
HAL Id: tel-04299086
https://theses.hal.science/tel-04299086v1

Submitted on 22 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing smart home services using machine learning
and knowledge-based approaches

Mingming Qiu

To cite this version:
Mingming Qiu. Designing smart home services using machine learning and knowledge-based ap-
proaches. Machine Learning [cs.LG]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IP-
PAT014�. �tel-04299086�

https://theses.hal.science/tel-04299086v1
https://hal.archives-ouvertes.fr

626

N
N
T
:2

02
3I
PP

AT
01

4

Designing smart home services using
machine learning and knowledge-based

approaches
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 28 Avril 2023, par

Mingming Qiu

Composition du Jury :

Gérard MEMMI
Professeur, Télécom Paris Examinateur, Président

Alessandro FANTECHI
Professeur des universités, Université de Florence Rapporteur

Patricia PASCAL-STOLF
Professeure, Institut de Recherche en Informatique de Toulouse Rapporteuse

Zoubida KEDAD
Maîtresse de conférences, Université de Versailles
Saint-Quentin-en-Yvelines Examinatrice

Elie NAJM
Professeur émérite, Télécom Paris Directeur de thèse

Rémi SHARROCK
Maître de conférences, Télécom Paris Co-encadrant de thèse

Bruno TRAVERSON
Ingénieur de recherche, Électricité de France R&D Invité

Philippe FUTTERSACK
Ingénieur de recherche, Électricité de France R&D Invité

DESIGNING SMART HOME SERVICES USING
MACHINE LEARNING AND KNOWLEDGE-BASED

APPROACHES

A DISSERTATION PRESENTED
BY

MINGMING QIU

TELECOM PARIS
INSTITUT POLYTECHNIQUE DE PARIS

APRIL 2023

Acknowledgements
The completion of this thesis would not have been possible without the help and

support of many people to whom I would like to express my gratitude.
First, I would like to thank my thesis supervisors, Elie Najm, Bruno Traverson, and

Rémi Sharrock, for the time they devoted to my work. Elie Najm, my thesis director,
helped me a lot in greatly enriching my work with his experience, previous advice,
and unique insights, which are particularly essential in achieving the present contri-
butions. Bruno Traverson, my co-supervisor, helped me a lot with the details of my
work and gave me unique insights into the problems, which are very important to rea-
lize the rigorous work. Rémi Sharrock, my co-supervisor, helped me with the work
and software tools and provided me with suggestions to improve my work efficiency.

Next, I would like to thank Alessandro Fantechi and Patricia Pascal-Stolf for
agreeing to be the reviewers to review my work and provide insightful comments
so that I can improve my thesis and for accepting to be jury members. I would also
like to thank Gérard Memmi and Zoubida Kedad for accepting to be jury members
and for taking the time to read the work. I would also like to thank Philippe Futter-
sack for accepting to be invited to my defense, for giving me advice on my work, and
for encouraging me throughout my work.

I would also like to thank Amel Bouzeghoub and Maxime Lefrançois for having
reviewed my work during my midterm defense. Their insightful comments and sug-
gestions have improved my work and encouraged me in my thesis work.

In addition, I would like to thank the SEIDO laboratory that funded this work. I
would also like to thank my colleagues at EDF and Télécom Paris for their help and
support. It is a pleasant experience to work with them. I want to thank Drs. Ada
Diaconescu, Jan Gugenheimer, Liu Jiali, and Zhuoming Zhang, as well as PhD fellows
Wen-Jie Tseng, Elise Bonnail, Yang Liu, and Gaëlle Clavelin. I am so glad to have you
in the ACES and DIVA labs.

Moreover, I would like to thank Pierre Banquy for his encouragement, support, and
help with my work, and Drs. Sibo Cheng and Yuwei Wang for their encouragement.

Finally, I would like to thank my family, who always support me unconditionally,
believe in me, and encourage me. I want to thank all the people I could not mention
who have given me valuable help.

i

ii

Abstract
Smart homes are homes equipped with connected objects (sensors for retrieving

state values from the environment, actuators for influencing these state values) and
with services that interact with these objects with the aim to provide for the inhabitant
more comfort, an improved quality of life, while reducing energy consumption. The
objects of a smart home can also interact directly with the inhabitant, resulting in
modifications, observable by the services, of the values of the states of the actuators
and sensors, thus allowing feedback and adaptation by these services.

The logic of the services deployed in a smart home can be designed by Artificial
Intelligence approaches of symbolic type (modeling of state changes in the form of
rules) or numerical type (selection of state values by learning techniques).

Nevertheless, neither of the approaches is totally satisfactory since the symbolic
approach faces limitations of dynamic adaptability (the rules of behavior are predefi-
ned at design time) and the numerical approach faces limitations of explicability (the
logic of decision making is not explicit).

This thesis presents four proposals that aim to overcome these limitations by using
a hybrid approach combining learning techniques and predefined rules.

The first proposal is the use of reinforcement learning to create a dynamic service
in two phases : first a pre-training phase in a simulated environment based on typical
state configurations and a rule-based profile of the inhabitant, then a deployment
phase in a real environment where the behavior is refined following the feedback
from the inhabitant.

The second proposal generalizes the first one to the case of several services having
possible conflicts when they try to change the states of shared actuators. Several op-
tions are studied depending on whether the learning is done globally for all services
or individually per service and then the conflicting decisions are reconciled.

The third proposal is the extraction of rules from created dynamic services by lin-
king an analysis phase (identification of each situation encountered by the service
into an instance rule) and a synthesis phase (refinement of the set of extracted rules
with the instance rule).

The fourth proposal is the evaluation of the hybrid architecture where the logical
behavior of the deployed services comes from either predefined rules, or created dy-

iii

namic services driven by reinforcement learning, or rules extracted from these created
dynamic services.

These four proposals have been evaluated in several simulated comparative envi-
ronments on temperature control, light intensity, and air quality services. In general,
the experiment results demonstrate that learning systems can satisfactorily create
conflict-free services. In addition, they prove that the proposed rule extraction me-
thod can well extract rules from learning systems. Finally, they show the advantages
of integrating predefined and extracted rules into the decision-making of learning
systems.

This thesis work can be extended according to several perspectives. For example,
the co-simulation of physical phenomena would allow a more precise consideration
(heat transfer between spaces) and a better anticipation of the evolution of states of
the environment. The integration of various inhabitant profiles during the learning
process would allow a dynamic adaptation of the services to various inhabitant pro-
files. Taking into account the energy cost of the deployed services would allow the
implementation of energy saving policies.

iv

Résumé
Les maisons intelligentes sont des maisons équipées d’objets connectés (capteurs

pour récupérer des valeurs d’état de l’environnement, actionneurs pour influencer
ces valeurs d’état) et de services qui interagissent avec ces objets dans le but d’of-
frir à l’habitant plus de confort, une meilleure qualité de vie, tout en réduisant la
consommation d’énergie. Les objets d’une maison intelligente peuvent également in-
teragir directement avec l’habitant, entraînant des modifications, observables par les
services, des valeurs des états des actionneurs et des capteurs, permettant ainsi un
retour d’information et une adaptation par ces services.

La logique des services déployés dans une maison intelligente peut être conçue
par des approches d’Intelligence Artificielle de type symbolique (modélisation des
changements d’état sous formes de règles) ou numérique (sélection des valeurs d’état
par des techniques d’apprentissage).

Néanmoins, aucune des approches n’est totalement satisfaisante puisque l’ap-
proche symbolique se heurte à des limitations d’adaptabilité dynamique (les règles
de comportement sont prédéfinies à la conception) et l’approche numérique à des
limitations d’explicabilité (la logique de la prise de décision n’est pas explicite).

Ce mémoire de thèse présente quatre propositions qui visent à lever ces limitations
en s’inscrivant dans une approche hybride combinant des techniques d’apprentissage
et des règles prédéfinies.

La première proposition est l’utilisation de l’apprentissage par renforcement pour
créer un service dynamique en deux phases : une phase de pré-entrainement en en-
vironnement simulé à partir de configurations d’états types et de profil de l’habitant
basé sur des règles, suivie d’une phase de déploiement en environnement réel où le
comportement est affiné suite aux retours de l’habitant.

La deuxième proposition généralise la première au cas de plusieurs services ayant
éventuellement des conflits quand ils essaient de changer les états des actionneurs
partagés. Plusieurs options sont étudiées selon que l’apprentissage s’effectue globale-
ment pour tous les services ou individuellement par service puis les décisions contra-
dictoires sont réconciliées.

La troisième proposition est l’extraction de règles des services dynamiques créés en
enchaînant une phase d’analyse (identification de chaque situation rencontrée par le

v

service en une règle d’instance) et une phase de synthèse (raffinement de l’ensemble
de règles extraites avec la règle d’instance).

La quatrième proposition est l’évaluation de l’architecture hybride où le comporte-
ment logique des services déployés provient soit de règles prédéfinies, soit de services
dynamiques créés et dirigés par l’apprentissage par renforcement, soit de règles ex-
traites à partir de ces services dynamiques créés.

Ces quatre propositions ont été évaluées dans plusieurs environnements compa-
ratifs simulés sur des services de régulation de température, d’intensité lumineuse et
de qualité de l’air. En général, les résultats des expériences démontrent que les sys-
tèmes d’apprentissage peuvent créer demanière satisfaisante des services sans conflit.
De plus, ils prouvent que la méthode d’extraction de règles proposée peut bien ex-
traire les règles des systèmes d’apprentissage. Enfin, ils montrent les avantages de
l’intégration de règles prédéfinies et extraites dans la prise de décision des systèmes
d’apprentissage.

Ce travail de thèse peut être prolongé selon plusieurs perspectives. Par exemple,
la co-simulation des phénomènes physiques permettrait une prise en compte plus
précise (transfert de thermique entre espaces) et une meilleure anticipation de l’évo-
lution des états de l’environnement. L’intégration de profils d’habitant divers lors de
l’apprentissage permettrait une adaptation dynamique des services à des profils d’ha-
bitant variés. La prise en compte du coût énergétique des services déployés permet-
trait de mettre en place des politiques de sobriété énergétique.

vi

Contents

I Introduction and background 9

1 Introduction 10
1.1 Introduction . 10
1.2 Smart home . 11
1.3 Research questions . 14
1.4 Main contributions . 16
1.5 Outline . 17

2 Knowledge-based approaches for service creation 19
2.1 Introduction . 19
2.2 Knowledge-based approaches . 20

2.2.1 Ontology . 20
2.2.2 Rules . 23

2.3 SAREF . 25
2.4 Existing work . 32
2.5 Conclusion . 34

3 Data-driven approaches for service creation 35
3.1 Introduction . 35
3.2 Machine learning . 37
3.3 Reinforcement learning classification 39
3.4 Reinforcement learning principles . 40

3.4.1 Multilayer perceptron . 46
3.4.2 Long short term memory . 47

3.5 Existing work . 50
3.6 Conclusion . 52

4 Hybrid approaches for service creation 53
4.1 Introduction . 53
4.2 Discussion of existing service creation approaches 54

1

CONTENTS

4.2.1 Knowledge-based approaches for service creation 54
4.2.2 Data-driven approaches for service creation 55
4.2.3 Hybrid approaches for service creation 56

4.3 Existing work . 56
4.4 Requirements for an hybrid system 57
4.5 Conclusion . 58

II Contribution 61

5 Creation of a smart home service using Reinforcement Learning 62
5.1 Introduction . 62
5.2 A simple smart home system . 65
5.3 RL-based simple smart home system 69
5.4 Simulated simple smart home system 78
5.5 Simulated simple smart home system examples 81

5.5.1 Simulated environments for services 81
5.5.2 Design of reward functions 88

5.6 Adaptation to a simple target-undefined service and a simple target-
defined service . 90

5.7 Conclusion . 92

6 Creation of multiple smart home services 95
6.1 Introduction . 95
6.2 Proposed architectures for creating multiple dynamic smart home ser-

vices . 96
6.2.1 Merged service-based architectures 98
6.2.2 Composite service-based architectures 100

6.3 Comparative experiment . 105
6.3.1 Experiment metrics . 105
6.3.2 Evaluation results . 106

6.4 Architecture deployment in the real world 109
6.5 Conclusion . 110

7 Rule extraction from data-driven smart home services 111
7.1 Introduction . 112

2

CONTENTS

7.2 Motivation of rule extractions . 113
7.3 Context of rule extractions . 114
7.4 Existing work . 115
7.5 The proposed PBRE method . 117

7.5.1 Generate instance rules . 117
7.5.2 Generalize instance rules . 118
7.5.3 Combine rules . 119
7.5.4 Refine rules . 120

7.6 Integration of rule extraction in smart home service creation 124
7.6.1 Integration of rule extraction in simulation 124
7.6.2 Integration of rule extraction in the real world 125

7.7 Evaluation experiment . 126
7.7.1 Metrics . 126
7.7.2 Evaluation and Comparison with Existing Work 127
7.7.3 Experiment in the smart home context 128

7.8 PBRE variant for dynamic rule extraction from an untrained service . 130
7.9 Dynamic rule extraction from multiple smart home services 132
7.10 Conclusion . 133

8 Hybrid system for smart home services creation 135
8.1 Introduction . 135
8.2 Proposed HKD-SHO system . 137

8.2.1 Service dispatcher . 139
8.2.2 Rule extraction . 141
8.2.3 Rule deletion . 142
8.2.4 State proposition . 143
8.2.5 Decision maker . 145

8.3 Working process of HKD-SHO . 146
8.4 Comparative experiment . 149

8.4.1 Experiment results and analysis 150
8.5 Conclusion . 155

3

CONTENTS

III Conclusion and Annexes 157

9 Conclusion 158
9.1 Main results . 158
9.2 Discussion . 161
9.3 Perspectives . 161

A Synopsis en Français 163

B Publications 170

C Acronyms 171

D Glossary 173

E Variables 175

Bibliography 176

4

List of Figures

2.1 Communication between different ontologies without SAREF 25
2.2 Communication between different ontologies with SAREF 25
2.3 General overview of SAREF . 26
2.4 Properties of class "Device" . 27
2.5 SubClasses of class "Device" . 27
2.6 Properties of class "Function" . 27
2.7 SubClasses of class "Function" . 27
2.8 Properties of class "Command" . 28
2.9 SubClasses of class "Command" . 28
2.10 Properties of class "Service" . 29
2.11 SubClasses of class "Service" . 29
2.12 Subclasses of class "State" . 29
2.13 Properties of class "Profile" . 29
2.14 Subclasses of class "Commodity" . 30
2.15 Properties of class "Task" . 30
2.16 Properties of class "Property" . 31
2.17 Subclasses of class "Property" . 31
2.18 Properties of class "Feature Of Interest" 31
2.19 Properties of class "Measurement" . 31
2.20 Subclasses of class "Unit Of Measure" 32

3.1 Machine learning classification . 37
3.2 Principle of RL based on table . 41
3.3 Q-learning table storing action quality values 41
3.4 Principle of RL based on machine learning system 43
3.5 MLP and LSTM cells-based RL agent 44
3.6 An artificial neuron . 47
3.7 An aritificial neural network (ANN) 47
3.8 A multi-layer perceptron (MLP) . 47
3.9 Principle of RNN . 48

5

LIST OF FIGURES

3.10 Principle of LSTM . 49

5.1 Smart home system based on services 63
5.2 simple smart home system . 65
5.3 Simple smart home system with one temperature service 67
5.4 Simple smart home system with one light intensity service 68
5.5 RL-based simple smart home system 69
5.6 Time diagram for RL-based simple smart home system 70
5.7 Simulated RL-based simple smart home system 79

6.1 Classification of SHOMA architectures 97
6.2 Architecture of OLSbA . 98
6.3 Architecture of QmixbA . 99
6.4 Architecture of RSAbA . 100
6.5 Architecture of CCbA . 101
6.6 Architectures of PbA (in yellow) and EPbA (in red) 102
6.7 Architecture of TRbA . 103
6.8 Architecture of CSbA . 104
6.9 Architecture evaluations without constraint and with two services . . 106
6.10 Architecture evaluations with constraint and two services 107
6.11 Architecture evaluations without constraint and with three services . 108
6.12 Architecture evaluations with constraint and three services 108

7.1 PBRE rule extraction process . 117
7.2 Tree data structure . 117
7.3 Rule extraction in a smart home system with one service in simulation 124
7.4 Rule extraction in a smart home system with one service in the real

world . 124
7.5 Metrics acquiring procedure . 126
7.6 PBRE and RxNCM experiment results by working on seen datasets . . 129
7.7 PBRE and RxNCM experiment results by working on unseen datasets 129
7.8 PBRE with the seen datasets . 129
7.9 PBRE with the unseen datasets . 129
7.10 Rule extraction without "refining rules" in a smart home system with

one service in simulation . 132

6

LIST OF FIGURES

7.11 Rule extraction without "refining rules" in a smart home system with
one service in the real world . 132

8.1 Structure of HKD-SHO . 136
8.2 Detailed working process of HKD-SHO 147
8.3 Evaluation results with RSAbA being the machine learning-based sys-

tem and without constraint in the inhabitant’s profile 151
8.4 Evaluation results with EPbA being the machine learning-based system

and without constraint in the inhabitant’s profile 151
8.5 Evaluation results with RSAbA being the machine learning-based sys-

tem and with constraint in the inhabitant’s profile 152
8.6 Evaluation results with EPbA being the machine learning-based system

and with constraint in the inhabitant’s profile 152
8.7 Evaluation results with RSAbA being the machine learning-based sys-

tem and without constraint in the inhabitant’s profile 153
8.8 Evaluation results with EPbA being the machine learning-based system

and without constraint in the inhabitant’s profile 153
8.9 Evaluation results with RSAbA being the machine learning-based sys-

tem and with constraint in the inhabitant’s profile 154
8.10 Evaluation results with EPbA being the machine learning-based system

and with constraint in the inhabitant’s profile 154

7

List of Tables

7.1 Datasets used for evaluating the performance of the extracted rules . 127
7.2 Number of rules extracted with PBRE and RxNCM 128
7.3 Number of rules extracted by PBRE from different DQNs 129
7.4 Extracted Rules for the light service simulated by different DQNs . . 131

8

Part I

Introduction and background

9

1
Introduction

Contents
1.1 Introduction . 10

1.2 Smart home . 11

1.3 Research questions . 14

1.4 Main contributions . 16

1.5 Outline . 17

1.1 Introduction

From the appearance of home appliances in the early twentieth century to the
emergence of smart homes or home automation in the 2000s, smart homes have
received increasing attention from research and industry domains. Moreover, the in-
troduction of the Internet of Things (IoT) [107] contributes to creating a smart home
system that can be remotely controlled on a large scale.

To realize the intelligence of a smart home and meet the requirements of an inha-
bitant, we need to create various services [88], such as services to control the room
temperature or adjust the room light intensity, and the definition of a smart home
service varies depending on the context of the problems involved.

The creation of smart home services depends on various components containing
diverse devices, including sensors to collect data and actuators to execute the actions
proposed by services, the protocols to realize the data transmission, the inhabitants
for whom services are created, and the developers who design services.

Based on these components, developing smart home services involves logical and

10

CHAPTER 1. INTRODUCTION

physical specifications. The logical specification involves the logical decision making
by proposing states to actuators after having considered the environment state va-
lues sensed by sensors, and the physical specification concerns the hardware part,
which includes how to collect data from the environment, how to transmit data to
services using different protocols and how to deploy the smart home system in the
real world. In our study, we only focus on the logical specification by developing a
logic of decision-making to realize the creation of smart home services. Such logic is
mainly based on either knowledge-based or data-driven approaches.

In this chapter, we first present the context of the smart home. Then, we describe
the research questions that we try to address in the thesis. Next, we present the princi-
pal contributions that we have made during the thesis. Finally, we provide an outline
of the entire document.

1.2 Smart home

A smart home was just an idea when it was first mentioned, and only existed in
science fiction. With the development of various technologies, this idea became a rea-
lity. For example, according to [8], in 1966, Westinghouse engineer Jim Sutherland
created ECHO IV. As the first true home automation device, ECHO IV controls tempe-
rature and appliances, allowing inputting and retrieving shopping lists, recipes, and
other family memos. In 1969, with the introduction of ARPANET, the precursor to the
Internet we know today, the truly connected universe was ushered. In 1975, the X10
Home Automation Project was introduced. We got into the territory of practical de-
vices for real homes. In 1980s, motion-sensing lights, automatic garage door openers,
programmable thermostats, and security systems were commonplace and affordable.
In 1984, the term "smart house" was coined by the American Association of Home
Builders. In 1990, John Romkey and Simon Hackett created a toaster connected to
and controlled through the Internet. The Internet of Things (IoT) [79] was born.
Nevertheless, this term was named by Kevin Ashton another nine years later. Since
the 2000s, smart devices and systems have rapidly evolved with the help of the IoT.
According to a research report from the IoT analyst firm Berg Insight [9], the num-
ber of smart homes in Europe and North America reached 105.0 million in 2021. The
most advanced smart home market is North America, having an installed base of 51.3
million smart homes at the end of the year 2021.

11

CHAPTER 1. INTRODUCTION

With the increasing popularity of a smart home, different definitions are propo-
sed. For example, [85] specifies that a smart home integrates different services using a
common communication system, assures an economic, secure, and comfortable home
operation, and includes a high degree of intelligent functionality and flexibility. [10]
specifies that a smart home is an application of ubiquitous computing where the home
environment is monitored by ambient intelligence to provide context-aware services
and facilitate remote home control. [19] defines a smart home as a residence equip-
ped with a communication network, linking sensors, domestic appliances, and de-
vices. It can be remotely monitored, accessed, or controlled and provide services that
respond to the needs of its inhabitants. [113] emphasizes smart home technologies
used to realize a smart home. It describes that smart home technologies refer to de-
vices that provide some degree of digitally connected or enhanced services to occu-
pants, and are often synonymous with "home automation systems". [114] describes
a smart home as a private house with many smart home automation devices. The
communication of these devices can create new services and additional benefits for
an inhabitant. [127] defines a smart home as a home that can proactively change its
environment to provide services that promote independent living for the elderly. [89]
defines a smart home as a dwelling equipped with smart technologies that provide
customized services to the inhabitant.

From the above examples on the definitions of a smart home, we can observe that
the intelligence of a smart home is realized by creating various services to meet the
needs of an inhabitant.

Depending on contexts and problems, different definitions of a service are propo-
sed. For example, in service-oriented architecture (SOA), a service is a self-contained
software unit designed to perform a specific task. In other words, a set of procedures
or software components designed to perform a specific task can be regarded as a
service [99]. In the field of the Web, [18] defines a Web service as a distributed com-
ponent that is loosely coupled and reusable, encapsulate discrete functions, and is
accessible via standard Internet protocols.

In the field of the IoT, some work also introduces different definitions for a service.
For example, in [86], a smart city service can fulfill a goal by performing a set of
functions, and its characteristics describe the way the service interacts with urban
resources and other services, the impact it has on the environment and people, and

12

CHAPTER 1. INTRODUCTION

the requirements for the infrastructures it uses. In some knowledge representation
models [81], the concept of a service is also included. For example, The SAREF (Smart
Applications REFerence) ontology [15] defines that a service is provided by a device
and represents certain function of that device. It is used so that the functions of that
associated device can be discovered, registered, and remotely controlled by other
devices on the same network. In [35], a service is represented as a tuple containing
both functional and non-functional properties associated with that service. The same
author expresses the same definition of a service in [34], namely that any device can
be considered as a service, e.g., a TV set is a TV service. In [115], a service is implicitly
expressed as an action that can be performed if certain conditions are met. In [86], a
service is the target of an ensemble of functions that can be triggered under certain
conditions.

In our study, we define that, to realize the intelligence of a smart home, each ser-
vice tries to control one specific state, called the monitored state, by proposing states
for associated actuators after considering environment states sensed by sensors. For
example, a temperature service controls the monitored indoor temperature by adjus-
ting the related curtain, window, and air conditioner after considering the inhabitant’s
state and the indoor and outdoor temperatures. A light intensity service controls the
monitored indoor light intensity by adjusting the associated curtain and lamp after
considering the outdoor light intensity and the inhabitant’s state.

To create smart home services, both communication and decision-making are in-
volved. Communication concerns collecting data from the environment and transmit-
ting it to services using different protocols. Decision-making involves proposing states
for related actuators by considering the environment state values detected by sensors.
Our study only focuses on logical decision-making to create smart home services.

Knowledge-based and data-driven approaches are two primary categories of ap-
proaches to creating services by designing logical decision-making. In knowledge-
based approaches, the created services are explicable. When we say that services are
explicable in our study, we means that they can show the inhabitant under which si-
tuations they have proposed certain actuators’ states. In data-driven approaches, the
created services can dynamically propose actuators’ states to adapt to the inhabitant’s
preferences by considering the constantly changing environment states. Furthermore,
RL (Reinforcement Learning) [48], whose basic idea is that an artificial agent learns

13

CHAPTER 1. INTRODUCTION

the system’s behavior patterns by interacting with the environment, can create data-
driven services that consider the inhabitant’s reactions to the actions proposed by the
services to find out the inhabitant’s preferences. And it is essential to consider the
inhabitant’s reactions when attempting to design a user-friendly smart home system
[36].

1.3 Research questions

Despite some advantages mentioned above for knowledge-based and data-driven
approaches, neither of the two types of approaches can create smart home services
satisfactorily. For knowledge-based approaches, the services created are usually static
and cannot adapt to the changing environment and the changing inhabitant’s prefe-
rence.

For data-driven approaches, however, the created data-driven services are like
black boxes that constantly update themselves to adapt to the changing environment
states and the changing inhabitant’s preference. Therefore, the inhabitant has no idea
under which situations certain services have suggested certain actions.

Considering the above brief analysis of using data-driven and knowledge-based
approaches to create smart home services, we propose the following research ques-
tions (RQ.1 ∼ RQ.4) to be addressed to create services. The created services will be
explicable and can dynamically propose actuators’ states to achieve the inhabitant’s
target monitored states.

RQ.1 How can we address the drawbacks of existing methods to create a
dynamic smart home service to adapt to the changing environment
and the changing inhabitant’s preference?
Existing methods to create smart home services have several drawbacks.
For example, they usually require manual inputs from the inhabitant, and
the manual inputs can be complex when the physical phenomena of the
environment states are complex and the inhabitant has no idea how to ad-
just the actuators to achieve his/her target monitored states. In addition,
the services are usually created during design time, and cannot evolve to
adapt to the changing environment and the changing inhabitant’s prefe-
rence. To address these problems, we start with the simplest smart home

14

CHAPTER 1. INTRODUCTION

system, where there is only one single service, and try to create a dynamic
smart home service that can adapt to the changing environment and the
changing inhabitant’s preference.

RQ.2 How can we extend the proposal of creating one single dynamic smart
home service to a more general situation of creating multiple dynamic
smart home services that are adaptive and conflict-free?
There are usually multiple services within a smart home. Including the
drawbacks mentioned in RQ.1, when there are multiple services, potential
conflicts can be generated if these services simultaneously access the same
actuators. Nevertheless, it is complex for existing methods to create mul-
tiple dynamic smart home services that can adapt to the changing environ-
ment and the changing inhabitant’s preference while ensuring no conflicts
among these services. To address these problems, by extending the propo-
sal to RQ.1, we try to realize the creation of multiple dynamic smart home
services which are adaptive and conflict-free.

RQ.3 How can we make the created dynamic smart home services expli-
cable ?
Existing methods to create dynamic smart home services are like black
boxes, and users have no idea of the logic of the behavior of the created
services. Nevertheless, knowing the logic of the behavior of the created
services is important for system maintenance and security. Therefore, we
try to propose methods to make the created dynamic services explicable.

RQ.4 How can we create dynamic smart home services that are adaptive,
conflict-free, and explicable ?
In a smart home, it is essential that services are both dynamic, to adapt to
the changing environment and the changing inhabitant’s preference, and
explicable, so that users are aware of the logic of the services’ behavior.
Nevertheless, little existing work is able to create services that are dyna-
mic while explicable. Therefore, we try to propose a solution to create a
user-friendly smart home with conflict-free services. These services can dy-
namically adapt to the changing environment, improve their performance
by considering the inhabitant’s preferences or reactions, and explain to
users in which situations certain actuators’ states are proposed.

15

CHAPTER 1. INTRODUCTION

1.4 Main contributions

To create smart home services which are explicable and can dynamically propose
conflict-free actuators’ states to adapt to the inhabitant’s preferences for monitored
states, we try to address the above four research questions by making the following
contributions :
1. Creation of a single dynamic smart home service that is adaptive.

Considering the simplest smart home with only one service, we propose an RL-
based structure to create the corresponding single smart home service. The crea-
ted service can dynamically propose actuators’ states to adapt to the changing
environment and meet the inhabitant’s preferences.

2. Creation of multiple dynamic smart home services which are adaptive and
conflict-free.
We propose several multi-services based architectures based on the proposed
RL-based single service structure. The created multiple services inherit the ad-
vantages of an RL-based single service to dynamically propose actuators’ states
to adapt to the changing environment and the changing inhabitant’s preference.
Furthermore, they are conflict-free even though they simultaneously work on the
same actuators.

3. Extraction of explicable smart home services from dynamic and adaptive
smart home services.
We propose an algorithm to extract knowledge-based services from dynamic
data-driven services. Therefore, the data-driven services will be explicable using
the extracted knowledge-based services to demonstrate to users under which
situations certain actuators’ states are proposed.

4. Creation of dynamic smart home services which are adaptive, conflict-free
and explicable.
We propose a system that combines the proposed multi-services based archi-
tectures and the proposed algorithm to extract knowledge-based services. This
system can create dynamic services that are conflict-free, explicable, and able to
adapt to the changing environment states and the changing inhabitant’s prefe-
rence.

16

CHAPTER 1. INTRODUCTION

1.5 Outline

The document is divided into three parts. The first part introduces the context,
the research questions, the existing solutions to address the questions, and the ana-
lysis of the existing solutions. The second part presents the contributions to solve
the questions mentioned in the first part. The third part concerns the conclusion, the
discussion, and the perspective.

The first part includes chapters 1∼4. Chapter 1 is the current chapter that intro-
duces the context related to the smart home and smart home services, the research
questions, the contributions, and the outline of the document. Chapter 2 presents the
definition of using knowledge-based approaches for service creation, the components
of knowledge-based approaches, and the existing work concerning services based on
this category of approaches. Chapter 3 contains the definitions of using data-driven
approaches for service creation, the introduction of the data-driven algorithms used
in our work, and the existing work concerning service creation and some other appli-
cations based on data-driven approaches. Chapter 4 analyzes knowledge-based and
data-driven approaches for service creation. Based on this analysis, we consider hy-
brid systems based on hybrid approaches that combine knowledge-based and data-
driven approaches for service creation. In addition, we present existing work on using
hybrid approaches for service creation and compare it to the requirements that we be-
lieve a hybrid system should have so as to create smart home services in a satisfactory
manner.

The second part contains chapters 5∼8. Chapter 5 introduces the concept of a
simple smart home system, proposes how to use RL to create a single dynamic smart
home service, how to deploy a smart home service in the real world, and how to si-
mulate a smart home system. By reusing the proposed structure of a single dynamic
smart home service, several architectures are proposed in Chapter 6 to create multiple
services that can dynamically propose conflict-free actuators’ states. Several experi-
ments are conducted to evaluate the performance of these architectures and select
those with better performance. Chapter 7 presents the definition, the motivation, and
the related work on extracting rules from trained learning systems. It also explains
our proposed rule extraction method and evaluates and demonstrates its satisfactory
performance in several experiments. Moreover, a variant of this method is proposed to
dynamically extract rules even when the learning systems are not well trained. Chap-

17

CHAPTER 1. INTRODUCTION

ter 8 describes the proposed hybrid system based on our proposed hybrid approaches
that combines knowledge-based and data-driven approaches to create smart home
services that are dynamic, explicable and conflict-free. It also shows the better per-
formance of this hybrid system compared to the other two systems. The first system
only contains the data-driven approaches presented in Chapter 6. The second system
includes pre-existing rules and the same data-driven approaches.

The third part contains Chapter 9 and Annexes. Chapter 9 describes the main
results of our entire work, the discussion of some problems to be solved, and the
perspective including interesting research directions to be explored. Annexes contain
the acronyms, the variables, and the main glossaries that appear in the document.

18

2
Knowledge-based approaches
for service creation

Contents
2.1 Introduction . 19

2.2 Knowledge-based approaches . 20

2.2.1 Ontology . 20
2.2.2 Rules . 23

2.3 SAREF . 25

2.4 Existing work . 32

2.5 Conclusion . 34

2.1 Introduction

Knowledge-based approaches are one of the most important categories of ap-
proaches for the development of smart home services. Systems built using this type
of approaches include a knowledge representation and an inference engine, where
the knowledge representation consists of a set of facts and rules. To create services,
knowledge-based approaches can be used. Due to the concise and clear format of the
rules, the created services are usually explicable.

In a smart home, there are numerous objects, such as sensors and actuators, and
various services. Knowledge-based approaches can express the relationship between
objects, between services, and between objects and services. In addition, rules are
used to create knowledge-based smart home services, and the created services can

19

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

show users in which situations certain states of the actuators are proposed. Moreo-
ver, the inhabitant can easily create knowledge-based smart home services if he/she
knows how to set the states of the actuators.

Knowledge representation is one of the most important components of knowledge-
based approaches. Ontology is one of the most popular methods for knowledge re-
presentation. Many ontologies are proposed for different domains. One of the well-
known ontologies for the smart home domain is the SAREF (Smart Appliances RE-
Ference) ontology. It allows the separation and recombination of ontologies from dif-
ferent domains. SAREF is also the knowledge representation to be leveraged in our
contributions.

We will leverage this chapter to provide the basic principle of knowledge-based
approaches and explain the knowledge representation we will use in our work. The-
refore, in the rest of the chapter, we first introduce the definition and components of
knowledge-based approaches. Then, we describe the SAREF ontology in detail. Next,
we present existing work that uses knowledge-based approaches to deal with services
related problems and applications. Finally, we conclude this chapter.

2.2 Knowledge-based approaches

A Knowledge representation and an inference engine are two main components
of a system implemented by a knowledge-based approach. The knowledge represen-
tation contains a set of facts and rules [4]. Facts are known to be true in certain
domains, such as the smart home, and can be implemented using, for example, onto-
logies [80]. Rules can be viewed as extensions of facts with additional conditions that
must be satisfied for them to be true [2]. An inference engine, also called a reasoner,
applies rules to the set of known facts and derives new facts from it.

2.2.1 Ontology

Ontology is a knowledge representation method that tries to realize knowledge
exchange between different domains. It describes the semantics of data and provides
a unified way of communication through which different parties can understand each
other [119]. Thus, an ontology is a shared conceptual model of a formal specification
[132] and can facilitate knowledge sharing across different domains by providing a
common understanding [119]. As a result, it can be used to solve the interoperability

20

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

problem. In addition, it is also used in the Semantic Web [24] to provide additional
constraints and annotations during knowledge sharing. An ontology mainly contains
4 elements : classes, instances, relations and axioms [119] where :
1. Classes or concepts are the fundamental elements of the ontology. They can be

organized into a hierarchy of superclasses and subclasses, also known as a taxo-
nomy. All classes in the same hierarchy have common properties.

2. Instances or individuals are the representations of certain real objects in practice
and belong to certain classes or concepts. For example, "John" can be an instance
of the class "Person", and "John" in real life represents a person named "John".

3. Relations, relationships, or properties are binary relations used to describe the
relation between two classes or two instances. They can also be used to depict
the characteristics of classes or instances. When we apply the cartesian product
of two sets on the property, the first element is named a domain, and the second
is called a range. We consider two kinds of properties : an object property is a
relation having both the domain and the range be both classes or both instances,
and a data property is a relation having the domain be an instance or a class and
the range be some literal value. For example, "John hasAge 12" is a data property,
and "John hasBother Jack" is an object property. In both examples, The domain
"John" is an instance of the class "Person", and the range "12" is an integer not
belonging to any class. In contrast, the range "Jack" is an instance of the class
"Person".

4. An axiom is used to constrain classes, instances, and relations. For example, the
subclass axiom can be expressed by an example : class "a :Student" is a subclass of
the "class a :Person" to restrict the relationship between the two classes. Axioms
are usually expressed in first-order logic (FOL) [112, 38] and are used to check
the consistency of the ontology.

Several reference ontologies have been developed to cover the needs of different
fields. In this section, we introduce one of the most popular ontologies, the Web On-
tology Language (OWL) [93].

21

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

OWL

The W3C Web Ontology Language (OWL) is a Semantic Web language [76]. It is
part of the W3C’s Semantic Web technology stack which also contains RDF (Resource
Description Framework), RDFS (RDF Schema), SPARQL, etc. Three increasingly-
expressive sublanguages : OWL Lite, OWL DL (Description Logics), and OWL full
are included in OWL. Any of them can be used to build an ontology.

OWL Lite

OWL Lite primarily provides classification hierarchy and simple constraints. It is
a light version of OWL DL and only contains basic language features. Some require-
ments need to be met when using some properties in OWL Lite :
1. the subject of "owl :equivalentClass" needs to be class names and the object of

"owl :equivalentClass" needs to be class names or restrictions.
2. the subject of "rdfs :subClassOf" should be class names and the object of

"rdfs :subClassOf" should be class names or restrictions ;
3. "owl :intersectionOf" needs to be used on lists of length greater than one that

contains only class names and restrictions ;
4. the object of "owl :allValuesFrom" and "owl :someValuesFrom" needs to be class

names or datatype names ;
5. the object of "rdf :type" needs to be class names or restrictions ;
6. the object of "rdfs :domain" needs to be class names, and the object of

"rdfs :range" needs to be class names or datatype names.

OWL DL

OWL DL is a description logic supporting data values, data types, and datatype
properties. OWL DL and OWL Lite extend the RDF vocabulary, but also restrict the
use of that vocabulary. The restrictions for OWL DL may be the following examples :
1. OWL DL requires a pairwise separation between classes, data types, datatype

properties, object properties, annotation properties, ontology properties (i.e.,
the import and versioning stuff), individuals, data values, and the built-in vo-
cabulary. Therefore, a class cannot be an individual at the same time.

22

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

2. OWL DL requires that no cardinality constraints (neither local nor global) can be
applied to transitive properties, their inverses, or any of their superproperties.

3. Most RDF(S) vocabulary cannot be used within OWL DL.

OWL Full

OWL Full contains all constructs of the OWL language and allows free, unrestricted
use of RDF constructs. In other words, it is designed for maximum RDF compatibility.
The compatibility can be illustrated by the following examples :
1. The resource "owl :Class" is equivalent to "rdfs :Class".
2. OWL Full allows classes to be treated as individuals.
3. Object properties and datatype properties are not disjoint, which means that

"owl :ObjectProperty" is equivalent to "rdf :Property". Therefore, datatype pro-
perties are effectively a subclass of object properties.

OWL Lite is a sublanguage of OWL DL. They have no significant difference. The
main difference is between OWL DL and OWL Full. Specifically, OWL Full allows
free mixing of OWL with RDF Schema and, like RDF Schema, does not enforce strict
separation of classes, properties, individuals, and data values. In contrast, OWL DL
restricts mixing with RDF and requires separating classes, properties, individuals, and
data values. For example, in OWL Lite and OWL DL, "owl :class" is a separate subclass
of "rdf :class", meaning that not all RDF classes are OWL classes. However, in OWL
Full, they are identical.

2.2.2 Rules

Rules are usually described by the expression IF-THEN. For example, "if A then
B", where "A" contains a set of conditions, also called antecedents, and "B" contains
conclusions, also called consequences. Thus, the expression states that "if all the
conditions in A are true, then the conclusions in B are true". Since the knowledge-
based system is usually applied in the domain of FOL (First Order Logic), each ante-
cedent and consequence in the rule expression is often a FOL formula or sometimes
a function such as an n-ary function that accepts many arguments. Introducing rules
into the knowledge base helps to improve the ontology. It allows the ontology to
describe relationships that cannot be described in DL (Description Logic) [72]. Mo-
reover, rules, just like ontology, allow the exchange and reuse of knowledge between

23

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

different systems. Several rule languages have been proposed, such as FOL RuleML
(First-Order Logic RuleML), SWRL (Semantic Web Rule Language), Notations3, Jena
rules, ECA (Event-Condition-Action) rules, and IFTTT(If-This-Then-That).
(1) FOL RuleML [26] was developed as the central language of RuleML [27]. It com-

bines the Quantifier RuleML to introduce logical quantifiers and the Disjunctive
RuleML to introduce logical operators. It is enriched by other connectives, such
as classical negation. In addition, FOL RuleML also contains the "query" function.
In FOL RuleML, each antecedent is called an atom, consisting of individuals and
variables.

(2) SWRL [62] is a markup language based on the combination of two sublanguages
of OWL (Web Ontology Language) with Unary/Binary datalog RuleML : OWL DL
and OWL Lite [92]. It extends the set of OWL axioms with horn-like rules, which
allow the use of horn-like rules in a knowledge base with OWL. An XML syntax is
provided to describe these rules based on the syntax of RuleML and OWL XML.
In addition, an exchange syntax OWL RDF/XML enables the use of a Resource
Description Framework (RDF) syntax in the descriptions of SWRL rules. The lo-
gical operators and quantifications in SWRL are the same as in RuleML. Together
with SAREF, SWRL is leveraged in our work.

(3) Notation3 [23] or N3 extends the RDF model to include rule formulas, variables,
logical implications, and functional predicates, and provides a readable textual
syntax as an alternative to RDF/XML. N3 logic has been intentionally restricted
to limited expressive power : it currently does not include first-order negation.
However, negated forms are available for many of the built-in functions.

(4) The Jena rule [100] can be described in RDF syntax and is designed to work with
RDF graphs. Because Jena rules treat a returned parameter as another parameter
in the parameter list rather than something applied to the left of the built-in
parameter, it has a graph structure instead of the typical tree structures found
in programming languages. Also, it can only be used by reasoners in the Jena
framework [68].

(5) ECA rules [45] were developed to support the need to react to different kinds of
events occurring in active databases [101]. An ECA rule has three parts [32] : An
event, a condition, and an action. The event part specifies the signal that triggers
the invocation of the rule. The condition part is a logical test that, if satisfied or

24

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

Figure 2.1 – Communication between dif-
ferent ontologies without SAREF

Figure 2.2 – Communication between dif-
ferent ontologies with SAREF

evaluated to be true, causes the action to be carried out. The action part specifies
the actions to be taken on the data.

(6) IFTTT [5] is a popular trigger-action programming platform [7]. It is created
by the IFTTT private commercial company to connect apps, devices, and ser-
vices from different developers to trigger one ormore automation involving those
apps, devices and services [7]. The principle of IFTTT is that if certain conditions
are met, then something else will happen. The "if this" part is called a trigger,
and the "then that" part is called an action [6].

2.3 SAREF

The Smart Appliances REFerence (SAREF) ontology [1] was developed as a
consensus model that facilitates the mapping of existing semantic models in the smart
appliance domain and reduces the translation effort from one domain to another. It
has an explicit definition of classes for the smart appliance, wide application, and
large support community. Therefore, It is also the knowledge representation to be
used in our work.

According to [15], before the introduction of SAREF, different semantic models
have recurring base concepts, but they often use different terminologies and different
data models to represent these concepts, as shown in Fig.2.1. With the introduction of
SAREF, different semantic models can continue to use their own terminology and data
models and relate to each other through the common semantics defined in SAREF, as
shown in Fig.2.2. In the following sections, we introduce the important terminologies
of SAREF.

25

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

Figure 2.3 – General overview of SAREF

SAREF : Classes

The main concepts of the SAREF ontology are shown in Fig.2.3. The starting point
of SAREF is the concept of the "Device" (e.g., a lamp). A "Device" is designed to ac-
complish certain tasks (e.g., increase/decrease the light intensity in a room) and is
used to satisfy a marketable good, the "Commodity". In SAREF, the "Commodity"
class typically refers to energy commodities (e.g., electricity, gas, coal, and oil). A
"Device" may have multiple "Function"s (e.g., turn the lamp on/off) associated with
a "Command" (e.g., turn on/off). Different "Function" can cause the "Device" to be in
different "State" (e.g., on/off) through the corresponding "Command". In addition, a
"Device" may provide a "Service" (e.g., turn on service) that represents the "Function"s
of that "Device". The definition of a "Service" does not match the one in Section 1.2,
since our definition refers to an attempt to control a particular state by performing
various associated functions. Therefore, it is more correct to say that a service can be
implemented by leveraging different functions of the associated devices.

Furthermore, a "Device" is used to detect, measure, or control a "Property" (e.g.,
light intensity) that corresponds to the monitored state controlled by our defined
service ; the value associated with this "Property" is the "Measurement". When the
"Measurement" is described in terms of a unit of power or energy, that property is

26

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

Figure 2.4 – Properties of class "De-
vice"

Figure 2.5 – SubClasses of class "Device"

a type of power or energy property. A "Device" also has an associated "Profile" that
collects information about the "Property" or "Commodity" to optimize its use. Each
class can have multiple instances representing the objects in real life or in simulation.
In the following sections, we present some important classes in detail.

Device

The "device" is the central class in SAREF. It is a tangible object that, in the context
of smart devices, is designed to perform a specific task in households, shared public
buildings, or offices. Fig.2.4 shows us the properties of a "Device". The object pro-
perty is in blue and the data property is in green. In this figure, we can also see
the constraints defined for the ranges of some properties. Fig.2.5 shows us the sub-
classes of the "Device" class. We can see that "Device" has five subclasses : "HVAC",
"Metre", "Sensor", "Actuator" and "Appliance". The subclasses "Sensor" and "Actuator"
also have subclasses. The relationship between a class and its subclass is expressed
by the "is-a" property.

Figure 2.6 – Properties of class "Func-
tion"

Figure 2.7 – SubClasses of class "Function"

27

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

Function

The "Function" class contains functionalities required to perform a task for which
a "Device" is designed. A "Device" may be designed to perform multiple "Function"s.
"Functions"s can be divided into several categories (subclasses) reflecting different
viewpoints. For example, the viewpoint of the area for which the function of an ap-
plication is used (light, temperature, etc.), or the action that the function of an appli-
cation can support (e.g., receive, reply, notify, etc.), etc. Fig.2.6 shows us the object
property of "Function". The subject of "hasCommand" is a Function, and the range
is "Command". "hasCommand" shows us which "Function" can be ordered by which
"Command". In Fig.2.7 we can find available subclasses of "Function" defined in SA-
REF, where the subclass "Actuatoring function" has several subclasses.

Command

A "Command" can act on a state, but it does not necessarily have to act on a state.
For example, the command ON acts on the state ON/OFF, but the command GET
does not act on a state. It merely attempts to retrieve a specific value. A list of re-
levant "Command"s for SAREF is available and can be expanded. Fig.2.8 shows us

Figure 2.8 – Properties of class "Com-
mand"

Figure 2.9 – SubClasses of class "Command"

28

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

the properties of the "Command" class, which contains two object properties. Fig.2.9
shows us all available subclasses of "Command" in SAREF, where "Get command" and
"Set level command" also have their subclasses.

Service

A "Service" is a representation of one or more "Function"s that makes those "Func-
tion"s discoverable, recordable, and remotely controllable by other devices on the
network. It is provided by one or more "Device"s. When describing a "Service", the
"Device"s providing the "Service" and the associated "Function" must be specified. In
Fig.2.10, the properties of a "Service" are shown. We can see that two object proper-
ties are included with the constraints on the ranges. Fig.2.11 shows an example of
subclasses of "Service" - "Switch on service". This service can be provided by devices
with the "Switch on" functions.

Figure 2.10 – Properties of class "Ser-
vice"

Figure 2.11 – SubClasses of class "Service"

State

Depending on the "Function"s performed, a "Device" may be in a particular "State".
The subclasses of the "State" can be found in Fig.2.12, from which it can be seen that
the "State" has not only binary states, but also n-nary states, e.g. the "Multi level
state".

Figure 2.12 – Subclasses of class "State" Figure 2.13 – Properties of class "Pro-
file"

29

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

Figure 2.14 – Subclasses of class "Commodity" Figure 2.15 – Properties of class "Task"

Profile

The "Profile" class is associated with a "Device" to collect information about a parti-
cular "Property" or "Commodity" to optimize the use of a device in the home/building.
The "Profile" is related to a specific "Property" or "Commodity" and can be calcula-
ted over a period of time and be associated with specific costs. Fig.2.13 shows us the
available properties of the "Profile".

Commodity

The "Commodity" class can represent amarketable item for which there is demand,
and is supplied without difference in quality across a market. SAREF focuses espe-
cially on energy commodity such as "Coal", "Electricity", "Gas", and "Water" as shown
in Fig.2.14. The "Device" class has a relation with "Commodity" through the object
property "isUsedFor" as shown in Fig.2.4.

Task

The "Task" class describes the goal for which a device is designed (from the user’s
point of view). For example, an air conditioner is designed for the task of changing the
temperature of the environment. SAREF has provided instances of the class "Task" ins-
tead of subclasses, but we can create the subclasses according to our needs. The "De-
vice" class connects to the "Task" class through "Accomplishes", as shown in Fig.2.4.
The "Task" class connects to the "Device" class via the object property "isAccompli-
shedBy"as shown in Fig.2.15.

Property

The "Property" class represents a quality of a feature of interest that can be measu-
red. Its available subclasses can be found in Fig.2.17. In addition, it uses "isControlled-

30

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

Figure 2.16 – Properties of class "Property" Figure 2.17 – Subclasses of class "Property"

ByDevice" and "isMeasuredByDevice" to connect to the class "Device", "isPropertyOf"
to connect to the "Feature Of Interest" class, and "relatesToMeasurement" to connect
to the "Measurement" Class. These relationships can be seen in Fig.2.16.

Feature Of Interest

The "Feature Of Interest" class represents a real world entity from which a pro-
perty is measured. For example, a lamp can be defined as a feature of interest, and
its property can be the light which will be measured by the light intensity belonging
to the "Measurement" class. In SAREF, there are no predefined subclasses for "Fea-
ture Of Interest. However, the "Feature Of Interest" links to the "Property" through

Figure 2.18 – Properties of class "Feature
Of Interest"

Figure 2.19 – Properties of class "Measurement"

31

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

Figure 2.20 – Subclasses of class "Unit Of Measure"

"hasProperty", and links to the "Measurement" through "hasMeasurement" as shown
in Fig.2.18

Measurement

The "Measurement" class measures the value of a "Property". In SAREF, there are no
subclasses predefined for the "Measurement" class. Nevertheless, the "Measurement"
class has relationships with several other classes. For example, it uses "relatesToPro-
perty" to link to the "Property" class, "isMeasurementOf" to link to the "Feature Of
Interest", and "isMeasuredBy" to link to the "Unit Of Measure" as shown in Fig.2.19.

Unit Of Measure

The "Unit Of Measure" class is a standard for measurement of a quantity, such as a
"Property". For example, Light intensity is a "Property" and illuminance (lux) is a unit
of light intensity that represents a definite predetermined light intensity. Whenwe say
100 lux, we actually mean 100 times the definite predetermined light intensity called
"illuminance (lux)". SAREF has defined several subclasses for the "Unit Of Measure"
class as shown in Fig.2.20. Nevertheless, there is only one relationship to connect
the "Measurement" class to "Unit Of Measure" class, while no relationship coming out
from the "Unit Of Measure" class.

2.4 Existing work

Several knowledge-based work concerning services has already been carried out.
Some of the existing work aims to solve problems that may exist when creating ser-

32

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

vices. For example, [17] proposes the concept of "cluster" to group services that share
the same actuators, or services that share actuators with the same services aiming
at avoiding potential conflicts. Within each cluster, some priorities are defined for
different services, and the determination of the states of the shared actuators de-
pends on these priorities and the objective to maximize the number of services to
be satisfied. [98] proposes a tool called TrigGen to avoid errors caused by too few
triggers in rules manually created by users. Using this way, we can avoid unexpected
behavior and security vulnerabilities caused by custom rules with missing triggers,
for example, during the service development. [134] proposes a layered architecture
of smart home that combines ontology and multiagent technologies to automatically
acquire semantic knowledge and support heterogeneity and interoperability services
to address several issues, such as device heterogeneity, composite activities recog-
nition, and providing appropriate services. In such architecture, a generic inference
algorithm is presented based on unordered actions and temporal property of activity
for inferring both continuous composite activity and personalized service in real time.
Then a novel idea is introduced for agent to learn the knowledge of human activity
(HA) autonomously and translate into itself knowledge, the purpose of which is to
guide agent in performing services in a way compatible with HA.

Some other existing work tries to use knowledge-based approaches to realize the
service creation or service-based applications. For example, [51] proposes a platform
called Midgar consisting of several layers to create services. First, the inhabitant de-
fines his/her requirements in the process definition layer in a graphical format, which
are then transformed into an XML-based DSL (Domain Specific Language). Then, in
the service generation layer, a Java application is generated, compiled and executed
based on the DSL specification. During compilation, the Java application communi-
cates with the servers and database in the processor and object manager layer to find
available objects that can satisfy the requirements. Finally, in the object layer, the ob-
jects execute the commands received from the servers. [87] proposes a smart home
system containing two levels to create services : a low level and a high level. The low
level includes the execution of various devices, while the high level includes system
modeling, rule transformation, and system reasoning. System modeling uses the se-
mantic web to model the environment and ECA-based descriptions to simulate the
operation of services. Rule transformation is about converting ECA into executable
semantic rules, e.g., SWRL (Semantic Web Rule Language). And reasoning is about

33

CHAPTER 2. KNOWLEDGE-BASED APPROACHES FOR SERVICE CREATION

deriving new facts based on SWRL. These new facts are converted into commands
and sent to the devices for execution. [31] respects the following procedures to create
new services. First, it describes each device with Vorto-DSL containing functional and
non-functional features. Then, the matcher analyzes the functionalities and interfaces
of the devices based on the Vorto-DSL to determine if they can be integrated. After the
matching process, the functionalities of the matched devices are merged to assign the
trigger and action. This process is performed by the Mapper. Finally, the integrated
service is translated into a programming language for execution. [47] aims to renew
the role of the station by improving the passenger experience by providing access to
real-time train information and external mobility services through STINGRAY project
to overcome the disadvantage that traditional station information systems tend to be
closed to the outside world. For the provision of external mobility services, It presents
a distributed software architecture that can integrate interfaces from heterogeneous
infomobility service providers using an ontology describing the main characteristics
of mobility domains.

2.5 Conclusion

Knowledge-based approaches are one of the most important approaches for the
development of smart home services. A knowledge-based system usually consists
of a knowledge representation and an inference engine. The knowledge represen-
tation contains various facts and rules. The creation of smart home services using
knowledge-based approaches is to establish a set of rules. There are several types of
knowledge representations, of which ontology is one of the most well-known, and
OWL is one of the well-known ontologies designed for the Semantic Web. Since our
study focuses on the smart home, despite the numerous ontologies, we choose to use
the SAREF ontology in our work, which facilitates the mapping of existing semantic
models in the smart appliance domain and reduces the effort to convert one model to
another. In the next chapter, we present another category of approaches for creating
smart home services.

34

3
Data-driven approaches for
service creation

Contents
3.1 Introduction . 35

3.2 Machine learning . 37

3.3 Reinforcement learning classification . 39

3.4 Reinforcement learning principles . 40

3.4.1 Multilayer perceptron . 46
3.4.2 Long short term memory . 47

3.5 Existing work . 50

3.6 Conclusion . 52

3.1 Introduction

Data-driven approaches are another primary category of approaches to creating
smart home services. The services created suggest states for actuators through data
analysis and interpretation. Machine learningmethods that learn from data andmake
predictions based on it are at the forefront of data-driven decision-making [30]. They
seek to automatically discover patterns in systems by analyzing the datasets provided.
Therefore, machine learning methods in a smart home can create services that can
dynamically propose states for actuators by considering the environment states to
adapt to the inhabitant’s preferences.

User-friendliness is important when creating services for a smart home, and in-
teraction is one of the essential factors in creating user-friendly services [59]. Some

35

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

machine learning methods, such as Reinforcement Learning (RL) [48], can learn to
adjust actuators by interacting with the inhabitant, and the interaction of RL is im-
plemented by expressing the (dis)satisfaction of the inhabitant and can be realized in
two ways. The first way is that the inhabitant can change the states of the actuators
to express his/her (dis)satisfaction. The second way is that the inhabitant can define
the target monitored states so that the service can compute the difference between
the updated monitored states and their corresponding target values. The difference
can represent the (dis)satisfaction of the inhabitant.

RL is used to learn closed-loop control policy [58]. It is different from closed-loop
control systems in several aspects. For example, it is not mandatory to define the
target values for the RL algorithm as the RL algorithm can interact with the environ-
ment or with the inhabitant to find out the patterns of the system. However, target
values or references are usually obligatorily required in closed-loop control systems.
Second, one RL algorithm can make propositions to adapt to the inhabitant’s multiple
preferences regarding different inhabitant states. In other words, one RL algorithm
can learn multiple targets simultaneously. For example, an RL algorithm can propose
actuators’ states to adapt to the preferences specifying that if the inhabitant is rea-
ding, then the indoor light intensity should be 200 lux ; if the inhabitant is working,
then the indoor light intensity should be 250 lux ; if the inhabitant is seeing a movie,
then the indoor light intensity should be 50 lux ; and so on. However, one closed-
loop control system can only meet one target at any time by tuning its parameters.
If it wants to meet another target, it needs to retune its parameters, and the upda-
ted closed-loop control system can no longer meet the previous target. For example,
instead of proposing actuators’ states to meet the above multiple preferences simul-
taneously, a closed-loop control system can only meet one preference at any time.
Third, the "feedback" of the RL algorithm is the reward that can be in different forms.
For example, it can be the difference between the sensed monitored state and its cor-
responding target value. It can also be the reactions of the inhabitant, e.g., changing
the actuators’ states proposed by the RL algorithm by the inhabitant to express the
negative reward. Nevertheless, the feedback of closed-loop control systems can only
be the difference between the sensed monitored state and its corresponding target
value.

Because of the capability of interacting with the inhabitant, the support of multiple
target values, and the existence of different ways, especially the simple and natural

36

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

Figure 3.1 – Machine learning classification

way to provide the "feedback", RL is chosen as the data-driven approach in our study
for creating smart home services.

In this chapter, we first introduce the existing classification of machine learning
algorithms. Then, we present the classification of RL that we use in our study. After
that, we introduce the principle of RL. Next, we present existing work on using data-
driven algorithms to realize service creation and some other applications. Finally, we
present the conclusion of this chapter.

3.2 Machine learning

Machine learning is a subfield of artificial intelligence [75]. It aims to develop
methods for discovering patterns in provided data and then using those patterns to
automatically make predictions about future data from the same source or with the
same distributional characteristics [97]. Therefore, machine learning is about predic-
ting the future based on the past [42].

Several classification methods have been proposed to categorize machine learning
[11]. One of the most common categories is to divide machine learning into super-
vised learning, unsupervised learning, and reinforcement learning [41] as shown in
Fig.3.1 [106] :

(1) Supervised learning : According to [82], supervised learning, also known as
density estimation in statistics, attempts to determine the input-output relation-
ship of a system based on a given set of paired input-output training samples.
Leveraging the found relationship, it can suggest the output of the system when
a new input is given. Depending on the nature of the target output data, su-

37

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

pervised learning can be divided into classification and regression : If the target
output consists of category data or a finite set of discrete values that indicate the
class labels of the input, then supervised learning is a type of classification. On
the other hand, if the output consists of continuous values, then supervised lear-
ning is a regression problem. For example, given the inputs about the animals’
appearance, such as hair color, weight, and height, and the outputs of the ani-
mal categories, a classification-based supervised learning algorithm can find the
relationship between the animals’ appearance and their categories. In addition,
we can use regression learning to find the relationship between the description
of some houses, such as the areas, the lighting conditions and the number of
rooms, and the prices required to buy the corresponding houses.

(2) Unsupervised learning : According to [43], unsupervised learning studies how
systems can learn to represent certain input patterns in a way that reflects the
statistical structure of the entire collection of input patterns. Clustering and di-
mensionality reduction are two classic examples of unsupervised learning [53].
As an example of a clustering problem, suppose that the inputs are photorecep-
tor activities generated by different images of a cat and a dog. Unsupervised
learning first characterizes these photoreceptor activities. Then it groups them
into the appropriate number of clusters.

(3) Reinforcement learning : Reinforcement learning [70] is related to control
theory. Here, an agent learns to propose actions that can influence the environ-
ment through trial-and-error interactions with the dynamic environment. The
goal of reinforcement learning is to maximize cumulative rewards throughout
its lifetime. A reward is generated by a predefined reward function with respect
to the updated states of the environment and sent back to the agent to guide its
learning direction, which serves a similar function as target values in supervised
learning. An example of reinforcement learning is the robot. In this example, an
agent is used to make decisions for the robot, such as go straight, turn left, turn
right, or turn around to reach a certain position. A reward is generated when the
robot approaches the target position ; otherwise, a penalty or negative reward is
suggested. The reward is sent back to the agent so that it can update its decisions
for the next time step.

As mentioned in Chapter 2, existing methods for creating smart home services of-
ten require manual input from the inhabitant. These operations can be very complex

38

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

if the the physical phenomena of the environment states are complex and the inha-
bitant has no idea how to adjust the actuators to achieve his/her target monitored
states. Therefore, in this chapter, we focus on improving the creation of smart home
services aiming at reducing the inhabitant’s manual interventions or making the in-
teraction simpler and more natural. Since RL can automatically discover the patterns
of the system by interacting with the environment, we can use it to create smart home
services that dynamically propose actuators’ states.

RL-based smart home services can propose actuators’ states to adapt to the in-
habitant’s preferred monitored states by interacting with the environment. To this
end, RL-based services take the environment states as input and suggest the states
of the actuators to update the corresponding monitored states, e.g., indoor tempera-
ture. The inhabitant expresses either satisfaction or dissatisfaction with the updated
monitored states, and this reaction is converted into rewards that are sent back to
the services. The way the reaction is expressed should be as simple as possible. For
example, in the real world, the inhabitant can directly change the states of the ac-
tuators to express his/her dissatisfaction, or he/she can change nothing about the
actuators’ states to express the satisfaction. Otherwise, the inhabitant can define the
target monitored states. In this case, to calculate the rewards, services compare the
updated monitored states with their target values. They then update their associated
parameters by considering the original environment states, the rewards received, and
the updated environment states to ensure that positive rewards are generated in the
next time step.

Therefore, RL-based smart home services do not require complex or technical ope-
rations from the inhabitant. They can consider the inhabitant’s reactions, including
satisfaction or dissatisfaction, and can dynamically and continuously learn the inha-
bitant’s target monitored states by interacting with the environment. In the following
sections of this chapter, the principle of RL is explained in more detail.

3.3 Reinforcement learning classification

Reinforcement learning (RL) algorithms can be broadly categorized into two main
types : Model-Based Reinforcement Learning (MBRL) [94] and Model-Free Reinfor-
cement Learning (MFRL) [33].

(1) MBRL : In MBRL, a model is used to mimic the environment and decide

39

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

the next states after the system performs certain actions. The environment
dynamic characteristics are represented by a set of transition probabilities,
with each describing the probability of changing from certain environment
states to some new ones.

(2) MFRL : On the other hand, MFRL does not require transition probabilities to
describe the dynamics of the environment. Since it is difficult and complex to
obtain transition probabilities between environment states in the real world,
we choose RL algorithms belonging to MFRL algorithms in our work.

In addition, MFRL is further divided into Monte Carlo (MC) learning and Temporal
Difference (TD) learning [117] :

(1) MC : MC only works for episodic tasks and updates action quality values at
the end of the episode, making the learning process of MC slower

(2) TD : TD works not only for episodic tasks, but also continuing tasks that
update action quality values at each time step [65].

Since it makes more sense to allow the inhabitant to express his/her
(dis)satisfaction at each time step rather than at the end of an episode, TD learning
is preferred in our study.

Depending on how the action quality values are updated, TD learning is further di-
vided into several categories, such as Q-learning [126], SARSA [117], Double deep
Q-learning (DDQN) [124], and Dueling Double Deep Q-learning [125]. In our stu-
dies, Q-learning is chosen. Therefore, the principles of RL to be presented in the next
section is based on the Q-learning.

3.4 Reinforcement learning principles

The detailed principle of RL is shown in Fig.3.2, with the associated variables being
explained as follows :
1. t at the subscript is the time step, where a time step is an iteration from the

acquisition of the observable states from the environment to the acquisition of
the new observable states.

2. Az represent the states proposed by the agent for the related actuators.

40

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

Figure 3.2 – Principle of RL based on table

3. O is the observable states that represent states that can be accessed by the agent,
thus including the states of actuators and sensors.

4. X represent the states extracted from O and used as input to the agent.
5. r represent the reward computed by a given reward function, and tells the agent

whether it is good or not to propose Az.
The "agent" is usually a table that stores the mapping between the input states

X at different time steps and the action quality values of all states of all actuators,
as shown in Fig.3.3. The action quality value of a particular state of an actuator at

Figure 3.3 – Q-learning table storing action quality values

41

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

certain X is denoted as Qa
b,c, where a represents the actuator to which the state is

associated, b indicates the state of the actuator a to which the current action quality
valueQ belongs, and c is the time step of the current environment statesXc. An action
quality value Q represents the expected long-term reward the agent could receive if
it selects some state as the new state of the associated actuator at the current time
step.

At time step t, the agent uses a certain policy, for example, the greedy-policy, to
select the state whose action quality value is the maximum for each actuator at time
step t :

state for actuator Act 1 is the state with index :
argmax(Q1

0,t, Q
1
1,t, Q

1
2,t, ·)

state for actuator Act 2 is the state with index :
argmax(Q2

0,t, Q
2
1,t, Q

2
2,t, ·)

· · · ,

(3.1)

where argmax means to select the index of the action quality value whose value is
the maximum.

We use At to represent the updated actuators’ states after the actuators change
their states from At−1 to Azt (therefore, At has the same value with Azt). The state
changes of the actuators cause the observable states to change from Ot to Ot+1. Based
on the updated monitored state contained in the updated observable states, a reward
rt+1 is calculated. Therefore, rt+1 is calculated at time step t + 1 to represent the
satisfaction of the proposed actuators’ states by the agent at time step t. Moreover,
the states Xt+1, which serve as the input of the RL agent, are extracted from Ot+1 by
an "interpreter". Then, the next time step t+ 1 becomes the current time step t, and
Xt+1 and the reward rt+1 are used as the current Xt and rt and sent to the agent.

Next, based onXt, At, Xt+1, and rt+1, the "agent" updates the action quality values
for the updated At within the table with :

Qnew(Xt, At)← (1− α) ·Qt(Xt, At) + α · (rt+1 + γ ·maxAQ(Xt+1, A)), (3.2)

where maxAQ(Xt+1, A) is the maximum action quality values that can be obtained
when the agent is at states Xt+1. Finally, the updated "agent" repeats the above pro-
cess.

42

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

Figure 3.4 – Principle of RL based on machine learning system

The agent continues the iteration until it reaches the desired state or a maximum
number of time steps has elapsed. This series of time steps is called one episode. In our
study, we denote an episode when the maximum number of time steps T is reached.
We use Epoch to denote the number of episodes, which means that the agent repeats
the iterations Epoch times, where each iteration starts with the initial time step t = 0

and lasts until the maximum time step t = T .

However, systems in the real world, e.g., a smart home system, are usually high-
dimensional by containing diverse environment states. Therefore, a table is not suffi-
cient to establish the mapping between the input states and the corresponding action
quality values of all possible states of all actuators, since storing such a table can
require a large amount of memory.

To solve this problem, as shown in Fig.3.4, Deep Reinforcement Learning (DRL),
which uses deep learning algorithms that include MultiLayer Perceptions (MLP) and
Long Short Term Memory (LSTM) cells to replace the table, is used in our study.
The agent based on MLP and LSTM cells is shown in Fig.3.5. The input Xt is passed
through several LSTM cells and an MLP to obtain the corresponding action quality
values Qt. Some policy, such as the ϵ-greedy policy [121], is used to select states for
each actuator. The principle of the LSTM cell and MLP is presented in subsections
3.4.1 and 3.4.2, respectively.

Therefore, the agent contains a regression function fDRL(X) based on the DRL
model that, given knowledge of the input states X, can compute the action quality
values for all possible states of all actuators. For example, knowing the input states
Xt at time step t, we obtain a vector of action quality values Q for all possible states

43

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

Figure 3.5 – MLP and LSTM cells-based RL agent

of all actuators :
Q← fDRL(Xt). (3.3)

The process of calculating the action quality values without updating the regression
function by updating the parameters contained in it is also called the testing process
of the DRL model.

Assuming DRL contains parameters θ that include weights and bias within related
deep learning algorithms, such as the weights and bias of LSTM cells and MLP to be
presented in subsections 3.4.1 and 3.4.2, fDRL can be written as fDRL(X ;θ), meaning
that fDRL has parameters θ and takes states X as input. To update the agent, instead
of updating the action quality values as a table did, the DRL model tries to update its
parameters θ so that the difference between the original action quality values Q(Xt)

and the updated action quality values Qnew(Xt) are minimized. Therefore, we need
to first compute Qnew(Xt) using fDRL by rewriting Eq.3.2 as :

Qnew ← (1− α) · fDRL(Xt ;θ) + α · (rt+1 + γ ·max(fDRL(Xt+1 ;θ′))), (3.4)

where a copy of fDRL is defined with possibly different values θ′ for the same kind of
parameters. In this case, fDRL(X ;θ) is called the main DRL, which is the model we
are trying to update. fDRL(X ;θ′) is called the target DRL. It is used as the target that
the main DRL is trying to adapt to, and its parameters are assigned to the parameters
of the main DRL every a predetermined number of episodes, avoiding the problem of
target shifting.

The process of updating DRL parameters is called the training process of the DRL
model. A replay memory [84] is used to train DRL. A replay memory M stores the
transition e of each time step. Assuming that the current time step is t, the training
process of DRL can be represented in Algo.1.

44

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

Algorithm 1: train DRL model
Result: reward

1 M : replay memory
2 L : the minibatch (minimum numbers) of transitions used to train DRL
3 C : certain predefined number of time steps
4 Epoch : total episodes
5 T : total time steps
6 ep : current episode
7 fDRL(X ;θ) : main DRL
8 fDRL(X ;θ′) : target DRL, where θ′ has the same value with θ before starting to train.
9 Function training() :

10 for each episode ep in Epoch do
11 for each time step t in T do
12 Qt ← fDRL(Xt ;θ)
13 Use ϵ-greedy policy to select states Azt for actuators based on Qt

14 State changes of the actuators (At ← Azt) cause states Ot to change to Ot+1

15 Calculate rt+1 using predefined reward function by considering Ot+1

16 Acquire the transition et+1 ← {Ot, At, Ot+1, rt+1}
17 Update the replay memory M by concatenating et+1 to M
18 Randomly sample L transitions from M , and denote these transitions as E.
19 for each transition e in E do
20 knowing e→ O,A,Onew, r
21 X ← extract from O by the interpreter
22 Xnew ← extract from Onew by the interpreter
23 Q← fDRL(X ;θ)
24 Qnew ← (1− α) ·Q+ α · (r + γ ·max(fDRL(X

new ;θ′))
25 floss(Q,Qnew ;θ) mean square error loss function
26 {θ ← θ − α∂floss

∂θ }
27 end
28 end
29 if ep%C equals 0 then
30 θ′ ← θ
31 end
32 end

Knowing that the total number of episodes is Epoch, and the total number of time
steps is T , suppose that the current episode is ep (line 10) and the current time
step is t (line 11). The main DRL calculates the action quality values for all states
of all actuators using Eq.3.3 (line 12). Then, the ϵ-greedy policy is used to select
the states Azt for all associated actuators (13). The actuators change their states
from At−1 to At, where At equals to the proposed Azt, and the state changes of the
actuators lead to the changes of the observable states Ot to new values Ot+1 (line
14). Afterwards, a predefined reward function is used to calculate reward rt+1 by
considering Ot+1 (line 15). At this point, a transition et+1 is obtained that has the
value et+1 = {Ot, At, Ot+1, rt+1} (line 16), and concatenated in the replay memoryM
(line 17).

Next, we randomly sample a minibatch transitions E with size L from the replay

45

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

memoryM (line 18). For each transition e in E (line 19), knowing that the transition
e contains O,A,Onew and r (line 20). we use the interpreter to respectively extract
input states X and Xnew from O and Onew (lines 21∼ 22). Next, we calculate the
action quality valuesQ for the initial statesX in e using Eq.3.3 (line 23). Then we use
Eq.3.4, and leveraging main DRL fDRL(X ;θ) and target DRL fDRL(X ;θ′) to update
the action quality values Q so as to obtain Qnew (line 24). Before starting to train
fDRL(X ;θ), θ′ has the same value with θ. Afterwards, we calculate the mean square
error betweenQ andQnew (line 25), and use gradient descent to update the value of θ
(line 26). The updating process of parameters θ is performed at each time step. After
iterating all transitions, at the end of the current time step t, if the current episode ep
is an integer multiple of C (line 29), we assign the values of θ to θ′.

The fDRL with updated parameter θ can be used to do the testing process using
Eq.3.3 to propose action quality values for the new arriving input Xt+1. In the follo-
wing sections, we present the principle of MLP and that of LSTM cell.

3.4.1 Multilayer perceptron

Neural networks (NNs) are computing systems inspired by biological neural net-
works that constitute animal brains. They are based on a collection of connected units
or nodes called artificial neurons. In each neuron, as shown in Fig.3.6, a multiple li-
near regression is first performed by multiplying multi-variable inputs x0, x1, · · · , xn,
such as the inhabitant’s states, the outdoor environment state, and the indoor moni-
tored states (e.g., the indoor temperature), by the corresponding bias b and weights
w1, w2, · · · , wn of the connections :

z(x0, x1, · · · , xn) = x0 · b+ x1 · w1 + x2 · w2 + · · ·+ xn · wn, (3.5)

The result is then used as input to a linear or nonlinear activation function to obtain
the output y [52] :

y = f(x0 · b+ x1 · w1 + x2 · w2 + · · ·+ xn · wn) (3.6)

The nonlinear activation functions allow the neural networks to recognize complex
nonlinear patterns of the system under study.

An artificial neural network (ANN), as shown in Fig.3.7, consists of three layers :
an input layer, a hidden layer, and an output layer. The input layer contains inde-

46

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

pendent variables that help determine the outputs in the output layer. The hidden
layer consists of several artificial neurons that allow ANN to recognize the complex
patterns of the system under study.

When the depth of the hidden layers is more than one, the system is called MLP
(Multi-Layered Perceptron) [78]. An MLP example containing two hidden layers is
shown in 3.8. The input layer and the output layer contain the same thing as ANN : the
input layer collects input patterns, and the output layer has classifications or output
signals to which the input patterns can be assigned. For example, the input patterns
may contain a set of descriptions about an animal, and the output is the category of
the animal. The hidden layers fine-tune their input weights on the connections until
the cumulative error of the samples, i.e., the difference between the targets and the
outputs of the MLP, is the minimum.

3.4.2 Long short term memory

Recurrent neural networks (RNNs) [108], are a class of neural networks that use
the outputs of the previous time step as inputs of the current time step. The principle
of RNNs is shown in Fig.3.9. The structure on the left shows the general principle of
RNN. The "RNN" block in the middle represents an RNN cell, which is the backbone
of the RNN. It corresponds to an artificial neuron in the MLP and fine-tune their input
weights until the cumulative error between the targets and the outputs of the MLP is
the minimum.

Figure 3.6 – An artificial neuron Figure 3.7 – An aritificial
neural network (ANN)

Figure 3.8 – A multi-layer per-
ceptron (MLP)

47

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

Figure 3.9 – Principle of RNN

In addition, we can see that the RNN cell contains two inputs : Input states Xt,
which represent the current information from the environment, and hidden statesHt,
which are used to encode the characterization of the information from the previous
time step. The output of the RNN at the current time step are the hidden states of
that time step.

The specific procedure of an RNN containing one RNN cell is explained on the
right in Fig.3.9 : first, we initialize the hidden states H0. Then, in the first time step,
H0 and the environment states X1 in the current time step are used as input to the
RNN cell, resulting in the hidden states H1 and the output Y1, where Y1 and H1 have
the same value. Subsequently, H1 and X2 are used as input to the same RNN cell
state, producing H2, which is also used as Y2. The process repeats until the current
time step t, where the same RNN cell takes the current environment states Xt and
the hidden states Ht−1 of the previous time step as input and generates the output
value Yt and the hidden states Ht for the current time step t.

There are several types of RNN. The one we use is Long Short Term Memory
(LSTM), first introduced in [61]. Its general principle is shown on the left in Fig.3.10.
Compared to the left part in Fig.3.9, in addition to the hidden state Ht−1, there is an
additional variable Ct−1 that encodes the aggregation of information from all previous
time steps that were processed. The right part is the structure of the LSTM cell, which
distinguishes the LSTM from other RNN learning systems.

48

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

Figure 3.10 – Principle of LSTM

From the right part of Fig.3.10, we can see that an LSTM cell contains three gates :
a forget gate, an input gate and an output gate to store, write or read the information.
A forget gate decides which information is important and which can be ignored by
using a sigmoid function 1

1+e−x , represented by σ. The sigmoid function takes the
hidden states Ht−1 of the previous time step and the current environment states Xt

as inputs. If the output of the sigmoid function is close to 1, the corresponding inputs
are important ; on the other hand, if the output is close to 0, the forget gate ignores
the corresponding inputs. Thus, the output of the forget gate is :

ft = σ(Wf · [Ht−1, Xt] + bf), (3.7)

where [Ht−1, Xt] denotes the concatenation of Ht−1 and Xt to obtain a multivariable
matrix, where each input sample studied contains states belonging to Ht−1 or Xt.

The second gate is the input gate that decides what new information is added into
the previous cell state Ct−1. There are several operations in this gate : first, a sigmoid
function is applied to the output of the linear regression function on the current states
Xt and the previous hidden states Ht−1 :

it = σ(Wi · [Ht−1, Xt] + bi). (3.8)

Similar to the forget gate, this operation selects the important information with value
1 from the inputs and ignores the unimportant information with value 0. Then, a tanh
function ex−e−x

2
is used to encode the states Xt and the hidden states Ht−1 between

49

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

-1 and 1 :
C̃t = tanh(Wc · [Ht−1, St] + bc). (3.9)

This new information is then multiplied by the output of the sigmoid function to
select the more important information among the encoded new information, where
⊙ means element-wise multiplication :

C̃t = it ⊙ C̃t. (3.10)

Next, the cell state updates its value by first multiplying the output of the forget
gate and then adding the additional new cell state that comes from the input gate.
The whole process can be expressed as follows :

Ct = Ct−1 ⊙ ft + C̃t. (3.11)

The cell state Ct is firstly used as the updated cell state at the current time step t.
Secondly, it is used in the output gate to multiply the selected important information
from the input states to obtain the updated hidden state, which is also the output
value Yt proposed by the LSTM to approximate the target value :

Ht = tanh(Ct)⊙ ot, (3.12)

where ot is the output of the output gate and is calculated by :

ot = σ(Wo · [Ht−1, St]). (3.13)

3.5 Existing work

Machine learning systems have become increasingly popular in recent years. More
andmore smart home systems are using these systems to implement different services
within a smart home. For example, [28] proposes a framework to learn a situation
model to free inhabitants from manually designing smart home services. This model
aims to provide context-aware services in a smart environment : User activities are
learned and recognized using support vector machines (SVMs) based on collected
data labeled by an expert. Then, unsupervised learning is used to extract situations
from the observed data based on Jeffrey divergence. Finally, the extracted situation
segments can be used to learn situation labels with user or expert input. The resul-

50

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

ting situation model can be further developed based on the resident’s feedback using
the situation partitioning. [96] proposes a system called ACHE that controls tempera-
ture, heating, and lighting without prior programming by the inhabitant. ACHE aims
to save energy resources while respecting the inhabitant’s habitual behavior. Speci-
fically, the system continuously monitors the environment and observes inhabitant’s
activities. Then, it uses reinforcement learning-based neural networks to extract the
patterns of inhabitant’s habitual lifestyle. Finally, it implements smart home control.
[130] uses machine learning, sensing and networking technology, and eco-feedback
features to regulate indoor temperature while adapting to the inhabitant’s habitual
behaviors. [22], using Batch Reinforcement Learning, proposes an energy manage-
ment system called RLbEMS to autonomously define a strategy for selling or storing
excess energy in a smart home. [131] proposes an energy management algorithm ba-
sed on deep deterministic policy gradients to schedule HVAC (Heating, Ventilation,
and Air Conditioning) and energy storage in smart home. [95] uses Q-learning to
adapt to an inhabitant’s habitual behavior and implement lighting control. [77, 129]
use DRL to study a user’s preferred indoor temperature and use this information to
adjust temperature-related actuators to ultimately achieve the goal of saving energy
while meeting the user’s comfort requirements

In addition, there is also other work that uses RL to address different problems
and realize various applications. For example, [44] proposes an RL-based automatic
scaling algorithm called HSLinUCB to address the horizontal auto-scaling problem,
which consists in creating or deleting some complete resources for Web applications
in the Cloud. HSLinUCB aims to optimize resource allocation by finding the smal-
lest number of containers required to satisfy SLA (Service Level Agreement). To do
this, HSLinUCB proposes the number of containers by considering the contextual in-
formation. The proposed number of containers, together with the new contextual
information contributes to the acquisition of the latency at the new time step. A pre-
defined reward function based on the latency is leveraged to calculate the reward
to update the parameters of HSLinUCB so as to guide its learning direction. [109]
proposes a framework to realize the autonomous driving. This framework uses the
attention models to extract relevant information from the collected raw data of sen-
sors, then applies RNN for information integration, and finally uses end-to-end DRL
pipeline for autonomous driving. [54] demonstrates that a recent DRL algorithm ba-
sed on off-policy training of DQN can scale to complex 3D manipulation tasks and can

51

CHAPTER 3. DATA-DRIVEN APPROACHES FOR SERVICE CREATION

learn deep neural network policies efficiently enough to train on real physical robots.
It also demonstrate that the training times can be further reduced by parallelizing the
algorithm across multiple robots which pool their policy updates asynchronously.

3.6 Conclusion

Data-driven approaches are another main category of approaches used for the de-
velopment of smart home services. In this type of approaches, smart home services are
created by proposing states to the corresponding actuators after considering the cur-
rent states of the environment. Our study mainly focuses on data-driven approaches
based on machine learning. This approach can dynamically create services by lear-
ning from available datasets. Depending on whether the suggestions affect the en-
vironment, the current machine learning algorithms are divided into RL when the
response is positive and other algorithms when the response is negative. Depending
on whether there is a target or label for each sample during the training process, these
other algorithms can be divided into supervised learning when there are targets or
labels for the corresponding samples and unsupervised learning when there are no
targets or no labels for these samples. Since RL can dynamically create services by
interacting with the environment, we tend to use it to create smart home services that
can dynamically suggest the state of actuators considering the satisfaction or dissa-
tisfaction of the inhabitant. It is also proposed to integrate RL with other machine
learning algorithms such as MLPs and LSTM cells so that RL can learn the patterns
of more complex systems.

52

4
Hybrid approaches for service
creation

Contents
4.1 Introduction . 53

4.2 Discussion of existing service creation approaches 54

4.2.1 Knowledge-based approaches for service creation 54
4.2.2 Data-driven approaches for service creation 55
4.2.3 Hybrid approaches for service creation . 56

4.3 Existing work . 56

4.4 Requirements for an hybrid system . 57

4.5 Conclusion . 58

4.1 Introduction

Knowledge-based and data-driven approaches are two main approaches to smart
home service development. Nevertheless, neither of them can satisfactorily realize
service creation. For example, although the knowledge-based approach can create
services that show the inhabitant in which situations certain actuators’ states are sug-
gested, these services have difficulty in adapting to the changing environment states.
As for the data-driven approach, despite its ability to create dynamic services, it is
usually like a black box, and the inhabitant cannot understand in which situation
certain services proposed certain actuators’ states. To solve the problems of the two
approaches while preserving their advantages, we think of using hybrid systems ba-
sed on both approaches and propose some requirements that a hybrid system should

53

CHAPTER 4. HYBRID APPROACHES FOR SERVICE CREATION

satisfy when creating services. For example, the services created by the hybrid sys-
tem should be able to dynamically propose actuators’ states to adapt to the changing
environment states and the changing inhabitant’s preference. Moreover, the created
services should be explicable by showing the inhabitant in which situations certain
states of the actuators are suggested. Even though the rules in the knowledge repre-
sentation cannot ensure to cover all possible environment states, the hybrid system
should still be able to create dynamic services

In this chapter, we first discuss the advantages and disadvantages of knowledge-
based and data-driven approaches. Based on the discussion, we propose hybrid sys-
tems based on knowledge-based and data-driven approaches. Afterward, we present
existing work about using hybrid systems to create services. Next, considering the
existing hybrid systems, we formulate requirements that a hybrid system should
have to enable the satisfying creation of smart home services. Finally, we provide
the conclusion of the chapter.

4.2 Discussion of existing service creation approaches

As shown in the previous chapters, knowledge-based and data-driven approaches
are the main approaches to create smart home services. In this section, we describe
the advantages and disadvantages of the two approaches for smart home service
creation.

4.2.1 Knowledge-based approaches for service creation

The knowledge-based approaches have several advantages and disadvantages in
the development of smart home services. The advantages of the knowledge-based ap-
proaches for the development of smart home services can be enumerated as follows :
(1) Explicability : Due to the clear structure of rules, the created knowledge-based

services can show users in which situations certain services have suggested cer-
tain states for the actuators.

(2) Manual creation of simple services : If the inhabitant knows his/her prefe-
rences and how to set the actuators to achieve the preferences, he/she can ma-
nually create services by describing a set of rules that guarantee the inhabitant’s
satisfaction if the inhabitant’s preferences do not change.

54

CHAPTER 4. HYBRID APPROACHES FOR SERVICE CREATION

(3) Time saving : The time required to create services with knowledge-based ap-
proaches is small if they are simple.

(4) Learning guide : The created knowledge-based services can be used to deter-
mine the learning direction of the data-driven services.

However, knowledge-based approaches also have disadvantages in the develop-
ment of smart home services :
(1) Difficulty of manual creation of complex services : The inhabitant often has to

create knowledge-based services manually or make some mandatory inputs. The
process of manually creating services or making required inputs can be complex.
This is because if only the inhabitant’s target monitored states are known, the
developers or inhabitant must calculate the inverse equations to figure out how
to set the actuators to obtain the target monitored states. However, these inverse
equation calculations can be difficult if the physical phenomena of the environ-
ment states are complex and there are numerous actuators being involved.

(2) Static services : The services created are often static and cannot evolve to adapt
to the changing environment and the changing inhabitant’s preference.

(3) Difficulty in ensuring to cover all environment states : Knowledge-based ser-
vices cannot ensure to cover all possible situations of the environment states
while satisfying the changing inhabitant’s preference for certain monitored state,
especially when there are multiple services, therefore, multiple monitored states.

4.2.2 Data-driven approaches for service creation

When data-driven approaches are used to create smart home services, the advan-
tages are as follows :
(1) Relatively easy service creation : The data-driven services can be relatively ea-

sily created for any environment states without considering the explicit physical
phenomena of the associated environment states.

(2) Dynamic services creation with inhabitant interaction : Some data-driven
approaches, such as RL, can create services that dynamically adapt to the inha-
bitant’s preferences by taking into account inhabitant’s satisfaction or dissatis-
faction.

(3) Coverage of all environment states : The created data-driven services can pro-
pose actuators’ states for any possible environment states.

55

CHAPTER 4. HYBRID APPROACHES FOR SERVICE CREATION

However, data-driven approaches also have some drawbacks when creating dynamic
services, for example :
(1) Lack of explicability : Unlike explicable knowledge-based services, the inhabi-

tant does not know in which situations the created data-driven services sugges-
ted certain actuators’ states.

To address the problems of both knowledge-based and data-driven approaches in
creating dynamic smart home services while preserving their advantages, we consider
hybrid approaches.

4.2.3 Hybrid approaches for service creation

Hybrid approaches combine knowledge-based and data-driven approaches, where
knowledge-based and data-driven approaches are used to propose the states of actua-
tors. Depending on how the two approaches are combined, there are different hybrid
systems based on hybrid approaches, as shown in the next section.

4.3 Existing work

Some hybrid solutions have been studied in the domain of the Internet of Things
(IoT) or control problems. Two existing projects have been found concerning the
service creation using hybrid systems. For example, [128] proposes a neural network
and rules based approach for the smart home system, using predefined rules to control
the system while collecting data and training the neural network. Once the neural
network can generate new knowledge that guarantees higher efficiency, the system
switches to using the neural network.

[57] proposes a hybrid system that integrates knowledge-based and neural net-
work systems. At the beginning of the control problem, the knowledge-based sys-
tem achieves a specific control objective based on predefined rules in the knowledge
base. Then, the rules teach the neural network to make the same decision through
reinforcement learning. Finally, the neural network takes over the decision-making
once it is optimized. However, if errors occur in the neural network’s decisions, the
knowledge-based system again takes responsibility for decision-making and teaching
the neural network. This work does not only use the rules because, in its opinion,
with the integration of highly parallel hardware architectures for the neural network,

56

CHAPTER 4. HYBRID APPROACHES FOR SERVICE CREATION

the performance, such as the execution time, of this neural network would vastly
improve.

4.4 Requirements for an hybrid system

Both [128] and [57] only consider the situation that at the beginning of the trai-
ning process the machine learning method-based system is not well trained. There-
fore, knowledge-based services are used to control the system. They could be used to
control the learning direction of the data-driven services. Once the data-driven ser-
vices are well-trained, the data-driven services take control of the system instead of
continuing to use the knowledge-based services.

However, both failed to take into account several situations. First, knowledge-based
services have difficulty in covering all possible situations while adapting to the in-
habitant’s preferences. Second, they are usually created manually, and the creation
process can be complicated if the physical phenomena of the environment states are
complex and the inhabitant has no idea how to adjust the actuators to achieve his/-
her target monitored states. Third, data-driven services are like black boxes, and the
inhabitant has no idea in which situations the data-driven services suggested certain
actuators’ states.

Therefore, we consider another hybrid system to overcome the above disadvan-
tages. The desired hybrid system should meet the following requirements :
(1) Simultaneous control by knowledge-based and data-driven services :

Knowledge-based and data-driven services should control the system simulta-
neously. It is because if the knowledge-based services cannot propose actuators’
states for certain situations, the data-driven services can make the proposition
to control the system. The simultaneous working process allows the system to
overcome the disadvantage that the knowledge-based services cannot ensure to
cover all possible situations of the environment states while adapting to the in-
habitant’s preferences.

(2) Predefined priorities for knowledge-based and data-driven services : Some
priorities should be predefined for knowledge-based and data-driven services
when these services attempt to adjust the same actuators. This avoids potential
conflicts when they propose different states for identical actuators.

57

CHAPTER 4. HYBRID APPROACHES FOR SERVICE CREATION

(3) Dynamic creation of knowledge-based services : In addition, knowledge-based
services should be dynamically generated to adapt to the changing environment
states and the changing inhabitant’s preference, eliminating the necessity for the
inhabitant to manually create complex knowledge-based services.

(4) Manual creation of simple knowledge-based services : Manual creation of
knowledge-based services is always possible for the inhabitant, so the inhabi-
tant can manually create simple smart home services. For example, the inhabi-
tant wants to turn off the lamp when he/she is sleeping. The manual creation
of knowledge-based services saves the time spent by data-driven approaches to
learning the same services.

(5) Explicability of data-driven services : Finally, the data-driven services should
be able to indicate to the inhabitant in which environment states they suggested
certain states of the actuators, which can be essential for the maintenance and
security of the hybrid system.

To realize this hybrid system, we try to solve the following problems in the follo-
wing chapters of the second part "Contribution" :
(1) We start from a simple smart home system in which there is only one service,

and try to propose a method for creating a single dynamic smart home service.
(2) Since a smart home system usually contains multiple services, we should find

a way to create multiple dynamic smart home services which are conflict-free
based on the solution to the (1).

(3) Since it is important to show the inhabitant in which situations certain services
proposed certain states of actuators, we should propose a method to make the
created dynamic smart home services explicable.

(4) We should propose a system that improves the solution to the (2) while inte-
grating the solution to the (3) to create dynamic smart home services that are
explicable and conflict-free .

4.5 Conclusion

Knowledge-based approaches can be used to create smart home services by de-
fining a list of rules. Based on the concise and clear structure of rules, the created

58

CHAPTER 4. HYBRID APPROACHES FOR SERVICE CREATION

knowledge-based services can show the inhabitant in which situations certain ser-
vices proposed certain states for the actuators. Moreover, the inhabitant can manually
create services if he/she knows his/her preferences and how to set the actuators to
achieve the target monitored states, which ensures the inhabitant’s satisfaction if his/-
her preferences do not change. Creating services with knowledge-based approaches
will take little time if the services are easy to create. Finally, the created knowledge-
based services can be used to determine the learning direction of the data-driven
services.

Nevertheless, the inhabitant is required to manually create services or make cer-
tain entries. These manual creation processes can become complex if the desired ser-
vices are complex. For example, the physical phenomena of the environment states
are complex and the inhabitant has no idea how to adjust the actuators to achieve
his/her target monitored states. As a result, the developers or the inhabitant need to
calculate the inverse equations to knowwhich actuators’ states to be set when the sys-
tem is at certain environment states. This process becomes even more complex when
there are numerous actuators and multiple monitored states. Moreover, the created
services are often static and cannot adapt to the changing environment and the chan-
ging inhabitant’s preference. Furthermore, knowledge-based services usually cannot
cover all possible situations, which means that there are situations where existing
knowledge-based services cannot propose states to actuators.

As for data-driven approaches, they can relatively easily create smart home ser-
vices without requiring explicit physical phenomena of the environment states. They
can create dynamic services that adapt to the changing inhabitant’s preference and
environment by considering the inhabitant’s satisfaction or dissatisfaction. The crea-
ted data-driven services can propose actuators’ states under any environment states.
However, unlike knowledge-based services, the inhabitant does not know in which
situations the data-driven services have proposed certain actuators’ states.

To overcome the drawbacks of these two approaches, some work has proposed hy-
brid systems that combine both approaches : They use the knowledge-based services
to control the system until the data-driven services are well-trained, and to control the
learning direction of the data-driven services. However, the knowledge-based services
cannot ensure to cover all possible situations of the constantly changing environment.
Thus, when only the knowledge-based services control the system, there can be some
situations where no services are available to propose states for the actuators. In ad-

59

CHAPTER 4. HYBRID APPROACHES FOR SERVICE CREATION

dition, the manual creation of the knowledge-based services may become complex
when the the physical phenomena of the environment states are complex and the in-
habitant has no idea how to adjust the actuators to achieve his/her target monitored
states. Finally, the data-driven services are like black boxes, and the inhabitant does
not know in which situations certain services have proposed certain actuators’ states.

Therefore, we consider another hybrid system to overcome the problems of the
existing hybrid system, and propose several requirements that the hybrid system
should meet. First, the knowledge-based and data-driven approaches should control
the system simultaneously to avoid the disadvantage that the knowledge-based ser-
vices cannot ensure to cover all possible situations. Second, knowledge-based and
data-driven services should be prioritized to avoid conflicts when they simultaneously
propose different states for the same actuators. Third, knowledge-based services
should be generated dynamically. Meanwhile, the manual creation of knowledge-
based services should be maintained so that the inhabitant can create his/her desired
smart home services when these services are simple to be created. Finally, data-driven
services should indicate to the inhabitant in which situations they have suggested cer-
tain actuators’ states.

60

Part II

Contribution

61

5
Creation of a smart home
service using Reinforcement
Learning

Contents
5.1 Introduction . 62

5.2 A simple smart home system . 65

5.3 RL-based simple smart home system . 69

5.4 Simulated simple smart home system . 78

5.5 Simulated simple smart home system examples 81

5.5.1 Simulated environments for services . 81
5.5.2 Design of reward functions . 88

5.6 Adaptation to a simple target-undefined service and a simple target-defined service 90

5.7 Conclusion . 92

5.1 Introduction

Smart homes are homes that deliver smart services to their inhabitants. As shown
in Fig.5.1, each smart home is equipped with sensing and actuating devices capable of
capturing (represented by a sparse dotted arrow in Fig.5.1) the environment states
and of performing actions (represented by a z-shaped arrow in Fig.5.1) that affect
these states. The intelligence of smart homes is realized by deploying services. The
role of a service is to communicate with (represented by a solid arrow from devices
to services in Fig.5.1) and act upon (represented by a solid arrow from services to

62

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

actuators in Fig.5.1) these devices in order to produce the appropriate changes of the
state of the environment so as to comply with the inhabitant’s needs (represented by a
dense dotted arrow in Fig.5.1). For instance, an air temperature service may regulate
indoor air temperature of a home by acquiring the current room temperature from
a smart thermometer (sensor device) and by appropriately acting upon the heater
(actuator device) present in the room. The environment represents all physical phe-
nomena that can be measured by sensors and that are of interest to the inhabitant.
The states that are of interest to the inhabitant are also called the monitored states.
The inhabitant may also be part of the environment as his/her status (reading, wat-
ching TV, sleeping, ...) may be sensed and used by services to make the corresponding
changes in the environment.

Hence, the inhabitant relies on services to produce the needed changes in the en-
vironment. But, in fact, he/she may also take an active part in making these changes.
The inhabitant may act in two ways. For one, he/she may define the preferred va-
lues for the monitored states, values that will be considered as targets to be met by
services. Alternatively, the inhabitant may directly act on actuator devices to directly
provoke the changes in the monitored states. For instance, he/she may set the pre-
ferred indoor air temperature to 19°C, and also, switch on a lamp with the desired
light intensity to read a book. The inhabitant’s actions, i.e., setting target values or
acting on actuators, are observable by the services and hence influence their future
behavior.

Figure 5.1 – Smart home system based on services

Furthermore, a smart home is intrinsically dynamic. On the one hand, the physical
environment is itself continuously changing, and, on the other hand, the inhabitant’s
preference may differ depending on his/her state. For instance, indoor light intensity
in a room may be influenced by the outdoor light intensity which varies according

63

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

to the time of the day and to weather conditions. This indoor light intensity should
also adapt to inhabitant’s current activity, bright when reading a book and dim when
watching television.

As seen in Chapter 2 and Chapter 3, two main approaches exist to develop
smart home services, knowledge-based approach and data-driven approach. The
knowledge-based approach consists in specifying rules that are fed to a reasoner
which decides what actions need to be performed depending on the current states
sensed in the environment. The advantage of this approach is its simplicity when the
services to be deployed are simple. But it fails short when multiple services are jointly
considered, especially when these services share actuators with possible conflicts in
the actions to be applied to these actuators. In addition, knowledge-based services are
usually static and cannot evolve to adapt to the dynamic smart home. Furthermore,
the knowledge-based approach may be more challenging to use even for some simple
services where physical phenomena need to be known by the service. For instance,
in a light intensity service where the light intensity of a lamp in a room needs to be
set to a certain level so as to have the light in the room comply with a predefined
intensity. The level of the light intensity to be set to the lamp will in fact depend on
the light intensity provided by external light sources, but the relationship between
these different light sources are governed by laws of physics that need to be made
explicit in order to be used in a knowledge-based approach.

Data-driven approaches do not have these shortcomings. They rely on having a
training period where the inhabitant has access to actuators and has the initiative to
take the appropriate actions, while having the services observe and learn from the
inhabitant’s behavior. Then, the service gradually takes over and becomes more and
more active in making decisions. The present chapter is dedicated to presenting a
data-driven approach for service creation in a smart home. More specifically, it pre-
sents the application of the RL method for creating one single service, the simplest
situation of a smart home system. Chapter 6 is devoted to the case of smart homes
with multiple services, a general situation of a smart home system.

The data-driven approach, compared to the knowledge-based approach, has some
disadvantages. First, it is not transparent to the inhabitant as it does not provide the
right explanations about how some decisions have been made by the service. Methods
to overcome the defect of explicability are presented in chapter 7. Second, the training
period may be long and annoying to the inhabitant. We present means to overcome

64

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

this problem at the end of this chapter.
The remainder of this chapter is structured as follows. First, we present the general

concepts underlying a simple smart home system, i.e., a smart home with one single
service. Then we present the use of an RL method and associated algorithms for the
creation of a single service. Next, we address the issue of the long training phase when
the service is deployed in the real environment by presenting a simulation based pre-
training phase. After that, we provide some simple smart home systems applications,
each with a different smart home service. Finally, we conduct two simulated experi-
ments to prove that a simple smart home system can adapt to the inhabitant’s target
monitored state when he/she uses different ways (either defining the target value
for the monitored state or directly changing the actuators’ states) to express his/her
reaction to the updated monitored state.

5.2 A simple smart home system

We start with the simplest situation, namely a single smart home service. A smart
home system that contains only a single service is called a simple smart home system.
In this section, we introduce the structure, related concepts, and some examples of
such a system.

The principle of a simple smart home system is shown in Fig.5.2, where the ser-
vice module z can be implemented using either knowledge-based or data-driven ap-
proaches. The variables in this figure are explained as follows :

Figure 5.2 – simple smart home system

1. S = {s0, s1, s2, · · ·} is a set of sensor variables. They capture the current states of

65

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

the sensors representing the values of the environment states. s0 is the monitored
variable. Its value is monitored by the service to meet the target defined by the
inhabitant.

2. A = {a0, a1, a2, · · · , } is a set of actuator variables. They capture the current states
of the actuators. a0 is the target variable. It holds the target value to be met by
the service in s0. Its value can only be modified by the inhabitant (using a′0). The
other actuator variables (a1, a2, · · ·) can be modified by the inhabitant (usingA′),
or by the service (using Az).

3. A′ = {a′0, a′1, a′2, · · · , } is a set of variables that are used to assign values to actuator
variables (a0, a1, · · ·) by the inhabitant. a′0 is the target assignment variable.

4. Az = {az1, az2, · · · , } is a set of variables that are used to assign values to actuator
variables (a1, a2, · · ·) by the service. They reflect the actions performed by the
service. Az does not include the variable az0 as the target value is only defined
by the inhabitant using a′0.

Depending on the value set in a0, we consider two kinds of services :
1. target-defined service : when a0 ̸=⊥, i.e., a0 is defined.
2. target-undefined service : when a0 =⊥.

Target-defined smart home service

A target-defined smart home service is a service where the target variable a0 has a
value defined either initially or dynamically by the inhabitant using a′0. The inhabitant
may also still directly act on the other actuators using a′1, a

′
2, · · ·.

Target-undefined smart home service

A target-undefined smart home service is a service where the target variable a0 is
undefined. So the service does not have a target to comply with, the satisfaction of
the inhabitant is obtained when the service provides the right actions to be performed
on the actuators. When the inhabitant is not satisfied, he/she cannot use a′0, and can
only act on the other actuators using a′1, a

′
2, · · ·.

The way inhabitant satisfaction is expressed differs in target-defined and target-
undefined services. In target-defined services, satisfaction is measured by the diffe-
rence between a0, the target defined by the inhabitant, and s0, the sensor variable

66

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Figure 5.3 – Simple smart home system with one temperature service

monitored by the service. In target-undefined service (i.e., the target a0 is not defi-
ned), the inhabitant’s satisfaction is evaluated by measuring the distance between
Az, the actions proposed by the service, and A′, the reactions of the inhabitant to
these actions.

Example 1 : simple smart home system with one temperature service

Consider a simple smart home system with only one temperature service, as shown
in Fig.5.3. The temperature service sets the temperature in a room by adjusting the
states of the window, the curtain, and the air conditioner. The monitored state is the
indoor temperature. The temperature service is a target-defined service, which means
that the inhabitant defines the preferred indoor temperature. The inhabitant may still
act on the states of the actuators. From Fig.5.3 we can see that the components of
the temperature service are as follows :
1. S = {tr, te, us}, where tr is the sensor variable capturing the indoor temperature,

te is the sensor variable capturing the outdoor temperature, and us is the sensor
variable capturing the inhabitant state (e.g., reading, working,· · ·).

2. A = {ttr, win, cur, ac}, where ttr is the target variable holding the target value
that tr should meet. win is the actuator variable containing the state of the win-
dow, cur is the actuator variable containing the state of the curtain, and ac is the
actuator variable containing the state of the air conditioner.

3. A′ = {tr′, win′, cur′, ac′}, where tr′ is the target assignment variable containing
the target value for tr, and {win′, cur′, ac′}, which are optional, are the actuator

67

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Figure 5.4 – Simple smart home system with one light intensity service

variables containing state values that the inhabitant wants the related actuators
to have.

4. Az = {winz, curz, acz}, where winz is an actuator variable containing the state
value of the window proposed by the service, curz is the actuator variable contai-
ning the state value of the curtain proposed by the service, and acz is the actuator
variable containing the state of the air conditioner proposed by the service.

5. O is a set of states observable by the service, where O = S ∪ A = {tr, te, us, ttr,
win, cur, ac}.

Example 2 : simple smart home system with one light intensity service

We continue another simple smart home system with only one light intensity ser-
vice, as shown in Fig.5.4. The light intensity service adjusts the light intensity in a
room by acting on the state of a lamp and a curtain. Therefore, the monitored state
for this light intensity service is the indoor light intensity. The light intensity service
is a target-undefined service, meaning that the inhabitant only changes the states of
the actuators to express his/her dissatisfaction. This allows the service to adapt to
the inhabitant’s states. From Fig.5.4, it can be seen that the components of the light
intensity service are as follows :
1. S = {lr, le, us}, where lr is the sensor variable capturing the indoor light inten-

sity, le is the sensor variable capturing the outdoor light intensity, and us is the
sensor variable capturing the inhabitant state.

2. A = {lp, cur}, where lp is the actuator variable containing the state value for the
lamp, and cur is the actuator variable containing the state value for the curtain.

68

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

3. A′ = {lp′, cur′}, where lp′ is the actuator variable containing the state value for
the lamp set by the inhabitant, and cur′ is the actuator variable containing the
state value for the curtain set by the inhabitant.

4. Az = {lpz, curz}, where lpz is the actuator variable containing the state value for
the lamp proposed by the service, and curz is the actuator variable containing
the state value for the curtain proposed by the service.

5. O is a set of observable states, where O = S ∪ A = {lr, le, us, lp, cur}.

5.3 RL-based simple smart home system

Reinforcement learning (RL) [48] has a basic idea that an artificial agent learns
the behavioral patterns of the system by interacting with the environment. It is well
suited for both target-defined and target-undefined services. When the target values
for the monitored states are explicitly defined by the inhabitant, the RL algorithm
proposes the states of the actuators considering the environment states and the target
values to realize the adaptation. However, if the target values for the monitored states
are not explicitly defined by the inhabitant, the RL algorithm proposes the states of
the actuators considering the environment states and the new states of the actuators
defined by the inhabitant. In this section, we use RL to model a service (target-defined
or target-undefined) that can dynamically propose the states of the actuators to adapt
to the inhabitant’s target monitored state in a simple smart home system.

Fig.5.5 shows the RL-based service within a simple smart home system. It can be
seen that the smart home service z consists of three modules : an interpreter, an RL al-

Figure 5.5 – RL-based simple smart home system

69

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

gorithm, and a policy. An interpreter is responsible for first, extracting the states used
as input to the RL algorithm; second, calculating the reward representing the inha-
bitant’s (dis)satisfaction to the updated monitored state ; third, updating the replay
memory storing the transition of one historical time step, where one time step is an
iteration from capturing the environment states by the smart home system following
the calculation of the reward function by the interpreter, to the new environment
states acquisition followed by the reward function calculation. An RL algorithm is
used to calculate the action quality values for all possible states of all actuators. A po-
licy selects the final states to which actuators will change their states. The variables
mentioned in this figure are shown as follows :
1. X is the states extracted from O and used as input to the RL algorithm.
2. r is the reward calculated by the interpreter representing the inhabitant’s

(dis)satisfaction to the updated monitored state.
3. M is the replay memory storing the transition e of each past time step.
4. Q is the action quality values denoting the long term reward that the smart home

system can obtain when the actuators change their states to certain values.

Fig.5.6 shows the time diagram of one time step for a service with the structure
shown in Fig.5.5. A time step is a time interval during which data is examined and
analyzed. In this figure, the representation of each variable not presented previously
is shown as follows :

Figure 5.6 – Time diagram for RL-based simple smart home system

70

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

1. I : inhabitant.
2. zi : interpreter within the model of the service z.
3. zr : reward function within the model of the service z.
4. zp : policy within the model of the service z.
5. e : transition of one time step, where a transition is a vector storing the states

related with the service z during the associated time step.
Suppose that currently the system is at time step t, the working process of this

time diagram is shown as follows :
1. At the beginning of t, the observable states Ot that include the actuators’ states

A and the sensors’ states S at time step t are acquired by the interpreter zi. In
zi, Ot will be included into the transition et and et+1.

2. a reward rt is calculated by zi to express the inhabitant’s (dis)satisfaction to the
updated monitored state at time step t− 1. Therefore, rt represents the reward
calculated at time step t for the actions at time step t− 1.

3. The transition et has its whole values where et = {Ot−1, Azt−1, sz0,t−1, Ot, rt}.
Therefore, et is calculated at time step t for the actions taken place at time step
t− 1.

4. The replay memory Mt−1 updates its value to Mt where Mt = Mt−1 ⊕ et. There-
fore, Mt at time step t contains past information before the time step t, and has
value Mt = {e1, e2, · · · , et}.

5. The RL algorithm zr updates its parameters using Mt through training process
as to be introduced in Algo.4.

6. Including to calculating rt, the interpreter zi also extractsXt that is used as input
to the updated RL algorithm zr.

7. The updated RL algorithm zr then proposes the action quality values Qt to the
policy zp.

8. The policy zp then selects the states Azt for the variables A associated with the
actuators’ states. Azt will also be passed to the interpreter zi so that its value can
be included into et+1.

9. The state changes of the actuators result in the changes of the monitored state
with a new value sz0,t. The sensors capture the values of the environment states

71

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

and assign these values to the variables S that are associated with the environ-
ment states.

10. The observable states Ozt containing the values of the actuators and the sensors,
and are sent to the interpreter zi so that sz0,t can be included into et+1.

11. If the inhabitant I is not satisfied with the updated monitored state sz0,t, by
defining A′

t, he/she can change the states of the actuators or he/she can define
the target value for the monitored state. It is supposed that the definition of A′

t

should not before the interpreter zi receiving Ozt, and should not be too late so
that the changes of the monitored state could be finished before the arrival of
time step t+ 1.

12. Afterwards, the system comes to the next time step t+ 1, and repeats the above
process including capturingOt+1 and calculate rt+1. The two values will be inclu-
ded into et+1 so that et+1 has its whole values : et+1 = {Ot, Azt, sz0,t, Ot+1, rt+1}.
Therefore, the same with et, et+1 is calculated at time step t + 1 for the actions
taken place at time step t.

In the following paragraphs, we respectively present in more detail the three mo-
dules of a service model : an interpreter, an RL algorithm, and a policy.

Interpreter

The interpreter contains three functions. The first function is presented as follows :

X ← fx({S,A}) = fx(O), (5.1)

where fx is a function that selects the subset X from the observable states O, and X

is used as input to the RL algorithm.
Second, the interpreter contains a reward function fr that generates a reward

r given the latest input transition e in the replay memory M . The Algo.2 shows the
detail of this reward function fr when the service is a target-defined service, meaning
that the inhabitant directly specifies the target value a′0 ∈ A′ for the monitored state :
Knowing the updated monitored state sz0 resulting from the actuators changing their
states to Az, the target monitored state a′0, and that sz0 and a′0 are included in the
latest transition ofM (line 7), if sz0 complies with a′0, then a constant positive reward
is returned by the reward function fr. Otherwise, a negative reward will be returned.

72

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Algorithm 2: calculate the reward when the service is a target-defined service
Result: reward

1 M : replay memory
2 sz0 : updated monitored state, resulting from the actuators changing their states to the states

proposed by the service
3 a′0 ∈ A′ : target monitored state defined by the inhabitant
4 r : reward representing the (dis)satisfaction of the inhabitant to sz0
5 c : certain predefined positive constant value
6 Function fr(M) :
7 knowing that sz0 and a′0 are contained in the latest transition of M
8 if sz0 complies with a′0 then
9 return r = c

10 else
11 return r = −c // or r = −|sz0 − a′0|, or r = −|sz0 −median(a′0)| if a′0 is a range
12 end

This negative reward can be a constant negative value, or the negative difference
between sz0 and a′0 if a′0 is a scalar, or the negative difference between sz0 and the
median of a′0 if a′0 is a domain value. Using the median value as a target allows the
monitored state to approach the median value and stay away from the two boundary
values. Besides using the constant value as a reward, other reward functions that
provide more varied rewards can be used.

However, the inhabitant can also express his/her dissatisfaction by changing the
actuators’ states from Az to A′, in this case, the service is a target-undefined service.
The corresponding reward function is shown in Algo.3, knowing the actuators’ states
Az proposed by the service, the updated monitored state sz0 resulting from the actua-
tors changing their states to Az, the actuators’ states A′ proposed by the inhabitant,

Algorithm 3: calculate the reward when the service is a target-undefined service
Result: reward

1 M : replay memory
2 Az : actuators’ states proposed by the service
3 sz0 : updated monitored state, resulting from the actuators changing their states to the states

proposed by the service
4 A′ : actuators’ states defined by the inhabitant
5 r : reward representing the (dis)satisfaction of the inhabitant to sz0
6 c : certain predefined positive constant value
7 Function fr(M) :
8 knowing that the latest Az, sz0, and A′ are contained in the latest transition in the replay

memory M
9 if Az equals A′ then

10 return r = c
11 else
12 return r = −c
13 end

73

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

and that Az, sz0, and A′ are in the latest transition ofM (line 8). The reward function
contained in the interpreter tells whether Az and A′ are equal. If they are equal, a
positive constant reward value is returned, as shown in line 10. Otherwise, a negative
constant reward value is returned, as shown in line 12. Similarly to Algo.2, the re-
ward function fr in Algo.3 can also define other algorithms which can generate more
varied reward values.

RL algorithm - training process

The RL algorithm proposes action quality values for each possible state of each
actuator. In our study, DQN (Deep Q learning) [60], where Q-learning is based on
deep learning algorithms including MLPs and LSTM cells as presented in Chapter 3,
is used as the RL algorithm. The policy is applied to select the state that each actuator
will take. The RL algorithm contains two phases : the training process and the testing
process.

The training phase is about how the RL algorithm updates its parameters based
on the replay memory. The detailed process of the training phase is shown in Algo.4.
To train the RL algorithm, as shown in line 19, we first sample a subset of replay
memory called E from M . E contains L transitions. Then for each transition e in
E (line 20), we first use the interpreter (Eq.5.1) to select the RL algorithm’s input
state X (line 22). Then the RL algorithm RL(X ;θ) with the parameters θ generates
the action quality values Qo for all states of all actuators by considering the states X
(line 23).

Next, after the actuators have changed states to Az, using Eq.5.1, the interpreter
is used another time to select the updated input Xu of the target RL algorithm. The
input of Eq.5.1 contains the updated monitored state sz0 and other observable states
O−s0 that maintain unchanged except the monitored state, where O−s0 = O − s0

(line 24). The target RL algorithm RL(Xu ;θ′) with the parameters θ′ generates the
new action quality values for all states of all actuators considering the updated states
Xu (line 25). Then, using Eq.3.4 in Chapter 3 and considering the original Qo and
the updated Qu, Qo is changed to Q′

o (line 26).
Then, a mean square error loss function is attained by considering Qo and Q′

o (line
27). We use the back gradient descent of the loss function on the parameters θ to
update θ (line 28). We perform the above operation for each transition e in E. If

74

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Algorithm 4: training process of RL algorithm
Result: updated RL algorithm

1 M : replay memory
2 e : one transition in the replay memory
3 S : states captured by sensors
4 s0 : monitored state before the actuators change their states
5 sz0 : updated monitored state, resulting from the actuators changing their states to the states

proposed by the service
6 s′0 : updated monitored state, resulting from the actuators changing their states to the states

proposed by the inhabitant
7 A : actuators’ states
8 Az : actuators’ states proposed by the service z
9 X : states considered by the service

10 Xu : updated states considered by the service
11 r : reward representing the (dis)satisfaction of the inhabitant to the updated monitored state
12 RL(X ;θ) : main RL algorithm whose input is X, and its parameters to be updated are θ
13 RL′(Xu ;θ′) : target RL algorithm whose input is Xu, and its parameters θ′ is set to be θ every

constant C time steps
14 L : batch size representing the number of transitions used to train the RL algorithm
15 α : the learning rate representing the gradient descent speed
16 ep : current epoch
17 C : certain predefined integer number
18 Function ftraining(M) :
19 randomly sample L transitions from M and name them as E
20 for e in E do
21 select O,Az, sz0, r from e
22 X ← fx({O})
23 Qo ← RL(X ;θ)
24 Xu ← fx({O−s0 , sz0})
25 Qu ← RL′(Xu ;θ′)
26 Q′

o ← run Eq.3.4
27 floss(Qo, Q

′
o ;θ)← mean square error loss function

28 {θ ← θ − α∂floss
∂θ }

29 end
30 if ep%C equals 0 then
31 θ′ ← θ
32 end

the current epoch ep is an integer multiple of C as shown in line 30, we update the
parameters θ′ of the target RL algorithm to the parameters θ of the main RL algorithm,
as shown in line 31.

RL algorithm - testing process

After obtaining the updated main RL algorithm with parameter θ, we can predict
the action quality values of all possible states of all actuators. As shown in Algo.5, to
predict the action quality values of all possible states of all actuators, we first collect
the observable states O. Then, based on Eq.5.1, we use the interpreter to select the
input state of the RL algorithm X from O as shown in line 5. Finally, considering the

75

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Algorithm 5: testing process of RL algorithm
Result: action quality values

1 O : observable states
2 X : input states considered by the service
3 RL(X ;θ) : main RL algorithm whose input is X, and its parameters to be updated are θ
4 Function fevaluation(O) :
5 X ← fx({O})
6 Q← RL(X ;θ))
7 return Q

selected X, the RL algorithm RL(X ;θ) yields the action quality values of all possible
states of all actuators as shown in line 6. The generated Q is returned and sent to the
policy module to select new states for the associated actuators.

Policy

The policy we use is the ϵ-greedy policy. Its principle can be found in Algo.6. We
first define a constant Cp, which is between 0 (exclusive) and 1 (exclusive), as shown
in line 7. Then, we uniformly randomly generate a number ϵ ranging between 0 (in-
clusive) and 1 (inclusive), as shown in line 8. If ϵ is not less than Cp (line 9), the
policy selects the states whose action quality value is the maximum for each actuator
(line 11). Otherwise, if ϵ is less than Cp, the policy randomly selects states for each
actuator by following the uniform distribution. The ϵ-greedy policy ensures a balance
between exploitation (selecting the states with the maximum action quality values)
and exploration (randomly selecting states for actuators) [46].

Algorithm 6: ϵ-greedy policy for selecting the states of the actuators
Result: states of the actuators

1 Q : action quality values of all states of each actuator, where Q = {Q1, Q2, · · · , Qk, · · ·}
2 Qk : action quality value of all states of the Kth actuator, where Qk = {qk0 , qk1 , · · ·}
3 S : environment states
4 A : states of actuators, where A = {A1, A2, · · ·}
5 Ak : possible states of kth actuator, where Ak = {ak0 , ak1 , · · · , aki , · · ·}
6 Function fpolicy(Q) :
7 define a constant number Cp, where 0 < Cp < 1
8 uniformly randomly generate a real number ϵ, where 0 ≤ ϵ ≤ 1
9 if ϵ ≥ Cp then

10 for Qk in Q do
11 select aki whose qki is the maximum in Qk

12 end
13 else
14 uniformly randomly select a state aki from all available states of Ak

15 end
16 return selected states of each actuator

76

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Dealing with min-max constraints

Some target-defined services may also need to satisfy another secondary requi-
rement in addition to reaching the target value. This is the case, for example, of
temperature services where the secondary requirement is energy saving. The present
document does not cover this kind of services. However, we present a partial solution
for a service that constrains the use of the actuator with lower priority. To that end,
we define an alternative reward function which adapts the reward to the actions that
satisfy this constraint. This alternative reward function is presented in the section
dealing with service pretraining which will be introduced in a subsequent section.

Deployment of an RL-based service in the real world

To deploy the above process in the real world, we need the service module, the
devices and the environment. Since the devices and the environment are provided
by the real world, only the service with its three modules : interpreter, RL algorithm,
and policy, needs to be implemented by the developer. The implementation of the
three modules in the real world can be seen in the presentations of the above sections
"Interpreter", "RL algorithm - training process", "RL algorithm - testing process", and
"policy".

However, the service needs time to be well-trained. In addition, the process of pro-
posing actuators’ states by the service is almost random at the beginning of the trai-
ning process. Moreover, the training process of this system involves interacting with
the inhabitant. As a result, the inhabitant can be frequently interrupted to express
his/her (dis)satisfaction with the updated monitored state. The frequent interrup-
tion may disturb the inhabitant, so a good user experience cannot be guaranteed.

To address these issues, we propose to pretrain this system in a simulated environ-
ment. When the system is well-trained, it is deployed in the real world and continues
its training process. Pretraining in the simulation allows the service to gain some
knowledge of the preferences of an inhabitant, reducing service interruption to the
inhabitant when the service is deployed in the real world. To further reduce the num-
ber of interruptions, it is recommended that the inhabitant’s profile in the simulated
experiment matches the preferences of the real inhabitant as closely as possible. Ho-
wever, our current study does not address how to make the simulated inhabitant’s
profile as close as possible to the real inhabitant’s preferences. Instead, we view this

77

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

as a promising perspective for future studies. Since we do not have access to a real
smart home, our study only focuses on the logic for creating one (or multiple) smart
home service in the simulation.

5.4 Simulated simple smart home system

When deploying the system in the real world, the developer only needs to design
the service module. However, in the simulated experiment, the developer must simu-
late the environment in addition to implementing the servicemodule. Theoretically, in
the simulation, the service can be a target-defined or target-undefined service, where
a simple simulated experiment is conducted at the end of this chapter (Section 5.6)
to prove that the RL-based target-defined and target-undefined service can adapt to
the simulated inhabitant’s profile.

When we try to simulate the environment, it is easy to simulate the inhabitant pro-
file by specifying the values for the target assignment variable a′0 associated with the
corresponding monitored state for a target-defined service. Nevertheless, it is com-
plex to simulate the environment for a target-undefined service, as it is difficult to
compute inverse equations to obtain the states of the actuators that should be set for
the target variables {a′1, a′2, · · ·} within the inhabitant profile. Therefore, in the rest of
the document, we mainly focus on the target-defined services in the simulation.

Designing the service module in the simulated experiment for a target-defined ser-
vice is the same as in the real world. The implementation details can be found in the
"Interpreter", "RL algorithm - training process", "RL algorithm - testing process", and
"policy" in Section5.2. As for the simulated environment, different services corres-
pond to different environments. Therefore, to simulate the environment of a specific
service, we should study the existing work on the physical phenomena of the environ-
ment states associated with that service. The simulated environments of some services
are provided in the next section. Regardless of the type of service, in our work, we
divide the simulated environment states into three categories :

Definition 5.4.1: Simulated environment
A simulated environment for a given service is composed of :

– an input scenario, which is a collection of time functions that produce va-
lues for each sensor variable in S−0 at each time step, where S−0 = S−{s0}.

78

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

– a transfer function which calculates the value of the variable representing
the monitored state based on the values of the sensor and actuator va-
riables.

– an inhabitant profile, which is a function defining the target value of the
variable a′0 with respect to the inhabitant states, with some additional
constraint if necessary.

Fig.5.7 shows us the simulated simple smart home system. We can see that the
simulated environment contains an input scenario, a transfer function, and an in-
habitant profile. The sensor variables S capture the values of the environment states
simulated by the input scenario (simulating the inhabitant state and the physical envi-
ronment states other than the monitored state) and the transfer function (simulating
the monitored state). The actuator variables A represent the states of the actuators.
Their values and the values of S serve as input for the transfer function. The inhabi-
tant profile specifies the target value of the monitored state when the inhabitant is in
a particular state.

Compared to Fig.5.5 in the real world, the simulation in the rest of the document
(except the simple experiment conducted in Section 5.6 to prove that theoretically
the RL-based service can be both target-defined and target-undefined) only simulates
how to select the target variable A′ = {a′0} of the monitored state for the inhabitant
profile, and not how to choose A′ = {a′1, a′2, · · ·}. This is because it is difficult to dyna-
mically solve the inverse equations to obtain the value of A′ = {a′1, a′2, · · ·} that leads
to the target value of the monitored state, given the values of the other environment

Figure 5.7 – Simulated RL-based simple smart home system

79

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

states.

We present how the three components of a simulated environment can be simu-
lated in a general way. First, the input scenario F−0 containing a set of functions can
be represented as :

S−0,t ← F−0(t), (5.2)

where S−0,t is a set of sensor variables capturing the values of the environment states
except the monitored state at time step t.

Then, the transfer function fm can be represented as follows :

s0,t ← fm(St, At) = fm(Ot), (5.3)

where St are the sensor variables capturing the values of available environment states
at time step t,At are the actuator variables having values of the states of the actuators,
Ot = St∪At are the observable states, and s0,t is a sensor variable capturing the value
of the monitored state at time step t.

Finally, we need to simulate the inhabitant profileH(us) that describes the variable
representing the target value a0 for the monitored state s0. The simulated H(us) de-
pends on the simulated inhabitant state variable us. It corresponds to the preferences
for the monitored state of the real inhabitant when the service is in the real environ-
ment. To simulate H(us), we use a rules based approach. Therefore, H(us) can be
expressed as follows :

if the us is us0, then the target monitored state a0 is a0,0 ;

if the us is us1, then the target monitored state a0 is a0,1 ;

if the us is us2, then the target monitored state a0 is a0,2 ;

if the us is us3, then the target monitored state a0 is a0,3.

· · ·

(5.4)

where a0,0 · · · a0,3 can be scalar values or domain values. When we try to simulate
the inhabitant’s profile for different services, the target values for the corresponding
monitored states are defined considering the experience of a realistic inhabitant. Since
Hus is simulated by knowledge, the smart home system shown in Fig.5.7 is a hybrid
system that combines the simulated knowledge-based inhabitant profile and the data-
driven RL algorithm-based service.

80

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

5.5 Simulated simple smart home system examples

In this section, we present several simple smart home systems, each containing a
different service : a light intensity service, a temperature service, and an air quality
service. Moreover, some constraint may be added to each of these services. In our
study, the one that constrain the use of the actuators with lower priority, is added to
each of these services, assuming that each of these services contains one lower priori-
tized actuator. This constraint can be considered as the composition of the inhabitant
profile. The constraint and the target monitored state contribute to calculating a re-
ward using an ad-hoc reward function. This ad-hoc reward function differs from the
one in Algo.2 for the general situation without constraint.

As described in Section 5.4, the service module design process for a simple smart
home system in the simulation is the same as in the real world. The details can be
found in Section 5.2 of the"Interpreter", "RL algorithm - training process", "RL algo-
rithm - testing process", and "policy". Therefore, we only simulate the environment for
each associated service. When simulating the environment, we neglect effects with
low impact. For example, we do not consider the heat generated by turning on the
lamp. In addition, we consider two types of inhabitant profiles : The first is the inha-
bitant profile specifying the target values for the monitored state depending on the
inhabitant’s state. The second profile is based on the first one and constrain the use of
the actuator with lower priority. The reward function in Algo.7 corresponding to the
first type of the inhabitant profile is the application of Algo.2, while the reward func-
tion for the second type of the inhabitant profile is an ad-hoc function and described
in Algo.8.

5.5.1 Simulated environments for services

The involved variables and the states they are associated with are as follows :
(1) us : inhabitant state. (2) le : outdoor light intensity. (3) te : outdoor temperature.
(4) ae : outdoor air quality. (5) lr : indoor light intensity. (6) tr : indoor temperature.
(7) ar : indoor air quality. (8) lp : state of the lamp. (9) cur : the curtain state.
(10) ac : state of the air conditioner. (11) win : the window state. (12) ap : state of
the air purifier. (13) wct : working duration for windows and curtain. (14) act : air
conditioner working duration. (15) apt : air purifier working duration. lr, tr and ar

are the monitored states that light, temperature and air quality services attempt to

81

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

adjust.

Light intensity service

The light intensity service takes us and le as input and uses a policy to select lp and
cur as output. The selected lp and cur are used to change lr, the monitored state of
the light intensity service. A predefined reward function generates a reward rlight to
describe whether the updated value of lr corresponds to the inhabitant profile. Then,
the RL algorithm is trained on the replay memory containing a set of transitions. Each
transition contains the current environment states us and le, the proposed states by
the service for the actuators lp and cur, the updated monitored state for lr, and the
reward rlight. The updated RL algorithm is used to repeat the above process. The
components of the corresponding simulated environment are as follows :
(1) the input scenarios contains the functions to produce values for us and le.
(2) the transfer function is the function to calculate the value for lr considering le, lp

and cur.
(3) the inhabitant profile Hlight is the function to define the target value for lr.
ust is randomly generated at time t by following the uniform distribution : ust =

Uint(0, nus), where nus is the total number of possible states of the inhabitant and
Uint(0, nus) is a uniform distribution that randomly generates an integer between 0
inclusive and nus exclusive.

le within a day is simulated with a Gaussian distribution [67, 69] : let =

N (amplititude = 600,mean = 12, stddev = 3) + 5 · U(0, 1), where N denotes the
Gaussian distribution. Also, some noise is added to let, which is simulated using a
uniform distribution with a maximum value of 5. To simplify the experiment, let is
generated every 5 minutes each day.

The output of the RL-simulated light intensity service is lpt and curt. lpt can be
chosen among multiple levels represented by integers, with level 0 indicating that
the lamp is off and other levels indicating that the lamp is on. The light intensity
that lpt can provide is β · lpt, where β = 100 is the light intensity that one level
can provide. curt has three possible values : 0, 1/2,1. They mean that the curtain
is closed, half open, and fully open, respectively. The calculation of the indoor light
intensity simplifies the complex interactions between natural and artificial lighting in
the indoor space, for example, forgetting the size and orientation of the window and

82

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

the presence of shading devices. Therefore, in our study, the indoor light intensity lrt
at time step t is expressed as :

lrt = β × lpt + let × curt (5.5)

The inhabitant profileHlight, which describes the target indoor light intensity with
respect to the inhabitant state us, is as follows :

if the inhabitant is absent, then the indoor light intensity is 0 lux ;
if the inhabitant is working, then the indoor light intensity is between 250 lux to
350 lux ;
if the inhabitant is seeing a movie, then the indoor light intensity is between 350
lux to 450 lux ;
if the inhabitant is sleeping, then the indoor light intensity is 0 lux.

The inhabitant profileHlight constraining the use of the actuator with lower priority
is :

constraining the use of the actuator (the lamp) with lower priority,
if the inhabitant is absent, then the indoor light intensity is 0 lux ;
if the inhabitant is working, then the indoor light intensity is between 250 lux to
350 lux ;
if the inhabitant is seeing a movie, then the indoor light intensity is between 350
lux to 450 lux ;
if the inhabitant is sleeping, then the indoor light intensity is 0 lux.

Temperature service

The temperature service is responsible for adjusting tr to the target values set by
the inhabitant. To do this, the temperature service learns to propose ac, win, cur and
the corresponding working duration act, wct considering us and te. A reward rtemp is
then generated by the predefined reward function to showwhether the updated value
of tr satisfies the preferred value of the inhabitant. The DQN uses the transitions,
each of which contains the current environment states us, te, the proposed values
by the service for ac, win, cur, act, wct, the updated monitored state for tr, and the
reward rtemp. Once the RL is updated, it is used to restart the above procedure. The

83

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

components of the corresponding simulated environment are as follows :
(1) the input scenarios contain the functions to generate values for us and te.
(2) the transfer function is the function to calculate the value for tr considering

ac, act, cur, win, wct, tr and te.
(3) the inhabitant profile Htemp is the function to define the target value for tr.
The detailed description of the simulation of the associated environment state is :

ust is simulated in the same way as in the light intensity service. tet is simulated with
trigonometric functions [21] and expressed as :

tet = A · cos(B · (x−D)) + C (5.6)

where A = −7, B = π/12, C = 19 and D = 4 and x is the corresponding time with
unit hour at time step t ; the relation between x and t is : x = t ·5/60 because the time
interval between two time steps t and t+1 is 5 minutes. Since act, wint, curt, actt, wctt

are suggested by the temperature service, they need not be simulated. Here we give
their possible values : (1) act ∈ {0,−1, 1} with 0 for off, 1 for heating, and −1 for
cooling ; (2) curt ∈ {0, 1/2, 1} with 0 for closed, 1/2 for half open, and 1 for open.
It has the same range as in the light intensity service. (3) wint ∈ {0, 1} with 0 for
closed, and 1 for open ; (4) actt, wctt ∈ {i/10 for i ∈ {0, 50}}.

The calculation of the indoor temperature is simplified by forgetting the complex
interaction between the indoor and outdoor temperatures, for example, the insula-
tion and ventilation of the building. Therefore, in our study, the calculation of the
indoor temperature is as follows : The indoor temperature is affected by the outdoor
temperature and the temperature supplied by the air conditioner. Assume that energy
consumed by the air conditioner for one hour is ϕac = 20·735watt-hour (W ·h), where
this value is to ensure an obvious temperature change after having the air conditio-
ner work for one minute ; the specific heat of the air is constant and is Cp = 1.005 ;
the air density is constant on average and has the value ρ = 1.205(kg/m3) ; and the
room under study has the volume V = 60(m3). Thus, the energy produced after the
operation of the air conditioner for the duration of ∆actt(h) is :

Qac,t = ϕac ·∆actt (5.7)

Assuming that the resulting indoor temperature at time t+1 is trt+1, the total energy

84

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

that should be provided to maintain trt+1 is thus equal :

Qheat,t = Cp · ρ · V · |trt+1 − trt| (5.8)

Besides, there is always the air circulation between the indoor and outdoor through
the window and curtain, so the heat loss due to the air exchange is :

Qheat
loss,t = Lt · wctt · ρ · Cp (5.9)

where Lt(m
3/s) is the air flow rate for indoor and outdoor air circulation and can be

calculated as follows [3] :

Lt = dh · dl ·

√
2 · gr · (ρet − ρrt) · h

λ · dw · ρrt/dl +
∑

ς · ρrt
(5.10)

where dh = 2(m), dl = 2(m), and dw = 0.2(m) are the height, length, and width of
the window, respectively ; gr = 9.81(m/s2) is the acceleration rate due to the gravity ;
λ = 0.019 is the Darcy-Weisbach friction coefficient ; ∑ ς is the summarized minor
loss coefficient ; and ρet and ρrt are the indoor and outdoor air densities as a function
of the corresponding air temperature :

ρet , ρ
r
t = 1.293(kg/m3) · 273(K)/(273(K) + (tet, trt)(

◦C)) (5.11)

As a result, we have the relation :

Qheat
t = Qac,t +Qheat

loss,t (5.12)

According to Eq.5.7,Eq.5.8 and Eq.5.9, we can acquire the resulted indoor tempera-
ture :

trt+1 =
Qac,t +Qheat

loss,t

Cp · ρ · V
± trt (5.13)

where "+" represents that the air conditioner is heating, and "-" denotes that it is
cooling.

The simulated inhabitant profile Htemp describing the target indoor temperature
when the inhabitant is in different state is :

85

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

if the inhabitant is absent, then the indoor temperature is constant ;
if the inhabitant is working, then the indoor temperature is between 23◦ and 25◦ ;
if the inhabitant is seeing a movie, then the indoor temperature is between 20◦ and
22◦ ;
if the inhabitant is sleeping, then the indoor temperature is between 17◦ to 19◦.

The simulated inhabitant profileHtemp that constrains the use of the actuator with
lower priority is :

constraining the use of the actuator (the air conditioner) with lower priority,
if the inhabitant is absent, then the indoor temperature is constant ;
if the inhabitant is working, then the indoor temperature is between 23◦ and 25◦ ;
if the inhabitant is seeing a movie, then the indoor temperature is between 20◦ and
22◦ ;
if the inhabitant is sleeping, then the indoor temperature is between 17◦ to 19◦.

Air quality service

The air quality service attempts to control the monitored indoor air quality by ad-
justing ap, win, cur of the actuators and their working duration apt and wct. The air
quality service takes the state us and ae as inputs and propose states for the actuators
ap, win, cur, apt, wct. A reward rair is generated by the predefined reward function to
describe whether the updated value for ar matches the preferences of the inhabi-
tant. The RL algorithm then uses the transitions to train itself, with each transition
containing the current states us, ae, the proposed values for ap, win, cur, apt, wct, the
updated value for ar, and the received reward rair. Once the RL algorithm is updated,
it is used to repeat the above process. The components of the corresponding simulated
environment are as follows :
(1) the input scenarios contain the functions to generate values for us and ae.
(2) the transfer function is the function to calculate the value for ar considering

ap, apt, win, cur, wct, te, tr and ar.
(3) the inhabitant profile Hair is the function to define the target value for ar.
The detailed descriptions for simulating the above states are as follows : ust is simu-

lated in the same way as in the light intensity and temperature services. To simulate

86

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

aet, we construct a model to calculate aet at each time step from the atmospheric car-
bon dioxide dataset 1 from quasi-continuous measurements on American Samoa [74].
Since this is a real dataset, it can better reflect the changes of the carbon dioxide in the
atmosphere. To build the model, we first do the imputation by replacing the anoma-
lous data with surrogate data. In this study, we use the average of the corresponding
data as the surrogate data. Then, an interpolation (a Python built-in interpolation
function called interp1d within the Python library scipy.interpolate) is used to obtain
a dataset sampled every 5 minutes instead of every hour. We will use this new dataset
as the aet. The states proposed for the actuators are adjusted by the RL algorithm.
The possible values for the actuators involved are : (1) sap,t ∈ {0, 60, 170, 280, 390, 500}
with 0 being turning off, and other numbers representing the values of the cubic me-
ter air flow rate (m3/h or CMH) of the air purifier ; (2) curt has the same range as in
the example of light intensity and temperature services ; (3) wint has the same range
as in the example of temperature service ; (4) aptt, wctt ∈ {i/10 for i ∈ {0, 50}}.

The calculation of the monitored indoor air quality is simplified by forgetting seve-
ral complex factors, for example, the ventilation of the building, indoor air pollutants,
indoor humidity, and indoor temperature. Themonitored indoor air quality is influen-
ced by the outdoor air quality and the air purifier and can be calculated as follows
[14] :

art+1 =art ·
(
1− apt · aptt

V
− Lt · wctt

V
− nus,t · bus,t ·∆xus

V

)
+ aet ·

Lt · wctt
V

+ sexha,t ·
nus,t · bus,t ·∆xus

V

(5.14)

where V and Lt represent the same value as in the temperature service environment
setting ; sexha,t = 38000(ppm) is a constant representing the CO2 content in the exha-
led air ; nus,t is the number of inhabitants in the room. In this study, nus,t is constant
and has the value 1 ; bus,t is the CO2 breathing rate of the inhabitant, whose value
depends on the inhabitant’s activity and can be found in Table 3 and Table 4 in [102].
In this article, we assume that the inhabitant is between 21 and 30 years old, so the
physical activity level B corresponding to us is B = {0, 1.4, 4, 1}. The CO2 breathing
rate bus,t associated with us is bus,t ∈ {0, 11.004(mg/s), 31.44(mg/s), 7.6635(mg/s)}.
∆xus is the inhabitant’s breathing time, which is a constant value and is 5 minutes
between two time steps.

1. The dataset can be downloaded from : https://we.tl/t-Lbj5PxK2bF

87

https://we.tl/t-Lbj5PxK2bF

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

The inhabitant’s profile Hair describing the target indoor air quality when the in-
habitant is in different state for the air quality service is as follows with the unit being
µmol/mol or parts per million (ppm) :

if the inhabitant is absent, then the indoor air quality is constant ;
if the inhabitant is working, then the indoor air quality is between 100 ppm and
300 ppm;
if the inhabitant is seeing a movie, then the indoor air quality is between 200 ppm
and 400 ppm;
if the inhabitant is sleeping, then the indoor air quality is between 100 ppm and
200 ppm.

Meanwhile, the inhabitant profile Hair constraining the use of the actuator with
lower priority is :

Constraining the use of the actuator (the air purifier) with lower priority,
if the inhabitant is absent, then the indoor air quality is constant ;
if the inhabitant is working, then the indoor air quality is between 100 ppm and
300 ppm;
if the inhabitant is seeing a movie, then the indoor air quality is between 200 ppm
and 400 ppm;
if the inhabitant is sleeping, then the indoor air quality is between 100 ppm and
200 ppm.

5.5.2 Design of reward functions

In this section, we design reward functions by comparing the updated monitored
state with the target monitored state specified in the inhabitant profile for experi-
ments without and with constraining the use of the actuator with lower priority in
the inhabitant profile. To simplify the presentation, we show how to design the re-
ward function for the temperature service. The reward functions for the light intensity
and air quality services can be designed using the same principle.

88

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Algorithm 7: Reward function without constraint
Result: Reward functions without constraint

1 ust : inhabitant state at time step t
2 trt : indoor temperature at time step t
3 tr∗t : the target indoor temperature at time step t
4 rt : reward obtained at time step t
5 v : certain predefined positive numerical value
6 µ : certain predefined negative numerical value
7 Function Reward_no_constraint(ust, trt, tr∗t) :
8 if ust equals to certain state then
9 if trt satisfies the target indoor temperature then

10 rt = v
11 else
12 rt = µ // or r = −|trt − tr∗t | if tr∗t is a scalar , or r = −|trt −median(tr∗t)| if tr∗t

is a range
13 end
14 end
15 return rt

Reward function for the service without constraint

When there is no constraint, we use the reward function as shown in Algo.7. It is
an application of Algo.2 on the temperature service.

In our study, the target indoor temperature in the inhabitant’s profile depends on
the inhabitant’s state. According to Algo.7, if the inhabitant is in a particular state
(line 8), e.g. "working", and the updated indoor temperature trt complies with the
inhabitant’s target indoor temperature, then the reward at time step t is a some po-
sitive numerical value v (lines 9∼10) ; otherwise, the reward is a certain negative
numerical value µ, or the negative Manhattan distance between tr∗t and trt if tr∗t is a
scalar value, or the negative Manhattan distance between median(tr∗t) and trt if tr∗t
is a domain value (lines 11∼12).

Reward function for the service that constrain the use of the actuator with lower priority

If constraining the use of the actuator with lower priority is required in the inha-
bitant profile, we can express the new reward function in Algo.8 as follows :

If the inhabitant is in a some state (line 13), such as the inhabitant is "working", if
the indoor temperature complies with the target indoor temperature (line 14), under
this condition, if the air conditioner is off, or its working duration is zero, then the
reward is a certain predefined positive numerical value v (lines 15∼16) ; otherwise,
the reward is v/2 (lines 17∼18). However, if the indoor temperature does not comply
with the target indoor temperature, then the reward is some negative value µ, or the

89

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

Algorithm 8: Reward function with constraint
Result: Reward function constraining the use of the actuator with lower priority

1 ust : inhabitant state at time step t
2 trt : indoor temperature at time step t
3 tr∗t : the target indoor temperature at time step t
4 act : air conditioner state at time step t
5 actt : work duration of air conditioner at time step t
6 wint : window state at time step t
7 curt : curtain state at time step t
8 wctt : window and curtain working duration at time step t
9 rt : reward obtained at time step t

10 v : certain predefined positive numerical value
11 µ : certain predefined negative numerical value
12 Function Reward_with_constraint(ust, trt, act, actt, wint, curt, wctt, tr

∗
t) :

13 if ust equals to some state then
14 if trt satisfies the target indoor temperature then
15 if act is off or actt is 0 then
16 rt = v
17 else
18 rt = v/2
19 end
20 else
21 rt = µ // or r = −|trt − tr∗t | if tr∗t is a scalar , or r = −|trt −median(tr∗t)| if tr∗t

is a range
22 end
23 end
24 return rt

negativeManhattan distance between tr∗t and trt if tr∗t is a scalar value, or the negative
Manhattan distance between trt and the median of tr∗t if tr∗t is a domain value (lines
20∼21).

5.6 Adaptation to a simple target-undefined service and a simple
target-defined service

As we pointed out in Section 5.4, theoretically, we can simulate both target-defined
and target-undefined services. To prove this, we perform a simple simulated expe-
riment to show that both RL-based target-defined and target-undefined services can
adapt to the simulated inhabitant profile.

Simulated simple smart home system with a target-defined service

The inhabitant profile for a target-defined service only specifying the target values
for the monitored state is as follows, where the profile is the same as that shown in
Section 5.5.1 :

90

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

if the inhabitant is absent, then the indoor light intensity is 0 lux ;
if the inhabitant is working, then the indoor light intensity is between 250 lux to
350 lux ;
if the inhabitant is seeing a movie, then the indoor light intensity is between 350
lux to 450 lux ;
if the inhabitant is sleeping, then the indoor light intensity is 0 lux.

We first train this RL-based system using Algo.4 on a training dataset randomly
sampled from the replay memory storing the transitions of each historical time step.
After the system is well trained, we use the RL-based light intensity service to propose
actuators’ states using Algo.5 for a test dataset where each data can be a transition
sampled from the replay memory and different from those that are already within
training dataset, or a transition of the newest time step. The corresponding average
accuracy is 90.5%. The accuracy indicates the number of samples within the testing
dataset for which the service can correctly propose actuators’ states to satisfy the
target monitored state, as a percentage of the total number of samples. The result
shows that the structure in Fig.5.7 can create the light intensity service that meets
the inhabitant’s profile consisting of the target values for the monitored state.

Simulated simple smart home system with a target-undefined service

When the service is a target-undefined service, we suppose that we have the follo-
wing inhabitant profile :

if the inhabitant is absent, then the lamp should be off, and the curtain should be
closed ;
if the inhabitant is working, then the lamp should be at level 3, and the curtain
should be off ;
if the inhabitant is seeing a movie, then the lamp should be at level 4, and the
curtain should be fully open ;
if the inhabitant is sleeping, then the lamp should be off, and the curtain should be
half open.

We use an RL-based system, as explained in Fig.5.7, to create a light intensity ser-
vice that adapts to the inhabitant’s profile defined above. We first train this RL-based

91

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

system on a training dataset. After the system is well trained, we use the service to
propose actuators’ states for a testing dataset. The corresponding accuracy is 90.75%.
Therefore, we can conclude that the RL-based service canmeet the inhabitant’s profile
specifying the preferred actuators’ states.

From the above two experiments, we can conclude that the RL-based service can
be used to simulate both target-defined and target-undefined services to adapt to the
corresponding inhabitant profiles. Nevertheless, the inhabitant is not interested in
the details of how to adjust the actuators. Moreover, in most situations, it is difficult
for the inhabitant to calculate the inverse equations to find solutions for setting the
actuators. This analysis is especially complex when the dynamics of the monitored
state is complex and the number of associated actuators is large. Therefore, our study
will only focus on the target-defined service, where the inhabitant profile specifies
the target values for the monitored state when the inhabitant is in different states, as
shown in Section 5.5.

5.7 Conclusion

We define a smart home as a home where the inhabitant’s preferences are met by
leveraging various services. Smart home services can propose actuators’ states after
considering the environment states sensed by sensors. Each smart home service aims
to adjust a particular monitored state so that the value of the monitored state matches
its target value explicitly or implicitly defined by the inhabitant.

To create services, instead of considering a general smart home, we start from the
simplest situation of a simple smart home system containing only one service. This
service can propose states for associated actuators to change the monitored state
so that its value can adapt to the inhabitant’s preferences. A smart home service
can be target-defined or target-undefined. In a target-defined service, to express the
(dis)satisfaction of the inhabitant to the updated monitored state, the inhabitant can
define its target value. The service compares the updated monitored state value with
its target to determine the (dis)satisfaction of the inhabitant. In a target-undefined
service, if the inhabitant is unsatisfied with the updated monitored state, he/she di-
rectly changes the actuators’ states. Otherwise, he/she does nothing.

Since it is important to consider the inhabitant’s reactions and reduce his/her ma-
nual operations to build a user-friendly smart home, we propose an RL-based struc-

92

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

ture for the simple smart home system. Therefore, the home system contains a dy-
namic service that can dynamically propose actuators’ states after considering the
environment states detected by the sensors and the inhabitant’s (dis)satisfaction. In
this structure, each service can be considered as an RL agent that includes an inter-
preter, an RL algorithm, and a policy. The interpreter has three functions. First, it
selects the states that serve as input to the RL algorithm. Second, it computes the
reward regarding the inhabitant’s reaction to the updated monitored state. Third, it
stores the transition in a replay memory that is used to train the RL algorithm. The
RL algorithm is used to calculate action quality values for all states of all actuators.
The policy selects the state with the maximum action quality value for each actuator.

Such an RL-based service can already be deployed in the real environment. Howe-
ver, in this case, it will take time for the service to be well-trained. Moreover, frequent
interruptions may occur during the adaptation to the inhabitant’s profile, since pro-
posing the states of the actuators at the beginning of the learning process can be
considered as a random process. Therefore, we propose to pretrain this system using
a hybrid knowledge-based/data-driven approach in simulation. The inhabitant profile
is simulated by the rules based knowledge, and the service is modeled by an RL-based
data-driven algorithm. The pretrained system is then deployed in the real world and
continues its training with the real inhabitant. Our study focuses solely on developing
the logic to create dynamic services in simulation. Furthermore, it is difficult for the
inhabitant to manually compute the inverse equation to obtain the states that the ac-
tuators should have to satisfy the inhabitant’s preferred monitored state. Therefore,
in the simulation, the inhabitant profile only contains the target values of the moni-
tored state, with some additional constraint. Thus, only the target-defined service is
considered in the simulation.

This chapter also presents the process of simulating a simple smart home system,
with each smart home system containing a specific service. In the simulation of a
simple smart home system, the design process of the service modules for different
services is the same as in the real environment. Therefore, we only simulate the en-
vironment that is different between services. Each simulated environment for each
service includes an input scenario, a transfer function, and an inhabitant profile. The
input scenario consists of functions that generate values for sensor variables other
than the monitored state variable. The transfer function calculates the value for the
monitored state variable considering sensor and actuator variables. The inhabitant

93

CHAPTER 5. CREATION OF A SMART HOME SERVICE USING REINFORCEMENT LEARNING

profile describes the target values for the monitored state variable when the inhabi-
tant is in different states. It is optional with some additional constraint.

Finally, we present several simulated simple smart home system examples where
each smart home system contains respectively a light intensity service, a temperature
service, and an air quality service. For each service, we define two types of inhabitant
profiles : The first one defines the target values for the monitored state variable in
terms of different inhabitant states, and the second one is based on the first one and
constrain the use of the actuator with lower priority. An ad-hoc reward function is
defined for the second case where the inhabitant profile has the constraint.

94

6
Creation of multiple smart
home services

Contents
6.1 Introduction . 95

6.2 Proposed architectures for creating multiple dynamic smart home services 96

6.2.1 Merged service-based architectures . 98
6.2.2 Composite service-based architectures . 100

6.3 Comparative experiment . 105

6.3.1 Experiment metrics . 105
6.3.2 Evaluation results . 106

6.4 Architecture deployment in the real world . 109

6.5 Conclusion . 110

6.1 Introduction

In a smart home, there are usually multiple services. Nevertheless, it is challenging
for an inhabitant or developer to manually create these services. Several reasons exist
for this difficulty. For example, the inhabitant or developers must manually deduce
the actuators’ states to adapt to the inhabitant’s preferred monitored states while en-
suring that no potential conflicts occur when these services act on the same actuators.
Nevertheless, it is complex when the physical phenomena of the environment states
are complex and the number of related actuators is large.

In Chapter 5, we proposed a smart home system based on RL,where each service
is regarded as an agent and contains three modules : an interpreter, an RL algorithm,

95

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

and a policy. The created service is dynamic that can dynamically propose actuators’
states by considering the environment states. In this chapter, extending the proposed
single service based structure, we propose several multi-services based architectures
with a collective name SHOMA (Smart HOme-based Multi-services Architectures).
Services in each SHOMA architecture can dynamically propose conflict-free actuators’
states by considering the environment states. They are also adaptive by changing
their behavior to match the inhabitant’s preferences after considering the inhabitant’s
reaction.

The process of deploying SHOMA architectures in the real world is the same as
deploying the system with one single smart home service. It also involves two steps.
The first step is to train the SHOMA architecture-based system in simulation, which
can reduce the frequency of requiring the inhabitant’s reactions to the updated moni-
tored states and increase the training rate of the system in the real world. The second
step is continuously training the SHOMA architecture-based system in the real world.
Our study only focuses on the simulation part.

For the rest of the chapter 1, we first introduce the proposed architectures for crea-
ting multiple dynamic smart home services. Then, we run several simulated environ-
ments to evaluate the proposed architectures, analyze the corresponding results, and
select the architectures with better performance. Next, we briefly present how the
selected architectures can be deployed in the real world. Finally, we summarize the
chapter.

6.2 Proposed architectures for creating multiple dynamic smart
home services

To better illustrate the principle of SHOMA architectures, we first present a smart
home system with three services. Then, we introduce how to use SHOMA architec-
tures to create this system. Creating a smart home systemwith more or less than three
services using SHOMA architectures is the same as the process with three services.
In our study, the time interval of a time step is the same for all services. We do not
consider the situation where the time interval of a time step is different in different
services. Instead, solutions to such a situation are a promising perspective.

1. The original version of this chapter was published in 2022 IEEE International Conference on Machine Learning and
Applications (ICMLA’22) and can be found in [104]

96

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

Figure 6.1 – Classification of SHOMA architectures

We denote the three services as z1, z2, and z3. They belong to different types of
services, and each can represent any specific smart home service. The actuators asso-
ciated with each of them are : (1) {d1, d2, d3} for z1 ; (2) {d2, d4, d5} for z2 ; (3) {d2, d3, d6}
for z3, where d2 is shared by the three services and d3 is shared by z1 and z3. In
addition, the states that each service considers are : (1) Oz1 = {oz11 , oz12 , · · ·} for z1 ;
(2) Oz2 = {oz21 , oz22 , · · ·} for z2 ; (3) Oz3 = {oz31 , oz32 , · · ·} for z3. The states converted
by the interpreter and used as input to the RL algorithm in each service are ex-
pressed as Xz1 , Xz2 , and Xz3, where X = Xz1 ∪ Xz2 ∪ Xz3. The corresponding
target values defined by the inhabitant are denoted as A′,z1 , A′,z2, and A′,z3, where
A′ = A′,z1 ∪ A′,z2 ∪ A′,z3. Services z1, z2, and z3 are individually implemented by res-
pecting the principle shown in Fig.5.5 in Chapter 5. Therefore, we have the following
modules : interpreter IPz1, rl algorithm RLz1 and policy POz1 for z1 ; interpreter IPz2,
RL algorithm RLz2 and policy POz2 for z2. The same is true for z3.

Using the three services and their associated modules in different ways, we de-
fine eight architectures in SHOMA based on the concept of multi-agent RL (MARL)
[133] to model a smart home system to create dynamic services : One Learning
System-based Architecture (OLSbA), Qmix-based Architecture (QmixbA), Remove
Shared Actuators-based Architecture (RSAbA), Common Controller-based Architec-
ture (CCbA), Priority-based Architecture (PbA), Equal Priority-based Architecture
(EPbA), Total Reward-based Architecture (TRbA), and Context Sharing-based Ar-
chitecture (CSbA). As shown in Fig.6.1, these architectures can be divided into two
types : "merged service-based architectures" and "composite service-based architec-
tures". The difference between them depends on whether all services are merged as
one single service when modeling the smart home system. For "composite service-
based architectures", the architectures can be further divided into three subtypes :
"indirect mutual influence", "direct mutual influence" and "without mutual influence".

97

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

The difference between them lies in how the shared actuators’ states are determined.
For "indirect mutual influence" and "direct mutual influence", each service proposes
states for the shared actuators under the indirect or direct influence of other services.
In "without mutual influence", the states of the shared actuators are determined by
one service or controller, thus eliminating the influence between services.

6.2.1 Merged service-based architectures

The first architecture category is the merged service-based architecture, where
all services of the smart home system are merged as one single service to regulate
multiple monitored states. Two SHOMA architectures belong to this category : OLSbA
and QmixbA.

One learning system based architecture

The OLSbA shown in Fig.6.2 models the entire smart home system as a single
service z. In the initial time step, the interpreters IPz1 , IPz2 and IPz3 transform the
observable environment states Oz1 , Oz2 and Oz3 into states Xz1 , Xz2 and Xz3, which
are used as input to the RL algorithm. The algorithm generates action quality values
for all possible states of all available actuators. Then the policy POz uses a function
to decide the state for each actuator, e.g., the greedy policy selects the state with the

Figure 6.2 – Architecture of OLSbA

98

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

highest action quality value for the actuator. The monitored states update their values
as the actuators change their states to the proposed ones. Based on the updated moni-
tored states and the inhabitant’s reactions A′, IPz1 , IPz2 and IPz3 respectively calculate
the reward rz1 , rz2 and rz3 . The original environment states, the proposed actuators’
states Az = Azz1 ∪ Azz2 ∪ Azz3 by the service, the updated environment states after
actuators having changed their states to Az, and the total reward r = rz1 + rz2 + rz3

are collected as one transition and stored in a replay memory. The replay memory is
used to train the RL algorithm in z. Then, the updated RL algorithm or the updated
service z is used to repeat the above process.

Qmix based architecture

Based on the principle of [105], we propose QmixbA shown in Fig.6.3. To de-
termine the states of the actuators, QmixbA introduces a learning system called
Qmix that takes the action quality value outputs Qz1 , Qz2 , Qz3 from the RL algorithms
RLz1 ,RLz2 and RLz3 as inputs and a hyper neural network [55] to determine the values
of its parameters. Moreover, the total reward r = rz1 + rz2 + rz3 is used to determine
the learning direction of Qmix and the hyper neural network. Finally, Qmix generates
the action quality values for all possible states of each actuator, and a policy is used
to select the final states to which each actuator switches.

Figure 6.3 – Architecture of QmixbA

99

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

6.2.2 Composite service-based architectures

In composite service-based architectures, each monitored state is controlled by a
service. Since a service controls one or more actuators, certain actuators may be sha-
red by multiple services. Therefore, conflicts can be generated when these services
simultaneously propose different states for the same actuators. Based on the mecha-
nisms used to determine the states of these shared actuators, "composite service-based
architectures" can be further divided into three subcategories : "without mutual in-
fluence", "indirect mutual influence", and "direct mutual influence".

Without mutual influence

"without mutual influence" refers to architectures where shared actuators are
controlled by only one service or controller, which includes two architectures : RSAbA
and CCbA.

Remove shared actuators based architecture In RSAbA, only one sharing service is main-
tained to determine the states of the shared actuators. The service that is maintained
is the one whose corresponding dynamic characteristic about the monitored state is
the simplest. In the given example with multiple services, we assume that the order
of complexity of each service is : complexity(z1) < complexity(z2) < complexity(z3),

Figure 6.4 – Architecture of RSAbA

100

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

therefore, d2 and d3 are controlled by z1. Thus, RSAbA can be expressed in Fig.6.4.

Common controller based architecture CCbA defines a common controller modeled by
an RL algorithm for each shared actuator. As shown in Fig.6.5, because d2 is shared
by z1, z2, and z3, a common controller CCd2 is defined for d2. CCd2 takes the inputs
of the RL algorithms of the sharing servicesX = Xz1∪Xz2∪Xz3 and the total reward
rd2 = rz1 + rz2 + rz3 as its input, and proposes the state for the actuator d2. The
same principle can be applied for the actuator d3. Because it is shared by z1 and z3, a
common controller CCd3 is defined. CCd3 takes the inputs of the RL algorithm of the
corresponding sharing servicesXz1,z3 = Xz1∪Xz3 and the total reward rd3 = rz1 +rz3

as input, and proposes the state for the actuator d3.

Indirect mutual influence

The category "indirect mutual influence" includes architectures where each ser-
vice proposes states of the shared actuators under the indirect influence from other
services. The final states of the shared actuators are determined by considering the
propositions of all services. They can influence the states of the shared actuators pro-
posed by each service in the next time step. Therefore, the final states of these shared
actuators can be considered as the indirect influence of other services on each service.

Figure 6.5 – Architecture of CCbA

101

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

PbA and EPbA are two architectures of this type.

Priority-based architecture In PbA, a priority calculator modeled by an RL algorithm
is defined for each shared actuator. Each priority calculator proposes priorities for
services that share the same actuator. Fig.6.6 in yellow shows how z1, z2 and z3 can
be modeled with PbA : Each service receives its associated observable states as input.
Then, for non-shared actuators, each service directly proposes the states. For each of
the shared actuators, the action quality values of all possible states proposed by the
sharing services are multiplied by the priorities of the corresponding sharing services
to obtain the weighted action quality values. These priorities are proposed by the
corresponding priority calculator. The state with the highest action quality value is
then selected for this shared actuator.

For example, d2 is shared by z1, z2 and z3. Each service uses an RL algorithm to
propose action quality values Qz1

d2
, Qz2

d2
, and Qz3

d2
for d2. A priority calculator PCd2 is

defined for d2. It takes the inputs of all RL algorithmsX = Xz1∪Xz2∪Xz3 as input and
proposes three priorities pz1d2, pz2d2, pz3d2 whose sum is one. A policy based on the value
function addition principle [116] (abbreviated as VFAP in this document) introduced

Figure 6.6 – Architectures of PbA (in yellow) and EPbA (in red)

102

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

in [116] is used to compute the final action quality value Qd2 for d2 :
Qd2 = Qz1

d2
· pz1d2 +Qz2

d2
· pz2d2 +Qz3

d2
· pz3d2 , (6.1)

It then selects the state with the highest action quality value inQd2 or randomly select
a state as the new state to which d2 will switch.

Equal priority based architecture The principle of EPbA is shown in red in Fig.6.6.
Instead of computing the priorities of the services sharing the same actuators, EPbA
directly summarizes the action quality values of the shared actuators and selects the
states with the highest action quality values according to VFAP policy. We can also say
that all sharing services have the same priority with value 1 to associate EPbA with
PbA. The example of using VFAP policy to calculate the final action quality values for
the shared actuator d2 is :

Qd2 = Qz1
d2

+Qz2
d2

+Qz3
d2
. (6.2)

Then the state with the highest action quality value in Qd2 or a random state is selec-
ted as the new state of d2.

Figure 6.7 – Architecture of TRbA

103

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

Direct mutual influence

The direct mutual influence category includes architectures where each service
proposes the states of shared actuators under the direct influence of other services.
For example, each service that shares the same actuators considers the total reward
that results from summing the rewards of these services. The total reward then di-
rectly influences the proposition that each service makes for the state of the shared
actuator. Therefore, for each service sharing the same actuators, the total reward can
be considered as a direct influence from the other services on that service. TRbA and
CSbA are two architectures of this type of SHOMA.

Total reward based architecture TRbA, as shown in Fig.6.7, is a variant of EPbA. Unlike
EPbA, TRbA adds the total rewards of all services sharing the same actuator to each
service’s RL algorithm as an additional reward to determine the states of that shared
actuator. For example, d3 is shared by z1 and z3. Therefore, the total reward rd3 =

rz1 + rz3 is used as an additional reward and sent to RLz1 and RLz3. By introducing
the total rewards, the states of the shared actuators can be determined by ensuring
that all sharing services receive high rewards simultaneously.

Figure 6.8 – Architecture of CSbA

104

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

Context sharing based architecture In CSbA, each service takes its associated environ-
ment states, its hidden states, and the hidden states of other services that use the
same actuators as input. Each hidden state contains the information of the previous
time step about the associated service. As shown in Fig.6.8, service z1 considers its
environment states Oz1, its hidden states Hz1, and the hidden states Hz2 and Hz3 of
z2 and z3 ; while z2 receives its environment state Oz2, its hidden state Hz2, and the
hidden states Hz1 and Hz3 of z1 and z3 as input. The same principle applies to the
z3. In addition, as in TRbA, the total reward is used. For each service, the hidden
states and total rewards are used as a direct influence from other sharing services
that share the same actuator with it. The states of the non shared actuators depend
only on the output of the action quality values of the associated services. The states of
the shared actuators depend on the action quality values generated by a MultiLayer
Perceptron (MLP)-based policy which uses the action quality values coming from the
sharing services as its input.

6.3 Comparative experiment

To compare the performance of SHOMA architectures for creating smart home
services, we conduct several simulated experiments based on three simulated target-
defined services : a light intensity service, a temperature service, and an air quality
service. Each service constrains the use of the actuator with lower priority. The simu-
lated environments of the three services and their associated reward functions are
presented in Section 5.5.

Among simulated light intensity, temperature and air quality services, the curtain
is shared by the three services, where curlight, curtemp, curair are the curtain state va-
lues respectively proposed by the three services. In addition, the window is shared by
the temperature and air quality services, which respectively propose wintemp, winair

values for the window state. The same is true for the working duration of the curtain
and the window. The temperature and air quality services share this working duration
and respectively suggest wcttemp, wctair values for this working duration.

6.3.1 Experiment metrics

To evaluate the SHOMA architectures and select the architectures with the best
performance, we first compare all architectures with the temperature and air quality

105

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

services, with and without constraining the use of the actuator with lower priority in
the simulated inhabitant profile. From this comparison, we select the architectures
with better performance. Then, we evaluate the selected architectures with three
services with and without constraining the use of the actuator with lower priority in
the inhabitant profile, and determine the best performing architectures.

Following metrics are defined to evaluate the performance of the architectures :
(1) Accuracy of each service to propose the states of the actuators correctly. (2) Ac-
curacy of all services to propose the states of the actuators simultaneously correctly,
which describes the inhabitant’s satisfaction to the architecture. (3) Average of all
accuracy, which denotes the general performance of an architecture. The above accu-
racy indicates the number of samples for which each service or all services correctly
propose actuators’ states so that the updated monitored states match the inhabitant’s
target values, as a percentage of the total number of samples.

6.3.2 Evaluation results

Evaluation results with two services

Fig.6.9 shows the result of the predefined metrics for the experiment without the
constraint. It can be seen that EPbA generally performs better on all four metrics : the
accuracy of the temperature service (red legend), the air quality service (yellow le-
gend), the two services that correctly suggest the state of the actuators simultaneously
(blue legend), and the general performance (green legend). RSAbA and CCbA per-
form best after EPbA. PbA is the fourth, followed by TRbA. OLSbA, CSbA, and QmixbA
perform worst.

We then apply these architectures to the same test dataset but with the constraint.
The result is shown in Fig.6.10. The result is almost the same as in Fig.6.9, except

Figure 6.9 – Architecture evaluations without constraint and with two services

106

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

Figure 6.10 – Architecture evaluations with constraint and two services

that the performance of PbA drops sharply. With the exception of OLSbA and QmixbA,
the other architectures also show slight performance degradation, but not as severe
as PbA. To remove the doubt that adding the constraint in the reward function is not
a good way to realize energy saving, we select architectures : RSAbA, CCbA, PbA,
EPbA, and TRbA, with the general performance greater than or close to 50% based
on the result in Fig.6.9, for three service-based experiments.

Experiment results with three services

Fig.6.11 shows the metric results : accuracy of the light intensity service (deep
red legend), the temperature service (light red legend), the air quality service (yel-
low legend), the three services that correctly suggest the state of the actuators si-
multaneously (blue legend), and the average accuracy (green legend), without the
constraint. Compared to Fig.6.9, the performance of RSAbA and PbA improves, which
means that introducing the light intensity service helps to improve the learning per-
formance of the temperature and air quality services. For RSAbA, this can be because
introducing the light intensity service reduces the number of actuators controlled
by the temperature and air quality services. For PbA, introducing the light intensity
service may provide more information to decide which service should have higher
priority. For EPbA, the performance in the two figures is almost the same, so introdu-
cing the light intensity service has no significant impact. The performance of CCbA
and TRbA is still not as good as the other three architectures : The performance of
CCbA has slightly decreased. The performance of TRbA has dropped significantly, so
introducing the light intensity service makes services with TRbA architecture harder
to learn the system patterns.

Fig.6.12 shows the results when there are three services and with constraining the

107

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

Figure 6.11 – Architecture evaluations without constraint and with three services

Figure 6.12 – Architecture evaluations with constraint and three services

use of the actuator with lower priority. From this figure, we can observe that, EPbA
and RSAbA always have the best performance that is hardly affected. This shows that
constraining the use of the actuator with lower priority and expressing it as the inha-
bitant profile work well for them. However, the performance of PbA decreased signi-
ficantly compared with Fig.6.11, which is the same phenomenon as that in Fig.6.10.
Therefore, constraining the use of the actuator with lower priority in the inhabitant
profile is not a suitable method for PbA. Perhaps other methods should be used to
describe this constraint. The performance of CCbA and TRbA has decreased, which
may be because introducing more services along with the constraint makes the envi-
ronments more complex. As a result, learning the features of the environment using
the two architectures becomes more complicated.

The above four experiments show that OLSbA and QmixbA perform worse than
most composite service-based architectures, which proves the advantage of composite
service-based architectures. Moreover, the comparison of the composite service-based
architectures shows that EPbA and RSAbA have better performance than the others,
and thus are selected for our future research on the smart home system. Even though
only experiments with two and three services are discussed in this document, these

108

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

experiments considered all possible problems that may occur when more than three
services work together. Therefore, our results are most likely applicable for systems
with more than three services, even though these systems may need more time to be
well trained.

6.4 Architecture deployment in the real world

The process of deploying a SHOMA architecture-based system into the real world
is similar to deploying the system to create a single dynamic smart home service
presented at the end of Section 5.2. We can already deploy SHOMA architecture-
based system in the real world. In this case, since the real world already provides the
environment, developers only need to design different service modules to construct
the SHOMA architecture.

However, at the beginning of the training process, proposing the actuators’ states
by the SHOMA architecture-based system can be regarded as a random process. As
a result, the inhabitant may need to frequently express his/her dissatisfaction to the
updated monitored states, which does not contribute to building a user-friendly smart
home.

Therefore, we propose to pretrain the SHOMA architecture-based system in the
simulated environment. When the system is well-trained, it continues its training pro-
cess in the real world. This pretraining allows the SHOMA architecture-based services
to know what actuators’ states need to be proposed to achieve the approximate target
monitored states. Therefore, the pretrained system will be less disruptive to the in-
habitant and contribute to a better user experience when deployed in the real world.
In addition, pretraining may increase the system’s training rate when deployed in the
real world. When pretraining the system in the simulated environment, developers
need to design the service modules of various services and simulate the environment
including input scenarios, transfer functions, and inhabitant profiles. Since we do not
have access to a real smart home, we only focus on the logic of creating multiple
dynamic smart home services in the simulation.

109

CHAPTER 6. CREATION OF MULTIPLE SMART HOME SERVICES

6.5 Conclusion

Having proposed an RL-based structure for the creation of one single dynamic
service where each service is regarded as an agent containing an interpreter, an RL
algorithm, and a policy, in this chapter, we reuse this structure to propose architec-
tures for creating multiple dynamic smart home services. These architectures share a
common name : SHOMA. The SHOMA architectures ensure no conflicts among the
actuators’ states proposed by related services.

The SHOMA architectures are divided into merged service-based and composite
service-based architectures, depending on whether all services are merged as one
single service. For each category, there are several subcategories. We conduct seve-
ral simulated experiments, where each contains two or three smart home services,
and the inhabitant’s profile does or does not constrain the use of the actuator with
lower priority, to prove the advantage of defining composite service-based architec-
tures. We then select the architectures with better performance. Although we only
conducted experiments for two and three services, these experiments considered all
possible problems when there are more than three services. Therefore, the results of
our experiments are most likely applicable to systems with more than three services.

In addition, the deployment of SHOMA architectures in the real world involves
two phases, just like a single smart home service. In the first phase, the smart home
services modeled by the SHOMA architecture are pretrained in advance in the simu-
lated environment which contains three components. First component is the input
scenarios that generate values for the physical environment states and the inhabitant
state at each time step. Second is the transfer functions that compute the value for
the monitored states when the values of the environment states and the states of the
actuators are known at each time step. Third is the inhabitant profiles that describe
the target values for the monitored states given the inhabitant state. In the second
phase, the services continue their training in the real environment to adapt to the
preferred monitored states of the real inhabitant. Since we do not have access to a
real smart home, our studies only focus on the logic of creating smart home services
in simulation.

110

7
Rule extraction from
data-driven smart home
services

Contents
7.1 Introduction . 112

7.2 Motivation of rule extractions . 113

7.3 Context of rule extractions . 114

7.4 Existing work . 115

7.5 The proposed PBRE method . 117

7.5.1 Generate instance rules . 117
7.5.2 Generalize instance rules . 118
7.5.3 Combine rules . 119
7.5.4 Refine rules . 120

7.6 Integration of rule extraction in smart home service creation 124

7.6.1 Integration of rule extraction in simulation 124
7.6.2 Integration of rule extraction in the real world 125

7.7 Evaluation experiment . 126

7.7.1 Metrics . 126
7.7.2 Evaluation and Comparison with Existing Work 127
7.7.3 Experiment in the smart home context . 128

7.8 PBRE variant for dynamic rule extraction from an untrained service 130

7.9 Dynamic rule extraction from multiple smart home services 132

7.10 Conclusion . 133

111

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

7.1 Introduction

In the previous chapter, we proposed SHOMA architectures to create multiple
smart home services that can dynamically propose actuators’ states considering the
inhabitant’s (dis)satisfaction. However, the created services are based on data-driven
RL algorithms that are black boxes. Thus, users have no idea in which situations the
services have proposed certain actuators’ states. Nevertheless, this knowledge can be
essential for users concerning system maintenance and security issues.

To solve this problem, we propose to extract knowledge-based services from a lear-
ning method-based data-driven smart home services by extracting rules from these
services. The extracted rules show the inhabitant in which situations the data-driven
services have suggested certain actuators’ states, and enrich the knowledge base so
that it can cover more situations.

However, most existing rule extraction methods focus on learning systems with
discrete inputs or learning systems designed for binary classification problems. Ho-
wever, in a smart home, there are both discrete (window state : open or closed) and
continuous states (light intensity or temperature). Moreover, the control of smart
home services can be regarded as not only a binary classification problem, but also a
multi-class classification problem.

In this chapter, we propose amethod called PBRE (Pedagogic Based Rule Extractor)
that can extract rules from a trained learning system that accepts both discrete and
continuous states as inputs. We conduct several experiments to evaluate PBRE and
compare its performance with that of existing rule extraction methods, and the results
show the good and better performance of PBRE. In addition, under the hypothesis
that the input states of smart home services are all important, which means that the
service considers all these states, we propose a PBRE variant to dynamically extract
rules from untrained learning systems.Moreover, when there aremultiple smart home
services, we propose to combine all inputs from these services into a single input,
and all outputs from these services into a single output. The single input and output
are then used as input to the PBRE variant to realize dynamic rule extraction from
multiple services.

In the rest of the chapter 1, we first explain the motivation for rule extraction. Then,
we introduce the context of rule extraction from learning systems, including its defini-

1. Main part of this chapter was published in 2022 International Conference on Database and Expert Systems Applications
(DEXA’22) and can be found in [103]

112

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

tion and classification. Next, we describe existing work on rule extraction. After that,
we explain the principle of PBRE. We then present how the rule extraction method
can be integrated into a smart home system. We also conduct several experiments
to evaluate PBRE by first comparing it with an existing method and then using it to
extract rules from multiple simulated single light intensity services with different in-
habitant profiles. Moreover, we propose a PBRE variant to dynamically extract rules
from an untrained smart home service. Further, we propose a strategy to dynamically
extract rules from multiple smart home services using the PBRE variant. Finally, we
summarize the main contributions of this chapter.

7.2 Motivation of rule extractions

Several existing work has mentioned various motivations for rule extractions. For
example, [66] states that the main reason for extracting rules is to obtain a compre-
hensible description of the hypothesis underlying the model, which is also provided
by [90, 12, 91]. In addition, knowledge verification, which can be acquired through
rule extractions, is crucial in many domains. For example, in safety-critical applica-
tions [12], such as airlines, autonomous vehicles, and power plants, where users can
validate the decisions made by the underlying models. In addition, knowledge veri-
fication is also essential for domains required by law, such as the U.S. federal Equal
Credit Opportunity Act, which prohibits lenders from certain forms of discrimination
by consequently providing specific reasons if an application is denied.

Another motivation mentioned by [66] is the capability of automatic knowledge
acquisition. Such a capability makes it possible to first build the knowledge base with
new knowledge discovered by learning method-based systems, and then debug a
knowledge base that can be complex to maintain. In other words, rule extraction
enables the integration of symbolic and connectionist approaches [12]. Finally, [90]
and [66] have also justified that rule extraction contributes to the induction of scien-
tific theories or the study of the generalization behavior of the underlying model.

In addition to comprehensibility, automatic knowledge acquisition, and contribu-
tion to induction and generalization research [66], [12] has introduced other new
motivations. For example, there is an increasing need for software verification. Sup-
pose artificial learning systems are integrated into these software systems. In this
case, rule extraction techniques are needed for these learning systems to realize soft-

113

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

ware verification and debug these learning systems. [91] explains that rule extraction
improves the performance of rule induction techniques by removing idiosyncrasies in
the data.

In a smart home system, the introduction of rule extraction allows the inhabitant
to understand in which situations certain actuators’ states are dynamically proposed,
which is especially important when the smart home system involves safety-critical
decisions. In addition, since the data-driven services can dynamically propose actua-
tors’ states, the knowledge-based services can be automatically created by extracting
rules from data-driven services, avoiding the manual creation of knowledge-based
services. Finally, the extracted rules can be used to guide the learning direction of the
data-driven services.

7.3 Context of rule extractions

Several definitions have been proposed to explain rule extractions. For example,
according to [56, 39], rule extraction is the process of producing a description of
the neural network hypothesis that is comprehensible and closely approximates the
predictive behavior of the neural network, given a trained neural network and the
data on which the neural network was trained. The definition in [126] is similar to
that in [56, 39], but specifies the name of the algorithm. It states that in the context
of high-dimensional feature spaces, giving a trained SVM (Support Vector Machine)
and the data on which it was trained, rule extraction should provide an understan-
dable description of the SVM hypothesis. This description can closely approximate
the predictive behavior of the SVM.

According to [66], the above definitions of rule extractions did not insist that the
returned description consists of rules, but of a description format that is comprehen-
sible to humans. For example, "if-then" rules, "M-of-N" rules, and decision trees. Thus,
there is an inherent duality between comprehensibility and accuracy. The extracted
rules should make a trade-off between comprehensibility, so that humans can easily
understand the descriptions, and accuracy, to approximate the model under study as
closely as possible. The trade-off usually depends on the users’ preferences and the
problem’s requirements for which the application was developed.

Several taxonomies have been defined to classify rule extraction algorithms. In this
work, we mainly present the taxonomy proposed by [13], which is used by multiple

114

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

existing work [56, 66, 90]. [13] classifies rule extraction algorithms into decomposi-
tional, pedagogical, and eclectic methods. Decompositional and pedagogical methods
are also called linked rule extraction techniques and black-box rule extraction tech-
niques [118]. The decompositional approach focuses on extracting rules at the level
of individual neurons (input, hidden, and output neurons) within the trained neu-
ral network [13]. The outputs of the input and hidden neurons must be a binary
(yes/no) result corresponding to the rule consequent notion. This approach seems
to be able to generate a complete set of rules for the trained neural network, but
could be time-consuming and computationally expensive [120]. In pedagogical ap-
proaches, the trained neural network is viewed as a black box that maps inputs and
corresponding outputs. Such a mapping is regarded as an instance rule describing
only a particular situation. These instance rules are then refined to obtain more ge-
neral rules. The pedagogical approaches can be faster than the decompositional ones,
but they are less likely to cover all the rules contained in the trained neural network
[120]. The eclectic approaches are the approaches that include decompositional and
pedagogical approaches.

7.4 Existing work

There is a lot of work on extracting rules from trained neural networks or learning
method-based systems. For example, [25] proposes a pedagogical algorithm called
RxNCM. This algorithm first removes insignificant input attributes from a trained
neural network, where the "insignificant attributes" means that the deletion of these
input attributes has no significant influence on the precision of the neural network.
Then, it determines the ranges for each attribute by selecting its minimum and maxi-
mum values from the training samples. The rules are created by combining attributes
with ranges of values and the corresponding outputs. These rules are then pruned by
removing conditions from a rule if the accuracy of the rules can be increased in the
unseen dataset, dataset that are never used to extract rules. Finally, the pruned rules
are updated by removing overlapping ranges of attribute values between rules if the
accuracy of the new rules in the unseen dataset is increased.

In a tree-based machine learning approach [73], [29] collects all formulas from
the root to a leaf node with a decision value and conjugates all these formulas to
obtain a rule.

115

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

[110] proposes a decompositional algorithm. After pruning the neural network by
reducing the number of hidden layers, the algorithm first discretizes the activation
values of each hidden unit into multiple domains using the algorithm mentioned in
[83]. Then, it extracts rules matching the activation domain with the corresponding
output of each hidden unit. Next, it captures rules describing each activation domain
regarding the inputs. Finally, it merges the two sets of rules to obtain the final rules.

[71] proposes a decompositional algorithm to extract rules from a three-layer ba-
sed neural network : The algorithm first determines the neural network architecture,
then removes redundant connections within the neural network, subsequently discre-
tizes the output values of the hidden nodes to cluster the input attribute values, next
generates rules by associating the determined input attribute value with the corres-
ponding output values, and finally repeatedly prunes the rules if the accuracy of the
extracted rules is not satisfactory.

[50] uses the decomposition-based KT algorithm [49] to generate rules by iterati-
vely describing a given class as positive or negative. The weighted sum of the positive
attribute and the rest of the negative attributes should be greater than the hidden
layer threshold.

[123] proposes decomposition-based MOFN to extract rules. Unlike [50], MOFN
introduces the concept of similar unit groups. To extract rules, first, a neural network
is created using KBANN [122] and then trained. Next, units with similar weighted
connections are grouped. The average values replace the weight values in each group,
and the groups with low link weights are deleted. The updated neural network is
subsequently trained again by optimizing the bias values. Then rules with weights and
biases are extracted by combining inputs and outputs. The final rules are obtained
by removing the weights and biases.

[118] proposes three rule extraction algorithms. The first is a type of black box
rule extraction technique, which requires the inputs of neural networks to be binary
or banalized. The second and the third are linked rule extraction techniques with the
difference that the former limits the number of premises of the final extracted rules,
while the latter has no such limitations.

However, except for RxNCM, the above work only focuses on neural networks with
specific structures, e.g., [29, 110, 71] are only suitable for tree-based machine lear-
ning methods. Alternatively, it only accepts categorical and limited integer inputs,
e.g., [123, 50] are only suitable for neural networks with limited integer inputs. Al-

116

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Figure 7.1 – PBRE rule extraction process Figure 7.2 – Tree data structure

ternatively, it only concentrates on classification problems with categorical or limited
integer outputs, e.g., the proposed algorithms in [118] only interest in classification
problems.

In this chapter, we propose amethod called PBRE (Pedagogic Based Rule Extractor)
to extract rules from trained neural networks or other trained learning method-based
systems by ignoring their input and output data types and their structures. We then
compare PBRE with RxNCM to prove the better performance of PBRE.

7.5 The proposed PBRE method

The principle of PBRE is illustrated in Fig.7.1 : First, PBRE extracts an instance rule
from a trained learning method-based system, where an instance rule is a mapping
between the inputs and outputs of a learning method-based system at a given time
step. Then, it generalizes the instance rule. Next, it combines the generalized rules by
merging those whose conclusions are the same and the range values of the states in
the conditions overlap. Finally, it refines the combined rules by removing insignificant
states in the conditions based on the accuracy of the rules in the unseen dataset. The
"insignificant states" means that the deletion of these input states has no significant
influence on the precision of the learning system. The unseen dataset is a dataset that
contains samples from which no rules are ever extracted, while the seen dataset has
been used to extract rules. The use of the unseen dataset allows the evaluation of the
generalization capability [71, 118] of the extracted rules.

7.5.1 Generate instance rules

A learning method-based system can directly output the desired action that an ac-
tuator will perform. In our study, a deep Q-Network (DQN) [60] is used. It can dyna-

117

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

mically propose actuators’ states by considering the (dis)satisfaction of the inhabitant
and the high dimensional environment states within a smart home system. Suppose
that there is a trained learning method-based system with an unknown structure, its
input {i0, i1, · · · , in} has value {si0,t, · · · , sin,t} where the first subscript indicates the
type of the input state and the second subscript denotes the time step. The proposed
states for related actuators are {sd0,t, · · · , sdmt} where the first subscript represents
the type of the actuator and the second subscript denotes the time step. Therefore,
we can obtain and represent the instance rule irt at time step t as

if state i0 has value si0,t, · · · , and state in has value sin,t,

then actuator d0 will have state sd0,t, · · · , and actuator dm will have state sdm,t.
(7.1)

However, instance rules are not like rules for general situations. We should gene-
ralize them into rules by performing the following procedure.

7.5.2 Generalize instance rules

We generalize instance rules by first expressing instance rules in a tree structure
with linked lists. This tree structure gives a concise and clear idea of an instance
rule’s compositions and generalization process. Then, we generalize an instance rule
by merging it with another instance rule or rule whose conclusions are the same as
those of the instance rule and whose certain conditions have close values or contain
the values of those of the instance rule.

Fig.7.2 shows the structure of the linked list tree. Each branch is a linked list and
stores an instance rule or a rule. Each branch node consists of a state value belonging
to either conclusions or conditions. Except for the root node whose value is constant,
the other nodes at the same level describe the values of the same type of states in
different instance rules or rules. The data structure of each node belonging to the
Node class is shown in Fig.7.2. It consists of two parts : data being the state value of
the current node and subNodes storing the child nodes of the current node. The state
value of the node is represented as

node.data = {Float:mean, F loat:min, F loat:max} (7.2)

wheremean, min, andmax are the average, minimum, and maximum of the state va-

118

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

lue of all combined samples. The introduction of a range value between the minimum
and the maximummakes it possible to combine instance rules or an instance rule and
a rule when their conclusions are the same, while the values of certain states in the
conditions are the same or close or overlap. The data structure of subNodes is shown
in Eq.7.3. It is a vector consisting of all subnodes of the current node. Each element
in this vector contains a subnode of class Node and an integer count indicating how
many times the state value of the current subnode appears simultaneously with the
state values of the nodes in the same branch and at higher levels.

node.subNodes = {{Node:node0, Integer: count0}, · · ·}. (7.3)

To access a node and its subnodes, we use the dot notation like the property
accessor in JavaScript, i.e., the node ni in slashes in Fig.7.2 can be described as
root.node1.nodec, which belongs to the class Node, its state value is ni.data, and the
subnodes are ni.subNodes. To access its average, minimum and maximum values,
we use ni.data.mean, ni.data.min and ni.data.max. To query its jth subnode, we use
ni.subNodes[j].

However, after generalizing an instance rule, some particular state value ranges
overlap between rules with the same conclusions. Therefore, we need to combine the
obtained rules.

7.5.3 Combine rules

Weuse the algorithmCOR (Combine Overlapping Rules) in Algo.9 to combine rules
whose conclusions are the same while the states in the condition have overlapping
values. To combine rules within a rule set GRa where their conclusions are the same,
and a particular state in the condition, say state c, has overlapping values, we first
sort GRa by the ascending order of minimum values with respect to state c (line 5).
Next, we name the first rule of GRa as grm (line 6). Then we iterate GRa. For each
rule gra ofGRa, its minimum value of state c is compared with the maximum value of
the same state in grm. If the former is not larger than the latter, we change grm.c.max

to the larger value between gra.c.max and grm.c.max (lines 7∼9). If there is no such
gra, we store grm in GRb and define the current gra as grm for the next iteration(lines
10∼17). Once the iteration of GRa is complete, we store grm in GRb one more time
to ensure that the last grm is concatenated with GRb (lines 19∼23). Finally, we need

119

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Algorithm 9: Combine Overlapping Rules (COR)
Result: combined rules

1 GRa : rule set whose conclusions are the same while states in the condition may have
overlapping values

2 gra.c : state value of the state c in the condition in a rule gra
3 GRb : final returned rule set
4 Function COR(GRa) :
5 sort GRa in ascending order with respect to gra.c.min for gra in GRa

6 grm = GRa[0]
7 for gra in GRa do
8 if gra.c.min ≤ grm.c.max then
9 grm.c.max = max(gra.c.max, grm.c.max)

10 else
11 if GRb equals None then
12 GRb = grm
13 else
14 GRb =concatenate GRb and grm
15 end
16 grm = gra
17 end
18 end
19 if GRb equals None then
20 GRb = grm
21 else
22 GRb=concatenate GRb and grm
23 end
24 Delete duplicate rule from GRb

25 return GRb

to delete duplicate rules from GRb (line 24).

7.5.4 Refine rules

In this section, we focus on removing insignificant states in the conditions using
Algo.10. First, we use Pearson product-moment correlation coefficients (PPMCC) [20]
to calculates the states-targets correlation vector. This vector stores the correlation
between available state types and the targets. Then, we sort this correlation vec-
tor in ascending order to ensure the least correlated state types come first (lines
8∼10). For each stateType in available state types stateTypes, and for each unseen
sample dunseen in unseen datasetDunseen, first, we define a rule setGR1 acquired from
GR by removing states with types in insignificantStates and stateType. Then, we
create a rule set GR2 containing rules from GR1, whose states’ range values in the
conditions contain the states’ values of the unseen sample under study dunseen. We
also define a rule set GR0 equal to GR2 with the deleted states being added (line
11∼16). If the size of GR2 is 1, we select the conclusions of this rule as the targets of

120

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Algorithm 10: Remove Insignificant States (RIS)
Result: final rules

1 D : dataset storing samples with each containing state values and target values
2 Dunseen : unseen dataset with each containing state values and target values
3 GR = {gr1, · · · , grk} : extracted rules
4 maxAcc : the maximum accuracy
5 stateTypes : the available state types
6 insignificantStates : vector storing insignificant state types
7 Function RIS(D, Dunseen, GR) :
8 corrState = D.corr().iloc[:−1,−1]
9 sort corrState in ascending order

10 sort stateTypes with the same order of corrState
11 for stateType in stateTypes do
12 numCorrect = 0
13 for dunseen in Dunseen do
14 create GR1 ∈ GR without states with types in insignificantStates and stateType
15 select GR2 ∈ GR1, whose rules’ states ranges contain those of dunseen
16 create GR0 by adding deleted states to GR2

17 if size(GR2) equals 1 then inference← conclusions of GR2

18 else
19 arr=concatenate dunseen.states and GR0.states.mean
20 arr, corrState2=remove states with types in insignificantStates and

stateType from arr, corrState
21 arr = arr ∗ corrState2
22 inference = Inference(arr)
23 end
24 if inference equals dunseen.targets then numCorrect+ = 1
25 end
26 acc = numCorrect/length(Dunseen)
27 if acc ≥ maxAcc then add stateType to insignificantStates ; maxAcc = acc
28 end
29 for stateType in insignificantStates do
30 for dunseen in Dunseen do
31 arr=execute lines 14∼19
32 arr, corrState2=arr, corrState remove states with types in insignificantStates

and add state with type stateType
33 execute lines 22∼26
34 end
35 if acc ≥ maxAcc then remove stateType from insignificantStates ; maxAcc = acc
36 end
37 remove states with types in insignificantStates from R ; return GR

dunseen (line 17). Otherwise, we remove states with types in insignificantStates and
stateType from the concatenated states matrix which combines the states of dunseen
and the averages of the states in the conditions of GR0. The states with types in
insignificantStates and stateType are also removed from the states-targets correla-
tion vector (lines 18∼20). Then, we calculate the weighted matrix by multiplying the
states-targets correlation vector and the concatenated matrix (line 21). The resulted
weighted matrix allows to put more importance on the states that are more correlated

121

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Algorithm 11: Infer the unseen sample (Inference)
Result: Inference result

1 arr :matrix concatenating states of the unseen sample and averages of the states in the
conditions of the rules

2 ϵ : predefined small number
3 Function Inference(arr) :
4 corr = correlation(arr)
5 if ∀i, j ∈ corr, (i− j) < ϵ then select conclusions of the rule which has the maximum sum

of frequencies of occurrence of the conclusions
6 else
7 select conclusions of the rule with the maximum correlation
8 end
9 return conclusions

(or significant) with the targets. Next, we use Algo.11 to derive the unseen sample
dunseen with the inputs being the concatenated matrix (line 22).

As shown in Algo.11, to obtain inference, we use PPMCC to calculate the corre-
lation between dunseen and rules in R2 based on the input concatenated state matrix
(line 4). If all rules have close correlations with dunseen, we choose the conclusions of
the rule which has the maximum sum of frequencies of occurrence (count in Eq.7.3)
of the conclusions ; otherwise, we select the conclusions of the rule whose states are
most strongly correlated with those of dunseen (lines 5∼7).

After all unseen samples are derived, we compute the accuracy ofGRwithout state
with types in insignificantStates and stateType (line 26). If the accuracy is not less
than the maximum accuracy, the state with type stateType is not important for the
rules to correctly make inference. It will be added to the insignificantStates vector,
and the current accuracy will be the maximum accuracy (line 27). Next, after having
run through all stateTypes and obtained the final insignificantStates, we decide
which stateType in insignificantStates can be re-added to rules to maintain or im-
prove the accuracy on the unseen dataset. If such a stateType exist, it will be removed
from insignificantStates vector, and the updated accuracy will be the newmaximum
accuracy as shown in lines 29∼35. When the updated final insignificantStates is ac-
quired, we remove states belonging to types in insignificantStates from GR and
return the updated GR as the final extracted rules (line 37). An extracted rule after
having been converted to "if-then" rule can be written as :

if state i0 is between si0,min and si0,max and has average si0,m, · · · , then actuator

d0 will have state sd0 with frequency of occurrence countd0 , · · · .
(7.4)

122

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Reasoning process

After having obtained the extracted rules without insignificant states in the condi-
tions, we can use these rules to make inference for any dataset including seen and
unseen datasets. The process is shown in Algo.12.

Suppose that we have the extracted rules GR ; a vector of insignificant states
insignificantStates acquired from Algo.10 ; and a dataset D2 storing samples with
each only containing the states.

For each sample d in D2 (line 5), we remove the insignificant states from d (line
6). Then, we select the extracted rules GR2 whose range values of the states in the
conditions contain the values of the states of the current sample d (line 7). If there
is only one extracted rule being activated (line 8), we select the conclusion of the
activated rule as the proposition for the current sample d (line 9). Otherwise, if there
are several extracted rules being activated (line 10), we perform the following pro-
cess : first, we concatenate the states of d and the average values of the states in
the conditions of the activated extracted rules GR2 (line 11). Next, we calculate the
PPMCC correlation between d and GR2 based on the similarity between the states
of d and averages of the states in the conditions of GR2 (line 12). If all the extrac-
ted rules have close correlations with d (line 13), we select the conclusions of the

Algorithm 12: Infer samples (Reasoner)
Result: Inference result

1 GR : extracted rules
2 insignificantStates : insignificant states
3 D2 : dataset to be inferred by the extracted rules
4 Function Reasoner(GR, insignificantStates, D2) :
5 for d in D2 do
6 d← remove states of insignificantStates from d
7 GR2 ← select the extracted rules from GR whose ranges of states in the conditions

contain the values of the states of d
8 if size(GR2) equals 1 then
9 select conclusions of GR2

10 else
11 arr=concatenate d.states and GR2.states.mean
12 corr = correlation(arr)
13 if ∀i, j ∈ corr, (i− j) < ϵ then select conclusions of the rule which has the

maximum sum of frequencies of occurrence of the conclusions
14 else
15 select conclusion of the rule with the maximum correlation for d
16 end
17 end
18 end
19 return conclusions for D2

123

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Figure 7.3 – Rule extraction in a smart home
system with one service in simulation

Figure 7.4 – Rule extraction in a smart home
system with one service in the real world

rules with the maximum sum of the frequencies of occurrences in terms of the states
in the conclusions (line 13). Otherwise, we select the conclusions of the rule which
is the most correlated with d (line 15). At the end of the algorithm, we return the
conclusions for all samples within D2 (line 19)

7.6 Integration of rule extraction in smart home service creation

Applying the learningmethod-based system and rule extractionmethods in a smart
home helps to build a smart home system that automatically creates explicable ser-
vices. In this section, we present the working process of this system in simulation
and the real world in subsections 7.6.2 and 7.6.1. The two processes correspond to
the fact that the deployment of a smart home system in the real world involves two
phases : The first phase is the pretraining of the system in simulation, and the second
phase is the continuous training of the smart home system in the real world.

7.6.1 Integration of rule extraction in simulation

Fig.7.3 shows how the smart home system looks like in simulation : First, the time
step t is initialized. Next, the predefined functions, including the input scenario, the
transfer function and the inhabitant profile, generate the environment states, such as
the inhabitant state and the indoor and outdoor light intensities at time step t. Then,
the service simulated by the learning method selects the states that the actuators
should take at time step t, and the actuators update their states to the selected ones.
The monitored state is subsequently updated regarding the actuators’ executions. De-

124

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

pending on the predefined reward function and the simulated inhabitant profile, a
reward is calculated to indicate whether the inhabitant is satisfied with the upda-
ted monitored state. After that, the system uses a specific optimization algorithm to
train the learning method-based system based on the transitions. Once the learning
method-based system is well-trained with high and stable accuracy, the rules are ex-
tracted using PBRE and stored in a database. The system then determines whether
the current time step is the last. However, if the learning method-based system is not
well-trained, the system directly checks if the current time step is the last. If it is not
the last time step, the system proceeds to the next time step ; otherwise, it returns to
the first time step and repeats the entire process. The DQN mentions in the following
two subsections correspond to the RL algorithm within a service as shown in Chapter
5. As a result, the states in the conditions of a rule or an instance rule are from the
input states to the RL algorithm within a service model, where the input states are
extracted by the interpreter within a service model.

7.6.2 Integration of rule extraction in the real world

Fig.7.4 shows how rule extractions are integrated into the learning method-based
smart home system in the real world : When the system starts, it reads the sensor
variables capturing the values of the observable environment states associated with
the service. Then the service selects the involved actuators’ states. The actuators up-
date their states to the selected ones. The executions of the actuators lead to changes
in the monitored state, e.g., indoor light intensity. Optionally, if the inhabitant is sa-
tisfied with the updated monitored state, he/she takes no action ; otherwise, he/she
can change some or all associated actuators’ states to match his/her habitual beha-
vior. Alternatively, the inhabitant can define the target value for the monitored state
(these target values can also be predefined). Taking into account the changes the in-
habitant makes to the actuators’ states, the system can obtain the reward calculated
by the predefined reward function. Or, the system can calculate the reward by compa-
ring the updated monitored state with its corresponding target value if the inhabitant
specifies the target value for the monitored state. It then trains the learning method-
based system using the transitions as input. Each transition contains the values of
the environment states sensed by the sensors, the states of the actuators proposed by
the service, the reward, and the updated environment states. If the learning method-
based system is well-trained with high and stable accuracy, it uses PBRE to extract

125

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

rules and store them in a database ; otherwise, it repeats the process described above.

7.7 Evaluation experiment

To evaluate the performance of PBRE, we first compare it with an existing method
based on benchmark datasets and then evaluate it based on three simulated smart
home services.

7.7.1 Metrics

We use the following metrics to do the evaluation : (1) The number of extracted
rules. [40, 71] (2) Accuracy describes the number of samples where the updated mo-
nitored states conform to the inhabitant’s preferences as a percentage of the total
number of samples. [16, 123, 135] (3) Similarity, or fidelity [16, 123, 135], is the
number of samples where conclusions derived from the rules are the same with pro-
positions proposed by the learning method-based system as a percentage of the total
number of samples. (4) Inference is the number of samples that the extracted rules
can derive as a percentage of the total number of samples.

Metrics 7.7.2∼(4) are evaluated for both seen and unseen samples. The procedure
for determining the metrics is shown in Fig.7.5. First, we simulate input sample 1
and input sample 2. The learning method-based system makes predictions and stores
them in two databases for the two samples. Next, input sample 1 is used with the
learning method-based system to extract rules and obtain metric (1). These rules are

Figure 7.5 – Metrics acquiring procedure

126

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Table 7.1 – Datasets used for evaluating the performance of the extracted rules

Dataset Num. of
samples

Num. of attributes Attribute characteristics Num. of class

Iris dataset 150 4 Real 3
Wisconsin breast cancer 569 30 Real 2
Sonar dataset 208 60 Real 2
German credit dataset 1000 9 Categorical, Integer 2
Ionosphere dataset 350 34 Integer, Real 2
Heart disease dataset 303 13 Categorical, Integer, Real 5

used to derive the two samples. Finally, the derived conclusions are compared with
the predictions to evaluate metrics 7.7.2∼(4).

7.7.2 Evaluation and Comparison with Existing Work

This section presents the first evaluation experiment comparing PBRE with an exis-
ting method called RxNCM. The comparison is based on six datasets from the Univer-
sity of California Irvine machine learning repository : the Iris dataset, the Wisconsin
Breast Cancer (WBC) dataset, the Sonar dataset, the German Credit dataset, the Io-
nosphere dataset, and the Heart Disease dataset. The iris dataset classifies flowers,
the Wisconsin breast cancer dataset diagnoses whether the cancer is benign or ma-
lignant, the sonar dataset uses sonar to identify whether an object is a metal or a
stone, the German credit dataset identifies each person who takes out a loan from
a bank as a good or bad borrower, the Ionosphere Dataset analyses whether a radar
is good or bad, and the heart disease dataset diagnoses heart disease. The detailed
descriptions of the datasets can be found in Table 7.1.

Experiment results

Table 7.2, Fig.7.6 and Fig.7.7 show the metric results for PBRE and RxNCM. Table
7.2 shows us the result for metric 7.7.2 defined in Section 7.7.1 of the current chapter.
We see that the number of rules extracted from each dataset by PBRE or RxNCM is not
large, which ensures that storing the extracted rules does not require large memory,
which is an important metric for a high-dimensional smart home system.

Fig.7.6 and Fig.7.7 show us the results of metrics 7.7.2 to defined in Section 7.7.1
of the current chapter, where the blue legend "NN Acc.", the dark corn flower blue
legend "PBRE Acc." and the light corn flower blue legend "RxNCM Acc." respectively

127

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Table 7.2 – Number of rules extracted with PBRE and RxNCM

Iris WBC Sonar German credit Ionosphere Heart disease
PBRE num. of rules 3 2 2 2 2 5
RxNCM num. of rules 3 2 2 2 2 5

describes the accuracy of the learning method-based system, the extracted rules by
PBRE, and the extracted rules by RxNCM; the dark orange legend "PBRE Sim." and
light orange legend "RxNCM Sim." respectively represents the similarity of the PBRE
and the RxNCM; the light magenta legend "PBRE Infe." and the light purple legend
"RxNCM Infe." respectively denotes the inference of the PBRE and the RxNCM; the
light green legend "PBRE Ave." and the dark green legend "RxNCM Ave." respectively
illustrates the average of the three previous metric results (accuracy, similarity, and
inference) and represents the general performance of the corresponding algorithm.

From the two figures, we can observe that although RxNCM, like PBRE, can infer
all seen and almost all unseen samples (see "PBRE Infe." and "RxNCM Infe."), the rules
extracted with PBRE generally have higher accuracy and similarity than those extrac-
ted with RxNCM (see "PBRE Acc.", "RxNCM Acc.", "PBRE Sim." and "RxNCM Sim.").
To illustrate the general performance, we calculate the average of metrics 7.7.2 to
(4) and denote it as "PBRE Ave." and "RxNCM Ave.". The results show that PBRE
has higher general performance than RxNCM for both datasets, which is consistent
with the observations made above for metrics 7.7.2 to (4). Moreover, including gene-
ral performance, RxNCM has higher metric results in the unseen datasets than in the
seen datasets, and PBRE does the opposite and has higher metric results than RxNCM
in both datasets. This is because to refine rules, PBRE not only deletes the states in
the conditions but also adds them back, which ensures the number of states in the
conditions and, thus, guarantees that PBRE achieves good performance in the unseen
datasets and maintains the performance in the seen datasets.

7.7.3 Experiment in the smart home context

In this section, we present the second evaluation experiment where we use PBRE
to extract rules from three individual light intensity services (DQN_v1, DQN_v2, and
DQN_v3). Each service is simulated based on a DQN, following the principle shown in
Fig.5.7. The detailed working process of the corresponding smart home system based
on a single light intensity service can be seen in Fig.7.3. To perform the simulated

128

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Figure 7.6 – PBRE and RxNCM experiment results by working on seen datasets

Figure 7.7 – PBRE and RxNCM experiment results by working on unseen datasets

Table 7.3 – Number of rules extracted by PBRE from different DQNs

DQN_v1 DQN_v2 DQN_v3
Num. of rules 4 4 19

Figure 7.8 – PBRE with the seen datasets Figure 7.9 – PBRE with the unseen datasets

experiment for each light intensity service, we use the simulated environment shown
in Section 5.5.1 in Chapter 5. In addition, the inhabitant profile for each service can
be found in Table 7.4.

Experiment Results

The metric results of PBRE in extracting rules from different DQN-based services
for the seen and unseen datasets are shown in Table 7.3, Fig.7.8 and Fig.7.9. We can
see that the number of extracted rules in Table 7.3 for each simulated service is not
large, which ensures that storing these rules does not require large memory. Moreo-
ver, we can see that the number of rules in DQN_v3 has a larger value because the
corresponding inhabitant profile is more complex, as shown in Table 7.4. Further-
more, from Fig.7.8 and Fig.7.9, we see that PBRE can extract rules from DQN-based

129

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

services with satisfactory general performance (see "PBRE Ave.’), which can be fur-
ther explained as follows : The extracted rules achieve the same and sometimes even
higher accuracy than the DQN-based services ; they have the same similarity to the
DQN-based services in the seen datasets and almost the same similarity in the un-
seen datasets ; moreover, they can infer all seen and almost all unseen samples. One
of the extracted rules after having hidden averages and frequencies of occurrence
from Eq.7.4 in DQN_v3 is :

if the inhabitant is working, and the outdoor light intensity is between 0.35 and

243.28, then the lamp is at level 3, and the curtain is closed.
(7.5)

More rules can be found in Table 7.4 where we approximate the lowest and highest
values of each state’s range to integers. This table shows that DQN_v1 and DQN_v2
have the same extracted rules suggesting always closing the curtain. However, the
rules in DQN_v3 have a curtain setting more varying as constraining the use of the
actuator with lower priority is required in the inhabitant profile. Moreover, when
expressing the rules, we only show the states’ ranges instead of the states’ averages
to make it easier to compare with the inhabitant profile.

7.8 PBRE variant for dynamic rule extraction from an untrained
service

However, during the dynamic proposition of the actuators’ states by a service, it
is impractical to stop the working process of the service to select important input
states for the rules to be extracted. Therefore, we assume that the input states are
already refined and need not be removed. Under this hypothesis, we use PBREwithout
the process of "refining rules" to dynamically extract rules when the received reward
is positive. This rule extraction can take place even during the training process of
PBRE. The dynamically extracted rules allow the inhabitant to know the situations
under which certain actuators’ states are proposed. Furthermore, because the rules
are extracted only when the reward for the service is positive, the knowledge-based
services corresponding to these extracted rules will have higher accuracy than the
related learning method-based systems.

In this case, we define a customized inference process for the PBRE variant. Com-

130

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Table 7.4 – Extracted Rules for the light service simulated by different DQNs

DQN Habitual behaviors Extracted rules
v1 (1) If the inhabitant is absent, then the in-

door light intensity is 0 lux ; (2) If the in-
habitant is working, then the indoor light
intensity is between 250 lux and 350 lux ;
(3) If the inhabitant is seeing a movie, then
the indoor light intensity is between 350 lux
and 450 lux ; (4) If the inhabitant is slee-
ping, then the indoor light intensity is 0 lux.

(1) If the inhabitant is absent, then the lamp is off, and
the curtain is closed ; (2) If the inhabitant is working,
then the lamp is at level 3, and the curtain is closed ;
(3) If the inhabitant is seeing a movie, then the lamp
is at level 4, and the curtain is closed ; (4) If the inha-
bitant is sleeping, then the lamp is off, and the curtain
is closed.

v2 (1) If the inhabitant is absent, then the in-
door light intensity is 0 lux ; (2) If the in-
habitant is working, then the indoor light
intensity is between 250 lux and 350 lux ;
(3) If the inhabitant is seeing a movie, then
the indoor light intensity is between 350 lux
and 450 lux ; (4) If the inhabitant is slee-
ping, then the indoor light intensity is 0 lux.

(1) If the inhabitant is absent, and the outdoor light
intensity is between 0 and 605 lux, then the the lamp
is off, and the curtain is closed ; (2) If the inhabitant is
working, and the outdoor light intensity is between 0
and 605 lux, then the lamp is at level 3, and the curtain
is closed ; (3) If the inhabitant is seeing a movie, and
the outdoor light intensity is between 0 and 605 lux,
then the lamp is at level 4, and the curtain is closed ;
(4) If the inhabitant is sleeping, and the outdoor light
intensity is between 0 and 605 lux, then the lamp is
off, and the curtain is closed.

v3 With the preference of decreasing the use
of the related energy consuming actuator :
(1) If the inhabitant is absent, then the in-
door light intensity is 0 lux ; (2) If the in-
habitant is working, then the indoor light
intensity is between 250 lux and 350 lux ;
(3) If the inhabitant is seeing a movie, then
the indoor light intensity is between 350 lux
and 450 lux ; (4) If the inhabitant is slee-
ping, then the indoor light intensity is 0 lux.

(1) If the inhabitant is absent, and the outdoor light in-
tensity is between 0 and 605 lux, then the lamp is off,
and the curtain is closed ; (2) If the inhabitant is wor-
king, and the outdoor light intensity is between 246
and 357 lux, then the lamp is off, and the curtain is
fully open ; (3) If the inhabitant is working, and the
outdoor light intensity is between 512 and 605 lux,
then the lamp is off, and the curtain is half-open ; (4) If
the inhabitant is seeing a movie, and the outdoor light
intensity is between 356 and 452 lux, then the lamp
off, and the curtain is fully open ; (5) If the inhabitant
is sleeping, and the outdoor light intensity is between
0 and 605 lux, then the lamp is off, and the curtain is
closed ; · · ·

pared to the one in Algo.12 for PBRE, the difference is that for each sample to be
inferred, we do not need to remove the insignificant states as shown in line 6 of
Algo.12. The other operations are the same. The details of the inference process of
the PBRE variant is shown in Algo.13.

In addition, Fig.7.3 and Fig.7.4 are changed to Fig.7.10 and Fig.7.11, respectively.
In the situation of deploying the smart home system in simulation and the real world,
the condition that determines whether to "extract rules by PBRE" is changed from "is
DQN trained" to "is the reward positive".

131

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

Figure 7.10 – Rule extraction without "refining
rules" in a smart home system with one service in
simulation

Figure 7.11 – Rule extraction without "refining
rules" in a smart home system with one service in
the real world

7.9 Dynamic rule extraction from multiple smart home services

Since a smart home usually contains multiple services, and we cannot stop the
training process of the learning method-based smart home services to do the rule ex-
traction, we use the PBRE variant to realize the dynamic rule extraction frommultiple
services.

To do this, the PBRE variant will regard all services as one single service. Therefore,
at a given time step, the inputs and outputs of all services will be concatenated as

Algorithm 13: Infer samples (Reasoner)
Result: Inference result

1 GR : available extracted rules
2 D2 : dataset to be inferred by the extracted rules
3 Function Inference(GR, D2) :
4 for d in D2 do
5 GR2 ← select the extracted rules from GR whose ranges of states in the conditions

contain the values of the states of d
6 if size(GRZ) equals 1 then
7 select conclusions of GR2

8 else
9 arr=concatenate d.states and GR2.states.mean

10 corr = correlation(arr)
11 if ∀i, j ∈ corr, (i− j) < ϵ then
12 select conclusions of the rule which has the maximum sum of frequencies of

occurrence of the conclusions
13 else
14 select conclusions of the rule with the maximum correlation
15 end
16 end
17 end
18 return conclusions for D2

132

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

one single input and one single output. The single input and output are then used as
input of the PBRE variant to obtain the final extracted rule. During the rule extraction
process, the rules can be extracted only when the rewards for all services are positive.
The inference process is the same with the one shown in Algo.13

The reason we consider the input and output of all services as a single input and
output in rule extraction is to ensure that the propositions of the actuators’ states by
the extracted knowledge-based services are the same with the propositions by the
corresponding data-driven services when the environment is in certain states.

7.10 Conclusion

We have proposed data-driven architectures to create dynamic smart home ser-
vices. However, the created data-driven services are like black boxes, and the inhabi-
tant has no idea in which situations certain actuators’ states are proposed.

To solve this problem, we propose to extract knowledge-based services from data-
driven services by extracting rules from these data-driven services. Different from
existing work [64] aiming at making learning method-based systems understandable
by the inhabitant (e.g., using natural language easily understood by the inhabitant),
we solely concentrate on extracting rules to showing the behavior of the correspon-
ding learning method-based system.

To extract rules, we propose a new rule extraction method called PBRE that can
extract rules from a data-driven service without considering the structures of the
associated learning method and the data types of the input states, and can be used
for problems that can be regarded as multi-class classification problems. The working
principle of PBRE includes four parts : generate instance rules, generalize instance
rules, combine rules, and refine rules.

The deployment of the smart home service in the real environment involves two
phases. The first phase is the pretraining of the smart home system in simulation,
and the second phase is the continuous training of the smart home service in the real
world. Therefore, the integration of PBRE into the smart home system includes two
phases : The integration of PBRE into the smart home system in simulation and in the
real world. Several experiments are conducted to evaluate the performance of PBRE
in extracting rules. The first is the extraction of rules from learning systems used for
six benchmark datasets, and the second is the extraction of rules from three single

133

CHAPTER 7. RULE EXTRACTION FROM DATA-DRIVEN SMART HOME SERVICES

smart home light intensity services with each being simulated by a DQN. The results
show the satisfactory performance of PBRE.

Moreover, to refine rules in PBRE, states are removed from conditions and added
back if the accuracy of the extracted rules on the unseen dataset does not decrease.
However, it is impractical to stop the working process of a service and then select
important states in the condition for the extracted rules. Therefore, assuming that
the input states for a data-driven smart home service are already refined, we propose
a PBRE variant to realize the dynamic rule extraction. In this variant, the process
of"refining rules" is not necessary, and the condition for extracting rules depends on
whether the reward of the smart home service is positive. In this way, the inhabitant
can dynamically know the situations in which certain actuators’ states are proposed.
In addition, the knowledge-based service based on these extracted rules will have
higher accuracy than the corresponding data-driven service. This is because these
rules will only be extracted when the reward of the data-driven service is positive.

Nevertheless, in a smart home, there are usually multiple smart home services.
Therefore, we propose a technique based on the PBRE variant to dynamically extract
rules from multiple smart home services : at a given time step, all inputs and outputs
of all services are viewed as one single input and output. The single input and output
are then used as input of the PBRE variant. The rules can be extracted only when the
rewards of all services are positive.

Considering the fact that a smart home usually contains multiple services and that
it is impractical to stop the learning method-based services to do the rule extraction,
in the following chapters, the technique of using the PBRE variant to do the dynamic
rule extraction from multiple learning method-based services will be used, which
contributes the acquisition of explicable and dynamic smart home services.

134

8
Hybrid system for smart home
services creation

Contents
8.1 Introduction . 135
8.2 Proposed HKD-SHO system . 137

8.2.1 Service dispatcher . 139
8.2.2 Rule extraction . 141
8.2.3 Rule deletion . 142
8.2.4 State proposition . 143
8.2.5 Decision maker . 145

8.3 Working process of HKD-SHO . 146
8.4 Comparative experiment . 149

8.4.1 Experiment results and analysis . 150
8.5 Conclusion . 155

8.1 Introduction

In this chapter, we propose to combine knowledge-based and data-driven ap-
proaches in order to deliver hybrid solution for service creation. We will start from a
set of manually defined knowledge-based services (a set of rules and associated rea-
soner). Considered individually these services are simple enough to be defined in this
setting. We will be using these services to accelerate the learning phase that we will
be using to combine these services. We will be using some of the SHOMA architec-
tures defined in Chapter 6. During this learning phase, we will also put in practice
the rules extraction mechanism for PBRE variant defined in Chapter 7.

135

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

In our hybrid architecture, we will have three ways to decide what actions will be
taken at each time step, namely (sorted by higher priority first) :
— the reasoner for manually defined services
— the reasoner for extracted rules
— the SHOMA architecture-based system
The actions that will be decided by considering the highest priority first, then

turning to the lowest priority if the higher priorities are not satisfactory.
In this chapter, we first present the structure of our hybrid system that we call

HKD-SHO (Hybrid Knowledge-based and Data-driven services-based Smart HOme
system). Then, we explain the working process of the different components of this
hybrid system. Next, we describe the working process of the system as a whole. Af-
terward, we run several simulated comparative experiments to evaluate this hybrid
system, and prove its performance is better than the system with only the learning
method and the system with the learning method and the preexisting rules. Finally,
we summarize the chapter.

Figure 8.1 – Structure of HKD-SHO

136

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

8.2 Proposed HKD-SHO system

Fig.8.1 shows the structure of HKD-SHO, which consists of five modules : the "ser-
vice dispatcher", the "knowledge representation", the "state proposition", the "deci-
sion maker", and the "rule management". In addition, the "existing rules", the "onto-
logy" and the "extracted rules" modules are contained in the "knowledge representa-
tion" module. The "existing rules reasoner", the "SHOMA architecture-based system",
and the "extracted rules reasoner" are included in the "state proposition" module.
The "PBRE variant" and the "rule deletion" are contained in the "rule management"
module. Before presenting the working process of HKD-SHO, we define the follo-
wing hypotheses that HKD-SHO should fulfill. First. the existing rules and ontology
are predefined either by the inhabitant or by the developers. Second, the SHOMA
architecture-based system is already predefined based on the selected SHOMA archi-
tectures in Chapter 6 : EPbA and RSAbA.

The general working process of HKD-SHO is as follows : First, the values of the ac-
tuators and the sensors are sent to the "service dispatcher" which allows the selection
of the associated sensors and actuators for each service. The "service dispatcher" then
sends these dispatched states to the "ontology" in the "knowledge representation" mo-
dule to update the state values of the corresponding instances (including instances of
actuators and sensors, which associate with some instances of services). Sometimes,
the "service dispatcher" tells the ontology whether to create new instances for the
actuators, the sensors, and even the services. The updated "ontology" comprising the
latest observable states (including the states of the actuators and the sensors) are sent
to the "SHOMA architecture-based system" within the "state proposition" module.

Before proposing new states for actuators, the "SHOMA architecture-based sys-
tem" calculates the rewards for the iteration of the previous time step. In addition, if
the replay memory contains at least a minibatch number of transitions, the "SHOMA
architecture-based system" also involves the training process to update its parame-
ters. These rewards are passed to the "PBRE variant" and "rule deletion" in the "rule
management" module to decide whether to extract rules or delete the extracted rules
based on the activities of the previous time step. In addition, the input states to the
RL algorithms within the "SHOMA architecture-based system" of the previous time
step, and the information coming from the "decision maker" module specifying the
final actuators’ states are made by which services (existing rules-based services, data-

137

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

driven services and extracted rules-based services) of the previous time step, are also
sent to the rule management module for deleting or extracting rules in the next time
step.

The updated "extracted rules" along with the state values in the "ontology" are sent
to the "extracted rules reasoner" in the "state proposition" module. In addition, the
"existing rules", which are predefined and can only be deleted by the users, are sent
along with the state values in the "ontology" to the "existing rules reasoner" in the
"state proposition" module. The "extracted rules reasoner", the "SHOMA architecture-
based system", and the "existing rules reasoner" are three structures used in the "state
proposition" module to create services that propose new states for the related actua-
tors.

The "existing rules reasoner" used in our work is Pellet [111]. It infers new states
for actuators based on the input states and the existing rules. The existing rules are
expressed in SWRL (Semantic Web Rule Language) [63] and stored in the "exis-
ting rules" database. The extracted rules are expressed in "if-then" rules, where each
state in the condition contains its range value and the average of all training samples
concerning that state, as shown in Eq. 7.4 in Chapter 7. These rules are stored in the
"extracted rules" database. The "extracted rules reasoner" is customized. It considers
not only the ranges of the states in the conditions, but also the PPMCC similarity. The
similarity is between the average values of the states in the conditions and the corres-
ponding states of the sample under consideration. The "SHOMA architecture-based
system" contains a selected SHOMA architecture to propose states for the correspon-
ding actuators.

The propositions of the states of the actuators coming from the "extracted rules
reasoner", the "existing rules reasoner", and the "SHOMA architecture-based system"
are sent to the "decision maker" to determine the final states of the actuators. In
addition, the "decision maker" also sends information to the "PBRE variant" and the
"rule deletion" in the "rule management". The information contains the determined
final states of the actuators and the fact that the propositions of which services were
selected as the determined final states of the actuators in the current time step.

The selected states of the actuators are sent to the actuators, and the state changes
of the actuators can lead to changes in the monitored states. Then, the inhabitant may
express his/her reaction to the updated monitored states by changing the states of
the actuators to new values A′ = {a′1, a′2, · · ·} to meet the target monitored states.

138

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

In this case, the services are target-undefined services without explicitly specifying
the target values for the monitored states. Alternatively, the inhabitant can explicitly
specify the target values a′0 ∈ A′ for monitored states. He/She can also predefine
these target values in terms of his/her different states, and the services select the
target values that correspond to the current environment states. In this case, the
services are the target-defined services.

Then, the new states of the sensors and actuators are sent to the "service dispat-
cher". The HKD-SHO comes to the next time step and repeats the process described
above. In the new time step, the "SHOMA architecture-based system" calculates the
rewards for the previous time step that precedes the new time step. Together with the
states used as inputs to the RL algorithms within the services in the previous time step
and the information provided by the "decision maker" in the previous time step, the
"PBRE variant" decides whether to extract rules or the "rule deletion" decides whether
to delete the extracted rules. If rules are extracted, they are stored in the "extracted
rules" database in the "knowledge representation" module. Otherwise, the extracted
rules can be deleted from the "extracted rules" database.

As the "SHOMA architecture-based system" is presented in Chapter 6, the "existing
rules reasoner" is based on the existing Pellet reasoner, the "extracted rules reasoner"
and the "PBRE variant" are presented in Chapter 7, and the "rule deletion" is just
about removing certain extracted rules from the "extracted rules" database. In the
following sections, we will briefly introduce the working process of "state proposi-
tion", "PBRE variant" and "rule deletion", and mainly focus on the presentation of the
"service dispatcher" and the "decision maker".

8.2.1 Service dispatcher

After having defined that each device is a service, [35] proposes an IoT service
model for service z and represents the model as < zid, zname, F,Q > where (1) zid is a
unique identifier. (2) zname is the name of the service. (3) F = {f1, f2, · · · , fn} denotes
the functions offered by the service. (4) Q = {q0, q1, · · · , qm} denotes non-functional
attributes or quality of service (QoS) preferences. This model clarifies the composition
of a service and provides a better understanding of a service.

Motivated by this service model and considering our proposed service definition,
we introduce a new data-based model called "service dispatcher" for smart home ser-
vices by selecting the observable states related to that service. The service dispatcher

139

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

is used for two purposes. First, it can be used to visualize better the associated ser-
vices’ components (actuators and sensors). Second, it can tell the ontology whether
to create new instances for the sensors, the actuators, and particular types of service
when new actuators and sensors that are components of certain types of services are
added to the smart home, and the sensors have non-null values. The new data-based
model ztype,id for a service is expressed as a tuple < id, type, location, p,D >. The
definition of each component is as follows :
(1) id and type are the unique identifier and type of the service z ;
(2) location is the place where the service is located, e.g. location = living room

means that this service is in the living room;
(3) p registers the variables related with the monitored state that z is trying to adjust,

i.e. p = {air quality} indicates that z is an air quality service and is trying to
manage the air quality at location location ;

(4) D stores variables representing devices that are associated with z : D =

{d0, · · · , dj, · · · , dk} where d represents either an actuator or a sensor.
The devices contain both actuators and sensors. The data-based model of an actua-

tor can be expressed as dtype,id = {id, type, location,W,Z, Sz,t, st}, and the data-based
model of a sensor can be expressed as dtype,id = {id, type, location,W,Z, st}, where :
(1) id and type are the unique identifier and category of the current device, respec-

tively ;
(2) location is the place where the device is located, e.g. location = living room

means that the device is located in the living room;
(3) W stores all possible values of the current device, i.e. a window has possible

states W = {0, 1} indicating closed or open.
(4) Z contains all services with which the current device is associated. For example,

a window may be associated with an air quality service with a unique iden-
tifier 1 and a temperature service with a unique identifier 2, such that Z =

{zair,1, zair temperature,2} ;
(5) Sz,t is the state proposed by the service z for the device at time step t. For

example, Sair_temperature,t = {0} for a window means that the window is pro-
posed to be off by an air temperature service at time step t ;

140

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

(6) st is the state of the device at time step t. For example, st = 0 for a window
means that the window is off at time step t.

For the service and device models proposed above, if there are no values for a com-
ponent, we use None to represent it. An example of the data-based model for a light
intensity service instance zlight_intensity,1 with type light intensity can be expressed as
< id = 1, type = light intensity, location = living room, p = light_intensity,D =

{dlamp,1, dcurtain,1, dinhabitant_state,1, dlight_intensity,1, dlight_intensity,2} >, where
dlight_intensity,1 and dlight_intensity,2 are the sensor variables respectively capturing
the indoor light intensity and the outdoor light intensity.

8.2.2 Rule extraction

To do the rule extraction in a dynamic way, we leverage the PBRE variant for
multiple smart home services as shown in Section 7.9 of Chapter 7. The working
process is briefly shown in Algo.14.

Suppose that the current time step is t. Thus, the rule extraction to be performed is
based on the activities at time step t− 1. Before extracting rules, we know that, first,
the input states for the RL algorithms of the SHOMA architecture-based system are
Xt−1 obtained from the "SHOMA architecture-based system". Second, the rewards
Rt computed at time step t represent the reactions of the inhabitant to the propo-
sed actuators’ states at time step t − 1, which are also obtained from the "SHOMA
architecture-based system". Third, the determined final actuators’ states at time step
t − 1 are At−1. They are acquired from the "decision maker". Fourth, the message

Algorithm 14: Rule extraction
Result: final extracted rules

1 Xt−1 : input states to the RL algorithms within SHOMA architecture-based system
2 Rt : rewards calculated at time step t
3 At−1 : final determined actuators’ states for time step t− 1
4 Infot−1 : information specifying the propositions of which service are taken at time step t− 1
5 GRt : the updated extracted rules at time step t
6 Function RuleExtraction(Xt−1, At−1, Rt, Infot−1) :
7 if all rewards in Rt are positive then
8 if Infot−1 specifies that the propositions of the SHOMA architecture based system

are parts of the new states of the actuators at time step t− 1 then
9 GRt ← using the PBRE variant (Section 7.9) with inputs Xt−1 and At−1 to extract

rules
10 end
11 end
12 return GRt

141

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

Infot−1 received from the "decision maker" indicates which services proposed At−1

at time step t− 1. Fifth, the updated extracted rules are GRt.
If the rewards of all services Rt are positive (line 7), and the "decision maker" used

infot−1 to indicate that the propositions of the learning method-based system are part
of At−1 (line 8). In this case, with the input being At−1 and Xt−1, the PBRE variant
presented in Section 7.9 is used to extract rules and return the updated extracted rules
GRt (line 9). Finally, this algorithm returnsGRt to the database of the extracted rules
(line 12)

8.2.3 Rule deletion

Algo.15 shows the process of deleting rules based on the activities at time step t−1.
Suppose the current time step is t. The total extracted rules isGRt, the extracted rules
that proposed actuators’ states at time step t − 1 is grt−1, the reward set calculated
at time step t representing the reactions of the inhabitant to the actuators’ states
proposed at time step t − 1 is Rt, and the message coming out from the "decision
maker" is infot−1. We have the following working process of the "rule deletion" :

If there is at least one service whose reward calculated at time step t is negative
(line 6), and the message infot−1 sent by the "decision maker" at time step t− 1 tells
that the propositions of the extracted rules are parts of the final new actuators’ states
at time step t − 1 (line 7), in this case, we delete the extracted rules grt−1 that are
used to propose actuators’ states at time step t − 1 from GRt (line 8). Finally, we
return the updated extracted rules GRt to the database (line 11).

Algorithm 15: Rule deletion
Result: final extracted rules

1 GRt : total extracted rules at time step t
2 grt−1 : the extracted rules that proposed the actuators’ states at time step t− 1
3 Rt : rewards calculated at time step t
4 Infot−1 : information specifying the propositions of which service are taken at time step t− 1
5 Function RuleDeletion(GRt) :
6 if not all rewards in Rt are positive then
7 if Infot−1 specifies that the propositions of the extracted rules are parts of

the new states of the actuators at time step t− 1 then
8 GRt ← Delete grt−1 from GRt

9 end
10 end
11 return GRt

142

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

8.2.4 State proposition

Three structures are available to create services to propose actuators’ states : exis-
ting rules reasoner, machine learning method-based system, and extracted rules rea-
soner. In this section, we first explain why we defined three service creation structures
in the HKD-SHO, and then provide a brief description of proposing actuators’ states
using the three structures.

Available service creation structures

Assume that the target monitored states are easy to realize. For example, turning
off the lamp and closing the curtain is evident if the inhabitant wants the light in-
tensity to be zero lux when entering the room. Then, there is no need to create a
data-driven service that takes time to be well trained. Suppose that it is the preexis-
ting rules based services that handle the decision-making. In this case, the user can
always track the preexisting rules to find out in which situation certain preexisting
rules based services suggested certain actuators’ states. As a result, we define an "exis-
ting rules reasoner" to create services.

In addition, rules are extracted from data-driven services only if they propose states
of actuators that result in monitored states that satisfy the inhabitant. Therefore, the
services created by extracted rules can achieve higher inhabitant satisfaction than the
data-driven services. Moreover, during the learning process, the data-driven services
sometimes randomly propose states for actuators instead of selecting states more
likely to cause monitored states to have target values. This exploration process [37]
can discover the inhabitant’s less frequent behavior pattern and satisfy the inhabitant.
In this case, the extracted rules corresponding to this decision-making can represent
the inhabitant’s less frequent preferences. Nevertheless, data-driven approaches may
ignore these less frequent preferences and retain the more frequent ones. Moreover,
when the extracted services are used for decision-making, users can always track
the corresponding extracted rules to find out in which historical environment states
certain services suggested certain actuators’ states. For these reasons, we also define
the "extracted rules reasoner".

However, preexisting and extracted rules based services cannot always ensure
to cover all possible situations. In this case, we need data-driven services that can
propose actuators’ states for any environment states. Moreover, the data-driven ser-
vices can adapt to the changing inhabitant’s target monitored states and environment

143

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

states. As a result, we also need the "SHOMA architecture-based system" service crea-
tion structure.

State proposition

In the "state proposition" module, three ways are provided : existing rules reaso-
ner, extracted rules reasoner and SHOMA architecture-based system. Some attention
should be paid for them :
— Existing rules are manually created by the inhabitant, thus they can be incom-

plete or conflicting.
— Extracted rules are progressively generated during the learning phase, thus they

can be incomplete.
— SHOMA architecture-based system by nature is able to propose actuators’ states

for any environment states at any time step.
The brief process of proposing actuators’ states by the three available services is

shown in Algo.16. Specifically, knowing that the observable states at time step t is Ot.
The updated extracted rules after having potentially performed rule extraction or rule
deletion are GRt. The preexisting rules are ERt. The selected SHOMA architectures
are either EPbA or RSAbA. To propose states for the actuators, the Pellet reasoner
infers the actuators’ states at time step t when given the observable states Ot and the
preexisting rules ERt (line 6).

Algorithm 16: Propositions of actuators’ states
Result: Propositions of the states of the actuators

1 Ot : observable states at time step t
2 GRt : updated extracted rules after potentially performing rule extraction or rule deletion at

time step t
3 ERt : existing rules at time step t
4 SHOMA : selected SHOMA architectures : EPbA or RSAbA
5 Function StateProposition(Ot) :

// preexisting rules
6 actuators’ states proposed by preexisting rules← Pellet(ERt, Ot)

// extracted rules
7 dt ← maintaining the states in Ot which have the same state types as the states of the

conditions of the extracted rules GRt

8 actuators’ states proposed by extracted rules← Inference(GRt, dt) as shown in Algo.13
// learning method-based system

9 actuators’ states proposed by SHOMA architecture-based system← SHOMA(Ot)
10 return actuators states respectively proposed by the existing rules, extracted rules and

SHOMA architecture-based system

144

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

The extracted rules propose actuators states based on a customized reasoner with
the inference process as shown in Algo.13 in Chapter 7 by considering not only the
ranges of the states in the conditions, but also the PPMCC similarity between the
states in the conditions and the corresponding states of the sample under study. Spe-
cifically, the observable states Ot of the current sample first maintain those states
which have the same types as the states in the conditions of GRt, and the new states
of the sample is denoted as dt, as shown in line 7 of the current Algo.16. Then, we
use Algo.13 with the input being dt and GRt to obtain the actuators’ states proposed
by the extracted rules, as shown in line 8 of the current Algo.16.

To propose actuators’ states by the SHOMA architecture-based system, the selected
SHOMA architectures, either EPbA or RSAbA, are used to propose actuators’ states
when given Ot as its input (line 9).

Finally, the actuators’ states proposed by the three available services are returned
as shown in line 10, so that the "decision maker" presented in the next section can
choose the final actuators states.

8.2.5 Decision maker

The "decision maker" is applied to select the services whose proposed actuators’
states are chosen to be the new actuators’ states in a given time step. The principle of
the "decision maker" is shown in Algo.17. To select the final services among preexis-
ting rules based services, extracted rules based services, and data-driven services, we
need to determine their priorities. Since it is the inhabitant or the developers who

Algorithm 17: Decision-making for final actuator states
Result: Final states for actuators

1 Az : proposed final states for actuators
2 Function DecisionMaker() :
3 Az ← select actuators’ states proposed by preexisting rules
4 for a in Az do
5 if a equals ∅ or has conflicts then
6 a← select those proposed by extracted rules
7 end
8 end
9 for a in Az do

10 if a equals ∅ then
11 a← select those proposed by the data-driven services
12 end
13 end
14 return Az

145

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

define the preexisting rules, the preexisting rules based services can ensure the satis-
faction of the inhabitant’s preferences or something to which the developers want the
home system to pay attention. As a result, the "decision maker" in HKD-SHO prefers
the actuators’ states proposed by the preexisting rules based services, as shown in
lines 3.

If the "exiting rules reasoner" cannot create services to suggest states for specific
actuators, or there are conflicts among the propositions of the preexisting rules based
services, the "decision maker" selects the actuators’ states proposed by the extrac-
ted rules, as shown in lines 4∼8. The reason is that the extracted rules are obtained
from the SHOMA architecture-based system when the inhabitant is satisfied with the
updated monitored states. Therefore, they can almost guarantee (with some uncer-
tainty due to the mechanism used to extract rules) the satisfaction of the inhabitant’s
preferences. In addition, the extracted rules have higher accuracy than the learning
method-based SHOMA architecture-based system [103]. Moreover, the inhabitant or
the developers can track the extracted rules to find out in which situations certain
services suggested certain states of the actuators. Finally, the propositions by the ex-
tracted rules based services will be without conflicts because of the inference mecha-
nism concerning the similarity and frequency of occurrence presented in Section 7.8
of Chapter 7.

However, the rules cannot ensure to cover all possible situations for no matter
which environment states. Nevertheless, the "SHOMA architecture-based system" can
always create services that propose actuators’ states for no matter which environment
states. Thus, if there are some situations where the rules based services cannot be
created, as shown in lines 9∼13, the "decision maker" selects the actuators’ states
proposed by data-driven services created by the "SHOMA architecture-based system".

8.3 Working process of HKD-SHO

In this section, we introduce the working process of HKD-SHO, which can be di-
vided into two situations : The first is that the services are target-undefined services,
where the inhabitant expresses dissatisfaction with the updated monitored states by
changing the actuators’ states. The second is that the services are target-defined ser-
vices, where the inhabitant specifies the target values for the monitored states. The
related variables within the working duration are explained as follows :

146

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

(1) Ot = {Oz0
t , Oz1

t , · · ·} are the observable states at time step t, with z0, z1, · · · being
the available services.

(2) Xt = {Xz0
t , Xz1

t , · · ·} are the input states at time step t.
(3) Rt are a set of rewards for each service, where Rt = {rz0t , rz1t , · · ·}.
(4) Azt = {Azz0t , Azz1t , · · ·} are the actuators’ states proposed by available services.
(5) Sz0,t = {szz00,t, szz10,t, · · ·} are a set of updated monitored states after the actuators

change their states to Azt, .
(6) A′

t = {a′1, a′2, · · ·} are a set of actuators’ states defined by the inhabitant when
the services are target-undefined services.

(7) A′
t = {a′,z00 , a′,z10 , a′1, a

′
2, · · ·} are a set of states including the target monitored

states and actuators’ states defined by the inhabitant when the services are
target-defined services.

(8) A′
0,t = a′,z00,t ∪a

′,z1
0,t , · · · are a set of target monitored states defined by the inhabitant

at time step t for different services.
(9) S ′

0,t = {s
′,z0
0,t , s

′,z1
0,t , · · ·} are a set of updated monitored states after the actuators’

states change their values to {a′1, a′2, · · ·} at time step t.

Working process of HKD-SHO

Figure 8.2 – Detailed working process of HKD-SHO

147

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

The working process of HKD-SHO can be shown in Fig.8.2. When the system starts,
we denote the current time step as t. The observable states Ot including sensor va-
riables and actuator variables are sent to the "service dispatcher".

The "service dispatcher" selects the observable states for each service from Ot.
Then, the observable states are used to update the knowledge representation mo-
dule, such as the values in the range of the data properties of the sensor instances
and the actuator instances associated with each service instance in the ontology.

In this situation, the system asks whether the current time step is the initial time
step. If yes, the updated knowledge is used as input to the Algo.17 so that the algo-
rithm can suggest the final states of the actuators. Otherwise, if the current time step
is not the initial one, the SHOMA architecture-based system computes the rewards
Rt of the previous time step t− 1. The rewards Rt correspond to the activities at the
previous iteration rather than the rewards Rt+1 for the current iteration.

Thus, when Rt are sent to the "rule management" module, it is used to poten-
tially perform the rule extraction or deletion considering the activities of the previous
time step t − 1. The two white triangle arrows mean that the diamond condition is
waiting for the rewards calculated in the next time step to match the activities of
the current time step. The transition of the previous time step for each service z is
dzt−1 = {Oz

t−1, Az
z
t−1, sz

z
0,t−1, O

z
t , r

z
t }.

Then, the SHOMA architecture-based system is trained using the transitions by fol-
lowing Algo.4 in Chapter 5. The updated SHOMA architecture-based system, the up-
dated extracted rules, and the preexisting rules are used to propose actuators’ states.
The proposed actuators’ states are used by the "decision maker" that contains Algo.17
to determine the final states for the actuators. In addition to proposing the final ac-
tuators’ states Azt, the "decision maker" also sends some information to the "rule
management" module. The information contains the knowledge indicating whether
Azt is proposed by the extracted rules reasoner or the SHOMA architecture-based sys-
tem. It also contains the values of Azt. Furthermore, the "state proposition" also sends
the input states extracted by the "interpreter" within the "SHOMA architecture-based
system" to the "rule management" module.

The information from the "decision maker" is used together with the rewards Rt+1

computed in the next time step t+1 to decide whether to extract rules for the current
time step t, delete the extracted rules used to propose the states of the actuators at
the current time step t, or do nothing. The actuators change their states to the final

148

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

selected states Azt. The changes in the actuators’ states cause the monitored states to
switch to Sz0,t. Subsequently, HKD-SHO asks whether the inhabitant is satisfied with
the updated monitored states so as to calculate Rt+1 in the next time step.

Suppose the inhabitant is dissatisfied with the updatedmonitored states. When the
services are target-undefined services, in this case, he/she can change the actuators’
states to A′

t, and the monitored states will be updated to S ′
0,t. Otherwise, he/she takes

no action. Alternatively, when the services are target-defined services, the inhabitant
can set the target values for the monitored states. The setting of the target monitored
states can also be predefined. The changes of the actuators’ states in target-defined
services are not mandatory.

The system comes to the next time step t + 1, and repeats the above process. Du-
ring the next time step t + 1, the rewards Rt+1 are calculated. They are sent to the
"rule management" module. Suppose that Rt+1 are not positive for all services, and
the message from the "decision maker" states that the propositions of the extracted
rules are parts of At+1. In this case, the extracted rules that are used to make the
propositions at time step t are deleted from the "knowledge representation" module.
However, suppose that Rt+1 are positive for all services, and the message of the "de-
cision maker" states that the propositions of the SHOMA architecture-based system
are parts of At+1. In this case, a rule is extracted from the SHOMA architecture-based
system using the PBRE variant by considering the inputs Xt to the RL algorithms
within the "SHOMA architecture-based system" and the determined final actuators’
states Azt. The extracted rule is stored in the "knowledge representation" module.

Changing the actuators’ states to express the dissatisfaction of the inhabitant can
almost only happen when HKD-SHO is deployed in the real world. This is because in
the simulation, we need to simulate the inhabitant profile specifying how to set the
states of the actuators. However, it is difficult to calculate the inverse equations to ob-
tain the states of the actuators to be proposed knowing the input environment states.
The calculation becomes incredibly complex when the preferences of the inhabitant
are complex, or the number of the associated actuators is large.

8.4 Comparative experiment

To evaluate the performance of HKD-SHO, we use the simulated environments
presented in Section 5.5 of Chapter 5 and predefined metrics presented in Section

149

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

6.3.1 of Chapter 6 to conduct several experiments. All services are target-defined
services. These experiments are divided into experiments with two or three services
and without or with constraining the use of the actuators with lower priority in the
inhabitant profiles. The performance of HKD-SHO is compared with the system with
only a learning method-based system and the system with the learning method-based
system and preexisting rules (Its working process can be described as the working
process of HKD-SHO without preexisting rules).

8.4.1 Experiment results and analysis

Four comparisons are performed. In each comparison, the simulated environment
consists of two or three services with or without the constraint being integrated into
the inhabitant profile. Also, in each comparison, two structures, RSAbA and EPbA,
selected in Chapter 6, are respectively used to model the learning system. Moreover,
the involved preexisting rules in SWRL (Semantic Web Rule Language) are :

(1) smartHome :Curtain(?cur) ∧ smartHome :Lamp(?lp) ∧ smartHome :Person(?p)∧ smartHome :

hasState(?p, ?ps) ∧ sameAs(?ps, smartHome :sleeping)

→ smartHome :hasState(?lp, smartHome :off) ∧ smartHome :hasState(?cur, smartHome :close)

(2) smartHome :Window(?win) ∧ smartHome :AirPurifier(?ap) ∧ smartHome :AirCondition(?ac)

∧ smartHome :Lamp(?lp) ∧ smartHome :Person(?p) ∧ smartHome :hasState(?p, ?ps) ∧ sameAs

(?ps, smartHome :absent)

→ smartHome :hasState(?ac, smartHome :off) ∧ smartHome :hasState(?lp, smartHome :off)∧

smartHome :hasState(?ap, smartHome :off) ∧ smartHome :hasState(?win, smartHome :close) (8.1)

The first SWRL specifies that if the inhabitant is sleeping, then the lamp is off and
the curtain is closed. The second SWRL describes that if the inhabitant is absent, then
the air conditioner, the lamp and the air purifier are off, and the window is closed.

In each figure of the evaluation results in the following sections, the yellow bar
chart corresponds to the result of the learning method-based system with the lear-
ning method indicated in the heading (RSAbA or EPbA) ; the red bar chart shows
the result of the learning method-based system with preexisting rules. The green
bar chart show the results of HKD-SHO based on the learning method-based system,
preexisting rules, and extracted rules. In addition, the horizontal axis indicates the
type of metric. For example, the label "temp" explains the accuracy of the temperature
service to correctly propose the states of the actuators. The label "air" shows the ac-
curacy of the air quality service to correctly proposes the states of the actuators. The

150

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

Figure 8.3 – Evaluation results with RSAbA being the machine learning-based system and without
constraint in the inhabitant’s profile

Figure 8.4 – Evaluation results with EPbA being the machine learning-based system and without
constraint in the inhabitant’s profile

label "temp+air" indicates the accuracy of the temperature service and the air qua-
lity service to simultaneously and correctly propose the states of the actuators. The
label "light+temp+air" specifies the accuracy of the light service, the temperature
service and the air quality service to correctly and simultaneously propose actuators’
states, and "avg" is the average of all the previous accuracy, which shows the general
performance of the corresponding system.

Comparison result under the environment with two services

Figures Fig.8.3 and Fig.8.4 show the evaluation results of the machine learning-
based system, the machine learning-based system with existing rules, and the HKD-
SHO in the experiment where there are a temperature service and an air quality ser-
vice. The RSAbA and EPbA are respectively used to model the machine learning-based
system in the three systems, and no constraint of minimizing the use of the actuator
with lower priority is simulated in the inhabitant’s preferences. From the two figures,
it can be seen that, first, by observing the metric "avg" and the metric "temp+air",
in most of the situations, the systems where the machine learning method is RSAbA
generally give better metric results than the systems where the machine learning
method is EPbA. Second, when RSAbA and EPbA are respectively the machine lear-
ning method, by observing all metrics, the system with only the machine learning

151

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

Figure 8.5 – Evaluation results with RSAbA being the machine learning-based system and with
constraint in the inhabitant’s profile

Figure 8.6 – Evaluation results with EPbA being the machine learning-based system and with
constraint in the inhabitant’s profile

method has worse performance compared to the other two systems : the machine
learning-based system with existing rules and the HKD-SHO system. The machine
learning-based system with existing rules performs better than the systems with only
the machine learning method, while the HKD-SHO system performs the best.

Fig.8.5 and Fig.8.6 show the metric results of the systems in an environment with
two services, where RSAbA and EPbA are respectively the method for the machine
learning system and the constraint of minimizing the use of the actuator with lower
priority is integrated into the preferences of the inhabitant. Based on the results, we
can conclude that, first, by observing the metrics of "avg" and "temp+air", the systems
where the machine learning method is EPbA generally give better metric results than
the systems where the machine learning method is RSAbA. Second, by observing all
metrics, the system with only the machine learning method generally has the worst
performance, while the system HKD-SHO has the best performance.

Comparison result under the environment with three services

Fig.8.7 and Fig.8.8 show the evaluation results of the system based on the machine
learning method, the system based on the machine learning method and the existing
rules, and the system HKD-SHO. These experiments contain three services and do
not specify the constraint of minimizing the use of the actuator with lower priority

152

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

Figure 8.7 – Evaluation results with RSAbA being the machine learning-based system and without
constraint in the inhabitant’s profile

Figure 8.8 – Evaluation results with EPbA being the machine learning-based system and without
constraint in the inhabitant’s profile

in the inhabitant’s preferences. From the two figures, it can be seen that, firstly, by
observing metrics of "avg" and "light+temp+air", the systems using RSAbA as the
method of the machine learning system can achieve better performance than the
systems using EPbA as the method of the machine learning system. Second, in both
situations where RSAbA and EPbA are the methods of the machine learning system,
by observing all metrics, the system containing only the machine learning method
in most of the situations performs worse than the system comprising the machine
learning method and the existing rules. Meanwhile, the system HKD-SHO has the
best performance.

Fig.8.9 and Fig.8.10 show the evaluation results of the machine learning sys-
tems, the machine learning system with existing rules, and the HKD-SHO under the
environment with three services and with the constraint of minimizing the use of
the actuator with lower priority being integrated into the inhabitant’s preference.
From the two figures, we can see that, first, by observing the metrics "avg" and
"light+temp+air", the systems using RSAbA as the machine learning method can
generally achieve better performance than the systems using EPbA as the method of
the learning system. Second, by observing all metrics, the system using only the ma-
chine learning method generally has the worst performance among the three systems,
while the system HKD-SHO has the best performance.

153

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

Figure 8.9 – Evaluation results with RSAbA being the machine learning-based system and with
constraint in the inhabitant’s profile

Figure 8.10 – Evaluation results with EPbA being the machine learning-based system and with
constraint in the inhabitant’s profile

Experiment Analysis

From the above experiment results, we can conclude that, first, in most of the si-
tuations, by observing the general performance (metric "avg") and the satisfaction of
the inhabitant (metric temp+air" for two services and metric "light+temp+air" for
three services), the systems using RSAbA as the method of the machine learning sys-
tem have better performance than systems using EPbA as the method of the machine
learning system. Second, in most situations, the system using only the machine lear-
ning method has the worst performance, while HKD-SHO has the best performance.
The better performance of HKD-SHO can be explained by the fact that the introduc-
tion of growing extracted rules provides the machine learning method-based system
with the learning direction. Moreover, these rules are extracted when the machine
learning-based system can contribute to obtaining satisfying monitored state values.
As a result, these rules can better ensure the satisfaction of the inhabitant than the
machine learning method-based system or the machine learning method-based sys-
tem with a fixed number of existing rules.

154

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

8.5 Conclusion

Data-driven approaches can create data-driven services to dynamically propose
actuators’ states to adapt to the changing environment states and the inhabitant’s
preferences. The propositions of actuators’ states can be made by data-driven ser-
vices for any environment states. However, the data-driven services cannot explain to
the inhabitant in which situations certain services have suggested certain actuators’
states.

Knowledge-based approaches allow the inhabitant tomanually create simple smart
home services if the inhabitant knows how to set the actuators’ states to meet the tar-
get monitored states. The created knowledge-based services can guide the learning
direction of the data-driven services. Moreover, the inhabitant understands in which
situations certain actuators’ states are suggested. However, knowledge-based services
are usually static and cannot evolve as the inhabitant’s preferences and the environ-
ment states change. In addition, they cannot always ensure that the knowledge-based
services have covered all possible environment states. Moreover, there can be poten-
tial conflicts among knowledge-based services.

To overcome the disadvantage of the two approaches while maintaining their ad-
vantages, we propose HKD-SHO, which combines knowledge-based and data-driven
services. There are three types of services in HKD-SHO : The first type is created by
preexisting rules. These preexisting rules based services are usually created by the
inhabitant who knows how to set the corresponding actuators to meet the target mo-
nitored states. Manual service creation saves the time of training the corresponding
data-driven services.

The second type is the extracted rules based services, which have higher accu-
racy than the data-driven services and are used to enrich the preexisting rules based
services. Moreover, their propositions are without conflicts and take over the propo-
sitions of the preexisting rules based services when there are conflicts among those
propositions by preexisting rules based services, which guarantees that the final deter-
mined services are conflict-free. Furthermore, the two types of services can be tracked
to show the inhabitant in which situations the services suggested certain actuators’
states.

The third type is the data-driven services that can propose actuators’ states for
any environment states. This type of services can adapt to the changing environment

155

CHAPTER 8. HYBRID SYSTEM FOR SMART HOME SERVICES CREATION

states. They can also ensure the adaptation of the extracted rules based services.
HKD-SHO consists of five modules : "service dispatcher", "knowledge represen-

tation", "state proposition", "rule management", and "decision maker". The "service
dispatcher" is used to describe the components (sensors and actuators) of each as-
sociated service. The "knowledge representation" stores the ontology and the rules,
whose values are updated using the "service dispatcher" and the "PBRE variant" rule
extraction module.

In "state proposition", three service creation structures are defined for three types
of services : the "existing rules reasoner", the "extracted rules reasoner", and the
"SHOMA architecture-based system". They respectively create preexisting rules based
service, extracted rules based service and data-driven service by proposing actuators’
states that match the current environment states.

Then, the "decision maker" is used to select the final services that will be used to
propose states for actuators. During the selection of the final services, preference is
given to the preexisting rules based service created by the "existing rules reasoner",
then the extracted rules based service created by the "extracted rules reasoner", and
finally the data-driven service created by the "SHOMA architecture-based system".

Next, the "rulemanagement" module is used to update the extracted rules. Suppose
that the selected services can cause the monitored states to have target values, and
the propositions of the data-driven service are parts of the final determined actuators’
states, in that case, the rules can be extracted by the "PBRE variant" in the "rule
extraction" module. However, suppose that the selected actuators’ states cannot cause
some monitored state to have its target value, and the propositions of the extracted
rules based service are parts of the final determined actuators’ states. In this case, the
corresponding triggered extracted rule is deleted.

To evaluate HKD-SHO, we compare it with two other systems : the system that
uses only the learning method and the system that uses both the learning method
and the preexisting rules. These comparisons are realized through several simulated
experiments. Each experiment is with two or three target-defined services and with
or without constraining the use of the actuators with lower priority. The selected
SHOMA architectures are used in each environment to model the learning system.
The results show that HKD-SHO has better performance concerning our predefined
metrics.

156

Part III

Conclusion and Annexes

157

9
Conclusion

Contents
9.1 Main results . 158

9.2 Discussion . 161

9.3 Perspectives . 161

In this chapter, we first present the conclusion of our entire work, which includes
context, problems, and contributions. We then provide several interesting perspec-
tives to explore.

9.1 Main results

With the introduction of the IoT, the smart home is becoming more and more
popular. Its intelligence is realized by creating various services. The establishment of
smart home services usually involves logical and physical specification. The logical
specification concerns on designing the logic of decision making by proposing states
to actuators after having considered the environment state values sensed by sensors.
The physical specification involves the hardware part including how to collect data
from the environment, how to transmit data to services using different protocols and
how to deploy the smart home system in the real world. In our study, we only focus on
logical decision-making to create smart home services. Knowledge-based and data-
driven approaches are two primary approaches to creating services. Nevertheless,
neither of them can realize the service creation in a satisfactory manner

In our setting, a smart home service is a mechanism that communicates with de-
vices (sensors and actuators) in order to produce the appropriate changes of the cor-

158

CHAPTER 9. CONCLUSION

responding monitored state so as to comply with the inhabitant’s needs.
Our first proposal (Chapter 5) is a RL method to design a single service for a smart

home. We distinguished two kinds of services, namely, (a) target-defined where the
user sets a value for a special variable, the target variable, and where the service mo-
nitors another special variable, the monitored variable which is brought the closest
possible to the target. (b) target-undefined where the service relies only on the ob-
servations of the inhabitant’s actions on actuators which produce either a positive or
negative reward. We then presented a simulation solution that allows to pretrain the
service in order to accelerate the learning phase.

Then, in Chapter 6, we extended the RL-based single service model and proposed
several architectures with a collective name SHOMA, in order to create multiple smart
home services. The SHOMA architectures ensure that there are no conflicts among
the created services. They are classified into merged service-based architectures and
composite service-based architectures depending on whether all services are mer-
ged as one service or not. The two architecture categories are further divided into
several subcategories. We evaluated these architectures through several simulated
experiments. In each experiment, two or three simulated target-defined smart home
services are modeled. In addition, the simulated inhabitant profile includes the tar-
gets of the monitored states and, optionally, constrains the use of the actuators with
lower priority. The experiments demonstrate the better performance of the composite
service-based architectures and select the architectures : RSAbA and EPbA.

In Chapter 7, in order to associate an equivalent reasoning based decision-making
mechanism to the data-driven services, we proposed a rule extraction method called
PBRE. PBRE has been designed to extract rules that make conflict-free state proposi-
tions from already trained data-driven approaches while not relying on the number
of the output, the input data types and the structure of the data-driven algorithms.
We conducted several experiments to evaluate the performance of PBRE and com-
pare it with an existing rule extraction method. These experiments involve extracting
rules from learning systems used to model six benchmark datasets and from learning
systems used to simulate three light intensity services. The results showed better per-
formance of PBRE. We also showed how rule extraction can be integrated into service
creation for a smart home system. Furthermore, we modified PBRE to ensure that
it can dynamically extract rules that can make conflict-free propositions during the
training processes of the data-driven approaches (before the training is completed).

159

CHAPTER 9. CONCLUSION

Moreover, we proposed a mechanism to realize the rule extraction from multiple ser-
vices based on the PBRE variant so that the rule extraction can be applied to a general
smart home system.

Finally, we proposed a hybrid system called HKD-SHO, which combines the selec-
ted SHOMA architectures (EPbA and RSAbA) and the PBRE variant (for dynamic rule
extraction from multiple services). HKD-SHO can create dynamic services based on
three types of smart home services : preexisting rules based service, extracted rules
based service, and data-driven service. These created services are explicable, conflict-
free and with an accelerated learning phase. The reasons for the existence of the three
types of services are explained as follows.

For preexisting rules based services, if the inhabitant’s target monitored state is
easy to realize, then there is no need to create a data-driven service that takes time to
be well trained. Moreover, if the decision-making from these rules is not satisfactory,
the user can track and modify the unsatisfying rule.

For extracted rules based services, rules are extracted from data-driven services
only when they propose actuators’ states that can meet the targets of the monitored
states. Therefore, the services created by extracted rules can achieve higher inhabi-
tant satisfaction than the corresponding data-driven services. In addition, during the
learning process, the data-driven mechanism sometimes randomly suggest states for
actuators instead of selecting actuators’ states more likely to lead to satisfying mo-
nitored states. This exploration process can discover the inhabitant’s less frequent
behavior patterns. In this case, the extracted rules corresponding to these patterns
can represent less frequent services. Such less frequent services can be ignored by
data-driven services. Moreover, when the extracted rules based services are used for
decision-making, they can help to justify the decision-making. Furthermore, the states
proposed for the actuators are conflict-free.

For data-driven services, since both preexisting rules based services and extrac-
ted rules based services cannot ensure to cover all possible situations, we still need
data-driven services to perform decision-making by interacting with the inhabitant.
Since the data-driven services adapt to the inhabitant’s preferences and the changing
environment states, and rules are extracted only for the cases where the data-driven
services succeeded in providing satisfying actuators’ states, the data-driven services
can guarantee the correctness and adaptation of the extracted rules based services.

HKD-SHO is evaluated through several simulated experiments. In each expe-

160

CHAPTER 9. CONCLUSION

riment, HKD-SHO simulates a smart home system with two and three simulated
target-defined services with and without constraining the use of the actuator wit lo-
wer priority. Furthermore, in each experiment, HKD-SHO-based smart home system
is compared with smart homes, respectively modeled by two other systems. The first
is the learning method-based system without preexisting rules, and the second is the
learning method-based system with preexisting rules. The evaluation results show
the better performance of HKD-SHO.

9.2 Discussion

Our proposals have some limitations :
1. In our approach to define a single service, we used a time step and made the

hypothesis that the inhabitant reacts within the time step. This hypothesis may
be too strong and is not easy to be satisfied by some services.

2. We did not provide a method to ensure that the interval of the time step used by
a given service is appropriate.

3. During the proposition of SHOMA architectures, we supposed that the time steps
of all services have the same time intervals. Finding this common interval is not
guaranteed in all situations.

4. In our PBRE algorithm to generate rules, we did not consider the properties
(e.g., conciseness) of the generated rules and whether they are easily used for
the purpose of explainability.

5. In the simulation phase, it is difficult to consider target-undefined services be-
cause of the complexity of modeling environment behavior.

6. In our SHOMA architectures to create multiple services, we did not work on
mixing target-defined and target-undefined services.

9.3 Perspectives

Some perspectives are interesting to be explored in our future studies. We could
improve the simulation from the following perspectives :
1. When simulating a smart home system with multiple target-defined services,

the inhabitant profile can contain the target monitored states and the constraint

161

CHAPTER 9. CONCLUSION

on the use of the actuators with lower priority. This constraint is a first step to
realize energy saving. It can be extended by considering the working duration
to the states of energy consuming actuators.

2. To deploy a smart home system with RL-based services in the real world, we
propose to pretrain these services in simulation. After being well trained, these
services are deployed in the real world and continue their training process. To
ensure that the pretrained services have a better knowledge about the prefe-
rences of the real inhabitant, we should ensure that the simulated inhabitant
profile and the simulated physical phenomena of the environment states are as
similar as possible to those of the real world.

3. When trying to model the dynamic characteristics of the environment states
in the simulation phase, it can be interesting to consider the co-influence bet-
ween different physical phenomena, for example, the indoor temperature can
influence the indoor humidity through co-simulation.

Considering the energy saving, we can have the following perspectives :
1. To realize the energy saving for a specific service, it would be interesting in a

multiple services architecture to define an energy saving service and combine
this energy saving service with that specific service to try to realize the energy
saving for that specific service.

2. It would also be interesting to define an energy saving service to try to achieve
energy savings for all smart home services and not just one specific service.

Finally, we can work on improving the inhabitant’s experience from the following
perspectives :
1. When evaluating the rule extraction capability of PBRE and the HKD-SHO, it is

essential to assess the explicability of the extracted rules and the performance
of HKD-SHO using qualitative results obtained through focus groups.

2. Our study only considers a smart home systemwith only one inhabitant. It would
be promising to study how to improve the contributions for a smart home system
with multiple inhabitants.

162

A
Synopsis en Français

Chapitre 1

Avec l’introduction de l’IdO (Internet des Objets), la maison intelligente devient
de plus en plus populaire. Son intelligence se concrétise par la création de services
de maison intelligente implique généralement une spécification logique et physique.
La spécification logique concerne la conception de la logique de prise de décision
en proposant des états aux actionneurs après avoir pris en compte les valeurs d’état
de l’environnement détectées par les capteurs. La spécification physique concerne la
partie matérielle, compris la manière de collecter les données de l’environnement, de
transmettre les données aux services à l’aide de différents protocoles et de déployer
le système de maison intelligente dans le monde réel. Dans notre étude, nous nous
concentrons uniquement sur la prise de décision logique pour créer des services de
maison intelligente.

Pour créer des services, nous cherchons à résoudre quatre questions de recherche :
(1). Comment créer un service de maison intelligente qui peut s’adapter à l’évolu-
tion dynamique des préférences de l’habitant ? (2). Comment créer des services mul-
tiples qui fonctionnent sans conflits ? (3). Comment rendre les services explicables ?
(4). Comment garantir les caractéristiques ci-dessus en même temps? Pour répondre
à ces questions, dans notre étude, nous avons fait un état de l’art des approches exis-
tantes pour créer des services. Ces approches peuvent être classées en trois catégo-
ries : Les approches basées sur la connaissance, les approches dirigées par les données,
et les approches hybrides qui contiennent les deux catégories. Nous avons analysé les
avantages et les inconvénients de ces approches. Pour résoudre ces inconvénients, hé-

163

ANNEXE A. SYNOPSIS EN FRANÇAIS

riter de ses avantages et résoudre les questions de recherche, nous avons fait quatre
contributions, chacune pouvant répondre à l’une des questions de recherche.

Chapitre 2

Les approches basées sur la connaissance sont l’une des plus importantes pour le
développement de services de maison intelligente. Un système basé sur les connais-
sances se compose généralement d’une représentation des connaissances et d’un mo-
teur d’inférence. La représentation des connaissances contient divers faits et règles. La
création de services de maison intelligente à l’aide d’approches basées sur la connais-
sance consiste à établir un ensemble de règles. Il existe plusieurs types de repré-
sentations des connaissances, dont l’ontologie est l’une des plus connues, et OWL
(Web Ontology Language) est l’une des ontologies les plus connues conçues pour le
web sémantique. Comme notre étude se concentre sur la maison intelligente, mal-
gré les nombreuses ontologies, nous avons choisi d’utiliser l’ontologie SAREF (Smart
Appliances REFerence) dans notre travail, qui facilite la mise en correspondance des
modèles sémantiques existants dans le domaine des appareils intelligents et réduit
l’effort de conversion d’un modèle à l’autre.

Chapitre 3

Les approches dirigées par les données constituent une autre catégorie principale
d’approches utilisées pour le développement de services de maison intelligente. Dans
ce type d’approches, les services sont créés en proposant des états aux actionneurs
correspondants après avoir pris en compte les états actuels de l’environnement. Notre
étude se concentre principalement sur les approches dirigées par les données et ba-
sées sur l’apprentissage automatique. Cette approche peut créer dynamiquement des
services en apprenant à partir des ensembles de données disponibles. Selon que les
suggestions affectent ou non l’environnement, les algorithmes actuels d’apprentissage
automatique sont divisés en RL (Reinforcement Learning) lorsque la réponse est po-
sitive et en d’autres algorithmes lorsque la réponse est négative. Selon qu’il existe une
cible ou une étiquette pour chaque exemple au cours du processus d’apprentissage,
ces autres algorithmes peuvent être divisés en apprentissage supervisé lorsqu’il existe
des cibles ou des étiquettes et en apprentissage non supervisé lorsqu’il n’y a pas de

164

ANNEXE A. SYNOPSIS EN FRANÇAIS

cibles ou d’étiquettes. Comme le RL peut créer dynamiquement des services en inter-
agissant avec l’environnement, nous avons tendance à l’utiliser pour créer des services
de maison intelligente qui peuvent suggérer dynamiquement l’état des actionneurs
en fonction de la satisfaction ou de l’insatisfaction de l’habitant. En outre, bien qu’il
existe de nombreux algorithmes de RL, compte tenu de la difficulté de modéliser
l’environnement sur la base d’un ensemble de probabilités de transition et de la né-
cessité de prendre en compte la réaction de l’habitant à chaque étape du temps, dans
notre étude, nous utilisons Q learning comme algorithme de RL sélectionné. Il est
également proposé d’intégrer le RL à d’autres algorithmes d’apprentissage automa-
tique tels que les MLP (MultiLayer Perceptron) et les cellules LSTM (Long Short Term
Memory) afin que le RL puisse apprendre les modèles de systèmes plus complexes.

Chapitre 4

Ni les approches basées sur les connaissances ni celles dirigées par les données ne
peuvent créer des services de manière satisfaisante, car les approches basées sur les
connaissances sont limitées en termes d’adaptabilité dynamique (les règles de com-
portement sont prédéfinies au moment de la conception) et les approches dirigées par
les données sont limitées en termes d’explicabilité (la logique de la prise de décision
n’est pas explicite). Pour résoudre ces problèmes, certains travaux ont proposé des
systèmes hybrides qui combinent les deux approches : ils utilisent les services basés
sur la connaissance pour contrôler le système jusqu’à ce que les services dirigés par
les données soient bien entraînés. Ensuite, les services dirigés par les données rempla-
ceront les services basés sur les connaissances pour contrôler le système. Cependant,
les services basés sur les connaissances ne peuvent pas garantir qu’ils peuvent faire
des propositions pour n’importe quel environnement, tandis que les services dirigés
par les données sont comme des boîtes noires, et l’habitant ne sait pas dans quelles
situations certains services ont proposé certains états d’actionneurs. Par conséquent,
nous envisageons un autre système hybride pour surmonter les problèmes du système
hybride existant.

Chapitre 5

Dans notre étude, nous définissons qu’un service de maison intelligente est un mé-

165

ANNEXE A. SYNOPSIS EN FRANÇAIS

canisme qui communique avec des dispositifs (capteurs et actionneurs) afin de pro-
duire les changements appropriés de l’état monitoré correspondant afin de se confor-
mer aux besoins de l’habitant. Dans ce contexte, notre première proposition est une
méthode RL pour concevoir un seul service pour une maison intelligente. Nous avons
distingué deux types de services, à savoir : (a) cible définie où l’utilisateur fixe une va-
leur pour un état monitoré que le service surveille. (b) cible non définie où le service
se base uniquement sur les observations des actions de l’habitant sur les actionneurs,
et cette action produit soit une récompense positive, soit une récompense négative.
Nous avons ensuite présenté une solution de simulation qui permet de pré-entraîner
le service afin d’accélérer la phase d’apprentissage.

Chapitre 6

nous avons étendu le modèle de service unique basé sur le RL et proposé plusieurs
architectures sous le nom collectif de SHOMA (Smart HOme-based Multi-services
Architectures), afin de créer de multiples services de maison intelligente. Les archi-
tectures SHOMA garantissent qu’il n’y a pas de conflits entre les services créés. Elles
sont classées en architectures basées sur des services fusionnés et en architectures
basées sur des services composites, selon que tous les services sont fusionnés en un
seul service ou non. Les deux catégories d’architecture sont ensuite divisées en plu-
sieurs sous-catégories. Nous avons évalué ces architectures au moyen de plusieurs
expériences simulées. Dans chaque expérience, deux ou trois services simulés de mai-
son intelligente de type cible définies sont modélisés. En outre, le profil de l’habitant
simulé inclut les cibles des états monitorés et, optionnellement, contraint l’utilisa-
tion des actionneurs de moindre priorité. Les expériences démontrent la meilleure
performance des architectures composites basées sur les services et sélectionnent les
architectures : RSAbA (Remove Shared Actuators-based Architecture) et EPbA (Equal
Priority-based Architecture).

Chapitre 7

Afin d’associer un mécanisme décisionnel équivalent basé sur le raisonnement aux
services dirigés par les données, nous avons proposé une méthode d’extraction de
règles appelée PBRE (Pedagogic Based Rule Extractor). PBRE a été conçue pour ex-

166

ANNEXE A. SYNOPSIS EN FRANÇAIS

traire des règles qui font des propositions d’état sans conflit à partir d’approches diri-
gées par les données déjà entraînées, sans dépendre du nombre de sorties, des types
de données d’entrée et de la structure des algorithmes dirigés par les données. Nous
avons mené plusieurs expériences pour évaluer les performances de PBRE et les com-
parer à une méthode d’extraction de règles existante. Ces expériences impliquent
l’extraction de règles à partir de systèmes d’apprentissage utilisés pour modéliser
six ensembles de données de référence et à partir de systèmes d’apprentissage uti-
lisés pour simuler trois services d’intensité lumineuse. Les résultats ont montré une
meilleure performance de PBRE. Nous avons également montré comment l’extraction
de règles peut être intégrée dans la création de services pour un système de maison
intelligente. En outre, nous avons modifié PBRE pour garantir qu’il peut extraire dy-
namiquement des règles qui peuvent faire des propositions sans conflit pendant les
processus de l’apprentissage des approches dirigées par les données. En outre, nous
avons proposé un mécanisme pour réaliser l’extraction de règles à partir de services
multiples basés sur la variante PBRE afin que l’extraction de règles puisse être appli-
quée à un système de maison intelligente général.

Chapitre 8

Nous avons proposé un système hybride appelé HKD-SHO (Hybrid Knowledge-
based and Data-driven services-based Smart HOme system), qui combine les architec-
tures SHOMA sélectionnées (EPbA et RSAbA) et la variante PBRE (pour l’extraction
dynamique de règles à partir de services multiples). HKD-SHO peut créer des ser-
vices dynamiques basés sur trois types de services : les services basés sur des règles
préexistantes, les services basés sur des règles extraites et les services basés sur des
données. Ces services créés sont explicables, exempts de conflits et dotés d’une phase
d’apprentissage accélérée. Les raisons de l’existence de ces trois types de services sont
expliquées ci-dessous.

Pour les services basés sur des règles préexistantes, si la valeur cible de l’état mo-
nitoré définie par l’habitant est facile à réaliser, il n’est pas nécessaire de créer un
service basé sur des données qui nécessite du temps pour être bien formé. De plus,
si la prise de décision à partir de ces règles n’est pas satisfaisante, l’utilisateur peut
suivre et modifier la règle qui n’est pas satisfaisante.

Pour les services basés sur des règles extraites, les règles sont extraites des services

167

ANNEXE A. SYNOPSIS EN FRANÇAIS

dirigés par les données uniquement lorsqu’elles proposent des états d’actionneurs qui
peuvent atteindre les cibles des états monitorés. Par conséquent, les services créés par
les règles extraites peuvent atteindre une plus grande satisfaction de l’habitant que
les services correspondants dirigés par les données. De plus, pendant le processus
d’apprentissage, le mécanisme dirigés par les données suggère parfois au hasard des
états pour les actionneurs au lieu de sélectionner les états des actionneurs les plus
susceptibles de conduire à des valeurs cibles des états monitorés. Ce processus d’ex-
ploration peut découvrir les comportements les moins fréquents de l’habitant. Dans
ce cas, les règles extraites correspondant à ces motifs peuvent représenter des services
moins fréquents. Ces services moins fréquents peuvent être ignorés par les services
basés sur les données. De plus, lorsque les services basés sur des règles extraits sont
utilisés pour la prise de décision, ils peuvent aider à justifier la prise de décision. De
plus, les états proposés pour les actionneurs sont sans conflit.

Pour les services dirigés par les données, étant donné que les services préexistants
basés sur des règles et les services extraits basés sur des règles ne peuvent pas couvrir
toutes les situations possibles, nous avons toujours besoin de services dirigés par les
données pour prendre des décisions en interagissant avec l’habitant. Étant donné que
les services dirigés par les données s’adaptent aux préférences de l’habitant et à l’évo-
lution de l’environnement, et que les règles ne sont extraites que dans les cas où les
services dirigés par les données ont réussi à fournir des états d’actionneurs satisfai-
sants, les services dirigés par les données peuvent garantir l’exactitude et l’adaptation
des services basés sur des règles extraites.

HKD-SHO est évalué au moyen de plusieurs expériences simulées. Dans chaque
expérience, HKD-SHO simule un système de maison intelligente avec deux et trois
services simulés de type cible définis avec et sans contrainte d’utilisation de l’action-
neur avec une priorité plus faible. En outre, dans chaque expérience, le système de
maison intelligente basé sur HKD-SHO est comparé à des maisons intelligentes mo-
délisées par deux autres systèmes. Le premier est le système basé sur la méthode d’ap-
prentissage sans règles préexistantes, et le second est le système basé sur la méthode
d’apprentissage avec règles préexistantes. Les résultats de l’évaluation montrent les
meilleures performances de HKD-SHO.

168

ANNEXE A. SYNOPSIS EN FRANÇAIS

Chapitre 9

La conclusion sur les principaux résultats de notre travail est fournie. En outre,
nous avons discuté de certaines limites de notre travail. Par exemple, l’habitant doit
réagir dans le pas de temps, ce qui peut être une hypothèse forte lorsque le système
est déployé dans le monde réel. En outre, des perspectives intéressantes sur différents
aspects, tels que l’économie d’énergie et l’expérience de l’habitant, sont fournies.

169

B
Publications

• Qiu, M., Najm, E., Sharrock, R., & Traverson, B. (2022, July). Pbre : A rule ex-
traction method from trained neural networks designed for smart home services.
In Database and Expert Systems Applications : 33rd International Conference,
DEXA 2022, Vienna, Austria, August 22–24, 2022, Proceedings, Part II (pp. 158-
173). Cham : Springer International Publishing. [103]

• M. Qiu, E. Najm, R. Sharrock and B. Traverson, "Reinforcement Learning Based
Architectures for Dynamic Generation of Smart Home Services," 2022 21st IEEE
International Conference on Machine Learning and Applications (ICMLA), Nas-
sau, Bahamas, 2022, pp. 7-14, doi : 10.1109/ICMLA55696.2022.00010. [104]

• M. Qiu, E. Najm, R. Sharrock and B. Traverson, "Reinforcement Learning Based
Architectures for the Creation of Dynamic Smart Home Services" submitted to
the journal Neurocomputing.

• M. Qiu, E. Najm, R. Sharrock and B. Traverson, "HKD-SHO : A hybrid system
based on knowledge-based and data-driven services for a smart home" submit-
ted the 35th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI).

170

C
Acronyms

(1). SAREF : Smart Appliances REFerence
(2). OWL : Web Ontology Language
(3). IoT : Internet of Things
(4). FOL : First Order Logic
(5). DL : Description Logic
(6). SWRL : Semantic Web Rule Language
(7). RDF : esource Description Framework
(8). RL : Reinforcement learning
(9). MBRL : Model-Based Reinforcement Learning

(10). MBFL : Model-Free Reinforcement Learning
(11). MC : Monte Carlo Learning
(12). TD : Temporal Difference
(13). DRL : Deep Learning-based Reinforcement Learning
(14). MLP : MultiLayer Perceptions
(15). LSTM : Long Short Term Memory
(16). RNN : Recurrent Neural Network
(17). SHOMA : Smart HOme-based Multi-services Architectures
(18). OLSbA : One Learning System-based Architecture
(19). QmixbA : Qmix-based Architecture
(20). RSAbA : Remove shared Actuators based Architecture

171

ANNEXE C. ACRONYMS

(21). CCbA : Common Controller-based Architecture
(22). PbA : Priority-based Architecture
(23). EPbA : Equal Priority based Architecture
(24). TRbA : Total Reward-based Architecture
(25). CSbA : Context Sharing-based Architecture
(26). PBRE : Pedagogic Based Rule Extractor
(27). HKD-SHO : Hybrid Knowledge and Data-driven services based Smart HOme

system
(28). PPMCC : Pearson Product Moment Correlation Coefficients
(29). DQN : Deep Q-Network

172

D
Glossary

(1). environment states : The environment stands for the surroundings inside and
outside the house. The environment states are various physical variables used to
describe the environment, e.g., temperature, air quality, light intensity, etc.

(2). monitored state : A monitored state is a state that is of interest to the inhabi-
tant, usually inside the smart home, such as the temperature, light intensity, or
air quality in the room. Its value is influenced either by external phenomena (na-
tural or artificial) or controlled by the execution of different actions by different
actuators.

(3). observable environment states : The environment states whose values can be
observed by users are called observable environment states, such as the states of
the actuators and the states whose values can be captured by sensors

(4). target monitored state : The value that the monitored state is required to
achieve, and can only be determined by the inhabitant.

(5). smart home : A smart home is a house with numerous services that can dyna-
mically evolve through appropriate devices.

(6). smart home service : Each smart home service adjusts one monitored state by
commanding a set of actuators to perform corresponding actions according to
the environment state values detected by the associated sensors.

(7). action quality value : An action quality value represents the long-term reward
that the RL agent could receive if it selects the corresponding state as the new
state for the associated actuator.

(8). training dataset : The dataset used to train the data-driven based systems.

173

ANNEXE D. GLOSSARY

(9). test dataset : This dataset usually comes from the same distribution with the
training dataset. It is used to evaluate the data-driven based systems and is never
used to train the data-driven system.

(10). Simple smart home system : A simple smart home system is a smart home
system that contains one smart home service.

(11). knowledge-based service : The knowledge-based service is composed by a set
of rules. These rules can be triggered to propose actuators’ states so as to change
the values of monitored states.

(12). well-trained learning system : a learning system is well-trained if the parameter
values are stable and do not show large changes. Or the difference between the
prediction of the learning method-system and the corresponding target value is
small and does not show large changes.

(13). insignificant states : Insignificant states, or more specifically, insignificant input
states, means that the deletion of these input states has no significant influence
on the precision of the learning method-based system.

174

E
Variables

(1). r : reward
(2). t : time step t.
(3). T : total number of time steps.
(4). ep : one episode.
(5). Epoch : total number of episodes.
(6). O : observable environment states.
(7). X : input states of (an) RL algorithm(s)
(8). S : a set of sensor variables storing values of different states. S = {s0, s1, · · ·},

were s0 is the monitored variable holding the value of the monitored state.
(9). A : actuator variables storing actuators’ current states. A = {a0, a1, a2, · · ·},

where a0 is the target variable holding target values to be met by the monitored
state, and can only be defined by the inhabitant through a′0.

(10). A′ : a set of variables used to assign values to actuator variables by the inhabi-
tant. A′ = {a′0, a′1, a′2, · · · , }, where a′0 is the target assignment variable, and the
inhabitant uses it to define target value for a0.

(11). Az : variables used to assign values to actuator variables by the service, where
Az = {az1, az2, · · · , }.

(12). Q : action quality value
(13). M : replay memory composed by multiple transitions.
(14). e : one transition

175

ANNEXE E. VARIABLES

(15). L : minibatch representing the minimum number of transitions used to train the
RL algorithm

(16). sz0 : updated monitored state, resulting from the actuators changing their states
to the states proposed by the service

(17). s′0 : updated monitored state, resulting from the actuators changing their states
to the states proposed by the inhabitant

(18). us : sensor variable capturing the inhabitant state.
(19). le : sensor variable capturing the outdoor light intensity.
(20). te : sensor variable capturing the outdoor temperature.
(21). ae : sensor variable capturing the outdoor air quality.
(22). lr : sensor variable capturing the indoor light intensity.
(23). tr : sensor variable capturing the indoor temperature.
(24). ar : sensor variable capturing the indoor air quality.
(25). lp : actuator variable representing the lamp state.
(26). cur : actuator variable representing the curtain state.
(27). ac : actuator variable representing the air conditioner state.
(28). win : actuator variable representing the window state.
(29). ap : actuator variable representing the air purifier state.
(30). wct : actuator variable representing the working duration for windows and cur-

tain.
(31). act : actuator variable representing the air conditioner working duration.
(32). apt : actuator variable representing the air purifier working duration.
(33). GR : extracted rules
(34). ER : preexisting rules

.

176

Bibliography
[1] Smart appliances reference (saref) ontology. https://sites.google.com/site/

smartappliancesproject/ontologies/reference-ontology.

[2] Facts, rules, goals and queries. http://www.ablmcc.edu.hk/~scy/prolog/
pro02.htm.

[3] Air flow volume and velocity. https://www.engineeringtoolbox.com/
natural-draught-ventilation-d_122.html.

[4] Rule builder’s guide. https://publib.boulder.ibm.com/tividd/td/tec/
GC32-0669-01/en_US/HTML/RBGmst324.htm.

[5] Ifttt. https://ifttt.com/, .

[6] What is ifttt ? the ultimate guide. https://www.safewise.com/au/what-is-ifttt/
#:~:text=IFTTT%20stands%20for%20%E2%80%9CIf%20This,camera%
20and%20some%20smart%20lights., .

[7] What is ifttt ? how to use if this, then that ser-
vices. https://www.computerworld.com/article/3239304/
what-is-ifttt-how-to-use-if-this-then-that-services.html, .

[8] A brief history of smart home automation. https://zeusintegrated.com/blog/
item/a-brief-history-of-smart-home-automation, . Accessed : 2022-12-26.

[9] The number of smart homes in europe and north america
reached 105 million in 2021. https://www.berginsight.com/
the-number-of-smart-homes-in-europe-and-north-america-reached-105-million-in-2021,
. Accessed : 2022-12-26.

[10] F. K. Aldrich. Smart homes : past, present and future. In Inside the smart home,
pages 17–39. Springer, 2003.

[11] E. Alpaydin. Machine learning. MIT Press, 2021.

[12] R. Andrews, J. Diederich, and A. B. Tickle. Survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-Based

177

https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
http://www.ablmcc.edu.hk/~scy/prolog/pro02.htm
http://www.ablmcc.edu.hk/~scy/prolog/pro02.htm
https://www.engineeringtoolbox.com/natural-draught-ventilation-d_122.html
https://www.engineeringtoolbox.com/natural-draught-ventilation-d_122.html
https://publib.boulder.ibm.com/tividd/td/tec/GC32-0669-01/en_US/HTML/RBGmst324.htm
https://publib.boulder.ibm.com/tividd/td/tec/GC32-0669-01/en_US/HTML/RBGmst324.htm
https://ifttt.com/
https://www.safewise.com/au/what-is-ifttt/#:~:text=IFTTT%20stands%20for%20%E2%80%9CIf%20This,camera%20and%20some%20smart%20lights.
https://www.safewise.com/au/what-is-ifttt/#:~:text=IFTTT%20stands%20for%20%E2%80%9CIf%20This,camera%20and%20some%20smart%20lights.
https://www.safewise.com/au/what-is-ifttt/#:~:text=IFTTT%20stands%20for%20%E2%80%9CIf%20This,camera%20and%20some%20smart%20lights.
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://zeusintegrated.com/blog/item/a-brief-history-of-smart-home-automation
https://zeusintegrated.com/blog/item/a-brief-history-of-smart-home-automation
https://www.berginsight.com/the-number-of-smart-homes-in-europe-and-north-america-reached-105-million-in-2021
https://www.berginsight.com/the-number-of-smart-homes-in-europe-and-north-america-reached-105-million-in-2021

BIBLIOGRAPHY

Systems, 8(6) :373–389, 1995. ISSN 0950-7051. doi : https://doi.org/10.
1016/0950-7051(96)81920-4. Knowledge-based neural networks.

[13] R. Andrews, J. Diederich, and A. B. Tickle. Survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-based
systems, 8(6) :373–389, 1995.

[14] G. Ansanay-Alex. Estimating occupancy using indoor carbon dioxide concen-
trations only in an office building : a method and qualitative assessment. In
REHVAWorld Congress on Energy efficient, smart and healthy buildings (CLIMA),
pages 1–8, 2013.

[15] S. Appliances. Smartm2m; smart appliances ; reference ontology and onem2m
mapping, 2017.

[16] A. D. Arbatli and H. L. Akin. Rule extraction from trained neural networks
using genetic algorithms. Nonlinear Analysis : Theory, Methods & Applications,
30(3) :1639–1648, 1997.

[17] R. B. Baghli. Approche sémantique de la conception de services connectés : cadre
d’architecture, algorithmique de composition, application à la maison connectée.
PhD thesis, Télécom ParisTech, 2017.

[18] Z. Baida, J. Gordijn, and H. Akkermans. Service ontology. Vrije Universität
Amsterdam, 2003.

[19] N. Balta-Ozkan, B. Boteler, and O. Amerighi. European smart home market
development : Public views on technical and economic aspects across the uni-
ted kingdom, germany and italy. Energy Research & Social Science, 3 :65–77,
2014.

[20] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coefficient. In
Noise reduction in speech processing, pages 1–4. Springer, 2009.

[21] J. Š. Benth and F. E. Benth. A critical view on temperature modelling for
application in weather derivatives markets. Energy Economics, 34(2) :592–
602, 2012.

[22] H. Berlink and A. H. Costa. Batch reinforcement learning for smart home
energy management. In Twenty-Fourth International Joint Conference on Arti-
ficial Intelligence, 2015.

178

BIBLIOGRAPHY

[23] T. Berners-Lee and D. Connolly. Notation3 (n3) : A readable rdf syntax. https:
//www.w3.org/TeamSubmission/n3/.

[24] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific ameri-
can, 284(5) :34–43, 2001.

[25] S. K. Biswas, M. Chakraborty, B. Purkayastha, P. Roy, and D. M. Thounaojam.
Rule extraction from training data using neural network. International Journal
on Artificial Intelligence Tools, 26(03) :1750006, 2017.

[26] H. Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet, and G.Wagner. Fol
ruleml : The first-order logic web language. https://www.w3.org/Submission/
FOL-RuleML/.

[27] H. Boley, A. Paschke, and O. Shafiq. Ruleml 1.0 : the overarching specification
of web rules. In International Workshop on Rules and Rule Markup Languages
for the Semantic Web, pages 162–178. Springer, 2010.

[28] O. Brdiczka, J. L. Crowley, and P. Reignier. Learning situation models in a smart
home. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(1) :56–63, 2008.

[29] H. Bride, J. Dong, J. S. Dong, and Z. Hóu. Towards dependable and explainable
machine learning using automated reasoning. In International Conference on
Formal Engineering Methods, pages 412–416. Springer, 2018.

[30] S. L. Brunton and J. N. Kutz. Data-driven science and engineering : Machine
learning, dynamical systems, and control. Cambridge University Press, 2022.

[31] F. Burzlaff, M. Ackel, and C. Bartelt. A mapping language for iot device des-
criptions. 2019.

[32] R. Buyya, R. N. Calheiros, and A. V. Dastjerdi. Big data : principles and para-
digms. Morgan Kaufmann, 2016.

[33] S. Çalışır and M. K. Pehlivanoğlu. Model-free reinforcement learning algo-
rithms : A survey. In 2019 27th Signal Processing and Communications Appli-
cations Conference (SIU), pages 1–4. IEEE, 2019.

[34] D. Chaki and A. Bouguettaya. Fine-grained conflict detection of iot services. In
2020 IEEE International Conference on Services Computing (SCC), pages 321–
328. IEEE, 2020.

179

https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/Submission/FOL-RuleML/
https://www.w3.org/Submission/FOL-RuleML/

BIBLIOGRAPHY

[35] D. Chaki, A. Bouguettaya, and S. Mistry. A conflict detection framework for iot
services in multi-resident smart homes. In 2020 IEEE International Conference
on Web Services (ICWS), pages 224–231. IEEE, 2020.

[36] M. Chan, D. Estève, C. Escriba, and E. Campo. A review of smart
homes—present state and future challenges. Computer methods and programs
in biomedicine, 91(1) :55–81, 2008.

[37] M. Coggan. Exploration and exploitation in reinforcement learning. Research
supervised by Prof. Doina Precup, CRA-W DMP Project at McGill University, 2004.

[38] T. Contributor. first-order logic. https://www.techtarget.com/whatis/
definition/first-order-logic.

[39] M. W. Craven. Extracting comprehensible models from trained neural networks.
The University of Wisconsin-Madison, 1996.

[40] M. W. Craven and J. W. Shavlik. Learning symbolic rules using artificial neu-
ral networks. In Proceedings of the Tenth International Conference on Machine
Learning, pages 73–80, 2014.

[41] A. Dasgupta and A. Nath. Classification of machine learning algorithms. In-
ternational Journal of Innovative Research in Advanced Engineering (IJIRAE), 3
(3) :6–11, 2016.

[42] H. Daumé. A course in machine learning. Hal Daumé III, 2017.

[43] P. Dayan, M. Sahani, and G. Deback. Unsupervised learning. The MIT encyclo-
pedia of the cognitive sciences, pages 857–859, 1999.

[44] D. Delande, P. Stolf, R. Feraud, J.-M. Pierson, and A. Bottaro. Horizontal sca-
ling in cloud using contextual bandits. In Euro-Par 2021 : Parallel Processing :
27th International Conference on Parallel and Distributed Computing, Lisbon,
Portugal, September 1–3, 2021, Proceedings, pages 285–300. Springer, 2021.

[45] K. R. Dittrich, S. Gatziu, and A. Geppert. The active database management
system manifesto : A rulebase of adbms features. In Rules in Database Systems :
Second International Workshop, RIDS’95 Glyfada, Athens, Greece, September 25–
27, 1995 Proceedings 2, pages 1–17. Springer, 1995.

180

https://www.techtarget.com/whatis/definition/first-order-logic
https://www.techtarget.com/whatis/definition/first-order-logic

BIBLIOGRAPHY

[46] A. dos Santos Mignon and R. L. d. A. da Rocha. An adaptive implementation
of ε-greedy in reinforcement learning. Procedia Computer Science, 109 :1146–
1151, 2017.

[47] A. Fantechi, G. Gori, J. Parri, and S. Sampietro. Stingray project : Smart stations
as hubs of infomobility services for smart cities. 02 2022.

[48] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. An
introduction to deep reinforcement learning. arXiv preprint arXiv :1811.12560,
2018.

[49] L. Fu. Rule learning by searching on adapted nets. In AAAI, volume 91, pages
590–595, 1991.

[50] L.-M. Fu. Knowledge-based connectionism for revising domain theories. IEEE
Transactions on Systems, Man, and Cybernetics, 23(1) :173–182, 1993.

[51] C. G. García, B. C. P. G-Bustelo, J. P. Espada, and G. Cueva-Fernandez. Midgar :
Generation of heterogeneous objects interconnecting applications. a domain
specific language proposal for internet of things scenarios. Computer Networks,
64 :143–158, 2014.

[52] C. Gershenson. Artificial neural networks for beginners. arXiv preprint
cs/0308031, 2003.

[53] Z. Ghahramani. Unsupervised learning. In Summer school on machine learning,
pages 72–112. Springer, 2003.

[54] S. Gu, E. Holly, T. P. Lillicrap, and S. Levine. Deep reinforcement learning for
robotic manipulation. arXiv preprint arXiv :1610.00633, 1, 2016.

[55] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint arXiv :1609.09106,
2016.

[56] T. Hailesilassie. Rule extraction algorithm for deep neural networks : A review.
arXiv preprint arXiv :1610.05267, 2016.

[57] D. A. Handelman, S. H. Lane, and J. J. Gelfand. Integrating neural networks
and knowledge-based systems for intelligent robotic control. IEEE Control Sys-
tems Magazine, 10(3) :77–87, 1990.

181

BIBLIOGRAPHY

[58] E. Hansen, A. Barto, and S. Zilberstein. Reinforcement learning for mixed
open-loop and closed-loop control. Advances in Neural Information Processing
Systems, 9, 1996.

[59] R. Harper. Inside the smart home. Springer Science & Business Media, 2006.

[60] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan,
J. Quan, A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[61] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8) :1735–1780, 1997.

[62] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
Swrl : A semantic web rule language combining owl and ruleml. https://www.
w3.org/Submission/SWRL/.

[63] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, et al.
Swrl : A semantic web rule language combining owl and ruleml. W3C Member
submission, 21(79) :1–31, 2004.

[64] E. Houzé. A generic and adaptive approach to explainable AI in autonomic sys-
tems : the case of the smart home. PhD thesis, Institut Polytechnique de Paris,
2022.

[65] Hugh Perkins. How to distinguish episodic task and continuous tasks ? https:
//stats.stackexchange.com/a/271358, 2017.

[66] J. Huysmans, B. Baesens, and J. Vanthienen. Using rule extraction to improve
the comprehensibility of predictive models. 2006.

[67] S. Ilyas et al. The impact of revegetation on microclimate in coal mining areas
in east kalimantan. Journal of Environment and Earth Science, 2(11) :90–97,
2012.

[68] A. Jena. Apache jena : A free and open source java framework for building
semantic web and linked data applications. https://jena.apache.org/.

[69] A. S. Juraimi, M. Saiful, M. Begum, A. Anuar, and M. Azmi. Influence of floo-
ding intensity and duration on rice growth and yield. Pertanika J. Trop. Agric.
Sci, 32(2) :195–208, 2009.

182

https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
https://stats.stackexchange.com/a/271358
https://stats.stackexchange.com/a/271358
https://jena.apache.org/

BIBLIOGRAPHY

[70] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning : A
survey. Journal of artificial intelligence research, 4 :237–285, 1996.

[71] S. Kamruzzaman, M. Islam, et al. Extraction of symbolic rules from artificial
neural networks. arXiv preprint arXiv :1009.4570, 2010.

[72] L. H. Karlsen. Description logic 1 : Syntax and semantics. https://www.uio.no/
studier/emner/matnat/ifi/INF3170/h15/undervisningsmateriale/dl1.pdf.

[73] C. Kern, T. Klausch, and F. Kreuter. Tree-based machine learning methods for
survey research. In Survey research methods, volume 13, page 73. NIH Public
Access, 2019.

[74] J. M. K.W. Thoning, A.M. Crotwell. Atmospheric carbon dioxide dry air mole
fractions from continuous measurements at mauna loa, hawaii, barrow, alaska,
american samoa and south pole. https://doi.org/10.15138/yaf1-bk21, 2021.

[75] P. Langley et al. The changing science of machine learning. Machine learning,
82(3) :275–279, 2011.

[76] O. Lassila, F. van Harmelen, I. Horrocks, J. Hendler, and D. L. McGuinness. The
semantic web and its languages. IEEE Intelligent Systems and their Applications,
15(6) :67–73, 2000.

[77] S. Lee and D.-H. Choi. Reinforcement learning-based energy management of
smart home with rooftop solar photovoltaic system, energy storage system,
and home appliances. Sensors, 19(18) :3937, 2019.

[78] S. Lek and Y. Park. Multilayer perceptron. In S. E. Jørgensen and B. D. Fath, edi-
tors, Encyclopedia of Ecology, pages 2455–2462. Academic Press, Oxford, 2008.
ISBN 978-0-08-045405-4. doi : https://doi.org/10.1016/B978-008045405-4.
00162-2.

[79] S. Li, L. D. Xu, and S. Zhao. The internet of things : a survey. Information
systems frontiers, 17(2) :243–259, 2015.

[80] P. Lin, Q. Song, and Y. Wu. Fact checking in knowledge graphs with ontological
subgraph patterns. Data Science and Engineering, 3(4) :341–358, 2018.

[81] C. P. Ling, N. M. M. Noor, F. Mohd, et al. Knowledge representation model for
crime analysis. Procedia computer science, 116 :484–491, 2017.

183

https://www.uio.no/studier/emner/matnat/ifi/INF3170/h15/undervisningsmateriale/dl1.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3170/h15/undervisningsmateriale/dl1.pdf
https://doi.org/10.15138/yaf1-bk21

BIBLIOGRAPHY

[82] B. Liu. Supervised learning. In Web data mining, pages 63–132. Springer,
2011.

[83] H. Liu and R. Setiono. Chi2 : Feature selection and discretization of numeric
attributes. In Proceedings of 7th IEEE International Conference on Tools with
Artificial Intelligence, pages 388–391. IEEE, 1995.

[84] R. Liu and J. Zou. The effects of memory replay in reinforcement learning. In
2018 56th annual allerton conference on communication, control, and computing
(Allerton), pages 478–485. IEEE, 2018.

[85] R. Lutolf. Smart home concept and the integration of energy meters into a
home based system. In Seventh international conference on metering apparatus
and tariffs for electricity supply 1992, pages 277–278. IET, 1992.

[86] M. Ma, S. M. Preum, W. Tarneberg, M. Ahmed, M. Ruiters, and J. Stankovic.
Detection of runtime conflicts among services in smart cities. In 2016 IEEE In-
ternational Conference on Smart Computing (SMARTCOMP), pages 1–10. IEEE,
2016.

[87] L. Mainetti, V. Mighali, L. Patrono, and P. Rametta. A novel rule-based se-
mantic architecture for iot building automation systems. In 2015 23rd Inter-
national Conference on Software, Telecommunications and Computer Networks
(SoftCOM), pages 124–131. IEEE, 2015.

[88] S. N. Makhadmeh, A. T. Khader, M. A. Al-Betar, S. Naim, A. K. Abasi, and
Z. A. A. Alyasseri. Optimization methods for power scheduling problems in
smart home : Survey. Renewable and Sustainable Energy Reviews, 115 :109362,
2019.

[89] D. Marikyan, S. Papagiannidis, and E. Alamanos. A systematic review of the
smart home literature : A user perspective. Technological Forecasting and Social
Change, 138 :139–154, 2019.

[90] D. Martens, B. Baesens, and T. Van Gestel. Decompositional rule extraction
from support vector machines by active learning. IEEE Transactions on Know-
ledge and Data Engineering, 21(2) :178–191, 2008.

[91] D. Martens, J. Huysmans, R. Setiono, J. Vanthienen, and B. Baesens. Rule
extraction from support vectormachines : an overview of issues and application

184

BIBLIOGRAPHY

in credit scoring. Rule extraction from support vector machines, pages 33–63,
2008.

[92] D. L. McGuinness and F. van Harmelen. Owl web ontology language overview.
https://www.w3.org/TR/owl-features/.

[93] D. L. McGuinness, F. Van Harmelen, et al. Owl web ontology language over-
view. W3C recommendation, 10(10) :2004, 2004.

[94] T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement
learning : A survey. arXiv preprint arXiv :2006.16712, 2020.

[95] M. Mozer. Lessons from an Adaptive Home, pages 271 – 294. 01 2005. ISBN
9780471686590. doi : 10.1002/047168659X.ch12.

[96] M. C. Mozer. The neural network house : An environment hat adapts to its
inhabitants. In Proc. AAAI Spring Symp. Intelligent Environments, volume 58,
1998.

[97] K. P. Murphy. Machine learning : a probabilistic perspective. MIT press, 2012.

[98] C. Nandi and M. D. Ernst. Automatic trigger generation for rule-based smart
homes. In Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, pages 97–102, 2016.

[99] T. Nolle. service-oriented architecture (soa). https://www.techtarget.
com/searchapparchitecture/definition/service-oriented-architecture-SOA#:
~:text=Service%2Doriented%20architecture%20(SOA)%20is%20a%
20software%20development%20model,to%20complete%20a%20specific%
20task., 2020.

[100] ontology2.com. Forward chaining with the jena rules language. https:
//ontology2.com/the-book/jena-rule-language.html.

[101] N. W. Paton and O. Diaz. Active database systems. ACM Computing Surveys
(CSUR), 31(1) :63–103, 1999.

[102] A. Persily and L. de Jonge. Carbon dioxide generation rates for building occu-
pants. Indoor air, 27(5) :868–879, 2017.

185

https://www.w3.org/TR/owl-features/
https://www.techtarget.com/searchapparchitecture/definition/service-oriented-architecture-SOA#:~:text=Service%2Doriented%20architecture%20(SOA)%20is%20a%20software%20development%20model,to%20complete%20a%20specific%20task.
https://www.techtarget.com/searchapparchitecture/definition/service-oriented-architecture-SOA#:~:text=Service%2Doriented%20architecture%20(SOA)%20is%20a%20software%20development%20model,to%20complete%20a%20specific%20task.
https://www.techtarget.com/searchapparchitecture/definition/service-oriented-architecture-SOA#:~:text=Service%2Doriented%20architecture%20(SOA)%20is%20a%20software%20development%20model,to%20complete%20a%20specific%20task.
https://www.techtarget.com/searchapparchitecture/definition/service-oriented-architecture-SOA#:~:text=Service%2Doriented%20architecture%20(SOA)%20is%20a%20software%20development%20model,to%20complete%20a%20specific%20task.
https://www.techtarget.com/searchapparchitecture/definition/service-oriented-architecture-SOA#:~:text=Service%2Doriented%20architecture%20(SOA)%20is%20a%20software%20development%20model,to%20complete%20a%20specific%20task.
https://ontology2.com/the-book/jena-rule-language.html
https://ontology2.com/the-book/jena-rule-language.html

BIBLIOGRAPHY

[103] M. Qiu, E. Najm, R. Sharrock, and B. Traverson. Pbre : A rule extractionmethod
from trained neural networks designed for smart home services. In Interna-
tional Conference on Database and Expert Systems Applications, pages 158–173.
Springer, 2022.

[104] M. Qiu, E. Najm, R. Sharrock, and B. Traverson. Reinforcement learning based
architectures for dynamic generation of smart home services. In 2022 21st IEEE
International Conference on Machine Learning and Applications (ICMLA), pages
7–14, 2022. doi : 10.1109/ICMLA55696.2022.00010.

[105] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. White-
son. Qmix : Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In International Conference on Machine Learning, pages
4295–4304. PMLR, 2018.

[106] M. Ribeiro, K. Grolinger, and M. A. Capretz. Mlaas : Machine learning as a
service. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 896–902. IEEE, 2015.

[107] K. Rose, S. Eldridge, and L. Chapin. The internet of things : An overview. The
internet society (ISOC), 80 :1–50, 2015.

[108] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[109] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforcement learning
framework for autonomous driving. arXiv preprint arXiv :1704.02532, 2017.

[110] R. Setiono and H. Liu. Neurolinear : From neural networks to oblique decision
rules. Neurocomputing, 17(1) :1–24, 1997.

[111] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet : A practical
owl-dl reasoner. Journal of Web Semantics, 5(2) :51–53, 2007.

[112] R. M. Smullyan. First-order logic. Courier Corporation, 1995.

[113] B. K. Sovacool and D. D. F. Del Rio. Smart home technologies in europe : A cri-
tical review of concepts, benefits, risks and policies. Renewable and sustainable
energy reviews, 120 :109663, 2020.

186

BIBLIOGRAPHY

[114] H. Strese, U. Seidel, T. Knape, and A. Botthof. Smart home in deutschland.
Institut für Innovation und Technik (iit), 46 :13, 2010.

[115] Y. Sun, X. Wang, H. Luo, and X. Li. Conflict detection scheme based on formal
rule model for smart building systems. IEEE Transactions on Human-Machine
Systems, 45(2) :215–227, 2014.

[116] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition net-
works for cooperative multi-agent learning. arXiv preprint arXiv :1706.05296,
2017.

[117] R. S. Sutton and A. G. Barto. Reinforcement learning : An introduction. chapter
5-6, pages 91–240. Cambridge, MA : MIT Press, 2018.

[118] I. A. Taha and J. Ghosh. Symbolic interpretation of artificial neural networks.
IEEE Transactions on knowledge and data engineering, 11(3) :448–463, 1999.

[119] M. M. Taye. Understanding semantic web and ontologies : Theory and appli-
cations. arXiv preprint arXiv :1006.4567, 2010.

[120] B. J. Taylor and M. A. Darrah. Rule extraction as a formal method for the verifi-
cation and validation of neural networks. In Proceedings. 2005 IEEE Internatio-
nal Joint Conference on Neural Networks, 2005., volume 5, pages 2915–2920.
IEEE, 2005.

[121] M. Tokic and G. Palm. Value-difference based exploration : adaptive control
between epsilon-greedy and softmax. In Annual conference on artificial intelli-
gence, pages 335–346. Springer, 2011.

[122] G. G. Towell. Symbolic knowledge and neural networks : Insertion, refinement
and extraction. 1993.

[123] G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based
neural networks. Machine learning, 13(1) :71–101, 1993.

[124] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[125] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv :1511.06581, 2015.

187

BIBLIOGRAPHY

[126] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3) :279–
292, May 1992. ISSN 1573-0565. doi : 10.1007/BF00992698.

[127] B. Winkler. An implementation of an ultrasonic indoor tracking system suppor-
ting the OSGI architecture of the ICTA lab. PhD thesis, University of Florida,
2002.

[128] M. Woźniak and D. Połap. Intelligent home systems for ubiquitous user sup-
port by using neural networks and rule-based approach. IEEE Transactions on
Industrial Informatics, 16(4) :2651–2658, 2019.

[129] X. Xu, Y. Jia, Y. Xu, Z. Xu, S. Chai, and C. S. Lai. A multi-agent reinforce-
ment learning-based data-driven method for home energy management. IEEE
Transactions on Smart Grid, 11(4) :3201–3211, 2020.

[130] R. Yang and M. W. Newman. Learning from a learning thermostat : lessons for
intelligent systems for the home. In Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing, pages 93–102, 2013.

[131] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. Zhang, Y. Zhang, and T. Jiang.
Deep reinforcement learning for smart home energy management. IEEE Inter-
net of Things Journal, 7(4) :2751–2762, 2019.

[132] J. Zhang, W. Zhao, G. Xie, and H. Chen. Ontology-based knowledge manage-
ment system and application. Procedia Engineering, 15 :1021–1029, 2011.

[133] K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning : A selec-
tive overview of theories and algorithms. Handbook of Reinforcement Learning
and Control, pages 321–384, 2021.

[134] Y. Zhang, G. Tian, S. Zhang, and C. Li. A knowledge-based approach for mul-
tiagent collaboration in smart home : From activity recognition to guidance
service. IEEE Transactions on Instrumentation and Measurement, 69(2) :317–
329, 2019.

[135] Z.-H. Zhou. Rule extraction : Using neural networks or for neural networks?
Journal of Computer Science and Technology, 19(2) :249–253, 2004.

188

Titre : Conception de services pour maison intelligente à l’aide d’approches basées sur l’appren-
tissage automatique et la représentation de connaissances

Mots clés : maison intelligente, conception de services, apprentissage par renforcement, représen-
tation de connaissance et raisonnement

Résumé : L’intelligence de la maison intelli-
gente est réalisée en créant divers services.
Chaque service tente d’ajuster un état mo-
nitoré en contrôlant les actionneurs associés
après avoir pris en compte les états de l’en-
vironnement détectés par les capteurs. Ce-
pendant, la conception de la logique des ser-
vices déployés dans une maison intelligente se
heurte à des limitations soit d’adaptabilité dy-
namique (règles prédéfinies) soit d’explicabilité
(techniques d’apprentissage). Quatre proposi-
tions s’inscrivant dans une approche hybride
combinant des règles prédéfinies et des tech-
niques d’apprentissage visent à lever ces limi-
tations.
La première proposition consiste à utiliser l’ap-
prentissage renforcé pour créer un service dy-
namique. Le déploiement de ce service unique
comprend deux phases : le pré-entraînement
dans la simulation et l’entraînement continu dans
le monde réel. Notre étude se concentre uni-

quement sur la partie simulation. En étendant
la première proposition, la deuxième proposition
propose plusieurs architectures pour créer plu-
sieurs services dynamiques et sans conflit. Ce-
pendant, les services dirigés par les données
ne sont pas explicables. Par conséquent, la troi-
sième proposition vise à extraire des services
explicables basés sur la connaissance à par-
tir de services dynamiques dirigés par les don-
nées. La quatrième proposition tente de combi-
ner les deuxième et troisième propositions pour
créer des services dynamiques et explicables.
Ces propositions sont évaluées dans un envi-
ronnement simulé sur des services de contrôle
de la température, de l’intensité lumineuse et de
la qualité de l’air adaptés aux activités de l’habi-
tant. Elles peuvent être étendues selon plusieurs
perspectives, telles que la co-simulation de phé-
nomènes physiques, l’adaptation dynamique à
différents profils d’habitant, et l’efficacité énergé-
tique des services déployés.

Title : Designing smart home services using machine learning and knowledge-based approaches

Keywords : smart home, service design, reinforcement learning, knowledge representation and
reasoning

Abstract : The intelligence of a smart home
is realized by creating various services. Each
service tries to adjust one monitored state by
controlling related actuators after considering
environment states detected by sensors. Howe-
ver, the design of the logic of the services de-
ployed in a smart home faces limitations of ei-
ther dynamic adaptability (predefined rules) or
explicability (learning techniques). Four propo-
sals that are parts of a hybrid approach com-
bining predefined rules and learning techniques
aim at mitigating these limitations.
The first proposal is to use reinforcement lear-
ning to create a dynamic service. The deploy-
ment of this single service includes two phases :
pretraining in the simulation and continuous trai-
ning in the real world. Our study only focuses
on the simulation part. Extending the first propo-

sal, the second proposal proposes several archi-
tectures to create multiple dynamic and conflict-
free services. However, the created data-driven
services are not explicable. Therefore, the third
proposal aims to extract explicable knowledge-
based services from dynamic data-driven ser-
vices. The fourth proposal attempts to combine
the second and third proposals to create dyna-
mic and explicable services. These proposals
are evaluated in a simulated environment on
temperature control, light intensity, and air qua-
lity services adapted to the activities of the in-
habitant. They can be extended according to se-
veral perspectives, such as the co-simulation of
physical phenomena, the dynamic adaptation to
various inhabitant profiles, and the energy effi-
ciency of the deployed services.

189
Institut Polytechnique de Paris
91120 Palaiseau, France

190

	I Introduction and background
	Introduction
	Introduction
	Smart home
	Research questions
	Main contributions
	Outline

	Knowledge-based approaches for service creation
	Introduction
	Knowledge-based approaches
	Ontology
	Rules

	SAREF
	Existing work
	Conclusion

	Data-driven approaches for service creation
	Introduction
	Machine learning
	Reinforcement learning classification
	Reinforcement learning principles
	Multilayer perceptron
	Long short term memory

	Existing work
	Conclusion

	Hybrid approaches for service creation
	Introduction
	Discussion of existing service creation approaches
	Knowledge-based approaches for service creation
	Data-driven approaches for service creation
	Hybrid approaches for service creation

	Existing work
	Requirements for an hybrid system
	Conclusion

	II Contribution
	Creation of a smart home service using Reinforcement Learning
	Introduction
	A simple smart home system
	RL-based simple smart home system
	Simulated simple smart home system
	Simulated simple smart home system examples
	Simulated environments for services
	Design of reward functions

	Adaptation to a simple target-undefined service and a simple target-defined service
	Conclusion

	Creation of multiple smart home services
	Introduction
	Proposed architectures for creating multiple dynamic smart home services
	Merged service-based architectures
	Composite service-based architectures

	Comparative experiment
	Experiment metrics
	Evaluation results

	Architecture deployment in the real world
	Conclusion

	Rule extraction from data-driven smart home services
	Introduction
	Motivation of rule extractions
	Context of rule extractions
	Existing work
	The proposed PBRE method
	Generate instance rules
	Generalize instance rules
	Combine rules
	Refine rules

	Integration of rule extraction in smart home service creation
	Integration of rule extraction in simulation
	Integration of rule extraction in the real world

	Evaluation experiment
	Metrics
	Evaluation and Comparison with Existing Work
	Experiment in the smart home context

	PBRE variant for dynamic rule extraction from an untrained service
	Dynamic rule extraction from multiple smart home services
	Conclusion

	Hybrid system for smart home services creation
	Introduction
	Proposed HKD-SHO system
	Service dispatcher
	Rule extraction
	Rule deletion
	State proposition
	Decision maker

	Working process of HKD-SHO
	Comparative experiment
	Experiment results and analysis

	Conclusion

	III Conclusion and Annexes
	Conclusion
	Main results
	Discussion
	Perspectives

	Synopsis en Français
	Publications
	Acronyms
	Glossary
	Variables
	Bibliography

