
HAL Id: tel-04300189
https://theses.hal.science/tel-04300189

Submitted on 22 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using structured algebraic geometry codes in modern
cryptography

Mathieu Lhotel

To cite this version:
Mathieu Lhotel. Using structured algebraic geometry codes in modern cryptography. Cryptography
and Security [cs.CR]. Université Bourgogne Franche-Comté, 2023. English. �NNT : 2023UBFCD027�.
�tel-04300189�

https://theses.hal.science/tel-04300189
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE
FRANCHE-COMTE

PREPAREE A L’Université de Franche-Comté

Ecole doctorale n°553
Carnot–Pasteur

Doctorat de Mathématiques

Par
Mr Lhotel Mathieu

Utilisation de codes de géométrie algébrique structurés en
cryptographie moderne

Thèse présentée et soutenue à Besançon, le 3 Juillet 2023

Composition du Jury :

M. Daniel Augot Directeur de recherche, Inria Saclay (LIX) Président
M. Marc Perret Professeur, Université de Toulouse II Rapporteur

M. Alain Couvreur Directeur de recherche, Inria Saclay (LIX) Rapporteur
Mme Christine Huyghe Directrice de recherche, Université de Franche-Comté Examinatrice
M. Philippe Lebacque Mâıtre de conférence, Université de Franche-Comté Directeur de thèse

M. Hugues Randriambololona Expert en cryptographie, ANSSI Co-directeur de thèse

Using structured algebraic geometry codes in modern
cryptography

Remerciements

Tout d’abord, je tiens à remercier l’ensemble des membres du jury pour avoir accordé du temps à
mes travaux. Plus particulièrement, je remercie Marc et Alain pour avoir accepté d’en rédiger un
rapport ainsi que pour les corrections qu’ils m’ont suggérées. En dehors de leur participation au
jury, je les remercie pour leurs nombreux conseils et explications.

Mes prochains remerciements vont à mes deux directeurs de thèse, Philippe et Hugues, qui ont
permis à cette thèse de voir le jour. Malgré des moments difficiles, dus à la distance ou encore
à la Covid-19, ils ont réussi à garder ces années motivantes pour moi. Je remercie Philippe, qui
m’accompagne depuis mes projets de master et qui a suffisamment cru en moi pour poursuivre
cette aventure. Je le remercie également pour nos discussions intéressantes et nos parties sur la
borne d’arcade. Je remercie Hugues d’avoir accepté de co–encadrer cette thèse et pour ses précieux
conseils et idées.

J’exprime mes plus chaleureux remerciements à Jade, sans qui cette thèse aurait eu beaucoup
moins de saveur. Je la remercie pour nos discussions, tant professionnelles que personnelles. Je ne
saurais énumérer tous les moments où nous avons improvisé une visio pour faire de longs calculs
(pas toujours intéressant). Je suis persuadé que ses futurs étudiants seront plus que satisfaits de son
encadrement.

Je souhaite également remercier tous les membres du projet Barracuda, qui m’ont offert de
nombreuses opportunités de partager mon travail. Au même titre, je remercie les habitués du groupe
de travail Code–Crypto, qui m’ont permis de rencontrer de nombreuses personnes travaillant sur les
mêmes sujets que moi. Cela s’est révélé très bénéfique, surtout en début de thèse.

Je remercie tous les membres de Laboratoire de Mathématiques de Besançon, tant l’équipe de
théorie des nombres que le personnel administratif ou encore l’équipe informatique, pour m’avoir
offert un cadre de travail accueillant. Ils ont toujours su répondre efficacement à mes demandes et
interrogations. Je pense aussi à mes collègues doctorants, avec qui j’ai pu échanger de nombreuses
fois lors de séminaires.

Je tiens à remercier tout particulièrement deux doctorants qui ont commencé cette aventure en
même temps que moi, Audrey et Charles. Leur présence à mes côtés durant ces trois années a été une
réelle motivation pour moi. Avoir l’opportunité de donner mes premiers enseignements ou encore
premières présentations en même temps qu’eux était très encourageant et bien moins stressant. Ces
années auraient étés moins amusantes sans vous.

Un grand merci à mes amis qui m’ont soutenu et accompagné durant ces trois années (et pas
seulement). Ils ont toujours été là, dans les bons moments comme dans les plus difficiles. Bien que
de nombreux changements aient eu lieu au cours de ces trois dernières années, nous n’avons jamais
perdu contact et j’espère que ce ne sera jamais le cas.

Mes plus profonds remerciements vont à ma famille, en particulier mes parents et mon frère.
Ils m’ont toujours apporté leur soutien, si bien moral que financier, pendant mon cursus scolaire,
surtout dans les moments les plus difficiles. Ils n’ont jamais perdu confiance en moi, bien qu’ils
n’aient sûrement pas la moindre idée de ce que j’ai fait durant ces trois longues années ! Je remercie
également Julien, pour ses conseils sur la langue anglaise, ainsi que pour son hospitalité dans des
moments creux de la SNCF !

Enfin, merci à Clémence pour sa présence et son soutien, depuis plus d’un an maintenant. Merci
d’être là pour m’écouter me plaindre de mes petits problèmes de doctorant.

1

Contents

Introduction 5

Résumé 13

1 Algebraic geometry codes 21

1.1 Coding theory . 21

1.1.1 Linear codes . 21

1.1.2 Punctured code and subfield subcode . 22

1.1.3 Permutation group and invariant code . 23

1.1.4 Schur product of codes . 24

1.2 Tools of algebraic geometry . 25

1.2.1 Algebraic curves over finite field . 25

1.2.2 Algebraic function fields . 26

1.2.3 Divisors and Riemann–Roch spaces . 29

1.2.4 Differentials and the Riemann–Roch theorem 31

1.2.5 Ca,b curves . 32

1.3 AG codes and their subfield subcodes . 33

1.3.1 Algebraic Geometry codes . 33

1.3.2 Duality . 33

1.3.3 Subfield subcode of AG codes and their parameters 35

1.3.4 The family of Generalized Reed–Solomon codes 36

1.3.5 Decoding AG codes . 37

2 Code–based cryptography 39

2.1 The McEliece encryption scheme and its security . 39

2.1.1 Description of the scheme . 39

2.1.2 Message recovery attack and Information Set Decoding (ISD) 40

2.1.3 Key recovery attack . 40

2.2 IOP of Proximity to a linear code . 41

2.2.1 Interactive oracle proof (IOPs) . 41

2.2.2 Proximity testing to an evaluation code . 42

2.2.3 The FRI protocol . 43

3 Structural attack against quasi–cyclic SSAG codes 45

3.1 Preliminaries . 45

3.1.1 Structured AG codes . 45

3.1.2 The invariant code . 46

3.2 Finding the equation of a Galois cover . 48

3.2.1 Setting . 48

3.2.2 Finding the evaluation vector . 49

3.3 Applications . 52

3.3.1 About the quotient curve . 52

3.3.2 Kummer covering . 52

3.3.3 Elementary abelian p–extension . 58

3.4 Generalization to solvable Galois cover . 61

3

CONTENTS

4 Goppa–like SSAG codes distinguisher 63
4.1 First estimation of the dimension of the square of the trace of an SSAG code 63
4.2 Goppa–like AG codes . 65

4.2.1 Definition, parameters and context in the literature 65
4.2.2 On the dimension of the square of the dual of a Goppa–like AG code 66
4.2.3 Sharpness of the bound . 68

4.3 One–point Goppa–like AG code on Ca,b–curves . 69
4.3.1 The point at infinity and weighted degree . 69
4.3.2 The codes . 70
4.3.3 Weighted Euclidean division . 70
4.3.4 Upper bound in Goppa–like case . 71

4.4 Analysis of the distinguisher . 76
4.4.1 High rate distinguishable codes in the case of elliptic curves 76
4.4.2 Codes on the Hermitian curve . 77

5 IOP of Proximity to AG codes on the Hermitian tower 79
5.1 Sequence of AG codes compatible with proximity tests 79

5.1.1 Sequence of curves . 79
5.1.2 Sequence of codes . 80

5.2 Foldable AG codes along the Hermitian tower . 81
5.2.1 Preliminaries . 81
5.2.2 Construction of foldable AG codes . 83

5.3 Folding operators for AG codes . 86
5.4 AG–IOPP on the Hermitian tower . 86

5.4.1 Description of the AG–IOPP system . 87
5.4.2 Properties of the AG–IOPP with the Hermitian tower 88

Conclusion 91

Appendix A Algorithm for retrieving the equation of a cover 93

Appendix B Foldable AG codes from a tower of modular curves 95
B.1 Preliminaries . 95
B.2 Towards foldable AG codes . 98
B.3 Conclusion and future work . 104

Bibliography 109

List of Figures 111

List of Algorithm 113

List of Tables 115

4

Introduction

Context

From public key to post–quantum cryptography

In the area of cryptography, public key cryptography (or asymmetric cryptography) concerns schemes
using a pair of keys: the public key which is known to anyone and the secret key, only known by
the recipient of the message. The family of public key encryption schemes was introduced by Diffie
and Hellman [DH76]. Before this, most of the systems used in cryptography were part of the so–
called secret key cryptography (or symmetric cryptography), which uses the same key to encrypt and
decrypt the message. In such systems, both parties have to agree on a secure way to share the key,
which is no more the case while considering a pair of keys.

The first public key cryptosystem was introduced by Rivest, Shamir and Adleman [RSA78],
and is known as the RSA cryptosystem. It is still widely used for secure data transmission, and
its security mainly relies on the hardness of factorizing large integers into primes (in the sense
that factorizing efficiently would broke the scheme). Since then, several other schemes have been
proposed, whose security rely on other assumptions coming from number theory as well, such as the
discrete logarithm problem. However, the recent threat of quantum computers leads to expand the
area of cryptography: in fact, these number theoretical problems could be broken in polynomial time
on a quantum computer, using Shor’s algorithm [Sho94]. Post–quantum cryptography is the domain
which regroups new cryptosystems, based on new assumptions that resist to quantum attacks. In
this thesis, we are interested in code–based cryptography, which uses error–correcting codes. In this
case, the security is based on the problem of decoding a random linear code, for which no quantum
algorithm is known yet, reason why it is a good candidate in post–quantum cryptography.

Code–based cryptography

In 1978, McEliece [McE78] introduced the first public key encryption scheme based on linear codes.
The main idea is to use a random code from a well–chosen family to generate the pair of keys. As
the structure of the code is hidden (the secret key), it is a hard task to decipher a message for anyone
who does not know a specific decoding algorithm for the chosen family of codes. The encryption of
a plain message is done by using a basis of the code (i.e. a generator matrix), then some errors are
introduced at random locations. The generator matrix (which is the public key) needs to be random
to keep secret the structure of the code. The secret key is a part of the hidden structure of the code
that allows to build an efficient decoding algorithm. The decryption step thus consists in applying
the decoding algorithm to remove the errors, recovering a codeword in the public code. The initial
message can then be derived from it using the public key.

For an attacker that does not know the secret key of the scheme, there are two solutions to recover
the message. First, one could try to decode the cipher text as a noisy codeword of a random code.
This problem, called message recovery attack, is related to the so–called generic decoding problem:

Problem 1. (Decisional) Generic Decoding Problem: Let C ∈ Fn be a linear code over a finite
field F, t ≤ n a positive integer and y ∈ Fn. Decide whether there exists a codeword c ∈ C whose
Hamming distance to y is less than or equal to t.

This problem is supposed to be difficult in average, and was proven to be NP–complete in
[BMvT78]. The second method consists in recovering the secret key from the public data. From
this, it is possible to build a decoding algorithm that can decipher any message. In the literature,
any such attack is usually called key recovery attack.

5

Improving the original proposal

In its initial proposal, McEliece [McE78] proposed to use classical binary Goppa codes, which is a
subfamily of alternant codes. Up to now, all known attacks against it have exponential complexity in
the parameters, hence the scheme is still considered secure. Adding to the fact that encryption and
decryption are very fast, the McEliece’s cryptosystem is at the center of modern cryptography, and
one of the last code–based candidates for standardization of post–quantum cryptographic schemes
to the NIST competition since the third round. However, it suffers a major drawback: the key sizes
are too huge to be efficient. For more than forty years, several directions have been investigated to
mitigate this problem. Among them, we distinguish two different angles: either replacing the family
of classical Goppa codes with another one or using more structured codes (i.e. equipped with the
action of some automorphism group), with the hope to keep the same advantages.

In 1986, Niederreiter [Nie86] suggested to use Generalized Reed–Solomon codes (GRS), but they
are proved to be weak because of the structural attack of Sidelnikov and Shestakov [SS92]. As any
GRS code can be seen as an algebraic geometry (AG) code on P1, Janwa and Moreno [JM96] then
proposed to use AG codes from curves of arbitrary genus. More precisely, their paper includes three
proposals: one based on AG codes, one on concatenated AG codes and a last one using subfield
subcodes of AG codes (SSAG in short). For the version with concatenated codes, Sendrier found an
effective attack in [Sen94]. For AG codes on curves with genus ≤ 2, an attack was found by Faure
and Minder in [FM08, Min07, Fau09]. Finally, the scheme based on AG codes has been completely
broken by Couvreur, Márquez–Corbella and Pellikaan [CMCP17], who proposed a filtration–based
attack on AG codes for any genus, enabling decoding just by handling the public key and without
knowledge on the geometric structure of the code. However, the authors underlined that subfield
subcode of AG codes are resistant to this filtration attack. For this reason, we are led to consider
the last proposition, that is schemes using SSAG codes, for which no efficient attack is known yet.

The other direction consists in using quasi–cyclic (QC) or quasi–dyadic (QD) codes. This addi-
tional structure allows to describe a given generator matrix with only a few rows, hence reducing
key sizes. The case of QC codes has been proposed in [Gab05], where quasi–cyclic subcodes of BCH
codes are suggested. Unfortunately, this family cannot be used as it does not have enough possible
keys. This first paper was followed by many others, which proposed to use alternant or classical
Goppa codes with different automorphism group like QC alternant codes [BCGO09] and QD Goppa
codes [MB09, BLM11]. Notice that all these codes can be seen as subfield subcodes of AG codes
on the projective line. However, since 2010, a new version of key recovery attack appeared, referred
to as algebraic attack. This method consists in recovering the secret structure of an alternant code
by solving a system of polynomial equations. In the generic case of alternant codes, this technique
does not have polynomial complexity and cannot be used to recover the hidden structure in practice.
However, in the case of QC alternant codes, the corresponding system of equations can be simplified,
which leads to an attack. In particular, the authors in [FOP+16] showed that the security of such
schemes reduces to the security of a smaller code, the folded code, which ican be computed from
the public data. This strategy was improved in [Bar18b], where it is proven that the initial key
recovery problem on the original QC alternant code can be reduced to a smaller code that can be
derived from the public one: the invariant code. In this last paper, Barelli improves the approach
of [FOP+16] and consider the case of automorphisms arising from a non–affine homography. In her
thesis [Bar18a], she also initiated the study of QC SSAG codes from a Kummer cover of P1, showing
that it has the same security as the scheme using alternant or Goppa codes.

Proximity tests to linear codes

Since their introduction in [LFKN90], arithmetization techniques for constructing short proof systems
have been fruitfully applied to probabilistically checkable proofs (PCPs [BFLS91, AS92, ALM+98]).
Roughly speaking, in a probabilistic proof system for a binary relationR, the arithmetization process
transforms any instance–witness pair (x,w) into a word that belongs to some error–correcting code
C if (x,w) ∈ R, or is very far from C otherwise. Since the work of Kilian [Kil92] and Micali [Mic98],
a lot of efforts have been put into making PCPs efficient enough to obtain practical sublinear non–
interactive arguments for delegating computation. In search of reducing the work required to generate
proofs, Interactive Oracle Proofs (IOPs, [BCS16]) have been introduced as a common generalization
of PCPs and Interactive Proofs (IPs). At some point, aforementioned sublinear arguments require
a proximity test to a Reed–Solomon code. As a solution, one can use an IOP of Proximity (IOPPs,
[BCG+17]) for RS codes. An IOPP for an error–correcting code consists in an interaction between
a prover and a verifier, in which the prover seeks to convince that some word, given as oracle input

6

to the verifier, is indeed a codeword. In this case, the verifier accepts the proof; otherwise he rejects
it with high probability.

The Fast Reed–Solomon Interactive Oracle Proof of Proximity (FRI) protocol, introduced in
[BBHR18] and improved in [BKS18, BGKS20, BCI+20], is an IOPP for testing proximity to a RS
code. As for its properties, it admits linear prover time, logarithmic verifier time and logarithmic
query complexity. Being highly efficient, it is a crucial tool in systems deployed in the real life. The
main drawback of considering RS codes for IOPP is that they must have an alphabet size larger
than their length, meaning that practical IOP–based succinct arguments are designed over large
fields. Moreover, the protocol FRI requires the set of evaluation points to have a specific structure:
concretely, the evaluation set must be invariant under the action of a large group of order a power
of two.

Considering AG codes instead of RS codes is not only natural, but could also weaken these
limitations. In 2020, Bordage and Nardi [BN20] gave a clear criterion for constructing AG code–
based IOPPs with linear proof length and sublinear query complexity, as well as a concrete instance
for codes defined on Kummer type curves.

Contributions

Analysis of the McEliece scheme using quasi–cyclic SSAG codes

This contribution is a joint work with my supervisors and Elise Barelli, which has not been published
yet.

In Chapter 3, we study the security of the secret key of McEliece schemes based on structured
SSAG codes with a non–trivial permutation group, i.e. codes endowed with a group action arising
from the underlying geometry of the curve from which the code is defined. We improve the technique
initiated by Barelli in the Chapter 5 of her thesis [Bar18a], in which she shows that the security of the
scheme reduces to the security of the invariant code. More precisely, she proposed a security reduction
for quasi–cyclic SSAG codes constructed on Kummer–type curves, whose invariant subcode turns
out to be an alternant code, i.e. a subfield subcode of an AG code on P1. To do so, she makes use of
the fact that the quotient curve has a trivial divisor class group to recover the secret structure of the
public code from the knowledge of the invariant one. Since the support and multiplier of alternant
codes are weak to algebraic attacks [FOPT10], there is no advantage to consider structured SSAG
codes whose invariant subcode is defined over P1 in McEliece’s like cryptosystems, compared with
the case of classical Goppa codes. In this thesis, we improve this method, which can consequently
be applied to a more general framework.

The invariant code. Consider the following setting: given a Galois cover π : Y → X of smooth and
irreducible projective curves over Fqm , we consider an SSAG code C := SSAGq (Y,Q, G), invariant
under the action of some permutation σ induced by an automorphism of Y, as public code in a
McEliece scheme. If we denote by X := Y/⟨σ⟩ the corresponding quotient curve, it turns out (as
it was already noticed in [Bar18a, Corollary 5.3]) that the invariant code Cσ of C is also an SSAG
code, defined over the quotient curve X . More precisely,

Cσ = SSAGq

(
X ,P, G̃

)
,

for some support P ∈ X (Fqm) and divisor G̃ ∈ Div(X), which are explicitly described in terms of
Q, G and the ramification in the cover Y → X . To obtain an effective security reduction, we make
the following assumptions on the quotient curve X :

• X has a unique point at infinity P∞, which totally ramifies in Y → X ;

• X admits a canonical divisor which is equivalent to (2g(X)− 2)P∞.

Clearly, these hypotheses are satisfied by the projective line, thus in the case treated in [Bar18a,
Chapter 5]. Our assumptions might sound restrictive, but there is actually a fairly large class of
curves satisfying both of them, namely the class of Ca,b curves (introduced in [Miu93]).

7

Security reduction. The geometric structure of the invariant code can be exploited to recover
the secret elements of the public code. Roughly speaking, under some technical assumptions, the
knowledge of the triple (X ,P, G̃) can be used to find (Y,Q, G). Following the idea of [Bar18a,
Chapter 5], the crucial step is to find a defining equation of the initial curve Y. If the cover Y → X
corresponds to an extension L/K of algebraic function fields, this can be done by finding the minimal
polynomial of some element y ∈ L such that L = K(y). More precisely, the idea is to build a linear
system whose solution, ideally unique, is the evaluation vector y := (y(Q))Q∈Q. Once y it is found,
we know all the data of the secret support Q, which can then be used to recover the desired equation
of Y using an appropriate interpolation method. The secret divisor G is then recovered by taking the
pullback of the invariant one, i.e G = π∗G̃. In our setting, the quotient curve might have positive
genus, hence there is no reason for its divisor class group to be trivial. Consequently, we cannot hope
to describe Riemann–Roch spaces on Y in terms of invariant data (as done by Barelli in her prior
work). Thankfully, we show that this is not mandatory to build our linear system, as it is enough
to consider a sufficiently large and explicit divisor D ∈ Div(X) such that

π∗LX (D) · y ∈ LY(G
⊥),

where G⊥ ∈ Div(Y) is the divisor associated to the dual code of the public SSAG.

Concrete instances. As illustrative examples, we consider the frameworks where Y → X is a
Kummer cover or an elementary abelian p–cover (in Sections 3.3.2 and 3.3.3 respectively).

The first case corresponds to curves Y with equation of the form yℓ = f , where f is a rational
function that lies in the quotient curve and ℓ is an integer prime to the characteristic and such that
ℓ | qm− 1. Therefore, the action of the automorphism σ acting on the public SSAG code is uniquely
determined by the choice of a primitive ℓ–th root of unity ξ, i.e.

σ(y) = ξ · y.

Consequently, the evaluation vector y satisfies a geometric progression on each orbit or size ℓ. Taking
this into account to add more equations to our system, it is reasonable to find a unique solution.

In the second case, the curve Y has a defining equation of the form yp
u−y = f , where f ∈ Fqm(X),

u ≥ 1 and p := char(Fqm). Assuming that Fpu ⊆ Fqm , the automorphism σ is here characterized by
the choice of some element β ∈ Fpu , i.e

σ(y) = y + β.

This time, this action is traduced in terms of arithmetic progression in the vector y.

In both cases, under some technical assumptions on the function f , all our computations realized
on Magma end up with a unique solution to our linear systems, which is the desired vector y.

Behaviour of the square of the dual of Goppa–like AG codes

This work is the result of a collaboration with Jade Nardi and Sabira El Khalfaoui. A preprint is
available on arxiv [KLN23].

Since classical Goppa codes remain good candidates for post–quantum code–based cryptography,
it is interesting to study specific AG codes on any genus curves, whose algebraic structure mimic
theirs. Several attempts have been proposed in that direction, starting with Janwa and Moreno
[JM96], who introduced Goppa codes on smooth and irreducible projective curves. Later on, Cou-
vreur [Cou14] defined Cartier codes as specific subcode of SSAG codes. In Chapter 4 of this thesis,
we introduce the family of Goppa–like AG codes and study the behaviour of the square of their dual,
hence generalizing the distinguisher found in [MT21] in the case of alternant and classical Goppa
codes.

Goppa–like AG codes. Let D be an effective divisor on a curve X over Fqm . Take a rational
function g /∈ L(D) and a set of evaluation points P ∈ X (Fqm) such that P ∩ Supp(D) = ∅ and P ∩
Supp((g)) = ∅. We define the Goppa–like AG code associated to the AG code C = CL(X ,P, D+(g))
as the subfield subcode of its dual, i.e.

Γ(P, D, g) := C⊥|Fq .

The terminology Goppa–like is justified by the fact that our construction coincides with classical
Goppa codes while considering codes over P1, in which case the rational function g plays the role

8

of the Goppa polynomial. Compared with the family of Goppa codes introduced in [JM96], the
addition of the function g defines a multiplicator for the AG code which is algebraically related
to the evaluation set. Moreover, it facilitates the use of SSAG codes as public keys for McEliece
cryptosystems: in fact, given an error correcting capability t, we can fix a divisor D ∈ Div(X) such
that deg(D) ≥ 2t + 2g(X) + 1. Then, we obtain a family of codes in which public keys can be
picked by running a set of functions g outside L(D). Our codes can also be compared with Cartier
codes [Cou14] in the following way: given the same support P and divisor D+ (g), the Cartier code
Carq(P, D+(g)) is a subfield subcode of Γ(P, D, g). Moreover, we also provide a sufficient condition
in terms of degree of the divisor for the two constructions to be equal.

Distinguisher attack in Goppa–like case. In [MT21], the authors benefited from the trace
structure of the dual of a subfield subcode to display a distinguisher for alternants and classical Goppa
codes. Roughly speaking, a distinguisher for a linear code consists in distinguishing a generator
matrix of the code from a random matrix. In the case of [MT21], it is obtained by using the well–
known behaviour of GRS codes with respect to the Schur product. In fact, the dimension of the
square of an r–dimensional GRS code is smaller than expected from a random code, i.e.

dimFqm
GRSr(x,y) = 2r − 1, when r <

n

2
.

instead of the expected quadratic upper bound
(
r+1
2

)
. As generalization of GRS codes, it is natural

to observe that AG codes behave similarly under the square operation, the only difference being a
non–trivial contribution due to the genus of the curve. Combining this specific structure with results
on the product of Riemann–Roch spaces, we obtain the following bound on the dimension of the
square of the dual of Goppa–like AG codes:

Proposition 4.9. With above notation, assume s := deg(D) ≥ g(X), and set

k := dimFqm
C and e := min

(⌊m
2

⌋
,

⌊
logq

(
k2

s

)⌋)
.

Then

dimFq (Γ(P, D, g)⊥)⋆2 ≤
(
mk + 1

2

)
− m

2

(
k(k − 1)(2e+ 1)− 2s

(
qe+1 − 1

q − 1

))
.

Weighted Euclidean division and one–point Goppa–like codes from Ca,b curves. In the
case of Goppa–like AG codes on Ca,b curves associated with the one–point divisor D := sP∞ (where
P∞ is the unique point at infinity), we can improve the bound given in Proposition 4.10. In fact,
such codes can be seen as the evaluation of bivariate polynomials, coming from the specific structure
of the Riemann–Roch space L(sP∞), i.e.

L(sP∞) = Span
(
xiyj | 0 ≤ i, 0 ≤ j ≤ a− 1 and ai+ bj ≤ s

)
.

By defining a weighted degree on bivariate polynomials belonging to the ring S = ∪s≥0L(sP∞), we
then manage to perform division algorithms via Gröbner basis. As expected in the univariate case,
the remainder has a weighted degree generally smaller than the divisor’s. Under some additional
conditions on the divisor D = sP∞ + (g), we then prove

Theorem 4.22. Let s′ > s and take a rational function g ∈ L(s′P∞) with dega,b (g) = s′. Suppose
that s ≥ (s′ − s)q + 2ga,b − 1 and set

k := dimFqm
CL(X ,P, sP∞ + (g)) and e∗ := min

(⌊m
2

⌋
,

⌈
logq

(
k2

s′(q − 1)2

)⌉
+ 1

)
.

Then

dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤

(
mk + 1

2

)
− m

2
(k2(2e∗ + 1) + k − 2s′(qe

∗
− qe

∗−1 + 1)).

Efficiency of the distinguisher. Our results generalize the ones of [MT21] in the sense that our
bounds coincide with theirs in the genus zero case. Consequently (and without much a surprise),
we are also only able to distinguish high rate Goppa–like AG codes. As for efficiency, several
computations realized on Magma tend to show that the bound given in Theorem 4.24 is sharp
whenever the code seems random. More precisely, it is likely to be the case whenever the function
g has simple zeroes. Compared with the case of classical Goppa codes, the Goppa polynomial is
usually assumed to be square–free, which is the reason why the bound for classical Goppa codes
given in [MT21] is sharp. However, as already noticed by Mora and Tillich, it seems complicated to
turn this distinguisher into an efficient structural attack.

9

Two examples: Elliptic and Hermitian codes. In Section 4.4, we analyze our distinguisher
both in the case of codes from an elliptic curve and the Hermitian curve (which belong to the family
of Ca,b curves). The first case being close to classical Goppa codes (i.e. the genus of such curves
is one), our maximal distinguishable rates are roughly the same. Considering Hermitian codes, we
show that the high genus imposed by the choice of the curve makes the distinguisher ineffective. In
fact, the upper bound on the dimension given in Theorem 4.24 is always bigger than the maximal
possible length of the code. Adding the fact that such codes can be encoded efficiently [BRS22], it is
encouraging to consider the family of one–point Goppa–like AG codes from the Hermitian curve as
public keys in a McEliece cryptosystem. Some computations to compare this family of codes with
classical Goppa codes can be found at the end of Chapter 4.

IOP of Proximity to AG codes along the Hermitian tower

This contribution is the result of a collaboration with Sarah Bordage, Jade Nardi and Hugues Ran-
driambololona [BNLR22].

In [BN20], Bordage and Nardi proposed to replace Reed–Solomon codes with AG codes while
testing proximity to linear codes in IOP of Proximity. The initial idea was to remove the limitations
imposed by RS codes by considering more structured codes. Hence, they provide a generic criterion
for constructing AG code–based IOPP, by defining in a general framework sequences of AG codes
compatible with proximity testing, which are called foldable codes. In the Chapter 5 of this thesis, we
give an explicit family of foldable AG codes defined on the Hermitian tower, and study the properties
of the IOPP derived from it.

Foldable AG codes. Let X be a curve defined over some finite field F, equipped with a finite
solvable group G ⊆ Aut(X). By solvability of G, there exists a sequence of normal subgroups
{Id} := G0 ▷ G1 ▷ · · · ▷ Gr := G such that each quotient Γi := Gi/Gi−1 is cyclic. We thus obtain a
sequence of curves

X := Xr → Xr−1 → · · · → X0 := X/G,
such that each Xi−1 arises as the quotient of Xi by Γi. A proximity text to some AG code C :=
CL(X ,P, G) consists in deciding whether some function f : P → F belongs to C or not. To do so,
we construct a sequence of AG codes (Ci)ri=0 with decreasing length such that Ci = CL(Xi,Pi, Gi) is
defined over Xi and Cr := C. Be choosing carefully the structure of each code, the first proximity test
can be turned into a membership test of a function f ′ : P0 → F in the smallest code C0. Roughly
speaking, P is chosen globally G–invariant and each Pi−1 is obtained as the projection of Pi to the
quotient curve Xi−1. The tricky part is to define a suitable sequence of divisors (Gi)

r
i=0 such that

each Riemann–Roch space LXi(Gi) can be explicitly described in terms of Riemann–Roch spaces in
the quotient curve Xi−1. Such conditions are examined in Section 5.1.2 while defining compatible
divisors. If we manage to construct such a sequence of codes, the initial code C is said to be foldable.

The case of the Hermitian tower. Consider the infinite tower of function fields (Fi)i≥0 over
Fq2 such that F0 = Fq2(x0) and Fi = Fi−1(xi), recursively defined by

xq
i + xi = xq+1

i−1 , for all i ≥ 1.

It corresponds to an infinite sequence of curves

· · · → Xi → Xi−1 → · · · → X0 = P1,

called the Hermitian tower. Contrary to the case of Kummer foldable codes (see. [BN20]), we
have no hope to use Maharaj’s theorem [Mah04, Theorem 2.2] to obtain a suitable decomposition
of Riemann–Roch spaces, as it requires the order of the automorphism group to be prime with the
characteristic of the field, which is obviously not the case in our setting. To overcome this difficulty,

we can consider one–point divisors, supported by the unique point at infinity P
(i)
∞ ∈ Xi(Fq2). Doing

so, we can obtain a desired decomposition by hand, using the fact that the basis of LXi(mP
(i)
∞) is

well–known, i.e.

LXi
(mP (i)

∞) = Span

xa0
0 · · ·x

ai
i | 0 ≤ a0, 0 ≤ aj ≤ q − 1 and

i∑
j=0

ajq
i−j(q + 1)j ≤ m

 .

Due to the Weierstrass gap theory, we also need to increase the degree of our divisors at each
step (with respect to the sequence of genera in the tower), in order to guarantee the existence of

10

balancing functions (which are needed to prove the soundness of our IOPP). At the end, we propose
the following sequence of foldable AG codes:

Ci := CL(Xi,Pi, diP
(i)
∞), for i ≥ 1; (1)

where Pi ⊆ Xi(Fq2)\
{
P

(i)
∞

}
is a set of length at most qi+2, and the integers di’s are recursively

defined by di−1 = ⌊di

q ⌋+ 2g(Xi−1).

AG–IOPP system with foldable Hermitian codes. In Section 5.4, we define an IOPP to test

proximity of some function f (imax) : Pimax
→ Fq2 to the AG code CL(Ximax

,Pimax
, dimax

P
(imax)
∞). It

corresponds to a imax–round interactive proof in which the initial proximity test is reduced to a
proximity test of some function f (0), defined as a fold of f (imax), to the smallest AG code defined on
X0. Its main properties are summarized in the following informal theorem:

Theorem (Informal, see [BNLR22, Theorem 45]). Let Cimax be an AG code as in Equation (1),
with length n at most equal to qimax+2. Then the IOPP system described in Section 5.4.1 has perfect
completeness, small soundness error for every proximity parameter δ, and the following properties:

rounds complexity r(n) < log(n)
proof length ℓ(n) < n
query complexity q(n) ≤ tq log(n) + 1

prover complexity tp(n) = O
(
n ·MFq2

(q) log(q)
)

verifier complexity tv(n) = O
(
log(n) ·MFq2

(q) log(q)
)
,

where MFq2
(d) denotes the cost of multiplying two degree-d univariate polynomials over Fq2 .

11

Résumé

Contexte

De cryptographie à clé publique à cryptographie post–quantique

Dans le domaine de la cryptographie, la cryptographie à clé publique (ou cryptographie asymétrique)
regroupe les schémas utilisant une paire de clés : la clé publique connue de tous et la clé secrète,
seulement connue du destinataire des messages chiffrés. La famille de schémas de chiffrement à
clé publique a été présentée pour la première fois par Diffie et Hellman [DH76]. Avant cela, la
plupart des schémas cryptographiques provenaient de la cryptographie à clé secrète (ou cryptographie
symétrique), qui utilise la même clé pour chiffrer et déchiffrer le message. Dans de tels systèmes, les
deux participants doivent au préalable se mettre d’accord sur un moyen sûr et efficace d’échanger la
clé, ce qui n’est plus nécessaire en cryptographie à clé publique.

Le premier schéma en cryptographie asymétrique fût proposé par Rivest, Shamir et Adelman
[RSA78] : c’est le schéma de chiffrement RSA. Il est encore aujourd’hui largement utilisé pour
la transmission de données sécurisées, et sa sécurité est principalement fondée sur la difficulté de
factoriser de grands entiers en produit de nombres premiers (dans le sens où une factorisation ef-
ficace casserait le schéma). Depuis, plusieurs autres schémas ont été proposés, dont la sécurité
repose sur d’autres problèmes issus de la théorie des nombres, comme le problème du logarithme
discret. Cependant, la menace grandissante des ordinateurs quantiques impose une diversification
de la cryptographie : en effet, ces problèmes de théorie des nombres pourraient être cassés en temps
polynomial sur un ordinateur quantique à l’aide de l’algorithme de Shor [Sho94]. La cryptographie
post–quantique est le domaine qui regroupe les nouveaux systèmes de chiffrement, dont la sécurité
s’appuie sur de nouvelles hypothèses, différentes de celles issues de théories des nombres, et qui
résistent aux algorithmes quantiques. Dans cette thèse, on s’intéresse à la cryptographie à base de
codes, qui utilise des codes correcteurs d’erreurs. Dans ce cas, la principale hypothèse de sécurité
est le problème du décodage d’un code linéaire aléatoire, pour lequel aucun algorithme quantique
n’est connu à ce jour. Pour cette raison, la cryptographie à base de codes est un bon candidat en
cryptographie post–quantique.

Cryptographie à base de codes correcteurs d’erreurs

En 1978, McEliece propose le premier système de chiffrement à clé publique à base de codes linéaires.
L’idée principale est d’utiliser un code aléatoire issu d’une famille bien choisie pour générer la paire
de clés. La structure du code étant cachée (c’est la clé secrète), il est difficile de déchiffrer un message
pour quiconque ne connâıt pas un algorithme de décodage efficace pour la famille de codes choisie. Le
chiffrement d’un message est réalisé en utilisant une base du code (c.-à-d. une matrice génératrice),
et des erreurs sont ajoutées à des positions aléatoires. Pour garder secrète la structure du code, la
matrice génératrice doit sembler aléatoire : c’est la clé publique. La clé secrète est un algorithme
de décodage efficace, qui peut être obtenu à partir de la structure secrète du code. L’étape de
déchiffrement consiste à récupérer d’abord un mot de code en appliquant l’algorithme de décodage
au message crypté pour retirer les erreurs. Le message initial peut ensuite être retrouvé à partir du
mot de code à partir de la clé publique.

Pour un attaquant qui ne connâıt pas la clé secrète du schéma, il existe deux solutions pour
retrouver le message. D’abord, il peut tenter de déchiffrer le message crypté en tant que mot bruité
dans un code linéaire aléatoire. Ce problème, appelé attaque sur le message, est lié au problème de
décodage.

Problème 1 (Problème de décodage (version Décisionnel)). Soit C ∈ Fn un code linéaire sur un
corps fini F, t ≤ n un entier positif et y ∈ Fn. Décider s’il existe un mot de code c ∈ C dont la
distance de Hamming à y est inférieure ou égal à t.

13

Ce problème est connu pour être difficile en moyenne, et a été prouvé NP–complet dans [BMvT78].
La seconde méthode concerne la récupération de la clé secrète à partir de la seule clé publique. Ceci
fait, il est possible de construire un algorithme de décodage qui peut déchiffrer n’importe quel
message. Dans la littérature, ce type d’attaque est appelé attaque sur la clé.

Améliorer la proposition initiale

Dans son schéma de 1978, McEliece [McE78] propose d’utiliser la famille de code de Goppa binaires
classiques, qui est une sous–famille des codes alternants. Jusqu’à aujourd’hui, toutes les attaques
contre ce schéma ont une complexité exponentielle en les paramètres du code publique, donc le
cryptosystème est encore considéré sécurisé. Additionné au fait que le chiffrement et le déchiffrement
sont très rapides, le cryptosystème de McEliece est au centre de la cryptographie moderne, et l’un
des derniers candidats à base de codes correcteurs pour la compétition lancée par le NIST en vue
d’une standardisation de la cryptographie post–quantique. Cependant, il possède un défaut majeur :
les tailles de clés sont trop grosses pour que le schéma soit efficace. Depuis plus de quarante ans, des
recherches ont été menées dans différentes directions pour essayer de corriger ce problème. Parmi
elles, on distingue deux tendances : remplacer la famille de codes de Goppa classiques par une autre
famille et utiliser des codes plus structurés, avec l’espoir de garder les mêmes avantages.

En 1986, Niederreiter [Nie86] suggéra d’utiliser les codes de Reed–Solomon généralisés (GRS),
mais ils sont la cible d’une attaque structurelle par Sidelnikov et Shestakov [SS92]. Comme tout
code GRS peut être vu comme un code de géométrie algébrique (AG) sur P1, Janwa et Moreno
[JM96] ont proposé d’utiliser les codes AG construits sur des courbes de genre quelconque. Plus
précisément, leur papier contient trois propositions : une sur les codes AG, une sur les codes AG
concaténés et une dernière utilisant des sous–codes sur un sous–corps de codes AG (appelés plus
simplement des codes SSAG). Pour la version avec les codes concaténés, Sendrier a trouvé une
attaque efficace dans [Sen94]. Les codes AG sur des courbes de genre ≤ 2 sont la cible d’une attaque
de Faure et Minder [FM08, Min07, Fau09]. Plus tard, Couvreur, Márquez–Corbella et Pellikaan
[CMCP17] ont complètement cassé le schéma à partir de codes AG, en proposant une attaque par
filtration qui, en genre quelconque, permet de décoder un message avec la seule connaissance de la
clé publique. Cependant, les auteurs ont souligné le fait que les sous–codes sur un sous–corps de
codes AG sont résistants à cette attaque par filtration. Pour cette raison, nous sommes amenés à
considérer la dernière proposition, c’est–à–dire les schémas utilisant les codes SSAG, pour lesquels
aucune attaque efficace n’est connue pour le moment.

L’autre piste consiste à utiliser des codes quasi cycliques (QC) ou quasi dyadiques (QD). Cette
structure additionnelle permet de décrire les matrices génératrices avec seulement quelques lignes,
réduisant ainsi la tailles des clés. Le cas des codes quasi cycliques a d’abord été proposé dans
[Gab05], ou des sous–codes de codes BCH sont suggérés. Malheureusement, cette famille de codes
n’est pas satisfaisante, car elle possède trop peu de clés possibles. Cet article a été suivi par de
nombreux autres, qui proposent d’utiliser les codes alternants ou de Goppa classiques avec différents
groupes d’automorphismes, comme les codes alternants quasi cycliques [BCGO09] ou encore les
codes de Goppa quasi dyadiques [MB09, BLM11]. On remarque au passage que tous ces codes
peuvent être vu comme des sous–codes sur un sous-corps de codes AG définis sur la droite projective.
Cependant, depuis 2010, une nouvelle version d’attaque sur la clé est apparue, appelée attaque
algébrique. Cette méthode consiste à retrouver la structure secrète d’un code alternant en résolvant
un système d’équations polynomiales. Dans le cas général des codes alternants, cette technique n’a
pas une complexité polynomiale et ne peut donc pas être utilisée pour retrouver la structure cachée
en pratique. Cependant, dans le cas de codes alternants quasi–cycliques, le système d’équations
correspond peut être simplifié, ce qui donne une attaque. En particulier, les auteurs de [FOP+16]
ont montré que la sécurité de ces schémas de chiffrement se réduit à la sécurité d’un code plus petit,
le code replié, qui peut facilement être obtenu à partir des données publiques. Cette stratégie a été
améliorée dans [Bar18b], ou il est montré que le problème de récupération de clé initial associé à
un code alternant quasi cyclique peut se réduire au même problème sur un code plus petit que l’on
peut déduire du code public : le code invariant. Dans ce dernier papier, Barelli améliore l’approche
de [FOP+16] et considère le cas d’automorphismes provenant d’une homographie non affine. De
plus, dans sa thèse [Bar18a], elle étudie la sécurité du schéma de McEliece utilisant des codes SSAG
quasi cycliques construit sur un revêtement de Kummer de P1, montrant ainsi que ce cryptosystème
possède la même sécurité que celui utilisant des codes de Goppa ou alternants.

14

Test de proximité à des codes linéaires

Introduit dans [LFKN90], les techniques d’arithmétisation pour construire des systèmes de preuves
courtes ont depuis été appliquées aux preuves vérifiables probabilistiquement (PCPs [BFLS91, AS92,
ALM+98]). Sans entrer dans les détails, dans un système de preuve probabiliste pour une relation
binaire R donnée, le processus d’arithmétisation transforme un couple exemple–témoin (x,w) en
un mot qui appartient à un certain code correcteur d’erreurs C si (x,w) ∈ R, ou est très loin
de C sinon. Depuis les travaux de Kilian [Kil92] et Micali [Mic98], beaucoup d’efforts ont étés
déployés pour rendre les systèmes PCPs suffisamment efficaces pour obtenir des arguments non
interactifs sous–linéaires pour déléguer les calculs. Dans l’optique de réduire les efforts requis pour
générer des preuves, la notion de Preuves par Oracle Interactif (IOPs [BCS16]) est créée comme
une généralisation commune des protocoles PCPs et des Preuves Intéractives (IPs). À un moment,
les arguments sous–linéaires mentionnés plus haut nécessitent un test de proximité à un code de
Reed–Solomon. Comme solution, on peut utiliser un IOP de Proximité (IOPPs [BCG+17]) pour
les RS codes. Un IOPP pour un code correcteur consiste en une interaction entre un prouveur et
un vérifieur, dans laquelle le prouver cherche à convaincre qu’un mot, donné en entrée au vérifieur,
appartient bien au code. Dans ce cas, le vérifieur accepte la preuve; dans le cas contraire, il la rejette
avec grande probabilité.

Le protocole FRI, d’abord proposé dans [BBHR18] puis amélioré dans [BKS18, BGKS20, BCI+20],
est un IOPP pour tester la proximité à un code de Reed–Solomon. En ce qui concerne son efficacité,
il nécessite un temps linéaire pour le prouver, logarithmique pour le vérifieur et une complexité
de requêtes logarithmique également. Étant très efficace, c’est un outil important déployé dans de
nombreux systèmes de nos jours. Le principal point faible de considérer les codes RS pour des
tests de proximité est que la taille de l’alphabet doit être plus grosse que la longueur du code. Par
conséquent, les IOP concrets à base de codes RS sont construits sur des corps très gros.

De plus, le protocole FRI demande que l’ensemble d’évaluation du RS code correspondant ait
une structure spéciale : concrètement, il doit être invariant sous l’action d’un grand groupe d’ordre
une puissance de deux.

Le fait de considérer les codes AG au lieu des codes RS est non seulement naturel, mais pourrait
aussi nous affranchir de ses restrictions. En 2020, Bordage et Nardi donnent un critère précis
pour construire des systèmes IOPP à base de codes AG ayant des preuves en temps linéaire et
une complexité de requêtes sous–linéaire. À titre d’exemple, elles proposent également un système
concret pour des codes AG construit sur des courbes de Kummer.

Contributions

Analyse du schéma de McEliece utilisant des codes SSAG quasi–cycliques

Ces travaux, encore non publiés, sont le fruit d’une collaboration avec Elise Barelli et mes deux
directeurs de thèse.

Dans le Chapitre 3, nous étudions la sécurité de la clé secrète du schéma de McEliece à base
de codes SSAG structurés avec un groupe de permutation non trivial, c’est–à–dire équipés d’une
action de groupe issue de la géométrie de la courbe à partir de laquelle le code est construit. Nous
améliorons la technique du Chapitre 5 de la thèse d’Élise Barelli [Bar18a], dans laquelle elle montre
que la sécurité de la clé secrète se réduit à celle du code invariant. Plus précisément, elle propose une
réduction de sécurité pour les codes SSAG quasi cycliques construits sur des courbes de Kummer,
dont le sous–code invariant est un code alternant, c’est–à–dire le sous–code sur un sous–corps d’un
code AG sur P1. Pour ce faire, elle utilise entre autre le fait que la courbe quotient possède un
groupe de classe trivial pour retrouver la structure du code public à partir de celle du code invariant.
Comme le support et le multiplicateur d’un code alternant sont fragiles aux attaques algébriques,
il n’y a aucun avantage à considérer cette famille de codes plutôt que celle des codes de Goppa
classiques. Dans cette thèse, nous améliorons cette technique de sorte qu’elle puisse être appliquée
dans un contexte plus général.

Le code invariant. Considérons la situation suivante : étant donné un revêtement Galoisien
de courbes projectives lisses et irréductibles π : Y → X sur Fqm , on considère le code C =
SSAGq (Y,Q, G), invariant sous l’action d’une permutation σ induite par un automorphisme de
la courbe Y, comme code public dans un schéma de McEliece. Si X := Y/⟨σ⟩ désigne la courbe
quotient, le code invariant Cσ de C est aussi un code SSAG (voir [Bar18a, Corollaire 5.3]), définit

15

sur la courbe X . Plus précisément, on a

Cσ = SSAGq

(
X ,P, G̃

)
,

pour un certain support P ⊆ X (Fqm) et diviseur G̃ ∈ Div(X) qui sont décrits explicitement en
termes de Q, G et de la ramification dans le revêtement Y → X . Pour que notre réduction de
sécurité fonctionne, il nous faut rajouter deux hypothèses sur la courbe quotient X :

1. X possède un unique point à l’infini P∞, qui est totalement ramifié dans Y → X ;

2. Il existe un diviseur canonique sur X qui est équivalent à (2g(X)− 2)P∞.

Ces hypothèses sont clairement vérifiées pour la droite projective, c’est–à–dire dans le cas traité dans
[Bar18a, Chapitre 5]. Elles pourraient sembler restrictives de premier abord, mais il existe en fait
une classe assez grosse et bien connue de courbes qui les vérifie : les courbes Ca,b [Miu93].

Réduction de sécurité. La structure géométrique du code invariant peut être exploitée pour
récupérer les éléments secrets du code public. Globalement, sous certaines hypothèses techniques, le
triplet (X ,P, G̃) peut être utilisé pour retrouver (Y,Q, G). En effet, en reprenant l’idée de [Bar18a,
Chapitre 5], l’étape clé est de retrouver une équation de la courbe initiale Y. Si le revêtement Y → X
correspond à l’extension de corps de fonctions L/K, cela peut être réalisé en trouvant le polynôme
minimal d’un élément y ∈ L primitif sur K. plus précisément, l’idée est de construire un système
d’équations linéaires dont le vecteur d’évaluation y := (y(Q))Q∈Q est solution (idéalement unique).
Une fois y retrouvé, on peut utiliser le support secret Q désormais connu pour récupérer une équation
de Y en utilisant la méthode d’interpolation appropriée. Le diviseur G est quant à lui reconstruit
comme le tiré en arrière du diviseur invariant, i.e. G = π∗G̃. Dans notre contexte, la courbe quotient
peut avoir un genre strictement positif, donc il n’y a pas de raison que son groupe de classes soit
trivial. Par suite, on a peu d’espoir d’être en mesure d’exprimer les espaces de Riemann–Roch sur Y
en termes de données connues sur la courbe invariante (comme le faisait Barelli). Fort heureusement,
nous montrons que cela n’est pas nécessaire, puisque pour construire notre système d’équation, il
nous suffit de considérer un diviseur suffisamment gros et explicite D ∈ Div(X) tel que

π∗LX (D) · y ∈ LY(G
⊥),

où G⊥ ∈ Div(Y) est le diviseur du code dual du SSAG public.

Exemples concrets. En tant qu’applications, on s’intéresse aux cas ou Y → X est un revêtement
du Kummer ou un revêtement élémentaire p–abélien (dans les Sections 3.3.2 et 3.3.3 respectivement).

Le cas des revêtements de Kummer correspond à des courbes dont l’équation est de la forme
yℓ = f , ou f est une fonction rationnelle sur la courbe quotient, et ℓ est un entier positif premier à
la caractéristique tel que ℓ | qm− 1. Ainsi, l’action de l’automorphisme σ agissant sur le code SSAG
public est entièrement déterminée par le choix d’une racine primitive ℓ–ième de l’unité ξ, i.e.

σ(y) = ξ · y.

Par conséquent, le vecteur d’évaluation y recherché vérifie une condition de progression géométrique
sur chacune de ses orbites de taille ℓ. En utilisant cette remarque pour rajouter des équations à
notre système, il est raisonnable d’espérer obtenir une solution unique.

Dans le cas d’un revêtement p-abélien, la courbe Y est définie par une équation de la forme
yp

u − y = f , où f ∈ Fqm(X), u ≥ 1 et p est la caractéristique de Fqm . En supposant de plus que
Fpu ⊆ Fqm , l’automorphisme σ est dans ce cas caractérisé par le choix d’un élément β ∈ Fpu , i.e.

σ(y) = y + β.

Cette fois, l’action ci–dessus est traduite en termes de progression arithmétique sur le vecteur
d’évaluation y.

Dans les deux cas, sous l’ajout de certaines hypothèses techniques sur la fonction rationnelle f ,
plusieurs tests réalisés sur Magma semblent indiquer que l’on se retrouve toujours avec une solution
unique, qui est le vecteur recherché.

16

Comportement du carré du dual des codes AG Goppa–like

Cette contribution est le résultat d’une collaboration avec Jade Nardi et Sabira El Khalfaoui. Un
préprint est disponible sur arxiv [KLN23].

Comme les codes de Goppa classiques restent de bons candidats à la cryptographie post–quantique
à base de codes correcteurs, il est intéressant d’étudier des codes AG spécifiques, construit sur des
courbes de genre quelconque, dont la structure copie la leur. Plusieurs tentatives ont étés réalisées
dans cette direction, à commencer par Janwa et Moreno [JM96], qui ont défini des codes de Goppa
sur des courbes projectives lisses et irréductibles. Plus tard, Couvreur [Cou14] propose l’étude de
certains sous–codes de codes SSAG : les codes de Cartier. Dans le Chapitre 4 de cette thèse, nous
définissons la famille des codes AG dits Goppa–like, et étudions le comportement du carré de leur
dual, généralisant ainsi le distingueur de [MT21] pour les codes alternants et les codes de Goppa
classiques.

Codes AG Goppa–like. Soit D un diviseur effectif sur une courbe X définit sur le corps fini
Fqm . Fixons une fonction g /∈ L(D) et un ensemble de points d’évaluation P ∈ X (Fqm) tels que
P ∩ Supp(D) = ∅ et P ∩ Supp((g)) = ∅. On définit le code Goppa–like associé au code AG
C = CL(X ,P, D + (g)) comme le sous–code sur Fq de son dual, c’est–à–dire

Γ(P, D, g) := C⊥|Fq
.

La terminologie Goppa–like est justifiée par le fait que notre construction cöıncide avec celle des
codes de Goppa classiques dans le cas de codes construit sur P1, auquel cas le fonction g joue le rôle
du polynôme de Goppa. Comparé aux codes de Goppa proposés dans [JM96], l’ajout de la fonction
g permet de définir un multiplicateur pour le code AG qui est algébriquement lié à l’ensemble
d’évaluation. De plus, ce multiplicateur facilite l’utilisation des ces codes dans le contexte d’un
schéma de McEliece : en effet, étant donné un taux de correction d’erreurs t, on peut commencer
par choisir un diviseur D ∈ Div(X) tel que deg(D) ≥ 2t + 2g(X) + 1. On obtient alors une famille
de codes dans laquelle on peut sélectionner nos clés publiques en choisissant la fonction g dans un
ensemble n’appartenant pas à L(D). Il est également possible de comparer nos codes aux codes de
Cartier [Cou14] de la manière suivante : étant fixé un support P et un diviseur D + (g), le code
de Cartier Carq(P, D + (g)) se trouve être un sous–code de Γ(P, D, g). Nous donnons aussi une
condition nécessaire sur le degré du diviseur pour que les deux constructions rendent le même code.

Attaque par distingueur dans le cas Goppa–like. Dans [MT21], les auteurs bénéficient de la
structure particulière de la trace du dual d’un sous–code sur un sous–corps pour établir un distingueur
pour les codes alternants et les codes de Goppa classiques. En quelques mots, un distingueur pour
un code linéaire permet de décider si une de ses matrices génératrices semble aléatoire ou non. Dans
le cas de [MT21], le distingueur est obtenu à partir du comportement bien connu des codes GRS
vis–à–vis du produit de Schur. En effet, la dimension du carré d’un code GRS de dimension r est
bien plus petite que celle attendue pour un code aléatoire, i.e.

dimFqm
GRSr(x,y) = 2r − 1, si r <

n

2

au lieu de la borne supérieur quadratique
(
r+1
2

)
attendue. En tant que généralisation des codes

GRS, il n’est pas étonnant de constater que les carrés codes de géométries algébriques réagissent de
la même manière, la seule différence notable étant l’apparition d’une contribution non triviale liée
au genre de la courbe. En associant cette propriété avec des résultats sur le produit d’espaces de
Riemann–Roch, nous obtenons la borne suivante sur la dimension du carré du dual d’un code AG
Goppa–like:

Proposition 4.9. Avec les notations précédentes, supposons que s = deg(D) ≥ g(X), et posons

k := dimFqm
C et e := min

(⌊m
2

⌋
,

⌊
logq

(
k2

s

)⌋)
.

Alors

dimFq (Γ(P, D, g)⊥)⋆2 ≤
(
mk + 1

2

)
− m

2

(
k(k − 1)(2e+ 1)− 2s

(
qe+1 − 1

q − 1

))
.

17

Division euclidienne à poids et codes AG Goppa–like à un point sur les courbes Ca,b.
Dans le cas particulier des codes AG Goppa–like construit sur une courbe Ca,b associé au diviseur à
un point D = sP∞ (P∞ étant l’unique point à l’infini), nous parvenons à améliorer la borne donnée
dans la Proposition 4.10. En effet, de tels codes peuvent être vus comme l’évaluation de polynômes
bivariés, dû à la structure particulière de l’espace de Riemann–Roch L(sP∞), i.e.

L(sP∞) = Span
(
xiyj | 0 ≤ i, 0 ≤ j ≤ a− 1 and ai+ bj ≤ s

)
.

En définissant un degré à poids sur chaque polynôme bivarié de l’anneau S = ∪s≥0L(sP∞), nous
introduisons une notion de division euclidienne généralisée via des bases de Gröbner. Comme attendu
dans le cas univarié, le reste de nos divisions a généralement un degré plus petit que celui du
diviseur. Sous des conditions techniques supplémentaires sur le degré du diviseur D = sP∞ + (g),
nous démontrons alors :

Theorem 4.22. Soient s′ > s deux entiers et g ∈ L(s′P∞) de degré à poids dega,b (g) = s′ une
fonction rationnelle. Supposons que s ≥ (s′ − s)q + 2ga,b − 1 et posons

k := dimFqm
CL(X ,P, sP∞ + (g)) et e∗ := min

(⌊m
2

⌋
,

⌈
logq

(
k2

s′(q − 1)2

)⌉
+ 1

)
.

Alors

dimFq (Γ(P, sP∞, g)⊥)⋆2 ≤
(
mk + 1

2

)
− m

2
(k2(2e∗ + 1) + k − 2s′(qe

∗
− qe

∗−1 + 1)).

Efficacité du distingueur. Nos résultats généralisent ceux de [MT21] dans le sens où nos bornes
cöıncident avec les leurs dans le cas du genre zéro. Par conséquent (et sans réelle surprise), nous
sommes aussi seulement en mesure de distinguer des codes AG Goppa–like de ratio élevé. Concernant
l’efficacité de notre distingueur, plusieurs tests réalisés sur Magma semblent montrer que la borne
du Théorème 4.24 est optimale lorsque le code semble aléatoire. Plus précisément, nous pensons que
c’est le cas lorsque la fonction rationnelle g ne possède que des zéros simples. Si l’on compare avec
le cas des codes de Goppa classiques, il est très souvent supposé que le polynôme de Goppa est sans
facteur carré, raison pour laquelle la borne donnée pour les codes de Goppa classiques dans [MT21]
est optimale. Cependant, comme Mora et Tillich l’avaient déjà remarqué, il semble difficile d’utiliser
ce distingueur dans une attaque structurelle sur le code.

Les exemples des codes elliptiques et Hermitiens. Dans la Section 4.4, nous analysons notre
distingueur dans le cas de codes construits sur une courbe elliptique ou sur la courbe Hermitienne
(qui sont toutes deux des courbes Ca,b). Le premier cas étant relativement proche des codes de
Goppa classiques (les courbes elliptiques sont de genre 1), nos plus gros ratios distinguables sont
plus ou moins les mêmes. En ce qui concerne les codes hermitiens, nous montrons que le genre élevé
de la courbe rend le distingueur inefficace. En effet, la borne supérieure sur la dimension donnée
dans le Théorème 4.24 est toujours supérieure à la longueur maximale du code. Ajouté au fait que
ces codes peuvent être encodés efficacement [BRS22], il est encourageant de considérer la famille
d’AG codes Goppa–like à un point construit sur la courbe Hermitienne pour générer la paire de clés
dans le contexte du cryptosystème de McEliece. En fin de Chapitre 4, nous proposons un comparatif
d’efficacité entre cette famille de codes et celle des codes de Goppa classiques.

IOP de Proximité aux codes AG construit sur la tour Hermitienne

Ces travaux ont été menés en collaboration avec Sarah Bordage, Jade Nardi and Hugues Randri-
ambololona [BNLR22].

Dans [BN20], Bordage et Nardi ont proposé de remplacer les codes de Reed–Solomon dans les
IOPs de Proximité aux codes linéaires. L’idée initiale était de pallier aux limitations imposées par
les codes RS en considérant des codes plus structurés. Elles proposent alors un critère général pour
construire des IOPPs à base de codes AG, en donnant un contexte global pour qu’une famille de
codes AG soit compatible avec les tests de proximité : on parle alors de codes repliables. Dans le
Chapitre 5 de cette thèse, nous donnons une famille explicite de codes AG repliables définie sur la
tour Hermitienne, et étudions les propriétés du système IOPP qui en découle.

18

Codes AG repliables. Soit X une courbe définie sur un corps fini F et G ⊆ Aut(X) un groupe
d’automorphisme résoluble. Il existe une suite de sous–groupes distingués {Id} := G0 ▷ G1 ▷ · · · ▷
Gr := G tel que tous les quotients Γi := Gi/Gi−1 sont cycliques. Cela correspond à une suite de
revêtements de courbes

X := Xr → Xr−1 → · · · → X0 := X/G,

ou chaque Xi−1 est le quotient de Xi par le Γi. Un test de proximité à un code AG C := CL(X ,P, G)
consiste à déterminer si une fonction f : P → F appartient à C ou non. Pour ce faire, l’idée est
de construire une suite de codes AG (Ci)ri=0 de longueur décroissante telle que Ci = CC(Xi,Pi, Gi)
est défini sur la i-ème courbe Xi et Cr := C. En choisissant efficacement la structure de chacun des
codes, le premier test de proximité peut se réduire à un test d’appartenance d’une nouvelle fonction
f ′ : P0 → F au plus petit code C0. Plus précisément, P est choisi globalement G–invariant et
chaque Pi−1 est obtenu comme la projection de Pi sur la courbe Xi−1. Le point clé est de construire
une suite de diviseurs (Gi)

r
i=0 de sorte que l’espace de Riemann–Roch LXi(Gi) puisse être décrit

de manière explicite à l’aide d’espaces de Riemann–Roch sur la courbe quotient Xi−1. De telles
conditions donneront lieu à la notion de diviseurs compatibles en Section 5.1.2. S’il est possible de
construire une telle suite de codes, le code initial C est dit repliable.

Le cas de la tour Hermitienne. Considérons la tour infinie de corps de fonctions (Fi)i≥0 sur
Fq2 tel que F0 = Fq2(x0) est le corps de fonction rationnel et Fi = Fi−1(xi), où

xq
i + xi = xq+1

i−1 , pour tout i ≥ 1.

Cette tour correspond à une suite infinie de courbes

· · · → Xi → Xi−1 → · · · → X0 = P1,

appelée la tour Hermitienne. Contrairement au cas des codes repliables sur des courbes de type
Kummer (cf. [BN20]), nous n’avons ici aucune chance de pouvoir utiliser le théorème de Maharaj
[Mah04, Theorem 2.2] pour obtenir la décomposition d’espaces de Riemann–Roch recherchée, puisque
l’une des hypothèses demande à ce que l’ordre de l’automorphisme agissant sur le code soit premier
à la caractéristique, ce qui n’est bien sûr pas le cas ici. Pour palier à ce problème, nous pouvons
de nouveau considérer des codes à un point, supporté par un multiple de l’unique point à l’infini

P
(i)
∞ ∈ Xi(Fq2). Ce faisant, nous pouvons exploiter la structure spécifique des espaces LXi(mP

(i)
∞),

i.e.

LXi
(mP (i)

∞) = Vect

xa0
0 · · ·x

ai
i | 0 ≤ a0, 0 ≤ aj ≤ q − 1 et

i∑
j=0

ajq
i−j(q + 1)j ≤ m

 ,

pour obtenir à la main la décomposition que l’on recherche. Prenant en compte la théorie des sauts
de Weierstrass dans notre construction, nous demandons aussi à ce que le degré de nos diviseurs soit
augmenté à chaque étape (d’un facteur dépendant du genre des courbes successives) afin de garantir
l’existence de fonctions balances (qui sont primordiales pour démontrer la soundness du système
IOPP correspondant). À termes, nous proposons la suite de codes AG repliables suivante :

Ci := CL(Xi,Pi, diP
(i)
∞), pour i ≥ 1; (2)

où Pi ⊆ Xi(Fq2)\
{
P

(i)
∞

}
est un ensemble de points rationnels de longueur au plus qi+2, et la suite

d’entiers di’s sont définis de manière récursive par di−1 = ⌊di

q ⌋+ 2g(Xi−1).

Système AG–IOPP avec des codes Hermitiens repliables. Dans la section 5.4, nous définis–
sons un système IOPP pour tester la proximité d’une fonction f (imax) : Pimax

→ Fq2 au code AG

CL(Ximax
,Pimax

, dimax
P

(imax)
∞). Il s’agit d’une preuve interactive en imax–tours dans laquelle le test

de proximité initial est réduit à un test de proximité d’une fonction f (0), définie comme un replié de
f (imax), au plus petit code définit sur X0. Ses principales propriétés sont résumées dans le théorème
(informel) qui suit :

Theorem (Informel, voir [BNLR22, Théorème 45]). Soit Cimax
un code AG comme dans l’équation

(1), de longueur n ≤ qimax+2. Alors le système IOPP décrit dans la Section 5.4.1 est parfaitement
complet, a une petite erreur de soundness pour tout paramètre de proximité δ, et les propriétés
suivantes :

19

complexité des tours r(n) < log(n)
longueur de preuve ℓ(n) < n
complexité des requêtes q(n) ≤ tq log(n) + 1

complexité du prouver tp(n) = O
(
n ·MFq2

(q) log(q)
)

complexité du vérifieur tv(n) = O
(
log(n) ·MFq2

(q) log(q)
)
,

où MFq2
(d) désigne le coût de multiplication de deux polynômes univariés de degré d sur Fq2 .

20

Chapter 1

Algebraic geometry codes

1.1 Coding theory

Let Fq be the finite field with q elements, where q is a power of some prime number p. For the
upcoming bases in coding theory and without further precision, we refer to [MS86].

1.1.1 Linear codes

Definition 1.1 (Linear Code). Let k ≤ n be two non–negative integers. A linear [n, k]q code over
Fq is a subspace C ⊆ Fn

q of dimension k. The integers n and k are respectively the length and the

dimension of C, and any vector of C is called a codeword. The rate of C is the ratio R := k
n .

A generator matrix M of C is a k × n matrix over Fq whose rows are a basis of C as a vector space.
In particular, we have

C =
{
xM | x ∈ Fk

q

}
.

A parity check matrix H of C is a (n− k)× n matrix over Fq such that

∀c ∈ C, c ∈ C ⇐⇒ HcT = 0.

Generator matrices of codes are not unique, and it is the same for parity check ones. However,
it is often convenient to have a generator matrix with the specific form

M = (Ik | A),

where A is a k× (n− k) matrix over Fq and Ik is the identity matrix of size k. In this situation, M
is said to be systematic. A linear code does not always have a systematic generator matrix but if so,
this matrix is unique and the code is said to be systematic.

Definition 1.2 (Dual code). Let C be a linear code over Fq. Its dual code, denoted by C⊥, consists
in all vectors which are orthogonal to all codewords of C. More precisely,

C⊥ := {y ∈ Fn
q | ycT = 0 for all c ∈ C}.

It is easy to see that any parity check matrix of C is a generator matrix of its dual C⊥. As a
consequence, C⊥ has same length n and dimension n− dimFq

(C).

Definition 1.3 (Hamming distance). The Hamming distance between two vectors x,y ∈ Fn
q , de-

noted by dH(x,y), is defined by

dH(x,y) := | {i ∈ {1, · · · , n} | xi ̸= yi} |,

where x = (x1, · · · , xn) and y = (y1, · · · , yn).
The Hamming weight of a vector x ∈ Fn

q is defined by its distance to the zero vector, i.e. its number
of non–zero components:

wH(x) := dH(x,0) = | {i ∈ {1, · · · , n} | xi ̸= 0} |.

Since we will only deal with the Hamming metric, we simply talk about the distance between
two codewords or the weight of a codeword.

21

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

Definition 1.4 (Minimum distance). The minimum distance of a code C, denoted by d(C) or just
d, is the minimum Hamming distance between two of its codewords, namely

d(C) := min {dH(x,y) | x,y ∈ C and x ̸= y} .

The minimum distance of a linear code C can also be seen as the minimum weight of its non–zero
codewords, that is to say

d = min {wH(x) | x ∈ C\ {0}} .

Later on, any linear code C over Fq will be described in terms of its length, dimension and
minimum distance. For this reason, such a code will be referred to as an [n, k, d]q code (or just
[n, k]q code). The following famous theorem makes the link between these parameters.

Theorem 1.5 (Singleton bound). If C is an [n, k, d]q code, then

n− k ≥ d− 1.

Codes with k + d = n + 1 are in a sense optimal, and thus are called MDS codes (maximal
distance separable codes). The easiest example is the case of Reed–Solomon codes:

Example 1.6. Let r be a positive integer and choose a generator β of F∗
q , i.e. such that F∗

q ={
β, β2, . . . , βq−1

}
. The Reed–Solomon code of length n = q − 1 and dimension r over Fq is defined

by
RSr :=

{
(f(β), f(β2), · · · , f(βq−1)) | f ∈ Fq[T] and deg(f) < r

}
.

It is easily checked that RSr is MDS, i.e. n = k + d− 1.

1.1.2 Punctured code and subfield subcode

In this section, we describe several ways to construct new codes from existing ones.

Definition 1.7 (Puncturing). Let C ⊆ Fn
q be a linear code and I ⊆ {1, · · · , n} a set of coordinates.

The punctured code of C at I is defined by

PunctI(C) :=
{
(ci)i∈{1,··· ,n}\I | c = (c1, · · · , cn) ∈ C

}
.

This is a code of length n− |I|.

Proposition 1.8. Let C ⊆ Fn
q be a [n, k, d]q linear code and I ⊆ {1, · · · , n}. Then PunctI(C) is an

[n− |I|, k′, d′]q code with

k − |I| ≤ k′ ≤ k and d− |I| ≤ d′ ≤ d.

From now on, let m ≥ 1 be a positive integer and consider the finite extension Fqm of Fq. Below,
we describe two ways to construct new codes from existing ones: considering a linear code over Fqm ,
it may happen that some of its codewords lie in Fn

q , leading to the following definition:

Definition 1.9 (Subfield subcode). Let C ⊆ Fn
qm be a linear code over Fqm . Its subfield subcode over

Fq, denoted by C|Fq
, is the subcode over Fq consisting in all codewords of C which lie in Fn

q , i.e.

C|Fq
:= C ∩ Fn

q .

Usually, it is an hard task to find the exact parameters of a subfield subcode. A first estimation
is given by the following theorem:

Theorem 1.10. Let C be linear [n, k, d]qm code. Then C|Fq in an [n, k′, d′]q code with

k′ ≥ n−m(n− k) and d′ ≥ d.

Another construction that permits to build a code over Fq starting from a code C over Fqm uses
the trace operator.

Definition 1.11 (Trace code). Given an extension Fqm/Fq of finite field, the trace operator

TrFqm/Fq
: Fqm → Fq

is defined for all x ∈ Fqm by

TrFqm/Fq
(x) :=

m−1∑
i=0

xqi .

22

1.1. CODING THEORY

This definition naturally extends to vectors x ∈ Fn
qm , so that the trace acts component–wise:

TrFqm/Fq
(x) =

(
TrFqm/Fq

(x1) , · · · ,TrFqm/Fq
(xn)

)
,

and thus to codes C over Fqm :

TrFqm/Fq
(C) =

{
TrFqm/Fq

(c) | c ∈ C
}
.

The code TrFqm/Fq
(C) is called the trace code of C.

Given a linear code C over Fqm , we have a trivial upper bound on the dimension of its trace code
over Fq, i.e.

dimFq TrFqm/Fq
(C) ≤ m · dimFqm

(C).

We conclude this section by stating Delsarte’s theorem, which makes the link between subfield
subcode and trace code.

Theorem 1.12 ([Del75, Theorem 2]). Let C ⊆ Fn
qm be any linear code, then

(C ∩ Fn
q)

⊥ = TrFqm/Fq

(
C⊥
)
.

Remark 1.13. When there is no ambiguity on the fields (which will be the case in Section 1.1.4 and
the whole Chapter 4), we may write Tr(·) instead of TrFqm/Fq

(·).

1.1.3 Permutation group and invariant code

Let Sn be the group of permutations of {1, · · · , n}.

Definition 1.14 (Permutation group). Let C be a linear code of length n over Fq and σ ∈ Sn a
permutation acting on C via cσ =

(
cσ(1), · · · , cσ(n)

)
, for every codeword c ∈ C. We say that C is

σ–invariant if Cσ = C, in which case we say that σ is a permutation of C. The permutation group of
C is defined as the subset of all such permutations, i.e.

Perm(C) := {σ ∈ Sn | Cσ = C} .

Definition 1.15 (Invariant code). Given a linear code C ⊆ Fn
q together with a permutation subgroup

Σ ⊆ Perm(C), we define the invariant code of C under Σ as the subcode

CΣ := {c ∈ C | cσ = c, ∀σ ∈ Σ} ⊆ C.

Defined this way, the invariant code has repeated entries (i.e. the coordinates of its codewords are
constant on each orbit under the action of Σ), so we usually use another one: the punctured invariant

code, denoted by CΣ. More precisely, all the orbits of Σ on {1, . . . , n} have same cardinality |Σ|, and
CΣ is obtained from CΣ by keeping only the first entry in each of them.

Example 1.16. With above notation, assume that ℓ | n = length(C) and that Σ = ⟨σℓ⟩ is cyclic of
order ℓ, generated by the ℓ–quasi–cyclic shift σℓ (which is cyclic on each of the n

ℓ blocks of length ℓ
of {1, . . . , n}). Considering the set of indices Iℓ := {1, ..., n}\{1, ℓ+ 1, . . . , n− ℓ+ 1}, the punctured
invariant code is in this case defined by

CΣ := PunctIℓ

(
CΣ
)
= PunctIℓ

(ker((σ̃ℓ − id)|C)),

where σℓ : Fn
q → Fn

q is induced by σℓ and id is the identity map. In particular, the code CΣ has
length n

ℓ .

Notice that by definition, it is possible to construct a generator matrix of the (punctured) invariant
code from the knowledge of a generator matrix of C and the induced permutation. Throughout this

thesis, we always work with the punctured invariant code CΣ, and simply write CΣ. Hence, when
talking about the invariant code, we always implicitly assume it is the punctured one, meaning that
is has smaller length.

23

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

1.1.4 Schur product of codes

In the discussion below, to make it more readable, we shall write Tr(·) instead of TrFqm/Fq
(·) when

considering the Trace operator.

Definition 1.17 (Schur product of codes). Let C and D be two linear codes over Fqm with same
length n. We define their Schur product by

C ⋆D := ⟨c ⋆ d | c ∈ C,d ∈ D⟩Fqm
,

where c ⋆ d stands for the component–wise product of vectors. If C = D, we call C⋆2 := C ⋆ C the
square code of C.

It is clear that if C and D have respective dimension k1 and k2, an obvious bound on the dimension
of their Schur product is k1k2. However, this bound is not relevant when C ∩D ≠ {0}. In particular,
for any [n, k]qm code C, we have

dimFqm
C⋆2 ≤ min

(
n,

(
k + 1

2

))
. (1.1)

For a random linear code C (i.e. its generators matrices cannot be distinguished from random
matrices) whose square does not fill the full space, the dimension of its square is

(
k+1
2

)
with high

probability (see. [CCMZ15]).
In this thesis (see Chapter 4), we focus on square code considerations to construct a distinguisher,

i.e. a way to decide if a given matrix generates a structured code or is a random matrix. In particular,
we will make good use of the following result, which describes the structure of the Schur product of
two trace codes:

Proposition 1.18 ([MT21, Proposition 12]). Let C and D be two linear codes with same length n
over Fqm . Then

Tr(C) ⋆ Tr(D) ⊆
m−1∑
i=0

Tr
(
C ⋆Dqi

)
,

where Dqi :=
{
(dq

i

1 , . . . , dq
i

n) | d ∈ D
}
.

Considering square codes, this result can be improved:

Proposition 1.19 ([MT21, Proposition 15]). Let C be a linear code over Fqm . Then

Tr(C)⋆2 ⊆
⌊m

2 ⌋∑
i=0

Tr
(
C ⋆ Cq

i
)
.

Moreover, if m is even,

dimFq
Tr
(
C ⋆ Cq

m
2
)
≤ m

2
(dimFqm

C)2.

An estimation on the dimension of the square of the trace of a linear code can be derived from
the above proposition.

Corollary 1.20 ([MT21, Corollary 16]). Let C be any Fqm–linear code. Then

dimFq
Tr(C)⋆2 ≤ m · dimFqm

C⋆2 +
(
m

2

)
(dimFqm

C)2.

Furthermore, if dimFq
Tr(C) = m · dimFqm

(C), then

dimFq
Tr(C)⋆2 −

(
dimFq

Tr(C) + 1

2

)
≤ m ·

(
dimFqm

C⋆2 −
(
dimFqm

C + 1

2

))
.

The above corollary implies that if the dimension of a square code is smaller than the one expected
for a random code, namely

dimFqm
(C⋆2) <

(
dimFqm

C + 1

2

)
,

then this property is retained for the trace code, i.e.

dimFq
Tr(C)⋆2 <

(
dimFq

Tr(C) + 1

2

)
.

As we will see in Chapter 4, this fact is especially true for Reed–Solomon codes, and more
importantly for algebraic geometry codes.

24

1.2. TOOLS OF ALGEBRAIC GEOMETRY

1.2 Tools of algebraic geometry

In this section, we introduce some required tools in algebraic geometry, both in the case of curves and
function fields. Our main references are [Mor93, Chapter 1] for curves and [Sti09] for the function
field point of view.

As we are only interested in the finite field case, we define our objects over some finite field Fq

and we denote by Fq its algebraic closure.

1.2.1 Algebraic curves over finite field

Let An and Pn be the n–dimensional affine and projective spaces over Fq respectively. As usual, any
point P in Pn is an equivalence class of (n+1)–tuples, denoted by P = [x1 : · · · : xn+1], with xi ∈ Fq

not all zero, under the relation:

[x1 : · · · : xn+1] ≡ [y1 : · · · : yn+1] ⇐⇒ ∃λ ∈ F∗
q such that ∀i ∈ {1, · · · , n}, xi = λyi.

Definition 1.21 (Projective set). A polynomial F ∈ Fq[X1, · · · , Xn+1] is homogeneous of degree d
if for any (x1, · · · , xn+1) ∈ Fn+1

q and any λ ∈ F∗
q , we have

F (λx1, · · · , λxn+1) = λdF (x1, · · · , xn+1).

Given a subset S ⊆ Fq[X1, · · · , Xn+1] of homogeneous polynomials, we define its zero set by

Z(S) = {P ∈ Pn | F (P) = 0 , ∀F ∈ S}.

A subset Y ⊆ Pn is called a projective algebraic set (or just projective set) if Y = Z(S) for some set
of homogeneous polynomials S. A projective set Y is said to be irreducible if it is non–empty and if
it cannot be written as the union of two distinct algebraic subsets Y = Y1 ∪ Y2, such that Y1 ̸⊆ Y2
and Y2 ̸⊆ Y1 .

To define the notion of projective varieties and curves, we first need to introduce a topology on
projective sets.

Definition 1.22 (Zarisky topology). The Zarisky topology on the projective space Pn is defined by
taking the open sets as the complement of projective sets.

Definition 1.23 (Projective variety). A projective variety is an irreducible closed subset of Pn,
under the Zarisky topology. An open subset of a projective variety is referred to as a quasi–projective
variety.

Later on, both projective or quasi–projective varieties will be called varieties. Given a variety Y,
we define its homogeneous ideal, denoted by I(Y), as the ideal

I(Y) = {F ∈ Fq[X1, · · · , Xn+1] homogeneous | F (P) = 0, ∀P ∈ Y}.

Let F,G ∈ Fq[X1, · · · , Xn+1] be two homogeneous polynomials with same degree such that G /∈ I(Y).

Then the fraction
F

G
∈ Fq(X1, · · · , Xn+1) is called a rational function on Y. The elements F

G and

F ′

G′ define the same rational function if the polynomial FG′ − F ′G is identically zero on Y.

Definition 1.24 (Function field of a variety). The function field Fq(Y) of a variety Y is the field of
rational functions on Y, and the dimension of the variety Y is defined as the transcendence degree
of Fq(Y) over Fq.

We now have all the tools in hand to define the notion of projective curves.

Definition 1.25 (Projective curve). A projective curve (or just curve) over the finite field Fq,
denoted by X/Fq (or X when there is no ambiguity on the base field), is a variety of dimension one
over Fq, i.e. a variety whose function field Fq(X) has transcendence degree one over Fq.

Example 1.26. In the affine plane over Fq, we consider the variety X defined by the homogeneous
polynomial Y 3 − X3 − Z3. Setting x : X/Z and y := Y/Z, the function field Fq(X) of X consists
in all elements of the form P

Q , with P,Q ∈ Fq[x, y]. Since y3 = x3 + 1, the transcendence degree of

Fq(X) over Fq is one, hence X is a projective curve.

25

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

In Definition 1.24, we saw that to any curve X/Fq, we can associate its function field. The theory
of function fields will be studied in the next subsection. From now on, we only consider projective
plane curves, i.e. curves X ⊆ P2. This case is easier to understand and actually sufficient for the
results presented in this thesis. It also helps in precising our definition of smoothness.

Definition 1.27 (Smooth curves). Let X be a projective plane curve defined by some homogeneous
polynomial F ∈ Fq[X,Y, Z]. A point P ∈ X is said to be non singular if at least one of the partial
derivatives ∂F

∂X , ∂F
∂Y or ∂F

∂Z is not zero at P . The curve is smooth if all its points are non singular.

Example 1.28. Consider the projective plane curve of Example 1.26, defined by the homogeneous
polynomial F (X,Y, Z) = Y 3 − X3 − Z3 over Fq. The partial derivatives of F are −3X2, 3Y 2 and
−3Z2, hence the curve is smooth whenever the characteristic of Fq is not 3.

Definition 1.29 (Local ring of a point). Let X be a curve and P ∈ X . A rational function f ∈ Fq(X)
is regular at P if it can be written of the form f = H

G , with G non zero at P . The set of all regular
functions at P forms a ring OP , called the local ring at P .

The terminology ”local ring” makes sense since OP is in fact a local ring, whose unique maximal
ideal mP ⊆ OP consists in all functions f ∈ OP such that f(P) = 0.

In the next section, we will show that there exists a correspondence between smooth irreducible
projective curves and algebraic function fields in one variable. In particular, this permits to transfer
the notions from one language to the other. To conclude this section, we define two important objects
which are specific to curves defined over finite fields.

Definition 1.30 (Rational points). Let X ⊆ Pn
(
Fq

)
be a curve defined over Fq, i.e. its defining

homogeneous polynomials have coefficients in Fq. By definition, the points on X have coordinates in
the algebraic closure Fq, but some of them may lie in Fq itself. These are called Fq–rational points
(or simply rational points). The set of all rational points of X is denoted by X (Fq).

Later, we will see that the set of rational points of a curve is always finite, and that we can
estimate its cardinality. It will be a crucial tool to define the family of algebraic geometry codes.

Example 1.31. The Klein curve K3 over F4 is defined by the homogeneous equation

X3Y + Y 3Z + Z3X = 0.

If we write F4 = {0, 1, α, α+ 1}, then

K3(F4) = {[0 : 0 : 1], [α : α+ 1 : 1], [α+ 1, α : 1], [1 : 0 : 0], [0 : 1 : 0]},

i.e. K3 has 5 F4–rational points.

Definition 1.32. A closed point of a projective plane curve X over Fq is an orbit under the Frobenius
automorphism Frobq : [x : y : z] 7→ [xq : yq : zq]. Its degree is the cardinality of the orbit.

1.2.2 Algebraic function fields

For this section and without further details, we refer to [Sti09]. Below, we start by giving the one
to one correspondence between smooth irreducible projective plane curves and function fields in one
variable, which motivates the study of function field theory. Thanks to this, we then give an algebraic
point of view of the notions presented in Section 1.2.1. Throughout this thesis, we will use either
one or the other depending on the situation.

As in the previous section, we define objects over some finite field Fq even if it works for any
arbitrary field.

Definition 1.33 (Algebraic function field). An algebraic function field (or just function field) K/Fq

of one variable over Fq is a field extension K ⊇ Fq which is a finite algebraic extension of Fq(x),
where x ∈ K is transcendental over Fq.

Example 1.34. The simplest example of function field is the rational function field : an extension
K/Fq is said to be rational if K = Fq(x) for some x ∈ K which is transcendental over Fq. In this
case, each element z ∈ Fq(x) admits a unique representation

z = a ·
∏
i

pi(x)
ni ,

where 0 ̸= a ∈ Fq, the polynomials pi(x) ∈ Fq[x] are monic, pairwise distinct and irreducible and
ni ∈ Z.

26

1.2. TOOLS OF ALGEBRAIC GEOMETRY

From Definition 1.24, we know that the field of rational functions Fq(X) of a projective curve X
is a function field in one variable. The converse is also true, as it is stated in the following theorem.

Theorem 1.35 ([Liu02, Proposition 7.3.13 and Remark 7.3.14]). There is an anti–equivalence be-
tween the following two categories:

• smooth, irreducible, projective curves over Fq, with non–constant morphisms of curves over Fq,

• function fields over Fq, with field morphisms over Fq,

which to a curve X associates its function field K = Fq(X).

The above theorem states that we can either deal with curves or function fields. Depending on
the situation, we might prefer one to the other. In accordance with [Sti09, Section 1.4 ff.], when
speaking about a function field K over Fq, we always implicitly assume that the field of constants
of K is equal to Fq, i.e. Fq is algebraically closed in K. Alternatively, it means that all our curves
will be geometrically irreducible.

Example 1.36. In Example 1.34, we defined the rational function field Fq(x) over Fq. The curve
associated to it according to Theorem 1.35 is the projective line P1 over Fq.

Definition 1.37 (Valuation ring). A valuation ring of K/Fq is a ring O ⊆ K such that

1. Fq ⊊ O ⊊ K, and

2. for any x ∈ K, we have x ∈ O or x−1 ∈ O.

Proposition 1.38. Let O be a valuation ring of K/Fq. Then

1. O is a local ring, i.e. it has a unique maximal ideal P := O\O×.

2. Let 0 ̸= x ∈ K. Then x ∈ P ⇐⇒ x−1 /∈ O.

3. The maximal ideal P of O is principal.

Proof. See [Sti09], Proposition 1.1.5 and Theorem 1.1.6.

We now define the notion of places of a function field, which play the role of closed points in the
case of projective curves over Fq.

Definition 1.39 (Place). A place P of a function field K/Fq is the maximum ideal of some valuation
ring O of K. From Proposition 1.38 2, O is uniquely determined by P , thus we write

OP := O =
{
x ∈ K | x−1 /∈ P

}
.

Since P is principal, there exists t ∈ OP such that P = tOP . Such an element is called a local
parameter at P (or a prime element at P). The set of all places of K is denoted PK .

Remark 1.40. Let X be a smooth projective curve over Fq and Fq(X) its function field. There is a
one–to–one correspondence between the set of places PFq(X) and the set of closed points of X . Thus,
every place P ∈ PFq(X) coincides with the local ring Op of some point p ∈ X . Hence, there is no
ambiguity in the notation between local ring of a point and valuation ring of a place.

Proposition 1.41 ([Sti09, Theorem 1.1.6, (b)]). Let P ∈ PK and t ∈ K be a local parameter at P .
Then any 0 ̸= x ∈ K has a unique representation of the form x = tnu, with n ∈ Z and u ∈ O×

P .

Let us fix a place P ∈ PK , t a local parameter at P and x ∈ OP \ {0} an element such that
x = tnu. Moreover, we denote by νP (x) := n the valuation of x at P (which does not depend on the
choice of t). Setting νP (0) = ∞, the function νP : K → Z ∪ {∞} is a discrete valuation of K/Fq,
i.e. it satisfies the following properties:

1. νP (x) =∞ ⇐⇒ x = 0.

2. For all x, y ∈ K, νP (xy) = νP (x) + νP (y).

3. For all x, y ∈ K, νP (x+ y) ≥ min {νP (x), νP (y)}, with equality if νP (x) ̸= νP (y).

4. There exists z ∈ K such that νP (z) = 1.

5. For all a ∈ F∗
q , νP (a) = 0.

27

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

Let x ∈ K and P ∈ PK . If νP (x) > 0, we say that P is a zero of x, and a pole of x if νP (x) < 0.

Definition 1.42 (Residue field and degree). Let P ∈ PK .

1. The field FP := OP /P is called the residue class field of P . Given x ∈ OP , its class in the
quotient group FP is denoted by x(P).

2. The degree of P is defined by deg(P) := [FP : K]. A degree one place is referred to as a
rational place.

The degree of a place is always finite (see [Sti09], Proposition 1.1.15). Again, there is a one–to–
one correspondence between rational points on a curve X and degree one places in its function field
Fq(X).

Example 1.43. [Sti09, Section 1.2] The rational function field Fq(x) over Fq has exactly q+1 places
of degree one. According to Example 1.34, they corresponds to the set P1(Fq) of rational points on
the projective line, given by

P1(Fq) = {[α : 1] | α ∈ Fq} ∪ {P∞} ,

where P∞ is the unique pole of x.

In what follows, we consider a finite extension L/K, where K is a function field over Fq. We then
recall that there exists a link between places in K and those in L: this is the ramification theory.

Definition 1.44. Let L/K be a finite extension of function fields over Fq, and Q ∈ PL, P ∈ PK two
places. We say that Q lie over P (or that Q is an extension of P) if P ⊆ Q, in which case we write
Q|P . In particular, P = Q ∩K.

Proposition 1.45 ([Sti09, Proposition 3.1.4]). With notation as above, the following assertions are
equivalent:

1. Q|P .

2. There exists an integer e := e(Q|P) ≥ 1 such that for all x ∈ L,

νQ(x) = e(Q|P)νP (x).

The finite integer e(Q|P) is called the ramification index of Q|P . Moreover, the (also finite)
integer f(Q|P) := [FQ : FP] is called the inertia degree of Q over P . A place P is said to be totally
ramified in L/K if there is only one place Q above P and e(Q|P) = [L : K]. Likewise, we say that
P totally splits in L/K if P admits [L : K] extensions in L, each with ramification index equals to
one.

In this thesis, we will several times consider the following situation: let L/Fq be a function field
and Aut(L) be the group of Fq–automorphisms of L. For any finite subgroup G ⊆ Aut(L), we denote
by LG the fixed field of L by G, i.e

LG = {x ∈ L | σ(x) = x , ∀σ ∈ G} .

In this case, the function field extension L/LG is Galois with Galois group G, and the ramification
in the extension behaves with respect to the action of the Galois group G:

Proposition 1.46 ([Sti09, Lemma 3.5.2]). Let L/Fq be a function field and σ ∈ Aut(L). Let also
Q ∈ L and P ∈ L⟨σ⟩ be such that Q|P . Then σ(Q) := {σ(x) | x ∈ Q} is a place of L, and:

1. σ(Q)|P .

2. e(σ(Q)|P) = e(Q|P).

Remark 1.47. If X is a smooth irreducible projective curve over Fq with function field F and G ⊆
Aut(F), then the curve associated to the fixed field FG is called the quotient curve of X by G,
denoted by X/G (notice that we make the analogy between automorphisms of the curve and those
of its function field, see Theorem 1.35).

28

1.2. TOOLS OF ALGEBRAIC GEOMETRY

Example 1.48. [Sti09, Annex A.13] Suppose that n | q − 1 and let L = Fq(x, y) be a function field
defined by the equation

yn = p(x),

where p ∈ Fq[x] is a square–free polynomial of degree d prime to n. Then L/Fq(x) is cyclic of order
n and its Galois group is given by

Gal(L/Fq(x)) = {σ : y 7→ ξy | ξ ∈ µ∗
n(Fq)} .

Such an extension is called a Kummer extension. Remark that if Y is the smooth projective curve
associated to L, then the one associated to its fixed field LGal(K/Fq(x)) = Fq(x) is the projective line
P1 over Fq.

1.2.3 Divisors and Riemann–Roch spaces

In this section, we choose to present the results from the algebraic point of view, meaning that we
deal with function fields and places rather than curves and points. Further details can be found in
[Sti09, Sections 1.4 and 1.5].

From now on, fix a function field K over Fq. As discussed above and following [Sti09, Section
1.4 ff.], we assume that Fq is algebraically closed in K. Keep in mind that the remaining of Section
1.2 can be applied by replacing K with its associated geometrically irreducible curve X .

Definition 1.49 (Divisors). The divisor group of K, denoted by Div(K), is the free abelian group
generated by the places of K. The elements of Div(K) are called divisors. In other words, any
divisor D ∈ Div(K) is a formal sum

D =
∑

P∈PK

nPP,

where nP ∈ Z are all zero but finitely many. The support of D is defined by

Supp(D) := {P ∈ PK | nP ̸= 0} .

Given a place P ∈ PK , we set νP (D) := nP . The degree of the divisor D is defined by

deg(D) :=
∑

P∈Supp(D)

νP (D) deg(P).

The group Div(K) is endowed with a partial order in the following way:∑
P∈PK

nPP ≥
∑

P∈PK

mPP ⇐⇒ ∀Q ∈ PK , nP ≥ mP .

If 0 denotes the zero divisor in Div(K) (i.e all νP (0) = 0), then we say that the divisor D is effective
if D ≥ 0. It is well–known that any non zero function x ∈ K has only finitely many poles and zeros
in PK (see for example [Sti09, Corollary 1.3.4]). Hence, the following definition makes sense.

Definition 1.50 (Principal divisors). Let 0 ̸= x ∈ K and denote by Z(x) (resp. N(x)) the set of
zeros (resp. poles) of x in PK . We define

(x)K0 :=
∑

P∈Z(x)

νP (x)P , the zero divisor of x,

(x)K∞ :=
∑

P∈N(x)

(−νP (x))P , the pole divisor of x and

(x)K = (x)K0 − (x)K∞ the principal divisor of x.

The subset of Div(K) generated by the principal divisors of K forms a subgroup, denoted by
Princ(K). Given two functions x, y ∈ K, we have

(xy)K = (x)K + (y)K .

Whenever it is clear from the context, we just write (x) instead of (x)K to talk about the principal
divisor of x ∈ K (the same holds for (x)0 and (x)∞). Note that (x)0 ≥ 0, (x)∞ ≥ 0 and

(x) =
∑

P∈PK

νP (x)P.

The non zero elements lying in Fq are characterized by

x ∈ Fq ⇐⇒ (x) = 0.

29

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

Example 1.51. Let Fq(x) be the rational function field over Fq and f ∈ Fq[x] a polynomial which
splits in Fq. Denote by {α1, ..., αs} its roots in Fq and by mi their multiplicity. The divisor of f is
then given by

(f)Fq(x) =

s∑
i=1

miPi − deg(f)P∞,

where Pi a degree one place in K, associated to the point [αi : 1] in the projective line (see Example
1.43 for a description of P1(Fq)). The place P∞ is the unique pole of x.

Theorem 1.52 ([Sti09, Theorem 1.4.11]). All principal divisors of K have degree zero. More pre-
cisely, for any x ∈ K, we have

deg((x)0) = deg((x)∞) = [K : Fq(x)].

Definition 1.53 (Divisor class group). The factor group

Cl(K) := Div(K)/Princ(K)

is called the divisor class group of K. For any D ∈ Div(K), we denote by [D] its class in Cl(K).
We say that two divisors D1 and D2 are equivalent, and we write D1 ∼ D2, if [D1] = [D2], i.e.
D2 = D1 + (x) for some x ∈ K.

Remark 1.54. As any principal divisor has degree zero, two equivalent divisors have same degree.

Let Div0(K) be the subgroup of Div(K) made of all degree zero divisors, and

Cl0(K) := Div0(K)/Princ(K)

the group of divisor class of degree zero. (which makes sense thanks to Theorem 1.52).

Proposition 1.55 ([Sti09, Proposition 5.1.3]). Cl0(K) is a finite group, and its order h(K) :=
#Cl0(K) is called the class number of K.

For any r ≥ 1, the number of divisor classes in Cl(K) of degree r does not depend on r, and is
equal to h(K). In Proposition 1.70, we give an estimation of this integer.

In the case of a finite extension of function fields L/K, we can define a specific divisor in L, which
keeps track of all the ramification in the extension.

Definition 1.56. Let L/K be a finite extension of function fields. The divisor

Diff(L/K) =
∑

P∈PK

∑
Q|P

d(Q|P) ·Q. (1.2)

is called the different of L/K, where d(Q|P) is the different exponent of Q over P (see [Sti09,
Definition 3.4.3]).

Our next subject of interest will play a fundamental role in the thesis, being key to define the
so–called Algebraic Geometry (AG) codes, which will be done in Section 1.3.

Definition 1.57 (Riemann–Roch space). For a divisor D ∈ Div(K), we define its Riemann–Roch
space as the Fq–vector space

LK(D) := {x ∈ K∗ | (x) ≥ −D} ∪ {0} .

Its dimension ℓ(D) := dimFq LK(D) is called the dimension of the divisor D.

Without ambiguity on the function field, we simply write L(D) instead of LK(D).

Remark 1.58 ([Sti09], Lemma 1.4.6). The Riemann–Roch spaces of two equivalent divisors are iso-
morphic as Fq–vector spaces.

Example 1.59. Let us consider the pole P∞ of x in the rational function field Fq(x). Then for any
integer k > 0, the space L(kP∞) has dimension k + 1, and

L(kP∞) =
〈
1, x, · · · , xk

〉
Fq

.

These spaces are usually used to build Reed–Solomon codes.

30

1.2. TOOLS OF ALGEBRAIC GEOMETRY

The computation of the dimension ℓ(D) of a divisor is very important for us as it gives information
on the parameters of AG codes. However, this is usually a difficult task and we are often only able
to give a lower bound on it. A first one is given by the following lemma:

Lemma 1.60 ([Sti09, Proposition 1.4.9]). For any D ∈ Div(K), we have

ℓ(D) ≤ max {0,deg(D) + 1} .

In particular, if deg(D) < 0, then ℓ(G) = 0.

To better handle the dimension of Riemann–Roch spaces, we need to introduce first the notion
of differential forms.

1.2.4 Differentials and the Riemann–Roch theorem

The main purpose of this section is to present the Riemann-Roch theorem, which is a powerful tool
that gives an explicit formula for the dimension of any divisor. Details for this section can be found
in [Sti09, Sections 1.5 and 4.1].

Let K be a function field over Fq. A derivation of K is a Fq–linear map δ : K → K satisfying
the product rule

δ(xy) = xδ(y) + yδ(x), ∀x, y ∈ K.

We denote by Der(K) the K–vector space of derivations over K. If we are given a separating
element x ∈ K (i.e. such that K/Fq(x) is finite and algebraic), then there exists a unique derivation
δx ∈ Der(K) such that δx(x) = 1.

Lemma 1.61 ([Sti09, Lemma 4.1.6]). Der(K) is a one–dimensional K–vector space. In particular,
for every η ∈ Der(K), we have η = η(x)δx.

The last step before defining differentials is to consider the set

Z := {(u, x) ∈ K ×K | x is separating} ,

on which we define an equivalence relation ∼ by

(u, x) ∼ (v, y) ⇐⇒ v = uδy(x).

Definition 1.62. For a couple (u, x) ∈ Z, its class under the relation ∼ is denoted by udx, and is
called a differential form (or just differential) of K. We simply write dx for the class of (1, x), and
the set of all differentials of K is denoted by ΩK .

The main properties of differentials are put together in the following proposition:

Proposition 1.63 ([Sti09, Propositions 4.1.8 and 1.5.13]). With notation as above, we have:

1. x ∈ K is a separating element ⇐⇒ dx ̸= 0.

2. Every differential ω ∈ ΩK can be uniquely written in the form ω = hdx, with h ∈ K. In
particular, dimK ΩK = 1.

3. If 0 ̸= ω ∈ ΩK and if tP is a prime element at the place P ∈ PK , then there exists u ∈ K such
that ω = udtP .

Definition 1.64. Let ω ∈ ΩK and P ∈ PK . We define the valuation of ω at P by

νP (ω) := νP (u), if ω = udtP .

As we associated a divisor to any function x ∈ K, we can associate to a differential ω ∈ ΩK the
divisor (ω)K (or just (ω) if it is clear from the context), defined by

(ω)K =
∑

P∈PK

νP (ω)P.

Such a divisor is called a canonical divisor, and it does not depend on the choice of the prime elements
tP ’s. If ω = hdx with h ∈ K (see Proposition 1.63, 2), then we have

(ω)K = (h)K + (dx)K ,

where
(dx)K = −2(x)K∞ +Diff(K/Fqm(x)). (1.3)

31

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

Remark 1.65. Since dimK ΩK = 1, we easily see that canonical divisors on K are equivalent.

Definition 1.66. The genus g(K) (or just g) of K is defined as the dimension of any canonical
divisor, i.e.

g(K) := ℓ(W), for a canonical divisor W = (ω)K ∈ Div(K).

We are now ready to present the Riemann–Roch theorem.

Theorem 1.67 (Riemann–Roch, [Sti09, Theorem 1.5.15]). Let ω ∈ ΩK and W := (ω)K its divisor.
Then for any D ∈ Div(K), we have

ℓ(A) = deg(A) + 1− g(K) + ℓ(W −A).

This result can be precised in the case of canonical divisors:

Corollary 1.68 ([Sti09, Corollary 1.5.16]). For any canonical divisor W ∈ Div(K), we have

deg(W) = 2g(K)− 2.

Theorem 1.69 ([Sti09, Theorem 1.5.17]). If D ∈ Div(K) is a divisor such that deg(D) ≥ 2g(K)−1,
then

ℓ(D) = deg(D) + 1− g(K).

The genus of a function field is a powerful tool that can be used to estimate the class number or
the number of rational points:

Proposition 1.70 ([TVN07, Proposition 3.1.22]). Let K be a function field over a finite field F.
Then

(
√
|F| − 1)2g(K) ≤ h(K) ≤ (

√
|F|+ 1)2g(K). (1.4)

This implies in particular that any rational function field has only one divisor class, since it has
genus zero.

Theorem 1.71 (Hasse–Weil Bound). Let K be a function field over Fq and X the corresponding
curve with respect to Theorem 1.35. Then the number X (Fq) of rational points on X is bounded by

|X (Fq)| ≤ q + 1 + 2g(K)
√
q.

A proof of this famous theorem can be found in [Sti09, Theorem 5.2.3]. Usually, the genus of a
function field is hard to compute. In the case of an extension L/K, we have a formula that links
g(L) and g(K).

Theorem 1.72 (Hurwitz Genus Formula, [Sti09, Theorem 3.4.13]). Let L/K be a finite extension
of function fields over Fqm . Then

2g(L)− 2 = [L : K] · (2g(K)− 2) + deg (Diff(L/K)) ,

where the different Diff(L/K) is defined in Definition 1.56.

We finish this section by giving an overview of a well–known class of curves, namely Ca,b curves.

1.2.5 Ca,b curves

As a complement to the upcoming discussion, we refer the reader to [Miu93].

Definition 1.73. Let a, b be coprime integers. A Ca,b curve over Fq is a curve having an irreducible,
affine and non singular plane model with equation

fa,b(x, y) = α0ay
a + αb0x

b +
∑

αijx
iyj = 0, (1.5)

where fa,b ∈ Fq[X,Y] and the sum is taken over all couples (i, j) ∈ {0, · · · , b}×{0, · · · , a} such that
ai+ bj < ab.

32

1.3. AG CODES AND THEIR SUBFIELD SUBCODES

Let Xa,b be such a curve, defined over Fq. Its genus is given by

ga,b := g(Xa,b) =
(a− 1)(b− 1)

2
.

The common point of all these curves is their behaviour with respect to the points at infinity.
In fact, the condition imposed on the leading monomial of fa,b implies that Ca,b curves have only
one point at infinity, say P∞. More importantly, we know a nice basis of the Riemann–Roch space
associated to any multiple of this point, i.e. for any non negative integer s, we have:

L(sP∞) = Span
(
xiyj | 0 ≤ i, 0 ≤ j ≤ a− 1 and ai+ bj ≤ s

)
. (1.6)

This particularity will be used several times throughout this thesis. One could think that Equa-
tion (1.5) is kinda restrictive, but the class of Ca,b is quite general: for example, any Kummer type
curve (see Example 1.48) is a particular case of Ca,b curve. It is also the case for the so–called
Artin–Schreier curves.

1.3 AG codes and their subfield subcodes

In this section, we define algebraic geometry (AG) codes and their subfield subcodes (SSAG). With-
out specific mention, we refer to [TVN07] and [Sti09].

1.3.1 Algebraic Geometry codes

We consider a finite extension Fqm of Fq, and we construct codes over Fqm , before considering subfield
subcodes over Fq.

In what follows, X denotes an irreducible and smooth projective curve over Fqm andK its function
field. The genus of X is the one of its function field, i.e. g(X) := g(K). Let P = {P1, · · · , Pn} be a
set of n distinct rational points on X and G ∈ Div(X) be a divisor of degree less than n such that
Supp(G) ∩ P = ∅. We consider the evaluation map

evP :

{
L(G) −→ Fn

qm

f 7−→ (f(P1), · · · , f(Pn)).
(1.7)

Definition 1.74 (AG code). With previous notation, the algebraic geometry (AG) code on X
associated to the support P and the divisor G is defined by

CL (X ,P, G) := {evP(f) | f ∈ L(G)} ⊆ Fn
qm .

Let k := ℓ(G) and {f1, · · · , fk} be a basis of L(G). Then the matrix

M =

f1(P1) · · · f1(Pn)
...

. . .
...

fk(P1) · · · fk(Pn)

 ∈ Fn
qm (1.8)

is a generator matrix of CL (X ,P, G).

Using the Riemann–Roch theorem (see. Theorem 1.67), we can estimate the dimension and the
minimum distance of AG codes.

Theorem 1.75 ([Sti09, Corollary 2.2.3]). If n > deg(G), CL (X ,P, G) is an [n, k, d]qm code, with

k = ℓ(G) ≥ deg(G) + 1− g(X) and d ≥ n− deg(G).

Moreover, if deg(G) ≥ 2g(X)− 1, then k = deg(G)+ 1− g(X). The Goppa designed distance for the
AG code CL (X ,P, G) is defined by d∗ := n− deg(G).

1.3.2 Duality

In the previous section, we defined AG codes associated to a support P and a divisor G. Actually,
there exists another kind of AG codes that can be constructed from the same support and divisor,
using differential forms introduced in Section 1.2.4.

33

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

Definition 1.76 (Special divisor). Let G ∈ Div(X). We associate to G the subspace ΩK(G) ⊆ ΩK

of differential forms defined by

ΩK(G) :=
{
ω ∈ Ω∗

K | (ω)K ≥ G
}
∪ {0} .

This space is a vector space over Fqm , whose dimension i(G) := dimFqm
ΩK(G) is called the index

of speciality of G. We say that G is non–special if i(G) = 0; otherwise G is called special.

Remark 1.77. Notice that the definition of the space ΩK(G) is similar to the one of Riemann–Roch
spaces, which is not surprising as these objects play similar roles in terms of AG codes.

Theorem 1.78 ([Sti09, Theorem 1.5.14]). Let G ∈ Div(X) be any divisor and W = (ω) be a
canonical divisor. Then the map {

L(W −G)→ ΩK(G)
f 7−→ fω

is an isomorphism of Fqm–vector spaces. In particular, i(G) = ℓ(G)− deg(G) + g(K)− 1.

Definition 1.79 (Residue). Let ω ∈ ΩK , P a degree one place in K = Fqm(X) and tP a local
parameter at P such that ω = fdtP , with f ∈ K. The expansion of f into a Laurent series in tP
has the form

f =

∞∑
i=−r

ait
i
P , with r ∈ Z.

The residue Resω(P) of ω at P is then defined by

Resω(P) := a−1.

The above definition does not depend on the choice of the local parameter tP . We now have
all the tools to define the other kind of AG codes, namely Ω–AG codes. As in Section 1.3.1,
P = {P1, · · · , Pn} denotes a set of n distinct rational points on X and G ∈ Div(X) a divisor of
degree less than n such that Supp(G) ∩ P = ∅. The residue map is defined by

ResP :

{
ΩK −→ Fn

qm

ω 7−→ (Resω(P1), · · · ,Resω(Pn)).

Definition 1.80 (Ω–AG codes). With above notation, the Ω–AG code (or differential code) on X
associated with the support P and the divisor G is defined by

CΩ(X ,P, G) := {ResP(ω) | ω ∈ Ω(G−DP)} ,

where DP =
∑

P∈P
P .

Again, the Riemann–Roch theorem allows us to estimate the parameters of Ω–AG codes:

Theorem 1.81 ([Sti09, Theorem 2.2.7]). CΩ(X ,P, G) is an [n, k, d]qm code, with

k = i(G−DP) ≥ n− deg(G) + g(X)− 1 and d ≥ deg(G) + 2− 2g(X).

In addition, if deg(G) ≥ 2g(X)− 1, then k = n− deg(G) + g(X)− 1.

The link between both constructions of AG codes is given by the following theorem:

Theorem 1.82. The codes CL (X ,P, G) and CΩ(X ,P, G) are dual to each other, i.e.

CL (X ,P, G)
⊥
= CΩ(X ,P, G).

A proof of this statement can be found in [Sti09, Theorem 2.2.8], and mainly relies on the residue
formula ([Sti09, Corollary 4.3.3]).

The next and final result of this section shows that any Ω–AG code CΩ(X ,P, G) can be repre-
sented as a code CL (X ,P, H) for some explicit divisor H ∈ Div(X) (up to diagonal equivalence).
This can be helpful to deal with dual of AG codes without having to rely on differentials.

Proposition 1.83 ([Sti09, Proposition 2.2.10]). Let CL(X ,P, G) be an AG code defined on a curve
X . Then

CL(X ,P, G)⊥ = CL(X ,P, G⊥) · Zω,

with G⊥ = DP −G+W , where W := (ω)K is the divisor of some differential ω ∈ ΩK such that for
all P ∈ P, νP (ω) = −1, and Zω is the diagonal matrix those coefficients are the Resω(P), P ∈ P.

The divisor G⊥ is referred to as the dual divisor of G. In [Sti09, Lemma 2.2.9], it is also proven
that there exists a differential ω ∈ ΩK such that Zω is the identity matrix. Note that the dual
divisor is not well–defined, as it depends on the choice of the differential. Throughout this thesis,
while using this notation, there will be no ambiguity, as a suitable choice of a differential will be
made.

34

1.3. AG CODES AND THEIR SUBFIELD SUBCODES

1.3.3 Subfield subcode of AG codes and their parameters

We keep the notation of Section 1.3.1. Here, we define subfield subcode of AG codes (SSAG in
short), which will be used a lot in this thesis as they are good candidates to replace classical Goppa
codes in the McEliece cryptosystem [McE78]. We also recall known results about their parameters.

Definition 1.84 (SSAG codes). Let CL (X ,P, G) be an AG code over Fqm as in Definition 1.74.
We define its subfield subcode over Fq, denoted by SSAGq (X ,P, G), as follows:

SSAGq (X ,P, G) := CL (X ,P, G) |Fq
= CL (X ,P, G) ∩ Fn

q .

For SSAG codes, there is an obvious upper bound on the dimension, which is

dimFq
SSAGq (X ,P, G) ≤ dimFqm

CL (X ,P, G) ,

coming from the fact that any basis of CL (X ,P, G) over Fqm remains free when restricted to the
subfield Fq. In general, it is hard to find the true dimension of an SSAG code, but a trivial estimate
can be derived from Delsarte’s theorem (Theorem 1.12):

dimFq
SSAGq (X ,P, G) ≥ n−m dimFqm

CΩ(X ,P, G). (1.9)

As for the minimum distance, it is at least the one of the AG code CL(X ,P, G), hence bounded
from below by the designed distance d∗ = n− deg(G). Additionally, the structure of AG codes may
provide sharper bounds on the dimension of subfield subcodes of Ω–AG codes and trace codes of AG
codes.

Theorem 1.85 ([Sti09, Theorem 9.1.6]). With above notation, let G1 ∈ X be a divisor such that

G ≥ qG1 and G ≥ G1. (1.10)

Then

dimFq TrFqm/Fq
(CL(X ,P, G)) ≤

{
m (ℓ(G)− ℓ(G1)) + 1 if G1 ≥ 0,
m (ℓ(G)− ℓ(G1)) if G1 ̸≥ 0,

and

dimFq
CΩ(X ,P, G)|Fq

≥
{

n− 1−m (ℓ(G)− ℓ(G1)) if G1 ≥ 0,
n−m (ℓ(G)− ℓ(G1)) if G1 ̸≥ 0.

Remark 1.86. The biggest divisor (with respect to the degree) satisfying both conditions in Equation
(1.10) is given by [

G

q

]
:=

∑
P∈Supp(G+)

⌊
νP (G

+)

q

⌋
P +

∑
P∈Supp(G−)

νP (G
−)P, (1.11)

where G+ and G− are effective divisors such that G = G+ −G−.

With further hypotheses on G and
[
G
q

]
, [LC16, Theorem 1] gives an exact formula for the

dimension of such codes. Regarding the parameters of subfield subcodes of differential codes, Wirtz
[Wir88] improved the bound on their the minimum distance.

Theorem 1.87 ([Wir88, Theorem 2]). With the same notation as in Theorem 1.85, assume that
deg(G1) ≥ 2g − 1. Set U := {P ∈ Supp(G) | νP (G) ≥ 0 and νP (G) = q − 1 mod q} and GU =∑

P∈U P . Then

dimFq
CΩ(X ,P, G)|Fq

= dimFq
CΩ(X ,P, G+GU)|Fq

,

hence the minimum distance of CΩ(X ,P, G)|Fq
satisfies

d
(
CΩ(X ,P, G)|Fq

)
≥ degG+ degGU − 2g+ 2.

The next section is dedicated to a well–known class of AG codes, namely Generalized Reed–
Solomon codes.

35

CHAPTER 1. ALGEBRAIC GEOMETRY CODES

1.3.4 The family of Generalized Reed–Solomon codes

In the discussion below, we recall the definitions and some properties of Generalized Reed–Solomon
(GRS) codes and their subfield subcodes. In the following, the dimension of a GRS is denoted by r,
and our codes are still defined over the finite field Fqm .

Definition 1.88. Let x = (x1, . . . , xn) ∈ Fn
qm be a vector with pairwise distinct entries and y =

(y1, . . . , yn) ∈ Fn
qm be a vector with nonzero entries. The [n, r]qm generalized Reed–Solomon code

with support x and multiplier y is defined by

GRSr(x,y) = {(y1f(x1), . . . , ynf(xn)) | P ∈ Fqm [T], deg f < r} .

It is clear that the Reed–Solomon code RSr introduced in Example 1.6 is a particular case of
GRS code: in fact, taking xβ =

{
β, β2, . . . , βqm−1

}
where β is a generator of F∗

qm , we have

RSr = GRSr(xβ ,1),

where 1 stands for the unit vector.

It is possible to represent any GRS code as an AG code defined over the projective line: in fact,
let GRSr(x,y) be a GRS code as above. On the rational function field Fqm(x), denote by Pi the zero
of x − xi, and consider the set of degree one places P = {P1, . . . , Pn} ∈ PFqm (x). Using Lagrange’s
interpolation, we can find a polynomial h ∈ Fqm [T] such that

h(Pi) = yi for all i ∈ {1, . . . , n} and deg h < n.

Then
GRSr(x,y) = CL(P1,P, (r − 1)P∞ + (h)Fqm (x)),

where P∞ is the pole of x. From Theorem 1.82, Proposition 1.83 and the above discussion, we know
that the dual of any GRS code is also a GRS code. More precisely, we have:

Proposition 1.89. Let x,y be a support and multiplier of length n and r ≤ n. Then

GRSr(x,y)
⊥ = GRSr(x,y

⊥),

with

y⊥ :=

(
1

p′x(x1)y1
, . . . ,

1

p′x(xn)yn

)
,

where p′x is the derivative of the polynomial px(T) :=
n∏

i=1

(T − xi) ∈ Fqm [T].

Up to the dual operation, the subfield subcode of a GRS code is referred to as an alternant code.

Definition 1.90. With above notation, we define the alternant code over Fq associated with the
support x and multiplier y as

Ar,q(x,y) := GRSr(x,y)
⊥|Fq.

The integer r is called the order of the alternant code.

From Delsarte’s theorem and by duality, we also have

A⊥
r,q(x,y) = TrFqm/Fq

(GRSr(x,y)) .

There exists a subclass of alternant codes which is particularly attractive for cryptographic purposes:

Definition 1.91. Let x ∈ Fn
qm be a support vector and g ∈ Fqm [T] a univariate polynomial of degree

r such that g(xi) ̸= 0 for every i ∈ {1, . . . , n}. Then the Goppa code of order r with support x and
Goppa polynomial g is defined by

Γr(x, g) = GRSr(x,y)
⊥|Fq

,

where for any i ∈ {1, · · · , n} , yi := 1
g(xi)

.

The class of binary Goppa codes was the one considered by McEliece in his first proposal [McE78].
They are interesting because when the Goppa polynomial is square–free, there exists a polynomial
time algorithm that can correct up to r errors, where r is the order of the Goppa code (a discussion
about decoding AG codes can be found in the next section). In Chapter 4, we will consider a
generalization of these codes, called Goppa–like AG–codes, and study their behaviour under squaring
their dual.

36

1.3. AG CODES AND THEIR SUBFIELD SUBCODES

1.3.5 Decoding AG codes

In order to use AG codes in a cryptographic context, we need to know efficient decoding algorithms
for this family of codes. Several of them are known, we refer the reader to the survey of Couvreur
and Randriambololona [CR20] for more details. An algorithm for general AG codes, called the
basic algorithm [SV90, JLJ+89], can correct up to half the designed distance minus some defect

proportional to the genus of the curve, i.e. up to ⌊d
∗−1−g

2 ⌋. For AG codes on planes curves, the

modified algorithm [SV90] can correct at most ⌊d
∗−1
2 − g

4⌋ errors. Both these algorithms run in O(n3)
operations in the base field. Since then, a lot of work have been spend trying to remove the term
due to the genus, focusing on specific codes:

In the case of one–point codes, Feng and Rao [FR93], and later Sakata and al. [SJM+95], proposed

an algorithm which corrects ⌊d
∗−1
2 ⌋ in complexity O(n 7

3).
For the case of codes on maximal curves, Pellikaan [Pel89] gives an algorithm which correct up to

half the designed distance in O(n4) operations over the base field. This particular case is interesting
in this thesis as we are sometimes dealing with the Hermitian curve, which is known to be maximal.

All the improvements of the basic algorithm since the work of Feng and Rao get rid of the algebraic
geometry point of view, introducing the notion of error correcting pairs, and allow to correct up to
half the designed distance. For recent improvements in this area, see [CP20].

Independently, Sudan [Sud97] showed that, at the cost of possibly returning a list of codewords
instead of a single one, it was possible to correct errors on Reed–Solomon codes beyond half the
designed distance. A version of the so–called list decoding algorithm, valid for general AG codes,
is proposed in [GS99]. Recently, a efficient version has been proposed by Beelen, Rosenkilde, and
Solomatov [BRS22].

37

Chapter 2

Code–based cryptography

2.1 The McEliece encryption scheme and its security

2.1.1 Description of the scheme

The McEliece encryption scheme [McE78] is the first encryption scheme based on error–correcting
codes. It is a public key cryptosystem whose pair of keys are constructing from a certain family F
of structured codes over a finite field F, for which an efficient decoding algorithm is known. The
public key is then a random looking generator matrix of some code in F , while the secret key is the
corresponding decoding algorithm. For short, the McEliece scheme can be presented as follows.

The McEliece encryption scheme

Key generation:

Input: The parameters n, k, t ∈ N and a finite field F.

1. Select a family F of linear codes over F with an efficient decoding algorithm D.

2. Choose a [n, k] code C ∈ F correcting t errors. Let M be a k × n generator matrix of C and
denote by DC an efficient decoding algorithm for C.

Output: The public key pk = (M, t) and the secret key sk = DC .

Encryption:

Input: A message m ∈ Fk.

1. Select a random error vector e ∈ Fn such that wH(e) ≤ t.

2. Compute y := mM+ e.

Output: The cypher text y.

Decryption:

Input: A cypher text y = c+ e, where c ∈ C.

1. Compute c = DC(y).

2. Recover the initial message m from the knowledge of c = mM and M by Gaussian elimination.

Output: The plaintext m.

There exists two kinds of attacks against the McEliece cryptosystem: message recovery attack
and key recovery attack. The first one essentially consists in recovering a plaintext m from the
knowledge of the cypher text y and the public key. Once done, the attacker knows the plaintext

39

CHAPTER 2. CODE–BASED CRYPTOGRAPHY

but not the private key DC , meaning that in order to recover several messages, the attack must be
performed several times, hence the total cost becomes the sum of the cost of the attack on each
cypher text. The second kind of attack, i.e. key recovery attacks, consists in retrieving the decoding
algorithm DC of C from the knowledge of one of its generator matrix. In this case, once the attack
is performed, the cost of recovering any message becomes the cost of the decoding algorithm, which
works in polynomial time in the parameters n and k of the code.

In both cases, given a security parameter λ for the scheme, we say that there exists an efficient
attack on the scheme if there exists a polynomial time algorithm (in n and k) which can recover
either a plain message from a ciphertext or the secret key in less than 2λ binary operations. The
standard value for the security parameter is λ = 128, but a more realistic one would be around 80.

The security of the McEliece encryption scheme hence relies on both the choice of the family of
codes F and the hardness of solving the syndrome decoding problem (SD). The SD problem does not
depend on F and is related to the security of the message itself (i.e. message recovery attack). More
precisely, recovering a plaintext m from the knowledge of its cipher text and a generator matrix of
the code reduces to solve an instance of the SD problem. This will be discussed in Section 2.1.2.
The choice of F influences the security of the secret key, which can lead to key recovery attack. In
fact, we will see in Section 2.1.3 that for some family of codes which are too structured, there exist
polynomial time algorithms that recover the secret key from the public one.

2.1.2 Message recovery attack and Information Set Decoding (ISD)

The general idea of security behind McEliece cryptosystem’s relies on the hardness of decoding a
linear code, a problem which is referred to as the Worst–Case Syndrome Decoding Problem, which
can be stated as follows in its searching version:

Problem 2. (Search) Worst–Case Syndrome Decoding Problem: Let H be a parity check matrix
of a [n, k] code C over a finite field F. Let t be an integer and s ∈ Fn−k be a uniformly random
vector (called the syndrome). Then the (Worst–Case) Search Syndrome Decoding problem is to find
a vector e ∈ Fn of Hamming weight ≤ t such that HeT = 0.

This problem differs from the slightly easier Average–Case Syndrome Decoding Problem, in which
H is also sampled uniformly at random. The decisional version of the worst–case scenario was proven
to be NP–complete in [BMvT78], and is related to the generic decoding problem of a linear code in
the following way: let C be a [n, k] code over F, H one of its parity check matrix and t its correction
capability. Consider a noisy vector y = c + e, with c ∈ C and e ∈ Fn an error vector of Hamming
weight ≤ t. Decoding the cipher text y consists in finding c without a priori knowledge of any
decoding algorithm, and can be realized as follows. From the knowledge of H and the cipher text,
we compute the syndrome s := HyT . Note that

s := HyT = HcT +HeT = HeT ,

meaning that the syndrome does only depend on the error vector. If we are able to solve Problem 2
with parameters (H, s, t), then we can decipher c = y − e.

To secure the scheme, we need to chose the initial parameters such that the cost of solving Problem
2 is high enough. Apart from the brute force search among all possible error vectors of weight t,
all known algorithms for solving the SD problem are generalization of the so–called Information Set
Decoding (ISD), introduced by Prange in [Pra62]. The idea is to find a set of positions of the noisy
vector which does not contain any errors, and such that the corresponding submatrix of the public
generator matrix is invertible. Since its introduction in 1962, a lot of improvements of the ISD as
been realized. We do not enter into further details here, we refer the reader to the survey of Peters
[Pet10] or more recently to the one of [WGR22].

2.1.3 Key recovery attack

The complexity of a key recovery attack highly relies on the choice of the family of codes, and thus is
hard to estimate in a general case. It consists in recovering the secret key (i.e. a decoding algorithm
for the chosen code) knowing only a random looking generator matrix. Usually, this problem can
be reduced to the following: given a generator matrix of a [n, k] code C, can we find the inherent
structure that defines it, that is to say the secret elements that allow to build an efficient decoding
algorithm. For example, this problem can be easy to solve if the family of code is not large enough,
in which case a brute force search among all possible codes can be realized in less binary operations
than imposed by the security level.

40

2.2. IOP OF PROXIMITY TO A LINEAR CODE

Historically, McEliece [McE78] proposed to use binary classical Goppa codes. For his choices of
cryptographic parameters, we do not know any efficient algorithm that can recover the corresponding
support and Goppa polynomial; reason why this family of codes is still considered as secure at the
moment. Note that the distinguisher given in [MT21] only works for high rate codes, which is out of
range of McEliece initial parameters. A recent set of parameters has been proposed to the NIST’s
post–quantum cryptography standardization project [BCC+22].

The major drawback is that these parameters impose to have huge key sizes, which makes it
impracticable. Since 1978, several other families have been investigated to mitigate this problem,
while keeping a good security level. In particular, a few proposals use structured codes (e.g. quasi–
cyclic or quasi–dyadic codes). However, for some families, the key recovery problem is not hard. In
the case of Generalized Reed-Solomon (GRS) codes, Sidelnikov and Shestakov proposed in [SS92] a
polynomial time algorithm that recovers the secret elements of the codes, by seeking for minimum
weight codewords. As a natural geometric generalization, AG codes have been proposed [JM96]:
for codes defined over genus ≤ 2 curves, an attack was found by Faure and Minder [FM08]. This
attack cannot be extended to any AG code as its complexity is exponential in the genus. Later,
Couvreur, Marquez–Corbella and Pellikaan [CMCP17] broke any McEliece scheme based on AG
code for arbitrary genus. Their attack (called attack by filtration) does not recover the secret
structure of the code, but allows to build directly an efficient decoding algorithm.

In this thesis, we are mainly interested in SSAG codes, as there exists no key recovery attack on
them yet. In this case, the key security reduces to find the curve, support and divisor from which
the code is defined. More precisely, in SSAG code–based McEliece cryptosystem, the idea is to check
if the knowledge of a generator matrix of SSAGq (X ,P, G) allows to find the triple (X ,P, G). We
will focus on two kinds of cryptosystems:

1. Quasi–cyclic SSAG–based McEliece cryptosystems (see Chapter 3), in which case we show that
the key security reduces to the security of a subcode of the public code: the invariant code.

2. Systems based on one–point Goppa–like AG codes defined over a Ca,b curve, which are defined
in Chapter 4. In this case, we show that using square codes considerations allows to build a
distinguisher on the public code. More precisely, given a random looking matrix, we are able
to determine if it comes from a one–point Goppa–like code or not, which means that the secret
structure is not hidden enough. This work generalizes the distinguisher proposed in [MT21] in
the case of alternant and classical Goppa codes. However, we point out that it seems difficult
to turn the distinguisher into an efficient structural attack.

2.2 IOP of Proximity to a linear code

In this section, we give some context in the domain of proximity test to an AG code, by recalling
some definition and known properties about proofs systems. This will be useful in Chapter 5, where
we define Interactive Oracle Proofs of Proximity to AG codes (AG–IOPP system). The case of
proximity tests to Reed–Solomon codes, known as the FRI protocol, is detailed in Section 2.2.3.

2.2.1 Interactive oracle proof (IOPs)

We start by defining a specific proof system that has quite recently emerged in cryptography: In-
teractive Oracle Proofs (IOPs in short) (see [BCS16] for further explanations). This model has
demonstrated to be particularly promising for the design of proof systems in the past few years.

IOPs are proof systems that naturally combines interactive proofs (IPs) and probabilistically
checkable proofs (PCPs), and generalize interactive PCP protocols (which consist of a PCP followed
by an IP). Hence, we start by recalling these alternative models of proof systems.

Interactive proofs (IPs). Interactive proofs were introduced by Goldwasser, Micali and Rackoff
[GMR89]: it consists in a r–round interactive proof between a probabilistic polynomial–time verifier
and an all-powerful prover. During this interaction, r messages are exchanged, and the protocol ends
with the response of the verifier, which either accepts or rejects the proof proposed by the prover. An
IP is said to be public–coin if all the verifier’s messages are chosen uniformly and independently at
random (such a system is also called an Arthur–Merlin game [Bab85]). Since 1992, it is well–known
that any IOP can be turned into an Arthur–Merlin game via the Fiat–Shamir transform [Sha92].

41

CHAPTER 2. CODE–BASED CRYPTOGRAPHY

Probabilistically checkable proofs (PCPs). Probabilistically checkable proofs were introduced
by [ALM+98, BFLS91, AS92]: roughly speaking, in a PCP system, a probabilistic polynomial–time
verifier has oracle access to a proof string of length at most 2u that uses at most u bits of randomness,
and queries at most q locations of the proof before accepting or rejecting it.

Interactive Oracle Proofs (IOPs). An Interactive Oracle Proof (IOP) is a ”multi–round PCP”
in which the verifier has oracle access to the prover’s messages, and may probabilistically query them
(rather than having to read them in full). In more details, during each of the r rounds, the verifier
sends a challenge c to the prover, which he reads in full, before replying with a message f . The
verifier can then query to f as an oracle string. After the r rounds, the verifier either accepts or
rejects the proof.

The efficiency in the IOP model is expressed in terms of the proof length (total number of bits
in all the prover’s messages), the query complexity (total number of locations queried by the verifier
across all prover’s messages) and the round complexity r (total number of rounds).

2.2.2 Proximity testing to an evaluation code

To construct a proof system for a non–deterministic binary relation R, arithmetization techniques
(introduced in [LFKN90]) transform any instance–witness (x,w) into a word that belongs to a certain
error–correcting code C if (x,w) ∈ R, and is very far from C otherwise. This motivates a new proof
system, namely public–coin IOP of proximity (IOPP) to a linear code C.

To specify our definition, we consider a finite field F and some evaluation code C ⊆ FS with
evaluation domain S of size n over the alphabet F. An IOPP (P,V) for the code C is a pair of
randomized algorithms, where both P (the prover) and V (the verifier) receive as explicit input the
specification of the code C ⊆ FS . We define the input size to be the integer n = |S|. Furthermore, a
purported codeword f : S → F is given as explicit input to P and as an oracle to V. The two parties
interact over at most r = r(n) rounds and, during this conversation, P seeks to convince V that
f belongs to the code C. More precisely, at each round, V sends a message chosen uniformly and
independently at random, and P answers with an oracle. Verifier’s queries to the prover’s message
are generated by public randomness and performed after the end of the interaction with the prover.
Thus, this proof system is a public–coin protocol, as defined above.

We define the Hamming relative distance between f and the code C by

∆(f, C) := min {dH(f, c) | c ∈ C} .

The output of V after interacting with P is denoted by ⟨P↔ V⟩ ∈ {accept, reject}. Finally, the
notation Vf means that f is given as an oracle input to V.

Definition 2.1. A pair of randomized algorithms (P,V) is an IOPP system for the code C ⊆ Fn

with soundness error s : (0, 1]→ [0, 1] if the following conditions hold:

1) Perfect completeness: If f ∈ C, then

Pr
[〈
P(C, f)↔ Vf (C)

〉
= accept

]
= 1,

i.e. if f is in fact a codeword of C, then the verifier accepts the proof with probability one.

2) Soundness: For any function f : S → F such that δ := ∆(f, C) > 0 and any malicious prover
P∗, we have

Pr
[〈
P∗ ↔ Vf (C)

〉
= accept

]
≤ s(δ),

i.e. if f /∈ C, a cheating prover can only convince the verifier with low probability.

The efficiency of an IOPP system is expressed in terms of several parameters: the sum of lengths
of prover’s messages defines the proof length ℓ(n), expressed in number of symbols in the alphabet F.
The query complexity q(n) is the total number of queries made by the verifier to both the purported
codeword f and the oracle sent by the prover during the interaction. The prover complexity tp(n)
is the time needed to generate prover’s messages (which does not include the input f) and the
verifier complexity tv(n) is the time spent by the verifier to make his decision when queries and
query-answers are given as inputs.

42

2.2. IOP OF PROXIMITY TO A LINEAR CODE

2.2.3 The FRI protocol

The IOPP construction described in the previous section has been applied in the case where C is
a RS code, and is referred to as the Fast Reed–Solomon IOPP (FRI in short, see [BKS18] for a
complete presentation). As we aim to consider an IOPP for general AG codes, we explain how the
FRI protocol works below.

Let k be a positive integer and ρ ∈ (0, 1) such that ρ := 2−k. The FRI protocol allows to check
proximity to a Reed–Solomon code of length n = |P|, say

RS(P, ρ) := {f : P → F | deg(f) < ρn} ,

by testing proximity to a smaller code RS(P ′, ρ) with |P ′| < n = |P|. To do so, the protocol considers
a family of linear maps FP → FP′

which randomly fold any function in FP into a function in FP′
.

We present below in a simplified way three ingredients that enable the protocol to work.

1. Splitting of polynomials into even and odd part. Given an univariate polynomial f ∈ F[x] such
that deg(f) < ρn, there exists two polynomials g, h of degree both < 1

2ρn such that

f(x) = g(x2) + xh(x2). (2.1)

One may view such a decomposition as the result of the splitting of the space of polynomials
of degree less than ρn into two copies of the space of polynomials of degree less than ρn/2.

2. Randomized folding. Choose P to be a multiplicative group of order 2r generated by ω ∈ F.
Then, define P ′ =

〈
ω2
〉
=
{
x2 | x ∈ P

}
. Set π : F → F to be the map defined by π(x) = x2

and observe that π(P) = P ′. Moreover, |P ′| = |P|/2. The structure of the evaluation domain
allows to reduce the proximity problem by half the size at each round of iteration. Based on
the decomposition (2.1), we define the folding operator Fold[·, z] : FP → FP′

for any z ∈ F as
follows:

Fold[f, z] := g(x) + zh(x).

If deg(f) < ρn, both functions g : P ′ → F and h : P ′ → F belong to the smaller code RS(P ′, ρ).
Then for any random challenge z ∈ F, the operator Fold[·, z] maps RS(P, ρ) into RS(P ′, ρ).

3. Distance preservation after folding. Except with small probability over z, if ∆(f,RS(P, ρ)) ≥ δ,
then

∆ (Fold[f, z],RS(P ′, ρ)) ≥ (1− o(1))δ.

The FRI protocol goes as follow: the verifier sends a random challenge z ∈ F and the prover
answers with an oracle function f ′ : P ′ → F, which is expected to be equal to the folded function
Fold[f, z] : P ′ → F. At the next round, f ′ becomes the function to be folded, and the process
is repeated for r rounds. Each round reduces the problem by half (i.e. the size of the evaluation
domain), eventually leading to a function f (r) evaluated over a small enough set of points. This
induces a sequence of Reed–Solomon codes of strictly decreasing length, while the code rate remains
unchanged (and so does the relative minimum distance). The final test consists in testing if f (r)

belongs to the last RS code.

Perfect completeness of the protocol follows from 2. Prover and verifier efficiencies come from
the possibility of determining any value of Fold[f, z] at any point y ∈ P ′ with exactly two values of
f , namely on the set π−1({y}) (i.e. the square roots of y). Hence, a consistency test between f and
f ′ only requires two queries to f and one to f ′.

Soundness of the protocol mainly relies on item 3. It is proved using results about distance
preservation under random linear combinations. Based on that, we can deduce that if the folded
function Fold[f, z] is close to C for enough values of z, then it remains true for both g and h (defined
in Equation (2.1)). Details about this can be found in [BBHR18, BKS18, BGKS20, BCI+20].

Remark 2.2. Note that 3; above holds because both polynomials g and h appearing in the decom-
position (2.1) have exactly the same degree, arising from the crucial fact that the FRI protocol only
considers RS codes of dimension a power of two, meaning that the considered polynomials have
degree at most an odd bound.

Let us sketch what could happens when f is expected to have degree at most an even integer, say
2d. According to Equation (2.1), we have deg(g) ≤ d and deg(h) ≤ d− 1. Therefore, if deg(f) ≤ 2d,
then g+zh corresponds to a polynomial of degree ≤ d. However, knowing that g+zh has degree ≤ d
with high probability on z ∈ F only tells us that both g and h have degree ≤ d, which is not enough
to deduce that deg(f) ≤ 2d and not 2d+1. Even worse, it is worth noting that words corresponding

43

CHAPTER 2. CODE–BASED CRYPTOGRAPHY

to a degree 2d + 1 polynomial are among the farthest words from the RS code of degree ≤ 2d. In
the univariate case, the obstacle can be overcome by supposing not only deg(g),deg(h) ≤ d but also
deg(νh) ≤ d for a degree 1 polynomial function ν, called balancing function. This implies deg(h) < d
and hence deg(f) ≤ 2d. This will be really important in order to generalize this protocol to AG
codes since we will have to deal with the same issue.

44

Chapter 3

Structural attack against
quasi–cyclic SSAG codes

After several attempts in trying to replace the family of binary Goppa codes by AG codes, the natural
generalization of Reed–Solomon codes, in the McEliece encryption scheme, an attack for AG codes
defined on any genus curve is now known [CMCP17]. However, the scheme based on SSAG codes
is still unbroken, hence considering structured (e.g. quasi-cyclic) SSAG codes in order to reduce
key sizes is still promising. In the present chapter, we focus on this family of codes and make some
progress in the direction of structural attacks. More precisely, we show that the security of the public
quasi-cyclic SSAG code reduces to the security of its invariant code (see Definition 1.15). Since the
invariant code can be derived from the public data and has smaller parameters, cautions should be
made while considering such cryptosystems. This work can be seen as an extension of Chapter 5 of
Barelli’s PhD memoir [Bar18a], as her method is generalized in order to be applied in more general
setting.

For the whole chapter, we consider a Galois cover π : Y → X of smooth and irreducible projective
curves over the finite field Fqm . This corresponds (via Theorem 1.35) to a Galois extension of function
fields L/K, where L = Fqm(Y) and K = Fqm(X). Note that our AG and SSAG codes will first be
defined over the curve Y, while the corresponding invariant subcodes lie on the quotient curve X .

The chapter is organized as follows. In Section 3.1, we define structured AG codes and give some
properties of their invariant code. Next, we present the general idea to recover the equation of a
Galois cover of curves in Section 3.2. Section 3.3 is dedicated to concrete instances of our attack:
after giving properties required for the quotient curve, we focus on Kummer coverings and elementary
abelian p-extensions. We finish the Chapter by discussing how our attack could be generalized to a
solvable Galois cover in Section 3.4.

3.1 Preliminaries

3.1.1 Structured AG codes

By structured codes, we mean codes with a non trivial permutation group (Definition 1.14), coming
from the underlying geometry. We now explain how to obtain such codes, starting from the geometry
of the curve: to fix notation, consider an AG code

C := CL(Y,Q, G)

defined on the curve Y, where Q is a set of n distinct rational points which does not intersect the
support of some divisor G ∈ Div(Y) and assume as usual that deg(G) < n. Let Aut(Y/Fqm) be the
automorphism group of Y over Fqm , acting on the left. Thanks to Theorem 1.35, we can identify
Aut(L/Fqm) with Aut(Y/Fqm), acting on L on the right: for σ ∈ Aut(L/Fqm) ≃ Aut(Y/Fqm) and
f ∈ L, we set fσ := σ∗f = f ◦ σ. Now consider a finite subgroup Σ ⊆ Aut(Y/Fqm), and assume that
Q and G are invariant under Σ; observe that this means precisely that Q is a union, and G a sum, of
orbits under Σ. Since G is invariant, Σ also acts on the Riemann–Roch space L(G). As n > deg(G),
the isomorphism

evQ : L(G)→ C

45

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

sends this action to the AG code. Each σ ∈ Σ acts by

c = (f(Q1), . . . , f(Qn)) 7→ cσ := evQ(f
σ) = (σ∗f(Q1), . . . , σ

∗f(Qn))

= (f(σ−1(Q1)), . . . , f(σ
−1(Qn)))

As Q is also Σ–invariant, the set
{
σ−1(Q1), . . . , σ

−1(Qn)
}

is a permutation of Q, and the above
action on C permutes the corresponding coordinates. We denote this permutation by σ̃, meaning
that for every 1 ≤ i ≤ n, we have Qσ̃(i) = σ−1(Qi). As σ ranges in Σ, these σ̃ form a subgroup Σ̃ of
the permutation group Perm(C), acting on the right.

It is clear that any permutation automorphism of a linear code stabilizes its subfield subcodes.
Hence, given a subgroup Σ ⊆ Aut(Y/Fqm), and assuming Q and G to be invariant under Σ as above,

we also get a subgroup Σ̃SSAG of Perm(SSAGq (Y,Q, G)), acting on the right. Note that Σ̃SSAG is

nothing but Σ̃ restricted to the subfield subcode. Later on we will occasionally abuse notation and
write σ for σ̃, and Σ for Σ̃ or Σ̃SSAG, whenever it is clear from the context.

Since we know how to construct AG and SSAG codes that are invariant under some automorphism
subgroup, we focus on the properties of the corresponding invariant code.

3.1.2 The invariant code

Fix an AG code

C := CL(Y,Q, G)

as in the previous section, and let Σ ⊆ Aut(Y/Fqm) be an automorphism subgroup. In the discussion
below, we show that if C is Σ–invariant, its (punctured) invariant subcode CΣ (see. Definition 1.15) is
also an AG code, defined on the quotient curve Y/Σ, whose function field is the fixed field K := LΣ.
We start with the following lemma:

Lemma 3.1. With above notation, assume that Q and G are invariant under an automorphism
σ ∈ Aut(Y/Fqm). If a codeword c = evQ(f) ∈ CL(Y,Q, G) is σ–invariant, i.e if cσ = c, then
fσ = f .

Proof. Write Q = {Q1, ..., Qn}. We have

0 = cσ − c = evQ(f
σ − f),

hence fσ − f admits at least n zeroes Q1, . . . , Qn. Since G is σ–invariant, fσ ∈ L(G), thus fσ − f ∈
L(G). As n > deg(G), this imposes fσ − f = 0.

Our next definition will play a crucial while considering invariant codes.

Definition 3.2. Consider an extension L/K of function fields, corresponding to a morphism of

curves π : Y → X . Given a divisor G ∈ Div(L), we define its pushforward G̃ as the largest divisor
in K such that

π∗G̃ ≤ G.

Remark 3.3. We warn the reader that our definition of pushforward differs from the one usually used
in the literature, and denoted by π∗G. We will encounter the latter terminology later, in Chapter 5.
Since our definition notion will be widely used thought this chapter, we made the choice to give it a
name, which fits well as it is in some sense a ”dual” operation of pullback.

The properties of pushforwards are put together in the upcoming result.

Lemma 3.4. With notation as above:

(i) LL(G) ∩K = LK(G̃).

(ii) if we write

G =
∑
S∈PL

tSS

for integers tS almost all of which are 0, then

G̃ =
∑

R∈PK

(
min
S|R

⌊
tS

e(S|R)

⌋)
R.

46

3.1. PRELIMINARIES

(iii) we have

Supp(G̃) ⊆ π(Supp(G)).

(iv) for G1, G2 ∈ Div(L), we have

˜(G1 +G2) ≥ G̃1 + G̃2

(v) if A ∈ Div(K), then

π̃∗A = A.

Proof. (i) Given h ∈ K we have (h)L = π∗(h)K , and thus we have h ∈ LL(G) iff π∗(h)K ≥ −G.

But by Definition 3.2 this means precisely (h)K ≥ −G̃, i.e. h ∈ LK(G̃).

(ii) If G̃ =
∑

R∈PK

xRR, then

π∗G̃ =
∑

R∈PK

∑
S|R

xRe(S|R)S,

and so π∗G̃ ≤ G if and only if

xR ≤
tS

e(S|R)

for all R ∈ PK and all S|R. Then G̃ is maximal when all xR are maximal under this condition,
which means precisely

xR = min
S|R

⌊
tS

e(S|R)

⌋
.

The remaining results are consequences of (ii).

When L/K is a Galois extension, the above lemma can be precised when talking about invariant
divisor:

Proposition 3.5. Let L/K be a Galois extension of function fields, with Galois group Σ, and let
G ∈ Div(L) be a Σ–invariant divisor. Then:

(i) LL(G)Σ = LK(G̃)

(ii) if we write G as a sum of orbits under Σ, i.e.

G =

s∑
i=1

ti
∑

Q∈OrbΣ(Si)

Q

for places S1, ..., Ss ∈ PL nonconjugate under Σ and integers ti ∈ Z\{0}, then

G̃ =

s∑
i=1

⌊
ti

e(Si|Ri)

⌋
Ri,

where Ri = Si ∩K ∈ PK .

Proof. (i) Since LL(G)Σ = LL(G) ∩ LΣ = LL(G) ∩K, this is a special case of (i) in the previous
Lemma.

(ii) Observing that G is Σ–invariant and that e(Q|Ri) = e(Si|Ri) for all Q ∈ OrbΣ(Si), this is
again a special case of (ii) in the previous Lemma.

Theorem 3.6. Let C := CL(Y,Q, G) be an AG code defined on a curve Y over Fqm , with Q and
G invariant under the action of Σ ⊆ Aut(Y/Fqm). Then its invariant code under Σ is also an AG
code, defined on the quotient curve Y/Σ. In particular, we have

CΣ = CL(Y/Σ,P, G̃),

where G̃ is given by Proposition 3.5, (ii) and

P = {Q ∩ LΣ , Q ∈ Q}.

Proof. Consequence of Lemma 3.1 and Proposition 3.5.

47

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

Remark 3.7. The invariant and subfield subcode operations commute: more precisely, for any linear
code C ⊆ Fn

qm and Σ a subgroup of its permutation group, we have

(C ∩ Fn
q)

Σ = {c ∈ C | c ∈ Fn
q and σ(c) = c , ∀σ ∈ Σ} = CΣ ∩ Fn

q .

Corollary 3.8. With notation of Theorem 3.6, we have

SSAGq (Y,Q, G)
Σ
= SSAGq

(
Y/Σ,P, G̃

)
.

Proof. Consequence of Theorem 3.6 and Remark 3.7.

3.2 Finding the equation of a Galois cover

While considering a structured SSAG code SSAGq (Y,Q, G) as public key for the McEliece cryp-
tosystem, showing that the secret structure of the public code can be recovered from the invariant
code consists in assuming that the geometric structure of the invariant code is known, then use it to
find the secret data. More precisely, the crucial step is to recover an equation for the curve Y. In
this section, we provide the general idea to do so.

3.2.1 Setting

Let us consider a Galois cover
π : Y −→ X

between curves over Fqm , with Galois group Σ. It corresponds to a Galois extension of function
fields L/K, where K = Fqm(X), L = Fqm(Y) and such that Σ = Gal(L/K) (i.e. X = Y/Σ is
the corresponding quotient curve). In particular, there exists a primitive element y ∈ L such that
L = K(y) and

H(y) = 0 , where H ∈ K[T] irreducible polynomial.

By an equation of Y over X , we mean the minimal polynomial H of such a y over K. Denote by
ℓ = [L : K] = |Σ| the degree of the extension, and suppose we are given a set of r rational points on
X , say P = {P1, ..., Pr}, that totally split in the cover Y → X . For any 1 ≤ i ≤ r, we then have

π∗Pi = Qi,1 + ...+Qi,ℓ,

where Qi,j |Pi. In particular, it means that for all 1 ≤ i ≤ r,

OrbΣ(Qi,1) = {Qi,1, ..., Qi,ℓ}.

We denote by Q = {Qi,j | 1 ≤ i ≤ r and 1 ≤ j ≤ ℓ} the set of all extensions of the Pi’s in L.
Let G ∈ Div(L) be a Σ–invariant divisor such that Supp(G) ∩ Q = ∅ and deg(G) < n := ℓr.

Denote by G̃ ∈ Div(K) its pushforward (with respect to Definition 3.2), which satisfies Supp(G̃)∩P =

∅. The AG code CL(Y,Q, G) then admits CL(X ,P, G̃) as its invariant subcode under the action of
Σ, and likewise the SSAG–code

C := SSAGq (Y,Q, G)

admits CΣ = SSAGq

(
X ,P, G̃

)
as its invariant subcode. Hence, considering C as public code in a

McEliece encryption scheme, we aim to recover its geometric structure from the knowledge of CΣ.
To do so, we make the following assumptions:

A1. We know a generator matrix M ∈Mk,n(Fqm) of the SSAG code C, where k := dimFq C.

A2. We know the permutation subgroup Σ̃SSAG ⊆ Perm(C) induced by Σ.

A3. We know the underlying geometric structure of the invariant subcode CΣ, i.e. we know the
quotient curve X or equivalently its function field K, the finite set of places P in K, and the
invariant divisor G̃ ∈ Div(K).

As our aim is to recover an equation of Y over X , we describe below the general principles of our
method that allows to do so, at least under a further assumption that will be given later. Observe
first that, as a consequence of A2 and A3, we know the degree ℓ of the cover, and for any place
Pi ∈ P, we know the coordinate positions of C corresponding to the ℓ extensions Qi,j of Pi in Q. As
justified by the following proposition, the main ingredient of our method will be to find the evaluation
vector y = (y(Qi,j))i,j of length n = ℓr, for some primitive element y ∈ L satisfying certain degree
conditions.

48

3.2. FINDING THE EQUATION OF A GALOIS COVER

Proposition 3.9. Let y be a primitive element of L over K (i.e. L = K(y)), and

H(T) = T ℓ + hℓ−1T
ℓ−1 + · · ·+ h1T + h0 ∈ K[T]

be its minimal polynomial. For each k ∈ {0, . . . , ℓ− 1}, assume that either:

• we know a priori some divisor Dk ∈ Div(K), of degree deg(Dk) < r, such that hk ∈ LK(Dk);
or:

• the support of (hk)
K
∞ is unknown, but we know that it has degree deg(hk)

K
∞ < r/2.

Then the polynomial H(T) is entirely determined by the evaluation vector y = (y(Qi,j))i,j.

Proof. By Galois theory, the roots of H are yσ1 , . . . , yσℓ , where Σ = {σ1, . . . , σℓ}; and so for each k
we have

hk = (−1)ℓ−ksℓ−k(y
σ1 , . . . , yσℓ)

where sℓ−k stands for the degree ℓ − k elementary symmetric polynomial. Evaluating at Qi,j , we
deduce

hk(Pi) = (−1)ℓ−ksℓ−k(y(Qi,1), . . . , y(Qi,ℓ)), for all i ∈ {1, . . . , r}. (3.1)

Now it suffices to show that Equation (3.1) entirely determines hk.
In the case that hk ∈ LK(Dk) for a known Dk of degree deg(Dk) < r, let h′

k ∈ LK(Dk) be another
solution of (3.1). Then hk − h′

k ∈ LK(Dk), but hk − h′
k has at least r zeroes, hence hk − h′

k = 0.
If we only know that deg(hk)

K
∞ < r/2, let h′

k be another solution of (3.1) with deg(h′
k)

K
∞ < r/2,

and set Dk = (hk)
K
∞ + (h′

k)
K
∞, so deg(Dk) < r. Then again we have hk − h′

k ∈ LK(Dk), but hk − h′
k

has at least r zeroes, hence hk − h′
k = 0.

Note that finding H from y reduces to an interpolation problem: find the hk knowing their
values hk(Pi). Ultimately, this boils down to solving a linear system. Proposition 3.9 asserts that
the system will have a unique solution provided the cover Y over X can be defined by an equation
H whose coefficients hk are small enough compared to the length n of C. However, the algorithmic
complexity of writing down this linear system depends on the geometry: in case hk ∈ LK(Dk) for
a known Dk, we face a generalization to X of the Lagrange interpolation problem. In case we only
have control on the degree of (hk)

K
∞, we are in front of a generalized rational function reconstruction

problem. The study of these interpolation problems on arbitrary curves is still an area of active
research. Efficient algorithms are known for curves of genus 0, and ad hoc methods could be devised
for specific instances.

3.2.2 Finding the evaluation vector

Now we focus on the task of finding a suitable evaluation vector y. For this we make a fourth
assumption:

A4. We know an effective divisor B ∈ Div(K) such that the Riemann–Roch space LL(π
∗B) contains

a primitive element y for L over K.

Moreover we will request that this B ≥ 0 is not too large, in a sense that will appear clearer later.

Remark 3.10. We observe that the assumption A4 is closely related to the conditions in Proposi-
tion 3.9. Indeed, if y ∈ LL(π

∗B), then also yσ ∈ LL(π
∗B) for each conjugate yσ, from which it

follows hk = (−1)ℓ−ksℓ−k(y
σ1 , . . . , yσℓ) ∈ LK((ℓ−k)B), i.e. we can take Dk = (ℓ−k)B. Conversely,

if we know the Dk, then we can find a B using the theory of Newton polygons.
However, it might be that in some instances, we have additional information either on B or on the
(hk)

K
∞. Regarding Proposition 3.9, we also need to be able to compute Riemann–Roch spaces on X ,

especially those associated to the D′
ks, reason why we keep assumption A4 and the conditions in the

proposition separate, in order to allow more flexibility.
For instance, suppose we have some a priori information that allows us to know (y)L∞ perfectly.

It is then easily checked that we can take B = − ˜(−(y)L∞), and actually this will be the optimal (i.e.
the smallest) choice. More precisely, while considering applications in Section 3.3, the divisor (y)L∞
will be a multiple of the unique point at infinity in the extension, hence all the Riemann-Roch spaces
on K we need to compute will be known.

Notation 3.11. For the rest of the chapter, we adopt the following notation: given any set S of
rational points on a curve Y with function field L, we denote by DS the divisor in Div(L) which is
defined as the sum of all places in S, i.e.

DS :=
∑
P∈S

P.

49

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

Now, we make use of the specific structure of algebraic geometry codes: first, as subfield subcode,
we have SSAGq (Y,Q, G) ⊆ CL (Y,Q, G), hence

CL (Y,Q, G)
⊥ ⊆ SSAGq (Y,Q, G)

⊥ ⊗ Fqm .

Then, from Proposition 1.83, there exists a differential ω ∈ ΩL such that

CL (Y,Q, G)
⊥
= CL

(
Y,Q, G⊥) · Zω, (3.2)

where G⊥ = DQ−G+ (ω)L, νQi,j (ω) = −1 for all Qi,j ∈ Q and Zω is the diagonal matrix of length
n = ℓr whose coefficient are (Resω(Q))Q∈Q. For all g ∈ LL(G

⊥), we then have

M · Zω · evQ(g)T = 0, (3.3)

where M is a generator matrix of SSAGq (Y,Q, G), seen as a matrix over Fqm by scalar extension.

At this step, we could be tempted to use a differential ω ∈ ΩL such that Zω is the identity matrix
(see. Theorem 1.82) as it would clearly simplify Equation (3.3), but we actually have no reason
to know this differential explicitly, since L is unknown. More precisely, the trickiest part is to find
some explicit differential (i.e. in terms of known data) whose valuation at any place in the unknown
support Q equals -1. Among these differentials, if we manage to find one such that the divisor G⊥

is not to complicated, we can use Equation (3.3) to find y.

Lemma 3.12. With above notation, set F := LK(G̃⊥ − B) where B ∈ Div(K) is defined in
Assumption A4. Then

F ⊆ LK(G̃⊥)

and for all y ∈ LL(π
∗B) we have

π∗F · y ⊆ LL(G
⊥).

Proof. The first assertion comes from the fact that B is effective. As for the second, observe that
for g ∈ F and y ∈ LL(π

∗B) we have

(π∗g · y)L = π∗(g)K + (y)L ≥ π∗(−(G̃⊥ −B))− π∗B = −π∗G̃⊥ ≥ −G⊥.

Let g1, ..., gs be a basis of F over Fqm . For any 1 ≤ k ≤ s, consider the evaluation vector

uk := (π∗gk(Q1,1), . . . , π
∗gk(Q1,ℓ), . . . , π

∗gk(Qr,1), . . . , π
∗gk(Qr,ℓ))

and denote by
Dk := Diag(uk)

the corresponding diagonal matrix of length n. Equation (3.3) can then be rewritten as a linear
system:

Proposition 3.13. We consider the vector zω := Resω(Qi,j))i,j, where ω ∈ ΩL satisfies Equation
(3.3). For any y ∈ LL(π

∗B) with associated evaluation vector y = (y(Qi,j))i,j, we have
M ·D1 · (zω ⋆ y)T = 0

...
M ·Ds · (zω ⋆ y)T = 0,

(3.4)

which gives a set of ks equations of which zω ⋆ y is solution, where k = dimFq
C.

Proof. For all k ∈ {1, . . . , s}, Lemma 3.12 gives

π∗gk · y ∈ LL(G
⊥).

Evaluating at the places Qi,j ’s yields

uk ⋆ y ∈ CL(Y,Q, G⊥).

Since Zω · CL(Y,Q, G⊥) ⊆ SSAGq (Y,Q, G)
⊥
, we finally get

M ·Dk · (zω ⋆ y)T = 0,

which gives the desired result.

50

3.2. FINDING THE EQUATION OF A GALOIS COVER

Remark 3.14. Depending on the quotient curve X , it may be hard to find the exact divisor G̃⊥,
especially if its support is hard to explicit. For this reason, we might in concrete instances use
another divisor D ∈ Div(K) such that

• D ≤ G̃⊥;

• G̃⊥ −D has small degree and

• D can be explicitly computed from our hypotheses.

Note that Lemma 3.12 (and thus the system (3.4)) still holds by replacing G̃⊥ with such a D.

We point out that several computations realized on Magma [BCP97] show that the system (3.4)
usually does not have a unique solution. Thankfully, we can add other equations that are only
satisfied by the vector we are searching, making use of the action of the automorphism acting on Q,
leaving it invariant. We will come back at this step later in concrete instances. Moreover, depending
on the context, the residue vector zω might be known from our hypothesis and choice of differential.
Otherwise, solving the system (3.4) only allows us to recover the product vector zω ⋆ y.

Isolating the desired vector. If zω is unknown, we have to isolate y from the product zω ⋆ y.
To do so, we can build another linear system by changing slightly the space F defined in Lemma
3.12, so that zω ⋆ y2 is a solution of it.

Lemma 3.15. Let B = − ˜(−(y2)L∞) and set F ′ := LK(G̃⊥ −B′). Then

F ′ ⊆ LK(G̃⊥)

and
π∗F · y2 ⊆ LL(G

⊥).

Proof. Similar to the proof of Lemma 3.12.

Repeating the same process as above (using this time a basis of the space F ′), we can recover
zω ⋆ y2. As any component of zω is non zero, we conclude by computing

y = (zω ⋆ y2) ⋆ (zω ⋆ y)−1.

Finishing the attack. To complete the security reduction, we make use of Proposition 3.9 to
recover a defining equation of the cover, hence finding a projection morphism π and the minimal
polynomial H ∈ K[T] of a primitive element y of L over K. From this, we can also rebuild the

divisor G := π∗G̃ using Kummer’s theorem or its corollary ([Sti09, Theorem 3.3.7 and Corollary
3.3.8]). Having now recovered the whole structure of the public SSAG code, this proves that under
our assumptions, the security of the scheme reduces to the security of the invariant code.

Recap. Let us end up this somewhat formal section by summing up what is left to be precised in
concrete instances, in preparation for the next section.

• How to chose the divisor B ? As discussed in Remark 3.10, we will only consider extensions

where the divisor (y)L∞ is perfectly known, in which case we can take B = − ˜(−(y)L∞). This is
in some sense the easiest case but it still provides some interesting results.

• How can we make a smart choice for the differential ω ∈ ΩL satisfying Equation (3.3) ? The
ideal candidate is a differential satisfying

∀Qi,j ∈ Q , νQi,j (ω) = −1, (3.5)

while having a divisor which is as simple as possible (i.e. supported by only a few points).
Since ΩL is a one dimensional vector space over L (see Proposition 1.63, 2), it implies a suitable
choice of some function h ∈ L such that ω = hdx (where x is a separating element of L over
Fqm). In concrete instances, this can be done by studying the different divisor of L/Fqm(x).

• How to ensure that zω ⋆ y is the unique solution of the System (3.4) ? In Sections 3.3.2 and
3.3.3, we focus on extensions L/K which are cyclic generated by σ, in which cases the action
on the public SSAG code is uniquely determined by the image σ(y) of the primitive element
y under σ. In particular, this means that each orbit of the unknown vector y has a specific
structure (if σ(y) is known, the full orbit can be recovered from only one entry). Our plan is
to use this additional structure to add more equations to the system we have to solve, hopping
to reduce the number of solutions.

51

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

3.3 Applications

In this section, we present our attack in concrete instances of a cyclic extension of function fields,
which can be either a Kummer extension or an elementary abelian p–extension, depending whether
the degree of the cover is prime to the characteristic of the base field or not. First, we give sufficient
conditions on the quotient curve X to make the attack possible.

3.3.1 About the quotient curve

Below, we define a general class of curves that satisfy two properties, needed to enable our attack
whenever the quotient curve X is in this class.

Definition 3.16. We denote by B the set of pairs (X , P∞), where X is a smooth and irreducible
projective curve over Fqm equipped with a point P∞ ∈ X (Fqm) such that:

1. There exists a morphism X → P1 which is totally ramified at infinity, and hence P∞ is the
unique point at infinity in X .

2. There exists a function h ∈ K := Fqm(X) such that

(h · dx)K = (2g(X)− 2) · P∞, (3.6)

where x is a separating element of K over Fqm .

If α is a primitive element of K over the rational function field Fqm(x), then the first property
ensures that the divisor (α)K∞ is a multiple of P∞, which will helps in choosing the divisor B. The
second will be useful to find a good differential that satisfies Equation (3.2).
A fairly large class of curves that satisfy both conditions of Definition 3.16 is the class of Ca,b curves
(see Section 1.2.5): in fact,

• it has a unique point at infinity P∞, since a and b are relatively prime,

• for any canonical divisor W on a Ca,b curve, W ∼ (2ga,b − 2)P∞ (see [BESP10, Proposition
4.1]).

Note also that under technical assumptions, Kummer and Artin–Schreier curves can be seen as
Ca,b curves. In the upcoming sections, we apply our attack in the case where L/K is a Kummer
extension (Section 3.3.2) or an elementary abelian p–extension (Section 3.3.3) of a curve X which is
in the class B.

3.3.2 Kummer covering

Setting. Let (X , P∞) ∈ B be a curve satisfying both properties of Definition 3.16, K = Fqm(X) and
denote by a = [K : Fqm(x)]. If∞ is the point at infinity in the rational function field, we have P∞|∞
and e(P∞|∞) = a. Given an integer ℓ (not necessarily a prime) such that gcd(ℓ, char(Fqm)) = 1 and
ℓ | qm − 1, we consider the function fields extension L = K(y), with

yℓ = f,

where f ∈ K is a function that satisfies the following properties:

K1. P∞ is the only pole of f , and d := −νP∞(f) is prime to ℓ. Hence, (f)K∞ = dP∞;

K2. ∀P ∈ Supp
(
(f)K0

)
, νP (f) = 1.

L/K is a Kummer extension, cyclic of order ℓ = [L : K] and whose Galois group is given by

Gal(L/K) = {σ : y 7→ ξ · y | ξ ∈ µ∗
ℓ (Fqm)}.

We denote by Y the curve associated to L and π : Y → X the corresponding morphism.
Assuming ℓ | qm − 1 implies that the primitive ℓ–th roots of unity are indeed in Fqm . Let us

discuss the assumptions made on the function f :

• first, assuming gcd(d, ℓ) = 1 ensures that P∞ is totally ramified in L/K, which will be manda-
tory later on.

52

3.3. APPLICATIONS

• Supposing that f as only one pole, which is P∞, is not too much of a restriction since we
can always get back to this case: in fact, if f has multiple poles, the Strong Approximation
Theorem [Sti09, Theorem 1.6.5] guarantees that there exists a function α ∈ K×, with P∞ as
only pole, and such that

(fα)K∞ = (d+ d′)P∞,

where d′ := −νP∞(α) > 0. Now, from Kummer’s theory, we get the same extension by replacing
the equation yℓ = f with zℓ = f ′, where f ′ = fαℓ (since αℓ ∈ (K×)ℓ). If we do so, we have
(f ′)K∞ = (d+d′ℓ)P∞, which is prime to ℓ since d is. Hence, f ′ = fα satisfies K1. Note however
that multiplying the equation by αℓ would create new zeroes, but we can also ensure that the
zeroes of α differ from those of f .

• Finally, we make the assumption K2 for 2 reasons: it allows to describe simply both the
ramification in L/K and the structure of the different divisor Diff(L/K). More precisely, it
implies that the divisor (yf)

L +Diff(L/K) is only supported by the unique point at infinity in
L. In Example 3.21, we show that the latter property does not hold if f has a multiple zero.

Remark 3.17. Notice that K2 exactly means that f as only simple zeroes. If K = Fqm(x), then f is a
univariate polynomial in x and it corresponds to suppose it is square–free, which is usually assumed
while considering Kummer extensions of the rational function field.

In what follow, we describe in details the attack presented in Section 3.2 to recover the evaluation
vector y = (y(Qi,j))i,j . For our hypotheses, we take the same as in Section 3.2.1: more precisely,
with notation of Proposition 3.9, we have H(T) = T ℓ − f ∈ K[T]. Moreover, we assume that K1
and K2 hold, but the function f ∈ K is unknown.

The choice of ω. We start by studying the different of L/Fqm(x). First, by transitivity of the
different [Sti09, Corollary 3.4.12], we have

Diff(L/Fqm(x)) = π∗ (Diff(K/Fqm(x))) + Diff(L/K). (3.7)

Since L/K is a Kummer extension, which has been extensively studied, we know exactly which
places ramify.

Proposition 3.18. With the above notation, let P ∈ PK and Q ∈ PL such that Q|P . Then

e(Q|P) =
ℓ

gcd(ℓ, νP (f))
and d(Q|P) = e(Q|P)− 1.

Proof. See [Sti09, Proposition 3.7.3].

Corollary 3.19. Let Z(f) be the set of zeroes of f in PK . Under K1 and K2, we have

(f)K =
∑

P∈Z(f)

P − dP∞,

and thus

Diff(L/K) = (ℓ− 1)

 ∑
P∈Z(f),Q|P

Q+Q∞

 ,

where Q∞|P∞ is the unique extension of P∞ in L.

Proof. Proposition 3.18 gives that any place P ∈ PK\ Supp(f)K does not ramify. Now, for any
P ∈ Supp(f)K , we have gcd(ℓ, νP (f)) = 1 (using K1 for P∞ and K2 for the zeroes of f), hence any
such P totally ramifies in L/K. The result follows from the definition of the different (see Definition
(1.56)).

Proposition 3.20. With notation as above, (Y, Q∞) ∈ B. Moreover, there exists h ∈ K such that
the differential

ω0 := h · y
f
· dx ∈ ΩL

satisfies

(ω0)
L = (2g(L)− 2) ·Q∞.

53

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

Proof. We have already seen that Q∞ is the unique point at infinity in Y. It remains to prove the
second point of Definition 3.16: since (X , P∞) ∈ B, there exists h ∈ K such that

(h · dx)K = (2g(K)− 2)P∞.

Next, notice that both K1 and K2 imply

(f)L = π∗(f)K = ℓ

 ∑
P∈Z(f),Q|P

Q− dQ∞

 ,

since any place in Supp
(
(f)K

)
is totally ramified. From the defining equation yℓ = f , we then get(
y

f

)L

= (ℓ− 1)

dQ∞ −
∑

P∈Z(f),Q|P

Q

 .

Using Corollary 3.19 yields(
y

f

)L

+Diff(L/K) = (ℓ− 1)(d+ 1) ·Q∞ = deg (Diff(L/K)) ·Q∞, (3.8)

the last equality coming from the linearity of the degree map and the fact that any principal divisor
has degree zero. By definition of h and Equation (1.3), we have

(h)K = (2g(K)− 2)P∞ − (dx)K = (2g(K)− 2)P∞ + 2(x)K∞ −Diff(K/Fqm(x)).

Now we take the pullback:

(h)L = ℓ(2g(K)− 2)Q∞ + 2(x)L∞ − π∗ (Diff(K/Fqm(x))) . (3.9)

Adding both Equations (3.8) and (3.9), the transitivity of the different (3.7) finally gives

(ω0)
L = (h)L +

(
y

f

)L

+ (dx)L

= [ℓ(2g(K)− 2) + deg(Diff(L/K))]Q∞

= (2g(L)− 2)Q∞,

the last equality coming from Corollary 1.68.

In the following counter–example, we show in a simple case why the assumption K2 is important.

Counter-example 3.21. Let F := F121. Denote by K = F(x) the rational function field and
consider the Kummer extension L = K(y), with

y5 = f(x) := (x− α)3(x− β) and α ̸= β ∈ F.

Let Pα and Pβ be the zeroes of x−α and x−β in K, respectively. We easily check that (f)K∞ = 4P∞,
where P∞ is the pole of x. Remark that Pα, Pβ and P∞ are totally ramified, hence K1 hold but
clearly K2 does not, as Pα is a zero of order 3. We have

Diff(L/K) = 4(Qα +Qβ +Q∞),

where Qα, Qβ and Q∞ are the extensions of Pα, Pβ and P∞ respectively. A quick computation shows
that (yf)

L +Diff(L/K) is not only supported by Q∞, i.e.(
y

f

)L

+Diff(L/K) = 20Q∞ − 8Qα.

With above notation, we can take h = 1 (K is the rational function field). Hence, the differential ω0

defined in Proposition 3.20 satisfies

(ω0)
L = 10Q∞ − 8Pα.

Consequently, the formula for ω0 does not work here. Even worse, we can check on Magma [BCP97]
that there exist no function z ∈ L such that

(zdx)L = (2g(L)− 2)Q∞,

which entails (Y, Q∞) /∈ B.

54

3.3. APPLICATIONS

At this step, we now have access to a differential ω0 which is rather simple since it is only
supported by Q∞. Of course, we still need to deal with the conditions of Equation (3.5), which is
the point of the upcoming discussion.

Lemma 3.22. Consider the sets

R :=
{
R ∈ PFqm (x) | ∃P ∈ P such that P |R

}
, RK := {P ∈ PK | P |R, for some R ∈ R} ,

and the function

ιP :=
∏
R∈R

(x− x(R)) ∈ Fqm(x).

Setting r∗ := #R ≤ r, where r = n
ℓ is the number of orbits in the unknown support Q, we have

(ιP)
L = π∗DRK

− (ℓar∗) ·Q∞,

where DRK
is the divisor associated to RK with respect to Notation 3.11.

Proof. By definition, we have
(ιP)

Fqm (x) = DR − r∗∞,

where ∞ stands for the point at infinity in Fqm(x). The result follows from the definition of DRK

and the fact that Q∞ is the only extension of ∞, with e(Q∞|∞) = ℓa.

Notice that P ⊆ RK , the equality being attained if K/Fqm(x) is Galois and if P is Galois–
invariant, which is not necessarily the case (this justify the introduction of the integer r∗).

Proposition 3.23. The differential ω := ι−1
P ω0 ∈ ΩL satisfies

(ω)L = (2g(L)− 2 + ℓar∗) ·Q∞ − π∗DRK
.

Moreover, for every Qi,j ∈ Q, we have νQi,j
(ω) = −1.

Proof. Consequence of Proposition 3.20 and Lemma 3.22. The result about the valuation of ω at
each Qi,j comes from the fact that νQi,j

(π∗DRK
) = 1.

Corollary 3.24. With above notation, let A := DRK
−DP ∈ Div(K). Then the dual divisor G⊥ of

G, as defined in Proposition 1.83, is given by

G⊥ := DQ −G+ (ω)L = (2g(L)− 2 + ℓar∗) ·Q∞ −G− π∗A.

Proof. Consequence of Proposition 3.23 and the fact that π∗A = π∗DRK
−DQ.

The shape of the divisor G⊥ being now known, it remains to study its pushforward G̃⊥ in order
to apply Lemma 3.12.

Study of G̃⊥. To recover the evaluation vector y, we need to have as many equations as possible
in the system (3.4), meaning that we want F (defined in Lemma 3.12) to be as big as possible (the
same holds for F ′ (see Lemma 3.15) if it is needed). It might be hard to compute directly the divisor

G̃⊥, but we show below that we still can perform the attack by considering an alternative divisor

D ∈ Div(K) such that D ≤ G̃⊥ and G̃⊥ −D has small degree.

Proposition 3.25. Following notation 3.11, we consider the divisors

D :=

(⌊
2g(L)− 2 + ℓar∗

ℓ

⌋
− 1

)
·P∞−G̃−A−DSupp(G̃)−DSupp(G̃)∩Supp(A) and B := − ˜(−(y)L∞),

both lying in Div(K). Then

1. B =

⌈
d

ℓ

⌉
· P∞.

2. D ≤ G̃⊥ and LK(D −B) ⊆ LK(G̃⊥).

3. For all y ∈ LL(π
∗B) and g ∈ LK(D −B), we have

π∗g · y ∈ LL(G
⊥).

55

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

4. The divisor D −B ∈ Div(K) can be computed from our hypotheses.

Proof. 1. Since (f)K∞ = dP∞, the defining equation of Y gives ℓ(y)L∞ = π∗(dP∞) = ℓdQ∞. Thus,
(y)L∞ = dQ∞, and hence

B = − ˜(−(y)L∞) = −(−̃dQ∞) = −
⌊
−d
ℓ

⌋
P∞ =

⌈
d

ℓ

⌉
P∞.

2. First, recall that L/K is a Galois extension, hence for all P ∈ PK and Q ∈ PL with Q|P , the
integer e(Q|P) := e(P) does not depend on Q [Sti09, Corollary 3.7.2]. Keeping above notation,
we know by definition that

A =
∑

P∈Supp(A)

P, and thus π∗A =
∑

P∈Supp(A),Q|P

e(Q|P) ·Q.

Using Corollary 3.24, we can write

G⊥ = (2g(L)− 2 + ℓar∗ − νQ∞(G)) ·Q∞ +
∑

Q∞ ̸=Q∈PL

(−νQ(G)− νQ(π
∗A))Q,

since we know that Q∞ /∈ Supp(π∗A) (but we might have Q∞ ∈ Supp(G)). By definition of
the pushforward (cf. Definition 3.2) and its properties (cf. Lemma 3.4), we have

G̃⊥ =

⌊
2g(L)− 2 + ℓar∗ − νQ∞(G)

ℓ

⌋
P∞ +

∑
P∞ ̸=P∈PK

min
Q|P

⌊
−νQ(G)− νQ(π

∗A)

e(Q|P)

⌋
︸ ︷︷ ︸

:=νP (G̃⊥)

P,

(3.10)
using the fact that Q∞|P∞ is totally ramified in L/K. By distinguishing cases, we can estimate

the valuations νP (G̃⊥) defined above for any P (at several steps of the computations, we will
use the fact that for any x, y ∈ R, we have ⌊x− y⌋ ≥ ⌊x⌋ − ⌊y⌋ − 1):

(a) If P = P∞, we have

νP∞(G̃⊥) ≥
⌊
2g(L)− 2 + ℓar∗

ℓ

⌋
− νP∞(G̃)− 1.

(b) If P ∈ Supp(G̃) and P /∈ Supp(A), then

νP (G̃⊥) = min
Q|P

⌊
−νQ(G)

e(Q|P)

⌋
≥ −

⌊
νQ(G)

e(P)

⌋
− 1 = −νP (G̃)− 1.

(c) If P /∈ Supp(G̃) and P ∈ Supp(A), we have by definition

νP (G̃⊥) = min
Q|P

⌊
−νQ(π∗A)

e(Q|P)

⌋
= −1 = −νP (A).

(d) In the case P ∈ Supp(G̃) ∪ Supp(A), we have

νP (G̃⊥) = min
Q|P

⌊
−νQ(G)− νQ(π

∗A)

e(Q|P)

⌋
≥
⌊
−νQ(G)

e(P)

⌋
−
⌊
νQ(π

∗A)

e(P)

⌋
− 1

≥ −
⌊
νQ(G)

e(P)

⌋
− 1− νP (A)− 1

≥ −νP (G̃)− νP (A)− 2.

(e) For any other P , we have νP (G̃⊥) = 0.

Using these estimations in Equation (3.10) yields

G̃⊥ ≥
(⌊

2g(L)− 2 + ℓar∗

ℓ

⌋
− 1

)
· P∞ − G̃−A−DSupp(G̃) −DSupp(G̃)∩Supp(A) := D.

The inclusion LK(D −B) ⊆ LK(G̃⊥) follows from the fact that B is an effective divisor.

56

3.3. APPLICATIONS

3. For y ∈ LL(π
∗B) and g ∈ LK(D −B), we have

(π∗g · y)L = π∗(g)K + (y)L

≥ π∗(−(D −B))− π∗B

≥ −π∗D

≥ −π∗G̃⊥

≥ −G⊥,

since D ≤ G̃⊥ from 2. This proves that π∗g · y ∈ LL(G
⊥).

4. The integer ℓ is known from A2; and A3 allows us to know explicitly a, r∗ and both divisors G̃
and A (in particular, we know their supports). Finally g(L) can be computed from Hurwitz’
formula (see Theorem 1.72).

The above proposition implies that we can construct D explicitly and consider F := LK(D−B)

instead of LK(G̃⊥ − B) (as done in Lemma 3.12) to build the linear system (3.4). Notice that our

choice of D is not too far from the true value of G̃⊥: in fact, the imprecision arises while bounding

from below the valuations νP (G̃⊥), using a classic inequality of the floor function, i.e.

∀x, y ∈ R, ⌊x− y⌋ ≥ ⌊x⌋ − ⌊y⌋ − 1.

Obviously, we cannot compute directly the left parts since we do not know the valuations occurring
in the decomposition of G and π∗A (they are secret). By splitting these floor parts into two, we end

up with known valuations (i.e. these of G̃ and A). Built this way, the divisor D − G̃⊥ has a small
enough degree, and can be used to build our linear system.

Adding geometric progression. To increase our chances to find a unique solution, we can add
other equations to our system, using the action of the automorphism acting on Q. In fact, since L/K
is a Kummer extension, the automorphism σ acting on the code C := SSAGq (Y,Q, G) is completely
determined by the choice of a primitive ℓ–th root unity ξ. Thus, the evaluation vector y = (y(Qi,j))i,j
satisfies a geometric progression on each orbit of size ℓ (since we assumed by construction that Q
is ordered by orbits of size ℓ). Let us clarify what we mean by geometric progression: for any
ξ ∈ µ∗

ℓ (Fqm), we consider the following block matrix:

E(ξ) =


B(ξ) 0 0

0

0
0 0 B(ξ)

 ∈Mn(Fqm), where B(ξ) =



ξ −1 0 0

0

0

0 −1
−1 0 0 ξ


has size ℓ× ℓ. If ξ is the root of unity that defines σ, then

E(ξ) · yT = 0.

The next lemma shows that the residue vector zω also satisfy this geometric progression.

Lemma 3.26. With the choice of differential made in Proposition 3.23, we have

∀Qi,j ∈ Q, Resω(Qi,j) =
h(Qi,j)y(Qi,j)

f(Qi,j)
∏

R∈R,x(R) ̸=x(Qi,j)

(x(Qi,j)− x(R))
.

Proof. Clear since ω :=
h · y

f ·
∏

R∈R
(x− x(R))

dx.

Since both f , h and x lie in K, they are invariant under the action of σ, which implies that the
vector zω satisfies the same geometric progression as y, i.e. E(ξ) · zTω = 0. Consequently, for any
i ∈ {1, · · · , r} and (Qi,1, · · · , Qi,ℓ) ∈ Q, we have

Resω(Qi,j+1) · y(Qi,j+1) = ξ2 · Resω(Qi,j) · y(Qi,j),

57

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

where j ∈ {1, · · · , ℓ} mod ℓ. Adding this to our system yields
E(ξ2) · (zω ⋆ y)T = 0

M ·D1 · (zω ⋆ y)T = 0
...

M ·Ds · (zω ⋆ y)T = 0,

(3.11)

which is a collection of n+ks equations for n unknowns. The new system (3.11) is over–constrained
but we know that at least zω ⋆y is solution, provided that we guessed the good root of unity ξ. Since
φ(ℓ) = |µ∗

ℓ (Fqm)| = O(n), we can test all possible values of ξ until eventually we find the correct
one, at the cost of at most a linear factor (in the length n of the code). Actually, it is difficult to
give sufficient conditions for the system to have rank one, but it is very reasonable to hope it has a
unique solution (up to scalar multiplication) when we picked the good root of unity, which always
happened in our computing experiments. Additionally, picking a wrong ξ tends to give a system
without any solution.

From now on, assume that we recovered the product vector zω ⋆ y as well as the good root of
unity ξ ∈ µ∗

ℓ (Fqm). Following the idea of Lemma 3.15, we build another linear system to recover
zω ⋆ y2, obtained by replacing E(ξ2) with E(ξ3) in (3.11), i.e.

E(ξ3) · (zω ⋆ y2)T = 0
M ·D1 · (zω ⋆ y2)T = 0

...
M ·Ds · (zω ⋆ y2)T = 0.

(3.12)

Finally, we compute y = (zω ⋆ y2) ⋆ (zω ⋆ y)−1. A plane model of Y can then be found by using an
appropriate interpolation method (possible thanks to Proposition, 3.9).

A formal algorithm describing the attack can be found in Appendix A, and aMagma [BCP97] im-
plementation can be found on a GitHub repository at https://github.com/Reiikar/attack QC SSAG codes.

3.3.3 Elementary abelian p–extension

Setting. Let (X , P∞) ∈ B, K = Fqm(X), a := [K : Fqm(x)] and denote by p the characteristic of
Fqm . Given a integer u ≥ 1 such that Fpu ⊆ Fqm , we consider an elementary abelian p–extension L
of K with degree pu. From [GS91, Proposition 1.1], there exists y ∈ L such that L = K(y), with

yp
u

− y = f, f ∈ K. (3.13)

Similarly to Section 3.3.2, we need to assume that f satisfies K1, i.e.

(f)K∞ = dP∞ and gcd(d, ℓ) = 1.

Remark 3.27. In this case, the hypothesis K2 is no longer required, as it does not impact the
ramification in the extension: in any case, P∞ is the only place that ramifies (see Proposition 3.29).

As we assumed Fpu ⊆ Fqm , the polynomial T pu −T ∈ Fqm [T] has all its roots in Fqm . Hence, the
extension L/K is Galois of order pu = [L : K] and

Gal(L/K) = {σ : y 7→ y + β | β ∈ Fpu}.

As usual, we denote by π : Y → X the corresponding morphism.

Remark 3.28. In the case u = 1, L/K is nothing but an Artin–Schreier extension (see [Sti09,
Proposition 3.7.8]), which is cyclic of prime degree p (i.e. Gal(L/K) ≃ Fp).

In order to recover the evaluation vector

y = (y(Qi,j))i,j ,

we take the same hypotheses as in Section 3.2.1, and assume that L = K(y) with y as in Equation
(3.13), i.e its minimal polynomial over K equals H(T) = T pu−T−f ∈ K[T]. Moreover, the function
f is unknown, but we know it satisfies K1.

58

3.3. APPLICATIONS

The choice of ω. As generalization of Artin–Schreier extensions, elementary abelian p–extensions
are well–studied. In particular, the following proposition gives a description of the ramification in
such extensions.

Proposition 3.29. With above notation, P∞ is the only place which ramifies in L/K. It has a
unique extension Q∞ ∈ PL, i.e. it is totally ramified. Moreover, its different exponent is given by

d(Q∞|P∞) = (pu − 1)(d+ 1).

Proof. Let P ∈ PK . Then from [Sti09, Proposition 3.7.10], we have:

1. either there exists z ∈ K such that νP (f − (zp
u − z)) ≥ 0, in which case we set mP := −1;

2. or else, for some z ∈ K, we have νP (f − (zp
u − z)) = −m < 0 and m ̸≡ 0[p]. In this case, set

mP := m (uniquely determined by f and P).

The integer mP is well–defined for any place P , and [Sti09, Proposition 3.7.10 (c) and (d)] give
that P is ramified if and only if mP > 0, in which case it totally ramifies. In our setting, any
P ∈ PK\ {P∞} has mP = −1, hence is unramified (we assumed P∞ to be the only pole of f). From
K1, the integer mP∞ := d is prime to p, thus P∞ is totally ramified. The formula for the different
exponent is also given in [Sti09, Proposition 3.7.10 (d)].

Corollary 3.30. The different of L/K is given by

Diff(L/K) = (pu − 1)(d+ 1)Q∞.

Proof. Immediate consequence of the definition of the different (see Definition 1.56) and Proposi-
tion 3.29.

Similarly to Kummer setting, we now show that (Y, Q∞) ∈ B and provide a differential satisfying
condition 2 of Definition 3.16.

Proposition 3.31. With notation as above, (Y, Q∞) ∈ B. Moreover, there exists h ∈ K such that
the differential

ω0 := h · dx ∈ ΩL

satisfies
(ω0)

L = (2g(L)− 2) ·Q∞.

Proof. We already saw that Q∞ is the unique point at infinity in Y. From Definition 3.16, there
exists h ∈ K such that (hdx)K = (2g(K)− 2)P∞. Applying Equation (1.3) yields

(2g(K)− 2)P∞ = (h)K − 2(x)K∞ +Diff(K/Fqm(x)).

Taking the pullback, we get

(h)L = pu(2g(K)− 2)Q∞ + 2(x)L∞ − π∗ (Diff(K/Fqm(x))) .

Using Equation (1.3) again, this time applied to (dx)L gives

(dx)L = −2(x)L∞ + π∗ (Diff(K/Fqm(x))) + Diff(L/K).

Consequently, summing up the last two equalities and using Corollary 3.30 yields

(ω0)
L = (h)L + (dx)L

= pu(2g(K)− 2)Q∞ + (pu − 1)(d+ 1)Q∞

= (2g(L)− 2)Q∞,

the last equality coming from Corollary 1.68.

Keeping notation of Lemma 3.22, we proceed as in Section 3.3.2 to build the differential

ω := ι−1
P h · dx ∈ ΩL (3.14)

such that
νQi,j

(ω) = −1 for all Qi,j ∈ Q

and
(ω)L = (2g(L)− 2 + puar∗) ·Q∞ − π∗DRK

.

59

CHAPTER 3. STRUCTURAL ATTACK AGAINST QUASI–CYCLIC SSAG CODES

The divisors G⊥ and G̃⊥. Setting A := DRK
−DP , we deduce from the above discussion that

G⊥ := DQ −G+ (ω)L = (2g(L)− 2 + puar∗) ·Q∞ −G− π∗A.

As in the Kummer case, we build our linear system by using a divisor D ∈ Div(K) which is slightly

smaller than G̃⊥:

Proposition 3.32. Let

D :=

(⌊
2g(L)− 2 + puar∗

ℓ

⌋
− 1

)
·P∞−G̃−A−DSupp(G̃)−DSupp(G̃)∩Supp(A) and B := − ˜(−(y)L∞),

both lying in Div(K). Then

1. B =

⌈
d

pu

⌉
· P∞.

2. D ≤ G̃⊥ and LK(D −B) ⊆ LK(G̃⊥).

3. For all y ∈ LL(π
∗B) and g ∈ LK(D −B), we have

π∗g · y ∈ LL(G
⊥).

4. The divisor D −B ∈ Div(K) can be computed from our hypotheses.

Proof. Similar to Proposition 3.25.

Adding arithmetic progression. One of the main difference with Section 3.3.2 is of course the
action of the Galois group of L/K. By assumption, the code C = SSAGq (Y,Q, G) is invariant under
the action of some order pu automorphism σ : y 7→ y + β, with β ∈ Fpu . As a consequence, the
vector y = (y(Qi,j))i,j satisfies an arithmetic progression on each orbit of size pu. More precisely,
consider the following block matrices:

C =


B 0 0

0

0
0 0 B

 ∈Mn(Fqm), where B =



−1 1 0 0

0

0

0 1
1 0 0 −1


∈Mpu(Fqm).

If β ∈ Fpu is the element that defines the automorphism acting on C, then

C · yT = β,

where β = (β, . . . , β)T is a column vector of size n = rpu.
Our choice of differential (Equation (3.13)) implies

Resω(Qi,j) =
h(Qi,j)∏

R∈R,x(R) ̸=x(Qi,j)

(x(Qi,j)− x(R))
, ∀ Qi,j ∈ Q. (3.15)

It is then clear that the residue vector does not satisfy the arithmetic progression under each orbit:
in fact, from Equation (3.15), the residues of ω are equal on each given orbit (since both h and ιP
lie in K). The latter property is helpful as it means that zω is known under our hypotheses. The
final linear system we have to solve is then

C · yT = β
M ·D1 · Zω · yT = 0

...
M ·Ds · Zω · yT = 0,

(3.16)

where Zω is the diagonal matrix of length n corresponding to zω. Again, the system (3.16) is a
collection of n + ks equations with n unknowns, which has to be solved at most pu = 0(n) times,
until we guessed the good value of β. Again, this would at most increase the complexity by a linear
factor.

60

3.4. GENERALIZATION TO SOLVABLE GALOIS COVER

3.4 Generalization to solvable Galois cover

In this last section, we discuss how the attack presented in Section 3.2 could be generalized to
any solvable Galois cover of curves. In Sections 3.3.2 and 3.3.3, we instantiate the attack in both
Kummer and abelian p–extensions, which are interesting since they characterize in a sense all cyclic
extensions: in fact, given an extension L/K of function fields over Fqm with degree a = [L : K], then

• if gcd(a, p) = 1 and a | qm−1, then L/K is a Kummer extension of degree a (see [Sti09, Annex
A.13]);

• if a = pu and Fpu ⊆ Fqm , then L/K is an elementary abelian p–extension of degree pu (see
[GS91, Proposition 1.1]).

Let us explain how we could deal with the solvable Galois case: let (X , P∞), and consider a cover
π : Y → X (corresponding to an extension L/K of function fields) of curves over Fqm , such that
G := Gal(L/K) is solvable. By definition, there exists a sequence of normal subgroups

{Id} := G0 ◁ G1 ◁ · · · ◁ Gs := G, (3.17)

such that any quotient Gi+1/Gi in Equation (3.17) is cyclic of degree ni := mip
ri ∈ N, where mi is

prime to p. For any i ∈ {0, . . . , s}, we denote by Li := LGi the fixed field by Gi. From Galois theory,
the sequence (3.17) leads to a tower of function fields

K := Ls ⊆ Ls−1 ⊆ · · · ⊆ L0 := L (3.18)

such that for every 0 ≤ i ≤ s − 1, the extension Li/Li+1 is cyclic, with Galois group Gi+1/Gi and
degree ni. Equivalently, this corresponds to a tower of Fqm–curves

Y := X0 −→ X1 −→ · · · −→ Xs := X (3.19)

such that each curve Xi is equipped with the action of the cyclic group Gi+1/Gi, and Xi+1 is the
corresponding quotient curve.

Now, assume that we want to show that the security of a public G–invariant SSAG code

C0 := SSAGq (X0,Q0, G0)

can be reduced to the security of its invariant subcode

Cs := CG
0 = SSAGq (Xs,Qs, Gs) .

As both Q0 and G0 are assumed to be globally G–invariant, they are also invariant under the action
of each subgroup Gi appearing in the sequence (3.17). Consequently, there exists a sequence of
invariant subcodes of C0, say (Ci)si=1such that for all 0 ≤ i ≤ s− 1,

Ci := CGi+1/Gi

i+1 .

As the invariant subcode of an SSAG code is still an SSAG code (Corollary 3.8), each Ci is itself an
SSAG code, i.e.

Ci = SSAGq (Xi,Qi, Gi) ,

for some (invariant) support Qi and divisor Gi. Keeping the assumptions A1,A2 and A3 of Sec-
tion 3.2.1, we want to show that we can recover the structure of C0 from whose of its (full) invariant
code Cs. To do so, we could proceed the following way: from the knowledge of Cs and since Xs−1 → Xs

is Galois with degree ns = msp
rs , we may apply successively the attack in Kummer case with degree

mi (Section 3.3.2) and abelian p–extension case with degree pri (Section 3.3.3). Hopefully, we end
up with an equation of the intermediary curve Xs−1, from which we manage to build the code Cs−1.
Repeating this process, we could ride up the sequence (3.19) until recovering the secret structure of
C0.

However, this method might work only if at each step, we can efficiently verify that our extensions
satisfy conditions K1 and K2 (Kummer case) or K1 (abelian p–extension case). Actually, there is no
reason for it to be true, and it is not reasonable to assume from the beginning that these conditions
are true for all intermediary extensions.

As future work, it could be promising to find the largest class of cyclic covers Y → X such that
(Y, Q∞) ∈ B, whenever (X , P∞) ∈ B. Finding a characterization of such covers would give a step
further to this generalization.

61

Chapter 4

Goppa–like SSAG codes
distinguisher

In this Chapter, in introduce a new family of codes that can be used in a McEliece cryptosystem,
called Goppa–like AG codes. These codes generalize classical Goppa codes and can be constructed
from any curve of genus g ≥ 0. Focusing on codes from Ca,b curves, we study the behaviour of the
dimension of the square of their dual to determine their resistance to distinguisher attacks similar
to the one for alternant and Goppa codes developed by Mora and Tillich [MT21]. In this paper, the
authors managed to get a sharp upper bound by performing Euclidean division by powers of the
multiplicator g in the case of classical Goppa codes. Considering one–point Goppa–like AG codes
defined on a Ca,b curve, we prove that performing division algorithms via Gröbner bases enables us
to obtain similar results. Even better, computations tend to show that the bound we obtain on the
dimension is sharp whenever the code seems random, hence generalizing the distinguisher proposed
in [MT21]. The counterpart is that our distinguisher suffers the same problem, i.e. we can only
distinguish high rate codes.

The chapter is organized as follows. In Section 4.1, we give a first upper bound on the dimension of
the square of the dual of an SSAG code, using an old result on Riemann–Roch spaces due to Mumford
[Mum70]. Section 4.2 is dedicated to Goppa–like AG codes: after motivating their definition, we
then bound from above the dimension of the square of their dual, as done in [MT21] in the case of
alternant codes. In Section 4.3, we refine the bound in the case of Goppa–like codes from Ca,b curves,
associated to one–point divisors. Our results are then analyzed in Section 4.4, where we discuss our
bound in the case of codes from elliptic curves and the Hermitian curve. In the latter case, we study
the effectiveness of our codes applied to a McEliece’s cryptosystem.

Throughout the whole chapter, we fix a finite field Fqm of characteristic p > 0, where q is a power
of p and m ≥ 1. To make the notation less cumbersome, we write Tr(·) instead of TrFqm/Fq

(·) (see
Section 1.1.2 for a definition of the Trace operator).

4.1 First estimation of the dimension of the square of the
trace of an SSAG code

In [MT21], the authors benefited from the fact that the square of GRS codes is abnormally small, i.e
the inequality in Equation (1.1) is always strict. More precisely, if GRSr(x,y) ⊆ Fn

qm is a dimensional

r ≤ n+1
2 code, then

dimFqm
GRSr(x,y)

⋆2 = 2r − 1.

This fact is then used to get a first estimation of the square of the dual of an alternant code, via
Proposition 1.19. Below, we show that AG codes, as generalization of GRS ones, benefit from the
same structure with respect to the Schür product. For the remaining of this section, let X be a
smooth and irreducible projective curve over Fqm with genus g := g(X).

Proposition 4.1 ([Mum70, Theorem 6]). Let F,G be two divisors on X such that deg(G) ≥ 2g+ 1
and deg(F) ≥ 2g. Then

L(F) · L(G) = L(F +G),

where L(F) · L(G) := Span (f · g : (f, g) ∈ L(F)× L(G)).

As a consequence, given an AG code CL(X ,P, G), we have

CL(X ,P, G)⋆2 ⊆ CL(X ,P, 2G),

63

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

with equality if deg(G) ≥ 2g+1. If deg(G) ≥ g, applying the Riemann–Roch theorem to the divisors
G and 2G yields

dimFqm
CL(X ,P, G)⋆2 ≤ dimFqm

CL(X ,P, 2G) = 2 deg(G) + 1− g, (4.1)

which is much smaller than the expected dimension given in Equation (1.1). As the dual of an AG
code is also an AG code (see Proposition 1.83), Proposition 1.19 can also give information on the
subfield subcode of the AG code C := CL(X ,P, G) (using the correspondence of Delsarte’s theorem
1.12), i.e (

SSAGq

(
X ,P, G⊥)⊥)⋆2 ⊆ ⌊m

2 ⌋∑
i=0

Tr
(
C ⋆ Cq

i
)
. (4.2)

Corollary 4.2. Let C := CL(X ,P, G) be a k–dimensional AG code on X associated with a degree
s ≥ g divisor. Then

dimFq

(
SSAGq

(
X ,P, G⊥)⊥)⋆2 ≤ (mk + 1

2

)
− m

2
(k(k − 1)− 2s).

Proof. From Equation (4.1), we have dimFqm
(C)⋆2 ≤ 2s+1− g ≤ k+ s. Thus, Corollary 1.20 yields

dimFq Tr(C)
⋆2 ≤ m(k + s) +

(
m

2

)
k2 = (2k + 2s+mk2 − k2)

m

2

= (k(mk + 1)− k2 + k + 2s)
m

2

=

(
mk + 1

2

)
− m

2
(k(k − 1)− 2s).

According to the above corollary, the dimension of the square of the dual of an SSAG code is less
than the expected value for random mk–dimensional codes (which is

(
mk+1

2

)
), due to the algebraic

structure of AG codes. However, this bound does not fully benefit from this rich structure, notably
the following property.

Lemma 4.3. Let C := CL(X ,P, G) be a k–dimensional AG code on X . For every i ≥ 0, we have

C ⋆ Cq
i

⊆ CL(X ,P, (qi + 1)G)

Proof. Fix i ≥ 0 and let f1, f2 ∈ L(G). Then the product f1f
qi

2 belong to L((qi + 1)G) as

(f1f
qi

2) + (qi + 1)G = ((f1) +G) + qi ((f2) +G) ≥ 0.

This proves the inclusion of spaces

L(G) · L(G)q
i

⊆ L((qi + 1)G),

hence the inclusion of the associated codes.

Remark 4.4. The property above for i = 0 follows from Proposition 4.1. To the best of our knowledge,
there is no sufficient criterion for the equality for any i ≥ 1 to hold in the literature. Given a basis
{f1, . . . , fk} of the Riemann–Roch space L(G), the vector space L(G) · L(G)q

i

is spanned by the set{
fuf

qi

v | 1 ≤ u ≤ v ≤ k
}
. From our experiments, it may happen that the cardinality of this family

is larger than ℓ((qi + 1)G) without the equality holding, which means that these generators may be

linearly dependent in L((qi + 1)G) and do not form a basis of L(G) · L(G)q
i

.

Thanks to Lemma 4.3, it will be possible to better handle the terms Tr
(
C ⋆ Cqi

)
in Equation

(4.2). In the next section, we improve the bound of Corollary 4.2 in some specific cases.

64

4.2. GOPPA–LIKE AG CODES

4.2 Goppa–like AG codes

4.2.1 Definition, parameters and context in the literature

The codes and their parameters. Let D be an effective divisor of positive degree s on a smooth
and irreducible projective curve X over Fqm . Denote by K = Fqm(X) the function field of X and
take a rational function g ∈ K such that g /∈ L(D). Given a set of rational points P ⊆ X (Fqm) such
that P ∩ Supp(g) = ∅ and P ∩ Supp(D) = ∅, we consider the AG code

C := CL(X ,P, D + (g)) =
{
evP(fg

−1) | f ∈ L(D)
}
.

From now on, we also set G := D + (g).

Definition 4.5. The Goppa–like AG code associated to C is defined as the subfield subcode of its
dual code, i.e.

Γ(P, D, g) := C⊥|Fq
.

Such a code has length n = #P. As stated in [JM96, Theorem 1], if 2g − 2 < degD < n, its
dimension satisfies

dimFq
Γ(P, D, g) ≥ n−m dimFqm

CL(X ,P, D + (g)) = n−m(deg(D)− g+ 1).

As for its minimum distance, it is bounded from below by deg(D)− 2g+ 2.

Remark 4.6. These estimations of the dimension and the minimum distance may be improved by
Theorem 1.85 and 1.87. Regarding the dimension, it is worth noting that, since g /∈ L(D), the divisor
G = D + (g) is not effective. Hence, any divisor G1 satisfying the conditions of Equation (1.10) is
also non–effective, which means that

dimFq
Γ(P, D, g) ≥ n−m (ℓ(G)− ℓ(G1)) .

Without additional conditions on the divisor D and the function g, the divisor GU for G defined in
Theorem 1.87 is zero. Generally, we cannot expect for a better bound for the minimum distance.

Why the terminology Goppa–like? In [JM96], Janwa and Moreno define Goppa codes on
smooth and irreducible projective curves. Compared to their definition, Definition 4.5 introduces a
function g which defines a multiplicator for the AG code over Fqm that is algebraically related to
the support P.

Introducing this function g facilitates the use of SSAG as public keys for McEliece cryptosystems.
Given an error correcting capability t, we can fix a divisor D whose degree satisfies deg(D) ≥
2t+ 2g+ 1. Then the family of codes in which the public key is picked can be defined by running a
family of functions g outside L(D).

The terminology Goppa–like AG codes instead of simply Goppa codes is motivated by the fact
that we want to emphasize the use of a different curve than the projective line P1, like we differentiate
AG codes from Reed–Solomon codes. In our definition, the rational function g plays the role of the
Goppa polynomial. As described in [Sti09, Example 9.1.8], Goppa codes are nothing but Goppa–like
AG codes from the projective line X = P1. In fact, given r ≥ 0, recall that the Generalized Reed–
Solomon (GRS) code of dimension r, support x ∈ Fn

qm and multiplier y ∈ (F∗
qm)n is defined as (see

Section 1.3.4)

GRSr(x,y) = {(y1f(x1), y2f(x2), . . . , ynf(xn)) | f ∈ Fqm [X] such that deg(f) < r}.

Take a univariate polynomial g of degree r such that g(xi) ̸= 0 for every i ∈ {1, . . . , n}. Then the
Goppa code of order r and support x ∈ Fn

qm is defined as

Γr(x, g) = GRSr(x,y)
⊥|Fq

where y = (g(x1)
−1, g(x2)

−1, . . . , g(xn)
−1). As usual, represent the Fqm–points of P1 by the couples

P1(Fqm) = {[1 : x] | x ∈ Fqm} ∪ {P∞} for P∞ = [0 : 1]. Take P = {[1 : x1], [1 : x2], . . . , [1 : xn]} and
D = (r− 1)P∞. Finally, the polynomial g can be seen as a function on P1 which lies in L(rP∞) but
not in L((r − 1)P∞). Then both constructions match: Γr(x, g) = Γ(P, D, g).

65

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

Relation with Cartier codes. Cartier codes [Cou14] are also defined as a geometric realization
of Goppa codes, since well–known properties of Goppa codes naturally extend to them. For instance,
Theorem 1.87 holds for Cartier code without assumption on the degree of the divisor.

The link with Goppa–like AG codes is the following: by definition, a Cartier code is a subcode
of the subfield subcode of a differential code (see [Cou14, Proposition 4.3]), which actually means
that for the good choice of divisor, a Cartier code is a subcode of the corresponding Goppa–like AG
code. Moreover, [Cou14, Theorem 5.1] provides a sufficient condition for both constructions to be
equal. More precisely, let us consider a Goppa–like AG code Γ(P, D, g) and G = D+ (g). Then the
Cartier code Carq(P, G) (see [Cou14, Definition 4.2]) satisfies Carq(P, G) ⊆ Γ(P, D, g), and

dimFq
(Γ(P, D, g)/Carq(P, G)) ≤ m · i(G1),

where G1 is any divisor such that
G ≥ qG1 and G ≥ G1. (1.10)

Above, i(G1) stands for the index of speciality of G1 (see [Sti09, Definition 1.6.10]). By the Riemann–
Roch theorem, if deg(G1) > 2g − 2, then i(G1) = 0. Thus, using Remark 1.86, the Cartier code

Carq(P, G) coincides with the Goppa–like AG code Γ(P, D, g) whenever deg

[
G

q

]
> 2g− 2.

Example 4.7. Let q = 3 and m = 4. We consider the elliptic curve defined over Fqm by the equation

E : y2 = x3 + 2x+ 1.

As usual, we denote by P∞ the unique point at infinity on E. We take D as a one–point divisor
supported by P∞, i.e D = sP∞. For a fixed degree s = 7, we consider two choices of function g:

1. First, let g1 = x4 /∈ L(D) (since νP∞(g1) = −8). In this case, g has 2 zeros (say P1 and P2),
which are those of x. More precisely, we have

(g1) = 4(P1 + P2)− 8P∞.

Hence, if we set G = D+ (g1), the divisor
[
G
q

]
= P1 +P2 −P∞ has degree 1 > 2g(E)− 2 = 0,

meaning that the codes Γ(P, D, g1) and Car3(P, G) are equal over F3.

2. Second, take g2 = x4 +xy. Again, we have g2 /∈ L(D) since it has same valuation at P∞ as g1.
This time, we can verify that g2 has 8 distincts rational zeros, say R1, . . . , R8, i.e

(g2) = R1 + · · ·+R8 − 8P∞.

Consequently, we easily check that deg
([

G
q

])
= −1 ≤ 2g(E)− 2. Some computations realized

on Magma show that the codes Γ(P, D, g2) and Car3(P, G) are not equal in this case.

Magma results are summarized in Table 4.1.

n s = deg(D) Choice of g deg
([

G
q

])
dimF3

(Γ(P, D, g)) dimF3
(Car3(P, G))

88 7 g = x4 1 64 64
82 7 g = x4 + xy −1 50 54

Table 4.1: Comparison of Cartier and Goppa–like constructions

4.2.2 On the dimension of the square of the dual of a Goppa–like AG
code

In this section, we aim to generalize the properties found by the authors of [MT21] (Section 6), in
the context of Goppa–like AG codes. To do so, we consider the AG code

C := CL(X ,P, D + (g))

as in Definition 4.5. Since Γ(P, D, g) is the subfield subcode of C⊥, putting it into Equation (4.2)
yields (

Γ(P, D, g)⊥
)⋆2 ⊆ ⌊m/2⌋∑

i=0

Tr
(
C ⋆ Cq

i
)
. (4.3)

66

4.2. GOPPA–LIKE AG CODES

Below, we discuss how to improve the upper bound given in Corollary 4.2, which is valid for all
subfield subcodes of AG codes. The idea is to use the specific algebraic structure of our code inherited
from the choice of its divisor. In fact, notice that C is monomially equivalent to CL(X ,P, D): more
precisely, if CL(X ,P, D) is generated by M, then a generator matrix of C is obtained by multiplying
M by the diagonal matrix whose coefficients are g−1(P), for P ∈ P. A direct consequence of this is
the following lemma.

Lemma 4.8. Suppose s = deg(D) ≥ g. Then for all i ≥ 0, we have

dimFq Tr
(
C ⋆ Cq

i
)
≤ m

(
s
(
qi + 1

)
+ 1− g

)
.

Proof. From Lemma 4.3, we deduce that

dimFqm
C ⋆ Cq

i

≤ dimFqm
L((qi + 1)G) = dimFqm

L((qi + 1)D) = s(qi + 1) + 1− g,

the last equality coming from the Riemann–Roch theorem (since deg(qi+1)D = (qi+1)s ≥ 2g− 1).
The result follows from the usual upper bound on the dimension of the trace of a code.

Remark 4.9. At first glance, it seems that we could have benefited from Theorem 1.85 to get a
sharper bound in the previous lemma. Indeed, for every i ≥ 1, we have[

(qi + 1)G

q

]
= qi−1G+ − (qi + 1)G−,

writing G = G+ − G− with G+, G− ≥ 0. However, in the context of Goppa–like codes, we have
G = D + (g) where g /∈ L(D), hence G− ̸= 0. Without further hypotheses on the divisor D and

the function g, the degree of the divisor
[
(qi+1)G

q

]
may be too low to bound the dimension of its

Riemmann–Roch space from below via the Riemann–Roch theorem.

This simple lemma yields an upper bound on the dimension of the square of the dual of Goppa–
like codes.

Proposition 4.10. Let C := CL(X ,P, D + (g)) be an AG code as above and assume s ≥ g. Set

k := dimFqm
C and e := min

(⌊
m
2

⌋
,
⌊
logq

(
k2

s

)⌋)
. Then

dimFq
(Γ(P, D, g)⊥)⋆2 ≤

(
mk + 1

2

)
− m

2

(
k(k − 1)(2e+ 1)− 2s

(
qe+1 − 1

q − 1

))
.

Proof. For any e0 ∈
{
0, . . . , ⌊m2 ⌋

}
, Equation (4.3) above implies

dimFq
(Γ(P, D, g)⊥)⋆2 ≤

⌊m/2⌋∑
i=0

dimFq
Tr
(
C ⋆ Cq

i
)

≤
e0∑
i=0

m(s(qi + 1) + 1− g) +

⌊m/2⌋∑
i=e0+1

Tr
(
C ⋆ Cq

i
)

(by Lemma 4.8)

≤
e0∑
i=0

m(sqi + k) +

(
m− 1

2
− e0

)
mk2 (by the Riemann–Roch theorem)

≤ m

2

(
2k(e0 + 1) + 2s

(
qe0+1 − 1

q − 1

)
+ k2(m− 1)− 2e0k

2

)
≤
(
mk + 1

2

)
− m

2

(
k(k − 1)(2e0 + 1)− 2s

(
qe0+1 − 1

q − 1

))
.

Notice that at the third line, we can replace ⌊m2 ⌋ with
m−1
2 while bounding the second part of the

sum thanks to the even case in Proposition 1.19.
To get the best bound, we maximize the expression

m

2

(
k(k − 1)(2e0 + 1)− 2s

(
qe0+1 − 1

q − 1

))
with respect to e0. Removing the constant parts, this is equivalent to find the maximum of the
function

F (e0) = e0k
2 − s

qe0+1

q − 1

67

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

over
{
0, . . . , ⌊m2 ⌋

}
in the discrete domain of non–negative integers. We compute the discrete deriva-

tive:

∆F (e0) = F (e0 + 1)− F (e0) = (e0 + 1)k2 − s
qe0+2

q − 1
−
(
e0k

2 − s
qe0+1

q − 1

)
= k2 − sqe0+1.

This function is decreasing with e0, and the smallest value for which ∆F (e0) ≤ 0 corresponds to its
maximum. It is the smallest value of e0 such that k2 ≤ sqe0+1, i.e.

e0 = e :=

⌊
logq

(
k2

s

)⌋
.

4.2.3 Sharpness of the bound

Definition 4.5 of a Goppa–like AG code Γ(P, D, g) := C⊥|Fq
requires very few hypotheses. Besides

the conditions on the supports of D and (g), which guarantee that the code is well–defined, we only
ask for the function g not to belong to the Riemann–Roch space L(D). This hypothesis is enforced

to make sure that the dimension of Tr(C)⋆2 is not abnormally small compared to the expected value
given in Corollary 1.20, and thus to make Goppa–like AG codes resistant to a distinguisher based
on the square of their dual. Let us discuss a bit more this assumption on g:

First, if the function g lied in L(D) (or more generally if the vector of the evaluations (g(P))P∈P
belonged to CL(X ,P, D)), then the code C = CL(X ,P, D + (g)) would contain the evaluation of
the constant function 1 = g

g , i.e. the unit vector (1, . . . , 1). In this case, the vector (1, . . . , 1)

would belong to Cqi for every i ∈ {0, . . . , ⌊m/2⌋} and each term in the sum on the right–hand side

would contain a copy of Tr(C). This non–trivial intersection between the codes Tr
(
C ⋆ Cqi

)
would

contribute with a negative term in the above bound.

Secondly, if g belonged to L(D), then D+(g) would be effective. This would imply the inclusion
L((qi + 1)D) ⊂ L((qi+1 + 1)D) for every i ≥ 0. Therefore, in the proof of Proposition 4.10, when
bounding from above the dimension of the sum by the sum of the dimensions of the trace codes, we
would have no chance to get a sharp bound.

Unfortunately, the condition g /∈ L(D) does not guarantee that the bound given in Proposi-
tion 4.10 is reached. In the following proposition, we detail one situation in which we cannot hope
for equality.

Proposition 4.11. Using the same notation as above, set C1 = CL

(
X ,P,

[
D+(g)

q

])
(see Equation

(1.11) for the definition of
[
G
q

]
, given G). If dim C1 ≥ 1, then the bound given in Proposition 4.10

is not reached.

Proof. Any non–zero codeword c ∈ C1 ⊂ C satisfies cq ∈ C. As c lies in Fn
qm , we have cq

m

= c ∈
Cqm−1

. Therefore, we have C1 ⊆ C∩Cq
m−1

, and for every i ∈
{
1, . . . , ⌊m2 ⌋

}
, we have Cq

i

1 ⊆ Cq
i ∩Cqi−1

.
Then

Tr
(
C ⋆ Cq

i

1

)
⊆ Tr

(
C ⋆ Cq

i
)
∩ Tr

(
C ⋆ Cq

i−1
)
.

As a result, each pair of consecutive terms in the sum
⌊m/2⌋∑
i=0

Tr
(
C ⋆ Cqi

)
has a non–trivial intersection.

However, using [Tia19, Theorem 2], equality with the upper bound only occurs if

⋂
0≤j≤⌊m/2⌋

 ∑
0≤i≤⌊m/2⌋

i ̸=j

Tr
(
C ⋆ Cq

i
) = {0} .

Remark 4.12. As noted in Remark 4.9, when picking the function g at random outside L(D), the
code C1 is likely to be reduced to zero.

68

4.3. ONE–POINT GOPPA–LIKE AG CODE ON Ca,b–CURVES

As recalled in Section 4.2.1, Goppa–like AG codes coincide with Cartier code as soon as

deg

([
D + (g)

q

])
> 2g− 2.

In this case, the code C1 has dimension at least g. This means that when the Goppa–like code is
also a Cartier code, the dimension of the square of its dual is very unlikely to meet the bound given
in Proposition 4.10.

Remark 4.13. When considering classical Goppa codes (see. Definition 1.91) for the McEliece cryp-
tosystem, it is common to ask for the degree r Goppa polynomial g to have only simple roots. In

this case, we have
[
(r−1)P∞+(g)

q

]
= −P∞ and the code C1 defined in Proposition 4.11 is always zero.

The situation above thus never occurs.

4.3 One–point Goppa–like AG code on Ca,b–curves

The bound given in section 4.2.2 can be improved even more by considering more structured codes,
i.e. one–point Goppa–like AG codes on Ca,b curves.

4.3.1 The point at infinity and weighted degree

Let a, b be coprime positive integers and fix a Ca,b curve Xa,b. As defined in Section 1.2.5, this means
that Xa,b have an irreducible, affine and non–singular plane model with equation

fa,b(x, y) = α0ay
a + αb0x

b +
∑

αijx
iyj = 0, (4.4)

where fa,b ∈ Fqm [X,Y] with α0a, αb0 ̸= 0, and the sum is taken over all couples (i, j) ∈ {0, · · · , b} ×
{0, · · · , a} such that ai+ bj < ab. Among notable properties, recall that Xa,b has a unique point at

infinity. From now on, this point is denoted by P∞, and we write g(Xa,b) := ga,b = (a−1)(b−1)
2 the

genus of Xa,b.
We will consider codes obtained by evaluating functions on Xa,b which are regular everywhere,

except maybe at P∞.
These functions then belong to the coordinate ring of the affine curve Xa,b \ {P∞}, which we denote
by S, i.e

S =
⋃
s≥0

L(sP∞), (4.5)

where each Riemann–Roch space L(sP∞) has an explicit basis as follows:

L(sP∞) = Span
(
xiyj | 0 ≤ i, 0 ≤ j ≤ a− 1 and ai+ bj ≤ s

)
. (4.6)

In summary, any function that is regular on all Xa,b except maybe at P∞ can be seen as a
bivariate polynomial in the functions x and y.

Definition 4.14 (Weighted degree). Given a monomial of the form xiyj ∈ S, we define its weighted
degree by

dega,b
(
xiyj

)
:= ai+ bj.

From this degree, we can define a monomial order ≺ over S ≃ Fqm [x, y] as follows: given two

monomial xuyv and xu′
yv

′
, we say that

xuyv ≺ xu′
yv

′

if
dega,b (x

uyv) < dega,b

(
xu′

yv
′
)

or
(
dega,b (x

uyv) = dega,b

(
xu′

yv
′
)

and u < u′
)
. (4.7)

From the basis given in (4.6), any function f ∈ S can be written in the form

f(x, y) = c · xβyα + f ′(x, y),

with c ̸= 0, α ≤ a− 1 and f ′ ∈ S such that any monomial xiyj of f ′ satisfies ai+ bj < dega,b
(
xβyα

)
and j ≤ a− 1. The leading monomial of f with respect to the monomial order ≺ is thus defined by
LM(f) := xβyα. This extends the definition of weighted degree to any such function by setting

dega,b (f) := dega,b (LM(f)) .

It is easy to check that for any f ∈ S, its weighted degree dega,b (f) is equal to the biggest integer
s such that f belongs to the Riemann–Roch space L(sP∞). This way, any function in L(sP∞) can
be seen as a polynomial in x and y such that dega,b (f) ≤ s.

Remark 4.15. For every f ∈ S, we have dega,b (f) = −vP∞(f).

69

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

4.3.2 The codes

For the rest of this section, fix a Ca,b curve Xa,b over Fqm , whose defining equation is given by
Equation (4.4). We now define a subclass of Goppa–like codes, associated with the one–point divisor
sP∞.

Definition 4.16. Let s′ > s be two integers such that there exists a function g ∈ L(s′P∞) with
dega,b (g) = s′. Given a set of rational points P ⊂ Xa,b(Fqm) such that P ∩ Supp(g) = ∅, we define
the one–point Goppa–like AG code associated to P, s and g as

Γ(P, sP∞, g) := CL(Xa,b,P, sP∞ + (g))⊥|Fq
.

This definition might sound limiting, since we restrict ourselves to specific one–point divisor.
This is motivated by the fact that these codes can be encoded quickly thanks to the nice basis of
L(sP∞) (see [BESP10]), which is desirable if we aim to build a McEliece cryptosystem based on it.
Moreover, this property will be key in the upcoming sections as it allows a better understanding of
the square of the dual, under some additional conditions on s and s′.

In the next two sections, we generalize the result given in [MT21] in the case of classical Goppa
codes, by defining a weighted Euclidean division on the ring S (see Equation (4.5)), whose elements
are seen as bivariate polynomials.

4.3.3 Weighted Euclidean division

The following proposition generalizes the classical Euclidean division of univariate polynomials in
the case of function in S with respect to the weighted degree dega,b (see Definition 4.14). Before
that, we need the following definition:

Definition 4.17. For any function h ∈ S with leading monomial LM (h) = xβyα and α < a, we
define over Fqm the space

R(h) := Span (xuyv | u ≤ β + b− 1 and v ≤ a− 1 not both u ≥ β and v ≥ α) .

Note that the dimension of R(h) is equal to dega,b (h).

Proposition 4.18. Fix any nonzero function g ∈ S. Then for any function f ∈ S, there exist
f1, f2 ∈ S such that

f = f1g + f2 with f2 ∈ R(g).
Moreover, we have dega,b (f2) ≤ dega,b (f).

Proof. Since f ∈ S, we can see f as a bivariate polynomial in x and y (see Equation 4.5). In the
polynomial ring Fqm [x, y], we perform the division of f by a Gröbner basis of the ideal generated
by the equation fa,b of the curve Xa,b and the polynomial g with respect to the monomial order ≺
defined in Equation (4.7). The fact that f2 lies in R(g) and the result on the dimension of R(g)
both follow from [GH00, Proposition 4].

Finally, if we had dega,b (f) < dega,b (f2) with f = f1g + f2, this would mean that

LM(f2) = −LM(f1g) = λxuyv,

for some λ ∈ F∗
qm with both u ≥ β and v ≥ α, which is not possible by definition of R (g).

We will now use the weighted Euclidean division defined above to better control the elements in

Tr
(
C ⋆ Cqi

)
for C = CL(Xa,b,P, sP∞ + (g)), where we fixed s′ > s ≥ 0, g ∈ S with dega,b (g) = s′

and a set of points P ⊂ Xa,b(Fqm) such that P ∩ Supp(g) = ∅.
Before diving into technical proofs, let us fix some notation that we will use in the rest of the

paper. We extend the evaluation map defined in Equation (1.7) on all the ring S:

evP :

{
S → Fn

qm

f 7→ (f(P1), . . . , f(Pn))

Now, evP is an algebra homomorphism, where Fn
q is endowed with the product ⋆, i.e. evP(f) ⋆

evP(f
′) = evP(f · f ′) for any f, f ′ ∈ S.

For two functions f, f ′ ∈ S, we will write f ≡P f ′ if evP(f) = evP(f
′).

We also extend the trace operator on S by defining Tr(f) = f + fq + · · ·+ fqm−1

for every f ∈ S.
Since the map evP is an algebra homomorphism, we have evP (Tr(f)) = Tr(evP(f)). Moreover, for
any function f ∈ S, we have

Tr(fq) ≡P Tr(f) . (4.8)

70

4.3. ONE–POINT GOPPA–LIKE AG CODE ON Ca,b–CURVES

Lemma 4.19. Take i ≥ 1. Let f ∈ S such that dega,b (f) < s′(qi + 1). Then there exists f ′ ∈
R
(
gq

i−qi−1+1
)
such that the vectors Tr

(
f

gqi+1

)
≡P Tr

(
f ′

gqi+1

)
.

Proof. By Proposition 4.18, we can write f = f1g
qi−qi−1+1 + f2 with f2 ∈ R

(
gq

i−qi−1+1
)

and

dega,b (f2) ≤ dega,b (f). Therefore, using Equation (4.8), we get

Tr

(
f

gqi+1

)
= Tr

(
f1g

qi−qi−1+1

gqi+1

)
+Tr

(
f2

gqi+1

)
≡P Tr

(
fq
1 g

gqi+1

)
+Tr

(
f2

gqi+1

)
.

By definition, the second term has the expected form. Let us examine the first term. If f1 = 0,
we are done. Otherwise, the definition of f1 gives dega,b (f1) = dega,b (f)− s′(qi − qi−1 + 1), and

dega,b (f
q
1 g) = q dega,b (f1) + s′

= q dega,b (f)− s′(q − 1)(qi + 1).

Then dega,b (f
q
1 g) < dega,b (f) if and only if dega,b (f) < s′(qi + 1), which holds by definition of f .

Performing a new division by replacing f with fq
1 g gives a new decomposition fq

1 g = f ′
1g

qi−qi−1+1+f ′
2,

with f ′
2 ∈ R

(
gq

i−qi−1+1
)
and dega,b (f

′
2) ≤ dega,b (f). In particular, we can decompose Tr

(
fq
1 g

gqi+1

)
into a sum of traces as we did for Tr

(
f

gqi+1

)
. If f ′

1 = 0, the result is proved. Otherwise, we can repeat

another time the division process. As the weighted degree of the successive quotients decrease, we
ultimately end up with a quotient equal to zero, which proves the result.

Definition 4.20. For any 1 ≤ i ≤ ⌊m2 ⌋, we define

Ti(s, g) :=
{
evP

(
Tr

(
f

gqi+1

))
| f ∈ R

(
gq

i−qi−1+1
)
∩ L(s(qi + 1)P∞)

}
and we set

T0(s, g) :=
{
evP

(
Tr

(
f

g2

))
| f ∈ L(2sP∞)

}
.

The vector spaces Ti(s, g) have been designed so that we have

Tr
(
C ⋆ Cq

i
)
⊆ Ti(s, g) (4.9)

for all i ∈
{
0, . . . ,

⌊
m
2

⌋}
. Indeed, it is straightforward for i = 0 and it follows from Lemma 4.19 for

i ≥ 1, noticing that f ∈ L(sP∞) · L(sP∞)q
i ⊆ L(s(qi + 1)P∞).

We will benefit from these inclusions to improve the bound given in Proposition 4.10, provided
that we can efficiently compute the dimension of the trace codes Ti(s, g). This is studied in the next
section.

4.3.4 Upper bound in Goppa–like case

In the proposition below, we study the intersection

Mi(s, g) := R
(
gq

i−qi−1+1
)
∩ L(s(qi + 1)P∞) (4.10)

for every i ∈ {1, . . . , ⌊m/2⌋}, in order to better grasp the trace codes Ti(s, g)’s introduced in Def-
inition 4.20. First we set some notation: fix i ∈ {1, . . . , ⌊m/2⌋} and write LM(g) = xβyα with

aβ + bα = s′. By reducing modulo the equation fa,b of Xa,b, we can write the function gq
i−qi−1+1

such that its leading monomial with respect to the monomial order ≺ is

LM
(
gq

i−qi−1+1
)
= xβiyαi (4.11)

where αi ∈ {0, . . . , a− 1} is the remainder of the Euclidean division of α(qi − qi−1 + 1) by a and

βi = β(qi − qi−1 + 1) + b
α(qi − qi−1 + 1)− αi

a
=

s′(qi − qi−1 + 1)− bαi

a
. (4.12)

Depending on the weighted degree s′ of g, we can compute the exact dimension of the vector space
Mi(s, g) defined in Equation (4.10).

71

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

Proposition 4.21. 1. If s′(qi − qi−1 + 1) > s(qi + 1) + a, then Mi(s, g) = L(s(qi + 1)P∞);

2. If s′(qi − qi−1 + 1) ≤ s(qi + 1) + 1− 2ga,b, then Mi(s, g) = R(gq
i−qi−1+1);

3. If there exists v∗ ∈ {1, . . . , αi − 1} such that

s(qi + 1) + a− b(a+ v∗ − αi) < s′(qi − qi−1 + 1) ≤ s(qi + 1) + a− b(a+ v∗ − 1− αi),

we have

dimFqm
(Mi(s, g)) =

a−1∑
v=v∗

⌊
s(qi + 1)− bv

a

⌋
+ v∗(βi + b) + a− v∗.

4. Otherwise, there exists v∗ ∈ {αi + 1, . . . , a} such that

s(qi + 1) + a− b(v∗ − αi) < s′(qi − qi−1 + 1) ≤ s(qi + 1) + a− b(v∗ − 1− αi),

in which case

dimFqm
(Mi(s, g)) =

a−1∑
v=v∗

⌊
s(qi + 1)− bv

a

⌋
+ v∗βi + αib+ a− v∗.

Proof. Using the notation above, we can write

R
(
gq

i−qi−1+1
)
:= SpanFqm

{xuyv | u ≤ βi + b− 1, v ≤ a− 1 not both u ≥ βi and v ≥ αi}

= Span


1, x, . . . , xβi+b−1,

· · ·
yαi−1, yαi−1x, . . . , yαi−1xβi+b−1,

yαi , yαix, . . . , yαixβi−1,
· · ·

ya−1, ya−1x, . . . , ya−1xβi−1


Next, we define for any v ∈ {0, . . . , a− 1}:

ℓiv := max
{
u ≥ 0 | xuyv ∈ L(s(qi + 1)P∞)

}
=

⌊
s(qi + 1)− bv

a

⌋
,

implying

L(s(qi + 1)P∞) = Span


1, x, . . . , xℓi0 ,

y, yx, . . . , yxℓi1 ,
· · ·

ya−1, ya−1x, . . . , ya−1xℓia−1

 .

We thus have a description of a basis of both spaces R(gqi−qi−1+1) and L(s(qi + 1)P∞), leading to
an exact formula for the dimension of their intersection Mi(s, g) for any value of i:

dimFqm
Mi(s, g) =

αi−1∑
v=0

min(βi + b, ℓiv + 1) +

a−1∑
v=αi

min(βi, ℓ
i
v + 1). (4.13)

It remains to compute the corresponding minima with respect to v:

(i) If 0 ≤ v ≤ αi − 1, by using (4.12), we get

βi + b ≤ ℓiv + 1 ⇐⇒ s′(qi − qi−1 + 1) ≤ s(qi + 1) + a− b(a+ v − αi) := F (v).

(ii) Otherwise, αi ≤ v ≤ a− 1 and

βi ≤ ℓiv + 1 ⇐⇒ s′(qi − qi−1 + 1) ≤ s(qi + 1) + a− b(v − αi) := G(v).

Note that both F and G are decreasing with v, and we easily check that F (0) = G(a). Thus, we
have the following sequence of integers

F (αi − 1) ≤ · · · ≤ F (0) = G(a) ≤ G(a− 1) ≤ · · · ≤ G(αi).

Depending on the value of s′, there are a few cases to consider:

72

4.3. ONE–POINT GOPPA–LIKE AG CODE ON Ca,b–CURVES

• s′(qi − qi−1 + 1) > G(αi), in which case Mi(s, g) = L(s(qi + 1)P∞);

• s′(qi − qi−1 + 1) ≤ F (αi − 1), and Mi(s, g) = R(gq
i−qi−1+1);

• There exists v∗ ∈ {1, ..., αi − 1} such that F (v∗) < s′(qi − qi−1 + 1) ≤ F (v∗ − 1);

• There exists v∗ ∈ {αi, ..., a} such that G(v∗) < s′(qi − qi−1 + 1) ≤ G(v∗ − 1).

The formulas for the dimension of Mi(s, g) follows from the above computations and (4.13).

Note that item 1. corresponds to the case where Ti(s, g) = Tr
(
g−(qi+1) · L(s(qi + 1)P∞)

)
, which

would produce the same bound as the one given in Proposition 4.10. Instead, we focus on item 2.,
since in this case, we can show some inclusion relations between the Ti(s, g)’s.

Proposition 4.22. Keep above notation and let i∗ ∈
{
0, . . . , ⌊m2 ⌋ − 1

}
be the smallest integer such

that
sqi

∗
≥ (s′ − s)(qi

∗+1 − qi
∗
+ 1) + 2ga,b − 1. (4.14)

Then
Ti∗(s, g) ⊆ Ti∗+1(s, g) ⊆ · · · ⊆ T⌊m

2 ⌋(s, g).

Proof. From Proposition 4.21 (2), we know that (4.14) implies

Mi∗+1(s, g) = R(gq
i∗+1−qi

∗+1−1+1).

We can easily check that the function

i 7→ s(qi + 1) + 1− 2ga,b
qi − qi−1 + 1

is increasing with i, hence we also have

Mi(s, g) = R(gq
i−qi−1+1), ∀ i ∈

{
i∗, . . . ,

⌊m
2

⌋
+ 1
}
. (4.15)

We now prove the inclusions between the T ′
i s, assuming first that i∗ ̸= 0 (since the definition of T0

is a bit different). Let i ∈
{
i∗, . . . , ⌊m2 ⌋ − 1

}
, and recall that

Ti(s, g) :=
{
evP

(
Tr

(
f

gqi+1

))
| f ∈ R

(
gq

i−qi−1+1
)
∩ L(s(qi + 1)P∞)

}
Given an element evP

(
Tr
(

f

gqi+1

))
in Ti(s, g), we want to show that it belongs to Ti+1(s, g). Applying

Proposition 4.18 by replacing f with fgq
i+1−qi and g by gq

i+1−qi+1, we obtain

fgq
i+1−qi = f1g

qi+1−qi+1 + f2, (4.16)

with f2 ∈ R(gq
i+1−qi+1) = Mi(s, g) (using (4.15)) and dega,b (f2) ≤ dega,b

(
fgq

i+1−qi
)
. Next, we

write

Tr

(
f

gqi+1

)
= Tr

(
fgq

i+1−qi

gqi+1+1

)

= Tr

(
f1g

qi+1−qi+1

gqi+1+1

)
+Tr

(
f2

gqi+1+1

)
≡P Tr

(
fq
1 g

gqi+1+1

)
+Tr

(
f2

gqi+1+1

)
.

By assumption on f2, we immediately have that evP

(
Tr
(

f2
gqi+1+1

))
∈ Ti+1(s, g). If f1 = 0, we are

done. Otherwise, we have from (4.16):

dega,b (f1) = dega,b

(
fgq

i+1−qi
)
− dega,b

(
gq

i+1−qi+1
)
= dega,b (f)− s′.

Thus

dega,b (f
q
1 g) < dega,b

(
fgq

i+1−qi
)
⇐⇒ q dega,b (f) + (1− q)s′ < dega,b (f) + s′(qi+1 − qi)

⇐⇒ dega,b (f) < s′(qi + 1),

73

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

which is true since in particular f ∈ L(s(qi+1)P∞) and s < s′. Since the weighted degree decreases,
we can repeat the division process until eventually we obtain a quotient f1 equal to zero (as in the
proof of Lemma 4.19), which proves that Ti(s, g) ⊆ Ti+1(s, g).

In the case i∗ = 0, we also have to prove that T0(s, g) ⊆ T1(s, g), which differs from the other

cases due to the definition of T0. Let evP

(
Tr
(

f
g2

))
∈ T0(s, g), for some f ∈ L(2sP∞). Using

Proposition 4.18, this time replacing f with fgq−1 and g with gq+1 yields

fgq−1 = f1g
q + f2,

with f2 ∈ R(gq) = M1(s, g) (using (4.15) again). Thus, we can write

Tr

(
f

g2

)
= Tr

(
fq
1 g

gq+1

)
+Tr

(
f2

gq+1

)
,

with evP

(
Tr
(

f2
gq+1

))
∈ T1(s, g). Since dega,b (f1) = dega,b

(
fgq−1

)
− dega,b (g

q) = dega,b (f) − s′,

we have

dega,b (f
q
1 g) < dega,b

(
fgq−1

)
⇐⇒ q dega,b (f) + (1− q)s′ < dega,b (f) + s′(q − 1)

⇐⇒ (q − 1) dega,b (f) < 2s′(q − 1)

⇐⇒ dega,b (f) < 2s′,

which holds since s < s′ and f ∈ L(2sP∞). Repeating the division process until we find a quotient
equal to zero shows that T0(s, g) ⊆ T1(s, g). The other inclusions hold as in the case i∗ ≥ 1.

Combining the inclusions (4.9) with both the above propositions lead to a better understanding
of the dimension of the square of the dual of one–point Goppa–like AG codes, namely:

Corollary 4.23. With notation of Proposition 4.22, set k := dimFqm
CL(Xa,b,P, sP∞+(g)). Then,

for all e ∈
{
0, . . . , ⌊m2 ⌋

}
, the dimension of Γ(P, sP∞, g)⊥)⋆2 is bounded from above by

dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤

(
m− 1

2
− e

)
mk2 + dimFq

(
e∑

i=0

Ti(s, g)

)
.

Moreover, if i∗ ≤ e ≤ ⌊m2 ⌋ is the integer satisfying equation (4.14) , we have

dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤

(
m− 1

2
− e

)
mk2 +ms′(qe − qe−1 + 1)

+ dimFq

(
i∗−1∑
i=0

Ti(s, g)

)
− dimFq

(
Te(s, g) ∩

i∗−1∑
i=0

Ti(s, g)

)
.

Proof. Starting from Equation (4.3) and using Equation (4.9), we have

dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤

⌊m/2⌋∑
i=0

dimFq
Tr
(
C ⋆ Cq

i
)

≤ dimFq

e∑
i=0

Ti(s, g) +
⌊m/2⌋∑
i=e+1

Tr
(
C ⋆ Cq

i
)

≤ dimFq

e∑
i=0

Ti(s, g) +
(
m− 1

2
− e

)
mk2,

for all e ∈
{
0, . . . , ⌊m2 ⌋

}
. If i∗ ≤ e ≤ ⌊m2 ⌋, Proposition 4.22 gives

e∑
i=i∗

Ti(s, g) = Te(s, g).

Consequently, we can write

dimFq

(
e∑

i=0

Ti(s, g)

)
= dimFq

(
i∗−1∑
i=0

Ti(s, g)

)
+ dimFq Te(s, g)− dimFq

(
Te(s, g) ∩

i∗−1∑
i=0

Ti(s, g)

)
.

74

4.3. ONE–POINT GOPPA–LIKE AG CODE ON Ca,b–CURVES

To finish the proof, we use the fact that Me(s, g) = R
(
gq

e−qe−1+1
)
(see. Proposition 4.21, 2), hence

we have
dimFq

Te(s, g) ≤ m · dimFqm
R
(
gq

e−qe−1+1
)
= ms′(qe − qe−1 + 1).

Despite the fact that the upper bound given in Corollary 4.23 can be numerically computed with
the knowledge of the degree s and the function g, it is hard to give a close formula for any parameter,
since the intersections of the trace codes Ti(s, g)’s are hard to manipulate. However, if we assume
that i∗ = 0, we can sharpen the above result.

Theorem 4.24. Suppose that s ≥ (s′−s)q+2ga,b−1 and let e∗ := min
(⌊

m
2

⌋
,
⌈
logq

(
k2

s′(q−1)2

)⌉
+ 1
)
.

Then

dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤

(
mk + 1

2

)
− m

2
(k2(2e∗ + 1) + k − 2s′(qe

∗
− qe

∗−1 + 1)).

Proof. The condition s ≥ (s′ − s)q + 2ga,b − 1 exactly implies that i∗ = 0 and

T0(s, g) ⊆ T1(s, g) ⊆ · · · ⊆ T⌊m
2 ⌋(s, g),

by Proposition 4.22. Thus, using Corollary 4.23 and the inequality

dimFq Te(s, g) ≤ m dimFqm
R(gq

e−qe−1+1),

we get

dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤ min

(
ms′(qe − qe−1 + 1) +

(
m− 1

2
− e

)
mk2

)
≤ min

(m
2

(
2s′(qe − qe−1 + 1) + k2(m− 1)− 2k2e

))
≤ min

((
mk + 1

2

)
− m

2

(
k2(2e+ 1) + k − 2s′(qe − qe−1 + 1)

))
.

the minimum being taking over e ∈
{
1, . . . , ⌊m2 ⌋

}
. To get the best bound, we need to maximize the

function
F (e) = ek2 − s′(qe − qe−1 + 1)

over
{
1, . . . , ⌊m2 ⌋

}
. We compute the discrete derivative:

∆F (e) = F (e+ 1)− F (e) = (e+ 1)k2 − s′(qe+1 − qe + 1)− ek2 + s′(qe − qe−1 + 1)

= k2 − s′qe−1(q − 1)2.

This function is decreasing with e, and the smallest value for which ∆F (e) ≤ 0 corresponds to its
maximum. It is the smallest value of e such that k2 ≤ s′qe−1(q − 1)2, i.e.

e =

⌈
logq

(
k2

s′(q − 1)2

)⌉
+ 1.

Several computational experiments showed then when the code C := CL(Xa,b,P, sP∞ + (g)) is
sufficiently random, the bound given in Theorem 4.24 is sharp, leading to a distinguisher if the
parameters of C are not well–chosen. We give a concrete example showing the sharpness of our
bound (computations have been done using Magma [BCP97]).

Example 4.25. Set q = 3 and m = 3. We consider the curve X over Fqm = F729 defined by

y2 + y = x3 + x+ 2.

This elliptic curve X is a particular case of C2,3 curve with genus g = 1. Set s′ = s + 1 for s ≥ 0,
and g ∈ Fqm(X) such that g = xβyα + g′, where aβ + bα = s + 1; and g′ is sampled at random
in L(sP∞). For each such g, consider Pg := X (Fqm)\ Supp(g). Using Magma, we then compare
the true dimension of the square of the dual of Cg := Γ(Pg, sP∞, g) with the upper bound given in
Theorem 4.24 for s ∈ {4, . . . , 10}. Results can be found in Table 4.2.

In our computing experiments, we can check that g always has simple zeros, hence
[
sP∞+(g)

3

]
=

−P∞. This example illustrates how the bound can be sharp when we are outside the scope of
Proposition 4.11.

75

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

n s dimFq
Cg dimFq

(Cg)⋆2 dimFq
(C⊥g)⋆2 Upper bound in Theorem 4.24

781 4 757 781 234 234
783 5 753 783 327 327

782 6 746 782 402 402
783 7 741 783 483 483

782 8 734 782 570 570
782 9 728 782 663 663
781 10 721 781 762 762

Table 4.2: Sharpness of the bound.

In the last section, we discuss how to efficiently choose the parameters of a one–point Goppa–like
AG code in order to resist this distinguisher.

4.4 Analysis of the distinguisher

In the previous section, we provided an (experimentally) sharp upper bound on the dimension of the
square of the dual of a one–point Goppa–like AG code, which could lead to a distinguisher for the
corresponding code. More precisely, let C := CL(Xa,b,P, sP∞ + (g)) be an AG code as above, with
dega,b (g) := s′ > s ≥ 2ga,b − 1. We showed that if s and s′ are such that s ≥ (s′ − s)q + 2ga,b − 1,
then

dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤ min

(m
2

(
2s′(qe

∗
− qe

∗−1 + 1) + k2(m− 1− 2e∗)
)
, n
)
, (4.17)

where e∗ :=

⌈
logq

(
k2

s′(q − 1)2

)⌉
+ 1. Thus, the code is distinguishable from a random one only if

the right–hand side of Equation (4.17) is smaller than the length n of the code. It is possible to
study when this case occurs, by starting to bound from above the maximal possible length: since
P ∩ Supp(g) = ∅, this maximum is reached when P = Xa,b(Fqm)\{P∞} and g has no rational zero,
that is

n = #P = |Xa,b(Fqm)| − 1 ≤ qm + 2ga,b
√
qm,

using the Hasse–Weil bound (Theorem 1.71). In order to protect the code against the distinguisher,
the parameters have to be chosen such that

m

2

(
2s′(qe

∗
− qe

∗−1 + 1) + k2(m− 1− 2e∗)
)
≥ qm + 2ga,b

√
qm. (4.18)

Remark 4.26. As already discussed, the bound given in Theorem 4.24 looks to be sharp whenever
the function g is randomly chosen. As it is an experimental consideration, we warn the reader that
the condition given in Equation (4.18) might not be sufficient : more precisely, it may happens that
our bound is bigger than n, but the real dimension of (Γ(P, sP∞, g)⊥)⋆2 is not.

In what follows, we focus on two specific classes of Ca,b curves. First, we determine the maximal
(with respect to the dimension) codes we can distinguish in the case where Xa,b is an elliptic curve.
This case is relevant since it is the closest to the case of classical Goppa codes, and we will see that
our results are very similar to the one given in [MT21]. Next up, we focus on the particular case
of the Hermitian curve, which also turns out to be a Xa,b curve. It is well–known to be a good
candidate to construct efficient codes as it is a maximal curve. Due to its high genus, we then show
that any one–point Goppa–like code defined on it cannot be distinguished.

4.4.1 High rate distinguishable codes in the case of elliptic curves

Let Xa,b be an elliptic curve, i.e. a = 2 and b = 3. For some set of parameters which produces codes
of cryptographic size, we compute the maximal distinguishable value of s. To get close to the case
of classical Goppa codes, we also fix s′ = s+ 1.

As it was noticed in [MT21] and as we can see in Table 4.3, we are only able to distinguish high
rate codes. The smallest distinguishable rates are roughly the same as the one given in [MT21].

76

4.4. ANALYSIS OF THE DISTINGUISHER

q m n Largest distinguishable s Corresponding rate

2 12 4218 14 0, 963
2 13 6688 18 0, 982

3 7 2186 15 0, 962
3 8 6393 24 0, 977

5 5 3043 27 0, 961
5 6 4500 22 0, 971
5 6 6688 30 0, 976

7 4 2395 27 0, 957
7 5 4650 26 0, 971
7 5 8192 37 0, 979

17 3 4820 92 0, 943

Table 4.3: Largest distinguishable Goppa–like AG code in elliptic case.

4.4.2 Codes on the Hermitian curve

As the Hermitian curve is a particular case of Ca,b curve, we investigate the behaviour of one–point
Goppa–like AG codes constructed on it with respect to our distinguisher. In particular, we show
that all these codes resist to it, since Equation (4.18) always holds in this setting, essentially because
the genus of the Hermitian curve is too high with respect to the size of the field. Let us first recall
some known results about the Hermitian curve (see for example [Sti09]).

Let m ≥ 1 be an even integer and denote by q0 := qm/2, so that Fqm = Fq20
. The Hermitian curve

H over Fq20
is defined by the equation

H : yq0 + y = xq0+1.

Its genus is given by gH = q0(q0−1)
2 and it is a maximal curve, i.e. #H(Fq20

) = q30 + 1.

Proposition 4.27. Suppose s ≥ (s′− s)q+2gH− 1. Then for any choice of g and P, the one–point
Goppa–like code Γ(P, sP∞, g) resists the distinguisher given in Theorem 4.24.

Proof. As discussed at the beginning of the section, the code cannot be distinguished whenever
Equation (4.18) holds. In this particular case, we know exactly the number of rational points, hence
the length n of the Goppa–like code is at most q30 . Since m is even, we are left to prove that

B(e∗) := ms′(qe
∗
− qe

∗−1 + 1) +
(m
2
− e∗

)
mk2 ≥ q30 , (4.19)

where k := dimFqm
CL(H,P, sP∞ + (g)) = s+ 1− gH.

- If e∗ < m
2 , then B(e∗) > mk2. Using the assumption on s and s′, we know that s ≥ 2gH+q−1.

This yields k ≥ gH + q and thus

B(e∗)− q30 > m(g2H + 2gHq + q2)− q30

>
m

4
(q40 − 2q30 + q20) +mq(q20 − q0 + q)− q30

≥ 1

2
(q40 − 2q30 + q20) + 4(q20 − q0 + 2)− q30 (m ≥ 2 and q ≥ 2)

>
q0
2
(q30 − 4q20 + 9q0 − 8) > 0,

since q0 ≥ 2. Inequality (4.19) holds in this case.

- If e∗ = m
2 , then since q0 = qm/2, we have B

(
m
2

)
= ms′(q0 − q0q

−1 + 1). Moreover, s′ > s
implies s′ ≥ 2gH + q, and

B
(m
2

)
− q30 ≥ m(2gH + q)(q0 − q0q

−1 + 1)− q30

≥ 2

(
q20(q0 − 1)

(
q − 1

q

)
+ q0(q0 − 1) + q0(q − 1) + q

)
− q30

≥ q30

(
2

(
q − 1

q

)
− 1

)
+ 2q20

(
1−

(
q − 1

q

))
+ 2(q0(q − 2) + q).

77

CHAPTER 4. GOPPA–LIKE SSAG CODES DISTINGUISHER

Clearly, the last expression is minimal for q = 2, so we finally get

B
(m
2

)
≥ q20 + 4 > 0,

which proves (4.19) in this case and conclude the proof.

Consequently, it is still reasonable to consider the Hermitian curve to build efficient SSAG code–
based cryptosystem. In Table 4.4, we provide parameters for one–point Goppa–like Hermitian codes
that resist the distinguisher given in Section 4.3. They also improve key sizes compared to the subfield
subcodes of 1–point Hermitian codes parameters reported in [NEK21, Tables 2 and 3], which already
reduced key sizes compared with binary Goppa codes. The notation are as follow:

• q0 is such that our codes are defined over Fq20
and m = 2 (i.e q = q0);

• s is the degree of the divisor D = sP∞ + (g);

• n and k denote the length and the dimension of our codes, respectively;

• t is the correction capability;

• Prange complexity denotes the exponent in the complexity of running the ISD algorithm (see.
[Pra62]);

• Key sizes are computed via the formula k(n− k)⌈log2(q)⌉, and expressed in Bytes.

q0 s n k t Prange complexity Key size (Bytes)

11 265 1320 898 77 153 142 108

13 312 2188 1718 77 198 302 798
16 354 4078 3608 56 199 847 880

13 490 2189 1363 166 270 422 189
16 460 4080 3398 109 313 1 158 718

Table 4.4: Goppa-Like Hermitian codes parameters Γ(P, sP∞, g) over Fq2 .

78

Chapter 5

IOP of Proximity to AG codes on
the Hermitian tower

The context of this Chapter can be found in Section 2.2. Here, we are interested in proximity tests
to several families of AG codes, as they are good candidates to construct short proof systems. The
main idea is to adapt the protocol FRI described in Section 2.2.3, which is an efficient IOP system
to test proximity to a Reed–Solomon code. This Chapter is based on [BNLR22], in which IOPPs
for some families of AG code are proposed and studied: the case of Kummer codes and the case of
AG codes defined over the so–called Hermitian tower. As my contribution to this work concerns the
second family, we focus on this case. At several points, some technical results will be given without
proofs, in which cases we refer the reader to [BNLR22].

In 2020, Bordage and Nardi [BN20] gave a clear criterion for constructing IOPPs for AG codes
with linear proof length and sublinear query complexity, as well as a concrete instantiation for AG
codes defined over Kummer curves. In the case of AG code defined over a tower of Hermitian curve,
we then provide a family of foldable codes compatible with their definition of proximity testing, as
well as properties of the IOPP than can be derived from it.

The Chapter is organized as follows: In Section 5.1, we start by giving a definition for AG codes
to be compatible with proximity testing. Then, an explicit family of foldable AG code along the
Hermitian tower is given in Section 5.2. Finally, Sections 5.3 and 5.4 are dedicated respectively to
the folding operator used to reduce the proximity test to a smaller code and the corresponding IOPP
and its properties.

5.1 Sequence of AG codes compatible with proximity tests

In this section, we give a general definition of foldable AG codes, valid both in the case of codes along
the Hermitian tower and codes over Kummer–type curve (treated in [BNLR22]). More precisely, this
can be done by considering a sequence of curves equipped with automorphisms subgroups. As we
want to keep this section quite general, let F be any finite field.

5.1.1 Sequence of curves

Let X be a curve defined over the finite field F and a finite solvable group G ⊆ Aut(X). By solvability
of G, there exists a sequence of subgroups

{Id} := G0 ◁ G1 ◁ · · · ◁ Gr := G, (5.1)

such that each Gi−1 is a normal subgroup of Gi and the factor group Γi := Gr+1−i/Gr−i ≃ Z/piZ is
cyclic of order pi (for 1 ≤ i ≤ r). In particular, the cardinality of G equals |G| =

∏r
i=1 pi.

From Galois theory, the group Γr = G1/G0 = G1 acts on Xr := X , we then define the correspond-
ing quotient curve Xr−1 := Xr/Γr. Repeating this process for each i ∈ {1, · · · , r}, we recursively
obtain a sequence of curves as follows:

Xr := X and Xi−1 := Xi/Γi.

We set Fi := F(Xi) their corresponding function field and we denote by πi : Xi → Xi−1 the canonical

79

CHAPTER 5. IOP OF PROXIMITY TO AG CODES ON THE HERMITIAN TOWER

projection modulo the action of Γi. We obtain a sequence of curves

X := Xr Xr−1 · · · Xi Xi−1 · · · X0 ≃ X/G,

Γr

πr

Γr−1

πr−1 πi+1

Γi

πi

Γi−1

π1 (5.2)

which corresponds via Theorem 1.35 to a tower of function field

F0 ⊆ F1 ⊆ · · · ⊆ Fr := F(X),

where for each i ∈ {0, · · · , r}, Fi := F(Xi). Even if the sequence of curves depends on the choice
of the normal series (5.1), the last curve X0 is always isomorphic to X/G. From now on, such a
sequence of curves is referred to as an (X ,G)–sequence.

5.1.2 Sequence of codes

Let (Xi)i be a (X ,G)–sequence as above. For any i ∈ {0, . . . , r}, we aim to define an AG code

Ci := CL (Xi,Pi, Gi)

on the curve Xi associated to a divisor Gi ∈ Div(Fi) and a support Pi ⊆ Xi(F). The upcoming
discussion explains how to choose Pi and Gi.

Choice of the evaluation sets. For our protocol, we need, for each i ∈ {1, · · · , r}, that every
point in Pi−1 admits exactly pi := |Γi| preimages under the projection πi. For this reason, we choose
the first support Pr ⊆ X (F) as a (disjoint) union of G–orbits of size |G|, i.e. such that G acts freely
on Pr. This way, we can define for every i ∈ {1, · · · , r} the set Pi−1 := πi(Pi).

Choice of the divisors. Let Gr ∈ Div(Fr) be a divisor that is globally Γr–invariant. This ensures
that Supp(Gr) ∩ Pr = ∅. For simplicity, we will assume that Gr is in fact supported by Γr–fixed
points.

Remark 5.1. As done several time in this thesis, we will later consider one–point divisors, whose
support is reduced to a point which totally ramifies in the tower. Under the action of G, this means
that such a point is a full orbit.

To make our protocol complete and sound, we need the sequence of divisors (Gi)
r
i=0 to satisfy

the following properties:

• each Gi is supported by Γi–invariant points;

• each Riemann–Roch space LFi
(Gi) admits an explicit decomposition in terms of Riemann–

Roch spaces on the fixed field Fi−1 (see Equation (5.3));

• for any 1 ≤ i ≤ r, Gi−1 needs to be compatible with the choice of Gi and the structure of its
Riemann–Roch space (explanation is delayed to Definition 5.4).

We know discuss these restrictions by definition what we mean by decomposition of Riemann–
Roch spaces.

Definition 5.2. Let i ∈ {1, · · · , r} and Gi ∈ Div(Fi). We say that the function µi partitions
LFi(Gi) with respect to the action of the order pi subgroup Γi if

LFi
(Gi) =

pi−1⊕
j=0

µj
iπ

∗
i

(
LFi−1

(Ei,j)
)
, (5.3)

with

Ei,j :=

⌊
1

pi
πi∗
(
Gi − j(µi)

Fi
)⌋
∈ Div(Fi−1) for 0 ≤ j ≤ pi − 1,

where given a divisor D =
∑

P∈PFi

npP ∈ Div(Fi), we set:

⌊
1

n
D

⌋
=
∑

P∈PFi

⌊nP

n

⌋
P

and
πi∗D =

∑
P∈PFi

nPπi(P).

80

5.2. FOLDABLE AG CODES ALONG THE HERMITIAN TOWER

Remark 5.3. In the literature, the divisor πi∗(D) is sometimes referred to as the pushforward of the
divisor D. We warn the reader that this definition differs from our notion of pushforward, as defined
in Definition 3.2 with the notation D̃.

Definition 5.4 (Compatibility). Fix i ∈ {1, · · · , r}, Gi ∈ Div(Fi) and a function µi ∈ Fi which
partitions LFi

(Gi) in the sense of Equation (5.3). A divisor Gi−1 ∈ Div(Fi−1) is said to be (Gi, µi)–
compatible if the following assertions hold:

1. for every j ∈ {0, · · · , pi − 1}, Gi−1 ≥ Ei,j ;

2. for every j ∈ {0, · · · , pi − 1}, there exists a function νi−1,j ∈ Fi−1 such that

(νi−1,j)
Fi−1
∞ = Gi−1 − Ei,j .

The functions νi−1,j are called balancing functions.

The first requirement imposed on the sequence of divisors ensures that L(Ei,j) ⊆ L(Gi−1) and
second means that for every fj ∈ L(Ei,j), the function νi−1,jfj lies in L(Gi−1). We now come to the
definition of foldable AG code.

Definition 5.5 (Foldable AG codes). Let C = CL (X ,P, G) be an AG code on a curve X . We say
it is foldable if the following conditions are satisfied:

1. there exists a finite solvable group G ⊆ Aut(X) that acts freely on P. A composition series of
G as in Equation (5.1) provides an (X ,G)–sequence of curves (Xi)i;

2. there exists e ∈ (0, 1) such that |G| > |P|e;

3. there exists two sequences (µi)i ∈ Fi = F(Xi) and (Gi)i ∈ Div(Xi) such that Gr = G and for
every i ∈ {1, · · · , r}:

- the divisor Gi is supported by Γi–fixed points;

- the function µi partitions LXi(Gi) in the sense of Definition 5.2;

- Gi−1 is (Gi, µi)–compatible (Definition 5.4).

Remark 5.6. The second requirement in Definition 5.4 is really compelling and requires geometric
knowledge about the curves Xi. In fact, on a general curve, not every effective divisor is the pole
locus of a function, and characterizing which divisor indeed arises this way is at the center of the
Weierstrass gap theory, at least while considering one–point divisors. We will come back at discussion
in concrete instances, while seeking for balancing functions νi−1,j .

5.2 Foldable AG codes along the Hermitian tower

5.2.1 Preliminaries

Let Fq be a finite field. In what follows, we deal with curves and AG codes defined over the field Fq2 ,
as the well–known Hermitian curve as to be defined over a field of square cardinality. The study of
the Hermitian tower has been initiated in [She93]. In addition, details about the Hermitian curve
can also be found in [Sti09, Section 6.4]. In the discussion below, we describe an efficient way to
build a sequence of AG codes CL (Xi,Pi, Gi) along a tower of Hermitian curves.

Sequence of curves. We consider the sequence of function fields F = (Fi)i≥0 over Fq2 , recursively
defined by F0 = Fq2(x0) and Fi = Fi−1(xi), where

xq
i + xi = xq+1

i−1 , for all i ≥ 1. (5.4)

According to Theorem 1.35, the tower F corresponds to a tower of curves (Xi)i≥0 such that
Fi = Fq2(Xi), for any i ≥ 0. Also, we can view each curve Xi embedded into an i–dimensional
projective space with variables (x0, · · · , xn) defined by the equations (5.4).

Remark 5.7. For i = 1, the field F1 is nothing but the Hermitian function field H over Fq2 , those
main properties are given in [Sti09, Lemma 6.4.4].

Let gi := g(Fi) denotes the genus of the function field Fi. An explicit formula for every i ≥ 0 is
given by the following proposition:

81

CHAPTER 5. IOP OF PROXIMITY TO AG CODES ON THE HERMITIAN TOWER

Proposition 5.8 ([She93, Proposition 4]). We have g0 = 0 and for all i ≥ 1,

gi =
1

2
[(q2 − 1)((q + 1)i − qi) + 1− qi] =

1

2

(
i∑

k=1

qi+1

(
1 +

1

q

)k−1

+ 1− (1 + q)i

)
. (5.5)

Additionally, for every i ≥ 0, we can recursively prove that the number of Fq2–rational places in
Xi is given by

|Xi(Fq2)| = qi+2 + 1.

We end up with an infinite sequence of curves (Xi)i≥0, called the Hermitian tower, as follows:

. . . Xi Xi−1 . . . X0 ≃ P1,
πi+1

Γi

πi

Γi−1

πi−1 π1 (5.6)

where Γi stands for the automorphism acting on Xi and πi : Xi → Xi−1 is the corresponding quotient
map. This tower is a specific tower of Artin–Schreier extensions, which have been extensively studied
(see [Sti09], Section 3.7). We now recall some classical results that will be useful to design fordable
AG codes along this tower.

Automorphisms and projection maps. By definition of the Hermitian tower [Sti09, Proposi-
tion 3.7.10], the Galois group of the extension Fi/Fi−1 is the group of automorphisms defined by
(x1, ..., xi−1, xi) 7→ (x1, ..., xi−1, xi + α), where α runs in

S =
{
α ∈ Fq2 | αq + α = 0

}
.

Note that if we fix a non–zero element α ∈ S, then for every β ∈ Fq, αβ also lies in S. Hence, S
is an additive group which is isomorphic to Fq. The corresponding projection map πi : Xi → Xi−1

consists in the projection onto the first i coordinates.
For every i ≥ 0, we set Πi : Xi → X0 to be the composition of the first i quotient maps, i.e.

Πi := π1 ◦ π2 ◦ · · · ◦ πi−1 ◦ πi. (5.7)

The point at infinity. In what follows, let us denote by P
(0)
∞ the unique pole of the function x0

in the rational function field F0, which corresponds to the point at infinity on the projective line
X0 = P1. The following lemma gives us the ramification behaviour of this point alongside the tower.

Lemma 5.9. Let i ≥ 1. The place P
(0)
∞ is totally ramified in Fi, which means that the preimage

Π−1
i

({
P

(0)
∞

})
consists in a unique place in Fi, denoted by P

(i)
∞ . Moreover, P

(0)
∞ is the unique place

that is ramified in the tower F .

Proof. See [She93] or [GX12, Section 3.1] for a more recent summary.

This specific behaviour of the point at infinity encourages us to define a sequence of one–point
AG codes associated to it, meaning that our divisors Gi ∈ Div(Fi) will be taken as multiple of the

corresponding point at infinity P
(i)
∞ , i.e.

Gi := diP
(i)
∞ , for any i ≥ 0,

where di > 0 which will be chosen carefully later on.

Let us now focus on the principal divisors (xj)
Fi(0 ≤ j ≤ i) and their valuation at P

(i)
∞ along the

tower.

Lemma 5.10. The following two assertions hold:

1. For i ≥ 0, we have

(xi)
Fi = (q + 1)i

(
P (i) − P (i)

∞

)
,

where P (i) is the unique common zero of the functions x0, · · · , xi.

2. Let i ≥ 0. Then for 0 ≤ j ≤ i, the valuation of the function xj ∈ Fi at P
(i)
∞ is given by

ν
P

(i)
∞

(xj) = −qi−j(q + 1)j .

82

5.2. FOLDABLE AG CODES ALONG THE HERMITIAN TOWER

Proof. 1. For this part of the proof, see also [BFGM16, Section 2]. We prove the result by
induction on i ≥ 0. Let P (0) be the zero of x in the rational function field F0 = Fq2(x0), i.e.

(x0) = P (0) − P (0)
∞ .

Since F1 is the Hermitian function field (particular case of Artin–Schreier extension), it is well-
known ([Sti09, Lemma 6.4.4]) that P (0) completely splits in F1/F0. More precisely, there are

exactly q elements β ∈ Fq2 such that βq +β = 0, and each of them corresponds to a place P
(1)
0,β

in F1 such that x0(P
(1)
0,β) = 0 and x1(P

(1)
0,β) = β. With such notation, we denote by P (1) := P

(1)
0,0

the unique common zero of x0 and x1 in F1. From the equation xq
1 + x1 = xq+1

0 , the functions
x0 and x1 have the same zeros in F1, and

q · ν
P

(1)
∞

(x1) = −(q + 1) · e(P (1)
∞ |P (0)

∞),

that is ν
P

(1)
∞

(x1) = −(q + 1). Consequently, (x1)
F1 = (q + 1)

(
P (1) − P

(1)
∞

)
, which proves the

result for i = 1. Since any extension Fi/Fi−1 corresponds to the same Artin–Schreier extension,
we can recursively prove that for any i ≥ 0, the functions xi, xi−1, · · · , x1, x0 have only one
common zero in Fi, denoted by P (i). More precisely, this place arises as the only extension in
Fi of P

(i−1) such that xi(P
(i)) = 0. Using this time the equation xq

i + xi = xq+1
i−1 , we deduce

from the formula for (xi−1)
Fi−1 that

q · ν
P

(i)
∞

(xi) = −(q + 1)(q + 1)i−1 · e(P (i)
∞ |P (i−1)

∞),

hence ν
P

(i)
∞

(xi) = −(q + 1)i.

2. Consequence of 1 applied to (xj)
Fj , and the fact that

e
(
P (i)
∞ |P (j)

∞

)
= [Fi : Fj] = qi−j .

Basis of the Riemann–Roch space associated with the divisor diP
(i)
∞ . Given i ≥ 0, P

(i)
∞ is

the unique pole of all functions x0, · · · , xi. Since we know all their valuation at P
(i)
∞ (see Lemma 5.10,

2), we have an explicit basis for of the Riemann–Roch space associated to the one–point divisor

mP
(i)
∞ .

Lemma 5.11. For all i ≥ 1 and m ≥ 1, we have

LFi(mP (i)
∞) = Span

xa0
0 · · ·x

ai
i | 0 ≤ a0, 0 ≤ aj ≤ q − 1 and

i∑
j=0

ajq
i−j(q + 1)j ≤ m

 .

Proof. It is clear that all functions xa0
0 , · · · , xai

i belong to LFi
(mP

(i)
∞). To show that they indeed

form a basis, we make use of the Weierstrass gap theory at P
(i)
∞ (whose Weierstrass semigroup is

defined in Equation (5.8)). More precisely, we show that we have exactly dimFq2
LFi

(mP
(i)
∞) such

functions. Details can be found in [She93, Proposition 6].

5.2.2 Construction of foldable AG codes

We aim to define a sequence of AG codes on the tower (Xi)i≥0 that is compatible with the definition
of our folding operator (see Definition 5.16). More especially, for some fixed i ≥ 0, we consider the
one–point AG code

CL (Xi,Pi, Gi) , where Pi ⊆ Xi(Fq2)\
{
P (i)
∞

}
and Gi = diP

(i)
∞ ,

defined on the curve Xi. To obtain a sequence of foldable codes, we need to describe the Riemann–
Roch space of Gi using Riemann–Roch spaces on lower curves. In the case of AG code over Kummer–
type curves, a decomposition as in Equation (5.3) is performed by using [Mah04, Theorem 2]. Un-
fortunately, the latter theorem only works for specific cyclic extensions whose degree is prime to
the characteristic of the base field, which is not the case here since the degree of our automorphism
exactly equals the characteristic. Hence, we have to find a decomposition by hand, which can be done
thanks to the explicit basis of the Riemann–Roch spaces given in Lemma 5.11, and is the subject of
the next proposition.

83

CHAPTER 5. IOP OF PROXIMITY TO AG CODES ON THE HERMITIAN TOWER

Proposition 5.12. Let i ≥ 1. Set Gi = diP
(i)
∞ for some integer di > 0. Then

LFi
(Gi) =

q−1⊕
j=0

xj
iπ

∗
i

(
LFi−1

(Ei,j)
)

with

Ei,j :=

⌊
1

q
πi∗
(
Gi − j(xi)

Fi
)⌋
∈ Div(Fi−1), for 0 ≤ j ≤ q − 1,

where the notation πi∗ was defined in 5.2. In other words, the function xi ∈ Fi partitions LFi(Gi)
in the sense of to Definition 5.4.

Proof. From Lemma 5.11, LFi
(Gi) contains linear combinations of monomials of the form xa0

0 · · ·x
ai
i ;

with a0 ≥ 0, 0 ≤ aj ≤ q − 1 for 0 < j ≤ i and
i∑

j=0

ajq
i−j(q + 1)j ≤ m. Since the a′js (for j > 0)

run in {0, · · · , q − 1}, the proof follows from the fact that the function xa0
0 · · ·x

ai−1

i−1 ∈ Fi lies in the

Riemann–Roch space LFi

(
Gi − j(xi)

Fi
)
, which means that xa0

0 · · ·x
ai−1

i−1 (seen in Fi−1 this time)
belongs to LFi−1(Ei,j).

In order to make Gi−1 compatible with (Gi, xi), we need the existence of q balancing functions
νi−1,j ∈ Fi−1 (for 0 ≤ j ≤ q − 1) such that

Gi−1 − Ei,j = (νi−1,j)
Fi−1
∞ .

The divisor (xi)
Fi being known (see Lemma 5.10, 1), we have

Ei,j =

⌊
di − j(q + 1)i

q

⌋
P (i−1)
∞ , for all i, j.

Hence, we have to balance the divisors

Gi−1 − Ei,j =

(
di−1 −

⌊
di − j(q + 1)i

q

⌋)
P (i−1)
∞ ,

which leads to study the Weierstrass semigroup at P
(i−1)
∞ , denoted from now on by H

(
P

(i−1)
∞

)
(see

[Sti09, Section 1.6]). The generators of this semigroup can be found by using Lemma 5.10, since

P
(i−1)
∞ is the unique pole of the functions x0, · · · , xi−1 and we know their valuation at this point.

More precisely, we have

H
(
P (i−1)
∞

)
=
〈
qi−1−k(q + 1)k | 0 ≤ k ≤ i− 1

〉
N . (5.8)

Remark 5.13. In the spirit of the FRI protocol (see Section 2.2.3), we could be tempted to choose
Gi−1 as Ei,0. Such a choice would be valid in the sense of Definition 5.4 if and only if there exists,

for every 0 ≤ j ≤ q − 1, a balancing function νi−1,j ∈ Fi−1 such that Gi−1 −Ei,j = (νi−1,j)
Fi−1
∞ , i.e.⌊

di
q

⌋
−
⌊
di − j(q + 1)i

q

⌋
∈ H

(
P (i−1)
∞

)
.

However, when i increases, this condition is never satisfied, meaning that we will have to make a
smarter choice for Gi−1.

To ensure that deg (Gi−1 − Ei,j) is never a Weierstrass gap at P
(i−1)
∞ , the idea is to increase the

degree di−1 of Gi−1. Taking the Weierstrass Gap Theorem [Sti09, Theorem 1.6.8] into consideration,
we can prove:

Theorem 5.14. Let i ≥ 1. Suppose Gi = diP
(i)
∞ for some integer di. We set Gi−1 = di−1P

(i−1)
∞ ,

with

di−1 :=

⌊
di
q

⌋
+ 2gi−1.

Then Gi−1 is (Gi, xi)–compatible (see Definition 5.4).

84

5.2. FOLDABLE AG CODES ALONG THE HERMITIAN TOWER

Proof. By the Weierstrass Gap Theorem [Sti09, Theorem 1.6.8], we know that

max
(
N\H

(
P (i−1)
∞

))
≤ 2gi−1 − 1.

Then, for any 0 ≤ j ≤ q − 1, the difference

mi,j := deg(Gi−1 − Ei,j) =

(⌊
di
q

⌋
−
⌊
di − j(q + 1)i

q

⌋
+ 2gi−1

)
(5.9)

always belongs to the Weierstrass semigroup at P
(i−1)
∞ , meaning that some balancing function does

exist.

About the balancing functions. Since we know a N–basis of H
(
P

(i−1)
∞

)
(see Equation (5.8)),

we are able to explicit the form of the balancing functions νi−1,j , for any 1 ≤ i ≤ r and 0 ≤ j ≤ q−1.
In particular, for a fixed i, they can be chosen as product of powers of x0, · · · , xi−1. More precisely,
if ai,j := (ai,j(0), · · · , ai,j(i− 1)) ∈ Ni is a vector of integers such that

mi,j =

i−1∑
k=0

ai,j(k) · qi−1−k(q + 1)k, (5.10)

then mi,j (defined in Equation (5.9)) is in fact in H
(
P

(i−1)
∞

)
. The corresponding choice for the

balancing function is then given by

νi,j =

i−1∏
k=0

x
ai,j(k)
k .

Note that finding a vector ai,j satisfying Equation (5.10) leads to study the diophantine equation

mi,j =

i−1∑
k=0

ak · qi−1−k(q + 1)k

with i unknowns ak ∈ N, for which we know by construction that there exist solutions (and we only
need one).

A family of foldable AG codes. Let us denote by imax the level in the tower (Xi)i≥0 such that
Ximax

is the curve on which the code we want to test proximity is defined.

Proposition 5.15. Let P0 ⊆ P1(Fq2)\
{
P

(0)
∞

}
and define Pimax ⊆ Ximax(Fq2) as the preimage of P0

under Πimax
(defined in (5.7)). For any fixed integer dimax

, the AG code CL

(
Ximax

,Pimax
, dimax

P
(imax)
∞

)
is foldable in the sense of Definition 5.5.

Proof. The group G ≃ Z/pimaxZ acts on the curve Ximax
, and its action on Pimax

is obviously free by
definition of Pimax

. We have |Pimax
| = |P0|pimax , implying the existence of some e ∈ (0, 1) such that

|G| > |Pimax |e. Finally, the third and last condition for an AG code to be foldable (see Definition
5.5) follows from Theorem 5.14.

To make sure we get compatible divisors and as stated in Theorem 5.14, we need to increase the
degree of each folded divisor by twice the genus of the curve at each step. The counterpart is that
the dimension of each folded code decreases much slowly than their length. To construct a sound
AG–IOPP system based on this family, we need to ensure that we do not get a last code (i.e. a
Reed–Solomon code) which is trivial. To avoid this problem, we need to control the dimension of
each foldable code. An efficient way to do this is to consider codes of the specific form

Cα := CL
(
Ximax ,Ximax(Fq2)\

{
P (imax)
∞

}
, (2α+ 1)gimaxP

(imax)
∞

)
, (5.11)

for some α > 1
2 . In fact, the choice Pimax

= Ximax
(Fq2)\

{
P

(imax)
∞

}
is the biggest possible, and is in

fact G–invariant since it is easily proved (by induction) that every rational point on Ximax
, excepted

for P
(imax)
∞ , totally splits in the tower. In this case, the length of the code is nimax = qimax+2.

In [BNLR22], we provide a sufficient condition on α and imax to get a constant fixed rate when
q goes to infinity, which can be done be studying the genus formula given in Proposition 5.8. The
code Cα will be used to control the rate of the last folded code (see Section 5.4.2).

85

CHAPTER 5. IOP OF PROXIMITY TO AG CODES ON THE HERMITIAN TOWER

5.3 Folding operators for AG codes

In Section 5.2.2, we determined the needed properties for an AG code to be foldable (in the case of
the Hermitian tower). We now construct the so–called folding operator, which ensures that at each
step of the IOPP protocol, the proximity test of a given AG code can be reduced to the proximity
of its folded code. We then study its properties.

To keep the framework general, we use below the same notation as in Section 5.1. Let (Ci)ri=0 =
(CL(Xi,Pi, Gi))

r
i=0 be a family of foldable AG codes on a sequence of curves (Xi)i defined over some

finite field F, where Cr satisfies all conditions in Definition 5.5. In the context of an IOPP, we want
to test proximity of a function f (r) : Pr → F to the code Cr. To do so, we aim to inductively reduce
the problem to a smaller one, consisting of testing proximity to some smaller code Ci. More precisely,
our goal is to define from any function f (i) : Pi → F another function f (i−1) : Pi−1 → F such that
the relative distance ∆(f (i−1), Ci−1) is roughly equal to ∆(f (i), Ci).

The folding operator. Fix i ∈ {1, . . . , r} and consider an arbitrary function f : Pi → F. For
each P ∈ Pi−1, we denote by SP := π−1

i ({P}) the set of pi places in Xi above P . Let

If,P (X) :=

pi−1∑
j=0

aj,PX
j ∈ F[X]

be the univariate polynomial of degree less than pi which interpolates the set of points

{(µi(Q), f(Q)) | Q ∈ SP }

(i.e. for all Q ∈ SP , we have If,P (µi(Q)) = f(Q)), where µi is the function that partitions LFi
(Gi).

For any j ∈ {0, . . . , pi − 1}, we then define the function

fj :

{
Pi−1 → F
P 7→ aj,P .

By assumption, we have |Pi−1| = |Pi|
pi

, hence the idea is to define pi functions fj such that f

corresponds to the evaluation of a function in LFi(Gi) if and only if each fj coincides with a function
in LFi−1(Ei,j) ⊂ LFi−1(Gi−1). Now, instead of testing whether fj ∈ Ci−1 for all j, we reduce those
claims into a single one by taking a random linear combination of fj ’s, referred to as the folding
of f. At this point, note that for soundness analysis, the introduction of the balancing functions
νi−1,j in the definition of compatible divisors guaranties that no fj corresponds to a function lying
in LFi−1

(Gi−1)\LFi−1
(Ei,j). This explains why the folding operation takes it into account.

Definition 5.16 (Folding operator). For any z = (z1, z2) ∈ F2, we define the folding of f as the
function Fold[f, z] : Pi−1 → F such that

Fold[f, z] :=

pi−1∑
j=0

zj1fj +

pi−1∑
j=0

zj+1
2 νi−1,jfj .

Properties of the folding operator. In this paragraph, we give without proofs three key prop-
erties satisfied by our folding operator. This will, using [ABN22, Theorem 1], prove the completeness
and the soundness of our AG–IOPP. The proofs of the upcoming results can be found in [BNLR22],
Section 7.2.

Proposition 5.17. The folding operator defined above satisfies the following properties:

1. Locality. Let z ∈ F2. Then for each P ∈ Pi−1, the value of Fold[f, z](P) can be computed
with exactly pi queries to the function f , namely at the points π−1

i ({P}).

2. Completeness. Let z ∈ F2. If f ∈ Ci, then Fold[f, z] ∈ Ci−1.

3. Distance preservation. For δ > 0, if f is δ–far from Ci (i.e. ∆(f, Ci) > δ), then its folding
Fold[f, z] is δ–far from Ci−1 with high probability on z ∈ F2.

5.4 AG–IOPP on the Hermitian tower

Given a family (Ci)ri=0 = (CL(Xi,Pi, Gi))
r
i=0 of foldable AG codes over a finite field F, we informally

describe the IOPP system (P,V) for testing proximity of a function f (r) : Pr → F to the code Cr in
a general case, before studying its properties in the case of the family of codes along the Hermitian
tower given in Proposition 5.15. Again, proofs and details can be found in [BNLR22], Section 8.

86

5.4. AG–IOPP ON THE HERMITIAN TOWER

5.4.1 Description of the AG–IOPP system

Our IOPP system is divided into two phases, referred to as COMMIT and QUERY phase. Before
any interaction, both the verifier V and the prover P agree on the sequence of foldable codes (Ci)ri=0

satisfying Definition 5.5 (that is, for all i ∈ {1, . . . , r}, they agree on: the curve Xi, support Pi,
divisor Gi, function µi and balancing functions νi−1,j for j ∈ {0, . . . , pi − 1}).

COMMIT phase. This first phase consists in an interaction over r rounds between the prover
P and the verifier V. For each round i ∈ {1, . . . , r} , the verifier samples a random challenge z(i) =

(z
(i)
1 , z

(i)
2) ∈ F2. As an answer, the prover gives oracle access to a function f (i−1) : Pi−1 → F, which

is expected to be equal to Fold
[
f (i), z(i)

]
. To compute the values of f (i−1) on the set Pi−1, an

honest prover exploits the fact that the folding f (i−1) of f (i) is locally computable (see Proposition
5.17, 1). This phase ends up with P sending a final function f (0) : P0 → F.

The COMMIT phase is depicted in Figure 5.1. For both this figure and Figure 5.2, full lines
means that the data can be seen in full, while dotted lines correspond to an oracle access.

Prover Verifier

f (r)

(F,Xr,Pr, Gr)

z(r) ← F2

f (r−1)

z(r−1) ← F2

f (r−2)

...

z(1) ← F2

f (0)

COMMIT Phase

f (r−1) = Fold
[
f (r), z(r)

]
f (r−2) = Fold

[
f (r−1), z(r−1)

]
...

f (0) = Fold
[
f (1), z(1)

]
Final test: fr ∈ Cr

Figure 5.1: AG–IOPP : COMMIT phase

QUERY phase. During the QUERY step, the task of the verifier is to check that each consecutive
pair of oracle functions

(
f (i), f (i−1)

)
is consistent, i.e. that f (i−1) is indeed constructed as the folding

of f (i). More precisely, the idea is to check that the equality

f (i−1)(P) = Fold
[
f (i), z(i)

]
(P) (5.12)

holds at a random point P ∈ Pi−1. Again, the local property of the folding operator ensures that
each test only requires pi queries to f (i) and one to f (i−1). This verification test is referred to as
round consistency test. The set of points in which Equation (5.12) has to be checked is chosen by
V in the following way: at the beginning, a random Qr ∈ Pr is sampled. Then, for each round
i ∈ {1, . . . , r}, V computes the next location test as Qi−1 := πi(Qi). The set {Q1, . . . , Qr} is called
query path. Note that the correlation between the round consistency tests allows to improve the
soundness of the IOPP.

For the final test, V reads f (0) : P0 → F entirely to decide if it belongs to CL(X0,P0, G0) or
not. The QUERY phase of the protocol can be repeated several times before the final decision of
the verifier, hence improving the soundness error. Picture 5.2 sums up this discussion.

87

CHAPTER 5. IOP OF PROXIMITY TO AG CODES ON THE HERMITIAN TOWER

Prover Verifier

f (r)

(F,Xr,Pr, Gr)

z(r) ← F2

f (r−1)

z(r−1) ← F2

f (r−2)

...

z(1) ← F2

f (0)

QUERY Phase

Round consistency tests:
Sample Qr ∈ Pr, and define a query
path (Q1, . . . , Qr), s.t. Qi−1 = πi(Qi).

f (r−1)(Qr)
?
= Fold

[
f (r), z(r)

]
(Qr)

f (r−2)(Qr−1)
?
= Fold

[
f (r−1), z(r−1)

]
(Qr−1)

...

f (0)(Q1)
?
= Fold

[
f (1), z(1)

]
(Q1)

Final test: f (0)
?
∈ CL(X0,P0, G0)

Figure 5.2: AG–IOPP : QUERY phase

5.4.2 Properties of the AG–IOPP with the Hermitian tower

Here, we study the properties of the AG IOPP system described in the previous section, in the case
of the family of foldable codes along the Hermitian tower given in Section 5.2.2. All is summarized
in the informal theorem below.

Theorem 5.18 ([BNLR22, Theorem 45]). Let imax ≥ 0 and consider a family of foldable AG codes

(Ci)imax
i=0 =

(
CL

(
Xi,Pi, diP

(i)
∞

))imax

i=0
as in Proposition 5.15. The length n = #Pimax of Cimax is at

most qimax+2. Then the IOPP system described in Section 5.4.1 is an imax–round interactive proof
with the following properties:

1. Perfect completeness: If f (imax) ∈ Cimax
and f (imax−1), . . . , f (0) are honestly generated by the

prover, then V accepts the proof with probability 1.

2. Soundness: Assume that f (imax) is δ–far from Cimax
. Then for any prover P∗ (possibly mali-

cious), we have

Pr
[〈

P∗ ↔ Vf(imax)

(Cimax
)
〉
= accept

]
≤ err(δ),

where err(δ) is small and depends on both the error during the COMMIT phase and the ones
due to the t iterations of the QUERY phase.

Moreover, we have:

rounds complexity r(n) < log(n)
proof length ℓ(n) < n
query complexity q(n) ≤ tq log(n) + 1

prover complexity tp(n) = O
(
n ·MFq2

(q) log(q)
)

verifier complexity tv(n) = O
(
log(n) ·MFq2

(q) log(q)
)
,

where MFq2
(d) denotes the cost of multiplying two degree-d univariate polynomials over Fq2 .

After the interaction between P and V, we end up with a proximity test of a function f (0) to an

AG code C0 := CL(X0,P0, d0P
(0)
∞). As X0 equals the projective line, the code C0 is nothing but a

Reed–Solomon code. Taking this into consideration, we can replace the final test of our AG–IOPP
system with a proximity test to a RS code (i.e. a FRI protocol, see Section 2.2.3), until we get a
dimension one RS code.

As already discussed at the end of section 5.2.2, we need to ensure that the RS code C0 is not
trivial, i.e. its rate is smaller than 1. In [BNLR22, Section 8.3.2], this is examined by considering
the foldable code defined in Equation (5.11), that is

Cα := CL
(
Ximax

,Ximax
(Fq2)\

{
P (imax)
∞

}
, (2α+ 1)gimax

P (imax)
∞

)
, with α >

1

2
.

88

5.4. AG–IOPP ON THE HERMITIAN TOWER

We then provide a sufficient condition on α and imax to bound from above the rate of C0, as well as
the following examples:

q imax n Rimax
1− ρ >

24 3 220
1/8 1/3

25 5 235

24 4 224

1/16

1/3

25
3 225 3/4

5 235 1/2

26
4 236 3/4

5 242 2/3

7 254 1/2

24 3 220 1/32 1/2

Table 5.1: Example of parameters of foldable codes of rate R along the Hermitian tower.

In Table 5.1, we display some examples of initial level imax and initial rate Rimax
of Cimax

for
which the AG-IOPP reduces to the proximity test of the RS code C0 of rate ρ. In particular, the
lower bound on 1− ρ provides an estimation of the minimum distance of C0.

89

Conclusion

For the three years that ended with this manuscript, we focused on how we could use algebraic
geometry codes in post–quantum cryptography. More precisely, we worked in two different directions:
the first consists in studying AG code-based cryptosystems (such as McEliece’s encryption scheme),
by either proposing new ones or analyzing the security of existing ones. The second way to use this
family of codes is when constructing new and efficient proof systems. It is now time to sum up our
contributions and present some perspectives.

In the case of McEliece’s encryption scheme based on structured SSAG codes, we provided a
security reduction of the corresponding secret key. Currently, the technique introduced can be applied
whenever the public SSAG code is quasi–cyclic, either built on a Kummer cover or an elementary
abelian p–cover of curves. With some additional work, we hope that this security reduction could be
generalized to a solvable Galois cover of curves, at least under some technical assumptions. Moreover,
some needed hypotheses could be weakened. The consequence of this work is that cautions have to
be taken while constructing McEliece’s scheme based on these codes in order to guarantee a good
security level.

With the desire to generalize the construction of the distinguisher for alternant and classical
Goppa codes proposed in [MT21], we define a new class of SSAG codes whose structure mimics
theirs: Goppa–like AG codes. After successfully adapting the techniques of [MT21] to build a
distinguisher, we study different sets of parameters for Goppa–like AG codes. The specific case
of one–point Goppa–like AG codes constructed on the Hermitian curve might be interesting for
designing efficient SSAG–based cryptosystems for the following reasons:

• they can be encoded efficiently, as the evaluation space is well–known;

• they are resistant to our distinguisher;

• for similar parameters, they improve key sizes compared with binary Goppa codes.

The remaining work of this thesis focuses on using AG codes while designing efficient proof
systems, especially in the context of proximity tests to a linear code. Recognizing the effectiveness of
the Reed–Solomon–based FRI protocol, a first AG codes-based IOPP has been proposed in [BN20].
Following this work, we propose another protocol, this time relying on codes constructed on the
Hermitian tower, with the aim of correcting problems imposed by the choice of Reed–Solomon
codes. In fact, considering recursive towers enables us to construct an IOPP on a polylogarithmic-
size alphabet. Concerning efficiency, our concrete instance reaches quasilinear prover time and
polylogarithmic verification.

As a conclusion, we point out perspectives motivated by our work: both Chapters 3 and 4
provide new cryptanalysis tools in the context of McEliece’s encryption schemes, that might be
useful for future constructions. The use of AG codes in proximity tests being now initiated, there
are probably lots of ways to improve it: a first idea could be to consider codes constructed from
an optimal tower of curves (Appendix B goes in that direction). Observing that the area of code–
based cryptography is constantly in progress nowadays, we hope that our contributions could lead
to significant improvements in the future.

91

Appendix A

Algorithm for retrieving the
equation of a cover

In this appendix, we present a formal algorithm that describes the attack proposed in Section 3.3.2,
in the context of a Kummer cover of curves Y → X , where (X , P∞) ∈ B (the class B is defined
in Section 3.3.1). Keeping the same notation, recall that we aim to recover the evaluation vector
y = y(Qi,j)i,j . For ξ ∈ µ∗

ℓ (Fqm), we are led to solve linear systems of the form

∆1(ξ)


E(ξ2) · (zω ⋆ y)T = 0

M ·D1 · (zω ⋆ y)T = 0
...

M ·Ds · (zω ⋆ y)T = 0

and ∆2(ξ)


E(ξ3) · (zω ⋆ y2)T = 0

M ·D1 · (zω ⋆ y2)T = 0
...

M ·Ds · (zω ⋆ y2)T = 0.

In this framework, we describe in Algorithm 1 the attack of Section 3.3.2 in the context of a
McEliece cryptosystem based on a quasi–cyclic SSAG code defined on Y. For simplicity, we write
K = Fqm(X) = Fqm(x, z), which is a degree a extension of the rational function field. Hence, any
degree one place P ∈ P can be associated to the rational point in X with projective coordinates
[x(P) : z(P) : 1]. Given Q ∈ Q such that Q|P , the representative point of Q on Y as projective
coordinates [x(P) : z(P) : y(Q) : 1] in P3.

A full complexity analysis of Algorithm 1 below is hard to estimate because of the interpolation
step (see the discussion below Proposition 3.9). For completeness, we still provide a complexity
analysis when X = P1, since in this case we can use the classical Lagrange’s interpolation method to
recover f . Remark that this specific case coincides with the one considered in [Bar18a, Chapter 5].

Proposition A.1. Suppose K = Fqm(x) is the rational function field and consider L = K(y), with

yℓ = f,

where f ∈ Fqm [T] is a square–free polynomial of degree d. Let n, k be the length and the dimension
of the public SSAG respectively, r := n/ℓ be the number of orbits in Q and s := ℓ(D − B). If
r ≥ d+ 1, then Algorithm 1 finds an equation of Y, as well as the secret structure of the public code
in O((φ(ℓ) + 1)(nω + nω−1sk) operations over Fqm , where ω is the exponent of linear algebra.

Proof. The complexity of solving a linear system with k equations and n unknowns is in O(nω−1k)
operations over the base field, where ω is the exponent of linear algebra. Since both ∆1(ξ) and ∆2(ξ)
consist in sk+n equations for n unknowns, the cost of line 10 is O(nω+nω−1sk) operations over Fqm

(operations need to be done in Fqm and not Fq as the roots of unity might be in Fqm\Fq). Since we
have to seek for the correct root of unity ξ, this step might be repeated at most φ(ℓ)–times, where
φ is the Euler totient function. After solving the first system, we can assume that we recovered
the correct value for ξ and thus the second system only has to be resolved once, with the same
complexity.

Next, we have to realize one Lagrange’s interpolation at line 18 (which is the classical one in this
case, since f is a one variable polynomial) in order to recover a defining equation of the Kummer
cover. As we assumed r ≤ d + 1, Lagrange’s interpolation finds a unique polynomial f of degree d
such that a plane model of Y is given by yℓ = f(x) in O(d2) operations over Fqm (which is negligible
compared to the cost of solving the linear systems).

Finally, the last step we have to care about is at line 20, where we are left to compute the
pullback of the invariant divisor. As for the support, we need to recover the y–coordinates of points

93

in Supp(G). This can be done by finding roots of several polynomials: indeed, from Kummer’s

theorem [Sti09, Theorem 3.3.7], if x(Q) denotes the x–coordinate of a point R ∈ Supp(G̃), then the y–
coordinates of the extensions of P in Supp(G) are exactly the roots of the polynomial T ℓ−f(x(Q)) ∈
Fqm [T]. This step can be done by factorizing each polynomial using Berlekamp algorithm, whose
cost is O(ℓω + qmℓ2) operations over Fqm . In any practical cases, the length of the public code is
larger that the cardinality of the base field (i.e. n > qm) and thus this step is also negligible. As a
result, the total cost of Algorithm 1 is in O((φ(ℓ) + 1)(nω + nω−1sk) over Fqm .

Algorithm 1: Security reduction in Kummer cover

Input : A generator matrix Mpub of the public SSAG code, P = {P1, · · · , Pr} and G̃.
The integers ℓ and d.

Output: A function f ∈ K and the secret structure (Q, G).
1 x←− (x(P1), ..., x(P1)︸ ︷︷ ︸

ℓ−times

, ..., z(Pr), ..., z(Pr))

2 z←− (z(P1), ..., z(P1)︸ ︷︷ ︸
ℓ−times

, ..., z(Pr), ..., z(Pr))

3 D ←−
⌊
(ℓ− 1)(d− 1)− 2 + ℓar∗

ℓ

⌋
P∞ − G̃−A

4 B ←−
⌈
a
ℓ

⌉
P∞

5 M ←− set of primitive ℓ–th roots of unity in Fqm

6 temp := 0
7 while temp = 0 do

8 ξ
$←−M

9 Exclude(M ,ξ)
10 S1 ←− Solve(∆1(ξ))
11 if dim(S1) = 1 then
12 S2 ←− Solve(∆2(ξ)) // ξ is now known

13 if dim(S2) = 1 then
14 temp := 1

15 y1
$←− S1\{0}

16 y2
$←− S2\{0}

17 y∗ ← y2 ⋆ y
−1
1

18 f ←− Interpolate(x, z,y∗)
19 Q ←− {Qi,j = (xi,j : zi,j : y

∗
i,j : 1)}

20 G←− π∗(G̃)
21 return f , Q and G

Note that Algorithm 1 can also be used in the case of an elementary abelian p–extension of
Fqm(x), by only changing a few lines: in fact, in the latter setup, we have to solve at most pu =
#Aut(L/Fqm(x)) linear systems of the form (3.16) (pu := [L : Fqm(x)]), whose total cost is in
O(pu(nω + nω−1sk)) operations over Fqm .

94

Appendix B

Foldable AG codes from a tower of
modular curves

In the discussion below, we give valid setting to construct a family of foldable AG codes defined on
an optimal tower of curves over a finite field Fq. Let us recall what we mean by optimal towers:
given a sequence of curves X = (Xi)i, we define its limit by

λ(X) = lim
i→∞

#Xi(Fq)

g(Xi)
.

It is well–known from the Drinfeld–Vladut bound [GS07, Theorem 2.5] that for any such X ,

λ(X) ≤ √q − 1.

We say that the tower X is (asymptotically) optimal if the bound is attained, i.e.

λ(X) = √q − 1.

Note that there may exists optimal tower over Fq only if q is a square (in which case there always
exists one). More details about optimal towers can be found in [GS07, Chapter 1].

Below, we focus on the optimal tower over a finite field of cardinality q = p2, where p is an odd
prime, recursively defined by the equation

y2 =
x2 + 1

2x
.

This tower has been proven to be optimal in [GS07, Section 4.3] and also modular [Elk01], as it
comes from the modular tower (X2n

0)n≥0. Optimal towers are good candidates to design long AG
codes since they asymptotically have the maximal number of rational points for a given base field,
with respect to the Drinfeld–Vladut bound. Below, we keep notation as in Chapter 5.

B.1 Preliminaries

Let q = p2 be a power of an odd prime p.

Sequence of curves and automorphisms. We consider the tower of function field F = (Fi)i≥0

over Fq, recursively defined by F0 = Fq(x0) and Fi = Fi−1(xi), where

x2
i =

x2
i−1 + 1

2xi−1
, ∀i ≥ 1. (B.1)

For any i ≥ 0, we denote by Xi the curve over Fq with function field Fi = Fq(Xi), and by gi its
genus. We obtain an infinite tower of curves as in Equation 5.6, where Γi = Z/2Z and πi : Xi → Xi−1

is the projection map. We also set Πi := π1 ◦ · · · ◦ πi−1 ◦ πi the composition of the first i quotient
maps.

95

Ramification and genus. Note that every extension Fi/Fi−1 is a Kummer extension of degree 2,
meaning that to obtain a good decomposition for Riemann–Roch spaces (as in Equation (5.3)) along
this tower, we can use the same tool as in [BNLR22] for the case of foldable codes over Kummer
type curves, which is Maharaj’s theorem [Mah04, Theorem 2.2]. To apply it efficiently, we first need
to control the principal divisors of xi ∈ Fi for any i ≥ 0. Thankfully, a lot of work has been done in
[NOQ11] to understand the ramification behaviour in the tower. In their paper, they also provide
a genus formula which will be useful at some point, as well as an explicit basis for Riemann–Roch
spaces associated to one–point divisors. For the remaining of this section, we keep their notation
and recall some of their results.

From now on, any place in Fi will be denoted with an exponent ”(i)” to signify that it belongs

to the i-th function field Fi is the tower. For each α ∈ Fq ∪ {∞}, we denote by P
(0)
α the unique zero

of x0 − α in the rational function field F0 = Fq(x0), and we consider the set

R =
{
P

(0)
0 , P (0)

∞ , P
(0)
±1 , P

(0)
±i

}
⊆ PF0

.

Lemma B.1 ([NOQ11, Lemma 2.2]). Let i ≥ 1. Then

1. The places P
(0)
0 , P

(0)
∞ , P

(0)
i and P

(0)
−i are totally ramified in Fi/F0. If P

(i)
0 , P

(i)
∞ , P

(i)
i , P

(i)
−i denote

their unique extension, we have:

ν
P

(i)
∞

(xi) = −1, ν
P

(i)
0

(xi) =

{
1 , i = 0
−1 , i ≥ 1

and ν
P

(i)
±i

(xi) =

 0 , i = 0
1 , i = 1
−1 , i ≥ 2;

2. The place P
(i−1)
1 totally splits in Fi. Its two extensions P

(i)
1 and P

(i)
−1 satisfy xi(P

(i)
1) = 1 and

xi(P
(i)
−1) = −1.

3. P
(i−1)
−1 totally splits in Fi; its two extensions Q

(i)
i and Q

(i)
−i are the only zeros of the function

1 + x2
i ∈ Fi, and

ν
Q

(i)
±i
(1 + x2

i) = 2i;

4. Let 0 ≤ r ≤ i, and denote by Q
(i)
r |P (r)

−1 an extension of P
(r)
−1 in Fi.

(i) If 0 ≤ r ≤ ⌊ i−3
2 ⌋, then Q

(i)
r |Q(i−1)

r with e(Q
(i)
r |Q(i−1)

r) = 2 and ν
Q

(i)
r
(xi) = −1.

Moreover, the sum of the degree of such places equals 2r+2.

(ii) If ⌊ i−1
2 ⌋ ≤ r ≤ i− 2, then Q

(i)
r |Q(i−1)

r with e(Q
(i)
r |Q(i−1)

r) = 1 and

ν
Q

(i)
r
(xi) =

{
−22r+2−i, r ≤ i− 3
−2i−2, r = i− 2.

The sum of the degree of such places equals 2i−r.

It turns out that all places described in Lemma B.1 are all the places above the set R in F ,
and more importantly; (xi)

Fi is only supported by these places. Except for Q
(0)
±i = P

(0)
±i , all places

considered above are distinct.

Definition B.2. For any i ≥ 0 and 0 ≤ r ≤ i, we define

D(i)
r :=

∑
Q

(i)
r |P (r)

−1

Q(i)
r ∈ Div(Fi).

We have D
(i)
i = P

(i)
−1, and we can extend this definition for r = −2, and −1 by setting

D
(i)
−2 := P

(i)
0

and
D

(i)
−1 := P

(i)
i + P

(i)
−i .

Corollary B.3. 1. For any i ≥ 0 and −2 ≤ r ≤ i, we have

deg
(
D(i)

r

)
=

{
2i−r, if i ≤ 2r + 2
2r+2, if i ≥ 2r + 2.

96

2. If i ≥ 1 and −2 ≤ r ≤ i, then a place in Supp
(
D

(i)
r

)
ramifies in Fi/Fi−1 if and only if

i ≥ 2r + 3.

Proof. Immediate consequence of Lemma B.1 4 (see also [NOQ11, Corollary 2.4]).

The ramification of the places P
(r)
−1 in the tower being somewhat technical, you can find it for

the first stages of the tower in Figure B.1.

r = 0 r = 1

i = 0

i = 1

i = 2

i = 3

i = 4

P
(0)
−1

Q
(1)
−i Q

(1)
i

Q
(2)
0 Q

(2)
0 Q

(2)
0 Q

(2)
0

Q
(3)
0 Q

(3)
0 Q

(3)
0 Q

(3)
0

Q
(4)
0 Q

(4)
0 Q

(4)
0 Q

(4)
0

P
(1)
−1

Q
(2)
−i Q

(2)
i

Q
(3)
1 Q

(3)
1 Q

(3)
1 Q

(3)
1

Q
(4)
1 Q

(4)
1 Q

(4)
1 Q

(4)
1 Q

(4)
1 Q

(4)
1 Q

(4)
1 Q

(4)
1

Figure B.1: Ramification of P
(r)
−1 for r ∈ {0, 1} and i ≤ 4

We now have all the ingredients we need to explicit the principal divisors we will need later on.

Proposition B.4. 1. We have (x0)
F0 = P

(0)
0 − P

(0)
∞ , (x1)

F1 = D
(1)
−1 − P

(1)
0 − P

(1)
∞ and for any

i ≥ 2:

(xi)
Fi = 2i−2D

(i)
i−2 − P (i)

∞ −
⌊ i−3

2 ⌋∑
r=−2

D(i)
r −

i−3∑
⌊ i−1

2 ⌋

22r−i+2D(i)
r ;

2. We have (1 + x0)
F0 = P

(0)
−1 − P

(0)
∞ , (1 + x1)

F1 = 2P
(1)
−1 − P

(1)
0 − P

(1)
∞ and for any i ≥ 2:

(1 + xi)
Fi = 2iP

(i)
−1 − P (i)

∞ −
⌊ i−3

2 ⌋∑
r=−2

D(i)
r −

i−3∑
⌊ i−1

2 ⌋

22r−i+2D(i)
r ;

3. We have (1 + x2
0)

F0 = D
(0)
−1 − 2P

(0)
∞ , (1 + x2

1)
F1 = 2D

(1)
0 − 2P

(1)
0 − 2P

(1)
∞ and for any i ≥ 2:

(1 + x2
i)

Fi = 2iD
(i)
i−1 − 2P (i)

∞ − 2

⌊ i−3
2 ⌋∑

r=−2

D(i)
r −

i−3∑
⌊ i−1

2 ⌋

22r−i+3D(i)
r ;

97

Proof. For items 1 and 2 , we refer to [NOQ11, Proposition 2.5]. For 3 , note that the functions xi

and (1+x2
i) have the same poles, and for any P (i) ∈ Supp(xi)

Fi
∞, we have νP (i)(1+x2

i) = 2 ·νP (i)(xi).

Moreover, D
(i)
i−1 = Q

(i)
i +Q

(i)
−i by definition, so Lemma B.1 3 . gives the result, since

deg((1 + x2
i)

Fi
0) = 2[Fi : F0] = 2i+1 = 2i deg

(
D

(i)
i−1

)
.

We conclude this preliminary section with a genus formula for each function field in the tower F .

Proposition B.5 ([NOQ11, Proposition 2.6]). For i ≥ 0, the genus gi of Fi is given by

gi =


(
2

i+2
2 − 1

)(
2

i
2 − 1

)
, if i ≡ 0[2](

2
i+1
2 − 1

)2
, if i ≡ 1[2].

=

{
2i+1 − 3 · 2 i

2 + 1, if i ≡ 0[2]

2i+1 − 2
i+3
2 + 1, if i ≡ 1[2].

B.2 Towards foldable AG codes

As in the case of the Hermitian tower (see Section 5.2), we want to define a sequence of foldable
AG codes along the tower F . In [NOQ11], the authors give an explicit way to split Riemann–Roch

spaces associated to the one–point divisor sP
(i)
∞ ∈ Div(Xi), using Riemann–Roch spaces on Xi−1.

This motivates the use of these one–point divisors to define our sequence of codes.

For any fixed i ≥ 1, the group Gi = Z/2iZ acts on Xi and the quotient curve Xi/Gi is equal to
the projective line P1. We want to deal with an AG code on Xi of the form

CL (Xi,Pi, Gi) ,

where Pi ⊆ Xi(Fq2)\
{
P

(i)
∞

}
is a support made of distinct orbits of size 2i and Gi = diP

(i)
∞ for

some di ≥ 0. Since P
(i)
∞ is totally ramified in the tower (see Lemma B.1, 1 .), the divisor Gi is also

Gi–invariant.

Splitting of Riemann–Roch spaces. The following theorem gives the desired decomposition of

the Riemann–Roch space associated to the one–point divisor Gi = diP
(i)
∞ . In particular, it implies

that each xi ∈ Fi partitions LFi
(Gi) with respect to Definition 5.2.

Theorem B.6. Let i ≥ 1 and Gi = diP
(i)
∞ ∈ Div(Fi), for some di ≥ 0. Then

LFi
(Gi) = π∗

i−1

(
LFi−1

(Ei,0)
)
⊕ xiπ

∗
i−1

(
LFi−1

(Ei,1)
)
,

where

Ei,0 =

⌊
di
2

⌋
P (i−1)
∞

and

Ei,1 = 2i−2D
(i−1)
i−2 +

⌊
di − 1

2

⌋
P (i−1)
∞ −

⌊ i−3
2 ⌋∑

r=−2

D(i−1)
r −

i−3∑
⌊ i−1

2 ⌋

22r−i+2D(i−1)
r if i ≥ 2.

The formula for E1,1 is a bit different, i.e.

E1,1 = D
(0)
−1 +

⌊
d1 − 1

2

⌋
P (0)
∞ − P

(0)
0 .

Proof. Consequence of [Mah04, Theorem 2.2] applied to the Kummer extension Fi/Fi−1. The struc-
ture of Ei,1 follows from the formula for (xi)

Fi (see Proposition B.4, 1.) and the ramification
behaviour given in Lemma B.1.

98

Weak compatibility. Fix i ≥ 1. Since P
(i)
∞ is not the only zero of Ei,1, we cannot consider a

one–point divisor of the form Gi = diP
(i)
∞ while satisfying Gi−1 ≥ Ei,1, which is needed for Gi−1

to be (Gi, xi)–compatible (see Definition 5.4). To overcome this problem, we introduce a weaker
version of compatibility, referred to as weak-compatibility. Keep in mind that this new definition
implies slight changes to the folding operator defined in Definition 5.16.

Definition B.7 (Weak compatibility). Let i ≥ 1, and take the general framework of Section 5.1.2,
i.e. Fi/Fi−1 is cyclic of prime order pi. Let Gi ∈ Div(Fi) and µi ∈ Fi be a function that partitions
LFi(Gi) with respect to Definition 5.2. A divisor Gi−1 ∈ Div(Fi−1) is said to be weak (Gi, µi)–
compatible if there exist functions fi−1,j ∈ Fi−1 (0 ≤ j ≤ pi − 1) such that

1. For every j ∈ {0, · · · , pi − 1}, Gi−1 + (fi−1,j)
Fi−1 ≥ Ei,j ;

2. For every j ∈ {0, · · · , pi − 1}, there exists a weakly balancing function νi−1,j ∈ Fi−1 such that

(νi−1,j)
Fi−1
∞ = Gi−1 − Ei,j + (fi−1,j)

Fi−1 .

The functions fi−1,j introduced above allows to compensate the poles of the divisor Gi−1 − Ei,1

without modifying its degree.
Regarding Theorem B.6, we could be tempted to chose

Gi−1 := Ei,0 =

⌊
di
2

⌋
P (i−1)
∞ .

However, the complicated structure of Ei,1 will lead to an impossibility of finding the weakly bal-
ancing function νi−1,1 if we do so. Actually, the Weierstrass gap theory tells us that such a function
does exist only if the divisor Gi−1 − Ei,1 has high enough degree, as explained by the following
proposition:

Proposition B.8. Let D =
s∑

i=1

niPi be a divisor on a given function field F with genus g and

1 ≤ r ≤ s. If deg(D) ≥ 2g(F)− 1 + r, there exists a function h ∈ F such that

∀1 ≤ i ≤ r, νPi
(h) = −ni.

In particular, if r = s, we have (h)∞ = D.

Proof. Set D′ = D −
r∑

i=1

Pi =
r∑

i=1

(ni − 1)Pi +
s∑

i=r+1

niPi. By hypothesis, we have

deg(D′) = deg(D)− r ≥ 2g(F)− 1.

From the Riemann–Roch theorem (Theorem 1.67), this implies that for every 1 ≤ i ≤ r, ℓ(D′+Pi) =
ℓ(D′) + 1. Hence, there exists a function hi ∈ L(D′ + Pi)\L(D′), satisfying:

- For each 1 ≤ i ≤ r, νPi
(hi) = −ni;

- For each 1 ≤ i ̸= j ≤ r, νPj
(hi) ≥ νPj

(D′ + Pi) = −nj + 1

Set h =
r∑

i=1

hi ∈ F . The strict triangular inequality gives

νPi(h) = min {νPi(hi), νPi(h− hi)} = −ni,

which yields the desired result.

In our situation, the above Proposition implies that weakly balancing functions do exist if for
any i ≥ 1 and j ∈ {0, 1}, whenever we have

deg
(
Gi−1 − Ei,j + (fi−1,j)

Fi−1
)
≥ 2g(Fi)− 1 + #Supp

(
Gi−1 − Ei,j + (fi−1,j)

Fi−1
)

(B.2)

For this reason, and without changing the support of our sequence of divisors, we raise the valuation

of Gi−1 at P
(i−1)
∞ at each step. More precisely, we set

Gi−1 =

(⌊
di
2

⌋
+ αi−1

)
P (i−1)
∞ , (B.3)

for some well–chosen αi−1 ≥ 0.
In what follows, we first discuss about the functions fi−1,j , before getting back to the choice of

the integer αi−1 that guarantees the existence of weakly balancing functions.

99

About the functions fi−1,j. With the choice made in Equation (B.3), we have Gi−1 − Ei,0 =

αi−1P
(i−1)
∞ ≥ 0, meaning that we do not need to find a function fi−1,0. However, it is clear that

Gi−1 − Ei,1 is not effective. Thus, we have to find fi−1,1 ∈ Fi−1 such that

Gi−1 − Ei,1 + (fi−1,1)
Fi−1 ≥ 0.

As we want to apply this construction to an effective IOPP, it is desired to have an explicit formula
for fi−1,1, for every i ≥ 1. Actually, we show that the set (fi−1,1)i≥1 can be constructed recursively,
allowing the prover to precompute it.

For every i ≥ 2, recall that Theorem B.6 gives

Gi−1 − Ei,1 =

(⌊
di
2

⌋
−
⌊
di − 1

2

⌋
+ αi−1

)
P (i−1)
∞ +

⌊ i−3
2 ⌋∑

r=−2

D(i−1)
r +

i−3∑
r=⌊ i−1

2 ⌋

22r−i+2D(i−1)
r − 2i−2D

(i−1)
i−2 .

(B.4)

Written in this form, we know exactly the pole part of Gi−1 − Ei,1, hence we seek for a function

whose zero divisor is exactly supported by D
(i−1)
i−2 , in order to compensate it. This requires two

lemmas.

Lemma B.9. Let i ≥ 3. Then(
1 + x2

i−1

1 + xi−2

)Fi−1

= 2i−2D
(i−1)
i−2 −

{
2D

(2)
−1, if i = 3

2i−4D
(i−1)
i−4 if i ≥ 4.

Proof. The whole proof uses the description of several principal divisors in the tower (see Proposition
B.4). For the case i = 3, we have(

1 + x2
2

1 + x1

)F2

= (1 + x2
2)

F2 − (1 + x1)
F1

= 4D
(2)
1 −

(
2P (2)

∞ + 2P
(2)
0 + 2D

(2)
−1

)
− π∗

(
2P

(1)
−1 − P

(1)
0 − P (1)

∞

)
= 4D

(2)
1 −

(
2P (2)

∞ + 2P
(2)
0 + 2D

(2)
−1

)
−
(
2D

(2)
1 − 2P

(2]
0 − 2P (2)

∞

)
= 2D

(2)
1 − 2D2

−1.

Now for i ≥ 4, we have(
1 + x2

i−1

1 + xi−2

)Fi−1

= 2i−2D
(i−1)
i−2 +

[
(xi−2)

Fi−1
∞ − 2(xi−1)

Fi−1
∞

]
,

where

(xi−2)
Fi−1
∞ − 2(xi−1)

Fi−1
∞ = π∗

P (i−2)
∞ +

⌊ i−5
2 ⌋∑

r=−2

D(i−2)
r +

i−5∑
⌊ i−3

2 ⌋

22r−i+4D(i−2)
r


− 2

P (i−1)
∞ +

⌊ i−4
2 ⌋∑

r=−2

D(i−1)
r +

i−4∑
⌊ i−2

2 ⌋

22r−i+3D(i−1)
r


From Corollary B.3, any place in D

(i−2)
r ramifies in Fi−1/Fi−2 if and only if i − 1 ≥ 2r + 3, i.e.⌊

i− 4

2

⌋
≥ r. Then

(xi−2)
Fi−1
∞ − 2(xi−1)

Fi−1
∞ = 2

⌊ i−5
2 ⌋∑

r=−2

D(i−1)
r +

i−5∑
⌊ i−3

2 ⌋

22r−i+4D(i−2)
r

− 2

⌊ i−4
2 ⌋∑

r=−2

D(i−1)
r +

i−4∑
⌊ i−2

2 ⌋

22r−i+3D(i−1)
r


=

{
−22(i−4)−i+4D

(i−1)
i−4 = −2i−4D

(i−1)
i−4 , if i ≡ 1[2]

−2D(i−1)

⌊ i−4
2 ⌋ + 2 · 22⌊ i−3

2 ⌋−i+4D
(i−1)

⌊ i−3
2 ⌋ − 2i−4D

(i−1)
i−4 , if i ≡ 0[2]

= −2i−4D
(i−1)
i−4 .

The result follows.

100

Despite having the good divisor, the above function cannot be chosen as fi−1,1 since it would
create another pole, but this time with a smaller valuation. Our blessing is that we can raise the

valuation at P
(i−1)
∞ by eventually taking a bigger αi−1. As a result, finding a function whose only

pole is P
(i−1)
∞ together with this consideration on αi−1 will provide a valid choice for fi−1,1. Such a

function is given in the next lemma:

Lemma B.10. Let i ≥ 3 and set hi−1 =
i−1∏
j=0

xj ∈ Fi−1. Then

(hi−1)
Fi−1 =

⌊ i−3
2 ⌋∑

r=−2

D(i−1)
r +

i−3∑
r=⌊ i−1

2 ⌋

22r−i+3D(i−1)
r − (2i − 1)P (i−1)

∞ .

Proof. We proceed by induction on i ≥ 3. Using Proposition B.4, we have

(h2)
F2 = (x0)

F2 + (x1)
F2 + (x2)

F2

=
(
4D

(2)
−2 − 4P (2)

∞

)
+
(
2D

(2)
−1 − 2D

(2)
−2 − 2P (2)

∞

)
+
(
D

(2)
0 −D

(2)
−2 −D

(2)
−1 − P (2)

∞

)
= D

(2)
−2 +D

(2)
−1 +D

(2)
0 − 7P (2)

∞ ,

which gives the initiation. now let us suppose the formula holds for a given i ≥ 3. Recalling that

D
(i)
r ramifies in Fi/Fi−1 if and only if r ≤ ⌊ i−3

2 ⌋ (see Corollary B.3), we have

(hi−1)
Fi = 2

⌊ i−3
2 ⌋∑

r=−2

D(i)
r +

i−3∑
r=⌊ i−1

2 ⌋

22r−i+3D(i)
r −

(
2i+1 − 2

)
P (i)
∞ .

This gives

(hi)
Fi = (hi−1)

Fi + (xi)
Fi

=

⌊ i−3
2 ⌋∑

r=−2

D(i)
r +

i−3∑
r=⌊ i−1

2 ⌋

(
22r−i+3 − 22r−i+2

)
D(i)

r + 2i−2D
(i)
i−2 −

(
2i+1 − 2 + 1

)
P (i)
∞

=

⌊ i−2
2 ⌋∑

r=−2

D(i)
r +

i−2∑
r=⌊ i

2 ⌋

22r−i+2D(i)
r − (2i+1 − 1)P (i)

∞ ,

which give the result for i+ 1. Note that for the last equality, we need to deal with the parity of i.
Details are left to the reader.

Both the above lemmas allow to construct an explicit function fi−1,1 for i ≥ 3, as well as a
sufficient condition for the divisor Gi−1 − Ei,1 + (fi−1,1)

Fi−1 to be effective.

Proposition B.11. Let i ≥ 3 and set fi−1,1 = h2
i−1

1 + x2
i−1

1 + xi−2
∈ Fi−1. Then

Gi−1 − Ei,1 + (fi−1,1)
Fi−1 =

(⌊
di
2

⌋
−
⌊
di − 1

2

⌋
+ αi−1 + 2− 2i+1

)
P (i−1)
∞ + 3

⌊ i−3
2 ⌋∑

r=−2,r ̸=i−4

D(i−1)
r

+ 3

i−3∑
r=⌊ i−1

2 ⌋,r ̸=i−4

22r−i+3D(i−1)
r +


D

(i−1)
i−4 , if i ∈ {3, 5}

2D
(i−1)
i−4 , if i = 4

13 · 2i−6D
(i−1)
i−4 , if i ≥ 6.

In particular, if αi−1 ≥ 2i+1, the above divisor is effective.

Proof. We start by proving a formula for the divisor of fi−1,1. From Lemmas B.9 and B.10, we have

(fi−1,1)
Fi−1 = 2(hi−1)

Fi−1 +

(
1 + x2

i−1

1 + xi−2

)Fi−1

=

⌊ i−3
2 ⌋∑

r=−2

2D(i−1)
r +

i−3∑
r=⌊ i−1

2 ⌋

22r−i+4D(i−1)
r − (2i+1 − 2)P (i−1)

∞ + 2i−2D
(i−1)
i−2

−

{
2D

(2)
−1, if i = 3

2i−4D
(i−1)
i−4 if i ≥ 4.

101

At this step, we need to check in which sum D
(i−1)
i−4 belongs to with respect to i, in order to find the

correct valuation. This leads to distinguish between the case i ≤ 5 and i ≥ 6. Finally, we have

(fi−1,1)
Fi−1 =

⌊ i−3
2 ⌋∑

r=−2,r ̸=i−4

2D(i−1)
r +

i−3∑
r=⌊ i−1

2 ⌋,r ̸=i−4

22r−i+4D(i−1)
r − (2i+1 − 2)P (i−1)

∞ + 2i−2D
(i−1)
i−2

+

{
2D

(i−1)
i−4 , if i ≤ 5

22(i−4)D
(i−1)
i−4 if i ≥ 6.

−

{
2D

(2)
−1, if i = 3

2i−4D
(i−1)
i−4 if i ≥ 4.

=

⌊ i−3
2 ⌋∑

r=−2,r ̸=i−4

2D(i−1)
r +

i−3∑
r=⌊ i−1

2 ⌋,r ̸=i−4

22r−i+4D(i−1)
r − (2i+1 − 2)P (i−1)

∞ + 2i−2D
(i−1)
i−2

+


0, if i ∈ {3, 5}
D

(i−1)
i−4 , if i = 4

3 · 2i−4D
(i−1)
i−4 , if i ≥ 6

Thus, from the formula (B.4), we have

Gi−1 − Ei,1 + (fi−1,1)
Fi−1 =

(⌊
di
2

⌋
−
⌊
di − 1

2

⌋
+ αi−1 + 2− 2i+1

)
P (i−1)
∞ + 3

⌊ i−3
2 ⌋∑

r=−2,r ̸=i−4

D(i−1)
r

+ 3

i−3∑
r=⌊ i−1

2 ⌋,r ̸=i−4

22r−i+3D(i−1)
r +


D

(i−1)
i−4 , if i ∈ {3, 5}

2D
(i−1)
i−4 , if i = 4

13 · 2i−6D
(i−1)
i−4 , if i ≥ 6.

It is clear from the formula that Gi−1 −Ei,1 + (fi−1,1)
Fi−1 is effective if and only if its valuation

at P
(i−1)
∞ is non negative, i.e.⌊

di
2

⌋
−
⌊
di − 1

2

⌋
+ αi−1 + 2− 2i+1 ≥ 0.

Hence, taking αi−1 ≥ 2i+1 is a sufficient condition, for any i ≥ 3.

Remark B.12 (Cases i = 1 and i = 2). The cases i ∈ {1, 2} have to be discussed separately, as the

above formulas hold for i ≥ 3 only. Setting f0,1 =
1+x2

0

x0
∈ F0 and f1,1 = x0(1 + x1)

2 ∈ F1, we easily
check that

G0 − E1,1 + (f0,1)
F0 =

(⌊
d1
2

⌋
−
⌊
d1 − 1

2

⌋
+ α0 − 2

)
P (0)
∞ + P

(0)
0

and

G1 − E2,1 + (f1,1)
F1 =

(⌊
d2
2

⌋
−
⌊
d2 − 1

2

⌋
+ α1 − 4

)
P (1)
∞ + 2D

(1)
0 .

Notice that the condition on αi−1 given in Proposition B.11 still holds in these cases.

We now have an explicit formula for the function fi−1,1 for any i ≥ 1, as well as a condition
to satisfy the first requirement of Definition B.7. It remains to check whenever we can find weakly
balancing functions, which is the topic of the next paragraph.

Existence of weakly balancing functions. In the previous discussion, we showed that for any
i ≥ 1, with the choice of fi−1,1 made in Proposition B.11 and taking

Gi−1 :=

(⌊
di
2

⌋
+ αi−1

)
P (i−1)
∞ ,

we have
Gi−1 − Ei,0 = αi−1P

(i−1)
∞ ≥ 0

and
Gi−1 − Ei−1,1 + (fi−1, 1)

Fi−1 ≥ 0,

provided that αi−1 ≥ 2i+1. This ensure that Gi−1 satisfies 1 of Definition B.7, for all i ≥ 1. To prove
the existence of weakly balancing functions, we get back to the sufficient condition (B.2), which leads
to study the degree and the cardinality of the support of Gi−1 − Ei,j + (fi−1,j)

Fi−1 (j ∈ {0, 1}).

102

Lemma B.13. For any i ≥ 1, we have

deg
(
Gi−1 − Ei−1,0 + (fi−1,0)

Fi−1
)
= αi−1

and

deg
(
Gi−1 − Ei−1,1 + (fi−1,1)

Fi−1
)
=

⌊
di
2

⌋
−
⌊
di − 1

2

⌋
+αi−1+


−1 if i = 1
0 if i = 2

2⌊
i+3
2 ⌋ − 2⌊

3−i
2 ⌋ − 2i−1 overwise.

Proof. Let i ≥ 3.
The case j = 0 is immediate. If j = 1, note first that the degree of Gi−1 −Ei−1,1 + (fi−1, 1)

Fi−1

does not depend on the choice of fi−1,1. From (B.4) and Corollary B.3, we have:

deg (Gi−1 − Ei−1,1) =

⌊
di
2

⌋
−
⌊
di − 1

2

⌋
+ αi−1 +

⌊ i−3
2 ⌋∑

r=−2

2r+2 +

i−3∑
r=⌊ i−1

2 ⌋

2r+1 − 2i−1

=

⌊
di
2

⌋
−
⌊
di − 1

2

⌋
+ αi−1 + 2⌊

i+3
2 ⌋ − 2⌊

3−i
2 ⌋ − 2i−1.

For i = 1, 2, we can compute the corresponding degrees from Remark B.12, since the formula for
Ei,1 differs in this case. This gives

deg (G0 − E1,1) =

⌊
d1
2

⌋
−
⌊
d1 − 1

2

⌋
+ α0 − 1

and

deg (G1 − E2,1) =

⌊
d2
2

⌋
−
⌊
d2 − 1

2

⌋
+ α1.

Lemma B.14. Let i ≥ 1. Then

#Supp
(
Gi−1 − Ei−1,0 + (fi−1,0)

Fi−1
)
= 1

and

#Supp
(
Gi−1 − Ei−1,1 + (fi−1,1)

Fi−1
)
=


2 if i = 1
3 if i = 2

3 · 2⌊ i+1
2 ⌋ − 4 overwise.

Proof. All cases j = 0 and j = 1 together with i = 1, 2 are easy. We are left to check the cases
j = 1 and i ≥ 3. Note that in order to compute the support, we can get ride of the valuations,

provides that they are not zero. Moreover, any place in #Supp(D
(i−1)
r) as degree one, meaning that

the degree of D
(i−1)
r equals the cardinality of its support. Thus, both Proposition B.11 and 2 of

Corollary B.3 gives

#Supp
(
Gi−1 − Ei−1,1 + (fi−1,1)

Fi−1
)
= 1 +

⌊ i−3
2 ⌋∑

r=−2

#Supp
(
Di−1

r

)
+

i−3∑
r=⌊ i−1

2 ⌋

#Supp
(
Di−1

r

)

= 1 +

⌊ i−3
2 ⌋∑

r=−2

2r+2 +

i−3∑
r=⌊ i−1

2 ⌋

2i−1−r

= 1 + (2⌊
i+3
2 ⌋ − 1) + 2i · 2−⌊ i−1

2 ⌋(1− 2−⌊ i−3
2 ⌋)

= 2⌊
i+3
2 ⌋ + 2⌊

i+1
2 ⌋ − 4

= 3 · 2⌊
i+1
2 ⌋ − 4.

We can now gives a sufficient condition on αi−1 for all i ≥ 1 such that with our construction, all
divisors Gi−1 are weak (Gi, xi)–compatible. Recall that we already imposed αi−1 ≥ 2i+1. Let us
check if this restriction coincides with Equation (B.2).

103

Proposition B.15. Suppose α0 ≥ 4, α1 ≥ 8 and for all i ≥ 3:

αi−1 ≥

{
2i+2 + 2i−1 − 2

i+6
2 + 3 · 2 i

2 − 2, if i ≡ 0[2]

2i+2 + 2i−1 − 2
i+5
2 + 2

i+1
2 − 2, if i ≡ 1[2]

(B.5)

Then for all i ≥ 1, the divisor Gi−1 defined by Equation (B.3) are weak (Gi, xi)–compatible with
respect to the chosen functions fi−1,j.

Proof. From Proposition B.5, we have g1 = 1 and g2 = 3. Thus, Equation (B.2) applied for i ∈ {1, 2}
gives α0 ≥ 4 and α1 ≥ 8, which is coherent. Now, let i ≥ 3. We have to check the inequality⌊

di
2

⌋
−
⌊
di − 1

2

⌋
+ αi−1 + 2⌊

i+3
2 ⌋ − 2⌊

3−i
2 ⌋ − 2i−1 ≥ 2gi − 1 + 3 · 2⌊

i+1
2 ⌋ − 4,

i.e.

αi−1 ≥ 2gi + 3 · 2⌊
i+1
2 ⌋ − 2⌊

i+3
2 ⌋ + 2i−1 + 2⌊

3−i
2 ⌋ − 5−

⌊
di
2

⌋
+

⌊
di − 1

2

⌋
︸ ︷︷ ︸

≤−4

≥ 2gi + 3 · 2⌊
i+1
2 ⌋ − 2⌊

i+3
2 ⌋ + 2i−1 − 4

≥

{
2 · (2i+1 − 3 · 2 i

2 + 1) + 3 · 2 i
2 − 2

i+2
2 + 2i−1 − 4, if i ≡ 0[2]

2 · (2i+1 − 2
i+3
2 + 1) + 3 · 2 i+1

2 − 2
i+3
2 + 2i−1 − 4, if i ≡ 1[2]

≥

{
2i+2 + 2i−1 − 2

i+6
2 + 3 · 2 i

2 − 2, if i ≡ 0[2]

2i+2 + 2i−1 − 2
i+5
2 + 2

i+1
2 − 2, if i ≡ 1[2]

Since i ≥ 3, an easy computation shows that the above lower bound on αi−1 is always bigger than
2i+1, leading to the sufficient condition on αi−1 to guarantee the existence of weakly balancing
functions.

B.3 Conclusion and future work

Throughout Section B.2, we gave valid setting to build a sequence of foldable one–point AG codes
along the optimal tower F recursively defined by Equation (B.1), namely the codes(

CL

(
Xi,Pi, diP

(i)
∞

))
i≥0

,

where di−1 =
⌊
di

2

⌋
+αi−1, for a sequence of integers (αi)i≥0 satisfying conditions of Proposition B.15.

While seeking for compatible divisors, we had to weaken the condition of Definition 5.4, as it
was imposed if we want to consider one–point codes at each step. Surely, it implies that while
using these codes into an AG–IOPP system, the folding operator as to be modified consequently.
More importantly, proofs of the key properties of the IOPP (see 5.4.2 in the case of foldable codes
along the Hermitian tower) might also require some adjustments, in particular for the soundness.
Furthermore, as in the Hermitian tower case, the degree of our divisor needs to be increased at each
step, meaning that we also need to control the sequence of rates of the folding family, in particular
the last RS code.

To conclude, a lot of work needs to be done to construct an efficient AG–IOPP system based on
our family of foldable codes, which could be done in the future. We hope that this could lead to
some improvements in the area of Interactive Proofs.

104

Bibliography

[ABN22] Daniel Augot, Sarah Bordage, and Jade Nardi. Efficient multivariate low–degree tests via
interactive oracle proofs of proximity for polynomial codes. Designs, Codes and Cryptog-
raphy, 2022.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
extended version of FOCS’92.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characteriza-
tion of NP. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh,
Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer Society, 1992.

[Bab85] László Babai. Trading group theory for randomness. STOC’ 85, 1985.

[Bar18a] Elise Barelli. On the security of short McEliece keys from algebraic and algebraic geometry
codes with automorphisms. PhD thesis, universite Paris–Saclay, 2018.

[Bar18b] Elise Barelli. On the security of some compact keys for McEliece scheme. CoRR,
abs/1803.05289, 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed–Solomon
interactive oracle proofs of proximity. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 14:1–14:17, 2018.

[BCC+22] Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, and al. Clas-
sic mceliece: conservative code–based cryptography: cryptosystem specification.
https://classic.mceliece.org/nist.html, October 2022.

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive oracle proofs with constant rate and query complexity. In 44th In-
ternational Colloquium on Automata, Languages, and Programming, volume 80 of LIPIcs.
Leibniz Int. Proc. Inform., pages Art. No. 40, 15. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2017.

[BCGO09] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. Reducing
key length of the McEliece cryptosystem. In Progress in cryptology–AFRICACRYPT 2009,
volume 5580 of Lecture Notes in Comput. Sci., pages 77–97. Springer, Berlin, 2009.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Prox-
imity Gaps for Reed–Solomon codes. IACR Cryptol. ePrint Arch., 2020:654, 2020.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BESP10] Régis Blache, Jorge Estrada Sarlabous, and Maria Petkova. A geometric interpretation
of reduction in the Jacobians of Cab curves. In Arithmetics, geometry, and coding theory
(AGCT 2005), volume 21 of Sémin. Congr., pages 17–34. Soc. Math. France, Paris, 2010.

[BFGM16] Albrecht Böttcher, Lenny Fukshansky, Stephan Ramon Garcia, and Hiren Maharaj. Lat-
tices from Hermitian function fields. J. Algebra, 447:560–579, 2016.

105

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31, 1991.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
sampling outside the box improves soundness. In 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, pages
5:1–5:32, 2020.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst–case to average case re-
ductions for the distance to a code. In 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA, pages 24:1–24:23, 2018.

[BLM11] Paulo S. L. M. Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes in cryp-
tography. In Post-quantum cryptography, volume 7071 of Lecture Notes in Comput. Sci.,
pages 179–199. Springer, Heidelberg, 2011.

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent
intractability of certain coding problems. IEEE Trans. Inform. Theory, IT-24(3):384–386,
1978.

[BN20] Sarah Bordage and Jade Nardi. Interactive oracle proofs of proximity to algebraic geometry
codes. CoRR, abs/2011.04295, 2020.

[BNLR22] Sarah Bordage, Jade Nardi, Mathieu Lhotel, and Hugues Randriambololona. Interactive
oracle proofs of proximity to algebraic geometry codes. CoRR, abs/2011.04295, 2022.

[BRS22] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast decoding of AG codes over
Ca,b curves. IEEE Trans. Inform. Theory, 68(11):7215–7232, 2022.

[CCMZ15] Ignacio Cascudo, Ronald Cramer, Diego Mirandola, and Gilles Zémor. Squares of random
linear codes. IEEE Trans. Inform. Theory, 61(3):1159–1173, 2015.

[CMCP17] Alain Couvreur, Irene Márquez-Corbella, and Ruud Pellikaan. Cryptanalysis of mceliece
cryptosystem based on algebraic geometry codes and their subcodes. IEEE Transactions
on Information Theory, 63(8):5404–5418, 2017.

[Cou14] Alain Couvreur. Codes and the Cartier operator. Proc. Amer. Math. Soc., 142(6):1983–
1996, 2014.

[CP20] Alain Couvreur and Isabella Panaccione. Power error locating pairs. Des. Codes Cryptogr.,
88(8):1561–1593, 2020.

[CR20] Alain Couvreur and Hugues Randriambololona. Algebraic geometry codes and some ap-
plications. CoRR, abs/2009.01281, 2020.

[Del75] Philippe Delsarte. On subfield subcodes of modified Reed–Solomon codes. IEEE Trans.
Inform. Theory, IT-21(5):575–576, 1975.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Inform. Theory, IT-22(6):644–654, 1976.

[Elk01] Noam D. Elkies. Explicit modular towers, 2001.

[Fau09] Cédric Faure. Etudes de systèmes cryptographiques construits à l’aide de codes correcteurs,
en métrique de hamming et en métrique rang. Ph.D. thesis, Ecole Polytechnique X, 2009.

[FM08] Cédric Faure and Lorenz Minder. Cryptanalysis of the McEliece cryptosystem over hy-
perelliptic curves. Proceedings of the eleventh International Workshop on Algebraic and
Combinatorial Coding Theory, pages 99–107, 2008.

[FOP+16] Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, Frederic de Portzamparc, and
Jean-Pierre Tillich. Folding alternant and Goppa codes with non–trivial automorphism
groups. IEEE. Trans. Inform. Theory, 62(1):184–198, 2016.

[FOPT10] Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Algebraic
cryptanalysis of McEliece variants with compact keys. Advances in Cryptology - EURO-
CRYPT 2010, LNCS, vol. 6110:279–298, 2010.

106

[FR93] Gui Liang Feng and T. R. N. Rao. Decoding algebraic–geometric codes up to the designed
minimum distance. IEEE Trans. Inform. Theory, 39(1):37–45, 1993.

[Gab05] Philippe Gaborit. Shorter keys for code based cryptography. Proceedings of the 2005 In-
ternational Workshop on Coding and Cryptography (WCC 2005) (Bergen, Norway), pages
81–91, March 2005.

[GH00] O. Geil and T. Høholdt. Footprints or generalized Bezout’s theorem. IEEE Transactions
on Information Theory, 46(2):635–641, 2000.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GS91] Arnaldo Garćıa and Henning Stichtenoth. Elementary abelian p–extensions of algebraic
function fields. Manuscripta Math., 72(1):67–79, 1991.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed–Solomon and
algebraic–geometry codes. IEEE Trans. Inform. Theory, 45(6):1757–1767, 1999.

[GS07] Arnaldo Garćıa and Henning Stichtenoth. Topics in geometry, coding theory and cryptog-
raphy, volume 6 of Algebra and Applications. Springer, Dordrecht, 2007.

[GX12] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers and
improved optimal rate list decoding. CoRR, abs/1204.4209, 2012.

[JLJ+89] Jørn Justesen, Knud J. Larsen, H. Elbrønd Jensen, Allan Havemose, and Tom Høholdt.
Construction and decoding of a class of algebraic geometry codes. IEEE Trans. Inform.
Theory, 35(4):811–821, 1989.

[JM96] Heeralal Janwa and Oscar Moreno. McEliece public key cryptosystems using algebraic–
geometric codes. Des. Codes Cryptogr., 8(3):293–307, 1996.

[Kil92] Joe Kilian. A note on efficient zero–knowledge proofs and arguments (extended abstract).
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992,
Victoria, British Columbia, Canada, pages 723–732, 1992.

[KLN23] Sabira El Khalfaoui, Mathieu Lhotel, and Jade Nardi. Goppa-like ag codes from ca,b curves
and their behaviour under squaring their dual, 2023.

[LC16] Phong Le and Sunil Chetty. On the dimension of algebraic–geometric trace codes. Mathe-
matics, 4(2):32, 2016.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 2–10. IEEE
Computer Society, 1990.

[Liu02] Qing Liu. Algebraic geometry and arithmetic curves. Oxford, 2002.

[Mah04] Hiren Maharaj. Code construction on fiber products of Kummer covers. IEEE Trans.
Inform. Theory, 50(9):2169–2173, 2004.

[MB09] Rafael Misoczki and Paulo Barreto. Compact McEliece keys from Goppa codes. Selected
Areas in Cryptography (Calgary, Canada), 2009.

[McE78] Robert J. McEliece. A public–key cryptosystem based on algebraic coding theory. DSN
Progress Report 44, pages 114–116, 1978.

[Mic98] Silvio Micali. Computationally–sound proofs. In Logic Colloquium ’95 (Haifa), volume 11
of Lecture Notes Logic, pages 214–268. Springer, Berlin, 1998.

[Min07] Lorenz Minder. Cryptography based on error correcting codes. Ph.D. thesis, Ecole Poly-
technique Fédérale de Lausanne, 2007.

[Miu93] S. Miura. Algebraic geometric codes on certain place curves. Electronics and Communica-
tion in Japan (Part III: Fundamental Electronic Science), 76(12):1-13, 1993.

[Mor93] Carlos Moreno. Algebraic Curves over Finite Fields. Cambridge Tracts in Mathematics.
Cambridge University Press, 1993.

107

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The theory of error–correcting codes.
North-Holland. Amsterdam, fifth edition, 1986.

[MT21] Rocco Mora and Jean-Pierre Tillich. On the dimension and structure of the square of the
dual of a Goppa code. CoRR, abs/2111.13038, 2021.

[Mum70] David Mumford. Varieties defined by quadratic equations. Questions on algebraic varieties,
C.I.M.E., III Ciclo. Edizioni Cremonese, Rome, 1970.

[NEK21] Gábor P. Nagy and Sabira El Khalfaoui. Towards the security of McEliece’s cryptosystem
based on Hermitian subfield subcodes. Prikl. Diskr. Mat. Suppl., pages 168–175, 2021.

[Nie86] H. Niederreiter. Knapsack–type cryptosystems and algebraic coding theory. Problems
Control Inform. Theory/Problemy Upravlen. Teor. Inform., 15(2):159–166, 1986.

[NOQ11] Francesco Noseda, Gilvan Oliveira, and Luciane Quoos. Bases for riemann–roch spaces of
one–point divisors on an optimal tower of function fields. arXiv, 2011.

[Pel89] Ruud Pellikaan. On a decoding algorithm for codes on maximal curves. IEEE Trans.
Inform. Theory, 35(6):1228–1232, 1989.

[Pet10] Christiane Peters. Information–set decoding for linear codes over Fq, volume 6061 of Lecture
Notes in Comput. Sci. Springer, Berlin, 2010.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans., IT-8:S
5–S 9, 1962.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public–key cryptosystems. Comm. ACM, 21(2):120–126, 1978.

[Sen94] Nicolas Sendrier. On the structure of a randomly permuted concatened code. EU-
ROCODE’94., pages 169–173, 1994.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[She93] Ba-Zhong Shen. A justesen construction of binary concatanated codes that asymptoti-
cally meet the zyablov bound for low rate. IEEE Transactions on Information Theory,
39:239–242, 1993.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994),
pages 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA, 1994.

[SJM+95] Shajiro Sakata, Jørn Justesen, Y. Madelung, Helhe Elbrønd Jensen, and Tom Høholdt.
Fast decoding of algebraic–geometric codes up to the designed minimum distance. IEEE
Trans. Inform. Theory, 41(6, part 1):1672–1677, 1995. Special issue on algebraic geometry
codes.

[SS92] Vladimir Michilovich Sidelnikov and S.O. Shestakov. On the insecurity of cryptosystem
based on generalized Reed–Solomon codes. Descrete Math. Appl. 1, no. 4:439–444, 1992.

[Sti09] Henning Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, second edition, 2009.

[Sud97] Madhu Sudan. Decoding of Reed Solomon codes beyond the error–correction bound. J.
Complexity, 13(1):180–193, 1997.

[SV90] Alexei N. Skorobogatov and Sergei G. Vlăduţ. On the decoding of algebraic–geometric
codes. IEEE Trans. Inform. Theory, 36(5):1051–1060, 1990.

[Tia19] Yongge Tian. Formulas for calculating the dimensions of the sums and the intersections
of a family of linear subspaces with applications. Beiträge zur Algebra und Geometrie /
Contributions to Algebra and Geometry, 60, 2019.

[TVN07] Michael A. Tsfasman, Serge G. Vlăduţ, and Dmitry Nogin. Algebraic geometric codes.
Number n0. 139 in Cambridge Tracts in Mathematics. Cambridge University Press, 2007.

[WGR22] Violetta Weger, Niklas Gassner, and Joachim Rosenthal. A survey on code-based cryp-
tography, 2022.

108

[Wir88] Michael Wirtz. On the parameters of Goppa codes. IEEE transactions on information
theory, 34(5):1341–1343, 1988.

109

110

List of Figures

5.1 AG–IOPP : COMMIT phase . 87
5.2 AG–IOPP : QUERY phase . 88

B.1 Ramification of P
(r)
−1 for r ∈ {0, 1} and i ≤ 4 . 97

111

List of Algorithms

1 Security reduction in Kummer cover . 94

113

List of Tables

4.1 Comparison of Cartier and Goppa–like constructions 66
4.2 Sharpness of the bound. 76
4.3 Largest distinguishable Goppa–like AG code in elliptic case. 77
4.4 Goppa-Like Hermitian codes parameters Γ(P, sP∞, g) over Fq2 78

5.1 Example of parameters of foldable codes of rate R along the Hermitian tower. 89

115

Titre : Utilisation de codes de géométrie algébrique structurés en cryptographie moderne.
Mots clés : Codes linéaires, cryptosystème de McEliece, cryptanalyse, géométrie algébrique, preuves par oracle
intéractif.

Résumé : En 1978, McEliece introduit un nouveau schéma de chiffrement à clé publique fondé sur les codes correcteurs
d’erreurs. Depuis, il s’est avéré avoir de nombreux avantages, comme un chiffrement et déchiffrement rapide, couplé
au fait qu’il soit un bon candidat en cryptographie post–quantique. La principale contrainte est qu’il impose des
tailles de clé trop grosses comparées aux autres systèmes de chiffrement à clé publique actuels. Dans ce contexte,
nous étudions la sécurité de certaines variantes du schéma de McEliece, à base de sous–codes de codes de géométrie
algébrique (SSAG). Plus précisément, nous montrons que la structure secrète du code SSAG public peut être récupérée
à partir du celle de son sous–code invariant, qui a de plus petits paramètres.

Initialement fondée sur les codes de Goppa classique, la proposition initiale de McEliece est encore considérée
comme sécurisé aujourd’hui. Tenant compte de ce fait, nous définissons une nouvelle famille de codes : les codes AG
Goppa–like. L’idée est de copier la structure algébrique des codes de Goppa héritée du choix du multiplicateur, tout
en considérant des courbes de genre supérieur, permettant de construire de plus longs codes. Se concentrant sur les
codes à un point sur des courbes Ca,b, nous étudions le comportement de la dimension du carré de leur dual pour
évaluer leur résistance aux attaques par distingueur. Comme cette famille peut être encodée rapidement, il s’agit d’un
bon candidat pour remplacer les codes de Goppa classiques.

Dans le contexte des preuves par oracle interactif (IOPs), nous engageons l’étude de tests de proximité à des codes
AG. Le problème de tester la proximité à un code C consiste à distinguer le cas ou un mot donné en entrée appartient à
C du cas où il en est très éloigné. Dans le but de généraliser le protocole FRI s’appuyant sur les codes de Reed-Solomon,
nous proposons un cadre valide pour définir un IOP de Proximité aux codes AG (AG–IOPP). Comme exemple concret,
nous nous concentrons sur les codes construits à partir d’une tour de courbes Hermitiennes, qui peuvent être définis
sur un alphabet de taille polylogarithmique. Nous donnons également une famille de codes repliables dont l’AG-IOPP
correspondant atteint une complexité quasilinéaire pour le prouveur et polylogarithmique pour le vérifieur.

Title : Using structured algebraic geometry codes in modern cryptography.
Keywords : Linear codes, McEliece cryptosystem, cryptanalysis, algebraic geometry, interactive oracle proofs.

Abstract : In 1978, McEliece introduced a new public–key cryptosystem, based on error-correcting codes. Since
then, it has demonstrated to have a lot of advantages, such as a fast encryption and decryption, in addition to the fact
that it is a good candidate for post-quantum cryptography. The main constraint is that it imposes large keys sizes
compared with other actual public–key cryptosystems. In this context, we study the security of variants of McEliece’s
encryption schemes based on structured subfield subcode of algebraic geometry codes (SSAG). More precisely, we show
that the underlying secret structure of the public SSAG can be recovered from that of its invariant code, which has
smaller parameters.

Initially based on the family of classical Goppa codes, the first proposal of McEliece is still considered secure today.
Taking this into account, we define a new family of codes: Goppa–like AG codes. The idea is to mimic the algebraic
structure of Goppa codes inherited from the choice of the multiplier while considering higher genus curves, which
allows to construct longer codes. Focusing one one–point codes from Ca,b curves, we study the behavior of the square
of their dual to determine their resistance to distinguisher attacks. As this family can be efficiently encoded, it is a
good candidate to replace classical Goppa codes.

In the context of Interactive Oracle Proofs (IOPs), we initiate the study of proximity tests to AG codes. The
problem of testing proximity to a code C consists in distinguishing between the case where an input word belong to
C and the case where it is far from it. Aiming to generalize the FRI protocol based on Reed-Solomon codes, we give
valid setting to design an efficient IOP of Proximity to AG codes (AG–IOPP). As concrete instantiation, we focus on
AG codes arising from a tower of Hermitian curves, which can be defined over polylogarithmic–size alphabet. We also
give a family of foldable AG codes on this tower whose corresponding AG–IOPP achieves quasilinear prover time and
polylogarithmic verification.

Classification AMS : 11T71, 14G50, 14H05, 11G20, 14Q20.

Université de Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon, France

	Introduction
	Résumé
	Algebraic geometry codes
	Coding theory
	Linear codes
	Punctured code and subfield subcode
	Permutation group and invariant code
	Schur product of codes

	Tools of algebraic geometry
	Algebraic curves over finite field
	Algebraic function fields
	Divisors and Riemann–Roch spaces
	Differentials and the Riemann–Roch theorem
	Ca,b curves

	AG codes and their subfield subcodes
	Algebraic Geometry codes
	Duality
	Subfield subcode of AG codes and their parameters
	The family of Generalized Reed–Solomon codes
	Decoding AG codes

	Code–based cryptography
	The McEliece encryption scheme and its security
	Description of the scheme
	Message recovery attack and Information Set Decoding (ISD)
	Key recovery attack

	IOP of Proximity to a linear code
	Interactive oracle proof (IOPs)
	Proximity testing to an evaluation code
	The FRI protocol

	Structural attack against quasi–cyclic SSAG codes
	Preliminaries
	Structured AG codes
	The invariant code

	Finding the equation of a Galois cover
	Setting
	Finding the evaluation vector

	Applications
	About the quotient curve
	Kummer covering
	Elementary abelian p–extension

	Generalization to solvable Galois cover

	Goppa–like SSAG codes distinguisher
	First estimation of the dimension of the square of the trace of an SSAG code
	Goppa–like AG codes
	Definition, parameters and context in the literature
	On the dimension of the square of the dual of a Goppa–like AG code
	Sharpness of the bound

	One–point Goppa–like AG code on Ca,b–curves
	The point at infinity and weighted degree
	The codes
	Weighted Euclidean division
	Upper bound in Goppa–like case

	Analysis of the distinguisher
	High rate distinguishable codes in the case of elliptic curves
	Codes on the Hermitian curve

	IOP of Proximity to AG codes on the Hermitian tower
	Sequence of AG codes compatible with proximity tests
	Sequence of curves
	Sequence of codes

	Foldable AG codes along the Hermitian tower
	Preliminaries
	Construction of foldable AG codes

	Folding operators for AG codes
	AG–IOPP on the Hermitian tower
	Description of the AG–IOPP system
	Properties of the AG–IOPP with the Hermitian tower

	Conclusion
	Appendix Algorithm for retrieving the equation of a cover
	Appendix Foldable AG codes from a tower of modular curves
	Preliminaries
	Towards foldable AG codes
	Conclusion and future work

	Bibliography
	List of Figures
	List of Algorithm
	List of Tables

