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NOTATION

- Let c ∈ C,Re(c) (resp. Im(c) ) denote the real part (resp., the imaginary part) of c.

- Given n ∈ N, the norm of the space R
n is denoted by ♣ · ♣.

- A function α : R≥0 → R≥0 is said to be a class K function if α is nonnegative, increasing and

vanishing at 0 . It is said to be a class K∞ function if moreover it satisfies

lim
s→+∞

α(s) = +∞.

- A function β : R≥0 × R≥0 → R≥0 is said to be a class KL function if, for each nonnegative value s,

the function r → β(r, s) is a class K function and, for every positive value r, the function s → β(r, s)

is strictly decreasing and satisfies

lim
s→+∞

β(r, s) = 0.

- The identity operator associated to a Hilbert space H is denoted by IH .

- Given a Hilbert space H equipped with the scalar product ⟨·, ·⟩H .

- Given a positive value L, let us consider the function (t, x) ∈ R≥0 × [0, L] 7→ z(t, x) ∈ R. The term

zt or ∂tz (respectively zx or ∂xz) stands for the partial derivative of z with respect to t (respectively

with respect to x ). Similarly, zxxx or ∂xxx stands for the third derivative of z with respect to x. When

the function z depends only on x, z′ (respectively z′′′ ) denotes the first (repectively the third) spatial

derivative of z. When the function z depends only on t, ż = d
dt
z denotes the time derivative of z. We

use the notation żd to indicate the Dini derivative of z at t = 0. We recall that żd = lim sup
t→0

z(t)−z(0)
t

.

- Given two vector spaces E and F , L(E,F ) denotes the space of linear continuous applications

from E into F . If E is a normed vector space, we denote by ∥ · ∥E the norm on E. We denote by

E′ the dual space of E, that is, the space of all continuous linear functionals on E and we denote

by ⟨·, ·⟩E,E′ the dual product on E × E′.

- Given a positive value T ∈ [0,∞), the space of continuous functions on [0, T ] is denoted by C(0, T ).

Given k ∈ N
⋆, a function f is said to be of class Ck(0, T ) if dl

dtl f(t), where l ∈ ¶1, . . . , k♢, belongs

to the space C(0, T ).

- Given any subset of R denoted by Ω (R+ or an interval, for instance), Lp(Ω;Rn) denotes the set

of (Lebesgue) measurable functions f1, . . ., fn such that, for i = ¶1, . . . , n♢,
∫

Ω
♣fi(x)♣pdx < +∞

when p ̸= + ∞ and such that sup essx∈Ω♣fi(x)♣ < +∞ when p = +∞. The associated norms

are, for p ̸= +∞, ∥(f1, . . . , fn)∥p
Lp :=

∫
Ω

♣f1(x)♣pdx + . . . +
∫

Ω
♣fn(x)♣pdx and, for p = + ∞,

∥f1, . . . fn∥L∞(Ω;Rn) := sup essx∈[0,L]♣f1(x)♣ + . . . + ♣fn(x)♣. When n = 1, we simplify the notation

7
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and use Lp(Ω). For any p ∈ [1,∞], the Sobolev space W1,p(Ω) is defined by the set ¶f ∈ Lp(Ω) ♣
f ′ ∈ Lp(Ω)♢. For m ≥ 2, the Sobolev space Wm,p(Ω) is defined by the set ¶f ∈ Wm−1,p(Ω) ♣
f ′ ∈ Wm−1,p(Ω)♢. We also set Hm(Ω) = Wm,2(Ω). We say that the function f ∈ Lp

loc(Ω) (resp.

f ∈ Wm,p
loc (Ω)) if the restriction of fχK ∈ Lp(Ω) (resp. fχK ∈ Wm,p(Ω)) for every compact set K

contained in Ω, where χK is the characteristic function of the set K.

- The function sign is defined by

sign0(z) :=





−1 if z < 0,

0 if z = 0,

1 if z > 0.

- The set-valued function sign is defined by

sign(z) :=





−1 if z < 0,

[−1, 1] if z = 0,

1 if z > 0.

- For every x ∈ R, we use ⌊x⌋ to denote the integer part of a number x and we use ⌈x⌋m to denote

♣x♣m sign(x) with m ≥ 0.

- For x ∈ R
n with n ∈ N, we use xi with i = 0, 1 . . . , n− 1 to indicate the coordinates of x.
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CHAPTER 1

INTRODUCTION

In recent decades, considerable efforts have been devoted to the development of tools for the de-

sign of control laws ensuring the desired performances despite disturbances/uncertainties. The general

problems discussed in this thesis are the design of stabilizing feedback laws and output regulation for

infinite-dimensional systems subjected to disturbances/uncertainties.

Sliding mode control (see [116] for a good introduction to this topic) has been one of the most

popular robust control techniques in recent decades. These types of control laws are known to be robust

control and quite simple to implement. Sliding mode control design is split into two steps: firstly, a sliding

variable (sliding surface) is selected such that, once this variable equals zero, global asymptotic stability

is ensured; secondly, a discontinuous feedback-law is designed such that the trajectory reaches in a

finite time the sliding surface, that is defined from the sliding variable. This thesis aims to contribute on

the topic of sliding mode control in the context of infinite-dimensional systems. From this problem, a

question arises.

How to propose a systematic methodology for the design of sliding variables

for linear infinite-dimensional systems?

Question 1

Various methods of sliding variable design are already known for linear finite-dimensional systems

(see e.g, [116, Chapter 2],[39]). At the best of our knowledge, this question started in [98, 97, 96,

94] for infinite-dimensional systems. These articles use Lyapunov technique or regularization-based

technique or state space decomposition synthesis to tackle the asymptotic stability of linear infinite-

dimensional systems subjected to disturbances/uncertainties, with sliding mode control. The aim of this

thesis is to provide complementary results for linear infinite-dimensional systems subjected to distur-

bances/uncertainties.

Furthermore, sliding mode control needs the full information of the sliding variable. To answer the

previous question, we consider the sliding variable to be the scalar product of the state of the system

and an eigenfunction of the adjoint operator of the closed-loop system without disturbance. Thus, sliding

mode control needs the measurement of this scalar product.

However, in most cases, sensors can measure only a part of the state. Thus, in practical terms, it

may not be possible to measure the previous sliding variable. Therefore, instead of assuming that we

measure this sliding variable, we propose to assume that we measure some moments of the state of the

system. Hence, a second question arises.

9



Introduction

Is it possible to maintain the asymptotic stability of linear infinite-dimensional

systems subjected to disturbances by using the measurement of a few mo-

ments of the state of the system?

Question 2

Finally, we aim to contribute to the output regulation problem. The output regulation problem consists

in designing a feedback-law such that the output converges asymptotically towards a desired reference

and such that disturbances are rejected. This thesis aims at contributing to this topic for a nonlinear

Korteweg-de Vries equation by using integral action. To achieve this objective, we follow a Lyapunov

approach. Now, a third and last question can be stated

Is it possible to design a PI controller for Korteweg-de Vries equation using a

Lyapunov method?

Question 3

The manuscript is divided into three chapters. Chapter 1 tackles Question 1. Chapter 2 solves Ques-

tion 2 . Finally, Chapter 3 answers Question 3.

Here is the precise outline of the thesis.

Outline

• Chapter 2 deals with linear infinite-dimensional systems with an unbounded control operator. After

a presentation of our design methodology on a finite-dimensional example, we present a sliding

mode based control law, a super-twisting based control law for the infinite-dimensional system.

The well-posedness of the closed-loop system and its asymptotic stability are established using

techniques derived from the semigroup theory. Two illustrative examples are provided.

• Chapter 3 deals with the stabilization of a linear hyperbolic system subject to a boundary distur-

bance. Our feedback design relies on the active disturbance rejection control. The well-posedness

of the closed-loop system and its asymptotic/exponential stability are established using techniques

derived from the semigroup theory combined with Lyapunov techniques. A numerical example is

given to illustrate the efficiency of our strategy.

• Chapter 4 deals with the output regulation of a nonlinear Korteweg-de Vries equation subject to

a distributed disturbance. The control input and the regulated output are located at the boundary.

To achieve this objective, we follow a Lyapunov approach. To this end inspired by a strictifica-

tion methodology recently introduced in the finite-dimensional context [107], we construct an ISS-

Lyapunov functional for the Korteweg-de Vries equation thanks to the use of an observer which is

designed following the backstepping approach. Then, thanks to this Lyapunov functional, we apply

the forwarding approach in order to solve the desired output regulation problem.

10
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CHAPTER 2

SLIDING MODE CONTROL FOR LINEAR

INFINITE-DIMENSIONAL SYSTEMS

2.1 Introduction

This chapter is concerned with the stabilization of a class of linear infinite-dimensional systems with

unbounded control operators and subject to a boundary disturbance (see e.g, [14, 37, 71] for a review

on this class of system). To be more precise, we aim to design a sliding mode control (SMC) [44, 116,

128] for the stabilization of boundary or pointwise control for linear partial differential equations (PDEs).

We further propose a super-twisting control (STC), where, in contrast with the standard SMC strategy,

the control is continuous.

The boundary control of systems described by partial differential equations has received a lot of

attention for decades. It is still an important research line today because its application in many important

engineering systems is natural (see e.g., [11]). Such a problem has been studied in [110, 113, 31, 54]

in the controllability context, in [117, 127, 32, 29, 143, 68, 38] in terms of stabilization, to cite just few

papers dealing with this topic.

In this chapter, as mentioned earlier, we focus on the case where infinite-dimensional systems are

subject to a disturbance. Therefore, we are not only interested in the stabilization, but also in the rejection

of this disturbance. This might be interpreted as a regulation problem. In the case where the disturbance

is constant, one can follow a proportional integral (PI) strategy, which is quite well-known in the linear

finite-dimensional context, but which is still nowadays an active topic when dealing with PDEs (see e.g.,

[9, 76, 69, 122, 99]). For more complicated cases, i.e., when the disturbance is time-dependant, one

may apply the internal-model approach [99, 41, 109], which consists, roughly speaking, in adding the

dynamics of the disturbance in the loop of the controller, which requires therefore the knowledge of this

dynamics. Our strategy, based on SMC controllers, is in contrast with the latter one, since only the bound

of the disturbance is needed, at the price of assuming that the disturbance matches with the control (i.e.,

the control and the disturbance are located at the same place).

The SMC strategy has been proved to be efficient for robust control of nonlinear systems of ordinary

differential equations (ODEs) [116, 128, 44, 137]. Such controllers allow to force, thanks to discontinuous

terms, the trajectories of the system to reach in a finite-time a manifold, called the sliding surface, and

to evolve on it, this manifold being defined from control objectives. Basically, the design of the control

is split into two steps: firstly, a sliding variable is selected such that, once this variable equals zero,

global asymptotic stability is ensured; secondly, a discontinuous feedback-law is designed such that the

13



Chapter 2 – Sliding mode control for linear infinite-dimensional systems

trajectory reaches the sliding surface, that is defined thanks to the sliding variable. Once the surface is

reached, the disturbance is rejected. The generalization of the SMC procedure to the PDEs case is not

new. In [98, 97], a definition of equivalent control (which is the control applied to the system after reaching

the sliding surface, to ensure that the trajectories stays on the surface thereafter) for systems governed

by semilinear differential equations in Banach spaces has been proposed. One can refer also to [72,

73] where differential inclusions and viability theory are combined to design sliding mode controllers

for semilinear differential equations in Banach spaces. We also mention the use of spectral reduction

methods in [95] and the case where there are uncertain measurements in [144]. In the last decade, a

backstepping strategy has been used to select a sliding variable [55, 102, 130, 119, 79]. Note also that

the SMC feedback-law is discontinuous, which creates chattering phenomena when implementing the

control numerically. Recall that chattering phenomena are characterized by high frequency oscillations.

Therefore, in practical control cases, it is important to reduce this phenomena by providing continuous

or smooth controller.

Based on second-order sliding mode techniques (see e.g, [116, Chapter 4]), the super-twisting al-

gorithm has been developed for systems whose the sliding variable admits a relative degree (see [116,

Definition 1.6]) equal to 1. The essential feature of the super-twisting control is to require only the mea-

surement of the sliding variable to guarantee the convergence in finite-time to zero of the sliding variable

and its derivative. Moreover, the super-twisting feedback-law is continuous with respect to the state, and

this drastically attenuates the chattering phenomenon.

The aim of this chapter is to propose a strategy different from the ones that have been mentioned

earlier in order to design "classical" sliding mode controls and super-twisting sliding mode controls for

general linear infinite-dimensional systems. Indeed, the sliding variable is defined as the scalar product

of the state and an eigenfunction of the adjoint operator of the closed-loop system without disturbance.

This requires measurement of the scalar product of the state with some function. Such a sliding variable

allows to directly use well-known results on the stabilization of abstract infinite-dimensional systems

with unbounded control operators in the absence of disturbance [46, 127, 117] together with well-known

results about the finite-time convergence of the sliding variable in the context of the finite dimension [91,

105, 128]. In comparison with [98, 97, 72, 73], the approach proposed in this chapter allows to define

explicitly and systematically the sliding variable for a large class of linear infinite-dimensional systems.

This chapter is organized as follows. Section 2.2 provides an overview of our design strategy through

a finite-dimensional example. Section 2.3 presents a class of linear infinite-dimensional system with an

unbounded control operator, the sliding mode based control law, the super-twisting based control law

and the main results of the chapter. Section 2.4 introduces an illustrative example. Finally, Section 2.5

collects some remarks

2.2 Basic idea of SMC

The purpose of this section is to provide an overview of the strategy that will be proposed for infinite-

dimensional systems through a finite-dimensional example. It should be noted that the sliding surface

design strategy proposed in this section is different from existing methods given in [116, Chapter 2].

14
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Figure 2.1: System (2.1) for d = 0: w1, w2, w3 versus time, with the feedback law (2.2).

Let us consider the following system





ẇ1 = −w1 + w2,

ẇ2 = −w1 + w3,

ẇ3 = u+ d,

(2.1)

where u is the control and d is an unknown disturbance. The goal is to design a feedback control u

that drives the trajectories of (2.1) to the origin asymptotically, despite the presence of the unknown

disturbance d. For example, when the system (2.1) is undisturbed i.e., d = 0, the feedback-law

u = −w1 − w2 − w3 (2.2)

provides asymptotic stability of the origin of (2.1) (see Figure 2.1). If the unknown disturbance is bounded

then the feedback-law (2.2) drives the states of (2.1) to a bounded domain (see Figure 2.2).

2.2.1 Sliding mode Control

Since the feedback-law (2.2) allows to stabilize asymptotically the origin of (2.1) with d = 0, we are

going to add to the feedback-law a second term uSMC that will compensate the effect of the disturbance

and will make the closed-loop system asymptotically stable in the presence of the disturbance. Thus, if

we select u as

u = −w1 − w2 − w3 + uSMC =
(

−1 −1 −1



w1

w2

w3


+ uSMC , (2.3)

15
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Figure 2.2: System (2.1) for d(t) = sin(t): w1, w2, w3 versus time, with the feedback law (2.2).

then the system (2.1) can be written as follows:



ẇ1

ẇ2

ẇ3


 = AL



w1

w2

w3


+B(uSMC + d) (2.4)

with

AL = A+BL, A =




−1 1 0

−1 0 1

0 0 0


 , B =




0

0

1


 andL =

(
−1 −1 −1


. (2.5)

Now, through a simple calculation, we can see that

λ =
1

3

(
−2 − 5 3

√
2

9
√

29 − 43
+

3

√
1

2
(9

√
29 − 43)

)
≈ −1.39265 (2.6)

is an eigenvalue of A⊤
L and φ =




1 + λ+ λ2

1 + λ

1


 is an eigenvector of A⊤

L associated to λ, where A⊤
L is the

transpose matrix of AL. Then, let us introduce the following surface

Σ :=







w1

w2

w3


 ∈ R

3 ♣
〈

w1

w2

w3


 , φ

〉

R3

= (1 + λ+ λ2)w1 + (1 + λ)w2 + w3 = 0





(2.7)
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2.2. Basic idea of SMC

Since on the surface Σ, w3 = −aw1 − bw2 with

{
a = 1 + λ+ λ2,

b = 1 + λ,
(2.8)

then, on Σ, the system (2.4) is equivalent to





ẇ1 = −w1 + w2,

ẇ2 = −(1 + a)w1 − bw2,

w3 = −aw1 − bw2.

(2.9)

With the following Lyapunov function

V (w1, w2) =
(
w1 w2


P

(
w1

w2

)
(2.10)

we can prove that w1, w2 and w3 converge to zero asymptotically, where P is given by

P =

(
−γ+β2−β+1
2(β−1)(γ+β)

1−γβ
2(β−1)(γ+β)

1−γβ
2(β−1)(γ+β)

γ2−γ−β+1
2(β−1)(γ+β)

)
, β = −b, γ = −(1 + a). (2.11)

Note that, the disturbance d does not appear in (2.9). Then, the idea of SMC is to drive in finite-time the

trajectories of system (2.1) on the surface Σ and to maintain the motion on Σ by means of the control.

To achieve this goal, let us introduce a new variable σ given by

σ =

〈

w1

w2

w3


 , φ

〉

R3

. (2.12)

Thus, if we drive σ to zero in finite-time by means of the control, then asymptotic convergence of the

state variable to zero, in the presence of the disturbance, can be achieved. Let us prove this. From (2.4),

the σ-dynamics yields

σ̇ =

〈

ẇ1

ẇ2

ẇ3


 , φ

〉

R3

=

〈
AL



w1

w2

w3


+B(uSMC + d), φ

〉

R3

=

〈
AL



w1

w2

w3


 , φ

〉

R3

+ ⟨B,φ⟩
R3 (uSMC + d)

(2.13)

Since φ is an eigenvector of A⊤
L and ⟨B,φ⟩

R3 = 1, then we obtain from (2.13)

σ̇ = λσ + uSMC + d. (2.14)

Let us consider the following candidate Lyapunov function for the σ-dynamics

V (σ) =
1

2
σ2. (2.15)
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Chapter 2 – Sliding mode control for linear infinite-dimensional systems

Then, the derivative of V along of the trajectory of (2.14) yields

V̇ (σ) = σσ̇ = σ (λσ + uSMC + d) = λσ2 + σ (uSMC + d) . (2.16)

Since λ < 0 then, we have

V̇ (σ) ≤ σuSMC + ♣σ♣♣d♣. (2.17)

Therefore, if we assume that the disturbance d is bounded, i.e., ∥d∥L∞(R+) ≤ M with M a positive

constant, then by selecting

uSMC = −ρ sign(σ) (2.18)

with ρ > M , we obtain

V̇ (σ) ≤ −♣σ♣(ρ−M). (2.19)

As a consequence, σ reaches zero in a finite-time tr that is bounded by

tr ≤ ♣σ(0)♣
ρ−M

. (2.20)

Finally, with the control (2.3)-(2.18), the trajectories of the system (2.1) reach the surface Σ in finite-time

tr and remain on it despite the presence of the bounded disturbance d. The control (2.3)-(2.18) is called

sliding mode controller, the variable σ is called the sliding variable and the surface Σ is called the sliding

surface.

The results of the simulation of the system (2.1) with the control (2.3)-(2.18), the control gain ρ = 1.2

and the disturbance d(t) = sin(t) are presented in Figures 2.3-2.5. Figure 2.3 shows the asymptotic

convergence of the state variables to zero in the presence of the disturbance. In Figure 2.4, the control

input u appears. Figure 2.5 shows that the sliding surface is reached in finite-time.
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Figure 2.3: System (2.1) for d(t) = sin(t): w1, w2, w3 versus time, with the feedback law (2.3)-(2.18).
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Figure 2.4: Control input (2.3)-(2.18) versus time.
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Figure 2.5: Sliding variable (2.12) versus time, with the feedback law (2.3)-(2.18).

As mentioned before, the SMC feedback-law is discontinuous, which creates chattering phenomenon

when implementing the control numerically as we see in Figure 2.3 and Figure 2.4. We are going to

propose in the next section a feedback-law which allows to attenuate the chattering phenomenon.

2.2.2 Super-twisting control

In the previous section, we saw that the control (2.3)-(2.18) is discontinuous, which created chattering

phenomenon when implementing the control numerically. However, in an application, it is important to

reduce this phenomenon by providing a continuous or a smooth controller, while keeping the robustness

of the control with respect to the disturbance.

Let us start by assuming for instance that d = 0 and consider the following continuous control

u = −w1 − w2 − w3 − λσ − α♣σ♣ 1
2 sign(σ), α > 0. (2.21)

Then, the sliding variable dynamics (2.13) becomes

σ̇ = −α♣σ♣ 1
2 sign(σ). (2.22)

Thus, the derivative of V defined in (2.15) along the trajectory of (2.22) yields

V̇ (σ) = −α♣σ♣ 3
2 = −α(

√
2)

3
2V

3
4 . (2.23)

As a consequence, σ reaches zero in a finite-time tr that is bounded by

tr ≤ 2
♣σ(0)♣ 1

2

α
. (2.24)
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2.2. Basic idea of SMC

Now, let us consider the case where d ̸= 0. Then, it is easy to see that the control (2.21) does not drive

the sliding variable σ to zero. In order to compensate the effect of the disturbance, we add a term to the

control in (2.21). Precisely, we consider the following feedback-law

{
u = −w1 − w2 − w3 − λσ − α♣σ♣ 1

2 sign(σ) + v,

v̇ = −β sign(σ)
(2.25)

with β > 0. Then, the dynamics of the sliding variable (2.13) becomes

{
σ̇ = −α♣σ♣ 1

2 sign(σ) + v + d

v̇ = −β sign(σ).
(2.26)

If we assume that d is globally Lipschitz over R+ then, according to the following transformation

z = d+ v, (2.27)

the system (2.26) is rewritten as {
σ̇ = −α♣σ♣ 1

2 sign(σ) + z

ż = −β sign(σ) + ḋ.
(2.28)

In addition, if we assume that the disturbance satisfy ∥ḋ∥L∞(R+) ≤ C with C a positive constant, then by

selecting

β > C and α >
√
β + C,

there exists a finite-time tr > 0 such that σ = 0 and z = 0 for any t > tr according to [115, Theorem

1]. Thus, with the control (2.25), the trajectories of the system (2.1) reach the surface Σ in finite-time

tr and remain on it despite the presence of the disturbance d. The control defined in (2.25) is called

super-twisting control. Note that, it is continuous since both −α♣σ♣ 1
2 sign(σ) and v are continuous.

The results of the simulation of the system (2.1) with the control (2.25), the control gains β = 1.2,

α = 2 and the disturbance d(t) = sin(t) (C = 1) are presented in Figures 2.6-2.9. Figure 2.6 shows the

asymptotic convergence of the state variable to zero in the presence of the disturbance. In Figure 2.7,

the continuous control input u appears. Figure 2.8 shows that the sliding surface is reached in finite-time.

Figure 2.9 shows that, after a reaching time, the term v of the controller is almost equal to the distur-

bance −d. This shows that, once the sliding mode is reached, the perturbation can be reconstructed

from the term v appearing in the feedback control law (2.25). If we compare Figures 2.3 and 2.4 with

Figures 2.6 and 2.7, respectively, we remark that the chattering phenomenon is greatly attenuated when

using the super-twisting control.

21



Chapter 2 – Sliding mode control for linear infinite-dimensional systems

0 5 10 15 20 25 30 35 40 45 50

t

-4

-2

0

2

4

6

8

10

15 20 25 30 35 40 45 50

t

-0.01

-0.005

0

0.005

0.01

w
1

w
2

w
3

Figure 2.6: System (2.1) for d(t) = sin(t): w1, w2, w3 versus time, with the feedback law (2.25).
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Figure 2.7: Control input (2.25) versus time.
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Figure 2.8: Sliding variable (2.12) versus time, with the feedback law (2.25).
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Figure 2.9: The term −v in (2.25) and the disturbance d(t) = sin(t) versus time.

Note that the most important point of the strategy is the choice of the sliding variable. Once the

suitable sliding variable is chosen, the remainder of the strategy can be easily applied. Note that sufficient

conditions for this sliding variable design are as follows;
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Chapter 2 – Sliding mode control for linear infinite-dimensional systems

• the pair (A,B) is stabilizable i.e., there exists a matrix L such that the eigenvalues of AL :=

A+BL belong to C−;

• select an eigenvector φ of A⊤
L such that B⊤φ ̸= 0.

Let us explain how one select such an eigenvector. For this, we distinguish the two possible cases.

First case: the matrix L ̸= 0. In this case, there exists an eigenvalue λ ofA⊤
L such that ker

(
A⊤

L − λId

)
̸⊂

B⊥, where B⊥ is the set of orthogonal vectors to B and Id is the identity matrix. Indeed, let us assume

that,

for all eigenvalueλ ofA⊤
L we have ker

(
A⊤

L − λId

)
⊂ B⊥. (2.29)

Then, for all eigenvalue λ of A⊤
L and for all φ ∈ ker

(
A⊤

L − λId

)
, we have

{
A⊤

Lφ = λφ

B⊤φ = 0.
(2.30)

Since A⊤
L = A⊤ + L⊤B⊤, then, from (2.30), we obtain for all eigenvalue λ of A⊤

L and for all φ ∈
ker
(
A⊤

L − λId

)

A⊤
Lφ = λφ ⇔ A⊤φ = λφ. (2.31)

Thus, A⊤
L and A⊤ have the same spectrum, which is impossible. As a result, the assumption in (2.29) is

not correct.

Second case: the matrix L = 0. In this case, the matrix A is Hurwitz. Then, either there is an eigen-

vector φ of A⊤
L such that B⊤φ ̸= 0, or there is no such eigenvector. If such a vector does not exists and

if the pair (A,B) is stabilizable, then we find ourselves in the previous case.

As a consequence, in both cases, one can always select an eigenvector φ such that B⊤φ ̸= 0 and, to

apply our strategy, it suffices therefore to assume the stabilizability of (A,B). This relaxes the restriction

of the controllability of the pair (A,B) if we compare our sliding surface design for instance with the

method based on eigenvalue placement algorithms [116, Chapter 2].

2.3 SMC for linear infinite-dimensional systems

All along this section, H is a Hilbert space on K ( K is either R or C) equipped with a scalar product

⟨·, ·⟩H and a norm ∥ · ∥H .
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2.3. SMC for linear infinite-dimensional systems

2.3.1 Problem Statement

In this section we are interested in the stabilization (at the origin) problem for the system





d

dt
w = Aw +B(u+ d),

w(0) = w0,

(2.32)

where w(t) ∈ H is the state, u(t) ∈ K is the control input and d(t) ∈ K is an unknown disturbance.

In system (2.32), A : D(A) ⊆ H → H is a linear operator with D(A) densely defined in H and B ∈
L(K, D(A∗)′), with A∗ the adjoint operator of A. Our objective is to provide a design method so that

system (2.32) is globally stabilized despite the disturbance d. To do so, we will follow the sliding mode

strategy.

This strategy can be applied thanks to the following set of assumptions.

Assumption 1 The following statements hold.

(i) The operator A : D(A) ⊆ H → H generates a strongly continuous semigroup, that is

denoted by (T(t))t≥0.

(ii) The operator B is admissiblea for (T(t))t≥0.

(iii) There exists an operator L : D(L) → K such that the operator

{
AL = A+BL,

D(AL) = ¶w ∈ D(L); (A+BL)w ∈ H♢,
(2.33)

is the infinitesimal generator of a strongly continuous semigroup (S(t))t≥0 on H and the

origin of the following system 



d

dt
w = (A+BL)w,

w(0) = w0,

(2.34)

is globally asymptotically stable.

aSee e.g [125, Section 4.2]

Items (i) and (ii) allow to state the well-posedness of system (2.32) in H with u ∈ L2
loc([0,+∞),K).

Finally, Item (iii) of Assumption 1 refers to a stabilizability property of system (2.32), needed to ensure

that, without disturbance, the system can be stabilized.

The disturbance d is not supposed to be known entirely, but we assume the knowledge of its bound.

Assumption 2 The unknown disturbance d is supposed to be uniformly bounded measurable,

i.e., ♣d(t)♣ ≤ Kd for some Kd > 0 and for a.e. t ≥ 0.

Remark 1 Note that Item (iii) of Assumption 1 has been proven in [127, Theorem 2.1] in the case where
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Chapter 2 – Sliding mode control for linear infinite-dimensional systems

the pair (A,B) is exactly controllable in time T .

Our goal is to find a state feedback control u which allows to reject the disturbance and to globally

asymptotically stabilize the system (2.32) around 0. Precisely, we are looking for a sliding surface on

which the system (2.32) has the same behavior than the system (2.34) in a finite-time. According to Item

(iii) of Assumption 1, we know that 0 is globally asymptotically stable for the system (2.34). The next

section will provide a definition of this sliding surface (and its related sliding variable), the associated

sliding mode controllers and the associated super-twisting controllers.

2.3.2 Sliding surface

Let φ ∈ D(A∗
L) := ¶φ ∈ H ♣ ∃c > 0,∀ϕ ∈ D(AL), ♣⟨φ,AL(ϕ)⟩H ♣ ≤ c∥ϕ∥H♢ be an eigenfunction of

the adjoint operator of AL such that B∗φ ̸= 0 and λ the eigenvalue associated with φ. We introduce the

following sliding surface Σ

Σ := ¶w ∈ H ♣ ⟨φ,w⟩H = 0♢ .

Its related sliding variable σ : R+ → K is defined by

σ(t) := ⟨φ,w(t)⟩H (2.35)

for any solution w of (2.32). This sliding variable represents the scalar product between the state and an

eigenfunction of A∗
L.

This section is devoted to the design of a sliding mode controller and a super-twisting controller. In

the following section, we begin with the design of the sliding mode control.

Sliding mode control

Since B∗φ ̸= 0 then, we consider the sliding mode controller u defined by, for a.e. t ≥ 0,

u(t) = Lw(t) − 1

B∗φ


λσ(t) +K sign(σ(t))


, (2.36)

where σ is given in (2.35), K is a positive constant that will be chosen later. Moreover, the set-valued

function sign is defined by

sign(s) =

{
s

♣s♣ if s ̸= 0,

¶z ∈ K ♣ ♣z♣K ≤ 1♢ if s = 0.

Note that, since B∗ ∈ L(D(A∗),K), then B∗φ ∈ K. Thus, we make the following assumption about the

constant K.

Assumption 3 The constant K is chosen such that K
♣B∗φ♣ > Kd.
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2.3. SMC for linear infinite-dimensional systems

Then, the closed-loop system (2.32)-(2.36) can be written as





d

dt
w ∈ ALw +B

(
d− 1

B∗φ


λσ(t) +K sign(σ(t))

)
,

w(0) = w0.

(2.37)

The notion of solution for this system is defined in Definition 2.

Formally, the derivative of σ along the trajectory of (2.37) yields, for a.e. t ≥ 0

σ̇(t) = ⟨φ, d

dt
w(t)⟩H

= ⟨φ,ALw(t)⟩H +B∗φ

(
d(t) − 1

B∗φ


λσ(t) +K sign(σ(t))

)

= ⟨A∗
Lφ,w(t)⟩H +B∗φ

(
d(t) − 1

B∗φ


λσ(t) +K sign(σ(t))

)
(2.38)

= λ⟨φ,w(t)⟩H +B∗φ

(
d(t) − 1

B∗φ


λσ(t) +K sign(σ(t))

)

σ̇(t) ∈ B∗φ


d(t) − K

B∗φ
sign(σ(t))



with A∗
Lφ = λφ. Then, the following holds, for a.e. t ≥ 0

1

2

d

dt
♣σ(t)♣2 = Re

(
σ̄(t)σ̇(t)

)

= Re


σ̄(t)B∗φ

(
d(t) − K

B∗φ
sign(σ(t))

)

≤ −(K − ♣B∗φ♣Kd)♣σ(t)♣.

(2.39)

as long as σ(t) ̸= 0. Therefore, separating variables and integrating inequality (2.39) over the time

interval 0 ≤ s ≤ t, we obtain

♣σ(t)♣ ≤ ♣σ(0)♣ − (K − ♣B∗φ♣Kd)t. (2.40)

Thus, there exists a finite-time tr > 0, for which we know a bound that will be given later on, such that

σ(t) = 0 for any t > tr. This means that the system (2.37) reaches the sliding surface Σ in finite-time tr
and remains on it. Since σ(t) = 0 for any t > tr, then σ̇(t) = 0 for any t > tr. Thus, from (2.38), we have

0 ∈ d(t) − K
B∗φ

sign(σ(t)) for any t > tr.

The next section focuses on the design of the super-twisting control.

Super-twisting control

In this section, we make the following assumption about the disturbance.
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Chapter 2 – Sliding mode control for linear infinite-dimensional systems

Assumption 4 The disturbance d(·) is globally Lipschitz over R+ and there exists a known pos-

itive constant C such that, for a.e. t ∈ R+,

♣ḋ(t)♣ ≤ C. (2.41)

We assume that K = R. We do not treat the complex case, since we are not aware whether there

exist super-twisting controllers for system whose state is in C. We consider the super-twisting controller

u defined by, for all t ≥ 0,




u(t) = Lw(t) +

1

B∗φ


− λσ(t) − α♣σ(t)♣ 1

2 sign(σ(t)) + v(t)


,

v̇(t) ∈ −β sign(σ(t)),

(2.42)

where σ is given in (2.35), α and β are positive constants which will be chosen later.

Formally, the derivative of σ along the trajectory of (2.32)-(2.42) yields, for all t ≥ 0

σ̇(t) = ⟨φ, d

dt
w(t)⟩H

= ⟨φ,ALw(t)⟩H +B∗φd(t) − λσ(t) + v(t) − α♣σ(t)♣ 1
2 sign(σ(t))

= λσ(t) − λσ(t) +B∗φd(t) + v(t) − α♣σ(t)♣ 1
2 sign(σ(t)) (2.43)

= −α♣σ(t)♣ 1
2 sign(σ(t)) + v(t) +B∗φd(t).

Then, according to the following transformation

z(t) = B∗φd(t) + v(t), (2.44)

we obtain {
σ̇(t) = −α♣σ(t)♣ 1

2 sign(σ(t)) + z(t),

ż(t) ∈ B∗φḋ(t) − β sign(σ(t)).
(2.45)

From [115, Theorem 1], all trajectories of (2.45) converge to zero in a finite time.

Proposition 1 ([115, Theorem 1]) Assuming that

β > ♣B∗φ♣C and α >
√
β + ♣B∗φ♣C, (2.46)

there exists a finite-time tr > 0 such that σ(t) = 0 and z(t) = 0 for any t > tr.

Then, the closed-loop system (2.32)-(2.42) can be written as





d

dt
w = ALw +B

(
1

B∗φ


− λσ(t) − α♣σ(t)♣ 1

2 sign(σ(t)) + z(t)

)
,

ż(t) ∈ B∗φḋ(t) − β sign(σ(t)),

w(0) = w0 ∈ H, z(0) = z0 ∈ R.

(2.47)
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Main results

The equations (2.38) and (2.45) are understood in the sense of Filippov [48, Chapter 2]. We recall

the definition.

Definition 1 A Filippov solution of (2.38) (resp., of (2.45)) is an absolutely continuous map that satisfies

(2.38) (resp. (2.45)) for almost all t ≥ 0.

The solutions of (2.37) are understood in the sense of the following definition.

Definition 2 Let w0 ∈ H. We say that the map w : [0,∞) → H is a mild solution of (2.37), if w ∈
C([0,∞);H) ∩ H1

loc([0,∞);D(A∗)′) such that, for all t ∈ [0,∞),

w(t) = S(t)w0 +

∫ t

0

S(t− s)Bh(s)ds, (2.48)

where A∗ is the adjoint operator of A, (S(t))t≥0 is the strongly continuous semigroup generated by the

operator AL and h : [0,∞) → K is in L2
loc([0,∞);K) and satisfies, for a.e. t ≥ 0,

h(t) ∈ − 1

B∗φ


λσ(t) +K sign(σ(t))


+ d(t) (2.49)

with σ given in (2.35).

The following definition indicates how the solutions of (2.47) are understood.

Definition 3 Let w0 ∈ H and z0 ∈ R. We say that the map w : [0,∞) → H and z : [0,∞) → R is a mild

solution of (2.47), if w ∈ C([0,∞);H) ∩ H1
loc([0,∞);D(A∗)′) and z is absolutely continuous such that,

for all t ∈ [0,∞), w(t) = S(t)w0 +

∫ t

0

S(t− s)Bω(s)ds (2.50)

and

for a.e. t ∈ [0,∞), ż(t) ∈ B∗φḋ(t) − β sign(σ(t)), (2.51)

where A∗ is the adjoint operator of A, (S(t))t≥0 is the strongly continuous semigroup generated by the

operator AL and

ω(t) =
1

B∗φ


− λσ(t) − α♣σ(t)♣ 1

2 sign(σ(t)) + z(t)


(2.52)

with σ given in (2.35).

Note that Definition 2 and Definition 3 are based on the concept of mild solution1.

Before presenting the results of this chapter, we present the following definition of the equilibrium

point of systems (2.37) and (2.47).

1See e.g [125, Definition 4.1.5]
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Definition 4 1. We say that w̃ ∈ H is an equilibrium point of system (2.37) , if w̃ ∈ D(AL) and there

exists w̃∗ ∈ [−Kd,Kd] − K
B∗φ

(λ⟨φ, w̃⟩H + sign(⟨φ, w̃⟩H)) such that

ALw̃ +Bw̃∗ = 0. (2.53)

2. We say that (w̃, z̃) ∈ H × R is an equilibrium point of system (2.47), if (w̃, z̃) ∈ D(AL) × R such

that

ALw̃ +B

(
1

B∗φ


− λ⟨φ, w̃⟩H + z̃ − α♣⟨φ, w̃⟩H ♣ 1

2 sign
(
⟨φ, w̃⟩H

)
)

= 0

and

0 ∈ B∗φ[−C,C] − β sign
(
⟨φ, w̃⟩H

)
. (2.54)

Remark 2 One can check that 0 ∈ H (resp., (0, 0) ∈ H × R) is an equilibrium point of (2.37) (resp.,

(2.47)).

The main results of this chapter can be formulated as follows:

Theorem 1 (Existence of solutions) 1. Assume that Assumption 1, Assumption 2 and As-

sumption 3 are satisfied. Therefore, for any initial condition w0 ∈ H, the closed-loop system

(2.37) admits a mild solution.

2. Assume that Assumption 1, Assumption 4 and Equation (2.46) are satisfied. Therefore,

for any initial condition w0 ∈ H and z0 ∈ R, the closed-loop system (2.47) admits a mild

solution.

The proof is given in the Appendix A. The next result of this chapter is stated as follows:

Theorem 2 (Global asymptotic stability) 1. Assume that Assumption 1, Assumption 2 and

Assumption 3 are satisfied. For any initial condition w0 ∈ H, 0 ∈ H is globally asymptotically

stable for (2.37).

2. Assume that Assumption 1, Assumption 4 and Equation (2.46) are satisfied. For any initial

condition (w0, z0) ∈ H × R,

(
0

0

)
∈ H × R is globally asymptotically stable for (2.47).

The proof is given in the Appendix A.
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2.4 Illustrative examples

2.4.1 Heat equation

Consider the following system





∂tw(t, x) = ∂xxw(t, x), (t, x) ∈ R≥0 × (0, 1),

∂xw(t, 0) = c0w(t, 0), t ∈ R+,

∂xw(t, 1) = u(t) + d(t), t ∈ R+,

w(0, x) = w0(x),

(2.55)

where c0 is a positive constant, u(t) ∈ R is the control input and d(t) ∈ R is an unknown disturbance.

This equation can be written in an abstract way as in (2.32) if one sets H = L2(0, 1),

A : D(A) ⊂ L2(0, 1) → L2(0, 1),

w 7→ w′′,
(2.56)

where

D(A) := ¶w ∈ H2(0, 1) ♣ w′(0) = c0w(0); w′(1) = 0♢, (2.57)

and the control operator B is the delta function in L(R, D(A)′) defined as follows

⟨φ,Bu⟩D(A),D(A)′ = φ(1)u (2.58)

for all u ∈ R and φ ∈ D(A), where ⟨·, ·⟩D(A),D(A)′ is a dual product. The adjoint operator of A is

A∗ : D(A∗) ⊂ H → H,

w 7→ w′′,
(2.59)

with D(A∗) := ¶w ∈ H2(0, 1) ♣ w′(0) = c0w(0); w′(1) = 0♢. It can be checked that the operator A is

self-adjoint in H. The adjoint of operator of B is

B∗ : D(A∗) → R

φ 7→ φ(1).
(2.60)

According to [79, Lemma 2.1 and 2.2], A generates a strongly continuous semigroup (T(t))t≥0 of con-

tractions on H and the operator B is admissible for the semigroup (T(t))t≥0. Thus, the operators A and

B satisfy the Items (i) and (ii) Assumption 1. Moreover, according to [79, Lemma 2.1], the origin of





∂tw(t, x) = ∂xxw(t, x), (t, x) ∈ R≥0 × (0, 1),

∂xw(t, 0) = c0w(t, 0), t ∈ R+,

∂xw(t, 1) = 0, t ∈ R+,

w(0, x) = w0(x),

(2.61)
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is globally exponentially stable in H. As a consequence, Item (iii) of Assumption 1 holds for the operator

L equal to the zero operator.

Since A is self-adjoint, then its spectrum is real. Therefore, a direct computation gives that the eigen-

pairs (λ, φλ) of A satisfies




φλ(x) = cos(

√
−λx) +

c0√
−λ

sin(
√

−λx),

√
−λ tan(

√
−λ) = c0.

(2.62)

The function x ∈ R \ ¶ π
2 + kπ; k ∈ Z♢ 7→ tan(x) is surjective. Thus, the equation

√
−λ tan(

√
−λ) = c0

admits a solution. Note that λ is negative, since the origin of (2.61) is globally exponentially stable in H.

Let φλ ∈ D(A) the eigenfunction of the operator A associated to λ. The sliding variable and the

feedback-law under consideration are as follows

σ(t) =

∫ 1

0

w(t, x)φλ(x)dx and

u(t) = − 1

φλ(1)

(
λσ(t) +K sign(σ(t))

)
. (2.63)

Thus, if we choose d and K as in Assumption 2 and 3, we can conclude that the origin of





∂tw(t, x) = ∂xxw(t, x), (t, x) ∈ R≥0 × (0, 1),

∂xw(t, 0) = c0w(t, 0), t ∈ R+,

∂xw(t, 1) ∈ − 1

φλ(1)

(
λσ(t) +Ksign(σ(t))

)
+ d(t), t ∈ R+,

w(0, x) = w0(x),

(2.64)

is globally asymptotically stable in H. On the other hand, the super-twisting control under consideration

is as follows 


u(t) =

1

φλ(1)


− λσ(t) − α♣σ(t)♣ 1

2 sign(σ(t)) + v(t)


,

v̇(t) ∈ −β sign(σ(t)).

(2.65)

Therefore, if we choose d as in Assumption 4, β and α as in (2.46) we can conclude that the origin of





∂twt(t, x) = ∂xxw(t, x), (t, x) ∈ R≥0 × (0, 1),

∂xw(t, 0) = c0w(t, 0), t ∈ R+,

∂xw(t, 1) =
1

φλ(1)


− λσ(t) − α♣σ(t)♣ 1

2 sign(σ(t)) + v(t)


+ d(t), t ∈ R+,

w(0, x) = w0(x),

(2.66)

is globally asymptotically stable in H.

Using the finite difference method [77], we performed some numerical simulations. We choose λ =

−2c0 − π2 which is an approximated solution of
√

−λ tan(
√

−λ) = c0, c0 = 0.5, K = 2.5, w0(x) = 10x3
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and d(t) = 2 sin (t). The space and time steps are taken as 0.1 and 0.0001, respectively. In Figure 2.11

the control input u defined in (2.63) makes chattering phenomenon appearing once the sliding variable

has converged (see Figure 2.12). In Figure 2.10, the stabilization of w of (2.64) is illustrated.

Figure 2.10: Sliding mode control (2.63): state of system (2.64) versus space and time.
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Figure 2.11: Sliding mode control (2.63): control input u versus time.
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Figure 2.12: Sliding mode control (2.63): sliding variable σ versus time.

Figures 2.14, 2.15 and 2.13 are obtained with the same settings as the Figures 2.11, 2.12 and 2.10

with β = 2.5 and α = 2.2 in he case of super-twisting control (2.65). It must be noted that, thanks to

the use of super-twisting algorithm, the chattering on u has been removed (super-twisting is continuous)

whereas the stabilization is kept.

Figure 2.13: Super-twisting control (2.65): state of the system (2.66) versus space and time.
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Figure 2.14: Super-twisting control (2.65): control input u versus time.
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Figure 2.15: Super-twisting control (2.65): sliding variable σ versus time.
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2.4.2 Linear hyperbolic system

Consider the following system





∂tw1(t, x) + λ1∂xw1(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

∂tw2(t, x) − λ2∂xw2(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

w1(t, 0) = u(t) + d(t),

w2(t, 1) = k2w1(t, 1),

w1(0, x) = w0
1(x), w2(0, x) = w0

2(x),

(2.67)

where λ1, λ2 are positive constants, k2 ∈ R \ ¶0♢, u(t) ∈ R is the control input and d(t) ∈ R is an

unknown disturbance. This system has been studied in [78] and the results were obtained in Lp(0, 1)

with p ∈ [1,∞]. Here, we present the results in L2(0, 1).

The system (2.67) can be written in an abstract way as in (2.32) if one sets H = L2(0, 1;R2),

A : D(A) ⊂ L2(0, 1,R2) → L2(0, 1;R2),
(
w1

w2

)
7→
(

−λ1w
′
1

λ2w
′
2

)
,

(2.68)

where

D(A) :=

{(
w1

w2

)
∈ H1(0, 1;R2) ♣ w1(0) = 0, w2(1) = k2w1(1)

}
. (2.69)

Since λ1 and λ2 are positive constants, define a scalar product onH as follows: for all

(
w1

w2

)
,

(
φ1

φ2

)
∈ H,

〈(
w1

w2

)
,

(
φ1

φ2

)〉
:=

∫ 1

0

1

λ1
w1(x)φ1(x)dx+

∫ 1

0

1

λ2
w2(x)φ2(x)dx. (2.70)

Thus, the adjoint operator of A is

A∗ : D(A∗) ⊂ L2(0, 1,R2) → L2(0, 1;R2),
(
w1

w2

)
7→
(
λ1w

′
1

−λ2w
′
2

)
,

(2.71)

where

D(A∗) :=

{(
w1

w2

)
∈ H1(0, 1;R2) ♣ w2(0) = 0, w1(1) = k2w2(1)

}
. (2.72)

Then, the control operator B ∈ L(R, D(A)′) is defined as follow

〈(
φ1

φ2

)
, Bu

〉

D(A),D(A)′

= φ1(0)u (2.73)
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for all u ∈ R and

(
φ1

φ2

)
∈ D(A), where ⟨·, ·⟩D(A),D(A)′ is a dual product.The adjoint of operator of B is

B∗ : D(A∗) → R
(
φ1

φ2

)
7→ φ1(0).

(2.74)

We can prove as in the proof of [11, Theorem A.1] that A generates a strongly continuous semigroup

(T(t))t≥0 of contractions on H. As in Appendix B, we can prove that the operator B is admissible for the

semigroup (T(t))t≥0. Thus, the operators A and B satisfy the Items (i) and (ii) Assumption 1. Moreover,

according [11, Theorem 2.4.], the origin of





∂tw1(t, x) + λ1∂xw1(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

∂tw2(t, x) − λ2∂xw2(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

w1(t, 0) = k1w2(0),

w2(t, 1) = k2w1(t, 1),

w1(0, x) = w0
1(x), w2(0, x) = w0

2(x),

(2.75)

is globally exponentially stable in H with ♣k1k2♣ < 1. As a consequence, Item (iii) of Assumption 1 holds

with the operator L defined as

L : H1(0, 1;R2) ⊂ L2(0, 1;R) → R,
(
w1

w2

)
7→ k1w2(0),

(2.76)

and the operator AL define as





AL

(
w1

w2

)
=

(
−λ1w

′
1

λ2w
′
2

)
,

D(AL) =

{(
w1

w2

)
∈ H1(0, 1;R2) ♣ w1(0) = k1w2(0), w2(1) = k2w1(1)

}
.

(2.77)

Thus, the adjoint operator of AL is

A∗
L : D(A∗

L) ⊂ L2(0, 1,R2) → L2(0, 1;R2),
(
w1

w2

)
7→
(
λ1w

′
1

−λ2w
′
2

)
,

(2.78)

with D(A∗
L) :=

{(
w1

w2

)
∈ H1(0, 1;R2) ♣ w2(0) = k1w1(0), w1(1) = k2w2(1)

}
. Then, a direct computation
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gives that the eigenpairs (λ, φ1λ
, φ2λ

) of A∗
L satisfies





φ1λ
(x) = c0e

λ
λ1

x,

φ2λ
(x) = k1c0e

− λ
λ2

x,

k1k2 = e
λ
(

1
λ1

+ 1
λ2

)
,

λ < 0, c0 ∈ R \ ¶0♢.

(2.79)

Thus, the sliding variable under consideration is as follows

σ(t) =
1

λ1

∫ 1

0

w1(t, x)φ1λ
(x)dx+

1

λ2

∫ 1

0

w2(t, x)φ2λ
(x)dx (2.80)

and the sliding mode control under consideration is given by

u(t) = k1w2(t, 0) − 1

φ1λ
(0)

(
λσ(t) +K sign(σ(t))

)
. (2.81)

Then, if we take d and K as in Assumptions 2 and 3, we can conclude that the origin of





∂tw1(t, x) + λ1∂xw1(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

∂tw2(t, x) − λ2∂xw2(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

w1(t, 0) = k1w2(0) − 1

φ1λ
(0)

(
λσ(t) +K sign(σ(t))

)
+ d(t),

w2(t, 1) = k2w1(t, 1),

w1(0, x) = w0
1(x), w2(0, x) = w0

2(x),

(2.82)

is globally asymptotically stable in H. On the other hand the super-twisting control under consideration

is as follows 


u(t) = k1w2(t, 0) +

1

φ1λ
(0)


− λσ(t) − α♣σ(t)♣ 1

2 sign(σ(t)) + v(t)


,

v̇(t) ∈ −β sign(σ(t)).

(2.83)

Therefore, if we choose d as in Assumption 4, β and α as in (2.46) we can conclude that the origin of





∂tw1(t, x) + λ1∂xw1(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

∂tw2(t, x) − λ2∂xw2(t, x) = 0, (t, x) ∈ R≥0 × (0, 1),

w1(t, 0) = k1w2(0) +
1

φ1λ
(0)


− λσ(t) − α♣σ(t)♣ 1

2 sign(σ(t)) + v(t)


+ d(t),

w2(t, 1) = k2w1(t, 1),

w1(0, x) = w0
1(x), w2(0, x) = w0

2(x),

(2.84)

is globally asymptotically stable in H.

Using the finite difference method [77], we performed some numerical simulations. We choose λ1 =
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2, λ2 = 1, k2 = 2, c0 = 1, λ = −5, d(t) = sin (t), K = 1.2 and

w0
1(x) = −2χ(0,0.5)(x) + χ(0.5,1)(x),

w0
2(x) = −3χ(0,0.5)(x) − χ(0.5,1)(x).

The space and time steps are taken as 0.005 and 0.0012, respectively. Figure 2.18 shows that the sliding

surface is reached in finite-time. In Figure 2.19, the control input u defined in (2.81) appears. In Figures

2.16 and 2.17, the stabilization of the state of (2.82) is illustrated. Figures 2.18, 2.19 and 2.16 indicate

that the chattering phenomenon occurs.

Figure 2.16: Sliding mode control (2.81): state variable w1 (2.82) versus space and time.

39



Chapter 2 – Sliding mode control for linear infinite-dimensional systems

Figure 2.17: Sliding mode control (2.81): state variable w2 (2.82) versus space and time.
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Figure 2.18: Sliding mode control (2.81): sliding variable σ (2.80) versus time.
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Figure 2.19: Sliding mode control (2.81): control input u versus time.

Figures 2.23, 2.22, 2.20 and 2.21 are obtained with the same settings as the Figures 2.18, 2.19, 2.16

and 2.17 with β = 1.5 and α = 2.1 in the case of super-twisting control (2.83). It must be noted that,

thanks to the use of super-twisting algorithm, the chattering phenomenon is greatly attenuated whereas

the stabilization is kept.

Figure 2.20: Super-twisting control (2.83): state variable w1 (2.84) versus space and time.
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Figure 2.21: Super-twisting control (2.83): state variable w2 (2.84) versus space and time.
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Figure 2.22: Super-twisting control (2.83): control input u versus time.
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Figure 2.23: Super-twisting control (2.83): sliding variable σ (2.80) versus time.

2.5 Conclusion

In this chapter, we have proposed a design method based on sliding mode control for the stabiliza-

tion of a class of linear infinite-dimensional systems with unbounded control operators and subject to a

boundary disturbance. The sliding variable is defined as the scalar product of the state and an eigenfunc-

tion of the adjoint operator of the closed-loop system without disturbance. This requires measurement

of the scalar product of the state with some function, which from a practical point of view is too restric-

tive. The existence of solutions of the closed-loop system has been proved as well as the disturbance

rejection and the asymptotic stability of the closed-loop control system. We further have extended the

super-twisting method for the same class of linear infinite-dimensional systems.
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CHAPTER 3

ACTIVE DISTURBANCE REJECTION

CONTROL FOR THE STABILIZATION OF A

HYPERBOLIC SYSTEM

3.1 Introduction

This chapter is concerned with the stabilization of a hyperbolic system with a boundary control and

subject to a disturbance (see e.g, [11] for a review on this class of system). Normally, the sliding mode

control proposed in the previous Chapter can solve this problem. These controls depend on the sliding

variable, meaning that the latter is assumed to be measured. But, from a practical point of view, it may

not be possible to measure the sliding variable proposed in the Chapter 2. Thus, in this chapter, we are

going to follow another control design, namely the active disturbance rejection control strategy [47, 132].

Systems of transport equations have received much attention for many years due to the many physi-

cal phenomena that can be modelled by this way: e.g pressure drilling [70], water management systems

[42], aeronomy [114] and cable vibration dynamics [129]. A good overview of the actual research lines

concerning this topic is provided in [11] and [64].

Stabilization of this kind of systems where the disturbances appear is not a new topic. The reader

can refer to [122, 28] in which PI controllers are proposed or [40] and [41] with controllers based on

backstepping method and observer design. Note that, in these cases, the disturbances might not be

located at the same position as the control. However, the dynamics of the disturbance is assumed to

be known. The objective of the current chapter is to propose a control strategy for a larger class of

uncertainties/disturbances as it was the case in Chapter 2 and in [78, 119, 10] with sliding mode control.

As the sliding mode control method, the active disturbance rejection control (ADRC) is a powerful

method to deal with disturbances. It was initially proposed in [61] in the context of finite dimensional

systems. The main idea of the ADRC is to build an observer to estimate the disturbance. Then, the

disturbance is compensated in a feedback-law by its estimated value. Recently, this approach has been

successfully applied to systems described by one-dimensional partial differential equations (PDEs) [79,

56, 140, 139, 19, 57, 59].

The contribution of this chapter is to apply the ADRC strategy to design a feedback-law which allows

to reject the disturbance asymptotically and to ensure that the resulting closed-loop system is globally

asymptotically stable. The proposed ADRC is based on an extended state observer [141, 134, 58] or a
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robust observer [75, 51, 35, 34, 3] which allows to estimate the disturbance asymptotically. The extended

state observer is a class of high-gain observer [67, 2, 8, 6] and provides estimation of the state and the

disturbance. Moreover, the robust observer provides the estimation of the state despite the presence

of the disturbance. To apply this strategy, we assume that we know some moments of the PDE’s state,

which is often possible in practice [4, 93]. In contrast with [56, 57], the dynamics of the output are not

derived from the weak formulation of the PDE, which, in general, leads to a scalar ODE. We rather com-

pute the dynamics of all the moments up to a certain degree n, which leads to a much more complicated

system. We are, in general, closer to practical cases, since the output that is assumed to be known in

[56, 57] does not correspond exactly to a moment.

This chapter is organized as follows. Section 3.2 provides an overview on the ADRC strategy through

a finite-dimensional example. Section 3.3 presents a linear hyperbolic equation, the ADRC strategy and

the main results of the chapter. Finally, Section 3.4 collects some remarks.

3.2 Basic idea of ADRC

The purpose of this section is to provide a brief overview of the concept of ADRC for the reader who

is discovering it for the first time. It should be noted that the techniques presented in this section are not

new. For example, they can be found in [47].

Let us consider the following system 



ẇ1 = w2,

ẇ2 = w3,

ẇ3 = u+ d,

y = w1

(3.1)

where u is the control, y is the output and d is an unknown disturbance. The goal is to design a feedback

control u that drives the trajectories of (3.1) to the origin asymptotically, despite the presence of the

unknown disturbance d. For example, when the system (3.1) is undisturbed i.e disturbance d = 0, the

feedback-law

u = −6w1 − 11w2 − 6w3 (3.2)

allows to asymptotically stabilize the origin of (3.1) (see Figure 3.1).

Note that for any initial state
(
w1(0) w2(0) w3(0)


∈ R

3 and for any u, d ∈ L∞(R+), y(t) = 0 for

all t ≥ 0 implies that w1(t) = w2(t) = w3(t) = 0 for all t ≥ 0. This means that the system (3.1) is strongly
1 observable. Thus, the main idea of the ADRC is to build an observer to estimate the disturbance d

in order to cancel the effect of the disturbance thanks to its estimate. We have at least two possibilities

for the estimation of the disturbance by an observer. The first way is to design a robust observer [116,

Chapter 7] for the system (3.1) and deduce the estimation of d from the observation errors. The second

way is to consider the disturbance d as an extended state variable of the system (3.1) and design an

extended state observer [134] for the system (3.1). In addition, in the first case [116, Chapter 7], we need

1see e.g [63, Definition 1.2]
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Figure 3.1: w1, w2 and w3 versus time, when d = 0 and u defined by (3.2)

to assume that the disturbance d is bounded whereas in the second case [134], we need to assume that

the derivative of the disturbance d is bounded, which means that the disturbance d is Lipschitz (in the

weakest case).

Let us assume that the disturbance is bounded, i.e ♣d(t)♣ ≤ M with M a positive constant. Consider

the following system 



˙̂w1 = ŵ2 − k1M
1
3 ⌈ŵ1 − w1⌋ 2

3 ,

˙̂w2 = ŵ3 − k2M
2
3 ⌈ŵ1 − w1⌋ 1

3 ,

˙̂w3 ∈ u− k3M sign(ŵ1 − w1),

(3.3)

where k1, k2 and k3 are positive constants. Notice that the system (3.3) is known as the Levant’s differ-

entiator [74]. Now, set ei = ŵi − wi, i = 1, 2, 3 the estimation errors. Then, we have





ė1 = e2 − k1M
1
3 ⌈e1⌋ 2

3 ,

ė2 = e3 − k2M
2
3 ⌈e1⌋ 1

3 ,

ė3 ∈ −k3M sign(e1) − d.

(3.4)

If we select 



k1 = 3.34k
1
3
3 ,

k2 = 5.3k
2
3
3 ,

k3 > 0,

(3.5)

then according to [34, Theorem 1], the origin of (3.4) is finite-time stable. Thus, there exists tr > 0 such

that for all t ≥ tr, e1(t) = e2(t) = e3(t) = 0. Therefore, according to the last line (3.4), we have for all
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t ≥ tr

0 ∈ −k3M sign(e1(t)) − d(t). (3.6)

Since sign(e1(t)) = [−1, 1] for all t ≥ tr, then for all t ≥ tr the set −k3M sign(e1(t)) is closed, bounded,

and upper semi-continuous. Thus, according to [49, Page 78] there exists a measurable function d̂(t) ∈
−k3M sign(e1(t)) such that

∀t ≥ tr, d(t) = d̂(t). (3.7)

Therefore, for all t ≥ tr, d̂(t) is an estimate of d(t). Finally, to stabilize system (3.1), we simply cancel the

disturbance by using the feedback control:

u = −6w1 − 11w2 − 6w3 − d̂ (3.8)

The closed-loop of (3.1) under the feedback control (3.8) is given by





ẇ1 = w2,

ẇ2 = w3,

ẇ3 = −6w1 − 11w2 − 6w3 − d̂+ d,

d̂ ∈ −k3M sign(ŵ1 − w1)

˙̂w1 = ŵ2 − k1M
1
3 ⌈ŵ1 − w1⌋ 2

3 ,

˙̂w2 = ŵ3 − k2M
2
3 ⌈ŵ1 − w1⌋ 1

3 ,

˙̂w3 = −6w1 − 11w2 − 6w3,

(3.9)

Using the error variable ei, i = 1, 2, 3, we can rewrite the system (3.9) as:





ẇ1 = w2,

ẇ2 = w3,

ẇ3 = −6w1 − 11w2 − 6w3 − ė3,

ė1 = e2 − k1M
1
3 ⌈e1⌋ 2

3 ,

ė2 = e3 − k2M
2
3 ⌈e1⌋ 1

3 ,

ė3 = d̂− d

d̂ ∈ −k3M sign(e1).

(3.10)

Since for all t ≥ tr, e1(t) = e2(t) = e3(t) = 0, it immediately follows that (w1(t), w2(t), w3(t)) → 0 as

t → ∞. The control in (3.8) is called active disturbance rejection control.

The results of the simulation of the system (3.1) with the control (3.8), the control gain τ = 0.05, k3 = 1.1,

k1 and k2 being derived from (3.5) and the disturbance d(t) = sin(t) + 1
2 cos(t) are presented in Figures

3.2-3.3. The following low-pass filter

τ
˙̂
d+ d̂ = −k3M sign0(e1) (3.11)
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is used to obtain d̂ in simulations. Figure 3.2 shows the asymptotic convergence of the state variables to

zero in the presence of the disturbance. Figure 3.3 shows that d̂ estimates well d. The estimation of d is

efficient once the observer has converged.
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Figure 3.2: w1, w2 and w3 versus time, when d = sin(t) + 1
2 cos(t) and u defined by (3.8).
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Figure 3.3: d̂ and the disturbance d versus time.
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3.3 ADRC for hyperbolic systems

In Chapter 2, we proposed sliding mode controls to address the asymptotic stability of linear systems

of infinite dimension in the presence of external disturbances. These controls depend mainly on the

sliding variable, meaning that the latter is assumed to be measured. This means that in our case we

measure the scalar product between the state of the system (2.32) and a function in D(A∗
L)
(
D(A∗

L) is

defined in (2.78)
)
. To be pragmatic, let us go back to Example 2.4.2 where the sliding variable is defined

by

σ(t) =
c0

λ1

∫ 1

0

w1(t, x)e
λ

λ1
xdx+

k1c0

λ2

∫ 1

0

w2(t, x)e− λ
λ2

xdx. (3.12)

In this case, this means that we measure σ which is the sum of two scalar products in L2(0, 1). Thus, we

measure these scalar products. But, from a practical point of view, how can we measure these scalar

product without the knowledge of the full state w1 and w2 information? Do there exist sensors able to

measure such outputs ? Unfortunately, we cannot answer these questions with any certainty. Therefore,

in the sequel, we will propose an ADRC in which what is measured can be achieved in practice [4, 93].

3.3.1 Transport equation

Consider now the following linear transport equation





∂tw(t, x) + λ∂xw(t, x) = 0, (t, x) ∈ R+ × (0, L)

w(t, 0) = u(t) + d(t),

w(0, x) = w0(x),

(3.13)

where L > 0, λ > 0, u(t) ∈ R denotes the control and d(t) ∈ R is an unknown disturbance. When the

system (3.13) is undisturbed (d = 0), it is well known that the feedback-law

u(t) := aw(t, L),

allows to stabilize the system if ♣a♣ < 1. If we assume that there exists a known positive constant C such

that, for a.e t ∈ R+,

♣d(t)♣ ≤ Kd (3.14)

then, from Chapter 2, the following feedback-law





u(t) := aw(t, L) − λσ(t) −K sign(σ(t))

σ(t) =
1

λ

∫ 1

0

w(t, x)e
µ

λ
xdx

µ < 0, ♣a♣ < 1,

K > Kd,

(3.15)
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allows to stabilize the system (3.13) despite the presence of the unknown disturbance. This means that

it is assume that w(t, L) and σ(t) are measured for all t > 0.

Let n ∈ N fixed. Instead of assuming that σ(t) is measured for all t > 0, assume that the n−th

moment defined by ∫ L

0

xnw(t, x)dx

is measured and denote by ηi the i-th moment of w, where i = 0, . . . , n i.e.

ηi(t) :=

∫ L

0

xiw(t, x)dx. (3.16)

But, ηn does not stand for a sliding variable. Indeed, formally, the derivative of ηn along the trajectory of

(3.13) yields, for all t ≥ 0

η̇n(t) = −λLnw(t, L) + nηn−1(t).

This means that the relative degree is not equal to 1 anymore. Thus, ηn does not stand for a sliding

variable for standard SMC strategy. Moreover, if we perform formal integrations by parts and using

boundary conditions of (3.13), we obtain that the moments satisfy the following chain of integrators





η̇n(t) = −λLnw(t, L) + nληn−1(t),

η̇n−1(t) = −λLn−1w(t, L) + (n− 1)ληn−2(t),
...

η̇1(t) = −λLw(t, L) + λη0(t),

η̇0(t) = −λw(t, L) + λ(u(t) + d(t)).

(3.17)

Thus, if w(·, L) ∈ Cn(R+) and the measured output ηn is a class of Cn+1(R+), then the relative degree

of the system (3.13) is equal to n + 1 according to (3.17). In this case, we can design a (n + 1)-order

sliding mode control based on ηn. However, w(·, L) ∈ Cn(R+) is an extremely restrictive condition

because this would mean, for example, that we have to restrict ourselves to the initial value w0 that

are in C∞(0, L). Thus, for a general framework, ηn should not be chosen as a sliding variable. Instead

of following the sliding mode strategy, we are going to estimate the disturbance d in order to cancel the

effect of disturbance in the feedback-law by its estimate.

Estimation of disturbance

We assume that equation (3.14) holds. To estimate the disturbance, we design an observer for (3.17)

using a Levant’s differentiator [74] of the form





˙̂ηn(t) = −λLnw(t, L) + nλη̂n−1(t) − knK
1

n+1

d ⌈η̂n − ηn⌋ n
n+1 ,

˙̂ηn−1(t) = −λLn−1w(t, L) + (n− 1)λη̂n−2(t) − kn−1K
2

n+1

d ⌈η̂n − ηn⌋ n−1
n+1 ,

...
˙̂η1(t) = −λLw(t, L) + λη̂0(t) − k1K

n
n+1

d ⌈η̂n − ηn⌋ 1
n+1 ,

˙̂η0(t) ∈ −λw(t, L) + λu(t) − k0Kd⌈η̂n − ηn⌋0

(3.18)
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where ki for i = 0, 1, . . . , n, are the output injection gains to be selected to ensure the convergence of

the observer. We define the estimation error as ei := η̂i − ηi. The error dynamics is given by





ėn(t) = nλen−1(t) − knK
1

n+1

d ⌈en⌋ n
n+1 ,

ėn−1(t) = (n− 1)λen−2(t) − kn−1K
2

n+1

d ⌈en⌋ n−1
n+1 ,

...

ė1(t) = λe0(t) − k1K
n

n+1

d ⌈en⌋ 1
n+1 ,

ė0(t) ∈ −λd(t) − k0Kd⌈en⌋0

(3.19)

that gives {
ėi(t) = iλei−1(t) − kiK

n+1−i
n+1

d ⌈en⌋ i
n+1 , i = 1, . . . , n

ė0(t) ∈ −λKd[−1, 1] − k0Kd⌈en⌋0.
(3.20)

Using the following transformation





êi =
(i+ 1)λei

ki+1Kd

, i = 1, . . . , n

ê0 =
e0

k1Kd

,

kn+1 = 1

(3.21)

we obtain 



˙̂ei(t) = −k̃i

⌈
wn

λ(n+1)

⌋ i
n+1 − êi−1(t)


, i = 1, . . . , n

˙̂e0(t) ∈ −k̃0

⌈
wn

λ(n+1)

⌋0

+ λ
k0

[−1, 1]

 (3.22)

where

k̃0 =
k0

k1
and k̃i =

λ(j + 1)ki

ki+1
i = 1, . . . , n.

The solution of system (3.22) is understood in the sense of Filippov ([48]) and the existence of the

solution will be proved later. From [34, Theorem 1 and Proposition 1], all trajectories of (3.22) converge

to zero in finite-time. More precisely, we have the following Proposition.

Proposition 2 [34, Theorem 1 and Proposition 1] There exists a valid set of differentiator parameters

ki, i = 1, . . . , n and a finite-time tr > 0 such that êi(t) = 0, i = 1, . . . , n for any t > tr.

Then, according to (3.21), êi(t) = 0, i = 1, . . . , n for all t ≥ tr implies that ei(t) = 0, i = 1, . . . , n for all

t ≥ tr. Thus, according to the last line (3.19), we have for all t ≥ tr

0 ∈ −k0Kd sign(en(t)) − λd(t). (3.23)

Since sign(en(t)) = [−1, 1] for all t ≥ tr, then for all t ≥ tr the set − k0Kd

λ
sign(en(t)) is closed, bounded,

and upper semi-continuous. Thus, according to [49, Page 78] there exists a measurable function d̃(t) ∈
− k0Kd

λ
sign(en(t)) such that

∀t ≥ tr, d(t) = d̃(t). (3.24)
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Therefore, for all t ≥ tr, d̃(t) is an estimate of d(t).

Then, to stabilize the system (3.13), consider now the following feedback controller:

u(t) = aw(t, L) − d̃(t), ♣a♣ < 1. (3.25)

Note that the first term in (3.25) is a usual control that makes the closed-loop system (3.13) exponentially

stable without the disturbance. The second term is used to compensate the effect of the disturbance.

The closed-loop system (3.13)-(3.25) is finally given by





∂tw(t, x) + λ∂xw(t, x) = 0,

w(t, 0) = aw(t, L) − d̃(t) + d(t),

˙̂ηi(t) = −λLiw(t, L) + iλη̂i−1(t) − kiK
n+1−i

n+1

d ⌈η̂n − ηn⌋ i
n+1 , i = 1, . . . , n

˙̂η0(t) = λw(t, L)
(
a− 1

)

d̃ ∈ − k0Kd

λ
sign(η̂n(t) − ηn(t))

w(0, x) = w0(x),

η̂(0) = η̂0 ∈ R
n+1.

(3.26)

Remark 3 According to Proposition 2, ei(t) = 0, i = 1, . . . , n for all t > tr. Thus, ėi(t) = 0, i = 1, . . . , n

for all t > tr. Then, the mild solution 2 w of (3.26) is a mild solution to

{
∂tw(t, x) + λ∂xw(t, x) = 0,

w(t, 0) = aw(t, L)
(3.27)

for all t > tr.

The main result of this section can be formulated as follows:

Theorem 3 (Existence of solutions) Assume that (3.14) holds. Then, for all T > 0 and

for all (w0, η̂
0) ∈ L2(0, L) × R

n+1, the closed-loop system (3.26) admits a mild solution

(y, η̂) ∈ C(0, T ;L2(0, L) × R
n+1).

Theorem 4 (Global asymptotic stability) There exists a KL-function α such that, the following

inequality

∥w(t, ·)∥L2(0,L) + ♣e(t)♣Rn+1 ≤ α(∥w0∥L2(0,L) + ♣e0♣Rn+1 , t) (3.28)

is satisfied for any (w0, η̂
0) ∈ L2(0, L) × R

n+1, for any t ≥ 0 and for all solution (y, η̂) of (3.26),

where e = η̂ − η, e0 = η̂0 − η0 and η0
i = ηi(0).

The proofs are given in the Appendix B.

2See e.g [125, Definition 4.1.5]
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Numerical illustration Consider the system (3.13) with the control defined by (3.25)-(3.19). The pa-

rameters of the system (3.13) are L = 3, λ = 2. We choose the disturbance as

d(t) = sin(t) + 0.5 cos(t) − 1. (3.29)

The parameters of the control and estimator are n = 1, k0 = 2, k1 =
√
k0, a = 0.47, τ = 0.05, Kd = 2.1.

The time-space step variation (∆t,∆x) = (0.0015, 0.0150) satisfies the CFL condition λ∆t

∆x
< 1. The

following low-pass filter

τ ˙̃d+ d̃ = −k0Kd

λ
sign0(en) (3.30)

is used to obtain d̃ in simulations. In Figure 3.4, the robust stabilization of w is illustrated. Figure 3.5

shows that d̂ estimates well d.

Figure 3.4: State variable w of (3.26) versus time and space.

54



3.3. ADRC for hyperbolic systems

0 5 10 15 20 25

t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3.5: d̃ (–) and the disturbance d (–) versus time.

3.3.2 System of transport equations

In the previous section, we saw how the ADRC works for a transport equation. In this section, let us

consider two transport equations coupled at the boundary and inside the domain.

Consider the following system of transport equations with λ1 > 0, λ2 > 0, c1, c2 ∈ R and a ∈ R





∂tw1(t, x) + λ1∂xw1(t, x) = c1w2(t, x), (t, x) ∈ R+ × (0, L)

∂tw2(t, x) − λ2∂xw2(t, x) = c2w1(t, x), (t, x) ∈ R+ × (0, L)

w1(t, 0) = u(t) + d(t),

w2(t, L) = aw1(t, L),

(3.31)

where u(t) ∈ R denotes the control input and d(t) ∈ R an unknown disturbance. When the system (3.31)

is undisturbed (d = 0), it is nowadays well-known that the control law

u(t) := bw2(t, 0)

allows to stabilize the system (3.31) if there exist positive parameters p1 > 0, p2 > 0 and µ > 0 such that

for all x ∈ [0, L]

P(x) :=

(
µλ1p1e

−µx −c1p1e
−µx − c2p2e

µx

−c1p1e
−µx − c2p2e

µx µλ2p2e
µx

)
(3.32)

is positive definite and

b2
⩽
p2λ2

p1λ1
, a2

⩽
p1λ1

p2λ2
e−2µL, (3.33)
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see [11, Corollary 5.5.]. However, notice that if





a = 1,

c1 = c2 = c < 0,

L ≥ −π

c

(3.34)

then according to [11, Proposition 5.12], there is no b ∈ R such that u(t) = bw2(t, 0) allows to stabilize the

system (3.31). We will therefore assume all along this section that the system (3.31) can be stabilized

with a static output feedback.

As in the previous section, the goal is to propose an ADRC u allowing the rejection of the disturbance

d and the global asymptotic stabilization of the system around the point (0, 0).

Canonical form

The vector space I := L2((0, L);R2) is equipped with the scalar product

((
φ1

φ2

)
,

(
ψ1

ψ2

))

µ

:= p1

∫ L

0

φ1ψ1e
−µxdx+ p2

∫ L

0

φ2ψ2e
µxdx (3.35)

for every

(
φ1

φ2

)
∈ L2 and for every

(
ψ1

ψ2

)
∈ L2, where p1, p2, µ > 0 are defined in (3.32) and (3.33).

With this scalar product, I is an Hilbert space. Let A : D(A) ⊂ I → I be the linear operator defined by





A
(
φ1

φ2

)
=

(
−λ1φ

′
1 + c1φ2

λ2φ
′
2 + c2φ1

)
,

D(A) =

{(
φ1

φ2

)
∈ H1(0, L,R2) ♣ φ1(0) = 0, φ2(L) = aφ1(L)

} (3.36)

where λ1, λ2, c1, c2 and a are given in system (3.31). We can prove as in the proof of [11, Theo-

rem A.1] that A generates a C0−semigroup (T (t))t≥0 on I. Also, consider the operator B defined as

p1λ1

〈(
φ1

φ2

)
,Bv

〉

D(A∗),D(A∗)′

= p1λ1φ1(0)v for all v ∈ R and

(
φ1

φ2

)
∈ D(A∗) where A∗ is the adjoint

operator of A and ⟨·, ·⟩D(A∗),D(A∗)′ is the dual product. We can prove as in Appendix B that the oper-

ator B is admissible for the C0−semigroup (T (t))t≥0. So, for any initial value

(
w1(0, ·)
w2(0, ·)

)
∈ I and for

any u ∈ L2
loc (0,∞), there exists a unique mild solution (w1, w2) ∈ C([0,∞); I) ∩ H1

loc ((0,∞);D(A∗)′)

according to [125, Proposition 4.2.5]. Thus, for all t ≥ 0 we have

(
w1(t, ·)
w2(t, ·)

)
−
(
w1(0, ·)
w2(0, ·)

)
=

∫ t

0

[
A
(
w1(s, ·)
w2(s, ·)

)
+ B (u(s) + d(s))

]
ds. (3.37)

Now, let n ∈ N − ¶0♢ fixed and we denote by ηi (resp. γi) the i-th moment of w1 (resp. w2), with
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i = 0, . . . , n, i.e.,

ηi(t) :=

∫ L

0

xiw1(t, x)dx and γi(t) :=

∫ L

0

xiw2(t, x)dx (3.38)

Since (w1, w2) ∈ C([0,∞); I) ∩ H1
loc ((0,∞);D(A∗)′) then, for all i = 0, . . . , n, ηi and γi are absolutely

continuous. Therefore, by performing integrations by parts and using boundary conditions of (3.31), we

can prove that the moments are the Carathéodory solutions 3 of the following system:





η̇n(t) = c1γn(t) − λ1L
nw1(t, L) + nλ1ηn−1(t),

η̇n−1(t) = c1γn−1(t) − λ1L
n−1w1(t, L) + (n− 1)λ1ηn−2(t),

...

η̇1(t) = c1γ1(t) − λ1Lw1(t, L) + λ1η0(t),

η̇0(t) = c1γ0(t) − λ1w1(t, L) + λ1(u(t) + d(t)),

γ̇n(t) = c2ηn(t) + aλ2L
nw1(t, L) − nλ2γn−1(t),

γ̇n−1(t) = c2ηn−1(t) + aλ2L
n−1w1(t, L) − (n− 1)λ2γn−2(t),

...

γ̇1(t) = c2η1(t) + aλ2Lw1(t, L) − λ2γ0(t),

γ̇0(t) = c2η0(t) + aλ2w1(t, L) − λ2w2(t, 0)

(3.39)

which gives

Ẏ (t) = AY (t) +B


u(t) + d(t)


+ Γ(t), (3.40)

where

Yi =

{
ηn+1−i, i = 1, . . . , n+ 1,

γ2n+2−i, i = n+ 2, . . . , 2n+ 2.
(3.41)

and A ∈ M2n+2(R), B,Γ(t) ∈ R
2n+2 such that

Γi(t) =





− λ1L
n+1−iw1(t, L), if i = 1, . . . , n+ 1

aλ2L
2n+2−iw1(t, L), if i = n+ 2, . . . , 2n+ 1,

aλ2w1(t, L) − λ2w2(t, 0), else ,

(3.42)

Bi =

{
λ1, if i = n+ 1

0, else,
(3.43)

Ai,j =





(n+ 1 − i)λ1, if j = i+ 1, and i = 1, . . . , n+ 1

− (2n+ 2 − i)λ2, if j = i+ 1, and i = n+ 2, . . . , 2n+ 1

c1, if j = i+ n+ 1, and i = 1, . . . , n+ 1

c2, if j = i− (n+ 1), and i = n+ 2, . . . , 2n+ 2

0, else.

(3.44)

The system (3.39) is the system under canonical form from where the disturbance is estimated as

3See e.g [26, Theorem 1.1, page 43]
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detailed in the next section.

Estimation of disturbance

Now, the idea is to estimate the disturbance d appearing in (3.31) from the system (3.39). Note that if

c2 = 0 then the dynamics of γi, i = 0, 1, . . . , n, do not depend on the disturbance d. Thus, for example, to

estimate d from (3.39), we can assume that, for all t ≥ 0, we measure ηn(t), w1(t, L), w2(t, 0) and γi(t),

i = 0, 1, . . . , n and design a robust observer as in the previous section, based only on the dynamics of

ηi, i = 0, 1, . . . , n. This means that we measure n + 1 moments of w2 and the n − th moment of w1 to

achieve the goal. Note that this case is much better than to measure

∫ L

0

φ1(x)w1(t, x)dx and
∫ L

0

φ2(x)w2(t, x)dx (3.45)

with

(
φ1

φ2

)
∈ D(A∗) because, for instance, if φ1 and φ2 are analytic then each integral of (3.45) is a

kind of infinite sum of ηi and γi respectively. Moreover, if c1 = c2 = 0 then it is enough to measure ηn(t)

and w1(t, L) to be able to estimate the disturbance d thanks to a robust observer for the dynamics of

ηi, i = 0, 1, . . . , n. Thus, it is similar to what was done in the previous section. Therefore we assume

that c1 ̸= 0 and c2 ̸= 0, which corresponds to a much more complicated case than before. Our objective

is to measure less than n + 2 moments to estimate the disturbance d. In order to do so, the following

hypothesis is stated.

Assumption 5 The system (3.40) is controllable.

Remark 4 In order to understand the importance of Assumption 5 and why it is far from trivial that such

a property holds, let us talk about what happens when n = 1. In this case,

A =




0 λ1 c1 0

0 0 0 c1

c2 0 0 −λ2

0 c2 0 0




and B =




0

λ1

0

0



. (3.46)

The Kalman matrix K(A,B) is given by

K(A,B) =
(
B,AB,A2B,A3B



=




0 λ2
1 0 2c1c2λ

2
1 − c1c2λ1λ2

λ1 0 c1c2λ1 0

0 0 c2λ
2
1 − c2λ1λ2 0

0 c2λ1 0 c1c
2
2λ1



, (3.47)

and its determinant is given by

det(K(A,B)) = λ4
1c1c

3
2(λ1 − λ2)2. (3.48)
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Thus, we can see that, if λ1 = λ2, then det(K(A,B)) = 0; in this case, the system is not controllable.

Therefore, the system (3.40) is not controllable if λ1 = λ2 and n = 1. However, when λ1 ̸= λ2, the system

is controllable. Note that, even if λ1 ̸= λ2, it is possible that the system (3.40) is not controllable for a

higher value of n.

From Assumption 5 and according to [123, Theorem 2.2.7], there exists a change of variable Z = MY

that allows to write the system (3.40) in Brunovsky’s normal form

Ż(t) = AzZ(t) +Bz


u(t) + d(t)


+MΓ(t) (3.49)

with

Az =




0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1

−a0 −a1 · · · −a2n+1




and Bz =




0
...

0

1




(3.50)

{
M·,2n+2 = B,

M·,i = AM·,i+1 + aiB, i = 1, . . . , 2n+ 1,
(3.51)

where M·,i is the i-th column of the matrix M ∈ M2n+2(R) and the coefficients ai are those of the

characteristic polynomial of A. We can prove that the characteristic polynomial PA of A is defined by

PA(x) = (−1)n+1(c1c2 − x2)n+1 = x2n+2 +

2n+1∑

i=0

aix
i. (3.52)

Moreover, from (3.52), we can deduce that for all q = 0, . . . , n,

a2q+1 = 0. (3.53)

Note that, with the Brunovsky output Z1 = CzZ, the system (3.49) is observable where Cz =(
1 0 . . . 0


. Thus, in order to estimate the disturbance d, we can design a robust observer or

an extended state observer based on the system (3.49). For that, we assume that we also measure

w1(t, L) and w2(t, 0) for all t ≥ 0. Moreover, if n is odd, then

Z1 = M1,·Y and M1,i = 0 ∀i ∈ J1, 2n+ 2K\
{
n+ 2, n− 2q; q ∈

r
0,
⌊n

2

⌋z}
, (3.54)

else, we have

Z1 = M1,·Y and M1,i = 0 ∀i ∈ J1, 2n+ 2K\
{
n+ 2, n− 2q; q ∈

r
0,
⌊n

2

⌋
− 1

z}
, (3.55)

where M1,· is the first row of M . Therefore, if n is odd (resp. n is even) Z1 depends on γn and η2q+1,

q = 0, 1, . . . ,
⌊

n
2

⌋ (
resp. q = 0, 1, . . . ,

⌊
n
2

⌋
− 1
)
. As a consequence, if n is odd (resp. n is even), we assume

also that for all t ≥ 0, we measure γn(t) and η2q+1(t), q = 0, 1, . . . ,
⌊

n
2

⌋ (
resp. q = 0, 1, . . . ,

⌊
n
2

⌋
− 1
)
.
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Example 1 For n=1, we have
⌊

n
2

⌋
= 0. Since n = 1 is odd then q = 0. Thus, Z1 depends on γ1 and η1.

On the other hand, PA(x) = x4 − 2c1c2x
2 + c2

1c
2
2 and M is given by




−c1c2λ1λ2 0 λ2
1 0

0 −c1c2λ1 0 λ1

0 c2λ
2
1 − c2λ1λ2 0 0

−c1c
2
2λ1 0 c2λ1 0



. (3.56)

Thus, we have

Z1 = M1,·Y =
(

−c1c2λ1λ2 0 λ2
1 0






η1

η0

γ1

γ0




= −c1c2λ1λ2η1 + λ2
1γ1. (3.57)

Then, we can see that Z1 depends on γ1 and η1. It is therefore sufficient to assume the knowledge of γ1

and η1.

Since the pair (Az, Cz) is observable, then there exists Gz ∈ R
2n+2 such that the matrix A0 = Az −GzCz

is Hurwitz, with Cz =
(

1 0 . . . 0


. Therefore, system (3.49) can be rewritten as follows

Ż(t) = A0Z(t) +GzCzZ(t) +Bz


u(t) + d(t)


+MΓ(t). (3.58)

Now, in order to estimate the disturbance through a system with fewer inputs, let us introduce the follow-

ing auxiliary system

Ż(t) = A0Z(t) +GzCzZ(t) +Bzu(t) +MΓ(t). (3.59)

Note that, system (3.59) depends only on the input and output of the original system (3.58). Thus it

is completely known. As a consequence, the error Z − Z system describing the dynamics of the error

Z̃ = Z − Z is ideal for disturbance estimation. Z̃-dynamics reads as

˙̃Z(t) = A0Z̃(t) +Bzd(t) (3.60)

i.e

{
˙̃Zi(t) = Z̃i+1(t) − giZ̃1, i = 1, . . . , 2n+ 1
˙̃Z2n+2(t) = −∑2n+1

i=1 aiZ̃i+1 − (a0 + g2n+2)Z̃1 + d(t)
(3.61)

where the constants gi, i = 1, . . . , 2n+ 2, are the components of Gz.

Now, we assume that the disturbance d is continuous and bounded. Furthermore, one supposes that

there exists a known positive constant Kd such that, for all t ∈ R+,

♣d(t)♣ ≤ Kd. (3.62)
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Since A0 is Hurwitz, then the solution of (3.61) is bounded. Then, we can propose the following observer

for system (3.61)





˙̂
Zii = Ẑi(i+1) + ϕi

(
Z̃1, Ẑ12, Ẑ23, . . . , Ẑ(i−1)i


− Lik1

(
Ẑii − Ẑ(i−1)i



˙̂
Zi(i+1) ∈ Ẑ(i+1)(i+2) + ϕi+1

(
Z̃1, Ẑ12, Ẑ23, . . . , Ẑi(i+1)


− L2

i k2

(
Ẑii − Ẑ(i−1)i


, i = 1, . . . , 2n+ 1,

(3.63)

with




k1(s) := q(κs)

k2(s) := sign(s) + q(κs)

ϕi

(
Z̃1, Ẑ12, Ẑ23, . . . , Ẑ(i−1)i


= −giZ̃1, i = 1, . . . , 2n+ 1

ϕ2n+2

(
Z̃1, Ẑ12, Ẑ23, . . . , Ẑ(2n+1)(2n+2)


= −∑2n+1

i=1 aiẐi(i+1) − (a0 + g2n+2)Z̃1

, q(s) := ⌊s⌉ 1
2 + s.

(3.64)

and the conventions Ẑ01 = Z̃1 and Ẑ(2n+2)(2n+3) = 0, and where κ is a positive real number and the

Li are positive real numbers that will be selected later on. The overall state dimension of the observer

is 4n + 2. The indexes of the observer variables are selected with the convention that Ẑii is the first

state-component of the i-th block providing an estimate of the variable Z̃i, Ẑi(i+1) is the second state-

component of the i-th block providing an estimate of the variable Z̃i+1. As a consequence, for each

variable Z̃i, with i = 2, . . . , 2n + 1, we have two different estimates. We define the estimation error as

Eii := Ẑii − Z̃i and Ei(i+1) := Ẑi(i+1) − Z̃i+1 for i = 1, . . . , 2n+ 1. The error dynamics is given by

{
Ėii = Ei(i+1) − Lik1

(
Eii − E(i−1)i

)

Ėi(i+1) ∈ E(i+1)(i+2) − L2
i k2

(
Eii − E(i−1)i

)
+ vi, i = 1, . . . , 2n+ 1,

(3.65)

with

vi(t) =





0, i = 1, . . . , 2n

−
2n+1∑

j=1

ajEj(j+1)(t) − d(t), i = 2n+ 1.
(3.66)

We can prove as in [1] that by selecting the gains Li sufficiently large and in an appropriate way, observer

(3.63) ensures finite time convergence of the estimate to the state of the system (3.61). More precisely,

we have the following Proposition.

Proposition 3 [1, Theorem 2 and Theorem 3] There exist positive real numbers (κ, L1, . . . , L2n+1) > 0,

such that observer (3.63) ensures finite time estimation of system (3.61), namely there exists a time

tr ≥ 0 such that

Ẑii(t) = Z̃1(t), Ẑi(i+1)(t) = Ẑ(i+1)(i+1)(t) = Z̃i+1(t), i = 1, . . . , 2n+ 1, ∀t ≥ tr. (3.67)

In addition, for any ϵ > 0, there exists δ > 0 such that for any solution Z̃ of (3.61) initialized in C0 and any
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solution Ẑ of (3.63) initialized in Ĉ0, we have the implication ∀i = 1, . . . , 2n+ 1

∣∣∣Ẑii(0) − Z̃i(0)
∣∣∣+
∣∣∣Ẑi(i+1)(0) − Z̃i+1(0)

∣∣∣ < δ =⇒
∣∣∣Ẑii(t) − Z̃i(t)

∣∣∣+
∣∣∣Ẑi(i+1)(t) − Z̃i+1(t)

∣∣∣ < ϵ ∀t
(3.68)

where C0 ⊂ R
2n+2 and Ĉ0 ⊂ R

4n+2 are compact sets.

Proof. The proof of the Proposition 3 is the proof of [1, Theorem 2 and Theorem 3] with,

ℓ1 = max
i=1,...2n+1

ai

and ℓ0 any positive real number.

Then, from (3.65) with i = 2n+ 1 and Proposition 3, we have for all t ≥ tr

0 ∈ −L2
2n+1 sign

(
Ẑ(2n+1)(2n+1)(t) − Ẑ2n(2n+1)(t)


− d(t). (3.69)

Since sign
(
Ẑ(2n+1)(2n+1)(t) − Ẑ2n(2n+1)(t)


= [−1, 1] for all t ≥ tr, then for all t ≥ tr the set

−L2
2n+1 sign

(
Ẑ(2n+1)(2n+1)(t) − Ẑ2n(2n+1)(t)


is closed, bounded, and upper semi-continuous. Thus,

according to [49, Page 78] there exists a measurable function

d̂(t) ∈ −L2
2n+1 sign

(
Ẑ(2n+1)(2n+1)(t) − Ẑ2n(2n+1)(t)


such that

∀t ≥ tr, d(t) = d̂(t). (3.70)

Therefore, for all t ≥ tr, d̂(t) is an estimate of d(t).

Control design

In order to make the origin of (3.31) globally asymptotically stable, the feedback controller u is de-

signed as follows:

u(t) := bw2(t, 0) − d̂(t). (3.71)

It is clear from (3.71) that the first term is the control that makes the closed-loop system (3.31) exponen-

tially stable without the disturbance [11, Corollary 5.5]. The term −d̂ is used to compensate the effect of

62



3.4. Conclusion

the disturbance. Under the feedback (3.71), the closed-loop system of (3.31) becomes





∂tw1(t, x) + λ1∂xw1(t, x) = c1w2(t, x),

∂tw2(t, x) − λ2∂xw2(t, x) = c2w1(t, x),

w1(t, 0) = bw2(t, 0) − d̂(t) + d(t),

w2(t, L) = aw1(t, L),

Ż(t) = Bz

(
bw2(t, 0) − d̂(t)


+A0Z(t) +GzCzZ(t) +MΓ(t),

˙̂
Zii = Ẑi(i+1) − giZ̃1 − Lik1

(
Ẑii − Ẑ(i−1)i


,

˙̂
Zi(i+1) ∈ Ẑ(i+1)(i+2) − gi+1Z̃1 − L2

i k2

(
Ẑii − Ẑ(i−1)i


, i = 1, . . . , 2n

˙̂
Z(2n+1)(2n+1) = Ẑ(2n+1)(2n+2) − g2n+1Z̃1 − L2n+1k1

(
Ẑ(2n+1)(2n+1) − Ẑ2n(2n+1)


,

˙̂
Z(2n+1)(2n+2) = −

2n+1∑

i=1

aiẐi(i+1) − (a0 + g2n+2)Z̃1 + d̂(t) − L2
2n+1q

(
κ
(
Ẑ(2n+1)(2n+1) − Ẑ2n(2n+1)


,

d̂(t) ∈ −L2
2n+1 sign

(
Ẑ(2n+1)(2n+1)(t) − Ẑ2n(2n+1)(t)


.

(3.72)

We are now in position to state our two main results of this section, namely: an existence theorem and

a stabilization theorem ensuring that the disturbance is rejected. We set J = I × R
2n+2 × R

4n+2.

Theorem 5 Let parameters (κ, L1, . . . , L2n+1) be fixed as in Proposition 3. Then, for any initial

state
(
w1(0, ·), w2(0, ·), Z(0), Ẑ(0)


∈ J , the closed-loop system (3.72) admits a mild solution

(
w1, w2, Z, Ẑ


∈ C (0,∞; J ).

Theorem 6 Let parameters (κ, L1, . . . , L2n+1) be fixed as in Proposition 3. Then, there exists a

KL-function β such that, the following inequality

∥∥∥∥∥

(
w1(t, ·)
w2(t, ·)

)∥∥∥∥∥
I

≤ α

(∥∥∥∥∥

(
w1(0, ·)
w2(0, ·)

)∥∥∥∥∥
I

+ ♣E(0)♣, t
)

(3.73)

is satisfied for any initial state
(
w1(0, ·), w2(0, ·), Z(0), Ẑ(0)


∈ J , for any t ≥ 0 and for all

solution
(
w1, w2, Z, Ẑ


of (3.72), where E is the vector of component Ei = (Eii, Ei(i+1)) with

i = 1, . . . , 2n+ 1.

The proofs are given in the Appendix B.

3.4 Conclusion

In this chapter, we apply the ADRC method for stabilization of a linear hyperbolic system subject to

a boundary disturbance. A robust observer is used to estimate disturbance. This requires measurement
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of some moments of the state, which is better in terms of measurement. Then, the feedback control is

designed, which contains two parts. The first part is used to compensate the disturbance and the second

part is the nominal feedback. The existence of solutions of the closed-loop system is shown, and the

global asymptotic stability of the closed-loop system is proven.
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CHAPTER 4

ISS LYAPUNOV STRICTIFICATION VIA

OBSERVER DESIGN AND INTEGRAL

ACTION CONTROL FOR A KORTEWEG-DE

VRIES EQUATION

4.1 Introduction

This chapter deals with the construction of an ISS-Lyapunov functional via a strictification procedure

and the output regulation of a Korteweg-de Vries (KdV) equation. The KdV equation, introduced in 1895

by Diederik J. Korteweg and Gustav de Vries, is a mathematical model of waves on shallow water sur-

faces (see e.g., [21] for a survey). Such an equation has been studied in [110, 23, 27] in the controllability

context, in [22, 29, 86, 120, 87] in terms of stabilization, and in [121, 25] where some asymptotic analysis

of the equilibrium point coinciding with the origin are given.

The system considered here can be written as follows:





∂tw + ∂xw + ∂xxxw + w∂xw = d1(t, x) ,

w(t, 0) = w(t, L) = 0 ,

∂xw(t, L) = d2(t) ,

w(0, x) = w0(x) ,

(4.1)

where (t, x) ∈ R+ × [0, L], L > 0, d1 and d2 denote external inputs that might be seen, for instance, as

disturbances, and its associated linearized dynamics around the origin described by





∂tw + ∂xw + ∂xxxw = d1(t, x) ,

w(t, 0) = w(t, L) = 0 ,

∂xw(t, L) = d2(t) ,

w(0, x) = w0(x) .

(4.2)

where (t, x) ∈ R+ × [0, L].

Inspired by a strictification methodology recently introduced in the finite-dimensional context, we will

construct an ISS-Lyapunov functional for the KdV equations (4.1) and (4.2) thanks to the use of an
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observer which is designed following the backstepping approach [81]. This wil allows us to conclude that

the KdV equations (4.1) and (4.2) satisfy an ISS property with respect to the disturbances d1, d2. Then,

we will consider the regulation problem of KdV equations (4.1) and (4.2) in which the disturbance d2

is considered as a control input acting at the boundary condition, and the output y(t) = ∂xw(t, 0) has

to be regulated at a certain desired constant reference r in presence of unknown distributed constant

disturbances d1. Thanks to the previous ISS-Lyapunov functional, we apply the forwarding approach [89,

7] in order to solve the desired output regulation problem.

This chapter is organized as follows. Section 4.2 presents the strictification methodology in the finite-

dimensional context. In Section 4.3, we formulate the problem and state the results about the construc-

tion of the ISS Lyapunov functional. Section 4.4 states and proves some regulation results for the KdV

equation. Finally, Section 4.5 collects concluding remarks.

4.2 Strictification of Lyapunov function

Lyapunov functions are known as a very efficient tool to study stability. But, there does not exist a

systematic method to find a suitable Lyapunov function for any system except linear finite-dimensional

ones. There are two kinds of Lyapunov functions: weak Lyapunov function and strict Lyapunov function.

The weak Lyapunov functions are distinguished by negative semi-definite time derivatives along all tra-

jectories of the system, while the strict Lyapunov functions have negative definite time derivatives along

all trajectories of the system. Note that there is no systematic method to build strict Lyapunov function

either for nonlinear ordinary differential equations or (linear or nonlinear) partial differential equations.

In contrast with strict Lyapunov functions, in many situations, a weak Lyapunov function exists. Often, it

also coincides with the energy of the system. Moreover, it is well known that the weak Lyapunov func-

tions are sufficient to prove stability in the sense of Lyapunov, but they are not sufficient when it comes to

proving asymptotic stability or carrying out a stability analysis of a system in the presence of disturbance.

Strict Lyapunov functions can be used to solve several important robustness and stabilization problems.

For example, it plays a very important role in quantifying the convergence rates of all trajectories of the

system towards an equilibrium point or to quantify the effects of uncertainties, since they can be used to

prove input-to state stability. This motivated a lot of meaningful research on methods to explicitly build

strict Lyapunov functions [82, 118, 107, 112, 36, 108]. In particular, in the finite-dimensional context, a

lot of attention has been put in the strictification of weak Lyapunov functions, namely the conception of

systematic procedures to modify a weak Lyapunov function in order to make it strict, see, for instance,

[82, 107]. To the best of our knowledge, in the infinite-dimensional context, such an approach has been

applied only to certain classes of hyperbolic systems [108].

The first contribution of this chapter is the construction of an ISS-Lyapunov functional for the KdV

equation via a strictification procedure. The methodology we propose to achieve this goal is inspired on

[107] and is based on the design of an observer. In order to understand the construction of our ISS-

Lyapunov functional, we are going to briefly present in the next subsection the strictification procedure

of [107].
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4.2.1 Observers to the aid of strictification of Lyapunov functions

Let O be an open neighborhood of the origin in R
n . We consider a system the dynamics of which on

O are:

ẇ = f(w) (4.3)

with w ∈ O and f : O −→ R
n a sufficiently many times differentiable function which vanishes at 0. We

assume the knowledge of a weak Lyapunov function V : O −→ R+. We look for a function h : O −→ R
p

satisfying:

⟨∇V (w), f(w)⟩Rn ≤ −α(♣h(w)♣) (4.4)

where α is a class K function, and such that the system:

ẇ = f(w), y = h(w)

is observable in such a way that we can design an observer. What we mean by we can design an

observer is that there exist continuous functions τ : O −→ R
m and φ : h(O) × R

m −→ R
m such that:

1. the function x 7→ (h(w), τ(w)) is injective on O.

2. We have:

∇τ(w)f(w) = φ(h(w), τ(w)), τ(0) = 0. (4.5)

3. For the augmented system:

ẇ = f(w), ˙̂w = φ(h(w), ŵ) (4.6)

we know a C1 function V : O × R
m −→ R+ satisfying:

V(x, τ(w)) = 0

and for all (w, ŵ) such that ŵ ̸= τ(w),

V(w, ŵ) > 0,
∂V
∂w

(w, ŵ)f(x) +
∂V
∂ŵ

(w, ŵ)φ(h(w), ŵ) = −W(w, ŵ) < 0 (4.7)

This does give an observer since, on one hand, when ŵ is in the image τ(O), and the value h(w) is

known, there is a unique w satisfying:

ŵ = τ(w),

and, on the other hand, the solution (X(w, t), Z((w, ŵ), t)) of (4.6), issued from (w, ŵ) at time 0, is such

that Z((w, ŵ), t) converges to τ(X(w, t)) as t goes to infinity.

By evaluating at (0, τ(w)) the functions involved in (4.7), we obtain:

∂V
∂ŵ

(0, τ(w))φ(0, τ(w)) = −W(0, τ(w)) < 0 ∀w ∈ O : τ(w) ̸= 0. (4.8)
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This allow to define the auxiliary function Va as:

Va(w) = V(0, τ(w)).

In view of (4.5), we have the decomposition:

⟨∇Va(w), f(w)⟩Rn = −W(0, τ(w)) +
∂V
∂ŵ

(0, τ(w))[φ(h(w), τ(w)) − φ(0, τ(w))].

Here, h plays the role of a disturbance. We assume that we are in an ISS-like context, i.e. there exist

a class K∞ function γ and a continuous positive definite function αa : τ(O) −→ R+ satisfying :

∂V
∂ŵ

(0, τ(w))φ(h(w), τ(w)) ≤ −ωαa(Va(w)) + γ(♣h(w)♣) (4.9)

with ω > 1. Then, we obtain

LfVa(w) ≤ −Wa(w) + γ(♣h(w)♣) (4.10)

with Wa : O −→ R+ such that the function x 7→ Wa(w) + ♣h(w)♣ is positive definite. In this case, the

function

Vs(w) = µ(V (w)) + µa(Va(w)), (4.11)

where µ and µa are appropriately chosen C1 class K∞ functions, is a good candidate for being a strict

Lyapunov function.

Finally, we only keep the functions τ and V of the procedure and we need explicit expressions for

them. To give the reader a better understanding of the procedure, we propose the following example.

Example 2 Consider the following system

ẇ = Aw (4.12)

with A a matrix. Let us assume there is P positive definite matrix such that

PA+A⊤P ≤ −C⊤C

where Q is only semidefinite positive matrix, namely Q ≥ 0. Then, the function

V (w) = w⊤Pw

is a weak Lyapunov function since

V̇ ≤ −
(
Cw
)⊤
Cw.

Let us suppose that the pair (A,C) is observable. Then there exists K such that A − LC is Hurwitz,

namely

˙̂w = Aŵ + L(Cw − Cŵ), (4.13)

is an observer. Furthermore, since A− LC is Hurwitz, there exists a positive definite matrix S satisfying

S(A− LC) + (A− LC)⊤S = −IRn .

68



4.3. Construction of an ISS Lyapunov functional

Thus, we can show that the system (4.13) is an observer for the system (4.12) by using

U(w, ŵ) = (w − ŵ)⊤S(w − ŵ)

which satisfies

U̇ = −♣w − ŵ♣2.

Then, we can deduce that V = U and τ is the identity function. Now, let us consider the Lyapunov

function

W (w) = V (w) + bU(x, 0) = w⊤Pw + bw⊤Sw

with b > 0 to be chosen. Its derivative satisfies

Ẇ ≤ −w⊤Q⊤Qw + 2bw⊤S(A−KQ+KQ)w

≤ −w⊤Q⊤Qw − b♣w♣2 + 2bw⊤SKQw

≤ −w⊤Q⊤Qw +
1

2
w⊤Q⊤Qw − (1 − 2b♣S♣♣K♣♣Q♣)♣w♣2

≤ −1

2
w⊤Q⊤Qw − (1 − 2b♣S♣♣K♣♣Q♣)♣w♣2.

Hence, by selecting b small enough, in particular such that

b♣S♣♣K♣♣Q♣ =
1

4

then we obtain

Ẇ ≤ −1

2
(w⊤Q⊤Qw + ♣w♣2).

As a consequence, W is a strict Lyapunov function.

In the following section, this procedure is used to construct a coercive ISS Lyapunov function for

systems (4.1) and (4.2).

4.3 Construction of an ISS Lyapunov functional

The objective of this section is to study the ISS properties of the KdV models (4.1) and (4.2) through

the existence of a strict ISS-Lypaunov functional. The construction of this ISS-Lypaunov functional is

based on the strictification procedure described in the previous section. More precisely, let us consider

system (4.1) with no inputs, namely d1 = d2 = 0. A formal computation shows that the time derivative of

the energy E defined as

E(w) :=

∫ L

0

w(t, x)2dx (4.14)

yields along solutions

Ė(w) :=
d

dt

∫ L

0

w(t, x)2dx = −♣∂xw(t, 0)♣2. (4.15)
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These computations are sufficient to establish that the origin is Lyapunov stable but not to conclude

stronger properties (such as asymptotic stability or an ISS property if we re-introduce the effect of the

disturbances in the computation of the derivative of the energy along the trajectories of (4.1). In other

words, the energy E is a weak-Lyapunov functional. From [110, Proposition 3.3], ∂xw(t, 0) is an exactly

observable output as soon as L /∈ N with

N :=

{
2π

√
k2+kl+l2

3 : k, l ∈ N

}
,

then, following the previous section, our strategy consists in designing an observer with the output

∂xw(t, 0). Such an observer is obtained by using the backstepping approach (see, e.g., [81]) and the

Fredholm transformation (see, e.g., [29] or [52]). The proposed observer differs from the works in [85,

86, 120] in the same context of KdV equations because a different measured output is considered. Fi-

nally, by combining the Lyapunov functional derived from the observer analysis and the energy E, we

obtain a strict Lyapunov functional, that will be used to establish the desired ISS properties for systems

(4.1) and (4.2) with respect to the inputs d1 and d2.

Note that we will not provide further discussions on the well-posedness of (4.2) and (4.1), since it is

not the main topic of this section. Interested readers may refer to [110, 33, 16] for more information on

this issue. Nevertheless, we recall the two results below. The first result deals with mild solutions. The

statement reads as follows.

Proposition 4 [23, Theorem 9] For any T, L > 0, for any w0 ∈ L2(0, L), for any d1 ∈ L1([0, T ];L2(0, L))

and d2 ∈ L2(0, T ), systems (4.1) and (4.2) admit a unique mild solution

w ∈ C0([0, T ];L2(0, L)) ∩ L2(0, T ; H1(0, L)) .

The second result deals with more regular solutions. The statement reads as follows.

Proposition 5 [16, Theorem 1.3][33, Proposition 7] For any T, L > 0, for any w0 ∈ H3
L(0, L), for any

d1 ∈ C1([0, T ], L2(0, L)) and d2 ∈ C2([0, T ]), systems (4.1) and (4.2) admit a unique classical solution

w ∈ C(0, T ; H3(0, L)) ∩ C1(0, T ;L2(0, L))

with H3
L(0, L) := ¶w ∈ H3(0, L) : w(0) = w(L) = 0, w′(L) = d2(0)♢.

Next, we state the following definition of input-to-state stability for systems (4.1) and (4.2).

Definition 5 System (4.1) (resp. (4.2)) is said to be (exponentially) input-to-state stable (ISS), if there

exist positive constants c0, c1, c2, µ, such that any solution w ∈ C0(R+;L2(0, L)) ∩ L2(R+; H1(0, L)) to

(4.1) (respectively to (4.2)) satisfies for all t ≥ 0

∥w(t, ·)∥L2 ≤ c0e
−µt∥w0∥L2 + c1

∫ t

0

e−µ(t−s)∥d1(s, ·)∥L2ds+ c2

∫ t

0

e−µ(t−s)♣d2(s)♣ds, (4.16)

for any initial condition w0 ∈ L2(0, L), d1 ∈ L2([0, t];L2(0, L)) and d2 ∈ L2(0, t). Furthermore, if there
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exists δ > 0 such that (4.16) holds only with w0, d1, d2 satisfying

∥w0∥L2 + lim
t→∞

∫ t

0

e−µ(t−s)
(

∥d1(s, ·)∥L2 + ♣d2(s)♣

ds ≤ 3δ

then the system (4.1) (resp. (4.2)) is said to be locally (exponentially) input-to-state stable (LISS).

In the literature, the definition (4.16) is related to the notion of the “Fading Memory Input-to-State

Stability”, see e.g [66, Chapter 7], due to the presence of weighting exponential functions used in the

norms characterizing the gain of the signals d1 and d2. Thus, with some abuse of language, we call

it Input-to-State Stability in this chapter. Also, it is important to underline that such a definition allows

to consider a large class of disturbances d1, d2, which includes, among others, constant and periodic

signals.

In general, proving the ISS property defined above needs the knowledge of the trajectories of the

system, which is not an easy task. Therefore, in practice, ISS Lyapunov functionals are used to prove

the desired ISS properties. To this end, we recall the result in [90, Theorem 3], showing that the existence

of an ISS Lyapunov functional is sufficient to establish the ISS properties of Definition 5.

Before stating the definition of such Lyapunov functionals, we recall now which type of derivatives

we are going to use in this chapter. Indeed, if any Lyapunov functional V for solutions to (4.2) or (4.1) is

Fréchet differentiable, one has the following equality:

V̇d(w0) =
d

dt
V (w(t))

∣∣∣∣
t=0

= DV (w0)∂tw(0), ∀w0 ∈ H3(0, L), (4.17)

where DV (w0) denotes the Fréchet derivative at w0 (see for instance [37, Definition A.5.33] for the

definition). The proof of this equality follows the same path than the one given in [37, Lemma 11.2.5].

For example, the energy E(w) = ∥w∥2
L2 is Fréchet differentiable. Indeed, for all w, h ∈ L2(0, L) we have

E(w + h) = E(w) + 2

∫ L

0

w(x)h(x)dx+ E(h).

Thus

lim
∥h∥L2 →0

♣E(w + h) − E(w) − 2
∫ L

0
w(x)h(x)dx♣

∥h∥L2

= lim
∥h∥L2 →0

E(h)

∥h∥L2

= lim
∥h∥L2 →0

∥h∥L2 = 0.

Therefore, this means that, the energy E is Fréchet differentiable and the Fréchet differential DE(w) at w

is defined by h ∈ L2(0, L) 7→ DE(w)h = 2
∫ L

0
w(x)h(x)dx . Then, the time derivative of E along classical

solution of (4.2) can be computed as

Ė(w) = DE(w)∂tw = 2

∫ L

0

(−∂xw − ∂xxxw + d1)w dx, (4.18)

and, for time derivative along classical solution of (4.1):

Ė(w) = DE(w)∂tw = 2

∫ L

0

(−∂xw − ∂xxxw − w∂xw + d1)w dx, (4.19)
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showing that the time does not play any role when using the Fréchet derivative. This is why the time will

disappear when differentiating Lyapunov functionals in the rest of the chapter.

We are now in position to state the following definition of ISS Lyapunov functional.
Definition 6 A Fréchet differentiable function V : L2(0, L) → R is said to be an exponentially ISS

Lyapunov functional for the system (4.1) (resp. (4.2)), if there exist positive constants α, ᾱ, α, σ1, σ2 such

that:

(i) For all w ∈ L2(0, L),

α∥w∥2
L2 ≤ V (w) ≤ ᾱ∥w∥2

L2 . (4.20)

(ii) The time derivative of V along the trajectories of (4.1) (resp. (4.2)) satisfies

V̇ (w) ≤ −α∥w∥2
L2 + σ1∥d1∥2

L2 + σ2♣d2♣2 . (4.21)

for any w ∈ L2(0, L), d1 ∈ L2(0, L) and d2 ∈ R. If there exists δ > 0 such that (ii) holds only if ∥w∥L2 +

∥d1∥L2 + ♣d2♣ ≤ 3δ then V is said to be a locally exponentially ISS Lyapunov functional for the system

(4.1).

As explained above, for any L /∈ N , the energy function in L2-norm defined in (4.14) is a weak Lyapunov

functional for the system (4.1) (resp. (4.2)) in view of (4.15). Indeed, on the the right hand side of the

inequality, we have a function which depends only on a part the state w(t, x), i.e., ∂xw(t, 0). From (4.15),

one can deduce that the origin of the system of (4.1) with d1 = d2 = 0 is Lyapunov stable. In order to

show also the exponential stability properties of the origin, one can follow [110, Proposition 3.3], by using

the fact that ∂xw(t, 0) is exactly observable as soon as L /∈ N : indeed, using the related observability

inequality, and integrating (4.15) between 0 and T , exponential stability can be established as illustrated

in [21, §4.1.]. However, nothing can be easily said in the presence of disturbances. As a consequence, in

order to show the desired ISS properties of the system (4.1) (resp. (4.2)), we follow a different approach

here: we aim at constructing a strict ISS Lyapunov functional, which is a new result, to the best of our

knowledge. Using the observability of the output ∂xw(t, 0), we can follow the methodology described in

the previous section and that can be decomposed as follows. First, we design an observer for the output

∂xw(t, 0). Second, we consider the sum of the Lyapunov functional coming from the latter observer

design and the natural energy, and we prove that this sum boils down to be a strict Lyapunov functional.

Third, thanks to this strict Lyapunov functional, we deduce ISS properties for systems (4.1) and (4.2).

These properties are written more precisely in the following theorem, which is the first main result of this

chapter.

Theorem 7 Suppose that L /∈ N . Then, there exists a functional W : L2(0, L) → R+ such that,

the functional V (w) := W (w) + E(w) with E being the energy in L2-norm defined in (4.14), is

(a) an exponentially ISS Lyapunov functional for the system (4.2);

(b) a locally exponentially ISS Lyapunov functional for the system (4.1).

Moreover, the functional W is given by W (w) := ∥Π(w)∥2
L2 with Π being a continuous linear

operator from L2(0, L) to L2(0, L) with a continuous inverse.
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The proof of Theorem 7 is postponed to Appendix C. In particular, in the next section, we will first

show how to design an ISS observer for the linearized system (4.2) by means of the output ∂xw(t, 0).

The proposed design is based on the backstepping method, see, e.g., [81] and on the Fredholm trans-

formation, see, e.g., [52, 29]. Then, in the proof of Theorem 7, we will use the ISS-Lyapunov functional

associated to such an observer to build the functional W claimed in the statement of Theorem 7.

The following result will be also useful when dealing with the regulation problem. It is an ISS result for

a perturbed version of (4.1) with non-constant (small) coefficients. Its proof is omitted for compactness

since it follows the same path used in the proof of Theorem 7, item (b).

Corollary 1 Suppose L /∈ N . There exists positive real numbers ā, b̄ such that, for any a ∈
C([0, L]), b ∈ C1([0, L]) satisfying ∥a∥∞ ≤ ā and ∥b∥W 1,∞ ≤ b̄, the Lyapunov functional V estab-

lished in Theorem 7 is a locally exponentially ISS Lyapunov function for the following system





∂tw + ∂xw + ∂xxxw + w∂xw = a(x)w + b(x)∂xw , (t, x) ∈ R+ × [0, L] ,

w(t, 0) = w(t, L) = 0 , t ∈ R+ ,

∂xw(t, L) = d2(t) , t ∈ R+ ,

w(0, x) = w0(x), x ∈ [0, L] .

(4.22)

Moreover, it is an exponential ISS Lyapunov functional for the linearized dynamics of (4.22), i.e.

in absence of the term w∂xw.

4.3.1 Observer design for a Linear KdV equation

In this section, we design an observer for the linear KdV equation (4.2) with y(t) = ∂xw(t, 0) defined

as the output function. In particular, we consider the following system





∂tw + ∂xw + ∂xxxw = d1 , (t, x) ∈ R+ × [0, L] ,

w(t, 0) = w(t, L) = 0 , t ∈ R+ ,

∂xw(t, L) = d2(t) , t ∈ R+ ,

w(0, x) = w0(x) , x ∈ [0, L] ,

y(t) = ∂xw(t, 0) , t ∈ R+ ,

(4.23)

and we design an observer with a distributed correction term of the form





∂tŵ + ∂xŵ + ∂xxxŵ + p(x)[y(t) − ∂xŵ(t, 0)] = 0 , (t, x) ∈ R+ × [0, L] ,

ŵ(t, 0) = ŵ(t, L) = 0 , t ∈ R+ ,

∂xŵ(t, L) = 0 , t ∈ R+ ,

ŵ(0, x) = ŵ0(x) , x ∈ [0, L] ,

(4.24)

where p is an output injection gain to be designed. Note that the well-posedness of system (4.24) can

be proved by following the same approach as in [85]. We define now the estimation error coordinates as

follows

ŵ 7→ w̃ := w − ŵ
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mapping system (4.24) into





∂tw̃ + ∂xw̃ + ∂xxxw̃ − p(x)∂xw̃(t, 0) = d1 , (t, x) ∈ R+ × [0, L] ,

w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,

∂xw̃(t, L) = d2(t) , t ∈ R+ ,

w̃(0, x) = w̃0(x) , x ∈ [0, L] .

(4.25)

The objective of this section is to show that the gain p can be selected so that to guarantee the system

(4.25) to be ISS with respect to the disturbances d1, d2. This, in turns, guarantees the convergence of

the solutions of the observer (4.24) towards the trajectories of the observed plant (4.23) in the unper-

turbed case (d1 = 0, d2 = 0), and desirable bounded-input bounded-output properties otherwise. This

is established in the next theorem claiming the existence of an ISS-Lyapunov functional for the system

(4.25) under an appropriate choice of the function p.

Theorem 8 Suppose that L /∈ N . For any λ > 0, there exist a non-zero function p ∈ L2(0, L), a

Lyapunov functional U : L2(0, L) → R and positive constants c, c̄, ϱ1, ϱ2 satisfying the following

properties.

(i) For all w̃ ∈ L2(0, L)

c∥w̃∥2
L2 ≤ U(w̃) ≤ c̄∥w̃∥2

L2 . (4.26)

(ii) The time derivative of U along the trajectories of (4.25) satisfies, for all w ∈ L2(0, L),

d1 ∈ L2(0, L) and d2 ∈ R,

U̇(w̃) ≤ −λU(w̃) + ϱ1∥d1∥2
L2 + ϱ2♣d2♣2. (4.27)

Moreover, the functional U is given by U(w) := ∥Π
−1

(w)∥2
L2 , with Π being a continuous linear

operator from L2(0, L) to L2(0, L) with continuous inverse.

Proof. The proof of Theorem 8 is divided into two parts. The first step consists in proving the existence

of p ∈ L2(0, L) such that the origin of (4.25), in the unperturbed case d1 = 0, d2 = 0, is exponentially

stable. The second step is to show the existence of a Lyapunov functional U satisfying the inequalities

(4.26) and (4.27).

Let us start the proof of the first step. Inspired by [29, equation (1.8)], consider the change of coordi-

nates

w̃ 7→ γ := Π
−1
w̃ (4.28)

where the functional Π is defined thanks to the following Fredholm integral transformation

w̃(x) = Π(γ)(x) := γ(x) −
∫ L

0

P (x, z)γ(z)dz , (4.29)

for all x ∈ [0, L], where w̃ satisfies (4.25) with d1 = 0 and d2 = 0, P is a function to be defined and γ is
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the solution to the following system





∂tγ + ∂xγ + ∂xxxγ + λγ = 0 , (t, x) ∈ R+ × [0, L],

γ(t, 0) = γ(t, L) = ∂xγ(t, L) = 0 , t ∈ R+ ,

γ(0, x) = γ0(x) , x ∈ [0, L],

(4.30)

with λ > 0. Note that using an integration by parts and the boundary conditions of (4.30), one immedi-

ately obtains
d

dt

∫ L

0

♣γ(t, x)♣2dx ≤ −2λ

∫ L

0

♣γ(t, x)♣2dx

from which it is straightforward to deduce the exponential stability in the L2-norm of γ. As a consequence,

the main idea of the proof consists in selecting the function p such that (4.29) holds. To do so, we need to

find the kernel P such that w̃(t, x) = Π(γ)(t, x) satisfies (4.25) when d1 = 0 and d2 = 0. Furthermore, we

have also to ensure that the corresponding transformation is invertible and continuous. To this end, we

first formally differentiate with respect to the time and with respect to the space the change of coordinates

(4.29). We obtain the following identities

∂tw̃(t, x) = ∂tγ(t, x) +

∫ L

0

P (x, z)
(
λγ(t, z) + γz(t, z) + γzzz(t, z)


dz , (4.31)

∂xw̃(t, x) = ∂xγ(t, x) −
∫ L

0

∂xP (x, z)γ(t, z)dz , (4.32)

∂xxxw̃(t, x) = ∂xxxγ(t, x) −
∫ L

0

∂xxxP (x, z)γ(t, z)dz , (4.33)

in which (4.31) has been obtained by using the γ-dynamics in (4.30). After some integrations by parts,

(4.31) gives

∂tw̃(t, x) = ∂tγ(t, x) − P (x, 0)γ(t, 0) + P (x, L)γ(t, x) + P (x, L)∂xxγ(t, L) − P (x, 0)∂xxγ(t, 0)

−
∫ L

0

(
− λP (x, z) + ∂zP (x, z) + ∂zzzP (x, z)


γ(t, z)dz − ∂zP (x, L)∂xγ(t, L) + ∂zzP (x, L)γ(t, L)

− ∂zzP (x, 0)γ(t, 0) + ∂zP (x, 0)∂xγ(t, 0) . (4.34)

Then, by adding on both sides the terms ∂xw̃, ∂xxxw̃ and −p(x)∂xw̃(t, 0) and using (4.25), (4.30) and

the previous identities (4.32), (4.33), we further obtain

∂tw̃(t, x) + ∂xw̃(t, x) + ∂xxxw̃(t, x) − p(x)∂xw̃(t, 0) =

= ∂tγ(t, x) + ∂xγ(t, x) + ∂xxxγ(t, x) + λγ(t, x) −
∫ L

0

(
− λP + ∂zP + ∂zzzP + ∂xxxP + ∂xP


γ(t, z)dz

− λγ(t, x) + P (x, L)∂xxγ(t, L) + ∂zP (x, 0)∂xγ(t, 0) − P (x, 0)∂xxγ(t, 0)

− p(x)


∂xγ(t, 0) −

∫ L

0

∂xP (0, z)γ(t, z)dz


.
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Then, using the identity

−λγ(t, x) =

∫ L

0

λδ(x− z)γ(t, z)dz ,

where δ(x − z) denotes the Dirac measure on the diagonal of the square [0, L] × [0, L], the previous

equation gives

∂tw̃(t, x) + ∂xw̃(t, x) + ∂xxxw̃(t, x) − p(x)∂xw̃(t, 0)

= ∂tγ(t, x) + ∂xγ(t, x) + ∂xxxγ(t, x) + λγ(t, x) − P (x, 0)∂xxγ(t, 0) + P (x, L)∂xxγ(t, L)

−
∫ L

0

(
− λP + ∂zP + ∂zzzP + ∂xP + ∂xxxP − λδ(x− z)


γ(t, z)dz

+ p(x)

∫ L

0

∂xP (0, z)γ(t, z)dz − ∂xγ(t, 0)
[
p(x) − ∂zP (x, 0)

]
.

(4.35)

From equation (4.35), we finally obtain the following conditions for the functions P and p.

(a) The identity −λP +∂zP +∂zzzP +∂xP +∂xxxP = λδ(x− z) is satisfied for all (x, z) ∈ [0, L] × [0, L].

(b) The boundary conditions P (x, 0) = P (x, L) = ∂xP (0, z) = 0 are satisfied for all (x, z) ∈ [0, L] ×
[0, L].

(c) An appropriate choice of p is given by p(x) := ∂zP (x, 0), for all x ∈ [0, L].

Moreover, note also that the following.

(d) By setting x = 0 and x = L in (4.29), we need: P (0, z) = P (L, z) = 0 for all z ∈ [0, L].

(e) By setting x = L in (4.32), we need: ∂xP (L, z) = 0 for all z ∈ [0, L].

Therefore, collecting the conditions (a)-(e), we impose the function P to satisfy the following PDE





−λP + ∂zP + ∂zzzP + ∂xP + ∂xxxP = λδ(x− z) ,

P (x, 0) = P (x, L) = 0 ,

P (L, z) = P (0, z) = 0 ,

∂xP (L, z) = ∂xP (0, z) = 0 ,

(4.36)

where (x, z) ∈ [0, L] × [0, L] and δ(x − z) denotes the Dirac measure on the diagonal of the square

[0, L] × [0, L]. Now, in order to show the existence of a solution to (4.36), let us make the following

change of variable: (
z

x

)
7→
(
x̄

z̄

)
:=

(
L− z

L− x

)
,

and define G(x̄, z̄) := −P (x, z). From (4.36) it is obtained





λG+ ∂z̄G+ ∂z̄z̄z̄G+ ∂x̄G+ ∂x̄x̄x̄G = λδ(x̄− z̄) ,

G(x̄, 0) = G(x̄, L) = 0 ,

G(L, z̄) = G(0, x̄) = 0 ,

∂z̄G(x̄, 0) = ∂z̄G(x̄, L) = 0 ,

(4.37)
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with (x̄, z̄) belonging to [0, L]×[0, L]. Note that in [29, Lemma 2.1], it has been proved that, for any L /∈ N ,

the system (4.37) admits a unique solution G ∈ H1
0((0, L) × (0, L)). Therefore, we can conclude that the

kernel P exists. Then according to [29, Lemma 3.1], the transformation Π is invertible and continuous on

L2(0, L) and its inverse is also continuous. As a consequence, we have shown that, for an appropriate

choice of the function p ∈ L2(0, L), the system (4.25) is transformed into the system (4.30) via a linear

change of coordinates which is invertible with a continous inverse. Since the origin of system (4.30) is

exponentially stable, we conclude that the same is true for the origin of (4.25) in the non-perturbed case

(i.e., d1 = 0, d2 = 0). Note also that p is non-zero. Indeed, if p = 0 then, in view of the condition (c),

we would have ∂zP (x, 0) = 0. Therefore, the system (4.36) would have seven boundary conditions. But

then, because of the degree of the first equation of (4.36), the system (4.36) would have no solution.

This concludes the first part of the proof.

We want now to prove the existence of a Lyapunov functional which satisfies the inequalities (4.26)

and (4.27) in presence of d1, d2. To this end, we choose the following candidate Lyapunov functional

U : L2(0, L) → R

U(w) := ∥Π
−1

(w)∥2
L2 (4.38)

Since Π
−1

exists, then U is well defined in L2(0, L). Moreover, according to the continuity of Π
−1

and Π

in L2(0, L), there exist two positive constants c and c̄ satisfying inequality (4.26) for all w ∈ L2(0, L). Note

that the functional w ∈ L2(0, L) 7→ U(w) ∈ R+ is equivalent to the standard norm on the space L2(0, L)

according to (4.26). It only remains to prove that U satisfies the inequality (4.27). To this end, we show

inequality (4.27) for w̃0 ∈ H3
L(0, L), d2 ∈ C2([0, T ]) and d1 ∈ C1([0, T ], L2(0, L)). The result follows for

all w̃0 ∈ L2(0, L), d1 ∈ L1([0, T ];L2(0, L)) and d2 ∈ L2(0, T ), by a standard density argument similar to

the one used in [83, Lemma 1]. Now, consider again the transformation defined in (4.28), (4.29). Similar

computations can be used to show that its inverse transformation is defined by

γ(x) := Π
−1

(w̃)(x) = w̃ +

∫ L

0

Q(x, z)w̃(z)dz , (4.39)

where Q ∈ H1
0((0, L) × (0, L)) is now the solution of the following system





λQ+ ∂zQ+ ∂zzzQ+ ∂xQ+ ∂xxxQ = λδ(x− z) ,

Q(x, 0) = Q(x, L) = 0 ,

Q(L, z) = Q(0, z) = 0 ,

∂xQ(L, z) = 0 ,

(4.40)

and satisfies p(x)+
∫ L

0
p(z)Q(x, z)dz = ∂zQ(x, 0) for all x ∈ [0, L]. Now, consider the solution w̃ of system

(4.25) with d1, d2 possibly different from zero. Then, applying the change of coordinates γ = Π
−1

(w̃)

defined in (4.39), (4.40), we obtain





∂tγ + ∂xγ + ∂xxxγ + λγ = Π
−1

(d1) + ∂zQ(x, L)d2, (t, x) ∈ R+ × [0, L],

γ(t, 0) = γ(t, L) = 0 , t ∈ R+,

∂xγ(t, L) = d2(t), t ∈ R+,

γ(0, x) = γ0(x) , x ∈ [0, L] .

(4.41)
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The derivative of U along the trajectory of (4.25), or equivalently on the trajectory of (4.41), yields

U̇(w) = − 2

∫ L

0

γ
(
∂xxxγ + ∂xγ + λγ − Π

−1
(d1) − ∂zQ(x, L)d2


dx

= − 2λ

∫ L

0

♣γ♣2dx+ 2

∫ L

0

∂xγ∂xxγdx+ 2

∫ L

0

Π
−1

(d1)γdx+ 2d2

∫ L

0

∂zQ(x, L)γdx

≤ − 2λ∥γ∥2
L2 + 2

∣∣∣∣∣

∫ L

0

Π
−1

(d1)γdx

∣∣∣∣∣+ d2
2 − (∂xγ(0))2 + 2

∣∣∣∣∣d2

∫ L

0

∂zQ(x, L)γdx

∣∣∣∣∣ , (4.42)

where, in the second equation, we have used an integration by parts to compute

2

∫ L

0

∂xγ∂xxγdx =
[
(∂xγ(x))2

]L

0
= d2

2 − (∂xγ(0))2 .

Using first Cauchy-Schwarz’s inequality and then Young’s inequality 2ab ≤ νa2 + 1
ν
b2, for any ν > 0, from

(4.42) we finally obtain

U̇(w) ≤ − 2λ∥γ∥2
L2 + 2∥γ∥L2∥Π

−1
(d1)∥L2 + 2♣d2♣∥γ∥L2∥∂zQ(·, L)∥L2 + ♣d2♣2

≤ − λ∥γ∥2
L2 + 2

λ
∥Π

−1
(d1)∥2

L2 +


1 +

2

λ
∥∂zQ(·, L)∥2

L2


♣d2♣2 .

Using the inequality (4.26) on the term depending on d1, we finally obtain

U̇(w) ≤ −λ∥γ∥2
L2 +

2c̄

λ
∥d1∥2

L2 +


1 +

2

λ
∥∂zQ(·, L)∥2

L2


♣d2♣2 (4.43)

showing the inequality (4.27) with ϱ1 = 2c̄
λ
, ϱ2 = 1 + 2

λ
∥∂zQ(·, L)∥2

L2 . This completes the proof.

From the existence of the ISS Lyapunov functional established in Theorem 8, one can immediately

deduce the following property for the observer (4.24).

Corollary 2 For any λ > 0, there exists a function p ∈ L2(0, L) such that the observer (4.24) is

an ISS exponential convergent observer for system (4.23) with convergence rate λ, namely, there

exist some c0, c1, c2 > 0 such that the following inequality holds

∥ŵ(t, ·) −w(t, ·)∥L2 ≤ c0e
−λt∥ŵ0 −w0∥L2 + c1

∫ t

0

e−λ(t−s)∥d1(s, ·)∥L2ds+ c2

∫ t

0

e−λ(t−s)♣d2(s)♣ds,
(4.44)

for any initial conditions w0, ŵ0 ∈ L2(0, L), any d1 ∈ L2([0, t];L2(0, L)), any d2 ∈ L2(0, t) and for

all t ≥ 0.

Proof. The proof can be directly inherited from Theorem 8 by applying Grönwall’s lemma to inequality

(4.27).

As a conclusion of this section, we note that, taking into account the exponential stability properties

of the observer (4.24), a local observer may also be designed for the non-linear KdV model (4.1). In
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particular, selecting the gain p as in Corollary 2 it is possible to show that the following system





∂tŵ + ∂xŵ + ∂xxxŵ + ŵ∂xŵ + p(x)[y(t) − ∂xŵ(t, 0)] = 0 , (t, x) ∈ R+ × [0, L] ,

ŵ(t, 0) = ŵ(t, L) = 0 , t ∈ R+ ,

∂xŵ(t, L) = 0 , t ∈ R+ ,

ŵ(0, x) = ŵ0(x) , x ∈ [0, L] ,

is a locally exponentially ISS observer for system (4.1), namely inequality (4.44) holds for all w0, ŵ0, d1, d2

satisfying

∥ŵ0∥L2 + ∥w0∥L2 + lim
t→∞

∫ t

0

e−µ(t−s)
(

∥d1(s, ·)∥L2 + ♣d2(s)♣

ds ≤ δ

for some δ small enough. The proof can be derived by combining the arguments of the proof of Theorem

8 with the robustness result established in Corollary 1.

In the next section, the proposed ISS-Lyapunov functional in Theorem 7 will be used in order to

design an output feedback integral action controller.

4.4 Output regulation problem

In this section we consider the regulation problem of a KdV equation in which the disturbance d2 is

considered as a control input acting at the boundary, and the output y(t) = ∂xw(t, 0) has to be regulated

at a certain desired constant reference r in presence of unknown distributed constant disturbances d1.

Roughly speaking, the output regulation problem consists in designing a feedback-law such that the

output converges asymptotically towards a desired reference and such that disturbances are rejected,

possibly in spite of some “small” model uncertainties. Following the celebrated internal-model principle,

a solution to such a problem exists when references and disturbance (denoted generically as exosignals)

are generated by a known autonomous dynamical system (denoted as exosystem), and a copy of such

a system is embedded in the controller dynamics, see, e.g. [50, 99]. A well known example is the use of

integral action for tracking and rejecting constant references and disturbances.

Output regulation is an old topic in the finite dimensional context, but many results remain to be

found in the context of nonlinear systems (see e.g., [7, 53] for recent results in this field), and many

further research lines have to be followed when dealing with time-varying references. See, for instance,

[5] where a finite-dimensional system is regulated by adding a transport equation for the case of periodic

exosignals. For infinite dimensional systems, even if one can mention some old results such as [60], the

topic is still very active. A generalization of internal-model principle has been proposed in [99], but the

use of integral action to achieve output regulation in the presence of constant references/perturbations

for infinite dimensional systems has been initiated earlier in [104]. Since then, several methods to design

an integral action have been developed for linear dynamics following, for instance, a spectral approach

in [103, 135, 99], by using operator and semi-group methods in [80, 136], based on frequency domain

methods with Laplace transform in [13, 30] or by relying on Lyapunov techniques in [76], [43, 124]. We

may also mention [40, 41] which propose to regulate an output towards time-varying references that are

generated by a known linear dynamical system. In the context of nonlinear PDEs, we recall also the
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works [92, 65, 138].

Among all these techniques, we are particularly interested in Lyapunov techniques. Indeed, such a

methodology has been proved to be efficient to deal with nonlinear systems. Among these techniques,

we aim at using the forwarding methodology that has been first introduced for finite dimensional systems

in cascade form [89, 7] and then extended to some hyperbolic systems [122] in the regulation context,

and to abstract systems [84] in the stabilization context. In [122], it is shown that a strict Lyapunov

functional is needed for open-loop stable systems that we aim at regulating. In other words, before

adding an integral action, we should be able to show that a strict Lyapunov functional for the open-loop

dynamics does exist (or can be obtained after employing a preliminary stabilizing state-feeedback, see,

e.g. [7] in the finite dimensional context). Such Lyapunov functionals are known for hyperbolic systems

[12], but it is not the case for the KdV equation. In addition to the existence of this Lyapunov functional,

some ISS properties are needed to apply the forwarding method.

To achieve the output regulation problem, we extend the plant with an integral action processing the

error ∂xw(t, 0) − r and we show how to design an output-feedback law. The gain of the controller is

obtained via the forwarding technique which is employed to construct a strict Lyapunov functional built

upon the ISS-Lyapunov functional obtained in the section 4.3. Global stability properties are established

for the linear model (4.2) while only local ones are proved for the nonlinear one (4.1). Note that, in both

cases, we prove pointwise convergence of the tracking error i.e limt→∞ ♣∂xw(t, 0) − r♣ = 0. This is in

contrast with the results in [109, Theorem 1.1] where the convergence towards 0 of the tracking error

has been proved only in the norm of the space L2
α([0,+∞)), for some α < 0. However, from a practical

point of view, it is more interesting to have a pointwise convergence. In the context of output regulation of

nonlinear PDEs as in (4.1), there exist very few results. Let us mention for instance [138] which studies

quasilinear hyperbolic systems. We recall also [92, 65] in which the local problem is solved for regular

linear operators perturbed by nonlinearities satisfying a Lipschitz condition. Note, however, that these

results do not directly apply to the KdV nonlinear model because the nonlinearity w∂xw is not Lipschitz

in the right space. In this section, we are able to solve the local regulation problem for (4.1) thanks to the

strict Lyapunov functional that we established in section 4.3.

In the section 4.4.1, we focus on the linearized version of the KdV model (4.2). Then, in section 4.4.2,

we will show a local result for the nonlinear system (4.1).

4.4.1 Regulation of linear KdV equation by means of the forwarding method

Consider the following system





∂tw + ∂xw + ∂xxxw = d(x) , (t, x) ∈ R+ × [0, L] ,

w(t, 0) = w(t, L) = 0 , t ∈ R+

∂xw(t, L) = u(t) , t ∈ R+

w(0, x) = w0(x) , x ∈ [0, L]

y(t) = ∂xw(t, 0) , t ∈ R+

(4.45)

where d ∈ L2(0, L) is a constant perturbation, u ∈ R is the control input, and y ∈ R is the output to be

regulated at a certain desired constant reference r. We define the regulated output error e = y − r and
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we defined our regulation objective as

lim
t→∞

e(t) = lim
t→∞

y(t) − r = 0 . (4.46)

To this end, we follow the standard set-up of output regulation [7, 122] and we extend system (4.45) with

an integral action processing the desired error to be regulated. In other words, we consider a dynamical

feedback law of the form

η̇ = y − r , u = kη , (4.47)

where η ∈ R is the state of the controller and k is a positive constant to be selected small enough, as

shown later. The closed-loop system (4.45), (4.47) can be seen as an augmented system, i.e. a PDE

system (whose state is w) coupled with an ODE (whose state is η), which reads





∂tw + ∂xw + ∂xxxw = d(x) , (t, x) ∈ R+ × [0, L] ,

w(t, 0) = w(t, L) = 0 , t ∈ R+ ,

∂xw(t, L) = kη(t) , t ∈ R+ ,

η̇(t) = ∂xw(t, 0) − r , t ∈ R+ ,

w(0, x) = w0(x), η(0) = η0 , x ∈ [0, L] .

(4.48)

We define the space X := R × L2(0, L), that is the state space of (4.48). It is a Hilbert space as the

Cartesian product of two Hilbert spaces. In the rest of the section, we will show the following properties

for the closed-loop system (4.48): it is well posed, it admits a unique equilibrium which is exponentially

stable, and the regulation objective (4.46) is achieved when considering sufficiently regular solutions.

To this end, we introduce now the following two linear operators S and A that will be used in the rest

of the section. In particular, we denote with S the operator associated with the linear KdV equation (4.2).

The operator S and its domain D(S) ⊂ L2(0, L) are defined as

Sw = −w′ − w′′′, D(S) := ¶w ∈ H3(0, L) : w(0) = w(L) = w′(L) = 0♢. (4.49)

Then, we define the operator A in order to describe the closed-loop system (4.48) in the following

abstract form

d

dt
ζ = Aζ + Γ , ζ(0) = ζ̃0 , ζ :=

(
η

w

)
, A(η, w) :=

[
w′(0)

−w′ − w′′′

]
, Γ :=

[
−r
d

]
, (4.50)

with the domain of A defined as D(A) := ¶(η, w) ∈ R × H3(0, L) ♣ w(0) = w(L) = 0, w′(L) = kη♢ ⊂ X.

We start by proving the existence and uniqueness of an equilibrium for system (4.48) in the following

lemma.

Lemma 1 For any k ̸= 0 and (d, r) ∈ L2(0, L) × R there exist a unique equilibrium state

(η∞, w∞) ∈ X to system (4.48).

The proof of Lemma 1 is postponed to Appendix C
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Next, we show the following well-posedness result for the closed-loop system (4.48). In the proof,

we will also introduce a strict Lyapunov functional for the closed-loop system (4.48). Such a Lyapunov

functional is obtained via the forwarding methodology similarly to [122, 84] and it is based on the ISS-

Lyapunov established in Theorem 7.

Lemma 2 Let L /∈ N . There exist k⋆
0 > 0 such that for any k ∈ (0, k⋆

0), for any (d, r) ∈ L2(0, L)×R

and for any initial condition (η0, w0) ∈ X (resp.D(A)), there exists a unique weak solution (η, w) ∈
C0(R+;X) (resp. strong solution in C1(R+;X) ∩ C0(R+;D(A))) to system (4.48).

The proof of Lemma 2 is postponed to Appendix C.

Finally, the next result deals with the exponential stability of equilibrium state (η∞, w∞) and with the

related output regulation objective (4.46).

Theorem 9 (Stabilization and regulation) Let L /∈ N and consider system (4.48). For any k ∈
(0, k⋆

0), with k⋆
0 given by Lemma 2, there exist b0, ν0 > 0, and for any (d, r) ∈ L2(0, L) × R there

exists (η∞, w∞) ∈ X, computed according to Lemma 1, such that any solution to system (4.48)

with initial condition (η0, w0) ∈ X satisfies

∥(η(t), w(t, ·)) − (η∞, w∞)∥X ≤ b0e
−ν0t∥(η0, w0) − (η∞, w∞)∥X . (4.51)

for all t ≥ 0. Moreover, for any strong solution to (4.48), and in particular, for any (η0, w0) ∈ D(A),

the output y is asymptotically regulated at the reference r, namely (4.46) is satisfied.

The proof of Theorem 9 is postponed to Appendix C.

We remark that the results of Lemma 2 and Theorem 9 can be alternatively proven according to

[109, Theorem 1.1] and standard properties of well-posed linear systems (see, e.g.,[126, Proposition

4.6]). These proofs, however, cannot be easily extended to the context of nonlinear systems. In this

article, instead, we propose alternative proofs which are based on Lyapunov arguments. As we shall

see in the next section, such proofs are instrumental to the design of an integral action control of the

form (4.47) for the nonlinear model (4.1).

4.4.2 Regulation of nonlinear KdV equation by means of the forwarding method

In this section, we consider the regulation problem for a nonlinear KdV equation (4.1). In particular,

we consider the system





∂tw + ∂xw + ∂xxxw + w∂xw = d(x) , (t, x) ∈ R+ × [0, L] ,

w(t, 0) = w(t, L) = 0 , t ∈ R+ ,

∂xw(t, L) = u(t) , t ∈ R+ ,

w(0, x) = w0(x) , x ∈ [0, L] ,

y(t) = ∂xw(t, 0) , t ∈ R+ ,

(4.52)
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4.4. Output regulation problem

where d ∈ L2(0, L) is a constant perturbation, u ∈ R is the control input and y(t) ∈ R is the output to be

regulated to a constant reference r as in (4.46). Following the design proposed in Section 4.4.1 for the

linear model (4.2), we consider the same output-feedback integral control (4.47) and we compactly write

the closed-loop system (4.52), (4.47) as





∂tw + ∂xw + ∂xxxw + w∂xw = d(x) , (t, x) ∈ R+ × [0, L] ,

w(t, 0) = w(t, L) = 0 , t ∈ R+ ,

∂xw(t, L) = kη(t) , t ∈ R+ ,

η̇(t) = ∂xw(t, 0) − r , t ∈ R+ ,

w(0, x) = w0(x), η(0) = η0 , x ∈ [0, L] .

(4.53)

In the following, we will show that for sufficiently small perturbations d and references r the closed-loop

system (4.53) is well posed and it admits a unique equilibrium which is locally exponentially stable.

Furthermore, for solutions which are sufficiently regular, the regulation objective (4.46) is satisfied. We

start by showing the existence and uniqueness of an equilibrium.

Lemma 3 There exist d̄ > 0 and r̄ > 0 such that, for any (d, r) ∈ L2(0, L)×R satisfying ∥d∥L2 ≤ d̄

and ♣r♣ ≤ r̄, there exists a unique equilibrium state (η∞, w∞) ∈ X to system (4.53). Furthermore

there exists w > 0 such that for any w0 ∈ (0, w], there exists d0 > 0 and r0 > 0 so that, for any

(d, r) ∈ L2(0, L) × R satisfying ∥d∥L2 ≤ d0 and ♣r♣ ≤ r0 then ∥w∞∥H3 ≤ w0.

The proof of Lemma 3 is postponed to Appendix C.

Now, given (d, r) ∈ L2(0, L) × R satisfying the assumptions of Lemma 3, let (η∞, w∞) be the corre-

sponding equilibrium to system (4.53) and consider the following change of coordinates

(w, η) 7→ (w̃, η̃) := (w − w∞, η − η∞).

The (w̃, η̃)-dynamics is given by





∂tw̃ + ∂xw̃ + ∂xxxw̃ + w̃∂xw̃ = −w′
∞w̃ − w∞∂xw̃ , (t, x) ∈ R+ × [0, L] ,

w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,

∂xw̃(t, L) = kη̃(t) , t ∈ R+ ,

˙̃η(t) = ∂xw̃(t, 0) , t ∈ R+ ,

w̃(0, x) = w̃0(x), η̃(0) = η̃0 , x ∈ [0, L] ,

(4.54)

where w̃0(x) = w0(x) −w∞(x) ∈ H3(0, L) and η̃0 = η0 − η∞ ∈ R. In the new coordinates, the regulation

objective (4.46) for system (4.54) reads

lim
t→∞

e(t) = lim
t→∞

∂xw̃(t, 0) = 0 (4.55)

Note that showing the well-posedness of system (4.54) is equivalent to prove the well-posedness of

system (4.53) in the original coordinates (w, η). As a consequence, in the rest of the section, we will

focus on the system (4.54) in the new coordinates (w̃, η̃).
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Lemma 4 For any w∞, there exists k⋆
1 > 0 such that, for any k ∈ (0, k⋆

1 ], for any w∞ ∈ H3(0, L)

satisfying ∥w∞∥H3 ≤ w∞, and any initial condition (η̃0, w̃0) ∈ D(A), there exists τ > 0 such

that the Cauchy problem (4.54) is well-posed in the space C1(0, τ) ×
(
C([0, τ ]; H3(0, L)) ∩

L2([0, τ ]; H4(0, L))
)
.

The proof of Lemma 4 is postponed to Appendix C.

Note that we have established the existence of unique classical solution of (4.54) locally in time.

However, the Lyapunov functional introduced in the Section 4.4.1 needed to establish Lemma 2 and

Theorem 9 can be used to deduce the existence of unique solution global in time. Indeed, since the time

derivative of the Lyapunov functional will be proved to be non-increasing, this shows that the solution

cannot explode for large time, proving thus that the solution exists for any positive time, as soon as the

initial conditions are small enough. The next result deals with the local exponential stability of the origin

of system (4.54).

Theorem 10 (Local Exponential Stability) There exist positive real number k∗
2 , w∞, such that,

for any k ∈ (0, k∗
2) there exist positive real numbers ∆, ν1, b1, such that for any solution to system

(4.54) with w∞ satisfying ∥w∞∥H3 ≤ w∞ and initial conditions (η̃0, w̃0) ∈ D(A) satisfying ♣η̃0♣ +

∥w̃0∥L2 ≤ 2∆, the following inequality holds ∥(η̃(t), w̃(t))∥X ≤ b1e
−ν1t∥(η̃0, w̃0)∥X for all t ≥ 0.

Moreover the regulation objective defined in (4.55) is satisfied.

The proof of Theorem 10 is postponed to Appendix C.

Finally, by combining the statement of Lemma 3 and Theorem 10 we have the following output regu-

lation result for the system (4.53) in the original coordinates w, η.

Corollary 3 (Output Regulation) There exist positive real numbers k∗
2 , d̄, r̄, such that, for any

disturbance d and reference r satisfying ∥d∥L2 ≤ d̄ and ♣r♣ ≤ r̄ and for any k ∈ (0, k∗
2) the output

y is asymptotically regulated at the reference r, namely (4.46) is satisfied, for any solution to

system (4.53), with initial conditions (η0, w0) ∈ D(A) sufficiently small in the norm R × L2(0, L).

4.5 Conclusion

In this chapter, we have solved the output regulation problem by means of an integral action for a

Korteweg-de-Vries (KdV) equation controlled at the boundary and subject to some distributed constant

disturbances so that to regulate a boundary output to a given constant reference. For this, we have

followed a Lyapunov approach. We have first designed an ISS Lyapunov functional which is obtained

by strictifying the energy associated to the system. In particular, the energy is modified by adding a

second term which is obtained from the design of an observer built with the backstepping technique.

Then, thanks to this ISS Lyapunov functional, we have applied the forwarding method to achieve our

goal in the context of output regulation. In particular, we extended the system with an integral action and
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4.5. Conclusion

we designed an output feedback controller acting at the boundary. We show that if the selected gain is

sufficiently small then the solutions of the closed-loop system converge to an equilibrium. Furthermore,

for strong solutions, point-wise convergence of the regulated output is achieved. Similar results hold

locally for the nonlinear model of the KdV, namely in presence of small references and perturbations and

with a local domain of attraction.
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CHAPTER 5

CONCLUSION

In this thesis, some problems related to the robust control of infinite-dimensional systems have been

investigated. To be more precise, we have addressed Questions 1, 2 and 3 stated in the Introduction

using various techniques from finite and infinite-dimensional system theory.

How to propose a systematic methodology for the design of sliding variables

for linear infinite-dimensional systems?

Question 1

Answer to Question 1. In Chapter 2, linear abstract control systems with an unbounded linear control

operator have been studied. Assuming that

• the linear operator A generates a strongly continuous semigroup,

• the linear control operator B is admissible,

• there exists a stabilizing linear feedback law for unperturbed system,

we followed the sliding mode strategy by adding to the already known feedback law, a second feedback

law that compensates the effect of the disturbance and makes the origin of the closed-loop system

globally asymptotically stable in the presence of the disturbance. The sliding variable is defined as the

scalar product of the state and an eigenfunction of the adjoint operator of the unperturbed closed−loop

system. The semigroup theory and Filippov theory have been used to conclude on the existence of the

solution of the closed−loop system. The finite−time stability in the context of the finite−dimensional

system combined with semigroup theory have been used to prove the asymptotic stability of the origin

of the closed−loop system.

Is it possible to maintain the asymptotic stability of linear infinite-dimensional

systems subjected to disturbances by using the measurement of a few mo-

ments of the state of the system?

Question 2
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Chapter 5 – Conclusion

Answer to Question 2. Chapter 3 follows the active disturbance rejection control strategy to answer

Question 2. This strategy was used to design a robust control for a linear hyperbolic system. The semi-

group theory has been used to conclude on the well−posedness of the closed−loop system and Lya-

punov techniques have been applied to tackle the asymptotic stability of the origin of the closed−loop

system.

Is it possible to design a PI controller for Korteweg-de Vries equation using a

Lyapunov method?

Question 3

Answer to Question 3. In Chapter 4, we have first designed an ISS Lyapunov functional for a Korteweg-

de-Vries equation. This functional was obtained by strictifying the energy associated to the system. In

particular, the energy was modified by adding a second term which was obtained from the design of an

observer built with the backstepping technique. Then, thanks to this ISS Lyapunov functional, we have

applied the forwarding method to achieve the output regulation problem.

Perspectives The main challenges that still need to be addressed are the following:

• extending our results for the case where the operator A is nonlinear in Chapter 2. This will allow

the treatment of nonlinear PDEs. Many notions will need to be adapted such as the admissibility;

• design of adaptive sliding mode control for abstract linear or nonlinear control systems with matched

disturbance. Adaptive in the sense of time-dependent gains. As a result, it is no longer necessary

to know the bound of disturbance.

• it might also be interesting to investigate the case where the disturbance does not match with the

control as it has been done for ODEs in [20, 133, 45, 106];

• extending our strictification approach to other classes of PDEs for which a strict Lyapunov func-

tional is not yet known.
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CHAPTER 6

APPENDIX

A Proof of the main results of Chapter 2

Proof of Theorem 1

The proof of Theorem 1 is divided into two parts. In the first part, the proof of the Theorem 1 is

presented in the case of system (2.37). The second part deals with the proof of Theorem 1 in the case

of system (2.47).

Let us start the proof of the first part.

Sliding mode control

We consider the following ODE




γ̇(t) ∈ B∗φ


d− K

B∗φ
sign(γ(t))


, t ∈ R+,

γ(0) = γ0 ∈ R,

(A.1)

The system (A.1) is understood in the sense of Filippov [48]. In the next lemma, we state that there

exists a unique solution to (A.1) and that (A.1) is stabilized in finite-time.

Lemma 5 Assume that Assumption 2 hold. Then, the ODE (A.1) admits a unique Filippov solution.

Moreover, there exists tr > 0 such that, for any Filippov solution γ of (A.1),

γ(t) = 0, ∀ t ≥ tr,

with

tr ≤ ♣γ(0)♣
K −Kd♣B∗φ♣ .

Lemma 5 is an immediate consequence of the general Filippov theory [48, Chapter 2] (for the real case),

[131, Theorem 2.8] (for the complex case), when applied to the particular case of (A.1). The finite-time

stability can be deduced easily by Lyapunov arguments.

Let γ be the Filippov solution of (A.1) with initial condition γ(0) = ⟨φ,w0⟩H . We consider the following

system 



d

dt
ϕ = ALϕ+

1

B∗φ
B(γ̇ − λγ),

ϕ(0) = ϕ0 ∈ H.

(A.2)
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If B is an admissible operator for S and γ̇−λγ ∈ L2
loc([0,∞);K), then system (A.2) admits a unique mild

solution, where (S(t))t≥0 is the strongly continuous semigroup associated with the operator AL. This is

what we will prove in the next Lemma, which says that there exists a unique solution in the sense of

[125, Definition 4.1.5].

Lemma 6 For all ϕ0 ∈ H, the system (A.2) admits a unique mild solution

ϕ ∈ C([0,∞);H) ∩ H1
loc([0,∞);D(A∗)′).

Proof. Let γ be a Filippov solution of (A.1). Then, according to Lemma 5, γ is absolutely contin-

uous. Moreover, γ̇ is bounded and measurable according to Assumption 2. Thus, we have γ̇ − λγ ∈
L2

loc([0,∞);K). On the other hand, according to Item (ii) of Assumption 1, B is admissible for (T(t))t≥0,

then according to [62, Proposition 4.2], B is an admissible control operator for (S(t))t≥0. Then, according

to [125, Proposition 4.2.5], the statement of Lemma 6 holds, achieving the proof.

Now, the aim is to prove that the mild solution ϕ to (A.2) with initial condition w0 is a mild solution to

(2.37). To that end, we will show that the following function

y(t) = ⟨φ, ϕ(t)⟩H , (A.3)

with ϕ the solution of (A.2), is equal to γ, for any t > 0.

Lemma 7 For all w0 ∈ H, y is a Carathéodory solution to

{
ẏ(t) = λy + γ̇(t) − λγ(t), for a.e t ≥ 0,

y(0) = ⟨φ,w0⟩H

(A.4)

i.e., y is an absolutely continuous map such that, for all t ≥ 0

y(t) − y(0) =

∫ t

0

(
λy(s) + γ̇(s) − λγ(s)

)
ds. (A.5)

Proof. Let ϕ be the mild solution of (A.2). Since φ ∈ D(A∗
L), and using Item (ii) of Assumption 1, then

according to [125, Remark 4.2.6], we obtain for that, every t ≥ 0,

⟨φ, ϕ(t) − w0⟩H =

∫ t

0


⟨A∗

Lφ, ϕ(s)⟩H +
1

B∗φ
B∗φ(γ̇(s) − λγ(s))


ds

=

∫ t

0


λ⟨φ, ϕ(s)⟩H + γ̇(s) − λγ(s)


ds, (A.6)

because A∗
Lφ = λφ. Then, using (A.3), one has, for all t ≥ 0,

y(t) − y(0) =

∫ t

0

(
λy(s) + γ̇(s) − λγ(s)

)
ds. (A.7)

This concludes the proof.

We introduce the function g defined by g(t) = y(t) − γ(t). From (A.1) and (A.4) with γ(0) = ⟨φ,w0⟩H ,
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g is solution of {
ġ(t) = λg(t)

g(0) = 0
(A.8)

Thus, for any t ∈ R, g(t) = 0. By definition of g, we deduce that, for any t ∈ R, y(t) = γ(t). Therefore,

according to (A.1) we have, for a.e. t ≥ 0,

1

B∗φ
γ̇(t) ∈ − K

B∗φ
sign(y(t)) + d(t). (A.9)

Thus, according to Lemma 6 and (A.9), ϕ satisfies Definition 2. Then, we conclude that, for any Filippov

solution γ of (A.1) with initial condition γ(0) = ⟨φ,w0⟩H , the associated mild solution ϕ of (A.2) is a mild

solution of (2.37). This concludes the proof of Theorem 1 in the case of system (2.37). ✷

Super-twisting control

Let w0 ∈ H, z0 ∈ R. Consider the following ODE





ρ̇(t) = −α♣ρ(t)♣ 1
2 sign(ρ(t)) + η(t), t ∈ R+,

η̇(t) ∈ B∗φḋ(t) − β sign(ρ(t)), t ∈ R+

ρ(0) = ρ0, η(0) = z0.

(A.10)

The system (A.10) is understood in the sense of Filippov [48]. In the next lemma, we state that there

exists a solution to (A.10).

Lemma 8 Assume that (2.46) holds. Then, there exists an absolutely continuous map (ρ, η) that satis-

fies (A.10) for almost every t ≥ 0.

Proof. We consider the function f : R2 → R
2 defined by

f(ρ, η) =

{
f+(ρ, η) = (−α√

ρ+ η,−β) if ρ > 0,

f−(ρ, η) = (α
√−ρ+ η, β) if ρ < 0

(A.11)

and let Fd : (ρ, η) ∈ R
2 7→ Fd(ρ, η) be the set-valued map defined by

Fd(ρ, η) = B̄(0, ♣B∗φ♣C) +

{
¶f(ρ, η)♢ if ρ ̸= 0,

conv¶f+(ρ, η), f−(ρ, η)♢ if ρ = 0
(A.12)

where conv denotes convex closure and B̄(0, ♣B∗φ♣C) is a closed ball of R2 centered at 0 and of radius

♣B∗φ♣C. Since f is continuous on R \ ¶0♢ × R, then the function Fd is non-empty, compact, convex and

upper semi-continuous. Then according to [15, Theorem 3.6], there exists at least one solution of the

differential inclusion

ζ̇ ∈ Fd(ζ) (A.13)

where ζ = (ρ, η). Since Fd is the Filippov’s construction (as in [48, Chapter 2]) associated with (A.10),

then, there exists an absolutely continuous map that satisfies (A.10) for almost every t ≥ 0, concluding
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therefore the proof.

Let (ρ, η) be a solution of (A.10) with initial condition ρ(0) = ⟨φ,w0⟩H . We consider the following

system 



d

dt
ψ = ALψ +

1

B∗φ
B(ρ̇− λρ),

ψ(0) = w0 ∈ H.

(A.14)

Since ρ and η are continuous then, according to the first line of (A.10), we deduce that ρ̇ is also continu-

ous. Moreover, since ρ and ρ̇ are continuous, then ρ̇ − λρ ∈ L2
loc([0,∞);R). Thus, according to Lemma

6, the system (A.14) admits a unique mild solution ψ ∈ C([0,∞);H) ∩ H1
loc([0,∞);D(A∗)′) .

As in the previous case, the aim is now to prove that the solution (ψ, η) is a mild solution to (2.47).

For this purpose, we are going to show that the following function

θ(t) = ⟨φ,ψ(t)⟩H , (A.15)

with ψ the solution of (A.14), is equal to ρ for any t > 0.

Lemma 9 For all w0 ∈ H, θ is a Carathéodory solution of

{
θ̇(t) = λθ + ρ̇(t) − λρ(t), t ≥ 0,

θ(0) = ⟨φ,w0⟩H .
(A.16)

The proof of Lemma 9 is similar to the proof of Lemma 7. We therefore omit the proof of Lemma 9.

Now, according to Lemma 8, θ is absolutely continuous map. Moreover, if we set κ = θ − ρ, then κ

satisfies (A.8). Thus, κ(t) = 0 for all t ∈ R. This mean that, θ(t) = ρ(t) for any t ∈ R. As a consequence,

according to (A.10), we have, for a.e t ≥ 0,

η̇(t) ∈ B∗φḋ(t) − β sign(θ(t)). (A.17)

Thus, according to Lemma 8 and (A.17), η is absolutely continuous map and satisfies (2.51). Therefore,

(ψ, η) satisfies the Definition 3. This, mean that (ψ, η) is a mild solution of (2.47). This concludes the

proof of Theorem 1 in the case of system (2.47). ✷

Proof of Theorem 2

Like the proof of Theorem 1, the proof of Theorem 2 is divided into two parts. In the first part, the

proof of the Theorem 2 is presented in the case of the system (2.37). The second part deals with the

proof of Theorem 2 in the case of system (2.47).

Let us start the proof of the first part.

Sliding-mode control

Let us consider w a mild solution of (2.37) with initial condition w0 ∈ H. Then, according Definition

2, there exists h ∈ L2
loc([0,∞);K) such that h satisfies (2.49) and w satisfies (2.48). Therefore, since
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φ ∈ D(A∗
L), and using Item (ii) of Assumption 1, then according to [125, Remark 4.2.6], w satisfies, for

every t ≥ 0,

⟨φ,w(t) − w0⟩H =

∫ t

0


⟨A∗

Lφ,w(s)⟩H +B∗φh(s)


ds =

∫ t

0


λ⟨φ,w(s)⟩H +B∗φh(s)


ds, (A.18)

because A∗
Lφ = λφ. Using (2.35), one has, for every t ≥ 0,

σ(t) − σ(0) =

∫ t

0

(
λσ(s) +B∗φh(s)

)
ds. (A.19)

As a consequence, σ defined in (2.35) is a Carathéodory solution to

{
σ̇(t) = λσ(t) +B∗φh(t),

σ(0) = ⟨φ,w0⟩H .
(A.20)

Since h ∈ − 1
B∗φ


λσ+K sign(σ)


+d, then σ is a Filippov solution of (A.1) with initial condition ⟨φ, z0⟩H .

From Lemma 5, there exists a finite-time tr such that

σ(t) = 0 for any t > tr.

Therefore, σ̇(t) = 0 for any t > tr. As a consequence, from (A.20), for any t > tr, h(t) = 0. Thus, for

any t > tr, the system (2.37) is equivalent to the system (2.34) and hence is asymptotically stable in H

from the Item (iii) of Assumption 1. Therefore, to conclude the proof of Theorem 2 in the case of system

(2.37), it is just necessary to prove that the system (2.37) depends continuously on initial conditions on

the time interval [0, tr]. For this purpose, we consider w a mild solution of (2.37) with initial condition

w0 ∈ H on the interval [0, tr]. Then, using the Definition 2, there exists C0 > 0 such that, for all t ∈ [0, tr],

we have

∥w(t)∥H ≤ C0∥w0∥H +

∥∥∥∥
∫ t

0

S(t− s)Bh(s)ds

∥∥∥∥
H

. (A.21)

Since (S(t))t≥0 is exponentially stable and B is an admissible operator for (S(t))t≥0, then according to

[125, Proposition 4.3.3], there exists C1 > 0 independent of tr such that, for all t ∈ [0, tr]

∥w(t)∥H ≤ C1


∥w0∥H + ∥h∥L2(0,tr)


. (A.22)

Moreover, since h ∈ − 1
B∗φ

(
λσ+K sign(σ)

)
+d, then according to Assumption 2, h is bounded. Therefore,

there exists C2 > 0 such that

∥h∥L2(0,tr) ≤ C2t
1
2
r . (A.23)

Moreover, according to Lemma5, tr ≤ ♣⟨φ,w0⟩H ♣
K−♣B∗φ♣∥d∥L∞(R+)

. Thus, using Cauchy-Schwarz’s inequality, we

have

tr ≤ ∥φ∥H

K − ♣B∗φ♣∥d∥L∞(R+)
∥w0∥H . (A.24)
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As a consequence, according to (A.22), (A.23) and (A.24), there exists C3 > 0 (independent of tr) such

that for all t ∈ [0, tr],

∥w(t)∥H ≤ C3


∥w0∥H +

√
∥w0∥H


. (A.25)

This concludes the proof of Theorem 2 in the case of system (2.37). ✷

Remark 5 In contrast with many stabilization techniques, we do not need here to compute time-derivative

of Lyapunov functionals for the infinite-dimensional system. More precisely, classical techniques rely on

the existence of strong solutions for which on computes time derivative of a suitable Lyapunov functional,

and one concludes then on the stability for weak solution by a density argument.

Super-twisting control

Let us consider (w, z) a mild solution of (2.47) with initial condition (w0, z0) ∈ H×R. Then, according

Definition 3, there exists z̃ ∈ L1
loc([0,∞);R) with z̃(t) ∈ sign(σ(t)) such that, for a.e t ≥ 0, ż(t) =

B∗φd(t) − βz̃ and w satisfies (2.50). Replacing h by ω in (A.19), then σ satisfies (A.19). Then, according

to (2.52), (A.19) we obtain, for a.e t ∈ [0, T ]

{
σ̇(t) = −α♣σ(t)♣ 1

2 sign(σ(t)) + z(t),

ż(t) = B∗φḋ(t) − βz̃(t).
(A.26)

Since z̃ ∈ sign(σ(t), then (σ, z) is a Filippov solution of (A.10) with initial condition (⟨φ,w0⟩H , z0). Accord-

ing to Proposition 1, there exists a finite-time such that

σ(t) = 0 and z(t) = 0

for any t > tr. Then, for any t > tr, the solution z to system (2.47) is solution to system (2.34) and hence

is asymptotically stable in H from Item (iii) of Assumption 1. Therefore, as in the previous part, we just

need to prove that the system (2.47) depends continuously on initial conditions on the time interval [0, tr]

to conclude the proof of Theorem 2. For this purpose, we consider (w, z) a mild solution of (2.47) with

initial condition (w0, z0) ∈ H × R on the interval [0, tr]. Then, like in the previous part, using Definition 3,

there exists C0 > 0 such that, for all t ∈ [0, tr], we have

∥w(t)∥H ≤ C0


∥w0∥H + ∥ω∥L2(0,tr)


. (A.27)

Since w is continuous on [0, tr] , then, according to (2.35), σ is also continuous. Therefore, σ is bounded

on [0, tr]. Moreover, z is an absolutely continuous map. Thus, z is bounded on [0, tr]. Then, the function

ω(·) :=
1

B∗φ


− λσ(·) − α♣σ(·)♣ 1

2 sign(σ(·)) + z(·)


is also bounded on [0, tr]. Therefore, there exists C1 > 0 such that

∥ω∥L2(0,tr) ≤ C1t
1
2
r . (A.28)
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Now, according to [91, Theorem 2], there exist positive constants C2, C3 such that

{
tr < C2 (♣σ(0)♣ + ♣z0♣) ,
♣z(t)♣ ≤ C3♣z0♣.

(A.29)

Using Cauchy-Schwarz’s inequality, we obtain

♣σ(0)♣ = ♣⟨φ,w0⟩H ♣ ≤ ∥φ∥H∥w0∥H . (A.30)

As a consequence, according to (A.27), (A.28), (A.29) and (A.30), there exists C4 > 0 such that, for all

t ∈ [0, tr],

∥w(t)∥H + ♣z(t)♣ ≤ C4


∥w0∥H + ♣z0♣ +

√
∥w0∥H + ♣z0♣


. (A.31)

This concludes the proof of Theorem 2. ✷

B Proof of the main results of Chapter 3

Proof of Theorem 3

Let’s consider the operator A : ϕ ∈ D(A) ⊂ L2(0, L) 7→ Aϕ ∈ L2(0, L) defined as

{
Aϕ = −λϕ′,

D(A) =
{
ϕ ∈ H1(0, L) ♣ ϕ(0) = aϕ(L)

} (B.1)

where λ is given in system (3.13). According to the proof of [11, Theorem A.1], it generates aC0−semigroup

(T(t))t≥0 of contractions in L2(0, L). Also, consider the operator B defined as λ⟨φ,Bv⟩D(A∗),D(A∗)′ =

λφ(0)v for all v ∈ R and φ ∈ D(A∗) where A∗ is the adjoint operator of A and ⟨·, ·⟩D(A∗),D(A∗)′ is the

dual product. Now, let us prove that B is admissible 1 for (T(t))t≥0. To do so, consider the system





d

dt
w = A∗w,

γ = B∗w.

(B.2)

where A∗ : φ ∈ D(A∗) ⊂ L2(0, L) 7→ A∗φ ∈ L2(0, L) and B∗ : φ ∈ D(A∗) 7→ B∗ : φ ∈ R are given by





A∗φ = λφ′,

D(A∗) =
{
φ ∈ H1(0, L) ♣ φ(L) = aφ(0)

}
,

B∗ : φ ∈ D(A∗) 7→ λφ(0).

(B.3)

For all w0 ∈ D(A∗), the function

w(t) = T
∗(t)w0 (B.4)

1See e.g [125, Definition 4.2.1]
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defines the unique classical solution of (B.2) where T
∗(t) 2 is a C0−semigroup with infinitesimal gener-

ator A∗ on L2(0, L). Now, consider the following function

E(t) =

∫ L

0

(w(t, x))2dx.

The time derivative of E along the trajectories of (B.2) reads as, for all t ≥ 0,

Ė(t) =2

∫ L

0

∂tw(t, x)w(t, x)dx = 2λ

∫ L

0

∂xw(t, x)w(t, x)dx = λ(♣w(t, L)♣2 − ♣w(t, 0)♣2)

= − λ♣w(t, 0)♣2(1 − a2) ⩽ 0. (B.5)

Then, from (B.5), one deduces that, for all T > 0

∫ T

0

♣γ(t)♣2dt =λ2

∫ T

0

♣w(t, 0)♣2dt =
λ

a2 − 1

∫ T

0

Ė(t)dt =
λ

1 − a2
(E(0) − E(T ))

⩽
λ

1 − a2
E(0) =

λ

1 − a2
∥w(0, ·)∥2

L2(0,L) (B.6)

where γ come from (B.2). Then

∫ T

0

♣γ(t)♣2dt ⩽ λ

1 − a2
∥w(0, ·)∥2

L2(0,L). (B.7)

Then according to [125, Definition 4.3.1 and Theorem 4.4.3.], this proves that B is admissible for the

C0−semigroup (T(t))t≥0.

Now, let (y0, η̂
0) ∈ L2(0, L) × R

n+1 such that η̂0 ̸= η0. Then, there exist t0 > 0 such that for all

t ∈ [0, t0], we have η̂(t) ̸= η(t). Therefore, for all t ∈ [0, t0], sign(η̂n(t) − ηn(t)) = ±1. Thus, for all

t ∈ [0, t0]

d̃ = ∓k0Kd

λ
. (B.8)

As a consequence, for all t ∈ [0, t0], the system (3.26) is equivalent to the following system





∂tw(t, x) + λ∂xw(t, x) = 0,

w(t, 0) = aw(t, L) + d(t) − d̃(t),

˙̂ηi(t) = −λLiw(t, L) + iλη̂i−1(t) − kiK
n+1−i

n+1

d ⌊η̂n − ηn⌋ i
n+1 , i = 1, . . . , n

˙̂η0(t) = λw(t, L)
(
a− 1

)

w(0, x) = w0(x),

η̂(0) = η̂0 ∈ R
n+1.

(B.9)

Since the function d̂ : t 7→ d(t) − d̃(t) is bounded on [0, t0] and B is admissible for (T(t))t≥0, then,

according to [125, Proposition 4.2.5], there exist a unique mild solution w ∈ C([0, t0];L2(0, L)) of (B.9).

As a consequence, the functions w(·, L) and ηn(·) are continuous on [0, t0]. Then, the right hand side of

2See e.g [125, Proposition 2.8.5]
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the system





˙̂ηi(t) = −λLiw(t, L) + iλη̂i−1(t) − kiK
n+1−i

n+1

d ⌊η̂n − ηn⌋ i
n+1 , i = 1, . . . , n

˙̂η0(t) = λw(t, L)
(
a− 1

)

η̂(0) = η̂0 ∈ R
n+1.

(B.10)

is continuous on [0, t0]×R
n+1. Thus, according to [26, Theorem 1.2], the system (B.10) admits a solution

η̂ ∈ C1([0, t0]). As a consequence, the system (3.26) admits a mild solution on [0, t0]. Moreover, for all

t ∈ [0, t0], w(t, ·) ∈ D(A) and satisfies the following equations in D(A∗)′

w(t, ·) − w0 = −λ
∫ t

0

∂xw(s, ·)ds+

∫ t

0

Bd̂(s)ds,∀t ∈ [0, t0]. (B.11)

Thus, for all t ∈ [0, t0], w(t, ·) ∈ D(A) and for all i = 0, 1 . . . , n, for all (t, x) ∈ [0, t0] × [0, L], y satisfies

xiw(t, x) − xiw0(x) = −λ
∫ t

0

xi∂xw(s, x)ds+

∫ t

0

xiBd̂(s)ds. (B.12)

As a consequence, we have for all i = 0, 1 . . . , n, and for all t ∈ [0, t0]

∫ L

0

xiw(t, x)dx−
∫ L

0

xiw0(x)dx = −λ
∫ t

0

∫ L

0

xi∂xw(s, x)dxds+

∫ t

0

∫ L

0

xiBdxd̂(s)ds. (B.13)

Since B is the product of the delta function at x = 0 with λ, then for all i = 1 . . . , n

∫ L

0

xiBdx = 0 (B.14)

and ∫ L

0

Bdx = λ, because 0 ∈ [0, L]. (B.15)

Thus, for all i = 1 . . . , n, we have

∫ L

0

xiw(t, x)dx−
∫ L

0

xiw0(x)dx = −λ
∫ t

0

∫ L

0

xi∂xw(s, x)dxds, ∀t ∈ [0, t0] (B.16)

and

∫ L

0

w(t, x)dx−
∫ L

0

w0(x)dx = −λ
∫ t

0

∫ L

0

∂xw(s, x)dxds+ λ

∫ t

0

d̂(s)ds, ∀t ∈ [0, t0].

Using an integration by parts, one immediately obtains

∫ L

0

w(t, x)dx−
∫ L

0

w0(x)dx = −λ
∫ t

0


w(s, L) − w(s, 0) − d̂(s)


ds, ∀t ∈ [0, t0] (B.17)
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and for all i = 1 . . . , n, for all t ∈ [0, t0]

∫ L

0

xiw(t, x)dx−
∫ L

0

xiw0(x)dx = iλ

∫ t

0

∫ L

0

xi−1w(s, x)dxds− λ

∫ t

0

Liw(s, L)ds.

Using (3.16) and the fact that, for all t ∈ [0, t0], w(t, ·) ∈ D(A), we obtain, for all t ∈ [0, t0]

η0(t) − η0(0) = −λ
∫ t

0


w(s, L)(1 − a) − d̂(s)


ds (B.18)

and for all i = 1 . . . , n, for all t ∈ [0, t0]

ηi(t) − ηi(0) =

∫ t

0


iληi−1(s) − λLiw(s, L)


ds. (B.19)

This prove that, for all i = 0, 1 . . . , n, the i−th moment ηi of w is a Carathéodory solution to (3.17) on

[0, t0].

Now, we assume without loss of generality that t0 < tr, where tr is given in Proposition 2. Thus,

according to Proposition 2, η̂(t) ̸= η(t) for all t ∈ [t0, tr[. As a result, the same reasoning at time interval

[0, t0] is step-by-step applied to time interval [t0, tr[, by considering w(t0, ·) as the initial condition. As a

consequence, the system (3.26) admits a solution on [0, tr[.

Moreover, on one hand, according to Proposition 2, η̂(t) = η(t) and d(t)− d̃(t) = 0 for all t ≥ tr. Thus,

for all t ≥ tr, the system (3.26) is equivalent to the following system





∂tw(t, x) + λ∂xw(t, x) = 0,

w(t, 0) = aw(t, L),
˙̂ηi(t) = −λLiw(t, L) + iλη̂i−1(t), i = 1, . . . , n
˙̂η0(t) = λw(t, L)

(
a− 1

)

w(0, x) = w0(x),

η̂(0) = η̂0 ∈ R
n+1.

(B.20)

It can be proved as before that the system (B.20) admits a solution on [tr,∞[. Then, in conclusion, for

all (w0, η̂
0) ∈ L2(0, L) × R

n+1 such that η̂0 ̸= η0, the system (3.26) admits a solution on [0,∞[.

Let (w0, η̂
0) ∈ L2(0, L) × R

n+1 such that η̂0 = η0. Then, there exist t0 > 0 such that, we have

η̂(t) = η(t). Thus, for all, t ∈ [0, t0[ the system (3.26) is equivalent to the following system





∂tw(t, x) + λ∂xw(t, x) = 0,

w(t, 0) = aw(t, L) + d(t) − d̃(t),
˙̂ηi(t) = −λLiw(t, L) + iλη̂i−1(t), i = 1, . . . , n
˙̂η0(t) = λw(t, L)

(
a− 1

)

d̃(t) ∈
[
− k0Kd

λ
, k0Kd

λ

]

w(0, x) = w0(x),

η̂(0) = η̂0 ∈ R
n+1, d̃(0) = d̃0 ∈ R.

(B.21)

Since the function t 7→ d(t)− d̃(t) is bounded on [0, t0[ then we conclude as before that the system (B.21)
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admits a solution on [0, t0[ and the i−th moment ηi of w is a Carathéodory solution to (3.17) on [0, t0[.

However, since η̂(t) = η(t) for all t ∈ [0, t0[, then according to Proposition 2, t0 > tr. Thus, for all

t ≥ tr, the system (3.26) is equivalent to system (B.20). As a consequence t0 = ∞.

This concludes the proof of Theorem 3 ✷.

Proof of Theorem 4

Let (w0, η̂
0) ∈ L2(0, L)×R

n+1. Using the error variable e defined in (3.19), we can write the equivalent

system of (3.26) as follows:





∂tw(t, x) + λ∂xw(t, x) = 0,

w(t, 0) = aw(t, L) − 1

λ
ė0(t),

ėi(t) = iλei−1(t) − kiK
n+1−i

n+1

d ⌊en⌋ i
n+1 , i = 1, . . . , n

ė0(t) = −λd(t) + λd̃(t),

d̃ ∈ −k0Kd

λ
sign(en)

(B.22)

Then, according to Proposition 2 and Remark 3, there exists a finite-time tr such that, for all t > tr,

the solution w of (B.22) is equivalent to the system (3.27) and hence is globally exponentially stable in

L2(0, L) from [11, Theorem 2.1]. Therefore, to conclude the proof of Theorem 4, it is just necessary to

prove that the system (B.22) depends continuously on initial conditions on the time interval [0, tr]. It is

stated in the following Lemma.

Lemma 10 There exists a K-function β such that for all (w0, e
0) ∈ L2(0, L) × R

n+1, for all t ∈ [0, tr],

∥w(t, ·)∥L2(0,L) + ♣e♣Rn+1 ≤ β(∥w0∥L2(0,L) + ♣e0♣Rn+1). (B.23)

for all solution (w, e) of (B.22).

Proof. Let (w0, e
0) ∈ L2(0, L) ×R

n+1 and we consider (w, e) a solution of (B.22) associated (w0, e
0).

Then, according to [125, Proposition 2.1.2], there exists K0 > 0 such that, for all t ∈ [0, tr], we have

∥w(t, ·)∥L2(0,L) ≤ K0∥w0(·)∥L2(0,L) +

∥∥∥∥
1

λ

∫ t

0

T(t− s)Bė0(t)ds

∥∥∥∥
L2(0,L)

. (B.24)

As a consequence, since (T(t))t≥0 is exponentially stable and B is admissible operator for (T(t))t≥0,

then we have according to [125, Proposition 4.4.5], that there exists K1 > 0 independent of tr such that

∥w(t, ·)∥L2(0,L) ≤ K1

(
∥w0(·)∥L2(0,L) + ∥ė0(·)∥L2(0,tr)

)
. (B.25)

Since d and the sign function are bounded then according to (3.19), ė0 is also bounded. Therefore, there

exists K2 > 0 such that

∥ė0∥2
L2((0,tr),R) ≤ K2tr. (B.26)
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Now, according to [34, Theorem 1], there are positive constants K3, K4 (dependent on the bound of d)

such that {
tr < K3♣e0♣Rn+1 ,

♣e♣Rn+1 ≤ K4♣e0♣Rn+1 .
(B.27)

As a consequence, according to (B.25), (B.26) and (B.27), there exists C1 > 0 (independent of tr) such

that, for all t ∈ [0, tr],

∥w(t, ·)∥L2(0,L) + ♣e♣Rn+1 ≤ β(∥w0∥L2(0,L) + ♣e0♣Rn+1). (B.28)

where β is given by β : s ∈ R+ 7→ C1(s+
√
s). This concludes the proof of Lemma 10.

Since for all t > tr, the solution w of system (B.22) is globally exponentially stable in L2(0, L), then

according to Lemma 10 and Proposition 2, there exists a KL-function α such that, for any w0 ∈ L2(0, L),

for any η̂0 ∈ R
n+1 and for any t ≥ 0:

∥w(t, ·)∥L2(0,L) + ♣e(t)♣Rn+1 ≤ α(∥w0∥L2(0,L) + ♣e0♣Rn+1 , t) (B.29)

for all solution (w, e) of (B.22). This concludes the proof of Theorem 4 ✷.

Proof of Theorem 5

Let
(
w1(0, ·), w2(0, ·), Z(0), Ẑ(0; r)


∈ J . Using the error dynamics defined in (3.65), we can write

the equivalent system of (3.72) as follows





∂tw1(t, x) + λ1∂xw1(t, x) = c1w2(t, x),

∂tw2(t, x) − λ2∂xw2(t, x) = c2w1(t, x),

w1(t, 0) = bw2(t, 0) − L2
i q
(
κ
(
E(2n+1)(2n+1)(t) − E2n(2n+1)(t)

))
−

2n+1∑

j=1

ajEj(j+1)(t) − Ė(2n+1)(2n+2)(t),

w2(t, L) = aw1(t, L),

˙̃Z(t) = A0Z̃(t) +Bzd(t),

Ėii(t) = Ei(i+1)(t) − Lik1

(
Eii(t) − E(i−1)i(t)

)

Ėi(i+1)(t) ∈ E(i+1)(i+2)(t) − L2
i k2

(
Eii(t) − E(i−1)i(t)

)
, i = 1, . . . , 2n,

Ė(2n+1)(2n+1)(t) = E(2n+1)(2n+2)(t) − L2n+1k1

(
E(2n+1)(2n+1)(t) − E2n(2n+1)(t)

)

Ė(2n+1)(2n+2)(t) = −L2
2n+1q

(
κ
(
E(2n+1)(2n+1)(t) − E2n(2n+1)(t)

))
−

2n+1∑

j=1

ajEj(j+1)(t) + d̂(t) − d(t),

d̂(t) ∈ −L2
2n+1 sign

(
E(2n+1)(2n+1)(t) − E2n(2n+1)(t)

)
.

(B.30)

Then, we can see that the dynamics of Z̃, Eii and Ei(i+ 1) do not depend on w1, w2. Thus, we can

prove the well-posedness Z̃ and E of (B.30) separately.

Since d is bounded, then, for all initial value Z̃(0), there exists a unique absolutely continuous map Z̃

that satisfies ˙̃Z(t) = A0Z̃(t) + Bzd(t) for almost t ≥ 0. Thus, for all i = 1, . . . , 2n+ 1, ˙̃Zi+1 ∈ L1
loc (0,∞).
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Moreover, for each i = 1, . . . , 2n+1, there exists an absolutely continuous map (Eii, Ei(i+1)) that satisfies

{
Ėii = Ei(i+1) − Lik1

(
Eii − E(i−1)i

)

Ėi(i+1) ∈ E(i+1)(i+2) − L2
i k2

(
Eii − E(i−1)i

)
+ vi,

(B.31)

for almost t ≥ 0, with

vi(t) =





0, i = 1, . . . , 2n

−
2n+1∑

j=1

ajEj(j+1)(t) − d(t), i = 2n+ 1.
(B.32)

Now, in order to prove the well-posedness of the (w1, w2) part of (3.72), we consider the following

operator 



A1

(
φ1

φ2

)
=

(
−λ1φ

′
1 + c1φ2

λ2φ
′
2 + c2φ1

)
,

D(A1) =

{(
φ1

φ2

)
∈ H1(0, L,R2) ♣ φ1(0) = bφ2(0), φ2(L) = aφ1(L)

}
.

(B.33)

We can prove as in the proof of [11, Theorem A.1] that, A1 generates a C0−semigroup (T1(t))t≥0 on I.

Also, consider the operator B1 defined as

p1λ1

〈(
φ1

φ2

)
,B1v

〉

D(A∗

1),D(A∗

1)′

= p1λ1φ1(0)v (B.34)

for all v ∈ R and

(
φ1

φ2

)
∈ D(A∗

1) where A∗
1 is the adjoint operator of A and ⟨·, ·⟩D(A∗

1),D(A∗

1)′ is the dual

product. Now, let us prove that B1 is admissible 3 for (T1(t))t≥0. To do so, consider the system





d

dt

(
φ1(t, ·)
φ2(t, ·)

)
= A∗

1

(
φ1(t, ·)
φ2(t, ·)

)
,

y(t) = B∗
1

(
φ1(t, ·)
φ2(t, ·)

) (B.35)

where A∗
1 : φ ∈ D(A∗

1) 7→ A∗
1φ ∈ I and B∗

1 :

(
φ1

φ2

)
∈ D(A∗

1) 7→ B∗

(
φ1

φ2

)
∈ R are given by





A∗
1

(
φ1

φ2

)
=

(
λ1(φ′

1 − µφ1) + c2p2

p1
φ2e

2µx

−λ2(φ′
2 + µφ2) + c1p1

p2
φ1e

−2µx

)
,

D(A∗
1) =

{(
φ1

φ2

)
∈ H1(0, L,R2) ♣

(
φ1(L)

φ2(0)

)
=

(
0 p2λ2

p1λ1
ae2µL

p1λ1

p2λ2
b 0

)(
φ1(0)

φ2(L)

)}
,

B∗
1 :

(
φ1

φ2

)
∈ D(A∗

1) 7→ p1λ1φ1(0).

(B.36)

3See e.g [125, Definition 4.2.1]
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Since A1 generates a C0−semigroup (T1(t))t≥0 on I then, A∗
1 generates a C0−semigroup (T ∗

1 (t))t≥0

on I. Hence, for all

(
φ0

1

φ0
2

)
∈ D(A∗

1), the function

(
φ1(t, ·)
φ2(t, ·)

)
= T ∗

1 (t)

(
φ0

1

φ0
2

)
, ∀t ≥ 0 (B.37)

defines the unique classical solution of (B.35). Now, consider the following function

V (φ1, φ2) =

∥∥∥∥∥

(
φ1

φ2

)∥∥∥∥∥
µ

:= p1

∫ L

0

φ1(x)2e−µxdx+ p2

∫ L

0

φ2(x)2eµxdx (B.38)

The time derivative of V along the trajectories of (B.35) reads as, for all t ≥ 0,

V̇ (φ1(t, ·), φ2(t, ·)) = −1

2

∫ L

0

(
φ1(t, x) φ2(t, x)


P(x)

(
φ1(t, x)

φ2(t, x)

)
dx

− p1λ1

2
φ1(t, 0)2


1 − p1λ1

p2λ2
b2


− p2λ2

2
φ2(t, L)2


eµL − p2λ2

p1λ1
a2e3µL


(B.39)

According to (3.32) and (3.33), one can deduce from (B.39) that, for all t ≥ 0





V̇ (φ1(t, ·), φ2(t, ·)) ≤ 0,

φ1(t, 0)2 ≤ − 1

p1λ1

2

(
1 − p1λ1

p2λ2
b2
 V̇ (φ1(t, ·), φ2(t, ·)). (B.40)

Thus, from (B.40), we obtain for every T > 0 and for all t ∈ [0, T ]

∫ T

0

♣y(t)♣2dt = p2
1λ

2
1

∫ T

0

φ1(t, 0)2dt

≤ − p1λ1

1
2

(
1 − p1λ1

p2λ2
b2

∫ T

0

V̇ (φ1(t, ·), φ2(t, ·))dt

≤ p1λ1

1
2

(
1 − p1λ1

p2λ2
b2
 (V (φ1(0, ·), φ2(0, ·)) − V (φ1(T, ·), φ2(T, ·)))

≤ p1λ1

1
2

(
1 − p1λ1

p2λ2
b2
V (0) (B.41)

where y come from (B.35). Then, for every T > 0 we have

∫ T

0

♣y(t)♣2dt ≤ p1λ1

1
2

(
1 − p1λ1

p2λ2
b2

∥∥∥∥∥

(
φ1(0, ·)
φ2(0, ·)

)∥∥∥∥∥
µ

(B.42)

Then according to [125, Definition 4.3.1 and Theorem 4.4.3.], this proves that B1 is admissible for the

C0−semigroup (T1(t))t≥0.

102



Now, since q is continuous and for each i = 1, . . . , 2n+1, (Eii and Ei(i+1)) are absolutely continuous,

then the function

q̃ : t ∈ R+ 7→ −L2
i q
(
κ
(
E(2n+1)(2n+1)(t) − E2n(2n+1)(t)

))
−

2n+1∑

j=1

ajEj(j+1)(t) − Ė(2n+1)(2n+2)(t) (B.43)

belongs to L2
loc(0,∞). As a consequence, since A1 generates a C0−semigroup (T1(t))t≥0 on I and

the operator B1 is an admissible operator for the C0−semigroup (T1(t))t≥0, then for any initial value(
w1(0, ·)
w2(0, ·)

)
∈ I, there exists a unique mild solution (w1, w2) ∈ C([0,∞); I) ∩ H1

loc ((0,∞);D(A∗
1)′) ac-

cording to [125, Proposition 4.2.5]. This concludes the proof of Theorem 5. ✷

Proof of Theorem 6

Let
(
w1(0, ·), w2(0, ·), Z(0), Ẑ(0)


∈ J . Then, according to Proposition 3, there exists a finite-time tr

such that, for all t ≥ tr, the solution (w1, w2) of (B.30) is equivalent to the solution of the following system





∂tw1(t, x) + λ1∂xw1(t, x) = c1w2(t, x),

∂tw2(t, x) − λ2∂xw2(t, x) = c2w1(t, x),

w1(t, 0) = u(t) + d(t),

w2(t, L) = aw1(t, L).

(B.44)

Thus, according to [11, Corollary 5.5.], there exists a positive constant ξ such that

V (w1(t, ·)w2(t, ·) ≤ V (w1(tr, ·)w2(tr, ·))e−ξ(t−tr) (B.45)

where V is given in (B.38). Therefore, to conclude the proof of Theorem 6, it is just necessary to prove

that the solution (w1, w2) of system (B.30) depends continuously on initial conditions on the time interval

[0, tr].

Now, according to [125, Proposition 2.1.2], there exists K0 > 0 such that, for all t ∈ [0, tr], we have

∥∥∥∥∥

(
w1(t, ·)
w2(t, ·)

)∥∥∥∥∥
I

≤ K0

∥∥∥∥∥

(
w1(0, ·)
w2(0, ·)

)∥∥∥∥∥
I

+

∥∥∥∥
∫ t

0

T(t− s)B1q̃(t)ds

∥∥∥∥
I

(B.46)

where q̃ is given in (B.43). As a consequence, since (T1(t))t≥0 is exponentially stable and B1 is admissi-

ble operator for (T1(t))t≥0, then we have according to [125, Proposition 4.4.5], that there exists K1 > 0

independent of tr such that

∥∥∥∥∥

(
w1(t, ·)
w2(t, ·)

)∥∥∥∥∥
I

≤ K1

(∥∥∥∥∥

(
w1(0, ·)
w2(0, ·)

)∥∥∥∥∥
I

+ ∥q̃(·)∥L2(0,tr)

)
. (B.47)

Since q is continuous and for each i = 1, . . . , 2n+ 1, (Eii and Ei(i+1)) are absolutely continuous, then q̃
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is continuous. Thus, there exists K2 > 0 such that

∥q̃(·)∥2
L2(0,tr) ≤ tr. (B.48)

Now, according to [1, Theorem], there exists a positive constant K3 such that

tr < K3 ♣E(0)♣ . (B.49)

As a consequence, according to (B.47), (B.48) and (B.49), there exists C > 0 (independent of tr) such

that, for all t ∈ [0, tr],

∥∥∥∥∥

(
w1(t, ·)
w2(t, ·)

)∥∥∥∥∥
I

≤ C

(∥∥∥∥∥

(
w1(0, ·)
w2(0, ·)

)∥∥∥∥∥
I

+
√

♣E(0)♣
)
. (B.50)

This conclude the proof of Theorem 6. ✷

C Proof of the main results of Chapter 4

Proof of Theorem 7

Let T > 0. We prove the statement of the Theorem 7 for w0 ∈ H3
L(0, L), d2 ∈ C2

0 ([0, T ]) and

d1 ∈ C1([0, T ], L2(0, L)), where we recall that H3
L(0, L) is defined in the Proposition 5. Since H3

L(0, L),

C2([0, T ]) and C1([0, T ], L2(0, L)) are dense in L2(0, L), L2(0, T ) and L1([0, T ];L2(0, L)), respectively,

the result follows for all w0 ∈ L2(0, L), d1 ∈ L1([0, T ];L2(0, L)) and d2 ∈ L2(0, T ), by a standard density

argument similar to the one provided in [83, Lemma 1].

Proof of item (a) of Theorem 7

The derivative of the Energy (4.14) gives along solutions of the linear KdV model (4.2) a negative

term in ∂xw(t, 0). Moreover, Theorem 8 shows that using such a term in the w-dynamics, we are able to

obtain an ISS-Lyapunov functional U . As a consequence, the main idea of this proof consists in adding

and subtracting the term ∂xw(t, 0), multiplied by a coefficient p(x), in the w dynamics: one term is used

to obtain the negativity in the L2 norm of the full space as in (4.27), while the other is treated as a

distributed disturbance d1 and compensated by the negativity of the Energy.

With the previous points in mind, fix λ = 1 and consider the functions p and U given by Theorem 8.

Set p̄ := ∥p∥2
L2 . Note that p̄ ̸= 0 because p is a non-zero function. We define the operator Π and the

function W as follows

W (w) :=
1

2p̄ϱ1
U(w) = ∥Π(w)∥2

L2 , Π(w) :=
1√

2p̄ϱ1
Π

−1
(w) , (C.1)

for all w ∈ L2(0, L), where the operator Π and the parameter ϱ1 are given by Theorem 8. We show

that the statement of the theorem holds and in particular that the inequalities (4.20), (4.21) are satisfied.
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First, in view of (4.26), we obtain

c

2p̄ϱ1
∥w∥L2 ≤ W (w) ≤ c̄

2p̄ϱ1
∥w∥L2 .

As a consequence, by recalling that E(w) = ∥w∥2
L2 , the inequality (4.20) is satisfied for the function

V = E +W with α := 1 +
c

2p̄ϱ1
and ᾱ := 1 + c̄

2p̄ϱ1
.

Then, in order to show the inequality (4.21) we compute the derivative of the functional V along the

trajectories of the system (4.2). We first analyze the time derivative of the energy E. Using (4.15) and

adding the effect of the perturbations d1, d2, we obtain

Ė(w) = −♣∂xw(0)♣2 + 2

∫ L

0

w(x)d1(x)dx+ ♣d2♣2

≤ −♣∂xw(0)♣2 +
c

4p̄ϱ1
∥w∥2

L2 +
4p̄ϱ1

c
∥d1∥2

L2 + ♣d2♣2 (C.2)

where the second inequality has been obtaining by using the Cauchy-Schwarz and Young inequalities,

and with the parameters c, ϱ1 given by Theorem 8. Next, we compute the derivative of W along the

trajectories of system (4.2). To this end, we first add and subtract the term p(x)∂xw(t, 0) to the dynamics,

obtaining





∂tw + ∂xw + ∂xxxw − p(x)∂xw(t, 0) = −p(x)∂xw(t, 0) + d1(t, x) , (t, x) ∈ R+ × [0, L] ,

w(t, 0) = w(t, L) = 0 , t ∈ R+ ,

∂xw(t, L) = d2(t) , t ∈ R+ ,

w(0, x) = w0(x) , x ∈ [0, L] .

(C.3)

Applying the ISS-Lyapunov inequality (4.27) along solutions to (C.3), the derivative of U yields

U̇(w) ≤ − U(w) + ϱ1∥d1 − p∂xw(0)∥2
L2 + ϱ2♣d2♣2

≤ − c∥w∥2
L2 + 2ϱ1∥d1∥2

L2 + 2ϱ1∥p ∂xw(0)∥2
L2 + ϱ2♣d2♣2 , (C.4)

where in the second inequality we used again the inequality (4.26). Finally, we can compute the deriva-

tive of the function V = E + W , with W defined in (C.1), by combining (C.4) and (C.2) and using the

identity

−♣∂xw(0)♣2 + 1
p̄
∥p ∂xw(0)∥2

L2 = 0 . (C.5)

Simple computations give the inequality (4.21) with the choice α :=
c

4p̄ϱ1
, σ1 = 4p̄ϱ1

c
+ 1

p̄
, σ2 := 1 + ϱ2

2p̄ϱ1
.

This concludes the proof of item (a) of Theorem 7. ✷

Proof of the item (b) of Theorem 7

Consider again the function V = E +W with W defined in (C.1). The derivative of the energy (4.14)

along the trajectories of the nonlinear system (4.1) is computed as in (C.2) because the contribution of

the nonlinear w∂xw is zero. Next, we compute the time derivative of W . However, due to the presence

of the nonlinear term w∂xw we cannot apply off-the-shelf the inequality (4.27) by including such a term
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in the disturbance d1: it would not be bounded with the right norm. As a consequence, unfortunately, we

need to revisit and adapt some steps of the proof of Theorem 8 and in particular we need to compute

the change of coordinates defined in (4.28), (4.39). Recalling that we selected λ = 1, the γ-dynamics

reads




∂tγ + ∂xγ + ∂xxxγ + γ = −Π̄−1(p)∂xw(t, 0) + Π−1(d1) − Π−1(w∂xw) + ∂zQ(x, L)d2, (t, x) ∈ Ω

γ(t, 0) = γ(t, L) = 0 , t ∈ R+

∂xγ(t, L) = d2(t) , t ∈ R+

γ(0, x) = γ0(x) , x ∈ [0, L] .

(C.6)

where Q is defined in (4.39). With respect to system (4.41) we have two extra terms to analyse, that are

the terms Π−1(p)∂xw(0) and Π−1(w∂xw). As a consequence, we consider again the Lyapunov functional

U(w) := ∥γ∥2
L2 as in (4.38), and we follow similar computations to those developed from (4.42) to (4.43).

Also, as in the proof of item (a), we consider as a full disturbance the term d1 − p∂xw(0), see inequality

(C.4). In particular, the derivative of U along the trajectories of system (C.6) satisfies, for all w ∈ L2(0, L)

U̇(w) ≤ −∥γ∥2
L2 + ϱ1∥d1 − p∂xw(0)∥2

L2 + ϱ2♣d2♣2 + 2

∣∣∣∣∣

∫ L

0

f(w∂xw)γdx

∣∣∣∣∣

where the function f is defined as f(w∂xw)(x) := Π̄−1(w∂xw)(x) = w(x)∂xw(x)+
∫ L

0
Q(x, z)w(z)∂xw(z)dz.

By using the same argument as in [29, Proof of Theorem 1.2, page 1111-1113], we can show the exis-

tence of positive constant f̄ that depends only on the function Q, such that

2

∣∣∣∣∣

∫ L

0

f(w∂xw)(x)γ(x)dx

∣∣∣∣∣ ≤ f̄∥γ∥3
L2 ∀w ∈ L2(0, L).

As a consequence, combining the previous inequalities and following the same computations in (C.4),

we obtain, for all w ∈ L2(0, L)

U̇(w) ≤ −
(
1 − f̄∥γ∥L2

)
∥γ∥2

L2 + 2ϱ1∥d1∥2
L2 + 2ϱ1∥p ∂xw(0)∥2

L2 + ϱ2♣d2♣2 .

Therefore, using the inequality (4.26), we obtain

U̇(w) ≤ − c

2 ∥w∥2
L2 + 2ϱ1∥d1∥2

L2 + 2ϱ1∥p ∂xw(0)∥2
L2 + ϱ2♣d2♣2

for all w satisfying ∥w∥L2 ≤ δ̄, with δ̄ = (2
√
cf̄)−1. Using the definition of the function W in (C.1) and

following the same steps of item (a), we obtain the inequality inequality (4.21) with the choice α :=
c

8p̄ϱ1
,

σ1 = 4p̄ϱ1

c
+ 1

p̄
, σ2 := 1 + ϱ2

2p̄ϱ1
, and δ = 1

3 δ̄. This concludes the proof of item (b) of Theorem 7. ✷
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Proof of Lemma 1

Consider the following boundary value problem





w′
∞(x) + w′′′

∞(x) = d(x) , x ∈ [0, L] ,

w∞(0) = w∞(L) = 0 ,

w′
∞(0) = r ,

which represents the nonzero equilibrium state of (4.48), together with η∞ =
w′

∞
(L)

k
. Consider the

smooth function ϕ(x) = rx(L−x)
L

. It satisfies the boundary conditions ϕ(0) = ϕ(L) = 0 and ϕ′(0) = r. We

set ψ = w∞ − ϕ. Then ψ satisfies the following system





ψ′(x) + ψ′′′(x) = j(x) , x ∈ [0, L] ,

ψ(0) = ψ(L) = 0 ,

ψ′(0) = 0 ,

where j(x) = d(x) − ϕ′(x). This system can be written in the operator form as S∗ψ = j, where S∗, is

the adjoint operator of S defined in (4.49). In particular, S∗, is defined as S∗ψ = ψ′′′ + ψ′ with domain

D(S∗) := ¶w ∈ H3(0, L) : w(0) = w(L) = w′(0) = 0♢. Following [88, Lemma 4], we can prove

that the canonical embedding from D(S∗), equipped with the graph norm, into L2(0, L), is compact.

Then, according to [24, Proposition 4.24], S∗ is an operator with compact resolvent. This implies that

its spectrum consists only of eigenvalues. Moreover, 0 is not an eigenvalue of S∗. Hence, there exists

a unique solution ψ∞ to the equation S∗ψ = j. The equilibrium (η∞, w∞) can then be computed as

w∞(x) = ψ∞ +ϕ(x) for all x ∈ [0, L] and η∞ =
w′

∞
(L)

k
, with ϕ being the function defined at the beginning

of the proof. ✷

Proof of Lemma 2

Given (d, r) ∈ L2(0, L)×R, let (η∞, w∞) the corresponding equilibrium to (4.48) computed according

to Lemma 1. Consider the following change of coordinates

(w, η) 7→ (w̃, η̃) := (w − w∞, η − η∞). (C.7)

The (w̃, η̃)-dynamics is given by





∂tw̃ + ∂xw̃ + ∂xxxw̃ = 0 , (t, x) ∈ R+ × [0, L] ,

w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,

∂xw̃(t, L) = kη̃(t) , t ∈ R+ ,

˙̃η(t) = ∂xw̃(t, 0) , t ∈ R+ ,

w̃(0, x) = w̃0(x), η̃(0) = η̃0 , x ∈ [0, L] ,

(C.8)

where w̃0(x) = w0(x) −w∞(x) and η̃0 = η0 −η∞. System (C.8) can be rewritten, in the operator form, as

d

dt
ζ̃ = Aζ̃, ζ̃ = ζ0, ζ̃ :=

(
η̃

w̃

)

107



with A and its domain D(A) defined as in (4.50). As a consequence, systems (4.48) and (C.8) are

equivalent. Then, if one proves that the operator A defined in (4.50) is a m-dissipative operator on

(X, ∥ · ∥X), one can apply the result provided by [17, Theorem 3.1], and conclude that the statement

of Lemma 2 holds. For that, we look for an equivalent norm and a related scalar product coming from

a Lyapunov functional. We will prove then the dissipativity with respect to such a scalar product. This

Lyapunov functional is built following the forwarding approach (see e.g [122]). To simplify the notation, in

the rest of this proof, we will write (η, w) instead of (η̃, w̃).

Now, by recalling the definition of the operator S in given in (4.49), we define the operator M :

L2(0, 1) → R as solution to the following Sylvester equation

MSw = Cw , ∀w ∈ D(S) , (C.9)

where C : f ∈ H1
0(0, L) 7→ f ′(0) ∈ R. Since the strongly continuous semigroup generated by the operator

S is exponentially stable, the Sylvester equation (C.9) admits a unique solution, see [101, Lemma 22].

Moreover, since M is a linear form, according to Riesz representation theorem [18, Theorem 4.11], the

operator M is uniquely defined as Mw =
∫ L

0
M(x)w(x)dx. In order to obtain an explicit solution, we

write equation (C.9) in the explicit form

w′(0) = −
∫ L

0

M(x)[w′(x) + w′′′(x)]dx ∀w ∈ D(S).

Using integration by parts we obtain

w′(0) =

∫ L

0

w(x)[M ′(x) +M ′′′(x)]dx+M(0)w′′(0) −M(L)w′′(L) −M ′(0)w′(0) ,

for all w ∈ D(S). From the latter equation, we obtain the following boundary value problem





M ′′′ +M ′ = 0 ,

M(0) = M(L) = 0 ,

M ′(0) = −1 .

(C.10)

It can be verified that the function

M : x ∈ R 7→ −2 sin( x
2 ) sin( L−x

2 )

sin( L
2 )

(C.11)

is a solution to (C.10). Computations are omitted for space reasons. Moreover, it is the unique solution

to (C.10) and the operator M defined above is the unique solution to the Sylvester equation (C.9). Then,

the operator M : L2(0, L) → R can be expressed as Mφ =
∫ L

0
M(x)φ(x)dx.

With the operator M so defined, consider the candidate Lyapunov functional V : X → R defined as

V(η, w) = V (w) + (η − Mw)2 , (C.12)

where V is the Lyapunov functional given by Theorem 7. By construction, the Lyapunov functional V is
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equivalent to the standard norm on the space X, and in particular, there exist positive constants ν, ν̄

such that the following holds

ν∥(η, w)∥2
X ≤ V(η, w) ≤ ν̄∥(η, w)∥2

X , ∀(η, w) ∈ X . (C.13)

To show this fact, note that, following similar arguments used in the proof of Proposition 4 of [122], for

any ρ ∈]0, 1[ we have

ρ


1

2
η2 − ∥M∥2

L2∥w∥2
L2


≤ (η − Mw)2 ≤ 2(η2 + ∥M∥2

L2∥w∥2
L2)

for all (η, w) ∈ X. Furthermore, according to Theorem 7, we know that V satisfies the inequality (4.20).

Then we have

ρ


1

2
η2 − ∥M∥2

L2∥w∥2
L2


+ α∥w∥2

L2 ≤ V(w) ≤ 2
(
η2 + ∥M∥2

L2∥w∥2
L2

)
+ ᾱ∥w∥2

L2 .

Therefore, by selecting ρ sufficiently small, inequality (C.13) holds for some ν̄ > ν > 0. By recalling that

the functional V established in Theorem 7 is of the form V = E + W , where E and W are quadratic

forms of the L2 norm of w, from the Lyapunov functional V defined in (C.12), we can also deduce a

scalar product, that we define as follows

〈[
η1 w1

]⊤

,
[
η2 w2

]⊤
〉

V

:=
(
η1 − Mw1

)(
η2 − Mw2

)
+ ⟨w1, w2⟩L2 + ⟨Πw1,Πw2⟩L2 , (C.14)

with Π being the linear operator given by Theorem 7. It is equivalent to the usual scalar product in X.

Now, we are in position to prove that A is m−dissipative according to [100]. For this, we need to

show that A is dissipative and maximal. We begin with showing the dissipative properties. To this end,

we use the scalar product given in (C.14). By using the definition of A given in (4.50), we obtain, for all

ζ ∈ D(A),

⟨Aζ, ζ⟩V =
(
w′(0) + M(w′′′ + w′)

)(
η − Mw

)
− ⟨w′ + w′′′, w⟩L2 − ⟨Π(w′′′ + w′),Πw⟩L2

=
(
w′(0) +

∫ L

0

M(x)[w′(x) + w′′′(x)]dx
(
η − Mw


− ⟨w′ + w′′′, w⟩L2 − ⟨Π(w′′′ + w′),Πw⟩L2 .

(C.15)

For the first term, it can be shown, after some integrations by parts, that

∫ L

0

M(x)[w′(x) + w′′′(x)]dx = −kη − w′(0) (C.16)

for all ζ ∈ D(A). Then, for the second term, we recall the ISS properties of the functional V stated in

Theorem 7. In particular, applying the inequality (4.21) to the system (4.48), in which d is the distributed

disturbance (thus having the role of d1) and kη is seen as a disturbance acting at the boundary condition
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(thus having the role of d2), we obtain

−2⟨w′ + w′′′, w⟩L2 − 2⟨Π(w′′′ + w′),Πw⟩L2 ≤ −α∥w∥2
L2 + σ2k

2η2 . (C.17)

for all ζ ∈ D(A). Hence, combining inequalities (C.15) with (C.16) and (C.17), we obtain

⟨Aζ, ζ⟩V ≤ − kη
(
η − Mw

)
− α

2
∥w∥2

L2 +
σ2

2
k2η2

≤ −k


1 −

σ2

2
+

∥M∥L2

4α


k


η2 − α

4
∥w∥2

L2

for all ζ ∈ D(A), where the second inequality has been obtained by using Young’s inequality. As a

consequence, we can select

k⋆
0 =


σ2

2
+

∥M∥L2

4α

−1

.

This implies that for any k ∈ (0, k⋆
0) there exists ε > 0 such that we have

⟨Aζ, ζ⟩V ≤ −ε(♣η♣2 + ∥w∥2
L2) (C.18)

for all ζ ∈ D(A), which shows that the operator A is dissipative.

Now, we want to show that A is a maximal operator. According to Lümer-Phillips theorem [100, Theorem

4.3], proving that A is maximal reduces to show that there exists a positive λ0 such that for all ζ ∈ X,

there exists ζ̃ ∈ D(A) such that (λ0IX − A)ζ̃ = ζ. Let (η, w) ∈ X. We look for a (η̃, w̃) ∈ D(A) satisfying





w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,

w̃(0) = w̃(L) = 0 ,

w̃′(L) = kη̃ ,

λ0η̃ − w̃′(0) = η ,

(C.19)

namely 



w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,

w̃(0) = w̃(L) = 0 ,

w̃′(L) = k
λ0

(η + w̃′(0)) ,

λ0η̃ − w̃′(0) = η .

Now, we consider the following boundary value problem





w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,

w̃(0) = w̃(L) = 0 ,

w̃′(L) = k
λ0

(η + w̃′(0)) ,

and the smooth function ϕ̃(x) = kηx2(x−L)
λ0L2 satisfying the boundary conditions

ϕ̃(0) = ϕ̃(L) = ϕ̃′(0) = 0 , ϕ̃′(L) =
k

λ0
η .
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We set ψ̃ = w̃ − ϕ̃. Then ψ̃ satisfies the following boundary value problem





ψ̃′ + ψ̃′′′ + λ0ψ̃ = j̃(x) , x ∈ [0, L] ,

ψ̃(0) = ψ̃(L) = 0 ,

ψ̃′(L) = k
λ0
ψ̃′(0) ,

(C.20)

where j̃(x) = w(x)− ϕ̃′(x)− ϕ̃′′′(x)−λ0ϕ̃. Now, we define the operator Ŝ and its domain D(Ŝ) ⊂ L2(0, L)

as

Ŝψ = −ψ′ − ψ′′′, D(Ŝ) :=
{
ψ ∈ H3(0, L) : ψ(0) = ψ(L) = 0, ψ′(L) =

k

λ0
ψ′(0)

}
.

We define also its adjoint operator Ŝ∗ and its domain D(Ŝ∗) as

Ŝ∗ψ = ψ′′′ + ψ′, D(Ŝ∗) :=
{
ψ ∈ H3(0, L) : ψ(0) = ψ(L) = 0, ψ′(0) =

k

λ0
ψ′(L)

}
.

Note that Ŝ and Ŝ∗ are dissipative. Indeed, by selecting λ0 > k, we have

∫ L

0

ψŜψdx =


k

λ0
− 1


ψ′(0)2 < 0 , ψ ∈ D(ĉS) ,

∫ L

0

ψŜ∗ψdx =


k

λ0
− 1


ψ′(L)2 < 0 , ψ ∈ D(Ŝ∗) .

Moreover, Ŝ is closed andD(Ŝ) is dense in L2(0, L). Then, according to [100, Theorem 4.3 and Corollary

4.4] Ŝ ism-dissipative operator. Finally, since Ŝ is am-dissipative operator then the system (C.20) admits

a solution ψ̃ in D(Ŝ). As a consequence, there exist (η̃, w̃) ∈ D(A) solution of (C.19). This proves that A
is maximal and concludes the proof of Lemma 2. ✷

Proof of Theorem 9

The first part of the proof is proved for any initial condition (η0, w0) ∈ D(A). The result follows for all

initial conditions in X by a standard density argument (see e.g. [83, Lemma 1]). Consider the equilibrium

(η∞, w∞), recall the change of coordinates defined in (C.7) and consider the error system (C.8). We show

now that the its origin is exponentially stable. To this end, consider the Lyapunov functional V defined in

(C.12). According to the proof of dissipativity of A of Lemma (2), for any k ∈ (0, k⋆) the time derivative

of V along the strong solution to (C.8) satisfies (C.18). As a consequence, from (C.13) and Grönwall’s

lemma, there exist positive constants b0, ν0 such that, for all (η0, w0) ∈ D(A) and for all t ≥ 0

∥(η̃(t), w̃(t, ·))∥X ≤ b0e
−ν0t∥(η̃0, w̃0)∥X . (C.21)

By using the density of D(A) in X, and the change of coordinates (C.7), we conclude that (4.51) holds.

Now, we need to show that the regulation objective (4.46) is achieved for strong solutions. For this,

note that if (η0, w0) ∈ D(A), then (η̃0, w̃0) ∈ D(A). Then (η̃, w̃) ∈ C1(R+;X) ∩ C0(R+;D(A))
)
. Now, let

us introduce the new variables v, ξ defined as follows

(w̃, η̃) 7→ (v, ξ) := (∂tw̃, ˙̃η) . (C.22)
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The dynamics of (v, ξ) is given as





∂tv + ∂xv + ∂xxxv = 0 , (t, x) ∈ R+ × [0, L] ,

v(t, 0) = v(t, L) = 0 , t ∈ R+

∂xv(t, L) = kξ(t) , t ∈ R+

ξ̇(t) = vx(t, 0) , t ∈ R+

v(0, x) = v0(x), ξ(0) = ξ0 , x ∈ [0, L] .

(C.23)

with

v0(x) = −w̃′
0(x) − w̃′′′

0 (x), x ∈ [0, L], ξ0 = w̃′
0(0). (C.24)

Since (v(0, ·), ξ(0)) ∈ X, then, according to the Lemma 2 and the first statement of Theorem 9, we have

(v, ξ) ∈ C0(R+;X) and

∥(ξ(t), v(t, ·))∥X ≤ b0e
−ν0t∥(ξ(0), v(0, ·))∥X , ∀(v0, ξ0) ∈ X .

By definition of v and ξ and using (C.24), one can see that, once one considers (v0, ξ0) ∈ X, then this

implies that (η0, w0) ∈ D(A). Then, using the definition of the change of coordinates (C.22) and (C.24)

we obtain

∥∂tw̃(t, ·)∥L2 ≤ ∥( ˙̃η(t), ∂tw̃(t, ·))∥X ≤ b0e
−ν0t∥(−w̃′

0(x) − w̃′′′
0 (x), w̃′

0(0))∥X , ∀w0 ∈ D(A) . (C.25)

Now, by multiplying the first equation of (C.8) by w̃ and integrating by parts, we get after some computa-

tions

k2η̃(t)2 − ∂xw̃(t, 0)2 =

∫ L

0

w̃(t, x)∂tw̃(t, x)dx .

Using Cauchy-Schwarz’s inequality, from (C.21) and (C.25) we finally obtain

♣∂xw̃(t, 0)♣2 ≤ ∥w̃(t, ·)∥L2∥∂tw̃(t, ·)∥L2 + k2♣η̃(t)♣2 −→
t→∞

0 , ∀(η0, w0) ∈ D(A) .

From the previous inequality we obtain limt→∞ ♣∂xw̃(t, 0)♣ = limt→∞ ♣∂xw(t, 0)−r♣ = 0 for all (η0, w0) ∈ D(A),

and therefore (4.46), concluding the proof. ✷

Proof of Lemma 3

Consider the following boundary value problem





w′
∞(x) + w′′′

∞(x) + w∞(x)w′
∞(x) = d(x) , x ∈ [0, L] ,

w∞(0) = w∞(L) = 0 ,

w′
∞(0) = r ,

(C.26)

which represents the nonzero equilibrium state of (4.48), with η∞ =
w′

∞
(L)

k
. We prove that there exists a

solution to system (C.26) by following a fixed-point strategy. We set

H3
r(0, L) :=

{
w ∈ H3(0, L) : w(0) = w(L) = 0, w′(0) = r

}
,
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and we introduce the operator T0 : H3
r(0, L) → H3

r(0, L) defined by T0(w) = φ where φ is the solution to





φ′(x) + φ′′′(x) = d(x) − w∞(x)w′
∞(x) , x ∈ [0, L] ,

φ(0) = φ(L) = 0 ,

φ′(0) = r ,

(C.27)

Note that the functional ∥ · ∥H3
r

: w ∈ H3(0, L) 7→ ∥w′ + w′′′∥L2 ∈ R+ is a semi-norm on the space

H3(0, L). Furthermore, H3
r(0, L) ⊂ H1

0(0, L). Then, according to the Poincaré’s inequality, the semi-norm

∥ · ∥H3
r

is a norm on the space H3
r(0, L) which is equivalent to the standard norm induced by H3(0, L). In

other words, there exists a positive constant κ such that

∥w∥H3
r

≤ ∥w∥H3(0,L) ≤ κ∥w∥H3
r
, ∀w ∈ H3

r(0, L) . (C.28)

Now, we have,

∥T0(w)∥H3
r

=∥d− ww′∥L2

≤∥d∥L2 + ∥ww′∥L2

≤∥d∥L2 + ∥w∥L∞∥w′∥L2 ,

for all w ∈ H3
r(0, L). Denoting with the constant ℓ the norm of the embedding H3(0, L) in L∞(0, L),

according to the Rellich-Kondrachov Theorem (see [18, Theorem 9.16]), we have

∥T0(w)∥H3
r

≤∥d∥L2 + ℓ∥w∥H3(0,L)∥w′∥L2

≤∥d∥L2 + κℓ∥w∥2
H3

r

≤d̄+ κℓ∥w∥2
H3

r
,

for all w ∈ H3
r(0, L) and all d satisfying ♣d♣L2 ≤ d̄. Moreover, we have for all w1, w2 ∈ H3

r(0, L)

∥T0(w1) − T0(w2)∥H3
r

= ∥w1w
′
1 − w2w

′
2∥L2

≤ ∥(w1 − w2)w′
1∥L2 + ∥w2(w′

1 − w′
2)∥L2

≤ κℓ∥w1 − w2∥H3
r
∥w1∥H3

r
+ κℓ∥w1 − w2∥H3

r
∥w2∥H3

r

≤ κℓ
(
∥w2∥H3

r
+ ∥w2∥H3

r

)
∥w1 − w2∥H3

r
.

We consider now the operator T0 defined as in (C.27), restricted on the closed ball

Bw :=
{
w ∈ H3

r(0, L) : ∥w∥H3
r

≤ w
}

with w to be chosen later. Then, collecting all the previous inequalities we have

∥T0(w)∥H3
r

≤ d̄+ κℓw2 ,

∥T0(w1) − T0(w2)∥H3
r

≤ 2κℓw∥w1 − w2∥H3
r
,
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for all w,w1, w2 ∈ Bw. Finally, we select d̄ and w such that the following conditions hold

d̄ <
1

4κℓ
and

1 −
√

1 − 4d̄κℓ

2κℓ
≤ w <

1

2κℓ
. (C.29)

With such a choice, we obtain ∥T0(w)∥H3
r

≤ w for all w ∈ Bw and ∥T0(w1) − T0(w2)∥H3
r
< ∥w1 − w2∥H3

r
,

for all w1, w2 ∈ Bw. This shows that the operator T0 is an operator of contraction. Applying the Banach

fixed point theorem [18, Theorem 5.7] we deduce that the operator T0 admits a unique fixed point, and

therefore that there exists a unique solution w∞ ∈ Bw to (C.26). Now, given w, we deduce the value

of r̄. Indeed, since w∞ ∈ H3(0, L) then we have w′
∞ ∈ H2(0, L). Then, according to the embedding of

H2(0, L) in C1([0, L]), we have w′
∞ ∈ C1([0, L]). Therefore, according to [142, Lemma 1] we have

(w′
∞(0))2 ≤ 2

L
∥w′

∞∥2
L2 + L∥w′′

∞∥2
L2 ≤


2

L
+ L


∥w∞∥2

H3(0,L) . (C.30)

Since w∞ ∈ Bw, then according to (C.28) and (C.30), and to the definition of H3
r(0, L), we obtain

r2 = (w′
∞(0))2 ≤ κ


2

L
+ L


w2 . (C.31)

Finally, we can choose r̄ = w
√
κ
(

2
L

+ L
)
. Therefore, according to (C.29) and (C.31), we deduce that for

any w0 ∈ (0, w], there exists d0 > 0 and r̄0 > 0 so that, for any (d, r) ∈ L2(0, L) ×R satisfying ∥d∥L2 ≤ d̄0

and ♣r♣ ≤ r̄0 then ∥w∞∥H3 ≤ w0. This concludes the proof of Lemma 3. ✷

Proof of Lemma 4

First, by writing the explicit solution of η̃ along solutions, that is η̃(t) = η̃0 +
∫ t

0
∂xw̃(s, 0)ds, we rewrite

system (4.54) as follows





∂tw̃ + ∂xw̃ + ∂xxxw̃ + w̃∂xw̃ + ∂x(w̃w∞) = 0 , (t, x) ∈ R+ × [0, L] ,

w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,

∂xw̃(t, L) = k
(
η̃0 +

∫ t

0
∂xw̃(s, 0)ds


, t ∈ R+ ,

w̃(0, x) = w̃0(x), x ∈ [0, L] .

(C.32)

Now, given (s, τ) ∈ N × R, we introduce the space Ss(τ) := C([0, τ ];Hs(0, L)) ∩ L2([0, τ ];Hs+1(0, L))

equipped with the norm defined as

∥w∥2
Ss(τ) := ∥w∥2

C([0,τ ];Hs(0,L)) + ∥w∥2
L2([0,τ ];Hs+1(0,L)) + ∥∂xw∥2

C([0,τ ];L2(0,L)) .

We consider the operator T1 : S3(τ) → S3(τ) defined by T1(w̃) = φ where φ is the solution of





∂tφ+ ∂xφ+ ∂xxxφ+ ∂x(w∞φ) = −w̃∂xw̃ , (t, x) ∈ [0, τ ] × [0, L] ,

φ(t, 0) = φ(t, L) = 0 , t ∈ [0, τ ] ,

∂xφ(t, L) = k
(
η̃0 +

∫ t

0
∂xw̃(s, 0)ds


, t ∈ [0, τ ] ,

φ(0, x) = w̃0(x), x ∈ [0, L]

(C.33)
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with τ > 0 and k > 0 to be chosen later. With the operator T1 so defined, we deduce that if w̃ is a

fixed point of T1 then w̃ ∈ S3(τ) is a solution of (C.32). To this end we will apply the Banach fixed-point

Theorem. According to [16, Proposition 5.1], for any w∞ there exists C > 0 such that

∥T1(w̃)∥2
S3(τ) ≤ C

(
∥w̃0∥2

H3(0,L) + k2

(
τ ♣η̄0♣2 +

∫ τ

0

∣∣∣∣
∫ t

0

∂xw̃(s, 0)ds

∣∣∣∣
2

dt+ ∥∂xw(·, 0)∥2
L2(0,τ)

)

+ ∥w̃∂xw̃∥2
H1(0,τ ;H1(0,L))

)

for all w̃ ∈ S3(τ) and any ∥w∞∥H3 ≤ w∞. On the other hand, we have

∫ τ

0

∣∣∣∣
∫ t

0

∂xw̃(s, 0)ds

∣∣∣∣
2

dt ≤
∫ τ

0

∫ t

0

♣∂xw̃(s, 0)♣2dsdt ≤ τ∥∂xw̃(·, 0)∥2
L2(0,τ).

Since, w̃ ∈ S3(τ), then for all t ∈ [0, τ ], w̃(t, ·) ∈ H3(0, L), which imply ∂xw̃(t, ·) ∈ H2(0, L) for all t ∈ [0, τ ].

Then, according to the embedding of H2(0, L) in C1([0, L]), we have ∂xw̃(t, ·) ∈ C1([0, L]) for all t ∈ [0, τ ].

Therefore, according to [142, Lemma 1], we obtain

(∂xw̃(t, 0))2 ≤


2

L
+ L


∥w̃(t, ·)∥2

H3(0,L)

for all t ∈ [0, τ ], which implies

∥∂xw̃(·, 0)∥2
L2(0,τ) ≤


2

L
+ L


∥w̃∥2

L2(0,τ ;H3(0,L)) ≤


2

L
+ L


∥w̃∥2

S3(τ). (C.34)

Then, we have

∫ τ

0

∣∣∣∣
∫ t

0

∂xw̃(s, 0)ds

∣∣∣∣
2

dt ≤ τ


2

L
+ L


∥w̃∥2

L2(0,τ ;H3(0,L)) ≤ τ


2

L
+ L


∥w̃∥2

S3(τ). (C.35)

Also, since w̃ ∈ S3(τ), then according to [16, Lemma 3.1], we deduce the existence of C > 0 such that

∥w̃∂xw̃∥2
H1(0,τ ;H1(0,L)) = ∥w̃∂xw̃∥2

L2(0,τ ;H1(0,L)) + ∥(w̃∂xw̃)t∥2
L2(0,τ ;H1(0,L)) ≤ C(τ

1
2 + τ

1
3 )2∥w̃∥4

S3(τ).

(C.36)

As a consequence, from (C.34), (C.35) and (C.36), there exists a positive constant C > 0 such that

∥T1(w̃)∥2
S3(τ) ≤ C


∥w̃0∥H3(0,L) + k2τ ♣η̄0♣2 +


(τ

1
2 + τ

1
3 )2∥w̃∥2

S3(τ) +


2

L
+ L


(k2τ + k2)


∥w̃∥2

S3(τ)


.

(C.37)
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Moreover, from (C.34), (C.35) and (C.36), we obtain

∥T1(w̃1) − T1(w̃2)∥2
S3(τ) ≤

≤ C


k2
∫ τ

0

∣∣∣
∫ t

0
(∂xw̃

1(s, 0) − ∂xw̃
2(s, 0))ds

∣∣∣
2

dt+ ∥∂xw̃
1(·, 0) − ∂xw̃

2(·, 0)∥2
L2(0,τ)

+∥w̃2(∂xw̃
2 − ∂xw̃

1) + ∂xw̃
1(w̃2 − w̃1)∥2

H1(0,τ ;H1(0,L))



≤ C
((

2
L

+ L
)

(k2τ + k2) + (τ
1
2 + τ

1
3 )2∥w̃1∥2

S3(τ) + (τ
1
2 + τ

1
3 )2∥w̃2∥2

S3(τ)


∥w̃1 − w̃2∥2

S3(τ)

for all w̃1, w̃2 ∈ S3(τ). We consider T1 restricted to the closed ball Bρ = ¶w̃ ∈ S3(τ) : ∥w̃∥S3(τ) ≤ ρ♢ ⊂
S3(τ) with ρ to be chosen later. Then

∥T1(w̃)∥2
S3(τ) ≤ C

(
∥w̃0∥2

H3(0,L) + k2τ ♣η̃0♣2 + ρ2
(

2
L

+ L
)
k2 +

(
(τ

1
2 + τ

1
3 )2ρ2 +

(
2
L

+ L
)
k2τ

ρ2


and

∥T1(w̃1) − T1(w̃2)∥2
S3(τ) ≤ C

(
k2
(

2
L

+ L
)

+
(

2
L

+ L
)
k2τ + 2(τ

1
2 + τ

1
3 )2ρ2


∥w̃1 − w̃2∥2

S3(τ).

Finally, we select the constant ρ, k1 and τ so that to obtain a contractive operator. For instance, we can

select ρ =
√

3C∥w̃0∥H3(0,L) and

k⋆
1 =

√
1

6C


L

2 + L2



and τ > 0 such that the following inequalities are satisfied

τ(k⋆
1)2♣η̃0♣2 < ∥w̃0∥2

H3(0,L) ,(
(τ

1
2 + τ

1
3 )2ρ2 +

(
2
L

+ L
)

(k⋆
1)2τ


ρ2 < 1

2 ∥w̃0∥2
H3(0,L) ,

(
2
L

+ L
)

(k⋆
1)2τ + 2(τ

1
2 + τ

1
3 )2ρ2 < 1

2 .

It follows that, for any k ∈ (0, k⋆
1 ], ∥T1(w̃)∥S3(τ) ≤ ρ for any w̃ ∈ Bρ and ∥T1(w̃1) − T1(w̃2)∥S3(τ) <

∥w̃1 − w̃2∥S3(τ) for any w̃1, w̃2 ∈ Bρ. Then, T1 is a contraction operator from Bρ to Bρ. According to the

Banach fixed-point theorem, T1 admits a unique fixed point. Its unique fixed point is the desired solution

of (C.32) for 0 ≤ t ≤ τ . This shows that w̃ in (C.33) has a unique solution in S3(τ). Since ∂xw̃(t, 0) is

continuous on [0, τ ] then η̃ is in C1(τ) by definition of solution of an ODE. This concludes the proof of

Lemma (4). ✷

Proof of Theorem 10

The main idea of this proof is to extend the analysis developed for the linear KdV model in Sec-

tion 4.4.1. In particular, following the main steps of the proof of Lemma 2, we aim at building a Lyapunov

functional for the overall closed-loop system (4.53) by relying on Corollary 1. Indeed, setting a = −w′
∞,

b = −w∞ and d2 = kη, system (4.54) is in the form (4.22). As a consequence, there exist δ > 0 and a

Lyapunov functional V such that, for any ∥w′
∞∥∞ ≤ ā and ∥w∞∥W 1,∞ ≤ b̄, the derivative of V along the
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trajectories of system (4.54) satisfies

V̇ (w̃) ≤ −α∥w̃∥2
L2 + σ1k

2η̃2 ∀ (η̃, w̃) ∈ Dδ(A) , (C.38)

with Dδ(A) := ¶(η̃, w̃) ∈ D(A) : ∥(η̃, w̃)∥X ≤ δ♢. Now, we consider the Lyapunov functional V defined

in (C.12). We want to show the local exponential stability of the origin of the system (4.54) with the

functional V. First, note that V is uniformly bounded by the norm in the space X of (η̃, w̃), similar to

inequality (C.13). Then, using (C.38), its derivative along solutions to (4.53) is given by, for any (η̃, w̃) ∈
Dδ(A).

V̇(η̃, w̃) ≤ −α∥w̃∥2
L2 + σ1k

2η̃2 + 2F (η̃, w̃) (C.39)

with F (η̃, w̃) :=
(
η̃ − Mw̃

)(
˙̃η − M∂tw̃

)
. After some integrations by parts, and recalling the property of

M in (C.16), we obtain

˙̃η − M∂tw̃ = −kη̃(t) +

∫ L

0

M(x)w̃(x)w′
∞(x)dx− 1

2

∫ L

0

M ′(x)w̃(x)2dx−
∫ L

0

(
M(x)w∞(x)

)′
w̃(x)dx,

from which we obtain

F (η̃, w̃) = −kη̃2 + η̃kMw̃ + η̃Φ(w̃) − Mw̃Φ(w̃)

with

Φ(w̃) =

∫ L

0

M(x)w̃(x)w′
∞(x)dx− 1

2

∫ L

0

M ′(x)w̃(x)2dx−
∫ L

0

(
M(x)w∞(x)

)′
w̃(x)dx

According to (C.11), M ∈ C∞([0, L]). Therefore M ′ is bounded on [0, L]. Then, using first Cauchy-

Schwarz’s inequality and then Young’s inequality, we bound the terms in F as follows:

♣kη̃Mw̃♣ ≤ 2k2∥M∥2
L2

α
η̃2 +

α

8
∥w̃∥2

L2 ,

♣η̃Φ(w̃)♣ ≤ k

2
η̃2 +

1

2k


4∥Mw′

∞∥2
L2 + 4∥(Mw∞)′∥2

L2 + ∥M ′∥2
∞∥w̃∥2

L2


∥w̃∥2

L2 ,

♣Mw̃Φ(w̃)♣ ≤ α

8
∥w̃∥2

L2 +
2∥M∥2

L2

α


4∥Mw′

∞∥2
L2 + 4∥(Mw∞)′∥2

L2 + ∥M ′∥2
∞∥w̃∥2

L2


∥w̃∥2

L2 .

As a consequence, combining the previous bounds we further obtain

F (η̃, w̃) ≤

α

4
+


2∥M∥2

L2

α
+

1

2k


4∥Mw′

∞∥2
L2 + 4∥(Mw∞)′∥2

L2 + ∥M ′∥2
∞∥w̃∥2

L2


∥w̃∥2

L2

− k

2


1 − 4k

∥M∥2
L2

α


η̃2

≤

α

4
+


2∥M∥2

L2

α
+

1

2k


8∥M∥2

W 1,∞∥w∞∥2
H3 + ∥M ′∥2

∞∥w̃∥2
L2


∥w̃∥2

L2

− k

2


1 − 4k

∥M∥2
L2

a1


η̃2
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where, in the second inequality, we have used ∥Mw′
∞∥2

L2 + ∥(Mw∞)′∥2
L2 ≤ 2∥M∥2

W 1,∞∥w∞∥2
H3 . Using

the previous inequality together with (C.39) yields

V̇(η̃, w̃) ≤


−α

2
+


4∥M∥2

L2

α
+

1

k


8∥M∥2

W 1,∞∥w∞∥2
H3 + ∥M ′∥2

∞∥w̃∥2
L2


∥w̃∥2

L2 (C.40)

+


σ1k

2 − k


1 − 4k

∥M∥2
L2

α


η̃2

for all (η̃, w̃) ∈ Dδ(A). As a consequence, we can finally fix all the parameters. In particular, we select

k⋆
2 = min

{
k⋆

0 , k
⋆
1 ,


α

ασ1 + 4∥M∥2
L2

}

with k⋆
0 given by Lemma 2, and k⋆

1 given by Lemma 4. Moreover, given any k ∈ (0, k⋆
2), select

w∞ = min




ā, b̄,

√√√√
α

64∥M∥2
W 1,∞

(
4∥M∥2

L2

α
+ 1

k






,

with ā, b̄ given by Corollary 1. Moreover, let us define δ ∈ (0, δ) satisfying

δ̄2 ≤ α

8∥M ′∥2
∞


4∥M∥2

L2

α
+

1

k

−1

.

Using all these bounds we can finally conclude the existence of a positive constant ε such that

V̇ ≤ −ε(∥w̃∥2
L2 + η̃2) ∀(η̃, w̃) ∈ Dδ̄(A). (C.41)

Finally, standard Lyapunov arguments briefly recalled here allows to conclude the result of the proof.

In particular, consider a c > 0 small enough such that Ωc := ¶(η̃, w̃) ∈ D(A) : V(η̃, w̃) ≤ c♢ ⊂ Dδ̄(A).

Now consider any solution to (4.53) starting inside Ωc. By Lemma 3 there exists τ > 0 such that such

a solution exists on [0, τ ]. Let T ≥ τ be its maximal interval of time of existence. In view of (C.41),

the derivative of V is always negative, showing that such the solution cannot escape the level set Ωc.

Hence, its maximal interval of existence is [0,∞). Moreover, we can conclude the existence of a positive

constant ∆ ∈ (0, δ̄) such that the set D∆(A) is included in the domain of attraction of the origin of

system (4.54). Combining the Fréchet derivative (4.17) and the Grönwall’s lemma with (C.41) one can

show the first part of the statement, that is ∥(η̃(t), w̃(t))∥X ≤ b1e
−ν1t∥(η̃0, w̃0)∥X , for all t ≥ 0 and for all

(η̃0, w̃0) ∈ D∆(A).

Finally, to prove the second part of the statement, we can use the same argument as in the proof of

[111, Proposition 3.9] to deduce that there exists a continuous nonnegative function χ : R+ → R+ and

positive constants C, µ such that, for all (η̃0, w̃0) ∈ D∆(A)

∥∂tw̃(t, ·)∥L2 ≤ Ce−µtχ(∥w̃0∥L2)∥∂tw̃(0, ·)∥L2 , ∀t ≥ 0 . (C.42)
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By multiplying the first equation of (4.54) by w̃ and integrating by parts, we get after some computations

−k2η̃(t)2 + ∂xw̃(t, 0)2 = −2

∫ L

0

w̃(t, x)∂tw̃(t, x)dx+

∫ L

0

♣w̃(t, x)♣2w′
∞(x)dx

≤ 2∥w̃(t, ·)∥L2∥∂tw̃(t, ·)∥L2 + ℓ∥w̃(t, ·)∥2
L2∥w̃∞∥H3(0,L).

where ℓ is the constant of the embedding of H3(0, L) in L∞(0, L). Then, we can deduce limt→∞ ♣∂xw̃(t, 0)♣ =

limt→∞ ♣∂xw(t, 0) − r♣ = 0 for all (η̃0, w̃0) ∈ D∆(A), concluding the proof.
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Titre: Contributions à la théorie du contrôle des systèmes de di-

mension infinie soumis à des perturbations/incertitudes

Mot clés : Contrôle par mode glisant, stabilisation, régulation de sortie, équations aux dérivées par-

tielles, stabilité entrée-état, observateur.

Resumé : Dans cette thèse, nous étudions des

problèmes de stabilisation et de régulation de sor-

tie pour des systèmes de dimension infinie soumis

à des perturbations. Tout d’abord, nous consid-

érons le problème de la stabilisation d’un système

dynamique abstrait linéaire de dimensions infinies

avec un opérateur de contrôle non borné et soumis

à une perturbation située au même endroit que le

contrôle. Pour résoudre ce problème, nous suivons

une stratégie de contrôle par mode glissant. Dans

un second temps, nous considérons le problème

de la stabilisation d’un système hyperbolique (une

équation de transport et un système d’équations

de transport) contrôlé au bord et soumis à une

perturbation située au même endroit que le con-

trôle. L’objectif ici est de proposer pour ce cas par-

ticulier un contrôle qui exige moins pour ce qui

est de la sortie. Pour résoudre ce problème, nous

proposons un "active disturbance rejection con-

trol". Enfin, nous nous intéressons à la construc-

tion d’une fonctionnelle de Lyapunov permettant de

prouver la stabilité entrée−état et de resoudre un

problème de regulation de sortie d’une équation de

Korteweg-de Vries.

Title: Contributions to control theory for infinite-dimensional sys-

tems subjected to disturbances/uncertainties

Keywords : Sliding mode control, stabilization, output regulation, partial differential equations, input-to-

state stability, observer.

Abstract: In this thesis, we study problems of

stabilization and output regulation for infinite-

dimensional systems subjected to disturbances.

First, we consider the problem of the stabilization

of an abstract linear infinite-dimensional system

with unbounded control operators and subject to

a matched disturbance. To solve this problem, we

follow a sliding mode control strategy. Secondly, we

consider the problem of the boundary stabilization

of a linear hyperbolic system (a transport equation

and a system of transport equations) subjected to

a matched disturbance. The objective here is to

propose for this particular case a control which re-

quires much less in terms of measurement than the

design proposed before. To solve this problem, we

propose an active disturbance rejection control. Fi-

nally, we are interested in the construction of an

input-to-state stability Lyapunov functional and the

output regulation of a Korteweg-de Vries equation.
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