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Abstract

In this thesis, we study the formation of coherent structures in the early
stages of transition from a laminar state towards a chaotic attractor. We aim to
unveil the rich array of dynamical characteristics appearing in the laminar-chaos
transition of external flows, and to determine some of the universal ingredients
in the transition. In particular, we analyse the formation of large coherent
structures under the competition among multiple global instabilities. These
techniques are applied, to a different extent, to multiple physical problems:
acoustics, wake and jet flows and problems with moving interfaces.
In acoustic problems, the instability of the jet flow past a hole is analysed in
terms of its transfer function, the impedance, which allows us to consider the
incompressible problem, as long as the flow is acoustically compact. The continu-
ation of the emerging limit cycle from the self-sustained instability is carried out
following a fixed-point method for limit cycles, which also provides information
about the sensitivity of the cycle characteristics to localised variations in the
flow-field. The flow problems with moving interfaces require the development of
novel numerical techniques to analyse the issuing instabilities. Herein, we explore
the techniques of a linearised diffusive Immerse Boundary Method in a case
with Vortex-Induced-Vibrations (VIV), and the linearised Arbitrary Lagrangian
Eulerian technique for the dynamics of a bubble in a straining flow.
In the case of multiple interacting flow instabilities, we analyse the organising
centres: the steady-steady bifurcation with 1:2 resonance condition in the config-
uration of two concentric jets, a codimension-three Takens-Bogdanov bifurcation
in the case of the wake flow behind a spinning cylinder, the steady-Hopf bi-
furcation in a case of an axisymmetric wake flow, and the triple Hopf in two
cases, the wake flow dynamics behind a rotating particle (non-resonant) and
the sound emissions of a rounded impinging jet (resonant). In addition to the
qualitative description of the dynamics and the formation of spatio-temporal
patterns in the flow, the analysis of these organising centres offers information
about the connections between the underlying baseflow/perturbations and the
nonlinear transitions. For instance, the existence of a (near-)resonance condition
in the case of the rounded impinging jet suggests for the existence of a non-local
feedback mechanism, which is herein analysed using a decomposed notion of the
structural sensitivity tensor.

Keywords — Instabilities, acoustics, dynamical systems, mode interaction
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Résumé
Dans cette thèse, nous étudions la formation de structures cohérentes dans

les premiers stades de transition de l’état laminaire vers un attracteur chao-
tique. L’objectif vise à montrer la riche gamme des caractéristiques dynamiques
apparaissant dans la transition laminaire-chaos pour les écoulements externes,
déterminant ainsi certains ingrédients universels de la transition. L’analyse porte
en particulier sur la formation des structures cohérentes issues de l’interaction
entre plusieurs instabilités globales. Ces techniques s’appliquent, à degrés divers,
à de multiples problèmes physiques : acoustique, écoulements de sillage et jet ou
encore problèmes avec des interfaces mobiles.
Dans les problèmes acoustiques, l’instabilité de l’écoulement d’un jet à travers
un trou est analysée à partir de sa fonction de transfert, l’impédance. Cela
permet de considérer une modélisation incompressible tant que l’écoulement est
acoustiquement compact. La continuation du cycle limite émergeant à partir
de l’instabilité autoentretenue est effectuée selon une méthode de point-fixe
pour les cycles limites, une méthode qui fournit également des informations sur
les grandeurs de sensibilité. Les problèmes d’écoulement à interfaces mobiles
nécessitent le développement de nouvelles techniques numériques pour analyser
les instabilités. Nous explorons, dans un cas, une technique Immersed Boundary
Method linéarisée avec des Vibrations Induites par Vortex (VIV) et, dans un
autre cas, la technique Lagrangienne Eulérienne Arbitraire linéarisée pour la
dynamique d’une bulle dans un flux de déformation.
Dans le cas des écoulements avec des multiples instabilités qui interagissent,
nous analysons les bifurcations à haute-codimension suivantes : une bifurcation
stationnaire-stationnaire avec une condition de résonance 1:2 dans la configura-
tion de jets concentriques, une bifurcation de Takens-Bogdanov de codimension
trois dans le cas d’un écoulement de sillage derrière un cylindre en rotation,
la bifurcation de Hopf-stationnaire dans le cas d’un écoulement de sillage ax-
isymétrique et la bifurcation triple Hopf dans deux cas, celle de la dynamique
de l’écoulement de sillage derrière une particule en rotation (non-résonnante) et
celle des émissions sonores d’un jet incident (résonant). En plus de la description
qualitative de la dynamique et de la formation de structures spatio-temporelles
dans l’écoulement, l’analyse de ces bifurcations à haute-codimension offre de
l’information par rapport aux mécanismes physiques de l’instabilité. À titre
d’exemple, l’existence d’une condition de (quasrésonance, dans la configuration
d’un jet incident arrondi, suggère l’existence d’un mécanisme de rétroaction non
local qui est ici analysé en utilisant une notion décomposée du tenseur de la
sensibilité structurelle.

Mots-Clés — Instabilités, Acoustique, Systèmes dynamiques, interactions des
modes
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Preface

In this thesis, we study the formation of exact coherent structures in the early
stages of transition from a laminar state towards a chaotic attractor. Herein,
we define exact coherent structures as invariant solutions of the Navier–Stokes
equations. We aim to unveil the rich array of dynamical characteristics appearing
in the laminar-chaos transition of fluid flows, and to determine the universal
ingredients in the transition. In particular, we analyse the formation of large
coherent structures under the competition among multiple global instabilities.
These techniques are applied, to a different extent, to multiple physical problems:
sound emissions of a jet past a hole or of a jet impinging on a wall; the wake
flow (with or without mixed convection) behind bluff bodies and problems with
moving interfaces such as Vortex-Induced-Vibrations (VIV) or the dynamics of
a bubble in a straining flow.
The Thesis is divided into two parts. A brief introduction on the basic concepts
and methods is presented in part A. In addition, it is provided a description
of the main findings of the set of articles belonging to the category of mode
interaction, which are listed just below. Part B contains the articles.

Mode interaction

Sierra-Ausin, Javier, David Fabre, Vincenzo Citro, and Flavio Giannetti (2020).
“Bifurcation scenario in the two-dimensional laminar flow past a rotating
cylinder”. In: Journal of Fluid Mechanics 905.

Sierra-Ausin, J, M Lorite-Diez, et al. (2022). “Unveiling the competitive role of
global modes in the pattern formation of rotating sphere flows”. In: Journal
of Fluid Mechanics 942.

Corrochano, A. et al. (2023). “Mode selection in concentric jets with resonance
1:2”. In: Journal of Fluid Mechanics (accepted).

Sierra-Ausin, J., D. Fabre, and E. Knobloch (2023). “Wake dynamics in buoyancy-
driven flows: steady state–Hopf mode interaction with O(2) symmetry revis-
ited”. In: Phys. Rev. E (submitted).

Sierra-Ausin, J. and F. Giannetti (2023). “On the linear and nonlinear mecha-
nisms for the tonal and broadband noise of subsonic rounded impinging jets”.
In: Journal of Fluid Mechanics (to be submitted).

We have analysed five organising centres, which exemplify some of the most
common laminar-chaotic transitions for self-sustained instabilities. These corre-
spond to: a degenerate case of the Takens-Bogdanov bifurcation, the interaction
between two non-oscillating modes in an axisymmetric configuration with 1:2
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resonance, a steady-Hopf mode interaction, and the interaction between three
oscillating modes (triple Hopf) with and without resonance.
The first case, a degenerate Takens–Bogdanov bifurcation, is actually a codimension-
three bifurcation. Surprisingly, when varying two parameters, we (almost) find
numerically a codimension-three bifurcation. The reason behind this anomaly
might be the regularity of the Navier–Stokes equation when the Reynolds number
tend to zero. The uniqueness of the steady-state solution at this limit constraints
the number of steady solutions in the parameter space to be odd; at least when
considering the laminar bifurcation problem. This suggests that this kind of
degenerate Takens-Bogdanov bifurcation might be more general than it seems
for the Navier–Stokes equations. This work that resulted in Sierra-Ausin, Javier,
Fabre, Citro, and Giannetti (2020) was started during my master thesis, and it
was finalized during the first months of the PhD. It provides a rationalisation for
the existence of multiple steady states for the flow past a rotating cylinder, as it
was already observed in previous studies. Two bistability regions are identified,
the first with two stable fixed points and the second with a fixed point and a cycle.
The presence of homoclinic and heteroclinic orbits, which are classical in the
presence of Takens–Bogdanov bifurcations, was confirmed by direct numerical
simulations.
The second scenario with two modes that interact corresponds to the steady-
steady symmetry breaking with 1 : 2 resonance of the azimuthal wave numbers.
In Corrochano et al. (2023) we have analysed the dynamics near the primary
bifurcation of two concentric jets. Under a set of conditions (Armbruster et al.,
1988), one may identify near the bifurcating point several surprising non-trivial
coherent structures of the jets: slowly drifting rotating waves, heteroclinic cycles
and quasi-periodic solutions that approximate the dynamics of the heteroclinic
cycle. Such an organising centre was also identified numerically (Nore, Tuck-
erman, et al., 2003) and experimentally (Nore, Moisy, et al., 2005) in the Von
Karman swirling flow.
Third, we focus on a classical scenario with a continuous symmetry displaying
mode interaction between slow and fast dynamics (0 − iω). The steady-Hopf
bifurcation in axisymmetric (O(2) symmetry) flows is analysed and applied to
the Wake Flow of Axisymmetric bluff bodies (WFA) and the Wake Flow of
Axisymmetric bluff bodies under Mixed-Convection (WFA-MC) in Sierra-Ausin,
Fabre, and Knobloch (2023). This organising centre is also of relevance for the
Taylor-Couette flow (Chossat et al., 2012), and for the trajectory instabilities
in falling bodies (Tchoufag et al., 2015) and rising bubbles in a fluid (Bonnefis,
2019). We also analyse the existence of robust heteroclinic cycles, which are
idealised Self-Sustained-Processes (SSP).
Finally, we study the interaction between three oscillating instabilities, a triple
Hopf bifurcation (iω1 − iω2 − iω3). This case is of relevance for fluid flows
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interacting with rotating particles. In, Sierra-Ausin, Lorite-Diez, et al. (2022)
we provide a bifurcation and a phase diagram of the wake flow behind a rotating
sphere. This is an example of the non-resonant case, which arises naturally in
fluid flows depending on several parameters and displaying multiple interacting
self-sustained instabilities, where the core of the instability or wavemaker of
the global modes is localised in space. The resonant case, instead, is relevant
for the study of the non-linear interaction between a family of global modes
associated to a non-local feedback-loop. In this case, the core of the instability
is not localised in space, and the frequency of the global modes is nearly a multi-
ple of a fundamental pulsation Δω. In Sierra-Ausin and Giannetti (2023) we
analyse the dynamics of a laminar rounded impinging jet, which exemplifies the
resonant-case. Therein, in addition to studying the resonant mode interaction,
we propose an acoustic-hydrodynamic decomposition of the structural sensitivity
map, which serves to identify the spatial localisation of the feedback-loop.

The continuation of limit-cycles with respect to parameters and the evalua-
tion of their linear stability requires efficient numerical techniques. This was the
objective during the first steps of this thesis. We developed a fixed-point method
for the computation of periodic solutions of incompressible and compressible
Navier–Stokes equations. Herein, we employ the Harmonic Balance or Fourier–
Galerkin method for the reconstruction of the limit cycle; the resulting linear
system is subsequently solved with a Newton-Krylov method. The evaluation
of the linear stability of the periodic solution is evaluated with the Floquet–
Hill method, the frequency domain counterpart of the classic Floquet analysis
(Barkley et al., 1996). The sensitivity with respect to frequency variations of
the limit cycle and its structural sensitivity is then evaluated in a fixed point
manner following the works Giannetti and Luchini (2007), Giannetti, Camarri,
and Luchini (2010), and Giannetti, Camarri, and Citro (2019). This novel nu-
merical strategy greatly simplifies the numerical burden required for an efficient
evaluation of the wavemaker of the instability with respect to time-stepping
approaches. These techniques are discussed in two manuscripts

A fixed-point method for limit cycles

Sierra-Ausin, Javier, Pierre Jolivet, et al. (2021). “Adjoint-based sensitivity
analysis of periodic orbits by the Fourier–Galerkin method”. In: Journal of
Computational Physics 440, p. 110403.

Sierra-Ausin, Javier, Vincenzo Citro, Flavio Giannetti, et al. (2022). “Efficient
computation of time-periodic compressible flows with spectral techniques”.
In: Computer Methods in Applied Mechanics and Engineering 393, p. 114736.

ix



In the following, we consider another acoustic problem: the whistling poten-
tiality of the jet flow past a hole. Such a case is a canonical configuration to
study the sound emission of humans. Sierra-Ausin, Fabre, Citro, et al. (2022)
analyses the stability problem in terms of the zeros of the transfer function of
the system: the impedance.
The study of the acoustic emissions of the jet flow past a hole has been continued,
and we are preparing a manuscript comparing linear theory and experiments
(Hirschberg et al., 2022; Hirschberg et al., 2023).
For the treatment of the boundary conditions in these problems, we have de-
veloped a non-reflecting boundary condition, the complex mapping techinique
(Sierra-Ausin, Javier, Fabre, and Citro, 2020), which allows us to efficiently
tackle the numerical issues arising when dealing with compressible or convec-
tively dominated flow configurations. The jet flow past a hole is here a canonical
example where both problematics are present. The technique allows damping
outgoing waves before reaching the numerical boundary, thus avoiding wave
reflection from the numerical far-field boundaries.

The whistling of a jet past a hole

Sierra-Ausin, Javier, David Fabre, and Vincenzo Citro (2020). “Efficient stability
analysis of fluid flows using complex mapping techniques”. In: Computer
Physics Communications 251, p. 107100.

Hirschberg, Lionel et al. (2022). “Linear Theory and Experiments for Laminar
Bias Flow Impedance: Orifice Shape Effect”. In: p. 2887.

Sierra-Ausin, J., D Fabre, V Citro, et al. (2022). “Acoustic instability prediction
of the flow through a circular aperture in a thick plate via an impedance
criterion”. In: Journal of Fluid Mechanics 943.

Hirschberg, Lionel et al. (2023). “Linear Theory and Experiments for Laminar
Bias Flow Impedance”. In: AIAA (to be submitted).

During the doctoral period, we have collaborated with the group of Politecnico
di Bari on the linear stability properties of problems with moving interfaces. It
includes the linear stability of a bubble suspended in an axisymmetric uniaxial
straining flow (Sierra-Ausin, Bonnefis, et al., 2022). Thanks to a recently
developed Linearized Arbitrary Lagrangian-Eulerian approach, we compute the
steady equilibrium states and associated bubble shapes. In particular, we show
a novel self-propelled instability of the bubble in this problem. Additionally, we
have developed a framework to perform linear stability studies of fluid-structure-
interaction (FSI) problems (Tirri et al., 2023). It consists on the linearisation of
a diffusive immersed-boundary-method (IBM).
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Linear stability with moving interfaces

Sierra-Ausin, Javier, Paul Bonnefis, et al. (2022). “Dynamics of a gas bubble
in a straining flow: Deformation, oscillations, self-propulsion”. In: Physical
Review Fluids 7.11, p. 113603.

Tirri, Antonia et al. (2023). “Linear stability analysis of fluid–structure interac-
tion problems with an immersed boundary method”. In: Journal of Fluids
and Structures 117, p. 103830.

Finally, I include here a set of manuscripts that were published during the
time that I carried out this doctoral project, but that will not be covered in the
thesis.

Miscellaneous

Sierra-Ausin, Javier, Vincenzo Citro, and David Fabre (2019). “On boundary
conditions for compressible flow simulations”. In: pp. 335–340.

Citro, V, F Giannetti, and J. Sierra-Ausin (2020). “Optimal explicit Runge-Kutta
methods for compressible Navier-Stokes equations”. In: Applied Numerical
Mathematics 152, pp. 511–526.

Sáez-Mischlich, Gonzalo, Sierra-Ausin, Javier, and Jérémie Gressier (2022). “The
Spectral Difference Raviart–Thomas Method for Two and Three-Dimensional
Elements and Its Connection with the Flux Reconstruction Formulation”. In:
Journal of Scientific Computing 93.2, pp. 1–54.

Sáez-Mischlich, Gonzalo, Sierra-Ausin, Javier, Gilles Grondin, et al. (2022). “On
the properties of high-order least-squares finite-volume schemes”. In: Journal
of Computational Physics 457, p. 111043.

Division of the work between the authors

For transparency, and with the aim of recognising the contributions of each
author to the papers published during this PhD project, in the following it is
outlined the individual contributions to the papers using the relevant CRediT
(Contributor Roles Taxonomy) roles (Allen et al., 2019).

Paper 1 Sierra-Ausin, Javier, Fabre, Citro, and Giannetti (2020).
Javier Sierra-Ausin (JSA): Conceptualization, Methodology, Software,
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CHAPTERI
Introduction

Fluids are ubiquitous in nature; they compose three of the four classical states
of nature, liquids, gases and plasmas. They have been observed, analysed and
studied since at least the classical period of ancient Greece. A legend says that
the first philosophical, or, in our modern terms, mathematical theory dealing
with fluid flows was the one that explains buoyancy, the Archimedes principle.
Archimedes was charged to show that the crown made of gold for the king of
Syracuse was not of pure gold, as the goldsmith had claimed. Archimedes thought
long and hard but could not find a method for proving that the crown was not
solid gold 1. Not until, he filled a bathtub and then noticed some water spilled
over the edge. At that moment, he noticed that the water displaced by his body
was equal to the weight of the body. Then, forgetting that he was undressed,

1The word koronê, the Greek translation of crown, was also used to denote the keel of a
ship. If the story was that "Hieron commissioned an exceptionally heavy koronê and asked
Archimedes to prove that it would not sink when placed on water", there is obvious scope for
confusion with the notion of an exceptionally valuable, heavy, crown.
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he went running naked down the streets from his home to the king, shouting
Eureka. Archimedes’ principle of buoyancy was the first theory of fluid mechanics.
Since then, mathematicians, physicists, and engineers have worked together to
unravel the enigmas behind the motion of fluids. The governing equations of fluid
mechanics were mathematically formalized over several decades of progressively
building the theories by Navier and Stokes during the XIXth century. They
correspond to the conservation of momentum and mass for Newtonian fluids,
the equivalent of Newton laws in classical physics. Despite the existence of
the governing laws of fluid since far more than a century2, the dynamics of
flows still puzzle us. During the second half of the XIX century, a similar
phenomenon was observed for the dynamics of N rigid spheres. The dynamics
of the spheres is governed by the Newton equations, which are deterministic.
That is, for a given initial condition of the position and velocity of the spheres
at time t0 we always obtain the same response at time t1. However, physicists
and mathematicians soon realized about the difficulty or even unfeasibility of
determining an exact solution for the equations of N rigid spheres when N

becomes large (note that N = 3 is already large!). This problem led to two
major discoveries. The dynamics of a large number of small spheres is used to
model the motion of atoms or particles, in these cases N > 1020. In those cases,
the problem is no longer attacked from a deterministic point of view, but we
aim to provide a statistical description of the system. Equilibrium Statistical
mechanics has been founded during the XIXth century by the seminal work of
Maxwell, Boltzmann and Gibss (Penrose, 1979). The main aim was to explain
the properties of macroscopic systems from the atomistic point of view. On the
other hand, we have the discovery of deterministic chaos, which started with the
pioneering work of Poincaré (Poincaré, 1890) and the advances of the second
half of the XXth century by Chirikov, 1979, Hénon, 1976, Lorenz, 1963, Ruelle
et al., 1971, and many others. It shows, in particular, that typical statistical
features observed in systems with many degrees of freedom are also shared by
systems with few degrees of freedom. These two developments come together
with the developments of Statistical mechanics far from equilibrium and ergodicity
theory (Coudene, 2009). The concept of the Perron-Frobenius operator, which
is the time-evolution operator of the physical measure or SRB measure, links
the classical concepts of Liouville operator for Hamiltonian mechanics and its
invariant measure. An important property, believed to hold in some sense for most
cases of chaotic attractors is hyperbolicity, that is that trajectories in the phase
space expand or contract exponentially in time, and it has major consequences in
the reconstruction of the statistical properties. First, one can construct spectral
determinants or zeta functions, via cycle expansions (Cvitanovic et al., 2005),
to recover a probabilistic description of the attractor, i.e. averaged observables,

22023 is the bicentenary of Navier’s work that led to the establishment of the master
equations of fluid mechanics, known as the Navier-Stokes equations.
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cumulants, etc. However, a major drawback for practical applications of these
techniques is the dependency of cycle expansions in a priori knowledge of the
topology of the phase space. In particular, this technique is highly efficient
when one can encode dynamics with a symbolic alphabet. In this way, symbolic
dynamics can be used to determine rules that forbid certain subsequences of
dynamic symbols, which is known as pruning. In the absence of pruning rules,
one may employ some physical insights of the problem to try to determine
which are the most relevant regions of the phase space, e.g. solutions with
large dissipation. Some recent works in the fluid mechanics community (Wedin
et al., 2004; Gibson et al., 2008; Gibson et al., 2009; Olvera et al., 2017), just
to mention a few, employ these methods to determine what is known as exact
coherent structures.
The computation and the study of the instabilities and the formation of coherent
structures is the subject of the hydrodynamic stability theory (Charru, 2011;
Drazin et al., 2004; Huerre et al., 1990). The aim of classic hydrodynamic
stability is to determine the asymptotic stability3 of the laminar steady state,
which may be unique or multiple. Historically, hydrodynamic stability deals
with the local stability analysis of the steady state, that is, the steady state
depends non-trivially on a single coordinate (Briggs et al., 1964; Bers, 1975).
In this setting, one distinguish between two types of instabilities (Monkewitz,
1990). The exponential growth of a perturbation in a co-moving frame of
reference, at the group velocity of the wave packet, corresponds to what is called
a convective instability. Instead, the exponential growth of a perturbation in
a fixed frame of reference, that is at a null group velocity, corresponds to an
absolute instability. Free jets, shear, and boundary layers are the archetype flows
displaying convective instabilities, while the wake flow behind bluff bodies is a
classical flow configuration with an absolute instability. With the evolution of
the computer processing speed and memory capabilities, the local restriction has
been progressively reduced 4 allowing us the determination of the asymptotic
linear stability of two and three-dimensional steady states (Fabre, Citro, et al.,
2018; Moulin et al., 2019). In this setting, we could draw a similar dichotomy as
in the local framework. One may distinguish between modal (Taira et al., 2017)
and non-modal (Schmid, 2007; Luchini et al., 2014) linear stability, owning to the
properties of the linearized operator around the steady state. The asymptotic
behaviour of the steady state is studied by modal linear stability, while, non-

3In the case the linearized operator around the steady state is hyperbolic, i.e. the spectrum
does not contain the imaginary axis, linear stability implies asymptotic stability (Kapitula
et al., 2013)

4A quote from Lutz Lesshafft HDR thesis (Lesshafft, 2018): " Scientific development,
even within one discipline as close-knit as open flow instability, does not usually advance in
lockstep. When I took my position at LadHyX in 2009, global eigenmode analysis was the
fashion of the time. This framework . . . had been introduced already in the late 1980s . . . The
Ph.D. work of Nichols, Coenen and myself on jet instability was still entirely built on the local
analysis of laminar steady base flows
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1 – Instabilities in external flows

modal linear stability, introduced by Trefethen (1999), provides a rationalization
about the transient growth in systems where the linearized operator is not
normal (hermitian for complex operators). Assuming that transient growth is
not large, and disturbances are small, modal stability, or as it is usually referred
to, global stability, is sufficient to determine if the flow is stable and its threshold
of instability. It is therefore sufficient to conduct a linear stability analysis, which
is the central block of global stability approaches.

1

Instabilities in external flows

1.1
Coherent structures and instabilities in jets. From amplifiers to oscillators.

Here, we distinguish two types of instabilities: amplifiers and oscillators. In
the first case, oscillations are driven by external perturbations and free jets are
a canonical example, see fig. I.1 (b). In the second, oscillations are driven by
intrinsic mechanisms. Some examples are impinging jets (Jaunet et al., 2019),
the jet flow through an orifice (Fabre, Longobardi, Bonnefis, et al., 2019; Fabre,
Longobardi, Citro, et al., 2020) or buoyant jets and plumes (Chakravarthy et al.,
2018), an example of the latter is displayed in fig. I.1 (a).

The discrete spectrum of amplifiers around the baseflow is stable, that is

(a) . (b) .

Figure I.1 – Examples of the oscillator and amplifier type flow. (a)
Photograph of the smoke rising from a cigarette (extracted from Van Dyke
et al. (1983)) (b) response of an incompressible circular jet of Reynolds
number Re = 1.95×104 to an acoustic forcing of Strouhal number St = 0.3
(extracted from Crow et al. (1971)). .

amplifiers are asymptotically stable flows, but only linearly. These flows are
characterised by large transient growth, which is determined in the frequency
domain by means of the resolvent operator (Trefethen, 1999) or in the time domain
as an optimal perturbation that maximises a given gain function (Shaabani-
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Ardali et al., 2019; Garnaud et al., 2013).
In contrast, the baseflow of oscillators is unstable and they allow for self-sustained
oscillations. The methodology in this case consists in the solution of the linear
problem (eigenvalue problem), continuation of the periodic solution or arc-length
continuation in the case of a saddle-node bifurcation. The identification of
physical mechanisms is systematically determined in terms of sensitivity maps.
Here, we may distinguish, the structural sensitivity (Giannetti and Luchini,
2007), the sensitivity to the baseflow variations (Marquet, Sipp, et al., 2008) or
the endogeinity (Marquet and Lesshafft, 2015).

1.2
Coherent structures in bluff bodies. A connection with pattern formation.

The wake flow past bluff bodies, for instance a spherical particle, is a canonical
model of numerous applications, such as particle-driven flows, sport aerodynamics
and freely rising or falling bodies, where the changes in particles’ paths are related
to the destabilization of complex flow regimes and associated force distributions.
In addition, the flow past bluff bodies serves as a canonical example of the
oscillator class, where the study of instabilities is pursued by linear theory,
see fig. I.2. However, the linear theory does not account for the successive
formation of coherent structures with spatio-temporal broken symmetries, with
respect to the laminar state. The systematic use of bifurcation theory helps

Figure I.2 – Left: von Kármán vortex street in a circular cylinder wake
at Reynolds number Re = 140 (photograph taken from Van Dyke et al.
(1983). Right: quasi patterns in a Faraday wave experiment in a container
in the shape of France. (photograph taken from Edwards et al. (1994)). .

to uncover the interplay between flow instabilities and the formation of flow
patterns, thus drawing a connection between pattern formation in reaction–
diffusion systems (Hoyle et al., 2006) and the formation of coherent structures
in fluid flows. Bifurcation theory has been mostly employed to study wall
bounded flow configurations such as Taylor–Couette flow (Chossat et al., 2012)
or Rayleigh–Benard (Cross et al., 1993), among others. The study of unconfined
flow configurations from a dynamical systems’ perspective is more recent. The
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primary instability leading to self-sustained oscillations, that is, the first Hopf
bifurcation, has been studied for the flow past a cylinder flow (Gallaire et al.,
2016; Sipp and Lebedev, 2007; Barkley et al., 1996), the flow past a rotating
sphere (Citro, Tchoufag, et al., 2016), open cavity flows (Sipp, 2012) or for the
fluttering an spiriling motion of buoyancy-driven bodies (Tchoufag et al., 2015).
In addition, the mode interaction and pattern selection has been analysed for the
wake flow past an axisymmetric disk Meliga, Chomaz, et al., 2009, in swirling
jets Meliga, Gallaire, et al., 2012 or in falling objects (Tchoufag, 2013, Appendix
C).

1.3
Coherent structures in FSI and bubbles. The treatment of the interface.

Bubbles, droplets, insect wings, flags, or heart valves share a common element:
a deformable interface. They all possess a surface that is deformed or is displaced
by the action of the fluid stresses around it. In addition, these surfaces also
affect the dynamics of the flow, creating in this way a two-way coupling, which
is in general nonlinear. Pfister (2019) provides a comprehensive introduction

Figure I.3 – Left: Flapping airfoil before the onset of instability (photo-
graph extracted from Vandenberghe et al. (2004)). Right: Rising bubble in
a quiescent flow, displaying a helicoidal trajectory and oscillations of the
shape of the bubble (photograph extracted from (Veldhuis et al., 2008)). .

to the one-way and two-way coupling modelling techniques in Fluid-Structure-
Interaction (FSI) problems. The authors employed a Lagrangian-based Arbitrary
Lagrangian Eulerian (ALE) formalism, which was introduced by Hughes et al.
(1981) and extended to time-dependent problems by Fernández et al. (2003a) and
Fernández et al. (2003b), to model the deformation of elastic structures. Herein,
we adopt a similar Lagrangian-based ALE method to analyse the instabilities of
bubbles immersed in a fluid (Bonnefis, 2019). The linear stability analysis of
FSI problems is tackled with an Immersed Boundary Method (IBM) based on a
moving-least-square (MLS) approach (Nitti et al., 2020).

6 Chapter I – Introduction



CHAPTERII
Methodology

1

Generic dynamics

We introduce the governing equations of the fluid motion as an autonomous
infinite dimensional dynamical system, which can be written using the following
compact notation,

B
∂q
∂t

= F(q, η) in Ω,

0 = Fbc(q, η) on ∂Ω,
(II.1)

where the generic fluid domain of computation Ω with boundaries ∂Ω being
sketched in fig. II.1. Here q takes the role of the state variable of the system and
η the parameter vector, that is, the dimensionless parameters of the problem.
These parameters are classified by their significance: dynamical1 (Reynolds,

1Dimensionless numbers that are obtained as the ratio of two forces or diffusivities.
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1 – Generic dynamics

outletinlet

bottom

top

body

Figure II.1 – Sketch of a generic flow configuration with a solid body
immersed within the fluid domain Ω, with boundaries ∂Ω .

Prandtl numbers), kinematic (Mach number), geometrical (aspect ratio), etc.
We use the generic notation for the boundary conditions operator Fbc, which
remains undefined, and it will be included into F hereinafter. B is a linear
operator, F is a nonlinear operator on a Hilbert space X with inner product
〈·, ·〉. In this way, both differential algebraic problems (DAE) and evolutionary
partial differential equations (PDE) are included. Natural Hilbert spaces for the
infinite dimensional case are Sobolev spaces, see Kapitula et al. (2013), whereas
in finite dimensions we will generally consider Rn.

1.1
Computation of the laminar state – Newton iteration

The time-independent solution q0, i.e., F(q0, η) = 0, of eq. (II.1) is efficiently
solved by means of a Newton iteration. The steady-state is determined by
substituting the ansatz q(n)

0 + δq into eq. (II.1), where the small correction δq is
computed from the linear expansion of eq. (II.1). In the following, the operator
DF is defined to be the Jacobian operator of the vector field F. Then we end
up with the following classical Newton-scheme:
Initialize the steady-state guess q(0)

0 and solve the linear problem

DF(q(n)
0 , η)δq = −F(q(n)

0 , η) in Ω, (II.2)

while updating every iteration for the the steady-state guess

q(n+1)
0 = q(n)

0 + δq.

1.2
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Evaluation of the linear dynamics of the baseflow

The steady-state q0 is asymptotically stable if, for any infinitesimally small
perturbation q′(t), the perturbed state q0 + q′(t) approaches q0 when t → ∞

B
∂q′

∂t
= DF(q0, η)q′ in Ω. (II.3)

The Laplace transform of the time-variable of eq. (II.3), that is, we consider
perturbations of the type q′(t) �→ q̂eλt, leads to

Lλq̂ =
(

λB − DF(q0, η)
)

q̂ = 0 in Ω. (II.4)

For finite-dimensional vector fields F, the spectrum of Lλ is only composed of
the eigenvalues of Lλ, however, for infinite dimensional vector fields, the spectrum
may contain a continuous spectrum. When the domain Ω is unbounded2, the
spectrum σ(Lλ) is decomposed into a discrete point spectrum σpt(Lλ) and a
continuous spectrum σcont(Lλ). The continuous spectrum is associated with
conditions at the far-field, and it is relevant for convective instabilities, whereas
the modes of the discrete spectrum are energy bounded and with compact
support in space. In the following, unless it is otherwise stated, we only consider
the discrete spectrum.

Linear stability from a transfer function

In some cases, under additional assumptions (Sierra-Ausin, Fabre, Citro,
et al., 2022; Sabino et al., 2020), one may evaluate the stability of the system
by considering the zeros (respectively, poles) of a reduced input-output transfer
function Z(iω, q̂ω, s). Here s ∈ Rp is an additional set of parameters, with p � n,
where n is the size of q̂ω ∈ Rn, once the problem has been discretised in space.
The first step consists in the evaluation of q̂ω via a forced problem, that is, we

determine the response of the linearised system to a harmonic forcing term Ĥeiω

with ω ∈ R, (
iωB − DF(q0, η)

)
q̂ω = Ĥ. (II.5)

Then, one may define a scalar input-output transfer function as

Z(iω, q̂ω, s) ≡ PZ

(
iωB − DF(q0, η)

)−1
Ĥ, (II.6)

where the operator PZ selects the (scalar) output of the system. Provided the
transfer function is analytic, it can be analytically continued into the complex

2Actually, the correct notion behind the pseudo-modes or Weyl sequence composing the
continuous spectrum is the closedness of the linear operator. However, herein we simply
consider the unboundedness of the physical domain, which allows the existence of waves with
a bounded amplitude but infinite energy, to avoid the introduction of additional definitions.
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Figure II.2 – Nyquist diagram for the impedance Z along the complex
contour Γ of integration enclosing the unstable complex plane, where
Cauchy’s argument principle is applied.

plane, and look for the values of λ = λr +iλi ∈ C, that satisfy Z(λ+iω, q̂ω, s) = 0.
A first order expansion is as follows

0 = Z(λ + iω, q̂ω, s) = Z(iω, q̂ω, s) +
∂Z

∂ω
λ + O(|λ|2), (II.7)

which furnishes a criterion of instability, i.e., the system is then unstable if
λr > 0, which happens if the Nyquist curve for impedance Z encircles the origin,
while being oriented counter-clockwise (fig. II.2).

Non-normality and transient growth

Until this point, we have provided a necessary condition for the asymptotic
stability of eq. (II.3). This condition turns out to be sufficient if the norm of the
perturbation q′(t0) is sufficiently small. On the other hand, if the norm of the
perturbation is finite, transient effects may trigger a nonlinear response, which
is the usual description of the instabilities in free jets that we have very briefly
discussed in section 1.1. The general solution of eq. (II.3) can be written as

q′(t) = SDF(q0,η)(t)q′(t0) (II.8)

where SDF(q0,η)(t) is the semigroup3 generated by the linear operator DF(q0, η).
From eq. (II.8), we define the maximal energy gain from an arbitrary initial
perturbation as the norm of the semigroup at a time t,

G(t) ≡ ||SDF(q0,η)(t)|| ≡ sup
q′(t0)∈X

{ ||SDF(q0,η)(t)q′(t0)||
||q′(t0)|| , q′(t0) ∈ X} (II.9)

3Here, we assume the following: DF(q0, η) is a densely defined closed operator in the
Hilbert space X that generates SDF(q0,η)(t), which is a C0 semigroup.
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we can state the following about the gain.
In the large time limit (t → ∞), if the linear operator DF(q0, η) is bounded
(Kapitula et al., 2013), then

lim
t→∞ G(t) = etα

(
DF(q0,η)

)
(II.10)

where α
(
DF(q0, η)

)
is the spectral abscissa (or spectral bound) of DF(q0, η),

which is defined as the largest bound (real part) on the spectrum α(A) =
supz∈σ Rez. In the case of unbounded operators, that is, when we consider
a continuous spectrum σcont, it turns out that eq. (II.10) is no longer true.
Instead, one must replace the spectral abscissa by the numerical abscissa ω(A) =
α
( 1

2 (A + A†)
)
, A† being the adjoint operator of A. Then, in a Hilbert space X

and for the kind of operators we have considered (they generate a C0 semigroup),
the following statement holds

lim
t→∞ G(t) = etω

(
DF(q0,η)

)
(II.11)

which is equivalent to

lim
t→∞

ln G(t)
t

= ω
(
DF(q0, η)

)
(II.12)

The proof to eq. (II.12) can be found in Trefethen (1999, Ch. 19).
Additionally, it is of interest to relate the transient growth with the spectral prop-
erties of the linear operator. It turns out that there is a simple characterisation
of the initial growth rate at time t → 0, which is given by

d

dt
G(t)|t=0 = ω

(
DF(q0, η)

)
(II.13)

A proof of this statement can be found in Trefethen (1999, Ch. 17). In addition,
it is possible to bound at any time t the evolution of the gain by

etα
(

DF(q0,η)
)

≤ G(t) ≤ etω
(

DF(q0,η)
)
. (II.14)

These bounds are rather obscure; a direct physical interpretation is not immedi-
ately evident. In the finite dimensional case, when the operator DF(q0, η)

)
is

diagonalisable, we have the alternative upper bound,

etα
(

DF(q0,η)
)

≤ G(t) ≤ κ(V)etα
(

DF(q0,η)
)

= ||V−1||||V||etα
(

DF(q0,η)
)
. (II.15)
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κ(V) the condition number of the linear operator DF(q0, η)
)
. In this case,

κ(V) = 1 when the linear operator is a normal operator, that is,

DF(q0, η)
)
DF†(q0, η)

)
= DF†(q0, η)

)
DF(q0, η)

)
,

then the condition number κ(V) = 1, otherwise κ(V) > 1 and transient growth
is possible.
Transient effects and the receptivity process can be quantified by evaluating the
resolvent operator norm

R(iω) ≡ sup
Ĥ�=0

||q̂ω||
||Ĥ|| = sup

Ĥ�=0

||
(

iωB − DF(q0, η)
)−1

Ĥ||
||Ĥ|| ≡ sup

Ĥ�=0

||(Liω)−1Ĥ||
||Ĥ||

(II.16)
which provides the frequency-response gain. More generally, we can define the
resolvent operator norm for any z ∈ C as R(z), which promptly allows for the
definition of the pseudospectra of the system as

σε = {z ∈ C : R(z) = ε−1}. (II.17)

A thorough analysis of G(t) in terms of the pseudospectra may be found in the
excellent book by Trefethen (1999, Ch. 14-19), in here we just state the following
result without any further justification,

G(t) ≤ Lεetαε

(
DF(q0,η)

)
2πε

, ∀ε > 0, ∀t ≤ 0, (II.18)

with Lε the arc length boundary of σε and the pseudo-spectral abscissa αε

(
DF(q0, η)

) ≡
supz∈σε

Rez. A summary of these results is depicted in fig. II.3 (b,c).

1.3
Computation of the limit cycle – Harmonic balance method

Here we propose a method to determine the periodic solution, with period
T , of eq. (II.1). It is a natural choice to parameterise any T -periodic orbit q∗

in a t mod T basis, i.e., a Fourier basis. For that purpose, let us consider the
Fourier–Galerkin method, also denoted harmonic balance (HB) in literature
(Urabe, 1965; Krack et al., 2019). We start our analysis by introducing the
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(a) .
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Figure II.3 – (a) An example of the (pesudo-)spectrum of a linear
operator; the figure (a) illustrates pseudospectra of the Orr-Sommerfeld
operator at neutrality (Re = 5772) for plane Poiseuille flow. Circle
markers represent the eigenvalues, and the coloured isolines illustrate the
pseudospectrum σε in logarithmic scale. (b) A transient evolution of the
gain G(t) whose slope at t → 0 is determined by the numerical abscissa,
at t → ∞ by the spectral radius and the maximum is approximated by the
pseudospectrum.

Fourier–Galerkin projection operator πN onto the Fourier basis as follows:

πN : X × R → X × (Z/(2N + 1)Z)
πN (q) = qh(t) = q0 +

∑N
n=1 [qc,n cos(nωt) + qs,n sin(nωt)]

=
[
q0, q1,c, q1,s, ..., qN,c, qN,s

]︸ ︷︷ ︸
(Q(τ,N))T

[
1, cos(ωt), sin(ωt), ..., cos(Nωt), sin(Nωt)

]︸ ︷︷ ︸
FN

,

(II.19)
where Q(τ,N) are the 2N + 1 Fourier coefficients of the approximated solution
qh and FN is the Fourier basis in sine/cosine components. The ansatz qh(t)
and its derivative are smooth T -periodic functions. The T -residual is defined
as the difference between the nonlinear and the time-derivative term, which is
expressed as follows:

r : X × R → X × R

r(q, ∂q
∂t , t) = B ∂q

∂t − F(q).
(II.20)

Following the Fourier–Galerkin or Bubnov–Galerkin method in the Fourier basis,
the governing equations of HB are obtained by integrating the truncated residual
equations weighted by the Fourier basis over a period T = 2π

ω . The obtained
T -residual is called the truncated T -residual:

r̂h : X × (Z/(2N + 1)Z) → X × (Z/(2N + 1)Z)
r̂h(QN , ω) =

∫ 2π
ω

0 rh(qh, ∂qh

∂t , t)T FN dt = 0,
(II.21)

Chapter II – Methodology 13
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where
rh(qh,

∂qh

∂t
, t) = B

∂qh

∂t
− F(qh). (II.22)

Equation (II.22) provides 2N + 1 equations for 2N + 2 unknowns in the au-
tonomous case. Autonomous systems present a continuous symmetry, i.e., q(t+ξ)
is also a periodic solution with arbitrary ξ phase. The phase of the limit cycle
remains to be fixed. This is usually done by imposing a condition at t = 0,
i.e., g(q, ∂q

∂t , 0) = 0 or an orthogonality condition
∫ T

0 F(qh)T qhdt = 0. Equa-
tion (II.22) corresponds to balancing each harmonic individually, that is, to have
null Fourier coefficients of the truncated residual.

Fourier–Galerkin equations So far, the procedure to obtain a periodic orbit
remains general. Now, without loss of generality, we shall consider the case
where the nonlinear flow is of quadratic type, that is,

F(q, η) = Lq + N(q, q). (II.23)

The incompressible Navier–Stokes equations are of this type. Under these
assumptions, eq. (II.22) takes the form:

0 = Lq0 + N0

nωBqn,s = Lqn,c + Nn,c, n = 1, . . . , N

−nωBqn,c = Lqn,s + Nn,s, n = 1, . . . , N

gh(qh) = 0.

(II.24)

Here, a detailed description of the quadratic terms is given:

N0 = N(q0, q0) + 1
2
∑N

i=1 N(qi,s, qi,s) + N(qi,c, qi,c)
Ni,c =

[
N(qi,c, q0) + N(q0, qi,c)

]
+ 1

2
∑i−1

j=1
[
N(qj,c, qi−j,c) − N(qj,s, qi−j,s)

]
+ 1

2
∑N

j=i+1
[
N(qj,c, qj−i,c) + N(qj−i,s, qj,s)

]
+ 1

2
∑N

j=i+1
[
N(qj−i,c, qj,c) + N(qj,s, qj−i,s)

]
Ni,s =

[
N(qi,s, q0) + N(q0, qi,s)

]
+ 1

2
∑i−1

j=1
[
N(qj,c, qi−j,s) + N(qj,s, qi−j,c)

]
− 1

2
∑N

j=i+1
[
N(qj,c, qj−i,s) + N(qj−i,s, qj,c)

]
+ 1

2
∑N

j=i+1
[
N(qj−i,c, qj,s) + N(qj,s, qj−i,c)

]
.

Formally, eq. (II.24) will be denoted as:

0 = −ωB̃Q(τ,N) + L̃Q(τ,N) + Ñ(Q(τ,N), Q(τ,N)) = r̃(Q(τ,N)), (II.25)
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where operators B̃, L̃, and Ñ(·, ·) are as follows,

B̃QN =

⎡⎢⎢⎢⎢⎣
0

B1
. . .

BN

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

q0

q1
...

qN

⎤⎥⎥⎥⎥⎦ with Bn =

[
0 nB

−nB 0

]
for n = 1, . . . , N.

(II.26)

L̃QN =

⎡⎢⎢⎢⎢⎣
L

L
. . .

L

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

q0

q1
...

qN

⎤⎥⎥⎥⎥⎦ with qn =

[
qn,c

qn,s

]
for n = 1, . . . , N.

(II.27)

Ñ(QN , QN ) =

⎡⎢⎢⎢⎢⎣
N0

N1
...

NN

⎤⎥⎥⎥⎥⎦ with Nn =

[
Nn,c

Nn,s

]
for n = 1, . . . , N. (II.28)

Finally, we briefly recall that Stokes, 1972 studied the convergence of
eq. (II.25). In particular, if the exact problem eq. (II.1) possesses a solution q∗

of period T = 2π
ω , then the solution [Qτ,N , ωτ,N ] of the system eq. (II.25), for

sufficiently large N , converges to the exact solution q∗ if the monodromy matrix
possesses a unique Floquet multiplier equal to one.

1.4
Linear stability of the limit cycle – Floquet–Hill method

In this section, the Floquet theory of finite dimensional systems in RN is
addressed. Unfortunately, there does not exist a general theory for time-periodic
PDEs, but some particular cases have been already tackled, see parabolic and
hyperbolic evolution problems in Kuchment, 1993, Chapter 5 and references
therein. For the sake of self-consistency, let us introduce a set of classical
definitions in the study of dynamical systems.
Let t → q∗(t) be a T -periodic solution of eq. (II.1) for a given set of parameters
η∗ ∈ Rp. The associated flow of eq. (II.1) is denoted by ϕ(t; q0), which solves
B ∂q

∂t = F(q, η) with q(0) = q0.
Furthermore, we consider a codimension one hypersurface S, chosen in such a
way that every trajectory that crosses S in a neighborhood of the intersection
point o ∈ S of the periodic orbit with the surface S intersects transversally
and in the same direction, see Kuznetsov, 2013. Such a section S is refer to as
Poincaré section. Using the the Poincaré section, let us define the Poincaré map
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Figure II.4 – (a) An unstable periodic orbit q∗ crossing the Poincaré
section at point o∗, and the evolution perturbed orbit q∗ + δq(t) from
the point o1. (b) Floquet spectrum in terms of Floquet multipliers μn

(resp. Floquet exponents λn on top figure) of an unstable periodic orbit
q∗. Red dots (square on the top figure) are associated to the unstable
fundamental solution δq1(t), whereas gray markers denote the neutral
Floquet eigenvalue. .

or return map P(o):

P(o) := PS(o) = ϕ(TS(o); o), (II.29)

where TS(o) is the return time and it coincides with the period T of the periodic
orbit when o∗ is a fixed point, i.e., o∗ = P(o∗):

o −−−−→
q→q∗ o∗ implies TS(o) → T.

The linear stability of the T -periodic orbit q∗(t) can be studied by checking
the evolution of the perturbed distance δq(t) to the T -periodic orbit q∗:

δq(t) = ϕ(t; q∗ + δq0) − ϕ(t; q∗), with δq(0) = δq0. (II.30)

Measuring the distance after a period yields:

δq(T ) = ϕ(T ; q∗ + δq0) − ϕ(T ; q∗) =
∂ϕ(T ; q∗)

∂q
δq0 + O(||δq0||2), (II.31)

where in the last expression appears the monodromy matrix ∂ϕ(T ;q∗)
∂q . To find

another representation of the monodromy matrix, consider the following evolution
equation:

B
∂

∂t

∂ϕ(t; q∗)
∂q

=
∂F(ϕ, η∗)

∂ϕ

∂ϕ(t; q∗)
∂q

,
∂ϕ(0; q∗)

∂q
= I. (II.32)
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Consequently, the monodromy matrix will be denoted by Φ(T ) = ∂ϕ(T ;q∗)
∂q ,

where the fundamental solution matrix Φ(t) ∈ M(R)N×N satisfies the following
matrix initial-value problem:

B
∂Φ
∂t

=
∂F
∂q

(q∗, η∗)Φ, Φ(0) = I. (II.33)

The spectrum of the monodromy matrix is composed of an eigenvalue μ = 1,
due to the translation invariance of the periodic orbit and another set of N − 1
eigenvalues. Due to the definition of the Poincaré map, it is not difficult to
observe that the other N − 1 eigenvalues of the Jacobian operator coincide with
those of the derivative of the Poincaré map DP(o∗), see the book of Seydel Seydel,
2009 and references therein for a proof.
Thanks to Floquet’s theorem, the perturbation δq(t) is written as:

δq(t) =
N∑

n=1

cnδqn(t),

where fundamental solutions δqn can be rewritten in the Floquet’s normal form:

δqn(t) = eλntpn(t), (II.34)

where pn is a T -periodic vector and λn are called the Floquet exponents. They
are related to the eigenvalues μn of the monodromy matrix, also called Floquet
multipliers, by the following relation: λn = log(μn)

T + ikω for k ∈ Z. To see
this relation, consider linear independence of fundamental solutions and let us
substitute the Floquet’s normal form into eq. (II.31). Then, we are left with the
following expression:

μnpn(0) =
∂ϕ(T ; q∗)

∂q
pn(0) ⇐⇒ λnBpn =

[
− B

∂

∂t
+

∂F(q∗, η∗)
∂q

]
pn. (II.35)

In section 1.3, we have carried out a brief review of the stability of periodic
orbits. The present section aims to determine an efficient algorithm for the solu-
tion of the Floquet stability eq. (II.35). Prior to the discussion of the algorithm,
please note the following analogy between the HBM parametrization of the
autonomous problem eq. (II.1) and the Poincaré map, introduced in eq. (II.29).
Phase condition may be interpreted as the parametrization of a codimension one
hypersurface. Then, the T -periodic solution q∗

h taken at nT instants, n ∈ N, is
a fixed point of the Poincaré map. As discussed in section 1.3, eigenvalues of the
derivative of the Poincaré map determine the stability of the periodic orbit, and
these arise as a subproduct of the computation of the periodic orbit.
Nevertheless, this procedure to determine the Floquet stability would break the
continuous symmetry, i.e., the phase is fixed, then the neutral Floquet multiplier,
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i.e., μ = 1, would not be in the spectrum set. Therefore, in practice, the phase
condition is left in the stability study.
The Fourier–Galerkin form of Floquet stability eq. (II.35) consists in the projec-
tion onto the finite Fourier space X × (Z/(2N + 1)Z), i.e., on a finite Fourier
series.

The Floquet stability problem in the Fourier–Galerkin basis can be formally
expressed with the following generalized eigenvalue problem:

λ(τ,N) diag(B)2N+1P(τ,N) = Dr̃(Q(τ,N))P(τ,N)

where Dr̃(Q(τ,N))P(τ,N) =
[

− ωB̃ + L̃ + DÑ(Q(τ,N))
]
P(τ,N),

(II.36)

where P(τ,N) =
[
p0, p1,c, p1,s, ..., pN,c, pN,s

]T is the finite Fourier decomposition
of the periodic eigenvector p(t) and λ(τ,N) is the approximation of the Floquet
exponent defined eq. (II.34). Please note that the explicit definition of the
derivative of the residual operator Dr̃(Q(τ,N)) is as follows,

where the derivative of the quadratic operator is a dense block-symmetric
matrix as follows:

DÑ(Q(τ,N)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

DN(0) . . . DN(0,i) . . . DN(0,N)

...
. . .

...
DN(i,0) . . . DN(i) . . . DN(i,N)

...
. . .

...
DN(N,0) . . . DN(N,i) . . . DN(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (II.37)

Let us consider the detailed description of each block. In the following, let us
denote DN(q) = N(·, q) + N(q, ·), the linear operator of the derivative evaluated
at q.

Diagonal blocks DN(i)

DN(0) = DN(q0) (II.38)

DN(i) =

[
DN(q0) + 1

2 DN(q2i,c) 1
2 DN(q2i,s)

1
2 DN(q2i,s) DN(q0) − 1

2 DN(q2i,c)

]
if 0 < i ≤ N

2
(II.39)

DN(i) =

[
DN(q0) 0

0 DN(q0)

]
if i >

N

2
. (II.40)

Off diagonal-blocks DN(i,j)

DN(0,j) =
[

1
2 DN(qj,c) 1

2 DN(qj,s)
]

if j �= 0, (II.41)
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DN(i,0) =

[
1
2 DN(qi,c)

1
2 DN(qi,s)

]
if i > 0. (II.42)

If i �= j, j �= 0, j < i, j + i ≤ N :

DN(i,j) =

[
1
2 DN(qi−j,c) + 1

2 DN(qj+i,c) − 1
2 DN(qi−j,s) − 1

2 DN(qj+i,s)

1
2 DN(qi−j,s) + 1

2 DN(qj+i,s) 1
2 DN(qi−j,c) + 1

2 DN(qj+i,c)

]
.

(II.43)
If i �= j, j �= 0, j < i, j + i > N :

DN(i,j) =

[
1
2 DN(qi−j,c) − 1

2 DN(qi−j,s)

1
2 DN(qi−j,s) 1

2 DN(qi−j,c)

]
if i �= j, j �= 0, j < i, (II.44)

otherwise DN(j,i) = (DN(i,j))T .
As depicted in fig. II.4, Floquet exponents are not unique in the complex

field C, nevertheless they are in C/iωR. Let us consider the finite dimensional
case, i.e., q∗ ∈ Rn. In such a case, the Floquet spectrum is of dimension n, i.e.,
there are n eigenvalues in C/iωR. Nonetheless, the dimension of the Floquet
HBM problem is (2N + 1)n, there are 2N + 1 in the same conjugacy class, i.e.,
λτ

k = λτ
0 + ikω, k ∈ Z, where λτ

0 is the eigenvalue closest to the real axis in the
complex plane.
This remark motivates the definition of the truncated spectra ΛN : this set of
converged eigenvalues is a compact set in C restricted to the strip Cω ≡ {z ∈ C :
ω/2 ≤ Im(z) ≤ ω/2}.

1.5
Non-linear dynamics – Mode interaction

So far, we have outlined some numerical and theorical tools for the contin-
uation of steady-states and limit cycles and the determination of their linear
stability. In this subsection, we describe the reduced dynamics resulting from
competing instability mechanisms of the steady-state, that is, from mode in-
teraction. The study of mode interactions is, in a sense, a step-forward and
a step-backward with respect to the study of a single limit cycle. It is a step-
forward since it provides information about the existence of global bifurcations,
such as, Saddle-Node to Ifinite PERiod (SNIPER) bifurcation. And, it is a
step-backward, because it is not exact since it is based on the dynamics of a
reduced system which is determined from asymptotic matching methods, e.g.,
the multiple scales method or the homological equation. However, it is a valuable
tool for the determination of the transition towards complex dynamics, including
low dimensional chaos.
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Figure II.5 – Local bifurcations of codimension one of periodic orbits.
Spectrum in terms of Floquet exponents a), e), and h). Spectrum in terms
of Floquet multipliers d), g), and j). Pitchfork bifurcation in a), b), and
d). Fold bifurcation in a), c), and d). Period-doubling bifurcation in e),
f), and g). Neimark–Sacker in h), i), and j) .

Reduction to the centre manifold

In the following, we proceed to the determination of the coefficients of a
generic centre manifold, with the following linear expansion,

q(t, τ) = q0 +
N∑

k=1

z�q̂�ei(m�θ−ω�t) + c.c. (II.45)

Note that the parameter N is the number of neutral modes that span the centre
eigenspace. In addition, for the sake of simplicity, we consider a quadratic
dependency on the state variable and parameters, that is, we replace eq. (II.1)
by

B
∂q
∂t

= F(q, η) ≡ Lq + N(q, q) + G(q, η), x ∈ Ω (II.46)

This form of the governing equations takes into account a linear dependence on
the state variable q through L and a quadratic dependence on state variable
and the parameters η through the operators G(·, ·) and N(·, ·).
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Multiple-scales ansatz We expand the solution q of eq. (II.46) in powers of
a small parameter ε � 1:

q(t, τ) = q0 + εq(ε)(t, τ) + ε2q(ε2)(t, τ) + O(ε3) (II.47)

The expansion encompasses a three-scale expansion of the original time that
incorporates the fast timescale t of the self-sustained instability and two slow
time scales τ ≡ τ1 + ετ2 of the evolution of the (complex) amplitudes zi(τ), to
be defined below. That is, we expand the time variable as

t �→ t + ετ1 + ε2τ2 + O(ε3) (II.48)

The resulting expansion of the left side of eq. (II.46) up to third order is as
follows:

εB
∂q(ε)

∂t
+ ε2[B∂q(ε2)

∂t
+ B

∂q(ε)

∂τ1

]
+ ε3[B∂q(ε3)

∂t
+

∂q(ε2)

∂τ1
+ B

∂q(ε)

∂τ2

]
(II.49)

while the right side is

F(q, η) = F(0) + εF(ε) + ε2F(ε2) + ε3F(ε3) . (II.50)

The expansion eq. (II.50) will be detailed at each order.

Order O(ε0) The leading order solution q0 of the multiple scales expansion
eq. (II.47) is the steady state of the governing equations evaluated at the threshold
of instability, i.e., η = ηc or Δη ≡ η − ηc = 0,

0 = F(q0, 0) , x ∈ Ω. (II.51)

Order O(ε1) The first order correction q(ε)(t, τ) in the multiple scales expan-
sion of eq. (II.47) is composed of the eigenmodes of the linearized system

q(ε)(t, τ) ≡ ∑N
k=1 z�(τ)q̂�ei(m�θ−ω�t) + c.c. (II.52)

Each term q̂� in the first order expansion (II.52) solves the corresponding linear
problem:

J(ω�,m�)q̂� =
(

iω�B − ∂F
∂q |q=q0,Δη=0

)
q̂�, x ∈ Ω, (II.53)

where ∂F
∂q |q=q0,Δη=0 = Lm�

+Nm�
(q0, ·)+Nm�

(·, q0). The subscript m� indicates
the azimuthal wavenumber used for the evaluation of the operator.

Order O(ε2) The second order expansion term q(ε2)(t, τ) is determined from
the resolution of a set of forced linear systems, where the forcing terms are
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evaluated from first and zeroth order terms. The expansion in terms of amplitudes
zi(τ) of q(ε2)(t, τ) is assessed from term-by-term identification of the forcing
terms at the second order. The nonlinear second order terms are

F(ε2) ≡
N∑

j,k=1

(
zjzkN(q̂j , q̂k)e−i(mj+mk)θe−i(ωj+ωk)t + c.c.

)
+

N∑
j,k=1

(
zjzkN(q̂j , q̂k)e−i(mj−mk)θe−i(ωj−ωk)t + c.c.

)
+

N∑
�=1

η�G(q0, e�) ,

(II.54)

where e� is an element of the orthonormal basis of RNp , a vector composed of
zeros except at the position � where it is equal to unity. In the following we
differentiate the resonant terms, whose amplitude are z

(ε2)
j , and the non-resonant

terms. The second order term can be expanded as

q(ε2) ≡
N∑

j=1

(
z

(ε2)
j q̂(ε2)

j + c.c.
)
+

N∑
j,k=1
k≤j

(
zjzkq̂j,k+zjzkq̂j,−k+ c.c.

)
+

N∑
�=1

Δη�q
(η�)
0 ,

(II.55)
with the rules q̂j,k = q̂k,j and q̂−j,−k = q̂j,k. Terms q̂j,j are harmonics of
the flow, q̂j,k with j �= k are coupling terms, q̂j,−j are harmonic base flow
modification terms and q(η�)

0 are base flow corrections due to the assumed
departure of the parameter η� from the critical point measured by ε.

Finally, for the non-resonant forcing terms, the second-order terms are
computed by solving the following nonresonant system of equations,

J(ωj+ωk,mj+mk)q̂j,k = F̂(j,k)
(ε2) , (II.56)

where F̂(j,k)
(ε2) ≡ N(q̂j , q̂k) + N(q̂k, q̂j) and

J(0,0)Q
(η�)
0 = G(Q0, e�). (II.57)

In the case of a resonant pair, ωj ± ωk = ω� and mj ± mk = m�, for j �= k and
�, j, k = 1, . . . N , we shall solve for the following bordered system,(

J(ω�,m�) q̂�

q̂†
� 0

)(
q̂(ε2)

�

e
(�)
(j,k)

)
=

(
F̂(j,k)

(ε2)

0

)
(II.58)

with e
(�)
(j,k) a coefficient of the normal form issued of the resonant interaction. If

there is not a resonant interaction between the modes j and k, the coefficient
e(j,k) = 0. If the Jacobian J(0,0) in eq. (II.57) is singular, we substitute F̂(j,k)

(ε2) by
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G(Q0, e�) in eq. (II.58), which gives us the following system(
J(0,0) q̂�

q̂†
� 0

)(
q̂(η�,ε2)

0

e
(�)
0

)
=

(
G(Q0, e�)

0

)
(II.59)

Order O(ε3) At third order, there are secular terms. The linear λ� and cubic
terms a(i,j) for i = 1, 2 are determined by imposing the solvability condition,

λ� =
〈q̂†

� , F̂(z�)
(ε3)〉

〈q̂†
� , Bq̂�〉

, a(�,j) =
〈q̂†

� , F̂(z�|zj |2)
(ε3) 〉

〈q̂†
� , Bq̂�〉

. (II.60)

The forcing terms for the linear coefficients are

F̂(zj)
(ε3) ≡

N∑
�=1

η�

([
N(q̂j , q(η�))

0 + N(q(η�)
0 , q̂j)

]
+ G(q̂j , e�)

)
. (II.61)

The forcing terms for the cubic coefficients are

F̂(zj |zk|2)
(ε3) ≡ [

N(q̂j , q̂|zk|2) + N(q̂|zk|2 , q̂j)
]

+
[
N(q̂−k, q̂zjzk

) + N(q̂j,k, q̂−k)
]

+
[
N(q̂k, q̂zjzk

) + N(q̂zjzk
, q̂k)

]
.

(II.62)

if j �= k and

F̂(zj |zj |2)
(ε3) ≡ [

N(q̂j , q̂|z|2
j
) + N(q̂|z|2

j
, q̂j)

]
+
[
N(q̂−j , q̂z2

j
) + N(q̂z2

j
, q̂−j)

]
,

(II.63)

for the diagonal forcing terms.
If there is a resonant forcing term to the �th mode, which we would name F̂zR

�

(ε3),
we can determine the coefficient associated with this term as before,

χzR
�

=
〈q̂†

� , F̂zR
�

(ε3)〉
〈q̂†

� , Bq̂�〉
. (II.64)

Finally, we would obtain the following expression of the centre manifold,

dz�

dτ
= e

(�)
0 + z�

(
λ� +

N∑
j=1

a(�,j)|zj |2)+
N∑

j,k=1

e
(�)
(j,k)zjzk +

∑
zR

�

χzR
�

zR
� (II.65)

For the sake of simplicity if we have only a resonant third order term to the �th

mode, we shall name it χ�, as it is the case in eq. (II.75) of the next subsection.
The reduction of the complete dynamics to the centre manifold is performed
in more detail in the part B. Unfortunately, bear in mind that the notation
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employed in the articles and in chapter IV may slightly change with respect to
the one employed in here. The reduction of the incompressible Navier–Stokes
equations to the normal form of a saddle-node bifurcation is detailed in Sierra-
Ausin, Javier, Fabre, Citro, and Giannetti (2020, App. B). The determination
of the coefficients of the degenerate Hopf bifurcation, the Bautin bifurcation, is
detailed in Sierra-Ausin, Javier, Fabre, Citro, and Giannetti (2020, App. C). The
non-resonant triple Hopf organising centre is discussed in Sierra-Ausin, Lorite-
Diez, et al. (2022, App. A), and the resonant case in Sierra-Ausin and Giannetti
(2023, App. B). The steady-Hopf bifurcation is covered in Sierra-Ausin, Fabre,
and Knobloch (2023, App.). Finally, the steady-steady with 1:2 resonance is
analysed in Corrochano et al. (2023, App. A).

Classification of codimension two bifurcations

In fig. II.5 we have seen that the bifurcations of the limit-cycle are charac-
terised by their frequency-content. The same is true for the bifurcations of the
steady-state. In that sense, if the instability is oscillatory we say that is a Hopf
bifurcation, instead, if the instability is non-oscillating, can be of three sub-kinds:
saddle-node (SN), pitchfork or symmetry-breaking (SB), transcritical bifurcation
(Tr). These are all the possibilities for bifurcations of codimension-one. These
singularities take place at a given codimension-one manifold in the parameter
space. Thus, they are generic in systems depending on a parameter. Similarly, a
bifurcation of codimension-N takes place at certain manifold of codimension-N
in the parameter space, and it occurs generically in systems depending on N

parameters. In addition, the unfolding of the bifurcation, that is, the explo-
ration of the neighbourhood of the bifurcation point in the parameter space,
turns out to be relevant for the dynamics of systems depending on less than N

parameters. In this sense, the codimension-N manifold in the parameter space
aids to classify the dynamics of systems near the bifurcation point. That is
why, hereinafter, we use interchangeably the concepts of bifurcation of higher
codimension (codimension-N , N ≤ 2), mode interaction, and organising centre.
Let us now turn our attention of instabilities, in the presence of two competing
modes, we can distinguish:4

(a) 0 − 0 Zero-zero or Taken-Bogdanov bifurcation (TB).

(b) 0 − iω Zero-Hopf bifurcation (ZH).

(c) iω1 − iω2 Double Hopf bifurcation (HH).

4Herein, we do not consider the degenerated case of the Hopf bifurcation: Bautin or
Generalised Hopf bifurcation, nor the degenerated pitchfork bifurcation, nor the degenerated
case of the saddle node bifurcation: the cusp bifurcation, .
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The TB bifurcation corresponds to the resonant interaction5 between two non-
oscillating modes, giving rise to unsteadiness. The ZH bifurcation is a canonical
case of slow-fast dynamics in systems displaying a symmetry breaking (0 mode)
and a self-sustaining instability (iω mode). Finally, The HH bifurcation corre-
sponds to the competition of two self-sustained instabilities, leading to periodic
or quasi-periodic dynamics.
In addition to the frequency-content, in order to fully describe the reduced
dynamics of the system, one must also consider the spatial wavelength. That
is, the wave number of a three-dimensional symmetry breaking instability. For
a helical instability from an axisymmetric steady-state the relevant ansatz is
eim(θ− ω

m t), with a phase velocity ω
m . Similarly, for travelling/standing pulses

from a two-dimensional steady-state is eikz(z− ω
kz

t) with a phase velocity ω
kz

.
For the sake of simplicity, we consider herein only the helical case. Based on the
space-time frequency content, we may distinguish:

(a) ω1 = 0, ω2 = 0 Zero-zero bifurcation.

(i) (m1, m2) with m1 = m2 = 0 Takens-Bogdanov (TB) with a normal
form of dimension two. We take z1 = x1 + iy1 and z2 = x2 + iy2, so
the centre manifold is as follows,

ẋ1 = x2 + e
(1)
0 + λ1x1 + e

(1)
(1,1)x

2
1 + e

(1)
(1,2)x1x2 + e

(1)
(2,2)x

2
2

ẋ2 = e
(2)
0 + χ2x1 + λ2x2 + e

(2)
(1,1)x

2
1 + e

(2)
(1,2)x1x2 + e

(2)
(2,2)x

2
2
(II.66)

which under the following non-degeneracy conditions e
(2)
(1,1) �= 0 and

e
(1)
(1,1) + e

(2)
(1,2) �= 0 we can perform a nonlinear change of coordinates,

u1 = P1(y1, y2) and u2 = P2(y1, y2) can be recast to its topological
normal form (Kuznetsov, 2013),

u̇1 = u2

u̇2 = β1 + β2u1 + u2
1 + su1u2

(II.67)

with β1 and β2 playing the role of the unfolding parameters and
s = ±1.
In Sierra-Ausin, Javier, Fabre, Citro, and Giannetti (2020) we study
a degenerate codimension three TB bifurcation, which arises in the
wake flow behind a spinning cylinder. In particular, the degenerate
TB bifurcation is the organizing centre of this problem, and it jus-
tifies the existence of a saddle-node homoclinic bifurcation and the
hysteresis observed in previous numerical simulations (Pralits et al.,
2010; Thompson et al., 2014).

5The linear part of the centre manifold is a dimension two, zero-eigenvalue Jordan block
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(ii) (m1, m2) with m1 = 0 and m2 �= 0 the same normal form as the ZH
whose dimension is three. Its centre manifold is as follows,

ẋ1 = e
(1)
0 + λ1x1 + e

(1)
(1,1)x

2
1 + e

(1)
(1,2)x1x2 + e

(1)
(2,2)x

2
2

ż2 = z2

(
λ2 + a(2,2)|z2|2 + e

(2)
(1,2)x1 + a(2,1)x

2
1

) (II.68)

(iii) (m1, m2) with m1 �= 0 and m2 �= 0 with the same normal form as the
HH whose dimension is four, and it as follows,

ż1 = z1

(
λ1 + a(1,1)|z1|2 + a(1,2)|z2|2

)
ż2 = z2

(
λ2 + a(2,2)|z2|2 + a(2,1)|z1|2

) (II.69)

Equation (II.69) corresponds to the non-resonant case. In addition,
we may find resonant cases, such as, the 1 : 2 resonance (Porter et al.,
2000) or 1 : 3 (Porter et al., 2001). The resonant cases are particularly
rich, in Corrochano et al. (2023) we study the transition from an
axisymmetric state towards a symmetry-broken state with a 1 : 2
azimuthal resonance in a configuration of two concentric jets, its polar
normal form is as follows,

ṙ1 = e
(1)
(−1,2)r1r2 cos(χ) + r1

(
λ1 + a(1,1)r

2
1 + a(1,2)r

2
2

)
, (II.70a)

ṙ2 = e
(2)
(1,1)r

2
1 cos(χ) + r2

(
λ2 + a(2,1)r

2
1 + a(2,2)r

2
2

)
, (II.70b)

χ̇ = −
(

2e
(1)
(−1,2)r2 + e

(2)
(1,1)

r2
1

r2

)
sin(χ), (II.70c)

with the polar coordinates related to the complex amplitudes by
z1 = r1eiφ1 and z2 = r2eiφ2 where rj and φj for j = 1, 2 are the
amplitude and phase of the symmetry-breaking modes m1 = 1 and
m2 = 2, respectively. Note that the resonance makes that the phase
χ = φ2 − 2φ1 is coupled with the amplitudes r1 and r2.

(b) (0 − iω) Zero-Hopf bifurcation (ZH).

(i) (m1, m2) with m1 = m2 = 0 it is the generic ZH bifurcation and it is
the same as eq. (II.68).

(ii) (m1, m2) with m1 �= 0 and m2 �= 0 has a normal form of dimension
six,

ż1 = λ1z1 + χ1z−2z2(z1)2m2/m1−1

+
(
a(1,1)|z1|2 + a(1,2)|z2|2 + a(1,2)|z3|2)z1

(II.71)

ż2 =
(
λ2 + iωh

)
z2 + χ2z

2m2/m1
1 z−2

+
(
a(2,1)|z1|2 + a(2,2)|z2|2 + a(2,3)|z3|2)z2

(II.72)
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ż3 =
(
λ2 + iωh

)
z3 + χ2z

2m2/m1
1 z2

+
(
a(2,1)|z1|2 + a(2,2)|z3|2 + a(2,3)|z2|2)z3 ,

(II.73)

with m2/m1 ∈ N, otherwise χ1 = χ2 = 0. In Sierra-Ausin, Fabre, and
Knobloch (2023) we have performed a detailed analysis of this normal
form with a particular emphasis on applications to axisymmetric wake
flows (WFA) and axisymmetric wake flows with mixed convection
(WFA-MC).

(c) (iω1 − iω2) Double Hopf bifurcation (HH).

(i) (m1, m2) with m1 = m2 = 0 it is the generic HH bifurcation, whose
normal form is eq. (II.69).

(ii) (m1, m2) with m1 = 0 and m2 �= 0 it has a normal form of dimension
six, with the normal form eq. (II.70) with χ1 = χ2 = 0 in the non-
resonant case.

(iii) (m1, m2) with m1 �= 0 and m2 �= 0 has a normal form of dimension
eight, see (Golubitsky et al., 2012).

In the presence of three competing instabilities, the number of possibilities
is much larger, and it is beyond the scope of this manuscript to enumerate all
of them. In this thesis, we study the SO(2)-equivariant triple Hopf with and
without resonance condition. The state variable for N = 3 is expanded as,

q(t) =
∑N

k=1
(
zk(τ)q̂(zk)(r, z)ei(mkθ−ωkt) + c.c.

)
. (II.74)

The resonance condition that we use is 2ω2 − ω1 = ω3 and 2m2 − m1 = m3. Its
normal form is as follows,

ż1 = z1
(
λ1 + a(1,1)|z|21 + a(1,2)|z|22 + a(1,3)|z|23

)
+ χ1z2

2z3

ż2 = z2
(
λ2 + a(2,1)|z|21 + a(2,2)|z|22 + a(2,3)|z|23

)
+ χ2z1z2z3

ż3 = z3
(
λ3 + a(3,1)|z|21 + a(3,2)|z|22 + a(3,3)|z|23

)
+ χ3z2

2z1

(II.75)

In the case that the resonance condition is not satisfied χj = 0 for j = 1, 2, 3. In
the asymptotic expansion, the resonance condition does not need to be exactly
satisfied, but the terms 2ω2 −(ω1 +ω3) and 2m2 −(m1 +m3) have to be small. In
this way, they can be considered of a higher order in the multiple scale expansion.
This normal form arises in applications of wake flows behind rotating bodies
(Sierra-Ausin, Lorite-Diez, et al., 2022) and in the strong tonal sound emissions
of rounded impinging jets (Sierra-Ausin and Giannetti, 2023). The former one is
an example of the non-resonant case, and the latter is an example of the resonant
case.
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CHAPTERIII
Flow physics

1

Governing equations

In the following, we introduce the governing equations of four different prob-
lems, the incompressible Navier–Stokes equations, the Boussinesq approximation
to model the problem of mixed convection, the compressible Navier–Stokes
equations and the Navier–Stokes equations for moving interfaces.

1.1
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1 – Governing equations

Incompressible Navier–Stokes equations

We consider the evolution of an incompressible fluid within a domain Ω. The
operators of the dynamical system eq. (II.1) are

B =

(
I 0
0 0

)
, F(q, η) =

(
−u · ∇u − ∇p + 2

Re ∇ · (D(u)
)

∇ · u

)
, (III.1)

here the state variable q = [u, p]T is composed of the velocity field and the
hydrodynamic pressure; the strain tensor is defined as D(u) ≡ 1

2

(∇u + ∇uT
)
.

The problem depends on a single dimensionless number, the Reynolds number –
defined as follows:

Re =
U∞L

ν
(III.2)

where U∞ is the characteristic velocity, L is the characteristic length of the
problem, and ν is the kinematic viscosity. Herein, we express the vector of
parameters as η = Re.

Finite-element formulation

The finite element formulation is based on the variational form of the govern-
ing equations. The variational form is subjected to the definition of the inner
product, which for a scalar or vectorial quantity is defined as 〈φ1, φ2〉:

〈φ1, φ2〉 =
∫
Ω

φ1 · φ2 dΩ,

The weak form of the Navier-Stokes equations is obtained by introducing test
functions [v, q] associated with the momentum and continuity equations, and
integrating over the domain

∀[v, q
]T

, 〈v, ∂tu〉 =
〈

v, −u · ∇u − ∇p +
2

Re
∇ · (D(u)

)〉
+〈q, ∇ · u〉 . (III.3)

It is customary to integrate by parts the stress-tensor and to reduce the derivation
of the state variable to first order,

∀[v, q
]T

, 〈v, ∂tu〉 = − 〈v, u · ∇u〉 −
〈

D(v),
2

Re
D(u)

〉
+ 〈∇v, p〉 + 〈q, ∇ · u〉 .

(III.4)
So far, we have not specified the functional space of the unknowns [u, p] and

the test functions
[
v, q
]T . The most common choice is u, v ∈ Hdiv(Ω), where

Hdiv(Ω) = {v : v ∈ (L2(Ω))N and ∇ · v ∈ L2(Ω)}

and p, q ∈ L2(Ω). A discretization of
[
Hdiv(Ω), L2(Ω)

]T is the Taylor-Hood
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basis
[
P2, P2, P1

]T , where Pn are Lagrange elements of order n.

1.2
Mixed–convection Navier–Stokes equations

We adopt the Boussinesq approximation to model the problem of mixed
convection. In this case, the two operators of the dynamical system eq. (II.1)
are as follows,

B =

⎛⎜⎝ I 0 0
0 0 0
0 0 1

⎞⎟⎠ , F(q, η) =

⎛⎜⎝ −u · ∇u − ∇p + 2
Re ∇ · (D(u)

)
+ RiTez

∇ · u
−u · ∇T + 1

Pr Re ∇2T

⎞⎟⎠ ,

(III.5)
where the state variable q = [u, p, T ]T is composed of the velocity field, the
hydrodynamic pressure and the temperature. The parameters are the Reynolds
number, the Prandtl number and the Richardson number – defined as follows:

Re =
U∞L

ν
, Ri = −βez · g(TS − T∞)L

U2∞
, Pr =

ν

κ
. (III.6)

In the definition of the dimensionless number: U∞ is the characteristic velocity,
L is the characteristic length, ν is the kinematic viscosity, β is the coefficient
of thermal expansion, TS is the temperature of a solid boundary, T∞ is the
characteristic temperature and κ is the thermal diffusivity. Herein, we express
the vector of parameters as η = [Re, Ri, Pr]T .

Finite element formulation

The weak form of the mixed convection Navier-Stokes equations is promptly
defined by introducing test functions [v, q, s] associated with the momentum,
continuity and convection equations, integrating by parts and integrating over
the domain

∀[v, q, s], ∂t 〈v, u〉 + ∂t 〈s, T 〉 = − 〈v, u · ∇u〉 − 〈D(v), 2
Re D(u)

〉
+ 〈∇v, p〉

+ 〈v, RiTez〉 + 〈q, ∇ · u〉 − 〈s, u · ∇T 〉
−
〈

∇s,
1

Pr Re
∇T

〉
(III.7)

The unknowns
[
u, p, T

]T ∈ [Hdiv(Ω), L2(Ω), L2(Ω)
]T and the test functions[

v, q, s
]T ∈ [Hdiv(Ω), L2(Ω), L2(Ω)

]T . The solution is determined in the discrete[
P2,P2,P1,P1]T space.

1.3
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Compressible Navier–Stokes equations

Let us introduce the compressible Navier–Stokes equations as the gov-
erning equations of motion of a perfect gas described in primitive variables
q = [ρ, ur, uθ, uz, p, T ]T , and the set of control parameters η = [Re, M∞, Pr]T .
These are formally expressed as

B =

⎛⎜⎜⎜⎝
1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

F(q, η) = −

⎛⎜⎜⎜⎜⎝
u · ∇ρ + ρ∇ · u

ρu · ∇u − ∇p + ∇ · τ(u)
(γ − 1)

[
ρT∇ · u − γM2

∞τ(u) : D(u)
]

+ ρu · ∇T + γ
Pr Re ∇2T

−ρT + 1 + γM2
∞p

⎞⎟⎟⎟⎟⎠ ,

(III.8)
where the state variable q = [ρ, u, T, p]T is composed of the density, velocity
field, temperature, and pressure. Below in an example, we shall indicate how
we proceed to render the state variable dimensionless, see eq. (III.29). The
parameters are the Reynolds number, the Prandtl number and the Mach number
– defined as follows:

Re =
U∞L

ν
, M∞ =

U∞√
γRgT∞

, Pr =
ν

κ
. (III.9)

In the definition of the dimensionless number: U∞ is the characteristic velocity,
L is the characteristic length, ν is the kinematic viscosity, γ = cp

cv
is the isentropic

coefficient, Rg is the constant of the gas, T∞ is the characteristic temperature
and κ is the thermal diffusivity. Herein, we express the vector of parameters as
η = [Re, M∞, Pr]T .

Finite element formulation

The weak form of the compressible Navier–Stokes equations is promptly
defined by introducing test functions [v, q, r, j] associated with the momentum,
continuity and convection equations, integrating by parts and integrating over
the domain, we obtain the following set of equations,

∀[v, q, r, j], 〈r, ∂tρ〉 + 〈r, u · ∇ρ + ρ∇ · u〉
+ 〈v, ρ0∂tu〉 + 〈v, ρu · ∇u〉 − 〈∇ · v, p〉 + 〈∇v : τ(u)〉
+ 〈j, ρu · ∇T 〉 + 〈j, ρ∂tT 〉
− 〈j, γ(γ − 1)M2

∞τ(u) : D(u)
〉

+
γ

Pr Re
〈∇j, ∇T 〉

+
〈
q, 1 + γM2

∞p
〉− 〈q, ρT 〉 .

(III.10)
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The unknowns
[
u, p, ρ, T

]T ∈ [(H1)N , L2(Ω), L2(Ω), L2(Ω)
]T and the test func-

tions [v, q, r, j]T ∈ [(H1)N , L2(Ω), L2(Ω), L2(Ω)
]T . The solution is determined

in the discrete
[
P2,P2,P1,P1, P1]T space.

Artificial Boundary Conditions – Complex mapping

R
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in

slip
axis

wall

w
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L H

r

z- z=0 z=Hz=-L

Figure III.1 – Diagram of a rounded impinging jet. The physical domain,
represented as a white area, is complemented with a radial buffer layer,
shown as a light grey shaded zone..

The far-field boundaries should be transparent or at least absorbing in
order to avoid the reflection of the outgoing waves. For the evaluation of the
linear stability of the compressible Navier–Stokes equations, we introduce a
buffer region, see fig. III.1, which damps the outgoing waves before reaching the
boundary, and thus avoids possible reflections.
Herein, we shall denote Ψ(x, t) a given wave propagating in the direction x. The
difficulty we want to solve is associated to the existence of solutions behaving
as Ψ(x, t) ≈ eikx−iωt as x → ∞, which, according to the argument of k, may
be oscillating, or even worse, exponentially growing. The idea is to consider an
analytical continuation of the solution for complex x, and solve in a region of the
complex plane where all physically relevant solutions are nicely decaying. To
this aim, we will define a mapping from a (real) numerical coordinate X defined
in a truncated domain X ∈ [0, Xmax] to the physical coordinate x.

Definition of a smooth mapping The application of the proposed method
to a given problem leads to two separate regions: (i) an unmodified domain for
X < X0 and (ii) a mapped region for X > X0, characterized by a parameter γc

defining the direction in the complex plane. The simplest choice is as follows:

x = Gx(X) =

{
X for X < X0,[
1 + iγc

]
X for X > X0,

(III.11)
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which transforms the x-derivatives as follows:

∂

∂x
=

⎧⎪⎨⎪⎩
∂

∂X
for X < X0,

1
1 + iγc

∂

∂X
for X > X0,

(III.12)

In practice, it is desirable to design a mapping function which gradually
enters into the complex plane with a transition region of characteristic length
Lc, in order to avoid possible reflections caused by an abrupt change at X = X0.
This can be achieved using a mapping function with the form:

Gx : R → C such that x = Gx(X) =
[
1 + iγcg(X)

]
X (III.13)

where g(X) has to be chosen as a smooth function such as g(X) = 0 for X < X0

and g(X) ≈ 1 for X > X0+Lc up to Xmax for a length LCM = Xmax−(X0+Lc

)
where complex mapping is activated. We found good performance using g(X) =

tanh
([

X−X0
Lc

]2
)

. To apply the method to a linear PDE of the form eq. (III.10),

one has simply to modify the spatial derivatives as follows:

∂

∂x
≡ Hx

∂

∂X
with Hx(X) =

(
∂Gx

∂X

)−1

. (III.14)

For a given PDE problem, the regularity of the complex mapping function
g ∈ Cr(Ω) is determined by the highest derivative order of the considered PDE
problem. This requirement is due to the fact that the derivative should be
continuous between the physical and the complex mapping domain to avoid any
numerical reflection.

Decomposition of the linear perturbation

When considering an eigenmode (q̂) arising from the compressible Navier–
Stokes equations, it is useful to attempt to decompose it into three components:
acoustic, hydrodynamic and entropic. There is a large literature on the decompo-
sition of acoustic sources (Ewert et al., 2003; Spieser, 2020) to compute acoustic
propagation effects. In our case, we follow the reciprocal reasoning, we adopt a
monolithic computation of the compressible flow, i.e. we do not decompose the
flow into acoustic sources and acoustic propagation, and we would like to unveil
the feedback loop responsible for the instability mechanism and the frequency
selection. We adopt the definition that the acoustic component of the velocity
field is derived from a potential function.
For this purpose, we adopt a Helmholtz-Hodge decomposition (Schoder et al.,
2020) of the perturbation velocity field into acoustic (potential) and hydrodynamic
(solenoidal)

û = ûac + ûhyd = ∇φc + ∇ × Ψ (III.15)
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applying divergence to eq. (III.15), the potential φc is determined from the
following Poisson equation

Δφc = ∇ · û in Ω
∇φc · n = û · n on ∂Ω.

(III.16)

The hydrodynamic component of the velocity is subsequently determined by
subtracting ûhyd = û − ûac = û − ∇φc. The uniqueness of the Helmholtz
decomposition is subjected to the L2-orthogonality condition, in our case satisfied
by the suitable boundary condition of eq. (III.16), and the decay of the velocity
field at the far-field (Schoder et al., 2020).
The pressure component of the mode q̂ is determined from the momentum
equation

− 1
ρ0

∇p̂ = iωû + û · ∇u0 + u0 · ∇û +
ρ̂

ρ0
u0 · ∇u0 − 1

Re
∇ · τ(û), (III.17)

from the decomposition p̂ = p̂ac + p̂hyd + p̂s and applying the divergence operator
to the momentum equation, we obtain the following equations

− 1
ρ0

Δp̂ac +
∇ρ0 · ∇p̂ac

ρ2
0

− ∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂ac

ρ0

)
= (III.18a)

iω∇ · ûac + ∇ · (u0 · ∇ûac
)

+ ∇ · (ûac · ∇u0
)

(III.18b)

− 1
ρ0

Δp̂hyd +
∇ρ0 · ∇p̂hyd

ρ2
0

− ∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂hyd

ρ0

)
= (III.18c)

∇ · (u0 · ∇ûhyd
)

+ ∇ · (ûhyd · ∇u0
)

(III.18d)

with decay at the far-field r → ∞. Details of the derivation are given in Sierra-
Ausin and Giannetti (2023, App. A). Finally, the entropic part of the pressure is
recovered by subtracting the two other components to the pressure of the mode
p̂s = p̂ − p̂ac − p̂hyd, which accounts for the dissipation effects of the viscous
stress-tensor.
The other two components, temperature and density, are determined as fol-
lows. The acoustic and hydrodynamic components are considered to evolve
isentropically and are directly determined from the pressure,

T̂ac = (γ − 1)M2
∞p̂ac, T̂hyd = (γ − 1)M2

∞p̂hyd, T̂s = T̂ − T̂ac − T̂hyd, (III.19)

ρ̂ac = M2
∞

ρ0

T0
p̂ac, ρ̂hyd = M2

∞
ρ0

T0
p̂hyd, ρ̂s = ρ̂ − ρ̂ac − ρ̂hyd. (III.20)

Non-local structural sensitivity decomposition

We consider the case of a global instability caused by a feedback process
between two travelling waves. In this case one cannot provide a direct local
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definition of the wavemaker or structural sensitivity. That is, we can still
formulate the concept of structural sensitivity, but it is no longer localised in
space, i.e., it displays a support all along the interacting path between the two
travelling waves. We briefly recall the concept of structural sensitivity, before
introducing an adequate decomposition of the wavemaker for global instabilities
generated by non-local feedback process. The adjoint equations are herein used
to evaluate the effect of a linear harmonic forcing H(q̂) ≡ δ(x − x0)PHC0Pq̂q̂,(

− iωB|q0 + DF|q0

)
q̂ = H(q̂), (III.21)

where C0 is a generic linear operator acting on q̂, and PH a diagonal matrix
that selects the type of forcing. In the following, we neglect mass injection to
the system, and we simply consider momentum forcing and a source of heat
release, that is, PH = diag(0, I, 1, 0, 0). The projection operator Pq̂ is also a
diagonal matrix that selects the dependency of the forcing on the perturbation.
The structural sensitivity tensor is therefore defined as

iδω = 〈PHq̂†, δ(x − x0)C0Pq̂q̂〉
≤ ||C0||||PHq̂†||L2 ||Pq̂q̂||L2 = ||C0||Ss(x0),

(III.22)

that is, the structural sensitivity map is defined as Ss(x0) ≡ ||PHq̂†||L2 ||Pq̂q̂||L2 .
The scalar field Ss is then an upper bound function for the eigenvalue variation,
and it can be employed to determine locations where the feedback is stronger.
Therefore, allowing an identification of the regions where the instability mech-
anism acts. However, when it is not localized within a small physical region,
it does not clearly identify the wavemaker, but a possible interacting region
between the components of the global mode.
Decomposing the mode q̂ we can rewrite the harmonic forcing as H(q̂) =
H(q̂ac + q̂hyd + q̂s), which due to linearity of the forcing term on the eigenmode
is simply expressed as

H(q̂) = H(q̂ac) + H(q̂hyd) + H(q̂s). (III.23)

Thus, we have a first decomposition of the harmonic forcing H(q̂) from the
splitting of the state variable. However, the term H(q̂ac) is not necessarily a
forcing term that uniquely induces acoustic perturbations. Assume, for simplicity,
that the previous forcing term depends uniquely on the acoustic velocity, H(uac),
and it only acts on the momentum equation, that is, we neglect mass or heat
injection. The forcing term must be rotational-free, i.e., ∇ × H(uac) = 0,
otherwise it will induce vortical perturbations into the flow. Therefore, H(q̂ac)
should be interpreted as a generic forcing or feedback term that depends on the
acoustic perturbation. To determine the effect of the forcing, that is, which kind
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of response induces, we decompose the forcing operator into H = Hac+Hhyd+Hs.
Following, this reasoning, we may decompose eq. (III.21),

〈q̂†
ac,
(

− iωB|q0 + DF|q0

)
q̂ac〉q̂ac = Hac(q̂ac) + Hac(q̂hyd) + Hac(q̂s),

〈q̂†
hyd,

(
− iωB|q0 + DF|q0

)
q̂hyd〉q̂hyd = Hhyd(q̂ac) + Hhyd(q̂hyd) + Hhyd(q̂s),

〈q̂†
s ,
(

− iωB|q0 + DF|q0

)
q̂s〉q̂s = Hs(q̂ac) + Hs(q̂hyd) + Hs(q̂s),

(III.24)
The interpretation of the adjoint q̂† as a measure of the receptivity with respect
to a harmonic forcing allows us to decompose the adjoint. In this manner, the
adjoint variable serves to project the forcing term onto each of the subspaces with
the decomposed adjoint q̂† = q̂†

ac + q̂†
hyd + q̂†

s . That is, Hac(q̂) = 〈q̂†
ac, H(q̂)〉q̂ac,

Hhyd(q̂) = 〈q̂†
hyd, H(q̂)〉q̂hyd and Hs(q̂) = 〈q̂†

s , H(q̂)〉q̂s. Then, we can rewrite
eq. (III.24),(

〈q̂†
ac,
(

− iωB|q0 + DF|q0

)
q̂ac〉 + 〈q̂†

ac, H(q̂ac)〉 + 〈q̂†
ac, H(q̂hyd)〉 + 〈q̂†

ac, H(q̂s)〉
)

q̂ac = 0(
〈q̂†

hyd,
(

− iωB|q0 + DF|q0

)
q̂hyd〉 + 〈q̂†

hyd, H(q̂ac)〉 + 〈q̂†
hyd, H(q̂hyd)〉 + 〈q̂†

hyd, H(q̂s)〉
)

q̂hyd = 0(
〈q̂†

s ,
(

− iωB|q0 + DF|q0

)
q̂s〉 + 〈q̂†

s , H(q̂ac)〉 + 〈q̂†
s , H(q̂hyd)〉 + 〈q̂†

s , H(q̂s)〉
)

q̂s = 0,

(III.25)
which exemplifies the role of the decomposed adjoint variable to project the
structural forcing perturbation onto the corresponding subspace.
An inspection of ?? suggests the definition of a non-local structural sensitivity
matrix as

iδωk
j = 〈q̂†

k, δ(x − x0)C0q̂j〉
≤ ||C0||||q̂†

k(x0)||||q̂j(x0)|| = ||C0||S(j,k)
s(x0),

S(j,k)
s(x0) = ||q̂†

k(x0)||||q̂j(x0)|| with j, k = ac, hyd, s.
(III.26)

The new structural sensitivity provides information about the cross-interaction
between vortical and acoustic components of the flow. It is usually the case
that the feedback loop is initiated by the hydrodynamic instability of the shear
layer, which induces an acoustic response. In turn, when an acoustic wave
impinges on the region where the shear layer is most sensitive, it promotes back
the hydrodynamic instability, continuing the loop. With this novel definition,
S(hyd,ac)

s identifies the most sensitive region of the flow to vortical perturbations,
inducing an acoustic response. This first region can be named the wavemaker of
the hydrodynamic perturbations exciting an acoustic response. The second (and
third) wavemaker of interest corresponds to the excitation of a hydrodynamic
response from hydrodynamic ( S(hyd,hyd)

s ) or acoustic perturbations (S(ac,hyd)
s ).

Physically, S(hyd,hyd)
s determines the hydrodynamic wavemaker, which in a

causal reasoning, could be argued to be the region initiating the feedback process.
And S(ac,hyd)

s determines the most sensitive region of the flow to an acoustic
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perturbation inducing a hydrodynamic excitation, that is, the retro-action of
the acoustic wave into the hydrodynamic instability. Additionally, we introduce
a further decomposition of the non-local structural sensitivity map to account
only for the forcing of the momentum equation for a forcing term that depends
uniquely on the velocity field, that is,

iδωk
j = 〈û†

k, δ(x − x0)C0ûj〉
≤ ||C0||||û†

k(x0)||||ûj(x0)|| = ||C0||S(j,k)
u,s (x0),

S(j,k)
u,s (x0) = ||û†

k(x0)||||ûj(x0)|| with j, k = ac, hyd, s.
(III.27)

Overall, the adjoint is decomposed as follows,

û† = û†
hyd + û†

ac = ∇φ†
c + ∇ × Ψ†,

ŝ† = ŝ†
s

ρ̂† = ρ̂†
ac + ρ̂†

hyd + ρ̂†
s , (Sierra-Ausin and Giannetti, 2023, App. A)

p̂† = p̂†
ac =

∇ · û†

γM2∞

T̂ † = T̂ †
ac + T̂ †

s = −∇ · û†

γM2∞
+
(
ŝ†u0 · ∇s0 − γ

Pr Re
1
ρ0

Δs0
)

(III.28)

An important property of the adjoint-direct mode bases is the bi-orthogonality.
The pairs of primitive variables

{
0, û, ŝ); (0, û†, ŝ)

}
are bi-orthogonal, but that is

no longer true when considering the complete primitive variable
{

(ρ̂, û, ŝ); (ρ̂†, û†, ŝ)
}

,
that is, when considering the continuity equation or the density variable. The
set of bases lacks the bi-orthogonality property when mass is injected to the
system, which implies the existence of an intrinsic coupling mechanism between
the three components of the mode via the continuity equation, which in turn,
impedes the decomposition of the sources of mass as acoustic, hydrodynamic or
entropic. In the following, we will restrict ourselves to sources in the momentum
equation, that is, we use eq. (III.27) to analyse the response of the system to
body forces.

Example: Rounded laminar impinging jet

Let us consider the flow configuration of a rounded subsonic impinging jet.
The computational domain was depicted in fig. III.1. For this problem we
consider that the primitive variables have been made dimensionless to

x =
x̃
D

, t =
t̃ũz|z=0

D
, ρ =

ρ̃

ρ̃|fs
, u =

ũ
ũz|z=0

, T =
T̃

T̃ |fs
,

p =
p̃ − p̃|fs

ρ̃|fsũz|2z=0
, M∞ =

ũz|z=0

(γRgT̃ |fs)1/2
, Re =

ρ̃|fsũz|z=0D

μ(T̃ |fs)

(III.29)

38 Chapter III – Flow physics



1 – Governing equations

where Rg is the ideal gas constant, ũz|z=0 denote the average value of the axial
velocity at the cross-section z = 0, and ρ̃|fs, p̃|fs, T̃ |fs denote the values on
the far-field or free-stream. And the Navier–Stokes equations eq. (III.8) are
complemented with the following boundary conditions,

uz = 1, ur = 0, T = (1 − γ−1
2 M2

∞) on ∂Ωin

uz = 0, ur = 0, ∇T · n = 0 on ∂Ωwall

ur = 0, ∇T · n = 0 on ∂Ωslip

ρ = 1, p = 0, T = 1 on ∂Ωout.

(III.30)

The inlet boundary condition models the inflow from a reservoir with a constant
total temperature equal to unity. In such a way, the energy of the system is kept
constant for every Mach number M∞. The length of the pipe is a constant of the
problem that determines the height of the boundary layer, here we have chosen
L = 2.5D. The flow in the slip region is nearly constant, thus the length of this
region is not an important parameter of the problem. The location of the start
of the absorbing layer is chosen to be z−∞ = r∞ = 15D. Finally, the distance
between the nozzle end location (z = 0) and the impinging wall is H, which is
kept constant H = 5D. Then the linear Navier–Stokes equations eq. (II.4) are
complemented with the following homogeneous boundary conditions,

ûz = 0, ûr = 0, T̂ = 0 on ∂Ωin

ûz = 0, ûr = 0, ∇T̂ · n = 0 on ∂Ωwall

ûr = 0, ∇T̂ · n = 0 on ∂Ωslip

ρ̂ = 0, p̂ = 0, T̂ = 0 on ∂Ωout.

(III.31)

Let us illustrate the application of this decomposition to a particular example.
Figure III.2 depicts the components of the density fluctuations ρ̂ of a global mode
with frequency ωi ≈ 3.1 for a baseflow of the impinging jet at MJ ≈ 0.9 and
Re = 800. The decomposition allows us to identify the hydrodynamic component
of the density ρ̂hyd, displayed in (a). Similarly, the entropic component of the
density ρ̂s, which is illustrated in (c), is localised within the shear layer. The
fluctuations of these two fields are mainly underpinned by the instability of the
shear layer; as one may appreciate from the number of nodes along the axial
direction. Instead, the acoustic component of the density field ρ̂ac, displayed in
(b), corresponds to a guided jet wave, which results from the propagation of the
local production of divergence of the velocity field within the jet.

Figure III.3 displays two pairs of structural sensitivity pairs. The first,
S(hyd,ac)

u,s , is the map measuring the eigenvalue drift due to an acoustic response
induced by a hydrodynamic structural perturbation. At large Mach numbers
(MJ ≈ 0.9), fig. III.3 (a) shows that S(hyd,ac)

u,s is localised near the nozzle lip and
within the jet at an axial location around z ≈ H − D. The region within the
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(a) . (b) . (c) .

Figure III.2 – Density decomposition of the global mode with St ≈ 0.5
at criticality (Re = 900) at M∞ = 0.6. (a) Acoustic component of
density ρ̂ac. (b) Hydrodynamic component of density ρ̂hyd. (c) Entropic
component of density ρ̂s .

(a) . (b) .

(c) . (d) .

Figure III.3 – (a-b) An example of the map S(hyd,ac)
u,s for a mode at

a large Mach (MJ ≈ 0.9) number and another at an itermediate Mach
number (MJ ≈ 0.5). (c-d) Map S(ac,hyd)

u,s for the global mode (MJ ≈ 0.9)
and (MJ ≈ 0.5). More details can be found in Sierra-Ausin and Giannetti
(2023, Sec. 4). .
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jet is found at the spatial location with the largest production of divergence of
the velocity field. An acoustic guided jet mode (cf fig. III.2) is then responsible
for the closure of the feedback-loop. When the Mach number is decreased,
the production of divergence of velocity is less effective and the most effective
mechanism to close the feedback loop turns out to be a vortex-sound mechanism,
that is, the sensitivity map S(hyd,ac)

u,s highlights the region where the linearised
Lamb vector is large (not shown). Figure III.3 (c-d) displays the complementary
sensitivity map S(ac,hyd)

u,s , which measures eigenvalue drift due to a hydrodynamic
response induced by an acoustic perturbation. Not surprisingly, the impingement
of acoustic perturbations onto the nozzle lip is the most effect mechanism to
trigger the instability of the shear layer, which is mostly of vortical nature. Such
a mechanism is largely insensitive to Mach number variations.

1.4
Navier–Stokes equations for bubble dynamics

Herein, we overview the modelling and numerical approach for the compu-
tation of problems with a free interface. This section is based on Sierra-Ausin,
Bonnefis, et al. (2022, App. A), and it illustrates the (Linearised) Arbitrary
Lagrangian Eulerian (L-ALE) method. In this case, since the governing equations
include the kinematic and dynamic boundary conditions, we do not write the
governing equations in their operator form eq. (II.1). In addition, a detailed
description of the finite element formulation may be found in Bonnefis (2019).
Free-boundary problems involving a Newtonian fluid contained in a time-
dependent fluid domain Ω(t) bounded by a fixed boundary Γs and a free boundary
Γb(t) subjected to capillary effects are governed by (III.32)-(III.35) supplemented
with appropriate boundary conditions on Γs.

∂tΩu + u · ∇Ωu = ρ−1∇Ω · ΣΩ in Ω(t) , (III.32)

∇Ω · u = 0 in Ω(t) , (III.33)

∂tΩη = u · n on Γb(t) , (III.34)

ΣΩ · n = (−pb + γκ)n on Γb(t) . (III.35)

In the L-ALE approach, we first consider a reference domain Ω0, which is fixed and
allows unknowns to be evaluated in an Eulerian manner, and the physical domain
Ω(t), which depends upon time and where Lagrangian quantities are evaluated.
Let x0 and x denote the local position (with respect to some fixed origin) of a
given geometrical point in Ω0 and Ω, respectively. Then, the two domains are
connected through the diffeomorphism Φ : Ω0 �→ Ω, with Φ(x0, t) = x. In the L-
ALE approach, this diffeomorphism is linearized in the form Φ(x0, t) = x0+ξ(x0),
where ξ(x0) is a displacement field such that ||ξ(x0)|| = ||x − x0|| ∼ O(ε0||x0||)
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with ε0 � 1. The field ξ(x0) propagates the Lagrangian displacement of the
interface η into the fluid domain. This displacement field is arbitrary since
it is not determined by the governing equations (III.32)-(III.35), i.e. it is not
dictated by the actual motion of the fluid elements, except at the free boundary.
It only needs to obey the no-penetration condition (III.34), plus some mild
smoothness properties. Usually, the smoothness of ξ is ensured by assuming
that its distribution within the fluid domain is governed by an elliptic equation,
such as the Laplace equation or the Cauchy equation for an elastic material.
An illustration of the L-ALE methodology is depicted in fig. III.4. The sketch
shows how the free boundary, labelled Γb in the physical domain Ω and Γb,0 in
the reference domain Ω0, transforms from one domain to the other. Although
the geometric properties of this boundary, especially its unit normal n and
tangent t, may be evaluated in both domains, we always evaluate them in
Ω0, after which they may be mapped forward onto the physical domain via
Φ if needed. The L-ALE formalism leads to an approach in which the

×x×××××x0

0
b

s s

b,0

n
0
(n+1)

t
0
(n+1)n0(nn n)

t0(n)

(n)
0
(n+1)

(n-1)
0
(n)

(0)
0
(1)

)
0
t
)

Figure III.4 – Sketch of the geometrical transformations involved in
the L-ALE approach. (a): general framework, showing in particular the
physical domain Ω and the reference domain Ω0 (the corresponding free
boundary is Γb and Γb,0, respectively); (b): successive updates of the
reference domain during the iterations of the Newton method. .

governing equations and the deformation of the physical domain are solved
simultaneously and consistently, which ensures the stability of the algorithm
involved. Such an approach, in which the unknown to be determined is the state
vector q = [u, p, pb, ξ, η]T (T denoting the transpose), is sometimes referred to
as ‘monolithic’. To obtain the steady-state solution of (III.32)-(III.35), we solve
the corresponding steady nonlinear problem using a Newton method, following
the methodology introduced in Bonnefis, 2019. For the numerical resolution, the
volume fields [u, p]T are discretized following a Taylor–Hood scheme, i.e. the
mixed-finite-element Lagrange basis (P2,P2,P1) and the mesh deformation ξ is
discretized within the (P2, P2) finite element space. The free-surface field η is
discretized within Galerkin-Fourier spaces. The displacement of the free-surface
η is orthogonally projected onto a Fourier basis η(s0) =

∑Nb

k=0 φk(s0)Xη(k),
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where φk is a Fourier basis, Xη(k) the coefficients of η within that basis, Nb the
number of Fourier elements and s0 the arc-length coordinate. The steady-state
solution, q0 = [u0, p0, pb,0, 0, 0]T, is determined iteratively by solving the system
of equations governing the increment q′ = [u′, p′, p′

b, ξ, η]T, namely,

LNS [q′] ≡ u′ · ∇Ω0u0 + u0 · ∇Ω0u′ = −u0 · ∇Ω0u0 in Ω0 ,

−ρ−1∇Ω0 · ΣΩ0(u′, p′) +ρ−1∇Ω0 · ΣΩ0

+QΩ0(ξ)
Ldiv[q′] ≡ ∇Ω0 · u′ − ∇Ω0u0 : ∇T

Ω0
ξ = −∇Ω0 · u0 in Ω0 ,

Lkin[q′] ≡ u′ · n0 + u0 · n′ = −u0 · n0 on Γb,0 ,

Ldyn[q′] ≡ (p′
b − p′ − γκ′)n0 = (p0 − pb,0 + γκ0)n0 on Γb,0 ,

+(pb,0 − p0 − γκ0)n′ −2μDΩ0(u0) · n0

+2μDΩ0(u′) · n0

+2μDΩ0(u0) · n′

Lcom[q′] ≡ ξ − ηn0 = 0 on Γb,0 ,

LE [ξ] ≡ ∇Ω0 · E(ξ) = 0 in Ω0 ,

(III.36)
where the Ω0 subscript indicates that the corresponding spatial derivative is
evaluated in the reference domain Ω0 bounded (partly) by the free boundary
Γb,0. In (III.36), the first four equations correspond to the linearized form of the
governing equations (III.32)-(III.35). The deformation of the domain induces
several extra terms in these linearized equations, especially an extra momentum
source term QΩ0(ξ) = −u0 · ∇Ω0u0 · ∇Ω0ξ + ρ−1(∇Ω0 · ΣΩ0) · ∇T

Ω0
ξ + ρ−1μ∇Ω0 ·{∇Ω0u0 · ∇Ω0ξ + (∇Ω0u0 · ∇Ω0ξ)T} in the momentum equation. The last two

equations determine the displacement field ξ throughout the domain. The elliptic
operator E controls the spatial distribution of this arbitrary displacement within
Ω0, subject to the compatibility condition ξ = η′n0 on Γb,0. Here, following
Pfister, 2019, we assume that this distribution obeys a linear elastic response, i.e.
we set E(ξ) = 2μeDΩ0(ξ) + λe(∇Ω0 · ξ)I. With this choice, the last equation in
(III.36) may be interpreted as the Cauchy equation of elasticity, the coefficients
λe and μe being Lamé pseudo-coefficients which we both set to unity.

At each iteration n, the pseudo-steady state solution is updated in the form
q(n)

0 = q(n−1)
0 + q′ = [u0 + u′, p0 + p′, pb,0 + p′

b, ξ, η]T. The reference domain Ω0

is also updated, based on conditions xΩ(n)
0

= xΩ(n−1)
0

+ ξ and xΓ(n)
0

= xΓ(n−1)
0

+ η

linking the position of a given point standing in the fluid domain or on the free
boundary in two successive reference configurations, as sketched in fig. III.4(b).
In cases where the free boundary is a closed surface, the enclosed volume must
stay equal to its initial value, Vb, provided effects of compressibility are negligible
in the corresponding medium. This implies

Lvol[q′] ≡
∫

Γb,0

ηdS0 =
∫

Ωb,0

(1 + ∇Ω0 · ξ)dV0 − Vb on Γb,0 . (III.37)
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In the vicinity of a saddle-node bifurcation, the jacobian matrix is ill-conditioned,
in particular it is singular at the bifuration point. In these cases, instead of the
natural continuation on parameters, for instance on the Weber number We, we
continue the solution on the arc-length coordinate s with a pseudo-arc-length
continuation method. It consists in replacing the jacobian matrix by a bordered
matrix, i.e. a matrix with an additional column and an additional line. The
application of this technique is problem dependent, because it depends on the
parameters of the problem. Thus, here we consider continuation with steps Δs

on the couple of parameters (pb, S), the pressure within the bubble pb and the
strain rate S. If we denote eq. (III.36) plus any additional constraint such as by
L|q0q′ = −F(q0), then the bordered system is as follows,(

L|q(n−1)
0

Dbc

dpb

ds
dS
ds

)(
q′

S′

)
=

(
−F(q(n−1)

0 ) − Dbc(S(n−1)
0 )

− dpb

ds (p(n−1)
b,0 − p

(0)
b,0) − dS

ds (S(n−1)
0 − S

(0)
0 ) + Δs

)
(III.38)

where the vector of unknowns q′ is increased with the Newton update of the strain
rate S′. The operator Dbc, which is a column vector in the bordered matrix, serves
to impose the boundary conditions on the velocity field, and it only depends on the
strain rate S. The derivative dpb

ds acts on the pressure of the bubble only, and dS
ds

on the strain rate. They are determined at the initial step of the Newton method
from the resolution of L|q(0)

0

dq
dS |q(0)

0
= − F(q(0)

0 )
dS . From the field dq

dS |q(0)
0

, we select

the rate of variation of the pressure of the bubble with the strain rate dpb

dS |q(0)
0

and, since dS
dS = 1, the vector [ dp

ds , dS
ds ]T = [ dpb

dS |q(0)
0

, 1]T /(( dpb

dS |q(0)
0

)2 + 1)1/2.

Once the steady state is reached, the linear stability of the corresponding
solution is determined by examining the fate of disturbances with the eigenmode
form q′ = [û, p̂, p̂b, ξ̂, η̂]Te−iωt, the hatted complex amplitudes depending on
x0. In cases where the base configuration is axisymmetric, as in the physical
problem considered in this paper, we rather consider disturbances of the form
q′ = [û, p̂, p̂b, ξ̂, η̂]Teimθ−iωt, with θ the polar angle of the (r, θ, z) cylindrical
coordinate system and m the corresponding wavenumber, the hatted amplitudes
depending now only on r and z. Such solutions are obtained by solving the
eigenvalue problem

−iω
(
û − ξ̂ · ∇Ω0u0

)
+ LNS [q̂] = 0 in Ω0 ,

Ldiv[q̂] = 0 in Ω0 ,

−iωη̂ + Lkin[q̂] = 0 on Γb,0 ,

Ldyn[q̂] = 0 on Γb,0 ,

Lcom[q̂] = 0 on Γb,0 ,

LE [ξ̂] = 0 in Ω0 ,

(III.39)

supplemented with
Lvol[q̂] = 0 on Γb,0 (III.40)
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if the constraint (III.37) holds. In (III.39), the term iωξ̂ · ∇Ω0u0 arising in the
linearized momentum equation is the acceleration of the moving domain, which
must be subtracted to obtain the actual fluid acceleration in Ω0. Here, the
reference domain is that corresponding to the steady-state solution of (III.36),
i.e. Ω0 ≡ Ω(N)

0 , where N is the number of iterations carried out to reach
the steady solution through the Newton method, as depicted in fig. III.4(c).
Problems (III.36) and (III.39) are solved thanks to the open finite element
software FreeFem++ (see Bonnefis, 2019 for details).
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CHAPTERIV
Mode interaction

This chapter serves a summary of chapter VI, and it is entirely based on
those articles.

1

Takens-Bogdanov – The organizing centre for the flow past
spinning cylinders

In this section, we analyse a physical case, whose dynamics are organized by
a degenerate case of the Takens-Bodganov bifurcation, which has been defined
in section 1.5. The Takens-Bogdanov bifurcation is of codimension-two when
the two non-degeneracy conditions on the coefficients of the centre manifold
eq. (II.66) are met, that is, e

(2)
(1,1) �= 0 and e

(1)
(1,1) + e

(2)
(1,2) �= 0 . Otherwise, when

e
(2)
(1,1) �= 0 and e

(1)
(1,1) + e

(2)
(1,2) = 0 or e

(2)
(1,1) = 0 and e

(1)
(1,1) + e

(2)
(1,2) �= 0 , the
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bifurcation is of codimension-three. The former (e(2)
(1,1) �= 0 and e

(1)
(1,1) +e

(2)
(1,2) = 0)

is referred to as the cusp case, and it has been extensively analysed by Dumortier,
Roussarie, and Sotomayor (1987). It has the following normal form,

u̇1 = u2

u̇2 = β1 + β2u2 + β3u1u2 + u2
1 ± u3

1u2.
(IV.1)

The unfolding of the cusp case is rather similar to the codimension-two Takens-
Bogdanov, but with the two saddle-node curves intersecting tangentially in a
cusp point.
The second case, e

(2)
(1,1) = 0 and e

(1)
(1,1) +e

(2)
(1,2) �= 0 has been analysed by Dumortier,

Roussarie, Sotomayor, and Zoladek (2006). The authors have shown that the
centre manifold eq. (II.66) can be reduced to the following normal form,

u̇1 = u2

u̇2 = β1 + β2u1 + β3u2 + bu1u2 + s1u2
1u2 + s2u3

1,
(IV.2)

for s1, s2 = ±1 and b > 0. The authors distinguish three subcases: saddle,
focus and elliptic cases. When the coefficient s1 = 1, the subsequent bifurcation
scenario is referred to as the saddle case. The scenario with s1 = −1 and
0 < b < 2

√
2 is named the focus case. The elliptic subcase occurs when s1 = −1

and b > 2
√

2.
In the following, we restrict ourselves to the discussion of the dynamics of the
focus case, which is relevant for the dynamics of the flow past a spinning cylinder.
The two-dimensional flow past a rotating circular cylinder is controlled by two
parameters: the Reynolds number Re = U∞D

ν and the rotation rate α = ΩD
2U∞

.
Ω is the dimensional cylinder angular velocity, U∞ is the free stream velocity, D

the diameter of the cylinder and ν the dynamic viscosity of the fluid.

D

Ω

U∞

x

y

z

n

t

Figure IV.1 – Sketch of a rotating cylinder immersed in a uniform flow..

The incompressible Navier-Stokes equations eq. (III.1) are complemented
with the following boundary conditions: on the cylinder surface, no-slip boundary
conditions are set by U · t = ΩD/2 and U · n = 0, where (t, n) are the director
vectors of the surface in the plane (x-y); in the far field, uniform boundary
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Figure IV.2 – Evolution of the horizontal force Fx as a function of the
rotation rate α for four Reynolds numbers, (a) Re = 60, (b) Re = 100,
(c) Re = 170 and (d) Re = 200. Solid lines denote stable steady
states, dashed-dotted lines denote unstable steady states of focus
type or nodes, dashed lines are used for steady states of saddle type.
Solid circles denote Hopf bifurcations and solid squares denote saddle
node bifurcations. .

conditions are set U → (U∞, 0) when r → ∞, where r is the distance to the
cylinder centre (see fig. IV.1). In the discussion, we consider clockwise rotation
of the cylinder surface (α > 0).

Characterisation of multiple steady state solutions

To introduce the existence of multiple steady states, we first characterize
them by plotting in fig. IV.2 the associated lift as a function of the rotation rate
α, for four different values of α. In these plots, stable solution are indicated by
continuous lines and unstable ones by dashed lines. For Re = 60, as illustrated
in fig. IV.2(a), only one steady state exists for all values of α. This state is
stable except in the ranges α � 2 (corresponding to the existence of mode I), and
5.2 � α � 5.5 (corresponding to the existence of mode II). For higher Reynolds
numbers, a small region of multiple solutions arise in a small-scale interval
around α ≈ 5. This phenomenon is illustrated in fig. IV.2 (b) for Re = 100 and
is associated to a "s" shape of the curve, featuring two successive folds. Note
that before the first fold, the steady solution is 2-unstable (focus type); at the
first fold it turns into 1-unstable (saddle type) and at the second fold it turns
into stable.
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(a) α = 1.8 .
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(b) α = 4.35.
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(c) α = 4.75.
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(d) Stable steady state .
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(e) Saddle steady state. (f) Unstable steady
state.

Figure IV.3 – Steady flow around a rotating cylinder (vorticity levels
and streamlines) for selected parameters. (a) : α = 1.8, Re = 200 (at the
supercritical Hopf bifurcation threshold) ; (b) : α = 4.35, Re = 200 (at
the Hopf bifurcation); (c) : (α = 4.75, Re = 200 (at the fold bifurcation).
(d − f) correspond to three base-flow solutions existing in the range of
multiple solutions, namely for α = 5.25 and Re = 200. The circled dot
shows the position of the hyperbolic stagnation point..

Topological description of steady state solutions

We now illustrate the spatial structure of some steady state solutions, with
emphasis on the topological structure of the corresponding flows. We restrict
to the case Re = 200 as previously considered in fig. IV.2(d). Figure IV.3(a)
corresponds to α = 1.8, the value at which mode I is re-stabilised. The corre-
sponding flow is characterised by a stagnation point located beneath the cylinder
axis, on the left side of the y−cylinder axis. Compared to the steady flow in
the non-rotating case, which is characterized by a symmetrical recirculation
region, the upper recirculating bubble is reduced whereas the lower one is moved
downwards. Further increasing the rotation speed, both recirculation bubbles
shrink and eventually vanish. At α = 4.35 (fig. IV.3(b)) corresponding to the
lower threshold for the existence of mode II, recirculating bubbles have already
disappeared, and the vorticity wraps the cylinder. Stagnation point is located
on the opposite side but downstream the cylinder vertical axis.
Figure IV.3(c) corresponds to the steady state flow at the fold bifurcation ob-
served for α = 4.75 and giving rise to the disconnected states observed in fig. IV.2
(d). Compared to the previous state, the flow is topologically different, as no
stagnation point is observed along the wall of the cylinder. On the other hand,
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two stagnation points are observed within the flow. One of them is elliptic
and located at the centre of the detached recirculation bubble. The other is
hyperbolic and located along the streamline bounding the recirculation bubble.
Figure IV.3(d − f) displays the three coexisting steady states at α = 5.25 and
Re = 200. Topology of streamlines of unstable and stable steady states dif-
fers. In the stable case (plot d) there is a single recirculation region encircling
the cylinder and bounded by a hyperbolic stagnation point, as in the classical
potential solution existing in this range of rotation rates. On the other hand,
for both unstable states, the topology is similar, as in the case of fig. IV.3(c).
The recirculation region is detached from the cylinder and contains an elliptic
stagnation point located approximately in the midpoint between the hyperbolic
point and the bottom point of the cylinder surface. In the unstable steady state,
the recirculating region is more stretched, as it can be seen in fig. IV.3 (d-f).

We highlight that even though topological changes in the streamlines of the
steady states and bifurcations of the velocity field are in general independent
events (see Brøns (2007)), in some cases these two events occur in a small
neighbourhood of the space of parameters (see Heil et al. (2017)). In the current
situation, it has been confirmed that there is not a one-to-one relation between
both phenomena. For instance, the transition between detached recirculation
bubble (as in plot c) and recirculation bubble encircling the cylinder (as in plot
d) along the stable branch occurs at some value of α in the range [4.75 − 5.25]
where no dynamical bifurcation occurs. Yet for larger Reynolds numbers, i.e.
Re � 190, successive creation and destruction of vortices seems to be relevant in
the preservation of the disconnected branch of steady states.

Bifurcation diagram in the parameter plane (Re, α)

The bifurcation curves detected in the α < 10, Re < 200 range by linear
stability analysis of all steady state solutions are depicted in fig. IV.4. Three
Hopf bifurcation curves are detected and plotted with full lines. The first one
encircles the range of existence of unsteady mode I. The second one delimits the
range of existence of unsteady mode II in its lower and left parts, but not on its
upper part. The third one (in grey) occurs along a steady state which is already
unstable, and hence is not likely to be related to a bifurcation observable in DNS
or experiments.

In addition, we have identified two bifurcation curves associated to saddle-
nodes or "folds", here denoted F+ and F−. These curves delimit the range of
existence of multiple two-dimensional steady states, displayed as a grey region in
fig. IV.4. Note that the extension of this region explains the difference between
the cases Re = 170 and Re = 200 discussed in the previous paragraph; according
to the figure, for a sufficiently large rotation rate (α > 5) we should always
expect multiple steady state solutions for Re � 190.

Chapter IV – Mode interaction 51



1 – Takens-Bogdanov – The organizing centre for the flow past spinning
cylinders

0 50 100 1500

10

TB-C

Mode  II

Mode  I

Re

7 .5

   5

2 .5

200

GH

Figure IV.4 – Bifurcation curves in the range Re ∈ [0, 200] and α ∈
[0, 10]. Black and gray lines are used to denote local bifurcations. Solid
lines indicate the presence of a Hopf bifurcation, dashed line
designate the first fold bifurcation curve, F− and dashed dotted line
denote the second fold bifurcation, F+. The grey region indicates the
coexistence of three steady states. The solid grey curve inside the grey
region denotes a secondary Hopf bifurcation occurring on one of the
unstable steady states. Mode I is the classical vortex shedding mode,
whereas Mode II was described by Pralits et al. (2010). A generalized
Hopf (GH) bifurcation separates the supercritical Hopf bifurcation left to
the GH point to the subcritical Hopf bifurcation right to the GH point .

In fig. IV.4, the two saddle-node curves seem to merge, with the Hopf curve
existing for lower Re at a point with coordinates Re ≈ 75, α ≈ 5.4. Inspection
shows that there are actually both a 02 or Takens-Bogdanov (TB) bifurcation
and a cusp (C) bifurcation in very close vicinity in this range of parameters.

Qualitative study of the normal form

The transition occurring for Re ≈ 75 and α ≈ 5.4 is characterized by the end
of the Hopf curve (H−) at a fold curve (F+) (characteristic of a Takens-Bogdanov
bifurcation), and a transition between one and three steady states (characteristic
of a cusp). This suggests that the present situation is actually very close to a
codimension-3 bifurcation, which turn out to be of the saddle subtype. The
dynamical behaviour of the system can thus be expected to be well predicted
using the normal form describing the universal unfolding of eq. (IV.2). We
should think of the unfolding parameters (β1, β2 and β3) to be mapped from
the physical parameters (Re, α). fig. IV.5 illustrates all the possible behaviours
of the dynamical system, sketched by sample phase portraits, along with their
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Figure IV.5 – Bifurcation diagram predicted using the normal form
eq. (IV.2) in the stable focus case (adapted from Dumortier, Roussarie,
Sotomayor, and Zoladek (2006)), and qualitative phase portrait in regions
(1), (2), (3), (4), (5) and along curve H∞. Note that in the qualitative
phase portraits, focus and node points are not distinguished. .

range of existence in the (β1, β2) plane. This figure corresponds to a subset of the
complete diagram displayed in Dumortier, Roussarie, Sotomayor, and Zoladek
(2006, Ch. 1, pages 6-8), restricted to a range of parameters which is sufficient
to explain all the dynamical features of the present problem. The bifurcation
diagram displays two codimension-two points, a cusp C and a Takens Bogdanov
TB. These codimension-two points result from the tangential intersection of two
codimension-one curves: the cusp point C occurs when the two fold curves F+

and F− collide, while the TB point arises from the intersection of the supercritical
H− Hopf curve and the F+ fold. In addition, the bifurcation diagram predicts a
homoclinic global bifurcation along a curve H∞ originating from the TB point
and terminating along the F− fold on a point denoted SNL (for saddle-node-
loop). Left from this point, the F− curve corresponds to a local saddle-node
while right from this point it corresponds to a homoclinic saddle-node bifurcation
(appearance of two fixed points along a previously existing cycle). Note that the
SNL point and the intersection of H− and F− are formally not codimension-2
points (see Dumortier, Roussarie, Sotomayor, and Zoladek (2006)).

Phase portraits obtained in the various regions delimited by bifurcation
boundaries are displayed in the subplots offig. IV.5. One of the most interesting
predictions is the existence of two regions characterized by the existence of two
stable states (bistability). The first region (3), in the vicinity of the cusp, is
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(a) Zoom in the region of cusp bifurca-
tion..

(b) Zoom in the region of Takens Bog-
danov bifurcation..

Figure IV.6 – Zooms of figure IV.4 in the vicinity of the C and TB
codimension-2 points. Black solid lines denote fold bifurcations F±, the
long dashed (red online) line is used for the Hopf bifurcation line H−
and the short dashed (red online) curve denotes the local change from
stable focus to stable node. Numbers correspond to each phase portrait of
fig. IV.5 (a).

characterized by two stable steady states . The third region (4) is characterized
by both a stable steady state and a stable cycle. In all other regions, there is a
single stable solution, which is either a steady state (in regions 1 and 5) or a
cycle (in region 2). Note that in these phase portraits, nodes, and foci points are
not distinguished. Distinguishing between these cases (Dumortier, Roussarie,
Sotomayor, and Zoladek, 2006) leads to consider a larger number of subcases
(for instance region 1 could be split in two subregions corresponding to a stable
node and a stable focus . . . ) but the transition between these subcases are not
associated to bifurcations.

In order to check the predictions of the normal form approach, we have
conducted an accurate exploration of the range of parameters corresponding
to the C-TB region. The exploration allowed us to confirm the existence of
both a cusp and a Takens-Bogdanov point. fig. IV.6 displays an enlargement
of the full bifurcation diagram (fig. IV.4) in two narrow ranges centred on the
C and TB codimension-2 points. The bifurcation curves and the regions are
numbered with the same convention as in figure IV.5. Although it is not possible
to present all results in a single figure because the curves are very steep and close
to each others, the numerical results fully confirm the predictions of the normal
form. In particular, the numerical results allow confirming the coexistence of two
stable states (in regions 3) and of a stable cycle and a stable state (in region 4).
However, a precise mapping of the curve H∞ bounding the region 4 could not
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(a) . (b) .

Figure IV.7 – Evolution of the period of the limit cycle as it approaches
the homoclinic connection. a) Linear plot of the period T as a function
of the rotation rate α where αSN is the rotation rate at the saddle node.
b) Logarithm of the period and the distance to the bifurcation point. .

be achieved, but the occurrence of a global homoclinic bifurcation was confirmed
(see below).
The normal form predicts a homoclinic curve H∞ and a homoclinic saddle-node
bifurcation along the F− curve, right from the SNL point, corresponding to the
appearance of two steady solutions along a previously existing cycle.

A generic feature of the imminent presence of a homoclinic saddle-node
bifurcation is the divergence of the period of the limit cycle on which the saddle
node appears. More precisely, the period is expected to scale as ∝ 1√

αSN −α
as

α → αSN (see Gasull et al. (2005)). To check this prediction, time-stepping
simulations were conducted for Re = 170 and values of α just below the F−
curve. As shown in fig. IV.7 the period of the limit cycle effectively diverges as
one approaches the bifurcation following the theoretical behaviour.

Dynamics near the threshold can be perfectly understood in a two-dimensional
manifold. Phase portraits of the bifurcation are displayed in fig. IV.8. These
phase portraits were computed with an initial guess generated by a small linear
perturbation to a steady state in the direction of its corresponding eigenmode.
The initial guess is then integrated in time until it reaches its limit set, i.e.
a periodic, homoclinic orbit or another steady state. Below the bifurcation
threshold (fig. IV.8(a)) a stable limit cycle exists, represented by a thick solid
line. At the bifurcation threshold, a saddle-node arises along this cycle, which
ceases to exist, giving rise to a homoclinic connection (an approximation of this
orbit is delineated by a thick solid line in fig. IV.8(b) ). Beyond the saddle-node
bifurcation, the saddle-node splits into two fixed points. Hence, three steady
states exist, including a stable one (see fig. IV.8(c)). There exist four stable
heteroclinic connections, two between unstable-stable steady states represented
by a dashed line in fig. IV.8(c) and other two between saddle-stable steady states
denoted by a solid line. This sequence of events is fully consistent to the sequence
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Figure IV.8 – Phase portrait of the dynamics of the rotating cylinder
at Re = 170 for three values of the rotation rate α. Vertical (horizontal)
axis is the lift force Fy (drag force Fx) on the cylinder surface, empty
dots denote steady state solutions. (a-b) Limit sets (resp. transients)
are depicted by a thick solid line (resp. thin dashed). c) Heteroclinic
connections between unstable-stable (resp. saddle-stable) are depicted by
thin solid lines (resp. dashed dotted) .

connecting phase portraits (2), (SNL) and (4) in fig. IV.5.

2

Steady-Steady with 1:2 resonance – Robust heteroclinic cycles
in the flow of concentric jets

We now turn our attention to a second organizing centre, the steady-steady
bifurcation with O(2) symmetry and with strong azimuthal resonance 1 : 2. Such
an organizing centre is observed in the coaxial flow between two concentric jets.
In the past, such a scenario had been observed in numerical simulations of the
counter-rotating von Kármán swirling flow by Nore, Tuckerman, et al. (2003)
and subsequently observed in experiments by the same authors (Nore, Moisy,
et al., 2005). The mathematical aspects of the bifurcation scenario have been
extensively studied in the past by (Dangelmayr, 1986; Jones et al., 1987; Porter
et al., 2001; Armbruster et al., 1988) and the reflection symmetry breaking case
(SO(2)) by Porter et al. (2005).

Problem definition

The governing equations of the flow within the domain are the incompressible
Navier–Stokes equations (eq. (III.1)). These are written in cylindrical coordinates
(r, θ, z), which are made dimensionless by considering D as the reference length
scale and Wo,max as the reference velocity scale, which is the maximum velocity
in the outer pipe at z = zmin. The incompressible Navier–Stokes equations
eq. (III.1) are complemented with the following boundary conditions

U = (0, 0, Wi) on Γin,i and U = (0, 0, Wo) on Γin,o, (IV.3)
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Figure IV.9 – Computational domain..

where

Wi = δu tanh
(
bi(1 − 2r)

)
and Wo = tanh

[
bo

(
1 −
∣∣∣∣2r − (Router,1 + Router,2)

D

∣∣∣∣)] .

The parameter δu corresponds to the velocity ratio between the two jets, defined
as δu = Wi,max/Wo,max. The parameters bo and bi represent the boundary
layer thickness within the nozzle, which are fixed equal to 5 (as in Canton
et al. (2017)). Finally, no-slip boundary condition is set on Γwall and stress-free
(
( 1

Re τ(U) − P
) · n = 0) boundary condition is set on Γtop and Γout (see fig. IV.9

for a visualization of the domain and boundaries).

Characterization of the axisymmetric steady state

We begin by characterizing the development of the axisymmetric steady state
with varying δu at a constant Reynolds number fixed to Re = 100. Figure IV.10
synthesizes the main topological changes experienced by the steady state. At
δu = 0, the solution (point (a) in fig. IV.10) represents an annular jet, which
diffuses as it travels downstream and enters the ambient fluid. This figure
illustrates that the solution curve can be divided into three segments. The first
segment comprised between 0 ≤ δu < δ1

u is characterized by an inner jet nearly
trapped by a large recirculation region with a characteristic length Lr, which
remains almost constant with the velocity ratio. In the second region, which
ranges between δ1

u < δu < δ2
u and it is represented as a shaded area in the figure,

the recirculating region rapidly reduces its size. In this region, the axial velocity
of the inner jet is comparable with the axial velocity observed in the recirculating
region, which promotes mixing between both regions. As the velocity ratio is
increased, the inner jet is sufficiently energetic to break the recirculating region,
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which occurs between point (c) and (d) in fig. IV.10. The final segment, that
ranges between δu > δ2

u, is characterized by two quasi-planar jets that rapidly
mix to form a larger one at around z ≈ 5.
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Figure IV.10 – Evolution of the recirculation length (Lr) of the recir-
culating bubble with respect to the velocity ratio δu between the inner
and outer jet. The diagram of the second row on the left displays the
minimum value within the domain of the axial velocity. It is spatially
localized within the recirculating region for δu < 0.5 and near the middle
wall for larger values of the velocity ratio. Meridional projections of the
axisymmetric stream-function isolines and the axial velocity contour in a
range of (z, r) ∈ [−1, 5] × [0, 5] .

Linear stability analysis

We briefly discuss the main findings of the linear stability study at fixed
velocity ratio δu = 1 and δu = 2. We have tracked the evolution of the critical
Reynolds number with respect to the distance for four branches of global modes.
Two steady modes with azimuthal wavenumber m = 1 and m = 2, hereinafter
referred to as modes S1 and S2, respectively. A cross-section view at z = 1 is
displayed in fig. IV.11 (a-b). The other two unsteady modes, named F1 and F2

have respectively azimuthal wavenumbers m = 1 and m = 2. A cross-section
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(a) . (b) . (c) . (d) .

Figure IV.11 – Cross-section view at z = 1 of the four unstable modes
at criticality for the annular jet case (δu = 0). The streamwise vorticity
�z is visualised by colours. (a) Mode S1 for L = 0.5, (b) Mode S2 for
L = 0.5, (c) Mode F1 for L = 3 and (d) Mode F2 for L = 3..

view of these two modes is displayed in fig. IV.11 (c-d). Please note that for
the chosen set of parameters, the onset of instability for axisymmetric unsteady
mode F0 is always located at larger Reynolds numbers than the aforementioned
modes. This is one of the major differences with the case studied by Canton
et al. (2017), who found that for small values of the jet distance L ≈ 0.1, the
dominant instability is an unsteady axisymmetric one, which would be named
F0 with our nomenclature. Thus, in the following, we only include the results for
the S1, S2, F1 and F2 modes. The primary instability of the annular jet is then
a steady symmetry-breaking bifurcation that leads to a jet flow with a single
symmetry plane, displayed in fig. IV.11 (a). In contrast, bifurcations that lead
to the mode S2 possess two orthogonal symmetry planes, see fig. IV.11 (b).

(a) . (b) .

Figure IV.12 – Neutral lines of the four modes found studying the
configuration of two concentric jets, fixing the velocity ratio. (a) δu = 1,
(b) δu = 2. Black lines: modes with m = 1, red lines: modes with m = 2.
Solid lines: steady modes, dashed lines: unsteady modes..

Figure IV.12 compares the results obtained for a constant velocity ratio when
varying the distance between jets. The increase of the distance between the

Chapter IV – Mode interaction 59



2 – Steady-Steady with 1:2 resonance

jets has a de-stabilising effect. The largest critical Reynolds number is found
at the smallest explored distance between the jets, that is, L = 0.5. The points
where mode switching occurs are highlighted in fig. IV.12. We can appreciate
that the interaction between the branch S1 (non-oscillating m = 1 mode) and
S2 (non-oscillating m = 2 mode) happens in both considered velocity ratio δu.
Another feature of the neutral curves is the existence of turning points, which
are not shown here, see the associated article for more information.

Normal form, basic solutions and their properties

Herein, we perform a normal form reduction, which allows us to predict
non-axisymmetric steady, periodic, quasiperiodic and heteroclinic cycles between
non-axisymmetric states.
In order to unravel the existence and the stability of the nonlinear states near
the codimension two point, let us write the flow field as

q = q0 + Re
[
r1(τ)eiφ1(τ)e−iθq̂s,1

]
+ Re

[
r2(τ)eiφ2(τ)e−2iθq̂s,2

]
(IV.4)

in polar coordinates for the complex amplitudes z1 = r1eiφ1 and z2 = r2eiφ2

where rj and φj for j = 1, 2 are the amplitude and phase of the symmetry-
breaking modes m = 1 and m = 2, respectively. The normal form is expressed
in reduced polar notation as follows,

ṙ1 = e3r1r2 cos(χ) + r1

(
λ(s,1) + c(1,1)r

2
1 + c(1,2)r

2
2

)
, (IV.5a)

ṙ2 = e4r2
1 cos(χ) + r2

(
λ(s,2) + c(2,1)r

2
1 + c(2,2)r

2
2

)
, (IV.5b)

χ̇ = −
(

2e3r2 + e4
r2

1
r2

)
sin(χ), (IV.5c)

where the phase χ = φ2 − 2φ1 is coupled with the amplitudes r1 and r2 because
of the existence of the 1 : 2 resonance. Before proceeding to the analysis of the
basic solutions of eq. (IV.5), we can simplify these equations by the rescaling(

r1
|e3e4|1/2 , r2

e3

)→ (r1, r2), which yields the following equivalent system,

ṙ1 = r1r2 cos(χ) + r1

(
λ(s,1) + c11r2

1 + c12r2
2

)
, (IV.6a)

ṙ2 = sr2
1 cos(χ) + r2

(
λ(s,2) + c21r2

1 + c22r2
2

)
, (IV.6b)

χ̇ = − 1
r2

(
2r2

2 + sr2
1

)
sin(χ), (IV.6c)

with the coefficients

s = sign(e3e4), c11 =
c(1,1)

|e3e4| , c12 =
c(1,2)

e2
3

, c21 =
c(2,1)

|e3e4| , c22 =
c(2,2)

e2
3

.
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Finally, we consider a third normal form equivalent to the previous ones but which
removes the singularity of eqs. (IV.5) and (IV.6) when r2 = 0 (Corrochano et al.,
2023). The third normal form, which we shall refer to as reduced Cartesian normal
form, takes advantage of the simple transformation x = r2 cos(χ), y = r2 sin(χ)
(Porter et al., 2005):

ṙ1 = r1

(
λ(s,1) + c11r2

1 + c12(x2 + y2) + x
)

, (IV.7a)

ẋ = sr2
1 + 2y2 + x

(
λ(s,2) + c21r2

1 + c22(x2 + y2)
)

, (IV.7b)

ẏ = −2xy + y
(

λ(s,2) + c21r2
1 + c22(x2 + y2)

)
, (IV.7c)

In this final representation standing wave solutions are contained within the
invariant plane y = 0, and due to the invariance of eq. (IV.7) under the reflection
y �→ −y, one can restrict attention, without loss of generality, to solutions with
y ≥ 0, cf (Porter et al., 2001). The system eq. (IV.6) possess four types of fixed
points, which are listed in table IV.1.

Name Definition Bifurcations Comments
O r1,O = r2,O = 0 − Steady axisymmetric state
P r2

2,P = −λ(s,2)
c22

, r1,P = 0 λ(s,2) = 0 Bifurcation from O

r1,MM = − λ(s,1)±r2,MM +c12r2
2,MM

c11
λ(s,1) = 0 Bifurcation from O

MM PMM(r2,MM cos(χMM )) = 0 σ± = 0 Bifurcation from P
cos(χMM ) = ±1
cos(χT W ) = (2c11+c12)λ(s,2)−(2c21+c22)λ(s,1)

ΣT W (2λ(s,1)+λ(s,2))

TW r2
2,T W = −(2λ(s,1)+λ(s,2))

ΣT W
cos(χT W ) = ±1 Bifurcation from MM

r2
1,T W = 2r2

2,T W

Table IV.1 – Definition of the fixed points of the reduced polar normal
form eq. (IV.6). σ± is defined in eq. (IV.8), the polynomial PMM is
defined in eq. (IV.9) and ΣT W ≡ 4c11 + 2(c12 + c21) + c22. .

First, the axisymmetric steady state (O) is represented by (r1, r2) = (0, 0), so
it is the trivial steady state of the normal form. The second steady state is what
it is denoted as pure mode (P). In the original coordinates, it corresponds to the
symmetry breaking structure associated to the mode S2. This state bifurcates
from the axisymmetric steady state (O) when λ(s,2) = 0. The third fixed point
is the mixed mode state (MM), which is listed in table IV.1. It corresponds
to the reflection-symmetry-preserving-state associated to the mode S1. It may
bifurcate directly from the trivial steady state O, when λ(s,1) = 0 or from P
whenever σ+ = 0 or σ− = 0, where σ± is defined as

σ± ≡ λ(s,1) − −λ(s,2)c12

c22
±
√

−λ(s,2)

c22
. (IV.8)
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The representation in the reduced polar form is

r1,MM = −λ(s,1) ± r2,MM + c12r2
2,MM

c11
, cos(χMM ) = ±1,

and the condition PMM(r2,MM cos(χMM )) = 0, where PMM is defined as

PMM(x) ≡ sμ1+(s+c21λ(s,1)−c(1,1)λ(s,2))x+(c21+sc12)x2+(c12c21−c11c22)x3.

(IV.9)
Finally, the fourth fixed point of the system are travelling waves (TW). It is
surprising that the interaction between two steady states causes a time-periodic
solution. The travelling wave emerges from MM in a parity-breaking pitchfork
bifurcation that breaks the reflection symmetry when cos(χT W ) = ±1. The
TW drifts at a steady rotation rate ωT W along the group orbit, i.e., the phases
φ̇1 = r2,T W sin(χT W ) and φ̇2 = −s

r2
1,T W

r2,T W
sin(χT W ) are non-null.

Name Bifurcation condition Comments
SW sr2

1 − 2c11r2
1r2,MM cos(χMM ) − 2c22r3

2,MM cos(χMM )3 = 0 Bif. from MM
MTW DT W − TT W IT W = 0, IT W > 0 Bif. from TW

Table IV.2 – Definition of the limit cycles of the reduced polar normal
form eq. (IV.6). .

Mixed modes and travelling waves may further bifurcate into standing waves
(SW) and modulated travelling waves (MTW), respectively. These are generic
features of the 1 : 2 resonance for small values of λ(s,1) and λ(s,2), when s = −1.
In the original coordinates, SW are periodic solutions, whereas MTW are
quasiperiodic. Standing waves emerge via a Hopf bifurcation from MM when
the conditions PSW

(
r2,MM cos(χMM )

)
> 0 for

PSW(x) ≡ (2c22x3 − sr2
1)c11 − (2c12x + 1)(c21x + s)x,

and the one listed in table IV.2 are satisfied. MTW are created when a torus
bifurcation happens on the travelling wave branch, which occurs when the
conditions listed in table IV.2 are satisfied.

Another remarkable feature of eq. (IV.5) is the existence of robust heteroclinic

Name Condition Comments
Ht AGH λ(s,1) > 0, λ(s,2) > 0, c22 < 0 Existence

σ+ > 0, σ− < 0 Asymptotic stability

Table IV.3 – Definition of the conditions for the existence of the Ht
AGH (robust heteroclinic cycles connecting pure modes) of the reduced
polar normal form eq. (IV.6). .
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cycles that are asymptotically stable. When s = −1, there are open sets of
parameters (see table IV.3) where the reduced polar normal form exhibits
structurally stable connections between π−translations on the circle of pure
modes, cf (Armbruster et al., 1988). These structures are robust and have been
observed in a large variety of systems, (Nore, Tuckerman, et al., 2003; Nore,
Moisy, et al., 2005; Mercader et al., 2002; Palacios et al., 1997; Mariano et al.,
2005). In addition to these robust heteroclinic cycles connecting pure modes,
there exist more complex limit cycles connecting O, P, MM and SW, cf (Porter
et al., 2001). These cycles are located for larger values of λ(s,1) and λ(s,2), with
possibly chaotic dynamics (Shilnikov type). In this study, we have not identified
any of these.

Results of the steady-steady 1 : 2 mode interaction

(a) . (b) .

Figure IV.13 – Evolution of the codimension two interaction S1 − S2
in the space of parameters (Re, L, δu). Grey points denote the points that
were computed, and the red point denotes the transition from steady to
unsteady with low frequency .

The location of the mode interaction between S1 and S2 in the (Re, δu) plane
is depicted in fig. IV.13. It shows that the mode switching between the modes
S1 and S2 is indeed stationary only for δu < 1.5 and L < 1.3. For larger values
of the velocity ratio and the jet distance, the interaction is not purely stationary;
the linear modes oscillates with a slow frequency. It implies that the mode
selection for large velocity ratios near the codimension two points is similar to
that reported by Meliga, Gallaire, et al. (2012) for swirling jets. However, even
when the two primary bifurcations are non-oscillating (S1 and S2), the 1 : 2
resonance of the azimuthal wavenumbers induces a slow frequency, which we
denote as travelling wave solutions (TW).

We consider the bifurcation sequence for δu = 1.0 and L = 1.15, which
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Figure IV.14 – Parametric portrait at the codimension two point S1 : S2
for parameter values (L, δu) = (1.15, 1.0). Visualizations of blue and
red surfaces in the isometric views represent the respective positive and
negative isocontour values of the perturbative axial velocity indicated in
the figure .

is qualitatively similar to transitions in the range 0.5 < δu < 1.5, near the
codimension two points, which are depicted in fig. IV.13. At the codimension
two points for δu < 0.5, at least one of the two bifurcations is sub-critical and a
normal form reduction up to fifth order is necessary. Subcritical transition was
also noticed for a distance between jets L = 0.1 by Canton et al. (2017), who
reported high levels of the linear gain associated to transient growth mechanisms.
This last case is not considered in here. Figure IV.14 displays the phase portrait
of the stable attractors near the S1 : S2 interaction. For values of δu > 1.0, the
axisymmetric steady state loses its axisymmetry leading to a new steady state
with symmetry m = 2, herein denoted as pure mode (P). A reconstruction of the
flow field of such a state is performed at the bottom right of fig. IV.14, which
shows that the state P possesses two orthogonal planes of symmetry. Near the
codimension two point, for values of the velocity ratio δu < 1.1, the state P is
only observable, that is non-linearly stable, within a small interval with respect to
the Reynolds number. For larger values of the velocity ratio, the state P remains
stable within the analysed interval of Reynolds numbers. For values of the
velocity ratio δu < 1.0, the bifurcation diagram is more complex. Figure IV.15
displays the bifurcation diagram of the fixed-point solutions of eq. (IV.7) on
the left diagram and the full set of solutions of the normal form in the right
diagram. The axisymmetric steady state first bifurcates towards a Mixed-Mode
solution, which is the solution in the y = 0 plane for the right diagram of
fig. IV.15. A solution with a non-symmetric wake has been reconstructed in
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(a) . (b) .

Figure IV.15 – Bifurcation diagram with respect to the Reynolds number
for L = 1.15 and δu = 0.8. The left diagram reports the evolution of r2 for
the fixed point solutions of the normal form. The right diagram displays
the bifurcation diagram in the Cartesian coordinates. Solid lines and
dashed lines denote stable attractors and unstable attractors, respectively .

fig. IV.14. The Mixed-Mode solution is only stable within a small interval of the
Reynolds number. A secondary bifurcation, denoted BifMM−T W , gives rise to a
slowly rotating wave of the wake. The TW and the MM solutions are identical
at the bifurcation point. The phase speed is zero at the bifurcation, thus this
is not a Hopf bifurcation. It corresponds to a drift instability that breaks the
azimuthal symmetry, i.e. it starts to slowly drift. This unusual feature, that
travelling waves bifurcate from a steady solution at a steady bifurcation, is a
generic feature of the 1 : 2 resonance. A reconstruction of the travelling wave
solution is depicted on the top of fig. IV.14. It corresponds to the line with
non-zero y component in the right diagram of fig. IV.15. The TW solution loses
its stability in a tertiary bifurcation, denoted as BifT W −MT W . It conforms to
a Hopf bifurcation of the TW solution, which gives birth to a quasi-periodic
solution named Modulated Travelling Wave (MTW). A representation of this
kind of solution in the Cartesian coordinates (r1, x, y) is depicted on the right
image of fig. IV.15.

Eventually, the Modulated Travelling Wave experiences a global bifurcation.
That occurs when the periodic MTW solution, in the (r1, x, y) coordinates, nearly
intersects the invariant r1 = 0 and y = 0 planes. The transition sequence is
represented in the right image of fig. IV.15 in the Cartesian coordinates (r1, x, y).
The amplitude of the MTW limit cycle increases until the MTW arising at the
tertiary bifurcation BifT W −MT W are destroyed by meeting a heteroclinic cycle at
BifMT W −Ht. The locus of BifMT W −Ht is reported in fig. IV.14. The conditions
for the existence of the heteroclinic cycles are listed in table IV.3. When σ−
becomes negative, the cycle is attracting and robust heteroclinic cycles are
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Figure IV.16 – Heteroclinic cycle solution for parameter values Re = 200,
δu = 0.8. The top and bottom image sequences along the heteroclinic cycle
show (from left to right) an axial slice plane at z = 1 of the instantaneous
fluctuations of the axial velocity of the flow field as viewed from down-
stream, along with a three-dimensional isometric view (d on the top and
g on the bottom).The middle diagram displays the heteroclinic cycle in
the coordinates (r1, x, y) .

observed. It is destroyed when σ+ becomes negative, in that case the pure modes
are no longer saddles which breaks the heteroclinic connection. Figure IV.16
displays the instantaneous fluctuation field from a heteroclinic orbit connecting
P and its conjugate solution P’, which is obtained by a rotation of π/2, for
parameter values Re = 200 and δu = 0.8. The dynamics of the cycle takes
place in two phases. Figure IV.16 depicts the motion of the coherent structure
associated to the heteroclinic cycle. Starting from the conjugated pure mode P’,
the cycle leaves the point (a), located in the vicinity of P’, along the unstable
eigenvector y, which is the stable direction of P. The first phase consists in
a rapid rotation by π/2 of the wake, it corresponds to the sequence a-b-c-d-e
displayed in fig. IV.16. Then it is followed by a slow approach following the
direction y and departure from the pure mode state P along the direction r1.
The second phase consists in a rapid horizontal motion of the wake, which is
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an evolution from P to P’ that takes place by the breaking of the reflectional
symmetry with respect to the vertical axis; it constitutes the sequence e-f-g-h-i-a.
Please note that equivalent motions are also possible. The first phase of rapid
counter-clockwise rotation by π/2 can be performed in the opposite sense. It
corresponds to a motion in the Cartesian coordinates along the plane r1 along
negative values of y. The sequence e-f-g-h-i-a can be replaced by a horizontal
movement in the opposite sense, which adjusts to connect the plane y = 0
corresponding to negative values of r1.

3

Steady-Hopf – A common organizing centre for the wake flow
past axisymmetric bluff bodies

This section presents a mathematical study of a truncated normal form
relevant to the bifurcations observed in axisymmetric wakes, in particular, a disk
and a sphere. We consider the interaction between a steady state bifurcation and
Hopf bifurcation in a system with O(2) symmetry when both modes have the same
wavenumber. This situation arises naturally in numerous flow configurations,
for example, Taylor–Couette flow (TCF), the wake flow of axisymmetric objects
(WFA) and the wake of axisymmetric objects in mixed convection (WFA-MC).
The bifurcation diagrams are interpreted in terms of symmetry considerations.
The normal form coefficients are computed for several examples of wake flows
and the resulting predictions compared with the results of direct numerical flow
simulations. In general, satisfactory agreement is obtained.

The flow state q = [u, p] is specified by the velocity field u and the hydrody-
namic pressure p (the WFA-MC also includes the temperature field T ). Near the
mode interaction (a codimension-two bifurcation) the flow state takes the form

q = q0 + Re
[
z0(t)e−iθq̂s

]
+ Re

[
z1(t)e−iθq̂h,−1 + z2(t)eiθq̂h,1

]
+ h.o.t.

(IV.10)

Here q0 is the steady flow that is invariant under the action of the whole O(2)
group, q̂s is the steady mode and q̂h is the Hopf (unsteady) mode. The Ansatz in
eq. (IV.10) takes into account the continuous (translation or rotation) symmetry
via the terms e±iθ, where θ ∈ S1 is an angle-like variable in the periodicity
direction; for axisymmetric problems it corresponds to the azimuthal angle, while
in the TCF it corresponds to the axial direction: θ ≡ −2πx/Λ, where Λ is the
mode wavelength. Here without loss of generality the azimuthal wavenumber m

is taken to be m = 1.
We will not deal with the general case, instead we consider a truncated form
retaining only nonlinearities of third order. Such a truncated system can be
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expressed in the following explicit form:

ż0 = λsz0 + l0z0|z0|2 + l1
(|z1|2 + |z2|2)z0

+il2
(|z2|2 − |z1|2)z0 + l3a0a2z1

(IV.11a)

ż1 =
(
λh + iωh

)
z1 +

(
B|z1|2 +

(
A + B

)|z2|2)z1

+Cz1|z0|2 + Dz2
0z2

(IV.11b)

ż2 =
(
λh + iωh

)
z2 +

(
B|z2|2 +

(
A + B

)|z1|2)z2

+Cz2|z0|2 + Da2
0z1 ,

(IV.11c)

where l0, l1, l2, l3 are real coefficients and A, B, C, D are complex coefficients.
Using the polar representation of the complex amplitudes zj = rjeiφj for j =
0, 1, 2, eq. (IV.11) can be reduced to a system of four coupled equations governing
the amplitudes r0, r1, r2 and the phase Ψ ≡ φ1 − φ2 − 2φ0:

ṙ0 =
[

λs + l0r2
0 + l1

(
r2

1 + r2
2
)]

r0

+l3r0r1r2 cos Ψ
(IV.12a)

ṙ1 =
[

λh + Brr2
1 + (Ar + Br)r2

2 + Crr2
0
]
r1

+r2
0r2
(
Dr cos Ψ + Di sin Ψ

) (IV.12b)

ṙ2 =
[

λh + Brr2
2 + (Ar + Br)r2

1 + Crr2
0
]
r2

+r2
0r1
(
Dr cos Ψ − Di sin Ψ

) (IV.12c)

Ψ̇ = (Ai − 2l2)(r2
2 − r2

1) − 2l3r1r2 sin Ψ
+r2

0Di cos Ψ
[r2

r1
− r1

r2

]
− r2

0Dr sin Ψ
[r2

r1
+

r1

r2

]
,

(IV.12d)

Interestingly, the polar system only involves 9 of the 13 original coefficients,
namely: l0, l1, l3, Ar, Br, Cr, Dr, Di and Ai − 2l2. The system eq. (IV.12) is
decoupled from the evolution of the phase φ0 and the "mean phase" of the Hopf
component φm = (φ1 + φ2)/2, which evolve according to

φ̇0 = l2(r2
2 − r2

1) + l3r1r2 sin Ψ , (IV.13a)

φ̇m = ωh +
(
Bi + 1

2 Ai

)
(r2

1 + r2
2) + Cir

2
0

+
1
2

r2
0Di cos Ψ

[
r2

r1
+

r1

r2

]
+

1
2

r2
0Di sin Ψ

[
r1

r2
− r2

r1

]
.

(IV.13b)

Types of solutions

The solutions that are stationary in the polar representation are summarized
in the table IV.4. The simplest solution is the trivial solution (TS) (z0, z1, z2) =
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Table IV.4 – Nomenclature and symmetry groups of the steady state
solutions of the system (IV.12). .

Name Representative Isotropy group (complex) Isotropy group (polar) Frequencies
Pure modes:

TS (0, 0, 0, nd) O(2) × S1 D4 � Z2(κ) 0
SS (ra, 0, 0, nd) Z2(κ) × S1 Z2(κ) × Z2(Φπ) 0
RW (0, ra, 0, nd) S̃O(2) Z4(Rπ/2Φπ/2) 1
SW (0, ra, ra, nd) Z2(κ) × Z2(RπΦπ) Z2(κ) × Z2(RπΦπ) 1

Mixed modes:
MM0 (ra, rb, rb, 0) Z2(κ) Z2(κ) 1
MMπ (ra, rb, rb, π) Z2

(
κ · RπΦπ

)
Z2
(
κ · RπΦπ

)
1

MW (0, ra, rb, Ψ) Z2(RπΦπ) Z2(RπΦπ) 1
Precessing waves:

General (ra, rb, rc, Ψ) 1 1 2
Type A (ra, rb, rb, Ψ) 1 1 2
Type B (ra, rb, rc, 0 or π) 1 1 2
Type C (ra, rb, 0, Ψ) 1 1 2

(0, 0, 0). This solution corresponds to Couette flow in the TCF problem, and to
the axisymmetric solution in the WFA and WFA-MC problems. There are three
primary solutions: steady state modes (SS), rotating waves (RW) and standing
waves (SW). The steady state mode (SS) takes the form (z0, 0, 0), z0 �= 0. This
state corresponds to the Taylor Vortex state in the TCF problem and the Steady
Shedding mode in the wake problems.
The RW and SW solutions arise in a primary Hopf bifurcation of the trivial state.
Because of O(2) symmetry, the eigenvalues at the Hopf bifurcation are doubled,
and the Hopf bifurcation produces simultaneously a branch of rotating waves
(RW, (z0, z1, z2) = (0, z1, 0)) and standing waves (SW, (z0, z1, z2) = (0, z1, z1)).
The RW break reflection symmetry; consequently, there are two RW, rotating in
opposite directions and related by reflection. In contrast, the SW are reflection-
symmetric oscillations with zero mean. In the TCF problem the RW corresponds
to the Spiral Vortex state, while in the wake problem they correspond to the Spiral
Shedding state, observed, for example, in the wake of a rising bubble (Mougin
et al., 2001). While the SW state corresponds, respectively, to the Ribbon
state in the TCF problem and the Symmetric Periodic Shedding state observed,
for example, in the wake of a disk when R ≈ 150. Each of these solutions
corresponds to a one-dimensional fixed point subspace spanned either by z0 or z1,
and their presence is therefore guaranteed by the equivariant branching lemma
(Golubitsky et al., 2012).
Secondary bifurcations may lead to states with a higher-dimensional fixed point
subspace. An example is provided by mixed mode states that correspond to
a (nonlinear) superposition of the SS and SW modes. There are two possible
states of this type. The first is denoted by MM0, and corresponds, respectively,
to a pattern called Twisted Vortices in the TCF problem and to the reflection
symmetry-preserving mode (RSP) in the wake problem. The second mixed mode,
MMπ, corresponds, respectively, to Wavy Vortices in the TCF problem and to
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Table IV.5 – Nomenclature and symmetry group of limit cycle solutions
of the system (IV.12). .

Name Representative Isotropy group Frequencies
of solution in polar coordinates in primitive coordinates

M̃M0,π (ra(t), rb(t), rb(t), 0 or π) 1 2
ĨMM (0, rb, rc, Ψ(t)) 1 2
PuW (ra(t), rb(t), rc(t), Ψ(t)) 1 2

with rb = rc and sin Ψ = 0
3-frequency waves: (3FW)

General (ra(t), rb(t), rc(t), Ψ(t)) 1 3
Type A (ra(t), rb(t), rb(t), Ψ(t)) 1 3

with sin Ψ �= 0
Type B (ra(t), rb(t), rc(t), 0 or π) 1 3

with rb �= rc

Type C (0, rb(t), rc(t), nd) 1 3
with rb �= rc

Type D (ra(t), rb(t), 0, Ψ(t)) 1 3
with sin Ψ �= 0

the reflection symmetry-breaking mode (RSB) in the wake problem. Finally,
one can also find a mixed mode state involving the Hopf modes, referred to
as a modulated wave state (MW), consisting of a (nonlinear) superposition of
two rotating wave modes. This state is referred to as the Modulated Spiral
mode (MSP) in the TCF problem and the Modulated Wave mode (MW) in the
wake problem. It is a mode with two temporal frequencies, which are in general
incommensurate, and so corresponds to a 2-torus. This type of solution does not
occur generically in the third-order system, although it arises in higher order
normal forms or in the degenerate case corresponding to Ar = 0 (Knobloch,
1986).
The last solution type, that is, a state arising in a tertiary bifurcation, corresponds
to a fixed point in the (r0, r1, r2, Ψ) coordinates with no further symmetry.
According to eq. (IV.13), in such states the phase φ0 of the steady mode
generically precesses at a constant rate given by φ̇0. Consequently, states of this
type display two frequencies, one of which is close to the critical Hopf frequency
while the other is a low frequency given by eq. (IV.13a). These solutions will be
referred to as Precessing Waves (PrW) or drifting waves.

The solutions that are periodic in the polar representation are summarized
in table IV.5. We distinguish three types of solutions. The first type is referred
to as a Modulated Mixed Mode, since it displays the same spatial symmetries
as the mixed modes already described. We also find periodic states, which are
called Pulsating Waves (PuW). In such states, the polar coordinates (r0, r1, r2, Ψ)
all oscillate periodically in time, but the pulsation retains a certain symmetry.
Specifically, r1 = r2 and sin Ψ = 0, where the overbar indicates an average
over the pulsation period. The last type of periodic solution corresponds to
the case where the (r0, r1, r2, Ψ) coordinates are once again all periodic, but
the conditions r1 = r2 and sin Ψ = 0 are violated. We call these states Three-
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Frequency Waves (3FW), since they are characterized by a frequency near
the critical Hopf frequency, the pulsation frequency, and finally the precession
frequency.

Mixed convection in the flow past a disk

Let us revisit the problem of pattern formation behind a disk falling through
a stratified fluid. In our formulation the disk is held fixed, with flow past it (the
WFA-MC problem). This problem has many practical applications in engineering
such as cooling, heating (Kotouč et al., 2009), sedimentation (Gan et al., 2003),
melting (Mcleod et al., 1996), combustion (Sadhal et al., 2012), vaporization
(Chiang et al., 1993). A heated disk represents a heat source embedded within
the physical domain, where the solid body is subjected to forces of hydrodynamic
and thermal origin. There are two main cases of interest, the case of a hot
falling sphere where the fluid within the wake is accelerated with respect to
the spherical body. Such a configuration is called assisting flow. The opposite
case, where the wake of a hot ascending spherical particle is decelerated by
buoyancy effects, is referred to as opposing flow. We focus on the opposing
flow case under mixed convection conditions. This problem depends on three
control parameters, the Reynolds number Re, the Richardson number Ri, and
the aspect ratio of the disk χ, where 1/χ is the dimensionless thickness. The
WFA problem for Ri = 0 and 1/χ ≈ 0 has already been studied by Fabre,
Auguste, et al. (2008). They used numerical simulations to determine the normal
from coefficients fitted from the simulations. The case χ = 3 was studied in detail
by Auguste et al. (2010). A more rigorous study via multiple-scale analysis was
performed by Meliga, Chomaz, et al. (2009). Later, Chrust et al. (2010) explored
the flow dependence on the parameters (Re, χ) using numerical simulations and
proposed a classification of the patterns observed. These studies demonstrated
the importance of the disk thickness on the transition scenario. Chrust et al.
observed that, when the thickness 1/χ is large, for instance χ = 1, the symmetry
plane is preserved for large values of the Reynolds number, i.e., only SS and MM0

(possibly with modulated mixed modes or precessing waves) are observed before
spatio-temporal chaos appears. In the limit of zero thickness, when 1/χ ≈ 0,
the transition scenario starts with the formation of a SS pattern followed by
the breaking of the symmetry plane, leading to a MMπ mode and eventually
to standing waves SW. At intermediate values of the thickness, a large variety
of spatio-temporal patterns may be observed, as highlighted by the study of
Auguste et al. In the present study, we shall look for the connections between
the opposing flow case in mixed convection and the situation at Ri = 0, in terms
of the spatio-temporal patterns observed in the flow. Figure IV.17 displays
the location of the codimension-two point corresponding to the Hopf-Steady
State bifurcation, obtained by varying 1/χ ∈ [0, 1]. The top panels show the
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(a) χ = 10. (b) χ = 3.

Figure IV.17 – The location of the codimension-two Hopf-Steady State
bifurcation in the (Re, Ri) plane as a function of the aspect ratio χ of
the disk (Re: black line; Ri: red line). The colour-coded symbols refer
to the points obtained in numerical computations. Top: temperature
distribution of the basic state at (a) 1/χ = 0.1 (Re ≈ 130, Ri ≈ −0.068),
(b) 1/χ ≈ 0.33 (Re ≈ 150, Ri ≈ −0.078)..

corresponding temperature distribution in space and the growing extent of the
recirculation bubble in the steady states associated with two distinct values
of the aspect ratio χ of the disk. In the range of aspect ratios considered
here, the critical Reynolds number grows linearly with the thickness 1/χ of
the disk, as previously observed by Fernandes et al. (2007). In addition, the
critical Richardson number displays a maximum around 1/χ ≈ 0.1 followed by
a linear decrease in the critical Richardson number. Here, we briefly cover the
case of thickness χ = 3. This case displays a large number of spatio-temporal
structures. To the left of the organizing center, the transition scenario is based
on the initial formation of standing waves, followed by modulated waves and
an eventual tertiary bifurcation, not taken into account in the normal form,
leading to temporal chaos. Figure IV.19 displays the reconstruction of the
lift coefficient from the normal form at Ri = 0, in comparison to the results
obtained numerically by Auguste et al. (2010). It distinguishes five regions, with
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Figure IV.18 – The predicted patterns in the flow past a disk with χ = 3
under mixed convection (opposing flow) conditions in parameter space.
Snapshots of the reconstructed states are included..

the Knit-Knot (KK) region among them. The transition begins at Re ≈ 159.4
(Re ≈ 159.8 in Auguste et al. (2010)) via the formation of a steady state
pattern (SS), which eventually bifurcates into a mixed mode (MM0) at around
Re ≈ 182.5 (Re ≈ 179.9 in Auguste et al. (2010)). The MM0 state loses
stability at around Re ≈ 184.5. Quantitatively, up to this point, the sequence
of bifurcations is reasonably well predicted with regard to the data reported
by Auguste et al. (2010). The Knit-Knot region in our analysis covers a large
variety of states with similar characteristics in terms of the frequency components
(at least two), and the lift coefficient CL. The authors identified this motion
as temporally quasiperiodic motion resulting from the spontaneously broken
reflection symmetry. The temporal dynamics of the KK state may be described
as the composition of a state with frequency ωh and a low frequency state,
whose pulsation experiences large variation within its region of existence (from
Tp ≈ 96 2π

ωh
at Re = 185 to Tp ≈ 48 2π

ωh
at Re = 187 and then to Tp ≈ 54 2π

ωh
at

Re = 190). This bifurcation sequence is followed by the appearance of the MMπ

state, estimated to be around Re ≈ 198.5 (Re ≈ 190.4 in Auguste et al. (2010))
which connects to the standing wave branch at around Re ≈ 214 (Re ≈ 215.2 in
Auguste et al. (2010)). According to theory, this sequence of bifurcations should
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be followed by the formation of a modulated wave branch and precessing waves.
However, we do not discuss these patterns here due to the lack of simulation
data to compare with and because these patterns can only be described using
the fifth order normal form whose coefficients were not computed. For more
information, see fig. IV.18.

(a) . (b) .

Figure IV.19 – (a) Bifurcation diagram in terms of the lift coefficient
CL for the WFA problem (Ri = 0) with χ = 3. Solid lines were computed
from the normal form, dashed lines were extracted from Auguste et al.
(2010). Black lines denote CL,max and red lines denote the average of CL.
(b) Bifurcation diagram in the Knit-Knot region of fig. IV.19 in terms of
the period TP of the low frequency modulation. Square markers: Hopf
bifurcation. Circles: saddle-node bifurcation. Triangles: Neimark-Sacker
bifurcation. .

4

Triple Hopf organizing centre – From the flow past rotating
particles to the acoustic emission of impinging jets

Here we analyse the triple Hopf organizing centre with and without a reso-
nance condition. The non-resonant case arises naturally in fluid flows depending
on several parameters and displaying multiple interacting self-sustained insta-
bilities, where the core of the instability or wavemaker of each global mode
is localised. This is exemplified in the case of the wake flow behind rotating
spherical particles (Sierra-Ausin, Lorite-Diez, et al., 2022). The resonant case,
instead, is relevant when the core of the instability is not localised in space, and
it may even occur when the flow configuration depends on a single parameter. In
this case, the frequency of the global modes is expected to be nearly a multiple
of a fundamental pulsation Δω. The intense tonal sound emissions of rounded
impinging jets at large subsonic Mach numbers (Sierra-Ausin and Giannetti,
2023) are a good example of this kind of resonant non-local feedback.
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We expand the flow field into a baseflow component (in our case the steady state)
and self-sustained coherent structures,

q(t) = q0 +
∑N

k=1
(
zk(τ)q̂(zk)(r, z)ei(mkθ−ωkt) + c.c.

)
, (IV.14)

The resonance condition is 2ω2 −ω1 = ω3 and 2m2 −m1 = m3, that is, triads
of nearby interacting modes. Its normal form is as follows,

ż1 = z1
(
λ1 + ν11|z|21 + ν12|z|22 + ν13|z|23

)
+ χ1z2

2z3

ż2 = z2
(
λ2 + ν21|z|21 + ν22|z|22 + ν23|z|23

)
+ χ2z1z2z3

ż3 = z3
(
λ3 + ν31|z|21 + ν32|z|22 + ν33|z|23

)
+ χ3z2

2z1

(IV.15)

where νk�, λk, χk ∈ C for k, � = 1, 2, 3. If the resonance condition is not satisfied,
then χj = 0 for j = 1, 2, 3. The real part of the linear terms, named λk,
correspond to the growth rate of the kth mode. Respectively, the imaginary part
of λk is associated to the frequency variation of the kth mode with respect to the
frequency of the neutral mode, i.e., with respect to the frequency ωk determined
from linear stability analysis. The terms νk� are the third order self (k = �) and
cross interaction (k �= �) coefficients. The resonant coefficients χk arise because of
the quantization of the eigenvalues in the spectrum at a nearly constant distance
Δω, i.e. frequency gaps Δωk = (ωk+1 − ωk) are nearly constant. Figure IV.20
(a) displays a spectrum with these characteristics (we assume mk = 0). In the
analysis, we consider that the imperfections in the frequency difference between
two modes is small, that is, (Δωk+1 − Δωk) ∼ ε2. In this way, the term z2

2z3

is nearly resonant with z1, or in other terms ω2 − Δω2 ≈ ω1. The resonance
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Figure IV.20 – (a) An example of an arc-discrete spectrum centred
around ω2. (b) Dependency of the coupling coefficient on χ3, i on the
modes (solid line denotes dependency on amplitude zj, dashed line on the
conjugate amplitude zj). .

condition can be extended to a larger number of modes, that is, a N -Hopf
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interaction. The general case with arbitrary N limit cycles may be expressed as

żj = zj

(
λj +

∑N
k=1 νjk|z|2k

)
+ NLj,res for j = 1, . . . , N (IV.16)

where NLj,res are the resonant terms at the third order. Figure IV.20 (b)
illustrates the resonant interactions for N = 5. It admits three resonant terms
for the equation of z3, i.e. NL3,res = χ3,1z2

2z1 + χ3,2z2z3z4 + χ3,3z2
4z5.

4.1
Non-resonant – The flow past rotating particles

The flow past an axisymmetric rotating body is controlled by two parameters:
the Reynolds number (Re) and the rotation rate (Ω) which is defined as the ratio
of the tangential velocity Ω∗D∗/2 on the sphere surface to the inflow velocity
W ∗

∞, that is, Re = W ∗
∞D∗

ν∗ , Ω = Ω∗D∗
2W ∗∞

.

θ

Figure IV.21 – Sketch of the problem and geometric configuration.

The incompressible Navier–Stokes equations (eq. (III.1)) are complemented
with the following boundary conditions

U = (0, Ω, 0) on Σb U = (0, 0, 1) on Σi. (IV.17)

A no-slip boundary condition is set on the rotating sphere and a uniform boundary
condition is set in the inlet, as shown in fig. IV.21.

Classification of solutions

In the following, the RHS of eq. (IV.15) is designated f(z) where z =
(z1, z2, z3). The reduced vector f is equivariant under the action of the group
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Name Representative Isotropy group (complex) Frequencies
TS (Trivial state) (0, 0, 0) SO(2) × T3 0

RW (Rotating wave) (ra, 0, 0) S(1, r, 0, 0) × T2 1
MM (Mixed mode) (ra, rb, 0) S(1, r, l, 0) × S1 2

IMM (Interacting mixed mode) (ra, rb, rc) 1 3

Table IV.6 – Nomenclature and symmetry group (cf Sierra-Ausin, Lorite-
Diez, et al., 2022) of fixed point solutions of the system eq. (IV.19).

Γ ≡ SO(2) × T3, with the following action representation

θ · z ≡ (z1eilθ, z2eirθ, z3eisθ)
(ψ1, ψ2, ψ3) · z ≡ (z1eiψ1 , z2eiψ2 , z3eiψ3),

(IV.18)

where l, r, s ∈ Z, θ ∈ [0, 2π) and ψi ∈ [0, 2π) for i = 1, 2, 3. Here, (ψ1, ψ2, ψ3) and
θ are the representations in C3 of the actions of the group Γ, which correspond
to the time-shift and rotational invariance, respectively. The substitution of the
polar decomposition of z = reiΦ, with r =

(
r1, r2, r3

)
and Φ =

(
φ1, φ2, φ3

)
, into

eq. (IV.15) yields the following decoupled phase-amplitude system

ṙ� = r�

[
ΛR

� + VR
�kr2

k

]
, k, � = 1, 2, 3,

φ̇� = ΛI
� + VI

�kr2
k, k, � = 1, 2, 3,

(IV.19)

where Λ = ΛR + ΛI ≡ (λ1, λ2, λ3)T and the matrix V = VR + iVI is

V ≡

⎛⎜⎝ν11 ν12 ν13

ν21 ν22 ν23

ν31 ν32 ν33

⎞⎟⎠ (IV.20)

To ease the presentation of the fixed point solutions of eq. (IV.19), let us introduce
the inverse of the linear operator V, which can be written as

V−1 =
1

det V

⎛⎜⎝det V11 det V21 det V31

det V12 det V22 det V32

det V13 det V23 det V33

⎞⎟⎠ , (IV.21)

where det Vk� denotes the minor of the matrix V, obtained by eliminating the
line k and the column �. In the following, the notation ṙ = fR(r) will be adopted
to denote the amplitude equation of the nonlinear system eq. (IV.19). The
remainder of this subsection will be devoted to the study of the three fixed-point
solutions of eq. (IV.19).
Rotating waves correspond to the simplest non-trivial fixed point of eq. (IV.19),

which in the original set of equations is a periodic solution. They arise as the
result of a supercritical Hopf bifurcation of the steady state (named Trivial
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Name of solutions Definition Eigenvalues

RWi r
(RW )
i =

√
−λR

i

νR
ii

−λR
i ,

(for i = 1, 2, 3) λR
j − νR

ji

λR
i

νR
ii

, for j �= i

MMij , (i, j = 1, 2, 3) r
(MMij)
i =

√
λR

j νR
ij − λR

i νR
jj

det(Vkk)
νR

ii r2
i + νR

jjr2
j

2
±
√(

νR
ii r2

i − νR
jjr2

j

)2
/4 + νR

ijνR
jir

2
i r2

j

(j �= i, k �= i, k �= j) r
(MMij)
j =

√
λR

i νR
ji − λR

j νR
ii

det(Vkk)
1

det(VR
kk)

[
λR

k det(VR
kk) + λR

i det(VR
ik) + λR

j det(VR
jk)
]

IMM123 (r2
1, r2

2, r2
3)T = −(VR

)−1ΛR Eigs of DfR

Table IV.7 – Defining equations and eigenvalues of the solutions of the
polar third order normal form eq. (IV.19).

State in table IV.6) and they may eventually bifurcate into mixed modes; the
eigenvalues of rotating waves may be found in the first row of table IV.7. Mixed
modes, defined in table IV.7, are the result of the interaction between two
rotating waves, as the Modulated Waves (MW) of section 3. A mixed-mode has
a representative in the normal form with two non-zero amplitude terms, thus
they correspond to a T 2-quasiperiodic state in the original system of equations.
These states may experience two kinds of bifurcations. They may lose stability
in the transversal direction or within their own subspace, these two conditions
are listed in table IV.7. Eventually, a bifurcation in the transversal direction of
a mixed-mode may be associated with the appearance of an interacting mixed
mode (IMM123) attractor. An interacting mixed mode corresponds to a T 3-
quasiperiodic state in the original system of equations, and it is represented by
three non-zero amplitude terms. However, T 3-quasiperiodic states are hardly
observed in numerical simulations of dissipative systems, as it is the case of Navier-
Stokes equations (eq. (III.1)), instead a chaotic attractor is usually observed
(Newhouse et al., 1978).

Linear stability

The breaking of the reflection symmetry regarding the azimuthal angle induces
the prevalence of rotating waves along the rotation of the sphere. Consequently,
bifurcations that lead to standing waves or to a symmetry breaking steady state
do not occur generically. The existence of standing waves or a steady state mode
requires the matching between the phase speed of the helical pattern and the
rotation of the body, which is another condition to be met. In our findings,
within the parameter space Re < 300 and Ω < 4, we have found the existence
of three distinct types of rotating waves, named RW1, RW2 and RW3, which
are depicted in fig. IV.22. Linear stability results (fig. IV.23a) reveal that the
axisymmetric steady state, referred in the following as Trivial State (TS), is
stable in the white shaded region and unstable in the grey shaded region. The
neutral curve of stability displays two regions in the parameter space (Re, Ω)
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(a) (b) (c)

Figure IV.22 – Cross-section view at z = 3.5 of the three unstable
modes. The streamwise component of the vorticity vector �z is visualised
by colours. (a) RW1 at point (ReA, ΩA) = (77, 2.24). (b) RW2 at point
(ReB , ΩB) = (188, 1.01). RW3 at point (ReA, ΩA)..

for which the first primary bifurcations are rotating waves of low frequency
(LF) where the wake past the sphere displays a single helix (RW1), depicted
in fig. IV.22 (a). In the second region, the flow pattern of the wake displays
a double helix (RW3) with a high frequency (HF), depicted in fig. IV.22 (c).
The onset of instability of the third branch (RW2) displaying a flow pattern
of the wake with a single helix with a medium frequency (MF), depicted in
fig. IV.22 (b), turns out to be linearly unstable for Ω ≤ 4. Each pair of neutral
curves intersects once, leading to three codimension-2 points (A, B, C). Another
aspect of importance is the evolution of frequencies of the instability. Frequencies
at critical parameters are reported in fig. IV.23 (b) as a function of Ω. The
frequency evolution is divided into two regions, a first of a rapid evolution for
low rotation rates Ω < 1 and a second one wh00ere the frequency of the three
modes hardly depends on the rotation rate.

Bifurcation diagram at a constant rotation rate

Herein, we fix the rotation rate to a constant Ω = 1.75. Let us assume
that we have determined the normal form, following the procedure detailed
in Sierra-Ausin, Lorite-Diez, et al. (2022). Bifurcation events are designated
by their corresponding value of the Reynolds number, Restateb

statea
where statea

stands for the simplest state that exists before the bifurcation and stateb stands
for the resulting state after the bifurcation. In addition, the notation Reσk,s

statea

indicates a bifurcation of the statea where the eigenvalue σk (k = 1, 2, 3) has
changed sign: s indicates stabilization and u indicates the change from stable
to unstable of the referring eigenvalue/eigenmode pair. In the following, there
is only a bifurcation of this kind, the one associated to the mixed mode MM12

that is stabilized/destabilized because of a change of sign of the eigenvalue in the
transversal direction (r3). Thus, we simplify the notation to Res

statea
or Reu

statea
.

Figure IV.24 displays the bifurcation diagram, with Reynolds number as
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(a) (b)

Figure IV.23 – Linear stability properties of the rotating sphere configu-
ration. (a) Neutral curve of stability: the onset of the primary instability
is portrayed with a solid black line ( ), whereas the continuation of the
neutral curves is depicted with dashed black lines ( ). (b) Frequency
evolution with respect to Ω of linear modes at the critical Reynolds number
(Rec(Ω))..

the control parameter for Ω = 1.75. There exist three primary bifurcations,
i.e., bifurcations from the axisymmetric steady state, located at ReRW1

T S , ReRW2
T S

and ReRW3
T S , respectively. However, the RW2 branch remains unstable all along

the analysed interval. The first transition to occur is a supercritical Hopf
bifurcation leading to the RW1 solution, which is then followed by another
supercritical Hopf bifurcation leading to RW3. For the range of Reynolds numbers
ReRW1 < Re < ReMM13

RW3
there exists a single stable attractor, which corresponds

to the limit cycle associated with the solution RW1. At ReMM13
RW3

the RW3 branch
experiences a Neimark-Sacker bifurcation that results in the appearance of the
mixed mode solution MM13. In the interval ReMM13

RW3
< Re < ReMM13

RW1
both

primary solutions (RW1 and RW3) are stable under any arbitrary perturbation
and in addition they are connected by the unstable mixed-mode MM13, which is
located on the separatrix of the basin of attraction of the two primary solutions
(the phase portrait of this scenario is sketched in fig. IV.24 (b.1)). Eventually,
the solution branch MM13 terminates at Re = ReMM13

RW1
, which makes RW3

the single attractor of the system for the interval ReMM13
RW1

< Re < ReMM23
RW3

.
The RW3 branch eventually bifurcates into the mixed mode branch MM23,
which is a stable attractor within the interval ReMM23

RW3
< Re < ReIMM123

MM23
. The

other primary branch, the unstable RW1 undergoes another Neimark-Sacker
bifurcation at ReMM12

RW1
which results into the existence of the MM12 branch, yet

unstable for perturbations in the transversal direction of the mixed mode (in the
r3 direction). The MM12 mixed mode branch appears to be stable only within
a small interval Res

MM12
< Re < Reu

MM12
, where two bifurcations, which are

associated to an instability in the transversal direction r3, occur at the two limit
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(a)

r2

r3r1

r2

r3r1 r1

r2

r3

(b.1) (b.2) (b.3)

(b)

Figure IV.24 – (a) Transition scenario at Ω = 1.75. Attractors are
depicted with solid lines, whereas unstable invariant states are represented
with dashed lines.(b) Schematic representation of phase portraits. (b.1.)
Two stable rotating waves separated by a mixed mode solution. (b.2.)
Two stable mixed modes. (b.3.) An interacting mixed mode attractor, the
chaotic attractor that shadows the IMM123 is sketched in a lighter blue
color..
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values. We have employed s and u to denote the stable or unstable nature of
MM12 regime. Thus, for Res

MM12
< Re < Reu

MM12
there is a second region with

multiple stable attractors, which is schematically displayed in fig. IV.24 (b.2).
The last bifurcation accounted by the normal form is the destabilisation of the
MM23 branch at Re = ReIMM123

MM23
that leads to the appearance of the IMM123

branch, whose phase portrait is sketched in fig. IV.24 (b.3). Please note that
despite the fact that IMM123 is a fixed point solution of the normal form, the
Newhouse-Takens-Ruelle theorem indicates that the original system of equations
may exhibit a chaotic attractors shadowing the IMM123 solution. A systematic
comparison of flow observables, such as the longitudinal and transversal forces,
between normal form estimations and direct numerical simulations is discussed
in Sierra-Ausin, Lorite-Diez, et al. (2022).

4.2
Resonant

This section is based on Sierra-Ausin and Giannetti (2023, Section 5).
We consider the following normal form

ṙ1 = r1
[
λR

1 + νR
11r2

1 + νR
12r2

2 + νR
13r2

3
]

+ r2
2r3
[

cos(ψ)χR
1 + sin(ψ)χI

1
]

ṙ2 = r2
[
λR

2 + νR
21r2

1 + νR
22r2

2 + νR
23r2

3
]

+ r1r2r3
[

cos(ψ)χR
2 − sin(ψ)χI

2
]

ṙ3 = r3
[
λR

3 + νR
31r2

1 + νR
32r2

2 + νR
33r2

3
]

+ r2
2r1
[

cos(ψ)χR
3 + sin(ψ)χI

3
]

ψ̇ = δω + cos(ψ)
[− χI

3r1r2
2/r3 + 2χI

2r1r3 − χI
1r3r2

2/r1)
]

− sin(ψ)
[
χR

3 r1r2
2/r3 + 2χR

2 r1r3 + χR
1 r2

2r3/r1
]
.

(IV.22)
Here, we use the notation ψ = (φ3 − φ2) − (φ2 − φ1) for the resonant phase,
δω ≡ δωL + δωNL with δωL ≡ [ω1 + ω3 − 2ω2] for the linear frequency mismatch
at neutrality, and the nonlinear frequency mismatch δωNL ≡ ΔωNL

2 − ΔωNL
1 =

[ωNL
1 + ωNL

3 − 2ωNL
2 ], where ωNL

k = λI
k + νI

k1r2
1 + νI

k2r2
2 + νI

k3r2
3 for k = 1, 2, 3.

The upper scripts R and I are used to denote the real and imaginary part of the
coefficient. The details about the computation of the coefficients of the normal
form, and the numerical modelling may be found in Sierra-Ausin and Giannetti
(2023, Section 2, Appendix B)
We analyse the solutions of eq. (IV.22) in the presence of resonant coupling,
the phase-locked transition from a resonant quasiperiodic state to a modulated
three frequency state with a small frequency modulation. The new modulating
frequency, being proportional to the imperfections in the frequency quantization
(δωNL), is expected to induce a transition to a chaotic attractor, following
the route to chaos suggested by Ruelle–Takens–Newhouse, when this new fre-
quency is of the order of the frequency difference between two modes, e.g., ΔωNL

1 .
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Stochastic modelling

Ruelle–Takens–Newhouse (Newhouse et al., 1978) state that one may obtain
a chaotic Axiom A attractor by perturbing a three-tori solution, with a given
arbitrarily small perturbation. However, it fails to provide the precise route
to chaos, which may occur following a torus breakdown (Tanaka, 2005), which
occurs because of the loss of smoothness of the two or three tori attractors
(Marques et al., 2001). In order to account for the loss of smoothness of the
system, we replace

δωNL �→ δωNL(1 + dWt),

with dWt a differential Wiener process and a constant δωNL determined by
integrating eq. (IV.22). That is, we replace the equation for the resonant phase
by

dψ = δωLdt + δωNL(dt + dWt)
+
(

cos(ψ)
[− χI

3r1r2
2/r3 + 2χI

2r1r3 − χI
1r3r2

2/r1)
])

dt

−
(

sin(ψ)
[
χR

3 r1r2
2/r3 + 2χR

2 r1r3 + χR
1 r2

2r3/r1
])

dt.

(IV.23)

The model is essentially similar to the following case of multiplicative noise with
respect to the polar amplitudes on the resonant phase. Consider the mapping

νI
ij �→ νI

ij(1 + dW ij
t ) and λI

i �→ λI
i (1 + dW i

t ),

which leads to

δωNL �→ δωNL + (dW 1
t + dW 3

t − 2dW 2
t )

+
(∑3

j=1 νI
1jr2

j dW 1j
t

)
+
(∑3

j=1 νI
3jr2

j dW 3j
t

)
−2
(∑3

j=1 νI
2jr2

j dW 2j
t

)
.

(IV.24)

The substitution of eq. (IV.24) into eq. (IV.22) leads to eq. (IV.23) when the
value of the polar amplitudes is fixed, leading to a one-way coupling. Herein, we
choose such a model for simplicity; the proposed model fixes the value of δωNL

and accounts for the uncertainty with an additive noise term.
This phenomenological modelling is based on the fact that the sources of sound
responsible for the closure of the feedback become less coherent with decreasing
Mach number, which is described in Sierra-Ausin and Giannetti (2023, Section
3 and 4). Such a modelling is faithful with the deterministic normal form
eq. (IV.22) in the mean sense, that is, E

(
δωNL(1 + dW )

)
= δωNL. At low

subsonic Mach number, the increase of δωNL is caused by the elongated nature
of the wavemaker, which enables the existence of sources of vortex sound at
distinct spatial locations. Each of these sources it is associated with a distinct
fundamental frequency Δω, which is inversely proportional to the convective
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time it takes for the hydrodynamic perturbations to reach the source of vortex
sound at the wavemaker and to the acoustic time it takes for the perturbation
to reach back to the lip of the nozzle. Therefore, providing a phenomenological
interpretation to the increase of the modulation frequency with a decreasing
Mach number. Thus, the transition to a broadband spectrum can be interpreted
as the consequence of the loss of coherence of the feedback process and the fact
that the levels of the acoustic pressure decrease with decreasing Mach number.
The latter effect is attributed to the fact that with decreasing Mach number, the
production of the divergence of velocity field is reduced, which occurs mostly
within the jet and near the wall. Additionally, the propagation of the guided
jet wave becomes less effective with decreasing Mach number, because of the
increase of its wavelength.

Resonant – An example of broadband and tonal noise

At low Mach numbers, a broadband spectrum characterises the dynamical
attractor. Figure IV.25 (a) displays the spectrum obtained from axisymmetric
numerical simulations, which is displayed with red, blue and black solid lines for
pressure probes at an axial location z = 0 and a radial position r = 1D, r = 2D

and r = 4D, respectively. This type of dynamics is modelled by a periodic
solution (MMdM) of the normal form eq. (IV.22), which is a three-tori solution
in the original coordinates of the ansatz eq. (IV.14). The Modulated Mixed
drift Wave possesses a modulation frequency ω′ ≈ Δω, i.e., the modulation
frequency has a similar magnitude to the frequency difference between the
other two dominant frequencies. In that scenario, the original dynamics of the
Navier–Stokes equations1 are expected to be chaotic with a broadband spectrum.
However, fig. IV.25 (a) shows a tonal spectrum (yellow line), which has been
obtained from the deterministic normal form. Such a feature is characteristic
of this particular type of normal form, and it is a pathological property of the
truncation. Instead, when considering the stochastic model with δω ≈ 0.1, one
obtains a spectrum (green line) which offers a considerably better comparison with
respect to the data of the axisymmetric simulation. In this case, the spectrum
displays a wide peak of small magnitude around f1 and f2, and a broadband
spectrum with a similar slope to the numerical results (red line). Thought the
matching is not perfect, the ratio between the peak and the broadband levels
is slightly larger in the deterministic model, which suggests a higher degree of
stochasticity of the axisymmetric numerical simulation. The difference may be
explained from the fact that the axisymmetric numerical simulations allow for a
vortical feedback. Vortices emitted by the roll-up of the radial shear layer near
the wall and outside the jet are propagated towards the lip. These vortices are

1Herein, we have simulated the axisymmetric Navier–Stokes equations, which provide
a similar qualitative picture (broadband or tonal spectrum) to the three-dimensional high
Reynolds number flows.
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(a) . (b) .

Figure IV.25 – (a) Sound pressure levels at M∞ = 0.3, Re = 2000.
Probes of instantaneous pressure fluctuations at the axial location z = 0
and radial positions r = 1D (red - axisymmetric time-stepping, yellow -
deterministic normal form, green stochastic normal form with δω = 0.1),
r = 2D (black - axisymmetric time-stepping) and r = 4D (dark blue
- axisymmetric time-stepping). The vertical dashed lines highlight the
frequencies of the peaks obtained with the axisymmetric time-stepping
simulation. (b) Sound pressure levels at M∞ = 0.3, Re = 2000. Same
legend as (a) .

produced aperiodically in a chaotic region of the flow, and they reach the lip
of the nozzle, triggering the shear layer instability. Such a feature is strongly
nonlinear, and it is not accounted by the normal form. A possible correction
to the stochastic model would consist in the inclusion of a diffusion coefficient√

Deff in δω(1 +
√

DeffdW ), and thus determine the effective diffusion from the
fitting of numerical or experimental data (Callaham et al., 2021).
At large Mach numbers, the dynamical attractor is characterized by a tonal
spectrum with large peaks at discrete frequencies. This type of dynamics is
modelled by a fixed-point (MrW) or a periodic solution (MMdW) of the normal
form eq. (IV.22). In this case, the modulation frequency of the Modulated
Mixed resonant Wave is smaller than the frequency difference between the modes
(ω′ � Δω). In that scenario, the spectrum of the Navier–Stokes equations is
expected to be weakly tonal with wide and large magnitude peaks. In this
case, the deterministic normal form offers a good qualitative description of the
spectrum, it is able to identify the main frequency peaks and the frequency
modulation f ′. The frequency modulation obtained from numerical simulations is
f ′

DNS ≈ 0.05, while the frequency modulation from the normal form is f ′ ≈ 0.04.
Additionally, as in the broadband case, we compare in fig. IV.25 (b) the results of
the axisymmetric numerical simulation (red line) with those of the deterministic
normal form (yellow line) and the stochastic model (green line). It shows a
reasonable comparison, though the sound pressure levels are underestimated.
Additionally, since the model is weakly nonlinear, it fails to predict the existence
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of a peak at f2/2, which occurs because of a secondary instability of the radial
shear layer. Inspection of the numerical results suggests that such a frequency
peak occurs because of a vortex-pairing instability of the radial shear layer
(Shaabani-Ardali et al., 2019).
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1

Conclusions

1.1
Mode interaction

In this thesis, we have systematically studied cases of fluid instabilities dis-
playing mode interaction. One of the objectives of this dissertation has been to
establish a connection between the fluid instabilities and the patterns or coherent
structures of the flow. In that sense, one may consider the organising centre of
the bifurcation problem to be a kind of weakly non-linear class, that is universal
for some types of instabilities.
Under that consideration, in the absence of an equivariance condition, that is,
a symmetry property, of the governing equations the Hopf-Hopf or triple Hopf
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organising centre (section 4) is the most common type of weakly-non linear class
of flows that one may encounter. Thus, it is expected to be of relevance for
flow configurations without any continuous nor discrete symmetry. This kind
of organising centre corresponds to the Ruelle-Takens-Newhouse route to chaos.
However, even in this (simple) case, this is not the whole story. As it has been
evidenced in section 4, the core of the instability may be localised in space, or
it may lie along an extended region of the flow. The oscillating instabilities
of the flow past bluff bodies are usually of the first type, whereas many flow
configurations with a convective unstable shear layer, for example: cavity flows,
some cases of flow past an airfoil, impinging jets or screeching jets, are found to
be of the second type. The instability of the second type is said to be due to a
non-local feedback loop. The fact that the core of the instability is not localised
in space may have important consequences for the spectrum of the baseflow.
The spectrum may display a family of discrete modes with nearly equidistant
frequencies, suggesting a frequency selection criterion based on the properties of
the feedback loop. Thus, any reduced equation describing the dynamics of these
flows shall account for the (weakly-)1resonant conditions arising from the linear
frequencies of the modes in the spectrum.
The flow instability behind a spinning cylinder exemplifies another type organis-
ing centre: a focus Takens-Bogdanov bifurcation. It corresponds to a degenerate
case of the Takens-Bogdanov bifurcation. This organising centre is the simplest
scenario accounting for an intersection of Hopf and saddle-node lines, and the
existence of an odd number of steady-states. In the classical Takens-Bogdanov
bifurcation, there are only regions in the parameter space with an even number
of steady-states. The existence of three co-existing steady-states due to two
successive saddle-node bifurcations, provides a clear evidence of a near-cusp
bifurcation. Such a dynamical scenario might be more general than it seems.
When considering a laminar configuration, if there is a fold bifurcation, one
would expect at least another fold. Why? The governing equations simplify to
the Stokes equations when the Reynolds number tends to zero, these equations
are linear and with unique solution. Therefore, a fold bifurcation at a low
Reynolds number necessarily implies the existence of a second fold, otherwise we
would have two steady-state solutions when the Reynolds number tends to zero,
which is impossible. This reasoning suggests that the focus Takens-Bogdanov is
almost a codimension-three bifurcation, and that the third condition is nearly
satisfied by some mild regularity properties of the equations. Vaguely, such a
flow displays a Takens-Bogdanov instability due to the competition between the
instability of the shear layer inducing the von Kármán street and the spin of the
cylinder, which tends to reduce the frequency of the instability.
In the presence of continuous symmetries, we have analysed two axisymmetric

1We use here the word weakly to include situations where the resonant condition is nearly
satisfied, but not in a strict sense.
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configurations: the steady-Hopf (section 3) and steady-steady (1:2) (section 2)
organising centres. The first arises in many flow configurations, such as the wake
flow past an axisymmetric bluff body or the flow/path instabilities of rising/-
falling objects or bubbles. The second has been experimentally and numerically
Nore, Tuckerman, et al., 2003; Nore, Moisy, et al., 2005 in a Von Kármán flow,
and leads to robust heteroclinic cycles, which can be assumed to be the simplest
example of a Self-Sustaining-Process (SSP).

1.2
Compressible flows – Acoustics

In the thesis, we have considered two canonical flow configurations. First, we
have considered the whistling potentiality of a jet flow through a hole in Sierra-
Ausin, Fabre, Citro, et al. (2022), which is a canonical configuration to study
the sound emitted by humans. Second in Sierra-Ausin and Giannetti (2023) we
analyse the properties of the hydrodynamic-acoustic feedback-loop underpinning
the tonal and broadband sound emissions of a rounded subsonic impinging jet. In
this second work, we propose a novel decomposition of the structural sensitivity
map for instabilities supported by an acoustic-hydrodynamic feedback.
For both compressible problems, the design of non-reflecting boundary conditions
is delicate, and we introduced a novel complex-mapping technique (Sierra-Ausin,
Javier, Fabre, and Citro, 2020) for this purpose. The instability of the jet flow
through an orifice has been analysed in terms of the zeros of the transfer function
of the system, the impedance. The numerical continuation of the emerging
limit cycles has been carried out via a fixed-point method (Sierra-Ausin, Javier,
Jolivet, et al., 2021; Sierra-Ausin, Javier, Citro, Giannetti, et al., 2022), which is
preferred over a time-integration scheme due to the time-step constraints at low
Mach number.

1.3
Moving interfaces

We have analysed two flow configurations having a moving interface. First
the vortex-induced vibration by a single and a pair of spring-mounted, damped,
rigid circular cylinder, immersed in a Newtonian viscous flow and capable of
moving in the direction orthogonal to the unperturbed flow is analysed with a
linearised diffusive immersed boundary method in Tirri et al. (2023). Second,
in Sierra-Ausin, Bonnefis, et al. (2022) we study linear stability of a bubble
suspended in an axisymmetric uniaxial straining flow with a linearised ALE
approach.
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2

Perspectives

In each of the manuscripts, we discuss perspectives of possible future works.
Herein, we suggest some directions of research that are of interest in the author’s
view.
The systematic analysis of the organising centres discussed in the dissertation
could be extended also to analyse the qualitative properties of the phase space
with data assimilation and optimisation techniques. A promising perspective for
future works could be the extension of the work carried out by Cenedese et al.
(2022) to account for outer-resonance conditions, which in our nomenclature
are resonance conditions. In this direction, it would be also of great interest to
derive a stochastic centre-like manifold for systems far from equilibrium. Such a
description would directly connect with ideas of spontaneous stochasticity and
the diffusion of information by performing a coarse graining in systems with a
large number of chaotic degrees of freedom (Wouters et al., 2017; Schmuck et al.,
2013).
Another interesting perspective is the combination of the methodology of mode-
interaction in the study of problems with a moving interface. For instance, the
bifurcation analysis of the steady-Hopf bifurcation can be applied directly to
the case of a rising bubble in an unbounded domain. The extension, however, is
not trivial since it involves the linearisation of the ALE procedure at each order
of the multiple-scales expansion. Similarly, the mode interaction between two
oscillating instabilities can be directly applied to the VIV instability of several
cylinders in tandem or aligned.
Finally, the identification of the active regions of the flow when the instability
core is not localised in space may be extended to study instabilities issued
of a non-local hydrodynamic feedback-loop, that is, due to the instant effect
of the pressure to impose the incompressibility condition, to thermo-acoustic
instabilities in combustion applications and to instabilities underpinned by a
mechanism due to the coupling between deformation of the interface and the
flow.
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The aim of this paper is to provide a complete description of the bifurcation scenario of
a uniform flow past a rotating circular cylinder up to Re = 200. Linear stability theory
is used to depict the neutral curves and analyse the arising unstable global modes. Three
codimension-two bifurcation points are identified, namely a Takens–Bogdanov, a cusp
and generalised Hopf, which are closely related to qualitative changes in orbit dynamics.
The occurrence of the cusp and Takens–Bogdanov bifurcations for very close parameters
(corresponding to an imperfect codimension-three bifurcation) is shown to be responsible
for the existence of multiple steady states, as already observed in previous studies. Two
bistability regions are identified, the first with two stable fixed points and the second
with a fixed point and a cycle. The presence of homoclinic and heteroclinic orbits,
which are classical in the presence of Takens–Bogdanov bifurcations, is confirmed by
direct numerical simulations. Finally, a weakly nonlinear analysis is performed in the
neighbourhood of the generalised Hopf, showing that above this point the Hopf bifurcation
is subcritical, leading to a third range of bistability characterised by both a stable fixed
point and a stable cycle.

Key words: bifurcation

1. Introduction

The flow past a circular cylinder is a classical configuration which has been widely
adopted in the fluid dynamics community as a canonical model to investigate vortex
shedding behind bluff bodies. In the case of a fixed cylinder, i.e. without rotation, the
dynamics and the corresponding bifurcations are well known (Williamson 1996). The case
of a rotating cylinder, which has implications for flow control using wall motion (Modi
1997; el Hak 2000), has recently received attention. A number of numerical studies in a
two-dimensional framework have been conducted (Kang, Choi & Lee 1999; Stojković,
Breuer & Durst 2002, 2003; Mittal 2004) and have revealed the existence of several
steady and unsteady regimes. Linear stability approaches (Pralits, Brandt & Giannetti
2010; Pralits, Giannetti & Brandt 2013) have shown the existence of two separated regions

† Email address for correspondence: fgiannetti@unisa.it
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of instability in the (Re, α) plane, where α is the dimensionless rotation rate and Re is
the Reynolds number. The so called Mode I becomes unstable via a supercritical Hopf
bifurcation and it is present for 0 ≤ α ≤ 2. This mode is the one associated with the

classical Bénard–von-Kármán vortex street, and characterised by the alternate shedding of
vortices of opposite sign. At higher rotation rates, around 4.5 ≤ α < 6 another unsteady
mode exists, denoted as Mode II. The physical mechanism driving this mode is rather
different, as it corresponds to a slow-frequency shedding of vortices with the same
vorticity sign. Its onset is less well characterised than Mode I from the point of view
of bifurcation theory: the fact that the frequency is very low suggests a more complex
bifurcation scenario and its supercritical or subcritical nature is still unclear. The full
characterisation of Mode II is complicated by the fact that, in approximately the same

range of (Re, α) parameter space, a region where three steady-state solutions coexist has
been evidenced (Pralits et al. 2010; Rao et al. 2013a). A more thorough characterisation
of this phenomenon has been carried out by Thompson et al. (2014) who observed that the
region of existence of multiple steady-state solutions grows with the Reynolds number.
Note also that the picture is further complicated by the existence of three-dimensional
(3-D) instabilities in this range. This point is outside of the range of the present paper

which restricts to 2-D dynamics, but a brief review on 3-D stability properties of this flow
can be found in appendix E.

To explain the existence of multiple steady states, Rao et al. (2013a) conjectured that
they emerge from a cusp bifurcation point. Indeed, a cusp correctly explains the change in
the number of steady states from one to three. However, a cusp is not generally associated
with the existence of a Hopf bifurcation in the same range of parameters, so it cannot

explain, alone, all the features discussed above. The fact that the frequency of Mode II
is very small is an indicator of a second kind of codimension-two bifurcation, namely a
02 or Takens–Bogdanov bifurcation (Kuznetsov 2013, chapter 8, p. 314) This bifurcation
typically occurs when the frequency of a limit cycle vanishes. However, in the vicinity of
a standard Takens–Bogdanov bifurcation, only two steady states generally exist, not three.
This combination of features suggests that the picture could hide a codimension-three

bifurcation point, also known as a generalised Hopf bifurcation. The unfolding of this

generalised Takens–Bogdanov bifurcation has been studied by Dumortier et al. (2006)
and Kuznetsov (2005) from a mathematical point of view, but to our knowledge such a
feature has not yet been evidenced in a fluid dynamics system such as the one considered
here.

The main purpose of the present work is to review the classification of the possible
2-D states in the (Re, α) ∈ [0, 200] × [0, 10] parameter plane with the point of view of
dynamical system theory. Firstly, we will characterise the nature of the codimension-one
bifurcation curves (Hopf or saddle nodes). We give a cartography of the regions where
multiple steady states exist and give a detailed description of these multiple states as well
as their stability properties. We further identify three codimension-two points, namely
a Takens–Bogdanov (TB) bifurcation, a cusp and a generalised Hopf (GH) bifurcation.

We show that the two first are effectively located very close to each other and that the
whole dynamics in this range of parameters is effectively described by the unfolding of a
codimension-three bifurcation point.

The article is organised as follows: in § 2 the formulation of the problem is discussed
together with the methodology adopted in the present analysis. Section 3 begins with a
characterisation of the multiple steady states. A complete bifurcation diagram covering the
range (Re, α) ∈ [0, 200] × [0, 10] is then presented. The next subsections aim at clarifying
the picture in the vicinity of the identified codimension-two points.
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FIGURE 1. Sketch of a rotating cylinder immersed in a uniform flow.

2. Problem formulation and investigation methods

2.1. Geometrical configuration and general equations
The two-dimensional flow past a rotating circular cylinder is controlled by two parameters:
the Reynolds number Re = U∞D/ν and the rotation rate α = ΩD/2U∞. Here, Ω is the
dimensional cylinder angular velocity, U∞ is the free stream velocity, D the diameter of
the cylinder and ν the dynamic viscosity of the fluid. The fluid motion inside the domain
is governed by the two-dimensional incompressible Navier–Stokes equations,

∂U
∂t

+ U · ∇U = −∇P + ∇ · τ(U), (2.1a)

∇ · U = 0, (2.1b)

where U is the velocity vector whose components are (U, V), P is the reduced pressure and
the viscous stress tensor τ(U) can be expressed as ν(∇U + ∇UT). The incompressible
Navier–Stokes equations (2.1) are complemented with the following boundary conditions:
on the cylinder surface, no-slip boundary conditions are set by U · t = ΩD/2 and U · n =
0, where (t, n) are the director vectors of the surface in the plane (x, y); in the far field,
uniform boundary conditions are set U → (U∞, 0) when r → ∞, where r is the distance
to the cylinder centre (see figure 1). In the discussion we consider clockwise rotation of
the cylinder surface (α > 0).

In the following, Navier–Stokes equations (2.1) and the associated boundary conditions
will be written symbolically under the form B(∂Q/∂t) = N S(Q), where Q = (U, P) is
the state vector and B is a linear projection operator, meaning that the time derivatives

apply only on the velocity components.

2.2. Linear stability analysis
Under the framework of linear stability analysis, we first need to identify base-flow
solutions defined as the steady solutions Qb of the (two-dimensional) Navier–Stokes
equations, namely the solutions of NS(Qb) = 0. We then characterise the dynamics of
small-amplitude perturbations around this base flow by expanding them over the basis of
linear eigenmodes, i.e.

Q(x, y, t) = Qb(x, y) + ε
∑

j

q̂j(x, y) exp(λjt). (2.2)
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Here, ε is a small parameter, λj the eigenvalues and q̂j the eigenmodes. The eigenpairs

[λj, q̂j] have to be determined as the solutions of the following eigenvalue problem:

λû + ub · ∇û + û · ∇ub = −∇p̂ + ∇ · τ(û) (2.3a)

∇ · û = 0. (2.3b)

Which will be written in the following under the symbolic form λjBq̂j + LNS q̂j = 0. In

the following we consider that eigenmodes q̂(x, y) have been normalised, see appendix C
for further details. Note that in (2.2), to fully represent the dynamics, the summation over
eigenmodes may involve a continuous sum over the spectrum, i.e. the discrete and the
continuous or essential spectra of the operator (see Kapitula & Promislow (2013) for a
rigorous discussion). However, to determine global stability we only need to consider a
limited number of eigenmodes, so we keep the summation as a discrete sum indexed by j.

Owing to the eigenvalues, two cases can be distinguished:

(i) If all eigenvalues λj have negative real part the considered base flow is a stable
solution.

(ii) If n eigenvalues have positive real part, the considered base flow will be referred to
as a n-unstable solution. Note that 1-unstable solutions are commonly referred to as
saddle points because a projection of their dynamics in a 2-D plane (phase portrait)
has an attractive direction and another repulsing one, while 2-unstable solutions are
either unstable nodes or unstable foci depending if the leading eigenvalues are both
real or complex conjugates.

The transition from stable to unstable (or from n-unstable to n + 1-unstable) is called
a local bifurcation. The simplest bifurcations (such as saddle nodes and Hopf) are said

to be codimension-one and occur along given curves in the parameter plane (Re, α). The

intersection of two such curves tangentially is called a codimension-two bifurcation and

generally leads to a rich dynamics in the vicinity of the intersection point.

2.3. Notions of bifurcation theory
From the viewpoint of dynamical system theory, the expression (2.2) can be generalised

as a decomposition of the perturbations over the leading modes of the system

Q(x, y, t) = Qb(x, y) +
∑

j

Aj(t)q̂j(x, y). (2.4)

Then, the problem can be reduced to a low-dimensional system governing the amplitudes
Aj(t)

d

dt
Aj = λjAj + (NL), (2.5)

where (NL) represent the nonlinear interactions between modes. Investigation of these
nonlinear terms allows us to predict the dynamics in the vicinity of bifurcation points.
Systematic methods exist to compute these nonlinear terms (such as weakly nonlinear
expansions, centre manifold reduction or Lyapunov–Schmidt reduction). However,

restricting ourselves to a qualitative point of view (up to a continuous change of
coordinates with continuous inverse), it is also possible to predict a number of features
by examining the generic normal form of the bifurcation, namely, a standard form to
which the dynamical system can be reduced by a series of elementary manipulations
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(see Wiggins (2003) for details). Particular forms of codimension-two bifurcations
encountered in the rotating cylinder are discussed in §§ 3.5 and 3.6.

2.4. Numerical methodology
In the present manuscript, we adopt the same numerical methodology used in Fabre
et al. (2020) and described in Fabre et al. (2019). The computation of the steady-state
solutions, the resolution of the linear problems and the time stepping techniques are
implemented using the open-source finite element software FreeFem++. Parametric studies
and generation of figures are performed using Octave/Matlab thanks to the generic drivers
of the StabFem project (see a presentation of these functionalities in Fabre et al. 2019).
According to the philosophy of this project, codes reproducing parts of the results of
the present paper are available from the StabFem website (https://gitlab.com/stabfem/
StabFem). On a standard laptop, all the computations discussed below can be obtained
in a few hours, except time stepping simulations which take longer. Results presented in
§ 3 are obtained with a computational domain Lx = 120 and Ly = 80 in the streamwise
and cross-stream directions, respectively. The cylinder centre is located 40 diameters
downstream of the inlet, symmetrically between the top and bottom boundaries. Numerical
convergence issues are discussed in appendix D by a meticulous comparison between
results obtained with different meshes, where domain dimension and grid density were
varied.

Steady nonlinear Navier–Stokes equations are solved by a Newton method. In the
degenerated cases, pseudo-arc length continuation is performed to be able to compute
multiple steady-state solutions, as described in appendix A. The generalised eigenvalue
problem (2.3) is solved by the Arnoldi method or by a simple inverse iteration algorithm.
Finally, nonlinear unsteady Navier–Stokes equations are integrated forward in time with a
second-order time scheme (Jallas, Marquet & Fabre 2017).

3. Results

3.1. Characterisation of multiple steady-state solutions
To introduce the existence of multiple steady states, we first characterise them by plotting
in figure 2 the associated lift as function of the rotation rate α, for four different values of
α. In these plots, stable solutions are indicated by continuous lines and unstable ones by
dashed lines, following the usual convention in dynamical systems theory.

For Re = 60, as illustrated in figure 2(a), only one steady state exists for all values of α,
for Re = 60. This state is stable except in the ranges α � 2 (corresponding to the existence
of Mode I), and 5.2 � α � 5.5 (corresponding to the existence of Mode II).

For higher Reynolds numbers, a small region of multiple solutions arises in a small-scale
interval around α ≈ 5. This phenomenon is illustrated in figure 2(b) for Re = 100 and is
associated with an ‘s’ shape of the curve, featuring two successive folds. Note that, before
the first fold, the steady solution is 2-unstable (focus type); at the first fold it turns into
1-unstable (saddle type) and at the second fold it turns into stable. To detect these folds,
pseudo-arc length continuation is carried out with α as a parameter and the horizontal

force exerted on the cylinder surface Fx as a monitor to track and distinguish multiple
steady states (see appendix A for a more detailed discussion).

For larger values of the Reynolds number, as illustrated in figure 2(c) for Re = 170,
the interval of existence of multiple states for α ≈ 5 expands to α ∈ [4.75, 5.12]. In
addition, we observe a second range displaying multiple states for α > 5.87. This second
interval is associated with a fold bifurcation at α = 5.87, giving rise to two additional and
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FIGURE 2. Evolution of the horizontal force Fx as a function of the rotation rate α for four
Reynolds numbers, (a) Re = 60, (b) Re = 100, (c) Re = 170 and (d) Re = 200. Solid lines
denote stable steady states, dashed-dotted lines denote unstable steady states of focus type
or nodes, dashed lines are used for steady states of saddle type. Solid circles denote Hopf
bifurcations and solid squares denote saddle-node bifurcations.

disconnected steady solutions. Note that both these solutions are unstable, respectively of
node and saddle types.

Finally, for Re = 200, as illustrated in figure 2(d), we observe that the two ranges
of multiple steady states are merged into a single one. In this case there is a single
saddle-node bifurcation around α = 4.75 leading to two branches of steady states which
are disconnected from the branch existing for lower values of α. Here, one of these
branches is stable and the second is unstable (saddle type).

3.2. Topological description of steady-state solutions
We now illustrate the spatial structure of some steady-state solutions, with emphasis on
the topological structure of the corresponding flows. We restrict ourselves to the case Re =
200, as previously considered in figure 2(d).

Figure 3(a) corresponds to α = 1.8, the value at which Mode I is re-stabilised. The
corresponding flow is characterised by a stagnation point located beneath the cylinder
axis, on the left side of the y-cylinder axis. Compared to the steady flow in the non-rotating
case, which is characterised by a symmetrical recirculation region, the upper recirculating
bubble is reduced whereas the lower one is moved downwards.

Further increasing the rotation speed, both recirculation bubbles shrink and eventually
vanish. At α = 4.35 (figure 3b) corresponding to the lower threshold for the existence
of Mode II, recirculating bubbles have already disappeared and the vorticity wraps the
cylinder. Stagnation point is located on the opposite side but downstream the cylinder
vertical axis.



Bifurcation scenario in 2-D laminar flow past a cylinder 905 A2-7

–20.0 0 20.0

ωz

–20.0 0 20.0

ωz

–20.0 0 20.0

ωz

α = 4.35

Stable steady state Saddle steady state Unstable steady state

α = 1.8

–20.0 0 20.0

ωz
–20.0 0 20.0

ωz

α = 4.75

–20.0 0 20.0

ωz(e)

(b)(a) (c)

(d ) ( f )

FIGURE 3. Steady flow around a rotating cylinder (vorticity levels and streamlines) for selected
parameters. (a) α = 1.8, Re = 200 (at the supercritical Hopf bifurcation threshold); (b) α =
4.35, Re = 200 (at the Hopf bifurcation); (c) α = 4.75, Re = 200 (at the fold bifurcation). (d–f )
Correspond to three base-flow solutions existing in the range of multiple solutions, namely for
α = 5.25 and Re = 200. The circled dot shows the position of the hyperbolic stagnation point.

Figure 3(c) corresponds to the steady-state flow at the fold bifurcation observed for
α = 4.75 and giving rise to the disconnected states observed in figure 2(d). Compared to
the previous state, the flow is topologically different as no stagnation point is observed
along the wall of the cylinder. On the other hand, two stagnation points are observed
within the flow. One of them is elliptic and located at the centre of the detached
recirculation bubble. The other is hyperbolic and located along the streamline bounding
the recirculation bubble.

Figure 3(d–f ) displays the three coexisting steady states at α = 5.25 and Re = 200. The

topology of the streamlines of unstable and stable steady states differs. In the stable case

(panel d) there is a single recirculation region encircling the cylinder and bounded by a
hyperbolic stagnation point, as in the classical potential solution existing in this range
of rotation rates. On the other hand, for both unstable states, the topology is similar
to the case of figure 3(c). The recirculation region is detached from the cylinder and
contains an elliptic stagnation point located approximately in the midpoint between the
hyperbolic point and the bottom point of the cylinder surface. In the unstable steady state,
the recirculating region is more stretched, as it can be seen in figure 3(d–f ).

We highlight that even though topological changes in the streamlines of the steady
states and bifurcations of the velocity field are in general independent events (see Brøns
2007), in some cases these two events occur in a small neighbourhood of the space of
parameters (see Heil et al. 2017). In the current situation it has been confirmed that
there is not a one-to-one relation between both phenomena. For instance, the transition
between detached recirculation bubble (as in panel c) and recirculation bubble encircling

the cylinder (as in panel d) along the stable branch occurs at some value of α in the range

[4.75–5.25] where no dynamical bifurcation occurs. Yet, for larger Reynolds numbers,
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i.e. Re � 190, successive creation and destruction of vortices seems to be relevant in the
preservation of the disconnected branch of steady states.

3.3. Analysis of the spatial structure of direct and adjoint eigenmodes
To explain why the steady state displayed in figure 3( f ) is unstable, the two corresponding

unstable modes (both associated with real eigenvalues) are displayed in figure 4 for Re =
200 and α = 5.25. Direct modes are characterised by two recirculating regions of opposite
vorticity. Vorticity is stronger and more localised in Mode IIa while Mode IIb displays a

larger region with non-zero vorticity. Adjoint eigenvectors q̂†
for Mode IIa and Mode IIb

are also displayed in figure 4. Adjoint fields (Luchini & Bottaro 2014) can be interpreted
as a kind of Green’s function for the receptivity of the global mode. Scalar product of the
adjoint field with a forcing function or an initial condition provides the amplitude of the
instability mode (see Giannetti & Luchini 2007). Therefore, Mode IIa is highly receptive
in the upper right side of the near wake of the cylinder. The region of maximum receptivity
extends from the close upper right region of the cylinder to a larger region at the bottom
right of the cylinder and it is weaker than Mode IIa. Both modes present weak sensitivity
to forcing upstream of the cylinder.

3.4. Bifurcation diagram in the parameter plane (Re, α)
The bifurcation curves detected in the α < 10, Re < 200 range by linear stability analysis
of all steady-state solutions are depicted in figure 5.

Three Hopf bifurcation curves are detected and plotted with full lines. The first one
encircles the range of existence of unsteady Mode I. The second one delimits the range

of existence of unsteady Mode II in its lower and left parts, but not on its upper part. The
third one (in grey) occurs along a steady state which is already unstable, and hence is not
likely to be related to a bifurcation observable in DNS or experiments.

In addition, we have identified two bifurcation curves associated with saddle nodes
or ‘folds’, here denoted F+ and F−. These curves delimit the range of existence of
multiple two-dimensional steady states, displayed as a grey region in figure 5. Note that the
extension of this region explains the difference between the cases Re = 170 and Re = 200
discussed in the previous paragraph; according to the figure a single interval of α is found
for Re � 190.

In figure 5, the two fold curves seem to merge with the Hopf curve existing for lower Re
at a point with coordinates Re ≈ 75, α ≈ 5.4. Inspection shows that there are actually
both a 02 or TB bifurcation and a cusp (C) bifurcation in very close vicinity in this
range of parameters. This region will be studied in § 3.5. Additionally, in another range of
parameters located at the lower threshold of existence of the Mode II, we have identified

the existence of a Bautin or GH bifurcation which splits the Hopf curve into supercritical
(Re < ReGH) and subcritical (Re > ReGH). This region will be studied in § 3.6.

3.5. Cusp–Takens–Bogdanov region

3.5.1. Qualitative study of the normal form
The transition occurring for Re ≈ 75 and α ≈ 5.4 is characterised by the end of the Hopf

curve (H−) at a fold curve (F+) (characteristic of a Takens–Bogdanov bifurcation), and a
transition between one and three steady states (characteristic of a cusp). This suggests
that the present situation is actually very close to a codimension-three bifurcation. The
dynamical behaviour of the system can thus be expected to be well predicted using



Bifurcation scenario in 2-D laminar flow past a cylinder 905 A2-9

–2.4 1.1

Mode IIa Mode IIb

Adjoint mode IIa Adjoint mode IIb

4.7

R(ωz)

–2.4 1.1 4.7

R(ωz)

0 0.8 1.5

|q†|

0 0.8 1.5

|q†|

(b)(a)

(c) (d )

FIGURE 4. Contour plot of vorticity ωz of Mode IIa and Mode IIb at α = 5.25 and Re = 200
of the unstable steady state (a,b). The magnitude of adjoint modes (c,d).

the normal form describing the universal unfolding of the codimension-three planar

bifurcation, also called a generalised TB bifurcation. This normal form has been studied
by both Dumortier et al. (2006) and Kuznetsov (2013, chapter 8.3). The normal form can
be written as follows:

dy1

dt
= y2, (3.1a)

dy2

dt
= β1 + β2 y1 + β3 y2 + εy3

1 + c1 y1 y2 − y2
1 y2, (3.1b)

where β1, β2 and β3 are unfolding parameters (mapped from the physical parameters
(Re, α)), c1, ε (which can be rescaled to ±1) are fixed coefficients which depend on
the nonlinear terms of the underlying system. Note that this normal form generalises both
the normal form of the standard TB bifurcation (which is recovered for β1(Re, α) = 0)
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FIGURE 5. Bifurcation curves in the range Re ∈ [0, 200] and α ∈ [0, 10]. Black and grey lines
are used to denote local bifurcations. Solid lines indicate the presence of a Hopf bifurcation,
dashed line designates the first fold bifurcation curve, F−, and dashed dotted line

denotes the second fold bifurcation, F+. Grey region indicates the coexistence of three steady
states. Solid grey line inside the grey region denotes a secondary Hopf bifurcation occurring on
one of the unstable steady states.

and the one of the fold bifurcations (which is recovered for β3(Re, α) = 0). The occurrence
of both these codimension-two conditions for very close values of the parameters is
characteristic of an imperfect codimension-three bifurcation and justifies the relevance
of the associated normal form.

The dynamics of the normal form (3.1) has been explored by Dumortier et al. (2006)
who classified the possible phase portraits and the associated bifurcation diagrams as
functions of the unfolding parameters (β1, β2, β3) along a spherical surface. They showed

that all possible bifurcation diagrams fall into three possible categories, called focus,

saddle and node according to the values of the coefficients c1 and ε. The situation

0 < c1 < 2
√

2 and ε = −1 corresponds to the stable focus case and is found to lead to
a bifurcation diagram consistent with the present situation, so we concentrate on this case.

Figure 6 illustrates all the possible behaviours of the dynamical system, sketched by
sample phase portraits, along with their range of existence in the (β1, β2) plane. This
figure corresponds to a subset of the complete diagram displayed in Dumortier et al.
(2006, chapter 1, pp. 6–8), restricted to a range of parameters which is sufficient to explain
all the dynamical features of the present problem. The bifurcation diagram displays two
codimension-two points, a cusp C and a TB. These codimension-two points result from

the tangential intersection of two codimension-one curves: the cusp point C occurs when

the two fold curves F+ and F− collide, while the TB point arises from the intersection
of the supercritical H− Hopf curve and the F+ fold. In addition, the bifurcation diagram
predicts a homoclinic global bifurcation along a curve H∞ originating from the TB point
and terminating along the F− fold on a point denoted SNL (for saddle-node loop). Left

from this point, the F− curve corresponds to a local saddle node while right from this
point it corresponds to a homoclinic saddle-node bifurcation (appearance of two fixed
points along a previously existing cycle). Note that the SNL point and the intersection of
H− and F− are formally not codimension-two points (see Dumortier et al. 2006).

Phase portraits obtained in the various regions delimited by bifurcation boundaries
are displayed in the panels of figure 6. One of the most interesting predictions is the

existence of two regions characterised by the existence of two stable states, a bistability

phenomenon. The first region (3), in the vicinity of the cusp, is characterised by two stable
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FIGURE 6. Bifurcation diagram predicted using the normal form 3.1 in the stable focus case
(adapted from Dumortier et al. 2006), and qualitative phase portrait in regions (1), (2), (3), (4),
(5) and along curve H∞. Note that in the qualitative phase portraits, focus and node points are
not distinguished.

Type Re α

TB 77.6 5.36
C 75.6 5.38
GH 160 4.46

TABLE 1. Position of codimension-two bifurcation points.

steady states. The third region (4) is characterised by both a stable steady state and a stable

cycle. In all other regions, there is a single stable solution which is either a steady state (in
regions 1 and 5) or a cycle (in region 2).

Note that in these phase portraits nodes and foci are not distinguished. Distinguishing

between these cases (Dumortier et al. 2006) leads to consideration of a larger number of
subcases (for instance region 1 could be split in two subregions corresponding to a stable
node and a stable focus . . . ) but the transitions between these subcases are not associated

with bifurcations.

3.5.2. Numerical results in the C–TB region
In order to check the predictions of the normal form approach, we have conducted an

accurate exploration of the range of parameters corresponding to the C–TB region. The

exploration allowed us to confirm the existence of both a cusp and a Takens–Bogdanov

point. The locations in the (α, Re) plane are given in table 1.
Figure 7 displays ‘zooms’ of the full bifurcation diagram (figure 5) in two narrow ranges

centred on the C and TB codimension-two points. The bifurcation curves and the regions
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line H− and short dashed (red) curve denotes the local change from stable focus to stable node.
Numbers correspond to each phase portrait of figure 6(a). (a) Zoom in the region of cusp
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FIGURE 8. Evolution of the period of the limit cycle as it approaches the homoclinic
connection. (a) Linear plot of the period T as a function of the rotation rate α where αSN is the
rotation rate at the saddle node. (b) Logarithm of the period and the distance to the bifurcation
point.

are numbered with the same convention as in figure 6. Although it is not possible to present
all results in a single figure because the curves are very steep and close to each other,
the numerical results fully confirm the predictions of the normal form. In particular, the
numerical results allow us to confirm the coexistence of two stable states (in regions 3)
and of a stable cycle and a stable state (in region 4). However, a precise mapping of the
curve H∞ bounding the region 4 could not be achieved, but the occurrence of a global
homoclinic bifurcation was confirmed (see § 3.5.3).

3.5.3. Homoclinic bifurcation
As explained in § 3.5, the normal form predicts a homoclinic curve H∞ and a homoclinic

saddle-node bifurcation along the F− curve, right from the SNL point, corresponding to
the appearance of two steady solutions along a previously existing cycle.
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FIGURE 9. Phase portrait of the dynamics of the rotating cylinder at Re = 170 for three values
of the rotation rate α. Vertical (horizontal) axis is the lift force Fy (drag force Fx ) on the cylinder
surface, empty dots denote steady-state solutions. (a,b) Limit sets (respectively transients) are

depicted by a thick solid line (respectively thin dashed). (c) Heteroclinic connections between

unstable–stable (respectively saddle–stable) are depicted by thin solid lines (respectively dashed
dotted).

A generic feature of the imminent presence of a homoclinic saddle-node bifurcation
is the divergence of the period of the limit cycle on which the saddle node appears.
More precisely, the period is expected to scale as ∝ 1/

√
αSN − α as α → αSN (see Gasull,

Mañosa & Villadelprat 2005). To check this prediction, time stepping simulations were
conducted for Re = 170 and values of α just below the F− curve. As shown in figure 8 the
period of the limit cycle effectively diverges as one approaches the bifurcation following
the theoretical behaviour.

Dynamics near the threshold can be perfectly understood in a two-dimensional
manifold. Phase portraits of the bifurcation are displayed in figure 9. These phase portraits
were computed with an initial guess generated by a small linear perturbation to a steady
state in the direction of its corresponding eigenmode. The initial guess is then integrated
in time until it reaches its limit set, i.e. a periodic, homoclinic orbit or another steady
state. Below the bifurcation threshold (figure 9a) a stable limit cycle exists, represented
by a thick solid line. At the bifurcation threshold, a saddle node arises along this

cycle, which ceases to exist, giving rise to a homoclinic connection (an approximation
of this orbit is delineated by a thick solid line in figure 9b). Beyond the saddle-node
bifurcation, the saddle node splits into two fixed points. Hence, three steady states exist,
including a stable one (see figure 9c). There exist four stable heteroclinic connections,
two between unstable–stable steady states represented by a dashed line in figure 9(c) and

other two between saddle–stable steady states denoted by a solid line. This sequence of
events is fully consistent to the sequence connecting phase portraits (2), (SNL) and (4)
in figure 6.

3.6. Generalised Hopf

3.6.1. Normal form analysis
Bautin bifurcation or GH is a codimension-two bifurcation where the equilibrium has

purely imaginary eigenvalues λ1,2 = ±ω0 with ω0 > 0, and the third-order coefficient of
the normal form vanishes. Generalised Hopf bifurcation is thus a degenerate case of the
generic Hopf bifurcation, where the cubic normal form is not sufficient to determine the
nonlinear stability of the system. To unravel the dynamics near the Bautin bifurcation point
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FIGURE 10. Qualitative bifurcation scenario in the vicinity of the GH bifurcation.

consider the normal form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx1

dt
= β2x1 − x2 + β1x1(x2

1 + x2
2) ± x1(x2

1 + x2
2)

2.

dx2

dt
= β2x2 + x1 + β1x2(x2

1 + x2
2) ± x2(x2

1 + x2
2)

2.
(3.2)

Three curves are of special interest:

(i) System (3.2) undergoes a supercritical Hopf bifurcation in the half-line H+ =
{(β1, β2)|β2 > 0, β1 = 0}. This curve separates a region containing a stable focus
to a region containing an unstable focus plus a stable limit cycle.

(ii) System (3.2) undergoes a subcritical Hopf bifurcation in the half-line H− =
{(β1, β2)|β2 < 0, β1 = 0}. This curve separates a region containing an unstable
focus, from one containing a stable focus and two limit cycles (one being stable
and the other one being unstable).

(iii) System (3.2) undergoes a fold cycle bifurcation on the curve FLC = {(β1, β2)|β2
1 +

4β2 = 0, β1 < 0}. This curve separates a region containing two limit cycles from
one which does not contain any limit cycle (a stable fixed point also exists in both
regions).

The most notable feature of this bifurcation is the existence of a bistability region
characterised by two stable states (a fixed point and a cycle). Therefore, hysteretic
behaviour is expected as one successively crosses curves H− and FLC. The bistability range
is also characterised by the existence of an unstable limit cycle constituting the ‘edge state’
bounding the basins of attraction of the two stable states (figure 10).
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3.6.2. Weakly nonlinear analysis
Unstable limit cycles are not easy to track, since they require stabilisation techniques,

such as BoostConv (Citro et al. 2017) or edge-state tracking (Bengana et al. 2019), or the
use of continuation techniques, such as harmonic balance (Fabre et al. 2019). Alternatively,
we have performed a multiple-scale analysis up to fifth order (see appendix C). This
method was previously used to study thermoacoustic bifurcations in the Rijke tube
(Orchini, Rigas & Juniper 2016), displaying a good match with time stepping simulations
with a much lower computational cost. By performing a weakly nonlinear analysis up
to fifth order it is possible to determine a complex amplitude equation for the amplitude
A of the critical linear mode q̂. Here, the critical linear mode is normalised so that its

L2B-norm (see appendix C), i.e. its kinetic energy, is unity, which corresponds to the same
normalisation as in Mantič-Lugo, Arratia & Gallaire (2014). The governing equation is a
Stuart Landau equation, depending on a small parameter ε2 = Rec(α)−1 − Re−1

dA
dt

= (iω0 + ε2λ0 + ε4λ1)A + (ν1,0 + ε2ν1,1)|A|2A + ν2,0|A|4A. (3.3)

We remark that (3.3) is equivalent to (3.2) if separating real and imaginary parts. Searching

for a solution under the form A = |A| eiωt, and injecting into (3.3) leads to

|A| =
√√√√− ν1,r

2ν2,r
±

√
ν2

1,r

4ν2
2,r

− λr

ν2,r

ω = ω0 + ν1,i|A| + ν2,i|A|2

⎫⎪⎪⎬⎪⎪⎭ , (3.4)

where ν1 = ν1,0 + ε2ν1,1, λ = ε2λ0 + ε4λ1, ν2 = ν2,0 and subscripts r, i denote real and
imaginary parts respectively. It turns out that ν2,r is always negative while ν1,r changes
sign at (Re, α) = (ReGH, αGH). One can deduce the following consequences:

(i) If Re < ReGH (i.e. ν2r < 0), (3.4) has a single solution |A| for λr > 0 (i.e. Re > Rec)
and none for λr < 0 (i.e. Re < Rec). In this case, the Hopf bifurcation is supercritical.

(ii) If Re > ReGH , (i.e. ν2r > 0), (3.4) has a single solution |A| for λr > 0 (i.e. Re > Rec),
two solutions if λc < λr < 0 with λc = ν2

1,r/4ν2,r and no solution if λr < λc. In this
case, the Hopf bifurcation is subcritical. The condition λr = λc defines a curve in
the (Re, α) plane which corresponds to the fold cycle bifurcation associated with
the emergence of the two limit cycles.

Figure 11 represents the amplitude and frequency of the limit cycles predicted by (3.4)
for three values of Re. According to these results, the fold curve is predicted to be very
close to the Hopf curve, i.e. within a few tenths of Re up to Re = 250. This behaviour

allows us to clarify the transition occurring at the GH point in figure 6. For Re < ReGH ,
when increasing Re for fixed α (or increasing α with fixed Re), the transition occurs
via a supercritical Hopf bifurcation. On the other hand, for Re > ReGH , the transition
is predicted to be subcritical, involving the existence of a band where both steady state
and Mode II coexist. Note that the width of the bistability band predicted by the weakly
nonlinear analysis is very narrow, and could thus be difficult to evidence using direct
numerical simulations.

4. Conclusion and discussion

The present study allowed us to clarify the bifurcation scenario in the two-dimensional
flow past a rotating cylinder, especially concerning the range of parameters corresponding
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FIGURE 11. (a) Amplitudes of stable (solid line) and unstable (dashed line) limit cycles for four
Rec = 100; 170; 200; 250, where Rec denotes the Reynolds number at the Hopf bifurcation. Grey
scale: darker curves designate quantities associated with a lower Re, i.e. black curve Re = 100
and light grey Re = 250. (b) Strouhal number of limit cycles.

to the onset of the ‘Mode II’ unsteady vortex shedding mode. Using steady-state
calculation involving arclength continuation and linear stability analysis, we have been
able to draw all bifurcation curves existing in the range of parameters corresponding to
Re < 200 and α < 5. Three codimension-two bifurcations have been identified along the
border of the range of existence of this mode, namely a Takens–Bogdanov, a cusp and a

generalised Hopf. The first two are located in close vicinity, in such a way that the whole
dynamics can be understood using the normal form of the codimension-three bifurcation
(for a generalised Takens–Bogdanov bifurcation). The analysis also allowed us to identify

three ranges of parameters characterised by bistability, two of them located in the vicinity

of the Takens–Bogdanov and cusp points, the third one emanating from the generalised
Hopf point. Time stepping simulations and a weakly nonlinear analysis have confirmed
these findings, and have also allowed us to characterise the homoclinic and heteroclinic
orbits connecting the fixed points, in full accordance with the predictions of the normal
form theory.

The most surprising result of the study is the existence of an almost perfect

codimension-three bifurcation in a problem characterised by only two control parameters.
Such a feature suggests that the problem could be quite sensible to any small perturbations
in a way such that small perturbations could completely change the scenario. We have
checked that the scenario is robust with respect to numerical discretisation issues (see
appendix D). The dependency with respect to additional physical parameters is more
interesting. The effect of compressibility is an interesting question which we expect to
investigate in future studies. Preliminary results have shown that for a Mach number of

order 0.1, the dynamics in the region of the near-codimension-three point is effectively
greatly modified. Other additional parameters, such as for instance shear or confinement,
could be added. Finally, one may question the relevance of the present findings for
three-dimensional flows. A short review of three-dimensional stability properties of
the rotating cylinder flow is given in appendix E. The discussion confirms that the
most important results of the present study occur in range of parameters where no
three-dimensional instabilities are present.
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Appendix A. Pseudo arc-length continuation

Arc-length continuation is a standard technique in dynamical systems theory. It allows
for the continuation of a given solution branch through a turning or fold point. At the

turning point the Jacobian of the system is singular; therefore, any iterative method based
on the Jacobian is doomed to failure. To prevent the stall in the convergence of the
Newton’s method, an extra condition needs to be added to the system of equations. In
the current study we have chosen a pseudo arc-length methodology, which is based in a
predictor–corrector strategy. The extended system adds an extra equation which ensures

the tangency to the branch of the solution. For that purpose, a parameter is chosen,

here either Re or α, and a monitor of the variation, either the horizontal force acting
on the cylinder surface Fx or the vertical force Fy . The parameter and the monitor are
parametrised by the length of the branch, here indicated by the parameter s. The current
solution is varied by a given step Δs tangent to the solution branch and later corrected by
a orthogonal correction. Let us denote by the subscript j the arc-length iteration and by the
superscript n the Newton iteration of the corrector step, where N is used to denote the last
step. In the description below, let us consider without loss of generality we have fixed the
parameter α and the monitor Fx .

A.1. Predictor
The predictor step consists in the determination of a initial guess α0

j for the iteration j of

the arc length. The initial guess is determined from a tangent extrapolation of the solution
branch.

α0
j = αN

j−1 + dαN
j−1

ds
Δs, (A 1a)

q0
j = qN

j−1 + dqN
j−1

ds
Δs =⇒ Fx(q0

j ) = Fx(qN
j−1) + dFx(qN

j−1)

ds
Δs. (A 1b)

In (A 1), dαN
j−1/ds is the slope of the tangent in the α direction and dqN

j−1/ds in the
direction of the vector field. The tangent is computed from the differentiation of the
stationary Navier–Stokes equations (2.1)

dqN
j−1

ds
= −

[
∂NSqN

j−1

∂q

]−1 ∂NSqN
j−1

∂α
, (A 2)

where we have used the notation NSqN
j−1

= 0 to denote the steady incompressible

Navier–Stokes equation whose solution is qN
j−1. The tangent is completed with a

normalisation condition in the arc length

∥∥∥∥∥dFx(qN
j−1)

ds

∥∥∥∥∥
2

2

+
∥∥∥∥∥dαN

j−1

ds

∥∥∥∥∥
2

2

= 1. (A 3)
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A.2. Corrector
This step consists in an orthogonal correction of the tangent guess. To do so one needs to
solve the following system of equations⎡⎣ ∂NSqn

j

∂q

∂NSqn
j

∂α

dFx (qn
j1)

ds Fx(·) dαn
j

ds

⎤⎦ [
Δqn+1

j

Δαn+1
j

]
=

[ −NS(u)

Δs − dFx

ds Fx(qn
j − qN

j−1) − dα

ds (α
n
j − αN

j−1)

]
, (A 4)

where the last equation of (A 4) comes from the differentiation of the normalisation
condition (A 3) and considering that Δαj = Δαn+1

j + αn
j − αN

j−1 = αN
j − αN

j−1 (similarly
on q).

Appendix B. Weakly nonlinear analysis to determine the normal
form of the saddle-node bifurcation

Saddle-node bifurcation and homoclinic saddle-node bifurcation are locally
characterised by the normal form of the saddle-node bifurcation (see Kuznetsov 2013). In
the generic case, when a2(Re, α) /= 0 and a0(Re, α) /= 0 the central manifold is unravelled
by its second-order normal form

dx1

dt
= a0(Re, α) + a2(Re, α)x2

1 + O(x3
1). (B 1)

Coefficients a2(Re, α) /= 0 and a0(Re, α) /= 0 can be obtained with aid of weakly
nonlinear analysis. Let us consider the following transformations:

t = τ0 + ε2τ1, (B 2a)

d

dt
= d

dτ0

+ ε2 d

dτ1

, (B 2b)

Q = Qb + εq̂ + ε2q2, (B 2c)

where ε2 = (1/Rec) − (1/Re). The system at order ε0 is the incompressible Navier–Stokes
system that provides the base flow. The system at order ε1 is identical to the linearised
Navier–Stokes problem (2.3). At order ε2 secular term appears and solvability condition
must be imposed

a0 =
〈
û†

, −τ(Ub)
〉

〈
û†

, û
〉 , (B 3)

a2 =
〈
û†

, −û∇û
〉

〈
û†

, û
〉 . (B 4)

Here, û†
denotes the adjoint or left eigenvector of linearised Navier–Stokes equations

associated with the null eigenvalue.

Appendix C. WNL to determine the normal form of the Hopf bifurcation
degeneracy

Weakly nonlinear analysis has been used extensively in the case of Hopf
bifurcations to unravel the frequency of the limit cycle near the bifurcation threshold
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(see Gallaire et al. 2016) and to determine the validity of stability analysis on the mean
flow (see Sipp & Lebedev 2007). In this article WNL analysis is used to determine the
existence of a generalised Hopf bifurcation (see § 3.6). The starting point of the weakly

nonlinear method is the decomposition of the flow field into multiple scales

Q = Qb + ε
[
Awnlq̂ eiω0t + c.c.

]
+ ε2

[
q2,0 + |Awnl|q|Awnl|

2,0 + (A2
wnlq2,2 e2iω0t + c.c.)

]
+ ε3

[
Awnl eiω0t

(
q3,1 + |Awnl|2q|Awnl|2

3,1 + |Awnl|2qAwnlĀwnl
3,1

)
+ A3

wnl e3iω0tq3,3 + c.c.
]

+ ε4
[
q4,0 + |Awnl|2q|Awnl|2

4,0 + |Awnl|4q|Awnl|4
4,0

+A2
wnl e2iω0t

(
q4,2 + |Awnl|2q|Awnl|2

4,2

)
+ A4

wnl e4iω0tq4,4 + c.c.
]

+ O(ε5), (C 1a)

where the complex amplitude Awnl depends upon a slow time scale τ = ε2t. The choice
of the parameter ε is the same as in Fabre et al. (2019), ε2 = 1/Rec(α) − 1/Re, where
the critical Reynolds Rec(α) is a function of the rotation rate α. When the ansatz (C 1)
is substituted into the Navier–Stokes equations, at orders O(ε3) and O(ε5) solvability
conditions need to be imposed due to the presence of secular terms which lead to a
Stuart–Landau equation depending upon the slow time scale τ

∂Awnl

∂τ
= (λ0 + ε2λ1)Awnl + (ν1,0 + ε2ν1,1)|Awnl|2Awnl + ε2ν2,0|Awnl|4Awnl. (C 2)

If we take into account the definition of the slow time scale τ = ε2t, the fact that up to
leading order O(ε) we have dAwnl/dt = iω0εAwnl and we define a new amplitude which
depends on ε as A = εAwnl we can rewrite (C 2) as

dA
dt

= (iω0 + ε2λ0 + ε4λ1)A + (ν1,0 + ε2ν1,1)|A|2A + ν2,0|A|4A. (C 3)

In the following we consider that the eigenmode q̂ and its adjoint q̂†
have been normalised

so that ||q̂||2B = 〈
q̂,Bq̂

〉 = 〈
û, û

〉 = 1 and
〈
q̂†

,Bq̂
〉
=

〈
û†

, û
〉
= 1. This normalisation is the

same as that one used in the self-consistent methodology (see Mantič-Lugo et al. 2014):
with this choice, A is a real constant representing the amplitude of the linear mode with
respect to its L2 norm. In the following we will use the notation LNS iωq = iωBq −
LNSq to denote the application of the linearised operator at a specific frequency ω.

The ansatz (C 1) is substituted into the incompressible Navier–Stokes equations (2.1):

(i) Order O(ε0) leads to the steady-state Navier–Stokes equations (2.1).

(ii) Order O(ε1) leads to the linearised Navier–Stokes equations (2.3).

(iii) Order O(ε2) contains three terms, which are computed as the solution of three linear
systems:

LNS0q2,0 = −2∇ · (d(Ub)), (C 4a)

LNS0u|Awnl|
2,0 = −q̂ · ∇ ¯̂u + ¯̂u · ∇q̂, (C 4b)

LNS2iω0
u2,2 = −û · ∇û. (C 4c)
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(iv) At order O(ε3) there are degenerate terms, i.e. terms corresponding to the frequency
iω0. The operator LNS iω0

is not injective (q̂ belongs to its kernel) and it is not

surjective because q̂†
belongs to the kernel of its adjoint and the operator is Fredholm

in L2. Therefore we need to impose solvability conditions in order to obtain terms

q3,1, q|Awnl|2
3,1 and qAwnlĀwnl

3,1 . Solvability conditions at O(ε3) correspond to

μ1 = −
〈
û†

, û · ∇u|Awnl|
2,0 + u|Awnl|

2,0 · ∇û
〉

〈
û†

, û
〉 , (C 5)

μ2 = −
〈
û†

, ¯̂u · ∇u2,2 + u2,2 · ∇ ¯̂u
〉

〈
û†

, û
〉 , (C 6)

λ0 = −
〈
û†

, û · ∇u2,0 + u2,0 · ∇û + 2∇ · (d(û))
〉

〈
û†

, û
〉 , (C 7)

where μ1 + μ2 = ν1,0. Additionally, given the fact that L2 is a Hilbert space and the
operator is Fredholm, the space can be decomposed into a direct sum of the range of
the operator LNS iω0

and the kernel of its adjoint. This implies that secular terms are
determined up to a constant in the direction of the eigenmode q̂, i.e. q3,1 → q3,1 +
δ0q̂, δ0 ∈ R. This degree of freedom is fixed by considering δ0 = 0, i.e. each secular

term is orthogonal to the linear adjoint mode q̂†
in the norm B, i.e.

〈
q̂†

,Bq3,1

〉
= 0.

This choice for the extra degree of freedom has been also used in Carini, Auteri &
Giannetti (2015). This leads to

(LNS iω0
−Bq̂

q̂†HB 0

) (
q3,1

λ0

)
=

(
F 3,1

0

)
(C 8)

and similarly for pairs (q|Awnl|2
3,1 , μ1) and (qAwnlĀwnl

3,1 , μ2 replacing F 3,1 by F |Awnl|2
3,1 and

F AwnlĀwnl
3,1 respectively. Please note that

F 3,1 = −û · ∇u2,0 − u2,0 · ∇û − 2∇ · (d(û))

F |Awnl|2
3,1 = −û · ∇u|Awnl|

2,0 − u|Awnl|
2,0 · ∇û

F AwnlĀwnl
3,1 = −¯̂u · ∇u2,2 − u2,2 · ∇ ¯̂u

⎫⎪⎪⎬⎪⎪⎭ . (C 9)

The other non-resonant term is solved as usually,

LNS3iω0
q3,3 = F 3,3 = −û · ∇u2,2 − u2,2 · ∇û. (C 10)
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(v) At order O(ε4) we find six terms which are solved by the resolution of the following
linear systems

LNS0q4,0 = F 4,0

LNS0q|Awnl|2
4,0 = F |Awnl|2

4,0

LNS0q|Awnl|4
4,0 = F |Awnl|4

4,0

LNS2iω0
q4,2 = F 4,2

LNS2iω0
q|Awnl|2

4,2 = F |Awnl|2
4,2

LNS4iω0
q4,4 = F 4,4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (C 11)

where the right-hand side terms are

F 4,0 = −u2,0 · ∇u2,0 − 2∇ · d(u2,0), (C 12)

F |Awnl|2
4,0 = −u3,1 · ∇ ¯̂u − ¯̂u · ∇u3,1 − ū3,1 · ∇û − û · ∇ū3,1

− u2,0 · ∇u|Awnl|2
2,0 u|Awnl|2

2,0 · ∇u2,0, (C 13)

F |Awnl|4
4,0 = −u2,2 · ∇ū2,2 − ū2,2 · ∇u2,2 − u|Awnl|2

2,0 · ∇ − u|Awnl|2
2,0

− u|Awnl|2
3,1 · ∇ ¯̂u − ¯̂u · ∇u|Awnl|2

3,1 − ū|Awnl|2
3,1 · ∇û − û · ∇ū|Awnl|2

3,1

− uAwnlĀwnl
3,1 · ∇ ¯̂u − ¯̂u · ∇uAwnlĀwnl

3,1 − ūAwnlĀwnl
3,1 · ∇û − û · ∇ūAwnlĀwnl

3,1 , (C 14)

F 4,2 = −u|A|2wnl
2,0 · ∇u2,0 − u2,0 · ∇u|A|2wnl

2,0 − u3,1 · ∇û − û · ∇u3,1

− 2∇ · d(u2,2), (C 15)

F |Awnl|2
4,2 = −u2,0 · ∇u2,2 − u2,2 · ∇u2,0 − u|Awnl|2

3,1 · ∇û − û · ∇u|Awnl|2
3,1

− uAwnlĀwnl
3,1 · ∇û − û · ∇uAwnlĀwnl

3,1 − u3,3 · ∇ ¯̂u − ¯̂u · ∇u3,3, (C 16)

F 4,4 = −u2,2 · ∇u2,2 − u3,3 · ∇û − û · ∇u3,3. (C 17)

(vi) At order O(ε5) we find three degenerate terms proportional to Awnl, Awnl|Awnl|2 and
Awnl|Awnl|4. As for the case of the third-order solvability conditions, they lead to the
computation of coefficients λ1, ν1,1 and ν2,0

λ1 =
〈
û†

, F 5,1

〉
ν1,1 =

〈
û†

, F Awnl|Awnl|2
5,1

〉
ν2,0 =

〈
û†

, F Awnl|Awnl|4
5,1

〉

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (C 18)
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where F 5,1, F |Awnl|2
5,1 and F |Awnl|4

5,1 are defined as follows:

F 5,1 = −u2,0 · ∇u3,1 − u2,0 · ∇u3,1 − u4,0 · ∇û − û · ∇u4,0

− 2∇ · d(u3,1), (C 19)

F Awnl|Awnl|2
5,1 = −u2,0 · ∇u|Awnl|2

3,0 − u|Awnl|2
3,0 · ∇u2,0

− u2,0 · ∇uAwnlĀwnl
3,0 − uAwnlĀwnl

3,0 · ∇u2,0

− u|Awnl|2
2,0 · ∇u3,1 − u3,1 · ∇u|Awnl|2

2,0

− u2,2 · ∇ū3,1 − ū3,1 · ∇u2,2

− û · ∇u|Awnl|2
4,0 − u|Awnl|2

4,0 · ∇û

− ¯̂u · ∇uA2
wnl

4,0 − uA2
wnl

4,0 · ∇ ¯̂u
− 2∇ · d(u|Awnl|2

3,0 ) − 2∇ · d(uAwnlĀwnl
3,0 ), (C 20)

F Awnl|Awnl|4
5,1 = −u|Awnl|2

2,0 · ∇u|Awnl|2
3,0 − u|Awnl|2

3,0 · ∇u|Awnl|2
2,0

− u|Awnl|2
2,0 · ∇uAwnlĀwnl

3,0 − uAwnlĀwnl
3,0 · ∇u|Awnl|2

2,0

− u2,2 · ∇ū|Awnl|2
3,0 − ū|Awnl|2

3,0 · ∇u2,2

− u2,2 · ∇ūAwnlĀwnl
3,0 − ūAwnlĀwnl

3,0 · ∇u2,0

− u|Awnl|4
4,0 · ∇ ¯̂u − ¯̂u · ∇u|Awnl|4

4,0

− uA2
wnl|Awnl|2

4,0 · ∇ ¯̂u − ¯̂u · ∇uA2
wnl|Awnl|2

4,0

− ū2,2 · ∇u3,3 − u3,3 · ∇ū2,2. (C 21)

Appendix D. Mesh convergence

Mesh independence of the solutions has been verified systematically. First, we have
considered a given mesh refinement and varied the physical size of the domain, see table 2.
We have observed that for a domain length of 80 diameters downstream the cylinder
centre, 40 diameters upstream the cylinder centre and 40 in the cross-stream direction
the solution is not affected by the imposition of boundary conditions. Secondly, we have
looked at the effect of the mesh refinement on the properties of the solution. For that
purpose a parametric study of eigenvalues, Hopf WNL coefficients and global monitors
of a given steady-state solution have been carried out, see (table 3). The sensitivity to

mesh convergence of cusp and Takens–Bogdanov bifurcation points has been also tested.
Results show that each of them is found within ΔRec < 0.2. Every mesh is computed by
Delaunay triangulation. Mesh M1 has been generated by blocks, as it is generally done
with structured meshes; M2 and M3 have been computed following the mesh adaption
procedure described in Fabre et al. (2019, appendix A), with respect to base flow only
and with respect to base flow and direct mode structure; M4 and M5 are the consequence
of successive division of each triangle edge by two and four respectively, with respect to
mesh M3. The mesh selected for this study is M1 which provides results within the one per

cent of relative error with respect to the finest mesh. One of the reasons that led us not
to use mesh adaptation is the fact that the structure of the mode greatly changes within
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Mesh Xmin Xmax Ymax Method

M1 −40 80 40 Meshed by blocks
M2 −40 80 40 Adapted BF
M3 −40 80 40 Adapted BF + EM
M4 −40 80 40 Adapted BF + EM + (split 2)

M5 −40 80 40 Adapted BF + EM + (split 4)

M6 −20 40 20 Meshed by blocks

TABLE 2. Geometrical parameters of the physical domain of meshes Mi and the method
adopted for their generation.

Mesh ωc αc Fx Fy μ1 μ2 Np

M1 0.3057 4.433 −0.0107 10.712 −0.0348 + 0.0669i 0.0334 − 0.0231i 32 291

M2 0.3035 4.447 −0.0028 10.791 −0.0442 + 0.0548i 0.0469 − 0.0553i 1966

M3 0.3067 4.429 −0.0146 10.700 −0.0351 + 0.0663i 0.0330 − 0.0232i 7682

M4 0.3075 4.424 −0.0160 10.675 −0.0349 + 0.0655i 0.03290 − 0.0227i 30 364

M5 0.3027 4.444 −0.0142 10.772 −0.0349 + 0.0691i 0.0342 − 0.0240i 120 728

M6 0.3078 4.4486 −0.0575 10.7844 −0.0343 + 0.0695i 0.0324 − 0.0219i 8089

M7 0.3053 4.4308 −0.0226 10.7018 −0.0354 + 0.0669i 0.0336 − 0.0231i 72 088

TABLE 3. Comparison of the performance of several meshes at Rec = 170.

the parameter range (Re, α) investigated: this would have required many successive mesh
adaptions.

Appendix E: Three-dimensional stability of steady-state solutions

In this section, we review three-dimensional stability studies carried out by Pralits et al.
(2013), Rao et al. (2013a,b), Radi et al. (2013) and Rao et al. (2015).

It is now well known the secondary three-dimensional transition from a
two-dimensional unsteady flow towards a three-dimensional flow at Re ≈ 190 and α = 0,
see Williamson (1996). Vortices in the wake of the fixed cylinder, i.e. α = 0, develop
spanwise waviness whose wavelength is approximatelyfour cylinder diameters. The
rotation of the cylinder surface on this linear steady mode, denoted as Mode A in Rao
et al. (2015), has a stabilising effect for rotation rates α < 1, see figure 12.

Instead, if we consider the stability of an infinitesimal spanwise perturbation on a

steady-state solution, the flow displays spanwise waviness at a much lower Reynolds
number Re ≈ 100 and α = 0. The onset of instability of this stationary mode, denoted
as Mode E in Rao et al. (2015), is shown in figure 12 as a function of (Re, α).

In the same region of existence of the unsteady two-dimensional Mode II, experimental

evidence has shown the presence of a three-dimensional mode, see Linh (2011). A steady
three-dimensional mode, here denoted as Mode II-3D, extends to lower Reynolds values
than the two-dimensional threshold of the non-rotating cylinder, and for a larger interval

in α than the two-dimensional Mode II. The instability mechanism of Mode II-3D is of
hyperbolic nature, see Pralits et al. (2013).
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FIGURE 12. Neutral stability curves in the range Re ∈ [0, 200] and α ∈ [0, 10]. Black and
grey lines are used to denote two-dimensional local bifurcations whereas red lines are used
to designate the boundaries of three-dimensional local bifurcations. Dashed and point-dashed
lines indicate the presence of a stationary bifurcation boundary, solid lines are used to designate
unsteady bifurcation boundaries.

Finally, note that the occurrence of two unstable modes has also been documented in
the flow past rotating spheres (Citro et al. 2016; Fabre et al. 2017). However, the spatial
structure of the direct and adjoint modes for our geometrical configuration is very different
with respect to the case of the rotating sphere flow.
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The linear and non-linear stability of two concentric jets separated by a duct wall is analysed by9

means of global linear stability and weakly non-linear analysis. Three governing parameters10

are considered, the Reynolds number based on the inner jet, the inner-to-outer jet velocity11

ratio (𝛿𝑢), and the length of the duct wall (𝐿) separating the jet streams. Global linear stability12

analysis demonstrates the existence of unsteady modes of inherent convective nature, and13

symmetry-breaking modes that lead to a new non-axisymmetric steady-state with a single or14

double helix. Additionally, we highlight the existence of multiple steady-states, as a result15

of a series of saddle-node bifurcations and its connection to the changes in the topology of16

the flow. The neutral lines of stability have been computed for inner-to-outer velocity ratios17

within the range 0 < 𝛿𝑢 < 2 and duct wall distances in the interval 0.5 < 𝐿 < 4. They reveal18

the existence of hysteresis, and mode switching between two symmetry breaking modes with19

azimuthal wavenumbers 1 : 2. Finally, the mode interaction is analysed, highlighting the20

presence of travelling waves emerging from the resonant interaction of the two steady states,21

and the existence of robust heteroclinic cycles that are asymptotically stable.22

Key words: Concentric jets, linear stability analysis, dynamical systems, wakes/jets23

1. Introduction24

Double concentric jets is a configuration enhancing the turbulent mixing of two jets, which25

is used in several industrial applications where the breakup of the jet into droplets due to26

flow instabilities is presented as the key technology. Combustion (i.e., combustion chamber27

of rocket engines, gas turbine combustion, internal combustion engines, etc.) and noise28

reduction (e.g., in turbofan engines) are the two main applications of this geometry, although29

the annular jets can also be found in some other relevant applications such as ink-jet printers30

or spray coating.31

The qualitative picture emerging from this type of flow divides the inner field of concentric32

jets in three different regions: (i) initial merging zone, (ii) transitional zone and (iii) merged33
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Figure 1: Sketch representing the three flow regimes in the near field of double concentric
jets. Figure based on the sketch presented in (Ko & Kwan 1976; Talamelli & Gavarini

2006).

zone, as presented in fig. 1, that follows the initial sketch presented by Ko & Kwan (1976).34

In the initial merging zone (i), just at the exit of the two jets, two axisymmetric shear layers35

(inner and outer boundary layer) develop and start to merge. In this region, we distinguish36

the inner and outer shear layers, related with the inner and outer jet stream. Then, most of the37

mixing occurs in the transitional zone (ii), that extends until the external shear layer reaches38

the centreline. Finally, in the merged zone (iii), the two jets are totally merged, modelling a39

single jet flow.40

Several parameters define the characteristic of this flow: the inner and outer jet velocities,41

the jet diameters, the shape and thickness of the wall separating both jets, the Reynolds42

number, the boundary layer state and thickness at the jet exit and the free stream turbulence.43

Based on these parameters, it is possible to identify several types of flow behaviour, which44

can be related with the presence of flow instabilities.45

Numerous studies have investigated the interaction between the inner and outer shear46

layers of the jet and their effect on the flow instability. Starting with Ko & Kwan (1976), they47

postulated that the double concentric jet configuration could be considered as a combination48

of single jets. Nevertheless, Dahm et al. (1992) revealed by means of flow visualisations,49

diverse topology patterns as function of the outer/inner jet velocity ratio, reflecting that the50

dynamics of the inner and outer jet shear layers were different from that in a single jet.51

Moreover, this study exhibited a complex interaction between vortices identified in both52

shear layers, affecting the instability mechanism of the flow. Subsequently, different flow53

regimes are recognised as a function of the outer/inner velocity ratio. For cases in which54

the outer velocity is much larger than the inner velocity, the outer shear layer dominates the55

flow dynamics (Buresti et al. 1994), and a low frequency recirculation bubble can be spotted56

at the jet outlet (Rehab et al. 1997). For still high outer/inner velocity ratios, the outer jet57

drives the flow dynamics, exciting the inner jet which ends oscillating at the same frequency58

as the external jet. This trend is known as the lock-in phenomenon, identified by several59

authors (Dahm et al. 1992; Rehab et al. 1997; da Silva et al. 2003; Segalini & Talamelli60

2011). Moreover, the oscillation frequency detected was similar to the one defined by a61

Kelvin-Helmholtz flow instability, generally encountered in single jets. When the outer/inner62
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velocity ratio is similar, a Von Kármán vortex street is detected near the separating wall,63

depicted in various investigations (Olsen & Karchmer 1976; Dahm et al. 1992; Buresti et al.64

1994; Segalini & Talamelli 2011). A wake instability affected the inner and outer shear65

layers, reversing the lock-in phenomenon. Finally, for small outer/inner velocity ratios, the66

inner jet presents its own flow instability in the shear layer, while a different flow instability67

was identified in the outer jet, as shown by Segalini & Talamelli (2011).68

The velocity ratio between jets has also an influence on noise attenuation, which was69

analysed experimentally by Williams et al. (1969). It was observed that for some given70

configurations, more noise attenuation was present than for the others, with a maximum71

between 12 and 15𝑑𝐵.72

Regarding the geometric configuration of the concentric jets, Buresti et al. (1994) detected73

the presence of an alternate vortex shedding when the separation wall thickness between the74

two jets was sufficiently large, also recognised by Dahm et al. (1992); Olsen & Karchmer75

(1976). This finding was as well presented by Wallace & Redekopp (1992), including the76

influence of the wall thickness and sharpness on the characteristics of the jet.77

This vortex shedding has been theoretically analysed (Talamelli & Gavarini 2006) by means78

of linear stability analysis, and experimentally tested (Örlü et al. 2008). These investigations79

agree on the vortex shedding driving the evolution of both outer and inner shear layer.80

Consequently, a global absolute instability can be triggered by this mechanism with no81

external energy input. The vortex shedding can be therefore considered as a potential tool for82

passive flow control, delaying the transition to turbulence by means of controlling the near83

field of the jet.84

The study performed in Talamelli & Gavarini (2006) constituted an entry point for85

subsequent researches (although ignoring the effect of the duct wall separating the two86

streams). A similar procedure was employed to investigated the local linear spatial stability of87

compressible, inviscid coaxial jets (Perrault-Joncas & Maslowe 2008) and lately accounting88

for the effects of heat conduction and viscosity (Gloor et al. 2013). Both investigations89

found two modes of instability, one being associated with the primary and the other with90

the secondary stream, showing an independence between modes, the effect of velocity ratio91

mainly affects the first mode, while the second mode was primarily influenced by the diameter92

ratio between jets. Gloor et al. (2013) also identified parameter regimes in which the stability93

of the two layers is not independent anymore, and pointed that viscous effects are essential94

only below a specific Reynolds number. Subsequently, this work was expanded in Balestra95

et al. (2015) to investigate the local inviscid spatio-temporal instability characteristics of96

heated coaxial jet flows, where the presence of an absolutely unstable outer mode was97

identified.98

Recently, Canton et al. (2017) performed a global linear stability analysis to study more99

in detail this vortex shedding mechanism behind the wall. They examined a concentric jet100

configuration with a very small wall thickness (0.1𝐷, with 𝐷 the inner jet diameter), but101

the authors selected an outer/inner velocity ratios where it was known that the alternate102

vortex shedding behind the wall was driving the flow. A global unstable mode (absolute103

instability) with azimuthal wavenumber 𝑚 = 0 was found, confirming that the primary104

instability was axisymmetric (the modes with 𝑚 = 1, 2 were stable at the flow conditions105

at which the study was carried out). The highest intensity of the global mode was located106

in the wake of the jet, composed by an array of counter-rotating vortex rings. The shape107

of the mode changes when moving along its neutral curve, revealing through the numerical108

simulations a Kelvin-Helmholtz instability over the shear-layer between the two jets and in109

the outer jet at high Reynolds numbers. Nevertheless, the authors showed that the wavemaker110

was located in the bubble formed upstream the separating wall, in good agreement with111
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the results presented by Tammisola (2012), who performed a similar stability analysis in a112

two-dimensional configuration (wakes with co-flow).113

The stability of annular jets, a limit case where the inner jets have zero velocity, has114

also been investigated. In different analyses of annular jets (Bogulawski & Wawrzak 2020;115

Michalke 1999), it has been illustrated that this type of axisymmetric configuration does not116

behave as it appears. The𝑚 = 0 modes studied have been shown to be stable, and the dominant117

mode found by both studies is helical (𝑚 = 1). In addition, to characterise the annular jet,118

these investigations analyse the behaviour of the case by adding an azimuthal component119

to the inflow velocity, making the discharge of the annular jet eddy-like, comparing the120

evolution of the frequency and growth rate of this 𝑚 = 1 mode.121

The convective stability of weakly swirling coaxial jets has also been studied, as done in122

Montagnani & Auteri (2019), where the optimal response modes are determined from an123

external forcing. The impact of velocity ratio between jets, effect of swirl, and influence124

of Reynolds number is presented by means of non-modal analysis. They showed that125

small transient perturbations rapidly grow, experiencing a considerable spatial amplification,126

where nonlinear interactions come into play being capable of triggering turbulence and127

large oscillations. For non-swirling coaxial jets, the stability characteristics are found to be128

dominated by the axisymmetric and sinuous optimal modes.129

The current study aims to expand the investigations of Canton et al. (2017), who used130

a specific geometry and varied the outer-to-inner velocity ratio. Herein, we aim to provide131

a complete characterisation of the leading global modes, and to demonstrate the effect of132

three parameters on the linear stability properties. These three parameters are: the duct wall133

thickness separating the two jets, which is explored in the interval 𝐿 ∈ [0.5, 4], the inner-134

to-outer velocity 𝛿𝑢, within the range 𝛿𝑢 ∈ [0, 2], and the Reynolds numbers based on the135

inner jet. We find unstable global modes with azimuthal wavenumbers 𝑚 = 0 (axisymmetric136

modes), 𝑚 = 1 and 𝑚 = 2.137

This work also performs a study of the mode interaction between two steady modes with138

azimuthal wavenumbers 𝑚 = 1 and 𝑚 = 2. Different analyses have been done to determine139

the attracting coherent structures when there is an interaction between modes. Some of these140

flow structures are non-axisymmetric steady states, travelling waves or most remarkably141

robust heteroclinic cycles.142

The article is organised as follows. Section 2 defines the problem and the governing143

equations for the coaxial jet configuration, as well as the linear stability equations and the144

methodology for mode selection. A characterisation of the axisymmetric steady-state is done145

in Section 3. In particular, we show the existence of multiple steady-states, as a result of146

a series of saddle-node bifurcations. Section 4 is devoted to the discussion of the global147

linear stability results. Section 4.1 is intended to illustrate the basic features of the most148

unstable global modes, such as their spatial distribution and frequency content, as well as, a149

brief discussion about the instability physical mechanism. In the following subsections, we150

perform a parametric exploration in terms of the inner-to-outer velocity ratio, and the duct151

wall length between the jet streams in order to determine the neutral curves of global stability.152

Section 5 undertakes a detailed study of the unfolding of the codimension-two bifurcation153

between two steady-modes with azimuthal wavenumbers 𝑚 = 1 and 𝑚 = 2. Therein, we154

discuss the consequences of 1 : 2 resonance, which leads to the emergence of unsteady155

flow structures, such as travelling waves or robust heteroclinic cycles, among others. Finally,156

Section 6 summarises the main conclusions of the current study.157

Focus on Fluids articles must not exceed this page length
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Figure 2: Computational domain of the configuration of two concentric jets, used in
StabFem.

2. Problem formulation158

2.1. Computational domain and general equations159

The computational domain, represented in fig. 2, models a coaxial flow configuration, which160

is composed of two inlet regions, an inner and outer pipe, both having a distance 𝐷 between161

walls and length 5𝐷, i.e. 𝑧𝑚𝑖𝑛 = −5𝐷. The computational domain has an extension of162

𝑧𝑚𝑎𝑥 = 50𝐷 and 𝑟𝑚𝑎𝑥 = 25𝐷. The distance between the pipes is equal to 𝐿, measured from163

the inner face of the outer tube to the face of the inner jet.164

The governing equations of the flow within the domain are the incompressible Navier–165

Stokes equations. These are written in cylindrical coordinates (𝑟, 𝜃, 𝑧), which are made166

dimensionless by considering 𝐷 as the reference length scale and 𝑊𝑜,𝑚𝑎𝑥 as the reference167

velocity scale, which is the maximum velocity in the outer pipe at 𝑧 = 𝑧𝑚𝑖𝑛.168

𝜕U
𝜕𝑡

+ U · ∇U = −∇𝑃 + ∇ · 𝜏(U), ∇ · U = 0, (2.1a)169

with 𝜏(U) =
1

Re
(∇U + ∇U𝑇 ), Re =

𝑊𝑜,𝑚𝑎𝑥𝐷

𝜈
. (2.1b)170

171

The dimensionless velocity vector U = (𝑈,𝑉,𝑊) is composed of the radial, azimuthal and172

axial components, 𝑃 is the dimensionless-reduced pressure, the dynamic viscosity 𝜈 and the173

viscous stress tensor 𝜏(U).174

The incompressible Navier–Stokes equations eq. (2.1) are complemented with the follow-175

ing boundary conditions176

U = (0, 0,𝑊𝑖) on Γ𝑖𝑛,𝑖 and U = (0, 0,𝑊𝑜) on Γ𝑖𝑛,𝑜, (2.2)177

where

𝑊𝑖 = 𝛿𝑢 tanh
(
𝑏𝑖 (1 − 2𝑟)

)
and 𝑊𝑜 = tanh

[
𝑏𝑜

(
1 −

����2𝑟 − (𝑅𝑜𝑢𝑡𝑒𝑟 ,1 + 𝑅𝑜𝑢𝑡𝑒𝑟 ,2)

𝐷

����
) ]

.

The parameter 𝛿𝑢 corresponds to the velocity ratio between the two jets, defined as 𝛿𝑢 =178

𝑊𝑖,𝑚𝑎𝑥/𝑊𝑜,𝑚𝑎𝑥 , the volumetric flow rate of the inner and outer jet are defined as �𝑉𝑖 =179

2𝜋
∫ 𝑅𝑖𝑛𝑛𝑒𝑟

0
𝑟𝑊𝑖d𝑟 and �𝑉𝑜 = 2𝜋

∫ 𝑅𝑜𝑢𝑡𝑒𝑟,2

𝑅𝑜𝑢𝑡𝑒𝑟,1
𝑟𝑊𝑜d𝑟, respectively. The parameters 𝑏𝑜 and 𝑏𝑖180

represent the boundary layer thickness within the nozzle, which are fixed equal to 5 (as in181
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Canton et al. (2017)). With this choice of parameters the volumetric flow rate of the inner182

jet is a function of the inner-to-outer velocity �𝑉𝑖 = 3.73𝛿𝑢, whereas the flow rate of the outer183

jet is a function of the duct wall length separating the two jets �𝑉𝑜 = 5.41𝐿. There is a weak184

influence of the boundary layer thickness on the stability properties of the jet, and it is related185

to the vortex shedding regime developed upstream the separation wall (more details may be186

found in Talamelli & Gavarini (2006)). Finally, no-slip boundary condition is set on Γ𝑤𝑎𝑙𝑙187

and stress-free (
(

1
𝑅𝑒 𝜏(U) − 𝑃

)
· n = 0) boundary condition is set on Γ𝑡𝑜𝑝 and Γ𝑜𝑢𝑡 , as shown188

in fig. 2.189

In the sequel, Navier–Stokes equations eq. (2.1) and the associated boundary conditions190

will be written symbolically under the form191

B𝜕Q
𝜕𝑡

= F(Q, 𝜼) ≡ LQ + N(Q,Q) + G(Q, 𝜼), (2.3)192

with the flow state vector Q = [U, 𝑃]𝑇 , 𝜼 = [Re, 𝛿𝑢]𝑇 , and the entries of the matrix B193

arises from rearranging eq. (2.1). Such a form of the governing equations takes into account194

a linear dependency on the state variable Q through L. And a quadratic dependency on the195

parameters and the state variable through operators G(·, ·) and N(·, ·).196

2.2. Asymptotic stability197

2.2.1. Linear stability analysis198

In this study, the authors attempt to characterise the stable asymptotic state from the spectral199

properties of the Navier–Stokes equations eq. (2.1). First, let us consider the stability of200

an axisymmetric steady-state solution named Q0, which will be also referred to as trivial201

steady-state. For that purpose, let us evaluate a solution of eq. (2.1) in the neighbourhood of202

the trivial steady state, i.e., a perturbed state as follows,203

Q(x, 𝑡) = Q0(x, 𝑡) + 𝜀q̂(𝑟, 𝑧)e−i(𝜔𝑡−𝑚𝜃) , (2.4)204

where 𝜀 � 1, q̂ = [û, 𝑝]𝑇 is the perturbed state, 𝜔 is the complex frequnecy and 𝑚 is the205

azimuthal wavenumber. The next step consists in the characterisation of the dynamics of206

small-amplitude perturbations around this base flow by expanding them over the basis of207

linear eigenmodes (2.4). If there is a pair [i𝜔ℓ , q̂ℓ] with Im(𝜔ℓ) > 0 (resp. the spectrum208

is contained in the half of the complex plane with negative real part) there exists a basin209

of attraction in the phase space where the trivial steady-state Q0 is unstable (resp. stable)210

(Kapitula & Promislow 2013). The eigenpair [i𝜔ℓ , q̂ℓ] is determined as a solution of the211

following eigenvalue problem,212

J(𝜔ℓ ,𝑚ℓ ) q̂(𝑧ℓ ) ≡
(
𝑖𝜔ℓB −

𝜕F
𝜕q |q=Q0 ,𝜼=0

)
q̂(𝑧ℓ ) = 0, (2.5)213

where the linear operator J is the Jacobian of eq. (2.1), and
(
𝜕F
𝜕q |q=Q0 ,𝜼=0

)
q̂(𝑧ℓ ) = L𝑚ℓ q̂(𝑧ℓ ) +214

N𝑚ℓ (Q0, q̂(𝑧ℓ ) )+N𝑚ℓ (q̂(𝑧ℓ ) ,Q0). The subscript𝑚ℓ indicates the azimuthal wavenumber used215

for the evaluation of the operator. In the following, we account for eigenmodes q̂(𝑧ℓ ) (𝑟, 𝑧)216

that have been normalised in such a way 〈û(𝑧ℓ ) , û(𝑧ℓ ) 〉𝐿2 = 1.217

The identification of the core region of the self-excited instability mechanism (Gianneti &218

Luchini 2007) is evaluated by means of the structural sensitivity tensor219

S𝑠 =
(
û†

)∗
⊗ û. (2.6)220

2.2.2. Methodology for the study of mode selection221

In the following, we briefly outline the main aspects of the methodology employed in the study
of mode interaction or unfolding of a bifurcation with codimension-two, a comprehensive
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explanation is left to appendix A. Herein, we use the concept of mode interaction as a synonym
of the analysis of a bifurcation with codimension-two, that is, a bifurcation satisfying two
conditions, e.g., a bifurcation where two modes become at the same time unstable. The
determination of the attractor or coherent structure is explored within the framework of
equivariant bifurcation theory. The trivial steady-state is axisymmetric, i.e. the symmetry
group is the orthogonal group𝑂 (2). Near the onset of the instability, dynamics can be reduced
to those of the centre manifold. Particularly, due to the non-uniqueness of the manifold one
can always look for its simplest polynomial expression, which is known as the normal form
of the bifurcation. The reduction to the normal form is carried out via a multiple scales
expansion of the solution Q of eq. (2.3). The expansion considers a two scale development
of the original time 𝑡 ↦→ 𝑡 + 𝜀2𝜏, here 𝜀 is the order of magnitude of the flow disturbances,
assumed to be small 𝜀 � 1. In this study we carry out a normal form reduction via a weakly
non-linear expansion, where the small parameters are

𝜀2
𝛿𝑢

= 𝛿𝑢,𝑐 − 𝛿𝑢 ∼ 𝜀2 and 𝜀2
𝜈 =

(
𝜈𝑐 − 𝜈

)
=

(
Re−1
𝑐 − Re−1

)
∼ 𝜀2.

A fast timescale 𝑡 of the self-sustained instability and a slow timescale of the evolution of the222

amplitudes 𝑧𝑖 (𝜏) are also considered in eq. (2.11), for 𝑖 = 1, 2, 3. The ansatz of the expansion223

is as follows224

Q(𝑡, 𝜏) = Q0 + 𝜀q(𝜀) (𝑡, 𝜏) + 𝜀2q(𝜀2) (𝑡, 𝜏) +𝑂 (𝜀3). (2.7)225

Herein, we evaluate the mode interaction between two steady symmetry breaking states with226

azimuthal wave number 𝑚1 = 1 and 𝑚2 = 2, that is,227

q(𝜀) (𝑡, 𝜏) =
(
𝑧1(𝜏)q̂(𝑧1) (𝑟, 𝑧)𝑒

−i𝑚1 𝜃 + c.c.
)

+
(
𝑧2(𝜏)q̂(𝑧2) (𝑟, 𝑧)𝑒

−i𝑚2 𝜃 + c.c.
)
,

(2.8)228

where 𝑧1 and 𝑧2 are the complex amplitudes of the two symmetric modes q̂(𝑧1) and q̂(𝑧1) .229

Note that the expansion of the LHS of eq. (2.3) up to third order is as follows230

𝜀B
𝜕q(𝜀)

𝜕𝑡
+ 𝜀2B

𝜕q(𝜀2)

𝜕𝑡
+ 𝜀3

[
B
𝜕q(𝜀3)

𝜕𝑡

]
+𝑂 (𝜀4), (2.9)231

and the RHS respectively,232

F(q, 𝜼) = F(0) + 𝜀F(𝜀) + 𝜀2F(𝜀2) + 𝜀3F(𝜀3) +𝑂 (𝜀4). (2.10)233

Then, the problem up to third order in 𝑧1 and 𝑧2 can be reduced to (Armbruster et al. 1988)234

�𝑧1 = 𝜆1𝑧1 + 𝑒3𝑧1𝑧2 + 𝑧1

(
𝑐 (1,1) |𝑧1 |

2 + 𝑐 (1,2) |𝑧2 |
2
)
,

�𝑧2 = 𝜆2𝑧2 + 𝑒4𝑧
2
1
+ 𝑧2

(
𝑐 (2,1) |𝑧1 |

2 + 𝑐 (2,2) |𝑧2 |
2
)
.

(2.11)235

where 𝜆1 and 𝜆2 are the unfolding parameters of the normal form. The procedure followed for236

the determination of the coefficients 𝑐 (𝑖, 𝑗) for 𝑖, 𝑗 = 1, 2 and 𝑒3 and 𝑒4 is left to Appendix A.237

An exhaustive analysis of the nonlinear implications of this normal form on dynamics is left238

to section 5.239

2.2.3. Numerical methodology for stability tools240

Results presented herein follow the same numerical approach adopted by Fabre et al. (2019);241

Sierra et al. (2020a,b, 2021); Sierra-Ausin et al. (2022a,b), where a comparison with DNS242

can be found. The calculation of the steady-state, the eigenvalue problem and the normal243

form expansion are implemented in the open-source software FreeFem++. Parametric studies244

and generation of figures are collected by StabFem drivers, an open-source project available245

in https://gitlab.com/stabfem/StabFem. For steady-state, stability and normal form246

computations, we set the stress-free boundary condition at the outlet, which is the natural247

boundary condition in the variational formulation.248
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The resolution of the steady nonlinear Navier-Stokes equations is tackled by means of the249

Newton method. While, the generalised eigenvalue problem (eq. (2.5)) is solved following250

the Arnoldi method with spectral transformations. The normal form reduction procedure of251

section 2.2.2 only requires to solve a set of linear systems, which is also carried out within252

StabFem. On a standard laptop, every computation considered below can be attained within253

a few hours.254

3. Characterisation of the axisymmetric steady-state255

(a) (b) (c)

Figure 3: (Re = 400, 𝐿 = 1) Meridional projections of the axisymmetric streamfunction
isolines and the axial velocity contour in a range of (𝑧, 𝑟) ∈ [−1, 5] × [0, 5]. The large

recirculation bubble is depicted with a thick black line. (a) 𝛿𝑢 = 0. (b) 𝛿𝑢 = 1. (c) 𝛿𝑢 = 2.

The base flow is briefly described as a function of the inner-to-outer velocity ratio 𝛿𝑢,256

the Reynolds number and the length 𝐿 of the duct wall separating the two jet streams. We257

begin by characterising the development of the axisymmetric steady-state with varying 𝛿𝑢 at258

a constant Reynolds number fixed to Re = 400 and distance between the jets 𝐿 = 1. The axial259

velocity component of the steady-state is illustrated in fig. 3 for three values of the velocity260

ratio. The most remarkable difference between them is the modification of the topology of261

the flow near the duct separating the two coaxial jet streams. The annular jet case (𝛿𝑢 = 0),262

represented in fig. 3 (a), displays a large recirculation bubble. On the other hand, for the263

velocity ratios 𝛿𝑢 = 1 and 𝛿𝑢 = 2 there is no longer a large recirculation bubble, but two264

closed regions of recirculating fluid near the duct separating the two coaxial jets. These last265

two cases are illustrated in fig. 3 (b-c).266

Figure 4 displays the evolution of the recirculation length (𝐿𝑟 ) associated with the large267

recirculating bubble, which characterises the configurations of coaxial jets with a low value268

of the velocity ratio 𝛿𝑢. Figure 4(a) shows that the recirculation length is nearly constant269

for values of the velocity ratio 𝛿𝑢 smaller than the magnitude of the velocity vector in the270

recirculation region. The value of the plateau, for a constant duct wall distance 𝐿, increases271

with the Reynolds number. Reciprocally, at constant Reynolds number, the recirculation272

length increases with the duct wall length 𝐿 separating the jet streams. For configurations273

of coaxial jets operated within this interval of the velocity ratio 𝛿𝑢, we can say that the274

inner jet is trapped by the large recirculation region. Instead, when the velocity ratio 𝛿𝑢275

is of similar magnitude to the axial velocity in the recirculating region, the inner jet is276

sufficiently energetic to break the recirculating region. For those values of the velocity277

ratio, the recirculation length is a rapidly decreasing function of 𝛿𝑢. From fig. 4(a) we may278

conclude that larger distances between the jets respectively, a smaller value of the Reynolds279
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Figure 4: Evolution of the recirculation length (𝐿𝑟 ) of the recirculating bubble with respect
to the velocity ratio 𝛿𝑢 between the inner and outer jet. Solid lines are computed for a fixed
Reynolds number Re = 400, while dashed lines are computed for a fixed distance 𝐿 = 1.

The figure (b) magnifies the region near the saddle-node bifurcation for 𝐿 = 1, while
figure (c) corresponds to an enlargement of the region near the saddle-node for 𝐿 = 2.

number, lead to the existence of the recirculation region for larger velocity ratios. In addition,280

fig. 4 demonstrates the existence of multiple steady-states for the same velocity ratio. An281

enlargement of the region with multiple steady-states is displayed in Figure 4 (b) for the case282

of 𝐿 = 1. It shows the existence of three steady-states in the interval of 0.265 � 𝛿𝑢 � 0.275,283

where the extreme points correspond to the location of the saddle-nodes. Figure 5 depicts284

the base flows associated with the circle markers in fig. 4 (b). Particularly, it demonstrates285

that the saddle-node bifurcations are, in some cases, associated with changes in the topology286

of the flow. From fig. 5 (a) to (b), one may appreciate the formation of a recirculating region287

along the duct wall separating the jet streams. While, from (b) to (c) we observe the formation288

of an additional region of recirculating flow near the upper corner of the duct wall. The large289

recirculation bubble is displaced downstream due to the formation of the two additional290

recirculation regions.

(a) (b) (c)

Figure 5: (Re = 400, 𝐿 = 1) Meridional projections of the axisymmetric streamfunction
isolines and the axial velocity contour in a range of (𝑧, 𝑟) ∈ [−1, 5] × [0, 5]. Each

subfigure is associated to a marker of fig. 4 (b).

291

Figure 4 (c) corresponds to an enlargement of the region with multiple steady-states for a292

distance 𝐿 = 2 between the jet streams. The base flows associated to the circle markers are293

illustrated in fig. 6. It demonstrates that changes in the flow topology do not always occur294
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(a) (b)

(c) (d)

Figure 6: (Re = 400, 𝐿 = 2) Meridional projections of the axisymmetric streamfunction
isolines and the axial velocity contour in a range of (𝑧, 𝑟) ∈ [−1, 8] × [0, 5]. Each

subfigure is associated to a marker of fig. 4 (c).

through saddle-node bifurcations. The base flow depicted in fig. 6 (a) already features a small295

region of a recirculating flow near the lower corner of the thick wall duct. Furthermore, from296

(a) to (b) we observe a stretching of the recirculation region attached to the duct wall, but297

without any change in the topology of the flow. On the contrary, the transitions from (b) to298

(c) and (c) to (d) are associated to changes in the topology of the flow. The passage from299

(b) to (c) is characterised by the formation of a vortex ring near the upper corner of the duct300

wall. Likewise, from (c) to (d) we appreciate a reconnection between the large recirculation301

bubble and the new vortex ring. Finally, the flow topology of the fifth steady-state, the circle302

marker without any text annotation, is identical to (d). In addition, it is worth noting that in303

the interval 0 < 𝛿𝑢 < 2 no further fold bifurcations are observed. Leading to the conclusion,304

that the saddle-node bifurcations are tightly connected to changes in the topology of the flow,305

leading to the disappearance of the large recirculation bubble and the formation of the two306

regions of recirculating fluid. Nonetheless, they are not neither the cause nor the effect of the307

modifications in the flow topology.308

Lastly, the influence on the flow rate has been analysed, as the change of the distance309

between jets 𝐿, maintaining the same velocity profile on the outer jet, affects the value of310

the outer flow rate �𝑉𝑜 ≈ 5.4𝐿. On the other hand, the flow rate of the inner jet only depends311

on the inner-to-outer velocity ratio �𝑉𝑖 ≈ 3.7𝛿𝑢. As seen on figure 7, there are no significant312

changes on the recirculation bubble when the flow rate is changed. Figures 7 (b) and (c) show313

that similar cases with different flow rates but same ratio (
�𝑉𝑜
�𝑉𝑖

) between the inner and outer314

jet, present similar recirculation bubble.315

Rapids articles must not exceed this page length
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(a) (b) (c)

Figure 7: (Re = 200) Meridional projections of the axisymmetric streamfunction isolines
and the axial velocity contour in a range of (𝑧, 𝑟) ∈ [−1, 5] × [0, 8]. (a) (𝐿 = 1, 𝛿𝑢 = 1).

(b) Duct wall length 𝐿 = 3 and with the same flow rate of the outer jet ( �𝑉𝑜) of case (a). (c)

(𝐿 = 3, 𝛿𝑢 = 2) with the same ratio of the flow rate (
�𝑉𝑜
�𝑉𝑖

) between the inner and outer jet of

cases (a) and (b)).

4. Linear stability analysis316

4.1. Spectrum317
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Figure 8: Spectrum computed at four different configurations of (Re, 𝐿, 𝛿𝑢) for 𝑚 = 0, 1, 2.
The inset inside each subfigure magnifies the region near the origin. Stationary or low
frequency modes are designated S, while oscillating/flapping modes are designated F,

with the azimuthal wavenumber as the subscript.
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Herein, we analyse the asymptotic linear stability of the steady-state in four distinct318

configurations. The first spectrum, depicted in fig. 8 (a), has been computed for a velocity319

ratio 𝛿𝑢 = 1. Similarly, the second spectrum corresponds to a velocity ratio 𝛿𝑢 = 0.28, which320

represents the middle branch after the saddle-node, that is, the equivalent of the marker (b) in321

fig. 4 (b) for Re = 250. These two configurations have been determined for a duct wall length322

𝐿 = 1. The remaining two spectrums have been computed for duct wall distances of 𝐿 = 0.5323

and 𝐿 = 2, which are illustrated in fig. 8 (c) and fig. 8 (d), respectively. The computation324

of the spectrum reveals the existence of eigenmodes, with azimuthal wavenumbers 𝑚 = 0,325

𝑚 = 1 and 𝑚 = 2, that become unstable.326

First, the four spectrums display three types of continuous branches, referred to as 𝑏𝑖

(a) 𝑅𝑒 = 250, 𝐿 = 1, 𝛿𝑢 = 1 (b) 𝑅𝑒 = 250, 𝐿 = 1,
𝛿𝑢 = 0.28

(c) 𝑅𝑒 = 800, 𝐿 = 0.5,
𝛿𝑢 = 1

(d) 𝑅𝑒 = 250, 𝐿 = 2, 𝛿𝑢 = 1

Figure 9: Axial velocity component of the non-oscillating global modes 𝑆1 (bottom panel
of the subfigure) and 𝑆2 (top panel of the subfigure). The label of the subfigures coincide

with the label of fig. 8.

327

(𝑖 = 1, 2, 3), as it was the case in the configuration of coaxial jets described by Canton et al.328

(2017). The branch 𝑏3 is composed of spurious modes. The branch 𝑏2 is constituted of modes329

localised within the jet shear layers. While the branch 𝑏1 is composed by nearly steady modes330

with support in the fluid region surrounding the jets.331

Second, in the four configurations we find two non-oscillating unstable modes (or nearly332

neutral as it is the case in fig. 8 (c)) with azimuthal wavenumber 𝑚 = 1 and 𝑚 = 2,333
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hereinafter referred to as modes 𝑆1 and 𝑆2, respectively. These two modes are depicted in334

fig. 9, which illustrates their axial velocity component for the four configurations. Their335

spatial distribution is mostly localised inside the recirculating region of the flow, but they336

are also supported along the shear layer of the jets. Evaluating both the direct and adjoint337

modes, we can identify the core of the global instability from the maximum values of the338

function | |S𝑠 (𝑟, 𝑧) | |𝐹 , which has been defined in eq. (2.6).

(a) 𝑆1 (𝑅𝑒 = 250, 𝐿 = 1,
𝛿𝑢 = 1)

(b) 𝑆2 (𝑅𝑒 = 250, 𝐿 = 1,
𝛿𝑢 = 1)

(c) 𝑆1 (𝑅𝑒 = 800, 𝐿 = 0.5,
𝛿𝑢 = 1)

(d) 𝑆2 (𝑅𝑒 = 800, 𝐿 = 0.5,
𝛿𝑢 = 1)

(e) 𝑆1 (𝑅𝑒 = 250, 𝐿 = 2,
𝛿𝑢 = 1)

(f) 𝑆2 (𝑅𝑒 = 250, 𝐿 = 2,
𝛿𝑢 = 1)

Figure 10: Structural sensitivity map | |S𝑠 (𝑟, 𝑧) | |𝐹 . White lines are employed to represent
the steady-state streamlines.

339

Figure 10 illustrates the sensitivity maps for the modes displayed in fig. 9 (a,c,d). The340

sensitivity maps | |S𝑠 (𝑟, 𝑧) | |𝐹 are compact supported within the region of recirculating fluid,341

featuring negligible values elsewhere. The maximum values of the sensitivity maps, displayed342

in fig. 10 (a,c,e) for the mode 𝑆1, are found within the inner vortex ring, in particular near343

the downstream part of the inner vortical region, and on the interface between the two344

vortical rings. By increasing the wall length separating the jet streams, the wavemaker moves345

downstream towards the right end of the inner vortical region. A similar observation is drawn346

from fig. 10 (b,d,f), where the core of the instability is also found within the inner vortex ring.347
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Similar observations were drawn in the case of the wake behind rotating spheres (Sierra-348

Ausín et al. 2022), where the core of the instability was also found near the downstream part349

of the recirculating flow region. Therein, it was concluded that the instability is supported by350

the recirculating flow region.351

Figure 8 (d) illustrates the existence of two oscillating/flapping modes with azimuthal

(a) (b)

(c) (d)

Figure 11: Axial velocity component of the oscillating global modes 𝐹1 (a) and 𝐹2 (b).
Structural sensitivity map | |S𝑠 (𝑟, 𝑧) | |𝐹 of mode 𝐹1 (c) and 𝐹2 (d). White lines are

employed to represent the steady-state streamlines.

352

wavenumber 𝑚 = 1 and 𝑚 = 2, hereinafter referred to as 𝐹1 and 𝐹2, respectively. The353

axial velocity component of these two modes is displayed in fig. 11, together with their354

associated structural sensitivity map. The unsteady modes 𝐹1 and 𝐹2 possess a much larger355

spatial support than 𝑆1 and 𝑆2. They are formed by an array of counter-rotating vortex spirals356

sustained along the shear layer of the base flow. For the mode 𝐹2 the amplitude of these357

structures grows downstream of the nozzle, in the axial direction, with a maximum around 𝑧 ≈358

70, after which they slowly decay. The mode 𝐹1 grows further downstream, with a maximum359

around 𝑧 ≈ 300. The spatial structure of these eigenmodes resembles the axisymmetric360

mode of Figure 9 in Canton et al. (2017) or the optimal response modes determined by361

Montagnani & Auteri (2019). As it was the case for the non-oscillating modes, the core of362

the instability is found near the downstream part of the inner vortex ring. Tentatively, one363

may conclude that vortical perturbations are produced within the recirculating flow region364

and convected downstream while experiencing a considerable spatial amplification, which in365

turn justifies the resemblance with the optimal response modes determined by Montagnani366

& Auteri (2019).367

There is an unstable 𝑚 = 0 mode, hereinafter referred to as 𝑆0, in the spectrum displayed368

in Figure 8 (b). Such a mode, which is illustrated fig. 12 (a), is the result of a saddle-node369

bifurcation leading to the existence of multiple steady-states, a feature that has been discussed370

in section 3. It is a mode that promotes the formation of a recirculating flow region attached371

to the duct wall. In section 3 we have remarked that the 𝑆0 modes can be related to changes372
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(a) (b)

(c) (d)

Figure 12: (a) Global mode 𝑆0 for the configuration (𝑅𝑒 = 250, 𝐿 = 1, 𝛿𝑢 = 0.28). The top
panel of (a) represents the axial velocity, while the bottom panel depicts the radial velocity
component. Structural sensitivity map | |S𝑠 (𝑟, 𝑧) | |𝐹 of the mode 𝑆0 (b), 𝑆1 (c) and 𝑆2 (d).

White lines are employed to represent the steady-state streamlines.

in the topology of the flow, and to a downstream shift of the recirculation bubble. Thus, it is373

not surprising that the core of the instability, shown in fig. 12 (b), is found on the interface374

between the recirculating region attached to the wall and the large recirculation bubble, and375

mostly in a region close to the axis found near the leftmost end of the recirculation bubble.376

The changes in the base flow due to the 𝑆0 mode have an impact on the instability core of377

the 𝑆1 and 𝑆2 modes, which are depicted in fig. 12 (c) and (d), respectively. The maximum378

values of the structural sensitivity are found on the leftmost end of the recirculation bubble379

near the axis of revolution, while it is found in the centre of the recirculation bubble for the380

mode 𝑆2.381

4.2. Annular jet configuration 𝛿𝑢 = 0382

Herein, we investigate the effect of the duct wall length (0.5 < 𝐿 < 4) on the linear stability383

of the annular jet (𝛿𝑢 = 0).384

The linear stability findings are summarised in fig. 13, which displays the evolution of385

the critical Reynolds number with respect to the duct wall distance (𝐿) for the four most386

unstable modes: two non-oscillating 𝑆1 and 𝑆2, and two oscillating 𝐹1 and 𝐹2. A cross-387

section view at 𝑧 = 1 is displayed in fig. 14. Please note that for the chosen set of parameters388

the axisymmetric unsteady mode 𝐹0, is always found at larger Reynolds numbers than the389

aforementioned modes, that is why in the following, we only include the results for the 𝑆1,390

𝑆2, 𝐹1 and 𝐹2 modes. This is one of the major differences with the case studied by Canton391

et al. (2017). For small values of the duct wall length (𝐿 ≈ 0.1) separating the jet streams,392

the dominant instability is a vortex-shedding mode, which in our nomenclature is referred393
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(a) (b)

Figure 13: Linear stability boundaries for the annular jet (𝛿𝑢 = 0). (b) Frequency evolution
of the unsteady modes. Legend: 𝑆1 mode is displayed with a solid black line, 𝑆2 with a

solid red line and 𝐹1 and 𝐹2 modes are depicted with dashed black and red lines,
respectively.

(a) (b) (c) (d)

Figure 14: Cross-section view at 𝑧 = 1 of the four unstable modes at criticality for the
annular jet case (𝛿𝑢 = 0). The streamwise component of the vorticity vector 𝜛𝑧 is

visualised by colours. (a) Mode 𝑆1 for 𝐿 = 0.5, (b) Mode 𝑆2 for 𝐿 = 0.5, (c) Mode 𝐹1 for
𝐿 = 3 and (d) Mode 𝐹2 for 𝐿 = 3.

to as 𝐹0. On the contrary, for duct wall lengths in the interval 0.5 < 𝐿 < 4, the primary394

instability of the annular jet is a steady symmetry-breaking bifurcation that leads to a jet395

flow with a single symmetry plane, displayed in fig. 14 (a). In contrast, bifurcations that396

lead to the mode 𝑆2 possess two orthogonal symmetry planes, see fig. 14 (b). In section 4.1397

it has been established that non-oscillating modes 𝑆1 and 𝑆2 for 𝛿𝑢 = 1 display most of398

its compact support within the region of recirculating fluid. Likewise, in the annular jet399

configuration, fig. 15 demonstrates that the spatial distribution of these two stationary modes400

𝑆1 and 𝑆2 is found inside the recirculation bubble. For jet distances 𝐿 < 2, the second mode401

that bifurcates is 𝐹1 mode, depicted in fig. 16 (a). This situation corresponds to a bifurcation402

scenario similar to other axisymmetric flow configurations, such as the flow past a sphere or a403

disk (Auguste et al. 2010; Meliga et al. 2009). For larger distances between jets, the scenario404

changes. The second bifurcation from the axisymmetric steady-state is the 𝐹2, displayed in405

fig. 16 (b). Other configurations where the primary or secondary instability involves modes406

with azimuthal component 𝑚 = 2 are swirling jets (Meliga et al. 2012) and the wake flow407

past a rotating sphere (Sierra-Ausín et al. 2022). The unsteady modes 𝐹1 and 𝐹2 display408

a similar structure to the unsteady modes discussed in section 4.1. They are formed by an409
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(a) (b)

Figure 15: Global modes 𝑆1 (a) and 𝑆2 (b) at criticality for 𝐿 = 0.5 and 𝛿𝑢 = 0. The top
panel of (a) represents the axial velocity, while the bottom panel depicts the radial velocity

component. Black lines represent the streamlines of the base flow.

(a) (b)

Figure 16: Axial velocity component of the neutral modes for 𝐿 = 3 and 𝛿𝑢 = 0 (a) 𝐹1, (b)
𝐹2 .

array of counter-rotating vortex spirals developing in the wake of the separating duct wall410

and convected downstream, while experiencing an important spatial amplification until they411

eventually decay after reaching a maximum amplitude.412

4.3. Fixed distance between jets and variable velocity ratio 𝛿𝑢413

In the following, we focus on the influence of the velocity ratio 𝛿𝑢 between jets for fixed jet414

distances 𝐿. Figure 17 displays the neutral curve of stability for jet distances (a) 𝐿 = 0.5415

and (b) 𝐿 = 1. One may observe that the primary bifurcation is not always associated to416

the mode 𝑆1 as it is the case for 𝛿𝑢 = 0. For sufficiently large velocity ratios, the primary417

instability leads to a non-axisymmetric steady-state with a double helix, corresponding to418

the unstable mode 𝑆2. As can be appreciated in fig. 9 (b), for small values of 𝛿𝑢, the mode419

𝑆1 expands downstream over a relatively large area, having a higher activity than mode 𝑆2,420

which is confined to the recirculation region. As the ratio between velocities is increased, as421

observed in fig. 9 (a), mode 𝑆2 enlarges and resembles to mode 𝑆1, controlling the instability422

mechanism for large values of 𝛿𝑢. Another interesting feature, which could motivate a control423

strategy, is the occurrence of vertical asymptotes. This sudden change in the critical Reynolds424

number is due to the retraction, disappearance of the recirculation bubble and the formation425

of a new recirculating flow region, aspects that have been covered in section 3. For 𝐿 = 0.5,426
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(a) (b)

Figure 17: Linear stability boundaries for the concentric jets (a) 𝐿 = 0.5 and (b) 𝐿 = 1.
Same legend as fig. 13.

this sudden change occurs for 𝛿𝑢 ≈ 0.25, and for higher values of 𝛿𝑢 the critical Reynolds427

number is around twice larger than the one of the annular jet (𝛿𝑢 = 0). The case of jet distance428

𝐿 = 1 was discussed in section 3. The sudden change in the stability of the branch 𝑆1 occurs429

between 𝛿𝑢 ∈ [0.25, 0.5]. Within this narrow interval, the primary branch of instability is430

the 𝐹1. At around 𝛿𝑢 = 0.4, the primary bifurcation is again the branch 𝑆1, which becomes431

secondary at around 𝛿𝑢 ≈ 0.8 in favour of the branch 𝑆2. In fig. 17 we have highlighted the432

codimension two point interaction between the 𝑆1 − 𝑆2 modes, which will be analysed in433

detail in section 5. Around this point, we can observe the largest ratio (
𝑅𝑒𝑐 | 𝛿𝑢≠0

𝑅𝑒𝑐 | 𝛿𝑢=0
) between434

the value of the critical Reynolds number of the primary instability for a concentric jet435

configuration (𝛿𝑢 ≠ 0) and the annular jet problem (𝛿𝑢 = 0).436

4.4. Fixed velocity ratio 𝛿𝑢 and variable distance between jets437

Figure 18 compares the results obtained for a constant velocity ratio when varying the438

distance between jets. As observed before, the increase of the distance between the jets has439

a de-stabilising effect. The largest critical Reynolds number is found at 𝛿𝑢 = 0, and the440

critical Reynolds number decreases with the duct wall length 𝐿 between the jet streams. The441

points of codimension two are highlighted in fig. 18. We can appreciate that the interaction442

between the branch 𝑆1 and 𝑆2 happens for every velocity ratio 𝛿𝑢 explored, and it is the mode443

interaction associated to the smallest distance between jets. Additionally, for a velocity ratio444

𝛿𝑢 = 0.5 there exist two points where the branches of the linear modes 𝑆1 and 𝐹1 intersect.445

Another feature of the neutral curves is the existence of turning points, which are associated446

to the existence of saddle node bifurcations of the axisymmetric steady-state, addressed in447

section 3. The saddle-node bifurcations of the steady-state induce the existence of regions in448

the neutral curves with a tongue shape. These saddle node bifurcations are also responsible449

for the formation of the vertical asymptotes observed in fig. 17. Finally, it is of interest the450

transition of the modes 𝑆1 and 𝑆2, which induce the symmetry breaking of the axisymmetric451

steady state to slow low frequency spiralling structures. These modes have been identified452

for 𝛿𝑢 = 0.5 for 𝑚 = 1, 𝛿𝑢 = 1 for 𝑚 = 2, and 𝛿𝑢 = 2 for both 𝑚 = 1 and 𝑚 = 2. As it will be453

clarified in section 5, these oscillations are issued from the non-linear interaction of modes,454

emerging simultaneously for a specific Reynolds number, and changing their position as the455

most unstable global mode of the flow.456
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a) b)

c) d)

e) f)

Figure 18: Neutral lines of the four modes found studying the configuration of two
concentric jets fixing the velocity ratio. (a-b) 𝛿𝑢 = 0.5, (c-d) 𝛿𝑢 = 1, (e-f) 𝛿𝑢 = 2. Black

lines: modes with 𝑚 = 1, red lines: modes with 𝑚 = 2. Straight lines: steady modes,
dashed lines: unsteady modes. The discontinuity points, i.e., the points where the second

most unstable mode (of a given type) becomes the most unstable are highlighted with
square markers.
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5. Mode interaction between two steady states. Resonance 1 : 2457

5.1. Normal form, basic solutions and their properties458

The linear diagrams of section 4 have shown the existence of the mode interaction between459

the modes 𝑆1 and 𝑆2. It corresponds roughly to the mode interaction that occurs at the largest460

critical Reynolds number for any value of 𝐿 herein explored. In this section, we analyse the461

dynamics near the 𝑆1 : 𝑆2 organising centre. We perform a normal form reduction, which462

allows us to predict non-axisymmetric steady, periodic, quasiperiodic and heteroclinic cycles463

between non-axisymmetric states.464

The mode interaction that is herein analysed corresponds to a steady-steady bifurcation465

with 𝑂 (2) symmetry and with strong resonance 1 : 2. Such a bifurcation scenario has466

been extensively studied in the past by (Dangelmayr 1986; Jones & Proctor 1987; Porter &467

Knobloch 2001; Armbruster et al. 1988) and the reflection symmetry breaking case (SO(2))468

by Porter & Knobloch (2005). In order to unravel the existence and the stability of the469

nonlinear states near the codimension two point, let us write the flow field as470

q = Q0 + Re
[
𝑟1(𝜏)𝑒

𝑖𝜙1 (𝜏)𝑒−𝑖 𝜃 q̂𝑠,1
]
+ Re

[
𝑟2(𝜏)𝑒

𝑖𝜙2 (𝜏)𝑒−2𝑖 𝜃 q̂𝑠,2
]

(5.1)471

in polar coordinates for the complex amplitudes 𝑧1 = 𝑟1ei𝜙1 and 𝑧2 = 𝑟2ei𝜙2 where 𝑟 𝑗 and 𝜙 𝑗472

for 𝑗 = 1, 2 are the amplitude and phase of the symmetry-breaking modes 𝑚 = 1 and 𝑚 = 2,473

respectively. The complex-amplitude normal form eq. (2.11) is expressed in this reduced474

polar notation as follows,478

�𝑟1 = 𝑒3𝑟1𝑟2 cos(𝜒) + 𝑟1

(
𝜆 (𝑠,1) + 𝑐 (1,1)𝑟

2
1 + 𝑐 (1,2)𝑟

2
2

)
, (5.2a)479

�𝑟2 = 𝑒4𝑟
2
1 cos(𝜒) + 𝑟2

(
𝜆 (𝑠,2) + 𝑐 (2,1)𝑟

2
1 + 𝑐 (2,2)𝑟

2
2

)
, (5.2b)480

�𝜒 = −
(
2𝑒3𝑟2 + 𝑒4

𝑟2
1

𝑟2

)
sin(𝜒), (5.2c)481

482

where the phase 𝜒 = 𝜙2 − 2𝜙1 is coupled with the amplitudes 𝑟1 and 𝑟2 because of the483

existence of the 1 : 2 resonance. The individual phases evolve as484

�𝜙1 = 𝑒3𝑟2 sin(𝜒),

�𝜙2 = −𝑒4
𝑟2

1

𝑟2
sin(𝜒).

(5.3)485

Before proceeding to the analysis of the basic solutions of eq. (5.2), we can simplify these
equations by the rescaling ( 𝑟1

|𝑒3𝑒4 |1/2
,
𝑟2

𝑒3

)
→ (𝑟1, 𝑟2),

which yields the following equivalent system489

�𝑟1 = 𝑟1𝑟2 cos(𝜒) + 𝑟1

(
𝜆 (𝑠,1) + 𝑐11𝑟

2
1 + 𝑐12𝑟

2
2

)
, (5.4a)490

�𝑟2 = 𝑠𝑟2
1 cos(𝜒) + 𝑟2

(
𝜆 (𝑠,2) + 𝑐21𝑟

2
1 + 𝑐22𝑟

2
2

)
, (5.4b)491

�𝜒 = −
1

𝑟2

(
2𝑟2

2 + 𝑠𝑟2
1

)
sin(𝜒), (5.4c)492

493

where the coefficients

𝑠 = sign(𝑒3𝑒4), 𝑐11 =
𝑐 (1,1)

|𝑒3𝑒4 |
, 𝑐12 =

𝑐 (1,2)

𝑒2
3

, 𝑐21 =
𝑐 (2,1)

|𝑒3𝑒4 |
, 𝑐22 =

𝑐 (2,2)

𝑒2
3

.
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Name Definition Bifurcations Comments

O 𝑟1,𝑂 = 𝑟2,𝑂 = 0 − Steady axisymmetric state

P 𝑟2
2,𝑃

=
−𝜆(𝑠,2)
𝑐22

, 𝑟1,𝑃 = 0 𝜆 (𝑠,2) = 0 Bifurcation from O

𝑟1,𝑀𝑀 = −
𝜆(𝑠,1) ±𝑟2,𝑀𝑀+𝑐12𝑟

2
2,𝑀𝑀

𝑐11
𝜆 (𝑠,1) = 0 Bifurcation from O

MM PMM (𝑟2,𝑀𝑀 cos(𝜒𝑀𝑀 )) = 0 𝜎± = 0 Bifurcation from P
cos(𝜒𝑀𝑀 ) = ±1

cos(𝜒𝑇𝑊 ) =
(2𝑐11+𝑐12)𝜆(𝑠,2) −(2𝑐21+𝑐22)𝜆(𝑠,1)

Σ𝑇𝑊 (2𝜆(𝑠,1) +𝜆(𝑠,2) )

TW 𝑟2
2,𝑇𝑊

=
−(2𝜆(𝑠,1) +𝜆(𝑠,2) )

Σ𝑇𝑊
cos(𝜒𝑇𝑊 ) = ±1 Bifurcation from MM

𝑟2
1,𝑇𝑊

= 2𝑟2
2,𝑇𝑊

Table 1: Definition of the fixed points of the reduced polar normal form eq. (5.4). 𝜎± is
defined in eq. (5.6), the polynomial 𝑃𝑀𝑀 is defined in eq. (5.7) and

Σ𝑇𝑊 ≡ 4𝑐11 + 2(𝑐12 + 𝑐21) + 𝑐22.

Finally, we consider a third normal form equivalent to the previous ones but which removes the494

singularity of eqs. (5.2) and (5.4) when 𝑟2 = 0. Standing waves (sin 𝜒 = 0) naturally encounter495

this type of artificial singularity, which manifests as in eq. (5.4) as an instantaneous jump496

from one standing subspace to the other by a 𝜋-translation. This is the case of the heteroclinic497

cycles, previously studied by Armbruster et al. (1988); Porter & Knobloch (2001). The third498

normal form, which we shall refer to as reduced Cartesian normal form, takes advantage of499

the simple transformation 𝑥 = 𝑟2 cos(𝜒), 𝑦 = 𝑟2 sin(𝜒) (Porter & Knobloch 2005):503

�𝑟1 = 𝑟1

(
𝜆 (𝑠,1) + 𝑐11𝑟

2
1 + 𝑐12(𝑥

2 + 𝑦2) + 𝑥
)
, (5.5a)504

�𝑥 = 𝑠𝑟2
1 + 2𝑦2 + 𝑥

(
𝜆 (𝑠,2) + 𝑐21𝑟

2
1 + 𝑐22(𝑥

2 + 𝑦2)
)
, (5.5b)505

�𝑦 = −2𝑥𝑦 + 𝑦
(
𝜆 (𝑠,2) + 𝑐21𝑟

2
1 + 𝑐22(𝑥

2 + 𝑦2)
)
, (5.5c)506

507

In this final representation standing wave solutions are contained within the invariant plane508

𝑦 = 0, and due to the invariance of eq. (5.5) under the reflection 𝑦 ↦→ −𝑦, one can restrict509

attention, without loss of generality, to solutions with 𝑦 � 0, cf Porter & Knobloch (2001).510

The system eq. (5.4) possess four types of fixed points, which are listed in table 1.511

First, the axisymmetric steady state (O) is represented by (𝑟1, 𝑟2) = (0, 0), so it is the512

trivial steady-state of the normal form. The second steady-state is what it is denoted as pure513

mode (P). In the original coordinates, it corresponds to the symmetry breaking structure514

associated to the mode 𝑆2. This state bifurcates from the axisymmetric steady state (O) when515

𝜆 (𝑠,2) = 0. The third fixed point is the mixed mode state (MM), which is listed in table 1. It516

corresponds to the reflection symmetry preserving state associated to the mode 𝑆1. It may517

bifurcate directly from the trivial steady state O, when 𝜆 (𝑠,1) = 0 or from P whenever 𝜎+ = 0518

or 𝜎− = 0, where 𝜎± is defined as519

𝜎± ≡ 𝜆 (𝑠,1) −
−𝜆 (𝑠,2)𝑐12

𝑐22
±

√
−𝜆 (𝑠,2)

𝑐22
. (5.6)520
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Name Bifurcation condition Comments

SW 𝑠𝑟2
1
− 2𝑐11𝑟

2
1
𝑟2,𝑀𝑀 cos(𝜒𝑀𝑀 ) − 2𝑐22𝑟

3
2,𝑀𝑀

cos(𝜒𝑀𝑀 )3 = 0 Bif. from MM

MTW 𝐷𝑇𝑊 − 𝑇𝑇𝑊 𝐼𝑇𝑊 = 0, 𝐼𝑇𝑊 > 0 Bif. from TW

Table 2: Definition of the limit cycles of the reduced polar normal form eq. (5.4).

The representation in the reduced polar form is

𝑟1,𝑀𝑀 = −
𝜆 (𝑠,1) ± 𝑟2,𝑀𝑀 + 𝑐12𝑟

2
2,𝑀𝑀

𝑐11
, cos(𝜒𝑀𝑀 ) = ±1,

and the condition PMM(𝑟2,𝑀𝑀 cos(𝜒𝑀𝑀 )) = 0, where PMM is defined as521

PMM(𝑥) ≡ 𝑠𝜇1 + (𝑠 + 𝑐21𝜆 (𝑠,1) − 𝑐 (1,1)𝜆 (𝑠,2) )𝑥 + (𝑐21 + 𝑠𝑐12)𝑥
2 + (𝑐12𝑐21 − 𝑐11𝑐22)𝑥

3. (5.7)522

Finally, the fourth fixed point of the system are travelling waves (TW). It is surprising that523

the interaction between two steady-states causes a time-periodic solution. The travelling524

wave emerges from MM in parity-breaking pitchfork bifurcation that breaks the reflection525

symmetry when cos(𝜒𝑇𝑊 ) = ±1. The TW drifts at a steady rotation rate 𝜔𝑇𝑊 along the526

group orbit, i.e., the phases �𝜙1 = 𝑟2,𝑇𝑊 sin(𝜒𝑇𝑊 ) and �𝜙2 = −𝑠
𝑟2

1,𝑇𝑊

𝑟2,𝑇𝑊
sin(𝜒𝑇𝑊 ) are non-null.527

Mixed modes and travelling waves may further bifurcate into standing waves (SW) and
modulated travelling waves (MTW), respectively. These are generic features of the 1 : 2
resonance for small values of 𝜆 (𝑠,1) and 𝜆 (𝑠,2) , when 𝑠 = −1. In the original coordinates, SW
are periodic solutions, whereas MTW are quasiperiodic. Standing waves emerge via a Hopf

bifurcation from MM when the conditions PSW

(
𝑟2,𝑀𝑀 cos(𝜒𝑀𝑀 )

)
> 0 for

PSW(𝑥) ≡ (2𝑐22𝑥
3 − 𝑠𝑟2

1)𝑐11 − (2𝑐12𝑥 + 1) (𝑐21𝑥 + 𝑠)𝑥,

and the one listed in table 2 are satisfied. MTW are created when a torus bifurcation happens528

on the travelling wave branch when the conditions listed in table 2 are satisfied.529

Another remarkable feature of eq. (5.2) is the existence of robust heteroclinic cycles that530

are asymptotically stable. When 𝑠 = −1, there are open sets of parameters where the reduced531

polar normal form exhibits structurally stable connections between 𝜋−translations on the532

circle of pure modes, cf Armbruster et al. (1988). These structures are robust and have been533

observed in a large variety of systems, (Nore et al. 2003, 2005; Mercader et al. 2002; Palacios534

et al. 1997; Mariano & Stazi 2005). In addition to these robust heteroclinic cycles connecting535

pure modes, there exist more complex limit cycles connecting O, P, MM and SW, cf Porter &536

Knobloch (2001). These cycles are located for larger values of 𝜆 (𝑠,1) and 𝜆 (𝑠,2) , with possibly537

chaotic dynamics (Shilnikov type). In this study, we have not identified any of these. Finally,538

a summary of the basic solutions and the bifurcation path is sketched in fig. 19.539

5.2. Results of the steady-steady 1 : 2 mode interaction540

Section 4.4 reported the location of mode interaction points for discrete values of the velocity541

ratio 𝛿𝑢. The location of the mode interaction between 𝑆1 and 𝑆2 is depicted in fig. 20. It shows542

that the mode switching between the modes 𝑆1 and 𝑆2 is indeed stationary only for 𝛿𝑢 < 1.5543

and 𝐿 < 1.3. For larger values of the velocity ratio and the jet distance, the interaction is not544

purely stationary; at least one of the linear modes oscillates with a slow frequency. It implies545
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Figure 19: Schematic representation of the basic solutions of eq. (5.2) and their
bifurcation path.

a) b)

Figure 20: Evolution of the codimension two interaction 𝑆1 − 𝑆2 in the space of parameters
(Re, 𝐿, 𝛿𝑢). Grey points denote the points that were computed and the red point denotes

the transition from steady to unsteady with low frequency as reported in section 4.4.

that the mode selection for large velocity ratios near the codimension two points is similar546

to the one reported by Meliga et al. (2012) for swirling jets. However, even when the two547

primary bifurcations are non-oscillating (𝑆1 and 𝑆2), the 1 : 2 resonance of the azimuthal548

wavenumbers induces a slow frequency, what we denote as travelling wave solutions (TW).549

We consider the bifurcation sequence for 𝛿𝑢 = 1.0 and 𝐿 = 1.15, which is qualitatively550

similar to transitions in the range 0.5 < 𝛿𝑢 < 1.5, near the codimension two points, which551

are depicted in fig. 20. At the codimension two points for 𝛿𝑢 < 0.5, at least one of the552

two bifurcations is sub-critical and a normal form reduction up to fifth order is necessary.553

Subcritical transition was also noticed for a distance between jets 𝐿 = 0.1 by Canton et al.554

(2017), who reported high levels of the linear gain associated to transient growth mechanisms.555

This last case is out of the scope of the present manuscript. Figure 21 displays the phase556

portrait of the stable attractors near the 𝑆1 : 𝑆2 interaction. For values of 𝛿𝑢 > 1.0, the557

axisymmetric steady-state loses its axisymmetry leading to a new steady-state with symmetry558
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Figure 21: Parametric portrait at the codimension two point 𝑆1 : 𝑆2 for parameter values
(𝐿, 𝛿𝑢) = (1.15, 1.0). The colour-shaded areas corresponds to the regions in the parameter
space where a given solution is attracting, e.g., the green-shaded area is the region where

TW is the attracting solution. Solid lines indicate codimension-one bifurcations,
dashed-lines indicate when 𝜆 (𝑠,2) = 0 (P) and 𝜆 (𝑠,1) = 0 (MM), a grey marker denotes the
codimension-two point. The visualisations of blue and red surfaces in the isometric views
represent the respective positive and negative isocontour values of the perturbative axial

velocity indicated in the figure.

Figure 22: Bifurcation diagram with respect to the Reynolds number for 𝐿 = 1.15 and
𝛿𝑢 = 0.8. The left diagram reports the evolution of 𝑟2 for the fixed point solutions of the

normal form. The right diagram displays the bifurcation diagram in the Cartesian
coordinates. Solid lines and dashed lines denote stable attractors and unstable attractors,

respectively.

𝑚 = 2, herein denoted as pure mode (P). A reconstruction of the perturbative component of559

the flow field of such a state is performed at the bottom right of fig. 21, which shows that the560

state P possesses two orthogonal planes of symmetry. Near the codimension two point, for561

values of the velocity ratio 𝛿𝑢 < 1.1, the state P is only observable, that is non-linearly stable,562

within a small interval with respect to the Reynolds number. For larger values of the velocity563

ratio, the state P remains stable within the analysed interval of Reynolds numbers. For values564
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of the velocity ratio 𝛿𝑢 < 1.0, the bifurcation diagram is more complex. Figure 22 displays565

the bifurcation diagram of the fixed-point solutions of eq. (5.5) on the left diagram and the566

full set of solutions of the normal form in the right diagram. The axisymmetric steady-state567

first bifurcates towards a Mixed-Mode solution, which is the solution in the 𝑦 = 0 plane for568

the right diagram of fig. 22. A solution with a non-symmetric wake has been reconstructed569

in fig. 21. The Mixed-Mode solution is only stable within a small interval of the Reynolds570

number. A secondary bifurcation, denoted Bif𝑀𝑀−𝑇𝑊 , gives raise to a slowly rotating wave571

of the wake. The TW and the MM solutions are identical at the bifurcation point. The phase572

speed is zero at the bifurcation, thus this is not a Hopf bifurcation. It corresponds to a drift573

instability that breaks the azimuthal symmetry, i.e. it starts to slowly drift. This unusual574

feature, that travelling waves bifurcate from a steady solution at a steady bifurcation, is a575

generic feature of the 1 : 2 resonance. A reconstruction of the travelling wave solution is576

depicted on the top of fig. 21. It corresponds to the line with non-zero 𝑦 component in the577

right diagram of fig. 22. The TW solution loses its stability in a tertiary bifurcation, denoted578

as Bif𝑇𝑊−𝑀𝑇𝑊 . It conforms to a Hopf bifurcation of the TW solution, which gives birth579

to a quasi-periodic solution name Modulated Travelling Wave (MTW). A representation of580

this kind of solution in the Cartesian coordinates (𝑟1, 𝑥, 𝑦) is depicted on the right image of581

fig. 22.582

Eventually, the Modulated Travelling Wave experiences a global bifurcation. That occurs583

when the periodic MTW solution, in the (𝑟1, 𝑥, 𝑦) coordinates, nearly intersects the invariant584

𝑟1 = 0 and 𝑦 = 0 planes. The transition sequence is represented in the right image of fig. 22 in585

the Cartesian coordinates (𝑟1, 𝑥, 𝑦). The amplitude of the MTW limit cycle increases until the586

MTW arising at the tertiary bifurcation Bif𝑇𝑊−𝑀𝑇𝑊 are destroyed by meeting a heteroclinic587

cycle at Bif𝑀𝑇𝑊−𝐻𝑡 . The locus of Bif𝑀𝑇𝑊−𝐻𝑡 is reported in fig. 21 and in good agreement588

with Armbruster et al. (1988). The conditions for the existence of the heteroclinic cycles589

are: 𝜆 (𝑠,1) > 0, 𝜆 (𝑠,2) > 0, 𝑐22 < 0. When 𝜎− becomes negative, the cycle is attracting590

and robust heteroclinic cycles are observed. It is destroyed when 𝜎+ becomes negative, in591

that case the pure modes are no longer saddles which breaks the heteroclinic connection.592

Figure 23 displays the instantaneous fluctuation field from a heteroclinic orbit connecting P593

and its conjugate solution P’, which is obtained by a rotation of 𝜋/2, for parameter values594

Re = 200 and 𝛿𝑢 = 0.8. The dynamics of the cycle takes place in two phases. Figure 23595

depicts the motion of the coherent structure associated to the heteroclinic cycle. Starting596

from the conjugated pure mode P’, the cycle leaves the point (a), located in the vicinity of P’,597

along the unstable eigenvector 𝑦, which is the stable direction of P. The first phase consists598

in a rapid rotation by 𝜋/2 of the wake, it corresponds to the sequence a-b-c-d-e displayed in599

fig. 23. Then it is followed by a slow approach following the direction 𝑦 and departure from600

the pure mode state P along the direction 𝑟1. The second phase consists in a rapid horizontal601

motion of the wake, which is an evolution from P to P’ that takes place by the breaking602

of the reflectional symmetry with respect to the vertical axis; it constitutes the sequence603

e-f-g-h-i-a. Please note that equivalent motions are also possible. The first phase of rapid604

counter-clockwise rotation by 𝜋/2 can be performed in the opposite sense. It corresponds605

to a motion in the Cartesian coordinates along the plane 𝑟1 along negative values of 𝑦. The606

sequence e-f-g-h-i-a can be replaced by a horizontal movement in the opposite sense, which607

adjusts to connect the plane 𝑦 = 0 corresponding to negative values of 𝑟1.608

6. Discussion & Conclusions609

The current study provides a complete description of the configuration consisting of two610

coaxial jets, broadly found in industrial processes, covering a wide range of applications such611

as noise reduction, mixing enhancement, or combustion control. The numerical procedure612
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Figure 23: Heteroclinic cycle solution for parameter values Re = 200, 𝛿𝑢 = 0.8. The top
and bottom image sequences along the heteroclinic cycle show (from left to right) an axial
slice plane at 𝑧 = 1 of the instantaneous fluctuations of the axial velocity of the flow field
as viewed from downstream, along with a three-dimensional isometric view (d on the top

and g on the bottom).The middle diagram displays the heteroclinic cycle in the
coordinates (𝑟1, 𝑥, 𝑦).

herein employed has been validated with the existing literature in the case of the stability613

analysis (see B for a detailed overview). A large region of the parameter space is explored614

(𝛿𝑢, 𝐿) ∈ ([0, 2], [0.5, 4.5]), substantially expanding the work of Canton et al. (2017).615

Section 3 provides an analysis of the basic properties of the steady-state, such as the616

topology of the flow and its variations in terms of the three parameters (𝑅𝑒, 𝐿, 𝛿𝑢). It also617

highlights the existence of multiple steady-states, as a result of a series of saddle-node618

bifurcations, and its connection to the changes in the topology of the flow. Highlighting,619

nonetheless, that changes in the topology are not a direct consequence of a saddle-node620

bifurcation. The linear stability analysis performed in Section 4 reveals the existence of two621

unstable steady modes: 𝑆1 and 𝑆2, which are mostly located within the recirculation bubble,622

and two unsteady ones: 𝐹1 and 𝐹2, which are also produced within the recirculating region of623

the flow, but they are convected downstream, while experiencing substantial amplification.624

In addition, in section 4, we briefly discuss the consequences of the retraction and eventual625

disappearance of the recirculation bubble and the formation of a new recirculating flow626

region, aspects that have been covered in section 3, in terms of the sudden changes in the627

critical Reynolds number. Subsequently, the critical Reynolds number is determined for a628
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wide range of inner-to-outer velocity rations and duct wall lengths. An increase of the velocity629

ratio has an overall stabilising effect, and it leads to the swap from mode 𝑆1, characterised630

with one symmetry plane, to mode 𝑆2 that possesses two symmetry planes. Afterwards,631

the effect of the distance 𝐿 between jets is analysed. The primary effect of increasing this632

distance is a decrease in the critical Reynolds number for all values of 𝛿𝑢 investigated.633

Section 5 analyses the mode interaction between two symmetry breaking modes with634

azimuthal wavenumbers 𝑚 = 1 and 𝑚 = 2. The unfolding of the codimension-two bifurcation635

reveals the presence of unsteadiness as a result of the resonant 1 : 2 interaction between the636

two steady-modes. The codimension-two point is located at a velocity ratio 𝛿𝑢 = 1.0 and637

distance between jets of 𝐿 = 1.15, a situation that it is qualitatively equivalent to transitions638

found in the range 0.5 < 𝛿𝑢 < 1.5. For values lower than 𝛿𝑢 = 1.0, the bifurcation diagram639

exhibits an intricate path. First, a Mixed-Mode (MM) solution emerges, which displays a non-640

symmetric wake. The Mixed-Mode solution is only stable for a small range of the Reynolds641

number. Subsequently, a slowly rotating wake is triggered in the form of a Travelling Wave642

(TW). This unusual feature, an unsteady state emerging from a steady state, corresponds to a643

drift instability commonly found at 1 : 2 resonance. Then, the TW solution encounters a Hopf644

bifurcation, developing a quasi-periodic solution in the form of a Modulated Travelling Wave645

(MTW). Finally, the MTW solution undergoes a global bifurcation meeting a heteroclinic646

cycle (Ht). This heteroclinic orbit links the solution P with its conjugate solution P’, spinning647

the wake from P’ to P, and moving it horizontally from P to P’. On the other hand, for values648

higher than 𝛿𝑢 = 1.0, a non-axisymmetric steady state emerges as a pure mode P with two649

orthogonal planes of symmetry. If the transition happens for values of the velocity ratio close650

to unity, a further increase in the velocity ratio rapidly leads to the heteroclinic cycle.651

Physical realizations of the 1 : 2 mode interaction have been observed by Mercader et al.652

(2002) and Nore et al. (2003, 2005) for confined flow configurations. However, to the author’s653

knowledge, this is the first time that a robust heteroclinic cycle resulting from this type of654

1 : 2 interaction is reported in the literature for an external flow configuration, as it is the655

coaxial jet configuration.656
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Appendix A. Normal form reduction664

In this section we provide a detailed explanation of the normal form reduction to obtain665

the coefficients of eq. (2.11), we define the terms of the compact notation of the governing666

equations eq. (2.3), which is reminded here, for the sake of conciseness,667

B𝜕Q
𝜕𝑡

= F(Q, 𝜼) ≡ LQ + N(Q,Q) + G(Q, 𝜼). (A 1)668

The nonlinear convective operator N(Q1,Q2) = U1 · ∇U2 accounts for the quadratic669

interaction on the state variable. The linear operator on the state variable is LQ = [∇𝑃,∇·U]𝑇 .670

The remaining term accounts for the linear variations in the state variable and the parameter671

vector. It is defined as G(Q, 𝜼) = G(Q, [𝜂1, 0]
𝑇 ) + G(Q, [0, 𝜂2]

𝑇 ) where G(Q, [𝜂1, 0]
𝑇 ) =672

𝜂1∇ · (∇U + ∇U𝑇 ) and G(Q, [0, 𝜂2]
𝑇 ). The former operator shows the dependency on the673

parameter 𝜂1, which accounts for the viscous effects. The latter operator depends on the674

parameter 𝜂2, which accounts for the velocity ratio between jets and it is used to impose the675

boundary condition U = (0, 𝜂2 tanh
(
𝑏𝑖 (1 − 2𝑟)

)
, 0) on Γ𝑖𝑛,𝑖 . In addition, we consider the676

following splitting of the parameters 𝜼 = 𝜼𝑐 + Δ𝜼. Here 𝜼𝑐 denotes the critical parameters677

𝜼𝑐 ≡ [𝑅𝑒−1
𝑐 , 𝛿𝑢,𝑐]

𝑇 attained when the spectra of the Jacobian operator possess at least an678

eigenvalue whose real part is zero. The distance in the parameter space to the threshold is679

represented by Δ𝜼 = [𝑅𝑒−1
𝑐 − 𝑅𝑒−1, 𝛿𝑢,𝑐 − 𝛿𝑢]

𝑇 .680

A.1. Multiple scales ansatz681

The multiple scales expansion of the solution q of eq. (2.3) is682

q(𝑡, 𝜏) = Q0 + 𝜀q(𝜀) (𝑡, 𝜏) + 𝜀2q(𝜀2) (𝑡, 𝜏) +𝑂 (𝜀3), (A 2)683

where 𝜀 � 1 is a small parameter. The distance in the parameter space to the critical point684

Δ𝜼 = [𝑅𝑒−1
𝑐 −𝑅𝑒−1, 𝛿𝑢,𝑐−𝛿𝑢]

𝑇 is assumed to be of second order, i.e.Δ𝜂𝑖 = 𝑂 (𝜀2) for 𝑖 = 1, 2.685

The expansion eq. (A 2) considers a two scale expansion of the original time 𝑡 ↦→ 𝑡 + 𝜀2𝜏. A686

fast timescale 𝑡 and a slow timescale of the evolution of the amplitudes 𝑧𝑖 (𝜏) in eq. (A 2), for687

𝑖 = 1, 2. Note that the expansion of the LHS eq. (2.3) up to third order is as follows688

𝜀B
𝜕q(𝜀)

𝜕𝑡
+ 𝜀2B

𝜕q(𝜀2)

𝜕𝑡
+ 𝜀3

[
B
𝜕q(𝜀3)

𝜕𝑡
+ B

𝜕q(𝜀)

𝜕𝜏

]
, (A 3)689

and the RHS respectively,690

F(q, 𝜼) = F(0) + 𝜀F(𝜀) + 𝜀2F(𝜀2) + 𝜀3F(𝜀3) . (A 4)691

The expansion eq. (A 4) will be detailed at each order.692

A.1.1. Order 𝜀0
693

The zeroth order Q0 of the multiple scales expansion eq. (A 2) is the steady state of the694

governing equations evaluated at the threshold of instability, i.e. 𝜼 = 𝜼𝑐,695
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0 = F(Q0, 𝜼𝑐). (A 5)696

A.1.2. Order 𝜀1
697

The first order q(𝜀) (𝑡, 𝜏) of the multiple scales expansion of eq. (A 2) is composed of the698

eigenmodes of the linearised system699

q(𝜀) (𝑡, 𝜏) ≡
(
𝑧1(𝜏)𝑒

−i𝑚1 𝜃 q̂1 + 𝑧2(𝜏)𝑒
i−𝑚2 𝜃 q̂2 + c. c.

)
. (A 6)700

in our case, 𝑚1 = 1 and 𝑚2 = 2. Each term q̂ℓ of the first order expansion eq. (A 6) is a701

solution of the following linear equation702

J(𝜔ℓ ,𝑚ℓ ) q̂ℓ ≡
(
𝑖𝜔ℓB −

𝜕F
𝜕q |q=Q0 ,𝜼=𝜼𝑐

)
q̂ℓ = 0, (A 7)703

where 𝜕F
𝜕q |q=Q0 ,𝜼=𝜼𝑐 q̂ℓ = L𝑚ℓ q̂ℓ + N𝑚ℓ (Q0, q̂ℓ) + N𝑚ℓ (q̂ℓ ,Q0). The subscript 𝑚ℓ indicates704

the azimuthal wavenumber used for the evaluation of the operator.705

A.1.3. Order 𝜀2
706

The second order expansion term q(𝜀2) (𝑡, 𝜏) is determined from the resolution of a set of707

forced linear systems, where the forcing terms are evaluated from first and zeroth order708

terms. The expansion in terms of amplitudes 𝑧𝑖 (𝜏) (𝑖 = 1, 2) of q(𝜀2) (𝑡, 𝜏) is assessed from709

term-by-term identification of the forcing terms at the second order. Non-linear second order710

terms in 𝜀 are711

F(𝜀2) ≡

2∑
𝑗 ,𝑘=1

(
𝑧 𝑗 𝑧𝑘N(q̂ 𝑗 , q̂𝑘)𝑒−i(𝑚 𝑗+𝑚𝑘) 𝜃 + c.c.

)

+

2∑
𝑗 ,𝑘=1

(
𝑧 𝑗 𝑧𝑘N(q̂ 𝑗 , q̂𝑘)𝑒−i(𝑚 𝑗−𝑚𝑘) 𝜃 + c.c.

)

+

2∑
ℓ=0

𝜂ℓG(Q0, eℓ),

(A 8)712

where the terms proportional to 𝑧 𝑗 𝑧𝑘 are named F̂(𝑧 𝑗 𝑧𝑘)

(𝜖 2)
and eℓ is an element of the713

orthonormal basis of R2.714

Then, we look for a second order term expanded as follows715

q(𝜀2) ≡

2∑
𝑗 ,𝑘=1
𝑘� 𝑗

(
𝑧 𝑗 𝑧𝑘 q̂𝑧 𝑗 𝑧𝑘 + 𝑧 𝑗 𝑧𝑘 q̂𝑧 𝑗 𝑧𝑘 + c.c

)
+

2∑
ℓ=1

𝜂ℓQ(𝜂ℓ )
0

. (A 9)716

Terms q̂𝑧2
𝑗

are azimuthal harmonics of the flow. The terms q̂𝑧 𝑗 𝑧𝑘 with 𝑗 ≠ 𝑘 are coupling717

terms, and q̂ |𝑧 𝑗 |2 are harmonic base flow modification terms. Finally, Q(𝜂ℓ )
0

are base flow718

corrections due to a variation of the parameter 𝜂ℓ from the critical point.719

At this order, there exist two resonant terms, the terms proportional to 𝑧1𝑧2 and 𝑧2
1
, which720

are associated with the singular Jacobian J(0,𝑚𝑘) for 𝑘 = 1, 2. To ensure the solvability of721

these terms, we must enforce compatibility conditions, i.e. the Fredholm alternative. The722

resonant terms are then determined from the resolution of the following set of bordered723

systems724 (J(0,𝑚𝑘) q̂𝑘
q̂†
𝑘 0

) (
q̂(z(𝑅) )

𝑒

)
=

(
F̂(z(𝑅) )

(𝜀2)

0

)
, z(𝑅) ∈ [𝑧1𝑧2, 𝑧

2
1]
𝑇 , (A 10)725
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where 𝑒 = 𝑒3 for z(𝑅) = 𝑧1𝑧2 and 𝑒 = 𝑒4 for z(𝑅) = 𝑧2
1
. The non-resonant terms are computed726

by solving the following non-degenerated forced linear systems727

J(0,𝑚 𝑗+𝑚𝑘) q̂𝑧 𝑗 𝑧𝑘 = F̂(𝑧 𝑗 𝑧𝑘)

(𝜖 2)
, (A 11)728

and729

J(0,0)Q(𝜂ℓ )
0

= G(Q0, eℓ). (A 12)730

A.1.4. Order 𝜀3
731

At third order, there exist six degenerate terms. In our case, we are not interested in solving732

for terms of third-order, instead, we will determine the linear and cubic coefficients of the733

third order normal form eq. (2.11) from a set of compatibility conditions.734

The linear terms 𝜆 (𝑠,1) and 𝜆𝑠,2 and cubic terms 𝑐 (𝑖, 𝑗) for 𝑖 = 1, 2 are determined as follows735

𝜆 (𝑠,1) =
〈q̂†

1
, F̂(𝑧1)

(𝜀3)
〉

〈q̂†
𝑧 ,Bq̂𝑧〉

, 𝜆 (𝑠,2) =
〈q̂†

2
, F̂(𝑧2)

(𝜀3)
〉

〈q̂†
2
,Bq̂2〉

, 𝑐 (𝑖, 𝑗) =
〈q̂†

2
, F̂(𝑧𝑖 |𝑧 𝑗 |

2)

(𝜀3)
〉

〈q̂†
𝑖 ,Bq̂𝑖〉

. (A 13)736

The forcing terms for the linear coefficient are737

F̂(𝑧 𝑗 )

(𝜀3)
≡

2∑
ℓ=1

𝜂ℓ

( [
N(q̂ 𝑗 ,Q(𝜂ℓ ))

0
+ N(Q(𝜂ℓ )

0
, q̂ 𝑗)

]
+ G(q̂ 𝑗 , eℓ)

)
. (A 14)738

which allows the decomposition of 𝜆 (𝑠,ℓ) = 𝜆 (𝑠,ℓ) ,Re(Re−1
𝑐 Re−1) + 𝜆 (𝑠,ℓ) , 𝛿𝑢 (𝛿𝑢,𝑐 − 𝛿𝑢) for739

ℓ = 1, 2.740

The forcing terms for the cubic coefficients are741

F̂(𝑧 𝑗 |𝑧𝑘 |
2)

(𝜀3)
≡

[
N(q̂ 𝑗 , q̂ |𝑧𝑘 |2) + N(q̂ |𝑧𝑘 |2 , q̂ 𝑗)

]
+

[
N(q̂−𝑘 , q̂𝑧 𝑗 𝑧𝑘 ) + N(q̂ 𝑗 ,𝑘 , q̂−𝑘)

]
+

[
N(q̂𝑘 , q̂𝑧 𝑗 𝑧𝑘 ) + N(q̂𝑧 𝑗 𝑧𝑘 , q̂𝑘)

]
.

(A 15)742

if 𝑗 ≠ 𝑘 and743

F̂(𝑧 𝑗 |𝑧 𝑗 |
2)

(𝜖 3)
≡

[
N(q̂ 𝑗 , q̂ |𝑧 |2𝑗

) + N(q̂ |𝑧 |2𝑗
, q̂ 𝑗)

]
+

[
N(q̂− 𝑗 , q̂𝑧2

𝑗
) + N(q̂𝑧2

𝑗
, q̂− 𝑗)

]
,

(A 16)744

for the diagonal forcing terms.745

Appendix B. Validation of the code - Comparison with the literature746

The calculations made in StabFem in the sections at the main manuscript are validated747

comparing the leading global mode in the geometry proposed by Canton et al. (2017).748

Moreover, the critical Reynolds number and associated frequency are also analysed. In the749

cited work, the authors use an analogous geometry with the following parameters:750

• Radious of the inner jet 𝑅𝑖𝑛𝑛𝑒𝑟 = 0.5751

• Diameter of the outer jet 𝐷 = 0.4752

• Distance between jets 𝐿 = 0.1753

• Ratio between velocities 𝛿𝑢 = 1754

The linear stability analysis has been carried out imposing 𝑚 = 0, as done by Canton755

et al. (2017), so the leading global mode will be axisymmetric. The critical Reynolds number756

𝑅𝑒𝑐 and the frequency 𝜔 of the leading global mode are compared in Tab. 3. As seen, few757
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Canton et al. (2017) Present work
𝑅𝑒𝑐 1420 1405
𝜔 5.73 5.72

Table 3: Comparison of 𝑅𝑒𝑐 and 𝜔 between previous work and the present one.

Figure 24: Direct mode, adjoint mode and sensitivity of the leading global mode studied
by Canton et al. (2017) calculated using StabFem.

differences can be found on the critical Reynolds number and the frequency. The relative758

error in the 𝑅𝑒𝑐 calculation is 1.06% and the one of the frequency is 0.17%.759

The global mode is now calculated using StabFem and compared with the one calculated760

by Canton et al. (2017). This mode can be found in figures 9, 10 and 11 on the cited paper.761

As it can be seen, there are not substantial differences between the direct modes, being both762

of them a vortex street with their biggest amplitude situated 10 units downstream the exit763

of the jets. The adjoint mode is concentrated within the nozzle, with its biggest amplitude764

situated on the sharp corners. There is no difference between the adjoint mode calculated765

with StabFem and the one in Canton et al. (2017). Finally, the structural sensitivity is similar766

to the one computed by Canton et al. (2017). It is composed by two lobes in the space between767

the exit of the two jets.768
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We present a detailed mathematical study of a truncated normal form relevant to the bifurcations
observed in wake flow past axisymmetric bodies, with and without thermal stratification. We employ
abstract normal form analysis to identify possible bifurcations and the corresponding bifurcation
diagrams in parameter space. The bifurcations and the bifurcation diagrams are interpreted in
terms of symmetry considerations. Particular emphasis is placed on the presence of attracting
robust heteroclinic cycles in certain parameter regimes. The normal form coefficients are computed
for several examples of wake flows behind buoyant disks and spheres, and the resulting predictions
compared with the results of direct numerical flow simulations. In general, satisfactory agreement
is obtained.

I. INTRODUCTION

Bifurcation, defined here as a transition between two
states with different symmetry, is a key concept in many
fields of modern physics. Generally speaking, the larger
the symmetry of a problem, the greater is the number of
ways the symmetry may be broken, leading to the richest
collections of bifurcation scenarios. Equivariant bifurca-
tion theory [1] constitutes a mathematical framework for
studying such problems, and predicts the possible states
that may arise and the bifurcation routes between them.
A key idea for the parameter space exploration of physi-
cal problems is the identification of points of codimension
two (or greater), namely sets of parameters at which two
(or more) bifurcations arise simultaneously. The richest
range of possible behavior is usually encountered in the
vicinity of such points. The theory also provides a sys-
tematic procedure for constructing truncated dynamical
systems called normal forms that enable a classification
of all admissible states near such codimension-two points
and their stability properties. This classification depends
only on the symmetry properties of the problem and is
thus common to all problems involving the same symme-
try.
Fluid mechanics has proved to be a particularly

rich playground for the investigation of bifurcations [2].
The classical problems for which bifurcation theory has
proved both relevant and helpful include, among others,
Taylor–Couette flow (TCF, [3, 4]) and Rayleigh-Bénard
convection (RBC, [5]). Bifurcation theory is also relevant
to wake flows, with the wake of a fixed two-dimensional
(2D) cylinder transverse to the flow providing the classic
example. Here the wake experiences a Hopf bifurcation
leading to the von Kármán vortex street beyond Re ≈ 47,
where Re is a suitably defined Reynolds number. The
case where the cylinder rotates was recently shown to
give rise to a much richer range of behavior that was also
successfully explained using bifurcation theory [6].
The present work is primarily devoted to transitions

in wake flows past axisymmetric objects (WFA) within

a homogeneous fluid. The geometry which attracted the
largest number of studies is that of a sphere. Here, exper-
iments [7, 8] and numerical investigations [9–11] reveal a
primary steady state bifurcation resulting in the loss of
axisymmetry, followed by a secondary bifurcation leading
to reflection-symmetric periodic states. The case of a ro-
tating sphere, recently analysed in [12], reveals a primary
bifurcation leading to a rotating wave pattern. Secondary
and tertiary bifurcations are therein interpreted as the
result of an interaction between three rotating wave pat-
terns. The cases of disks [13–15] and ellipsoids [15] have
also been investigated, revealing a collection of new states
and bifurcation scenarios involving the loss and recovery
of planar symmetry.

Two other related classes of problems will also be con-
sidered here. The first is the path taken by objects in
free motion, such as rising bubbles or falling solid disks
(WFA-FO problem, see [16]). For falling or rising disks,
experiments [16–19]) and simulations [20, 21] reveal a rich
range of possible behavior. As shown in [22], linear sta-
bility analysis predicts correctly the primary bifurcations
for these flows, while weakly nonlinear analysis [23] re-
produces the zigzag path observed in experiments. The
case of a rising bubble proved to be more challenging.
For bubbles of a fixed ellipsoidal shape, linear stability
analysis predicts correctly the destabilization of the path
observed in experiments [24], while [25] conducted a lin-
ear stability analysis for a deformable bubble, leading to
the conclusion that shape deformation plays little role in
the resulting dynamics.

The last class of problems considered here is closely re-
lated to the two previous ones and corresponds to wake
flows past fixed objects in a thermally stratified back-
ground involving mixed convection due to Prandtl num-
ber effects (WFA-MC). Motivated by interest in the tran-
sition to a turbulent wake in this system, the authors of
Ref. [26] conducted a parameter study using numerical
simulations at two different Prandtl numbers, Pr = 0.72
and Pr = 7. For both ellipsoids and disks [15], a large
collection of states with various symmetry properties was
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revealed, closely related to the states found in the two
previous sets of problems.
Fabre et al. [13] were the first to recognize that equiv-

ariant bifurcation theory is relevant to these sets of prob-
lems, and to note that the relevant spatial symmmetry
(corresponding to the mathematical group O(2)) is the
same as that in Taylor-Couette flow, thus highlighting
an unexpected analogy between both systems. Fabre et
al. thus reconsidered the normal form initially intro-
duced in [3, 4] for the TCF problem, and showed that
with an appropriate choice of the coefficients, the dy-
namics of the flow past a sphere and a thin disk are
correctly reproduced. Auguste et al. [14] successfully ap-
plied the same approach to a thick disk. Subsequently,
Meliga et al. [27] reconsidered the case of the sphere and
the thick disk using a multiple scale analysis to deter-
mine the coefficients in the normal form. Their results
are in agreement with the numerical simulations of [13],
thereby confirming the relevance of the approach. How-
ever, their derivation method is not fully rigorous, as the
problem is not strictly of codimension two. However,
exact codimension-two points were detected in both the
WFA-MC [26] and theWFA-FO [22] problems, indicating
that in these problems a rigorous normal form derivation
may be undertaken.
As previously mentioned, Golubitsky and collaborators

[3, 28] investigated solutions of the normal form corre-
sponding to the steady/Hopf interaction in the presence
of O(2) symmetry, with application to the TCF prob-
lem, exploring the dynamics up to secondary bifurca-
tions. However, they do not provide a systematic study
of the problem and many details are left to the reader.
Their study also overlooks possible ternary bifurcation to
states which are not observed in the TCF problem but
are nonetheless relevant to the problems considered here.
The purpose of this work is thus to revisit and extend
these results and to explain how they can be applied to
the TFC, WFA, and WFA-MC problems. Our method
differs from that of Golubitsky et al. [3, 28] in several
aspects:

• The study is restricted to a truncated problem
where only third-order nonlinearities are consid-
ered.

• Two systems are introduced: a polar coordinate
representation that eliminates the two continuous
symmetries of the system and a second system writ-
ten in its natural Hilbert basis which reduces the
dynamics to its fundamental domain. These tech-
niques, when systematically employed, reduce the
six-dimensional system to four dimensions and the
fixed-point solutions to a single representative of
each group orbit and enable us to establish the pres-
ence of robust heteroclinic cycles in this system.

• The amplification rates λs and λh of the two pri-
mary modes are included explicitly in the unfolding
of the problem. Golubitsky et al. considered the

amplification rates as unspecified functions of a sin-
gle control parameter only.

Our approach is thus much more in line with that used
by Hirschberg and Knobloch [29, 30] for the related prob-
lem of interaction of two steady-state modes with O(2)
symmetry. There are strong similarities between these
two situations, as emphasized in what follows.
The paper is organized as follows. Section II presents

the normal form and introduces a reduction to polar coor-
dinates that is used in what follows. Section III proposes
a general nomenclature for the various solutions of the
problem. Section IV reviews the fixed-point solutions of
the normal form: pure modes, mixed modes, and possi-
ble bifurcations of higher order. Section V considers a
degenerate case in which a number of details can be in-
vestigated analytically. Section VI presents a numerical
exploration of various solutions of the truncated prob-
lem. Next, section VII explains how the various results
can be used to construct consistent stability diagrams,
while section VIII applies these results to the flow past
a fixed axisymmetric object, in particular, a disk and a
sphere. The paper concludes with a brief discussion in
Section IX. Some technical details are relegated to a pair
of Appendices. Background to the techniques we use and
their application to problems arising in fluid mechanics
may be found in [2].

II. NORMAL FORM AND REDUCTION TO
AMPLITUDE EQUATIONS

A. Problem parametrization

The flow state q = [u, p] is specified by the velocity
field u and the hydrodynamic pressure p (the WFA-MC
also includes the temperature field T ). Near the mode
interaction (a codimension-two bifurcation) the flow state
takes the form

q = Q0 +Re
[
a0(t)e

−iθq̂s

]
+ Re

[
a1(t)e

−iθq̂h,−1 + a2(t)e
iθq̂h,1

]
+ h.o.t.

(1)

Here Q0 is the steady-state flow state that is invariant
under the action of the whole O(2) group, q̂s is the steady
mode and q̂h is the Hopf (unsteady) mode. The Ansatz
in eq. (1) takes into account the continuous (translation
or rotation) symmetry via the terms e±iθ, where θ ∈ S1

is an angle-like variable in the periodicity direction; for
axisymmetric problems it corresponds to the azimuthal
angle, while in the TCF it corresponds to the axial di-
rection: θ ≡ −2πx/Λ, where Λ is the mode wavelength.
Here without loss of generality the azimuthal wavenum-
ber m is taken to be m = 1. Both the steady-state flow
and the eigenmodes are functions of other spatial vari-
ables (radial distance and azimuthal angle for the TFC;
radial and axial distances for axisymmetric wake prob-
lems), but this dependence is not of importance here.
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In the following we shall be interested in the dynamics
arising from the interaction between the amplitude a0 of
the steady mode and the amplitudes a1, a2 of the left
and right-rotating waves associated with the Hopf mode.
All three amplitudes are in general complex functions of
the time t and their behavior near the mode interaction
is described by normal form theory.

B. Universal normal form

The normal form is obtained in a standard way: pro-
vided the original system of equations is Γ-equivariant
under the group Γ ≡ O(2) × S1, the normal form must
also be Γ-equivariant. The Hilbert–Weyl and Poénaru
theorems, stated in [28, Ch 1], ensure the existence of
a finite set of Γ-equivariant polynomials generating the
Γ-equivariant Taylor expansion (at the origin) of any
smooth mapping. The group Γ acts on C3 which de-
composes into irreducibles C ⊕ C2 corresponding to the
steady and Hopf modes. The action of the group Γ is
generated by rotations Rα, reflection κ, and the tem-
poral phase shift Φ of the Hopf mode. The canonical
representation of these actions is as follows:

Rα : (a0, a1, a2) →
(
a0e

iα, a1e
iα, a2e

−iα
)

Φ : (a0, a1, a2) →
(
a0, a1e

iφ, a2e
iφ
)

κ : (a0, a1, a2) →
(
a0, a2, a1

)
.

(2)

Based on these considerations, Golubitsky et al. [3, 28]
show that the resulting normal form can be written as
follows:⎛⎝ȧ0

ȧ1
ȧ2

⎞⎠ =
(
c1 + iδc2

)⎛⎝a0
0
0

⎞⎠ +
(
c3 + iδc4

)⎛⎝a0a1a2
0
0

⎞⎠
+
(
p1 + iq1

)⎛⎝ 0
a1
a2

⎞⎠ +
(
p2 + iq2

)
δ

⎛⎝ 0
a1
−a2

⎞⎠
+
(
p3 + iq3

)⎛⎝ 0
a20a2
a20a1

⎞⎠ +
(
p4 + iq4

)
δ

⎛⎝ 0
a20a2
−a20a1

⎞⎠ ,

(3)
where δ ≡ |a2|2 − |a1|2, and the 12 real quantities ci, pi

and qi, i = 1, 2, 3, 4, are functions of the control param-
eters and of the five generators of the ring of invariant
polynomials under the action of the group Γ:

ρ ≡ |a0|2, N ≡ |a1|2 + |a2|2, Δ ≡ (|a2|2 − |a1|2
)2
,

η ≡ Re
(
a20a1a2

)
, ξ ≡ (|a2|2 − |a1|2

)
Im
(
a20a1a2

)
. (4)

C. Normal form in polar coordinates

Using the polar representation of the complex ampli-
tudes aj = rje

iφj for j = 0, 1, 2, eq. (3) can be reduced
to a system of four coupled equations governing the am-
plitudes r0, r1, r2 and the phase Ψ ≡ φ1 − φ2 − 2φ0:

ṙ0 =
[
c1 + c3r1r2 cosΨ− c4δ sinΨ

]
r0

ṙ1 =
[
p1 + δp2

]
r1

+
[(
p3 + δp4

)
cosΨ +

(
q3 + δq4

)
sinΨ

]
r20r2

ṙ2 =
[
p1 − δp2

]
r2

+
[(
p3 − δp4

)
cosΨ− (

q3 − δq4
)
sinΨ

]
r20r1

Ψ̇ = 2
(
q2δ − c2δ − c3 sinΨ− c4δ cosΨ

)
+

r20
r1r2

[(
q3 +Nq4

)
cosΨ− (

Np3 +Δp4
)
sinΨ

]
.

(5)
Note that this system is four-dimensional due to the

two continuous symmetries of the system (3). Invariance
under the action of the phase shift Φ reduces the three
angle-like variables (φ0, φ1, φ2) to two (φ0, φ1 − φ2); in-
variance under the rotations Rα then leads to the single
phase Ψ.
The polar system is equivariant under the action of the

group Γρ which is isomorphic to the Pauli group Γρ �
D4 � Z2, where the symbol � indicates the semi-direct
product between groups. The generators of the group
are the reflection κ and Rπ/2Φπ/2, the discrete rotation
through π/2 with an equal time shift. For the sake of
conciseness, let us introduce the action of the following
group elements on the polar vector field:

κ :
(
r0, r1, r2,Ψ

)→ (
r0, r2, r1,−Ψ

)
Rπ/2Φπ/2 :

(
r0, r1, r2,Ψ

)→ (
r0,−r1, r2,Ψ+ π

)
RπΦπ :

(
r0, r1, r2,Ψ

)→ (− r0, r1, r2,Ψ
)

Rπ/2Φ−π/2

(
r0, r1, r2,Ψ

)→ (
r0, r1,−r2,Ψ+ π

)
,

(6)

where Rπ/2Φ−π/2 = κ · (Rπ/2Φπ/2

)3 · κ and RπΦπ =

(Rπ/2Φπ/2)
2. In the next section we present a classifica-

tion of the various solutions based on the polar represen-
tation.

D. Group-theoretic considerations

Branching of solutions is determined by the structure
of the isotropy lattice acting on fixed points of the normal
form (3). The isotropy subgroups of solutions that arise
at primary bifurcations correspond to maximal isotropy
subgroups of Γ, that is, isotropy subgroups that are not
included in any other isotropy subgroup other than Γ it-
self. In a similar manner, solutions arising at secondary
bifurcations have isotropy subgroups that are maximal
in a subgroup strictly smaller than Γ. This process con-
tinues until the trivial group is reached, corresponding
to the most general fixed point subspace of the normal
form.
Prior to the introduction of the isotropy lattice of the

normal form (3), let us introduce the following notation
to denote some of the isotropy subgroups of Γ: the group

of rotations S̃O(2),

S̃O(2) ≡ {RφΦ−φ | φ ∈ [0, 2π)}, (7a)
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FIG. 1: Lattice of isotropy subgroups of the symmetry
group Γ (resp. Γρ).

and the group Zn(g), a cyclic subgroup generated by the
element g, satisfying gn = Id. The isotropy lattice of the
normal form (3) is represented in fig. 1. In section III
we use the information extracted from this lattice to de-
termine the types of invariant solutions admitted by the
normal form. In addition to the isotropy subgroups of
the complex normal form, table III lists the isotropy sub-
groups of the solutions of the polar system (5).

E. Third order normal form

Here we will not deal with the general case, instead we
consider a truncated form retaining only nonlinearities of
third order. Such a truncated system can be expressed
in the following explicit form:

ȧ0 = λsa0 + l0a0|a0|2 + l1
(|a1|2 + |a2|2

)
a0

+il2
(|a2|2 − |a1|2

)
a0 + l3a0a2a1

(8a)

ȧ1 =
(
λh + iωh

)
a1 +

(
B|a1|2 +

(
A+B

)|a2|2)a1
+Ca1|a0|2 +Da20a2

(8b)

ȧ2 =
(
λh + iωh

)
a2 +

(
B|a2|2 +

(
A+B

)|a1|2)a2
+Ca2|a0|2 +Da20a1 ,

(8c)

where l0, l1, l2, l3 are real coefficients and A,B,C,D are
complex coefficients. The correspondence with the nota-
tion of Golubitsky et al. [3, 28] is reported in tables I
and II.
The system (8) then corresponds to the polar equations

ṙ0 =
[

λs + l0r
2
0 + l1

(
r21 + r22

)]
r0

+l3r0r1r2 cosΨ
(9a)

ṙ1 =
[

λh +Brr
2
1 + (Ar +Br)r

2
2 + Crr

2
0

]
r1

+r20r2
(
Dr cosΨ +Di sinΨ

) (9b)

ṙ2 =
[

λh +Brr
2
2 + (Ar +Br)r

2
1 + Crr

2
0

]
r2

+r20r1
(
Dr cosΨ−Di sinΨ

) (9c)

Ψ̇ = (Ai − 2l2)(r
2
2 − r21)− 2l3r1r2 sinΨ

+r20Di cosΨ
[r2
r1

− r1
r2

]
− r20Dr sinΨ

[r2
r1

+
r1
r2

]
.

(9d)

Interestingly, the polar system only involves 9 of the
13 original coefficients, namely: l0, l1, l3, Ar, Br, Cr,
Dr, Di and Ai − 2l2. The system (9) is decoupled from
the evolution of the phase φ0 and the ”mean phase” of
the Hopf component φm = (φ1 + φ2)/2, which evolve
according to

φ̇0 = l2(r
2
2 − r21) + l3r1r2 sinΨ , (10a)

φ̇m = ωh +
(
Bi +

1
2Ai

)
(r21 + r22) + Cir

2
0

+
1

2
r20Di cosΨ

[
r2
r1

+
r1
r2

]
+
1

2
r20Di sinΨ

[
r1
r2

− r2
r1

]
.

(10b)

In addition we introduce a system whose coordinates
are invariant under the group action, except for the re-
flection symmetry in Ψ. We do this primarily because
we would like to use the resulting system to study a par-
ticular degenerate case in section V. The advantage of
such a system is that dynamics occur in the ”fundamen-
tal domain”, that is, there is only one representative of
each group orbit. The system is defined in terms of the
invariants

R = r20, S = r21 + r22, P = r1r2, Q = cosΨ . (11)

In term of these coordinates the evolution equations
become

Ṙ = 2
[
λs + l0R+ l1S + l3P

]
R (12a)

Ṡ = 2
[
λh +BrS + CrR

]
S

+4
[
ArP +DrQR

]
P

(12b)

Ṗ =
[
λh +BrS + CrR

]
P

+4
[
ArP +DrQR

]
S −DiR

√
(1−Q2)(S2 − 4P 2)

(12c)

TABLE I: Correspondence of the real coefficients of the
normal form (8) with the literature.

λs λh ωh l0 l1 l2 l3
[3, 28] c1μ · μ p1μ · μ q10 c1ρ c1N c20 c30
[4] α0μ+ β0ν α1μ+ β1ν ω0 c0 Re(d0) −Im(d0) f0
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Q̇ =
[
2l3 +

DrRS
P

]
(1−Q2)

+
[
(Ai − 2l2)− DiRQ

P

]√
(1−Q2)(S2 − 4P 2) .

(12d)
In the study that follows, we take the nonlinear coef-

ficients lj for j = 1, 2, 3, 4, A,B,C,D as well as the fre-
quency ωh of the Hopf mode as constant. The amplifica-
tion rates λs and λh will be used as unfolding parameters.
Our study provides predictions for the existence and sta-
bility of the possible solutions in the (λs, λh) plane. To
apply these results to the flows we are interested in, we
have to specify the dependence of the amplification rates
on the control parameters of the problem. The WFA
problem employs a single control parameter R while the
WFA-MC problem is specified by two control parame-
ters R1 and R2 related to the magnitude of the incoming
velocity and the temperature difference between the ob-
ject and the background, respectively. In this case the
amplification rates can be assumed to have the following
dependence:

λs = αs(R1 −R∗
1) + βs(R2 −R∗

2),
λh = αh(R1 −R∗

1) + βh(R2 −R∗
2) ,

(13)

where R∗
1 and R∗

2 are the threshold values given by the
linear stability analysis of the axisymmetric steady state;
for the WFA problem βs = βh = 0.

In the TCF problem R1, R2 are related to the angular
velocities of the inner and outer cylinders; in the vicinity
of the bicritical (codimension-two) point (R∗

1, R∗
2) the

amplification rates can be assumed to depend linearly on
the distance to this point:

λs = c1R1
(R1 −R∗

1) + c1R2
(R2 −R∗

2),
λh = p1R1

(R1 −R∗
1) + p1R2

(R2 −R∗
2) .

(14)

Numerical values for (R∗
1, R

∗
2) and for the parameters

c1R1
, c1R2

, p1R1
, p1R2

are tabulated in [3] for several values
of the radius ratio η < 1 (i.e. the ratio of the radii of the
inner and outer cylinders).

III. CLASSIFICATION OF THE SOLUTIONS

The nomenclature used to classify the various solutions
is given in tables III and IV. We describe every possible
solution, although the emphasis will be put on the so-
lutions that arise generically in the third-order problem
and in the degenerate case considered in section V.

TABLE II: Correspondence of the complex coefficients
of the normal form (8) with the literature.

A B C D
[3, 28] 2

(
p20 + iq20

)
(p1N − p20) + i(q1N − q20) p1ρ + iq1ρ p30 + iq30

[4] e1 − d1 d1 c1 f1

To illustrate the various solutions graphically, we
project the four-dimensional phase space into a plane
spanned either by the complex amplitude A(t) or by
A′

j(t) for j = 0, 1, where

A(t) ≡ a0(t) + a1(t) + a2(t),
A′

j(t) ≡ A(t)e−iφj(t), for j = 0, 1,
(15)

hereafter referred to as the A-projection and the A′-
projection, respectively.
The function A provides a global measure of the dy-

namics of the system and combines contributions from
both the steady and unsteady components. In the wake
problem, the real and imaginary parts of A can be identi-
fied with the leading order contribution to the lift forces
in the y and z directions, respectively. In the TCF prob-
lem they represent, for example, the vorticity levels at
two points located a quarter of a wavelength apart in the
periodicity direction.
The solutions that are stationary in the polar repre-

sentation are summarized in the table III. The simplest
solution is the trivial solution (TS) (a0, a1, a2) = (0, 0, 0).
This solution corresponds to Couette flow in the TCF
problem, and to the axisymmetric solution in the WFA
and WFA-MC problems. In the A-projection this solu-
tion corresponds to the origin (Figure 2a). There are
three primary solutions: steady-state modes (SS), rotat-
ing waves (RW) and standing waves (SW). The steady
state mode (SS) takes the form (a0, 0, 0), a0 �= 0. This
state corresponds to the Taylor Vortex state in the TCF
problem and the Steady Shedding mode in the wake prob-
lems. In the A-projection this state is represented by an
off-center point (Figure 2b). As shown in table V and in
fig. 2b using a thin dashed-dotted line there is a circle
of such states related by rotations Rφ0

; each state is in
addition reflection-symmetric.
The RW and SW solutions arise in a primary Hopf

bifurcation of the trivial state. Because of O(2) sym-
metry, the eigenvalues at the Hopf bifurcation are dou-
bled, and the Hopf bifurcation produces simultaneously
a branch of rotating waves (RW, (a0, a1, a2) = (0, a1, 0))
and standing waves (SW, (a0, a1, a2) = (0, a1, a1)). The
RW break reflection symmetry; consequently, there are
two RW, rotating in opposite directions and related by
reflection. In contrast, the SW are reflection-symmetric
oscillations with zero mean. In the TCF problem the
RWs correspond to the Spiral Vortex state, while in the
wake problem they correspond to the Spiral Shedding
state, observed, for example, in the wake of a rising bub-
ble [31]. In the A-projection the RW state corresponds to
a limit cycle centered at the origin (Figure 2c), while the
SW state is represented by a radial oscillation through
the origin (Figure 2d). In the TCF problem, the SWs
correspond to the Ribbon state while in the wake prob-
lem they correspond to the Symmetric Periodic Shedding
state observed, for example, in the wake of a disk when
R ≈ 150. As for SS, there is a circle of SW states re-
lated by rotations, see fig. 2d. Each of these solutions
corresponds to a one-dimensional fixed point subspace
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TABLE III: Nomenclature and symmetry groups of the steady-state solutions of the system (5).

Name Representative Isotropy group (complex) Isotropy group (polar) Frequencies
Pure modes:

TS (0, 0, 0, nd) O(2)× S1 D4 � Z2(κ) 0
SS (ra, 0, 0, nd) Z2(κ)× S1 Z2(κ)× Z2(Φπ) 0

RW (0, ra, 0, nd) S̃O(2) Z4(Rπ/2Φπ/2) 1
SW (0, ra, ra, nd) Z2(κ)× Z2(RπΦπ) Z2(κ)× Z2(RπΦπ) 1

Mixed modes:
MM0 (ra, rb, rb, 0) Z2(κ) Z2(κ) 1
MMπ (ra, rb, rb, π) Z2

(
κ ·RπΦπ

)
Z2

(
κ ·RπΦπ

)
1

MW (0, ra, rb,Ψ) Z2(RπΦπ) Z2(RπΦπ) 1
Precessing waves:

General (ra, rb, rc,Ψ) 1 1 2
Type A (ra, rb, rb,Ψ) 1 1 2
Type B (ra, rb, rc, 0 or π) 1 1 2
Type C (ra, rb, 0,Ψ) 1 1 2

Re(A)

Im(A)

(a) TS

Re (A)

I m(A)

(b) SS

Re(A)

Im(A)

(c) RW

Re(A)

Im(A)

(d) SW

FIG. 2: The trivial state (TS) and the primary
branching solutions SS, RW and SW in the complex A

plane.

spanned either by a0 or a1, and their presence is there-
fore guaranteed by the equivariant branching lemma.

Secondary bifurcations may lead to states with a
higher-dimensional fixed point subspace. These states
correspond to the next rung of the lattice of isotropy sub-
groups. An example is provided by mixed mode states
that correspond to a (nonlinear) superposition of the SS
and SW modes. There are two possible states of this
type. The first is denoted by MM0, and corresponds,
respectively, to a pattern called Twisted Vortices in the
TCF problem and to the reflection symmetry-preserving
mode (RSP) in the wake problem. In the A-projection

the solution oscillates back and forth in the radial di-
rection but now with non-zero mean (Figure 3a). The
second mixed mode, MMπ, corresponds, respectively, to
Wavy Vortices in the TCF problem and to the reflec-
tion symmetry-breaking mode (RSB) in the wake prob-
lem. In the A-projection this solution corresponds to a
back-and-forth along a line segment perpendicular to the
radial direction (Figure 3b). The phase φ0 of both these
states is arbitrary. In other words, there is a circle of so-
lutions of each type, as indicated in fig. 3a) and fig. 3b).
Finally, one can also find a mixed mode state involving
the Hopf modes, referred to as a modulated wave state
(MW), consisting of a (nonlinear) superposition of two
rotating wave modes. This state is referred to as the
Modulated Spiral mode (MSP) in the TCF problem and
the Modulated Wave mode (MW) in the wake problem.
It is a mode with two temporal frequencies, which are in
general incommensurate, and so corresponds to a 2-torus
as sketched in fig. 3c. This type of solution does not
occur generically in the third-order system, although it
arises in higher order normal forms or in the degenerate
case corresponding to Ar = 0 [32].

The last solution type, that is, a state arising in a
tertiary bifurcation, corresponds to a fixed point in the
(r0, r1, r2,Ψ) coordinates with no further symmetry. Ac-
cording to eq. (10), in such states the phase φ0 of the
steady mode generically precesses at a constant rate given
by φ̇0. Consequently, states of this type display two
frequencies, one of which is close to the critical Hopf
frequency while the other is a low frequency given by
eq. (10a). Such modes have been called ”modulated ro-
tating waves” in [3], but here we prefer to avoid the am-
biguous word ”modulated” which has been used to de-
scribe a large variety of very different states in the past.
Instead, these solutions will be referred to as Precessing
Waves (PrW) or ”drifting waves”.

The precession of these states is best appreciated in
the A′-projection, showing the state in a frame of refer-
ence precessing with the steady-state component a0. In
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Re (A)

I m(A)

(a) MM0

Re (A)

I m(A)

(b) MMπ

Re (A)

I m(A)

(c) MW – A-projection

Re(A'1)

Im(A'1)

(d) MW – A′
1-projection

FIG. 3: The secondary states (a) MM0, (b) MMπ and
(c) MW in the complex A plane. (d) The A′-projection

of the MW state.

this frame of reference, the PrW is periodic and takes
the form of an ellipse (Figure 4b. Note that in this rep-
resentation the polar coordinates (r0, r1, r2,Ψ) can be in-
terpreted graphically: r0 is the distance of the center of
the ellipse to the origin, (r1 + r2)/2 and (r1 − r2)/2 are
the major and minor axes, and Ψ is twice the angle be-
tween the major axis of the ellipse and the direction of
the steady-state component.

There are in fact four types of PrW as explained in Ta-
ble III. The general solution, PrW General, occurs gener-
ically in the third order normal form and corresponds
to the most general fixed-point solution of eq. (9). In
addition, there are special PrW states. The first two,
called PrW Type A and Type B, do not occur generi-
cally in the third order problem, but they are found in
normal forms of higher order or in the degenerate case
considered in section V. The third solution, PrW Type
C is another degenerate solution that arises in the third
order normal form but only when the three conditions
Ai − 2l2 = Dr = Di = 0 are satisfied.

The solutions that are periodic in the polar represen-
tation are summarized in table IV. We distinguish three
types of solutions. The first type is referred to as a Modu-
lated Mixed Mode since it displays the same spatial sym-
metries as the mixed modes already described. For ex-
ample, in the A-projection the Modulated Mixed Mode

state M̃Mπ evolves on a 2-torus, whose shape resembles
that of MMπ (Figure 5a). The A′

0-projection (Figure 5b)
yields an identical but rotated picture, indicating that
the phase of the steady-state component remains con-

stant. The related state M̃M0 is not displayed, since its

Re(A)

Im(A)

(a) A-projection of PrW

Im(A'0)

Re(A'0)

(b) A′
0-projection of PrW

FIG. 4: The tertiary state PrW.

Re(A)

Im(A)

(a) A-projection of ˜MMπ

I m(A'0)

Re (A'0)

(b) A′
0-projection of ˜MMπ

FIG. 5: The Modulated Mixed Mode M̃Mπ in the
complex A plane.

A-projection is identical to that of the MM0 state. Its
modulus |A|, however, pulsates with two independent fre-
quencies.
We also find periodic states we call Pulsating

Waves (PuW). In such states, the polar coordinates
(r0, r1, r2,Ψ) all oscillate periodically in time, but the
pulsation retains a certain symmetry. Specifically, r1 =
r2 and sinΨ = 0, where the overbar indicates an av-
erage over the pulsation period. According to eq. (10)
the phase φ0 of the steady-state component also pulsates
periodically, but the average value of its derivative over
one pulsation period vanishes. Consequently, the pat-
tern does not precess. In the A-projection the solution
evolves on a 2-torus that remains confined within a given
angular sector (Figure 6a), indicating the absence of net
precession. The A′

0-projection (Figure 6b) also reveals a
2-torus, albeit of different form.
The last type of periodic solution corresponds to the

case where the (r0, r1, r2,Ψ) coordinates are once again
all periodic, but the conditions r1 = r2 and sinΨ = 0
are violated. In the A-projection, this state appears ir-
regular (Figure 7a), while the A′

0-projection (Figure 7b)
revels a 2-torus. In fact, this solution actually evolves on
a 3-torus, owing to net drift in the phase φ0. We call
these states Three-Frequency Waves (3FW), since they
are characterized by a frequency near the critical Hopf
frequency, the pulsation frequency, and finally the pre-
cession frequency.
The classification of the solutions of the generic steady-

Hopf interaction with O(2) symmetry presented by Gol-
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TABLE IV: Nomenclature and symmetry group of limit cycle solutions of the system (5).

Name Representative Isotropy group Frequencies
of solution in polar coordinates in primitive coordinates

M̃M0,π (ra(t), rb(t), rb(t), 0 or π) 1 2

ĨMM (0, rb, rc,Ψ(t)) 1 2
PuW (ra(t), rb(t), rc(t),Ψ(t)) 1 2

with rb = rc and sinΨ = 0
3-frequency waves: (3FW)

General (ra(t), rb(t), rc(t),Ψ(t)) 1 3
Type A (ra(t), rb(t), rb(t),Ψ(t)) 1 3

with sinΨ �= 0
Type B (ra(t), rb(t), rc(t), 0 or π) 1 3

with rb �= rc
Type C (0, rb(t), rc(t), nd) 1 3

with rb �= rc
Type D (ra(t), rb(t), 0,Ψ(t)) 1 3

with sinΨ �= 0

Re(A)

Im(A)

(a) A-projection of PuW

Im(A'0)

Re(A'0)

(b) A′
0-projection of PuW

FIG. 6: The Pulsating Wave PuW in the complex A
plane.

ubitsky et al. [3, 28] and covered in section IID is based
on maximal isotropy subgroups of the symmetry group
O(2) × S1 of the normal form. This technique predicts
the existence up to tertiary bifurcations of fixed points
of the complex normal form 3. These isotropy subgroups
correspond to the symmetries of the solutions within the
fixed point subspace of each isotropy group (cf. table III).
However, several of the states identified here have trivial
symmetry (denoted by 1), and their existence cannot be
established by group-theoretic arguments alone. Thus,
the polar representation introduced here is helpful for the
explicit computations required to establish the presence
of these more complex states.

IV. DYNAMICS OF THE SOLUTIONS

In this section, we describe the various solutions of
the truncated third-order system (8). We summarize
not only the solutions but also their stability properties,
assuming that all necessary non-degeneracy conditions
hold.

Re(A)

Im(A)

(a) A-projection of 3FW

I m(A'0)

Re (A'0)

(b) A′
0-projection of 3FW

FIG. 7: The Three-Frequency Wave 3FW in the
complex A plane.

A. Pure modes

Table V contains the definition and eigenvalues of the
trivial state and of the pure modes. Since the polar angle
Ψ is undefined for these states, the results are obtained
from the primitive amplitude equations (8). Therefore,
six eigenvalues are listed for each branch. The condition
for supercriticality of the primary branch is also given.
This can be deduced from elementary considerations. For
example, the SS branch is supercritical if l0 < 0, as can
be seen in both the equation for the branch (which is
then defined for λs > 0) and the first non-zero eigenvalue
(which is then negative, implying that stability has been
transferred to the SS branch). The conditions for su-
percriticality also provide the conditions for the subcrit-
icality (if the corresponding parameter has the opposite
sign) and non-degeneracy (if the corresponding quantity
is non-zero).

The bifurcation at λh = 0 is the standard Hopf bifur-
cation with O(2) symmetry, and so gives rise simultane-
ously to branches of RW and SW. The RW rotate coun-
terclockwise (clockwise) when ωh > 0 (ωh < 0). Reflec-
tion symmetry implies that for each RW (r1, r2) = (r1, 0)
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TABLE V: Defining equations and eigenvalues of primary branches in the third order normal form (8).

Name of solutions Definition Eigenvalues Notes
(condition for supercriticality)

Pure modes:
TS r0 = r1 = r2 = 0 λs (twice) Bif. to SS

λh ± iωh (twice each) Bif. to SW and RW

SS r0 =
√

−λs
l0

≡ rP 0 Inv. under rotation

l0 < 0 φ0 arbritrary 2l0r
2
P Bif. from TS

r1 = r2 = 0 λh + iωh + (C +D)r2P and c.c. Bif. to MM0

λh + iωh + (C −D)r2P and c.c. Bif. to MMπ

SW r1 = r2 =
√

− λh
(2Br+Ar)

≡ rS 0 Inv. under time shift

2Br +Ar < 0 r0 = 0 0 Inv. under rotation
φ1 − φ2 arbitrary (4Br + 2Ar)r

2
S Bif. from TS

φ̇1 = φ̇2 = ωh + (2Bi +Ai)r
2
S −2Arr

2
S Bif. to RW

λs + (2l1 + l3)r
2
S Bif. to MM0

λs + (2l1 − l3)r
2
S Bif. to MMπ

RW r1 =
√

− λh
Br

≡ rR 0 Inv. under time shift + rotation

Br < 0 r0 = r2 = 0 2Brr
2
R Bif. from TS

φ̇1 = ωh +Bir
2
R Ar2R and c.c. Bif. to SW

λs + (l1 + il2)r
2
R and c.c. Bif. to PrW

there is also a RW (r1, r2) = (0, r1) rotating in the oppo-
site direction. The condition Ar = 0 represents a degen-
eracy that is analysed theoretically in [1, 2, 32, 33]. In
the vicinity of this degeneracy two-frequency states are
present, and these are analyzed in appendix B.

B. Mixed modes

The defining equations for the mixed modes are given
in table VI. We differentiate between nondegenerate so-
lutions of the third-order truncated normal form, which
are the Mixed Modes of type MM0,π, and degenerate
solutions, which are the Modulated Wave modes MW
briefly discussed in appendix B. The nondegeneracy con-
ditions for the existence of MM branches are Δ± =
(2Br + Ar)l0 − (2l1 ± l3)(Cr ± Dr) �= 0, with the pos-
itive sign for MM0 and the negative sign for MMπ. In-
spection shows that these states bifurcate supercritically
from the SS branch if Δ±l0 < 0 and from the SW branch
if Δ±(2Br + Ar) < 0. Modulated Wave modes MW are
degenerate solutions of the third order normal form (9)
and exist when Ar = 0 and Δb = l3 sinΨ �= 0.

At this point, it is interesting to point out the similar-
ities between the present problem and the related prob-
lem of the interaction between two steady-state modes
with opposite parity analysed by Hirschberg & Knobloch
[29, 30]. The latter problem has two pure modes and
two mixed modes, which are defined by equations sim-
ilar to those defining our SS and SW pure modes and
mixed modes. So, if we restrict to the subspace gener-
ated by the SS and SW pure modes, all the results of
Hirschberg & Knobloch [29, 30] can be directly applied
to the present case. This is not so, however, within the

system (8), which reveals the presence of additional sec-
ondary bifurcations (see below).

C. Stability of mixed modes and tertiary
bifurcations

Higher order bifurcations can be detected by lineariz-
ing the normal form (8) around the mixed modes in ta-
ble VI. Working with the primitive equations, as done in
Golubitsky et al. [28], leads to the same results, but the
procedure is more involved. Within the polar representa-
tion four eigenvalues need to be computed; the remaining
eigenvalues are both zero owing to the two continuous
symmetries, the invariance of the mixed modes under ro-
tation and time translation.

1. Mixed modes

To obtain the results listed in table VI, consider the
following expansion: r0 = ra+x0, r1 = rb+x1, r2 = rb+
x2 and Ψ = Ψ0 +ψ, with either Ψ0 = 0 for MM0 or Ψ =
π for MMπ; in either case we suppose the perturbation
is infinitesimal, |x0|, |x1, |x2|, |ψ| 	 1. In terms of the
quantities ρ = x1−x2 and xM = (x1+x2)/2 the resulting
liner stability problem is block-diagonal:
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TABLE VI: Defining equations and eigenvalues of mixed modes in the third order normal form (8).

Name of solutions Definition Eigenvalues Notes
(condition for supercriticality)

MM0 r2a = (2l1+l3)λh−(2Br+Ar)λs

Δ+
eigs of M+

a Bif. to M̃M0

Δ+ �= 0 r2b = (Cr+Dr)λs−l0λh
Δ+

eigs of M+
b Bif. to PrW and/or PuW

Δ+ = (2Br +Ar)l0 − (2l1 + l3)(Cr +Dr)

MMπ r2a = (2l1−l3)λh−(2Br+Ar)λs

Δ− eigs of M−
a Bif. to M̃Mπ

Δ− �= 0 r2b = (Cr−Dr)λs−l0λh
Δ− eigs of M−

b Bif. to PrW and/or PuW

Δ− = (Br +Ar)l0 − (2l1 − l3)(Cr −Dr)

MW r2a = 1
2

[
− Ar

2p2
N

−
√

χ

4p1Δp2
N

]
−2r2SW

(
Ar + 4r2SW p2N

)
Bif. from/to SW

2Br +Ar < 0, Ar > 0 r2b = 1
2

[
− Ar

2p2
N

+
√

χ

4p1Δp2
N

]
−r2RW

(
Ar − 2r2RW p2N

)
Bif. from/to RW

p2N < 0, p1Δ < 0 λs − l1
Ar

p2
N

Bif. to PrW or 3FW

Existence I: Ar/p
2
N < 0

Existence II: 0 < χ

p1Δp2
N

<
A2

r

(p2
N

)2
χ = Ar(Ar + 2Br)− 4p2N −Ar

p1N2

p2N
λh

(
ẋ0

ẋM

)
= M±

a

(
x0

xM

)
with

M±
a = 2

(
l0r

2
a (2l1 ± l3)rarb

(Cr ±Dr)rarb (2Br +Ar)r
2
b

)
,

(
ρ̇

ψ̇

)
= M±

b

(
ρ
ψ

)
with

M±
b = 2

( −Arr
2
b ∓Drr

2
a ±Dir

2
arb

(2l2 −Ai)rb ∓Dir
2
a/rb ∓(Drr

2
a + l3r

2
b )

)
,

(16)
with the upper sign applying to MM0 and the lower one
to MMπ. The matrices M+

a , M+
b , M−

a , M−
b correspond,

respectively, to the matrices denoted M0, M1, N0 and N1

in Golubitsky et al. [28], but are obtained here in a much
more straightforward way. The expressions are identical,
except for the prefactor 2 which is missing in Golubitsky
et al. and an overall change of sign in their matrix M1.
Let us first discuss the situation in the subspace

(x0, xM ), which is governed by the system (16a). This
system is completely analogous to that studied by
Hirschberg & Knobloch [29], since it involves perturba-
tions within the SS/SW invariant subspace of the prob-
lem. In particular, the determinant of the matrix M±

a

(i.e. the product of the eigenvalues) is 4rarbΔ±. It fol-
lows that a steady state bifurcation cannot occur along
either mixed mode within the SS/SW subspace. This
fact could have been anticipated by noting that this sub-
space does not admit symmetry-breaking bifurcations of
these states. As a result only Hopf bifurcations are pos-
sible. It follows that the eigenvalues of the matrix M±

a

are either real with constant sign, or complex conjugate
with a possible Hopf bifurcation. Inspection shows that
the situation depends upon the signs of the quantities
l0, 2Br + Ar, and Δ±. If Δ± < 0, both eigenvalues

are real and their product is negative. Therefore, one of
the eigenvalues is stable and the other unstable. This
means that the corresponding branch MM0,π is always
less stable than the primary SS and SW branches. In the
case Δ± > 0, the product of the eigenvalues is positive,
and their sum is given by the trace of the matrix, i.e.
2
(
l0r

2
a + (2Br +Ar)r

2
b

)
. When l0 < 0 and 2Br +Ar < 0,

i.e., when both primary bifurcations are supercritical, the
trace remains negative, indicating that both eigenvalues
are stable along the whole mixed mode branch. Similarly,
when l0 > 0, and 2Br + Ar > 0, i.e. when both primary
bifurcations are subcritical, the trace remains positive,
indicating that both eigenvalues are unstable along the
whole branch. The last possibility, l0(2Br + Ar) < 0,
arises when one of the primary bifurcations is subcrit-
ical while the other is supercritical. In this case, the
real part of the eigenvalues changes sign somewhere along
the branch, signaling the occurrence of a Hopf bifurca-
tion. The solution born at such a Hopf bifurcation is

referred to here as a Modulated Mixed Kode (M̃MΨ0
, see

table IV). The frequency of oscillation of the Modulated
Mixed Mode at the Hopf bifurcation is given by the de-
terminant of the matrix M±

a and may be expressed in
terms of r2a as follows:

ω2
a = − l0Δ±

2Br +Ar
r4a . (17)

According to Hirschberg & Knobloch [29], the corre-
sponding bifurcation is degenerate within the third or-
der truncation, and higher order terms are required to
determine whether it is subcritical or supercritical.
Consider now the situation in the (ρ, ψ) subspace, gov-

erned by the system (16b). Inspection shows that the
matrix M±

b may have complex or real eigenvalues. So,
in this subspace, each of the mixed modes can experi-
ence steady bifurcations (associated with the vanishing
of a single eigenvalue of M±

b ) and/or Hopf bifurcations
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(associated with the vanishing of the real part of a pair
of complex eigenvalues of M±

b ). To discuss the nature
of the solutions born at these tertiary bifurcations it is
useful to note that the phase drift φ̇0 of the steady mode
component is related to these quantities by the equation

φ̇0 = −2l2rbρ± l3r
2
bψ +O(ρ3, ρ2ψ, ψ2ρ, ψ3) , (18)

obtained from eq. (10a).

A steady state bifurcation will generically give rise to
a branch with constant, nonzero (ρ, ψ), and according
to eq. (18) such a state will therefore precess at a con-
stant angular velocity. The corresponding bifurcation
will be referred to as a parity-breaking bifurcation, and
the states produced as Precessing Waves (PrW, see ta-
ble III). On the other hand, a Hopf bifurcation will gener-
ically give rise to a limit cycle in the (ρ, ψ) plane. Since
this cycle is symmetric about (ρ, ψ) = (0, 0), eq. (18)
implies that the resulting state will drift back and forth
with zero net drift. The result is a direction-reversing
wave [34] and we refer here to states of this type as Pul-
sating Waves (PuW, see table IV).

These predictions are in agreement with those of Gol-
ubitsky et al. except for their expectation that the
symmetry-breaking Hopf bifurcation (i.e. the Hopf bifur-
cation in the (ρ, ψ) subspace) gives rise to a 3-frequency
state. We see that while the bifurcation is indeed associ-
ated with translations of the pattern and hence motion
along a three-torus, this motion is in fact a two-frequency
motion (in the original variables).

The eigenvalues of the matrix M±
b solve a quadratic

equation which cannot be simplified easily, and generally
has to be investigated on a case-by-case basis. However,
it is instructive to consider the situation in the vicinity
of the bifurcation points of the mixed modes from the
pure modes. In the vicinity of the bifurcation from the
SS mode one has rb 	 ra, and the eigenvalues of M±

b are,

at leading order, (∓2Dr2a,∓Dr2a). Thus, if Dr > 0 (resp.
Dr < 0), the MM0 is more (resp. less) stable than the
MMπ mode in the vicinity of the bifurcation from the SS
mode. Similarly, near the bifurcation from the SW mode,
the requirement ra 	 rb shows that the eigenvalues of
M±

b are, at leading order, (−2Arr
2
b ,∓2l3r

2
b ). The first

eigenvalue indicates stability for both MM0 and MMπ

modes provided Ar > 0. Recall that the parameter Ar

also determines if the SW branch is more or less stable
than the RW branch. Thus, the mixed modes inherit
this property from the SW branch in the vicinity of the
bifurcation point. The second eigenvalue likewise implies
that if l3 > 0 (resp. l3 < 0), the MM0 is more (resp. less)
stable than the MMπ in the vicinity of the bifurcation
from the SW mode.

D. Bifurcation from Rotating Waves to Precessing
Waves

As indicated in table III, the RW branch has a couple
of complex eigenvalues which may lead to a bifurcation
to a Precessing Wave (PrW). This situation was investi-
gated by Crawford et al. [35] using the primitive sixth-
order system. The derivation was lengthy and required
the demonstration of an extension of the Hopf theorem
to complex equations. The use of the polar representa-
tion introduced here leads to substantial simplifications
because, within this representation, this bifurcation is
in fact a steady-state one, and the resulting Precessing
Wave is a stationary solution of the polar equations.
We consider here the clockwise (ωh > 0) RW with

(r1, r2) ≡ (rR, 0), where rR is given in table III. Accord-
ing to the table, a bifurcation occurs along this branch
when the bifurcation parameter, defined by

σR ≡ λs + l1r
2
R , (19)

vanishes. Inspection shows that the corresponding eigen-
vector breaks the symmetry of the mixed mode (i.e., it
points in the a0 direction). We expect, therefore, that
the branch originating in this bifurcation will be char-

acterized by r0 = O(σ
1/2
R ). We further anticipate that

r2 = O(σR) and r1 = rR + x1 with x1 = O(σR). We also
assume that Ψ has a finite limit in the vicinity of the
bifurcation point. With these assumptions, the station-
ary solutions of the polar system (12) obey the following
equations at leading order:

σR + l0r
2
0 + 2l1rRx1 + l3rRr2 cosΨ = 0 (20a)

2BrrRx1 + Crr
2
0 = 0 (20b)

ArrRr2 = −r20
(
Dr cosΨ−Di sinΨ

)
(20c)

(Ai − 2l2)rRr2 = −r20
(
Di cosΨ +Dr sinΨ

)
. (20d)

To solve these equations, we add the squares of equations
eqs. (20c) and (20d) to obtain[

A2
r + (Ai − 2l2)

2r2Rr
2
2

]
= |D|2r40 . (21)

This equation allows us to express r2 in terms of r0. Elim-
inating sinΨ from eqs. (20c) and (20d) leads to

cosΨ = − DrAr +Di

(
Ai − 2l2

)
|D|√A2

r + (Ai − 2l2)2
. (22)

Finally, x1 is easily expressed as a function of r0 from
eq. (20b). Introducing these expressions into eq. (20a)
yields a classical branching equation which can be cast
in the form

σR +Hrr20 = 0,

with Hr = l0 − l1
Cr

Br
− l3

DrAr +Di(Ai − 2l2)

A2
r + (Ai − 2l2)2

.

(23)
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It follows that in the vicinity of the bifurcation point,
the Precessing Waves are given by the branching equa-
tion r0 ≈ (−σR/H

r)1/2, and the bifurcation is then su-
percritical if Hr < 0.

The precession rate corresponding to this solution is
given by eq. (10a) and reads

φ̇0 = −l2r
2
R +Hir20

with Hi = l2
Cr

Br
+ l3

DiAr−Dr(Ai−2l2)
A2

r+(Ai−2l2)2
.

(24)

Note that the branching parameter Hr and the term Hi

correspond, respectively, to the real and imaginary parts
of the complex Hopf coefficient H computed in [35], at
the end of a much lengthier analysis.

E. Robust heteroclinic cycles

As already mentioned one may expect the pres-
ence of structurally stable or robust heteroclinic
cycles in our system in view of its similarity to
the mode interaction problem studied in [29, 30]
when written in polar coordinates. More gener-
ally, a heteroclinic cycle is a set of trajectories

{(r(j)0 (t), r
(j)
1 (t), r

(j)
2 (t),Ψ

(j)
(t)
)}j=1,2,...,m that connect

equilibrium solutions {(r(j)0 , r
(j)
1 , r

(j)
2 ,Ψ(j)

)}j=1,2,...,m

with the property that
(
r
(j)
0 (t), r

(j)
1 (t), r

(j)
2 (t),Ψ

(j)
(t)
)

is backward asymptotic to
(
r
(j)
0 , r

(j)
1 , r

(j)
2 ,Ψ(j)

)
and

forward asymptotic to
(
r
(j+1)
0 , r

(j+1)
1 , r

(j+1)
2 ,Ψ(j+1)

)
with the convention

(
r
(m+1)
0 , r

(m+1)
1 , r

(m+1)
2 ,Ψ(m+1)

)
=(

r
(1)
0 , r

(1)
1 , r

(1)
2 ,Ψ(1)

)
. Such cycles are robust if each con-

nection is robust, i.e. cannot be destroyed by changing
parameters. Robust heteroclinic cycles typically do not
exist in general nonsymmetric vector fields. However,
they may exist in symmetric systems such as ours. First
examples of robust heteroclinic cycles connecting saddle
points were found in [36, 37]. Afterwards, Melbourne,
Krupa and collaborators [38, 39] established a general
approach to the existence and stability of structurally
stable heteroclinic cycles in Γ-equivariant systems. The
existence of a robust heteroclinic cycle requires the
following conditions:

• Each saddle solution sits on a flow-invariant line lj ,
say, and each such line is the fixed-point subspace
for the isotropy subgroup of the saddle solution, i.e.
lj = Fix(Σj−1) ∩ Fix(Σj).

• The isotropy subgroups of the invariant lines are
maximal isotropy subgroups.

• The invariant plane containing the invariant line
is the fixed point subspace of a maximal isotropy
subgroup.

The proof of this result is based on the existence of
cycles in the isotropy lattice, such as fig. 8 for the present

FIG. 8: Structure within in the isotropy lattice
suggesting that there may exist of a robust heteroclinic

cycle.

case, and suggests that the present system may possess
robust heteroclinic cycles.
Indeed, the isotropy lattice in fig. 8 suggests the exis-

tence of a robust heteroclinic cycle between the steady-
state mode SS and the standing wave mode SW. Such
a heteroclinic cycle possesses two connections that lie
within the Fix

(
Z(κ)

)
and Fix

(
Z(κ · (π, π)) subspaces. In

our notation the heteroclinic connections lie in the in-
variant subspaces of the two MM solutions. Melbourne
et al. [40] found that in the supercritical case such a cy-
cle exists whenever the steady-state mode SS is a saddle
(resp. sink) in the fixed-point subspace Fix

(
Z(κ)

)
of the

isotropy subgroup of the MM0 mode and a sink (resp.
saddle) in the fixed-point subspace Fix

(
Z(κ · (π, π))) of

the isotropy subgroup of the MMπ mode. Similarly, the
SW mode must be a sink (resp. saddle) in Fix

(
Z(κ)

)
and

a saddle (resp. sink) in Fix(Z
(
κ · (π, π)). These condi-

tions are satisfied if the first three existence conditions in
table VII are satisfied. In addition, no other fixed point
solutions can be present in either of the fixed point sub-
spaces and solutions starting in the neighborhood of the
trivial mode are required to remain bounded, a condi-
tion that is satisfied if the last two existence conditions
in table VII hold.
The necessary and sufficient conditions for the asymp-

totic stability of a particular type of robust heteroclinic
cycle referred to as Type A are derived in [39]. This
type of heteroclinic cycle is constructed in such a way
that each trajectory connecting two fixed-point solutions
lies within the fixed point subspace of an isotropy group
isomorphic to Z2. Because of this the necessary and suf-
ficient condition for asymptotic stability is

m∏
j=1

min
(− νcj , ν

e
j − νtj

)
>

m∏
j=1

νej , (25)

where νcj , ν
e
j , ν

t
j , ν

r
j denote the contracting, expanding,

transversal and radial eigenvalues of the solution j. The
contracting eigenvalue of the solution j corresponds to
the minimum eigenvalue (maximum −νj) in the fixed
point subspace of solution j; the expanding eigenvalue
corresponds to the eigenvalue with the largest real part
among the eigenvalues restricted to the fixed point sub-
space of the backward asymptotic heteroclinic connec-
tion; the radial eigenvalue is the eigenvalue with the
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TABLE VII: Definining conditions for structurally and asymptotically stable heteroclinic cycles connecting SS and
SW. Here ν±SS ≡ λh + (Cr ±Dr)r

2
P and ν±SW ≡ λs + (2l1 ± l3)r

2
S .

Name of solution Existence Asymptotic stability
(condition for supercriticality) (Asymp. stable if ii) and either i-a) or i-b) )

HetSS−SW ν+
SSν

−
SS < 0 i-a) ν+

SSν
−
SW < −ν−

SS min(−ν+
SW , ν−

SW + 2Arr
2
s)

l0 > 0 ν+
SW ν−

SW < 0 i-b) ν−
SSν

+
SW < −ν+

SS min(−ν+
SW , ν+

SW + 2Arr
2
s)

Ar + 2Br > 0 ν+
SSν

−
SW > 0 ii) Ar > 0

λs
λh

(Cr+Dr)
l0

+ λh
λs

(2l1+l0)
(2Br+Ar)

> −2
λs
λh

(Cr−Dr)
l0

+ λh
λs

(2l1−l0)
(2Br+Ar)

> −2

smallest real part (largest −νrj ) within the intersection
between the two previous fixed point subspaces and the
transverse eigenvalue correspond to the eigenvalue with
the largest real part among the eigenvalues restricted to
the orthogonal complement. The proof of the identity
eq. (25) is based on the use of a set of Poincaré return
maps to obtain global estimates of stability from local
ones. For more details the reader is referred to [38, 39].
The application of eq. (25) shows that in our case the het-
eroclinic cycle HetSS−SW is asymptotically stable pro-
vided condition ii) and either condition i-a) or i-b) in
table VII hold. This possibility was not considered in
[28].

V. THE DEGENERATE CASE Di = 0, Ai − 2l2 = 0

In this section we consider a codimension-two degen-
erate case where the parameters Di and Ai − 2l2 both
vanish. This situation arises when all the nonlinear
coefficients in eq. (8) are real. This case is of basic
theoretical interest since it actually corresponds to the
case where an additional Z2 symmetry is present in the
primitive amplitude equations. In this case eq. (8) also
reduces to a special case of the equations studied in
generality by Silber & Knobloch [41] provided we also
take l0 = Ar + 2Br, λs = λh.

In this case the equations in polar coordinates take the
following form:

ṙ0 =
[
λs + l0r

2
0 + l1

(
r21 + r22

)
+ l3r1r2 cosΨ

]
r0 (26a)

ṙ2 + ṙ1 =
[

λh +Br(r
2
1 + r22) +Arr1r2

+r20(Cr +Dr cosΨ)
]
(r1 + r2)

(26b)

ṙ2 − ṙ1 =
[

λh +Br(r
2
1 + r22)−Arr1r2

+r20(Cr −Dr cosΨ)
]
(r2 − r1)

(26c)

Ψ̇ = −
[
2l3r1r2 +Drr

2
0

r21 + r22
r1r2

]
sinΨ . (26d)

In this case the PQRS coordinates are particularly
useful. The equations in these coordinates take the fol-
lowing form:

Ṙ = 2
[
λs + l0R+ l1S + l3PQ

]
R, (27a)

Ṡ = 2
[
λh +BrS + CrR

]
S

+4
[
ArP +DrRQ

]
P,

(27b)

Ṗ = 2
[
λh +BrS + CrR

]
P

+
[
ArP +DrRQ

]
S,

(27c)

Q̇ =
[
2l3P

2 +DrRS
]
1−Q2

P . (27d)

These equations possess an additional reflection sym-
metry

κr : (r0, r1, r2,Ψ) → (r0, r2, r1,Ψ) (28)

responsible for a reflection symmetry in Ψ:

(κr · κ) · (r0, r1, r2,Ψ) = (r0, r1, r2,−Ψ).

This symmetry has several consequences. First, the

isotropy group of the polar normal form is now Γ
(d)
ρ �

Z2
2�D4 � Z4

2�Z2. Its isotropy lattice, depicted in fig. 9,
displays new isotropy groups whose fixed point subspaces
are of dimension three, viz. ΣPrWA

, ΣPrWB
, Σ

˜IMM
. The

fixed point subspaces Fix
(
ΣPrWA

)
and Fix

(
ΣPrWB

)
are

characterized by r1 = r2 and sinΨ = 0, respectively, and
are of dimension four in the space of complex amplitudes,
i.e. they display two-frequency behavior, see table VIII.
In contrast, the fixed point subspace Fix

(
Σ

˜IMM

)
is char-

acterized by r0 = 0. Strictly speaking this is not an in-
variant subspace of the cubic truncation (since Ar �= 0)
but it does become so when the truncation is extended
to fifth order, cf. appendix B. This subspace is also of
dimension four, and is spanned by solutions of the form
(0, a1, a2), i.e., by r1 �= r2 and the corresponding phases
(φ1, φ2).

In addition, it turns out that the isotropy subgroups
associated to the Interacting Mixed Modes ΣIMM0

and
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TABLE VIII: Nomenclature and isotropy group of steady-state solutions of the system (26).

Name Representative Isotropy group (polar) Frequencies
Primary bifurcations:

SS (ra, 0, 0, nd) Z2(κr)× Z2(κ)× Z2(Φπ) 0
RW0 (0, ra, 0, nd) D4(Rπ/2Φπ/2, κ · κr) 1
RWπ (0, ra, 0, nd) D4(Rπ/2Φπ/2, κ · κr · Φπ) 1
SW0 (0, ra, ra, nd) Z2(κr)× Z2(κ)× Z2(RπΦπ) 1
SWπ (0, ra, ra, nd) Z2(κrΦπ)× Z2(κ)× Z2(RπΦπ) 1

Secondary bifurcations:
MM0 (ra, rb, rb, 0) Z2(κr)× Z2(κ) 1
MMπ (ra, rb, rb, π) Z2(κrΦπ)× Z2

(
κ ·RπΦπ

)
1

IMM0 (0, ra, rb, 0) Z2(κr · κ)× Z2(RπΦπ) 1
IMMπ (0, ra, rb, π) Z2(κr · κ · Φπ)× Z2(RπΦπ) 1

Tertiary bifurcations:
PrWA (ra, rb, rb,Ψ) Z2(κr) 2
PrWB (ra, rb, rc, 0 or π) Z2(κr · κ) 2

ĨMM (0, ra, rb,Ψ(t)), Ψ(t) = φ1(t)− φ2(t) Z2(RπΦπ) 2

FIG. 9: Lattice of isotropy groups of the degenerate
normal form.

ΣIMMπ are not conjugates of each other, i.e. these so-
lutions are distinct as in the case of the Mixed modes
MM0 and MMπ. The reason behind the distinction be-
tween the subgroups ΣSW0

, ΣSWπ
(resp. ΣRW0

, ΣRWπ
)

is algebraic: these isotropy groups are not conjugate of
each other, although their fixed point representative are
of the same type. This is because the phase Ψ is un-
defined for either rotating waves and standing waves - a
consequence of the fact that for these states a0 = 0. How-
ever, we find it convenient to distinguish between SW0

and SWπ (resp. RW0 and RWπ) based on the limiting

behavior of the Mixed Modes (resp. Mixed Waves) as
r0 → 0, as indicated in the isotropy lattice fig. 9.

In this degenerate case the conditions for higher or-
der bifurcations, as well as the complete definition of all
possible branches of precessing waves, can be obtained
explicitly. The corresponding results are tabulated in
table IX. It will be found that there are at most three
branches of precessing waves. The first two are denoted
PrWA and PrWB , while the third kind is generic with
no additional symmetry and hence trivial isotropy, and
is denoted PrWG.

A. Bifurcations from Mixed Modes and Rotating
Waves

Bifurcations from Mixed Modes are governed by the
eigenvalues of the matrices M±

b defined in section IVC
(apart from the possible bifurcation to a modulated
mixed mode if l0(2Br + Ar) < 0). In the present case,
the matrix is diagonal with real eigenvalues. Therefore
symmetry-breaking bifurcations from MM can only lead
to PrW (Precessing Waves), excluding the possibility of
PuW (Pulsating Waves). The number of such bifurca-
tions follows from the eigenvalues of M±

b . The first of
these is 2(−Arr

2
b ∓Drr

2
a), and this quantity changes sign

along the MM0 (MMπ) branch. The second eigenvalue
of M±

b is ∓2
(
l3r

2
b +Drr

2
a

)
. Thus if l3Dr > 0, this eigen-

value remains of one sign for both mixed modes. On the
other hand, if l3Dr < 0, it changes sign somewhere along
both branches. So, the number of branching points to
Precessing Waves along the MM branches is either one
(if l3Dr > 0) or three (if l3Dr < 0). These results are
restated in the top part of table IX, where the conditions
for a zero eigenvalue are stated in terms of λs and λh

instead of ra and rb using table VI.

We also report in the table the branching point from
the RW branch, investigated in section IVD. This point
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exists generically and the corresponding branch has Ψ =
0 (resp. Ψ = π) if ArDr < 0 (resp. ArDr > 0). We end
up with a total number of either 2 or 4 bifurcation points
to Precessing Waves.

The ĨMM solution is degenerate as was the case already
for the generic third order normal form. The addition of
higher order terms, as done in appendix B, leads to the

existence of the solution ĨMM, which in this degenerate
case is a heteroclinic connection between the Interacting
Modes IMM0 and IMMπ. This last statement follows
from the integration of eq. (26d) with r0 = 0, which leads
to Ψ → 0 as t → ∞ and Ψ → π as t → −∞ if l3rarb > 0
and to Ψ → π as t → ∞ and Ψ → 0 as t → −∞ if
l3rarb < 0.

B. The subspace r1 = r2

The dynamics within the invariant subspace
Fix

(
ΣPrWA

)
, defined in polar coordinates as

Fix
(
ΣPrWA

)
= {(r0, r1, r2,Ψ) : r1 = r2}, (29)

take the form

ṙ0 =
[

λs + l0r
2
0 + 2l1r

2
1 + l3r

2
1 cosΨ

]
r0 (30a)

ṙ1 =
[
λh + (Ar + 2Br)r

2
1 + (Cr +Dr cosΨ)r20

]
r1 (30b)

Ψ̇ = −2
[
l3r

2
1 +Drr

2
0

]
sinΨ . (30c)

The PRQ coordinates can also be used in this subspace
(which corresponds to S = 2P ):

Ṙ = 2
[
λs + l0R+ (2l1 + l3Q)P

]
R, (31a)

Ṗ = 2
[
λh + (2Br +Ar)P + (Cr +DrQ)R

]
P, (31b)

Q̇ = 2
[
l3P +DrR

]
(1−Q2) . (31c)

The resulting systems are formally identical to those
governing the interaction of two steady-state modes with
opposite parity studied by Hirschberg & Knobloch, eq.
(10) of [29], given by the correspondence

r0 ≡ r, r1 ≡ ρ,Ψ ≡ 2Ψ, λs ≡ λ, λh ≡ μ, l0 ≡ a,
2l1 ≡ b, l3 ≡ e, 2Br +Ar ≡ d, Cr ≡ c,Dr ≡ f.

(32)

The results of [29, 30] can therefore be applied to the
system eq. (30). We use these results to conclude that
when Drl3 < 0 the two branches of mixed modes are
connected by a tertiary branch of the form r0 �= 0, r1 =

r2 �= 0, sinΨ �= 0. In the nomenclature of the present
manuscript this branch corresponds to a Precessing Wave
of type A (see table III). The defining equations for this
solution are

R = r20 =
σ0A − σπA

2DrΣA
, (33a)

P = r21 = r22 = −σ0A − σπA

2l3ΣA
, (33b)

Q = cosΨ =
σπA + σ0A

σπA − σ0A
, (33c)

where

ΣA ≡ (2Br +Ar + 2l1)Dr − l3(Cr + l0) �= 0,
Σa

A ≡ Dr(Ar + 2Br)− l0l3,

H0,π
A ≡ ( Δ+ +Δ−)− 4Drl3(1− ΣA/Σ

a
A)

1
2

(
σ0A + σπA

) ≡ (
(2Br +Ar)Dr − Crl3

)
λs

+
(
2Drl1 − l0l3

)
λh,

1
2

(
σ0A − σπA

) ≡ Drl3(λs + λh),
(33d)

as in eq. (17) of [29]. The range of existence of this
connecting branch in the (λs, λh) plane is obtained by
imposing the condition cosΨ ∈ [−1, 1] on eq. (33c); the
conditions obtained from cosΨ = ±1 are identical to
the conditions obtained from the vanishing of the second
eigenvalue of M±

b and displayed in table IX, confirming
that the PrWA branch connects the two Mixed Mode
branches.
The stability of all the solutions within the invariant

subspace Fix
(
ΣPrWA

)
is determined as in Ref. [29]. The

linearized dynamics within this subspace are governed by
a 3×3 matrix with determinant DA, trace TA and second
invariant IA given below:

DA = − 4

DrΣ2
Al3

σπAσ0A (σπA − σ0A) , (34a)

TA =
Σa

A (σπA − σ0A)

Drl3ΣA
, (34b)

IA = −Δ+σ
2
πA +Δ−σ2

0A

Drl3Σ2
A

+
(−4Drl3 +Δ+ +Δ−)

Drl3Σ2
A

σπAσ0A.
(34c)

Since−1 < Q < 1 along the PrWA branch the quantity
σπA − σ0A ≡ −2Drl3(λs + λh) cannot vanish along it.
As a consequence, DA only vanishes at the bifurcations
to Mixed Modes (defined by Q = ±1), and no steady
state bifurcations occurs within the invariant subspace
ΣPrWA

along the branch. The necessary and sufficient
conditions for the stability of the branch within its fixed
point subspace are DA < 0, TA < 0, IA > 0 and HA ≡
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TABLE IX: Higher order bifurcations in the degenerate case Di = 0, Ai − 2l2 = 0. Note: (1)Results for bifurcations
to modulated mixed modes hold in the generic case. (2)Results relevant to the PrW of type A also hold in the less
degenerate case to Di = 0, Ai − 2l2 �= 0. (3)The bifurcation from rotating waves leads to a PrWB in the present case,
and to a general PrW in the generic case. (4)The conditions listed for the existence of Hopf bifurcations ensure an

odd number of Hopf lines (1 or 3). The condition for an odd number of Hopf lines in the case of a termination at the
MMπ fixed point is Δ+Λ

+
B > 0.

Branch New solution Bifurcation point Condition for existence

MM0 PrW
(2)
A σ0A ≡ [

l3(Cr +Dr)−Dr(2Br +Ar)
]
λs +

[
(2l1 + l3)Dr − l0l3

]
λh = 0 l3Dr < 0

PrWB σ0B ≡ −[
ArCr − 2BrDr

]
λs +

[
Arl0 −Dr(2l1 + l3)

]
λh = 0 ArDr < 0

M̃M
(1)

0 2(Br +Ar)(Cr +Dr − l0)λs + l0(2l1 + l3 − 2Br −Ar)λh = 0 (2Br +Ar)l0 < 0

MMπ PrW
(2)
A σπA ≡ [

l3(Cr −Dr)−Dr(2Br +Ar)
]
λs +

[
(2l1 − l3)Dr − l0l3

]
λh l3Dr < 0

PrWB σπB ≡ −[ArCr + 2BrDr]λs + [Arl0 +Dr(2l1 − l3)]λh = 0 ArDr > 0

M̃M
(1)

π (2Br +Ar)(Cr +Dr − l0)λs + l0(2l1 + l3 − 2Br −Ar)λh = 0 (2Br +Ar)l0 < 0

RW PrW
(1,3)
B σR ≡ λs − l1λh/Br = 0 Generic

PrWA PrWG ≡ (
l3(σ0A + σπA)−Ar(σπA − σ0A)

)
/
(
ΣAl3) = 0 l3Dr < 0, A2

r < l23
3FW(A) HA = 0 eq. (38).

PrWB PrWG σBG ≡ [2l3BrDr −A2
rCr]λs + [A2

rl0 − 2l1l3Dr − l3ArDr]λh = 0 If ArDr < 0, A2
r −Arl3 < 0,

If ArDr > 0, A2
r +Arl3 < 0

3FW(B)(4) HB = 0 eq. (49)
PrWG 3FW Ω4 − IIGΩ

2 +DG = 0, TGΩ
2 − IG = 0 −

IA − DA/TA > 0. Inspection of eq. (34a) shows that
the determinant is negative (resp. positive) whenever
σπA − σ0A > 0, which occurs when l3 > 0, Dr < 0
(resp. l3 < 0, Dr > 0) corresponding to the bifurcation of
PrWA from the MMπ mode (resp. MM0). Provided that
the determinant is negative, then the trace is negative if
and only if ΣA

Σa
A
> 0. If these two conditions are satisfied,

the necessary and sufficient condition of the positivity of
the second invariant IA all along the branch is that Δ+ ≥
0 and Δ− ≥ 0 (defined in table VI), since σ0AσπA ≤ 0
all along the branch. The fourth condition is as follows,

0 < HA ≡ 1

Drl3Σ2
A

[
−Δ+σ

2
πA −Δ−σ2

0A

+σπAσ0A(Δ+ +Δ− − 4Drl3(1− ΣA/Σ
a
A)
]
.

(35)
Thus, if the previous three conditions are satisfied, the
necessary and sufficient condition for HA > 0 all along
the branch is∣∣∣(1− ΣA

Σa
A

)− Δ+ +Δ−
4Drl3

∣∣∣ ≥ −
√

Δ+Δ−
2Drl3

, (36)

which is immediately satisfied if 0 < ΣA/Σ
a
A < 1. Sum-

marizing, the necessary and sufficient condition for the
stability of the branch within the invariant subspace
ΣPrWA

all along its existence is

Δ+ > 0, Δ− > 0, 0 <
Σa

A

ΣA
< 1, l3 > 0 . (37)

The condition ΣA

Σa
A
< 1 can be replaced by eq. (36).

The quantity HA(σ0,A, σπ,A) can be interpreted as the
distance to a Hopf bifurcation of the PrWA branch, which

is located at HA(σ0,A, σπ,A) = 0. In particular, because
the trace TA divides DA, we have at most two Hopf bi-
furcations. There is a supercritical Hopf from the PrWA

branch leading to a stable 3FW if the following conditions
are satisfied:

Δ+ > 0, Δ− > 0, l3Dr < 0,√
Δ+Δ−
2Drl3

≤ (
1− ΣA

Σa
A

)− Δ+ +Δ−
4Drl3

≤ −
√

Δ+Δ−
2Drl3

.

(38)
The case of a single Hopf bifurcation arises when the
following two degeneracy conditions hold, Δ−Δ+ = 0
and ΣA = Σa

A. Therefore, whenever eq. (38) is satisfied
and Δ+Δ− �= 0 we have two Hopf bifurcations in the
(σ0,A, σπ,A) plane, located at

σπA = K±
A,Hσ0A,

K± ≡ H0,π
A

2Δ+
± 1

Δ+

(
(H0,π

A )2 − 4Δ+Δ−
) 1

2 ,
(39)

with H0,π
A defined in eq. (33d).

In the present situation we also need to determine one
additional eigenvalue that describes the stability in the
r2−r1 direction. This eigenvalue, hereafter σAG, is given
by

σAG ≡ 2P (l3Q−Ar)

=
l3(σ0A + σπA)−Ar(σπA − σ0A)

ΣAl3
.

(40)

A necessary and sufficient condition ensuring the exis-
tence of a steady state bifurcation associated with the
vanishing of σAG is that the signs of σAG at either end
of the branch are opposite. This leads to the condition
reported in the last column of table IX.
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C. The subspace sinΨ = 0

The second fixed point subspace corresponds to
sinΨ = 0. At first glance, this subspace corresponds
to two distinct cases, Ψ = 0 and Ψ = π. However, be-
cause of the symmetry of the polar equations, a jump in
Ψ by π is equivalent to a change of sign of either r1 or
r2. As a consequence, to investigate this subspace, we
may set Ψ = 0 but allow arbitrary signs r1 and r2. Both
Mixed Mode solutions belong to this subspace (MMπ cor-
responds to Ψ = 0, r2 = −r1). The pure modes can also
be considered as part of this subspace, even though Ψ is
not defined for these branches. Within this subspace, the
equations take the form:

ṙ0 =
[
λs + l0r

2
0 + l1

(
r21 + r22

)
+ l3r1r2

]
r0 (41a)

ṙ1 =
[

λh +Brr
2
1 + (Ar +Br)r

2
2 + Crr

2
0

]
r1

+Drr
2
0r2

(41b)

ṙ2 =
[

λh +Brr
2
2 + (Ar +Br)r

2
1 + Crr

2
0

]
r2

+Drr
2
0r1

(41c)

Ṙ = 2
[
λs + l0R+ l1S + l3P

]
R (42a)

Ṡ = 2
[
λh +BrS + CrR

]
S

+4
[
ArP +DrR

]
P

(42b)

Ṗ = 2
[
λh +BrS + CrR

]
P

+
[
ArP +DrR]S .

(42c)

To detect the existence of Precessing Waves in the
present subspace, we look for steady solutions of the
above equations. From eqs. (42b) and (42c) we obtain
the conditions

λh +BrS + CrR = 0, ArP +DrR = 0. (43)

The Precessing Waves in question belong to this sub-
space, leading to

R = r20 = −Ar

Dr

σ0B − σπB

4ΣB
, (44a)

P = r1r2 =
σ0B − σπB

4ΣB
, (44b)

S = r21 + r22 = −σ0B + σπB

2ΣB
, (44c)

where ΣB ≡ Br(Arl0 −Drl3)− l1(ArCr) �= 0,

σR ≡ λs − l1
Br

λh,

σ0B + σπB ≡ 2
[(
ArCr

)
λs +

(
l3Dr −Arl0

)
λh

]
,

σ0B − σπB ≡ 4BrDrσR .
(44d)

These expressions define a single branch of Precessing
Waves referred to as the PrWB branch. One may check
that the conditions obtained on imposing P = 0 and S =
2|P | yield, respectively, the conditions listed in table IX
for the bifurcation from Rotating Waves and the relevant
Mixed Mode, confirming that the PrWB branch connects
these two branches. Note that the sign of P is given by
ArDr. So, had we adopted the convention that both r1
and r2 are positive and Ψ is either 0 or π we would have
arrived at the conclusion that PrWB is associated with
Ψ = 0 if ArDr < 0 and Ψ = π if ArDr > 0. Note
that the precession frequency given by eq. (10a) vanishes
when l2 = 0. In this case, the resulting mode will actually
be singly periodic in the primitive variables, instead of a
two-frequency wave. However, this property is not visible
when working with the polar variables.
The stability of the PrWB branch within its invariant

subspace Fix (ΣPrWB
) can be determined by studying its

characteristic polynomial in a similar manner as done for
PrWA in section VB. The invariants of the 3×3 stability
matrix are the determinant DB , trace TB and IB given
below:

DB = −4ΣBR(2P − S)(2P + S)

=
Ar

DrΣ2
B

σπBσ0B (σπB − σ0B)
(45a)

TB = 2l0R+ (Ar + 2Br)S

=
Arl0

(
σπB − σ0B

)−Dr(Ar + 2Br)
(
σ0B + σπB

)
2DrΣB

(45b)

IB = R
(
Δ+ (2P + S) + Δ− (−2P + S)

)
+2ArBr

(
S2 − 4P 2

)
=

Ar

4DrΣ2
B

(
Δ−σ2

πB −Δ+σ
2
0B

)
+

Ar

4DrΣ2
B

(
8BrDr +Δ+ −Δ−

)
σ0BσπB .

(45c)

The vanishing of σR coincides with the origin of the
PrWB branch along the RW branch. Note that the van-
ishing of σR implies σ0B = σπB . Similarly, one of the
quantities σ0B or σπB vanishes on the termination of the
PrWB branch on one of the mixed modes. One may ver-
ify that the third point where DB vanishes is located out-
side the existence interval of the branch, confirming that
no parity-breaking bifurcation occurs along the branch.
In addition, one may confirm that σ0BσπB > 0, except
at the termination point.
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The necessary conditions for stability within the
Fix(PrWB) subspace are DB < 0, TB < 0, IB > 0 and
HB ≡ IB − DB/TB > 0. From eq. (45a) one may eas-
ily verify that the determinant is negative if and only if
ΣB < 0. Similarly, the trace has constant negative sign if
Ar+2Br < 0 and l0 < 0, which are the conditions for the
supercriticality of Standing Waves and the Steady-State
mode, respectively. If instead l0(Ar +2Br) < 0, then the
trace changes sign within the region of existence of the
PrWB solution. Analogously, the necessary conditions
for a constant positive sign of the second invariant IB
everywhere along the branch are

ArBr > 0 and Δ+ > 0 if ArDr < 0
or Δ− > 0 if ArDr > 0 .

(46)

The first condition ensures that the second invariant is
positive at its birth from the RW branch, while the sec-
ond condition ensures that IB is positive at its termina-
tion on the corresponding MM branch. To ensure that
IB > 0 along the whole PrWB branch it suffices to have
Δ− > −C+ if ArDr < 0, a condition that depends only
on Δ+ and BrDr, or Δ+ > −C− if ArDr > 0 for C− > 0,
a condition that depends only on Δ− and BrDr.
The PrWB branch is stable when HB > 0. If HB

changes sign along the PrWB branch a Hopf bifurcation
with frequency Ω takes place (HB = 0), characterized by
the following set of conditions

TBΩ
2 −DB = 0, Ω2 − IB = 0 . (47)

These equations yield the conditions for the presence of
a Hopf bifurcation along the PrWB branch stated above.
In terms of the eigenvalues σ0B(λs, λh) and σπB(λs, λh)
of the Mixed Modes the Hopf distance HB is given by

HB ≡ − Ar

8D2
rΣ

3
B

(
Δ−Λ−

Bσ
3
πB −Δ+Λ

+
Bσ

3
0B

+
[
Λ+
B

(
8BrDr −Δ−

)
+ 2Arl0Δ+ − 8DrΣB

]
σπBσ

2
0B

+
[
Λ−
B

(
8BrDr +Δ+

)
+ 2Arl0Δ− + 8DrΣB

]
σ2
πBσ0B

)
Λ±
B ≡ Dr(Ar + 2Br)±Arl0 .

(48)
The condition HB = 0 describes a planar cubic al-

gebraic curve in (σ0B , σπB). A possible procedure is to
determine the type of the planar curve isomorphic to one
of the five canonical forms [42], and then determine the
number of solutions from it. Instead of following this pro-
cedure we prefer to provide a sufficient condition for the
appearance of a Hopf bifurcation along this branch. Pro-
vided eq. (46) holds, the frequency Ω is real, and there
exists an odd number (one or three) of Hopf bifurcations
whenever HB has opposite signs at the two endpoints of
the branch. This occurs when

Δ−Λ−
B < 0 (MM0), Δ+Λ

+
B > 0 (MMπ) . (49)

When eq. (49) does not hold the number of Hopf bifur-
cations is even (none or two). In such a case one can

distinguish between the different scenarios using, for in-
stance, the Descartes sign rule for positive roots.

In addition to the three eigenvalues governing the sta-
bility of the PrWB branch within the sinΨ = 0 subspace
discussed above, there is a fourth eigenvalue governing
the stability in the orthogonal direction given by

σBG = −(2l3P −ArS). (50)

The vanishing of this eigenvalue leads to the birth of a
branch of General Precessing Waves. The resulting con-
dition in terms of λs and λh is listed in table IX. A condi-
tion ensuring that such a bifurcation occurs somewhere
along the branch is that σBG has opposite signs at its
termination points on RW and the relevant MM. This
leads to the condition reported in the last column of ta-
ble IX. This condition is the same as for the bifurcation
from PrWA.

D. The third branch of precessing waves

As demonstrated in the previous sections, two bifur-
cations can occur along the precessing waves of type A
and B giving rise to a precessing wave with no symmetry
called PrWG. Here we investigate this branch as well as
its stability. We look for a steady solution of the polar
equations with r0 �= 0, r1 �= r2 and sinΨ �= 0, cf. Ta-
ble VIII. The same manipulations as before lead to the
following conditions:

0 = PQl3 +Rl0 + Sl1 + λs,
0 = BrS + CrR+ λh,
0 = ArP +DrQR,
0 = DrRS + 2P 2l3 .

(51)

The solution of this system yields the conditions for the
presence of the PrWG branch:

R =
2Brλs − (2l1 +Ar)λh

ΣG
,

S = 2
Crλs − l0λh

ΣG
,

P =
−1

l3ΣG

(
Drl3

(
Brλs − (2l1 +Ar)λh

)(
Crλs − l0λh

)) 1
2

,

Q = Ar

( Crλs − l0λh

Drl3[2Brλs − (2l1 +Ar)λh]

) 1
2

,

where ΣG = Cr(Ar + 2l1)− 2Brl0 �= 0.
(52)

These expressions define a single solution branch. One
may check that imposing Q2 = 1 and S = 2|P | yields,
respectively, the same conditions as found for the steady
bifurcations from the PrWA and PrWB branches listed
in table IX, confirming that the PrWG solution indeed
links these two branches.
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The invariants of the stability matrix are

TG = 2Rl0 + S (Ar + 2Br)

=
2 (σS (Ar + 2Br) + l0σR)

ΣG
,

DG = 8ΣGDrl3R
2(4P 2 − S2)(Q2 − 1),

=
32

Σ3
Gl3

σSσR

(
A2

rσS +Drl3σR

)
(DrσR + σSl3)

IG =
4Ar

Σ2
G

(
2(Br −Ar)σ

2
S −D2

rσ
2
R

)
+
σSσR

Σ2
Gl3

(
4Dr(2ArBr − 3l23) + 4l0l3(Ar + 2Br)

)
−4

σSσR

Σ2
Gl3

(
(Ar + 2l1)(ArDr + Crl3)

)
IIG = − 8

Σ3
G

(
D2

r l0σ
3
R + 4A2

rBrσ
3
S

)
+
8DrσSσ

2
R

Σ3
Gl3

(
2ΣB + l3(ΣA − 4BrDr)− l0(A

2
r + l23)

)
+
8σ2

SσR

Σ3
Gl3

(
Arl3ΣG − 6BrDrl

2
3

)
+
8σ2

SσR

Σ3
Gl3

A2
r

(
DrAr + 2Dr(l1 −Br)− 2l3l0

)
.

(53)
The determinant DG only vanishes at the termination

points, that is, whenever Q2 = 1 or S = 2|P |, which
rules out the possibility of a steady state bifurcation.
Thus there can only be Hopf bifurcations along the PrWG

branch. The frequency Ω solves the following equations
obtained from the characteristic polynomial

Ω4 − IIGΩ
2 +DG = 0, TGΩ

2 − IG = 0 , (54)

leading to the following sixth order equation in terms of
λs and λh:

II2G − IIGIGTG + T 2
GDG = 0 . (55)

E. A robust heteroclinic cycle

The isotropy lattice (see fig. 9) of the degenerate case
under discussion suggests the possibility that new hete-
roclinic cycles may exit. One of the most intriguing pos-
sibilities is a connection between the isotropy subspace
of Mixed Modes and the subspaces of Precessing Waves
A and B, corresponding to a cycle of type C in the clas-
sification of Krupa and Melbourne [39]. The conditions
for the existence of a robust heteroclinic cycle connecting
Mixed Modes consists in demanding that MM0 is a saddle
whose unstable manifold is of dimension one (resp. sink)
within ΣPrWB

and a sink (resp. saddle) within ΣPrWA
.

Then MMπ would need to be a sink (resp. saddle) within
ΣPrWB

and a saddle (resp. sink) within ΣPrWA
. How-

ever, for the mixed mode MMπ to be a saddle within
ΣPrWA

and the mixed mode MM0 to be a sink it is nec-
essary that σπA

− σ0A < 0 with Drl3 < 0, conditions

(a) A-projection of PuW (b) A′
0-projection of PuW

FIG. 10: Heteroclinic cycle between MMπ and MM0 in
the polar normal form (9) with

Ai − 2l2 = Di = sinΨ = 0 (black line) and
corresponding results when Ai − 2l2 �= 0 and Di = 0
(red line) or Di �= 0 and Ai − 2l2 = 0 (blue line).

that indicate that there is a fixed point within the invari-
ant subspace ΣPrWA

, i.e. PrWA (resp. PrWB). Despite
the existence of a fixed point within the invariant sub-
space ΣPrWA

(resp. ΣPrWB
), a robust heteroclinic cycle

may still exist, cf. [43] In the case of an invariant fixed
point subspace of dimension two the existence of hetero-
clinic cycles relies on the use of the Poincaré-Bendixson
theorem, see for instance [40]. In this case the fixed-
point subspace is required to be free of any other fixed
point other than those connected by the heteroclinic cy-
cle. Instead when the dimension is three, one may use
the invariant sphere theorem, or more generally a Lya-
punov functional to establish attraction. In our case the
presence of a robust heteroclinic cycle requires that the
coefficients Cr ± Dr and 2l1 ± l3 should both be posi-
tive, since otherwise the Precessing Waves A and B are
globally attractive except possibly within a ball of size
O(λs, λh) in the subspace R,S, P . These conditions are
listed in table X. Note that our reasoning does not ex-
clude the existence of a small heteroclinic cycle within
the O(λs, λh) ball near PrW, although such a state (if it
exists) would require a larger set of defining conditions
and would be restricted to a small region of phase space.

If the conditions listed in table X are satisfied then
there exists a robust heteroclinic cycle between mixed
modes, which bifurcates to a 3FW in the case Ai−2l2 �= 0
and Di = 0, and to a PuW or 3FW in the case with
Ai − 2l2 �= 0 and Di �= 0, see fig. 10. Finally, the ap-
plication of the theory of Krupa and Melbourne [39] also
allows one to establish the existence of heteroclinic cycles
between standing waves and mixed modes, whose exis-
tence and stability conditions are listed in table X. As
for the heteroclinic cycles between mixed modes, these
heteroclinic cycles persist in the form of limit cycles of
the polar normal form when the degeneracy conditions
are not satisfied, see fig. 11.
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TABLE X: Defining conditions for structurally and asymptotically stable heteroclinic cycles connecting mixed
modes or standing waves and a mixed mode.

Name of solutions Cond. of existence Asymptotic stability
(comments) (Asymp. stable if either i-a) or i-b) )

HetMM0−MMπ

Stable radial dir. Δ+ > 0, Δ− > 0, l0 < 0, Ar + 2Br < 0 i-a) σπA + σπB < 0,
Sink-saddle conditions σ0Aσ0B > 0, σπAσπB < 0, l3Dr < 0, ArDr > 0, i-b) σ0A − σ0B > 0
Non-attractivity of PrW 2l1 ± l3 > 0, Cr ±Dr > 0

HetSW−MMπ

Stable radial dir. Δ− > 0, l0 < 0, Ar + 2Br < 0, Ar > 0 i-a) 2
(
2Br +Ar

)
λs −

(
2l1 −Ar

)
λh > 0

SW saddle in Fix(ΣMMπ ) σ−
SW > 0, σ+

SW < 0 i-b) σπA + σπB < 0
MMπ saddle in Fix(ΣPrWB ) σπAσπB < 0, ArDr > 0

HetSW−MM0

Stable radial dir. Δ+ > 0, l0 < 0, Ar + 2Br < 0, Ar > 0 i-a) 2
(
2Br +Ar

)
λs −

(
2l1 −Ar

)
λh > 0

SW saddle in Fix(ΣMM0) σ−
SW < 0, σ+

SW > 0 i-b) σπA − σπB > 0
MM0 saddle in Fix(ΣPrWB ) σ0Aσ0B > 0, ArDr < 0

(a) A-projection of PuW (b) A′
0-projection of PuW

FIG. 11: Heteroclinic cycle (black) between MMπ and
SW in the polar normal form (9) with

Ai − 2l2 = Di = sinΨ = 0 (black line) and
corresponding results with Ai − 2l2 �= 0 (red line) or

Di �= 0 (blue line).

VI. NUMERICAL EXPLORATION OF THE
THIRD-ORDER NORMAL FORM (9)

The section V has shown the existence of multiple
fixed points with additional symmetries, e.g. PrWA

and PrWB , in the degenerate case (equivariant under
the group O(2) × Z2 × S1). The additional Z2 symme-
try is characteristic of mode interactions in O(2) sym-
metric systems with strong resonance conditions (1:2
[43], 1:3 [44]). Departure from the degeneracy condition
(Ai − 2l2 = Di = 0) breaks this additional Z2 symmetry
and may be responsible for destroying the HetSS−SW het-
eroclinic cycle, leading to more complex dynamics. This
section is devoted to the numerical exploration of the de-
generate case Ai − 2l2 = Di = 0 and the implications of
the departure from this condition (Ai − 2l2 �= 0 and/or
Di �= 0). For this purpose, we choose generic values for
the normal form coefficients, listed in table XI. These
coefficients are chosen in such a way that primary bifur-
cations, i.e., bifurcations leading to SS, SW and RW are
supercritical, and the flow is globally stable, that is, there
is no finite-time blow-up.

As the bifurcation parameter, we have selected the
polar angle θ such that the unfolding parameters are
λS = ρ cos θ and λH = ρ sin θ, with ρ = (0,∞) and
θ ∈ [0, 2π). In contrast to [43] the bifurcation diagram
barely depends on ρ, and we have fixed the value of ρ
at ρ = 0.5. The numerical continuation of the polar
normal form is carried out with the numerical contin-
uation software MATCONT [45]. In the following, we
will show the bifurcation diagrams associated to the de-
generate and non-degenerate cases. There are two ma-
jor differences. First, the two connected branches of
symmetric Precessing Waves (PrWA and PrWB) are a
characteristic feature of the degenerate case (symmetry
O(2) × Z2 × S1). In the non-degenerate case, these two
branches split into two disconnected branches of general
Precessing Waves PrWG. Secondly, in the degenerate
case we observe HetSS−SW cycles, which break apart as
the orbit intersects the invariant subspace r1 = r2. In-
stead, in the non-degenerate case we have identified com-
plex heteroclinic cycles around HetPrWA

. Such a feature
was also observed by Porter and Knobloch [43], who con-
cluded that the transition from HetSS−SW cycles to this
second set is a characteristic of systems with O(2) × Z2

symmetry where the Z2 symmetry is weakly broken.

A. The degenerate case Ai − 2l2 = Di = 0

Figure 12 shows the bifurcations of the fixed point
branches of the polar normal form with the parame-
ters listed in table XI and the degeneracy conditions
Ai − 2l2 = Di = 0. Along this particular path, the

TABLE XI: Cubic coefficients of the normal form.

l0 l1 l3 Ar Br Cr Dr

−6.19 −1.4 −1.7 0.96 −1.08 4 10
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FIG. 12: Bifurcation diagram in the degenerate case
when ρ = 0.5, showing |r| =

√
r20 + r21 + r22 as a

function of the angle θ.

trivial state first loses stability at θ = −π/2 in a primary
pitchfork bifurcation to the SS mode, which terminates
at θ = π/2. The SS mode gives birth to the MM0 branch
when θ = arctan (Cr +Dr)/l0 ≈ −1.15 and to the MMπ

branch when θ = arctan (Cr −Dr)/l0 ≈ 0.77 (table V).
The mixed mode MM0 subsequently produces the PrWA

branch in a symmetry-breaking bifurcation when σ0A = 0
(table IX) and then terminates on the SW branch. A
magnified visualization is displayed in fig. 13(a), where
we can observe the PrWA which terminates on the MMπ

branch and eventually gives birth to a general precessing
wave PrWG via a symmetry-breaking bifurcation when
σAG = 0. The PrWG mode experiences a Hopf bifurca-
tion that leads to a 3FW (blue point in fig. 12). fig. 14 il-
lustrates a stable periodic orbit (3FW) with a thick black
line and the stable manifold of PrWA with a thin gray
line. The existence of a global attractor (PrWA) in the
invariant subspace r1 = r2 prevents the existence of a
true heteroclinic cycle HetSS−SW , but allows the exis-
tence of shadowing stable periodic orbits that approxi-
mate it, see fig. 14. These orbits exist in 0.52 < θ < 0.592
and collapse in a global bifurcation when the limit cycle
intersects the invariant subspace r1 = r2 at θ ≈ 0.592.
Once a trajectory intersects the r1 = r2 subspace, it is
trapped within it and so is attracted to the only attrac-
tor in this subspace, i.e., the PrWA state. The same
phenomenon occurs in the small region of coexistence of
MMπ and the heteroclinic cycle, 0.78 < θ < 0.82. The
PrWG branch terminates on the PrWB branch, which
connects RW and MMπ. Finally, the MMπ branch is
stable between its endpoint on the SW branch and its
symmetry-breaking bifurcation that leads to the PrWB

branch. For 0.82 < θ ≤ π the only stable state is the SW
branch.

B. Non-degenerate case Ai − 2l2 = −1, Di = 0.35

The general picture of the bifurcation scenario, de-
picted in fig. 12, remains qualitatively unchanged. How-
ever, the Precessing Wave branches are modified. We

first examine the case when one of the two degener-
acy conditions is still satisfied. The case Ai − 2l2 = 0
but Di �= 0 is illustrated in fig. 13(b) and reveals the
existence of two distinct PrWG branches. This case
corresponds to an imperfect bifurcation, where the two
symmetry-breaking pitchfork bifurcations leading to the
PrWG branch in the degenerate case are replaced by a
saddle-node bifurcation on each branch. The second case,
Di = 0 but Ai − 2l2 �= 0, illustrated in fig. 13(c), shows
the presence of PrWA and PrWG branches, the latter
replacing the symmetric PrWB branch. These branches
connect via a transcritical bifurcation, which is respon-
sible, in this case, for the stability of the whole upper
section of the PrWG branch since no Hopf bifurcation
takes place.

We next turn our attention to the non-degenerate case
Ai − 2l2 �= 0, Di �= 0. The bifurcation diagram of
the fixed points of the polar normal form is depicted in
fig. 15. The figure displays two disconnected branches
of general Precessing Waves PrWG. The first of these,
referred to as PrWG,1 in the figure, becomes unstable
through a Hopf bifurcation, leading to a 3FW branch
(not shown). The second PrWG branch, labeled PrWG,2,
bifurcates from and terminates on the MMπ branch with
a saddle-node bifurcation in between: the upper section
is stable, whereas the lower is unstable. Because of the
symmetry under reflection κ, there is in fact a pair of
such saddle-node bifurcations, PrW±

G,2, both occurring
at θ = θSN ≈ 0.663445. Moreover, each is of Saddle-
Node-in-a-Periodic-Orbit (SNIPER) type but with com-
plex leading eigenvalues at the fold points PrW±

G,2: (0,

−0.6795, −0.0182 ± 0.4418i). For a study of this sit-
uation in the absence of κ symmetry, see [46]. In the
presence of this symmetry, this case can either lead to a
pair of symmetry-related homoclinics to PrW±

G,2 or, as

in this case, to a heteroclinic cycle connecting PrW+
G,2

to PrW−
G,2 and vice versa, a consequence of intertwined

nature of the stable and unstable manifolds of PrW±
G,2.

In the former case the near-homoclinic orbit to the left of
PrW±

G,2 contains a certain number of decreasing oscilla-

tions as it approaches and leaves PrW±
G,2, the number of

these oscillations depending on the speed with which the
trajectory passes through the PrW±

G,2 neighborhood, and
hence on the distance of θ from θSN . In the latter case the
unstable manifold associated with the degenerate eigen-
value injects the trajectory into the image fold point and
the same local behavior there leads to reinjection back
into the original fold, generating a κ-symmetric hetero-
clinic cycle, cf. [47]. Figure 16 shows such an orbit in two
projections, computed for θ just below θSN ≈ 0.663445.
At this θ the PrW±

G,2 points are absent and the orbit
shown is actually a long period periodic orbit. Figure 17a
shows the period of such orbits as a function of θSN − θ,
confirming the expected relation T ∼ (θSN−θ)−1/2. This
divergence is a consequence of a slowdown of the trajec-
tory in the vicinity of the phase space location where the
PrWG,2 appear when θ increases through θSN , resulting
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FIG. 13: Bifurcation diagram in the degenerate case when ρ = 0.5, showing |r| =
√
r20 + r21 + r22 as a function of the

angle θ. Legend: Solid (dashed) lines are stable (unstable) fixed points. Symmetry-breaking bifurcations are
illustrated with gray points and Hopf bifurcations with blue points. Note: in (a) as well as in fig. 12 the PrWG

branch has been artificially displaced upwards to visually differentiate it from the PrWA branch.

FIG. 14: Example of a heteroclinic cycle SS-SW (thick
line). The gray line corresponds to the stable manifold

of PrWA.

in increased accumulation of turns as this point is ap-
proached. Note that these orbits inherit the stability of
the (upper) PrWG,2 branch (cf. fig. 15) and hence repre-
sent attractors of the system.

Figure 18 shows sample attractors found on decreas-
ing θ further. Figure 18a shows a stable symmetric orbit
at θ = 0.663, followed by asymmetric chaotic attractors
(with a positive Lyapunov exponent) generated with in-
creasing distance from θSN . The absence of chaotic states
near θSN is a consequence of the fact the flow in this re-
gion is locally contracting.

To understand the origin of these states, we examine
the behavior of a typical periodic orbit associated with
the SNIPER bifurcation. As already explained this orbit
depends sensitively on the value of θ < θSN . In fig. 19a
we show the period T of this orbit as a function of θ

3FW

|r
| PrWG,2

PrWG,1

SW

RW

M
M

0.3 0.4 0.5 0.6 0.7 0.8

0.8

0.7

0.6

0.5

0.4

FIG. 15: Bifurcation scenario in the non-degenerate case
showing |r| =

√
r20 + r21 + r22 as a function of the angle θ

with the same legend as in fig. 13. The end point of
PrWG,1 is located at θ ≈ 0.6581, i.e., below θSN but
above the global bifurcation at θ ≈ 0.6454. Note: The
blue point and subsequently the 3FW branch have been
artificially displaced, so the crossing point between the
SW and PrWG,1 and the blue point do not coincide.

obtained using numerical continuation. This period di-
verges as θ → θSN from below and the orbit approaches
the heteroclinic cycle shown in fig. 16. As θ deceases
the period T decreases, although this decrease is inter-
rupted by a series of back-to-back folds. Each such pair
is responsible for the elimination of one small amplitude
turn of the trajectory (not shown), resulting in a gradual
unwinding of the trajectory. As θ decreases towards the
leftmost fold and beyond, the trajectory develops small
loops in the vicinity of PrWG,1 (fig. 20) and its period be-
gins to diverge again, this time logarithmically (fig. 17b),
indicating approach to a heteroclinic connection involv-
ing PrWG,1 and located at θ = θhet ≈ 0.6454. Since
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(a)

(b)

FIG. 16: Heteroclinic cycle at θSN ≈ 0.663445.

the leading unstable eigenvalues of PrWG,1 at this pa-
rameter values are complex, 0.2446 ± 0.3661i, while the
leading stable eigenvalue is real, −0.0251, these points
are both saddle-foci. The complex unstable eigenvalues
account for the oscillatory approach to the global bifur-
cation at θ ≈ 0.6454 while the fact that the flow near
PrWG,1 is locally expanding implies that we should ex-
pect stable chaotic dynamics near this parameter value,
as in the classical example of Shil’nikov where the signs
of the eigenvalues are reversed [48–50].

In fig. 19a the solid line tracks the period of the κ-
symmetric orbit. As θ → 0.6454 from above, this or-
bit collides with PrWG,1, forming a heteroclinic con-
nection from PrWG,1 to its image under κ and back
again. Near θhet this orbit is accompanied by back-to-
back symmetry-breaking bifurcations, generating asym-
metric periodic orbits (fig. 19b). These asymmetric orbits
are free to period-double into chaos, resulting in ’bubbles’
of chaotic behavior, as described in [51] and references
therein. Close to the primary heteroclinic bifurcation
these bubbles ’burst’ via the formation of pairs of sub-
sidiary homoclinic orbits. The red dashed and thin solid
lines in fig. 19b show examples of this generic behavior
in our problem; fig. 19c compares the homoclinic orbit
at the green dashed asymptote with the corresponding
period-doubled orbit on the red dashed branch at the

(a)

(b)

FIG. 17: (a) Evolution of the period of the stable limit
cycles shadowing the heteroclinic cycle as a function of
the distance θSN − θ to the saddle-node bifurcation. (b)
Evolution of the period near the heteroclinic bifurcation

at θhet, where σhet = −0.0251 is the leading stable
eigenvalue of the PrWG,1 fixed point.

same θ value. Further details are omitted. Thus, the pri-
mary symmetric periodic orbit is associated with a num-
ber of chaotic intervals located around subsidiary homo-
clinic orbits originating in global bifurcations of asym-
metric orbits associated with it, cf. fig. 18. In particular,
stable chaotic motion is also observed for θ below the
primary heteroclinic bifurcation at θhet ≈ 0.6454.

We mention that the periodic orbit originating from
the Hopf point on the PrWG,1 branch (θ ≈ 0.3841,
blue point in Fig 15) is stable from the Hopf point to
θ ≈ 0.4518, where the first of several Neimark-Sacker
bifurcations takes place. These are interspersed with ad-
ditional global bifurcations and intervals of chaos as θ
increases towards θhet ≈ 0.6454. Some sample solutions
are shown in fig. 21 to whet appetite. The details depend
on the parameters used and are omitted.
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(a) (b) (c) (d)

FIG. 18: Stable attractors in a (r0, r1, r2) projection for (a) θ = 0.663 (symmetric periodic orbit); (b) θ = 0.647
(asymmetric orbit); (c) θ = 0.645 (asymmetric orbit); (d) θ = 0.643 (asymmetric orbit). The symmetry-related

PrWG,2 fixed points corresponding to the saddle-node at θ ≈ 0.663445 are indicated by red points, with the PrWA

point (present in the degenerate case only) depicted as a blue point; these are shown for orientation only.

VII. NORMAL FORM REDUCTION

The process of reducing the governing equations to nor-
mal form near a multiple bifurcation is based on center
manifold reduction followed by a series of near-identity
variable changes to simplify the dynamical equations on
the center manifold. The resulting equations are then
unfolded by introducing parameters that break apart
the multiple bifurcation in a generic way. In infinite-
dimensional problems, such as those arising in fluid me-
chanics, it is preferable to employ multiple scales tech-
niques to compute both the normal form and the coeffi-
cients within it as part of the same calculation. We em-
ploy here this technique to determine all the coefficients
in the third-order normal form (8).

First, let us introduce the following formal expression
for the governing equations on a domain Ω:

B
∂q

∂t
= F(q,η) ≡ Lq+N(q,q) +G(q,η), x ∈ Ω ,

Dbcq(x) = q∂Ω, x ∈ ∂Ω .
(56)

Here ∂Ω represents the domain boundary. This form
of the governing equations takes into account a linear
dependence on the state variable q through L and a
quadratic dependence on state variable and the param-
eters η through the operators G(·, ·) and N(·, ·). Equa-
tion (56) formally includes the incompressible Navier–
Stokes equations written in cylindrical coordinates for
the TFC and WFA problems, whereas for WFA-MC one
must consider the Boussinesq approximation of the in-
compressible Navier–Stokes equations written in cylin-
drical coordinates as well. For this set of equations, the

operators in eq. (56) take the following form,

Lq =

⎛⎝ −∇P
∇ ·U
0

⎞⎠ ,

N(q1,q2) = −
⎛⎝ U1 · ∇U2

0
U1 · ∇T

⎞⎠ ,

G(q,η) =

⎛⎝ 1
Re∇ · (∇U+ (∇U)T

)
+RiTez

0
1

RePr∇2T

⎞⎠ .

(57)
In red color we have included the modification for the
WFA-MC problem with respect to the WFA problem.
The set of parameters η ∈ RNp , where Np is the
number of parameters, is composed of the two dimen-
sionless angular velocities of the cylindrical annulus for
TFC, the inverse of the Reynolds number for WFA, and
the inverse of the Reynolds, Richardson and Prandtl
numbers for WFA-MC. In the following, we will con-
sider the most general case, that is, the WFA-MC case
where the vector of parameters takes the form η ≡
[η0, η1, η2] =[Re−1,Ri,Pr]T . The Reynolds number is
defined as the ratio of inertial and viscous forces, i.e.,
Re = U∞D

ν , with U∞ the uniform velocity at the far field,
D the diameter of the bluff body and ν the kinematic vis-
cosity; while the Prandtl number, Pr = ν

κ , stands for the
ratio of viscous and thermal diffusivity (κ). The Richard-

son number is defined as Ri = −β(eU∞ ·g)(Tb−T∞)D
U2∞

, with

β the thermal expansion coefficient, eU∞ = U∞/U∞ the
unit vector in the direction of the far field velocity, g the
gravity vector, and Tb and T∞ the temperature of the
bluff body and at the far field, respectively. Finally,
without loss of generality, we suppose that the depen-
dence of the solution on the trace (solution restricted to
the boundary of the domain) is linear, i.e. we take Dbc

to be a linear boundary condition operator. One can also
consider the dependence of the boundary conditions on
parameters, that is either Dbc(η) or q∂Ω(η), which may
be used, for instance, for modeling of a moving wall. For
the sake of simplicity and without loss of generality, this
case is not considered.
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(a) (b)

(c) (d) (e) (f)

FIG. 19: (a) Evolution of the period T of a symmetric periodic orbit born in the SNIPER bifurcation θ ≈ 0.663445
and terminating in a heteroclinic bifurcation at θ ≈ 0.6454 (thick solid line). Secondary branches of asymmetric

states are displayed in thin lines: solid line for the branch whose period diverges at θ ≈ 0.64377 and dashed lines for
the other branches, see panel (b) for more detail. The secondary branches are accompanied by back-to-back

period-doubling cascades (three period-doubling points are indicated with solid circles of the same color as the
branch) which open up via the formation of subsidiary homoclinic orbits as in panel (c), black line; the superposed
red curve shows an accompanying period-doubled solution. Portraits (d-f) display the (r1, r2) projection at θ = 0.65

for the dashed magenta, blue, and orange branches showing a symmetric and two asymmetric periodic orbits,
respectively. The location of PrWG,1 is indicated with small circle in (c-f). Only (c) is close to homoclinic; the

proximity of orbit (e) to the lower fixed point is a projection effect.

(a) (b)

FIG. 20: The periodic orbit at the seventh and eighth
folds from the right, with a period-doubling bubble in
between (not shown). (a) θ = 0.6437. (b) θ = 0.6466.

A. Multiple scales Ansatz

The multiple scales expansion of the solution q of
eq. (56) consists of an expansion of eq. (1) in powers
of a small parameter ε 	 1:

q(t, τ) = Q0 + εq(ε)(t, τ) + ε2q(ε2)(t, τ) +O(ε3) (58)

Parameters η are assumed to be of second order, i.e.
ηi = O(ε2) for i = 0, 1, 2. The expansion (58) en-
compasses a two-scale expansion of the original time,
t �→ t + ε2τ , that incorporates the fast time scale t of
the self-sustained instability and the slow time scale τ
of the evolution of the amplitudes ai(τ) in eq. (1), for
i = 0, 1, 2. The resulting expansion of the left side of
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(a) (b)

(c) (d)

FIG. 21: (a) Phase portrait of a near-homoclinic orbit
to the SW state in the (r0, r1, r2) space at θ = 0.452,
and (b) the corresponding time series showing r0(t)

(red), r1(t) (green) and r2(t) (blue). Near the
homoclinic connection r1 approaches r2 and r0 falls to

zero. (c) A trajectory at θ = 0.457 in the
(Re(a0), Im(a0), r2) space showing that the trajectory
intermittently visits SW states with different phases φ,
each visit resulting in a switch between an oscillation
about one PrWG,1 state to an oscillation about the
other; red circles represent the group orbit of the two

PrWG,1 states while the blue circle represents the group
orbit of the SS states [52]. (d) Chaotic attractor at
θ = 0.49 (thin dashed grey line) together with an
(unstable) κ-symmetric periodic orbit computed at

θ ≈ 0.4896.

eq. (56) up to third order is as follows:

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+B

∂q(ε)

∂τ

]
(59)

while the right side is

F(q,η) = F(0) + εF(ε) + ε2F(ε2) + ε3F(ε3) . (60)

The expansion eq. (60) will be detailed at each order.

1. Order ε0

The leading order solution Q0 of the multiple scales
expansion eq. (58) is the steady state of the governing
equations evaluated at the threshold of instability, i.e.
η = ηc,

0 = F(Q0,0) , x ∈ Ω ,
DbcQ0(x) = Q0,∂Ω , x ∈ ∂Ω .

(61)

2. Order ε1

The first order correction q(ε)(t, τ) in the multiple
scales expansion of eq. (58) is composed of the eigen-
modes of the linearized system

q(ε)(t, τ) ≡ Re
(
a0(τ)e

−im0θq̂0

)
+ Re

(
a1(τ)e

−iωte−im1θq̂1

)
+ Re

(
a2(τ)e

−iωtei−m2θq̂2

)
,

(62)

where the reflection symmetry in O(2) imposes the re-
quirement m2 = −m1.
Each term q̂ in the first order expansion (62) solves

the corresponding linear problem:

J(ω�,m�)q̂ =
(
iωB− ∂F

∂q |q=Q0,η=ηc

)
q̂, x ∈ Ω,

Dbcq̂(x) = 0, x ∈ ∂Ω ,
(63)

where ∂F
∂q |q=Q0,η=ηc q̂ = Lm�

q̂ + Nm�
(Q0, q̂) +

Nm�
(q̂,Q0). The subscript m indicates the azimuthal

wavenumber used for the evaluation of the operator.

3. Order ε2

The second order expansion term q(ε2)(t, τ) is deter-
mined from the resolution of a set of forced linear sys-
tems, where the forcing terms are evaluated from first
and zeroth order terms. The expansion in terms of am-
plitudes ai(τ) of q(ε2)(t, τ) is assessed from term-by-term
identification of the forcing terms at the second order.
The nonlinear second order terms are

F(ε2) ≡
2∑

j,k=0

(
ajakN(q̂j , q̂k)e

−i(mj+mk)θe−i(ωj+ωk)t + c.c.
)

+

2∑
j,k=0

(
ajakN(q̂j , q̂k)e

−i(mj−mk)θe−i(ωj−ωk)t + c.c.
)

+
2∑

=0

ΔηG(Q0, e) ,

(64)
where e is an element of the orthonormal basis of RNp ,
a vector composed of zeros except at the position � where
it is equal to unity.
Since no quadratic combination of elements in eq. (62)

results in resonant terms, the second order term can be
expanded as

q(ε2) ≡
2∑

j,k=0
k≤j

(
ajakq̂j,k+ajakq̂j,−k+ c.c.

)
+

2∑
=0

ΔηQ
(η�)
0 ,

(65)

with the rules q̂j,k = q̂k,j and q̂−j,−k = q̂j,k. Note

the slight abuse of notation with q̂−0 = q̂0. Terms q̂j,j

are harmonics of the flow, q̂j,k with j �= k are coupling
terms, q̂j,−j are harmonic base flow modification terms
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and Q
(η�)
0 are base flow corrections due to the assumed

departure of the parameter Δη = ηc − η from the crit-
ical point measured by ε.
Finally, the second-order terms are computed by solv-

ing the following nonresonant system of equations,

J(ωj+ωk,mj+mk)q̂j,k = F̂
(j,k)
(ε2) , (66)

where F̂
(j,k)
(ε2) ≡ N(q̂j , q̂k) +N(q̂k, q̂j) and

J(0,0)Q
(η�)
0 = G(Q0, e). (67)

4. Order ε3

At third order resonant terms are generated and these
lead to secular (nonperiodic) terms in the expansion. We
eliminate these terms by imposing a solvability condi-
tion on the system via the Fredholm alternative. This
condition determines the required normal form at third
order in ε. Specifically, the linear terms λs and λh are
determined as follows

λs =
〈q̂†

0, F̂
(a0)
(ε3) 〉

〈q̂†
0,Bq̂0〉

, λh =
〈q̂†

1, F̂
(a1)
(ε3) 〉

〈q̂†
1,Bq̂1〉

=
〈q̂†

2, F̂
(a2)
(ε3) 〉

〈q̂†
2,Bq̂2〉

, (68)

while the (real) cubic coefficients li for i = 0, 1, 2, 3 are
given by

l0 =
〈q̂†

0, F̂
(a0|a0|2)
(ε3) 〉

〈q̂†
0,Bq̂0〉

, l3 =
〈q̂†

0, F̂
(a0a1a2)
(ε3) 〉

〈q̂†
0,Bq̂0〉

l1 − il2 =
〈q̂†

0, F̂
(a0|a1|2)
(ε3) 〉

〈q̂†
0,Bq̂0〉

, l1 + il2 =
〈q̂†

0, F̂
(a0|a2|2)
(ε3) 〉

〈q̂†
0,Bq̂0〉

.

(69)
Finally, the complex coefficients A,B,C and D are given
by

B =
〈q†

1, F̂
(a1|a1|2)
(ε3) 〉

〈q̂†
1,Bq̂1〉

, A+B =
〈q†

1, F̂
(a1|a2|2)
(ε3) 〉

〈q̂†
1,Bq̂1〉

,

C =
〈q†

1, F̂
(a1|a0|2)
(ε3) 〉

〈q̂†
1,Bq̂1〉

, D =
〈q†

1, F̂
(a2

0a2)

(ε3) 〉
〈q̂†

1,Bq̂1〉
.

(70)
The forcing terms associated with the solvability con-

ditions in eqs. (68) to (70) are detailed in appendix A1.

VIII. CONSTRUCTION OF BIFURCATION
DIAGRAMS

We now explain how the results derived in the previous
section can be used to construct consistent bifurcation di-
agrams. The method is similar to that used in Hirschberg
& Knobloch [29] and is explained in fig. 22. As illus-
trated in this figure, the conditions for the occurrence
of the various bifurcations can be interpreted as lines in

the (λs, λh) plane. For example, the primary steady-
state bifurcation occurs along the line λs = 0, which is
the horizontal axis in this representation. Similarly, the
primary Hopf bifurcation occurs along the line λh = 0,
which is the vertical axis. The conditions relevant to the
birth of mixed modes also correspond to straight lines,
as displayed in the figure. For both the wake problem
(WFA or WFA-MC) and the TCF problem, variation of
the base-flow parameters defines a path in the (λs, λh)
plane. The bifurcation diagram can then be constructed
by considering the successive crossings of this path with
the lines defining the bifurcations.

Let us consider first the bifurcation scenario of the
WFA-MC case as a function of Reynolds numbers ηRe

and ηRi, at a constant distance in terms of the sec-
ond parameter from the organizing centre. We denote
by ηRe|Ri=Ric the path followed at a constant Richard-
son number equal to that at which the unsteady and
steady modes become simultaneously unstable, i.e., at
the same critical Reynolds number. Similarly, we denote
by ηRe|Ri=0 the straight line path from quadrant III (de-
fined by λs < 0, λh < 0), traversing quadrant IV (λs > 0,
λh < 0), and then crossing into quadrant I (λs > 0,
λh > 0). This path is relevant to the wake problem
(WFA) for increasing the Reynolds number if we assume
a linear dependence of the form eq. (13). When following
this path, the first bifurcation is the primary bifurcation
leading to the SS mode. There are two possible secondary
bifurcations on this branch, leading to MM0 and MMπ

and these occur along the lines −l0λh +(Cr ±Dr)λs = 0
with positive sign for MM0 and negative sign for MMπ.
The sign of Dr indicates which of these bifurcations oc-
curs first along the given path. For example, ifDr < 0, as
displayed on the figure, the bifurcation to MMπ occurs
first. Moreover, if Δ− > 0 (as assumed in the figure),
this bifurcation is supercritical and gives rise to a sta-
ble branch. The bifurcation from SS to MMπ may occur
subsequently, as found in the figure, but the branch born
at this bifurcation is necessarily unstable, according to
the considerations in section IVC.

Similarly, the lines −(2Br+Ar)λs+(l1± l3)λh = 0 in-
dicate secondary bifurcations from SW to MM0 (positive
sign) and MMπ (negative sign). Starting from the pure
SW mode and following the prescribed path backward,
the sign of l3 lets us distinguish which of these lines will
be crossed first. For example, if l3 < 0, as displayed on
the figure, the bifurcation to MMπ occurs first, leading
to a stable branch if Δ > 0.

Figure 22b exhibits the case corresponding to l3 < 0,
Dr < 0, Δ+ > 0, Δ− > 0, the situation relevant to wake
flow past a fixed disk. The figure displays the bifurcation
diagram for a disk of aspect ratio χ = 10. For more
details, see section VIII B.

In the following, we analyze the predicted transition
behavior of the for flow past a fixed sphere and a fixed
disk. In some figures, we use the lift coefficient to illus-
trate the bifurcation diagram; this is defined as CL =

L
1
2ρ∞U2∞D

, with L the lift force, ρ∞, and U∞ the density
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FIG. 22: Illustration of the construction of the stability diagram for the WFA problem with a fixed disk of aspect
ratio χ = 10. (a) The unfolding plane (λs, λh). Dashed lines indicate the loci of bifurcations from SS and SW to
MM0,π. The paths labeled ηRe|Ri=Ric and ηRe|Ri=0 are the paths followed in this plane for Ri = Ric and Ri = 0,

respectively. (b) Bifurcation diagram corresponding to the ηRe|Ri=0 path. See section VIII B for details.

and velocity at the far field (assumed equal to unity) and
D the diameter of the object.

A. Mixed convection in the flow past a sphere

Let us revisit the problem of pattern formation behind
a sphere falling through a thermally stratified fluid. In
our formulation the sphere is held fixed, with flow past it
(the WFA-MC problem). This problem has many prac-
tical applications in engineering such as cooling, heating
[26], sedimentation [53], melting [54], combustion [55],
and vaporization [56]. A heated sphere represents a heat
source embedded within the physical domain, where the
solid body is subjected to forces of hydrodynamic and
thermal origin. There are two main cases of interest.
The case of a hot falling sphere where the fluid within the
wake is accelerated with respect to the spherical body is
called assisting case and is characterized by a positive
Richardson number (Ri > 0). The opposite case, where
the wake of a hot ascending spherical particle is deceler-
ated by buoyancy effects, is referred to as the opposing
case and corresponds to a negative Richardson number
(Ri < 0). Kotouc et al. [26] studied numerically both
configurations for two Prandtl numbers, Pr = 0.72 and
Pr = 7. The assisting flow case displays an organising
center of Hopf-Hopf type with azimuthal wavenumbers
m = 1 and m = 2. The opposing flow configuration ex-
hibits instead a point in the (Re,Ri) parameter space
where a steady-state mode and a pair of unsteady modes
with azimuthal wavenumber m = ±1 are simultaneously
unstable.
The opposing flow case at Pr = 0.72 displays a

large variety of patterns. The codimension-two point at
(Rec, Ric) point, see tables XII and XIII, splits the pa-
rameter space in the following sense: for Ric < Ri < 0
the primary bifurcation breaks the axisymmetry of the
steady-state solution, i.e., it corresponds to a steady-
state mode (state I in Kotouc et al. [26]); for Ri < Ric
the primary branch is a standing wave (state XIV in Ko-
touc et al. [26]), i.e., a solution with mean-zero lift force
preserving the symmetry plane. For Richardson numbers
Ri < Ric the observed transition to more complex spatio-
temporal patterns is explained by the interaction between
the unsteady pair of modes. In this regime the cubic trun-
cation is degenerate, as already explained, and in order
to lift the degeneracy between the modulated wave states

MW and ĨMM (these states are labelled XX in Kotouc et
al. and not distinguished) one must either include higher
order terms in the normal form or introduce terms that
break the O(2) symmetry, see appendix B. These modu-
lated wave states then bifurcate further, generating gen-
eral Precessing Waves. In the study of Kotouc et al. [26],
the authors did not observe PrWG, and instead identified
aperiodic states, i.e., states that did not display any par-
ticular spatiotemporal symmetry. This finding could be
explained by a subsequent bifurcation towards a 3FW,
although this is not taken into account in the normal
form.

When Ri > Ric a large variety of states exist. The
axisymmetric steady state loses stability with respect to
a nonaxisymmetric steady-state mode, thereby losing ax-
isymmetry. The resulting SS state then transitions into
a mixed mode MM0 that preserves reflection symme-
try and is associated with a nonzero mean lift. The
MM0 state further transitions into a general Precessing
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TABLE XII: Location of the codimension-two point and the corresponding Strouhal number at unsteady onset,
together with the linear coefficients in the normal form for the WFA-MC flow past a sphere or a disk.

Case Rec Ric Stc λs λh

Sphere 172 −0.13 8.5 · 10−2 86.7 · ηRe + 0.82 · ηRi

(
84.7− 67.9i

) · ηRe +
(
2.19− 3.31i

) · ηRi

Disk χ = 10 129.4 −0.069 1.07 · 10−1 76.8 · ηRe + 0.057 · ηRi

(
66.0− 25.2i

) · ηRe +
(
0.52− 1.10i

) · ηRi

Disk χ = 3 152.9 −0.079 9.5 · 10−2 95.3 · ηRe + 0.37 · ηRi

(
92.5− 40.0i

) · ηRe +
(
1.10− 1.48i

) · ηRi

FIG. 23: The predicted patterns in the flow past a sphere under mixed convection (opposing flow) conditions in
parameter space. Snapshots of the reconstructed states are included.

Wave (PrWG), i.e., a state without a symmetry plane and
slowly rotating mean lift, which in turn bifurcates into a
3FW and finally to a Pulsating Wave state. These three
states are located within small regions of the parameter
space. However, they have been numerically determined:
PrWG was numerically observed by Kotouc et al. [26] for
Ri > −0.1 (state XIII) and the 3FW or PuW state were

TABLE XIII: Cubic and quintic coefficients of the
normal form for the WFA-MC flow past a sphere.

l0 l1 l2 l3 p1Δ
−10.57 −4.57 −0.078 0.27 −201.1

A B C D p2N
1.07 + 0.75i −2.8 + 3.54i −3.78 + 3.02i 0.79− 1.0i −18.10

identified for Ri ≈ −0.1 (state XIX), which is a state that
displays a temporary symmetry plane and at least two
frequency components. The Pulsating Wave state even-
tually transitions into MMπ, i.e., a mixed mode without
a symmetry plane (also state XIII in [26]). This series
of bifurcations is followed either by a standing wave, or
modulated wave modes or a Precessing Wave, which is
in qualitative accordance with the study of Kotouc et al.

B. Mixed convection in the flow past a disk

Let us now examine the transition scenario for axisym-
metric wake flow past a disk, focusing on the opposing
flow case under mixed convection conditions. This prob-
lem depends on three control parameters, the Reynolds
number Re, the Richardson number Ri, and the aspect
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FIG. 24: The predicted patterns in the flow past a disk with χ = 10 under mixed convection (opposing flow)
conditions in parameter space. Snapshots of the reconstructed states are included.

ratio of the disk χ, where 1/χ is the dimensionless thick-
ness.

The WFA problem for Ri = 0 and 1/χ ≈ 0 has already
been studied by Fabre et al. [13] using numerical simula-
tions and normal from coefficients fitted from the simula-
tions. The case χ = 3 was studied in detail by Auguste et
al. [14]. A more rigorous study via multiple-scale anal-
ysis was performed by Meliga et al. [27]. Later, Chrust
et al. [15] explored the flow dependence on the param-
eters (Re, χ) using numerical simulations and proposed
a classification of the patterns observed. These studies
demonstrated the importance of the disk thickness on the
transition scenario. Chrust et al. observed that, when
the thickness 1/χ is large, for instance χ = 1, the sym-
metry plane is preserved for large values of the Reynolds

TABLE XIV: Cubic and quintic coefficients of the
normal form for the WFA-MC flow past a disk with

χ = 10.

l0 l1 l2 l3 p1Δ
−4.45 −5.94 0.92 −2.28 −50

A B C D p2N
0.1− 1.29i −2.14 + 1.69i −0.64− 2.35i −1.05 + 1.10i −1

number, i.e., only SS and MM0 (possibly with modu-
lated mixed modes or precessing waves) are observed be-
fore spatio-temporal chaos appears. In the limit of zero
thickness, when 1/χ ≈ 0, we will see that the transition
scenario starts with the formation of a SS pattern fol-
lowed by the breaking of the symmetry plane, leading
to a MMπ mode and eventually to standing waves SW.
At intermediate values of the thickness, a large variety of
spatio-temporal patterns may be observed, as highlighted
by the study of Auguste et al. In the present study, we
shall look for the connections between the opposing flow
case in mixed convection and the situation at Ri = 0,
in terms of the spatio-temporal patterns observed in the
flow.

Figure 25 displays the location of the codimension-two
point corresponding to the Hopf-Steady State bifurcation
obtained by varying 1/χ ∈ [0, 1]. The top panels show the
corresponding temperature distribution in space and the
growing extent of the recirculation bubble in the steady
states associated with two distinct values of the aspect ra-
tio χ of the disk. In the range of aspect ratios considered
here, the critical Reynolds number grows linearly with
the thickness 1/χ of the disk, as previously observed by
Fernandes et al. [18]. In addition, the critical Richardson
number displays a maximum around 1/χ ≈ 0.1 followed
by a linear decrease in the critical Richardson number.
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(a) χ = 10 (b) χ = 3

FIG. 25: The location of the codimension-two
Hopf-Steady State bifurcation in the (Re, Ri) plane as
a function of the aspect ratio χ of the disk (Re: black
line; Ri: red line). The color-coded symbols refer to the

points obtained in numerical computations. Top:
temperature distribution of the trivial steady-state at
(a) 1/χ = 0.1 (Re ≈ 130, Ri ≈ −0.068), (b) 1/χ ≈ 0.33

(Re ≈ 150, Ri ≈ −0.078).

In the following we shall discuss in detail the two cases
χ = 10 and χ = 3. The case χ = 10 corresponds to a
case with a relatively simple transition scenario, similar
to that explained by Meliga et al. [27]. On the other
hand, the case χ = 3 displays a larger number of spatio-
temporal structures, and is qualitatively similar to the
case of the sphere discussed in section VIIIA.

The parameter space summarizing the normal form
predictions for χ = 10 is displayed in fig. 24. In this case,
to the left of the codimension-two point (grey point in the
diagram), the trivial steady state transitions to stand-
ing waves and the subsequent bifurcations are uniquely
explained by the unsteady modes. To the right of the
codimension-two point the primary bifurcation breaks
the axisymmetry of the steady state, i.e., it generates the
SS state, followed by a periodic state with no reflection
symmetry and non-zero mean lift, i.e., the MMπ state.
The mixed mode MMπ state eventually bifurcates into a
standing wave solution, which finally bifurcates to MW
via the effect of higher order terms.

The dynamics near the organizing center for the flow
past a disk with thickness 1/χ = 1/3 is richer. As in
the previous cases, to the left of the organizing center

the transition scenario is based on the initial formation
of standing waves, followed by modulated waves and an
eventual tertiary bifurcation, not taken into account in
the normal form, leading to temporal chaos. To the
right of the organizing center the transition scenario is
qualitatively similar to that of the sphere (compare sec-
tion VIIIA and fig. 26), although in the present case the
codimension-two point is sufficiently close for the theory
to provide quantitative predictions of the transition sce-
nario. In other words, the transition scenario in the sim-
ple WFA problem of the disk with aspect ratio χ = 3 is
constrained by the dynamical structures emanating from
the organizing center at Ri �= 0, something that is not the
case for the sphere, see Kotouc et al. [26, Fig 4.]. Fig-
ure 27 displays the reconstruction of the lift coefficient
from the normal form at Ri = 0, in comparison to the
results obtained numerically by Auguste et al. in [14]. It
distinguishes five regions, with the Knit-Knot (KK) re-
gion among them. The transition begins at Re ≈ 159.4
(Re ≈ 159.8 [14]) via the formation of a steady-state pat-
tern (SS), which eventually bifurcates into a mixed mode
(MM0) at around Re ≈ 182.5 (Re ≈ 179.9 in [14]). The
MM0 state loses stability at around Re ≈ 184.5. Quan-
titatively, up to this point, the sequence of bifurcations
is reasonably well predicted with regard to the data re-
ported by [14]. The Knit-Knot region in our analysis
covers a large variety of states with similar characteris-
tics in terms of the frequency components (at least two),
and the lift coefficient CL. Auguste et al. [14] identified
this motion as temporally quasiperiodic motion result-
ing from spontaneously broken reflection symmetry. The
temporal dynamics of the KK state may be described
as the composition of a state with frequency ωh and a
low frequency state, whose frequency experiences large
variation within its region of existence (from Tp ≈ 96 2π

ωh

at Re = 185 to Tp ≈ 48 2π
ωh

at Re = 187 and then to

Tp ≈ 54 2π
ωh

at Re = 190, cf. fig. 29). This bifurcation se-
quence is followed by the appearance of the MMπ state,
estimated to be around Re ≈ 198.5 (Re ≈ 190.4 in [14])
which connects to the standing wave branch at around
Re ≈ 214 (Re ≈ 215.2 in [14]). According to theory, this
sequence of bifurcations should be followed by the forma-
tion of a modulated wave branch and precessing waves.
However, we do not discuss these patterns here due to
the lack of simulation data to compare with and because
these patterns can only be described using the fifth order
normal form whose coefficients we have not computed.

TABLE XV: Cubic and quintic coefficients of the
normal form for the WFA-MC flow past a disk with

χ = 3.

l0 l1 l2 l3 p1Δ
−6.19 −4.86 0.47 −2.76 −50

A B C D p2N
0.56− 0.38i −2.3 + 2.3i −1.7 + 0.32i 0.79 + 0.52i −6
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FIG. 26: The predicted patterns in the flow past a disk with χ = 3 under mixed convection (opposing flow)
conditions in parameter space. Snapshots of the reconstructed states are included.

For more information, see fig. 26.
Let us return to the discussion of the Knit-Knot re-

gion. In our more detailed analysis, this state is actually
composed of several simpler states, see fig. 28. The MM0

bifurcates into a precessing wave PrWG at Re ≈ 184.5.
This precessing wave is stable up to Re ≈ 186.3, where
a saddle-node bifurcation takes place leading to a 3FW ,
denoted as 3FWA in fig. 28. The three-frequency wave is
observable only in a small interval, however, and eventu-
ally reconnects to a Pulsating Wave via a global homo-
clinic bifurcation at around Re ≈ 186.9. This Pulsating
Wave is stable up to around Re ≈ 191.9. At this stage,
we can observe two other bifurcations leading to three-
frequency waves with 3FWB (unstable) and 3FWC (sta-
ble); both of these branches reconnect to the main branch
(PuW) following a saddle node bifurcation of limit cy-
cles. The pulsating wave state finally reconnects with
the symmetry-breaking mixed mode (MMπ) branch.

IX. DISCUSSION & CONCLUSION

In this article, we have analyzed the properties of the
normal form and the bifurcation scenario relevant to the
bifurcations observed in axisymmetric wakes described
by the Navier–Stokes equation. We have shown that near

the onset of instability, it is possible to reduce the dynam-
ics via center manifold reduction to a normal form, i.e.,
an ordinary differential equation, whose unfolding fully
captures the local behavior of the Navier-Stokes equa-
tion. Such normal forms inherit the discrete and con-
tinuous symmetries of the system, in the present case
O(2) symmetry. We have shown that this approach, car-
ried out in the vicinity of a steady state-Hopf interaction,
suffices to predict much of the observed behavior.

Our analysis of the generic steady state-Hopf case re-
lied on a reduction to polar coordinates. The fixed point
solutions of the normal form, e.g. the pure modes and
the mixed modes, have been observed in a variety of fluid
flows, including Taylor-Couette and wake flows. Here, we
have attempted to provide a complete description of the
fixed point solutions of the normal form, as well as possi-
ble bifurcations to periodic solutions of the polar normal
form corresponding to two- and three-frequency waves.

Particularly noteworthy is our discovery of robust, po-
tentially attracting, heteroclinic cycles in this mode in-
teraction. In previous studies [57, 58], self-sustained pro-
cesses have been related to a three-step process involv-
ing rolls advecting streamwise velocity, leading to streaks
which once unstable lead to wavy perturbations whose
nonlinear interaction with itself feeds the rolls. In terms
of the mode interaction, the self-sustained cycle described
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FIG. 27: Bifurcation diagram in terms of the lift
coefficient CL for the WFA problem (Ri = 0) with

χ = 3. Solid lines were computed from the normal form,
dashed lines were extracted from [14]. Black lines

denote CL,max and red lines denote the average of CL.
See legend in fig. 28 for a description of the markers.

by Dessup et al. [57] corresponds to a HetSS−SW cycle
or to an orbit that shadows it. In this sense, one could
expect that other, more complex dynamics, for instance
a HetPrWA

cycle, may also be observed in the bifurcation
scenario of real fluid systems. We mention that the indef-
inite increase in period associated with the approach to
an attracting robust heteroclinic cycle cannot in general
be seen in numerical integration of the normal form, on
account of rounding error. Instead, the solution trajec-
tory settles into a statistical limit cycle with a finite mean
period [59]. This is even more so for partial differential
equations [60] and in experiments where the presence of
noise prevents approach to such a cycle [61]. This fact
points to the importance of fluctuations in applications
of the theory to fluid dynamics problems, as also empha-
sized in [47] in connection with the SNIPER bifurcation.
We have applied here the general theory to several dis-

tinct fluid flows and used it to explore the bifurcation sce-
nario of wake flows behind a sphere or disk falling through
either a constant density fluid or a vertically stratified
fluid (problems WFA and WFA-MC, respectively). In
particular, in section VII, we determined the normal form
coefficients for these problems on the assumption that
each object is held fixed, and used these results in sec-
tion VIII to construct consistent stability diagrams for
these flows, comparing the predicted bifurcation scenar-
ios for mixed-convection flow past a fixed axisymmetric
object, a disk and a sphere, with the results of direct nu-
merical simulations of these flows. These results enabled
us to rationalize the results of previous numerical studies
including those in the complicated Knit-Knot region of

FIG. 28: Bifurcation diagram in the Knit-Knot region
of fig. 27 in terms of the period TP of the low frequency
modulation. Square markers: Hopf bifurcation. Circles:
saddle-node bifurcation. Triangles: Neimark-Sacker

bifurcation.

Auguste et al. [14] for the WFA problem for a disk with
thickness χ = 3 and the WFA-MC problem for a sphere
of Kotouč et al. [26], states XIII or XIX, thereby demon-
strating the utility of our bifurcation-theoretic approach.
Unfortunately, neither of these cases predicts the pres-
ence of structurally stable heteroclinic cycles, although
such states may arise for other parameter values.
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Appendix A: Normal form reduction

1. Third order forcing terms

The third order forcing terms are obtained from the
substitution of the Ansatz (58) into F(q,η). The gen-
eral expression of the third order forcing term F(ε3) is as
follows:

F(ε3) ≡
2∑

j=−2
k,=−2

ajaka
[
N(q̂j , q̂k,) +N(q̂k,, q̂j)

]
e−imnθe−iωnt

+
2∑

j=−2,=0

ajΔη
[
N(q̂j ,Q

(η�))
0 +N(Q

(η�)
0 , q̂j)

]
e−imjθe−iωjt

+
2∑

j=−2,=0

ajΔηG(q̂j , e)e
−imjθe−iωjt ,

(A1)
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(a)

(b)

FIG. 29: The ambiclinic orbit ReHom
MM0

(gray line) at
Re = 186.4 of fig. 28. The gray dot is the location of

MM0 while the red markers indicate the location of the
PrWG states. The red and blue trajectories represent
limit cycles for higher values of Re; the period TP of
these states diverges logarithmically as Re → 186.4

from above (not shown).

with a slight abuse of notation such that q̂j = q̂−j ,

q̂k,j = q̂−k,−j and aj = a−j . Therefore, the azimuthal
wavenumber and the frequency associated with a neg-
ative index are both considered to be of the opposite
sign, i.e., ω−j = −ωj and m−j = −mj . Finally, ωn

and mn are defined by the relations ωn = ωj + ωk + ω,
mn = mj +mk +m, where n = j + k + �.
Resonant terms are those for which (ωn,mn) is equal to

either (0,m0), (ω1,m1) or (ω1,−m1) (plus the complex
conjugate pairs). The remaining terms only play a role
in higher-order truncations.
Hierarchically, the first class of third-order forcing

terms are those that are linear with respect to the am-
plitudes aj for j = 0, 1, 2,

F̂
(aj)

(ε3) ≡
2∑

=0

Δη

([
N(q̂j ,Q

(η�))
0 +N(Q

(η�)
0 , q̂j)

]
+G(q̂j , e)

)
.

(A2)
The second type of resonant forcing terms are those

used to compute the real coefficients lj for j = 0, 1, 2, 3.

They are proportional to the cubic terms in the first equa-
tion of the complex normal form (8), and are given by

F̂
(a0|a0|2)
(ε3) ≡ [

N(q̂0, q̂0,−0) +N(q̂0,−0, q̂0)
]

+
[
N(q̂−0, q̂0,0) +N(q̂0,0, q̂−0)

]
,

(A3)

with the notation q̂−0 = q̂0. Similarly, the terms

F̂
(a0|aj |2)
(ε3) for j = 1, 2 are given by

F̂
(a0|aj |2)
(ε3) ≡ [

N(q̂0, q̂j,−j) +N(q̂j,−j , q̂0)
]

+
[
N(q̂−j , q̂0,j) +N(q̂0,j , q̂−j)

]
+
[
N(q̂j , q̂0,−j) +N(q̂0,−j , q̂j)

]
,

(A4)

while F̂
(a0a1a2)
(ε3) is expressed as

F̂
(a0a1a2)
(ε3) ≡ [

N(q̂−0, q̂1,−2) +N(q̂1,−2, q̂−0)
]

+
[
N(q̂1, q̂−0,−2) +N(q̂−0,−2, q̂1)

]
+
[
N(q̂−2, q̂−0,1) +N(q̂−0,1, q̂−2)

]
.
(A5)

The third class of forcing terms are those used for the
computation of the complex coefficients A,B,C and D.

These are F̂
(aj |aj |2)
(ε3) for j = 1, 2:

F̂
(aj |aj |2)
(ε3) ≡ [

N(q̂j , q̂j,−j) +N(q̂j,−j , q̂j)
]

+
[
N(q̂−j , q̂j,j) +N(q̂j,j , q̂−j)

]
,

(A6)

F̂
(aj |ak|2)
(ε3) for j = 1, 2 and k = 0, 1, 2 with j �= k,

F̂
(aj |ak|2)
(ε3) ≡ [

N(q̂j , q̂k,−k) +N(q̂k,−k, q̂j)
]

+
[
N(q̂−k, q̂j,k) +N(q̂j,k, q̂−k)

]
+
[
N(q̂k, q̂j,−k) +N(q̂j,−k, q̂k)

]
.

(A7)

Finally, the term F̂
(a0a

2)
(ε3) is expressed as

F̂
(a0a

2)
(ε3) ≡ [

N(q̂0, q̂0,2) +N(q̂0,2, q̂0)
]

+
[
N(q̂2, q̂0,0) +N(q̂0,0, q̂2)

]
.

(A8)

Appendix B: Modulated wave mode

The modulated wave mode is a degenerate solution of
the normal form (8) truncated at third order. Crawford
& Knobloch [32] analyzed the unfolding of the three sim-
plest degeneracy conditions: (i) Ar+2Br = 0, (ii) Br = 0
and (iii) Ar = 0. Hereinafter, we do not aim to provide
the complete picture of the unfolding, which was the con-
cern of Crawford & Knobloch [32]. However, we briefly
summarize some of their results, and list sufficient con-
ditions for the stability and branching of the modulated
wave solution.
The existence of the MW solution is subject to the

following conditions

p1(0, r21 + r22, (r
2
2 − r21)

2, 0, 0, λ) ≡ 0
p2(0, r21 + r22, (r

2
2 − r21)

2, 0, 0, λ) ≡ 0 .
(B1)
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Hill and Stewart [62] observed that the condition p2 ≡ 0
is a degeneracy condition if one evaluates the polynomial
p2 at the origin, i.e. p2(0, 0, 0, 0, 0, 0) ≡ Ar. Since, to
fifth order,

p1(0, r21 + r22, (r
2
2 − r21)

2, 0, 0, λ) ≡
λh + ( 12Ar +Br)(r

2
1 + r22)

+p1Δ(r
2
2 − r21)

2 + p1N (r21 + r22)
2 ,

p2(0, r21 + r22, (r
2
2 − r21)

2, 0, 0, λ) ≡
1
2Ar + p2N (r21 + r22) + p2Δ(r

2
2 − r21)

2 ,

(B2)

the {r1, r2} evolution is given by

ṙ1 = r1

[
λh +Brr

2
1 + (Ar +Br)r

2
2

+(p1Δ + p1N2 − p2N )r41 + (p1Δ + p1N2 + p2N )r42
+2(p1N2 − p1Δ)r

2
2r

2
1 + p2Δ(r

2
2 − r21)

3
]
,

ṙ2 = κ · ṙ1,
(B3)

where κ · ṙ1 stands for the action of the reflection symme-
try, defined in eq. (6), and p2Δ = 0 to restrict the equation
to fifth order. Inspection of eq. (B3) shows that the fixed
points ra, rb satisfy

r2a =
1

2

[
− Ar

2p2N
−
√

χ

4p2Np1Δ

]
r2b =

1

2

[
− Ar

2p2N
+

√
χ

4p2Np1Δ

]
,

(B4)

where the symbol χ, which is a function of the parameter
λh, is defined in table VI. Evidently, the MW states exist
when Ar/p

2
N < 0 and 0 < χ/(p2Np1Δ) < A2

r/(p
2
N )2.

The stability within the MW subspace, i.e. with re-
spect to perturbations in {r1, r2} only, can be analysed
in terms of the determinant and trace of the Jacobian
stability matrix restricted to this subspace:

det(MMW ) = 32p2Np1Δr
2
ar

2
b (ra − rb)

2
(ra + rb)

2
,

(B5a)

tr(MMW ) =
Ar

p2N

[Arp
1
N2

p2N
− 1

2
(Ar + 2Br)

]
+
(
r2a − r2b

)2(
4p1Δ − 2p2N

)
,

(B5b)

In view of eq. (B5a), the determinant vanishes when
rarb = 0 corresponding to the rotating wave branch
and when ra = rb corresponding to the standing wave
branch. Therefore, the modulated wave branch connects
the branches of rotating and standing waves. The stand-
ing waves changes stability when σSW ≡ −2r2SW (Ar +
4r2SW p2N ) changes sign, which can happen if Arp

2
N < 0.

The corresponding standing wave amplitude is given by

r2SW = − Ar

4p2N
. The standing wave emerges as a stable

(resp. unstable) solution within the {r1, r2} subspace if
Ar > 0 (resp. Ar < 0) and it becomes unstable (resp.

stable) when r2SW = − Ar

4p2N
. The stability of the rotat-

ing wave within the {r1, r2} subspace is determined by
the eigenvalue σRW ≡ −r2RW (Ar − 2r2RW p2N ) which is
stable (resp. unstable) if Ar < 0 (resp. Ar > 0). The

corresponding amplitude is r2RW = − Ar

2p2N
.

The conditions on the determinant show that the MW
branch does not experience steady bifurcations, except
at the two end points. The MW solution is stable if
det(MMW ) > 0, that is, p2Np1Δ > 0, and the trace is neg-
ative. It is sufficient to ensure that the trace is negative
at the end points, which is ensured if Ar > 0, p2N < 0,
p1Δ < 0 and Br + Ar < 0. Otherwise, the MW branch
may experience a Hopf bifurcation leading to a 3FW.

Let us now focus on the stability of the MW branch
with respect to perturbations in the variable r0. We see
that the MW can bifurcate into a Precessing Wave solu-
tion whenever,

λs − l1
Ar

p2N
≥ 0 .

In the supercritical case, the PrW connects in parame-
ter space a Mixed Mode with a Modulated Wave Mode.
Finally, a possible scenario for a bifurcation from a PrW
towards a three-frequency wave arises whenever eq. (9d)
does not possess a fixed point.

[1] M. Golubitsky and M. Roberts, A classification of degen-
erate hopf bifurcations with O(2) symmetry, Journal of
Differential Equations 69, 216 (1987).

[2] J. D. Crawford and E. Knobloch, Symmetry and
symmetry-breaking bifurcations in fluid mechanics, An-
nual Review of Fluid Mechanics 23, 341 (1991).

[3] M. Golubitsky and W. Langford, Pattern formation and
bistability in flow between counterrotating cylinders,
Physica D: Nonlinear Phenomena 32, 362 (1988).

[4] P. Chossat and G. Iooss, The Couette-Taylor Problem,
Vol. 102 (Springer Science & Business Media, 2012).

[5] M. Golubitsky, J. Swift, and E. Knobloch, Symme-
tries and pattern selection in rayleigh-bénard convection,

Physica D: Nonlinear Phenomena 10, 249 (1984).
[6] J. Sierra, D. Fabre, V. Citro, and F. Giannetti, Bifur-

cation scenario in the two-dimensional laminar flow past
a rotating cylinder, Journal of Fluid Mechanics 905, A2
(2020).

[7] D. Ormières and M. Provansal, Transition to turbulence
in the wake of a sphere, Physical Review Letters 83, 80
(1999).

[8] K. Gumowski, J. Miedzik, S. Goujon-Durand, P. Jenffer,
and J. Wesfreid, Transition to a time-dependent state of
fluid flow in the wake of a sphere, Physical Review E 77,
055308 (2008).

[9] R. Natarajan and A. Acrivos, The instability of the



36

steady flow past spheres and disks, Journal of Fluid Me-
chanics 254, 323 (1993).
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The wake flow past a streamwise rotating sphere is a canonical model of numerous
applications, such as particle-driven flows, sport aerodynamics and freely rising or falling
bodies, where the changes in particles’ paths are related to the destabilization of complex
flow regimes and associated force distributions. Herein, we examine the spatio-temporal
pattern formation, previously investigated by Lorite-Díez & Jiménez-González (J. Fluid
Mech., vol. 896, 2020, A18) and Pier (J. Fluids Struct., vol. 41, 2013, pp. 43–50), from
a dynamical system perspective. A systematic study of the mode competition between
rotating waves, which arise from the linearly unstable modes of the steady-state, exhibits
their connection to previously observed helical patterns present within the wake. The
organizing centre of the dynamics turns out to be a triple Hopf bifurcation associated
with three non-axisymmetric, oscillating modes with respective azimuthal wavenumbers
m = −1, −1 and −2. The unfolding of the normal form unveils the nonlinear interaction
between the rotating waves to engender more complex states. It reveals that for low values of
the rotation rate, the flow field exhibits a similar transition to the flow past the static sphere,
but accompanied by a rapid variation of the frequencies of the flow with respect to the
rotation. The transition from the single helix pattern to the double helix structure within the
wake displays several regions with hysteric behaviour. Eventually, the interaction between
single and double helix structures within the wake lead towards temporal chaos, which here
is attributed to the Ruelle–Takens–Newhouse route. The onset of chaos is detected by the
identification of an invariant state of the normal form constituted by three incommensurate
frequencies. The evolution of the chaotic attractor is determined using of time-stepping
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simulations, which were also performed to confirm the existence of bi-stability and to assess
the fidelity of the computations performed with the normal form.

Key words: shear-flow instability, wakes

1. Introduction

The flow around a rotating sphere has drawn the attention of many researchers in recent
years as it represents a canonical problem with many engineering and physics applications.
For instance, such configuration may be found in multiple practical and natural phenomena
like particle-driven flows (Shi & Rzehak 2019), fluidized bed combustion (Liu &
Prosperetti 2010; Feng & Musong 2014), sports aerodynamics (Passmore et al. 2008;
Robinson & Robinson 2013), seeds’ flight (Barois et al. 2019; Rabault, Fauli & Carlson
2019) or free-falling/rising bodies (Ern et al. 2012; Auguste & Magnaudet 2018; Mathai
et al. 2018), among others. In such applications, the instability of paths of the spherical
bodies is shown to depend on the forces distributions acting on their surface and, therefore,
on the flow regimes that are destabilized for different values of the Reynolds number and
rotation rates. Consequently, a profound understanding of the physics of the flow around
a rotating sphere and its instability features is required to predict the dynamics of rotating
particles and evaluate possibilities of flow and path control.

The unstable flow regimes at the wake past a fixed sphere have been extensively
characterized, as it represents a classical example of open flow leading to rich pattern
formation and dynamical complexity. As reported by different numerical and stability
analyses available in the literature, the flow experiences a complex sequence of laminar
bifurcations as the Reynolds number Re increases (see, e.g. Sakamoto & Haniu 1990;
Johnson & Patel 1999; Fabre, Auguste & Magnaudet 2008; Fabre et al. 2017). For a static
(non-rotating) sphere, the flow first experiences a steady bifurcation around Rec1 
 212,
leading to a steady, reflection-symmetric bifid wake (steady-state mode, Fabre et al. 2008),
followed by a Hopf bifurcation at Rec2 
 272 (Citro et al. 2017), leading to a periodic,
vortex-shedding mode which preserves the axial reflection symmetry plane (RSP mode,
Fabre et al. 2008). This reflection symmetry in the shedding process is lost around
Rec3 
 375, from which the wake starts to oscillate transversely (Chrust, Goujon-Durand
& Wesfreid 2013).

When rotation is applied, the bifurcation scenario of the sphere wake is modified,
generating even richer dynamics. In particular, as shown by Poon et al. (2010), the topology
and frequency of the unstable flow regimes depend on the rotation rate Ω and the axis of
rotation.

In general, the flow past streamwise rotating spheres has received considerably less
attention than transversely rotating spheres (see, e.g. Citro et al. 2016), and their dynamics
and controllability features are not yet fully understood. However, some numerical and
experimental studies have focused on the flow topology and stability modifications
produced in the sphere wake as the streamwise rotation speed increases (Kim & Choi
2002; Niazmand & Renksizbulut 2005; Skarysz et al. 2018) at low values of Reynolds
number. The problem can be also studied under linear stability analysis perspective as in
Pier (2013) and Jiménez-González, Manglano-Villamarín & Coenen (2019). Moreover, the
influence of streamwise rotation is not only restricted to the sphere, and it has been also
studied in wakes behind other axisymmetric geometries which follow a similar series of
bifurcations, as in Jiménez-González et al. (2013) and Jiménez-González et al. (2014) for
blunt-based bodies.
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The introduction of streamwise rotation introduces unsteadiness and asymmetry in
the sphere wake. The steady state is substituted by a frozen rotation with azimuthal
wavenumber m = −1 symmetry (Kim & Choi 2002; Jiménez-González et al. 2019), the
negative sign indicating that vortical structures wind in the direction opposite to the swirl
motion. When either Re or Ω increase, the periodic behaviour of this low-frequency
frozen state diverges to quasiperiodic or even chaotic states. The quasiperiodicity can
be caused by the appearance of a medium-frequency component, related to the RSP
mode of the non-rotating situation, or to the appearance of a component with m = −2
symmetry in the flow, for Re < 500 and moderate Ω values (Skarysz et al. 2018;
Lorite-Díez & Jiménez-González 2020). Moreover, in a more recent study, Lorite-Díez
& Jiménez-González (2020) also identified very complex patterns close to chaotic
behaviours, by performing direct numerical simulations (DNS). More precisely, with the
help of dynamic mode decomposition tools, the nonlinear regimes are reported to be
characterized by three fundamental frequency components (related to unstable structures

displaying m = −1, m = −1 and m = −2 symmetries, respectively) and their interactions.
However, the time-stepping simulations do not provide a clear insight about the origin of
instability of these complex regimes and the fundamental nature of the incommensurate
or derived frequency components, so that the use of adjoint stability tools seem
advisable to isolate fundamental modes and identify mechanisms of receptivity to forcing
or control.

Additionally, the time-stepping simulations of such complex dynamical systems are
generally demanding in terms of computational cost, especially close to bifurcations
thresholds, where long convergence times are usually required to obtain statistically
relevant solutions. As a matter of fact, alternative weakly nonlinear approaches, as those
based on bifurcation theory (Golubitsky & Langford 1988), may be more efficient to
elucidate the pattern of transitions and major features of flow regimes with increasing
values of the problem parameters (i.e. Re, Ω), by taking advantage of the symmetry of the
base flow and proximity between successive instability thresholds. That said, the transition
scenarios of complex systems with underlying symmetries usually lead to a large variety
of pattern formations.

Close to the onset of stability, these patterns may be caused by a single instability, or
alternatively, the system can display instabilities where several modes are concomitantly
accountable for the destabilization of the trivial state. Besides, flow configurations
controlled by a diversity of parameters may lose stability in diverse manners. A large
diversity of patterns may emerge in the entire parameter space, and, in particular, one
can find specific regions displaying mode competition. The combination of symmetry
with a parameter space whose dimension is higher than one is a classical scenario where
mode interaction occurs. The organizing centre of such cases is denoted as a bifurcation
of codimension n, with n ∈ N. Codimension is herein loosely defined as the number of
interacting modes, and also corresponds to the dimension of the low-order dynamical
system model called the normal form capturing the essence of the dynamics. The interested
reader can find more about pattern formation in symmetric systems in Golubitsky, Stewart
& Schaeffer (2012), while the study of the normal form of bifurcations with codimension
higher than one may be found in the books of Guckenheimer (2010) or Kuznetsov (2013).
The passage from a high-dimensional system to a reduced one with a slow manifold
takes advantage of the theoretical framework provided by the singular perturbation theory.
For example, the geometric singular perturbation theory, reviewed by Verhulst (2007), is
a powerful technique within the singular perturbation theory. In the bifurcation theory
of autonomous systems, it is customary to employ centre manifold or normal form
reduction. This procedure has been employed for the study of bifurcations from steady
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states (Haragus & Iooss 2010), maps (respectively Poincaré maps associated with a
limit-cycle solution) (Kuznetsov & Meijer 2005), homoclinic and heteroclinic connections
(Homburg & Sandstede 2010). The most commonly used computational procedures to
determine the centre manifold are weakly nonlinear analysis, multiple scales expansion
or the homological equation. In the past, these approaches have been exploited to study
mode interaction in thermally driven convective motions, e.g. the Rayleigh–Bénard (Varé
et al. 2020) and Langmuir circulation (Allen & Moroz 1997), in the fluid flow between
counter-rotating cylinders, e.g. the Taylor–Couette flow (Golubitsky & Langford 1988)
and its variants (Renardy et al. 1996), in magnetoconvection (Rucklidge et al. 2000), in
the flow past a rotating cylinder (Sierra et al. 2020b) and in swirling jets (Meliga, Gallaire
& Chomaz 2012).

In light of the aforementioned studies, for the parameters considered herein, one can
expect that a linear stability analysis (LSA) discriminates at least three unsteady unstable
fundamental modes: two with azimuthal wavenumber m = −1 and a third one with
m = −2; meaning that the organizing centre is a triple-Hopf bifurcation with SO(2)

symmetry. Despite the likely existence of three unstable modes, because the dimension
of the parameter space is two, the triple-Hopf bifurcation is not expected to occur.
Therefore, the approach followed herein for the study of the triple-Hopf bifurcation is
based on the extension of the normal form obtained at codimension-two points to the
codimension-three manifold. In practical terms, we determine a fifth-order truncation in
terms of the expansion parameter of the normal form at codimension-two points, followed
by a linear (respectively quadratic for linear coefficients) extension of normal form
coefficients to a specific point in the parameter space. Such an approach is detailed in § 4
and it is similar to the centre-unstable manifold reduction, cf. Armbruster, Guckenheimer
& Holmes (1989), Podvigina (2006a), Podvigina (2006b) and Meliga, Chomaz & Sipp
(2009a). In any case, once the normal form is determined, one can analyse the bifurcation
scenario, which displays a rich variety of patterns, among which one can expect: rotating
waves, quasiperiodic mixed modes or chaotic solutions displaying multiple frequency
components, along with bi-stable states stemming from the coexistence of two stable
rotating waves, mixed modes and rotating waves, diverse mixed modes or mixed modes
and chaotic attractor.

Some of these transition features and bi-stable dynamics had been confirmed via
time-stepping numerical simulations undertaken by Lorite-Díez & Jiménez-González
(2020) and Pier (2013) who reported a rich variety of spatio-temporal patterns. However,
they did not perform an exhaustive analysis of the nature of the bifurcations between
the distinct regimes. Therefore, the objective of the present research is twofold. The first
objective is to undertake a global stability analysis to determine the connection between
the observed patterns by Lorite-Díez & Jiménez-González (2020) and the linear stability
of helical modes. The identification of these fundamental modes allows an identification
of the underlying physical mechanisms responsible for the instabilities and the receptivity
of the flow to forcing or control possibilities. Secondly, the analysis of the normal form
associated with the organizing centre serves to provide a complete phase portrait of the
flow attractors before the emergence of temporal chaos and to unravel the transition
towards chaotic spatio-temporal dynamics observed by Lorite-Díez & Jiménez-González
(2020) and Pier (2013).

The outline of the manuscript is as follows. First, the flow configuration and the
numerical approach are presented in § 2. Second, we undergo a LSA in § 3, which identifies
the most unstable global modes, their underlying physical mechanisms and sensitivity
to forcing. Third, we introduce the methodology for the normal form reduction and we
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Figure 1. Sketch of the problem and geometric configuration.

illustrate it with a bifurcation diagram at constant rotation rate in § 4. Then, in § 5 we
pursue the study by comparing the normal form predictions with DNS results and we
provide a complete phase diagram of the stable attractors of the flow in the range Re ≤ 300
and Ω < 4. Finally, in § 6 we summarise the main findings and we argue of some future
applications of the study.

2. Methodology

2.1. Flow configuration – governing equations
The flow past an axisymmetric rotating body is controlled by two parameters: the Reynolds
number (Re) and the rotation rate (Ω) which is defined as the ratio of the tangential
velocity Ω∗D∗/2 on the sphere surface to the inflow velocity W∗∞. The fluid motion
inside the domain is governed by the incompressible Navier–Stokes equations written in
cylindrical coordinates (r, θ, z),

∂U
∂t

+ U · ∇U = −∇P + ∇ · τ(U), ∇ · U = 0, (2.1a)

with τ(U) = 1

Re
(∇U + ∇UT), Re = W∗∞D∗

ν∗ , Ω = Ω∗D∗

2W∗∞
, (2.1b)

x = x∗ 1

D∗ , t = t∗
W∗∞
D∗ , U = U∗ 1

W∗∞
P = P∗

(
1

W∗∞

)2

. (2.1c)

Dimensional quantities are identified with the upperscript symbol ∗. Reference scales
are specified in (2.1c). The dimensionless velocity vector U = (U, V, W) is composed of
the radial, azimuthal and axial components, P is the dimensionless reduced pressure and
the viscous stress tensor, τ(U). For representation purposes, it is sometimes necessary
to use the Cartesian coordinates (x, y, z), here z denotes the streamwise direction, y the
vertical crosswise direction and x the direction that forms a direct trihedral with z and y.
The incompressible Navier–Stokes equations (2.1) are complemented with the following
boundary conditions:

U = (0, Ω, 0) on Σb U = (0, 0, 1) on Σi. (2.2)

No-slip boundary condition is set on the rotating sphere and a uniform boundary
condition is set in the inlet, as shown in figure 1.
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In the sequel, Navier–Stokes equations (2.1) and the associated boundary conditions will
be written symbolically under the form

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q, Q) + G(Q, η), (2.3)

where B is the projection matrix onto the velocity field with the flow state vector
Q = [U, P]T, and the parameter vector η = [Re−1, Ω]T. Such a form of the governing
equations takes into account a linear dependency on the state variable Q through L and a
quadratic dependency on parameters and the state variable through operators N(·, ·) and
G(·, ·), which are detailed in Appendix A.

2.2. Nomenclature
Let us introduce some general concepts that will be employed throughout the study. Steady

states, i.e. Q such that F (Q, η) = 0, periodic orbits, i.e. Q(t) = Q(t + T) for every t ≥ 0,

are the simplest invariants of (2.3). In general, an invariant set V of the phase space of

(2.3) is a set that is preserved under dynamics, i.e. for every initial solution Q(t0) ∈ V , we

have Q(t) ∈ V for every t ≥ 0. A Tn-quasiperiodic state, n > 1, n ∈ N∗, is an invariant of
the system (2.3) that can be decomposed as a finite sum of n incommensurate frequencies
ωn, i.e.

Q = Q0 +
n∑

=1

(
Q̂eiωt + c.c.

)
. (2.4)

Incommensurate frequencies are those that are linearly independent, i.e. for k ∈ Z, we

have
∑n

=1 kω = 0 if and only if every k = 0. Here, we determine the incommensurate
frequencies as those corresponding to the fundamental modes (least stable eigenmodes)

identified by LSA.

A second important property is the attractiveness of an invariant set. We denote as basin

of attraction the set of initial conditions leading to long-time behaviour that approaches
the attractor. The celebrated manuscript of Newhouse, Ruelle & Takens (1978) states
that Tn-quasiperiodic states, with n ≥ 3, are unusual attractors, in the sense that every
Tn-quasiperiodic state can be perturbed by an arbitrarily small amount to a new vector
field with a chaotic attractor. In other words, for any Tn-quasiperiodic state of (2.3), one
may observe a chaotic Axiom A attractor by experimental or numerical means. Here, Axiom
A attractor denotes a class of dynamical systems where the non-wandering set is hyperbolic
and the attractor has a dense set of periodic orbits, more details about hyperbolicity may
be found, for instance, in the recent article by Ni (2019).

2.3. Direct numerical simulation details
The flow governed by (2.1) is solved by means of DNS, following a time-stepping approach
using the finite-volume library OpenFOAM�. The domain shown in figure 1 consists of
an upstream hemisphere of radius r∞ = 15D and a downstream tube extending z2 = 50D
downstream of the body.

Regarding boundary conditions at the outlet, Σo, we impose an outflow condition
that implements a Neumann condition for the velocity, n · ∇U = 0, where n is the
outward normal, and a Dirichlet condition for the pressure, P = 0. The latter may be
considered equivalent to setting a stress-free condition at the outlet for small values of
the viscosity (as highlighted by Tomboulides & Orszag 2000). Finally, at the outer radial
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boundary, Σw, we set a slip boundary condition, n · U = 0. Note that such domain size
and boundary conditions have been selected according to previous numerical works on
rotating axisymmetric bodies (see, e.g. Jiménez-González et al. 2013; Lorite-Díez &
Jiménez-González 2020). Additionally, second-order schemes have been employed for
spatial and time integration. Nevertheless, for the sake of conciseness, the reader is referred
to Appendix A in Lorite-Díez & Jiménez-González (2020) for detailed information about
the employed numerical schemes, convergence and validation studies. In the present
simulations ∼2.6 millions of elements mesh, denoted #2 in table 1 (Appendix A) therein,
is used.

The three-dimensional time-stepping simulations were computed in parallel. In
particular, the DNS are carried out, once converged, for T ∼ 500 convective units
for periodic regimes, and until T ∼ 1000 convective units for quasiperiodic and most
complex regimes. The employed time step is �t = 0.003 for all simulations. In terms
of computational cost, running on 16 Intel Xeon E5-2665 processors, a simulation lasting
T = 1000 convective time units corresponds to approximately 10 days.

3. Linear stability analysis

3.1. Methodology
As a first step of the reduction procedure, we identify the base flow solution, which
is defined as the steady solution Qb of the (axisymmetric) Navier–Stokes equations,
namely the solution of F (Qb) = 0. We then characterize the dynamics of small-amplitude
perturbations around this base flow by expanding them over the basis of linear eigenmodes

Q = Qb + ε
∑



q(ε)(t, τ ) = Qb + ε
∑



(
z(τ )q̂(z)(r, z)ei(mθ+ωt) + c.c.

)
, ε � 1.

(3.1)
The eigenpairs [iω, q̂(z)] are then determined as the solutions of the eigenvalue problem

J (ω,m)q̂(z) =
(

iωB − ∂F
∂q

∣∣∣∣
q=Qb,�η=0

)
q̂(z), (3.2)

where (∂F/∂q|q=Qb,�η=0)q̂(z) =Lm
q̂(z)+Nm

(Qb, q̂(z))+Nm
(q̂(z), Qb) +G(Qb, ηc),

with ηc = [Re−1
c , Ωc]T. The subscript m indicates the azimuthal wavenumber used for

the evaluation of the linearized Navier–Stokes operator J (ω,m). Please note that here, the

term �η = [Re−1
c − Re−1, Ωc − Ω]T denotes the departure from the critical condition

attained at [Re−1
c , Ωc]T. In the following, we consider that eigenmodes q̂(z)(r, z) have

been normalised in such a way that 〈q̂(z), q̂(z)〉B = 〈û(z), û(z)〉 = ∫
Ω

u(x)Tu(x) dx = 1.

3.1.1. Numerical methodology for stability tools
Results presented herein follow the same numerical approach adopted by Fabre et al.
(2018), Sierra, Fabre & Citro (2020a) and Sierra et al. (2020b). The calculation of
the base flow, the eigenvalue problem and the normal form expansion are implemented
in the open-source software FreeFem++. Parametric studies and generation of figures
are collected by StabFem drivers, an open-source project available at https://gitlab.com/

stabfem/StabFem. Results shown in §§ 3–5 have been computed with a numerical domain

(see figure 1) of size z2 = 50D, z1 = 20D and r∞ = 20D, in the streamwise and crosswise

directions, respectively. For steady-state, stability and normal form computations, we set
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Figure 2. Cross-section view at z = 3.5 of the three unstable modes. The streamwise component of the
vorticity vector �z is visualized by colours. Results are shown for (a) RW1 at point (ReA, ΩA) = (77, 2.24);
(b) RW2 at point (ReB, ΩB) = (188, 1.01); (c) RW3 at point (ReA, ΩA).

the stress-free boundary condition at the outlet, which is the natural boundary condition in
the variational formulation. Numerical convergence issues are discussed in Appendix D.
The resolution of the steady nonlinear Navier–Stokes equations is tackled by means of the
Newton method. While the generalized eigenvalue problem (3.2) is solved following the
Arnoldi method with spectral transformations. The normal form reduction procedure of § 4
only requires us to solve a set of linear systems, which is also carried out within StabFem.
On a standard laptop, every computation considered below can be attained within a few
hours.

3.2. Neutral curves of stability
In the presence of supercritical self-sustained instabilities, rotating waves are predominant.
These patterns prevail in axisymmetric flows, where the reflection symmetry regarding
the azimuthal angle is broken. Here, the reflection symmetry is broken because of the
rotation of the sphere, which induces a preferential direction of rotation. Consequently,
bifurcations that lead to standing waves or to a symmetry breaking steady state do not
occur generically. The existence of standing waves or a steady-state mode requires the
matching between the phase speed of the helical pattern and the rotation of the body,
which is another condition to be met. The global stability analysis of the flow past the
sphere confirms that only rotating waves are linearly unstable for the range of Reynolds
numbers Re < 300 and Ω < 4. The parametric linear stability study of the flow past the
rotating sphere shows the existence of three neutral curves, which are associated to the
three least stable modes identified by global stability analysis. These correspond to rotating
waves, named RW1, RW2 and RW3, which are depicted in figure 2. Linear stability results
(figure 3a) reveal that the axisymmetric steady state, referred in the following as a trivial

state, is stable in the white shaded region and unstable in the grey shaded region. The
neutral curve of stability displays two regions in the parameter space (Re, Ω) for which
the first primary bifurcations are rotating waves of low frequency where the wake past
the sphere displays a single helix (RW1), depicted in figure 2(a). In the second region, the
flow pattern of the wake displays a double helix (RW3) with a high frequency, depicted in
figure 2(c). The onset of instability of the third branch (RW2) displaying a flow pattern of
the wake with a single helix with a medium frequency, depicted in figure 2(b), turns out to
be linearly unstable for Ω ≤ 4. Each pair of neutral curves intersects once, leading to three
codimension-two points (A, B, C), identified in table 1. Another aspect of importance is the
evolution of frequencies of the instability. Frequencies at critical parameters are reported
in figure 3(b) as a function of Ω . The frequency evolution is divided into two regions, a

942 A54-8



Triple-Hopf bifurcation in the flow past a rotating sphere

50

Ω

Ω

0

1

2

3

4

100 150

TS

200 250

B

C

A

0

0.05

0.10

0.15
St

StRW1

StRW2

RW
2

RW
1

RW
1

RW
3

RW
3

StRW3

0.20

0.25

0.30

1 2 3 4
Re

(b)(a)

Figure 3. Linear stability properties of the rotating sphere configuration. (a) Neutral curve of stability: the
onset of the primary instability is portrayed with a solid black line (—), whereas the continuation of the neutral
curves is depicted with dashed black lines (- - -). (b) Frequency evolution with respect to Ω of linear modes at
the critical Reynolds number (Rec(Ω)).

Name Re Ω Mode inter. θN γ

Static 212 0 RW1 4◦ 0.76
A 77 2.24 (RW1, RW3) (4.6◦, 8.0◦) (0.89, 0.98)

B 188 1.01 (RW2, RW3) (0.7◦, 2.3◦) (0.82, 0.80)

C 73 3.95 (RW1, RW2) (3.8◦, 9.9◦) (0.80, 0.68)

Table 1. Location in the parameter space (Re, Ω) and the pair of modes involved at the codimension-two
points. It also lists the main properties of the primary bifurcation of the flow past the static sphere. The last two
columns are related to non-normality effects and are defined in § 3.3.

first of rapid evolution for low rotation rates Ω < 1 and a second where the frequency of
the three modes hardly depends on the rotation rate.

The neutral curve of stability reveals that the static configuration (Ω = 0) exhibits
the largest critical Reynolds number. Then, the critical value of the Reynolds number
is hardly modified by weak rotating speeds, in the range Ω < 0.3. However, there is
a clear threshold around Ω ≈ 0.4 where the critical Reynolds number passes from
around Rec ≈ 200 to Rec ≈ 100 in a narrow interval Ω ∈ [0.4, 1.2]. The critical Reynolds
number remains approximately constant up to the point A, the point which divides the
boundary of stability. Below the point A, that is, for Ω < ΩA, the steady-state flow transits
supercritically to a single helix rotating wave RW1; above the point A, i.e. Ω > ΩA, the
steady-state flow transits supercritically to the double helix rotating wave, RW3. Such a
point corresponds to a double-Hopf bifurcation between modes 1 and 3, and its analysis

is left to §§ 4 and 5. Other two double-Hopf bifurcation points exist, denoted B and C,
which characterize the interaction between modes 2 and 3, and 1 and 2, respectively. Yet,
at points B and C the trivial state is already unstable, thus, instabilities associated with
these points are not directly observed in experiments or numerical simulations. Instead,
these organizing centres play a role in the pattern formation of secondary instabilities,
which is left to §§ 4 and 5, where we interpret the subtle implications of these points in
dynamics. In addition, authors have looked for the presence of a primary bifurcation that
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leads to the RW2 state. For the studied configuration, there does not exist such a region in
the range 0 < Ω < 6.

3.3. Properties of the axisymmetric steady state
The analysis presented in this section studies the linear stability of the axisymmetric
steady-state solution in the range Re ≤ 250 and Ω ≤ 4. Typical axisymmetric steady-state
solutions (TS) at codimension-two points are portrayed in figure 4, which shows the

neutrally stable trivial state state at (ReA, ΩA) = (77, 2.24) and the two other unstable

trivial states at (ReB, ΩB) = (188, 1.01) and (ReC, ΩC) = (73, 3.95), respectively. The
flow visualization illustrates the recirculation region behind the sphere, delimited by the
separatrix, which divides the recirculation bubble and the unperturbed flow field. Such a
line, depicted with a thick solid line in figure 4 connects the separation point on the sphere
surface and the stagnation point on the r = 0 axis. The development of the recirculation
bubble can be measured using the maximum extent of the region

Lr = max

{
z − D

2
| W(r = 0, z) ≤ 0

}
, (3.3)

where D is the diameter of the sphere. Figure 5(a) displays the evolution of the length
of the recirculation bubble by varying Ω and Re. The length of the bubble increases
monotonically with the angular velocity Ω of the sphere as well as the largest negative
values of the streamwise velocity behind the sphere, from around 40 % for Ω = 0 to
around 60 % for the largest values of Ω explored. A similar trend was identified by Kim &

Choi (2002) at Re=100; however, we should consider that the trends observed in figure 5(a)
are only valid before bifurcation. After that, Lr does not have to increase with Ω , as seen by
Lorite-Díez & Jiménez-González (2020) and Kim & Choi (2002). The results at the onset
of stability of the steady state are synthesized in figure 5(b), with a domain of existence of

a stable steady state (white shaded) and another of an unstable steady state (grey shaded).

In § 3.4 we identify the core of the RW1 and RW3 instabilities, which are found within the
recirculation region. In particular, a passive control that shortens the recirculation region is
an efficient technique to stabilize the flow. Therefore, it is not surprising that the neutrally
stable flow is characterized by a shorter recirculation region with respect to the unstable
steady state.

Finally, we briefly discuss the influence of non-normality mechanisms, lift-up and
convective non-normality as they are partly related to recirculation region length. The main
results are included in table 1, where we can see a lower influence of non-normality effects
through the obtained values for γ and θN , with respect to the static sphere configuration.
The estimator θN measures the importance of non-normality, the lower θN the more
important non-normal effects are. On the other hand, the estimator γ characterizes the

relative contribution between the lift-up and the convective non-normality mechanisms
to the total non-normality effects. A γ value close to 0 indicates the dominance of the
lift-up effect. The largest non-normal effects have been measured at point B (lowest values
of θN), which corresponds to the point with the largest critical Reynolds number among
the codimension-two points. The values of θN obtained at point B are associated with a
larger non-normality than the stationary mode (the case of RW1 with O(2) symmetry) and
RW2 at the threshold for (Ω = 0, Re = 281), which was found by Meliga, Chomaz & Sipp
(2009b) to be 1◦. Thus, one may conclude that the rotation of the sphere increases the effect
of non-normality, however, it induces an earlier transition with regard to the Reynolds
number, which turns out to globally reduce the effect of non-normality. This previous

942 A54-10



Triple-Hopf bifurcation in the flow past a rotating sphere

0

0

–1

–2

–3

1

2

3

0

–1

–2

–3

1

2

3

2

z

r

4

0 0.5–0.5 1.0 0 0.5–0.5 1.0

6 0 2

z
4 6

(a) (b)
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statement can be also indirectly verified from the satisfactory comparison between normal
form estimations and DNS results in § 5.1. Furthermore, the analysis of the direct global
mode shows a dominant effect of the convective non-normality, which is responsible at
most of around 90 % (mode RW1) and 98 % (mode RW3) at point A and around 80 % for the
remainder modes at points B and C. In comparison, the stationary and oscillating modes
of static configuration (Ω = 0) displayed γ = 0.76 and γ = 0.94. More details about the
non-normality study such as the definition of θN and γ can be found in Appendix B.

3.4. Identification of the physical mechanisms from a control perspective
In this section we analyse the physical mechanisms leading to the RW1 and RW3 states at
the point A. However, we do not discuss the RW2 state as it will be seen in § 5, this state is
not expected to be observed. First, we consider what is the effect of a steady axisymmetric
forcing term, which represents the presence of a small obstacle, wall suction/blowing (as
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the control applied in Niazmand & Renksizbulut 2005), etc. In this case the governing
equations of the resulting flow are the same as (2.3) with the addition of a forcing term

H0 ≡ Ĥ0,

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q, Q) + G(Q, η) + Ĥ0. (3.4)

This case has been treated in the past by Marquet, Sipp & Jacquin (2008) in the case of
the flow past a circular cylinder and by Sipp (2012) in the case of the open cavity flow. The
introduction of the forcing induces a modification of the eigenvalue iω �→ iω + �iω0

 ,

where �iω0
 = 〈∇H0 iω, Ĥ〉. Therefore, the control that induces the largest deviation of

the growth rate (respectively frequency) of the mode  is in the direction of ∇H0 iω, which
is defined as

∇H0 iω = BTJ (0,0)B∇Ub iω for  = 1, 2, 3. (3.5)

Here ∇Ub iω is the sensitivity of the eigenvalue of the mode  ( = 1, 2, 3) with respect
to variations in the axisymmetric steady state, cf. (Marquet et al. 2008). The sensitivity

of the th eigenvalue ∇H0λ to the introduction of a steady axisymmetric forcing is
represented in figure 6 for the two modes present in the codimension point A. The
low-frequency mode (RW1) is most sensitive to a steady axisymmetric forcing at the
leftmost end of the recirculation region (see figure 6a,b). This forcing corresponds to one
that accelerates the streamwise motion at the end of the recirculation region, thus reducing
the counterclockwise motion of the recirculation zone, which would induce an effective

decrease of the growth rate (respectively frequency). This is in accordance with the fact
that the recirculation motion will be weaker, and the convective motion will be slower (note
this is also the case for the sensitivity of the frequency RW3 to steady forcing figure 6d).
On the other hand, the high-frequency mode is most sensitive in a near wake region behind
the sphere, close to the recirculation bubble (see figure 6c,d). In this case, a forcing that
decelerates the clockwise motion within the recirculation region would cause the largest

stabilization effect.

Second, let us consider the receptivity of the flow to the presence of localized feedbacks,
as in Giannetti & Luchini (2007). The harmonic forcing H ≡ H (z) exp(i(ωt + mθ)) is
defined as

H (z) = δ(x − x0)C(z) · û(z),  = 1, 2, 3, (3.6)

where C(z) is a generic feedback matrix and δ(x − x0) is the Dirac distribution centred at
the point x0 = (z0, r0, θ0). Thus, the variation of the eigenvalue due to the introduction of
the localized feedback is

�uiω = 〈q̂†
(z)

, δH (z)〉 = C(z) : S()
s (x0),  ∈ I (3.7)

The rank two tensor of (3.7) is commonly designated as the structural sensitivity tensor,

here denoted as S()
s ,

S()
s ≡ û†

(z)
⊗ ¯̂u(z),  = 1, 2, 3. (3.8)

The spectral norm of the structural sensitivity tensor for low- and high-frequency modes
is depicted in figure 7. Similar to the receptivity to axisymmetric steady forcing, the
recirculation bubble (RW3) and the leftmost end of the recirculation region (RW1) are
the most sensitive regions of the flow.
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Figure 6. Steady forcing at codimension point A. Sensitivity of amplification rate to the steady axisymmetric
forcing ∇H0λ for (a) the low-frequency mode, also known as RW1, and (c) the high-frequency mode,
also known as RW3. Sensitivity of the frequency to the steady axisymmetric forcing ∇H0λ for (b) the
low-frequency mode, RW1, and (d) the high-frequency mode, RW3. The magnitude of the growth rate and
frequency sensitivities is pictured by colours and their orientation by arrows.

4. Normal form reduction

In this study bifurcations involving a steady-state mode uniquely exist for the static
configuration (Ω = 0). For such a reason, we will focus our attention on the
codimension-two double-Hopf (Chossat, Golubitsky & Lee Keyfitz 1986) and the

codimension-three triple-Hopf bifurcations, and we will characterize solutions based on
the patterns allowed by these bifurcations. In our problem, the competition between two or
more of the several rotating waves occurs in the neighbourhood of the primary bifurcation.
For such a reason, the three double-Hopf points (depicted in figure 3a) are of special
interest.

These points act as organizing centres of dynamics, and they provide some partial
answers about the transition scenario. For instance, around the point A there are regions
of bi-stability where either RW1 and RW3 coexist. Nevertheless, these codimension-two

points do not account for a third interaction. In each of the double-Hopf interactions,
the competition with one of the leading modes is omitted. The full instability scenario
is accounted by considering the unfolding of the triple-Hopf bifurcation. Yet, such an
instability does not show up generally with only two parameters. And the search for a
third parameter where such a bifurcation generically occurs is not a trivial task. Not to
mention that even in the case one finds such a parameter, the flow configuration may be
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Figure 7. Spectral norm of the structural sensitivity tensor. (a) Low-frequency mode, (b) high-frequency
mode.

considerably distinct from the one initially conceived. Therefore, in the current research,
we adopt a similar strategy as the one conducted by Meliga et al. (2009a) on the wake flow
past a disk. However, rather than performing a variation of the centre-unstable manifold
reduction, which is an invariant procedure but without the attractiveness property of
the centre manifold (Podvigina 2006a,b), we prefer to adopt a higher-order (up to fifth

order) multiple scales expansion at each codimension-two point, and then we extend the
coefficients to other locations in the parameter space. The chosen approach differentiates
from other previous techniques because it allows an exact identification of the polynomial
coefficients of the normal form at codimension-two points, where one can employ the
Fredholm alternative to determine the normal form coefficients and remove the secular
terms of the expansion. Other centre-unstable techniques determine the coefficients of
the normal form at non-resonant conditions, which invalidates the use of the Fredholm
alternative if one is far from the onset of instability. On the other hand, our technique
does not provide an a priori knowledge of the error committed in the extension procedure
from a codimension-two point to another point in the parameter space. Thus, as with other

perturbative techniques, one needs to perform a cross-comparison with DNS in the region
of interest of the parameter space, which is performed in § 5.1.

In the following, we briefly outline the main constituents in the study of pattern
formation, a comprehensive explanation is left to Appendix A. Pattern formation is studied
herein in the framework of bifurcation theory. Near the onset of the bifurcation, dynamics
can be reduced to the centre manifold, whose algebraic expression is simplified via a series
of topologically equivalent transformations into the normal form. The reduction to the
normal form is carried out via a multiple scales expansion of the solution Q of (2.3).
The expansion considers a two-scale development of the original time t �→ t + ε2τ , here
ε is the order of magnitude of the flow disturbances, assumed small ε � 1. In this study
we carry out a normal form reduction via a weakly nonlinear expansion, where the small
parameters are

ε2
Ω = (Ωc − Ω) ∼ ε2 and ε2

ν = (νc − ν) =
(

Re−1
c − Re−1

)
∼ ε2. (4.1a,b)

The technique decomposes time into a fast time scale t of the phase associated to the

self-sustained instabilities and a slow time scale related to the evolution of the amplitudes

zi(τ ), introduced in (4.3), for i = 1, 2, 3. The ansatz of the expansion is

Q(t, τ ) = Qb + εq(ε)(t, τ ) + ε2q(ε2)(t, τ ) + ε3q(ε3)(t, τ ) + ε4q(ε4)(t, τ ) + O(ε5). (4.2)
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In the following, we shall consider the normal form equation resulting from the interaction
of three rotating wave modes identified by LSA, that is,

q(ε)(t, τ ) = (
z1(τ )q̂(z1)

(r, z) exp(i(m1θ + ω1t)) + c.c.
)

+ (
z2(τ )q̂(z2)

(r, z) exp(i(m2θ + ω2t)) + c.c.
)

+ (
z3(τ )q̂(z3)

(r, z) exp(i(m3θ + ω3t)) + c.c.
)
. (4.3)

Note that the expansion of the left-hand side of (2.3) up to fifth order is

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B

∂q(ε3)

∂t
+ B

∂q(ε)

∂τ

]
+ ε4B

∂q(ε4)

∂t
+ ε5

[
B

∂q(ε3)

∂τ

]
+ O(ε5),

(4.4)

and the right-hand side respectively is

F (q, η) = F (0) + εF (ε) + ε2F (ε2) + ε3F (ε3) + ε4F (ε4) + ε5F (ε5) + O(ε6). (4.5)

Then, the problem truncated at order three is reduced to a low-dimensional system
governing the complex amplitudes zj(t),

ż1 = z1

[
λ1 + ν11|z1|2 + ν12|z2|2 + ν13|z3|2

]
,

ż2 = z2

[
λ2 + ν21|z1|2 + ν22|z2|2 + ν23|z3|2

]
,

ż3 = z3

[
λ3 + ν31|z1|2 + ν32|z2|2 + ν33|z3|2

]
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.6)

where νk, λk ∈ C for k,  = 1, 2, 3. The real part of the linear terms, named λk,
correspond to the growth rate of the kth mode. Respectively, the imaginary part of λk is
associated to the frequency variation of the kth mode with respect to the frequency of the
neutral mode, i.e. with respect to the frequency ωk determined from LSA. The terms νk
are the third-order self (k = ) and cross-interaction (k /= ) coefficients. The coefficients

of the normal form are estimated as

λ = ε2
νλ

(ε2
ν )

 + ε2
Ωλ

(ε2
Ω)

 + ε4
νλ

(ε4
ν )

 + ε4
Ωλ

(ε4
Ω)

 + ε2
Ωε2

νλ
(ε2

νε2
Ω)

 ,

νk = ν
(0)
k + ε2

νν
(ε2

ν )

k + ε2
Ων

(ε2
Ω)

k ,

⎫⎬⎭ (4.7)

where ν
(0)
k , ν

(ε2
ν )

k , ν
(ε2

Ω)

k , and the corresponding linear coefficients, are evaluated at the
intersection point between the Hopf curves associated to mode k and . For instance,

the coefficient ν
(0)
13 is evaluated at point A. The distinct coefficients of (4.7) used for the

evaluation of the coefficients of the normal form are listed in tables 4 and 5 (Appendix A).

4.1. Classification of solutions
In the following, the right-hand side of (4.6) is designated f (z) where z = (z1, z2, z3). The
reduced vector f is equivariant under the action of the group Γ ≡ SO(2) × T3, with the
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Name Representative Isotropy group (complex) Frequencies

TS (Trivial state) (0, 0, 0) SO(2) × T3 0

RW (Rotating wave) (ra, 0, 0) S(1, r, 0, 0) × T2 1

MM (Mixed mode) (ra, rb, 0) S(1, r, l, 0) × S1 2
IMM (Interacting mixed mode) (ra, rb, rc) 1 3

Table 2. Nomenclature and symmetry group of fixed-point solutions of the system (4.9).

following action representation:

θ · z ≡ (z1eilθ , z2eirθ , z3eisθ ),

(ψ1, ψ2, ψ3) · z ≡ (z1eiψ1, z2eiψ2, z3eiψ3).

}
(4.8)

Here l, r, s ∈ Z, θ ∈ [0, 2π) and ψi ∈ [0, 2π) for i = 1, 2, 3; (ψ1, ψ2, ψ3) and θ are the

representations in C3 of the actions of the group Γ , which correspond to the time shift
and rotational invariance, respectively. The substitution of the polar decomposition of z =
reiΦ , with r = (r1, r2, r3) and Φ = (φ1, φ2, φ3), into (4.6) yields the following decoupled
phase-amplitude system:

ṙ = r

[
ΛR

 + VR
kr2

k

]
, k,  = 1, 2, 3,

φ̇ = ΛI
 + V I

kr2
k , k,  = 1, 2, 3.

⎫⎬⎭ (4.9)

Here Λ = ΛR + ΛI ≡ (λ1, λ2, λ3)
T and the matrix V = VR + iV I is

V ≡
⎛⎝ν11 ν12 ν13

ν21 ν22 ν23

ν31 ν32 ν33

⎞⎠ . (4.10)

To ease the presentation of the fixed-point solutions of (4.9), let us introduce the inverse
of the linear operator V , which can be written as

V−1 = 1

detV

⎛⎝detV11 detV21 detV31

detV12 detV22 detV32

detV13 detV23 detV33

⎞⎠ , (4.11)

where detVk denotes the minor of the matrix V , obtained by eliminating the line k and
the column .

In the following, the notation ṙ = f R(r) will be adopted to denote the amplitude
equation of the nonlinear system (4.9). The remainder of this subsection will be devoted
to the study of the three fixed-point solutions of (4.9).

The classification of the solutions of the generic triple-Hopf bifurcation interaction with
SO(2) symmetry is based on maximal isotropy subgroups of the group Γ . This technique
predicts the existence up to tertiary bifurcations of fixed points of the complex normal form
(4.6). These isotropy subgroups correspond to the symmetries of the solutions within the
fixed-point subspace of each isotropy group (cf. table 2).
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TS

RW2RW1 RW3

M M13M M12 M M23

IM M123

Figure 8. Isotropy lattice of the triple-Hopf bifurcation.

In our discussion, we identify the subgroups of SO(2) × T3. Each element in the group
has the form

(θ, ψ1, ψ2, ψ3) ∈ SO(2) × T3. (4.12)

Using this notation, the subgroup S(k, l, r, s) of SO(2) × T3 is defined as

S(k, l, r, s) = {(kθ, lθ, rθ, sθ)|θ ∈ S1}. (4.13)

The conjugacy classes of isotropy subgroups of SO(2) × T3 are documented with the
representative of the fixed-point subspace in polar coordinates and the number of
incommensurate frequencies in table 2. Additionally, a graphical representation of the
isotropy lattice is displayed in figure 8 in terms of the class representative of the fixed-point
subspace.

Rotating waves correspond to the simplest non-trivial fixed point of (4.9), which in the
original set of equations is a periodic solution. They arise as the result of a supercritical
Hopf bifurcation of the steady state (named trivial state in table 2) and they may eventually
bifurcate into mixed modes; the eigenvalues of rotating waves may be found in the
first row of table 3. Mixed modes, defined in table 3, are the result of the interaction
between two rotating waves. A mixed mode has a representative in the normal form with

two non-zero amplitude terms, thus, they correspond to a T2-quasiperiodic state in the
original system of equations. These states may experience two kinds of bifurcations. They
may lose stability in the transversal direction or within their own subspace, these two
conditions are listed in table 3. Eventually, a bifurcation in the transversal direction of
a mixed mode may be associated with the appearance of an interacting mixed mode

(IMM123) attractor. An interacting mixed mode corresponds to a T3-quasiperiodic state
in the original system of equations, and it is represented by three non-zero amplitude
terms. However, T3-quasiperiodic states are hardly observed in numerical simulations of
dissipative systems, as it is the case of Navier–Stokes equations (2.1), instead a chaotic
attractor is usually detected. A more exhaustive analysis of the unfolding of the triple-Hopf
bifurcation is left to Appendix C.

4.2. Illustration of the procedure
Let us detail the procedure followed to compute the bifurcation scenario, a procedure that
is also followed in § 5 for the determination of the parametric portrait. For the sake of
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Name of solutions Definition Eigenvalues

RWi (for i = 1, 2, 3) r(RW)
i =

√
−λ

R
i

νR
ii

−λR
i , λR

j − νR
ji
λR

i

νR
ii

, for j /= i

MMij, (i, j = 1, 2, 3) r
(MMij)

i =
√
λR

j νR
ij − λR

i νR
jj

det(Vkk)

νR
ii r2

i + νR
jj r2

j

2
±

√
(νR

ii r2
i − νR

jj r2
j )

2/4 + νR
ij ν

R
ji r2

i r2
j

(j /= i, k /= i, k /= j) r
(MMij)

j =
√
λR

i νR
ji − λR

j νR
ii

det(Vkk)

1

det(VR
kk)

[λR
k det(VR

kk) + λR
i det(VR

ik) + λR
j det(VR

jk)]

IMM123 (r2
1, r2

2, r2
3)

T = −(VR)−1ΛR Eigs of D f R

Table 3. Defining equations and eigenvalues of the solutions of the polar third-order normal form (4.9).

simplicity, we first discuss the bifurcation diagram for a constant rotation rate Ω = 1.75
in terms of the amplitudes (r1, r2, r3). We would like to remind the reader that the
amplitudes (r1, r2, r3) are representative of the kinetic energy of the velocity fluctuations,
based on the normalization choice of § 3.1. First, we need to determine the coefficients
of the normal form, listed in tables 4 and 5, following the procedure of Appendix A.
Then, one may evaluate the linear and cubic coefficients of the normal form at Ω = 1.75
for a variable Reynolds number from the evaluation of (4.7). Please note that, for the

evaluation of cross-diagonal cubic coefficients, the expansion parameter ε2
Ω = Ωc − Ω

depends on the location of the critical rotation rate Ωc, that is, to evaluate ν13 one
evaluates ε2

Ω,A = ΩA − Ω whereas to evaluate ν23 one evaluates ε2
Ω,B = ΩB − Ω . The

diagonal cubic coefficients may be evaluated directly at the bifurcation point for every
rotation rate Ω as a function of ε2

ν or by considering the cubic coefficient of the nearest

codimension-two point. In our procedure, we found good agreement with time-stepping

simulations in the range 1 ≤ Ω ≤ 3 if we consider ν11 = νA
11, ν22 = νB

22 and ν33 = νB
33; the

consideration of νA
33 induces a small deviation in the transition from MM23 to IMM123 of

few units of the Reynolds number. The corresponding coefficients for Ω = 1.75 are listed
in table 6 (Appendix A). Please note that the procedure illustrated herein corresponds to
a method to determine the coefficients of the normal form; nonetheless, these coefficients
can be estimated from numerical simulations as in Fabre et al. (2008) or following
a data-driven approach, cf. Callaham, Brunton & Loiseau (2022), Loiseau & Brunton
(2018) and Loiseau, Noack & Brunton (2018). Bifurcation events are designated by their

corresponding value of the Reynolds number Restateb
statea , where statea stands for the simplest

state that exists before the bifurcation and stateb stands for the resulting state after the

bifurcation. In addition, the notation Reσk,s
statea indicates a bifurcation of the statea where

the eigenvalue σk (k = 1, 2, 3) has changed sign, s indicates stabilization and u indicates
the change from stable to unstable of the referring eigenvalue/eigenmode pair. In the
following, there is only a bifurcation of this kind, the one associated to the mixed mode
MM12 that is stabilized/destabilized because of a change of sign of the eigenvalue in the
transversal direction (r3). Thus, we simplify the notation to Res

statea
or Reu

statea
.

Figure 9 displays the bifurcation diagram, with Reynolds number as the control
parameter for Ω = 1.75. There exist three primary bifurcations, i.e. bifurcations from the
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Figure 9. (a) Transition scenario at Ω = 1.75. Attractors are depicted with solid lines, whereas unstable
invariant states are represented with dashed lines.(b) Schematic representation of phase portraits. (i) Two
stable rotating waves separated by a mixed-mode solution. (ii) Two stable mixed modes. (iii) An interacting
mixed-mode attractor, the chaotic attractor that shadows the IMM123 is sketched in a lighter blue colour.

axisymmetric steady state, located at ReRW1
TS , ReRW2

TS and ReRW3
TS , respectively. However, the

RW2 branch remains unstable all along the analysed interval. The first transition to occur
is a supercritical Hopf bifurcation leading to the RW1 solution, which is then followed by
another supercritical Hopf bifurcation leading to RW3. For the range of Reynolds numbers

ReRW1 < Re < ReMM13
RW3

, there exists a single stable attractor, which corresponds to the

limit cycle associated with the solution RW1. At ReMM13
RW3

the RW3 branch experiences a

Neimark–Sacker bifurcation that results in the appearance of the mixed-mode solution

MM13. In the interval ReMM13
RW3

< Re < ReMM13
RW1

both primary solutions (RW1 and RW3) are

stable under any arbitrary perturbation and in addition they are connected by the unstable
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mixed mode MM13, which is located on the separatrix of the basin of attraction of the
two primary solutions, the phase portrait of this scenario is sketched in figure 9(b i).

Eventually, the solution branch MM13 terminates at Re = ReMM13
RW1

, which makes RW3 the

single attractor of the system for the interval ReMM13
RW1

< Re < ReMM23
RW3

. The RW3 branch

eventually bifurcates into the mixed-mode branch MM23, which is a stable attractor

within the interval ReMM23
RW3

< Re < ReIMM123
MM23

. The other primary branch, the unstable RW1,

undergoes another Neimark–Sacker bifurcation at ReMM12
RW1

which results in the existence

of the MM12 branch, yet unstable for perturbations in the transversal direction of the
mixed mode (in the r3 direction). The MM12 mixed-mode branch appears to be stable
only within a small interval Res

MM12
< Re < Reu

MM12
, where two bifurcations, which are

associated to an instability in the transversal direction r3, occur at the two limit values.
We have employed s and u to denote the stable or unstable nature of the MM12 regime.

Thus, for Res
MM12

< Re < Reu
MM12

, there is a second region with multiple stable attractors,

which is schematically displayed in figure 9(b ii). The last bifurcation accounted by the

normal form is the destabilization of the MM23 branch at Re = ReIMM123
MM23

that leads to

the appearance of the IMM123 branch, whose phase portrait is sketched in figure 9(b iii).
Please note that despite the fact that IMM123 is a fixed-point solution of the normal form,

the Newhouse–Takens–Ruelle theorem indicates that the original system of equations may
exhibit a chaotic attractors shadowing the IMM123 solution.

5. Bifurcation scenario

5.1. Comparison with DNS
In this section we assess the validity of the normal form to characterize the bifurcation

scenario, as well as its capability to predict accurately the frequencies and force
coefficients of the flow. The estimations of the normal form are compared with DNS
results, which are performed at constant rotation rate Ω = 1.75, the scenario analysed
in § 4.2. As a first guess, we show the accurate prediction of the fundamental frequencies
of each of the invariant states from normal form analysis in figure 10(a) in comparison
with DNS results (markers), which will be discussed below.

Direct numerical simulations have been carried out to confirm the existence of the
bi-stability of full governing equations (2.1) at Re = 110. In particular, two families of
time-stepping simulations have been performed with two distinct initial conditions, in such
a way that, after a transient period, each of them converged towards different time-periodic
solutions. On the one hand, we have used a static, axisymmetric base flow initially obtained
at Re = 70, Ω = 0 which is able to develop the RW1 state (family I, grey markers). On the
other hand, we have used the solution obtained by Lorite-Díez & Jiménez-González (2020)
at Re = 250, Ω = 2.2 as initial seed to find the RW3 state (family II, blue markers), which
in turn confirms the existence of multiple stable attractors at Re = 110.

To determine the observed regimes, we have computed the frequency components
corresponding to StRW1 and StRW3 , displayed in figure 10(b,c), using fast Fourier transform

(FFT) spectra of pointwise streamwise and radial velocities in the near wake. The spectra

are calculated using the oscillatory part of the velocity-time evolution, i.e. U′ = U − Ū
for the radial velocity component, where ·̄ stands for the temporal averaging operator. The
three-dimensional topology of the two rotating wave patterns are displayed by means of
iso-surfaces of Q quantity in figure 11, where single and double helices topologies are
shown.
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Figure 10. Frequency characterization of the flow at Ω = 1.75. (a) Frequency evolution estimated from the
normal form (continuous lines), where attractors are represented with continuous lines, whereas unstable
invariant solutions are depicted with dashed lines. The markers of figure (a) denote the resulting pattern
obtained from a time-stepping simulation; axisymmetric steady state ◦, RW1 �, RW3 �, MM12 	, MM23 ♦,
IMM123 �, the family of initial conditions is visualized by colours (family I: grey, family II: blue). Figures (b–g)
display the FFT fluctuating velocity spectra for the different regimes obtained by means of DNS. Two velocity
components: W ′ (red solid line), U′ (black solid line) and locations (0, 0, 3.5) and (0, 0.5, 3.5), respectively, are
selected to characterize all the frequencies in the wake. Unstable mode frequencies are included: low frequency
(light red solid line), medium frequency (light green dashed line) and high frequency (light blue dotted line).
Results are shown for (b) Re = 110, (c) Re = 110, (d) Re = 150, (e) Re = 150, ( f ) Re = 181, (g) Re = 210.
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Figure 11. Three-dimensional structures of RW1 (a) and RW3 (b) at Re = 110 and Ω = 1.75. We have used
isosurfaces of Q-criterion, Q = 0.001, coloured by streamwise vorticity, �z ∈ [−1, 1] (blue to red) to depict
the flow structure.
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Figure 12. Three-dimensional structure of MM12 (a), MM23 (b) and IMM123 (c) at Re = 150 (a,b) and Re =
210 (c) and Ω = 1.75. We have used isosurfaces of Q-criterion, Q = 0.001, coloured by streamwise vorticity,
�z ∈ [−1, 1] (blue to red) to depict the flow structure.

Similarly, the existence of two stable mixed-mode attractors (MM12 and MM23) is
confirmed at Re = 150. Two time-stepping simulations of the full governing equations
at Re = 150 were performed, using RW1 and RW3 solutions as initial seeds, the resulting
frequency spectra of these patterns are displayed in figure 10(d,e), where the different
frequencies associated with MM12 and MM23 are identified. In particular, we can see that
the appearance of the medium-frequency component originates quasiperiodic regimes.
The mixed mode MM12 has been detected only in a small interval of Reynolds numbers,
which is faithfully captured by the normal form; however, the value of Res

MM12
≈ 154

slightly differs from the results of the DNS, which show a stable MM12 for Re = 150. The
corresponding patterns are displayed in figure 12(a,b).

The T3-quasiperiodic state IMM123 has been detected with DNS for Reynolds numbers
Re ≈ 181. Such a state seems to be the single stable attractor in the analysed range 181 <

Re < 210. A series of DNS were carried out with two families of initial conditions: the
mixed modes MM12 and MM23, both obtained at lower Reynolds numbers. Eventually,
every DNS converged to the IMM123 state, which seems to confirm the claim that it is the
single stable attractor. Their associated spectra is depicted in figure 10( f,g) and its complex
topology can be seen in figure 12(c). The identification of the three main frequencies
(low, medium and high) in the spectra, figure 10( f ), along with the multiple nonlinear
interactions between them is possible for Reynolds number values near the bifurcation

value ReIMM123
MM23


 181. However, it rapidly departs from the T3-quasiperiodic state towards

a more irregular state (Re = 210) with a nearly continuous velocity spectrum, depicted in
figure 10(g).

Globally, the good agreement between normal form analysis and DNS frequencies
shows the predictive capability of the normal form within the range of Reynolds numbers
studied (see figure 10a).

A further investigation of the dynamics of this attractor has been carried out by means
of the 0 − 1 test. Such a test was introduced by Gottwald & Melbourne (2004, 2009)
to distinguish between regular and chaotic dynamics. More precisely, it corresponds to a
dichotomy test where an estimate K, associated to an asymptotic growth of the dynamics,
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Figure 13. Nonlinear patterns identified through HODMD analysis. The patterns are depicted using
streamwise vorticity contours, �z. Results are shown for (a) MM12, (b) MM23 and (c) IMM123 regimes. Tags
values inside the contours refer to the corresponding frequency of each mode, Sti.

takes discrete values [0, 1] which are associated with non-chaotic (0) and chaotic (1).
Further details are given in Appendix F. The results corresponding to the application
of the test to the local radial velocity U′(0, 0.5, 3.5), obtained for the two families of
computations, indicate a rapid departure towards chaotic dynamics, displayed in the
Appendix (figure 16). These results confirm that the transition scenario is eventually ended
by the Newhouse–Takens–Ruelle route to chaos.

Furthermore, DNS results can be used to illustrate the spatial pattern associated with
each fundamental frequency (low, medium, high). To that aim, a high-order dynamic

mode decomposition (HODMD) technique (see Vega & Le Clainche 2020, and references
therein) has been applied to instantaneous fields of streamwise vorticity �z located at
z = 2.5 to isolate the spatial distributions of the main frequency components. More
details about the HODMD technique and its application to present data can be found
in Appendix E. In particular, the application of the technique to flow patterns MM12,
MM23 and IMM123 allowed the spatial characterization of the fundamental frequencies
and their interactions. Apart from these frequencies, the methodology also provides
the approximate contribution of each fundamental mode in the nonlinear state. The
spatial patterns identified by HODMD are depicted using contours of spanwise vorticity
without normalization. Thus, for the MM12 state, the HODMD decomposition identifies
four energetic modal contributions, corresponding to frequencies St = 0, 0.103, 0.174 and
0.072, which are depicted in figure 13(a). The use of instantaneous snapshots of �z allows
identifying mean flow (St = 0) given by the constant streamwise rotation. Likewise, the
low-frequency component (St = 0.103) displays a dipole m = −1 topology. Similarly, the

medium-frequency component (St = 0.174), also features a m = −1 structure, although
their topology resembles the Yin-Yang mode (Auguste, Fabre & Magnaudet 2010).
Finally, an axisymmetric m = 0 topology is identified at St = 0.072, as the product of
the interaction between low-frequency (LF) and medium-frequency (MF) modes, Stm0 

StMF − StLF. Such a mode is specially energetic close to the longitudinal axis and even

dominant in some locations. In Lorite-Díez & Jiménez-González (2020) the authors

identified such a mode as a fundamental frequency of the flow, named fb therein. However,
given the results from linear stability and normal form analysis, we have now identified
this mode as a subproduct.

The same analysis for the MM23 regime allows the identification of three main frequency
components, depicted in figure 13(b). Apart from the mean flow (St = 0), the flow
decomposition pinpoints a mode with high frequency (HF) StHF = 0.304, that displays
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Figure 14. Evolution of the time-averaged forces with respect to Reynolds number for a constant rotation rate
Ω = 1.75. The force coefficients determined from the normal form analysis are represented by continuous
lines. The force coefficients determined from DNS are depicted with markers. Same legend as in figure 10.

a m = −2 structure. In addition, the Yin-Yang mode is also retrieved but now with a
frequency, StMF = 0.238. Note that, the amplitude associated with this medium-frequency

component is very small. The weak energy associated with such a medium-frequency
mode in the MM23 regime is also observable in the corresponding spectra in figure 10(e).

Furthermore, the HODMD analysis of the complex regime IMM123, present at Re = 210
and Ω = 1.75, is depicted in figure 13(c). The decomposition identifies the axisymmetric
mean flow, the three fundamental frequencies and many interactions between them,
although only five energetic components have been selected for depiction. For instance, the

low-frequency and medium-frequency modes display m = −1 symmetries and respective
frequencies StLF = 0.095 and StMF = 0.231, which are similar to those corresponding
to the MM12 and MM23 regimes. Similarly, the frequency value of the high-frequency
mode (m = −2) remains nearly constant with respect to previous regimes, StHF = 0.299,
indicating that the dependence of frequencies with Re is small (as in figure 3b). Among
the main subproducts, the axisymmetric pattern (m = 0) produced by the interaction
of fundamental frequencies Stm0 
 StLF + StHF − StMF = 0.163 stands out. It should
be noted that there is a small mismatch between the identified peaks in FFT and the
frequencies obtained by HODMD that is produced by the different sampling period and
the corresponding recording frequency during the simulation.

To complement the previous analysis, we next focus on the effect of the different flow
states, shown in figure 11 and figure 12, on the sphere’s aerodynamic forces. Thus, we
present in figure 14(a) the evolution with respect to Reynolds number at Ω = 1.75 of the
time-averaged drag coefficient, CD = Cz, and on figure 14(b) the total transverse force

coefficient CL =
√

C2
x + C2

y for normal form analysis and DNS.

The comparison between force coefficients obtained by means of normal form and DNS
approaches is indeed fairly satisfactory. The method captures the main trends in the forces
and, for most of the states, the prediction is reasonably similar, as it was with the different
fundamental frequencies. More precisely, for simpler regimes, such as rotating waves, the
normal form analysis and DNS provide the same results. At Re = 150, for mixed modes,
both methods display a small discrepancy (below five percent). This seems to be related
to a small nonlinear contribution of the medium-frequency mode identified by the DNS,
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as it can be seen in the corresponding FFT spectra (see figure 10d,e). That said, the
general trend of the mean drag CD displays a general reduction with Re, which may be
partly due to a smaller viscous drag contribution. Besides, the pressure drag component
is likely to decrease as well, since Lr is shown to increase with Re (see figure 5b) for a
given rotation rate, Ω . In particular, as discussed by Roshko (1993) for three-dimensional
bluff body wakes, an increase of the recirculating length leads to a decrease in the drag
values on account of a pressure recovery associated to changes in the curvature of the
separatrix line. Additionally, major changes in the trends are reported between different
flow regimes, as expected from strong modifications in the near wake topology and flow
separation (Lorite-Díez & Jiménez-González 2020).

Similarly, the agreement is also good for the mean total transverse coefficient, CL,
although it displays small deviations for states RW1 and MM23 (see figure 14b). The
value of CL is strongly affected by the wake regime and the corresponding azimuthal
symmetry. Therefore, the two families of simulations display quite a different evolution.

Moreover, it should be noted that the high-frequency mode does not create a net component
of transverse force due their symmetric wake topology, as it is seen for RW3 and MM23

regimes, where this mode is dominant, causing CL 
 0. In those cases, the wake structures
net eccentricity is small, inducing a negligible transverse force. In view of such results,
such regimes should be favoured in case of control if a stabilization of the trajectory is
wished, e.g. for freely rising or falling rotating spheres, as the transverse displacement of
the body might be limited. Conversely, RW1, MM12 and IMM123 are likely to cause lateral
shift and destabilization of the trajectory for freely moving bodies due to their greater
mean lateral force and their corresponding eccentric wake structures.

5.2. Parametric exploration
Let us discuss the influence of the rotation rate in the dynamics of the flow past the rotating
sphere. For that purpose, we determine the stable attractors of the normal form in the range
Re < 300 and Ω < 4. The cubic normal form coefficients are determined following the
same procedure as in § 4.2. However, for low rotation rates (Ω < 0.8), we found that the
linear coefficients of the normal form were not correctly estimated. So, for these values of
the rotation rate, the linear coefficients are determined exactly at the threshold of instability
of each codimension-one bifurcation.

The flow past the static sphere (Ω = 0), analysed by Fabre et al. (2008), experiences
a symmetry breaking bifurcation that leads to the reflection-symmetric bifid wake

(steady-state mode) and eventually a Hopf bifurcation that leads to the RSP. The phase
diagram depicted in figure 15 shows that both the rotating wave RW1 and the mixed mode
MM12 are the continuation in the parameter space of the steady-state and RSP mode,
respectively. Thus, dynamics for low values of the rotation rate (Ω < 1) are qualitatively
similar to the flow past the static sphere. However, for rotation rate values slightly larger
than ΩB, one starts detecting a wake with a double helix. This fact has been evidenced by
the numerical simulations of Lorite-Díez & Jiménez-González (2020), Pier (2013) and the
experimental work of Skarysz et al. (2018) who reported that at around Ω ≈ 1.5 for large
Reynolds numbers (Re > 250) the quasiperiodic motion of the wake changes from a single
to double helix pattern, which is consistent with the phase diagram in figure 15. However,
if we look in detail at how the flow transits from a single helix to the double helix wake in
terms of the rotation of the sphere, one can observe three bi-stable regions, between RW1

and RW3, between RW3 and MM12, and between MM12 and MM23. These bi-stable sections
connect two regions of the parameter space with distinct attractors, the rotating waves RW1

and RW3 and the mixed modes MM12 and MM23. It is of interest that the formation of
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normal form (4.9). The axisymmetric state (TS) persists in the white region. Shaded regions indicate the
existence of a stable pattern (respectively, stable patterns). Dashed lines illustrate unstable rotating waves
neutral curves obtained by LSA.

these new states occurs near the codimension-two point B, which exhibits the importance
of this bifurcation as an organizing centre, even though it occurs as a bifurcation for an
already unstable trivial state. Furthermore, the importance of the codimension point A
is clearly evidenced by figure 15, which also acts as an organizing centre of dynamics.
Around point A, one finds four distinct regions with inequivalent dynamics. If we move
counterclockwise from point A, we have the left region where the trivial axisymmetric
state is stable, the lower region where the RW1 state is the single attractor, a region with
two stable attractors (RW1 and RW3) and the upper region where the RW3 is the single
stable state. Finally, the significance of the other codimension-two bifurcation, the point
C, is rather more subtle. This point is located in the only region where one can observe the
mixed mode MM13, which is only observed for very large rotation rates, and it connects
the RW3 state and the T3-quasiperiodic state IMM123.

Therefore, one may conclude that the rotation of the sphere has a mild effect on the
bifurcation scenario for low rotation rates (Ω < 1). Rotation rates between 1 < Ω < 2
favourise the appearance of a double helix wake and hysteresic behaviour, whereas large

rotation rates (Ω > 2) have a destabilizing effect which rapidly triggers the emergence of
chaotic dynamics via a Ruelle–Takens–Newhouse route.

6. Conclusion

The present study conducts a complete study of the transition scenario of the flow past
a rotating sphere, which is a canonical model of many industrial and natural phenomena
like particle-driven flows, sport aerodynamics, bubble motion, plant seeds, etc. In such

applications the changes in the paths of the particles are related to the destabilization of
complex flow regimes and associated force distributions. To gain a deeper understanding
of the underlying physics and evaluate possibilities of flow and path control, we have
studied the mode competition involved in the formation of patterns in the flow past a
rotating sphere, associated sensitivity to forcing and the effect of flow regimes on the force
coefficients. This research aimed to structurally study the pattern formation previously
examined by Lorite-Díez & Jiménez-González (2020), Pier (2013) and to determine from
a dynamical perspective the fundamental building blocks of dynamics before and up to
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temporal chaos. In order to do that, we have employed LSA, normal form analysis and

DNS.
Rotation of the sphere breaks the reflectional symmetry, thus inducing a preferential

direction. This turns out to favourise the presence of rotating wave instabilities, instead
of a steady symmetry breaking bifurcation, as it is the case for the flow past the static
sphere. These instabilities exhibit a localized wavemaker within the recirculation zone,
which is evidenced by the sensitivity maps. In addition, non-normality effects are weaker
than in the flow past the static sphere, mainly because the primary bifurcation occurs at
lower Reynolds number values. This might be an indication of a weaker transient growth
of asymptotically stable perturbations for the rotating sphere wake flow (Chomaz 2005).

The bifurcation scenario is qualitatively distinct and it greatly varies with the rotation
rate, as it has been discussed in § 5.2. The flow field displays a large variety of attractors
from rotating waves, quasiperiodic mixed modes to T3-quasiperiodic structures. In
addition, one may find multiple attractors, which is associated to hysteresis, and it seems to
be a common feature of many supercritical and subcritical flows, cf. (Subramanian, Sujith
& Wahi 2013; Guo et al. 2018; Ren et al. 2021; Huang et al. 2018; Suckale et al. 2018).
Eventually, for sufficiently large Reynolds numbers, Lorite-Díez & Jiménez-González
(2020) and Pier (2013) identified irregular regimes for most rotation rates, which are

associated to a T3-quasiperiodic attractor. Nonetheless, such a state is just observed by
means of DNS near its onset of existence. For larger Reynolds number values, the attractor

is no longer quasiperiodic, but it is characterized by a continuous frequency spectra, that
turns out to be chaotic. Indeed, such a chaotic attractor shadows the three frequency
quasiperiodic state predicted by the normal form, which is evidenced by physical global
features of the flow, e.g. the force acting on the surface of the sphere.

The analysis performed in this paper is able to accurately predict the fundamental
modes of the wake flow, the bifurcation scenario and the forces acting on the sphere
without the need of performing a fully nonlinear DNS. The results are compared against
DNS computations at Ω = 1.75 with an excellent agreement in regime zones, mode
frequencies and force coefficients. Then, our procedure has been validated without
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including non-normal and resonance effects in our analysis. In any case, their impact has
been proven to be very reduced in this problem.

In the classification of the observed regimes, one may question which is the path or
bifurcation scenario and how are they constituted, i.e. if it is possible to reconstitute the
strange attractor with a sparse approximation. The identification of a T3-quasiperiodic
state, complemented with DNS results, allows the justification that the route to chaos is
indeed the Ruelle–Takens–Newhouse. This has several consequences for further studies
of this or similar flows. First, we have been able to identify the route to chaos and the
fundamental building blocks, which are the three rotating waves. One could attempt to
obtain further insight into the chaotic attractor and to investigate physically interesting
properties such as mixing or the forces on the sphere from the information extracted from
the three unstable periodic orbits associated with the fundamental rotating waves. In this
case, it seems reasonable to construct a symbolic alphabet with the main fundamental
modes being the rotating waves. Then, one may approximate average quantities or the
eigenvalues of the Perron–Frobenius operator by cycle expansions, cf. (Cvitanovic et al.
2005), as it has been recently done by Yalnız & Budanur (2020); Yalnız, Hof & Budanur
(2021) using algebraic topology techniques.

In addition, if ones attempt to design a control procedure to the quasiperiodic state
or to prevent the presence of chaotic dynamics, the use of harmonic forcing, as in Sipp
(2012), seems a promising option, and the implementation is straightforward from the
information provided in §§ 4 and 5. Additionally, the sensitivity to base flow modifications
and structural sensitivity have been presented for the low-frequency and high-frequency
modes in § 3.4 to analyse harmonic and steady control possibilities. It has been shown
that the low-frequency mode displays a strong sensitivity inside the recirculating region,
suggesting a higher receptivity to control through surface rear blowing, in line with the
results presented in Niazmand & Renksizbulut (2005). In principle, the attenuation of
the amplitude of such a mode would imply a decrease in the mean drag and total lift
coefficients (see figure 14), which could presumably prevent the path’s instability in
the case of freely rising bodies, as those analysed by Mathai et al. (2018). Therein, the
tuning of rotational inertia is proposed to modify the wake and path’s instabilities. The
effect of changes in the moment of inertia may imply variations of the rotation rate,
and consequently, changes in the regimes and associated forces. At that point, the force
diagrams presented in figure 14 could be useful to guide such a tuning procedure and
selectively set the regime of interest.
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Coef. λ
(ε2

ν )

 λ
(ε2

Ω)

 λ
(ε4

ν )

 λ
(ε2

Ωε2
ν )

 λ
(ε4

Ω)



λA
1 15 − 0.60i (−1.8 + 8.2i) × 10−2 (−1.5 − 2.9i) × 102 9.6 − 1.5i (−38 − 2.9i) × 10−3

λA
3 43 − 5.5i (−22 + 5.8i) × 10−2 (−2.3 − 10i)102 11 − 0.18i (−1.6 − 1.6i)10−1

λB
2 (11 − 3.2i) × 101 (−2.6 + 1.64i) × 10−1 (−1.1 + 6.9i) × 102 5.4 + 5.2i (−3.4 − 18i) × 10−2

λB
3 54 − 50i 0.36 − 0.58i (4.2 − 6.9i) × 103 64 − 22i (−1.9 − 4.4i) × 10−1

λC
1 9.1 − 3.7i (1.1 + 11i) × 10−2 (−1.1 − 7.4i) × 102 −0.80 + 3.8i (18 − 4.4i) × 10−2

λC
2 46 − 18i (−1.2 + 1.7) × 10−2 (−2.7 − 18i) × 102 16 + 10i (−4.4 − 3.6i) × 10−2

Table 4. Linear coefficients of the normal form (4.9) evaluated at codimension-two points.

Appendix A. Normal form reduction procedure for the triple-Hopf interaction

Before we detail the procedure for the reduction of the governing equations to the normal
form (4.6), let us detail the terms that composed the compact notation of the governing
equations (2.3), which is reminded here for the sake of conciseness,

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q, Q) + G(Q, η). (A1)

The operator G(Q, η) = G(Q, [η1, 0]T) + G(Q, [0, η2]T), where G(Q, [η1, 0]T) =
η1∇ · (∇U + ∇UT) and G(Q, [0, η2]T) expresses the imposition of the boundary
condition U = (0, η2, 0) on Σb. The nonlinear operator N(Q1, Q2) = U1 · ∇U2, and the
linear operator accounts for the remaining terms that are linear on the state variable Q,
i.e. LQ = [∇P, ∇ · U]T. In addition, we consider the following splitting of the parameters
η = ηc + �η, where ηc denotes the critical parameters ηc ≡ [Re−1

c , Ωc]T attained when
the spectra of the Jacobian operator of the steady state posses at least an eigenvalue whose

real part is zero, and �η = [Re−1
c − Re−1, Ωc − Ω]T the departure from the critical

condition.
The procedure followed in this manuscript consists of the determination of a fifth-order

Taylor expansion of the centre manifold, also known as the normal form, of the three
codimension-two-Hopf points (A, B, C), which enables a linear approximation of the cubic
coefficients νk and a quadratic approximation of the linear coefficients λ. The ultimate
goal of this approach is the determination of the coefficients listed in tables 4–6. That is,
to determine the cubic coefficient νk values as

νk = ν
(0)
k + ε2

νν
(ε2

ν )

k + ε2
Ων

(ε2
Ω)

k , (A2)

where ν
(0)
k , ν

(ε2
ν )

k and ν
(ε2

Ω)

k are determined at the two-Hopf point between mode k and .

Similarly, the estimation of the linear coefficient is

λ = ε2
νλ

(ε2
ν )

 + ε2
Ωλ

(ε2
Ω)

 + ε4
νλ

(ε4
ν )

 + ε4
Ωλ

(ε4
Ω)

 + ε2
Ωε2

νλ
(ε2

νε2
Ω)

 . (A3)

The reduction to the normal form is carried out via a multiple scales expansion of the
solution Q of (2.3). The expansion considers a two-scale expansion of the original time, a
fast time scale t of the self-sustained instability and a slow time scale of the evolution of
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Coef. ν
(0)
k ν

(ε2
ν )

k ν
(ε2

Ω)

k

νA
11 −0.46 + 0.16i 6.3 + 10.1i (4.4 − 1.1i) × 10−2

νA
13 −3.0 + 0.73i (4.6 − 2.3i) × 102 −3.6 − 5.2i

νA
31 −0.73 + 1.07i (2.2 − 8.6i) × 101 (2.2 − 2.4i) × 10−1

νA
33 −1.5 + 2.1i (−1.1 − 11i) × 101 −0.56 − 0.30i

νB
22 −1.8 + 0.22i (2.2 − 34i) × 101 0.46 − 1.0i

νB
23 −1.9 − 0.2i (2.9 − 1.4i) × 102 2.6 + 2.4i

νB
32 (−34 − 3.1i) × 10−2 (3.0 − 10i) × 102 −0.22 + 2.2i

νB
33 −1.7 + 0.9i (1.0 − 11i) × 102 0.30 − 1.54i

νC
11 −0.25 + 0.15i 34 − 2.1i (5.2 − 10i) × 10−2

νC
12 0.58 − 0.58i (−2.4 + 3.0i) × 102 0.74 − 0.28i

νC
21 (4.6 − 26i) × 10−2 2.3 − 71i (2.4 − 30i) × 10−2

νC
22 −1.9 + 3.1i (4.7 − 10i) × 102 −2.4 + 5.2

Table 5. Cubic coefficients of the normal form (4.9) evaluated at codimension-two points.

Coef. Value

λ1 (−0.019 + 0.038i) + (20.2 − 1.60i)ε2
ν + (−1.5 − 2.9i) × 102ε4

ν

λ2 (0.1805 + 0.1107i) + (11 − 2.8i) × 101ε2
ν + (−1.1 + 6.9i) × 102ε4

ν

λ3 (−0.13 + 0.003i) + (49 − 6.3i)ε2
ν + (−2.3 − 10i)102ε4

ν

ν11 (−0.44 + 0.15i) + (6.3 − 10i)ε2
ν

ν12 (2.2 − 1.2i) + (−2.4 + 3.0i) × 102ε2
ν

ν13 (−4.7 + 1.9i) + (4.6 − 2.3i) × 102ε2
ν

ν21 (0.10 + 0.43i) + (2.3 − 71i)ε2
ν

ν22 (−2.2 + 0.94i) + (2.2 − 34i) × 101ε2
ν

ν23 (−0.08 − 1.6i) + (2.9 − 1.4i) × 102ε2
ν

ν31 (−0.63 + 0.95i) + (2.2 − 8.6i) × 101ε2
ν

ν32 (−0.19 − 0.06i) + (3.0 − 10i) × 102ε2
ν

ν33 (−1.9 + 2.0i) + (1.0 − 11i) × 101ε2
ν

Table 6. Cubic coefficients of the normal form (4.9) evaluated at Ω = 1.75.

the amplitudes

t �→ t + ε2τ, ε � 1, (A4)

here ε is the order of magnitude of the flow disturbances. The small parameters are

ε2
Ω = (Ωc − Ω) ∼ ε2 and ε2

ν = (νc − ν) =
(

Re−1
c − Re−1

)
∼ ε2. (A5a,b)

The ansatz of the expansion is

Q(t, τ ) = Qb + εq(ε)(t, τ ) + ε2q(ε2)(t, τ ) + ε3q(ε3)(t, τ ) + ε4q(ε4)(t, τ ) + O(ε5). (A6)

Note that the expansion of the left-hand side of (2.3) up to fifth order is

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B

∂q(ε3)

∂t
+ B

∂q(ε)

∂τ

]
+ ε4

[
B

∂q(ε4)

∂t
+ B

∂q(ε2)

∂τ

]
+ ε5

[
B

∂q(ε5)

∂t
+ B

∂q(ε3)

∂τ

]
, (A7)
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respectively the right-hand side is

F (q, η) = F (0) + εF (ε) + ε2F (ε2) + ε3F (ε3) + ε4F (ε4) + ε5F (ε5). (A8)

Then we are left with the determination of the forcing terms of (A8).
The reduction detailed in this appendix considers the interaction between two rotating

wave solutions at a codimension-two point. In the following, we adopt the notation for the
solutions z1 and z2, which correspond to point C. In order to proceed for the other two
points, replace z1 by z3 or z2 by z3.

A.1. Notation
Since the number of terms grows quickly with the order, in order to enhance readability,
we define the set of vectors of linear, quadratic, cubic and fourth-order interactions as

Z ≡ {z1, z2}, Z = {z̄1, z̄2},
Z2 ≡ Z ⊗ Z ⊕ Z ⊗ Z = {z2

1, z1z2, z2
2, |z1|2, z1z̄2, |z2|2},

Z3 ≡ Z ⊗ Z2 ⊕ Z2 ⊗ Z

= {z3
1, z2

1z2, z1z2
2, z3

2, z1|z1|2, z2|z1|2, z2
2z̄1, z̄2z2

1, z1|z2|2, z2|z2|2},
Z4 ≡ Z2 ⊗ Z2 ⊕ Z ⊗ Z

3

= {z4
1, z3

1z2, z2
1z2

2, z1z3
2, z4

2, z2
1|z1|2, z1z2|z1|2, z2

2|z1|2, z2
1|z2|2,

z1z2|z2|2, z2
2|z2|2, z1z̄2|z1|2, z1z̄2|z2|2, z3

1z̄2, z̄1z3
2}, (A9)

where only unique elements are kept. We denote by zn
α any element of the family Zn, with

n ∈ N∗. In addition to these sets, we shall define the set of resonant terms

ZR ≡ {z1, z2, z1|z1|2, z1|z2|2}. (A10)

A.2. Zeroth order
The zeroth order corresponds to the steady-state problem of the governing equations
evaluated at the threshold of instability, i.e. �η = 0,

0 = F (Qb, 0), (A11)

whose solution is the steady state Qb.

A.3. First order
The first order corresponds to the resolution of a homogeneous linear system, i.e. the
generalized eigenvalue problem evaluated at the threshold of instability, i.e. �η = 0. In
such a case, the vector is expanded as

q(ε) = z1q̂(z1)
exp(−i(m1θ + ω1t)) + z2q̂(z2)

exp(−i(m2θ + ω2t)) + c.c. (A12)

Then, the eigenpairs [iω, q̂(z)] are determined as the solutions of the following eigenvalue

problem:

J (ω,m)q̂(z) =
(

iωB − ∂F
∂q

|q=Qb,�η=0

)
q̂(z). (A13)

The eigenmode q̂(z)(r, z) is then normalised in such a way that 〈û(z), û(z)〉L2 = 1.
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A.4. Second order
The second-order expansion term q(ε2)(t, τ ) is determined by the resolution of a set of

linear systems, where the forcing terms are evaluated from first- and zeroth-order terms.
The expansion in terms of amplitudes z(τ ) of q(ε2)(t, τ ) is assessed by collecting the

second-order forcing terms. Nonlinear second-order terms in ε are

F (ε2) ≡
2∑

j,k=1

(
zjzkN(q̂(zj)

, q̂(zk)
) exp(−i(mj + mk)θ) exp(−i(ωj + ωk)t) + c.c.

)

+
2∑

j,k=1

(
zjz̄kN(q̂(zj)

, q̂(z̄k)
) exp(−i(mj − mk)θ) exp(−i(ωj − ωk)t) + c.c.

)

+
2∑

=1

ηG(Qb, e), (A14)

where e is an element of the orthonormal basis of R2. Then the second-order expansion

of the flow variable is carried out so it matches the terms of the forcing (A14),

q(ε2) ≡
∑
z2
α∈Z

(
z2
α q̂(z2

α) exp(−i(mαθ + ωαt)) + c.c.
)

+
2∑

=1

ηQ(η)
b . (A15)

Terms q̂(z2
j )

are harmonics of the flow, q̂(zjzk)
with j /= k are coupling terms, q̂(|zj|2) are

harmonic base flow modification terms and Q(η)
b are base flow corrections due to a

modification of the parameter η from the critical point. Then the second-order terms

are determined from the resolution of the following systems of equations:

J (ωj+ωk,mj+mk)q̂(zjzk)
= F̂ (zjzk). (A16)

Here F̂ (zjzk) ≡ N(q̂(zj)
, q̂(zk)

) + N(q̂(zk)
, q̂(zj)

) and

J (0,0)Q
(η)
b = G(Qb, e). (A17)

A.5. Third order
At third order, we proceed as for previous orders, first the forcing term is expanded as

F (ε3)

∑
zα∈Z ,z2

β∈Z2

zα · z2
β

[
N(q̂(z2

β), q̂(zα))+N(q̂(zα), q̂(z2
β))

]
exp(i(mα + mβ)θ+i(ωα+ωβ)t)

+
2∑

j=1

2∑
=1

[
zjη

[
N(q̂(zj)

, Q(η)
b ) + N(Q(η)

b , q̂(zj)
)
]

exp(−imjθ) exp(−iωjt) + c.c.
]

+
2∑

j=1

2∑
=1

[
zjηG(q̂(zj)

, e) exp(−imjθ) exp(−iωjt) + c.c.
]
, (A18)
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where ωn and mn are defined as ωn = ωj + ωk + ω, mn = mj + mk + m with n = j +
k + . Followed by the expansion of the state variable q(ε3)(t, τ ),

q(ε3)(t, τ ) ≡
∑
z3
α∈Z

[
z3
α q̂(z3

α) exp(−i(mαθ + ωαt)) + c.c.
]

+
2∑

j=1

2∑
=1

[
zjηQ(η)

(zj)
exp(−imjθ) exp(−iωjt) + c.c.

]
. (A19)

At this order there exist resonance terms, which are associated with the singular Jacobian
J (ωk,mk) for k = 1, 2, 3. To ensure the solvability of these terms, we must enforce

compatibility conditions, i.e. the Fredholm alternative. The resonant terms are then

determined from the resolution of the following set of bordered systems:

(
J (ωk,mk) q̂(zk)

q̂†
(zk)

0

) (
q̂
(z(R)

α )

s

)
=

(
F̂

(z(R)
α )

0

)
, z(R)

α ∈ ZR. (A20)

Here s = λ(ε2
ν )

k (respectively s = λ(ε
2
Ω)

k ) for z(R)
α = zk and s = ν

(0)
kl for z(R)

α = zk|z|2. The

non-resonant terms are then determined as at second order from the resolution of forced
linear systems.

A.6. Fourth order
At fourth order we proceed as at second order, we expand the forcing term F (ε4) as

F (ε4) ≡
∑

zα∈Z ,z3
β∈Z3

zα · z3
β

[
N(q̂(z3

β), q̂(zα))+N(q̂(zα), q̂(z3
β))

]
exp(i(mα+mβ)θ+i(ωα+ωβ)t)

+
∑

z2
α∈Z2,z2

β∈Z2

z2
α · z2

β

[
N(q̂(z2

α), q̂(z2
β))

]
exp(i(mα + mβ)θ + i(ωα + ωβ)t)

+
2∑

=1

η

∑
z2
α∈Z2

z2
αG(q̂(z2

α), e) exp(−i(mαθωαt))

+
2∑

,k=1

ηηk

[
N(Q(ηk)

b , Q(η)
b )

]

+
2∑

=1

η

∑
zα∈Z ,zβ∈Z

zα · zβ

[
N(Q(η)

(zα), q̂(zβ))

+N(q̂(zβ), Q(η)

(zα))
]

exp(i(mα + mβ)θ + i(ωα + ωβ)t), (A21)
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and the state variable q(ε4) as

q(ε4) ≡
∑

z4
α∈Z4

(
z4
α q̂(z4

α) exp(−i(mαθ + ωαt)) + c.c.
)

+
2∑

=1

η

∑
z2
β∈Z2

z2
βQ(η)

(z2
β)

exp(−i(mβθ + ωβ t)) +
2∑

,k=1

ηkηQ(ηηk)
b , (A22)

which are determined from the resolution of a forced linear system.

A.7. Fifth order
At fifth order, we uniquely consider the resonant terms. These are the coefficients of
members of ZR. The resonant forcing terms are

F̂
(ηjηk)
z = N(q̂(z), Q

(ηjηk)

b ) + N(Q
(ηjηk)

b , q̂(z))

+
(

G(Q(ηk)
(z)

, ej) + G(Q
(ηj)

(z)
, ek) − λ(ηj)

 BQ(ηk)
(z)

− λ(ηk)
 BQ

(ηj)

(z)

) (
1 − 1

2
δjk

)
,

F̂ (η)

zj|zk|2 = N(q̂(zj)
, Q(η)

(|zk|2)) + N(Q(η)

(|zk|2), q̂(zj)
)

+ N(q̂(z̄k)
, Q(η)

(zjzk)
) + N(Q(η)

(zjzk)
, q̂(z̄k)

)

+ N(q̂(zj|zk|2), Q(η)
b ) + N(Q(η)

b , q̂(zj|zk|2))

+ N(q̂(|zk|2), Q(η)

(zj)
) + N(Q(η)

(zj)
, q̂(|zk|2))

+ N(q̂(zjzk)
, Q(η)

(z̄k)
) + N(Q(η)

(z̄k)
, q̂(zjzk)

)

+
(

N(q̂(zjz̄k)
, Q(η)

(zk)
) + N(Q(η)

(zk)
, q̂(zjz̄k)

)
)

(1 − δjk)

+
(

N(q̂(zk)
, Q(η)

(zjz̄k)
) + N(Q(η)

(zjz̄k)
, q̂(zk)

)
)

(1 − δjk)

−
(
λ

(η)
j + λ(η)

k + λ̄(η)
j

)
Bq̂(zj|zk|2) − ν

(0)
jk BQ(η)

(zj)
, (A23)

with j, k,  = 1, 2 and δjk is the Kronecker symbol. Finally, the coefficients of the normal
form are obtained as

λ
(ηjηk)

 =
〈q̂†

(z)
, F̂

(ηjηk)
z 〉

〈q̂†
(z)

, Bq̂(z)〉
,

ν
(η)
jk =

〈q̂†
(z)

, F̂ (η)

zj|zk|2〉
〈q̂†

(z)
, Bq̂(z)〉

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(A24)

for j, k,  = 1, 2.

Appendix B. Non-normality (lift-up and convective mechanisms)

In this section we explore the effect of the non-normal mechanisms on the instability.
Two non-normal mechanisms were identified in the flow configuration of the static sphere
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(Ω = 0), cf. Meliga et al. (2009b), the lift-up and convective non-normality mechanisms.

The lift-up mechanism is associated with the transport of the steady-state solution by the
perturbation, that is, to the component û · ∇Ub of (3.2), cf. Marquet et al. (2009). On the
other hand, the convective non-normality is due to the advection of disturbances by the
steady state, that is, the term Ub · ∇mû of (3.2) and −Ub · ∇mû† for the adjoint operator.
In physical terms, it corresponds to the convection of disturbances in opposite directions.
In terms of direct q̂ and adjoint q̂† global modes, the lift-up non-normality is characterized
by the near orthogonality of the direct and adjoint components of velocity because they
tend to concentrate in different components of velocity, even if both direct and adjoint
modes are active in the same region of space. Instead, the convective non-normality is
associated with direct and adjoint modes that tend to be orthogonal because they are
localized in different regions of the space. The non-normality may be measured by the
angle θN (Meliga et al. 2009b) defined as

cos
(π

2
− θN

)
=

〈q̂†
(z)

, Bq̂(z)〉(
〈q̂†

(z)
, Bq̂†

(z)
〉
)1/2 (〈q̂(z), Bq̂(z)〉

)1/2
, (B1)

where the direct and adjoint modes are normalised such that 〈q̂†
(z)

, Bq̂(z)〉 = 1 and

〈q̂(z), Bq̂(z)〉 = 1. It thus measures the departure of θN from π/2 of the angle between

direct and adjoint global modes, that is, the smaller the departure the larger the
non-normality. However, such a quantity does not suffice to estimate the global effect
of each non-normal mechanism, lift-up and convective non-normality. To overcome such
an issue, Meliga et al. (2009b) proposed to introduce the estimator γ defined as

γ = 1 −
〈|q̂†

(z)
|, B|q̂(z)|〉(

〈q̂†
(z)

, Bq̂†
(z)

〉
)1/2 (〈q̂(z), Bq̂(z)〉

)1/2
, (B2)

where |q̂(z)|2 = |û(z)|2 + |p̂(z)|2 = |û(z)|2 + |v̂(z)|2 + |ŵ(z)|2 + |p̂(z)|2 stands for the
Euclidean pointwise norm. Such an estimator is used to determine whether the
non-normality is due to the lift-up effect or the convective non-normality and it is bounded
0 ≤ γ ≤ 1. In the case of dominance of the lift-up effect γ is close to 0, i.e. a similar
spatial distribution of direct and adjoint modes. On the other hand, a value of γ close to
unity implies separation in the support of the adjoint and direct global modes.

Appendix C. Unfolding of the triple-Hopf bifurcation

C.1. Classification of solutions
The trivial axisymmetric steady-state solution transits into a rotating wave

RWi = {zj = 0| ∀j /= i, i, j = 1, 2, 3} (C1)

via Hopf-bifurcation. Each of the three types of rotating waves are potential candidates for
a primary bifurcation, and they appear in distinct regions of the parameter space (Re, Ω).

In addition, in the vicinity of the organizing centre of the type (Hopf-Hopf) one can

predict the type of secondary bifurcation from each of the rotating waves. Secondary

bifurcations of rotating axisymmetric bodies are of mixed-mode type MMij, i, j = 1, 2, 3,

MMij = {z = 0| ∀ /= i,  /= j, i, j,  = 1, 2, 3}. (C2)

Mixed-mode solutions are quasiperiodic solutions with possibly different azimuthal

patterns. The transition to a mixed-mode solution MM12 is possible either from RW1
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or RW2 but not from RW3. Finally, near a triple-Hopf bifurcation point there may exist
a mixed mode composed of three (incommensurate) frequencies, here denoted IMM123.

This branch can bifurcate from any of the two-frequency component mixed modes MMij,
for distinct i, j = 1, 2, 3.

C.2. Unfolding amplitude equations – types of solutions

C.2.1. Rotating waves – RW
Rotating waves RWi are fixed points of (4.9), where two modes are null, i.e. they satisfy

r(RW)
i =

√
−λ

R
i

νR
ii

, for i = 1, 2, 3. (C3)

Rotating wave solutions are stable if

λR
i > 0, λR

j − νR
ji
λR

i

νR
ii

< 0, for j /= i, for i, j = 1, 2, 3. (C4)

C.2.2. Mixed modes – MMij
Mixed-mode solutions MM12 (respectively MM13 or MM23) are two-component solutions
of (4.9) where r3 = 0 (respectively r2 = 0 or r1 = 0) and the other two components are
non-null. Amplitudes ri, rj depend on parameters as follows:

r
(MMij)

i =
√√√√λR

j νR
ij − λR

i νR
jj

det(VR
kk)

, r
(MMij)

j =
√√√√λR

i νR
ji − λR

j νR
ii

det(VR
kk)

. (C5a,b)

Here i, j, k = 1, 2, 3 with i /= j, k /= i and k /= j.
The Jacobian matrix D f R can be written in block-diagonal form, which simplifies the

stability computations. It is composed of a 2 × 2 and a 1 × 1 block. The eigenvalue
associated with the 1 × 1 block is stable if

σk ≡ 1

det(VR
kk)

[
λR

k det(VR
kk) + λR

i det(VR
ik) + λR

j det(VR
jk)

]
< 0. (C6)

The 2 × 2 block is

Df R
ij = 2

⎛⎝ νR
ii (r

(MMij)

i )2 νR
ij r

(MMij)

i r
(MMij)

j

νR
ji r

(MMij)

i r
(MMij)

j νR
jj (r

(MMij)

j )2

⎞⎠ , (C7)

with r
(MMij)

i r
(MMij)

j =
√
λR

i λ
R
j [νR

ij ν
R
ji + νR

jj ν
R
ii ] − [(λR

i )2νR
jj ν

R
ji + (λR

j )2νR
ii ν

R
ij ]/ det(VR

kk).
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The eigenvalues that govern the stability of the mixed-mode solutions of kind MMij are
the roots of the characteristic polynomial

σ 2 − tr
(

Df R
ij

)
σ + det

(
Df R

ij

)
= 0, (C8)

where

tr
(

Df R
ij

)
= νR

ii

(
r(

MMij)
i

)2

+ νR
jj

(
r(

MMij)
j

)2

(C9)

and

det
(

Df R
ij

)
=

(
r(

MMij)
i

)2 (
r(

MMij)
j

)2

det
(
VR

kk

)
. (C10)

Therefore, one can express the pair of eigenvalues as

σ±
ij ≡

νR
ii r2

i + νR
jj r2

j

2
±

√(
νR

ii r2
i − νR

jj r2
j

)2
/4 + νR

ij ν
R
ji r2

i r2
j , (C11)

where, for ease of notation, the uperscript MMij has been removed. A necessary condition

for the Hopf bifurcation of the mixed-mode solutions to occur is that νR
ii ν

R
jj < 0 and

νR
ij ν

R
ji < 0. In other words, a Hopf bifurcation from the mixed mode may occur if one

of the rotating waves comprised in the mixed mode arises from a supercritical bifurcation
whereas the other arises as a result of a subcritical bifurcation from the axisymmetric
steady state. This case is discussed in detail in Kuznetsov (2013, § 8.6) and is denoted as

the difficult case. The case where νR
ii ν

R
jj > 0 is denoted as the simple case, in such a case

the mixed-mode solution is a sink or a source located in the separatrix of the basin of
attraction of rotating waves.

C.3. Interacting mixed mode – IMM123

The IMM123 mode is a 3-tori solution (phases φi are non-resonant) with their amplitudes
determined as the solution of the following linear system:

r2 ≡ (r2
1, r2

2, r2
3)

T = −
(
VR

)−1
ΛR = −1

detVR

⎛⎜⎜⎝
detVR

11λ
R
1 + detVR

21λ
R
2 + detVR

31λ
R
3

detVR
12λ

R
1 + detVR

22λ
R
2 + detVR

32λ
R
3

detVR
13λ

R
1 + detVR

23λ
R
2 + detVR

33λ
R
3

⎞⎟⎟⎠ .

(C12)

The stability of the interacting mixed-mode solution is determined by the eigenvalues of
the Jacobian D f R,

Df R ≡ 2

⎛⎜⎜⎝
νR

11r2
1 νR

12r1r2 νR
13r1r3

νR
21r1r2 νR

22r2
2 νR

23r3r2

νR
31r1r3 νR

32r3r2 νR
33r2

3

⎞⎟⎟⎠ . (C13)

The eigenvalues of D f R are roots of its characteristic polynomial denoted as p(D f R),

p(Df R) ≡ σ 3 − I1σ
2 + I2σ − I3 = 0,

I1 = tr
(

Df R
)
, I2 = 1

2

[(
tr

(
Df R

))2 − tr
(

[Df R]2
)]

, I3 = det
(

Df R
)
.

⎫⎪⎬⎪⎭ (C14)
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The trace of the Jacobian can be expressed as a function of the square of the amplitudes
r2

1, r2
2 and r2

3 and the real part of the matrix of coefficients V ,

tr
(

Df R
)

≡ 2
(
νR

11r2
1 + νR

22r2
2 + νR

33r2
3

)
, (C15)

similarly the second invariant of the Jacobian

1

2

[(
tr

(
Df R

))2 − tr
(

[Df R]2
)]

≡ 4
(

r2
1r2

2 detVR
33 + r2

1r2
3 detVR

22 + r2
2r2

3 detVR
11

)
,

(C16)

and the determinant

det
(

Df R
)

= 8r2
1r2

2r2
3 detVR. (C17)

The characteristic polynomial (C14) is a cubic polynomial with real coefficients. Thus,
the eigenvalues σ of the Jacobian D f R are either all real or one of them is real and the other
two are complex conjugate. The nature of the eigenvalues depends on the discriminant of
the cubic equation. A stationary bifurcation occurs when det(D f R) = 0, which under the
generic condition detVR /= 0 only occurs at the origin of the IMM123.

A Hopf bifurcation arises when the following conditions are satisfied:

tr
(

Df R
)

< 0,

[(
tr

(
Df R

))2 − tr
(

[Df R]2
)]

> 0

and

[(
tr

(
Df R

))3 − tr
(

Df R
)

tr
(

[Df R]2
)]

= det
(

Df R
)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (C18)

The condition tr (D f R) < 0 ensures that Hopf bifurcation is the primary bifurcation
of the IMM123 solution, i.e. the real eigenvalue is negative. Such a condition holds true
in the supercritical case, when νii < 0, for i = 1, 2, 3. Additionally, there is a change in
the nature of the solution IMM123 whenever the discriminant changes sign, it changes
from sink to stable foci, from source to unstable foci, from saddle to saddle foci or vice

versa. Even though these local changes in the nature of the fixed-point solution IMM123

cannot be considered as a local bifurcation, they could be linked to global changes in
dynamics, e.g. the appearance of a heteroclinic cycle as in the difficult case of a Hopf-Hopf
bifurcation (Kuznetsov 2013, Ch. 8.7.). Finally, a necessary and sufficient condition for the
stability of the asymptotic stability of the IMM123 solution can be expressed in terms of
the invariants of the Jacobian matrix

I1 < 0, I2 > 0, I3 < 0, I1I2 > I3. (C19)

Inspection of (C19) shows that the condition for the Hopf bifurcation indeed corresponds
to the limit case of the condition I1I2 ≥ I3.

Appendix D. Mesh convergence

Mesh independent solutions have been verified systematically. First, we have considered
a given mesh refinement, and we have varied the physical size of the domain. We have
observed that, for a domain length of 50 diameters downstream of the sphere centre,

20 diameters upstream of the cylinder centre and 20 in the cross-stream direction, the

effects of the boundary condition do not have an effect on the solution. Secondly, we
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M1 M2 M3 M4

Num. tri. 5.6 × 103 2.4 × 104 3.9 × 104 8.1 × 104

hmax 3D 2D 1D 0.25D
haniso 5 2 1 1
Adaptation Steady state Steady state and modes Same as M2 Same as M2

Table 7. Properties of the meshes used in the study of mesh convergence.

Coef. M1 M2 M3 M4

νB
22 −1.8 + 0.23i −1.8 + 0.22i −1.8 + 0.22i −1.8 + 0.22i

νB
23 −2.1 − 0.26i −2.0 − 0.27i −1.9 − 0.21i −1.9 − 0.0.22i

νB
32 −0.32 − 0.042i −0.35 − 0.027i −0.34 − 0.027i −0.34 − 0.031i

νB
33 −1.6 + 0.91i −1.6 + 0.87i −1.7 + 0.89i −1.7 + 0.89i

Table 8. Cubic coefficients of the normal form (4.9) evaluated at the codimension-two point A.

have looked at the effect of mesh refinement on the properties of the solution. For that
purpose, we performed a parametric study of eigenvalues, normal form coefficients of
the codimension-two point B (table 8). Every mesh is initially computed by Delauny
triangulation, and subsequently adapted to either base flow, eigenmode or both, following
the methodology described in Fabre et al. (2018); and their properties are summarised in
table 7.

Appendix E. Higher-order dynamic mode decomposition

This analysis allows us to gain valuable insight on the dominant modes and associated
spatio-temporal flow structures which govern the wake for the different regimes
encountered in our transition scenario (figure 9). As detailed by Le Clainche & Vega
(2017a), Vega & Le Clainche (2020), HODMD is an extension of the standard dynamic

mode decomposition (DMD) technique (Schmid 2010), which has been proven useful

to study flow structures associated with quasiperiodic (featuring a large number of
frequencies) or transitional regimes (Le Clainche & Vega 2017b), where the classical DMD
approach may fail, being therefore applicable to complex spectral and spatial cases, as the
problem investigated herein. The number of modes identified by HODMD is determined
by M, whose value is related to the spatial resolution of the input data, and N, determined
by the temporal resolution.

Thus, the present HODMD tool has been applied to resolve the spatial structure related
to dominant frequencies characterizing the different flow regimes identified from the DNS
results. Typically, the input data consists of a set of N = 2000 streamwise vorticity, �z,
snapshots interpolated in a 80×80 (M = 6400) rectangular grid whose domain is (x, y) ∈
[−1, 1] located at z = 2.5. Moreover, it should be noted that the vorticity snapshots are
equally spaced in time with a �t = 0.15. Such temporal parameters allow us to resolve
frequencies between Stmin = 0.003 and Stmax = 3.33, according to the Nyquist criterion.
Given such input data, which satisfies the condition N < M, the values of the main
HODMD parameters, i.e. order, d, and tolerance, ε, have been calibrated and fixed at
d = 50 and ε = 1e − 6 to capture a great number of modes.
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Appendix F. The 0-1 test

The quantitative 0-1 method (Gottwald & Melbourne 2004) is used to evaluate the
dynamic complexity and likely chaotic nature of the flow regimes. The method is
directly applied to time series of any scalar, as the pointwise fluctuating radial
velocity U′. In particular, given a set of data from velocity of N samples, U′(j) with
j = 1, . . . , N, a translation variable is defined as p(m) = Σ

ms
j=1U′(j) cos(js), for m =

1, . . . , ms and s ∈ (0,π/5). The mean square displacement is defined as Mc(m) =
limN→∞(1/N)ΣN

j=1[pc(j + m) − p(j)]2, which requires that ms ≤ N (as in Gottwald &

Melbourne (2004), we use ms = N/10). Thus, the variable Mc(m) is bounded when p(j) is
also bounded which is the case for regular dynamics. However, if the translation variable
p(m) is chaotic, Mc(m) grows linearly with m, so that an asymptotic growth K can be
defined as

K = lim
m→∞

log(Mc(m))

log(m)
, (F1)

which will take the value of 1 for chaotic dynamics and 0 for regular dynamics. Further
information and validation of the use of this estimate to evaluate the dynamic nature of
complex flow regimes can be found in Lorite-Díez & Jiménez-González (2020).
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We study the dynamics of a rounded subsonic impinging jet. We investigate this prob-
lem by solving the compressible linearised Navier–Stokes equations around a laminar
baseflow, with a normal form issued from a weakly-nonlinear approach and by means of
axisymmetric time-stepping simulations. The linear stability analysis shows the existence
of a family of global modes for every Mach number, which are supported by a non-local
feedback loop. In order to get an insight to the core of the instability mechanisms, we
propose a non-local decomposition of the structural sensitivity and the endogeneity con-
cepts. The use of these sensitivity maps allows us to differentiate two distinct instability
mechanisms. The instability is always initiated by a shear layer instability. Nonetheless,
the closure of the feedback differs. At large Mach number, the production of divergence
lies inside the jet, and it is responsible for the backward propagation of the guided jet
mode. On the other hand, at low Mach number, the wavemaker of the instability is
along the region where the module of the linearised Lamb vector is largest. Therefore,
indicating that the closure mechanism is a pressure wave issued from a vortical source.
We also provide a qualitative description of the tonal and broadband noise by means
of the normal form of the bifurcation. Based on a phenomenological reasoning, we also
suggest a stochastic model which accounts for the low coherence of the sources of sound
at low Mach number. Such a model reproduces reasonably well the sound pressure level
measured from time-stepping simulations.

1. Introduction – Aim of the study

It has been established that intense acoustic tonal sound is generated by the im-
pingement of a high subsonic or supersonic jet onto a wall. Early experimental studies
carried out by many researchers, including Powell (1953, 1961), Wagner (1971), Neuwerth
(1974), Preisser (1979), Ho & Nosseir (1981); Nosseir & Ho (1982) observed that the
frequency varies with the distance to the solid boundary, and it is organised in stages.
Furthermore, the dynamics of the jet, for instance pressure in the near-field and in the far-
field, were found to peak at particular frequency for high subsonic Mach numbers and to
be broadband for low Mach numbers (Nosseir & Ho 1982). The staging phenomenon led
Powell (1953) to conjecture that the self-sustained mechanism was a two-stage process,
which involves the vortical structures convected downstream and the acoustic waves
propagating upstream from the solid boundary to the nozzle. Similar feedback loops have
been also observed in supersonic impinging jets. The establishment of the feedback loop
has been studied experimentally by Norum (1991) and numerically by Gojon et al. (2016);
Bogey & Gojon (2017) for ideally expanded supersonic jets. Similarly, for underexpanded
jets, there is experimental evidence of the existence of the loops by Risborg & Soria

† Email address for correspondence: javier.sierra@imft.fr
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(2009); Buchmann et al. (2011); Mitchell et al. (2012) and numerical by Dauptain et al.
(2012); Gojon & Bogey (2017a). Ho & Nosseir (1981) proposed a simplified frequency
selection criterion, assuming the wave propagating upstream to be a free-stream acoustic
wave propagating outside the jet. Nevertheless, later studies established that the feedback
loop is closed by a guided jet wave propagating mostly inside the jet (Tam & Ahuja
1990). Tam & Ahuja (1990) proposed a theoretical model for the frequency selection.
The model considers a Kelvin-Helmholtz mode with a constant frequency and guided
jet waves classified by their radial and azimuthal structure with different dispersion
relations. The authors conjectured that the loop is closed by the Kelvin-Helmholtz mode
and the least-dispersive guided wave. Following this reasoning, they concluded that tonal
noise does not exist below a cut-off Mach number because the frequency of the guided
waves does not match the frequency of the Kelvin-Helmholtz mode. Particularly, the
properties of the guided waves, allow us to explain the frequencies and the axisymmetric
or helical nature of the acoustic tones (Gojon et al. 2016; Bogey & Gojon 2017; Jaunet
et al. 2019; Varé & Bogey 2022a,b). These guided waves are involved in other resonance
phenomena, for examples in screech generation mechanism, as studied by Gojon & Bogey
(2017b); Edgington-Mitchell et al. (2018); Mancinelli et al. (2019); Edgington-Mitchell
(2019) or in jet-plate interactions, as recently investigated by Jordan et al. (2018); Tam
& Chandramouli (2020); Varé & Bogey (2022a). They also play a role in the generation
of acoustic tones near the nozzle (Towne et al. 2017; Brès et al. 2018; Bogey 2021) and
in the upstream acoustic far field of free jets (Bogey 2022).
The paper aims to rationalize previous experimental results on the sound emission

from a jet impinging on a perpendicular flat surface at large subsonic Mach numbers.
We have several objectives. First, we analyse the properties of the feedback loop, by
means of a Helmholtz-Hodge decomposition that allows a global decomposition of the
flow perturbations and a local decomposition into the underpinned waves of the baseflow,
i.e., we measure the relative magnitude of the acoustic and hydrodynamic components of
the global mode. It results that for a sufficiently large Reynolds number, there is always a
global unstable mode. However, at low and large Mach numbers of the jet, the mechanisms
responsible for the closure of the feedback mechanism are distinct. In particular, that
connects with the cut-off criterion of Tam & Ahuja (1990) for the existence of tonal
or broadband noise. Tam & Ahuja (1990) conjectured that below the cut-off Mc ≈ 0.6
high acoustic sound emissions are not possible because the Strouhal of the first guided
wave does not match the Strouhal of the Kelvin-Helmholtz instability. Such a conclusion
has been widely used in literature to justify the existence of broadband noise emissions
below the cut-off Mach number. However, we will show that the feedback mechanism
responsible for high acoustic tonal emissions at high subsonic Mach numbers, also exist
at low Mach numbers, even at the incompressible limit for the laminar jet, nonetheless
distinct closure mechanisms cause the instability. This is shown following a three-step
approach:

(i) Determine the linear global mode associated to the feedback mechanism at every
Mach number.
(ii) Determine the nature of the feedback-loop at low and high Mach numbers. We

introduce a novel decomposition of the structural sensitivity map.
(iii) Perform a wave decomposition of the feedback global mode into Kelvin-Helmholtz

and guided waves.
Such a process allows us to unveil the instability core of the feedback-loop and to analyse
the physical mechanisms supporting the instability. In addition, the wave decomposition
allows us to determine the local characteristics in terms of waves of the loop, e.g., the
reflection coefficient at neutrality.
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Furthermore, we analyse the nonlinear dynamics of the impinging jet flow configuration.
Specifically, we will show that the frequencies involved in the feedback process are mostly
determined by geometrical features and the velocity of propagation in the medium, i.e.
Mach number and convective velocity. The eigenvalues associated to the global modes are
found to form a discrete arc, with a nearly constant frequency distance Δω. Furthermore,
performing the expansion of the flow into base flow and harmonic contributions,

q(x, t) = q0(x) +
∑N

k=1

[
AkqAk

eiωkt + c.c.] + . . . (1.1)

where the higher harmonics and the zeroth-harmonic modification of the meanflow
have been omitted. With such an ansatz, we have carried out a normal form reduction
approach (Sierra-Auśın et al. 2022; Sierra et al. 2020b) to determine the reduced-order
equation that governs the dynamics of the feedback mechanism, the normal form in polar
coordinates Ak = rke

iφk is as follows

ṙj = rj
(
λj +

∑N
k νjkr

2
k) + Fres(r, Ψ)

ψ̇j = Fψj
(r, Ψ).

(1.2)

The vector r = [r1, . . . rN−1]
T with rj for j = 1, . . . N is the vector of (real) amplitudes

proportional to each normalized global mode that characterizes the amplitude of the limit
cycle, and Ψ = [ψ1, . . . ψN ]T is the vector of resonant phases, where each resonant phase
is a function of an imperfect quantisation of the feedback modes Ψj = Δφj −Δφj−1 =
(φj+1−φj)− (φj−φj−1). Herein, we treat the case with N = 3, and the vector fields Fψj

and Fres will be specified later on for this case. In the case of a perfect equi-distribution of
feedback modes (ωk = kΔω), the limit cycles would be in a perfect resonance. However,
nonlinear modulations of the frequency, which could be accounted by the disparity in
the amplitude of local sources of divergence of the velocity field perturbations or vortex-
sound responsible for the closure of the feedback-loop.
In addition, in order to model the broadband behaviour characteristic of low Mach
number flows, we propose a stochastic model which is based on a phenomenological
reasoning. It accounts for the low temporal coherence of the sources of sound at low
Mach number, which in turn induce a frequency mismatch in the frequency selection
criterion. The model is able to capture the qualitative features of low and large Mach
number flows.
The outline of the manuscript is as follows. First, the flow configuration and the numerical
approach are presented in section 2. Second, in section 3 we describe some basic properties
of the baseflow, and we show the main results of the linear stability study, highlighting
two mechanisms of closure of the feedback-mechanism. Third, in section 4 we carry out a
Helmholtz-Hodge decomposition in order to get a further insight into the hydrdodynamic-
acoustic feedback loop by means of a novel non-local structural sensitivity decomposition.
Therein, we also perform a weakly non-parallel decomposition of the global mode into
the waves supported by the baseflow with the aim of determining the reflection coeffi-
cient. Then, in section 5 we analyse the interaction between limit cycles by means of
axisymmetric time-stepping simulations and the normal form. Finally, in section 6 we
summarise the main findings of the study.
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Figure 1: Diagram of the domain. The physical domain, represented as a white area, is
complemented with a radial buffer layer, shown as a light grey shaded zone.

2. Numerical approach

2.1. Governing equations

Let us introduce the compressible Navier–Stokes equations as the governing equations
of motion of a perfect gas described in primitive variables q = [ρ, ur, uθ, uz, p, T ]

T
, and

the set of control parameters η = [Re,M∞]T . These are formally expressed as

B
∂q

∂t
= F(q,η) with B = diag(1, ρI, ρ, 0), (2.1)

F(q,η) = −

⎛⎜⎜⎜⎝
u · ∇ρ+ ρ∇ · u

ρu · ∇u−∇p+∇ · 1
Reτ(u)

(γ − 1)
[
ρT∇ · u− γ

M2
∞

Re τ(u) : D(u)
]
− ρu · ∇T + γ

Pr Re∇2T

−ρT + 1 + γM2
∞p

⎞⎟⎟⎟⎠ , (2.2)

The geometric configuration used in the analysis of the acoustic radiation of a rounded
impinging jet is sketched in fig. 1. It consists of a pipe that is subdivided into two zones,
a first pipe with slip adiabatic walls and a second pipe of length L with no-slip adiabatic
walls. The physical domain, depicted as a white region in fig. 1 is complemented with
an absorbing boundary layer in the far-field, which is either a complex mapping region
(Sierra et al. 2020a) for the linear computations of section 2.2 or a sponge region (Fani
et al. 2018) for the nonlinear computations of section 2.3. In our formulation, the primitive
variables have been made dimensionless to

x =
x̃

D
, t =

t̃ũz|z=0

D
, ρ =

ρ̃

ρ̃|fs , u =
ũ

ũz|z=0
, T =

T̃

T̃ |fs
,

p =
p̃− p̃|fs

ρ̃|fsũz|2z=0

, M∞ =
ũz|z=0

(γRgT̃ |fs)1/2
, Re =

ρ̃|fsũz|z=0D

μ(T̃ |fs)

(2.3)

where Rg is the ideal gas constant, ũz|z=0 denote the average value of the axial velocity

at the cross-section z = 0, and ρ̃|fs, p̃|fs, T̃ |fs denote the values on the far-field or
free-stream. The Navier–Stokes equations eq. (2.1) are complemented with the following
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boundary conditions,

uz = 1, ur = 0, T = (1− γ−1
2 M2

∞) on ∂Ωin

uz = 0, ur = 0, ∇T · n = 0 on ∂Ωwall

ur = 0, ∇T · n = 0 on ∂Ωslip

ρ = 1, p = 0, T = 1 on ∂Ωout.

(2.4)

The inlet boundary condition models the inflow from a reservoir with a constant total
temperature equal to unity. In such a way, the energy of the system is kept constant
for every Mach number M∞. The length of the pipe is a constant of the problem that
determines the height of the boundary layer, here we have chosen L = 2.5D. The flow
in the slip region is nearly constant, thus the length of this region is not an important
parameter of the problem. The location of the start of the absorbing layer is chosen to
be z−∞ = r∞ = 15D. Finally, the distance between the nozzle end location (z = 0) and
the impinging wall is H, which is kept constant H = 5D.

2.2. Linear Navier–Stokes equations

The asymptotic linear stability of a steady-state q0 is examined from the temporal
evolution of an infinitesimal perturbation, i.e. by performing the following expansion
q = q0 + ε(q̂e−iωt + c.c.) where ε 	 1. The steady-state q0 is said to be asymptotically
linearly stable if there is not an eigenvalue with a positive growth rate, in other words
for every eigenvalue ωi < 0, otherwise it is said to be linearly unstable. The perturbation
q̂ and its eigenvalue iω are determined by solving the following eigenvalue problem

−iωB|q0 q̂+DF|q0(q̂,η) = 0, (2.5)

The linear Navier–Stokes equations eq. (2.5) are complemented with the following ho-
mogeneous boundary conditions,

ûz = 0, ûr = 0, T̂ = 0 on ∂Ωin

ûz = 0, ûr = 0, ∇T̂ · n = 0 on ∂Ωwall

ûr = 0, ∇T̂ · n = 0 on ∂Ωslip

ρ̂ = 0, p̂ = 0, T̂ = 0 on ∂Ωout.

(2.6)

In the following, we will also consider the adjoint eigenmode q̂†, which is a solution of
the adjoint eigenvalue problem

iωB|q0 q̂
† +DF†|q0(q̂

†,η) = 0. (2.7)

where · is employed for the complex conjugation. The boundary conditions of the adjoint
problem are the same as the direct, eq. (2.6). The adjoint modes are normalised by the
B−inner product, that is 〈q̂†, q̂〉B = 1.

2.3. Time-stepping approach

The Navier–Stokes equations (eq. (2.1)) are evolved in time with a fully implicit time
integrator. We use a third order BDF scheme to integrate in time the state variable q.
The semi-discrete in time equations are as follows,

B
[11
6
q(tn+1)− 3q(tn) +

3

2
q(tn−1)− 1

3
q(tn−2)

]
= −ΔtF(q(tn+1),η) (2.8)
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Each time-step, the nonlinear problem eq. (2.8) is solved with a Newton method,[
11
6 B+ΔtDF|q�(tn+1)

]
δq = B

[
3q(tn)− 3

2q(tn−1) +
1
3q(tn−2)

]
−ΔtF(q(tn+1),η)

q+1(tn+1) = q(tn+1) + δq.
(2.9)

The assembling of the jacobian matrix DF|q�(tn+1) is the most expensive step, and as it
is conventional, a frozen jacobian matrix is adopted all along the Newton method, that
is, DF|q�(tn+1) = DF|q(tn). Furthermore, provided that the time-step is not too large, the
jacobian matrix is kept constant for few time-steps, as long as the number of iterations
to convergence of the Newton method do not drastically grow.

2.4. Normal form reduction

In the following, we summarize the normal form reduction procedure, which is carried
out to study the interaction between distinct periodic orbits resulting from global
instabilities associated to the main feedback mechanism. A comprehensive explanation
is left to appendix B.
Near the onset of the bifurcation, dynamics can be reduced to the normal form. The
coefficients of the normal form are computed following a multiple scales expansion of the
solution q of eq. (2.1). The expansion considers a two scale development of the original
time t �→ t + ε2τ , here ε is the order of magnitude of the flow disturbances, assumed
small ε 	 1. Herein, we consider the small parameters εM2 and εν , which are a function
of the Mach number and Reynolds numbers at the far-field,

ε2M2 =
(
M2

∞,c −M2
∞
) ∼ ε2 and ε2ν =

(
νc − ν

)
=
(
Re−1

c − Re−1
) ∼ ε2.

The technique decomposes time into a fast timescale t of the phase associated to the
self-sustained instabilities and a slow timescale related to the evolution of the amplitudes
zi(τ), introduced in eq. (2.11), for i = 1, 2, 3. The ansatz of the expansion is as follows

q(t, τ) = qb + εq(ε)(t, τ) + ε2q(ε2)(t, τ) + ε3q(ε3)(t, τ) +O(ε4) (2.10)

In the following, we shall consider the normal form equation resulting from the interaction
of three modes identified by linear stability, that is,

q(ε)(t, τ) =
∑N

k=1

(
zk(τ)q̂(zk)(r, z)e

iωkt + c.c.
)

(2.11)

Note that the expansion of the LHS of eq. (2.1) up to third order is as follows

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+B

∂q(ε)

∂τ

]
+O(ε4), (2.12)

and the RHS respectively,

F(q,η) = F(0) + εF(ε) + ε2F(ε2) + ε3F(ε3) +O(ε4). (2.13)

Then, the problem truncated at order three is reduced to a low-dimensional system
governing the complex amplitudes zj(t). Herein we consider the case of N = 3, the
general case is briefly discussed in appendix B.5. The normal form is as follows,

ż1 = z1
(
λ1 + ν11|z|21 + ν12|z|22 + ν13|z|23

)
+ χ1z

2
2z3

ż2 = z2
(
λ2 + ν21|z|21 + ν22|z|22 + ν23|z|23

)
+ χ2z1z2z3

ż3 = z3
(
λ3 + ν31|z|21 + ν32|z|22 + ν33|z|23

)
+ χ3z

2
2z1

(2.14)

where νk, λk, χk ∈ C for k, � = 1, 2, 3. The real part of the linear terms, named λk,
correspond to the growth rate of the kth mode. Respectively, the imaginary part of λk is
associated to the frequency variation of the kth mode with respect to the frequency



Dynamics of a rounded laminar subsonic impinging jet 7

(a) (b) (c)

Figure 2: Spatial distribution of the Mach number for a baseflow at (a) Re = 2200 and
M∞ = 0.2, (b) M∞ = 0.6 and Re = 800. (c) Radial evolution of the Mach number (blue
for the profiles of (a) and red for (b)) from the nozzle exit (z = 0, represented with the
darkest colour) to z = 4D (light colour), with an equidistant step of a diameter.

of the neutral mode, i.e., with respect to the frequency ωk determined from linear
stability analysis. The terms νk are the third order self (k = �) and cross interaction
(k �= �) coefficients. The resonant coefficients χk arise because of the quantization of
the eigenvalues in the spectrum at a nearly constant distance Δω, i.e. frequency gaps
Δωi = (ωi+1−ωi) are nearly constant, see fig. 15 (a) in appendix B.5. In the analysis, we
consider that the imperfections in the frequency difference between two modes is small,
that is, (Δωi+1 −Δωi) ∼ ε2. In this way, the term z22z3 is nearly resonant with z1, or in
other terms ω2 −Δω2 ≈ ω1.

3. Linear global stability procedure – Parametric analysis

3.1. Baseflow properties

We define the baseflow as the steady-state solution of the Navier–Stokes equations
satisfying the boundary conditions listed in eq. (2.4). The baseflow is determined by two
dimensionless parameters, the Reynolds number (Re) based on the averaged velocity at
the nozzle exit and the Mach number (M∞) based on the averaged velocity at the nozzle
exit and the speed of sound at the far-field. Given this definition of the Mach number
based on the speed of sound at the far field (M∞), the actual Mach number of the flow
can be considerably larger, specially for M∞ ∈ [0.5, 0.6], where compressibility effects are
significant. Figure 2 reports the spatial distribution of the Mach number in the region
between the nozzle and the impinging wall. Figure 2 (c) shows the radial evolution of
the velocity profile. Since we consider a laminar baseflow the boundary layer thickness
at the nozzle exit (darker velocity profile in the figure) is considerably larger than for a
turbulent mean flow profile, and it is around a tenth of the diameter.

3.2. Linear stability – Compressibility effects

We analyse the effects of the Mach number on the feedback mechanism. First, we
determine the dominant global linear modes for every subsonic Mach number, which
corresponds to M∞ ∈ [0, 0.6]. Figure 3 shows the neutral curves of linear stability of the
steady-state. We follow the evolution of the leading five modes, which are characterised
by a slow frequency evolution with respect to the Mach number and a nearly constant
frequency Δω distance between modes. At a given Mach number, the modes are charac-
terised by their axial wavenumber; the dominant modes at M∞ = 0.6, displayed in fig. 3
(g-i), are characterised by seven, six and eight half-wavelengths, respectively. Nonetheless,
such a characterisation is not constant with varying Mach number, the number of axial
wavelengths can vary up to a unit. The change of the axial wavenumber is a continuous
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Figure 3: Bifurcation diagram showing the neutral curves of stability and evolution of the
critical pulsation ωr of the axisymmetric steady-state flow for a nozzle to wall distance
H/D = 5. Visualization of the critical eigenmode (real part of the axial velocity) with
overlaid steady-flow streamlines. Each visualization contains a superposed image of the
structural sensitivity map.

process and occurs within the interacting region between the axial and radial shear layers,
i.e. 4.5D < z < H.
The primary instability corresponds to a Hopf bifurcation, leading to a periodic solution
with ω ≈ 3.7 (blue line in fig. 3) for M∞ < 0.49 and to frequency ω ≈ 4 (green line in
the figure) for M∞ > 0.49. The mode switching happens in a codimension Hopf-Hopf
two point, which it has also been experimentally observed in Nosseir & Ho (1982), where
they also detected hysteresis-like behaviour between two modes.
The non-local feedback mechanism selects the frequency of the global mode for every
Mach number, however the strength of the feedback loop rapidly decreases with the Mach
number. This feature may be observed directly from the global modes by comparing the
ones obtained at large subsonic Mach number (M∞ = 0.6, MJ ≈ 0.9) represented by
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subfigures (g-i) and the ones for lower Mach numbers, see subfigures (a-f). Please note
that the amplitude of the modes is normalised in such a way that the perturbation energy
(Chu 1965) is unitary.
Figure 3 also displays, in an inset located at the upper left location of each subfigure, the
structural sensitivity, introduced by Giannetti & Luchini (2007) and defined herein in
section 4.1. The structural sensitivity highlights the spatial location where a generic
modification of the instability core produces the largest drift in the growth rate or
frequency of the mode. Therefore, it is hereafter considered as the core of the instability.
For large subsonic Mach numbers (0.5 < M∞ < 0.6) the structural sensitivity has
an extended compact support within the axial shear layer and the jet region. It is
intermittent, located at the axial position of the pulses in the axial shear layer of the
direct mode, excluding the region near the wall (H−D < z < H). Thus, suggesting that
the region near the wall does not play a dominant effect to the instability at large Mach
number. Tentatively, one can argue the following about the two types of peaks of the
structural sensitivity. The dominant peaks of the structural sensitivity at the shear-layer
correspond to the energy transfers between the baseflow shear and the perturbation. And
the large amplitude peaks within the jet may be the region where the vortical fluctuations
are transformed into acoustics via a coupling mechanism. It may be observed from fig. 4
(a) that the region of largest divergence of the mode matches with the spatial location
highlighted by the structural sensitivity. One can determine the production of fluctuating
divergence from the divergence of the linearised momentum equation, that is,

−iω∇ · û+

Cdiv
A︷ ︸︸ ︷

u0 · ∇(∇ · û) +∇ · ( ρ̂
ρ0

u0 · ∇u0) = −
Cdiv

P,b︷ ︸︸ ︷
û · ∇(∇ · u0)−

Pdiv
a︷ ︸︸ ︷

Δp̂

ρ0
+

∇p̂ · ∇ρ0
ρ20

−
(
(∇û)T : ∇u0 + (∇u0)

T : ∇û
)

︸ ︷︷ ︸
Cdiv

P,a

+
1

Re
∇ · (∇ · τ(û))︸ ︷︷ ︸

Pdiv
b

(3.1a)

Note that, eq. (3.1) can be written entirely in terms of velocity and density fluctuations,
if we assume that the pressure fluctuations are isentropic, i.e., M2

∞p̂ = ρ̂T0. The module
of the convection term, hereafter referred to as Cdiv

A corresponds to the convection
of the divergence and density fluctuations by the baseflow. This term is displayed
in fig. 4 (b). The spatial support of Cdiv

A lies within the jet region and the radial
shear layer. Nonetheless, despite the fact that it is supported at the location of the
maximum fluctuating divergence, one cannot associate this term as a source of divergence
production. It merely advects fluctuating divergence and density, that has been already
produced within the flow. The spatial support of term Cdiv

P,a, displayed in fig. 4 (d),
mostly lies within the shear layer and in regions with non-zero divergence of the baseflow
(not shown). P div

a is the pressure source term whose spatial support lies in the shear
layer, in a region within the jet near the wall (H − D < z < H) and the region near
the nozzle exit. The largest local contribution to the fluctuating divergence is due to
this term. The other two production terms (Cdiv

P,b and P div
b ) are of small magnitude, and

their spatial support is not found within the region of the maximum of the divergence.
However, we have previously argued that the pressure, if we assume an isentropic process
at the perturbation level, plays a similar role to the one of the density. Tentatively, one
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(a) (b)

(c) (d)

Figure 4: Module of the (a) divergence of the mode; (b) module of the term Cdiv
A in

eq. (3.1a); (c) module of the term P div
a in eq. (3.1a); (d) module of the term Cdiv

P,a in
eq. (3.1a).

may argue that the pressure serves to enforce the continuity condition, thereby inducing
a modification of the volume flux. In a similar way, by taking the material derivative of
the linearised continuity equation, it is possible to derive a generalised wave equation,
where the dominant source term is a term proportional to the fluctuating divergence
(not shown here). Then, we could say that in a second step, the divergence of the
mode induces an acoustic pulse that is propagated as a longitudinal density wave, and
therefore providing the closure of the feedback-loop.

On the other hand, for low subsonic Mach numbers (M∞ < 0.4), the structural
sensitivity has an extended support within the radial shear layer (2.5D < r < 5D).
In this case, the structural sensitivity has a thin continuous structure. To understand
the nature of the wavemaker at low Mach numbers, we write the linearised momentum
equation in the Crocco’s form (Rienstra & Hirschberg 2004),

−iωû+∇ · ((u0 · û+
p̂

ρ0
)I− τ(û)

)
= u0 × ω̂ + û× ω0, (3.2)

where we have neglected the term −∇ρ0p̂
ρ2
0

, which is of small magnitude at low Mach

number. We can readily observe that the linearised Lamb vector u0 × ω̂ + û× ω0 acts a
source term, and one could argue that it corresponds first to the region driving the hydro-
dynamic instability, and second to a source of sound, which is in turn, responsible for the
production of the backward propagating acoustic pressure that closes the feedback-loop
(Powell 1990; Howe 1975). Figure 5 displays the linearised Lamb vector, which is localised
within the radial shear layer and at the same spatial location as the structural sensitivity



Dynamics of a rounded laminar subsonic impinging jet 11

(a) (b) (c)

Figure 5: (a-b) Axial and radial components, respectively, of the real part of the linearised
Lamb vector u0 × ω̂ + û × ω0 at M∞ = 0.2 and Re = 2200. (c) Module of the Lamb
vector, the arrows indicate the direction.

at low Mach numbers. Thus, providing a rationalisation to the nature of the wavemaker,
which in this situation is located along the vortex sheet near the impinging wall. For the
sake of consistency, please note that the Lamb vector at large Mach numbers also possess
a similar structure, that is, it is a thin-elongated structure along the vortex sheet (not
shown). However, the structural sensitivity does not have this kind of structure, thus
suggesting that vortex sound is not the dominant vortical-acoustic coupling.

4. Decomposition of the feedback mechanism

In order to gain a better understanding of the feedback process responsible for the
instability, we perform two types of decomposition. First, a Helmholtz-Hodge decompos-
ition of the global linear mode q̂, which allows distinguishing between the acoustic and
vortical+entropic components of the flow. Additionally, such a decomposition allows us
to formulate a finer structural sensitivity concept. This decomposition of the structural
sensitivity highlights the space location where a vortical (resp. acoustic) modification in
the structure of the problem is able to produce the greatest drift in the eigenvalue of the
operator projected onto the acoustic or vortical component. The study is then pursued
with the analysis of the feedback-loop with the endogeneity map, which provides further
access to the relation between the growth rate or frequency of the mode in terms of
underlying the physical mechanisms. We finish the section with a decomposition of the
global mode in terms of the local waves underpinned by the baseflow, which allows us to
determine the reflection coefficient between the shear layer wave and the guided jet wave
at neutrality.

4.1. Decomposition of the linear perturbation

The linear perturbation q̂ is herein decomposed into three components: acoustic,
hydrodynamic and entropic. There is a large literature in decomposition of acoustic
sources (Ewert & Schröder 2003; Spieser 2020) to compute acoustic propagation effects.
In our case, we follow the reciprocal reasoning, we adopt a monolithic computation of
the compressible flow, i.e. we do not decompose the flow in acoustic sources and acoustic
propagation, and we would like to unveil the feedback loop responsible for the instability
mechanism and the frequency selection.
For this purpose, we adopt a Helmholtz-Hodge decomposition (Schoder et al. 2020) of
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the perturbation velocity field into acoustic (potential) and hydrodynamic (solenoidal)

û = ûac + ûhyd = ∇φc +∇× Ψ (4.1)

applying divergence to eq. (4.1), the potential φc is determined from the following Poisson
equation

Δφc = ∇ · û in Ω
∇φc · n = û · n on ∂Ω.

(4.2)

The hydrodynamic component of the velocity is subsequently determined by subtracting
ûhyd = û− ûac = û−∇φc. Note that, the uniqueness of the Helmholtz decomposition is
subjected to the L2-orthogonality condition, in our case satisfied by the suitable boundary
condition of eq. (A 6), and the decay of the velocity field at the far-field (Schoder et al.
2020).
The pressure component of the mode q̂ is determined from the momentum equation

− 1

ρ0
∇p̂ = iωû+ û · ∇u0 + u0 · ∇û+

ρ̂

ρ0
u0 · ∇u0 − 1

Re
∇ · τ(û), (4.3)

from the decomposition p̂ = p̂ac + p̂hyd + p̂s and applying the divergence operator to the
momentum equation, we obtain the following equations

− 1

ρ0
Δp̂ac +

∇ρ0 · ∇p̂ac
ρ20

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂ac
ρ0

)
= iω∇ · ûac +∇ · (u0 · ∇ûac

)
+∇ · (ûac · ∇u0

)
(4.4a)

− 1

ρ0
Δp̂hyd +

∇ρ0 · ∇p̂hyd
ρ20

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂hyd
ρ0

)
= ∇ · (u0 · ∇ûhyd

)
+∇ · (ûhyd · ∇u0

)
(4.4b)

with decay at the far-field r → ∞. Details of the derivation are given in appendix A.1.
Finally, the entropic part of the pressure is recovered by subtracting the two other
components to the pressure of the mode p̂s = p̂ − p̂ac − p̂hyd, which accounts for the
dissipation effects of the viscous stress-tensor.
The other two components, temperature and density, are determined as follows. The
acoustic and hydrodynamic components are considered to evolve isentropically and are
directly determined from the pressure,

T̂ac = (γ − 1)M2
∞p̂ac, T̂hyd = (γ − 1)M2

∞p̂hyd, T̂s = T̂ − T̂ac − T̂hyd, (4.5)

ρ̂ac = M2
∞

ρ0
T0

p̂ac, ρ̂hyd = M2
∞

ρ0
T0

p̂hyd, ρ̂s = ρ̂− ρ̂ac − ρ̂hyd. (4.6)

Let us illustrate the application of this decomposition to a particular example. For that
purpose, we have chosen the global mode (h) of fig. 3. Figure 6 depicts the components
of the density fluctuations ρ̂. The hydrodynamic density fluctuations ρ̂hyd, being only
hydrodynamic, resemble to the hydrodynamic pressure fluctuations, which result from a
Kelvin-Helmholtz instability of the shear layer, at low Mach numbers (Sierra-Ausin et al.
2022). The entropic component of the density ρ̂s, which is illustrated in (c), is localised
within the shear layer. In this component, one can perfectly appreciate the wavelength
and the number of nodes of forward wave composing the feedback loop, in this case the
forward wave has six nodes. The acoustic component of the density ρ̂ac, depicted in (a),
is composed of a radiating part and the guided jet wave, which is localised within the
jet region. In this case, the guided jet wave is composed of two waves, i.e. it has four
nodes. From this decomposition, we can formulate a criterion for the frequency selection,
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(a) (b) (c)

Figure 6: Density decomposition of the global mode with St ≈ 0.5 at criticality (Re =
900) at M∞ = 0.6 (Mode (h) in fig. 3. (a) Acoustic component of density ρ̂ac. (b)
Hydrodynamic component of density ρ̂hyd. (c) Entropic component of density ρ̂s

similar to the Rössiter modes,

St−1 =
H/D

Uc,SLnhyd
+

H/D

M−1∞ nac

, with Uc,SL ≈ 1

2
Ur=0 (4.7)

such a criterion considers that the phase velocity of the hydrodynamic forward mode
corresponds to the inviscid approximation, that is, Uc,SL takes the mean value between
the two velocities of the shear layer, and the guided jet wave is propagated back nearly at
the speed of sound of the far-field. Such a criterion provides a way to classify the global
modes from the number of half-wavelengths of the guided jet wave mode (nac) and the
hydrodynamic mode (nhyd).

4.2. Localization of the non-local structural sensitivity

The global instability is underpinned by a feedback process between two travelling
waves, which impedes a direct local definition of the wavemaker which is identified by
the largest values of the structural sensitivity map. In other terms, we can still formulate
the concept of structural sensitivity, but it is no longer localized in space, i.e., it displays
a spatial distribution all along the interacting path between the two travelling waves.
We briefly recall the concept of structural sensitivity, before introducing an adequate
decomposition of the wavemaker for global instabilities generated by non-local feedback
process. The adjoint equations are herein used to evaluate the effect of a linear harmonic
forcing H(q̂) ≡ δ(x− x0)PHC0Pq̂q̂,(

− iωB|q0 +DF|q0

)
q̂ = H(q̂). (4.8)

C0 is a generic linear operator acting on q̂, and PH a diagonal matrix that selects the
type of forcing. In the following, we neglect mass injection to the system, and we simply
consider momentum forcing and a source of heat release, that is, PH = diag(0, I, 1, 0, 0).
The projection operator Pq̂ is also a diagonal matrix that selects the dependency of the
forcing on the perturbation. The structural sensitivity tensor is therefore defined as

iδω = 〈PHq̂†, δ(x− x0)C0Pq̂q̂〉 � ||C0||||PHq̂†||L2 ||Pq̂q̂||L2 = ||C0||||Ss(x0)||F , (4.9)

that is, the structural sensitivity tensor is defined as Ss(x0) ≡ PHq̂† ⊗ Pq̂q̂, whereas
the Frobenius norm of the tensor is referred to as structural sensitivity map, and it
is defined as ||Ss(x0)||F ≡ ||PHq̂†||L2 ||Pq̂q̂||L2 . The scalar field ||Ss(x0)||F is then an
upper bound function for the eigenvalue variation, and it can be employed to determine
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locations where the feedback is stronger. Therefore, allowing an identification of the
regions where the instability mechanism acts. However, when it is not localized within a
small physical region, it does not clearly identify the wavemaker, but a possible interacting
region between the components of the global mode.
Decomposing the mode q̂ we can rewrite the harmonic forcing as H(q̂) = H(q̂ac+ q̂hyd+
q̂s), which due to linearity of the forcing term on the eigenmode is simply expressed as

H(q̂) = H(q̂ac) +H(q̂hyd) +H(q̂s). (4.10)

Thus, we have a first decomposition of the harmonic forcingH(q̂) from the splitting of the
state variable. However, the term H(q̂ac) is not necessarily a forcing term that uniquely
induces acoustic perturbations. Assume, for simplicity, that the previous forcing term
depends uniquely on the acoustic velocity, H(uac), and it only acts on the momentum
equation, that is, we neglect mass or heat injection. The forcing term must be rotational-
free, i.e., ∇ ×H(uac) = 0, otherwise it will induce vortical perturbations into the flow.
Therefore, H(q̂ac) should be interpreted as a generic forcing term that depends on the
acoustic perturbation. To determine the effect of the forcing, that is, which kind of
response induces, we decompose the forcing operator into H = Hac +Hhyd +Hs as in
section 4.1. Following, this reasoning, we may decompose eq. (4.8),

〈q̂†
ac,
(
− iωB|q0 +DF|q0

)
q̂ac〉q̂ac = Hac(q̂ac) +Hac(q̂hyd) +Hac(q̂s),

〈q̂†
hyd,

(
− iωB|q0 +DF|q0

)
q̂hyd〉q̂hyd = Hhyd(q̂ac) +Hhyd(q̂hyd) +Hhyd(q̂s),

〈q̂†
s ,
(
− iωB|q0 +DF|q0

)
q̂s〉q̂s = Hs(q̂ac) +Hs(q̂hyd) +Hs(q̂s),

(4.11)
where the sum of the previous three equations is equal to eq. (4.8). Enabling the
interpretation of the adjoint q̂† as a measure of the receptivity with respect to a
harmonic forcing. It thus allows us to decompose the adjoint in a similar manner to
the way we decomposed the global mode in section 4.1. In this manner, the adjoint
variable serves to project the forcing term onto each of the subspaces, with the following
decomposed adjoint q̂† = q̂†

ac + q̂†
hyd + q̂†

s . That is, Hac(q̂) = 〈q̂†
ac,H(q̂)〉q̂ac, Hhyd(q̂) =

〈q̂†
hyd,H(q̂)〉q̂hyd and Hs(q̂) = 〈q̂†

s ,H(q̂)〉q̂s. From eq. (4.11), we may conclude that with
this decomposition of the adjoint mode, the projected harmonic feedback term, e.g., Hac,
only induces a response in the subspace where the feedback term is projected, following
this example q̂ac. Then, we can rewrite eq. (4.11),(

〈q̂†
ac,
(
− iωB|q0

+DF|q0

)
q̂ac〉+ 〈q̂†

ac,H(q̂ac)〉+ 〈q̂†
ac,H(q̂hyd)〉+ 〈q̂†

ac,H(q̂s)〉
)
q̂ac = 0(

〈q̂†
hyd,

(
− iωB|q0

+DF|q0

)
q̂hyd〉+ 〈q̂†

hyd,H(q̂ac)〉+ 〈q̂†
hyd,H(q̂hyd)〉+ 〈q̂†

hyd,H(q̂s)〉
)
q̂hyd = 0(

〈q̂†
s ,
(
− iωB|q0

+DF|q0

)
q̂s〉+ 〈q̂†

s ,H(q̂ac)〉+ 〈q̂†
s ,H(q̂hyd)〉+ 〈q̂†

s ,H(q̂s)〉
)
q̂s = 0,

(4.12)
which exemplifies the role of the decomposed adjoint variable to project the structural
forcing perturbation onto the corresponding subspace.
A direct inspection of eq. (4.12) suggests the definition of a localized structural sensitivity
matrix as

iδωk
j = 〈q̂†

k, δ(x− x0)C0q̂j〉 � ||C0||||q̂†
k(x0)||||q̂j(x0)|| = ||C0||||S(j,k)

s(x0)||F ,
S(j,k)

s(x0) = PHq̂†
k(x0)⊗Pq̂q̂j(x0) with j, k = ac, hyd, s,

||S(j,k)
s(x0)||F = ||PHq̂†

k(x0)||||Pq̂q̂j(x0)|| with j, k = ac, hyd, s.
(4.13)
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The new structural sensitivity provides information about the cross-interaction between
vortical and acoustic components of the flow. In the problem of the impinging jet, the
feedback loop is initiated by the hydrodynamic instability of the shear layer, which
induces an acoustic response. In turn, when acoustic wave impinges on the nozzle lip
promotes back the hydrodynamic instability, continuing the loop. With this novel defin-

ition, S
(hyd,ac)
s identifies the most sensitive region of the flow to vortical perturbations,

inducing an acoustic response. This first region can be named the wavemaker of the
hydrodynamic perturbations exciting an acoustic response, which in the case of the
impinging jet is expected to be located near the impinging wall and possibly near sharp
corners. The second (and third) wavemaker of interest corresponds to the excitation

of a hydrodynamic response from hydrodynamic ( S
(hyd,hyd)
s ) or acoustic perturbations

(S
(ac,hyd)
s ). Physically, S

(hyd,hyd)
s determines the hydrodynamic wavemaker, which in a

causal reasoning, could be argued to be the region initiating the feedback process. And

S
(ac,hyd)
s determines the most sensitive region of the flow to an acoustic perturbation

inducing a hydrodynamic excitation, that is, the retro-action of the acoustic wave into
the hydrodynamic instability. Additionally, we introduce a further decomposition of the
non-local structural sensitivity map to account only for the forcing of the momentum
equation for a forcing term that depends uniquely on the velocity field, that is,

iδωk
j = 〈û†

k, δ(x− x0)C0ûj〉 � ||C0||||û†
k(x0)||||ûj(x0)|| = ||C0||||S(j,k)

u,s (x0)||F ,
||S(j,k)

u,s (x0)||F = ||û†
k(x0)||||ûj(x0)|| with j, k = ac, hyd, s.

(4.14)
We are left with the decomposition of the adjoint eigenmode. Herein, we summarise the
decomposition, a detailed derivation is left to appendix A.2. We propose the following
decomposition for the adjoint velocity field,

û† = û†
hyd + û†

ac = ∇φ†
c +∇× Ψ †,

Δφ†
c = ∇ · û† in Ω

∇φ†
c · n = û† · n on ∂Ω.

(4.15)

From eq. (4.9), we can interpret the adjoint variable as the sensitivity of the eigen-
value/eigenvector variations with respect to a linear harmonic feedback. In this sense,
û†
ac corresponds to the sensitivity to vortical-free eigenvector variations with respect to

a generic linear harmonic forcing in the momentum equation. Similarly, û†
hyd should be

understood as the sensitivity to the dilation-free eigenvector variations with respect to a
generic linear harmonic forcing in the momentum equation.
When considering the adjoint variables, we prefer to consider the evolution equation of the
entropy fluctuations ŝ instead of the energy equation, see appendix A for the introduction
of the linearised governing equations in entropy-form. The inclusion of a source term into
the entropy equation, for instance a source of heat release, induces a modification of the
entropy evolution. By definition, we defined hydrodynamic and acoustic modes to be
isentropic (we neglected the effects of viscous dissipation), thus ŝ† projects sources in
the entropy equation to sources of entropic nature, i.e., ŝ† = ŝ†s , a trivial decomposition.
Instead, source terms in the energy equation may induce modifications of the acoustic
and hydrodynamic components of the flow, and its decomposition is more cumbersome.
Finally, the decomposition of the adjoint of the continuity equation, ρ̂†, is determined by
substituting the previously decomposed adjoint and entropy adjoint fields into the linear-
ised adjoint equations, which is left to appendix A.2. Overall, the adjoint is decomposed
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as follows,

û† = û†
hyd + û†

ac = ∇φ†
c +∇× Ψ †, from eq. (4.15)

ŝ† = ŝ†s
ρ̂† = ρ̂†ac + ρ̂†hyd + ρ̂†s , from eq. (A 14)

p̂† = p̂†ac =
∇ · û†

γM2∞

T̂ † = T̂ †
ac + T̂ †

s = −∇ · û†

γM2∞
+
(
ŝ†u0 · ∇s0 − γ

Pr Re

1

ρ0
Δs0

)
(4.16)

An important property of the adjoint-direct mode bases is the bi-orthogonality. The

pairs of primitive variables
{
0, û, ŝ); (0, û†, ŝ)

}
are bi-orthogonal, but that is no longer

true when considering the complete primitive variable
{
(ρ̂, û, ŝ); (ρ̂†, û†, ŝ)

}
, that is, when

considering the continuity equation or the density variable. The set of bases lacks the bi-
orthogonality property when mass is injected to the system, which implies the existence
of an intrinsic coupling mechanism between the three components of the mode via the
continuity equation. Which, in turn, impedes the decomposition of the sources of mass as
acoustic, hydrodynamic or entropic. In the following, we will restrict ourselves to sources
in the momentum equation, that is, we use eq. (4.14) to analyse the response of the
system to body forces. Figure 7 displays two pairs of structural sensitivity pairs. The

first, S
(hyd,ac)
u,s , is the map measuring the eigenvalue drift due to an acoustic response

induced by a hydrodynamic perturbation. At large Mach numbers (MJ ≈ 0.9), fig. 7

(a) shows that S
(hyd,ac)
u,s is localised near the nozzle lip and within the jet at an axial

location around z ≈ H − D. The region within the jet is found at the spatial location
with the largest production of divergence of the velocity field (cf section 3.2). An acoustic
guided jet mode (cf fig. 6) is then responsible for the closure of the feedback-loop. When
the Mach number is decreased, the production of divergence of velocity is less effective
and the most effective mechanism to close the feedback loop turns out to be a vortex-

sound mechanism, that is, the sensitivity map S
(hyd,ac)
u,s highlights the region where the

linearised Lamb vector is large (cf section 3.2). The feedback loop in this case can be
closed via an acoustic pressure wave released from the region where the Lamb vector
is of large magnitude and propagated as a spherical wave towards the nozzle of the lip
(fig. 8 (a,c)) or from inside the jet (fig. 8 (b,d)). The spatial location of the source of
sound of the latter mechanism is robust with respect to modifications in the Mach or
Reynolds number, i.e., the jet has a preferential location where divergence is created, and
it corresponds to the region within the jet before the jet impinges the wall, cf fig. 4. On the
other hand, the vortical acoustic sources along the region with a large amplitude of the
linearised Lamb vector are highly sensitive to non-linear effects and to variations in the
Reynolds number. The sensitivity to non-linear effects is due to the roll-up of the vortex
sheet and the interaction between vortices emitted at distinct stages of the cycle. This
region of the flow is dominated by vortical effects, and it becomes rapidly chaotic. From
the acoustic standpoint, there exist several acoustic sources at distinct spatial positions
capable to close the loop, which in turn would select a slightly different frequency of
the cycle. That is, in some sense, the lack of temporal coherence of the vortical region
implies a weaker frequency selection criterion. This aspect will be explored in more detail
in section 5.
Figure 7 (c-d) displays the complementary sensitivity map S

(ac,hyd)
u,s , which measures

eigenvalue drift due to a hydrodynamic response induced by an acoustic perturbation.
Not surprisingly, the impingement of acoustic perturbations onto the nozzle lip is the
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(a) (b)

(c) (d)

Figure 7: (a-b) Map S
(hyd,ac)
u,s for the global mode of points (h) and (e) of fig. 3. (c-d)

Map S
(ac,hyd)
u,s for the global mode of points (h) and (d) of fig. 3.

(a) (b) (c) (d)

Figure 8: (a,b) Real and imaginary part of the pressure of mode (b) in fig. 3 at M∞ =
0.2. (c,d) Pressure fluctuations issued from an axisymmetric time-stepping simulation at
M∞ = 0.2 and Re = 2200.

most effect mechanism to trigger the instability of the shear layer, which is mostly of
vortical nature. Such a mechanism is largely insensitive to Mach number variations.

4.3. A finer insight to the instability core: An identification of the active flow regions

In previous sections, we have employed the structural sensitivity to identify the most
sensitive regions of the flow to cause a drift to the eigenvalue (section 3.2). In addition, our
refined non-local structural sensitivity allowed us to provide a localised stability core for a
non-local instability issued from a feedback loop (section 4.2). In this section, we connect
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(a) (b)

(c) (d)

Figure 9: (a-b) Endogeneity field for mode (g) in fig. 3 at M∞ = 0.6; (a) Re(E), (b)
Im(E). (c-d) Endogeneity field for mode (b) in fig. 3 M∞ = 0.2; (c) Re(E), (d) Im(E).

the qualitative description provided in section 3.2 in terms of physical mechanisms with
a precise description of the active regions of the flow. For this purpose, we adopt the
definition of the endogeneity proposed by Marquet & Lesshafft (2015), which yields a
direct link between structural modifications in the linearised governing equations and
the eigenvalue variations. The endogeneity is introduced as the scalar (complex) field
measuring the eigenvalue drift when considering a localised forcing term with the same
structure as the Jacobian operator DF|q0

, that is, H(q̂) = δ(x − x0)DF|q0 q̂, which
induces the following drift in the eigenvalue,

iδω = 〈q̂†, δ(x− x0)DF|q0 q̂〉 = 〈q̂†(x0), DF|q0 q̂(x0)〉 ≡ E(x0) (4.17)

with the essential property that
∫
Ω
E(x)dx = −iω. This last property is the most

important feature of the endogeneity concept. The scalar field E(x0) measures how local
variations of the flow alter the global characteristics of the instability, such as growth
rate or frequency.
Figure 9 displays the endogeneity fields for the dominant modes at M∞ = 0.6 and
M∞ = 0.2, respectively, which corresponds to mode (g) and mode (b) of fig. 3. The
imaginary part of the endogeneity for mode (g), displayed in fig. 9 (b), is positive between
the nozzle lip and the region where the module of the divergence of velocity of the mode is
largest. It also corresponds to the spatial location with the largest positive real part of the
endogeneity, shown in fig. 9 (a). Therefore, suggesting that the frequency is selected by
the travelling time that the perturbations take to travel back-and-forth. The imaginary
part endogeneity of mode (b), shown in fig. 9 (d), is composed of two regions. A region
with positive sign along the axial shear layer, and another with larger magnitude and
alternating sign along the radial shear layer. It suggests that the frequency is determined
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ECA ECP EP

M∞ = 0.6 (g) −0.18 + 0.37i 0.49 + 1.6i −0.27 + 1.4i
M∞ = 0.2 (b) −1.0 + 2.5i 1.17 + 0.79i −0.14 + 0.13i

Table 1: Decomposition of the integral of the endogeneity field,
∫
Ω
E(x)dx, for the

dominant mode at M∞ = 0.6 (g) and at M∞ = 0.2 (b) in fig. 3.

by the amount of the time that it takes for the perturbations to be convected downstream
towards the wall, but also by the radial position of the acoustical source responsible for
the pressure wave closing the feedback-loop. The real part of the endogeneity, shown
in fig. 9 (a), has a similar structure to the imaginary part. The axial shear layer plays
mostly a passive effect, that is, perturbations are mostly convected downstream towards
the impinging wall, which has a net stabilising effect.
The endogeneity provides a further insight into the mechanisms of the instability. Since∫
Ω
E(x)dx = −iω, one can decompose the governing equations and analyse the effect

that distinct mechanisms have in the instability. For this purpose, we follow a similar
decomposition of the linearised compressible Navier–Stokes to the one laid out by
Meliga et al. (2010) into production (P ) and convective terms, where the latter are
subdivided into advection-convection (CA) and production-convection (CP ) terms. The
decomposition is as follows,

DF(CA)|q0 q̂ ≡

⎧⎪⎨⎪⎩
u0 · ∇ρ̂+ ρ0∇ · û
ρ̂u0 · ∇u0 + ρ0u0 · ∇û

ρ0T0u0 · ∇ŝ+ ρ̂T0u0 · ∇s0 + ρ0T̂u0 · ∇s0

(4.18a)

DF(CP )|q0 q̂ ≡

⎧⎪⎨⎪⎩
ρ̂∇ · u0 + û · ∇ρ0

ρ0û · ∇u0

ρ0T0û · ∇s0

(4.18b)

DF(P )|q0 q̂ ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

∇p̂− 1

Re
∇ · τ(û)

− γ(γ − 1)
M2

∞
Re

(
τ(û) : D(u0) + τ(u0) : D(û)

)− γ

Pr Re
ΔT̂

(4.18c)

And we define the endogeneity fields for each of the operators,

ECA(x) ≡ q̂†(x) ·DFCA |q0 q̂(x) (4.19a)

ECP (x) ≡ q̂†(x) ·DFCA |q0 q̂(x) (4.19b)

EP (x) ≡ q̂†(x) ·DFCA |q0 q̂(x) (4.19c)

Table 1 reports the global contribution to the instability of the three operators defined
in eq. (4.18). For the two modes, the convection-advection and production operators
have a global stabilising effect, whereas the convection-production operator plays a
global destabilising role. Their spatial distributions (real part) are shown in fig. 10.
The convection-production term provides the main root of the growth rate. The largest
contribution coming from the base flow shear ρ0û · ∇u0 term, which is active along
the axial shear layer, see fig. 10 (b,e). The convection-advection operator is globally
stabilising, however it plays an active role in advecting the perturbation to the instability
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(a) (b) (c)

(d) (e) (f)

Figure 10: (a-c) Endogeneity field for mode (g) in fig. 3 at M∞ = 0.6; (a) ECA , (b) ECP ,
(c) EP . (e-f) Endogeneity field for mode (b) in fig. 3 M∞ = 0.2; (d) ECA , (e) ECP , (f)
EP .

core. Visual inspection of the real part of the ECA field, displayed in fig. 10 (a,d), suggests
that at large Mach numbers the acoustic perturbations are propagated along the shear
layer to the region of largest divergence of the fluctuating velocity field. On the other
hand, at low Mach number, the downstream convection of perturbation counteracts the
local growth and makes the instability more convective. Concerning the production terms,
at large Mach number, the field, displayed in fig. 10 (c), is positive inside the jet from
the nozzle lip to z ≈ H − D. The effect on the growth rate seems to be associated to
the backward propagation of the guided jet mode from the region around z ≈ H − D
to the nozzle-lip. Instead, at low Mach numbers, the dominant production term is the
pressure gradient, which enforces the continuity condition by inducing a perturbation
of the volume flux across the shear layer, cf Marquet & Lesshafft (2015). In the region
between the nozzle lip and the impinging wall counteracts the effect of the advection
operator inside the jet, and it favours the convective effect outside the jet.
Finally, motivated by the significant role played by the divergence of the velocity

perturbations in the closure of the feedback-loop at large Mach number, we analyse
the effect on the growth rate of local modifications of the divergence of the momentum
equation (eq. (3.1)). To do so, we take the inner product of the acoustic velocity adjoint
û†
ac with the momentum equation, which by integration by parts leads to the following

definition of Ediv,

iδωdiv = 〈−∇φ†, δ(x− x0)DF(mom)|q0 q̂〉
= 〈φ†, δ(x− x0)∇ ·DF(mom)|q0 q̂〉+ B.T. (4.20a)

Ediv ≡ φ†(x)
(∇ ·DF(mom)|q0 q̂

)
(x), (4.20b)

where it can be shown that the boundary terms (B.T.) are null in the impinging jet
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(a) (b)

(c) (d)

Figure 11: (a) Endogeneity field of the divergence of the momentum equation Ediv. (b)
ECA

div . (c) E
CP

div . (d) E
P
div.

configuration. Following the same approach as in eq. (4.19), we can split we split E(div)

and analyse the effect of the three aforementioned operators on the growth rate. Such
analysis renders possible to study the effect on the growth rate of the physical mechanisms
generating and advecting the divergence of the velocity field. Figure 11 (a) displays the
real part of the E(div). Not surprisingly, the largest positive contribution comes from the
region with the largest divergence of the mode (z ≈ H −D). The convection production
term, displayed in fig. 11 (c), peaks in the region of largest divergence of the baseflow,
which suggests a local conversion of divergence from the baseflow to the perturbations.
The structure of the convection-advection and production terms is more intriguing. The
ECA

div and EP
div are almost identical, but of opposite sign, suggesting that the role of the

pressure is to counteract the advection of fluctuating divergence. The shear layer, delimits
the region inside and outside the jet. Inside the jet, the production of divergence of the
fluctuating velocity field has a destabilising effect; instead, the advection of divergence
inside the jet renders the instability more convective. The largest growth rate drift by
the production of a divergence is observed to happen along thin radial layers inside the
jet. The spatial distribution of EP

div composed of cell structures vaguely resembles the
shock-cell structure observed in supersonic jets (Edgington-Mitchell et al. 2018), where
the divergence of the velocity field is produced across the shock cell. Thus, suggesting a
connection between the production of divergence and the instability mechanisms between
large subsonic and supersonic Mach numbers.

4.4. Wave decomposition of the feedback mechanism

Herein, we perform a weakly non-parallel local decomposition of the different waves
supported by the base flow. The configuration under investigation contains in fact
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an extended region of quasi-parallel flow, where a simplified analysis can be used to
investigate the local stability property of the jet and the supported waves. Specifically,
in regions where the flow is almost parallel, we perform a multiple-scale analysis: the
disturbance is assumed to have the following asymptotic expansion

q(r,Z) = e−iφ(Z)/ε
∑
n,k

Ck(Z)q
(ε)
n,k(r,Z) εn , (4.21)

where the slow variable Z = εz is kept O(1) in the limit ε → 0. Here the expansion
parameter ε is defined as the ratio of the two main length scales occurring in the problem,

i.e ε =
�W
�B

where ��B is the characteristic scale over which the base flow experiences an

O(1) variation, while ��W is the characteristic wavelength of the perturbation. Note that
the expansion (4.21) depends on both ε and ε = 1/Re owing to the base flow dependence
on the Reynolds number. For our purpose it is not necessary to provide an explicit
relation between the two parameters, but it suffices to assume ε ∼ O(1/Re). The validity
of the previous assumptions can be verified a posteriori.

In eq. (4.21) we consider the primitive variables q̂ = [ρ̂, û, p̂, T̂ ], that is, the vector
containing the components of the disturbance field. The phase φ = − ∫ (α(Z)+δα(Z))dZ
is a slowly-varying function of Z to be determined during the asymptotic procedure. The
slow varying amplitude Ck(Z) should be interpreted as the projection of the global mode
onto the local waves supported by the baseflow, and it is also determined using the
asymptotic procedure. Introducing eq. (4.21) into the linearised system, up to O(ε), and
collecting different powers of ε, we are left with the following series of problems describing
the evolution of the perturbation,
O(ε0) (− iωB|q0 +DF(α)|q0

)
q
(ε)
0,k(r,Z) = 0 (4.22a)

u0, v0, p0 → 0 as r → ∞ (4.22b)

u0 = v0 = 0 at r = 0 (4.22c)

O(ε1)

(− iωB+DF(α)
)
q
(ε)
1,k(r,Z) = i

d

dα

(− iωB+DF(α)
)dq(ε)

0,k

dZ
(4.23a)

u1, v1, p1 → 0 as r → ∞ (4.23b)

u1 = v1 = 0 at r = 0. (4.23c)

At O(ε0) the problem is linear, and we determine the pair
(
α(Z),q

(ε)
0,k(r,Z)

)
from the

resolution of the eigenvalue problem eq. (4.22). At the next order, O(ε1), the problem has
a forcing secular term, which needs to be removed by imposing the solvability condition.
The solvability condition provides the weakly-non-parallel correction of the phase, herein
named δα(Z), and defined as

δα =
q
†,(ε)
0,k ·

[
d
dα (−iωB+DF(α))

dq
(ε)
0,k

dZ

]
q
†,(ε)
0,k ·

[
d
dα (−iωB+DF(α))q

(ε)
0,k

] . (4.24)

In the previous expression, q
†,(ε)
0,k is the adjoint solution of the linear problem eq. (4.22).

Finally, we determine the projection of the global mode onto the kth local wave. We use
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the local adjoint solution of the kth wave to determine the slowly varying amplitude,

Ck(Z) = q
†,(ε)
0,k ·

[ d

dα
(−iωB+DF(α))q̂(r, z)

]
e−i

∫
αk+δαkdZ , (4.25)

with q̂(r, z) the global mode.
Figure 12 (a) displays the spectrum of the linear spatial stability problem eq. (4.22) for
a baseflow at Re = 800 and M∞ = 0.6 (Mode (g) in fig. 3) at the mid-point between the
nozzle lip and the impinging wall (z = 2.5D). The spectrum displays a set of modes along
the axis, which belong to the continuous branches α+ and α− of free-stream acoustic
modes (Towne et al. 2017). Another set of modes emerge from the right end of the
spectrum for Im(α) > 0, these modes approximate the entropy continuous branch. There
are also four discrete modes. Two duct modes, namedD± with the upper script indicating
the direction of propagation. The radial support of these two modes lies inside the jet.
There is a guided jet mode, which is found at the left of the free-stream continuous
branch, that is, it possesses a slower phase speed than the free-stream sound speed. The
radial support inside the jet of the pressure component is similar to the duct modes, but
it also possesses a radial support outside the jet. There is also a Kelvin-Helmholtz or
shear layer mode, with a radial support around the shear layer of the baseflow.
The projection coefficient (Ck) of the global mode onto the duct modes is nearly null.
Hereafter, we consider that the global mode is composed only of the shear layer mode
(mode 1) and the guided jet wave mode (mode 2), that is, we truncate the sum in
eq. (4.21) to just two modes. The global mode and the local waves are normalised with
the energy of the fluctuations (Chu 1965). From this assumption, at neutrality, one can
recover the reflection coefficient by considering the ratio between the two waves, here we

define the reflection coefficient as r =
C2(Zm)

C1(Zm)
, with Zm = H/2 the mid-point between

the impinging wall and the nozzle lip. In the central region, the two slowly varying
amplitudes are nearly constant (not shown), which justifies its usage to determine the
local properties of the waves. Figure 12 (b) shows the evolution of the two projection
coefficients of the local waves onto the global mode. The coefficient of the shear layer
mode C1 is nearly constant and equal to unity. Thus, the evolution of C2 with respect to
the Mach number of the jet provides a direct characterisation of the reflection coefficient.
The coefficient of the guided jet mode is O(10−1) at large Mach numbers, it evolves
roughly as M6

J in the interval (MJ,c, 0.9), and then it decreases as M2
J in the interval

(0,MJ,c), with MJ,c ≈ 0.4. The transition in the reflection coefficient dependency with
the Mach number of the jet is another consequence of the modification of the instability
mechanism, from the closure of the feedback loop by propagation of the divergence of
velocity created within the jet to the closure of the loop by vortical acoustic sources
outside the jet near the wall.

5. Nonlinear dynamics of the impinging jet

Herein, we study the dynamics of the normal form involving three global modes, which
is the simplest equation displaying tonal dynamics, that is periodic or quasiperiodic
resonant solutions, and the decoupling of the resonant mode. We also compare the
numerical results obtained from axisymmetric time-stepping simulations at different M∞
for fixed Re = 2000. In addition, we propose a phenomenological model to account for
the transition to broadband dynamics using a simple model of additive Gaussian noise
on the resonant phase.
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(a) (b)

Figure 12: (a) Spectrum of the linear spatial stability problem eq. (4.22) for a baseflow
at Re = 800 and M∞ = 0.6 (Mode (g) in fig. 3) at the mid-point between the nozzle
lip and the impinging wall (z = 2.5D). (b) Evolution of the projection coefficients C1

(Kelvin-Helmholtz mode) and C2 (Guided-Jet mode) with respect to the Mach number
of the jet (MJ).

5.1. Modelling of the non-linear dynamics – Normal form reduction

First, we express eq. (B 20) of section 2.4 in the polar coordinates of the complex
amplitudes zk(τ) = rk(τ)e

iφk(τ). This procedure allow us to reduce the dimension of the
normal form from six (three complex amplitudes) to four, three equations for the real
amplitudes and an equation for a resonant phase ψ = (φ3 − φ2)− (φ2 − φ1),

ṙ1 = r1
[
λR
1 + νR11r

2
1 + νR12r

2
2 + νR13r

2
3

]
+ r22r3

[
cos(ψ)χR

1 + sin(ψ)χI
1

]
ṙ2 = r2

[
λR
2 + νR21r

2
1 + νR22r

2
2 + νR23r

2
3

]
+ r1r2r3

[
cos(ψ)χR

2 − sin(ψ)χI
2

]
ṙ3 = r3

[
λR
3 + νR31r

2
1 + νR32r

2
2 + νR33r

2
3

]
+ r22r1

[
cos(ψ)χR

3 + sin(ψ)χI
3

]
ψ̇ = δω + cos(ψ)

[− χI
3r1r

2
2/r3 + 2χI

2r1r3 − χI
1r3r

2
2/r1)

]
− sin(ψ)

[
χR
3 r1r

2
2/r3 + 2χR

2 r1r3 + χR
1 r

2
2r3/r1

]
.

(5.1)

Here, we use the notation δω ≡ δωL + δωNL with δωL ≡ [ω1 + ω3 − 2ω2] the
linear frequency mismatch at criticality, and the nonlinear frequency mismatch
δωNL ≡ ΔωNL

2 −ΔωNL
1 = [ωNL

1 +ωNL
3 −2ωNL

2 ], where ωNL
k = λI

k+νIk1r
2
1+νIk2r

2
2+νIk3r

2
3

for k = 1, 2, 3. The upper scripts R and I are used to denote the real and imaginary part
of the coefficient.
We analyse the solutions of eq. (5.1) in two steps, first we summarise the results of the
non-resonant case (χ1 = χ2 = χ3 = 0), which was studied more in detail for the case
of the mode interaction in the wake flow behind a rotating sphere (Sierra-Auśın et al.
2022). Subsequently, we discuss, in the presence of resonant coupling, the phase-locked
transition from a resonant quasiperiodic state to a modulated three frequency state with
a small frequency modulation. The new modulating frequency, being proportional to the
imperfections in the frequency quantization (δωNL), is expected to induce a transition to
a chaotic attractor, following the route to chaos suggested by Ruelle–Takens–Newhouse,
when this new frequency is of the order of the frequency difference between two modes,
e.g., ΔωNL

1 .

5.1.1. Stochastic modelling

Ruelle–Takens–Newhouse (Newhouse et al. 1978) state that one may obtain a chaotic
Axiom A attractor by perturbing a three-tori solution, with a given arbitrarily small
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perturbation. However, it fails to provide the precise route to chaos, which may occur
following a torus breakdown (Tanaka 2005), which occurs because of the loss of smooth-
ness of the two or three tori attractors (Marques et al. 2001). In order to account for the
loss of smoothness of the system, we replace

δωNL �→ δωNL(1 + dW ),

with dW a differential Wiener process and δωNL determined from the deterministic
normal form. This phenomenological modelling is based on the fact that the sources of
sound responsible for the closure of the feedback become less coherent with decreasing
Mach number (see section 4). Such a modelling is faithful with the deterministic normal
form eq. (5.1) in the mean sense, that is, E

(
δωNL(1 + dW )

)
= δωNL. At low subsonic

Mach number, the increase of δωNL is caused by the elongated nature of the wavemaker,
which enables the existence of sources of vortex sound at distinct spatial locations. Each
of these sources it is associated with a distinct fundamental frequency Δω, which is
inversely proportional to the convective time it takes for the hydrodynamic perturbations
to reach the source of vortex sound at the wavemaker and to the acoustic time it
takes for the perturbation to reach back to the lip of the nozzle. Therefore, providing
a phenomenological interpretation to the increase of the modulation frequency with
a decreasing Mach number. Thus, the transition to a broadband spectrum can be
interpreted as the consequence of the loss of coherence of the feedback process and
the fact that the levels of the sound acoustic pressure decrease with decreasing Mach
number. The latter effect is attributed to the fact that with decreasing Mach number,
the production of the divergence of velocity field is reduced, which occurs mostly within
the jet and near the wall. Additionally, the propagation of the guided jet wave becomes
less effective with decreasing Mach number, because of the increase of its wavelength.
This phenomenon can be appreciated in fig. 7, where the structural sensitivity to the
acoustic response of the system from hydrodynamic perturbations is displaced from a
spatial location within the jet to an elongated region near the wall outside the jet.

5.1.2. Properties of the deterministic normal form

In the absence of a coupling between the real amplitudes rk and the resonant phase
ψ, i.e. χ1 = χ2 = χ3 = 0, we have that ψ = (ωNL

2 − ωNL
1 )t − (ωNL

3 − ωNL
2 )t, which is

generally non-zero. In this case, eq. (5.1) is simplified to

ṙ = r

[
ΛR
 + VR

kr
2
k

]
, k, � = 1, 2, 3,

φ̇ = ΛI
 + VI

kr
2
k, k, � = 1, 2, 3,

(5.2)

where Λ = ΛR + ΛI ≡ (λ1, λ2, λ3)
T and the matrix V = VR + iVI is

V ≡
⎛⎝ν11 ν12 ν13
ν21 ν22 ν23
ν31 ν32 ν33

⎞⎠ (5.3)

To ease the presentation of the fixed point solutions of eq. (5.2), let us introduce the
inverse of the linear operator V, which can be written as

V−1 =
1

detV

⎛⎝detV11 detV21 detV31

detV12 detV22 detV32

detV13 detV23 detV33

⎞⎠ , (5.4)

where detVk denotes the minor of the matrix V, obtained by eliminating the line k and
the column �.
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Name Representative Frequencies
TS (Trivial state) (0, 0, 0, n.d.) 0

PW (Periodic Wave mode) (ra, 0, 0, n.d.) 1
MW (Mixed Wave mode) (ra, rb, 0, n.d.) 2

3FW (Three Frequency Wave mode) (ra, rb, rc, n.d.) 3
MrW (Mixed resonant Wave mode) (ra, rb, rc, ψd) 2

Table 2: Nomenclature of fixed point solutions of the system eq. (5.1). The MW and the
3FW correspond to the case of non-resonant coupling χ1 = χ2 = χ3 = 0.

Name of solutions Definition Eigenvalues
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det(Vkk)
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det(VR
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λR
k det(VR
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i det(VR

ik) + λR
j det(VR

jk)
]

3FW123 (r21, r
2
2, r

2
3)

T = −(VR
)−1

ΛR Eigs of DfR

Table 3: Defining equations and eigenvalues of the solutions of the polar third order
normal form eq. (5.1) in the case of non-resonant coupling χ1 = χ2 = χ3 = 0. DfR

denotes the Jacobian matrix of the polar amplitudes of eq. (5.2).

This equation has four types of solutions, listed in table 2 with their respective
nomenclature and number of independent frequencies. The definition of the solutions
and their linear stability is enumerated in table 3. The two solutions of interest for us
are the PW and the MW, which are representative of tonal dynamics.
Now, we turn our attention to the resonant case. In particular, we focus on the dynamics
of a resonant MW state, which is a quasiperiodic state and the amplitudes r1 and r2
determined as in table 3, with a constant resonant amplitude r3 and locked phase ψ. This
new state, referred to as Mixed resonant Wave (MrW) still possesses two incommensurate
frequencies, with the third mode resonant to the other two. A definition of this resonant
solution may be found in table 4. The MrW branch may display a Hopf bifurcation, which,
in the case of r3 	 r1, r2, can be analysed by simply studying the two-by-two sub-block of
the Jacobian matrix of eq. (5.1). The MrW12 branch loses stability in a Hopf bifurcation
with a modulation frequency ω′ ∝ δωNL, see the last column of table 4. It occurs when

the attracting eigenvalue in the r3-direction is smaller than −σMW12
� χI

3

χR
3

δω. The

right-hand side of the inequality can be interpreted as the effective frequency mismatch

δωeff ≡ χI
3

χR
3
δω induced by the coupling coefficients. The Modulated Mixed drift Wave

(MMdW) is susceptible to be observed as a chaotic attractor when studying the Navier–
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Name of solutions Definition Stability

MrW12 tan(ψ) = −χR
3 δω + σMW12χ

I
3

χI
3δω + σMW12χ
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3

2χR
3

(
δωχI

3 + χR
3 σMW12
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3 )
2 − (χI
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r22r1 sin(ψ) ω′ = | δω
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|

Table 4: Defining equations and eigenvalues of the Mixed resonant wave of eq. (5.1) in the
case of resonant coupling. The amplitudes r1 and r2 are defined in table 3, since they are

the same as for the MW12. The eigenvalue σMW12
= 1

det(VR
33)

[
λR
3 det(VR

33)+λR
1 det(VR

13)+

λR
2 det(VR

23)
]
is the eigenvalue of the MW in the direction of r3. ω

′ is defined criticality,

that is, when σMW12 =
χI
3

χR
3
δω.

Stokes equations. However, it is possible to observe this new three-frequency state as a
non-chaotic attractor when the modulation frequency is much smaller than the other two
frequencies ω′ 	 ω1, ω2, which occurs if δω 	 1. Similarly, in the actual dynamics of the
Navier–Stokes equation, a chaotic attractor is likely to shadow the MMdW state, which
is expected to occur when the third amplitude (r3) is sufficiently large. Therefore, in this
sense, we cannot provide a sharp cut-off for the transition of broadband (chaotic) - tonal
dynamics, but we provide a qualitative description of the transition in the simplest case
with resonance between the modes of the spectrum. In the following sections, we provide
a comparison of the deterministic and stochastic normal forms with direct numerical
simulations of the axisymmetric impinging jet.

5.2. Normal form – Results

5.2.1. Small subsonic Mach number – An example of broadband noise

At low Mach numbers, a broadband spectrum characterizes the dynamical attractor
(obtained from axisymmetric numerical simulations, section 2.3), which is displayed in
fig. 13 (b) with red, blue and black solid lines for pressure probes at an axial location
z = 0 and a radial position r = 1D, r = 2D and r = 4D, respectively. This type
of dynamics is modelled by a periodic solution (MMdM) of the normal form eq. (5.1),
which is a three-tori solution in the original coordinates of the ansatz eq. (2.11). The
MMdM solution emerges almost directly from of the PW2 branch (fig. 13 (a)), that is, the
MrW13 is unstable (not shown). The Modulated Mixed drift Wave possesses a modulation
frequency ω′ ≈ Δω, that is, the modulation frequency has a similar magnitude to the
frequency difference between the other two dominant frequencies. In that scenario, the
original dynamics of the Navier–Stokes equations are expected to be chaotic with a
broadband spectrum. However, fig. 13 shows a tonal spectrum (yellow line), which has
been obtained from the deterministic normal form. Such a feature is characteristic of
this particular type of normal form, and it is a pathological property of the truncation.
Instead, when considering the stochastic model with δω ≈ 0.1, one obtains a spectrum
(green line) which offers a considerably better comparison with respect to the data of
the axisymmetric simulation. In this case, the spectrum displays a wide peak of small
magnitude around f1 and f2, and a broadband spectrum with a similar slope to the
numerical results (red line). Thought the matching is not perfect, the ratio between
the peak and the broadband levels is slightly larger in the deterministic model, which



28 J. Sierra-Ausin, F. Giannetti, D. Fabre

(a) (b)

Figure 13: (a) Bifurcation diagram at M∞ = 0.3 with respect to the Reynolds number
with |r| =

√
r21 + r22 + r23. Solid lines indicate stable attractors, dashed lines indicate

unstable fixed points of eq. (5.1). (b) Sound pressure levels at Re = 2000. Probes of
instantaneous pressure fluctuations at the axial location z = 0 and radial positions
r = 1D (red - axisymmetric time-stepping, yellow - deterministic normal form, green
stochastic normal form with δω = 0.1), r = 2D (black - axisymmetric time-stepping) and
r = 4D (dark blue - axisymmetric time-stepping). The vertical dashed lines highlight the
frequencies of the peaks obtained with the axisymmetric time-stepping simulation.

suggests a higher degree of stochasticity of the axisymmetric numerical simulation. The
difference may be explained from the fact that the axisymmetric numerical simulations
allow for a vortical feedback, vortices emitted by the roll-up of the radial shear layer near
the wall and outside the jet are propagated towards the lip. These vortices are produced
aperiodically in a chaotic region of the flow, thus reducing the coherence of the spectrum
when they induce a hydrodynamic instability near the lip of the nozzle. Such a feature
is strongly nonlinear, and it is not accounted by the normal form. A possible correction
to the stochastic model would consist in the inclusion of a diffusion coefficient

√
Deff in

δω(1+
√
DeffdW ), and thus determine the effective diffusion from the fitting of numerical

or experimental data (Callaham et al. 2021).

5.2.2. Large subsonic Mach number – An example of weakly resonant tones

At large Mach numbers, the dynamical attractor is characterized by a tonal spectrum
with large peaks at discrete frequencies. This type of dynamics is modelled by a fixed-
point (MrW) or a periodic solution (MMdW) of the normal form eq. (5.1). Figure 14
(a) shows the bifurcation diagram obtained with the deterministic normal form. The
mode-switching point reported in section 3 was located at MA

∞ ≈ 0.49. For larger values
of M∞ the PW3 branch emerges from the primary bifurcation as a stable solution, and
the PW2 branch subsequently bifurcates. The PW2 branch is unstable near the onset of
instability, and it is restabilised following a subcritical bifurcation of the MrW23 branch.
Figure 14 (a) shows the existence of regions with multiple stable attractors (PW2 and
PW3, and MW13 and MMdW), a feature that was also observed in the experimental
campaign of Nosseir & Ho (1982) at large Mach numbers of the jet. Specifically, the
MMdW coexists with a stable non-resonant quasiperiodic solution (MW13). The MW13

state becomes unstable via a symmetry breaking bifurcation to a MrW13. The MrW13

branch experiences a saddle-node bifurcation and it folds onto itself to finally reconnect
to the MW13 branch again. Because of the saddle-node bifurcation in the MrW13 branch,
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(a) (b)

Figure 14: (a) Bifurcation diagram at M∞ = 0.5 with respect to the Reynolds number
with |r| =

√
r21 + r22 + r23. Solid lines indicate stable attractors, dashed lines indicate

unstable fixed points of eq. (5.1). (b) Sound pressure levels at Re = 2000. Probes of
instantaneous pressure fluctuations at the axial location z = 0 and radial positions
r = 1D (red - axisymmetric time-stepping, yellow - deterministic normal form, green
stochastic normal form with δω ≈ 0.04), r = 2D (black - axisymmetric time-stepping)
and r = 4D (dark blue - axisymmetric time-stepping). The vertical dashed lines highlight
the frequencies of the peaks obtained with the axisymmetric time-stepping simulation.

after the second re-connection, the MW13 branch continues to be unstable. In addition,
even when the MW13 branch is stable, its basin of attraction of is considerably smaller
than the one of the MMdW state, and it shrinks with increasing Reynolds number.
That is, in the interval of coexistence of the two branches, most of initial conditions are
attracted to the MMdW state. In the following, we simply consider the case at Re = 2000
of the MMdW state. In this case, the modulation frequency of the Modulated Mixed
resonant Wave is smaller than the frequency difference between the modes (ω′ 	 Δω).
In that scenario, the spectrum of the Navier–Stokes equations is expected to be weakly
tonal with wide and large magnitude peaks. In this case, the deterministic normal form
offers a good qualitative description of the spectrum, it is able to identify the main
frequency peaks and the frequency modulation f ′. The frequency modulation obtained
from numerical simulations is f ′

DNS ≈ 0.05, while the frequency modulation from the
normal form is f ′ ≈ 0.04. Additionally, as in the broadband case, we compare in fig. 14 the
results of the axisymmetric numerical simulation (red line) with those of the deterministic
normal form (yellow line) and the stochastic model (green line). It shows a reasonable
comparison, though the sound pressure levels are underestimated, between the spectrum
of the Navier–Stokes equations and the one from the stochastic model. However, since the
model is weakly nonlinear, it fails to predict the existence of a peak at f2/2, which occurs
because of a secondary instability of the radial shear layer. Inspection of the numerical
results suggests that such a frequency peak occurs because of a vortex-pairing instability
of the radial shear layer (Shaabani-Ardali et al. 2019).

6. Discussion & Conclusion

The dynamics of the hydrodynamic-acoustic feedback instability of a rounded laminar
subsonic impinging jet configuration has been analysed. First, it has been shown the
existence for every Mach number of a family of unstable modes, which are characterised
by their axial wavenumber. It has been discussed the nature of the instability in terms of
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the structural sensitivity and later by the complex-valued endogeneity map. It has been
argued that the guided jet wave is responsible for the closure of the feedback mechanism
initiated by the shear layer instability. The guided jet mode is the consequence of the
intense production of divergence of the velocity perturbations at an axial distance around
a diameter from the wall, which has been identified using a novel decomposed structural
sensitivity, suited to identify these type of non-local acoustic-hydrodynamic feedbacks.
Such an instability mechanism is responsible for the strong emission of tonal noise. First
it is robust, the mechanism is weakly sensitive to external perturbations, which could
be due to inflow perturbations or the interaction with vortices issued from the region
near the wall and initiated by the roll-up of the radial vortex sheet. Second, the emission
of sound is strong, a feature that is observed when considering the relative amplitude
between vortical and acoustic pressure of the linear mode. So, in this sense, linear stability
is relevant to determine the possibility of strong sound emissions. On the other hand, at
low Mach numbers, the main source of sound comes from vortex-sound. The structural
sensitivy peaks along the radial vortex-sheet, which is the region with the largest module
of the linearised Lamb vector. The difference in the mechanisms have several consequences
in the non-linear dynamics. The dynamics of the vorticity field in a region around the
radial vortex-sheet becomes rapidly chaotic with small variations of the Reynolds number
from the primary Hopf bifurcation. Physically, the low temporal coherence of the vortical
sources of sound, which are responsible for the emission of the pressure wave closing the
feedback-loop, are at the origin of the measured broadband spectrum of the acoustic
pressure field. We provide a reduced model, issued from a weakly non-linear analysis, to
account for the qualitative changes in dynamics between low and large subsonic Mach
numbers. The deterministic model mimics some features of the actual dynamics, such
as the frequency-locking of a third tone with the other two or the appearance of a
third slow frequency. Nevertheless, due to the truncation to third order, the model does
not display chaotic dynamics. Based on a phenomenological reasoning, we propose a
stochastic model which accounts for the low temporal coherence of the sources of sound
at low Mach number, which in turn induce a frequency mismatch (δω). Such a model is
able to reasonably reproduce the sound pressure level spectrums measured from time-
stepping simulations. There exist several appealing perspectives. To mention some, it
might be of interest to determine from experimental turbulent rounded impinging jets
the coefficients of the normal form with data-assimilation techniques, cf Cenedese et al.
(2022). In addition, the non-local structural sensitivity map may help to investigate
the fine details of the instability mechanism in many other configurations where the
instability is issued of a non-local feedback, such as airfoil noise, screech, or cavity flows.

Appendix A. Entropy formulation – Decomposition of the adjoint

In this section, we detail the derivation of the decomposition of the adjoint variable
q̂† into acoustic, vortical and entropic components. Before, proceeding to the detailed
description of the adjoint equations, we introduce the linearised compressible Navier–
Stokes equations in the primitive variables [ρ̂, û, ŝ, T̂ , p̂]T . The motivation to introduce
this set of equations is because they have a simpler decomposition. The linearised
equations are(

− iωB|q0
+DF|q0

)
q̂ = 0, with B|q0

= diag(1, ρ0I, ρ0T0, 0, 0), (A 1)
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DF|q0 q̂ =
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τ(û) : D(u0) + τ(u0) : D(û)
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And their adjoint counterpart are(
iωB|q0

+DF†|q0

)
q̂† = 0, with B|q0

= diag(1, ρ0I, ρ0T0, 0, 0), (A 3)
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A.1. Decomposition of the global mode

We first detail how we decompose the global mode q̂ into: acoustic, hydrodynamic and
entropic components.
We adopt a Helmholtz-Hodge decomposition (Schoder et al. 2020) of the perturbation
velocity field into acoustic (potential) and hydrodynamic (solenoidal)

û = ûac + ûhyd = ∇φc +∇× Ψ (A 5)

applying divergence to eq. (4.1), the potential φc is determined from the following Poisson
equation

Δφc = ∇ · û in Ω
∇φc · n = û · n on ∂Ω.

(A 6)

The hydrodynamic component of the velocity is subsequently determined by subtracting
ûhyd = û− ûac = û−∇φc. Note that,the uniqueness of the Helmholtz decomposition is
subjected to the L2-orthogonality condition, in our case satisfied by the suitable boundary
condition of eq. (A 6), and the decay of the velocity field at the far-field (Schoder et al.
2020).
The pressure decomposition is derived from the linearised momentum equation. Consider-
ing an isenstropic relationship between density and pressure fluctuations, i.e, ρ̂T0 = M2

∞p̂,
and taking divergence of the linearised momentum equation, we end up with the following
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elliptic equation for the pressure,

− 1

ρ0
Δp̂+

∇ρ0 · ∇p̂

ρ20
−∇ ·

(
M2

∞
T0

(
u0 · ∇u0

) p̂

ρ0

)
= ∇ · (u0 · ∇û

)
+∇ · (û · ∇u0

)
+iω∇ · û− 1

Re
∇ · (∇ · τ(û)).

(A 7)
Decomposing the velocity field into acoustic and hydrodynamic and leaving the viscous
dissipation term to the entropic component, we end up with the following decomposition
of the pressure,

− 1

ρ0
Δp̂ac +

∇ρ0 · ∇p̂ac
ρ20

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂ac
ρ0

)
= iω∇ · ûac +∇ · (u0 · ∇ûac

)
+∇ · (ûac · ∇u0

)
(A 8a)

− 1

ρ0
Δp̂hyd +

∇ρ0 · ∇p̂hyd
ρ20

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂hyd
ρ0

)
= ∇ · (u0 · ∇ûhyd

)
+∇ · (ûhyd · ∇u0

)
(A 8b)

p̂s = p̂− p̂hyd − p̂ac. (A 8c)

A.2. Decomposition of the adjoint mode

Before introducing the decomposition of the adjoint global mode, we first review the
significance of the decomposition in a simpler example, where we only consider the
momentum equation. We introduce a harmonic forcing Hu to the momentum equation,

−iωρ0û+ ρ̂u0 · ∇u0 + ρ0u0 · ∇û+ ρ0u0 · ∇û−∇p̂+
1

Re
∇ · τ(û) = ρ0Hu. (A 9)

The introduction of the forcing term Hu induces a response of the velocity field û and the
pressure field p̂. In the presence of viscous dissipation, the introduction of the momentum
source term always excites an entropic response. However, such a component is expected
to become of lesser importance at larger Reynolds numbers and to be localized near wall
boundaries and in regions of large magnitudes of the shear tensor. For such a reason,
we propose the decomposition of the velocity adjoint into hydrodynamical and acoustic
components, but having in mind that this is not a perfect decomposition since they
should possess a possibly small entropic part. The excitation of the dilation of velocity
is evaluated by taking the divergence of the linearised momentum equation eq. (A 9),

−iω∇ · û +
ρ̂

�0
∇ · ∇(u0u0) +∇( ρ̂

�0

) · ∇(u0u0)

+∇ · ∇(u0û)−Δ
( p̂

ρ0

)
+

1

Re
∇ · (∇ · τ(û)) = ∇ ·Hu.

(A 10)

Equation (A 10) implies that divergence free forcing terms, i.e., ∇ · Hu = 0, do
not excite the acoustic component of the global mode. Furthermore, neglecting viscous
dissipation effects, this type of forcing term only excites the hydrodynamic component
of the global mode. A similar reasoning leads to the conclusion that, when we neglect
viscous dissipation effects, a rotational-free forcing, i.e., ∇ × Hu = 0, only excites the
acoustic component of the perturbation.
Now, interpreting the adjoint global mode as the projector onto the corresponding
component of the global mode, we propose a Helmholtz-Hodge decomposition of the
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adjoint velocity field,

û† = û†
hyd + û†

ac = ∇φ†
c +∇× Ψ †,

Δφ†
c = ∇ · û† in Ω

∇φ†
c · n = û† · n on ∂Ω.

(A 11)

This decomposition is bi-orthogonal when considering only direct and adjoint
velocity fields, that is, 〈û†

hyd, ρ0ûac〉 = 〈û†
ac, ρ0ûhyd〉 = 0 with 〈û†

ac, ρ0ûac〉 �= 0 and

〈û†
hyd, ρ0ûhyd〉 �= 0. Therefore, the momentum forcing can be expanded as

ρ0Hu = 〈û†
hyd, ρ0Hu〉ûhyd + 〈û†

ac, ρ0Hu〉ûac = ρ0Hhyd,u + ρ0Hac,u. (A 12)

The next step in the decomposition consists in the decomposition of the entropy
adjoint ŝ†. Here below, we justify that ŝ† = ŝ†s , that is, that a forcing term to the
entropy equation only excites the entropy component of the global mode. It derives
from the fact that we have defined the acoustic and hydrodynamic components to be
entropy-free. Evidently, since ŝ†hyd = ŝ†ac = 0, the decomposition is bi-orthogonal in the
entropy variable.

From these considerations, we can derive the remaining components of adjoint. Sub-
stituiting the gradient of the density adjoint ∇ρ̂† from eq. (A 4a) into eq. (A 4b) we derive
an explicit equation for ρ̂†

−iωρ̂† = −iωu0 · û† − u0 ·
(
u0 · ∇û†)+ u0 ·

(
û† · (∇u0)

T
)− û† · (u0 · ∇u0

)
+ 1

Reu0 · ∇ · τ û† − 2γ(γ − 1)
M2

∞
Re

1
ρ0
u0 · ∇ · ŝ†τ(u0)

−T0ŝ
†u0 · ∇s0 + (γ − 1)T0T̂

† − T0p̂
†

(A 13)

Substituting ŝ† = 0, û† = û†
ac (or û† = û†

hyd), and T̂ † = −p̂†, a relationship that is

obtained from eq. (A 4) by considering ŝ† = 0, we are led to the following decomposition
of ρ̂†

−iωρ̂†ac = −iωu0 · û†
ac − u0 ·

(
u0 · ∇û†

ac

)
+ u0 ·

(
û†
ac · (∇u0)

T
)

−û†
ac ·

(
u0 · ∇u0

)− γT0p̂
†

−iωρ̂†hyd = −iωu0 · û†
hyd − u0 ·

(
u0 · ∇û†

hyd

)
+ u0 ·

(
û†
hyd · (∇u0)

T
) (A 14)

And the entropic component is determined as ρ̂†s = ρ̂†− ρ̂†ac− ρ̂†hyd. The decomposition of

ρ̂† is not generally bi-orthogonal with respect to the density decomposition of the global
mode.
However, if at least one of the components of the global mode is small with respect
to the other two, it is possible to propose a nearly bi-orthogonal decomposition, while
including the adjoint to the continuity equation. In the following, we will assume that
||q̂s|| 	 ||q̂ac|| and ||q̂s|| 	 ||q̂hyd||. In this case, the decomposition of the adjoint of the
continuity equation is as follows,

ρ̂†ac,bo = ρ̂†ac −
〈ρ̂†ac, ρ̂hyd〉B
〈ρ̂†hyd, ρ̂hyd〉B

ρ̂†hyd

ρ̂†hyd,bo = ρ̂†hyd − 〈ρ̂†hyd, ρ̂ac〉B
〈ρ̂†ac, ρ̂ac〉B

ρ̂†ac

ρ̂†s,bo = ρ̂†s +
〈ρ̂†hyd, ρ̂ac〉B
〈ρ̂†ac, ρ̂ac〉B

ρ̂†ac +
〈ρ̂†ac, ρ̂hyd〉B
〈ρ̂†hyd, ρ̂hyd〉B

ρ̂†hyd

(A 15)
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From the assumption that the order of magnitude of one of the components of the global
mode is smaller than the other two, in our example the entropic component, we can
decompose any forcing term in a near orthogonal fashion. That is, assume a generic mass
injection Hρ, we would like to decompose

Hρ = αacρ̂ac + αhydρ̂hyd + αsρ̂s. (A 16)

Taking the inner product with the decomposed adjoint of the continuity equation
eq. (A 15), we can promptly determine the two first Fourier coefficients of eq. (A 16),
which are as follows,

αac =
〈ρ̂†ac,bo, Hρ〉B

〈ρ̂†ac,bo, ρ̂ac〉B +O(ε)
+O(ε) ≈ 〈ρ̂†ac,bo, Hρ〉B

〈ρ̂†ac,bo, ρ̂ac〉B
αhyd =

〈ρ̂†hyd,bo, Hρ〉B
〈ρ̂†hyd,bo, ρ̂hyd〉B +O(ε)

+O(ε) ≈ 〈ρ̂†hyd,bo, Hρ〉B
〈ρ̂†hyd,bo, ρ̂hyd〉B

.

(A 17)

Where the small parameter is defined in such a way that the ratio between the norm
of the small component to the other two is small, that is, ||q̂s||/||q̂ac|| = O(ε). This
decomposition, in our example, allows us to measure the receptivity of the acoustic and
hydrodynamic components of the global mode with respect to a mass injection. Thus,
providing a localised structural sensitivity also in cases where mass is injected to the
system, at least for cases where one of the density components is considerably smaller
than the other two.

Overall, the adjoint is decomposed as follows,

û† = û†
hyd + û†

ac = ∇φ†
c +∇× Ψ †, from eq. (A 11)

ŝ† = ŝ†s
ρ̂† = ρ̂†ac,bo + ρ̂†hyd,bo + ρ̂†s,bo

p̂† = p̂†ac =
∇ · û†

γM2∞

T̂ † = T̂ †
ac + T̂ †

s = −∇ · û†

γM2∞
+
(
ŝ†u0 · ∇s0 − γ

Pr Re

1

ρ0
Δŝ†

)
(A 18)

Appendix B. Normal form reduction

Here, we discuss the computation of the coefficients of the normal form eq. (B 20).
These are computed following a multiple scales expansion of the solution q of eq. (2.1).
We rewrite the governing equations as follows,

B
∂q

∂t
= F(q,η) ≡ −

(
c+ Lq+

1

2
N2(q,q) +

1

6
N3(q,q,q) +G1(q,η) +

1

2
G2(q,q,η)

)
,

(B 1)

where c = [0,0, 0, 1]T , B is the mass matrix, L the linear operator on the state
variable q, and G1 and G2 the linear and quadratic operators in the state variable
q and parameters η. These operators are defined as
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B =

⎛⎜⎜⎝
1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

⎞⎟⎟⎠ , L =

⎛⎜⎜⎝
0 0 0 0
0 0 0 ∇
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

G1(q,η) =

⎛⎜⎜⎝
0 0 0 0
0 − 1

Re∇ · τ(·) 0 0

0 0 − γ

PrReΔ 0

0 0 0 γM2
∞

⎞⎟⎟⎠ ,

G2(q1,q1,η) =

⎛⎜⎜⎝
0
0

−(γ − 1)γM2
∞/Re

(
τ(u1) : D(u2) + τ(u2) : D(u1)

)
0

⎞⎟⎟⎠ ,

(B 2)

while the quadratic nonlinear operator on the state variable is defined as

N2(q1,q2) =

⎛⎜⎜⎝
u1 · ∇ρ2 + u2 · ∇ρ1 + ρ1∇ · u2 + ρ2∇ · u1

0
0

−(ρ1T2 + ρ2T1

)
⎞⎟⎟⎠ , (B 3)

and cubic nonlinear operator on the state variable is

N3(q1,q2,q3) =

⎛⎜⎜⎜⎜⎜⎜⎝

0∑
i,j,k

ρiuj · ∇uk∑
i,j,k

(γ − 1)ρiTj∇ · uk + ρiuj · ∇Tk

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (B 4)

The expansion considers a two scale development of the original time t �→ t + ε2τ , here
ε is the order of magnitude of the flow disturbances, assumed small ε 	 1. Herein, we
consider the small parameters εM2 and εν , which are a function of the Mach number and
Reynolds numbers at the far-field,

ε2M2 =
(
M2

∞,c −M2
∞
) ∼ ε2 and ε2ν =

(
νc − ν

)
=
(
Re−1

c − Re−1
) ∼ ε2.

With this compact notation we can provide an explicit form of the linearized Navier–
Stokes equations with respect to baseflow qb,

DF|qb
(q,η) ≡ Lq+N2(qb,q) +

1

2
N3(qb,qb,q) +G1(q,η) +G2(qb,q,η). (B 5)

The technique decomposes time into a fast timescale t of the phase associated to the self-
sustained instabilities and a slow timescale related to the evolution of the amplitudes
zi(τ), introduced in eq. (2.11), for i = 1, 2, 3. The ansatz of the expansion is as follows

q(t, τ) = qb + εq(ε)(t, τ) + ε2q(ε2)(t, τ) + ε3q(ε3)(t, τ) +O(ε4) (B 6)

In such a case, the vector is expanded as

q(ε)(t, τ) =
∑N

k=1

(
zk(τ)q̂(zk)(r, z)e

iωkt + c.c.
)

(B 7)
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Note that the expansion of the LHS of eq. (2.1) up to third order is as follows

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+B

∂q(ε)

∂τ

]
+O(ε4), (B 8)

and the RHS respectively,

F(q,η) = F(0) + εF(ε) + ε2F(ε2) + ε3F(ε3) +O(ε4). (B 9)

In the following, in order to improve readability, we define the set of vectors of linear,
quadratic, and secular interactions.

Z ≡ {z1, z2, z3}, Z = {z1, z2, z3}
Z2 ≡ Z⊗ Z⊕ Z⊗ Z = {z21 , z22 , z23 , z1z2, z1z3, z2z3, |z1|2, |z2|2, |z3|2,

z1z2, z1z3, z2z3}
ZS ≡ {z1, z2, z3, z1|z1|2, z1|z2|2, z1|z3|2, z2|z1|2, z2|z2|2, z2|z3|2,

z3|z1|2, z3|z2|2, z3|z3|2, z1z2z3, z22z3, z22z1}

(B 10)

where only unique elements are kept. We denote by znα any element of the family Zn,
with n ∈ N∗.

B.1. Zeroth order

The zeroth order corresponds to the steady-state problem of the governing equations
evaluated at the parameter vector η = (M∞,Re)T ,

0 = F(qb,η) (B 11)

whose solution is the steady state qb.

B.2. First order

The first order corresponds to the resolution of a homogeneous linear system, i.e., a
generalized eigenvalue problem evaluated. The eigenpairs

[
iω, q̂(z�)

]
are determined as

the solutions of the following shifted (Meliga et al. 2009) eigenvalue problem

J̃ω�
q̂(z�) =

(
iωB− ε2S−DF|qb

(q,η)
)
q̂(z�) (B 12)

where we have introduced the shift operator ε2S, which is defined in such a way that
J̃ω�

q̂(z�) = 0 at η and Im(ω) = 0, and Sq = 0 for any other vector field q distinct
to the eigenmodes. The B−norm of the eigenmodes q̂(z�)(r, z) is scaled to unity, i.e.,
〈q̂, q̂〉B = 1.
Analogously, the adjoint eigenmodes are determined from the resolution of eq. (2.7) and
normalised with respect to the direct mode so the inner product is equal to the unity,
i.e, 〈q̂†, q̂〉B = 1

B.3. Second order

The second order expansion term q(ε2)(t, τ) is determined by the resolution of a set of
linear systems, where the forcing terms are evaluated from first and zeroth order terms.
The expansion in terms of amplitudes z(τ) of q(ε2)(t, τ) is assessed by collecting the
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second order forcing terms. Non-linear second order terms in ε are

F(ε2) ≡
3∑

j,k=1

1

2

(
zjzkN2(q̂(zj), q̂(zk))e

−i(ωj+ωk)t + c.c.
)

+
3∑

j,k=1

1

2

(
zjzkN2(q̂(zj), q̂(zk))e

−i(ωj−ωk)t + c.c.
)

+
2∑

=1

ηG1(qb, e),

(B 13)

where e is an element of the orthonormal basis of R2. Then the second order expansion
of the flow variable is carried out, so it matches the terms of the forcing

q(ε2) ≡
∑

z2
α∈Z2

(
z2αq̂(z2

α)e
−iωαt + c.c.

)
+

2∑
=1

ηq
(η�)
b , (B 14)

The terms q̂(z2
j )

are harmonics of the flow, q̂(zjzk) with j �= k are coupling terms, q̂(|zj |2)
are harmonic base flow modification terms and q

(η�)
b are base flow corrections due to a

modification of the parameter η from the critical point. Then the second order terms
are determined from the resolution of the following (non-singular) systems of equations

J(ωj+ωk)q̂(zjzk) = F̂(zjzk), (B 15)

where F̂(zjzk) is the term of eq. (B 13) proportional to zjzk and

J(0,0)Q
(η�)
b = G(Qb, e). (B 16)

B.4. Third order

At third order, we proceed as for previous orders, first the forcing term is expanded

F(ε3)

∑
zα∈Z,z2

β∈Z2

zαz
2
β

[
N(q̂(z2

β)
, q̂(zα))

]
ei(ωα+ωβ)t

∑
zα∈Z,zβ∈Z,zγ∈Z

zαzβzγ
[
N3(q̂(zγ), q̂(zβ), q̂(zα))

]
ei(ωα+ωβ+ωγ)t

+

2∑
j=1

2∑
=1

[
zjη

[
N2(q̂(zj),Q

(η�)
b )

]
e−iωjt + c.c.

]
+

2∑
j=1

2∑
=1

[
zjηG1(q̂(zj), e)e

−iωjt + c.c.
]
+

3∑
j=1

zjSq̂(zj),

(B 17)

Followed, by the expansion of the third-order secular terms q(ε3)(t, τ)

q(ε3)(t, τ) ≡
∑

zα∈ZS

[
z3αq̂(zα)e

−iωαt + c.c.
]

+

2∑
j=1

2∑
=1

[
zjηQ

(η�)
(zj)

e−iωjt + c.c.
] (B 18)

To ensure the solvability of the resonant terms we must enforce compatibility conditions,
i.e. the Fredholm alternative. The resonant terms are then determined from the resolution
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ν11 ν12 ν13 ν21 ν22 ν23

−0.57− 0.28i −0.04 + 0.13i −1.3− 1.2i −0.1− 0.23i −0.25− 0.94i −0.15− 2.5i

ν31 ν32 ν33 χ1 χ2 χ3

−1.6 + 2.3i −1.0 + 0.48i −0.76 + 0.34i 1.7− 1.8i −0.27− 0.61i −3.0− 1.7i

Table 5: M∞ = 0.3.

ν11 ν12 ν13 ν21 ν22 ν23

−0.068 + 0.032i −0.025 + 0.028i −0.33 + 0.076i −0.10 + 0.090i −0.27 + 0.23i −0.34 + 0.076i

ν31 ν32 ν33 χ1 χ2 χ3

−0.15 + 0.022i −0.43− 0.009i −0.25− 0.15i −0.015− 0.047i −0.076 + 0.033i −0.065− 0.048i

Table 6: M∞ = 0.5.

of the following set of bordered systems(
J(ωk,mk) q̂(zk)

q̂†
(zk)

0

)(
q̂
(z

(S)
α )

s

)
=

(
F̂

(z
(S)
α )

0

)
, z(S)

α ∈ ZS (B 19)

where s = λ
(ε2ν)
k (respectively s = λ

(ε2
M2∞

)

k ) for z
(S)
α = zk and s = ν

(0)
kl for z

(S)
α = zk|z|2

and s = χ1 for z
(S)
α = z22z3, s = χ2 for z

(S)
α = z1z2z3, and s = χ3 for z

(S)
α = z22z1.

Table 5 and table 6 list the cubic coefficients of the normal form for the two considered
Mach numbers based on the far-field speed of sound (M∞).

B.5. Example of a larger number of mode interactions

The general case with arbitrary N limit cycles may be expressed as

żj = zj
(
λj +

∑N
k=1 νjk|z|2k

)
+NLj,res for j = 1, . . . , N (B 20)

where NLj,res are the resonant terms at the third order. For N = 5, the resonant term is
as follows,

NLres =

⎡⎢⎢⎢⎢⎣
χ1,1z

2
2z3 + χ1,2z2z3z4 + χ1,3z2z4z5 + χ1,4z

2
3z5

χ2,1z1z2z3 + χ2,2z1z4z3χ2,3z1z5z4χ2,4z
2
3z4 + χ2,5z3z4z5

χ3,1z
2
2z1 + χ3,2z2z3z4 + χ3,3z

2
4z5

χ4,1z5z4z3 + χ4,2z
2
3z2 + χ4,3z3z2z1χ4,4z5z2z3χ4,5z5z1z2

χ5,1z
2
4z3 + χ5,2z4z3z2 + χ5,3z4z2z1 + χ5,4z

2
3z1

⎤⎥⎥⎥⎥⎦ (B 21)

Figure 15 (b) illustrates the resonant interactions for N = 5 for the equation of z3, i.e.
NL3,res = χ3,1z

2
2z1 + χ3,2z2z3z4 + χ3,3z

2
4z5.
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Figure 15: (a) Sketch of the spectrum. (b) Sketch of the spectrum indicating the local
contributions to the normal form: (double) solid line indicates the coefficient multiplies
the (square) of the mode, dashed line the complex conjugate of the mode.
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Sensitivity of periodic solutions of time-dependent partial differential equations is com-

monly computed using time-consuming direct and adjoint time integrations. Particular 
attention must be provided to the periodicity condition in order to obtain accurate results. 
Furthermore, stabilization techniques are required if the orbit is unstable. The present 
article aims to propose an alternative methodology to evaluate the sensitivity of periodic 
flows via the Fourier–Galerkin method. Unstable periodic orbits are directly computed 
and continued without any stabilizing technique. The stability of the periodic state is 
determined via Hill’s method: the frequency-domain counterpart of Floquet analysis. 
Sensitivity maps, used for open-loop control and physical instability identification, are 
directly evaluated using the adjoint of the projected operator. Furthermore, we propose 
an efficient and robust iterative algorithm for the resolution of underlying linear systems. 
First of all, the new approach is applied on the Feigenbaum route to chaos in the Lorenz 
system. Second, the transition to a three-dimensional state in the periodic vortex-shedding 
past a circular cylinder is investigated. Such a flow case allows the validation of the 
sensitivity approach by a systematic comparison with previous results presented in the 
literature. Finally, the transition to a quasi-periodic state past two side-by-side cylinders 
is considered. These last two cases also served to test the performance of the proposed 
iterative algorithm.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Steady and periodic states of continuous and discrete dynamical systems are the two simplest cases of invariant sets 
which are of fundamental importance to characterize dynamics and to design efficient control strategies. Limit cycles may 
be found in almost every field of physics and applied mathematics. Some complex structures of the phase space, such as 
invariant tori or some strange attractors, may be preceded by a stable periodic solution. The continuation of these periodic 
solutions beyond their domain of stability may help unravel some stochastic properties of these complex organizations, i.e., 
Lyapunov exponents, entropy, natural measure, etc., cf. Cvitanovic [1]. Stability and sensitivity calculations require robust 
and efficient numerical algorithms for their computation. Concerning uniquely the computation of the periodic orbits there 
exist two groups of methods: local methods which aim to determine a point of the periodic orbit and which is set as the 
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initial value for further integration, and global methods that aim to reconstruct the whole solution without time integration. 
Among local methods, one may find the direct integration of the governing equations and the shooting technique. The latter 
minimizes the distance to the periodic orbit via an iterative procedure, which leads to an improvement on the convergence 
rate with respect to the simple time integration. These methods, without further modifications, however, fail to compute 
unstable periodic orbits (UPO) and, in some cases, they are characterized by a low convergence rate. Some of the stabi-
lization techniques applied to UPO are the recursive projection method (RPM) [2] or the residual recombination approach 
(BoostConv) [3]. Global methods, on the other hand, seek for direct representation of the sought solution on a given basis 
in a weighted residual approach. In this way, one may distinguish among trigonometric or orthogonal collocation, whose 
weight basis is composed of Dirac delta functions and its ansatz is either a Fourier or polynomial basis respectively, and 
Fourier–Galerkin or harmonic balance, whose weight and ansatz basis is composed of Fourier functions. Collocation methods 
are common in numerical continuation tools, such as AUTO [4] and MatCont [5,6], due to their robustness and generality. 
They are able to compute not only periodic solutions but also homoclinic or heteroclinic connections. Fourier–Galerkin uses 
trigonometric base functions as ansatz as well as weight functions. Fourier base functions possess interesting properties: 
they are by definition periodic, easy to compute, and provide rapid convergence whenever the solution is smooth.

Similarly, the stability of periodic orbits may be carried out in a local or global manner. In the local approach, the com-

putation of Floquet multipliers is realized by a power iteration or Arnoldi algorithm via a matrix-free approach which 
reconstructs a faithful projection of the monodromy matrix. On the contrary, global methods directly reconstruct the 
monodromy matrix, either in the time or frequency domain, which generally allows more accurate results with faster con-
vergence. The algorithm for the evaluation of sensitivity quantities is composed of two main building blocks: computation 
of a periodic solution and resolution of its direct and adjoint linear stability problems. Accordingly, efficient and simpler 
numerical techniques for the resolution of both problems imply faster and easier evaluations of sensitivity quantities. Such 
a constraint leads us to discard local methods due to their slow rate of convergence towards the periodic state. Furthermore, 
given that the nature of the orbit is periodic, every sensitivity equation shall also be. The periodicity requirement is critical 
in the calculation of accurate sensitivity maps, such as those computed by Giannetti et al. [7]. Therefore, a methodology that 
respects such a constraint seems a natural choice. The present study presents in a systematic manner the computation of 
stability and sensitivity of periodic solutions of discretizations of PDEs (resp. solutions to a system of ODE) via the Fourier–
Galerkin method where the determination of its stability is carried out by Floquet or Hill’s theory. Authors follow the new 
framework developed by Giannetti et al. [8] to investigate the sensitivity of periodic orbits. Giannetti et al. [8] studied the 
sensitivity of the three-dimensional secondary instability of the wake to a structural perturbation of the associated linear 
equations. The region of maximum coupling between the velocity components was found using the most unstable Floquet 
mode and its adjoint mode. The authors reported also the variation of this region in time by considering a structural per-
turbation that is impulsively applied in time at a given phase of the vortex-shedding process. The present approach can be 
considered an efficient and effective approximation of the framework proposed in Giannetti et al. [8,7].

The text is structured as follows: first, the methodology for the computation of a periodic orbit and the evaluation 
of its stability is introduced in section 2. The Fourier–Galerkin method is introduced in section 2.1 and section 2.2 is 
dedicated to the evolution equations with quadratic nonlinearities, e.g., Lorenz-like systems or Navier–Stokes equations. 
Floquet stability is reviewed in a general context in section 2.3, which is then particularized to the frequency domain 
in section 2.4. Sensitivity computations are later introduced in section 2.5. Section 2.6 addresses the numerical solution of 
the large algebraic systems in a parallel context via iterative methods. Finally, the study is concluded by some numerical 
examples. At first, we show the ability of the present methodology to track the route to chaos via period-doubling in 
the Lorenz system. Sections 3.2 and 3.3 are then dedicated to two fluid flow cases to discuss the performance of the 
methodology and to demonstrate the utility of sensitivity maps in the identification of physical instability mechanisms.

2. Methodology

2.1. Periodic boundary value problem

Let us start with a generic autonomous class of evolution equations of the form:

B
∂q

∂t
= F(q, ν), q(t + T ) = q(t), (1)

where B is a linear operator, F is a nonlinear operator on a Hilbert space X with inner product 〈·, ·〉, and ν ∈ Rp the set 
of parameters. In this way, both differential algebraic problems (DAE) and evolutionary partial differential equations (PDE) 
are included. Natural Hilbert spaces for the infinite-dimensional case are Sobolev spaces, see Kapitula and Promislow [9], 
whereas in finite dimensions we will generally consider Rn . In the following, we assume that the nonlinear operator F is of 
quadratic type, i.e., F(q) = Lq + N(q, q), where L and N(·, ·) are linear and quadratic nonlinear operators, respectively. This 
choice will be clear later in section 2.2, however note that many analytical functions can be recast in this way, see Guillot 
et al. [10].
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2.2. The Fourier–Galerkin method for periodic boundary problems

The solution of eq. (1) is T -periodic. Therefore, it seems a natural choice to parametrize any T -periodic orbit q∗ , in a 
t mod T basis, i.e., a Fourier basis. For that purpose, let us consider the Fourier–Galerkin method, also denoted harmonic 
balance (HB) in the literature, cf. [11,12]. Fourier–Galerkin can be seen as a weighted residual approach for a periodic ansatz 
and weight functions. Fourier base functions present the advantage of being easy to compute and provide fast convergence 
in smooth cases.

We start our analysis by introducing the Fourier–Galerkin projection operator πN onto the Fourier basis as follows:

πN : X × R → X × (Z/(2N + 1)Z)

πN(q) = qh(t) = q0 + ∑N
n=1

[
qc,n cos(nωt) + qs,n sin(nωt)

]
= [

q0,q1,c,q1,s, ...,qN,c,qN,s

]︸ ︷︷ ︸
(Q(τ ,N))T

[
1, cos(ωt), sin(ωt), ..., cos(Nωt), sin(Nωt)

]︸ ︷︷ ︸
FN

,
(2)

where Q(τ ,N) are the 2N + 1 Fourier coefficients of the approximated solution qh and FN is the Fourier basis in sine/cosine 
components. The ansatz qh(t) and its derivative are smooth T -periodic functions.

The residual is defined as the difference between the nonlinear and the time-derivative term, which is expressed as 
follows:

r : X × R → X × R

r(q,
∂q
∂t

, t) = B ∂q
∂t

− F(q).
(3)

Following the Fourier–Galerkin or Bubnov–Galerkin method in the Fourier basis, the governing equations of HB are 
obtained by integrating the truncated residual equations weighted by the Fourier basis over a period T = 2π

ω . The obtained 
residual is called the truncated residual:

r̂h : X × (Z/(2N + 1)Z) → X × (Z/(2N + 1)Z)

r̂h(QN ,ω) = ∫ 2π
ω

0 rh(qh,
∂qh
∂t

, t)TFN dt = 0,
(4)

where

rh(qh,
∂qh
∂t

, t) = B
∂qh
∂t

− F(qh). (5)

Equation (5) provides 2N + 1 equations for 2N + 2 unknowns in the autonomous case. Autonomous systems present a 
continuous symmetry, i.e., q(t + ξ) is also a periodic solution with an arbitrary ξ phase. The phase of the limit cycle 
remains to be fixed. This is usually done by imposing a condition at t = 0, i.e., g(q, ∂q

∂t
, 0) = 0 or an orthogonality condition ∫ T

0 F(qh)T qhdt = 0. Equation (5) corresponds to balancing each harmonic individually, that is to have null Fourier coefficients 
of the truncated residual.

Fourier–Galerkin equations So far, the procedure to obtain a periodic orbit remains general. Now, without loss of generality, 
we shall consider the case where the nonlinear flow is of quadratic type. This constraint is far from being restrictive since 
many evolution problems can be recasted in this form, see Cochelin et al. [13] for the finite-dimensional case. Under these 
assumptions, eq. (5) takes the form:

0 = Lq0 +N0

nωBqn,s = Lqn,c +Nn,c, n = 1, . . . ,N

−nωBqn,c = Lqn,s +Nn,s, n = 1, . . . ,N

gh(qh) = 0.

(6)

For the sake of brevity, Fourier coefficients Ni are not developed as functions of Q(τ ,N) , see appendix A for an explicit 
description of these terms. Formally, eq. (6) will be denoted as:

0 = −ωB̃Q(τ ,N) + L̃Q(τ ,N) + Ñ(Q(τ ,N),Q(τ ,N)) = r̃(Q(τ ,N)), (7)

where operators B̃, L̃, and Ñ(·, ·) are detailed in appendix A and it is assumed that the phase of the limit cycle has been 
fixed.
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Remark 1. It is here highlighted that if one desires to compute a 2T -periodic solution q̃∗ , since a 2T -periodic solution is 
also T -periodic, the current strategy requires some modifications. The methodology is adapted by doubling the number of 
harmonics to 2N: the odd harmonics of the initial guess coincide with those of the T -periodic solution, and even modes 
are initialized to zero or to the Floquet mode associated with a period-doubling bifurcation, see section 2.4.

Finally, we briefly recall that Stokes [14] provided a dedicated theorem about the convergence of eq. (7). In particular, 
if the exact problem eq. (1) possesses a solution q∗ of period T = 2π

ω , then the solution [Qτ ,N , ωτ,N ] of the system eq. (7), 
for sufficiently large N , converges to the exact solution q∗ if the monodromy matrix possesses a unique Floquet multiplier 
of multiplicity one.

Remark 2. In the original work of Stokes [14], where the theorem was originally proved, the main hypothesis was the non-
criticality of the periodic solution, i.e., the periodic orbit is isolated in the phase space: the neutral Floquet multiplier is of 
multiplicity one.

2.3. Floquet-time stability theory

In this section, the Floquet theory of finite-dimensional systems in RN is addressed. Unfortunately, there does not exist 
a general theory for time-periodic PDEs but some particular cases have been already tackled, see parabolic and hyperbolic 
evolution problems in Kuchement [15, Chapter 5] and references therein. For the sake of self-consistency, let us introduce a 
set of classical definitions in the study of dynamical systems.

For the sake of self-consistency, let us introduce a set of classical definitions in the study of dynamical systems.

Let t → q∗(t) be a T -periodic solution of eq. (1) for a given set of parameters ν∗ ∈ Rp . The associated flow of eq. (1) is 
denoted by ϕ(t; q0), which solves B ∂q

∂t
= F(q, ν) with q(0) = q0.

Furthermore, we consider a codimension one hypersurface S , chosen in such a way that every trajectory that crosses S in 
a neighborhood of the intersection point o ∈ S of the periodic orbit with the surface S intersects transversally and in the 
same direction, see Kuznetsov [16]. Such a section S is denoted as Poincaré section. Thanks to the Poincaré section, let us 
define the Poincaré map or return map P(o):

P(o) := PS(o) = ϕ(T S(o);o), (8)

where T S (o) is the return time and it coincides with the period T of the periodic orbit when o∗ is a fixed point, i.e., 
o∗ = P(o∗):

o −−−→
q→q∗ o∗ implies T S(o) → T .

The linear stability of the T -periodic orbit q∗(t) can be studied by checking the evolution of the perturbed distance δq(t)

to the T -periodic orbit q∗:

δq(t) = ϕ(t;q∗ + δq0) − ϕ(t;q∗), with δq(0) = δq0. (9)

Measuring the distance after a period yields:

δq(T ) = ϕ(T ;q∗ + δq0) − ϕ(T ;q∗) = ∂ϕ(T ;q∗)
∂q

δq0 + O (||δq0||2), (10)

where in the last expression appears the monodromy matrix
∂ϕ(T ;q∗)

∂q . To find another representation of the monodromy 
matrix, consider the following evolution equation:

B
∂

∂t

∂ϕ(t;q∗)
∂q

= ∂F(ϕ,λ∗)
∂ϕ

∂ϕ(t;q∗)
∂q

,
∂ϕ(0;q∗)

∂q
= I. (11)

Consequently, the monodromy matrix will be denoted by �(T ) = ∂ϕ(T ;q∗)
∂q , where the fundamental solution matrix �(t) ∈

M(R)N×N satisfies the following matrix initial-value problem:

B
∂�

∂t
= ∂F

∂q
(q∗, λ∗)�, �(0) = I. (12)

The spectrum of the monodromy matrix is composed of an eigenvalue μ = 1, due to the translation invariance of the 
periodic orbit and another set of N − 1 eigenvalues. Due to the definition of the Poincaré map, it is not difficult to observe 
that the other N −1 eigenvalues of the Jacobian operator coincide with those of the derivative of the Poincaré map DP (o∗), 
see the book of Seydel [17] and references therein for a proof.
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Thanks to Floquet’s theorem, the perturbation δq(t) is written as:

δq(t) =
N∑

n=1

cnδqn(t),

where fundamental solutions δqn can be rewritten in the Floquet’s normal form:

δqn(t) = eλntpn(t), (13)

where pn is a T -periodic vector and λn are called the Floquet exponents. They are related to the eigenvalues μn of the 
monodromy matrix, also called Floquet multipliers, by the following relation: λn = log(μn)

T
+ ikω for k ∈ Z. To see this relation, 

consider linear independence of fundamental solutions and let us substitute the Floquet’s normal form into eq. (10). Then, 
we are left with the following expression:

μnpn(0) = ∂ϕ(T ;q∗)
∂q

pn(0) ⇐⇒ λnBpn =
[
− B

∂

∂t
+ ∂F(q∗, λ)

∂q

]
pn. (14)

2.4. Hill’s method

In section 2.3, we have carried out a brief review of the stability of periodic orbits. Here, we aim to determine an efficient 
algorithm for the solution of the Floquet stability eq. (14). Prior to the discussion of the algorithm, please note the following 
analogy between the HBM parametrization of the autonomous problem eq. (1) and the Poincaré map, introduced in eq. (8). 
Phase condition may be interpreted as the parametrization of a codimension one hypersurface. Then, the T -periodic solution 
q∗
h
taken at nT instants, n ∈ N , is a fixed point of the Poincaré map. As discussed in section 2.3, eigenvalues of the derivative 

of the Poincaré map determine the stability of the periodic orbit, and these arise as a subproduct of the computation of the 
periodic orbit.
Nevertheless, this procedure to determine the Floquet stability would break the continuous symmetry, i.e., the phase is 
fixed, then the neutral Floquet multiplier, i.e., μ = 1, would not be in the spectrum set. Therefore, in practice, the phase 
condition is left in the stability study.
The Fourier–Galerkin form of Floquet stability eq. (14) consists in the projection onto the finite Fourier space X × (Z/(2N +
1)Z), i.e., on a finite Fourier series.

The Floquet stability problem in the Fourier–Galerkin basis can be formally expressed with the following generalized 
eigenvalue problem:

λ(τ ,N) diag(B)2N+1P(τ ,N) = D r̃(Q(τ ,N))P(τ ,N)

where D r̃(Q(τ ,N))P(τ ,N) =
[
− ωB̃+ L̃+ DÑ(Q(τ ,N))

]
P(τ ,N),

(15)

where P(τ ,N) = [
p0, p1,c, p1,s, ..., pN,c, pN,s

]T
is the finite Fourier decomposition of the periodic eigenvector p(t) and λ(τ ,N)

is the approximation of the Floquet exponent defined eq. (13).

Please note that the explicit definition of the derivative of the residual operator D r̃(Q(τ ,N)) can be found in appendix A.

As depicted in Fig. 1, Floquet exponents are not unique in the complex field C, nevertheless they are in C/iωR. Let us 
consider the finite-dimensional case, i.e., q∗ ∈ Rn . In such a case, the Floquet spectrum is of dimension n, i.e., there are n
eigenvalues in C/iωR. Nonetheless, the dimension of the Floquet HBM problem is (2N + 1)n, there are 2N + 1 in the same 
conjugacy class, i.e., λτ

k
= λτ

0 + ikω, k ∈ Z, where λτ
0 is the eigenvalue closest to the real axis in the complex plane.

This remark motivates the definition of the truncated spectra �N : this set of converged eigenvalues is a compact set in C
restricted to the strip Cω ≡ {z ∈ C : ω/2 ≤ Im(z) ≤ ω/2} (Fig. 2).

Notes on the convergence of the truncated spectra Since eq. (15) is a spectral approximation of the continuous problem eq. (10), 
an important aspect of the methodology is whether or not the eigenvalue λ and the eigenvector PN converge to the actual 
eigenvalue and eigenmode respectively. Zhou et al. [18] have partially answered this query. They proved the convergence of 
the truncated problem in the strip Cω ≡ {z ∈ C : ω/2 ≤ Im(z) ≤ ω/2} under the assumption that the nonlinear flow F (q, ν)

is piecewise C1[0, T ]. Likewise, Deconick et al. [19] proved the convergence of Hill’s method in the Floquet–Bloch theory, 
i.e., periodicity in space, for compact subsets of C. They proved the absence of spurious eigenvalues, i.e., an eigenvalue λn

which does not converge to any eigenvalue λ of the problem eq. (14) as the number of harmonics N → ∞. In the same 
reference, one may find for self-adjoint operators that for any eigenvalue λ of the monodromy operator, there exists a se-
quence {λN }∞N=1 such that limN→∞ |λN − λ| → 0 and with a spectral rate of convergence, i.e., |λN − λ| = O (N−p) for p ≥ 1, 
which has been later extended for a larger family of periodic differential operators by Jonshon et al. [20].
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Fig. 1. a) An unstable periodic orbit q∗ crossing the Poincaré section at point o∗ , and the evolution perturbed orbit q∗ + δq(t) from the point o1. b) Floquet 
spectrum in terms of Floquet multipliers μn (resp. Floquet exponents λn on top figure) of an unstable periodic orbit q∗ . Red dots (square on the top figure) 
are associated to the unstable fundamental solution δq1(t) whereas gray markers denote the neutral Floquet eigenvalue. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Local bifurcations of codimension one of periodic orbits. Spectrum in terms of Floquet exponents a), e), and h). Spectrum in terms of Floquet 
multipliers d), g), and j). Pitchfork bifurcation in a), b), and d). Fold bifurcation in a), c), and d). Period-doubling bifurcation in e), f), and g). Neimark–Sacker 
in h), i), and j).

Finally, let us contemplate other choices for the selection of the set of converged eigenvalues. Bentvelsen et al. [21] com-

pared different sorting algorithms to determine the set of converged eigenvalues and eigenmodes. They employed a sorting 
algorithm between elements in the same conjugacy class, i.e., λn = λ j + ikω. Numerical experiments reported a faster nu-
merical strategy to produce a set of converged eigenvalues, but such an approach is not yet rigorously justified. Such a 
sorting algorithm seems to be the preferred strategy for mechanical systems, see Lazarus et al. [22] and Guillot et al. [23].

For convenience, we introduce also the Floquet adjoint stability problem with respect to the natural inner product in the 
Fourier–Galerkin basis:

λ̄(τ ,N) diag(B)2N+1P†(τ ,N) = D r̃T (Q(τ ,N))P†(τ ,N)

where D r̃T (Q(τ ,N))P†(τ ,N) =
[
− ωB̃T + L̃T + DÑT (Q(τ ,N))

]
P†(τ ,N),

(16)

where P†(τ ,N) = [
p0, p

†
1,c, p

†
1,s, ..., p

†
N,c, p

†
N,s

]T
is the finite Fourier decomposition of the periodic adjoint eigenvector p†(t)

and the conjugate eigenvalue λ̄(τ ,N) is the approximation of the adjoint Floquet exponent.
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2.5. Sensitivity analysis for periodic orbits

This section is an introduction to sensitivity computations near a bifurcation point of the periodic solution. Among 
possible applications to sensitivity theory, one may find passive control or identification of underlying physical mechanisms 
leading to the instability.
Let us consider the infinitesimal perturbed problem of eq. (1) with respect to the state variable q:

B
∂(q∗ + δq)

∂t
= F(q∗ + δq, ν) + δH(q∗ + δq), q∗(t + T ) = q∗(t). (17)

A force-feedback perturbation δH(q∗ + δq) leads to changes in dynamics. The original work of Giannetti et al. [8] analyzed 
the effect of a local force-feedback δH(δq). For that purpose, authors introduced the concept of structural sensitivity tensor 
Ss to the secondary instability, i.e., a bifurcation of the Poincaré map associated with a T -periodic solution, which is the 
extension of the structural sensitivity tensor of bifurcations from a steady-state solution, introduced by Giannetti et al. [24]. 
The structural sensitivity measures the variation of a Floquet exponent δλ with respect to variations of the Floquet mode 
δp. In a second article, the same authors [7] introduced the sensitivity to variations in the periodic orbit q∗ itself. This 
tensor field is called sensitivity to baseflow variations, denoted as Sb . Analogously to the structural sensitivity, the sensitivity 
to baseflow variations measures the effect of a localized force-feedback δH(q∗). This leads to a variation in the Floquet 
exponent δλ with respect to variations of the periodic solution δq∗ . Sb is evaluated following a similar procedure to Ss . 
Nonetheless, one must take special care to ensure the uniqueness of Sb . Uniqueness is guaranteed by construction and the 
Fredholm alternative. For the sake of clarity, Sb will not be rigorously introduced because it would lead to another set of 
definitions to overcome this technical issue, the interested reader is referred to [7].

Instead, we have decided to introduce another interesting sensitivity map Sω , the sensitivity map to frequency variations 
of the limit cycle, which measures the variation of the frequency (resp. period) of the periodic state with respect to the 
introduction of a localized feedback. Furthermore, in the present section, authors introduce the novel harmonic sensitivity 
map Sn

s (resp. Sn
ω), which measures the effect of a structural harmonic perturbation. This last set of maps provides new 

insights into the harmonic nature of the instability. Each sensitivity quantity is directly computed in the frequency domain.

Let us begin with the averaged structural sensitivity tensor S̄s of a Floquet exponent λ:

S̄s(x) =
∫ T+t
t Mp⊗Mp†dt∫ T+t

t

∫

Mp ·Mp†dxdt

. (18)

It is the operator whose contraction with a generic infinitesimal localized feedback operator in space provides: δλ = C1 :
S̄s(x0), where δH(δq) = δ(x − x0)C1 · δq, where δ(x − x0) is the Dirac distribution at x − x0 and C1 is a generic constant 
feedback matrix. In the sensitivity paradigm, it is also helpful to consider phase details of the structural sensitivity which 
are retrieved by considering impulsive structural perturbations applied in time at a precise phase of the periodic solution, 
i.e., at t = t0. This consideration leads to the instantaneous structural sensitivity Ss :

Ss(x, t) = Mp⊗ Mp†∫ T+t
t

∫

Mp ·Mp†dxdt

. (19)

In such a case, the variation of the Floquet exponent δλ = C1 : Ss(x0, t0), where δH(δq) = δ
(
(t mod T ) − t0

)
δ
(
x − x0

)
C1 · δq, 

provides access to the phase. However, it fails to determine the harmonic nature of the instability. For such considerations, 
it is helpful to introduce a novel sensitivity map, the harmonic structural sensitivity Sn

s , where n indicates the harmonic 
number. The direct computation of the frequency spectra Sn

s is in general complex-valued. However, for the sake of self-
consistency with the previous methodology, Sn,(s|c)

s is the real harmonic structural sensitivity:

Sn,c
s (x) = 2

T

∫ T+t
t Mp⊗ Mp† cos(nωt)dt∫ T+t

t

∫

Mp ·Mp†dxdt

Sn,s
s (x) = 2

T

∫ T+t
t Mp⊗Mp† sin(nωt)dt∫ T+t

t

∫

Mp ·Mp†dxdt

,

(20)

where the structural perturbation δH(δq) = 2
T
cos(nωt)δ

(
x − x0

)
C1 · δq (resp. sin(nωt)) provides a variation of the Floquet 

exponent δλ = C1 : Sn,c
s (x0) (resp. Sn,s

s (x0)) due to a harmonic perturbation. The 2
T

term is simply a normalization factor.

Remark 3. In the original work of Giannetti et al. [8], M = B. The inclusion of the matrix M in the definition of the struc-
tural sensitivity was done to consider a particular set of variables instead of the whole set of variables. We highlight that 
definition eqs. (18) to (20) are valid for PDEs. Finite-dimensional systems do not depend on spatial coordinates. Therefore, 
there is no need to introduce a localized feedback force, i.e., δH(δq) = C1 · δq.

7
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The averaged structural sensitivity S̄(τ ,N)
s associated to the Floquet exponent λ(τ ,N) in the Fourier–Galerkin basis can be 

expressed as:

S̄(τ ,N)
s (x) = Mp0 ⊗Mp†

0 + 1
2

∑N
n=1Mpn,c ⊗Mp†

n,c +Mpn,s ⊗Mp†
n,s∫


Mp0 ·Mp†

0 + 1
2

∑N
n=1Mpn,c ·Mp†

n,c +Mpn,s ·Mp†
n,sdx

. (21)

Analogously, harmonic components may be written as:

Sn,c;(τ ,N)
s (x) = 2

T
∫ T+t
t

∫
 Mp·Mp†dxdt

([
Mpi,c ⊗Mp†

0 +Mp0 ⊗Mp†
i,c

]
+ 1

2

∑i−1
j=1

[
Mpi,c ⊗Mp†

i− j,c −Mp j,s ⊗Mp†
i− j,s

]
+ 1

2

∑N
j=i+1

[
Mp j,c ⊗Mp†

j−i,c +Mp j−i,s ⊗Mp†
j,s

]
+ 1

2

∑N
j=i+1

[
Mp j−i,c ⊗Mp†

j,c +Mp j,s ⊗Mp†
j−i,s

])
Sn,s;(τ ,N)
s (x) = 2

T
∫ T+t
t

∫
 Mp·Mp†dxdt

([
Mpi,s ⊗Mp†

0 +Mp0 ⊗Mp†
i,s

]
+ 1

2

∑i−1
j=1

[
Mpi,c ⊗Mp†

i− j,s +Mp j,s ⊗Mp†
i− j,c

]
− 1

2

∑N
j=i+1

[
Mp j,c ⊗Mp†

j−i,s +Mp j−i,s ⊗Mp†
j,c

]
+ 1

2

∑N
j=i+1

[
Mp j−i,c ⊗Mp†

j,s +Mp j,s ⊗Mp†
j−i,c

])
.

(22)

In a similar fashion, let us introduce the sensitivity tensor of frequency variations ω, here denoted as S̄ω :

S̄ω(x) =
∫ T
0 Mq∗ ⊗Mp†

h
dt∫ T

0

∫

M ∂q∗

∂t
·Mp†

h
dxdt

, (23)

where p†

h
is the adjoint Floquet mode associated to the neutral Floquet exponent λ = 0. S̄ω is the operator whose contraction 

with a generic infinitesimal localized feedback operator in space provides the variation of the frequency δω = C2 : Sω , where 
δH(q∗) = δ(x − x0)C2 · q∗ .

The instantaneous sensitivity tensor to frequency variations Sω is defined as:

Sω(x) = Mq∗ ⊗Mp†
h
dt∫ T

0

∫

M ∂q∗

∂t
·Mp†

h
dxdt

, (24)

where δω = C2 : Sω(x0, t0) and δH(δq) = δ
(
(t mod T ) − t0

)
δ
(
x − x0

)
C2 · q∗

Finally, let us introduce harmonic sensitivity to frequency variations maps Sn,c
ω and Sn,s

ω . They provide further information 
for the open-loop control of the periodic solution with harmonic forcing. These quantities are a generalization of the weakly 
nonlinear expansion introduced by Sipp [25] to perform harmonic control near the onset of unsteadiness. These sensitivity 
maps are introduced as weighted products with the Fourier basis:

Sn,c
ω (x) = 2

T

∫ T
0 Mq∗ ⊗Mp†

h
cos(nωt)dt∫ T

0

∫

M ∂q∗

∂t
·Mp†

h
dxdt

Sn,s
ω (x) = 2

T

∫ T
0 Mq∗ ⊗Mp†

h
sin(nωt)dt∫ T

0

∫

M ∂q∗

∂t
·Mp†

h
dxdt

,

(25)

where the structural perturbation δH(δq) = 2
T
cos(nωt)δ

(
x − x0

)
C2 · q∗ , resp. sin(nωt), provides a variation of oscillating 

frequency δω = C2 : Sn,c
ω (x0), resp. Sn,s

ω (x0), due to an harmonic perturbation. Eventually, the sensitivity of the frequency 
S̄(τ ,N)

ω in the Fourier–Galerkin basis is computed as:

S̄(τ ,N)
ω (x) = Mq∗

0 ⊗Mp†
h;0 + 1

2

∑N
n=1Mq∗

n,c ⊗Mp†
h;n,c

+Mq∗
n,s ⊗ Mp†

h;n,s

ω
2

∫


∑N
n=1 n

[
Mq∗

n,s ·Mp†
n,c −Mq∗

n,c ·Mp†
n,s

]
dx

, (26)

and harmonic sensitivity tensors Sn,c;(τ ,N)
ω and Sn,s;(τ ,N)

ω in the Fourier–Galerkin basis:

8
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Sn,c;(τ ,N)
s (x) = 2

T
∫ T+t
t

∫
 Mq∗·Mp†

h
dxdt

([
Mq∗

i,c ⊗Mp†

h;0 +Mq∗
0 ⊗Mp†

h;i,c
]

+ 1
2

∑i−1
j=1

[
Mq∗

i,c ⊗Mp†

h;i− j,c
−Mq∗

j,s ⊗Mp†

h;i− j,s

]
+ 1

2

∑N
j=i+1

[
Mq∗

j,c ⊗Mp†

h; j−i,c
+Mq∗

j−i,s ⊗Mp†

h; j,s
]

+ 1
2

∑N
j=i+1

[
Mq∗

j−i,c ⊗Mp†
h; j,c +Mq∗

j,s ⊗Mp†
h; j−i,s

])
Sn,s;(τ ,N)
s (x) = 2

T
∫ T+t
t

∫
 Mq∗·Mp†

h
dxdt

([
Mq∗

i,s ⊗Mp†
h;0 +Mq∗

0 ⊗Mp†
h;i,s

]
+ 1

2

∑i−1
j=1

[
Mq∗

i,c ⊗Mp†

h;i− j,s
+Mq∗

j,s ⊗Mp†

h;i− j,c

]
− 1

2

∑N
j=i+1

[
Mq∗

j,c ⊗Mp†

h; j−i,s
+Mq∗

j−i,s ⊗Mp†

h; j,c
]

+ 1
2

∑N
j=i+1

[
Mq∗

j−i,c ⊗Mp†

h; j,s +Mq∗
j,s ⊗Mp†

h; j−i,c

])
.

(27)

2.6. Numerical methods

This section presents strategies for the resolution of eqs. (7) and (15). Efficient numerical techniques are required for the 
solution of linear systems composed of a large number of degrees of freedom. In particular, direct factorization becomes 
rapidly unfeasible due to the large memory requirements. Iterative methods with inner-outer preconditioning are proposed. 
Outer preconditioning improves the convergence of the Krylov method and inner preconditioning increases the efficiency of 
computation on blocks.

Nonlinear problem eq. (7) The solution of eq. (7) is performed via a Newton-like method:

D r̃(Q(τ ,N)
(n)

)δQ(τ ,N)
(n+1) = −r̃(Q(τ ,N)

(n)
). (28)

A Newton–Krylov strategy is chosen in the case r̃ arises from semi-discretization in space of a PDE or via a Newton method 
if r̃ is the vector field that stems from a differential system with a small number of degrees of freedom. The latter is 
common in the literature of mechanical systems and it is solved with dense matrices and direct linear solvers, for more 
information, the interested reader is referred to Krack et al. [12, Chapter 4].

Eigenvalue problem Arnoldi or shift-and-invert iteration are the chosen candidates for efficient extraction of leading Floquet 
exponents in eqs. (15) and (16).

Linear systems Preconditioning strategies are needed for an efficient resolution of linear systems from Newton itera-
tions eq. (28) or Arnoldi iterations applied to eqs. (15) and (16). In the present study, we have considered three strategies 
for the outer preconditioning: block Jacobi, upper and lower triangular Gauss–Seidel. Solutions of inner systems, i.e., in-
volving diagonal blocks of D r̃(Q(τ ,N)

(n) ), are computed using exact LU factorizations or iterative solvers, e.g., additive Schwarz 
method (ASM). For other choices of inner block-factorization, the interested reader may consider, for example, the modified 
augmented Lagrangian method [26] as implemented by Moulin et al. [27]. The preconditioning step is coupled with an 
iterative Krylov method: the flexible GMRES [28].

3. Results

Numerical results presented in this section have been obtained with in-house codes. Results presented in section 3.1

have been calculated with a MATLAB code developed by the authors for the computation of limit cycles and the evalu-
ation of their stability with the methodology shown in section 2. Numerical examples of sections 3.2 and 3.3 have been 
computed with FreeFEM, a finite element code for the resolution of PDEs in the variational form, cf. [29]. Navier–Stokes 
equations written in the weak formulation are discretized by projecting the flow field (u, v, p) upon a basis of Taylor–Hood 
finite elements with piecewise quadratic velocities and piecewise linear pressure. The number of triangles of the discretized 
domain considered in sections 3.2 and 3.3 varies in a range of O(104) −O(105) which results in around O(105) −O(106)

degrees of freedom per mode, that is O(n · 105) − O(n · 106) with n = 2N + 1 the number of modes retained in the 
Fourier basis. Linear systems and eigenvalue problems are solved by PETSc [30] and SLEPc [31]. For more information, 
the interested reader is referred to the recent review article in linear and nonlinear stability in fluid flows by Fabre et al. 
[32] and the StabFem project hosted at https://stabfem .gitlab .io /StabFem/. Results presented in section 3.1 provide numer-

ical evidence of the capability of the Fourier–Galerkin methodology to continue stable and unstable branches of periodic 
solutions past period-doubling bifurcations and to accurately evaluate the stability of a periodic orbit. Evaluation of the 
performance of numerical techniques described in section 2.6 and an assessment of the accuracy of sensitivity quantities 
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Fig. 3. a) Bifurcation diagram of the Lorenz system. b) Zoom into the interval of period-doubling bifurcations. Solid (resp. dashed) lines denote stable (resp. 
unstable) solutions. Red (resp. gray) markers denote a period-doubling bifurcation (resp. symmetry breaking).

Fig. 4. a) Evolution of the period. b) x− z slice of the stable solution at ρ = 215.38, before the sixth period-doubling bifurcation. Same legend as in Fig. 3.

detailed in section 2.5 is carried out in sections 3.2 and 3.3. The authors would like to compare the present methodol-

ogy with respect to classical time-stepping techniques for the computation of sensitivity maps as in Giannetti et al. [7]. 
For that purpose, we consider an IMEX time-integration technique, e.g., explicit Runge–Kutta integration for the nonlinear 
terms and implicit Crank-Nicolson for the linear terms. The computation of the converged periodic solution, the direct and 
adjoint modes with time-stepping techniques require the solution of around O(MT ) time units, with M the number of 
periods required for convergence, which is usually of the order of few hundreds for the periodic solution and of thou-
sands for the evaluation of the direct and adjoints modes to obtain accurate results, and T the fundamental period. The 
evaluation of a period usually requires a number of time steps of the order of N = O(T /�t), which is N = O(102) in 
the case of the wake flow past a cylinder, see [3, Sec. 7]. That results in a much larger total computation time than the 
one required for the evaluation of sensitivity maps with the current methodology. For instance, if we consider a coarse 
numerical domain, the mesh M1 of Table 1, the serial evaluation of Fourier–Galerkin methodology for the periodic solu-
tion, direct and adjoint eigenmodes are of the order of few minutes whereas the time-stepping methodology takes several 
hours, which is highly dependent on the time step which at the same time depends on the level of refinement. During 
the elaboration of this manuscript authors have compared the sensitivity maps computed with time-stepping techniques 
and Fourier–Galerkin method. Even if it is difficult to compare results that are coming from different numerical discretiza-
tions and different grids, [8] employed finite differences with a staggered grid, comparing the results we found that the 
sensitivity maps agree very well and the relative error is of few percents depending on the mesh and the physical param-

eters.

3.1. Lorenz system: the case of Feigenbaum route to chaos

Routes to chaos are of fundamental interest in the study of nonlinear dynamics. Most common routes to chaos are 
intermittency, crisis, quasiperiodicity, and period-doubling. The current section focuses on the latter. Period-doubling route 
is also denoted as Feigenbaum route to chaos and is characterized by an infinite number of period-doubling bifurcations in a 
finite interval of the parameter set. In particular, Feigenbaum noted that under mild assumptions of the nonlinear operator, 
the distance between consecutive bifurcations shrinks in a universal manner, see Collet et al. [33]:

lim
n→∞

νn+1 − νn

νn − νn−1
= δ,

where δ ≈ 4.6692016 . . . is the Feigenbaum constant for dissipative dynamical systems and it can be numerically evaluated 
from Figs. 3 and 4. Period-doubling arises as a pitchfork bifurcation of a fixed point of the associated Poincaré return 
map.
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Fig. 5. a) Decay of Fourier modes of y component for a periodic solution near the fourth period-doubling bifurcation. b) Evolution of the eigenvalue 
associated to the period-doubling mode.

Fig. 6. Sketch of a cylinder immersed in a uniform flow.

In particular, here the Lorenz system illustrates the capability of the Fourier–Galerkin method to track period-doubling 
bifurcations and compute periodic solutions in a substantially nonlinear system. Let us first introduce Lorenz equations:

ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = xy − bz,

(29)

with parameters b = 8
3
, σ = 10, and ρ ∈ (210, 320]. In this range of parameters, there is a first bifurcation around ρ ≈ 312.9, 

where the stable solution ceases to be symmetric via a pitchfork bifurcation due to the reflectional symmetry (x → −x, 
y → −y) of the system. These two branches remain stable up to ρ ≈ 229.4, where a first period-doubling bifurcation 
occurs. It is then followed by an infinite number of them, of which the first six have been computed, see Fig. 3. The stable 
periodic orbit before the sixth period-doubling bifurcation is reported in Fig. 4 b). Fig. 4 a) illustrates the geometric growth 
of the period past successive period-doubling bifurcations. As pointed out in Remark 1, successive period-doubling solutions 
have been computed by doubling the number of harmonics of the truncated Fourier series.

The convergence of a periodic solution is evaluated a posteriori by the decay of Fourier modes and by the evolution 
of the leading eigenvalue. Fig. 5 shows, for a periodic solution at the onset of the fourth period-doubling bifurcation, the 
irregular decay of Fourier harmonics due to the strong nonlinearities. In addition, Fig. 5 shows that the methodology is able 
to accurately predict some parts of the spectrum even if the decay of Fourier modes is not smooth. Particularly, prior to the 
fourth period-doubling bifurcation Fig. 5, a minimum of around N = 40 is required for a correct evaluation of the leading 
Floquet exponent.

Finally, let us conclude this section with a remark concerning the number of Fourier modes retained for the reconstruc-
tion of a periodic solution past a period-doubling bifurcation. As stated in Remark 1, a periodic solution whose period is 
2mT , i.e., the system has experienced m period-doubling bifurcations, is also 2m−1T -periodic. The computation of a 2mT -

periodic solution requires 2mÑ Fourier modes, where Ñ is the length of the Fourier basis used for the computation of a 
T -periodic solution. As a consequence, the number of harmonics for a single T -period is Ñ = N

2m
, which, for instance for 

N = 40 and m = 3, gives Ñ = 5.

3.2. Flow past a two-dimensional circular cylinder

Let us consider a fluid mechanics example: a canonical case of the flow past a bluff body, i.e., the flow past a two-

dimensional cylinder sketched in Fig. 6. Dynamics and the first two bifurcations are well known, see Williamson [34].
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Fig. 7. Reconstruction of the streamwise velocity Ux of the periodic oscillating vortex solution at Re = 190. The flow is reconstructed at t = 0 for N = 6.

Fig. 8. a) Decay of Fourier spectrum for Re = 190, Re = 260, and Re = 440 b) Evolution of the amplitude of Fourier modes.

The governing equations are the incompressible Navier–Stokes equations which are of quadratic type, see appendix B, 
therefore they fit into the developed strategy.

3.2.1. Computation of the baseflow
The Fourier–Galerkin strategy reconstructs the periodic solution of the flow past a cylinder, as reported in Fig. 7. The 

approach is initialized with the unstable eigenmode at the threshold, Re ≈ 47, and it is continued up to Re = 450, with at 
most N = 10 modes. In order to estimate the precision of the results obtained by the numerical procedure, two Reynolds 
numbers are selected, Re = 190 and Re = 260, and we run cross-comparison of the estimated Strouhal with the data 
available in the literature. At Re = 190 (resp. Re = 260), by retaining N = 5 harmonics, a Strouhal number St = 0.1938

(resp. St = 0.2058) has been obtained, a result in good agreement with the value St = 0.1950 (resp. St = 0.2071) reported 
by Barkley et al. [35]. These accurate results with a reduced Fourier basis are due to the rapid decay of the Fourier spectrum, 
which is displayed in Fig. 8 a). The Fourier spectrum displays a quadratic decay, with small dependence on the Reynolds 
number if sufficient modes are retained. To determine whether or not the number of retained modes is sufficient, one could 
evaluate a posteriori the evolution of the amplitude of each mode with respect to the parameter, i.e., Re. The amplitude of 
each Fourier mode grows exponentially until saturation, see Fig. 8 b). Therefore, an appropriate selection of N could be to 
retain at least a mode that is not saturated or select the basis length N so that the amplitude of the last mode is below a 
certain threshold.
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Fig. 9. Effect of Reynolds number, preconditioning technique and number of Fourier modes. a) Compares preconditioning techniques and b) the number of 
Fourier modes for a Gauss–Seidel upper triangular preconditioner.

Table 1
Average number of GMRES iterations per Newton iteration for 
three numerical domains M1, M2 and M3 at Re = 100 with up-
per triangular Gauss–Seidel. The tolerance of the Newton method 
is set to 10−8.

Mesh ID # elements # GMRES iterations

N = 1 N = 2 N = 3

M1 1.4 · 104 33 36 38

M2 4.5 · 104 32 37 39

M3 1.85 · 105 33 38 38

Table 2
Total number of GMRES iterations for the resolution of the nonlinear problem eq. (7) at Re =
100, N = 4 with the numerical domain M1, the upper triangular Gauss–Seidel as the outer 
preconditioning technique and inexact factorization with the ASM method for inner blocks. 
Variation of inner iterations and total GMRES iterations with respect to the relative tolerance 
in the inexact factorization of inner blocks. The tolerance of the Newton method is set to 10−8.

ASM tolerance 10−8 10−7 10−6 10−5 10−4 10−3 LU

# total iterations 344 310 278 246 267 369 238

Average # inner iterations 52 44 35 25 18 16 —

3.2.2. Performance evaluation of iterative methods

Another important aspect to be addressed is the performance of methods used for numerical resolution. In particular, for 
the present case, authors have evaluated the dependency of the chosen iterative strategy, a flexible restarted GMRES, for the 
solution of linear systems such as eq. (28) on a set of parameters: Reynolds number, number of elements in the numerical 
domain, preconditioning techniques and number of modes of the Fourier basis.

Independently of the chosen preconditioning technique, the number of GMRES iterations for the resolution of the linear 
system eq. (28) increases quadratically with respect to the Reynolds number, see Fig. 9 a). As expected, triangular Gauss–
Seidel preconditioning speeds up computations with respect to block Jacobi. However, the gain between choosing an upper 
or a lower triangular preconditioner is marginal. The second aspect that was studied is the influence of the number of 
iterations required to solve the linear system under a change of the total number of elements. Table 1 reports the average 
number of GMRES iterations, for three numerical domains Mi , i = 1, 2, 3. It results that the number of GMRES iterations 
does scale with the total number of elements in the numerical domain. In addition, authors have studied the effect of an 
inexact factorization of the inner diagonal blocks. ASM is used to precondition the inner blocks with upper triangular GS 
as outer preconditioner. It is compared with exact LU factorization for the diagonal blocks. Table 2 reports the variation of 
the total number of GMRES iterations required to solve the nonlinear problem eq. (7) and the averaged number of inner 
iterations for each inner diagonal block. It is concluded that inexact factorization of inner blocks hardly changes the number 
of GMRES iterations, as long as the relative tolerance is correctly tuned. The effect of the number of modes in the truncated 
Fourier basis is reported in Fig. 9 b). Similar conclusions can be drawn with respect to other preconditioners, the number 
of modes in the Fourier basis does not affect the iterative strategy, as long as N is sufficient for convergence.

Finally, the performance of the parallel implementation is considered. For that purpose a strong scalability test has been 
carried out with a fine numerical domain composed of 1.85 · 105 elements. The number of modes is fixed to N = 4 and 
the preconditioning technique is the upper triangular Gauss–Seidel. Fig. 10 a) reports the evolution of the averaged time 
per Newton iteration with respect to the number of processes. The actual scaling time is degraded by around 35% with 
respect to perfect linear scaling, that is the average time per Newton iteration approximately evolves as # of processes−0.65. 
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Fig. 10. Performance of the linear solver with upper triangular Gauss–Seidel with a discretized domain composed of 1.85 · 105 elements and N = 4.

Fig. 11. Spanwise velocity component Uz of mode A at Re = 190. a) and c), resp. b) and d), first and second sinus components of direct, resp. adjoint, 
Floquet modes.

Fig. 12. Averaged structural sensitivity S̄(τ ,N)
s of mode A at Re = 190, kz = 1.585, and N = 4. a) Spectral norm. b) Trace.

Similarly, Fig. 10 b) reports the total memory consumption for the solution of the linear system eq. (28). It displays an 
increase of memory of around 20% each time the number of processes doubles.

In conclusion, GMRES iterations depend quadratically on Reynolds number and they are independent on the total number 
of mesh elements, the dimension of the Fourier basis as long as N is sufficient to characterize the periodic solution. In a 
future study, authors will study other preconditioning techniques to attempt to reduce the dependency on Re.

3.2.3. Stability & sensitivity analysis
Beyond the threshold of the first instability, which is found at around Re ≈ 47, a stable two-dimensional T -periodic 

solution exists up to Re ≈ 190 where the stable solution ceases to be two-dimensional via a steady symmetry-breaking bi-
furcation of the spanwise homogeneous direction. The Floquet mode associated to this second instability, reported in Fig. 11, 
is commonly denoted as mode A whose wavenumber is kz = 1.585, see Giannetti et al. [8].

Prior to the discussion of sensitivity quantities, let us point out their validity. The reported sensitivity maps in Figs. 12

and 13 are in perfect agreement with those presented in literature, cf. [7]. A common query in physics is: which are 
the underlying physical mechanisms responsible for the instability? Structural sensitivity allows to localize the core of 
the vortex-shedding instability, that is the sensitivity of the Floquet exponent to a generic structural perturbation of the 
linearized equations. Fig. 12 displays the compact support structure of the sensitivity for mode A, which translates to a 
localized instability in the near wake. Similarly, if one desires to shift the harmonic frequency ω, the most efficient way is 
to act on the near wake in accordance with the map Sω , see Fig. 13.
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Fig. 13. Averaged sensitivity to frequency variations S̄(τ ,N)
ω of mode A at Re = 190, kz = 1.585, and N = 4. a) Spectral norm. b) Trace.

Fig. 14. Sketch of the two circular cylinders in a side-by-side arrangement immersed in a uniform flow.

Fig. 15. Streamwise component Ux of the periodic baseflow solution at Re = 62. a) Meanflow component. b) First cosinus component. c) Second cosinus 
component.

3.3. Flow past two cylinders in tandem

Let us explore a second fluid mechanics example: the flow past two side-by-side circular cylinders. The flow config-
uration, reported in Fig. 14, is governed by two dimensionless parameters, Reynolds number (Re) and the ratio of the 
distance between cylinders and their diameter (g = d

D
). For some ranges of parameters, reported by Carini et al. [36], 

the two-dimensional flow pattern is characterized by an asymmetric unsteady wake with respect to the horizontal axis. 
Such a phenomenon, which has been denominated flip-flop, develops at low Reynolds numbers, 50 < Re < 90, through 
a Neimark–Sacker bifurcation. In the following, the dimensionless distance between cylinders is fixed, g = 0.7, such that 
flip-flop instability appears.

3.3.1. Computation of the baseflow
The periodic solution past two side-by-side cylinders is reconstructed by Fourier–Galerkin with N = 4 (Fig. 15). The 

method is initialized with the unstable in-phase eigenmode associated with the first supercritical Hopf bifurcation of the 
steady state, see section 3.2.3. The accuracy of baseflow computations were compared with reported results in the literature. 
At Re = 62, a St ≈ 0.111 matches the one computed by Carini et al. [36].

3.3.2. Memory requirements of linear solvers
Section 3.2.2 focuses on the performance of iterative methods by considering the influence of some parameters on the 

number of iterations required by the linear solver to solve eq. (28) with a relative tolerance of 10−5. Another important facet 
of linear solvers is their memory consumption. Particularly, the total memory consumption is expected to increases with 
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Fig. 16. a) Memory gain evolution w.r.t. number of Fourier modes (for a coarse mesh nt = 12354 triangles) for three Reynolds numbers. b) Memory gain 
w.r.t. number of mesh triangles.

Fig. 17. Mode IP at Re = 62. a) and c), resp. b) and d), meanflow and first cosinus components of direct, resp. adjoint, Floquet modes.

the number of modes of the truncated Fourier basis and mesh refinement. We define the memory gain, GM = memory LU
memory GMRES

, 
as the ratio of memory consumed by LU w.r.t. GMRES to solve a linear system whose linear operator is the Jacobian matrix 
defined in appendix A.3.

Tests have been run on an Intel cluster with 64 Intel(R) Xeon(R) CPU E5-4610 processors and 256 GB of memory. For a 
fixed mesh with nt = 12,354 triangles, inner iterations of the Newton method are solved with varying N , with the upper 
triangular Gauss–Seidel preconditioner and LU factorization. They have confirmed the linear memory gain, independently 
of Re, with respect to the number of elements kept in the Fourier basis, as reported in Fig. 16 a). Analogously, the effect 
of mesh size on memory storage is also studied. The memory gain is reported in Fig. 16 b) as a function of the number of 
triangles. Curves correspond to different lengths of the truncated Fourier basis. Clearly, memory gain is independent of the 
mesh size, regardless of N .

3.3.3. Stability & sensitivity analysis
The stability of the steady state has been studied by Mizushima et al. [37]. They reported three types of instabilities, 

a symmetry breaking of the steady state via a pitchfork bifurcation, an oscillatory in-phase via a Hopf bifurcation, and 
a third oscillatory instability far from the near wake. For the chosen configuration (g = 0.7) the primary instability is 
a supercritical Hopf bifurcation at Re ≈ 57.5 whose most unstable eigenmode is the in-phase oscillatory, mode IP partially 
reported in Fig. 17. The Floquet analysis reveals a pair of complex-conjugate multipliers on the in-phase synchronized vortex 
shedding periodic solution between the two cylinders. Neimark–Sacker appears at Rec = 61.7, which is in good agreement 
with the result Rec = 61.8 reported by Carini et al. [36].

Structural sensitivity, reported in Fig. 18, shows a symmetric averaged core of the instability in the near wake that is 
larger than the sensitive instability core of the single cylinder reported in Fig. 12. In addition, amplitudes of harmonic sen-
sitivity are displayed in the frequency ω-axis. They provide further information about the origin of the flip-flop instability. 
Sensitive regions to harmonic structural perturbation are found for the first harmonic where it is possible to observe two 
sensitive regions around y = ±2 and a single one around y = 0 in the near wake for the second harmonic component. 
Remarkably, in this case, the instability is more sensitive to the second harmonic than the first one. The other sensitivity 
map, S̄ω reported in Fig. 19, is particularly concentrated in the zone between cylinders. Not surprisingly, previous results in 
the literature indicate large variations of baseflow frequency as the gap ratio g is varied.

4. Conclusion

The computation of stability and sensitivity of periodic solutions provides access to inherent mechanisms leading to 
changes in dynamics. Efficient computational methods are essential for the computation of large-scale systems such as 
those arising from the semi-discretization of the governing equations. The spectral Fourier–Galerkin method is proposed for 
the efficient computation and continuation of autonomous problems. The methodology, though general, has been presented 
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Fig. 18. Structural sensitivity S(τ ,N)
s for Re = 62 with N = 2. t-axis: reconstruction of the spectral norm of the instantaneous structural sensitivity S(τ ,N)

s (x, t)
at discrete instants t = { T

3
, 2T

3
, T }. ω-axis: spectral norm of the modulus of harmonic sensitivity |Sn;(τ ,N)

s | =
√

Sn,c;(τ ,N)
s

2 + Sn,s;(τ ,N)
s

2
for harmonic compo-

nents n = {0, 1, 2}. The spectral norm of the modulus of the harmonic sensitivity |Sn;(τ ,N)
s | is reconstructed in time at discrete instants.

Fig. 19. Averaged sensitivity to frequency variations S̄(τ ,N)
ω of mode A at Re = 190, kz = 1.585, and N = 4. a) Spectral norm. b) Trace.

for quadratic nonlinearities, where the frequency transform has a simple form, see appendix A.1. In the case of finite systems 
with few degrees of freedom, quadratic recasting is an option ([10,13]). However, such a recast increases the computational 
burden. It multiplies the number of degrees of freedom by a factor, which is not acceptable in large-scale systems. In those 
cases, an exact Fourier transform of nonlinear terms is required, see for instance the cubic nonlinearity of the compressible 
Navier–Stokes equations in Sierra et al. [38].

The present methodology is used to analyze three different scenarios. First, a toy model: Lorenz equations are used to 
display some of the properties of the methodology. Fourier–Galerkin strategy is employed for the continuation of unstable 
periodic orbits through a series of period-doubling bifurcations in the Feigenbaum route to chaos. Such a situation, usually 
studied by collocation or shooting methods, proves to be one of the worst-case scenarios for this kind of spectral method 
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due to the lack of smoothness of the system of equations, see Moore [39]. Regardless, the approach proves to be capable 
to compute partially and accurately this route to chaos at least in small systems, the continuation of the period-doubling 
cascade in large systems is still an open challenge for future studies.
Two fluid mechanics cases, archetypal of bluff body flows, are studied with the presented machinery. The vortex-shedding 
periodic flow past a circular cylinder and the flip-flop instability of two circular cylinders side-by-side have been accurately 
reconstructed with a finite number of harmonics. Such a set of examples have been employed to test the performance 
of the numerical resolution. The number of GMRES iterations is independent of the number of harmonics and it depends 
quadratically on the Reynolds number. Similarly, the memory gain of iterative methods with respect to a direct factorization 
increases linearly with the length of the truncated basis and it is independent of the mesh size. Two kinds of instabil-
ities are analyzed, the transition of a two-dimensional periodic solution towards a three-dimensional periodic state and 
the flip-flop instability through a Neimark–Sacker bifurcation. Both instabilities mechanisms have been examined with the 
aid of sensitivity maps developed in section 2.5. Structural sensitivity of the periodic solution allows the identification of 
physical mechanisms causing self-sustained instabilities. Two types of instabilities have been reported in section 3: the 
spatio-temporal symmetry breaking in the case of two circular cylinders in tandem configuration, or the transition to a 
three-dimensional flow in the single circular cylinder configuration. In addition, sensitivity to frequency variations identifies 
those regions of the space where open-loop control will be most effective to cause a change in frequency. To conclude, the 
authors would like to remark that these sensitivity maps are easily computed under this framework, which is also more 
computationally efficient than direct time-integration in the studied configurations.
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Appendix A. Fourier–Galerkin equations

A.1. Nonlinear operator

Fourier–Galerkin equations (6) are derived by averaging truncated residual equations over a period T . Given the orthog-
onality of the Fourier basis, linear terms depend only on a harmonic whereas Fourier coefficients of the quadratic term Ni

may depend on several of them. Here a detailed description of the quadratic terms is given:

N0 = N(q0,q0) + 1
2

∑N
i=1N(qi,s,qi,s) +N(qi,c,qi,c)

Ni,c = [
N(qi,c,q0) +N(q0,qi,c)

]
+ 1

2

∑i−1
j=1

[
N(q j,c,qi− j,c) −N(q j,s,qi− j,s)

]
+ 1

2

∑N
j=i+1

[
N(q j,c,q j−i,c) +N(q j−i,s,q j,s)

]
+ 1

2

∑N
j=i+1

[
N(q j−i,c,q j,c) +N(q j,s,q j−i,s)

]
Ni,s = [

N(qi,s,q0) +N(q0,qi,s)
]

+ 1
2

∑i−1
j=1

[
N(q j,c,qi− j,s) +N(q j,s,qi− j,c)

]
− 1

2

∑N
j=i+1

[
N(q j,c,q j−i,s) +N(q j−i,s,q j,c)

]
+ 1

2

∑N
j=i+1

[
N(q j−i,c,q j,s) +N(q j,s,q j−i,c)

]
.

A.2. Residual notation

For the sake of a simpler presentation eq. (7) presents a series of operators, i.e., B̃, ̃L, Ñ. Their definition is as follows:

Time derivative matrix B̃

B̃QN =

⎡⎢⎢⎢⎣
0

B1

. . .

BN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q0

q1

...

qN

⎤⎥⎥⎥⎦ with Bn =
[

0 nB
−nB 0

]
for n = 1, . . . ,N. (A.1)
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Linear operator L̃

L̃QN =

⎡⎢⎢⎢⎣
L

L
. . .

L

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q0

q1

...

qN

⎤⎥⎥⎥⎦ with qn =
[
qn,c

qn,s

]
for n = 1, . . . ,N. (A.2)

Nonlinear operator Ñ

Ñ(QN ,QN) =

⎡⎢⎢⎢⎣
N0

N1

...

NN

⎤⎥⎥⎥⎦ with Nn =
[
Nn,c

Nn,s

]
for n = 1, . . . ,N. (A.3)

A.3. Jacobian operator

Consider a small perturbation of [Q(τ ,N), ω]T , here denoted as [δQ(τ ,N), δω]T , the linearized HBM equation is as follows:

0 = −δωB̃QN − ωB̃δQ(τ ,N) + L̃δQ(τ ,N) + DÑ(Q(τ ,N))δQ(τ ,N)

= −δωB̃Q(τ ,N) + D r̃(Q(τ ,N))δQ(τ ,N),
(A.4)

where the derivative of the quadratic operator is a dense block-symmetric matrix as follows:

DÑ(Q(τ ,N)) =

⎡⎢⎢⎢⎢⎢⎢⎣

DN(0) . . . DN(0,i) . . . DN(0,N)

...
. . .

...

DN(i,0) . . . DN(i) . . . DN(i,N)

...
. . .

...

DN(N,0) . . . DN(N,i) . . . DN(N)

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.5)

Let us consider the detailed description of each block. In the following, let us denote DN(q) = N(·, q) + N(q, ·), the linear 
operator of the derivative evaluated at q.

Diagonal blocks DN(i)

DN(0) = DN(q0) (A.6)

DN(i) =
[
DN(q0) + 1

2
DN(q2i,c) 1

2
DN(q2i,s)

1
2
DN(q2i,s) DN(q0) − 1

2
DN(q2i,c)

]
if 0 < i ≤ N

2
(A.7)

DN(i) =
[
DN(q0) 0

0 DN(q0)

]
if i >

N

2
. (A.8)

Off diagonal-blocks DN(i, j)

DN(0, j) = [
1
2
DN(q j,c) 1

2
DN(q j,s)

]
if j �= 0, (A.9)

DN(i,0) =
[

1
2
DN(qi,c)

1
2
DN(qi,s)

]
if i > 0. (A.10)

If i �= j, j �= 0, j < i, j + i ≤ N:

DN(i, j) =
[

1
2
DN(qi− j,c) + 1

2
DN(q j+i,c) − 1

2
DN(qi− j,s) − 1

2
DN(q j+i,s)

1
2
DN(qi− j,s) + 1

2
DN(q j+i,s) 1

2
DN(qi− j,c) + 1

2
DN(q j+i,c)

]
. (A.11)

If i �= j, j �= 0, j < i, j + i > N:

DN(i, j) =
[

1
2
DN(qi− j,c) − 1

2
DN(qi− j,s)

1
2
DN(qi− j,s) 1

2
DN(qi− j,c)

]
if i �= j, j �= 0, j < i, (A.12)

otherwise DN( j,i) = (DN(i, j))T .

19



J. Sierra, P. Jolivet, F. Giannetti et al. Journal of Computational Physics 440 (2021) 110403

Appendix B. Navier–Stokes operators

In the studied configurations, the flow is controlled by the Reynolds number Re = U∞D
ν , U∞ is the free stream velocity, 

D the diameter of the cylinder and ν the dynamic viscosity of the fluid. The fluid motion inside the domain is governed by 
the two-dimensional incompressible Navier–Stokes equations,

∂U

∂t
+U · ∇U = −∇ P + ∇ · τ (U) (B.1a)

∇ ·U = 0, (B.1b)

where q = [U, P ], U is the velocity vector whose components are (U , V ), P is the reduced pressure and the viscous stress 
tensor τ (u) can be expressed as ν(∇U + ∇UT ). The incompressible Navier–Stokes equations (B.1) are complemented with 
the following boundary conditions: on the cylinder surface, no-slip boundary conditions, uniform boundary conditions are 
set U → (U∞, 0) and stress-free at the outlet.

In the main text, Navier–Stokes equations (B.1) and the associated boundary conditions are written under the form 
B ∂q

∂t
= Lq +N(q, q), where N(q, q) = U · ∇U is the convective term.
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Abstract

A systematic approach to parametrically analyze compressible time-periodic flows is proposed. Instead of time-stepping

simulations, a Fourier–Galerkin strategy is adopted, which consists of the projection of the periodic solution onto a truncated

Fourier series. Starting from the compressible Navier–Stokes equations, a truncated nonlinear problem coupling the 2N + 1

fields, representing the Fourier discretization, is derived. This nonlinear problem is solved by Newton iteration and a set of

efficient algorithms for the resolution of the arising inner linear systems is proposed. Compared to alternative methods, the

formulation is free of any numerical constraint affecting performance, e.g. a CFL-like condition. It is also free of aliasing

effects arising in other spectral techniques. The efficiency of the method is illustrated for two configurations where sound is

radiated due to a flow instability, namely the flow around a circular cylinder and the flow through two successive apertures,

i.e. the hole-tone configuration.

© 2022 Elsevier B.V. All rights reserved.

Keywords: Spectral method; Acoustics; Compressible flows; Nonlinear dynamics; Limit cycle

1. Introduction

Many fluid dynamics problems are characterized by the spontaneous emergence of time-periodic solutions. The

classical approach in the studying of periodic states is to perform time integration of the governing equations up to

convergence to a stable (unstable) limit cycle. However, this approach can become rapidly very expensive in some

circumstances. For instance, it is notably inefficient near bifurcations leading to unsteadiness where transients can

be lengthy. It is also unsuited to cases where the underlying physics imposes tiny time steps. This situation is met

for example with compressible, low-Mach-number limit flows involving acoustic radiation, where a severe time-step

restriction is imposed by the large separation in convective and acoustic velocity scales.

Several ideas have been proposed to speed-up the convergence of time-stepping towards a limit cycle, for instance,

using time filters [1] or considering symmetries [2]. However, the efficiency of such approaches remains case-

dependent. An alternative idea is to take advantage of the time periodicity of the expected solution by applying
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spectral techniques to the time discretization and directly solving for the entire cycle. The problem may be worked
out either in spectral or time domain, leading to two distinct classes of methods.

In the first case, formulating the problem in the spectral domain leads to the Harmonic Balance (or Fourier–
Galerkin) formulation, a representation of the cycle by a truncated Fourier series up to N th order. The Navier–Stokes
equations are then written in spectral space, leading to a system coupling the 2N + 1 Fourier components. This
last system can be solved globally using, for instance, a Newton iteration. This method is useful for the study of
low-dimensional systems of equations modeling mechanical problems [3]. Recently, an alternative formulation of
the Harmonic-Balance called self-consistent method has been introduced for order N = 1 [4,5] and subsequently
adapted to order N = 2 [6]. Self-consistent method has gained some popularity in the fluid instability community
(see [7] for a discussion on the link between harmonic-balance and self-consistent method). Besides a description of
the limit cycle, the self-consistent method yields an amplitude equation describing the transient dynamics towards
it. A generalization of the method to compressible flows was proposed by [8] for the wake of a cylinder. However,
the accuracy of the truncation to order N = 1 remains case-dependent. A general implementation of the Harmonic
Balance method in frequency domain for compressible flows up to arbitrary order N is still missing.

Alternatively, the problem may be formulated in time, leading to the so called time-spectral method. In this case,
the 2N + 1 Fourier components are replaced by 2N + 1 “snapshots” representing the cycle. The equations are
evaluated in the time domain, but the time-derivative is computed in the frequency domain, thus requiring direct
and inverse discrete Fourier transforms to pull back this term into the time domain. Time Spectral Method has
been successfully used for the characterization of high Reynolds flows in the field of turbomachinery, e.g. Hall
et al. [9] and Mavriplis et al. [10], where it is considered as a closure model of averaged equations, or an
alternative to Unsteady Reynolds Averaged Navier–Stokes equations (URANS) (see Ekici et al. [11], Sicot et al. [12]
and references therein). Recently, it has been extended for the treatment of free-surface flows and fluid structure
interaction problems (see Gatin et al. [13] and Yao et al. [14]).

Despite their limited usage in the literature, the Fourier–Galerkin formulation presents a series of advantages
regarding other approaches requiring the action of the discrete Fourier transform cf. [15]. First, the approach is free
of aliasing errors because the projection onto the Fourier basis is analytical, i.e. it evaluates the analytical Fourier
coefficients of the residual. On the contrary, Time-Spectral-Method (TSM) and other similar methodologies rely on
sampling a series of time-instants and on the use of successive discrete Fourier transforms, which if in one hand may
permit faster evaluations of the residual in case of strong nonlinearity on the other it will inherently add aliasing
errors. Under the sampling theorem, higher harmonics of nonlinear terms cannot be resolved with the same number
of samples used for linear terms. As a result, methods relying on the discrete Fourier transform must increase the
number of degrees of freedom, e.g. the 3/2-rule of Orszag for quadratic nonlinearity [16].

Furthermore, the solution of the TSM formulation may be solved by a fixed-point algorithm, e.g. Newton method
or by a pseudo-time marching strategy. In fluid mechanics, in particular for turbomachinery applications, a pseudo-
time marching is the preferred strategy to compute the final periodic solution. This strategy is effective at moderate
Mach numbers. Nonetheless, at low-Mach-number, where there is a large scale difference between the convective
and the acoustic scale, the pseudo-time step must be considerably constrained.

An upper bound for the pseudo-time step is determined from quantities in the acoustic scale either because of
CFL or accuracy condition. Regarding the linear stability condition efforts have been paid to enlarge the stability
limit: optimal explicit Runge Kutta (ERK) schemes have been determined for several spatial discretization. Examples
can be found in the works by Parsani et al. [17] for spectral differences, Citro et al. for classical finite element [18]
and Kubatko et al. [19] for discontinuous Galerkin. Nevertheless, the integration of Navier–Stokes equations, even
with optimal ERK schemes, requires a significant number of iterations, which makes a full parametric study of low
Mach number flows an impractical task.

The aim of the present study is to propose a numerical resolution algorithm for the Fourier–Galerkin method
considering an arbitrary truncation order N , allowing an efficient reconstruction of periodic solutions of the
compressible Navier–Stokes equations. Governing equations and linear stability are introduced in Section 2. Fourier–
Galerkin approach is introduced in Section 3, where particular emphasis is placed on the derivation of nonlinear
terms of the Fourier–Galerkin residual (a detailed derivation can be found in Appendix). The resulting nonlinear
problem is solved via a Newton–Krylov approach with an efficient preconditioning strategy in a parallel context.
Finally, in Section 4 and Section 5 the presented approach is applied to two numerical examples: the flow past
a circular cylinder and the sound generation in a hole tone configuration, both in the low-Mach-number limit. In
Section 5.1.2 a comparison of the performance of the current implementation of Fourier–Galerkin with TSM is
reported for the cylinder case at several Mach numbers.
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2. Theoretical formulation

Let us consider the description of nonlinear saturated states of compressible flows. The exposition is suffi-

ciently general to be extended for the study of other type of flows. Nevertheless, attention will be paid to the

Fourier–Galerkin representation of the quadratic and cubic nonlinearity.

2.1. Governing equations

Let us consider a compressible fluid motion of a perfect gas (characterized by its specific constant Rg and

adiabatic index γ ) with constant dynamic viscosity μ and heat conductivity κ . The flow is described by the fluid

density ρ̃, the velocity vector field ũ = (ũ, ṽ, w̃), the pressure p̃, and temperature T̃ . These dimensional primitive

variables are made dimensionless as follows:

x = x̃
̄
, t = t̃ ū

̄
, ρ = ρ̃

ρ̄
, u = ũ

ū
, T = T̃

T̄
, p = p̃

ρ̄ R̄g T̄
, (1)

where reference values are designated by an upper bar ·̄.
After a convenient choice of the reference length ̄ and velocity ū, one can classically define three nondimensional

numbers (Reynolds, Mach and Prandtl) as follows:

Re = ρ̄ū̄

μ̄
, M = ū√

ρ̄ R̄g T̄
, Pr = μ̄

ρ̄κ̄
. (2)

Introducing these notations into the compressible Navier–Stokes equations leads to a set of equations governing the

evolution of the nondimensional state vector q = [ρ, u, T, p]. To facilitate the analysis and enlighten the nature of

the nonlinearities, it is convenient to write these equations as follows:

NS(
q

) ≡ M
(∂q
∂t

) + L
(
q

) + F2

(
q, q

) + F3

(
q, q, q

) = 0. (3)

In Eq. (3), the “mass” matrix M multiplying the time-derivative and the linear operator L are defined as:

M =

⎛⎜⎜⎝
1 0 0 0

0 ρI 0 0

0 0 ρ 0

0 0 0 0

⎞⎟⎟⎠ , L =

⎛⎜⎜⎝
0 0 0 0

0 −∇ · τ (·) 0 1

γ M2 ∇
0 0 − γ

Pr ∇2 0

0 0 0 1

⎞⎟⎟⎠ (4)

The nonlinear terms involve a quadratic operator F2 and a cubic operator F3 defined as:

F2

(
qi , q j

) =

⎛⎜⎜⎜⎝
ui · ∇ρ j + ρi∇ · u j

0
(γ − 1)

[
pi∇ · u j − γ M2τ (ui ) : D(u j )

]
−ρi Tj

⎞⎟⎟⎟⎠ (5)

F3

(
qi , q j , q

) =

⎛⎜⎜⎝
0

ρi u j · ∇u

ρi u j · ∇T

0

⎞⎟⎟⎠ (6)

In these expressions, I denotes the identity operator, whose dimension is determined by the number of velocity

components; τ (u) is the shear stress tensor τ (u) = 1
Re

[
2D(u) − 2

3

(∇ · u
)
I
]

and D(u) = 1
2

[
∇u + ∇uT

]
is the strain

tensor. Additionally a set of boundary conditions are needed to close the problem. Specific boundary conditions are

case dependent and they are not here specified.

It is important to remark that, unlike incompressible flows where only quadratic nonlinearities are present,

compressible Navier–Stokes equations contain both quadratic and cubic nonlinearities. In particular, the term ρu·∇u,

which for incompressible equations is the only nonlinearity and a quadratic one, becomes a cubic nonlinearity in

the compressible case. This point explains why a derivation of equations in Fourier–Galerkin method is much more

intricate.

3
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To facilitate derivations in following sections, it is convenient to define symmetric nonlinear operators:

F(sym)
2

(
qi , q j

) =
[
F2

(
qi , q j

) + F2

(
q j , qi

)]
, (7)

F(sym)
3

(
qi , q j , q

) =
[
F3

(
qi , q j , q

) + F3

(
qi , q, q j

)
+ F3

(
q j , qi , q

) + F3

(
q, qi , q j

)
+ F3

(
q j , q, qi

) + F3

(
q, q j , qi

)]
(8a)

With the aim of a simpler description of Fourier–Galerkin formalism, please note that dyadic interactions

(interactions between two modes) are also possible whenever the tryadic nonlinear term F(sym)
3 contains the mean

flow and other two harmonics, introduced in Section 3. So, in general dyadic interactions arise in the nonlinear

term,

F(dya)
2

(
qi , q j

) = F(sym)
2

(
qi , q j

) + F(sym)
3

(
qi , q j , q0

)
. (9)

2.2. Linear stability

Before presenting the methodology used to compute a periodic cycle in the nonlinear regime, we recall the

principle of Linear Stability Analysis (LSA) [20], which is the favored tool to detect the onset of such cycles from

a previous steady state. Accordingly, LSA will be used in Section 5.1.1 to detect the critical Reynolds numbers

associated with unsteadiness. Presentation of the LSA formalism also allows to introduce some notations which are

used in the sequel.

The linear stability of compressible flows can be studied with a classical normal-mode analysis: the velocity and

pressure fields are decomposed into a time-independent base flow, i.e. a steady-state, q0 = [ρ, u0, T0, p0], and a

generic three-dimensional small disturbance q′ = [
ρ ′, u′, T ′, p′]. After introducing this decomposition into Eq. (3)

and linearizing, it is found that the base flow is governed by the steady version of the Navier–Stokes equations,

whereas the perturbation field is described by the linearized unsteady Navier–Stokes equations (LNSE) written as

follows:

M|q0

∂q′

∂t
+ Lq′ + F(sym)

2

(
q0, q′) + 1

2
F(sym)

3

(
q0, q0, q′) = 0, (10)

where M|q0
= diag(1, ρ0I, ρ0, 0) denotes the mass matrix evaluated at the steady state.

Global modes are modal non-trivial solutions of Eq. (10), which are expressed as follows:

q′ = q̂ eλt + c.c., (11)

where λ corresponds to the complex eigenvalue (σ + iω) and c.c. stands for complex conjugate and q̂ is the

associated eigenmode. The real part of λ represents the growth rate of the perturbation and the imaginary part

ω its circular frequency. For σ > 0, the flow is unstable whereas for σ < 0 it is stable. Introducing the ansatz

Eq. (11) in the LNSE Eq. (10), we obtain the following generalized eigenvalue problem:

0 = λM|q0
q̂ + LNS |q0

(
q̂

)
(12)

with

LNS |q0

(
q̂

) ≡ Lq̂ + F(sym)
2

(
q0, q̂

)
+ F(sym)

3

(
q0, q0, q̂

) (13)

4
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3. Fourier–Galerkin method for Navier–Stokes equations

3.1. Fourier–Galerkin residual equation

Fourier–Galerkin method employs a truncated Fourier basis FN , which is inherently periodic, thus perfectly

suitable for the reconstruction of the periodic flow state:

πN (q) ≡ q̌(0) + ∑N
n=1

[
q̌((n,c)) cos(nωt) + q̌((n,s)) sin(nωt)

]
≡ Q̌TFN

with FN = [
1, cos(ωt), sin(ωt), . . . , cos(Nωt), sin(Nωt)

]T

and Q̌ = [
q̌(0), q̌((1,c)), q̌((1,s)), . . . , q̌((N ,c)), q̌((N ,s))

]T
,

(14)

where πN is the projector operator onto the Fourier basis FN ; q̌((n,c))(x) and q̌((n,s))(x) are the coefficients of

the Fourier series, in other words, they are two real nth-order harmonics describing the nonlinear perturbation

at two instants separated by a quarter-period of oscillation. The projection πN onto a finite Fourier basis FN
introduces an error, nonetheless for smooth functions (C∞(0, T )) such an error decreases with an exponential rate,

i.e. ∝ e−C N , C > 0 with the number of harmonics N retained in the basis [21, Lemma 2.2].

The first step to obtain Fourier–Galerkin equations consists on the injection of the ansatz (14) into the unsteady

Navier–Stokes equations (3). A Galerkin procedure is thus employed, i.e. the previously obtained equation is

weighted with each term of the Fourier basis and then integrated over a period. Such a process is summarized

below:

NS(
q

) Fourier−−−−−→
projection

NS(
πN (q)

) Weighted−−−−→
residual

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ř(0) = 1

T

∫ T

0

NS(
πN (q)

)
dt

ř(n,c) = 2

T

∫ T

0

NS(
πN (q)

)
cos(nωt) dt

ř(n,s) = 2

T

∫ T

0

NS(
πN (q)

)
sin(nωt) dt

Finally, the residual vector Ř = [
ř(0), ř(1,c), ř(1,s), . . . , ř(N ,c), ř(N ,c)

]T
is equated to zero, i.e. Ř = 0. In particular,

the Fourier–Galerkin residual of the compressible Navier–Stokes equations written in primitive variables is expressed

in compact operator notation as follows:

ř(0) = LNS |q̌(0)

(
q̌(0)

) + F̌(0)
2

(
Q̌

) + F̌(0)
3

(
Q̌

)
(15a)

ř(k,c) = kωM|q0
q̌(k,s) + LNS |q̌(0)

(
q̌(k,c)

) + F̌(k,c)
2

(
Q̌

) + F̌(k,c)
3

(
Q̌

)
(15b)

ř(k,s) = −kωM|q0
q̌(k,c) + LNS |q̌(0)

(
q̌(k,s)

) + F̌(k,s)
2

(
Q̌

) + F̌(k,s)
3

(
Q̌

)
(15c)

Linear terms contained in the operator LN S uniquely consist of interactions among harmonics of the same order

and the mean flow. Dyadic and triadic interactions among harmonics are encoded in the nonlinear operators F̌(k)
2 and

F̌(k)
3 . For instance, F̌(0)

2 and F̌(0)
3 , are the feedback terms among harmonic interactions and the mean flow. Similarly

F̌(k,c)
2 and F̌(k,c)

3 (resp. F̌(k,s)
2 and F̌(k,s)

3 ) are the forcing terms of the kth cosine (resp. sinus) harmonic component.

Interactions among different harmonics greatly increase with the degree of non linearity of the nonlinear operator.

A detailed description of nonlinear terms may be found in Appendix. Eq. (15a) corresponds to the evolution of

the mean flow component q̌(0).

In addition to the 2N +1 unknown fields constituting the Fourier expansion, the problem admits one extra scalar

unknown, namely the frequency ω. The determination of the frequency it is equivalent to the determination of the

period T = 2π
ω

, which is measured as the distance in time between two solution points satisfying πN (q)(t + T ) =
πN (q)(t). In addition, the problem is autonomous, which implies that for every phase shift ξ , πN (q)(t + ξ ) is a

solution of the system whenever πN (q)(t) is a solution. Therefore one can start measuring the period T at any

solution point q(t + ξ ) along the periodic orbit; in other words, the phase-condition that fixes the phase-shift ξ , it

is an implicit equation of ω that serves to determine the unknown frequency. Any condition of the form g(Q̌) = 0

where g is a linear function of the unknown fields can be used for this purpose. In practice, one can define the

function g so as to coincide with a physically relevant integral quantity of the oscillating field at instant t = 0.

For instance, for wake instability problems (Section 5.1.1) one can use the lift force exerted on the body, or for

5
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oscillating jet problems (Section 5.2), one can use the oscillating flow rate across the aperture. At this stage we keep

g(Q̌) = 0 as an arbitrary linear function of the oscillating part of the flow. This function can always be decomposed

formally as follows:

g(Q̌) =
N∑

n=1

[
g(n,c)(q̌(n,c)) + g(n,s)(q̌(n,s))

]
, (16)

where g(n,c), g(n,s) are scalar-valued linear functions of the Fourier components.

3.2. Newton iteration method

Newton iteration is the chosen approach to solve the nonlinear Fourier–Galerkin system. At each step of the

procedure, starting from an estimate
[
Q̌n, ωn

]T
of the solution, we look for an improved estimate defined as:

Q̌n+1 = Q̌n + δQ̌, ωn+1 = ωn + δω. (17)

Introducing Eq. (17) into the governing equations and linearizing with respect to perturbations [δQ̌, δω] leads to

a linear system which has to be solved at each step of the procedure:

DŘ
[
δQ̌, δω

]T = −
[
Ř(Q̌n), g(Q̌n)

]T
, (18a)

here DŘ denotes the Jacobian operator, written in block–matrix form as follows:

DŘ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dř(0;0) · · · Dř(0;k,c) Dř(0;k,s) · · · Dωř(0)

...
. . .

...
...

. . .
. . .

Dř(k,c;0) · · · Dř(k,c;k,c) Dř(k,c;k,s) · · · Dωř(k,c)

Dř(k,s;0) · · · Dř(k,s;k,c) Dř(k,s;k,s) · · · Dωř(k,s)

... · · · ...
...

. . .
. . .

0 · · · g(k,c) g(k,s) · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

and Dř(k,c; j,s) denotes the derivative of the residual term ř(k,c) with respect to the sinus component of the j th

harmonic. Those block operators are defined as follows:

Dř(0)δQ̌ = LNS |q̌(0)

(
δq̌(0)

)
+

[
DF̌(0)

2|Q̌ + DF̌(0)

3|Q̌
]
δQ̌ (20a)

Dř(k,c)δQ̌ = kωM
∣∣
δq̌(0)

q̌(k,s) + kωM
∣∣
q̌(0)

δq̌(k,s) + LNS |q̌(0)

(
δq̌(k,c)

)
+

[
DF̌(k,c)

2|Q̌ + DF̌(k,c)

3|Q̌
]
δQ̌ (20b)

Dř(k,s)δQ̌ = −kωM
∣∣
δq̌(0)

q̌(k,c) − kωM
∣∣
q̌(0)

δq̌(k,c) + LNS |q̌(0)

(
δq̌(k,s)

)
+

[
DF̌(k,s)

2|Q̌ + DF̌(k,s)

3|Q̌
]
δQ̌ (20c)

Dωř(0)δω = DωF̌(0)

2|Q̌δω (21a)

Dωř(k,c)δω = δω
(
kM

∣∣
q̌(0)

q̌(k,s)

) + DωF̌(k,c)

2|Q̌ δω (21b)

Dωř(k,s)δω = δω
(−kM

∣∣
q̌(0)

q̌(k,c)

) + DωF̌(k,s)

2|Q̌ δω. (21c)

With these notations, the action of each of the linear operators defined in Eq. (20) may be understood as the

action of a row vector:

Dř(k,c) = [
Dř(k,c;0), Dř(k,c;1,c), Dř(k,c;1,s), . . . , Dř(k,c;N ,c), Dř(k,c;N ,s)

]
6
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Fig. 1. Dependency pattern in the evaluation of the entry (k, j) in the derivative of each operator.

eventually leading to the block definition of the matrix defined in (19). Because the Fourier components with k �= 0

involve both a cosine and a sine, a given entry (k, j) of the Jacobian operator DŘ is a 2 × 2 block if k �= 0 and

j �= 0, a 2 × 1 block if k �= 0 and j = 0, a 1 × 2 block if k = 0 and j �= 0 or 1 × 1 block if k = j = 0. Each

block is computed with respect to a set of harmonics and the mean component. The dependency pattern of each

entry greatly depends on the nonlinearity of the operator: Fig. 1 schematizes the dependency stencil. Evaluation of

the linear operator LNS |q̌(0)
depends uniquely on the mode k and on the mean component. Quadratic nonlinearities

include interactions with modes |k − j | and j + k. Whereas the evaluation of the nonlinear term F̌(k,s)
3 may depend

on the full set of harmonics. For more details consider the detailed description provided in Appendix.

3.3. Resolution of the linear system of equations

The critical part in the algorithm is the resolution of the linear system (18a). Here, the GMRES method is

used for the factorization of the full Jacobian DŘ. Nonetheless, such an approach requires efficient preconditioning

techniques to speed up convergence. In such a way the linear system Eq. (18a) is transformed into:

P−1 DŘ
[
δQ̌n+1, δωn+1

]T = −P−1
[
Ř(Q̌n), g(Q̌n, t = 0)

]T
. (22)

Three outer preconditioning techniques have been considered in this study: Block Jacobi and Block Gauss Seidel
(upper and lower triangular). Let us detail these preconditioning techniques. In the following only the Fourier–

Galerkin residual is considered. The line in the Jacobian operator that corresponds to the phase condition is included

in the set of degrees of freedom of a Dř(i) block. In such a way the block composed of Dř(i) and the phase condition

is not singular and the following preconditioning techniques are applicable.

Block-Jacobi preconditioning considers only blocks that are found on the diagonal, i.e. it does not take into

account interactions with other Fourier components.

PB J (Q̌n, ωn) =

⎡⎢⎢⎢⎢⎢⎢⎣

Dř(0) . . . 0 . . . 0
...

. . .
...

0 . . . Dř(i) . . . 0
...

. . .
...

0 . . . 0 . . . Dř(N )

⎤⎥⎥⎥⎥⎥⎥⎦ (23)

Another possibility consists in the use of a Gauss–Seidel preconditioner. Upper triangular GS solves for each

component by considering interactions with only higher harmonics.

PGSU (Q̌n, ωn) =

⎡⎢⎢⎢⎢⎢⎢⎣

Dř(0) . . . Dř(0,i) . . . Dř(0,N )

...
. . .

...

0 . . . Dř((i)) . . . Dř((i,N ))

...
. . .

...

0 . . . 0 . . . Dř(N )

⎤⎥⎥⎥⎥⎥⎥⎦ (24)

7
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Analogously, lower triangular block GS solves for every component by considering interactions uniquely with lower

harmonics.

PGSL (Q̌n, ωn) =

⎡⎢⎢⎢⎢⎢⎢⎣

Dř(0) . . . 0 . . . 0
...

. . .
...

Dř((i,0)) . . . Dř(i) . . . 0
...

. . .
...

Dř((N ,0)) . . . Dř((N ,i)) . . . Dř(N )

⎤⎥⎥⎥⎥⎥⎥⎦ (25)

The preconditioned linear operator P−1 DŘ of Eq. (22) in the case of BJ is composed of identity blocks in the

diagonal and non-null blocks off-diagonal. Such a procedure is effective when the matrix is diagonally dominant,

e.g. when harmonic components are of small amplitude. Let us consider the expression of P−1 DŘ, particularized

for the above considered preconditioners:

P−1
B J DŘ = P−1

B J PGSL + P−1
B J PGSU − I (26a)

P−1
GSU DŘ = P−1

GSU PGSL − P−1
GSU + I (26b)

P−1
GSL DŘ = P−1

GSLPGSU − P−1
GSL + I, (26c)

in the above expressions the decomposition DŘ = [PGSU + PGSL − PB J ] is assumed. Preconditioners P require

the factorization of diagonal blocks Dř(i). Two methods have been considered, exact factorization (LU) and

Additive-Schwarz Method (ASM) with LU as sub-preconditioner.

3.4. Initial condition

When using a Newton method, an essential point for convergence is to start the process from an initial “guess”

as close as possible to the expected solution. In parametric studies, continuation methods are commonly employed;

namely, we select as initial condition a solution previously computed for close values of the parameters and repeat

the procedure. The question remains on how to obtain a very first solution to initiate the continuation. One may start

the process for parameter values just above the threshold for the onset of the cycle, where Linear Stability Analysis

(LSA) gives a good clue of the solution. The simplest idea is to take the order-zero component as the mean flow

of the LSA, namely Q̌0 = q0, set the order-one components to coincide with the linear eigenmode with some fitted

amplitude ζ , namely Q̌1,c = ζ Re(q̂), Q̌1,s = −ζ I m(q̂), and initialize all higher-order components to zero. This

method may need some fine hand-tuning of the amplitude ζ . A second, more elaborate method is to use Weakly
Nonlinear Analysis (WNL), which provides an approximation of the solution close to the threshold up to order

N = 2. This method is not detailed here; see [7] for a demonstration of this procedure in the incompressible case.

3.5. Summary

To summarize this section, a concise presentation of the whole procedure used to numerically solve the problem

is given in algorithm 1.

4. Numerical approach

The FreeFEM software based on a finite element method is used to solve the problem numerically. An initial

mesh is generated by decomposing the computational domain in triangles via a Delaunay–Voronoi algorithm. A

variational formulation of the problem is then built using P2 (quadratic) elements for each component of the velocity

and P1 (linear) elements for the pressure, temperature and density. Linear systems are solved with the PETSc library

in a parallel context. The parallelization is carried out following a memory distributed paradigm. The system is

decomposed in space into ncores partitions, where ncores is the number of cores. The 2N + 1 Fourier components

associated with the generic partition i are available for the processor i . Sponge regions are used to damp acoustic

waves far from the domain of interest to prevent their reflection. The definition of the sponge region is the same as

in Fani et al. [8].

8
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Algorithm 1 Fourier-Galerkin for compressible Navier Stokes

Require: Initial guess
(
Q̌0, ω0

)
. Parameters M , Re.

1: function FOURIER-GALERKIN(M, Re, Q̌0, ω0)

2: n = 0

3: while ||
[
Ř(Q̌n, ωn), g(Q̌n)

]T |2 < tol do

4: Evaluate [Ř(Q̌n, ωn), g(Q̌n)]

5: Evaluate DŘ(Q̌n, ωn) � Full or matrix-vector function

6: j = 0

7: for j < m do
8: Assemble preconditioner P � e.g. Block Jacobi

9: P−1 DŘn, j

[
δQ̌n, j+1, δωn, j+1

]T = −P−1Řn, j � GMRES

10: (Q̌n, j+1, ωn, j+1) = (Q̌n, j + δQ̌n, j+1, ωn, j + δωn, j+1)

11: j = j + 1

12: end for
13: (Q̌n+1, ωn+1) = (Q̌n + δQ̌n+1, ωn + δωn+1)

14: n = n + 1

15: end while
16: return (Q̌n+1, ωn+1)

17: end function

Fig. 2. Sketch of the computational domain Ω of the uniform flow past a circular cylinder.

Parametric studies and generation of figures are performed using Octave/Matlab with the aid of the generic

drivers of the StabFem project (see a presentation of these functionalities in [7]). According to the philosophy of

this project, a number of example codes generating sample results from the present paper are available online (htt

ps://gitlab.com/stabfem/StabFem).

Note that in the numerical implementation, we make an extensive use of mesh adaptation to ensure that spatial

convergence is reached. The mesh is adapted either to a base flow and a linear eigenmode following the procedure

explained in [7], or to the whole set of fields constituting the Fourier coefficients of the flow. Such adaptations are

repeated several times during the parametric studies, and each time, the solution is projected onto the new mesh

and used as starting point to relaunch the Newton iteration.

5. Results

5.1. Flow past a cylinder

5.1.1. Definition of the problem
The first example is the flow past a circular cylinder, a canonical configuration extensively studied in the literature

in the incompressible [7,22] and compressible [8,23] setting. Cross-validations with literature are carried out to

9
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Fig. 3. (a) Evolution of the Strouhal fundamental frequency with Re. Experimental reference was taken from Carte et al. [24] and DNS

data from Inoue et al. [25]. (b) Amplitude of the limit cycle. DNS reference data was reported by Mantic et al. [4].

Fig. 4. Vorticity field at Re = 150 and M = 10−1. (a) Mean component. (b) q̌(1,c) component. (c) q̌(2,c) component.

Fig. 5. Re = 150 and M = 0.2. (a) Pressure distribution around the cylinder. (b) Decay of pressure distribution at θ = π
2

. Markers report

reference data from [25].

assess the precision of the method. In addition the numerical performance of linear solvers is evaluated in this case

study.

A schematic representation of the computational domain Ω is shown in Fig. 2. Governing equations are

complemented with the following boundary conditions: uniform velocity U∞, density ρ∞ and temperature T∞ at

boundaries Γin , Γup, Γdown , Γout and no-slip adiabatic wall at the cylinder surface. The computational domain is a

square of size (300D × 300D) which is immersed into a sponge domain of (1000D × 1000D). The chosen sponge

size, which is around six wavelengths of the acoustic disturbance at M = 10−2 in each direction, is sufficient to

prevent any acoustic reflection from the boundaries of the domain Ω . The auxiliary function g(Q̌) needed to fix the

phase of the cycle was defined as g(Q̌) = Fy(t = 0) ≡ ∫
Γw

(
[−pI + τ (u)]t=0 · n

)
· eyd, where Γw is the cylinder

wall, so that the instant t = 0 corresponds to a zero of the oscillating lift exerted on the cylinder.

10
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Fig. 6. Spectral reconstruction of the solution at Re = 150 and M = 10−1. Gray-scale to distinguish the amplitude of each harmonic, lighter

grays are used for higher harmonics.

Fig. 7. Evolution of the total number of iterations of the inexact factorization with the ASM method of inner blocks with respect to the

tolerance of the ASM procedure. Likewise, total number of GMRES iterations for the resolution of the nonlinear problem with respect to the

ASM tolerance. Parameters Re = 150, M = 0.1, N = 2 with a numerical domain composed of 1.3 · 105 elements and the lower triangular

Gauss Seidel as the outer preconditioner.

A comparison with other results reported in the literature is shown in Fig. 3. As can be seen (Fig. 3a), the

frequency of the limit cycle is reliably evaluated even with a truncation to a single harmonic (N = 1). However, it

fails to faithfully estimate its amplitude A =
(∑N

n=1

∥∥q̌(n)

∥∥2

L2(Ω)

) 1
2
. By contrast, a truncated Fourier basis with order

N = 2 is sufficient to correctly predict the amplitude in the studied interval, namely Re ∈ [Rec, 100]. For higher

Reynolds numbers, e.g. Re = 150, a larger number of harmonics (N > 2) still modifies the spectral reconstruction,

see Fig. 6. Such a figure displays the spectral content of the solution at Re = 150 and M = 10−1. A high-fidelity

reconstruction of the periodic solution can be obtained with N ≥ 4, where the last mode displays a much smaller

amplitude than the others.

Fig. 4 portrays the structure of the Fourier components reconstructing the vortex shedding cycle for Re = 150

and M = 10−1. The structure of the mean flow and first harmonic are in good accordance with [8], but the

second harmonic was not computed by these authors. Moreover, to assess the capability of the methodology to

correctly reconstruct the solution both in the near field (governed by hydrodynamics) and in the far field (governed

by acoustics), Fig. 5 represents the structure of the pressure field for the parameter values M = 2 · 10−1 and

Re = 150, with a truncation N = 2. The comparison with reference data from the Direct Numerical Simulations

(DNS) of Inoue et al. [25] is excellent, both for pressure along the cylinder wall (Fig. 5a), and along the vertical

line defined by x = 0 (Fig. 5b).

5.1.2. Performance evaluation
Let us now use this test case to assess the performance of numerical algorithms to efficiently solve linear systems

such as Eq. (18a). The tolerance to achieve the convergence of the Newton method corresponds to the L2 norm of

the Newton update of Eq. (18a), i.e. ‖δx‖L2 =
√

‖δQ̌‖2
L2 + |δω|2, lower than 10−8. Likewise, the relative tolerance

of the GMRES procedure (the ratio of the L2 norm of the residual at the 1st iteration with respect to the i th
iteration) for convergence is set to 10−5. The resolution of the linear problems whose associated matrix is an inner
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Fig. 8. Same parameters and mesh refinement as Fig. 7. (a) Evolution of relative residual versus cumulative Krylov vectors for the

three preconditioners. (b) Evolution of the relative residual versus number of GMRES iterations for several restart configurations (outer

preconditioner GSU).

Fig. 9. (a) Dependency of GMRES iteration number with respect to the level of refinement of the computational domain at Re = 150 and

M = 0.1 with N = 2. (b) Number of GMRES iterations as a function of Reynolds number and outer preconditioner with N = 2. Dashed

line denotes the corrected number of GMRES iterations with the Block–Jacobi preconditioning.

block diagonal Dř(i), described in Section 3.3, is carried out with two approaches. If memory is not an issue, each

block in the diagonal (of the Block-Jacobi or Gauss–Seidel preconditioners) is LU factorized. Otherwise an ASM

preconditioner is used to solve the linear problems associated with inner blocks and the tolerance is varied from

10−3 to 10−7 (cf. Fig. 7). The GMRES approach takes 103 iterations with LU factorization of inner blocks; the

number of GMRES iterations (107) reaches a minimum for a relative tolerance of the ASM approach of 10−5

(cf. Fig. 7), which shows weak independence of the GMRES procedure on the method used for the resolution of

the inner diagonal blocks. On each GMRES iteration a Krylov vector is used (no restart). So the total number of

Krylov vectors is equal to the number of GMRES iterations. Fig. 8a reports the evolution of the relative residual

versus the cumulative number of Krylov vectors. In addition, on the same problem we tested the effect of nKry , the

number of Krylov vectors retained in the basis (restarted GMRES). As expected the convergence rate deteriorates,

but convergence is still reached in a reasonable number of iterations.

As reported in Fig. 9b, the number of GMRES iterations per Newton iteration increases quadratically with

Reynolds number. In terms of GMRES iterations, the block diagonal preconditioning is less efficient than the other

two but they follow the same trend as Re increases. Nonetheless, the GS preconditioning performs an additional

number of N (2N + 1) matrix–vector products, which is around 50% more block matrix–vector operations than BJ;

therefore, one should correct the number of GMRES iterations by a factor 1.5, which is displayed in Fig. 9 with

a dashed line. The methodology is also independent, as long as it is sufficient to reconstruct the solution from the

number of harmonics and grid refinement, the latter reported in Fig. 9a. Finally a linear memory gain relative to an

increasing length of the Fourier basis has been reported by Sierra et al. [26] with respect to the direct factorization

of the full Jacobian operator.
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Table 1
Wall-clock time required for convergence with eight processors for Re = 150 and

numerical domain composed of 1.4 · 104 elements.

N /Method Fourier–Galerkin Explicit TSM Implicit TSM

M = 3 · 10−1

N = 4 2344 s 2451 s 8345 s

N = 5 2645 s 2992 s 9745 s

N = 6 3049 s 3250 s 11 121 s

M = 10−1

N = 4 2357 s 7745 s 22 355 s

N = 5 2591 s 8454 s 26 341 s

N = 6 3063 s 9721 s 31 545 s

M = 10−2

N = 4 2297 s 73 320 s 92 673 s

N = 5 2618 s 83 450 s 103 673 s

N = 6 3104 s 91 680 s 1 209 452 s

For the sake of comparison with other similar methodologies, authors have considered the Time spectral method

(TSM), which solves the following nonlinear problem

Mτ,K DFT Ω̌
τ,K D−1

FT Q + L
(
Q

) + F2

(
Q, Q

) + F3

(
Q, Q, Q

) = 0, (27)

where Ω̌ τ,K
k =

[
0 kω

−kω 0

]
, Ω̌ τ,K

0 = 0, DFT denotes the discrete Fourier Transform operator (resp. D−1
FT

corresponds to the inverse Fourier transform operator) and Mτ,K is the mass matrix M evaluated at each sampled

instance. TSM requires the invertibility of forward and inverse discrete Fourier transforms. Therefore, the number of

samples K must be fixed to K = 2N+1. TSM is commonly adapted from an already existing code via a pseudo-time
integration approach (see e.g. [27]): an extra pseudo-time derivative M ∂Q

∂tps
is added as a source term to Eq. (27).

The resulting equations are solved in a pseudo-time direction until the stationary solution of the TSM formulation

is reached. Note that the stationary solution of the TSM formulation is a spectral reconstruction of a periodic

solution of the original system of equations. Such a technique is relative easy to implement as it only requires to

add the TSM time-derivative on an already existing code. However, the pseudo-time marching approach is not able

to directly compute an unstable periodic solution without stabilization procedures, see for instance BoostConv [28].

Furthermore, the efficiency of the approach depends on the CFL parameter of the pseudo-time step Δtps which is

constrained as

Δtps = CFL
U∞

h (1 + 1
M ) + ωN

(28)

where h is a measure of the size of the grid spacing and an extra term ωN is added due to the extra pseudo-time

derivative. In acoustic applications, i.e. when 1
M � 1 the CFL condition is roughly simplified to Δtps ≈ CFL hM

U∞ ;

from a practical point of view, O( 1
M ) additional iterations are required with respect to the integration of the classical

Navier–Stokes equations.

We carried out an accurate comparison at Re = 150 for three Mach numbers (M = 3 · 10−1, M = 10−1 and

M = 10−2), with N = 4, 5, 6. The TSM data are computed by using the OpenSource SU2 code [29], where a

finite volume implementation of the TSM method is available. The dual-time integration is realized with either the

classical fourth-order Runge–Kutta method or with an implicit Euler iteration at the largest CFL allowed by stability

constraints.

Regarding the initial condition, the Fourier–Galerkin–Newton–Krylov approach is initialized with a previous

frequency reconstruction at another Mach or Reynolds number (either with the same or less number of harmonics

N ). Whereas, for the TSM, the initial solution consists of a snapshot of a DNS with the same set of parameters

(Re, M). Such a choice was verified a posteriori to be faster than to initialize the TSM computation with a series

of snapshots for another parameter configuration as it is done for FG. Additionally, TSM requires ω and T as an
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Table 2
Average memory consumption for the resolution of the linear system Eq. (22) in a Newton iteration of

the Fourier–Galerkin approach with ncores = 8 with a numerical mesh of 7 · 104 elements for Re = 150,

M = 10−1.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Mem.(Gb) 13.5 Gb 24.5 Gb 34.1 Gb 41.1 Gb 53.6 Gb 64.2 Gb

Table 3
Average memory consumption for the resolution of the linear system Eq. (22) in a Newton iteration of the

Fourier–Galerkin approach with N = 4 and a mesh of 1.4 · 105 elements for Re = 150, M = 10−1.

ncores = 8 ncores = 16 ncores = 32 ncores = 64

Mem.(Gb) 75 Gb 93 Gb 129 Gb 171 Gb

input to evaluate the time derivative term. For our test, we have chosen a pair (ω, T ) previously computed by

a DNS. Sensitivity issues to an incorrect selection of the pair (ω, T ) are discussed in Nimmagadda et al. [29].

Both approaches are computed with distinct codes and two different meshes has been used. In order to have a fair

comparison, both numerical domains are composed of approximately 1.4 ·104 elements (triangles for FG and quads

for TSM).

In reference to the numerical performance, let us first remark the similarity in terms of wall-clock time and

memory requirements of the implicit integration of a dual time-step and a GMRES iteration of the Newton–Krylov–

Fourier–Galerkin approach cf. [29,30]. However, a formal correspondence between explicit TSM and FG in terms

of residual evaluations or matrix–vector products does not seem evident. Therefore, a numerical comparison of

both approaches has been carried out in a eight cores Intel i7-9700 architecture. Table 1 reports the wall-clock time

required for convergence (norm of the residual below 10−6). Fourier–Galerkin and explicit TSM record a similar

wall-clock time for M = 3 · 10−1, however TSM suffers a linear increase in the wall-clock time with the 1
M factor.

Therefore, as the Mach number decreases FG rapidly outperforms TSM in wall-clock time due to the CFL constraint

on the pseudo time.

Finally, let us discuss the memory requirements of the Newton–Krylov methodology on two meshes with two

different levels of refinement. M1 is composed of around 1.4 · 105 elements and M2 has around 7 · 104 elements.

Tests on memory requirements have been carried out on a cluster node equipped with 64 Intel(R) Xeon(R) CPU

E5-4610 processors and 256 GB of RAM memory. The first test, carried out on mesh M2, assess the average

memory consumption for the resolution of the linear system associated with each Newton iteration (Eq. (22)).

These were performed with eighth processors for parameters Re = 150 and M = 10−1 and upper Gauss–Seidel as

preconditioning. Table 2 reports a sub-linear memory increasing with a empirical factor N 0.8. Such a factor is mainly

due to the direct factorization of each block diagonal of the Jacobian Eq. (19). Similar results have been reported

for the implicit TSM cf. [31,32]. The second performance test evaluates the memory scalability with respect to the

number of processors; the results are reported in Table 3. A 30% increase of memory consumption is observed

each time the number of processors is doubled. More studies regarding the scalability of the methodology have

been previously carried out [26].

Finally, we highlight that the TSM wall-clock time reported in Table 1 requires the exact knowledge of the

frequency ω. As a consequence, the total time required to get a given solution should take into account also the

need to compute such a frequency. Our approach, on the other hand, directly characterizes the frequency within the

global solution.

5.2. Whistling jet

The second test case is the flow passing through two circular holes in a plate (known as the hole-tone

configuration). Such a flow configuration is encountered in many practical applications, including human whistling,

wind instruments, whistling of a tea kettle [33], or birdcalls (devices used by hunters to imitate bird singing) [34,35].

In this study Fourier–Galerkin formalism is adopted with N = 2, 3 to study the self-sustained hydrodynamic

instability and the radiation of sound past the unsteady onset. The physical domain and mesh structure are the same

as in [35]. The numerical domain Ω is axisymmetric, as depicted in Fig. 10, with size (800Rh,1 × 400Rh,1) (z × r ).
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Fig. 10. Sketch of the hole-tone configuration, frame of reference and definition of geometrical parameters. An example of computational

mesh is also reported in light gray. An actual birdcall is depicted in the upper right corner. For details about the used geometry see [35].

Fig. 11. (a) Evolution of the Strouhal fundamental frequency with Re. (b) Amplitude of the limit cycle.

Fig. 12. Sound directivity at Re = 350 and M = 0.02 at a distance r = 35. Pressure variation Δp′ is scaled by γ M2.

The problem is complemented with appropriate boundary conditions: adiabatic no-slip walls, inlet mass flux

such as the flow rate across the first hole is equal to unity and sponge layers of the order of three to four acoustic

wavelengths at the far field. The sponge definition is the same as in [8]. The auxiliary function g(Q̌) needed to fix

the phase of the cycle was defined as g(Q̌) = ∫
Γh1

[(u(t = 0) − u0) · n] d S, where Γh1 is the cross section of the

first hole, so that the instant t = 0 corresponds to a zero of the oscillating volume flow across the hole.

Fig. 11 shows the frequency and amplitude of the cycle as a function of Re, computed with respectively N = 2

and N = 3 truncations. In the current configuration, a truncated Fourier basis with order two seems sufficient since

the results for N = 2 and N = 3 only differ by a few percents. Note that the flow is steady until the threshold of

the first unsteadiness, which is located at Rec ≈ 332.5. This threshold value was first determined by linear stability

analysis. The initial guess for the Fourier–Galerkin method with Re > Rec was obtained with a weakly nonlinear

expansion and continuation was used afterwards while increasing Re.

The current approach provides direct access to the harmonic decomposition of sound directivity, reported in

Fig. 12. The interaction between the jet and the two holes acts as a monopole aerodynamic source with different

intensities upstream and downstream the cavity. The total sound radiation is of higher intensity upstream than

downstream the obstacle, nonetheless the first harmonic behaves nearly as an isotropic monopole and the third

harmonic radiates with higher intensity in the positive z direction.
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Fig. 13. Pressure component of acoustic and hydrodynamic perturbations at Re = 350 and M = 0.02 with N = 3. Pressure variation Δp′
is scaled by γ M2.

The whistling jet test case is a perfect example of what is called in the theory of numerical analysis a stiff problem.

Namely, the ratio between the two velocity scales (acoustic and hydrodynamic) of the flow is large, therefore the

time step is greatly constrained with respect to an application where the fast velocity scale is not of interest. A

reconstruction of a time series of the periodic flow separating both hydrodynamic and acoustic scales is displayed

in Fig. 13. Time integration with common numerical schemes, e.g. Runge–Kutta method, of a single point (fixed

Re and M) of Fig. 11 requires the integration of several flow time scales, T = 1
St . Moreover, the maximum time

step of an explicit time integrator is governed by the fast time scale which is of the order Δt ≈ O(M). This implies

that the simulation of the compressible Navier–Stokes equations at low-Mach-number would take approximately

an O(M−1) the amount of time necessary for a incompressible simulation. The analysis of acoustic radiation at
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the low-Mach-number limit usually becomes prohibitively expensive and it requires the use of low-Mach-number

limit approximations, where different scales are solved sequentially with a one-way feedback, see Nana et al. [36].

Fourier–Galerkin approach applied to compressible flows is intended to open new possibilities in the study of flows

of acoustic and aeroacoustic interest at low-Mach-number since the CFL constraint does not hold. Additionally, the

approach could be adapted to track quasiperiodic solutions by the consideration of two incommensurate frequencies

and their interactions.

6. Conclusion

An efficient methodology for the computation of periodic flow solutions has been presented. The approach is

based on the orthogonal projection of the sought solution on a truncated Fourier basis. The parametrized limit

cycle is then directly accessible by solving a fixed point problem without the requirement of solving for transients.

Krylov–Newton method has been selected for the resolution of the nonlinear residual problem Eq. (15). That sort

of approach necessitates efficient preconditioning techniques, in the current study two layers of preconditioners are

proposed and their performance has been tested in the flow past the circular cylinder in Section 5.1.1. Assembling

of the Jacobian and residual operators, as well as the solution of the nonlinear problem is effectuated in a parallel

framework. A comparison with similar spectral techniques has been demonstrated in Section 5.1.2, where it is shown

the absence of a CFL-like condition for the Fourier–Galerkin approach. The latter property is significant for the

reconstruction of solutions of stiff problems. Finally, the hole-tone configuration serves as a test case to demonstrate

the ability of the technique to accurately reconstruct the two flow scales.

To conclude, we stress again that in addition to being efficient for computation of a cycle for a single set of

parameters, our implementation is designed to perform parametric studies using a continuation method. Namely,

once we have computed a cycle, taking it as an initial condition to relaunch the Newton iteration for nearby values

of the parameter generally converges in only a few iterations. This procedure still needs an initial guess. In the

present paper, the latter is constructed for parameters just above the instability onset using a weakly nonlinear

expansion. Another possibility is to initialize the approach with a previous solution of a time-stepping simulation.

This procedure has not been demonstrated here but might be simpler as any available software performing DNS

may be used. Another advantage of the methodology is the ability to track unstable periodic cycles. Such solutions

are not accessible with usual time-stepping DNS, but they are important when characterizing the dynamics from

a dynamical system perspective, as their knowledge allows to understand more complex dynamics involving, for

instance quasi-periodic orbits or chaotic attractors [37,38].
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Appendix. Fourier Galerkin equations

Let us detail the derivation of Fourier–Galerkin equations Eq. (15). For the sake of self-consistency let us first

summarize the Fourier–Galerkin equations:

ř(0) = LNS |q̌(0)

(
q̌(0)

) + F̌(0)
2

(
Q̌

) + F̌(0)
3

(
Q̌

)
(A.1a)

ř(k,c) = kωM|q0
q̌(k,s) + LNS |q̌(0)

(
q̌(k,c)

) + F̌(k,c)
2

(
Q̌

) + F̌(k,c)
3

(
Q̌

)
(A.1b)

ř(k,s) = −kωM|q0
q̌(k,c) + LNS |q̌(0)

(
q̌(k,s)

) + F̌(k,s)
2

(
Q̌

) + F̌(k,s)
3

(
Q̌

)
(A.1c)

where nonlinear operators in the Fourier basis F̌(i)
(
Q̌

)
have been explicitly written using their quadratic and

cubic contributions. The first step in an explicit derivation of Eq. (A.1) consists on the injection of the Fourier
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Table A.4
Summary of trigonometric identities. c and s denote cosinus and sinus functions.

Each term of the right (sum) is multiplied by a factor of 1
4

.

Product Sum

m n  n + m +  n + m −  n +  − m m +  − n

c c c c c c c
c c s s −s s s
c s c s s s −s
c s s −c c −c c
s c c s s −s s
s c s −c c c −c
s s c −c −c c c
s s s −s s s s

representation of the sought solution Eq. (14) into the governing equations:∑N
n=1 LNS |q̌(0)

(
q̌(0)

) +
[
−kωM|q0

q̌(k,c) + LNS |q̌(0)

(
q̌(n,s)

)]
sin(nωt)

+
[
kωM|q0

q̌(k,s) + LNS |q̌(0)

(
q̌(n,c)

)]
cos(nωt)

+ ∑N
n=1

∑N
m=1

[
F2

(
q̌(n,s), q̌(m,s)

)
sin(nωt)sin(mωt)

+ F2

(
q̌(n,s), q̌(m,c)

)
sin(nωt)cos(mωt)

+ F2

(
q̌(n,c), q̌(m,s)

)
cos(nωt)sin(mωt)

+ F2

(
q̌(n,c), q̌(m,c)

)
cos(nωt)cos(mωt)

]
+ ∑N

n=1

∑N
m=1 nω

[
−M

∣∣
q̌(m,s)

q̌(n,c)sin(nωt)sin(mωt)

− M
∣∣
q̌(m,c)

q̌(n,c)sin(nωt)cos(mωt)

+ M
∣∣
q̌(m,s)

q̌(n,s)cos(nωt)sin(mωt) + M
∣∣
q̌(m,c)

q̌(n,s)cos(nωt)cos(mωt)
]

+ ∑N
=1

∑N
n=1

∑N
m=1

[
F3

(
q̌(,s), q̌(n,s), q̌(m,s)

)
sin(ωt)sin(nωt)sin(mωt)

+ F3

(
q̌(,c), q̌(n,s), q̌(m,s)

)
cos(ωt)sin(nωt)sin(mωt)

+ F3

(
q̌(,s), q̌(n,s), q̌(m,c)

)
sin(ωt)sin(nωt)cos(mωt)

+ F3

(
q̌(,c), q̌(n,s), q̌(m,c)

)
cos(ωt)sin(nωt)cos(mωt)

+ F3

(
q̌(,s), q̌(n,c), q̌(m,s)

)
sin(ωt)cos(nωt)sin(mωt)

+ F3

(
q̌(,c), q̌(n,c), q̌(m,s)

)
cos(ωt)cos(nωt)sin(mωt)

+ F3

(
q̌(,s), q̌(n,c), q̌(m,c)

)
sin(ωt)cos(nωt)cos(mωt)

+ F3

(
q̌(,c), q̌(n,c), q̌(m,c)

)
cos(ωt)cos(nωt)cos(mωt)

]
= 0

(A.2)

Prior to the weighted residual step, it is convenient to work out trigonometric products of A.2 to cos(kωt) (resp.

sin(kωt)) where 0 ≤ k ≤ N .

Table A.4 summarizes the set of identities to rearrange products of trigonometric terms into sum of terms of

the Fourier basis. In the following, instead of working with non-symmetric operators as F3, let us use symmetric

operators as F(sym)
3 . Symmetric operators simplify the derivation of Fourier–Galerkin nonlinear terms F̌(i,c) (resp.

F̌(i,s)). Such a choice allows to uniquely consider a set of terms with argument (n + m + )ωt and (n + m − )ωt
because the symmetric operator intrinsically considers the other set of terms whose arguments are (n − m + )ωt
and (−n + m + )ωt . Nonetheless, special care must be paid to consider unique terms, which is effectuated by the

coefficient multiplying each term. In addition, the permutation of (m, n) by (n, m) does not change terms whose

argument is (n+m−)ωt , which implies that only six terms of this kind are possible for each (m, n) m+n ≤ N +k,

listed in Table A.5. Analogously, for terms whose arguments are of the kind (n + m + )ωt only four terms are

possible, reported in Table A.6 with their corresponding coefficients.

18



J. Sierra-Ausin, V. Citro, F. Giannetti et al. Computer Methods in Applied Mechanics and Engineering 393 (2022) 114736

Table A.5
Coefficients of terms whose argument is of the kind (n + m − )ωt . Element pairs

(m, n) = (n, m) are considered the same.

Index Coefficient

(m, n)  n + m −  = k

(c, c) c 1
8

c

(c, s) s 1
4

c

(s, s) c − 1
8

c

(c, s) c 1
4

s

(c, c) s − 1
8

s

(s, s) s 1
8

s

Table A.6
Coefficients of terms whose argument is of the kind (n + m + )ωt . Same legend as

in Table A.5.

Index Coefficient

(m, n, ) n + m +  = k

(c, c, c) 1
24

c

(c, s, s) − 1
8

c

(c, c, s) 1
8

s

(s, s, s) − 1
24

s

A.1. Fourier–Galerkin nonlinear terms of third degree

Once the nonlinear terms of the third degree are written as coefficients of elements of the Fourier basis, the

derivation of the Fourier–Galerkin expression of F̌(i)
3

(
Q̌

)
is immediate:

F̌(0)
3

(
Q̌

) = 1

8

N−1∑
m=1,n=1
m+n≤N

[
2F(sym)

3

(
q̌(n,s), q̌(m,c), q̌(n+m,s)

)
− F(sym)

3

(
q̌(n,s), q̌(m,s), q̌(n+m,c)

)
+ F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(n+m,c)

)]
(A.3a)

F̌(k,c)
3

(
Q̌

) = 1

8

N∑
m=1,n=1

m+n≤N+k

[
2F(sym)

3

(
q̌(n,s), q̌(m,c), q̌(n+m−k,s)

)
− F(sym)

3

(
q̌(n,s), q̌(m,s), q̌(n+m−k,c)

)
+ F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(n+m−k,c)

)]
+ 1

24

k−2∑
m=1,n=1
m+n≤k−1

[
F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(k−n−m,c)

)
− 3F(sym)

3

(
q̌(n,c), q̌(m,s), q̌(k−n−m,s)

)]
(A.3b)

F̌(k,s)
3

(
Q̌

) = 1

8

N∑
m=1,n=1

m+n≤N+k

[
2F(sym)

3

(
q̌(n,c), q̌(m,s), q̌(n+m−k,c)

)
− F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(n+m−k,s)

)
19
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+ F(sym)
3

(
q̌(n,s), q̌(m,s), q̌(n+m−k,s)

)]
+ 1

24

k−2∑
m=1,n=1
m+n≤k−1

[
−F(sym)

3

(
q̌(n,s), q̌(m,s), q̌(k−n−m,s)

)
+ 3F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(k−n−m,s)

)]
(A.3c)

A.2. Fourier-Galerkin nonlinear terms of second degree

Analogously, the quadratic operator F̌(i)
2

(
Q̌

)
is written as:

F̌(0)
2

(
Q̌

) = 1

4

N∑
n=1

[
2FM

2,(nω,nω)

(
q̌(n,s), q̌(n,c)

)
+ F(dya)

2

(
q̌(n,c), q̌(n,c)

)
+ F(dya)

2

(
q̌(n,s), q̌(n,s)

)]
(A.4a)

F̌(k,c)
2

(
Q̌

) = 1

2

N∑
n=k+1

[
FM

2,((k−n)ω,nω)

(
q̌(n,s), q̌(n−k,c)

)
+ FM

2,(−nω,(n−k)ω)

(
q̌(n−k,s), q̌(n,c)

)
+ F(dya)

2

(
q̌(n,c), q̌(n−k,c)

)
+ F(dya)

2

(
q̌(n,s), q̌(n−k,s)

)]
+1

4

k−1∑
n=1

[
FM

2,(kω,kω)

(
q̌(n,s), q̌(k−n,c)

)
+ F(dya)

2

(
q̌(n,c), q̌(k−n,c)

)
− F(dya)

2

(
q̌(n,s), q̌(k−n,s)

)]
(A.4b)

F̌(k,s)
2

(
Q̌

) = 1

2

N∑
n=k+1

[
FM

2,((n−k)ω,−nω)

(
q̌(n,c), q̌(n−k,c)

)
+ FM

2,(−nω,(n−k)ω)

(
q̌(n−k,s), q̌(n,s)

)
+ F(dya)

2

(
q̌(n,s), q̌(n−k,c)

)
− F(dya)

2

(
q̌(n,c), q̌(n−k,s)

)]
+ 1

4

k−1∑
n=1

[
FM

2,((k−n)ω,nω)

(
q̌(n,s), q̌(k−n,s)

)
+ FM

2,(−nω,(n−k)ω)

(
q̌(k−n,c), q̌(n,c)

)
+ 2F(dya)

2

(
q̌(k−n,c), q̌(n,s)

)]
(A.4c)

Please also note the definition of the new dyadic operator FM
2,(a,b):

FM
2,(a,b)

(
q̂i , q̂ j

) ≡ aM
∣∣
q̂i

q̂ j + bM
∣∣
q̂ j

q̂i (A.5)

where M
∣∣
q̂ j

= diag(1, ρ̂ j I, ρ̂ j , 0).
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A.3. Jacobian operator

Let us consider the Jacobian operator of the Fourier–Galerkin residual Eq. (A.1):

Dř(0)δQ̌ = LNS |q̌(0)

(
δq̌(0)

)
+

[
DF̌(0)

2|Q̌ + DF̌(0)

3|Q̌
]
δQ̌ (A.6a)

Dř(k,c)δQ̌ = kωM
∣∣
δq̌(0)

q̌(k,s) + kωM
∣∣
q̌(0)

δq̌(k,s) + LNS |q̌(0)

(
δq̌(k,c)

)
+

[
DF̌(k,c)

2|Q̌ + DF̌(k,c)

3|Q̌
]
δQ̌ (A.6b)

Dř(k,s)δQ̌ = −kωM
∣∣
δq̌(0)

q̌(k,c) − kωM
∣∣
q̌(0)

δq̌(k,c) + LNS |q̌(0)

(
δq̌(k,s)

)
+

[
DF̌(k,s)

2|Q̌ + DF̌(k,s)

3|Q̌
]
δQ̌ (A.6c)

where LNS (−kω)

|q̌(0)

(
q̌(k,c)

)
and M

∣∣
δq̌(0)

are linear operators. So, it is left to compute the derivative of nonlinear terms

with respect to Q̌, noted DF̌(k,s)

2|Q̌ and DF̌(k,s)

3|Q̌ , along with the derivative with respect to ω:

Dωř(0)δω = DωF̌(0)

2|Q̌δω (A.7a)

Dωř(k,c)δω = δω
(
kM

∣∣
q̌(0)

q̌(k,s)

) + DωF̌(k,c)

2|Q̌ δω (A.7b)

Dωř(k,s)δω = δω
(−kM

∣∣
q̌(0)

q̌(k,c)

) + DωF̌(k,s)

2|Q̌ δω (A.7c)

Terms DωF̌(0)

2|Q̌, DωF̌(k,s)

2|Q̌ and DωF̌(k,c)

2|Q̌ will be detailed in the following section.

A.4. Jacobian operator of Fourier–Galerkin nonlinear terms of third degree

The Jacobian operator of Eq. (A.3) is a linear operator composed of 2 × 2 blocks for each harmonic component,

except the mean flow component. Jacobian operators of high degree of nonlinearity lead to dense representations

of derivative operators in the frequency domain, that is, the interactions between harmonics greatly depend on the

degree of nonlinearity. The blocks of the Jacobian corresponding to the mean flow component are expressed as:

DF̌(0; j,s)
3 δq̌( j,s) = 1

4

min (N− j,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌( j+m,s)

)
+ 1

4

min ( j−1,1)∑
m=1

F(sym)
3

(
q̌( j−m,s), q̌(m,c), δq̌( j,s)

)
− 1

4

min (N− j,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌( j+m,c)

)
(A.8a)

DF̌(0; j,c)
3 δq̌( j,c) = 1

4

min (N− j,1)∑
m=1

F(sym)
3

(
q̌(m,s), δq̌( j,c), q̌( j+m,s)

)
− 1

8

min ( j−1,1)∑
m=1

F(sym)
3

(
q̌( j−m,s), q̌(m,s), δq̌( j,c)

)
+ 1

4

min (N− j,1)∑
m=1

F(sym)
3

(
q̌(m,c), δq̌( j,c), q̌( j+m,c)

)
+ 1

8

min ( j−1,1)∑
m=1

F(sym)
3

(
q̌( j−m,c), q̌(m,c), δq̌( j,c)

)
(A.8b)
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Similarly, the cosinus lines of the Jacobian are expressed as:

DF̌(k,c; j,s)
3 δq̌( j,s) = 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌( j+m−k,s)

)

+ 1

4

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌( j+k−m,s), q̌(m,c), δq̌( j,s)

)
− 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌( j+m−k,c)

)

− 1

4

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌(k− j−m,s)

)
(A.9a)

DF̌(k,c; j,c)
3 δq̌( j,c) = 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,s), δq̌( j,c), q̌( j+m−k,s)

)

− 1

8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌(m,s), q̌( j+k−m,s), δq̌( j,c)

)
+ 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,c), δq̌( j,c), q̌( j+m−k,c)

)

+ 1

8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌(m,c), q̌( j+k−m,c), δq̌( j,c)

)
+ 1

8

min (k− j−1,1)∑
m=1

F(sym)
3

(
q̌(m,c), q̌(k−m− j,c), δq̌( j,c)

)
− 1

8

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,c), q̌(m,s), q̌(k−m− j,s)

)
(A.9b)

and finally the derivative of sinus components:

DF̌(k,s; j,s)
3 δq̌( j,s) = 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌( j+m−k,c)

)
− 1

8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌( j+k−m,c), q̌(m,c), δq̌( j,s)

)
+ 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌( j+m−k,s)

)
+ 1

8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌( j+k−m,s), q̌(m,s), δq̌( j,s)

)
− 1

8

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌(k− j−m,s)

)
+ 1

8

min (k− j−1,1)∑
m=1

F(sym)
3

(
q̌(k− j−m,c), q̌(m,c), δq̌( j,s)

)
(A.10a)
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DF̌(k,s; j,c)
3 δq̌( j,c) = 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,s), δq̌( j,s), q̌( j+m−k,s)

)
+ 1

4

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌(m,c), q̌( j+k−m,s), δq̌( j,c)

)
− 1

4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,c), δq̌( j,c), q̌( j+m−k,s)

)
+ 1

4

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,c), q̌(m,c), q̌(k−m− j,s)

)
(A.10b)

A.5. Jacobian operator of Fourier–Galerkin nonlinear terms of second degree

Let us now detail the expressions of quadratic nonlinear terms. Please note that some of the terms do not appear

because their index is higher than N or lower than one. In the following, those terms whose index is equal to k − j
may uniquely be present if j ≤ k + 1. Similarly those terms whose index is k + j should respect k + j ≤ N . Terms

which do not satisfy the previous relations are implicitly suppressed.

DF̌(0)δq̌( j,c) = 1

2
FM

2,(− jω, jω)

(
q̌( j,s), δq̌( j,c)

) + 1

2
F(dya)

2

(
q̌( j,c), δq̌( j,c)

)
(A.11a)

DF̌(0)δq̌( j,s) = 1

2
FM

2,(− jω, jω)

(
δq̌( j,s), q̌( j,c)

) + 1

2
F(dya)

2

(
q̌(n,s), δq̌(n,s)

)
(A.11b)
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Prior to the introduction of the derivative of the quadratic nonlinear term with respect to ω, let us define the

derivative with respect to ω of the generic operator FM
2,( jω,kω)

(
q̌(a), q̌(b)

)
:

DωFM
2,( jω,kω)

(
q̌(a), q̌(b)

) = (
jM

∣∣
q̌(a)

q̌(b) + kM
∣∣
q̌(b)

q̌(a)

)
(A.12)

Then the definition of DωF̌(0)

2|Q̌, DωF̌(k,s)

2|Q̌ and DωF̌(k,c)

2|Q̌ is as follows,

DωF̌(0)

2|Q̌δω = 1

2
δω

N∑
j=1

DωFM
2,(− j, j)

(
q̌( j,s), q̌( j,c)

)
(A.13a)

DωF̌(k,c)

2|Q̌ δω = δω
[ 1

4

k−1∑
j=1

DωFM
2,(k,k)

(
q̌( j,c), q̌(k− j,s)

)
+ 1

2

N∑
j=i+1

DωFM
2,(k− j,− j)

(
q̌( j,c), q̌(k− j,s)

)
+ 1

2

N∑
j=i+1

DωFM
2,(k− j, j)

(
q̌( j,s), q̌(k− j,c)

) ]
(A.13b)

DωF̌(k,s)

2|Q̌ δω = δω
[ 1

4

k−1∑
j=1

DωFM
2,(k− j, j)

(
q̌( j,s), q̌(k− j,s)

)
+ 1

4

k−1∑
j=1

DωFM
2,(k− j,− j)

(
q̌( j,c), q̌(k− j,c)

) ]
(A.13c)

+ 1

2

N∑
j=i+1

DωFM
2,( j−k,− j)

(
q̌( j,s), q̌(k− j,s)

)
+ 1

2

N∑
j=i+1

DωFM
2,( j−k,− j)

(
q̌( j,c), q̌(k− j,c)

)
(A.13d)

References
[1] L. Shaabani-Ardali, D. Sipp, L. Lesshafft, Time-delayed feedback technique for suppressing instabilities in time-periodic flow, Phys.

Rev. Fluids 2 (11) (2017) 113904.

[2] D. Jallas, O. Marquet, D. Fabre, Linear and nonlinear perturbation analysis of the symmetry breaking in time-periodic propulsive

wakes, Phys. Rev. E 95 (6) (2017) 063111.

[3] M. Krack, J. Gross, Harmonic Balance for Nonlinear Vibration Problems, Springer, 2019.
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We investigate the mechanisms leading to acoustic whistling for a jet passing through
a circular hole in a thick plate connecting two domains. Two generic situations are
considered. In the first one, the upstream domain is a closed cavity while the downstream
domain is open, leading to a class of conditionally unstable modes. In this case, the
instability source lies in the recirculation region within the thickness of the plate, but
coupling with a conveniently tuned resonator is needed to select the conditional instability
range. In the second situation, the two regions, upstream and downstream of the hole,
are considered as open, leading to a class of hydrodynamic modes where instability of
the recirculation region is sufficient to generate self-oscillations without the need of any
resonator. A matched asymptotic model, valid in the low Mach limit, is used to derive a
global impedance of the system, combining the impedance of the hole and the modelled
impedances of the upstream and downstream domains. It is shown that the knowledge
of this global impedance along the real ω-axis provides an instability criterion and a
prediction of the eigenvalues of the full system. Validations against the solutions of the
eigenvalue problem obtained from the linearized fully compressible formulation confirm
the accuracy of the approach. Then, it is subsequently used to characterise the range of
existence of instabilities as a function of the Reynolds number, the Mach number, the
aspect ratio of the hole and (for the cavity configuration) the dimensionless volume of the
cavity.

Key words: jet noise, shear-flow instability

1. Introduction

Plates with orifices are very common elements adopted in numerous industrial
applications, like, for example, silencers, fuel injectors or wind instruments.

† Email address for correspondence: fgiannetti@unisa.it
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Under the effect of a harmonic incident acoustic wave, the vortex sheet formed at the
lip of the aperture becomes periodically modulated and acts as an amplifier due to a
Kelvin–Helmholtz instability, reorganising the jet into an arrangement of vortex rings.
The generation of vorticity is an efficient mechanism to dissipate acoustic energy, as a
consequence, the use of multiple perforated plates traversed by a mean flow is widely
employed as a sound attenuator device for industrial applications, such as gas turbine
combustion systems. These systems may suffer from thermoacoustic instabilities because
of the potential for unsteady heat release, which can damage the combustion system
itself. The flow through a perforated liner with bias flow has been studied experimentally
by Heuwinkel, Enghardt & Rohle (2007) while Hughes & Dowling (1990), Eldredge
& Dowling (2003) and Rupp, Carrotte & Macquisten (2012) have conducted both
experimental and theoretical investigations. There are, however, situations where the flow
through a hole can lead to the opposite effect, namely spontaneous self-oscillations and
sound emissions. A particularly favourable situation with respect to sound emission is
the flow through two successive holes, as encountered, for instance, in bird calls and
tea kettle whistles (Henrywood & Agarwal 2013; Longobardi et al. 2021). Although less
common, the flow through a single hole can also lead to powerful sound emissions. As
in other related examples of aeroacoustic resonators, (including, for instance, the ‘edge

tone’ encountered in the mouthpiece of a recorder or organ pipe), two situations may
occur. In the first one, the frequency of the whistling may be directly selected by that of an
acoustic resonator located in the vicinity of the hole. This is, for instance, the case for the
so-called ‘pipe tone’ (or pfeifenton), corresponding to a long cylindrical pipe terminated
by an aperture of smaller section. In this configuration, which was intensively investigated
experimentally by Anderson (1954), the frequency of the whistling directly corresponds
to one of the resonance frequencies of the pipe. In the second one, the frequency may
be selected by the flow itself regardless of the existence of any acoustic resonator. This
situation was noted by Bouasse (1929), who observed that the flow through a hole in a thick
plate separating two large chambers leads to a whistling with a frequency proportional to
the thickness of the hole. This observation was rediscovered by Jing & Sun (2000) and Su
et al. (2015) who, in an effort to improve the performance of perforated plates as sound
dampers, reported that, in some circumstances, these devices could lead to self-sustained
whistling. In music acoustics one observes the interaction between the two type of
mechanisms, cf. Coltman (1976). In the case of the flue instrument, the so-called edge-tone
oscillation can coexist with the pipe tone and under some specific circumstances, as, for
example, during the attack transients, it may be dominant, cf. Castellengo (1999). Verge,
Hirschberg & Causse (1997) proposed a lumped model for flue instruments where these
two feedback loops can coexist and interfere: a hydrodynamic loop responsible for the
edge tone and a cavity loop responsible for the pipe tone. On the contrary, in the case of
the flow past an aperture both mechanisms are associated with the same feedback loop,
which is modified by placing a cavity upstream of the perforation. These two situations
respectively correspond to the so-called class III and class II categories of aeroacoustic
resonators, following the classification of Chanaud (1970).

Recently, Fabre et al. (2019) used the linearized Navier–Stokes equations (LNSE)
approach to investigate the unsteady flow through a circular aperture in a thin plate
subjected to harmonic forcing. A novel non-reflecting boundary condition called the
complex mapping method (Sierra, Fabre & Citro 2020) was introduced to overcome
the numerical difficulties created by the strong spatial amplification of the fluctuations.
The approach allows computing in a rigorous way the impedance of the hole, namely
the ratio between unsteady pressure difference across the orifice and unsteady volume
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flow rate through the orifice, a quantity which can be directly introduced in more
elaborate acoustical models. In that study, the authors confirmed that the LNSE can be
effectively adopted to predict the impedance even in cases where the spatial evolution
of the perturbations is rapidly dominated by nonlinear effects. The same approach was
subsequently used by Fabre et al. (2020) for the case of a hole through a thick plate. An
important result is that, for sufficiently thick holes, the impedance can acquire a negative
real part in some ranges of forcing frequencies, indicating that energy can be extracted
from the flow, thus providing a source for self-oscillations. Investigation of the structural
sensitivity also allowed the authors to demonstrate that the hydrodynamic instability of
the shear layer separating the jet from the recirculation bubble is the driving motor for
the observed phenomenon. This corresponds to the same instability as in the jet of a
flue instrument or the shear layer for a grazing flow along a cavity, cf. Dai & Aurégan
(2016, 2018). In this flow configuration, the sharpness of the aperture corner creates a
recirculation bubble that enhances the instability mechanism.

The response of a system to a harmonic forcing is naturally studied via a transfer
function: here it corresponds to the concept of impedance, which can also be used to
obtain important information regarding the stability properties of a system. First, plotting
the impedance in the form of Nyquist diagrams (namely a parametric representation of
Z(ω) in the complex plane for real values of ω) provides a direct way to determine
the number of unstable modes of the system, as a function of the number of times the
Nyquist contour encircles the origin. Secondly, when the system has a complex eigenvalue
located close to the real ω-axis, an approximation of the eigenvalue can be obtained from a
Taylor expansion of the impedance function around the real axis. Such methods are widely
used in several fields such as in automatics or electronics, but remain underemployed
in the flow instability community where eigenvalue computation remains the preferred
approach. Note, however, that the second idea was recently applied successfully by Ferreira
Sabino et al. (2020) for the problem of vortex-induced vibrations for a spring-mounted
cylinder.

The links between impedance and stability properties were explored by Fabre et al.
(2020) for the jet flow through a hole. The discussion revealed the existence of two
different instability mechanisms leading to sound production: a purely hydrodynamic

instability characterised by spontaneous self-oscillations existing in the absence of any

incoming acoustic wave, and a conditional instability due to an over-reflection of acoustic
waves. Simple criteria formulated in terms of the impedance were given for both kinds
of instabilities, allowing us to determine their range of existences as a function of the
hole aspect ratio and the Reynolds number. Among the studies considering a multiply
perforated plate, Jing & Sun (2000) and Su et al. (2015) measured experimentally the
impedances for several configurations with variable hole thickness parameter values,
which are in good accordance with the first branch of conditional unstable modes, cf.
Fabre et al. (2020, § 8). Moussou et al. (2007) studied experimentally a long pipe with a
constriction for a number of values of the constriction ratio and the thickness ratio. In this
study, they identified both the first and second branch of conditionally unstable modes.

In the approach of Fabre et al. (2020), the flow was assumed as locally incompressible,
a hypothesis which is expected to be valid for small values of the square of the Helmholtz
number (He2 = ω2M2), and which does not directly allow predicting the acoustic field.
Nevertheless, they suggested that the locally incompressible solution could be matched
to outer solutions incorporating compressibility effects, leading to more elaborate models
applicable in situations incorporating, for instance, acoustic resonators and radiation in an
open domain.
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The object of the present paper is precisely to show how the impedance computations
of Fabre et al. (2020) based on a locally incompressible solution can be used to build a
model applicable for a realistic situation involving compressibility. In addition, acoustic
pressure fields, obtained from full compressible LNSE computations complement the
study. Two generic situations are considered. In the first situation referred to as cavity/open
configuration, the domain located upstream of the hole is considered as a closed cavity of
finite volume, while the downstream domain is considered as open. We then show that
the presence of the upstream resonator can effectively lead to instabilities, as predicted
by the conditional instability criterion. The second situation, referred to as open/open
configuration, corresponds to the case where the two regions, upstream and downstream
of the hole, are considered as open domains of large dimension. We show, in this case, that

an instability of purely a hydrodynamic type can arise.

The paper is organized as follows. In § 2 the two generic situations are introduced,

and the parameters are outlined. In § 3 we introduce an asymptotically matched or
lumped model which allows defining a global impedance for the selected configuration
by combining the hole impedance as computed by Fabre et al. (2020) and the impedances
of the upstream and downstream domains. We also show that a Taylor expansion of this
impedance around the real ω-axis can be used to obtain an instability criterion and an
estimation of the eigenvalue of the unstable modes in the fully compressible case. In
§ 4 we introduce a numerical resolution method for the eigenvalue problem in a fully

compressible set-up. In § 5 we present results for the cavity/open configuration. We
compare both approaches, demonstrating that the asymptotic model is effectively accurate
for low Mach numbers. We then provide a parametric study for both problems, thanks
to the asymptotic model. Section 6 presents results for the open/open configuration. We
particularly investigate the effect of compressibility on the purely hydrodynamic instability
mechanism identified by Fabre et al. (2020), and also consider the acoustic directivity of
far-field sound emission.

2. Problem definition

2.1. Fluid parameters
The fluid is considered as a perfect gas with specific constant Rg and adiabatic index
γ = 1.4. We denote with ρ0 the reference density and with T0 the reference temperature
(both corresponding to the values in the upstream domain). The fluid is assumed to have
constant dynamic viscosity μ and heat conductivity α. The mass flow rate at the inlet of the
domain is denoted with ṁ0, while the mean velocity across the hole is UM = ṁ0/(ρ0πR2

h).
Based on this velocity scale and the hole diameter Dh = 2Rh, the Reynolds and Mach
numbers of the flow are then defined as

Re = ρ0DhUM

μ
≡ 2ṁ0

πRhμ
; M = UM

c0
with c0 = √

γ RgT0. (2.1a,b)

The fluid is also characterised by a Prandtl number Pr = ρ0α/μ which is here assumed to
be Pr = 0.7.

2.2. Open/open configuration
In the first configuration, termed open/open configuration and sketched in figure 1, we
consider that a plate separates two semi-infinite ‘open domains’ of large dimensions.
By ‘open domain’ we mean that acoustic waves generated at either side of the hole
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ṁ

ṁ + Eṁ′

Pin Pout

Lh

RhP in
 + Ep′in (t

) P
out  + Ep ′

out  (t)

Figure 1. Sketch of the open/open configuration.

propagate towards infinity without reflection. Denoting with Lh the thickness of the plate,
the geometry is thus completely defined by a single dimensionless parameter, the aspect
ratio of the hole, defined as

β = Lh

2Rh
= Lh

Dh
. (2.2)

In the fully compressible simulations, boundary conditions have to be applied at the
boundary of the domain. For simplicity, a half-spherical boundary is considered upstream,
and a uniform radial velocity is imposed, as sketched in the figure. Non-reflective boundary
conditions used for the compressible computations are introduced and explained in details
in § 4.

2.3. Cavity/open configuration
The second considered configuration, termed cavity/open configuration, is sketched in
figure 2. This configuration is selected here to study, in the simplest possible setting, the
coupling of the hole with a cavity acting as a resonator. The upper domain is considered
as a cavity of dimensions Lin, Rin which acts as a Helmholtz resonator. Therefore, only
its volume is relevant, not the exact dimensions Lin, Rin or the particular geometry. Thus,
in addition to the aspect ratio β defined above, a second geometrical parameter enters the
problem, namely the dimensionless volume defined as

Vin = LinπR2
in

R3
h

. (2.3)

The inlet condition is imposed at the leftmost boundary where, for simplicity, a constant
velocity profile is enforced, as sketched in the figure.

3. Matched asymptotic model

Before considering the resolution of the problem in a fully compressible setting, we
detail here a matched asymptotic model which allows us to compute a total impedance
characterising the behaviour of linear perturbations of the full system. We first explain how
the different regions of the flow domain can be described to obtain the model, and then
discuss how the derived total impedance can be used to predict the onset of instabilities.
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ṁ

ṁ

VinR3
h = πR2

inLin
Pout

Lh

Rh

Lin

Rin

P in
 + Ep′in P

out  + Ep ′
out  (t)

Figure 2. Sketch of the cavity/open configuration.

3.1. Matching principle
Under the hypothesis that the Mach number is small and that acoustic wavelengths are
much larger than the dimensions of the hole (acoustic compactness hypothesis), it is
possible to assume that the flow in the vicinity of the hole is locally incompressible, while
compressibility is only relevant in the upstream and downstream domains. This hypothesis
is at the origin of the asymptotically matched or lumped model. The ingredients required
for matching are the pressure pin(t) just upstream of the hole, the pressure pout(t) just
downstream of the hole, and the volume flow rate q(t) across the hole. Working in the
frequency domain, all these quantities are expanded as a constant value associated with

the base flow, plus a perturbation with harmonic dependency e−iω̃t, where ω̃ is a (possibly
complex) dimensional frequency,

pin(t) = Pin + p′
in e−iω̃t, pout(t) = Pout + p′

out e−iω̃t,

q(t) = Q0 + q′ e−iω̃t,.

}
(3.1)

It is important to understand that here p′
out corresponds to the level of the fluctuating

pressure field at distances ‖x‖ considered large in relation to the hole dimension but

small compared with the acoustic wavelength, i.e. Rh � ‖x‖ � λ̃, with λ̃ = 2πc0/ω̃.
Consequently, this pressure level corresponds both to the outer limit for the inner solution,
and to the inner limit for the outer solution of the classic matched asymptotic expansion
procedure. The same holds for p′

in which is also used as a matching limit between inner
and outer solutions.

3.2. Impedance modelling

3.2.1. Inner region: hole impedance
The inner region, located in the vicinity of the hole (delimited by dotted lines in figures 1
and 2), is governed by the incompressible LNSE. A resolution method for this problem was
introduced and validated in Fabre et al. (2020): for the benefit of the reader, this approach
is also briefly summarised in § A. The cited method allows us ultimately to deduce the
(dimensionless) hole impedance Zh(ω) defined as

Zh(ω) =
[

R2
h

ρ0UM

]
p′

in − p′
out

q′ . (3.2)

Here the factor R2
h/(ρ0UM) is introduced to turn the impedance into a dimensionless one,

since the dimensional impedance ( p′
in − p′

out)/q′ has physical units kg s−1 m−4 in the
international system, and it is a function of the dimensionless frequency ω = Rhω̃/UM .
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The impedance is ultimately searched as Zh = P · (LNS + iωB)−1 · F , where F
represents a forcing of the LNSE by an imposed flow rate, (LNS + iωB)−1 is the linear
resolvent of the incompressible LNSE, and P is an operator allowing us to extract the
overall pressure jump from the linear perturbation. After a convenient discretization,
computation of the impedance is thus straightforward and only requires inversion of a
single linear problem. More details are given in Appendix A. It is thus much faster in
comparison to eigenvalue computation, which, using the shift-and-invert method, typically
requires numerous iterative resolutions of such problems. Once Zh(ω) is computed and
tabulated (Fabre et al. 2020) a complete parametric study in terms of Mach number and
the cavity volume can be performed as shown below.

3.2.2. Downstream region: radiation impedance
When observed from a large distance, the hole can be seen as a monopolar source, which
classically gives rise to spherical diverging waves. This is classically described by a
radiation impedance defined as the ratio between pressure p′

out and flow rate q′. This
impedance can be obtained by asymptotically matching an acoustically compact inner
solution with a monopolar acoustic source, cf. Fletcher & Rossing (2012), Pierce (2019)
and Rossing (2007). The computation is also reproduced in Fabre et al. (2020, Appendix A
therein). When expressed in dimensionless variables, the result is a purely real impedance
Zrad given by

Zrad =
[

R2
h

ρ0UM

]
p′

out

q′ = Mω2

2π
. (3.3)

3.2.3. Upstream region: case of an open domain
In a similar way, in the case of the ‘open domain’ (figure 1), one can introduce the
impedance of the inlet domain Zin, which is defined as

Zin =
[

R2
h

ρ0UM

]
p′

in
q′ = −Mω2

2π
= −Zrad. (3.4)

3.2.4. Upstream region: case of a cavity
In the case where the upstream domain is considered as a closed cavity (figure 2), we
assume that this cavity acts as a Helmholtz resonator, namely the pressure p′ = p′

in, and

the density ρ′ = ρ′
in are uniform. Then a mass budget leads to

Vinc2
0

dρ′
in

dt
= Vin

dp′
in

dt
= ρ0q′, (3.5)

which allows the introduction of the impedance of the cavity Zcav ,

Zcav =
[

R2
h

ρ0UM

]
p′

in
q′ = i

ωM2Vin
= i

ωχ
, χ = M2Vin. (3.6)

Note that this expression indicates that the cavity acts as a capacitor for an electrical circuit
or as a spring in a mechanical system. Moreover, its characteristics only depend upon the
quantity χ = M2Vin which combines the Mach number and the dimensionless volume of
the cavity. Such a model could be complemented with the addition of two other terms
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that have been neglected. In particular, one could include on the left-hand side of the
mass balance the deviation from isentropic pressure fluctuations due to, for instance, the
effects of the thermal boundary layer and on the right-hand side, the convective term
involving density fluctuations. These terms have been neglected based on the fact that
velocity and temperature gradients within the cavity are small as long as the ratio between
the height of the cavity and the radius of the hole is large. In our study, this corresponds to
Lin = Rin = (Vin/π)1/3 � Rh, which holds for the cavities analysed in this study.

3.2.5. Summary: total impedance of the problem
Regrouping all the regions, we are now able to obtain a single constitutive equation for
the total impedance of the system, denoted either as Za or Zb for the two investigated
configurations, which allows us to determine the eigenfrequencies of the complete
problem.

(a) For the open/open configuration, Zh = −2Zrad, or equivalently,

Za(ω) = Zh(ω) + Mω2

π
= 0. (3.7)

(b) For the cavity/open configuration, Zh = −Zcav − Zrad, or equivalently,

Zb(ω) = Zh(ω) + Mω2

2π
+ i

M2Vinω
= 0. (3.8)

We emphasize that the total impedance defined here is designed mainly to be used to
detect eigenvalues, hence, only the condition Z(ω) = 0 is significant. The complex zeros
ω = ωR + ωI of Z then correspond to the eigenmodes of the system, and the system is
therefore unstable if there exists such a zero with ωI > 0. When not zero, there is no direct
physical interpretation to the value Z(ω) associated with a given ω. Schematically, 1/Z
can be conceived of as a measure of the response of the system to an imposed forcing, so
that Z = 0 means that the response is infinite, or in other words that a solution without
forcing is possible. For instance, Fabre et al. (2020, Appendix A therein) considered
the case where the forcing corresponds to a spherically converging wave coming from
downstream; in this case the reflection coefficient is effectively proportional to Z−1 (see
equation (A12) in this reference). Other kinds of forcing could be considered, leading to
the same conclusion. In the present paper we remain to an intuitive interpretation of Z−1

and do not elaborate on the link between the impedance and any specific forcing.

3.3. Predicting instability from a Taylor expansion of the impedance
As stated in the introduction, knowledge of the impedance function Z(ω) along the
real ω-axis allows obtaining important information regarding instability properties of the
system in two ways. First, Cauchy’s argument principle (see Appendix C) can be used
as a graphical method to determine whether or not an instability exists. This argument is
developed in § C. Second, eigenvalues located close to the real axis may be expected to be
accurately predicted from a Taylor expansion of the impedance around the real axis. This
argument is presented here.

3.3.1. Asymptotic prediction of eigenvalue for the cavity/open configuration
Following an idea previously used in Ferreira Sabino et al. (2020) for the problem
of vortex-induced vibrations of a spring-mounted cylinder, we assume here that the
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impedance of the full system is mostly reactive. In the present case, this means that
the impedance is dominated by its imaginary part, while the real parts (i.e. Re(Zh) and
the radiation impedance) correspond to lower-order terms. Such a hypothesis, together
with the fact that the flow is acoustically compact within the region of the hole, allow
the use of an asymptotic expansion truncated at first order to determine the zeros of the
impedance. We first elaborate this idea for the cavity/open configuration. The hypotheses
are as follows:

(i) |Re(Zh)| � |Im(Zh)|, i.e. |Re(Zh)| ∼ ε|Im(Zh)|;
(ii) Mω2/2π � |Im(Zh)|, i.e. Mω2/2π ∼ ε|Im(Zh)|.

Here the real parameter 0 < ε � 1. Note that hypothesis (i) is not justified for every value
of ω0 since from the results of Fabre et al. (2020) the real and imaginary parts of Zh are
generally of comparable order of magnitudes. However, this hypothesis can be expected to
be valid in the vicinity of the threshold of the instability. Hypothesis (ii) is needed for the

acoustic compactness and, therefore, directly satisfied.
Consider the frequency expansion

ω = ω0 + εω1, ω0 ∈ R, ω1 ∈ C, ε ∈ R, (3.9)

and let us substitute ω in (3.8) by (3.9) and by performing a Taylor expansion in terms of
the assumed small quantities leads to

Zb(ω) = i

[
Im (Zh(ω0)) + 1

M2Vinω0

]

ε

[
Re (Zh(ω0)) + Mω2

0

2π
+

((
∂Zh

∂ω

)
ω=ω0

− i

M2Vinω
2
0

)
ω1

]

+ O
(
ε2

)
, (3.10)

where O(ε2) denotes higher-order terms as a function of the assumed small parameter.

The condition Zb = 0 then leads to the following results.

(i) The zeroth-order terms lead to the condition

− ω0Im (Zh(ω0)) = 1

M2Vin
= 1

χ
. (3.11)

(ii) The first-order term leads to

Im(ω1) =

[
Re (Zh(ω0)) + Mω2

0

2π

] ((
∂Im (Zh(ω))

∂ωR

)
ω=ω0

− 1

χω2
0

)
((

∂Re(Zh ((ω))

∂ωR

)
ω=ω0

)2

+
((

∂Im (Zh(ω))

∂ωR

)
ω=ω0

− 1

χω2
0

)2
,

Re(ω1) =
−

[
Re (Zh(ω0)) + Mω2

0

2π

] (
∂Re(Zh)

∂ωR

)
ω=ω0((

∂Re (Zh(ω))

∂ωR

)
ω=ω0

)2

+
((

∂Im (Zh(ω))

∂ωR

)
ω=ω0

− 1

χω2
0

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.12)
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1

M2Vin

ω

–
ω

Z h,
I (ω

)

ω0

Im(ω1)

Im(ω1)

ω
ω0

(b)(a)

Figure 3. Linear scale representation of the zero computation of (3.9) with the (a) zeroth-order (3.11) and
(b) first-order (3.12) approximations.

The imaginary part of the first-order correction directly provides a criterion of
stability. Provided that the imaginary part of ∂Zh/∂ω is negative (a condition which
is found to hold in all cases where the starting hypotheses are verified), then it is
possible to conclude that an instability is possible as soon as

Re (Zh(ω0)) < −Mω2
0

2π
. (3.13)

We recognize here an improved version of the conditional instability criterion of
Fabre et al. (2020). Physically, this condition means that the energy extracted
from the base flow −Re(Zh(ω0))|q′|2/2 must be larger than the energy radiated

Zrad|q′|2/2.

Fabre et al. (2020) have documented the function Zh(ω) for real values of ω over a
wide range of parameters. Once the hole impedance function Zh(ω) is determined, these
results can be used to solve the coupled conditions (3.11), (3.12) and ultimately to obtain an
instability criterion and an estimate for the growth rate. Figure 3 explains graphically these
conditions. The resolution can be done in two ways. Via a direct method, that is, given the
parameters M and Vin, one first solves for (3.11), which is an implicit equation in ω0 as a
function of the parameter χ (as sketched in figure 3a). Then one may deduce Im(ω1) which
is an explicit function of ω0 and M (as sketched in figure 3b) and it ultimately provides a
criterion of instability.

An alternative is to follow an inverse method. Given M, we first consider Im(ω1) as a
function of ω0 and deduce the ranges of ω0 where this function is positive (as indicated in
blue on figure 3b). Once these unstable ranges are known, we deduce the corresponding
ranges for 1/(M2Vin) by using (3.11) (as indicated by blue ranges in figure 3a). The
approach thus indicates the ranges of Vin where, for the given M, the jet is unstable. The
great advantage of this inverse method is that the equation (3.11) is explicit when solving
for Vin in terms of ω0.

The inverse method is a very efficient way to obtain an estimation of the eigenvalue
of the full problem ω = ω(Re, β, M, Vin) provided one disposes of a tabulation of the
function Zh(ω; Re, β) for real values of ω. It must be emphasised that the number of
parameters has been reduced from four to only two, as Vin and M only occur through the
modelled impedance of the upstream and downstream domains. However, the reduction
relies on a series of strong hypotheses: first M � 1 and |ω| � 1/M for the matched
asymptotic model to hold, and second the assumptions used to treat Re(Zh) as a correction.
The validity of the approach, therefore, has to be assessed by comparing the results with
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those obtained using a fully compressible model in order to clarify the range of validity of
the used approximations, as detailed in § 5.1.

3.3.2. Asymptotic prediction of eigenvalue for the open/open configuration
Let us now follow a similar route to achieve an estimation of the eigenvalue ω for the
open/open configuration. In this case, the zeroth-order and first-order corrections simplify
to

−ω0Im(Zh)(ω0) = 0, (3.14)

Im(ω1) =

[
Re (Zh(ω0)) + Mω2

0

π

] (
∂Im(Zh)

∂ωR

)
ω=ω0∣∣∣∣∣

(
∂Zh

∂ω

)
ω=ω0

∣∣∣∣∣
2

,

Re(ω1) =
−

[
Re (Zh(ω0)) + Mω2

0

π

] (
∂Re(Zh)

∂ωR

)
ω=ω0∣∣∣∣∣

(
∂Zh

∂ω

)
ω=ω0

∣∣∣∣∣
2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

where the non-zero ω0 are the zeros of the imaginary part of the hole impedance function
Im(Zh) and the growth rate is estimated by (3.15).

Note that this expression is identical to the one obtained for the cavity/open
configuration when Vin → ∞, except for the radiation term, which is twice the value in
the previous case. This accounts for the fact that radiation occurs on both sides, so that
total radiation losses are twice larger.

4. Full compressible formulation

After detailing the matched asymptotic model, we now introduce in this section a
numerical method to resolve directly the eigenvalue problem in a fully compressible
setting.

4.1. Compressible Navier–Stokes equations
Let us consider a compressible fluid motion of a perfect gas described in primitive

variables by q = [ρ, u, T, p]T, where the velocity vector field is u = (u, v, w), pressure
p, temperature T and fluid density ρ. Dimensional primitive variables have been made
dimensionless, as follows:

x = x
Dh

, t = t̃UM

Dh
, ρ = ρ̃

ρref
, u = ũ

UM
, T = T̃

Tref
, p = p̃ − pref

ρref U2
M

. (4.1a–f )

Here dimensional values are designated by an upper tilde ·̃, and reference values
are indicated with the ·ref . Dynamics is governed by the compressible Navier–Stokes
equations, which are here written in terms of primitive dimensionless variables in the
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compact vector notation

M

(
∂q
∂t

)
= NS (q) = L (q) + N(q) + C = 0, (4.2)

where C = [0, 0, 0, 1]T, the mass matrix M and the linear operator L are defined as

M =

⎛⎜⎝ 1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

⎞⎟⎠ , L =

⎛⎜⎜⎜⎝
0 0 0 0
0 −∇ · (·) 0 ∇
0 0 − γ

Pr Re
� 0

0 0 0 γ M2

⎞⎟⎟⎟⎠ , (4.3a,b)

while the nonlinear operator is written as

N(q) =

⎛⎜⎝
u · ∇ρ + ρ∇ · u

ρu · ∇u
(γ − 1)

[
ρT∇ · u − γ M2𝞽(u) : D(u)

] + ρu · ∇T
−ρT

⎞⎟⎠ . (4.4)

Here D = 1/2(∇u + ∇uT) is the rate of strain tensor and  is the viscous stress tensor
defined as  = 2μD − 2μ/3∇ · uI .

4.2. Compressible Navier–Stokes – base flow equations
The stability of a steady-state solution to infinitesimal perturbations can be analysed using
the classical approach based on linearization of the governing equations: the total flow
field is expanded into the sum of a steady-state term plus an infinitesimally small unsteady
harmonic perturbation as

q(t) = q0 + ε
(

q̂ e−iωt + c.c.
)

, (4.5)

where ε � 1. Inserting (4.5) in the governing equations (4.2) and neglecting quadratic
terms leads to two problems, one for the base flow and one for the perturbation.
In particular, at leading order, only steady terms are kept, which leads to the steady
Navier–Stokes equations

NS (
q0

) = L
(
q0

) + N(q0) + C = 0, (4.6)

complemented with appropriate boundary conditions. No-slip adiabatic boundary
conditions are used at the walls (4.7c). At the axis of revolution, the radial component
v0 is set equal to zero, and the radial derivative of the remaining terms is null (4.7d)). At
the outlet we set stress-free and isothermal boundary conditions (4.7b); in this way the
pressure at the outlet is equal to the thermodynamic pressure, i.e. p0 = 1. Finally, at the
inlet boundary Γin = Γin,0 ∪ Γin,1, a constant mass flow is enforced on the Γin,0 boundary,
slip condition, constant density and zero thermal flux are imposed on the Γin,1 (4.7a).
Summarising,

ρ0|Γin = 1,

∫
Γin,0

ρ0u0 · n dS = π

4
, (u0 · n) |Γin,1 = 0, (∇T0 · n) |Γin = 0, (4.7a)

T0|Γout = 1, (−p0I + (u0)) · nΓout = 0, (4.7b)

u0|Γw = (0, 0, 0)T, (∇T0 · n) |Γw = 0, (4.7c)

v0|Γw = 0,
∂u0

∂r
= ∂w0

∂r
= ∂ρ0

∂r
= ∂T0

∂r
= ∂p0

∂r
= 0 on Γaxis. (4.7d)
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r+

Figure 4. Schematic representation of the computational mesh for both configurations, (a) open/open case, (b)
closed/open case: z−∞, z∞, r∞ are, respectively, the location of the physical inlet, outlet and lateral boundaries.
The physical domain is padded into a complex mapping layer with a radial extension rCM (respectively axial
zCM extension). The inner domain corresponds to an inner region with the highest vertex density: z−, z+, r+
are, respectively, the location of the left, right and lateral boundaries of this inner domain; in the closed/open
case the inner domain includes the cavity located upstream of the hole.

4.3. Linearized compressible Navier–Stokes equations – homogeneous problem
The linearized compressible Navier–Stokes equations govern the evolution of the
perturbation q̂,

− iωM q̂ = LNS0

(
q̂
) = [

L + DN |q0

]
q̂, (4.8)

where DN |q0
is the Jacobian matrix of the nonlinear operator evaluated at the steady state

q0.
With the purpose of modelling a large container upstream of the hole, for the open/open

case, we have designed a computational domain, figure 4(a), composed of three regions: an
inner domain with the highest vertex density, the physical domain and an absorbing layer
to eliminate the appearance of spurious eigenvalues. The absorbing layer corresponds to
the complex mapping technique, cf. Sierra et al. (2020). The boundary conditions of the
linearized full compressible formulation for the open/open case are as follows:

ρ̂|Γin = 0,
(−p̂I + (û)

) · nΓout = 0,
(
∇T̂ · n

)
|Γin = 0, (4.9a)

ρ̂|Γout = 0,
(−p̂I + (û)

) · nΓout = 0,
(
∇T̂ · n

)
|Γout = 0, (4.9b)

û|Γw = (0, 0, 0)T,
(
∇T̂ · n

)
|Γw = 0, (4.9c)

v̂|Γw = 0,
∂ û
∂r

= ∂ŵ
∂r

= ∂ρ̂

∂r
= ∂T̂

∂r
= ∂ p̂

∂r
= 0 on Γaxis. (4.9d)

In particular, in the far field (inlet and outlet) we impose null density variations, a
stress-free boundary condition and vanishing thermal flux (4.9a) and (4.9b); doing so the
mass flux, ρ0û · n, is allowed to vary. A no-slip adiabatic boundary condition is used at the
walls (4.9c), while at the axis the radial component of the velocity v̂ is set to zero, together
with a null radial derivative of the remaining terms (4.9d).

For the purpose of modelling a closed cavity that acts as an acoustic resonator, we have
a computational domain, which is sketched in figure 4(b), where the complex mapping
layer is only present in the region placed downstream of the hole. The set of boundary
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conditions are as follows:

ρ̂|Γin = 0, û|Γin = (0, 0, 0)T,
(
∇T̂ · n

)
|Γin = 0, (4.10a)

ρ̂|Γout = 0,
(−p̂I + (û)

) · nΓout = 0,
(
∇T̂ · n

)
|Γout = 0, (4.10b)

û|Γw = (0, 0, 0)T,
(
∇T̂ · n

)
|Γw = 0, (4.10c)

v̂|Γw = 0,
∂ û
∂r

= ∂ŵ
∂r

= ∂ρ̂

∂r
= ∂T̂

∂r
= ∂ p̂

∂r
= 0 on Γaxis. (4.10d)

i.e. null density and velocity variations (4.10a) at the inlet, a stress-free condition, null
density variation and vanishing thermal flux (4.10b) at the outlet; no-slip and adiabatic
walls (4.10c); null radial velocity component and null radial derivative of the remaining
terms (4.10d).

4.4. Numerical implementation
Following a usual route in global stability analysis, the nonlinear problem (4.6) for the
base flow is solved using a Newton iteration method and the eigenvalue problem (4.8)
is solved using a shift-invert Arnoldi method. Spatial discretization is done using a
finite-element method, using P2-elements for velocity components ux, ur and P1-elements
for thermodynamic variables P, ρ, T . Mesh generation and assembly of matrix operators
is performed using the FreeFem++ software (Hecht 2012). Resolution is achieved using
PETSc/SLEPc libraries, which are directly implemented in FreeFem++. Monitoring of
computation, loop over the parameters and post-processing are handled in Matlab thanks
to the StabFem suite (Fabre et al. 2018). Note that during the process, mesh adaptation is
used in a way similar to as described in Fabre et al. (2018), to ensure that the resolution is

sufficient to ensure grid independence when computing the base flow and the eigenmodes.
Examples of codes reproducing sample results are shared on the website of the StabFem
project. Some details about the computed base flows are given in Appendix B. Details
about grid convergence are given in Appendix E.

5. Results – cavity/open configuration

5.1. Validation of the asymptotic model – comparison with compressible LNSE
In § 3.3.1 we introduced an asymptotic method which is able to predict the eigenvalues
ω = ω(Re, β, M, Vin) from a simple tabulation/computation of the function Zh(ω; Re, β)

for real values of ω, hence reducing the number of parameters from four to two only. Before
conducting a full parametric study of the instability with the proposed matched asymptotic
method, we have to assess its validity by comparing the predictions with resolution of the
full eigenvalue problem. This is done in figure 5 which compares the amplification rates
(a,c,e,g) and frequencies (b,d, f,h) obtained with the two approaches for values of M, Re
and Vin spanning a large range of parameter values, considering a hole with aspect ratio
β = 0.3.

Consider, first, the predictions of the asymptotic model represented by coloured lines in
the figures. Thanks to the inverse method explained in § 3.3.1, the asymptotic prediction
allows us to plot ω as a continuous function of Vin. We use solid lines for the segments
of the curves corresponding to unstable modes and dotted lines for those corresponding
to stable modes. As identified by Fabre et al. (2020), for β = 0.3, several modes of
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Figure 5. Growth rate (a,c,e,g) and frequency (b,d, f,h) of eigenmodes as a function of Vin, M and Re for
β = 0.3. Lines were obtained from the matched asymptotic model and points with the compressible LNSE.
Solid lines denote unstable regions, dashed lines are used for stable zones.

conditional instability, termed C1, C2, etc. . . are expected to arise as the Reynolds number
is increased. The corresponding frequencies are quantized, and an argument to explain this
quantification was proposed in terms of the dynamics of the shear layer. An alternative
argument, in terms of a forward shear wave and a backward acoustic wave, is proposed in

Appendix D.

From the results of Fabre et al. (2020), for β = 0.3 (see also figure 18 reproduced in

Appendix D), the first mode C1 arises just below Re = 800 and the second mode C2 arises

943 A48-15



J. Sierra-Ausin, D. Fabre, V. Citro and F. Giannetti

for Re ≈ 1500. This is in good agreement with the observed results of the asymptotic
model, which effectively predicts two ranges of instability for Re = 1600 and Re = 2000,
at least, for the smallest considered values of M. The figure also shows that increasing M
results in a shifting of the instability ranges towards smaller values of Vin.

Consider now, the eigenvalue calculations, represented by circles in the figures. Results
have been computed for a limited set of values of Vin where unstable modes were expected.
Recall that in the eigenvalue study, Vin is linked to the size of the numerical domain, so
that the whole process (mesh generation, base flow computation, resolution of eigenvalue
problem) has to be restarted for each new value of Vin. An excellent matching between the
two estimates may be appreciated even for large growth rates, the relative error being
less than 3 % in most cases. Comparison seems poorer, at first sight, for the case of
Re = 800 reported in figure 5(a) but it must be remembered that the case is very close
to the threshold and amplification rates are very small, so that the absolute error is actually
of comparable order to the other cases. Not that an excellent agreement is still found in
cases where the amplification rate is not small, a range where the impedance criterion
should be a priori slightly less reliable due to its perturbative nature. The agreement
also remains excellent when the Mach number is raised to M = 2 × 10−2. Note that,

for eigenvalue computations, it has been only considered configurations with Vin > 102,

since for smaller values, the cavity becomes very small and the modelling as a Helmholtz
resonator becomes questionable. This is why we did not attempt to draw any comparisons
for M > 2 × 10−2, with the exception of a case with M = 4 × 10−2 represented in plot (e).

5.2. Structure of some eigenmodes
Let us now illustrate the structure of a few eigenmodes computed with the full
compressible LNSE. Figure 6 displays the eigenmode computed for M = 5 × 10−3 and
Vin = 104 for Re = 1200. This mode is correctly predicted by the asymptotic model, and
recognized to correspond to the branch C1 of conditional instability modes, as defined by
Fabre et al. (2020). As observed, the pressure level inside the cavity is uniform, confirming
that the cavity effectively acts as a Helmholtz resonator for this mode so that the modelling
hypotheses are correctly verified. Downstream of the hole, the mode is characterised by
an alternance of structures of opposite sign, localized along the shear layer. This structure
is characteristic of regions associated with a negative real part of impedance, as identified
by Fabre et al. (2020). Note that very far away in the downstream domain, the structure
is expected to match with a spherical diverging wave of the dimensionless wavelength
λ = 2π/(MωR). Here λ is of order 70, so this structure is not visible on the figure. A
characterisation of the far-field acoustic radiation is described in § 6.3; see figure 13.

In addition to eigenmodes of the kind presented in figure 6 which are well predicted
by our asymptotic approach, one typically observes the existence of other families of
eigenmodes with a more complex structure. Figure 7(b) displays a family of such modes,
computed for the set of parameters M = 2 × 10−1, Vin = 104 for Re = 1200. One clearly
observes that the pressure inside the cavity is no longer uniform, but characterised by nodal
lines in the radial and axial distributions. These modes are recognised as cavity modes.
They arise as soon as the acoustic compactness hypothesis fails, i.e. when the acoustic
wavelength is smaller than the characteristic length (Lin = (Vin/π)1/3) of the cavity.

5.3. Parametric study
In our previous work, the ranges of parameters corresponding to a conditional instability
(requiring the presence of a correctly tuned resonator) were mapped in the Re–β plane;
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see Fabre et al. (2020, figure 13), also reproduced in Appendix D (see figure 18). We are
now able to build upon these results a parametric study of the situation where the resonator
corresponds to the upstream cavity, as a function of the four parameters (Re, β, M, Vin).

Figures 8 and 9 display the dependence of the neutral curves on the Mach number and

Vin for several Reynolds numbers and values β = 0.3 and β = 1, respectively. Let us first
explore the value β = 0.3 displayed in figure 8; there exist only two unstable modes, C1

and C2. The cavity is correctly tuned to trigger the instability inside each of the bounded
coloured regions of the (Vin, M) plane. For the configuration corresponding to β = 1,

there exist four modes of conditional instability. As reported in Fabre et al. (2020), C1

and C4 instabilities only exist if the cavity connected upstream of the aperture is correctly
tuned, that occurs inside each of the bounded coloured regions of the (Vin, M) plane of
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figure 9(a,d). These regions of instability grow with the Reynolds number, and they shrink
with Vin. Contrary to instabilities C1 and C4, for a given value of Vin, instabilities C2

and C3 may exist for every M; for this reason, these instabilities may be conceived as a
degenerate situation of pure hydrodynamic instabilities H2 and H3, which are discussed in
§ 6.

Finally, the dependence of this type of instability on the acoustic resonator is better
appreciated if we consider the effect of Vin and M together with the χ = VinM2 parameter.
This allows us to display neutral curves of stability in the (χ, Re) plane, which is shown
in figure 10 for several values of β and M, where the explicit dependence on the Mach
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number originates from the radiation term of (3.8). Each bounded region corresponds to
a conditional instability Ci; neutral curves display the shape of a ‘tongue’ with the tip
located at the lowest Reynolds number of the instability region and a vertical asymptote
located at the Reynolds number of the threshold of the Hi instability (if it exists). From
figure 10 we can appreciate how Ci conditional instabilities are a generalization of the
pure hydrodynamic instabilities Hi. Nevertheless, a connection between hydrodynamic
and conditional instabilities for limit values of χ is outside the range of validity of the
methodology used for the closed/open case. In fact, one may relate the characteristic cavity
length (Lin) and the acoustic wavelength (λac) in terms of the Strouhal number and the
parameter χ , (

L3/2
in
λac

)2

= St2
χ

π
, (5.1)

which implies that, for cavities characterised by χ � 1, one cannot rule out the existence
of higher cavity modes. Such a finding is only relevant for regions near the vertical
asymptotes of figure 9. The methodology remains valid for the C1 mode, where the product
St2(χ/π) < 1, even in the region of χ > 1 for β = 1, because the Strouhal number of the
C1 mode is approximately one-fourth, cf. Appendix D.

6. Results – open/open configuration

6.1. Parametric study
A purely hydrodynamic instability exists in the present configuration for sufficiently large
values of the hole aspect ratios β. In this section we check that such instabilities are
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effectively encountered in the open/open configuration and provide a parametric study
of their range of existence as a function of the parameters Re, β, M.

Figure 11(a) displays the range of existence of instabilities as a function of Re and β for
three values of M. Two different modes, corresponding to the purely hydrodynamic modes
H2 and H3 as identified by Fabre et al. (2020), are documented. Note that higher instability
modes, called Hi with i = 4, 5, 6 · · · , exist in the studied interval of the parameter β;
however, they arise at larger values of Re and are not considered. The curves displayed
in the figure for the smallest value of M, namely 10−2, are very close to the predictions
obtained by Fabre et al. (2020, figure 15), which is represented by dots in figure 11. One
can see that compressibility has almost no effect on the instability threshold of mode H2.
On the other hand, it has a destabilizing effect on mode H3. Figure 11(b) investigates
the effect of compressibility on the oscillation frequency, here represented as a Strouhal
number Stβ = ωRβ/2π. One can see that compressibility decreases the frequency for the
shortest holes and has almost no effect on frequency for longer ones. This behaviour is
associated with the significant modification of the threshold of instability (Re) for short
holes (left asymptote of either H2 or H3 in figure 11), which does not occur for holes
with a larger β value. A substantial variation in the critical Reynolds number induces a
modification of the vena contracta coefficient αvena (see, e.g. figure 16), which in turn may
be linked to the frequency of the instability; see the discussion in Appendix D.

6.2. Effect of Mach number – sensitivity analysis
In order to explain these observed trends, we consider the sensitivity dω/dM of the
complex frequency ω with respect to M. This quantity may be split into two terms,
corresponding respectively to the sensitivity to base flow modifications and to the
sensitivity to a Mach number variation of the linearized equations,

dω

dM

∣∣∣∣
M

= ∂ω

∂M

∣∣∣∣
q0

+ ∂ω

∂q0

∣∣∣∣
M

∂q0

∂M
. (6.1)

We have employed two techniques, a continuous adjoint technique described in Meliga,
Sipp & Chomaz (2010) and a forward evaluation of the sensitivity. Provided the Mach
number is close to the incompressible limit, the continuous adjoint technique provides
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less accurate results; for this reason, we have decided to perform a forward evaluation.

The first term ∂ω/∂M is evaluated using a first-order finite difference, which requires

the resolution of two eigenvalue problems (4.8) with the steady state frozen at the Mach
number M, and with a Mach number perturbation of a small magnitude ΔM � M in
the linearized Navier–Stokes operator of the eigenvalue problem. The second term is
also evaluated by finite difference using two different steady states computed at M and
M + ΔM where the Jacobian operator is evaluated at M. Figure 12 displays the sensitivity

computed in such a way for a value of Re corresponding to the thresholds of the instability
for modes H2 (with β = 0.8) and H3 (with β = 2). The figure also displays the value of
∂ω1/∂M obtained from the asymptotic model (3.12), which is a constant. Figure 12(a)
reports a linear variation of the two terms of the sensitivity with respect to Mach number.
A Mach number variation in the base flow has a stabilizing effect, whereas the instability
is triggered by small variations of the Mach number of the linearized operator. The most
dominant term for this kind of acoustically compact solutions seems to be the base flow
effect, which has a small stabilizing effect. In particular, it explains the almost insignificant
variation of the H2 neutral curves in figure 11. Concerning the frequency, both terms
have an almost opposite effect, which implies an almost null variation of the instability
frequency for the H2 mode. The impedance criterion in this case predicts a stabilizing
effect with a small frequency increase, which holds relatively well for M < 0.02. On the
other hand, the variation with respect to the Mach number of the growth rate and the
frequency of instability of a configuration that is no longer acoustically compact for Mach
numbers of the order of M ∼ 10−2 such as the H3 mode at threshold for β = 0.8 greatly
differs with the estimations made with the impedance criterion. Figure 12(b) reports a
similar stabilizing effect of the base flow to the one of the H2 mode. However, in this case
variations of the Mach number in the linearized operator greatly destabilize the steady

state, which causes the large variations in the neutral curves displayed in figure 11. In
terms of frequency variations, it is possible to observe much larger excursions, which
are negative and constant for M < 0.07 and increase linearly for M > 0.07. So we may
conclude that the impedance criterion holds relatively well for large β and instability
modes with low frequency, which are in turn the most acoustically compact, but it fails
to predict accurate trends even for low Mach numbers for modes with higher frequencies
and small length to thickness ratios.

6.3. Directivity of acoustic emission
Finally, we address the influence of parameters (β, M) on the directivity pattern of
instabilities of type H2 and H3. For that purpose, we evaluate the set of neutral eigenmodes
for each pair (β, M). Note that the amplitude of the eigenmodes are arbitrary, the pressure
levels displayed in figure 14 have been normalized with respect to the monopole radiation
(based on the oscillating volume flux through the perforation). Three values of the Mach
number M = {10−2, 2 × 10−2, 5 × 10−2} and two of the dimensionless parameter β =
{1, 2} are selected for this study. The configuration β = 1 corresponds to a configuration
less acoustically compact than β = 2 and it seems a priori more likely that the radiation
differs from the single monopole pattern. Figure 13 displays the acoustic pressure levels
of the real part of the neutral eigenmodes, H2 in the upper part and H3 in the lower
part, for M = 5 × 10−2 and β = 1 (a) and β = 2 (b). Figure 13(a) displays the pressure
levels in logarithmic scale for β = 1. In that figure one can appreciate a monopolar-like
radiation for H3; however, at M = 5 × 10−2 the H2 mode displays a radiation pattern with

a preferential direction aligned with the streamwise coordinate. In such a configuration,
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M = 5 × 10−2; (a) β = 1 and (b) β = 2.

either the hole and the jet emit sound, which produces an uneven radiation of sound
downstream and upstream of the hole. These observations can be better appreciated in
figure 14(a), where the departures from an isotropic radiation for M = 10−2 and the sound
emission for M = 5 × 10−2 are clearly seen. For β = 2 (figures 13(b) and 14(c)), the
neutral eigenmodes display a fairly monopolar-like radiation; for the H3 mode (figure 14d),
higher pressure levels are measured downstream of the hole for directions forming an angle
less than 45 degrees with the axis of symmetry.

7. Conclusion

The objective of the present paper was to investigate how the instability potential of a
single jet passing through a hole in a thick plate, recently identified by Fabre et al. (2020)
using LNSE in a strictly incompressible setting, manifests in a more realistic configuration
involving compressibility. For this sake, we considered two generic situations. In the first
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situation, the upstream domain is a closed cavity and the downstream domain is an open
space. This situation was chosen to check the conditional instability mechanism, requiring
the existence of a conveniently tuned resonator. In the second situation, the two regions,
upstream and downstream of the hole, are considered as open. This situation was chosen to
check the purely hydrodynamical instability which is expected to exist even in the absence
of a resonator.

The two cases have been analysed with an asymptotic method, which provides an
instability criterion and an estimate for the amplification rate. The method consists, in a
first step, in writing an impedance of the global system incorporating the hole impedance
as computed by Fabre et al. (2020) and modelling the impedance of the upstream and
downstream regions, and in a second step, in performing a Taylor expansion of this
impedance around the real ω-axis to identify its zeros. The great advantage of the method
is that the Mach number M and the cavity volume Vin appear as parameters in the model,
so that a parametric study of the problem can be done entirely in terms of the Reynolds
number and aspect ratio, therefore reducing the number of computational parameters from
four to two.

The potential to accurately predict the instability properties via the asymptotic model is
put into test in §§ 5.3 and 6 for the conditional and pure hydrodynamic cases, respectively.
A cross-comparison with the results carried out with the compressible Navier–Stokes
equations shows a good match between the two approaches. The impedance criterion has
been employed to identify the regions of existence in the (Re, χ) plane of a series of
Ci, i = 1, 2, 3, 4, . . . modes. In addition to these acoustically compact modes, at larger
Reynolds numbers, there exist unstable modes associated with higher-order modes of
the cavity connected upstream (see figure 7 for an example of that phenomenon). The
use of the impedance criterion for the characterisation of the compressibility effect in
the pure hydrodynamical case is less accurate. We have observed that the estimations of
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the growth rate are relatively acceptable for the H2 mode, but they are faulty for the H3

mode, in particular for small length to diameter ratios. The inadequacy of the criteria to
characterise this case can be attributed to the lack in the asymptotic model of the effect of
the backward-travelling acoustic wave. These results suggest that a better modelling of the
hydrodynamic-acoustic interaction is required to gain in accuracy. Finally, in § 6 we have
examined the influence of the Mach number on the directivity pattern of the family of the
pure hydrodynamical modes.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
J. Sierra-Ausin https://orcid.org/0000-0001-6036-5093;

D. Fabre https://orcid.org/0000-0003-1875-6386;

V. Citro https://orcid.org/0000-0003-2923-9157;

F. Giannetti https://orcid.org/0000-0002-3744-3978.

Appendix A. Computation of the hole impedance thanks to incompressible LNSE

A.1. Incompressible Navier–Stokes equations
Under the hypothesis of acoustic compactness, discussed in § 2.3, the flow is assumed to
be locally incompressible in the region of the hole, where the fluid motion is governed by
the incompressible Navier–Stokes equations

∂

∂t

[
u
0

]
= N S

([
u
p

])
=

[ −u · ∇u − ∇p + Re−1∇2u
∇ · u

]
. (A1)

The stability of the steady state [u0, p0] is investigated by using the linearized approach,
in which the total flow field is decomposed into the sum of a steady base flow and a small
time-harmonic perturbation as[

u
p

]
=

[
u0
p0

]
+ ε

([
û
p̂

]
e−iωt + c.c.

)
. (A2)

A.2. Incompressible Navier–Stokes equations – base-flow equations
The base flow is the solution of the steady version of the Navier–Stokes equations

N S[u0; p0] = 0, (A3)

with the following set of boundary conditions:∫
Γin

u0 · n dS = Q0, (A4a)

p0 = 0 on Γout. (A4b)

This problem is solved using a classical Newton iteration.
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A.3. Linearized incompressible Navier–Stokes equations – forced problem
The linear perturbation is governed by the equations

− iωB[û, p̂]T = LNS0([û, p̂]T), (A5)

where LNS0 is the linearized Navier–Stokes operator around the base flow and B is a
weight operator defined as

LNS0

[
û
p̂

]
=

[ − (
u0 · ∇û + û · ∇u0

) − ∇p̂ + Re−1∇2û
∇ · û

]
; B =

[
1 0
0 0

]
.

(A6a,b)

Equation (A6a,b) is complemented with the following boundary conditions:∫
Γin

û · n dS = q′, (A7)

p̂(x, r) = 0 on Γout. (A8)

A non-zero perturbation of the flow rate q′ is imposed, fixed arbitrarily, to q′ = 1.
Equation (A7) thus leads to a non-homogeneous Dirichlet boundary condition at the inlet
plane, treated by imposing a constant axial velocity ûx. The problem can be symbolically
written as

[LNS + iωB] [û; p̂] = F , (A9)

where LNS is the linearized Navier–Stokes operator (implicitly containing the
homogeneous boundary condition at the outlet), and F represents symbolically the
non-homogeneous boundary condition at the inlet. This problem is non-singular and
readily solved. Since p̂ has been set to zero (without loss of generality) along the outlet
boundary, the pressure drop p′

in − p′
out can be extracted from [û; p̂] by retrieving the mean

value of the p̂ component along the inlet boundary Γin of the computational domain; such

an operation can be written formally as p′
in = P[û, p̂], where P is a linear operator. The

impedance is then ultimately deduced as Zh = P · (LNS + iωB)−1 · F .

Appendix B. Properties of the compressible steady state
As illustrated in figure 15, the base flow is characterised by a recirculation region
originating from the upper corner of the hole. The pressure jump due to this recirculation
can be represented by the so-called discharge coefficient (also called the vena contracta

coefficient) αvena = R2
h/R2

J , where RJ is the effective radius of the jet. This function has

been tabulated by Fabre et al. (2020) as a function of Re and β in the incompressible case.
When taking into account the compressibility effects, the discharge coefficient (Bragg
1960) can be written in term of the dimensionless variables introduced in § 4.1 as

αvena = ṁ0

πR2
h

1 + γ M2Pin√
Tin

1

M

√√√√ 2

γ − 1

[(
1 + γ M2Pin

1 + γ M2Pout

)−2/γ

−
(

1 + γ M2Pin

1 + γ M2Pout

)−(γ+1)/γ
] ,

(B1)
which in the low Mach number limit can be approximated as

αvena = ṁ0

πR2
h

√
ρin(2(Pin − Pout) − 3M2(Pin − Pout)2

, (B2)
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Figure 15. Contour plot of the base flow q0 for β = 0.3, Re = 1400 and M = 5 × 10−2. (a) Spatial evolution
of the Mach number. (b) Spatial evolution of the sensitivity of the axial velocity with respect to the Mach
number ∇Mw0.
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Figure 16. Discharge coefficient as a function of Mach number for several Re for β = 0.3. Dots correspond to
computed values of αvena, lines correspond to the theoretical estimation, cf. Bragg (1960). (b) Axial velocity
profile of the sensitivity with respect to Mach number for β = 0.3, Re = 1600, M = 10−1 at z = 0.2.

and it coincides with the one employed by Fabre et al. (2020) at the incompressible limit.
Note that at large Reynolds numbers other simpler estimates exist, for instance, see the
discussion by Gilbarg (1960) for the compressible Borda tube, which has been revisited by
Durrieu et al. (2001) and compared against experimental evidence. Figure 16(a) displays
the effect of the Mach number on the discharge coefficient. It shows a good quantitative
agreement with the theoretical estimation, and it weakly increases with the Mach number.
Compressibility effects accelerate the bulk flow within the jet core, whereas the flow
within the recirculation region hardly changes (see the evolution of the sensitivity with
respect to the Mach number of the streamwise velocity in figures 16(b) and 15(b)). In
addition, it has been observed that the shear layer thickness remains unchanged with a
weak Mach number increase (M < 0.2). In § 6 it is shown that an increase of the Mach
number in the steady-state solution has a stabilizing effect, which can be attributed to an
attenuated recirculation region.

Appendix C. Nyquist curve – Cauchy’s argument principle

Let us review the use of the Nyquist criterion together with the drawing of Nyquist
curves. In the absence of poles in the real axis, the Nyquist plot is drawn along the
real axis. However, in the presence of a pole of the impedance in the real axis, one
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Figure 17. (a) The complex contour Γ of integration enclosing the unstable complex plane, where Cauchy’s
argument principle is applied. (b) Nyquist curve for the augmented system impedance along Γ .
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Figure 18. (a) Thresholds of the conditional instabilities C1, C2, C3 and C4 as a function of β and Re.
(b) Strouhal evolution with β. Solid lines are the boundaries of the conditional stability computed with
incompressible LNSE and dashed lines are the estimation with αvena = 0.76.

must take a contour that does not encircle the pole. In particular, the augmented system

impedance possess a pole at ω = 0, therefore, a complex contour that does not encircle
zero is employed as the one depicted in figure 17(a). In the evaluation of the impedance,
let us consider here without loss of generality the augmented system impedance Z(a)

(either Z(a) = Za or Z(a) = Zb) along the contour Γ , i.e. Z(a)(Γ ), which provides a direct
evaluation of the stability of the system. Provided that the contour of integration does not
encircle any pole of the system, which is satisfied by construction, the number of times that
the curve Z(a)(Γ ) encircles the origin in the counterclockwise direction determines the
number of zeros in the area surrounded by the contour Γ . In the condition that the contour
of integration Γ encloses the unstable complex plane, then any encirclement of the origin
implies that the system is unstable. To illustrate this, let us consider the Nyquist curve

represented in figure 17(b), where the curve Z(a)(Γ ) is oriented counterclockwise, and it
encircles twice the origin: this implies that the system has two unstable zeros. A more
careful evaluation reveals that this corresponds to a pair of conjugated complex zeros.

Additionally, impedance values for real ω can also provide an estimation of the complex
zeros whenever Im(ω) is of small magnitude. Here, let us detail the procedure followed
in § 3.3.1. We consider the case where the Nyquist curve is found near the origin. The
first scenario corresponds to a complex frequency ω = ωR + iωI = ω0 + εω1, where
ω0, ωR, ωI are real values, ω1 is considered to be complex and a small real parameter
ε � 1.
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Provided the impedance Z(a)(ω) = Re(Z(a)(ω)) + iIm(Z(a)(ω)) = Z(a)
R (ω) + iZ(a)

I (ω)

is analytic, the first-order Taylor expansion at ω0 provides

0 = Z(a)(ω) = Z(a)(ω0) +
(

dZ(a)

dω

)
ω=ω0

(ω − ω0) + R1(ω), (C1)

where R1(ω) is the remainder of the Taylor expansion. The remainder of the expansion can
be shown to be bounded, for instance, using Cauchy’s integral formula and the maximum
principle (see, for instance, Rudin 1987) yields

|R1(ω)| ≤ Mr
|ω − ω0|2

r(r − |ω − ω0|) ≤ Mr
η2

1 − η
, with Mr ≡ max

|ω−ω0|=r
|Z(a)(ω)| (C2)

for |ω − ω0| < r and |ω − ω0|/r ≤ η < 1, where we have assumed that the impedance
function is holomorphic in a closed disk of radius r of the complex plane. Therefore,
the function R1(ω)/(ω − ω0) is also analytic within the disk. In such a way we can
approximate the value of zero ω as

ω − ω0 = Z(a)(ω0)(
dZ(a)

dω

)
ω=ω0

+ R1(ω)

ω − ω0

≈ Z(a)(ω0)(
dZ(a)

dω

)
ω=ω0

= Z(a)
R (ω0) + iZ(a)

I (ω0)(
∂Z(a)

R (ω)

∂ωR

)
ω=ω0

+ i

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

, (C3)

where the error of the approximation is

ε ≤

∣∣∣∣∣∣∣∣∣
Z(ω0)(

dZ
dω

)
ω=ω0

∣∣∣∣∣∣∣∣∣
η′

1 − η′ , (C4)

with η′ = |R1(ω)|/|ω − ω0|/|(dZ/dω)ω=ω0 |, because the radius of convergence of the
rational complex function 1/((dZ/dω)ω=ω0 + z) is equal to |(dZ/dω)ω=ω0 |. Thus,
the approximation (C3) converges uniformly far from the critical points of the
impedance. Furthermore, it provides good estimates whenever |Z(ω0)| ∼ ε � 1 and
|ω − ω0| ∼ ε � 1, which is the motivation to the condition (i) and the expansion in
frequency in § 3.3.1. Finally, note that (C3) could be used as a step in a Newton iteration,
whenever the initial guess ω0 is far from the zero of the impedance.

Multiplication by the complex conjugate of the denominator in (C3) leads to

εω1 ≈

(
Z(a)

R (ω0) + iZ(a)
I (ω0)

) ⎛⎝(
∂Z(a)

R (ω)

∂ωR

)
ω=ω0

− i

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠
⎛⎝(

∂Z(a)
R (ω)

∂ωR

)
ω=ω0

⎞⎠2

+
⎛⎝(

∂Z(a)
I (ω)

∂ωR

)
ω=ω0

⎞⎠2
. (C5)
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Finally, one could split (C5) in real and imaginary parts, this yields the expression for ωR,

εRe(ω1) = ωR − ω0 ≈

⎛⎝Z(a)
R (ω0)

(
∂Z(a)

R (ω)

∂ωR

)
ω=ω0

+ Z(a)
I (ω0)

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠
⎛⎝(

∂Z(a)
R (ω)

∂ωR

)
ω=ω0

⎞⎠2

+
⎛⎝(

∂Z(a)
I (ω)

∂ωR

)
ω=ω0

⎞⎠2
,

(C6)
and for ωI ,

εIm(ω1) = ωI ≈

⎛⎝Z(a)
I (ω0)

(
∂Z(a)

R (ω)

∂ωR

)
ω=ω0

− Z(a)
R (ω0)

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠
⎛⎝(

∂Z(a)
R (ω)

∂ωR

)
ω=ω0

⎞⎠2

+
⎛⎝(

∂Z(a)
I (ω)

∂ωR

)
ω=ω0

⎞⎠2
. (C7)

Appendix D. Frequency selection argument

This appendix provides an argument explaining the quantification of the eigenvalues
observed for the cavity/open configuration.

The frequency of the sound generated is selected by considering the two elements that
compose the feedback loop of a class III aerodynamic whistle: the hydrodynamic-acoustic
wave interaction and the acoustic resonator. In this kind of mechanism, we can distinguish
two feedback loops, a first loop composed of the interaction of a hydrodynamic instability
with an acoustic wave and a second one which accounts for the interaction of the first
feedback loop with the acoustic resonator. A hydrodynamic-acoustic wave interaction
develops whenever the shear layer of the jet is unstable and the jet acts as a source
of energy, which occurs when the resistance of the hole is negative. The shear layer
instability is triggered at the leftmost corner of the hole, disturbances grow along the hole;

however, in the case when the shear layer is not sufficiently unstable (so self-sustained
oscillations arise by pure hydrodynamical arguments) it requires an acoustic wave to close
the loop, which is an instantaneous process in the low Mach number limit. For acoustically
compact source regions, the frequency selection of this mechanism is dominated by the
hydrodynamic instability, because the travel time of the acoustic wave is of lower order
of magnitude. Secondly, the cavity acts a resonator, selecting a set of discrete frequencies
among those associated with a negative resistance.

In the present configuration, there exist four branches of instability, each of them
denoted as Cn for n = 1, 2, 3, 4, which are characterised by a nearly constant Strouhal
number

St(n)
β = ω(n)β

2π
(D1)

as β is varied. The characteristic frequency of Cn branches is related by a frequency shift

St(n)
β = St(n−1)

β + ΔStβ , where ΔStβ ≈ [0.6, 0.7]. This frequency shift may be estimated

if one realizes that the global instability is the result of the constructive interaction
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Figure 19. Diagram of the non-local interaction leading to global instability.

between two travelling waves: a downstream-travelling wave, which is excited about the
hole lip and propagates around the jet core position, and an upstream-travelling wave that
propagates backwards. The non-local constructive interaction of such waves gives rise to

a self-sustained global in time instability, which, in some circumstances, is able to radiate
an intense acoustic field.

In the following analysis we reconsider the discharge coefficient αvena =√
ρU2

M/2(Pin − Pout), which can be thought of as a measure of the vena contracta

phenomenon, assuming that the jet contracts to a top-hat jet with constant velocity UJ
and radius RJ . Then applying Bernouilli law, one obtains αvena = UM/UJ = πR2

J/πR2
h

that was introduced in Fabre et al. (2019) in the discussion of the work of Howe (1979),
which is classically associated with the pressure loss across the aperture, and it relates the
mean velocity UM with the jet velocity UJ . In Fabre et al. (2019, § 2.5 and Appendix A)
the importance of the vena contracta coefficient αvena and the actual value of the phase
velocity of the Kelvin–Helmholtz instability, where the phase velocity depends on the
frequency ω but which is around Uc = UJ/2 for sufficiently high ω. The value of the
discharge coefficient tends asymptotically to αvena → 0.61 for large Re; however, in the
range of Reynolds numbers where transition occurs αvena is maximal and takes values
αvena ∈ [0.7, 0.76]. In the following, we consider a constant discharge coefficient αvena =
0.76, which was the value reported in Fabre et al. (2020, figure 5) for most of β in the
range of Reynolds numbers where the transition occurs.

In order to estimate the frequency shift ΔStβ let us consider the travel time of each
travelling wave past the hole. The hydrodynamic travelling wave takes ΔKH = Lh/Uc =
2αvenaLh/UM and the acoustic wave Δac = MLh/UM; therefore, the total travelling time

Δ = ΔKH + Δac = Lh(2αvena + M)

UM
≈ 2αvena

Lh

UM
, f (n) = 2n − 1

2Δ
, Δf = 1

Δ
,

(D2a-c)
where it is considered that M � 1 and the convective velocity of the hydrodynamic

perturbation is 2αvena
UM

as it is displayed in figure 19. Thus, the associated Strouhal shift

ΔStβ = ΔfLh

UM
≈ 1

2αvena
. (D3)

Similarly, the Strouhal frequency of each Cn branch is estimated as

St(n)
β = 2n − 1

4αvena
, n = 1, 2, 3 . . . . (D4)

In the previous reasoning, it has been implicitly assumed that only odd mode structures
as those depicted in Fabre et al. (2020, figure 9) lead to a conditional instability.
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The superposition of the base flow with odd modes (respectively even) at the instant of the

cycle where the flow rate through the hole is maximum results in an upward (respectively

downward) displacement of the shear layer, thus, pressure is increased (respectively

decreased) in the presence of odd modes (respectively even). This implies that the hole
impedance is negative, which is the criterion of existence of conditional stability.

Finally, let us discuss the influence of compressibility regarding modifications in
frequency at the threshold of instability for each of the unstable modes. Compressibility
induces a weak variation in the vena contracta coefficient, see figure 16(a), while
the threshold of instability is significantly modified for a given value of β near the
left asymptote for conditional instabilities (figure 18a) and hydrodynamic instabilities
(figure 11a). Thus, for short holes β (here short refers to a value of β near a vertical
asymptote of the corresponding instability), the critical Reynolds number is considerably
modified by compressible effects, which in turn induces a change in the vena contracta
coefficient (more important than the variation of the vena contracta by compressibility
at constant Reynolds number). For those cases, one could evaluate the shift in frequency
δ|MΔStβ = ΔStβ(M + ΔM) − ΔStβ(M) as

δ|MΔStβ = −2 (αvena(Rec(M + ΔM), M + ΔM) − αvena(Rec(M), M)) + ΔM

(2αvena(Rec(M), M) + M)2
, (D5)

where the first term, the variation in the vena contracta due to a variation in Mach number,
is negligible with respect to the variation in Mach number for long holes, and thus, the
variation of frequency for those instabilities is of lesser importance.

Appendix E. Computational domains and absorbing boundary layer

This section discusses the design of computational domains used for the computation
of steady states and eigenmodes with the full compressible formulation, and steady
states and the forced harmonic response with the incompressible formulation. The
computational strategy must be designed in such a way as to avoid the presence of spurious
eigenvalues/eigenmodes. The creation of meshes for the full compressible formulation
follows a block-structured strategy, similar to the one sketched in figure 4. The domain is
divided into three regions: an inner region with the highest vertex density, a mid region
with intermediate vertex density and a coarser region for the absorbing layer. Meshes
employed for the incompressible case are composed of two regions, a physical domain
with the highest vertex density and a coarser region for the absorbing layer. Table 1 lists
a number of computational meshes employed in this study (M2, M3, M4 and M5 for the
full compressible case, and M1 for the incompressible case). However, such a list is not
exhaustive because in addition to the block-strategy refinement, the computational domain
has been locally refined following an adaptive local refinement procedure, where the metric
for the refinement is based on the steady state and on the eigenmodes (respectively steady
state and forced harmonic response in the incompressible case), cf. Hecht (2012) and Fabre
et al. (2018).

The absorbing boundary layer corresponds to the complex mapping technique (Sierra
et al. 2020) where a coordinate transformation G is defined as follows:

Gz : R → C such that z = Gz(Z) = [
1 + iγz,cgz(Z)

]
Z,

Gr : R → C such that r = Gr(R) = [
1 + iγr,cgr(R)

]
R.

}
(E1)

Here gz(Z) (respectively gr(R)) has to be chosen as a smooth function such as gz(Z) = 0
for Z < Z0 and gz(Z) ≈ 1 for Z > Z0 + Lc up to Zmax. The complex mapping acts on
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Zmax Rmax Z0 Lc γz,c R0 Rc γr,c ntri

M1 50 50 10 2.5 0.3 5 2.5 0.3 42 460 tri.
M2 300 300 10 5 0.3 10 2.5 0.3 165 841 tri.
M3 600 600 10 5 0.3 10 2.5 0.3 235 874 tri.
M4 600 600 170 5 0.3 170 5 0.3 314 525 tri.
M5 1500 1500 10 5 0.3 10 2.5 0.3 413 356 tri.

Table 1. Meshes used for cases where the complex mapping technique is adopted. Note: the smooth transition
functions are defined as gz(Z) = tanh([(Z − Z0)/Lc]2) and gr(R) = tanh([(R − R0)/Rc]2). In the following,
Lmax = z−∞ + zCM = z∞ + zCM and Rmax = r∞ + rCM (figure 4).

a finite region of length zCM = Zmax − (Z0 + Lc). The function gz is defined as gz(Z) =
tanh([(Z − Z0)/Lc]2). The application of this map to the linearized Navier–Stokes requires
that each spatial derivative, within the complex mapped region, is modified as

∂

∂z
≡ Hz

∂

∂Z
with Hz(Z) =

(
∂Gz

∂Z

)−1

. (E2)

An example of parameters for the usage of the complex mapping layer for the
incompressible case is listed in table 1 (M1). In the full compressible formulation, one
must pay particular attention to the extension of the complex mapping region, which
here is selected to cover at least two acoustic wavelengths, i.e. zCM = rCM > 1/St M. For
instance, the largest acoustic wavelength in this study corresponds to the validation case
in § 5.1, where λac ≈ 600 (St ≈ 1/3 and M = 5 × 10−3), for which M5 is an appropriate
choice.
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𝑐 = Sound speed, m · s−1

𝐻𝑒 = Helmholtz number

i = imaginary unit, i2 ≡ −1

Im {. . . } = Imaginary part

𝐿 = Length, m

𝑀 = Mach number

𝑝 = Pressure, Pa

𝑞 = Unsteady volumetric flow, m3 · s−1

𝑄 = Steady volumetric flow, m3 · s−1

𝑟 = reflection coefficient

𝑅 = Radius, m

𝑅𝑒 = Reynolds number

Re {. . . } = real part

u = velocity, m · s−1

𝑢 = axial velocity component, m · s−1

𝑈 = Speed, m · s−1

𝑍 = Impedance, m · s−1

𝛼 = Factor

𝛿 = thickness, m

Δ = Difference

𝜃 = Angle, rad

𝜈 = Kinematic viscosity of air, 1.5 × 10−5m2s−1

𝜌 = Density, kg · m−3

∇ = Gradient operator, m−1

Φ = porosity

𝜔 = Angular frequency, rad · s−1

Subscripts

0 = Steady value

1 = Displacement

2 = Momentum

cal = Calibration

cor = Correction

dif = Diffuser

dst = Downstream

frc = Forcing

hfl = High-frequency limit

𝐼 = Imaginary part

inl = Inlet

max = Maximum

mic = Microphone

min = Minimum

msr = Measurement

lfl = Low-frequency limit

o = Open

orf = Orifice

oul = Outlet

𝑟 = Radial component

𝑅 = Real part

s = Sample

set = User set
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tws = Thwaites

ust = Upstream

𝑥 = Axial component

Superscript
′ = Indicates fluctuation

¯ = Dimensionless quantity

I. Introduction
In many real-world applications—including aeroengines and power gas turbine combustors —one encounters a flow

passing through orifices in plates [1–5]. Under unfavorable conditions these orifices produce sound; i.e., they whistle.

Whistling of sharp edged circular orifices in finite-thickness plates was first experimentally observed by Sondhauss

[6] and reported by Rayleigh [7]. Experimental investigations by Anderson [8–12] and later by Jing and Sun [13],

Karthik et al. [14], Testud et al. [15], Lacombe et al. [16], Zhou and Bodén [17], Su et al. [18], Moers et al. [19] and

Wu et al. [20] provided more insight into the controlling parameters. Nair and Sujith [21] studied the chaotic behavior

around the onset of whistling. Lacombe et al. [16], Moussou [22] and Fabre et al. [4] used the Nyquist criterion [23] to

obtain a prediction of the sharp-edged orifice’s whistling based on its acoustic transfer impedance. Jing and Sun [13]

used a discrete-vortex model to predict the acoustical response of orifices. Ji and Zhao [24] used a Lattice Boltzmann

model to predict the acoustic impedance of orifices. Su et al. [18] and Chen et al. [25] used Unsteady Reynolds

Averaged Navier Stokes (URANS) simulations to predict the transfer impedance of thick sharp edged orifices. Alenius

et al. [26, 27] and Sorvadi et al. [28] used compressible Large Eddy Simulations (LES) to study sound production by

a sharp-edged thick-plate orifice. Kiergegaard et al. [29, 30] and later Fabre et al. [4] used Linearized Navier Stokes

Equation (LNSE) models to study the whistling conditions of an orifice in a thick plate.

In particular, Fabre et al. [3] reported a numerical simulation based study of acoustic response of a single sharp-edged

circular-shaped perforation in an infinitely-thin plate. In a subsequent publication—Fabre et al. [4] reported a numerical

simulation based investigation of whistling by a single sharp-edged cylindrical perforation in a plate of finite thickness.

In both studies a laminar steady base flow was established in the direction of the perforation’s axis of rotational symmetry.

The laminar base flow was then used as the initial condition, for simulations employing a Linearized Navier-Stokes

Equations (LNSE) code. These LNSE simulations consisted of acoustically perturbing the base flow at a fixed frequency.

The acoustic impedance of the circular perforation was determined for the set frequency. This was repeated for an

ensemble of frequencies.

We note that for bias flow through slit-shaped orifices, the influence of the geometry of the edges was investigated

experimentally by Tonon et al. [31] and Moers et al. [19]. Moreover, in the absence of flow the influence of a cylindrical

orifice’s shape on its transfer impedance was investigated by Temiz et al. [32]. The focus of investigation of the presently

reported study was on cylindrical orifices of various shapes subject to bias flow.

A sharp-edged orifice subject to a bias flow and upstream acoustic forcing, displays local minima in the real

part of the transfer impedance. If, this local minimum is negative it is said that there is whistling potentiality. The

Strouhal numbers at which these minima occur correspond to the convection time close to an integer number of shear

perturbations from the orifice’s inlet to its outlet. The first local minimum corresponds to the presence within the orifice

of one perturbation, the second to two, etc. Ergo, in this text these local minima of the real part of the transfer impedance

will be referred to as the first, second, etc. hydrodynamic modes.

Guzman-Iñigo et al. [5], made a first step to investigate —by means of numerical simulations and the use of an

semi-analytical model (based on Howe’s analogy [33])—the influence of the shape of a single circular perforation

in a plate of finite thickness. Indeed, Guzman-Iñigo et al. [5] reported results for a slightly rounded upstream inlet

of the perforation. They reported that very small changes of the perforation’s inlet edge can bring about significant

modifications in its acoustic response. One notes that Guzman-Iñigo et al. [5] state: “. . . this paper is restricted to

small modifications of the edge when compared with the radius of the hole.” Indeed, in Ref. [5] the influence of more

significant rounding of the inlet edge was left to the future.

We note that sound production by orifices—in the situation as sketched above—is similar to that in: whistler nozzles,

horns, diffusers and shalow cavities [34–36]. A qualitative explanation of this sound production mechanism—in terms

of Howe’s analogy [33]—was provided by Hirschberg et al. [34].
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Fig. 1 Sketch of the computational domain.

The present work builds on Fabre’s et al. [3, 4] & Guzman-Iñigo’s et al. [5] work. Indeed, we used a LNSE-simulation

approach to investigate the transfer impedance of an orifice in a plate of finite thickness—in the presence of laminar

flow through it. In addition, original complementary measurements were carried out using an impedance tube for the

four investigated orifice shapes, to wit: a sharp-edged orifice, a rounded-inlet and sharp-outlet orifice, a sharp-inlet and

rounded-outlet orifice, a convergent-divergent nozzle orifice (i.e., with a rounded inlet followed by a diffuser section).

We report theoretical results on the influence of significant rounding of the inlet edge. In addition, we present—

hitherto unreported—results of a systematic investigation of the effect of a rounded downstream edge. We also

numerically and experimentally investigated the acoustic response of a convergent-divergent-nozzle orifice. Moreover,

the experiments were used to investigate the influence of the upstream acoustic-forcing amplitude on the results. This

was done to probe the limits of the LNSE model’s application regime. In the experiments the orifice is confined within a

tube. The influence of this confinement is quantified for the sharp edged orifice.

The compressible numerical-simulation approach—including a description of the computational domain, the

equations which are solved and boundary conditions—used to preform the investigation are succinctly described in

§II and §II.B.2. In §III, the experimental approach is described. Results are reported in §IV. Two distinct LNSE

codes—viz. incompressible and compressible LNSE—are compared in §IV.A. Results of the parameter study performed

with the compressible LNSE code are provided in §IV.B. Complementary experimental results are provided and

compared to numerical simulation results in §IV.C. Conclusions are drawn in §VI.

II. The numerical simulation approach
In §II.A, a description of the numerical domain is provided. The equations solved for the numerical simulation

(mean flow and compressible LNSE) are provided in §II.B. The reader is referred to Guzman-Iñigo et al. [37] for a

more expansive discussion of the compressible LNSE model. The boundary conditions used are discussed in §II.C. A

description of how the impedance is determined is provided in §II.D.

A. The computational domain
In Fig. 1, a sketch of the computational domain used for the presently-reported investigation is shown. The dashed

dotted line is a cylindrical-symmetry axis. The cylindrical symmetric domain had a radius of 5𝑅orf to the left (upstream)

and right (downstream) of a constriction with a minimum radius 𝑅orf . The length of this constriction

𝐿orf = 2𝑅orf (1)

was fixed for all presently-reported numerical investigations. The lengths of the parts of the domain upstream and

downstream from the constriction—henceforth referred to as the orifice—were 40𝑅orf and 300𝑅orf , respectively. The

axial position of the in- and outlet are—in Fig. 1—indicated with 𝑥inl and 𝑥oul.

The four orifice shapes considered for our numerical investigation—shown in Fig. 2—were:

(a) a sharp-edged circular orifice (Fig. 2(a)),

(b) a rounded upstream edge with a sharp-edged outlet (Fig. 2(b)),

(c) a sharp-edged inlet with a rounded outlet (Fig. 2(c)),

(d) a convergent-divergent nozzle geometry (Fig. 2(d)).

The rounded-inlet orifice (Fig. 2(b) had an upstream-edge radius of curvature, 𝑅ust. The rounded-outlet orifice

(Fig. 2(c)) had an downstream-edge radius of curvature, 𝑅dst. The convergent-divergent nozzle the diffuser angle of the

convergent-divergent nozzle orifice (Fig. 2(d)) was
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Fig. 2 Orifice shapes considered for the numerical simulation study: (a) sharp-edged orifice (b) rounded
upstream edge (c) rounded downstream edge (d) convergent-divergent nozzle.
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𝜃dif = 2 arctan

(
𝑅out − 𝑅orf

𝐿orf − (𝑅orf/2)

)
(2)

where the neck-cross-section radius 𝑅orf and plate thickness 𝐿orf were fixed (Eq. (1)) and the radius of the outlet cross

section 𝑅out (defined in Fig. 2(d)) was varied systematically.

B. The solved equations
The equations solved to establish the mean flow are described in §II.B.1. In §II.B.2 the linearized Navier-Stokes

equations (LNSE) are presented.

1. Mean flow
The dimensionless steady incompressible-flow equations (mass and momentum conservation)—which are solved to

establish a mean flow—are:

∇̄ · ū = 0 (3)

ū · ∇̄ū = −
1

�̄�
∇̄𝑝 +

1

𝑅𝑒orf
∇̄2ū (4)

where

𝑅𝑒orf ≡
2𝑅orf𝑈orf

𝜈
(5)

is the Reynolds number based on the orifice diameter 2𝑅orf and 𝑈orf the averaged axial flow speed at the orifice’s inlet.

𝑈orf is defined as follows:

𝑈orf =
𝑄orf

𝜋𝑅2
orf

(6)

where 𝑄orf is the volumetric flow rate through the orifice.

These dimensionless equations were discretised using the finite-element method within the FEniCSx computing

platform [38] and a first-order accurate Newton integration scheme. A basis of Arnold-Brezzi-Fortin MINI-elements [39],

with 𝑃1 elements for the pressure and 𝑃1𝑏 elements for each velocity component. The discrete non-linear problem was

solved using the Newton method.

2. Linearized Navier-Stokes equations
The dimensionless compressible linearized Navier-Stokes equations (LNSE) are:

𝐻𝑒orf
𝜕�̄�′

𝜕𝑡
= −�̄�0∇̄ · (ū′) − ū0 · ∇̄�̄�

′ (7)

𝐻𝑒orf
𝜕ū′

𝜕𝑡
+ ∇̄ · (ū′ū0 + ū0ū′ + �̄�′ū0ū0) = −∇̄𝑝 +

𝑀orf

𝑅𝑒orf
∇̄2ū (8)

where

𝐻𝑒orf =
2𝑅orf𝜔

𝑐orf
(9)

is a Helmholtz number based on the—upstream boundary imposed—forcing frequency, 𝜔, the orifice’s diameter, 2𝑅orf ,

and the sound speed, 𝑐orf at its inlet; and

𝑀orf =
𝑈orf

𝑐orf
(10)

is the Mach number at the orifice’s inlet.
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BC(1)

BC(3) BC(5)

BC(4)

BC(2)

Fig. 3 Sketch of where the boundary conditions (BCs) are applied.

These LNSE simulations—using the previously computed mean flow as a background flow—were performed using

the FEniCSx computing platform [38] and a second-order accurate finite-element method. N.b., these equations were

solved in the frequency domain.

A detailed description of the numerical model for the incompressible flow simulations are found in Fabre et al. [4].

C. Boundary conditions
In Fig. 3, a sketch of where the boundary conditions (BCs) are applied is shown. The pipe segments, when present

upstream or downstream of the orifice have a cross sectional radius of 5𝑅orf . Two different sets of boundary conditions

are applied to establish the mean flow and to perform the LNSE simulations. These boundary conditions are briefly

described in §II.C.1 and §II.C.2, respectively.

1. Mean-flow boundary conditions
The boundary conditions applied to establish the mean flow were:

BC(1): 𝑢𝑥 = 𝑈orf𝑅orf
2/(5𝑅orf)

2

BC(3): 𝑢𝑟 = 0

BC(4): 𝑢𝑟 = 0

BC(5): 𝑢𝑥 = 0 and 𝑢𝑟 = 0

where BC(1) is an inflow boundary condition, BC(3) a slip boundary condition, BC(4) is a symmetry boundary condition

and BC(5) is a no-slip boundary condition.

2. LNSE boundary conditions
The boundary conditions used to perform the LNSE simulation were:

BC(1): non-reflective boundary condition

BC(2): non-reflective boundary condition

BC(4): 𝑢𝑟 ,𝑅 = 0 and 𝑢𝑟 ,𝐼 = 0 (symmetry boundary condition)

BC(5): 𝑢𝑥,𝑅 = 0 and 𝑢𝑥,𝐼 = 0 (no-slip boundary condition)

BC(5): 𝑢𝑟 ,𝑅 = 0 and 𝑢𝑟 ,𝐼 = 0 (no-slip boundary condition)

where BC(4) is a symmetry boundary condition and BC(5) is a no-slip boundary condition. N.b., the subscripts 𝑅 and 𝐼
indicate the real and imaginary components, respectively. Moreover, at BC(1) acoustic forcing at a fixed frequency 𝜔
was applied.

The boundary conditions for the incompressible flow simulation results are found in Ref. [4]. In the case of the

incompressible flow model results, there was a pipe of radius 5𝑅orf upstream of the orifice. The downstream flow

emerged into free space, bounded by the downstream side of the orifice plate.

D. Determination of the impedance
The transfer impedance, 𝑍 , of the orifice is defined as follows

𝑍 =
𝑝′ust − 𝑝′

dst

𝑞′
= 𝑍𝑅 + i𝑍𝐼 (11)

where 𝑞′ is the volumetric flow rate fluctuation. 𝑝′ust and 𝑝′
dst

are the up- and downstream pressure fluctuation; viz., up-

and downstream of the orifice. In dimensionless form the impedance is
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�̄� = �̄�𝑅 + i�̄�𝐼 =
𝑅2

orf

𝜌orf𝑈orf
𝑍 (12)

The impedance is a function of the forcing frequency 𝜔, which in dimensionless form becomes a Strouhal number, to

wit:

Ω ≡
𝑅orf

𝑈orf
𝜔 (13)

The up- and downstream pressure fluctuations are taken to be composed of up- and downstream traveling plane

waves in the pipe segments up and downstream of the orifice 𝑝±ust and 𝑝±
dst

, respectively. These wave amplitudes are

obtained by wave decomposition of the cross-sectional averaged results of the simulations—the multi-microphone

method was used for this. The acoustic field at the axial orifice inlet and outlet positions 𝑥inl and 𝑥oul (defined in

Fig. 1)—is obtained by extrapolation, namely

𝑝′ust = 𝑝+ust exp

(
−i

𝜔

𝑐 + 𝑢0
𝑥inl

)
+ 𝑝−ust exp

(
i

𝜔

𝑐 − 𝑢0
𝑥inl

)
(14)

𝑝′dst = 𝑝+dst exp

(
−i

𝜔

𝑐 + 𝑢0
𝑥oul

)
+ 𝑝−dst exp

(
i

𝜔

𝑐 − 𝑢0
𝑥oul

)
(15)

In terms of velocity fluctuations, one has

𝑢′ust =
𝑝+ust

𝜌𝑐
exp

(
−i

𝜔

𝑐 + 𝑢0
𝑥inl

)
−

𝑝−ust

𝜌𝑐
exp

(
i

𝜔

𝑐 − 𝑢0
𝑥inl

)
(16)

𝑢′dst =
𝑝+

dst

𝜌𝑐
exp

(
−i

𝜔

𝑐 + 𝑢0
𝑥oul

)
−

𝑝−
dst

𝜌𝑐
exp

(
i

𝜔

𝑐 − 𝑢0
𝑥oul

)
(17)

The unsteady volumetric flow rate fluctuation is then taken to be

𝑞′ = 25𝜋𝑅2
orf𝑢

′
ust (18)

III. Experimental approach
A succinct description of the experimental setup is provided in §III.A. The experimental method used to determine

the transfer impedance is briefly described in §III.C. Appendix A provides a description of the calibration of the flow

controller used to set the steady bias flow.

A. Experimental setup
In Fig. 4, a sketch of the experimental setup used to determine the transfer impedance of an orifice subject to a bias

flow is shown. A volume-flow rate �𝑄 is imposed— using a calibrated flow controller—on the upstream side (left-hand

side of the orifice in Fig. 4) of the orifice to impose the bias flow.

The radius of the pipe upstream and downstream from the orifice was 𝑅pipe = 25 mm. The shapes of the orifices

could be varied. Four of the shapes described in Fig. 2 were investigated—viz.: the sharp edge orifice, an orifice with

rounded upstream edge 𝑅ust = 2𝑅orf , an orifice with rounded downstream edge 𝑅dst = 2𝑅orf and a convergent divergent

orifice with 𝑅out = 7𝑅orf/4.

Acoustic forcing was done by means of a 25 W loudspeaker fixed flush at the upstream-pipe end. The imposed

acoustic-forcing signal was harmonic and its amplitude could be varied. For a fixed forcing amplitude a preset frequency

range was scanned. Six pre-polarized 1/4 inch microphones (type BWSA, sensitivity 50 mV · Pa−1) mounted flush

upstream from the orifice under investigation were used to recorded the acoustic response due to forcing.

The samples used were very precise (accuracy of the order of 0.01 mm) reproductions of the geometries depicted in

Fig. 2. E.g., the sharp-edge were manufactured such that they were literally razor sharp. This was confirmed by the fact

that the transfer impedance measurement results remained identical when the position of the orifice with sharp square

edged was inverted with respect to the flow direction.
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Fig. 4 Sketch of the experimental setup.

B. Acoustic-forcing amplitude
In the experiments, a forcing amplitude was applied using the upstream speaker (as sketch in Fig. 4). This was done

by having the user set a forcing voltage 𝑉frc target. The actual harmonic pressure fluctuation was measured by means of

the calibrated microphone 50 mm upstream of downstream side of the orifice. A feedback system tuned 𝑉frc to keep |𝑝′ |
constant as the frequency was stepwise changed.

The relative velocity-forcing amplitude can be determined, using

|𝑢′
frc
|

𝑈orf
=

|𝑝′ |

𝜋𝜌𝑈2
orf
|�̄� |

(19)

One notes that |�̄� | is a function of the forcing frequency (or the Strouhal number Ω). Two order-of-magnitude limits of

|𝑢′
frc
|/𝑈orf , can be explored: the high-frequency and the low-frequency limits.

Let us start with the high-frequency limit. In this limit �̄� is dominated by the inertia �̄�𝐼 , which in turn is of the

order-of-magnitude of Ω. One finds:

lim
Ω→∞

|𝑢′
frc
|

𝑈orf
=

(
|𝑢′

frc
|

𝑈orf

)
hfl

�
1

𝜋Ω
|𝑝′ |

𝜌𝑈2
orf

(20)

Moving to the low-frequency limit, one applies Bernoulli’s quasi-steady equation (𝑝orf = 𝜌𝑈2
orf
/2), one has

𝑈orf ± 𝑢′frc =

√
2 (𝑝orf ± 𝑝′)

𝜌
� 𝑈orf

(
1 ±

𝑝′

𝜌𝑈2
orf

)
(21)

one finds

lim
Ω→0

|𝑢′
frc
|

𝑈orf
=

(
|𝑢′

frc
|

𝑈orf

)
lfl

�
|𝑝′ |

𝜌𝑈2
orf

(22)

Ergo, going forward |𝑝′ | = |𝑝′ |/(𝜌𝑈2
orf
) will be used as an indication for the order-of-magnitude of |𝑢′ |/𝑈orf .

C. Experimental determination of the transfer impedance
The transfer impedance was determined using the approach described in more detail by Aulitto et al. [40]. It is

based on the measurement of the reflection coefficient with and without the presence of an orifice—also referred to as

a “sample”—at 𝑥 = 0. Indeed, the sample could be replaced by a ring to create a smooth open pipe. The reflection

coefficient of the open pipe, 𝑟𝑜 and the reflection coefficient with the presence of an orifice, 𝑟𝑠 were measured using the

method described in Jang and Ih [41].

The dimensionless radiation impedance of the open pipe was calculated using

�̄�𝑜 =
1 + 𝑟𝑜
1 − 𝑟𝑜

(23)
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(a) (b)

(c)

Fig. 5 Sharp-edged orifice compared compressible LNSE simulation compared to Fabre’s et al. incompressible
LNSE results for 𝑅𝑒orf = 1.2 × 103: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω (c) �̄�𝐼/(𝛼corΩ) vs. Ω.

and the same expression was used to determined the impedance in the presence of a perforated plate

�̄�𝑠 =
1 + 𝑟𝑠
1 − 𝑟𝑠

(24)

The transfer impedance was then determined as follows

�̄�orf = �̄�𝑜 − �̄�𝑠 (25)

IV. Results
Most of the numerical simulation results presented here, were obtained with the compressible LNSE code described

in §II.B.2. However, in §IV.A results for the sharp-edged orifice case are compared to simulations obtained with an

incompressible LNSE code described by Fabre et al [3, 4]. In §IV.C, LNSE results are compared to original empirical

data obtained using the experimental setup and approach briefly described in §III. All results in this section were

obtained with 𝑅𝑒orf = 1.2 × 103,the reported measurements were also obtained for this Reynolds number. Under these

circumstances the flow within the orifice is expected to be laminar, as assumed in the theoretical model.

A. Comparison of compressible and incompressible LNSE results
In Fig. 5 results for sharp-edged orifice (Fig. 2(a)) obtained with the compressible LNSE code described in §II.B.2

are compared to results obtained with an incompressilbe LNSE code (the incompressible LNSE code was developed and

used for investigations by Fabre et al. [3, 4]). One observes three minima of the real part of the impedance corresponding
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(a) (b)

Fig. 6 Rounded-inlet orifice compared to the sharp-edged orifice compressible LNSE simulation results for
𝑅𝑒orf = 1.2 × 103: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

to the first three hydrodynamic modes. The first mode (at Ω � 0.7) has no whistling potentiality as the minima remains

positive. The second (Ω � 2.5) and third (Ω � 4.7) hydrodynamic mode have a strong whistling potentiality.

One should note that the results produced with the incompressible LNSE code were obtained with a different

computational domain and boundary conditions. Indeed, for the incompressible case the boundary condition imposed at

BC(5) in Fig. 3, were—excluding the plate and orifice were a no-slip condition was imposed—slip boundary conditions.

Moreover, I.e., the results for the incompressible case are a model for a sharp-edged orifice in a plate between an

upstream duct of radius 5𝑅orf and a downstream unducted space.

In Fig. 5(a), one observes that the results for the real part of the transfer impedance, �̄�𝑅, overlap within ca. 1%.

In Fig. 5(b) one observes a deviation of not more than 22% in, �̄�𝐼/Ω, the imaginary part of the transfer impedance

divided by the Strouhal number. This deviation is due to a confinement effect on �̄�orf,𝐼 . Indeed, using Fok’s formula

[42] the incompressible LNSE result can be corrected for this confinement effect by dividing the imaginary part of the

transfer impedance by a correction factor 𝛼cor = 1.073. The result is shown in Fig. 5(c), one notes that there is overall

much better agreement between the results of the two flow simulations. Moreover, the maximum deviation—at the

first local minimum or hydrodynamics mode—is reduced to not more that 14% when applying this correction. This

significant reduction indicates that the difference in �̄�orf,𝐼 is mainly due to confinement effects. We concluded that for

the LNSE simulations the fact that the downstream side is ducted or unducted does not play a major role.

The fact that the real part of the impedance is not affected by the confinement indicates that, the dissipation or

production of sound occurs locally within the orifice or in a region close to the exit of the orifice. Indeed, the dissipation

is related to the modulation of the shear layer at the flow separation point at the orifice inlet. Sound production is related

to the exit of the perturbed shear layer from the orifice. The imaginary part of the impedance corresponding to the

inertia of the flow is less concentrated and therefore more sensitive to confinement.

B. Parameter variation: compressible LNSE simulation results
In Fig. 6, simulation results are shown for the rounded inlet geometry (2(b)). 𝑅ust/𝑅orf was varied from 1/40 to

2. The results are compared with the sharp-edged orifice case (thickest solid black line). One observes in Fig. 6(a)

that rounding the even a little bit—e.g. 𝑅ust/𝑅orf = 1/40—drastically diminishes, by ca. a factor two, the whistling

potentiality of the orifice. Indeed, for 𝑅ust/Rorf
> 1/20 𝑍orf,𝑅 > 0; i.e. the results for 𝑅ust/Rorf

> 1/20 indicate that the

whistling potentiality vanishes. This confirms and extends the results obtained by Guzman-Iñigo et al. [5].

Results, for the rounded outlet geometry (Fig. 2(c)) are shown in Fig. 7. 𝑅dst/𝑅orf was varied logarithmically from

1/10 to 2. The results are compared to the sharp-edge orifice case (thickest solid black line). One observes, in Fig. 7(a),

that as 𝑅dst/𝑅orf > 4/10 the first hydrodynamic mode (minimum of the real part of the transfer impedance) emerges as

the only source of whistling potentiality. Indeed, 𝑅dst/𝑅orf > 4/10 the second minimum in �̄�orf,𝑅 vanishes.

In Fig. 8, results for the convergent-divergent nozzle orifice (Fig. 2(d)) are shown in Fig. 8. 𝜃dif was varied from

0.00 rad to 1.18 rad. One observes as expected an absence of predicted whistling potentiality for 𝜃dif = 0. This

corresponds to the configuration in Fig. 2(b). As 𝜃dif is increased, one observes the emergence of a dominant first

hydrodynamic mode (minimum in �̄�orf,𝑅) (Fig. 8(a)).
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(a) (b)

Fig. 7 Rounded-outlet orifice response compared to that of the sharp-edged orifice compressible LNSE simulation
results for 𝑅𝑒orf = 1.2 × 103: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 8 Transfer impedance for convergent-divergent nozzle geometry compressible LNSE simulation results for
𝑅𝑒orf = 1.2 × 103 as a function of the Strouhal numberΩ: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 9 Convergent-divergent nozzle geometry compressible LNSE simulation hydrodynamic modes for 𝑅𝑒orf =
1200: (a) �̄�𝑅,min vs. 𝜃dif (b) Ωmin vs. 𝜃dif
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(a) (b)

Fig. 10 Sharp-edged orifice measurements compared to compressible LNSE results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

In Fig. 9(a), the first and second minima in �̄�orf,𝑅 are shown as a function of 𝜃dif . The Strouhal number at which

these minima occur, Ωmin, are plotted as a function of 𝜃dif in Fig. 9(b). One notes that the first and second minima

occur at Ωmin � 1.25 and Ωmin � 2.9, respectively. Moreover, one notes that the results predict an optimum in whistling

potentiality of the first hydrodynamic mode for 𝜃dif = 0.52 rad, while the second hydrodynamic mode remains silent for

the conditions investigated.

Thus, the shape of an orifice can be changed in order to optimize predicted whistling potentiality. We note that

the possibility for a whistling potentiality of the third hydrodynamic mode is obtained for the sharp edged orifice at

sufficiently high Reynolds numbers.

C. Comparison of numerical and experimental results
All the experimental and numerical simulation results reported here were obtained with 𝑅𝑒orf = 1.2 × 103.

In Fig. 10, experimental results obtained with the sharp-edged orifice are compared to those of the compressible

LNSE model. The experimental results were obtained with four dimensionless-forcing amplitudes 𝑝′ = 0.11 (thick

dotted line), 0.26 (thick dashed-dotted line), 0.53 (thick dashed line) and 2.63 (thick solid line). One notes that the

signal is affected by noise for 𝑝′ = 0.11 at higher Strouhal numbers, to wit, Ω > 5. However, for 𝑝′ = 0.11 and Ω < 5

the signal is quite clean. Moreover, a clear dependence of the experimental results on 𝑝′ is observed. E.g., one notes

for 𝑝′ = 0.11 and 0.26—although the real part of the transfer impedance is very nearly identical— on the second

hydrodynamic mode at Ω � 2.5 a significant deviation of ca. 14% in the inertial part 𝑍orf,𝐼/Ω. While for 𝑝′ = 0.53 the

real and imaginary parts of the transfer impedance follow the global trends of the lower amplitude results, the highest

amplitude 𝑝′ = 2.63 display drastically different behavior. Moreover, for 𝑝′ = 2.63 whistling potentiality is completely

suppressed. At these high amplitudes the acoustic velocity amplitude within the orifice becomes comparable to the

steady flow velocity. Acoustically induced back flow might occur.

We note that that LNSE model prediction (thin solid line in Fig. 10) deviates structurally from the empirical data.

E.g., the Strouhal number prediction for the second hydrodynamic mode deviates by ca. −17%.

The experimental results for a rounded inlet, 𝑅ust/𝑅orf = 2, are compared to the compressible LNSE model

predictions (thin solid line) in Fig. 11. The thick dotted, thick dashed-dotted, thick dashed, and thick solid line are for

𝑝′ = 0.11, 0.26, 0.53 and 2.63, respectively. One sees that 𝑍orf,𝑅 for 𝑝′ = 0.11 and Ω > 5 is dominated by noise. It is

interesting to note that for �̄�orf,𝑅 is basically amplitude independent. A difference in �̄�orf,𝐼 for 0.5 < Ω < 3 is observed

between 𝑝′ = 2.63 and the lower forcing amplitudes. One notes, that the LNSE model predictions for �̄�orf,𝐼/Ω differ

wildly from the experimental results. That said, one observes that both the LNSE model and the measurements for all

four 𝑝′ show a completely suppressed whistling potentiality for 𝑅ust/𝑅orf = 2.

Experimental results for the rounded-outlet orifice are shown in Fig. 12 for 𝑝′ = 0.11 (thick dotted line), 0.26

(dashed dotted line), 0.53 (thick dashed line), 2.63 (thick solid line). The results obtained with 𝑝′ = 0.11 for Ω > 5

are dominated by noise. It is interesting to note that the highest forcing amplitude suppresses the orifice’s whistling

potentiality. Although quantitative agreement between the empirical data and the LNSE model is observed, obvious

quantitative differences are discernible in e.g. the prediction of Ω for the first hydrodynamic mode.
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(a) (b)

Fig. 11 Rounded-inlet sharp-edged outlet orifice, 𝑅ust/𝑅orf = 2, measurements compared to compressible LNSE
results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 12 Sharp-edged inlet rounded-outlet orifice, 𝑅dst/𝑅orf = 2, measurements compared to compressible LNSE
results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 13 Convergent-divergent nozzle orifice, 𝜃dif = 0.52 rad, measurements compared to compressible LNSE
results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.
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Experimental and LNSE model results for the convergent-divergent nozzle orifice are shown in Fig. 13. Experimental

data for 𝑝′ = 0.11 (thick dotted line), 0.26 (thick dashed dotted line), 0.53 (thick dashed line) and 2.63 (thick solid line)

are shown. One noted that the signal for 𝑝′ = 0.11 with a Strouhal number above 5 is dominated by noise. That said, the

experimental results for 𝑝′ = 0.11 and 0.26 are discerned to be essentially the same. This indicates that the results are in

the linear regime. Notably, the whistling potentiality of the orifice appears to be suppressed for the highest forcing

amplitude 𝑝′ = 2.63. In spite of the fact that qualitative agreement between the empirical data and the LNSE model is

observed, clear quantitative differences are discernible in e.g. the prediction of Ω for the first hydrodynamic mode.

V. Discussion
The influence of an orifice’s shape on its transfer impedance and by extension its whistling potentiality, were

investigated using a LNSE model and experimentally. Four cylindrical orifice shapes were considered: a sharp-edged

(inlet and outlet) orifice, a rounded-inlet sharp-edged outlet orifice, a sharp-edged inlet rounded outlet orifice, and a

convergent-divergent nozzle orifice. The thickness of the plate containing the orifice, 𝐿orf , was twice the minimum

radius, 𝑅orf of the orifice; viz., 𝐿orf = 2𝑅orf . The individually probed orifices were subject to a bias flow, which was

fixed such that the Reynolds number based on the orifice neck diameter 2𝑅orf was 𝑅𝑒orf = 1.2 × 103.

The experimental and simulation results for sharp-edged orifice confirm that the second hydrodynamic mode—viz.,

the second and most pronounced local minimum in the real part of the transfer impedance of the orifice—has the largest

whistling potentiality. This is in agreement with the experimental observations of Testud et al. [15] and Moers et al.

[19]. The fact that they have a higher whistling potentiality than the first mode is due to the fact that at low Strouhal

numbers the amplification of the perturbations by the shear layer perturbations increases exponentially with the ratio of

shear layer length to hydrodynamic wavelength. Hence, the second hydrodynamic mode corresponds to an amplification

of perturbations, which is the square of the amplification for the first mode. The fact that the third mode does not have a

much larger whistling potentiality is due to the reduction of the amplification at higher Strouhal numbers. As predicted

by Michalke [43], there is a critical Strouhal number based on the shear layer thickness above which the shear layer is

hydrodynamically stable. This effect is therefore Reynolds dependent, as illustrated by the results presented by Fabre et

al. [4] for the same orifice geometry. An interesting result obtained by Fabre et al. [4] is that the Strouhal number of the

hydrodynamic modes is only weakly dependent on the Reynolds number and that when the plate thickness is used as

reference length instead of 𝑅orf the Strouhal number becomes almost independent of the plate thickness. A systematic

study of the Reynolds number and plate thickness on the Strouhal number for the first two hydrodynamic modes is

provided by Testud et al. [15]

In the case of the rounded-inlet sharp-outlet orifice, the results show that even for minor rounding 𝑅ust/𝑅orf = 1/40

the whistling potentiality —i.e., compared to for 𝑅ust/𝑅orf > 1/10 the whistling potentiality is essentially suppressed.

These findings confirm and extend those found by Guzman-Iñigo et al. [5].

Results for the sharp-inlet rounded outlet orifice show that rounding of the outlet affects the whistling potentiality

of the orifice significantly. Indeed, for 𝑅dst/𝑅orf > 4/10 the orifice’s whistling potentiality is shifted to the first

hydrodynamic mode. I.e., rounding the downstream edge, whilst keeping the upstream edge sharp, enhances the

whistling potentiality of the first hydrodynamic mode—yet reduces that of higher modes. It is noteworthy that Vortex

Sound Theory qualitatively predicts this. Moreover, this confirms that the notion that sound production can only occur

through impingement on e.g. a sharp-downstream edge is inadequate.

In the case of the convergent-divergent nozzle geometry, the first hydrodynamic mode was found to dominate its

whistling potentiality. Moreover, the difussor angle, 𝜃dif , was varied systematically whilst keeping all other parameters

of the problem fixed. For 𝜃dif = 0.52 an optimum in whistling potentiality was found. I.e., a orifice’s shape can be

changed to optimize its whistling potentiality. For diffusers (conical pipe diameter expansion) in gas transport systems,

van Lier et al. [35] also found a large whistling potentiality at an angle of this magnitude.

In the experiments, the forcing-amplitude, |𝑝′ |, was varied. Overall, one observes a dependence of the results on the

amplitude for 𝑝′ > 0.26. I.e, results obtained with 𝑝′ > 0.26 are in the nonlinear regime.

Obviously, the nonlinear regime is formally outside of the LNSE model’s application regime. That said, generally

remarkable qualitative agreement is observed between the LNSE and experimental data. Notably, in some instances this

qualitative agreement extends to experimental data in the nonlinear regime.

However, a structural quantitative deviation between the LNSE predictions and experimental data in the linear

regime is noted. E.g., in the case of a sharp-edged orifice—even though �̄�orf,𝑅min
is well predicted for the second

hydrodynamic mode, viz., within a few percent—the corresponding Strouhal number deviates by ca. 17%. Moreover,

the observed imaginary part was at high Strouhal numbers systematically lower than the predicted values.
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Interestingly, the highest forcing amplitude, 𝑝′ = 2.63, was observed to suppress whistling potentiality. This can

obviously not be predicted with a LNSE model.

VI. Conclusions
The shape of an orifice subject to a bias flow can significantly affect its transfer impedance and ergo its whistling

potentiality. Moreover, an orifice’s geometric parameters can be manipulated to optimize its whistling potentiality. It

was experimentally observed that high forcing amplitudes suppress whistling potentiality. While the real part of the

impedance (resistance) is not affected by the confinement of the orifice within a pipe, the imaginary part (inertance) is.

A. Flow controller calibration
The flow controller (Bronkhorst F202Av) used to set the volume flow was calibrated against a static pressure

difference measurement at the highest available flow rate for the orifice with upstream rounded edge 𝑅ust = 2𝑅orf

(without any acoustic forcing). These measurements were corrected for the influence of the displacement thickness of

the viscous boundary layers. For moderately high Reynolds numbers 𝑅𝑒orf = 9 × 103 as used for this calibration the

boundary are laminar and rather thin compared to 𝑅orf .

Using the method of Thwaites, one can determine the square of the momentum thickness

𝛿2
2 =

0.45𝜈

𝑈6

ˆ 𝐿orf

0

𝑈5d𝑥 (26)

where 𝑥 is the axial coordinate. Moreover, one has that

𝛿1 = 𝐻12 (𝐿orf)𝛿2 (27)

where 𝐻12 (𝐿orf) = 2.61 for (d𝑈/d𝑥)𝑥=𝐿orf
= 0, as prevails at the exit of this orifice.

Assuming a quasi-1D flow across the rounded-inlet orifice (Fig. 2(b)) and neglecting the displacement thickness 𝛿1,

one finds for the axial velocity

𝑈 =

(
𝑅orf

𝑅

)2

𝑈orf (28)

where

𝑅 = 𝑅orf + 𝐿orf −

√
𝐿2

orf
− (𝐿orf − 𝑥)2 (29)

Eq. (26) can now be rewritten to find

𝛿2
2 =

0.45𝜈

𝑈orf
𝑅orf

ˆ 𝐿orf/Rorf

0

(
𝑅orf

𝑅

)10

d

(
𝑥

𝑅orf

)
(30)

We defined the integral

𝐼 ≡

ˆ 𝐿orf/Rorf

0

(
𝑅orf

𝑅

)10

d

(
𝑥

𝑅orf

)
(31)

which using Mathematica was found to be 𝐼 = 0.57. Using Eq. (27), one finds

𝛿1

𝑅orf
= 𝐻12 (𝐿orf)

√(
2 × 0.45

𝑅𝑒orf
𝐼

)
(32)

We define

𝛼tws = 1 −
2𝛿1

𝑅orf
(33)

and note that

16
This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.



This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

𝑈orf = 𝛼𝑡𝑤𝑠𝑈max (34)

where 𝑈max is the maximum velocity on the center line at the rounded inlet orifice’s outlet. Using Bernoulli one finds

𝑈max =

√
2Δ𝑝
𝜌

(35)

The static pressure difference, Δ𝑝, measured by means of a TROTEC TA400 manometer (Fig. 4) across the

rounded-inlet orifice (Fig. 2(b)) can now be related to the volumetric flow through it:

�𝑄msr = 𝜋𝑅2
orf𝛼tws𝑈max = 𝜋𝑅2

orf𝛼tws

√
2Δ𝑝
𝜌

(36)

Using the interface with the flow controller a volumetric flow, �𝑄set, can be set. �𝑄set = 1.31 × 10−3 m3 · s−1 was set

(90% of the highest imposable volumetric-flow rate) and the corresponding Δ𝑝 = 119 Pa was determined (uncertainty 1

Pa). One finds 𝑈orf � 𝛼tws𝑈max = 13.3 m · s−1, which yields 𝑅𝑒orf = 2𝑅orf𝑈orf/𝜈 = 8.87 × 103. Using Eqs. (32) and

(36), one can determine 𝛼tws = 0.960 and the calibration coefficient:

�𝑄msr

�𝑄set

= 0.81 (37)
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a b s t r a c t

Global linear stability analysis of open flows leads to difficulties associated to boundary conditions,

leading to either spurious wave reflections (in compressible cases) or to non-local feedback due to the

elliptic nature of the pressure equation (in incompressible cases). A novel approach is introduced to

address both these problems. The approach consists of solving the problem using a complex mapping

of the spatial coordinates, in a way that can be directly applicable in an existing code without any

additional auxiliary variable. The efficiency of the method is first demonstrated for a simple 1D

equation modeling incompressible Navier–Stokes, and for a linear acoustics problem. The application

to full linearized Navier–Stokes equation is then discussed. A criterion on how to select the parameters

of the mapping function is derived by analyzing the effect of the mapping on plane wave solutions.

Finally, the method is demonstrated for three application cases, including an incompressible jet, a

compressible hole-tone configuration and the flow past an airfoil. The examples allow to show that

the method allows to suppress the artificial modes which otherwise dominate the spectrum and

can possibly hide the physical modes. Finally, it is shown that the method is still efficient for small

truncated domains, even in cases where the computational domain is comparable to the dominant

wavelength.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulations of real flow configurations in open
domains require artificial boundary conditions to allow vortical
structures to freely escape from the domain and avoid wave re-
flections. The most common Artificial Boundary Conditions (here
denoted as ABC) chosen for compressible fluid flows are the
sponge regions which imply the introduction of an artificial damp-
ing term in an outer ‘sponge layer’ located far away from the
interesting regions. The main advantage of this method is its
simplicity. However, it generally leads to extremely large meshes
characterized by sponge layers much larger than the regions of
interest. An alternative method is the Perfectly Matched Layer
(PML) treatment of ABCs. First introduced by Berenger [1] for
electromagnetic radiation problems and later extended for lin-
ear acoustics problems by Bermudez et al. [2], this method has
proven its efficiency for studying compressible flows using lin-
earized Navier–Stokes Equations (LNSE) in the frequency do-
main. However, since the method introduces a spatial attenuation

� The review of this paper was arranged by Prof. N.S. Scott.∗ Corresponding author at: IMFT, UPS, Allée du Professeur Camille Soula,

31400 Toulouse, France.

E-mail address: javier.sierra@imft.fr (J. Sierra).

which depends upon the frequency, it cannot be directly applied
to global stability problems where the frequency is unknown. A
possible solution is to introduce auxiliary variables in the buffer
region leading to a formulation where the dependency with re-
spect to the frequency does not appear anymore, as done for
instance by Hu et al. [3] and Whitney [4]. However the introduc-
tion of these new variables significantly increases the dimension
of the problems under investigation. As well, in the formulation
of PML the estimation of a base state is required, which is not
generally an easy task for flows with domains whose geometry is
convoluted.

ABC are also required for the stability analysis of purely in-
compressible open configurations such as swirling flows (see [5]).
The difficulties are due to the strong convective amplification
of vortical perturbations, which may still be active at the outlet
boundary, and to the elliptic nature of the pressure equation
leading to nonlocal feedback between upstream and downstream
boundary conditions. Lesshaft [6] showed that these two prob-
lems lead to the existence of two families of artificial eigenmodes
which can in some situations dominate the spectrum and hide
the physically relevant modes. Fabre et al. [7] observed similar
difficulties in studying the response to harmonic forcing of a jet
flow through a zero-thickness circular hole. In this work, the
authors introduced a method based on the Complex Mapping

https://doi.org/10.1016/j.cpc.2019.107100

0010-4655/© 2019 Elsevier B.V. All rights reserved.
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(CM) of the spatial coordinates. The key idea is to introduce a

spatial damping which is independent upon the frequency and

thus directly fitted to eigenvalue computations. In a subsequent

work Fabre et al. [8], the method was successfully applied to the

eigenvalue analysis of the jet through a circular hole of nonzero

thickness, allowing to capture unstable global modes arising from

the existence of a recirculation region within the thickness of the

hole.

The purpose of this work is to explain the principle of the

CM technique and to show that is applicable to the linear sta-

bility analysis of both compressible and incompressible flows.

We demonstrate that (i) it is efficient as a non-reflexion con-

dition for acoustic perturbations and (ii) it is able to provide a

sufficient decay for the large convective amplification of vortical

perturbations, thus efficiently fixing both problems identified

above.

The remainder of the paper is organized as follows: In

Section 2 we introduce the complex mapping methodology for

a linear PDE problem and we draw some parallels between CM

and PML. In Section 3 we apply CM to a canonical scalar PDE

problem, the Ginzburg–Landau equation. This toy model serves

to demonstrate how CM can be used to reduce non-local effects,

i.e. to suppress the (elliptic) feedback pressure mechanism in

the incompressible Navier–Stokes equations. In Section 4 we

discuss the effect of CM on the spectrum of the Helmholtz

equation that governs inviscid linear acoustics, showing that the

methods effectively work as a non-reflective boundary condition.

Sections 5 and 6 focus on the application of complex mapping to

Navier–Stokes equations. We first review the concept of global

stability of both incompressible and compressible flows, which

motivates the study of the effect of CM in plane acoustic and

hydrodynamic waves. Finally, in Section 6 three application

cases, where CM is used for stability computations, are presented.

First an incompressible jet flow which suffers from non-local

feedback due to strong spatial amplification of linear perturba-

tions. ABC are mandatory in this case to correctly characterize

the spectrum of the linear problem. Second, we study the effect

of CM in a compressible flow, the hole-tone configuration, by

looking at the performances of CM with respect to sponge layers.

The last numerical case is the weakly compressible flow past

a symmetric airfoil at a large angle of attack. In this last test

case, it is shown that complex mapping region is still effective

even when its length is shorter than the acoustic wavelength. The

Navier–Stokes and linear acoustics computations are performed

using the FreeFem++ solvers and Octave/Matlab drivers provided

by the StabFem suite (see the review paper by Fabre et al. [9]

for details). Programs reproducing most of the figures of the

paper are available online on the web page of the project (https:

//gitlab.com/stabfem/StabFem).

2. Introduction of the complex mapping technique for eigen-
value problems

2.1. Mathematical framework (1D case)

To introduce the method, let us first consider for simplicity a

one dimensional autonomous linear partial differential equation

(PDE) with the following form:

∂Ψ

∂t
= LΨ (1)

where Ψ (x, t) is defined on the domain x ∈ Ω = [0, ∞], and L
is a linear operator. The asymptotic linear stability of such PDE is

driven by modal solutions with the form

Ψ (x, t) = Ψ̂ (x)e−iωt (2)

where ω is the complex eigenvalue. We are therefore led to a

linear eigenvalue problem with the form

− iωΨ = LΨ . (3)

The problem is then said to be linearly unstable if there exists

at least one eigenvalue such as ωi > 0. Note that the modal ansatz

(2) is also at the basis of the so-called frequency-domain approach

to harmonically forced non-homogeneous PDEs (such as wave

scattering problems). The difference is that in the frequency-

domain approach it is sufficient to consider the solution for real

values of the frequency ω, while in the linear stability approach

ω has generally to be solved as a complex number.

2.2. Motivation of the complex mapping

The difficulty we want to solve is associated to the existence

of solutions behaving as Ψ (x, t) ≈ eikx−iωt as x → ∞, which,

according to the argument of k, may be oscillating, or even worse,

exponentially growing. The idea is to consider an analytical con-

tinuation of the solution for complex x, and solve in a region of

the complex plane where all physically relevant solutions are

nicely decaying. To this aim, we will define a mapping from a

(real) numerical coordinate X defined in a truncated domain X ∈
[0, Xmax] to the physical coordinate x.

2.3. Definition of a smooth mapping

The application of the proposed method to a given problem

leads to two separate regions: (i) an unmodified domain for X <

X0 and (ii) a mapped region for X > X0, characterized by a

parameter γc defining the direction in the complex plane. The

simplest choice is as follows:

x = Gx(X) =
{

X for X < X0,[
1 + iγc

]
X for X > X0,

(4)

which transforms the x-derivatives as follows:

∂

∂x
=

⎧⎪⎨⎪⎩
∂

∂X
for X < X0,

1

1 + iγc

∂

∂X
for X > X0,

(5)

In practice it is desirable to design a mapping function which

gradually enters into the complex plane with a transition region

of characteristic length Lc , in order to avoid possible reflections

caused by an abrupt change at X = X0. This can be achieved using

a mapping function with the form:

Gx : R → C such that x = Gx(X) =
[
1 + iγcg(X)

]
X (6)

where g(X) has to be chosen as a smooth function such as g(X) =
0 for X < X0 and g(X) ≈ 1 for X > X0 + Lc up to Xmax for a length

LCM = Xmax − (
X0 + Lc

)
where complex mapping is activated. We

found good performance using g(X) = tanh

([
X−X0
Lc

]2
)
. To apply

the method to a linear PDE of the form (3), one has simply to

modify the spatial derivatives as follows:

∂

∂x
≡ Hx

∂

∂X
with Hx(X) =

(
∂Gx

∂X

)−1

. (7)

For a given PDE problem, complex mapping function g ∈ Cr (Ω),

where r is equal to the highest derivative order of the considered

PDE problem. This requirement is due to the fact that the deriva-

tive should be continuous between the physical and the complex

mapping domain to avoid any numerical reflection.
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Fig. 1. Numerical spectrum of the Ginzburg Landau equation (a) without and (b) with complex mapping, for domain size Xmax = 40 (red crosses), Xmax = 20 (blue

squares) and Xmax = 15 (green circles). The theoretical solution in infinite domain in absence of non-local feedback is displayed by black dots (discrete spectrum)

and black dotted line (essential spectrum).

2.4. Comparison with the perfectly matched layer method

The CM method introduced here shares similarities with the
PML technique. The PML technique was first introduced by Be-
ranger in the context of electromagnetic waves (Maxwell equa-
tions). The initial exposition of the method was formulated in the
temporal domain and involved the introduction of auxiliary vari-
ables. Soon after, the method was reformulated in the frequency
domain (i.e. considering solutions with modal temporal depen-
dance e−iωt ) by Teixeira [10] who showed that it is equivalent to
modifying the spatial derivative operators as follows :

∂

∂x
→ 1

1 + i
σ (x)

ω

∂

∂x
. (8)

Teixeira & Chew [10] also pointed out that this reformula-
tion is equivalent to solving for a complex variable defined as
follows:

x = GPML(X) = X + i

ω

∫ X

σ (X ′)dX ′. (9)

Comparing these equations with the ones defining our com-
plex mapping, we immediately see that the two methods are
closely related, the difference being that in the PML the coor-
dinate mapping depends upon the frequency ω. Therefore, the
method is not directly applicable to eigenvalue problems, where
ω is unknown.

3. Application to a 1D model problem

3.1. Description of the model and theoretical solution

In this section we first demonstrate the efficiency of the
method for a one dimensional PDE which has often been used as
a model for global hydrodynamical instability of open shear flow,
namely the linear Ginzburg–Landau equation (see the recent book
of Schneider & Uecker [11, Ch. 10] for a rigorous mathematical
derivation and analysis of this equation):

− iωΨ = −U
∂Ψ

∂x
+ κ

∂2Ψ

∂x2
+ μ(x)Ψ + F(ψ). (10)

In this model, U represents the convective velocity, κ a diffusion
coefficient, μ(x) a local growth rate of the instability, F a non-
local coupling term. We use the following law for the local growth
rate:

μ(x) = μ∞ + μ1e
−x/L∗ . (11)

where μ∞, μ1, L
∗ ∈ R are parameters of the problem. With

this choice, the homogeneous problem in a semi-infinite domain
(without the term F) admits a discrete spectrum ωn with n =

1, 2, . . . (where the linear operator is Fredholm and closed, that

is the solution belongs to the space, here H1
0 (R

+)). Discrete modes

are alike to eigenvalues in finite dimensional problems. The spec-

trum of Eq. (10) is also composed of a second set, denoted as

essential spectrum ωess() with  ∈ R (where the linear operator is

no longer Fredholm or closed, for more details on the spectrum

of infinite dimensional operators see the book of Kapitula &

Promislow [12, Ch. 3]). This set depends uniquely on asymptotic

coefficients of Eq. (10). The corresponding solution is given in

Appendix A ( Eq. (35) and Eq. (37)). Following Lesshafft [6], we

introduce a nonlocal feedback term defined as

F(ψ) = εe
− (x−xA)

2

b2 Ψ (xS) (12)

where ε is a coupling parameter, xS is the location of a ‘‘sensor’’

(located close to the outlet) and xA the location of an activator

(located close to the inlet). Such a feedback exists in real flows

through the pressure, either as a result of backward-propagating

pressure waves (in compressible flows) or as an instantaneous

non-local effect (in incompressible flows). Lesshaft [6] showed

that this nonlocal term leads to the appearance of a family of

artificial eigenmodes called ‘‘arc branch modes’’ which are clearly

dependent on the size of the domain and hence have to be ruled

out when one wants to focus on the discrete modes. We will

show that the complex mapping technique efficiently reaches this

objective.

3.2. Numerical solution and effect of CM

In this section, we assume the following values for the model

parameters: μ∞ = −1, μ1 = 10, κ = 1 − i, U = 6.5 and

L∗ = 10. With this choice, the problem is absolutely unstable

in the range x ∈ [0, 4.6], convectively unstable in the range

x ∈ [4.6, 23], and locally stable for x ∈ [23, ∞]. Moreover, the

analytical solution (see Appendix A) tells us that the two first

modes of the discrete spectrum are unstable while the higher-

order discrete eigenvalues and the essential spectrum are stable.

In the following we will consider the numerical solution of the

problem using a feedback term with parameters xA = 1, b = 0.2,

xB = Xmax − 1, ε = 0.1. The numerical solution is done using a

Chebyshev collocation method.

Fig. 1 (a) displays the numerically computed spectra without

complex mapping (x ≡ X) for three values of the numerical

domain size, namely Xmax = 15, 20 and 40. In all cases, the

numerically computed spectra are dominated by the ‘‘arc-branch’’

artificial modes whose location clearly depends upon the size of

the domain. Note that with the chosen parameters, the arclength

modes are located in the unstable (ωi > 0) half-plane. For the

smallest domains (Xmax = 15 and 20) these modes completely
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mask the physically relevant discrete modes. Computing the most
unstable mode is only possible with the largest domain (Xmax =
20), and yet some mismatch with the theoretical solution can
be observed on the figure. Fig. 1 (b) displays the numerically
computed spectra using the complex mapping technique, with
the same values of the numerical domain size (Xmax = 15, 20
and 40), and applying the complex mapping starting from L0 =
Xmax − 5. The other parameters affecting the complex mapping
are γc = 10 and Lc = 1.

As one can observe, the introduction of CM has the effect of
completely suppressing the arc-branch of artificial modes, and
for all cases the two unstable discrete eigenvalues (plus two
stable ones) are correctly recovered. One still observes a branch
of artificial eigenvalues, but they are rejected far away from the
unstable region, and below the theoretical essential spectrum. It
is remarkable that the CM technique allows to correctly compute
the unstable discrete modes independently of the size of the
domain, even in the two smallest cases (Xmax = 15, Xmax = 20)
where the problem remains convectively unstable at the location
of the numerical truncation.

4. Application to linear acoustics

4.1. Physical problem and asymptotic solution

In this section, we demonstrate the efficiency of the complex
mapping method for a purely linear acoustic wave problem, cor-
responding to a cylindrical pipe of radius D

2
and length L opening

to a semi-infinite domain. This is a classical problem in linear
acoustics, the interested reader is referred to the book of Fletcher
& Rossing [13, Ch. 8] for a brief review.

In an inviscid framework, it is classical to express the velocity
and pressure in terms of the velocity potential Φ , namely u =
∇Φ , p = ρ ∂Φ

∂t
. The problem reduces to the Helmholtz equation:

∇2Φ +
(

ω

c∞

)2

Φ = 0 in Ω (13)

where c∞ is the speed of sound. Eq. (13) is complemented with
boundary conditions. At the walls, the bottom and the axis we
impose non-penetration conditions:

∇Φ · n = 0 at Γin, Γwall, Γa (14)

In addition, in an unbounded space, the relevant asymptotic
condition is the Sommerfeld condition (see the review of
Schot [14]):

∂Φ

∂rs
−

(
i
ω

c∞
Φ + Φ

rs

)
→ 0 as rs =

√
r2 + z2 → ∞ (15)

Physically this condition means that away from the outlet,
the acoustic field matches with a monopolar source leaving the
domain, and there is no wave coming from infinity. In practice,
when working with a truncated domain, this asymptotic condi-
tion has to be replaced by an artificial boundary condition at the
outlet surface Γout which does not lead to any notable reflection.
We will show in the next subsection that the use of CM efficiently
fulfills this goal. Note that the physical problem considered here
admits an analytical solution in the limit of long pipes (L/D � 1).
This solution is obtained by matching a plane-wave description
within the pipe to a monopolar radiation in the outer domain,
and details are given in Appendix B. The corresponding result is
as follows:

ω ≈ (n − 1/2)π
c∞

L + Δ
− iπ2

32

(2n − 1)2c∞D2

(L + Δ)3
with n = 1, 2, . . .

(16)

where Δ = 4D/3π is the so-called correction length [13]. The
first term in this expression means that the acoustical wavelength
λac = 2πc∞/ωr is 4/(2n − 1) times the effective length (L + Δ)
of the pipe, which corresponds to the resonance condition of
an ideally open pipe. The second term represents the damping
rate due to radiation in the semi-infinite space, which is found
to be largest for higher-order modes. In addition, the physical
problem in infinite domain admits an essential spectrum whose
outer boundary, the Fredholm border (FB), is located on the real
ω-axis, corresponding to weak solutions of the problem which
are not square-integrable and do not satisfy the Sommerfeld
condition, and defined as:

ωFB = c∞, for  ∈ R (17)

Physically, these solutions correspond to plane waves coming
from infinity and reflecting along the wall (with weak influence
of the pipe).

4.2. Numerical results

In this section we present results obtained using the CM
method. Technically, the method was used by applying the map-
ping equation (6) to both r and z coordinates, namely r = G(R)
and z = G(Z) where R, Z are the numerical coordinates in the
truncated domain Ω . Hence, both r and z derivatives appearing
in the Laplacian operator are modified using Eq. (7). We apply
the mapping outside of the box (R, Z) = [0, R0] × [−H, Z0]
(corresponding to the dashed box in Fig. 2).

Fig. 3 displays the computed spectra for a long and a short
pipe, respectively L/D = 10 and L/D = 3. The results of the
CM method are compared to a reference solution using a much
larger domain (Rmax = 50) and imposing directly the Sommerfeld
boundary condition at the outlet (see Appendix C for details about
implementation of this case). For the longest pipe, the both the
CM method and the reference case allow to compute accurately
the discrete spectrum (8 discrete modes can be found in the range
displayed in the figure). In the reference case without CM, the
numerically computed spectrum also contains a large number of
artificial eigenvalues, all located in the stable range (ωi < −0.05),
which correspond a discretized version of the essential spectrum
discussed above.

For the physical modes, the numerical results fit well with
the asymptotic formula equation (16) for the lowest modes. For
the higher frequency modes the asymptotic formula overpredicts
the damping; this is not surprising since the asymptotic theory
assumes monopolar radiation while high frequency modes are
known to be more directive, hence less energy is radiated.

For the shortest pipe ( Fig. 3 (b)), the discrete modes are much
more damped. As one can observe, the computation without CM
only allows to compute the first mode of the series. All the others
are located in the region occupied by the artificial modes, leading
to the impossibility to compute them. Note that the agreement
with the asymptotic formula equation (16) is less good than for
the long pipe because the hypothesis L/D � 1 does not hold.
Considering the second mode, the pressure component along the
axis for L/D = 3 is reported in Fig. 2 (b). The pressure field in
the physical case (without CM) is approximately a standing wave
within the pipe (with real and imaginary parts in phase) and an
outward propagating wave outside of the pipe (with a π/2 phase
shift). As can be seen, use of the CM leaves the pressure field
unaffected within the pipe and up to z = Z0, but the structure
is completely damped for farther distances.

As for the artificial eigenvalues, using the CM technique has
the effect of ‘sweeping’ them towards much larger damping rates,
and allows to correctly compute the 6 first modes of the series.
Moreover, it can be seen that the imposition of the CM method
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Fig. 2. (a) Sketch of the flow configuration representing the flow through the acoustic circuit. Geometric parameters are displayed. (b) Evolution of acoustic waves

along the z-direction at the axis for the short pipe (L/D = 3). Real and imaginary parts of the pressure component of the leading mode (see Fig. 3 (b)) are depicted.

Solid line corresponds to CM and dashed–dotted (red online) to Sommerfeld boundary condition. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 3. Acoustic spectrum of the open-pipe configuration for (a) a long pipe (L/D = 10) and (b) a short pipe (L/D = 3). Blue circles correspond to result using CM

(with parameters X0 = Z0 = 2, Lc = 2, γc = 1 and domain size Rout = 10), and red crosses to a reference solution using a much larger domain (Rmax = 50) and

Sommerfeld boundary condition at the outlet. Black dots correspond to the asymptotic formula equation (16).

dramatically affects their location in the complex plane. Mathe-
matical analysis if the essential spectrum shows that the effect of
CM is to ‘tilt’ it from the real axis (as defined by (17)) to a line in
the complex plane defined by

ωFB = c∞
1

1 + iγc

= ic∞e−i arctan(γc ), for  ∈ R. (18)

The artificial modes obtained with CM are observed to lie approx-
imately along this line.

Note that in addition to be more accurate with shorter do-
mains, the CM is numerically less demanding than the Sommer-
feld method. In effect, as the eigenvalue appears only as ω2, it is
enough to formulate the problem for Φ and solve for ω2. On the
other hand, using Sommerfeld method, as the eigenvalue appears
as ω2 in the Helmholtz equation and ω in the boundary condition,
it is required to solve for an augmented state vector [Φ, Φ1]
with Φ1 = ωΦ . The corresponding formulation is detailed in
Appendix C.

To investigate the performance of the CM method, we display
in Table 1 the numerical values of the three first eigenvalues
of the short pipe (with L/D = 3) for various choices of the
domain size Rout and complex mapping parameters r0, z0, Lc and
γc . We note that the results agree within 1% . Considering that

the acoustic wavelength of the first mode is λac ≈ 2π/ω1,r ≈
13.7, it is specially remarkable that the CM method is able to
produce accurate result with a domain as short as Rout = 5, which
represents a fraction of this wavelength.

5. Application to global stability analysis

5.1. Governing equations

Let us consider both compressible or incompressible Navier–
Stokes equations written in compact operator form as

B ∂q(x; t)
∂t

= NS(q(x; t)). (19)

Here q denotes the state vector defined as q = [u; ρ; T ; p] using
non-conservative variables for compressible or q = [u; p] for
incompressible flows. B is a linear operator specifying how the
time derivative applies to variables. Finally, NS is the nonlinear
Navier–Stokes operator. A detailed form of the compressible op-
erator is given by Fani et al. [15] and the incompressible case is
detailed in the review article of Fabre et al. [9]. In the following
sections, Reynolds number is defined as Re = Ur Lr

ν∞ where Lr ,

Ur are the characteristic length and velocity scales of the flow
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Table 1
Eigenvalues of a short open pipe (L/D = 3) for various choices of the complex-mapping parameters.

Rout r0 z0 Lc γc ω1 ω2 ω3

20 2 2 1 1 0.4623−0.0076i 1.4089−0.0560i 2.3894−0.1197i

10 2 2 1 1 0.4624−0.0076i 1.4091−0.0560i 2.3898−0.1200i

5 2 2 1 1 0.4639−0.0061i 1.4085−0.0561i 2.3895−0.1199i

10 2 2 1 0.2 0.4624−0.0076i 1.4091−0.0560i 2.3898−0.1200i

10 5 5 2 1 0.4627−0.0089i 1.4092−0.0562i 2.3897−0.1199i

configuration and ν∞ is the kinematic viscosity at the far field.
For compressible cases, the Mach number is defined as the ratio
of the characteristic velocity to the speed of sound at the far field,
M = Ur

c∞ .

5.1.1. Base flow solution & linearized Navier–Stokes-modal decom-
position

Stability studies rely on the linearization about a base state q0.
We define here q0 as the base flow corresponding to the solution
of the steady Navier–Stokes equations :

NS(q0(x)) = 0 (20)

In addition, the base-flow has to fulfill a set of boundary con-
ditions which depend on the application case and will be detailed
in Section 6.

In the framework of LNSE, we are led to consider small-
amplitude perturbations of this base flow:

q = q0(x) + εq′(x, t), (21)

where ε is a small parameter and the perturbation is expressed
as in Eq. (3) under the modal form

q′(x, t) = q̂e−iωt + c.c. (22)

For both the forced and the autonomous problem, injecting the
modal ansatz in Navier–Stokes equations (21) leads to a linear
problem which can be written as follows:

− iωBq̂ = LNSq̂ (23)

Here LNS is the Linearized Navier–Stokes operator whose def-
inition may be found in the analysis of Fani et al. [15] for the
compressible and in see Fabre et al. [9] for the incompressible
case. In addition to the case-dependent set of physical bound-
ary conditions, an unbounded problem requires another set of
asymptotic conditions. Physically, we can expect the velocity
perturbations associated with vortical structures to decay under
the effect of viscous diffusion, and the pressure perturbations to
behave like a divergent acoustic wave as function of the spherical
coordinate rs = |x|. In the compressible case these conditions are
expressed as follows

û, ∇û ≈ 0 for rs = |x| → ∞; (24)

rs

[
c∞

∂ p̂

∂rs
+

(
U∞

∂

∂x
− iω + 1

rs

)
p̂

]
≈ 0 for rs = |x| → ∞.

(25)

where the second expression is recognized as the so-called Som-
merfeld condition, which coincides with Eq. (15) in the case of
quiescent ambient flow. In the incompressible setting Eq. (24) is
the unique boundary condition, because pressure is automatically
set by the velocity–pressure Poisson equation. Note that this way
of exposing the boundary conditions is not fully rigourous and
involves a number of pedagogical shortcuts. For instance, the as-
sumption that vortical perturbations are eventually damped relies
on the effect of viscosity, while the Sommerfeld condition comes
from an inspection of the inviscid equations. To express the con-
ditions more rigourously one should also separate the perturba-
tions of the thermodynamical variables into adiabatic (acoustic)

and non-adiabatic (entropy) components. However, this pair of
equations contains all problems related to artificial boundary
conditions and is well suited to the discussion in the next section.

5.2. Effect of CM in the spatial structure of modes

5.2.1. Study of plane-wave solutions for a parallel flow
The condition that the base-flow is asymptotic to a uniform

flow u ≈ U∞ex is generally impossible to reach in a truncated
domain with reasonable dimensions. On the other hand, it is gen-
erally reasonable to assume that in the vicinity of the truncation
plane, the flow approaches a parallel shear flow. We will thus first
investigate the behavior of possible solutions of the LNSE under
this hypothesis. We thus consider a parallel shear flow defined as
u0 = U(y)ex (or for problems with axial symmetry u0 = U(r)ex)
developing in the half-space defined by x > 0, here ex denotes
a unit vector in the x positive direction. We suppose that U(y)
tends to U∞ when y is sufficiently large, and note Uc = U(0) the
velocity at the centerline. This situation represents both a wake
(with Uc < U∞) or a jet (with Uc > U∞) (see Fig. 4). It is also
reasonable to assume that Uc and U∞ are both positive which
means that the local velocity profile is convectively unstable (see
the book of Huerre & Rossi [16]).

Under those hypotheses, the solution of the eigenvalue prob-
lem can be expected as a superposition of plane-wave solutions,
namely

q̂(x, y)e−iωt =
∑
k

q̂(y)k,ωei(kx−ωt) (26)

Two kinds of solutions can be expected. The fist kind corresponds
to acoustic waves. Restricting to longitudinal waves (independent
of the y-direction) and assuming Uc ≈ U∞ for simplicity, two
solutions are defined as
ω

k±
ac

= ±c∞ + U∞ (27)

If the mean flow is subsonic (U∞ − c∞ < 0), then the solution
k−
ac (representing an acoustic wave propagating in the negative

direction) does not verify the condition equation (25) and has
to be canceled by the ABC. On the other hand, k+

ac must not be
affected by the ABC.

The second kind corresponds to vorticity waves. The corre-
sponding values for k can be obtained from the local stability
analysis of the considered shear flow. This topic is well known
and such solutions can be found in several textbooks (e.g. Huerre
& Rossi [16] ). The possible solutions are given by a dispersion
relation D(kH , ω). In the spatial stability framework which is rele-
vant here, the solutions kH (ω) are of two different types, noted
k+
H and k−

H . Only the k+
H branches should appear in a solution

developing in the positive x-direction, so one should check that
the ABC does not result in any problem related to the k−

H branches.
For the present discussion, we will consider the simplest case
of a shear layer of zero thickness (see Fig. 1b). The problem
corresponds to the classical Kelvin–Helmholtz instability, and the
corresponding solutions for k as given by:

ω

k+
H,s

= U∞ + Uc

2
− i

|U∞ − Uc |
2

ω

k+
H,u

= U∞ + Uc

2
+ i

|U∞ − Uc |
2

(28)
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Fig. 4. (a) Basic velocity profile of wake shear flow. (b) Simple velocity profile model of a zero-thickness shear layer.

Fig. 5. Sketch of the propagation of hydrodynamic and acoustic waves, where for the sake of illustration LCM and Lc are depicted intentionally large with respect

to the physical domain. In ordinate the amplitude of a plane-wave, ‖eikxq̂k,ω‖1, is represented. (a) without CM : waves k+
H,u and k+

ac are present at the outlet, thus

leading to reflected waves (only the reflections caused by wave k+
H,u are represented). (b) with CM, and choosing γc according to (33): Waves k+

H,u and k+
ac are damped

when reaching the boundary, so no reflection is generated.

Here k+
H,u

is the spatially unstable Kelvin–Helmholtz wave and

k+
H,s

is a spatially stable wave which does not lead to particular
problems but has to be retained in the discussion. Note that both
solutions belong to the k+

H category and should thus be present
in the solution of the problem for x → +∞. The zero-thickness
shear layer does not possess any k−

H solutions (for reasons dis-
cussed in Huerre & Rossi [16]) but continuous U(y) profiles admit
such solutions which, except in cases where U∞ and/or Uc are
negative, are always located in the half-plane Im(k) < 0 and far
away from the k+

H,su
solutions.

5.2.2. Effect of CM on plane-waves
For the present discussion we will thus restrict to five solu-

tions. Acoustic waves k±
ac , the KH waves k+

H,su
and a possible k−

H

solution. The behavior of these solutions as |x| → ∞ is one of
the three following cases:

(i) Dominant if Im(kx) < 0, i.e. arg(kx) ∈ [−π, 0] (29)

(ii) Evanescent if Im(kx) > 0, i.e. arg(kx) ∈ [0, π ] (30)

(iii) Oscillating if Im(kx) = 0, i.e. arg(kx) = 0, π (31)

We will consider the asymptotic effect of complex mapping equa-
tion (4). The situation differs according to the argument of ω. We
consider three cases:

Case 1: arg(ω) = 0
The case where ω is real is particularly important as it is

relevant to both the forced problem resolved in frequency do-
main, and to the stability problem at marginal conditions. Fig. 6(a)
sketches the location of the five considered plane-wave solutions

in the complex k-plane. The region Im(k) < 0 corresponding to
dominant solutions in the absence of mapping is indicated by the
gray area. Both solutions k+

H,u and k−
H belong to this region, while

k+
H,s is evanescent and k±

ac are both oscillating.
As sketched in Fig. 6(b), the effect of the complex map-

ping Eq. (4) for x is to ‘tilt’ the boundary between dominant and
evanescent solutions by an angle arg(γc). As a result, the choice
γc > 0 is sufficient to turn the physically relevant k+

ac into an
evanescent wave and the unwanted k−

ac into a dominant wave,
which will thus be damped as it propagates backwards. However,
if γc is small, the solution will still contain a dominant k+

H,u wave.
This solution corresponds to the spatially growing Kelvin-

Helmholtz instability, and is perfectly relevant from a physical
point of view. However, if the spatial growth of this wave is
larger than the spatial damping of the backward-propagating k−

ac

induced by the mapping, the k−
ac solution may still be present in

the domain as a reflection of the k+
H,u. The remedy to avoid this is

to chose γc such as k+
H,u becomes evanescent, see Fig. 5 (b). This

requirement leads to the following condition:

arctan(γc) > − arg(k+
H,u), i.e. γc >

|U∞ − Uc |
U∞ + Uc

(32)

The corresponding situation, where only the k−
ac wave is dom-

inant, is sketched in Fig. 6 (b). CM is also effective in a situation
where k+

H,u does not decay enough before reaching the outer
boundary, but backward propagating wave does before escaping
complex mapping region and reaching the physical domain. It
is found that in that case CM is more effective for compressible
flows and Eq. (32) turns to be the condition for the low Mach
limit, see Appendix D for details.
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Fig. 6. Diagram displaying a complex mapping Gx(X) for a real frequency ω, such that arg(ω) = 0, in the complex plane of the wave-vector k. Red squares represent

spatial acoustic modes k±
ac , whereas blue circles represent hydrodynamic modes k+

H,su
and the blue cross denotes the k−

H mode.

Fig. 7. Diagram displaying a complex mapping Gx(X) for an unstable frequency ω, in the complex plane of the wave-vector k. Legend of symbols is the same as in

Fig. 6.

Fig. 8. Diagram displaying a complex mapping Gx(X) for a stable frequency ω, in the complex plane of the wave-vector k. Legend of symbols is the same as in Fig. 6.

Case 2: 0 < arg(ω) � π
2

This second case corresponds to the expected behavior of a

temporally unstable mode. As seen in Fig. 7, this case is more

favorable, as the k−
ac wave is already in the dominant region

without need of the mapping. If one wants to turn the k+
H,u wave

into an evanescent as in Fig. 5 (b) one needs to choose γc in such

a way it possesses a sufficient decay (see Fig. 7):

arctan(γc) > arctan

( |U∞ − Uc |
U∞ + Uc

)
− arg(ω) (33)

Case 3: − π
2

� arg(ω) < 0

Now we consider a value ω corresponding to a stable global

mode. This case is the less favorable, as without mapping (see Fig. 8

(a)). The k−
ac wave is in the dominant region, meaning that it will

be amplified as propagating backwards, destroying any chances to

correctly compute the mode. The condition to change this mode

into a dominant one and turn the k+
H,u into an evanescent one

is still given by Eq. (33), but it is more restrictive here than in
previous cases since arg(ω) < 0.

6. Application cases

6.1. Incompressible flow through a single hole

In this section we will discuss the application of the complex
mapping methodology to incompressible Navier–Stokes equa-
tions. The hole diameter is considered as the reference length,
denoted by Lr and the characteristic scale, Ur is the mean velocity
across the hole. The application case is the flow past a single hole

of finite thickness. This configuration has been recently studied by

Fabre et al. see [8, Sec. 3] for the definition of the problem and a
discussion about boundary conditions. Severe numerical difficul-
ties arise in the solution of the linearized Navier–Stokes equations
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Fig. 9. Sketch of the flow configuration representing the oscillating flow past a

circular hole in a thick plate.

Table 2
Description of meshes Mi for i = 1, 2, 3. Nv denotes the number of vertices of

the mesh. Geometrical parameter Lout denotes the axial longitude of the mesh

and Rout is the radial extension of the numerical domain.

Description of numerical domains M1 − M3

Mesh Lout Rout X0 Lc γc Nv

M1 20 15 5 1 0.5 17915

M2 30 20 – – – 30695

M3 60 20 – – – 78300

due to the strong spatial amplification of linear perturbations, in
particular pressure (see Fig. 9).

An artificial boundary treatment is a mandatory technique for
this type of study. Large amplifications of linear perturbations
lead to physical perturbations far downstream the hole. Ideally,
this would require an infinite domain, at least in the streamwise
direction. However, numerical computations are realized in trun-
cated domains. If the computational domain is not sufficiently
large, that is amplitude of the perturbed field is negligible close
to the outer boundary, ‘‘spurious eigenvalues’’ constituting the
discretized version of the continuous spectrum may arise. In the
case of large perturbations, these ‘‘spurious eigenvalues’’ can be
even located in the unstable side of the spectrum and close to
discrete physical eigenvalues as Reynolds number increases.

The linear stability study of the flow past a hole in a thick
plate shows that dynamics of Re < 3000 can be explained by
the presence of three discrete physical modes, here denoted by
H1, H2 and H3. For validation purposes we have designed three
computational meshes Mi for i = 1, 2, 3, the first one with CM
uniquely in the axial direction and the other two without any ABC
but with longer axial dimension, denoted Lout (see Table 2).

Fig. 11 displays the numerically computed spectra using nu-
merical domains M1, M2 and M3 for Re = 1700, Re = 2000. The
spectra here displayed presents three discrete eigenvalues Hi for
i = 1, 2, 3 and a set of ‘‘spurious eigenvalues’’, named arc-branch
by Lesshafft [6], which arise due to non-local feedback mecha-
nism of spurious pressure signals from the truncated boundary

Table 3
Eigenvalue computations for Re = 1600.

Mesh H1 H2 H3

M1 −0.1156i + 0.5024 0.0854i + 2.0985 −0.0926i + 4.1230

M2 −0.1259i + 0.5017 0.13916i + 2.1051 −0.1051i + 4.1359

M3 −0.1189i + 0.5017 0.0826i + 2.107 −0.0944i + 4.1240

Table 4
Eigenvalue computations for Re = 2000.

Mesh H1 H2 H3

M1 −0.0435i + 0.5615 0.3032i + 2.2436 0.2418i + 4.3184

M2 −0.0421i + 0.5645 0.3114i + 2.2467 0.2287i + 4.3268

M3 −0.0420i + 0.5628 0.2965i + 2.2399 0.1232i + 4.2807

and upstream locations. Computations of the spectra without
ABC, M2 and M3, lead to the presence of unstable spurious eigen-
values (ωi > 0). Moreover, as the Reynolds number increases they
tend to approach discrete eigenvalues Hi. The use of CM results in
a good separation of physical and spurious eigenvalues. However,
CM methodology with γc > 0 does not allow to identify the
complex conjugate modes of Hi located in ωr < 0. The exploration
of the other side of the spectrum can be determined by choosing
γc < 0. In Fig. 10 it is possible to visualize the effect of complex
mapping on the structure of the pressure component of the H2

mode. Indeed, one may observe how CM can efficiently transform
a convective dominant wave into evanescent, hence any non-local
effect, i.e. arc-branch eigenvalues, is avoided.

Finally, Table 3 and Table 4 display a comparison of the nu-
merical efficiency of numerical methodologies Mi for i = 1, 2, 3
for the computation of discrete eigenvalues. Following, similar
arguments as in Fabre et al. [8] we conclude that CMmethodology
allows a precise identification of discrete spectrum with a lower
number of vertices with respect to methodologies without ABC.

6.2. Hole-tone configuration

The problem of the flow passing through a circular hole in a
plate is encountered in many practical applications and has been
widely studied by experimental and numerical investigations.
This situation is encountered in various applications, including
the whistle of a tea kettle, which has been studied by Henrywood
& Agarwal [17] or birdcalls (devices used by hunters to imitate
bird singing) analyzed by Fabre et al. [18] (see Fig. 12).

Attempts to characterize the instability mechanism were pre-
viously made using incompressible (see Fabre et al. [18]) and
compressible (see Longobardi et al. [19]) LNSE. These efforts
allowed to identify the difficulties associated to boundary condi-
tions. The diameter of the first hole is taken as the characteristic
length scale Lr and the mean velocity along the hole as the refer-
ence velocity scale Ur . This test case has been previously used to

Fig. 10. Pressure component of the eigenmode H2 with mesh M1 (upper) and mesh M3 (lower).
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Fig. 11. Spectrum computed with three meshes. × (red online) denotes eigenvalues computed with M1, ∗ (green online) with M2 and + (blue online) with M3 for

(a) Re = 1700 and (b) Re = 2000. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Sketch of the hole-tone configuration, frame of reference and definition

of geometrical parameters. An example of computational mesh is also reported

in light gray. An actual birdcall is depicted in the upper right corner. e denotes

the thickness of the cavity wall, radius of holes Rh,i, i = 1, 2, radius and length

of the cavity are denoted by Rcav and Hcav respectively. Values of geometrical

parameters can be found in Longordardi et al. [19].

show CM efficiency by Sierra et al. [20], where more details about
governing equations, i.e. compressible Navier–Stokes, boundary
conditions and methodology may be found.

6.2.1. Eigenvalue computations
We study some characteristics of the spectrum of the flow

by solving Eq. (19) in the compressible setting. Linear dynamics
of the birdcall flow at a sufficiently high Reynolds number is
governed by a set of unstable discrete modes, the continuous
spectrum remains stable. In the studied range of Re and M∞,
we have appreciated the presence of four unstable modes up
to Re = 1600. These modes have been computed with two
techniques, sponge as boundary condition at the far field and
complex mapping. Artificial boundary conditions are needed to
compute physically relevant modes and to avoid the appearance
of spurious modes in the spectrum due to boundary conditions.

To identify these modes at threshold we have used complex
mapping. Complex mapping technique allows to tilt the continu-
ous branch of the spectrum to leave discrete modes isolated and
easy to be identified at the threshold. This phenomenon is briefly
described in Section 4. At Fig. 13, spectrum is displayed for two
Reynolds numbers at M∞ = 0.05. The spectrum corresponding
to the simulation with sponge boundary condition at far field at
threshold presents some discrete eigenvalues and a continuous
branch along the real axis. Let us consider the case Re = 320
and M∞ = 0.05. At that configuration Mode 1 is neutrally
stable. However, we are not able to identify it by numerical
means since it is clustered inside the continuous branch. So, one
should increase further the Reynolds number hoping to find the

mode in the unstable zone. With the complex mapping technique
continuous branches are rotated from the origin with an angle
arg x whereas discrete modes remain invariant. This allows to
identify modes near and at threshold. These modes are displayed
in Fig. 14. In that figure it is possible to appreciate the hydro-
dynamic instability which is the part of the mode of highest
amplitude. It is possible to remark a few properties of these
modes. The pressure is fairly constant in the cavity but it is not
constant as it has been reported by Longobardi et al. [19]. The
spatial structure of pressure mode inside and outside the cavity
is proportionally dependent of the temporal frequency ω, which
indicates a direct link between the quantization of frequency and
pressure oscillations between both holes (see Fig. 14 (a) and (b)
for the structure of Mode 1 and 2 at Re = 1600 and Fig. 16 (b)
for the frequency). Similarly, as ω increases a given mode tends
to have its support farther from the cavity. From the vorticity
field of Fig. 14 it is possible to observe the antisymmetric pattern
of vorticity inside the cavity for mode 1 and mode 2 and the
tendency of the shear layer to become symmetric and reduce its
thickness as ω increases, this is specially remarkable for mode 4.

Finally in Fig. 15, we depict the imaginary part of the pressure
of global modes for Re = 1600 and M∞ = 0.05 for Mode 2
and Mode 4. It is possible to observe the radiation of acoustic
waves propagating into the far field as spherical waves. Acoustic
radiation between Mode 2 and Mode 4 differs in wavelength
λac and acoustic directivity. Wavelength decreases as ω increases
whereas the acoustic directivity seems to change when the acous-
tic wave is able to penetrate into the cavity as it has been
previously observed by Longobardi et al. [19].

For this study we have used four meshes which are shown
in Table 5. M1 has been used as a reference test case computed
with sponge layers. Remaining meshes are used with CMmethod-
ology which allows to greatly reduce the size of the domain
and the number of points. The size of the domain is denoted
by [Xmin, Xmax, Rmax], where Xmin is the x-coordinate of the inlet,
Xmax is the x-coordinate of the outlet and Rmax corresponds to the
outer radius of the domain. Please note that the minimum size
of the sponge section, denoted by [Xmin, Xmax, Rmax] in Table 5, is
the minimum domain size to effectively damp acoustic waves.
The outer boundary is located at a distance approximately three
times the acoustic wavelength of the first bifurcated mode. The
reduction in computational time from the use of Sponge or Com-
plex mapping can be also perfectly visualized in Table 5 where it
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Fig. 13. Spectrum near two bifurcation Re at M∞ = 0.05. Legend : 	 are used to denote eigenvalues corresponding to CM. Red is used for γc = 0.1 and blue for

γc = 0.15. Black x denotes those eigenvalues computed without artificial boundary conditions. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 14. It displays the four unstable modes at Re = 1600 and M∞ = 0.05. The real part of the pressure mode pn and the imaginary part of the vorticity Ωi are

shown for each mode at the upper and lower sides of each figure respectively.

is displayed the time needed to compute the leading eigenvalue

with each of the considered meshes.

Computations with mesh M1 were carried out in serial with

an Intel i7 2.6 GHz whereas numerical tests for Mi for i =
2, 3, 4 were computed with an Intel i7 2.2 GHz. Computational

time takes into account the computation of the baseflow and the

leading eigenvalue at Re = 400 and M∞ = 0.05. The gain in

computational time between Sponge and CM is around 50 for the

finest mesh and 125 for the coarsest. This gain in performance

is due to the fact that the domain size of the mesh is greatly

reduced, therefore reducing the number of elements required for

the computation.

Concerning precision, a comparison between the four consid-

ered meshes is displayed in Fig. 16. In that figure it is possible to

observe in (b) linear frequency results are in agreement between

the two considered methodologies. Whereas for the linear growth

despite the fact the good fit between both methodologies and the

four considered meshes there is a slighter disagreement between

M4 and M1 for the mode with linear frequency around ωr ≈ 9 at

high Re. The difference in the growth rate between M3 and M1 is



12 J. Sierra, D. Fabre and V. Citro / Computer Physics Communications 251 (2020) 107100

Fig. 15. Imaginary part of the pressure pi of two direct modes the second mode at the left and the fourth mode at the right. The main figure displays the radiation

of the acoustic field whereas the zoomed region shows the spatially localized hydrodynamic mode.

Fig. 16. Comparison of CM with sponge for the four unstable branches. Black lines are used to denote the results computed with the sponge method, whereas gray,

blue and red are used for the mesh generated with the mesh adaptation algorithm detailed in the review article of Fabre et al. [9]. Solid lines denote the first mode,

loosely dashed lines the second, dash dotted the third and densely dotted the fourth one. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Table 5
Mesh definition and performances. [Xmin, Xmax, Rmax] denotes the size of the computational domain, X0 the location above which the

CM is applied (in both (r, x) directions) and Nv the number of mesh vertices where the boundary conditions are effectively applied.

The table also displays the computed eigenvalue ω and the time required for computation Re = 400 and M∞ = 0.05. The required

time to perform a computation of baseflow and leading eigenvalue with a single processor is displayed.

Mesh Methodology Nv [Xmin, Xmax, Rmax] X0 γc ω Time (s)

M1 Sponge 1211054 [−120,120,130] – – 4.7574 + 0.0792i 83944 s

M2 CM 31986 [−30,30,30] 10 0.2 4.6922 + 0.0666i 1655 s

M3 CM 40942 [−80,80,80] 40 0.2 4.7151 + 0.0945i 1421 s

M4 CM 14337 [−30,30,30] 10 0.15 4.7051 + 0.0747i 669 s

lower than 5% in the worst case scenario, which corresponds to

the growth rate of Mode 4. In this case the relative error is large

because of the small magnitude of the growth rate.

6.3. Flow past an airfoil

Low Reynolds number flow past an airfoil is a flow con-

figuration which has attracted interest from micro-air vehicles

or bio inspired air vehicles designers. Airfoils in these types of

configurations are usually configured to operate at high angles

of attack. Characteristic length and velocity scales are the chord

length of the airfoil profile and the far field uniform velocity. Flow

unsteadiness is encountered in the separated shear layer due to

a Kelvin-Helmholtz instability and in the wake of the airfoil in

the form of a Von Karman vortex street. In the past Zhang &

Samtaney [21] [22] have carried out the study of a NACA 0012

profile at angle of attack α = 16◦. In the current section we

reproduce previous results of the NACA 0012 airfoil for a given

flow configuration. Effectiveness of the CM methodology will be

shown by a parametric study of the length of the CM layer and

cross comparison with reference results.

In Table 6, it is displayed the leading eigenvalue for several

meshes M1 − M4 which correspond to different lengths of CM

layer. CM is activated outside a rectangle whose upper right

corner is [X0, Y0] and its lower left corner is [−X0, −Y0] with CM

parameters γc = 0.3 and Lc = 5. Rout is the radial extension of

the numerical domain and LCM ≈ Rout − 10. Acoustic wavelength,

λac = 2π
ωr

(
1

M∞ +1
)
, forM∞ = 0.1 at Re = 1000 is around λac ≈ 28,

where length is non-dimensionless with respect to the chord of

the airfoil. A length of the CM region, of around LCM ≈ [50, 60] is
sufficient to capture the leading eigenvalue, which has been also

computed with sponge layers, see MS . Nevertheless, M1 whose

length of the complex mapping region is LCM ≈ λac
3

presents

a relative error of around 1%. This is another example of the
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Fig. 17. Streamwise velocity ux,1 of the most unstable mode at Re∞ = 1000,

M∞ = 0.1 and α = 16◦ .

Table 6
Eigenvalue computation for Re = 1000 and M∞ = 0.1 with respect to

incompressible DNS results of [22]. CM corresponds to M1−M6. MS corresponds

to a computational domain of size Rout and a sponge region activated at [X0, Y0].

Re = 1000 and M∞ = 0.1

Mesh Rout [X0, Y0] ωi ωr

M1 20 [10, 10] 0.7110 2.6102

M2 30 [10, 10] 0.7079 2.5954

M3 40 [10, 10] 0.7071 2.5862

M4 70 [10, 10] 0.7048 2.5692

M5 30 [5, 5] 0.7079 2.5954

M6 30 [2, 2] 0.7067 2.5953

MS 100 [10, 10] 0.7036 2.5660

Ref. [22] − − 0.716 2.5095

strength of CM with respect to sponges which require several
acoustic wavelengths to avoid any reflection. In Table 6 it is also
displayed a parametric comparison of [X0, Y0], the size of the
physical domain, we find that the activation of CM close to the
body X0 = Y0 = 2 does not affect much the leading eigenvalue,
the relative error of the growth rate is less than 0.3% and the
frequency varies less 0.1%. This result is not surprising due to the
fact that eigenvalue sensitivity tensor has its support close to the
trailing edge of the body, then in the physical domain even for
small values of [X0, Y0] (see Fig. 17).

7. Conclusion

A novel non-reflecting boundary condition for linear stability
computations, i.e. modal stability, has been introduced. Complex
mapping arises as a spectral transformation of the PDE problem to
easily identify the onset of unsteady modes near the threshold by
the rotation of the continuous spectrum, see Section 6.2. It is also
an artificial boundary treatment that preserves the number of
degree of freedoms and it is easy to implement in any numerical
code. In the present study, we have discussed the effect of CM in
the spectrum of PDE problem, see Section 3. As well, a guideline
for the choice of the direction and length of the complex mapping
has been introduced in the framework of hydrodynamic and
acoustic flow instabilities. Complex mapping avoids the increase
of the number of degrees of freedom imposed by buffer layers or
Perfectly Matched Layer methods, whereas precision is similar to
those as it has been shown in the four numerical cases. Opposed
to sponge regions which require enormous domain sizes at low
Mach numbers to damp acoustic wave reflections, complex map-
ping has proved to be much more efficient at this regime. In the
hole tone configuration at M∞ = 0.05 the number of degrees
of freedom was reduced by at least 50 which demonstrates the
usefulness of the methodology, see Section 6.2. It has been also
shown in the flow past a NACA 0012 airfoil, Section 6.3, or in

the acoustic circuit of cylindrical pipe, Section 4, the application
of a complex mapping layer with a length of fraction around a
fourth or a third of the acoustic wavelength is sufficient for the
computation of the quantity of interest, i.e. leading eigenvalue,
within 1% of error. Moreover, the application of complex map-
ping to incompressible flows with large amplifications due to
convective instabilities allows to mitigate the non local feedback
effect between downstream and upstream boundaries due to
the elliptic nature of Navier–Stokes equations, see Section 6.1.
In those cases, the complex transformation is able to provide
sufficient decay to vortical perturbations to alleviate non-local
interactions with the outer boundary. The current discussion of
the methodology is mainly focused on the study of fluid me-
chanics instabilities nevertheless, the proposed approach can be
used to simulate other wave supporting problems. Here we cite
some other physical phenomena, for instance those described by
Maxwell’s, Helmholtz, elastodynamic or poroelasticity equations.
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Appendix A. Analytical solution of the Ginzburg–Landaumodel

In this appendix we derive the analytical solution of the
Ginzburg–Landau equation:

− iωΨ = −U
∂Ψ

∂x
+ κ

∂2Ψ

∂x2
+ μ(x)Ψ (34)

with homogeneous boundary conditions: ψ(0, t) = 0; ψ(∞, t) =
0, and with a local growth rate defined as μ(x) = μ∞ + μ1e

−x/L∗ ,
where μ∞, μ1, L

∗ ∈ R are parameters of the problem. The local
stability of the Ginzburg–Landau equation depends on the local
growth rate μ(x) (see Huerre & Rossi [16, Ch. 3] for more details).
The theoretical solution in the physical domain x ∈ [0, ∞]
consists of two kinds of modes:

• First, a discrete spectrum corresponding to square-integrable
solutions. With our choice for μ(x), the corresponding modes
can be searched in analytical form as

Ψ (x) = e
Ux
2κ

[
AJs(ae

− Ux
2κ ) + BYs(ae

− Ux
2κ )

]
. (35)

where Js and Ys are Bessel functions of first and second

kinds, s = 2L∗
√

U2

4κ
− 1

κ

(
μ∞ + iω

)
and a = 2L∗

√
μ1

κ
. The

condition that Ψ (x, ω) should decay at x → ∞ leads to B =
0, and application of the homogeneous Dirichlet boundary
condition at X = 0 leads to the transcendental equation

Js(a) = 0 (36)

which admits discrete solutions corresponding to frequen-
cies ωn (n = 1, 2, ..) of the discrete modes.

• Secondly, the fact that μ(x) asymptotes to a constant value
μ∞ for large x leads to the existence of an essential spectrum,
corresponding to solutions which are not square-integrable
but oscillating, with asymptotic form ψ(x) ≈ eix with  ∈ R.
Injecting this form in the equation with μ(x) ≈ μ∞ leads to
the following definition of the essential spectrum:

ωess = i(μ∞ − κ2) + U;  ∈ R. (37)

Convergence of the finite difference discretization. In order to guar-
antee that the centered second order finite difference discretiza-
tion does not introduce a systematic error a convergence test is
carried out, see Fig. 18. Eigenvalues corresponding to analytical
solution are compared with numerical results. The expected sec-
ond order of convergence is recovered whenever the cell size Δx
is sufficiently small.
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Fig. 18. Convergence test of the centered second order finite difference method

for the GL problem. ωn denotes the nth eigenvalue where n = 1, 2 and ωn,ref are

analytical eigenvalues. Solid line (resp. dashed line) corresponds to first (resp.

second) eigenvalue. Dashed–dotted line is used to display the asymptotic second

order of convergence.

Appendix B. Asymptotic solution for a finite-length acoustic
pipe opening to an infinite domain

In this appendix, we derive an asymptotic solution for eigen-
values of the acoustic problem of Section 4 valid for long pipes,
namely L/D � 1. For this sake, we first consider a forced problem,
assuming that the pipe is driven at its bottom by a harmonic
forcing with frequency u′

x,in = e−iωt . Under this framework,
the forced response of the pipe to acoustic forcing can be fully
characterized by the inlet impedance

Ẑin(ω) = pin

Qin

(38)

where q′ = Qine
−iωt and p′ = pine

−iωt . Moreover, the eigenmodes
of the autonomous problem for a pipe closed at the bottom can be
tracked as zeros of the impedance. Following the book of Fletcher
& Rossing [13], the inlet impedance of the pipe can be expressed
in terms of the characteristic impedance Z0 = ρ∞c∞

Sin
and the

outlet impedance ZL:

Zin = Z0
ZL cot(

ω
c∞ L) + iZ0

[iZL + Z0 cot(
ω
c∞ L)] (39)

In the asymptotic limit λ/D � 1 where λ is the asymptotic
wavelength, the outlet impedance of an circular in a semi-infinite
domain has the following expression:

ZL = Z0[1
2
(
ωD

2c∞
)2 + Δiω/c∞] (40)

where Δ is the so-called correction length given by Δ = 8D
6π

≈
0.425D.

Therefore, substituting Eq. (40) into Eq. (39):

Zin = Z0

1
2
( ωD
2c∞ )2 cot( ω

c∞ (L + Δ)) + i

[ i
2
( ωD
2c∞ )2 + cot( ω

c∞ (L + Δ))] (41)

The eigenvalues of the autonomous problem for a pipe closed at
the bottom can be tracked as poles of the impedance (or zeros
of the admittance Yin = Z−1

in . At leading order (neglecting the
radiation term) these correspond to cot[ ω

c∞ (L + Δ)] = 0, hence

ω(0) = (2n − 1)π
c∞

2(L + Δ)
.

A first-order approximation can be obtained by setting ω = ω(0)+
ω(1) assuming |ω(1)| � |ω(0)|, and injecting into Yin. This leads to

ω(1) = − Yin(ω
(0))

[∂Yin/∂ω]ω(0)
which eventually leads to

ω(1) = − iπ2

32

(2n − 1)2c∞D2

(L + Δ)3

Appendix C. Acoustic problem

In this section we detail the formulation of the free acous-
tic problem with Sommerfeld boundary condition at the outer
boundary. The linear dependency of Sommerfeld equation (15)
on ω forces to add an extra field Φ1 = ω

c∞ Φ . The subsequent

eigenvalue problem reads

∇2Φ + ω

c∞
Φ1 = 0 (42a)

Φ1 − ω

c∞
Φ = 0 (42b)

Sommerfeld:
∂Φ

∂rs
−

(
iΦ1 + Φ

rs

)
= 0

where rs =
√
r2 + z2 at Γout (42c)

Appendix D. Effect of CM on plane-waves

In this section we study how CM affects plane waves. Consider
the situation of a wave whose amplitude is A0 at X = X0 + Lc
and the complex parameter γc > 0 is not sufficiently large to
sufficiently decay k−

H,u before the end of the domain. Backward-

propagating waves occur, among which k−
ac possess the largest

spatial growth rate. In this simplified analysis we take the hy-
pothesis, k−

i,ac � k−
i;H,s, which is usually the case in shear flows

because acoustic waves are oscillating and backward propagating
hydrodynamic modes are dominant, thus k−

i;H,s < 0. In the follow-
ing the amplitude of backward propagating wave at X = X0 + Lc
is ACM

0 .

A0e
−k+

i;H,u
LCM−γc LCM (k+

r;H,u
−k−r,ac ) = ACM

0 (43)

From dispersion relations equation (27) and equation (28) we
obtain that γc needs to be chosen

γc = |U∞ − Uc |
(
1 − M∞

)(
U∞ + Uc

) − Mc

(
U∞ − Uc

)
−

ln(
A0

ACM
0

)

2ωLCM

(
1 − M∞

)(
U2∞ + U2

c

)(
U∞ + Uc

) − Mc

(
U∞ − Uc

) (44)

where M∞ = U∞
c∞ , Mc = Uc

c∞ . We note that the second term

is positive and its absolute value is controlled by the complex
mapping length, LCM . We consider the case Mc � 1, which is
equivalent to suppose that the speed of sound is much larger than
the velocity difference in the shear layer c∞ � Uc . Then the final
expression is as follows

γc >
(
1 − M∞

) |U∞ − Uc |(
U∞ + Uc

) (45)

Note that in the low Mach limit M∞ → 0, Eq. (32) is recovered.
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a b s t r a c t

In this work, we present a novel approach to perform the linear stability analysis

of fluid–structure interaction problems. The underlying idea is the combination of a

validated immersed boundary solver for the nonlinear coupled dynamics with Krylov-

based techniques to obtain a robust and accurate global stability solver for elastic

structures interacting with incompressible viscous flows. The computation of the leading

eigenvalues of the linearized system is carried out in a matrix-free framework by adopt-

ing a classical Krylov subspace method. The proposed algorithm avoids the complex

analytical linearization of the equations while retaining all the relevant aspects of the

fully-coupled fluid–structure system.

The methodology has been tested for several cases involving two-dimensional incom-

pressible flows around elastically mounted circular cylinders. The obtained results show

a good quantitative agreement with those available in the literature. Finally, the method

was applied to investigate the linear stability of the laminar flow past two elastically

mounted cylinders in tandem configuration at Re = 100, revealing the existence of two

complex dominant modes. For low values of the reduced velocity U∗, only one mode is

found to be unstable and related to the stationary wake mode. The loss of stability of

the second mode at U∗ = 4 marks the beginning of the lock-in region. We also show

that for U∗ = 5 the modes interact, giving rise to the beating phenomenon observable in

the nonlinear time evolution of the system. For larger values of the reduced velocity, the

linear dynamics is governed by one dominant mode characterized by wider oscillations

of the rear cylinder, matching the results of the nonlinear simulations.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction of elastic bodies with incompressible flows has attracted the interest of many researchers since the

pioneering studies on aeroelasticity (Theodorsen, 1934; Kornecki et al., 1976). These configurations are encountered in

a large variety of engineering applications, spanning from biomedical devices (de Tullio et al., 2009; Borazjani, 2013) to

energy harvesting systems (Doaré and Michelin, 2011; Grouthier et al., 2014; Nitti et al., 2022) and unmanned underwater

vehicles (Tangorra et al., 2007; Mansoorzadeh and Javanmard, 2014). Such systems are prone to several types of instability
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and, despite their complex nonlinear behavior, the early stages of the transition between two distinct dynamical states
can often be explained in terms of the excitation of a linearly unstable mode. While being a well-established technique for
investigating fluid flows (Theofilis, 2011), linear stability analysis (LSA) has been adopted quite recently for cases involving
fully coupled fluid–structure interactions (FSI), mainly to provide insights into the physical mechanisms associated with
the emergence of flow-induced oscillations and to design control strategies able to suppress them.

The first examples of linear stability analyses over FSI configurations date back to the pivotal studies of Theodorsen
(1934) on the flutter instability of an aerodynamic section. Theodorsen formulation was based on the potential flow
and slender body assumptions. While the adoption of these simplified flow models is legitimate in the field of classical
aeronautics, applications involving low to medium Reynolds numbers or flow separation require the simultaneous solution
of the linearized Navier–Stokes equations coupled with the linearized equation of motion of the elastic solid.

Cossu and Morino (2000) were the first to perform a linear stability analysis of a two-dimensional low Reynolds number
flow interacting with an elastically-mounted bluff body. They investigated the primary instability of a circular cylinder,
which was free to oscillate in the cross-flow direction by solving the linearized flow equations in a moving reference frame.
Navrose and Mittal (2016) adopted the same approach with a non-inertial frame of reference to conduct a parametric
study of the lock-in phenomenon exhibited by elastically-mounted circular cylinders in the laminar flow regime. Cossu
and Morino (2000) reported a critical Reynolds number half the value obtained for the fixed cylinder case with low solid-
to-fluid density ratios. Meliga and Chomaz (2011) extended the stability analyses to smaller mass ratios (O(10−4)). The
numerical technique employed therein consisted in a multiple-time-scale expansion to decouple fluid and solid dynamics
at the leading order of the perturbation.

More recently, Pfister et al. (2019) adopted a Lagrangian-based approach to derive a linearization of the equations
of motion for a coupled fluid–structure problem written in an Arbitrary-Lagrangian–Eulerian (ALE) framework. This
formulation becomes cumbersome when it is based on the Lagrangian motion of the structure, requiring important
modifications in the residual o the Navier–Stokes equations to take into account the motion of the mesh. Fernández and
Le Tallec (2002) proposed, instead, an Eulerian-based formulation in an attempt to overcome the difficulties arising from
a moving grid. In their formulation, obtained starting from the weak form of the ALE equations, the coupling between the
flow and the solid is made via a transpiration technique. Although reducing considerably the complexity of the problem,
this method produces additional stress contributions at the interface, termed added stiffness, that depend on higher-order
derivatives of the flow variables. Negi et al. (2020) followed the same methodology but performed the linearization of
the equations of motion in their integral form.

Moulin et al. (2017) suggested the use of non-conforming methods to investigate the stability of strongly coupled FSI
systems, discussing, in particular, the adoption of a fictitious domain formulation to handle the coupling between the fluid
and the solid. Goza et al. (2018), who also proposed a non-conforming approach, conducted a global stability analysis of
inverted flags submerged in uniform flows using an Immersed Boundary (IB) method. They resorted to the numerical
derivation of the Jacobian matrix linearizing the discretized operators around the steady state via a first-order finite
difference scheme. The memory requirements with matrix-forming strategies become rapidly unfeasible when dealing
with a large number of degrees of freedom, e.g., three-dimensional FSI configurations. This aspect is even more relevant
in the computation of neutral curves since the Jacobian matrix must be re-evaluated for each base flow.

In this work, we propose an alternative procedure to study the linear stability characteristics of FSI systems by adopting
a Jacobian-free approach (Mettot et al., 2014). Matrix-free strategies lead to significant memory savings at the cost of
longer integration times. In contrast, they provide access to only a subset of the spectrum associated with the eigenvalue
problem (EVP) that originates from the classic normal-mode approach. Nonetheless, the accessible portion of the spectrum
is generally the most relevant, consisting of the most unstable eigenvalues.

In the present article, we adopt a time-stepping methodology that makes use of high-fidelity nonlinear simulations
obtained with a direct-forcing IB method, based on a moving-least-square (MLS) approach. One of the main advantages
of the IB formulation resides in the fact that it can handle multi-body configurations with no additional complexity. In
addition, the fluid equations are resolved on a staggered Cartesian grid, which makes the method prone to a simple parallel
implementation for three-dimensional computations.

The choice of the specific IB forcing technique is crucial for the success of the computation. It has been noted that
the use of a sharp forcing field usually leads to the appearance of unphysical fluctuations of the hydro-dynamical force
acting on the solid body (Uhlmann, 2003). Seo and Mittal (2011) attribute the emergence of pressure oscillations to an
unintended transpiration effect at the immersed boundary, due to the fact that the role of the Eulerian nodes close to the
interface can change from a time-step to the next as the body moves. These spurious oscillations can be suppressed by
spreading the forcing term over a wider stencil through the use of a smoother Lagrangian–Eulerian transfer function (Yang
et al., 2009). In view of these considerations, and after a few trials, we adopted an MLS forcing procedure that provides
a good trade-off between accuracy and robustness. Details on the IB treatment are provided in the next section.

The proposed strategy involves the adoption of the matrix exponential, first introduced by Eriksson and Rizzi (1985)
in the context of global stability analysis. In their paper, the authors proposed to approximate the action of the Jacobian
matrix via finite differences to investigate the instability of the transonic flow over an airfoil, a phenomenon modeled
by the two-dimensional Euler equations. They also highlighted the need for a matrix transformation to retrieve the least
stable portion of the spectrum of the discrete operator. The same approach was later extended to the full Navier–Stokes
equations by Chiba (1998), who performed a linear stability analysis of the two-dimensional square lid-driven cavity flow,

2
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and by Tezuka and Suzuki (2006), who carried out a TriGlobal stability analysis (Theofilis and Colonius, 2011) of the flow

around various spheroids.

Gómez et al. (2011) incorporated the approach of Tezuka and Suzuki (2006) into publicly-available computational fluid

dynamics (CFD) solvers, highlighting the flexibility of the method that looks at the CFD solver as a black-box source. In a

successive paper (Gómez et al., 2015), Gomez et al. extended that work by inserting a shift-invert strategy to grant access

to specific portions of the spectrum. Our contribution builds on the above-mentioned series of papers and provides an

extension of Chiba’s approach to FSI problems.

This paper is organized as follows. First, in Section 2, we introduce the problem of linear stability in the context

of fluid–structure interaction and derive the theoretical foundations of the methodology. Numerical validation of the

solver is presented in Section 3, together with the results obtained by applying the presented strategy to the problem of

flow-induced vibrations of two cylinders in tandem. In Section 4, the main results and conclusions are summarized.

2. Methodology

In this work, the discussion is restricted to the motion of elastically-mounted rigid bodies immersed in a two-

dimensional incompressible viscous flow, although the derived method remains completely general.

2.1. Governing equations

The governing equations of the flow dynamics are the incompressible Navier–Stokes equations, written in the

dimensionless form:

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u + f ,

∇ · u = 0,

(1)

where u and p denote the fluid velocity and pressure, respectively. The body force term f , in the absence of other external

fields, corresponds to the IB body-force field. Eq. (1) is closed by appropriate boundary conditions related to the specific

considered configuration. Flow variables have been made dimensionless by considering a reference length Lr and velocity

scale Ur ; the Reynolds number is defined as Re = (UrLr )/ν, with ν the kinematic viscosity of the fluid.

The structure is modeled as a rigid body with the elastic center coincident with the center of mass. Its motion is

governed by Newton’s second law for the ith degree of freedom:

ẍi + σi

A∗
i ρ

∗ ẋi +
ki

A∗
i ρ

∗
(
xi − x

eq

i

) = Ci, i = 1, . . . , nDOF (2)

where the variables have been made dimensionless by means of the bulk parameters of the flow field.

The system of equations given by (2) represents a spring–mass–damper system where σi and ki are, respectively,

the non-dimensional linear damping and stiffness coefficients of the ith degree of freedom (DOF), x
eq

i is the equilibrium

position of the ith spring and nDOF gives the total number of degrees of freedom. For instance, nDOF = 3 in two-dimensional

problems, comprising the two components of the displacement and the rigid rotation around the center of mass. The term

A∗
i ρ

∗ represents the non-dimensional mass coefficient. In two dimensions, for the translational DOFs, A∗
i corresponds to

A∗, which is the ratio of the cross-sectional area of the body to the square of the reference length, Lr . For the rotational

DOF, A∗
i = I∗, which is the second moment of area with respect to the centroidal axis divided by the fourth power of Lr .

The coefficient Ci represents the non-dimensional force (or torque) acting upon the ith DOF.

In the examples illustrated throughout this work, the effect of gravity has been neglected and the only contribution to

the forcing term in the body equations comes from the interaction with the flow. That being the case, the behavior of a

rigid body with only one degree of freedom is governed by two dimensionless parameters: the density ratio ρ∗ = ρs/ρf ,

which is the ratio of solid to fluid density, and the reduced velocity U∗ = √
(A∗

1ρ
∗4π2)/k1, representing the ratio of

two characteristic time scales of the problem, i.e., the period of the natural mode of the body and that of the convective

motions of the flow.

2.2. Time stepping - Pressure-segregation algorithm

The Navier–Stokes equations (1) are integrated in time through a semi-implicit procedure (Nitti et al., 2020), where

the convective and viscous terms are discretized by a third-order Runge–Kutta (RK) and a Crank–Nicolson scheme,

respectively. Each substep is resolved by means of a classical fractional-step method,

û = ϕ̂
[1]
Δtu

k,

ũ = ϕ
[1]
Δtu

k,

uk+1 = ϕ
[2]
Δt ũ =

(
ϕ

[2]
Δt ◦ ϕ

[1]
Δt

)
uk,

(3)

3



A. Tirri, A. Nitti, J. Sierra-Ausin et al. Journal of Fluids and Structures 117 (2023) 103830

where uk is the velocity field at the kth RK substep, û is an intermediate velocity field that does not satisfy the interface

conditions, ũ is a provisional field that is globally divergence-free, but not locally, and uk+1 is the updated velocity field

at the (k + 1)th substep. The preliminary velocity û is computed explicitly via the discrete flow ϕ̂
[1]
Δt ,

ϕ̂
[1]
Δtu

k ≡ uk + Δt

[
−αk∇pk + αk

Re
∇2uk + βkHk + γ kHk−1

]
, (4)

where H represents the nonlinear terms u · ∇u and αk, βk and γ k are the coefficients of the time scheme (see Nitti et al.

(2020) for details). The computed field is next used to evaluate the IB forcing f , whose detailed description is left to

Section 2.2.1. Then, the provisional velocity field ũ is computed by solving the Helmholtz equation(
1 − αkΔt

2Re
∇2

)
Δũ = û − uk + Δtf (û), (5)

where Δũ = ũ − uk. The discrete flow ϕ
[1]
Δt is defined as

ϕ
[1]
Δtu

k = uk +
(
1 − αkΔt

2Re
∇2

)−1 (
û − uk + Δtf (û)

)
(6)

Finally, the pressure is updated according to

pk+1 = pk +
(
1 − αkΔt

2Re
∇2

)
p∗, (7)

with the scalar quantity p∗ resulting from the solution of the Poisson equation,

∇2p∗ = ∇ · ũ
αkΔt

. (8)

The RHS of Eq. (8) enforces the continuity of the final velocity field uk+1, given by the discrete flow ϕ
[2]
Δt ,

uk+1 = ϕ
[2]
Δt ũ ≡ ũ − αkΔt∇p∗. (9)

A second-order-accurate spatial discretization is achieved using centered finite differences in a non-uniform staggered

Cartesian grid.

Given the time-splitting nature of the fractional-step approach, the boundary conditions at the fluid–structure interface

are enforced on an intermediate non-solenoidal velocity field. This imposition is subsequently spoiled in the corrector

step to enforce local continuity (Fadlun et al., 2000); however, the modification of the interface velocity caused by the

correction step can be minimized through a repetition of the forcing procedure after the solution of the Helmholtz

equation (5). Observations have shown that the discrepancy between the interpolated final fluid velocity and the local

body velocity is effectively reduced with three to five iterations of the forcing procedure (Breugem, 2012), up to a

root-mean-square error equal to ∼ O(10−5).

Within the present method, the local difference between the interpolated fluid velocity and the solid velocity employed

in the forcing stage is measured downstream of the time-scheme, and its Root Mean Square (RMS) is evaluated over the

set of Lagrangian markers (see Section 2.2.1). In presence of moving surfaces, the RMS error is found to be ∼ O(10−4) of

the freestream velocity (see fig. 11 of Nitti et al. (2020)).

The equations of motion for the rigid body are integrated in time by means of a Crank–Nicolson scheme. Within this

staggered approach, at each sub-step, the fluid, and structural systems are solved in a sequential fashion: first, a low-order

extrapolation for the fluid–solid interface position and velocity is employed in the IB procedure to advance the flow field

in time; then the coupling between fluid and rigid-body dynamics is accomplished using the Eulerian load distribution

f coming from the IB procedure to obtain the total force and moment integrals (Lācis et al., 2016; chih Lai and Peskin,

2000) in the RHS of Newton’s equations (2). This procedure avoids the integration of pressure and viscous stresses on

the contour of the body, circumventing the need for a reconstruction procedure. When the density ratio ρ∗ is close to

unity, a strong coupling of the fluid and solid solutions may be needed (Förster et al., 2007). For the majority of the

examples presented, a weak coupling between the fluid and structural systems was able to capture the dynamics with

sufficient accuracy. A strong iterative coupling was employed for the tandem cylinders case presented in Section 3.3, for

which ρ∗ = 2.546. Within this simple iterative approach, we measure the L∞ norm of the relative difference in the body

displacement between two successive iterations and iterate until its value is below the convergence tolerance tol = 10−8.

The method usually converges within two to six iterations. For the investigated cases, though, the loosely and strongly

coupled algorithms yield negligible differences, as shown in fig. 9 of Borazjani and Sotiropoulos (2009) within a similar

IB-FSI framework.

The simulations employed for the stability calculations were performed with a fixed time-step taken small enough

to keep the CFL condition around the value of 0.2, in order to capture the FSI dynamics with sufficient accuracy for all

explored configurations. The average spacing between adjacent Lagrangian markers was set equal to 0.5Δxloc , where Δxloc
is the local Eulerian cell dimension. Further details on the method can be found in Nitti et al. (2020).
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2.2.1. Immersed boundary procedure

The boundary conditions at the fluid–structure interface are imposed on the provisional velocity field using a direct-

forcing immersed boundary technique. Following Uhlmann (2005), body-force terms are computed over a set of suitably

spaced Lagrangian markers laying on the immersed surface. Each velocity component is interpolated at the Lagrangian

markers via an MLS approximation (Vanella and Balaras, 2009),

V̂i(xl) = ΨT(xl)ûi, (10)

where ûi is the array that collects the ith velocity component at the face centers within the support domain (see Fig. 1)

of each Lagrangian marker and V̂i is the ith velocity component at the Lagrangian position xl. In two dimensions, the

minimum number of grid cells ne contained in the support domain is equal to 9. The linear operator ΨT(xl) is defined as

ΨT(xl) ≡ pT(xl)(A(xl))−1B(xl), (11)

where

pT(xl) = [1, xl, yl],

A(xl) =
ne∑
k=1

W
(
xl − xk

)
p

(
xk

)
pT

(
xk

)
,

B(xl) = [
W (xl − x1)p(x1) . . .W (xl − xne )p(xne )

]
.

(12)

The weight function W (xl − xk) plays the role of a convolution kernel. Throughout this work, the exponential function is

used,

W(xl − xk) =
{
e−(rk/ε)

2
for rk ≤ 1

0 for rk > 1
(13)

where rk = |xL − xk|/ri, with ri the size of the support domain in the ith direction and ε = 0.3. A volume force component

is then computed for each Lagrangian marker l,

F l
i = V l

i − V̂i(xl)
Δt

, (14)

where V l
i is the ith component of velocity to be imposed at the interface and Δt is the time-step of the numerical scheme.

Finally, the forcing term to be added to the RHS of the Navier–Stokes equations (1) is computed at each Eulerian grid point

using again the shape functions of the interpolation procedure

f ki =
nl∑
l=1

clΨ
l
kF

l
i , (15)

where f ki is the ith component of the forcing for the kth Eulerian grid point, nl is the number of Lagrangian markers whose

support domain contains the selected Eulerian point and cl is a scaling coefficient (see Nitti et al. (2020) for details).

2.3. Linear stability

In this section, we focus on the linear stability of the coupled system. After spatial discretization, fluid and solid

variables are collected into the state vector q, and the problem is reformulated as

dq
dt

= R(q), (16)

where R is the nonlinear evolution operator of the system. The linear stability of a steady-state qb of the system

(R(qb) = 0) can be studied by observing the evolution in time of a small-amplitude perturbation, εq′, superimposed

on the base state (q(t) = qb + εq′(t)). By injecting this decomposition into (16) and retaining only the first-order terms,

the evolution of q′ is governed by

dq′

dt
= ∂R

∂q

∣∣∣∣
qb

q′ = J (qb)q
′, (17)

where J (qb) is the linear Jacobian operator evaluated with respect to the steady-state qb. Following the traditional

normal-mode approach, the stability characteristics of the system are deduced from the spectrum of the Jacobian operator,

q′(t) = q̂eωt + c.c. (18)

(J (qb) − Iλ) q̂ = 0 (19)

5
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Fig. 1. Scheme of the IB forcing. The Eulerian nodes contained in the support domain of the selected marker are involved in the forcing procedure.

where ω is a complex eigenvalue, q̂ is the spatial structure of the related eigenmode and c.c. indicates the complex
conjugate. For an autonomous system, the exact solution of the linear initial value problem expressed by Eq. (17) is given
by

q′(t0 + T ) = eJ(qb)Tq′(t0) = Φ(T )q′(t0), (20)

where the operator Φ is known as the exponential propagator of the system. Injecting into Eq. (20) the modal decompo-
sition, we get the following eigenvalue problem

μq̂ = Φ(T )q̂. (21)

The eigenvalues of the two problems are related through the exponential transformation μ = eωT , while the eigenvectors
remain unchanged. The asymptotic linear stability properties of the system are dictated by the module of the eigenvalues
μ. If all eigenvalues have |μ| < 1, the system is linearly stable, while it is unstable if at least one eigenvalue has |μ| > 1.
For |μ| = 1, the system is neutrally stable. The exponential transformation alters the spectrum in such a way that the
dominant eigenvalues, i.e. the eigenvalues of largest modulus, correspond to the leading ones in the original eigenvalue
problem, where with the term leading, we refer to the eigenvalues with the largest real parts.

2.3.1. Numerical strategy
The problem of linear stability is now reduced to finding the eigenvalues of an N ×N matrix Φ, where the dimension

N is given by the number of cells or nodes of the discretized domain times the number of flow variables, plus the degrees
of freedom of the body. For real-world systems, the explicit calculation (and storage) of the matrix exponential often
carries a prohibitive computational load and one must resort to iterative algorithms, such as those belonging to the class
of Krylov-subspace projection methods. In these algorithms, an M-dimensional Hessenberg matrix H (with M � N)
approximates the matrix exponential in a low-dimensional Krylov subspace, which is constructed via the repeated action
of operator Φ on a given starting vector. The eigenvalues of the Hessenberg matrix, the so-called Ritz values, constitute
an approximation of the eigenvalues of the exponential matrix.

Given the matrix-free framework of this method, we aim at the approximation of the action of Φ on a perturbation
vector. In doing so, we introduce the propagator F (q) of the complete solution,

q(t0 + T ) = F (q0, T ), (22)

where q0 = q(t = t0) is the value assumed by the state vector q at a given time t = t0 and q(t0 + T ) represents its
evolution after a time T . The solution at time t = t0 can be expressed as the superposition of the previously defined
steady-state qb and a small amplitude deviation for this base state εq′(t0). A Taylor expansion of operator F around the
base state qb yields

F (qb + εq′(t0), T ) = F (qb, T ) + ∂F (q, T )
∂q

∣∣∣∣
qb

εq′(t0) + O(ε2), (23)

where εq′(t0) represents a small deviation from the base state.

6
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It can be shown that the second term on the RHS is, up to the scalar ε, an approximation of (q′(t0 + T ) − q′(t0)) for
small values of T . The details of this derivation are provided in Appendix A.

Substituting the derivative of F (q, T ) into the RHS of (23) and neglecting higher order terms in ε, we get an expression

for evaluating the advancement in time of the perturbation based only on the propagator of the complete solution,

q′(t0 + T ) ≈ F (qb + εq′(t0), T ) − F (qb, T )

ε
. (24)

Taking the limit of Eq. (24) as ε −→ 0, the RHS gives a Gateaux derivative of F at qb,

lim
ε→0

F (qb + εq′(t0), T ) − F (qb, T )

ε
. (25)

In a discrete context, the action of the time-marching matrix of the perturbation can be recovered through a finite

difference that only involves calls to the time-stepping scheme described in Section 2.2 (here we have adopted the same

nomenclature to refer to both discrete and time-continuous operators). Selecting a small but non-zero value of ε, the

derivative given by (25) can be approximated by

F (qb + εqp(t0), nΔt) − F (qb, nΔt)

ε
, (26)

where qp represents the perturbation vector in the discrete system. For ease of notation, we employ the same notation

qb to refer to both the continuous and discrete base state. The parameter n is the number of time-steps by which the

solution is advanced in time and Δt is simply the time-step of the scheme, chosen according to the desired CFL condition.

A better approximation of (25) can be built via higher-order finite differences. In the present work, we employ a

second-order finite difference to approximate the evolution of a given perturbation qp(t0):

qp(t0 + nΔt) = q+ − q−
2ε

, (27)

where q+ and q− are the results of two separate calls to the FSI solver, advancing in time the base state after the addition

and subtraction, respectively, of the same small perturbation:

q+ = F (qb + εqp(t0), nΔt), (28)

q− = F (qb − εqp(t0), nΔt). (29)

Although such an approach presents the disadvantage of requiring two calls to the time-stepper, it reduces the number

of required iterations by providing a more accurate estimate for the matrix–vector product (Knoll and Keyes, 2004).

We can compute a set of the least stable eigenvalues via a Krylov projection method. In this work, approximations to

the leading eigenvalues of the system are computed using the implicitly restarted Arnoldi method (IRAM) (Sorensen, 1992)

as implemented in the ARPACK open source package (Lehoucq et al., 1998).

The base states here considered are equilibrium solutions of the fully coupled nonlinear system, therefore their

evaluation requires the solution of a nonlinear algebraic system.

For large-scale problems, a pure Newton–Raphson method is prohibitive because of the size of the systems, hence

the most common approach to overcome this difficulty is the use of a Newton–Krylov technique. In this work, the base

state for each test case was computed using BoostConv (Citro et al., 2017), an iterative residual recombination procedure

belonging to the class of Krylov methods.

The choice of such an algorithm fits perfectly into our matrix-free approach since BoostConv can be easily applied as

a black-box procedure requiring only several calls to a pre-existing time-marching algorithm, without any modification.

The outline of the algorithm is shown below:

1. The base flow is computed via BoostConv (Citro et al., 2017)

2. Arnoldi iterations are performed until the desired convergence is reached: (k = 1, 2, . . .)

(a) Vector qk
p is generated

(b) Reverse communication (Lehoucq et al., 1998) with the flow solver provides qk
p = q+−q−

2ε

(c) Convergence of the desired Ritz pairs is checked

3. A logarithmic transformation is performed to recover the original eigenvalues: λ = (log |μ| + i arg(μ)) (nΔt)−1.

For all cases shown in this article, a non-zero pseudo-random perturbation has been employed as a starting vector for the

Arnoldi iterations, respecting the divergence constraint on the velocity. It is worth pointing out that the present approach

circumvents the need to select appropriate boundary conditions for the perturbation field, while the boundary conditions

of the nonlinear evolution problem are included in the discrete operator F .

7
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Some remarks on the effect of the IB interface on the linear results. With the IB approach, the solid–fluid interface is enforced

by a time-varying distribution of forcing terms that mimics the effect of the body on the flow. Since, in general, the

interface does not coincide with the grid lines, the need for an interpolation procedure arises. The way this transfer of

information is done defines the specific variant of the IB method.

In the presence of a moving interface, the choice of the interpolation scheme is even more important. It has been noted,

for instance, that non-physical force oscillations arise, in this case, with some variants of the IB method (Yang et al., 2009),

like the discrete Delta function formulation. Complications emerge also with the Cartesian grid (or cut-cell) approach, in

which the fluid–solid interface is sharply tracked, in view of the fact that the role of the grid points near the interface can

change from time-step to time-step (Yang and Balaras, 2006) (i.e. a grid point that belongs to the portion of the domain

occupied by the solid at a given time-step can drop out of the body contour at the next time-step and viceversa). While

the role of the node changes, it still carries the physical information about its previous phase, consequently, the local

pressure field is strongly perturbed.

The choice of the above-described MLS technique, among the diverse options belonging to the class of non-conforming

methods, is motivated by the need for a smooth transfer between Lagrangian and Eulerian nodes (Vanella and Balaras,

2009; Uhlmann, 2003). Indeed, the emergence of non-physical pressure oscillations in the nonlinear solution would have

a detrimental impact on the accuracy of Eq. (27), involved in the computation of the linear modes with respect to the

steady-state. The present method shows reduced spurious oscillations in the vicinity of the interface due to the fact that

the IB forcing field is slightly smeared within the compact support of the MLS interpolation.

One issue of interest is to what extent the smeared representation of the interface affects the accuracy of the

computation for higher Reynolds number flows. The wall-resolved computation of the viscous shear layer in presence

of moving immersed boundaries is still an open research area. One way to improve the local accuracy with reasonable

computational expense within an IB framework is to employ a locally refined semi-structured grid (Durbin and Iaccarino,

2002; de Tullio et al., 2007) in order to increase the grid resolution near the body. It is worth recalling that the present

method relies on the linearization of the system around steady solutions of the Navier–Stokes equations, which usually

exist for sufficiently low Reynolds numbers.

Another point to be considered is the effect of the IB treatment on the evaluation of the finite difference in Eq. (27)

itself. When the position of a given Lagrangian marker falls into a certain grid cell in the solution q+ and into an adjacent

cell in q−, the subtraction (q+−q−) involves grid points that are included in the support domain of the marker in one case

and left out in the other. To avoid this problem, the support domain of each marker is kept fixed during the evaluation

of q+ and q−, such that the forced fluid cells are the same in the two solutions. The corresponding marker is prevented

from falling outside of the fixed support owing to the short integration time T and the small scaling factor ε employed

in the linearization procedure. In this way, the procedure provides an accurate and robust computation of leading modes

with a finite difference approach.

2.3.2. Selection of the linearization parameters

One critical aspect of the presented procedure is the selection of the linearization parameters, i.e., the integration period

T = nΔt and the perturbation scaling factor ε.

The choice of the integration time is somewhat problem dependent. As reported by Goldhirsch et al. (1987), for a given

number of requested eigenvalues k, the order of the error related to the model reduction is given by |e(λk−λM )T |. This means

that the accuracy can be improved either by increasing the number of integration time steps n, or by augmenting the

dimension of the basis M . Eriksson and Rizzi (1985) refer to n as a selectivity parameter, in the sense that, as it increases,

the separation among the least damped eigenvalues is magnified. Both options can provide sufficient separation between

the desired eigenvalues and the remaining part of the spectrum.

In spite of that, it is worth noting that this methodology is based on an approximation of the evolved perturbation,

given by Eq. (24), which is valid for short integration periods. For this reason, it is legitimate to keep T small while

increasing the value of M for particularly clustered eigenvalues.

One issue to be considered when dealing with iterative methods is the need for convergence acceleration that arises

for high-resolution simulations. The rate of convergence of an iterative method decreases with the condition number of

the Jacobian matrix, which in turn increases as the grid is refined. To address this issue and improve the performance

of the method, adequate preconditioning is usually required. Building a preconditioner in a matrix-free context is not a

trivial task because the matrix is never formed and standard preconditioning techniques cannot be directly applied.

To preserve the flexibility of the time-stepping global stability solver, the technique employed to control the conver-

gence must be iterative and matrix-free. As an example, Mack and Schmid (2010) proposed a Jacobian-free DNS-based

global stability solver for compressible flows with the addition of a preconditioning matrix in explicit form. Instead,

Asgharzadeh and Borazjani (2017) addressed this issue through the use of an analytical Jacobian as a preconditioner

in a Newton–Krylov method for the implicit solution of the Navier–Stokes equations. Some other options for matrix-free

preconditioning are discussed in Knoll and Keyes (2004).

The remaining parameter that must be selected by the user is the linearization coefficient ε, i.e. the amplitude of the

discrete perturbation. Its value should result from a trade-off between the truncation error of the finite difference and

round-off errors related to the finite precision arithmetic.
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Fig. 2. Spatial distribution of the vorticity for the real (a) and imaginary (b) parts of the unstable eigenmode of the flow past a fixed circular cylinder

at Re = 50.

Table 1
Unstable eigenvalue for the flow past a fixed circular cylinder at Re = 50. Present results

show good agreement with values present in the literature, as indicated by the relative

error reported on the right.

Reference ω (%)

Siconolfi et al. (2017) 0.0160 + 0.759i 2.85

Negi et al. (2020) 0.0133 + 0.742i 0.61

Present 0.0154 + 0.738i –

Literature provides some guidelines for the appropriate choice of ε, the interested reader is referred to the works of

Eriksson and Rizzi (1985), Knoll and Keyes (2004), Schulze et al. (2009) and Mack and Schmid (2010). In this work, we

follow a commonly used approach that selects the scaling factor of the perturbation at each time-stepper call via

ε = ε0
‖qb‖ + ‖qp‖

‖qp‖
, (30)

where ‖q‖ is the L2 norm of vector q and ε0 is a user-defined parameter related to the truncation error (An et al., 2011)

of the FSI time-stepping scheme.

The choice of ε0 has a great influence on the success of this time-stepping approach, and the user should keep in mind

that this task is somewhat solver-dependent. Following the example of Mack and Schmid (2010), we report in Appendix C

a parametric study that illustrates the influence of the parameter ε0 on the accuracy of the results obtained for a given

configuration.

3. Validation and results

In this section, to validate the algorithm derived above, we present the results of several numerical tests involving the

vortex-induced vibration (VIV) of elastically mounted circular cylinders in a cross-flow. After the validation, a multi-body

configuration is finally explored, consisting of the VIV of two identical spring-mounted cylinders in tandem configuration.

3.1. Flow past a fixed circular cylinder

The proposed methodology has been first validated with respect to the two-dimensional flow past a fixed circular

cylinder, which is the subject of abundant literature in the field of hydrodynamic instability as it is considered the

prototype flow around bluff bodies.

For this case, the flow quantities are made dimensionless by taking the diameter of the cylinder D and the incoming

flow velocity U∞ as reference variables. The reported results are obtained over a rectangular domain with size [−28D :
52D] × [−28D : 28D], with the origin placed on the cylinder axis. A uniform streamwise velocity is imposed at the

inlet boundary along with a zero cross-sectional velocity (u = 1, v = 0), while free-shear boundary conditions are

enforced on the lateral boundaries. At the outlet, a convective boundary condition allows the outgoing waves to exit the

computational domain with minimal reflections while preserving local continuity. No-slip conditions are applied to the

velocity at the surface of the cylinder via the IB procedure described in the previous section. Fig. 3 illustrates an example of

the stretched Cartesian grid used for the computations. To obtain the results here presented, a grid containing 900 × 570

cells was employed, with a minimum grid spacing of 0.022D attained over a uniformly spaced rectangular region around

the cylinder measuring 10D in the streamwise direction and 4D in the cross-stream direction.

An estimate for the globally unstable eigenvalue ω at Re = 50 is reported in Table 1 along with results from Refs.

Siconolfi et al. (2017) and Negi et al. (2020), while Fig. 2 shows the vorticity field of the real and imaginary parts of the

related unstable eigenmode.

3.2. VIV of an isolated cylinder

As a second validation case, we report the results of the linear stability analysis of the VIV of an isolated elastically

mounted circular cylinder, to test the ability of our IB solver to accurately capture the dynamics of a small perturbation

of the fluid–structure system.

9



A. Tirri, A. Nitti, J. Sierra-Ausin et al. Journal of Fluids and Structures 117 (2023) 103830

Fig. 3. Example of a grid used for the linear stability analysis of the flow past a circular cylinder (for both the fixed and oscillating cases). To make

the graph more readable, every tenth grid point in each direction is displayed. The inset shows a close-up of the cylinder region for the actual grid

employed in the calculations.

The size of the domain and the distance of the center of mass of the cylinder from its boundaries are the same as in

the case of the fixed cylinder, as well as the boundary conditions. For all cases investigated, the Reynolds number based

on the cylinder diameter is kept fixed at Re = 60, the cylinder being free to oscillate only in the cross-stream direction

with no structural damping.

For the computations, the same grid used for the case of the fixed cylinder was employed after a grid convergence

study. Results and details of the grid refinement study are reported in Appendix B together with an investigation of the

influence of the domain size on the accuracy of the results.

In Fig. 4, we report the variation of the non-dimensional frequency and growth rate of the two least stable eigenvalues

with the reduced velocity U∗, for two distinct values of the relative density, namely, ρ∗ = 20 and ρ∗ = 5. For the largest

density ratio, the two leading modes exhibit a clear distinction for each value of the reduced velocity U∗. Following

Navrose and Mittal (2016), we denote them as the fluid mode (FM), due to the high affinity that it shows with the wake

mode of the fixed cylinder (see Fig. 5), and the elastic mode (EM). This classification is further confirmed by noticing how

the frequency of the FM remains close to that of the unstable mode for the flow around a fixed cylinder at the same

Reynolds number (see Table 1) for all values of U∗, while the frequency of the EM, on the other hand, decreases following

the variation of the natural frequency of the cylinder, given by 1/U∗.
For ρ∗ = 5, the two modes lose their distinction for intermediate values of U∗, therefore, following Navrose and Mittal

(2016), we refer to them as the coupled fluid–elastic modes (FEM) I and II. For low values of U∗, modes FEMI and FEMII

resemble the stationary wake mode (i.e. the mode associated with the vortex-shedding in the wake of the fixed cylinder)

and the elastic mode, respectively; however, as U∗ increases, the two eigenmodes become coupled and exchange their

characteristics (see Fig. 6).

3.3. Flow-induced vibrations of two cylinders in tandem

The case considered in this section is the configuration proposed by Borazjani and Sotiropoulos (2009), with two

identical elastically mounted cylinders in tandem arrangement placed in a free-stream flow. A parametric exploration

of the dynamics of the system is beyond the scope of the current work, so we restricted our analysis to the 1-DOF case in

which the cylinders are free to oscillate only in the cross-stream direction. The streamwise distance between their centers

is equal to 1.5 diameters, while the cross-stream offset is zero. No structural damping is considered and the solid-to-fluid

density ratio is kept constant at ρ∗ = 2.546 for all simulations. Given the low value of the density ratio and the close

proximity of the cylinders, the problem under investigation represents a challenging test case that can prove the flexibility

of the method.

We first present the nonlinear response of the cylinders at the diameter-based Reynolds number Re = 200, for values

of the reduced velocity spanning the range 1.5 ≤ U∗ ≤ 14. A sketch of the computational domain along with the boundary

conditions employed is shown in Fig. 7. The inlet is located at a distance Lin = 15D from the midpoint between the centers

of the cylinders, with the total length of the domain being equal to Lin+Lout = 55D, while the lateral boundaries are placed
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Fig. 4. Linear stability results: change of the growth rate λ and the Strouhal number, St = (fD)/U∞ , of the two least stable modes with U∗ for

ρ∗ = 20 (a, c) and ρ∗ = 5 (b, d) at Re = 60. Continuous red line: results from Sabino et al. (2020); dashed blue line: results from Navrose

and Mittal (2016); gray circles: present results. The red curves were reproduced using the open-source Matlab drivers of the StabFem project

(https://gitlab.com/stabfem/StabFem). (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

Fig. 5. Spanwise vorticity field of the real part of FM (a, c) and EM (b, d) for (Re = 60, ρ∗ = 20) at U∗ = 7 (a, b) and U∗ = 9 (c, d). The fluid flows

from left to right. Note how the fluid mode resembles the unstable mode for a fixed cylinder reported in Fig. 2.

at a distance Llat = 15D from the centers. A uniform Dirichlet boundary condition is given at the inlet and on the lateral

boundaries, while a convective condition is assigned at the outlet with a convective velocity c = 0.8. The computations

were performed over a stretched Cartesian grid containing 900 × 520 cells, with a minimum grid spacing of 0.0154D in

the regularly spaced box region around the origin, measuring 4D in each direction.

All simulations were initialized with the steady base flow computed via BoostConv (Citro et al., 2017) by keeping the

cylinders fixed at their initial positions. No starting perturbation was superposed to the stabilized solution; thus, the

initial departure from the base flow was triggered only by round-off errors. Fig. 8 shows the temporal evolution of the
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Fig. 6. Spanwise vorticity field of the real part of FEMI (a, c) and FEMII (b, d) for (Re = 60, ρ∗ = 5) at U∗ = 5 (a, b) and U∗ = 6 (c, d). The fluid

flows from left to right.

Fig. 7. Sketch of the computational domain employed for the direct numerical simulations of the flow interacting with two circular cylinders in

tandem arrangement at Re = 200.

position of the centers of mass of the two cylinders for different values of U∗, each one being representative of a distinct
behavior of the system. For U∗ = 3 (see Fig. 8(a)) the cylinders experience a longer transient phase characterized by
low-amplitude vibrations before reaching a periodic regime where the two cylinders oscillate out-of-phase with the front
one exhibiting higher amplitude than the rear. Borazjani and Sotiropoulos (2009) classified this behavior as state 1 of the
system and referred to the vibration state where the rear cylinder achieves a larger oscillation amplitude as state 2. When
the reduced velocity is increased to U∗ = 4, the dynamic response of the fluid–structure system changes noticeably as
the two cylinders exhibit a quasi-periodic behavior distinguished by larger amplitudes of vibration that undergo a low-
frequency modulation in time. As can be seen from the close-up region in Fig. 8(b), such modulations come with a change
in the phase difference between the two oscillatory motions, as the phase angles are generally out of phase, but match
periodically.

As the reduced velocity is further increased to U∗ = 5, a shift from state 1 to state 2 is observed and the two cylinders
oscillate in phase opposition, with the rear one exhibiting greater amplitude than the front one. For higher values of the
reduced velocity, there is no qualitative change in the dynamical response of the system. The trailing cylinder continues
to oscillate at a higher amplitude and out-of-phase with respect to the front one. Fig. 9(a) shows the variation of the
maximum displacement A∗

MAX with the reduced velocity for each cylinder; the A∗
MAX value was measured disregarding

the early transient phase. Results from Borazjani and Sotiropoulos (2009) and Griffith et al. (2017) are also included for
comparison, showing a good overall agreement with the present outcome. The main discrepancy observed for the higher
values of U∗ can be ascribed to the different initial conditions. To verify this assumption, we repeated the computations
for 11 ≤ U∗ ≤ 14 starting from a snapshot of the unsteady solution at U∗ = 10; the results, represented in Fig. 9(a) by
dashed lines, are markedly closer to the data present in the literature. These findings could indicate the existence of a
hysteresis effect, already observed for the case of two stationary cylinders in tandem (Papaioannou et al., 2006) and for
the VIV of a single cylinder (Prasanth and Mittal, 2009; Singh and Mittal, 2005). However, a detailed characterization of
the system dynamics is beyond the scope of this article. Results obtained by running simulations of the same configuration
at Re = 100 are presented in Fig. 9(b); the behavior of the system is found to depend strongly on the reduced velocity
with a good qualitative agreement with the Re = 200 case. Time traces of the displacements of the two cylinders are
reported in Fig. 10 for four different values of the reduced velocity, along with the spectral content of the time history of
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Fig. 8. Flow past two freely vibrating cylinders in tandem at (Re, ρ∗) = (200, 2.546): time evolution of the vertical displacement of the cylinders

for different values of U∗; a: U∗ = 3; b: U∗ = 4; c: U∗ = 5; d: U∗ = 7. The inset in the lower-left corner of each figure provides a zoom-in of the

region delimited by the black rectangle.

the vertical separation Δy between the centers of the two cylinders. For low values of the reduced velocity, the cylinders

are found to oscillate in phase with small amplitudes, indicating that we are still outside the lock-in regime. For U∗ = 3

(see Fig. 10a), the phase difference between the front and rear cylinders is small, with the rear one exhibiting somewhat

larger displacements. When the reduced velocity is increased to U∗ = 4, the dynamic response of the system changes

considerably as the cylinders enter the lock-in regime, oscillating out-of-phase at a higher frequency and with the front

cylinder now exhibiting wider oscillations. As the velocity is further increased to U∗ = 5, a change in the behavior of the

system is observed again since the rear cylinder now oscillates with larger relative amplitude, while the vertical separation

between the cylinders undergoes oscillations with a periodic amplitude modulation that closely resembles a beating

motion. This observation is confirmed by looking at the frequency content in Fig. 10c, which shows two main peaks having

similar frequencies. In a linear system, the superposition of these two harmonics would result in a beating frequency, given

by fb = |f2 − f1|, and a corresponding period of about 97 time units, which is very close to the characterizing period of

the oscillations of both cylinders. This beating phenomenon disappears by further increasing the reduced velocity as the

frequency of vibration diminishes. It is interesting to notice that Borazjani & Sotiropoulos identified U∗ = 5 as the critical

state of the system at Re = 200, delimiting the transition from state 1 to state 2.

3.3.1. Global stability

In this section, we investigate the interaction between the fluid and the two elastically mounted cylinders in tandem

through a global linear stability analysis, to further ascertain the validity and robustness of the proposed methodology.

The computations were performed on the same grid used to conduct the flow analysis presented in the previous

section. Given the low value of the density ratio ρ∗, the results of the nonlinear simulations obtained with a weak coupling

of the fluid and solid dynamics were compared with those obtained via a strong coupling. Even though the two procedures

exhibited very similar results, the iterative procedure provided more accurate results with a reduced number of Arnoldi
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Fig. 9. Variation with the reduced velocity U∗ of the maximum non-dimensional displacement A∗
MAX of two identical cylinders in tandem (L = 1.5)

at Re = 200 (a) and Re = 100 (b). Squares: front cylinder; circles: rear cylinder. The present results for Re = 200 are compared with the ones from

Borazjani and Sotiropoulos (2009) and Griffith et al. (2017). Dotted line: the simulations were initialized from an instantaneous snapshot of the

solution for a smaller value of U∗ .

Fig. 10. Flow past two freely vibrating cylinders in tandem arrangement at (Re, ρ∗) = (100, 2.546): time evolution of the vertical displacement of

the cylinders for different values of U∗; a: U∗ = 3; b: U∗ = 4; c: U∗ = 5; d: U∗ = 7. The inset in the lower-left corner of each figure shows the

time history of the vertical distance Δy between the cylinders for the time interval marked by the black rectangle. On the right, it is reported the

single-sided amplitude spectrum of Δy.
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Fig. 11. Spatial distribution of the vorticity for the real (a) and imaginary (b) parts of the unstable eigenmode for the flow past two fixed cylinders

in tandem arrangement at Re = 100.

iterations for the stability calculations. The fixed time-step size was chosen in order to keep the CFL number under the

0.4 value.

As in the case of the single cylinder, the linear stability analysis of the fluid alone predicts the existence of an unstable

eigenvalue ωs = 0.0404+0.7907i associated with the vortex shedding in the wake of the two cylinders. In the following,

we refer to this eigenvalue as the stationary wake mode. The corresponding eigenmode (see Fig. 11) closely resembles the

unstable eigenmode of the single cylinder case. This observation is consistent with results from literature asserting that,

for small streamwise spacings, the two cylinders shed like a single body (Papaioannou et al., 2006).

When the cylinders are free to move in the cross-stream direction, the LSA identifies the presence of an additional

eigenmode for the range of parameters considered. In Fig. 12, the two least stable eigenvalues are tracked over a wide

range of reduced velocities, in an attempt to identify the mechanisms responsible for the lock-in regime and for the

change of behavior that occurs around U∗ = 5. It is observed that, for the lower values of U∗, the two leading modes

are quite distinct, with the frequency of the first mode (represented by blue dots in Figs. 12(b) and 12(d)) being close

to the frequency of the stationary wake mode, fsD/U∞ = 0.1258. Conversely, the frequency associated with the second

mode (red dots in Figs. 12(b) and 12(d)) is slightly smaller than the natural frequency of the cylinders for values of the

reduced velocity up to U∗ = 7, where the frequencies of the two modes are almost coincident and remarkably close to

that of the limit cycle shown in Fig. 10(d). Therefore, for the lower values of U∗, we associate the first mode with the wake

instability and the second one with the structural mode. For U∗ = 5 the two modes show comparable growth rates and

close frequencies, flagging an interaction that is visible in the nonlinear evolution as well. The peak frequencies revealed

by the amplitude spectrum on the right side of Fig. 10(c) are, indeed, quite close to the frequencies of the leading modes at

U∗ = 5 reported in Fig. 12(d). After the crossing of the two modes, both frequencies remain close to that of the stationary

wake mode for all U∗, and a classification of the modes as fluid mode and structural mode is not possible.

For values of the reduced velocity lower than U∗ = 4, the mode associated with the structure is still stable. This finding

is coherent with the small amplitude of oscillation observed in the calculations. Then, at the critical value U∗ = 5, the

growth rate of mode 2 surpasses that of mode 1, possibly explaining the transition from state 1 to state 2 and the greater

amplitudes of vibration observed in the nonlinear simulations. In an attempt to shed further light on this phenomenon, we

report in Figs. 12(a) and 12(c) the growth rate and the frequency, respectively, of the two least stable modes for the same

tandem arrangement when only the rear cylinder is free to move. For this configuration, we find that the growth rate

of the unstable mode increases considerably for U∗ ≥ 5, while the growth rate of the stable mode attains its maximum

value.

These results indicate that the mechanism responsible for the large amplitude oscillations is already present in this

fixed-free case. The temporal evolution of the flow starting from the base state shows that, for all the values of the reduced

velocity, a regular vortex street excites the oscillation of both cylinders, with the rear one undergoing larger vibrations.

This is due to the fact that vortices are initially shed only from the rear cylinder, which thus experiences a greater pressure

difference. The outcome is coherent with the observations of Borazjani and Sotiropoulos (2009), who suggest that it is the

vortex-shedding in the wake that initiates the excitation of the system and subsequently generates a vertical separation

between the cylinders. When this separation becomes large enough, other interaction mechanisms come into play and

give rise to different dynamical states.

There is, however, another point to address which is the passage from state 2 to state 1 that is observed when changing

the value of U∗ from U∗ = 3 to U∗ = 4 and the switch from state 1 to state 2 that occurs at U∗ = 5. To investigate this

phenomenon, we have reported in Fig. 13a the early transient of the time history of the vertical displacement of the

cylinders for U∗ = 4. It is clearly visible that the cylinders oscillate almost in phase, with a low amplitude of vibration

as in the case U∗ = 3 (Fig. 13b) and the rear cylinder exhibits larger oscillations, following the characteristics of the first

mode. The temporal evolution shows that the growth of the first mode saturates as the oscillations approach a limit cycle

with small amplitude. Later, the cylinders lose their synchronization owing to the emergence of the second mode. The

greater amplitude of vibration of the front cylinder, however, cannot be explained with linear arguments. For U∗ > 5, the

dynamics of the linearized system is governed by the second mode, characterized by the counter-phase oscillation of the

cylinders, with the rear one undergoing larger vibrations.

Fig. 14 shows the vorticity fields of the two unstable eigenmodes related to the eigenvalues reported in Fig. 12, for

three different values of the reduced velocity. Again, for U∗ = 4, mode 1 resembles the stationary wake mode of Fig. 11

but departs from it for the higher values of U∗. On the other hand, the shape of mode 2 also changes when the reduced

velocity is increased from U∗ = 4 to U∗ = 5, while a further increase in the value of U∗ produces a shift upstream of the

high vorticity region.
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Fig. 12. Results of the LSA for the flow around two elastically-mounted cylinders in tandem at Re = 100. Evolution with U∗ of the growth rate λ

and the Strouhal number St of the two least stable modes. Fig. (a, c): only the rear cylinder is free to oscillate; fig. (b, d): both cylinders are free

to move. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Time evolution of the vertical displacement of two freely vibrating cylinders in tandem arrangement at (Re, ρ∗) = (100, 2.546) for U∗ = 4

(a) and U∗ = 3 (b).

4. Summary and conclusions

The role played by linear effects in the loss of stability of a fluid–structure system has motivated researchers to develop

new techniques to perform linear stability analyses of coupled FSI problems.

In this paper, we propose a method that extends Chiba’s approach (Chiba, 1998) to study the coupled dynamics of

flow-structure systems. A time-stepping iterative procedure, based on the exponential transformation of the Jacobian

matrix, was derived in a general setting. This was implemented within an existing immersed boundary solver and
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Fig. 14. Flow past two spring-mounted circular cylinders in tandem arrangement at Re = 100. Spatial distribution of the vorticity of the real part

of mode 1 (a, c, e) and mode 2 (b, d, f ) for U∗ = 4 (a, b), U∗ = 5 (c, d) and U∗ = 6 (e, f ).

validated against well-documented cases of flow-induced vibrations of rigid bodies. The outcomes of the linear stability

analysis showed a good overall agreement with the results from the literature, obtained using mesh-conforming methods.

Future developments of the method could include a local grid refinement to achieve a higher resolution near the

immersed surface at a lower cost (Vanella et al., 2010). The validation tests were limited to the case of rigid-body motion,

nevertheless, it is straightforward to extend the range of applicability of the method to deformable structures.

The matrix-free nature of the algorithm makes it particularly convenient for the analysis of three-dimensional flows

around structures with complex geometries, where an analytical linearization of the coupled systems of equations would

be impracticable. Moreover, the Cartesian grid employed within the IB framework facilitates the parallelization of the

numerical scheme, which is an essential feature for solving three-dimensional problems within a reasonable time.

In Section 3.3, the method was tested on the case of two oscillating cylinders in tandem; the results of the stability

analysis matched reasonably well with the nonlinear simulations, providing further confidence in the robustness of the

method and opening the way to the instability analysis of multi-body configurations. Two dominant modes were identified

across the range 3 ≤ U∗ ≤ 14. For values of the reduced velocity U∗ < 4, only one mode is unstable and the cylinders

oscillate out of lock-in. At U∗ = 4 the second mode loses its stability and the cylinders enter the lock-in zone, then for

U∗ = 5 the modes cross and their interaction gives rise to the beating phenomenon observed in the nonlinear simulations.

For U∗ > 5 the growth rate of the dominant mode is significantly greater than that of the other one, justifying the higher

amplitude of vibration observed in the calculations. The comparison with the linear stability of the fixed-free configuration

shows that the mechanism giving rise to large amplitude oscillations is already present in the latter case, as the growth

rate of the unstable mode grows in a similar fashion for U∗ > 5, while its frequency is always close to that of the

stationary wake mode. This observation implies that the vortex-shedding plays a major role in triggering the vibrations

and that interference effects between the cylinders come into play only when the vertical separation between the two

cylinders is large enough, as suggested by Borazjani and Sotiropoulos (2009).

One major advantage of the methodology consists of the generality of the formulation, which does not depend on the

specific time-stepping scheme chosen for integrating the governing equations. Without the pretense of being exhaustive,

in Section 2.3.2, some guidelines were provided for the selection of the linearization parameters, with the purpose to

furnish the reader with the necessary tools to implement the strategy within existing CFD codes.
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Appendix A. Derivation of the Gateaux derivative

In this section, we report further details of the derivation of Eq. (24) presented in Section 2.3.1.
Combining the definitions of F and R(q) given in Section 2, we get

F (q(t0), T ) =
∫ t0+T

t0

R(q(t))dt + q(t0). (A.1)

We now consider the second term on the right-hand side of Eq. (23). Substituting the expression above, it reads

∂F (q, T )
∂q

∣∣∣∣
qb

q′(t0) = ∂

∂q

∣∣∣∣
qb

[∫ t0+T

t0

R(q)dt
]
q′(t0) + q′(t0). (A.2)

Recognizing that the extremes of integration do not depend on q and that q′(t0) does not depend on time, we can
interchange integration and differentiation and bring q′(t0) inside the integral,

∂F (q, T )
∂q

∣∣∣∣
qb

q′(t0) =
∫ t0+T

t0

∂R(q)
∂q

∣∣∣∣
qb

q′(t0)dt + q′(t0). (A.3)

Supposing then a little variation of q′(t) in the interval [t0, t0 + T ], which is true for small values of T , we have replaced
q′(t0) into the integral with q′(t).∫ t0+T

t0

∂R(q)
∂q

∣∣∣∣
qb

q′(t0)dt ≈
∫ t0+T

t0

J (qb)q
′(t)dt. (A.4)

Finally, we recognize that (A.4) is simply the integration of the initial value problem given by Eq. (17), and therefore

∂F (q, T )
∂q

∣∣∣∣
qb

q′(t0) ≈ q′(t0 + T ) − q′(t0). (A.5)

Appendix B. Grid convergence tests

To assess the grid and domain convergence of the stability results, eigenvalue computations were performed on
different grids for the VIV case presented in Section 3.2, with (ρ∗,U∗) = (20, 7).

Table B.2 reports the growth rate λ and the Strouhal number St of the least stable eigenvalue for four different
discretizations of the same domain of size [−28D : 52D] × [−28D : 28D], with the origin placed on the cylinder axis. On
the rightmost column, it is reported the percentage error e%j made in computing the eigenvalue ωj, as the finest grid is
taken as reference,

e%j = |ωj − ωref |
|ωref | × 100. (B.1)

Table B.3 reports the growth rate and the non-dimensional frequency of both the fluid and elastic modes for three
distinct domains. The corresponding grids are coincident in the uniformly spaced rectangular zone around the cylinder,
the minimum spacing being equal to Δxmin = 0.022. In particular, the grid used for the medium domain D2 corresponds
to grid 2 in Table B.2. The analysis shows a minor difference between the medium and big domains, thus motivating the
choice of D2 as the computational domain for the cases presented in Section 3.2. The blockage ratio reported in Table B.3
is defined as the ratio of the cylinder diameter to the cross-stream dimension of the computational domain.

Appendix C. Effect of the linearization parameter ε0

To evaluate the influence of the user-defined linearization parameter ε0 on the accuracy of the results, we report in
Fig. C.1 the variation of the relative error er and the residual ‖r‖ of the least stable Ritz pair against ε0. The former is
given by

er = |ω − ωref |
|ωref | , (C.1)

where ω is the least stable eigenvalue computed for a given value of ε0 on the chosen grid and ωref is a reference value.
In the absence of an exact solution of the EVP, the selected ωref is the least stable eigenvalue computed on a reference
grid with the parameter ε0 chosen so as to minimize the residual ‖r‖. The results displayed in Fig. C.1 refer to the VIV
case introduced in Section 3.2 with (Re, ρ∗,U∗) = (60, 20, 7).
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Table B.2
Convergence study with respect to grid resolution. For each of the four grids, the total

number of cells Nc and the minimum cell dimension Δxmin are reported, together with

the growth rate λ and the Strouhal number St of the least stable mode for (Re, ρ∗,U∗) =
(60, 20, 7). Grid 2 was used to obtain the results presented throughout the manuscript,

while the relative error e% is computed with respect to the values obtained with grid 4.

Grid Nc Δxmin λ St e%

1 310800 0.0286 0.0427 0.1205 0.662

2 513000 0.0220 0.0447 0.1210 0.221

3 765600 0.0182 0.0448 0.1211 0.106

4 1068600 0.0154 0.0447 0.1213 –

Table B.3
Sensitivity of the rightmost eigenvalues to the size of the computational domain for

(Re, ρ∗,U∗) = (60, 20, 7). D1: [−35 : 65] × [−35 : 35], D2: [−28 : 52] × [−28 : 28],
D3: [−21 : 39] × [−21 : 21]. All the grids used for the analysis have the same minimum

cell dimension Δxmin . The percentage blockage ratio is reported for each domain size.

D1 D2 D3

1.43% 1.78% 2.38%

λr St λr St λr St

FM 0.0440 0.1206 0.0447 0.1210 0.0461 0.1219

EM 0.0086 0.1309 0.0085 0.1309 0.0080 0.1308

Fig. C.1. Effect of the input parameter ε0 on the relative error (a) and direct residual (b) for the VIV case reported in Section 3.2 with the following

set of parameters (ρ∗ = 20, Re = 60, U∗ = 7). Results are reported for two different grids (see Table B.2 for details), the relative error is computed

with respect to the finest grid in Table B.2.
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Dynamics of a gas bubble in a straining flow: Deformation, oscillations,
self-propulsion
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We revisit from a dynamical point of view the classical problem of the deformation of a
gas bubble suspended in an axisymmetric uniaxial straining flow. Thanks to a recently
developed Linearized Arbitrary Lagrangian-Eulerian approach, we compute the steady
equilibrium states and associated bubble shapes. Considering perturbations that respect the
symmetries of the imposed carrying flow, we show that the bifurcation diagram is made of
a stable and an unstable branch of steady states separated by a saddle-node bifurcation,
the location of which is tracked throughout the parameter space. We characterize the
most relevant global mode along each branch, namely, an oscillatory mode that becomes
neutrally stable in the inviscid limit along the stable branch, and an unstable nonoscillating
mode eventually leading to the breakup of the bubble along the unstable branch. Next,
considering perturbations that break the symmetries of the carrying flow, we identify two
additional unstable nonoscillating modes associated with the possible drift of the bubble
centroid away from the stagnation point of the undisturbed flow. One of them corresponds
merely to a translation of the bubble along the elongational direction of the flow. The
other is counterintuitive, as it corresponds to a drift of the bubble in the symmetry plane
of the undisturbed flow, where this flow is compressional. We confirm the existence and
characteristics of this mode by computing analytically the corresponding leading-order
disturbance in the inviscid limit, and show that the observed dynamics are made possible
by a specific self-propulsion mechanism that we explain qualitatively.

DOI: 10.1103/PhysRevFluids.7.113603

I. INTRODUCTION

The dynamics of a gas bubble (more generally a drop) freely suspended in a viscous fluid
undergoing a uniaxial straining flow has received considerable attention since the pioneering
work of Taylor [1]. When the fluid inertia cannot be neglected, the bubble shape results from
the competition of pressure and viscous stresses that act to increase the interface deformation and
the capillary stress that resists it. Under certain conditions, capillary effects are insufficient to keep
the deformation finite, leading eventually to the breakup of the bubble. This physical configuration
is commonly described in terms of the Weber (We) and Reynolds (Re) numbers which characterize
the relative importance of inertial forces with respect to capillary and viscous forces, respectively.
At low-but-finite Reynolds number, Acrivos and Lo [2] showed that no steady bubble shape exists
beyond a critical Weber number, Wec, increasing as Re3/4. The same qualitative conclusion was

*Also at Department of Industrial Engineering (DIIN), University of Salerno UNISA, Fisciano, 84084, Italy;
javier.sierra@imft.fr
†Also at Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari,
70125, Italy.
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FIG. 1. Sketch of the physical configuration with the symmetry axis r = 0 and the symmetry plane z = 0
of the undisturbed straining flow, and the corresponding (r, θ, z) coordinate system.

reached in the inviscid limit by Miksis [3] who determined the corresponding O(1) value of Wec.
Subsequently, Ryskin and Leal [4] computed the steady bubble shape over a wide range of We and
Re by solving the full stationary Navier-Stokes equations on a boundary-fitted grid. They found that
Wec increases monotonically with Re and recovered with a good accuracy the predictions of [2] and
[3] in the respective limits. These findings were confirmed by Kang and Leal [5] who considered
the time-dependent bubble evolution, starting from some arbitrary initial shape. Among other things,
they showed that the critical Weber number is highly sensitive to this initial condition, observing that
it decreases as the initial elongation of the bubble is increased beyond that of the steady solution.
They also considered the case of oscillating bubbles in the inviscid limit and showed that their
oscillation frequency decreases as We increases and vanishes for We = Wec.
In this study, we revisit this rich phenomenology with the help of a global linear stability

approach. Obviously, the chief technical difficulty in this free-boundary problem stands in the fact
that the geometry of the flow domain is a priori unknown.This is why up to now it has been tackled
numerically either with boundary integral methods in the creeping-flow limit (Re = 0) [6,7] or in the
potential flow limit [8,9], or with Navier-Stokes solvers making use of time-evolving boundary-fitted
grids [4,5]. Here we overcome this difficulty by making use of the recently developed Linearized
Arbitrary Lagrangian-Eulerian approach [10], which allows the governing equations and boundary
conditions of the problem to be expanded rigorously on an appropriate reference domain. We specify
the problem in Sec. II and provide an overview of the Linearized Arbitrary Lagrangian-Eulerian
methodology in the Appendix. In Sec. III we take advantage of this approach to determine the
complete bifurcation diagram of the system by considering perturbations respecting the symmetries
of the imposed straining flow. This diagram is found to comprise a stable and an unstable branch
connected through a saddle-node bifurcation. The stable branch corresponds to the previously
computed steady states. The unstable branch, which was only reported before under creeping-flow
conditions [7], is shown to be associated with the breakup of the bubble under subcritical conditions.
In Sec. IV we characterize the dominant linearly unstable or marginally stable mode of the system
along each branch. By letting the bubble centroid move freely, we also identify two unstable modes
that break the symmetries of the imposed straining flow and, to the best of our knowledge, have not
been described up to now. We observe that in one of them the bubble drifts away from the symmetry
axis of the straining flow. We show that this surprising dynamics are associated with an original
self-propulsion mechanism.

II. STATEMENT OF THE PROBLEM

We consider a gas bubble with negligible viscosity and constant volume Vb immersed in a
Newtonian fluid, with dynamic viscosity μ and density ρ. The surface tension γ acting at the
interface is assumed constant and the flow is considered incompressible. The fluid is subject to
a uniaxial straining flow which, in the (er, eθ , ez ) basis sketched in Fig. 1, induces the velocity
field U∞ = − S

2 rer + Szez, where S denotes the uniform strain rate. The bubble centroid stands

113603-2
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initially at the origin r = z = 0 which is also the hyperbolic point of the straining flow. The
stationary configuration (but not necessarily the eigenmodes to be considered later) is assumed
to stay axisymmetric about the z axis (r = 0) and to exhibit a mirror symmetry with respect to the
midplane z = 0 (see Fig. 1). Defining the equilibrium diameter d of the bubble such that Vb = π

6 d3,
we characterize the bubble deformation in the parameter space (Oh,We). The Ohnesorge number,
Oh = μ√

ργ d
, is defined as the ratio of the viscous force μUcd based on the capillary velocity scale

Uc = [γ /(ρd )]1/2 and the capillary force γ d . Similarly, the Weber number, We = ρS2d3

4γ , is defined

as the ratio of the inertial force ρU 2
o d2 based on the outer velocity scaleUo = Sd/2 and the capillary

force. A Reynolds number may also be built by combining these two parameters in the form
Re =

√
We
Oh = ρUod

μ
. The bubble elongation may be characterized through the aspect ratio χ = dz

dr
,

with dz and dr the major and minor axis lengths, respectively.
Let &(t ) and 'b(t ) denote the time-dependent fluid domain and bubble-fluid interface, respec-

tively. The problem is governed by the set of equations

∂t&u + u · ∇&u = ρ−1∇& · �& in &(t ), (1)

∇& · u = 0 in &(t ), (2)

∂t&η = u · n on 'b(t ), (3)

�& · n = (−pb + γ κ )n on 'b(t ), (4)

supplemented with appropriate boundary conditions at r = 0, z = 0 and in the far field. In (1)–(4),
the subscript & is used to stress the fact that the time and space derivatives are to be evaluated in
the time-dependent domain &(t ). The no-penetration condition (3) implies that, at any location x
on the interface, the time derivative of the interface position η(x, t ) must coincide with the normal
component u · n of the local fluid velocity u(x, t ), n(x, t ) denoting the local unit normal directed
into the fluid. The stress tensor in the fluid is �&(u, p) = −pI + 2μD&(u), with p, I, and D&(u)
the pressure, unit tensor, and strain-rate tensor, respectively. The normal projection of (4) expresses
the fact that the normal stress n · �& · n balances the difference between the uniform pressure pb(t )
inside the bubble and the local capillary pressure γ κn, with κ (x, t ) = ∇& · n(x, t ) the local mean
curvature of the interface. Last, the tangential projection of (4) yields the shear-free condition n ×
(�& · n) = 0 which holds if the interface is free of any contamination.
Determining the steady solutions of (1)–(4) and performing subsequently a rigorous global linear

stability analysis of the system is made difficult by the deformable nature of the fluid domain.
Developing robust and efficient computational strategies to achieve this goal is currently an active
research area in the field of fluid-structure interactions; see, e.g., [11,12] and references therein. Here
we adopt a Linearized Arbitrary Lagrangian-Eulerian approach, hereinafter referred to as L-ALE,
which is a hybrid formulation combining the Eulerian and Lagrangian descriptions of the fluid
motion. This approach, initially developed by one of us [10], is well adapted to the treatment of
problems involving deformable fluid interfaces subjected to capillary forces. An overview of the
L-ALE methodology and of its numerical implementation is given in the Appendix.
An important strength of this approach is that steady-state solutions are computed using the

steady form of the governing equations, i.e., the time derivatives in (1) and (3) are dropped. Making
use of a Newton algorithm combined with a suitable continuation method (see the Appendix), this
allows the determination of both stable and unstable steady states, which would not be possible
with a time-marching approach. Once a steady state is reached, its linear stability is assessed by
examining the evolution of disturbances with a prescribed eigenmode form. In the present problem,
the base configuration exhibits an axial symmetry about the z axis. It is thus relevant to consider
disturbances of velocity, pressure, and position in the form *(r, z)eimθ−iωt , with θ the polar angle in
the cylindrical coordinate system sketched in Fig. 1 andm the corresponding wave number. Unstable
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FIG. 2. Bifurcation diagram. (a) Variation of the bubble elongation with the Weber number for a fixed
value of the Ohnesorge number, here Oh = 10−2; (b) variation of the critical Weber number with the Reynolds
number. Bullets: present results obtained with the L-ALE approach [the red bullet in (a) pinpoints the critical
Weber number where the saddle-node bifurcation takes place]; solid black line in(a)–(b): empirical correlation
proposed in [4]; dashed line in (a): unstable branch determined with the continuation method. In (b) the blue
line is the maximum Weber number We = We∗c (Re) beyond which Mode 0-S (o) stops oscillating; the red
line indicates the minimum Reynolds number beyond which Mode 1-S (s) (see Sec. IVB) is unstable. In both
panels, bubble shapes are shown for selected values of the parameters corresponding to the green bullets; the
black and red contours correspond to the steady state and the unstable Mode 0-S (s), respectively.

eigenmodes satisfying Im(ω) > 0 can be classified as stationary (s) if Re(ω) = 0 or oscillating (o)
if Re(ω) != 0. They can also be classified as symmetric (S) or antisymmetric (A) with respect to the
plane z = 0. In what follows, we classify the modes using a nomenclature that summarizes their
three characteristic properties, starting with their polar wave number m. For instance a “0-S (s)”
mode is axisymmetric (m = 0), symmetric with respect to the plane z = 0, and stationary.

III. BIFURCATION DIAGRAM

Figure 2(a) displays the bifurcation diagram obtained by setting the Ohnesorge number to the
constant value Oh = 10−2. This diagram reveals the existence of two branches below a critical
Weber number Wec ≈ 2.27 beyond which no stationary solution exists. Previous studies, for
instance [5], showed that the bubble extends indefinitely when We > Wec and eventually breaks
up. We tracked the two branches found for We �Wec using the pseudo-arc-length continuation
method described in the Appendix. Bubbles standing along the lower branch exhibit a convex shape
while those along the upper branch are characterized by the presence of a concave neck in the
symmetry plane. For a given We < Wec, solutions found along the lower branch (corresponding
to the bubble with the smaller aspect ratio) are linearly stable in the sense that, following the
nomenclature introduced above, all eigenmodes belonging to the 0-S subspace are damped. In
contrast, the solutions found along the upper branch are unstable due to the existence of an amplified
eigenmode of the 0-S (s) type. In the creeping-flow limit, Gallino et al. [7] identified this branch as
an edge state of the underlying dynamical system, a qualification that still holds in the presence of
finite-Reynolds-number effects. More precisely, if the initial conditions are located in the basin of
attraction of this branch, the system first converges toward the corresponding steady state, before the
solution becomes unstable at some point and the bubble eventually breaks up. The route to breakup
then takes the form of a specific unstable deformation mode, hereinafter referred to as Mode 0-S (s),
shown with thin red contours in Fig. 2(a). Compared with the corresponding equilibrium shape, this
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FIG. 3. (a) Variation of the frequency (black lines), growth rate of Mode 0-S (o) (green lines) and of Mode
0-S (s) (red lines) with respect to We, for three values of the Ohnesorge number. The black bullet and red
square help to identify the critical Weber numbers We∗c and Wec, respectively. (b) Pressure disturbance and
bubble shape for Mode 0-S (o) (lower branch of the bifurcation diagram), for We = 2.5 and Oh = 1× 10−4.
The black contour and gray lines represent the bubble shape and the streamlines in the base state, respectively.
The colors show the imaginary part of the pressure disturbance at time t = T/4 and the contours display
the bubble shape at t = T/4 (cyan), t = T/2 (orange), t = 3T/4 (dark blue), and t = T (magenta), with T
the period of oscillation. (c) Same for Mode 0-S (s) (upper branch of the bifurcation diagram), for the same
(We,Oh) pair.

mode is characterized by an increase in the bubble elongation and a reduction in the diameter of the
neck. The parametric dependence of the critical Weber number with respect to the Reynolds number
is reported in Fig. 2(b). Present results are found to agree well with those of [4] (solid black line).
In particular, the Re3/4 dependence predicted in [2] (after it was reinterpreted in [4]) in the low-Re
limit, and the asymptotic value We∞c ≈ 2.77 determined in [3] in the inviscid limit are recovered.
It may be observed that the stationary bubble shape corresponding to critical conditions is convex
for intermediate and large Ohnesorge numbers, Oh � O(10−2), say, but becomes slightly concave
in the neighborhood of the symmetry plane at lower Oh.
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IV. LINEAR STABILITY

A. Symmetry-preserving unstable or least stable modes

In experiments, the bubble centroid is usually constrained to stay fixed at the stagnation point
of the undisturbed flow using computer-controlled devices [13,14]. Under such circumstances,
the oscillations (for stable cases) or the deformations leading to breakup (for unstable cases) are
expected to respect the polar and mirror symmetries of the base flow. This is why we first consider
eigenmodes belonging to the subspace 0-S following the nomenclature introduced above. Two such
modes emerge as the most unstable or least stable ones. One is the already mentioned unstable Mode
0-S (s), found along the upper branch of the bifurcation diagram. This mode is stationary, i.e., it is
associated with a frequency such that Re(ω) = 0, and emerges from the saddle-node bifurcation
at the critical Weber number Wec. In contrast, the second mode, hereinafter referred to as Mode
0-S (o), is oscillating and stable. Figure 3(a) shows how the frequency of this mode (black line)
decreases as We increases and becomes eventually zero at a critical Weber number We = We∗c .
At this specific value, the complex eigenvalue associated with Mode 0-S (o) splits into two real
eigenvalues. Both are negative, i.e., the corresponding two modes are damped, but they behave in
opposite ways as We−We∗c increases within the interval [We∗c ,Wec]. The damping rate of the mode
associated with the smallest eigenvalue (in absolute value) decreases continuously and vanishes
eventually at We = Wec, leading to the amplification of Mode 0-S (s) beyond the saddle-node point
[red line in Fig. 3(a)]. In contrast, the damping rate of the original Mode 0-S (o) [green line in
Fig. 3(a)] increases continuously from We∗c to Wec, making this mode aperiodic throughout this
interval. The spatial structure of modes 0-S (o) and 0-S (s) at a slightly subcritical Weber number
(We = 2.5) is illustrated in Figs. 3(b) and 3(c). Mode 0-S (o) is associated with the complex eigen-
value ω = 1.3284− 0.0044i and therefore oscillates with a period T = 2π/1.3284 ≈ 4.73. These
oscillations result from the competition of inertial and capillary effects. They are characterized
by a periodic sequence of compressional (t = T/4) and extensional (t = 3T/4) displacements of
the bubble surface in the z direction. Conversely, Mode 0-S (s) is unstable (ω = +0.2797i) and
is characterized by a growing elongation of the bubble along its symmetry axis and a continuous
shrinking within its equatorial plane.
Variations of the growth rate of Mode 0-S (s) with respect to Wec −We are displayed in Fig. 4(a).

The growth rate exhibits a marked increase with the distance to the threshold, scaling as (Wec −
We)α with α = 1/4 and α = 1/2 in the high- and low-Reynolds-number limits, respectively. The
(Wec −We)1/4-scaling is seen to hold up to Oh ≈ 10−3, while the (Wec −We)1/2-scaling applies
for Oh � 10−1. Variations of the oscillation frequency (ωr) of Mode 0-S (o) with respect to
We∗c −We are displayed in Fig. 5. The frequency is also found to grow as (We∗c −We)α with
α = 1/4 and α = 1/2 in the high- and low-Reynolds-number limits, respectively. The similarity
of the above two scalings, albeit with the role of Wec played by We∗c in the case of Mode 0-S (o),
suggests a close connection between the dynamics of the two modes. As the respective positions of
the black bullet and red square in Fig. 3(a) makes clear [see also the blue line in the range Re < 10
in Fig. 2(b)], We∗c is slightly lower than Wec when viscous effects are large, and coincides with Wec

when Oh → 0. These findings are in line with those reported in [5]. That Mode 0-S (o) exhibits
aperiodically damped oscillations within a finite interval [We∗c (Oh),Wec(Oh)] in the presence of
significant viscous effects was also pointed out in [15]. Indeed, assuming the steady bubble shape
to be spherical and accounting for viscous effects in the dynamic boundary condition only through
the influence of normal stresses (i.e., ignoring the shear-free condition), it was found in [15] that
this aperiodically damped regime emerges for Oh � 0.12. Based on an expansion aroundWe = 0, it
was predicted that ωr scales as (Wec0 −We)1/2, with Wec0 ≈ 3.23. According to the inset in Fig. 5,
this prediction holds for We∗c −We � 0.3 but fails to predict the rapid variations of the frequency
near the critical Weber number.
The decay rate of Mode 0-S (o) is plotted in Fig. 4(b). This plot confirms the conclusion of

Fig. 3(a), showing that this mode is stable throughout its domain of existence. Its decay rate
increases linearly with Oh and is virtually independent of We. This mode becomes neutrally stable

113603-6



DYNAMICS OF A GAS BUBBLE IN A STRAINING FLOW

FIG. 4. Variations of the growth rate of modes 0-S (o) and 0-S (s). (a) With respect to Wec −We for Mode
0-S (s) on the unstable branch; (b) with respect to Oh for Mode 0-S (o) on the stable branch. In (a) the green
bullets, red squares, blue triangles, and gray triangles refer to Oh = 10−4, 10−3, 10−2, and 10−1, respectively;
in (b) the green circles, red squares, and blue triangles refer to We = 0.1, 0.2, and 0.4, respectively. The dashed
lines indicate the asymptotic scalings.

FIG. 5. Variation of the oscillation radian frequency ωr of Mode 0-S (o) with respect to We. The
black dashed lines correspond to the asymptotic scalings suggested by present results. The red line
shows the low-We expansion of [15]. The green bullets, red squares, blue triangles, and gray trian-
gles refer to Oh = 10−4, 10−3, 10−2, and 10−1, respectively. The inset provides a zoom on the range
0.5 �We∗c −We � 3.
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in the inviscid limit Oh → 0, and We∗c then coincides with Wec as the right panel in Fig. 3(a)
shows. This is no surprise since the problem becomes time-reversible in this limit and the bifurcation
becomes a conservative saddle-node one, with two purely complex eigenvalues changing into two
purely real ones. That Mode 0-S (o) is stable for finite Reynolds numbers indicates that inertial
and capillary effects stay in balance in the corresponding dynamics, with viscous effects providing
an additional stabilizing ingredient. This scenario works as long as the elongation of the bubble
is small enough for the latter to remain in the basin of attraction of the stable steady state, i.e.,
close to the lower branch of the bifurcation diagram in Fig. 2(a). Conversely, if the bubble aspect
ratio is large enough, breakup occurs through a Mode 0-S (s) deformation after the system has first
approached the unstable (upper) branch of the bifurcation diagram and then moved away from it.
In this case, the capillary force in the neck region close to the z = 0 symmetry plane is weaker
than with a Mode 0-S (o) deformation having the same magnitude, owing to the larger concavity
of the bubble surface [compare the blue contours in Figs. 3(b) and 3(c)]. This makes the capillary
force insufficient to balance the compressional force exerted by the base flow in that region. Beyond
the linear stage considered here, this situation leads unavoidably to breakup through the classical
end-pinching scenario [16,17].
One can wonder how relevant the dynamics associated with the unstable branch of the bifurcation

diagram are from an experimental point of view. In other words, how can this branch be reached in
practice, and howMode 0-S (s) can be triggered. Elements of answer stand in [16] which considered
the transient response of a previously elongated drop once the extensional flow is stopped. It was
observed that, provided the drop has reached a sufficient elongation prior to the stop, such that it has
already taken a waisted shape, it eventually breaks up via an end-pinching instability [17] instead
of relaxing towards its initial shape. These observations suggest that the unstable branch may be
reached by first elongating the bubble for some time under suitable supercritical conditions, i.e., by
imposing a Weber number We1 > Wec, until the bubble attains the desired waisted shape. Then,
after having identified the subcritical Weber number We2 < Wec at which the bubble achieves the
same or a very similar stationary shape on the unstable branch, the imposed strain may be suitably
reduced to decrease the Weber number We(t ) down to the value We2. Provided this transient is
calibrated in such a way that the disturbance it generates remains small (which may represent a
serious experimental challenge), the subsequent dynamics would correspond for some time to those
of the linearly unstable Mode 0-S (s) described here.

B. Symmetry-breaking unstable modes

In cases where the bubble centroid is left free, one has to consider eigenmodes breaking either
the axial symmetry about the r = 0 axis or the mirror symmetry about the z = 0 plane. Two
new unstable modes are then detected. To the best of our knowledge, these modes have not been
characterized so far. One of them, denoted as Mode 0-A (s), is unstable for every (We,Re). This
mode is stationary but antisymmetric with respect to the plane z = 0. As Fig. 6 (b) shows, this mode
corresponds to a drift of the bubble centroid along the direction of elongation of the undisturbed
flow. The existence of this unstable mode is the reason why in experiments a dynamic control
such as that described in [14] has to be applied in order to prevent the bubble (or drop) from
escaping along the extensional direction of the flow. The second mode, which we refer to as Mode
1-S (s), is also stationary. It is symmetric with respect to the plane z = 0 and associated with the
wave number m = 1 in the polar direction eθ . As the red line in Fig. 2(b) indicates, this mode
is unstable when the Reynolds number exceeds a value of the order of 20 which only weakly
depends on the Weber number. Beyond this threshold, the bubble is found to drift radially in the
z = 0 plane; the direction of this drift is arbitrary since it is dictated by the definition of the angle
θ . What is remarkable is that this drift is performed against the compressional component of the
undisturbed flow. Since no external force is applied to the system, this unexpected motion may
be thought of as an example of self-propulsion. The possibility for a deformable body immersed
in a potential flow to self-propel was examined in several studies, especially [18–20]. It was
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FIG. 6. Modes 0-A (s) and 1-S (s) in a high-Reynolds-number case. (a) Variation of the growth rate of
the two modes with respect to We, computed through the truncated potential flow solution of (7) and (8)
(lines), and the L-ALE approach in a slightly viscous flow with Re = 103 (bullets); black/gray: Mode 0-A
(s), red/pink: Mode 1-S (s). (b) Pressure disturbance (colours) and bubble shape (contours) for Mode 0-A
(s) with We = 10−1 and Re = 103, corresponding to the black bullet in (a). The almost superimposed blue
and dashed white contours refer to the results provided by the L-ALE approach and the truncated potential
flow solution, respectively. (c) Same with Mode 1-S (s), corresponding to the red bullet in (a). In (b)–(c) the
black contour represents the bubble shape in the base state and the gray lines show the corresponding
streamlines.

concluded that a deformable body experiencing a net rate of deformation may self-propel provided
its time-dependent shape presents some asymmetry. However, these references mostly considered
oscillatory deformations of bodies moving in a fluid at rest. In contrast, the mode involved in
the present case is stationary in the sense defined in Sec. II and the bubble moves in a straining
flow. These two features make the present situation quite different from those envisaged in the
aforementioned references.
The above predictions, especially those concerning Mode 1-S (s), need confirmation. For this

purpose, following the approach of [15,21], we considered the low-Oh (hence high-Re) regime and
determined analytically to first order inWe the evolution of a linear perturbation of the bubble shape,
assuming that the disturbed flow is strictly irrotational. That is, assuming u = ∇φ, we sought the
harmonic function φ satisfying

∂tη = ∇φ · n, ∂tφ + 1
2 (∇φ · ∇φ)+ ρ−1pb = ρ−1γ∇ · n on 'b. (5)
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For this, assuming that the Weber number is low enough for the undisturbed bubble to be close to a
sphere, we expanded the velocity potential and the bubble shape in the form

φ = Sd2

4

(
φs + εφm

u

)
, η = d

2

(
ηs + εηm

u

)
,

φs = P02 (ζ )

(
1

2
r2s + 1

3
r−3

s

)
, ηs = 1,

(6)

φm
u =

∞∑
n=0

χm
n (t )r

−(n+1)
s Y m

n (+,ϕ), ηm
u =

∞∑
n=1

δm
n (t )Y

m
n (+,ϕ),

withY m
n (+,ϕ) = Pm

n (ζ )e
−imϕ the spherical harmonics, Pm

n the associated Legendre polynomial, and
ζ = cos+. The corresponding spherical coordinate system is such that + = 0 (π ) on the positive
(negative) half of the z axis defined in Fig. 1, the meridional angle ϕ is equivalent to the angle
θ defined in the same figure, and rs is the radial position (normalized by d/2) measured from the
centroid of the undisturbed bubble. Injecting the ansatz (6) in (5), assuming ε � 1 and keeping only
terms of O(ε) yields the eigenvalue problem

χ̇m
n = (n − 1)(n + 2)δm

n

+ 5

2

(
1

2
We

) 1
2 { (n − 1− m)(n − m)(n − 2)

(2n − 3)(2n − 1) χm
n−2 − n(n + 1)− 3m2

(2n − 1)(2n + 3)χ
m
n

− (n + 3)(n + 1+ m)(n + 2+ m)

(2n + 3)(2n + 5) χm
n+2

}
, (7)

δ̇m
n = −(n + 1)χm

n

+ 5

2

(
1

2
We

) 1
2 { (n − 1− m)(n − m)(n + 1)

(2n − 3)(2n − 1) δm
n−2 + n(n + 1)− 3m2

(2n − 1)(2n + 3)δ
m
n

− n(n + 1+ m)(n + 2+ m)

(2n + 3)(2n + 5) δm
n+2

}
, (8)

with the dot denoting the time derivative. Solving the problem (7)–(8) for m = 0 and m = 1 up
to n = Nmax (with Nmax large enough that the eigenvalues no longer vary by further increasing
the number of harmonics) reveals that modes 0-A (s) and 1-S (s) are also the most unstable ones in
the potential flow limit. Their growth results from imbalances among the terms of the right-hand side
of (7)–(8), which involve the velocity ∇φs of the undisturbed straining flow. In (7) the imbalance
is between the variations of the dynamic pressure, −∇φs · ∇φu, and those of the capillary pressure,
−∇ · (∇ηu). In (8) it is between the variations of the normal velocity at the interface induced by the
velocity disturbance, ers · ∇φu (with ers the unit radial vector), and those induced by the disturbance
of the interface position, −∇φs · ∇ηu. Figure 6(a) shows how the growth rate of the two modes
varies with We according to the above truncated potential model and to the L-ALE approach. Both
solutions indicate that the growth rate increases as We1/2, as may be anticipated from the form of the
right-hand sides in (7)–(8). The growth rate of Mode 1-S (s) is slightly smaller than that of Mode 0-A
(s). Hence, to observe the former in a laboratory experiment, it is necessary to prevent the bubble
from moving along the z axis. As the location of the bullets in the figure shows, the growth rates
estimated with the L-ALE approach are lower than those resulting from the truncated potential flow
model, especially in the case of Mode 1-S (s). This is due to the fact that finite-We effects affecting
the steady state solution are not taken into account in the low-We potential flow expansion, nor
are viscous effects arising in the boundary layer that surrounds the bubble. Although these effects
are expected to be weak for Re = 103, they are likely to be stabilizing, hence to reduce the growth
rate. Despite these limitations, the truncated potential flow solution is found to provide a reliable
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estimate of the bubble deformation for modes 0-A (s) and 1-S (s) [dashed contour in Figs. 6(b)
and 6(c)]. At leading order, this deformation takes the form η0u(+, t ) ∝ cos+ for Mode 0-A (s) and
η1u(+,φ, t ) ∝ sin+ cosϕ for Mode 1-S (s). In summary, the above perturbative approach confirms
that the presence of the unstable Mode 1-S (s) and its unexpected dynamics are not artifacts of the
L-ALE approach. This mode is part of the intrinsic dynamical response of the system when the
bubble centroid is not constrained to stay at the stagnation point of the uniaxial flow.
The bubble shapes and the pressure disturbance distribution displayed in Fig. 6(c) help to

understand the physical mechanism that makes the self-propulsion associated with Mode 1-S (s)
possible. Consider that the bubble is initially spherical and stands at the stagnation point. If a
disturbance in the form of Mode 1-S (s) is applied, the geometric centroid of the bubble shifts
to a radial position r0 != 0. At this position, due to the radial pressure gradient −ρ S2

4 r0 induced by
the carrying flow, the disturbance past the bubble is no longer symmetric, even though the latter
is still considered spherical. This pressure gradient is responsible for the left/right asymmetry in
the pressure distribution of Fig. 6(c). That the pressure disturbance at the bubble surface reaches
its extrema approximately midway between the z axis and the symmetry plane z = 0 is a classical
feature of a nearly inviscid flow past a sphere translating in a straining flow (see, e.g., [22]). These
pressure extrema having opposite signs, they result in a net thrust (corresponding to an added-mass
force) propelling the bubble in the direction opposite to the pressure gradient, i.e., from left to right
in the figure. Moreover, the pressure on the outer side of the interface being equal to that within
the bubble minus the capillary pressure, the asymmetric pressure distribution tends to make the
bubble shape more asymmetric by decreasing (increasing) the mean curvature of the interface on
the high- (low-) pressure side. Again, these deformations change the position of the bubble centroid,
and they do it cooperatively with the above added-mass effect, as both mechanisms act to move the
bubble to a position r > r0 [i.e., to push it to the right in Fig. 6(c)]. Since the inward velocity of
the straining flow increases with r, so does the relative velocity between the carrying flow and
the bubble centroid. This in turn enhances the pressure asymmetry at the bubble surface, which
reinforces both the added-mass thrust and the asymmetric changes in the interface curvature, and
so on. This qualitative scenario confirms that applying an asymmetric perturbation corresponding
to the mode m = 1 to an initially spherical bubble resting at the stagnation point allows it to move
radially thanks to what may be considered as a self-propulsion mechanism assisted by the straining
flow. This mechanism grounds on the cooperative effect of capillary and inertial stresses, the latter
resulting from the interaction of the carrying flow with the velocity disturbance. Of course this
picture only holds as long as viscous effects are weak enough. Indeed, since the bubble leads the
fluid, the drag resulting from the corresponding relative velocity resists the bubble drift (whereas
the two cooperate in the case of Mode 0-(A) (s) in which the bubble lags the fluid). Therefore, it is
only under conditions where this drag is small enough for the inertial forces involved in the above
scenario to dominate that the bubble may drift. This is why Mode 1-S (s) only grows when the
Reynolds number is large enough, i.e., Re � 20 according to the red line in Fig. 2(b). This is also
why this intriguing behavior was not observed in the experiments of [13] in which the Reynolds
number was kept very low (in the range 10−2–10−4) by using very viscous oils as suspending fluid.

V. SUMMARY

In this study, we employed the recently developed L-ALE approach to revisit the dynamics of
a gas bubble immersed in a uniaxial straining flow. This approach proved to be able to accurately
determine the equilibrium shapes of the bubble, as well as the maximum Weber number Wec(Oh)
beyond which no equilibrium is possible. As already reported in the literature, the return to
equilibrium of a slightly disturbed bubble under subcritical conditions takes place through damped
oscillations, except within a small interval [We∗c ,Wec] where an aperiodic damped regime takes
place. We analyzed the eigenmode associated with these behaviors in detail. In particular, we
characterized the scaling laws governing the variations of the corresponding eigenvalue with Oh and
We∗c −We. Thanks to a suitable continuation method, we also found a second branch of solutions
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linked to the branch of stable solutions through a saddle-node point. This branch was not identified
up to now, except in the creeping-flow limit. Indeed, equilibrium shapes corresponding to this
second branch are always unstable, which makes them unreachable with traditional time-marching
approaches. The linear stability analysis revealed that the most amplified eigenmode on that branch
is stationary and is characterized by the occurrence of a neck on the symmetry plane of the bubble.
In the nonlinear stage, this would eventually lead to the breakup of the bubble through the end-
pinching mechanism. We sketched how this unstable branch and the above stationary mode may be
approached in a laboratory experiment. We also examined the case where the bubble centroid is not
constrained to stay at the stagnation point of the undisturbed flow, a situation that was not considered
in previous studies. In this case, two other unstable modes arise. The most amplified one corresponds
to the drift of the bubble along the elongational axis of the undisturbed flow. Surprisingly, the
slightly less amplified second mode leads to a drift of the bubble within the symmetry plane of
the undisturbed flow, a region where this flow is directed toward the stagnation point. To check
this unexpected prediction, we considered the low-We inviscid limit in which a truncated potential
flow model can be established. We solved the corresponding eigenvalue problem and confirmed the
predictions of the L-ALE approach in that limit. We also presented a qualitative scenario explaining
why, after imposing an asymmetric initial perturbation to the bubble, the pressure and the interface
curvature distributions develop growing asymmetric components that cooperate to make the bubble
drift against the base flow possible when viscous effects are weak enough.

APPENDIX A: OVERVIEW OF THE L-ALE APPROACH

Free-boundary problems involving a Newtonian fluid contained in a time-dependent fluid domain
&(t ) bounded by a fixed boundary 's and a free boundary 'b(t ) subjected to capillary effects are
governed by (1)–(4) supplemented with appropriate boundary conditions on 's. In the L-ALE
approach, we first consider a reference domain &0, which is fixed and allows unknowns to be
evaluated in an Eulerian manner, and the physical domain &(t ), which depends upon time and
where Lagrangian quantities are evaluated. Let x0 and x denote the local position (with respect to
some fixed origin) of a given geometrical point in&0 and&, respectively. Then the two domains are
connected through the diffeomorphism - : &0 �→ &, with -(x0, t ) = x. In the L-ALE approach,
this diffeomorphism is linearized in the form -(x0, t ) = x0 + ξ(x0), where ξ(x0) is a displacement
field such that ||ξ(x0)|| = ||x − x0|| ∼ O(ε0||x0||) with ε0 � 1. The field ξ(x0) propagates the
Lagrangian displacement of the interface η into the fluid domain. This displacement field is arbitrary
since it is not determined by the governing equations (1)–(4), i.e., it is not dictated by the actual
motion of the fluid elements, except at the free boundary. It only needs to obey the no-penetration
condition (3), plus some mild smoothness properties. Usually the smoothness of ξ is ensured by
assuming that its distribution within the fluid domain is governed by an elliptic equation, such as
the Laplace equation or the Cauchy equation for an elastic material. An illustration of the L-ALE
methodology is depicted in Fig. 7(a). The sketch shows how the free boundary, labeled 'b in the
physical domain & and 'b,0 in the reference domain &0, transforms from one domain to the other.
Although the geometric properties of this boundary, especially its unit normal n and tangent t, may
be evaluated in both domains, we always evaluate them in &0, after which they may be mapped
forward onto the physical domain via - if needed.
The L-ALE formalism leads to an approach in which the governing equations and the de-

formation of the physical domain are solved simultaneously and consistently, which ensures the
stability of the algorithms involved. Such an approach, in which the unknown to be determined
is the state vector q = [u, p, pb, ξ, η]T (the superscript T denoting the transpose), is sometimes
referred to as “monolithic.” To obtain the steady-state solution of (1)–(4), we solve the corre-
sponding steady nonlinear problem using a Newton method, following the methodology introduced
in [10].
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FIG. 7. Sketch of the geometrical transformations involved in the L-ALE approach. (a) General framework,
showing in particular the current physical domain & and free boundary 'b (black), and the reference domain
&0 and free boundary 'b,0 (blue); (b) successive updates of the reference domain during the iterations of the
Newton method.

That is, the steady-state solution, q0 = [u0, p0, pb,0, 0, 0]T, is determined iteratively by solving
the system of equations governing the increment q′ = [u′, p′, p′

b, ξ, η]
T:

LNS[q′] ≡ u′ · ∇&0u0 + u0 · ∇&0u′ − ρ−1∇&0 · �&0 (u
′, p′ )+ Q&0 (ξ) = −u0 · ∇&0u0 + ρ−1∇&0 · �&0 in &0,

Ldiv[q′] ≡ ∇&0 · u′ − ∇&0u0 : ∇T
&0

ξ = −∇&0 · u0 in &0,

Lkin[q′] ≡ u′ · n0 + u0 · n′ = −u0 · n0 on 'b,0,

Ldyn[q′] ≡ (p′
b − p′ − γ κ ′ )n0 + 2μD&0 (u

′ ) · n0 = (p0 − pb,0 + γ κ0)n0 on 'b,0,

+(pb,0 − p0 − γ κ0)n′ + 2μD&0 (u0) · n′ −2μD&0 (u0 ) · n0
Lcom[q′] ≡ ξ − ηn0 = 0 on 'b,0,

LE [ξ] ≡ ∇&0 · E(ξ) = 0 in &0,

(A1)
where n′ = −(t0 · ∇'b,0η)t0, κ

′ = ∇&0 · n′, and the &0 and 'b,0 subscripts indicate that the corre-
sponding spatial derivative is evaluated in the reference domain &0 bounded (partly) by the free
boundary 'b,0. In (A1) the first four equations correspond to the linearized form of the governing
equations (1)–(4). The deformation of the domain induces several extra terms in these linearized
equations, especially an extra momentum source term Q&0 (ξ) = −u0 · ∇&0u0 · ∇&0ξ + ρ−1(∇&0 ·
�&0 ) · ∇T

&0
ξ + ρ−1μ∇&0 · {∇&0u0 · ∇&0ξ + (∇&0u0 · ∇&0ξ)

T} in the momentum equation. The last
two equations determine the displacement field ξ throughout the domain. The elliptic operator E
controls the spatial distribution of this arbitrary displacement within&0, subject to the compatibility
condition ξ = ηn0 on 'b,0. Here, following [12], we assume that this distribution obeys a linear
elastic response, i.e., we set E(ξ) = 2μeD&0 (ξ)+ λe(∇&0 · ξ)I. With this choice, the last equation in
(A1) may be interpreted as the Cauchy equation of elasticity, the coefficients λe and μe being Lamé
pseudocoefficients which we both set to unity.
At each iteration n, the pseudo-steady-state solution is updated in the form q(n)0 = q(n−1)

0 + q′ =
[u0 + u′, p0 + p′, pb,0 + p′

b, ξ, η]
T. The reference domain &0 is also updated, based on conditions

x
&
(n)
0

= x
&
(n−1)
0

+ ξ and x
'
(n)
0

= x
'
(n−1)
0

+ ηn(n−1)
0 linking the position of a given point standing in

the fluid domain or on the free boundary in two successive reference configurations, as sketched
in Fig. 7(b). In other words, the steady-state solution is obtained by considering the governing
equations (A1) on a succession of physical domains such that the nth of them only differs slightly
from the (n − 1)th one, the latter being considered as the new reference domain during the nth
iteration.
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In cases where the free boundary is a closed surface (such as for a bubble), the enclosed volume
must stay equal to its initial value, Vb, provided effects of compressibility are negligible in the
corresponding medium. This implies

Lvol[q′] ≡
∫

'b,0

ηdS0 =
∫

&b,0

(1+ ∇&0 · ξ)dV0 − Vb on 'b,0. (A2)

The various matrices involved in the problem (A1)–(A2) are built and inverted within the finite-
element software FreeFem++. The volume fields (u, p) are discretized following a Taylor-Hood
scheme, i.e., the mixed finite-element Lagrange basis (P2, P1). The volume displacement field ξ is
discretized within the P2 finite-element space. The free-boundary displacement field η is discretized
within the Galerkin-Fourier space. This displacement is orthogonally projected onto the local
Fourier basis φk in the form η(s0) = ∑Nb

k=0 φk (s0)Xη(k), with Xη(k) the coefficients of η in that
basis, Nb the number of Fourier elements and s0 the arc length coordinate.
In the vicinity of a saddle-node bifurcation, the Jacobian matrix of (A1) is ill-conditioned. In

particular it is singular at the bifurcation point. In such situations, instead of the usual continuation
procedure performed on some control parameter, for instance, We, we continue the solution on
a suitable arc length with a pseudo-arc-length continuation method. This technique consists in
replacing the Jacobian matrix with a bordered matrix, i.e., a matrix with an additional column and
an additional row. The practical application of this technique, i.e., the definition of the arc length,
depends on the parameters of the problem under consideration. In the context of this paper, we build
the arc length on the pressure within the bubble, pb, and the strain rate of the base flow, S, so that the
infinitesimal arc length is (ds)2 = (d pb)2 + (dS)2. If (A1) [or (A1)–(A2)] is written symbolically
in the form L|q0 [q′] = −F(q0), the bordered system then takes the form(

L|q(n−1)
0

Dbc
d pb

ds
dS
ds

)(
q′
S′

)
=

( −F
(
q(n−1)
0

) − Dbc
(
S(n−1)
0

)
− d pb

ds

(
p(n−1)

b,0 − p(0)b,0

) − dS
ds

(
S(n−1)
0 − S(0)0

) + �s

)
, (A3)

where the state vector q′ is augmented with the update of the strain rate, S′, and �s denotes the arc
length step. The operatorDbc, which takes the form of a column vector in the bordered matrix, serves
to impose the boundary conditions on the velocity field and only depends on S. The derivative d pb

ds

acts on the pressure within the bubble only, while dS
ds only acts on the strain rate. These derivatives

are determined at the initial step of the Newton method by inverting the matrix operator L|q(0)0 and
computing the derivative of q with respect to S as dq

dS |q(0)0 = −L−1|q(0)0 · dF
dS (q

(0)
0 ). Then, selecting

the component d pb

dS |q(0)0 in the vector field
dq
dS |q(0)0 and making use of the definition (ds)2 = (d pb)2 +

(dS)2, the extra derivatives involved in (A3) are computed as d pb

ds = d pb

dS |q(0)0 {( d pb

dS |q(0)0 )
2 + 1}−1/2 and

dS
ds = {( d pb

dS |q(0)0 )
2 + 1}−1/2.

Once the steady state is reached, the linear stability of the corresponding solution is determined
by examining the fate of disturbances with the eigenmode form q′ = [û, p̂, p̂b, ξ̂, η̂]Te−iωt , the hatted
complex amplitudes depending on x0. In cases where the base configuration is axisymmetric, as in
the physical problem considered in this paper, we rather consider disturbances of the form q′ =
[û, p̂, p̂b, ξ̂, η̂]Teimθ−iωt , with θ the polar angle of the (r, θ, z) cylindrical coordinate system and
m the corresponding wave number, the hatted amplitudes depending now only on r and z. Such
solutions are obtained by solving the eigenvalue problem

−iω(
û − ξ̂ · ∇&0u0

) + LNS[q̂] = 0 in &0,

Ldiv[q̂] = 0 in &0,

−iωη̂ + Lkin[q̂] = 0 on 'b,0,

Ldyn[q̂] = 0 on 'b,0,

Lcom[q̂] = 0 on 'b,0,

LE [ξ̂] = 0 in &0,

(A4)
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supplemented with

Lvol[q̂] = 0 on 'b,0 (A5)

if the constraint (A2) holds for the steady state and the perturbation. In (A4) the term iωξ̂ · ∇&0u0
arising in the linearized momentum equation is the acceleration of the moving domain, which
must be subtracted to obtain the actual fluid acceleration in &0. Here the reference domain is that
corresponding to the steady-state solution of (A1), i.e., &0 ≡ &

(N )
0 , with N the number of iterations

carried out to reach the steady solution through the Newton method, as depicted in Fig. 7(b). The
eigenpairs of (A4)–(A5) are obtained using the SLEPc library.

[1] G. I. Taylor, The formation of emulsions in definable fields of flow, Proc. R. Soc. Lond. A 146, 501
(1934).

[2] A. Acrivos and T. S. Lo, Deformation and breakup of a single slender drop in an extensional flow, J. Fluid
Mech. 86, 641 (1978).

[3] M. J. Miksis, A bubble in an axially symmetric shear flow, Phys. Fluids 24, 1229 (1981).
[4] G. Ryskin and L. G. Leal, Numerical solution of free-boundary problems in fluid mechanics. Part 3.

Bubble deformation in an axisymmetric straining flow, J. Fluid Mech. 148, 37 (1984).
[5] I. S. Kang and L. G. Leal, Numerical solution of axisymmetric, unsteady free-boundary problems at finite

Reynolds number. I. Finite-difference scheme and its application to the deformation of a bubble in a
uniaxial straining flow, Phys. Fluids 30, 1929 (1987).

[6] G. K. Youngren and A. Acrivos, On the shape of a gas bubble in a viscous extensional flow, J. Fluid Mech.
76, 433 (1976).

[7] G. Gallino, T. M. Schneider, and F. Gallaire, Edge states control droplet breakup in subcritical extensional
flows, Phys. Rev. Fluids 3, 073603 (2018).

[8] J. Rodríguez-Rodríguez, J. M. Gordillo, and C. Martinez-Bazan, Breakup time and morphology of drops
and bubbles in a high-Reynolds-number flow, J. Fluid Mech. 548, 69 (2006).

[9] J. C. Padrino and D. D. Joseph, Viscous irrotational analysis of the deformation and break-up time of a
bubble or drop in uniaxial straining flow, J. Fluid Mech. 688, 390 (2011).

[10] P. Bonnefis, Etude des instabilités de sillage, de forme et de trajectoire de bulles par une approche de
stabilité linéaire globale, Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France
(2019), http://www.theses.fr/2019INPT0070.

[11] M. Heil, A. L. Hazel, and J. Boyle, Solvers for large-displacement fluid-structure interaction problems:
Segregated versus monolithic approaches, Comput. Mech. 43, 91 (2008).

[12] J. L. Pfister, O. Marquet, and M. Carini, Linear stability analysis of strongly coupled fluid–structure
problems with the Arbitrary Lagrangian–Eulerian method, Comput. Methods Appl. Mech. Eng. 355, 663
(2019).

[13] B. J. Bentley and L. G. Leal, An experimental investigation of drop deformation and breakup in steady,
two-dimensional linear flows, J. Fluid Mech. 167, 241 (1986).

[14] B. J. Bentley and L. G. Leal, A computer-controlled four-roll mill for investigations of particle and drop
dynamics in two-dimensional linear shear flows, J. Fluid Mech. 167, 219 (1986).

[15] I. S. Kang and L. G. Leal, Small-amplitude perturbations of shape for a nearly spherical bubble in an
inviscid straining flow (steady shapes and oscillatory motion), J. Fluid Mech. 187, 231 (1988).

[16] H. A. Stone, B. J. Bentley, and L. G. Leal, An experimental study of transient effects in the breakup of
viscous drops, J. Fluid Mech. 173, 131 (1986).

[17] H. A. Stone and L. G. Leal, Relaxation and breakup of an initially extended drop in an otherwise quiescent
fluid, J. Fluid Mech. 198, 399 (1989).

[18] P. G. Saffman, The self-propulsion of a deformable body in a perfect fluid, J. Fluid Mech. 28, 385 (1967).
[19] T. B. Benjamin and A. T. Ellis, Self-propulsion of asymmetrically vibrating bubbles, J. Fluid Mech. 212,

65 (1990).

113603-15



JAVIER SIERRA-AUSIN et al.

[20] T. Miloh and A. Galper, Self-propulsion of general deformable shapes in a perfect fluid, Proc. R. Soc.
London A Math. Phys. Eng. Sci. 442, 273 (1993).

[21] S. M. Yang, Z. C. Feng, and L. G. Leal, Nonlinear effects in the dynamics of shape and volume oscillations
for a gas bubble in an external flow, J. Fluid Mech. 247, 417 (1993).

[22] J. Magnaudet, M. Rivero, and J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. Part 1.
Steady straining flow, J. Fluid Mech. 284, 97 (1995).

113603-16



Bibliography

Poincaré, Henri (1890). “Sur le problème des trois corps et les équations de la
dynamique”. In: Acta mathematica 13.1, A3–A270.

Lorenz, Edward N (1963). “Deterministic nonperiodic flow”. In: Journal of
atmospheric sciences 20.2, pp. 130–141.

Briggs, Richard J et al. (1964). Electron-stream interaction with plasmas. Vol. 187.
MIT press Cambridge, MA.

Urabe, M. (1965). “Galerkin’s procedure for nonlinear periodic systems”. In:
Arch. Rational Mech. Anal. 20, pp. 120–152.

Crow, S Cj and FH Champagne (1971). “Orderly structure in jet turbulence”.
In: Journal of fluid mechanics 48.3, pp. 547–591.

Ruelle, David and Floris Takens (1971). “On the nature of turbulence”. In: Les
rencontres physiciens-mathématiciens de Strasbourg-RCP25 12, pp. 1–44.

Stokes, A. (1972). “On the approximation of nonlinear oscillations”. In: J. Dif-
ferential Equations 12, pp. 535–558.

Bers, Abraham (1975). “Linear waves and instabilities”. In: Plasma physics–les
houches 1972.

Hénon, Michel (1976). “A two-dimensional mapping with a strange attractor”.
In: The theory of chaotic attractors. Springer, pp. 94–102.

Newhouse, Sheldon, David Ruelle, and Floris Takens (1978). “Occurrence of
strange Axiom A attractors near quasi periodic flows on T m, m ≥ 3”. In:
Communications in Mathematical Physics 64.1, pp. 35–40.

Chirikov, Boris V (1979). “A universal instability of many-dimensional oscillator
systems”. In: Physics reports 52.5, pp. 263–379.

Penrose, Oliver (1979). “Foundations of statistical mechanics”. In: Reports on
Progress in Physics 42.12, p. 1937.

Hughes, Thomas JR, Wing Kam Liu, and Thomas K Zimmermann (1981).
“Lagrangian-Eulerian finite element formulation for incompressible viscous
flows”. In: Computer methods in applied mechanics and engineering 29.3,
pp. 329–349.

424



BIBLIOGRAPHY

Van Dyke, M and S Widnall (1983). “An album of fluid motion”. In: Journal of
Applied Mechanics 50.2, p. 475.

Dangelmayr, Gerhard (1986). “Steady-state mode interactions in the presence of
0 (2)-symmetry”. In: Dynamics and Stability of Systems 1.2, pp. 159–185.

Knobloch, E (1986). “On the degenerate Hopf bifurcation with O(2) symmetry”.
In: Contemporary Mathematics 56, pp. 193–201.

Dumortier, F, R Roussarie, and J Sotomayor (1987). “Generic 3-parameter
families of vector fields on the plane, unfolding a singularity with nilpotent
linear part. The cusp case of codimension 3”. In: Ergodic theory and dynamical
systems 7.3, pp. 375–413.

Jones, CA and MRE Proctor (1987). “Strong spatial resonance and travelling
waves in Bénard convection”. In: Physics Letters A 121.5, pp. 224–228.

Armbruster, Dieter, John Guckenheimer, and Philip Holmes (1988). “Heteroclinic
cycles and modulated travelling waves in systems with O (2) symmetry”. In:
Physica D: Nonlinear Phenomena 29.3, pp. 257–282.

Huerre, Patrick and Peter A Monkewitz (1990). “Local and global instabilities
in spatially developing flows”. In: Annual review of fluid mechanics 22.1,
pp. 473–537.

Monkewitz, PA (1990). “The role of absolute and convective instability in
predicting the behavior of fluid systems”. In: European Journal of Mechanics
B Fluids 9.5, pp. 395–413.

Chiang, C H and W A Sirignano (1993). “Interacting, convecting, vaporizing
fuel droplets with variable properties”. In: International Journal of Heat and
Mass Transfer 36.4, pp. 875–886.

Cross, Mark C and Pierre C Hohenberg (1993). “Pattern formation outside of
equilibrium”. In: Reviews of modern physics 65.3, p. 851.

Kuchment, Peter (1993). “Floquet Theory for Hypoelliptic Equations and Sys-
tems in the Whole Space”. In: Floquet Theory for Partial Differential Equa-
tions. Springer, pp. 103–123.

Edwards, W Stuart and S Fauve (1994). “Patterns and quasi-patterns in the
Faraday experiment”. In: Journal of Fluid Mechanics 278, pp. 123–148.

Barkley, Dwight and Ronald D Henderson (1996). “Three-dimensional Floquet
stability analysis of the wake of a circular cylinder”. In: Journal of Fluid
Mechanics 322, pp. 215–241.

Mcleod, Paul, David S Riley, and R Stephen J Sparks (1996). “Melting of a
sphere in hot fluid”. In: Journal of Fluid Mechanics 327, pp. 393–409.

Palacios, Antonio et al. (1997). “Cellular pattern formation in circular domains”.
In: Chaos: An Interdisciplinary Journal of Nonlinear Science 7.3, pp. 463–
475.

Trefethen, Lloyd N (1999). Spectra and Pseudospectra: The Behaviour of Non-
normal Matrices and Operators. Springer.

BIBLIOGRAPHY 425



BIBLIOGRAPHY

Porter, J and E Knobloch (2000). “Complex dynamics in the 1:3 spatial reso-
nance”. In: Physica D: Nonlinear Phenomena 143.1-4, pp. 138–168.

Marques, F, JM Lopez, and J Shen (2001). “A periodically forced flow dis-
playing symmetry breaking via a three-tori gluing bifurcation and two-tori
resonances”. In: Physica D: Nonlinear Phenomena 156.1-2, pp. 81–97.

Mougin, Guillaume and Jacques Magnaudet (2001). “Path instability of a rising
bubble”. In: Physical Review Letters 88.1, p. 014502.

Porter, J and E Knobloch (2001). “New type of complex dynamics in the 1:2
spatial resonance”. In: Physica D: Nonlinear Phenomena 159.3-4, pp. 125–
154.

Mercader, Isabel, Joana Prat, and Edgar Knobloch (2002). “Robust hetero-
clinic cycles in two-dimensional Rayleigh–Bénard convection without Boussi-
nesq symmetry”. In: International Journal of Bifurcation and Chaos 12.11,
pp. 2501–2522.

Ewert, Roland and Wolfgang Schröder (2003). “Acoustic perturbation equations
based on flow decomposition via source filtering”. In: Journal of Computa-
tional Physics 188.2, pp. 365–398.

Fernández, Miguel Angel and Patrick Le Tallec (2003a). “Linear stability analysis
in fluid–structure interaction with transpiration. Part I: Formulation and
mathematical analysis”. In: Computer methods in applied mechanics and
engineering 192.43, pp. 4805–4835.

— (2003b). “Linear stability analysis in fluid–structure interaction with transpi-
ration. Part II: Numerical analysis and applications”. In: Computer methods
in applied mechanics and engineering 192.43, pp. 4837–4873.

Gan, Hui et al. (2003). “Direct numerical simulation of the sedimentation of
solid particles with thermal convection”. In: Journal of Fluid Mechanics 481,
pp. 385–411.

Nore, Caroline, Laurette S Tuckerman, et al. (2003). “The 1 [ratio] 2 mode
interaction in exactly counter-rotating von Kármán swirling flow”. In: Journal
of Fluid Mechanics 477, pp. 51–88.

Drazin, Philip G and William Hill Reid (2004). Hydrodynamic stability. Cam-
bridge university press.

Vandenberghe, Nicolas, Jun Zhang, and Stephen Childress (2004). “Symmetry
breaking leads to forward flapping flight”. In: Journal of Fluid Mechanics
506, pp. 147–155.

Wedin, Hakan and Rich R Kerswell (2004). “Exact coherent structures in pipe
flow: travelling wave solutions”. In: Journal of Fluid Mechanics 508, pp. 333–
371.

Cvitanovic, Predrag et al. (2005). “Chaos: classical and quantum”. In: ChaosBook.
org (Niels Bohr Institute, Copenhagen 2005) 69, p. 25.

426 BIBLIOGRAPHY



BIBLIOGRAPHY

Gasull, Armengol, Vıéctor Mañosa, and Jordi Villadelprat (2005). “On the period
of the limit cycles appearing in one-parameter bifurcations”. In: Journal of
Differential Equations 213.2, pp. 255–288.

Mariano, Paolo Maria and Furio Lorenzo Stazi (2005). “Computational aspects of
the mechanics of complex materials”. In: Archives of Computational Methods
in Engineering 12.4, pp. 391–478.

Nore, C, F Moisy, and L Quartier (2005). “Experimental observation of near-
heteroclinic cycles in the von Kármán swirling flow”. In: Physics of Fluids
17.6, p. 064103.

Porter, J and E Knobloch (2005). “Dynamics in the 1: 2 spatial resonance with
broken reflection symmetry”. In: Physica D: Nonlinear Phenomena 201.3-4,
pp. 318–344.

Tanaka, Dan (2005). “Bifurcation scenario to Nikolaevskii turbulence in small
systems”. In: Journal of the Physical Society of Japan 74.8, pp. 2223–2225.

Dumortier, Freddy, Robert Roussarie, Jorge Sotomayor, and Henryk Zoladek
(2006). Bifurcations of planar vector fields: Nilpotent Singularities and Abelian
Integrals. Springer.

Hoyle, Rebecca and Rebecca B Hoyle (2006). Pattern formation: an introduction
to methods. Cambridge University Press.

Brøns, M. (2007). “Streamline topology: Patterns in fluid flows and their bifur-
cations”. In: Advances in applied mechanics 41, pp. 1–42.

Fernandes, Pedro C et al. (2007). “Oscillatory motion and wake instability
of freely rising axisymmetric bodies”. In: Journal of Fluid Mechanics 573,
pp. 479–502.

Giannetti, Flavio and Paolo Luchini (2007). “Structural sensitivity of the first
instability of the cylinder wake”. In: Journal of Fluid Mechanics 581, pp. 167–
197.

Schmid, Peter J (2007). “Nonmodal stability theory”. In: Annual review of fluid
mechanics 39.1, pp. 129–162.

Sipp, D. and A. Lebedev (2007). “Global stability of base and mean flows: a
general approach and its applications to cylinder and open cavity flows”. In:
J. Fluid Mech. 593, pp. 333–358.

Fabre, David, Franck Auguste, and Jacques Magnaudet (2008). “Bifurcations
and symmetry breaking in the wake of axisymmetric bodies”. In: Physics of
Fluids 20.5, p. 051702.

Gibson, John F, Jonathan Halcrow, and Predrag Cvitanović (2008). “Visualizing
the geometry of state space in plane Couette flow”. In: Journal of Fluid
Mechanics 611, pp. 107–130.

Marquet, Olivier, Denis Sipp, and Laurent Jacquin (2008). “Sensitivity analysis
and passive control of cylinder flow”. In: Journal of Fluid Mechanics 615,
pp. 221–252.

BIBLIOGRAPHY 427



BIBLIOGRAPHY

Veldhuis, Christian, Arie Biesheuvel, and Leen Van Wijngaarden (2008). “Shape
oscillations on bubbles rising in clean and in tap water”. In: Physics of fluids
20.4, p. 040705.

Coudene, Yves (2009). “A short proof of the unique ergodicity of horocyclic
flows”. In: Ergodic theory 485, pp. 85–89.

Gibson, John F, Jonathan Halcrow, and Predrag Cvitanović (2009). “Equilibrium
and travelling-wave solutions of plane Couette flow”. In: Journal of Fluid
Mechanics 638, pp. 243–266.

Kotouč, Miroslav, Gilles Bouchet, and Jan Dušek (2009). “Transition to turbu-
lence in the wake of a fixed sphere in mixed convection”. In: Journal of Fluid
Mechanics 625, pp. 205–248.

Meliga, Philippe, Jean-Marc Chomaz, and Denis Sipp (2009). “Global mode
interaction and pattern selection in the wake of a disk: a weakly nonlinear
expansion”. In: Journal of Fluid Mechanics 633, pp. 159–189.

Seydel, Rudiger (2009). Practical bifurcation and stability analysis. Vol. 5.
Springer Science & Business Media.

Auguste, Franck, David Fabre, and Jacques Magnaudet (2010). “Bifurcations in
the wake of a thick circular disk”. In: Theoretical and Computational Fluid
Dynamics 24.1, pp. 305–313.

Chrust, Marcin, Gilles Bouchet, and Jan Dušek (2010). “Parametric study of
the transition in the wake of oblate spheroids and flat cylinders”. In: Journal
of Fluid Mechanics 665, pp. 199–208.

Giannetti, Flavio, Simone Camarri, and Paolo Luchini (2010). “Structural sen-
sitivity of the secondary instability in the wake of a circular cylinder”. In:
Journal of Fluid Mechanics 651, pp. 319–337.

Pralits, Jan O, Luca Brandt, and Flavio Giannetti (2010). “Instability and
sensitivity of the flow around a rotating circular cylinder”. In: Journal of
Fluid Mechanics 650, pp. 513–536.

Charru, François (2011). Hydrodynamic instabilities. Vol. 37. Cambridge Univer-
sity Press.

Chossat, Pascal and Gérard Iooss (2012). The Couette-Taylor Problem. Vol. 102.
Springer Science & Business Media.

Golubitsky, Martin, Ian Stewart, and David G Schaeffer (2012). Singularities
and Groups in Bifurcation Theory: Volume II. Vol. 69. Springer Science &
Business Media.

Meliga, Philippe, François Gallaire, and Jean-Marc Chomaz (2012). “A weakly
nonlinear mechanism for mode selection in swirling jets”. In: Journal of Fluid
Mechanics 699, pp. 216–262.

Sadhal, Satwindar S, Portonovo S Ayyaswamy, and Jacob N Chung (2012).
Transport phenomena with drops and bubbles. Springer Science & Business
Media.

428 BIBLIOGRAPHY



BIBLIOGRAPHY

Sipp, Denis (2012). “Open-loop control of cavity oscillations with harmonic
forcings”. In: Journal of Fluid Mechanics 708, p. 439.

Garnaud, X et al. (2013). “Modal and transient dynamics of jet flows”. In:
PHYSICS OF FLUIDS 25, p. 044103.

Kapitula, Todd and Keith Promislow (2013). Spectral and dynamical stability of
nonlinear waves. Vol. 457. Springer.

Kuznetsov, Yuri A (2013). Elements of applied bifurcation theory. Vol. 112.
Springer Science & Business Media.

Schmuck, M et al. (2013). “New stochastic mode reduction strategy for dissipative
systems”. In: Physical Review Letters 110.24, p. 244101.

Tchoufag, Joël (2013). “Étude de la trajectoire d’objets en chute ou en ascension
dans un fluide visqueux: une approche de stabilité globale”. PhD thesis.
Université de Toulouse, Université Toulouse III-Paul Sabatier.

Luchini, Paolo and Alessandro Bottaro (2014). “Adjoint equations in stability
analysis”. In: Annual Review of fluid mechanics 46, pp. 493–517.

Thompson, MC et al. (2014). “The Existence of Multiple Solutions for Rotating
Cylinder Flows”. In.

Marquet, Olivier and Lutz Lesshafft (2015). “Identifying the active flow regions
that drive linear and nonlinear instabilities”. In: arXiv preprint arXiv:1508.07620.

Tchoufag, Joël, David Fabre, and Jacques Magnaudet (2015). “Weakly nonlinear
model with exact coefficients for the fluttering and spiraling motion of
buoyancy-driven bodies”. In: Physical Review Letters 115.11, p. 114501.

Citro, Vincenzo, Joël Tchoufag, et al. (2016). “Linear stability and weakly
nonlinear analysis of the flow past rotating spheres”. In: Journal of Fluid
Mechanics 807, pp. 62–86.

Gallaire, Francois et al. (2016). “Pushing amplitude equations far from threshold:
application to the supercritical Hopf bifurcation in the cylinder wake”. In:
Fluid Dynamics Repsearch 48.6, p. 061401.

Canton, J., F. Auteri, and M. Carini (2017). “Linear global stability of two
incompressible coaxial jets”. In: J. Fluid Mech. 824, pp. 886–911.

Heil, M. et al. (2017). “Topological fluid mechanics of the formation of the
Kármán-vortex street”. In: Journal of Fluid Mechanics 812, pp. 199–221.

Olvera, D and RR Kerswell (2017). “Exact coherent structures in stably stratified
plane Couette flow”. In: Journal of Fluid Mechanics 826, pp. 583–614.

Taira, Kunihiko et al. (2017). “Modal analysis of fluid flows: An overview”. In:
Aiaa Journal 55.12, pp. 4013–4041.

Wouters, J and GA Gottwald (2017). “Edgeworth expansions for slow-fast systems
and their application to model reduction for finite time scale separation”. In:
arXiv preprint arXiv:1708.06984 10.

Chakravarthy, RVK, Lutz Lesshafft, and P Huerre (2018). “Global stability of
buoyant jets and plumes”. In: Journal of Fluid Mechanics 835, pp. 654–673.

BIBLIOGRAPHY 429



BIBLIOGRAPHY

Fabre, David, Vincenzo Citro, et al. (2018). “A practical review on linear and
nonlinear global approaches to flow instabilities”. In: Applied Mechanics
Reviews 70.6.

Lesshafft, Lutz (2018). “Instability dynamics in jets and plumes”. PhD thesis.
Université Paris-Sud Orsay.

Allen, Liz, Alison O’Connell, and Veronique Kiermer (2019). “How can we ensure
visibility and diversity in research contributions? How the Contributor Role
Taxonomy (CRediT) is helping the shift from authorship to contributorship”.
In: Learned Publishing 32.1, pp. 71–74.

Bonnefis, Paul (2019). “Etude des instabilités de sillage, de forme et de trajectoire
de bulles par une approche de stabilité linéaire globale”. PhD thesis.

Fabre, David, Raffaele Longobardi, Paul Bonnefis, et al. (2019). “The acoustic
impedance of a laminar viscous jet through a thin circular aperture”. In:
Journal of Fluid Mechanics 864, pp. 5–44.

Giannetti, F, S Camarri, and V Citro (2019). “Sensitivity analysis and passive
control of the secondary instability in the wake of a cylinder”. In: Journal of
Fluid Mechanics 864, pp. 45–72.

Jaunet, Vincent et al. (2019). “Dynamics of round jet impingement”. In: 25th
AIAA/CEAS Aeroacoustics Conference, p. 2769.

Krack, Malte and Johann Gross (2019). Harmonic balance for nonlinear vibration
problems. Springer.

Moulin, Johann, Pierre Jolivet, and Olivier Marquet (2019). “Augmented La-
grangian preconditioner for large-scale hydrodynamic stability analysis”. In:
Computer Methods in Applied Mechanics and Engineering 351, pp. 718–743.

Pfister, Jean-Lou (2019). “Instabilities and optimization of elastic structures
interacting with laminar flows”. PhD thesis. UNIVERSITE PARIS-SACLAY.

Shaabani-Ardali, Léopold, Denis Sipp, and Lutz Lesshafft (2019). “Vortex pairing
in jets as a global Floquet instability: modal and transient dynamics”. In:
Journal of Fluid Mechanics 862, pp. 951–989.

Sierra-Ausin, Javier, Vincenzo Citro, and David Fabre (2019). “On boundary
conditions for compressible flow simulations”. In: pp. 335–340.

Citro, V, F Giannetti, and J. Sierra-Ausin (2020). “Optimal explicit Runge-Kutta
methods for compressible Navier-Stokes equations”. In: Applied Numerical
Mathematics 152, pp. 511–526.

Fabre, D, R Longobardi, V Citro, et al. (2020). “Acoustic impedance and
hydrodynamic instability of the flow through a circular aperture in a thick
plate”. In: Journal of Fluid Mechanics 885.

Nitti, Alessandro et al. (June 2020). “An immersed-boundary/isogeometric
method for fluid–structure interaction involving thin shells”. In: Computer
Methods in Applied Mechanics and Engineering 364, p. 112977. doi: 10.
1016/j.cma.2020.112977.

430 BIBLIOGRAPHY



BIBLIOGRAPHY

Sabino, Diogo et al. (2020). “Vortex-induced vibration prediction via an impedance
criterion”. In: Journal of Fluid Mechanics 890, A4.

Schoder, Stefan, Klaus Roppert, and Manfred Kaltenbacher (2020). “Helmholtz’s
decomposition for compressible flows and its application to computational
aeroacoustics”. In: SN Partial Differential Equations and Applications 1.6,
pp. 1–20.

Sierra-Ausin, Javier, David Fabre, and Vincenzo Citro (2020). “Efficient stability
analysis of fluid flows using complex mapping techniques”. In: Computer
Physics Communications 251, p. 107100.

Sierra-Ausin, Javier, David Fabre, Vincenzo Citro, and Flavio Giannetti (2020).
“Bifurcation scenario in the two-dimensional laminar flow past a rotating
cylinder”. In: Journal of Fluid Mechanics 905.

Spieser, Etienne (2020). “Modélisation de la propagation du bruit de jet par une
méthode adjointe formulée pour l’acoustique potentielle”. PhD thesis.

Callaham, Jared L et al. (2021). “Nonlinear stochastic modelling with Langevin
regression”. In: Proceedings of the Royal Society A 477.2250, p. 20210092.

Sierra-Ausin, Javier, Pierre Jolivet, et al. (2021). “Adjoint-based sensitivity
analysis of periodic orbits by the Fourier–Galerkin method”. In: Journal of
Computational Physics 440, p. 110403.

Cenedese, Mattia et al. (2022). “Data-driven modeling and prediction of non-
linearizable dynamics via spectral submanifolds”. In: Nature communications
13.1, p. 872.

Hirschberg, Lionel et al. (2022). “Linear Theory and Experiments for Laminar
Bias Flow Impedance: Orifice Shape Effect”. In: p. 2887.

Sáez-Mischlich, Gonzalo, Sierra-Ausin, Javier, and Jérémie Gressier (2022). “The
Spectral Difference Raviart–Thomas Method for Two and Three-Dimensional
Elements and Its Connection with the Flux Reconstruction Formulation”. In:
Journal of Scientific Computing 93.2, pp. 1–54.

Sáez-Mischlich, Gonzalo, Sierra-Ausin, Javier, Gilles Grondin, et al. (2022). “On
the properties of high-order least-squares finite-volume schemes”. In: Journal
of Computational Physics 457, p. 111043.

Sierra-Ausin, J, M Lorite-Diez, et al. (2022). “Unveiling the competitive role of
global modes in the pattern formation of rotating sphere flows”. In: Journal
of Fluid Mechanics 942.

Sierra-Ausin, J., D Fabre, V Citro, et al. (2022). “Acoustic instability prediction
of the flow through a circular aperture in a thick plate via an impedance
criterion”. In: Journal of Fluid Mechanics 943.

Sierra-Ausin, Javier, Paul Bonnefis, et al. (2022). “Dynamics of a gas bubble
in a straining flow: Deformation, oscillations, self-propulsion”. In: Physical
Review Fluids 7.11, p. 113603.

BIBLIOGRAPHY 431



BIBLIOGRAPHY

Sierra-Ausin, Javier, Vincenzo Citro, Flavio Giannetti, et al. (2022). “Efficient
computation of time-periodic compressible flows with spectral techniques”.
In: Computer Methods in Applied Mechanics and Engineering 393, p. 114736.

Corrochano, A. et al. (2023). “Mode selection in concentric jets with resonance
1:2”. In: Journal of Fluid Mechanics (accepted).

Hirschberg, Lionel et al. (2023). “Linear Theory and Experiments for Laminar
Bias Flow Impedance”. In: AIAA (to be submitted).

Sierra-Ausin, J., D. Fabre, and E. Knobloch (2023). “Wake dynamics in buoyancy-
driven flows: steady state–Hopf mode interaction with O(2) symmetry revis-
ited”. In: Phys. Rev. E (submitted).

Sierra-Ausin, J. and F. Giannetti (2023). “On the linear and nonlinear mecha-
nisms for the tonal and broadband noise of subsonic rounded impinging jets”.
In: Journal of Fluid Mechanics (to be submitted).

Tirri, Antonia et al. (2023). “Linear stability analysis of fluid–structure interac-
tion problems with an immersed boundary method”. In: Journal of Fluids
and Structures 117, p. 103830.

432 BIBLIOGRAPHY


