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Professeure, IMECC-Unicamp et CEMEAI Rapporteuse

Guillaume Carlier
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de nouveaux axes de recherches. Tu mérites amplement l’inscription sur ta tasse ! Wim, je te
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thèse a émergée.
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restera à mes yeux toujours un peu une R36. Également, je remercie Paulin Jacquot, que je
copie par le nom et par le choix de mes encadrements, mais pas par le choix de groupe (désolé
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1.1 Electricity markets: description and current context

1.1.1 The delicate balancing act of demand satisfaction

The electricity network operates at a predetermined frequency (50Hz in Europe), and only a very
small and short deviation is allowed. When the power generation does not meet the demand,
the lack of electricity in the grid is compensated by a frequency reduction. This can be the
starting point of a cascade failure leading to black-outs: some producers are forced to unplug
their generators from the network, as they are not able to produce at such a low frequency,
so that the imbalance increases and the frequency reduces even more. To prevent this, the
network regulators monitor carefully this equilibrium, by both anticipating the demand and
reacting swiftly in case of peak consumption (as an example, the last huge black-out in Europe
dates back to 2003 [Ber04]). The last winter was particularly scrutinized in France, where an
important part of the nuclear power plants was unavailable due to maintenance. In particular,
the government and the French regulator (RTE) have deployed an “electricity weather” forecast
system, called Ecowatt 1, in order to alert the population when a consumption peak is expected
in the following days. This system relies on good citizenship and individual responsibility to
reduce consumption and avoid imbalances.

From electricity generation to end-user fulfillment, the electricity is exchanged through two
markets: the wholesale market and the retail market, see Figure 1.1 for a schematic illustration.
We describe hereafter the modus operandi of the two markets (actors, quantity exchanged, time
window).

1https://www.monecowatt.fr/

11
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Figure 1.1: Wholesale and retail markets (Source: PJM)
Equivalent terminologies are used in the sequel, and are clarified in the figure.

1.1.2 Wholesale market

Several actors participate in the wholesale market2:
⋄ Producers: Companies exploiting big power plants

(nuclear power plants, wind farms, hydroelectric
power dams, etc.) for electricity production purposes.
In France, 95% of the production is achieved by EDF
and Engie3. The distribution of French production
on each resource is depicted on Figure 1.2.
⋄ Retailers: Agents having a portfolio of end-users and

trading electricity by aggregating the consumption
of their customers. Like suppliers, they are also re-
sponsible for paying the aggregated imbalance of their
portfolio. In France, as in Europe, there are several
huge retailers (EDF, Engie, TotalEnergies) and some
smaller actors (Eni, Enercoop, ekWateur, etc.).
⋄ Market regulator : Entity ensuring that the markets

correctly function, for the benefit of end consumers
and in line with energy policy objectives. In France,
this role is assumed by the CRE (Commision de
Régulation de l’Energie).

Figure 1.2: French installed power
plants capacities (Source: RTE,

12/2022)

⋄ Market exchange: Entity which operates the market platform and eases the energy ex-
changes between actors. In France, this role is assumed by EPEX spot for the day-ahead
market, and by EEX for the future market.

The quantities exchanged on this market are huge, and the power circulating in the electric grid
are typically in MW. This high-voltage transmission grid is maintained by a Transmission System
Operator (TSO). The TSO is in charge of balancing the market: it measures the imbalance and
take corrective measures if needed. The French TSO is RTE.

The exchange of energy in the wholesale market is divided in several sub-markets, corre-
sponding to several time horizons:

2The description is inspired by the following web-pages: https://www.incite-itn.eu/blog/introduction-
to-electricity-markets-its-balancing-mechanism-and-the-role-of-renewable-sources/ and https://
learn.pjm.com/electricity-basics/market-for-electricity.aspx

3https://selectra.info/energie/guides/comprendre/electricite/production

https://www.incite-itn.eu/blog/introduction-to-electricity-markets-its-balancing-mechanism-and-the-role-of-renewable-sources/
https://www.incite-itn.eu/blog/introduction-to-electricity-markets-its-balancing-mechanism-and-the-role-of-renewable-sources/
https://learn.pjm.com/electricity-basics/market-for-electricity.aspx
https://learn.pjm.com/electricity-basics/market-for-electricity.aspx
https://selectra.info/energie/guides/comprendre/electricite/production
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(i) Future market: Contracts between suppliers and retailers are signed months in advance.
These contracts constitute a safe option in terms of revenue (fixed price), but it is also the
most risky in terms of electricity consumption/production scheduling (high uncertainty).

(ii) Day-ahead market: Electricity is sold one day before the ex-
change of electricity occurs in the grid. This is a spot market:
the supply and demand are aggregated to find the equilibrium:
once all the bids are received, the market clearing price (spot
price) represents the value where supply and demand meet. At
the end, all the supply and demand bids that are equal or be-
low the market clearing price are approved. This mechanism
favors the “cheapest” (lowest marginal cost) power plants: the
cheapest resource will “clear” the market first (participates to
the electricity generation), followed by the next cheapest option
and so forth until demand is met, see Figure 1.3. The clear-
ing price is then interpreted as the price of the most expensive
resource that contributes to the energy generation.

Figure 1.3: Sorted
resources (Source: PJM)

(iii) Intraday market: Producers and retailers can correct within the day their past transac-
tion to adjust more precisely the supply to the demand.

(iv) Imbalance market: This market is responsible for the real time adjustment in order to
keep the frequency of the network as close as possible to the reference frequency.

The current energy crisis4
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Figure 1.4: Correlation between Gas cost, CO2 cost and electricity prices in Europe (Source:
eurelectric.org)

The causes of the electricity crisis which we have been observing since Fall 2021 are various:
4https://www.epexspot.com/en/energycrisis

https://www.epexspot.com/en/energycrisis
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(i) The first reason is the huge gas price spike which appends at the end of the covid period.
As explained previously, the spot price is determined by the most expensive power resource
used in the electricity mix, which often corresponds to a gas turbine. Figure 1.4 shows the
strong correlation between the evolution of day-ahead price and gas cost in Europe.

(ii) The second reason is the low generation capacity of many resources: low wind, lower-than-
usual gas storage, low hydro-reservoirs levels and low nuclear production since 2022.

(iii) The third reason is the increase of CO2 prices, driven by shift to -55% emission reduction
target for 2030 (Package “Fit for 55”, European Council5), which further drove up the
costs of conventional power plants.

1.1.3 Retail Market

A wide variety of offers...

After electricity is bought in the wholesale market by the resellers, it can be sold to end-users
(the population) in the retail market. These contracts are often affine in the consumption: they
are composed of a fixed price (subscription and installation) plus a variable price (in e/kWh). In
France, some contracts has several variable portions, corresponding to several periods (Peak/Off-
peak contracts).
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Figure 1.5: Distribution of French consumers in 2022 (Source: CRE)

Many consumers have options for purchasing electricity (this is the case in France for indi-
vidual consumers since 2007). In fact, they can choose among numerous competitive providers
(not only the historical one) to find the contract that best fits their needs. When it comes
to regulated offers (for instance, “Tarif Bleu” in France), the providers resell the electricity at
prices determined by government regulators. The quantities exchanged in the retail market are
of a lower order than in the wholesale market (the maximum power of end-users are in general
around few tens of kW). Electricity reaches final consumers through the low-voltage grid, op-
erated by a Distribution System Operator (DSO), responsible for the correct transportation of
electricity to end-users. In France, the DSO is Enedis. Figure 1.5 depicts the current distribu-
tion of consumers, distinguishing the contracts from the historical provider Électricité de France
(EDF) to the new providers.

5https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-
transition/

https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
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...and a myriad of customers

A specificity of retail electricity markets is the asymmetry between the number of sellers (electric-
ity providers) and buyers (end-users). In fact, the set of end-users corresponds to the households
of/in a state. In this market, each retailer aims at attracting a portion of the population in their
portfolio, by designing a competitive menu of offers/contracts.

The customers choice is strongly determined by the electricity invoice: a fully rational end-
user will select the cheapest contract for their needs. Classically, given a contract, the invoice
of a customer is proportional to their consumption, influenced by several factors:

⋄ Heating and cooling devices: a major factor is the type of heating. In France, many
households (around 35%6) use electricity as heating source.

⋄ Composition of the household: the consumption is heavily dependent on the composition
of the household: as an example, both the period and the quantity will differ between a
retired person and a family with a child.

⋄ Geography: In some countries, especially large countries, the weather can substantially
vary according to the region. For instance in France, the consumption needs and habits
significantly differ from north to south.

To help customers to choose the right offer among the vast jungle of contracts, price compar-
ison engines have been deployed, either from companies or from state agencies (see Figure 1.6
for the French case). These tools basically ask customers to provide the three factors mentioned
above, and display the annualized bill for each available offer in the retail market.

Figure 1.6: Example of price comparison engine (where name of contracts were hidden).

The current energy crisis

The spot prices spike in the wholesale market translates as a cost explosion for resellers in
the retail market. Figure 1.7a highlights that every European country was impacted by this
crisis. Nonetheless, the intensity of the household electricity price increase was not uniform: in
such countries (like in France), governments have initiated tariff shields to cap the prices and

6https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-
francais-1772

https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-francais-1772
https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-francais-1772
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(a) Average household price in Europe (Source: energy.eu).

(b) Typical household invoices in UK (consumption of 2900 kWh for electricity and 12000kWh for
gas).

Figure 1.7: Consequence of energy crisis on the retail market.

prevent from a too huge increase. The most striking hike appended in the U.K. where the annual
electricity invoice has been multiplied by a factor 3 between 2020 and 2023, see Figure 1.7b.

In addition to soaring prices and the resulting consequences for end-users, many suppli-
ers have been forced to file for bankruptcy. In France, three alternative suppliers (E.Leclerc,
Planète Oui, Cdiscount) have already stopped their activities and in the U.K., the seventh
largest electricity supplier (Bulb Energy, 5% market share, 1.7 million consumers) also had to
cease operations. In these cases, customers are most of the time automatically redirected to the
historical provider.
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1.2 Arising challenges

Complex behavior of users

Several (non-monetary) components can influence the decision of end users. Among them, a
growing part of the consumers carefully look at the origin of the electricity, i.e., which resource
was used for the production of the electricity. As an example, for a decade, there has been
a rapid emergence of “green” offers, guaranteeing that electricity is obtained from renewable
resources [HR14; MZ16; AF19].

In addition, three behavioral characteristics are often studied as they strongly impact the
customers choice:

(i) Partial/Bounded rationality: due to possible paucity of information about their consump-
tion characteristics, or unawareness about price updates, customers do not always select
the contract that an omniscient agent would have picked. This bounded rationality be-
havior, i.e., an uncertainty of some kind in the decision is now incorporated into a growing
number of models [ES17; RH18; RDP19], often implying customers choices of probabilis-
tic nature (e.g. logit choice models [Tra09]), more difficult to handle into optimization
problems [BLS23].

(ii) Price elasticity: the energy crisis has highlighted a non-negligible flexibility in the end-users
consumption, induced by high price fluctuation (here soaring prices). They have restricted
their consumption to focus only on essential usages. Many studies tackle this phenomenon
by estimating its intensity [And+97; Lij07; ACR20; NYK20]. This important adaptability
is the foundation of Demand Response [AE08], aiming at modifying the consumers load
curves by sending to the latter price incentives in order to lift down the peak consumption
(“peak clipping” and “load shifting”), see Figure 1.8.
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Figure 1.8: Two types of Demand Response mechanisms

(iii) Inertia in the response: as shown in Figure 1.6, price comparison engines often compare
the current offer of the end-user with the alternatives available in the market. There is
indeed an asymmetry between the already subscribed contract with the rest of the market
since customers are facing switching costs which favors an inertia in the choice dynamics:
end-users will only change their offer for another one if there exists a substantial difference
between the two contracts which compensates switching costs. These costs have various
origins: as illustrated in Figure 1.9, it can be monetary costs (exit fees, equipment costs),
but can be psychological (brand loyalty, time and effort spent to make the switch of
offer). We refer to [Stu02; Sal22; DW23] for estimations of switching costs in electricity
retail markets. Empirical studies analyzes the impact of these switching costs on both
the customers decision and on the pricing strategies [FH08; HP10; Abd17; Mys+18], and
more recently some works integrate the time dependence (inertia due to switching costs)
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Figure 1.9: Example of switching costs (Source: sketchbubble.com)

into optimization models [PE17; Hua22], recovering in particular the relationship between
brand loyalty and promotions.

Readability of the market

In recent years, offers have abounded: both the number of resellers and the number of contracts
per provider have increased (for instance, from 18 in 2008 to more than 100 retailers nowadays
in France7). As a consequence, consumers suffer from a reduced readability of the market and
are sometimes confused in this vast jungle of offers. In the meantime, having a larger menu of
offers enables a better fit to customers preferences and habits, and so a potential reinforcement
of the attractiveness. A natural question then arises for each provider: what is the optimal
trade-off between these two opposite trends ? This question is somehow less regarded in the
literature though it is an important concern for resellers concerns.

Incentive mechanisms for consumption reduction purposes

In a context of sobriety, due to both energy crisis (see previous sections) and ecological consid-
erations, retailers aim at incentivizing their customers for consumption reduction, not only in
peak period (as for demand response) but in average. These incentives can take several forms.
First, they can be based on customers civism and consciousness: some applications show to each
end-user how far their consumption is from the average consumption of similar customers (this
is the case in France for most of the providers, such as Engie and EDF). Another approach is
based on monetary reward, most of the time offering discounts if the customer was able to lower
their consumption compared to past years (“SimplyEnergy”8, “Plüm énergie”9 or “OhmCon-
nect”10). Economical studies looking at the impact of these monetary incentives on customers
can be found in the literature (e.g., [MT12; Pra+18; Rus+23]).

7Source: Commission de Régulation de l’Energie (CRE)
8https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
9https://plum.fr/cagnotte/

10https://www.ohmconnect.com/

https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
https://plum.fr/cagnotte/
https://www.ohmconnect.com/
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1.3 Pricing models as Stackelberg games in the literature

Game theory is a mathematical domain which analyzes the interaction between rational agents
(called players). The first contribution may be the duopolist problem formulated by Cournot
in 1838 [Cou38], where the notion of equilibrium is tackled, i.e., a situation where each player
does not want to deviate from their current situation. Mathematical games are then theorized
by von Neumann and Morgenstern in 1944 [VM47]. In the fifties, Nash [Nas53] formalized the
notion of equilibrium, very well-known and used today. In this thesis, we focus on a specific class
of games: Stackelberg games [Sta52]. These 2-players problems reflect the asymmetry of the
players’ roles: the leader first decides, then the follower replies (sequential games). This class
of games is particularly well-adapted to pricing problems in which a price-setting entity aims at
optimizing its revenue. The customers decision, then, always appends after the establishment
of the new pricing strategy.

We focus here on two frameworks dealing with Stackelberg games, and with numerous ap-
plication to pricing management: bilevel optimization, and principal-agent models. For a gentle
introduction on these two areas, we refer to preliminary chapter 3. We present hereafter an
overview of the existing contributions in the pricing literature.

Bilevel pricing

Bilevel problems constitute an important part of the mathematical literature of pricing problems.
They consist in problems with two players, where a first player (leader) proposes prices to
customers (followers) who maximize their own utility functions and take into account the prices
settled by the leader. We refer to Labbé and Violin [LV15] for a detailed presentation of the
concepts and solution models on bilevel pricing, as to the recent survey of Dempe [Dem20] for
an extensive review of the bilevel literature, with a particular focus on pricing problems.

Early works in network pricing. Labbé et al. [LMS98] first proposed a taxation model
applied to highway pricing, later extended by Brotcorne et al. [Bro+06]. Larsson and Patriks-
son [LP98] studied the question of the traffic congestion through bilevel programming. In freight
management, Brotcorne et al. [Bro+00] proposed a model and algorithms to determine optimal
tariffs. These models are applied to networks, therefore the followers problem inherits the graph
structure induced by the network topology. For instance, given the leader decision, the follower
problem is a shortest path problem. Dewez et al. [Dew+08] took advantage of the structure to
propose new valid inequalities to tighten the relaxations, as with path-based formulations.

Envy-free product pricing. The envy-free product pricing problem (sketched in Chapter 3)
was first analyzed by Guruswami et al. [Gur+05] from a complexity angle, showing the APX-
Hardness of the problem. Then, several reformulations of the bilevel problem have been proposed
by Shioda, Tunçel and Myklebust [STM11] and Fernandes et al. [Fer+13]. Heilporn [Hei+10]
and Fernandes et al. [Fer+16] studied links between the latter product pricing problem and
network pricing models, showing in particular that valid inequalities from one model can be
used in the other one (such as triangle inequality).

Applications on electricity pricing. For a decade, many pricing problems arose in energy
management. With the liberalization of retail electricity markets, Leyffer and Mundson [LM10]
tackled the issue of the optimal tariff-setting faced by a retailer in a competitive environment,
leading to an Equilibrium Problem with Equilibrium constraints (EPEC). Luna et al. [Lun+20]
then proposed a primal-dual regularization technique to overcome the ill-posedness of the prob-
lem arising from the non-uniqueness of lower decision. Besides, many contributions have been
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done in Demand Response: Zugno et al. [Zug+13] might be pioneers on this topics. Afşar
et al. [Afş+16] looked at the optimal tariff in order to incentive consumers to clip the peak
consumption. Also, Kovacs [Kov16] proposed an alternative time-variant tariff for demand re-
sponse. Alekseeva et al. [Ale+19] studied peak shifting strategies for cost reduction purposes.
Aussel et al. [Aus+20] enriched the model by adding one level of optimization (suppliers, ag-
gregators, end-users) and developed alternative tie-breaking rules to optimistic and pessimistic
formulation. Abate, Riccardo and Ruiz [ARR21] introduced uncertainty into the consumers
utility functions to take into account elasticity in the demand. Grimm et al. [Gri+21] compared
time-of-use (TOU), critical-peak-pricing (CPP) and real-time-pricing tariff (RTP) in a numerical
study made on realistic use-cases. Kozanidis and Kostarelou [KK23] proposed a bilevel model
to deal with the optimal price-bidding of energy producers in day-ahead electricity markets.

Works Actors (i) Time horizon
(ii) Stochasticity

Lower level
nature

(i) Approach
(ii) Type of solution

[LM10] Multi-L.
Common-F.

(i) Static
(ii) Deterministic Continuous

(i) Nonlinear models
(NCP formulations)

(ii) Stationary

[Zug+13] Single-L.
Multi-F.

(i) Discrete time
(ii) Discrete scenarios Linear (i) KKT reformulation

(ii) Global

[Afş+16] Single-L.
Multi-F.

(i) Discrete time
(ii) Deterministic Linear (i) KKT reformulation

(ii) Global

[Kov16] Single-L.
Multi-F.

(i) Discrete time
(ii) Deterministic Linear (i) Heuristic

[Ale+19] Single-L.
Multi-F.

(i) Discrete time
(ii) Deterministic Linear (i) KKT reformulation

(ii) Global

[Lun+20] Multi-L.
Common-F.

(i) Static
(ii) Deterministic Continuous

(i) Nonlinear models
(Dual regularization)

(ii) Stationary

[Aus+20] Single-L.
Multi-F.

(i) Discrete time
(ii) Deterministic Linear (i) KKT reformulation

(ii) Local

[ARR21] Single-L.
Multi-F.

(i) Discrete time
(ii) Discrete scenarios Linear (i) KKT reformulation

(ii) Local

[Gri+21] Single-L.
Single-F.

(i) Discrete time
(ii) Deterministic Linear (i) S.-D. reformulation

(ii) Global

[KK23] Single-L.
Single-F.

(i) Discrete time
(ii) Deterministic Integer (i) Opt.-V. reformulation

(ii) Global

Table 1.1: Non-exhaustive classification of bilevel problems applied to electricity pricing.
“S.-D.” stands for “Strong-Duality” and “Opt.-V.” stands for “Optimal-Value”,

“L.” for “Leader” and “F.” for “Follower”.

Tropical angle. An emerging direction is the viewpoint adopted by Baldwin and Klem-
perer [BK19] and Tran and Yu [TY19], where the customer decision is analyzed using tropical
geometry. This geometry uses the max-plus algebra, see e.g. [MS21]. The utility maximization
problem of the follower, then, consists in a selection of kind “one out of N possibilities”, and can
be viewed as the evaluation of a tropical polynomial. The agents response map is in this context
a polyhedral complex where each cell corresponds to a subset of leader’s decisions (prices) that
induce a common customers decision. When the problem involves several independent followers,
the “overlay” of polyhedral complexes give a full visual understanding of the pricing problem.
We refer to [Eyt18] for a tropical approach of bilevel pricing applied to mobile telecommunication
networks.
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Principal-Agent models for energy management

Principal-Agent models belongs to the theory of incentives, where the first approach dates
back to the works of Barnard [Bar38]. This theory was first designed in order to improve the
productivity of workers, in the same spirit as the Taylorism. As in bilevel pricing, the Principal
(a.k.a. the leader) designs a contract taking into account the rational behavior (so-called moral
hazard in this field) of the agent (a.k.a. the follower), who aims at maximizing its own utility.

In the last decade, contributions about Principal-Agent models applied to energy manage-
ment have been numerous. Carmona, Fehr and Hinz [CFH09] introduced an optimal stochastic
control problem for carbon pricing. Féron, Tankov and Tinsi [FTT20] studied the trading
process in intra-day electricity markets using Principal-Agent models. Alasseur, Farhat and
Saguan [AFS20] analyzed through risk sharing mechanism new levers to favor capacity invest-
ments. About Demand response, Aı̈d, Possamı̈ and Touzi [APT22] exhibited optimal incentives
for reducing both the average electricity consumption and its variance. In [Éli+20], Élie et al.
proved that a closed-form expression of optimal contracts can be found in the case of linear
energy valuation and when the contracts are indexed by aggregated consumption. The question
of electricity pricing in the retail market has been addressed by Alasseur et al. in [Ala+20]
where elasticity of the demand is described through a Constant Relative Risk Aversion mea-
sure (CRRA). Recent application emerged, as renewable markets for example. Aı̈d, Kemper
and Touzi [AKT23] introduced a Principal-Agent framework in order to model investments in
renewable energy. Also, Shrivats, Firoozi and Jaimungal [SFJ21] proposed a principal-agent
mean-field game applied to the market of Renewable Energy Certificates.

1.4 Objectives and contents of the thesis

In this PhD thesis, we analyze pricing problems which arise in energy management, and more
precisely at the interface between retailers and consumers. First, we focus on the pricing of offers
for the highly competitive retail market, where the crux of the matter is to fairly construct a
menu of offers, each of them selectable by any customer, but designed to be attractive for a
targeted portion of the population, the most profitable one for the electricity provider. Second,
we study incentive mechanisms which aim at reducing the electricity consumption of a portfolio
of end-users by constructing optimal rewards that favor the most sobriety-compliant customers.
Moreover, in most of electricity pricing problems, a critical data that needs to be estimated
is the typical (based on past data) consumption and invoice of customers. We look here at
refined estimations to this purpose. This PhD dissertation introduces modeling, theoretical and
algorithmic contributions to answer these issues. We now give more details on the content of
this dissertation:

⋄ We first establish a bilevel framework to tackle the question of the optimal pricing of a menu
of offers, a problem faced by a company whose aim is to stay competitive by designing its
tariff menu in reaction to a given market context. This work extends the models developed
in standard approaches for product pricing. This framework is of a combinatorial nature, as
customer decision consists in a discrete choice among the range of offers. In Chapter 4, we
introduce a new customer behavior – seen as a regularization of purely deterministic choice
models – where the decision of each clusterized end-user is now expressed as a discrete
probability measure on the alternatives, concentrated on the most advisable contracts for
the latter. This new model is motivated by the huge number of consumers, viewing each
cluster of end-users (consumers with similar characteristics) as a representative end-user
of an infinite-size homogeneous subpopulation. In Chapter 5, we enrich the customers
behavior by inserting into the lower problem switching costs, acting as an elastic restoring
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force that keeps the customers attached to their current offer. This inertial effect dives the
problem into a dynamical control framework: the model now corresponds to the control of
a Markovian decision process where the follower transition probabilities (from a contract
to another) are determined by the leader decision at each time step. We study in Chapter 6
another point of interest for operational services: the influence of the size of the menu,
i.e., the number of contracts to design. This question is tackled by a two step-strategy:
we first look at the mean-field limit case – in which a continuum of offers is designed –
and then we search for the best finite-size approximated menu that maximizes the leader
objective. This quantization problem enables us to determine a loss function which maps
the limit number of contracts with the relative revenue loss induced by this constraint.

⋄ We then gather contributions of different nature. In Chapter 7, we first consider the
question of the energy sobriety by focusing on a Principal-Agent framework, in which
a company aims at proposing a new type of contract which encourages the customers to
make some efforts in view of reducing their consumption. This contract provides a variable
reward in addition to the standard linear pricing (invoice proportional to the consumption)
which is based on the rank of the end-user within the set of similar users. This ranking
game scheme introduces a competition (mean-field equilibrium) between consumers, driv-
ing them to lower their mean power consumption. In Chapter 8, motivated by the wide
number of applications where invoice estimations are required, we focus on concentra-
tion inequalities and their embedding into optimization models. In particular, we look at
Bennett-type inequalities and show that a convex reformulation can be obtained, leading
to tractable chance-constrained programs, as the one coming from the electricity invoice
estimations context. Finally, we study in Chapter 9 a family of nonconvex approximations
of optimization problems under sparsity requirements. These sparse optimization prob-
lems naturally appear when it comes to the design of a menu of offers, which is indeed the
core of Chapter 6. We tackle the issue under a more general angle, considering a general
problem under cardinality constraints, and show that tractable approximated constraints,
based on Rényi entropies, lead to an acceptable solution, i.e., with a limited violation of
the original cardinality requirement.

1.5 Contributions of the chapters

We now give more details on the contributions of each chapter of this PhD thesis:

1. Chapter 4 states the problem faced by an electricity provider who aims at designing a
menu of offers intended for a wide number of end-users. A complete description of the
model would lead to a Multi-Leader-Common-Follower Game, see [LM10], where a Nash
equilibrium should be found between the providers. Here, we study a static version where
a provider optimizes the offers given a strategy (prices) of the other actors of the mar-
ket (competitive providers and regulated offers), leading to a Single-Leader-Single-Follower
problem, see Figure 1.10. This can be interpreted as an instantaneous reaction/adjustment
of the studied provider to a current market situation. We first introduce deterministic
models based on the bilevel (Envy-free unit-demand, see e.g., [Gur+05]) product pricing
framework, and derive MILP formulations coming from single-level reformulations. We
also recall Logit models [GMS15], viewed here as probabilistic regularization of customer
behavior, and analyze their asymptotic behavior. The main concern is about a both fair
and tractable model, and we develop to this purpose a quadratic regularization of the
lower level. We exhibit a polyhedral structure of the customers response (Theorem 4.3.1),
and show that when the regularization parameter – interpreted as the rationality intensity
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of end-users – tends to infinity (fully rational), deterministic response is recovered, i.e.,
the polyhedral complex converges to the cell description developed by Baldwin and Klem-
perer [BK19] in deterministic settings (Theorem 4.3.2). An extensive numerical study is
achieved on a realistic instance, showing the benefit of this new model (Figure 4.9) and
the absolute necessity of smooth customers behavior to avoid too optimistic prices (non
profitable in practice), see Figure 4.10.

Competitors / Regulated offers 
Provider 

Population of End-users 

Provider 

Population of End-users 

time 

Competitors / Regulated offers 

Figure 1.10: Bilevel problem faced by a provider willing to optimize its menu of offers in a
competitive market

We look at the provider reaction to given prices of the (static) competition. The provider first updates
the prices (red arrow), then each end-user in the heterogeneous population chooses an offer – either

from the provider (solid green arrow) or from the competitors (dashed green arrow).

2. In Chapter 5, we incorporate into the previous static bilevel model (Chapter 4) the in-
fluence of switching costs. The resulting inertia in the customers behavior translates as
a past dependence of the contract choice. We model the problem as a Markov Decision
Process where each transition problem between two discrete time steps corresponds to an
instance of the static bilevel model, see Figure 1.11. We formalize the problem as an opti-
mal control problem aiming at maximizing the average long-term reward (ergodic control,
see e.g. [ABG11]), and show that this can be equivalently solved by an ergodic eigenvalue
problem (Proposition 5.2.1). We prove using a contraction argument on the dynamics that
the eigenvalue problem has a regular solution (Theorem 5.2.2), from which the optimal
leader strategy can be obtained. We introduce a Policy Iteration algorithm [Put94; Gau96]
adapted to the control of decomposable population, recomputing on the fly the transitions
between states to drastically reduce the needed storage space, while keeping fast compu-
tational cost in comparison with Relative-Value-Iteration algorithms (RVI), see Table 5.2.
We then analyze the impact of the switching cost intensity on the pricing policy. We ob-
serve that above a threshold, periodic promotions are applied, providing a strictly higher
reward to the leader than constant-price strategies (Figure 5.5). We finally showcase the
extent of this behavior in an example, proving the superiority of cycling policies over static
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ones, see Section 5.7.

Competitors / Regulated offers 
Provider 

Population of End-users 

Provider 

Population of End-users 

time 

Competitors / Regulated offers 

Figure 1.11: Iterated bilevel pricing problem as a Markov Decision Process.
At each time step, the provider is able to update the prices, and each end-user of the heterogeneous
population can either keep the current contract, or change for a new one (from the same provider or

from the static competitors). In the latter case, she will suffer switching costs.

3. Chapter 6 explores another important factor in the design of tariff menus, that is the ques-
tion of the optimal number of offers (size of the menu) that a retailer should propose to the
population. To this aim, we first relax the condition on the size of the menu to obtain as a
limit case a problem where an affine contract can be especially designed for each end-user
(infinite size of menu). We show that this relaxed problem can be reformulated as a gen-
eralized monopolist problem à la Rochet-Choné [RC98] (Theorem 6.5.1), which is convex
when the customers portfolio is fixed (e.g. when full-participation constraint is imposed,
see (6.3)). Given the optimal menu (potentially of infinite size) of the relaxed problem,
we approximate the latter by a menu of finite prescribed number of contracts using a
pruning procedure (Algorithm 6), initially designed for control problems. This pruning
scheme iteratively reduces the size of the menu by removing the most redundant remaining
contract, i.e., the one which induces the least approximation error when it is removed. We
adapt this new reverse greedy approach for several criteria (e.g. L∞ or L1 norm), and
show that a partial recomputation of the solution at each iteration is always sufficient
(Propositions 6.3.1 and 6.3.2). We numerically observe that this local update leads to
huge computation time gains, see Figure 6.3. We then exploit the structure of the prob-
lem to interpret the decision of the customers as a Bregmann Voronoi diagram [BNN10]
– see Proposition 6.4.1 – and derive from quantization theory [Pag15] a Lloyd’s procedure
that aims at finding the best L1 approximation of the infinite-size menu by a finite one,
showing the efficiency and robustness of the new pruning methods.

4. Chapter 7 introduces a novel incentives scheme, applied to energy sobriety concerns. In
this scheme, the retailer (Principal) – motivated by regulation agencies/governments –
contracts with a continuum of customers by proposing to them a monetary reward based
on the individual ranking of each customer within the population, see Figure 1.12. The
consumers are then encouraged by this financial compensation to be ranked within the
best energy savers in order to receive the highest reward. Here, the competition between
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Subpopulation 1

. . .

Subpopulation k

. . .

Subpopulation K

Provider

Regulator

Incentive to reduce
global consumption

Reward = f (rank)

Competition (Nash) Competition (Nash) Competition (Nash)

Lower level (agents)

Upper level (principal)

Fixed level

Mean-field assumption: Each subpopulation is composed of an infinite number
of indistinguishable consumers

Ranking games : Application to Energy Savings C. Alasseur, E. Bayraktar, R. Dumitrescu, Q. Jacquet 4 / 24

Figure 1.12: Principal-Agent relationship between an energy supplier and a field of agents, the
latter competing with each other to obtain the best reward possible by reducing as possible

their energy consumption.
Motivated by governing energy reduction policies, the provider designs an incentive reward function

based on the ranking of the agents so that the relative best energy saver will receive the higher reward.
Given the incentive function, a Nash equilibrium has then to be found for each subpopulation of

homogeneous end-users.

end-users, triggered by a given reward function, is modeled as a mean-field game, and
we prove that it has a unique Nash equilibrium, which can be analytically determined
(Theorem 7.2.3). This characterization holds in particular for purely rank-based rewards,
widely studied in [BZ21]. Then, incorporating this closed-form formula of the equilibrium
in the retailer problem, we show that when the price-elasticity of the agents is uniform,
the optimal reward can be obtained through the resolution of a fixed-point equation on
the targeted optimal mean consumption. To this purpose, we exploit the optimality con-
ditions of an equivalent convex reformulation of the problem in the distribution space,
see Theorem 7.2.4. The latter characterization enables a fine understanding of the reward
function, establishing sufficient conditions for the development of such incentive schemes.
When a reward must be offered to a decomposable heterogeneous population with non-
uniform price elasticity, a numerical algorithm (Algorithm 10) is proposed, and simulations
on realistic examples shows that the approach is likely to produce important consump-
tion reductions while ensuring a mean end-users satisfaction greater than the traditional
(non-incentivized) case, see Figure 7.5.

5. In Chapter 8, we study Bennett-type concentration inequalities in view of integrating
them into chance-constrained programs [Pré95]. First, we introduce a double bisection
algorithm enabling to compute confidence bounds (Algorithm 12). This can be applied
for estimating invoices when consumption load curves are only known through their mo-
ments. Then, we study tight conservative approximations of chance-constrained programs
with information on means and variances (Proposition 8.4.1 and Proposition 8.4.2). We
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show that these approximations can be embedded into convex optimization programs as
in [NS07], and are tractable in many use cases. We first focus on a canonical discrete
problem, that is the integer knapsack problem, and show that a cutting-planes description
of the convex Bennett-type estimation (added iteratively in the Branch-and-Bound) leads
to more profitable robust solutions while keeping a reasonable computational time (Ta-
ble 8.2). We also use these estimators in continuous optimization problems, by focusing
on the robust support vector machines problem, and show on instances of the literature
that the approach reduces miss-classification error (Section 8.4.2).

6. In Chapter 9, we study generic sparse optimization problems. Such problems naturally
arise in pricing management. As an example, for the sake of readability, retailers of-
ten constrain their menu of offers to be of limited prescribed size, see Chapter 6. Here,
we introduce a family of cardinality’s lower bounds, involving Rényi’s entropy [Rén+61].
Focusing on application to selection problems – where the optimization is performed on
discrete probability measure space (simplex), we proved (Theorem 9.3.1) that the entropic
bounds we developed can control the sparsity of the solution, recovering as limit case the
exact ℓ0-norm. In numerical results, we study the specific case of the Shannon entropy
and its ability to impose sparsity in the solution. We show that the use of this entropic
bound for portfolio selection problems ensures a good compromise between the control of
the cardinality and optimization performance (Figure 9.6).

Schematic classification of the chapters

In Figure 1.13, we briefly outline the mathematical focuses of each chapter by keywords, and
classify the chapters according to the main modeling differences. The concepts mentioned in the
keywords are then introduced in the preliminary chapter (Chapter 3).
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Pricing for
electricity

retail markets

Continuum
of customers
(mean-field)

Competition
between

customers

Envy-free
model +
elasticity

Finite
number of
customers

Inertia in
customer
decision

Immediate
customer
decision

Chapter 4:
⋄ Bilinear bilevel opti-

mization
⋄ Regularized lower levels
⋄ Polyhedral complex

analysis

Chapter 5:
⋄ Ergodic control of

populations
⋄ Deterministic MDPs
⋄ Convergence analysis

(turnpike-like behaviors)

Chapter 6:
⋄ Principal-Agent problem

with adverse selection
⋄ Quantization of menus
⋄ Bregman Voronöı dia-

grams

Chapter 7:
⋄ Second-best Principal-

Agent problem
⋄ Mean-field games
⋄ Rank-based incentives

Figure 1.13: Mind map expressing the differences between the chapters in terms of modeling,
as with keywords outlining the main tools used in each chapter.



1.
In

tr
od

uc
ti

on

28 CHAPTER 1. INTRODUCTION



2.
F

re
nc

h
In

tr
o.2Ch

ap
te

r

Introduction (en français)
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2.1 Description des marchés de l’électricité et contexte actuel

2.1.1 L’équilibre du réseau: une tâche ardue

Le réseau électrique fonctionne à une fréquence prédéterminée (50 Hz en Europe), et seule
une déviation très faible et temporaire est autorisée. Lorsque la production d’électricité ne
répond pas à la demande, le manque d’électricité dans le réseau est compensé par une réduction
de la fréquence. Cela peut être le point de départ d’une panne en cascade conduisant à des
black-out : certains producteurs sont obligés de déconnecter du réseau certaines installations,
car ils ne sont pas en mesure de produire à une fréquence aussi basse, ce qui augmente le
déséquilibre et diminue encore la fréquence. Pour éviter cela, les régulateurs de réseau surveillent
attentivement cet équilibre, à la fois en anticipant la demande et en réagissant rapidement en
cas de pic de consommation (à titre d’exemple, le dernier grand black-out en Europe remonte à
2003 [Ber04]). L’hiver dernier a été particulièrement scruté en France, où une partie importante
du parc nucléaire était indisponible pour cause de maintenance. Le gouvernement et le régulateur
français (RTE) ont notamment déployé une “météo de l’électricité”, baptisée Ecowatt 1, afin
d’alerter la population en cas de pic de consommation prévu dans les jours suivants. Ce système
repose alors sur le civisme et la responsabilité individuelle pour réduire la consommation et
éviter les déséquilibres.

De la production d’électricité à la satisfaction de l’utilisateur final, l’électricité est échangée
via deux marchés : le marché de gros et le marché de détail, voir Figure 2.1 pour une illustration
schématique. Nous décrivons ci-après le modus operandi des deux marchés (acteurs, quantité
échangée, fenêtre temporelle).

1https://www.monecowatt.fr/

29
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Figure 2.1: Marché de gros et de détail (Source: PJM)

2.1.2 Marché de gros

Plusieurs acteurs participent au marché de gros2 :
⋄ Producteurs : Entreprises exploitant de grandes cen-

trales (centrales nucléaires, parcs éoliens, barrages
hydroélectriques, etc.) à des fins de production
d’électricité. En France, 95% de la production est
réalisée par EDF et Engie3. La répartition de la pro-
duction française sur chaque ressource est représentée
en Fig. 2.2.
⋄ Fournisseurs : Agents disposant d’un portefeuille

d’utilisateurs finaux et négociant de l’électricité en
agrégeant la consommation de leurs clients. Comme
les producteurs, ils sont également responsables du
paiement du déséquilibre global de leur portefeuille.
En France, comme en Europe, il existe quelques
grands distributeurs (EDF, Engie, TotalEnergies) et
plusieurs petits acteurs (Eni, Enercoop, ekWateur,
etc.).

Figure 2.2: Capacités installées des
centrales françaises (Source : RTE,

12/2022)

⋄ Régulateur du marché : entité veillant au bon fonctionnement des marchés, au bénéfice
des consommateurs finaux et conformément aux objectifs de la politique énergétique. En
France, ce rôle est assumé par la CRE (Commission de Régulation de l’Energie).

⋄ Marché d’échange : Entité qui exploite la plate-forme de marché et facilite les échanges
d’énergie entre les acteurs. En France, ce rôle est assumé par EPEX spot pour le marché
J − 1 et par EEX pour les marchés à termes.

Les quantités échangées sur ce marché sont importantes, et les puissances circulant dans le réseau
électrique sont typiquement en MW. Ce réseau de transport à haute tension est entretenu par
un Gestionnaire de Réseau de Transport (GRT). Le GRT est chargé d’équilibrer le marché : il
mesure le déséquilibre et prend des mesures correctives si nécessaire. Le GRT français est RTE.

L’échange d’énergie sur le marché de gros est divisé en plusieurs sous-marchés, correspondant
à plusieurs horizons temporels :

2La description est inspirée des pages Web suivantes : https://www.incite-itn.eu/blog/introduction-to-
electricity-markets-its-balancing-mecanism-and-the-role-of-renewable-sources/ et https://learn.
pjm.com/electricity-basics/market-for-electricity.aspx

3https://selectra.info/energie/guides/comprendre/electricite/production

https://www.incite-itn.eu/blog/introduction-to-electricity-markets-its-balancing- mecanism-and-the-role-of-renewable-sources/
https://www.incite-itn.eu/blog/introduction-to-electricity-markets-its-balancing- mecanism-and-the-role-of-renewable-sources/
https://learn.pjm.com/electricity-basics/market-for-electricity.aspx
https://learn.pjm.com/electricity-basics/market-for-electricity.aspx
https://selectra.info/energie/guides/comprendre/electricite/production
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(i) Marché à terme : les contrats entre les fournisseurs et les détaillants sont signés des mois
à l’avance. Ces contrats constituent une option sûre en termes de revenus (prix fixe), mais
c’est aussi la plus risquée en termes de programmation de la consommation/production
d’électricité (incertitude élevée).

(ii) Marché J-1 : l’électricité est vendue un jour avant que
l’échange d’électricité se produise dans le réseau. Il s’agit d’un
marché spot : l’offre et la demande sont agrégées pour trouver
l’équilibre : une fois toutes les offres reçues, le prix d’équilibre
du marché (prix spot) représente la valeur où l’offre et la de-
mande se rencontrent. À la fin, toutes les offres de production
et de demande qui sont égales ou inférieures au prix d’équilibre
du marché sont approuvées. Ce mécanisme favorise les centrales
électriques “les moins chères” (coût marginal le plus bas) : la
ressource la moins chère participera en premier à la production
d’électricité, suivie de l’option suivante la moins chère et ainsi
de suite jusqu’à ce que la demande soit satisfaite, voir Fig-
ure 2.3. Le prix d’équilibre est alors interprété comme le prix
de la ressource la plus chère qui contribue à la production
d’énergie.

Figure 2.3: Ressources
triées (Source : PJM)

(iii) Marché infra-journalier : les producteurs et les détaillants peuvent corriger dans la
journée leur transaction passée pour ajuster plus précisément l’offre à la demande.

(iv) Mécanismes d’ajustement : ce marché est responsable de l’ajustement en temps réel afin
de maintenir la fréquence du réseau aussi proche que possible de la fréquence de référence.

La crise énergétique actuelle4
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Figure 2.4: Corrélation entre coût du gaz, coût du CO2 et prix de l’électricité en Europe
(Source : eurelectric.org)

Les causes de la crise électrique que nous observons depuis l’automne 2021 sont diverses :
4https://www.epexspot.com/en/energycrisis

https://www.epexspot.com/en/energycrisis
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(i) La première raison est l’énorme flambée des prix du gaz qui s’ajoute à la fin de la
période Covid. Comme expliqué précédemment, le prix spot est déterminé par la ressource
électrique la plus chère utilisée dans le mix électrique, qui correspond souvent à une tur-
bine à gaz. Figure 2.4 montre la forte corrélation entre l’évolution du prix day-ahead et le
coût du gaz en Europe.

(ii) La deuxième raison est la faible capacité de production de nombreuses ressources : faible
éolien, stockage de gaz inférieur à la normale, faibles niveaux des réservoirs d’eau et faible
production nucléaire à partir de la fin 2022.

(iii) La troisième raison est l’augmentation des prix du CO2, entrâınée par le passage à l’objectif
de 55% de réduction des émissions pour 2030 (Package “Fit for 55”, Conseil européen5),
qui a encore fait grimper les coûts des centrales électriques conventionnelles.

2.1.3 Marché de détail

Une grande variété d’offres...

Une fois l’électricité achetée sur le marché de gros par les revendeurs, elle peut être vendue
aux utilisateurs finaux (la population) sur le marché de détail. Ces contrats correspondent
souvent à une fonction affine de la consommation : ils sont composés d’un prix fixe (abonnement
et installation) et d’un prix variable (en e/kWh). En France, certains contrats comportent
plusieurs parts variables, correspondant à plusieurs périodes (Contrats Heures Pleines/Heures
Creuses par exemple).
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Industriel
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(4,7M)
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(34M)

Total
(39M)
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Figure 2.5: Répartition des consommateurs français en 2022 (Source : CRE)

Les consommateurs peuvent désormais choisir librement leur offre d’électricité (c’est le cas
en France pour les particuliers depuis 2007). En effet, il existe aujourd’hui de nombreux four-
nisseurs alternatifs au fournisseur historique. Il existe tout de même des offres réglementées (par
exemple, Tarif Bleu en France) où les fournisseurs revendent l’électricité à des prix déterminés
par les régulateurs gouvernementaux. Les quantités échangées sur le marché de détail sont d’un
ordre inférieur à celles du marché de gros (la puissance maximale des utilisateurs finaux est en
général de l’ordre de quelques dizaines de kW). L’électricité parvient aux consommateurs finaux
via le réseau basse tension, exploité par un Gestionnaire du réseau de distribution (GRD), re-
sponsable de l’acheminement de l’électricité jusqu’aux utilisateurs finaux. En France, le GRD est

5https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-
transition/

https://www .consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
https://www .consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
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Enedis. Figure 2.5 décrit la répartition actuelle des consommateurs, en distinguant les contrats
du fournisseur historique (Électricité de France) aux nouveaux fournisseurs.

...et une myriade de clients

Une spécificité des marchés de détail de l’électricité est l’asymétrie entre le nombre de vendeurs
(fournisseurs d’électricité) et d’acheteurs (utilisateurs finaux). En effet, les utilisateurs finaux
correspondent à l’ensemble des ménages d’un pays. Sur ce marché, chaque fournisseur vise
à attirer une partie de la population dans son portefeuille, en concevant un menu compétitif
d’offres/contrats.

Le choix des clients est fortement déterminé par la facture d’électricité : un utilisateur final
pleinement rationnel sélectionnera le contrat le moins cher pour ses besoins. Classiquement,
étant donné un contrat, la facture d’un client est proportionnelle à sa consommation, influencée
par plusieurs facteurs :

⋄ Appareils de chauffage et de climatisation : un facteur important est le type de chauffage.
En France, de nombreux foyers (environ 35%6) utilise l’électricité comme source de chauffage.

⋄ Composition du ménage : la consommation dépend fortement de la composition du ménage
: à titre d’exemple, la période et la quantité seront différentes entre une personne retraitée
et une famille avec un enfant.

⋄ Géographie : Dans certains pays, en particulier les pays étendus, la météo peut varier
considérablement selon les régions. Par exemple en France, les besoins et les habitudes de
consommation diffèrent sensiblement du nord au sud.

Pour aider les clients à choisir la bonne offre parmi l’ensemble des contrats du marché, des
comparateurs de prix ont été déployés, soit par des entreprises, soit par des agences étatiques
(voir Figure 2.6 pour le cas français). Ces outils demandent essentiellement aux clients de
fournir les trois facteurs mentionnés ci-dessus et affichent la facture annualisée pour chaque offre
disponible sur le marché de détail.

Figure 2.6: Exemple de comparateur de prix (où le nom des contrats a était masqué).

6https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-
francais-1772

https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-francais-1772
https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-francais-1772
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La crise énergétique actuelle

(a) Prix moyen par ménage en Europe (Source: energy.eu).

(b) Factures d’un ménage typique au Royaume-Uni (consommation de 2900 kWh pour l’électricité et
12000 kWh pour le gaz, source: Finantial Times et Cornwall Insight, Ofgem).

Figure 2.7: Conséquence de la crise énergétique sur le marché de détail.

La flambée des prix spot sur le marché de gros se traduit par une explosion des coûts pour
les revendeurs sur le marché de détail. Figure 2.7a souligne que tous les pays européens ont été
impactés par cette crise. Néanmoins, l’intensité de la hausse du prix de l’électricité pour les
ménages n’a pas été uniforme : dans certains pays (comme en France), les gouvernements ont
mis en place des boucliers tarifaires pour plafonner les prix et éviter une hausse trop importante.
La hausse la plus frappante a eu lieu au Royaume-Uni où la facture annuelle d’électricité a été
multipliée par un facteur 3 entre 2020 et 2023, voir Figure 2.7b.

Outre la flambée des prix et les conséquences qui en résultent pour les utilisateurs finaux,
de nombreux fournisseurs ont été contraints de déposer le bilan. En France, trois fournisseurs
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alternatifs (E.Leclerc, Planète Oui, Cdiscount) ont déjà cessé leurs activités et au Royaume-
Uni, le septième fournisseur d’électricité (Bulb Energy, 5% de part de marché, 1,7 million de
consommateurs) a également dû cesser ses activités. Dans ces cas, les clients sont la plupart du
temps redirigés vers le fournisseur historique.

2.2 Défis émergents

Comportement complexe des utilisateurs

Plusieurs composants (non monétaires) peuvent influencer la décision des utilisateurs finaux.
Parmi eux, une partie croissante des consommateurs regarde attentivement l’origine de l’électricité,
c’est-à-dire quelle ressource a été utilisée pour la production de l’électricité. A titre d’exemple,
depuis une décennie, on assiste à l’émergence d’offres “vertes”, garantissant une électricité issue
de ressources renouvelables [HR14; MZ16; AF19].

Par ailleurs, trois caractéristiques comportementales sont souvent étudiées car elles impactent
fortement le choix des clients :

(i) Rationalité partielle/limitée : en raison du manque d’informations sur leurs caractéristiques
de consommation ou de l’ignorance des mises à jour des prix, les clients ne sélectionnent
pas toujours le contrat qu’un agent omniscient aurait choisi. Ce comportement sous ratio-
nalité limitée, c’est-à-dire avec une certaine incertitude dans la décision, est maintenant
intégré dans un nombre croissant de modèles [ES17; RH18; RDP19], impliquant souvent
des choix de clients de nature probabiliste (par exemple, les modèles de choix logit [Tra09]),
plus difficile à gérer dans les problèmes d’optimisation [BLS23].

(ii) Élasticité au prix : la crise énergétique a mis en évidence une flexibilité non négligeable
dans la consommation des utilisateurs finaux, induite par une forte fluctuation des prix (ici
la flambée des prix). Ils ont restreint leur consommation pour se concentrer uniquement
sur les usages essentiels. De nombreuses études abordent ce phénomène en estimant son
intensité [And+97; Lij07; ACR20; NYK20]. Cette importante adaptabilité est à la base du
“Demand Response”, voir par exemple [AE08]. Cette technique vise à modifier les courbes
de charge des consommateurs en envoyant à ces derniers des incitations tarifaires, le but
étant souvent de faire baisser le pic de consommation (“peak clipping” et “load shifting”),
voir Figure 2.8.
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(b) Peak clipping

Figure 2.8: Deux mécanismes de Demand response

(iii) Inertie dans la réponse: comme le montre Figure 2.6, les moteurs de comparaison de prix
comparent souvent l’offre actuelle de l’utilisateur final avec les alternatives disponibles sur
le marché. Il existe en effet une asymétrie entre le contrat déjà souscrit avec le reste du
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marché puisque les clients font face à des coûts de changement ce qui provoque une inertie
dans la dynamique de choix : les utilisateurs finaux ne changeront leur offre pour une autre
que s’il existe un différence substantielle entre les deux contrats qui compense les coûts de
changement. Ces coûts ont diverses origines : comme l’illustre Figure 2.9, il peut s’agir de
coûts monétaires (frais de sortie, coûts d’équipement), mais ils peuvent être psychologiques
(fidélité à la marque, temps et efforts consacrés au changement d’offre). Nous nous référons
à [Stu02; Sal22; DW23] pour les estimations des coûts de changement sur les marchés de
détail de l’électricité. Des études empiriques analysent l’impact de ces coûts de changement

Figure 2.9: Exemple de coûts de changement (Source : sketchbubble.com)

à la fois sur la décision des clients et sur les stratégies de tarification [FH08; HP10; Abd17;
Mys+18], et plus récemment certains travaux intègrent la dépendance temporelle (inertie
due aux coûts de changement) dans des modèles d’optimisation [PE17; Hua22], montrant
notamment le lien entre coûts de changement et promotions.

Lisibilité du marché

Ces dernières années, les offres se sont multipliées : tant le nombre de revendeurs que le nombre
de contrats par fournisseur ont augmenté (par exemple de 18 en 2008 à plus de 100 revendeurs
aujourd’hui en France7). En conséquence, les consommateurs souffrent d’une lisibilité réduite
du marché et sont parfois désorientés dans cette vaste jungle d’offres. Mais dans le même
temps, disposer d’un menu d’offres plus large permet de mieux s’adapter aux préférences et aux
habitudes des clients, et donc de renforcer son attractivité. Une question naturelle se pose alors
pour chaque fournisseur: quel est le compromis optimal entre ces deux tendances opposées ?
Cette question est moins abordée dans la littérature alors qu’elle est une préoccupation majeure
chez les fournisseurs.

Mécanismes incitatifs à des fins de réduction de la consommation

Dans un contexte de sobriété, dû à la fois à la crise énergétique (voir sections précédentes)
et à des considérations écologiques, les distributeurs visent à inciter leurs clients à réduire leur
consommation, non seulement en période de pointe (comme pour l’effacement) mais en moyenne.

7Source : Commission de Régulation de l’Energie (CRE)
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Ces incitations peuvent prendre plusieurs formes. Tout d’abord, elles peuvent être basées sur le
civisme et la conscience des clients : certaines applications montrent à chaque utilisateur final
à quel point sa consommation est éloignée de la consommation moyenne des clients similaires à
ce dernier (c’est le cas en France pour la plupart des fournisseurs, comme Engie et EDF). Une
autre approche est basée sur la récompense monétaire, offrant la plupart du temps des remises si
le client a pu réduire sa consommation par rapport aux années précédentes (“SimplyEnergy”8,
“Plüm énergie”9 ou “OhmConnect”10). Des études économiques examinant l’impact de ces
incitations monétaires sur les clients peuvent être trouvées dans la littérature (par exemple
[MT12; Pra+18; Rus+23]).

2.3 Tarification et jeux de Stackelberg dans la littérature

La théorie des jeux est un domaine mathématique qui analyse l’interaction entre des agents
rationnels (appelés joueurs). La première contribution est sans doute le problème du duopole
formulé par Cournot en 1838 [Cou38], où la notion d’équilibre est abordée, c’est-à-dire une
situation où chaque joueur ne veut pas dévier de sa situation actuelle. Les jeux mathématiques
sont ensuite théorisés par von Neumann et Morgenstern en 1944 [VM47]. Dans les années 50,
Nash [Nas53] formalise la notion d’équilibre, très connue et utilisée aujourd’hui. Dans cette thèse,
nous nous concentrons sur une classe spécifique de jeux, à savoir les jeux de Stackelberg [Sta52].
Ces problèmes à 2 joueurs reflètent l’asymétrie des rôles des joueurs : le meneur décide d’abord,
puis le suiveur répond (jeux séquentiels). Cette classe de jeux est particulièrement bien adaptée
aux problèmes de tarification dans lesquels une entité fixant les prix vise à optimiser ses revenus.
La décision du client intervient donc toujours après l’établissement de la nouvelle stratégie
tarifaire.

Nous nous concentrons ici sur deux cadres traitant des jeux Stackelberg, et avec de nom-
breuses applications à la gestion des prix : l’optimisation bi-niveau et les modèles principal-agent.
Pour une introduction sur ces deux domaines, nous renvoyons au chapitre préliminaire 3. Nous
présentons ci-après un aperçu des travaux existants sur la tarification.

Tarification en optimisation bi-niveau

Les problèmes à deux niveaux constituent une partie importante de la littérature mathématique
des problèmes de tarification. Il s’agit de problèmes à deux joueurs, où un premier joueur
(meneur) propose des prix aux clients (suiveurs) qui maximisent leurs propres fonctions d’utilité
et tiennent compte des prix fixés par le meneur. Nous renvoyons à Labbé et Violin [LV15] pour
une présentation détaillée des concepts et des modèles de solutions sur la tarification bi-niveau,
ainsi qu’aux travaux de Dempe [Dem20] pour une revue approfondie de la littérature bi-niveau.

Premiers travaux sur la tarification des réseaux. Labbé et al. [LMS98] ont d’abord
proposé un modèle de taxation appliqué à la tarification routière, étendu ensuite par Brotcorne
et al. [Bro+06]. Larsson et Patriksson [LP98] ont étudié la question de la congestion du trafic
à travers la programmation à deux niveaux. En gestion du fret, Brotcorne et al. [Bro+00] ont
proposé un modèle et des algorithmes pour déterminer les tarifs optimaux. Ces modèles sont
appliqués à des réseaux, et le problème rencontré par les suiveurs hérite de la structure de graphe
induite par la topologie du réseau. Par exemple, étant donné la décision du meneur, le problème
du suiveur peut être un problème de plus court chemin. Dewez et al. [Dew+08] ont profité de la

8https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
9https://plum.fr/cagnotte/

10https://www.ohmconnect.com/

https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
https://plum.fr/cagnotte/
https : //www.ohmconnect.com/
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structure pour proposer de nouvelles inégalités valides pour resserrer les relaxations, ainsi que
de nouvelles formulations basées sur la description des chemins.

Tarification de biens. Le problème de la tarification de produits “sans convoitise”, i.e., où
chaque agent est toujours en mesure de choisir l’option qu’il désire le plus (voir Chapter 3) a été
analysé pour la première fois par Guruswami et al. [Gur+05] sous l’angle de la complexité, mon-
trant le caractère APX-Hard du problème. Par la suite, plusieurs reformulations du problème
à deux niveaux ont été proposées par Shioda, Tunçel et Myklebust [STM11] et Fernandes et
al. [Fer+13]. Heilporn [Hei+10] et Fernandes et al. [Fer+16] ont étudié les liens entre ce dernier
problème de tarification des produits et les modèles de tarification rencontrés dans les réseaux,
montrant en particulier que des inégalités valides d’un modèle peuvent être utilisées dans l’autre.

Applications dans le domaine électrique. Pendant une décennie, de nombreux problèmes
de tarification se sont posés dans la gestion de l’énergie. Avec la libéralisation des marchés de
détail de l’électricité, Leyffer et Mundson [LM10] ont abordé la question de la tarification opti-
male à laquelle doit faire face un détaillant dans un environnement concurrentiel, amenant à la
résolution d’un problème d’équilibre sous contraintes d’équilibres (EPEC). Luna et al. [Lun+20]
ont ensuite proposé une technique de régularisation primale-duale pour contourner le caractère
mal posé du problème résultant de la non-unicité de la solution du niveau bas. De plus, de nom-
breuses contributions ont été faites en “Demand Response” : Zugno et al. [Zug+13] font figure de
pionniers sur ce sujet. Afşar et al. [Afş+16] ont étudié le tarif optimal afin d’inciter les consomma-
teurs à écrêter la pointe de consommation. Sur le même sujet, Kovacs [Kov16] a proposé un tarif
alternatif dépendant du temps. Alekseeva et al. [Ale+19] ont étudié des stratégies pour déplacer
le pic de consommation à des fins de réduction des coûts. Aussel et al. [Aus+20] ont enrichi
le modèle en ajoutant un niveau d’optimisation (fournisseurs, agrégateurs, utilisateurs finaux)
et ont développé des règles de partage alternatives en cas de choix équivalents, s’interprétant
comme un intermédiaire entre la formulation optimiste et la formulation pessimiste. Abate,
Riccardo et Ruiz [ARR21] ont introduit de l’incertitude dans les fonctions d’utilité des consom-
mateurs pour tenir compte de l’élasticité de la demande. Grimm et al. [Gri+21] ont comparé le
temps d’utilisation (TOU), la tarification de pointe critique (CPP) et le tarif de tarification en
temps réel (RTP) dans une étude numérique réalisée sur des cas d’utilisation réalistes. Kozani-
dis et Kostarelou [KK23] ont proposé un modèle à deux niveaux pour gérer les offres de prix
optimales des producteurs d’énergie sur les marchés de l’électricité J-1.

Géométrie tropicale. Une approche émergente est le point de vue adopté par Baldwin et
Klemperer [BK19] et Tran et Yu [TY19], où la décision du client est analysée à l’aide de la
géométrie tropicale. Cette géométrie utilise l’algèbre max-plus, voir par exemple [MS21]. Le
problème de maximisation de l’utilité du suiveur consiste alors en une sélection de type ”une
parmi N possibilités”, et peut être vu comme l’évaluation d’un polynôme tropical. La carte
de réponse des agents est dans ce contexte un complexe polyédral où chaque cellule corre-
spond à un sous-ensemble de décisions du meneur (prix) qui induisent une même décision client.
Lorsque le problème implique plusieurs suiveurs indépendants, la ”superposition” de complexes
polyédriques donne une compréhension visuelle complète du problème de tarification. Nous ren-
voyons à [Eyt18] pour une approche tropicale de la tarification à deux niveaux appliquée aux
réseaux de télécommunications mobiles.
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Travaux Acteurs (i) Temporalité
(ii) Incertitude

Nature du
niveau bas

(i) Approche
(ii) Type de solution

[LM10] Multi-L.
Common-F.

(i) Statique
(ii) Déterministique Continu

(i) Non-linéaire
(formulation NCP)

(ii) Stationnaire

[Zug+13] Single-L.
Multi-F.

(i) Temps discret
(ii) Par scénarios Linéaire (i) Reformulation KKT

(ii) Globale

[Afş+16] Single-L.
Multi-F.

(i) Temps discret
(ii) Déterministique Linéaire (i) Reformulation KKT

(ii) Globale

[Kov16] Single-L.
Multi-F.

(i) Temps discret
(ii) Déterministique Linéaire (i) Heuristique

[Ale+19] Single-L.
Multi-F.

(i) Temps discret
(ii) Déterministique Linéaire (i) Reformulation KKT

(ii) Globale

[Lun+20] Multi-L.
Common-F.

(i) Statique
(ii) Déterministique Continu

(i) Non-linéaire
(régularisation duale)

(ii) Stationnaire

[Aus+20] Single-L.
Multi-F.

(i) Temps discret
(ii) Déterministique Linéaire (i) Reformulation KKT

(ii) Locale

[ARR21] Single-L.
Multi-F.

(i) Temps discret
(ii) Par scénarios Linéaire (i) Reformulation KKT

(ii) Locale

[Gri+21] Single-L.
Single-F.

(i) Temps discret
(ii) Déterministique Linéaire (i) Reformulation S.-D.

(ii) Globale

[KK23] Single-L.
Single-F.

(i) Temps discret
(ii) Déterministique Entier (i) Reformulation Opt.-V.

(ii) Globale

Table 2.1: Classification non-exhaustive des travaux en optimisation bi-niveau appliqués à la
tarification électrique.

“S.-D.”: “Strong Duality”, “Opt.-V.”: “Optimal-Value”, “L.”: “Leader”, “F.”: “Follower”.

Modèles principal-agent pour la gestion de l’énergie

Les modèles Principal-Agent appartiennent à la théorie des incitations, dont la première ap-
proche remonte aux travaux de Barnard [Bar38]. Cette théorie a d’abord été conçue dans le but
d’améliorer la productivité des travailleurs, dans le même esprit que le taylorisme. Comme dans
la tarification à deux niveaux, le principal (alias le leader) conçoit un contrat en tenant compte
du comportement rationnel (appelé aléa moral dans ce domaine) de l’agent (alias le suiveur),
qui vise à maximiser sa propre fonction d’utilité.

Au cours de la dernière décennie, les contributions sur les modèles Principal-Agent appliqués
à la gestion de l’énergie ont été nombreuses. Carmona, Fehr et Hinz [CFH09] ont introduit un
problème de contrôle stochastique optimal pour la tarification du carbone. Féron, Tankov et
Tinsi [FTT20] ont étudié le processus d’échange sur les marchés infrajournaliers de l’électricité
à l’aide de modèles principal-agent. Alasseur, Farhat et Saguan [AFS20] ont analysé à travers
le mécanisme de partage des risques de nouveaux leviers pour favoriser les investissements ca-
pacitaires. Concernant l’effacement de la demande, Aı̈d, Possamı̈ et Touzi [APT22] ont présenté
des incitations optimales pour réduire à la fois la consommation moyenne d’électricité et sa vari-
ance. Dans [Éli+20], Élie et al. ont prouvé qu’une expression analytique des contrats optimaux
peut être trouvée dans le cas de la valorisation linéaire de l’énergie et lorsque les contrats sont
indexés par la consommation agrégée. La question de la tarification de l’électricité sur le marché
de détail a été abordée par Alasseur et al. in [Ala+20] où l’élasticité de la demande est décrite
par une mesure relative d’aversion au risque (CRRA). Des applications récentes ont émergé,
comme les marchés des énergies renouvelables par exemple. Aı̈d, Kemper et Touzi [AKT23] ont
introduit un cadre Principal-Agent afin de modéliser les investissements dans les énergies re-
nouvelables. Aussi, Shrivats, Firoozi et Jaimungal [SFJ21] ont proposé un jeu de champ moyen
principal-agent appliqué au marché des certificats d’énergie renouvelable.
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2.4 Objectifs et contenu de la thèse

Dans cette thèse, nous analysons les problèmes de tarification qui se posent dans la gestion
de l’énergie, et plus précisément à l’interface entre les distributeurs et les consommateurs.
Premièrement, nous nous concentrons sur la tarification des offres pour le marché de détail.
Dans ce cadre, il s’agit de construire un menu d’offres le plus rentable possible pour le four-
nisseur d’électricité, où chaque offre peut être sélectionnée par n’importe quel client mais est
conçue pour être attrayante pour une partie ciblée de la population. Dans un deuxième temps,
nous étudions des mécanismes incitatifs qui visent à réduire la consommation d’électricité d’un
portefeuille d’utilisateurs finaux en construisant des récompenses optimales favorisant les clients
les plus sobres. De plus, dans la plupart des problèmes de tarification de l’électricité, une donnée
critique qui doit être estimée est la consommation et la facture typiques (basées sur des données
passées) des clients. Nous examinons ici des estimations fines dans ce but. Cette thèse con-
tribue à répondre à ces différentes problématiques de par ses aspects novateurs tant d’un point
de vue théorique, modélisation et algorithmique. Nous donnons maintenant plus de détails sur
le contenu de cette thèse :

⋄ Nous abordons d’abord à travers l’optimisation bi-niveau la question de la tarification opti-
male d’un menu d’offres, problème crucial pour une entité qui cherche à rester compétitive
en concevant son menu tarifaire en réaction à un contexte de marché. Ce travail étend les
modèles développés dans les approches standard pour la tarification de biens. Ce cadre
est de nature combinatoire, la décision des clients consistant en un choix discret parmi la
gamme d’offres. Dans le chapitre 4, nous introduisons un nouveau comportement client –
vu comme une régularisation de modèles de choix purement déterministes – où la décision
de chaque utilisateur final est maintenant exprimée comme une mesure de probabilité
discrète sur les alternatives, concentrée sur les contrats les plus avantageux pour le con-
sommateur. Ce nouveau modèle est motivé par le grand nombre de consommateurs, con-
sidérant chaque groupe d’utilisateurs finaux (consommateurs ayant des caractéristiques
similaires) comme un utilisateur final représentatif d’une sous-population homogène de
taille infinie. Dans le chapitre 5, nous enrichissons le comportement des clients en insérant
dans le problème du suiveur des coûts de changement, agissant comme une force de rappel
qui maintient les clients attachés à leur offre actuelle. Cet effet d’inertie plonge le problème
dans un cadre de contrôle dynamique : le modèle correspond maintenant au contrôle d’un
processus de décision markovien où les probabilités de transition du suiveur (d’un contrat
à un autre) sont déterminées par la décision du meneur à chaque pas de temps. Nous
étudions dans le chapitre 6 un autre point d’intérêt pour les opérationnels : l’influence de
la taille du menu, c’est-à-dire le nombre de contrats à concevoir. Cette question est abordée
par une stratégie en deux étapes : nous examinons d’abord le cas limite champ moyen -
dans lequel un continuum d’offres est conçu - puis nous recherchons le meilleur menu de
taille finie qui approche au mieux le cas limite. Ce problème de quantification permet de
déterminer une fonction de perte qui met en correspondance le nombre de contrats utilisés
avec la perte relative de revenus induite par cette restriction.

⋄ Nous rassemblons ensuite des contributions de diverses natures. Dans le chapitre 7, nous
considérons d’abord la question de la sobriété énergétique en nous focalisant sur un cadre
Principal-Agent, dans lequel une entreprise vise à proposer un nouveau type de contrat
qui incite les clients à faire des efforts en vue de réduire leur consommation. Ce con-
trat prévoit une rémunération variable en plus de la tarification linéaire standard (facture
proportionnelle à la consommation) qui est basée sur le rang de l’utilisateur final dans
l’ensemble des utilisateurs similaires. Ce jeu de classement introduit une compétition
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(équilibre de champ moyen) entre les consommateurs, les poussant à baisser leur consom-
mation électrique moyenne. Dans le chapitre 8, motivés par le grand nombre d’applications
nécessitant des estimations de factures, nous nous concentrons sur les inégalités de con-
centration et leur intégration dans le modèle d’optimisation. En particulier, nous nous
intéressons aux inégalités de type Bennett et montrons qu’il est possible d’obtenir une re-
formulation convexe, conduisant à des programmes avec contraintes en probabilité traita-
bles. Enfin, nous étudions dans le chapitre 9 une famille d’approximations non convexes
de problèmes d’optimisation sous contrainte de cardinalité. Ces problèmes d’optimisation
parcimonieuse apparaissent naturellement lors de la conception d’un menu d’offres, qui est
au cœur du chapitre 6. Nous abordons ici la question de manière générale et montrons
que l’approche non linéaire basée sur les entropies de Rényi est peu gourmande en temps
tout en conduisant à une solution acceptable, c’est-à-dire avec une violation limitée de
l’exigence de cardinalité d’origine.

2.5 Contributions des chapitres

Nous donnons maintenant plus de détails sur les apports de chaque chapitre:

1. Le chapitre 4 énonce la problématique rencontrée par un fournisseur d’électricité qui vise
à concevoir un menu d’offres destinées à un grand nombre d’utilisateurs finaux. Une
description complète du modèle conduirait à un Multi-Leader-Common-Follower Game,
voir [LM10], où un équilibre de Nash devrait être trouvé entre les fournisseurs. Ici,
nous étudions une version statique où un fournisseur optimise ses offres compte tenu
de la stratégie (prix) des autres acteurs du marché (fournisseurs concurrents et offres
régulées), conduisant à un problème Single-Leader-Single-Follower, voir Figure 2.10. Cela
peut être interprété comme un ajustement immédiat d’un fournisseur à une situation
de marché. Nous introduisons d’abord des modèles déterministes basés sur le cadre de
tarification bi-niveau de biens (Envy-free unit-demand, voir par exemple [Gur+05]), et
dérivons des formulations MILP issues d’une reformulation à un seul niveau. Nous rap-
pelons également les modèles Logit [GMS15], vus ici comme une régularisation proba-
biliste du comportement des clients, et analysons leur comportement asymptotique. Le
souci principal est d’avoir un modèle à la fois juste et traitable, et nous développons à
cet effet une régularisation quadratique pour le problème du suiveur. Nous exposons une
structure polyédrique de la réponse des clients (Théorème 4.3.1), et montrons que lorsque
le paramètre de régularisation - interprété comme l’intensité de rationalité des utilisateurs
finaux - tend vers l’infini (entièrement rationnel), la réponse déterministe est récupérée,
c’est-à-dire que le complexe polyédrique converge vers la description cellulaire développée
par Baldwin et Klemperer [BK19] dans des contextes déterministes (Théorème 4.3.2). Une
étude numérique poussée est réalisée sur une instance réaliste, montrant l’intérêt de ce nou-
veau modèle (Figure 4.9) et la nécessité de modéliser un comportement lisse des clients
pour éviter des prix trop optimistes (non réalistes en pratique), voir Figure 4.10.

2. Dans le chapitre 5, nous intégrons dans le précédent modèle (Chapitre 4) l’influence des
coûts de changement. L’inertie qui en résulte dans le comportement des clients se traduit
par une dépendance au choix du contrat précédent. Nous modélisons le problème comme
un processus de décision de Markov où chaque problème de transition entre deux pas de
temps discrets correspond à une instance du modèle statique à deux niveaux, voir Fig-
ure 2.11. Nous formalisons le problème comme un problème de contrôle optimal visant à
maximiser la récompense moyenne sur un horizon de temps infini (contrôle ergodique, voir
par exemple [ABG11]), et montrons que cela peut être résolu de manière équivalente par
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Concurrents / Offres régulées 
Fournisseur 

Population d’usagers finaux 

Fournisseur 

Population d’usagers finaux 

temps 

Concurrents / Offres régulées 

Figure 2.10: Problème de bi-niveau rencontré par un fournisseur désireux d’optimiser son
menu d’offres dans un marché concurrentiel

Nous examinons la réaction du fournisseur aux prix donnés de la concurrence (statique). Le fournisseur
met d’abord à jour ses prix (flèche rouge), puis chaque utilisateur final de la population hétérogène

choisit son offre – appartenant soit au fournisseur (flèche verte pleine), soit à la concurrence (flèche en
pointillé).

un problème aux valeurs propres (Corrollaire 5.2.1). Nous prouvons à l’aide d’un argu-
ment de contraction sur la dynamique que le problème aux valeur propres a une solution
régulière (Théorème 5.2.2), à partir de laquelle la stratégie de leader optimale peut être
déduite. Nous introduisons un algorithme d’itération sur les politiques [Put94; Gau96]
adapté au contrôle de population décomposable, recalculant à la volée les transitions entre
états pour réduire drastiquement l’espace de stockage nécessaire, tout en gardant un coût
de calcul rapide par rapport aux algorithmes d’itération sur les valeurs relatives (RVI),
voir Table 5.2. Nous analysons ensuite l’impact de l’intensité des coûts de changement sur
la politique tarifaire. Nous observons qu’au-delà d’un seuil, des promotions périodiques
sont appliquées, offrant une rémunération strictement supérieure au meneur par rapport
aux stratégies à prix constants (Figure 5.5). Nous montrons enfin l’étendue de ce comporte-
ment dans un exemple, prouvant la supériorité des politiques cycliques sur les politiques
à prix constant, voir Section 5.7.

3. Le chapitre 6 explore un autre facteur important dans la conception des menus tarifaires,
à savoir la question du nombre optimal d’offres (taille du menu) qu’un fournisseur de-
vrait proposer à la population. Dans ce but, nous assouplissons d’abord la condition sur la
taille du menu pour obtenir comme cas limite un problème dans lequel un contrat peut être
spécialement conçu pour chacun des utilisateurs finaux (menu de taille infinie). Nous mon-
trons que ce problème relaxé peut être reformulé comme une généralisation du problème
présenté par Rochet et Choné [RC98] (Théorème 6.5.1), qui est convexe lorsque le porte-
feuille de clients est fixé (c-à-d lorsque la souscription au contrat est imposée), voir (6.3)).
Étant donné le menu optimal (potentiellement de taille infinie) du problème relaxé, nous
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Concurrents / Offres régulées 
Fournisseur 

Population d’usagers finaux 

Fournisseur 

Population d’usagers finaux 

temps 

Concurrents / Offres régulées 

Figure 2.11: Problème itéré de tarification à deux niveaux en tant que processus de décision de
Markov.

A chaque pas de temps, le fournisseur est en mesure de mettre à jour ses prix, et chaque utilisateur final
de la population hétérogène peut soit conserver son contrat actuel, soit en changer pour un nouveau (du

même fournisseur ou des concurrents statiques). Dans ce dernier cas, elle subira des frais de
changement.

approchons ce dernier par un menu de nombre fini de contrats en utilisant une procédure
d’élagage, initialement conçue pour les problèmes de contrôle, voir Algorithme 6. Ce
schéma d’élagage réduit itérativement la taille du menu en supprimant le contrat restant
le plus redondant, c’est-à-dire celui qui induit le moins d’erreur d’approximation lorsqu’il
est supprimé. Nous adaptons cette nouvelle approche de type “glouton inversé” pour
plusieurs critères (par exemple erreur en norme L∞ ou L1), et montrons qu’un recalcul
partiel de la solution à chaque itération est toujours suffisant (Propositions 6.3.1 et 6.3.2).
Nous observons numériquement que cette mise à jour locale entrâıne d’énormes gains de
temps de calcul, voir Figure 6.3. Nous exploitons ensuite la structure du problème pour
interpréter la décision des clients comme un diagramme de Voronoi utilisant les distances
de Bregmann [BNN10] – voir Proposition 6.4.1 – et dérivons de la théorie de la quantifica-
tion [Pag15] une procédure de Lloyd qui vise à trouver la meilleure approximation L1 du
menu de taille infinie par un menu fini, montrant l’efficacité et la robustesse des nouvelles
méthodes d’élagage.

4. Le chapitre 7 introduit un nouveau dispositif incitatif, appliqué aux préoccupations de
sobriété énergétique. Dans ce schéma, le fournisseur (Principal) – motivé par les agences
de régulation – contracte avec un continuum de clients homogènes en leur proposant une
récompense monétaire basée sur le classement individuel de chaque client au sein de la
population, voir Figure 2.12. Les consommateurs sont alors incités par cette compensation
financière à se classer parmi les meilleurs économes en énergie afin de recevoir la plus haute
récompense.

Ici, la concurrence entre les utilisateurs finaux, initiée par une fonction de récompense
donnée, est modélisée comme un jeu à champ moyen, et nous prouvons qu’elle admet un
unique équilibre de Nash, qui peut être déterminé analytiquement (Théorème 7.2.3). Cette
caractérisation vaut en particulier pour les récompenses purement basées sur le rang, large-
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Sous-population 1

. . .

Sous-population k

. . .

Sous-population K

Fournisseur

Regulateur

Incitation à réduire
la consommation globale

Récompense = f (rang)

Compétition (Nash) Compétition (Nash) Compétition (Nash)

Niveau bas (agents)

Niveau haut (principal)

Mean-field assumption: Each subpopulation is composed of an infinite number
of indistinguishable consumers

Ranking games : Application to Energy Savings C. Alasseur, E. Bayraktar, R. Dumitrescu, Q. Jacquet 4 / 24

Figure 2.12: Relation Principal-Agent entre un fournisseur d’énergie et un ensemble d’agents,
ces derniers rivalisant les uns avec les autres pour obtenir la meilleure récompense possible en

réduisant au maximum leur consommation d’énergie.
Motivé par des politiques gouvernementales de réduction d’énergie, le fournisseur conçoit une fonction

de récompense incitative basée sur le classement des agents afin que l’agent économisant le plus
d’énergie reçoive la récompense la plus élevée. Compte tenu de la fonction d’incitation, un équilibre de

Nash doit alors être trouvé pour chaque sous-population d’utilisateurs finaux homogènes.

ment étudiées dans [BZ21]. Ensuite, en incorporant cette formule analytique de l’équilibre
dans le problème du fournisseur, nous montrons que lorsque l’élasticité de la demande in-
duite par les prix est uniforme, la récompense optimale peut être obtenue par la résolution
d’une équation de point fixe sur la consommation moyenne cible optimale. Pour cela,
nous exploitons les conditions d’optimalité d’une reformulation convexe dans l’espace des
distributions, équivalente au problème initial, voir Théorème 7.2.4. Cette dernière car-
actérisation permet une compréhension fine de la fonction de récompense, établissant des
conditions suffisantes pour le développement de tels dispositifs incitatifs. Quand la popu-
lation est hétérogène et avec une élasticité au prix non uniforme, un algorithme numérique
(Algorithme 10) est proposé, et des simulations sur des exemples réalistes montrent que
l’approche est susceptible de produire d’importantes réductions de consommation tout en
garantissant une satisfaction moyenne des utilisateurs finaux supérieure au cas traditionnel
(non incitatif), voir Figure 7.5.

5. Dans le chapitre 8, nous étudions les inégalités de concentration de type Bennett en vue de
les intégrer dans des programmes sous contraintes en probabilité [Pré95]. Premièrement,
nous introduisons d’abord un algorithme à double dichotomie permettant de calculer des
bornes de confiance (Algorithme 12). Ceci peut être appliqué pour l’estimation des factures
lorsque les courbes de charge de consommation ne sont connues qu’à travers leurs moments.
Ensuite, nous étudions des approximations distributionnellement robuste de programmes
sous contraintes en probabilité avec des informations sur les moyennes et les variances
(Corollaires 8.4.1 et 8.4.2). Nous montrons que ces approximations peuvent être intégrées
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dans des programmes d’optimisation convexe comme dans [NS07], et sont traitables dans
de nombreux cas d’utilisation. Nous nous intéressons d’abord à un problème discret de
référence, à savoir le problème du sac à dos entier, et montrons qu’une description par plans
sécants de l’estimation convexe de type Bennett (ajoutés itérativement dans le Branch-and-
Bound) conduit à des solutions robustes plus rentables tout en gardant un temps de calcul
raisonnable (Table 8.2). Nous utilisons également ces estimateurs dans des problèmes
d’optimisation continue, en nous concentrant sur le problème des séparateurs à vaste marge
robustes, et montrons sur des instances de la littérature que l’approche réduit l’erreur de
classification (Section 8.4.2).

6. Dans le chapitre 9, nous étudions des problèmes génériques d’optimisation parcimonieux.
De tels problèmes se posent naturellement dans la gestion des prix. Par exemple, pour
des raisons de lisibilité, les détaillants contraignent souvent leur nombre d’offres à une
taille prescrite, voir le chapitre 6. Ici, nous introduisons une famille de bornes inférieures
pour cardinalité, faisant intervenir l’entropie de Rényi [Rén+61]. En nous concentrant
sur l’application aux problèmes de sélection - où l’optimisation est effectuée sur l’espace
des mesure de probabilité discrètes (simplexe), nous prouvons (Théorème 9.3.1) que les
bornes entropiques que nous avons développées peuvent contrôler la parcimonie de la
solution, récupérant comme cas limite la norme exacte ℓ0. Dans les résultats numériques,
nous étudions le cas particulier de l’entropie de Shannon et sa capacité à imposer de la
parcimonie dans la solution. Nous montrons que l’utilisation de cette borne entropique
pour problèmes de sélection de portefeuille assure un bon compromis entre le contrôle de
la cardinalité et les performances d’optimisation (Figure 9.6).

Classification schématique des chapitres

En Figure 2.13, nous décrivons brièvement les objectifs mathématiques de chaque chapitre par
mots-clés et classons les chapitres en fonction des principales différences de modélisation. Les
concepts mentionnés dans les mots clés sont introduits dans le chapitre préliminaire (Chapitre 3).
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⋄ MDPs déterministes
⋄ Analyse de convergence

(propriétés “turnpike”)

Chapitre 6:
⋄ Problème Principal-

Agent avec selection
adverse

⋄ Quantification de menus
d’offres

⋄ Diagrammes de Voronöı
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Figure 2.13: Schéma exprimant les différences entre les chapitres en termes de modélisation,
ainsi que des mots-clés décrivant les principaux outils utilisés dans chaque chapitre.



2.
F

re
nc

h
In

tr
o.

Publications and Works related to
this PhD thesis

***

[Jac+23a] Quadratic Regularization of Bilevel Pricing Problems and Applica-
tion to Electricity Retail Markets.
Joint work with Wim van Ackooij, Clémence Alasseur and Stéphane Gaubert
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2022 IEEE 61st Conference on Decision and Control (CDC), pp. 3617-3624
See Chapter 5.

[Jac+23b] A Quantization Procedure for Nonlinear Pricing with an Application
to Electricity Markets.
Joint work with Wim van Ackooij, Clémence Alasseur and Stéphane Gaubert
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***

In this preliminary chapter, we introduce three main theories – bilevel programming, Principal-
Agent models and control of Markov processes – related to the study of Stackelberg games, and by
which is underpinned the core of this PhD thesis. For each of the approaches, we give a simple
example on the product pricing problem, which is the basic problem underlying all the following
chapters.

3.1 Bilevel programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Reverse Stackelberg games: a bridge to the theory of incentives . . . . . . . . . . 52
3.3 Principal-Agent problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Markov Decision Processes for the control of populations . . . . . . . . . . . . . . 57

3.1 Bilevel programming

The special structure of pricing problems can be generally cast into the bilevel framework,
see [Bar13] and [Dem+15]. In this setting, a leader (here the company) aims at optimizing its
own objective (upper level), integrating into the constraints the decision of the follower (here the
consumers), viewed as the solution of an inner optimization problem (lower level). We denote by
x ∈ RM the set of variables controlled by the leader (upper variables), and by y ∈ RN the set of
variables controlled by the follower (lower variables). The two players have distinct objectives:

⋄ F : (RM ×RN )→ R the leader ’s objective function (modeling here a profit to maximize)

⋄ f : (RM ×RN )→ R the follower ’s objective function (modeling here a cost to minimize).

The strategy chosen by the leader is supposed to belong to a subset X ⊆ RM (if the upper
constraints are linear, then X is a polyhedron). For a leader strategy x ∈ X , the follower
minimizes f by finding an optimal strategy y∗ ∈ Ψ(x), where the set of optimal lower decisions
Ψ(x) is defined as

Ψ(x) := arg min
y∈Y(x)

f(x, y) . (3.1)

In (3.1), the subset Y(x) ⊆ RN represents the feasible values of y for a given upper decision
x∗, taking into account the constraints of the follower, and is called feasible set mapping. We
consider here for sake of simplicity that Y(x) is a convex subset of the form:

Y(x) := {y ∈ Y | g(x, y) ⩽ 0} , (3.2)

where g : RM ×RN → RP and y 7→ gk(x, y) is convex for any 1 ⩽ k ⩽ P and x ∈ RM .

49
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The set of optimal strategies Ψ(x) may not be reduced to a singleton, i.e, there may exist
several distinct lower decisions which appear to the follower as equivalent. However, these
decisions are not equivalent in general for the leader. To overcome this issue, we can develop
an optimistic model where the follower acts cooperatively by choosing y∗

o(x) such that y∗
o(x) =

arg maxy∈Ψ(x) F (x, y) or a pessimistic model where the follower realizes the worst case for the
leader by choosing y∗

p(x) = arg miny∈Ψ(x) F (x, y).

Remark 3.1.1

� The optimistic case is often easier to solve than pessimistic model, see
e.g. [Dem02]. Wiesemann et al. [Wie+13] presented conditions guaranteeing
the existence of optimal solutions for pessimistic bilevel problems, and devel-
oped iterative solution scheme adapted to this class of instances.

The general optimistic bilevel problem can be written

max
x∈X ,y∗

{
F (x, y∗) s.t. y∗ ∈ Ψ(x) = arg min

y∈Y, g(x,y)⩽0
f(x, y)

}
. (3.3)

Notation 3.1.1
In Stackelberg literature, the leader is denoted by “she” and the follower by “he”. We will
adopt this notation for the sequel. Besides, in graphic depiction, the first player will be
represented in red, and the second player in green, see Figure 1.10 to Figure 3.2.

Problems of the form Equation (3.3) are NP-Hard in general (even when the leader’s and
the follower’s objective functions are linear), and if we deal with mixed-integer programs, bilevel
problems can be ΣP

2 -Hard, see [Jer85]. However, several methods have been introduced in
order to solve them. The major part of the literature aims at reformulating bilevel instances as
single-level problems. We present hereafter two techniques:

Classical KKT reformulation. This first approach consists in replacing the lower level by
the Karush-Kuhn-Tucker (KKT) optimality conditions when it is suitable : let us assume that

(i) ∀x ∈ RM , y 7→ f(x, y) is convex,
(ii) and for each x ∈ X , there exists ŷ ∈ RN such that g(x, ŷ) < 0 (Slater condition).

Then, the set of global solutions of (3.3) coincides with the one of

max
x∈X ,y∈Y

F (x, y)

s.t. ∂yf(x, y) + λ⊤∂yg(x, y) = 0
g(x, y) ⩽ 0
λkgk(x, y) = 0, 1 ⩽ k ⩽ P

λ ∈ RP
⩾0

(3.4)

Dempe shows that the equivalence between single-level and bilevel formulation doesn’t hold
for local solutions: indeed, a local optimum of the single-level reformulation need not be a
local optimal solution to the bilevel programming problem, see [DD12, Example 3.1]. Methods
searching for stationary points require certain regularity [FL04b; Dus+17].
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The general difficulty in the solving of (3.4) lies in the complementarity constraints λkgk(x, y) =
0, as they reveal a combinatorial nature behind bilevel problems. Various mixed-integer methods
have been used, and we refer to the recent survey of Kleinert et al. [Kle+21] for an overview on
these techniques, among which Branch-and-Bound methods can be used to treat this difficulty
for medium-size instances [FM81; MB90]. Alternatively, nonlinear methods are often used to
smooth the complementarity constraints using penalization techniques, see e.g. [LM10; FL04a;
Dus+20].

Optimal-value reformulation. We define the optimal value function of the follower φ :
RM → R as

φ(x) := min
y∈Y, g(x,y)⩽0

f(x, y) . (3.5)

The optimistic bilevel problem can, then, be recast as a one-level instance :

max
x∈X ,y∈Y

F (x, y)

s.t. f(x, y) ⩽ φ(x)
g(x, y) ⩽ 0 .

(3.6)

This alternative single-level reformulation to the KKT reformulation was initiated by Out-
rata [Out90], and is used in branching algorithms [DK16; Fis+17]: in a schematic view, the
constraint “f(x, y) ⩽ φ(x)” in Equation (3.6) is hard to handle (it is in general nonconvex,
and even if it is convex, it can not be qualified). Therefore, these methods first ignore this
constraint (High-Point Relaxation [Bar13]) and then iteratively add cuts to take into account
the optimality of follower decision. Alternatively, in [AO22], the authors enhanced DC (Dif-
ference of Convex functions) algorithms by defining trial points as inexact solutions, reducing
computational burden.

A very studied case is the product pricing problem [STM11; Dew+08; Fer+16], with appli-
cations to toll pricing [LMS98], freight pricing [Bro+00] or tickets selling [Hoh20] :

max
x,y∗

M∑
i=1

N∑
j=1

xjy∗
ij

s.t. y∗ ∈ arg min
y


M∑

i=1

N∑
j=1

(xj − rij)yij s.t.
N∑

j=1
yij ⩽ 1, yij ⩾ 0, ∀i, j

 .

(3.7)

In (3.7), each customer 1 ⩽ i ⩽ M aims at choosing among N(≪ M) products the one max-
imizing the quantity rij − xj , which can be interpreted as the utility of product j (rij is a
reservation utility). If none of the products 1 ⩽ j ⩽ N gives a positive utility for customer i,
then the customer will not purchase any product and yij = 0 for all j. In this model, even if
several customers are reacting to the strategy of the leader, each customer reacts independently
as there is not any capacity constraint on the number of available products (Envy-free problems,
see e.g [STH07]). Therefore, the agents can be merged into one agent making a global decision
for each individual customer.

The formulation (3.7) has a specific structure: the two objective functions are bilinear. As
a consequence, the lower problem is linear when the decision of the leader is taken. Moreover,
the lower level is somehow simple, in the sense that we only require for the follower decision to
belong to the simplex {yi,· ∈ RN

⩾0 |
∑

j yij ⩽ 1}. Depending on the application, unitary selling
costs cij are sometimes added leading to an upper objective maxx

∑M
i=1

∑N
j=1(xj − cij)y∗

ij .
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Example 3.1.1 (Product pricing problem)
Let us consider the simplest case where there is only one customer (M = 1) and a single
product to price (N = 1), with reservation utility r = 1. Then, the problem simplifies to

max
x∈R

xy∗ s.t. y∗ ∈ arg min
0⩽y⩽1

{(x− 1)y} (3.8)

In this toy example, the set of optimal lower solution Ψ(x) is always a singleton, ex-
cept when x = r = 1, which corresponds to the case where the utility of the product is
exactly zero: at this price, every lower response is optimal, i.e., Ψ(1) = [0, 1]. An optimistic
lower response would be y = 1 as it maximizes the leader objective for x = 1, whereas a
pessimistic solution would be y = 0 to disadvantage the leader. A huge difference between
the two approaches is that the pessimistic solution has in general no guarantee to be at-
tained [Wie+13; Dem02]: in this example, the optimistic solution is x = 1, leading to a
revenue for the leader of F (1, 1) = 1, whereas the pessimistic solution is not attained (the
objective value is also 1, but only obtained at the limit case x→ 1).

1 2

1

x

y

(a) Optimal optimistic follower
response

1 2

1

x

y

(b) Leader objective function whithin
the optimal optimistic lower response

3.2 Reverse Stackelberg games: a bridge to the theory of incen-
tives

In the previous section, the follower decides his strategy by knowing the upper decision x∗ ∈ X .
In the pricing context, this means that the follower reacts to a price signal. This is realistic in
many situations, where the piece of information that the leader has agreed to provide is only a
price. For example, in the retail electricity market, the offers are only based on price coefficients
in e or e/kWh.

Let us imagine now that the leader aims at incentivising the follower to reach a target, for
example a consumption reduction. To this purpose, it is more natural (and more powerful) to
provide to the follower a reward function instead of a single price, describing for each level of
follower effort (lower decision) the corresponding price/reward that can be obtained.

Figure 3.1 shows the difference between standard (without incentives) Stackelberg games
and reverse Stackelberg games. Instead of a single price vector x∗ ∈ X , the leader now provides
a function ξ∗ : Y → X . This function can be viewed as the mirror of the lower response map
y∗(·), hence the named of reverse game. The general optimistic reverse Stackelberg game can
be written as the following bilevel instance:

max
ξ(·):Y→X , y∗

{
F (ξ(y∗), y∗) s.t. y∗ ∈ Ψ(x) = arg min

y∈Y, g(ξ(y),y)⩽0
f(ξ(y), y)

}
(3.9)

Concepts and basis framework can be found in [GSH12], and we refer to [BLS22] for recent
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Leader

Follower

x∗ ∈ X

y∗(x∗)
∈

arg min
y∈Y

g(x∗,y)⩽0

f(x∗, y)

(a) Stackelberg games

Leader

Follower

ξ∗(·) : Y → X

y∗(ξ∗)
∈

arg min
y∈Y

g(ξ∗(y),y)⩽0

f(ξ∗(y), y)

(b) Reverse Stackelberg game

Figure 3.1: Incentived schemes
A reverse Stackelberg game is a Stackelberg game where we allow the leader decision to belong to an

infinite-dimensional space.

advances on application to grid pricing.

Example 3.2.1
To illustrate that reverse Stackelberg games are, in some cases, a way to incentivise the
follower to better act in the leader sense, we recall the example of [Ols09]: we consider the
1-dimensional unconstrained bilevel problem with

F (x, y) = −(y − 5)2 − x2 , f(x, y) = x2 + y2 − xy .

Then, the leader wants to attain the point (x, y) = (0, 5) which gives a zero objective value.
However, in the standard Stackelberg game, the follower response to x = 0 is y = 0. If now
the leader provides to the follower the function ξ∗(y) = 2y − 10, then the follower response
will be

y∗(ξ∗) ∈ arg min
y

{
(2y − 10)2 + y2 − (2y − 10)y

}
= {5} .

The value of the incentive is then x∗ = ξ∗(y∗) = 0, leading to a zero objective value.

3.3 Principal-Agent problems

The theory of incentives (or contract theory) was initially introduced in Economics [LM09] and
developed in the seventies in particular with the various works of Mirrlees (see e.g. [Mir76]).
This theory analyses the relation between two asymmetric players, respectively named in this
context Principal and Agent (equivalent of leader and follower in bilevel).

Compared with reverse Stackelberg games, Principal-Agent problems also focus on the opti-
mal design of an incentive/contract, but often take into account uncertainty due to unobservable
characteristics for the principal.

Presentation in discrete time. Let (Ω,F) be a measurable space, and Y be a real-valued
random variable, representing the observable output process. In this context, the Principal sets
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up a contract ξ : R → R (Borel measurable map) at time 0 with the agent, and the agent is
payed ξ(Y ) at time 1.

Given a contract, the agent chooses an effort a ∈ R at time 0, generating a probability
measure Pa on (Ω,F) such that under Pa, Y has a continuous distribution with density f(·, a)
(the effort is the way for the agent to influence/control the stochastic output process Y ). The
agent has, then, a utility V A

0 (ξ, a) for each contract ξ and effort a, that he wants to maximize:

V A
0 (ξ) = sup

a∈R
V A

0 (ξ, a) .

For instance, a typical objective function considered in the literature (see e.g. the seminal paper
of Holmström and Milgrom [HM91]) is defined through an exponential function called Constant
Absolute Risk Aversion (CARA) :

V A
0 (ξ, a) = EPa

[
−e−θA(ξ−c(a))

]
,

where c is the cost of effort for the agent and θA > 0 is the risk aversion intensity.
In the same way, the Principal aims at maximizing a utility function V P

0 (ξ, a). To this
purpose, several models coexist, and can be divided into three main categories, depending on
the available quantity of information:

(i) Full information / First-best: the principal is able both to design the contract and to
control the action of the agent, then the provider optimization problem is

V P,F B
0 = sup

ξ,a

{
V P

0 (ξ, a) s.t. V A
0 (ξ, a) ⩾ R

}
, (3.10)

where the constraint (called Individual rationality, or IR in short) ensures that the utility
of the follower is greater than a reservation utility. This class of problems are called first-
best as they do not consider the optimal behavior of the agent, i.e., that a must belong
to the set of maximizers of a 7→ V A

0 (ξ, a). This relaxed case is a standard single-level
problem, simpler to solve. As an example, one can obtain using Borch’ rule [Bor62] that if
V P

0 is also define through a CARA utility, i.e., V P
0 (ξ, a) := EPa

[
−e−θP ξ

]
, then the optimal

contract is affine: ξ(Y ) = c + θP
θA+θP

Y , see e.g. [MR18].

(ii) Moral-hazard / Second-best: the principal is able to observe the output process Y , but
cannot directly influence the action, optimally chosen by the agent. In this case, the
principal problem is

V P,SB
0 = sup

ξ,a∗
V P

0 (ξ, a∗)

s.t. a∗ ∈ arg max
a∈R

V A
0 (ξ, a)

V A
0 (ξ, a∗) ⩾ R

(3.11)

The additional constraint (called incentive-compatibility condition, or IC in short) ex-
presses the optimality of the agent choice, the latter player maximizing his own utility
function. Problem (3.11) is in fact the stochastic analog of the reverse Stackelberg game
introduced in (3.9), and corresponds to a bilevel problem. The question of existence was
initially tackled by Page [Pag87], and the first widespread method was the First-order ap-
proximation (FOA) where the IC condition is replaced by the weaker first-order condition
∂aV A

0 (ξ, a) = 0, see [Rog85]. This idea ties up with the classical KKT transformation: in
both cases, single-level reformulations are obtained exploiting the optimality conditions of
the inner problem (note that the first-order approximation does not guarantee equivalence
with the two-level problem, as pointed out by Mirrlees [Mir99]).
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(iii) Adverse selection / Third-best: in this situation, the agent has a type (characteristic) which
is unknown by the principal. This uncertainty is ex ante the design of the reward (whereas
the moral hazard is uncertainty ex post the establishment of the contract), see e.g. [Sal05]
for the general theory. In practice, in models under adverse selection (we also speak about
models with screening), the distribution of types within the population is supposed to be
known by the Principal.

Principal-Agent problems under adverse selection include in particular the so-called monop-
olist problem [MR78; GL84; RC98]:

max
ξ: Y→X

∫
Ω

[ξ(y∗(τ))− C(ξ(y∗(τ)))] ρ(τ)dτ

s.t. ∀τ ∈ T y∗(τ) ∈ arg max
y
{τy − ξ(y)}

u(τ) := τy∗(τ)− ξ(y∗(τ)) ⩾ R(τ)

. (3.12)

In (3.12), each customer of type τ ∈ T aims at choosing among the set of goods Y ⊆ R the
one maximizing the quantity τy − ξ(y), which can be interpreted as the utility of good y. The
price of a good y is determined by the principal and corresponds to ξ(y). The upper objective
is then the maximization of the mean profit (difference between the price and the cost of the
good). Here, contrary to the product pricing problem in (3.7), there is a continuum of types
and a continuum of goods. Moreover, all the consumers choose a product of the principal, as we
ensure that the utility of each customer is greater than the reservation utility (hence the name
of monopolist problem). Equivalently, the contract menu offered by the principal can be written
as a pair of functions τ ∈ T 7→ (ξ̂(τ), ŷ(τ)), see e.g.[CD17]:

max
(ξ̂,ŷ): T →X × Y

∫
T

[
ξ̂(τ)− C(ξ̂(τ))

]
ρ(τ)dτ

s.t. ∀τ ∈ T τ ŷ(τ)− ξ̂(τ) ⩾ τ ŷ(τ ′)− ξ̂(τ ′), τ ′ ∈ T
u(τ) ⩾ R(τ)

. (3.13)

The fist constraint, so-called incentive-compatibility condition, ensures that the optimal choice
y∗(τ) for customers of type τ under incentive ξ̂ effectively corresponds to the good ŷ(τ).

Remark 3.3.1
The choice of the customer can be decided in advance by the principal so that a customer
of type τ will necessarily choose the good ŷ(τ). This is possible since we can dedicate one
specific good for each type of customers. Therefore, in contrast with the bilevel product
pricing problem (3.7), there is no longer any combinatorial issue, i.e., the choice of good j
is not encoded anymore with a binary variable yij but is now replaced by the decision ŷ(τ).

In [RC98], Rochet and Choné reformulate (3.12) as a variational problem under convexity con-
straints as follows:

min
u: T →Y

{∫
T

[u− τ∇u(τ)− C(∇u(τ))] ρ(τ)dτ

∣∣∣∣∣ u convex
u(τ) ⩾ R(τ)

}
. (3.14)

From the optimal solution u, the pair (ξ̂, ŷ) can be recovered as ŷ = ∇u and ξ̂(τ) = τ ŷ(τ)−u(τ).
Conditions for the existence of a solution to the latter problem have been tackled in [Car01] and
Carlier and Zhang [CZ20] extended these results to partial participation (relaxing the constraint
u ⩾ R). When a solution exists, the optimal (nonlinear) contract is a function that depends on
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the type of the consumer, revealed after the signing of the contract. Rochet and Choné [RC98]
show that there is in general bunching in the solution, i.e., agents with different types are treated
identically (same contract) in the optimal solution.

Example 3.3.1 (Product pricing as variational problem)
Let us consider a continuum of customers uniformly distributed according to their types
τ ∈ [0, 1]. The reservation utility is set to 0 and the cost function to C(y) = 1/2y2. We
display below the optimal solution of the variational problem in this simple setting (this is
done here using a discretization as in [EM09]).

0.5 τ0 1

−ξ̂(τ0)

0.1

0.2

τ

u
−ξ̂(τ0) + τy(τ0)

u(τ)

(a) Optimal utility function for Problem (3.14).

We observe that the utility is constant and equal to 0 for τ ⩽ 0.5. This means that every
customer of type τ ⩽ 0.5 chooses good y = 0 with price ξ̂ = 0. This illustrates that
bunching appears on subsets where the utility function is affine. For τ > 0.5, the good is
different for each type and has an increasing price. We represent the tangent plane to u at
τ = τ0 showing that the price and the good can be recovered from the utility function.

Time-dependent models. Suppose now that the process Y is a time-dependent process, and
that the action taken by the agent also evolves in time: for simplicity, let us suppose that the
process Yt is given by the following controlled state equation:

Yt =
∫ t

0
asds +

∫ t

0
σdWs, t ∈ [0, T ] ,

where the first integral is the drift, controlled by the action process a, and σ is the volatility
(intensity of the Brownian motion). The principal-agent problem with the latter setting has
been first studied by Sannikov [San08]. The standard steps that should be followed in order to
solve the time-dependent moral-hazard principal agent problem can be summarized as follows
(see e.g. [CPT17]):

1. Restrict the search space for the leader by finding a subset of contracts (with a fixed
form) for which we are able to compute analytically the best response of the agent. These
contracts are called revealing contracts.

2. Then, it has to be proved that an optimal contract belongs to the determined subset.

3. Finally, it remains to solve the (easier) problem defined on the subset of revealing contracts.
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Multi-agents models with competition. In many applications, the Principal designs a
contract not for a single follower but for a population of agents, distributed according to a
given distribution. If each agent reacts independently (as in Envy-free problems), the model
corresponds to a Principal-Agent instance under adverse-selection, see e.g. the monopolist prob-
lem (3.12). If now there is interaction/competition between the agents, then a Nash equilibrium
(no agent can do better by unilaterally changing their strategy) has to be found between the
agents a posteriori the signing of the contract. When the population is of large size, a mean-field
assumption is often supposed, considering that the population is a continuum of agents so that
the impact of each individual agent is negligible.

Given the contract, the decision of the population corresponds to a Nash equilibrium of a
mean-field games, see e.g. [HMC06; HCM07; Pie06]. These mean-field games are studied for their
own sake in various application fields (for instance in energy [ABM20] or in finance [GPY13]).
The embedding of these games into Principal-Agent problems has been regarded more recently
by Élie, Mastrolia and Possamäı [EMP19], and also Carmona and Wang [CW21]. Ranking
games [BZ16; BZ21] can be viewed as a special case, where the contract depends on the ranking
within the population, so that each agent competes to obtain the best ranking.

3.4 Markov Decision Processes for the control of populations

Notation 3.4.1
We bring to the reader’s attention that we still denote by x ∈ X the leader/controller action
to keep the same notation as in bilevel optimization theory, but this should not be confused
with standard state space notation in control theory.

A Markov chain (Yt)t⩾0 is a stochastic sequence of events/states, where the probability that
a given event happens at the next time step only depends on the current state (and not on the
sequence of all past events), see e.g., [Chu60]. In the discrete-time setting and in case of a finite
state space Y := {1, . . . , N} of N possible states, the Markov process (Yt) is fully determined by
the initial state Y0 and the transition matrix P = (P[Yt+1 = m | Yt = n])1⩽n,m⩽N .

The associated Markov Decision Process (or shortly MDP) is then a control problem where
a controller (this would correspond to the leader in bilevel or to the principal in Principal-Agent
theory) is able to influence the transition matrix by some action/control x ∈ X . We refer
to [Put94], [Ber12] and [Fru19] for introduction and main results on MDPs. At each time step,
if the process, or environment (it would correspond to the follower in bilevel optimization or
to the agent in Principal-Agent theory) is in state n ∈ {1, . . . , N} at time t and the controller
chooses action x, then the process will randomly move in state m ∈ {1, . . . , N} at time t+1 with
probability P (x)n,m, and gives to the controller an instantaneous reward θ(x)m. The transition
matrix is then indexed by the action chosen by the controller. The MDP is therefore represented
by a 4-tuple M = (Y, X , P (·), θ(·)), where

(i) X is the action/control space,
(ii) P (x) ∈ RN×N is the transition matrix associated with control x ∈ X ,
(iii) θ(x) ∈ RN is the instantaneous reward to be in a given state due to control x ∈ X .

Given an initial probability measure µ0 ∈ P(Y) = ∆N := {ν ∈ RN
⩾0 |

∑N
i=1 νi = 1} and

a sequence of actions (xt)t⩾0, the probability measure µt = (P[Yt = n])1⩽n⩽N satisfies the
deterministic transition equation:

µt+1 = µtP (xt) .
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Controller

Environment

action
xt = ξt(Yt)

Yt+1

θt+1

state
Yt

reward
θt

Figure 3.2: Schematic representation of Markovian Decision Process.
The dynamics is here represented as a loop, where at each iteration an action is chosen by the

controller, influencing the random choice of the next state.

At each time step and given the current state, the controller chooses an action xt according
to a decision rule ξt : Y → X . The collection of decision rules ξ = {ξt}t is then called a policy.
Stationary policies ξ = (ξ0, ξ0, ξ0; . . .) are an important and well-studied specific case.

Three different controller objective functions are considered in the literature:

(i) Finite-horizon gain: sup
ξ

E

[
T∑

t=1
θ(xt)Yt

∣∣∣∣∣ xt = ξt(Yt), Yt+1 ∼ P [ · | Yt, xt]
]

.

(ii) Discounted infinite-horizon gain: sup
ξ

E

[ ∞∑
t=1

αt−1θ(xt)Yt

∣∣∣∣∣ xt = ξt(Yt), Yt+1 ∼ P [ · | Yt, xt]
]

.

(iii) Average long-term gain: sup
ξ

lim inf
T →∞

1
T
E

[
T∑

t=1
θ(xt)Yt

∣∣∣∣∣ xt = ξt(Yt), Yt+1 ∼ P [ · | Yt, xt]
]

.

Finite-horizon problems can be solved by backward induction (dynamic programming) using
a Bellman equation [Bel54], whereas discounted infinite-horizon problems and average long-
term gain problems are typically solved by a fixed-point equation and respectively discounted
and relative Value-Iteration Algorithm, see e.g. [Put94] for details on the finite action spaces
and [Sch85] for compact action spaces.

Finite population and convergence to mean-field limit case

In the context of the control of a population, the environment corresponds to a finite set of
I agents. When the agents are indistinguishable (same behavior, i.e., same transition kernel
P (·)), Gast and Gaujal [GG10] and more recently Motte and Pham [MP22] introduced so-called
I-agent Markov Decision Processes, which are represented by a 5-tuple (Y,X , P (·), θ(·), I). As
for standard MDPs, the controller chooses an action x, and each agent i ∈ [I] is influenced by
this action so that he moves from ni to mi with probability P (x)ni,mi . The controller’s reward
is then 1

I

∑
i∈[I] θ(x)ni .

Remark 3.4.1
The I-agent MDP is equivalent to a standard MDP with state space YI and transition
matrix Q(u) = diag(P (x), . . . , P (x)) ∈ RNI×NI .

As in [MP22], one can define the lifted MDP associated withM as the (deterministic) MDP
(P(Y),X , T (·), r(·)), where
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⋄ P(Y) = ∆N is the set of probability measures on Y,
⋄ T (x) := [µ ∈ ∆N 7→ µP (x)] is the transition function which gives the next distribution

after executing action x,
⋄ r(x) := [µ ∈ ∆N 7→ ⟨θ(x), µ⟩N ] is the expected instantaneous reward according to a given

measure due to action x.

Gast and Gaujal [GG10] showed that for an infinite number of indistinguishable players
(I →∞), the I-agent MDP coincides with the lifted MDP for finite-time horizon and discounted
infinite horizon and provided convergence rates. Motte and Pham [MP22] extended this result
to a broader class of MDPs. In [Bäu23], Bäuerle focused on the average-gain optimality criteria
and shows that mean-field limit is ϵ-optimal for the discounted problem if the number of agents
is large and the discount factor close to one.

Many mean-field control problems in demand-side management have been studied since the
eighties: Malhame and Chong [MC85] introduces a control problem for a population of thermo-
statically controlled loads (TCL) and in [KM13], Kizilkale and Carmona circumvented the diffi-
culty of large population by mean-field approximation. Le Floch, Can Kara and Moura [FKM18]
studied the control problem of a large fleet of electrical vehicles needed to be charged. Cam-
mardella et al. [Cam+19] considered a quadratic criterion and a Kullback-Leibler penalty in
order to learn both the control and the transition kernel. In [Bré+19], electricity consumers
are incentivized to shift a part of the peak consumption to the off-peak period by designing dy-
namic pricing mechanisms through the use of multi-armed bandit techniques. Finally, Moreno
et al. [Mor+23] introduces a new mirror descent approach applied to demand-side management
control problem.

Let us come back to the product pricing problem, constituting our leitmotiv in this pre-
liminary chapter. In discrete choice theory (see e.g. [Tra09]), probabilities of choice are often
supposed to follow Gumbell distributions (logit models): still considering as in (3.7) M con-
sumers and N products, the probability that customer 1 ⩽ i ⩽ M chooses product 1 ⩽ l ⩽ N
after having chosen product 1 ⩽ n ⩽ N is

[Pi(x)]n,l = P[ul
in ⩾ uk

in, ∀ 0 ⩽ k ⩽ N ] ,

where the utility for customer i to select product k after product n is

uk
in = β−1ϵik + γ1l=n +

{
rik − xk (k ⩾ 1)
0 (k = 0)

.

As in the deterministic case (3.7), each customer i focuses on product n maximizing the quantity
rin−xn, but with an additional perturbation (of intensity β−1) coming from a family of indepen-
dent and identically distributed Gumbell noises {ϵij}ij . Each customer still has the possibility
not to choose one of the N products (and choose option k = 0). The correlation between two
consecutive customer choices is represented by an extra term γ1l=n, modeling an additional
utility to maintain the same choice from one time step to another. The parameter γ ⩾ 0 is then
viewed as a switching cost that appears when it comes to making a change of offer/product,
see e.g. [Dub+08; DHR09; DHR10]. This dynamic extension of the product pricing problem is
tackled e.g. in [PE17]. In the logit setting, the transition matrix Pi(x), coming from the optimal
choices of customer i, has a closed-form formula:

[Pi(x)]n,l = eβ(ril−xl)+γ1l=n /

(
1 +

N∑
k=1

eβ(rik−xk)+γ1k=n

)
.
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Example 3.4.1 (Product pricing as a deterministic MDP)
As in Example 3.1.1, let us consider the case where M = 1, N = 1 and r = 1. Then, the
finite-horizon problem simplifies to

max
x1,...,xT ∈X T

{
T∑

t=1
xtµt s.t. µt+1 = µt

1 + e−γ−β(1−xt) + 1− µt

1 + eγ−β(1−xt)

}
. (3.15)

Compared with the (non-dynamic) case in (3.8), the lower decision is here of probabilistic
nature and is unique (and explicit) in the logit setting, so that there is no ill-posedness issue.
Given a price x, the deterministic (binary) response y∗ can be viewed as the limit of µt

when β →∞ and γ → 0.
Despite its apparent simplicity, the problem (5.25) is already challenging: backward

induction approaches imply to solve transition problems (in the computation of Bellman
operator [Bel54]) which are here non concave (in x).
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This chapter is based on the published paper [Jac+23a], to which we add an extended study
of the deterministic and logit models (Section 4.2). We also provide in appendix (see 4.8.3) a
presentation of the numerical tool that embedded the different resolution methods we present in
the chapter.
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Abstract. We consider the profit-maximization problem solved by an electricity retailer who
aims at designing a menu of contracts. This is an extension of the unit-demand envy-free pricing
problem: customers aim to choose a contract maximizing their utility based on a reservation
bill and multiple price coefficients (attributes). A basic approach supposes that the customers
have deterministic utilities; then, the response of each customer is highly sensitive to price since
it concentrates on the best offer. A second classical approach is to consider logit model to add
a probabilistic behavior in the customers’ choices. To circumvent the intrinsic instability of the
former and the resolution difficulties of the latter, we introduce a quadratically regularized model
of customer’s response, which leads to a quadratic program under complementarity constraints
(QPCC). This allows to robustify the deterministic model, while keeping a strong geometrical
structure. In particular, we show that the customer’s response is governed by a polyhedral
complex, in which every polyhedral cell determines a set of contracts which is effectively chosen.
Moreover, the deterministic model is recovered as a limit case of the regularized one. We exploit
these geometrical properties to develop a pivoting heuristic, which we compare with implicit
or non-linear methods from bilevel programming, showing the effectiveness of the approach.
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Throughout the chapter, the electricity retailer problem is our guideline, and we present a
numerical study on this application case.

4.1 Introduction

4.1.1 Context

For a company, the question of determining the correct prices of its products is crucial: a
compromise has to be found between having enough consumers buying products and setting
prices that are sufficiently important to cover the production cost. Profit-maximization models
have been extensively studied. They consist in maximizing the seller profit taking in account
the customer behavior. The special structure of these problems can be generally cast into the
bilevel framework, see [Bar13] and [Dem+15]. In this setting, a leader (here the company) aims
at optimizing its own objective (upper level), taking into account the decision of the follower
(here the consumers), obtained as the solution of an inner optimization problem (lower level).
This 2-player problem is known in game theory as a Stackelberg game, see [Sta52], and reflects
the asymmetry of the players’ roles: the leader moves first, then the follower replies (sequential
games). As detailed in [Kle+21], two classical approaches consist in reformulating the problem as
a single-level one, either using strong-duality or the KKT conditions, to express the optimality of
the lower decision and constrain the upper problem. Formulations based on KKT conditions lead
to Mathematical Programs with Complementarity Constraints (MPCC), a class of optimization
problems whose interest has been growing in recent years, and particularly in the energy sector,
see [Afş+16; Ale+19; Aus+20; ARR21].

The unit-demand envy-free pricing problem is a specific case. We consider a finite number of
customers (or segments of customers) who are supposed to buy precisely one product, among the
ones maximizing their utility. Moreover, products are available in unlimited supply. [Gur+05]
showed that this problem is APX-hard (even on a restricted class of instances). [STM11] de-
veloped Mixed-Integer Programming (MIP) formulations, along with valid cuts and heuristics.
They also enhance the model to ensure that each customer faces a unique maximum utility.
[Fer+16] compare several MIP formulations and reinforce them with new valid cuts. All these
approaches are based on deterministic models of customer’s response. By their deterministic
nature, they lead to instability features: the customer’s response is discontinuous, resulting in
typical “sawtooth” shaped profit functions, see e.g. [LMS98; GMS15] or Figure 4.3 below.

There are situations in which revenue management data are uncertain, and as noted in [Tun08],
it is desirable that “optimal or near-optimal prices delivered by the optimization techniques [be]
robust under modest perturbations of the reservation prices of the potential customers and the
competitors’ prices”. This question of uncertain data and/or uncertain decision of the followers
is nowadays a central question in the bilevel community, see e.g., the recent survey [BLS23]. To
overcome instability issues, one approach is to consider choice models of a probabilistic nature.
Then, the value of the lower level objective determines the probability distribution of the cus-
tomer’s choice. The most studied case concerns the logit model, see [McF74; Tra09]. [LH11]
suppose that the population is homogeneous, meaning that there is only one segment. They
reformulate the problem as a concave maximization problem by a market-share transformation.
[SK20] extend this approach to the case of multiple price attributes. Logit pricing models with
multiple consumers segments have only been studied very recently: [Li+19] formalize the pric-
ing problem under the Mixed Multinomial Logit (MMNL), and develop algorithms to find good
solutions. [Hoh20] applies such models to the revenue management case study of the German
long-distance railway network. However, logit-based models are in general hard to solve with
guarantees of optimality, owing to their nonlinear and nonconvex nature.
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4.1.2 Contribution

We consider a multi-attribute version of the unit-demand envy-free pricing problem that we
model by a bilinear bilevel formulation. This applies in particular to the pricing of electricity
offers, which is our driving case study.

Our main contribution is the development of a new model, based on a quadratic regularization
of customer’s response: it has the same benefits as the logit-based models in terms of realism
and robustness, whereas its quadratic nature allows one to apply efficient algorithms based on
polyhedral geometry.

First, we give a closed-form expression of the lower response and highlight its polyhedral
structure (Theorem 4.3.1). This shows in particular that in the presence of near ties (contracts
with similar utilities), customer’s response distributes among the best contracts, rather than
concentrating on a single one. The regularization parameter measures the “rationality” of the
customer, in particular, the deterministic response is recovered as a limit case – with perfectly
rational customers (Theorem 4.3.2). More precisely, we show that in the regularized model,
the response is governed by a polyhedral complex, in which each open cell determines a set of
contracts which are effectively chosen.

Besides, we show that this model has the same good theoretical properties as the logit
model (stability) and provide metric estimates showing that the responses of the two models are
close (Section 4.8.2). The main interest of quadratic regularization, then, lies in computational
tractability. We show that the regularized bilevel model reduces to a convex Quadratic Program
with Complementary Constraints (QPCC). Powerful methods based on mixed or semidefinite
programming allow one to solve instances of significant size of QPCC with optimality guarantees,
although problems of this kind are generally difficult. In fact, we show in Section 4.8.1 that
solving the present quadratic model is APX-Hard, by reusing the transformation introduced for
the deterministic case in [Gur+05]. We develop in Section 4.4 an efficient local search method,
QSPC (Quadratic Search on the Price Complex), exploiting the polyhedral structure of the
customer’s response.

Finally, we consider realistic instances arising from French electricity markets, and analyze
the optimal solution in both deterministic and quadratic cases. In particular, we look at the
customers’ distribution to illustrate the influence of a regularized lower level. A performance
comparison between the proposed algorithm and other methods from the literature is also given
in Section 4.5.

Our study is inspired by several works. We adopt the viewpoint of [GMS15] in that we
consider the MMNL model [Li+19; Hoh20] as a regularized version of its deterministic ana-
log [STM11; Fer+16]. They look at a related problem that studies the toll pricing optimization,
and demonstrate, among other things, asymptotic convergence of the logit regularization to the
deterministic model. Besides, [STH07] introduced several probabilistic choice models as alterna-
tives to the logit approach, and developed convex mixed-integer formulations to solve them. In
particular, they considered a model which depends on the surplus of the products, and we design
a new customer’s response that satisfies this assumption. By comparison with all these works,
the main novelty is the introduction of the quadratic regularized model as a new probabilistic
customer’s response and the evidences that it has the same good features as the logit model, in
terms of economic realism and robustness, while being computationally more tractable. [DB01]
also investigate quadratic regularization on bilinear bilevel problems and develop bundle trust
region algorithm to solve them. We differ from their work by specializing the lower level to be
defined on the simplex, and by describing the customers’ choices as a polyhedral complex. This
interpretation is inspired by the study of [BK19], who showed that for deterministic models,
agent’s response can be represented by a polyhedral complex, a tropical hypersurface. This
tropical complex is recovered as a limit case of the present polyhedral complex when the reg-
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ularization term vanishes. Finally, to overcome the ill-posedness of bilevel problems (coming
from the non-uniqueness of the followers response), primal-dual techniques have been intro-
duced: [SSC17] directly regularized the KKT conditions of the lower problem whereas [Lun+20]
inserted a regularization term into the objective of the dual lower problem. Both approximation
schemes are proved to converge when the regularization term is driven to zero. In comparison,
we perform here a primal regularization so that the (unique) follower decision is always primal
feasible and corresponds to a modified customer behavior, interpreted as a probabilistic choice.

The chapter is organized as follows. In Section 4.2, we present the deterministic multi-
attribute unit-demand envy-free pricing problem and establish basic properties of the model
(optimality of integer low-level solutions, reformulation as a single level problem using the KKT
conditions). For comparison, we also recall the definition of the logit-based model. In Section 4.3,
we introduce the quadratically regularized model, in particular, we describe the geometric prop-
erties of customer’s response, and provide a reformulation as a single level QPCC. In Section 4.4,
we develop the local search method (QSPC), exploiting the polyhedral structure of customer’s
response. In Section 4.6, we provide a numerical analysis on instances from the electricity pricing
problem.

4.2 Preliminaries

4.2.1 Notation

In the sequel, we denote by ∆N the simplex of RN , and by ∥x∥N the Euclidean norm associated
with the canonical scalar product ⟨x, y⟩N on RN . For any polyhedron Q, Vert(Q) denotes the
set of vertices of Q. Moreover, for any optimization problem (P ), the value v (P ) ∈ R∪{±∞}
denotes its optimal value (that can be infinite if (P ) is infeasible or unbounded).

4.2.2 Deterministic model

We suppose that a company has W different types of contracts and that a market study has
distinguished beforehand S customer segments, each of them gathering consumers that have
approximately the same behavior. Given a segment s ∈ [S] := {1, . . . , S} and a product w ∈ [W ],
the reservation bill Rsw is the maximum bill that customers of this segment are willing to pay
on w. In the classical product pricing model, the items to sell are only characterized by a
price (determined by the company) and each customer faces the same price. In our setting,
we consider the multi-attribute case where the bill of each contract w is determined by a finite
number H > 1 of variables (or attributes), denoted by xh

w. For instance, in the French electricity
market, the invoice of a customer depends on at least two variables, representing a fixed and
a variable component, the former depending on the subscribed power of the customer and the
latter depending on his electricity consumption, see [CRE04]. Moreover, in the peak/off-peak
contract, the variable component distinguishes between the peak and off-peak consumption.
Then, the invoice is determined by at least three variables. The following assumption captures
such contracts.

Assumption 4.2.1. The bill θsw(x) paid by segment s for contract w is a linear form:

θsw(x) := ⟨Esw, xw⟩H , (4.1)

where Esw = (Eh
sw)h∈H ∈ RH

⩾0. Besides, the price coefficients xh
w are supposed to be in a

non-empty polytope X ⊂ RW ×H .
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In the electricity market context, Esw represents the electricity consumption of the customers
of segment s who choose the contract w. It depends on h (the period of the day) and on the
contract type w. This is realistic, since the notion of peak and off-peak period can vary along the
contracts, and since customers adapt their electricity consumption depending on their choice of
contract. Note that, in this model, the consumption does not depend on the price. This (strong)
simplification is justified by a high inelasticity of the electricity demand in the short run, see
e.g., [Cse20]. Hence, this model constitutes a first-order model, and aims at focusing on the
uncertainty of the decision, an active research field in bilevel programming [BLS23]. Here, we
are not looking at long-term policies, but we focus on finding the best price policy to a given
set of competitors’ offers at a given time. The situation in which the bill θsw(x) is affine in the
energy consumption, instead of being linear as in (4.1), reduces to the latter case by adding to
the set H an extra element h = 0, with E0

sw = 1 for all s, w. This is the case here, where (4.1)
simultaneously takes into account the fixed part (contracted power) and the variable portion
(depending on the consumption). We also make classical assumptions:

Assumption 4.2.2. (i) Unit-Demand: Each customer purchases exactly one contract.
(ii) Envy-free: There is no limitation on the number of customers able to purchase the

same contract and so each customer chooses a contract maximizing his utility.
(iii) No-purchase option: Consumers have the option not to purchase any contract, or in

a competitive environment, to choose a contract from a competitor.

The utility of segment s for contract w is the difference between the reservation bill and the
invoice, i.e.,

Usw(x) := Rsw − θsw(x) .

The disutility is then the opposite of the utility. The no-purchase option corresponds to the fact
that in competitive environment, customers can choose a contract among those proposed by
competitors. We assume here that the competition is static, meaning that competitors do not
react to the company prices. Therefore, competing contracts could be understood in our context
as regulated alternatives (for instance, in the French electricity market, there are several such
offers with prices determined by a regulation authority). More generally, the contracts from
different static competitors can be aggregated in a unique contract of a virtual competitor, and
the reservation bill Rsw consists here in the infimum of the bills proposed by the competition
to segment s (there can be an additional term representing a given preference for the contract
w). This utility is also called surplus, as it corresponds to the additional gain in terms of utility
that a consumer can expect by choosing an offer from the leader, compared to the no-purchase
option. The utility of the no-purchase option is therefore set to be 0.

Remark 4.2.1
We could also set the utility to be the opposite of the bill, i.e., Usw(x) = −θsw(x) and the
no-purchase utility to be Rsw, but as the utilities are defined up to an additive constant in
choice models, the standard normalization is to set the no-purchase utility to 0.

Finally, when a segment s chooses a contract w, the company has to fulfill the service,
implying a cost Csw. In the case of an electricity retailer, it has to supply electricity and we
suppose that they have the same structure as the bills θ i.e.,

∀s ∈ [S], w ∈ [W ], Csw =
〈
Esw, Čw

〉
H
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where Čw = (Čh
w)h∈H ∈ RH . In this way, Čh

w represents the unitary production cost at period
h for the contract type w. Note that this cost depends on the contract: for instance, a “green
electricity” contract may induce a higher production costs than a classical contract. A fixed
cost (not proportional to the consumption) can be incorporated in this model by introducing
the dummy period h = 0 with a unit virtual consumption E0

sw = 1, as explained above.
To model the customers behavior of segment s, we define the variables ys ∈ RW such that

∀s ∈ [S], w ∈ [W ], ysw =
{

1 if segment s chooses w,
0 otherwise.

(4.2)

To make explicit the no-purchase option, we introduce a variable ys0 and denote the extended
choice vector for segment s by ȳs := (ys0, ys) ∈ R×RW = RW +1 . We shall think of an element
ȳs ∈ ∆W +1 as a relaxed choice of segment s. When ȳs is a vertex of ∆W +1, ys = (ysw)w∈W

determines the behavior of segment s, according to (4.2). The no-purchase option corresponds
to ys0 = 1. For a price strategy x ∈ X, the customers behavior is defined by the solution set
mapping Ψ defined as

Ψ(x) := arg min
ȳ′∈(∆W +1)S

∑
s∈[S]

〈
θs(x)−Rs, y′

s

〉
W

 . (4.3)

Note that the scalar product that appears in the objective is on RW since the no-purchase option
induces a zero utility for any customer.

The multi-attribute unit-demand envy-free pricing problem can now be expressed as the
following bilinear bilevel model

max
x∈X,ȳ

F (x, ȳ) :=
∑

s∈[S]
ρs ⟨θs(x)− Cs, ys⟩W

∣∣∣∣∣∣ (x, ȳ) ∈ gph Ψ

 (o-BP )

In the model, ρs stands for the weight of segment s in terms of company’s profit. Note that
there is an asymmetry in the two objective functions: the leader aims at maximizing quantities
θsw(x) − Csw while the follower aims at minimizing the disutility θsw(x) − Rsw. The very
special case C = R would lead to a subclass of bilevel problems, known as zero-sum games, see
e.g., [Was14]. The label (o-BP ) refers to the optimistic nature of this bilevel problem: if the
lower level problem has several optimal solutions, the upper level optimizer takes into account
the most favorable of these optimal solutions, see e.g. [Dem+15].

Remark 4.2.2
Because all the segments react independently, we can aggregate all their actions under the
same problem. Hence, the minimization in the lower level problem (4.3) is made over the
Cartesian product of simplices. The vertices of each of these simplices represent the possible
decisions of a given segment.

The following result justifies the minimization over relaxed choices in (o-BP ).

Proposition 4.2.1
There exists an optimal solution of (o-BP ) with integer lower values y.

Proof. We denote by (x∗, ȳ∗) an optimal solution, which exists because gph Ψ is compact and
non-empty (from Assumption 4.2.1). The argmin set Ψ(x∗) is a face of the Cartesian product of
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simplices (∆W +1)S , since it arises from the minimization of a linear objective on this product.
So it is a non-empty integer polyhedron. Moreover, there exists an extreme point of Ψ(x∗),
denoted by ŷ, such that F (x∗, ŷ) = F (x∗, ȳ∗) owing to the linearity in y of the upper objective.
To conclude, (x∗, ŷ) is also an optimal solution and ŷ is integer as extreme point of Ψ(x∗).

Problem (o-BP ) is a very specific bilinear bilevel problem with a quite simple lower problem
(minimization over the simplex, without integrity constraints). However, despite its apparent
simplicity, this model is APX-hard since it includes as a special case the unit-demand envy-free
pricing model, which was shown to be APX-hard, see [Gur+05].

The problem (o-BP ) is a profit-maximization problem: in fact, we can define the optimistic
leader profit function πopt for a given price strategy x as

πopt(x) :=
∑

s∈[S]
ρs

∑
w∈[W ]

(θsw(x)− Csw)yopt
sw (x) (4.4)

where yopt
sw (x) is the optimistic lower response (which is binary, see (4.2)). The problem (o-BP )

is therefore the maximization of the function πopt over X. The optimistic profit function πopt

is piecewise linear (the profit is linear for a given customers distribution y, and the possible
customers distribution lies in a discrete set). However, πopt is in general discontinuous at prices
inducing ties (multiple minimum disutilities for a segment), see Fig. 4.3.

4.2.3 Tie-breaking rules

Proposition 4.2.2 (Degeneracy)
Let (x∗, ȳ∗) be an optimal solution of (o-BP ) and suppose that all the contracts are chosen
by at least one segment (otherwise the contract is not useful). If x∗ ∈ Int(X), then there
are at least W segments that face ties i.e. for all w ∈ [W ], there exists s ∈ [S] such that
y∗

sw = 1 and
θsw(x∗)−Rsw = min

{
0, {θsw′(x∗)−Rsw′}(w′ ̸=w)

}
.

Proof. Suppose that

∃w ∈ [W ], y∗
sw = 1⇒ θsw(x∗)−Rsw < min

{
0, {θsw′(x∗)−Rsw′}(w′ ̸=w)

}
.

Then, one could increase the price of the contract w by a little amount – which is possible
because x∗ ∈ Int(X) – and keep the same customers response, contradicting the optimality of
the leader’s decision.

Proposition 4.2.2 proves that solutions always contain ties between invoices for some cus-
tomers. Therefore, the relevance of the optimistic hypothesis has to be discussed. To this end,
we consider two other versions of the problem (o-BP ). First let us consider the pessimistic
version in which customers having ties are supposed to choose the worst invoice in terms of
leader’s profit:

sup
x∈X

min
ȳ

∑
s∈[S]

ρs ⟨θs(x)− Cs, ys⟩W

s. t. ȳs ∈ arg min
ȳ′

s∈∆W +1

〈
θs(x)−Rsw, y′

s

〉
W , ∀s

(p-BP )
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Remark 4.2.3
The existence of a solution is not guaranteed. Dempe gives in [Dem02, Theorem 3.3] a
pessimistic problem such that the optimum is not attained.

We also introduce an intermediary model between optimistic and pessimistic, called uniform
model, defined as

sup
x∈X

∑
s∈[S]

ρs ⟨θs(x)− Cs, ys⟩W

s. t. ysw = 1w∈Φs(x)/|Φs(x)|, ∀s, w

(u-BP )

where Φs(x) := arg min
{

0, {θsw(x)−Rsw}w∈[W ]

}
denotes the set of minimum disutilities among

the W + 1 possibilities. In this model, when a tie occurs, customers have no preference on the
contracts and spread their choice on the different possibilities (of course, the lower response
cannot be binary anymore). We then define the uniform leader profit function as

πuni(x) :=
∑

s∈[S]

∑
w∈[W ]

(θsw(x)− Csw)yuni
sw (x) (4.5)

where yuni stands for the uniform lower response. The three responses (optimistic, pessimistic
and uniform) only differ when a tie between two contracts appears. Using an idea of Gilbert,
Marcotte and Savard [GMS15], the following proposition establishes the equality of the three
versions in terms of optimal value, assuming a condition on the costs.

Assumption 4.2.3 (No-profit option). We say that the bilevel models (o-BP ), (p-BP ) and
(u-BP ) allow the no-profit option if we can set the price to be equal to Č i.e., Č ∈ X.

In the electricity provider context, this condition is realistic: setting prices equal to Č yields
a public service type policy (with no benefit), in which the company aims to cover exactly its
costs.

Theorem 4.2.1 (Indifference to tie-breaking rule)
The inequalities v (o-BP ) ⩾ v (u-BP ) ⩾ v (p-BP ) always hold. Moreover, as soon as the
models allow the no-profit option,

v (o-BP ) = v (u-BP ) = v (p-BP ) .

Proof. The inequalities v (o-BP ) ⩾ v (u-BP ) ⩾ v (p-BP ) are immediate. Let (x∗, ȳ∗) be an
optimistic optimal solution. For any δ > 0, we consider the perturbed price matrix xδ defined
by

∀w ∈ [W ], h ∈ [H], (xδ)h
w = 1

1 + δ

(
(x∗)h

w + δČh
w

)
.

This new price matrix lies in the polytope X , since it a barycenter of x∗ ∈ X and Č ∈ X.
Suppose that for a given segment s, there is a tie between contract w1 and w2 i.e.,

θsw1(x∗)−Rsw1 = θsw2(x∗)−Rsw2 .

In this optimistic problem, the segment s chooses between w1 and w2 the contract that maximizes
the profit of the leader i.e., the contract with the highest value θsw(x∗)− Csw. Without loss of
generality, we suppose that it is w1.
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The new price policy xδ is constructed in order to break the tie while keeping the same choice
of contract: from the definition of xδ, one can obtain that for any segment s and any contract
w θsw(xδ)− θsw(x∗) = − δ

1+δ (θsw(x∗)− Csw). Then,[
θsw1(xδ)−Rsw1

]
−
[
θsw2(xδ)−Rsw2

]
=
[
θsw1(xδ)− θsw1(x∗)

]
−
[
θsw2(xδ)− θsw2(x∗)

]
=− δ

1 + δ
([θsw1(x∗)− Csw1 ]− [θsw2(x∗)− Csw2 ]) ⩽ 0 .

Note that the only possibility to conserve the tie between w1 and w2 with price strategy xδ is
when both contracts yield the same profit for the leader. Therefore, for any δ sufficiently close to
0, (xδ, ȳ∗) is a pessimistic solution with objective 1

1+δ v(o-BP ). Hence, v (p-BP ) ⩾ 1
1+δ v(o-BP ),

leading to v (p-BP ) ⩾ v(o-BP ) when δ → 0+.

Theorem 4.2.1 proves that under the Assumption 4.2.3 the tie-breaking rule at the lower
level does not affect the optimal value. In consequence, considering the optimistic behavior does
not introduce any bias.

4.2.4 Single-level reformulation

Classical KKT transformation. The most common way to express the optimality of the
lower problem as a system of inequalities is to use the Karush-Kuhn-Tucker (KKT) conditions.
Applying this idea to (o-BP ) leads to the following formulation

max
x∈X,ȳ

∑
s∈[S]

ρsµs + ρs ⟨Rs − Cs, ys⟩W

s. t. 0 ⩽ ysw ⊥ θsw(x)−Rsw − µs ⩾ 0, ∀s, w

0 ⩽ ys0 ⊥ µs ⩽ 0, ∀s
ȳs ∈ ∆W +1, ∀s

(o-KKT )

To numerically solve this formulation, we usually replace the complementarity constraints
by Big-M constraints introducing new binary variables. Using Proposition 4.2.1, we provides a
compact formulation in which the lower variables ys are the only binary variables:

max
x∈X,ȳ

∑
s∈[S]

ρsµs + ρs ⟨Rs − Cs, ys⟩W

s. t. 0 ⩽ θsw(x)−Rsw − µs ⩽Msw(1− ysw), ∀s, w

0 ⩽ −µs ⩽Ms0(1− ys0), ∀s
ȳs ∈ Vert(∆W +1), ∀s

(4.6)

Here, the set of vertices Vert(∆W +1) is known and is equal to
{

y ∈ {0, 1}W +1 |
∑W

w=0 yw = 1
}

.
The Big-M parameters Msw > 0 must be chosen to be sufficiently large to prevent the elimination
of any optimal solution, see [PM19; KS23]. This is in general as hard as solving the initial bilevel
problem, see [Kle+20]. However, in the present case, owing to the boundedness of the pricing
variables x ∈ X and the structure of the constraints, we can explicitly find valid Big-M values.
If X ⊆

∏
1⩽w⩽W [x−

w , x+
w ], then it sufficies to take:

Msw = θsw(x+)−Rsw + Ms0 , Ms0 = max{0, max
1⩽w⩽W

{
Rsw − θsw(x−)

}
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Remark 4.2.4
The formulations (o-KKT ) and (4.6) generalize the (U) formulation introduced by [Fer+13]
that applies in the single-attribute case: the variables µs express the disutilities of each
segment s.

Using the strong-duality condition. We next present an alternative formulation exploiting
strong-duality, following an idea of Kleinert et al. [Kle+21] and the references therein. It uses
the dual of the lower problem, and expresses the equality of the primal and dual objectives.

Proposition 4.2.3
We can reformulate (o-BP ) as

max
x∈X,ȳ

∑
s∈[S]

ρs ⟨θs(x)− Cs, ys⟩W

s. t. ⟨θs(x)−Rs, ys⟩W ⩽ θsw(x)−Rsw, ∀s, w

⟨θs(x)−Rs, ys⟩W ⩽ 0, ∀s
ȳs ∈ ∆W +1, ∀s

(o-SDC)

Proof. For a segment s, the dual of the lower problem (4.3) is expressed as

max
µs∈R

{
µs

∣∣∣∣∣ µs ⩽ θsw(x)−Rsw, ∀w
µs ⩽ 0

}
.

Due to strong duality, the primal objective is lower than the dual one and observing that the
dual variable can be eliminated gives us the result.

Remark 4.2.5
In our special case, the approach by strong duality leads to the same formulation as the
Optimal Value Transformation[Dem+15]. In fact, being lower than all possible values is
here equivalent to being lower than the extreme points of the simplex, which is exactly what
the strong-duality reformulation gives us.

The formulation (o-SDC) does not contain complementarity constraints but there is no free-
lunch: the difficulty is recast in the bilinear terms θsw(x)ysw, ∀s, w. These terms are non-convex
and they are often relaxed into lifting variables that have to verify the McCormick inequalities.
Here, thanks to Proposition 4.2.1, we can suppose that the lower variables are binary, and thus
the McCormick relaxation becomes exact. Formulation (o-SDC) is therefore equivalent to

max
x∈X,ȳ

∑
s∈[S]

ρs

∑
w∈[W ]

νsw − Cswysw

s. t. ∑
w′∈[W ] νsw′ −Rsw′ysw′ ⩽ θsw(x)−Rsw, ∀s, w∑
w′∈[W ] νsw′ −Rsw′ysw′ ⩽ 0, ∀s

νsw ⩽ θsw(x), ∀s, w

νsw ⩽ Rswysw, ∀s, w

νsw ⩾ θsw(x)−max
x∈X
{θsw(x)}(1− ysw), ∀s, w

ȳs ∈ Vert(∆W +1), νs ∈ RW
⩾0, ∀s

(4.7)
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Once again, the compactness of X ensures that the Big-M value maxx∈X{θsw(x)} is sufficiently
large to keep the validity of the reformulation. Note that the lifting variable νsw represents the
product θsw(x)ysw which cannot exceed Rsw.

The MIP formulation of equation (4.7) extends the formulation HLMS, cited in [Fer+16]
and initially developed by Heilporn et al [Hei+10], to the multi-attribute case.

4.2.5 Logit regularization

The formulation (o-BP ) models customers reactions as deterministic behaviors. It relies on two
assumptions:

(i) customers have perfect rational and deterministic behavior,
(ii) parameters such as reservation bills and costs are perfectly known.

Both assumptions can be discussed: not only real customers are not purely rational agents in
that they can choose a contract that does not maximize the utility, but also a segment is the
aggregation of quasi-similar customers, not strictly identical ones. Therefore in reality, when a
segment faces two very close disutilities, customers of this segment are likely to spread themselves
over the two possibilities. Besides, the reservation bills and costs are estimations obtained by
analysis on the market but cannot be known exactly. Hence, assuming lower response to be
binary as in the optimistic model can be quite unrealistic and may lead to an unachievable
optimum. This can be avoided by Logit modeling which captures the probabilistic nature of
customers’ choice by adding a Gumbel uncertainty. There is a wide literature which uses this
approach as choice models, see e.g. [Tra09] and the references therein.

Previously, consumers were supposed to choose a contract minimizing their deterministic
disutility i.e., each segment s ∈ [S] selects w∗ ∈ {0 . . . W} such as Vsw∗ = minw∈{0...W } Vsw

where Vsw := θsw(x)−Rsw for all w ∈ [W ] and Vs0 := 0. We now suppose that their disutilities
are defined as

Usw := βVsw + εsw, ∀s, w,

where {εsw}w is a family of Gumbel random variables, distributed identically and indepen-
dently, and β ⩾ 0 is an inverse temperature in the sense of physics. The choice of Gumbel
uncertainties is standard in discrete choice theory, and the main underlying assumption is not
so much about the shape of the uncertainty but rather on the independence of the noises [Tra09,
Chapter 3]. Here, we suppose that the utilities capture enough information so that the remaining
part of the uncertainty behaves as a white noise.

Remark 4.2.6
In the sequel, we consider a common β across the segments, but all the results still apply
for a differentiated value βs = dsβ, where ds is a given parameter. This corresponds to a
rescaling of β, adapted to each segment.

As a consequence, the lower response is expressed as

ysw = P[Usw ⩽ Usw′ , ∀w′ ̸= w], ∀s, w . (4.8)

Hence, a customer has a probability to choose a contract which is not the optimal one in terms
of deterministic utility. The calculation of the probability ysw arising in equation (4.8) is done in
[Tra09] and it has an explicit form. Replacing the deterministic lower response by this expression
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of ysw leads to the following Mixed Multinomial Logit model:

max
x∈X,y

∑
s∈[S]

ρs ⟨θs(x)− Cs, ys⟩W

s. t. ysw = e−β(θsw(x)−Rsw)

1 +∑
w′∈[W ] e−β(θsw′ (x)−Rsw′ ) , ∀s, w

(β-BP )

Remark 4.2.7
The ’1’ in the denominator corresponds to the no-purchase option.

Equivalently, we recall here a standard reformulation of (β-BP ) :

Proposition 4.2.4
Problem (β-BP ) is equivalent to

max
x∈X,ȳ

∑
s∈[S]

ρs ⟨θs(x)− Cs, ys⟩W

s. t. ȳs ∈ arg min
ȳ′

s∈∆W +1

{〈
θs(x)−Rs, y′

s

〉
W + 1

β

〈
log(ȳ′

s), ȳ′
s

〉
W +1

}
, ∀s

(4.9)

Proof. Given V ∈ RW , we study the problem: minȳ∈∆W +1

{
⟨V, y⟩W + β−1 ⟨log(ȳ), ȳ⟩W +1

}
. First

note that the positivity assumption is always satisfied at the optimum, since the function y log(y)
acts a barrier. Looking at the KKT optimality conditions , we then obtain that there exists µ ∈ R

(dual variable of the constraint∑w yw = 1) such that for any w ⩽W , 0 = Vw+ 1
β (log(yw)+1)−µ.

This implies that yw = exp(βµ − 1) exp(−βVw). As ȳ must lie in the simplex, we recover the
standard expression of the logit model.

This model highlights that the logit expression is the optimum of a strictly convex minimiza-
tion problem (the property was pointed out in [Fis80] and [GMS15]). The objective function is
the deterministic function to which we add the entropic regularization term β−1 ⟨log(ȳ′

s), ȳ′
s⟩W +1,

attracting the lower response to the center of the simplex ∆W +1.
The model (β-BP ) is intrinsically defined as a single-level problem since the lower response

for any segment s is unique and analytically known. For a given price strategy x, we define the
leader profit function πlog(x; β) as

πlog(x; β) :=
∑

s∈[S]
ρs

∑
w∈[W ]

(θsw(x)− Csw)ylog
sw (x; β) (4.10)

where ylog stands for the logit lower response. This objective function πlog is in general neither
concave nor convex, see [Li+19].

We can think of the logit model as a regularization of the deterministic case, so it is of interest
to look at the convergence for β → +∞, expecting that the regularized optimum converges to the
deterministic optimum. Such a study has been done by Gilbert, Marcotte and Savard [GMS15]
in the context of toll pricing. In our setting, we prove asymptotic results without requiring
equality between the optimistic and pessimistic versions.
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Proposition 4.2.5
For a price strategy x ∈ X, limβ→+∞ ylog(x; β) = yuni(x) and so
limβ→+∞ πlog(x; β) = πuni(x). Moreover,

v (u-BP ) ⩽ lim inf
β→+∞

v (β-BP ) ⩽ lim sup
β→+∞

v (β-BP ) ⩽ v (o-BP )

and the equalities occurs under the no-profit option.

Proof. ⋄ Inequality lim supβ→+∞ v (β-BP ) ⩽ v (o-BP ):
Let (βn)n∈N ∈ RN such that limn→+∞ βn = +∞ and (zn)n∈N ∈ (X×∆W +1)N the sequence
of zn = (xn, ȳn) solutions of (βn-BP ). By compactness of X and ∆W +1, (zn)n∈N has
accumulation points.
Let (x∗, ȳ∗) be one of these points, we must show that ȳ∗ ∈ Ψ(x∗). We take s ∈ [S] and
two contracts w1 et w2 such that

θsw2(x∗)−Rsw2 = γ + θsw1(x∗)−Rsw1 , γ > 0.

By definition of accumulation points, there exists a sub-sequence (xk, ȳk)k∈K converging to
(x∗, ȳ∗) and by continuity of θ, ∃k1 ∈ N,∀k ⩾ k1, θsw2(xk)−Rsw2 ⩾ θsw1(xk)−Rsw1 + 1

2γ.
Therefore, using the definition of logit probabilities, ∀k ⩾ k1, 0 ⩽ (ȳk)sw2 ⩽ e− 1

2 βkγ .
Because βk goes to infinity, we can conclude that (ȳ∗)sw2 = 0 and since only minimum
disutilities have positive probabilities, ȳ∗ ∈ Ψ(x∗).
To conclude, all adherent points (x∗, ȳ∗) of the sequence are feasible solution of (o-BP ).

⋄ Inequality v (u-BP ) ⩽ lim infβ→+∞ v (β-BP ):
Because we can’t be sure that the supremum of the uniform problem (u-BP ) is attained,
we take a sequence (xn, ȳn)n∈N ∈ (X × ∆W +1)N of solutions of the uniform model. We
denoted by vn their objective value which converges to v (u-BP ).
Let ε > 0 be given, from the convergence, ∃n1 ∈ N, ∀n ⩾ n1, vn ⩾ v (u-BP )− ε/2.
Besides, from each xn we construct ỹn(β) such that ỹn(β) = logit(xn; β) and limβ→+∞ ỹn(β) =
ȳn. For all β, (xn, ỹn(β)) is a valid solution for (β-BP ) and its objective funtion converges
to vn when β → +∞ i.e.,

∃βn ∈ R, ∀β ⩾ βn, v (β-BP ) ⩾ vn − ε/2 .

In particular, for all β ⩾ βn1 , v (β-BP ) ⩾ v (u-BP )− ε.

The last proposition confirms that (β-BP ) is a valid regularization in that it consists on a
smooth approximation of (o-BP ) for sufficiently big β value. Nonetheless, we want to go further
in the analysis by obtaining indications on the evolution of the optimal value as β grows. To
do so, we study the simpler case where there is a unique segment (homogeneous population)
and unconstrained prices. This leads to a pricing model under the standard Mixed Multinomial
Logit (MNL) customer behavior:

vβ := max
θ,y

{
⟨θ − C, y⟩W

∣∣∣∣∣ yw = e−β(θw−Rw)

1 +∑
w′∈[W ] e−β(θw′ −Rw′ ) , ∀w

}
. (4.11)

In [LH11], Li et al. deeply study the model defined in (4.11) and provide in particular a
characterization of its optimal solution. We reuse this property in the next proposition to show
an asymptotic result. To this end, we set v∞ := maxw(Rw − Cw) and #v∞ the cardinality of
the latter argmax.
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Proposition 4.2.6 (Customers behavior)
For the standard MNL model defined in equation (4.11),

(i) vβ =
β→0

1
βW0 (W/e) + o

(
1
β

)
; where W0 denotes the Lambert function [Cor+96].

(ii) if v∞ > 0 then vβ =
β→+∞

v∞ − ln(βv∞)
β + ln(#v∞)−1

β + o
(

1
β

)
.

Proof. We know by [LH11, Theorem 2] that vβ satisfies

βvβeβvβ =
∑

w∈[W ]
e−1+β(Rw−Cw) .

and so βvβ =W0(f(β)), where f(β) = ∑
w∈[W ] e−1+β(Rw−Cw).

The result for the first item comes naturally.
For the second, because we suppose v∞ > 0, we have limβ→+∞ f(β) = +∞.
An elementary calculation shows that

ln(f(β)) =
β→+∞

βv∞ − 1 + ln(#v∞) + o(1) .

and it follows also ln ln(f(β)) =
β→+∞

ln(βv∞) + o(1).
From the properties of the Lambert function,

W0(f(β)) =
β→+∞

ln(f(β))− ln ln(f(β)) + O

( ln ln(f(β))
ln(f(β))

)
.

We therefore obtain that βvβ =
β→+∞

βv∞− ln(βv∞)−1+ln(#v∞)+o(1). The result is obtained
by dividing by β.

In Figure 4.1, we draw the optimal value on a simple case, along with the first-order asymp-
totic expansions found in proposition 4.2.6. The result for small β values is quite intuitive: with
customers randomly reacting, the company can impose very high price in such a way that there
are always some consumers buying its products. Hence, the company’s profit becomes infinite
as β → 0. The result for large β values is not so evident and can be interpreted as a moral
hazard, see the numerical section for an interpretation in the general case.

4.3 Quadratic regularization

In the case of a homogeneous population and unconstrained prices, [Li+19] express the prob-
lem (β-BP ) in terms of lower variables to obtain a concave maximization problem. If we add
bounds on prices and consider multi-attribute utilities, [SK20] show another concave transfor-
mation that keeps tractability in the resolution. However, with heterogeneous segments as it is
the case here, no tractable transformation is known, and only local optimum of (β-BP ) can gen-
erally be found. This motivates us to look at a new convex penalization, replacing the entropy
penalization term in (4.9) by a quadratic one.

max
x∈X,y

∑
s∈[S]

ρs ⟨θs(x)− Cs, ys⟩W

s. t. ȳs ∈ arg min
ȳ′

s∈∆W +1

{〈
θs(x)−Rs, y′

s

〉
W + 1

β

〈
ȳ′

s − 1, ȳ′
s

〉
W +1

}
, ∀s

(qβ-BP )
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Figure 4.1: Optimal value of (4.11) according to β.
The solid line represents the optimal value of the example.

The asymptotic results found in 4.2.6 are drawn with dotted lines.

The quadratic term β−1 ⟨ȳ − 1, ȳ⟩ is chosen so that it vanishes at any vertex of the simplex
∆W +1. The following result shows that two perhaps more intuitive quadratic terms lead to the
same optimum.

Proposition 4.3.1
The two following penalizations are equivalent to the one in (qβ-BP ):

(i) 1
β

∥∥∥ȳs − 1
W +1

∥∥∥2

W +1
(uniform law attractor),

(ii) 1
β ∥ȳs∥2W +1.

Proof. ∥ȳs − α∥2W +1 − ⟨ȳs − 1, ȳs⟩W +1 = (1− 2α)
(∑W

w=0 ysw

)
+ (W + 1)α2 = (1− α)2 + Wα2.

The two objective functions are equal up to a constant for valid lower responses, thus the argmins
are the same.

The first item suggests that our new penalization acts as an attractor to the uniform law whose
intensity is inversely proportional to β. The bigger β is, the more customers will uniformly spread
their choices on all the possibilities. This asymptotic behavior is therefore identical to the one
of logit regularization. In Section 4.8.2, we provide metric estimates – along with illustrations
– in order to compare the logit and quadratic regularizations. [DB01] have introduced such
a quadratic regularization in order to avoid discontinuities that appears in the deterministic
version (o-BP ), and theoretically analyze the convergence of a bundle trust region algorithm
specifically designed for this problem. Here, the second level is of a particular nature: we focus
on lower problem defined on simplices, which allows us to interpret the customers’ decision as
a geometric object. In particular, for W + 1 disutilities Vs0, . . . , VsW , the follower response of a
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given segment s can be written as

arg min
∆W +1

{
W∑

w=0
Vswysw + 1

β
y2

sw

}
= arg min

∆W +1

∥∥∥∥ys −
(
−β

2 Vs

)∥∥∥∥
W +1

= Proj
∆W +1

(
−β

2 Vs

)
. (4.12)

Here again, the disutility Vsw of a segment s stands for a certain θsw(x) − Rsw in the problem
(qβ-BP ). The response can be understood as a projection on the simplex of a specific vector
whose intensity varies proportionally to β.

Remark 4.3.1
The projection on a closed convex set is Lipschitz of constant one in the Euclidean norm,
a fortiori, it is continuous. Therefore, the quadratic lower response yquad(x; β), solution of
the lower problem in (qβ-BP ), is a continuous function of the price variables x.

4.3.1 Lower Response and Leader’s Profit

In the logit model, the lower response of a segment s is analytically known and is defined by
the logit expression. To better understand the customer behavior, we aim to find an explicit
calculation of the lower response for a segment s that faces disutilities Vs0, . . . , VsW . We assume
that these disutilities are sorted in ascending order. The lower response y that satisfies (4.12) is
the solution of the KKT conditions expressed as:

Vsw + 2
β

ysw − λsw − µs = 0, w ∈ {0 . . . W}

0 ⩽ ysw ⊥ λsw ⩾ 0, w ∈ {0 . . . W}
ys ∈ ∆W +1, λs ∈ RW +1

⩾0 , µs ∈ R

(4.13)

These conditions are necessary and sufficient because we study a convex minimization prob-
lem where the Slater’s condition holds. In the sequel, we analyze the KKT system (4.13) to
characterize the customer’s response.

Lemma 4.3.1 (Monotonicity)
If y satisfies (4.13), the sequence (ysw)w=0..W is decreasing for disutilities sorted in ascending
order.

Proof. We consider Vsw1 ⩽ Vsw2 . If ysw2 = 0, there is nothing to prove, the inequality ysw1 ⩾ ysw2

is automatically satisfied. If however ysw2 > 0, λsw2 = 0 by complementarity, and therefore
Vsw1 + 2

β ysw1 − λsw1 = Vsw2 + 2
β ysw2 . Since Vsw2 − Vsw1 ⩾ 0 and λsw1 ⩾ 0, 2

β (ysw1 − ysw2) ⩾ 0.
Therefore, in any case, ∀w1, w2, Vsw1 ⩽ Vsw2 ⇒ ysw1 ⩾ ysw2 .

Proposition 4.3.2 (Lower response algorithm)
For any segment s, let the sequence (csw)w∈[W ] be

csw := 1
w

[
2
β

+
w−1∑
w′=0

Vsw′

]

and let the index τ be defined as τ = min {w ∈ [W ], |Vsw ⩾ csw }. Then, the sequence (csw)
verifies the following property:

Vsw < csτ for w < τ ; Vsw ⩾ csτ for w ⩾ τ (4.14)
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Moreover, the solution (ys, λs, µs) of (4.13) can be expressed as follows

(i) ysw = β
2 [csτ − Vsw] for w < τ ; ysw = 0 for w ⩾ τ ,

(ii) λsw = 0 for w < τ ; λsτ = Vsτ − csτ ; λsw = λs,w−1 + Vsw − Vs,w−1 for w > τ ,
(iii) µs = csτ .

The index τ is therefore the index from which the probability y becomes zero.

Proof. The first property on (csw) comes with the ascending sort of Vs and the definition of τ :
Vsτ ⩾ csτ and therefore Vsw ⩾ csτ for w ⩾ τ . Besides, by minimality of τ , Vs,τ−1 < cs,τ−1. Using
the definition of (csw), for all w < τ , Vsw ⩽ Vs,τ−1 = csτ − τ−1

τ (cs,τ−1 − Vs,τ−1) < csτ .
Concerning the second part of the proposition, one can first remark that solution of (4.13)

is unique since it is a projection on the simplex, see (4.12). The procedure returns a certain
(ys, λs, µs) which is feasible for (4.13): by construction, y is nonnegative, ∑τ

w=0 ysw = 1 and the
complementarity constraints are satisfied. As the disutilities are sorted, λsw ⩾ λsτ ⩾ 0 for any
w ⩾ τ . The solution we obtain is therefore the unique solution of (4.13).

From the explicit calculation of the lower response, one can observe the following property

Corollary 4.3.1 (Soft threshold)
If ys satisfies (4.13), the first disutility is chosen with probability 1 if and only if the difference
between any other disutility and the one chosen is higher than 2/β i.e.,

ys0 = 1 and ∀w > 0, ysw = 0 ⇐⇒ ∀w > 0, Vsw ⩾ Vs0 + 2
β

. (4.15)

Proof. From the last proposition, the condition ∀w > 0, Vsw ⩾ Vs0 + 2
β is equivalent to Vs1 ⩾

Vs0 + 2
β which means that τ = 1.

Coming back to problem (qβ-BP ), we summarize the properties of the lower response in the
following corollary

Corollary 4.3.2 (Lower response of (qβ-BP ))
For a price strategy x and a given β, the quadratic lower response

(
yquad

sw (x; β)
)

w=0...W
for

a segment s can be computed by the following algorithm:

1. Compute Vsw(x) := θsw(x)−Rsw for all w ∈ [W ] and Vs0 = 0,
2. Reindex the disutilities so that they are sorted in the ascending order,
3. Calculate the solution y defined in Proposition 4.3.2,
4. The value yquad

sw (x; β) is the component of y that corresponds to the disutility Vs

initially indexed by w.

As pointed out in equation (4.12), the lower response can be viewed as a projection on
the simplex. Five algorithms to compute the projection are provided in [Con16]. The first
one, applied to the projection Proj∆W +1

(
−β

2 Vs

)
, allows us to recover the response found in

Proposition 4.3.2. Other algorithms are faster but do not contain such a clear interpretation
that customers select disutilities with the lowest values.

The next proposition studies the impact of β on the solution, using majorization preorder:



4.
Q

ua
d.

R
eg

ul
.

78 CHAPTER 4. QUADRATIC REGULARIZATION OF BILEVEL PROBLEMS

Definition 4.3.1 (Majorization,[MOA11]). For a vector a ∈ Rd, we denote by a↓ ∈ Rd the
vector with the same components, but sorted in descending order. Given a, b ∈ ∆d, we say
that a majorizes b from below written a ≻ b iff

k∑
i=1

a↓
i ⩾

k∑
i=1

b↓
i for k = 1, . . . , d .

Proposition 4.3.3 (Majorization ordering)
Let u ∈ Rn. For any 0 ⩽ α ⩽ β, Proj∆n

(αu) ≺ Proj∆n
(βu). As a consequence, the

customer decision yquad
s (x; β) is increasing according to β for the majorization preorder,

i.e., for 0 ⩽ α ⩽ β,
yquad

s (x; α) ≺ yquad
s (x; β) .

Proof. Using Proposition 4.3.2 (or [Con16], Algorithm 1]), if y = Proj∆n
(u), then

y = max{u− cκ(u↓), 0} , y↓ = max{u↓ − cκ(u↓), 0} ,

with ck(u) = 1
k

[∑k
i=1 ui − 1

]
and κ = max

{
k ∈ [n] | ck(u↓) ⩽ uk

}
.

As we are looking to majorization property, we can suppose w.l.o.g. that u is ordered in
a decreasing fashion, see Definition 4.3.1, so that the projection vector are also ordered. Let
κα := max {k ∈ [n] | ck(αu) ⩽ αuk} and κβ := max {k ∈ [n] | ck(βu) ⩽ βuk}. First note that
κβ ⩽ κα since κα = max{k | 1

k

∑k
i=1 ui − uk ⩽

1
kα} (idem for κβ). Let also y = Proj∆(αu) and

z = Proj∆(βu). Then, for d ⩾ κβ,

d∑
i=1

zi = 1 ⩾
d∑

i=1
yi .

For d < κβ(⩽ κα),

1
d

d∑
i=1

zi −
1
d

d∑
i=1

yi = (β − α)1
d

d∑
i=1

ui + cκα(αu)− cκβ
(βu)

= (β − α)
[

1
d

d∑
i=1

ui −
1

κβ

κβ∑
i=1

ui

]
︸ ︷︷ ︸

⩾0

+ 1
κα

[
κα∑
i=1

αui − 1
]

︸ ︷︷ ︸
:=cκα (αu)

− 1
κβ

[ κβ∑
i=1

αui − 1
]

︸ ︷︷ ︸
:=cκβ

(αu)

⩾
κα−1∑
k=κβ

ck+1(αu)− ck(αu) =
κα−1∑
k=κβ

1
k

[αuk+1 − ck+1(αu)] ⩾ 0

where the last inequality comes from the definition of ck(αu) for k ⩽ κα.

Proposition 4.3.3 has a strong qualitative interpretation: the more the regularization param-
eter β is, the less “diversified” the choice will be. As an example, in ∆n,( 1

n
, . . . ,

1
n

)
≺
( 1

n− 1 , . . . ,
1

n− 1 , 0
)
≺ · · · ≺

(1
2 ,

1
2 , 0, . . . , 0

)
≺ (1, 0, . . . , 0) .

Corollary 4.3.1 gives a quantitative information about when β is sufficiently large so that
the customer response concentrates on a single contract. It shows a soft threshold effect at a
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finite rationality (β < ∞): we allow the variables ysw to be fractional values, but they will
concentrate on a unique contract per segment if the disutilities are sufficiently separated. This
effect only occurs asymptotically (β =∞) in the logit model. Corollary 4.3.1 also has an intuitive
economic interpretation. In fact, one can link the estimation of the regularization intensity β
with the minimal gap (in e) above which the decision coincides with the best deterministic one
(probability one to choose the offer giving the highest utility). For example, the 2/β threshold
in (4.15) reveals that a value β = 0.2 then corresponds to the minimal difference of 10e to
recover a binary decision.

For a given price strategy x, the leader profit function πquad(x; β) is then defined as

πquad(x; β) :=
∑

s∈[S]
ρs

∑
w∈[W ]

(θsw(x)− Csw)yquad
sw (x; β) (4.16)

where yquad(x; β) is defined as explained in corollary 4.3.2. The problem (q-BP ) is therefore the
maximization of the function πquad over X.

4.3.2 Price complex and convergence to the deterministic model

[BK19] have introduced a geometric approach to analyze the response of agents to prices, in a
discrete choice model. They showed that the deterministic response is governed by a polyhedral
complex: all prices in a given cell yield the same response. Here, we generalize this approach to
continuous responses, since in our regularized model, responses do not concentrate anymore on
a single contract. However, the closed-form formula we found for the lower response highlights
the sparsity in terms of customer choices. In fact, in a feasible solution, only few contracts have
positive probabilities to be chosen by a segment s (we call them active contracts). Now, all the
prices in a given cell yield (different) responses encoded with the same “sparcity pattern” i.e.,
the responses share the same set of active contracts.

Definition 4.3.2. 1. A matrix A ∈ {0, 1}S×(W +1) is called a pattern. We denote by |As|
the number of positive coefficients in row s, and |A| = ∑

s∈[S] |As| the total number
of positive coefficients of A.

2. We denote by X(A; β) the price strategies that have an active-contract set corre-
sponding to the pattern A, i.e.,

X(A; β) :=
{

x ∈ X |1(yquad
sw (x;β)>0) = Asw, ∀s, w

}
.

Thus, the set of active contracts stays unchanged on the set X(A; β). We call this
price region a unique pattern region (UPR).

The UPRs are not closed since we look at the prices that give a positive probability. Thus, we
define X(A; β) to be the closure of the UPR X(A; β).

Definition 4.3.3. 1. A pattern A is said to be feasible if X(A; β) is non-empty, and
Aβ ⊆ {0, 1}S×(W +1) is then the set of feasible patterns.

2. A pure pattern A is a pattern containing only pure strategies i.e., each segment has
a unique active contract (|A| = S). The other patterns are called mixed patterns
(|A| > S).

3. A price complex cell is a non-empty set P ⊆ X such that there exist A1, . . . , Ak ∈ Aβ,
with k ⩾ 1, satisfying P = ⋂

1⩽i⩽k
X(Ai; β).
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4. The price complex is the collection of all price complex cells.

Proposition 4.3.4 (Characterization of price complex cells)
For any pattern A ∈ Aβ and any β > 0, the UPR X(A; β) is defined as X(A; β) =
X

0(A; β) ∩X1(A; β) where

X
0(A; β) =

x ∈ X

∣∣∣∣∣∣∣
∀s, w, if Asw = 0,

|As|Vsw(x) ⩾ 2β−1 +
∑

w′ | Asw′ =1
Vsw′(x)

 , (4.17a)

X1(A; β) =

x ∈ X

∣∣∣∣∣∣∣
∀s, w, if Asw = 1,

|As|Vsw(x) < 2β−1 +
∑

w′ | Asw′ =1
Vsw′(x)

 . (4.17b)

where |As| corresponds to the number of active contracts for s and Vsw(x) is defined as
in Corollary 4.3.2. As a consequence, X(A; β) = X

0(A; β) ∩ X
1(A; β) where X

1(A; β) :=
cl
(
X1(A; β)

)
, obtained by weakening the inequalities (4.17b).

Proof. Given a pattern A ∈ Aβ and a β > 0, we can assume w.l.o.g. that for any segment s the
disutilites are sorted in ascending order so that the active contracts are the first |As| ones. First,
we consider a price strategy x ∈ X(A; β). Using the notation of Proposition 4.3.2, τ = |As| and
equation (4.14) gives us exactly that x ∈ X

0(A; β) ∩ X1(A; β). Reciprocally, we suppose that
x ∈ X

0(A; β) ∩ X1(A; β)(4.17) is satisfied i.e., Vsw < cs,|As| for w < |As| and Vsw ⩾ cs,|As| for
w ⩾ |As|. Then, τ = |As| and x ∈ X(A; β).

Theorem 4.3.1
The collection of price complex cells constitutes an |X|-dimensional polyhedral complex,
and the |X|-cells are closures of UPRs i.e., X(A; β) for some pattern A ∈ Aβ.

Proof. It is clear that the collection of price complex cells covers the space X. Besides, from
the definition of a cell, the intersection of two cells P and P ′ is again a price complex cell or is
empty. Finally, Proposition 4.3.4 gives us a characterization of the cells with linear inequalities,
therefore the intersection of P with another P ′ is then characterized by the same inequalities as
P but with some of them saturated. Hence, the intersection is a common face of P and P ′.

We now study the asymptotic behavior of the price complex (β → ∞) and show how it
embeds in the deterministic complex introduced in [BK19]. To this end, we first denote by
X(A;∞) the polytope defined by the same inequalities as in X(A; β) setting β−1 = 0 (idem for
X

0 and X
1), and by A∞ the set of patterns inducing a non-empty X(A;∞). We next make

use of the notion of Painlevé-Kuratowski limits of sets. We refer to [RW09, Chapter 4] for
background on this notion, including the definition and properties of upper and lower limits.
We first prove the following preliminary lemma:

Lemma 4.3.2
Consider two sequences of polyhedra P +

β and P −
β defined as P ±

β :=
{

x ∈ X : Ax ⩽ b± β−1e
}

(e is the all-ones vector), and the limit case P := {x ∈ X : Ax ⩽ b}. Then, P +
β −−−→β→∞

P
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and limβ P −
β ⊆ P . Moreover, if Int(P ) ̸= ∅, P −

β −−−→β→∞
P .

Proof. Throughout the proof, we consider a sequence (βn) converging to ∞, and the notation
P ±

n has to be understood as P ±
βn

.
The two monotone sequences have a limit: limn P +

n = ⋂
n P +

n and limn P −
n = ⋃

n P −
n ,

see [RW09, Exercise 4.3], it remains to prove that this limit coincides with P . Two first in-
clusions come with the definition of the sequences: limn P −

n ⊆ P and P ⊆ limn P +
n .

Let us consider x /∈ P . If x ∈ X\P , then there exists a row i such that Aix = bi + ϵ where
ϵ > 0. Therefore, for βn ⩾ ϵ−1, x /∈ P +

n . Otherwise, if x /∈ X, x cannot be in any P +
n . In any

case, x /∈ P ⇒ x /∈ limn P +
n , and therefore limn P +

n ⊆ P .
We now assume that Int(P ) ̸= ∅. For any given x ∈ P , let us define the sequence xn :=

ProjP −
n

(x). Since the P − ↗, the distance ∥xn−x∥ is a decreasing sequence bounded from below
by 0 and converges to a distance d ⩾ 0. Suppose now that d > 0, then for any unitary vector
u, x + du /∈ P −

n , n ∈ N. Besides, there exists 0 ⩽ d′ ⩽ d and a unitary vector v such that
x + d′v ∈ Int(P ). Defining y = x + d′v, we obtain that y ∈ Int(P ) and y /∈ P −

n , n ∈ N. As it
belongs to the interior of P , Ay ⩽ b − ϵe, ϵ > 0 and for any βn ⩾ ϵ−1, y ∈ P −

n . This yields a
contradiction: d must be equal to 0, and therefore xn → x. To conclude, for any x ∈ P , we can
exhibit a sequence of points xn ∈ P −

n converging to x, so P ⊆ limn P −
n .

We are now ready to prove the following result:

Proposition 4.3.5 (Convergence)
For any pattern A, lim supβ→∞ X(A; β) ⊆ X(A;∞) . Moreover, if Int

(
X(A;∞)

)
̸= ∅,

X(A; β) −→
β

X(A;∞) .

Proof. Using Lemma 4.3.2, one can obtain the following inclusions:

lim sup
β

X(A; β) = lim sup
β

(
X

0(A; β) ∩X
1(A; β)

)
⊆ lim

β
X

0(A; β) ∩ lim
β

X
1(A; β) ⊆ X

0(A;∞) ∩X
1(A;∞) .

Moreover, if Int
(
X(A;∞)

)
̸= ∅, then limβ X

0(A; β) = X
0(A;∞), see Lemma 4.3.2. Besides,

X
0(A;∞) and X

1(A;∞) cannot be separated, and therefore X
0(A; β)∩X

1(A; β) −→
β

X
0(A;∞)∩

X
1(A;∞), see [RW09, Theorem 4.32c].

Lemma 4.3.3
For any pattern A ∈ A∞, the asymptotic cell X(A;∞) can be equivalently defined by the
following system

∀s, w, w′, if Asw = Asw′ = 1, Vsw(x) = Vsw′(x),
if Asw = 1 and Asw′ = 0, Vsw′(x) ⩾ Vsw(x).

(4.18)

Proof. We first define the mean active disutility for a segment s as Ṽs = 1
|As|

∑
w′ | Asw′ =1 Vsw′ .

Then, we know by (4.17b) that for any active contract w, Vsw − Ṽs ⩽ 2
β . Denoting by V + and

V − the extreme disutilities of active contracts, we obtain 0 ⩽ V +−V − ⩽ 2
β . At the limit, active
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contracts share a same disutility, equal to Ṽs. Besides, we also know from (4.17a) that for any
inactive contract w, Vsw ⩾ 2

β + Ṽs. At the limit, any inactive contract has disutilities greater
than the active contracts.

Lemma 4.3.4
For any mixed pattern A, there exist k > 1 pure patterns A1, . . . , Ak such that

X(A;∞) =
⋂

1⩽i⩽k

X(Ai;∞) .

Proof. Suppose that for a given segment s, |As| = k, then we can construct patterns A1, . . . , Ak

such that Ai is a copy of A where the row s is replaced by 1 on the ith active contract, and 0
everywhere else. From the characterization (4.18), we obtain that X(A;∞) = ⋂

1⩽i⩽k X(Ai;∞).
Each pattern Ai has pure strategy for segment s. If there still exist mixed strategies for other
segment, we can start again the transformation until all the patterns are pure.

At the limit β =∞, each mixed pattern is a face of some pure patterns. The pure patterns are
therefore sufficient to describe any cell.

Theorem 4.3.2 (Asymptotic cells and UPRs)
Let A1, . . . , Ak be k pure patterns, then

x ∈ P =
⋂

1⩽i⩽k

X(Ai;∞) ⇐⇒ {A1, . . . , Ak} ⊆ Ψ(x) .

where Ψ(x) is the set of optimistic best responses, defined in (4.3). Moreover, for any pure
pattern A,

Int
(
X(A;∞)

)
= {x ∈ X : {A} = Ψ(x)} .

Proof. The equivalence is a direct consequence of the Lemma 4.3.3. The equality also arises from
this lemma: the set {x ∈ X : {A} = Ψ(x)} is characterized by (4.18) with strict inequalities.

Theorem 4.3.2 establishes a link with the approach of [BK19]: we generalize the price complex
to relaxed choices and the definition we introduce in Definition 4.3.3 is equivalent to their
definition in the specific case β =∞. Moreover, Baldwin and Klemperer define unique demand
region (UDR) where the set Ψ(x) has a unique element, and Theorem 4.3.2 proves that any
pure UPR converges to the corresponding UDR. To illustrate Proposition 4.3.4, Figure 4.2
shows the complex cells for a single customer making a choice among two contracts from the
company and one from a competitor. The deterministic complex was depicted in [BK19, Figure
1] or in [Eyt18] for bilevel models, and Figure 4.2 illustrates the generalization of the price
complex to relaxed choices: note that new types of full-dimensional cells, representing choices
concentrated on several contracts, appear.

The logit profit function has no good convexity properties in our context of a heterogeneous
population. Thanks to the properties of the lower response and the notion of polyhedral complex,
we can prove that its quadratic analog is more structured:

Lemma 4.3.5
For K ⩾ N , the function J : x ∈ RN 7→

∑N
i=1 x2

i − 1
K

(∑N
i=1 xi

)2
is convex.
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Contract 1

Contract 2

Complex for β = 5
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Figure 4.2: Price complex in a simple case.
For β =∞ (deterministic case, solid line), the three cells correspond to the the choice of a unique
contract (rectangles indicate the choice). For β <∞, each line “splits” to create intermediate cells

(mixed strategies). Pure strategies correspond to white zones, strategies mixing two contracts
correspond to light gray zones and the strategy mixing all contracts corresponds to the dark gray zone.

Proof. The Hessian H of the function J is Hij = −2/K for i ̸= j and Hii = 2 − 2/K. Using
the Gershgorin circle theorem, any eigen value λi has to verify |λi − (2 − 2/K)| ⩽ ∑j ̸=i 2/K.
Therefore, λi ⩾ 2− 2N/K and we deduce that all eigen values of H are nonnegative.

Theorem 4.3.3 (Profit decomposition)
The quadratic leader profit function πquad(x; β) is continuous. Moreover, the problem
(qβ-BP ) is equivalent to the following problem

max
A∈Aβ

{
φ(A; β) := max

x∈X(A;β)
πquad(x; β)

}
(4.19)

where πquad(x; β) is concave on each price complex cell X(A; β), defined in Proposition 4.3.4.

Proof. The continuity of the lower response suffices to ensure the continuity of πquad. The
difficulty lies in the concave foundation. Because the profit function is a sum over the segments,
we may assume that there is only one segment s. Let us consider a feasible pattern A ∈ Aβ. On
the cell X(A; β) associated with this pattern, the profit function is expressed as

JA
s (x) :=

∑
w∈[W ] | Asw=1

(θsw(x)− Csw)yquad
sw (x; β) .

To keep compact notation, we define WA
s := {w ∈ [W ] |Asw = 1}, and Vsw := θsw(x)−Rsw for
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w ∈ [W ] and Vs0 = 0. Using corollary 4.3.2, we can rewrite JA as

JA
s (x) = β

2
∑

w∈WA
s

(Vsw + Rsw − Csw)(cs,|As| − Vsw)

= β

2
∑

w∈WA
s

(Rsw − Csw)(cs,|As| − Vsw)− β

2

 ∑
w∈WA

s

V 2
sw − cs,|As|

∑
w∈WA

s

Vsw



= L− β

2

 ∑
w∈WA

s

V 2
sw −

1
|As|

 ∑
w∈WA

s

Vsw

2


where L = 1
|As|

∑
w∈WA

s
Vsw + β

2
∑

w∈WA
s

(Rsw − Csw)(cs,|As| − Vsw) denotes the linear part. The
set WA

s has a cardinality of |As| or |As| − 1 depending on if the no-purchase option appears in
the first |As| disutilities. Therefore, by Lemma 4.3.5, JA

s is concave in Vs, and thus is concave
in x since the functions θ are linear. Finally, exploring X(A; β), A ∈ Aβ is sufficient to cover
the whole space X.

Theorem 4.3.3 paves the way to enumerative scheme resolutions: it shows that the problem
can be polynomially solved on each cells of the polyhedral complex, and if all the cells are
explored it gives a global optimum. Nonetheless, it could be very cumbersome (especially for
low β values).

4.3.3 QPCC Reformulation

As in the deterministic case, the model can be recast into a single-level program with comple-
mentarity constraints using the KKT conditions. Moreover, we are able to replace the bilinear
terms using manipulations on the constraints:

Theorem 4.3.4
The problem (qβ-BP ) is equivalent to the following concave QPCC problem

max
x∈X,µ∈RS ,ȳ

∑
s∈[S]

ρsµs + ρs ⟨Rs − Cs, ys⟩W − 2β−1ρs ∥ȳs∥2W +1

s. t. 0 ⩽ ysw ⊥ θsw(x)−Rsw + 2β−1ysw − µs ⩾ 0, ∀s, w

0 ⩽ ys0 ⊥ 2β−1ȳs − µs ⩾ 0, ∀s
ȳs ∈ ∆W +1, ∀s

(qβ-QPCC)

Proof. The KKT optimality condition have been detailed in (4.13). One can remark that the
variable λ can be removed to obtain the KKT system of (qβ-QPCC). We then reformulate the
objective by using the constraints: for a given s ∈ [S],

⟨θs(x), ys⟩W = ⟨µseW + Rs, ys⟩W − 2β−1 ∥ys∥2W
= µs − µsys0 + ⟨Rs, ys⟩W − 2β−1 ∥ys∥2W .

Finally, the objective in (qβ-QPCC) is obtained using the complementarity constraint on the
no-purchase option: µsys0 = 2β−1y2

s0.
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As in the deterministic case, we can replace the complementarity constraints in (qβ-BP ) by
Big-M constraints to obtain a mixed-integer quadratic problem (MIQP). However, the intro-
duction of binary variables is unavoidable since the existence of a solution with integer lower
response is no longer true:

max
x∈X,µ∈RS ,ȳ,z

∑
s∈[S]

ρsµs + ρs ⟨Rs − Cs, ys⟩W − 2β−1ρs ∥ȳs∥2W +1

s. t. 0 ⩽ θsw(x)−Rsw + 2β−1ysw − µs ⩽Msw(1− zsw), ∀s, w

0 ⩽ 2β−1ȳs − µs ⩽Ms0(1− zs0), ∀s
y ⩽ z

ȳs ∈ ∆W +1, z ∈ {0, 1}W +1, ∀s

(4.20)

QPCC problems have been recently studied, using conic relaxations – [Den+17; ZX19] – or
logical Benders – [BMP13; Jar+20]. In the latter, they introduce the notion of complementarity
piece defined by a valuation of the binary vector z. The complementarity pieces of (qβ-QPCC)
coincide with the cells X(A; β) of the price complex (4.17): admissible valuations of z define
feasible patterns, and vice versa.

4.3.4 Comparison with the logit model

Quadratic and logit regularizations share a parameter β, interpreted as a rationality parameter.
It will be convenient to replace the regularization parameter β in the quadratic model by β′ =
βe/4, leaving the value β in the logit model. In fact, the minimum of 1

β y(y− 1) is − 1
4β whereas

the minimum of 1
β y log(y) is − 1

eβ , and so this choice of β equalizes the minimal intensity of the
regularization term. To have a better intuition on the differences and similarities between the
logit and quadratic regularization, we study a simple case where there is one single-attribute
contract and five customers. We provide in Fig. 4.3 the leader profit as a function of the
contract price for multiple configurations (the optimistic version, the quadratic version and the
logit version for two values of β). The behavior of the deterministic and logit profit have already
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πquad(x; β), β = 0.8 e/4

πlog(x; β), β = 0.8

πquad(x; β), β = 5 e/4

πlog(x; β), β = 5

πopt(x)

Figure 4.3: Comparison of profit functions πopt, πlog and πquad
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been compared in another context in [GMS15]. We now include the quadratic model in this
comparison. The following properties of profit functions can be identified:

• The deterministic profit is piecewise linear but contains discontinuities that arise when
two contracts share the same minimal disutilities (here between the only contract and the
no-purchase option). The optimal profit is always attained at such a frontier price, leading
to an instability: for this specific case, the optimal deterministic profit is higher than 11
and is achieved for x = 3.7. Nevertheless, a price of x = 3.71 induces a profit lower than
4.

• The logit regularization smooths the deterministic profit function while maintaining its
global shape for β large enough. Nonetheless, the function is non-convex and we can
observe for β = 5 two local maxima.

• The quadratic regularization and its logit analog share the same behavior: in fact, the
shape is very similar for both values of β. The difference lies in the structure of the
quadratic model: the profit function is piecewise concave, see Theorem 4.3.3.

4.3.5 Comparison with the primal-dual regularization of [SSC17]
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P
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πopt

πSSC , ε = 0.01

πSSC , ε = 0.1

πquad, β = 4

πquad, β = 20

Figure 4.4: Comparison between the quadratic regularization

Our primal quadratic regularization (πquad) is drawn for β = 4 and β = 20 and the primal-dual
quadratic regularization of [SSC17] (πSSC) is drawn for ε = 0.1 and ε = 0.01.

Sun, Su and Chen [SSC17] have already used a quadratic regularization for the multi-product
pricing problem. As we do in this chapter, they provide a closed-form formula and look at the
leader profit function. The main difference between the two quadratic regularizations lies in the
fact that our version is only a primal regularization whereas the regularization of [SSC17] is of
a primal-dual nature. This leads to distinct regularized solutions – in particular, the ones that
we obtain remain feasible solutions of the deterministic model. Figure 4.4 illustrates the profit
functions obtained with the two versions, reusing Example 2 provided in [SSC17].

4.4 Local Search by Pivoting on the Price Complex

In the previous sections, we established geometrical properties of the quadratic regularization. In
particular, Theorem 4.3.4 provides a direct formulation which allows us to find a global optimum
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via MIQP techniques. However, such methods are workable only up to a limited instance size,
above which a good optimality gap cannot be obtained in reasonable time. Therefore, it is
of interest to develop a local search method taking advantage of the structure highlighted in
Theorem 4.3.3: finding the optimal solution is no more than finding the cell of the polyhedral
complex containing this solution. Indeed, computing the optimum on a given cell reduces to a
(simple) quadratic program. Given a cell, a neighbor cell can be obtained by reversing one of
the inequalities (4.17), however, computing all the neighbor cells is computationally expensive
(there is a large number of inequalities (4.17) and moreover some of them are redundant). Hence,
we introduce a narrow neighborhood which selects specific neighbors obtained by reversing
the inequalities associated to contracts near the active/inactive frontier, as these yields good
candidates in the search for better solutions, see Algorithm 1.

Algorithm 1 exploreGoodNeighbors

Require: A, xA, φA = πquad(xA; β) ▷ xA optimum on the initial pattern A
1: A∗, x∗, φ∗ ← A, xA, φA ▷ A∗ will be the best neighboring pattern
2: for s = 1 . . . S do
3: A− ← A, A+ ← A
4: w− ← max0⩽w⩽W {Vsw |Asw = 1} ▷ worst active contract
5: w+ ← min0⩽w⩽W {Vsw |Asw = 0} ▷ best nonactive contract
6: A−

s,w− , A+
s,w+ ← 0, 1 ▷ new patterns

7: for † ∈ {−, +} do
8: x†, φ† ← solution of maxx∈X(A†;β) πquad(x; β)
9: if φ† ⩾ φ∗ then

10: A∗, x∗, φ∗ ← A†, x†, φ† ▷ update best pattern
11: end if
12: end for
13: end for
14: return A∗, x∗, φ∗

More precisely, for a given feasible pattern A and for any segment s, we select two inequalities
on which we will pivot:

(i) the inequality (4.17b) of index (s, w−) where w− is the active contract with the greatest
disutility for s (i.e., with the lowest positive probability ysw),

(ii) and the inequality (4.17a) of index (s, w+) where w+ is the non-active contract with the
lowest disutility.

By pivoting, we mean that, starting from this feasible pattern A, we consider a new cell, in
which all the inequalities in (4.17a) and (4.17b) stay unchanged, except the two ones of indices
(s, w−) and (s, w+) that are reversed. This leads to a new pattern.

Although this strategy does not explore the whole neighborhood (it only changes 2S inequal-
ities among WS), pivoting on the selected inequalities is likely to produce relevant new cells.
We will consider two methods for exploring these cells:

1. computing φ( · ; β) for each of the 2S neighboring patterns by solving 2S quadratic pro-
grams, see (4.19), and returning the best pattern A′ with its value φ(A′; β) (it could be
the initial pattern if no improvement was made),

2. or solving the MIQP (4.20) where the only unfixed binary variables z are the 2S variables
indexed by the selected inequalities (the other variables z are equal to the current pattern
values) and returning the pattern A′ obtained by the solver with its value φ(A′; β).
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The second option is computationally more expensive (as it relies on a MIQP) but it explores
a wider neighborhood, since several of the S-groups of 2 inequalities can be reversed in a single
step.

Iterating the procedure exploreGoodNeighbors (Algorithm 1) produces a local search, which
always terminates because the number of patterns is finite and we continue only if we found a
better pattern than the previous one.

Remark 4.4.1
In Algorithm 1, the exploration runs along segments, but it could also be made in the
reversed order (loop on the contracts and selection of the worst active / best nonactive
segments). It appears in the numerical tests that the latter option is less efficient.

The local search ends up with a local optimum in the sense that there is no neighbor (achiev-
able by exploreGoodNeighbors) that produces a better solution. Then, to improve this solution,
we need to consider a larger neighborhood. This is the object of the procedure MIQP restart,
described in Algorithm 2, in which we construct a small MIQP, fixing binary variables, except
for the following ones:

(i) γS segments: for such a segment s, the variables zs,w in (4.20) become free for all w ∈
0 . . . W ; in other words, the whole row s in the pattern may be changed;

(ii) γW contracts: for such a contract w, the variables zs,w in (4.20) become free for all s ∈ [S];
in other words, the whole column w in the pattern may be changed;

(iii) every variable zs′w′ with s′ ̸= s and w′ ̸= w is made free with probability σ ∈ [0, 1].

This restart procedure uses a pattern as input and ends either with this pattern or a better one
if the MIQP has found such a pattern.

Algorithm 2 MIQP restart
Require: A ▷ initial pattern
1: Select γS segments, γW contracts and coefficients (s, w) with probability σ
2: Constrain z to be equal to A, except for the chosen segments, contracts and coefficients
3: A∗, x∗, φ∗ ← optimum of (4.20) with the additional constraints on z.
4: return A∗, x∗, φ∗

The complete heuristic (Algorithm 3), which we call Quadratic Search on Price Complex
(QSPC), alternates between the local search and the restart phase until no progress is made, i.e.,
several iterations do not have produced any improvement.

We provide a graphical illustration on Figure 4.5 showing the path (in terms of cells) achieved
by the algorithm through the iterations, and the final cell with the corresponding customers
response.

4.5 Performance analysis of the proposed method

The pre and post processing algorithms are implemented in Python 3.7, whereas the opti-
mization methods are implemented in C++ for numerical efficiency. Besides, we use Cplex
v12.10 [IBM09] as a MIQP solver and the tests are performed on a laptop Intel Core i7
@2.20GHz× 12. We ran Cplex on 4 threads.
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Algorithm 3 Quadratic Search on Price Complex (QSPC)
Require: A, xA, φA = πquad(xA; β), rmax ▷ xA optimum on the initial pattern A
1: r ← 0
2: A∗, x∗, φ∗ ← A, xA, φA ▷ A∗ will be the best pattern found
3: while r < rmax do ▷ r = # restarts without improvement
4: if r = 0 then
5: optloc ← false
6: while optloc is false do ▷ Until a local optimum is found
7: A′, xA′ , φA′ ← exploreGoodNeighbors(A∗, x∗, φ∗)
8: optloc ← (A′ = A∗)
9: A∗, x∗, φ∗ ← A′, xA′ , φA′

10: end while
11: end if
12: A′, xA′ , φA′ ← MIQP restart(A∗)
13: if A′ = A∗ then
14: r ← r + 1
15: else
16: A∗, x∗, φ∗, r ← A′, xA′ , φA′ , 0 ▷ Update best pattern
17: end if
18: end while
19: return A∗, x∗, φ∗

(a) The algorithm starts at the upper right
cell (every segment chose the competitor), and

evolves through the cells to finally stop at a
local maximum (here it is also the global one).

INTRODUCTION LEADER-FOLLOWER DEMAND ELASTICITY CONCLUSION

CUSTOMERS’ RESPONSE AS A POLYHEDRAL COMPLEX
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Figure: Example with S = 3 segments and W = 2 contracts
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(b) For each customer, we show on the right the active
contracts (chosen with positive probability).

Figure 4.5: Graphical illustration of the algorithm with S = 3 customers (blue, red and purple)
and W = 2 contracts of H = 1 price attribute.

4.5.1 Comparison with implicit method

Another way to solve the model (qβ-BP ) is from the profit-maximization point of view, consid-
ering directly the nonsmooth problem

max
x∈X

πquad(x; β) (4.21)

where the function πquad( · ; β) is defined in (4.16). Taking advantage of the lower response
uniqueness to end in a nonsmooth problem – where lower variables are functions of the upper
ones – constitutes the basis of implicit methods for bilevel problems, see [KLM20].
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Implicit methods require an oracle able to evaluate the objective function for any given point.
Therefore, the explicit calculation of the lower response given by corollary 4.3.2 turns out to be
essential in order to design the oracle. Powerful algorithms are already available, and we focus
on Covariance matrix adaptation evolution strategy (CMA-ES, [Han06; Han+10]). In our problem
the search space X has a reasonable dimension (W ×H). Therefore, we can expect CMA-ES to
find good solutions. For the numerical tests, we used an existing library available in C++1.
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Figure 4.6: Numerical results with CPLEX, CMA-ES, QSPC.
The upper graph shows the objective value and the lower graph shows the resolution time for a

segments number S varying between 5 to 50 and a β fixed to 0.5. For heuristic methods, five tries have
been done and vertical lines indicate the least and the greatest value. The final gap obtained with the

quadratic method is represented with a yellow zone (between the best solution and the best upper
bound). For comparison, results of the deterministic model (CPLEX - Det) are given.

CMA-ES CPLEX QSPC CPLEX - Det

Problem (qβ-BP ) (o-BP )
Method Section 4.5.1 Eq.(4.20) Algorithm 3 (o-KKT )

Parameters σ = 0.005 MIP Gap : 3% σ = 0.05 MIP Gap: 1%
λ = 1000 Max time: 3600s γS = γW = 1 Max time: 3600s

Table 4.1: Methods used in the numerical tests

Figure 4.6 shows the performances of methods listed in Table 4.1. The numerical tests
highlight the combinatorial explosion induced by the direct resolution of the quadratic model
with CPLEX for a finite β. The critical size seems to be around 30 segments on our data set. In
contrast, the deterministic value is very fast to obtain up to 50 segments. This emphasizes the
need of heuristics to rapidly obtain good solutions of the quadratic model.

The method CMA-ES is rather suitable for very large instances. In fact, the algorithm explores
1https://github.com/CMA-ES/libcmaes

https://github.com/CMA-ES/libcmaes
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the domain X which does not depend on the number of segments S, and the time to compute
the lower response (by Proposition 4.3.2) linearly increases in S. The overall resolution time of
CMA-ES has therefore an affine growth in the number of segments. Besides, the best solution
found by CMA-ES seems to edge closer to optimum as the size grows. Increasing the number
of segments dwindles the weight of each one in the objective, that tends to smooth the profit
function and, as a consequence, facilitates CMA-ES in the resolution.

The great power of QSPC is to systematically find very good solutions (no large variance of
the optimal value), even for large instances. Of course, this is only possible because we exploit
the special geometry of our problem (as opposed to a generic algorithm like CMA-ES). Concerning
resolution time, QSPC is also faster. However, QSPC becomes computationally more expensive
as the number of segments increases, since it involves the restart phase (solution of a MIQP
problem).

Finally, this numerical study gives us an a posteriori way to know how many segments are
needed to accurately represent the population. After 30 segments the objective value seems to
reach a plateau: using more segments does not seem to add useful information (at least in terms
of optimal value).

4.5.2 Comparison with NLP solvers

Non-linear programming (NLP) constitutes a third alternative – with implicit methods and
combinatorial methods – in the resolution of complementarity problems. Solvers have been
designed/adapted to deal with these reformulations, see [KLM20] for a recent practical survey.
For the numerical tests, we focus on two solvers:

(i) KNITRO [BNW06], which is a powerful commercial solver, able to recognize if the problem
contains complementarity constraints to reformulate them as a non-linear inequalities,

(ii) filterMPEC [FL04a], which is an extension a Sequential Quadratic Programming (SQP)
solver designed to solve MPECs. The theoretical material is described in [Ley06]. Note
that we keep the scalar product form (compl frm = 1) in all the runs.

Both solvers are available through the platform NEOS [CMM98].
Figure 4.7 compares the results obtained by KNITRO and filterMPEC with our heuristic.

We still display the value returned by CPLEX to bound the optimality gap. The whole graph is
computed with instances that slightly differ from the ones on Figure 4.6: the polytope X only
contains the bounds on prices and not any other constraint. In fact, the solution returned by
NLP methods violates the constraints by an ϵ and if the polytope X were more complicated
than a box, it would require a finer post-processing to reconstruct a valid price vector x that
exactly respects the inequalities/equalities of X.

The two NLP solvers are very fast to return a solution, either KNITRO or filterMPEQ, even
if the time cannot be considered as a uniform indicator since the calculations were achieved on
NEOS servers whereas QSPC was run on a personal computer. On these instances, QSPC always
returns better solutions. In fact, only Clarke-Stationary points can be ensured by NLP solvers,
see [KLM20] and the references therein. Of the two solvers, KNITRO seems to be the fastest, but
we run it on 4 threads whereas filterMPEC uses a SQP algorithm which is difficult to parallelize.

4.6 Application to Electricity Pricing

4.6.1 Instance definition

In the numerical tests, we consider an electricity pricing problem: a power retailer has W =
4 different contracts that need to be optimized, each one depending on H = 3 coefficients
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Figure 4.7: Comparison with NLP methods.
The upper graph shows the objective value and the lower graph shows the resolution time for a segments
number S varying between 5 to 50 and a β fixed to 0.5. For heuristic methods, five tries have been done
and vertical lines indicate the least and the greatest value. The final gap obtained with the quadratic

method is represented with a yellow zone (between the best solution and the best upper bound).

(peak/off-peak/fixed part)2. These contracts mimic the most common type of contracts existing
in the French power markets, and are listed in Table 4.2. To evaluate the costs Csw, we use
the methodology from the French regulator which consists in summing the different costs such
as electricity production cost, taxes, transport and distribution network charges or commercial
margin, see e.g. [CRE21, Figure 1]. The costs of electricity production are evaluated as the
average of historical market prices to represent that the retailer buys the energy for its customers
on power exchanges over the whole year. Costs are therefore not reflecting the hourly variability
of electricity market prices but this is coherent with our approach which is not a dynamic time
pricing but a fixed one.

1 Base Standard Low cost offers (digital-only customer services)2 Peak/Off peak
3 Base Green

3 Higher costs, but preferred by some segments
4 Peak/Off peak (higher reservation bill)

Table 4.2: Contracts used in the instances
Each offer has a base load version (no price difference between peak and off-peak periods) and a version

with different prices at peak and off-peak periods, making a total of 4 contracts.

Concerning the customers, a thousand load curves (obtained by the SMACH simulator of
EDF, see [Hur+15]) represent various power consumption profiles and mimic the entire French
population, taking into account different household compositions, locations, and electrical equip-

2Here, we call “peak period” the interval 8am – 8pm. The other twelve hours defines the “off-peak” period.
3This type of contract provides power generated from renewable source such as on-shore wind and the retailer

has to provide guarantees of origin which induces additional costs.
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(b) Weights of segments. For each
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users in this segment.

Figure 4.8: Clustering for 10 segments.

ments. To construct our set of instances, we used the k-means algorithm to obtain S clusters
(segments), where S = 10. In this way, customers that have similar consumption profile and
contract preferences are aggregated in the same cluster. Figure 4.8 displays the nominal con-
sumption after the clustering process, i.e., the aggregated year-based consumption that a typical
customer of the segment is expected to consume when he faces a constant price. Segments 6
and 9 correspond to consumers with high electricity consumption and typically have individual
houses with full-electric equipments and especially electrical heating. By contrast, segments 3,
4 and 5 are low energy consumers which are small households without electrical heating and
cooking. Segments 1, 9 and 10 have a highly differentiated peak/off-peak profile compared with
the others which consume in a more regular way. For peak/off-peak contracts, we suppose that
each customer can shift a part of the consumption from peak period to off-peak period (load
shifting). Here, we suppose that 15% of the nominal peak consumption can be shifted to off-peak
periods. Moreover, we suppose that the green preference is cast into three categories: highly
/ mediumly / lowly eco-friendly. This corresponds to an additional utility of 4% / 2% / 0%
of their bill computed with regulated prices4. For instance, segments 3, 4 and 5 have similar
nominal consumptions (see Figure 4.8) but different green preferences (see Figure 4.9). In this
study, we consider 6 competitors’ offers, defined with real prices that can be found in the French
market. These offers are depicted in Table 4.3.

Competitors 1 2 3 4 5 6
Peak (e/kWh) 0.174 0.1840 0.19 0.166 0.23

Off peak (e/kWh) 0.1819 0.147 0.155 0.135
Fixed portion (e) 136 136 144 144 148 141

Table 4.3: Competitors prices. Contract 2 and 4 are green contracts
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Contract 1 2 3 4
Peak (e/kWh) 0.166 0.1768 0.2215

Off peak (e/kWh) 0.1819 0.1607 0.1391
Fixed portion (e) 148 136 136.29 120

(a) Optimal prices with deterministic setting
Contract 1 2 3 4

Peak (e/kWh) 0.1693 0.1863 0.1895
Off peak (e/kWh) 0.1834 0.1491 0.1626
Fixed portion (e) 133.7 129.29 122.95 128.19

(b) Optimal prices with quadratic regularization of intensity β = 0.2

Table 4.4: Optimal prices

4.6.2 Numerical analysis

Table 4.4a shows the optimal prices for the deterministic case, and Figure 4.9a shows the cor-
responding distribution over the contracts. As previously explained on a theoretical example
(Figure 4.3), the deterministic model adjusts the prices so that many customers face two con-
tracts with equal utilities. This can be viewed in Figure 4.9a where the hatched bars represent
the ties in the choice. In Table 4.4a, we have the extreme case where the second retailer’s con-
tract contends exactly the same coefficients as the second competitors’ offer. We also noticed
that the segments who naturally favor green energy (segments 5, 8 and 9) chose a green contract
and that some segments are attributed to the competitors (such as segments 2, 6, 8 and 9) as
they must be too costly for the retailer.

We also display the results for the regularized case β = 0.2. In this example, this choice of β
appears to be close from the worst case from a retailer’s point of view (see Figure 4.10) and is,
in a sense, robust to any choice of β value. We observe that the optimal price grid (Table 4.4b)
is somehow different from the optimistic one. Every contract has a lower fixed part in the
regularized case compared with the deterministic case, but the variable portions can be either
lower or greater. Concerning the customers’ distribution along the contracts, we observe that
the choices are globally preserved in the sense that every deterministic decision stays privileged
in the regularized case. Let’s notice that high consumption segments (segments 6 and 9) and
highly differentiated peak/off-peak (segments 1, 9 and 10) are for a great part not favored by the
retailer and let to competitors for a high proportion. On the other side, our retailer manages
to attract green segments. In order to compare with logit approach, we also show the logit
customers’ distribution computed using the optimal quadratic prices. This distribution is very
similar to the quadratic case, see Figure 4.9b and Figure 4.9c. The main difference lies in the
small probabilities: the logit choice is slightly more spread on the different contracts, but the
probabilities stay highly comparable. We refer to Section 4.8.2 where we provide a more detailed
comparison between quadratic and logit approaches and develop metric estimates to quantify
the deviation between the two models.

To analyze the impact of the regularization, Figure 4.10 draws the profit function (retailer
objective) as a function of the regularization intensity. About the logit and quadratic model,
the result for small β values is quite intuitive: with customers randomly reacting, the company
can impose very high prices since there will always be some consumers taking its contracts.
Hence, the company’s profit becomes infinite as β → 0. For the company, having deterministic
customers is more beneficial since the price can be adjusted to perfectly fit the population

4The instances are not intended to fully depict the reality of the market, but they are already enough rich to
deliver some useful insights on the effectiveness of the model.
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Competitors

(a) Optimal customers’ distribution with deterministic setting.
A hatched bar means that the segment had the same utility as the chosen contract, but favors the

retailer by choosing the one with the highest profit value (it could be a competitors’ offer).
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Contract 3
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(b) Optimal customers’ distribution with quadratic regularization of intensity β = 0.2.
The size of the bar defines the probability of choices, i.e., a bar taking a fourth of the rectangle height

represents a choice probability of 25%.
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Contract 1

Contract 2

Contract 3
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Competitors

(c) Customers’ logit distribution with intensity β = 0.8/e for prices of Table 4.4b.

Figure 4.9: Optimal customers’ distributions.
Green contracts are displayed with a green-filled rectangle. Decisions of highly (resp. mediumly /

lowly) eco-friendly clusters are displayed with green (resp. brown / gray) bars. The six offers
of Table 4.3 are summed up into the first line, where only the best competitors’ offer is displayed.
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Figure 4.10: Optimal value as a function of the rationality parameter β.
We display the results for the model under logit response (Logit) and for the model under quadratic

response (Quad.). In addition, we display the objective value obtained by applying the optimal prices of
the deterministic model (Table 4.4a), assuming a quadratic response of the customers (Det.).

behavior. This can be interpreted as the result of moral hazard: the randomness in the followers
decision negatively impacts the leader revenue.

We also display the objective function value obtained by fixing the price to the optimal
prices found in the deterministic setting, i.e., supposing β =∞, but recalculating the response
and the optimal objective value in the uncertain context (finite value β). We see that the
objective value is far below the optimal quadratic solution (indeed, around 40% of revenue are
lost for large values of β). This highlights that the deterministic solution is unstable, and not
robust to uncertainty, see comments in Section 4.3.4. It is then necessary to consider regularized
consumers behavior to obtain a reliable menu of offers.

Remark 4.6.1
For completeness, one can find in Section 4.5 a numerical comparison of the QSPC solver with
other methods. This study is performed on various instance sizes and compares the proposed
method with direct resolution, MPEC solvers (via nonlinear reformulations), and on-the-
shelf heuristics. In particular, we could solve instances of substantial size (10 contracts, 50
segments) in a reasonable time with a MIP gap tolerance of 3%.

4.7 Conclusion

We explored an extension of the unit-demand envy-free pricing problem, in which the customer
invoice is determined by multiple price coefficients. We first analyzed a bilevel programming
model, assuming a fully deterministic behavior of customers (every customer takes only one
contract, maximizing her utility). This is inspired by known models in the case of a unique price
coefficient. Such bilevel problems reduce to mixed linear programming, allowing one to solve
instances of intermediate size to optimality. However, the assumption of deterministic behavior
is not realistic, at least for the class of electricity pricing problems that motivate this work. So,
we developed a new, alternative model, based on a quadratic regularization, which combines
tractability and realism. We demonstrated that the lower response map of this quadratic model
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is characterized by a polyhedral complex, and using this geometrical property, we designed a
heuristic which showed its efficiency in terms of optimality and time on our data set. We finally
analyze the behaviors of the three models (deterministic, logit and quadratic) on a use case and
highlight once again the need of a (tractable) probabilistic choice model to avoid unrealistic
solutions.

Several extensions may be considered to further improve the realism. In particular, through-
out the chapter, competitors are supposed not to adjust their prices to the strategy of the
company (static competition). Relaxing this assumption would imply to consider a Nash equi-
librium between leaders (multi-leader-common-follower games). In particular, this has been
studied by [LM10], where an application to the electricity market is also the main motivation.
Nonetheless, even considering the deterministic case (perfect knowledge and purely rational deci-
sion), only stationary points (not necessarily local solutions) can be numerically found in general,
and for relatively small instance size. Besides, we also suppose that end-customers immediately
react to the prices (no switching cost). Modeling such features would lead to dynamic games,
increasing a lot the computational time, and making the above numerical study intractable.

4.8 Appendices

4.8.1 Complexity

[Gur+05] proved that the deterministic model is APX-hard (see [Pas09] for a description of this
class). Using this result, we prove that the quadratic case is also APX-hard:

Proposition 4.8.1
The problem (qβ-BP ) is APX-hard, even in the single-attribute setting and without price
constraints.

Proof. Reusing the same polynomial transformation (and the same notations) as in [Gur+05],
we claim the existence of a sufficiently large parameter β (β ⩾ 8(n+m)) such that the quadratic
optimal value is not far from the deterministic one i.e., | v (qβ-BP )− v (o-BP )| ⩽ 1/4.
First, it can be noticed that the optimal prices cannot be any values: for any product,

• if the price is in ] 2
β , 1 − 2

β [, then customers having a null reservation bill for the contract
will have no chance to purchase it and customers having reservation bill of 1 or 2 will
purchase it with probability 1. So the company has more interest in setting the price at
1− 2

β .

• With the same logic, if the price is in ]1 + 2
β , 2− 2

β [, then the company has more interest
in setting the price at 2− 2

β .

• If the price is less than 2
β , the profit made by the company with this contract is less than

1/4, so setting the price to 1− 2
β is more beneficial.

• Finally, a price greater than 2 + 2
β does not make any profit.

For an optimal solution, the price values can only be in [1− 2
β , 1 + 2

β ]∪ [2− 2
β , 2 + 2

β ]. Taking the
optimal quadratic prices and rounding them to obtain a price vector of values 1 or 2 provides
a price vector for the deterministic problem with a value closed to the quadratic optimum i.e.,
v (o-BP ) ⩽ v (β-BP )− 2

β (n + m).
For the converse, taking the optimal deterministic solution (we know that the prices can

only be 1 or 2) and subtracting 2
β to each price gives a quadratic solution with objective value

closed to the deterministic optimum i.e., v (β-BP ) ⩽ v (o-BP )− 2
β (n + m).
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m + 2n − 1m + 2n − (k − 1)m + 2n − km + 2n − (k + 1)
optimal value

Figure 4.11: Representation of the objective value for the transformation of Guruswami et al.
Deterministic optimum is integer and the quadratic one lies in a small interval centered on it (hashed

zones).

Computing the quadratic optimum for β ⩾ 8(n+m) and rounding it gives us the deterministic
optimum. Thus, the quadratic case is at least as hard as the deterministic case, which was proved
to be APX-hard.

Remark 4.8.1
The structure of this specific instance allows us to exhibit a threshold from which the
quadratic model is a sufficiently good approximation for the deterministic model. In a
more general case, even if we have established the convergence of the quadratic model to
the deterministic one, we are not able to provide such a threshold.

4.8.2 Metric estimates to compare logit and quadratic regularization

Proposition 4.8.2
Consider a segment s facing W + 1 disutilities Vs0, . . . , VsW sorted in ascending order. For
a given β > 0, we denote by (yquad

sw )w the quadratic response (computed with a parameter
β′ = βe/4) and by (ylog

sw )w its logit analog (computed with β). Then,

If yquad
sw = 0, then ylog

sw ⩽ γw :=
(
1 + we

8
we

)−1
(⩽ 1/9) (4.22)

Conversely,
If ylog

sw ⩽ ηW
w :=

(
W + 1 + w(e

8
e − 1)

)−1
, then yquad

sw = 0 (4.23)

Proof. Suppose that yquad
sw = 0, then from Proposition 4.3.2, Vsw ⩾ csw = 1

w

[
8

eβ +∑w−1
k=0 Vsw

]
and thus

exp
( 8

we
− βVsw

)
⩽ exp

(
− 1

w

w−1∑
k=0

βVsk

)
⩽

1
w

w−1∑
k=0

e−βVsk ,

where the latter inequality is obtained by convexity of the exponential. We then deduce that
γ−1

w e−βVsw ⩽
∑w

k=0 e−βVsk . Using the logit expression gives us the desired result.
Suppose that ylog

sw ⩽ η for a given η. We exploit the ascending sort on V in the logit expression
to obtain

η ⩾
e−βVsw∑w−1

k=0 e−βVsk +∑W
k=w e−βVsk

⩾
e−βVsw∑w−1

k=0 e−βVs0 +∑W
k=w e−βVsw

.

Continuing the simplifications, η−1 ⩽ we−β(Vs0−Vsw) + (W − w + 1) and therefore

Vsw ⩾ Vs0 + 1
β

log
(

η−1 − (W − w + 1)
w

)
.

Finally, taking η = ηW
w implies that Vsw ⩾ Vs0 + 8

eβ , insuring that yquad
sw = 0.
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The technical Proposition 4.8.2 shows that there is a common convergence speed to the deter-
ministic behavior: in fact, for any value of β, if we have no “quadratic chance” to choose a
contract w then we have a very little logit probability to choose w. The converse applies but it
depends on the total number of contracts; in the logit version, the probability depends on the
whole set of contracts whereas the quadratic version does not care of the contracts that have a
very large disutility. It is important to note that the bounds γw and ηW

w in (4.22) and (4.23) are
valid for any value of β.

y 1

0

1y2

0
1

y
3

0

1

Logit path

Quadratic path

Uniform repartition

Figure 4.12: Logit and quadratic path on the simplex, as functions of β

Figure 4.12 illustrates Proposition 4.8.2 and shows the logit and quadratic paths for a disu-
tility vector V = (0, 1√

10 , 3√
10). The trajectory shares the same start point (the simplex center

for β = 0) and the same end point (the vertex y = (1, 0, 0) for β → +∞). However, for the
rest of the path the trajectories slightly deviate: we observe the sparsity effect of the projection
operator in the behavior of the quadratic path whereas the logit trajectory always lies in the
interior of the simplex.

4.8.3 Description of the code

The different models (optimistic, logit and quadratic) have been implemented into a digital
mock-up, thought to be generic and user-friendly thanks to a graphic interface, see Figure 4.13.

A first step, more data oriented, reads several excel files (mostly information on consumers
load curves and costs). After a pre-processing, a k-means clustering is performed to obtain a
prescribed number of segments (parameter to give in a configuration file). At the end of this
step, an .dat file is created, corresponding to the mathematical description of the instance (with
the same notation as in the previous sections), see Figure 4.14. The generation of instance
files makes possible the use of not only realistic instances (obtained by the preprocessing step
previously described) but also academic instances that can be randomly generated.

Then, the optimization is performed. The different optimization models are encoded in C++
(using the IloCplex library for QPCC and LPCC models, after a mixed-integer reformulation).
The solving of the logit model is also possible (using the black-box solver CMA-ES). The con-
figuration file allows to run a single method or several methods/models at once. When the
computation is performed, a solution file is written, so that the performances can be analyzed.

The third step on the tool is a post-processing phase, in which the solution files are read
and a pdf report is automatically generated, including visualization of the solutions (as obtained
in Figure 4.9).
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(a) Flow chart of the code

(b) Screenshot of the graphic interface

Figure 4.13: Flow chart and screenshot of the graphic interface
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Instance Format:
------------------

Row 1:
S W H X
where S nb of segments, W nb of contracts, H, nb of periods, X nb of equalities/inequalities
describing X

Row 2:
(rho s) {s in [S]}
where rho s is the weight of segment s in terms of profit for the company

Row 3:
(beta s) {s in [S]}
where beta s is the rationality of segment s. This parameter is ignored for optimistic resolution

Row 4:
(alpha w) {w in [W]}
where alpha w is the minimum fraction of the population that has to chose the contract

Rows 5 to 4+S:
(Eˆh sw) {w in [W], h in [H]}
where Eˆh sw is the comsumption of s at period h if he chooses w. Note that the 2-dimension indices
(w,h) are linearized such that k = H*(w-1) + h

Rows 5+S to 4+2*S:
(C sw) {w in [W]}
where C sw is the cost to provide the service to s if he chooses w

Rows 5+2*S to 4+3*S:
(R sw) {w in [W]}
where R sw is the reservation price of s for contract w

Rows 5+3*S to 4+3*S+X:
w E/G b A h
where w is the concerned contract,
E/G equals 0 if sum h (A h*x wh) = b and E/G equals 1 if sum h (A h*x wh) >= b

.readme

Figure 4.14: Explaination of the instance format (in the “.readme” of the tool)
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Ergodic control of a heterogeneous
population and application to

electricity pricing
***

This chapter is based on the proceedings paper [Jac+22], to which we add the study of a particular
example (Section 5.7) showing that the solution to the ergodic eigenproblem is in general not
unique. We also add a section (7.5) that first extends the results in the presence of noise in
the dynamics, and then relates these results with weak-KAM theory. In particular, we show
for controllable systems that the turnpike property can be viewed as a particular case of the
convergence to the Aubry set.

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Ergodic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Steady-state optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4 Application to electricity pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Numerical resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Study of the minimal non-trivial model . . . . . . . . . . . . . . . . . . . . . . . 123
5.8 Extensions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Abstract. We consider a control problem for a heterogeneous population composed of cus-
tomers able to switch at any time between different contracts, depending not only on the tariff
conditions but also on the characteristics of each individual. A provider aims to maximize an
average gain per time unit, supposing that the population is of infinite size. This leads to an er-
godic control problem for a “mean-field” MDP in which the state space is a product of simplices,
and the population evolves according to controlled linear dynamics. By exploiting contraction
properties of the dynamics in Hilbert’s projective metric, we show that the ergodic eigenproblem
admits a solution. This allows us to obtain optimal strategies, and to quantify the gap between
steady-state strategies and optimal ones. We illustrate this approach on examples from electric-
ity pricing, and show in particular that the optimal policies may be cyclic –alternating between
discount and profit taking stages.

103
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5.1 Introduction

5.1.1 Motivation and Context

Most OECD1 members have engaged a reform of their retail electricity markets. Historical
providers are now facing competition with new entrants. Opening up markets to competition
aims to improve their efficiency and to lower the prices for consumers, proposing a wider choice
of offers.

In theory, consumers are often supposed to be fully rational, and their reactions to price to
be instantaneous. However, many studies highlight that switching costs and limited awareness
conjointly lead to inertia in retail electricity market, which hinders efficient choices, see [HMP17;
NMS19; DW19]. Inertia in imperfect markets impacts the decision of the providers and mod-
ifies their pricing strategies. Then, what is the optimal tariff strategy for a company? In
general, two opposing forces arise: a harvesting motive and a incentive motive. Either the
company favors immediate rewards by taking advantage of the static market power, either the
firm proposes attractive offers to increase its market share and secure greater harvest in the
future [Cab09]. Studies also tend to show the importance of promotions in the pricing behavior
of firms, see [HP10; AR12]. In particular, empirical analyses show how the depth and frequency
of promotions are linked with the level of inertia.

5.1.2 Contributions

We consider a population of customers, that have different types (consumption profiles). Each
customer chooses between several energy contracts, taking into account the price offers of a
provider, who aims at optimizing a mean reward per time unit. This is represented by an
ergodic control problem, in which the state –the population– belongs to a product of simplices.
We suppose that the population evolves according to the Fokker-Planck equation of a controlled
Markov chain. In this work, we directly study the “mean-field” model where the population is
supposed to be of infinite size. This choice is motivated by our application where the population
is in fact the whole set of French households (around 30 million), leading to untractable model
without such mean-field hypothesis. Our first main result, Theorem 5.2.2, shows that the ergodic
eigenproblem does admit a solution. This entails that the value of the ergodic control problem is
independent of the initial state, and this also allows us to determine optimal stationary strategies.
Theorem 5.2.2 requires a primitivity assumption on the semigroup of transition matrices; it
applies in particular to positive transition matrices, such as the ones arising from logit based
models. The proof relies on contraction properties of the dynamics in Hilbert’s projective metric,
which allow us to establish compactness estimates which guarantee the existence of a solution.

We then study stationary pricing strategies. Owing to the contraction properties of the
dynamics, these are such that the population distribution converges to a stationary state. Then,
we refine a result from [Fly79], providing a bound on the loss of optimality arising from the
restriction to stationary pricing strategy. We define a family of Lagrangian functions, whose
duality gap provides an explicit bound on the optimality loss, see Proposition 5.3.1. In particular,
a zero duality gap guarantees that stationary pricing policies are optimal.

Finally, we apply these results to a problem of electricity pricing, inspired by a real case
study (French contracts). An essential feature of this model is to take into account the inertia of
customers, i.e., their tendency to keep their current contract even if it is not the best offer. This
is represented by a logit-based stochastic transition model with switching costs. Theorem 5.4.1
provides a closed-form formula for the stationary distribution. We present numerical tests on

1https://www.oecd.org/about/document/ratification-oecd-convention.htm

https://www.oecd.org/about/document/ratification-oecd-convention.htm


5.
Sw

it
ch

in
g

co
st

s

5.1. INTRODUCTION 105

examples of dimension 2 and 4. These reveal the emergence of optimal cyclic policies for large
switching costs, recovering the empirical notion of “promotions” of [DHR09] and [PE17].

5.1.3 Related works

As mentioned above, several studies brought to light complex phenomena that emerge when con-
sidering pricing on imperfect markets with inertia. However, this dynamic pricing problem has
been theoretically studied only recently: Pavlidis and Ellickson [PE17] focus on the discounted
infinite horizon pricing problem, and numerically solved it in small dimension. They directly
suppose a continuum of customers in each segment of the (heterogeneous) population, leading
to a “mean-field” system. In the context of discounted horizon, and in absence of common-
noise, the derivation of this model as a limit of a large finite population is achieved in [GG10].
In particular, Gast and Gaujal provide guarantees on the speed of convergence of order 1

√
N .

Motte and Pham [MP22] generalize the results in the presence of common-noise. In [Bäu23],
Bauerle focuses on a different criteria: the average long-term reward. This criterion has been
widely studied in control processes, but much less in the mean-field context. Biswas studied
mean-field games in discrete time, and proved that, under particular conditions, the optimum
is characterized by an ergodic eigenproblem [Bis15].

In contrast, the ergodic eigenproblem studied here is of a deterministic nature, more de-
generate than its stochastic analogue studied in the context of average cost Markov Decision
Processes. In particular, the Doeblin-type conditions generally used in this setting to obtain
the existence of an eigenvector [Kur89; HL96] do not apply. In fact, we end up with a special
case of the “max-plus” or “tropical” infinite dimensional spectral problem [KM97; AGW09], or
of the eigenproblem studied in discrete weak-KAM and Aubry Mather theory [Fat08; GT11].
Basic spectral theory results require the Bellman operator to be compact. This holds under
demanding “controllability” conditions (see e.g. [KM97, Theorem 3.6]), not satisfied in our set-
ting. Extenstions of these results rely on quasi-compactness techniques [MN02; AGN11], which
also do not apply to our problem. In comparison with [Bäu23], the equi-Lipschitz property of
the value function is not assumed a priori. Instead, we exploit here the contraction properties
of the dynamics to obtain the existence of the eigenvector. This is partly inspired by a previ-
ous work of Calvez, Gabriel and Gaubert [CGG14], in which contraction techniques in Hilbert
metric were applied to a different problem (growth maximization). Also, [CGG14] deals with
a PDE rather than discrete setting. Our result should also be compared with [Bis15, Th. 3.1],
in which different conditions, based on geometric ergodicity are used to guarantee the existence
of an eigenvector; these conditions do not apply to our case, in fact, they entail that the eigen-
vector is unique up to an additive constant, and this is generally not true in our model. In
fact, we provide an explicit counter example showing that the eigenvector may not be unique,
see Example 5.2.1, and this entails that our existence result cannot be obtained using geometric
ergodicity arguments.

The ergodic eigenproblem, in the deterministic “0-player case”, has been studied under
the name of cohomological equation in the field of dynamical systems. The existence of a
regular solution is generally a difficult question, a series of results going back to the work of
Livšic [Liv72], show that a Hölder continuous eigenvector does exists if the payment function
is Hölder continuous, and if the dynamics is given by an Anosov diffeomorphism. The latter
conditions requires the tangent bundle of the state space to split in two components, on which
the dynamics is either uniformly expanding or uniformly contracting. Here, we establish a “one
player” version, but requiring a uniform contraction assumption.

2the Markov Chain induced by any deterministic stationary policy consists of a single recurrent class plus a
–possibly empty– set of transient states (i.e., there exists a subset of states that are visited infinitely often with
probability 1 independently of the starting state)
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Time Transitions Assumption

[Sch85] discrete stochastic unichain2

[Bis15] discrete stochastic Doeblin / minorization3

[MN02] discrete deterministic quasi-compactness
[Fat08] continuous deterministic controlability4

[Zav12] discrete deterministic controlability
[CGG14] continuous deterministic contraction of the dynamics

Table 5.1: Non-exhaustive comparison of approaches to prove the existence of a solution to the
ergodic eigenproblem.

This chapter is organized as follows. In Section 5.2, we first define the model and prove the
results on the ergodic eigenproblem. We study steady-states and their optimality in Section 5.3,
and illustrate the electricity application in Section 5.4.

5.2 Ergodic control

5.2.1 Notations

We denote by ∆n the simplex of Rn, and by ⟨·, ·⟩n the scalar product on Rn. We denote by
sp(f) := maxx∈E f(x)−minx∈E f(x) the span of the function f : E → R. We say that a matrix
P is positive, and we write P ≫ 0, if all the coefficients of P are positive. The set of convex
functions with finite real values on a space K is denoted by Vex K, and the convex hull of a set
K is denoted by vex K. Moreover, the set of Lipschitz function on E is denoted by Lip(E), and
the relative interior of a set E is denoted by relint(E).

The Hilbert projective metric dH on Rn
>0 is defined as dH(u, v) = max1⩽i,j⩽n log(ui

vi

vj

uj
).

see [LN09]. It is such that dH(u, v) = 0 iff the vectors u and v are proportional, hence, the name
“projective”. For a set E ⊆ Rn

>0, we denote by DiamH(E) := maxu,v∈E dH(u, v) the diameter
of the set E, and for a matrix P ∈ Rn×n we denote by DiamH(P ) := max1⩽i,j⩽n dH(Pi, Pj)
the diameter of P , where Pi denotes the ith row of P . This can be seen to coincide with the
diameter, in Hilbert’s projective metric, of the image of the set Rn

>0 by the transpose matrix of
P .

Finally, for a sequence (at)t⩾1, we respectively denote by as:t, and a:t the subsequences
(aτ )s⩽τ⩽t and (aτ )1⩽τ⩽t.

5.2.2 Model

We consider a large population model composed of K clusters of indistinguishable individuals.
Each cluster k ∈ [K] := {1, . . . , K} represents a proportion ρk of the overall population, and is
supposed to react independently from the other clusters.

Let X and A be respectively the state and action spaces. We suppose in the sequel that X is
finite and w.l.o.g. X = {1, 2, . . . , N}. We suppose also that A is a compact set (in Section 5.4,
we will consider a subspace of RN ).

For any time t ⩾ 0 and any cluster k, we denote by µk
t ∈ ∆N the distribution of the

population of cluster k over [N ].

3for all state s, action a and measurable subset B of the state space, P (B|x, a) ⩾ ϵµ(B)
4for every pair of states (s, s′), there exists an action a making s′ accessible from s
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At every time t ⩾ 1, a controller chooses an action at ∈ A. She obtains a reward r :
A×∆K

N → R defined as
r : (at, µt) 7→

∑
k∈[K]

ρk

〈
θk(at), µk

t

〉
N

, (5.1)

where θkn(a) is the unitary reward for the controller coming from an individual of cluster k in
state n after executing action a.

We suppose that the dynamics of the system are deterministic, linear, with a Markov tran-
sition matrix. We then denote by P k(a) the transition matrix for cluster k such that

µk
t = µk

t−1P k(at) . (5.2)

The (deterministic) semi-flow ϕ of the state µ is then defined by

ϕt(a:t, µ0) := µt .

We also denote by Π the set of policies. Then, for a given policy π = {πt}t⩾1, the action taken
by the controller at time t is at = πt(µt).

In the sequel, the following assumptions will be used:

(A1) The transition matrix P k(·) is a continuous function of the action for any k.

(A2) There exists L ∈ N such that for any sequence of actions a:L ∈ AL and cluster k,∏
l∈[L] P k(ai)≫ 0.

Recall that in Perron-Frobenius theory, a nonnegative matrix M is said to be primitive if there
is an index l such that M l ≫ 0, see [BP94, Ch. 2]. Assumption (A2) holds in particular under
the following elementary condition:

(A2’) For any action a ∈ A, P (a)≫ 0.

(A3) There exists Mr such that, |θkn(a)| ⩽Mr for every k ∈ [K], n ∈ [N ] and a ∈ A.

Condition (A2) has appeared in [Gau96] in the context of semigroup theory, it can be checked
algorithmically by reduction to a problem of decision for finite semigroups, see Rk. 3.8, ibid.
Observe that (A3) is very reasonable in practice.

We equip the product of simplices ∆K
N with the norm ∥µ∥ := ∑K

k=1 ∥µk∥1. It follows
from (A3) that for any action a, the total reward function µ 7→ r(a, µ) is a Mr-Lipschitz real-
valued function from (∆K

N , ∥ · ∥) to (R, | · |).

Remark 5.2.1

�
Assumption (A2’) is not a Doeblin minorization condition (as in [Bis15] for
instance):this would suppose that there would exist ϵ > 0 and a measure f(·)
such that for all subsets D ⊆ ∆K

N ,

inf
µ∈∆K

N

inf
a∈A

P [µt ∈ D | µt−1 = µ, at = a] ⩾ ϵf(D) .

Here, this condition does not hold since the transitions are deterministic:
P [µt = ν | µt = µ, at = a] = 1(ν=µP (a)). This constitutes the most degenerate
(and difficult) case to handle.
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5.2.3 Optimality criteria

We suppose that the controller aims to maximize her average long-term reward, i.e.,

g∗(µ0) = sup
π∈Π

lim inf
T →∞

1
T

T∑
t=1

r(πt(µt), µt) . (5.3)

Starting from µ0, the population distribution will evolve in ∆K
N according to a policy π ∈ Π.

Nonetheless, with the assumptions we made, we next show that the dynamics effectively evolves
on a particular subset.

Let Qk
L(a:L) := ∏

l∈[L] P k(al) be the transition matrix over L time steps, and DL be defined
as DL =×k∈[K]D

k
L where

Dk
L = vex

(
{µkQk

L(a:L) | a:L ∈ AL, µk ∈ ∆N}
)

. (5.4)

Lemma 5.2.1
Let (A1)-(A2) hold. Then DL is a compact set included in the relative interior of ∆K

N .
Moreover, for t ⩾ L, µt ∈ DL for any policy π ∈ Π.

Proof. The set {µkQk
L(a:L) | (a:L, µk) ∈ AL×∆N} is compact, since (a:L, µk) 7→ µkQk

L(a:L) is
continuous and ∆N and A are both compact. Therefore, DL is compact as it is the convex hull
of a compact set in finite dimension. Then, the positiveness of Qk

L implies that Dk
L ⊂ relint(∆N ).

Moreover, by property of the semiflow, ϕt(a:t, µ0) = ϕL (at−L+1:t, ϕt−L(a:t−L, µ0)) ∈ DL.

µ1
µ2

µ3

Dk

Figure 5.1: Effective domain Dk for ∆3.

We recall that the relative interior of the simplex, equipped with Hilbert’s projective metric,
is a complete metric space, on which the Hilbert’s metric topology is the same as the Euclidean
topology. Hence, under (A1) and (A2), (DL, dH) is a complete metric space. We also recall
Birkhoff theorem, which shows that every matrix Q≫ 0 is a contraction in Hilbert’s projective
metric, i.e.,

∀µ, ν ∈ (RN
>0), dH(µQ, νQ) ⩽ κ(Q)dH(µ, ν) , (5.5)

where
κ(Q) := tanh (DiamH(Q) / 4) < 1 ,

see [LN09, Appendix A]. This property applies to the transition matrix P k(a) under (A2’), or
to Qk

L under (A2).
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Theorem 5.2.1
Suppose that Assumptions (A1) and (A2) hold. Then, the gain g∗ does not depend on the
initial population distribution.

Proof. Suppose that (A2’) hold. Let µ0 and ν0 two initial distributions such that g∗(µ0) < g∗(ν0).
The optimal gain g∗(ν0) is achieved by an infinite sequence of action a∗

1, a∗
2, . . . . Then, by

applying the same sequence of action starting from µ0, we obtain∣∣∣∣∣ 1T
T∑

t=1
r (at, µt)− r (at, νt))

∣∣∣∣∣ ⩽ 1
T

MΦ
r

T∑
t=1

dH(µt, νt)

⩽
1
T

MΦ
r

T∑
t=1

κtdH(µ0, ν0)

⩽
1
T

κ

1− κ
dH(µ0, ν0) .

The property (5.5) is used with κ = maxa∈A κ(P (a)). We therefore constructed a policy that
gives an average gain of g∗(ν0) starting from µ0.

The generalization for Section 5.2.2 is achieved by looking at a larger time subdivision where
the transition between two steps is given by QL ≫ 0.

In the sequel, the average gain will be simply written g∗.

5.2.4 Ergodic eigenproblem

For any real-valued function v : ∆K
N → R, the Bellman operator B is defined as

B v (µ) = max
a∈A
{r(a, µ) + v(µP (a))} .

A first observation is that µ 7→ (B v)(µ) is convex for any real-valued convex function v. Indeed,
the transition is linear in µ, as well as the reward; therefore, for any a ∈ A, the expression
under the maximum is convex in µ, and since the maximization preserves the convexity, the
observation is established. For a feedback policy π, we also define Bπ the Kolmogorov operator
such that Bπ v (µ) = r(π(µ), µ) + v(µP (π(µ))).

Existence of a solution

The ergodic control problem for a Markov decision process with Bellman operator B, on a
compact state space X , is classically studied by means of the ergodic eigenproblem

g1X + h = Bh , (5.6)

in which h is a bounded function on the state space, called the bias or potential, and g is a
real constant. If the ergodic eigenproblem is solvable, then, g yields the optimal mean payoff
per time unit, and it is independent of the initial state. Moreover, an optimal policy can be
obtained by selecting maximizing actions in the expression of Bh. When the state and action
spaces are finite, the ergodic eigenproblem is well understood, in particular, a solution does exist
if every policy yields a unichain transition matrix (i.e., a matrix with a unique final class), see
e.g. [Put94]. In the case of in infinite state space, the existence of a solution to the ergodic
eigenproblem is a more difficult question [KM97; Fat08; MN02; AGN11]. This is especially
the case for deterministic Markov decision processes, owing to the lack of regularizing effect
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of stochastic transitions. Here, we exploit the contraction properties of the dynamics, with
respect to Hilbert’s projective metric, together with the vanishing discount approach, to show
the existence. First let us show a preliminary result on metrics comparison:

Lemma 5.2.2
Let D ⊂ relint(∆n), n ∈ N and x, y ∈ D. Then,

n ∥x− y∥∞ ⩽ dH(x, y)Υ(DiamH(D)) (5.7)

where Υ(d) = 1
ded(ed − 1).

Proof. We use the results in [AGN15]: Lemma 2.3 shows that for any vectors u, x, y ∈ D such
that there exist a, b > 0 satisfying ax ⩽ u ⩽ bx and ay ⩽ u ⩽ by, we have the following
inequality:

∥x− y∥u ⩽
(
edT (x,y) − 1

)
emax(dT (x,u),dT (y,u)) ,

where dT denotes the Thompson distance, and ∥z∥u = inf{a > 0 | −au ⩽ z ⩽ au}. In
particular, by choosing u = (1/n, . . . 1/n) as the center of the simplex, ∥·∥u = n ∥·∥∞. Moreover,
dT (·, ·) ⩽ dH(·, ·) on relint(∆K

N ), see [AGN15, Eq. 2.4]. Therefore,

n ∥x− y∥∞ ⩽
(
edH(x,y) − 1

)
emax(dH(x,u),dH(y,u))

⩽
(
edH(x,y) − 1

)
eDiamH(D) .

We easily conclude using the fact that f : x 7→ ex − 1 is a convex function, and so for all
0 ⩽ x ⩽ x̄, f(x) ⩽ x ex̄−1

x̄ .

Let us define the optimal infinite horizon discounted objective V ∗
α , defined as

V ∗
α (µ0) = sup

π∈Π

∑
t⩾1

αt−1r(πt(µt), µt) , (5.8)

where α is the discount factor and µ0 is the initial distribution. As a consequence of Lemma 5.2.2,
we obtain that the value functions of the discounted problems constitute an equi-Lipschitz
family:

Lemma 5.2.3 (Equi-Lipschitz property)

Assume that (A1)-(A3) hold. Then, (V ∗
α )α∈(0,1) is

(
κMD

r
1−κ

)
-equi-Lipschitz on DL for the

Hilbert metric, i.e.,

∀µ0, ν0 ∈ DL, |V ∗
α (µ0)− V ∗

α (ν0)| ⩽ κMD
r

1− κ
dH(µ0, ν0) .

Proof. We first make the proof under the stronger assumption (A2’), and then deduce the general
result.

Let a be the sequence of actions derived from an ϵ-optimal policy π and initial condition
µ0 ∈ D1. Then, for ν0 ∈ D1

V ∗
α (µ0)− V ∗

α (ν0) ⩽
∑
t⩾1

αt−1
[
r (at, ϕt(a:t, µ0))
− r (at, ϕt(a:t, ν0))

]
+ ϵ .
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The total reward is (NMr)-Lipschitz for the infinite norm. Therefore, using Lemma 5.2.2,
µ 7→ r(a, µ) is Lipschitz of constant MD

r := 1
K MrΥ(DiamH(D1)) for the Hilbert metric. Hence,

V ∗
α (µ0)− V ∗

α (ν0) ⩽MD
r

∑
t⩾1

αt−1dH(ϕt(a:t, µ0), ϕt(a:t, ν0))

+ ϵ .

From the Birkhoff theorem, one can derive that dH(µP (a), νP (a)) ⩽ κ dH(µ, ν) for µ, ν ∈
D1, a ∈ A, where κ = maxa∈A κ(P (a)) < 1. As a consequence, dH(ϕt(a:t, µ0), ϕt(a:t, ν0)) ⩽
κtdH(µ0, ν0) and

V ∗
α (µ0)− V ∗

α (ν0) ⩽MD
r

∑
t⩾1

αt−1κtdH(µ0, ν0) + ϵ

⩽
κMD

r

1− ακ
dH(µ0, ν0) + ϵ ⩽

κMD
r

1− κ
dH(µ0, ν0) + ϵ .

The value function V ∗
α is therefore

(
κMD

r
1−κ

)
-equi-Lipschitz for the Hilbert metric.

To deduce the general result with (A2), we define
• Ã := AL, α̃ := αL,

• ϕ̃τ (ã:τ , µ0) := µ0
∏

1⩽t⩽τ Q(ãt),

• r̃(a:L, µ) := ∑
l∈[L] αl−1r(al, ϕl(a:l, µ)),

• and B̃ : V 7→ max
ã∈Ã{r̃(ã, µ) + V (ν) | ν = µQL(ã)}.

and observe that
V ∗

α (µ0) =
∑
τ⩾1

α̃τ−1r̃(ãτ , ϕ̃τ (ã:τ , µ0)) .

We have rescaled the time (τ instead of t) so that the transition matrix between time τ and
time τ + 1 is QL(ãτ ). One τ -time step corresponds to L t-time steps.

We are now able to prove the main result:

Theorem 5.2.2 (Existence of a solution)
Assume that (A1)-(A3) hold. Then, the ergodic eigenproblem

g 1DL
+h = B h (5.9)

admits a solution h∗ ∈ Lip(DL) ∩Vex(DL) and g∗ ∈ R.

Proof. Let us define a reference distribution µ ∈ ∆K
N , g∗

α = (1 − α)V ∗
α (µ) and h∗

α = V ∗
α −

V ∗
α (µ) 1DL

. Then, as V ∗
α is equi-Lipschitz on DL (Lemma 5.2.3), h∗

α is equi-bounded and equi-
Lipschitz on DL (in particular equi-continuous). By the Arzelà-Ascoli theorem, h∗

α → h∗ ∈
C0(DL).

Finally, from the discounted reward approach, we get B(αV ∗
α ) = V ∗

α , therefore
g∗

α

1− α
1DL

+h∗
α = B

(
αg∗

α

1− α
1DL

+αh∗
α

)
.

By the additive homogeneity property of the Bellman function, g∗
α 1DL

+h∗
α = B(αh∗

α) . The
fixed-point equation (5.29) is then obtained by continuity of the Bellman operator B.

To conclude, h∗ is convex since V ∗
α is convex and the pointwise convergence preserves the

convexity.
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Proposition 5.2.1
For any solution (g∗, h∗) of (5.29), g∗ satisfies (5.3), and a maximizer a∗(·) ∈ arg maxB h∗

defines an optimal stationary policy for the average gain problem.

Proof. Let π ∈ Π be a policy. By definition, for every t, Bπt h∗ ⩽ B h∗ = h∗ +g∗ 1DL
. Therefore,

iterating the Kolmogorov operator, we obtain

(Bπ1 ◦ . . . ◦ Bπt)h∗ ⩽ h∗ + tg∗ 1DL
.

Let h∗ := minµ∈DL
h∗(µ) be the minimum of h∗. Then, 0DL

⩽ h − h∗ 1DL
, and so (Bπ1 ◦ . . . ◦

Bπt)(0DL
) ⩽ h∗ + (tg∗ − h∗) 1DL

. Finally,

lim inf
t→∞

1
t
(Bπ1 ◦ . . . ◦ Bπt)(0DL

)(µ0) ⩽ g∗ .

Any strategy has an average reward lower than g∗. As we have proved that the bias function
h∗ is continuous on DL, a maximizer a∗(µ) can be found for any state µ, and so playing the
strategy a∗(µ) achieves the best possible average gain g∗.

In particular, the constant g∗ in (5.29) is unique, and it coincides with the optimal average
long-term reward, for all choices of the initial state µ0. However, even if the payoff g∗ is unique,
the bias function h∗ is not (and so neither is the optimal policy).

Non-uniqueness of the solution

In contrast with results where geometric ergodicity is assumed to guarantee the existence (and
the uniqueness) of the eigenvector, see e.g. [Bis15; HL96], the uniqueness of the latter is generally
not true. Indeed, we can construct instances where there exist several “attractor” states, and
where a family of strategies can be found so that each of them secures the optimal mean payoff. In
these instances, the eigenvector does exist but is not unique. To illustrate this fact, we introduce
in Example 5.2.1 a model satisfying (A1) to (A3). Note that taking the same dynamics as in
the example but without node 2 can also lead to a non-unique solution of the eigenroblem as
long as we allow for a more general form of reward r(a, µ). Here, we aim at fitting exactly with
our application case by considering that the reward function satisfies (5.1).

Example 5.2.1 (Non-uniqueness of the eigenvector)

1 2 3
a

1− a

a

1− a
1− a a

Let us consider the dynamical system described by the following transition matrix:

P (a) =

1− a a 0
1− a 0 a

0 1− a a

 ,

where the a is supposed to belong to the action space A, which is of the form

A = [a0, a1] , 0 < a0 < 1/2 and a1 = 1− a0 .
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We consider the following unitary reward θ(·):

θ(a)n =


1− a if n = 1,

0 if n = 2,

a if n = 3,

The reward function is then r(a, µ) = (1− a)µ1 + aµ3 for any µ ∈ ∆3, and

r(a, µP (a)) = (1− a)2(1− µ3) + a2(1− µ1) .

In the sequel, we work in the sub-simplex ∆⩽3 := {(x, y) ∈ R2
+ | x + y ⩽ 1}, considering that

µ2 can be reconstructed as µ2 = 1− µ1 − µ3.

The associated ergodic eigen problem. For any real-valued function v : ∆⩽3 → R, let us
define the Bellman operator B as

B v(µ1, µ3) = max
a∈A

{
(1− a)2(1− µ3) + a2(1− µ1)
+ v ((1− a)(1− µ3), a(1− µ1))

}
.

In Example 5.2.1, the transition a ∈ A 7→ P (a) is linear. Moreover, the transition matrix over
two time steps is then

(P (a))2 =

(1− a)2 + a(1− a) a(1− a) a2

(1− a)2 2a(1− a) a2

(1− a)2 a(1− a) a2 + a(1− a)


and has positive coefficients. Therefore, the transition matrix P (a) satisfies the primitivity
assumption (A2) for all a ∈ A. Using Theorem 5.2.2, the ergodic eigenproblem

g1D1 + h = B h (5.10)

admits a solution h∗ ∈ Lip(D1) ∩ Vex(D1) and g∗ ∈ R, where D1 is defined one can construct
the effective domain D1 as in (5.4). As the quantity in the maximum is convex, for any convex
function v : D1 → R, the maximum value in B v is obtained for a = a0 or a = a1. Therefore, in
the sequel, we restrict wlog the state space to be A = {a0, a1}.

Steady states. Let k ∈ {0, 1}. The equilibrium distribution µ̂ achieved by a constant decision
ak is given by the equation µ̂P (ak) = µ̂, which has a unique solution:

µ̂k
1 = (1− ak)2

1− ak(1− ak) , µ̂k
3 = a2

k

1− ak(1− ak) . (5.11)

Bias function for the Kolmogorov operator. Let us define Bk the Kolmogorov operator
associated to the constant strategy π : µ 7→ ak, i.e.,

Bk v(µ1, µ3) = (1− ak)2(1− µ3) + a2
k(1− µ1) + v ((1− ak)(1− µ3), ak(1− µ1)) .

Then, the linear function hk(µ1, µ3) = αkµ1 + βkµ3 and the gain gk are solutions of

hk(µ1, µ3) + gk = Bk hk(µ1, µ3), (µ1, µ3) ∈ D1 (5.12)
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if and only gk, αk and βk satisfy the following system
gk = (1− ak)2 + a2

k + (1− ak)αk + akβk

αk = −a2
k − akβk

βk = −(1− ak)2 − (1− ak)αk

,

where the unique solution of the latter system is given by

gk = a3
k + (1− ak)3

1− ak(1− ak) , αk = ak(1− ak)2 − a2
k

1− ak(1− ak) , βk = (1− ak)a2
k − (1− ak)2

1− ak(1− ak) . (5.13)

Note that g0 = g1 since a0 + a1 = 1, and we simply denoted it by g∗.

Solution for the ergodic eigen problem. We now exhibit a family of eigenvectors where
each of them constitutes a solution to the ergodic eigenproblem associated with Example 5.2.1:

Theorem 5.2.3 (Non-uniqueness of the eigenvector)
Let vk : D → R, k ∈ {0, 1}, be defined as

vk(µ1, µ3) = ĥk0(µ1, µ3) ∨ ĥk1(µ1, µ3) ∨ ĥk2(µ1, µ3) , (5.14)

with

⋄ ĥij(·, ·) := hj(·, ·)− hj(µ̂i
1, µ̂i

3), i, j ∈ {0, 1},

⋄ ĥk2(·, ·) := B1−k ĥkk(·, ·)− g∗.

Then, for any λ ∈ [0, 1], the couple (vλ, g∗) is solution the ergodic eigenproblem (5.10) –
corresponding to Example 5.2.1 – with g∗ defined in (5.13) and

vλ(µ1, µ3) :=
(
v0(µ1, µ3)− λ

1−λ

)
∨
(
v1(µ1, µ3)− 1−λ

λ

)
.

Proof. As first observation, the couple (hk, g∗), solution of (5.12), is not solution of the ergodic
eigenproblem (5.10). Therefore, let us try to construct a solution as a mixture of h0 and h1. To
this purpose, let us define the function the function u0 : D1 → R as

u0(µ1, µ3) = ĥ00(µ1, µ3) ∨ ĥ01(µ1, µ3) .

For (µ1, µ3) ∈ D1, the value of B u0(µ1, µ3) is given by the maximum of 4 quantities:

(i) B0 ĥ00(µ1, µ3) = ĥ00(µ1, µ3) + g∗,

(ii) B0 ĥ01(µ1, µ3),

(iii) B1 ĥ00(µ1, µ3),

(iv) B1 ĥ01(µ1, µ3) = ĥ01(µ1, µ3) + g∗,

The equality in (i) and (iv) comes from the fact that ĥ00 and ĥ01 are solutions for (5.12). Besides,
we can prove using basic algebra that

B0 ĥ01(µ1, µ3)− B1 ĥ00(µ1, µ3) = g∗(µ̂0
3 − µ̂0

1) ⩽ 0 .
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Therefore, the maximum is obtained either with (i), (iii) or (iv). We consider now the function

v0(µ1, µ3) = ĥ00(µ1, µ3) ∨ ĥ01(µ1, µ3) ∨ ĥ02(µ1, µ3) , (5.15)

with ĥ02(µ1, µ3) := B1 ĥ00(µ1, µ3) − g∗. By construction, v0 = B u0 − g∗. Moreover, one can
show that B ĥ02(µ1, µ3)− g∗ ⩽ v0(µ1, µ3). Therefore,

∀(µ1, µ3) ∈ D1, B v0(µ1, µ3) = B u0(µ1, µ3) = v0(µ1, µ3)− g∗ .

As a conclusion, (v0, g∗) is a solution of (5.10).
By symmetry of the problem, we can construct the function v1(µ1, µ3) = v0(µ3, µ1), and

(v1, g∗) is a different solution of (5.10). Finally, each max-plus combination of v0 and v1 also
constitutes a solution of the ergodic eigenproblem.

We display in Figure 5.2 the eigenvector v0, v1/2 and v1, obtained numerically (using the
RVI procedure, see Algorithm 4), as with the eigenvector v0, obtained theoretically (see above).

Remark 5.2.2
We continue the analysis of Example 5.2.1 in Section 7.5, where the convergence of the dy-
namical systems under optimal policies is studied through the weak KAM angle, showing in
particular that the projected Aubry set is reduced to two points, corresponding to the states
defined in (5.11). From this result, we will prove that any eigenvector is a tropical linear
combination of the two basis eigenvectors v0 and v1, showing that the family {vλ}λ∈[0,1]
describes all the eigenvectors that are solutions of the ergodic eigenproblem.

5.3 Steady-state optimality

5.3.1 Definition

The solution of dynamic programming problems, including the ergodic eigenproblem (5.29), is
subject to the “curse of dimensionality” . Therefore, it is of interest to investigate cases in which
the dynamic problem reduces to a static one. In fact, in some cases the optimal stationary
policy may be a simple policy that attracts the system to a steady-state (“get there, stay there”
– [Fly79]). We next formalize this property:

Definition 5.3.1. Let S = {(a, µ) ∈ A×∆K
N |µ = µP (a)} be the action-space domain of

stationary probabilities. Then, µ ∈ ∆K
N is a steady-state if there exists a ∈ A such that

(a, µ) ∈ S.

If (A2) holds, then for any cluster k and any price a ∈ A, the Markov chain induced by the
transition matrix P k(a) has a unique stationary distribution. We denote by µ(·) : A 7→ ∆K

N the
mapping sending an action to the stationary distribution it induces.

Definition 5.3.2. The optimal steady-state gain g is defined as

g := max
(a,µ)∈S

r(a, µ) . (5.16)

If (A2) holds, (5.16) is in general a static nonconvex maximization problem over the actions.
Nonetheless, we can expect to solve it efficiently in the case where µ(·) is analytically known,
see e.g. Section 5.4. Maximizers a are called optimal steady-state price, they correspond to a
steady-state distribution µ(a).
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Figure 5.2: Eigenvectors for Example 5.2.1 with A = [0.25, 0.75].
On the upper left, we display the eigenvector v0 (obtained by the RVI algorithm). On the
upper right, we display the theoretical v0 found in (5.15) as with the two steady states to

which each of optimal strategies converges. On the lower left, we display the eigenvector v1/2

and on the lower right, we display the eigenvector v1.

5.3.2 Optimality gap

In this section we introduce a class of Lagrangian functions designed so that each dual problem
turns out to be an upper bound of g∗. This extends the result of [Fly79] involving usual
Lagrangian functions. We use here a more general Lagrangian, depending on the choice of a
non-linear function φ. This leads to much tighter bounds, and allows us to prove the optimality
of a steady-state strategy whenever a zero duality gap is obtained. Let Φ be defined as

Φ = {φ : ∆K
N → ∆K

N injective and bounded} .

For a given function φ ∈ Φ, we define the Lagrangian function L(φ) : (A, ∆K
N ,RKN )→ R by

L(φ)(a, µ, λ) := r(a, µP (a)) + ⟨λ, φ (µP (a))− φ(µ)⟩KN .

As a direct consequence of the injectivity of φ, we obtain that for any given φ ∈ Φ,

g = max
(a,µ)∈A ×∆K

N

inf
λ∈RKN

L(φ)(a, µ, λ) .
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We also define the dual problem g(φ) as

g(φ) := inf
λ∈RKN

max
(a,µ)∈A ×∆K

N

L(φ)(a, µ, λ) . (5.17)

Proposition 5.3.1
With (g∗, h∗) solution of (5.29) and g defined in (5.16),

g ⩽ g∗ ⩽ g(φ), ∀φ ∈ Φ .

Proof. The proof extends the arguments in [Fly79, Remark 5.1] to nonlinear functions φ ∈ Φ.
First, from the geometrical convergence the dynamic (see Theorem 5.2.1), the valid strategy

consisting in executing action a each period of time induces an average reward of g, regardless
the initial distribution. Therefore, g ⩽ g∗.

Then, for ϵ > 0, there exists λϵ such that for any (a, µ) ∈ A×∆k
N ,

r(a, µP (a)) + ⟨λϵ, φ(µP (a))− φ(µ)⟩KN ⩽ g(φ) + ϵ .

We construct a sequence of decision a1, . . . , aT leading to distribution µ1, . . . , µT . Then, at each
period t,

r(at, µt) + ⟨λϵ, φ(µt)− φ(µt−1)⟩KN ⩽ g(φ) + ϵ .

Therefore, we take the mean over t = 1, . . . , T to recover the average reward criteria:

1
T

T∑
t=1

r(at, µt) + 1
T
⟨λϵ, φ(µT )− φ(µ0)⟩KN ⩽ g(φ) + ϵ .

The second term converges to zero when T → ∞ as we suppose that φ is bounded on the
simplex. So,

lim inf
T →∞

1
T

T∑
t=1

r(at, µt) ⩽ g(φ) + ϵ .

The latter inequality is valid for any ϵ > 0, and any sequence of action (at)t∈N, so g∗ ⩽ g(φ).

We define the duality gap δL(φ) as

δL(φ) := g(φ) − g.

As an immediate consequence of Proposition 5.3.1, if there exists φ ∈ Φ such that δL(φ) = 0,
then g∗ = g, and the dynamic program 5.3 reduces to the static optimization program (5.16).
Depending on the problem parameters, the duality gap may, or may not, vanish, see Figure 5.6.

5.4 Application to electricity pricing

We suppose that an electricity provider has N−1 different types of offers and that a study has
distinguished beforehand K customer segments, assuming that customers of a given segment
have approximately the same behavior. Given a segment k and an offer n ∈ [N−1], the reservation
price Rkn is the maximum price that customers of this segment are willing to spend on n, and
Ekn is the (fixed) quantity a customer of segment k will purchase if he chooses n. The utility
for these customers is linear and is defined as

Ukn(a) := Rkn − Eknan .
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where an is the price for one unit of product n. The action space is then a compact subset of
RN−1.

To model the competition between the provider and the other providers of the market,
consumers have an alternative option (state of index N). We suppose that this alternative offer
is fixed over time (for example a regulated contract). Then, under this assumption, it can be
modelized w.l.o.g. by a null utility for each cluster (UkN = 0).

If a customer of segment k chooses the contract n < N at price an, then the provider receives
Eknan from the electricity consumption of the customer and has an induced cost of Ckn. Note
that the cost should depend on the quantity Ekn, but as it is supposed to be a parameter, we
omit this dependency. The (linear) reward for the provider is then

θkn(a) = Eknan − Ckn, n < N, θkN = 0 .

We suppose that the transition probability follows a logit response, see e.g. [PE17]:

[P k(a)]n,m = eβ[Ukm(a)+γkn 1m=n]∑
l∈[N ] eβ[Ukl(a)+γkn 1l=n] , (5.18)

where the parameter γkn is the cost for segment k to switch from contract n to another one,
and β is the intensity of the choice (it can represent a “rationality parameter”). One can easily
check that (A1)-(A3) are satisfied.

In the no-switching-cost case (γ = 0), we say that the customers response is instantaneous,
and corresponds to the classical logit distribution, see e.g. [Tra09]:

µkn
L = eβUkn(a) /

∑
l∈[N ]

eβUkl(a) . (5.19)

Steady-states. The application scope of the transition model we defined in (5.18) is broader
than electricity pricing. For this specific kernel, we derive a closed-form expression for the
stationary distributions, fully characterized by the instantaneous response:

Theorem 5.4.1
Given a constant action a, the distribution µk

t converges to µk(a), defined as

µkn(a) = ηkn(a)µkn
L (a)∑

l∈[N ] ηkl(a)µkl
L (a)

. (5.20)

where ηkn(a) := 1 +
[
eβγkn − 1

]
µkn

L (a), and µL is defined in (5.19).

Proof. In the proof, we forget the dependence on k and a. The stationary probability is defined
as ∀m ∈ [N ], µm [1− P mm] = ∑

n̸=m µnP nm . We can then replace by the definition of the
probabilities (5.18) to obtain

µm

[ ∑
l ̸=m eβUm∑

l eβ[U l+1l=m γm]

]
=
∑

n̸=m

µn

[
eβUm∑

l eβ[U l+1l=n γn]

]
.

Defining µ̃n := µn∑
l
eβ[Ul+1l=n γn] , we obtain

∀m ∈ [N ], µ̃m
∑
l ̸=m

eβU l = eβUm ∑
l ̸=m

µ̃l .
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The solution µ̃n := λeβUn
, n ∈ [N ] is then a valid solution, and the constant λ is chosen so that∑

l∈[N ] µl = 1:
µkn(a) = λeβUkn(a) ∑

m∈[N ]
eβ[Ukn(a)+1m=n γkn]

λ−1 =
∑

n∈[N ]
eβUkn(a) ∑

m∈[N ]
eβ[Ukm(a)+1m=n γkn]

(5.21)

Finally, ηkn = ∑
l eβ[Ukl+1l=n γkn]/

∑
l eβUkl . We recover the definition of µ (5.21).

As a consequence, the optimal steady-state can be found by solving

g = max
a∈A

r(a, µ(a)) . (5.22)

Problem (5.22) has no guarantee to be convex. However, it is a box-constrained smooth opti-
mization problem which can be much more efficiently solved (at least up to local maximum)
than the original time-dependent problem.

In addition, if we suppose that γkn = γk > 0 for all n, then for any a ∈ A, we get the two
following properties as immediate consequence of Theorem 5.4.1:

• lim
γk→0

µk(a) = µk
L(a),

• (µkn) and (µkn
L ) are sorted in the same order.

We now aim to compare the steady-state µk(a) with the logit distribution µk
L(a) using the

majorization theory:

Definition 5.4.1 (Majorization,[MOA11]). For a vector a ∈ Rd, we denote by a↓ ∈ Rd the
vector with the same components, but sorted in descending order. Given a, b ∈ ∆d, we say
that a majorizes b from below written a ≻ b iff

k∑
i=1

a↓
i ⩾

k∑
i=1

b↓
i for k = 1, . . . , d .

Proposition 5.4.1 (Majorization property of the steady-state)
Let k ∈ [K] and a ∈ A be given. Suppose that γkn = γk > 0 for all n ∈ [N ], then the
stationary distribution majorizes the instantaneous logit response i.e.,

µk(a) ≻ µk
L(a) . (5.23)

Proof. Let us suppose that we reorder the probabilities (and the η) such that they are sorted in
the decreasing order. (

n∑
m=1

µm

)−1

=
∑n

l=1 ηlµl
L +∑N

l=n+1 ηlµl
L∑n

m=1 ηmµm
L

= 1 +
∑N

l=n+1 ηlµl
L∑n

m=1 ηmµm
L

⩽ 1 +
∑N

l=n+1 µl
L∑n

m=1 µm
L

=
(

n∑
m=1

µm
L

)−1

.

The inequality comes from the sorting of η, and the last equality from ∑
µL = 1.
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Proposition 5.4.1 establishes a qualitative feature of this model: if the price is kept constant over
time, then, in the model with inertia, the stationnary distribution of population majorized the
one obtained in the corresponding logit-model without inertia. Recalling that the majorization
order expresses a form of dispersion, this means that inertia increases the concentration of the
population on its favorite offers.

Lemma 5.4.1
Let us consider a and b in ∆d. If a ≻ b, then for all i, ai ⩽ dbi.

Proof. a↓
i ⩽

d∑
j=i

a↓
j = 1−

i−1∑
j=1

a↓
j ⩽ 1−

i−1∑
j=1

b↓
j =

d∑
j=i

b↓
j ⩽ (d− i + 1)b↓

i ⩽ db↓
i .

Proposition 5.4.2 (Boundedness of the steady-state gain)
Even with A = RN−1, the optimal steady-state gain g is bounded independently of γ.

Proof. Suppose that the optimal steady-state gain is attained for an action a, then

g =
∑

k∈[K]
ρk

∑
n∈[N ]

(Eknan − Ckn)µkn(a) ⩽ max
k,n

(Rkn − Ckn) +
∑

k∈[K]
ρk

∑
n∈[N ]

(Eknan −Rkn)µkn(a)

⩽ max
k,n

(Rkn − Ckn) +
∑

k∈[K]:Ukn(a)<0
ρk

〈
−Uk(a), µk(a)

〉
N

⩽ max
k,n

(Rkn − Ckn) + N
∑

k∈[K]:Ukn(a)<0
ρk

〈
−Uk(a), µk

L(a)
〉

N

⩽ max
k,n

(Rkn − Ckn) + N

βe
.

The third inequality comes from Lemma 5.4.1. For the fourth one, since the logit expression
contains a no-purchase option, µkn

L ⩽
1

1+e−βUkn(a) . To conclude, it remains to see that 1 + eβz ⩾

(βe)z for all z.

Proposition 5.4.2 proves that the optimal steady-state gain cannot diverge to infinity when the
inertia grows. This qualitative result is no longer true for the optimal strategy (that may be a
periodic sequence of actions instead of a single constant one), see Section 5.7.1.

5.5 Numerical resolution

5.5.1 Relative Value Iteration with Krasnoselskii-Mann damping

Relative Value Iteration (RVI) has been extensively studied to solve unichain finite-state MDP [Put94;
Ber98]. Simplicial state-spaces appear in particular in the definition of belief state for partially
observable MDP [Hau00]. For such continuous state-spaces, a discretization must be done as a
prerequisite to RVI algorithm. Here, we define a regular grid Σ of the simplex ∆K

N , and BΣ the
Bellman Operator with a linear point approximation on the grid Σ, achieved by a Freudenthal
triangulation [Lov91].

With this simple framework, we have the following property:
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µ1
µ2

µ3

Figure 5.3: Freudenthal triangulation of ∆3

Proposition 5.5.1 ([Hau00], Thm 12)
For any v ∈ Vex(∆K

N ),
B v ⩽ BΣ v .

As the bias function ĥ is convex at each iteration, the solution returned by Algorithm 4 provides
a gain which is an upper bound of the optimal gain g∗.

Algorithm 4 RVI with Mann-type iterates
Require: Grid Σ, Bellman operator BΣ, initial function ĥ0
1: Initialize ĥ = ĥ0, ĥ′(µ) = BΣ ĥ

2: while sp(ĥ′ − ĥ) > ϵ do
3: ĥ← ( ĥ′ −max{ĥ′}e + ĥ )/2
4: ĥ′(µ̂)← (BΣ ĥ)(µ̂) for all µ̂ ∈ Σ
5: end while
6: ĝ ← ( max(ĥ′ − ĥ) + min(ĥ′ − ĥ) )/2
7: return ĝ, ĥ

In Algorithm 4, we use, following [GS20], a mixture of the classical relative value iteration al-
gorithm [Put94] with a Krasnoselskii-Mann damping. As detailed in [GS20] (Th. 9 and Coro 13),
it follows from a theorem of Ishikawa that the sequence of bias function ĥ does converge, and it
follows from a theorem of Baillon and Bruck that ĝ provides an ϵ approximation of the optimal
average cost g∗ after O(1/ϵ2) iterations.

5.5.2 Howard algorithm with on-the-fly transition generation

With value-iteration algorithms, the second main class of iterative methods to solve MDPs are
policy iteration algorithms, initiated by Howard (see e.g [DF68] of [Put94]). We describe here
the method adapted to “decomposable” state spaces. Domain decomposition has already been
exploited by Festa [Fes18] in a different setting to obtain parallel Howard’s algorithm, as well as
memory space gain.

Let Λ = (µ̂i)i∈[M ] be a local semi-Lagrangian discretization of the simplex ∆N of size M :=
|Λ|. We refer the grid to be local, since the discretization is done for the probability space of one
sub-population and not on the global probability space ∆K

N . The global discretization is then

Σ = (µ̂⃗i1
, . . . , µ̂⃗iK

)⃗i∈[M ]K .

We define the local transition operator T Λ,k : (i, a) ∈ [M ]×A 7→ arg minj∈[M ] ∥µ̂iP
k(a)− µ̂j∥∞.

For each k ∈ [K], this operator can be computed in a preprocessing step, and stored in O(M ×



5.
Sw

it
ch

in
g

co
st

s

122 CHAPTER 5. ERGODIC CONTROL OF A HETEROGENEOUS POPULATION

| A |). Contrary to the RVI algorithm where a Freudenthal triangulation is performed during
the computation of BΣ, Figure 5.4 illustrates that the transition operator is approximated by
finding the closest discretization point (in the L∞-norm) to the true next state.

µ1
µ2

µ3

Figure 5.4: Semi-Lagrangian discretization of ∆3

The global transition can then be obtained on-the-fly, i.e., for any action a ∈ A and global
index i⃗ ∈ [M ]K , T Σ(⃗i, a) can be recomputed whenever it is required in the algorithm knowing
the sub-transition T Λ,k (⃗ik, a) for all k ∈ N :

T Σ : (⃗i, a) ∈ [M ]K ×A 7→ (T Λ,k (⃗ik, a))k∈[K] . (5.24)

Remark 5.5.1
A complete storage of T Σ would lead to a memory occupation in O(MK × |A |), whereas
the storage of every T Λ,k is O(K ×M × |A |).

Algorithm 5 shows the Howard algorithm with on-the-fly transition generation. It consists
in alternating a policy evaluation step with a policy improvement step. We implemented a
parallelized version of this algorithm5 by adapting the code of [Coc+98]6, initially intended for
computing spectral elements in max-plus algebra. The algorithm is known to have experimen-
tally a superlinear convergence which, in finite action-space setting, is reached in finitely many
steps, see e.g.[Put94]. Despite the decomposable transition, all the subpopulations k ∈ [K] are
linked together through a common policy. In the implementation, both the policy d̂ and the
bias function ĥ depend on the global state i⃗ ∈ Σ. Therefore, the memory needed to run the
algorithm is still exponential in the number of segments – in O(MK) – but would have been
worst with stored global transition T Σ – in O(MK × |A |) – the action space being very large
in general.

5.6 Numerical results

The numerical results were obtained on a laptop i7-1065G7 CPU@1.30GHz. We solved the prob-
lem up to dimension 4 (2 provider offers, 2 clusters) with high precision (δµ = 50 points for each
dimension, 1.6 million discretization points, precision ϵ = 10−5) in 7 hours for Value-Iteration al-
gorithm and in 70 seconds for the Howard algorithm adapted to decomposable state-spaces (both
methods parallelized on 8 threads), see Table 5.2. The Policy Iteration algorithm adapted to
decomposable state-spaces appears as the faster algorithm while occupying a reasonable memory
space.

5Available at https://gitlab.com/these_tarif/ergodic_inertia
6Available at http://www.cmap.polytechnique.fr/˜gaubert/HOWARD2.html

https://gitlab.com/these_tarif/ergodic_inertia
http://www.cmap.polytechnique.fr/~gaubert/HOWARD2.html
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Algorithm 5 Howard Algorithm with on-the-fly transition generation
Require: Local grid Λ, family of local transitions (T Λ,k)k∈[K], initial decision rule d̂′

1: do
2: d̂← d̂′

3: ĝ, ĥ solution of
{

ĝ + ĥ⃗i = r(d̂⃗i, µ̂⃗i) + ĥj⃗ , i⃗ ∈ Σ

j⃗ = T Σ(⃗i, d̂⃗i)
▷ Policy Evaluation

4: d̂′
i⃗
← arg mina∈A{r(a, µ̂⃗i) + ĥj⃗ | j⃗ = T Σ(⃗i, a)} for all i⃗ ∈ Σ ▷ Policy Improvement

5: while d̂′ ̸= d̂
6: return ĝ, d̂

Instance (node, arcs) RVI PI [Coc+98] This work
K = 1, N = 1 (2e3, 2.5e6) 70s 1s 0.2s
δµ = 1/2000 0.8Mo 30Mo 9Mo

K = 2, N = 2 (7.4e5, 6.9e8) 7h 390s 70s
δµ = 1/50 15Mo 13Go 103Mo

Table 5.2: Comparison RVI / Howard
We provides running times that include the graph building step, which is a very costly operation for
high dimensional graph in the standard Policy-Iteration algorithm. Every method ran on 8 threads.

In order to visualize qualitative results, we focus on the minimal non-trivial example (1 offer
and 1 cluster). Note that the conclusions we draw from this example remain valid for the case
2 offers / 2 clusters. We use data of realistic orders of magnitude: we consider a population
that checks monthly the market offers and consumes E = 500kWh each month. The provider
competes with a regulated offer of 0.17€/kWh (inducing a reservation price of 85€), and has a
cost of 0.13€/kWh. We suppose that the prices are freely chosen by the provider in the range
0.08-0.22€/kWh. The intensity parameter β is fixed to 0.1. In a quadratic setting (see previous
chapter), this means that a customer will choose with probability one a contract as long as its
utility is higher of 2/β = 20€in comparison to other offers.

Numerical experiments in Fig. 5.6-5.5 emphasize the role of the switching cost. There exists a
threshold – around γ = 22 in Fig. 5.6 – above which the steady-state policy becomes dominated
by a cyclic strategy, where a period of promotion is periodically applied to recover a sufficient
market share (period of 7 time steps on this example, see Fig. 5.5b and Fig. 5.5d). Below this
threshold, the optimal policy has an attractor point which is exactly the best steady-state price,
see Fig. 5.5c. The finite horizon policy is therefore a “turnpike” like strategy [Dam+14]: we
rapidly converge to the steady-state and diverge at the end of the horizon, see Fig. 5.5a. Fig. 5.6
highlights that the adding of a convex function φ strengthens the upper bound, so that the
optimality of the steady-state strategy is guaranteed up to γ around 19.

5.7 Study of the minimal non-trivial model

Let us study the simple (yet non-trivial) case where the company has 1 contract (N = 1) and
the population is homogeneous (K = 1). Numerical results have been shown in previous section.

In this setting, the probability µ to choose the retailer contract lies in the segment [0, 1]. For
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Figure 5.5: Numerical results for both the finite horizon and long-term average reward criteria.
Low (resp. high) switching cost stands for γ = 20 (resp. 25).

the finite-horizon setting, the toy model is therefore defined as

v∗
T (µ0) = max

a1,...,aT ∈AT



T∑
t=1

(at − C)µt

s. t.
[
µt 1− µt

]
=
[
µt−1 1− µt−1

]  eβγe−β(at−R)

1+eβγe−β(at−R)
1

1+eβγe−β(at−R)

e−β(at−R)

eβγ+e−β(at−R)
eβγ

eβγ+e−β(at−R)




.

(5.25)
In the sequel, the data is C = 2, R = 3, β = 3, T = 45.

5.7.1 Cycling strategies

Figure 5.5 suggests a threshold (in terms of switching cost intensity) that separates the deci-
sion behavior into two different regimes: the convergence to a steady state for low switching
costs intensity and the convergence to periodic strategies above the threshold (see Figure 5.5b).
Therefore, in order to better understand this cycling behavior, we define the set of periodic
strategies in the one-dimensional case as follows:
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Figure 5.6: Optimal gain g∗ for a range of switching costs, along with lower bound g and
upper bounds g(φ), φ(·) = (·)1,2,3,4.

Definition 5.7.1. A τ -cycle is a cycling strategy of τ time steps, defined by the customer
response (µ0, . . . , µτ−1, µτ ), with the cycling condition µ0 = µτ . For any τ -cycle l, we denote
by

(i) µ[l] = 1
τ

∑τ
t=1 µt and V [l] = 1

τ

∑τ
t=1(µt−µ)2 the mean and the variance of the customer

distribution over the cycle,

(ii) g[l] = 1
τ

∑τ
t=1(at − C)µt the gain (mean profit over the cycle).

Proposition 5.7.1
Let γ > 0, knowing µt−1 and µt in [0, 1], there exists a unique at verifying the constraint
in (5.25), defined as

ât := e−β(at−R) = 2µt − κt +
√

(2µt − κt)2 + 4γ̂2µt(1− µt)
2γ̂(1− µt)

(5.26)

where γ̂ = eβγ and κt = 1 + (γ̂2 − 1)(µt−1 − µt).

Proof. From (5.25), one obtains the following equation:

µt =
[

γ̂ât

1 + γ̂ât
− ât

γ̂ + ât

]
µt−1 + ât

γ̂ + ât
,

that can be equivalently written as a second-order equation: 0 = â2
t [γ̂(µt − 1)] + ât [2µt − κt] +

[γ̂µt] of discriminant ∆ = (2µt − κt)2 + 4γ̂2µt(1− µt) ⩾ 0.

Corollary 5.7.1
As a special case of Proposition 5.7.1,

(i) if γ = 0, ât = µt

1−µt
,
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(ii) the steady-state policy that converges to µ ∈]0, 1[ is obtained by fixing the price to

â = 2µ− 1 +
√

(2µ− 1)2 + 4γ̂2µ(1− µ)
2γ̂(1− µ) . (5.27)

Proof. Items (i) and (ii) are obtained with κt = 1, either with γ̂ = 1 or µt−1 = µt.

Proposition 5.7.1 gives an explicit expression of the (unique) action that allows a transition
between state µt−1 and µt. The uniqueness can be extended to transitions µt = µt−1P (a) in
higher dimension, but the explicit characterization of the action is not straightforward. We now
want to compare the gain over a τ -cycle l and the steady-state gain g. A first result is readily
obtained in absence of switching costs, i.e., γ = 0, showing that constant-price policies are in
this case optimal:

Proposition 5.7.2 (Gain without switching cost)
Suppose that γ = 0, then, the optimal steady-state policy induces a gain greater than the
one achieved by any τ -cycle l of at least V [l]

β , i.e.,

g[l] ⩽ g − V [l]
β

.

As a consequence, the optimal cycle corresponds to a constant-price policy.

Proof. Using Corollary 5.7.1, at = R− 1
β log

(
µt

1−µt

)
, and the mean profit of a τ -cycle l is

g[l] = (R− C)µ[l]− 1
βτ

τ∑
t=1

µt log
(

µt

1− µt

)
.

The function µ 7→ µ log
(

µ
1−µ

)
is strongly convex of modulus 1. Therefore, using Jensen’s

inequality for strongly convex function, see e.g. [MN10], we obtain that

g[l] ⩽ (R− C)µ[l]− 1
β

µ[l] log
(

µ[l]
1− µ[l]

)
− V [l]

β
⩽ g − V [l]

β
.

Let us specialize the τ -cycles to a particular sub-class:

Definition 5.7.2. A (s, S, τ)-cycle is a specific τ -cycle, in which µt = S + s−S
τ t, t ⩽ τ .

Proposition 5.7.3
Let us consider a (s, S, τ)-cycle l. Then,

g[l] ⩾ s(τ − 1)− S

τ
γ + O(1) as γ →∞ .

As a consequence, there exists a threshold Γ > 0 such that for any γ ⩾ Γ, the optimal
steady-state policy is dominated by a (s, S, τ)-cycle.
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Proof. Recalling that
√

a2 + b ⩽ |a| + b
2|a| , we have

√
(2µ− κ)2 + 4γ̂2µ(1− µ) ⩽ |2µ − κ| +

γ̂2µ(1− µ)
|2µ− κ|

. We first look at a period 1 ⩽ t < τ where µt−1 − µt = S−s
τ . As we suppose that

γ →∞, γ̂ ⩾
√

1 + τ
S−s and so κ ⩾ 2µ. Therefore,

â ⩽
γ̂µ

1 + (γ̂2 − 1)S−s
τ − 2µ

and
a ⩾ R + 1

β
log

(
(γ̂2 − 1)(S − s)− τ

γ̂τ

)
≃ 1

β
log(γ̂) + O(1) = γ + O(1) .

If now we look at the last period t = τ . Then, as we suppose that γ → ∞, γ̂ ⩾
√

1 + 1
S−s .

Therefore,

â ⩽
1 + (γ̂2 − 1)(S − s)

γ̂(1− y) + γ̂

(γ̂2 − 1)(S − s)− 1
and

a ⩾ R− 1
β

log
(

1 + (γ̂2 − 1)(S − s)
γ̂(1− y) + γ̂

(γ̂2 − 1)(S − s)− 1

)
≃ −γ + O(1) .

The mean profit is finally bounded by below : g[l] ⩾ 1
τ [(τ − 1)s− S] γ +O(1). To conclude, any

(s, S, τ)-cycle satisfying τ ⩾ 1 + S
s induces a mean profit that diverges with respect to γ. In the

meantime, the steady-state optimum is bounded, see Proposition 5.4.2, and so dominated for
sufficiently large switching cost γ.
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Figure 5.7: Evolution of the optimal (s, S, τ)-cycle for a range of switching cost values
The left (resp. middle, right) panel shows the gain (resp. cycle amplitude, cycle period) of the optimal
(s, S, τ)-cycle. The steady-state gain g is displayed for comparison, as well as the optimal gain obtained
in Figure 5.5. A kink appears at γ ≃ 0.762, indicating the separation of the cycling behavior from the

steady-state behavior.



5.
Sw

it
ch

in
g

co
st

s

128 CHAPTER 5. ERGODIC CONTROL OF A HETEROGENEOUS POPULATION

In Figure 5.7, we compute the optimal (s, S, τ)-cycle, by iterating over the possible values
of s, S, and τ for each given value of γ. Before the kink, the optimal cycle is in reality the
constant-price strategy (cycle of amplitude 0), and after this point, there exists cycle of positive
amplitude that outperforms the steady-state strategy. The results found in Figure 5.5 for a
broader class of cycles are consistent, and the (s, S, τ)-cycles are good approximations of the
optimal policy.

5.8 Extensions and Perspectives

5.8.1 Existence of a solution to the ergodic eigenproblem with common-noise

Here, we aim at extending the existence result proved in Theorem 5.2.2 to a stochastic framework,
where both the transition matrices and the instantaneous rewards are impacted by an hazard,
interpreted here as a common-noise in the dynamics, see [Bäu23]. Let Ω be a compact Lebesgue
measurable subset of RS , S ∈ N, anf F its natural filtration. For any action a ∈ A and state
µ ∈ ∆K

N , we denote by Pa,µ the state and action-dependent probability measure on (Ω, F ) along
with its corresponding density function fa,µ. For any realization ω ∈ Ω, we now denote by
r(a, µ, ω) (resp. P (a, ω)) the instantaneous reward (resp. the transition matrix) for µ ∈ ∆K

N

and a ∈ A.
For any real-valued function v : ∆K

N → R and discount factor α ∈]0, 1], the Bellman operator
Bα is now defined as

Bα v(µ) = max
a∈A

∫
Ω

[r(a, µ, ω) + αv(µP (a, ω))] fa,µ(ω)dω , (5.28)

where
∫

Ω fa,µ(ω)dω = 1. For α = 1, we simply write B = B1. For α < 1, we denote by vα

the solution of Bα v = v, which can be obtained as the limit of the sequence (vj
α)j∈N where

vj+1
α = Bα vj

α and vj
α ≡ 0. This result derives from the contraction property of the Bellman

operator Bα for α < 1.
As in the deterministic case, we make the following assumptions:

(B1) The transition (a, ω) 7→ P k(a, ω) is a continuous function for any k.

(B2) For any action a ∈ A, cluster k and ω ∈ Ω, P k(a, ω)≫ 0.

(B3) There exists Mr such that, |θkn(a, ω)| ⩽Mr for every k ∈ [K], n ∈ [N ], a ∈ A and ω ∈ Ω.

Let D be defined as D =×k∈[K]D
k where

Dk = vex
(
{µkP k(a, ω) | a ∈ A, µk ∈ ∆N , ω ∈ Ω}

)
.

Lemma 5.8.1
Let (B1)-(B2) hold. Then D is a compact set included in the relative interior of ∆K

N .
Moreover, for t ⩾ 1, µt ∈ D for any policy π ∈ Π.

Proof. The set {µkP k(a, ω) | (a, µk, ω) ∈ A×∆N ×Ω} is compact, since (a, µk, ω) 7→ µkP k(a, ω)
is continuous and ∆N , A and Ω are compact. Therefore, D is compact as it is the convex hull of
a compact set in finite dimension. Then, the positiveness of P k implies that Dk ⊂ relint(∆N ).
Moreover, by property of the semiflow, ϕt(a:t, µ0) ∈ D.
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Under (B1) and (B2), (D, dH) is then a complete metric space

∀w, a ∈ Ω×A, ∀µ, ν ∈ D, dH(µP (a, ω), νP (a, ω)) ⩽ κ(P (a, ω))dH(µ, ν) ,

where κ(P ) := tanh (DiamH(P ) / 4) < 1. We are now able to derive the stochastic analog
of Lemma 5.2.3, where the equi-Lipschitz of the value function is proved.

Lemma 5.8.2 (Equi-Lipschitz property for state-independent noise)
Assume that (B1)-(B3) hold, and that fa,µ(ω) = fa(ω) for all µ ∈ D. Then, vα is equi-
Lipschitz, i.e.,

∀α < 1, |vα(µ)− vα(ν)| ⩽MdH(µ, ν) ,

with M := MD
r

1−κ , κ = supa∈A,ω∈Ω κ(P (a, ω)) and MD
r defined in Lemma 5.2.2.

Proof. We denote by (vj
α)j∈N the sequence defined as vj+1

α = Bα vj
α and v0

α ≡ 0. Let us assume
that for a given j ∈ N, vj

α is M j
α-Lipschitz w.r.t the Hilbert metric , i.e.,∣∣∣vj

α(µ)− vj
α(ν)

∣∣∣ ⩽M j
αdH(µ, ν) .

Then, for µ, ν ∈ D ⊂ ∆N
K , we have:∣∣∣Bα vj

α(µ)− Bα vj
α(ν)

∣∣∣ ⩽ ∫
Ω
|fa,µ(ω)r(a, µ, ω)− fa,ν(ω)r(a, ν, ω)| dω

+ α

∫
Ω

∣∣∣fa,µ(ω)vj
α(µP (a, ω))− fa,ν(ω)vj

α(νP (a, ω))
∣∣∣ dω

⩽
∫

Ω
|fa,µ(ω)− fa,ν(ω)| r(a, µ, ω)dω

+
∫

Ω
|r(a, µ, ω)− r(a, ν, ω)| fa,ν(ω)dω

+ α

∫
Ω
|fa,µ(ω)− fa,ν(ω)| vj

α(µP (a, ω))dω

+ α

∫
Ω

∣∣∣vj
α(µP (a, ω))− vj

α(νP (a, ω))
∣∣∣ fa,ν(ω)dω

⩽
[(

LipH f̄a

) (
∥r∥∞ + α∥vj

α∥∞
)

+ ακM j
α + MD

r

]
dH(µ, ν) ,

with f̄a : µ ∈ D 7→
∫

Ω fa,µ(ω)dω. Therefore, vj+1
α is M j+1

α -Lipschitz with

M j+1
α =

(
LipH f̄a

) (
∥r∥∞ + α∥vj

α∥∞
)

+ ακM j
α + MD

r .

By assumption, f̄a is a constant function, so LipH f̄a = 0, and M j+1
α = ακM j

α + MD
r ⩽

κM j
α + MD

r . Therefore, for all j ∈ N, M j
α ⩽ M := MD

r
1−κ , which is independent of j. So, at the

limit, vα is M -equi-Lipschitz w.r.t. the Hilbert pseudo-metric.

Remark 5.8.1
In the proof, if the hazard depends on the state, i.e., f̄α is not constant, then there is
no guarantee that M j+1

α is bounded. In fact, there is no reason that
∥∥vj

α

∥∥
∞ be uniformly

bounded (when α→ 1, it goes to infinity in general).

As in the deterministic setting, the existence of a solution to the ergodic eigenproblem can
be derived from the equi-Lipschitz property of the value function, by applying the vanishing
discount approach. Following the same steps as in the proof of Theorem 5.2.2, we obtain:
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Theorem 5.8.1 (Existence of a solution for state-independent noise)
Assume that (B1)-(B3) hold. Then, the ergodic eigenproblem

g 1D +h = B h (5.29)

admits a solution h∗ ∈ Lip(D) ∩Vex(D) and g∗ ∈ R.

In Theorem 5.8.1, by restricting ourselves to state-independent noises, we can still apply the
vanishing discount approach, as in the deterministic case Theorem 5.2.2. In [Bäu23], Bäuerle
also used this approach in the stochastic case, but here we do not assume a priori the equi-
boundedness of the optimal discounted objective functions V ∗

α . Instead, using a contraction
argument on the dynamics, we obtained that (V ∗

α )α∈(0,1) is equi-Lipschitz (see Lemma 5.8.2).
In particular, it entails that any optimal eigenvector h∗ is Lipschitz (and not only upper semi-
continuous).

5.8.2 Generalization of turnpike properties via weak-KAM theory

In the numerical results (see Section 6.6 and Section 5.7), we observed that the dynamics does not
always converge to a steady-state, but converges for high switching costs to periodic strategies.
In this section, we aim at generalizing the turnpike properties (convergence to a single state)
to cycling policies. To this purpose, we exhibit connections between turnpike results in control
theory and weak-KAM theory [Fat97; FS04; FS05; Fat08; Dav+16]. Note that the latter link
was mentioned in [Tré22] where Trélat noticed that the existence of a storage function, often
assumed in control theory to force the dynamics to be strictly dissipative at the optimal static
point (and so to obtain turnpike results, e.g. in [Grü+21]), is related to the weak KAM theory.

Control problem. We first briefly generalize the results of previous sections to a slightly
broader setting: the set of states X is a separable and compact space for the topology of a
metric d; and the set of actions/controls A is a compact topological space. Let C(X ,R) be the
set of continuous function from X to R. We focus on the following Bellman operator:

∀h ∈ C(X ,R), B h : x ∈ X 7→ sup
a∈A
{r(x, u) + h (Γ(x, a))} , (5.30)

where the following assumptions hold:

Assumption 5.8.1. (i) The dynamics is described by a family of self-maps (Γ(·, a))a∈A of
X that are uniformly contracting, meaning that there exists a constant κ < 1 such
that d (Γ(x, a), Γ(y, a)) ⩽ κ d(x, y) for all x, y ∈ X .

(ii) The stage reward function r : X ×A is jointly continuous and the maps r(·, a) are
M -Lipschitz from (X , d) to R equipped with the usual distance.

Weak KAM analog of the control problem. Aubry-Mather theory [MF94] and weak KAM
(Kolmogorov-Arnold-Moser) theory [Fat97; FS04; FS05; Fat08; Dav+16] aim at studying orbits
minimizing the action, in relation with Hamiltonian dynamical systems. A discrete version of
the weak KAM theory was then introduced by Zavidovique [Zav23], from which we extracted
the following definitions.

Let c : X 2 → R be the stage cost function indexed by pairs of states:

c(x, y) := inf
a∈A
{−r(x, a) | Γ(x, a) = y} . (5.31)
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The stage cost c(x, y) is then the opposite of the maximum reward over the actions that can be
obtained when the dynamics go from state x to state y. Let T +

c be the positive Lax-Oleinick
semi-group, defined as

T +
c h(x) := sup

y∈X
{h(y)− c(x, y)} . (5.32)

With the definition of the stage cost function (in (5.31)), we easily get that B = T +
c . Therefore,

we can re-interpret the existence of a solution for the ergodic eigen problem, stated in Theo-
rem 5.2.2, as the existence of a positive weak KAM solution:

Theorem 5.8.2 (Existence of positive weak KAM solution, case of a contracting dynamics)
Assume that Assumption 5.8.1 hold. Then, the problem

T +
c h = h + g (5.33)

admits a solution h∗ ∈ Lip(X ) ∩ Vex(X ) and g∗ ∈ R. Moreover, any sequence (xn)n∈N

satisfying xn+1 ∈ arg max T +
c h∗(xn) for n ∈ N minimizes the average stage cost:

g∗ = inf
(xn)n∈N

lim sup
N→∞

1
N

N∑
n=1

c(xn, xn+1) . (5.34)

Theorem 5.8.2 is no more than a re-writing of Theorem 5.2.2 in the weak-KAM framework.
This result relies on the contraction property satisfied by the dynamics of the underlying MDP.
In weak KAM theory, another convenient assumption which guarantees the solvability of the
ergodic eigenproblem is the following:

Assumption 5.8.2 (Controllability). The cost function c(·, ·) is uniformly bounded and jointly
continuous on X .

This controllability assumption was in particular considered by Kolokoltsov and Maslov [KM97]
in order to show the existence of a solution. It supposes for the underlying dynamics that for
each pair of states (x, y) ∈ X 2 there exist a control a ∈ A so that y is attainable from x via
action a. Under this assumption, Zavidovique [Zav12] proved that a positive weak KAM solution
to (5.35) exists:

Theorem 5.8.3 (Existence of positive weak KAM solution, case of controllable system)
Assume that 5.8.2 hold. Then, the problem

T +
c h = h + g (5.35)

admits a solution h∗ ∈ Vex(X ) and g∗ ∈ R. Moreover, any sequence (xn)n∈N satisfying
xn+1 ∈ arg max T +

c h∗(xn) for n ∈ N minimizes the average stage cost:

λ∗ = inf
(xn)n∈N

lim sup
N→∞

1
N

N∑
n=1

c(xn, xn+1) . (5.36)

Note that extensions of this existence result have been proved using quasi-compactness tech-
niques, see e.g. [MN02]. Also, in [AL10], the authors relax the controllability assumption by
finding conditions to recover the continuity of the optimal control cost function c(x, y) on finite-
cost region. Here, the controllability assumption is not satisfied: due to the inertia in the
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response, the customers cannot switch from an offer to another too rapidly. This means that
only a restricted region around the previous state can be explored by the set of feasible actions.
Nevertheless, the connection between turnpike properties and weak-KAM solutions appears to
be simpler under a controllability assumption, and so, as a first approach, we assume that As-
sumption 5.8.2 holds in the rest of this chapter.

We now define the Aubry set through the use of critical subsolutions:

Definition 5.8.1 (Critical subsolutions, [Zav12]). Given C ∈ R, a function h : X → R is
called a C-subsolution if

∀(x, y) ∈ X 2, h(y)− h(x) ⩽ c(x, y) + C .

The set of the C-subsolutions is denoted by SC , and the set of critical subsolutions Sg∗ is
denoted by S = Sg∗ .

Note that a weak KAM solution u belongs to S: ∀(x, y) ∈ X 2, h(y) − c(x, y) ⩽ T +
c h(x) =

h(x) + g∗.

Definition 5.8.2 (Aubry set, [Zav12]). Let h ∈ S be a critical subsolution. The Aubry set of
h, Ãh ∈ XN, is defined as

Ãh =

(xn)n∈N | ∀n < p, h(xp)− h(xn) =
p−1∑
k=n

c(xk, xk+1) + (p− n)g∗

 .

The Aubry set Ã is then the intersection over all the critical subsolutions, i.e., Ã = ∩h∈S Ãh.
Finally, the projected Aubry set A refers to the projection of the Aubry set on the first
component, and is given by

A =
{

x0 | (xn)n∈Z ∈ Ã
}
⊆ (X )N .

The projected Aubry set can be understood as the collection of states where an optimal strategy
can go through infinitely-many times. In particular, from the definition of the Aubry set, a
τ -cycle (xn)n∈N (as introduced in Definition 5.7.1), where xi+τ = xi for all i ∈ N, belongs to
the Aubry set if ∑τ

i=1 c(xk, xk+1) = −τg∗, which means that the sequence produces an optimal
average long-term reward. Therefore, Aubry sets are able to capture the “optimal support” of
the dynamics.

Proposition-Definition 5.8.1 (Mañé potential). For every (x, y) ∈ X 2, we define cn(x, y) the
shortest-path of length n from x to y as

cn(x, y) := inf
(x1,...,xn−1)∈X n−1

{c(x, x1) + c(x1, x2) + . . . + c(xn−1, y)} .

We define the Mañé potential as c∗(x, y) := sup
h∈S

h(y) − h(x). As X is compact, it can be

equivalently defined as
c∗(x, y) = inf

k⩾1
ck(x, y) + kg∗ . (5.37)

The potential function verifies the following properties:

(i) (Triangular inequality) For x, y, z ∈ X , c∗(x, y) + c∗(y, z) ⩾ c∗(x, z) .
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(ii) For all y ∈ X , the function hy = −c∗(·, y) is a critical sub-solution.

(iii) A point y ∈ X belongs to the projected Aubry set A if and only if the function hy is
a positive weak KAM solution.

Proof. (i) suph∈S{h(y)−h(x)}+suph′∈S{h′(z)−h′(y)} ⩾ suph∈S{h(z)−h(y)+h(y)−h(x)} =
c∗(x, z).

(ii) By triangular inequality, c∗(x, z) − c∗(y, z) ⩽ c∗(x, y). Besides, c∗(x, y) ⩽ c(x, y) + g∗ by
definition of the potential. Therefore, hz(y)− hz(x) ⩽ c(x, y) + g∗.

Mañé potentials encode the optimal “way” to go from x to y: c∗(x, y) is computed using the
least-cost path ck(x, y) such that ck(x,y)

k is minimized. A positive (resp. negative) potential
means that the best average gain between x and y is lower (resp. greater) than the optimal one.

The link between the max-plus spectral problem and the weak KAM theory was initially
studied in [AGW09], where the construction of a minimal Martin space coincides with the
projected Aubry set when the state space is compact.

Strict subsolutions and strict dissipativity condition. Zavidovique showed that a sub-
solution can always be constructed so that the intersection of all the Aubry set Ah, h ∈ S, can
be reduced to the Aubry set of this peculiar subsolution:

Theorem 5.8.4 (Strict subsolution, [Zav23], Theorem 1.4.1)
There exists a subsolution h0 ∈ S ∩C(X ,R) such that if the equality h0(y) − h0(x) =
c(x, y) + g∗ holds for some (x, y) ∈ X 2, then

∀h ∈ S, h(y)− h(x) = c(x, y) + g∗ .

In the proof of Theorem 5.8.4, Zavidovique defines h0 as the mean of a dense sequence of
subsolutions, which is a non constructive definition. Here, we make an explicit construction of
the strict subsolution by defining h0 as a mean only on a subset of subsolutions. Let us first
recall a preliminary result:

Lemma 5.8.3
There exists a strictly positive measure on X .

Proof. Let us recall that we assume that X is separable. Consider any countable subset {xn |
n ∈ N}, dense in X . We can define µ = ∑

n 2−nδxn . As every open set contains some xn, the
measure is strictly positive on X .

Theorem 5.8.5 (Explicit construction of a strict subsolution)
Let h0 : x ∈ X 7→

∫
X hz(x)dµ(z), where µ is an arbitrary strictly positive measure, and hz

is defined in Definition 5.8.1. If the equality h0(y) − h0(x) = c(x, y) + g∗ holds for some
(x, y) ∈ X 2, then

∀h ∈ S, h(y)− h(x) = c(x, y) + g∗ .
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Proof. Suppose that h0(y) − h0(x) = c(x, y) + g∗ holds for some (x, y) ∈ X 2, and let β(z) =
c(x, y) + g∗ − hz(y)− hz(x). Then, by definition, β(z) ⩾ 0 for all z, and∫

X
β(z)dµ(z) = 0 .

As µ is a strictly positive measure, β(z) = 0 for all z ∈ X and so hz(y) − hz(x) = c(x, y) + g∗

for all z ∈ X . Using [AGW09, Theorem 6.2], we know that hz are the exteme generators of
S (as X is compact, the minimal Martin space is a subset of {hz}z∈X ) and thus, the strict
positivity of the quantity hz(y)−hz(x) = c(x, y) + g∗ for any z ∈ X induces the strict positivity
of h(y)− h(x) = c(x, y) + g∗ for any h ∈ S.

The 2-Aubry set is then defined as

Â =
{

(x, y) ∈ X 2 | h0(y)− h0(x) = c(x, y) + g∗
}

and is the restriction of the Aubry set to sequences of length 2. The solution h0 is therefore
strict on the set X 2 \ Â, meaning that

h0(y)− h0(x) < c(x, y) + g∗ for all (x, y) /∈ Â . (5.38)

This viewpoint of the Aubry set (as the set of states where h0 is not strict) establishes a link with
optimal control problems: a condition of strict dissipativity is often required to obtain turnpike
properties (convergence to a steady-state). In [Grü+21], denoting by s(x, u) := −r(x, u) + g∗

the so-called supply rate, the strict dissipativity condition is then expressed as follows:

Assumption 5.8.3 (Strict dissipativity condition). Let xe ∈ X an equilibrium. Then the
system is strictly x-dissipative at xe if it exists h ∈ X → R and α ∈ K∞ such that

(control setting) s(x, a) + h(x)− h(Γ(x, a)) ⩾ α(∥x− xe∥), x ∈ X , a ∈ A
(weak-KAM setting) h(y)− h(x) + α(∥x− xe∥) ⩽ c(x, y) + g∗, x, y ∈ X

.

Here, K∞ is the set of continuous, zero at zero, unbounded and strictly increasing function. The
function č(x, u) := s(x, u) + h(x)−h(Γ(x, u)) is called the rotated stage cost in [Grü+21], where
Grüne et al. proved in particular that if Assumption 5.8.3 holds, then the dynamics converges
to the steady-state xe (turnpike property). In the weak-KAM setting, this condition implies
that the projected Aubry set is reduced to the singleton {xe}:

Proposition 5.8.1
If Assumption 5.8.3 holds, then Ã = {(xn)n∈N} where xn = xe for all n ∈ N.

Proof. Let (xn)n∈N be a sequence of states. Then, summing the strict dissipativity conditions
for each pair (xn, xn+1), we obtain:

h(xp)− h(xn) +
p−1∑
k=n

α(∥xk − xe∥) ⩽
p−1∑
k=n

c(xk, xk+1) + (p− n)g∗ .

By definition, the function h in the strict dissipativity assumption is a subsolution, and therefore,
the sequence (xn)n∈N belongs to Ãh if ∑p−1

k=n α(∥xk − xe∥) = 0, which implies that xn = xe for
all n ∈ N. Finally, Ã = Ãh since the constant sequence (xe, xe, . . .) belongs to any Ãh′ for h′

subsolution.
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Convergence to the Aubry set. As we previously seen in numerical results, the strict
dissipativity condition is a strong assumption, supposing the dynamics converges to a single
state xe (that should be known in advance). Here, we relax this dissipativity assumption and
exploit the existence of the peculiar strict subsolution h0 (recall that this is only possible thanks
to controllability assumption):

Theorem 5.8.6 (Turnpike theorem, case of controllable system)
Let h∗ be a positive weak KAM solution, and x0 ∈ X . We denote by π∗(·) ∈ arg max T +

c h∗

an optimal stationary policy and {x∗
i } the sequence of states generated by the policy π∗.

Then, all the accumulation points of the sequence {xi} belong to the projected Aubry set
A.

Proof. The operator T + is nonexpensive therefore for any h1 and h2 in B(X ,R),∥∥∥(T +)N (h1)− (T +)N (h2)
∥∥∥

∞
⩽ ∥h1 − h2∥∞

In particular for h1 = 0 and h2 = h∗, we obtain that

(T +)N (0)(x0)− h∗(x0) ⩾ ∥h∗∥∞

and (T +)N (0)(x0) = −∑N−1
k=0 c(x∗

k, x∗
k+1) (optimal trajectory from x0). Therefore,

N−1∑
k=0

c(x∗
k, x∗

k+1) ⩽ −∥h∗∥∞ − h∗(x0).

Let č(x, y) := c(x, y) + g + h0(x)− h0(y) ⩾ 0 the rotated stage cost associated with the peculiar
subsolution h0. Then,

0 ⩽
N−1∑
k=0

č(x∗
k, x∗

k+1) ⩽ g + h0(x0)− h0(x∗
N )− ∥h∗∥∞ − h∗(x0) ⩽M , (5.39)

where M is a constant independent of N (the positiveness of the sum comes from the definition
of a subsolution).

The 2-state space X 2 is compact, therefore the sequence {(x∗
k, x∗

k+1)}k∈N admits accumulation
points. Let z ∈ X 2 be such a point, and {zk}k∈N ∈ (X ×X )N be a subsequence converging to z.
Suppose that z /∈ Â. Then, for all ϵ > 0, there exists index kϵ such that ∀k ⩾ kϵ, ∥zk − z∥ ⩽ ϵ.
Moreover, by continuity of the subsolution and c(·, ·),

∃(ϵc, η) ∈ R∗
+×R∗

+, ∀z′ ∈ X 2, ∥z′ − z∥ ⩽ ϵc ⇒ č(z′) ⩾ η .

So, for all k ⩾ kϵc , č(zk) ⩽ η, and ∑N−1
k=kϵc

č(zk) ⩾ (N−kϵc)η −−−−→
N→∞

∞ , which is a contradiction
with (5.39). Therefore, all the accumulation points of the sequence {(x∗

k, x∗
k+1)}k∈N belongs to

the 2-Aubry set Â.

Remark 5.8.2
If the Aubry set is reduced to a singleton, then we recover the notion of “turnpike”: the
dynamics converges to a steady-state. Note that the strict solution h0 can be explicitly
computed – see Theorem 5.8.5 and (5.37), and so the Aubry set too. Therefore, we are able
to numerically say when the optimal strategy describes a periodic orbit or simply converges
to a steady-state.
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5.8.3 Continuation of Example 5.2.1

We now complete the description of the optimal strategies in Example 5.2.1 by exhibiting the
2-Aubry set:

Theorem 5.8.7 (Description of the Aubry set)
Let us consider the dynamical system described in Example 5.2.1. Then, the 2-Aubry set
Â ⊆

(
∆⩽3

)2
only contains the two steady-states defined in (5.11), i.e.,

(µ, ν) ∈ Â ⇐⇒ (µ, a) ∈ {(µ̂k, ak)}k∈{0,1} and ν = µP (a) .

The projected Aubry set is then A = {µ̂0, µ̂1}.

Proof. By Definition 5.8.2, we directly get that (µ̂k, ak), k ∈ {0, 1}, belongs to the 2-Aubry set,
as c(µ̂k, µ̂k) = −g∗.

Conversely, let us define the cells Cij ∈ ∆⩽3 , i, j ∈ {0, 1}, as

Cijk =
{

(µ1, µ3) ∈ ∆⩽3 | ĥij(µ1, µ3) ⩾ ĥik(µ1, µ3)
}

,

where ĥij is defined in (5.12). Let us also define wij = ĥii ∨ ĥij . Then, wij , i, j ∈ {0, 1}, are
critical sub-solutions and

(i) B1 w00(µ1, µ3) = w00(µ1, µ3) + g∗ ⇐⇒ (µ1, µ3) ∈ A00 := C002 ∩C020,

(ii) B1 w01(µ1, µ3) = w01(µ1, µ3) + g∗ ⇐⇒ (µ1, µ3) ∈ A01 := C010 ∩C012,

(iii) B1 w02(µ1, µ3) = w02(µ1, µ3) + g∗ ⇐⇒ (µ1, µ3) ∈ A02 := (C020 ∩C021) ∪ (C010 ∩C001).

Therefore, as the Â = ⋂
h∈S Âh, see Definition 5.8.2, if (µ, µP (a0)) ∈ Â, then µ ∈ A00 ∩A01 ∩A02 =

{µ̂0}. By symmetry, if (µ, µP (a1)) ∈ Â, then µ ∈ A11 ∩A10 ∩A12 = {µ̂1}.

The complete description of the Aubry set in Theorem 5.8.7 shows that there exists only two
“attractors”, which are the steady-states.

Characterization of the weak KAM solutions. It is shown in [AGW09, Theorem 8.1]
that the functions hz where z belongs to the projected Aubry sets are precisely the extremal
generators of the set of weak-KAM solutions. Recall that the set of weak-KAM solutions is a
tropical linear space, meaning that it is stable by taking the pointwise maximum of functions,
and by translating a function by a constant. An element of a tropical linear space is extreme
if it cannot be written as the pointwise maximum of two elements of this space which are both
different from it. Theorem 8.1 of [AGW09] also states that any weak-KAM solution h of (5.10)
can be written as

h(x) = sup
z∈A
{hz(x)− ζ(z)} , (5.40)

where ζ : X → R. In our case, this means that the functions {vλ}λ∈[0,1] describes the whole set
of solutions (up to a constant). In particular, vk reads as the Mañé potential in µ̂k (up to a
constant), i.e., vk(µ) = −c∗(µ, µ̂k).

Note that the representation of the solutions as a supremum in (5.40) provides a discrete time
analogue of the representation of weak-KAM solutions established by Fathi in the continuous
time setting, see Theorem 8.6.1 in [Fat08].
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Remark 5.8.3 (Explicit strict subsolution)
The proof of Theorem 5.8.7 allows us to derive a strict subsolution: let h0 be defined as

h0 =
1∑

i=0

3∑
j=1

αijwij ,

where wij = ĥii ∨ ĥij and ∑k,j αij = 1. Then, h0 is strict on (∆⩽3 )\A.
In this case, it is not necessary to make the combination of all the subsolutions hz,

z ∈ ∆⩽3 , but only the combination of 6 subsolutions. As a consequence, we can here state
an analog result to Theorem 5.8.6, ensuring that any optimal policy converges to one of
the steady states µ̂k and proving that no cycling behavior (such as periodic promotions like
in Section 6.6) can happen.

5.9 Conclusion

We developed an ergodic control model to represent the evolution of a large population of cus-
tomers, able to actualize their choices at any time. Using qualitative properties of the population
dynamics (contraction in Hilbert’s projective metric), we showed the existence of a solution to
the ergodic eigenproblem, which we applied to a problem of electricity pricing. A numerical
study reveals the existence of optimal cyclic promotion mechanisms, that have already been
observed in economics. We also quantified the suboptimality of constant-price strategy in terms
of a specific duality gap.

We extended the results in the presence of noise, and show that contraction arguments
still lead to existence of solution for the ergodic eigenproblem. We also analyzed the problem
through the weak KAM angle. In particular, we focused on the description of the Aubry set,
to which the dynamics converge under any optimal policy. We provided an example that shows
the non-uniqueness of the optimal bias function, and computed the projected Aubry set for this
example, showing that the latter is not reduced to a single state (in contrast with situations
where turnpikes property holds).

The present model has connections with partially observable MDPs, in which the state space
is also a simplex. We plan to explore such connections in future work. Besides, the convergence
of the solution of the discretized ergodic equation (associated to the grid Σ) to the continuous
solution will also be studied.
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A Quantization Procedure for
Nonlinear Pricing with an

Application to Electricity Market
***

This chapter is based on the proceedings paper [Jac+23b], to which we add the reinterpretation
of the customer choice as a Bregman Voronöı diagram (Section 6.4) and the comparison of the
proposed pruning method with the Lloyd’s procedure for Bregman criterion.

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Nonlinear Pricing with Coupling Costs . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Pruning procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 Links with k-means clustering with Bregman divergence . . . . . . . . . . . . . . 148
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6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Abstract. We consider a revenue maximization model, in which a company aims at designing a
menu of contracts, given a population of customers. A standard approach consists in constructing
an incentive-compatible continuum of contracts, i.e., a menu composed of an infinite number
of contracts, where each contract is especially adapted to an infinitesimal customer, taking his
type into account. Nonetheless, in many applications, the company is constrained to offering
a limited number of contracts. We show that this question reduces to an optimal quantization
problem, similar to the pruning problem that appeared in the max-plus based numerical methods
in optimal control. We develop a new quantization algorithm, which, given an initial menu
of contracts, iteratively prunes the less important contracts, to construct an implementable
menu of the desired cardinality, while minimizing the revenue loss. We apply this algorithm to
solve a pricing problem with price-elastic demand, originating from the electricity retail market.
Numerical results show an improved performance by comparison with earlier pruning algorithms.
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6.1 Introduction

6.1.1 Motivation from electricity markets

Electricity retail markets are now open to competition in most countries, and providers are free
to design a menu of offers/contracts in addition to regulated alternatives (fixed prices), so that
each consumer can select among the vast jungle of offers the one which maximizes his utility.
In this chapter, the choice of a contract is based on the minimization of the invoice (rational
choice theory, see e.g. [Sco00]), and we suppose that each customer can adjust his consumption
to the electricity prices (price elasticity). This phenomenon is highlighted by the current spike
in energy prices: consumers are likely to make huge consumption reduction efforts in order to
save money.

A key problem for electricity providers is to design an optimal menu of offers, maximizing
their revenue, under a restriction on the “size” of the menu (number of contracts). In fact, from
an optimization point of view, proposing more contracts increases the revenue, as it allows one
to adjust the menu to the individual preferences of the different types of customers. However,
in practice, it is essential to restrict the number of contracts, in order to make the commercial
offer more visible to agents, easier to understand, and also to keep an implementable menu for
the company.

6.1.2 The optimal nonlinear pricing problem

We consider more generally the revenue maximization problem faced by a seller, called principal,
or leader in the setting of Stackelberg games [SC73]. This problem has been addressed by
the theory of mechanism design [BKS15] through the question of nonlinear pricing. The so-
called monopolist problem is among the most studied ones: in this approach, the population
is represented as a continuum of buyers (called agents or followers), and a contract can be
specifically designed for each agent (continuum menu). In the seminal paper [RC98], Rochet
and Choné study the monopolist problem by introducing a dual approach. In some specific
cases (linear-quadratic setting and specific agents distribution), analytic solutions can be found
in one [MR78] or many dimensions [Arm96], via reformulation as welfare maximization using
virtual valuation technique. Extending the framework of Rochet and Choné to decomposable
variational problem under convexity requirement, Carlier [CD17] addresses the question of the
existence and uniqueness of a solution, and proposes an iterative algorithm. In the specific
case R2, Mirebeau [Mir16] introduces a more efficient method using an adaptive mesh based
on stencils. The infinite-size menu is therefore characterized by a value-function satisfying the
incentive-compatibility conditions as with the full-participation condition, the latter supposing
that contracting with the whole population is optimal. Bergemann, Yeh and Zhang recently
considered the question of the optimal quantization of a menu [BYZ21].

6.1.3 Contributions

Our main contribution is the development of new quantization algorithms which, given the
infinite-size menu, aim at finding the best n-contracts approximation that maximizes the rev-
enue. This 2-step strategy bypasses the combinatorial difficulty tackled in bilevel pricing – see
e.g. [LMS98; BK19] – where formulations directly embed customer choices over the n contracts,
becoming rapidly untractable for large size of menu. We show that the quantization problem is
equivalent to the pruning problem, which arose, following McEneaney [McE07], in the develop-
ment of the max-plus based curse-of-dimensionality attenuation methods in numerical optimal
control, see [MDG08; GMQ11; GQS14], and [MD15] for an application. In these methods, the
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value function of an optimal control problem is represented as a supremum of “basis functions”,
and one looks for a sparse representation – with a prescribed number of basis functions. In
the present application, the basis functions are linear functions, representing contracts. We
develop a greedy descent algorithm which iteratively removes the less “important” contracts.
We consider different importance measures, taking into account the L1 and L∞ approximation
errors previously considered in the study of the pruning problem, and also a specific measure
of the loss of revenue, see Algorithms 6 and 7. An essential feature of these algorithms is the
low incremental cost per iteration, with an update rule requiring only local computations – in a
“small neighborhood” of the active set of a basis function. To do so, we exploit discrete geome-
try techniques, by associating to a basis decomposition a polyhedral complex, which is updated
dynamically.

To apply this algorithm to the optimal design of a menu in the electricity retail market, we
generalize the framework of [CD17] to allow for a nondecomposable (still convex) cost. Indeed,
the revenue of the provider depends on the supply cost, supposed to be an increasing function
of the global consumption, see e.g. ([Ack+18; Ale+19]). In this extended setting, we prove the
existence and uniqueness of the solution for the infinite-size menu (Theorem 6.2.1). The solving
of this problem is then tackled by a direct method (discretization of the variational problem).
We also take into account the elastic behavior of customers, who adapt their consumption
according to prices, even on an annual scale (we focus here on year-based contracts). We show
that, after a change of variables, the addition of a uniform elasticity actually reduces to the
previous model (Theorem 6.5.1). Numerical tests, on a realistic instance (arising from the
French electricity market), illustrate the efficiency of our approach both in terms of revenue
gain and of computational time, see Figure 6.3. Our algorithm also allows one to estimate the
minimal admissible number of contracts, given a target of acceptable revenue loss by comparison
with the infinite-size case.

6.1.4 Related works

In the nonlinear pricing context, the restriction to a finite number of offers has been regarded
only recently. In [BYZ21], the authors analyze the loss of revenue induced by this restriction,
exhibiting upper bounds of order 1/n2/d, where d is the dimension and n the maximal number of
contracts. A similar asymptotic error rate arose in a different setting of quantization theory, see
e.g. [GMQ11]. Moreover, in the linear-quadratic setting of [BYZ21], the extreme distributions
realizing the worst revenue loss satisfies separability conditions à la Armstrong [Arm96], leading
to an explicit expression for the optimal quantization. We do not satisfy these requirements
here, as we tackle a broader class of variational problem, hence the need of efficient methods
to solve the pricing problems with a finite number of contracts. In [EM09], a discretization is
obtained by writing the utility function as a supremum of finitely many affine functions, and
so the solution they obtain can be viewed as a n-contracts menu. However, the scheme also
discretizes the population (with the same size as the contracts). In the present application, this
is not desirable, since the size of the population has to be much larger that the size of the menu.

The present algorithms should be compared with the pruning methods to compute a sparse
representation of a function as maximum of a prescribed number of basis functions. The pruning
problem was shown in [GMQ11] to be a continuous version of the facility location problem,
a hard combinatorial optimization problem. The pruning algorithms developed in [MDG08;
GMQ11] rely on a notion of importance metric, measuring the contribution of each basis function
to the approximation error. A basic algorithm in [MDG08; GMQ11] performs a single pass
which keeps only the n basis functions with the highest importance metric, the latter being
evaluated either by solving a convex programming problem or in approximate way, after a
discretization of the state space. A greedy ascent algorithm is also implemented in [GMQ11],
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adding incrementally functions by decreasing order of importance. In contrast, the present
algorithm does not require a discretization of the state space. Moreover, the use of fast (local)
updates of the importance measure allows us to perform a greedy descent starting from the
complete family of basis functions, and removing at each stage the less important one. This
leads to improved performances on our application case.

The chapter is organized as follows: in Section 7.2, we define the nonlinear pricing problem,
adapted to our application case, and encompassing the monopolist framework. In Section 6.3,
we approximate the continuum menu by a finite set of contracts, and present refined pruning
algorithms with local update. Then, in Section 6.5, we specify the problem encountered in
electricity markets, and show how it boils down to the general case of Section 7.2. Finally, we
numerically study the effectiveness of our approach in Section 6.6.

6.2 Nonlinear Pricing with Coupling Costs

6.2.1 Notation

For two vectors x and y of Rd, we denote by ⟨x, y⟩ the scalar product and x ⊙ y the entrywise
product. Moreover, for a discrete set S, we denote by |S| the cardinality of S.

6.2.2 Generalized monopolist problem

Let us consider a heterogeneous population, where each agent in the population is defined by
a d-dimensional vector of characteristics x ∈ X. We suppose that X ⊂ Rd

>0 is a compact
polyhedral domain. An agent of type x will derive a utility ⟨x, α⊙ qk⟩ − pk from consuming
a good k with quality qk ∈ Rd

>0 and price pk ∈ R>0. The vector α ∈ (R∗)d is an exogeneous
data, viewed as a varying perception of the quality. The agents are distributed according to ρ
satisfying

∫
X ρ(x)dx = 1.

Let us consider a monopolist (principal) who designs a contract menu represented by a pair
of functions x 7→ (p(x), q(x)) ∈ P × Q. For each agent x, these functions indicate respectively
the price and the quality that the agent is supposed to prefer. Here, P and Q are compact
subsets of R>0 and Rd

>0. To ensure that the contract (p(x), q(x)) really satisfies agent of type x
(i.e., is optimal for him), an additional constraint on the shape of the function, called incentive-
compatibility condition is required: denoting by u(x) := ⟨x, α⊙ q(x)⟩ − p(x) the utility function
for the menu designed by the monopolist,

u(y)− u(x) ⩾ ⟨y − x, α⊙ q(x)⟩ , ∀x, y ∈ X . (6.1)

Let Ux be the set of admissible values of u for type x:

Ux := {⟨x, α⊙ q⟩ − p | (p, q) ∈ P ×Q} .

Each set Ux is compact by compactness of P and Q.

Proposition 6.2.1 ([Roc87])
Let q(·) be defined on X, with values in Q. There exists a function p : X → P such that
u(·) satisfies (6.1) if and only if

(i) u(x) ∈ Ux, for x ∈ X,

(ii) u is convex on X,
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(iii) ∇u(x) = α⊙ q(x) for a.e. x ∈ X.

The aim of the monopolist is then to maximize a revenue function, defined as

J(u, q) :=
∫

X
L(x, u(x), q(x))dx− C

(∫
X

M(x, q(x))dx

)
, (6.2)

In (6.2), the cost function C takes as input data aggregated on the whole domain X. Such
coupling cost naturally appears in some applications, for instance in electricity retail market,
see Section 6.5.

Assumption 6.2.1. The integrand L is linear in u and q. Moreover, the integrand M is
strictly convex in q, and C is increasing and strictly convex.

In addition to the incentive-compatibility condition, the utility must be greater than a reservation
utility:

u(x) ⩾ R(x) . (6.3)

The problem solved by the monopolist is then

max
u,q

{
J(u, q)

∣∣∣∣∣u, q satisfy (6.1), (6.3)
(u(x), q(x)) ∈ Ux ×Q for x ∈ X

}
(6.4)

Theorem 6.2.1
Under Assumption 6.2.1, Problem (6.4) has a unique optimal solution.

Proof. Using Proposition 6.2.1, for any solution, ∇u(x) = α ⊙ q(x) for a.e. x ∈ X. We then
directly study the existence and uniqueness in (u,∇u).

Existence. Let H1(X) be the Sobolev space associated with X. We define

K =
{

u

∣∣∣∣∣u convex and u ⩾ R

u(x) ∈ Ux, α−1 ⊙∇u(x) ∈ Q , ∀x ∈ X

}
.

The set K is a closed, convex and bounded subset of H1(X) (it is bounded since X is bounded
and ∥u∥L∞ and ∥∇u∥L∞ are bounded too; it is convex since R is convex).

Besides, J is concave (Assumption 6.2.1). Morover, as Q ⊂ Rd
>0, there exist a, b > 0 such

that for any x ∈ X, a ⩽ ∥∇u(x)∥ ⩽ b. Therefore, there exists c ∈ R+ such that |J(u,∇u)| ⩽ c,
and as a consequence, J is continuous on K, see [ET99, Chapter 1, Proposition 2.5].

Using the fact that H1(X) is reflexive and [ET99, Chapter 2, Proposition 1.2], Problem (6.4)
admits at least one solution.

Uniqueness. (Same arguments as in [RC98]) Let now consider two distinct solutions u1
and u2. Then, if ∇u1 ̸= ∇u2 on a measurable subset, any function tu1 + (1 − t)u2 is valid
and gives a strictly better solution than u1 and u2 (due to strict convexity of the cost function
u 7→ C(

∫
X M(x,∇u(x))dx) and linearity of L). Therefore, u1 − u2 is a constant function. By

linearity of L, the objective value obtained with u1 and u2 differ by the same constant. This
contradicts the optimality of the two solutions u1 and u2.

This result should be compared with [Car01], where the (decomposable) criteria is defined by
an integrand that must satisfy coercivity condition, which entails that a minimizing sequence
(un) must be bounded in the W 1,1 Sobolev norm. Here, J is not necessarily coercive. Instead,
the compactness argument directly comes with assumptions on P and Q.
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6.2.3 Discretized solution for the infinite-size case

As an extension of the monopolist problem, Problem (6.4) can be solved to optimality through a
discretization scheme. In [EM09], the authors proved the convergence of the discretized problem
to the continuous one, which can be extended to nondecomposable cost. Efficient numerical
methods have been proposed in [CD17] and [Mir16].

Definition 6.2.1 (Maximization/minimization diagram [BNN10]). Let S ⊆ {1, n} and {ûi}i∈S

be a set of |S| continuous functions defined on X ⊂ Rd.

(i) We call upper envelope (resp. lower envelope) of the functions {ûi}i∈S the function
x 7→ maxi∈S ûi(x) (resp. x 7→ mini∈S ûi(x)).

(ii) We call maximization diagram (resp. minimization diagram) of {ûi}i∈S the subdivi-
sion of X into cells such that, on each cell, arg maxi ûi (resp. arg mini ûi) is fixed.

Let us define a regular grid Σ of X. Each of the methods provides a solution {(p̂i, q̂i)}i∈Σ,
inducing a convex utility function ûΣ that can be represented as the supremum of affine functions,
with the notation:

ûS(x) = max
i∈S

ûi(x), S ⊆ Σ , (6.5)

where ûi : x ∈ Rd 7→ ⟨α⊙ q̂i, x⟩ − p̂i. Therefore, the discretized solution ûΣ is the upper
envelope of the family {ûi}i∈Σ and induces a maximization diagram. In the context of max-plus
methods [McE07; AGL08], the functions ûi are called basis functions and can be more general
than affine functions, but we focus here on this specific case, as this naturally appears in the
model (affine contracts).

6.3 Pruning procedures

6.3.1 Pruning method for max-plus basis decomposition

Let us now suppose that the monopolist has a maximal number of n contracts he can design.
Given the discretized infinite-size solution uΣ, the question can be recast as the following com-
binatorial problem:

min
S⊆Σ

{d(ûS , ûΣ) s.t. |S| ⩽ n} , (6.6)

where the function d(·) can be either

(i) the L∞ norm d∞(u, v) = ∥u− v∥L∞(X),

(ii) the L1 norm d1(u, v) = ∥u− v∥L1(X),

(iii) and the J-based criterion dJ(u, v) = J(v, α−1 ⊙∇v)− J(u, α−1 ⊙∇u) .

The third case corresponds to the maximization of the function J , where α−1 ⊙ q = ∇u thanks
to Proposition 6.2.1.

Theorem 6.3.1 ([GMQ11])
Let X ⊆ Rd and v : X → R strongly convex of class C2. Then, both L1 and L∞ approxi-
mation errors are Ω

(
1

n2/d

)
as n→∞.
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Theorem 6.3.1 exhibits an error rate identical to the complexity bound proved in [BYZ21] in a
different setting.

We define the importance metric of basis function i as

ν(S, i) = d(ûS\{i}, ûS) . (6.7)

This corresponds to an incremental version of the criteria (6.6). For the L∞ and L1 case, if
ν(S, i) = 0, then the i-th basis function does not contribute to the max-sum. Otherwise, if
ν(S, i) > 0, then it expresses the maximal difference between the shape of ûS with and without
ûi, depending on the criterion. For the criterion dJ , it expresses the loss of revenue for the
principal when contract i is removed.

6.3.2 Specific case: minimizing L∞ error

For an L∞ approximation error, the importance metric (6.7) can be computed by solving a
linear program, see [GMQ11]:

max
x∈X, ν

ν

s.t ∀j ∈ S\{i}, ûi(x)− ûj(x) ⩾ ν (λij)
(P S

i )

In (P S
i ), we denote by (λij)j the dual variable associated with each constraint. The set of

saturated constraints is then characterized by the positive variables λij .

Algorithm 6 Pruning for L∞ importance metric
Require: n ▷ Desired number of contracts
1: S ← Σ ▷ Indices of kept contracts
2: I ← Σ ▷ Indices of problems to re-compute
3: for t = 1 : |Σ| − n do
4: for i ∈ I do
5: νi, λi ← solution of (P S

i )
6: Ji ← {j ∈ S\{i} | λij > 0}
7: end for
8: r ← arg mini∈S νi ▷ Contract to remove
9: S ← S\{r}

10: I ← {i ∈ S | r ∈ Ji}
11: end for
12: return S

Algorithm 6 describes a greedy descent procedure: we start from the complete set of contracts
S, and iteratively remove the less important contract exploiting a fast local update of the
importance metric. Compared with [GMQ11], the importance metric is computed exactly, i.e.,
without discretization of the space X. Moreover, we take advantage of the linearity of the basis
functions ûi to exploit the optimal dual variables λij in the linear program (P S

i ):

Proposition 6.3.1 (Local update)
Let λij be the optimal dual variables in (P S

i ) for a contract i ∈ S. Then, the importance
metric of i stays unchanged when we remove a contract j ∈ S s.t. λij = 0, i.e., ν(S\{j}, i) =
ν(S, i).

Proposition 6.3.1 ensures the correctness of Algorithm 6, where we only re-compute at each
iteration the values νi for a very small subset of Σ. This leads to a huge gain in computation
time, see Section 6.6.
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6.3.3 L1 and J-based approximation error

Contrary to the L∞ case, the computation exploits the geometric structure. Indeed, the repre-
sentation of the function ûS as a maximum of basis functions ûj , j ∈ S induces a maximization
diagram, see Section 6.2.3. Each cell is denoted by Ci and corresponds to the types x ∈ X
such that ûS(x) = ûi(x). Removing a basis function ûi from the supremum ûS = supj∈S ûj

yields a local modification of the latter supremum, concentrated on a neighborhood of the cell
Ci. Hence, we will need to compute at each iteration the neighbors of each contract cell Ci with
i ∈ S. This idea may be compared with the notion of Delaunay triangulation associated to a
Voronöı diagram [For95]. During the algorithm, we keep in memory two sets: Ji represents the
neighboring cells of cell i, and Vi is the vertex representation of cell i. Two routines are used for
both the L1 and J-based criterion:

⋄ Vrep(S, i) returns the V-representation (representation by vertices) of the polyhedral cell
Ci induced by contract i for a given set S, taking as input the H-representation (represen-
tation by half-spaces) {x ∈ X | ûi(x) ⩾ ûj(x), ∀j ∈ S} of the cell i. This is done using
the revised reverse search algorithm implemented in the library lrs, see [Avi00].

⋄ updateNeighbors((VS)i∈I) updates the neighbors of each cell i ∈ I knowing the vertex
representation.

Proposition 6.3.2 (Local update)
The importance metric of a contract i ∈ S stays unchanged when we remove a contract j
which is not in the neighborhood of i, i.e., ν(S\{j}, i) = ν(S, i) for j ∈ S\Ji.

Proposition 6.3.2 ensures the correctness of Algo. 7, where we only re-compute vertex rep-
resentations for a small subset of contracts (corresponding to the neighboring cells of the lastly
removed contract, see line 8 of the algorithm). This local update is illustrated in Figure 6.1.
The update of the importance metric in line 11 differs between the L1 and J-based cases, and is
described in Algos. 8a–8b. In Algo. 8a, the integral that appears in the computation of νi can
be evaluated analytically using Green’s formula, as it integrates a linear form over a polytope,
see Appendix 6.8.1. In Algo. 8b, δL can be computed in the same way. For M0 and δM , this
generally involves the integration of the function x 7→M(x, q̂i). In the present application, this
function is linear, and so the direct integration is possible, see (6.17)–(6.18).
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Figure 6.1: Evaluation of contract by dividing into subregions (d = 2)
The green polyhedron corresponds to F4,−10 ∩ V10.
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Algorithm 7 Pruning with local update (for L1 and J-based)
Require: n ▷ Desired number of contracts
1: for i ∈ Σ do
2: Vi ← Vrep(Σ, i) ▷ Vertex representation
3: end for
4: S ← Σ ▷ Indices of kept contracts
5: I ← Σ ▷ Indices of problems to re-compute
6: for t = 1 : |Σ| − n do
7: (Ji)i∈I ← updateNeighbors((Vi)i∈I)
8: for i ∈ I, j ∈ Ji do
9: Fj,−i ← Vrep(S\{i}, j) ▷ Future cells

10: end for
11: ν ← updateImpMetric(I, (Vi)i∈S , (Fj,−i)j∈Ji,i∈S)
12: r ← arg mini∈S νi ▷ Contract to remove
13: S ← S\{r}
14: for j ∈ Jr do
15: Vj ← Fj,−r ▷ Update vertex representation
16: end for
17: I ← Jr

18: end for
19: return S

Algorithm 8a updateImpMetric (L1 error)
Require: I, (Vi)i∈S , (Fj,−i)i∈I,j∈Ji

1: for i ∈ I do ▷ Update metric on cells
2: νi ←

∑
j∈Ji

∫∫
Fj,−i∩Vi

(ûi(x)− ûj(x))dx

3: end for
4: return ν

Algorithm 8b updateImpMetric (J-based error)
Require: I, (Vi)i∈S , (Fj,−i)i∈I,j∈Ji

1: M0 ←
∑

i∈S

∫∫
Vi

M(x, q̂i)dx
2: for i ∈ S do ▷ Update metric on cells
3: δL ←

∑
j∈Ji

∫∫
Fj,−i∩Vi

L(x, ûi(x), q̂i)− L(x, ûj(x), q̂j)dx

4: δM ←
∑

j∈Ji

∫∫
Fj,−i∩Vi

M(x, q̂j)−M(x, q̂i)dx

5: νi ← δL − C(M0) + C(M0 + δM )
6: end for

Proposition 6.3.3 (Critical steps)
Let m be the maximum number of neighbors of a polyhedral cell during the execution of
the algorithm (for all t and i, |Ji| ⩽ m). Then,

⋄ The number of linear programs (P S
i ) solved in Algo. 6 is in O(m|Σ|),

⋄ The number of computations of a vertex representation of a polyhedral cell (calls to
Vrep(S, i) in Algo. 7 / reverse search) is in O(m2|Σ|).

By comparison with Proposition 6.3.3, a näıve implementation (full recomputation of the im-
portance metric at each step) of the two algorithms would respectively lead to a number of
critical steps in O(|Σ|2) and O(m|Σ|2). Indeed, each linear program P S

i can be solved in poly-
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nomial time (by an interior point method), and reverse search has an incremental running time
of O(|Σ|d) per vertex if the input is nondegenerate, see [Avi00].

6.4 Links with k-means clustering with Bregman divergence

Let us first introduce the notion of Bregman divergence and Bregman Voronöı diagram:

Definition 6.4.1 (Bregman Divergence [BNN10]). We define Bregman divergence Du : X ×
X → R+ with respect to a convex diferentiable function u as

Du(x, y) = u(x)− u(y)− ⟨x− y,∇u(y)⟩ (6.8)

Definition 6.4.2 (Bregman Voronöı diagram [BNN10]). Let S = {µ1, . . . , µn} be a set of n
points of X. We call (first-type) Bregman Voronöı diagram of S, denoted by voru(S), the
minimization diagram of the family d̂i(x) := Du(x, µi), i ∈ [n]:

voru(µi) := {x ∈ X | Du(x, µi) ⩽ Du(x, µj), ∀j ∈ [n]} . (6.9)

The point µi, associated with the Voronöı cell Ci = voru(µi), is called a site.

In the definitions, we do not require strict convexity of the function u, as it is generally
the case in the definition of Bregman divergence, as we will study Bregman Voronöı diagrams
of piecewise linear convex function. This means that we allow the Bregman pseudo-distance
between two distinct points to be zero.

Proposition 6.4.1 (Interpretation as Voronöı diagram)
Let S = {µ1, . . . , µn} be a set of n points of X. We define the family of functions ûi as the
supporting hyperplanes of u at µi, i.e.,

ûi(x) = u(µi) + ⟨x− µi,∇u(µi)⟩ .

Then, the maximization diagram of {ûi}1⩽i⩽n and the Bregman Voronöı diagram of S
coincides.

Proof.

Du(x, µi) ⩽ Du(x, µj) ⇐⇒ u(x)− u(µi)− ⟨x− µi,∇u(µi)⟩ ⩽ u(x)− u(µj)− ⟨x− µj ,∇u(µj)⟩
⇐⇒ u(µi) + ⟨x− µi,∇u(µi)⟩ ⩾ u(µj) + ⟨x− µj ,∇u(µj)⟩
⇐⇒ ûi(x) ⩾ ûj(x)

Proposition 6.4.1 shows that the maximization diagram induced by a quantized n-contracts
solution – obtained by pruning procedure from the complete solution ûΣ – is in fact a Bregman
Voronöı diagram associated to ûΣ (the polyhedral complex displayed in Figure 6.1 is therefore
an example of such a diagram).

In the sequel, let u be a convex function on a convex set X ⊂ Rd, such that u is differentiable
almost everywhere. We associate to X the p.d.f. ρ satisfying

∫
X ρ(x)dx. We also use the notation

ρ| C(x) = ρ(x)/
∫

C
ρ(y)dy .
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Clustering. We denote by Lu(S) the loss of optimality induced by a set of representatives
S = {µ1, . . . , µn}:

Lu(S) =
n∑

i=1

∫
voru(µi)

Du(x, µi)ρ(x)dx

=
∫

X
min

1⩽i⩽n
Du(x, µi)ρ(x)dx

=
∫

X
(u(x)− max

1⩽i⩽n
ûi(x))ρ(x)dx

If ρ is the uniform distribution over X, then Lu(S) is the L1-error between u(·) and the upper
envelope of {ûi}1⩽i⩽n. Algorithm 9 – initially introduced in [Ban+05] – adapts the Lloyd’s
procedure [Llo82] for clustering with Bregman divergence.

Algorithm 9 Bregman Hard Clustering – Lloyd procedure
Require: number of cluster n, initial centroids {µ(0)

i }1⩽i⩽n

1: t← 0
2: do
3: C(t)

i ← {x ∈ X | Du(x, µ
(t)
i ) ⩽ Du(x, µ

(t)
j ), ∀j ∈ [n]} for all i ∈ [n] ▷ Assignment step

4: µ
(t+1)
i =

∫
C(t)

i

xρ| C(t)
i

(x)dx ▷ Centroid estimation step
5: t← t + 1
6: while there exist i ∈ [n] such that µ

(t)
i ̸= µ

(t−1)
i

7: return {µ(t)
i }1⩽i⩽n

At each iteration, the algorithm achieves two steps : (i) an assignment step constructing the
cells of the Voronöı diagram, and (ii) a re-estimation step computing the coordinates of each
centröıd. This iterative algorithm is proved to monotonically decrease the loss function (and
therefore to monotonically decrease the L1-error between the function u and its upper envelope
{ûi}1⩽i⩽n).

Proposition 6.4.2 ([Ban+05], Proposition 2)
Algorithm 9 produces a sequence of centröıds {S(t) := {µ(t)

1 , . . . , µ
(t)
n }}t⩾0 such that loss

sequence {Lu(S(t))}t⩾0 is decreasing.

The latter algorithm exploits the equality between the geometrical barycentre of the cell and
the definition of the centröıd as the minimizer of the Bregman divergence integrated on the cell,
see the following proposition:

Proposition 6.4.3 ([Ban+05], Proposition 1)
Let C ⊆ X. Then, the centröıd of C coincides with the (unique) minimizer of the Bregman
information: ∫

C
xρ| C(x)dx = arg min

µ∈C

∫
C

Du(x, µ)ρ| C(x)dx . (6.10)

The terminal partition obtained by Algorithm 9 is locally optimal, i.e., the loss function
cannot be reduced by any perturbation of the centröıds positioning. We refer to [LB16, Theorem
1] for asymptotic quantization rate, previously shown in another context in [GMQ11].

Algorithm 9 provides an alternative method to the pruning procedure to find the best n-
contracts approximation of ûΣ that minimizes the L1-error, see the next section for numerical
comparison.
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6.5 Application to Electricity Markets

6.5.1 Price elasticity

Let us consider a provider holding several contracts, each of them defined by a fixed price
component p ∈ R (in €), and d variable price components z ∈ Rd (in €/kWh). In France, the
contracts often take into account d = 2 time periods, with different prices for Peak / Off-peak
consumptions. Moreover, the price coefficients (p, z) of each contract are supposed to belong to
a non-empty polytope P × Z ⊂ Rd+1:

Assumption 6.5.1. Let p−, p+ be in R>0 and z−, z+ be in Rd
>0. Then, P = [p−, p+], and

the polytope Z is of the following form:

Z :=
{

z− ⩽ z ⩽ z+ | zi1 ⩽ κi1,i2zi2 for i1 ⩽P i2
}

,

where P is a partially ordered set (poset) of {1, . . . , d}, and ⩽P the ordering relation, and
κi1,i2 > 0. When κ ≡ 1, z− ≡ 0 and z+ ≡ 1, Z is known as an order polytope [Sta86].

Assumption 6.5.1 is natural for the electricity pricing problem: the price can be freely determined
within a box (bounds), as long as some inequalities between peak price coefficients and off-peak
price coefficients are fulfilled.

We suppose that each agent in the (infinite-size) population is characterized by a reference
consumption vector x̌ ∈ X ⊂ Rd

>0. Here, supposing a continuum of agents is justified since
we consider in the application case the population of a whole country. We suppose that the
consumption is elastic to prices, i.e., a consumer can deviate from its reference consumption x̌.
In addition, we suppose that electricity elasticity can be captured into a utility-based framework,
see e.g. [Sam+12] for the properties that the utility must satisfy. Here, we focus on isoelastic
utilities:

Assumption 6.5.2 (Isoelastic utility function). For a reference consumption x̌, the utility of
consuming an amount of energy x ∈ Rd

⩾0 is depicted through a Constant Relative Risk
Aversion (CRRA,[Pin12; Ala+20]) or isoelastic utility:

Ux̌ : x ∈ Rd
⩾0 7→

1
η

d∑
i=1

βx̌i(xi)η, η ∈ (−∞, 0) ∪ (0, 1] . (6.11)

The coefficient η is called the risk aversion coefficient.

In this context, this elasticity measure depicts the easiness of a customer to adopt another
energy source to fulfill his needs. In [Ala+20], the authors model the electric elasticity by
this kind of utility function, and separate the case η < 0 and η ∈ (0, 1]. The first regime
(η < 0) will model a household consumption: the satisfaction coming from consuming energy
saturates to a maximum utility, and a zero consumption is prohibited. In contrast, the second
regime (η ∈ (0, 1]) will represent the high flexibility of the industrial sector, which can adapt
more easily its consumption according to price. We refer to [NC20] and references therein for
empirical studies on the intensity of the elasticity coefficient η.

For a contract defined by price coefficients (p, z) ∈ R×Rd, a consumer x̌ will optimize his
consumption in order to maximize the welfare function, obtained by subtracting the electricity
cost to (6.11):

U∗
x̌ : (p, z) ∈ R×Rd 7→ max

x∈R⩾0
d
{U x̌(x)− ⟨x, z⟩} − p . (6.12)
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We denote by U∗
x̌ the welfare function as the maximization term in (6.12) corresponds to a

Fenchel-Legendre transform up to a change of sign. As a consequence, U∗
x̌ is convex and nonin-

creasing. We now make the following assumption to fix the value of β:

Assumption 6.5.3. The reference consumption x̌ ∈ Rd is obtained for reference prices p̌ ∈ R

and ž ∈ Rd.

Under Assumption 6.5.3, the optimal consumption of customer x̌ on period i ∈ {1, . . . , d},
denoted E x̌i, is given by

E x̌i(z) = x̌i (zi/ži)
−1

1−η ⩾ 0 , (6.13)

and the welfare function is given by

U∗
x̌(p, z) =

(
1
η − 1

) d∑
i=1

x̌hžh (zh/žh)
−η

1−η − p . (6.14)

Equations (6.13) and (6.14) are obtained from the first order optimality condition (zero deriva-
tive) for (6.12) (βx̌i = žh (x̌h)1−η).

6.5.2 Infinite-size menu of offers

In this section, we relax the assumption of a finite number of contracts, by supposing that the
provider is able to define as many offers as consumers. Therefore, the infinite-size menu of offers
can be represented by two functions p : X → R and z : X → Rd, representing respectively the
fixed price component and the variable price components. Let us define the (weighted) invoice
of a consumer as

Lx̌ : (p, z) ∈ R×Rd 7→ (p + ⟨E x̌(z), z⟩)ρ(x̌) , (6.15)

where ρ(x̌) ⩾ 0 represents the density of customers with reference consumption x̌. The provider’s
revenue maximization problem is then

max
p,z
J 1(p, z)− J 2(z) (6.16a)

s.t. U∗
x(p(x), z(x)) ⩾ U∗

x(p(y), z(y)), ∀x, y ∈ X (6.16b)
U∗

x(p(x), z(x)) ⩾ R(x), ∀x ∈ X (6.16c)
p(x) ∈ P, z(x) ∈ Z (6.16d)

where J 1(p, z) =
∫

X Lx(p(x), z(x))dx and J 2(z) = C
(∫

X

∑d
i=1 Exi(z(x))ρ(x)dx

)
.

Equations (6.16b) and (6.16c) are respectively the incentive-compatibility condition and par-
ticipation constraint. Taking C as a strictly convex increasing function of the global consumption
is often considered in the literature. In particular, this cost function is often modeled as a piece-
wise linear function, see e.g. [Ale+19], or as a quadratic function, see e.g. [Ack+18]. In fact, the
marginal cost to supply electricity is not constant and increases with the consumption. The con-
vexity of the reservation utility is also a classical assumption, as this reservation utility should
be a supremum over the utilities of alternative offers (each of them being a linear function of
the reference consumption).

Let us make the following change of variables:

qi := (zi/ži)
−η

1−η .
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Then, the consumption on period i ∈ {1, . . . , d} is a convex function of qi, expressed as Ex̌i(qi) =
x̌i[qi]

1
η , and both the utility and the weighted invoice now read as linear functions of p and q:

defining α = (η−1 − 1)ž,

u(x) := ⟨x, α⊙ q(x)⟩ − p(x) ,

L(x, u(x), q(x)) :=
(

1
η ⟨x, ž ⊙ q(x)⟩ − u(x)

)
ρ(x) ,

(6.17)

Theorem 6.5.1
Under Assumption 6.5.1, the provider’s revenue maximization problem (6.16) is equivalent
to a monopolist problem of the form (6.4) with

M(x, q(x)) := ρ(x)
d∑

i=1
xi[qi(x)]

1
η (6.18)

and, if η < 0,

Q =

q ∈ Rd

∣∣∣∣∣∣∣∣
(
z−/ž

) −η
1−η ⩽ q ⩽

(
z+/ž

) −η
1−η

qi1⩽
(
κi1,i2

ži2
ži1

) −η
1−η

qi2 for i1 ⩽P i2

 ,

otherwise,

Q =

q ∈ Rd

∣∣∣∣∣∣∣∣
(
z+/ž

) −η
1−η ⩽ q ⩽

(
z−/ž

) −η
1−η

qi1 ⩾
(
κi1,i2

ži2
ži1

) −η
1−η

qi2 for i1 ⩽P i2


Proof. Owing to assumption on the set Q and the strict monotonicity of z 7→ z

−η
1−η (increasing

for η < 0 and decreasing for η > 0), one can explicitly derive the form of Q. The rest of the
formulation is immediate.

6.6 Numerical results

6.6.1 Instance

The numerical results were obtained on a laptop i7- 1065G7 CPU@1.30GHz. We provide in Ta-
ble 6.1 the values of the parameters used in the application. In particular, we consider reference
prices (p̂, ẑ) corresponding to French regulated prices, and reference consumption spread around
the mean French consumption per household (Emoy = 4MWh). The cost function is taken as
a quadratic function, scaled so that the marginal cost C ′(Emoy) = 0.08€/kWh. In comparison,
the production cost is estimated in France around 0.05€/kWh for nuclear plants1 and up to
0.09€/kWh for wind energy2.

We display in Figure 6.2 the infinite-size menu and the quantized solution for two different
sizes of menu (25 contracts and 10 contracts). In each cell Ci, the contract i brings to customers of
reference consumption x ∈ Ci the maximal utility given the quantized menu, i.e., ûS(x) = ûi(x)
for x ∈ Ci. We observe that there is a region/cell (light gray region) where the monopolist
reproduces the alternative option (of utility R). On the other side, for high consumption (peak
or off-peak), the monopolist manages to design contracts that provide strictly higher utility than
the regulated offer, and at the same time, procure to the monopolist a higher revenue.

1CRE (2022), Délibération n° 2022-45
2ADEME (2016), Coûts des énergies renouvelables en France
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Figure 6.2: L1-norm pruning for the electricity market case.
The normalized utility u−R is depicted with colormap (light gray corresponds to the zero

value and blue to high value).

η -0.1
p̌ 140€
ž (0,174,019)€/kWh

C(·) 0.01(·)2

(p−, p+) (0, 500)€
(q−

1 , q+
1 ) (0.05, 0.5)€/kWh

(q−
2 , q+

2 ) (0.05, 0.5)€/kWh
ρ Uniform([0.6, 1.8]× [1.4, 4.2])

R(·) linear function (one regulated contract)

Table 6.1: Instance used in the numerical results.

6.6.2 Comparison of pruning objectives

In the upper graph of Figure 6.3, the three pruning objectives studied in the chapter (L∞,
L1 and J-based) are compared with the 1-step approach of [MDG08; GMQ11]. The approach
consists in sorting the importance metrics for all i ∈ Σ, and directly taking the n contracts
with highest importance metric (here we consider the J-based importance metric). We display
the relative objective loss, defined as 1 - Jt/Jref, where Jt is the objective for a menu of size
t and Jref the objective obtained with the infinite-size menu. Note that removing a contract
can induce a violation of the full-participation constraint (u ⩾ R). Therefore, in order to
recover a feasible solution at each iteration, we lift up the solution with the simple rule u ←
u + max{maxx∈X{R(x)− u(x)}, 0}.

On this example, the pruning procedure of Algo. 7 (greedy descent) leads to a significant loss
reduction, whatever the criterion, compared with the 1-step approach. As expected, we observe
that the J-based pruning has the smallest relative loss in the objective, as we minimize the error
at each iteration of the process. In contrast, the L∞-norm does not capture sufficiently well the
behavior of the objective function J , and has larger objective loss, even for a large number of
contracts.

We also depicted the cumulated time along the iterations in the lower graph of Figure 6.3
(we do not display the time for the 1-step procedure, as it is very fast, in less than 0.5s). For
comparison, we add the cumulative time of a “näıve” J-based pruning, recomputing at each
iteration the importance metric of each cell (global update). On this example, we observe that
the computational time is already reduced by a factor almost 3 (this factor would be greater
in higher dimension, as the neighborhood would be larger). As expected, the L∞ criterion
is the fastest, owing to the fast local update rule exploiting the sparsity of optimal Lagrange
multipliers (Algorithm 6), and the J-based and L1-norm criteria have similar computational
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time, as they use the same algorithmic architecture, see Algo. 7. In terms of loss minimization,
the J-based pruning shows a loss of revenue reduced by a factor of around 2 by comparison with
other methods. This approach allows us to determine the minimum number of contracts given
an admissible revenue loss: e.g., Figure 6.3 shows that, with a J-based quantization, a menu of
10 contracts suffices to limit the revenue loss to 4%.

We finally compare the performance of the Lloyd algorithm with the pruning method with
L1-norm. We observe that the result of quite comparable. In particular, the pruning process
and the Lloyd algorithm end up in this example with the same solution for a very restricted
number of contracts. The difference lies in the computational time: the Lloyd algorithm is more
adapted for a single run whereas the pruning procedure hightly benefit from the warm-start
strategy and is particularly efficient when it comes to test a range of menu sizes.
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Figure 6.3: Comparison of error bounds for the three types of pruning objective, and for the
LLoyd algorithm. The upper graph shows the loss of optimality induced by a reduced number

of contracts. The lower graph depicts cumulative time along the iterations. (g) stands for
global update while (l) stands for local update.

6.7 Conclusion

We have addressed a nonlinear pricing problem incorporating coupling costs. This arises in
electricity markets, where supply costs depend on the global consumption. We have developed
a quantization procedure, allowing to maximize the revenue of a provider, given a cardinality
constraint on the set of contracts. This relies on refined pruning procedures, inspired by the
max-plus basis methods in numerical optimal control. In particular, we exploited the local
nature of the pruning process, in order to reduce the computational time. Thus, this leads to
a new class of applications for methods originally developed in optimal control, and this also
improves the complexity of a key ingredient of these methods.



6.
N

b
of

of
fe

rs

6.8. APPENDIX 155

A strong parallel with vector quantization can be made, see e.g. [Pag15]. In this context, a
different quantization problem is addressed by Lloyd’s procedures, ibid.. Whether these ideas
can be adapted to the quantization of the maximum of affine functions with revenue criterion is
left for further work.

6.8 Appendix

6.8.1 Green’s formula on 2D-polytope

Proposition 6.8.1
Let P a 2D-polytope describes by its vertices (xi, yi) ∈ R2 (counter-clockwise ordered).
Then for any a, b, c ∈ R,

∫∫
P

(ax + by + c)dxdy =
N∑

i=1


∮ yi+1

yi

b(qi + 1
τi

y)ydy

−
∮ xi+1

xi

(ax + c)(pi + τix)dx

 , (6.19)

with τi = yi+1−yi

xi+1−xi
, pi := yi − τixi and qi := xi − 1

τ yi.

Proof. The application of the Green formula gives :∫∫
P

(ax + by + c)dxdy =
∮

CP

(bxy)dy − (ax + c)ydx ,

where CP is the contour of the polytope P . We then decompose on each edges, and use the
change of variable x = q + y/τ in the first integral and y = x + τx in the second one.
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A Rank-Based Reward between a
Principal and a Field of Agents:
Application to Energy Savings

***
This chapter is based on the submitted paper [Ala+22].
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Abstract. In this chapter, we consider the problem of a Principal aiming at designing a
reward function for a population of heterogeneous agents. We construct an incentive based on
the ranking of the agents, so that a competition among the latter is initiated. We place ourselves
in the limit setting of mean-field type interactions and prove the existence and uniqueness of
the equilibrium distribution for a given reward, for which we can find an explicit representation.
Focusing first on the homogeneous setting, we characterize the optimal reward function using
a convex reformulation of the problem and provide an interpretation of its behaviour. We then
show that this characterization still holds for a sub-class of heterogeneous populations. For the
general case, we propose a convergent numerical method which fully exploits the characterization
of the mean-field equilibrium. We develop a case study related to the French market of Energy
Saving Certificates based on the use of realistic data, which shows that the ranking system allows
to achieve the sobriety target imposed by the European commission.

7.1 Introduction

7.1.1 Motivation

In Europe, energy retailers have incentives to generate energy consumption savings at the scale
of their customer portfolio. For example in France, since 2006, power retailers – called Obligés
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– have a target of a certain amount of Energy Saving Certificates1 to hold at a predetermined
future date (usually 3 or 4 years). If they fail to obtain this number of certificates, then they
face financial penalties. Certificates can be acquired either by certifying energy savings at the
customer or by buying certificates on the market. If a retailer holds more certificates than its
target at the end of the period, the surplus can be sold on the Energy Saving Certificates market.
The pluri-annual energy savings goal is determined by the government, and is function of the
cumulative discounted amount of energy saved (thanks to thermal renovation for instance)2.
Similar mechanisms – called White certificates – have been implemented in several countries in
Europe (Great Britain, Italy or Denmark).

There is evidence from behavioral economics that energy consumption reductions can be
motivated by providing a financial reward and/or information on social norms or comparison to
customers, see e.g. see [AT14] or [DM15]. Especially, in [DM15], the authors find that social
norms reduce consumption by around 6% (0.2 standard deviations). Secondly, they obtain that
large financial rewards for targeted consumption reductions work very well in reducing con-
sumption, with a 8% reduction (0.35 standard deviations) in energy consumption. For recent
years, electricity providers are aware of this lever to make energy savings, and contracts offering
bonus/rewards in compensation of reduction efforts appear, see e.g. the offers of “SimplyEn-
ergy”3, “Plüm énergie”4 or “OhmConnect”5. The interest of this kind of solutions is reinforced
in the current situation of gas and power shortage where many countries intend to diminish
their global energy consumption6.

7.1.2 Contributions

In this chapter, we design a monetary reward based on the rank of each consumer. In our context,
the rank measures the reduction effort of a consumer compared with the rest of the population
(a rank r ∈ [0, 1] indicates that the consumer is among the r percent of the population with the
highest consumption reduction). This new mechanism initiates a competition between similar
consumers to be the best energy saver and unites the incentive potential of rankings with a
financial reward.

We suppose that the interaction between the consumers is of mean-field type, i.e., the number
of consumers is infinite. This choice is motivated by our application, where the game is played
across a country (for e.g. around 30 millions of households in France). Given the reward, the
problem reduces to a mean-field game. Our first main result is to characterize the (unique)
mean-field Nash equilibrium of this game for rewards that linearly depend on the terminal
consumption (Theorem 7.2.3).

We then study the Principal-Agent relation (Stackelberg game) between the provider and
the population of consumers. We introduce the bi-level problem solved by the retailer, aiming at
maximizing over reward functions the profit made on the whole time period, taking into account
the consumption distribution achieved at the equilibrium. Our second main result is to derive a
semi-explicit formula of the optimal reward in the homogeneous setting (Theorem 7.2.4), which
follows by solving of a fixed-point equation. This relies on a convex reformulation of the problem,
obtained by transforming the latter into an optimization over equilibrium distributions, and by
expressing the sufficient optimality conditions for the reformulated problem. We show that the
unique optimal reward can be approximated by a bounded function, where the sub-optimality

1https://www.powernext.com/french-energy-saving-certificates
2https://www.ecologie.gouv.fr/dispositif-des-certificats-deconomies-denergie
3https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
4https://plum.fr/cagnotte/
5https://www.ohmconnect.com/
6https://www.politico.eu/article/eu-countries-save-energy-winter/

https://www.powernext.com/french-energy-saving-certificates
https://www.ecologie.gouv.fr/dispositif-des-certificats-deconomies-denergie
https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
https://plum.fr/cagnotte/
https://www.ohmconnect.com/
https://www.politico.eu/article/eu-countries-save-energy-winter/
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of the latter is controlled and converges to zero for sufficiently large bounds (Corollary 7.2.2).
In the general setting (heterogeneous population), we show that under uniform price elasticity
and uniform relative volatility, the problem reduces to the previous case (Proposition 7.2.2).
For the more general case, the reformulation in the distributions space does not apply, and we
introduce a numerical algorithm (Algorithm 10) to optimize the shape of the reward. This black-
box optimization procedure relies on a fast evaluation of the retailer objective function at each
iteration, which is done by exploiting the characterization of the mean-field Nash equilibrium.

We then apply our approach to the French market of Energy Saving Certificates using re-
alistic data (Section 7.4). We show that the numerical procedure exhibits a fast convergence,
and successfully finds the optimal reward in the homogeneous setting, and provides significant
consumption reduction in the general setting, while maintaining the satisfaction (utility) of the
consumers. We also simulate some trajectories of consumers by using the reward found in the
mean-field context to highlight the energy reduction capacity of this mechanism. In particular,
we show that the ranking system allows to achieve the sobriety target imposed by the European
commission.

Finally, we consider several extensions suitable to our context. First, we show that, for the
class of reward functions considered here, the addition of common-noise in the consumption
process only shifts the equilibrium distribution by a (random) constant. Besides, we focus on
time-dependent costs of effort for the agents, reflecting the collective awareness of agents on the
energy reduction’s necessity. We are also able to provide some invariance results, which show
that the use of more sophisticated reward (a function that jointly depends on the rank and the
consumption of the agent) is, at the equilibrium, equivalent to a reward that belongs to the class
of purely rank-based rewards.

7.1.3 Related Works

Given the reward function provided by the retailer, the competition between agents is mod-
eled by a mean-field game. These games have been introduced simultaneously by Lasry and
Lions [LL06a; LL06b; LL07] and Huang, Caines and Malhame [HMC06; HCM07]. They refer
to the study of differential games involving a large number of indistinguishable agents which
interact through their empirical distribution. By looking at the limit case where a continuum
of agents is involved, each of them asymptotically negligible, mean-field games provide efficient
ways to compute approximations of Nash equilibria for stochastic games with large number of
players (games which are otherwise rarely tractable). Among various techniques, the problem
is often solved by a fixed-point method involving both a Hamilton-Jacobi-Bellman equation –
characterizing the agents best response to a given population distribution – and a Fokker-Planck
equation. Existence and uniqueness of a mean-field equilibrium are then analyzed through this
system of coupled partial differential equations, see e.g. [Car+15; BCS17].

The design of a reward/incentive by the retailer is then modeled as a Principal-Agent prob-
lem, see e.g. the works of Sannikov [San08] and Capponi, Cvitanić and Yolcu [CCY12] in
continuous-time settings. In such problems, the Principal (retailer) aims at designing a mone-
tary reward that is offered to the agent, depending on the quantity of work achieved by the latter.
In energy management, Aı̈d, Possamäı and Touzi introduced an incentive mechanism to control
both the average consumption and the volatility of the agents consumption. The additional
difficulty in our context is the presence of a continuum of agents, and the interaction between
them which is expressed in terms of a mean-field game. Such extensions of the Principal-Agent
problem have been considered by Elie, Mastrolia and Possamäı [EMP19] – where an explicit con-
tract has been found for a specific class of dynamics (encompassing the linear-quadratic setting)
– and by Carmona and Wang [CW21] – focusing on the linear-quadratic setting and finite-state
spaces. Shrivats, Firoozi and Jaimungal [SFJ21] introduce a Principal-Agent formulation to
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study the interaction between a regulator and a field of providers in the market of Renewable
Energy Certificate (REC).

Our study is inspired by several works. We focus on rank-based interactions, previously
introduced in [BZ16], where results of existence and uniqueness of the mean-field Nash equilib-
rium are provided for a general class of rewards. Extensions to principal-agent problem are then
studied in [BCZ19; BZ21], deriving explicit expressions of optimal contract for several principal’s
objectives (profit/effort/rank-performance maximization/distribution target). In comparison to
these works, we provide new theoretical results for non purely rank-based reward in the case
of a homogeneous population and general convex cost functions, and extends the latter to a
sub-class of heterogeneous population, while keeping explicit characterizations of equilibria and
optimal rewards. Finding such explicit expressions is rare in the literature, and is only possible
by imposing a specific dynamics (as in [EMP19] and [CW21]). Another additional difficulty
which arises from the application is to take into account the diversity of the agents: here, we
consider that the overall population is clustered into a finite number of (infinite-size) indepen-
dent sub-populations. This heterogeneous context (in absence of uniform elasticity) increases
further the difficulty – both on analytic and numerical aspects – but is necessary on the appli-
cation side for realism purposes, see e.g. [SFJ21; SFJ22] for applications of mean-field games
to REC markets. In [Cam+21], Campbell et al. introduce deep learning algorithms to solve
principal-agent mean field games under heterogeneity of agent types. Here, we propose an alter-
native method, which takes advantage of the specific structure of the problem (explicit solution
of the underlying mean-field game and common rank-based reward across the sub-populations)
to lower the numerical complexity and derive efficient computational methods.

The rest of the chapter is organized as follows: in Section 7.2, we first define the model and
characterize the equilibrium for the mean-field game between the agents. In Section 7.3, we
propose a numerical approach to solve the problem in the heterogeneous setting, for which the
convex reformulation seems not extendable. In Section 7.4, we apply the results to the French
market of Energy Savings Certificates, and finally in Section 7.5, we tackle some extensions that
naturally arise in the context of the application. The proofs of the main results are given in the
appendix.

7.2 Model

7.2.1 Notation and Assumptions

In the sequel, we denote by P(R) the set of distributions defined on R and by P+(R) the
set of distributions having strictly positive density. Moreover, for any µ ∈ P(R), Fµ refers to
the cumulative distribution function (cdf) of µ, and when it exits, fµ (resp. qµ) refers to the
probability density function (pdf) (resp. the quantile function) of µ. Moreover, we write X ∼ µ
when X is distributed according to µ ∈ P(R). The normal distribution centered in m with
standard deviation σ is denoted by N (m, σ) and its pdf is denoted by x 7→ φ(x; m, σ).

Let us successively introduce the different players involved in the Stackelberg game:

Consumers. We consider a heterogeneous population of consumers, and we suppose that a
clustering algorithm can be applied as a preprocessing step in order to split the population into
K sub-populations (or clusters), each of them composed of similar customers. Each cluster
k ∈ [K] := {1, . . . , K} represents a proportion ρk of the overall population and corresponds
to a given class of customers, categorized for example according to their usages, their heating
system or the household composition. Here, we directly tackle mean-field interactions between
the agents:
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Assumption 7.2.1. We assume that each sub-population is composed of an infinite number
of indistinguishable agents, represented by a single consumer (representative agent).

Energy consumption. Let (Ω, F ,P) be a complete filtered probability space, which supports
a family of K independent Brownian motions {Wk}1⩽k⩽K , and A be the set of progressively
measurable processes a satisfying the integrability condition E

∫ T
0 |a(s)|ds < ∞. For a given

control ak ∈ A, we denote by Xa
k (t) the forecasted energy consumption of an agent from cluster

k (typically an household), forecast made at time t < T for the time period [0, T ]. The controlled
process Xa

k is described through the following stochastic differential equation:{
dXa

k (t) = ak(t)dt + σkdWk(t),
Xk(0) = xnom

k .
(7.1)

Here, we consider an arithmetic Brownian motion in the dynamics, expressing the uncertainty in
the electricity needs. The use of such arithmetic noise (specific to Ornstein-Uhlenbeck processes)
has been showed to be relevant for load modeling, see e.g. [RSM16]. Aı̈d, Possamäı and Touzi
considered in [APT22] the multidimensional version of this dynamics, to the same purpose of
representing the electricity consumption. The process ak in Equation (7.1) is then viewed as
the consumer’s effort to reduce his electricity consumption. Without any effort, customers are
expected to have a nominal consumption of xnom

k , and we define by fnom
k the p.d.f. of Xa

k (T )
under a zero effort (ak is a constant process equals to 0):

fnom
k (x) := φ

(
x ; xnom

k , σk

√
T
)

. (7.2)

Note that we do not explicitly impose bounds on the process Xk – typically non-negativity
assumption – but this will be naturally enforced by the cost of effort and the volatility parameter
σk so that the probability of negative consumption will be negligible.

Retailer. In this model, an electricity provider, incentivised by a regulation agency, aims at
designing a reward function based on the terminal ranking of the agents in order to lower the
global consumption of the customers: considering that the terminal consumption of the agents
in the kth population, i.e. Xa

k (T ), is distributed according to µk, the ranking r of a player
consuming the quantity x, is measured by the fraction of agents consuming less than x, i.e.,
r = Fµ(x), where Fµ denotes the cumulative distribution function on µ (so that the worst
performer/the highest consumption has rank one and the top performer has rank 0).

A reward function in our context is then a continuous real-valued function R × [0, 1] ∋
(x, r) 7→ R(x, r) that depends both on the terminal consumption x and the terminal ranking r.
We consider only rewards that are non-increasing in both arguments, to favor low ranks. For
any µ ∈ P(R), we write Rµ(x) = R(x, Fµ(x)) and when R(x, r) is independent of x, we say
that the reward is purely rank-based. In the sequel, we will consider the following decomposition
assumption:

Assumption 7.2.2. Each sub-population k ∈ [k] receives a reward Rk has the form

Rk (x, r) = Bk(r)− px , (7.3)

where p ∈ R and Bk ∈ B with B the set of purely rank-based (decreasing) functions. We
then call R the total reward and its rank-dependent part Bk the additional reward (financial
“bonus” for the consumer).
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In the energy context, the second member “−px” represents the classic invoice of the con-
sumer, where p is the price to consume one unit of energy (e.g. in e/kWh). Here, this simple
pricing strategy can be viewed as a regulated price (as this is the case in France for example7).
The invoice is embedded in the reward function since it acts as a natural incentive to reduce the
consumption. The first member Bk is then the additional financial reward offered to consumers
based on their terminal ranking.

Subpopulation 1

. . .

Subpopulation k

. . .

Subpopulation K

Provider

Regulator

Imposes to reduce
global consumption

Reward = f (rank)

Competition (Nash) Competition (Nash) Competition (Nash)

Mean-field assumption: Each subpopulation is composed of an infinite number
of indistinguishable consumers

Ranking games : Application to Energy Savings C. Alasseur, E. Bayraktar, R. Dumitrescu, Q. Jacquet 4 / 25

Figure 7.1: Relation between the Principal (provider) and the sub-populations composed of an
infinite number of Agents (consumers).

In the modeling of energy consumption, a common-noise is often added (it can represent for
example the outdoor temperature). However, we show that the insertion of such a noise only
shifts the consumption distribution (by a random constant). This result was already mentioned
for translation invariant functions (such as purely rank-based rewards), and we extend in Sec-
tion 7.5 this property to the more general class of reward functions satisfying Assumption 7.2.2.

Assumption 7.2.3 (Fair reward mechanism).

(i) Each cluster is independent: the rank of an agent of cluster k ∈ [K] is only determined
by the distribution of the cluster k.

(ii) The same unitary bonus is proposed to each cluster, i.e., Bk(r) = xnom
k β(r) for all

k ∈ [K].

Assumption 7.2.3 imposes that the sub-populations evolve separately, but are linked through a
common reward function. This assumption is taken for the sake of a fair reward mechanism:
on one hand, consumers only compete with similar agents, i.e., with agents having the same
characteristics (type of heating, household composition, ...) and on the other hand, the shape of
the reward should be identical for each the sub-population to prevent from favoring one cluster
compared to another. The function β is then the unitary bonus received by every customer (in
e/kWh).

Figure 7.1 outlines the Principal-Agent relation between the retailer and the field of con-
sumers. We then first focus on the competition among the agents before studying the principal
problem.

7“Tarif réglementé de vente” (TRV)
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7.2.2 Mean-field game between agents

In all this section, let us fix a cluster k ∈ [K], as there is no interaction between clusters. We
suppose here that the reward Rk(x, r) is given.

An agent of k is able to produce an effort ak to reduce its consumption, but has to pay as
a counter-part the quadratic cost ck a2

k(t) with ck > 0 a given positive constant. The convexity
of the effort cost is natural in the context of our application. In particular, this cost either
corresponds to the purchase of new equipment that is more efficient than the older one (new
heating installation, isolation, ...) or corresponds to a change in the consumption pattern (so-
briety). In the latter case, the convexity illustrates that small efforts (as for e.g. switching off
the light when leaving a room) are easy to make while large consumption reduction (as for e.g.
reducing heating or air conditioning ) are more demanding. It is also possible to consider a more
general convex cost, which is in non-quadratic form, since it would still lead to a tractable agent
problem. However, quadratic costs are often considered in order to obtain explicit expression of
the optimum, see e.g. [APT22] in the electricity context. In exchange of the effort, the consumer
receives the reward Rk(x, r), depending on his rank r = Fµk

(x) within the sub-population, where
µk is the k-sub-population distribution. His objective is then:

Vk(Rk, µk) := sup
a∈A

E

[
Rk,µk

(Xa
k (T ))−

∫ T

0
cka2

k(t)dt

]
. (P cons)

The quantity Vk(Rk, µk) represents the optimal expected utility of an agent of class k, for a given
provider’s reward and population distribution.

We present below some results which will be used throughout the chapter. The first theorem
gives the explicit solution of the agent’s best response to a population distribution µ̃k:

Theorem 7.2.1 (Characterization of the best response)
Given a bounded total reward function Rk satisfying Assumption 7.2.2 and µ̃k ∈ P(R), let

γk(µ̃) =
∫
R

fnom
k (x) exp

(
Rk,µ̃(x)
2ckσ2

k

)
dx (<∞) . (7.4)

Then, the optimal terminal distribution µ∗
k of a player from cluster k admits a pdf defined

as
fµ∗

k
(x) = 1

γ(µ̃k)fnom
k (x) exp

(
Rk,µ̃k

(x)
2ckσ2

k

)
, (7.5)

and the optimal value is then Vk(Rk, µ̃k) = 2ckσ2
k ln γk(µ̃k) .

The above result corresponds to [BZ21, Proposition 2.1] and is obtained using the Schrödinger
bridge approach, see [CGP15] for connections with optimal transport theory. The consumption
process Xk under the optimal effort then satisfies the equation

dXk(t) = ak(t, Xk(t); µ∗
k)dt + σkdWk(t),

where the optimal effort ak(·, ·; µ∗
k) is defined as ak(t, x, µ) = σ2

k∂x ln uk(t, x, µ) where

uk(t, x, µ) = E

[
exp

(
1

2ckσ2
k

Rk,µ(x + σk

√
T − tZ

)]
, Z ∼ N (0, 1) . (7.6)

We now introduce the notion of mean-field Nash equilibrium.
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Definition 7.2.1 (Mean-field Nash equilibrium). We say that µk ∈ P(R) is an equilibrium
(terminal distribution) if it is a fixed-point of the mapping Φk : µ̃k 7→ µ∗

k, with µ∗
k given

by the solution of the equation (7.5).

The existence of such an equilibrium has been proved in the general setting using Schauder’s fixed
point theorem (see [BZ16]). We give below a characterization of this equilibrium distribution,
as well as an explicit expression for purely rank-based rewards:

Theorem 7.2.2 (Characterization of the equilibrium distribution)
Given a bounded total reward function Rk : R × [0, 1] → R, the distribution µk ∈ P(R)
is an equilibrium terminal distribution for cluster k if and only if its quantile function qµk

satisfies

N

(
qµk

(r)− xnom
k

σk

√
T

)
=

∫ r
0 exp

(
−Rk,µk

(qµk
(z))

2ckσ2
k

)
dz∫ 1

0 exp
(
−Rk,µk

(qµk
(z))

2ckσ2
k

)
dz

, (7.7)

where N is the standard normal c.d.f. In the specific case of a purely rank-based reward,
we obtain that the equilibrium νk is unique and the quantile is given by

qνk
(r) = xnom

k + σk

√
TN−1


∫ r

0 exp
(
−Bk(z)

2ckσ2
k

)
dz∫ 1

0 exp
(
−Bk(z)

2ckσ2
k

)
dz

 . (7.8)

The mean consumption at the equilibrium is then mµk
=
∫ 1

0 qµk
(r)dr.

The above result is provided in [BZ21, Theorem 3.2], and below we extend the explicit charac-
terization to the more general case of reward maps R, which not only depend on the rank, but
also have a linear dependence on x.

Theorem 7.2.3 (Explicit characterization for non purely rank-based rewards)
Suppose the reward is of the form defined in Assumption 7.2.2. Then, the equilibrium µk

is unique, and it satisfies
qµk

(r) = qνk
(r)− pT

2ck
, (7.9)

where νk is the (unique) equilibrium distribution for the specific case p = 0 (purely rank-
based reward), defined in (7.8).

Theorem 7.2.3 shows that the addition of a linear part in the consumption acts as a shift on
the probability density function. We emphasize that our uniqueness result of the equilibrium
µ generalizes the one established in [BZ21], the latter being obtained under the additional
assumptions that the map r 7→ Rk(x, r) is convex and r 7→ ∂xRk(x, r) is non decreasing. Instead,
we assume a linear dependence on the consumption for the reward, but no convexity requirement
is made on its purely rank-based component B.

Corollary 7.2.1 (Equilibrium without additional reward)
For Rk(x, r) = −px, the equilibrium follows the normal distribution N

(
xpi

k , σk

√
T
)
, where

xpi
k = xnom

k − pT
2ck

is the consumption under the natural incentive associated with the price



7.
R

an
ki

ng
ga

m
es

7.2. MODEL 165

p. Moreover, the optimal consumer’s utility is

Vk(R, µk) = V pi
k := −pxpi

k −
p2T

4ck
. (7.10)

Proof. For Bk ≡ 0, Eq. (7.8) gives us qνk
(r) = xnom

k +σk

√
TN−1(r), therefore νk ∼ N (xnom, σk

√
T ).

We then obtain by Theorem 7.2.3 the definition of the equilibrium µk. Finally, using Lemma 7.7.1,
we get

2ckσ2
k ln γk(µ̃k) = ln

(∫
R

fnom
k (x) exp

(
−px

2ckσ2
k

)
dx

)
= −pxnom

k + p2T

4ck
.

Corollary 7.2.1 shows that the price of electricity constitutes a natural incentive, as the con-
sumer already makes an effort to reduce his consumption from xnom to xpi. However, it induces
a disutility for consumers (V pi ⩽ 0). An increase of the price would lead to a supplementary
consumption reduction but would decrease further the utility of the agents, and is therefore a
non-desirable energy saving strategy.

7.2.3 The Principal’s problem

In this section, we suppose that Assumption 7.2.2 is satisfied. Therefore, the equilibrium dis-
tribution is unique and is defined by (7.9). For a mean-field equilibrium (µk)k∈[K], the mean
consumption of the overall population is then mµ = ∑

k∈[K] ρkmµk
.

For a given k, we denote by ϵk the mapping which associates to the total reward function the
corresponding equilibrium distribution, i.e. ϵk(Rk) = µk, where µk satisfies (7.9). The problem
of the retailer can then be written as

π∗ := max
β∈B

pmµ − κ(mµ)−
∑

k∈[K]
ρkxnom

k

∫ 1

0
β(r)dr

∣∣∣∣∣∣∣∣
Rk(x, r) = xnom

k β(r)− px

µk = ϵk(Rk)
Vk(Rk, µk) ⩾ V pi

k + τxnom
k

 (P ret)

where κ(·) denotes the mean selling cost function and mµ is the mean consumption at the
equilibrium µ. The optimal objective π∗ then corresponds to the profit per agent (mean over
the population) made on the interval [0, T ] (in e). The inequality constraint on the utility
ensures that consumers “play the game”, as it procures a strictly better utility than without
additional reward. Classically, τ = 0, meaning that the effort achieved by consumers in order to
save energy is compensated (in mean) by the reward offered by the retailer. Observe that with
τ = 0, some agents may have a negative reward, which is not always desirable. Therefore, for
practical issue and acceptability, we allow for a positive tau to take into account switching costs
that appear when it comes to subscribing to a reward mechanism, see e.g. [MMV23].

Assumption 7.2.4. The function κ : R→ R is increasing, convex and differentiable. More-
over, κ′(0) < p < κ′(xpi).

Assumption 7.2.4 is natural in the context of our application. In practice, the selling cost
function is defined as κ : m 7→ cp(m) + s(m) , where

⋄ s(·) denotes the penalty imposed by the regulator to favor a reduction in consumption,
⋄ and cp(·) denotes the cost function, induced by the production of energy.
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We assume here that the marginal cost κ′(·) is lower than the marginal price p at 0 – meaning
that it is always profitable to sell a positive quantity of energy – and conversely we assume
that the marginal cost κ′(·) is greater than the marginal price p at xpi – meaning that it is not
profitable to sell more electricity with the additional reward than without. The penalty function
s is increasing and convex, since the regulator aims at encouraging consumption reduction by
strongly penalizing huge consumption levels. Moreover, the retailer’s aggregated cost function is
often considered as increasing and convex, due to a decreasing return to scale, see e.g. [Ale+19;
ABM20]: the mechanism of day-ahead markets favors the “cheapest” (lowest marginal cost)
power plants as the cheapest resource will participate to the electricity generation first, followed
by the second cheapest option, and so on, until the demand is satisfied. In the case of non-
convex aggregated cost, the convex hull of the aggregated cost function is often considered, see
e.g. [Sch+16].

In the case of a homogeneous population and linear dependence of the objective function with
respect to the equilibrium distribution, the results are obtained in [BZ21]. We extend them here
to the more general case of convex nonlinear dependencies.

Homogeneous population

We consider in this section the specific case where there is a unique cluster of customers (ho-
mogeneous population). Therefore, we omit the dependence in k. Using Lemma 7.7.2 (given in
the Appendix), Problem (P ret) can be reformulated as a constrained maximization problem on
the distribution space:

Proposition 7.2.1
Let us consider the following minimization problem

min
µ∈P+(R)

κ

(∫
R

yfµ(y)dy

)
+ 2cσ2

∫
R

ln
(

fµ(y)
fnom(y)

)
fµ(y)dy

s.t.
∫
R

fµ(y)dy = 1

y 7→ ln
(

fµ(y)
fnom(y)

)
+ p

2cσ2 y decreasing

. (7.11)

Then, the reward Bµ∗ ∈ B, constructed from an optimal distribution µ∗ ∈ P+(R) of (7.11)
as

Bµ∗(r) = V pi + τxnom + 2cσ2 ln
(

fµ∗(qµ∗(r))
fnom(qµ∗(r))

)
+ pqµ∗(r) (7.12)

is optimal for problem (P ret).

Proof. From Lemma 7.7.2, Bµ defined in (7.12) is the reward that achieves a given equilibrium
distribution µ with the lowest cost while satisfying the utility condition in (P ret) (since V (R, µ) =
(1 + τ)V pi for any attainable equilibrium µ and R(x, r) = Bµ(r)− px). The objective function
is then rewritten as a function of the pdf fµ using the expression of the reward.

We now relax (7.11) by ignoring the decreasingness of the additional reward in (7.11):

min
f :R→R

{
κ

(∫
R

yf(y)dy

)
+ 2cσ2

∫
R

ln
(

f(y)
fnom(y)

)
f(y)dy

∣∣∣∣ ∫
R

f(y)dy = 1 and f(x) ⩾ 0, x ∈ R

}
.

(P̃ ret)
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The discussion about the relation between the initial problem (7.11) and the relaxed one (P̃ ret)
is provided further. The optimal solution of this relaxed problem is then characterized by the
following lemma:

Lemma 7.2.1 (Characterization of the optimal distribution for the relaxed problem)
Let Assumption 7.2.4 holds. Then, (P̃ ret) defines a convex problem. Moreover, if µ∗ admits
a density fµ∗ which minimizes (P̃ ret), then it satisfies the following optimality conditions:
for µ∗-almost every x in R,

fµ∗(x) = 1
α(µ∗)fnom(x) exp

(
−x

κ′(mµ∗)
2cσ2

)
(7.13)

where
α(µ) =

∫
R

fnom(y) exp
(
−y

κ′(mµ)
2cσ2

)
dy .

Proof. The convexity of the objective functional with respect to f comes from the convexity of κ
(see Assumption 7.2.4) and the convexity of x 7→ x ln(x). The first-order conditions for (P̃ ret) are
detailed in Section 7.7. Furthermore, they are sufficient for this convex problem, see e.g. [LBD22,
Theorem 3.3].

In contrast with [BZ21], the optimal distribution is not explicit anymore due to the general
function κ(·). Instead, the optimal distribution is implicitly known through the fixed-point equa-
tion (7.13). We simplify this condition in the following theorem to end up with one-dimension
fixed-point equation on the mean consumption.

Theorem 7.2.4
Let Assumption 7.2.4 holds, and let δ : R→ R be a function given by

δ(m) = p− κ′(m) .

Then, the distribution µ∗ = N (m∗, σ
√

T ), where m∗ satisfies the fixed-point equation

m− xpi = T

2c
δ(m) , (7.14)

is optimal for the problem (P̃ ret). Moreover, the associated reward Bµ∗ is

Bµ∗(r) = τxnom + c

T

[
(xpi)2 − (m∗)2

]
+ qµ∗(r)δ(m∗) , (7.15)

and the associated retailer gain is

π∗ = m∗κ′(m∗)− κ(m∗) +
(

m∗ + xpi

2

)
δ(m∗)− τxnom . (7.16)

Corollary 7.2.2
Let Assumption 7.2.4 holds. Then, the fixed-point equation (7.14) admits a unique solution
m∗ ∈]0, xpi]. Moreover, the (unique) reward function is decreasing.
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Proof. The increasingness of κ′(·) suffices to ensure that (7.14) admits a unique solution. More-
over, as δ(0) ⩾ 0 ⩾ δ(xpi), the root of the equation T

2cδ(m)−m + xpi = 0 must belong to ]0, xpi].
As a consequence, δ(m∗) ⩽ 0 and the reward function Bµ∗ is decreasing.

The existence and uniqueness of a solution for (7.14) entails the existence and uniqueness of an
optimal reward for (P̃ ret). The knowledge of the bounds for m∗ along with the decreasingness
of δ(·) allows to use for instance a binary search algorithm to numerically find the optimal mean
consumption in logarithmic time.

Remark 7.2.1
For quadratic function s : m 7→ α2m2 + α1m + α0, the fixed point of (7.14) is analytically
known:

m∗ =
(
1 + α2T

c

)−1 (
xnom − (α1+cp)T

2c

)
.

The function δ(·) is here interpreted as the reduction desire of the provider, as consumption
reduction xpi − m∗ is proportional to |δ(m∗)|, see (7.14). It expresses the marginal benefit
coming from selling electricity (including the penalty function s provided by the regulator).

In the relaxed problem, we neglect that the reward is decreasing. However, this is directly
ensured by Corollary 7.2.2: the reward provided in Theorem 7.2.4 is decreasing if and only if δ
is negative at the optimum. Therefore, it is also optimal for the original retailer problem (P ret).

The optimal reward obtained in Eq. (7.15) is defined through the quantile of µ∗ and is
therefore unbounded. From the application viewpoint (it is not realistic to give unbounded
rewards to consumers) and for numerical issues, we now look at truncated reward. To this
purpose, let us define for any M > 0 the truncated optimal equilibrium distribution µM through
its p.d.f:

fµM (x) ∝ hM (x) := fnom(x) exp
(−yκ′(mµ∗) ∧M ∨ (−M)

2cσ2

)
. (7.17)

Theorem 7.2.5 (Bounded reward)
The total reward which leads to equilibrium µM and gives to agents the utility V pi + τxnom

is bounded for every consumption level and is defined as

∀x ∈ R, RµM (x) = V pi + τxnom − 2cσ2 ln
∫
R

hM (y)dy + xκ′(mµ∗) ∧M ∨ (−M) . (7.18)

Moreover, the mean consumption converges to the optimal one :

mµM = mµ∗ + O

(
e− M

2cσ2

)
.

Proof. From Lemma A.2., the total reward associated to µM is

RµM = V pi + τxnom + 2cσ2 ln (fµM (y)/fnom(y))

and satisfies the utility constraint by construction. The result is then obtained using the def-
inition of fµM . Besides, one can show (see [BZ21, Theorem 5.4]) that

∫
R hM dx = α(µ∗) +

O

(
e− M

2cσ2

)
and

∫
R xhM (x)dx = α(µ∗)mµ∗ + O

(
e− M

2cσ2

)
. As a consequence, mµM = mµ∗ +

O

(
e− M

2cσ2

)
.
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As the optimal (unbounded) total reward, its truncated analog obtained in (7.18) is linear in
the terminal consumption (inside the bounds [−M, M ]). This means that the consumers are
rewarded proportionally to their consumption reduction. Moreover, for both the theoretical
bonus (7.15) and the bounded one (7.18), τ only acts as a shift on the function in order to uplift
or lower the bonus received by each agent. Consequently, it is possible to a posteriori choose τ
in such a way that the bonus of a given ranking corresponds to a certain amount.

Heterogeneous population

We consider here the more general setting of a heterogeneous population, not studied yet in the
ranking games literature, which consists in a finite number of clusters K > 1. The transformation
which leads to (7.11) still applies, but the additional constraint Assumption 7.2.3 has to be
imposed to ensure the unitary reward is identical for every sub-population8.

As it will be seen below, we can recover explicitly solvable problems for a subclass of het-
erogeneous populations for which all agents of the overall population are similar up to a scaling
factor.

Proposition 7.2.2 (Explicit characterization for a sub-class of heterogeneous population)
Let suppose that the following statement holds:

∀k ∈ [K], xnom
k

xnom
1

= σk

σ1
= c1

ck
(:= θk) . (7.19)

Then, any µ1, . . . , µK equilibrium distributions associated to a common unitary reward β

solution of (P ret) satisfies fµk
(y) = 1

θk
fµ1

(
y
θk

)
for all k ∈ [K]. Moreover, the retailer’s

profit problem simplifies to

π∗ := θ̄ max
β∈B

pmµ1 − κ̃(mµ1)− xnom
1

∫ 1

0
β(r)dr

∣∣∣∣∣∣∣∣
R1(x, r) = xnom

1 β(r)− px

µ1 = ϵ1(R1)
V1(R1, µ1) ⩾ V pi

1 + τxnom
1

 , (7.20)

with κ̃(m) = θ̄−1κ(θ̄m) and θ̄ = ∑
k∈[K] ρkθk.

Proof. Using the characterization of the equilibrium in (7.9), qµk
(r) = θkqµ1(r). Therefore,

Fµk
(y) = Fµ1

(
y
θk

)
and fµk

(y) = 1
θk

fµ1

(
y
θk

)
. Moreover,

γ(µk) =
∫
R

fnom
k (x) exp

(
xnom

k β(Fµk
(x))− px

2ckσ2
k

)
dx

=
∫
R

1
θk

fnom
1

(
x
θk

)
exp

xnom
1 β

(
Fµ1

(
x
θk

))
− p x

θk

2c1σ2
1

 dx = γ(µ1) .

Therefore, Vk(Rk, µk) = θkV1(R1, µ1). As V pi
k = θkV pi

1 , the utility constraint is satisfied for
every sub-population.

Proposition 7.2.2 shows that in this specific case of heterogeneous population, the problem boils
down to the homogeneous framework, up to a re-scaling of the cost function κ. Therefore, Theo-
rems 7.2.4 and 7.2.5 and corollary 7.2.2 still apply, and in particular, the optimal distribution is

8Using Lemma 7.7.2, there exists a common unitary reward leading to equilibrium µ1, . . . , µK if and only if
there exists for all k ∈ [K] a constant Ck such that ckσ2

1
xnom

k
ln
(

fµk
(x)

fnom
k

(x)

)
= c1σ2

1
xnom

1
ln
(

fµ1 (x)
fnom

1 (x)

)
+ Ck for all x ∈ R.
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µ∗
1 = N (m∗

1, σ1
√

T ) where µ∗
1 is uniquely determined by the equation m∗

1−xpi
1 = T

2c1
(p− κ̃′(m∗

1)).
The condition (7.19) corresponds to the case where (i) the volatility of the noise is proportional
to the nominal consumption and where (ii) the price elasticity is identical for all sub-populations
(see Section 7.4.1 and (7.25) for the link between the cost of effort ck and the elasticity). The
second statement (ii) may be more debatable, as the elasticity of a consumer intuitively depends
on the equipment of the housing (for instance the type of heating).

7.3 Numerical resolution in the non-uniform heterogeneous case

To deal with the general case of a heterogeneous population, we develop a numerical algorithm
to compute the optimal reward from the original problem P ret. For a given N ∈ N, we denote
by ΣN the uniform discretization of the interval [0, 1] by N points, such that ΣN := {0 = η1 <
η2 < . . . < ηN = 1}. Let M ∈ R+, then we define the class of bounded piecewise linear rewards
adapted to ΣN as

B̂N
M :=

{
r ∈ [0, 1] 7→

N−1∑
i=1

1r∈[ηi,ηi+1[

[
bi + bi+1 − bi

ηi+1 − ηi
(r − ηi)

] ∣∣∣∣∣ b ∈ [−M, M ]N

b1 ⩾ . . . ⩾ bN

}
.

The reward function obtained as a linear interpolation of a non-increasing vector b is denoted
by β̂[b]. For this special class of reward, the computation of some integrals can be simplified.
The integral that appears in the equilibrium characterization (7.8) becomes∫ 1

0
exp

(
−xnom

k β̂[b](r)
2ckσ2

k

)
dr

= 2ckσ2
k(xnom

k )−1
N−1∑
i=1

ηi+1 − ηi

bi+1 − bi

[
exp

(
−xnom

k bi+1
2ckσ2

k

)
− exp

(
−xnom

k bi

2ckσ2
k

)]
and the integral of the bonus simplifies into∫ 1

0
β̂[b](r)dr =

N−1∑
i=1

(ηi+1 − ηi)
(

bi+1 + bi

2

)
.

Box maximization. We define the following transformation:

ϕN
M : [−1, 1]N → [−M, M ]N

z 7→ b
where

{
b1 = Mz1

bi = 1
2(bi−1 −M) + 1

2(bi−1 + M)zi, i > 1
. (7.21)

For any M ∈ R+ and N ∈ N, the function ϕN
M is invertible and

(
ϕN

M

)−1
is defined as:

(
ϕN

M

)−1
(b) =


z1 = 1

M
b1

zi = 2bi − bi−1 + M

bi−1 + M
, i > 1

As an example, Figure 7.2 displays (ηi, zi)i∈[N ] and the corresponding bonus function β̂[ϕN
M (z)].

We denote by πλ : B → R the Lagrangian function of (P ret), defined as

πλ(β) :=


pmµ − κ(mµ)−

∑
k∈[K]

ρkxnom
k

∫ 1

0
β(r)dr

−λ
∑

k∈[K]
ρk

(
V pi

k + τxnom
k − Vk(Rk, µk)

)+

∣∣∣∣∣∣∣∣∣∣∣
Rk(x, r) = xnom

k β(r)− px

µk = ϵk(Rk)


, (7.22)
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where (·)+ := max(0, ·). For fixed Lagrangian multiplier λ > 0, πλ constitutes a relaxed version
of the initial problem (P ret), where violations of the utility condition are not fully forbidden but
rather strongly penalized in the objective for large values of λ.

Proposition 7.3.1 (Maximization with box constraints)

max
z∈[−1,1]N

πλ(β̂[ϕN
M (z)]) = max

β∈BN
M

πλ(β) . (7.23)

Proof. By definition of BN
M , maxz∈[−1,1]N πλ(β̂[ϕN

M (z)]) ⩽ maxβ∈BN
M

πλ(β). As the map ϕN
M is

invertible, for any reward β ∈ B̂N
M , there exists z ∈ [−1, 1]N such that β = β̂[ϕN

M (z)], hence
the reverse inequality. Optimizing on B̂N

M is then equivalent to optimize on [−1, 1]N via the
transformation ϕN

M .
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)

Figure 7.2: Example of transformation using function ϕN
M for M = 4 and N = 10

Algorithm 10 aims at maximizing the function πλ. To this end, we do not directly search
the optimal reward but, as described previously, we use the invertible map ϕM

N to search in
the space [−1, 1]N , see Proposition 7.3.1. From a computational viewpoint, the search space
is now independent of M , and the decreasingness of the bonus function is directly encoded in
the transformation. Therefore, the only remaining constraints are the ones ensuring that the
solution belongs to the unit box. The search is then achieved by black-box optimization, since
the evaluation of πλ can be explicitly done using (7.8)-(7.9)). In the numerical results, we use
CMA-ES ([Han06]) as optimization solver through the C++ interface ([Fab13]). Convergence
properties are analyzed in [HO97], and we display in Section 7.4 the numerical convergence of
the objective along the iterations.

Remark 7.3.1 (i) The evaluation of πλ linearly depends on the number of sub-populations
(i.e., K) since, given a reward, the problem boils down to the computation of the
equilibrium distributions for the K sub-populations.

(ii) The reward function found by Algorithm 10 is bounded and decreasing, but might
violate the utility constraint “Vk(R, µk) ⩾ V pi

k + τxnom
k ” for small penalization values

of λ. Note that if the optimizer for the discrete problem on a sufficiently precise grid is
a global optimizer, then we get an ε-solution of the initial problem, see Theorem 7.2.5.
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Algorithm 10 Optimization of the reward
Require: M , N , λ, ΣN , solver Π, initial point z0,

Construct Θ as
Θ : z ∈]−1, 1]N 7→ πλ

(
β̂[ϕN

M (z)]
)

(7.24)

Apply Π to maximize Θ (starting from z0) and get the final state zΠ.
return βΠ = β̂[ϕN

M (zΠ)].

7.4 Application to Energy Savings

In this section, we develop a case study related to the French market of Energy Saving Certificates
based on the use of realistic data. We compare the results with existing reward mechanisms,
and analyze them in terms of consumption reduction (relatively to the target imposed by the
European commission).

7.4.1 Instances

Consumers. We consider the case where the retailer aims at designing a reward for 4 types
of consumers, listed in Table 7.1. Data on the average annual consumption correspond to the
French case. The consumers are here distinguished according to the surface of the housing

Distribution Housing Heating Nb occupants Consumption
(mean/year)

Sub-pop. 1 26% House 70 m2 Electric 3 9.9 MWh
Sub-pop. 2 49% House 70 m2 Non-electric 3 1.5 MWh
Sub-pop. 3 9% House 150 m2 Electric 4 20 MWh
Sub-pop. 4 16% House 150 m2 Non-electric 4 2.2 MWh

Table 7.1: Annual electricity consumption by type of usage.
The consumption data are extracted from “Agence France Electricité”9.

and the type of heating, which can represent up to 90% of the annual consumption. A more
elaborated clustering might also take into account the location of the housing or the age of the
occupants, but we focus here on the two main factors affecting the consumption. We suppose for
simplicity that the overall population is composed of these four sub-populations, representing a
total of 33 millions of households (current number of households in France). The distribution
of the sub-populations is then computed by considering that there are thrice as many 70m2-
houses as 150m2-houses (the mean surface in France10 in around 90m2) and that a 35%11 of the
French households is equipped with electric heating. This gives us a mean annual consumption
of 5.46MWh, or a total annual consumption of 180TWh. In comparison, the French annual
consumption for residential households is around 155TWh. This slight over-estimation is due
to the fact that we only consider here houses with three or four occupants.

We suppose that the consumption levels displayed in Table 7.1 corresponds to customers
having subscribed to a regulated offer, corresponding to a fixed price of electricity p. As showed

10https://www.lamaisonsaintgobain.fr/blog/insolites/metre-carre-et-confort-connaissez-vous-la-
moyenne-francaise

11https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-
francais-1772

11https://www.agence-france-electricite.fr/consommation-electrique/moyenne-par-jour/

https://www.lamaisonsaintgobain.fr/blog/insolites/metre-carre-et-confort-connaissez-vous-la-moyenne-francaise
https://www.lamaisonsaintgobain.fr/blog/insolites/metre-carre-et-confort-connaissez-vous-la-moyenne-francaise
https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-francais-1772
https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-francais-1772
https://www.agence-france-electricite.fr/consommation-electrique/moyenne-par-jour/


7.
R

an
ki

ng
ga

m
es

7.4. APPLICATION TO ENERGY SAVINGS 173

in Corollary 7.2.1, nominal consumption (xnom) and consumption under price p (xpi) are linked
by the relation xpi = xnom − p

2c (we consider annual consumption in Table 7.1, i.e., T = 1).
In [NYK20], the authors used several utility concave utility function to model the price

elasticity of the electricity demand. In particular, they studied a quadratic utility function
similar to the cost of effort we consider: with T = 1 and constant effort, V pi

k = maxx∈R{−px−
c(x − xnom)2} . This corresponds to the welfare maximization with quadratic utility, defined
as U(x, xnom) = −c(x − xnom)2. For this type of utility function, the elasticity is defined as
η = 1− xnom

xpi , see e.g. [NYK20, Eq. 19]). As a consequence, using the relation between xpi and
xnom and the definition of the elasticity, one can obtain the following relations:

c = −p

2ηxpi , xnom = xpi(1− η) . (7.25)

Several values of price elasticity are reported in [NYK20; Cse20], and we use here η = −0.32,
which corresponds to the estimation of the long-run residential price elasticity made by [Bön+15]
on the EPEX spot market between 2012 and 2014. Price elasticity is always studied at the scale
of a country (or even broader), and therefore we take an estimate which is identical for all
the agents (uniform elasticity). In the numerical results, we will analyze the influence of a
non-uniform elasticity, see Section 7.4.

Regarding the volatility, in the Low Carbon London pricing study, Carmichael et al. [Car+14]
reported a deviation of ±200 Watt for a demand of 1000 Watt. We take here a deviation σ

√
T

equals to 10% of the total consumption XT under zero effort for each of the four sub-populations.
Finally, we consider here for p the price of the regulated offer (“Tarif Bleu”) in 2019, that is 145
e/MWh12.

ck (e/MWh2) σk (MWh)
Sub-pop. 1 24 0.57
Sub-pop. 2 156 0.09
Sub-pop. 3 12 4.15
Sub-pop. 4 107 0.13

Table 7.2: Cost of effort and volatility parameters.

Retailer cost. We consider here the year 2019 (just before the energy crisis). We display
in Table 7.3 the marginal cost and the annual production for each type of power plants.

Power plant Marginal cost
(e/MWh)

Production
(TWh)

Hydro/Wind/Solar 0 to 15 115
Nuclear 30 380

Gas 70 30
Coal 86 7
Fuel 162 5

Table 7.3: Marginal price and annual production. Source: RTE Bilan électrique 2019 and
Ademe

12https://prix-elec.com/tarifs/evolution/2019

https://prix-elec.com/tarifs/evolution/2019
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By aggregating the production capacities by increasing cost (as in merit order curves for
day-ahead markets), we can obtain an estimate of the supply cost according the production,
see Figure 7.3. The total cost is then obtained by dividing the supply cost by 0.35 as this
approximately corresponds to the weight of supply in the total cost13. To fit with our situation
where we only look at the residential part of the consumption, we shift the cost curve so that a
residential consumption of 180TWh is “cleared” by a gas power plant (as it is often the case in
the day-ahead market) and we regularize it to be differentiable.
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Figure 7.3: Estimation of supply cost through marginal costs

Valuation of energy savings. Electricity retailers are obliged by the French government14

to reduce the global consumption of their customers, in the context of energy efficiency and
sobriety. From 2024 to 2030, the European regulation will impose a reduction target of 1.49%
of the annual consumption, and aspire to reach 1.9% by the end of 2030. If a retailer does not
succeed in gathering a sufficient amount of Energy Saving Certificates, a penalty of 15e/MWh
is applied (for “classic” certificates)15. In addition, each provider can buy (resp. sell) on a
market a certain quantity of certificates if the quantity of energy consumption overshoots (resp.
undershoots) the target. In 2023, the price of certificates is around 7.5e/MWh16. We consider
here a target of 5% of consumption reduction over 3 years (T = 3), corresponding to a mean
consumption of 15.6MWh for the three years. The valuation function is then defined as sθ(m) =
softplusθ(15(m−15.6)), where softplusθ = θ−1 log(1+exp(θx)). Figure 7.4 shows the two extreme
cases : a purely liquid market (θ = 0) and the absence of exchange (θ = ∞). We choose here
θ = 0.3 to represent an intermediate case.

7.4.2 Numerical Results

We use N = 20 discretization points for the bonus description and M = 0.1p. This means that
the maximal unitary bonus given to an agent cannot exceed 10% of the electricity price. We
take z0 ≡ 1 as initial guess. The main advantage of this initial guess is that it satisfies the

13https://www.ecologie.gouv.fr/commercialisation-lelectricite
14Loi POPE, 2005 : https://www.ecologie.gouv.fr/dispositif-des-certificats-deconomies-denergie
15https://www.calculcee.fr/les-primes-cee.php
16https://c2emarket.com/

https://www.ecologie.gouv.fr/commercialisation-lelectricite
https://www.ecologie.gouv.fr/dispositif-des-certificats-deconomies-denergie
https://www.calculcee.fr/les-primes-cee.php
https://c2emarket.com/
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Figure 7.4: Penalty function s(·) given by the regulator.

utility constraint (if τ < M). The initial standard deviation parameter of CMA-ES17 was set to
5%. The numerical results18 – parallelized on 10 threads – were obtained on a laptop i7-1065G7
CPU@1.30GHz.

Uniform elasticity. Figure 7.5 shows the results for the test case described in Section 7.4.1,
where the price elasticity is identical for all the sub-populations. As a consequence, Proposi-
tion 7.2.2 applies and we can analyze in this setting the performance of the numerical solving
procedure: in Figure 7.5a, the reward found by Algorithm 10 is very close to the (theoretical)
optimal reward, showing that the solver successfully finds the global optimum. About the com-
putational cost, the algorithm converged in approximately 3000 iterations (around 400 seconds),
but succeeded in reducing the optimality gap to less than 0.5% in 100 iterations.

We depict in Figure 7.5 the distribution of the terminal consumption for the four sub-
populations with and without the bonus. As shown in Corollary 7.2.1, the distribution without
reward is a Gaussian process centered in xpi (which corresponds to three times the annual
consumption displayed in Table 7.1). The terminal distribution with the optimal reward is then
a shift of this normal distribution – see Proposition 7.2.2. We observe that, as expected, the
terminal distribution is also identical for the four sub-populations, up to a scaling (fµ∗

k
(x) =

θ−1
k fµ∗

1
(θ−1

k x)). Here, the mean pluri-annual consumption on the whole population decreased
from 16.38MWh to 15.7MWh, giving a saving ratio of 4.1%. This has to be compared with
the initial objective of the regulator (a reduction of 5% of the pluri-annual consumption): the
retailer found a compromise between the penalty imposed by the regulator, the cost to propose
a reward mechanism and its natural willing to sell electricity.

The optimal bonus offered to customers takes negative values for the 1% consuming the
most (we choose τ a posteriori in this sense) and goes up to more than 4e per MWh, which
corresponds to a bonus of 66e in average over the three years. This should be compared for
instance with the “Bonus Conso” proposed by TotalEnergies19, where 30e are proposed for a
reduction of 5% over one year.

17We use the C++ implementation of CMA-ES, available at https://github.com/CMA-ES/libcmaes.
Practical hints are provided for the choice of the parameters.

18The whole code is available on the GitHub repository: https://github.com/jacquq/rk_games_electricity.
19https://www.totalenergies.fr/bonus-conso

https://github.com/CMA-ES/libcmaes
https://github.com/jacquq/rk_games_electricity
https://www.totalenergies.fr/bonus-conso
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Figure 7.5: Numerical results for the four populations described in Tables 7.1 and 7.2 (scalable
case).

The N-players game. We now numerically illustrate the behavior of several individual con-
sumers incentivized by the optimal bonus found in Figure 7.5a. The simulation of the trajectories
is done using a Euler-Maruyama scheme, see e.g. [NT15] for details on the discretization, as for
convergence rates.

Figure 7.6 displays the evolution of the forecasted consumption X
a∗

1
1 , from which we sub-

tracted the deviation coming from price in order to clearly distinguish the supplementary effort
made through the influence of the bonus. This corresponds to the quantity

Y1(t) = X
a∗

1
1 (t) + p(t− T )

2c1
,

where a∗
1 is the optimal effort in the presence of the bonus. We observe the same consumption

decrease as in Figure 7.5c, and this reduction has a linear behavior. Indeed, we showed in (7.18)
that the optimal total reward is linear in x, and for any reward Rk,µ = α0 − α1x, the corre-
sponding effort is a∗

k(t) = − α1
2ck

– see (7.6) – and the consumption reduction is then α1
2ck

t. This
has a strong implication on the behavior of the model: the effort made at time 0 ⩽ t ⩽ T by
a consumer is independent from his current situation, i.e., is not influenced by the hazard Wt.
This means that a consumer will not stop/reduce his effort even if he is undergoing an adverse
hazard.
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Figure 7.6: Deviation of the consumption from the no-bonus case
Trajectories for 20 consumers from sub-population 1.

Non-uniform price elasticity. We now slightly change the previous test case by considering
that the price elasticity is not constant across the population, but rather depends on the char-
acteristics of each agent. In particular, we consider here that the price elasticity of a consumer
with electric heating is greater than someone with another heating technology. This greater
specific adaptability is for instance exploited by some energy providers20. To see the influence
of non uniform elasticity, we divide by two the elasticity of sub-populations 2 and 4 – as they
do not have electric heating – and multiply by 1.5 the elasticity of sub-populations 1 and 3. In
this setting, the scaling condition (7.19) is no longer satisfied, and so, contrary to the previous
case, we are not able to find the theoretical optimal bonus function, but only able to perform a
numerical optimization using Algorithm 10.

Figure 7.7 shows the results for the test case with modified elasticity parameters. We use here
N = 40 discretization points and let the algorithm runs up to 5000 iterations. The convergence
of Algorithm 10 is still fast since the gap between the solution at iteration 100 was already close
to the final solution to less than 1%. About the terminal consumption distribution, we observe
that the mean consumption for sub-populations 1 and 3 is reduced by 5.3% whereas the mean
consumption for sub-populations 2 and 4 is reduced by 2.3%. Indeed, it reflects the increase
(resp. decrease) of price-elasticity for 1 and 3 (resp. 2 and 4). This should be compared with
the uniform consumption reduction of 4.1% in the previous setting.

The unitary bonus found by Algorithm 10 is lower than in Figure 7.5: for example, in the
uniform-elasticity case, every agent with a ranking lower than 0.6 received a unitary bonus
greater than 2e per MWh, while in the non-uniform case, only consumers with ranking lower
than 0.2 can claim this level of reward. This highlights the fact that the retailers does not need
to propose a reward as huge as in the previous case since the reduction effort is mostly endorsed
by users with electric heating, now more compliant to lower their consumption.

20https://www.sowee.fr/

https://www.sowee.fr/
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Figure 7.7: Numerical results for the four populations with different price elasticity.

7.5 Extensions

We propose in this section several extensions to fit with more general settings.

Energy consumption with common-noise. The add of common-noise is not rare in the
modeling of electricity consumption. But in this present case, it does not impact the retailer
problem. Intuitively, as the reward is determined by the ranking of the agents, an identical
perturbation of the consumption will not modify the rankings, and so the effort made by the
agents is independent of the common-noise.

Let us prove this intuitive behavior. To this purpose, we fix a sub-population k ∈ [K], and
suppose that the dynamics is now described as:

dXa
k (t) = ak(t)dt + σkdWk(t) + σ0dW 0(t), Xk(0) = xnom

k . (7.26)
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Proposition 7.5.1 (Translation invariance of the effort)
Let Rk be the total reward for sub-population k (satisfying Assumption 7.2.2) and µk be
the equilibrium distribution under Rk and without common-noise (given by (7.8)-(7.9)).
Then

µ0
k := x 7→ µk(x− σ0W 0(T )) (7.27)

is a (random) equilibrium distribution under Rk and dynamics (7.26).

Proof. For all x, q ∈ R and µ ∈ P(R), we have:

Rk,µk
(x + q) = Bk(Fµk

(x + q))− p(x + q) = Bk(Fµk(·+q)(x))− p(x + q) = Rk,µk(·+q)(x)− pq .

Therefore, according to the expression of the optimal effort in (7.6)

uk(t, x + q, µ) = q−1uk(t, x, µ(·+ q))

and ak(t, x + q; µk) = ak(t, x; µ(· + q)). Therefore, the drift is translation invariant, and the
results of [LW15] apply: µ0 defined in (7.27) is an equilibrium distribution for the dynamics
with common-noise.

In contrast with the purely rank-based case, total rewards satisfying Assumption 7.2.2 are not
translation invariant. Nonetheless, the drift obtained through the optimal effort is translation
invariant, enabling to use the results of [LW15]. For a common-noise W 0 such that E[W 0(·)] = 0,
maximizing the (expected version of the) profit, defined in (P ret), will boil down to the same
problem, and so will lead to the same optimal unitary reward.

General reward R(x, r). We consider here a more general form of reward, coupling the
terminal consumption and the ranking. Therefore, Assumption 7.2.2 is no longer satisfied and the
equilibrium cannot be explicitly computed with Theorem 7.2.4. Instead, one can used fixed-point
resolution techniques to compute the equilibrium.To this purpose, let us denote by W1(f1, f2)
the 1-Wasserstein metric for distribution f1, f2 ∈ P1(R) = {µ ∈ P(R) :

∫
R |x|dµ(x) < ∞}.

Algorithm 11 follows the standard way to numerically compute mean-field Nash equilibria –
see [AL20] – by iteratively updating the distribution using the best response operator. Here,
the operator is explicitly given by (7.5), which still applies for general forms of reward function,
see [BZ21].

Instead of Picard iterates (li = 1), a decreasing damping li =
(

1
i+1

)p
, p ∈ N can be used.

The latter sequence of inertial parameters defines iterates of Krasnoselskii-Mann type, which
has been proved to converge for pseudo-contractive map in Hilbert space, see [Raf07]. Such
a damping has been used for example to solve Linear-Quadratic mean-field control problems
in [Gra+16].

We then show that the uniqueness of the reward function is no longer true in the general
setting, and there exists a family of equivalent reward function, going from purely rank-based
rewards to purely consumption-based reward ones:

Proposition 7.5.2 (Invariance)
Let R∗(x, r) be an optimal reward function for the following problem

max
R(x,r)

{
−κ(mµ)−

∫
R

Rµ(x)fµ(x)dx

∣∣∣∣∣ µ = ϵ(R)
V (R, µ) ⩾ V pi

}
(7.28)

This equilibrium distribution obtained with R∗ is denoted by µ∗. Then,
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(i) the purely rank-based reward function B̂ : r 7→ R∗(qµ∗(r), r) is also an optimal reward,

(ii) the reward function R̂ : x 7→ R∗(x, Fµ∗(x)) is also an optimal reward.

Proof. By definition, the two reward functions B̂ and R̂ also satisfy the characterization of
the equilibrium (7.7) with µk = µ∗. Therefore, under these rewards, agents reach the same
equilibrium as with R, and their utility is identical. Morover, the objective in (7.28).

Algorithm 11 Fixed-point Resolution
Require:

- initial p.d.f. f
µ

(0)
k

of cluster k,

- error tolerance ε,
- iteration maximum nmax,
- sequence of damping coefficients {li}i∈N.

d, i← 2ε, 0
while d ⩾ ε or n ⩽ nmax do

f
µ

(i+1/2)
k

← Φk(f
µ

(i)
k

) ▷ Best-response map defined in Definition 7.2.1
f

µ
(i+1)
k

← lifµ
(i+1/2)
k

+ (1− li)fµ
(i)
k

▷ damping li

d←W1

(
f

µ
(i)
k

, f
µ

(i+1)
k

)
▷ distance between two iterates

i← i + 1
end while

In practice, Proposition 7.5.2 has very useful implications. It states that complicated reward
policies simplify into simple rules. The first item shows that we can construct a purely competitive
game in the sense that the consumers receive incentives only through their rank. The second
item shows that we can construct a decentralized reward since the incentive of each customer
only depends on their own consumption. Note that this notion of invariance applies at the
equilibrium, and the equivalence of the reward is no longer true outside the equilibrium.

Time-dependent effort cost. In the context of the ecological transition, the consumers are
more willing to contribute to the energy reduction, and therefore the effort cost c can be viewed
as a time dependent parameter, modeling the change of customers’ behavior.

In this case, with a cost profile ck(t), t ∈ [0, T ] for each cluster k, the consumer’s problem
becomes

Vk(R, µk) := sup
a

E

[
Rµk

(Xa
k (T ))−

∫ T

0
ck(t)a2

k(t)dt

]
. (7.29)

As a direct extension of [BZ16], we have the following existence result:

Theorem 7.5.1
Assume that the cost profiles are bounded such that there exist (ck, ck) verifying for all
t ⩽ T

0 < ck ⩽ ck(t) ⩽ ck .

Then, there exists at least one equilibrium.

Nonetheless, there is no more explicit formula (even for the best response of the agents) in
presence of time-varying cost of effort, as the Schrödinger bridge method requires a quadratic cost
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of effort that is constant over time. To illustrate the behavior of the agents with a time-dependent
cost of effort, we draw in Figure 7.8 the trajectories of the same 20 consumers as in Figure 7.6
obtained with the incentive depicted in Figure 7.5a and a cost of effort ck(t) = 24−1.5t e/MWh.
As expected, the energy savings are greater than the previous case (the terminal consumption
is now around 27.6MWh whereas it was around 28.5MWh with ck(t) = 24e/MWh.
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Figure 7.8: Deviation of the consumption from the no-bnous case.
Trajectories of 20 consumers from sub-population 1 obtained with the optimal control from the

mean-field approximation and a time-dependent cost of effort.

7.6 Conclusion

In this work, we study a Principal-Agent mean-field game where the incentive designed by
the principal is based on the ranking of each agent, initiating a competition between them.
This specific framework allows us to derive explicit formula for the (unique) mean-field Nash
equilibrium for the agents’ problem. Incorporating this characterization in the principal profit
maximization problem, we prove in the homogeneous setting that the optimal reward can be
obtained by solving a convex reformulation of the problem in the distribution space. We exploit
the optimality conditions of the latter to then get the optimal reward through a fixed-point
equation. In the general case, we show that the problem can be recast as a finite-dimensional
maximization over a box, which can be efficiently solved by numerical algorithms.

We apply the results to electricity markets where a provider aims at designing a reward for
its consumers portfolio in order to incentivise them to energy sobriety. We construct realistic
instances for the French market of Energy Saving Certificates, and numerically observe that the
rank-based rewards can constitute efficient mechanisms to make substantial energy reduction,
while staying sufficiently simple to be easily grasped by the consumers.
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7.7 Appendix

In this section, we collect several results and proofs.

Lemma 7.7.1

fnom
k (x) exp (τx) = exp

(
τxnom

k + 1
2τ2σ2

kT

)
φ
(
x; xnom

k + τσ2
kT, σk

√
T
)

. (7.30)

Proof.

fnom(x) exp (τx) = 1
σ
√

T
√

2π
exp

(
−(x− xnom)2 − 2τσ2Tx

2σ2T

)

= 1
σ
√

T
√

2π
exp

(
−(x− [xnom + τσ2T ])2

2σ2T
+ τxnom + 1

2τ2σ2T

)

Lemma 7.7.2 (Set of attainable equilibria) (i) For a given cluster k, the set of equilibria
attainable by an additional reward function B is given by

Ek = {µ ∈ P+(R) : 2ckσ2
k ln ζk,µk

(qµk
(r)) + pqµk

(r) is bounded and decreasing} ,

with ζk,µ := fµ/fnom
k .

(ii) If µk ∈ Ek, then

ϵ−1
k (µk) =

{
2ckσ2

k ln ζk,µk
(qµk

(r)) + pqµk
(r) + Ck : Ck ∈ R

}
(iii) Suppose that additional reservation “utility” constraint Vk(R, µk) ⩾ V pi

k + τxnom
k and

budget constraint
∫ 1

0 B(r)dr ⩽ K, then the constant Ck in (ii) is restricted to

V pi
k + τxnom

k ⩽ Ck ⩽ K − 2ckσ2
k

∫ 1

0
ln ζk,µk

(qµk
(r))dr − pmµk

.

In particular, such a Ck exists if and only if

2ckσ2
k

∫ 1

0
ln ζk,µk

(qµk
(r))dr − pmµk

⩽ K − V pi
k − τxnom

k .

Proof. Items (i) and (iii) directly comes from [BZ21]. For (ii), the condition of Theorem 7.2.2
is verified: ∫ r

0
exp

(
−Rµ(qµ(z))

2cσ2

)
dz =

∫ r

0
(ζµ(qµ(r)))−1 dz =

∫ qµ(r)

−∞
fnom(z)dz .

As the uniqueness is concerned, suppose that B and B′ lead to the same distribution µ with
p ̸= 0. Then, B and B′ lead to the same distribution ν with p = 0, see Theorem 7.2.3. Therefore,
as shown in [BZ21], B and B′ are equal up to a constant.
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Proof of Theorem 7.2.3

We give here the proof for a given class and, for simplicity, we omit the dependence in k.

Characterization of an equilibrium. First, suppose that ν is an equilibrium distribution for
the case p = 0. Let γ ∈ R whose value will be determined later. By definition of fν (see (7.5)),
we get∫ r

0
exp

(
−B(z)− p(qν(z) + γ)

2cσ2

)
dz =

∫ qν(r)

−∞
exp

(
−B(Fν(x))

2cσ2 + p

2cσ2 (x + γ)
)

fν(x)dx

= e
p

2cσ2 γ

γ(ν)

∫ qν(r)

−∞
exp

(
−B(Fν(x))

2cσ2 + p

2cσ2 x

)
fnom(x) exp

(
B(Fν(x))

2cσ2

)
dx.

Using (7.30) with τ = p
2cσ2 and the change of variables u = x−(xnom+ pT

2c
)

σ
√

T
, we deduce

∫ r

0
exp

(
−B(z)− p(qν(z) + γ)

2cσ2

)
dz = 1

γ(ν)e
1

2cσ2

(
γ+pxnom+ T p2

4c

) ∫ qν(r)

−∞
φ

(
x; xnom + pT

2c
, σ
√

T

)
dx

= 1
γ(ν)
√

2π
e

1
2cσ2

(
γ+pxnom+ T p2

4c

) ∫ qν (r)−(xnom+ pT
2c )

σ
√

T

−∞
exp

(
−u2

2

)
du

= 1
γ(ν)e

1
2cσ2

(
γ+pxnom+ T p2

4c

)
N

(
qν(r)− (xnom + pT

2c )
σ
√

T

)
.

Therefore, taking γ = −pT
2c , we end up with

N


[
qν(r)− pT

2c

]
− xnom

σ
√

T

 =

∫ r
0 exp

(
−B(z)−p[qν(z)− pT

2c ]
2cσ2

)
dz∫ 1

0 exp
(
−B(z)−p[qν(z)− pT

2c ]
2cσ2

)
dz

.

By setting qµ(r) = qν(r) − pT
2c , we recover the characterization of an equilibrium (see Theo-

rem 7.2.2).
Conversely, suppose now that µ is the equilibrium for p ∈ R. Then, following the same steps,

N


[
qµ(r) + pT

2c

]
− xnom

σ
√

T

 =
∫ r

0 exp
(
−B(z)

2cσ2

)
dz∫ 1

0 exp
(
−B(z)

2cσ2

)
dz

.

The distribution ν defined as qν(r) = qµ(r) + pT
2c is a valid equilibrium.

Uniqueness of the equilibrium. Suppose that there exist two distinct equilibrium distributions
µ and µ′ such that qµ ̸= qµ′ . Then by the above proof, we derive the existence of two distinct
equilibrium distributions ν and ν ′ for the case p = 0 satisfying qν ̸= qν′ . We get a contradiction
by the uniqueness of the equilibrium for purely rank-based rewards.

Proof of Lemma 7.2.1

We apply the KKT conditions on (P̃ ret) (relaxing the positivity assumption on f): for µ∗-almost
every x in R, 

0 = xκ′(mµ∗) + 2cσ2 ln
(

fµ∗(x)
fnom(x)

)
+ λ,∫ +∞

−∞
fµ∗(y)dy = 1

, λ ∈ R
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From which we can deduce that fµ∗(x) = fnom(x) exp
(
−xκ′(mµ∗ )+λ

2cσ2

)
, which is positive for all

x. The Lagrange multiplier λ is then computed using the normalization condition on fµ∗ .

Proof of Theorem 7.2.4

Integrating (7.13) gives us

mµ =
∫ +∞

−∞
yfµ(y)dy = 1

α(µ)

∫ +∞

−∞
yfnom(y) exp

(
−y

κ′(mµ)
2cσ2

)
dy

=
∫ +∞

−∞
yϕ

(
y; xnom − Tκ′(mµ)

2c
, σ
√

T

)
dy

= xnom − Tκ′(mµ)
2c

= xpi + T

2c
δ(mµ) ,

where we use Lemma 7.7.1 between the two first lines in order to recover a gaussian process.
We can now recover the reward:

B∗(r) = V pi + τxnom + 2cσ2 ln (ζµ∗(qµ∗(r))) + pqµ∗(r)

= V pi + τxnom + qµ∗(r)
[
p− κ′(mµ∗)

]
− 2cσ2 ln

(∫ +∞

−∞
fnom(y) exp

(
−y

κ′(mµ∗)
2cσ2

)
dy

)
= V pi + τxnom + c

T

[
(xnom)2 −m2

]
+ qµ∗(r)δ(mµ∗)

= τxnom + c

T

[
(xpi)2 −m2

]
+ qµ∗(r)δ(mµ∗) ,

where we use Lemma 7.7.1 to get the value of the integral. From the definition of the provider
objective,

π = pm− κ(m)−
∫ 1

0
B∗(r)dr

= pm− κ(m)− c

T

[
(xpi)2 −m2

]
−m

[
p− κ′(m)

]
− τxnom

= mκ′(m)− κ(m) +
(

xpi + m

2

)
2c

T

(
m− xpi

)
− τxnom

= mκ′(m)− κ(m) +
(

xpi + m

2

)
δ(m)− τxnom .

Proof of Proposition 7.5.2

(i) By construction, the reward B̃ is also bounded and decreasing. Then, the cost induced by
the additional reward is the same with R∗ and B̂:∫ +∞

−∞
R∗

µ∗(x)fµ∗(x)dx =
∫ 1

0
B̂(r)dr .

Finally, µ∗ is also an equilibrium for the reward B̂:

1
γ̂(µ∗)fnom(x) exp

(
B̂(Fµ∗(x))

2cσ2

)
= 1

γ∗(µ∗)fnom(x) exp
(

R∗
µ∗(x)
2cσ2

)
= fµ∗ ,

where γ̂ and γ∗ are computed respectively with B̂ and R∗. The last equality comes from
the characterization of an equilibrium. Therefore, the reward function B̂ satisfies the
constraints and produces the same objective value as R∗. It is also optimal.

(ii) The proof follows the same ideas as at the previous item.
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Tight Bound for Sum of
Heterogeneous Random Variables:
Application to Chance Constrained

Programming
***

This chapter is based on the submitted chapter [JZ23].
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Abstract. We study a tight Bennett-type concentration inequality for sums of heterogeneous
and independent variables, defined as a one-dimensional minimization problem. We show
that this refinement, which outperforms the standard known bounds, remains computation-
ally tractable: we develop a polynomial-time algorithm to compute confidence bounds, proved
to terminate with an ϵ-solution. From the proposed inequality, we deduce tight distributionally
robust bounds to Chance-Constrained Programming problems. To illustrate the efficiency of our
approach, we consider two use cases. First, we study the chance-constrained binary knapsack
problem and highlight the efficiency of our cutting-plane approach by obtaining stronger solu-
tion than classical inequalities (such as Chebyshev-Cantelli or Hoeffding). Second, we deal with
the Support Vector Machine problem, where the convex conservative approximation we obtain
improves the robustness of the separating hyperplane, while staying computationally tractable.

8.1 Introduction

Concentration inequalities – such as Hoeffding [Hoe63], Bennett [Ben62] or McDiarmid [McD89]
to cite a few – were originally introduced to quantify how a random variable deviates from its

185
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expectation. In this context, the probability to deviate is then estimated using information on
the two first moments (mean and variance) or the length of the support of the distribution,
depending on the concentration inequality that is considered. These inequalities have now a
wide variety of applications, see e.g. [BLB04], including chance constrained programming or
machine learning [NS07; PML22; WFP15; Kha+22].

Many refinements of Hoeffding and Bennett’s inequalities have been proposed: all these works
exploit Chernoff’s inequality but differ in the estimation of the moment-generating function
t 7→ E[etξ] associated to a random variable ξ. Figure 8.1 proposes a schematic classification of the
literature. From and Swift [FS13] and Zheng [Zhe17] both use a linear approximation of x 7→ etx,
that is tighter than Hoeffding’ bound [Hoe63] for variables in [0, 1]. They differ in the use of the
arithmetic-geometric mean inequality. Jebara [Jeb18] exploits an inequality from [Ben62, (b)] to
derive an analytic one-sided bound for sum of heterogeneous random variables. Finally, Cheng
and Li [CL22] insert a multipoint approximation of etξ and compare their results with [Zhe17].
We emphazise that the classification we made – which is a contribution on its own – focuses on
the crucial approximation done while tackling with Chernoff’s inequalities, and does not directly
compare the final bounds obtained in each work.

First-order bounds

Bounded on [0, 1]

[Ben62, (c)]⇝[Ben68],[DZ10] [Pin89]⇝[PML22]

[Ben62, (b)]1 ⇝[Jeb18]

[CL22] [FS13; Zhe17] [Hoe63]2

Figure 8.1: Classification of t 7→ E[etξ] estimations
1 Bennett’s inequality

2 Hoeffding’s inequality
If [a] ⇒ [b], the upper estimator of the moment-generating function in [a] is tighter than in [b]. If [a] ⇝

[b], [b] uses the same moment-generating estimator but improves / extends the results. Proofs of the
different implications are provided in Section 8.6.1.

In this chapter, we focus on the moment-generating estimator introduced in [Ben62, (c)]:
for a random variable ξ with mean µ, variance σ2 and maximal positive deviation b ∈ R⩾0 (i.e.,
ξ − µ ⩽ b), we have the following inequality:

∀t ⩾ 0, E
[
etξ
]
⩽ etµ σ2etb + b2e− tσ2

b

b2 + σ2 . (8.1)

This estimator is as tight as possible (knowing only µ, σ and b), since it has been proved to be
exact for a particular Bernoulli distribution, see e.g. [Ben62]. Dembo and Zeitouni [DZ10] exploit
this inequality to obtain a closed-form expression (involving a Kullback–Leibler divergence, see
e.g. [BL15]) in the specific case of identically distributed variables. Bennett [Ben68] extends
the results to non identically distributed variables, but, in order to obtain an explicit formula,
further approximations have been made, leaving room for possible improvements. In contrast, we
do not make additional approximations and directly construct the Chernoff bound using (8.1),
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see Theorem 8.2.1. Even if an analytic solution is not known in the heterogeneous setting, we
prove that this bound can be used in many applications.

We first focus on the computation of confidence bound and introduce a double bisection
algorithm (Algorithm 12). We prove that this algorithm computes a bound with arbitrary pre-
cision in polynomial time (Theorem 8.3.1). This algorithm belongs to the class of Probabilistic
Bisection Algorithms (PBA), see e.g. [Hor63; WFH13], but instead of having a zero-mean noise,
the error is bounded and controlled by a parameter.

We then apply this result on Chance-Constrained Programming (CCP) problems [CC59;
MW65; Pré70; Hen04; Ack20], a very attractive tool for dealing with uncertainty in optimiza-
tion problems in addition to stochastic [BL11; KW94; RS03] and robust [BEN09; BN00] opti-
mization approaches. This approach relies upon the characterization of uncertainty by means
of probabilistic information and tries to find a good solution in a probabilistic sense. A general
CCP problem is expressed as:

minx∈X E[c(x, ξ)]
s.t. P[gi(x, ξ) ⩾ 0, (i = 1, ..., m)] ⩾ p (8.2)

where x ∈ X ⊆ Rn denotes a decision vector and c is a cost function impacted by a random
process (uncertainty) ξ ∈ Rm. Also, P is the probability measure associated to the probability
space (Ω,F ,P) on which is defined ξ applied to a whole system of m stochastic inequalities
gi(x, ξ) ⩾ 0, (i = 1, ..., m). The parameter p ∈]0, 1[ is then a given confidence level, typically
close to 1.

Although CCP problems are in general very challenging, some specific cases lead to tractable
algorithms. In particular, for individual chance-constrained optimization (i.e., P[gi(x, ξ) ⩾ 0] ⩾
pi, (i = 1, ..., m)), and with Gaussian uncertainty (i.e., ξ follows a normal distribution), the
CCP problem can be formulated as a (convex) Second-Order Cone Programming (SOCP) prob-
lem, see e.g. [Hen07]. More generally, for specific families of distributions, it is known that
the set of a probabilistic constraint is convex, making possible the use of nonlinear methods,
see e.g. [Pré95; LLS05; AM19]. However, the distributions are commonly unavailable in many
applications, and even the evaluation of the constraint is not easy. A classical method is then to
find a conservative approximation of the problem that is distributionally robust, see e.g. [Sha21].
In this case, the chance-constraint are satisfied for any distribution and an optimal solution of
the approximate problem gives a feasible solution of the original chance-constrained problem.
Concentration inequalities have already been used in this context: to the best of our knowledge,
Pinter [Pin89] was the first to use concentration inequalities in optimization problem. Nemirovski
and Shapiro [NS07] proved that the use of Chernoff’s bounds provides tractable conservative
approximation of chance-constrained problems. In particular, they detailed the convex approxi-
mation for several families of univariate distributions. Peng, Maggioni and Lisser [PML22] focus
on SOCP conservative approximations of two types: distributionally robust formulations based
on Hoeffding and Chebyshev’s inequalities, and models which assume a normally distributed
uncertainty. In particular, they deal with joint independent chance-constraints, which is known
to be of a high complexity, see e.g. [NS07].

Here, we compare various formulations on knapsack problems [CG06; RP21] by specializ-
ing the study to second-order bounds (knowledge of means and variances). To this purpose,
we introduce a new convex conservative approximation based on Bernstein’s inequality (Propo-
sition 8.4.1) and derive from the tight Bennett’s inequality a strong approximation (Proposi-
tion 8.4.2). We show that the two formulations can be efficiently solved by a cutting-plane
approach and lead to solution improvement on instances from the literature (Table 8.2). In
particular, for a given budget, we improve the objective value compared to the SOCP formula-
tions [PML22].
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Finally, we focus on the Support Vector Machine (SVM) problem, see e.g. [CV95] in the
deterministic setting. Here, under uncertainties, the main difficulty lies in the large number of
probabilistic constraints. The distributionally robust version of the problem has been addressed
in [Ben+10; WFP15; Kha+22; FMP22]. In particular, Ben-Tal et al. [Ben+10] first consider
the same moment-generating estimator (8.1), but make additional approximations in order to
obtain SOCP formulations. Using convex optimization tools, we numerically highlight that our
approach increases further the quality of the separating hyperplane while staying tractable for
instances of substantial size.

This chapter is organized as follows. In Section 8.2, we first derive properties of the proposed
inequality, and numerically observe its asymptotic behavior. Then, we introduce in Section 8.3
an algorithm to compute confidence bounds. Finally, in Section 8.4, we apply the inequality to
chance-constrained programming, focusing on the knapsack problem (Section 8.4.1) and on the
Support Vector Machine problem (Section 8.4.2).

Notations. For two vectors a, b of RN , we denote by ⟨a, b⟩ the Euclidean scalar product.
Moreover, a ∧ b (resp. a ∨ b) stands for the component-wise maximum (resp. the minimum)
between a and b. Besides, for a discrete set X, vex(X) will read as the convex envelope of X.

8.2 On the tightest Cramér-Chernoff bound

We first recall Hoeffding’s [Hoe63] and Bennett’s [Ben62] inequalities:

Proposition 8.2.1 (Hoeffding)
Let ξ1, . . . , ξN be N independent random variables. If there exist a, b ∈ RN such that
P[ak ⩽ ξk − E[ξk] ⩽ bk] = 1 for all k ∈ {1, . . . , N}, then, for all d ⩾ 0,

ln P

[
N∑

k=1
ξk − E[ξk] ⩾ d

]
⩽ − 2d2∑N

k=1(bk − ak)2 . (8.3)

Consequently, for all τ ∈]0, 1[, P
[∑N

k=1 ξk − E[ξk] ⩾ dτ

]
⩽ τ where dτ = ∥b−a∥2

√
− ln (

√
τ) .

Proposition 8.2.2 (Bennett)
Let ξ1, . . . , ξN be N independent random variables. If there exist a, b, σ ∈ RN such that

(i) P[ξk − E[ξk] ⩽ b] = 1, k ∈ {1, . . . , N},

(ii) ∑N
k=1 E[ξ2

k] ⩽ σ2.

Then, with g : u 7→ (1 + u) ln(1 + u)− u, we get for all d ⩾ 0,

ln P

[
N∑

k=1
ξk − E[ξk] ⩾ d

]
⩽ −σ2

b2 g

(
bd

σ2

)
. (8.4)

Consequently, for all τ ∈]0, 1[, P
[∑N

k=1 ξk − E[ξk] ⩾ dτ

]
⩽ τ where dτ = σ2

b g−1
(

b2

σ2 ln
(

1
τ

))
.

Proposition 8.2.1 and Proposition 8.2.2 do not suppose the same a priori knowledge on the
random variables: in the latter, information in second-moment is supposed whereas the former
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only needs knowledge on the mean of each random variable. We now focus on the tightest
second-order Cramér-Chernoff bound, firstly introduced in [Ben62], and based on (8.1):

Theorem 8.2.1 (Refined Bennett’s inequality [NS07],Table 2)
Let ξ1, . . . , ξN be N independent random variables. If there exist b, σ ∈ RN such that such
that

(i) P[ξk − E[ξk] ⩽ bk] = 1, k ∈ {1, . . . , N},

(ii) Var(ξk) ⩽ σ2
k, k ∈ {1, . . . , N}.

Then, introducing γk := σ2
k

b2
k

, for all d ⩾ 0

∀λ ∈ RN
⩾0, ln P [⟨λ, ξ − E[ξ]⟩ ⩾ d] ⩽ inf

t⩾0

{
−td +

N∑
k=1

ln
(

γketλkbk + e−tλkbkγk

1 + γk

)}
. (8.5)

In addition, if P[ξk − E[ξk] ⩾ −bk] = 1 for all k ∈ {1, . . . , N},

∀λ ∈ RN , ln P [⟨λ, ξ − E[ξ]⟩ ⩾ d] ⩽ inf
t⩾0

{
−td +

N∑
k=1

ln
(

γket|λk|bk + e−t|λk|bkγk

1 + γk

)}
.

(8.6)

Proof. Using the Chernoff’s inequality on the variable ⟨λ, ξ − E[ξ]⟩, λ ∈ RN , we obtain

P [⟨λ, ξ − E[ξ]⟩ ⩾ d] ⩽ e−t(d+⟨λ,E[ξ]⟩) E
[
et⟨λ,ξ⟩

]
.

By the independence of the variables ξk, we have E
[
et⟨λ,ξ⟩

]
= ∏N

k=1 E
[
etλkξk

]
. Finally, us-

ing (8.1), we obtain for all t ⩾ 0 and λ ∈ RN
⩾0,

P[⟨λ, ξ − E[ξ]⟩ ⩾ d] ⩽ e−td
N∏

k=1

(
γketλkbk + e−tλkγkbk

1 + γk

)
.

For λ ∈ RN (possibly taking negative values), we boil down to the previous case by consider-
ing that ⟨λ, ξ − E[ξ]⟩ = ⟨|λ|, χ− E[χ]⟩ where χk = sign(λk)ξk. By assumption, χk has also a
maximal positive deviation less or equal than b. We conclude by applying the logarithm and by
rearranging the terms.

The right-hand sides of (8.5) and (8.6) correspond to the Cramér transform [DZ10, Section 2.2]
of the Bernoulli distribution that achieves the equality in (8.1). The scope of Theorem 8.2.1
is slightly more general than Hoeffding and Bennett inequality since we allow to have sum of
weighted heterogeneous random variables (positive or negative weights).

Under the assumptions of Theorem 8.2.1, and introducing τ− := ∏N
k=1

γk
1+γk

, we get as an
immediate corollary that for all α ⩾ 0

ln P

[
N∑

k=1
ξk − E[ξk] ⩾ αN

]
⩽ φ∗

α := inf
t⩾0

φα(t) , (8.7)

where

φα : t ⩾ 0 7→ ln(τ−) + Nt
(
b− α

)
+

N∑
k=1

ln
(
1 + γ−1

k e−tbk(1+γk)
)

(8.8)
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and b = 1
N

∑N
k=1 bk. The expression of φα is derived from (8.5) with λk = 1 for all k ∈ {1, . . . , N}.

In the specific case where the coefficient E[ξk], σk and bk are identical for all k ∈ {1 . . . N}
(homogeneous setting), the minimization in t that appears in (8.5) has an analytic solution
(using Kullback-Leibler divergence), see e.g. [DZ10; RS13]. In the framework of this chapter, we
allow for heterogeneous parameters, and therefore the minimum is no longer analytically known.
Nonetheless, the following properties show that the one-dimensional minimization problem is
well defined:

Proposition 8.2.3 (Study of φα)
Let α ⩾ 0, then φα(0) = 0. Moreover, the mapping φα is twice differentiable and its
respective derivatives are

(i) d

dt
φα(t) = N

(
b− α

)
−

N∑
k=1

bk(1 + γk)
1 + γketbk(1+γk) (in particular, d

dtφα(0) = −Nα),

(ii) d2

dt2 φα(t) =
N∑

k=1
b2

k(1 + γk)2 γketbk(1+γk)(
1 + γketbk(1+γk))2 .

Moreover, 0 < d2

dt2 φα(t) ⩽ Φ := 1
4
∑N

k=1 b2
k(1 + γk)2.

Proof. Let us introduce for all γ, d ∈ R>0, f(t) = ln
(
1 + γ−1e−td

)
. It follows that f ′(t) = −d

1+γetd

and f ′′(t) = d2 γetd

(1+γetd)2 ∈
]
0, d2

4

]
. To recover the results, note that φα(t) is composed of an

affine part plus the sum over k ∈ {1, . . . , N} of functions f(·) with d = bk(1 + γk).

We immediately deduce from Proposition 8.2.3 that the function φα(·) is strictly convex, and
thus the position of the minimum, denoted by t∗

α ∈ R⩾0∪{+∞}, is unique. The following lemma
lists useful properties of φ∗

α that will be used in the sequel.

Lemma 8.2.1 (Study of φ∗
α)

(i) For 0 < α ⩽ b, the function α 7→ φ∗
α is decreasing and t∗

α > 0.
Moreover, φ∗

0 = 0, φ∗
b

= ln(τ−) and for α > b, φ∗
α = −∞.

(ii) For α < mink{bk}, mink t
(k)
α ⩽ t∗

α ⩽ maxk t
(k)
α , where t

(k)
α = 1

bk(1+γk) ln
(

α+bkγk
γk(bk−α)

)
.

Moreover, t∗
α ⩽ − 1

N(b−α) ln(τ−) .

(iii) For α1, α2 < b,
∣∣φ∗

α2 − φ∗
α1

∣∣ ⩾ N min{t∗
α1 , t∗

α2} |α2 − α1|.

Proof. (i) Let 0 < α < β. Then, there exists t∗
α such that φ∗

α = φα(t∗
α). By item (i)

of Proposition 8.2.3, t∗
α must be positive as the derivative pf φα is negative in t = 0.

Besides, φα(t∗
α) = Nt∗

α(β−α) + φβ(t∗
α) > φβ(t∗

α). Here, we exploit the fact that for α > 0,
t∗
α > 0. As φ∗

β ⩽ φβ(t∗
α) by optimality, we easily conclude.

Then, if α = b, the infimum is reached for t→ +∞ and is equal to ln(τ−). If now α = 0,
then the minimum is attained at t = 0 (dφα

dt (t) ⩾ 0). Finally, if α > b, then t 7→ φα(t) is
decreasing, and diverges to −∞ when t→∞.

(ii) t
(k)
α would be the minimum if there was only the k-th term in φ (the existence is guaranteed

by the condition α ⩽ bk). We then get the property by using the fact that in one dimension,
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the minimum of a sum of convex functions lies in between the minimum and maximum
value of the minimizers of each function.
Besides, by (i), φα(t∗

α) ⩽ φα(0) = 0. Therefore, ln(τ−) + Nt∗
α(b − α) ⩽ 0 (since the

summation in (8.8) is positive), and so Nt∗
α ⩽

−1
b−α

ln(τ−).

(iii) Let α1, α2 ⩽ b. Then, by definition,

φ∗
α1 = φα1(t∗

α1) = Nt∗
α1(α2 − α1) + φα2(t∗

α1)
φ∗

α2 = φα2(t∗
α2) = Nt∗

α2(α1 − α2) + φα1(t∗
α2)

from which we deduce by optimality of t∗
α1 and t∗

α2 :

φ∗
α1 ⩾ Nt∗

α1(α2 − α1) + φ∗
α2

φ∗
α2 ⩾ Nt∗

α2(α1 − α2) + φ∗
α1

Consequently,
∣∣φ∗

α2 − φ∗
α1

∣∣ ⩾ N min{t∗
α1 , t∗

α2} |α2 − α1| .

The next theorem can be directly derived from Lemma 8.2.1 and provides an alternative
confidence bound ατ N to the bound dτ provided in Proposition 8.2.1 and Proposition 8.2.2.

Theorem 8.2.2
For all τ ∈ [τ−, 1], there exists a unique ατ such that φ∗

ατ
= ln (τ). Consequently,

P
[∑N

k=1 ξk − E[ξk] ⩾ ατ N
]
⩽ τ .

Numerical experiments. We aim to numerically compare the bounds developed in Sec-
tion 8.2 with four inequalities: Hoeffding (8.3), Bennett (8.4), Cantelli (a one-sided improvement
of Chebyshev’s inequality, see e.g. [BLB04]) and the bound introduced by Jebara [Jeb18]. To this
purpose, we follow the methodology of [Jeb18]: we search to bound ln P

[∑N
k=1 ξk − E[ξk] ⩾ αN

]
,

where the parameters E[ξk], σk, ak, bk and α are randomly generated following the rules described
in Table 8.1.

E[ξk] U(0, 1)
ak U(−1, 0)
bk U(0, 1)
σk U (0, (bk − ak) / 2)
α U

(
0, b
)

Table 8.1: Definition of the random variables

In order to have a fast implementation of φ∗
α, we introduce a bisection algorithm, see Al-

gorithm 12. Note that this bisection method is only valid because we have shown that φα is
convex and t∗

α is bounded, see Lemma 8.2.1. The four other bounds are immediate to compute
as they are analytically known.

The results are depicted in Figure 8.2 for 500 realizations of the uniformally distributed pa-
rameter α and are performed on a laptop Intel Core i7 @2.20GHz× 12. For each realization
and for each of the four inequalities with which we are comparing ourselves, we report the cor-
responding value of φ∗

α (x-coordinate) and the log-probability obtained by the latter inequality
(y-coordinate). The computation of the Bennett’s and Hoeffding’s bounds is almost immediate.
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Algorithm 12 Bisection Search to compute φ∗
α

Require: N , α, bk, σk, ϵ
t−, t+ ← 0, − 1

N(b−α) ln(τ−)
while t+ − t− > ϵ do

t̂← 1
2(t− + t+)

g ← d
dtφα(t̂)

if g ⩾ 0 then t+ ← t̂ else t− ← t̂
end while
return φ̂

The refined version of [Jeb18] takes around 1ms per instance for N = 100 (due to the compu-
tation of Lambert function), and φ∗

α takes around 5ms per instance for N = 100 for precision
ϵ = 1e−6.

We recover the results proved in Section 8.6.1: φ∗
α always outperforms Bennett, Hoeffding and

Jebara’s inequalities. We observe that Cantelli’s bound is better for large probability error (small
α) – typically exp(φ∗

α) ⩾ 20% – but becomes rapidly dominated by the four other Chernoff’s
inequalities. In fact, Chebyshev’s inequality has a quadratic decay in α when the Chernoff’s
bound has exponential behaviors . For φ∗

α ⩾ −5, the bound from [Jeb18] may be less efficient.
Possibly, this bound can exceed 1, because the minimizer that is used in the Chernoff’s inequality
has no guarantee to be optimal.

Remark 8.2.1
We did not display the results for Bernstein’s bound, as it is known that this inequality is
strictly looser than Bennett’s inequality [Ben62], see e.g. [Jeb18] for a proof.

8.3 Computing confidence bounds

In this section, we aim to derive a confidence bound ατ with a given maximum probability error
τ such that φ∗

ατ
= ln(τ). We first found an upper approximation of this confidence bound which

is strictly lower than b for τ > τ− (note that for a probability error less or equal than τ−, we
can only certify a confidence bound of b).

Lemma 8.3.1
Suppose that τ ∈ [τ−, 1], then

ατ ⩽ b−
( 1

NΓ ln(τ/τ−)
)2

,

where Γ = 1 + (mink γk mink(bk(γk + 1)))−1.
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Figure 8.2: Comparison of four bounds with φ∗
α.

If the marker is above the line, then the method gives looser bound compared to φ∗
α.

Proof. Let κ ⩾ 0 and ακ = b− κ. Then,

φακ

( 1√
κ

)
= ln(τ−) + N

√
κ +

N∑
k=1

ln
(

1 + γ−1
k e

− 1√
κ

bk(γk+1)
)

⩽ ln(τ−) + N
√

κ +
N∑

k=1
γ−1

k e
− 1√

κ
bk(γk+1)

⩽ ln(τ−) + N

[√
κ + (min

k
γk)−1e

− 1√
κ

mink(bk(γk+1))
]

⩽ ln(τ−) + N

[
√

κ + (mink γk)−1√κ√
κ + mink(bk(γk + 1))

]
⩽ ln(τ−) + NΓ

√
κ .

The second last inequality is obtained using e−x ⩽ (1 + x)−1 for x > 0. Therefore, for κ2 ⩽
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1
NΓ ln(τ/τ−), φακ

(
1√
κ

)
⩽ ln(τ) and as a consequence φ∗

ακ
⩽ ln(τ) = φ∗

ατ
. As α 7→ φ∗

α is
decreasing by Lemma 8.2.1, we obtain that ατ ⩽ ακ.

Note that, under its apparent simplicity, this property does not hold for other bounds such that
Hoeffding or Bennett.

Double bisection search algorithm. We now present a fast algorithm to compute ατ in-
troduced in Theorem 8.2.2. Algorithm 13 consists of two nested bisection searches. The inner
one is dedicated to find the minimum in t – see Algorithm 12 – to an arbitrary precision ϵ1 and,
as a consequence, to compute φ∗ to a precision Φϵ2

1, see Proposition 8.2.3. This estimation of
φ∗ constitutes the oracle for the outer bisection search. Therefore, the test is more elaborated
as it checks whether the decision is sure or not: we only reduce the space by half when the
oracle returns value far enough from the target ln(τ), i.e., with a distance greater than Φϵ2

1. If
not, then, it means that we obtain at a certain iteration an estimation close enough to ln(τ), so
we stop at this point. This outer bisection search is a particular case of Probabilistic Bisection
Algorithm (PBA) [Hor63; WFH13], where the error term is not necessarily of zero mean but
takes values in a small bounded interval.

Algorithm 13 Double Bisection Search for confidence bound’s computation
Require: τ , N , bk, σk, ϵ1, ϵ2

α−, α+ ← 0, b− (ln(τ/τ−) / (NΓ))2
▷ Init α-bisection

tol← false
while α+ − α− > ϵ2 or tol = false do

α̂← 1
2(α− + α+)

t−, t+ ← 0, − 1
N(b−α̂) ln(τ−) ▷ Init t-bisection

while t+ − t− > ϵ1 do
t̂← 1

2(t− + t+)
g ← d

dtφα(t̂)
if g ⩾ 0 then t+ ← t̂ else t− ← t̂

end while
φ̂← φα̂(t̂)
if φ̂ > ln(τ) + Φϵ2

1 then α− ← α̂
else if φ̂ < ln(τ)− Φϵ2

1 then α+ ← α̂
else tol← true
end if

end while
return α̂

Termination guarantees. The following proposition proves that this algorithm is fast (log
convergence) and provides a solution arbitrary close to the optimal solution.

Theorem 8.3.1
Let τ ∈]τ−, 1]. Algorithm 13 ends with a value α̂ such that

|α̂− ατ | ⩽ ϵ2 ∧
√

2Φ
N mink mk

ϵ1 ∧
2Φ

N mink(bkmk)ϵ2
1 , (8.9)
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where mk := ln(2+γ−1
k

)
b2

k
(1+γk) . Moreover, the total number of iterations Iτ is bounded:

Iτ ⩽

⌈
log2

(
b

ϵ2

)⌉⌈
log2

(
NΓ2 ln(1/τ−)
(ln(τ/τ−))2 ϵ1

)⌉
.

Proof. At the end of the algorithm, one obtain from the inner bisection that t− ⩽ t∗
α̂, t̂ ⩽ t+ and

|t+ − t−| ⩽ ϵ1. Suppose that the algorithm ends with a value α̂ and φ̂ = φα̂(t̂). Then, from the
mean-value theorem, there exists t ∈ [t−, t+] such that∣∣∣∣ d

dt
φα(t−)− d

dt
φα(t+)

∣∣∣∣ =
∣∣∣∣∣ d2

dt2 φα(t)
∣∣∣∣∣ (t+ − t−) ⩽ Φϵ1 .

As the derivative of φα is decreasing and positive (resp. negative) in t− (resp. t+), | d
dtφα(t)| ⩽

Φϵ1 for all t ∈ [t−, t+], and using once again the mean-value theorem,

|φ̂− φ∗
α̂| ⩽ Φϵ2

1 .

1st case: the algorithm ends with tol = true.
Therefore (criteria),

∣∣φ̂− φ∗
ατ

∣∣ ⩽ Φϵ2
1, and so

∣∣φ∗
α̂ − φ∗

ατ

∣∣ ⩽ 2Φϵ2
1 . Using Lemma 8.2.1, item

(iii), we obtain

|α̂− ατ | ⩽
2Φϵ2

1
N min{t∗

ατ
, t∗

α̂}
.

Then, using Lemma 8.2.1, item (ii), for all α,

t∗
α ⩾ min

k|bk>α

{ 1
bk(1 + γk) ln

(
α + bkγk

γk(bk − α)

)}
.

By concavity, ln(1 + x) ⩾ ln(1 + z) min{x/z, 1} for all x, z ⩾ 0. Therefore, for all k such that
bk > α (it exists otherwise α > b), we obtain:

ln
(

α + bkγk

γk(bk − α)

)
= ln

(
1 + α(1 + γk)

γk(bk − α)

)
⩾ ln

(
2 + 1

γk

)
min{ α

bk − α
, 1} ⩾ 1

bk
ln
(

2 + 1
γk

)
min{α, bk} .

Then, t∗
α ⩾ α mink{mk} ∨ mink{bkmk}. Therefore, as α̂ and ατ are positive quantities,

t∗
ατ
∨ t∗

α̂ ⩾ ατ min
k
{mk} ∨ α̂ min

k
{mk} ∨ min

k
{bkmk}

⩾ |α̂− ατ |min
k
{mk} ∨ min

k
{bkmk} .

Finally,

|α̂− ατ | ⩽ max
{√

2Φ
N mink mk

ϵ1,
2Φ

N mink(bkmk)ϵ2
1

}
.

2nd case: the algorithm ends with
∣∣α+ − α−∣∣ ⩽ ϵ2.

Then, as tol = false, at each iteration, |φ̂− ln(τ)| ⩾ Φϵ2
1, and so ατ lies in [α−, α+]. Therefore,

|α̂− ατ | ⩽
∣∣α+ − α−∣∣ ⩽ ϵ2.

Besides, denoting by It the number of iterations for the inner bisection search, we have

It ⩽

⌈
log2

(
− ln(τ−)

N(b− α)ϵ1

)⌉
.
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Then, as b− α ⩾
(

1
NΓ ln(τ/τ−)

)2
(see Lemma 8.3.1), It ⩽

⌈
log2

(
NΓ2 ln(1/τ−)
(ln(τ/τ−))2ϵ1

)⌉
. Furthermore,

denoting by Iα the number of iterations for the outer bisection search, we have

Iα ⩽

⌈
log2

(
b

ϵ2

)⌉
.

Theorem 8.3.1 proves that Algorithm 13 is fast (log convergence), and provides a solution
with an arbitrary precision. Note that the number of iterations is impacted by the distance of
τ from the minimal value τ−. In fact, very close to τ−, the minimizer t∗

α tends to +∞, and
therefore the width of the bisection search space becomes large. Nonetheless, for reasonable
error tolerance τ , the algorithm takes very few iterations. Meanwhile, the precision of α̂ does
not depend on τ .

Numerical experiments. We use the instances developed in Table 8.1. The results are de-
picted in Figure 8.3 for 1000 realizations, and are fast to obtain (few seconds in total). Of course,
the confidence bounds we obtain are larger than the value computed with normal distributions,
and so all values are greater than 1. We recover the superiority of the studied bound compared
to the standard Bennett’s inequality. Besides, Chebyshev-Cantelli’s bound is only valuable for
low probability level, and becomes inefficient for probabilities close to 1.
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Figure 8.3: Random instances, made of N = 10 heterogeneous variables.
For different probability levels (1− τ) and different inequalities, we display the value of the

confidence bound normalized by the normal case, i.e., the (exact) value for normal
distributions.

8.4 Application to Chance-Constrained Programming Problems

In the two next subsections, we will use the proposed concentration inequalities (8.5)-(8.6) into
two CCP problems of the form (8.2) with individual bilinear constraints of the form g(x, ξ) =
ξT x− b, with b ∈ R. The first application (knapsack problems) is of a combinatorial nature and
contains only one chance-constraint whereas the second one (Support Vector Machine problems)
is a continuous problem but contains as many chance-constraints as training points.
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8.4.1 Chance-constrained binary knapsack problem

Let us consider the knapsack problem with stochastic weights ξ ∈ RN , see e.g. [CG06; RP21].
To this purpose, we consider a measurable space of outcomes (Ω,F) and a probability measure
F on this space. Then, the problem can be stated as the following chance-constrained problem:

max
y∈{0,1}N

πT y

s.t PF

[
ξT y ⩾ c

]
⩽ τ

(CKP)

where τ < 1, π ∈ RN denotes the utility of each item and c ∈ R is the maximum budget. The
stochastic weights are here represented by a random vector ξ : Ω → Ξ ⊆ RN and are supposed
to be indepedent. If ξ follows a normal distribution, i.e., F = N (µ, σ2) with µ, σ ∈ RN ,
problem (DKP) can be reformulated as a SOCP problem, see e.g. [Pré95, Theorem 10.4.1] :

max
y∈{0,1}N

πT y

s.t Φ−1(1− τ)
√

yT Σy + µT y ⩽ c

(CKP-N)

where Φ is the cumulative distribution for the standard normal distribution and Σ = diag(σ2). In
this specific setting, efficient algorithms have been developed in order to solve problem (CKP-N),
see e.g. [Han+15].

Here, we rather consider that F is unknown but its first two moments (also denoted by
µ ∈ RN and σ2 ∈ RN ) are available, as well as maximal deviation (denoted by b ∈ RN

⩾0).
Therefore, F is no longer a normal distribution but belongs to the distributional uncertainty set
D(µ, σ, b) defined as

D(µ, σ, b) =

F

∣∣∣∣∣∣∣∣
PF [|ξi − µi| ⩽ bi] = 1, }
EF [ξi] = µi, i = {1, . . . , N}
Var(ξi) ⩽ σ2

i

 . (8.10)

The distributionally robust version of (DKP) is then obtained by looking at the most constrain-
ing choice of F ∈ D(µ, σ, b):

max
y∈{0,1}N

πT y

s.t sup
F ∈D(µ,σ,b)

PF

[
ξT y ⩾ c

]
⩽ τ

(DKP)

This problem has been firstly studied by Calafiore and El Ghaoui [CG06], where they focused
on Hoeffding-type valid conservative approximations (i.e., approximations whose feasible set is
included in the one of (DKP)). Recently, Ryu and Park [RP21] proposed to repeatedly solve
binary knapsack subproblems to deduce bounds on SOCP approximations which are classically
obtained by considering Chebyshev-Cantelli’s inequality. As we will compare the different ap-
proximations in the sequel, we first recall two classical results: let us define B = diag(b2),
then

(i) (Hoeffding) the problem (DKP-H) is a valid conservative approximation of (DKP)

max
y∈{0,1}N

πT y

s.t
√

2 ln(1/τ)
√

yT By + µT y ⩽ c

(DKP-H)
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(ii) (Chebyshev-Cantelli) the problem (DKP-C) is a valid conservative approximation of (DKP)

max
y∈{0,1}N

πT y

s.t
√

1
τ − 1

√
yT Σy + µT y ⩽ c

(DKP-C)

This comparison is inspired by the work of Peng, Maggioni and Lisser [PML22] where first-
order bounds (Hoeffding and an approximation of Bernstein bound) are used in the continuous
knapsack problem, and compared to exact SOCP relaxation for normal variables.

Using Theorem 8.2.1 with d := c − µT y, we obtain a tighter conservative approximation
of (DKP) formulated as the following problem:

max
y∈{0,1}N

t⩾0

πT y

s.t t
[
µT y − c

]
+

N∑
k=1

ln
(

γketykbk + e−tykbkγk

1 + γk

)
⩽ ln(τ)

(8.11)

The constraint contains bilinear terms tyk. A näıve approach could be to consider a Fortet
linearization of the bilinear terms, see e.g. [For60]. Here, we can reformulate the constraint by
considering the change of variable z := 1/t and by dividing the latter constraint by t:

(8.11) ⇐⇒



max
y∈{0,1}N

z⩾0

πT y

s.t µT y +
N∑

k=1
z ln

(
γke

yk
z

bk + e− yk
z

bkγk

1 + γk

)
⩽ c + z ln(τ)

(DKP)

Note that this transformation is possible because t > 0 at the optimum as long as τ < 1 (the left
hand-side of the constraint in (8.11) is equal to zero when t = 0). Also, z = 0 never produces
an optimal solution. Therefore, we can consider z ⩾ 0 in (DKP).

Proposition 8.4.1
For every γ, b ⩾ 0, the function Ψ+

γ,b : R×R⩾0 → R⩾0, defined as

Ψ+
γ,b(y, z) := z ln

(
γe

y
z

b + e− y
z

bγ

1 + γ

)
,

is jointly convex. Therefore, the problem (8.11) – without the integrity condition – is
convex.

Proof. From elementary calculation, the gradient and the Hessian of Ψ+
γ,b are respectively

∇Ψ+
γ,b(y, z) =

[
b− b(1+γ)

1+γe
y
z b(1+γ) , ln

(
γ+e− y

z b(1+γ)

1+γ

)
+ b(1+γ)y

z

(
1+γe

y
z b(1+γ)

)]T

HΨ+
γ,b

(y, z) = γe
y
z

b(1+γ)
(

b(1 + γ)
1 + γe

y
z

b(1+γ)

)2 [ 1
z − y

z2

− y
z2

y2

z3

]

As Tr
(

HΨ+
γ,b

(y, z)
)
⩾ 0 and det

(
HΨ+

γ,b
(y, z)

)
= 0, the Hessian is always a positive semi-definite

matrix, and the function is jointly convex.
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Remark 8.4.1
We can directly obtain the convexity of the function by noting that Ψ+

γ,b is the composition of
the perspective function [Com17] with a particular log-sum-exp function. This proposition
is generalized in [NS07] to a class of moment-generating function’s estimators. Nonetheless,
we make explicit the gradient and the Hessian of the function, since it will be necessary for
numerical optimization.

By Proposition 8.4.1, Problem (DKP) reduces to a convex Mixed-Integer Non-Linear Program-
ming (MINLP) problem, since there is a unique convex nonlinear constraint (the budget one).
For such problems with a moderate degree of nonlinearity, cutting-plane methods [WP95] are
known to be efficient. In this approach, the nonlinear term is approximated by a set of linear
constraints (cutting-plane), incrementally built by adding at each iteration a new cutting-plane
of the original constraint. The subproblem at iteration j is then expressed as:

(
y(j+1), z(j+1)

)
= arg max

y∈{0,1}N

z⩾0

{
πT y

∣∣∣∣∣µT y +
N∑

k=1

〈
s

(i)
k ,

(
yk

z

)〉
⩽ c + z ln(τ), 1 ⩽ i ⩽ j

}
, (8.12)

where s
(i)
k := ∇Ψ+

γk,bk

(
y

(i)
k , z(i)

)
. The convergence of this approach has been proved, see

e.g. [Bon+06, Theorem 9.6], and is achieved in a finite number of steps for this particular
problem (there is a finite number of knapsack-filling scenarios). Note that the cuts are dynam-
ically added in the branch-and-bound at each node where an integer solution is found (Lazy
constraint), so that the solver does not need to perform a complete Mixed-Integer Linear Pro-
gramming (MILP) problem solving at each iteration.

As an alternative to the model (8.11), we also introduce a convex reformulation of the
problem under Bernstein’s inequality: a valid conservative estimation of (DKP) can be obtained
by replacing the probabilistic constraint by Bernstein’s inequality (see e.g. [BLB04] for more
details on this inequality). We obtain the following formulation:

max
y∈{0,1}N

πT y

s.t exp
(
−

1
2(c− µT y)2∑N

k=1 y2
kσ2

k + 1
3z(c− µT y)

)
⩽ τ

z ⩾ bkyk, 1 ⩽ k ⩽ N

(DKP-B)

Proposition 8.4.2
Problem (DKP-B) is equivalent to the following problem:

max
y∈{0,1}N

z⩾0

πT y

s.t 1
3 ln(1/τ)z +

√√√√(yT z) Λ
(

y
z

)
+ µT y ⩽ c

z ⩾ bkyk, 1 ⩽ k ⩽ N

(8.13)
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where Λ = diag
[
(2 ln(1/τ)σ2

k)1⩽k⩽N
1
9 ln2(1/τ)

]
. Therefore, problem (DKP-B) – without the integrity

condition – is convex.

Proof. We reformulate the constraint so that we end up with a convex reformulation:

exp
(
−

1
2 t2∑N

i=1 y2
kσ2

k + 1
3zt

)
⩽ τ, t = c− µT y, z = max

k
{bkyk}

⇐⇒ ln(1/τ)
[

N∑
i=1

y2
kσ2

k + 1
3zt

]
⩽

1
2 t2

⇐⇒ ln(1/τ)
N∑

i=1
y2

kσ2
k ⩽

1
2
[
t− 1

3 ln(1/τ)z
]2
− 1

18 ln(1/τ)2z2

⇐⇒

√√√√2 ln(1/τ)
n∑

i=1
y2

kσ2
k + 1

9 ln2(1/τ)z2 ⩽ c− µT y − 1
3 ln(1/τ)z

⇐⇒

√√√√(yT z
)

Λ
(

y
z

)
⩽ c− µT y − 1

3 ln(1/τ)z

Note that, in the optimization problem, it is sufficient to consider z ⩾ max
k
{bkyk} as the opti-

mization will search for the lowest value possible (z only appears on the constraint above), ans
so the constraint will be naturally saturated.

The SOCP formulation introduced in Proposition 8.4.2 provides an alternative conservative
approximation, which can be directly compared to the classical Chebyshev approximation, as
they both belong to the same class of problem. In contrast, the formulation (8.11) is not ex-
pressed as a cone programming, but we provide in Section 8.7 a reformulation where constraints
are expressed via exponential cones.

Remark 8.4.2
We already know (proved theoretically above and highlighted by Figure 8.2) that (8.11) gives
better solution than all other formulations (apart from exact one in the case of normally
distributed weights), as the set of admissible solutions is larger. Note also that we did not
provide optimization model for the bound developed in [Jeb18] and [Ben62], as a convex
expression of the chance-constraint is all but immediate to obtain (if it exists).

Numerical results. In order to obtain chance-constrained instances, we adapted deterministic
instances from the literature1, see [Pis05], by adding a maximum standard deviation of 5% of
the original weight (taken as mean value), and setting the maximum value to b = 5σ. Note
that for normal distribution, the probability of exceeding µ+3σ is 0.997. Finally, the maximum
probability error τ is taken to 3%.

We use Cplex v12.10 as a MILP solver and the tests are performed on a laptop Intel Core
i7 @2.20GHz× 12. The MIP gap tolerance is taken to 0.001% and the Integrity tolerance to
1e-8. The tests show that the cutting-plane method adds very few cuts. For instance, the solver
added 190 cuts for the instance 1 10000.

1The instances are extracted from the website http://artemisa.unicauca.edu.co/˜johnyortega/instances_
01_KP/. We use the set of instances knapPI {X} 1000 1 where X goes from 1 100 to 2 10000 (the second number
stands for the number of items in the instances), see Table 8.2.

http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/
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Instance KP (CKP-N) (8.11) Prob. Time (DKP-B) (DKP-C) (DKP-H)
1 100 9147 8842 8817 0.19 0.1 8719 8817 8150
1 200 11238 11227 10962 0.81 0.1 10682 10832 10353
1 500 28857 28606 28405 2.11 0.4 28152 28127 27924
1 1000 54503 54105 53836 1.58 0.65 53617 53267 52109
1 2000 110625 110130 109779 2.95 1.8 109621 109148 107228
1 5000 276457 275685 275220 2.99 33.4 275068 274151 271160
1 10000 563647 562560 561968 3.00 97.4 561809 560387 556126
2 100 1514 1513 1512 0.82 0.1 1456 1476 1395
2 200 1634 1619 1594 0.69 0.2 1558 1592 1508
2 500 4566 4537 4504 2.31 0.5 4472 4472 4348
2 1000 9052 9008 8970 2.87 1.52 8951 8927 8761
2 2000 18051 17991 17946 2.85 4.0 17925 17872 17635
2 5000 44356 44262 44201 2.86 32.7 44184 44073 43696
2 10000 90204 90071 89996 2.99 84.2 89975 89807 89265

Table 8.2: Results for knapsack instances. We compare the two new formulations (8.11) and
(DKP-B) to the existing methods (DKP-H) and (DKP-C). The method KP corresponds to the

deterministic case, and (CKP-N) corresponds to a normally-distributed uncertainty. For
(8.11), we also provide the probability error and the computational time. When the objective

is in italic, the solver does not succeed to prove the optimality in the given time.

The numerical tests show the efficiency of the proposed relaxation: the use of the second-
order information leads to a substantial improvement of the optimal objective-function value,
compared to the classical Hoeffding bound. Besides, this method appears to be easy tractable,
as we were able to solve instances of 10000 items in less than two minutes. Note that the
relaxation seems to be a bit more tractable than the Hoeffding bound, as the solver cannot
prove the optimality of the solution with the desired precision in less than 10 minutes.

Remark 8.4.3
We present here the results for mixed-integer problems, but the results and the methodology
does not exploit the integrity condition of the variables, and so the results and the method-
ology are still applicable on the (simpler) continuous problem. In particular, a cutting-plane
approach still converges.

8.4.2 Distributionally Robust Support Vector Machine problem

Let us consider a dataset of M points (i.e., M pairs of features and labels) {ξi, li} where each
(stochastic) feature ξi : Ω → Ξi ⊆ RN is distributed according to Fi. The features are catego-
rized/classified into two classes, indexed by labels li ∈ {−1, +1}. The Support Vector Machine
(SVM) problem consists in finding a good separating hyperplane for the dataset, i.e., in finding
a pair (w, w0) ∈ RN ×R such that the hyperplane h : x ∈ RN 7→ wT x + w0 separates the
“+1”-type features (h(xi) > 0 for all i s.t. li = +1) from the “-1”-type features (h(xi) < 0 for
all i s.t. li = −1), see e.g. [SC08]. The chance-constrained formulation of the SVM problem
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(with soft margin), see e.g. [BM92; CV95], is then defined as follows:

min
w∈RN ,w0∈R,η∈RM

⩾0

1
2∥w∥

2
2 + r

M∑
i=1

ηi

s.t. PFi

[
li(wT ξi + w0) ⩽ 1− ηi

]
⩽ τi, i = 1, . . . , M

ηi ⩾ 0, i = 1, . . . , M

(CSVM)

This chance-constrained version has been recently studied, see e.g. [WFP15; Kha+22]. Here,
we focus on independent noises {ξk}1⩽k⩽N as in [Ben+10] and study the distributionally robust
version of (CSVM) by supposing, once again, that for each Fi, i ∈ {1, . . . , N}, belongs to the
distributional uncertainty set D(µi, σi, bi) with µi, σi, bi ∈ RN , see (8.10).

min
w∈RN ,w0∈R,η∈RM

⩾0

1
2∥w∥

2
2 + r

M∑
i=1

ηi

s.t. inf
Fi∈D(µi,σi,bi)

PFi

[
li(wT ξi + w0) ⩽ 1− ηi

]
⩽ τi, i = 1, . . . , M

ηi ⩾ 0, i = 1, . . . , M

(DSVM)

In contrast with the knapsack problem (DKP), the coordinates of the uncertain features are
multiplied by the weight w, which can be either positive or negative. Therefore, we can no
longer apply (8.5) and must use (8.6) which contains absolute values. Moreover, each training
feature defines a (nonlinear) chance-constraint.

Proposition 8.4.3
Let (SVM) be defined as

min
w∈RN ,w0∈R,η∈RM

⩾0

1
2∥w∥

2
2 + r

M∑
i=1

ηi

s.t − li(w0 + wT µi) +
N∑

k=1
Ψγik,bik

(wk, zi) ⩽ ηi − 1 + zi ln(τi), 1 ⩽ i ⩽M

(SVM)
where Ψγ,b : R×R⩾0 → R⩾0 is defined as Ψγ,b(y, z) = Ψ+

γ,b(|y|, z). This problem is a valid
conservative approximation of (DSVM).

Proof. We follow the similar steps as for the knapsack case. In particular, we use Theorem 8.2.1
for each chance-constraint i ∈ {1, . . . , M} with λ = −liw and d = ηi − 1 + li(w0 + µ). Then, we
apply the change of variable z = 1/t.

The following proposition shows that the function Ψ keeps the same regularity as Ψ+:

Proposition 8.4.4
The function Ψγ,b is convex and twice continuously differentiable. Moreover,

Ψγ,b(y, z) =

Ψ+
γ,b(y, z), y ⩾ 0

Ψ+
γ−1,bγ

(y, z), y ⩽ 0 (8.14)
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Consequently, problem (SVM) is a convex conservative approximation of (DSVM).

Proof. For y ⩾ 0, we have the following direct equalities:

Ψ+
γ,b(−y, z) = z ln

(
e− y

z
b + γ−1e

y
z

bγ

1 + γ−1

)
= z ln

e− y
z

(bγ)γ−1 + γ−1e
y
z

(bγ)

1 + γ−1

 = Ψ+
γ−1,bγ

(y, z) .

Furthermore, to check the regularity property, it suffices to verify the condition in y = 0. It holds
that ∇Ψ+

γ,b(0, z) = 0 for all γ ∈ R and b ∈ R>0, so ∇Ψγ,b(0−, z) = ∇Ψγ,b(0+, z) = 0. Moreover,

HΨ+
γ,b

(0, z) = b2γ

[
1
z 0
0 0

]
= HΨ+

γ−1,bγ

(0, z) . Therefore, Ψγ,b is twice continuously differentiable

in y = 0.

Numerical results. In the tests, (SVM) is implemented using the interior-point nonlinear
solver IPOPT2. The solver always returns the optimal solution as the problem has been proved
to be convex, see Proposition 8.4.4. For comparison, we also implement the robust SVM ap-
proximation using Chebyshev-Cantelli inequality – see e.g. [WFP15] – which can be efficiently
solved by any SOCP solver.

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

Class +1
Class -1
Deterministic SVM
Cantelli

SVM

(a) Robust separation
(no slack variables used)

-4 -3 -2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

Class +1
Class -1
Deterministic SVM
Cantelli

SVM

(b) Robust separation
(active slack variables for some points)

Figure 8.4: Two-dimensions SVM with τ = 0.02, M = 100, r = 100.
We directly represent the margin around the hyperplane (centered between the two lines)

First, we construct 2D instances with linearly separable classes. To estimate the uncertainty
of each feature, we follow the method of [WFP15] by calculating the standard deviation of
the training features for each class and then divide by 10. This appears to be reasonable as
an uncertainty set for each data point. The results are displayed in Figure 8.4. On the left
(see Figure 8.4a), the classes are sufficiently distant so that it is not necessary to activate slack
variables ηi. We observe that all the methods find the same hyperplane, but differ on the size
of the margin width. As expected, the Chebyshev-Cantelli’ inequality is more conservative on
this example. On Figure 8.4b, we reduce the space between the two classes. The features
are still linearly separable in the deterministic setting, but are not robustly separable both for
Chebyshev and for the proposed method. Nonetheless, we numerically observe that Cantelli
relaxation needs to activate more slack variables, and so the optimal value is greater than the
one found by the proposed method.

2https://coin-or.github.io/Ipopt/

https://coin-or.github.io/Ipopt/
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Figure 8.5: Two-dimensions SVM with τ = 0.02, M = 100, C = 100

We then use the proposed method on instances from the literature. In particular, we use
data on Breast Cancer in the Wisconsin3. This dataset contains 683 samples of dimension 10,
see e.g. [WFP15; Kha+22] for more information on the dataset. Figure 8.5 displays the time and
the score (the percentage of test data that satisfies the classification obtained with the training
set) for two configurations. We observe that the mean score is always higher than 96% (same
order as in [WFP15; Kha+22]), and the time stays reasonable even for a substantial number of
features (more than 500 training points, see Figures 8.5b and 8.5d).

8.5 Conclusion and perspectives

In this chapter, we studied a refined Bennett-type inequality, originally developed in the homo-
geneous setting and extended here to the heterogeneous case. We have shown that this con-
centration inequality can be used in a wide range of applications. First, we introduce a double
bisection search which computes (in logarithmic time) confidence bounds proved to be tighter
than other classical approaches. In particular, it outperforms the standard Chebyshev’s ap-
proach for high probability precision. Besides, we obtained tight distributionally robust bounds
for individual CCP problems which can be formulated as convex problem. In particular, we
highlighted that the inequality can be inserted into CCP binary knapsack problem while staying

3https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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tractable (instances of 10 000 binary variables). Tests on SVM problems have also been per-
formed, obtaining a better separability of the data on instances from the literature (containing
up to 500 points).

Future works will be dedicated to the extension of the results to the independent joint prob-
ability constraint case. Moreover, we think that this inequality can be helpful in many concrete
applications to estimate more precisely error bounds, especially we will focus on electricity bill
estimates.

8.6 Proofs

8.6.1 Comparison of moment-generating function estimations from the liter-
ature

[Ben62, (c)]⇒[Ben62, (b)]. Suppose that ξ − E[ξ] ⩽ b and Var(ξ) ⩽ σ2. Then, in [Jeb18],
the upper estimator of the moment-generating function is J(t) = 1 + γ

(
etb − 1− tb

)
, where

γ = (σ/b)2. Besides, in [DZ10], the upper estimator is

D(t) := γetb + e−tγb

1 + γ
.

If now we consider D as a function of γ, i.e., D(t, γ) = D(t), then, the second partial derivative
w.r.t. γ is ∂2

γD(t, γ) = 2
(1+γ)3

[
eγt − et

]
⩽ 0. Therefore, D(t, ·) is concave for any fixed t ⩾ 0 and

D(t, γ) ⩽ D(t, 0) + γ∂γD(t, 0) = J(t) .

[Ben62, (c)]⇒[Pin89]⇒[Hoe63]. As γ 7→ D(t, γ) is increasing, then D(t, γ) ⩾ D(t, 1) =
cosh(tb), which is exactly the bound obtained by Pinter with a = b. As cosh(x) ⩽ exp(x2/2),
we have D(t, 1) ⩽ e(tb)2/2, which is exactly the Hoeffding’s estimator.

[FS13; Zhe17]⇒[Hoe63]. Now, until the end of the proof, let us suppose that ξ ∈ [0, 1], i.e.,
a = −E[ξ] and b = 1 − E[ξ]. We denote by p = E[ξ] the mean value and by σ2 the variance.
Then, in [Hoe63], the upper estimator of the moment-generating function is H(t) = etp+t2/8 .
In [Zhe17] and [FS13], the upper estimator of the moment-generating function E[et(ξ−p)] is
Z(t) := 1 + p(et − 1). By basic algebra, H ′(t)− Z ′(t) =

(
p + t

4
)

etp+t2/8 − pet . Then

H ′(t)− Z ′(t) ⩾ 0 ⇐⇒ ln
(

1 + t

4p

)
+ t(p− 1) + t2/8 ⩾ 0 .

As ln(1 + x) ⩾ x

1+ 1
2 x

for x ⩾ 0, H ′(t)− Z ′(t) ⩾ 0 if[ 1
4p

+ p− 1
]

+ t

[1
8 + p− 1

8p

]
+ t2

[ 1
82p

]
⩾ 0 .

The above condition holds since the discriminant of this second-order equation is zero. Therefore,
H ′(t)− Z ′(t) ⩾ 0, and since H(0) = Z(0), we finally conclude that H(t) ⩾ Z(t) for t > 0.

[CL22]⇒[FS13; Zhe17]. In [CL22], the upper estimator is a family of function Ck such that

Ck(t) := 1 + k
(
et/k − 1

)
(p− σ2 − p2) + (σ2 + p2)(et − 1) ,

One can prove that {Ck(t)}k is decreasing ∀t ∈ R⩾0, and
lim

k→∞
Ck(t) = C∞(t) := 1 + t(p− q) + q(et − 1) ,

where q := σ2 + p2 ⩽ p. Hence, C∞(t)− Z(t) = (p− q)
(
1 + t− et

)
⩽ 0 .



8.
B

ou
nd

s
fo

r
C

C
P

206 CHAPTER 8. BOUNDS FOR SUM OF VARIABLES

[Ben62, (b)]⇒[CL22]. For ξ ∈ [0, 1], the upper estimator of [Jeb18] is J(t) = 1 + γ(et(1−p)−
1− t(1−p)). Using the notation θ = (1−p)2 ∈ [0, 1], we express C∞ and J in (θ, γ)-coordinates:C∞(t, γ, θ) = 1 + t(1−

√
θ) +

[
γθ + (1−

√
θ)2
] [

et − 1− t
]

J(t, γ, θ) = 1 + γ
(
et

√
θ − 1− t

√
θ
)

Now, the partial derivatives w.r.t γ are{
∂γC∞(t, γ, θ) = θ

[
et − 1− t

]
∂γJ(t, γ, θ) = et

√
θ − 1− t

√
θ

The function [0, 1] ∋ θ 7→ et
√

θ − 1 − t
√

θ is convex for any t ⩾ 0, and so ∂γJ ⩽ ∂γC∞. As
J(t, 0, θ) = 1 ⩽ C∞(t, 0, θ), we conclude that J(t) ⩽ C∞(t) .

8.7 Conic reformulation

First, Ψγ,b can also be written Ψγ,b(y, z) = max
{

Ψ+
γ,b(y, z), Ψ+

γ−1,bγ
(y, z)

}
. Therefore,

N∑
k=1

Ψγk,bk
(yk, z) ⩽ u ⇐⇒


∑N

k=1 vk ⩽ u

Ψ+
γk,bk

(yk, z) ⩽ vk

Ψ+
γ−1

k
,bkγk

(yk, z) ⩽ vk

Now, denoting the exponential cone by Kexp = {(x1, x2, x3) : x1 ⩾ x2ex3/x2},

Ψ+
γk,bk

(yk, z) ⩽ vk ⇐⇒ γke
yk
z

bk + e− yk
z

bkγk ⩽ e
vk
z (1 + γk)

⇐⇒ γke
ykbk−vk

z
bk + e

−ykbkγk−vk
z ⩽ 1 + γk

⇐⇒


γkρk + νk ⩽ (1 + γk)z
(ρk, z, ykbk − vk) ∈ Kexp

(νk, z,−ykbkγk − vk) ∈ Kexp

This formulation has a number of variables and (conic) constraints of order O(NM). There-
fore, this conic reformulation is only valuable for small to medium instance sizes.
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Abstract. We introduce a family of cardinality’s lower bounds, defined as ratios of norms. We
prove that the tightest bound of the family is obtained as a limit case, and involves a Shannon
entropy. We then use this entropic lower bound in sparse optimization problems to approximate
cardinality requirements. This provides a nonlinear nonconvex relaxed problem, which can be
efficiently solved by off-the-shelf nonlinear solvers. In the numerical study, we focus on the case
where the optimization is performed on the simplex, and where the classical ℓ1 penalization
does not yield sparse solution. The Finance Index Tracking problem is taken as an example and
illustrates the efficiency of the proposed approach.

9.1 Introduction

In numerous fields such as finance, energy or machine learning, decision makers aim to control the
cardinality of the solution vector, i.e., the number of representative features (assets in portfolio
optimization [BS07], shutdowns/start-ups in thermal power plants scheduling [BZE14a], Support
Vectors in machine learning [Bi+03], . . . ).

In optimization terminology, the cardinality of a solution encoded by a vector x ∈ Rn is
the number of non-zero elements, i.e., |{i ∈ [n] : xi ̸= 0}|, and is often written card(x). Both
correspond to the so-called ℓ0-pseudo-norm, denoted ∥x∥0. This pseudo-norm is positively ho-
mogeneous of degree 0, meaning that for all x ∈ Rn and α ̸= 0, ∥αx∥0 = ∥x∥0. Optimization
under cardinality requirements is called sparse optimization.

Sparsity has mainly emerged from the signal processing and machine learning communities,
under names such as compressed sensing [Don06] and sparse learning [Bi+03]. In machine learn-
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ing, the Sparse Support Vector Machine aims at finding a minimal cardinality linear classifier
which can separate two classes of labeled data. The sparsity of the solution helps for better
interpretability of the solution which is crucial in automated analysis of large text corpora. One
major case of using sparsity is the feature selection which refers to the necessity of selecting
representative variables from datasets containing a large number of features, many of them be-
ing irrelevant or redundant. For example, in finance, feature selection is used to restrict asset
allocation to a limited number of assets in the portfolio. Sparsity allows reducing a priori the di-
mension of a large-scale problem when performing a sparse regression that may be more efficient
than the classical one, by selecting a small set of predictors in a least-squares sense.

Sparsity is also very useful in energy management where many problems involve cardinality
constraints. Our original motivation is the intra-day problem, consisting in updating a day-
ahead generation schedule by modifying a limited number of power units schedules ([BZE14a],
[BZE14b]). Two other examples concern operation of power plants. During start-up, some
components of thermal power plants go from 20◦C to 1300 − 1900◦C in a few seconds leading,
over the long term, to damages, reducing their lifespan. Saving durability of these plants consists
in limiting the number of shutdowns/start-ups. Finally, when operating nuclear power plants,
it is necessary to limit the number of “deep” drops in power (because a nuclear reaction at low
power for a long time generates unwanted isotopes that “poison the heart”) and also to limit
the daily number of production variations (modulations) so as not to over-consume the boron
(neutron absorber) because a reduction in the boron available in the core makes the plant more
difficult to operate and leads to its premature shutdown for refueling.

Optimization problems involving the ℓ0-norm of the decision vector belong to the class of
sparse optimization problems and take one of the two following general form:

(i) ∥x∥0 in the objective function:

min
x∈X
{f (x) + λ∥x∥0 | g(x) ⩽ 0} (Pλ)

(ii) ∥x∥0 in constraints:
min
x∈X
{f (x) | g (x) ⩽ 0, ∥x∥0 ⩽ k (< n)} (Pk)

In both formulations, X ⊆ Rn is the set defining the constraints. The objective func-
tion f corresponds to a given criterion and is often considered as convex in machine learn-
ing applications (such as least-squares problems (LSQ)) while it may be nonconvex in energy
applications. The parameter λ ⩾ 0 is viewed as a regularization parameter used to man-
age the trade-off between the criterion f(x) and the sparsity of x. In selection problems, a
stronger constraint on the decision vector arises: x must belongs to the probability simplex, i.e.,
X ⊆ ∆n :=

{
x ∈ Rn

+ |
∑n

i=1 xi = 1
}
. In this specific case, the ℓ1-norm is constrained to be one.

Since the ∥·∥0 is lower semicontinuous on Rn and is discontinuous at any point belonging to an
hyperplane xi = 0, optimization problems involving the ℓ0-norm are nonconvex and hence very
challenging. They are inherently of combinatorial nature and hence, not solvable in polynomial-
time in general [Bie96]. Huge research effort has been made in sparse optimization and several
approaches have been proposed. Let us cite :

• The convex approximation. A typical example is the famous Least Absolute Shrinkage
and Selection Operator (LASSO) penalty technique. It consists in replacing the nonconvex
term ∥x∥0 by the convex approximation ∥x∥1. This approach has first been proposed for
linear regression in [Tib96]. Since then, the ℓ1-regularization technique has been exten-
sively studied and improved ([GN03], [Zou06], [KF00], ....) This leads to very efficient and
scalable algorithms in many cases. For example, the main approaches to sparse learning
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replace the (hard) cardinality requirements with some simpler (convex) functions such as
the ℓ1-norm, leading to tractable optimization problems. However, in several applications
of great interest, in energy for instance, the solutions obtained in this way are generally
far from the expected one. Moreover, replacing cardinality by the convex approximation
based on ℓ1-norm is pointless for optimization problems over the probability simplex (se-
lection problems) i.e., when the variables are discrete probability distributions, since in
this case the ℓ1 norm is constant over the feasible set. Then, the now-standard approaches
fail and some methods have been specifically dedicated to sparse optimization on simplex,
finding alternative convex approximations, for e.g. based on the ℓ∞-norm [PEC12].

• The nonconvex approximation. This approach consists in approximating ∥x∥0 by a
continuous nonconvex function. Various functions have been proposed to approximate the
ℓ0 term ([BM98], [Fu98], [Wes+03]) and several types of algorithms have been designed
to solve related optimization problems, including algorithms based on the Difference of
Convex functions (DC) ([CXY10], [GRC09], [GG13], [OL13], [TPL08], [PL14]) or based on
Successive or Local Linear Approximation ([BM98], [ZL08]). Nonconvex approximations
can be better than convex relaxations by guarantying a higher sparsity level, but the
related nonconvex optimization problems are more difficult to solve.

• Heuristic approach. In addition to the mathematical programming based approaches,
heuristic methods have also been applied, especially greedy algorithms, designed to directly
tackle cardinality minimization problem. Two noteworthy examples are the matching
pursuit [MZ93] and the orthogonal matching pursuit [PRK93].

Table 9.1 gives some additional entries in the literature.

Problem Optimality Resolution

[BS07] Sparse LSQ Global Branch & BoundPortfolio selection
[Nad+20] Sparse LSQ Global Branch & Bound
[BBN21] Sparse LSQ Global Branch & Bound
[Tib96] Sparse LSQ Relaxation Convex penalization (LASSO)
[SBA15] Sparse LSQ Relaxation Continuous nonsmooth penalty
[HT19] Sparsity Relaxation Nonconvex penalization
[AG19] Sparse regression Lower Bound SDP (convex)
[CD19] GSO Lower Bound Caprac conjugacy
[Sou+11] Sparse LSQ Heuristic Penalization + Greedy

Table 9.1: Different approaches to sparse optimization.
LSQ: Least squares problem

GSO : General Sparse Optimization

In this context, we propose an approach based on constructing a set of lower bounds of ℓ0-
pseudo-norm expressed as ratios of norms (Theorem 9.2.1). In particular, we prove that the best
lower bound we obtained is expressed as a function of Shannon entropy [Sha48] and ℓ1-norm.
In [SI16], the authors bring to light sharp extreme relations between Shannon entropy and ℓα-
norm (α > 0). Here, we obtain a relation for α = 0. Then, we insert this new bound in sparse
optimization problems, and show that the relaxed problem is a smooth nonlinear problem (yet
non convex), see proposition 9.2.1. Then, a local solution can be obtained by using a nonlinear
solvers like IPOPT [WB06]. Numerical experiments on the Finance Index Tracking problem
illustrate the efficiency of the proposed approach (Section 9.4).
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9.2 Entropic Lower Bound of ∥x∥0 and use in Sparse Optimiza-
tion

9.2.1 Renyi’s entropies

Recall that the Renyi’s entropy [Rén+61] of order α ⩾ 0, α ̸= 1, associated to a discrete distri-
bution p ∈ Rn, p ⩾ 0, p1 + · · ·+ pn = 1, is the quantity:

Hα(p) :=
( 1

1− α

)
log

n∑
i=1

pα
i .

Depending on the value of parameter α, four important special cases of Renyi’s entropies can
be mentioned:

⋄ Hartley’s entropy [Har28] (α = 0): H0(p) = log ∥x∥0 .

⋄ Shannon’s entropy [Sha48] (α→ 1): H1(p) = lim
α→1

Hα(p) = −∑i∈[n] pi log pi .

⋄ Collision entropy (α = 2): H2(p) = − log∑i∈[n] p2
i = − log ∥p∥22 .

⋄ Minimal entropy (α→∞): H∞(p) = lim
α→∞

Hα(p) = − log ∥p∥∞ .

In the case of a uniform probability distribution, the Rényi entropies of all orders, the
Hartley’s entropy and the Shannon entropy coincide.

The natural logarithm of ℓ0-pseudo-norm of a vector x ∈ Rn is the Hartley’s entropy, a mea-
sure of uncertainty [Har28], corresponding to the information provided by selecting, randomly
and uniformly, a sample from x.

9.2.2 A hierarchy of lower bounds

We define the ℓq-normof a vector x ∈ Rn, p ⩾ 1, as:

∥x∥q =
(

n∑
i=1
|xi|q

) 1
q

.

We remind the known lower bounds of ∥x∥0 as ratios of norms (∀x ∈ Rn \{0}):

B∞(x) := ∥x∥1
∥x∥∞

⩽ ∥x∥0 (9.1)

B2(x) :=
(
∥x∥1
∥x∥2

)2

⩽ ∥x∥0 . (9.2)

These lower bounds may be far from ∥x∥0 in practice.
We now introduce a family of bounds generalizing the two previous bounds: for x ̸= 0, and

α > 0, define

Bα(x) :=
( ∥x∥1
∥x∥α

) α
α−1

= exp Hα(p(x)) =

∑
i∈[n]

pi(x)α

 1
α−1

, p(x) := |x|/∥x∥1.
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In particular,

B1(x) = ∥x∥1∏
i∈[n]
|xi||xi|/∥x∥1

= ∥x∥1 exp

− 1
∥x∥1

∑
i∈[n]
|x|i log |x|i

 . (9.3)

Theorem 9.2.1 recalls that the family (Bα)α∈]0,+∞[ is ordered in a decreasing fashion, so that
the quality of the bound improves when α decreases.

Theorem 9.2.1 (Monotonicity according to order α, see e.g. [Cac97])

B∞(x) ⩽ . . . ⩽ B2 ⩽ . . . ⩽ B1 ⩽ . . . ⩽ B0 = ∥x∥0 . (9.4)

In the case ∥x∥1 = 1, B1 simplifies to the exponential of the Shannon entropy. We refer
to Figure 9.1 for a numerical example of the bound B1. This illustrates, in particular, the
concavity of this nonlinear bound.

(a) Entropy in 3 dimensions (b) Entropy as a contour plot

Figure 9.1: Shannon entropy H1(x) for x ∈ ∆3. The two first dimensions x1 and x2 are
displayed, and the third one is implicitly defined as x3 = 1− x1 − x2.

9.2.3 Sparse optimization and focus on Shannon entropy

We now focus on the integration of the previously defined entropic bound (9.3) in a sparse
optimization problem: let us assume a generic problem of the form (Pk). The corresponding
relaxation is then

min
x∈X

f(x)

s. t. g(x) ⩽ 0
B1(x) ⩽ k

(P̃k)

Proposition 9.2.1
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The problem (P̃k) can be equivalently reformulated as

min
x∈X

f(x)

s. t. g(x) ⩽ 0
Γ(x, ∥x∥1) ⩽ 0

(9.5)

where

(i) Γ : (x1, . . . , xn, z) ∈ Rn+1
+ 7→ z log (z)−∑i∈[n] xi log(kxi),

(ii) the Jacobian of Γ is defined as ∂Γ
∂xi

(x, z) = −1− log(kxi), ∂Γ
∂z (x, z) = 1 + log(z),

(iii) the Hessian of Γ is HΓ := diag(−1/x1, . . . ,−1/xn, 1/z) for (x, z) ∈ Rn+1
>0 .

The proof is immediate.
The relaxation problem that we obtain is not convex (the function Γ is concave), and there

is no guarantee in finding the global optimum of this relaxation. Nonetheless, this problem nu-
merically leads to solutions which are both sparse and with satisfactory objective value, see Sec-
tion 9.4.

9.3 Metric estimates between Bα and ϵ-cardinality

9.3.1 Majorization and Schur-convexity

Definition 9.3.1 (Majorization). For a vector a ∈ Rn
+, we denote by a↓ ∈ Rn

+ the vector
with the same components, but sorted in descending order. Given a, b ∈ Rn

+, we say that a
weakly majorizes (or dominates) b from below written a ≻w b iff

k∑
i=1

a↓
i ⩾

k∑
i=1

b↓
i for k = 1, . . . , n .

If a ≻w b and in addition ∑n
i=1 ai = ∑n

i=1 bi, then we say that a majorizes b, written a ≻ b.

Definition 9.3.2 (Schur-convexity/concavity). Let A ⊂ Rn
+. A real-valued function ϕ : Rn

+ →
R is said to be Schur-convex (resp. Schur-concave) if ϕ(x) ⩽ ϕ(y) (resp. ϕ(x) ⩾ ϕ(y) for
any x, y ∈ A satisfying x ≺ y.

Proposition 9.3.1 ([MOA11], Appendix F.3.a (p.532))
The Rényi entropy of an arbitrary α > 0 is Schur-concave; in particular, for α = 1, the
Shannon entropy is Schur-concave.

9.3.2 Extreme relation between ϵ-cardinality and entropy

We first show that no tight relation can be found between the cardinality and the bound Bα.
To see this, let k < n, and ϵ < 1/n. Define the probability distribution vn(k, ϵ) ∈ ∆n as

[vn(k, ϵ)]i =


1− (k − 1)ϵ, i = 1
ϵ, 2 ⩽ i ⩽ k

0, k + 1 ⩽ i ⩽ n

(9.6)
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and the associated entropy

Hv
α(k, ϵ) := Hα(vn(k, ϵ)) = 1

1− α
ln ((1− (k − 1)ϵ)α + (k − 1)ϵα) , 0 < α < 1

Hv
α(k, ϵ) := Hα (vn(k, ϵ)) = − (1− (k − 1)ϵ) ln (1− (k − 1)ϵ)− (k − 1)ϵ ln(ϵ), α = 1

The following property is immediate.

Proposition 9.3.2 (Worst-case comparison between cardinality and Bα)
For any ϵ > 0 and 0 < α ⩽ 1, card (vn(n, ϵ)) = n and Bα (vn(n, ϵ)) −−→

ϵ→0
1. Therefore, the

cardinality of a given probability distribution p ∈ ∆n is not controlled by the estimation
Bα(p).

Nonetheless, we aim to find extreme relations between Bα and the ϵ-cardinality, defined as

card
ϵ

(p) = |{i ∈ [n] | pi ⩾ ϵ}| . (9.7)

The parameter ϵ is viewed as a filtering threshold.

Lemma 9.3.1
Viewing k as a real number, the function k ∈ [1, n] 7→ Hv

α(k, ϵ) is an increasing function for
ϵ ⩽ 1

n and 0 < α ⩽ 1.

Proof. For α = 1, ∂Hv
α

∂k (k, ϵ) = ϵ
[
1 + ln

(
1
ϵ − k + 1

)]
. As ϵ ⩽ 1

n and k ⩽ n, we get that
k 7→ Hv(k, ϵ) is increasing. Now, for 0 ⩽ α < 1, ∂

∂k exp ((1− α)Hv
α(k, ϵ)) = ϵα − αϵ(1 − (k −

1)ϵ)α ⩾ ϵα − ϵ > 0 .

Lemma 9.3.2
For any ϵ > 0 and 0 < α ⩽ 1, an optimal solution of the problem

min
p∈∆n

{
Hα(p) | card

ϵ
(p) = k

}
(P k,n

α,ϵ )

is vn(k, ϵ), and corresponds to an objective value Hv
α(k, ϵ).

Proof. Any ordered element p ∈ ∆n satisfying cardϵ(p) = k can be represented as

p =
(

1−
k−1∑
i=1

αi −
n∑

i=k

βi, . . . , αk−1, βk, . . . , βn

)
,

with α1 ⩾ . . . ⩾ αk−1 ⩾ ϵ and ϵ > βk ⩾ . . . ⩾ βn ⩾ 0. Then, for 1 ⩽ d ⩽ n,

d∑
i=1

[vn(k, ϵ)]i −
d∑

i=1
pi =



k−1∑
i=d

αi − (k − d)ϵ +
n∑

i=k

βi, d ⩽ k

n∑
i=d

βi, d > k

.

By using Proposition 9.3.1, we obtain that the minimum of the Rényi entropy is attained for
vn(k, ϵ).
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Finding the distribution giving the minimal Rényi entropy using majorization theory has been
also performed in [Kog13] and [Sas18] for different set of constraints. Also, extreme relations
between Rényi entropy and lq-norm, q > 0, have been found in [SI16].

We introduce the invertible, increasing, function ϕα,ϵ : k ∈ [1, n] 7→ exp Hv
α(k, ϵ) ∈ [1, n].

Theorem 9.3.1 (ϵ-cardinality bounds)
Let 1 ⩽ b ⩽ n, ϵ > 0 and 0 ⩽ α ⩽ 1. For any vector p ∈ ∆n, if Bα(p) ⩽ b, then
cardϵ(p) ⩽ ⌊ϕ−1

α,ϵ(b)⌋.

Proof. By the resolution of (P k,n
α,ϵ ) (Lemma 9.3.2), we know that

card
ϵ

(p) = k ⇒ Bα(p) ⩾ exp Hv
α(k, ϵ)

As ϕα,ϵ is increasing and invertible, we deduce that cardϵ(p) ⩾ k ⇒ Bα(p) ⩾ exp Hv
α(k, ϵ) and

so
B∞(p) ⩽ b⇒ card

ϵ
(p) ⩽ ϕ−1

α,ϵ(b) .

Remark 9.3.1
The relation found in Theorem 9.3.1 is tight as it is attained for p = vn(ϕ−1

α,ϵ(b), ϵ) if
ϕ−1

α,ϵ(b) ∈ N.

Theorem 9.3.1 provides sparsity guarantees for the solution. In fact, if one requires a max-
imum cardinality of b, the solution has an ϵ-cardinality of ⌊ϕ−1

α,ϵ(b)⌋. Figure 9.2 shows that the
tightness of the bound improves when ϵ grows and α decreases.

9.4 Numerical Experiments

As an illustration of our approach, we will consider a sparse regression problem on the simplex
with a use case from finance (Index tracking).

A financial index is a number representing the value of the set of assets (stocks or bonds)
which reflects the value of a specific market or a segment of it. Insofar as an index is not a
financial instrument that we can directly trade, a stock or a bond market index is effectively
equivalent to a hypothetical portfolio of assets. In order to gain access to an index, it is nec-
essary to use financial instruments such as options, futures and exchange-traded funds, or to
create a portfolio of assets that closely tracks a given index. For a given index, fund managers
have the choice between two basic investment strategies. The active strategy assumes that the
markets are not perfectly efficient so that fund managers, thanks to their know-how, makes
specific investments and hope to add value by choosing high performing assets outperforming
an investment benchmark index. On the contrary, the passive strategy assumes that the market
cannot be beaten in the long run, so that fund managers expect a return that closely replicates
the investment weighting and returns of a benchmark index.

Currently, passive strategies seem to attract more interest from investors. Index tracking,
also known as index replication, is one of the most popular passive portfolio management strategy
to use the market index to determine the portfolio weights by reproducing the performance of
a market index, i.e., to match the performance of a theoretical portfolio as closely as possible.
Index tracking allows to get the desired returns from the overall market growth with the lower
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Figure 9.2: The ϵ-cardinality upper bound b 7→ ⌊ϕ−1
α,ϵ(b)⌋ for 1 ⩽ b ⩽ n = 100. The

approximation becomes tighter when ϵ increases and when α decreases.

variability and the lower expense ratio for the investment. The smaller the number of assets
needed to mimic is, the smaller the incurred transaction costs will be. Nevertheless, the tracking
error is likely to be higher when a small number of assets is used.

To create a tracking portfolio, the simplest technique, called full replication, is to buy ap-
propriate amounts of all the assets that make up the index. Provided that the true index
construction weights are available, it allows a perfect tracking. However, it has several disad-
vantages, one related to the fact that a portfolio can consist of thousands of stocks and the other
to the fact that there can be many small or illiquid stocks. These last types of shares increase
the risk associated with their sale, which is more difficult, and generate an arbitrage cost that
is all the more significant as it is frequent. One of the ways to overcome these drawbacks is to
construct a sparse index tracking portfolio ([BMC03], [JV02]) by limiting the number of assets
to approximately replicate an index. It corresponds to tracking a signal using a sparse mixture
of a given set of time series, see e.g. [BFP18]. A sparse portfolio simplifies the execution of
the portfolio and tends to avoid illiquid stocks that usually correspond to the assets with small
weights in an index, since in a sparse setting most of these assets are discarded. Furthermore,
since only a small number of assets is used, the transaction costs are reduced significantly due
to the reduction of the fixed (minimum) costs in the commission fees. For more details, see
([BFP18], [CE14]).
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Formulation as a Sparse Regression Problem. Following [CE14], we give the main steps
leading to formulate the Index Tracking problem as Sparse Regression Problem. Let a single
financial asset j on which we invest a sum Sj at the beginning of a period. If the rate of return
(or return) of this single asset is denoted rj , we will earn Sj,end = (1 + rj)Sj at the end of the
period with rj = Sj,end − Sj

Sj
. For n assets, we define a vector r ∈ Rn where the j-th component

is the rate of return of the j-th asset. r(k) ∈ Rn represents the vector of simple returns of the
components assets during the k-th period of time [(k − 1)∆, k∆], where ∆ is a fixed duration.

Let the entries of x ∈ Rn are the fractions of an investor’s total wealth invested in each of n
different assets. Investing at the beginning of the period a total sum S over all assets is made
by allocating a fraction xj , j = 1, . . . , n of S in the j-th asset. The non-negative vector x ∈ Rn

+
represents the portfolio “mix”, and its components sum to one. At the end of the period, the
total value of the portfolio is Send =

n∑
j=1

(1 + rj)xjS. The rate of return of the portfolio is the

relative increase in wealth Send − S

S
=

n∑
j=1

(1 + rj)xj − 1 =
n∑

j=1
xj − 1 +

n∑
j=1

rjxj = rT x; i.e.,

the standard inner product between the vector r of individual returns rj , j = 1, . . . , n and the
vector of the portfolio allocation weights x. The m× n matrix R gives the (close price) data of
the component assets. The component yk of the vector y ∈ RT represents the return of some
target financial index over the j-th period, for j = 1, . . . , n. Vector y is the close price of the
target index. Then , the so-called index tracking problem is to construct a portfolio x so as to
track as close as possible the “benchmark” index returns y. Since the vector of portfolio returns
over the considered time horizon is :

z = Rx, R ∈ Rm×n .

We may seek for the portfolio x with minimum Least Squares tracking error, by minimizing
∥Rx − y∥22. However, we need to take into account the fact that the elements of x represent
relative weights, that is they are non-negative and they sum up to one. In addition, a cardinality
constraint is added for constructing a sparse index tracking portfolio. For given R ∈ Rm×n and
y ∈ Rm, this leads to the following sparse regression problem :

(Pk) min
x∈Rn

+

{
∥y −Rx∥2

∣∣∣∣∣
n∑

i=1
xi = 1, card(x) ⩽ k

}
.

Problem (Pn) is then the problem without sparsity requirement. The constraint x ⩾ 0, 1T x =
1 makes the use of LASSO penalty (constant over the feasible set) irrelevant.

Numerical results. We conducted two experiments with data from [Cal21]. The results have
been obtained on a laptop i7-1065G7 CPU@1.30GHz.

In the first experiment, we consider the following sparse techniques with a limited index
tracking data set index with n = 50 assets over a period of m = 229 time steps ( the limited
number of assets being the limiting dimension that the SDP method can accept) :

(i) Greedy heuristic: solve (Pn), take the k greatest value of x and renormalize

(ii) Reversed greedy heuristic:

(iii) SDP approach: computation of method sdp2 of [AG19]

(iv) Mixed-integer programming: exact solving using CPLEX
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Algorithm 14 Reversed greedy heuristic
x← Solution of (Pn)
while card(x) > k do

i← arg min1⩽j⩽n xj

Add the constraint xi = 0 to (Pn)
x← Solution of (Pn)

end whilereturn x

(v) Entropy lower bound: solve the problem min
x∈Rn

+

{
∥y −Rx∥2

∣∣∣∣∣
n∑

i=1
xi = 1, B1(x) ⩽ k

}

Remark 9.4.1
The plain method based on ∥x∥∞ ⩾ 1/k [PEC12] has also been tested, but it does not
produce solutions with significant sparsity for this specific problem.

We aim at finding a vector x ∈ Rn with sparsity k = 10. Figures 9.3 to 9.5 illustrate the
obtained results. For the different methods tested, we carried out various simulations by varying
the desired cardinality along the x-axis in an interval ranging from 5 (a high degree of sparsity
is required with only 5 non-zero values out of the 50) to 45 (the desired vector is practically
dense). The quality of the solution to the problem can be assessed according to two criteria:
the value of the objective function at the optimum and the respect of the cardinality constraint.
The main comments that can be made from these results are listed below:

Figure 9.3: Index tracking for n = 50.
At the bottom left, the cardinality constraint is satisfied below the diagonal y = x.

At the bottom right, we display the cardinality for the solution filtered with a threshold of
10−4.
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Figure 9.4: Index tracking for n = 50 and k = 10

Figure 9.5: Index tracking for n = 50 and k = 10.
The bars represent the difference with exact solution.

(i) Compliance with the cardinality constraint is all the more difficult to satisfy when the
desired cardinality is low (see e.g. the time of the exact solver). Beyond a certain degree
of sparsity (here, about 30), the problem becomes easy to solve for all the methods tested.

(ii) Concerning the value of the objective function, we note that the “greedy” method is the
least efficient of all, while the “reversed greedy” method is competitive. From a desired
cardinality of 10, the results of the entropic method are very close to the MIP method
(exact resolution of the problem).



9.
Sp

ar
se

O
pt

im
.

9.5. CONCLUSIONS AND PERSPECTIVES 219

(iii) Regarding the respect of the cardinality constraint, we observe that, for strong sparsity
requirements, the SDP2 technique absolutely does not respect the desired cardinality unlike
the entropic method. The fact of filtering at 10−4 the values of cardinalities obtained does
not change the fact that the SDP2 method cannot calculate a solution which respects
the desired cardinality. The reversed greedy method provides solutions that respect the
cardinality constraint.

(iv) Concerning computation times, unsurprisingly the SDP2 method is the most expensive by
far, even for very low sparsity requirements. The exact MIP method is also expensive but
the computation time becomes logically lower as the sparsity requirement weakens. The
“reversed greedy” method requires a computation time that remains quite high, regardless
of the level of cardinality requirement. The entropic method, on the other hand, makes
it possible to calculate solutions in short times, even when the cardinality requirement is
very strong. This is an important point in practice, especially for large problem instances,
in which the entropic approach is more adapted than the SDP approach or the exact
approach.

In a second experiment, we illustrate the possibility to compute a sparse solution via entropic
bound even in high dimension (n = 430 assets) and hard cardinality requirement (k = 6).
Figure 9.6 compares the solution obtained without cardinality constraint (left subfigure) with
the relaxed problem (right subfigure). Our technique is highly scalable since its computational
time is low (around 1 second for our technique against around 3 seconds for the problem with-
out sparsity requirement). Moreover, the sparsity requirement is almost fully satisfied, as the
effective cardinality of the solution is 7 (the target was k = 6).

Figure 9.6: Index Tracking for n = 430 and k = 6.

9.5 Conclusions and Perspectives

By using ratios of norms, we proposed a new lower bound of cardinality, based on Shannon
entropy. Despite its non-convexity, the use of this entropic bound in a sparse optimization
problem is easy, and a local solution can be found very rapidly by using nonlinear solvers.
Early results obtained on Index Tracking Finance problem are good regarding other approaches
(heuristics, SDP,... ) and the proposed approach seems promising.
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Among the various perspectives opened to future investigation, we can mention the search
for efficient bounds and estimates of cardinality (results on estimates can be found in [BZE15]).
Extensive simulations on various applications, including Machine Learning, in order to evaluate
the efficiency of our approach would be worth considering. Finally, a close look on the relations
between Shannon entropy and ℓ0-pseudonorm should also be done to possibly get approximation
guarantees in the sparse optimization problem.



Perspectives
***

We tackle here some perspectives and possible extensions of the work presented in this PhD
dissertation.

Extensions to prosumers and multi-leader games

In the first part of this thesis, and especially in Chapter 4 we consider that the competitors
are static, i.e., the prices of their offers are supposed to be known in advance. This is justified
when it comes to reacting to a market situation, but not if one aims at finding the equilibrium
in the whole retail market. To this purpose, a natural extension would be to consider a multi-
leader-common-follower game, as in [LM10] and [Aus+20]. In this setting, given the leaders
strategies, the analyze of the customers reaction that we conducted still applies. Nonetheless,
the computation of all the strategies of the leaders requires the solving of an Equilibrium Problem
with Equilibrium Constraints (EPEC) of high complexity, and where only ”stationary points”
(which constitute a superset of Nash equilibria) can be found in general.

We have decided in this thesis to focus on inertia and elasticity respectively in Chapter 5
and Chapter 6, but the follower problem can be complexified in other directions. Among them,
followers can be in reality prosumers, i.e., consumers who can both consume and produce elec-
tricity, and even store electricity. Therefore, in this setting, the decision of the customer does
not only relate to the choice of a contract, but also involves the choice of installing or not ca-
pacities (e.g. solar panels). The description by tropical geometry and cell arrangements does
not straightforwardly extend to this more complex case.

Links with Weak-KAM theory for non-controllable system

We provide at the end of Chapter 5 links between weak-KAM theory and turnpike property. In
particular, we restrict to completely controllable systems to prove that under strict-dissipativity
condition, the process converges to an Aubry set, which can be either restricted to a single
state (standard turnpike property) or a set of states constituting a periodic stationary strategy.
However, this study was conducted by supposing that it is always possible to attain a state from
another one (controllability). This assumption does not hold in the pricing model we solved
in Chapter 5. Therefore, a natural extension could be the development of similar convergence
results with weaker condition, in the spirit of [AL10].

Quantization of monopolist problem for partial participation.

In Chapter 6, we present a pruning procedure to obtain a quantized solution (a menu of pre-
scribed number of offers) from the solution of the monopolist problem (nonlinear pricing). To
do so, we require that the solution satisfies the full-participation condition, i.e., that the whole
population contracts with the retailer (monopoly situation). This situation easily extends to
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the case where the targeted agents in the population are known. However, the retailer may aim
at optimizing in the same time the tariff menu and the set of customers with whom she will
contract. This partial-participation case was first studied by Jullien [Jul00], and Carlier and
Zhang [CZ20] demonstrated the existence of a solution for the continuum contract. Nonetheless,
no numerical method has been developed for this specific setting. The reverse greedy algorithm
introduced in this work must be adapted so that the procedure ensures at each iteration that
each targeted agent is effectively chosen and that the others are not.

Chance-constrained programing and sparse optimization for electricity markets

Chance-constrained programming problems naturally appear in a various range of applications,
especially in energy management, see e.g. [Ack+11]. In a pricing context, a major interest is
the estimate of electricity invoice. Indeed, the consumption is of stochastic nature and depends
on multiple factors such as the weather. In the model developed in Chapter 4, we consider
quadratic regularization or logit distribution as probability measure of the quantities ysw =
P[Usw ⩽ Usw′ ]. Another possibility could be to design distributionally robust approximation
by considering Bennett-type bounds, knowing estimations of mean and variances of energy
consumption. In Chapter 6, the question of the optimal number of contracts naturally belongs
to sparse optimization problem, in which we require the cardinality of the menu to be bounded.
The use of entropic bounds (such as Shannon entropy) could lead to sparse menu of offers with
sufficient revenue for the retailer.
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[BLS23] Y. Beck, I. Ljubić, and M. Schmidt. “A survey on bilevel optimization under uncer-
tainty”. In: European Journal of Operational Research (Feb. 2023). doi: 10.1016/
j.ejor.2023.01.008.

[Bel54] R. E. Bellman. Dynamic Programming. Princeton University Press, Dec. 1954. doi:
10.1515/9781400835386.

https://doi.org/10.48550/ARXIV.1901.10334
https://doi.org/10.24187/ecostat.2019.513.2002
https://doi.org/10.24187/ecostat.2019.513.2002
https://doi.org/https://doi.org/10.1016/j.ejor.2019.03.005
https://doi.org/https://doi.org/10.1016/j.ejor.2019.03.005
https://doi.org/10.1007/978-3-0348-8438-9_9
https://doi.org/10.1007/s10589-012-9497-4
https://doi.org/10.1007/s00245-023-09985-1
https://doi.org/10.1287/educ.2015.0134
https://doi.org/10.1214/19-aap1490
https://doi.org/10.1287/moor.2020.1107
https://doi.org/10.1016/j.ejor.2023.01.008
https://doi.org/10.1016/j.ejor.2023.01.008
https://doi.org/10.1515/9781400835386


226 BIBLIOGRAPHY

[BBN21] R. Ben Mhenni, S. Bourguignon, and J. Ninin. “Global optimization for sparse
solution of least squares problems”. In: Optimization Methods and Software (2021),
pp. 1–30. doi: 10.1080/10556788.2021.1977809.

[Ben+10] A. Ben-Tal, S. Bhadra, C. Bhattacharyya, and J. S. Nath. “Chance constrained
uncertain classification via robust optimization”. In: Mathematical Programming
127.1 (Oct. 2010), pp. 145–173. doi: 10.1007/s10107-010-0415-1.

[BEN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Vol. 28. Prince-
ton university press, 2009.

[BN00] A. Ben-Tal and A. Nemirovski. “Robust solutions of linear programming problems
contaminated with uncertain data”. In: Mathematical programming 88.3 (2000),
pp. 411–424.

[BCS17] J.-D. Benamou, G. Carlier, and F. Santambrogio. “Variational mean field games”.
In: Active Particles, Volume 1: Advances in Theory, Models, and Applications (2017),
pp. 141–171.

[BFP18] K. Benidis, Y. Feng, and D. P. Palomar. “Sparse Portfolios for High-Dimensional
Financial Index Tracking”. In: IEEE Transactions on Signal Processing 66.1 (2018),
pp. 155–170. doi: 10.1109/tsp.2017.2762286.

[Ben62] G. Bennett. “Probability Inequalities for the Sum of Independent Random Vari-
ables”. In: Journal of the American Statistical Association 57.297 (Mar. 1962),
pp. 33–45. doi: 10.1080/01621459.1962.10482149.

[Ben68] G. Bennett. “A one-sided probability inequality for the sum of independent, bounded
random variables”. In: Biometrika 55.3 (1968), pp. 565–569. doi: 10.1093/biomet/
55.3.565.

[BM92] K. P. Bennett and O. L. Mangasarian. “Robust linear programming discrimination
of two linearly inseparable sets”. In: Optimization Methods and Software 1.1 (Jan.
1992), pp. 23–34. doi: 10.1080/10556789208805504.

[BYZ21] D. Bergemann, E. Yeh, and J. Zhang. “Nonlinear pricing with finite information”.
In: Games and Economic Behavior 130 (Nov. 2021), pp. 62–84. doi: 10.1016/j.
geb.2021.08.004.

[Ber04] A. Berizzi. “The Italian 2003 blackout”. In: IEEE Power Engineering Society Gen-
eral Meeting, 2004. IEEE, 2004. doi: 10.1109/pes.2004.1373159.

[BP94] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sci-
ences. Society for Industrial and Applied Mathematics, Jan. 1994. doi: 10.1137/
1.9781611971262.

[Ber12] D. Bertsekas. Dynamic programming and optimal control: Volume I. Vol. 1. Athena
scientific, 2012.

[Ber98] D. P. Bertsekas. “A New Value Iteration method for the Average Cost Dynamic
Programming Problem”. In: SIAM Journal on Control and Optimization 36.2 (Mar.
1998), pp. 742–759. doi: 10.1137/s0363012995291609.

[BS07] D. Bertsimas and R. Shioda. “Algorithm for cardinality-constrained quadratic op-
timization”. In: Computational Optimization and Applications 43.1 (Nov. 2007),
pp. 1–22. doi: 10.1007/s10589-007-9126-9.

[Bi+03] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song. “Dimensionality
Reduction via Sparse Support Vector Machines.” In: Journal of Machine Learning
Research 3 (Mar. 2003), pp. 1229–1243. doi: 10.1162/153244303322753643.

https://doi.org/10.1080/10556788.2021.1977809
https://doi.org/10.1007/s10107-010-0415-1
https://doi.org/10.1109/tsp.2017.2762286
https://doi.org/10.1080/01621459.1962.10482149
https://doi.org/10.1093/biomet/55.3.565
https://doi.org/10.1093/biomet/55.3.565
https://doi.org/10.1080/10556789208805504
https://doi.org/10.1016/j.geb.2021.08.004
https://doi.org/10.1016/j.geb.2021.08.004
https://doi.org/10.1109/pes.2004.1373159
https://doi.org/10.1137/1.9781611971262
https://doi.org/10.1137/1.9781611971262
https://doi.org/10.1137/s0363012995291609
https://doi.org/10.1007/s10589-007-9126-9
https://doi.org/10.1162/153244303322753643


BIBLIOGRAPHY 227

[BZE14a] A. Bialecki, R. Zorgati, and L. El Ghaoui. “Intra-Day Unit-Commitment : A Group
Sparsity Approach”. In: Euro Mini Conference on Stochastic Programming and En-
ergy Applications, Institut Henri Poincaré (IHP), Paris, September 24-26 (2014).
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In: Comptes Rendus De L Academie Des Sciences Serie I-mathematique 324 (1997),
pp. 1043–1046.

[Fat08] A. Fathi. “The weak-KAM theorem in Lagrangian dynamics, Preliminary Version
Number 10”. https : / / www . math . u - bordeaux . fr / ˜pthieull / Recherche /
KamFaible/Publications/Fathi2008_01.pdf. 2008.

https://doi.org/10.1257/mic.20190163
https://doi.org/10.1509/jmkr.46.4.435
https://doi.org/10.1111/j.1756-2171.2010.00106.x
https://doi.org/10.1287/mksc.1070.0305
https://doi.org/10.1007/s00211-009-0270-2
https://doi.org/10.1287/moor.2018.0931
https://doi.org/10.1111/mafi.12291
https://doi.org/10.1111/geer.12111
https://doi.org/10.1111/geer.12111
https://github.com/AlexanderFabisch/CMA-ESpp
https://doi.org/10.1016/j.cor.2022.105930
https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf
https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf


232 BIBLIOGRAPHY

[FS04] A. Fathi and A. Siconolfi. “Existence of C 1 critical subsolutions of the Hamilton-
Jacobi equation”. In: Inventiones Mathematicae 155.2 (Feb. 2004), pp. 363–388.
doi: 10.1007/s00222-003-0323-6.

[FS05] A. Fathi and A. Siconolfi. “PDE aspects of Aubry-Mather theory for quasiconvex
Hamiltonians”. In: Calculus of Variations 22.2 (Feb. 2005), pp. 185–228. doi: 10.
1007/s00526-004-0271-z.
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[Fis+17] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. “On the use of intersection cuts for
bilevel optimization”. In: Mathematical Programming 172.1-2 (Sept. 2017), pp. 77–
103. doi: 10.1007/s10107-017-1189-5.

[Fis80] C. Fisk. “Some developments in equilibrium traffic assignment”. In: Transportation
Research Part B: Methodological 14.3 (1980), pp. 243–255. doi: https://doi.org/
10.1016/0191-2615(80)90004-1.

[FL04a] R. Fletcher and S. Leyffer. “Solving mathematical programs with complementarity
constraints as nonlinear programs”. In: Optimization Methods and Software 19.1
(2004), pp. 15–40. doi: 10.1080/10556780410001654241.

[FKM18] C. L. Floch, E. C. Kara, and S. Moura. “PDE Modeling and Control of Electric Vehi-
cle Fleets for Ancillary Services: A Discrete Charging Case”. In: IEEE Transactions
on Smart Grid 9.2 (Mar. 2018), pp. 573–581. doi: 10.1109/tsg.2016.2556643.

[Fly79] J. Flynn. “Steady State Policies for Deterministic Dynamic Programs”. In: SIAM
Journal on Applied Mathematics 37.1 (Aug. 1979), pp. 128–147. doi: 10.1137/
0137009.
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[Kle+21] T. Kleinert, M. Labbé, I. Ljubić, and M. Schmidt. “A Survey on Mixed-Integer
Programming Techniques in Bilevel Optimization”. In: EURO Journal on Compu-
tational Optimization 9 (2021), p. 100007. doi: https://doi.org/10.1016/j.
ejco.2021.100007.
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optimal”. In: Comptes Rendus Mathématique 343.10 (2006), pp. 679–684.

[LL07] J.-M. Lasry and P.-L. Lions. “Mean field games”. In: Japanese Journal of Mathe-
matics 2.1 (2007), pp. 229–260.

[LN09] B. Lemmens and R. Nussbaum. Nonlinear Perron–Frobenius Theory. Cambridge
University Press, 2009. doi: 10.1017/cbo9781139026079.

[Ley06] S. Leyffer. “Complementarity constraints as nonlinear equations: Theory and nu-
merical experience”. In: 2 (Jan. 2006), pp. 169–208. doi: 10.1007/0-387-34221-
4_9.

[LM10] S. Leyffer and T. Munson. “Solving multi-leader–common-follower games”. In: Opti-
mization Methods and Software 25.4 (2010), pp. 601–623. doi: 10.1080/10556780903448052.

[LH11] H. Li and W. Huh. “Pricing Multiple Products with the Multinomial Logit and
Nested Logit Models: Concavity and Implications”. In: Manufacturing and Service
Operations Management 13 (Oct. 2011), pp. 549–563. doi: 10.1287/msom.1110.
0344.

https://doi.org/10.1007/s10957-023-02166-8
https://doi.org/10.1007/s10957-023-02166-8
https://doi.org/10.1137/0327016
https://doi.org/10.1007/s10479-015-2016-0
https://doi.org/10.1007/s10479-015-2016-0
https://doi.org/10.1214/ecp.v20-3822
https://doi.org/10.1214/ecp.v20-3822
https://doi.org/10.2307/j.ctv7h0rwr
https://doi.org/10.1137/s1052623403430099
https://doi.org/10.1007/978-1-4615-5757-9_7
https://doi.org/10.1017/cbo9781139026079
https://doi.org/10.1007/0-387-34221-4_9
https://doi.org/10.1007/0-387-34221-4_9
https://doi.org/10.1080/10556780903448052
https://doi.org/10.1287/msom.1110.0344
https://doi.org/10.1287/msom.1110.0344


238 BIBLIOGRAPHY

[Li+19] H. Li, S. Webster, N. Mason, and K. Kempf. “Product-Line Pricing Under Dis-
crete Mixed Multinomial Logit Demand”. In: Manufacturing and Service Operations
Management 21 (2019), pp. 14–28. doi: 10.1287/msom.2017.0675.

[Lij07] M. G. Lijesen. “The real-time price elasticity of electricity”. In: Energy Economics
29.2 (Mar. 2007), pp. 249–258. doi: 10.1016/j.eneco.2006.08.008.

[LB16] C. Liu and M. Belkin. “Clustering with Bregman Divergences: an Asymptotic Anal-
ysis”. In: Advances in Neural Information Processing Systems. Ed. by D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc.,
2016.
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theory”. In: Commentarii Mathematici Helvetici (2012), pp. 1–39. doi: 10.4171/
cmh/247.

[Zav23] M. Zavidovique. Discrete and Continuous Weak KAM Theory: an introduction
through examples and its applications to twist maps. 2023. arXiv: 2308 . 06356
[math.DS].

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1017/CBO9780511805271
https://doi.org/10.1287/moor.2018.0975
https://doi.org/10.1287/moor.2018.0975
https://doi.org/10.1137/120861898
https://doi.org/10.1007/s10479-015-2039-6
https://doi.org/10.1007/978-1-4614-9050-0
https://doi.org/10.1007/978-1-4614-9050-0
https://doi.org/10.1016/0098-1354(95)87027-x
https://doi.org/10.1137/120864015
https://doi.org/10.4171/cmh/247
https://doi.org/10.4171/cmh/247
https://arxiv.org/abs/2308.06356
https://arxiv.org/abs/2308.06356


BIBLIOGRAPHY 245

[Zhe17] S. Zheng. “A refined Hoeffding’s upper tail probability bound for sum of independent
random variables”. In: Statistics and Probability Letters 131 (Dec. 2017), pp. 87–92.
doi: 10.1016/j.spl.2017.08.012.

[ZX19] J. Zhou and Z. Xu. “A simultaneous diagonalization based SOCP relaxation for con-
vex quadratic programs with linear complementarity constraints”. In: Optimization
Letters 13 (Oct. 2019). doi: 10.1007/s11590-018-1337-8.

[Zou06] H. Zou. “The adaptive lasso and its oracle properties”. In: J. Amer. Stat. Ass. 101
(2006), pp. 1418–1429.

[ZL08] H. Zou and R. Li. “One-Step Sparse Estimates in Nonconcave Penalized Likelihood
Models”. In: Ann. Statist. 36.4 (2008), pp. 1509–1533.

[Zug+13] M. Zugno, J. M. Morales, P. Pinson, and H. Madsen. “A bilevel model for electric-
ity retailers’ participation in a demand response market environment”. In: Energy
Economics 36 (Mar. 2013), pp. 182–197. doi: 10.1016/j.eneco.2012.12.010.

https://doi.org/10.1016/j.spl.2017.08.012
https://doi.org/10.1007/s11590-018-1337-8
https://doi.org/10.1016/j.eneco.2012.12.010


246 BIBLIOGRAPHY



List of Figures
***

1.1 Wholesale and retail markets (Source: PJM) . . . . . . . . . . . . . . . . . . . . 12
1.2 French installed power plants capacities (Source: RTE, 12/2022) . . . . . . . . . 12
1.3 Sorted resources (Source: PJM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Correlation between Gas cost, CO2 cost and electricity prices in Europe (Source:

eurelectric.org) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Distribution of French consumers in 2022 (Source: CRE) . . . . . . . . . . . . . . 14
1.6 Example of price comparison engine (where name of contracts were hidden). . . . 15
1.7 Consequence of energy crisis on the retail market. . . . . . . . . . . . . . . . . . . 16
1.8 Two types of Demand Response mechanisms . . . . . . . . . . . . . . . . . . . . . 17
1.9 Example of switching costs (Source: sketchbubble.com) . . . . . . . . . . . . . . 18
1.10 Bilevel problem faced by a provider willing to optimize its menu of offers in a

competitive market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.11 Iterated bilevel pricing problem as a Markov Decision Process. . . . . . . . . . . 24
1.12 Principal-Agent relationship between an energy supplier and a field of agents, the

latter competing with each other to obtain the best reward possible by reducing
as possible their energy consumption. . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.13 Mind map expressing the differences between the chapters in terms of modeling,
as with keywords outlining the main tools used in each chapter. . . . . . . . . . . 27
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Titre : Jeux de Stackelberg, tarification optimale et application aux marchés de l’électricité

Mots clés : Tarification, Optimisation bi-niveau, Géométrie tropicale, Jeux à champ moyen, Marchés de
l’électricité

Résumé : Dans cette thèse, nous combinons des ou-
tils d’optimisation bi-niveaux, de jeux à champ moyen et
de contrôle ergodique pour résoudre des problèmes com-
plexes de gestion des prix, en particulier dans la concep-
tion optimale de contrats pour les marchés de détail
de l’électricité. Tout d’abord, nous formulons le problème
comme une interaction meneur-suiveur (jeu de Stackel-
berg), dans laquelle la décision du client est de nature
probabiliste (rationalité limitée). Du point de vue de la
géométrie tropicale, nous analysons le choix du client en in-
terprétant ce dernier comme un complexe polyédral (arran-
gement cellulaire). Nous développons un nouvel algorithme
qui exploite cette géométrie sous-jacente et fournissons des
résultats sur des instances réalistes du problème de tarifi-
cation rencontré sur les marchés de détail de l’électricité.
Nous étendons ensuite ce modèle de deux manières :
premièrement, nous intégrons l’inertie dans la décision des
clients, modélisée comme un processus décisionnel de
Markov dans lequel les transitions correspondent à des
problèmes bi-niveaux. Nous prouvons que le problème de
contrôle ergodique associé admet une solution, qui peut
être obtenue par la résolution d’un problème aux valeurs
propres. Dans un second temps, nous étendons le modèle
en optimisant non seulement les coefficients de prix mais
aussi la structure du menu tarifaire : la question du nombre
optimal de contrats est vue comme la quantification opti-

male d’un menu d’offres de taille infinie, ce dernier étant
décrit comme un programme convexe. Nous développons
à cet effet de nouvelles procédures d’élagage, héritées
des méthodes max-plus utilisées en contrôle optimal. Par
ailleurs, nous étudions les mécanismes incitatifs par le
biais de récompenses monétaires en définissant une in-
teraction Principal-Agent entre un détaillant et un conti-
nuum d’agents, où chacun agent rivalise pour être le plus
économe en énergie (jeux de classement). Nous explici-
tons à la fois l’équilibre de Nash atteint par les agents et
la fonction de récompense optimale à offrir en présence
d’une élasticité-prix uniforme au sein d’une population
hétérogène. Nous présentons des résultats numériques
sur le cas général, et montrons le potentiel de ce jeu de
classement comme levier de sobriété. Enfin, nous nous
intéressons à deux théories qui apparaissent dans la ges-
tion des prix, à savoir l’optimisation sous contrainte en pro-
babilité et l’optimisation parcimonieuse. Pour le premier,
nous analysons la pertinence et le passage à l’échelle d’ap-
proximations convexes basées sur les inégalités de concen-
tration. Pour le second, nous introduisons une famille de
bornes entropiques pour laquelle nous prouvons la capa-
cité à contrôler la cardinalité de la solution, et que nous
intégrons dans des problèmes d’optimisation parcimonieux
pour obtenir des approximations non linéaires de ces der-
niers.

Title : Stackelberg games, optimal pricing and application to electricity markets

Keywords : Pricing, Bilevel optimization, Tropical geometry, Mean-field games, Electricity markets

Abstract : In this PhD dissertation, we combine tools from
bilevel optimization, mean-field games and ergodic control
to tackle challenging issues in pricing management, espe-
cially in the optimal design of contracts for retail electricity
markets. First of all, we formulate the problem as a leader-
follower interaction (Stackelberg game), in which the cus-
tomers decision is of probabilistic nature (bounded rationa-
lity). Through the tropical geometry viewpoint, we analyze
the customers choice by interpreting the latter as a polyhe-
dral complex (cell arrangement). We develop a new algo-
rithm that exploits this underlying geometry, and provide re-
sults on realistic instances from the pricing problem faced in
retail electricity markets. We then extend this model in two
ways: firstly, we incorporate inertia in the customers deci-
sion, modeled as a Markov Decision Process in which tran-
sitions correspond to bilevel problems. We prove that the
associated ergodic control problem admits a solution, that
can be obtained through the solving of an eigenvalue pro-
blem. Secondly, we extend the model by optimizing not only
the price coefficients but also the structure of the tariff menu
: the question of the optimal number of contracts is viewed

as the optimal quantization of an infinite-size menu of offers,
the latter being described as a convex program. We deve-
lop to this purpose new pruning procedures, inherited from
max-plus based methods used in optimal control. Besides,
we study incentive mechanisms through monetary rewards
by defining a Principal-Agent interaction between a retailer
and a field of agents, where each agent competes with simi-
lar ones to be the most energy-compliant customer (ranking
games). We make explicit both the Nash equilibrium achie-
ved by the agents and the optimal reward function to offer to
a heterogeneous population with uniform price elasticity. We
present numerical results on the general case, and show the
potential of this ranking game as a sobriety lever. Finally,
we study two frameworks that appear in pricing manage-
ment, that is chance-constrained programming and sparse
optimization. For the former, we analyze the tractability of
convex conservative approximations based on concentra-
tion inequalities. For sparsity concerns, we introduce a fa-
mily of entropic bounds – proved to control the cardinality
requirement – that we embed into sparse optimization pro-
blems to derive nonlinear approximations to the latter.
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