500 --maxThreshold 1000 --minThreshold -100 --

scoreFileName DRIP_run1_HeLa.bw pRPA_run2_HeLa.bw --outFileName 

"hela.drip.rpa.allcodinggene.matrix" --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "hela.drip.rpa.allcodinggene.matrix" --outFileName 

"20191024.hela.drip.rpa.allcodinggene.png" --averageType mean --colors red black --

samplesLabel HeLa-DRIP HeLa-pRPA --startLabel TSS --endLabel TTS --yMin 0 --yMax 1.75 

--plotType se --legendLocation lower-right --perGroup & 

 

# RFD 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

codingGenesAllPlus.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 -

-regionBodyLength 20000 --binSize 1000 --scoreFileName 

Hela.EdU.Combined_OkaSeq.RFD.bw --outFileName "RFD.allcodinggene.matrix" --

missingDataAsZero --skipZeros 

 

 

plotProfile --matrixFile "RFD.allcodinggene.matrix" --outFileName 

"20200225.RFD.geneOri.allcodinggene.png" --averageType mean --startLabel "TSS" --

endLabel "TTS" --colors blue --plotType se --legendLocation lower-left 

 

 

######  Fig 4g - all coding genes for DRIP & pRPA  + RFD with error band shTop1 ###### 

in Shell: 
computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

codingGenesAll.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 20000 --binSize 500 --maxThreshold 1000 --minThreshold -100 --

scoreFileName DRIP_run1_TOP1.bw pRPA_run2_TOP1.bw --outFileName 

"top.drip.rpa.allcodinggene.matrix" --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "top.drip.rpa.allcodinggene.matrix" --outFileName 

"top.drip.rpa.allcodinggene.png" --averageType mean --colors red black --samplesLabel 



TOP1-DRIP TOP1-pRPA --startLabel TSS --endLabel TTS --yMin 0 --yMax 1.75 --plotType se 

--legendLocation lower-right --perGroup & 

 

####################  Fig 4h - pairwise plot for gH2AX  ##################### 

in R: 
df.fiveless$level2 <- "others" 

df.fiveless$level2[df.fiveless$gH2AX_run2_ASF_RPKM > 

df.fiveless$gH2AX_run2_HeLa_RPKM] <- "shSRSF1>Ctrl" 

 

ggplot(df.fiveless, aes(x = log10(gH2AX_run2_HeLa_RPKM), y = 

log10(gH2AX_run2_ASF_RPKM))) + 

geom_point(size = 2, alpha = 0.7, aes(color = level2)) + 

geom_smooth(method=lm) + 

scale_color_manual(values=c("black","red"))+ 

xlim(-1,1)+ 

ylim(-1,1)+ 

ylab("gH2AX_run2_ASF_RPKM") + 

xlab("gH2AX_run2_HeLa_RPKM") + 

theme_classic()+ 

geom_abline(intercept = 0, slope = 1, color = "black") 

 

fit1 <- lm(gH_hela ~ gH_top, na.action=na.exclude, data = df.tt) 

fit1 <- lm(gH2AX_run2_HeLa_RPKM ~ gH2AX_run2_TOP1_RPKM, na.action=na.exclude, 

data = df.fiveless) 

R2 <- signif(summary(fit1)$adj.r.squared,5) 

Pval <-signif(summary(fit1)$coef[2,4], 5) 

 

df.fiveless$level <- "others" 

df.fiveless$level[df.fiveless$gH2AX_run2_TOP1_RPKM > 

df.fiveless$gH2AX_run2_HeLa_RPKM] <- "shTOP1>Ctrl" 

 

ggplot(df.fiveless, aes(x = log10(gH2AX_run2_HeLa_RPKM), y = 

log10(gH2AX_run2_TOP1_RPKM))) + 

geom_smooth(method=lm) + 

geom_point(size = 2, alpha =0.7, aes(color = level)) + 

scale_color_manual(values=c("black","red"))+ 

xlim(-1,1)+ 



ylim(-1,1)+ 

ylab("gH2AX_run2_TOP1_RPKM") + 

xlab("gH2AX_run2_HeLa_RPKM") + 

theme_classic()+ 

geom_abline(intercept = 0, slope = 1, color = "black") 

 

 

##########  Fig.5a   top25% and other genes bless signals in shTop1 +/- 2kb TTS  ######## 

in R: 
bless_hela <- read.table("B_HeLa_S1_L001_R1_HWGLVBCXY.bedgraph", col.names = 

c("chr","start","end","bless_hela")) 

bless_TOP1 <- read.table("B_HeLa_shTop1_S2_L002_R1_HWGLVBCXY.bedgraph", 

col.names = c("chr","start","end","score")) 

 

#####   generation the +/- 2kb TTS region 

in sh: 
### top25% BLESS signals metagene profiles : 

refGene_all_plus <- refGene_all[refGene_all$strand == "+", 1:5] 

refGene_all_minus <- refGene_all[refGene_all$strand == "-", 1:5] 

 

refGene_TTS2kb_plus <- data.frame(chr= refGene_all_plus$chromosome, start= 

refGene_all_plus$end - 2000, end= refGene_all_plus$end + 2000,geneID= 

refGene_all_plus$mRNA,strand = refGene_all_plus$strand) 

refGene_TTS2kb_minus <- data.frame(chr= refGene_all_minus$chromosome, start= 

refGene_all_minus$start - 2000, end= refGene_all_minus$start + 2000,geneID= 

refGene_all_minus$mRNA,strand = refGene_all_minus$strand) 

refGene_TTS2kb <- rbind(refGene_TTS2kb_plus,refGene_TTS2kb_minus) 

refGene_TTS2kb <- refGene_TTS2kb[with(refGene_TTS2kb, order(chr,start)), ] 

library(ggplot2) 

library(ggpubr) 

library(data.table) 

 

setDT(refGene_TTS2kb) 

setDT(bless_TOP1) 

setDT(bless_hela) 

setkey(refGene_TTS2kb,chr,start,end) 



refG_tts_bless_TOP1 <- foverlaps(bless_TOP1,refGene_TTS2kb,type = "any",mult = 

"all",nomatch = 0L) 

aggr_refG_bless_TOP1 <- aggregate(score ~ geneID,refG_tss_bless_TOP1, median) 

quant_top1_bless <- quantile(aggr_refG_bless_TOP1$score,probs = seq(0, 1, 0.25)) 

aggr_refG_bless_TOP1$level <- "other" 

aggr_refG_bless_TOP1$mRNA_rpkm <- 

df$RNAseq_HeLa_RPKM[match(aggr_refG_bless_TOP1$geneID,df$ID)] 

aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$score > quant_top1_bless[4],]$level <- 

"top25%" 

aggr_refG_bless_TOP1_top25 <- aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$level == 

"top25%",] 

aggr_refG_bless_TOP1_other <- aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$level == 

"other",] 

gene_refG_bless_TOP1_top25 <- refGene_all[match(aggr_refG_bless_TOP1_top25$geneID, 

refGene_all$mRNA),c(1:4,10,5)] 

gene_refG_bless_TOP1_other <- refGene_all[match(aggr_refG_bless_TOP1_other$geneID, 

refGene_all$mRNA),c(1:4,10,5)] 

gene_refG_bless_TOP1 <- refGene_all[match(aggr_refG_bless_TOP1$geneID, 

refGene_all$mRNA),c(1:4,10,5)] 

 

########################   heatmap  bless. ################################ 
 

computeMatrix reference-point --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_2kbtop25.bed 20200325_gene_bless_top1_2kbother75.bed --

scoreFileName B_HeLa_S1_L001_R1_HWGLVBCXY.bw 

B_HeLa_shTop1_S2_L002_R1_HWGLVBCXY.bw --outFileName 

"heatMap.blesstop25.matrix" --beforeRegionStartLength 5000 --afterRegionStartLength 5000 

--binSize 100 --missingDataAsZero --skipZeros --referencePoint TES 

plotHeatmap --matrixFile "heatMap.blesstop25.matrix" --outFileName 

"20200403.heatMap.bless2kbtop25.png" --colorList 

lavender,royalblue,gold,darkorange,firebrick --whatToShow "plot, heatmap and colorbar" --

refPointLabel TTS --samplesLabel "BLESS-HeLa" "BLESS-shTOP1" --regionsLabel "top 25% 

bless" "others" --zMax 4 --yMax 4 

 

#######  Fig.5b   top25% and other genes bless signals in shTop1 +/- 2kb TTS  ########### 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_2kbtop25.bed 20200325_gene_bless_top1_2kbother75.bed --



beforeRegionStartLength 5000 --afterRegionStartLength 5000 --regionBodyLength 10000 --

binSize 100 --maxThreshold 200 --scoreFileName DRIP_run1_HeLa.bw 

DRIP_run1_TOP1.bw --outFileName "drip.blesstop25.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "drip.blesstop25.matrix" --outFileName 

"20200403.drip.bless2kbtop25.png" --averageType mean --colors red black --samplesLabel 

"drip-hela" "drip-shTOP1" --regionsLabel "top25%" "others" --plotTitle " " --endLabel TTS --

plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_2kbtop25.bed 20200325_gene_bless_top1_2kbother75.bed --

beforeRegionStartLength 5000 --afterRegionStartLength 5000 --regionBodyLength 10000 --

binSize 100 --minThreshold -0.7 --scoreFileName pRPA_run2_HeLa.bw 

pRPA_run2_TOP1.bw --outFileName "rpa.blesstop25.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "rpa.blesstop25.matrix" --outFileName 

"20200403.rpa.bless2kbtop25.png" --averageType mean --colors red black --samplesLabel 

"rpa-hela" "rpa-shTOP1" --regionsLabel "top25%" "others" --plotTitle " " --endLabel TTS --

plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_2kbtop25.bed 20200325_gene_bless_top1_2kbother75.bed --

beforeRegionStartLength 5000 --afterRegionStartLength 5000 --regionBodyLength 10000 --

binSize 100 --minThreshold 0 --maxThreshold 10 --scoreFileName gH2AX_run2_HeLa.bw 

gH2AX_run2_TOP1.bw --outFileName "gH2AX.blesstop25.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "gH2AX.blesstop25.matrix" --outFileName 

"20200403.gH2AX.bless2kbtop25.png" --averageType mean --colors red black --

samplesLabel "gH2AX-hela" "gH2AX-shTOP1" --regionsLabel "top25%" "others" --plotTitle " " 

--endLabel TTS --plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_2kbtop25.bed 20200325_gene_bless_top1_2kbother75.bed --

beforeRegionStartLength 5000 --afterRegionStartLength 5000 --regionBodyLength 10000 --

binSize 100 --scoreFileName B_HeLa_S1_L001_R1_HWGLVBCXY.bw 

B_HeLa_shTop1_S2_L002_R1_HWGLVBCXY.bw --outFileName "bless.blesstop25.matrix" -

-missingDataAsZero --skipZeros 



plotProfile --matrixFile "bless.blesstop25.matrix" --outFileName 

"20200403.bless.bless2kbtop25.png" --averageType mean --colors red black --samplesLabel 

"bless-hela" "bless-shTOP1" --regionsLabel "top25%" "others" --plotTitle " " --endLabel TTS --

plotType se 

 

 

############# S.Fig.1f - mRNA RPKM in R-loop shTop1-specific genes ############## 

top_geneOnly <- read.table("intersect_TOP1_DRIP_genes.bed",col.names = 

c("chromosome","start","end","ID","score","strand")) 

hela_geneOnly <- read.table("intersect_HeLa_DRIP_genes.bed",col.names = 

c("chromosome","start","end","ID","score","strand")) 

top_geneOnly_rpkm <- unique(df[match(df$ID,top_geneOnly$ID),]) 

top_geneOnly_rpkm <- top_geneOnly_rpkm[!is.na(top_geneOnly_rpkm$chromosome),] 

hela_geneOnly_rpkm <- unique(df[match(df$ID,hela_geneOnly$ID),]) 

hela_geneOnly_rpkm <- hela_geneOnly_rpkm[!is.na(hela_geneOnly_rpkm$chromosome),] 

 

setDT(top_geneOnly_rpkm) 

setDT(hela_geneOnly_rpkm) 

setkey(top_geneOnly_rpkm,chromosome,start,end,ID) 

setkey(hela_geneOnly_rpkm,chromosome,start,end,ID) 

top_specif <- top_geneOnly_rpkm[!hela_geneOnly_rpkm] 

df.rnaHela <- data.frame(rpkm=top_specif$RNAseq_HeLa_RPKM, class="RNA_HeLa") 

df.rnaASF <- data.frame(rpkm=top_specif$RNAseq_ASF_RPKM, class="RNA_ASF") 

df.rnaTOP1 <- data.frame(rpkm=top_specif$RNAseq_TOP1_RPKM, class="RNA_TOP1") 

df.rna.3cells.top <- rbind(df.rnaHela,df.rnaASF,df.rnaTOP1) 

df.rna.3cells.top$rpkm <- log10(df.rna.3cells.top$rpkm) 

df.rna.3cells.top$cell <- "shTop1 specific genes" 

 

ggplot(data=df.rna.3cells, aes(x=class,y=rpkm)) + 

geom_boxplot(aes(fill=class),size = 1,width=0.4) + 

facet_wrap(~ cell, scales="free") + 

scale_fill_manual(values=c("gray100", "gray75", "gray50"))+ 

ylim(-5,3)+ 

ylab("mRNA level (log10 RPKM)")+ 

ggtitle("transcription expression for shTop1 and shASF specific genes in three cell lines")+ 

stat_compare_means(comparisons = my_comparisons,label.y = c(2.8, 3))+ 

stat_compare_means(label = "p.signif", method = "t.test", 



ref.group = "gH2AX_HeLa", hide.ns = TRUE) + 

theme_light()+ 

theme(axis.title= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5), 

axis.text= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5))+ 

theme(legend.position="top") 

 

##########################  S.Fig 1g   ############################## 

rf_Data <- read.csv('01_count_RPKM_and_peaks_intersect_on_refSeq_hg19.csv', sep = '\t', 

header = TRUE) 

Annot.cod.rpkm <- subset(Annot.cod,rpkm > 0) 

 

for(i in c(1:22)) { 

chr.name <- paste0("chr",i) 

print(chr.name) 

chr.length <- chr.sizes[chr.sizes$chr == chr.name,2] 

print(chr.length) 

 

list.name<- paste("listmap",sep = ".",chr.name) 

 

Annot.cod.rpkm.chr <- Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,] 

Annot.cod.rpkm.plus <- Annot.cod.rpkm.chr[Annot.cod.rpkm.chr$strand =="+",] 

Annot.cod.rpkm.minus <- Annot.cod.rpkm.chr[Annot.cod.rpkm.chr$strand == "-",] 

listmap <- rep(0,chr.length) 

if(nrow(intersect_codGene_chiaPET_fin_genes.chr.plus)>1){ 

for (i in 1:nrow(Annot.cod.rpkm.plus)){ 

for (j in (Annot.cod.rpkm.plus$start[i]):(Annot.cod.rpkm.plus$end[i])){ 

listmap[j]<- 1 

} 

} 

} 

if(nrow(intersect_codGene_chiaPET_fin_genes.chr.minus)>1){ 

for (i in 1:nrow(Annot.cod.rpkm.minus)){ 

for (j in (Annot.cod.rpkm.minus$start[i]):(Annot.cod.rpkm.minus$end[i])){ 

if (listmap[j]==0)listmap[j]<- 2 

else listmap[j]<- 3 

 

} 



} 

} 

assign(list.name,listmap) 

 

} 

 

Annot.cod.rpkm$scoreStrand_up <- Annot.cod.rpkm$distance_up <- 

Annot.cod.rpkm$scoreStrand_dw <- Annot.cod.rpkm$distance_dw <- 0 

Annot.cod.rpkm <- Annot.cod.rpkm[with(Annot.cod.rpkm, order(chr,start)), ] 

 

####################         upstream genes distance and orientation    ########### 

 

for(i in c(1:22)) { 

chr.name <- paste0("chr",i) 

print(chr.name) 

Annot.cod.rpkm.chr <- Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,] 

mx <- max(Annot.cod.rpkm.chr$end) 

listmap.chr.name <- paste0("listmap",seq =".",chr.name) 

listmap.chr <- get(listmap.chr.name) 

for (j in 1:(nrow(Annot.cod.rpkm.chr)-1) ) { 

if (Annot.cod.rpkm.chr$strand[j+1] == "+") 

{ 

pos <- Annot.cod.rpkm.chr$start[j+1]-1 

dis <-1 

score <- listmap.chr[pos] 

while(score==0 & pos > 1) 

{ 

pos<-pos-1 

dis <- dis+1 

score <- listmap.chr[pos] 

} 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$scoreStrand_up[j+1] <- score 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$distance_up[j+1] <- dis 

} 

if (Annot.cod.rpkm.chr$strand[j] == "-") 

{ 

pos <- Annot.cod.rpkm.chr$end[j] +1 



dis <- 1 

score <- listmap.chr[pos] 

while (score==0 & pos < mx) { 

pos <-pos+1 

dis <-dis+1 

score <- listmap.chr[pos] 

} 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$scoreStrand_up[j]<- score 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$distance_up[j]<-dis 

} 

} 

} 

 

 

################## downstream genes distance and orientation    ################### 

 

for(i in c(1:22)) { 

chr.name <- paste0("chr",i) 

print(chr.name) 

Annot.cod.rpkm.chr <- Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,] 

mx <- max(Annot.cod.rpkm.chr$end) 

listmap.chr.name <- paste0("listmap",seq =".",chr.name) 

listmap.chr <- get(listmap.chr.name) 

for (j in 1:(nrow(Annot.cod.rpkm.chr)-1) ) { 

if (Annot.cod.rpkm.chr$strand[j+1] == "-") 

{ 

pos <- Annot.cod.rpkm.chr$start[j+1]-1 

dis <-1 

score <- listmap.chr[pos] 

while(score==0 & pos > 1) 

{ 

pos<-pos-1 

dis <- dis+1 

score <- listmap.chr[pos] 

} 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$scoreStrand_dw[j+1] <- score 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$distance_dw[j+1] <- dis 



} 

if (Annot.cod.rpkm.chr$strand[j] == "+") 

{ 

pos <- Annot.cod.rpkm.chr$end[j] +1 

dis <- 1 

score <- listmap.chr[pos] 

while (score==0 & pos < mx) { 

pos <-pos+1 

dis <-dis +1 

score <- listmap.chr[pos] 

} 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$scoreStrand_dw[j]<- score 

Annot.cod.rpkm[Annot.cod.rpkm$chr == chr.name,]$distance_dw[j]<-dis 

} 

} 

} 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName dw_AO_5kb.bed 

dw_AO_more5kb.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 20000 --binSize 100 --minThreshold -100 --scoreFileName 

pRPA_run2_HeLa.bw --outFileName "pRPA.dwAO.moreLess5kb.hela.matrix" --

missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.moreLess5kb.hela.matrix" --outFileName 

"20200225_pRPA.dwAO.moreLess5kb.hela.png" --averageType mean --colors red blue --

regionsLabel "<5kb" ">5kb" --samplesLabel " " --plotTitle "pRPA.moreLess5kb.hela" --yMin 0 

--yMax 4.2 --endLabel TTS --plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName dw_AO_5kb.bed 

dw_AO_more5kb.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 20000 --binSize 100 --minThreshold -100 --scoreFileName 

pRPA_run2_TOP1.bw --outFileName "pRPA.dwAO.moreLess5kb.shTop1.matrix" --

missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.moreLess5kb.shTop1.matrix" --outFileName 

"20200225_pRPA.dwAO.moreLess5kb.shTop1.png" --averageType mean --colors red blue --

samplesLabel " " --regionsLabel "<5kb" ">5kb" --plotTitle "pRPA.moreLess5kb.shTop1" --yMin 

0 --yMax 4.2 --endLabel TTS --plotType se 



 

#######################  S.Fig 1h   ########################################## 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

dw_AO_5kbRPKMmore1BothGenes.bed dw_AO_5kbRPKMOther.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_HeLa.bw --outFileName 

"pRPA.dwAO.less5kb.RNArpkm1.hela.matrix" --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.less5kb.RNArpkm1.hela.matrix" --outFileName 

"20200225_pRPA.dwAO.less5kb.RNArpkm1.hela.png" --averageType mean --colors red blue 

--regionsLabel "<5kb-RPKM>1" "<5kb-RPKM<1" --samplesLabel " " --plotTitle 

"pRPA.rpkm1.less5kb.hela" --yMin 0 --yMax 4.2 --endLabel TTS --plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

dw_AO_5kbRPKMmore1BothGenes.bed dw_AO_5kbRPKMOther.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_TOP1.bw --outFileName 

"pRPA.dwAO.less5kb.RNArpkm1.shTop1.matrix" --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.less5kb.RNArpkm1.shTop1.matrix" --outFileName 

"20200225_pRPA.dwAO.less5kb.RNArpkm1.shTop1.png" --averageType mean --colors red 

blue --samplesLabel " " --regionsLabel "<5kb-RPKM>1" "<5kb-RPKM<1" --plotTitle 

"pRPA.rpkm1.less5kb.shTop1" --yMin 0 --yMax 4.2 --endLabel TTS --plotType se 

#######################  S.Fig 1j   ########################################## 

aggr_drip_merge_rloop_peak_Mergenes_hela <- aggregate(i.score ~ 

geneName,merge_rloop_peak_Mergenes_drip_hela, median) 

merge_rloop_peak_Mergenes_drip_top1 <- foverlaps(drip_TOP1,rloop_peak_genes_all,type 

= "any",mult = "all",nomatch = 0L) 

aggr_drip_merge_rloop_peak_Mergenes_top1 <- aggregate(i.score ~ 

geneName,merge_rloop_peak_Mergenes_drip_top1, median) 

 

merge_rloop_peaks_drip_hela <- foverlaps(drip_hela,merge_rloop_peaks,type = "any",mult = 

"all",nomatch = 0L) 

aggr_drip_merge_rloop_peaks_hela <- aggregate(score ~ 

start,merge_rloop_peaks_drip_hela, median) 



aggr_drip_rloopPeak_Mergenes <- 

cbind(aggr_drip_merge_rloop_peak_Mergenes_hela,aggr_drip_merge_rloop_peak_Mergene

s_top1) 

aggr_drip_rloopPeak_Mergenes$level <- "both" 

 

aggr_drip_rloopPeak_Mergenes[match(rloop_peak_genes_onlyInHeLa_2$geneName,aggr_

drip_rloopPeak_Mergenes$geneName),]$level <- "OnlyInHeLa" 

 

aggr_drip_rloopPeak_Mergenes[match(rloop_peak_genes_onlyInTop1_2$geneName,aggr_

drip_rloopPeak_Mergenes$geneName),]$level <- "OnlyInshTop1" 

 

 

ggscatter(aggr_drip_rloopPeak_Mergenes, x = "i.score", y = "i.score_shTop1", 

color = "level", 

palette = c("gray", "blue","red"), shape = 20, size = 1.5, 

ylab = "DRIP_Genes_with_rloopPeak_shTop1", 

xlab = "DRIP_Genes_with_rloopPeak_HeLa", 

title = "scatter-plot for the R-loop signals in genes with Rloop peak", 

ylim= c(0, 40), 

xlim= c(0, 40) 

 

)+ 

geom_abline(intercept = 0, slope = 1, color = "black") 

 

 

#####################  S.Fig 2g   ############################################ 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName dw_AO_5kb.bed 

dw_AO_more5kb.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 20000 --binSize 100 --minThreshold -100 --scoreFileName 

pRPA_run2_HeLa.bw --outFileName "pRPA.dwAO.moreLess5kb.hela.matrix" --

missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.moreLess5kb.hela.matrix" --outFileName 

"20200225_pRPA.dwAO.moreLess5kb.hela.png" --averageType mean --colors red blue --

regionsLabel "<5kb" ">5kb" --samplesLabel " " --plotTitle "pRPA.moreLess5kb.hela" --yMin 0 

--yMax 4.2 --endLabel TTS --plotType se 

 



computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName dw_AO_5kb.bed 

dw_AO_more5kb.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 20000 --binSize 100 --minThreshold -100 --scoreFileName 

pRPA_run2_TOP1.bw --outFileName "pRPA.dwAO.moreLess5kb.shTop1.matrix" --

missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.moreLess5kb.shTop1.matrix" --outFileName 

"20200225_pRPA.dwAO.moreLess5kb.shTop1.png" --averageType mean --colors red blue --

samplesLabel " " --regionsLabel "<5kb" ">5kb" --plotTitle "pRPA.moreLess5kb.shTop1" --yMin 

0 --yMax 4.2 --endLabel TTS --plotType se 

 

###########################  S.Fig 2h   ################################### 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

dw_AO_5kbRPKMmore1BothGenes.bed dw_AO_5kbRPKMOther.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_HeLa.bw --outFileName 

"pRPA.dwAO.less5kb.RNArpkm1.hela.matrix" --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.less5kb.RNArpkm1.hela.matrix" --outFileName 

"20200225_pRPA.dwAO.less5kb.RNArpkm1.hela.png" --averageType mean --colors red blue 

--regionsLabel "<5kb-RPKM>1" "<5kb-RPKM<1" --samplesLabel " " --plotTitle 

"pRPA.rpkm1.less5kb.hela" --yMin 0 --yMax 4.2 --endLabel TTS --plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

dw_AO_5kbRPKMmore1BothGenes.bed dw_AO_5kbRPKMOther.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_TOP1.bw --outFileName 

"pRPA.dwAO.less5kb.RNArpkm1.shTop1.matrix" --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.less5kb.RNArpkm1.shTop1.matrix" --outFileName 

"20200225_pRPA.dwAO.less5kb.RNArpkm1.shTop1.png" --averageType mean --colors red 

blue --samplesLabel " " --regionsLabel "<5kb-RPKM>1" "<5kb-RPKM<1" --plotTitle 

"pRPA.rpkm1.less5kb.shTop1" --yMin 0 --yMax 4.2 --endLabel TTS --plotType se 

 

##############################  S.Fig 2i   ############################### 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName ori_dw_1_5kb.bed 

ori_dw_5_20kb.bed ori_dw_20_50kb.bed --beforeRegionStartLength 10000 --



afterRegionStartLength 10000 --regionBodyLength 20000 --binSize 100 --minThreshold -100 

--scoreFileName pRPA_run2_HeLa.bw --outFileName "pRPA.dwAO.ori.distance.hela.matrix" 

--missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.ori.distance.hela.matrix" --outFileName 

"20200225_pRPA.dwAO.ori.distance.hela.png" --averageType mean --colors red black blue -

-regionsLabel "<5kb" "5-20kb" "20-50kb" --samplesLabel " " --plotTitle "pRPA.gene-

origin.dis.hela" --yMin 0 --yMax 2.2 --endLabel TTS --plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName ori_dw_1_5kb.bed 

ori_dw_5_20kb.bed ori_dw_20_50kb.bed --beforeRegionStartLength 10000 --

afterRegionStartLength 10000 --regionBodyLength 20000 --binSize 100 --minThreshold -100 

--scoreFileName pRPA_run2_TOP1.bw --outFileName 

"pRPA.dwAO.ori.distance.shTop1.matrix" --missingDataAsZero --skipZeros 

 

plotProfile --matrixFile "pRPA.dwAO.ori.distance.shTop1.matrix" --outFileName 

"20200225_pRPA.dwAO.ori.distance.shTop1.png" --averageType mean --colors red black 

blue --samplesLabel " " --regionsLabel "<5kb" "5-20kb" "20-50kb" --plotTitle "pRPA.gene-

origin.dis.shTop1" --yMin 0 --yMax 2.2 --endLabel TTS --plotType se 

 

################################  S.Fig 2j   ################################# 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

ori_dw_1_5kb_plus.bed ori_dw_5_20kb_plus.bed ori_dw_20_50kb_plus.bed 

ori_dw_50_up_plus.bed --beforeRegionStartLength 10000 --afterRegionStartLength 10000 --

regionBodyLength 10000 --binSize 1000 --scoreFileName 

Hela.EdU.Combined_OkaSeq.RFD.bw --outFileName "ori.dwAO.ori.plus.matrix" --

missingDataAsZero --skipZeros 

 

 

plotProfile --matrixFile "ori.dwAO.ori.plus.matrix" --outFileName "ori.dwAO.ori.plus.png" --

averageType mean --regionsLabel "<5kb" "5-20kb" "20-50kb" ">50kb" --startLabel "TSS" --

endLabel "TTS" --legendLocation lower-left 

 

 

 

############################  S.Fig 5b   ################################# 

#HeLa 



computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --maxThreshold 1000 --scoreFileName 

DRIP_run1_HeLa.bw --outFileName "drip.isma5kbTES.hela.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "drip.isma5kbTES.hela.matrix" --outFileName 

"20191024.drip.isma5kbTES.hela.png" --averageType mean --endLabel "TTS" --yMin 0 --

yMax 2 --color red black --plotType se --legendLocation upper-center 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --minThreshold -100 --scoreFileName 

pRPA_run2_HeLa.bw --outFileName "rpa.isma5kbTES.hela.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "rpa.isma5kbTES.hela.matrix" --outFileName 

"20191024.rpa.isma5kbTES.hela.png" --averageType mean --endLabel "TTS" --yMin 0 --yMax 

1.2 --color red black --plotType se --legendLocation upper-center 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --minThreshold 0 --scoreFileName 

gH2AX_run2_HeLa.bw --outFileName "gH2AX.isma5kbTES.hela.matrix" --

missingDataAsZero --skipZeros 

plotProfile --matrixFile "gH2AX.isma5kbTES.hela.matrix" --yMin 0.7 --yMax 6 --color red black 

--outFileName "20191024.gH2AX.isma5kbTES.hela.png" --averageType mean --endLabel 

"TTS" --plotType se --legendLocation upper-center 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --scoreFileName 

B_HeLa_S1_L001_R1_HWGLVBCXY.bw --outFileName 

"bless_c2_5kb_TES_k2_hela.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "bless_c2_5kb_TES_k2_hela.matrix" --outFileName 

"20191024_bless_c2_5kb_TES_k2_hela.png" --averageType mean --regionsLabel "cluster1" 

"cluster2" --endLabel "TTS" --yMin 0.5 --yMax 2.8 --color red black --plotType se --

legendLocation upper-center 

 



 

#shTop1 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --maxThreshold 1000 --scoreFileName 

DRIP_run1_TOP1.bw --outFileName "drip.isma5kbTES.top1.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "drip.isma5kbTES.top1.matrix" --outFileName 

"20191024.drip.isma5kbTES.top1.png" --averageType mean --plotType se --color red black --

endLabel "TTS" --yMin 0 --yMax 2 --legendLocation upper-center 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --minThreshold -100 --scoreFileName 

pRPA_run2_TOP1.bw --outFileName "rpa.isma5kbTES.top1.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "rpa.isma5kbTES.top1.matrix" --outFileName 

"20191024.rpa.isma5kbTES.top1.png" --averageType mean --plotType se --color red black --

endLabel "TTS" --yMin 0 --yMax 1.2 --legendLocation upper-center 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --minThreshold 1 --scoreFileName 

gH2AX_run2_TOP1.bw --outFileName "gH2AX.isma5kbTES.top1.matrix" --

missingDataAsZero --skipZeros 

plotProfile --matrixFile "gH2AX.isma5kbTES.top1.matrix" --yMin 0.7 --yMax 6 --color red black 

--plotType se --outFileName "20191024.gH2AX.isma5kbTES.top1.png" --averageType mean 

--endLabel "TTS" --legendLocation lower-center 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

genes_list_5kb_TES_k2.bed --beforeRegionStartLength 10000 --afterRegionStartLength 

10000 --regionBodyLength 20000 --binSize 500 --scoreFileName 

B_HeLa_shTop1_S2_L002_R1_HWGLVBCXY.bw --outFileName 

"bless_c2_5kb_TES_k2_top1.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "bless_c2_5kb_TES_k2_top1.matrix" --outFileName 

"20191024_bless_c2_5kb_TES_k2_top1.png" --averageType mean --regionsLabel "cluster1" 



"cluster2" --endLabel "TTS" --yMin 0.5 --yMax 2.8 --color red black --plotType se --

legendLocation upper-center 

 

###########################  S.Fig 5c   ################################# 

in R: 
library(ggplot2) 

library(ggpubr) 

library(data.table) 

 

setDT(refGene_TSS2kb) 

setDT(bless_TOP1) 

setDT(bless_hela) 

setkey(refGene_TSS2kb,chr,start,end) 

refG_tss_bless_TOP1 <- foverlaps(bless_TOP1,refGene_TSS2kb,type = "any",mult = 

"all",nomatch = 0L) 

aggr_refG_bless_TOP1 <- aggregate(score ~ geneID,refG_tss_bless_TOP1, median) 

refG_tss_bless_hela <- foverlaps(bless_hela,refGene_TSS2kb,type = "any",mult = 

"all",nomatch = 0L) 

aggr_refG_bless_hela <- aggregate(score ~ geneID,refG_tss_bless_hela, median) 

# +/- 2kb TSS resgion clusters 

quant_top1_bless <- quantile(aggr_refG_bless_TOP1$score,probs = seq(0, 1, 0.25)) 

#  0%        25%        50%        75% 

# 0.000000   0.000000   1.213596   3.222010 

# 100% 

# 433.245000 

# 

aggr_refG_bless_TOP1$level <- "other" 

aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$score > quant_top1_bless[4],]$level <- 

"top25%" 

aggr_refG_bless_TOP1_top25 <- aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$level == 

"top25%",] 

aggr_refG_bless_TOP1_other <- aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$level == 

"other",] 

gene_refG_bless_TOP1_top25 <- refGene_all[match(aggr_refG_bless_TOP1_top25$geneID, 

refGene_all$mRNA),c(1:4,10,5)] 

# 8785 



gene_refG_bless_TOP1_other <- refGene_all[match(aggr_refG_bless_TOP1_other$geneID, 

refGene_all$mRNA),c(1:4,10,5)] 

# 26467 

 

# top25% of delta(shTop1- hela)  +/- 2kb 

aggr_refG_bless_TOP1$delta <- aggr_refG_bless_TOP1$score - 

aggr_refG_bless_hela$score 

 

quant_top1_bless_delta<- quantile(aggr_refG_bless_TOP1$delta,probs = seq(0, 1, 0.25)) 

#       0%         25%         50% 

# -179.180250   -1.682957    0.000000 

# 75%        100% 

#   1.888770   31.495600 

 

aggr_refG_bless_TOP1$level_delta <- "other" 

 

aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$delta > 

quant_top1_bless_delta[4],]$level_delta <- "deltop25" 

aggr_refG_bless_TOP1_deltop25 <- 

aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$level_delta == "deltop25",] 

aggr_refG_bless_TOP1_del75 <- 

aggr_refG_bless_TOP1[aggr_refG_bless_TOP1$level_delta == "other",] 

 

gene_refG_bless_TOP1_deltop25 <- 

refGene_all[match(aggr_refG_bless_TOP1_deltop25$geneID, 

refGene_all$mRNA),c(1:4,10,5)] 

#8812 

gene_refG_bless_TOP1_del75 <- refGene_all[match(aggr_refG_bless_TOP1_del75$geneID, 

refGene_all$mRNA),c(1:4,10,5)] 

#26440 

 

write.table(gene_refG_bless_TOP1_top25, "20200325_gene_bless_top1_tss2kbtop25.bed", 

quote = FALSE, sep = "\t", col.names=F, row.names=F) 

write.table(gene_refG_bless_TOP1_other, "20200325_gene_bless_top1_tss2kb75.bed", 

quote = FALSE, sep = "\t", col.names=F, row.names=F) 



write.table(gene_refG_bless_TOP1_deltop25, 

"20200325_gene_bless_top1_tss2kbdel25.bed", quote = FALSE, sep = "\t", col.names=F, 

row.names=F) 

write.table(gene_refG_bless_TOP1_del75, "20200325_gene_bless_top1_tss2kbdel75.bed", 

quote = FALSE, sep = "\t", col.names=F, row.names=F) 

 

############################   mRNA P1593.  #############################@ 

mRNA_hela_tts2kb <- aggr_refG_bless_TOP1[, c(1,3,5,6)] 

colnames(mRNA_hela_tts2kb)[4] <- "mRNA_rpkm" 

mRNA_hela_tts2kb$cell <- "ctrl" 

colnames(mRNA_top1_tts2kb)[4] <- "mRNA_rpkm" 

mRNA_top1_tts2kb <- aggr_refG_bless_TOP1[, c(1,3,5,7)] 

mRNA_top1_tts2kb$cell <- "shTop1" 

mRNA_all_tts2kb <- rbind(mRNA_hela_tts2kb,mRNA_top1_tts2kb) 

 

my_comparisons <- c("ctrl","shTop1") 

ggplot(data=mRNA_all_tts2kb, aes(x=cell,y=log2(mRNA_rpkm))) + 

#geom_violin(width=0.6, position=position_dodge(0.75), bw=1.5)+ 

geom_boxplot(aes(fill=cell),size = 1,width=0.4) + 

facet_wrap(~ level, scales="free") + 

scale_fill_manual(values=c("gray100", "gray75", "gray50"))+ 

#ylim(-5,6)+ 

ylab("mRNA_rpkm")+ 

ggtitle("mRNA signal distribution for the genes in +/-2kb TTS top25%")+ 

stat_compare_means(comparisons = my_comparisons,label.y = c(10, 10.2))+ 

stat_compare_means(label = "p.signif", method = "t.test", 

hide.ns = TRUE,label.y = 10.4) + 

theme_light()+ 

theme(axis.title= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5), 

axis.text= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5))+ 

theme(legend.position="top") 

 

ggplot(data=mRNA_all_tts2kb, aes(x=cell,y=log2(mRNA_rpkm))) + 

#geom_violin(width=0.6, position=position_dodge(0.75), bw=1.5)+ 

geom_boxplot(aes(fill=cell),size = 1,width=0.4) + 

facet_wrap(~ level_delta, scales="free") + 

scale_fill_manual(values=c("gray100", "gray75", "gray50"))+ 



#ylim(-5,6)+ 

ylab("mRNA_rpkm")+ 

ggtitle("mRNA signal distribution for the genes in +/-2kb TTS delta top25%")+ 

stat_compare_means(comparisons = my_comparisons,label.y = c(10, 10.2))+ 

stat_compare_means(label = "p.signif", method = "t.test", 

hide.ns = TRUE,label.y = 10.4) + 

theme_light()+ 

theme(axis.title= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5), 

axis.text= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5))+ 

theme(legend.position="top") 

 

computeMatrix reference-point --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_tss2kbtop25.bed 20200325_gene_bless_top1_tss2kb75.bed --

scoreFileName B_HeLa_S1_L001_R1_HWGLVBCXY.bw 

B_HeLa_shTop1_S2_L002_R1_HWGLVBCXY.bw --outFileName 

"heatMap.blesstop25tss.matrix" --beforeRegionStartLength 5000 --afterRegionStartLength 

5000 --binSize 100 --missingDataAsZero --skipZeros --referencePoint TSS 

 

plotHeatmap --matrixFile "heatMap.blesstop25tss.matrix" --outFileName 

"20200407.heatMap.bless2kbtop25tss.png" --colorList 

lavender,royalblue,gold,darkorange,firebrick --whatToShow "plot, heatmap and colorbar" --

refPointLabel TSS --samplesLabel "BLESS-HeLa" "BLESS-shTOP1" --regionsLabel "top 25% 

bless" "others" --zMax 4 --yMax 4 

 

 

########################  S.Fig 5d   ################################### 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_tss2kbtop25.bed 20200325_gene_bless_top1_tss2kb75.bed --

beforeRegionStartLength 5000 --afterRegionStartLength 5000 --regionBodyLength 10000 --

binSize 100 --maxThreshold 200 --scoreFileName DRIP_run1_HeLa.bw 

DRIP_run1_TOP1.bw --outFileName "drip.blesstop25tss.matrix" --missingDataAsZero --

skipZeros 

plotProfile --matrixFile "drip.blesstop25tss.matrix" --outFileName 

"20200407.drip.bless2kbtop25tss.png" --averageType mean --colors red black --

samplesLabel "drip-hela" "drip-shTOP1" --regionsLabel "top25%tss" "others" --plotTitle " " --

endLabel TTS --plotType se 

 



computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_tss2kbtop25.bed 20200325_gene_bless_top1_tss2kb75.bed --

beforeRegionStartLength 5000 --afterRegionStartLength 5000 --regionBodyLength 10000 --

binSize 100 --minThreshold -5 --scoreFileName pRPA_run2_HeLa.bw pRPA_run2_TOP1.bw 

--outFileName "rpa.blesstop25tss.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "rpa.blesstop25tss.matrix" --outFileName 

"20200407.rpa.bless2kbtop25tss.png" --averageType mean --colors red black --samplesLabel 

"rpa-hela" "rpa-shTOP1" --regionsLabel "top25%" "others" --plotTitle " " --endLabel TTS --

plotType se 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20200325_gene_bless_top1_tss2kbtop25.bed 20200325_gene_bless_top1_tss2kb75.bed --

beforeRegionStartLength 5000 --afterRegionStartLength 5000 --regionBodyLength 10000 --

binSize 100 --scoreFileName B_HeLa_S1_L001_R1_HWGLVBCXY.bw 

B_HeLa_shTop1_S2_L002_R1_HWGLVBCXY.bw --outFileName 

"bless.blesstop25tss.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "bless.blesstop25tss.matrix" --outFileName 

"20200407.bless.bless2kbtop25tss.png" --averageType mean --colors red black --

samplesLabel "bless-hela" "bless-shTOP1" --regionsLabel "top25%" "others" --plotTitle " " --

endLabel TTS --plotType se 

 

 

##########################  S.Fig 6a   ##################################### 

my_comparisons <- list( c("cluster1", "cluster2") ) 

ggplot(data=aggr_drip_2cells, aes(x=condition,y=log2(score))) + 

geom_boxplot(aes(fill=condition),size = 1,width=0.4) + 

facet_wrap(~ cell, scales="free") + 

scale_fill_manual(values=c("gray100", "gray75", "gray50"))+ 

ylim(-5,6)+ 

ylab("log2(DRIP)")+ 

ggtitle("DRIP signal distribution for the genes in 2 clusters in 2 cells")+ 

stat_compare_means(comparisons = my_comparisons,label.y = c(5.5, 5.7))+ 

stat_compare_means(label = "p.signif", method = "t.test", 

hide.ns = TRUE,label.y = 5.9) + 

theme_light()+ 

theme(axis.title= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5), 

axis.text= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5))+ 



theme(legend.position="top") 

 

 

ggplot(data=aggr_rpa_2cells, aes(x=condition,y=log2(score))) + 

geom_boxplot(aes(fill=condition),size = 1,width=0.4) + 

facet_wrap(~ cell, scales="free") + 

scale_fill_manual(values=c("gray100", "gray75", "gray50"))+ 

ylim(-5,6)+ 

ylab("log2(pRPA)")+ 

ggtitle("pRPA signal distribution for the genes in 2 clusters in 2 cells")+ 

stat_compare_means(comparisons = my_comparisons,label.y = c(5.5, 5.7))+ 

stat_compare_means(label = "p.signif", method = "t.test", 

hide.ns = TRUE,label.y = 5.9) + 

theme_light()+ 

theme(axis.title= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5), 

axis.text= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5))+ 

theme(legend.position="top") 

 

ggplot(data=aggr_gH2AX_2cells, aes(x=condition,y=log2(score))) + 

geom_boxplot(aes(fill=condition),size = 1,width=0.4) + 

facet_wrap(~ cell, scales="free") + 

scale_fill_manual(values=c("gray100", "gray75", "gray50"))+ 

ylim(-5,6)+ 

ylab("log2(gH2AX)")+ 

ggtitle("gH2AX signal distribution for the genes in 2 clusters in 2 cells")+ 

stat_compare_means(comparisons = my_comparisons,label.y = c(5.5, 5.7))+ 

stat_compare_means(label = "p.signif", method = "t.test", 

hide.ns = TRUE,label.y = 5.9) + 

theme_light()+ 

theme(axis.title= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5), 

axis.text= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5))+ 

theme(legend.position="top") 

 

ggplot(data=aggr_bless_2cells, aes(x=condition,y=log2(score))) + 

geom_boxplot(aes(fill=condition),size = 1,width=0.4) + 

facet_wrap(~ cell, scales="free") + 

scale_fill_manual(values=c("gray100", "gray75", "gray50"))+ 



ylim(-5,6)+ 

ylab("log2(bless)")+ 

ggtitle("BLESS signal distribution for the genes in 2 clusters in 2 cells")+ 

stat_compare_means(comparisons = my_comparisons,label.y = c(5.5, 5.7))+ 

stat_compare_means(label = "p.signif", method = "t.test",hide.ns = TRUE,label.y = 5.9) + 

theme_light()+ 

theme(axis.title= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5), 

axis.text= element_text(size=15, color="black", face= "bold", vjust=0.5, hjust=0.5))+ 

theme(legend.position="top") 

 

 

###############################  S.Fig 6b   ################################## 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190725_c1_dwHO_disLess5kb.bed 20190725_c1_dwHO_disMore5kb.bed 

20190725_c2_dwHO_disLess5kb.bed 20190725_c2_dwHO_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --maxThreshold 1000 --scoreFileName DRIP_run1_HeLa.bw --outFileName 

"DRIP.2c.HOless5kb.hela.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "DRIP.2c.HOless5kb.hela.matrix" --outFileName 

"20190725.DRIP.2c.HOless5kb.hela.png" --averageType mean --colors red green blue black 

--regionsLabel "C1-HOless5kb" "C1-HOmore5kb" "C2-HOless5kb" "C2-HOmore5kb" --yMin 0 

--yMax 6 --endLabel TTS --legendLocation upper-left 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190725_c1_dwHO_disLess5kb.bed 20190725_c1_dwHO_disMore5kb.bed 

20190725_c2_dwHO_disLess5kb.bed 20190725_c2_dwHO_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --maxThreshold 1000 --scoreFileName DRIP_run1_TOP1.bw --outFileName 

"DRIP.2c.HOless5kb.top1.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "DRIP.2c.HOless5kb.top1.matrix" --outFileName 

"20190725.DRIP.2c.HOless5kb.top1.png" --averageType mean --colors red green blue black 

--regionsLabel "C1-HOless5kb" "C1-HOmore5kb" "C2-HOless5kb" "C2-HOmore5kb" --yMin 0 

--yMax 6 --endLabel TTS --legendLocation upper-left 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190725_c1_dwHO_disLess5kb.bed 20190725_c1_dwHO_disMore5kb.bed 

20190725_c2_dwHO_disLess5kb.bed 20190725_c2_dwHO_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -



-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_HeLa.bw --outFileName 

"pRPA.2c.HOless5kb.hela.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "pRPA.2c.HOless5kb.hela.matrix" --outFileName 

"20190725.pRPA.2c.HOless5kb.hela.png" --averageType mean --colors red green blue black 

--regionsLabel "C1-HOless5kb" "C1-HOmore5kb" "C2-HOless5kb" "C2-HOmore5kb" --yMin 0 

--yMax 2.5 --endLabel TTS --legendLocation upper-left 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190725_c1_dwHO_disLess5kb.bed 20190725_c1_dwHO_disMore5kb.bed 

20190725_c2_dwHO_disLess5kb.bed 20190725_c2_dwHO_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_TOP1.bw --outFileName 

"pRPA.2c.HOless5kb.top1.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "pRPA.2c.HOless5kb.top1.matrix" --outFileName 

"20190725.pRPA.2c.HOless5kb.top1.png" --averageType mean --colors red green blue black 

--regionsLabel "C1-HOless5kb" "C1-HOmore5kb" "C2-HOless5kb" "C2-HOmore5kb" --yMin 0 

--yMax 2.5 --endLabel TTS --legendLocation upper-left 

 

##########################  S.Fig 6c   #################################### 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190726_c1_dwCD_disLess5kb.bed 20190726_c1_dwCD_disMore5kb.bed 

20190726_c2_dwCD_disLess5kb.bed 20190726_c2_dwCD_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --maxThreshold 1000 --scoreFileName DRIP_run1_HeLa.bw --outFileName 

"DRIP.2c.CDless5kb.hela.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "DRIP.2c.CDless5kb.hela.matrix" --outFileName 

"20190725.DRIP.2c.CDless5kb.hela.png" --averageType mean --colors red green blue black 

--regionsLabel "C1-CDless5kb" "C1-CDmore5kb" "C2-CDless5kb" "C2-CDmore5kb" --yMin 0 

--yMax 6 --endLabel TTS --legendLocation upper-left 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190726_c1_dwCD_disLess5kb.bed 20190726_c1_dwCD_disMore5kb.bed 

20190726_c2_dwCD_disLess5kb.bed 20190726_c2_dwCD_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --maxThreshold 1000 --scoreFileName DRIP_run1_TOP1.bw --outFileName 

"DRIP.2c.CDless5kb.top1.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "DRIP.2c.CDless5kb.top1.matrix" --outFileName 

"20190725.DRIP.2c.CDless5kb.top1.png" --averageType mean --colors red green blue black 



--regionsLabel "C1-CDless5kb" "C1-CDmore5kb" "C2-CDless5kb" "C2-CDmore5kb" --yMin 0 

--yMax 6 --endLabel TTS --legendLocation upper-left 

 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190726_c1_dwCD_disLess5kb.bed 20190726_c1_dwCD_disMore5kb.bed 

20190726_c2_dwCD_disLess5kb.bed 20190726_c2_dwCD_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_HeLa.bw --outFileName 

"pRPA.2c.CDless5kb.hela.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "pRPA.2c.CDless5kb.hela.matrix" --outFileName 

"20190725.pRPA.2c.CDless5kb.hela.png" --averageType mean --colors red green blue black 

--regionsLabel "C1-CDless5kb" "C1-CDmore5kb" "C2-CDless5kb" "C2-CDmore5kb" --yMin 0 

--yMax 2.5 --endLabel TTS --legendLocation upper-left 

computeMatrix scale-regions --numberOfProcessors 8 --regionsFileName 

20190726_c1_dwCD_disLess5kb.bed 20190726_c1_dwCD_disMore5kb.bed 

20190726_c2_dwCD_disLess5kb.bed 20190726_c2_dwCD_disMore5kb.bed --

beforeRegionStartLength 10000 --afterRegionStartLength 10000 --regionBodyLength 20000 -

-binSize 100 --minThreshold -100 --scoreFileName pRPA_run2_TOP1.bw --outFileName 

"pRPA.2c.CDless5kb.top1.matrix" --missingDataAsZero --skipZeros 

plotProfile --matrixFile "pRPA.2c.CDless5kb.top1.matrix" --outFileName 

"20190725.pRPA.2c.CDless5kb.top1.png" --averageType mean --colors red green blue black 

--regionsLabel "C1-CDless5kb" "C1-CDmore5kb" "C2-CDless5kb" "C2-CDmore5kb" --yMin 0 

--yMax 2.5 --endLabel TTS --legendLocation upper-left 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 
 
The DNA replication program is frequently challenged by endogenous and exogenous stress, and the 
oncogene-induced replication stress is a major driver of tumor progression. One of these replicative 
stresses is transcription-replication conflict (TRC). Another potential obstacle for the replication 
progression is R-loop. However, the mechanism about how R-loops are involved in the regulation of 
TRC and genomic stability is still poor known. During my Ph.D. study, I have developed a 
bioinformatics method to study the replication fork direction and to detect the initiation zones. We 
successfully applied it to investigate the R-loop related TRC and observed that R-loops enriched at 
the transcription termination sites (TTSs) of highly expressed genes show a higher level of head-on 
TRC meanwhile replication fork pausing at these TTSs prevents head-on TRC and maintains genome 
integrity in a TOP1-dependent manner. 

MOTS CLÉS 
 
Réplication de l’ADN, directionalité de la fourche de réplication, conflit entre réplication et 
transcription, R-loops, instabilité génomique, analyse des données multi-omiques 

RÉSUMÉ 
 
Le programme de réplication de l'ADN est fréquemment mis à l'épreuve par un stress endogène et 
exogène, et le stress de réplication induit par l'oncogène est un moteur majeur de la progression 
tumorale. L'un de ces stress réplicatifs est le conflit transcription-réplication (TRC). Un autre obstacle 
potentiel à la progression de la réplication est R-loop. Cependant, le mécanisme sur la façon dont les 
R-loops sont impliquées dans la régulation du TRC et la stabilité génomique est encore mal connu. 
Pendant ma thèse, j'ai développé une méthode bio-informatique pour étudier la direction des fourches 
de réplication et détecter les zones d'initiation. Nous l'avons appliqué avec succès pour étudier le TRC 
lié à R-loop et avons observé que les R-loops enrichies au niveau des sites de terminaison de la 
transcription (TTS) de gènes hautement exprimés montrent un niveau plus élevé de TRC frontal tandis 
que la fourche de réplication s'arrêtant à ces TTS empêche le TRC frontal et maintient l'intégrité du 
génome d'une manière dépendante de TOP1. 

KEYWORDS 
 
DNA replication, replication fork direction, conflicts between replication and transcription, R-loop, 
genomic instability, multi-omics data analysis 
 


