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I N T R O D U C T I O N

One of the main goals of survey sampling is the estimation of �nite population parameters.
Common examples of these parameters of interest include population totals, population means
or population proportions, among others. Auxiliary information is often available and can
be incorporated in the estimation procedures to increase the precision of the resulting point
estimators. If the sampled units respond to all items, model-assisted estimation (Cassel et al.,
1976) and calibration (Deville and Särndal, 1992) provide �exible solutions for making use of
auxiliary variables and construct e�cient estimators of �nite population totals. In presence
of missing data, auxiliary information can also be used to reduce the undesirable e�ects of
nonresponse. Popular methodologies include imputation or re-weighting the sampled elements.

This work was born from an idea of collaboration with Médiamétrie1, the French audience
company. Initially, we were interested in developing and analyzing matrix completion
algorithms with survey data for estimating several �nite population totals (i.e., multipurpose
surveys). This topic is particularly promising, both from a theoretical and a practical point of
view. Unfortunately, the COVID-19 pandemic made it di�cult to meet and collaborate with
Médiamétrie as much as we would have desired and this thesis also explored other research
areas. Despite the sanitary complications, these three years have allowed us to have many
enriching discussions with Médiamétrie. In particular, Médiamétrie continually supported us
in the new research directions that the thesis had taken and, in particular, provided us with
databases that were useful to assess the performances of the new methodologies. The project
of matrix completion in surveys is still ongoing; more details about it are provided in Chapter
6. I hope that our future works in that area will be a useful contribution for Médiamétrie and
that our collaboration will continue long after the time of this thesis.

Médiamétrie often has to deal with a large number of covariates. More generally, it is
nowadays rather common for survey statisticians to face high-dimensional data. Therefore, in
this thesis, the problem of estimating �nite population totals in presence of a large number of
auxiliary variables is considered. The scenarios of full response and missing data are both
examined. In case of full response, I investigated the properties of existing model-assisted
estimators in a high-dimensional asymptotic framework and I suggested a new class of
model-assisted estimators based on random forests. In presence of missing data, I studied the
use of statistical learning predictors based on a large number of covariates for imputation as well
as the theoretical properties of imputed estimators based on regression trees and random forests.

Model-assisted estimation with high-dimensional data

Since the pioneering work of Särndal (1980), Robinson and Särndal (1983) and Särndal and
Wright (1984), model-assisted estimation procedures have attracted a lot of attention in the
literature; see also Särndal et al. (1992) for a comprehensive discussion of the model-assisted
approach. The main idea of model-assisted estimation is to estimate the functional relationship

1 Médiamétrie is leader of media and reference studies in audience measurements in France, see the website
https://www.mediametrie.fr/en for more details.
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between the survey variable and the set of covariates by means of a predictive model, and to
incorporate its predictions in the de�nition of the estimator. When the predictions are close
to the true values, the precision of the resulting estimator might increase. Many predictive
models have been suggested in the literature, from parametric models (Robinson and Särndal,
1983) and penalized linear models such as the lasso (McConville et al., 2017) and ridge (Goga
and Shehzad, 2010), to non-parametrics such as local polynomials (Breidt and Opsomer, 2000),
B-splines (Goga, 2005, Goga and Ruiz-Gazen, 2014), penalized splines (Breidt et al., 2005,
McConville and Breidt, 2013), neural networks (Montanari and Ranalli, 2005), generalized
additive models (Opsomer et al., 2007) and regression trees (McConville and Toth, 2019).

Most of the aforementioned literature is gravitating around predictors which are especially
e�ective when the number of covariates is relatively low; however, some of them tend to be
relatively ine�cient when used with a large number of covariates, a phenomenon known as
the curse of dimensionality (Hastie et al., 2011); see also Giraud (2021), Györ� et al. (2006)
for textbook discussions. Nowadays, it is no longer unusual for survey statisticians to face
scenarios where a large number of auxiliary variables are available at the estimation stage.
For example, Médiamétrie uses every day a panel of 7000 individuals and their television
consumption is recorded every second, thus leading to 86400 covariates (Cardot et al., 2013a).
Other applications on Médiamétrie data can also be found for instance in Goga et al. (2011).
Similarly, in Cardot et al. (2013b), the authors considered samples of size 1 500 from a real data
set collected by the Irish Commission for Energy Regulation Project concerning the electricity
consumption of households and companies recorded every 30 min (for example, there are
more than 300 variables over a week). In these examples, the assumption that the number of
covariates is negligible with respect to the sample size may not be satis�ed. Recently, to better
account for these high-dimensional scenarios, Cardot et al. (2017), Chauvet and Goga (2022),
Ta et al. (2020) investigated the asymptotic properties of linear model-assisted estimators when
the number of covariates was allowed to increase to in�nity.

In this thesis, I analyzed the performances of linear and penalized model-assisted estimators
in a high-dimensional asymptotic framework (Dagdoug et al., 2022a) and suggested in Dagdoug
et al. (2021b) the use of model-assisted estimator based on random forest algorithms (Breiman,
2001). Random forest predictors seem to remain relatively e�cient in high-dimensional settings
and seem to adapt well to sparsity (Biau, 2012, Scornet et al., 2015).

In Dagdoug et al. (2022a), we examined several model-assisted estimators from a design-
based point of view and in a high-dimensional setting, including linear regression and penalized
estimators. The consistency of model-assisted estimators based on linear regression, on the lasso
and on ridge was established under relatively weak assumptions. We conducted an extensive
simulation study using data from the Irish Commission for Energy Regulation Smart Metering
Project, to assess the sensitivity of model-assisted estimators based on several statistical learning
predictors to high-dimensional auxiliary information.

In Dagdoug et al. (2021b), we use random forests to estimate the functional relationship
between the survey variable and the auxiliary variables. Several important results have been
developed in this work. First, under regularity assumptions on the sampling design, on the
survey variable and the random forest algorithms, we showed the L1 convergence and the
asymptotic normality of the estimator. The asymptotic variance of the estimator was derived
and an L1 consistent variance estimator was suggested. A nice and new non-asymptotic
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property has also been shown: this estimator can be written according to the observations
which did not participate in the prediction, observations called “out-of-bag” in the “machine
learning” literature. The use of these units, which makes it possible to avoid over�tting, is
new in the context of estimation for survey data. A model-calibration procedure for handling
multiple survey variables was also discussed. The results of a simulation study suggested
that the proposed point and estimation procedures perform well in terms of bias, e�ciency
and coverage of normal-based con�dence intervals, in a wide variety of settings. We also
suggested a new variance estimator based on K-fold cross-validation method. This new
variance estimator constitutes an important advance in the theory of modern survey practice
because it corrects the defect of over�tting of traditionally used variance estimators and thus
makes it possible to construct reliable con�dence intervals. This new variance estimation
method is all the more important as it is completely general and can be used with other
nonparametric estimation methods such as splines, local polynomials, etc. Finally, adaptations
of random forest algorithms to di�erent sampling plans (strati�ed, proportional to size) were
proposed and the method was tested on audience data from Médiamétrie. More precisely, we
had access to 3 882 auxiliary variables and used a sample size of 4 000 observations; the goal
was to estimate the proportion of French individuals who listen to a radio of interest on a daily
basis, both at the overall population level and for several domains of interest.

Treatment of item nonresponse with high-dimensional data

Missing data are present in most censuses and sample surveys. Nonresponse is particularly
undesirable as unadjusted estimators might be biased and exhibit a substantial increase
of variance (Rubin, 1976); as such, the use of unadjusted estimators should be avoided
and nonresponse treated. Two cases are usually distinguished: unit nonresponse and item
nonresponse. Unit nonresponse is de�ned by a complete lack of information of a given element,
while item nonresponse characterizes elements for which some information is collected, but
not all. The treatment of unit nonresponse is beyond the scope of this thesis. Usually, item
nonresponse is handled using imputation, a procedure which consists in replacing missing
values with arti�cial values. Most often, these arti�cial values are obtained by means of a
predictive model. The theoretical properties of imputed estimators were investigated for
several non-parametric methods such as the nearest neighbor (Chen and Shao, 2000, 2001,
Yang and Kim, 2019), the score method (Haziza and Beaumont, 2007, Little, 1986), predictive
mean matching (Yang and Kim, 2017), kernel regression (Zhong and Chen, 2014), to cite just a
few. For a comprehensive review about the missing data literature in surveys, see Chen and
Haziza (2019) or Haziza (2009). In the same way as for model-assisted estimators, most of the
existing literature is centered around predictors which are sensitive to the number of auxiliary
variables; that is, they are particularly e�cient in low-dimensional settings, but might be
particularly sensitive to the curse of dimensionality. For instance, using arguments of Abadie
and Imbens (2006), it is shown in Yang and Kim (2019) that the nearest neighbor imputed
estimator has a non-negligible bias whenever the number of covariates is strictly greater than
one.

In this thesis, I also investigated the performances of imputed estimators based on predictors
known for their high-dimensional e�ciency. First, in Dagdoug et al. (2021a), we conducted a
large-scale simulation study in which we compared imputed estimators based on numerous
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statistical learning predictors commonly used by machine learning practitioners. In particular,
we included the traditional linear regression, the score method, as well as support vector
machines (Cortes and Vapnik, 1995, Smola and Schölkopf, 2004), k-nearest neighbors, regression
trees (Breiman, 1984), random forest (Breiman, 2001), gradient boosting (Chen and Guestrin,
2016, Friedman, 2001), Bayesian additive models (BART, Chipman et al. (2010)), additive models
with B-splines, Cubist Quinlan (1993), Quinlan et al. (1992). Various relationships between
the survey variable and the covariates were considered, as well as several sampling designs
and nonresponse models; high-dimensional scenarios were considered as well. We discovered
that imputed estimators based on complex algorithms (e.g. Cubist, Boosting, Bayesian additive
regression trees, Random forests) can often outperform traditional parametric models: when
the parametric model was well speci�ed, then the imputed estimator based on it was more
e�cient than imputed estimators based on nonparametric complex algorithms; however, in
most cases, the loss of e�ciency of nonparametric models versus parametric was relatively low.
On the other hand, when the parametric model was misspeci�ed, imputed estimators based on
nonparametric models were much more e�cient. Overall, we found that imputed estimators
based on Cubist, XGBoost and BART were very e�cient in most scenarios and substantially
improved over parametric estimators.

In Dagdoug et al. (2022b), we investigated both theoretically and empirically the
performances of regression tree and random forest imputed estimators. We gave a result
exhibiting a set of conditions on the predictor used for imputation under which the imputed
estimator based on this predictor is L2 consistent with respect to the joint distribution induced
by the model, the nonresponse mechanism and the sampling design. The conditions that
we found revealed that, if the predicted values are based on a predictor consistent for the
regression function and the L2 prediction error is bounded, even for �nite samples, then
the resulting imputed estimator converges in L2 towards the parameter of interest. Using
this result, the L2-convergence of the CART tree imputed is obtained. The L2-convergence
of the random forest imputed estimator is obtained using in�nite forests as a tool. We
suggested variance estimators which seemed to perform well (from a bias and coverage
rate point of view) on simulation studies. An application to data integration was also considered.

Organization of the dissertation and list of publications

The rest of this thesis is organized as follows. Chapter 1 is a presentation of the basic
concepts of survey sampling. These concepts are presented in a uni�ed framework as in
Rubin-Bleuer and Kratina (2005), Boistard et al. (2017), and Han and Wellner (2021). The
mathematical formalism employed in this framework is rather di�erent from the usual
presentations of survey sampling theory given in Särndal et al. (1992), Tillé (2020) or Lohr
(2021), but it has the advantage to include both design and model inferences commonly
used in the model-assisted literature as well as the model-design-nonresponse inferences
used in the imputation literature. Chapter 1 also describes brie�y basic sampling designs,
the usual Horvitz-Thompson estimator (Horvitz and Thompson, 1952) and summarizes the
main contributions of this dissertation. The chapters 2 and 3 are devoted to model-assisted
estimation in high-dimensional settings; Chapter 2 presents the article Dagdoug et al. (2022a)
while Chapter 3 presents the article Dagdoug et al. (2021b). The chapters 4 and 5 are concerned
with imputation in presence of a large number of covariates; Chapter 4 presents the article
Dagdoug et al. (2021a) while Chapter 5 presents the work in progress Dagdoug et al. (2022b)
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which will soon be submitted. Each of the chapters can be read independently one from
another. Finally, the thesis ends with a conclusion and some perspectives in Chapter 6.
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1 I N T R O D U C T I O N T O S U R V E Y S A M P L I N G A N D R E V I E W O F T H E
M A I N C O N T R I B U T I O N S

1.1 A basic introduction to survey sampling

1.1.1 Superpopulation framework

Let Y be a survey variable, representing a characteristic of interest that the survey statistician
wishes to study. Consider that the random variable Y is de�ned on a probability space
(Ω,M,Pm) taking values in a measurable space (E , E). The distribution of Y will be denoted
by PY := Pm ◦Y−1. Let N ∈ N∗ be a positive integer. De�ne N independent and identically
distributed (i.i.d.) random variables {Yk}k=1,...,N , with common law PY . Then, the probability
space (Ω,M,Pm) and the N-random vector Y := [Y1,Y2, ...,YN ]

> de�ne what we call in the
sequel a superpopulation model as described in Rubin-Bleuer and Kratina (2005) and denoted
by (Ω,M,Pm,Y ).

As stated in Shao and Tu (2012), "the basic objective of statistical analysis is extracting all
the information from the data to deduce "properties" of the "population" that generated the
data". This statement holds true for both classical statistics (sometimes referred to as inferential
statistics in the literature) and survey statistics; yet, the terms "properties" and "population"
have di�erent meanings in these two scenarios. In the next paragraph, we highlight these
di�erences and describe both approaches to inference.

In classical statistics, the term "population" is used to denote the probability distribution
PY from which the data has been generated. It can be viewed as an in�nite population, and in
survey statistics, as a superpopulation.

In survey statistics, however, the term "population" refers to a �nite population, that is, a
set of �nite cardinality, as opposed to the conceptual "in�nite population" of classical statistics.
The cardinality of a �nite population will be referred to as its size. We thus now consider a
�nite population U of N labeled elements

U := {u1, u2, ..., uN } = {1, 2, ..., N} ,

where uk denotes the k-th element of the population of interest U, also called the target
population. To each element uk of U, we generate a realization yk of Yk (i.e., Yk(ω) := yk ∈ E
for some ω ∈ Ω) and we say that U is generated by the superpopulation model (Ω,M,Pm,Y ).
For simplicity, in the sequel, we use {yk}k∈U to denote the random variables {Yk}k∈U .

In classical statistics, the "properties" referred to above, can often be de�ned as functionals
of the distribution PY . To be more precise, let (F,F ) denote a measurable space and M1

+ (E) be
the set of probability measures on E . An "in�nite population parameter" or "superpopulation
parameter" θM can often be represented as the image of an unknown element of M1

+ (E)

14
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through a known statistical functional T : M1
+ (E) → F, that is, θM := T(PY ), where PY is

unknown. For instance, a typical example is given by the mean (whenever appropriate) of a
real-valued distribution PY , in which case

θM = T(PY ) =

∫
R

ydPY .

In survey statistics, the "properties" that we wish to estimate are functions of the random
variables {yk}k∈U . These functions are called �nite population parameters in the sequel. Common
examples include the population total ty , the population mean ȳU and population proportion
pc of elements having a particular characteristic denoted "C" ; these are de�ned as follows:

ty :=
∑
k∈U

yk , ȳU :=
1
N

∑
k∈U

yk , pc :=
1
N

∑
k∈U

1{uk has characteristic "C"}. (1.1)

More generally, a �nite population parameter θU is de�ned as the image of an unknown
point (y1, ..., yN ) of E N through a known measurable function H : E N → F, that is, θU :=
H (y1, y2, ..., yN ).

Therefore, in both classical and survey statistics, the aim is to estimate the image of a known
function computed at an unknown point. However, the techniques to do so are sometimes quite
di�erent in both �elds. Moreover, an additional important di�erence is that, in the model-based
framework of survey statistics, the parameter of interest θU is a random variable taking values
in F, whereas the parameter of interest θM of classical statistics is deterministic. Indeed, see
that θU is measurable from Ω to F with realizations given by

θU(ω) = H (y1(ω), ..., yN (ω)) , ω ∈ Ω.

Therefore, di�erent realizations of the superpopulation model might lead to di�erent values of
the �nite population parameters of interest.

Most often, as in the examples given in (1.1), the �nite population parameters considered
for practical purposes are real-valued and the survey variable is real-valued as well. In some
cases, however, the spaces E and F might not be the set of real numbers. For instance, in Cardot
et al. (2013c), the authors considered the case of functional data in which E = F ([0; T], R), the
set of functions from [0; T] to R, for some T ∈ R∗+. Similarly, statisticians might be interested
in estimating more complex parameters such as the population distribution function

FN (x) =
1
N

∑
k∈U

1yk∈]−∞;x],

in which case F = D (R, [0; 1]), the Skorokhod space of cadlag functions with values in [0; 1].
In this work, we solely focus on the estimation of the total of real-valued random variables,

so that E = R and F = R. Indeed, since many population parameters can be expressed as
functions of totals, the population total is an important population parameter. In the sequel,
the aim is therefore to estimate the population total ty as de�ned in (1.1).
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1.1.2 Probability sampling

In order to estimate the unknown parameter ty , two approaches may be considered: a census
or a sample survey. A census consists of collecting the values of the variable of interest for all
population elements, in which case the true value of ty is known. However, due to practical
constraints (e.g., cost, time, ...), it is usually impossible to have access to all population elements;
a survey is used instead. A survey consists of selecting a subset s of the population, called a
sample. An estimator based on the information gathered from the sampled elements is then
used to infer on the parameter of interest. Throughout this work, several assumptions are made:
1) there is no coverage error1; 2) the sample s is selected according to a probability sampling
design; 3) no measurement error2 is present in the data collected. Moreover, in Chapter 3
and Chapter 4, we consider the idealistic scenario of full response. A framework for handling
nonresponse is described in Section 1.3. We also restrict ourselves to the case of sampling
without replacement, that is, we assume that population elements cannot be selected more
than once in the samples.

De�nition 1.1.1. (Sampling design. Särndal et al. (1992))
Let S be the collection of subsets of U. A sampling design is a probability mass function p : S 7→
[0; 1] satisfying ∑

s∈S

p(s) = 1. (1.2)

For each sampling design, we can de�ne a probability measure on the design space, called a
design probability.

De�nition 1.1.2. (Design probability.)
Let D be a sigma-algebra on S. The measurable space (S,D) is often called the design space. A
design probability Pp is a probability measure de�ned on the design space (S,D).

The measure
Pp :=

∑
s∈S

p(s)δs

is a design probability associated to the sampling design p, where δs denotes the Dirac measure
at s ∈ S. Each design probability can be characterized by a sampling design. Note that the
sample s selected from U can be viewed as the realization of a random sample S, de�ned
on some probability space (ΩS ,AS ,PS) taking values in the design space (S,D) such that
Pp = PS ◦ S−1. We summarize these ideas with a diagram illustrating the di�erences of classical
and survey statistics, as well as sample selection, see Figure 1. The size of the sample S is
denoted by nS. A sampling design for which ns = n for all samples s ∈ S having a non-null
probability of being selected is said to be of �xed size.

It is often convenient to represent samples without replacement as vectors in {0; 1}N . We
de�ne the concept of sample membership indicators.

De�nition 1.1.3 (Sample membership indicators).
For all k ∈ U, we de�ne the sampling membership indicator

Ik(S) := 1{k∈S},

1 A coverage error happens when the speci�cation of sampling units in the population from which a sample was
selected does not match the target population, see Lohr (2021) for details.

2 A measurement error is a situation in which a response in the survey di�ers from the true value.
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Superpopulation model (Ω,M,Pm,Y )

Population U with {y1, y2, ..., yN }

Sample s with {y(1), y(2), ..., y(n)}

Parameter space (F,F )

T

H

θM = T(Pm ◦Y−1)

θU = H(y1, y2, ..., yN )

Generation of
a population

Selection of
a sample

Figure 1: Diagram illustrating the di�erences between classical statistics and survey statistics. In the
sample, y(k) denotes the k-th element selected in the sample, where the order is arbitrary.

which takes the value 1 if the element k is selected in a sample and 0 otherwise. For simplicity, we
write Ik for Ik(S).

Since the map

φ :

{
S −→ {0; 1}N ,

s 7−→ [I1, I2, ..., IN ]
> .

is a bijection from S to {0; 1}N , it follows that each sample in S can be uniquely represented
as a vector of {0; 1}N . Some authors (e.g., Bonnéry (2011), Conti and Mecatti (2022)) de�ne
sampling designs on {0; 1}N rather than on S; the two formulations are indeed equivalent.

The random variables {Ik}k∈U are, by construction, de�ned in the design space and follow
a Bernoulli distribution {B(πk)}k∈U , each, respectively, where πk denotes the �rst-order
inclusion probability of element k , a notion de�ned below. Note that {Ik}k∈U are not necessarily
independent nor identically distributed.
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De�nition 1.1.4 (First and second order inclusion probabilities).
The �rst-order inclusion probability πk of element k is the probability that element k is selected in
a sample; it is de�ned as:

πk := PS (k ∈ S) = Pp ({k}) =
∑
s∈S:
k∈s

p(s), k ∈ U.

Similarly, the second-order inclusion probability πk` of elements k and ` is the probability that
elements k and ` are both selected in a sample; it is de�ned by:

πk` := PS ((k , `) ∈ S × S) = Pp ({k , `}) =
∑
s∈S:
k ,`∈s

p(s), k , ` ∈ U.

Throughout this dissertation, we assume that, for all k ∈ U, πk > 0 and for all
pairs (k , `) ∈ U × U, πk` > 0. The design covariance Covp (Ik , I`) is denoted by
∆k` := Covp (Ik , I`) = πk ,` − πkπ` .

To infer on the parameter θU based on a survey sample, the �rst step is to use a sampling
design to select a sample. The second step is to use an estimator θ̂ of θU and compute an
estimate based on the data collected from the sample.

De�nition 1.1.5 (Sampling strategy).
A sampling strategy is de�ned as a pair

(
p, θ̂

)
which produces an estimate of the parameter of

interest θU according to a sampling design p.

A strategy (p, θ̂) is e�cient if the estimator θ̂ is precise under the sampling design p, namely
if it has low variance computed with respect to p. The Horvitz-Thompson estimator (Horvitz
and Thompson, 1952, Narain, 1951) t̂π of ty is of particular interest.

De�nition 1.1.6 (Narain (1951), Horvitz and Thompson (1952)).
The Horvitz-Thompson estimator of the population total ty is de�ned as:

t̂π :=
∑
k∈S

yk

πk
=

∑
k∈S

dk yk , (1.3)

where dk := π−1
k , denotes the sampling weight of element k ∈ U. It is also often referred to as the

π-estimator or the expansion estimator.

The set {dk}k∈S is often referred to as the basic weighting system and can be interpreted
as follows: if element k of U is selected in the sample, then it represents dk elements of the
population. Next proposition displays the design properties of t̂π .

Proposition 1.1.1 (Särndal et al. (1992)). . Let p be an arbitrary sampling design. The Horvitz-
Thompson estimator t̂π has the following design properties.

i) Provided that πk > 0 for all k ∈ U, the estimator t̂π is design-unbiased, that is, Ep

[̂
tπ

]
= ty ,

where Ep [·] denotes the expectation with respect to the sampling design.
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ii) The design variance of t̂π is given by

Vp
(̂
tπ

)
=

∑
k∈U

∑
l∈U

∆kl
yk

πk

yl

π`
,

where Vp(·) denotes the expectation with respect to the sampling design.

iii) Provided that πk` > 0 for all (k , `) ∈ U ×U, the variance estimator

V̂π :=
∑
k∈S

∑
l∈S

∆k`

πk`

yk

πk

y`

π`
(1.4)

is design-unbiased for Vp
(̂
tπ

)
.

From a design-based point of view, the quantities {yk}k∈U in the expression of t̂π are not
random, the only random quantities are the sampling membership indicators {Ik}k∈U .

The unbiasedness property of the Horvitz-Thompson estimator is particularly attractive.
Using arguments of Godambe (1955), it can be shown that the Horvitz-Thomspon estimator
is the only unbiased homogeneous linear3 estimator of ty with weights independent of the
sample.

1.1.3 Sampling without auxiliary information

As mentioned in the previous sections, two sources of randomness may be considered: the
randomness due to the superpopulation model and the randomness due to the sampling design.
Assuming that the sampling design and the survey variable are independent, functions of
both sources of randomness might be considered using a product space representation with a
product measure. This assumption is realistic if no auxiliary information4 is available at the
sampling stage. A more complex joint model-design probability will be de�ned in Section 1.1.4.

De�nition 1.1.7 (Joint product model-design distribution).
Consider a superpopulation probability space (Ω, M, Pm) and a design probability space(
S, D, Pp

)
. De�ne byM ×D := {A× B; A ∈ M, B ∈ D} the Cartesian product ofM and

D and by M ⊗ D := σ (M ×D) the sigma-algebra product generated by the measurable
rectangles of the form A× B ∈ M ×D. The joint model-design probability induced by a sampling
design without auxiliary information is de�ned as the product measure Pm,p := Pm ⊗ Pp on the
measurable space (Ω ×S, M ⊗D), uniquely de�ned as

Pm,p (A× B) := Pm (A) ×Pp (B) ,

for all measurable rectangles A× B ∈ M ×D.

When no confusion arises, we omit the indexes and simply use P for Pm,p and we call
this representation the joint distribution. Below, we describe two sampling designs which

3 An estimator θ̂ of θU is said to be linear in the survey variable Y if θ̂ can be written θ̂ = w0 +
∑

k∈S wk yk with
weights {wk} independents of the survey variable. If w0 = 0, then θ̂ is said to be an homogeneous linear estimator
of θU ; otherwise, if w0 , 0, θ̂ is said to be non-homogeneous (Cassel et al., 1976, Särndal et al., 1978).

4 The term auxiliary information includes all information external to the survey itself which might be used to
improve a survey strategy; see Tillé (2020).
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can be included in this representation, that is, sampling designs which do not use any
additional information. The descriptions given below are only brief, we refer the reader to the
references Särndal (1992), Thompson (1997), Fuller (2009b) and Tillé (2020) for additional details.

Simple random sampling without replacement

Let n be the desired sample size. Simple random sampling without replacement (SRSWOR)
of size n is the design which assigns the same probability to all without replacement samples
of size equal to n and zero otherwise. That is, for s ∈ S,

p (s) =


(
N
n

)−1

if s is of size n,

0 otherwise.

The �rst-order inclusion probabilities are equal to πk = n/N for all k ∈ U and the second-order
inclusion probabilities are equal to

πk` =
n (n − 1)
N (N − 1)

,

for all k , ` ∈ U. It also follows that the π-estimator of ty is given by

t̂π =
N
n

∑
k∈S

yk .

The implementation of simple random sampling without replacement is fairly easy (Fan
et al., 1962); however, the sampling strategy

(
SRSWOR, t̂π

)
might lead to a large variance

for the Horvitz-Thompson estimator; this phenomenon might happen when the population
variability of the survey variable is large. This strategy may be improved if additional auxiliary
information is used at the sampling stage, for instance with strati�ed or proportional to size
sampling designs (described thereafter). As explained in Tillé (2020), "the use of simple random
sampling is a way of selecting a sample without preconceptions on the studied population.
However, if auxiliary information is known and the variable of interest Y is suspected of
being linked to this auxiliary information, then it will be more interesting to use a design that
integrates this auxiliary information".

Bernoulli sampling

Bernoulli sampling is another sampling design which gives equal inclusion probabilities
to all units of the population. More precisely, let π ∈ [0; 1]. Bernoulli sampling design is the
design for which the sample membership indicators {Ik}k∈U are independent and identically
distributed random variables, each Ik follows a Bernoulli distribution of parameter π. The
probability assigned to a sample s by a Bernoulli sampling is given by

p (s) = πns (1 − π)1−ns , s ∈ S,



1.1 a basic introduction to survey sampling 21

where ns is the size of the sample s. Its implementation is simple as it su�ces to draw N
independent realizations of a random variable with uniform distributionU (]0; 1[) and select
elements for which the realizations lie in the interval ]0; π[. The �rst order inclusion probabilities
are all equal to πk = π, for all k ∈ U and, we have πkl = π

2, for all k , l ∈ U. The π-estimator
is then given by

t̂π = π−1
∑
k∈S

yk .

For a Bernoulli design, the sample size ns =
∑

k∈U Ik is random and follows a Binomial
distribution B (N , π). The random size is an important drawback since it is impossible to know
in advance the cost of the survey and the Horvitz-Thompson estimator tends to be ine�cient
due to the random sample size (Särndal et al., 1992). To remedy the issue of the random size, a
natural idea would be to consider the conditional sampling design p (· |ns = n). This design is
in fact a simple random sampling design of size n as described before; a proof can be found in
Tillé (2020).

The parameter π needs to be chosen in order to implement the Bernoulli sampling. One
can choose for example π such that the expected sample size is equal to n, the desired sample
size, namely:

Ep [ns] = Nπ = n, (1.5)

which gives π = n/N .

1.1.4 Sampling with additional auxiliary information

In some cases, additional auxiliary information is known prior to sampling, either for all
population elements or in a aggregated form. On the probability space (Ω,M,Pm), we de�ne
a generic random vector z : Ω 7→ Rq. The distribution of z is denoted by Pz := Pm ◦ z−1 and
we de�ne N i.i.d. copies z1, z2, ..., zN on (Ω,M,Pm) with distribution Pz. The superpopulation
model then becomes (Ω,M,Pm,Y , ZU) , where ZU := [z1, z2, ..., zN ]

> ∈ RN×q. We assume that,
conditionally on the auxiliary variables ZU , the sampling design is independent of the survey
variable. In that case, the sampling design is said to be noninformative (Pfe�ermann, 1993).
On the other hand, if conditional independence is not satis�ed, the sampling design is said to
be informative, as considered in Pfe�ermann and Sverchkov (2009) or Bonnéry (2011), among
others.

De�nition 1.1.8. (Sampling design with auxiliary information.)
Consider the design space (S,D). A sampling design p using ZU as auxiliary information is a
function p : S ×RN×q → [0, 1], such that

i) for all s ∈ S, the map ZU 7→ p (s, ZU) is measurable.

ii) for all ZU ∈ RN×q, the map s 7→ p (s, ZU) is a sampling design.

Note that De�nition 1.1.1 is a special case of De�nition 1.1.8, by taking sampling designs
such that p (s, ZU) = p (s), for all s ∈ S and ZU ∈ RN×q. To each ω ∈ Ω, we can de�ne a design
probability Pp as

Pp (·,ω) :=
∑
s∈S

p(s, ZU(ω))δs(·).
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Note that a sampling design with auxiliary information p(·, ZU) is a random variable in
(Ω,M,Pm), as for di�erent realizations of ZU , we might obtain di�erent probability measures
on (S,D). The joint distribution of the sampling design and the superpopulation model cannot
be described anymore as a product measure on the product space; we adopt the construction
detailed for instance in Rubin (1976), Boistard et al. (2012) and Han and Wellner (2021).

De�nition 1.1.9 (Joint model-design distribution with auxiliary information).
Consider a superpopulation probability space (Ω,M,Pm) and a design probability space(
S, D,Pp

)
. The joint model-design probability induced by a sampling design with auxiliary

information is de�ned as the probability Pmz,p on the measurable space (Ω ×S, M ⊗D),
uniquely de�ned as

Pmz,p (A× B) :=
∫

A
Pp (B,ω) dPm(ω)

for all measurable rectangles A× B ∈ M ×D.

Sample membership indicators and inclusion probabilities are de�ned similarly as in the
previous section, but are random variables in the product space. As such, we should write
πk(ZU) for the �rst order inclusion probability of element k ; for simplicity, however, we omit
the dependence of ZU in the notations of the inclusion probabilities.

Poisson sampling

Bernoulli sampling has been de�ned as a sampling design for which the sample membership
indicators {Ik}k∈U are i.i.d. . Poisson sampling generalizes Bernoulli sampling, by inducing
sample membership indicators {Ik}k∈U that are independent but no longer identically
distributed; they are now Bernoulli variables with parameter πk ∈]0; 1[ (possibly dependent of
ZU), which are not necessarily the same for all k ∈ U. The sampling design p satis�es

p (s, ZU) =
∏
k∈s

πk

∏
k∈U−s

(1 − πk) , s ∈ S.

As in Bernoulli sampling, the sample size ns is random. The inclusion probabilities are {πk}k∈U ,
speci�ed by the statistician, and πk` = πkπ` for all k , ` ∈ U (by independence of the sample
membership indicators).

The quantities {πk}k∈U need to be determined in order to implement the Poisson sampling.
In Bernoulli sampling, the inclusion probability π can be chosen so that the expected sample size
Ep [ns] matches the desired sample size. In Poisson sampling, the relation (1.5) is insu�cient
to determine {πk}k∈U . A natural criterion would be to minimize the sampling variance of the
Horvitz-Thompson estimator under the constraint of a �xed expected sample size:

min
[π1,...,πN ]>∈ RN

Vp
(̂
tπ

)
= min
[π1,...,πN ]>∈ RN

∑
k∈U

(
1
πk
− 1

)
y2

k ,

s.t Ep [ns] = n.

(1.6)
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This problem is easily solved either by using the Lagrangian or with the Cauchy-Schwartz
inequality, a proof can be found in Särndal et al. (1992). One �nds

πk =
nyk∑

k∈U
yk

, k ∈ U. (1.7)

It is impossible to de�ne such inclusion probabilities since the values {yk}k∈U of the survey
variable are unknown prior to sampling. Let Z be an auxiliary variable positively correlated to
the survey variable Y and known for all k ∈ U, prior to sampling. We can de�ne

πk =
nzk∑

k∈U
zk

, k ∈ U, (1.8)

that is, replacing the unknown values {yk}k∈U in (1.7) by {zk}k∈U . The inclusion probabilities
(1.8) may be greater than one; let A be the set of nA elements such that nzk >

∑
k∈U

zk . Then, we

set πk = 1 for all k ∈ A and
πk = (n − nA)

zk∑
k∈U−A zk

for all πk ∈ U such that k < A.

Designs that satisfy (1.8) are called probability proportional to size designs (Särndal et al.,
1992). A Poisson sampling design with inclusion probabilities satisfying (1.8) will be almost
as e�cient as the strategy solving (1.6). However, the drawback of having a random sample
size still remains. It was then suggested to consider �xed size designs without replacement
satisfying (1.8), referred to as πps-sampling designs. However, for such designs, it is di�cult
to compute the second-order inclusion probabilities which are required for estimating the
variance of the Horvitz-Thompson estimator. For some probability proportional to size
designs5, Hájek (1964) suggested approximating the second order inclusion probabilities as
a function of the �rst-order inclusion probabilities. Moreover, recent advances in the �eld
provide �exible algorithms to implement designs satisfying (1.8); in particular, we mention the
cube method by Deville and Tillé (2004), widely used by national survey o�ces. Its description
is beyond the scope of this work, see Deville and Tillé (2004), Berger and Tillé (2009) or Tillé
(2011) for details.

Strati�ed sampling

Let P = {U1, U2, ..., UH} be a partition of U, where the H elements of P are called strata.
Let Nh denote the number of elements of Uh, so that N = N1 + N2 + ...+ NH . From each stratum
Uh, we select independently a sample Sh of nh elements according to a sampling design ph. The
�nal sample S of size n =

∑H
h=1 nh is:

S = S1 ∪ S2 ∪ ...∪ SH .

5 This approximation is valid for high entropy sampling designs, where the entropy I(p) of a design p is de�ned by
I(p) := −

∑
s∈S p(s) log(s), see Tillé (2020).
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The overall sampling design is de�ned as

p (S, ZU) = p1 (S1, ZU) × p2 (S2, ZU) × ... × pH (Sh, ZU) .

Since the strata form a partition of U, the population total ty may be written as :

ty =
∑
k∈U

yk =

H∑
h=1

∑
k∈Uh

yk =

H∑
h=1

tyh,

where tyh :=
∑

k∈Uh
yk . The �rst and second-order inclusion probabilities with respect to the

sampling design ph(·, ZU) are de�ned as follows:

πh
k = Pp,h ({k}, ZU) , k ∈ Uh,

πh
kl = Pp,h ({k , `}, ZU) , k , l ∈ Uh,

for h = 1, 2, ..., H. The �rst and second order inclusion probabilities with respect to p (·, Z) are
given by:

πk = π
h
k , if k ∈ Uh,

πkl =


πh

kl if k , l ∈ Uh,

πh
kπ

h′
l if k ∈ Uh, l ∈ Uh′ and h , h′ ∈ {1, ..., H}.

Using these inclusion probabilities, we can de�ne the π-estimator of ty as

t̂π =
H∑

h=1

t̂h,

where t̂h :=
∑

k∈Sh yk/π
h
k is the Horvitz-Thompson estimator of tyh. Because the selections in

di�erent strata are independent, the design variance of t̂π is given by

Vp
(̂
tπ

)
=

H∑
h=1

Vp
(̂
th
)

.

The overall variance of the Horvitz-Thompson estimator is thus dependent of the variance
of each of the H Horvitz-Thompson estimators, within each stratum. Therefore, the choice of
the strati�cation variable is important for the e�ciency of the overall strategy. The choice of
the sample size within each stratum is of great importance as well. The larger nh is, the better
the inferences will be for Uh due to a reduced variance, but increasing nh also increases the
cost of the survey. It is therefore of practical interest to search for sample sizes {nh}h=1,...,H that
best control the balance between precision and cost, a problem introduced by Neyman (1934)
and known as optimal sample allocation. The optimal sample size allocation, at a �xed cost
equal for all strata is given by

nh = n ×
NhSyUh∑H

h=1 NhSYUh

, (1.9)
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for h = 1, 2, ..., H, where SyUh
:=

{
(Nh − 1)−1 ∑

k∈Uh
(yk − ȳUh)

2}1/2 is the standard deviation
of the variable of interest Y within the population stratum. Naturally, we do not have this
information; hence, if a variable Z , available to us, is correlated with the variable of interest Y ,
we de�ne the Z-optimal allocation:

nh = n ×
NhSzUh∑H

h=1 NhSzUh

,

for h = 1, 2, ..., H, where SzUh
:=

{
(Nh − 1)−1 ∑

k∈Uh

(
zk − z̄Uh

)2
}1/2

, the standard deviation of
the variable Z within the stratum h.

If no auxiliary information other than the strati�cation variable is known other than the
strati�cation variable, a popular strategy is to use proportional allocation, for which the sample
sizes are given by

nh = n ×
Nh

N
for h = 1, 2, ..., H. It follows that the sampling fraction is the same for each stratum. If SYUh

= S2

for all h = 1, ..., H, then proportional allocation is optimal.

1.1.5 Asymptotic theory in survey sampling

An important part of theoretical statistics is concerned with the study of the asymptotic theory,
sometimes also called large sample theory. Indeed, it is often di�cult to obtain information
about the behavior of an estimator for a given �xed sample size. Usually, more information can
be deduced about statistics for large samples, i.e., when taking the limit of the sample size
to in�nity. The rationale behind the procedure is that the conclusions that we may establish
in the limit might still hold (approximately) in practice for "large enough" sample sizes. A
large part of this dissertation is devoted to investigate the asymptotic properties of survey
estimators. However, de�ning a formal asymptotic framework in survey sampling is not as
straightforward as it is in most areas of statistics. The main di�erence here is that the random
sample S takes its values in the subsets of the �nite population U. As such, it is not possible to
let n, the sample size, increase to in�nity if U is �xed. We adopt the asymptotic framework
developed in Isaki and Fuller (1982), which we describe below.

We start by considering a sequence {Nv}v∈N, strictly increasing to in�nity. Next, we
consider a sequence of embedded �nite populations {Uv}v∈N of size {Nv}v∈N, each generated
by the superpopulation model. In each �nite population Uv , a sample Sv of size nv is selected
according to a sampling design pv(·, ZUv ). While the �nite populations are assumed to be
embedded, we do not require this property to hold for the samples {Sv}v∈N. This asymptotic
framework assumes that v goes to in�nity, so that both the �nite population sizes and the
sample sizes go to in�nity. To improve readability, we will use the subscript v only in the
quantities Uv , Nv and nv ; quantities such as πk ,v shall be denoted simply as πk .

This framework has been used to establish the asymptotic properties of various estimators in
survey statistics. The asymptotic properties of the Horvitz-Thompson estimator are of particular
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interest since many estimators can be described as functions of Horvitz-Thompson estimators.
Conditions for the design-consistency6 of the Horvitz-Thompson estimators were investigated
by Isaki and Fuller (1982). The L2 design and joint consistency7 of the Horvitz-Thompson
estimator were established by various authors, e.g. Robinson and Särndal (1983), Breidt and
Opsomer (2000). Central limit theorems8 were obtained by various authors Madow (1948),
Erdos and Rényi (1959), Hájek (1964), Krewski and Rao (1981) and Bickel and Freedman (1984),
for particular sampling designs only. A review of some of these results can be found in Fuller
(2009b). A joint model-design framework was introduced by Rubin-Bleuer and Kratina (2005)
in which central limit theorems and convergence results were obtained for survey estimators.
More recently, several authors Bertail et al. (2013), Boistard et al. (2017), Han and Wellner
(2021) considered the problem of establishing limit theorems for survey empirical processes; a
thorough review on the subject is given in Han and Wellner (2021). The variance estimator of
the Horvitz-Thompson estimator given in (1.4) has been shown to be L1-consistent as well, see
Breidt and Opsomer (2000) or Goga and Ruiz-Gazen (2014) for proofs.

1.2 Use of auxiliary information at the estimation stage

1.2.1 Model-assisted estimation in surveys

The previous section described several strategies for which auxiliary variables were
incorporated in the sampling design, with the Horvitz-Thompson estimator. In this section, we
describe how auxiliary information can also be used at the estimation stage to build more
e�cient estimators of ty .

We place ourselves in the superpopulation model as before, in which we de�ne an additional
generic random vector x ∈ Rp on (Ω,M,Pm) and denote by Px its distribution. For simplicity,
we assume that the support of Px belongs to the unit hypercube [0; 1]p. For simplicity of
exposition, we further assume that the survey variable is compactly supported in an interval[
C1,Y ; C2,Y

]
. We de�ne a collection of covariates x1, x2, ..., xN i.i.d. with distribution Px and

concatenated in a matrix XU := [x1, x2, ..., xN ]
>. Without loss of generality, we assume that

the random vectors {xk}k∈U are to be used as auxiliary variables at the estimation stage, with
techniques detailed in Section 1.3, while the random vectors {zk}k∈U are designed to be used at

6 A sequence of estimators {θ̂v}v∈N of θU ,v is said to be design probability consistent if, for all ε > 0,

lim
v→∞

Pp

(
N−1
v |θ̂v − θU ,v | > ε

)
= 0.

7 Let 1 6 d < ∞. A sequence of estimators {θ̂v}v∈N of θU ,v is said to be design Ld consistent if

lim
v→∞

Ep

[
N−dv |θ̂v − θU ,v |

d
]
= 0, a.s.

The sequence is said to be Ld consistent (for the joint distribution) if

lim
v→∞

E
[
N−dv |θ̂v − θU ,v |

d
]
= 0.

8 A central limit theorem for {θ̂v}v∈N estimators of θU ,v is a result formalizing the existence of a normalizing
sequence {αv}v∈N and a real σ such that such that αv →∞ and αvN−1

v

(
θ̂v − θU ,v

)
L
→ N

(
0,σ2) .
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the sampling stage, as described in the previous section. Throughout the following sections, the
aim is to build e�cient strategies

(
p, t̂

)
for the estimation of ty . We assume that the sampling

design p is already determined and the sample data already collected; hence, the e�ciency of(
p, t̂

)
is measured by the mean squared error of the estimator t̂ computed with respect to the

sampling design p. At our disposal, we have the information contained in the set

Dma := {(xk , yk); k ∈ S}
⋃
{xk ; k ∈ U\S}.

An important part of this work relies on the fact that the problem of estimating �nite
population totals is closely related to a prediction problem. Indeed, let f : Rp → R be an
arbitrary function and de�ne the generalized di�erence estimator of ty (Cassel et al., 1976) based
on f as follows

t̂gd( f ) :=
∑
k∈U

f (xk) +
∑
k∈S

yk − f (xk)

πk
.

If f is a function independent of the sample S, the estimator t̂gd( f ) is design-unbiased, namely,
Ep

[̂
tgd( f )

]
− ty = 0 and its design-variance is given by

Vp

[̂
tgd( f )

]
=

∑
k∈U

∑̀
∈U

∆k`
yk − f (xk)

πk

y` − f (x`)
π`

.

The design-mean square error (which is equal, in that case, to the design-variance) of the
di�erence estimator is therefore linked to the choice of the function f and to the quality of
the covariates for predicting Y . If we assume that the survey variable can be represented as a
function of the covariates as follows

yk = m(xk), ∀k ∈ U, (1.10)

for a function m : Rp → R, then it follows that

Vp
(̂
tgd(m)

)
= 0.

In that case, the di�erence estimator is an optimal estimator for ty in the sense that its design
mean square error has the smallest value. We see therefore that the quality of the strategy
(p, t̂gd( f )) is closely related to the quality of the function f chosen in terms of predictor of Y ,
that is, how close are the quantities f (xk) from yk , for all population elements k . In practice,
Assumption (1.10) is often too simplistic; it would be more realistic to assume that

yk = m(xk) + εk , ∀k ∈ U, (1.11)

with εk denoting a sequence of i.i.d. random variables such that E [εk |xk] = 0 and
V (εk |xk) = σ

2. The function m is often called the regression function. Under Model (1.11), the
di�erence estimator is expected to be an e�cient estimator of ty; for instance, (Cassel et al.,
1976) proved that, t̂gd(m) is optimal in the sense that it minimizes the mean squared error with
respect to the joint distribution among the class of design unbiased estimators of ty (Cassel
et al., 1976).
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In most cases, the di�erence estimator based on m cannot be used as the regression function
m is unknown. The idea of model-assisted estimation is to estimate the unknown function m by
a regression function estimator (also called a predictor) m̂, �tted on {(xk , yk) ; k ∈ S}. The �tted
model is then used to construct the model-assisted estimator of ty (Särndal et al., 1992):

t̂ma =
∑
k∈U

m̂(xk) +
∑
k∈S

yk − m̂(xk)

πk
, (1.12)

where m̂(xk) denotes the prediction of m̂ at the point xk . The model-assisted estimator
is therefore de�ned as the population total of the estimated predictions {m̂(xk)}k∈U and
the weighted sum of the sampled units of the estimated residuals {yk − m̂(xk)}k∈S. If the
predictions {m̂(xk)}k∈S are close to the true values {yk}k∈S , then the �rst term will dominate;
if the predictions {m̂(xk)}k∈U are ine�cient, however, the second term will counterbalance the
ine�ciency of the �rst term and thus adds robustness to the estimator.

Whenever the predictor m̂ is sample dependent, the estimator t̂ma(m̂) is no longer
design-unbiased and its properties do not follow from the properties of the di�erence estimator.
The properties of (1.12) has been investigated for many predictors, from parametric models
(Robinson and Särndal, 1983), to non-parametrics such as local polynomials (Breidt and
Opsomer, 2000), B-splines (Goga, 2005) and (Goga and Ruiz-Gazen, 2014), penalized splines
(Breidt et al., 2005, McConville and Breidt, 2013), neural networks (Montanari and Ranalli, 2005),
generalized additive models (Opsomer et al., 2007) and regression trees (McConville and Toth,
2019). In the aforementioned articles, the design properties (asymptotic design unbiaseness and
consistency) of these estimators were established. The conclusions made about model-assisted
estimator are therefore independent of the quality of the model predictions. As explained in
Särndal et al. (1992), the approach is model-based, but not model-dependent. Several authors,
however, also investigated the joint design-model properties of these estimators, including
Särndal (1980), Robinson and Särndal (1983), Breidt and Opsomer (2000) and Goga (2005).

In most theoretical investigations of model-assisted estimators, the asymptotic properties
were established in an asymptotic framework in which the number of covariates included in
the model was kept �xed, thus implying that the ratio p/n is negligible. However, nowadays, it
is no longer unusual to face high-dimensional auxiliary information. These practical scenarios
are therefore not included in the scenario usually considered because the assumption that
p/n is negligible may not be satis�ed. The behavior of these estimators in such scenarios
was therefore, until recently, unknown. Recently, increasing attention has been devoted to
establishing asymptotics properties of model-assisted estimators in a framework in which the
number of covariates is increasing to in�nity as well. This framework is called high-dimensional;
the asymptotic results established in this framework include practical situations in which both
p = pv9 and nv are large. Often, they can be seen as generalizations of the results obtained in a
low-dimensional framework. In particular, Cardot et al. (2017) studied dimension reduction
through principal component analysis and established the design consistency of the resulting
estimator in a setting in which the number of principal components is allowed to increase.
More recently, Ta et al. (2020) investigated the properties of model-assisted estimators based
on linear regression and the Lasso, under the joint model-design distribution. Chauvet and

9 Here, the notation p is used to denote the number of covariates, and not the sampling design.
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Goga (2022) studied the design asymptotic properties of calibration estimators10, when the
number pv of calibration variables is going to in�nity.

In this dissertation, two articles focus on model-assisted estimation. First, we present the
article Dagdoug et al. (2022a) entitled Model-assisted estimation in high-dimensional settings
for survey data which investigates the asymptotic design behavior of linear and penalized
linear model-assisted estimators in a high-dimensional framework. The complete article is
presented in Chapter 3. Next, the article Dagdoug et al. (2021b) entitled Model-assisted estimation
through random forests in �nite population sampling deals with model-assisted estimators based
on random forests. The �nite sample properties of the resulting estimator were thoroughly
investigated and its asymptotic properties were established (L1-consistency, determination
of the asymptotic variance, suggestion of a L1-consistent variance estimator, asymptotic
distribution). The complete article is provided in Chapter 4.

1.2.2 Model-assisted estimation inhigh-dimensional settings for survey
data

For simplicity of exposure, we describe the predictors as if the available data was the population
data DU := {(xk , yk) ; k ∈ U}. Extension to their de�nitions at the sample level will be detailed
subsequently.

A description of linear and penalized linear models

In practice, it is often common and convenient for practitioners to assume that the regression
function in (1.11) is a linear function of the covariates, that is, that there exists β in Rp such
that m(x) = x>β. The unknown vector β can be estimated by β̃lr through the ordinary least
square criterion at the population level:

β̃lr = arg min
β∈Rp

∑
k∈U

(yk − x
>
k β)

2. (1.13)

Provided that the matrix XU is of full rank, the solution of (1.13) is unique, a closed-form
solution exists and is given by:

β̃lr =

(∑
k∈U

xkx
>
k

)−1 ∑
k∈U

xk yk .

The prediction at xk based on β̃lr is given by m̃(xk) := x>k β̃lr , for all k ∈ U.

10 Calibration is a procedure suggested by Deville and Särndal (1992), widely used in practice. The main idea is
to search for weights {wk}k∈S , which are as close as possible to the original weighting system {dk}k∈S , from
a distance point of view, while satisfying the constraint that the w-weighted estimator of the covariates totals
perfectly estimates their totals, whatever the sample S is. The reader is referred to Särndal (2007) for a review on
the subject.



1.2 use of auxiliary information at the estimation stage 30

In statistical learning, a popular method for improving the estimation of β in case of a large
number of covariates is to have recourse to penalization to estimate the unknown vector β.
More precisely, we de�ne

β̃pen = arg min
β∈Rp

∑
k∈U

(
yk − x

>
k β

)2
+

t∑̀
=1

λ` | |β | |
γ`
ν` , (1.14)

with t ∈ N, λ` ∈ R+, ν` ∈ N and γ` ∈ R+ are hyper-parameters to be chosen before estimation.
Common choices include t = 1, γ1 = 1 and η1 = 1 for the lasso; t = 1, γ1 = 2 and η1 = 2 for
ridge; t = 2, γ1 = 1, η1 = 1, γ2 = 2 and η2 = 2 for the elastic-net. The e�ect of penalization is
to decrease the norm of the vector of estimated coe�cients. Some choices such as the Lasso
or the Elastic-net are able to put some coe�cients down to zero, and therefore can be seen as
variable selection methods as well. The prediction at the point xk with a penalized linear model
is given as

m̃pen(xk) := x>k β̃pen, k ∈ U.

The generalized linear regression estimator and its penalized counterparts

In practice, the vectors β̃lr and β̃pen cannot be computed as the y-values are recorded for
the sample units only. An estimator of β̃lr , denoted by β̂lr , is obtained using the following
weighted least square criterion at the sample level:

β̂lr = arg min
β∈Rp

∑
k∈S

(yk − x>k β)
2

πk
. (1.15)

Again, the solution to (1.15) is unique provided that XS := (x>k )k∈S is of full rank and is given
by:

β̂lr =

(∑
k∈S

xkx>k
πk

)−1 ∑
k∈S

xk yk

πk
. (1.16)

Plugging m̂lr(xk) := x>k β̂lr in (1.12) leads to the model-assisted estimator based on linear
regression, also called the Generalized regression estimator (GREG, Särndal et al. (1992)):

t̂greg =
∑
k∈U

m̂lr(xk) +
∑
k∈S

yk − m̂lr(xk)

πk
.

For the estimation of β̃pen, we de�ne the following sample criterion:

β̂pen = arg min
β∈Rp

∑
k∈S

1
πk

(
yk − x

>
k β

)2
+

t∑̀
=1

λ` | |β | |
γ`
ν` .

A model-assisted estimator based on a penalized regression procedure is obtained from (1.12)
by replacing m̂(xk) with m̂pen(xk) = x>k β̂pen, leading to

t̂pen =
∑
k∈U

m̂pen(xk) +
∑
k∈S

yk − m̂pen(xk)

πk
.
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High-dimensional asymptotics for linear and penalized linear models

To state the high-dimensional consistency of the GREG estimator, mild regularity conditions
on the sampling design, the survey variable and the covariates are needed. These are the
extension of those used in Robinson and Särndal (1983), but adapted for the high-dimensional
framework, see Chapter 3 for more details.

Result 1.2.1. Consider a sequence of GREG estimators {̂tgreg}v∈N. Then,

1
Nv
(̂tgreg − ty) = Op

(√
p3
v

nv

)
.

Result 1.2.1 shows that, to guarantee the consistency of the GREG estimator t̂greg, the
number of auxiliary variables must be relatively small with respect to the sample size, i.e.,
p3
v/nv = op(1). Under stronger yet still realistic assumptions, the convergence rate can be

improved to
√

p2
v/nv . Even then, the convergence rate is quite slow compared to the traditional

asymptotic framework in which the GREG estimator is square-root consistent. With the same
assumptions used in Result 1.2.1, we show that the penalized estimator t̂pen is consistent
whenever the GREG estimator is and that, as a consequence, the penalized estimator cannot
converge slower than the GREG estimator.

Result 1.2.2. Consider a sequence of penalized model-assisted estimators {̂tpen}v∈N of ty obtained
by either ridge, lasso or elastic-net. Then,

1
Nv
(̂tpen − ty) = Op

(√
p3
v

nv

)
.

Under relatively stronger regularity conditions than those needed for result 1.2.2 (see
chapter 3 for more details), it is possible to improve on the convergence rate of some penalized
estimators. For instance, consider the particular case of the ridge estimator, t̂ridge.

Result 1.2.3. Consider a sequence of penalized ridge estimators {̂tridge}v∈N. Then,

1
Nv

Ep

����̂tridge − ty

����2 = O (
pv
nv

)
.

Simulation study

In Dagdoug et al. (2022a), we conducted a large simulation study that included many
scenarios. We chose to compare a wide range of model-assisted estimators, such as based
on linear regression, penalized regression with lasso, ridge and elastic-net, regression trees,
random forests, Cubist, gradient boosting, k-nearest neighbors and principal component
regression, see Chapter 3 and 5 for details. We were interested in estimating the �nite
population total of four survey variables; some of them were linear in the auxiliary variables
while others were not. To isolate the in�uence of the dimension, we added an increasing
number of noise variables that were not related to the survey variables and repeated our
simulations. We used both equal and unequal sampling designs in the simulations.
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Overall, Cubist and penalized regression estimators were the most e�cient. Random forests,
XGBoost, principal component regression, and, to a lesser extent, k-nearest neighbors, also
improved on the Horvitz-Thompson estimator in most cases. The results of linear regression
were very dependent of the survey variable considered and of the number of covariates
considered. Our results also illustrated a few notable facts. First, whether or not the survey
variable was linear in the auxiliary variables, the estimator based on linear regression was
the most impacted by the addition of noise variables. For instance, in one scenario, its relative
e�ciency with respect to the Horvitz-Thompson estimator increased by almost 600%. For that
same scenario, the other estimators had a relative e�ciency which increased of only 14%, on
average. The same observation was revealed in most scenarios tested, no matter the sampling
design. Another interesting �nding is that, when using unequal sampling designs with random
forests, the estimator may exhibit a small sample bias if the hyper-parameters are not well-
chosen (more precisely, if the covariates used in the sampling design are not su�ciently taken
into account).

1.2.3 Random forest for model-assisted estimation in �nite population
sampling

Regression trees and random forests are algorithms suggested for estimating the unknown
regression function m in (1.11) and making predictions; these are non-parametric prediction
methods or predictors. We begin by describing regression trees and random forests de�ned at
the population level.

A description of regression trees

A regression tree is a prediction method that can be viewed as an algorithm composed of
two parts: a partitioning algorithm and a prediction rule. Let DN denote the set of N-tuples of
vectors of [0; 1]p × [C1,Y ; C2,Y ].

A partitioning algorithm is an algorithm which, given data points, de�nes a partition of
the space of covariates. That is, this is a deterministic function P : DN → P ([0; 1]p) where
P ([0; 1]p) denotes the set of partitions of the unit hypercube of Rp, see Nobel (1996) for more
details. Generally, partitions are created by successive splits with the objective of optimizing a
certain criterion. The elements of the resulting partition P := {A1, A2, ..., AT } will be called the
leaves or nodes of the tree.

A prediction rule is an algorithm which, takes as input a partition P := {A1, A2, ..., AT }

and a dataset DU , and returns a prediction. In the case of regression trees, the prediction rule
traditionally used returns the empirical average of the set {yk ; k ∈ U such that xk ∈ A(x)},
where A(x) denotes the leaf of the tree containing point x. More precisely, the prediction
m̃tree(·,P, DU) := m̃tree(·) is de�ned by

m̃tree(x) =
∑
k∈U

1xk∈A(x)∑
`∈U 1x`∈A(x)

yk , (1.17)

where,1xk∈A(x) = 1 if xk ∈ A (x) and 0 otherwise. In this article, unless otherwise stated, the term
tree or regression tree will designate any regression tree built from any partitioning algorithm.
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Figure 2 illustrates a regression tree based on two covariates, leading to the corresponding
partition of R2. Below we describe the CART partitioning algorithm, commonly used in practice.

Figure 2: Regression tree on R2 (left) and its corresponding partition (right).

Example 1.2.1. CART partitioning algorithm (Breiman, 1984).
In the CART partitioning algorithm, the partition is obtained by successive splits. More precisely,
let A be a leaf of cardinality #(A) considered for the next split and CA be the set of all possible
splits in the leaf A, which corresponds to all the pairs ( j , z) = (variable, position). De�ne

mse(A) :=
1

#(A)

∑
k∈U

1xk∈A (yk − ȳA)
2 and ȳA :=

1
#(A)

∑
k∈U

1xk∈Ayk .

The splitting procedure is performed by �nding the best split ( j∗, z∗), that is, the one maximizing
the following criterion

L( j , z) = mse(A) −mse (AL) −mse (AR) (1.18)

where AL =
{
k ∈ A; xk j < z

}
, AR =

{
k ∈ A; xk j > z

}
. Equivalently, note that maximizing (1.18)

is similar to minimizing
L( j , z) = mse (AL) +mse (AR) .

This criterion therefore searches for the split which would generate child nodes as homogeneous as
possible, in terms of mean square error. Splits are always performed in the middle of two points. The
procedure continues as long as a stopping criterion is not reached. The usual stopping criteria are
obtained by specifying a minimum number of elements (n0) in the terminal nodes, or a maximum
depth (K) for the tree.

Example 1.2.2. Partitioning rule proposed by McConville and Toth (2019).
The algorithm proposed by McConville and Toth can be described as follows:

1. Consider n0 := n11/20, the minimum number of units in each node and choose α ∈]0; 0.5[, a
con�dence level.

2. If the chosen leaf A contains less than 2 × n0 elements, then A is a terminal node. In this
case, return to step 1. for the next node.
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3. Among the available p covariates, choose the one that has the test statistic with the lowest
p-value in the hypothesis test H0 : ”∃C ∈ R such as E

[
Y |X j ∈ A

]
= C” for j = 1, ..., p. If

none of these test statistics is signi�cant (with respect to the α threshold set in step 1.), then
A is a terminal leaf. In this case, return to step 1. for the next node.

4. Perform the split at a position z∗ ∈ arg maxz L( j , z), with L de�ned in the same way as for
the CART criterion. This criterion is only optimized on the positions leading to child leaves
containing at least n0 elements in each child leaf.

For more details about trees and partitioning procedures, the reader is referred to Hastie
et al. (2011) or Györ� et al. (2006), for comprehensive treatments of the topic.

Heuristic motivation and description of random forests

In practice, regression trees are particularly popular because their predictions can be easily
understood and interpreted. However, their predictive e�ciency may be low in some cases; see
Figure 3 for an illustration motivating the use of random forests instead of regression trees.
We have generated 100 observations with a covariate X1 from a distributionU ([0; 1]) and a
survey variable Y = 4 + 2X2

1 +N (0; 0.2). The green curve is the real regression function m and
we computed two estimations of m: the red curve is the tree-regression estimate of m based
on the CART criterion with n0 = 20 (see Exemple 1.2.1 from below) and the yellow curve is
the random forest estimation of m. We can remark that the random forest predictor provides a
much better estimation of m and we give below an heuristic explanation of this fact.

Figure 3: Estimation of a regression function with a regression tree and a random forest algorithm.
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By construction, a regression tree belongs to the set of piecewise functions, a set of
functions with �nite complexity11. Furthermore, the complexity of trees is necessarily lower or
equal to N ; thus, m̃tree belongs to the set of piecewise functions from Rp to R with, at most, N
di�erent values. If the regression function m belongs to this function space, then m̃tree may be
a good estimator of m. However, if m is a smooth function, say continuous, then m̃tree may be
far from m as the complexity of m is +∞ if m is not constant. Yet, every continuous function
can be seen as the uniform limit of a sequence of piecewise functions. The construction of
such a sequence of piecewise functions converging to a continuous function is based on two
facts: 1) the complexity must increase to in�nity; 2) the diameter of each interval on which the
piecewise function is constant must decrease to zero. It is thus possible to see N as an indicator
of maximal complexity that a tree can reach. It follows that, asymptotically (for large N), it is
possible for a tree to be an e�cient estimator of a continuous regression function. For small
samples, however, this may be another story.

While piecewise constant functions only have a small complexity, the following idea permits
to increase it substantially. It is possible to show that, if { fb}Bb=1 is a list of B piecewise functions,
each with maximal complexity N , then the average function

fave :=
1
B

B∑
b=1

fb,

belongs to the set of piecewise functions with maximal complexity B × N . Hence, the
maximal complexity of fave can be much greater than the complexity of the piecewise
functions { fb}Bb=1. Naturally, for the gain of complexity to be important, the functions { fb}Bb=1
must be di�erent one from another (the intervals on which they are constant should be di�erent).

A random forest is a predictor using this principle to estimate m: it is de�ned as an average
of B regression trees (thus, an average of piecewise functions). We see that the random forest
represented by the orange curve in Figure 3 is still a piecewise constant function, but with a
larger complexity than the red curve of the regression tree. Since the prediction rules described
in Examples 1.2.1 and 1.2.2 are deterministic, it is clear that, for a �xed set of elements, using the
same partitioning rule to construct B trees would simply result in constructing the same tree B
times. In this case, there would be no gain in complexity. Breiman thus suggested (Breiman, 1996,
2001) to introduce an additional randomness in the partitioning algorithm and/or prediction
rule. The additional randomness introduced in the predictors can be de�ned using the concept
of stochastic predictors. Let Θ be a random variable de�ned in a measurable space (J,J). A
stochastic predictor m̃ is a measurable function such that m̃ : Rp × J → R. In other words, the
predictor m̃ may use a random variable Θ to make its predictions. It follows that the prediction
method m̃ is random with respect to Θ and, as such, an additional randomness is present.
Example 1.2.3. Let q ∈]0; 1[ andΘ be a random variable with Bernoulli distribution B(q); de�ne
m̃(x,Θ) := Θ| |x| |2, where | |·| |2 denotes the Euclidean norm. Then, m̃ is a stochastic prediction
model, meaning that, for two di�erent realizations of Θ, the predictor m̃ may generate di�erent
predicted values. An additional source of randomness is present, i.e., VΘ (m̃(x,Θ)) > 0, where
VΘ(·) denotes the variance with respect to the random variable Θ.

11 For a function f : X → R, we call complexity of f the number of di�erent values that f can take, that is, the
quantity # ({ f (x); x ∈ X}).



1.2 use of auxiliary information at the estimation stage 36

Two more concrete examples of how the randomization procedure can be incorporated and
used in regression trees are given below.

Example 1.2.4. Breiman’s random forests, (Breiman, 2001).
The algorithm of Breiman can be described as follows:

1. Select B bootstrap samples12 in U, denoted by {U (Θb)}
B
b=1.

2. In each bootstrap sample, U(Θb), build a stochastic regression tree m̃ ( · ,Θb) by using the
CART criterion, as described in Example 1.2.1, where the splitting criterion is optimized only
on p0 covariates among the p available. The p0 covariates are chosen uniformly at random
(without replacement) among the p covariates available, according to Θb, at each split.

Example 1.2.5. Uniform random forests (Biau et al., 2008, Scornet, 2016a).
All the B trees of the forest have the same behavior; as such, we describe only the behavior of a
generic tree among the B belonging in the forest. We begin by considering [0; 1]p as the initial leaf.
Then, recursively, the algorithm splits in the following fashion.

1. A node G is chosen uniformly at random among the existing nodes.

2. A covariate X j is chosen uniformly at random among the p covariates X1, X2, ..., Xp.

3. A split is performed in the node G on X j at a position chosen uniformly at random.

The process is repeated K times, with K ∈ N, a parameter chosen by the user.

It is now possible to de�ne the prediction of a random forest as an average of the predictions
obtained from the B stochastic regression trees. More precisely, let {Θ(b)}Bb=1 be a sequence of B
i.i.d. random variables with distribution PΘ and {m̃tree(·,Θ(b))}Bb=1 be a sequence of stochastic
regression trees; a random forest prediction is de�ned as

m̃r f ( · , {Θ
(b)}Bb=1) :=

1
B

B∑
b=1

m̃tree( · ,Θ
(b)). (1.19)

For simplicity of notations, we note m̃ (B)r f the estimator in (1.19).

Remark 1.2.1. Initially, the term "random forest" was used to denote the initial algorithm of
Breiman (2001) and described in Example 1.2.4. However, the de�nition given in this section
describes a class of random forests algorithms, rather than a particular algorithm. Indeed, to each
partitioning rule and randomization process, it is possible to de�ne a "random forest" algorithm.
Therefore, the de�nition given above is quite general and includes many algorithms (including the
original algorithm of Breiman (2001)). It is also important to note that (non-stochastic) regression
trees as de�ned above are also part of this class; indeed, by taking B = 1 and a deterministic
partitioning rule, we obtain a regression tree.

For more details about random forests and their implementation, the reader is referred to
Biau and Scornet (2016) and Genuer and Poggi (2019).

12 A bootstrap sample of U is a sample of size N , selected from U with replacement.
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Random forests model-assisted estimator

The (random forest) di�erence estimator is de�ned as

t̂ (B)di f :=
∑
k∈U

m̃ (B)r f (xk) +
∑
k∈S

yk − m̃ (B)r f (xk)

πk
, (1.20)

where m̃ (B)r f is given by (1.19). In practice, the estimator t̂ (B)di f is not feasible. Indeed, it is built
from the prediction method m̃r f , itself built from DU and therefore from unknown data. We
propose to estimate the unknown prediction method m̃r f by m̂ (B)r f 1 using the information in
Dma:

m̂ (B)r f 1 (x) :=
1
B

B∑
b=1

∑
k∈S(Θb)

π−1
k 1xk∈ Â(b)(x)∑

`∈S(Θb)
π−1
`
1x`∈ Â(b)(x)

yk , (1.21)

where S(Θb) denotes the sample which was used to build the b-th tree and Â(b)(x) the leaf of
the b-th tree containing the point x and obtained by applying a partitioning algorithm such as
the CART algorithm given in Example 1.2.4 on the data Dma. The sums over the population
are therefore replaced by sums across the sample and a weighting process is applied. More
precisely, the sampling weights are incorporated into the numerator and the denominator
of (1.21), thus making it possible to better take into account sampling designs with unequal
probabilities. If the sampling design considered induces equal inclusion probabilities for all the
elements of the population, then the weights in (1.21) cancel themselves and the estimator
m̂ (B)r f of m̃ (B)r f is simply an estimator constructed by replacing population sums with sample
sums and population partitions are replaced by sample partitions.

We now de�ne a random forest model-assisted estimator as follows:

t̂ (B)r f 1 =
∑
k∈U

m̂ (B)r f 1 (xk) +
∑
k∈S

yk − m̂ (B)r f 1 (xk)

πk
. (1.22)

Remark 1.2.2. As mentioned previously, the random forest de�nition used before includes a
wide class of algorithms. We can note that, given the de�nitions of m̂ (B)r f 1 in (1.21) and t̂ (B)r f 1 in

(1.22), the equation t̂ (B)r f 1 de�nes a class of estimators rather than a particular estimator. More
precisely, let Fr f (Dma, B) denote the set of weighted random forest functions with B trees, �tted
on {(xk , yk); k ∈ S}. In this article, t̂ (B)r f 1 actually represents any element of the set

Tr f (Dma, B) :=

{̂
t =

∑
k∈U

f (xk) +
∑
k∈S

yk − f (xk)

πk
; f ∈ Fr f (Dma, B)

}
.

Observe that Tr f (Dma, 1) is the space of model-assisted estimators based on regression trees
(stochastic or not); thus, the set Tr f (Dma, 1) contains the estimator proposed by McConville and
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Toth (2019). The results presented in this section being independent of B, the number of trees, the
results presented below and in Chapter 4 are valid for any element t̂ (B)r f 1 of

Tr f (Dma) :=
⋃

B∈N∗
Tr f (Dma, B) .

Finite sample properties of the random forest estimator

Proposition 1.2.1. Consider a random forest model-assisted estimator t̂ (B)r f 1 .

1. The estimator t̂ (B)r f 1 can be seen as an average of model-assisted estimators:

t̂ (B)r f 1 =
1
B

B∑
b=1

t̂ (b)tree1,

where t̂(b)tree1 denotes the model-assisted estimator based on the b-th tree in the forest, i.e.,

t̂ (b)tree1 =
∑
k∈U

m̂ (b)tree1(xk) +
∑
k∈S

yk − m̂ (b)tree1(xk)

πk
,

and m̂ (b)tree1 is an estimator of (1.17).

2. The estimator t̂ (B)r f 1 can be written

t̂ (B)r f 1 =
∑
k∈U

m̂ (B)r f 1 (xk) +
1
B

B∑
b=1

∑
k∈O(S)

b

yk − m̂ (b)tree1(xk)

πk
, (1.23)

where O(S)b := S − S(Θb) denotes the so-called "out-of-bag" elements of the b-th tree.

3. If m̂ (B)r f 1 does not use a resampling mechanism13, then t̂ (B)r f 1 has the projection property14:

t̂ (B)r f 1 =
∑
k∈U

m̂ (B)r f 1 (xk).

The point 1. above reveals that the estimator t̂ (B)r f 1 is actually an average of B model-assisted
estimators. More generally, it is possible to show that an average of model-assisted estimator
remains a model-assisted estimator. Random forest estimators also have the following property:
if t̂ (B)r f 1 and t̂ (B)r f 1′ denote two forest estimators, each with B trees and built from the same
algorithm, then their average (̂t (B)r f 1 + t̂ (B)r f 1 )/2 is a random forest estimator built on 2B trees.
This property is no longer exact if we take the average of two forests with di�erent numbers
of trees. The point 2. shows that the random forest estimator computes its residuals only on

13 In a random forest, a resampling mechanism is a process consisting of selecting, with or without replacement,
observations from the original data before constructing the trees.

14 A model-assisted estimator t̂ma(m̂) is said to be a projection estimator if it can be written as the sum of predictions
of all population elements, i.e., t̂ma(m̂) =

∑
k∈U m̂(xk).
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the elements not selected to build the model. This is an unexpected positive point speci�c to
model-assisted estimators built on "bagging" (Breiman, 1996) type algorithms. Therefore, the
second term to the right of (1.34) can be seen as a protection against ine�cient predictions and
against over�tting. In particular, this implies that the e�ciency of forests that do not include a
resampling mechanism relies entirely on the prediction model (a consequence of point 3.).

Note that it is also possible to write m̂ (B)r f 1 as a weighted sum of the values {yk}k∈S:

m̂ (B)r f 1 (x) =
∑
k∈S

Ŵ (B)
k1 (x)yk , (1.24)

where

Ŵ (B)
k1 (x) =

1
B

B∑
b=1

π−1
k ψ

(b)
k 1xk∈ Â(x)∑

`∈S π
−1
`
ψ
(b)
`
1x`∈ Â(x)

, k ∈ S, (1.25)

with ψ(b)
`
= 1 if ` ∈ S(Θb) and 0 otherwise.

Proposition 1.2.2. Consider a model-assisted random forest estimator t̂ (B)r f 1 .

1. The estimator t̂ (B)r f 1 can be seen as a weighted sum of the values {yk}k∈S :

t̂(B)r f 1 =
∑
k∈S

w
(B)

k1 yk ,

where

w
(B)

k1 =
1
πk

{
1 +

∑̀
∈U

Ŵ (B)k1 (x`)

(
1 −

I`
π`

)}
, k ∈ S. (1.26)

2. For all sampling designs, we have
∑

k∈S w
(B)

k1 = N , for all s ∈ S.

3. We have
w
(B)

k1 = 1/πk

for elements which are never selected in subsamples, i.e., k ∈
⋂B

b=1 O(S)b .

4. If bootstrap is used as resampling mechanism, the probability that an element is never
selected converges to 0 when B increases to in�nity.

5. The weights {w (B)k1 }k∈S are independent of the survey variable if and only if the partitioning
rule used by the trees in the forest is independent of the survey variable.

The estimator t̂ (B)r f 1 is therefore an estimator which can be written as a weighted sum of the
values of the survey variable. On the other hand, the weights {w (B)k1 }k∈S might be dependent of
the survey variable if the partitioning rule is itself dependent of the survey variable (which
is often the case, in practice). Therefore, the application of this weighting system to other
survey variables must be done cautiously. On the other hand, when the splitting mechanism
does not depend on the variable of interest, the estimator t̂ (B)r f 1 therefore belongs to the class
of linear estimators (i.e., it can be written as a weighted sum of the measurements of Y
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with weights independent of Y ). The previous proposition also reveals that the sum of the
weights is always equal to the size of the population and that it is possible that some of
these weights are in fact equal to the initial survey weights. However, for large forests, this
phenomenon occurs only very rarely. Even when this scenario occurs, it should be noted
that these elements are still used in the construction of the estimator: they contribute to the
correction term in the form 2. Finally, we can note that, when no resampling mechanism is
used in the algorithm, then the weights (1.26) are always positive, which is an attractive property.

Asymptotic properties the random forest estimator

The results that we describe below require certain regularity assumptions concerning the
survey design, the survey variable and the forest algorithm on which the estimator is built, see
Dagdoug et al. (2021b) for more details. Most of these assumptions are commonly used in the
literature and veri�ed in practice, see for example Breidt and Opsomer (2000) and McConville
and Toth (2019) for more details. In particular, in Chapter 4, we restrict our work to the case
of random forests where the resampling mechanism used is sampling without replacement, a
slight modi�cation from the original algorithm of Breiman.

Result 1.2.4. There exists constants C1 > 0 and C2 > 0 such that:

Ep

���� 1
Nv

(̂
t (B)r f 1 − ty

) ���� 6 C1
√

Nv

+
C2

n0v
, a.s. (1.27)

where n0v is the minimal number of elements allowed per terminal node in each tree of the forest.

It is therefore possible to bound the L1 error of each estimator in the class T ∗r f (Dma).
Moreover, if n0v tends to in�nity, then this bound decreases to 0. Consequently, in this case,
the estimators of T ∗r f (Dma) are asymptotically unbiased and consistent for ty . In the rest of the
section, we will therefore assume that n0v tends to in�nity as n tends to in�nity. To get some of
the following results, we will actually need to consider n0v such that √nv/n0v converges to 0.

The following equivalence allows us to guide our suggestion regarding the asymptotic variance
of the forest estimator and to determine its asymptotic distribution.

Result 1.2.5. The estimator t̂ (B)r f 1 is equivalent to the generalized di�erence estimator t̂ (B)di f :

√
nv

Nv

(̂
t (B)r f 1 − ty

)
=

√
nv

Nv

(̂
t (B)di f − ty

)
+ oP(1),

where t̂(B)di f is given in (1.20).

This result allows us to deduce the asymptotic variance of t̂ (B)r f 1 , equal to

AVp

(
1

Nv
t̂ (B)r f 1

)
=

1

N2
v

∑
k∈Uv

∑
`∈Uv

(πkl − πkπ`)
yk − m̃ (B)r f (xk)

πk

y` − m̃ (B)r f (x`)

π`
. (1.28)
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In practice, this variance cannot be calculated and we therefore propose to estimate it by

V̂ (B)r f 1 =
1

N2
v

∑
k∈Sv

∑̀
∈Sv

πk` − πkπ`
πk`

yk − m̂ (B)r f 1 (xk)

πk

y` − m̂ (B)r f 1 (x`)

π`
. (1.29)

This is a consistent and asymptotically unbiased estimator for the asymptotic variance of t̂ (B)r f 1 ,
as guaranteed by the following result.

Result 1.2.6. The variance estimator V̂ (B)r f 1 is convergent for AVp

(
N−1
v t̂ (B)r f 1

)
, i.e. ,

lim
v→∞

Ep

(
nv
N2
v

����V̂ (B)r f 1 −AVp

(
N−1
v t̂ (B)r f 1

)����) = 0.

In order to be able to determine asymptotic con�dence intervals, it is necessary to determine
the asymptotic distribution of the proposed estimator which is obtained under the additional
assumption that the generalized di�erence estimator t̂ (B)di f follows a normal distribution.

Result 1.2.7. Assume that

N−1
v

(̂
t (B)di f − ty

)
√
Vp

(
N−1
v t̂ (B)di f

) L
−−−−→
v→∞

N (0, 1) ,

then
N−1
v

(̂
t (B)r f 1 − ty

)
√

V̂ (B)r f 1

L
−−−−→
v→∞

N (0, 1) .

As illustrated in Example 1.2.3, stochastic predictors have an additional source of variation,
introduced by the randomization variables. The variance estimator (1.29) does not take into
account these additional variations (induced by Θ, see 1.2.3). However, it is possible to show
that there is a positive constant C such that

VΘ
©­«

t̂ (B)r f 1

Nv

ª®¬ 6 C
B

.

Therefore, if B is chosen large enough, then the variations coming from the introduced
randomization are negligible and do not need to be estimated.

Simulations and empirical investigations

In Dagdoug et al. (2021b), several simulation studies have been conducted. Simulations were
performed in a large variety of scenarios in order to investigates the empirical performances of
the random forest point estimator t̂ (B)r f 1 . In most scenarios, the estimator was relatively e�cient:
when the relationship was linear in the covariates, t̂ (B)r f 1 was slightly less e�cient than the
GREG estimator, yet remained e�cient and improved on the Horvitz-Thompson estimator.
When the relationship was not linear, however, important improvements were obtained with
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t̂ (B)r f 1 over the GREG estimator. Our simulations also included a few high-dimensional scenarios,
in which t̂ (B)r f 1 was the only estimator included in the simulations to remain more e�cient than
the Horvitz-Thompson estimator.

We have also investigated the performances of the variance estimator V̂ (B)r f 1 de�ned in (1.29).
We noted, in accordance with our theoretical results, that the estimator V̂ (B)r f 1 is nearly unbiased
and e�cient when large sample and population sizes were used and when the minimal number
of elements in each node n0 is large enough. When this assumption was not satis�ed, however,
the estimator su�ered from an important negative bias leading to an undercoverage for the
con�dence intervals. The problem detected here is in fact more general and may happen to all
model-assisted estimators based on predictors capable of interpolating the data (i.e., �exible
enough). We suggested a cross-validated type variance estimator, which estimates e�ciently
the variance of the RF estimator, independently of the choice of n0, see Chapter 6 for more
about this procedure.

Lastly, we conducted a simulation study investigating the in�uence of the main hyper-
parameters of a random forest algorithm on the e�ciency of the resulting model-assisted
estimators. We found that the number of trees in the forest can be chosen arbitrarily large
without risk of over�tting; that the default number of variables considered for the splitting
process p0 =

√
p led to satisfactory results in most cases; and that the most in�uent parameter

to be chosen was n0, which should be chosen neither too small nor too large. The cross-validated
variance estimator discussed in the previous paragraph can also be used for guiding our choice
of parameters. A more elaborate discussion is provided in the Conclusion chapter of this
dissertation.

1.3 Item nonresponse and imputation in surveys

1.3.1 Basic framework and imputed estimators

In the previous sections, we made the assumption of full response, meaning that every
information sought for the sampled elements could be collected. In practice, however,
nonresponse happens in practically almost every survey. Chen and Haziza (2019) explains,
"every time data are collected, it is virtually certain that one will face the problem of missing
values." Throughout this work, two assumptions are made: 1) each element of the population
has a strictly positive probability of response; 2) the response of an element is independent
from the response of other elements. It is clear that in some cases, these assumptions may not
be satis�ed. For instance, it is possible that some elements may never want to respond (Kott,
1994). However, these assumptions seem to be satis�ed in most cases and are needed in order
to have e�cient nonresponse treatments.

Interestingly, nonresponse is an undesirable phenomenon which can be modeled as
a probability sampling design with unknown inclusion probabilities. Indeed, under the
assumption that the response of each element is not a�ected by the response of other
elements, nonresponse is essentially a Poisson sampling design with unknown parameters
{pk}k∈U where pk denotes the probability that unit k responds. To be more precise, let Ur

be a random variable taking value in the design space (S,D) with distribution Pr called a
nonresponse mechanism. In the literature, nonresponse mechanisms are classi�ed in three
di�erent categories (Rubin, 1976): missing completely at random (MCAR), missing at random
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(MAR) and missing not at random (MNAR). In the �rst category, it is assumed that the random
variable Ur is independent of the survey variable Y ; in the second scenario, it is assumed that,
conditionally on the covariates XU , the random variable Ur is independent of Y ; lastly, MNAR
is used for distributions satisfying neither MCAR nor MAR. In this work, we restrict our
investigations to the case of MAR.
Proposition 1.3.1. (Missing at random nonresponse mechanism.)
Consider the design space (S,D). A nonresponse mechanism Pr satisfying the missing at random
assumption is a function Pr : D ×RN×p → [0, 1], such that

i) for all A ∈ D, the map XU 7→ Pr (A, XU) is measurable.

ii) for all XU ∈ RN×q, the map A 7→ Pr (A, XU) is a probability measure on (S,D).

iii) The map

pr :=

{
S −→ [0; 1] ,

s 7−→ Pr ({s}) .

is a Poisson sampling design.

Note that, given the covariates, S and Ur are independent. In the imputation literature, it
is common practice to work with the joint distribution induced by the sampling design, the
superpopulation model and the nonresponse mechanism. The product space considered is the
following.
De�nition 1.3.1 (Joint model-design distribution with auxiliary information).
Consider the superpopulation probability space (Ω,M,Pm), the sampling design space(
S, D, Pp

)
and the response probability space (S, D,Pr). To each ω ∈ Ω, we de�ne a

product measure Pp,r (A× B,ω) := Pp (A,ω)Pr (B, XU(ω)) for all measurable rectangles
A × B ∈ D ⊗ D. The joint model-design-nonresponse probability induced by a nonresponse
mechanism satisfying the MAR assumption is de�ned as the probability Pm,p,r on the measurable
space (Ω ×S ×S, M ⊗D ⊗ D), uniquely de�ned as

Pm,p,r (A× B ×C) :=
∫

A
Pp,r (B ×C,ω) dPm(ω)

for all measurable rectangles A× B ×C ∈ M ⊗ D ⊗ D.

Each realization of Ur de�nes a subset of elements of U, which would be respondents if
they were selected in the sample. Thus, the observed elements are given by the realizations of
the random variable Sr := S ∩Ur , of size nr . The set of sampled nonrespondents is denoted by
Sm := S\Sr with size nm. As before, since each element of S can be represented as a vector
in {0; 1}N , we de�ne the random vector [r1, r2, ..., rN ]

> in the product space, where rk = 1 if
k ∈ Ur and 0 otherwise. By construction, {rk}k∈U is a set of independent Bernoulli random
variables {B(pk)}k∈U , where the set of response probabilities {pk}k∈U is unknown, and may
depend on the covariates under MAR.

In presence of nonresponse, the Horvitz-Thompson cannot be used as it is based on unknown
values. Indeed, we have the decomposition

t̂π =
∑
k∈Sr

yk

πk
+

∑
k∈Sm

yk

πk
, (1.30)
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where the second term of (1.30) is unknown. Instead, it is common to use an imputed estimator,
de�ned as

t̂imp =
∑
k∈Sr

yk

πk
+

∑
k∈Sm

y∗k
πk

, (1.31)

where y∗k is a proxy value used to replace missing yk , called an imputed value. If we assume that
the set of covariates {xk}k∈S is fully observed for all sampled elements, then it is customary to
use a predictor m̂, �tted on Dnr := {(xk , yk) ; k ∈ Sr} to de�ne the imputed values y∗k := m̂(xk).
In that case, the imputed estimator (1.31) is given by

t̂m̂ =
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂(xk)

πk
. (1.32)

In the article Dagdoug et al. (2022b), to establish our results, we laid out a set of conditions on
m̂ under which the imputed estimator t̂m̂ converges in L2 with respect to the joint distribution.
The conditions that we found on m̂ reveal that if the predicted values are based on a predictor
m̂ consistent (in L2) for the regression function m, and whose error is uniformly bounded, then
t̂m̂ converges in L2 towards ty .

For this result, we assumed, in addition to the conditions on m̂, similar conditions such as
those described in Breidt and Opsomer (2000) for the consistency of the Horvitz-Thompson,
see Chapter 5.

Result 1.3.1. Consider a sequence of predictors {m̂} �tted on Dnr and its population counterparts
{m̃} �tted on DN := {(xk , yk) ; k ∈ U} . If

i) The sequence of population predictors {m̃} satis�es

lim
v→∞

E

[(
m̃(x) −m(x)

)2
]
= 0,

with a convergence rate denoted γv .

ii) There exists a positive constant C, independent of v, such that

E

{(
m̂(x) −m(x)

)2 ����r , X , I

}
6 C. a.s.

Then, the sequence of imputed estimators {̂tm̂} is L2-consistent with rate

E

[(
1

Nv

{̂
tm̂ − ty

})2
]
= O

(
γv

)
.

The conditions that we found to ensure the L2 consistency of the imputed estimator have
simple interpretations: i) requires that, for large samples, the predictor m̂ estimates e�ciently the
true regression function m and ii) requires that, even for small samples, the error of estimation
is bounded. Omitting condition ii), the result therefore states that, for an imputed estimator to
be L2 consistent, it is enough that it is based on a consistent prediction method. In other words,
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in that scenario, the problem of imputation is not harder to solve than the problem of regression.

The theoretical properties of imputed estimators were investigated for the nearest neighbor
predictor (Chen and Shao, 2000, 2001, Yang and Kim, 2019), the score method (Haziza and
Beaumont, 2007, Little, 1986), predictive mean matching (Yang and Kim, 2017), kernel regression
(Zhong and Chen, 2014), to cite just a few. For more information about the missing data literature
in surveys, see Chen and Haziza (2019) or Haziza (2009).

In this dissertation, two articles were focused on imputed estimators. First, the article
Dagdoug et al. (2021a) entitled Imputation procedures in surveys using nonparametric and
machine learning methods: an empirical comparison, for which the main results are presented
next. This article investigates the empirical performances of imputed estimators based on
machine learning procedures, in a wide variety of scenarios. The complete article is presented
in Chapter 4. Next, the article Dagdoug et al. (2022b) entitled Regression tree and random
forest imputation in surveys with application to data integration is focused on the analysis of
imputed estimators based on regression trees and random forests. The �nite sample properties
of the resulting estimators are thoroughly investigated and their L2-consistency towards ty is
established.

1.3.2 Imputation procedures in surveys using nonparametric and
machine learning methods: an empirical comparison

In the article Dagdoug et al. (2021a), we conducted an extensive simulation study to compare
several nonparametric and machine learning imputation procedures in terms of bias and
e�ciency. The imputation procedures were evaluated in the case of �nite population totals
of continuous and binary variables and for population quantiles under both simple random
sampling without replacement and proportional-to-size Poisson sampling. The Cubist algorithm,
BART and XGBoost performed very well in a wide variety of settings. In general, these methods
seem to be highly robust to model misspeci�cation and seem to have the ability to capture
nonlinear trends in the data. Additive models based on B-splines performed well in the case of
population totals when the number of explanatory variables was small but broke down for large
values of p. Finally, random forests performed relatively well in a high-dimensional setting.
In practice, the choice of an imputation procedure is not clear-cut and depends on the data at
hand. If one is reasonably con�dent about the correct speci�cation of the �rst moment of the
imputation model (that includes the correct speci�cation of the functional form and the correct
speci�cation of the vector of explanatory variables), parametric imputation procedures are
expected to do well in terms of bias and e�ciency. In addition, parametric imputation is simpler
to understand and the results are easier to interpret, in general. In the case of complex/nonlinear
relationships and/or in a high-dimensional setting, our empirical investigations suggest that
machine learning procedures outperform traditional imputation procedures as they tend to
be robust against model misspeci�cation. However, these procedures require the speci�cation
of some regularization parameters. For instance, for XGBoost, one must specify the learning
rate, the maximal depth and the coe�cient of penalization. In support vector regression, the
cost function and the kernel function must be selected, among others. In practice, the value for
some of these parameters are determined through a cross-validation procedure. More details
can be found in Chapter 5.



1.3 item nonresponse and imputation in surveys 46

1.3.3 Regression tree and random forest imputation in surveys with
application to data integration

Let m̂ (B)r f 2 be an estimator of m obtained according to a random forest (with any partitioning
rule), unweighted, built on {(xk , yk); k ∈ Sr}, that is,

m̂ (B)r f 2 (x) =
∑
k∈Sr

Ŵ (B)
k2 (x)yk ,

where

Ŵ (B)
k2 (x) =

1
B

B∑
b=1

ψ
(b)
k 1xk∈ Â(x)∑

`∈Sr ψ
(b)
`
1x`∈ Â(x)

, k ∈ Sr .

The class of estimators imputed by random forests t̂ (B)r f 2 is de�ned by the set of elements of
the form

t̂ (B)r f 2 :=
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂ (B)r f 2 (xk)

πk
. (1.33)

Finite sample properties of the random forest imputed estimator

Proposition 1.3.2. Consider a random forest imputed estimator t̂ (B)r f 2 .

1. The estimator t̂ (B)r f 2 can be seen as an average of imputed estimators:

t̂ (B)r f 2 =
1
B

B∑
b=1

t̂(b)tree2,

where t̂ (b)tree2 denotes the imputed estimator based on the b-th tree in the forest.

2. If the sampling design has equal inclusion probability, then the estimator t̂ (B)r f 2 can be written

t̂ (B)r f 2 =
∑
k∈S

m̂ (B)r f 2 (xk)

πk
+

1
B

B∑
b=1

∑
k∈Ob(Sr )

yk − m̂ (b)tree2(xk)

πk
, (1.34)

where Ob(Sr) := Sr − Sr(Θb) and m̂ (b)tree2 denotes the b-th tree in forest m̂ (B)r f 2 .

3. If the sampling design has equal inclusion probability and if m̂ (B)r f 2 does not use a resampling

mechanism, then t̂ (B)r f 2 has the projection property:

t̂ (B)r f 2 =
∑
k∈S

m̂ (B)r f 2 (xk)

πk
.

Proposition 1.3.3. Consider a random forest imputed estimator t̂ (B)r f 2 .
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1. The t̂ (B)r f 2 estimator can be written as a weighted sum of {yk}k∈Sr :

t̂ (B)r f 2 =
∑
k∈Sr

w
(B)

k2 yk ,

where

w
(B)

k2 =
1
πk
+

∑
`∈Sm

Ŵ (B)
k2 (x`)

π`
=

1
πk
+

1
B

B∑
b=1

ψ
(b)
k

N̂b (xk , Sm)

Nb (xk , Sr(Θb))
, k ∈ Sr , (1.35)

where N̂b (xk , Sm) denotes the weighted sum of elements of Sm belonging to the node
containing xk and Nb (xk , Sr(Θb)) denotes the number of elements of Sr(Θb) belonging
to the node containing the point xk .

2. In the case of a deterministic tree, if the sampling design has equal inclusion probability,
then we have

w
(B)

k2 =
1
πk
×

(
1 +

1
B

B∑
b=1

ψ
(b)
k

N (xk , Sm)

N (xk , Sr(Θb))

)
.

where N (xk , Sm) denotes the number of missing elements in the node containing xk .

3. If the initial weights are calibrated to the population size
∑

k∈S
1
πk
= N , then

∑
k∈S w

(B)
k2 =

N .

4. We have
w
(B)

k2 =
1
πk

for elements k ∈
⋂B

b=1 Ob(Sr).

5. If there are at least n0 elements in the leaves of each tree, then the weights are bounded as
follows

dk 6 w
(B)

k2 6 dk

(
1 +

nm

n0

)
, a.s. k ∈ Sr . (1.36)

These bounds can be reached.

6. The weights {w (B)k2 }k∈Sr are independent of the survey variable if and only if the partitioning
rule used by the trees in the forest is independent of the survey variable.

As with the model-assisted estimator, the forest imputed estimator can be written as a
weighted sum of the values of the variable of interest. In the case of the imputed estimator,
these weights reveal a lot of information about the behavior of the estimator. First of all, we
observe that the imputation weights are always greater than or equal than the initial weights
and are calibrated on the sum of the initial weights. If we consider the weights of an estimator
based on a deterministic tree (e.g., CART, scoring method) with equal inclusion probabilities,
we have

w
(1)

k2 = dk ×

(
1 +

N (xk , Sm)

N (xk , Sr)

)
= dk ×

{
1 + Rmr (xk)

}
, k ∈ Sr .
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We therefore observe that, if most of the elements with characteristics similar to an element
k ∈ Sr have not responded, then a signi�cant weight will be attributed to element k because
the ratio Rmr (xk) will be important. Otherwise, if almost all the elements with characteristics
similar to the individual k ∈ Sr have responded, the imputation weights will be very close
to the initial weights. This is a desired behavior: when we have only a few elements similar
to many other, the imputation weights of these elements need to be large; otherwise, if
most elements of a given category are observed, it is enough to let the imputation weights
of these remain close to its original weight. In particular, a responding element has an
imputation weight equal to its initial weight if and only if all the elements in its leaf are
respondents. The same interpretation is valid in the case of unequal inclusion probabilities.
On the other hand, if we consider stochastic trees and random forests, these properties are
lost for forests with only a few trees (i.e., low B). Indeed, for the elements that have not been
selected (there may be many of them for low B), the imputation weights are equal to the
initial weights. Regardless of that, the sum of the imputation weights remains equal to the
sum of the initial weights: a compensation phenomenon is therefore necessarily introduced
and these weights can be relatively unstable. When B is large, this instability disappears
and the behavior of the weights of the forest is very close to the behavior of the weights of a tree.

Asymptotic properties of the random forest imputed estimator

To study the asymptotic properties of estimators imputed by forests, it is useful to consider
the in�nite predictor m̂ (∞)r f 2 de�ned by

m̂ (∞)r f 2 := lim
B→∞

m̂ (B)r f 2 = lim
B→∞

1
B

B∑
b=1

m̂ (b)tree2

as well as the in�nite estimator

t̂ (∞)r f 2 :=
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂ (∞)r f (xk)

πk
= EΘ

[̂
t (B)r f 2

]
. (1.37)

This estimator is of purely academic interest since, in practice, the number of trees that we can
use is always �nite. However, this in�nite estimator is particularly interesting for three reasons:
1) it is simpler to study theoretically than the �nite forest estimator; 2) it is more e�cient than
the �nite forest estimator, as the proposition below reveals; 3) it is approachable to a given
precision by the �nite forest estimator.

Proposition 1.3.4. There exists C > 0 such that

0 6 E


( t̂ (B)r f 2 − ty

Nv

)2 −E

( t̂ (∞)r f 2 − ty

Nv

)2 6
C
B

. (1.38)



1.3 item nonresponse and imputation in surveys 49

Moreover, for all ε > 0,

PΘ

(
|̂t (B)r f 2 − t̂ (∞)r f 2 | > ε

)
6 2 exp

©­­­­«
−Bε2

2n2
m

(
C2,Y −C1,Y

mink∈U πk

)2

ª®®®®¬
.

This proposition therefore shows that it seems to be interesting to build large forests, in
the sense that the in�nite forest estimator is more e�cient than the �nite forest estimator.
We now restrict our analysis to the case where, for the imputation in Sv , we choose Bv such
that, if v1 < v2 then the number of trees used to impute, Bv1 , is strictly less than the number
of trees used to impute, Bv2 . This allows the use of the result (1.38) implying, as soon as the
estimator of in�nite forests is consistent in L2, the consistency L2 of the estimator of �nite
forests. Moreover, we restrict ourselves to the case where t̂ (B)r f 2 is an imputed estimator based on
the random forest algorithm in Breiman’s original sense. More details about the assumptions
for this result are given in Chapter 5.

Result 1.3.2. The estimator t̂ (B)r f 2 converges in L2 with respect to the joint distribution, that is,

lim
v→∞

E

[(
1

Nv

(̂
t (B)r f 2 − ty

))2
]
= 0.

Finally, concerning the estimation of the variance, similarly as for model-assisted estimators,
we show that the variations due to the randomization variables decrease when B increases:

VΘ
©­«

t̂ (B)r f 2

Nv

ª®¬ 6 C
Bv

.

It is therefore su�cient to estimate the variance of t̂ (B)r f 2 with respect to the joint distribution
induced by the design, the model and the nonresponse mechanism. In most cases, the "naive"
variance estimator

V̂naive :=
∑
k∈S

∑̀
∈S

∆k`

πk`

rk yk + (1 − rk)y
∗
k

πk

r`y` + (1 − r`)y∗`
π`

(1.39)

is a severely biased estimator; the use of speci�c variance estimators is therefore necessary.
Two approaches are traditionally used: the "two-phase" approach (Särndal, 1992), and the
"reverse" approach (Shao and Steel, 1999). The interested reader can refer to Haziza and Vallée
(2020) for a review of concepts and tools related to variance estimation of imputed estimators.

We suggested two corresponding estimators. For the two-phase approach,

V̂sar := V̂sam + V̂nr + 2V̂mix , (1.40)

where

V̂sam := V̂naive +
∑
k∈Sm

d2
k (1 − πk) σ̂

2 V̂nr :=
∑
k∈S

γ2
k σ̂

2, V̂mix :=
∑
k∈S

γk (dk − 1) σ̂2,
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with σ̂ is an estimator of the variance of the model residuals and γk := rkw
(B)

k2 − dk for k ∈ S.
Finally, for the reverse approach, assuming that the sampling fraction nv/Nv is negligible, we
suggested the following variance estimator:

V̂rev :=
∑
k∈S

∑̀
∈S

∆k`

πk`

ξ̂
(B)

k

πk

ξ̂
(B)
`

π`
, (1.41)

where

ξ̂
(B)

k := m̂ (B)r f 2 (xk) + rk ·
1
B

B∑
b=1

N̂b (xk , S)

N̂b (xk , Sr)
·

(
yk − m̂ (b)tree(xk)

)
, k ∈ S.

We also performed several empirical studies aiming at assessing the performances of point
and variance estimators. The simulations suggest that point estimators behave well both in
terms of bias and e�ciency. Several variance estimators were used in the simulations, including
the estimators de�ned in (1.40) and (1.41). The results suggest that the estimators perform
relatively well in terms of bias and coverage rate. An application to mass imputation is also
included in this work; see Chapter 5 for details.





2 M O D E L - A S S I S T E D E S T I M AT I O N I N H I G H - D I M E N S I O N A L
S E T T I N G S F O R S U R V E Y D ATA

Abstract.1 Model-assisted estimators have attracted a lot of attention in the last three decades. These estimators
attempt to make an e�cient use of auxiliary information available at the estimation stage. A working model
linking the survey variable to the auxiliary variables is speci�ed and �tted on the sample data to obtain a set
of predictions, which are then incorporated in the estimation procedures. A nice feature of model-assisted
procedures is that they maintain important design properties such as consistency and asymptotic unbiasedness
irrespective of whether or not the working model is correctly speci�ed. In this article, we examine several
model-assisted estimators from a design-based point of view and in a high-dimensional setting, including
linear regression and penalized estimators. We conduct an extensive simulation study using data from the
Irish Commission for Energy Regulation Smart Metering Project, in order to assess the performance of several
model-assisted estimators in terms of bias and e�ciency in this high-dimensional data set.

Keywords: Design consistency; Elastic net; Lasso; Random Forest; Ridge regression; XGBoost.

2.1 Introduction

Surveys conducted by national Statistical O�ces (NSO) aim at estimating �nite population
parameters, which are those describing some aspects of the �nite population under study. In
this article, the interest lies in estimating the population total of a survey variable Y . Population
totals can be estimated unbiasedly using the well-known Horvitz-Thompson estimator (Horvitz
and Thompson, 1952). In the absence of nonsampling errors, the Horvitz-Thompson estimator
is unbiased with respect to the customary design-based inferential approach, whereby the
properties of estimators are evaluated with respect to the sampling design; e.g., see Särndal
et al. (1992). However, Horvitz-Thompson type estimators may exhibit a large variance in some
situations. The e�ciency of the Horvitz-Thompson estimator can be improved by incorporating
some auxiliary information, capitalizing on the relationship between the survey variable Y and
a set of auxiliary variables x. The resulting estimation procedures, referred to as model-assisted
estimation procedures, use a working model as a vehicle for constructing point estimators.
Model-assisted estimators remain design-consistent even if the working model is misspeci�ed,
which is a desirable feature. When the working model provides an adequate description of the
relationship between Y and x, model-assisted estimators are expected to be more e�cient than
the Horvitz-Thompson estimator.

The class of model-assisted estimators include a wide variety of procedures, some of
which have been extensively studied in the literature both theoretically and empirically.
When the working model is the customary linear regression model, the resulting estimator
is the well-known generalized regression estimator (GREG); e.g., Särndal (1980), Särndal and
Wright (1984) and Särndal et al. (1992). Other works include model-assisted procedures based

1 The article is accepted for publication in Journal of Applied Statistics, in Special Issue: Statistical Approaches for
Big Data and Machine Learning.
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on generalized linear models (Firth and Bennett, 1998, Lehtonen and Veijanen, 1998), local
polynomial regression (Breidt and Opsomer, 2000), splines (Breidt et al., 2005, Goga, 2005, Goga
and Ruiz-Gazen, 2014, McConville and Breidt, 2013), neural nets (Montanari and Ranalli, 2005),
generalized additive models (Opsomer et al., 2007), nonparametric additive models (Wang and
Wang, 2011), regression trees (McConville and Toth, 2019, Toth and Eltinge, 2011) and random
forests (Dagdoug et al., 2021b).

Due to the recent advances of information technology, NSOs have now access to a variety
of data sources, some of which may exhibit a large number of observations on a large number
of variables. So far, the properties of model-assisted estimator have been established under
the customary asymptotic framework in �nite population sampling (Isaki and Fuller, 1982) for
which both the population size N and the sample size n increase to in�nity, while assuming
that the number of auxiliary variables p is �xed. In other words, existing results require n to be
large relative to p. This framework is generally not adequate in the context of high-dimensional
data sets as p may be of the same order as n, or even larger, i.e., p > n. A more appropriate
asymptotic framework would let p increase to in�nity in addition to N and n. Cardot et al.
(2017) studied dimension reduction through principal component analysis and established
the design consistency of the resulting calibration estimator. More recently, Ta et al. (2020)
investigated the properties of the GREG estimator from a model point of view and when p
is allowed to diverge and Chauvet and Goga (2022) studied the asymptotic variance of the
calibration estimator when the number p of calibration variables is going to in�nity.

The aim of this paper is to give a general consistency result for a class of model-assisted
estimators when the number p of auxiliary variables is allowed to grow to in�nity. This class
of model-assisted estimators includes the GREG estimator as well as model-assisted estimators
based on penalization methods such as ridge, lasso and elastic net. The latter methods were
proposed to cope with multicolinearity between predictors in a high-dimension setting. Under
mild regularity assumptions, we show that these model-assisted estimators are design-consistent
provided that p3/n goes to zero. As we argue in Section 2.3, this rate can be improved if one
is willing to make additional assumptions about the rate of convergence of the estimated
regression coe�cient. In particular, we lay out a set of additional conditions under which the
model-assisted ridge estimator is consistent if p/n goes to zero and moreover, is

√
n-consistent

if p = O(na) with a ∈ [0, 1/2). Also, provided that the predictors are orthogonal, we show that
both the model-assisted lasso and elastic net estimators are consistent provided that p/n goes
to zero.

To the best of our knowledge, an empirical comparison of penalized or nonparametric
model-assisted estimators in terms of bias and e�ciency in a high-dimensional setting is
currently lacking. We aim to �ll this gap in the article. To assess the performance of several
model-assisted estimators in a high-dimensional setting, we conduct a large simulation study
using data from the Irish Commission for Energy Regulation Smart Metering Project. The data
set consists of electricity consumption recorded every half an hour for a two-year period and
for more than 6000 households and businesses, leading to highly correlated data. Due to the
high-dimensional feature, model-assisted estimators based on a linear model tend to breakdown
and penalized and reduction dimension based estimators may provide good alternatives.

The paper is organized as follows. In Section 2.2, we introduce the theoretical setup. In
Section 2.3, we investigate the asymptotic properties of several model-assisted estimators: the
GREG estimator as well as estimators based on ridge regression, lasso and elastic net. Section 2.4
contains an empirical comparison to assess the performance of several model-assisted estimators
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in terms of bias and e�ciency. In our empirical experiments, we included model-assisted
estimators based on ridge regression, lasso and elastic net, principal component regression as
well as model-assisted estimators based on CART, random forests, XGBoost and CUBIST. We
considered three sampling designs: simple random sampling without replacement, strati�ed
simple random sampling without replacement and strati�ed �xed-size without replacement
proportional to size sampling. We make some �nal remarks in Section 2.5. The technical details,
including the proofs of some results, are relegated to the Supplementary Material.

2.2 The setup

Consider a �nite population U = {1, 2, ..., N} of size N . We are interested in estimating ty =∑
i∈U yi , the population total of the survey variable Y . We select a sample S from U according

to a sampling design P(S) with �rst-order and second-order inclusion probabilities {πi}i∈U and
{πi`}i,`∈U , respectively. In the absence of nonsampling errors, the Horvitz-Thompson estimator

t̂π =
∑
i∈S

yi

πi
(2.1)

is design-unbiased for ty provided that πi > 0 for all i ∈ U; that is, Ep(̂tπ) = ty , where Ep(·)

denotes the expectation operator with respect to the sampling design P(S). In the sequel, unless
stated otherwise, the properties of estimators are evaluated with respect to the design-based
approach. Under mild conditions (Breidt and Opsomer, 2000, Robinson and Särndal, 1983), it
can be shown that the Horvitz-Thompson estimator t̂π is design-consistent for ty .

At the estimation stage, we assume that a collection of auxiliary variables, X1, X2, . . . , Xp,
is recorded for all i ∈ S. Moreover, we assume that the corresponding population totals
are available from an external source (e.g., a census or an administrative �le). Let xi =[
xi1, xi2, . . . , xip

]> be the x-vector associated with unit i. Also, we denote by XU = (x>i )i∈U the
N × p design matrix and XS = (x>i )i∈S its sample counterpart.

Model-assisted estimation starts with postulating the following working model:

ξ : yi = f (xi) + εi , i ∈ U, (2.2)

where f (·) is an unknown function and the errors εi are independent random variables such
that Eξ [εi |xi] = 0 and Vξ (εi |xi) = σ2, where σ2 is an unknown parameter. Although we
assume an homoscedastic variance structure, our results can be easily extended to the case of
unequal variances of the form Vξ (εi |xi) = σ

2ν(xi) for some known function ν(·).
The unknown function f (·) is estimated by f̂ (·) from the sample data (xi , yi)i∈S . The �tted

model is then used to construct the model-assisted estimator

t̂ma =
∑
i∈U

f̂ (xi) +
∑
i∈S

yi − f̂ (xi)

πi
, (2.3)

where f̂ (x) denotes the prediction at x under the working model (2.2). Whenever the
predictor f̂ (·) is sample dependent, the estimator t̂ma is design-biased, but can be shown to be
asymptotically design-unbiased and design-consistent for a wide class of working models, as
the population size N and the sample size n increase.
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2.3 Least squares and penalized model-assisted estimators

2.3.1 The GREG estimator

Suppose that the regression function f (·) is approximated by a linear combination of X j , j =
1, . . . , p. The working model (2.2) reduces to

ξ : yi = x>i β + εi , i ∈ U, (2.4)

where β =
[
β1, . . . , βp

]>
∈ Rp is a vector of unknown coe�cients. Under a hypothetical

census, where we observe yi and xi for all i ∈ U, the vector β would be estimated by β̃ through
the ordinary least square criterion at the population level:

β̃ = arg min
β∈Rp

| |yU − XUβ | |
2
2 = arg min

β∈Rp

∑
i∈U

(yi − x
>
i β)

2, (2.5)

where yU = (yi)i∈U . Provided that the matrix XU is of full rank, the solution to (2.5) is unique
and given by

β̃ =
(
X>UXU

)−1
X>U yU =

(∑
i∈U

xix
>
i

)−1 ∑
i∈U

xiyi . (2.6)

In practice, the vector β̃ in (2.6) cannot be computed as the y-values are recorded for the sample
units only. An estimator of β̃, denoted by β̂, is obtained from (2.6) by estimating each total
separately using the corresponding Horvitz-Thompson estimator. Alternatively, the estimator
β̂ can be obtained using the following weighted least square criterion at the sample level:

β̂ = arg min
β∈Rp

(
yS − XSβ

)>
Π−1

S
(
yS − XSβ

)>
= arg min

β∈Rp

∑
i∈S

(yi − x>i β)
2

πi
, (2.7)

where ΠS = diag (πi)i∈S and yS = (yi)i∈S. Again, the solution to (2.7) is unique provided that
XS is of full rank and it is given by

β̂ =
(
X>SΠ

−1
S XS

)−1
X>SΠ

−1
S yS =

(∑
i∈S

xix>i
πi

)−1 ∑
i∈S

xiyi

πi
. (2.8)

The prediction of f (·) at x under the working model (2.4) is f̂lr(x) = x> β̂. Plugging f̂lr(·) in
(2.3) leads to the well-known GREG estimator (Särndal et al., 1992):

t̂greg =
∑
i∈U

f̂lr(xi) +
∑
i∈S

yi − f̂lr(xi)

πi

=
∑
i∈U

x>i β̂ +
∑
i∈S

yi − x>i β̂

πi
. (2.9)
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If the intercept is included in the working model, the GREG estimator reduces to the population
total of the �tted values f̂lr(xi) = x>i β̂; that is, t̂greg =

∑
i∈U x>i β̂. Also, the GREG estimator can

be written as a weighted sum of the sample y-values:

t̂greg =
∑
i∈S

wiSyi , (2.10)

where

wiS =
1
πi

1 − x>i

(∑
i∈S

xix>i
πi

)−1 (∑
i∈S

xi

πi
−

∑
i∈U

xi

) , i ∈ S.

These weights can be also obtained as the solution of a calibration problem (Deville and Särndal,
1992). More speci�cally, the weights wiS are such that the generalized chi-square distance∑

i∈S(wiS − π
−1
i )

2/π−1
i is minimized subject to the calibration constraints

∑
i∈S wiSxi =

∑
i∈U xi .

This attractive feature may not be shared by model-assisted estimators derived under more
general working models.

2.3.2 Penalized least square estimators

While model-assisted estimators based on linear regression working models are easy to
implement, they tend to breakdown when the number of auxiliary variables p is growing
large. Also, when some of the predictors are highly related to each other, a problem known as
multicolinearity, the ordinary least square estimator β̃ given by (2.6) may be highly unstable.
As noted by Hoerl and Kennard (2000), “the worse the conditioning of X>UXU , the more β̃

can be expected to be too long and the distance from β̃ to β will tend to be large”. In survey
sampling, the e�ect of multicolinearity on the stability of point estimators has �rst been studied
by Bardsley and Chambers (1984) under the model-based approach. Chambers (1996) and Rao
and Singh (1997) studied this problem in the context of calibration. These authors noted that
the use of a large number of calibration constraints may lead to highly dispersed calibration
weights, potentially resulting in unstable estimators.

In a classical iid linear regression setting, penalization procedures such as ridge, lasso or
elastic-net can be used to help circumvent some of the di�culties associated with the usual
least squares estimator β̃. Let β̃pen be an estimator of β obtained through the penalized least
square criterion at the population level:

β̃pen = arg min
β∈Rp

∑
i∈U

(
yi − x

>
i β

)2
+

t∑̀
=1

λ` | |β | |
γ`
ν` , (2.11)

where λ`, ν` and γ` are positive real numbers, | | · | |ν is a given norm and t is a �xed positive
integer representing the number of di�erent norm constraints. The values of ν` , γ` and t are
typically predetermined. The tuning parameter λ` controls the strength of the penalty that
one wants to impose on the norm of β. Most often, the value of λ` is selected through a cross-
validation procedure. The coe�cients γ` and ν` are speci�c to the penalization method. Hence,
they a�ect the properties of the resulting estimator β̃pen. Three special cases are considered
below.
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When t = 1, γ1 = 2 and ν1 = 2, λ1 = λ, the estimator is known as the ridge regression
estimator (Hoerl and Kennard, 1970):

β̃ridge = arg min
β∈Rp

∑
i∈U

(
yi − x

>
i β

)2
+ λ | |β | |22 ,

where | |β | |22 =
∑p

j=1 β
2
j is the usual Euclidean norm of β. The solution is given explicitly by

β̃ridge =
(
X>UXU + λI p

)−1
X>U yU =

(∑
i∈U

xix
>
i + λI p

)−1 ∑
i∈U

xiyi , (2.12)

where I p denotes the p × p identity matrix.
When t = 1, ν1 = 1 and λ1 = λ, the estimator β̃pen is known as the lasso estimator

(Tibshirani, 1996):

β̃lasso = arg min
β∈Rp

∑
i∈U

(
yi − x

>
i β

)2
+ λ | |β | |1, (2.13)

where | |β | |1 =
∑p

j=1 |β j | is the L1-norm of β. As for the ridge, the lasso has the e�ect of
shrinking the coe�cients but, unlike the ridge, it can set some coe�cients β j to zero. Except
when the auxiliary variables are orthogonal, there is no closed-form formula for the lasso
estimator β̃lasso (Hastie et al., 2011). In survey sampling, McConville et al. (2017) investigated
the design-based properties of the lasso model-assisted estimator for �xed p.

The elastic-net estimator, that was suggested by Zou and Hastie (2005), combines two norms:
the euclidean norm | | · | |2 and the L1 norm, | | · | |1. If, in (2.11), we set t = 2, γ1 = 1, ν1 = 1, γ2 = 2,
ν2 = 2, λ1 = λα and λ1 = λ(1 − α), the resulting estimator is the elastic-net estimator, which
can be viewed as a trade-o� between the ridge estimator and the lasso estimator, realizing
variable selection and regularization simultaneously:

β̃en = arg min
β∈Rp

∑
i∈U

(
yi − x

>
i β

)2
+ λ

[
α | |β | |1 + (1 − α)| |β | |

2
2

]
,

for λ > 0 and α ∈ [0, 1] a parameter that is usually chosen using a grid of multiple values of α.
The penalized regression estimator β̃pen in (2.11) is unknown as the y-values are not observed
for the non-sample units. To overcome this issue, we use the following weighted penalized
least square criterion at the sample level:

β̂pen = arg min
β∈Rp

∑
i∈S

1
πi

(
yi − x

>
i β

)2
+

t∑̀
=1

λ` | |β | |
γ`
ν` . (2.14)

A model-assisted estimator based on a penalized regression procedure is obtained from
(2.3) by replacing f̂ (x) with f̂pen(x) = x> β̂pen, leading to

t̂pen =
∑
i∈U

f̂pen(xi) +
∑
i∈S

yi − f̂pen(xi)

πi

=

(∑
i∈U

x>i

)
β̂pen +

∑
i∈S

yi − x>i β̂pen

πi
, (2.15)
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where β̂pen is a generic notation used to denote the estimated regression coe�cient obtained
through either lasso, ridge or elastic net. Unlike the GREG estimator, t̂greg, the penalized model-
assisted estimator is sensitive to unit change of the X-variables because β̂pen is sensitive to unit
change. This is why, as in the classical regression setting, standardization of the X-variables
is recommended before computing β̂pen. If the intercept is included in the model, then it is
usually left un-penalized.

Remark 2.3.1. In the case of ridge regression, the estimator β̂ridge is given by

β̂ridge =
(
X>SΠ

−1
S XS + λI p

)−1
X>SΠ

−1
S yS =

(∑
i∈S

xix>i
πi
+ λI p

)−1 ∑
i∈S

xiyi

πi
. (2.16)

Using (2.16) in (2.15) leads to the ridge model-assisted estimator t̂ridge that can be expressed as a
weighted sum of sampled y-values, t̂ridge =

∑
i∈S wiS(λ)yi with weights given by

wiS(λ) =
1
πi

1 − x>i

(∑
i∈S

xix>i
πi
+ λI p

)−1 (∑
i∈S

xi

πi
−

∑
i∈U

xi

) , i ∈ S.

These weights can also be obtained through a penalized calibration problem. It can be shown
that they minimize the penalized generalized chi-square distance,

∑
i∈S(wiS − π

−1
i )

2/π−1
i +

λ−1 | |
∑

i∈S wiSxi −
∑

i∈U xi | |
2
2 (Beaumont and Bocci, 2008, Chambers, 1996). If some X-variables

are left un-penalized in (2.11), the resulting weights ensure consistency between the survey
estimates and their corresponding population totals associated with these variables.

We end this section by noting that the penalized model-assisted estimator t̂pen is sensitive to
the choice of the penalty parameter λ` . In the case of ridge regression, Bardsley and Chambers
(1984) suggested the ridge trace method for selecting the penalty parameter λ. This method
consists of plotting the weights wiS(λ), i ∈ S for values of λ from a pre-determined grid values
and to choose the value of λ for which the weights wiS(λ) are positive for all i ∈ S and∑

i∈S wiS(λ)xi −
∑

i∈U xi is the smallest di�erence among all the di�erences considered for the
grid values of λ. Using the fact that the modi�ed penalty λ∗ = λ/(1 + λ) lies between 0 and 1
and is an increasing function of λ, Beaumont and Bocci (2008) proposed a method based on the
bisection algorithm to �rst determine λ∗ and then, λ. Guggemos and Tillé (2010) implemented
a Fisher scoring algorithm in order to �nd the value of λ which maximizes a design-based
estimated log-likelihood criterion. In case of the lasso model-assisted estimator, McConville et al.
(2017) used a cross-validation procedure to choose the best value of λ. More research is needed
to suggest a uni�ed criterion in order to �nd the best penalty in a sample-based framework.
This is beyond the scope of the article. Most of the computer software use a cross-validation
criterion to choose the best penalty parameter.

2.3.3 Consistency of the GREG and penalized GREG estimators in a
high-dimensional setting

We adopt the asymptotic framework of Isaki and Fuller (1982) and consider an increasing
sequence of embedded �nite populations {Uv}v∈N of size {Nv}v∈N. In each �nite population Uv ,
a sample, of size nv , is selected according to a sampling design Pv(Sv) with �rst-order inclusion



2.3 least sqares and penalized model-assisted estimators 59

probabilities πi,v and second-order inclusion probabilities πi`,v . While the �nite populations are
considered to be embedded, we do not require this property to hold for the samples {Sv}v∈N.
This asymptotic framework assumes that v goes to in�nity, so that both the �nite population
sizes {Nv}v∈N, the samples sizes {nv}v∈N and the number of auxiliary variables {pv}v∈N go to
in�nity. To improve readability, we shall use the subscript v only in the quantities Uv , Nv , nv
and pv ; for instance, quantities such as πi,v shall be simply denoted by πi .

The following assumptions are required to establish the consistency of the GREG and
penalized GREG estimators in a high-dimensional setting.

(H1) We assume that there exists a positive constant C1 such that N−1
v

∑
i∈Uv

y2
i < C1.

(H2) We assume that lim
v→∞

nv
Nv
= π ∈ (0, 1).

(H3) There exist a positive constant c such that min
i∈Uv

πi > c > 0; also, we assume that
lim sup
v→∞

nv max
i,`∈Uv

|πi` − πiπ` | < ∞.

(H4) We assume that there exists a positive constant C2 such that, for all i ∈ Uv , | |xi | |
2
2 ≤ C2pv ,

where | | · | |2 denotes the usual Euclidean norm.

(H5) We assume that | | β̂ | |1 = Op(pv), where β̂ is the least square estimator given in (2.8)
and | | · | |1 denotes the L1 norm.

The assumptions (H1), (H2) and (H3) were used by Breidt and Opsomer (2000) in a
nonparametric setting and similar assumptions were used by Robinson and Särndal (1983)
to establish the consistency of the GREG estimator in a �xed dimensional setting. These
assumptions hold for many usual sampling designs such as simple random sampling without
replacement, strati�ed designs (Breidt and Opsomer, 2000), or high-entropy sampling designs.
Assumptions (H4) and (H5) can be viewed, respectively, as extensions of Assumption A.1 and
Assumption A.3 in Robinson and Särndal (1983) to pv-dimensional vectors with pv growing to
in�nity. Assumption (H5) is not very restrictive in this high-dimensional setting as it requires
that components of β̂ are all bounded. When pv is �xed, then our assumptions essentially
reduce to those of Robinson and Särndal (1983).
Result 2.3.1. Assume (H1)-(H5). Consider a sequence of GREG estimators {̂tgreg}v∈N of ty . Then,

1
Nv
(̂tgreg − ty) = Op

(√
p3
v

nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3
v/nv = o(1),

then N−1
v (̂tgreg − ty) = op(1).

The
√

n-consistency obtained by Robinson and Särndal (1983) is a special case of Result
3.1 with pv = O(1). Result 3.1 highlights the fact that the rate of convergence decreases as
the number of auxiliary variables pv increases. Yet, this result guarantees the existence of a
consistent GREG estimator, even when the number of auxiliary variables is allowed to diverge.
An improved consistency rate for t̂greg may be obtained if, in (H5), the usual euclidean norm is
used instead of L1-norm. Establishing the rate of convergence of the sampling error β̂ − β̃ may
also be utilized to obtain a lower consistency rate for t̂greg; e.g., see Chauvet and Goga (2022) .



2.3 least sqares and penalized model-assisted estimators 60

The next result establishes the design-consistency of model-assisted penalized regression
estimators. The proof is similar to that of Result 3.1 and is given in the Supplementary Material.
Result 2.3.2. Assume (H1)-(H5). Consider a sequence of penalized model-assisted estimators
{̂tpen}v∈N of ty obtained by either ridge, lasso or elastic-net. Then,

1
Nv
(̂tpen − ty) = Op

(√
p3
v

nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3
v/nv = o(1),

then N−1
v (̂tpen − ty) = op(1).

The above result makes no use of the asymptotic convergence rate of β̂pen which depends
on the penalization method. For example, if one can establish that | | β̂pen | |1 = Op(γv),
then N−1

v (̂tpen − ty) = Op(γv
√

pv/nv). Alternatively, improved consistency rates of t̂pen may
be obtained if one can establish the magnitude of the sampling error β̂pen − β̃pen in a
high-dimension setting. In other words, obtaining these improved rates requires additional
assumptions, unlike Result 3.2 which is obtained under relatively mild assumptions.

Next, we show that, under additional assumptions on the auxiliary variables, the model-
assisted ridge estimator is L1 design-consistent for ty if pv/n goes to zero and that it has the
usual

√
n-consistency rate if pv = O(na

v ) with 0 ≤ a < 1/2, which constitutes a signi�cant
improvement over Result 3.2.
Result 2.3.3. Assume (H1)-(H4). Also, assume that there exists a positive constant C̃ such that
λmax(X

>
Uv
XUv ) 6 C̃Nv , where λmax(X

>
Uv
XUv ) is the largest eigenvalue of X

>
Uv
XUv . Assume also

that Nv/λv = O(1).

1. Then, there exists a positive constant C such that Ep

[
| | β̂ridge | |

2
2

]
6 C and

1
Nv

Ep

����̂tridge − ty

���� = O (√
pv
nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy pv/nv =
o(1), then N−1

v Ep |̂tridge − ty | = o(1).

2. Ep(| | β̂ridge − β̃ridge | |
2
2) = O(pv/nv). Thus, if pv/nv = o(1), then Ep(| | β̂ridge − β̃ridge | |

2
2) =

o(1).

3. We have the following asymptotic equivalence:

1
Nv

(̂
tridge − ty

)
=

1
Nv

(̂
tdiff,˘ − ty

)
+ Op

(
pv
nv

)
,

where

t̂diff,˘ =
∑
i∈Sv

yi/πi −

(∑
i∈Sv

xi/πi −
∑
i∈Uv

xi

)>
β̃ridge

and

1
Nv

Ep

����̂tridge − ty

���� = O (
1
√

nv

)
+ O

(
pv
nv

)
.
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If pv = O(na
v ) with 0 ≤ a < 1/2, then

1
Nv

(̂
tridge − ty

)
=

1
Nv

(̂
tdiff,˘ − ty

)
+ op (1)

and
1

Nv
Ep

����̂tridge − ty

���� = O (
1
√

nv

)
.

It follows from Result 3.3 that, for pv = O(na
v ) with 0 ≤ a < 1/2, the asymptotic variance of

the model-assisted ridge estimator t̂ridge is equal to the variance of the generalized di�erence
estimator t̂diff,˘. For a = 1/2, we note that the model-assisted estimator is still

√
n-design

consistent but the remainder term is no longer negligible with respect to t̂diff,˘ and the variability
of this term should be consider to compute the asymptotic variance of t̂ridge. The case of model-
assisted estimators based on lasso and elastic-net is more intricate. This is due to the fact that
both estimators involve the L1-norm. As a result, a closed-form expression of these estimators
cannot be obtained. However, if the predictors are orthogonal, a closed-form expression exists
for the lasso and elastic-net estimators and improved consistency rates can be obtained; see
Proposition 3.1 below. The case of non-orthogonal predictors is more challenging and is beyond
the scope of this article.

Proposition 2.3.1. Suppose assumptions (H1)-(H3) and that the sampling design and
the X-variables are such that the columns of Π−1/2

Sv
XSv are orthogonal. Suppose also that

there exist positive quantities C3 and C4 such that max j=1,...,pv N−1
v

∑
i∈Uv

x4
i j ≤ C3 < ∞

and min j=1,...,pv N−1
v

∑
i∈Uv

x2
i j ≥ C4 > 0. Then, N−1

v (̂tgreg − ty) = Op(
√

pv/nv) and

N−1
v (̂tpen − ty) = Op(

√
pv/nv), where t̂pen denotes either the lasso or the elastic-net estimator.

2.4 Simulation study

In this section, we provide an empirical comparison of several model-assisted estimators. In
addition to the estimators discussed in Section 2.3. In addition, we considered model-assisted
estimators based on principal component regression (Cardot et al., 2017), regression trees
(Breiman, 1984), random forests (Breiman, 2001), k-nearest neighbors, XGBoost (Chen and
Guestrin, 2016) and Cubist (Quinlan et al., 1992). For a description of these methods, see Hastie
et al. (2011) and Dagdoug et al. (2021a) and the references therein.

We used data from the Irish Commission for Energy Regulation (CER) Smart Metering
Project that was conducted in 2009-2010 (CER, 2011)2 (Cardot et al., 2017). This project focused
on energy consumption and energy regulation. About 6000 smart meters were installed to
collect the electricity consumption of Irish residential and business customers every half an
hour over a period of about two years.

We considered a period of 14 consecutive days and a population of N = 6, 291 smart
meters (households and companies). Each day consisted of 48 measurements, leading to 672
measurements for each household. We denote by X j = X(t j), j = 1, . . . , 672, the electricity
consumption (in kW) at instant t j and by xi j the value of X j recorded by the ith smart meter
for i = 1, . . . , 6, 291. It should be noted that the matrix N−1X>X was ill-conditioned with a

2 The data are available on request at: https://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
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condition number equal to 254 753. This suggests that some of the X-variables were highly
correlated with each other.

We generated four survey variables based on these auxiliary variables according to the
following models:

Y1 = 400 + 2X1 + X2 + 2X3 +N(0, 1500);

Y2 = 500 + 2X4 + 4001 (X5 > 156) − 4001 (X5 6 156) + 10001 (X2 > 190)

+ 3001 (X5 > 200) +N(0, 1500);

Y3 = 1 + cos(2X1 + X2 + 2X3)
2 + ε1;

Y4 = 4 + 3 ·V
(
{X1 + X2}

2)−1/2
× {X1 + X2}

2 +N(0, 0.01),

where V(·) denotes the empirical variance and the errors ε1 in the model for Y3 were generated
from an Exp(10) and these errors were centered so as to obtain a mean equal to zero.

Our goal was to estimate the population totals tyj =
∑

i∈U yi j , j = 1, . . . , 4. From the
population, we selected R = 2, 500 samples, of size n = 600, which corresponds to a sampling
fraction n/N of about 10%. We considered three sampling schemes: simple random sampling
without replacement, strati�ed simple random sampling without replacement with optimal
allocation and strati�ed without replacement proportional to size sampling with proportional
allocation.

In each sample, we computed twelve model-assisted estimators of the form

t̂( j)ma =
∑
i∈U

f̂ ( j)(xi) +
∑
i∈S

yi − f̂ ( j)(xi)

πi
, j = 1, 2, . . . , 12,

where the predictors f̂ ( j)(xi), j = 1, 2, . . . , 12, were obtained using the following procedures:

Procedure 1: "LR" : Deterministic linear regression, leading to the GREG estimator.

Procedure 2: "CART": Classi�cation and regression tree algorithm (Breiman, 1984), leading
to an estimator closely related to that of McConville and Toth (2019) and
implemented with the R-package rpart.

Procedure 3: "RF": Random forests with the algorithm of Breiman (2001) with B = 1000 trees,
a minimal number of elements in each terminal node n0 = 5 and p0 = b

√
pc

variables selected randomly at each split, where b·c denotes the customary �oor
function. The algorithm leads to the estimator described in Dagdoug et al. (2021b).
Simulations were implemented with the R-package ranger.

Procedure 4: "Ridge": Ridge regression with a regularization parameter determined by cross-
validation and implemented with the R-package glmnet. The estimator was
studied by Goga and Shehzad (2010).

Procedure 5: "Lasso": Lasso regression with a regularization parameter determined by cross-
validation and implemented with the R-package glmnet (McConville et al., 2017).

Procedure 6: "EN": Elastic net regression with penalization coe�cients determined by cross-
validation with the R-package glmnet.
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Procedure 7: "XGB": XGBoost algorithm (Hastie et al., 2011) with 50 trees in the additive model,
each tree being with a depth of at most 6 and a learning rate λ = 0.01. Simulations
were implemented with the R-package XGBoost.

Procedure 8: "5NN": 5-nearest neighbors predictor with the euclidean distance and
implemented with the R-package caret.

Procedure 9: "Cubist": A cubist algorithm (Kuhn and Johnson, 2013) with 5 models in each
predictor, implemented with the R-package cubist; the algorithm and its
adaptation for survey data are described in Dagdoug et al. (2021a).

Procedure 10: "PCR1": Principal component regression based on the �rst bp1/4c components
kept and implemented with the R-package pls (Cardot et al., 2017).

Procedure 11: "PCR2": Principal component regression based on the �rst bp2/4c components
kept.

Procedure 12: "PCR3": Principal component regression based on the �rst bp3/4c components
kept.

As a measure of bias of the model-assisted estimators t̂( j)ma, j = 1, 2, ..., 12, we computed the
Monte Carlo percent relative bias de�ned as

RBMC

(̂
t( j)ma

)
= 100 ×

1
R

R∑
r=1

(̂t( j ,r)ma − ty)
ty

, j = 1, 2, . . . , 12,

where t̂( j ,r)ma denotes the estimator t̂( j)ma at the rth iteration, r = 1, . . . , R. As a measure of e�ciency,
we computed the relative of e�ciency, using the Horvitz-Thompson estimator t̂π given by (2.1),
as the reference. That is,

REMC

(̂
t( j)ma

)
= 100 ×

MSEMC (̂t
( j)
ma)

MSEMC (̂tπ)
, j = 1, 2, ..., 12,

where MSEMC (̂t
( j)
ma) = R−1 ∑R

r=1(̂t
( j ,r)
ma − ty)2 and MSEMC (̂tπ) is de�ned similarly.

We were also interested in investigating to which extent the model-assisted estimators
t̂( j)ma, j = 1, . . . , 12 were a�ected by the inclusion of a large number of predictors in the working
models. To that end, in addition to the variables X1, . . . , X5, we included dnoise predictors in the
working models. These predictors were available in the Irish data set. We used the following
values for dnoise: 5, 10, 20, 50, 100, 200, 300 and 400.

2.4.1 Simple random sampling without replacement

In this section, we present the results obtained under simple random sampling without
replacement (SRSWOR) of size n = 600. All the point estimators t̂( j)ma, j = 1, . . . , 12, exhibited a
negligible or small percent RB with a maximum value of about 3.1% (obtained in the case of
the GREG estimator). For this reason, results pertaining to relative bias are not reported here.

Figures 4-7 display the relative e�ciency of the model-assisted estimators t̂( j)ma, j = 1, . . . , 12
as a function of the number of auxiliary variables incorporated in the working models. To
improve readability, we have truncated some large values of RE, when applicable.
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We begin by discussing the results on relative e�ciency pertaining to the estimation of
the total of the survey variable Y1. For low-dimensional settings, the GREG estimator was very
e�cient with values of RE below 10%. These results can be explained by the fact that Y1 was
linearly related to the x-variables. However, as the number of variables dnoise increased, the
e�ciency of the GREG estimator rapidly deteriorated, suggesting that the performance of the
GREG estimator is sensitive to the dimension of the x-vector. As expected, model-assisted
estimators based on regularization methods such as ridge, lasso, elastic-net or dimension
reduction methods such as principal components regression, performed generally very well.
Unlike the GREG, these estimators were not much a�ected by the number of auxiliary variables
incorporated in the model. Turning to the model-assisted estimator based on a 5-nn, we note
that it was less e�cient than most competitors and that its e�ciency got worse as dnoise

increased, a phenomenon referred to as the curse of dimensionality. The model-estimators
based on XGBoost, Cubist and random forests performed quite well and did not seem to be
a�ected by the number of auxiliary variables incorporated in the model. Finally, the estimators
based on CART were less e�cient than those obtained through the other machine learning
methods.

The results pertaining to the survey variable Y2 and displayed in Figure 5 were fairly
consistent with those obtained for the survey variable Y1 with one exception: the Cubist
algorithm was signi�cantly more e�cient than the other procedures in all the scenarios.

Turning to the survey variable Y3 (see Figure 6), the model-assisted estimator based
on random forests was signi�cantly more e�cient than the Horvitz–Thompson estimator,
especially for large values of dnoise. The other procedures led to estimators less e�cient
than the Horvitz-Thompson estimator with values of RE above 100. In particular, the GREG
estimator broke down as the number of auxiliary variable increased. The performance of
model-assisted estimators based on CART and XGBoost algorithms deteriorated as the
dimension increased. In a high-dimension setting with highly correlated predictors, random
forests improved over CART due to the random subsampling of p0 variables among the p
variables, generating then decorrelated trees (Hastie et al., 2011).

The results in Figure 7 about the survey variable Y4 were similar to the ones in previous
�gures. Most estimators remained mostly una�ected by the number of auxiliary variables
dnoise. Again, the model-assisted estimator based on the Cubist algorithm was the best in all
the scenarios.

2.4.2 Strati�ed simple random sampling with optimal allocation

In the second simulation study, we partitioned the Irish residential and business customer
population into four strata U1, . . . , U4, using an equal quantile method with respect to the
variable, X1, the electricity consumption at instant t1. From the population, we selected R =
2, 500 strati�ed simple random samples, of size n = 600. The stratum sample sizes nh were
determined using an X2-optimal allocation, where X2 denotes the electricity consumption
recorded at instant t2. This led to n1 = 20, n2 = 36, n3 = 45 and n4 = 499. The �rst-order
inclusion probabilities, πi = nh/Nh, i ∈ Uh and the sampling weights wi = π

−1
i are shown in

Table 1.
We con�ned to the survey variables Y1 and Y3 only and we aimed at estimating ty1 and ty3 . It

is worth pointing out that the resulting sampling design was informative as the variables used
at the design stage (X1 and X2) were also related to the survey variables Y1 and Y3. In fact, the
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Figure 4: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y1 with SRSWOR (n = 600) and increasing number of auxiliary variables

Figure 5: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y2 with SRSWOR, n = 600 and increasing number of auxiliary variables

Monte Carlo coe�cient of correlation between the sampling weights and Y1 was approximately
equal to 0.402. We do not report the coe�cient of correlation between the sampling weights
and Y3 as the relationship between Y3 and the set of predictors X1, X3 is not linear.
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Figure 6: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y3 with SRSWOR, n = 600 and increasing number of auxiliary variables

Figure 7: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y4 with SRSWOR, n = 600 and increasing number of auxiliary variables

Again, in each sample we computed twelve model-assisted estimators t̂( j)ma, j = 1, . . . , 12 for
each of ty1 and ty3 . Since most machine learning software packages do not take the sampling
weights into account, we have included the design variables X1 and X2 in the set of predictors.
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Stratum 1 2 3 4
πi 0.012 0.022 0.028 0.316

wi = π
−1
i 77.85 43.83 35.11 3.16

Table 1: First-order inclusion probabilities and sampling weights within strata.

We begin by discussing the results pertaining to the estimation of the total of the survey
variable Y1. Figure 8 and Figure 9 display the Monte Carlo percent relative bias and the Monte
Carlo relative e�ciency as a function of the number of variables dnoise. Except for the model-
assisted estimators based on 5-nn and random forest, the other estimators exhibit a small value
of RB for all values of dnoise. Again, the 5-nn model-assisted estimator su�ered from the curse
of dimensionality. Turning to the estimator based on random forests, we note from Figure 8 that
the bias increased as the number of predictors dnoise increased. For instance, for dnoise = 400, the
value of RB was just above 10%. This signi�cant bias may be explained by the fact that random
forests is the only procedure among the ones considered in our simulation that randomly selects
p0 =

√
p variables among the initial p predictors at each split. For instance, for dnoise = 400, only

20 variables are randomly selected at each split. As a result, most predictions obtained through
a random forests algorithm were based on misspeci�ed working models, leading to potentially
bad �ts and large residuals. Also, each prediction corresponds to a weighted mean computed
within each node with n0 = 5 observations only. Therefore, each predictions corresponds to a
ratio-type estimate based on 5 observations only. This, together with the fact that the sampling
weights are highly variable, constitutes a conducive ground for the occurrence of small sample
bias. In terms of e�ciency, except for the GREG, the 5-nn and the random forest estimators,
the other procedures performed well with values of RE ranging from 60% to 80%. The best
procedures were Cubist and Lasso.

We now turn to the survey variable Y3. First, the Monte Carlo relative bias was negligible
for all the estimation procedures and are not reported here. Results about relative e�ciency are
plotted in Figure 10. Random forests performed extremely well and their performance improved
as dnoise increased. This suggests that the method was able to extract the information contained
in the predictors. This was also true for Cubist and XGBoost, although to a lesser extent.

To get a better understanding of the performance of random forests for the estimation of
the total of the survey variable Y1, we conducted additional scenarios based on di�erent values
of the hyper parameters n0, the number of observations within each terminal nodes, and p0,
the number of variables randomly selected at each split among the initial p model variables.
We used the following values for n0 and p0:

• n0 = 5 observations and p0 =
√

p variables which are the default choices in the R-package
ranger;

• n0 = 5 observations and p0 = p variables;

• n0 = 5 observations and p0 =
√

p variables, with, in addition, the design variables X1, X2,
as well as the vector of inclusion probabilities and the vector of strata that were selected
with probability 1, at each split, besides the p0 variables;

• n0 = n13/20 observations and p0 =
√

p variables.
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Figure 8: Relative bias of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the total of Y1

with strati�ed simple random sampling with X2-optimal allocation, n = 600 with increasing number of
auxiliary variables

Figure 9: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y1 with strati�ed simple random sampling with X2-optimal allocation, n = 600 and increasing
number of auxiliary variables

The Monte Carlo percent relative bias is displayed in Figure 11. We note that relative bias
was much smaller (always less than 1%) when the design variables were considered besides
p0 variables at each split. To a lesser extent, the bias decreased when more observations
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Figure 10: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y3 with strati�ed simple random sampling with X2-optimal allocation, n=600 and increasing
number of auxiliary variables

were allowed in each terminal node. These results suggest, that, when the sampling design is
informative, in order to avoid signi�cant small sample bias, we recommend to force the design
variables to be selected at each split. This option is available in the R package ranger.

Figure 11: Comparison of di�erent con�gurations of hyper-parameters for t̂r f for the estimation of the
total of Y1 with strati�ed simple random sampling and X2-optimal allocation, n = 600.
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2.4.3 Strati�ed inclusion probability proportional-to-size sampling
without replacement

We consider the strati�ed population described in Section 2.4.2. In each stratum, we selected
units according to a �xed-size inclusion probability proportional-to-size sampling without
replacement using X2, the electricity consumption at instant t = 2, as the size variable. In each
stratum, we used the sample size nh were determined according to proportional allocation; i.e.,
nh = n · Nh/N . The �rst-order inclusion probabilities were then given by

πi =
nh xi2∑
j∈Uh

x j2
, i ∈ Uh, and h = 1, 2, 3, 4.

As in Section 2.4.2, we focused on estimating ty1 and ty3 and we computed the same twelve
model-assisted estimators t̂( j)ma, j = 1, . . . , 12. The inclusion probabilities were highly correlated
with the survey variable Y1, with a correlation coe�cient of about 0.62; we do not report the
coe�cient of correlation in the case of Y3 as the underlying relationship was nonlinear. Based
on �ndings from the Section 2.4.2, we adopted the following con�guration for the random
forest algorithm: we considered n0 = 5 observations in each terminal node and, at each split,
we randomly selected p0 =

√
p variables. Note that the design variables X1 and X2 as well as

the vector of inclusion probabilities and the vector of stratum indicators were selected with
probability 1 at each split in addition to the p0 variables.

All the estimators exhibited a negligible relative bias (less than 1%). Figure 12 and Figure 13
show the relative e�ciency corresponding to ty1 ty3, respectively.

Figure 12: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y1 with strati�ed without replacement X2-proportional to size sampling, n = 600 and increasing
number of auxiliary variables
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Figure 13: Relative e�ciency of model-assisted estimators t̂(j)ma, j = 1, . . . , 12 for the estimation of the
total of Y3 with strati�ed without replacement X2-proportional to size sampling, n = 600 and increasing
number of auxiliary variables

From Figure 12, we note that most estimators exhibited a behavior similar to that obtained
in the case the strati�ed simple random sampling based on an X2-optimal allocation (see Section
2.4.2). However, we note that the estimators PCR1 and PCR2 did poorly unlike in the case
strati�ed simple random sampling based on an X2-optimal allocation. This poor behaviour may
be due to the fact that the sampling design was now much more informative and keeping a few
principal components only may have led to a loss of information. The estimator PCR3 based on
more principal components did better than PCR1 and PCR2. From Figure 13, we note that the
use of model-assisted estimators led to signi�cant improvement over the Horvitz-Thompson
estimator, with value of relative e�ciency ranging from 6% to 22%.

2.4.4 Strati�ed simple random sampling with proportional allocation

In this section, we consider a more realistic scenario based again on the Irish residential and
business customer data. As a strati�cation variable, we used the mean electricity consumption
recorded during the �rst week. Again, we constructed four strata using an equal-quantile
method based, this time, on the mean electricity consumption; see also Cardot et al. (2013b)
who used a similar design. The mean trajectories during the �rst week within each stratum are
plotted in Figure 14. From Figure 14, we note that Stratum 1 corresponds to consumers with
low global levels of electricity consumption, whereas Stratum 4 consists of consumers who
have high levels of electricity consumption.

Our aim was to estimate the total electricity consumption recorded on the Monday of
the second week and given by ty =

∑6291
i=1

∑384
j=336 yi j , where yi j is the electricity consumption

recorded for the i-th unit at the j-th instant. Within each stratum, we selected a sample, of
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size nh, according to simple random sampling without replacement. The nh’s were determined
according to proportional allocation; i.e, nh = n × (Nh/N) with n = 600. In each of the 2,500
samples, we computed the same 12 model-assisted estimators as in the previous sections. Again,
we computed the Monte Carlo percent relative bias and the relative e�ciency for each the 12
estimators. The results are presented in Table 2.

Figure 14: Average electricity consumption on each stratum during �rst week

Estimator Relative bias Relative e�ciency

LR 0.2 9.3
CART -0.1 41.0

RF -1.1 17.0
Ridge 0.1 4.0
Lasso 0.2 4.1

EN 0.2 4.1
XGB -1.7 24.9
NN5 -4.0 65.6

Cubist -0.0 4.3
PCR1 0.1 4.9
PCR2 0.1 4.2
PCR3 0.1 4.2

Table 2: Monte Carlo percent relative bias and relative e�ciency of several model-assisted estimators
under strati�ed simple random sampling with proportional allocation.

From Table 2, we note that the 5-nn model-assisted estimator was the only estimator to
exhibit a non-negligible bias. Although it was less e�cient than its competitors, it was more
e�cient than the Horvitz-Thompson estimator with a value of RE of about 65.6%. The ridge
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estimator was the most e�cient with a value of RE equal to 4% and was closely followed by lasso,
elastic-net, Cubist and principal components model-assisted estimators. The GREG estimator
performed very well with a value of RE of about 9.3%. Random forests led to considerable
improvement over the CART model-assisted estimator with values of RE of 17% and 41%,
respectively. Still, random forests were less e�cient than the GREG estimator, which is not
surprising as the relationship between the survey variable and the auxiliary variables was
linear.

2.5 Final remarks

In this paper, we have examined a number of model-assisted estimation procedures in a high-
dimensional setting both theoretically and empirically. If the relationship between the survey
variable and the auxiliary information can be well described by a linear model, our results
suggest that penalized estimators such as ridge, lasso and elastic net perform very well in
terms of bias and e�ciency, even in the case p = n. Model-assisted estimators based on random
forests, Cubist and XGBoost methods were mostly una�ected by the number of predictors
incorporated in the working model, even in the case of complex relationships between the study
and the auxiliary variables. As expected, the GREG estimator su�ered from poor performances
in the case of a large number of auxiliary variables.

The procedure Cubist stood out from the other machine learning procedure with very
good performances in virtually all the scenarios. Further work is needed to establish the
theoretical properties of model-assisted estimators based on Cubist in both a low-dimensional
and high-dimensional settings.

Variance estimation is an important stage of the estimation process. Further research
includes identifying the regularity conditions under which the variance estimators are design-
consistent in a high-dimensional setting.

We end this article by mentioning that virtually all the machine learning software packages
cannot handle design features such as unequal weights and strati�cation. For instance, some
random forests algorithms may involve a bootstrapping procedure and/or a cross-validation
procedure. To fully account for the sampling design, both procedures must be modi�ed so
as to account for the design features. One notable exception is the R package RPMS (Toth,
2021) that has the ability to incorporate sampling weights for CART and random forests. Not
fully accounting for the sampling design may be viewed as a form of model misspeci�cation.
However, model-assisted estimation procedures remain design-consistent even if the model is
misspeci�ed. In our experiments, several machine learning procedures (e.g., random forests,
Cubist, XGboost) performed very well in most scenarios even though we did not modify the
bootstrapping and cross-validation procedures to account for design features. In other words,
it seems that, accounting for predictors that are highly predictive of the Y -variable, seems to be
the preponderant factor with respect to the e�ciency aspect of model-assisted estimators. We
conjecture that fully accounting for the sampling design will likely lead to additional e�ciency
gains but that the predictive power of the model likely constitutes the "determining factor".
Developing machine learning procedures that fully account for the sampling design is currently
under investigation.
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2.6 Supplementary material

Result 3.1. Assume (H1)-(H5). Consider a sequence of GREG estimators {̂tgreg}v∈N of ty . Then,

1
Nv
(̂tgreg − ty) = Op

(√
p3
v

nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3
v/nv = o(1),

then N−1
v (̂tgreg − ty) = op(1).

Proof. We adapt the proof of Robinson and Särndal (1983) to a high-dimensional setting. Let Ii

be the sample membership indicator for unit i such that Ii = 1 if i ∈ S and Ii = 0, otherwise.
Let αi := Ii/πi − 1 for all i ∈ Uv . We consider the following decomposition:

1
Nv

(̂
tgreg − ty

)
=

1
Nv

∑
i∈Uv

αiyi −

pv∑
j=1

b j β̂ j , (2.17)

where b j =
1

Nv

∑
i∈Uv

αi xi j for j = 1, 2, ..., pv . Now, the �rst term does not depend on the
auxiliary information and we have (Breidt and Opsomer, 2000, Robinson and Särndal, 1983):

Ep

(
1

Nv

∑
i∈Uv

αiyi

)2

=
1

N2
v

∑
i∈U

y2
i ·Ep(α

2
i ) +

1

N2
v

∑
i∈Uv

∑
`∈Uv ,`,i

yiy` ·Ep(αiα`). (2.18)

We have Ep(α
2
i ) = (1 − πi)/πi 6 1/c and for i , `, Ep(αiα`) = (πi` − πiπ`)/πiπ` 6

maxi,`∈Uv ,i,` |πi` − πiπ` |/c2 by Assumption (H3). It follows from (H1), (H2) and (H3) that

Ep

(
1

Nv

∑
i∈Uv

αiyi

)2

6
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cN2
v

∑
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nv maxi,`∈Uv ,i,` |πi` − πiπ` |

c2nvN2
v

∑
i∈Uv

∑
`∈Uv ,`,i

|yiy` |

6

(
1
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y2
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(
1
nv

)
(2.19)

and so, ���� 1
Nv

∑
i∈Uv

αiyi

���� = Op

(
1
√

nv

)
. (2.20)

Now, consider the second term from the right-side of (2.17):���� pv∑
j=1

β̂ j b j

���� 6
√√√( pv∑

j=1

β̂2
j

) ( pv∑
j=1

b2
j

)
= | | β̂ | |2

√√√ pv∑
j=1

b2
j 6 | | β̂ | |1

√√√ pv∑
j=1

b2
j . (2.21)
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By Assumption (H5), we have that | | β̂ | |1 = Op(pv). Furthermore,√√√ pv∑
j=1

b2
j =

1
Nv

�����
�����∑
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�����
�����
2
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by Assumptions (H2)-(H4). It follows that√√√ pv∑
j=1

b2
j = Op

(√
pv
nv

)
. (2.23)

The result follows by using (2.17), (2.20), (2.21), (2.23) and Assumption (H5):

1
Nv
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Result 3.2. Assume (H1)-(H5). Consider a sequence of penalized model-assisted estimators
{̂tpen}v∈N of ty obtained by either ridge, lasso or elastic-net. Then,

1
Nv
(̂tpen − ty) = Op

(√
p3
v

nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy p3
v/nv = o(1),

then N−1
v (̂tpen − ty) = op(1).

Proof. From the proof of result (3.1), we only need to show that | | β̂pen | |2 = Op(pv) or | | β̂pen | |1 =

Op(pv), where β̂pen is one of the penalized regression coe�cient: ridge, lasso and elastic-net.
Consider �rst the ridge regression coe�cient, β̂ridge. The ridge regression estimator has
the advantage of having an explicit expression. We will show that | | β̂ridge | |2 < | | β̂ | |2 for
λ > 0. Let denote T̂λ = X>SvΠ

−1
Sv XSv + λI pv =

∑
i∈Sv

xix>i
πi
+ λI pv sample counterpart of Tλ =

X>Uv
XUv + λI pv =

∑
i∈Uv

xix>i + λI pv . Moreover, let λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂pv be the eigenvalues
of

∑
i∈Sv xix>i /πi in decreasing order and v̂ j the orthonormal corresponding eigenvectors,
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j = 1, . . . , pv . Then, the eigenvalues of the matrix T̂λ are λ̂1 + λ ≥ λ̂2 + λ ≥ . . . ≥ λ̂pv + λ ≥

λ > 0 with the same eigenvectors v̂ j , j = 1, . . . , pv . Using the same arguments as those
used in Hoerl and Kennard (1970), we obtain β̂ridge =

∑pv
j=1(λ̂ j + λ)

−1v̂ j v̂>j X
>
SvΠ

−1
Sv ySv and

β̂ =
∑pv

j=1(λ̂ j)
−1v̂ j v̂>j X

>
SvΠ

−1
Sv ySv . Let denote by c j = v̂>j X

>
SvΠ

−1
Sv ySv ∈ R, then

| | β̂ridge | |
2
2 =

pv∑
j=1

c2
j

(λ̂ j + λ)2
< | | β̂ | |22 =

pv∑
j=1

c2
j

(λ̂ j)
2

for λ > 0.

It follows that | | β̂ridge | |2 < | | β̂ | |2 ≤ || β̂ | |1 = Op(pv) and we get | | β̂ridge | |2 = Op(pv).
We now consider the lasso regression estimator, β̂lasso, which minimizes the design-based
version of the optimization problem given in (13) in the main article:

β̂lasso = arg min
β∈Rp

∑
i∈Sv

1
πi
(yi − x

>
i β)

2 + λ | |β | |1.

The lasso-estimator β̂lasso may be also obtained as the solution of a constrained optimization
problem:

min
β∈Rp

∑
i∈Sv

1
πi
(yi − x

>
i β)

2

under the constraint

| |β | |1 ≤ C,

for some small enough constant C > 0. If the ordinary least-square estimator β̂ satis�es the
constraint, namely if | | β̂ | |1 ≤ C, then the solution of the constrained optimization problem is
β̂lasso = β̂; otherwise, if | | β̂ | |1 > C, then the solution β̂lasso will be di�erent from the least-square
estimator β̂ and | | β̂lasso | |1 ≤ C < | | β̂ | |1. So, in both cases, we have | | β̂lasso | |1 ≤ || β̂ | |1 = Op(pv).
Finally, consider the elastic-net regression estimator, β̂en. Consider the following objective
functions:

Lols(β) =
∑
i∈Sv

1
πi
(yi − x

>
i β)

2

Len(β) =
∑
i∈Sv

1
πi
(yi − x

>
i β)

2 + λ1 | |β | |1 + λ2 | |β | |
2
2 = Lols(β) + λ1 | |β | |1 + λ2 | |β | |

2
2 ,

where λ1 = λα and λ2 = λ(1 − α) with λ > 0 and α ∈ (0, 1). The cases α = 0 and α = 1 lead,
respectively, to the ridge and lasso regression estimators which have been discussed above.
The ordinary least squares estimator β̂ veri�es β̂ = arg minβ∈Rp Lols(β) and the elastic-net
estimator veri�es β̂en = arg minβ∈Rp Len(β). Since β̂ minimizes Lols(β), we have Lols(β̂) 6

Lols(β̂en). Similarly, we have Len(β̂en) 6 Len(β̂ols). Therefore, the following inequalities hold:

Lols(β̂) + λ1 | | β̂en | |1 + λ2 | | β̂en | |
2
2 6 Lols(β̂en) + λ1 | | β̂en | |1 + λ2 | | β̂en | |

2
2 = Len(β̂en)

6 Lols(β̂) + λ1 | | β̂ | |1 + λ2 | | β̂ | |
2
2 = Len(β̂ols),
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which implies

λ1 | | β̂en | |1 + λ2 | | β̂en | |
2
2 6 λ1 | | β̂ | |1 + λ2 | | β̂ | |

2
2 . (2.24)

Furthermore, since λ1 > 0, we can write

λ2 | | β̂en | |
2
2 6 λ1 | | β̂en | |1 + λ2 | | β̂en | |

2
2 . (2.25)

Using (2.24), (2.25) and the fact that | | β̂ | |2 6 | | β̂ | |1, we obtain

λ2 | | β̂en | |
2
2 6 λ1 | | β̂ | |1 + λ2 | | β̂ | |

2
2 6 λ1 | | β̂ | |1 + λ2 | | β̂ | |

2
1

which implies

| | β̂en | |
2
2 6

α

1 − α
| | β̂ | |1+| | β̂ | |

2
1 = Op(p2

v)

and so, | | β̂en | |2 = Op(pv).
�

Result 3.3. Assume (H1)-(H4). Also, assume that there exists a positive constant C̃ such that
λmax(X

>
Uv
XUv ) 6 C̃Nv , where λmax(X

>
Uv
XUv ) is the largest eigenvalue of X

>
Uv
XUv . Assume also

that Nv/λv = O(1).

1. Then, there exists a positive constant C such that Ep

[
| | β̂ridge | |

2
2

]
6 C and

1
Nv

Ep

����̂tridge − ty

���� = O (√
pv
nv

)
.

If the numbers of auxiliary variables {pv}v∈N and the sample sizes {nv}v∈N satisfy pv/nv =
o(1), then N−1

v Ep |̂tridge − ty | = o(1).

2. Ep(| | β̂ridge − β̃ridge | |
2
2) = O(pv/nv). Thus, if pv/nv = o(1), then Ep(| | β̂ridge − β̃ridge | |

2
2) =

o(1).

3. We have the following asymptotic equivalence:

1
Nv

(̂
tridge − ty

)
=

1
Nv

(̂
tdiff,˘ − ty

)
+ Op

(
pv
nv

)
,

where

t̂diff,˘ =
∑
i∈Sv

yi/πi −

(∑
i∈Sv

xi/πi −
∑
i∈Uv

xi

)>
β̃ridge

and

1
Nv

Ep

����̂tridge − ty

���� = O (
1
√

nv

)
+ O

(
pv
nv

)
.
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If pv = O(na
v ) with 0 ≤ a < 1/2, then

1
Nv

(̂
tridge − ty

)
=

1
Nv

(̂
tdiff,˘ − ty

)
+ op (1)

and
1

Nv
Ep

����̂tridge − ty

���� = O (
1
√

nv

)
.

Proof. 1. As in the proof of result (3.2), we consider the eigenvalues of the matrix T̂λ
in decreasing order: λ̂1 + λ ≥ λ̂2 + λ ≥ . . . ≥ λ̂pv + λ ≥ λ > 0. The matrix T̂λ is
always invertible and the eigenvalues of T̂−1

λ are 0 < (λ̂1 + λ)
−1 ≤ (λ̂2 + λ)

−1 ≤ . . . ≤

(λ̂pv + λ)
−1 ≤ λ−1. We then obtain

| |T̂−1
λ | |2 6 λ

−1, (2.26)

where | | · | |2 is the spectral norm matrix de�ned for a squared p × p matrix A as | |A| |2 =
supx∈Rp ,| |x| |2,0 | |Ax| |2/| |x| |2. For a symmetric and positive de�nite matrix A, we have that
| |A| |2 = λmax(A), where λmax(A) is the largest eigenvalue of A. Now, we can write

1

N2
v

��������∑
i∈Sv

xiyi

πi

��������2
2
=

1

N2
v

∑
i∈Uv

∑
`∈Uv

x>i x`
yi Ii

πi

y` I`
π`
=

1

N2
v

Y>XUvX
>
Uv
Y

6
1

Nv
| |Y||22

1
Nv
| |XUvX

>
Uv
| |2,

where Y> =
(
yi Ii

πi

)
i∈Uv

. The symmetric and positive semi-de�nite Nv × Nv matrix

XUvX
>
Uv

has the same non-null eigenvalues as those of the positive de�nite pv × pv
matrix X>Uv

XUv ,. Therefore,

1
Nv
| |XUvX

>
Uv
| |2 =

1
Nv
λmax(X

>
Uv
XUv ) 6 C̃.

Using Assumptions (H1) and (H3), we have

1

N2
v

��������∑
i∈Sv

xiyi

πi

��������2
2
6

C̃
Nv
| |Y||22 =

C̃
Nv

∑
i∈Uv

y2
i Ii

π2
i

6
C̃

c2Nv

∑
i∈Uv

y2
i = O(1).

Finally, using also the fact that Nv/λ = O(1), we have

| | β̂ridge | |
2
2 6 | |T̂

−1
λ | |

2
2

��������∑
i∈Sv

xiyi

πi

��������2
2
6 N2

v λ
−2

�������� 1

N2
v

∑
i∈Sv

xiyi

πi

��������2
2
= O(1).

It follows that

Ep

[
| | β̂ridge | |

2
2

]
= O(1). (2.27)
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To obtain the L1 design-consistency of the ridge model-assisted estimator, we write as in
the proof of Result 3.1:

1
Nv

(̂
tridge − ty

)
=

1
Nv

∑
i∈Uv

αiyi −

pv∑
j=1

b j β̂ j ,ridge

=
1

Nv

∑
i∈Uv

αiyi −
1

Nv

(∑
i∈Uv

αixi

)>
β̂ridge

and

Ep

���� 1
Nv

(̂
tridge − ty

) ���� 6 Ep

���� 1
Nv

∑
i∈Uv

αiyi

���� +
√√√

Ep

(
1

N2
v

�������� ∑
i∈Uv

αixi

��������2
2

)
Ep | | β̂ridge | |

2
2

= O

(√
1
nv

)
+ O

(√
pv
nv

)
= O

(√
pv
nv

)
by (2.19), (2.22), (2.27).

2. We can write

β̂ridge − β̃ridge = T̂−1
λ

(∑
i∈Sv

Eiλ

πi
−

∑
i∈Uv

Eiλ

)
, (2.28)

where Eiλ = xi(yi − x>i β̃ridge) with
∑

i∈Uv
Eiλ = λI pv β̃ridge. Using the same arguments as

those used in the proof of Result 3.1, we get

1

N2
v

Ep

��������∑
i∈Sv

Eiλ

πi
−

∑
i∈Uv

Eiλ

��������2
2
6

(
1

cNv
+

nv maxi,`∈Uv ,i,` |πi` − πiπ` |

c2nv

)
1

Nv

∑
i∈Uv

| |Eiλ | |
2
2 .

(2.29)

Furthermore,

1
Nv

∑
i∈Uv

| |Eiλ | |
2
2 6

2C2pv
Nv

(∑
i∈Uv

y2
i +

∑
i∈Uv

(x>i β̃ridge)
2

)
= O(pv) (2.30)

by Assumptions (H1) and (H4) and the fact that

1
Nv

∑
i∈Uv

(x>i β̃ridge)
2 = β̃

>

ridge

(
1

Nv

∑
i∈Uv

xix
>
i

)
β̃ridge 6 | | β̃ridge | |

2
2

1
Nv
| |X>Uv

XUv | |2 = O(1).

(2.31)
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To obtain the above inequality, we have also used the fact that | | β̃ridge | |2 = O(1) which
can be proved by using the same arguments as the ones used for showing that | | β̂ridge | |2 =

O(1) in point (1). Expressions (2.29) and (2.30) lead to

1

N2
v

Ep

��������∑
i∈Sv

Eiλ

πi
−

∑
i∈Uv

Eiλ

��������2
2
= O

(
pv
nv

)
. (2.32)

The result follows from (2.28), (2.32) and the fact that | |NvT̂−1
λ | |2 = O(1) :

Ep | | β̂ridge − β̃ridge | |
2
2 = O

(
pv
nv

)
. (2.33)

3. We use the following decomposition:

1
Nv

(̂
tridge − ty

)
=

1
Nv

(̂
tdiff,˘ − ty

)
−

1
Nv

(∑
i∈Sv

xi

πi
−

∑
i∈Uv

xi

)> (
β̂ridge − β̃ridge

)
,

and

1
Nv

(̂
tdiff,˘ − ty

)
=

1
Nv

(∑
i∈Sv

yi

πi
−

∑
i∈Uv

yi

)
−

1
Nv

(∑
i∈Sv

xi

πi
−

∑
i∈Uv

xi

)>
β̃ridge

=
1

Nv

∑
i∈Uv

αiyi −
1

Nv

∑
i∈Uv

αix
>
i β̃ridge,

where αi = Ii/πi − 1, i ∈ Uv . From (2.19), we have that N−2
v Ep(

∑
i∈Uv

αiyi)
2 = O(n−1

v ) and

we can get N−2
v Ep

(∑
i∈Uv

αix>i β̃ridge

)2
= O(n−1

v ) by using similar arguments as those
used in the proof of Result 3.1 and (2.31). We obtain

1

N2
v

Ep
(̂
tdiff,˘ − ty

)2
= O

(
1
nv

)
.

The result follows since

1
Nv

Ep

����̂tridge − ty

���� 6 1
Nv

Ep

����̂tdiff,˘ − ty

���� +
√√√

1

N2
v

Ep

��������∑
i∈Sv

xi

πi
−

∑
i∈Uv

xi

��������2
2
Ep

��������β̂ridge − β̃ridge

��������2
2

= O

(
1
√

nv

)
+ O

(
pv
nv

)
by using (2.22) and (2.33).

�

Proposition 3.1. Suppose assumptions (H1)-(H3) and that the sampling design and the
X-variables are such that the columns of Π−1/2

Sv
XSv are orthogonal. Suppose also that

there exist positive quantities C3 and C4 such that max j=1,...,pv N−1
v

∑
i∈Uv

x4
i j ≤ C3 < ∞
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and min j=1,...,pv N−1
v

∑
i∈Uv

x2
i j ≥ C4 > 0. Then, N−1

v (̂tgreg − ty) = Op(
√

pv/nv) and

N−1
v (̂tpen − ty) = Op(

√
pv/nv), where t̂pen denotes either the lasso or the elastic-net estimator.

Proof. From the proof of Result 3.1 (more speci�cally, Equations 2.21 and 2.22), we need to
show that

∑
i∈Uv
| |xi | |

2
2/Nv = O(pv) and that | | β̂ | |2 = Op(1). The same result holds for β̂lasso and

β̂en. We have
∑

i∈Uv
| |xi | |

2
2/Nv =

∑pv
j=1

∑
i∈Uv

x2
i j/Nv ≤ pv

√
C3 = O(pv) under the assumption of

uniformly bounded forth moment of X j , j = 1, . . . , pv .
We �rst show that, under the assumed orthogonality condition, | | β̂lasso | |2 ≤ || β̂ | |2, | | β̂en | |2 ≤

|| β̂ | |2 and also | | β̂ | |2 = Op(1).
Consider again the objective function Lols(β) as in the proof of Result 3.2. We can write

Lols(β) =
∑
i∈Sv

1
πi
(yi − x

>
i β)

2 =
∑
i∈Sv

(ỹi − x̃
>
i β)

2 (2.34)

where ỹi = yi/
√
πi and x̃i = (x̃i j)

pv
j=1 = xi/

√
πi for all i ∈ Sv . Let X̃Sv = Π

−1/2
Sv

XSv = (x̃
>
i )i∈Sv =

(X̃1, . . . , X̃pv ). The columns of X̃Sv , denoted by X̃ j , j = 1, . . . , pv are assumed to be orthogonal.
This means that X̃>j X̃k = 0 for j , k . The ordinary least-square estimator β̂ is given by

β̂ = (X̃>SvX̃Sv )
−1X̃>Sv ỹSv .

Under the orthogonality condition, X̃>SvX̃Sv is a diagonal matrix with diagonal elements

given by | |X̃ j | |
2
2 =

∑
i∈Sv x̃2

i j =
∑

i∈Sv
x2
i j

πi
, which corresponds to the Horvitz-Thompson

estimator of
∑

i∈Uv
x2

i j . Therefore, β̂ = (β̂ j) j∈Sv and the j-th coordinate is given by
β̂ j = (

∑
i∈Sv x̃2

i j)
−1 ∑

i∈Sv x̃i j ỹi .

The lasso estimator β̂lasso = (β̂ j ,lasso)
pv
j=1 as well as the elastic-net estimator β̂en = (β̂ j ,en)

pv
j=1

are obtained by using the cyclic soft-thresholding algorithm (Hastie et al., 2011):

β̂ j ,lasso =
Sλ(

∑
i∈Sv ri j x̃i j)∑
i∈Sv x̃2

i j

and
β̂ j ,en =

Sλα(
∑

i∈Sv ri j x̃i j)∑nv
i=1 x̃2

i j + λ(1 − α)
,

where ri j = ỹi −
∑

k, j x̃ik β̂k and Sλ(z) = sign(z)(|z | − λ)+ is the soft-thresholding function
with (|z | − λ)+ = |z | − λ if |z | ≥ λ, and zero otherwise. If the columns of X̃Sv are orthogonal,
then

∑
i∈Sv ri j x̃i j =

∑
i∈Sv x̃i j ỹi and β̂ j ,lasso is the soft-threshold estimator of the least-square

estimator β̂ j :

β̂ j ,lasso =
Sλ(

∑
i∈Sv x̃i j ỹi)∑
i∈Sv x̃2

i j

.

The elastic-net estimator is given by

β̂ j ,en =
Sλα(

∑
i∈Sv x̃i j ỹi)∑

i∈Sv x̃2
i j + λ(1 − α)

.
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It follows that

| β̂ j ,lasso | =
|(|

∑
i∈Sv x̃i j ỹi | − λ)+ |∑

i∈Sv x̃2
i j

≤
|
∑

i∈Sv x̃i j ỹi |∑
i∈Sv x̃2

i j

= | β̂ j |, j = 1, . . . , pv

and | | β̂lasso | |2 ≤ || β̂ | |2. Similarly, | | β̂en | |2 ≤ || β̂ | |2.
We now show that | | β̂ | |2 = Op(1). We have

| | β̂ | |2 ≤ ||Nv(X̃
>
SvX̃Sv )

−1 | |2

�������� 1
Nv

X̃>Sv ỹSv

��������
2

.

The matrix X̃>SvX̃Sv is diagonal with diagonal elements equal to
∑

i∈Sv
x2
i j

πi
. Then,

| |Nv(X̃
>
SvX̃Sv )

−1 | |2 = max
j=1,...,pv

©­­«
1

N−1
v

∑
i∈Sv

x2
i j

πi

ª®®¬
and for all j = 1, . . . , pv :

1

N−1
v

∑
i∈Sv

x2
i j

πi

=
1

N−1
v

∑
i∈Uv

x2
i j

+ Op

(
1
√

nv

)
= Op(1)

by using (H2), (H3) and the assumption of uniformly bounded fourth moment of X j , j =
1, . . . , pv . We have also used the fact that 1/(N−1

v

∑
i∈Uv

x2
i j) ≤ 1/(min j=1,...,pv N−1

v

∑
i∈Uv

x2
i j) ≤

1/C4 = O(1) for all j = 1, . . . , pv . Then,

| |Nv(X̃
>
SvX̃Sv )

−1 | |2 = Op(1). (2.35)

Now, �������� 1
Nv

X̃>Sv ỹSv

��������2
2
≤

1
Nv

����ỹSv

����2
2

�������� 1
Nv

X̃SvX̃
>
Sv

��������
2

.

We have�������� 1
Nv

X̃SvX̃
>
Sv

��������
2
=

�������� 1
Nv

X̃>SvX̃Sv

��������
2
= max

j=1,...,pv

(
1

Nv

∑
i∈Sv

x2
i j

πi

)
≤ max

j=1,...,pv

(
1

Nv

∑
i∈Uv

x2
i j

)
≤

√
C3

and

1
Nv
| |ỹSv | |

2
2 =

1
Nv

∑
i∈Sv

y2
i

π2
i

≤
1

c2Nv

∑
i∈Uv

y2
i ≤

C1

c2

by Assumption (H1). So, | | 1
Nv
X̃Sv ỹSv | |2 = O(1) and combined with (2.35), we obtain | | β̂ | |2 =

Op(1).
�





3 M O D E L - A S S I S T E D E S T I M AT I O N T H R O U G H R A N D O M F O R E S T S

I N F I N I T E P O P U L AT I O N S A M P L I N G

Abstract1. In surveys, the interest lies in estimating �nite population parameters such as population totals
and means. In most surveys, some auxiliary information is available at the estimation stage. This information
may be incorporated in the estimation procedures to increase their precision. In this article, we use random
forests to estimate the functional relationship between the survey variable and the auxiliary variables. In recent
years, random forests have become attractive as National Statistical O�ces have now access to a variety of data
sources, potentially exhibiting a large number of observations on a large number of variables. We establish the
theoretical properties of model-assisted procedures based on random forests and derive corresponding variance
estimators. A model-calibration procedure for handling multiple survey variables is also discussed. The results
of a simulation study suggest that the proposed point and estimation procedures perform well in term of bias,
e�ciency and coverage of normal-based con�dence intervals, in a wide variety of settings. Finally, we apply the
proposed methods using data on radio audiences collected by Médiamétrie, a French audience company.

Keywords: Model-assisted approach; Model-calibration; Nonparametric regression; Random forest;
Survey data; Variance estimation.

3.1 Introduction

Since the pioneering work of Särndal (1980), Robinson and Särndal (1983) and Särndal and
Wright (1984), model-assisted estimation procedures have attracted a lot of attention in
the literature; see also Särndal et al. (1992) for a comprehensive discussion of the model-
assisted approach. At the estimation stage, auxiliary information is often available and can
be incorporated in the estimation procedures to increase the precision of the resulting point
estimators. The model-assisted approach starts with postulating a working model, describing
the relationship between a survey variable Y and a set of p auxiliary variables X1, X2, . . . , Xp.
The model is �tted to the sample observations to obtain predicted values, which then serve to
build point estimators of population means/totals. Model-assisted estimators are asymptotically
design-unbiased and design consistent, irrespective of whether or not the working model
is correctly speci�ed, which is an attractive feature; see Särndal et al. (1992) and Breidt and
Opsomer (2017), among others. When the working model holds, model-assisted estimators are
expected to be highly e�cient. However, when the sample size is small, the use of model-assisted
estimators requires some caution as they may su�er from small sample bias. In this article, we
use random forests to estimate the functional relationship between Y and X1, X2, . . . , Xp. In
recent years, random forests have become attractive as National Statistical O�ces have now
access to a variety of data sources, potentially exhibiting a large number of observations on a
large number of variables.

Consider a �nite population U = {1, ..., k , ..., N} of size N . We are interested in estimating the
population total of a survey variable Y , ty =

∑
k∈U yk . We select a sample S, of size n, according

1 The article is accepted for publication in Journal of the American Statistical Association.
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to a sampling design P(S | ZU), where ZU denotes the matrix of design information, available
prior to sampling for all the population units. Let IU = (I1, ..., Ik , ..., IN )

> be the N-vector of
sample selection indicators such that Ik = 1 if k ∈ S and Ik = 0, otherwise. The �rst-order
and second-order inclusion probabilities are given by πk = E [Ik | ZU] and πkl = E [Ik I` | ZU] ,
respectively.

A basic estimator of ty is the well-known Horvitz-Thompson estimator given by

t̂π =
∑
k∈S

yk

πk
. (3.1)

Provided that πk > 0 for all k ∈ U, the estimator (3.1) is design-unbiased for ty in the sense
E

[̂
tπ | yU ,ZU

]
= ty , where yU = (y1, y2, ..., yN )

>. The Horvitz-Thompson estimator makes no
use of auxiliary information beyond what is already contained in the matrix ZU .

We assume that a vector xk = (xk1, xk2, . . . , xkp)
> of auxiliary variables is available for all

k ∈ U. We also assume that yk , k ∈ U, are independent realizations from a working model ξ ,
often referred to as a superpopulation model:

E [yk | Xk = xk] = m(xk), (3.2)
V(yk | Xk = xk) = σ

2ν(xk),

where m(·) and ν(·) are two unknown functions and σ2 is an unknown parameter.
Suppose that Model (3.2) is �tted at the population level and let m̃(xk) be the population-

level �t associated with unit k obtained by �tting a parametric or nonparametric procedure.
This leads to the pseudo generalized di�erence estimator

t̂pgd =
∑
k∈U

m̃(xk) +
∑
k∈S

yk − m̃(xk)

πk
. (3.3)

Because the values m̃(xk) do not involve the sample selection indicators I1, . . . , IN , if follows
that E

[̂
tpgd | yU ,ZU ,XU

]
= ty , where XU is the N × p matrix whose N rows are the vectors

x1, . . . , xN . That is, the pseudo generalized di�erence estimator (3.3) is design-unbiased for
ty . In the sequel, we use the simpler notation Ep [·] instead of E [·|ZU ,XU , yU] to denote the
expectation operator with respect to the sampling design P(S |ZU). Similarly, the notation
Vp [·] is used to denote the design variance of an estimator.

Most often, the estimator (3.3) is unfeasible as the population-level �ts m̃(xk) are unknown.
Using the sample observations, we �t the working model and obtain the sample-level �ts m̂(xk).
Replacing m̃(xk) with m̂(xk) in (3.3), we obtain the so-called model-assisted estimator of ty:

t̂ma =
∑
k∈U

m̂(xk) +
∑
k∈S

yk − m̂(xk)

πk
. (3.4)

Unlike (3.3), the estimator (3.4) is no longer design-unbiased, but can be shown to be design-
consistent for ty for a relatively wide class of procedures m̂(·). The model-assisted estimator
(3.4) is expressed as the sum of the population total of the predictions m̂(xk) and an adjustment
term that can be viewed as a protection against model-misspeci�cation.

If m̂(xk) = x>k β̂ with coe�cients estimated by weighted least squares, the estimator (3.4)
reduces to the well-known generalized regression (GREG) estimator; e.g., see Särndal et al.
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(1992, Chap. 6). Model-assisted estimators based on generalized linear models were considered
by Lehtonen and Veijanen (1998) and Firth and Bennett (1998), among others. There are some
practical issues associated with the use of a parametric model such as linear and generalized
linear models: they may lead to ine�cient estimators if the function m(·) is misspeci�ed or if the
model fails to include interactions or predictors that account for curvature (e.g., quadratic and
cubic terms). In contrast, nonparametric procedures are robust to model misspe�ciation, which
is a desirable property. A number of nonparametric model-assisted estimation procedures have
been studied in the last two decades: local polynomial regression (Breidt and Opsomer, 2000),
B-splines (Goga, 2005) and penalized B-splines (Goga and Ruiz-Gazen, 2014), penalized splines
(Breidt et al., 2005, McConville and Breidt, 2013), neural nets (Montanari and Ranalli, 2005),
generalized additive models (Opsomer et al., 2007), nonparametric additive models (Wang and
Wang, 2011) and regression trees (McConville and Toth, 2019, Toth and Eltinge, 2011).

In this paper, we propose a new class of model-assisted estimators of ty based on random
forests (RF). Generally speaking, RF is an ensemble method that trains a (large) number of
trees and combines them to produce more accurate predictions than a single regression tree
would. Trees de�ne a class of algorithms that recursively split the p-dimensional predictor
space into distinct and non-overlapping regions. In other words, a tree algorithm generates a
partition of regions or hyperrectangles of Rp. For an observation belonging to a given region,
the prediction is simply obtained by averaging the y-values associated with the units belonging
to the same region. While regression trees are easy to interpret and allow the user to visualize
the partition (Hastie et al., 2011, pp. 306), they may su�er from a high model variance, hence
their quali�cation of "weak learners". A number of tree-based procedures have been proposed
with the aim of improving the predictive performances of regression trees, including pruning
(Breiman, 1984), Bayesian regression trees (Chipman et al., 1998), gradient boosting (Friedman,
2001) and RF (Breiman, 2001).

Several empirical studies suggest that RF can outperform state-of-the-art prediction models;
see e.g. Han et al. (2018), Hamza and Larocque (2005), Díaz-Uriarte and de Andrés (2006). RF are
widely used due to their predictive performances and their ability to handle small sample sizes
with a large number of predictors (Scornet, 2016b). Also, RF algorithms can be parallelized,
leading to a decrease in the training time. RF have been applied in a wide variety of �elds,
including medicine (Fraiwan et al., 2012), time series analysis (Kane et al., 2014), agriculture
(Grimm et al., 2008), missing data (Stekhoven and Buhlmann, 2011), genomics (Qi, 2012) and
pattern recognition (Rogez et al., 2008). In recent years, neural networks and deep learning
algorithms have attracted a lot of attention and have been shown to be e�ective in a wide
range of applications involving mostly unstructured data, such as speech recognition, image
reconstruction and text translation; see Najafabadi et al. (2015) and the references therein for a
review on the topic. However, to exhibit high levels of performance, deep learning algorithms
typically require huge amounts of data (Arnould et al., 2020, Najafabadi et al., 2015). This is
seldom the case in surveys as most data sets consist of structured data consisting of (at most)
a few hundred thousand observations and a few hundred survey variables. For an empirical
comparison of RF and neural networks, see Han et al. (2018). Finally, unlike RF algorithms that
require the speci�cation of a small number of hyper-parameters (see Section 3.6.3), gradient
boosting, Bayesian regression trees or deep learning approaches depend upon the complex
choice of a large number of hyper-parameters (Bergstra et al., 2011).

To the best of our knowledge, only little is known about the theoretical properties of RF
based on the original algorithm of Breiman (2001). Often, the theoretical investigations are
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made at the expense of simplifying assumptions; see for instance Biau et al. (2008) and Biau
(2012). Two notable exceptions are Wager (2014) and Scornet et al. (2015) who established
the theoretical properties of an algorithm closely related to that of Breiman (2001). In a �nite
population setting, the theoretical properties of RF algorithms have yet to be established, even
in the ideal situation of 100% response. This paper aims to �ll this important gap. While we are
mostly concerned with RF for regression, we can easily extend our methods to the case of RF
for classi�cation. Some recent empirical studies on the performance of RF for complex survey
data can be found in Tipton et al. (2013), Buskirk and Kolenikov (2015), De Moliner and Goga
(2018) and Kern et al. (2019).

The rest of the paper is organized as follows. Regression trees and RF are presented in Section
3.2. In Section 3.3, we suggest two classes of model-assisted estimators based on random forests:
the �rst is based on partitions built at the population level, while the second class is based
on partitions built at the sample level. In Section 3.4, we establish the theoretical properties
of model-assisted estimators based on RF and derive corresponding variance estimators. In
Section 3.5, we describe a model-calibration procedure for handling multiple survey variables. In
Sections 3.6.1-3.6.3, the �nite sample properties of the proposed point and variance estimation
procedures are evaluated through a simulation study, and in Section 3.6.4, we apply the proposed
methods using data on radio audiences collected by Médiamétrie, a French audience company.
The paper ends with some �nal remarks in Section 3.7. Proofs of major results and further
technical details are relegated to the Appendix and the Supplementary Material.

3.2 Regression trees and random forests

3.2.1 Regression trees

The original RF uses regression trees based on the classi�cation and regression tree algorithm
(CART) of Breiman (1984), whereby the partition of the predictor space is generated by a greedy
recursive algorithm. In this paper, we focus on the CART algorithm for regression, designed
for handling quantitative survey variables Y , but our methods also applies to the case of binary
survey variables. With regression trees, these estimated probabilities always lie between 0 and
1, which is a desirable feature. Alternative criteria may be used with binary variables, such
as the Gini impurity or the entropy instead of the CART regression criterion (Hastie et al.,
2011, Chapter 9). The CART algorithm for regression searches for the splitting variable and
the splitting position (i.e., the coordinates on the predictor space where to split) for which
the di�erence in empirical variance in the node before and after splitting is maximized. As a
starting point, we consider the hypothetical situation, where yk and xk are observed for all
k ∈ U and assume that the regression tree is �tted at the population level. We use the generic
notation A to denote a node with cardinality #(A) considered for the next split, and CA to
denote the set of possible splits in the node A, which corresponds to the set of all possible pairs
( j , z) = (variable, position). This splitting process is performed by searching for the best split
( j∗, z∗) for which the following empirical CART population criterion is maximized:

LN ( j , z) =
1

#(A)

∑
k∈U

1xk∈A

{
(yk − ȳA)

2 −

(
yk − ȳAL1xk j<z − ȳAR1xk j≥z

)2
}

, (3.5)
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where AL =
{
k ∈ A; xk j < z

}
, AR =

{
k ∈ A; xk j > z

}
and ȳA is the average of the y-values of

units belonging to A. The best cut is always performed in the middle of two consecutive data
points. In practice, it is common to impose a minimal number of observations N0 (say) in each
terminal node. In this case, the splitting process is performed until an additional split generates
a terminal node with fewer observations than N0.

The splitting process leads to the set

PU =
{

A(U)1 , . . . , A(U)j , . . . , A(U)JU

}
(3.6)

of JU hyperrectangles of Rp such that A(U)j
⋂

A(U)j ′ = ∅, for all j , j′ ∈ {1, 2, . . . , JU} and
JU⋃
j=1

A(U)j = Rp. Thus, the set PU de�nes a partition of Rp, whose elements are called the

terminal nodes. We use the generic notation A(U)(xk) to denote a terminal node belonging to
the partition PU given in (3.6) and that contains xk .

Figure 15 below illustrates how the recursive splitting procedure creates a partition in the
simple case of two auxiliary variables X1 and X2, based on 5 splits. Each grey rotated square
represents a split (variable, position) performed at some position along one of the two auxiliary
variables, X1 or X2. The white ellipses represent the 6 terminal nodes, also represented by the
scatter plot on the right; see also Biau and Devroye (2014) for a similar illustration.

Figure 15: A regression tree (left) and the corresponding partition of R2 (right).

The prediction m̃tree(xk) at the point xk is simply de�ned as the average of the y-values of
population individuals ` such that x` belongs to A(U)(xk):

m̃tree(xk) =
∑̀
∈U

1x`∈A(U)(xk )y`

Ñ(xk)
, (3.7)

where Ñ(xk) =
∑
`∈U 1x`∈A(U)(xk ) denotes,the number of units belonging to the terminal node

A(U)(xk). Given the partition PU , the population-level �t m̃tree(xk) may be viewed as the least
squares type prediction obtained by �tting a one-way ANOVA model with Y as the response
variable and the node membership indicators {1

xk∈A(U)j

}
JU
j=1 as the set of explanatory variables;

see (Hastie et al., 2011, Chapter 9) and the Supplementary Material for more details.
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3.2.2 Random forests

To introduce random forests (RF) in a �nite population setting, we again assume that yk and xk

are observed for all k ∈ U. RF are based on a (large) number B (say) of regression trees. The
prediction attached to unit k is de�ned as the average of the predictions produced by each of
the B regression trees. That is,

m̃r f (xk) =
1
B

B∑
b=1

m̃(b)tree(xk),

where m̃(b)tree(xk) is the predicted value attached to unit k obtained from the bth regression tree,
b = 1, . . . , B.

Obviously, if m̃(1)tree(xk) = . . . = m̃(B)tree(xk), then m̃r f (xk) = m̃(1)tree(xk). Such a situation would
occur if each regression tree uses a deterministic splitting criterion in (3.5), which would lead
to B identical partitions of Rp. To cope with this issue, some amount of randomization is
introduced in the tree building process, leading to B di�erent predictions of m(·). The original
algorithm of Breiman (2001) is implemented as follows:

1. Select B bootstrap data sets with replacement from the population data set, DU =

{(xk , yk)}k∈U , each data set containing N pairs of the form (xk , yk);

2. Fit a regression tree on each bootstrap data set. Before each split is performed, mtry

predictors are selected randomly and without replacement from the full set of p predictors.
The mtry selected predictors are the split candidates to be considered for searching the
best split in (3.5).

The algorithm stops when each terminal node contains less than a predetermined number of
observations. This procedure leads to a set P̃U =

{
P
(1)
U ,P(2)U , . . . ,P(B)U

}
of B di�erent partitions

of Rp, each of the form (3.6). The randomization used in the tree building process is denoted by
the random variable θ(U), assumed to belong to some measurable space (Θ,F ) and independent
of the data (Biau and Scornet, 2016). Let θ(U)b be the random variable associated with the bth tree.
The random variables θ(U)b , b = 1, . . . , B, are assumed to be independent and their distribution
is identical to that of the generic random variable θ(U). In the RF algorithm of Breiman, the
randomization is induced by the selection (with replacement) of observations in Step 1 of the
above algorithm and the random selection of split variables in Step 2 of the above algorithm.
A number of RF algorithms algorithms have been considered in the literature. For example,
(Biau et al., 2008, Scornet, 2016a) considered a simple RF algorithm called the uniform random
forest (URF) algorithm. In the URF algorithm, a variable is selected with equal probability
among the initial p predictors at each node and a split position is chosen uniformly in the
node along the direction of the selected variable. The algorithm stops when each terminal node
has a predetermined number of cuts. In this case, the randomization θ(U)b is characterized by
the random selections of the node, the split variable and the location. For more details on RF
algorithms, the reader is referred to Geurts et al. (2006), Biau et al. (2008), Biau (2012), Genuer
(2012), Scornet (2016a), among others. In the sequel, unless stated otherwise, we assume that
the observations in Step 1 of the above algorithm are selected without replacement (Scornet,
2017), which we will refer to as subsampling. Also, for more generality, the splitting criterion
is left unspeci�ed.
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Let m̃(1)tree(·, θ
(U)
1 ), . . . , m̃(B)tree(·, θ

(U)
B ), denote the predictions obtained with the B stochastic

or randomized regression trees. The RF prediction attached to unit k is de�ned as a bagged
estimator of B trees:

m̃r f (xk) =
1
B

B∑
b=1

m̃(b)tree(xk , θ(U)b ). (3.8)

It is worth pointing out that considering a new set of predictors at each split leads to B trees
which are less correlated with each other; that is, trees that are quite di�erent from one another.
As a result, the RF may lead to substantial gains in precision compared to a single tree (James
et al., 2015, Chapter 8). The number of predictors selected at each split, denoted by mtry , is thus
an important tuning parameter in the RF algorithm. In practice, the choice mtry =

√
p seems to

give good results, in general. In Section 3.6.3, we assess the impact of mtry through a simulation
study.

For any RF algorithm, the prediction at the point xk in (3.8) can also be expressed as

m̃r f (xk) =
∑̀
∈U

W̃`(xk)y` , (3.9)

where

W̃`(xk) =
1
B

B∑
b=1

ψ
(b,U)
`

1
x`∈A(U)

(
xk ,θ(U)

b

)
Ñ(xk , θ(U)b )

(3.10)

is a prediction weight attached to unit k with Ñ(xk , θ(U)b ) =
∑
`∈U ψ

(b,U)
`

1
x`∈A(U)(xk ,θ(U)

b
)

denoting
the number of observations belonging to the terminal node A(U) containing xk in the bth
regression tree. The random variables ψ(b,U)

`
in (3.10) depend on the resampling mechanism

used in the RF algorithm and depend on θ(U)b , but are independent of the sampling design P(S |
ZU). In the case of subsampling, the random variables ψ(b,U)

`
follow a Bernoulli distribution,

ψ
(b,U)
`
∼ B (N′/N), where N′ denotes the number of units in each subsample. Note that the

prediction m̃r f in (3.9) can be computed for either a continuous or a categorical y-variable. In
the latter case, the prediction m̃r f in (3.9) corresponds to the population proportion of units
who belong to a given category computed over the B trees.
Proposition 3.2.1. Consider the predictor weights W̃`(xk) given in (3.10).

i) The weights W̃`(xk) are uniformly bounded. That is,

0 < W̃`(xk) 6 cN−1
0

for all ` ∈ U and all xk ∈ Rp, where c is a positive constant that does not depend either on
k ,`, or N0, the minimal number of observations in the terminal nodes.

ii) The weight functions sum up to one; that is,
∑
`∈U W̃`(xk) = 1 for all xk ∈ Rp.

The proof of Proposition 3.2.1 is given in the Appendix.

3.3 Model-assisted estimation: Random forests

In Section 3.2, we assumed that yk and xk were observed for all k ∈ U, which led to the
population-level �ts m̃tree(xk) and m̃r f (xk) given by (3.7) and (3.9), respectively. However,
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both (3.7) and (3.9) cannot be computed in practice as the y-values are observed only for
k ∈ S. Moreover, the regression trees in Sections 3.2.1 and 3.2.2 were based on partitions
built recursively at the population level so as to optimize the population criterion (3.5). As a
result, these partitions depend on the vector of predictors {xk}k∈U but also on the unknown
population values {yk}k∈U . While the former type of dependency is inherent to most parametric
and nonparametric procedures, the latter is absent in many commonly used parametric and
nonparametric procedures such as spline procedures (Breidt et al., 2005, Breidt and Opsomer,
2000, Goga, 2005, Goga and Ruiz-Gazen, 2014, McConville and Breidt, 2013). Due to the
dependency on the unknown population values {yk}k∈U , establishing the theoretical properties
of model-assisted estimators based on RF is more challenging.

For these reasons, in Section 3.3.1, we start by considering the simpler case of population
partitions obtained using a variable Y ∗, assumed to be closely related to Y and available for all
k ∈ U. While this assumption is somehow strong and not tenable in many practical situations,
it provides some insights on how to tackle the problem in the presence of Y -dependency.
Algorithms allowing to get rid of the Y -dependency have been suggested in the random-forest
literature; see e.g. Biau et al. (2008), Biau (2012) or Devroye et al. (2013, Chap. 20). Sample-based
partitions are considered in Section 3.3.2.

3.3.1 Model-assisted estimation: Population-based partitions

In this section, we consider the case of a splitting criterion that does not depend on the data
{yk}k∈s. We consider a variable Y ∗ assumed to be closely related to Y and such that the values
y∗k are available for all k ∈ U. We seek population partitions P̃∗U , independent of the survey
variable Y , that maximize the following criterion:

L∗N ( j , z) =
1

#(A)

∑
k∈U

1xk∈A

{(
y∗k − y∗A

)2
−

(
y∗k − y∗AL

1xk j<z − y∗AR
1xk j≥z

)2
}
, (3.11)

where AR, AL are as in (3.5) and y∗A is the average of the y∗-values for the units belonging to a
node A.

Based on (3.11), the population-level �t at the point xk is given by

m̃∗r f (xk) =
∑̀
∈U

W̃∗` (xk)y` , (3.12)

where the weights W̃∗
`
(xk) in (3.12) are obtained from (3.10) by replacing A(U) with A∗(U), a

generic member of the partition P̃∗U .

The weights {W̃∗
`
(·)}`∈U in (3.12) are known for all ` ∈ U and are independent of Y . Since

m̃∗r f (xk) in (3.12) requires the y-values for all the population units, it cannot be computed. A
simple solution consists of replacing the population total on the right hand-side of (3.12) by its
corresponding Horvitz–Thompson estimator, which leads to

m̂∗r f (xk) =
∑̀
∈S

W̃∗
`
(xk)y`

π`
. (3.13)
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A model-assisted estimator of ty based on population RF is obtained by plugging m̂∗r f (xk) in
(3.3):

t̂∗r f =
∑
k∈U

m̂∗r f (xk) +
∑
k∈S

yk − m̂∗r f (xk)

πk
. (3.14)

Proposition 3.3.1. The RF estimator given in (3.14) can be expressed as

t̂∗r f =
∑
k∈S

wksyk ,

where the weights wks are given by

wks =
1
πk

{
1 +

∑̀
∈U

W̃∗k (x`)
(
1 −

I`
π`

)}
. k ∈ S (3.15)

Proof. By rearranging the sums, we get:

t̂∗r f =
∑
k∈S

yk

πk
+

∑̀
∈U

(
1 −

I`
π`

)
m̂∗r f (x`) =

∑
k∈S

yk

πk
+

∑̀
∈U

(
1 −

I`
π`

) (∑
k∈S

W̃∗k (x`)
yk

πk

)
=

∑
k∈S

{
1 +

∑̀
∈U

(
1 −

I`
π`

)
W̃∗k (x`)

}
yk

πk
.

�

Since the partitions P̃∗U , are independent of both the survey variable Y and the sample
S, the weights wks given by (3.15) depend on the sample only through the sample selection
indicators I` , ` ∈ U, but are independent of Y . As a result, these weights may be used to estimate
the population total of any survey variable, which is an attractive feature in multipurpose
surveys. However, for RF algorithms based on the splitting criterion in (3.11), we expect the
weights wks to be e�cient whenever the survey variable Y is highly correlated to the variable
Y ∗. In multipurpose surveys where the survey variables are not necessarily correlated with one
another, it may be preferable to use a splitting criterion that depends on the data {xk}k∈U as
done in quantile random forests (Devroye et al., 2013, Scornet, 2016a).

3.3.2 Model-assisted estimation: Sample-based partitions

In this section, we seek sample partitions P̂S =
{
P̂
(1)
S , . . . , P̂(b)S , . . . , P̂(B)S

}
using

Ln( j , z) =
1

#(A)

∑
k∈S

1xk∈A

{
(yk − ȳA)

2 −

(
yk − ȳAL1xk j<z − ȳAR1xk j≥z

)2
}

. (3.16)

Based on the partition P̂S , we obtain the sample-level �ts

m̂r f (xk) =
∑̀
∈S

Ŵ`(xk)y`

π`
, (3.17)
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where

Ŵ`(xk) =
1
B

B∑
b=1

ψ
(b,S)
`

1
x`∈A(S)

(
xk ,θ(S)

b

)
N̂(xk , θ(S)b )

, ` ∈ S, (3.18)

and N̂(xk , θ(S)b ) =
∑
`∈U I`π−1

`
ψ
(b,S)
`

1
x`∈A(S)

(
xk ,θ(S)

b

) denotes the estimated number of observations

in the terminal node A(S) containing xk in the bth regression tree. The variable ψ(b,S)
`

indicates
whether or not unit ` has been selected in the bth sub-sample and is such that ψ(b,S)

`
∼ B (n′/n)

for RF based on subsampling, where n′ denotes the number of units in each sub-sample.
Plugging m̂r f (·) in (3.4) leads to the RF model-assisted estimator

t̂r f =
∑
k∈U

m̂r f (xk) +
∑
k∈S

yk − m̂r f (xk)

πk
. (3.19)

Using similar arguments to those used in the proof of Proposition 3.3.1, we can show that t̂r f

can be expressed as
t̂r f =

∑
k∈S

w′ksyk ,

where the weights w′ks are given by

w′ks =
1
πk

{
1 +

∑̀
∈U

Ŵk (x`)

(
1 −

I`
π`

)}
, k ∈ S. (3.20)

Noting that
∑

k∈S Ŵk (x`) π−1
k = 1 for all ` ∈ U, it follows from (3.20) that

∑
k∈S w

′
ks = N

for every sample S. That is, the sum of the weights w′ks match the population size N perfectly,
a desirable property shared by other nonparametric model-assisted estimators (Breidt et al.,
2005, Goga, 2005, Goga and Ruiz-Gazen, 2014). Unlike the weights wks in (3.15), the weights
w′ks depend on both the sample selection indicators I` , ` ∈ U, and the partition P̂S that varies
from one sample to another. This is due to the fact that the nodes A(S) are constructed so as to
optimize the sample criterion (3.16). For this reason, the weights w′ks, k ∈ S, are variable speci�c
in the sense that depend on the survey variable Y . To cope with this issue, we describe a model
calibration procedure in Section 3.5 for handling multiple survey variables while producing a
single set of weights.

Remark 3.3.1. In practice, the variables ψ(b,S)
k in (3.18) are not generated for the units outside the

sample. However, at least conceptually, nothing precludes de�ning these variables for k ∈ U \ S. For
k ∈ U \ S, we set ψ(b,S)

k ∼ B ((N′ − n′)/(N − n)) so that
∑

k∈U ψ
(b,S)
k = N′. De�ning the variables

ψ
(b,S)
k for units outside the sample will have no e�ect on the predictions m̂r f (·) associated with the

sample units since Ik = 0 for k ∈ U \ S. This construction will prove useful in establishing the
asymptotic properties of the proposed procedures; see Section 3.4.

As for the RF prediction built at the population level described in Section 3.2.2, the prediction
m̂r f (xk) in (3.17) can be expressed as a bagged predictor (Hastie et al., 2011). That is,

m̂r f (xk) =
1
B

B∑
b=1

m̂(b)tree(xk , θ(S)b ),
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where m̂(b)tree(xk , θ(S)b ) =
∑
`∈S π

−1
`
ψ
(b,S)
`

1
x`∈A(S)

(
xk ,θ(S)

b

) y`/N̂(xk , θ(S)b ) is the prediction associated

with unit k based on the bth stochastic regression tree. The model-assisted estimator t̂r f given
by (3.19) can thus be viewed as a bagged estimator:

t̂r f =
1
B

B∑
b=1

t̂(b)tree(θ
(S)
b ),

where

t̂(b)tree(θ
(S)
b ) =

∑
k∈U

m̂(b)tree(xk , θ(S)b ) +
∑
k∈S

yk − m̂(b)tree(xk , θ(S)b )

πk

is the model-assisted estimator of ty based on the bth stochastic regression tree. As in the
case of regression trees built at the population level (see Section 3.2.1), given the partition
P̂
(b)
S = {A(bS)

j }
JbS
j=1, the predictions m̂(b)tree(xk , θ(S)b ) are least squares type predictions obtained

by �tting the one-way ANOVA model with Y as the response and the node membership
indicators {1

xk∈A(bS)j

}
JbS
j=1 as the explanatory variables; see the proof of Proposition 3.3.3 and the

Supplementary Material for more details. As a result, the estimator t̂(b)tree(θ
(S)
b ) is related to the

customary post-strati�ed estimator (Särndal et al., 1992).
Under mild assumptions, Proposition 3.3.2 below shows that bagging improves the e�ciency

of model-assisted estimators. This is similar to what is encountered in the classical RF literature
(Hastie et al., 2011).
Proposition 3.3.2. Let t̂(1), . . . , t̂(b), . . . , t̂(B) be a sequence of model-assisted estimators of ty and
let t̂ = B−1 ∑B

b=1 t̂(b) be a bagged estimator. Assuming that the t̂(b)’s have approximately the same
design bias and design variance, then, for B large enough:

MSEp(̂t) −MSEp(̂t(1)) 6 Vp(̂t(1))
(
max
b,b′

���Corp

(̂
t(b), t̂(b

′)
)��� − 1

)
6 0,

where MSEp(·) and Corp(·) denote the mean squared error and correlation operators with respect
to the sampling design.

The proof of Proposition 3.3.2 is given in the Appendix. We end this section by giving an
alternative expression for t̂r f .

Proposition 3.3.3. The RF estimator t̂r f given by (3.19) can be written as

t̂r f =
∑
k∈U

m̂r f (xk) +
1
B

B∑
b=1

∑
k∈S

(
1 − ψ(b,S)

k

) (
yk − m̂(b)tree(xk , θ(S)b )

)
πk

, (3.21)

where m̂(b)tree(xk , θ(S)b ) is the predictor associated with unit k based on the bth stochastic regression
tree.

The proof of Proposition 3.3.3 is given in the Appendix. It follows from Proposition 3.3.3,
that the second term on the right hand-side of (3.21) vanishes if ψ(b,S)

k = 1 for all k ∈ S. That
is, the estimator t̂r f reduces to the so-called projection form (Breidt et al., 2005, Goga, 2005,
Särndal et al., 1992)

t̂r f =
∑
k∈U

m̂r f (xk)
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if the RF algorithm does not involve a resampling mechanism. In addition, the second term on
the right hand-side of (3.21) vanishes if yk = c for all k , for some c ∈ R or if the trees in the
forest are fully grown (i.e., each terminal node contains a single observation), which implies
that the observations yk and the corresponding prediction m̂(b)tree(xk , θ(S)b ) coincide. When the
estimator t̂r f can be expressed in the projection form, the weights w′ks given by (3.20) are always
positive and cannot exceed the number of terminal nodes from the largest tree of the forest.

In practice, a resampling mechanism is typically used with RF algorithms. In this case, the
second term on the right hand-side of (3.21) does not vanish and is equal to the weighted sum
of residuals computed for the non-resampled units, also called the out-of-bag individuals (James
et al., 2015, Chapter 8), from each of the B trees. The second term on the right hand-side of
(3.21) can then be viewed as a correction term which brings additional information from the
units not used in computing the predictions m̂(b)tree(·, θ

(S)
b ), b = 1, . . . , B.

3.4 Asymptotic properties

To establish the asymptotic properties of the proposed estimators and to derive the associated
variance estimators, we consider the asymptotic framework of Isaki and Fuller (1982). We
start with an increasing sequence of embedded �nite populations {Uv}v∈N of size {Nv}v∈N.
In each �nite population Uv , a sample of size nv is selected according to a sampling design
Pv(Sv = sv | ZU). While the �nite populations are assumed to be embedded, we do not require
this property to hold for the samples {Sv}v∈N. This asymptotic framework assumes that v
goes to in�nity, so that both the �nite population sizes and the samples sizes go to in�nity. To
improve readability, we shall use the subscript v only in the quantities Uv , Nv and nv ; quantities
such as πk ,v shall be denoted simply as πk .

Assumptions: RF model-assisted estimator t̂∗r f

We make the following assumptions:

(H6) There exists a positive constant C such that supk∈Uv
|yk | 6 C < ∞.

(H7) We assume that lim
v→∞

nv
Nv
= π ∈ (0, 1).

(H8) There exist positive constants λ and λ∗ such that min
k∈Uv

πk > λ > 0 and min
k ,`∈Uv

πk` > λ
∗ > 0.

Also, we assume that lim sup
v→∞

nv max
k,`∈Uv

|πk` − πkπ` | < ∞.

Assumptions (H13)-(H15) have been extensively used in parametric, nonparametric and
functional model-assisted estimation (Breidt et al., 2005, Breidt and Opsomer, 2000, Cardot
et al., 2013c, Goga, 2005, Goga and Ruiz-Gazen, 2014, Robinson and Särndal, 1983). Assumption
(H13) implies that the survey variable Y is uniformly bounded (Breidt and Opsomer, 2000,
Cardot et al., 2010). Assumptions (H14) and (H15) deal with the �rst and second order inclusion
probabilities and they are satis�ed for the classical �xed-size sampling designs; see for example,
Robinson and Särndal (1983) and Breidt and Opsomer (2000). Furthermore, we assume that the
minimum number of observations N0v in a terminal nodes is growing to in�nity and we make
the following additional assumption
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(C1) The number of subsampled elements N′v is such that limv→∞ N′v/Nv ∈ (0; 1].

This assumption requires that the number N′v of elements in each subsample increases at
the same speed as the population size Nv , allowing each terminal node to have at least N0v

observations.

Assumptions: RF model-assisted estimator t̂r f

In addition to the above assumptions, we make the following assumptions to establish the
asymptotic properties of t̂r f given by (3.19).

(H9) There exists a positive constant C1 such that nv maxk,`∈Uv

���Ep

{
(Ik − πk)(I` − π`)|P̂S

}��� 6
C1.

(H10) The random forests based on population partitions and those based on sample partitions
are such that, for all x ∈ Rp :

Ep

(̂̃mr f (x) − m̃r f (x)
)2
= o(1),

where ̂̃mr f (x) =
∑
`∈Uv

1
B

∑B
b=1

ψ
(b,S)
`

1
x`∈A(S)

(
x,θ(S)

b

) y`̂̃N(x, θ(S)b )

with ̂̃N(x, θ(S)b ) =
∑
`∈Uv

ψ
(b,S)
`

1
x`∈A(S)

(
x,θ(S)

b

) .
Assumption (H18) is similar to that used by Toth and Eltinge (2011) and McConville and

Toth (2019); it requires that, as the sample and population size grow, the in�uence of extreme
observations on the sample partitions decreases. Assumption (H16) requires that the average
number of elements at the population level in the sample partitions converges to the average
number of population elements in the population partitions. It implicitly assumes that the
sample partitions converge to the population partitions. A similar result was established in Toth
and Eltinge (2011) in the case of regression trees. Toth and Eltinge (2011) evaluated the properties
of point estimators with respect to the joint distribution induced by the superpopulation model
and the sampling design. In a iid setting, Scornet et al. (2015) showed that the population
partitions converge to the theoretical partitions. Assumption (H16) can thus be viewed as a
design-based version of the result from Scornet et al. (2015). In the Supplementary Material, we
conduct a simulation study, whose results suggest that Assumption (H16) seems to be veri�ed,
at least in our experiments. More research is needed to provide a rigorous proof of Assumption
(H16) in the design-based approach and is beyond the scope of this article.

As in the case of model-assisted estimators based on RF with population-based partitions, we
assume that the minimum number of observations, n0v , in the terminal nodes is also growing to
in�nity and we assume the following additional assumption about the RF resampling algorithm
:

(C2) The number of subsampled elements n′v is such that limv→∞ n′v/nv ∈ (0; 1].

This assumption requires that the number n′v of elements in each subsample increases at the
same speed as the sample size nv , allowing each terminal node to have at least n0v observations.
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3.4.1 Asymptotic results

In this section, we state some results pertaining to sequences of RF model-assisted estimators
{̂tr f }. The corresponding results for the model-assisted estimators {̂t∗r f } can be found in the
Supplementary Material.

Result 3.4.1. Consider a sequence of RF model-assisted estimators {̂tr f }. Then, there exist positive
constants C̃1, C̃2 such that

Ep

���� 1
Nv

(̂
tr f − ty

) ���� 6 C̃1
√

nv
+

C̃2

n0v
, with ξ-probability one.

If
nu
v

n0v
= O(1) with 1/2 6 u 6 1, then there exists a positive constant C̃ such that

Ep

���� 1
Nv

(̂
tr f − ty

) ���� 6 C̃
√

nv
, with ξ-probability one.

Result 3.9.1 implies that the RF model-assisted estimator {̂tr f } is asymptotically design-
unbiased, i.e.,

lim
v→∞

Ep

[
1

Nv

(̂
tr f − ty

) ]
= 0, with ξ-probability one,

and design-consistent in the sense that

lim
v→∞

Ep

[
1{N−1

v |̂tr f −ty |>η}

]
= 0, with ξ-probability one

for all η > 0. Moreover, if n0v is large enough with respect to the sample size nv , the RF estimator
t̂r f is √nv-consistent. For a given partition, note that the number of terminal nodes is of order
O(nv/n0v), and if n0v satis�es the condition from the Result 3.9.1, the number of terminal nodes
is of order O(n1−u) for 1/2 6 u 6 1.

The next result shows that the RF model-assisted estimator t̂r f is asymptotically equivalent
to the pseudo-generalized di�erence estimator:

t̂pgd =
∑
k∈U

m̃r f (xk) +
∑
k∈S

yk − m̃r f (xk)

πk
, (3.22)

where m̃r f (xk) is given by (3.9).

Result 3.4.2. Consider a sequence of RF estimators {̂tr f }. Assume also that
nu
v

n0v
= O(1) with

1/2 < u 6 1. Then, {̂tr f } is asymptotically equivalent to the pseudo-generalized di�erence
estimator t̂pgd in the sense that

√
nv

Nv

(̂
tr f − ty

)
=

√
nv

Nv

(̂
tpgd − ty

)
+ oP(1).
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From Proposition 3.9.2, it follows that the asymptotic variance of t̂r f can be approximated by
the variance of (3.22). That is,

AVp

(
1

Nv
t̂r f

)
= Vp

(
1

Nv
t̂pgd

)
=

1

N2
v

∑
k∈Uv

∑
`∈Uv

(πkl − πkπ`)
yk − m̃r f (xk)

πk

y` − m̃r f (x`)

π`
.

(3.23)

While the RF model-assisted estimator t̂r f is design-consistent as long as n0v and nv grow to
in�nity (Result 3.9.1), the asymptotic equivalence of t̂r f with the pseudo-generalized di�erence
estimator t̂pgd is obtained only for n0v satisfying a certain rate. Stronger assumptions on higher-
order inclusion probabilities (Breidt and Opsomer, 2000, McConville and Toth, 2019) are required
in order to show that the asymptotic mean squared error of t̂r f is equivalent to the variance of
the pseudo-generalized di�erence estimator. We do not pursue this further.

Expression (3.23) suggests that t̂r f is e�cient if the residuals yk − m̃r f (xk) are small for
all k ∈ Uv . The asymptotic variance given in (3.23) cannot be computed in practice because
the residuals, yk − m̃r f (xk), k ∈ U, are unknown. Assuming that πk` > 0 for all pairs (k , `) ∈

Uv ×Uv , a design-consistent estimator of AVp

(
1

Nv
t̂r f

)
is given by

V̂r f

(
1

Nv
t̂r f

)
=

1

N2
v

∑
k∈Uv

∑
`∈Uv

Ik I`
πk` − πkπ`

πk`

yk − m̂r f (xk)

πk

y` − m̂r f (x`)

π`
, (3.24)

where m̂r f (xk) is given by (3.17). To establish the design consistency of (3.24), we require the
following additional assumption:

(H11) We assume that lim
v→∞

max
i, j ,k ,`∈D4,Nv

|Ep
{(

Ii I j − πiπ j
)
(Ik I` − πkπ`)

}
| = 0, where D4,Nv

denotes the set of distinct 4-tuples from Uv .

Assumption (H17) was suggested by Breidt and Opsomer (2000) and, together with (H14)-
(H15), is used to establish the design consistency of the unbiased estimator of the variance of
the Horvitz-Thompson estimator

∑
k∈Sv yk/πk , assuming that the survey variable Y has �nite

fourth moment. Assumption (H17) is satis�ed for simple random sampling without replacement
and strati�ed simple random sampling without replacement. It is also satis�ed for high entropy
sampling designs (Boistard et al., 2012, Cardot et al., 2013c).

Result 3.4.3. Consider a sequence of RF model-assisted estimators {̂tr f }. Assume also that
nu
v

n0v
=

O(1) with 1/2 < u 6 1. Then, the variance estimator V̂r f (̂tr f ) is asymptotically design-consistent
for the asymptotic variance AVp

(̂
tr f

)
. That is,

lim
v→∞

Ep

(
nv
N2
v

����V̂r f (̂tr f ) −AVp(̂tr f )

����) = 0.

Finally, we establish the central limit theorem that can be used to obtain asymptotically
normal con�dence intervals of ty . To that end, we assume that t̂pgd is normally distributed, an
assumption that is satis�ed in many classical sampling designs; e.g., see Fuller (2009a).
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(H12) The sequence of pseudo-generalized di�erence estimators {̂tpgd} satis�es

N−1
v

(̂
tpgd − ty

)√
Vp

(
N−1
v t̂pgd

) L
−−−−→
v→∞

N(0, 1),

where Vp
(
N−1
v t̂pgd

)
is given by (3.23).

Result 3.4.4. Consider the sequence of RF estimators {̂tr f }. Then,

N−1
v

(̂
tr f − ty

)√
V̂r f (N−1

v t̂r f )

L
−−−−→
v→∞

N (0, 1) .

The proof of Result 3.4.4 is a direct application of Results 3.9.2 and 3.9.3, and is thus omitted.

3.5 A model calibration procedure for handling multiple
survey variables

In practice, most surveys conducted by national statistical o�ces (NSO) collect information on
multiple survey variables. The collected data are stored in rectangular data �les. A column of
weights, referred to as a weighting system, is made available on the data �le. This weighting
system can then be applied to obtain an estimate for any survey variable. However, applying a
RF algorithm yield the variable-speci�c weights (3.20). In other words, the weights were derived
to obtain an estimate of the total for a speci�c survey variable Y . Hence, applying the weights
(3.20) to other survey variables may produce ine�cient estimators. A solution to this issue
consists of developing multiple sets of weights, one for each survey variable. This is usually
deemed undesirable by data users who are used to work with a single set of weights. In this
section, we describe a model calibration procedure (Wu and Sitter, 2001), originally proposed
by Montanari and Ranalli (2009), that yields a single weighting system while accounting for
multiple survey variables that are deemed important.

Suppose that we can identify a subset of survey variables Y1, . . . ,Yq, that are deemed
important. We postulate the following working model for each variable:

E
[
Yj k | X k = xk

]
= m( j)(x( j)k ), j = 1, · · · , q, (3.25)

where m( j)(·) is an unknown function and x( j)k is a vector of auxiliary variable associated
with unit k for the variable Yj . We allow a di�erent link functions m(·) and di�erent sets of
explanatory variables for each of the survey variables Y1, . . . ,Yq. The interest lies in estimating
the population totals ty1 , . . . , tyq . We assume that each of these totals is estimated using a
model-assisted estimator of the form (3.4) but with possibly di�erent methods. For instance,
some of the estimates may be based on a parametric working model, while others may be based
on a nonparametric working model (e.g., RF). We can construct the set of q predicted values
m̂(1)(x(1)k ), . . . , m̂(q)(x(q)k ), for k ∈ U.

In addition, we assume that, at the estimation stage, a vector vk of size q′ of calibration
variables is available for k ∈ S and that the corresponding vector of population totals tv =∑

k∈U vk is known. In practice, survey managers often want to ensure consistency between
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survey estimates and known population totals for important variables such as gender and age
group.

Given these predictions m̂(1)(x(1)k ), . . . , m̂(q)(x(q)k ), and the vector calibration variables v, we
seek calibrated weights wC

k , k ∈ S, as close as possible to the initial weights π−1
k subject to the

following q + q′ + 1 calibration constraints:∑
k∈S

wC
k = N , (3.26)

∑
k∈S

wC
k m̂( j)(x( j)k ) =

∑
k∈U

m̂( j)(x( j)k ), j = 1, . . . , q, (3.27)∑
k∈S

wC
k vk =

∑
k∈U

vk . (3.28)

More speci�cally, we seek calibrated weights wC
k such that∑

k∈S

G(wC
k /π

−1
k )

is minimized subject to (3.26)–(3.28), where G(·) is a pseudo-distance function measuring the
closeness between two sets of weights, such that G(wC

k /π
−1
k ) ≥ 0, di�erentiable with respect

to wC
k , strictly convex, with continuous derivatives g(wC

k /π
−1
k ) = ∂G(wC

k /π
−1
k )/∂w

C
k such that

g(1) = 0; see Deville and Särndal (1992).
The weights wC

k are given by

wC
k = π

−1
k F(̂λ

>
hk),

where F(.) is the calibration function de�ned as the inverse of g(.), ̂λ is a q + q′ + 1-vector of
estimated coe�cients and

hk =
(
1, m̂(1)k − m̂

(1)
, . . . , m̂(q)k − m̂

(q)
, v1k , . . . , vq′k

)>
(3.29)

with m̂( j)k ≡ m( j)(x( j)k ) and m̂
( j)
≡

∑
k∈S π

−1
k m̂( j)k /

∑
k∈S π

−1
k , j = 1, · · · , q.

The calibrated weights wC
k may be viewed as a compressed score summarizing the

information contained in the q working models (3.25) and the vector of calibration variables v.
The weighting system {wC

k ; k ∈ S} may be then applied to any survey variable Y , which leads
to the model calibration type estimator

t̂y,mc =
∑
k∈S

wC
k yk .

If the number of calibration constraints q + q′ + 1 is large, the resulting weights wC
k may be

highly dispersed leading to potentially unstable estimates t̂y,mc. A number of pseudo-distance
functions such as the truncated linear and the logit methods may be used to limit the variability
of the weights wC

k ; see Deville and Särndal (1992) for a description of these methods. A simple
alternative is to use additional constraints on the weights as part of the calibration constraints.
For instance, we may impose that wC

k < w0, where w0 is a threshold set by the survey statistician;
see also Santacatterina and Bottai (2018) for alternative constraints on the weights. Finally,
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we can relax the calibration constraints (3.26)-(3.28) by considering a L2-penalized criterion,
leading to a ridge-type model calibration estimator; see Montanari and Ranalli (2009). Montanari
and Ranalli (2009) reports the results of a simulation study, assessing the performance of point
estimators obtained through multiple and ridge model calibration methods.

3.6 Simulation study

3.6.1 Performance of point estimators

We conducted a simulation study to assess the performance of several model-assisted estimators,
in terms of bias and e�ciency. We generated a �nite population of size N = 10, 000, consisting
of a set of auxiliary variables and 8 survey variables. We �rst generated 7 auxiliary variables
X0, · · · , X6, according to the following distributions: X0 ∼ U(0, 1); X1 ∼ N (0, 1), X2 ∼

Beta (3, 1), X3 ∼ 2 × Gamma (3, 2), X4 ∼ Bernoulli(0.7), X5 ∼ Multinomial(0.4, 0.3, 0.3) and
X6 ∼ E(1). The variables X1, X2, X3, and X6 have been standardized so as to have a mean and a
variance equal to 0 and 1, respectively. To assess the performance of the proposed method in a
high-dimensional setting, we also generated 100 additional auxiliary variables V1, V2, · · · , V100,
from a uniform distributionU(−1, 1). Given the X-variables and the V-variables, we generated
the survey variables according to the following models:

Model 1: Y1 = 1 + 2 (X0 − 0.5) +N (0, 0.1) ;

Model 2: Y2 = 1 + 2 (X0 − 0.5)2 +N (0, 0.1);

Model 3: Y3 = 2 + X6 + X2 + X3 + X4 + X5 +N (0, 1);

Model 4: Y4 = 2 + (X6 + X2 + X3)
2 +N (0, 1);

Model 5: Y5 = 0.5X5 + exp(−X1) + 3X4 + exp(−X6) + E (1);

Model 6: Y6 = V2
1 + exp(−V2

2 ) +N (0, 0.3);

Model 7: Y7 = V2
1 + exp(−V2

2 ) +N (0, 0.3);

Model 8: Y8 = 3 +V1V2 +V2
3 −V4V7 +V8V10 −V2

6 +N (0, 0.5).

The errors in Model 5 have been scaled and centered so as to have a mean and a variance
equal to 0 and 1, respectively. Models 1 and 2 were used in Breidt and Opsomer (2000),
while Models 7 and 8 were introduced in Scornet (2017). Models 1-8 were generated so as
to include a relatively wide range of relationships between the Y -variable and the set of
explanatory variables: linear/non-linear relationships, presence/absence of quadratic terms
and presence/absence of interactions. Our scenarios also included low, medium and high-
dimensional settings. From the population, we selected R = 5, 000 samples, of size n, according
to simple random sampling without replacement. We used n = 250 and n = 1, 000. In each
sample, we computed the following estimators: (i) The Horvitz-Thompson (HT) estimator given
by (3.1); (ii) The generalized regression (GREG) estimator given by (3.4) with m̂(xk) = x>k β̂;
(iii) The model-assisted estimator (3.4) with m̂(xk) obtained through regression trees (CART);
and (iv) The model-assisted estimator (3.4) based on RF, where m̂(xk) is given by (3.17). We
considered three RF algorithms, each based on 1, 000 trees. The �rst (RF1) was based on
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bootstrap. The second algorithm (RF2) was based on subsampling with a sampling fraction
equal to 0.63 (Scornet, 2017). For both RF1 and RF2, the minimum number of observations per
terminal node was set to n0 = 5. Finally, the third algorithm (RF3) was based on bootstrap with
n0 =

√
n observations in each terminal node. In RF1-RF3, we used mtry =

√
p as it is the default

number of variables considered for the splitting process in most software packages dealing
with RF for regression.

For the estimators GREG, CART, RF1, RF2 and RF3, the predictions m̂(xk) were obtained
using the working models described in Table 3. For the survey variables Y7 and Y8, the
working models were based on a large number of super�uous explanatory variables (50 and
100, respectively), which allowed us to assess the behavior of the resulting estimators in a
medium/high dimensional setting.

Table 3: The working models

Survey variable Vector of explanatory variable X

used in the working model
Y1 X0

Y2 X0

Y3 X1 − X6

Y4 X1 − X6

Y5 X1 − X6

Y6 V1 −V10

Y7 V1 −V50

Y8 V1 −V100

We were interested in estimating the population totals tyj =
∑

k∈U yk j , j = 1, . . . , 8. As a
measure of bias of an estimator t̂yj , we used the Monte Carlo percent relative bias de�ned as

RB(̂tyj ) = 100 ×
1
R

R∑
r=1

(̂t(r)yj − tyj )

tyj
,

where t̂(r)yj denotes the estimator t̂yj in the rth iteration, r = 1, ..., R. As a measure of e�ciency
of an estimator t̂yj , we used the relative e�ciency, using the Horvitz-Thompson estimator, t̂yj ,π ,
as the reference:

RE (̂tyj ) = 100 ×
MSE (̂tyj )

MSE (̂tyj ,π)
,

where

MSE (̂tyj ) =
1
R

R∑
r=1

(̂t(r)yj − tyj )
2

and MSE (̂tyj ,π) is de�ned similarly. The results are displayed in Tables 4 and 5. The simulations
were performed using the R software with the package ranger (Wright and Ziegler, 2015).

We start by noting that all the estimators displayed a negligible bias in all the scenarios,
as expected. Also, both RF1 and RF2 showed very similar performances in terms of bias and
e�ciency in all the scenarios. This is consistent with the empirical results of Scornet (2017);
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Table 4: Monte Carlo percent relative bias (RB) and Monte Carlo e�ciency (RE) of several model-assisted
estimators for n = 250

Population GREG CART RF1 RF2 RF3

Y1
RB -0.0 -0.0 -0.0 -0.0 0.0
RE 3.0 3.5 3.7 3.6 3.4

Y2
RB -0.0 0.0 0.0 0.0 0.0
RE 101.0 37.6 39.4 38.3 35.0

Y3
RB 0.0 -0.0 -0.1 -0.1 -0.0
RE 19.6 55.2 33.8 34.0 35.4

Y4
RB -0.7 -1.2 -1.2 -1.5 -0.7
RE 81.1 61.1 49.7 49.0 53.1

Y5
RB -0.1 0.1 -0.0 -0.0 -0.0
RE 37.9 32.7 25.8 26.5 30.7

Y6
RB -0.0 0.3 -0.0 -0.0 -0.0
RE 105.2 72.2 57.5 57.5 58.3

Y7
RB -0.0 0.2 0.1 0.0 0.0
RE 127.6 84.3 75.8 75.5 76.8

Y8
RB 0.0 0.0 0.0 0.0 0.0
RE 127.0 135.6 92.7 92.5 95.6

i.e., the strategy based on bootstrap and the strategy based on subsampling with a sampling
fraction of 0.63 led to similar performances. The results for RF3 were similar to those obtained
for RF1 and RF2, which suggests that the number of observations in each terminal node did
not seem to a�ect the behavior of the point estimator, at least in our experiments. This may
not be the case in other scenarios as we illustrate in Section 3.6.3.

In the case of a linear relationship (which corresponds to the survey variables Y1 and Y3),
the GREG estimator was the most e�cient, as expected. For instance, for the survey variables
Y3, the value of RE for the GREG estimator was about 19.6%, whereas the RF1, RF2 and RF3
estimators showed a value of RE of about 34%. In the case of a nonlinear relationship (which
corresponds to the survey variables Y2 and Y4, . . . ,Y8), the GREG estimator was less e�cient
than RF1, RF2 and RF3. For instance, in the case of the variable Y4, the GREG showed a value
of RE of about 81.1%, whereas the RE of RF estimators lied between 49.0% and 53.1%. For the
variables Y6,Y7,Y8, the GREG estimator was even less e�cient than the Horvitz-Thompson
estimator with values of RE ranging from 105% to 127%.

In the case of a single explanatory variable (which corresponds to the survey variables Y1

and Y2), RF and regression trees displayed very similar performances. In contrast, the estimators
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Table 5: Monte Carlo percent relative bias (RB) and Monte Carlo e�ciency (RE) of several model-assisted
estimators for n = 1000.

Population GREG CART RF1 RF2 RF3

Y1
RB 0.0 0.0 0.0 0.0 0.0
RE 2.8 3.5 3.6 3.5 3.0

Y2
RB 0.0 0.0 0.0 0.0 0.0
RE 100.1 38.7 40.5 39.6 33.3

Y3
RB 0.0 0.0 -0.1 -0.1 0.0
RE 20.4 41.1 28.1 27.8 31.6

Y4
RB -0.1 -1.1 -0.9 -0.7 -0.2
RE 78.9 52.3 36.7 36.1 44.5

Y5
RB -0.0 0.0 0.0 0.0 -0.0
RE 37.3 24.5 20.9 21.2 24.8

Y6
RB 0.0 0.0 -0.0 -0.0 -0.0
RE 101.1 65.5 49.1 49.2 50.3

Y7
RB 0.0 0.0 0.0 0.0 0.0
RE 105.5 73.2 63.3 63.2 65.0

Y8
RB -0.0 -0.0 -0.0 -0.0 0.0
RE 166.6 137.6 96.0 95.7 89.5

RF1, RF2 and RF3 were more e�cient than the CART estimator when the vector of explanatory
variables was multi-dimensional (i.e., variables Y3, . . . ,Y9). In a high-dimensional setting (which
corresponds to the survey variables Y7 and Y8), the RF estimators were more e�cient than the
Horvitz-Thompson estimator, even for n = 250.

3.6.2 Performance of the proposed variance estimator

We have also investigated the performance of the variance estimator V̂r f given by (3.24) in the
case of RF with subsampling, in terms of relative bias and coverage of normal-based con�dence
intervals. We generated a population of size N = 100, 000 according to Model 5. The sample
size was set to n = 500; 1, 000; 5, 000; 10, 000; 20, 000 and 50, 000. Here, we present the results for
B = 1 but other values of B led to similar results and are not shown here. As we suspected that
the number of observations in each terminal node, n0, may have an impact on the behavior of
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V̂r f , we used di�erent values for n0 : n0 =
⌊
na/20

⌋
for a = 1; 3; 5; 7; 9; 11; 13; 15; 17. The choice

n0 =
⌊
n11/20

⌋
was advocated by McConville and Toth (2019). Figure 16 shows the Monte Carlo

percent relative bias of V̂r f for di�erent values of n and n0. Figure 17 shows the Monte Carlo

coverage rate of the con�dence interval, t̂r f ± 1.96
√

V̂r f , for di�erent values of n and n0.
From Figure 16, we note that V̂r f is severely biased for small values of n0 and as a

consequence, the con�dence intervals (see Figure 17) perform poorly for small values of
n0 because of the substantial underestimation of the true variance in these scenarios. For a
given value of n0, we note that the bias decreases as n increases and for a given value of n, the
bias decreases as n0 increases. For n0 = b13/20c, the con�dence intervals perform relatively
well with coverage rates close to the nominal rate. The signi�cant bias for small values of n0

is most likely due to over�tting, which is characterized by the presence of arti�cially small
residuals yk − m̂(xk) in each terminal node, which in turn, leads to underestimation. This
issue was raised by Opsomer and Miller (2005) in the context of local polynomial regression.
To cope with this issue, we suggest a variance estimator based on a K-fold criterion. More
speci�cally, we randomly split the sample S into K groups Sκ , κ = 1, . . . , K , of approximately
equal size. For k ∈ Sκ , let m̂(−κ)(xk) denote the prediction at the point xk built on S − Sκ and
ε̂
(−κ)
k = yk − m̂(−κ)(xk) the associated residual. The proposed K-fold variance estimator is given

by V̂ (K) =
∑K
κ1=1

∑K
κ2=1

∑
k∈Sκ1

∑
`∈Sκ2
(∆k`/πk`)(ε̂

(−κ1)

k /πk)(ε̂
(−κ2)

`
/π`). In practice, the number of

groups (or folds) is often set to K = 5 or K = 10. We tested the performance of V̂ (5) in terms of
bias and coverage probability, using the same scenarios as above. The bias was almost negligible
for all sizes n and n0 and the coverage rates lied between 93% and 96%, which constitutes a
signi�cant improvement over the results displayed in Figures 16 and 17. More research is
needed in order to establish the theoretical properties of the variance estimator based on a
K-fold criterion evaluate. It will be treated elsewhere.

Figure 16: Evolution of the relative bias with respect to n0.
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Figure 17: Evolution of the e�ective coverage with respect to n0.

3.6.3 Choice of hyper-parameters

To get a better understanding of how the choice of hyper-parameters impacts the behavior of
model-assisted estimators based on RF, we conducted additional scenarios. We �rst identi�ed
the following important hyper-parameters involved in the RF algorithm of Breiman (2001):

i) The minimal number of observations, n0, in each terminal node;

ii) The number of trees in the forest B;

iii) The number of variables considered for the search of the best split in the optimization
criterion (3.16);

iv) The resampling mechanism.

The additional scenarios were conducted using a �nite population of size N = 10, 000 consisting
of the survey variables Y5 and Y8 described in Section 3.6.1. Recall that the working model for
the survey variables Y5 included the predictors X1, . . . , X6, whereas it included the predictors
V1, . . . , V100 for the variable Y8 (see Table 3).

From the population, we generated R = 10, 000 samples, of size n = 1, 000, according to
simple random sampling without replacement. Figure 18 and Figure 19 show, respectively, the
relative e�ciency of the model-assisted estimators based on RF, t̂r f , corresponding to Y5 and Y8,
respectively, for several values of n0. Figure 18 suggests that t̂r f was much more e�cient than
the Horvitz-Thompson estimator for small values of n0 and that the value of RE approached
100 as n0 increased. This result can be explained by the fact that small values of n0 led to
homogeneous terminal nodes, which in turn led to small residuals yk − m̂r f (xk). For the survey
variable Y8, we note from Figure 19 that the value of n0 did not seem to a�ect the e�ciency of
the corresponding model-assisted estimator.

Figure 20 display the relative e�ciency for several values of B, the number of trees in the
forest for the survey variable Y8. As expected, a small value of B causes the estimator t̂r f to
loose some e�ciency. Figure 20 suggests that B = 50 led to good results and that the e�ciency



3.6 simulation study 107

Figure 18: Relative e�ciency of t̂r f for the survey variable Y5 and for several values of n0.

Figure 19: Relative e�ciency of t̂r f for the survey variable Y8 and for several values of n0

of t̂r f was not much a�ected by the number of trees B for B ≥ 50. Nevertheless, it is advisable
to choose a large value of B if the computational capacity permits. The results for the survey
variable Y5 were very similar and so we omit them.

In most software packages, the default number of variables considered for the splitting
process is mtry =

√
p in case of regression. In our simulations, this choice led to satisfactory

results in most scenarios. Figure 21 shows the relative e�ciency of t̂r f for the survey variable
Y8 and for several values of mtry . Since the working model for Y8 contained p = 100 explanatory
variables, the default value √p was equal to 10. Although the value √p = 10 was not the best
choice for optimal performances, it led e�cient model-assisted estimators. Furthermore, the
relative e�ciency did not vary much for values B larger than 30.
Turning to the resampling mechanism, a common choice is to use bootstrap (with replacement),
for which some of the results presented in the paper do not apply. However, as noted by several
authors (see e.g. Scornet et al. (2015), Wager (2014) and the references therein) and as shown in
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Figure 20: Relative e�ciency of t̂r f for the survey variable Y8 and for several values of B.

Figure 21: Relative e�ciency of t̂r f for the survey variable Y8 and for several values of mtry .

our simulations, selecting the points without replacement rather than with replacement does
not seem to a�ect the performance of the resulting model-assisted estimators in most cases.

3.6.4 Real data application

In this section, we apply the proposed methods using data collected by Médiamétrie, the
company that measures the media audience in France. In this application, we focus on radio
audiences. Each year, Médiamétrie conducts a survey aiming at gathering detailed information
about French individuals 13 years of age and over, including socio-demographic variables and
radio listening habits. We used the 2019 radio audience data that consisted of N = 26, 293
individuals. As a survey variable, we considered the binary variable Y , such that yk = 1 if an
individual in the kth individual listens to the radio of interest on a daily basis, and yk = 0
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otherwise. For con�dentiality reasons, we omit the name of the radio broadcaster. We aimed
at estimating the proportion of French individuals who listen to the radio of interest on a
daily basis, both at the overall population level and for several domains of interest. For each
individual, we had access to 43 socio-demographic variables (e.g., number of individuals in the
household, age of each member of the household, gender, internet habits, occupation, etc.) and
their listening habits of 21 other radios. For each individual, we also knew whether or not the
individual listens to any of these 21 radios, for each interval of 7.5 minutes on a typical day.
This led to a data set with p = 3, 882 variables, among which 3, 839 were binary.

From the data set, we selected a single sample of size n = 4, 000 according to a strati�ed
sampling design with 5 strata, each stratum corresponding to a French region: North-East,
North-West, Île-de-France, South-east and South-West. The strata sample sizes were determined
according to proportional allocation. We considered the following domains of interest: the
sub-population of individuals who connects to the internet everyday, almost every day, once
or twice per week, once to three times per month, very rarely, never, the sub-population of
individuals with/without children, the sub-populations of individuals living in cities of size (less
than 20, 000, between 20, 000 and 50, 000, between 50, 000 and 100, 000, between 100, 000 and
200, 000 and larger than 200, 000) and the sub-population of individuals living in households of
size 1, 2, 3, 4, 5 and 5+

We computed the following estimates both at the overall level and at the domain level:
(i) The Horvitz-Thompson estimator; (ii) the GREG estimator and (iii) the model-assisted
estimator based on RF with hyper-parameters B = 1, 000, n0 = bn11/20c and mtry =

√
p. The

working models used for the GREG estimator and the model-assisted RF estimator included
3882 explanatory variables. In each scenario, we also computed a 95% con�dence interval for
the proportion in the population of individuals who listen to the radio of interest. Finally, we
computed the ratio of the estimated variances, using the estimated variance of the Horvitz-
Thompson estimator, as the reference. Note that the "true value" was known for each domain
of interest. The results (in percentage) are given in Table ??.

From Table ??, we note that the Horvitz-Thompson estimator performed relatively well
in most scenarios. Because of the large number of predictors, the GREG estimator su�ered
from signi�cant small sample bias. For instance, the estimate based on the GREG estimate at
the overall level was equal to 27.7%, far from the true value of about 13.5%. In terms of point
estimation, the RF model-assisted estimator led to very similar results than those obtained
with the Horvitz-Thompson estimator. However, RF led to substantial improvement in terms of
estimated variance. Indeed, out of the 22 domains, the value of RV(RF) was smaller than 0.65 for
20 domains. The results suggest that, unlike the GREG estimator, the model-assisted estimator
based on RF was not a�ected by the large number of explanatory variables in the working model.
The median length of the con�dence intervals was equal to 5.4% for the Horvitz-Thompson
estimator, 4.2% for the RF estimator and 3.8% for the GREG estimator.

3.7 Final remarks

In this paper, we have introduced a new class of model-assisted estimators based on random
forests and derived corresponding variance estimators. We have established the theoretical
properties of point and variance estimators obtained through a RF algorithm based on
subsampling. The results of an empirical study suggest that the proposed estimators perform
well in a wide variety of settings, unlike the GREG and CART estimators. In practice, this
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robustness property is especially attractive when the data and the underlying relationships are
complex. The application on radio audience data recorded by the French company Médiamétrie
showed that the RF proposed estimator performed well in this high-dimension setting. We
have also described a model calibration procedure for handling multiple survey variables, yet
producing a single set of weights, which is attractive from a data user’s perspective.

In practice, virtually all survey face the problem of missing values. Survey statisticians
distinguish unit nonresponse (when no information is collected on a sampled unit) from item
nonresponse (when the absence of information is limited to some variables only). The treatment
of unit nonresponse starts with postulating a nonresponse model describing the relationship
between the response indicators (equal to 1 for respondents and 0 for nonrespondents) and a
vector of explanatory variables. The treatment of item nonresponse starts with postulating an
imputation model describing the relationship between the variable requiring imputation and a
set of explanatory variables. In both unit and item nonresponse, determining a suitable model
is crucial. Therefore, regression trees and RF may prove useful for obtaining accurate estimated
response propensities and predicted values. To the best of our knowledge, a theoretical treatment
of regression trees and RF in the context of either unit nonresponse or item nonresponse in a
�nite population setting is lacking. These topics are currently under investigation.

Traditionally, survey samples have been collected through probability sampling procedures
and inferences were conducted with respect to the customary design-based framework. In
recent years, there has been a shift of paradigm that can be explained by three main factors:
(i) a dramatic decrease of response rates; (ii) a rapid increase in data collection costs; and (iii)
the proliferation of nonprobabilistic data sources (e.g., administrative �les, web survey panels,
social media data, satellite information, etc.). To meet these new challenges, survey statisticians
face increasing pressure to utilize these convenient but often uncontrolled data sources. While
such sources provide timely data for a large number of variables and population elements, they
often fail to represent the target population of interest because of inherent selection biases.
The integration of data from a nonprobability source with data from a probability survey is a
topic that is currently being scrutinized by National Statistical O�ces. An approach to data
integration is statistical matching or mass imputation; see Yang and Kim (2020) for a very
recent review on the topic. Again, regression trees and RF algorithms may prove useful in the
context of integration of survey data. This topic is currently under investigation.

In a high-dimensional setting, RF may be used to select the most predictive predictors,
which in turn may be used in the construction of model-assisted estimators of population
totals/means. In this context, issues such as variable selection bias (Strobl et al., 2007) in a �nite
population setting need to be investigated. This will be treated elsewhere.

3.8 Appendix

Proof of Proposition 3.2.1 Since

W̃`(xk) =
1
B

B∑
b=1

ψ
(b,U)
`

1
x` ∈A(U )

(
xk ,θ(U )

b

)
Ñ(xk , θ(U)

b
)

, (3.30)
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involves positive quantities only, the weights W̃`(xk) are nonnegative. Since ψ(b,U)
`

∈ {0, 1} for all ` ∈ U
and for all b ∈ 1, 2, . . . , B, the weight can be bounded as follows:

W̃`(xk) =
1
B

B∑
b=1

ψ
(b,U)
`

1
x` ∈A(U )

(
xk ,θ(U )

b

)
Ñ(xk , θ(U)

b
)

6
1
B

B∑
b=1

(
Ñ

(
xk , θ(U)

b

))−1

6 cN−1
0 .

where c does not depend on b nor on k or `. To show ii), �x b ∈ 1, 2, ..., B. The result follows by noting
that W̃`(xk) =

(
Ñ

(
xk , θ(U)

b

))−1
exactly Ñ

(
xk , θ(U)

b

)
times.

Proof of Proposition 3.3.2 Let {̂t(b)} be a sequence of estimators of ty . Then,

Vp
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1
B

B∑
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t̂(b)
)
=

1
B2

B∑
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(̂
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)
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))

.
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Vp (̂t(1))
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+Vp (̂t(1))max

b,b′

���Corp
(̂
t(b), t̂(b
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)���

and Bias2
p(B
−1 ∑B

b=1 t̂(b)) = Bias2
p (̂t
(1)) = MSEp (̂t(1)) −Vp (̂t(1)). So, for B large enough:

MSEp

(
1
B

B∑
b=1

t̂(b)
)
6 Vp (̂t(1))max

b,b′

���Corp
(̂
t(b), t̂(b

′)
)��� −Vp (̂t(1)) +MSEp (̂t(1)).

Proof of Proposition 3.3.3 Consider the B partitions build at the sample level P̂S = {P̂(b)S
}B
b=1. For a

given b = 1, . . . , B, the partition P̂(b)
S

is composed by disjointed regions as follows P̂(b)
S
= {A(bS)j }

JbS

j=1 and

for each b, consider the JbS dimensional vector ẑ(b)
k
=
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xk ∈A
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, . . . ,1
xk ∈A
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)>
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if xk belongs to the region A(bS)j and zero otherwise for all j = 1, . . . , JbS . Since {A(bS)j }
JbS

j=1 is a
partition, then xk will belong to only one region and so, the vector ẑ(b)

k
will contain only one non

zero component. We have m̂r f (xk) = B−1 ∑B
b=1 m̂(b)tree(xk , θ(S)

b
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b
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ẑ(b)
`

y` (see also
the supplementary materiel for more details). Now,

∑
k∈S

yk − m̂r f (xk)

πk
=

1
B

B∑
b=1

∑
k∈S

yk − m̂(b)tree(xk , θ(S)
b
)

πk
=

1
B

B∑
b=1

∑
k∈S

(1 − ψ(b,S)
k
)(yk − m̂(b)tree(xk , θ(S)

b
))

πk

+
1
B

B∑
b=1

∑
k∈S

ψ
(b,S)
k
(yk − m̂(b)tree(xk , θ(S)

b
))

πk
.

For each b, consider the JbS dimensional vector 1JbS
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1>JbS
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3.9 Supplementary material

Assumptions: population-based RF model-assisted estimator t̂∗r f

To establish the properties of the proposed estimators, we will consider three categories of assumptions2:
assumptions on the sampling design, assumptions on the survey variable and, �nally, assumptions on
the random forests.

(H13) We assume that there exists a positive constant C such that supk∈Uv
|yk | 6 C < ∞.

(H14) We assume that lim
v→∞

nv
Nv
= π ∈ (0; 1).

(H15) There exist positive constants λ and λ∗ such that min
k∈Uv

πk > λ > 0, min
k,`∈Uv

πk` > λ
∗ > 0 and

lim sup
v→∞

nv max
k,`∈Uv

|πk` − πkπ` | < ∞.

(C3) The number of subsampled elements N ′v is such that limv→∞ N ′v/Nv ∈ (0; 1].

Assumptions: sample-based RF model-assisted estimator t̂r f

(H16) We assume that there exists a positive constant C1 > 0 such that

nv max
k,`∈Uv

���Ep

{
(Ik − πk)(I` − π`)|P̂S

}��� ≤ C1.

(H17) The random forests based on population partitions and those based on sample partitions are
such that, for all x ∈ Rp :

Ep

(̂̃mr f (x) − m̃r f (x)
)2
= o(1).

where ̂̃mr f (x) is given by

̂̃mr f (x) =
∑
`∈Uv

1
B

B∑
b=1

ψ
(b,S)
`

1
x` ∈A(S)

(
x,θ(S)

b

)
̂̃N(x, θ(S)

b
)

y`

with ̂̃N(x, θ(S)
b
) =

∑
k∈Uv

ψ
(b,S)
k

1
xk ∈A(S)

(
x,θ(S)

b

) and

m̃r f (x) =
∑
`∈Uv

1
B

B∑
b=1

ψ
(b,U)
`

1
x` ∈A(U )

(
x,θ(U )

b

)
Ñ(x, θ(U)

b
)

y`

with Ñ(x, θ(U)
b
) =

∑
k∈Uv

ψ
(b,U)
k

1
xk ∈A(U )

(
x,θ(U )

b

) .
Below, we include a graph illustrating the convergence of the di�erence ̂̃mr f − m̃r f towards 0 in L2

where the regression function was de�ned as m(X) = 2 + 2X1 + X2 + X3, with X1, X2 and X3 de�ned as
in Section 6 from the main paper. The population sizes were such that the sampling fraction was of 10%.

2 The assumptions presented here are the same as those presented in the main document; they are only recalled
here for simplicity of exposition.
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Similar results can be obtained using other simulation parameters.

(C4) The number of subsampled elements n′v is such that limv→∞ n′v/nv ∈ (0; 1].

Consistency of the Horvitz-Thompson variance estimator

(H18) Assume that lim
v→∞

max
i,j,k,`∈D4,Nv

|Ep

{(
Ii Ij − πiπj

)
(Ik I` − πkπ`)

}
| = 0, where D4,Nv denotes the

set of distinct 4-tuples from Uv .

3.9.1 Asymptotic results of the population RFmodel-assisted estimator
t̂∗r f

The population RF model-assisted estimator is given by

t̂∗r f =
∑
k∈Uv

m̂∗r f (xk) +
∑
k∈Sv

yk − m̂∗r f (xk)

πk
,

where m̂∗r f is the sample-based estimator of m by using RF built at the population level (for more details,
see relation (13) from the main paper):

m̂∗r f (xk) =
∑
`∈Sv

1
π`

W̃∗` (xk)y` , (3.31)

where

W̃∗` (xk) =
1
B

B∑
b=1

ψ
(b,U)
`

1
x` ∈A∗(U )

(
xk ,θ(U )

b

)
Ñ∗(xk , θ(U)

b
)
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and Ñ∗(xk , θ(U)
b
) =

∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A∗(U )

(
xk ,θ(U )

b

) is the number of units falling in the terminal node

A∗(U)
(
xk , θ(U)

b

)
containing xk . The estimator m̂∗r f (xk) can be written as a bagged estimator as follows:

m̂∗r f (xk) =
1
B

B∑
b=1

m̂∗(b)tree(xk , θ(U)
b
),

where m̂∗(b)tree(xk , θ(U)
b
) is the sample-based estimation of m based on the b-th stochastic tree:

m̂∗(b)tree(xk , θ(U)
b
) =

∑
`∈Sv

1
π`

ψ
(b,U)
`

1
x` ∈A∗(U )

(
xk ,θ(U )

b

)
Ñ∗(xk , θ(U)

b
)

y` . (3.32)

For more readability, we will use in the sequel m̂∗(b)tree(xk) instead of m̂∗(b)tree(xk , θ(U)
b
). Consider the pseudo-

generalized di�erence estimator:

t̂pgd =
∑
k∈Uv

m̃∗r f (xk) +
∑
k∈Sv

yk − m̃∗r f (xk)

πk
,

where m̃∗r f (xk) is the population-based estimator of m by using RF built at the population level (for more
details, see relation (12) from the main paper):

m̃∗r f (xk) =
∑
`∈Uv

W̃∗` (xk)y` .

The estimator m̃∗r f can be written as a bagged estimator as follows:

m̃∗r f (xk) =
1
B

B∑
b=1

m̃∗(b)tree(xk)

and m̃∗(b)tree(xk) is the predictor associated with unit k and based on the b-th stochastic tree:

m̃∗(b)tree(xk) =
∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A∗(U )

(
xk ,θ(U )

b

)
Ñ∗(xk , θ(U)

b
)

y` . (3.33)

We remark that m̂∗(b)tree(xk) is the Horvitz-Thompson estimator of m̃∗(b)tree(xk). As before, m̃∗(b)tree depends on
θ
(U)
b

but, for more readability, we drop θ(U)
b

from the expression of m̃∗(b)tree(xk).

We give in the next equivalent expressions of m̃∗(b)tree and m̂∗(b)tree. Consider for that the B partitions
built at the population level: P̃∗U = {P̃

∗(b)
U }B

b=1. For a given b = 1, . . . , B, the partition P̃∗(b)U build in
the b-th stochastic tree is composed by the J∗

bU
disjointed regions: P̃∗(b)U = {A∗(bU)j }

J∗
bU

j=1 . Consider
z∗(b)
k
= (1

xk ∈A
∗(bU )
1

, . . . ,1
xk ∈A

∗(bU )

J∗
bU

)> where 1
xk ∈A

∗(bU )
j

= 1 if xk belongs to the region A∗(bU)j and zero

otherwise for all j = 1, . . . , J∗
bU

. We drop the exponent U from the expression of z∗(b)
k

for more readability.
Since P̃∗(b)U is a partition, then xk belongs to only one region of the b-th tree, so the vector z∗(b)

k
will
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contain only one non-null component. Consider for example that xk ∈ A∗(bU)j , then m̃∗(b)tree(xk) is the
mean of y-values of individuals ` for which x` ∈ A∗(bU)j :

m̃∗(b)tree(xk) =
∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A

∗(bU )
j

Ñ∗(b)j

y` , for xk ∈ A∗(bU)j ,

where Ñ∗(b)j is the number of units belonging to the region A∗(bU)j :

Ñ∗(b)j =
∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A

∗(bU )
j

, j = 1, . . . , J∗bU . (3.34)

Then, m̃∗(b)tree(xk) can be written as follows:

m̃∗(b)
N ,r f (xk) = (z

∗(b)
k
)> β̃

∗(b)
, k ∈ Uv (3.35)

where

β̃
∗(b)
=

( ∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)>

)−1 ∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`

y` .

Remark that β̃∗(b) may be obtained as solution of the following weighted estimating equation:∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(y` − (z

∗(b)
`
)>β∗(b)) = 0.

Since the regions A∗(bU)j , j = 1, . . . , J∗
bU

, form a partition, then the matrix
∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)> is

diagonal with diagonal elements equal to Ñ∗(b)j , the number of units falling in the region A∗(bU)j for
all j = 1, . . . , J∗

bU
. By the stopping criterion, we have that all Ñ∗(b)j ≥ N0v > 0 for all j , so the matrix∑

`∈Uv
ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)> is always invertible and β̃

∗(b) is well-de�ned.
Consider now m̂∗(b)tree(xk), the estimator of the unknown m̃∗(b)tree(xk). Then, m̂∗(b)tree(xk) is the weighted

mean of y-values for sampled individuals ` belonging to the same region A∗(bU)j as unit k :

m̂∗(b)tree(xk) =
∑
`∈Sv

1
π`

ψ
(b,U)
`

1
x` ∈A

∗(bU )
j

N∗(b)j,N

y` for xk ∈ A∗(bU)j

and we can write:

m̂∗(b)tree(xk) = (z
∗(b)
k
)> β̂

∗(b)
, k ∈ Uv (3.36)

where

β̂
∗(b)
=

( ∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)>

)−1 ∑
`∈Sv

1
π`
ψ
(b,U)
`

z∗(b)
`

y` .

In the expression of β̂
∗(b)

, we do not estimate the matrix
∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)> since it is known and

besides, we guarantee in this way that we will always have non-empty terminal nodes at the population
level. So, β̂

∗(b)
will be always well-de�ned whatever the sample S is.
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Let denote by αk = π−1
k

Ik − 1 for all k ∈ Uv , where Ik is the sample membership, Ik = 1 if k ∈ S
and zero otherwise. In order to prove the consistency of t̂∗r f as well as its asymptotic equivalence to the
pseudo-generalized di�erence estimator t̂pgd , we use the following decomposition:

1
Nv

(̂
t∗r f − ty

)
=

1
Nv

(̂
tpgd − ty

)
−

1
Nv

∑
k∈Uv

αk(m̂∗r f (xk) − m̃∗r f (xk))

=
1

Nv

(̂
tpgd − ty

)
−

1
B

B∑
b=1

[
1

Nv

∑
k∈Uv

αk

(
m̂∗(b)tree(xk) − m̃∗(b)tree(xk)

)]
. (3.37)

We will prove that each term form the decomposition (3.37) is convergent to zero. We give �rst several
useful lemmas.

Lemma 1. There exists a positive constant c̃1 such that:

nv
N2
v

Ep (̂tpgd − ty)2 6 c̃1.

Proof. First of all, from relation (3.31), m̃∗r f (xk) is a weighted sum at the population level of y-values
with positive weights summing to one (see proposition 2.1. from the main paper). Then, we get that
supk∈Uv

|m̃∗r f (xk)| 6 C by using also assumption (H13). We have:

1
Nv
(̂tpgd − ty) =

1
Nv

∑
k∈Uv

αk(yk − m̃∗r f (xk))

and

nvEp

(
t̂pgd − ty

Nv

)2

=
nv
N2
v

Vp

( ∑
k∈Sv

(yk − m̃∗r f (xk))

πk

)
6

(
nv
Nv
·

1
λ
+

nv maxk,`∈Uv |πk` − πkπ` |

λ2

)
·

2
Nv

∑
k∈Uv

(
y2
k + (m̃

∗
r f (xk))

2
)

6 c̃1

by assumptions (H13)-(H15). �

Lemma 2. There exists a positive constant c̃2 not depending on b = 1, . . . , B, such that

Ep | | β̂
∗(b)
− β̃
∗(b)
| |22 6

c̃2Nv

N2
0v

for all b = 1, . . . , B.

Proof. We can write

β̂
∗(b)
− β̃
∗(b)

=

( ∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)>

)−1 ( ∑
`∈Sv

1
π`
ψ
(b,U)
`

z∗(b)
`

y` −
∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`

y`

)
=

( ∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)>

)−1 ( ∑
`∈Uv

α`ψ
(b,U)
`

z∗(b)
`

y`

)
(3.38)

Let denote by T̃∗(b) =
∑
`∈Uv

ψ
(b,U)
`

z∗(b)
`
(z∗(b)
`
)>. As already mentioned before, the matrix T̃∗(b) is diagonal

with positive diagonal elements given by Ñ∗(b)j the number of units falling in the region A∗(bU)j (see
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relation 3.34) for j = 1, . . . , J∗
bU

and by the stopping criterion, we have that Ñ∗(b)j ≥ N0v > 0. We obtain
then

| |(T̃∗(b))−1 | |2 = max
j=1,...,JbU

©­« 1

Ñ∗(b)j

ª®¬ ≤ N−1
0v , for all b = 1, . . . , B (3.39)

where | | · | |2 is the spectral norm matrix de�ned for a squared p × p matrix A by | |A| |2 =
supx∈Rp , | |x | |2,0 | |Ax| |2/| |x| |2. For a symmetric and positive de�nite matrix A, we have that
| |A| |2 = λmax(A) where λmax(A) is the largest eigenvalue of A. We get, for b = 1, . . . , B :

Ep | | β̂
∗(b)
− β̃
∗(b)
| |22 6 Ep

[
| |Nv(T̃

∗(b))−1 | |22 ·

�������� 1
Nv

∑
`∈Uv

α`ψ
(b,U)
`

z∗(b)
`

y`

��������2
2

]
6

N2
v

N2
0v

Ep

�������� 1
Nv

∑
`∈Uv

α`ψ
(b,U)
`

z∗(b)
`

y`

��������2
2

(3.40)

and

Ep

�������� 1
Nv

∑
k∈Uv

αkψ
(b,U)
k

z∗(b)
k

yk

��������2
2

=
1

N2
v

( ∑
k∈Uv

(ψ
(b,U)
k
)2y2

k | |z
∗(b)
k
| |22Ep(α

2
k) +

∑
k∈Uv

∑
`∈Uv
`,k

ψ
(b,U)
k

ψ
(b,U)
`

yk y`(z
∗(b)
k
)>z∗(b)

`
Ep(αkα`)

)
6

1
nv

(
nv
λNv
+

nv maxk,`∈Uv ,k,` |πk` − πkπ` |

λ2

) (
1

Nv

∑
k∈Uv

(ψ
(b,U)
k
)2y2

k | |z
∗(b)
k
| |22

)
6

C0

nv
(3.41)

by assumptions (H13)-(H15) and the fact that | |z∗(b)
k
| |22 = 1 for all k ∈ Uv and b = 1, . . . , B. From (3.40),

(3.41) and assumption (H13), we obtain that it exists a positive constant c̃2 such that

Ep | | β̂
∗(b)
− β̃
∗(b)
| |22 6

c̃2Nv

N2
0v

.

�

Result 3.9.1. Consider a sequence of population RF estimators {̂t∗r f }. Then, there exist positive constants
C̃1, C̃2 such that

Ep

���� 1
Nv

(̂
t∗r f − ty

) ���� 6 C̃1
√

nv
+

C̃2

N0v
, with ξ-probability one.

If
Na
v

N0v
= O(1) with 1/2 6 a 6 1, then

Ep

���� 1
Nv

(̂
t∗r f − ty

) ���� 6 C̃
√

nv
, with ξ-probability one.

Proof. We get from relation (3.37) :

1
Nv

Ep

����̂t∗r f − ty

���� 6 1
Nv

Ep

����̂tpgd − ty

���� + 1
B

B∑
b=1

1
Nv

Ep

���� ∑
k∈Uv

αk(m̂
∗(b)
tree(xk) − m̃∗(b)tree(xk))

����.
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Lemma 1 gives us that there exists positive constant C̃1 such that

1
Nv

Ep

����̂tpgd − ty

���� 6 C̃1
√

nv
. (3.42)

Now, by using relations (3.35) and (3.36), we can then write for any b = 1, . . . , B:∑
k∈Uv

αk(m̂
∗(b)
tree(xk) − m̃∗(b)tree(xk)) =

∑
k∈Uv

αk(z
∗(b)
k
)>(β̂

∗(b)
− β̃
∗(b)
)

and

1
Nv

Ep

���� ∑
k∈Uv

αk(m̂
∗(b)
tree(xk) − m̃∗(b)tree(xk))

���� 6 (
Ep

�������� 1
Nv

∑
k∈Uv

αkz
∗(b)
k

��������2
2

)1/2 (
Ep | | β̂

∗(b)
− β̃
∗(b)
| |22

)1/2

(3.43)

and

Ep

�������� 1
Nv

∑
k∈Uv

αkz
∗(b)
k

��������2
2
=

1

N2
v

( ∑
k∈Uv

Ep(α
2
k)| |z

∗(b)
k
| |22 +

∑
k∈Uv

∑
`∈Uv
`,k

Ep(αkα`)(z
∗(b)
k
)>z∗(b)

`

)
6

1
nv

(
nv
λNv
+

nv maxk,`∈Uv |πk` − πkπ` |

λ2

)
·

1
Nv

∑
k∈Uv

| |z∗(b)
k
| |22

6
C2

nv
(3.44)

by assumptions (H13)-(H15) and the fact that | |z∗(b)
k
| |22 = 1 for all k ∈ Uv and b = 1, . . . , B. Then, from

relations (3.43), (3.44) and lemma 2, we get that there exists a positive constant C̃2 such that, for any
b = 1, . . . , B, we have:

1
Nv

Ep

���� ∑
k∈Uv

αk(m̂
∗(b)
r f
(xk) − m̃∗(b)

N ,r f (xk))

���� 6 √
C2

nv

c̃2Nv

N2
0v

6
C̃2

N0v
(3.45)

by using also the assumption (H13). The result follows then from relations (3.42) and (3.45). �

Result 3.9.2. Consider a sequence of RF estimators {̂t∗r f }. If
Na
v

N0v
= O(1) with 1/2 < a 6 1, then

√
nv

Nv

(̂
t∗r f − ty

)
=

√
nv

Nv

(̂
tpgd − ty

)
+ oP(1).

Proof. We get from relation (3.37) and lemmas (1) and the proof of result 3.9.1 (relation 3.45) that

√
nv

Nv

(̂
t∗r f − ty

)
=

√
nv

Nv

(̂
tpgd − ty

)
+

1
B

B∑
b=1

[√
nv

Nv

∑
k∈Uv

αk(m̂
∗(b)
tree(xk) − m̃∗(b)tree(xk))

]
.

=

√
nv

Nv

(̂
tpgd − ty

)
+ OP

(√
nv

N0v

)
=

√
nv

Nv

(̂
tpgd − ty

)
+ oP(1)

provided that
Na
v

N0v
= O(1) with 1/2 < a 6 1. �
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Result 3.9.3. Consider a sequence of population RF estimators {̂t∗r f }. Assume that
Na
v

N0v
= O(1) with

1/2 < a 6 1, then the variance estimator V̂r f (̂t∗r f ) is design-consistent for the asymptotic variance

AVp

(̂
t∗r f

)
. That is,

lim
v→∞

Ep

(
nv
N2
v

����V̂r f (̂t∗r f ) −AVp (̂t∗r f )
����) = 0.

Proof Consider the following decomposition

nv
(
V̂p

(
N−1
v t̂∗r f

)
−AVp

(
N−1
v t̂∗r f

))
= nv

(
V̂p

(
N−1
v t̂∗r f

)
− V̂p

(
N−1
v t̂pgd

) )
+ nv

(
V̂p

(
N−1
v t̂pgd

)
−AVp

(
N−1
v t̂∗r f

))
where V̂p

(
N−1
v t̂pgd

)
is the pseudo-type variance estimator of Vp

(
N−1
v t̂pgd

)
=AVp

(
N−1
v t̂∗r f

)
given by

V̂p

(
N−1
v t̂pgd

)
=

1

N2
v

∑
k∈Uv

∑
`∈Uv

πk` − πkπ`
πk`

yk − m̃∗r f (xk)

πk

y` − m̃∗r f (x`)

π`
Ik I` .

Now, to prove that the consistency of the �rst term from right of (3.46), we use the same decomposition as
in Goga and Ruiz-Gazen (2014). Denote ẽk = yk − m̃∗r f (xk), êk = yk − m̂∗r f (xk) and ck` =

πk` − πkπ`
πk`πkπ`

Ik I` .

Then,

nv(V̂p

(
N−1
v t̂∗r f

)
− V̂p

(
N−1
v t̂pgd

)
) =

nv
N2
v

∑
k∈Uv

∑
`∈Uv

ck` (êk ê` − ẽk ẽ`)

=
nv
N2
v

∑
k∈Uv

∑
`∈Uv

ck` [(êk − ẽk)(ê` − ẽ`) + ẽk(ê` − ẽ`) + ẽ`(êk − ẽk)]

= A1 + A2 + A3.

For all k ∈ Uv , êk − ẽk = m̃∗r f (xk) − m̂∗r f (xk) and thus,

Ep |A1 | ≤

(
nv
λ2Nv

+
nv maxk,`∈Uv |πk` − πkπ` |

λ∗λ2

)
1

Nv

∑
k∈Uv

Ep(êk − ẽk)2,

by assumptions (H14)-(H15). Therefore, it su�ces to show that, for all k ∈ Uv , one has Ep(êk − ẽk)2 =
o(1) uniformly in k , which we show next. We have

Ep(m̃∗r f (xk) − m̂∗r f (xk))
2 6

1
B

B∑
b=1

Ep(m̃
∗(b)
tree(xk) − m̂∗(b)tree(xk))

2.

We can write by using relations (3.35) and (3.36):

m̂∗(b)tree(xk) − m̃∗(b)tree(xk) = (z∗(b)
k
)>(β̂

∗(b)
− β̃
∗(b)
)

and then, by using lemma (2),

Ep(m̃∗r f (xk) − m̂∗r f (xk))
2 6

1
B

B∑
b=1

Ep

(
| |z∗(b)

k
| |22 | | β̂

∗(b)
− β̃
∗(b)
| |22

)
6

c̃2Nv

N2
0v
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quantity going to zero provided that
Na
v

N0v
= O(1) with 1/2 < a 6 1.

Using the same arguments, we obtain that Ep |A2 | = o(1) and Ep |A3 | = o(1). We get then

nvEp |V̂p

(
N−1
v t̂∗r f

)
− V̂p

(
N−1
v t̂pgd

)
| = o(1).

The second term from right of (3.46) concerns the consistency of the estimator of the Horvitz-
Thompson variance computed for the population residuals yk − m̃∗r f (xk), k ∈ Uv . The proof of this
consistency (Breidt and Opsomer, 2000) requires assumptions only on the higher order inclusion
probabilities (H18) as well as �nite forth moment of yk − m̃∗r f (xk) :

1
Nv

∑
k∈Uv

(yk − m̃∗r f (xk))
4 ≤

4
Nv

∑
k∈Uv

(y4
k + (m̃

∗
r f (xk))

4) < ∞.

So,
nvEp |V̂p

(
N−1
v t̂pgd

)
−AVp

(
N−1
v t̂∗r f

)
| = o(1)

and the result follows.

3.9.2 Asymptotic results: the sample RF model-assisted estimator t̂r f

The sample RF model-assisted estimator is given by

t̂r f =
∑
k∈Uv

m̂r f (xk) +
∑
k∈Sv

yk − m̂r f (xk)

πk
,

where m̂r f is the estimator of m built at the sample level and by using RF based on partition built at the
sample level (for more details, see relation (17) from the main paper):

m̂r f (xk) =
∑
`∈Sv

1
π`

Ŵ`(xk)y` ,

where

Ŵ`(xk) =
1
B

B∑
b=1

ψ
(b,S)
`

1
x` ∈A(S)

(
xk ,θ(S)

b

)
N̂(xk , θ(S)

b
)

and N̂(xk , θ(S)
b
) =

∑
`∈Sv π

−1
` ψ

(b,S)
`

1
x` ∈A(S)

(
xk ,θ(S)

b

) is the estimated number of units falling in the terminal

node A(S)
(
xk , θ(S)

b

)
containing xk . As in Section 3.9.1, the estimator m̂r f (xk) can be written as a bagged

estimator of m as follows:

m̂r f (xk) =
1
B

B∑
b=1

m̂(b)tree(xk)

and m̂(b)tree(xk) is the estimation of m based on the b-th stochastic tree:

m̂(b)tree(xk) =
∑
`∈Sv

1
π`

ψ
(b,S)
`

1
x` ∈A(S)

(
xk ,θ(S)

b

)
N̂(xk , θ(S)

b
)

y` (3.46)
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As in Section 3.9.1, for more readability, we note in the sequel m̂(b)tree(xk) instead of m̂(b)tree(xk , θ(S)
b
).

Consider the pseudo-generalized di�erence estimator:

t̂pgd =
∑
k∈Uv

m̃r f (xk) +
∑
k∈Sv

yk − m̃r f (xk)

πk

where m̃r f is the estimation of m built at the population level by using RF based on partition built also
at the population level (relation (9) from the main paper):

m̃r f (xk) =
∑
`∈Uv

W̃`(xk)y` ,

where

W̃`(xk) =
1
B

B∑
b=1

ψ
(b,U)
`

1
x` ∈A(U )

(
xk ,θ(U )

b

)
Ñ(xk , θ(U)

b
)

with Ñ(xk , θ(U)
b
) =

∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A(U )

(
xk ,θ(U )

b

) is the number of units falling in the terminal node

A(U)
(
xk , θ(U)

b

)
containing xk . The estimator m̂r f can be also written as a bagged estimator as follows:

m̃r f (xk) =
1
B

B∑
b=1

m̃(b)tree(xk)

and

m̃(b)tree(xk) =
∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A(U )

(
xk ,θ(U )

b

)
Ñ(xk , θ(U)

b
)

y` .

As in the previous section, we will write m̃r f and m̂r f in equivalent forms. Consider for that the B
partitions build at the population level P̃U = {P̃(b)U }

B
b=1. For a given b = 1, . . . , B, the partition P̃(b)U

is composed by the disjointed regions P̃(b)U = {A(bU)j }
JbU
j=1 . Consider z(b)

k
= (1

xk ∈A
(bU )
1

, . . . ,1
xk ∈A

(bU )
JbU

)>

where 1
xk ∈A

(bU )
j

= 1 if xk belongs to the region A(bU)j and zero otherwise for all j = 1, . . . , JbU . Since

P̃
(b)
U is a partition, then xk belongs to only one region at the b-th step. Suppose for example that

xk ∈ A(bU)j , then m̃(b)tree(xk) is the mean of y-values for individuals ` for which x` ∈ A(bU)j :

m̃(b)tree(xk) =
∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A

(bU )
j

Ñ (b)j

y` , for xk ∈ A(bU)j ,

where Ñ (b)j is the number of units belonging to the region A(bU)j :

Ñ (b)j =
∑
`∈Uv

ψ
(b,U)
`

1
x` ∈A

(bU )
j

, j = 1, . . . , JbU . (3.47)

Then, m̃(b)tree(xk) can be written as a regression-type estimator with z(b)
k

as explanatory variables:

m̃(b)tree(xk) = (z
(b)
k
)> β̃

(b)
, k ∈ Uv (3.48)
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where

β̃
(b)
=

( ∑
`∈Uv

ψ
(b,U)
`

z(b)
`
(z(b)
`
)>

)−1 ∑
`∈Uv

ψ
(b,U)
`

z(b)
`

y` .

Based on the same arguments as in Section 3.9.1, the matrix
∑
`∈Uv

ψ
(b,U)
`

z(b)
`
(z(b)
`
)> is diagonal

with diagonal elements equal to Ñ (b)j , j = 1, . . . , JbU . By the stopping criterion, we have that all

Ñ (b)j ≥ N0 > 0, so the matrix
∑
`∈Uv

ψ
(b,U)
`

z(b)
`
(z(b)
`
)> is invertible and β̃

(b) is well-de�ned.
Consider now the B partitions build at the sample level P̂S = {P̂(b)S

}B
b=1. For a given b = 1, . . . , B,

the partition P̂(b)
S

is composed by the disjointed regions P̂(b)
S
= {A(bS)j }

JbS

j=1 . Consider ẑ(b)
k
=

(1
xk ∈A

(b)
1S

, . . . ,1
{xk ∈A

(b)
JbS
}
)> where 1

xk ∈A
(bS)
j

= 1 if xk belongs to the region A(bS)j and zero otherwise

for all j = 1, . . . , JbS . Here, the hat notation is to design the fact that the vector ẑ(b)
k

depends on random
dummy variables 1

xk ∈A
(bS)
j

. Since {A(bS)j }
JbS

j=1 form a partition, then xk belongs to only one terminal

node. Suppose for example that xk ∈ A(bS)j , then m̂(b)tree(xk) is a Hajek-type estimator:

m̂(b)tree(xk) =
∑
`∈Sv

1
π`

ψ
(b,S)
`

1
x` ∈A

(bS)
j

y`

N̂ (b)j

, for xk ∈ A(bS)j ,

where N̂ (b)j is the estimated number of units falling in the terminal node A(bS)j :

N̂ (b)j =
∑
`∈Sv

1
π`
ψ
(b,S)
`

1
x` ∈A

(bS)
j

, j = 1, . . . , JbS .

Then, m̂(b)tree(xk) can be written also as a regression-type estimator with ẑ(b)
k

as explanatory variables:

m̂(b)tree(xk) = (ẑ
(b)
k
)> β̂

(b)
, k ∈ Uv , (3.49)

where

β̂
(b)
=

( ∑
`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`
(ẑ(b)
`
)>

)−1 ∑
`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`

y` .

As in Section 3.9.1, remark that β̂
(b)

may be obtained as solution of the following weighted estimating
equation: ∑

`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`
(y` − (ẑ

(b)
`
)>β(b)) = 0.

Since {A(bS)j }
JbS

j=1 is a partition, then the matrix
∑
`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`
(ẑ(b)
`
)> is diagonal with diagonal

elements equal to N̂ (b)j , j = 1, . . . , JbS . By the stopping criterion and assumption (H15), we have that∑
`∈Sv

1
π`
ψ
(b,S)
`

1
x` ∈A

(b)
jS

≥ n0v > 0, so
∑
`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`
(ẑ(b)
`
)> is always invertible is and β̂

(b)
is well-

de�ned whatever the sample S is.
We need to consider also a second pseudo-generalized di�erence estimator:

̂̃tpgd = ∑
k∈Uv

̂̃mr f (xk) +
∑
k∈Sv

yk − ̂̃mr f (xk)

πk
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where

̂̃mr f (xk) =
∑
`∈Uv

©­« 1
B

B∑
b=1

ψ
(b,S)
`

1
x` ∈A(S)(xk ,θ(S)

b
)̂̃N(xk , θ(S)

b
)

ª®¬ y`
=

1
B

B∑
b=1

̂̃m(b)tree(xk)

with ̂̃N(xk , θ(S)
b
) =

∑
`∈Uv

ψ
(b,S)
`

1
x` ∈A(xk ,θ(S)

b
)

and

̂̃m(b)tree(xk) =
∑
`∈Uv

ψ
(b,S)
`

1
x` ∈A(S)(xk ,θ(S)

b
)
y`̂̃N(xk , θ(S)

b
)

= (ẑ(b)
k
)>

̂̃
β
(b)

, k ∈ Uv (3.50)

for

̂̃
β
(b)

=

( ∑
`∈Uv

ψ
(b,S)
`

ẑ(b)
`
(ẑ(b)
`
)>

)−1 ∑
`∈Uv

ψ
(b,S)
`

ẑ(b)
`

y` .

The matrix
∑
`∈Uv

ψ
(b,S)
`

ẑ(b)
`
(ẑ(b)
`
)> is also diagonal with diagonal elements equal to

∑
`∈Uv

ψ
(b,S)
`

1
x` ∈A

(bS)
j

≥

n0v > 0, j = 1, . . . , JbS so ̂̃
β
(b)

is also well-de�ned whatever the sample S is. In order to prove the
consistency of the sample-based RF estimator t̂r f , we use the following decomposition:

1
Nv
(t̂r f − ty) =

1
Nv
(̂̃tpgd − ty) −

1
Nv

∑
k∈Uv

αk(m̂r f (xk) − ̂̃mr f (xk)). (3.51)

We will give �rst several useful lemmas. The constants used in the following results may not be the
same as the ones from Section 3.9.1 even if they are denoted in the same way for simplicity.

Lemma 3. There exists a positive constant c̃1 such that:

nv
N2
v

Ep (̂tpgd − ty)2 6 c̃1.

Proof. The proof is similar to that of lemma 1. We also have that supk∈Uv
|m̃r f (xk)| 6 C by using

assumption (H13). Further,

nvEp

(
t̂pgd − ty

Nv

)2

6

(
nv
Nv
·

1
λ
+

nv maxk,`∈Uv |πk` − πkπ` |

λ2

)
·

2
Nv

∑
k∈Uv

(
y2
k + (m̃r f (xk))

2)
6 c̃1

by assumptions (H13)-(H15). �

Lemma 4. There exists a positive constant c̃2 such that:

nv
N2
v

Ep (̂̃tpgd − ty)2 6 c̃2.
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Proof. Using (3.50), we get that ̂̃mr f (xk) can be written as a weighted sum of y-values with positive
weights summing to unity, so supk∈Uv

|̂̃mr f (xk)| 6 C by using also assumption (H13). Now,

̂̃tpgd − ty =
∑
k∈Uv

αk(yk − ̂̃mr f (xk))

and
nv
N2
v

Ep (̂̃tpgd − ty) =
nv
N2
v

∑
k∈Uv

Ep

[
α2
k(yk −

̂̃mr f (xk))
2
]

+
nv
N2
v

∑
k∈Uv

∑
`,k,`∈Uv

Ep

[
(yk − ̂̃mr f (xk))(y` − ̂̃mr f (x`))Ep(αkα` |P̂S)

]
6

2nvC2

λNv
+

nv
N2
v

∑
k∈Uv

∑
`,k,`∈Uv

Ep

[
|yk − ̂̃mr f (xk)| |y` − ̂̃mr f (x`)| max

`,k∈Uv

|Ep(αkα` |P̂S)|

]
6 c̃2,

by assumptions (H14) and (H16). �

Lemma 5. There exists a positive constant c̃3 not depending on b such that:

Ep

��������β̂(b) − ̂̃
β
(b)

��������2
2
6

c̃3nv
n2

0v

,

for all b = 1, . . . , B.

Proof. Let denote by T̂(b) =
∑
`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`
(ẑ(b)
`
)>. As already mentioned, the JbS × JbS dimensional

matrix T̂(b) is diagonal with diagonal elements given by N̂ (b)j =
∑
`∈Sv

1
π`
ψ
(b,S)
`

1
x` ∈A

(b)
jS

the weighted

somme of units falling in the region A(b)
jS

for j = 1, . . . , JbS and by the stopping criterion, we have that
N̂ (b)j ≥ n0v > 0. The matrix T̂(b) is then always invertible with

| |(T̂(b))−1 | |2 ≤ n−1
0v for all b = 1, . . . B. (3.52)

Now, write

β̂
(b)
−

̂̃
β
(b)

= (T̂(b))−1

( ∑
`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`

y` − T̂
(b)̂̃β(b))

= (T̂(b))−1
∑
`∈Sv

1
π`
ψ
(b,S)
`

ẑ(b)
`

(
y` − ̂̃m(b)tree(x`)

)
= (T̂(b))−1

∑
`∈Uv

α` Ê (b)
`

(3.53)

where Ê (b)
`
= ψ

(b,S)
`

ẑ(b)
`
(y` − ̂̃m(b)tree(x`)) with

∑
`∈Uv

Ê (b)
`
= 0. We have that | |ẑ(b)

`
| |2 = 1 and

sup`∈Uv
|̂̃m(b)tree(x`))| ≤ C for all ` ∈ Uv and b = 1, . . . , B, then:

| |Ê (b)
`
| |22 6 2C2.
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Following the same lines as in lemma 4, we get that it exists a positive constant C̃0 not depending on b
such that

1

N2
v

Ep

�����
����� ∑
`∈Uv

α` Ê (b)
`

�����
�����2
2

6
C̃0

nv
, for all b = 1, . . . B. (3.54)

We obtain then from relations (3.52) and (3.53) that:

Ep

��������β̂(b) − ̂̃
β
(b)

��������2
2
6 Ep

©­«N2
v | |(T̂

(b))−1 | |22
1

N2
v

�����
����� ∑
`∈Uv

α` Ê (b)
`

�����
�����2
2

ª®¬
6

N2
v

n2
0v

1

N2
v

Ep

�����
����� ∑
`∈Uv

α` Ê (b)
`

�����
�����2
2

6
N2
v

n2
0v

C̃0

nv

6
c̃3nv
n2

0v

(3.55)

by assumption (H14). �

Result 3.9.4. Consider a sequence of sample RF estimators {̂tr f }. Then, there exist positive constants C̃1, C̃2

such that
1

Nv
Ep |t̂r f − ty | 6

C̃1
√

nv
+

C̃2

n0v
.

If
nuv
n0v
= O(1) with 1/2 6 u 6 1, then

Ep

���� 1
Nv

(̂
tr f − ty

) ���� 6 C̃
√

nv
, with ξ-probability one.

Proof. We use the decomposition given in relation (3.51):

1
Nv
(t̂r f − ty) =

1
Nv
(̂̃tpgd − ty) −

1
Nv

∑
k∈Uv

αk(m̂r f (xk) − ̂̃mr f (xk)).

Now,

Ep

����� 1
Nv

∑
k∈Uv

αk(m̂r f (xk) − ̂̃mr f (xk))

����� 6 1
B

B∑
b=1

1
Nv

Ep

����� ∑
k∈Uv

αk(m̂
(b)
tree(xk) −

̂̃m(b)tree(xk))

�����
and using relations (3.49) and (3.50), we get:

1
Nv

Ep

����� ∑
k∈Uv

αk(m̂
(b)
tree(xk) −

̂̃m(b)tree(xk))

����� 6 Ep
©­«
�����
����� 1
Nv

∑
k∈Uv

αk ẑ
(b)
k

�����
�����
2

��������β̂(b) − ̂̃
β
(b)

��������
2

ª®¬
6

√√√√
Ep

�����
����� 1
Nv

∑
k∈Uv

αk ẑ
(b)
k

�����
�����2
2

Ep

��������β̂(b) − ̂̃
β
(b)

��������2
2
.
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We have that | |ẑ(b)
k
| |2 = 1 for all k ∈ Uv and b = 1, . . . , B. We can show then by using the same arguments

as in the proof of lemma 4, that there exists a positive constant C̃ ′0 such that

Ep

�����
����� 1
Nv

∑
k∈Uv

αk ẑ
(b)
k

�����
�����2
2

6
C̃ ′0
nv

which together with lemma 5 gives us that there exists a positive constant C̃2 such that

1
Nv

Ep

����� ∑
k∈Uv

αk(m̂r f (xk) − ̂̃mr f (xk))

����� 6 C̃2

n0v
. (3.56)

Now,

1
Nv

Ep

����t̂r f − ty

���� 6 1
Nv

Ep

����̂̃tpgd − ty

���� + 1
B

B∑
b=1

1
Nv

Ep

����� ∑
k∈Uv

αk(m̂
(b)
tree(xk) −

̂̃m(b)tree(xk))

�����
6

C̃1
√

nv
+

C̃2

n0v

by using lemma 4 and relation (3.56). �

Result 3.9.5. Consider a sequence of RF estimators {̂tr f }. Assume that
nuv
n0v
= O(1) with 1/2 < u 6 1.

Then, √
nv

Nv

(̂
tr f − ty

)
=

√
nv

Nv

(̂
tpgd − ty

)
+ oP(1).

Proof. We have
√

nv
Nv

(̂
tr f − ty

)
=

√
nv

Nv

(̂
tpgd − ty

)
+

√
nv

Nv

∑
k∈Uv

αk(m̂r f (xk) − m̃N ,r f (xk)). (3.57)

Now,
√

nv
Nv

∑
k∈Uv

αk(m̂r f (xk) − m̃r f (xk))

=

√
nv

Nv

∑
k∈Uv

αk(m̂r f (xk) − ̂̃mr f (xk)) +

√
nv

Nv

∑
k∈Uv

αk(̂̃mr f (xk) − m̃r f (xk)). (3.58)

Relation (3.56) gives us that
√

nv
Nv

∑
k∈Uv

αk(m̂r f (xk) − ̂̃mr f (xk)) = OP

(√
nv

n0v

)
= oP(1) (3.59)

provided that
nuv
n0v
= O(1) with 1/2 < u 6 1. Consider now the second term from the right-side of

relation (3.58). We have:

nv
N2
v

Ep

( ∑
k∈Uv

αk(̂̃mr f (xk) − m̃r f (xk))

)2

6
nv
N2
v

(1 + λ)2

λ2

∑
k∈Uv

Ep

(̂̃mr f (xk) − m̃r f (xk)
)2
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+
nv
N2
v

∑
k∈Uv

∑
`,k,`∈Uv

Ep

[
|̂̃mr f (xk) − m̃r f (xk)| |̂̃mr f (x`) − m̃r f (x`)| max

`,k∈Uv

|Ep(αkα` |P̂S)|

]
6

(
nv
Nv

(1 + λ)2

λ2 +
C1

λ2

)
1

Nv

∑
k∈Uv

Ep

(̂̃mr f (xk) − m̃r f (xk)
)2
= o(1),

by assumptions (H14), (H15), (H16) and (H17). It follows then that
√

nv
Nv

∑
k∈Uv

αk(̂̃mr f (xk) − m̃r f (xk)) = oP(1). (3.60)

Relations (3.57), (3.58), (3.59) and (3.60) give then the result. �

Result 3.9.6. Consider a sequence of population RF estimators {̂tr f }. Assume also that
nuv
n0v
= O(1) with

1/2 < u 6 1. Then, the variance estimator V̂r f (̂tr f ) is asymptotically design-consistent for the asymptotic
variance AVp

(̂
tr f

)
. That is,

lim
v→∞

Ep

(
nv
N2
v

����V̂r f (̂tr f ) −AVp (̂tr f )
����) = 0. (3.61)

Proof. The proof follows the same steps as those of result (3.9.3). We need to show that

Ep

[(
m̂r f (xk) − m̃r f (xk)

)2]
= o(1), (3.62)

uniformly in k ∈ Uv . We have m̂r f (xk) − m̃r f (xk) = m̂r f (xk) − ̂̃mr f (xk) + ̂̃mr f (xk) − m̃r f (xk) and

Ep(m̂r f (xk) − ̂̃mr f (xk))
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(b)
tree(xk) −

̂̃m(b)tree(xk))
2

6
1
B

B∑
b=1

Ep

(
| |ẑ(b)
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)
6

c̃3nv
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= o(1)

by lemma 5 and provided that
nuv
n0v
= O(1) with 1/2 < u < 1. The result (3.62) follows then by using also

assumption (H17). �



4 I M P U TAT I O N P R O C E D U R E S I N S U R V E Y S U S I N G N O N PA R A M E T R I C

A N D M A C H I N E L E A R N I N G M E T H O D S : A N E M P I R I C A L C O M PA R I S O N

Abstract.1 Nonparametric and machine learning methods are �exible methods for obtaining accurate
predictions. Nowadays, data sets with a large number of predictors and complex structures are fairly
common. In the presence of item nonresponse, nonparametric and machine learning procedures may thus
provide a useful alternative to traditional imputation procedures for deriving a set of imputed values
used next for the estimation of study parameters de�ned as solution of population estimating equation.
In this paper, we conduct an extensive empirical investigation that compares a number of imputation
procedures in terms of bias and e�ciency in a wide variety of settings, including high-dimensional data sets.
The results suggest that a number of machine learning procedures perform very well in terms of bias and e�ciency.

Keywords: Additive models; Bayesian additive regression trees (BART); CART; Cubist algorithm;
Ensemble Methods; Nearest Neighbor; Item nonresponse; Random forest; Support vector regression (SVR); Survey
data; Statistical learning; Tree boosting.

4.1 Introduction

In the last decade, the interest in machine learning methods has been growing in national statistical
o�ces (NSO). These data-driven methods provide �exible tools for obtaining accurate predictions. The
increasing availability of data sources (e.g., big data sources and satellite information) provides a rich
pool of potential predictors that may be used to obtain predictions at di�erent stages of a survey. These
stages include the nonresponse treatment stage (e.g., propensity score weighting and imputation) and
the estimation stage (e.g., model-assisted estimation and small area estimation). The imputation stage is
the focus of the current paper.

Item nonresponse refers to the presence of missing values for some, but not all, survey variables.
Frequent causes of item nonresponse include refusal to answer a sensitive question (e.g., income) and edit
failures. The most common way of treating item nonresponse in NSOs is to replace a missing value with
a single imputed value, constructed on the basis of a set of p explanatory variables, X = (X1, . . . , Xp),
available for both respondents and nonrespondents. A variety of imputation procedures are available,
ranging from simple (e.g., mean, historical and ratio imputation) to more complex (e.g., nonparametric
procedures); e.g., see Chen and Haziza (2019) for an overview of imputation procedures in surveys.
Every imputation procedure makes some (implicit of explicit) assumptions about the distribution of the
variable Y requiring imputation. This set of assumptions is often referred to as an imputation model. At
the imputation stage, it is therefore important to identify and include in the model all the appropriate
explanatory variables that are predictive of the variable requiring imputation and determine a suitable
model describing the relationship between Y and the set of explanatory variables X.

We distinguish parametric imputation procedures from nonparametric imputation procedures. In
parametric imputation, the shape of the relationship between Y and X is predetermined; e.g., linear
and generalized linear regression models. However, point estimators based on parametric imputation
procedures may su�er from bias if the functional form is misspeci�ed or if the vector X fails to include
interactions or predictors accounting for curvature. In contrast, with nonparametric methods, the shape

1 The article is accepted for publication in Journal of Survey Statistics and Methodology.
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of the relationship between Y and X is left unspeci�ed. These methods have the ability to capture
nonlinear trends in the data and tend to be robust to the non-inclusion of interactions or predictors
accounting for curvature.

Commonly used nonparametric methods include kernel smoothing, local polynomial regression
and spline-based regression models. While these methods provide some robustness against model
misspeci�cation, they tend to breakdown when the number predictors is large, a problem known as
the curse of dimensionality. To mitigate this problem, one may employ additive models (Hastie and
Tibshirani, 1986). However, when the dimension of X is very large, these models tend to fail and machine
learning methods may provide an interesting alternative. The class of machine learning methods,
that includes tree-based models such as random forests and boosting methods, provide more �exible
approaches able to adapt to complex non-linear and non-additive relationships between the survey
variable requiring imputation and a set of predictors. These methods may also prove useful in the case of
large data sets exhibiting a large number of observations on a large number of variables. Many machine
learning procedures are relatively computationally e�cient and can produce accurate predictions by
o�ering the user a kind of automatic variable selection that may prove useful in a high-dimensional
setting.

However, both a theoretical treatment and an empirical comparison of machine learning imputation
procedures in the context of missing survey data are currently lacking. In this paper, we aim to �ll the
latter gap by conducting an extensive simulation study that investigates the performance of several
nonparametric and machine learning procedures in terms of bias and e�ciency. To that end, we generated
several �nite populations with relationships between Y and X, ranging from simple to complex and
generated the missing values according to several nonresponse mechanisms. We also considered both
a low-dimensional and high dimensional settings. The simulation setup and the models are described
in Section 4.4. We restricted our attention to population totals (Section 4.4) and population quantiles
(Section 4.5) as the target parameters. The following procedures were included in our comparisons: the
score method (Haziza and Beaumont, 2007, Little, 1986), K nearest-neighbour (Chen and Shao, 2000),
additive models based on B-spline regression, regression trees (Breiman, 1984), random forests (Breiman,
2001), tree-based boosting methods (Friedman, 2001) including XGBoost (Chen and Guestrin, 2016) and
Bayesian additive regression trees (Chipman et al., 2010), the cubist algorithm (Quinlan, 1993, Quinlan
et al., 1992) and support vector regression (Vapnik, 1998, 2000). In Section 4.3, we describe these models
and the corresponding imputation procedures.

In recent years, machine learning procedures have received some attention in a survey sampling
context. In the ideal situation of 100% response, the theoretical properties of model-assisted estimation
procedures based on regression trees (McConville and Toth, 2019) and random forests (Dagdoug et al.,
2021b) have been recently established. Dagdoug et al. (2022b) studied the theoretical properties of point
and variance estimators based on random forests in a context of imputation for item nonresponse and
data integration; see also De Moliner and Goga (2018), Tipton et al. (2013) for applications of random
forests in surveys. A number of empirical investigations have been conducted to assess the performance
of machine learning procedures in a context of propensity score estimation for unit nonresponse; e.g.,
Lohr et al. (2015), Gelein (2017) and Kern et al. (2019).

The machine learning procedures described in Section 4.3 slightly di�er from their traditional
implementation because of the inclusion of the sampling weights in the construction of imputed values.
However, it should be noted that most of the machine learning software packages for obtaining predicted
values assume simple random sampling and cannot handle unequal weights. Modifying machine learning
algorithms to account for unequal weights may prove challenging.

When the design features (e.g., sampling weights, stratum indicators, etc.) are related to the survey
variable requiring imputation, failing to incorporate them in the models may lead to biased estimators.
To cope with this issue, we suggest to include all the appropriate design variables in the speci�cation of
the model. Standard machine learning software packages may then be safely used for creating a set of
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imputed values. In Section 4.4, we use Poisson sampling with inclusion probabilities proportional to a
size variable X to select repeated samples from the �nite population. The size variable X being related
to the variable requiring imputation, including the X-variable in the speci�ed models led to satisfactory
results.

4.2 Preliminaries

Consider a �nite population U = {1, 2, ..., N} of size N . Let Y denote a survey variable and yi be the
y-values attached to unit i, i = 1, · · · , N . We are interested in estimating (i) the �nite population
total of the y-values, ty =

∑
i∈U yi and (ii) the �nite population quantile of order γ de�ned as Qγ :=

inf {t ∈ R; FN (t) > γ} , where
FN (t) =

∑
i∈U

1 (yi 6 t) /N

denotes the �nite population distribution function.
From U, we select a sample S, of size n, according to a sampling design P (S = s) with �rst-order

inclusion probabilities πi = Pr(i ∈ S).
A complete data estimator of ty is the well-known Horvitz-Thompson estimator

t̂π =
∑
i∈S

yi

πi
, (4.1)

which is design-unbiased for ty provided that πi > 0 for all i ∈ U. A complete data estimator of the �nite
population quantile Qγ is given by

Q̂γ := inf
{
t ∈ R; F̂(t) > γ

}
, (4.2)

where
F̂(t) =

1

N̂

∑
i∈S

1 (yi 6 t)
πi

(4.3)

with N̂ =
∑

i∈S 1/πi denoting the Horvitz-Thompson estimator of the population size N . Under mild
regularity conditions (Wang and Opsomer, 2011), the complete data estimator Q̂γ is design-consistent
for Qγ .

In practice, the Y -variable may be prone to missing values. Let ri be a response indicator such that
ri = 1 if yi is observed and ri = 0, otherwise. Let Sr = {i ∈ S; ri = 1} denote the set of respondents,
of size nr , and Sm = {i ∈ S; ri = 0} the set of nonrespondents, of size nm, such that Sr ∪ Sm = S and
nr + nm = n. Available to the imputer is the data (yi , xi) for i ∈ Sr as well as the values of the vector xi
for i ∈ Sm.

Let ŷi be the imputed value used to replace the missing value yi and

ỹi = riyi + (1 − ri) ŷi

be the ith value of the Y -variable after imputation. Point estimators of ty and Qγ after imputation, often
referred to as imputed estimators, are readily obtained from the complete data estimators (4.1) and (4.2)
by replacing yi with ỹi . This leads to

t̂imp =
∑
i∈S

ỹi

πi
(4.4)

and
Q̂γ,imp = inf

{
t ∈ R; F̂imp(t) > γ

}
, (4.5)
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where
F̂imp(t) =

1

N̂

∑
i∈S

1 (ỹi 6 t)
πi

(4.6)

denotes the imputed estimator of FN (t).

Remark 4.2.1. The population total ty , the distribution function FN (t) and the quantile of order γ, Qγ ,
may all be obtained as the solution of the following census estimating equation (Binder, 1983, Chen and
Haziza, 2019):

UN (θN ) =
∑
i∈U

u(yi ; θN ) = 0, (4.7)

where θN is a generic notation denoting a �nite population parameter and u(yi ; θ) is a function of θN . We
assume that a solution to (4.7) exists and is unique. For instance, the population total ty can be obtained as a
solution of (4.7) with u(yi ; θN ) = yi − n−1πiθN ; the �nite population distribution function FN (t) can be
obtained as a solution of (4.7) with u(yi ; θN ) = 1 (yi 6 t) − θN . Finally, the quantile Qγ of order γ can be
obtained as a solution of (4.7) with u(yi ; θN ) = 1 (yi 6 θN ) − γ. Other �nite population parameters can
be obtained as a solution of (4.7); e.g., see Chen and Haziza (2019). The imputed estimators t̂imp , Q̂γ,imp

and F̂imp(t) given respectively by (4.4)-(4.6) can be obtained by solving the following sample estimating
equation:

Ûimp(θ̂imp) =
∑
i∈S

1
πi

u(ỹi ; θ̂imp) = 0,

where θ̂imp denotes an imputed estimator of θN .

To construct the imputed values ŷi , we postulate the following imputation model ξ:

Eξ (yi |xi) = f (xi), (4.8)
Vξ (yi |xi) = σ

2
i ,

Covξ
(
yi , yj |xi , xj

)
= 0 for i , j ,

where f is an unknown function. Often, the variance structureσ2
i is assumed to have the formσ2

i = σ
2ai ,

where ai > 0 is a known coe�cient attached to unit i and σ2 is an unknown parameter.
We assume that the data are Missing At Random (Rubin, 1976):

f (yi |xi , ri = 1) = f (yi |xi , ri = 0). (4.9)

That is, we assume that the distribution of Y given x is the same for both respondents and nonrespondents.
If Condition (4.9) holds, the imputed values can be safely generated from f (yi |xi , ri = 1), which can be
estimated from the observed data. In the context of imputation, the properties of point estimators are
evaluated with respect to the joint distribution induced by the imputation, the sampling design and the
unknown nonresponse mechanism. This framework is often referred to as the ξpq-framework (Chen
and Haziza, 2019). Note that our simulation setup in Section 4.4 is consistent with the ξpq-framework
as the simulation process involves (i) generating repeated �nite populations; (ii) selecting a sample from
each of population and (iii) generating a set of response indicators in each sample.

Deterministic imputation consists of replacing the missing yi by ŷi = f̂ (xi), where f̂ is an estimator
of the unknown regression function f based on the responding units i ∈ Sr . However, deterministic
imputation methods tend to distort the distribution of the survey variable Y requiring imputation,
potentially leading to biased estimators of quantiles (Chen and Haziza, 2019, Haziza, 2009). To cope with
this issue, one can recourse to random imputation that consists of adding an appropriate amount of
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random noise to the deterministic value f̂ (xi). More speci�cally, let ej := σ̂−1
j {yj − f̂ (xj)} for j ∈ Sr ,

where σ̂j of an estimator of σj (see Remark 4.2.2 below). We de�ne the standardized residual

ẽj = ej −
∑
`∈Sr w`e`∑
`∈Sr w`

, j ∈ Sr .

In the case of random imputation, the missing yi is replaced by

ŷi = f̂ (xi) + σ̂i êi , (4.10)

where êi is selected at random from the set of standardized residuals {ẽj}j∈Sr with probability
wj/

∑
`∈Sr w` .

Remark 4.2.2. To obtain an estimator σ̂i of σi , one can postulate a model E(ε2
i | xi) = m(xi), where m

is an unknown function. An estimator σ̂2
i of σ2

i is obtained by �tting a parametric or a nonparametric
procedure with the square residuals e2

i as the response and xi as the set of predictors.

In Section 4.3, except for the parametric imputation procedure discussed in Section 4.3.1, all the
other procedures (Section 4.3.2-4.3.9) are nonparametric. In Section 4.4, these procedures are compared
empirically in terms of bias and e�ciency under a variety of settings.

4.3 A description of imputation methods

4.3.1 Parametric regression imputation

Parametric regression assumes that the �rst moment (4.8) is given by

Eξ (yi |xi) = f (xi , β), (4.11)

where β is a vector of coe�cients to be estimated and f (·) is a predetermined function. An estimator β̂
of β is obtained by solving the following estimating equations based on the responding units:∑

i∈Sr

wi

σ2
i

{yi − f (xi , β)}
∂ f (xi , β)

∂β
= 0, (4.12)

where wi > 0 is a weight attached to element i. Common choices for wi include wi = 1 and wi = π
−1
i

(Chen and Haziza, 2019). The imputed value ŷi under deterministic parametric regression imputation is
given by

ŷi = f (xi , β̂), i ∈ Sm. (4.13)

A special case of (4.13) is f (xi , β) = x>i β, which corresponds to the customary linear regression model.
In this case, the imputed value (4.13) reduces to

ŷi = x>i β̂, i ∈ Sm, (4.14)

where

β̂ =
©­«
∑
j∈Sr

wjσ
−2
j xjx

>
j
ª®¬
−1 ∑

j∈Sr

wjσ
−2
j xj yj . (4.15)

The imputed value ŷi given by (4.14) can be written as a weighted sum of the respondent y-values:

ŷi =
∑
j∈Sr

w′i j yj , i ∈ Sm, (4.16)
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where w′i j = x>i

(∑
j′∈Sr wj′σ

−2
j′ xj′x>j′

)−1
wjσ

−2
j xj . If the intercept is among the X-variables, then∑

j∈Sr w
′
i j = 1 for all i ∈ Sm. A random counterpart of (4.13) is given by (4.10).

Another important special case of (4.13) is the logistic regression model,

f (xi , β) = exp(x>i β)/(1 + exp(x>i β)),

which can be used for modeling binary variables. An estimator of β is obtained by solving (4.12), which
requires a numerical algorithm such as the Newton-Raphson procedure. To eliminate the possibility of
an impossible imputed value, a missing value to a 0 − 1 variable is typically imputed by ŷi , where ŷi is a
realization of a Bernoulli variable with parameter f (xi , β̂).

Under deterministic or random parametric regression imputation, the imputed estimator t̂imp is
consistent for ty provided that the �rst moment of the imputation model (4.8) is correctly speci�ed.
However, this type of imputation may lead to biased estimators of quantiles. In contrast, the use of a
random parametric regression imputation procedure tend to preserve the distribution of the variable
requiring imputation, leading to valid estimators; see Chen and Haziza (2019) for a discussion.

4.3.2 Imputation classes : the score method

The score method (Haziza and Beaumont, 2007, Little, 1986) consists of partitioning the sample S into
H (say) imputation classes and imputing the missing values within each class independently from one
class to another. It can be implemented as follows:

Step 1: For all i ∈ S, compute the preliminary values ŷLRi = x>i β̂, where β̂ is given by (4.15).

Step 2: Compute the empirical quantiles q1, q2, . . . , qH−1 of order 1/H, 2/H, . . . , (H − 1)/H of the ŷLR-
values.

Step 3: Split the sample S into H classes, C1, . . . , Ch , . . . , CH , such that

Ch =
{
i ∈ S : ŷLRi ∈ [qh−1; qh)

}
, h = 1, . . . , H,

with q0 = −∞ and qH = +∞.

It is common practice to use either mean imputation or random hot-deck imputation within classes. For
mean imputation, the imputed value for missing yi in the hth imputation class is given by

ŷi =

∑
j∈Sr∩Ch

wj yj∑
j∈Sr∩Ch

wj
=

∑
j∈Sr∩Ch

w′i j yj , i ∈ Sm ∩Ch ,

where w′i j = wj/
∑

j′∈Sr∩Ch
wj′ are the same for all i ∈ Sm ∩ Ch and

∑
j∈Sr∩Ch

w′i j = 1 for all i ∈
Sm ∩Ch . For random hot-deck imputation, the imputed value is given by ŷi = yj , where the donor
j ∈ Sr ∩Ch is selected at random from the set of donors belonging to the hth imputation class with
probability wj/

∑
j′∈Sr∩Ch

wj′ . Note that random hot-deck imputation within classes can be viewed as
mean imputation within classes with added residuals.

4.3.3 K-nearest neighbours imputation

K-nearest neighbour (KNN) imputation is one of the simplest and widely used nonparametric imputation
procedures. No explicit assumption is made about the regression function f relating Y and X. KNN
imputation consists of replacing the missing value of a recipient by the weighted average of the y-values
of its K closest respondents in terms of the X-variables.
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Nearest-neighbour (NN) imputation corresponds to the limiting case of KNN obtained with K = 1.
NN is a donor imputation belonging to the class of hot-deck procedures (Chen and Shao, 2000) since a
missing value is replaced by an actual respondent y-value from the same �le. NN imputation is especially
useful for imputing categorical or discrete Y -variables; e.g., see Chen and Shao (2000), Beaumont and
Bocci (2009) and Yang and Kim (2019).

Let NK (i) be the set of K responding units closest to xi . Any distance function in Rp may be used
to measure the closeness between two vectors xi and xj . In the simulation study presented in Section
4.4, we used the customary Euclidean distance. The KNN imputed value for missing yi is given by

ŷi =

∑
j∈NK (i)∩Sr wj yj∑
j∈NK (i)∩Sr wj

, i ∈ Sm.

The imputed value ŷi obtained with KNN can be written as a weighted sum of the respondent y-values:

ŷi =
∑
j∈Sr

w′i j yj , i ∈ Sm,

where w′i j = wj1( j ∈ NK (i))/
∑

j′∈NK (i)∩Sr wj′ for j ∈ Sr with
∑

j∈Sr w
′
i j = 1. KNN imputation is a

locally weighted procedure since the respondents j lying not close enough to unit i with respect to the
X-variables are assigned a weight equal to 0; i.e., w′i j = 0. The indicator function in the expression of
w′i j can be replaced by a one-dimensional continuous kernel smoother Kh , whose role is to control the
size of the weight through a tuning parameter h : the units j lying farther from unit i will be assigned a
smaller weight than units lying close to it (Hastie et al., 2011).

The imputed estimator under KNN imputation tends to be ine�cient when the dimension p of x is
large. Indeed, as p increases, it becomes more di�cult to �nd enough respondents around the point at
which we aim to make a prediction. This phenomenon is known as the curse of dimensionality (Hastie
et al., 2011, Chap. 1) for a more in-depth discussion ok the KNN procedure. Also, it su�ers from a
model bias which is of order (K/n)1/p . Nearest-neigbour imputation for missing survey data has been
considered in Chen and Shao (2000), Beaumont and Bocci (2009) and Yang and Kim (2019).

4.3.4 B-splines and additive model nonparametric regression

Spline regression is a �exible nonparametric method for �tting non-linear functions f (·). It can be
viewed as a simple extension of linear models. For simplicity, we start with a univariate X-variable
supported on the interval [0; 1]. A spline function of order v with κ equidistant interior knots, 0 =
ξ0 < ξ1 < ... < ξκ < ξκ+1 = 1, is a piecewise polynomial of degree v − 1 between knots and smoothly
connected at the knots. These spline functions span a linear space of dimension of q = v + κ with a basis
function given by the B-splines functions:

B`(x) = (ξ` − ξ`−v)
v∑
l=0

(ξ`−l − x)v−1
+ /Π

v
r=0,r,l(ξ`−l − ξ`−r ), ` = 1, . . . , q,

where (ξ`−l − x)v−1
+ = (ξ`−l − x)v−1 if ξ`−l ≥ x and equal to zero, otherwise; see (Dierckx, 1993,

Schumaker, 1981). The B-spline basis is appealing because the basis functions are strictly local: each
function B`(·) has the knots ξ`−v , . . . , ξ` with ξr = ξmin(max(r ,0),κ+1) for r = ` − v, . . . , ` (Zhou et al., 1998),
which means that its support consists of a small, �xed, �nite number of intervals between knots. The
unknown function f (·) is then approximated by f̂ (·), a linear combination of basis functions {B`}q`=1
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with coe�cients determined by a least squares criterion computed on the data (yi , xi)i∈Sr (Goga et al.,
2019). The missing value yi is then imputed by ŷi = f̂ (xi), where

f̂ (xi) =
q∑̀
=1

β̂`B`(xi) = b>i β̂, xi ∈ [0; 1], (4.17)

with bi = (B`(xi))
q
`=1 denoting the vector of B-spline basis functions, and β̂ = (β̂`)

q
`=1 minimizes

β̂ = arg min
β∈Rq

∑
j∈Sr

wj

(
yj −

q∑̀
=1

β`B`(xj)

)2

=
©­«
∑
j∈Sr

wjbjb
>
j
ª®¬
−1 ∑

j∈Sr

wjbj yj ; (4.18)

see Goga et al. (2019). The expression of β̂ is similar to that obtained with linear regression imputation
given by (4.15) but unlike (4.15), the estimator (4.18) uses the B-spline functions B1, . . . , Bq , whose
number can vary as a function of the number of knots κ and the order v of the B-spline functions. The
degree v of the piecewise polynomial does not seem to have a great impact on the model �ts if a large
enough number of interior knots is used (Ruppert et al., 2003). This is why quadratic or cubic splines
are mostly used in practice and an adequate number of interior knots will allow to obtain �exible �ts
that capture local non-linear trends in the data. Knots are usually placed at the X-quantiles and their
number may have a great e�ect on the model �ts: a large value of κ will lead to over�tting, in which
case a penalization criterion may be used in (4.18), while a small value of κ may lead to under�tting.
Ruppert et al. (2003) give a practical rule for choosing the number κ of interior knots :

κ = min

(
1
4
× number of unique xi , 35

)
.

The imputed value (4.17) with B-spline regression can be also written as a weighted sum of the
respondent y-values similar to (4.16), ŷi =

∑
j∈Sr w

′
i j yj for all i ∈ Sm with weights now given by

w′i j = b>i

(∑
j′∈Sr wj′bj′b>j′

)−1
wjbj . These weights do not depend on the y-values as in linear regression

imputation and
∑

j∈Sr w
′
i j = 1 since

∑q
j=1 Bj(x) = 1 for all x ∈ [0; 1]. Unlike linear regression imputation,

the weights w′i j are now local due to the B-spline functions ensuring more �exibility to model local
nonlinear trends in the data.

We now turn to the multivariate case. For ease of presentation, we con�ne to the case of two
predictors, X1 and X2. Additive models provide a simple way to model nonlinear trend in the data
(Hastie and Tibshirani, 1986) and extend the standard linear model by allowing non-linear functions
between the response variable Y and each of the explanatory variables, while maintaining additivity. In
the case of two predictors, the relationship between Y and X1, X2 is expressed as a linear combination of
unknown smooth functions f1 and f2:

yi = α + f1(xi1) + f2(xi2) + εi , (4.19)

where the εi’s are independent errors with mean equal to zero. The model (4.19) is restricted to be
additive and does not account for the potential interactions among the predictors. Accounting for
interactions between X1 and X2 would require the additional predictor X1X2 to be included in the model,
leading to

y = f1(x1) + f2(x2) + f3(x1, x2) + ξ ,

where f3 is a low-dimensional interaction function �tted by using two-dimensional smoothers, such as
local regression or two-dimensional splines. This is beyond the scope of this article. When the number of
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predictors is large, the number of potential interactions may be considerable, making the implementation
of this procedure challenging. In such situations, random forests and boosting, discussed in sections
4.3.6 and 4.3.7, provide more �exible approaches. But, as pointed out by James et al. (2015), additive
models provide a useful compromise between linear and fully nonparametric models.

The unknown functions f1 and f2 in (4.19) can be estimated by using two B-spline basis B1 =

{B11, . . . , B1q1} and B2 = {B21, . . . , B2q2}, which leads to f̂1(xi1) =
∑q1
`=1 β̂1`B1`(xi1) and f̂2(xi2) =∑q2

`=1 β̂2`B2`(xi2), where β̂1` and β̂2` are determined, as before, by a least square criterion. To ensure the
identi�ability of α, additional constraints such as

∑nr
i=1 f̂1(xi1) =

∑nr
i=1 f̂2(xi2) = 0 are usually imposed.

With these constraints, the estimators (α̂, β̂1, β̂2) are simply obtained as a regression coe�cient estimator,
for β̂1 = (β̂1`)

q1
`=1 and β̂2 = (β̂2`)

q2
`=1. The imputed value for missing yi is given by

ŷi = α̂ + f̂1(xi1) + f̂2(xi2), i ∈ Sm. (4.20)

In practice, a back�tting algorithm is used to compute f1(·) and f2(·) iteratively (Hastie et al., 2011).
However, when the number p of explanatory variables is large, the algorithm may not converge and
additive models tend to breakdown. Finally, random versions of (4.17) and (4.20) are obtained by adding
random residuals as in (4.10).

4.3.5 Regression trees

Regression trees through the CART algorithm have been initially suggested by Breiman (1984). Tree-
based methods are simple to use in practice for both continuous and categorical variables and useful
for interpretation. They form a class of algorithms which recursively split the p-dimensional predictor
space, the set of possible values for the X-variables, into distinct and non-overlapping regions of Rp .
The prediction f̂tree(xi) at point xi corresponds to the average of the respondent y-values falling in the
same region as unit i. When the number of X-variables is not too large, the splitting algorithm is quite
fast, otherwise it may be time-consuming.

Following Creel and Krotki (2006), we slightly adapt the original CART algorithm as well as the
estimation procedure of f (·). The CART algorithm recursively searches for the splitting variable and
the splitting position (i.e., the coordinates on the predictor space where to split) leading to the greatest
possible reduction in the residual mean of squares before and after splitting.

More speci�cally, let A be a region or node and let #(A) the number of units belonging to A. A split
in A consists of �nding a pair (`, z), where ` is the variable coordinates taking value between 1 and p,
and z is the position of the split along the `th coordinate, within the limits of A. Let CA be the set of all
possible pairs (`, z) in A. The splitting process is performed by searching for the best split (`∗, z∗) in the
sense that

(`∗, z∗) = arg max
(`,z)∈CA

L(`, z) (4.21)

with
L(`, z) =

1
#(A)

∑
i∈Sr

1(xi ∈ A)
{
(yi − ȳA)

2 −
(
yi − ȳAL1(Xi` < z) − ȳAR1(Xi` > z)

)2
}

,

(4.22)

where Xi j is the measure of jth variable Xj for the ith individual, AL = {X ∈ A;X` < z}, AR =

{X ∈ A;X` > z} and X` the `th coordinate of X ; ȳA is the average of yi for those units i such that
xi ∈ A. In (4.21), 1(xi ∈ A) = 1 if xi ∈ A, and 1(xi ∈ A) = 0, otherwise. From (4.21), the best split (`∗, z∗)
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is the one that produces a tree with the smallest residuals sum of squares (James et al., 2015, Chap. 8);
that is, we seek (`∗, z∗) that minimizes

(`∗, z∗) = arg min
(`,z)∈CA

{ ∑
i∈Sr :xi ∈A

(
yi − ȳAL

)2
1(Xi` < z) +

∑
i∈Sr :xi ∈A

(
yi − ȳAR

)2
1(Xi` > z)

}
.

The missing yi is replaced by ŷi = f̂tree(xi), which corresponds to the weighted average of the respondent
y-values falling into the same region as i ∈ Sm :

ŷi =
∑
j∈Sr

wj1(xj ∈ A(xi))∑
j′∈Sr wj′1(xj′ ∈ A(xi))

yj , i ∈ Sm, (4.23)

where A(xi) is the region from Rp containing the point xi . With tree-based methods, the imputed value
ŷi can also be expressed as

ŷi =
∑
j∈Sr

w′i j yj , i ∈ Sm, (4.24)

where w′i j = wj1(xj ∈ A(xi))/
∑

j′∈Sr wj′1(xj′ ∈ A(xi)) with
∑

j∈Sr w
′
i j = 1. With regression trees and

tree-based methods in general, the non-overlapping A-regions obtained by means of the CART algorithm
depend on the respondent data {(yi , xi)}i∈Sr ; i.e., the same set of X-variables with a di�erent set of
respondents will lead to di�erent non-overlapping A-regions. The resulting imputed estimator is similar
to a post-strati�ed estimator based on adaptative post-strata.

Regression trees are simple to interpret and often exhibit a small model bias. However, they tend
to over�t the data if each A-region contains too few elements. To cope with this issue, regression
trees may be pruned, meaning that super�uous splits (with respect to a penalized version of (4.21)) are
removed from the tree. Pruning a regression tree tends to reduce its model variance at the expense of
increasing the model bias; see Hastie et al. (2011). A random version of (4.24) is obtained by adding
random residuals as in (4.10). Bagging and boosting methods may be used to improve the e�ciency of
tree-based procedures. This is discussed next.

4.3.6 Random forests

Random forest (Breiman, 2001) is an ensemble method which achieves better accuracy than tree-
regression methods by creating a large number of di�erent regression trees and combining them to
produce more accurate predictions than a single model would. Random forests are especially e�cient in
complex settings such as small sample sizes, high-dimensional predictor space and complex relationships
(Hamza and Larocque (2005), Díaz-Uriarte and de Andrés (2006), among others). Since the article of
Breiman (2001), random forests have been extensively used in various �elds such as medicine (Fraiwan
et al., 2012), time series analysis (Kane et al., 2014), agriculture (Grimm et al., 2008), to cite just a few.
Recently, their theoretical properties have been established by Scornet et al. (2015).

There exist a number of random forest algorithms (see Biau and Scornet (2016) for discussion). A
widely used algorithm proceeds as follows (Dagdoug et al., 2022b):

Step 1: Consider B bootstrap data sets D1, D2, ..., DB , obtained by selecting with replacement nr pairs
(yi , xi) from D = {(yi , xi)}i∈Sr .

Step 2: In each bootstrap data set Db for b = 1, . . . , B, �t a regression tree and determine the prediction
f̂ (b)tree for the unknown f in (4.8) as described in section 4.3.5. For each regression tree, only p′

variables randomly chosen among the p variables are considered in the search for the best split
in (4.21).
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Step 3: The imputed value for missing yi is obtained by averaging the predictions at the point xi of the
B regression tree predictions:

ŷi =
1
B

B∑
b=1

f̂ (b)tree(xi), i ∈ Sm, (4.25)

where f̂ (b)tree(xi) is the prediction for the unknown f in (4.8) computed at xi and obtained with
the bth regression tree as described in Section 4.3.5. More speci�cally, from (4.23), the prediction
f̂ (b)tree(xi) corresponds to the weighted average of y-values for j ∈ Sr falling in the same region
A(b)(xi) containing i ∈ Sm.

A random version of (4.25) is obtained by adding random residuals as in (4.10). Although random forests
are based on fully-grown trees, the accuracy of the predictions is improved by considering bootstrap of
units and model aggregation, a procedure called bagging and used in statistical learning for reducing
the variability. The number B of regression trees should be large enough to ensure a good performance
without harming the processing time; see Scornet (2017). The second improvement brought by random
forest is the random selection at each split of p′ predictors, achieving decorrelated trees. The value of p′

is typically chosen as p′ '
√

p (Hastie et al., 2011). In random forest algorithms, a stopping criterion is
usually speci�ed so that the algorithm stops once a certain condition (e.g., on the minimum number of
units in each �nal nodes) is met.

4.3.7 Least square tree-boosting and other tree-boosting methods

As in bagging, boosting (Friedman, 2001) is a procedure that can be applied to any statistical learning
methods for improving the accuracy of model predictions and is typically used with tree-based methods.
While bagging involves the selection of bootstrap samples to create many di�erent predictions, boosting
is an iterative method that starts with a weak �t (or learner) and improves it at each step of the algorithm
by predicting the residuals of prior models and adding them together to make the �nal prediction.

To understand how boosting works, consider a regression tree with non-overlapping regions
A1, . . . , AJ , expressed as

T(x,Θ) =
J∑
j=1

γj1(xi ∈ Aj). (4.26)

The parameter Θ = {γj , Aj}
J
j=1 is obtained by minimizing

Θ̂ = arg min
Θ

J∑
j=1

∑
i:xi ∈A j

L(yi , γj) = arg min
Θ

∑
i∈Sr

L(yi , T(xi ,Θ)), (4.27)

where L denotes a loss function; e.g., the quadratic loss function. With the latter, given a region Aj ,
estimating the constant γj is usually straightforward as γ̂j = y j the average the y-values belonging to
Aj . However, �nding the regions {Aj}

J
j=1 and solving (4.27) in a traditional way may prove challenging

and computationally intensive as it requires optimizing over all the parameters jointly. To overcome
this di�culty, one may use a greedy top-down recursive partitioning algorithm to �nd {Aj}

J
j=1 as

described in Section 4.3.5. Alternatively, one may split the optimization problem (4.27) into many simple
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subproblems that can be solved rapidly. Boosting uses the latter and considers that the unknown f has
the following additive form:

f (x) =
M∑
m=1

T(x,Θm), (4.28)

where T(x,Θm) for m = 1, . . . , M are trees determined iteratively by using a forward stagewise procedure
(Hastie et al., 2011): at each step, a new tree is added to the expansion without modifying the coe�cients
and parameters of trees already added. Each added tree, usually referred to as a weak-learner, has a
small size and slowly improves the estimation of f in areas where it does not perform well. For the
quadratic loss function, after accounting for the survey weights, the algorithm becomes:
Step 1: Initialize the algorithm with a constant value: f̂0(xi) = 0 and

γ̂0 = arg min
γ∈R

∑
i∈Sr

wi(yi − γ)
2 =

1∑
i∈Sr wi

∑
i∈Sr

wiyi .

Step 2: For m = 1 to M :

(a) Given the current model f̂m−1, �t the regression tree that best predicts the residuals values
yi − f̂m−1(xi), i ∈ Sr and get the terminal regions (Ajm)

Jm
j=1.

(b) Given the terminal regions Ajm, the optimal constants γ̂jm are found as follows:

γ̂jm = arg min
γjm

∑
i∈Sr :xi ∈A jm

wiL(yi , f̂m−1(xi)+ γjm) = arg min
γjm

∑
i∈Sr :xi ∈A jm

wi(yi − f̂m−1(xi) − γjm)
2

for j = 1, . . . , Jm.

(c) Update f̂m(xi) = f̂m−1(xi) + T(xi , Θ̂m) where Θ̂m = {Ajm, γ̂jm}
Jm
j=1 and T(xi , Θ̂m) =∑Jm

j=1 γ̂jm1(xi ∈ Ajm).

Step 3: Output f̂M (xi) and get the imputed value

ŷi = f̂M (xi). (4.29)

A random version of (4.29) is obtained by adding random residuals as in (4.10). The number M of trees
should not be too large and, for better performances, Hastie et al. (2011) recommend to consider the
same number of splits Jm = J at each iteration. The value of J re�ects the level of dominant interactions
between the X-variables. The value J = 2 (one split) produces boosted models with only main e�ects
without interactions, whereas the value J = 3 allows for two-variable interactions. Empirical studies
suggest that J = 6 generally leads to good results. As in ridge regression, shrinkage is used with tree
boosting. In this case, Step 2. (c) of the above algorithm is replaced by a penalized version:

f̂m(xi) = f̂m−1(xi) + νT(xi , Θ̂m),

where the parameter ν ∈ (0, 1), called learning rate, is used to penalized large trees; usually ν = 0.1 or
0.01. Both M and ν control the performance of the model prediction.

XGBoost

Chen and Guestrin (2016) suggested a scalable end-to-end tree boosting system called XGBoost which is
extremely fast. Here, we adapt the algorithm in order to account for the survey weights. Consider again
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a tree with formal expression given in (4.26). This tree learning algorithm consists of minimizing the
following objective function at the m-th iteration:

Θ̂m = arg min
Θm

{
∑
i∈Sr

wiL(yi , f̂m−1(xi) +T(xi ,Θm))} +Ω(T(x,Θm)), (4.30)

where the penalty function Ω(T(x,Θm)) = γJ + λ
2

∑J
j=1 γ

2
j penalizes large trees in order to avoid

over�tting. The search problem is optimized by using a second-order Taylor approximation of L, and
ignoring the constant term, the new optimization problem reduces to:

Θ̂m = arg min
Θm

J∑
j=1

γj
∑

i∈Sr :xi ∈A j

wigi +
1
2
γ2
j (

∑
i∈Sr :xi ∈A j

wihi + λ)
 + γJ, (4.31)

where gi and hi are the �rst and second-order derivatives of the loss function computed at f̂m−1(xi).
With the quadratic loss function, gi = 2( f̂m−1(xi) − yi) and hi = 2. The new objective function from
(4.31) is a second-order polynomial with respect to γj , so the optimal γj is easily obtained as γ∗j =
−(

∑
i∈Sr :xi ∈A j

wigi)/(
∑

i∈Sr :xi ∈A j
wihi + λ), leading to the optimal value of the objective function as

−(1/2)
∑J

j=1(
∑

i∈Sr :xi ∈A j
wigi)

2/(
∑

i∈Sr :xi ∈A j
wihi + λ) + γJ. This value is then used next as a decision

criterion in a greedy top-down recursive algorithm to �nd the optimal regions Aj of the m-th tree to be
added.

Bayesian additive regression trees (BART)

Bayesian additive regression trees (Chipman et al., 2010, BART) is similar to boosting in the sense that
the unknown regression function f has an additive form as in (4.28). While boosting is completely
nonparametric, BART makes a Gaussian assumption on the model errors:

yi = f (xi) + εi , εi ∼ N
(
0,σ2) ,

where f (x) =
∑M

m=1 T(x,Θm) =
∑M

m=1 Tm(x, Γm) is assumed to be a sum of tree functions and Γm ={
γj , γ2, . . . , γJm

}
is the set of parameter values associated with the Jm terminal nodes in each tree

T(x,Θm).
As stated in Chipman et al. (2010), although similar in spirit to gradient boosting, BART di�ers

from boosting algorithms both by the way it weakens the individual trees by relying on a Bayesian
framework, but also on how it performs the iterative �tting. More speci�cally, a prior is speci�ed for the
parameters of the model (T1, Γ1), (T2, Γ2), . . . , (Tm, Γm) and σ2. The prior of Tm can be decomposed into
three components :

1. The probability that a node at depth J is a terminal node is given by α (1 + J)−β for α ∈ (0; 1) , β ≥
0.

2. The distribution on the splitting variable assignments in each interior node is uniform.

3. The distribution of the splitting value conditional on the chosen splitting variable is also uniform.

Borrowing the illustrative example of Chipman et al. (2010), with the parameters α = 0.95 and
β = 2, trees with 1, 2, 3, 4, 5 terminal nodes receive prior probabilities of 0.05, 0.55, 0.28, 0.09 and 0.03,
respectively. Therefore, as in boosting, the BART model tends to favor trees with a small number of
terminal nodes. However, the process of restricting the depth of regression trees (or equivalently the
number of terminal nodes) in BART is di�erent from the one used in boosting. For boosting, the depth of
the trees is �xed by the user and is similar for all trees used in the forest. For BART, the user speci�es a
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probability for the trees to have a certain number of terminal nodes. As a result, the number of terminal
nodes is random rather tan �xed. Therefore, it is likely that trees have only a small number of terminal
nodes with the BART model, but this number can vary depending on the data at hand. For γj , a conjugate
prior is chosen to make computations simpler; e.g., p(γjm |Tm) is assumed to be N(γγ ,σ2

γ ). Similarly,
a conjugate prior is chosen for σ2, e.g., the inverse chi-square distribution. To generate the posterior
distribution, the authors suggest the use of a Gibbs sampler. For general guidelines about the choices of
these parameters, see Chipman et al. (2010). The imputed value for missing yi is obtained as with the
general boosting algorithm given in Section 4.3.7, where the prediction of each regression tree is the
weighted average of the values in the terminal node containing xi .

4.3.8 Cubist algorithm

Cubist is an updated implementation of the M5 algorithm introduced by Quinlan et al. (1992) and Quinlan
(1993). It is an algorithm based on regression trees and linear models, among other ingredients. Initially,
Cubist was only available under a commercial license. In 2011, the code was released as open-source.
The algorithm proceeds as follows (Kuhn and Johnson, 2013, Chap. 8):

Step 1: Create a partition P = {A1, A2, ..., AT } of Rp . To do so, let CA be the set of all possible splits in
a node A of cardinality `, that is, the set of all possible pairs (position, variable). Then, the split
is performed using the following criterion:

L ′(z, j) = arg max
(z,j)∈CA

√√√√√∑
i∈Sr

©­«yi − ©­« 1
nr

∑
j′∈Sr

yj′
ª®¬ª®¬

2

−
∑̀
h=1

nh
nr

√√√√ ∑
i:xi ∈Dh

(
yi −

(
1
nr

∑
j′:xi ∈Dh

yj′

))2

,

where D1, . . . , D` denote the ` non-terminal nodes after each of the ` − 1 previous splits and nh
denotes the cardinal of elements in the node Dh .

Step 2: In each node, a linear model is �tted between the survey variable Y and the auxiliary variables
that have been used to split the tree. More speci�cally, consider the jth terminal node Aj . Then,
there exists a path from the �rst node to the current node Aj in the graph formed by the tree.
This path uses p′j variables among the set {X1, X2, ..., Xp}. For instance, assume that a partition
of 5 elements is created by the tree shown in Figure 22. Then, the linear model in the node A1 is
�tted using the variables that created the path in red, that is, X1, X4 and X6, and so p′1 = 3 for
this node. The linear model �tted in the node A4 uses only one variable, X1, (the green path), so
p′4 = 1. The coe�cients β j ∈ R

p′j of the linear model in the node Aj are estimated using the
customary weighted least squares criterion:

β̂ j = arg min
β j ∈R

p′
j

∑
i∈Sr

wi

{
yi − β>j x

(j)
i

}2
1

(
xi ∈ Aj

)
,

where x(j)i is the vector containing the measurements of the p′j variables for unit i.

Step 3: In each node, a backward elimination procedure is performed using the adjusted error rate (AER)
criterion. For instance, in the jth terminal node, we have

AE R(Aj) =
#(Aj) + p∗

#(Aj) − p∗
∑

i∈Sr :xi ∈A j

|yi − ŷi |,
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Figure 22: Example of a graph induced by a tree algorithm.

where p∗ denotes the number of variables used in the current model which predicts ŷi for a
prediction at the point xi . Each variable in the initial model is dropped and the AER is recomputed.
Terms are dropped from the model as long as the AER decreases.

Step 4: Once the tree is fully grown, it is pruned by removing unnecessary splits. Starting at the terminal
nodes, the AER is computed with and without the node. Whenever the node does not result in a
decrease of the AER, it is pruned. This process is performed until no more node can be removed.

Step 5: To avoid over-�tting, a smoothing procedure is performed. Let ŷi(j) be the predicted value
obtained by �tting the linear model in the jth child node and ŷi(p) be the predicted value
obtained from the direct parent node. These predictions are combined as

ŷi = ayi(j) + (1 − a)ŷi(p),

where

a =
V̂(e(p)) − Ĉov(e(j), e(p))

V̂(e(j) − e(p))

with ei(j) = yi − ŷi(j) denoting the ith coordinate of the vector e(j), ei(p) = yi − ŷi(p) denoting the
ith coordinate of the vector e(p) and V̂(·) and Ĉov(·, ·) denoting the empirical model variance
and covariance, respectively.

Step 6: Cubist can be used as an ensemble model. Once the Cubist algorithm is �tted, the subsequent
iterations of the algorithm use the previously trained algorithm to de�ne an adjusted response
y
(m)
i so that the next iteration of the algorithm uses

y
(m)
i = yi − (y

(m−1)
i − yi),

where y
(m)
i is the value of the adjusted response yi for the mth iteration of the Cubist algorithm.
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Step 7: The �nal imputed value for missing yi is derived using a K nearest-neighbour rule:

ŷi =
1
K

K∑
k=1

1
0.5 + dk

(tk + ŷ(k) − t̂k), (4.32)

where dk denotes the distance between xi and the kth neighbor, tk denotes the outcome of the
kth neighbor and t̂k its predicted value.

A random version version of (4.32) is obtained by adding random residuals as in (4.10).

4.3.9 Support vector regression

Support vector machines (Cortes and Vapnik, 1995, Smola and Schölkopf, 2004, Vapnik, 1998, 2000)
belong to the class of supervised learning algorithms and may be used for regression analysis. We start
by considering the linear regression model

f (xi) = β0 + x
T
i β, β0 ∈ R, β ∈ Rp ,

before discussing the case of nonlinear relationships. In the customary regression framework, the goal
is to minimize the residuals sum of squares. In Support Vector Regression (SVR), the goal is to minimize
a function of the residuals plus a L2-penalization on the regression coe�cient:

S =
∑
i∈Sr

Vε (yi − f (xi)) +
λ

2
| |β | |2, (4.33)

where Vε is the so-called ε-insensitive error measure de�ned as Vε (x) = 0 if |x | < ε and |x | − ε otherwise
(Vapnik, 2000) for ε > 0; ε can be viewed as the allowed tolerance for �tting; see Figure 1 in Smola
and Schölkopf (2004). The optimization problem (4.33) may not have solution and supplementary
tolerances ξi , ξ∗i (called also "the slack variables") on the individual �tted errors are considered (Smola
and Schölkopf, 2004). There exist several ways for incorporating weights in the optimization problem,
leading to di�erent weighted support vector regression solutions. We consider the method suggested by
Lee et al. (2005) and Han and Clemmensen (2014):

minimize
β

1
2
| |β | |2 +C

∑
i∈Sr

w̃i

(
ξi + ξ

∗
i

)
(4.34)

and
subject to yi − β0 − x

T
i β 6 ε + ξi ,

β0 + x
T
i β − yi 6 ε + ξ

∗
i .

ξi , ξ
∗
i > 0,

(4.35)

where C > 0 is the tuning parameter that provides a trade-o� between the smoothness of the �tted
function and the deviation from the training data and w̃i = wi/

∑
j∈Sr wj ∈ (0, 1) denotes the normalized

sampling weight associated with unit i. As a result, the w̃i’s are all smaller than one. As argued by
Han and Clemmensen (2014), incorporating weights in the objective function as in (4.34) has the
e�ect of shrinking the estimators β̂j to di�erent extents. The solution of (4.33) and (4.35) is given by
β̂ =

∑
i∈Sr

(
α̂i − α̂

∗
i

)
xi , which leads to

f̂ (x) =
∑
i∈Sr

(
α̂i − α̂

∗
i

)
< xi , x > +β0, (4.36)
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where < ·, · > is an inner product and α̂i > 0 and α̂∗i > 0 denote the Lagrange multipliers verifying the
quadratic programming problem:

min
αi ,α∗i

ε
∑
i∈Sr

(αi + α
∗
i ) −

∑
i∈Sr

yi(αi − α
∗
i ) +

1
2

∑
i,j∈Sr

(αi − α
∗
i )(αj − α

∗
j ) < xi , xj >

subject to 0 ≤ αi ,α∗i ≤ Ci := C × w̃i ,
∑

i∈Sr (αi − α
∗
i ) = 0 and αiα∗i = 0. As a result, only a subset of the

solution values (α̂i − α̂∗i ) are nonzero and the associated data values are called the support vectors. The
solution β̂ is written as a linear combination of these support vectors. Moreover, the prediction f̂ (x) uses
only the support vectors and the inner products between x and xi without requiring the computation of
β̂. This property is useful for extending the method to handle nonlinear relationships.

We now consider the case of a nonlinear and unknown function f . We approximate f in a basis of
functions {φm}Mm=1 as follows:

f (x) =
M∑
m=1

βmφm(x) + β0

and β0 and β = (βm)
M
m=1 minimize (4.34) and

subject to yi − β0 −

M∑
m=1

βmφm(xi) 6 ε + ξi ,

β0 +

M∑
m=1

βmφm(xi) − yi 6 ε + ξ
∗
i .

ξi , ξ
∗
i > 0.

(4.37)

A similar derivation as before leads to β̂ =
∑

i∈Sr

(
α̂i − α̂

∗
i

)
φ(xi) for φ(xi) = (φm(xi))Mm=1 and

f̂ (x) =
∑
i∈Sr

(
α̂i − α̂

∗
i

)
K(xi , x) + β0,

whereK(xi , x) =< φ(xi), φ(x) >=
∑M

m=1 φm(xi)φm(x) is a positive de�nite kernel (Smola and Schölkopf,
2004). The computation of f̂ (x) involves φ(x) only through inner products and using a kernel function
makes the computation of f̂ (x) possible without requiring φ(x). All is needed is the knowledge of
K . Using K , it is possible to solve the optimization problem in a higher-dimensional space without
having to compute any product in this space. Common choices of K(·, ·) include the Gaussian kernel
K(xi , xj) = exp

(
−||xi − xj | |

2) and the polynomial kernel K(xi , xj) =
(
1 + x>i xj

)q , q = 2, 3, . . . . The
imputed value for the missing yi is given by

ŷi =
∑
j∈Sr

(
α̂j − α̂

∗
j

)
K(xj , xi) + β̂0. (4.38)

A random version version of (4.38) is obtained by adding random residuals as in (4.10). The reader is
referred to Smola and Schölkopf (2004) for a discussion on how to estimate β0.

4.4 Simulation study: the case of population totals

We conducted an extensive simulation study to investigate the performance of the imputation procedures
described in Section 4.3 in terms of bias and e�ciency.
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4.4.1 The setup

For each scenario, we repeated R = 5, 000 iterations of the following process:

(i) A �nite population of size N = 10, 000 was generated. The population consisted of a survey
variable Y and a set of predictors X1, . . . , Xp .

(ii) From the �nite population generated in Step (i), a sample, of size n, was selected according to a
given probability sampling design.

(iii) In each sample, nonresponse to item Y was generated according to a given nonresponse
mechanism.

(iv) The missing values in each sample were imputed using several imputation procedures.

We now give a more in-depth discussion of each of the steps (i)-(iv).
We �rst generated �ve predictors X1, . . . , X5, according to the following distributions: X1 followed

a normal distribution, X1 ∼ N (0, 1) ; X2 followed a Beta distribution, X2 ∼ Beta (3, 1) ; X3 followed a
Gamma distribution, X3 ∼ 2 ×Gamma (3, 2) ; X4 followed a Bernoulli distribution, X4 ∼ B (0.7) ; and X5

followed a multinomial distribution, X5 ∼ Mult (0.4, 0.3, 0.3) . The predictors X1-X3 were continuous,
whereas the predictors X4 and X5 were discrete. The predictors X1-X3 were standardized so as to have a
zero mean and a variance equal to one. Given the predictors X1-X5, we generated the continuous survey
variables Y1, . . . ,Y8, according to the following models:

• Y1 = 2 + 2X1 + X2 + 2X3 +N(0, 1);

• Y2 = 2 + 2X1 + X2 + 2X3 + Pareto(1, 4);

• Y3 = 2 + X1 + X2
2 + X3 +N(0, 1);

• Y4 = 2 + 2X1 + X2 + 3X3X4 + 1.51(X5 = 1) − 21(X5 = 2) +N(0, 1);

• Y5 = 2 + 5X3
1 + 4X2

2 + X3X4 + 1.51(X5 = 1) − 21(X5 = 2) +N(0, 1);

• Y6 = 2 + (2X1 + X2 + 2X3)
2 +N(0, 1) + Beta(3, 1);

• Y7 = 2 + (2X1 + X2 + 3X3X4 + 1.51(X5 = 1) − 21(X5 = 2))2 +N(0, 1);

• Y8 = 4 cos (X1) +N(0, 1);

and the binary survey variables as follows:

• Y9 = 1(S1 > 1/2), where

S1 = 0.1 + 0.79 exp {1 + 0.5 (0.75 + 2X1 + 2X2 + 2X3 − X4 − X3X4

+1.51(X5 = 1) − 21(X5 = 2))}−1 ;

• Y10 = 1(S2 > 1/2), where
S2 = 0.55 ×Q + 0.02 − 0.01X3

2

with

Q = exp {1 + 0.4 × (6.5 + 2X1 + 2X2 + 2X3 − X4 − X3X4

+1.51(X5 = 1) − 21(X5 = 2))}−1 . (4.39)
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For the survey variables Y2 and Y6, note that we have generated errors for non-normal distribution
to assess the robustness of the BART procedure that assumes a Gaussian distribution for the errors.

From each population, we selected samples, of (expected) size n = 1, 000, according to two sampling
designs: (a) simple random sampling without replacement and (b) Poisson sampling with probability
proportional to the values of the variable X5; i.e., πi = 1, 000× (x5i/

∑
i∈U x5i) for all i ∈ U. Simple random

sampling without replacement was used for estimating the �nite population total of the continuous
survey variables Y1-Y6 and Y8 and the binary variables Y9 and Y10, whereas Poisson sampling was used
for estimating the totals of the survey variables Y4 and Y7.

In each sample, nonresponse to the survey variable Ỳ , ` = 1, . . . , 10, was generated according to
four nonresponse mechanisms. That is, the response indicators ri were generated from a Bernoulli
distribution with probability pgi , g = 1, . . . , 4, where

(NR1): p1i = 0.1 + 0.79 exp {1 + 0.5 (0.75 + 2xi1 + 2xi2
+2xi3 − xi4 − xi3xi4 + 1.51(xi5 = 1) − 21(xi5 = 2))}−1 ;

(NR2): p2i = 0.5;

(NR3): p3i = 0.55 × qi + 0.02 − 0.01x3
i2;

(NR4): p4i = 0.5 × qi + 0.13 − 0.1 (sin(xi1) + cos(xi2)) ;

where qi is the ith value of Q given by (4.39). In (NR1)-(NR4), the model parameters were set so as to
obtain a response rate of about 50% in each sample.

In each sample, the missing values were imputed according to eleven imputation procedures described
in section 4.3. Some of the imputation procedures required the speci�cation of some parameters (e.g.,
regularization parameter, depth of a regression tree, choice of a kernel, etc.). We have included several
con�gurations to assess the impact of these parameters on the performance of these procedures. Based
on the di�erent con�gurations, we ended up with twenty-seven imputation procedures. More speci�cally,
we included the following procedures:

Procedure 1: "LR" : Deterministic linear regression imputation; see Section 4.3.1.

Procedure 2: "MWCα" : Mean imputation within classes, where the number of units in each class was
set to α ∈ {50, 100, 250, 500}; see Section 4.3.2.

Procedure 3: "HDWCα" : Random hot-deck imputation within classes, where the number of units in
each class was set to α ∈ {50, 100, 250}; see Section 4.3.2.

Procedure 4: "KNN" : K-Nearest-Neighbours imputation with K = 1 and K = 5 nearest neighbours and
the euclidian distance and implemented with the R-package caret; see Section 4.3.3.

Procedure 5: "AMSα" : Additive models based on cubic B-splines with α equidistant interiors knots
placed at the x-quantiles, where α ∈ {5, 10} and implemented with the R-package mgcv;
see Section 4.3.4.

Procedure 6: "CART" : Imputation through regression trees with the CART algorithm and implemented
with the R-package rpart; see Section 4.3.5.

Procedure 7: "RF1" : Imputation through random forest with B = 1000 trees, one observation per
terminal node and 1 predictor considered for the search in each split. "RF2": Random forest
with B = 1000 trees, 5 observations per terminal node and √p predictors considered for
each split, where p is the number of X-variables used in the imputation model, in our
case p = 5. "RF3" : Random forest with B = 1000 trees, 10 observations per terminal
node and √p predictors considered for each split. Simulations were implemented with the
R-package ranger; see Section 4.3.6.
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Procedure 8: "XGB1": XGBoost algorithm with M = 50 trees each one with J = 3 �nal splits and a
learning rate of 0.1. "XGB2": XGBoost algorithm with M = 100 trees with J = 6 and a
learning rate of 0.05. "XGB3": XGBoost algorithm with M = 250 trees with J = 10 and
a learning rate of 0.01. Simulations were implemented with the R-package xgboost; see
Section 4.3.7.

Procedure 9: "BART" : Imputation through Bayesian additive regression trees. Simulations were
implemented with the R-package bartMachine; see Section 4.3.7.

Procedure 10: "CUBIST1": Cubist with one model. "CUBIST2" : Cubist with �ve models. "CUBIST3" :
Cubist with 5 models and unbiased estimation. Simulations were implemented with the
R-package Cubist; see Section 4.3.8.

Procedure 11: "SVR1": Support vector regression imputation with a Gaussian kernel and the ν objective
function. "SVR2": Support vector regression imputation with a polynomial kernel of
degree 3 and the ε-insensitive objective function. "SVR3": Support vector regression
imputation with a Gaussian kernel and the ε-insensitive objective function. "SVR4":
Support vector regression imputation with a linear kernel and the ε-insensitive objective
function. Simulations were implemented with the R-package e1071; see Section 4.3.9.

The imputation procedures used in our simulations were based on an imputation model that included
the predictors X1, . . . , X5, without any interaction terms. Except for random hot-deck imputation
(Procedure 3) and nearest-neighbour imputation (Procedure 4 with K = 1), for the binary variables Y9

and Y10, note that we have generated zeroes and ones from independent Bernoulli distributions with
parameter ŷi , where ŷi denotes the predicted value associated with unit i. Whenever ŷi < 0, we set it to
ŷi = 0. Similarly, when ŷi > 1, we set it to ŷi = 1.

As a measure of bias of the imputed estimator t̂imp given by (4.4), we computed the Monte Carlo
percent relative bias de�ned as

RBMC (̂timp) = 100 ×
1
R

R∑
r=1

(̂t(r)imp − ty)

ty
, (4.40)

where t̂(r)imp denotes the imputed estimator t̂imp at the rth iteration, r = 1, . . . , 5, 000.
As a measure of e�ciency, we computed the relative of e�ciency, using the complete data estimator

t̂π given by (4.1), as the reference. That is,

REMC (̂timp) = 100 ×
MSEMC (̂timp)

MSEMC (̂tπ)
, (4.41)

where MSEMC (̂timp) = R−1 ∑R
r=1(̂t

(r)
imp − ty)2 and MSEMC (̂tπ) is de�ned similarly.

4.4.2 Simulation results

In Section 4.4.2, we discuss the simulation results pertaining to the continuous survey variables Y1, . . . ,Y6

and Y8, with simple random sampling without replacement. The results for Poisson sampling used in the
case of Y4 and Y7 are discussed in Section 4.4.2. Finally, the case of the binary variables Y9 and Y10, whose
totals were estimated with simple random sampling without replacement, is discussed in Section 4.4.2.
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Continuous survey variables and simple random sampling without replacement

For simple random sampling without replacement, for each of the twenty-seven imputation procedures,
we had seven survey variables and four nonresponse mechanisms, leading to 27 × 4 × 27 = 756 sets
of simulation results. For ease of presentation, we present the results in tabular and graphic forms.
The displayed statistical analyses were obtained from 4 × 7 = 28 scenarios obtained by crossing all the
nonresponse models and the survey variables.

For each imputation procedure, Table 6 and Table 7 display, respectively, some descriptive statistics
regarding the Monte Carlo absolute percent relative bias (absolute value of RB) and the Monte Carlo
relative e�ciency (RE) of t̂imp calculated across the twenty-eight scenarios. The corresponding side-
by-side boxplots obtained from the twenty-eight scenarios are given in Figures 23 and 24. In Tables 6
and 7, the imputation procedures are ordered from the best to the worst with respect to the median
absolute percent RB (the median of the twenty-eight values of absolute RB) and the median percent
RE (the median of the twenty-eight values of RE), respectively. Figure 25 shows the distribution of the
imputed estimator for the best ten imputation procedures in terms of RE. Finally, Table 8 displays the
best �ve imputation procedures for each Y -variable.

From Table 6 and Table 7, among the twenty-seven imputation procedures, the best methods were:
CUBIST, XGboost, AMS and BART. The performance of CUBIST3 was especially impressive with a
median RE of 115%, a value of Q95 equal to 158% and a maximum value of 211%. The methods XGboost,
AMS and BART exhibited similar performances with values of median RE ranging from 122% and 129%.
However, for some scenarios, these methods did not perform well. For instance, the procedure XGB2
showed a value of max RE of about 438%, whereas it was equal to 1728% for AM5. Results suggest that
additive models with 5 interiors knots perform better than those with 10 interior knots. The next group
of imputation procedures includes SVR and RF, with values of median RE ranging from 141% and 151%.
Again, for some scenarios, both methods displayed poor performances with values of max RE ranging
from 322% to 1138%. The procedure CART was less e�cient than RF2 and RF3. The procedure 1-NN
did relatively well with a median RE equal to 194%. On the other hand, the procedure 5-NN was rather
ine�cient with a median RE of 229%, which suggests that KNN with survey data works well only with
a small number of neighbour. Turning to mean and random hot-deck imputation within classes, the
score method was outperformed by the aforementioned procedures. Among the di�erent versions of
MCW and HDWC, the procedure MWC50 (which corresponds to 20 classes) led to the best results. This
is consistent with the results of Haziza and Beaumont (2007). As expected, the procedure HDWC50
was less e�cient than MWC50 as random hot-deck imputation su�ers from the imputation variance,
arising from the random selection of donors within classes. Finally, for some scenarios, it is worth noting
that some of the procedures were better than the complete data estimator. For instance, for SVR4, the
minimum value of RE and the value of Q0.05 were respectively equal to 82% and 89%, respectively (see
Table 7). Finally, the results in Table 5 suggest that the best methods were CUBIST, XGBoost, additive
models and BART, which is consistent with the discussion above.

For each of the best ten imputation procedures displayed Table 7, Figure 26 displays the distribution
of t̂imp for each nonresponse mechanism. Figure 26 suggests that the nonresponse mechanism may have
a considerable impact on the behavior of the imputed estimator. For instance, in our experiments, we
note that most of the imputation procedures performed poorly in the case of the nonresponse mechanism
(NR1). Notable exceptions were AMS5, BART and Cubist3. In particular, Cubist3 seemed to be insensitive
to the nonresponse mechanism, which is a desirable feature.



4.4 simulation study: the case of population totals 149

Ranking Model Min Q0.05 Q0.25 Q0.5 Q0.75 Q0.95 Max

1 CUBIST3 0.0 0.0 0.0 0.1 0.9 2.8 3.5
2 AMS5 0.0 0.0 0.0 0.1 1.8 7.7 13.8
3 AMS10 0.0 0.0 0.0 0.1 1.8 7.6 13.5
4 CUBIST1 0.0 0.0 0.1 0.5 3.4 7.5 7.5
5 XGB1 0.0 0.0 0.2 0.6 1.8 4.2 5.4
6 MWC50 0.0 0.0 0.1 0.6 2.7 8.3 11.7
7 HDWC50 0.0 0.0 0.1 0.6 2.7 8.3 11.8
8 CUBIST2 0.0 0.0 0.1 0.6 3.6 7.5 7.5
9 BART 0.0 0.1 0.4 0.8 2.2 4.0 4.6
10 XGB2 0.1 0.2 0.4 0.9 2.8 5.4 10.1
11 LR 0.0 0.0 0.1 0.9 3.8 12.8 20.4
12 SVR3 0.1 0.1 0.4 1.0 3.2 7.1 13.5
13 MWC100 0.0 0.0 0.3 1.0 3.6 10.1 12.9
14 HDWC100 0.0 0.0 0.3 1.0 3.6 10.1 12.9
15 SVR1 0.0 0.1 0.4 1.2 3.4 7.4 14.0
16 RF3 0.0 0.2 0.5 1.3 3.8 16.6 20.7
17 RF2 0.0 0.1 0.4 1.4 4 15.6 18.6
18 MWC250 0.0 0.0 0.7 1.7 4.9 14.6 18.1
19 HDWC250 0.0 0.0 0.6 1.7 4.9 14.6 18.1
20 RF1 0.1 0.2 0.9 1.7 7.7 32.1 39.5
21 NN 0.0 0.1 1.0 2.1 5.2 8.0 9.4
22 MWC500 0.0 0.0 0.7 2.2 7.2 25.5 30.6
23 CART 0.0 0.1 0.1 2.4 4.9 17.4 28.0
24 X5NN 0.0 0.2 1.5 3 7.3 12.0 13.7
25 SVR2 0.1 0.2 1.0 3.7 11.7 19.9 27.0
26 XGB3 0.6 1.5 3.1 4.3 5.0 9.5 10.3
27 SVR4 0.0 0.0 2.4 5.3 7.8 22.2 33.3

Table 6: Monte Carlo percent absolute relative bias of the imputed estimator: Descriptive statistics over
all the scenarios
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Ranking Model Min Q0.05 Q0.25 Q0.5 Q0.75 Q0.95 Max

1 CUBIST3 102 102 111 115 125 158 211
2 BART 113 113 116 122 131 154 204
3 AMS5 100 101 111 123 147 378 1728
4 AMS10 100 101 112 123 167 1195 1749
5 XGB1 101 103 115 129 153 203 288
6 CUBIST2 102 103 119 133 187 360 365
7 XGB2 102 102 117 133 166 316 438
8 CUBIST1 103 105 120 136 182 360 365
9 SVR1 94 103 122 141 180 284 322
10 SVR3 95 106 122 143 181 269 299
11 RF3 115 118 131 149 192 919 1138
12 RF2 113 118 130 151 202 824 1025
13 CART 125 134 143 168 248 1498 2683
14 LR 110 111 114 169 315 823 3494
15 MWC50 113 114 122 171 205 308 583
16 HDWC50 120 120 128 189 240 332 600
17 MWC100 116 116 136 191 217 296 670
18 NN 101 111 125 194 378 486 526
19 XGB3 92 100 128 194 663 1082 1104
20 HDWC100 123 125 142 213 246 322 686
21 RF1 136 137 149 223 375 3656 3916
22 MWC250 128 130 159 229 279 383 1162
23 5NN 94 108 123 229 659 775 855
24 SVR2 97 102 151 242 1616 3849 6355
25 SVR4 82 89 117 258 1439 4301 8675
26 HDWC250 141 143 185 265 325 411 1184
27 MWC500 151 155 202 269 336 1783 3021

Table 7: Monte Carlo percent absolute relative e�ciency of the imputed estimator: Descriptive statistics
over all the scenarios
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Figure 25: Monte Carlo percent relative e�ciency across the scenarios: the best 10 procedures.

Figure 26: The e�ects of the nonresponse mechanism on the performance of the 10 best imputation
procedures.

Continuous survey variables with Poisson sampling

Recall that Poisson sampling was used for estimating the population total of the survey variables Y4 and
Y7. This led to 2 × 4 × 27 = 216 sets of results. Due to the small number of scenarios (2 × 4 = 8) for each
of the survey variables Y4 and Y7, Tables 9 and 10 show the minimum, the median and the maximum
Monte Carlo percent absolute RB and Monte Carlo percent RE only. The size variable X5 used to obtain
the �rst-order inclusion probabilities was included as a predictor in the imputation models. The results
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Ranking Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

1 LR CUBIST3 AMS5 BART XGB3 CUBIST3 CUBIST3 CUBIST3

2 CUBIST3 LR AMS10 CUBIST3 AMS5 BART AMS5 AMS5

3 MW50 AMS5 BART CUBIST1 AMS10 SVR3 AMS10 AMS10

4 AMS5 MWC50 CUBIST3 CUBIST2 XGB1 SVR1 MWC50 XGB1

5 AMS10 AMS10 CUBIST2 XGB1 XGB2 XGB1 BART BART

Table 8: Best 5 imputation procedures for each survey variable.

in Tables 9 and 10 were consistent with those obtained for simple random sampling without replacement.
Again, the best methods were CUBIST3, BART and XGB1 in terms of either bias or e�ciency.

Binary survey variables

In this section, we present the results pertaining to the binary variables Y9 and Y10. Again, for each
imputation procedure, we obtained 2 × 4 = 8 sets of results. Tables 11 and 12 show the minimum, the
median and the maximum Monte Carlo percent absolute RB and Monte Carlo percent RE, respectively.

The ranking for binary survey variables was slightly di�erent from that obtained for the continuous
survey variables. Nearest-neighbor (NN) imputation procedure was the best in terms of bias and e�ciency.
Recall that NN imputation did not rank among the best procedures for the continuous variables. NN
imputation was followed by CUBIST, XGBOOST and BART.

4.4.3 High-dimensional setting

In this section, we investigate the performance of a subset of the imputation procedures considered in
Section 4.4.1 in a high-dimensional setting. To that end, we used data from the Irish Commission for
Energy Regulation (CER) Smart Metering Project conducted in 2009-2010 (CER, 2011) that focused on
energy consumption and energy regulation2. About 6000 smart meters were installed in Irish residences
and businesses. The customer’s electrical consumption was collected every half an hour over a period of
about two years.

We considered a subset of the original data set. We ended up with a population of N = 6291 smart
meters (households and businesses) for a period of 14 consecutive days. For each population unit i
(household or business), we had 2 × 7 × 48 = 672 measurements denoted by Xj = X(tj), j = 1, . . . 672.
Each of these 672 measurements represents the electricity consumption (in kW) at instant tj . We denote
by xi j the value of Xj recorded by the smart meter i for i = 1, . . . , N at instant tj . It should be noted
that these variables were highly correlated among themselves with a condition number of the matrix
N−1XTX computed using all the data, of about 60.000.

We created four survey variables based on a subset of the auxiliary variables X1, . . . , X672:

Y1 = 400 + 2X1 + X2 + 2X3 +N(0, 1500);

Y2 = 400 + X1X2 + 2X3 +N(0, 1500);

Y3 = 500 + 2X4 + 4001{X5>156} − 4001 (X5 6 156) + 10001 (X2 > 190)

+ 3001 (X5 > 200) +N(0, 1500);

2 The data are available on request at: https://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
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Ranking Model Min Q0.5 Max

1 BART 0.1 0.9 3.0
2 CUBIST3 0.0 1 6.5
3 XGB1 0.0 2.4 5.2
4 CUBIST1 0.0 3.4 10.9
5 RF2 0.3 3.5 15.8
6 RF3 0.5 3.5 16.8
7 XGB2 0.4 3.9 8.6
8 AMS5 0.2 4.3 11.1
9 AMS10 0.2 4.3 10.7
10 CUBIST2 0.0 4.3 12.6
11 RF1 0.8 4.4 31.4
12 SVR3 0.1 4.4 6.7
13 LR 0.2 4.9 16.8
14 SVR1 0.1 4.9 7.1
15 MWC500 0.0 5.0 26.1
16 NN 0.0 5.0 7.3
17 MWC250 0.0 5.1 14.7
18 HDWC50 0.8 5.1 9.9
19 MWC50 0.0 5.2 9.9
20 MWC100 0.0 5.2 10.1
21 HDWC100 0.1 5.2 10.0
22 HDWC250 0.0 5.2 14.7
23 CART 0.2 5.6 24.6
24 5NN 1.3 7.1 11.7
25 XGB3 2.5 8.8 11.1
26 SVR2 1.0 11.7 22.6
27 SVR4 0.2 15.4 27.5

Table 9: Monte Carlo percent absolute relative bias of the imputed estimator: Descriptive statistics for
Poisson sampling.

Y4 = 1 + cos(2X1 + X2 + 2X3)
2 + ε1,

where ε1 ∼ E(2) and these error terms were centered so as to have a mean equal to zero. We were
interested in estimating the population total of the survey variables Y1-Y4. Again, the simulation was
based of R = 5, 000 iterations of the process described in Section 4.4. Samples of size n = 1000 were
selected according to simple random sampling without replacement. The missing values to the survey
variables Y1-Y4 were generated according to

pi = 0.1 + 0.89 × sigmoid {−0.83 + 0.001 × (2xi1 + 2xi2 − 2.5xi3)} ,

leading to an average response rate of about 50%.
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Ranking Model Min Q0.5 Max

1 BART 106 117 139
2 CUBIST3 111 118 239
3 XGB1 108 133 207
4 RF2 114 144 565
5 RF3 114 145 621
6 XGB2 110 156 246
7 SVR3 109 165 198
8 AMS5 124 168 486
9 SVR1 109 175 209
10 CUBIST1 114 175 469
11 NN 117 178 234
12 MWC50 125 188 396
13 MWC100 125 188 363
14 RF1 122 188 1868
15 LR 123 189 923
16 MWC250 128 190 525
17 CUBIST2 111 193 548
18 CART 133 198 1224
19 MWC500 133 198 1346
20 HDWC50 135 210 409
21 HDWC100 139 213 381
22 HDWC250 145 217 539
23 5NN 120 241 370
24 XGB3 116 272 441
25 AMS10 130 313 592
26 SVR2 142 493 1619
27 SVR4 141 769 2119

Table 10: Monte Carlo percent relative e�ciency of the imputed estimator: Descriptive statistics for
Poisson sampling.

Three high and very high dimensional settings were considered: in the �rst setting, the imputation
models used the �rst 15 auxiliary variables X1, ..., X15, in the data set. In the second and third settings,
the imputation models were based on the �rst 100 and 300 auxiliary variables X1, ..., X100, and X1, ..., X300,
respectively.

To impute the missing values, we con�ned to a subset of the imputation procedures considered in
Section 4.4.1: additive models, BART, CUBIST, XGBoost, random forests, nearest-neighbour imputation
and support vector regression. Linear regression imputation and mean imputation within 20 classes
were also considered. It is well known that the quality of predictions based on linear models tend to
deteriorate substantially in the presence of a very large number of auxiliary variables. To cope with this
issue, we also considered principal components analysis as a reduction-dimension method; see Cardot
et al. (2017).
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Ranking Model Min Q0.5 Max

1 NN 136 144 428
2 XGB3 153 165 860
3 XGB2 156 167 827
4 CUBIST3 156 167 841
5 XGB1 156 171 932
6 BART 156 173 1052
7 5NN 152 174 1191
8 CUBIST2 163 179 873
9 CUBIST1 169 191 904
10 RF2 158 192 1572
11 RF3 162 198 1769
12 AMS5 169 219 2453
13 MWC100 160 221 1120
14 MWC50 159 222 1067
15 SVR1 171 222 3196
16 AMS10 165 223 2472
17 MWC50 159 223 1061
8 M100 159 225 1116
19 CART 176 229 1882
20 LR 164 230 2707
21 MWC250 172 244 1460
22 MWC250 173 246 1471
23 SVR3 191 280 2899
24 RF1 190 305 4666
25 M500 186 365 4977
26 SVR4 219 409 26429
27 SVR2 413 1839 17279

Table 11: Monte Carlo percent relative e�ciency of the imputed estimator: Descriptive statistics for the
binary survey variables.

Table 13 shows the Monte Carlo percent relative bias (RB) and relative e�ciency (RE) for p = 15
predictors. Table 14 shows the results for p = 100 and p = 300 predictors. For each scenario, the best
imputation procedures are highlighted in bold. Note that the relative e�ciency is now computed with
respect to the mean square error of the imputed estimator based on the true imputation model. The
additive models were considered in the �rst setting only (p = 15 variables) because their performance
deteriorated rapidly as the number p of variables increased. For p = 100 and p = 300 the back�tting
algorithm did not reach convergence in most scenarios.

From Tables 13 and 14, we note that CUBIST and XGBoost were the best method in the vast majority
of the scenarios. These methods were followed by BART and random forests. As expected, additive
models performed poorly, which illustrates the curse of dimensionality. It is worth pointing out that
random forests performed better in the high-dimensional setting than they did in the low-dimension
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Ranking Model Min Q0.5 Max

1 NN 0.0 0.5 3.6
2 CUBIST3 0.02 0.7 6.7
3 XGB3 0.03 0.8 7.7
4 BART 0.1 0.8 8.8
5 XGB1 0.14 0.9 7.9
6 XGB2 0.0 0.9 6.9
7 5NN 0.0 1.0 7.3
8 CUBIST2 0.2 1.0 7.0
9 CUBIST1 0.0 1.1 6.8
10 RF2 0.12 1.5 10.3
11 RF3 0.13 1.6 11.0
12 AMS5 0.04 1.6 11.9
13 AMS10 0.1 1.6 11.9
14 SVR1 0.3 1.7 12.0
15 LR 0.19 1.8 12.3
16 CART 0.18 1.8 11.4
17 MWC50 0.0 1.8 7.5
18 MWC100 0.0 1.8 7.7
19 HDWC50 0.03 1.8 7.5
20 HDWC100 0.01 1.8 7.7
21 MWC250 0.0 2.0 9.4
22 HDWC250 0.0 2.0 9.4
23 SVR3 0.43 2.3 11.5
24 RF1 0.08 2.7 19.0
25 SVR4 0.17 3.0 36.5
26 MWC500 0.0 3.2 16.4
27 SVR2 1.9 9.5 33.9

Table 12: Monte Carlo percent absolute relative bias of the imputed estimator: Descriptive statistics for
the binary survey variables.

setting considered in section 4.4.1. Finally, the strategy based on principal components analysis did
relatively well in most scenarios.

4.5 Simulation study: the case of population quantiles

In this section, we turn our attention to population quantiles. Except for nearest-neighbour imputation,
we con�ned to the random versions of the imputation procedures described in Section 4.3. The target
parameters were the quantiles of order γ1 = 0.25, γ2 = 0.5 and γ3 = 0.75 that correspond to the �rst
quartile, the median and the third quartile, respectively. We considered a subset of the scenarios described
in Section 4.4.1. First, we con�ned to the case of the survey variables Y3 and Y6 and the nonresponse
mechanisms (NR1) and (NR3) described in Section 4.4.1, leading to 2 × 2 = 4 scenarios. Also, samples
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Variable Criterion LR MWC50 RF2 XGB1 NN SVR3 AMS5 CB3 PCR1 PCR2 PCR3 BART

Y1
RE 100 117 110 103 111 124 101 100 160 113 100 101
RB -0,18 1,7 1,7 0 -0,1 2,6 -0,0 -0,1 4,0 0,6 -0,5 0,3

Y2
RE 184 176 103 100 100 295 7041 101 159 213 207 106
RB -44,3 15,7 3,8 0 0,7 19,2 9,5 -0,0 -47,0 -53,1 -48,5 2,1

Y3
RE 190 135 102 108 128 134 403 109 188 178 210 105
RB 4,6 2,1 0,1 -0,2 0,1 2,08 -0,0 1,2 4,6 4,3 5,2 0,0

Y4
RE 125 126 143 147 188 195 130 118 119 121 123 131
RB -0,0 -0,0 0,5 0,2 -0,1 -1,3 0,0 -0,0 -0,11 -0,1 -0,0 0,0

Table 13: Relative biais (RB) and relative e�ciency (RE) of imputation procedures with p = 15 auxiliary
variables.

Variable Dim Criterion LR MWC50 RF2 XGB1 NN SVR3 CB3 PCR1 PCR2 PCR3 BART

Y1 p=100 RE 102 122 149 103 216 187 100 269 226 151 105
RB 0,14 2,1 4,2 0,3 6,2 5,1 0 7,8 6,6 4,0 0,6

Y2 p=100 RE 115 287 109 100 100 340 100 100 108 140 127
RB -23,8 34,3 7,5 0,1 3,3 26,1 -0,0 -31,0 -28,9 -32,5 5,8

Y3 p=100 RE 158 185 107 107 354 162 108 236 224 196 129
RB 3,2 3,9 1,1 -0,0 7,0 3,4 0,9 5,9 5,5 4,8 7,7

Y4 p=100 RE 140 141 151 146 243 217 122 120 120 121 135
RB 0,0 0,1 0,7 0,28 0,4 -1,5 -0,0 -0,0 -0,1 -0,1 -0,0

Y1 p=300 RE 120 215 190 103 286 237 100 290 262 189 110
RB -0,2 1 5,7 0,6 7,05 6,7 0,06 8,3 7,7 5,7 1,3

Y2 p=300 RE 102 1106 112 100 100 405 100 91 85 109 243
RB -6,3 89,1 9,5 0,1 4,01 35, -0,0 -28,4 -25,3 -26,9 4,6

Y3 p=300 RE 197 378 118 107 630 180 108 350 245 224 242
RB 1,0 6,7 2,0 0,0 9,1 4,1 0,8 6,2 6,1 5,6 6,4

Y4 p=300 RE 276 584 155 143 443 214 124 120 120 121 131
RB 0,1 2,4 0,7 0,3 0,6 -1,5 0,06 -0,0 -0,1 -0,1 -0,0

Table 14: Relative biais (RB) and relative e�ciency (RE) of imputation procedures with p = 100 and
respectively, p = 300 auxiliary variables.

were selected according to simple random sampling without replacement only. In each sample, we
computed the imputed estimator Q̂γ,imp given by (4.5) for γ1 = 0.25, γ2 = 0.5 and γ3 = 0.75. As in
Section 4.4, we computed the Monte Carlo percent relative bias of Q̂γ,imp and the relative e�ciency,



4.5 simulation study: the case of population qantiles 160

given respectively by (4.40) and (4.41) with t̂imp replaced with Q̂γ,imp , t̂π replaced with Q̂γ and ty replaced
with Qγ .

The results are presented in Figures 27-29. In each �gure, the x-axis corresponds to the median of
the Monte Carlo percent relative bias of Q̂γ,imp computed across the 4 scenarios, whereas the y-axis
corresponds to the median of the Monte Carlo relative e�ciency. For the purpose of clarity, we have
excluded from Figures 27-29 any imputation procedure whose median of the Monte Carlo percent
relative bias lied outside the interval [−20; 20] or whose median of the Monte Carlo relative e�ciency
was above 500.

From Figures 27-29, Cubist displayed a very good performance in terms of bias and e�ciency for the
three quantiles. The procedure XGBoost led to good results for Q0.25 and Q0.75 but performed poorly for
Q0.5. Similarly, BART performed very well for both Q0.5 and Q0.75 but exhibited a poor performance for
Q0.25. Support vector machine (SVR3) did relatively well for both Q0.5 and Q0.75 but was outperformed
by Cubist and XGBoost for Q0.25. Again, the Cubist algorithm seemed to be insensitive to the target
parameter, the model that has generated the Y -variable and the nonresponse mechanism, at least in our
experiments.

Figure 27: Median performances of the best imputed estimators for the estimation of Q0.25.
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Figure 28: Median performances of the best imputed estimators for the estimation of Q0.5.

4.6 Final remarks

In this paper, we have conducted an extensive simulation study to compare several nonparametric and
machine learning imputation procedures in terms of bias and e�ciency. The imputation procedures were
evaluated in the case of �nite population totals of continuous and binary variables and for population
quantiles under both simple random sampling without replacement and proportional-to-size Poisson
sampling. The Cubist algorithm, BART and XGBoost performed very well in a wide variety of settings. In
general, these methods seem to be highly robust to model misspeci�cation and seem to have the ability
to capture nonlinear trends in the data. Additive models based on B-splines performed well in the case of
population totals when the number of explanatory variables was small but broke down for large values
of p. Finally, random forests performed relatively well in a high-dimensional setting. In practice, the
choice of an imputation procedure is not clear-cut and depends on the data at hand. If one is reasonably
con�dent about the correct speci�cation of the �rst moment of the imputation model (that includes the
correct speci�cation of the functional form and the correct speci�cation of the vector of explanatory
variables), parametric imputation procedures are expected to do well in terms of bias and e�ciency.
In addition, parametric imputation is simpler to understand and the results are easier to interpret,
in general. In the case of complex/nonlinear relationships and/or in a high-dimensional setting, our
empirical investigations suggest that machine learning procedures outperform traditional imputation
procedures as they tend to be robust against model misspeci�cation. However, these procedures require
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Figure 29: Median performances of the best imputed estimators for the estimation of Q0.75.

the speci�cation of some regularization parameters. For instance, for XGBoost, one must specify the
learning rate, the maximal depth and the coe�cient of penalization. In support vector regression, the
cost function and the kernel function must be selected, among others. In practice, the value for some of
these parameters are determined through a cross-validation procedure. To keep the processing time at
a reasonable level, all the regularization parameters were predetermined in our experiments. Overall,
it seems that Cubist is an excellent choice as it performed well in all the scenarios, unlike its main
competitors (e.g., XGBoost, BART, random forest, etc.) whose performance varied from one scenario to
another. From a computational point of view, most procedures were e�cient. One notable exception
is BART that proved to be highly computer intensive with an average processing time approximately
twenty times larger than what was required for the other procedures.

Drawing inferences from survey data requires a variance estimate. It is well known that imputed
values should not be treated as observed values. Otherwise, the resulting variance estimates tend to be
much smaller, on average, than the true variance, especially if the nonresponse rates are appreciable. In
the last three decades, a number of variance estimation procedures have been proposed for obtaining
variance estimates that account for sampling, nonresponse and imputation. The reader is referred
to Haziza and Vallée (2020) for a comprehensive overview of variance estimation procedures in the
presence of singly imputed data sets. Estimating the variance of imputed estimators obtained through
machine learning procedures is challenging and requires further research. If the sampling fraction is
negligible, one can recourse to the bootstrap procedure of Shao and Sitter (1996) that consists of selecting
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bootstrap samples according to a complete data bootstrap procedure and reimputing the missing values
within each bootstrap sample using the same imputation method that was used on the original data. If a
machine learning procedure is used to impute the missing data, the Shao-Sitter procedure may be highly
computer intensive. When the sampling fraction is not negligible, the problem of bootstrap variance
estimation is more intricate (Chen et al., 2019). To make the variance estimation process simpler for
survey practitioners, it would be desirable to derive a "universal" variance estimator based on Taylor
expansion procedures that could be applicable to a wide class of machine learning imputation procedures,
at least in the case of negligible sampling fractions. This is currently under investigation.

Investigating the performance of deep learning methods in the context of imputation for missing
survey data would constitute a promising direction for future research. There exist a wide class of deep
learning procedures based on relatively sophisticated algorithms that proved to be extremely e�cient in
the context of unstructured data such as signal processing or text analysis. However, for deep learning
procedures to "shine" in terms of e�ciency typically requires a huge volume of unstructured data,
which is seldom the case in surveys. In practice, most data sets in surveys consist of structured data and
contains, at most, a few millions observations and a few hundred survey variables. As noted by Choley
(2018):
“(...) gradient boosting (such as XGBoost) is used for problems where structure data is available, whereas
deep learning is used for perceptual problems such as image classi�cation”.
We believe that the class of imputation procedures considered in this article, that includes bagging and
boosting among others, o�ers a number of very good options that may be applicable to virtually all the
surveys conducted by NSOs.
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W I T H A P P L I C AT I O N T O D ATA I N T E G R AT I O N

Abstract. Item nonresponse in surveys is usually handled through some form of imputation. Regression trees
and random forests provide �exible tools for obtaining a set of imputed values. We lay out a set of conditions
on the imputation model su�cient for establishing the L2-consistency of an imputed estimator. We consider
several regression trees and random forest algorithms for which we establish the L2-consistency. We derive the
asymptotic variance of imputed estimators and propose corresponding variance estimators. We apply our results
to the particular case of mass imputation for data integration. We present the results from a simulation study that
investigates the performance of point and variance estimators based on random forest imputation in terms of bias,
e�ciency and coverage rates.

Keywords: Missing data; Imputation; Survey sampling; Regression trees; Random forests.

5.1 Introduction

Since the seminal paper of Breiman (2001), random forests have been used in a variety of applications
including medicine (Fraiwan et al., 2012), time series analysis (Kane et al., 2014), agriculture (Grimm
et al., 2008), missing data (Stekhoven and Buhlmann, 2011), genomics (Qi, 2012) and pattern recognition
(Rogez et al., 2008). Random forests belong to the class of ensemble models, whereby a collection of B
regression trees are constructed and a prediction is generated from each of the B trees. Unlike many
nonparametric statistical procedures (e.g., kernel predictors, k-nearest neighbors, splines), random
forests perform relatively well with high-dimensional data; see e.g., Hamza and Larocque (2005) and
Díaz-Uriarte and de Andrés (2006). Some recent theoretical investigations (Biau, 2012, Klusowski, 2021,
Scornet et al., 2015) also suggest that random forests adapt well to sparse situations.

In surveys, the problem of missing data is ubiquitous. Estimators of population totals based on
complete cases only, often referred to as unadjusted estimators, tend to exhibit large biases when the
proportion of missing data is appreciable and the behavior of the responding units is di�erent from that
of the nonresponding units. In this article, we focus on the problem of item nonresponse, a term used to
describe the absence of information on some, but not all, survey variables for a sample unit. The missing
values are replaced by a plausible value constructed on the basis of auxiliary variables available for
both respondents and nonrespondents, a process known as imputation. A large number of imputation
procedures have been developed to compensate for missing values and to reduce the nonresponse bias
to the best possible extent. The reader is referred to Haziza (2009) and Chen and Haziza (2019) for
comprehensive discussions of imputation procedures in a survey sampling setting. Every imputation
procedure relies on some implicit or explicit assumptions about the distribution of the survey variable
requiring imputation. This set of assumptions is called an imputation model. In this context, tree-based
methods such as random forests may prove useful for obtaining a set of imputed values. Because
they are nonparametric in nature, random forests tend to be robust against model misspeci�cation.
Also, with the emergence of large data sets in National Statistical O�ces (NSO), random forests have
attracted a lot of attention in NSOs in recent years and are being scrutinized as an alternative to
traditional imputation procedures. However, to the best of our knowledge, a theoretical investigation on
the properties of random forests in the context of imputation for missing survey data is currently lacking.

164
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In this paper, the aim is to study a number of random forest algorithms that have been suggested in
the literature. In Section 5.2, we begin by introducing a set of two su�cient conditions on an imputation
model, so that, whenever satis�ed, leads to the L2-consistency of the resulting imputed estimator. In
Section 5.3, we provide an analysis of trees imputed estimators. Finite sample properties are derived
through the analysis of the corresponding weighting system. The L2-consistency of the tree imputed
estimator based on the CART algorithm (Breiman, 1984) is established. In Section 5.4, we focus on
random forest imputed estimators. We begin by establishing the connection between tree imputed
estimators and random forests imputed estimators. As such, random forest estimators inherit many
of the properties of tree estimators, minor a few di�erences that are highlighted. The L2-consistency
of forest imputed estimators based on uniform random forests (Biau et al., 2008, Scornet, 2016a) and
Breiman’s original algorithm (Breiman, 2001) is established. In Section 5.5, using the reverse approach
of Shao and Steel (1999) and the approach of Särndal (1992), we suggest two variance estimators that
account for the sampling, nonresponse and imputation variability. In Section 5.6, we apply random
forest imputation to the case of data integration. Before concluding, we investigate the empirical
properties through a simulation study presented in Section 5.7. All proofs and further technical details
are relegated to the Appendix.

5.2 Mean square consistency of imputed estimators

Consider a �nite population U = {1, 2, ..., N} of size N . We are interested in estimating the
population total, ty =

∑
k∈U yk , of a survey variable Y . We select a sample S, of size n, according to

a sampling design P (S) with �rst-order inclusion probabilities {πk}k∈U and second-order inclusion
probabilities {πk`}k,`∈U ; we shall denote by ∆k` := πkπ` − πk` the sampling covariances, for elements
k , ` ∈ U. The sample S is completely characterized by the vector of sample selection indicators
I = (I1, . . . , Ik , . . . , IN )>, where Ik = 1 if k ∈ S and Ik = 0, otherwise. A complete data estimator of ty is
the well-known Horvitz-Thompson (HT) estimator:

t̂π =
∑
k∈S

yk

πk
=

∑
k∈S

dk yk , (5.1)

with dk := 1/πk , the sampling weight attached to element k ∈ S. Provided that πk > 0, for all k ∈ U,
the estimator (5.1) is design-unbiased for ty .

In practice, the Y variable is subject to missingness. Let r = (r1, . . . , rk , . . . , rN )> denote the vector
of response indicators such that rk = 1 if yk is observed and rk = 0, otherwise. Let Sr = {k ∈ S; rk = 1}
denote the set of respondents, of size nr , and Sm = {k ∈ S; rk = 0} the set of nonrespondents, of size
nm, such that Sr ∪ Sm = S and nr + nm = n. Let xk = (x1k , x2k , ..., xpk)> be the vector of fully observed
auxiliary variables attached to unit k and X := {xk}k∈U . Available to the imputer are the pairs (yk , xk),
for k ∈ Sr , and the vector xk for k ∈ Sm. In this paper, we restrict our investigations to response
mechanisms satisfying the missing at random assumption (MAR, Rubin (1976)), de�ned below.

(H19) The missing data mechanism is such that:

a) The random vectors {[rk , yk , xk]
>}k∈Uv are independently and identically distributed (i.i.d.).

b) The nonresponse mechanism is missing at random (MAR), that is, P (rk = 1|xk , yk) = P (rk = 1|xk),
and, for all k ∈ U, P (rk = 1|xk) > 0.
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Assumption (H19) is common in the missing data literature (Rubin, 1976) and is required in order
to estimate the regression function from the observed data. It states that, given the covariates xk , the
survey variable yk is independent of the response indicators rk .

We assume that the relationship between the survey variable Y and the set of auxiliary variables x
can be described by the following imputation model:

ξ : yk = m(xk) + εk , k ∈ Sr , (5.2)

where m(x) := E [Y |X = x] denotes the regression function, and {εk}k∈Sr is a sequence of independent
and identically distributed (i.i.d.) white noise. We assume that: i) the regression function m is continuous;
ii) the distribution of the covariates Px is supported on Supp(Px), a compact subset the unit cube
[0; 1]p; iii) the residuals have a compact support; the survey variable Y has a distribution absolutely
continuous with respect to the Lebesgue measure. These assumptions imply that the survey variable Y
is almost surely bounded.

Let m̂ be a estimator of m �tted on Dnr := {(xk , yk); k ∈ Sr }. The imputed estimator t̂m̂ of ty based
on the imputation procedure m̂ is given by

t̂m̂ :=
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂(xk)
πk

, (5.3)

where m̂(xk) denotes the imputed value associated with k ∈ Sm.

To establish the asymptotic properties of (5.3), we consider the asymptotic framework of Isaki and
Fuller (1982). We consider an increasing sequence of embedded �nite populations {Uv}v∈N of size
{Nv}v∈N. In each �nite population Uv , a sample Sv , of size nv , is selected according to a sampling
design Pv with inclusion probabilities πk,v and πk`,v . While the �nite populations are assumed to be
embedded, we do not require this property to hold for the samples {Sv}v∈N. This asymptotic framework
assumes that v goes to in�nity, so that both the �nite population size Nv and the sample size nv go
to in�nity. To improve readability, we shall use the subscript v only in the quantities Uv , Nv and nv ;
quantities such as πk,v and πk`,v shall simply be denoted as πk and πk` .

We now describe a set of conditions on m̂ su�cient for establishing the L2-consistency of t̂m̂. An
imputed estimator t̂m̂ is said to be mean square consistent or L2-consistent for ty if

E

[{
1

Nv

(̂
tm̂ − ty

)}2]
−−−−→
v→∞

0. (5.4)

Throughout this chapter, the expectation and variance operators are evaluated with respect to the joint
distribution induced by the imputation model, the sampling design and the nonresponse mechanism.

We start with the regularity conditions needed for the L2-consistency of the complete data estimator
(5.1).

(H20) We assume that the sampling design Pv(·) is non-informative sampling and that

a) The sampling fraction is such that lim
v→∞

nv
Nv
= π∗ ∈ (0; 1).

b) There exists positive constants λ and λ∗ such that min
k∈Uv

πk > λ > 0, min
k,`∈Uv

πk` > λ
∗ > 0.

c) The sampling covariances are such that lim sup
v→∞

nv max
k,`∈Uv

|πk` − πkπ` | < ∞.
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Assumption (H20) is commonly used in the literature, see e.g., Robinson and Särndal (1983) and
Breidt and Opsomer (2000). It is known to hold for commonly used sampling designs.
Result 5.2.1. Assume (H19) and (H20). Consider a sequence of predictors {m̂} �tted on Dnr and its
population counterparts {m̃} �tted on DN := {(xk , yk) ; k ∈ U} . If

i) The sequence of population predictors {m̃} satis�es

lim
v→∞

E

[(
m̃(x) −m(x)

)2
]
= 0,

with a convergence rate denoted γv .

ii) There exists a positive constant C, independent of v, such that

E

{(
m̂(x) −m(x)

)2 ����r , X , I

}
6 C. a.s.

Then, the sequence of imputed estimators {̂tm̂} is L2-consistent with rate

E

[(
1

Nv

{̂
tm̂ − ty

})2
]
= O

(
γv

)
. (5.5)

Proof. See Appendix 5.2.1. �

Condition (i) in Result 5.2.1 requires the convergence of the L2-error of prediction towards zero
whereas Condition (ii) requires that the conditional error is almost surely bounded, even for �nite
samples. Under some regularity assumptions, Condition (i) is satis�ed for a large number of statistical
procedures including linear regression and nonparametric regression procedures such as k-nearest
neighbors and kernel regression under appropriate regularity conditions, see Devroye et al. (2013).
Assuming a framework in which condition (ii) is satis�ed, this result suggests that, in order to build a
consistent imputed estimator, it is enough to use a consistent predictor to produce the imputed values. In
that respect, imputation is not more di�cult than regression. In a way, this is closely related to Theorem
2.2 of Devroye et al. (2013), which states that it is enough to have a consistent regression estimate to
obtain a consistent classi�cation rule.
Remark 5.2.1. Result 5.2.1 can be used for establishing the L2-consistency of imputed estimators based
on a wide class of parametric and nonparametric procedures, without having to impose any assumption
on the superpopulation model. However, it may lead to suboptimal consistency rates without additional
assumptions. Indeed, if no assumption about the joint distribution of (X , y) or about the smoothness of
the regression function m(·) is made, an approach referred to as fully nonparametric, then there does not
exist any guaranteed convergence rate in Result 5.2.1, no matter which imputation procedure is used (see
Theorem 3.1 of Györ� et al. (2006)). It follows that if one aims to obtain the convergence rate of t̂m̂ based
on Result 5.2.1, one has to consider a restricted class for the distributions of (X ,Y ). By doing so, the rate
of convergence of t̂m̂ will be restricted by the minimax rate of convergence over the selected class, see e.g.,
Györ� et al. (2006).

5.3 Tree imputation

In this section we begin by describing regression trees and partitioning predictors. We de�ne an imputed
estimator based on a regression tree. Its �nite sample properties are discussed through the analysis of
the underlying weighting system.
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5.3.1 Trees and partitioning predictors

Partitioning predictors are algorithms that �rst create a partition P = {A1, A2, ..., AT } of the predictor
space based on Dnr , and use it to make their predictions. The elements of P are called the (terminal)
nodes. For a point x, de�ne

m̂tree (x,P) :=
∑
k∈Sr

1xk ∈A(x)∑
`∈Sr 1x` ∈A(x)

· yk =
∑
k∈Sr

Ŵk(x,P)yk , (5.6)

where A(x) denotes the node of P containing x and

Ŵk(x,P) :=
1xk ∈A(x)∑

`∈Sr 1x` ∈A(x)
, k , ` ∈ U, (5.7)

denotes the prediction weights of m̂tree. In other words, the prediction m̂tree(x) of m̂tree is obtained
by averaging the observations for the points that fall into the same node as the point x. We use the
convention that m̂tree (x,P) = 0 if x is in an empty node. Since m̂tree can be written as a weighted sum
of the observations, the properties of the tree imputed estimators are closely related to the properties of
the prediction weights {Ŵk(x` ,P)}k,`∈Sr . For simplicity, in the sequel, we write Ŵk(x) for the weights
de�ned in (5.7). Properties of the weights {Ŵk(x` ,P)}k,`∈Sr are given in Technical lemma 1.

Given the sample points, changing the partition may lead to di�erent predictions. As such, a
partitioning predictor is fully determined by both a set of points Dnr and a partition P. Most often,
the partition P is obtained as the output of a data partitioning algorithm; that is; an algorithm which
takes the sample points as input, and outputs a partition of the regressor space. When the partitioning
algorithm creates a partition by splitting recursively the regressor space, the algorithms are often called
trees. Adopting the terminology of Devroye et al. (2013), when the partitioning algorithm does not
make use of the survey variable Y , we say that the partitioning rule, and, by extension, the partitioning
predictor, has the X-property.

Example 5.3.1. CART algorithm (Breiman, 1984).
In the CART algorithm, splits are created by a greedy algorithm that splits recursively the regressor space.
More speci�cally, let A denote a node containing #(A) respondents, considered for the next split, and CA the set
of possible splits in the node A, which corresponds to the set of all possible pairs ( j , z) = (variable, position).
Let

mse(A) =
1

#(A)

∑
k∈Sr

1xk ∈A (yk − ȳA)
2

and ȳA be the average of the y-values of units belonging to A. This splitting process is performed by searching
for the best split ( j∗, z∗), i.e. the split for which the following criterion is maximized:

L( j , z) = mse(A) −mse (AL) −mse (AR)

where AL =
{
k ∈ A; xk j < z

}
, AR =

{
k ∈ A; xk j > z

}
. This criterion therefore searches for the split which

would generate child nodes as homogeneous as possible, in terms of mean square error. Splits are always
performed in the middle of two points. The procedure continues until a stopping criterion is reached. Usual
stopping criteria consist of specifying a minimum number of elements (n0) in the terminal nodes, or a
maximum depth (K) for the tree.

For more details about trees and partitioning procedures, the reader is referred to Hastie et al. (2011)
or Györ� et al. (2006).



5.3 tree imputation 169

5.3.2 Regression tree imputation

Let m̂tree(·, Dnr ) := m̂tree(·) be a tree predictor. We de�ne the regression tree imputed estimator t̂tree of
ty as

t̂tree :=
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂tree(xk)
πk

. (5.8)

The properties of t̂tree are closely related to the behavior of its underlying weighting system.

Proposition 5.3.1. The tree estimator t̂tree de�ned by (5.8) can be written as

t̂tree =
∑
k∈Sr

wk yk ,

where the weights {wk}k∈Sr are given by

wk =
1
πk
+

∑
`∈Sm

Ŵk(x`)
π`

=
1
πk
+

N̂ (xk , Sm)
N (xk , Sr )

, k ∈ Sr , (5.9)

with N̂ (xk , Sm) :=
∑
`∈Sm

π−1
` 1x` ∈A(xk ) denoting the estimated number of nonrespondents in A(xk);

similarly, N (xk , Sr ) :=
∑
`∈Sr 1x` ∈A(xk ) is used to denote the number of respondents that fall in A(xk).

To get a better understanding of the weighting system {wk}k∈Sr , consider the special case of πk = π,
for all k ∈ U. In that particular case, the estimation weights wk reduce to

wk = π
−1 ×

(
1 +

N (xk , Sm)
N (xk , Sr )

)
= π−1 ×

{
1 + Rmr (xk)

}
= π−1 · gk ,

where gk := 1+ Rmr (xk) and Rmr (xk) denotes the ratio between the number of nonrespondents and the
number of respondents in the node A (xk). We see that a set "g-weights" is induced by the tree estimator
in the case of equal inclusion probabilities (and only in that case). The weight wk will be large when the
ratio of nonrespondents over respondents for elements similar to element k is large. If the neighbors of
element k are mostly nonrespondents, there are only few such elements in the sample of respondents,
so that this "category" would, in some sense, be under-represented. In that case, the ratio Rmr (xk) is
large, so that the correction factor 1 + Rmr (xk) is signi�cantly greater than 1.

Remark 5.3.1. Although Proposition 5.3.1 states that t̂tree can be written as a weighted sum of the sequence
{yk}k∈Sr , it does not imply that t̂tree is a linear estimator of ty . Indeed, if the partition P induced by m̂tree

does not have the X-property, then the estimation weights {wk}k∈Sr also have a Y -dependency, which
implies that t̂tree is a nonlinear function of {yk}k∈Sr .

Proposition 5.3.2. The weights {wk}k∈Sr in (5.31) have the following properties.

i) The weights are calibrated to the population size N whenever the original weighting system {dk}k∈U
is: ∑

k∈Sr

wk =
∑
k∈S

dk := N̂ .

ii) If there are at least n0 elements in each node, the weights {wk}k∈Sr are bounded,

dk 6 wk 6 dk

(
1 +

nm
n0

)
, a.s. k ∈ Sr . (5.10)

The bounds are sharp, i.e., each of the bounds can be attained.
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The lower bound in (5.10) given by wk = dk is obtained where there is no missing elements in the
node containing element k . The upper bound is obtained when all missing elements are in the node of
element k , and if this node contains precisely the minimal number of elements possible. Two elements
can also be observed from Proposition 5.3.2: 1) more nonrespondents leads to a more conservative
inequality; 2) more elements in the nodes implies less volatile weights: the larger n0 is chosen, the lower
is the diameter of the support of {wk}k∈Sr , leading to less volatile weights.

Proposition 5.3.3. If the sampling design is such that πk = π for all k ∈ U, then t̂tree can be written in
projection form, that is,

t̂tree =
∑
k∈S

m̂tree(xk)
πk

.

Remark 5.3.2. When the sampling design induces unequal �rst order inclusion probabilities, we can �nd
cases where Proposition 5.3.3 does not hold. This is due to the fact that the predictions of the tree predictor
m̂tree are not weighted by the inclusion probabilities. If it was, Proposition 5.3.3 would hold without the
equal inclusion probabilities assumption.

5.3.3 Properties of the tree imputed estimator

As for most imputed estimators, information about the distribution of t̂tree are di�cult to obtain. In
general, its bias and variance are unknown. In some cases, however, it is possible to obtain information
about these quantities. First, in the particular case where the survey variable is constant, it is possible to
fully characterize the distribution of t̂tree, as shown in Example 5.3.2.

Example 5.3.2. Assume that
ξ : yk = C, k ∈ U,

and that
∑

k∈S dk = N . Then, we have t̂tree = ty , with probability one. In this particular case, ty is always
perfectly estimated by t̂tree. Note that, in this case, we have t̂π = ty , with probability one as well.

Obviously, this scenario is not realistic as it is too simple to represent practical situations; consider
the more practical example in which the survey variable is not constant, but the regression function is.
In that case, the �rst two moments of t̂tree can be obtained, see Example 5.3.3 below.

Example 5.3.3. Assume that
ξ : yk = C + εk , k ∈ U,

with {εk}k∈U is a sequence of i.i.d. random variables such that E [εk |xk] = 0 and E
[
ε2
k
|xk

]
= σ2. Assume

also that
∑

k∈S dk = N and that the tree predictor has the X-property. Then, it can be shown that t̂tree
remains unbiased but its variance is now strictly positive.

In a general setup, Result 5.3.1 shows that the tree imputed estimator based on the CART criterion
is L2 consistent for ty , under some regularity conditions.

Result 5.3.1. Assume (H19) and (H20). Consider a sequence of tree imputed estimators {̂ttree} based on
the CART criterion described in Example 5.3.1. Assume that:

1. No additional split is performed in a node if it contains one element or if the maximal depth Kv is
reached.

2. The regression function m is additive and bounded, i.e.

mv ∈ Gv := {g(x) =
pv∑
j=1

gj(xj), gj is bounded and Borel measurable, j = 1, 2, ...pv},
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and | |mv | |l0 = #{ j = 1, 2, ..., pv ; mj non-constant} = o(
√

Kv).

Then, if limv→∞ Kv = +∞ and limv→∞ 2Kv log (nr pv) /nr = 0, the tree estimator {̂ttree} is mean-square
consistent for ty , i.e.

lim
v→∞

E

[(
1

Nv

(̂
ttree − ty

) )2
]
= 0.

The conditions given in Result 5.3.1 follow from the conditions of results from Klusowski (2021).
The conditions on the tree predictor states that the depth of the trees should increase as the sample and
population sizes increase, but not too fast with respect to the number of respondents. The assumption
that the regression function is additive in its covariates is technical only.

Remark 5.3.3. Corollary 4.3 of Klusowski (2021) holds in a high-dimensional framework as well, in which
the number of covariates is allowed to increase to in�nity, with "noise" variables. Interestingly, Result 5.2.1
carries over every property regarding the conditions and the convergence rate of the sequence of predictors,
including high-dimensional convergence. As such, Result 5.3.1 also holds if pv diverges. As such, Result 5.3.1
also proves the existence of L2-consistent imputed estimators in a high-dimensional framework.

5.4 From trees to forest estimators

5.4.1 Randomized predictors and random forests

A random forest predictor is an ensemble method based on a large collection of regression trees. Its
predictions are de�ned as the average of the predictions of each of the trees in the forest. By noting that
the prediction rules described in Examples 1.2.1 and 1.2.2 are deterministic, it is clear that, for a �xed set
of elements, using the same partitioning rule to construct B trees would simply result in constructing
the same tree B times. Breiman suggested (Breiman, 1996, 2001) to introduce an additional randomness
in the partitioning algorithm and/or prediction rule. The additional randomness introduced in the
predictors can be de�ned using the concept of stochastic predictors. Let Θ be de�ned in a measurable
space (J,J). A stochastic predictor m̃ is a measurable function such that m̃ : Rp × J → R. In other
words, the predictor m̃ might use a random variable to make its predictions. It follows that the prediction
method m̃ is random with respect to Θ and, as such, an additional source of randomness is present.

Example 5.4.1. Let q ∈]0; 1[ and Θ be a random variable with Bernoulli distribution B(q); de�ne
m̃(x,Θ) := Θ| |x| |2, where | |·| |2 denotes the Euclidean norm. Then, m̃ is a stochastic prediction model,
meaning that, for two di�erent realizations of Θ, the prediction m̃ may generate di�erent values. An
additional random source is present, i.e. one can show that VΘ (m̃(x,Θ)) = q (1 − q)| |x| |22 > 0.

Two additional examples of how the randomization procedure can be incorporated and used in
regression trees are given below.

Example 5.4.2. Uniform random forest (Biau et al., 2008, Scornet, 2016a).
All the B trees of the forest have the same behavior; as such, we describe only the behavior of a generic tree
among the B belonging in the forest. We begin by considering [0; 1]p as the initial leaf. Then, recursively,
the algorithm splits as follows:

1. A node G is selected uniformly at random.

2. A splitting variable Xj is selected uniformly at random among the p auxiliary variables X1, X2, ..., Xp .
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3. A split is performed in the node G along the axis induced by Xj with a location chosen uniformly at
random.

The process is repeated K times, with K ∈ N, a parameter chosen by the user.

Example 5.4.3. Breiman’s original algorithm.
The algorithm poceeds as follows:

Step 1: Select B bootstrap samples from Sr denoted {Sr (Θb)}
B
b=1.

Step 2: On each bootstrap sample Sr (Θb), �t a tree predictor m̂ ( · ,Θb) using the CART algorithm on
Dnr (Θb), where the CART criterion is optimized on p0 covariates instead of p. The p0 covariates
are chosen uniformly at random (without replacement) among the p covariates available, at each
split, according to Θb .

Uniform random forests are mostly studied in the literature because the partitions of its trees
are independent of the observed data, thus making their theoretical analysis simpler. However,
because they do not use the data for building the partitions, they are of little practical interest.
In practice, Breiman’s original algorithm is typically used, but its theoretical analysis is more complicated.

Generally speaking, random forest predictions can be obtained as follows. Let {Θb}
B
b=1 denote

a sequence of i.i.d. random variables distributed according to some generic random variable Θ and
assumed to be independent of the observed data. Let {m̂tree ( · ,Θb)}

B
b=1 be a sequence of randomized

tree predictors. Then, the RF prediction at x is given by

m̂r f

(
x, {Θb}

B
b=1

)
=

1
B

B∑
b=1

m̂tree (x,Θb) =
1
B

B∑
b=1

∑
k∈Sr (Θb )

1xk ∈A(x,Θb )∑
`∈Sr (Θb )

1x` ∈A(x,Θb )

· yk , (5.11)

where Sr (Θb) = Sr if there is no resampling mechanism in the forest. It follows that predictions can be
also be written as

m̂r f

(
x, {Θb}

B
b=1

)
=

∑
k∈Sr

Ŵ (B)
k
(x, {Θb}

B
b=1) · yk ,

with weights given by

Ŵ (B)
k
(x, {Θb}

B
b=1) =

1
B

B∑
b=1

ψ
(b)
k
1xk ∈A(x,Θb )∑

`∈Sr ψ
(b)
`
1x` ∈A(x,Θb )

, (5.12)

with ψ(b)
k

denoting the indicator of selection of element k in Sr (Θb), meaning that ψ(b)
k
= 1 if k ∈ Sr (Θb)

and ψ(b)
k
= 0 otherwise. In the sequel, for ease of notation, we suppress the dependence of {Θb}

B
b=1

on the predictor and its weight functions in the notations; we write m̂ (B)
r f

for the predictor, Ŵ (B)
k

for
the weight functions, and Ab for a node of the b-th tree. Note that m̂ (B)

r f
is also dependent of Dnr , a

dependence which is omitted in the notation for readability.
For more details about random forests and their implementation, the reader is referred to Biau and

Scornet (2016) and Genuer and Poggi (2019).

5.4.2 Random forest imputation

Let m̂ (B)
r f

be a random forest predictor built on B trees. The random forest imputed estimator t̂ (B)
r f

of ty
is de�ned as
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t̂ (B)
r f

:=
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂ (B)
r f
(xk)

πk
, (5.13)

where m̂ (B)
r f
(xk) denotes the prediction of m̂ (B)

r f
de�ned in (5.11) at the point xk .

We begin our analysis of t̂ (B)
r f

by establishing the link between forest estimators and tree estimators,
described in Proposition 5.4.1.

Proposition 5.4.1. The forest imputed estimator t̂ (B)
r f

de�ned in (5.13) is an average of (randomized) tree
imputed estimators:

t̂ (B)
r f
=

1
B

B∑
b=1

t̂ (b)tree,

where t̂ (b)tree is the imputed estimator based on the b-th tree of the forest m̂ (b)tree, that is,

t̂ (b)tree =
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂ (b)tree(xk)

πk
.

Thus a forest estimator is an average of randomized tree estimators. Many of the properties of tree
estimators are also shared by randomized tree estimators, and thus with forest estimators as well.

In terms of �nite sample properties, we need to distinguish deterministic tree estimators from
randomized tree estimators when there is a resampling mechanism involved. If there is not resampling
mechanism, then the �nite sample properties of both types of estimators are similar. Indeed, if ψk = 1
for all k ∈ Sr , then every property stated in Section 5.3.1 hold. If not, however, some properties no
longer hold. This is due to the fact that the weights of a randomized tree

Ŵk(x`) =
ψk1xk ∈A(x` ,Θ)∑
i∈Sr ψi1xi ∈A(x` ,Θ)

, k , ` ∈ S,

are not always symmetrical in k , `. Speci�cally, property iv) of Technical lemma 1 no longer holds
anymore for such trees (in fact, symmetry holds only for elements k , ` ∈ ∩B

b=1Sr (Θb)). To analyze the
properties of forests, two main paths might be followed: �rst, through Proposition 5.3.1, thus deducing
properties of forests through the properties of randomized trees; second, through the fact that a forest
predictor can be written in (almost) the same way as a tree predictor, with weights de�ned in (5.12).
As such, most proofs can be reproduced almost identically. For conciseness, we omit proofs that are
obtained easily from similar arguments than those given in Section 5.3.

Proposition 5.4.2. The forest t̂ (B)
r f

estimator de�ned in (5.13) can be written as

t̂ (B)
r f
=

∑
k∈Sr

w
(B)
k

yk ,

where the weights {w (B)
k
}k∈Sr are given by

w
(B)
k
=

1
πk
+

∑
`∈Sm

Ŵ (B)
k
(x`)

π`
=

1
πk
+

1
B

B∑
b=1

ψ
(b)
k

N̂b (xk , Sm)
Nb (xk , Sr (Θb))

. (5.14)

Similarly as for individual tree estimators, forest estimators belong to the class of linear estimators
in Y if and only if each tree of the forest has the X-property; see Remark 5.3.1. The weights {w (B))

k
}k∈Sr

share the properties of the weights {wk}k∈Sr detailed in Proposition 5.3.2.
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5.4.3 From �nite to in�nite forests

We now consider forests with a large number of trees. Such forests are more stable, hence easier to
analyze. We begin our discussion on large forests by considering the notion of in�nite forests predictors,
de�ned as

m̂ (∞) := E
[
m̂ (B)
r f
|X , I , r , y

]
.

We emphasize that, in practice, m̂ (∞) cannot be computed explicitly (but can be approached, see below).
It is called an in�nite forest predictor because, by the strong law of large numbers, we have

lim
B→∞

m̂ (B)
r f
= lim

B→∞

1
B

B∑
b=1

m̂ (b)tree = m̂ (∞). a.s.

Accordingly, de�ne the in�nite forest estimator as

t̂ (∞)
r f

:=
∑
k∈Sr

yk

πk
+

∑
k∈Sm

m̂ (∞)
r f
(xk)

πk
=

∑
k∈Sr

w
(∞)

k
yk . (5.15)

Using the fact that an imputed forest estimator is a average of tree imputed estimators and the strong
law of large numbers, it follows that

lim
B→∞

t̂ (B)
r f

a.s.
= E

[̂
t (B)
r f
|X , I , r , y

]
= t̂ (∞)

r f
. (5.16)

We see therefore that, even though the in�nite forest estimator cannot be computed, there is hope to
approach it with a �nite forest estimator based on large B. In fact, approaching the in�nite forest is of
particular interest, as reveals next lemma.

Lemma 6. Consider sequences of �nite {̂t (B)
r f
} and in�nite {̂t (∞)

r f
} forest estimators.

There exists C such that

0 6 E


( t̂ (B)

r f
− ty

Nv

)2 −E

( t̂ (∞)

r f
− ty

Nv

)2 6
C
B

.

We also obtain that
√

nv
Nv

(̂
t (B)
r f
− ty

)
=

√
nv

Nv

(̂
t (∞)
r f
− ty

)
+ OP

(√
nv
B

)
.

By Lemma 6, we see that the mean squared error of in�nite forest is always lower of equal to the
mean squared error of �nite forest. As a consequence, it follows that in�nite forests are more e�cient
than �nite forests. Lemma 6 also reveals that the di�erence between the two errors is bounded, and
even decreases to 0 if B diverges. The following proposition postulates that, with high probability, the
�nite forest estimator can be made arbitrarily close to the (unknown) in�nite forests. Stability is also
recovered.
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Proposition 5.4.3. Fix B ∈ N and ε > 0. The probability (with respect to PΘ) that the �nite forest
estimator is not in an ε-neighborhood of the in�nite forest estimator is bounded by

PΘ

(
|̂t (B)
r f
− t̂ (∞)

r f
| > ε

)
6 2 exp

©­­­­«
−Bε2

2n2
m

(
supω∈ΩY Y (ω) − infω∈ΩY Y (ω)

mink∈U πk

)2

ª®®®®¬
, (5.17)

where ΩY denotes the sample space of the random variable Y .

Obviously, when B→∞, the bound given in Proposition 5.4.3 decreases to 0, which is convergence
in probability of t̂ (B)

r f
towards t̂ (∞)

r f
. This, naturally, is not surprising as both convergence in L2 and

almost sure hold, as stated for instance in (5.16). However, the bound (5.17) provides the quantitative
guarantee that, with large probability, the two estimators are close. In particular, the bound (5.17) can
be used to choose the number of trees to be used in practical situations. The bound also illustrates the
impact of the number of nonrespondents, with regards to the number of trees. A similar concentration
inequality can be obtained for the estimation weights as well: for ε > 0, we have

PΘ

(
|w
(B)
k
− w

(∞)

k
| > ε

)
6 exp

©­­­­«
−2Bε2

d2
k

n2
m

n2
0

ª®®®®¬
, k ∈ Sr .

5.4.4 Convergence of random forest imputed estimators

We conclude this section by two examples of L2-consistent forest estimators. We begin by considering
the case of uniform random forests, as described in Example 5.4.2, followed by Breiman’s random
forests. The proofs will rely on mainly the same ideas, but will require more restrictive assumptions
for Breiman’s random forests due to a high level of data dependency. An important part of our proof is
based on the idea that the forests that we consider are, in some sense, large and stable: we will assume
that, without rate requirement, the number of trees is strictly increasing: let v1 < v2 be positive integers,
then the number of trees Bv1 in the forest predictor used to impute in Sv1 is strictly lower than the
number of trees Bv2 used in imputation of Sv2 , i.e. v1 < v2 =⇒ Bv1 < Bv2 . The exact motivation of this
requirement will be made clear in the proofs below.

Result 5.4.1. Assume (H19) and (H20). Consider a sequence of uniform forest imputed estimators {̂t (B)
ur f
}

described in Example 5.4.2. Assume also that:

1. The number of steps Lv increases as v increases such that limv→∞ Lv = +∞ and limv→∞
2Lv

nv
= 0.

2. The number of trees in the forest increases, without rate requirement, i.e. limv→∞ Bv = +∞.

Then, the forest estimator {̂t (B)
ur f
} is mean-square consistent for ty , i.e.

lim
v→∞

E

[(
1

Nv

(̂
t (B)
ur f
− ty

))2
]
= 0.

The conditions given in Result 5.4.1 follow from the conditions of results from Scornet (2016a).

Result 5.4.2. Assume (H19) and (H20). Consider a sequence of Breiman’s random forest imputed estimators
{̂t(B)
br f
} described in Example 5.4.3. Assume also that:
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1. No additional split is performed in a node if it contains one element or if the maximal depth Kv is
reached.

2. The regression function m is additive with each component bounded, i.e.

mv ∈ Gv := {g(x) =
pv∑
j=1

gj(xj), gj is bounded and Borel measurable, j = 1, 2, ...pv},

and | |mv | |l0 = o(
√

Kv).

Then, if limv→∞ Kv (pv/p0v) = +∞ and limv→∞ 2Kv log (nr pv) /nr = 0, the forest estimator {̂t (B)
br f
} is

mean-square consistent for ty , i.e.

lim
v→∞

E

[(
1

Nv

(̂
t (B)
br f
− ty

))2
]
= 0.

5.5 Variance estimation

It is well known that treating imputed values as observed values and using the naive variance estimator

V̂naive :=
∑
k∈S

∑̀
∈S

∆k`

πk`

rk yk + (1 − rk)m̂
(B)
r f
(xk)

πk

r` y` + (1 − rk)m̂
(B)
r f
(x`)

π`
(5.18)

may lead to a severe underestimation of the overall variance V(̂t(B)
r f
). In this section, we derive two

variance estimators that take into account all variation sources through the methods described in
Särndal (1992) and Shao and Steel (1999); we shall call these approaches the two-phase and the reverse
frameworks, respectively. For more details about variance estimation of imputed estimators in surveys,
the reader is referred to Haziza and Vallée (2020). Proposition 5.5.1 illustrates how variance estimation of
large forest estimators is similar to variance estimation of tree estimators. For simplicity of notation, we
let EΘ andVΘ be the expectation and variance operators with respect to the random variables {Θb}

B
b=1,

conditionally on the every other random quantities.

Proposition 5.5.1. Consider sequences of �nite {̂t (B)
r f
} and in�nite {̂t (∞)

r f
} forest estimators. We have

V
©­«

t̂ (B)
r f
− ty

N
ª®¬ = V ©­«

t̂ (∞)
r f
− ty

N
ª®¬ +E

VΘ ©­«
t̂ (B)
r f

N
ª®¬
 . (5.19)

Furthermore, there exists C > 0 such that

E
[
VΘ

(
N−1
v t̂ (B)

r f

)]
6 C ×

n2
v

N2
vBv

.

Corollary 5.5.1. The contribution of E
[
VΘ

(̂
t (∞)
r f

)]
to the overall variance V

(̂
t (B)
r f
− ty

)
given in (5.19)

is at most of order O
(

n2
v

N2
v

×
nv
Bv

)
.

Proposition 5.5.1 and Corollary 5.5.1 highlight that the contribution of the randomization variance
can be made arbitrarily small by choosing a large value of B. More precisely, the contribution of the
randomization variance is at most of order O

(
f 2
v · nv/Bv

)
, which is small if either (or both): 1) the
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sampling fraction fv is small enough; 2) the number of trees is large enough. The other variance
component is the variance of the in�nite forest, which is, in some regards, a particular kind of regression
tree. Hence, for conciseness, we describe the variance estimation procedures only for t̂tree.

5.5.1 Variance estimation through the two-phase framework

Following Särndal (1992), we consider the decomposition

t̂tree − ty =
(̂
ttree − t̂π

)
+

(̂
tπ − ty

)
.

It follows that the overall mean-squared error of t̂tree can be written

E
[ (̂

ttree − ty
)2

]
= E

[ (̂
tπ − ty

)2
]
+E

[ (̂
ttree − t̂π

)2
]
+ 2E

[ (̂
ttree − ty

) (̂
tπ − ty

) ]
,

= Vsam +Vnr + 2Vmix .

We propose, as described in Särndal (1992), to estimate these three terms separately. The �rst term
is the sampling variance, the second corresponds the nonresponse variance and the third is a mixed
component. Following the method of Beaumont and Bocci (2009), an estimator of the sampling variance
is given by

V̂sam := V̂naive +
∑
k∈Sm

d2
k (1 − πk) σ̂

2,

where σ̂2 is an estimator of σ2. Usual sample variance estimators might be used on the data {êk}k∈Sr :=
{yk − m̂tree(xk)}k∈Sr . If heteroscedasticity is suspected in these residuals, one might regress {êk}k∈Sr
on the covariates {xk}k∈Sr with a regression tree (or forest) to predict {σ̂k}k∈Sr ; see e.g. Haziza and
Vallée (2020) for more details about the procedure. An estimator of the nonresponse variance is given by

V̂nr := σ̂2
∑
k∈S

γ2
k ,

where γk := rkwk − dk for k ∈ S. An estimator of the mixed component is given by

V̂mix :=
∑
k∈S

γk (dk − 1) σ̂2.

An estimator of the total variance is therefore given by

V̂sar := V̂sam + V̂nr + 2V̂mix . (5.20)

Remark 5.5.1. As noted by Beaumont and Bissonnette (2011) and in Haziza and Vallée (2020), the estimation
of the nonresponse and mixed components is simpli�ed when the imputation model is linear in the survey
variable. However, as mentioned in Remark 5.3.1, a tree predictor (and estimator) is linear in the survey
variable if and only if the partitioning algorithms has the X-property. For trees with the X-property, the
overall variance of t̂tree is therefore taken into account by V̂sar . However, when the partitioning algorithm
does not have the X-property, a rigorous justi�cation of the variance estimator given in (5.20) is beyond
the scope of this article. The rationale behind it is based on the assumptions that N−2

v V
(̂
ttree − ty

)
u

N−2
v V

(̂
ttree − ty |P

)
for large samples and that E

[
y2
k
|P

]
= σ2 + oP(1). In words, the overall variance

of t̂tree is taken into account by (5.20) if the in�uence of the variations produced by the partitions to the
overall variations is asymptotically negligible. Since most splitting criteria can be shown to converge to their
theoretical counterparts (see e.g., Scornet et al. (2015)), we expect these assumptions to hold. Simulations
provided in Section 5.7 also seem to corroborate these assumptions.
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5.5.2 Variance estimation through the reverse framework

In the reverse framework (Fay, 1991, Shao and Steel, 1999), conditionally on the nonresponse mechanism,
the variance of a regression tree imputed estimator can be decomposed as

V
(̂
ttree − ty |r

)
= E

[
V

(̂
ttree |r , y, X

)
|r

]
+V

[
E

(̂
ttree − ty |r , y, X

)
|r

]
:= V1 +V2. (5.21)

Note that, if t̂tree is asymptotically unbiased, it follows that V
(̂
ttree − ty |r

)
≈ V

(̂
ttree − ty

)
for large

samples. It is known that, for single-stage sampling designs, the contribution of V2 to the overall
variance is at most of order O(nv/Nv), see e.g., Shao and Steel (1999), Haziza and Vallée (2020). Hence, if
the sampling fraction is negligible, its computation may be omitted. In what follows, we make this
assumption.

Using a linearization of t̂tree, it follows that

V1 ≈ E

[
V

(∑
k∈S

dkξk |r , X , y

) ����r ] ,

where
ξk := m̃tree(xk) + rk ·

N (xk , U)
N (xk , Ur )

· (yk − m̃tree(xk)) , k ∈ S,

and

N(xk , U) :=
∑
k∈U

1xk ∈ Ã(x)
, N(xk , Ur ) :=

∑
k∈Ur

1xk ∈ Ã(x)
, m̃tree(xk) :=

∑
k∈U

1xk ∈ Ã(x)∑
`∈U 1x` ∈ Ã(x)

· yk ,

with Ã(x) denoting the node of the population partition containing x and Ur is the population of
respondents. The quantities {ξk}k∈S are therefore unknown; they can be estimated by

ξ̂k := m̂tree(xk) + rk ·
N̂ (xk , S)

N̂ (xk , Sr )
· (yk − m̂tree(xk)) , k ∈ S.

An estimator of V1 is given by

V̂rev :=
∑
k∈S

∑̀
∈S

∆k`

πk`

ξ̂k
πk

ξ̂`
π`

. (5.22)

If n/N is negligible, V̂rev is an estimator of the total variance.

5.6 Mass imputation for data integration

In recent years, there has been a shift of paradigm in NSOs that can be explained by three main factors:
(i) a dramatic decrease of response rates; (ii) increasing data collection costs; and (iii) the proliferation of
nonprobabilistic data sources such as web survey panels, social media and satellite information. To meet
these new challenges, NSOs face increasing pressure to utilize these convenient but often uncontrolled
data sources. While such data sources provide timely data for a large number of variables and population
units, they often fail to represent the target population of interest because of inherent selection biases.
The integration of data from a nonprobability source to data from a probability survey is a topic that is
currently being scrutinized by NSOs. The reader is referred to Beaumont and Rao (2021) and Yang and
Kim (2020) for recent overviews on data integration methods in a survey sampling setting.
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In this section, we show how our methodology and results can be applied to the problem of data
integration. Consider a �nite population U of size N . Two independent samples SA ⊂ U and SB ⊂ U
are observed. On the one hand, the sample SA of size nA is selected from the sampling frame according
to a probability sampling design PA(·) with �rst-order inclusion probabilities {π(A)

k
}k∈U known for all

population units. On the other hand, the sample SB of size nB is a sample where the inclusion probabilities
{π
(B)
k
}k∈U are unknown. The survey variable is assumed to be observed only for the elements of SB ,

whereas the vectors of covariates {xk}k∈SA and {xk}k∈SB are observed both samples. The framework is
summarized in Table 15 below.

πk X Y
SA Known Observed Unobserved
SB Unknown Observed Observed

Table 15: Summary of the data structure

Because the inclusion probabilities of the sample SB are unknown, SB cannot be used directly to
produce reliable estimates of ty . Moreover, a similar conclusion holds for SA since the measurements of
the survey variable are unobserved for those elements. In that framework, it is common to consider
the methodology of mass imputation; that is, a model m̂(SB )

r f
is �tted on {(xk , yk)}k∈SB to de�ne the

following estimator of ty :

t̂mi :=
∑
k∈SA

m̂(SB )

r f
(xk)

π
(A)
k

. (5.23)

A similar mass imputation estimator can also be constructed with any other imputation model, including
regression trees. In fact, the mass imputation estimator t̂mi can be viewed as an imputed estimator with
nm = n and an imputation model coming from an auxiliary source. Thus, the mass imputation estimator
inherits most of the properties proved for trees and forests imputed estimators. More precisely, our
previous regularity conditions turn into the following in this framework.

The regularity conditions on the sampling design PA(·) are similar to those made for the sampling
design P(·) in the previous sections. Regarding the (unknown) sampling design PB(·), it is enough to
assume that it is non-informative and that each element has a strictly positive probability of being in
the sample SB .

Under the assumptions mentionned in the above paragraph, the previous results of consistency hold
for both tree and forest mass imputed estimators. Assuming that the sample SB is of size much greater
than SA, i.e. nA/nB ≈ 0, we suggest, using the reverse framework, the following variance estimator:

V̂mi =
∑
k∈SA

∑
`∈SA

π
(A)
k`
− π
(A)
k
π
(A)
`

π
(A)
k`

m̂(B)
r f
(xk)

π
(A)
k

m̂(B)
r f
(x`)

π
(A)
`

. (5.24)

5.7 Simulations

In this section, we present the results of several empirical studies to assess the behaviors of the
methodologies introduced in this article. First, in Section 5.7.1, we study the empirical performances of
trees and forest imputed estimators; we compare them with other state-of-the-art imputed estimators.
In Section 5.7.2, we investigated the performances of the variance estimators suggested in Section
5.5. Section 5.7.3 provides the results of simulations investigating the performances of mass imputed
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estimators. Section 5.7.4 focuses on the performances of the variance estimator suggested for mass
imputed estimators.

5.7.1 Performances of point estimators

We generated a population U of size N = 10 000 consisting of a set of covariates X1, X2, ..., X5 and 5
survey variables. We begin by de�ning a matrix Z ∈ RN×p with entries giving by Zi j ∼ N (5, 1). Next,
We generated a design matrix X = A+ E ∈ RN×p , with A = SVD2 (Z) where SVD2 denotes the rank-2
singular value decomposition operator and E with components such that:

• Ek` ∼ N (0, 0.01) if Ak` 6 Q0.25,

• Ek` ∼ N (0, 0.8) if Q0.25 < Ak` 6 Q0.5,

• Ek` ∼ N (0, 1.6) if Q0.5 < Ak` 6 Q0.75,

• Ek` ∼ N (0, 2.4) if Q0.75 < Ak` ,

where Qα denotes the empirical quantile of order α of A2, the second column of A. The rationale behind
this construction was to use a design matrix X whose colums represent the covariates, which was full
rank, yet with correlations between the covariates and with an underlying structure of strata (given by
the quantiles of the column A2) with di�erent variances in each stratum.

Using X1 − X5, we generated 5 survey variables according to:

• Y1 = 2 + X1 + X2 + X3 + X4 +N (0, 1);

• Y2 = 2 + X2
1 + X2

2 + X3
3 + X4 +N (0, 1);

• Y3 = 2 + cos (X1 + X2) +N (0, 1);

• Y4 = 2 + 2X1 + 5X2 + X2
1 X2

3 X2
4 +N (0, 1);

• Y5 = 2 + X1 + 10 exp
(
21X5>5 − 31X5<6

)
+N (0, 1).

The goal was to estimate the totals ty j :=
∑

k∈U yk j for j = 1, ..., 5, where yk j denotes the measure
of the survey variable Yj for element k ∈ U. To this aim, we considered two scenarios: 1) we assumed
that the underlying strata structure of the design matrix was unknown to the survey statistician; 2) the
strata structure was known to the survey statistician, and thus this information could be incorporated
into the sampling design. In the �rst scenario, we used simple random sampling without replacement
of size n = 1 000. In the second, we used the known strata structure to de�ne a strati�ed sampling
with X2-optimal allocation. We note that the strati�ed sampling design was informative as correlations
between the survey variables and the inclusion probabilities were between 0.3 and 0.5.

Nonresponse to Y1,Y2, ...,Y5 was generated according to a MAR nonresponse mechanism, attributing
response probabilities de�ned as follows

pk = 0.1 + 0.8 × logit(5 − 0.25(xk1 + xk2 + xk3 + xk4)), k ∈ U,

and rk ∼ B(pk). Missing values were imputed by using the following 5 di�erent imputation procedures:

1) The imputed estimator (LR) based on linear regression.

2) The imputed estimator (CART) based on a regression tree.
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3) The imputed estimator (RF) based on random forest with:

• B = 1000 trees in the forests,

• Bootstrap as resampling mechanism,

• At least n0 = bn11/20c elements in each terminal node,

• The CART splitting criterion was optimized by selecting mtry =
√

p+ design variables with
probability one at each split.

4) The imputed estimator (NN1) based on nearest neighbor imputation.

5) The imputed estimator (NN5) based on 5-nearest neighbors imputation.

A Monte-Carlo procedure of R = 5 000 iterations was used to evaluate the performances of these
estimators. As a measure of bias, we used the Monte-Carlo relative bias (RB) de�ned as

RB(̂timp) = 100 ×
1
R

R∑
r=1

(̂t(r) − ty)
ty

, (5.25)

for an estimator t̂imp . The Monte-Carlo relative e�ciency (RE) with respect to the Horvitz-Thompson
estimator was also computed:

RE(t̂imp) = 100 ×

∑R
r=1(t̂

(r) − ty)2∑R
r=1(t̂

(r)
yπ − ty)2

. (5.26)

The results in terms of relative e�ciency and relative bias are reported in Table 16 and Table 17,
respectively.

Survey variable Design LR CART NN1 NN5 RF

Y1 SRSWOR 108 143 131 159 118
STRAT 113 159 130 126 124

Y2 SRSWOR 122 111 196 299 113
STRAT 120 129 158 215 112

Y3 SRSWOR 206 168 256 339 160
STRAT 209 153 227 244 145

Y4 SRSWOR 146 163 175 244 134
STRAT 159 187 161 209 147

Y5 SRSWOR 139 101 188 257 103
STRAT 144 103 172 210 104

Table 16: Relative e�ciencies (%) of the imputed estimators.
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Survey variable Design LR CART NN1 NN5 RF

Y1 SRSWOR -0.0 -0.0 -0.1 -0.3 -0.00
STRAT 0.0 0.09 -0.0 -0.1 0.1

Y2 SRSWOR -0.1 -0.1 -2.4 -3.6 0.1
STRAT -0.0 1.2 -2.0 -2.9 0.6

Y3 SRSWOR -0.0 -0.0 -1.0 -1.6 0.0
STRAT 0.1 -0.1 -1.0 -1.4 -0.0

Y4 SRSWOR -0.1 -0.8 -4.6 -6.7 -0.4
STRAT -0.3 1.0 -3.0 -5.3 1.1

Y5 SRSWOR -0.0 -0.0 -2.7 -4.3 0.4
STRAT 0.1 0.6 -2.4 -3.6 0.6

Table 17: Relative biases (%) of the imputed estimators.

Overall, the random forest imputed estimator stood out from other models with its good behavior,
both in terms of bias and e�ciency. It was followed by both the tree and linear regression estimators.
Nearest neighbors estimators were less e�cient and exhibited (small) negative biases in most scenarios.
The conclusions are similar for both strati�ed and simple random sampling, as all methods behave in
a similar manner in both designs. When the true relationship between the covariates and the survey
variable was linear (e.g. Y1), linear regression was the most e�cient estimator. For instance, for the
estimation of ty1, the linear regression imputed estimator exhibited a relative e�ciency of 108% for
SRSWOR and 113% for STRAT, whereas the second best estimator was RF, with 118% and 124%. Thus,
even in this scenario, the random forestimputed estimator was e�cient and close to the performances of
the linear regression imputed estimator. As expected, for non-linear relationships, linear regression was
less e�cient than random forest. For instance, for the estimation of Y5, RF had relative e�ciencies of 103%
and 104%, where LR had relative e�ciencies of 139% and 144%. We emphasize that, as noted in Dagdoug
et al. (2022a), in order to make sure that unequal probability sampling designs remain uninformative
with a random forest model, the design variables should be considered with high-probability at each
split; this is especially true in high-dimensional scenarios.

5.7.2 Performance of variance estimators

We also investigated the performances of variance estimators. To that aim, we generated a larger design
matrix X ∈ RN×p , with N = 100 000, p = 5 and the components Xi j were drawn i.i.d. from N(5, 1).
We generated the survey variables Y1, ...,Y5 using the same relationships as in the previous section. The
nonresponse mechanism was also the same. We used a regression tree imputed estimator with varying
node sizes to better understand the impact of this hyper-parameter on variance estimators. We have
included the following four di�erent variance estimators in our simulations:

• The naive variance estimator (NAIVE) de�ned in (5.18);
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• The two-phase variance estimator (SAR) de�ned in (5.20);

• The two-phase variance estimator (SAR-CV) with σ2 estimated by means of a cross-validation
procedure with K = 5-folds;

• The reverse variance estimator (REV) de�ned in (5.22).

For more details on the cross-validation procedure used, the reader is referred to Dagdoug et al. (2021b).
A Monte-Carlo procedure of R = 10 000 iterations was used to compute the Monte-Carlo relative biases
of the variance estimators as well as the 95% coverage that they produce. The results are given in Table
18. For the estimation of Y5, all variance estimators exhibited negligible biases and met the required
coverage; these results are therefore omitted in Table 18.

n0 = 30 n0 = 90 n0 = 150

Survey variable Estimator RB Coverage RB Coverage RB Coverage

Y1

SAR -19.05 0.921 -12.57 0.931 -10.18 0.936
SAR_CV 9.82 0.958 6.03 0.953 4.82 0.953
REV -19.34 0.920 -12.90 0.930 -10.57 0.935
NAIVE -45.53 0.850 -55.59 0.811 -60.99 0.778

Y2

SAR -2.21 0.946 -1.74 0.945 -0.746 0.950
SAR_CV 2.17 0.951 3.18 0.950 10.76 0.960
REV -2.14 0.946 -1.74 0.945 -0.52 0.950
NAIVE -7.11 0.940 -12.34 0.932 -22.26 0.917

Y3

SAR -13.86 0.928 -6.73 0.939 -6.17 0.941
SAR_CV 13.87 0.962 10.27 0.958 6.43 0.954
REV -13.89 0.928 -6.87 0.938 -6.51 0.940
NAIVE -44.58 0.851 -54.95 0.813 -59.74 0.783

Y4

SAR -13.25 0.925 -10.10 0.936 -7.26 0.941
SAR_CV 7.98 0.953 7.55 0.958 7.81 0.957
REV -14.08 0.923 -10.79 0.935 -7.62 0.94
NAIVE -32.31 0.885 -48.32 0.842 -55.77 0.808

Table 18: Relative biases and coverage rates for the estimation of Yj , for j = 1, 2, ..., 4.

The relative biases of the naive variance estimators were, for some scenarios, very large. For example,
for the estimation of the totals of Y1 and Y3, the naive estimator displayed a relative bias of about 45%.
Therefore, as expected, these variance estimators lead to important undercoverages. In most scenarios,
the variance estimators SAR and REV behave similarly. For the estimation of Y1, the exhibited negative
biases ranging between approximately −20% and −10% which lead to coverages between 0.921-0.936.
For the estimation of the totals of Y2, ...,Y5, SAR and REV were close to the 95% required coverage with
more than 94% of coverage when enough elements were in the terminal nodes of the tree. We note that,
for these two variance estimators, the best results were always obtained for larger values of n0, that
is, when there were many elements in the terminal nodes. However, independently of the number of
elements in the terminal nodes and across all scenarios, the estimator SAR_CV was very e�cient, with
only negligible positive biases and coverages ranging between 95.1% and 96.1%.
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5.7.3 Empirical performances of tree and forest mass imputed
estimators

We generated a �nite population of size N = 10 000 with two sets of auxiliary variables and four
survey variables. The �rst set of auxiliary variables consisted of X1 ∼ N(2, 1) and X2 ∼ N(2, 1). The
second set of auxiliary variables consisted of Z1 ∼ N (0, 1), Z2 ∼ Beta (3, 1), Z3 ∼ 2 × Gamma (3, 2),
Z4 ∼ Bernoulli(0.7), and Z5 ∼ Multinomial(0.4, 0.3, 0.3). Given these variables, we generated the survey
variables Y1-Y4 according to the following models:

• Y1 = 2 + X1 + X2 +N (0, 1) ;

• Y2 = 1 + 2X3
1 +N (0, 0.5) ;

• Y3 = 2 + Z2
1 + Z2 + Z2

3 + 1, 51{Z5=1} +N (0, 1) ;

• Y4 = 2 + (Z1 + Z2 + Z3)
2 +N (0, 1) + Beta(3, 1).

To estimate the population totals for the survey variables Y1 and Y2, we performed 5, 000 iterations
of the following process: we selected a probability sample, SA, of size nA = 500, according to simple
random sampling without replacement. Independently, we selected a nonprobability sample SB , of size
nB = 500, as follows: we partitioned the population into two strata : Stratum 1 consisted of the units k
with xk1 < 2 and Stratum 2 contained the remaining units. In Stratum 1, we selected n1 = 0, 7× nB units
according to simple random sampling without replacement. In Stratum 2, we selected n2 = 0, 3 × nB

units according, again, to simple random sampling without replacement. For the survey variables Y3 and
Y4, we used a similar procedure with a slight di�erence: the strati�cation was performed using the
variable Z1 instead of X1.

We mass imputed the missing elements {yk}k∈SA according to the same imputation models as those
described in Section 5.7.1, with the exception of the random forest algorithm for which we used B = 500
and n0 = 10. For each imputation procedures, the imputations were obtained using the set of predictors
described in Table 19.

Survey variable Vector of explanatory variable X

used in the working model
Y1 X1 − X2

Y2 X1 − X2

Y3 Z1 − Z5

Y4 Z1 − Z5

Table 19: Working models used.

We were interested in estimating the population total tyj =
∑

k∈U yk j , j = 1, · · · , 4. For each
imputation procedure (i)-(v), we computed the corresponding mass imputed estimator given by (5.23).
In addition, we computed the naive estimator, t̂naive = n−1

B

∑
k∈SB

yk (NAIVE).

As a measure of e�ciency, we computed the relative bias given by (5.25) and the relative e�ciency
given by (5.26), using the unfeasible Horvitz-Thompson estimator, t̂π =

∑
k∈SA

yk/πk(A) , as the reference.
The results are displayed in Table 20. As expected, the naive estimator is considerably biased in all

the scenarios with value of absolute RB ranging from 15.3% to 60.9%. This can be explained that the
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Population Criterion NAIVE LR CART NN 5NN RF

Y1
RB -16.7 0.0 -0.8 -0.2 0.0 -0.7
RE 17971 131 269 199 162 177

Y2
RB -60.9 7.0 -4.9 -3.4 -6.9 -4.8
RE 12948 376 210 128 242 163

Y3
RB 29.3 10.1 0.0 -3.1 -4.1 0.8
RE 11251 1528 130 236 301 92.6

Y4
RB 15.3 5.0 4.2 -6.9 -10.2 2.6
RE 1085 299 273 273 471 111

Table 20: Monte Carlo percent relative bias (RB) and Monte Carlo e�ciency (RE) of several mass
imputation estimators.

participation mechanism depended on the variable X1 (for Y1 and Y2) and the variable Z1 (for Y3 and Y4)
but neither of X1 nor Z1 was used in the estimation procedure. In the case of Y1, all the procedures led
to negligible biases and LR was the most e�cient. We note that CART was signi�cantly less e�cient
than the other procedures with a value of RE equal to 269%. For the estimation of the total of Y2, all the
procedures exhibited some moderate bias with values of absolute RB ranging from 3.4% (for NN) to 7.0%.
In terms of e�ciency the best procedure as NN followed by RF. The other procedures were signi�cantly
less e�cient. In the case of the survey variables Y3 and Y4, the best procedure in terms of both RB and
RE was RF. The imputation procedure was considerably ine�cient. In the case of Y4, both NN and 5NN
showed a signi�cant bias.

5.7.4 Empirical performances of variance estimators for mass imputed
estimators

In this section, we investigate the performance of V̂rf given by (5.24) in terms of bias and coverage of
normal con�dence intervals. We generated a population of size N = 50 000 consisting of a survey
variable Y = 0, 3 + 2X +N(0, 0.4), where X ∼ N(0, 1). From the population, 5, 000 probability samples
and nonprobability samples were selected using the setup in Section 7.2 for the survey variables Y1 and
Y2. We used nA = 500; 2000 and nB = 500; 2000; 10000.

In each sample, we computed (i) the imputed estimator (5.23) based on the random forest algorithm
of Breiman; (ii) the variance estimator given by (5.24); and (iii) a 95% con�dence interval of the form
t̂mi ± 1.96

√
V̂r f .

Table 21 reports the Monte Carlo percent relative bias of V̂r f and the Monte Carlo coverage
probability of the con�dence intervals. For nA = 500, the variance estimator showed a small bias. The
bias decreased as the ratio nA/nB decreased. For nA/nb = 500/10000 = 0.05, the variance estimator was
virtually unbiased. The coverage rates ranged from 94.1% to 94.7%. For nA = 2000, the variance estimator
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Sample size Criterion nB = 500 nB = 2000 nB = 10000

nA = 500
RB -5.5 -3.6 0.0

Coverage 94.1 94.1 94.7

nA = 2000
RB -25.1 -7.7 -1.5

Coverage 91.5 94.5 94.5

Table 21: Coverage rates and relative biases of V̂rf in percentage

was biased for nB = 500 with a value of absolute RB of about 25.1%. Again, the bias decreased as nB

increased. For nB = 10000, the absolute RB was approximately equal to 1.5% and the coverage rate was
about 94.5%. The results suggest that the coverage rate is close to the nominal rate when nB ≥ nA.

5.8 Appendix

Result 5.2.1. Assume (H19) and (H20). Consider a sequence of predictors {m̂} �tted on Dnr and its
population counterparts {m̃} �tted on DN := {(xk , yk) ; k ∈ U} . If

i) The sequence of population predictors {m̃} satis�es

lim
v→∞

E

[(
m̃(x) −m(x)

)2
]
= 0,

with a convergence rate denoted γv .

ii) There exists a positive constant C, independent of v, such that

E

{(
m̂(x) −m(x)

)2 ����r , X , I

}
6 C. a.s.

Then, the sequence of imputed estimators {̂tm̂} is L2-consistent with rate

E

[(
1

Nv

{̂
tm̂ − ty

})2
]
= O

(
γv

)
.

Proof. Write

E

[(
1

Nv

(̂
tm̂ − ty

) )2
]
6 2E

[(
1

Nv

(̂
tm̂ − t̂π

) )2
]
+ 2E

[���� 1

N2
v

(̂
tπ − ty

)2
����] , (5.27)

where t̂π denotes the HT estimator on complete data de�ned in (5.1). We turn into the second term of
the right-hand side of (5.27). Write

E

[���� 1

N2
v

(̂
tπ − ty

)2
����] = E[

1

N2
v

∑
k∈U

α2
k y

2
k

]
+E

[
1

N2
v

∑
k,`∈U
k,`

αkα` yk y`

]
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where αk := Ikπ−1
k
− 1. Under (H20) each of these term converge to zero with the rate O(n−1

v ). It remains
to show that the �rst term of (5.27) is converging to 0 with the rate O(γv).

Recall that

1
Nv

(̂
tm̂ − t̂π

)
=

1
Nv

∑
k∈S

{
(1 − rk)
πk

(m̂(xk) − yk)

}
,

hence

E

[(
1

Nv

(̂
tm̂ − t̂π

) )2
]
6 2E

[(
1

Nv

∑
k∈S

(1 − rk)
πk

(m̂(xk) −m(xk))
)2

]
(5.28)

+ 2E

[(
1

Nv

∑
k∈S

(1 − rk)
πk

(m(xk) − yk)

)2
]

We now establish the consistency of the second term of (5.28) with the rate O(n−1
v ). Write

E

[(
1

Nv

∑
k∈S

(1 − rk) (m(xk) − yk)

)2
]
= E


1

N2
v

∑
k,`∈S
`,k

(1 − rk)
πk

(1 − r`)
πl

× εkε`

 (5.29)

+E

[
1

N2
v

∑
k∈S

(
(1 − rk)
πk

)2

ε2
k

]
For the �rst term of (5.29), we use the law of total expectation as follows:

E


1

N2
v

∑
k,`∈S
l,k

(1 − rk)
πk

(1 − rl)
πl

× εkε`


= E


1

N2
v

∑
k,`∈S
`,k

(1 − rk)
πk

(1 − r`)
π`

E

[
εkε`

����X , I , r

]
Notice now that the random variables εk and ε` are independent for all k , `. Furthermore, recall that,
for all k ∈ U, E [εk |X] = 0. Thus, it follows that

E

[
εkε`

����X , I , r

]
= E

[
εk

����X , I , r

]
E

[
ε`

����X , I , r

]
= 0. (5.30)

Therefore, the �rst term in (5.29) is 0. For the second term, a similar derivation does not work. However,
we have that

E

[
1

N2
v

∑
k∈S

(
(1 − rk)
πk

)2

ε2
k

]
6

Nv

λ2N2
v

max
k∈U

E
[
(m(xk) − yk)

2] = O(N−1
v )
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since, for all k ∈ U, E
[
ε2
k

����X , I , r

]
= σ2 < ∞.

It remains to show that the �rst term of (5.28) is O(γv). Bounding arguments ensures that

E

[(
1

Nv

∑
k∈S

(1 − rk)
πk

(m̂(xk) −m(xk))
)2

]
6

nv
λ2Nv

1
Nv

∑
k∈U

E

[(
m̂(xk) −m(xk)

)2
]

.

Now, Condition ii) implies that there exists a positive constant C > 0, independent of v, such that

E

[(
m̂(xk) −m(xk)

)2 ����r , X , I

]
6 C, a.s.

and it follows from Condition i) and Lemma 7 that, for all k ∈ U,

E

[(
m̂(xk) −m(xk)

)2 ����r , X , I

]
P
−→ 0.

Hence, by the Lebesgues dominated convergence theorem,

lim
v→∞

E

[
E

[(
m̂(xk) −m(xk)

)2����r , X , I

] ]
= 0,

with the rate O(γv). Moreover, max(γv , 1/nv) = γv . The result follows. �

Proposition 5.3.1. The tree estimator t̂tree de�ned in (5.8) can be written as

t̂tree =
∑
k∈Sr

wk yk ,

where the estimation weights {wk}k∈Sr are given by

wk =
1
πk
+

∑
`∈Sm

Ŵk(x`)
π`

=
1
πk
+

N̂ (xk , Sm)
N (xk , Sr )

, k ∈ Sr , (5.31)

with N̂ (xk , Sm) :=
∑
`∈Sm

π−1
` 1x` ∈A(xk ) denoting the Horvitz-Thompson estimator of the number of

elements of A(xk) with elements of Sm; accordingly, N (xk , Sr ) :=
∑
`∈Sr 1x` ∈A(xk ) is used to denote the

cardinal of elements in Sr that fall in A(xk).

Proof. Write

t̂tree =
∑
k∈Sr

yk

πk
+

∑
k∈Sm

(
1
πk

∑
`∈Sr

Ŵ`(xk)y`

)
=

∑
k∈Sr

yk

πk
+

∑
`∈Sr

( ∑
k∈Sm

1
πk

Ŵ`(xk)

)
y`

=
∑
k∈Sr

{
1
πk
+

∑
`∈Sm

Ŵk(x`)
π`

}
yk .
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To prove the last equality, see that∑
`∈Sm

Ŵk(x`)
π`

(1)
=

∑
`∈Sm

π−1
` 1x` ∈A(xk )∑

i∈Sr 1x` ∈A(xk )
:=

N̂ (xk , Sm)
N (xk , Sr )

,

where equality (1) follows from the symmetry property given in Technical lemma 1 item iv). �

Proposition 5.3.2. The estimation weights {wk}k∈Sr in (5.31) have the following properties.

i) The weights are calibrated to the population size N whenever the original weighting system {dk}k∈U
is: ∑

k∈Sr

wk =
∑
k∈S

dk := N̂ .

ii) If there are at least n0 elements in each node, the weights {wk}k∈Sr are bounded,

dk 6 wk 6 dk

(
1 +

nm
n0

)
, a.s. k ∈ Sr .

The bounds are sharp, i.e. each of the bounds can be attained.

Proof. For i), recall that, for all x ∈ Rp , we have
∑

k∈Sr Wk(x) = 1, as stated in Technical lemma 1 item
i). Thus, ∑

k∈Sr

wk =
∑
k∈Sr

1
πk
+

∑
`∈Sm

∑
k∈Sr Ŵk(x`)

π`
=

∑
k∈Sr

1
πk
+

∑
`∈Sm

1
π`
=

∑
k∈S

1
πk

.

The bounds follow as a consequence of Technical lemma 1 item iii). �

Proposition 5.3.3. If the sampling design is such that πk = π for all k ∈ U, then t̂tree can be written in
projection form, that is,

t̂tree =
∑
k∈S

m̂tree(xk)
πk

.

Proof. Note that

t̂tree =
∑
k∈S

m̂tree(xk)
πk

+
∑
k∈Sr

yk − m̂tree(xk)
πk

.

It is therefore enough to show that ∑
k∈Sr

yk − m̂tree(xk)
πk

= 0.

Hence, write ∑
k∈Sr

yk − m̂tree(xk)
πk

=
∑
k∈Sr

π−1
k

(
yk −

∑
`∈Sr

Ŵ`(xk)y`

)
=

∑
k∈Sr

π−1
k yk −

∑
k∈Sr

π−1
k

∑
`∈Sr

Ŵ`(xk)y`

(2)
=

∑
k∈Sr

π−1
k yk −

∑
`∈Sr

π−1
`

( ∑
k∈Sr

Ŵk(x`)

)
y`
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=
∑
k∈Sr

π−1
k yk −

∑
`∈Sr

π−1
` y`

= 0.

Equality (2) follows from the fact that πk = π` , for all k , ` ∈ Sr and the symmetry property given in
Technical lemma 1 item iv). �

Result 5.3.1. Assume (H20) and (H19). Consider a sequence of tree imputed estimators {̂ttree} based on
the CART criterion described in Example 5.3.1. Assume also that:

1. There is no more split in a node if there is either only one element in it or if the maximal depth Kv is
reached.

2. The regression function m is additive and bounded, i.e.

mv ∈ Gv := {g(x) =
pv∑
j=1

gj(xj), gj is bounded and Borel measurable, j = 1, 2, ...pv},

and | |mv | |l0 = #{ j = 1, 2, ..., pv ; mj non-constant} = o(
√

Kv).

Then, if limv→∞ Kv = +∞ and limv→∞ 2Kv log (nr pv) /nr = 0, the tree estimator {̂ttree} is mean-square
consistent for ty , i.e.

lim
v→∞

E

[(
1

Nv

(̂
ttree − ty

) )2
]
= 0.

Proof. We begin by noting that, from Corollary 4.3 of Klusowski (2021), it follows that the sequence
{m̃tree,v} of tree predictors �tted on DNv is universally consistent in L2 for m, meaning

lim
v→∞

E

[(
m̃tree(x) −m(x)

)2]
= 0,

which is Condition i) of Result 5.2.1. Since we are in a framework in which Y is almost surely bounded,
it follows that

E

{(
m̂tree(x) −m(x)

)2 ����r , X , I

}
6 C. a.s.

Therefore, Condition ii) of Result 5.2.1 holds as well. Hence, Result 5.2.1 guarantees the mean-square
consistency of {̂ttree} is proved. �

Lemma 6. Consider sequences of �nite {̂t (B)
r f
} and in�nite {̂t (∞)

r f
} forest estimators.

There exists C such that

0 6 E


( t̂ (B)

r f
− ty

Nv

)2 −E

( t̂ (∞)

r f
− ty

Nv

)2 6
C
B

.

We also obtain that
√

nv
Nv

(̂
t (B)
r f
− ty

)
=

√
nv

Nv

(̂
t (∞)
r f
− ty

)
+ OP

(√
nv
B

)
.
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Proof. The proof essentially follows ideas described in Scornet (2016a). Write(̂
t (B)
r f
− ty

)2
=

(̂
t (B)
r f
− t̂ (∞)

r f
+ t̂ (∞)

r f
− ty

)2

=
(̂
t (B)
r f
− t̂ (∞)

r f

)2
+

(̂
t (∞)
r f
− ty

)2
+ 2

(̂
t (B)
r f
− t̂ (∞)

r f

) (̂
t (∞)
r f
− ty

)
. (5.32)

Next, notice that

E
[ (̂

t (B)
r f
− t̂ (∞)

r f

) (̂
t (∞)
r f
− ty

)]
= E

[
E

[ (̂
t (B)
r f
− t̂ (∞)

r f

) ����r , X , I , y

] (̂
t (∞)
r f
− ty

)]
= 0.

Therefore, taking expectations on both sides of (5.32) gives

E

[ (̂
t (B)
r f
− ty

)2
]
= E

[ (̂
t (B)
r f
− t̂ (∞)

r f

)2
]
+E

[ (̂
t (∞)
r f
− ty

)2
]

, (5.33)

so that

E

[ (̂
t (B)
r f
− ty

)2
]
−E

[ (̂
t (∞)
r f
− ty

)2
]
= E

[ (̂
t (B)
r f
− t̂ (∞)

r f

)2
]
> 0. (5.34)

Next, write

t̂ (B)
r f

Nv
−

t̂ (∞)
r f

Nv
=

1
Nv

∑
k∈Sm

m̂ (B)
r f
(xk) − m̂ (∞)

r f
(xk)

πk
,

so that

E

©­«
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r f

Nv
−

t̂ (∞)
r f

Nv

ª®¬
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1

N2
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©­«
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(xk)

πk

ª®¬
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6
nv
N2
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·E


∑
k∈Sm

(
m̂ (B)
r f
(xk) − m̂ (∞)

r f
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)2

π2
k
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nvNv

N2
vλ2
·max
k∈U

E

[(
m̂ (B)
r f
(xk) − m̂ (∞)

r f
(xk)

)2
]

Now, using Theorem 3.3 of Scornet (2016a), there exists a positive constant C such that, for all k ∈ U,

E

[(
m̂ (B)
r f
(xk) − m̂ (∞)

r f
(xk)

)2
]
6

C
B

,

leading to

E

©­«
t̂ (B)
r f

Nv
−

t̂ (∞)
r f

Nv

ª®¬
2 6

CnvNv

N2
vλ2Bv

= O

(
1

Bv

)
.
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Lemma 7. Assume (H19). Let {m̃} be a sequence of L2 consistent regression function estimates and let {m̂}
be the corresponding estimates �tted on Dnr = {(xk , yk); k ∈ Sr }. Then, {m̂} is such that,

E

[(
m̂(x) −m(x)

)2����X , I , r

]
P
→ 0.

Proof. By assumption,

lim
v→∞

E

[(
m̃(x) −m(x)

)2]
= 0.

From which it follows that

lim
v→∞

E

[����E[(
m̃(x) −m(x)

)2����X]
− 0

����] = 0.

In other words, the random variable E
[(

m̃(x) −m(x)
)2����X]

:= g(X) converges in L1 towards 0, which

implies that g(X) P→ 0. Furthermore, note that, under (H20) and (H19), we have almost sure equality of
the two random measures PY |X and PY |X ,I ,r . That is, the nonresponse mechanism and the sampling
design are ignorable. Therefore, �xing the sample of respondents and using the equality of conditional
distribution gives

E

[(
m̂(x) −m(x)

)2����X , I , r

]
P
→ 0.

We can note that this lemma is somewhat similar to that proven in Doob (1953) for the case of almost
sure convergence.

�

Proposition 5.4.3. Fix B ∈ N and ε > 0. The probability (with respect to PΘ) that the �nite forest
estimator is not in an ε-neighborhood of the in�nite forest estimator is bounded by

PΘ

(
|̂t (B)
r f
− t̂ (∞)

r f
| > ε

)
6 2 exp

©­­­­«
−Bε2

2n2
m

(
supω∈ΩY Y (ω) − infω∈ΩY Y (ω)

mink∈U πk

)2

ª®®®®¬
,

where ΩY denotes the sample space of the random variable Y .

Proof. Observe that

t̂ (B)
r f
− t̂ (∞)

r f
=

∑
k∈Sm

m̂ (B)
r f
(xk) − m̂ (∞)

r f
(xk)

πk
,

so that

PΘ

(
|̂t (B)
r f
− t̂ (∞)

r f
| > ε

)
= PΘ

©­«
���� 1
B

B∑
b=1

{ ∑
k∈Sm

m̂ (b)tree(xk) − m̂ (∞)
r f
(xk)

πk

}���� > ε
ª®¬ .

De�ne d̂ (b) :=
∑

k∈Sm
π−1
k

(
m̂ (b)tree(xk) − m̂ (∞)

r f
(xk)

)
. Note that, given the covariates, the sample

membership indicators, the survey variable and the nonresponse indicators, the sequence {m̂ (b)tree}
B
b=1 is

a sequence of independently and identically distributed (according to PΘ) random variables. The same
holds therefore for the sequence {d̂ (b)}B

b=1. Moreover, in our framework, these are zero mean bounded
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random variables. To see that, �rst note that infω∈ΩY Y (ω) and supω∈ΩY Y (ω) are �nite constants.
Hence, for all b ∈ {1, 2, ..., B} and k ∈ Sm,

inf
ω∈ΩY

Y (ω) − sup
ω∈ΩY

Y (ω) 6 m̂ (b)tree(xk) − m̂(∞)
r f
(xk) 6 sup

ω∈ΩY

Y (ω) − inf
ω∈ΩY

Y (ω). a.s.

Therefore, noting that infω∈ΩY Y (ω) − supω∈ΩY Y (ω) < 0, it follows that

nm ·
infω∈ΩY Y (ω) − supω∈ΩY Y (ω)

mink∈U πk
6 d̂ (b) 6 nm ·

supω∈ΩY Y (ω) − infω∈ΩY Y (ω)

mink∈U πk
, a.s.

Thus, for ε > 0,

PΘ

(
|̂t (B)
r f
− t̂ (∞)

r f
| > ε

)
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(���� B∑
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(3)
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mink∈U πk

)2

ª®®®®¬
,

where (3) follows from Hoe�ding inequality for bounded random variables. �

Result 5.4.1. Assume (H20) and (H19). Consider a sequence of uniform forest imputed estimators {̂t (B)
ur f
}

described in Example 5.4.2. Assume also that:

1. The number of steps Lv increases as v increases such that limv→∞ Lv = +∞ and limv→∞
2Lv

nv
= 0.

2. The number of trees in the forest increases, without rate requirement, i.e. limv→∞ Bv = +∞.

Then, the forest estimator {̂t (B)
ur f
} is mean-square consistent for ty , i.e.

lim
v→∞

E

[(
1

Nv

(̂
t (B)
ur f
− ty

))2
]
= 0.

Proof. Similar arguments than those used in the proof of Result 5.3.1 in coordination with Corollary 1
of Scornet (2016a) leads to the consistency of the in�nite forest estimator t̂(∞)

ur f
, that is,

lim
v→∞

E


( t̂ (∞)

ur f
− ty

Nv

)2 = 0.

Moreover, from Lemma 6, we have

0 6 E


( t̂ (B)

ur f
− ty

Nv

)2 −E

( t̂ (∞)
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Nv

)2 6
C
B

.

Thus, if we consider large forests (i.e. with an increasing number of trees), the sequences

E

[
N−2
v

(̂
t (B)
ur f
− ty

)2
]

and E
[
N−2
v

(̂
t (∞)
ur f
− ty

)2
]

must have the same limit. Hence,

lim
v→∞

E


( t̂ (B)

ur f
− ty

Nv

)2 = 0,
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which concludes the proof. �

Proposition 5.5.1. Consider sequences of �nite {̂t (B)
r f
} and in�nite {̂t (∞)

r f
} forest estimators. We have

V
©­«

t̂ (B)
r f
− ty

N
ª®¬ = V ©­«

t̂ (∞)
r f
− ty

N
ª®¬ +E

VΘ ©­«
t̂ (B)
r f

N
ª®¬
 .

Furthermore, there exists C > 0 such that

E
[
VΘ

(̂
t (B)
r f

)]
6 C ×

n2
v

N2
vBv

.

Proof. By the law of iterated variance,

V
(̂
t (B)
r f
− ty

)
= V

(
EΘ

[̂
t (B)
r f
− ty

] )
+E

[
VΘ

(̂
t (B)
r f
− ty

)]
.

From (5.16), it follows that

V
(̂
t (B)
r f
− ty

)
= V

(̂
t (∞)
r f
− ty

)
+E

[
VΘ

(̂
t(B)
r f
− ty

)]
.

Relation (5.19) is proved. Next, using Proposition 5.4.1, we have

VΘ

(̂
t (B)
r f
− ty

)
= VΘ

(̂
t (B)
r f

)
= VΘ

(
1
B

B∑
b=1

t̂ (b)tree

)
(4)
=

1
B
·VΘ

(̂
t(1)tree

)
,

where equality (4) follows from the fact that, as detailed in the proof of Proposition 5.4.3, conditionally on
everything but {Θb}

B
b=1, {̂t (b)tree}

B
b=1 is a sequence of i.i.d. random variables. Now, for any b ∈ {1, 2, ..., B},

VΘ

(̂
t (b)tree

)
= VΘ

( ∑
k∈Sm

m̂ (b)tree(xk)

πk

)
6 EΘ


( ∑
k∈Sm

m̂ (b)tree(xk)

πk

)2 6 n2

(
sup
ω∈ΩY

|Y (ω)|max
k∈U

dk

)2

.

This concludes the proof. �

Technical lemma 1. Consider the weights of a regression tree as de�ned in (5.7). The following hold:

i) If there is at least one element per terminal node, then, for all x ∈ Rp ,∑
k∈Sr

Ŵk(x) = 1.

ii) The weights of the tree can be seen as a the images of a weight function from Rp ×Rp to [0; 1], that is,

Ŵk(x`) := Ŵ (xk , x`) .

iii) If there is at least n0 elements per terminal node, then the range of Ŵ reduces to [0; n−1
0 ].

iv) The weight function is symmetrical in its arguments, that is, for all x, y ∈ Rp ,

Ŵ (x, y) = Ŵ (y, x) .
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Proof. For i), �x x ∈ Rp . Using the de�nition of (5.7), we have∑
k∈Sr

Ŵk(x) =
∑
k∈Sr

1xk ∈A(x)∑
`∈Sr 1x` ∈A(x)

=

∑
k∈Sr 1xk ∈A(x)∑
`∈Sr 1x` ∈A(x)

= 1.

Point ii) follows directly from the de�nition. To prove, iii), write

1xk ∈A(x)∑
`∈Sr 1x` ∈A(x)

6
1∑

`∈Sr 1x` ∈A(x)
6

1
n0v

by noting that
∑
`∈Sr 1x` ∈A(x) > n0. To see iv), let x, y ∈ Rp . Observe that

Ŵ (x, y) =


1∑

k∈Sr 1xk ∈A(y)
if x ∈ A(y),

0 otherwise.

Noting that the conditions x ∈ A(y) and y ∈ A(x) are the same, it is enough to split cases to prove the
equality. Assuming that x ∈ A(y), it follows that A(y) = A(x), so that

Ŵ (x, y) =
1∑

k∈Sr 1xk ∈A(y)
=

1∑
k∈Sr 1xk ∈A(x)

= Ŵ (y, x) .

In cases where, x < A(y), then Ŵ (x, y) = 0 and Ŵ (x, y) = 0 so that the equality also holds. �



6 C O N C L U S I O N A N D F U T U R E W O R K S

In this PhD thesis, I investigated the use of statistical learning procedures for the estimation of population
totals in presence of a large number of covariates. Two frameworks were considered: full response and
item nonresponse.

In the �rst, we assumed full response of the sampled elements and we studied the behavior of
model-assisted estimators in presence of a large number of covariates. Convergence rates involving
conditions of the ratio of the number of covariates over the sample size were established for linear
and penalized linear model-assisted estimators. We also suggested the use of random forests to face
high-dimensional data and analyzed their design-based properties.

In the second, we considered a more general framework in which the sampled elements might refuse
to respond, thus leading to missing data. We performed a large empirical study aiming at examining
which statistical learning predictors are particularly promising for imputation, in a wide variety of
scenarios. Finally, we performed an in-depth analysis of regression tree and random forest imputed
estimators.

In what follows, I discuss some thoughts on the use of machine learning predictors for survey
statistics, I highlight some of the limitations of the work presented in this thesis and introduce a few
ideas which might serve as future works.

6.1 Some thoughts on the use of machine learning algorithms
in surveys

The increasing attention for the �eld of statistical learning has permitted the emergence of numerous
highly complex predictive models and algorithms, often called machine learning methods. As illustrated
with various applications throughout this thesis, the use of such tools may be particularly useful in
surveys for the estimation of �nite population totals. Yet, an important question arises: is it always
wise, pro�table even, to incorporate highly complex predictive models, whose e�ciency sometimes relies
entirely on empirical clues, into survey strategies? It is often objected to statistical learning models that
they behave like "black boxes", thus producing results that we do not really know how to explain or
interpret. The articles Dagdoug et al. (2021b) and Dagdoug et al. (2022b) presented in this thesis are
an attempt at shedding some light towards the intepretability of random forests in surveys. However,
the intepretability of random in surveys remains partial only. More generally, additional research is
required for a better intepretability of these machine learning methods in a survey framework.

Moreover, recent empirical investigations (e.g., Dagdoug et al. (2021a), Larbi et al. (2022)) showed that
highly complex predictive algorithms such as Cubist (Quinlan et al., 1992), XGBoost (Chen and Guestrin,
2016), BART (Chipman et al., 2010) may be superior in many scenarios to traditional methodologies
in surveys. However, these methods should be used with caution as there are still questions regarding
the mechanisms that enable them to be that e�ective; in particular, they may not always be highly
e�ective when applied in a survey sampling framework. For example, in the article Dagdoug et al.
(2022a), simulation studies put into evidence that the model-assisted estimator based on the original
random forest algorithm was biased and thus particularly ine�cient in case of informative sampling
designs and high-dimensional scenarios. This ine�ciency was due to the fact that important design
variables might not be selected by the random mechanism used in random forest algorithm used at each
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split. Forcing the algorithm to consider the design variables with probability one at each split solves the
problem and the random forest model-assisted estimator implemented in this way recovers its usual
e�ciency.

Most often, these unsatisfactory behaviors arise from unexpected interactions between statistical
learning methods and survey sampling. Detecting these undesirable phenomena is therefore of
great interest and there is a need for both empirical and theoretical in-depth investigations of these
methodologies in a survey statistics framework. This thesis has provided answers to several issues
related to the use of machine learning techniques with survey data, but there are still many questions
which require further investigations. This work has also revealed new phenomena, sometimes
unexpected. I discuss and illustrate below several such phenomena as well as some personal thoughts
about machine learning methodologies combined with survey statistics.

Estimation in surveys is more than a problem of prediction

Studying the asymptotic properties of �nite population total estimators with respect to the sampling
design, as we did in Chapter 2 and Chapter 3, can be particularly insightful. Indeed, the fact that
some model-assisted estimators converge in L1 in the design space without restrictions on the number
of covariates reveals that, while predictive models can improve substantially the e�ciency of point
estimators in surveys, estimation of �nite population parameters is not a problem of prediction.

A particularly striking example of that statement is given by the Horvitz-Thompson estimator.
Indeed, observe that the Horvitz-Thompson estimator is a model-assisted estimator based on the
constant function f = 0, that is,

t̂ma( f ) :=
∑
k∈U

f (xk) +
∑
k∈S

yk − f (xk)
πk

=
∑
k∈U

0 +
∑
k∈S

yk − 0
πk

=
∑
k∈S

yk

πk
= t̂π .

Yet, under mild conditions, the Horvitz-Thompson is L2 consistent for the joint distribution,
independently of the true regression function. Of course, it is possible to �nd examples of regression
function for which the function f = 0 is a particularly poor estimate. This example illustrates that, even
in a scenario in which the predictor f used in the model-assisted estimator is a mediocre estimate of the
regression function, the estimator might still satisfy the usual square-root consistency.

The objectives of survey statistics and predictions are sometimes not aligned

In some cases, e�cient predictions might lead to estimators less e�cient than if they were based
on "worse" predictions. An example of this situation is provided by the propensity score adjusted
(PSA) estimator in presence of nonresponse. Assume the framework of Chapter 4 and Chapter 5, in
which the observed data are {(xk ; yk) ; k ∈ Sr } ∪ {xk ; k ∈ Sm} and the aim is to estimate ty is presence
of nonresponse. One possibility, studied in Chapter 3 and Chapter 4, is to use an imputed estimator
to counterbalance the negative e�ects of nonresponse. Another possibility is to model the unknown
response probabilities (Haziza, 2009) with propensity score adjusted estimator (PSA) de�ned as

t̂psa (̂r) :=
∑
k∈Sr

yk

πk p̂k
,
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where p̂k := r̂(xk) is an estimator of the unknown response probability pk of element k and r̂ : Rp 7→

[0; 1] is a predictor for the response probabilities. The rationale behind the PSA estimator follows from
the fact that, if the true response probabilities were known, one could use the unbiased estimator of ty

t̂ ∗psa :=
∑
k∈Sr

yk

πkpk
.

Since the response probabilities {pk}k∈Sr are unknown, the predictor r̂ is used to estimate them. At
�rst, it would seem that, if r̂1 is more e�cient for modelling the response probabilities {pk}k∈Sr than r̂2

(with respect to some criterion, e.g. mean squared error), then the estimator t̂psa(r̂1) should be more
e�ective than t̂psa(r̂2) to estimate ty , in terms of mean squared error. However, simulations performed
in Larbi et al. (2022) proved that this statement might not always be true. Indeed, the "best" predictor is
the predictor which uses best the information explaining how the response indicators behave, given the
covariates. The "best" estimator of ty , however, is the estimator based on the predictor of the response
probabilities which best uses the information both related to the response indicators and the survey
variable.

Imputation is not more di�cult than regression

In the previous paragraphs, we illustrated through practical examples that the goal of survey
sampling is the estimation of �nite population parameters and not prediction. In some cases, these two
goals are even pointing in di�erent directions. In some other cases, however, e�cient predictions lead
to e�cient estimation.

In Chapter 5, we established a result formalizing conditions about the predictor m̂ used for imputation
such that, whenever satis�ed, the resulting imputed estimator t̂m̂ would be L2-consistent for ty with
respect to the joint distribution. More precisely, if the predictor m̂ is L2-consistent for the regression
function m when �tted on i.i.d. data and if its L2 risk is uniformly integrable, then the imputed estimator
t̂m̂ is L2-consistent for ty .

This result reveals that, in order to build a consistent imputed estimator, it is enough to use a
predictor consistent for the regression function as imputation procedure. In that respect, imputation is
not more di�cult than regression. A parallel can be made with the problem of binary classi�cation, in
which one aims at predicting a label, say 0 or 1. In that case, it can be shown that if a predictor m̂ is L2

consistent for the regression function, then the decision function 1m̂>1/2 is consistent in the sense that
it minimizes the Bayes risk, see Devroye et al. (2013) for de�nitions and details.

We emphasize, however, that the conditions that we found on m̂ for the consistency of t̂m̂ towards
ty are su�cient, but probably not required for the consistency of the imputed estimators.

6.2 Open questions, extensions and future works

High-dimensional asymptotics for survey data

Contrary to the case of linear models studied in high dimensions (see Ta et al. (2020), Chauvet
and Goga (2022), Dagdoug et al. (2022a)), no condition on the rate of divergence of the number of
covariates is required for the design asymptotic properties of model-assisted estimators built upon
tree-based methods. This phenomenon seems to be explained by two reasons: 1) as explained above, a
model-assisted estimator does not need to be based on a consistent predictor (i.e. consistent for the
regression function) to be consistent for ty ; 2) the "asymptotic structure" of a linear estimator (e.g.
GREG) versus a tree-based estimator is di�erent in essence. Indeed, a linear estimator can be seen as a
calibrated estimator (see Deville and Särndal (1992) for details) on the p covariates. Therefore, when
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p = pv is allowed to increase to in�nity, it is actually a matter of imposing an ever-increasing number of
calibration constraints. This is not the case for estimators built on regression trees: these can also be
seen as calibrated estimators, but on the T covariates formed by the indicators of the tree nodes, and not
on the p covariates. Typically, T is a function of n0 (and of n) rather than p, and therefore the number of
calibration constraints imposed on an estimator built on a tree remains �xed as p tends to in�nity.

Several open questions remain in this research area. First, the conditions that we obtained in
Chapter 2 for the high-dimensional consistency of model-assisted estimators may not be optimal,
in the sense it might be possible to obtain weaker conditions. Whether or not these model-assisted
estimators are consistent or unconsistent for ty when the conditions that we found are not satis�ed
remains an open question. A more re�ned asymptotic analysis would be required to bring additional
insight towards this question. Moreover, the asymptotic results of Chapter 2 were established for the
consistency of point estimators. However, to our knowledge, the asymptotic properties of variance
estimators in high-dimensional settings are yet to be determined. Furthermore, while the equivalence
of asymptotic distribution holds for the random forest generalized estimator and the random forest
model-assisted estimator in high-dimensional settings, a central limit theorem for the di�erence
estimator in a high-dimensional scenario is yet to be established and might require a substantial amount
of additional research. Similar research questions for the case of imputation in presence of a large
number of covariates remain open as well.

Variance estimation for model-assisted estimators

In the simulation studies presented in Chapter 3, we discovered that the choice of the minimal
number of elements per terminal node of the random forest model-assisted estimator is crucial for the
variance estimator

V̂ (B)
r f 1 =

1

N2
v

∑
k∈Sv

∑
`∈Sv

πk` − πkπ`
πk`

yk − m̂ (B)
r f 1 (xk)

πk

y` − m̂ (B)
r f 1 (x`)

π`

to be e�cient. The simulations performed have shown that, if n0 is too small, then V̂ (B)
r f 1 might su�er

from an important negative bias. We discovered that the problem encountered is more general and may
happen to any model-assisted estimator based on a �exible predictor. To illustrate the issue, consider
the naive predictor m̂naive de�ned as:

m̂naive :

{
Rp −→ R,

x 7−→ yk1{xk ; k∈S }(x).

It is easily seen that the estimated variance V̂ma (̂tnaive) of t̂naive is zero:

V̂ma (̂tnaive) =
∑
k∈S

∑̀
∈S

∆k`

πk`

yk − m̂naive(xk)
πk

y` − m̂naive(x`)
π`

=
∑
k∈S

∑̀
∈S

∆k`

πk`

yk − yk

πk

y` − y`

π`
= 0.

Yet, there is obviously no reason for the true variance of t̂naive to be zero. The problem follows from
the fact that an over�tted predictor m̂ will produce a set of underestimated residuals {yk − m̂(xk)}k∈S ,
which are then used in the traditional variance estimator.

To cope with this issue, in Dagdoug et al. (2021b), we proposed to use a general K-fold cross-validated
variance estimator, de�ned by the following procedure, to estimate the variance of a model-assisted
estimator based on a predictor m̂. We randomly split the sample S into K groups Sκ , κ = 1, . . . , K , of
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approximately equal size. For k ∈ Sκ , let m̂(−κ)(xk) denote the prediction at the point xk built on S − Sκ
and ε̂ (−κ)

k
= yk − m̂(−κ)(xk) the associated residual. The proposed K-fold variance estimator is given by

V̂ (cv,K)
ma :=

K∑
κ1=1

K∑
κ2=1

∑
k∈Sκ1

∑
`∈Sκ2

∆k`

πk`

ε̂
(−κ1)

k

πk

ε̂
(−κ2)

`

π`
=

∑
k∈S

∑̀
∈S

∆k`

πk`

ε̂
(cv)
k

πk

ε̂
(cv)
`

π`
, (6.1)

where ε̂ (cv)
k

is the uniquely de�ned residual for element k ∈ S. The estimator V̂ (cv,K)
ma can be seen as a

generalization of the estimator suggested in Opsomer and Miller (2005) for local polynomial regression.
The estimator that we suggest also has connections with the jackknife variance estimators discussed in
Duchesne (2000) and Valliant (2002).

Simulations suggest that, in case of random forests, the estimator V̂ (cv,K)
ma is almost unbiased,

independently of the minimal number of elements per terminal node. However, the theoretical properties
of the estimator (6.1) are yet to be determined, further research in this area would therefore be required.
Moreover, since this variance estimator is very general and can be used for the variance estimation of
any model-assisted estimator, it is of interest to study the theoretical properties of (6.1) not only for
the particular case of random forest, but in a general setting; i.e. to �nd conditions on the predictor m̂
which are required for the good behavior of V̂ (cv,K)

ma .
As suggested by Yves Tillé, another possibility could be to take into account, in the variance estimator

a correction based on the degrees of freedom of the predictor used in a given model-assisted estimator.
This approach has the advantage of being less computationally intensive than the cross-validated
variance estimator as de�ned in (6.1); however, this approach also presents the drawback of having to
specify the degrees of freedom of a given predictor, which might a delicate task for complex machine
learning predictors.

Estimator selection in surveys with full response

The use of complex algorithms such as random forest, boosting, Cubist, neural networks or
BART forces statisticians to choose a certain number of hyper-parameters. The choice of some of
these parameters may highly in�uence the performances of the resulting estimators. More generally,
as many estimators have been suggested in the literature (e.g., model-assisted, calibration, ...), the
following question arises: among a list of candidates, which estimator should be chosen, given an observed
sample? In many areas of statistics, procedures and methodologies have been developed to address
this issue; for example, information criteria such as the Akaike Information Criterion (AIC, Akaike
(1998)), the Bayesian Information Criterion (BIC, Schwarz (1978)) among others, for parametric models,
cross-validation for statistical learning, the global Box and Jenkins methodology in time series (Box
et al., 2015), to name a few. In surveys, however, there is, to our knowledge, no general methodology to
be applied by practitioners. I believe that an important research area for the future in survey statistics is
to elaborate a methodology that practitioners can use to guide their choice. Two possibilities come to
mind for that purpose: 1) choose the best estimator t̂∗ among a list of possible candidates {̂t1, t̂2, ..., t̂J };
2) build an aggregate estimator t̂agg, function of the J candidates. Both options present advantages and
drawbacks. Estimator selection is particularly e�cient if the estimator selected is itself e�cient, but a
wrong choice might lead to ine�cient strategies. Aggregation has the advantage of being robust as it
might use each of J candidates, but as such might su�er from additional variations. In a context of
imputation, Chen and Haziza (2017) suggested using multiply robust estimators which aggregates a list
of predictors to produce a robust estimator, converging towards the parameter of interest if there is
one predictor in the list which is correctly speci�ed. Simulations of a similar procedure in a context of
model-assisted estimation seem to produce e�cient estimators as well, but additional research in this
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area is required.

From an estimator selection point of view, the cross-validated variance estimator (6.1) can also be
used in that setting. Initially, it was in that setting that Opsomer and Miller (2005) proposed a similar
estimator. They suggested a weighted version of the usual variance estimator, which corresponds to
the estimator in (6.1) with K = n − 1; however, the weighted version that they suggested can be used
only with linear predictors1, whereas the variance estimator in (6.1) can be used with any predictor. The
authors proposed to minimize a particular case of the cross-validated variance estimator (6.1) in order to
choose the bandwidth of the local polynomial predictor. This idea can be generalized to choose not only
an optimal hyper-parameter for a particular model-assisted estimator, but the optimal estimator among
a list of model-assisted estimators built on di�erent predictors. Consider, as in the previous paragraph, a
(�nite) list of candidates {̂t α1

1 , t̂ α2
2 , ..., t̂ αJ

J }, where αj ∈ Rd j is a vector of dj parameters to be chosen
for the candidate j . This representation is rather general and includes most model-assisted estimators.
For each of the candidates, we suggest choosing the optimal set of parameters solving

α∗j := arg min
α∈R

dj

V̂ (cv,K)
ma

(
t̂ α1

)
.

In practice, the problem should be discretized using a grid of possible values; in case of ties, random
selection could be used. We follow this procedure by selecting the best estimator among the list of
candidates de�ned as the estimator t̂∗ satisfying

V̂ (cv,K)
ma

(̂
t∗
)
= min

{
V̂ (cv,K)
ma

(
t̂
α∗j

1

)
, j = 1, 2, ..., J

}
.

Simulations seem to suggest that the proposed method select the best estimator with high probability.
However, rigorous proofs of that statement in a general setting would require substantial additional
research, which we believe would be interesting as a future work.

Calibrated matrix completion for covariates imputation in survey sampling

As explained in the introduction, originally, the aim of this PhD thesis was to develop and investigate
matrix completion algorithms for imputation in survey statistics. Eventually, other research areas were
explored, although, along the way, we did investigate some of the existing algorithms and investigated
their use in surveys. To be more precise, some additional notations are required.

Let XS denote the sample restriction of XU , and consider a set of survey variables y1, y2, ..., yq ,
concatenated in a population matrix YU with its sample restriction YS . We denote by S := [XS ,YS] ∈

Rn×d the sampled data, where d := p+ q. In this framework, nonresponse is allowed for both the survey
variables and the covariates, and we assume to have access to the population totals of X1, X2, ..., Xp

denoted by the vector tx. We denote by ΩS ⊂ {1, 2, ..., n} × {1, 2, ..., d} the set of indexes containing the
elements of S which are not subject to nonresponse. That is, zi j = (i, j) ∈ ΩS if and only if Si j , the
element in the i-th row and j-th column of S, is observed. Following Candès and Tao (2010), denote
by PΩS : Rn×d 7→ Rn×d the orthogonal projection onto the subspace of rectangular matrices which
vanishes outside of ΩS ; that is, for A ∈ Rn×d , the matrix PΩ (A) has for coe�cients

PΩ (A)i j =


Ai j if (i, j) ∈ Ω,

0 otherwise.
(6.2)

1 A predictor m̂ is said to be linear if there exists a set of weights {wk}k∈S , independent of the survey variable, such
that, for all x, m̂(x) =

∑
k∈S wk yk .
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PΩ |Y and PΩ |X are de�ned similarly for the restriction of Ω to the �rst q columns, and the next p
columns, respectively. With the projection operator above, the information available at the sample
level is contained in PΩ (S). Lastly, denote by | |A| |F =

√∑n
i=1

∑d
j=1 A2

i j the Frobenius norm of A and by

| |A| |∗ =
∑min(n,d)

j=1 σj (A) its nuclear norm, with σj (A) denoting the j-th largest singular value of A.

The original matrix completion problem can be stated as

minimize
Z ∈Rn×d

rank (Z) subject to PΩS (Z) = PΩS (S) . (6.3)

However, the rank minimization problem in (6.3) is not convex and is known to be NP-hard (Candès
and Tao, 2010); in particular no algorithm is known to solve such a problem in a reasonable time when,
say, n > 10. In Fazel et al. (2001), the authors considered a convex relaxation of the rank minimization
problem in (6.3) by using the nuclear norm,

minimize
Z ∈Rn×d

| |Z | |∗ subject to PΩS (Z) = PΩS (S) . (6.4)

This convex relaxation has been widely studied in the literature, see e.g. Candès and Recht (2009), Candès
and Tao (2010). Several authors (e.g. Mazumder et al. (2010)) considered a problem in which it was
assumed that the observed values are noisy and thus suggested solving the following problem instead:

minimize
Z ∈Rn×d

| |Z | |∗ subject to | |PΩS (Z) − PΩS (S)| |
2
F 6 δ, (6.5)

with δ > 0, a given tolerance. Equivalently, (6.5) can be rewritten

minimize
Z ∈Rn×d

| |Z | |∗ + λδ | |PΩS (Z) − PΩS (S)| |
2
F , (6.6)

where λδ is a given constant, depending on δ only. Mazumder et al. (2010) suggested the soft-impute
algorithm, a recursion based on iterative SVDs, to solve this problem. They have shown, among other
things, that Soft-Impute is convergent for the solution of (6.6).

In a survey framework, the simulations that we performed using the Soft-Impute algorithm to
recover the matrix S and estimate the totals of the survey variables Y1,Y2, ...,Yq seem to show that this
approach leads to severely biased and ine�cient total estimators. However, we found that applying the
Soft-Impute algorithm to the matrix of covariates XS instead, and then using the imputed design matrix
X̂S with traditional imputation procedures as described in Chapter 4 and Chapter 5 resulted in rather
e�cient estimators of ty . Yet, this approach does not make use of the totals tx assumed to be known. We
thus suggest solving a calibrated matrix completion problem:

X̂S = argmin
Z ∈Rn×p

| |Z | |∗ + λ2 | |PΩ |X (Z) − PΩ |X (XS)| |
2
F subject to | |HTπ (Z) − tx | |22 6 γ, (6.7)

for a given tolerance γ, and where HTπ denotes the Horvitz-Thompson operator HTπ : Rn×p → Rp

de�ned as

HTπ (Z) =

[∑
k∈S

Zk1

πk
,

∑
k∈S

Zk2

πk
, ...,

∑
k∈S

Zkp

πk

]
. (6.8)

This optimization problem recovers a low rank matrix, approximating XS at the observed entries
and such that, the Horvitz-Thomspon estimators of tx based on X̂S are close to be calibrated. Using
techniques of Cai et al. (2010), Mazumder et al. (2010) and an iterative algorithm, we could implement
an algorithm which seems to converge to the solution of (6.7), but additional research is required to
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prove the properties of this algorithm. Moreover, an additional extension would be to investigate the
properties of survey estimators when the completed matrix X̂S is used as auxiliary information.

It seems to me that this approach could be a valuable extension to the work presented in this
thesis; indeed, in Chapter 4 and 5, we examined the properties of imputed estimators in a framework in
which a set of p covariates were assumed to be fully observed at the sample level. However, in practice,
nonresponse might also be present in the covariates. As such, the methodologies detailed in 4 and 5
cannot be applied directly: an adaptation must be made. Matrix completion procedures could be an
interesting possibility for this adaptation.
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Résumé. Dans cette thèse, nous considérons le problème de l’estimation de totaux
en population �nie en présence d’un grand nombre de variables auxiliaires. Les scénarios
de réponse totale et de non-réponse partielle sont étudiés. Nous examinons les propriétés
théoriques et empiriques d’estimateurs assistés par modélisation et d’estimateurs imputés,
construits à partir de modèles prédictifs. Les modèles considérés sont des modèles de type
machine learning réputés pour être peu sensibles au �éau de la dimension, fréquemment
étudiés dans la littérature de l’apprentissage statistique.

Dans un cadre de réponse totale, nous examinons les propriétés de di�érents estimateurs
assistés par modélisation en considérant un cadre asymptotique dans lequel le nombre de
covariables tend vers l’in�ni. Des conditions su�santes sont obtenues pour la convergence
d’estimateurs par modélisation assistée basés sur des modèles linéaires et linéaires pénalisés
tels que Ridge, Lasso ou Elastic-net. De plus, une nouvelle classe d’estimateurs des totaux
par modélisation assistée basée sur des algorithmes de forêts aléatoires est suggérée. Leurs
propriétés en échantillons �nis et asymptotiques sont étudiées. Des estimateurs de la variance,
classique et basé sur la validation croisée, sont également proposés. L’e�cacité des estimateurs
est testée sur des données simulées et des données réelles d’audience fournies par Médiamétrie.

En présence de nonréponse partielle, nous avons réalisé une large étude par simulation
pour comparer des estimateurs imputés basés sur di�érents modèles prédictifs provenant de
l’apprentissage statistique. Nous avons de plus étudié théoriquement les propriétés des arbres
de régression et des forêts aléatoires pour l’imputation. Les propriétés en échantillons �nis et
asymptotiques de ces modèles ont été examinées et leur e�cacité a été testée sur des simulations.

Mots-clés: Théorie des sondages; données manquantes; apprentissage statistique; statistique
en grande dimension; forêts aléatoires.

Abstract. In this thesis, we consider the problem of estimating �nite population totals in
presence of a large number of auxiliary variables. The scenarios of full response and missing
data are both investigated. To that aim, we examine the theoretical and empirical properties of
model-assisted and imputed estimators based on statistical learning predictors deemed e�cient
in high-dimensional scenarios.

In case of full response, we examined the properties of existing model-assisted estimators in a
high-dimensional asymptotic framework in which the number of covariates increases to in�nity.
Conditions for the convergence of model-assisted estimators based on linear and penalized
linear models such as ridge, Lasso or Elastic-net are obtained. A new class of model-assisted
estimators of �nite population totals based on random forest algorithms is also suggested.
Their �nite sample and asymptotic properties are examined. We also suggested a classic and a
cross-validated variance estimators. The performances of the estimators suggested are tested
via a large simulation study on simulated and Médiamétrie data.

In presence of item nonresponse, we conducted a large-scale simulation study to compare
imputed estimators based on many statistical learning predictors. We also investigated
theoretically the use of regression trees and random forests predictors for imputation in
surveys. Both their �nite sample and asymptotic properties are studied and their properties are
investigated by means of simulation studies.

Keywords: Survey sampling; missing data; statistical learning; high-dimensional statistics;
random forests.
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