
HAL Id: tel-04300641
https://theses.hal.science/tel-04300641v1

Submitted on 22 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Gradient Langevin Algorithms for Stochastic
Optimization and Bayesian Inference

Pierre Bras

To cite this version:
Pierre Bras. Adaptive Gradient Langevin Algorithms for Stochastic Optimization and Bayesian In-
ference. Probability [math.PR]. Sorbonne Université, 2023. English. �NNT : 2023SORUS276�. �tel-
04300641�

https://theses.hal.science/tel-04300641v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT

en vue de l’obtention du grade de

Docteur de SORBONNE UNIVERSITÉ

Discipline : Mathématiques et Applications

Laboratoire de Probabilités, Statistique et Modélisation – UMR 8001

École Doctorale de Sciences Mathématiques de Paris Centre – ED 386

Présentée par
Pierre BRAS

Adaptive Gradient Langevin Algorithms for Stochastic
Optimization and Bayesian Inference

sous la direction de Gilles Pagès

Rapportée par: M. Éric Moulines École Polytechnique
M. Mike Giles University of Oxford

Soutenue le 11 Septembre 2023 devant le jury composé de:

M. Francis Bach INRIA Paris Président du Jury
M. Gilles Pagès Sorbonne Université Directeur
M. Éric Moulines École Polytechnique Rapporteur
M. Mike Giles University of Oxford Rapporteur
M. Olivier Pironneau Sorbonne Université Examinateur
Mme. Gersende Fort Institut de Mathématiques de Toulouse Examinatrice
M. Nicolas Fournier Sorbonne Université Examinateur
M. Josef Teichmann ETH Zürich Examinateur



Sorbonne Université
Laboratoire de Probabilités, Statistique

et Modélisation
UMR 8001, case 158

4 Place Jussieu
F-75252 Paris Cedex 5, France

École doctorale de Sciences
Mathématiques de Paris Centre

4 Place Jussieu
F-75252 Paris Cedex 5, France





Remerciements

Je remercie tout d’abord mon directeur de thèse, Gilles Pagès, pour m’avoir accepté en tant
que doctorant et pour m’avoir guidé et accompagné pendant ces trois années. J’ai beaucoup
appris sous sa direction et ses précieux conseils et remarques m’ont beaucoup aidé à prendre
du recul et à organiser mes recherches. Tout au long de ma thèse, j’ai été impressionné par ses
larges connaissances et son expertise dans de très nombreux aspects des probabilités numériques
et appliquées, et il avait (presque) toujours réponse à mes questions. Je me souviens de tous
les moments où je toquais à sa porte à l’improviste et malgré toutes ses responsabilités et
occupations, mon professeur trouvait toujours un moment de libre pour discuter.

Je remercie ensuite les rapporteurs de cette thèse Éric Moulines et Mike Giles, pour avoir
accepté cette charge. Leur rapport et leurs commentaires pertinents m’ont grandement aidé à
améliorer la qualité de ce manuscrit. Je remercie également les autres membres du jury, Francis
Bach, Olivier Pironneau, Gersende Fort, Nicolas Fournier et Josef Teichmann, pour l’honneur
qu’ils me font en participant au jury de ma soutenance. Leur expertise et leur expérience dans
leur domaine sont extrêmement précieuses pour évaluer mes travaux.

Durant ma thèse, j’ai pu bénéficier de l’accueil chaleureux et du soutien que m’ont témoigné
les membres du Laboratoire de Probabilités, Statistique et Modélisation (LPSM) de Sorbonne
Université. Je remercie particulièrement Vincent Lemaire et Idris Kharroubi pour nos discussions
mathématiques et pour avoir répondu à mes questions sur leurs articles, et Daphné Giorgi pour
organiser le séminaire Infomath et pour son aide précieuse en informatique. Je remercie Nicolas
Fournier et encore une fois Idris Kharroubi pour leur participation à mon comité de thèse
en début de troisième année. Je remercie Olivier Pironneau, professeur au laboratoire voisin
Jacques-Louis Lion, pour nos échanges sur un sujet commun qui m’ont été très utiles pour la
rédaction d’un article s’inspirant d’un de ses travaux.

Je remercie Fabien Panloup, professeur à l’Université d’Angers, pour avoir accepté de co-
écrire un article avec Gilles Pagès et moi-même. Sa collaboration a été très précieuse pour établir
un résultat important pour ma thèse.

Je remercie Arturo Kohatsu-Higa, professeur à Ritsumeikan University, pour m’avoir encadré
pour un stage de recherche de six mois au Japon préalable à ma thèse, mais aussi pour s’être
particulièrement occupé de moi et m’avoir accompagné pendant cette période. Grâce à lui, j’ai
beaucoup appris sur la recherche mathématique et l’article que nous avons écrit ensemble fait
également partie de ce manuscrit.

Je remercie Masaaki Fukasawa, professeur à l’université d’Osaka, pour m’avoir accueilli dans
son laboratoire pour un stage de recherche d’été. Je suis heureux d’avoir collaboré avec lui pour
la d’un rédaction d’un article, que j’ai aussi inclus dans cette thèse.

Toutes ces rencontres et échanges ont été très enrichissants pour moi et m’ont fait prendre

iv



Remerciements

conscience que l’apprentissage machine et la simulation numérique sont des domaines très larges
impliquant et mélangeant un large éventail de compétences et de spécialistes.

Pendant ces trois années au LPSM, j’ai eu la chance d’être entouré de collègues et amis
doctorants sans qui cette aventure n’aurait pas été possible, et je souhaite les remercier tout
particulièrement, pour nos conversations passionnantes à propos de probabilités et statistiques
qui m’ont aidé à plusieurs reprises quand je bloquais sur un sujet, mais aussi pour tous les autres
moments que nous avons partagés. Leur bonne humeur ont contribué à faire de ce laboratoire
un endroit agréable au quotidien, malgré certaines périodes de confinements durant lesquelles
nous n’avions pu nous voir qu’épisodiquement.

Je commencerai par les membres de mon bureau, je voudrais dire un grand merci à Loïc,
que je voyais presque tout le temps au bureau, Christian, mon petit frère de thèse avec qui
j’ai pu beaucoup échanger sur des sujets de recherche communs, Jean-David et ses nombreux
récits d’expérience aux quatre coins du monde, Arthur, Lucas I. pour son aide et conseils sur le
fonctionnement du laboratoire et séminaires en tant que "grand frère" et ancien du bureau. Je
continue avec les doctorants des autres bureaux du couloir et du premier étage, en remerciant
Robin et Yoan qui sont mes amis depuis bien avant la thèse et mes compagnons de l’ENS, mon
frère de thèse Guillaume, Lucas B., Lucas D. (beaucoup trop de Lucas), Émilien, Jérôme, Sonia,
David, Antonio, Alexandra, Bastien, Florian, Sergi, William et Isao. Enfin tous les doctorants
que je n’ai pu connaître que plus brièvement lors de mon stage de pré-thèse au LPSM, en
particulier mes grands frère et soeurs de thèse Yating, Thibault et Rancy. Certains d’entre vous
ne sont plus au labo depuis un bout de temps mais vous faites (et ferez toujours) partie de
l’histoire du LPSM et j’espère que vous lirez ces remerciements.

Ces trois dernières années ont aussi été marquées par des retours réguliers à Montpellier. Je
remercie mes amis d’enfance et de lycée, en particulier Sylvain et Arthur que je connais depuis
longtemps. Merci Arthur pour nos bavardages sur Messenger, nos sorties à Montpellier et à
Sète, nos soirées sur Apex Legends et tout le reste.

Je remercie ma famille, Papa et Maman qui m’ont toujours encouragé dans mes études et
apporté leur soutien inconditionnel dans tous mes choix, et surtout pendant cette thèse. Merci
de vous occuper encore de moi, merci pour toutes les fois où vous êtes venus m’accompagner ou
me chercher à la gare à cinq heures du matin comme à minuit. Merci à Mamie, toujours aussi
bienveillante, je prends beaucoup de plaisir à te revoir chaque fois à Montpellier. Je remercie ma
sœur Louise et Thibault, quand on se retrouve à Montpellier mais aussi pour chaque occasion
où vous m’avez invité dans votre appartement parisien. Merci à ma tante Martine à Andrésy
au bout du RER qui m’accueille de temps en temps depuis la prépa.

Et pour finir, merci à toi Yiming, tu es très importante dans ma vie et en rencontrant
les mêmes difficultés de la thèse nous avons pu nous soutenir mutuellement, surtout dans les
moments compliqués. Sans toi je n’aurais jamais pu aller aussi loin.

v





Résumé

Nous étudions les algorithmes adaptatifs de descente de gradient par dynamique de Langevin
(SGLD) pour résoudre des problèmes d’optimisation et d’inférence. Les algorithmes SGLD
consistent en une descente de gradient avec ajout de bruit exogène dans le but d’échapper aux
minima locaux et aux points selle. Contrairement à l’équation différentielle stochastique (EDS)
de Langevin classique, nous nous concentrons sur le cas où le bruit exogène est adaptatif i.e. non
constant et dépend de la position de la procédure, donnant une convergence plus rapide que les
algorithmes non adaptatifs. Bien que le cas constant ait été largement étudié, peu d’attention a
été portée jusqu’à présent au cas général et la littérature manque d’un résultat théorique général
de convergence.

Dans une première partie, nous prouvons la convergence de ces algorithmes pour la distance
de Wasserstein L1 et pour la distance de la variation totale, à la fois pour l’EDS continue et pour
l’algorithme discret avec des mesures de gradient bruitées. Nous nous intéressons également aux
algorithmes de Langevin-recuit simulé, où le bruit décroît lentement vers zéro au cours du temps
à une vitesse appropriée. Nous investiguons aussi le cadre "dégénéré" i.e. où la matrice Hessienne
en le minimum n’est pas définie positive, un aspect qui a été mis de côté par la littérature.

Dans une seconde partie nous appliquons les algorithmes SGLD à des problèmes d’optimisation
et d’inférence apparaîssant en apprentissage machine et en probabilités numériques et nous com-
parons les performances de divers algorithmes de Langevin préconditionnés (adaptatifs) avec
leurs équivalents respectifs non-Langevin. Nous observons que les algorithmes de Langevin
améliorent la procédure d’entraînement pour des réseaux de neurones artificiels très profonds
et que plus le réseau est profond, plus les gains apportés par les algorithmes de Langevin sont
importants. Suivant cette heuristique nous introduisons une nouvelle variante des algorithmes
de Langevin appelée "Langevin par couches", qui ajoute du bruit de Langevin sur seulement
les couches les plus profondes du réseaux. Nous montrons les avantages des algorithmes de
Langevin et de Langevin par couches pour l’entraînement d’architectures profondes en recon-
naissance d’image (ResNet, DenseNet) et en contrôle stochastique (réseaux Markoviens).

Une dernière partie est consacrée à la simulation numérique de processus stochastiques. Nous
démontrons des bornes pour la distance en variation totale entre une EDS et son schéma d’Euler-
Maruyama en temps court, en utilisant une extrapolation de Richardson-Romberg pondérée.
Ce résultat est crucial pour l’analyse de la convergence en variation totale des algorithmes
de Langevin mentionnés ci-dessus. En utilisant l’analyse trajectorielle, nous étudions le taux
d’erreur faible du schéma d’Euler-Maruyama pour les équations de Volterra stochastiques (EVSs),
qui sont des équations différentielles stochastiques non Markoviennes avec un noyau de mémoire,
tout en gardant à l’esprit le cas des modèles à volatilité rugueuse. Enfin, nous donnons des for-
mules et des méthodes de simulation pour le mouvement Brownien réfléchi ou arrêté dans un
cône en deux dimensions.

Mots clé– Optimisation Stochastique, Descente de Gradient, Equation de Langevin, Dy-
namique de Langevin, Recuit Simulé, Apprentissage Machine, Apprentissage Profond, Réseaux
de Neurones, Schéma d’Euler-Maruyama, Mesures de Gibbs, Contrôle Stochastique, Méthodes
de Monte Carlo, Méthodes MCMC.
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Abstract

This thesis focuses on adaptive Stochastic Gradient Langevin Dynamics (SGLD) algorithms to
solve optimization and Bayesian inference problems. SGLD algorithms consist in a stochastic
gradient descent with exogenous noise added in order to escape local minima and saddle points.
Contrary to the classic Langevin Stochastic Differential Equation (SDE), we study the case where
the exogenous noise is adaptive i.e. not constant but depends on the position of the procedure,
then yielding a convergence faster than non-adaptive algorithms. Although the constant case
has been extensively studied, little attention has been paid so far to the general case and the
literature lacks of a general theoretical convergence result.

In a first part we prove the convergence of SGLD algorithms for the L1-Wasserstein distance
and for the Total Variation distance for both the continuous stochastic differential equation and
the discrete algorithm with noisy gradient measurements. We also study Langevin-simulated
annealing algorithms, where the noise is slowly decreased to zero at an appropriate rate with
time. We investigate degenerate settings as well i.e. when the Hessian matrix at the minimum
is not definite, which is an aspect that had been put aside by the literature.

In a second part we apply SGLD algorithms to optimization and inference problems arising
in Machine Learning and in Numerical Probability and we compare the performances of vari-
ous preconditioned (adaptive) Langevin algorithms with their non-Langevin counterparts. We
observe that Langevin algorithms improve the training procedure for very deep artificial neural
networks and that the deeper a network is, the greater are the gains brought by Langevin al-
gorithms. Following these heuristics, we introduce a new variant of Langevin algorithms called
Layer Langevin, which adds Langevin noise only to the deepest layers of the network. We show
the benefits of Langevin and Layer Langevin algorithms for the training of very deep architec-
tures in image recognition (ResNet, DenseNet) and in stochastic optimal control (Markovian
networks).

A last part is devoted to the numerical simulation of stochastic processes. We give bounds
for the Total Variation distance between an SDE and its Euler-Maruyama scheme in small time,
using a weighted multi-level Richardson-Romberg extrapolation. This result is crucial for the
analysis of convergence in Total Variation of the above Langevin algorithms. Using path-wise
analysis, we study the weak error rate for the Euler-Maruyama scheme for Stochastic Volterra
Equations (SVEs) which are non-Markovian stochastic differential equations with memory ker-
nel, while keeping in mind the case of rough volatility models. Lastly, we give density formulae
and simulation methods for the reflected and stopped Brownian motion in a two-dimensional
wedge.

Keywords– Stochastic Optimization, Gradient Descent, Langevin Equation, Langevin Dynam-
ics, Simulated Annealing, Machine Learning, Deep Learning, Neural Networks, Euler-Maruyama
Scheme, Gibbs Measures, Bayesian Inference, Stochastic Optimal Control, Monte Carlo Meth-
ods, MCMC Methods.
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Notations

We give the notations that are commonly used throughout this thesis.

• We endow the space Rd with the canonical Euclidean norm denoted by | · | and we denote
⟨·, ·⟩ the associated canonical inner product. For x ∈ Rd and for R > 0, we denote
B(x,R) = {y ∈ Rd : |y − x| ≤ R}.

• For x, y ∈ Rd we denote (x, y) = {ux+(1−u)y, u ∈ [0, 1]} the geometric segment between
x and y.

• For a, b ∈ N we denote Ma,b(R) the set of a × b matrices with real coefficients. If a = b
we sometimes use the notation Ma(R) = Ma,a(R).

• For u, v ∈ Rd we denote by u ∗ v, or sometimes by u⊙ v, the element-wise product (Schur
product) i.e. u ∗ v = [uivi]1≤i≤d. Similarly we define u⊘ v = [ui/vi]1≤i≤d.

• For u ∈ Rd1 and v ∈ Rd2 we denote by u⊗v the tensor product with a⊗b = [aibj ]1≤i≤d1,1≤j≤d2 .

• For d1, . . . , dr ∈ N we define Rd1 ⊗ . . .⊗ Rdr the set of tensors of order r with dimensions
d1, . . . , dr i.e. tensors of the form (xi1,...,ir )1≤i1≤d1,...,1≤ir≤dr .

• For M ∈ (Rd)⊗k, we denote by ∥M∥ its operator norm, i.e. ∥M∥ = supu∈Rd×k, |u|=1M · u.
If M : Rd → (Rd)⊗k, we denote ∥M∥∞ = supx∈Rd ∥M(x)∥.

• For u ∈ Rd we denote diag(u) ∈ Md(R) the diagonal matrix with diagonal u.

• For (A, dA) and (B, dB) two metric spaces, typically A = Rd1 and B = Rd2 endowed with
the Euclidean distance, we denote Ck(A,B) the set of functions f : A → B being k times
differentiable with continuous kth derivative. If there is no ambiguity, we simply write
f ∈ Ck.

• For (A, dA) and (B, dB) two metric spaces, we say that f : A → B is coercive if dB(f(x), 0) →
∞ as dA(x, 0) → ∞ uniformly. For normed spaces, we can rewrite |f(x)| → ∞ as |x| → ∞.

• We denote Ck
b the set of functions in Ck being bounded with bounded partial derivatives

up to order k; we denote C̃k
b the set of functions in Ck with bounded partial derivatives up

to order k but that are not necessarily bounded themselves.

• If f : Rd1 → Rd2 is Lipschitz continuous, we denote by [f ]Lip its Lipschitz constant.
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• For f : Rd1 → Rd2 being Ck, for 1 ≤ j ≤ k we denote by ∇jf : Rd1 → Rd2 ⊗ (Rd1)⊗j its
derivative tensor of order j given by

∇jf =
(

∂jfi0

∂xi1 . . . ∂xij

)
1≤i0≤d2, 1≤i1,...,ij≤d1

.

• For f : Rd → R such that minRd f exists, we denote

argmin(f) =
{
x ∈ Rd : f(x) = min

Rd
f

}
.

• For f, g : Rq → R and x0 in R̄, we write f(x) ∼ g(x) as x → x0 meaning f(x) =
g(x) + o(g(x)) as x → x0.

• If un and vn are two real-valued sequences, we write un ≍ vn meaning that un = O(vn)
and vn = O(un).

• For a random vector X, we denote by [X] its law.

• We denote the total variation distance between two probability distributions π1 and π2 on
Rd:

dTV(π1, π2) = 2 supA∈Bor(Rd) |π1(A) − π2(A)|.
We have as well

dTV(π1, π2) = sup
{∫

Rd
fdπ1 −

∫
Rd
fdπ1 : f : Rd → [−1, 1] measurable

}
.

Moreover, we recall that if π1 and π2 admit densities with respect to some measure reference
λ, then

dTV(π1, π2) =
∫
Rd

∣∣∣∣dπ1
dλ

− dπ2
dλ

∣∣∣∣ dλ.
• We denote the Lp-Wasserstein distance between two distributions π1 and π2 on Rd:

Wp(π1, π2) = inf
{(∫

Rd
|x− y|pπ(dx, dy)

)1/p

: π ∈ P(π1, π2)
}
,

where P(π1, π2) stands for the set of probability distributions on (Rd×Rd,Bor(Rd)⊗2) with
respective marginal laws π1 and π2. For p = 1, let us recall the Kantorovich-Rubinstein
representation of the Wasserstein distance of order 1 [Vil09, Equation (6.3)]:

W1(π1, π2) = sup
{∫

Rd
f(x)(π1 − π2)(dx) : f : Rd → R, [f ]Lip = 1

}
. (0.0.1)

• For some distance D on the set of probability distributions on Rd and for X and Y two
Rd-valued random vectors, we denote without ambiguity D(X,Y ) = D([X], [Y ]).

• For x ∈ Rd, we denote by δx the Dirac mass at x.

• We generally consider (Ω,F ,P, (Ft)t≥0) a filtered probability space satisfying the usual
conditions.

• We denote by ReLU or (·)+ the ReLU function: ReLU(x) = (x)+ = max(0, x).

• For u, v ∈ R, we define u mod(v) = u− v⌊u/v⌋.

• We often use the notation C and c to denote positive constants, which may change from
line to line.
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Chapter 1
Introduction

Stochastic algorithms are a powerful tool to solve complex optimization and inference problems,
where the state space is not explored deterministically but randomly. Stochastic algorithms
have recently known a renewed interest, especially from the Machine Learning community; new
research aims at reworking, modifying the existing stochastic algorithms in order to make them
more efficient and to accelerate their convergence speed.

1.1 Stochastic algorithms

1.1.1 Stochastic gradient descent and the Robbins-Siegmund lemma

Let V : Rd → R and let us consider the following optimization problem with no constraint:

Minimize
x∈Rd

V (x). (1.1.1)

We assume that the dimension d is large so that this optimization problem is complex to solve.
We generally make the following assumptions on the function V : V is C1, coercive i.e. V (x) →
+∞ as |x| → +∞, which implies in particular that min(V ) exists. The stochastic gradient
descent (SGD) algorithm is a gradient descent with noise:

X0 ∈ Rd, Xn+1 = Xn − γn+1 (∇V (Xn) + ζn+1) , (1.1.2)

where (γn) is a positive sequence of steps which can be constant or decreasing to 0 and (ζn) is a
sequence of noise corresponding to noisy observations of the true gradient ∇V (Xn). Illustrations
of the gradient descent are given in Figures 1.1 and 1.2; we hope that for large enough n, Xn

will be close to argmin(V ). A classical setting is where ∇V (Xn) is measured with no bias i.e.
there exist a random variable Z with values in Rq and a function v : Rd × Rq → R such that

∀x ∈ Rd, E[v(x, Z)] = V (x) and E[∂xv(x, Z)] = ∇V (x). (1.1.3)

The stochastic gradient algorithm then becomes:

Xn+1 = Xn − γn+1∂xv(xn, Zn+1), (1.1.4)

where (Zn) is i.i.d. and where Z1 ∼ Z. The noise sequence ζ is then a sequence of increments
of a martingale i.e. for all n ∈ N, E[ζn+1|X0, . . . , Xn] = 0.

Stochastic algorithms were introduced by Robbins and Monro in [RM51] in 1951. The
Robbins-Siegmund Lemma [RS71] guarantees the convergence of the stochastic gradient algo-
rithm under some conditions.
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x0 x⋆

V

Figure 1.1: Gradient descent algorithm.

Lemma 1.1.1 (Robbins-Siegmund Lemma). Let h : Rd → Rd and let H : Rd × Rq → Rd be
such that

∀x ∈ Rd, E[H(x, Z)] = h(x).

Assume that there exists a C1 function V : Rd → R+ such that ∇V is Lipschitz-continuous and
|∇V |2 ≤ C(1 + V ) for some constant C > 0. Assume furthermore that ⟨∇V, h⟩ ≥ 0 and that

∀x ∈ Rd, ∥H(x, Z)∥2
2 ≤ C(1 + V (x)).

Let (γn) be a sequence of positive real numbers such that

∞∑
n=1

γn = +∞,
∞∑

n=1
γ2

n < +∞.

Then the sequence (Xn) defined by

Xn+1 = Xn − γn+1H(Xn, Zn+1)

satisfies:

1. Xn −Xn−1 → 0 almost surely and in L2 as n → ∞.

2. The sequence
(
E[V (Xn)]

)
n∈N is bounded.

3. V (Xn) converges almost surely.

4.
∑

n≥1 γn⟨∇V, h⟩(Xn−1) < +∞ almost surely.

5. The martingale sequence (∑n
k=1 γk(H(Xk−1, Zk) − h(Xk−1)) converges almost surely and

in L2(P).

1.1.2 Classic examples of stochastic optimization problems

We now give classic examples where such optimization problems arise.
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−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5−1.5
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−0.5

0.0

0.5
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1.5

SGD 0.05
Adam 0.05
RMSprop 0.02
Adadelta 10.
Adagrad 0.1

Figure 1.2: Example of gradient descent in R2 with different gradient descent algorithms for the
function V (x, y) = − sin(x2) cos(3y2)e−x2y2 − e−(x+y)2 with two global minima next to (0, 0).
For each gradient descent method we indicate its learning rate in the legend.
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1.1.2.1 Machine Learning and regression

Let us consider data samples ui ∈ Rdin and yi ∈ Rdout for 1 ≤ i ≤ M associated to a regression
problem, where (ui) are the inputs and (yi) are the outputs. That is, we look for a function
ψ : Rdin → Rdout which fits to the data i.e.

∀ 1 ≤ i ≤ M, ψ(ui) ≈ yi.

In other words, the objective is to extract a model from the empirical data. We look for a function
ψ in a family of functions parametrized by a finite-dimension parameter: {ψx, x ∈ Rd}. For a
loss function L : Rdout → R+ which measures the error between the prediction ψx(ui) and the
true data yi, the regression problem then becomes the minimization of the average loss over the
dataset and can be written as the following optimization problem:

Minimize
x∈Rd

V (x) := 1
M

M∑
i=1

L(ψx(ui) − yi). (1.1.5)

Examples of parametrization:

• Least-square regression: Let us write x = (θ, ι) ∈ Mdout,din(R) × Rdout so that ψx is the
affine function ψ(θ,ι)(u) = θ · u+ ι and L is the quadratic loss i.e. L(w) = (1/2)|w|2.

• Logistic regression: Let us assume that yi ∈ {±1} are labels associated to a binary classi-
fication problem and that ui ∈ Rd. Then the problems becomes

Minimize
x∈Rd

V (x) := 1
M

M∑
i=1

log
(
1 + e−yi⟨x,ui⟩

)
.

• Fully connected artificial Neural Networks: Let φ : R → R be a non-linear function. The
function φ is generally chosen to be a sigmoid-type or a ReLU-type function, see Figure
1.4. Let K + 1, K ∈ N, be the number of layers of the neural network and for k = 0, . . . ,
K let dk ∈ N be the size of the kth layer with d0 = din and dK = dout. For k = 1, . . . ,K,
u ∈ Rdk−1 and for θk ∈ Mdk,dk−1(R) and ιk ∈ Rdk we define the vector in Rdk :

φθk,ιk
(u) :=

[
φ([θk · u+ ιk]i)

]
1≤i≤dk

,

i.e. the scalar function φ is applied to the vector θk · u+ ιk coordinate by coordinate. Let
us write x = (θ1, ι1, . . . , θK , ιK), then the output of the neural network is

ψx(u) = θK ·
(
φθK−1,ιK−1 ◦ · · · ◦ φθ1,ι1(u)

)
+ ιK .

An illustration of a fully connected neural network is given in Figure 1.3. Neural networks
are known for their ability to approximate a wide range of non-linear functions in high
dimension and to fit to many non-linear regression tasks [Cyb89, LBH15].

The gradient descent algorithm for (1.1.5) then becomes

Xn+1 = Xn − γn+1
M

M∑
i=1

∂xψx(ui) · ∇L(ψx(ui) − yi).

However, if the number of samples M is large then computing ∇V exactly at each iteration is
costly. We instead replace this algorithm by a stochastic gradient algorithm: at each iteration n
let in ∈ {1, . . . ,M} be a random index chosen uniformly at random and the iteration becomes

Xn+1 = Xn − γn+1
M

∂xψx(uin+1) · ∇L(ψx(uin+1) − yin+1). (1.1.6)
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Figure 1.3: Scheme of a fully connected neural network with 3 layers (2 hidden layers) and with
output in R2.

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1 x 7→ 1
1+e−x

−10 −5 0 5 10

0

2

4

6

8

10
x 7→ x+

Figure 1.4: The Sigmoid and ReLU functions

0 10 20 30 40 50
0

10

20

Epochs

Lo
ss

Loss
Valuation loss
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layers with 64 units each and ReLU activation for the prediction of fuel efficiency on the Auto
MPG dataset [Qui93] using stochastic gradient descent.
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As a more stable version of (1.1.6) and still computationally efficient, the gradient can be
estimated by an average over a small batch of data:

Xn+1 = Xn − γn+1
Nbatch

∑
i∈In+1

∂xψx(ui) · ∇L(ψx(ui) − yi)

where In+1 is a subset of {1, . . . ,M} of size Nbatch taken uniformly at random with Nbatch ≪ M .
An example of neural network training is given in Figure 1.5.

1.1.2.2 Computation of quantiles and Value at Risk

Let Z be a random variable taking its values in R and such that E|Z| < ∞. For α ∈ [0, 1], let
qα be the quantile of order α, i.e.

qα = inf{u ∈ R : P(Z ≤ u) ≥ α}.

In the Mathematical Finance community, the quantile qα is called Value at Risk (VaR) and is
widely used with α close to 1 as a risk measure for risk management [Jor96]. Following [UR01]
we have the characterization

qα = argmin
x∈R

E
[
x+ 1

1 − α
(Z − x)+

]
=: argmin

x∈R
E[v(x, Z)].

To compute qα, one may apply a gradient descent algorithm however computing exactly the
expectation may be impossible. Instead the stochastic gradient algorithm reads

Xn+1 = Xn − γn+1

{
1 if Xn ≥ Zn+1
−α/(1 − α) if Xn < Zn+1,

where (Zn) is an i.i.d. sequence and where Z1 ∼ Z. The Conditional Value at Risk (CVaR) is
then defined as

E
[
Z|Z ≥ qα

]
= E[v(qα, Z)]

and can be directly estimated by the online computation [BFP09]:

1
Γn

n∑
k=1

γkv(Xk, Zk) with Γn := γ1 + . . .+ γn.

1.1.2.3 Stochastic optimal control

Let us consider the following stochastic control problem associated to an SDE in continuous
time:

min
u
J(u) := E

[∫ T

0
G(t, Y u

t )dt+ F (Y u
T )
]
, (1.1.7)

dY u
t = b(Y u

t , ut)dt+ σ(Y u
t , ut)dWt, t ∈ [0, T ] (1.1.8)

where b : Rd1 × Rd3 → Rd1 , σ : Rd1 × Rd3 → Md1,d2(R), W is a Rd2-valued Brownian motion
and u is a Rd3-valued continuous adapted process, T > 0, G : R+ × Rd1 → R and F : Rd1 → R.

Stochastic control problems are usually solved using specific strategies, such as Forward-
Backward SDEs (FBSDEs) [PW99], or by solving Hamilton-Jacobi-Bellman (HJB) optimality
conditions [Bel57] through Partial Differential Equation (PDE) methods or by stochastic dy-
namic programming [KD01]. Such problems can also be solved using Neural Networks calibrated
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1.1. Stochastic algorithms

by SGD techniques [GM05, HE16, WLP+19, CL21, BHLP22]. More specifically, we proceed as
follows. We approximate the control u as the output of a (fully connected) neural network

ut = uθ(t, Y u
t ) (1.1.9)

where uθ is a neural function with finite-dimensional parameter θ ∈ Rd. Since (1.1.8) defines a
Markovian process, we can assume that ut depends only on t and on Y u

t instead of t and the
whole previous trajectory (Y u

s )s∈[0,t]. We consider a subdivision of [0, T ]:

0 = t0 < t1 < · · · < tN = T (1.1.10)

and approximate (1.1.7) by the time discretized model

min
θ∈Rd

J̄(uθ) :=
N−1∑
k=0

(tk+1 − tk)G(tk+1, Ȳ
uθ

tk+1
) + F (Ȳ uθ

tN
), (1.1.11)

Ȳ uθ
tk+1

= Ȳ uθ
tk

+ (tk+1 − tk)b(Ȳ uθ
tk
, uθ(tk, Ȳ uθ

tk
)) +

√
tk+1 − tkσ(Ȳ uθ

tk
, uθ(tk, Ȳ uθ

tk
))ξk+1, (1.1.12)

ξk ∼
i.i.d.

N (0, Id2). (1.1.13)

For every θ ∈ Rd, ∇θJ̄ can be computed by automatic differentiation, where the gradient w.r.t.
to θ is tracked all along the trajectories through the recursive dynamics of the Euler scheme
(1.1.12) [GG05, Gil07]. Then the SGD algorithms reads

θn+1 = θn − γn+1∇θJ̄(uθn , (ξn+1
k )1≤k≤N ) (1.1.14)

where (ξn
k )1≤k≤N,n∈N is an array of i.i.d. random vectors N (0, Id2)-distributed, (γn)n∈N is a

non-increasing positive step sequence and where we wrote the dependence of J̄ in (ξn
k ).

1.1.2.4 Variance reduction in Monte Carlo simulation

In Monte Carlo simulation, we aim to estimate E[φ(Z)] where Z is a random vector taking its
values in Rd, φ : Rd → R and such that E|φ(Z)|2 < ∞, using the estimator 1

M

∑M
i=1 φ(Zi) where

M ∈ N is large and Zi are i.i.d. with Z1 ∼ Z. Variation reduction techniques help to estimate
E[φ(Z)] with smaller variance, yielding tighter confidence intervals.

More specifically, let us consider variance reduction by unconstrained recursive importance
sampling as introduced in [Aro04] and [LP10]. Let us assume that Z ∼ N (0, Id). For example,
for a Call option on a basket of risky assets driven by a multi-dimensional Black-Scholes model
we have

φ(Z) =

 d∑
i=1

ais
i
0 exp

r −
d∑

j=1

σ2
ij

2

T +
√
T

d∑
j=1

σijZ
j

−K


+

,

where r, T , K ∈ R+, σ ∈ Md(R) is definite positive definite symmetric and s0, a ∈ (0, s0)d and
Z = (Z1, . . . , Zd).

For θ ∈ Rd we have

E[φ(Z)] = 1
(2π)d/2

∫
Rd
φ(z)e− |z|2

2 dz = 1
(2π)d/2

∫
Rd
φ(z + θ)e

−|θ|2
2 −⟨θ,z⟩e− z2

2 dz

= E
[
φ(Z + θ)e

−|θ|2
2 −⟨θ,Z⟩

]
(1.1.15)

and

Var
[
φ(Z + θ)e

−|θ|2
2 −⟨θ,Z⟩

]
= E

[
φ2(Z + θ)e−|θ|2−2⟨θ,Z⟩

]
− E

[
φ(Z + θ)e

−|θ|2
2 −⟨θ,Z⟩

]2

9



Chapter 1. Introduction

= E
[
φ2(Z + θ)e−|θ|2−2⟨θ,Z⟩

]
− E[φ(Z)]2.

The objective is to solve the minimization problem

Minimize
θ∈Rd

V (θ) := E
[
φ2(Z + θ)e−|θ|2−2⟨θ,Z⟩

]
= E

[
φ2(Z)e−⟨θ,Z⟩+|θ|2/2

]
so that to estimate E[φ(Z)] by Monte Carlo simulation using (1.1.15) with a smaller variance.
The (naive) stochastic gradient algorithm writes

θn+1 = θn − γn+1φ
2(Zn+1)e−⟨θn,Zn+1⟩+|θn|2/2(θn − Zn+1). (1.1.16)

However (1.1.16) suffers from instability and explosion because of the factors of exponential
growth. This algorithm is improved in [LP10] using the following new representation of the
gradient:

∇V (θ) = E
[
φ2(Z − θ)(2θ − Z)

]
.

1.1.2.5 Optimal quantization

Vector quantization consists in mapping input values from a large (or continuous) set to output
values in a (finite) smaller set. It and was originally introduced for data compression [Llo82] and
is now more widely used in Machine Learning for unsupervised learning and clustering analysis,
in numerical probability for (conditional) expectation computation and option pricing.

More specifically, for µ some probability distribution in L2(Rq) and for fixed K ∈ N, the
optimal quantization problem reads

min
x=(x1,...,xK)∈(Rq)K

V (x) := 1
2

∫
Rq

min
1≤k≤K

|ξ − xk|2µ(dξ). (1.1.17)

Then defining the Voronoï partition of Rq:

Vk(x1, . . . , xK) :=
{
ξ ∈ Rq

∣∣ ∀ 1 ≤ j ≤ K, |ξ − xk| ≤ |ξ − xj |
}
, 1 ≤ k ≤ K,

we have

∂xkV (x) = ∂xk

1
2

K∑
j=1

∫
Vj(x)

|ξ − xj |2µ(dξ) =
∫

Vk(x)
(xk − ξ)µ(dξ) = EY ∼µ

[
1Y ∈Vk(x)(xk − Y )

]
and the corresponding SGD algorithm, also called Competitive Learning Vector Quantization
(CLVQ) in this case, reads with Xn = (X1

n, . . . , X
K
n ) ∈ (Rq)K and Yn ∼ µ and iid :

Xn+1 = Xn − γn+1
[
1Yn+1∈Vk(Xn)(Xk

n − Yn+1)
]
1≤k≤K

. (1.1.18)

An example of optimal quantization using the CLVQ algorithm is given in Figure 1.6.
We refer to [Pag15, Section 3.2] for more details about the CLVQ algorithm.

1.1.3 Stochastic processes and the Euler-Maruyama scheme

1.1.3.1 Stochastic differential equations

Let us consider a general SDE having its values in Rd:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 ⊥⊥ W (1.1.19)

10
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Figure 1.6: Example of optimal quantization in R2 where µ is the unweighted Gaussian mixture
with component distributions N (yk, (1/4)I2), 1 ≤ k ≤ 5, yk = (cos(2kπ/5), sin(2kπ/5)) and
where the number of quantizers is K = 5. We plot the density of µ, the points yk in blue,
the centroids xk given by the CLVQ algorithm in red and the frontiers of the Voronoï partition
(Vk)1≤k≤5 in red.

where W is a standard Rq-valued Brownian motion and X0 and W are both defined on some
probability space (Ω,A,P). A method of approximate numerical simulation of XT for fixed
time horizon T > 0 is the so-called Euler-Maruyama scheme which is the following time-discrete
recursive algorithm:

X̄0 = X0, X̄n+1 = X̄n + hb(X̄n) + h1/2σ(X̄n)Un+1, Un ∼ N (0, Id) i.i.d. (1.1.20)

with h = T/N , N ∈ N and XT is approximated by X̄N . This scheme is used in particular for
Monte Carlo estimation of expectations where for some f : Rd → R, E[f(XT )] is approximated
by the empirical mean M−1∑M

i=1 f(X̄(i)
N ), where X̄(i)

N are M independent simulations following
(1.1.20). Conversely, some discrete stochastic algorithms can be seen as the discretization of
some SDE, as seen in the following sections.

In order to evaluate the quality of the approximation X̄N as N → ∞, we use strong error
and weak error bounds. The strong error is defined for p ≥ 1 as the Lp norm(

E
∣∣X̄N −XT

∣∣p)1/p
= ∥X̄N −XT ∥p.

Bounds on the strong error are obtained as follows. Assuming for example that b and σ are
bounded and Lipschitz-continuous and writing X̄N = YT with

dYt = b(Y
¯
t)dt+ σ(Y

¯
t)dWt, Y0 = X0

where
¯
t = h⌊t/h⌋, for p ≥ 2 and t ∈ [0, T ] we have

∥Yt −Xt∥p ≤
∥∥∥∥∫ t

0
(b(Y

¯
s) − b(Ys))ds

∥∥∥∥
p

+
∥∥∥∥∫ t

0
(b(Ys) − b(Xs))ds

∥∥∥∥
p

11



Chapter 1. Introduction

+
∥∥∥∥∫ t

0
(σ(Y

¯
s) − σ(Ys))dWs

∥∥∥∥
p

+
∥∥∥∥∫ t

0
(σ(Ys) − σ(Xs))dWs

∥∥∥∥
p

≤ [b]Lip
( ∫ t

0
∥Ys −Xs∥pds+

∫ t

0
∥Ys − Y

¯
s∥pds

)
+ CBDG

p [σ]Lip
( ∣∣∣∣∫ t

0
∥Ys −Xs∥2

pds

∣∣∣∣1/2
+
∣∣∣∣∫ t

0
∥Ys − Y

¯
s∥2

pds

∣∣∣∣1/2 )
,

where we used the Burkholder-Davis-Gundy and the regular and generalized Minkowski inequali-
ties. But using the expression of the law of Ys conditionally to Y

¯
s, we have ∥Ys−Y

¯
s∥p ≤ C(s−

¯
s)1/2

so that with φt := sups∈[0,t] ∥Ys −Xs∥p we get

φt ≤ [b]Lip

∫ t

0
φsds+ CBDG

p [σ]Lip(
∫ t

0
φ2

sds)1/2 + Ch1/2

but we have for every α > 0:( ∫ t

0
φ2

sds
)1/2

≤ φ
1/2
t

( ∫ t

0
φsds

)1/2
≤ α

2φs + 1
2α

∫ t

0
φsds

and taking α = CBDG
p [σ]Lip yields

φt ≤ C

∫ t

0
φsds+ Ch1/2,

where C is a constant depending on p, T , ∥b∥∞, [b]Lip, ∥σ∥∞ and [b]Lip. By the Gronwall Lemma
we obtain φT ≤ Ch1/2 for p ≥ 2; for ∈ [1, 2) the result still holds remarking that ∥ · ∥p ≤ ∥ · ∥2.
Then the strong error ∥X̄N −XT ∥ = ∥YT −XT ∥p is of order N−1/2 as N → ∞.

The weak error measures the error between the respective laws of XT and X̄N , denoted [XT ]
and [X̄N ] respectively, and is generally defined as the total variation distance:

dTV([X̄N ], [XT ]) = 2 supA∈B(Rd) |P(X̄N ∈ A) − P(XT ∈ A)|,

or as the Lp-Wasserstein distance:

Wp([X̄N ], [XT ]) = inf
{(∫

Rd
|x− y|pπ(dx, dy)

)1/p

: π ∈ P([X̄N ], [XT ])
}
,

where P([X̄N ], [XT ]) stands for the set of probability distributions on (Rd × Rd,B(Rd)⊗2) with
respective marginal distributions [X̄N ] and [XT ], or as

sup
{
E[f(X̄N )] − E[f(XT )], f ∈ A

}
where A is some class of Borel functions from Rd to R; this last case corresponds to the total
variation distance for A being the set of Borel measurable functions bounded by 1, and to the
L1-Wasserstein distance for A being the set of Lipschitz-continuous functions with Lipschitz
constant no greater than 1, according to the Monge-Kantorovich duality for W1.

The weak error is generally much more difficult to analyse than the strong error. For the
Lp-Wasserstein distance, the weak error can be directly bounded by the Lp-strong error, however
better bounds can be obtained. Talay and Tubaro [TT90] and Bally and Talay [BT96] proved
that the weak error is in general of order N−1, against the order N−1/2 for the strong error, thus
showing that the weak error fundamentally differs from the strong error and generally converges
faster.
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1.1. Stochastic algorithms

1.1.3.2 Stochastic Volterra equations

Let us consider (continuous) stochastic Volterra processes in Rd i.e. which writes

Xt = X0 +
∫ t

0
K1(t, s)b(Xs)ds+

∫ t

0
K2(t, s)σ(Xs)dWs, t ∈ [0, T ], (1.1.21)

where (Wt) is a standard Brownian motion in Rq3 , where

b : Rd → Rq1 , K1 : [0, T ]2 → Md,q1(R), σ : Rd → Mq2,q3(R), K2 : [0, T ]2 → Md,q2(R),

and where q1, q2, q3 ∈ N. Stochastic Volterra equations (SVE) have been introduced for mod-
elling in population dynamics, biology and physics [GLS90, Moh98], in order to generalize
modelling to non-Markovian stochastic systems with some memory effect. They have been
mathematically studied since [BM80] and [Pro85]. SVEs have recently attracted much atten-
tion in the mathematical finance community in the context of rough volatility modelling i.e.
with K1(t, s) = K2(t, s) = (t − s)H−1/2 for some H ∈ (0, 1/2), yielding less regular trajec-
tories than for classic SDEs because of the singularity of the kernel for s = t, and which
are more able to reproduce some features of asset prices for small H, typically H ≃ 0.1
[ALV07, GJR18, EEFR18, JR20, Fuk17, Fuk21]. We recall that a rough stochastic volatil-
ity model is a special case of a singular two-dimensional SVE, where the first process is an asset
price satisfying

dSt = St

√
VtdBt

for some Brownian motion B and where the second process (Vt) is the volatility satisfying some
rough stochastic equation, then giving for the joint process (1.1.21) 2 × 2 matrix kernels K1 and
K2 being diagonal and constant on their first coordinate.

An approximation of the solution of (1.1.21) is given by the Euler-Maruyama scheme for
SVEs:

X̄n+1 = X0 + h
n∑

j=0
K1((n+ 1)h, jh)b(X̄j) + h1/2

n∑
j=0

K2((n+ 1)h, jh)σ(X̄j)(Wtj+1 −Wtj )

with h = T/N , N ∈ N and XT is approximated by X̄N .
The strong order of convergence of the Euler-Maruyama scheme for a rough SVE with

parameter H is known to be N−H in general, which is very slow for small H ∈ (0, 1/2). The weak
order rate is still an open problem, see [BHT22, BFN22, Gas23, FSW22] for recent advances.

1.1.4 Bayesian inference and sampling from probability measures

Stochastic algorithms are also used for sampling from a probability measure.
In Bayesian inference, we consider a family of probability distributions on Rd0 parametrized

by a finite-dimensional parameter {p(u|x)du : x ∈ Rd} and a prior distribution on the parameter
p0(x)dx. Assuming that the observations u1, . . ., uM are i.i.d. and follow the distribution
p(u|x)du conditionally to the value of the parameter x, the posterior probability on x ∈ Rd

knowing the observations has density proportional to p0(x)p(u1|x) . . . p(uM |x). Defining

V (x) := − log(p0(x)p(u1|x) . . . p(uM |x)) = − log(p0(x)) − log(p(u1|x)) − · · · − log(p(uM |x))
=: V0(x) + V1(x) + · · · + VM (x),

then the posterior parameter X has a law of density proportional to e−V (x). In this context,
Bayesian inference requires sampling from a probability measure which is defined from a large
amount of data if M is large.
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Given a probability measure ν, Markov Chain Monte Carlo (MCMC) methods build an ex-
plicit Markov chain (Xn) admitting ν as its invariant measure, allowing to approximatively sam-
ple from ν. The Metropolis-Hastings algorithm was introduced by Metropolis in 1953 [MRR+53]
and extended by Hastings in 1970 [Has70]. Given a probability density ν and a parametrized
Markov kernel chosen by the user Q(x, dy) on Rd, the Markov chain X on Rd is defined recur-
sively by:

• Sample X̃n+1 from Q(Xn, dy).

• Xn+1 = X̃n+1 with acceptance probability

min
(

1, ν(X̃n+1)Q(X̃n+1, Xn)
ν(Xn)Q(Xn, X̃n+1)

)

and Xn+1 = Xn otherwise

so that the probability measure with density ν is the unique invariant distribution of X. One
advantage of this algorithm is that it does not require to compute the normalization constant
of the density ν nor the one of the kernel Q.

Lamberton and Pagès introduced in 2002 the method of sampling from a probability measure
by solving SDEs [LP02]. That is, assuming that the SDE

dXt = b(Xt)dt+ σ(Xt)dWt (1.1.22)

taking its values in Rd is ergodic with invariant measure ν, then considering the Euler-Maruyama
scheme with decreasing steps

X̄n+1 = X̄n + γn+1b(X̄n) + √
γn+1σ(X̄n)Un+1, Un ∼ N (0, Id) i.i.d., (1.1.23)

the measure ν is estimated by the weighted average of Dirac measures

νn := 1
Γn

n∑
k=1

γkδX̄k
, Γn = γ1 + . . .+ γn. (1.1.24)

[LP02] shows that for a general mean-reverting diffusion (1.1.22), the averaged Euler scheme
of an ergodic diffusion converges to the invariant probability measure of the diffusion. More
precisely:

Theorem 1.1.2. Assume that there exists a C2 and coercive Lyapunov function V : Rd →
[V ⋆,∞) such that ∇2V is bounded and

|∇V |2 + |b|2 ≤ CV, ∥σ(x)σ⊤(x)∥ = o(V (x)) as |x| → ∞, (1.1.25)
∃α > 0, β ∈ R, ⟨∇V, b⟩ ≤ −αV + β, (1.1.26)

and that (1.1.22) admits a unique invariant measure ν. Then for every f : Rd → R being
continuous with f(x) = o(V k(x)) for some k ∈ N, then νn(f) → ν(f) as n → ∞.

This method of simulation with respect to some probability measure fundamentally differs
from using the Euler-Maruyama scheme for solving SDEs at fixed time horizon T > 0. It was
then specifically analysed and extended in a series of papers, among them [LP03, Lem05, PP09,
LP12, DM17, PR20].
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More recently, [PP23] gives convergence rates for the law of X̄n itself in the algorithm (1.1.23)
for the L1-Wasserstein distance and the total variation distance. Assuming furthermore that σ is
bounded and elliptic and that b is Lipschitz-continuous and the following confluence assumption:

∀x, y ∈ Rd, W1([Xx
t ], [Xy

t ]) ≤ C|x− y|e−ρt, (1.1.27)

which is fulfilled in particular if the uniform dissipative assumption outside some compact set is
satisfied:

∃α0 > 0, ∃R > 0, ∀x, y ∈ B(0, R), ⟨b(x) − b(y), x− y⟩ ≤ −α0|x− y|2, (1.1.28)

the authors obtain a convergence speed at rate "almost" γn, which reads:

W1([X̄x
n ], ν) ≤ Cγn| log(γn)|ϑ(x), (1.1.29)

∀ε > 0, ∃Cϵ > 0, dTV([X̄x
n ], ν) ≤ Cεγ

1−ε
n ϑ(x), (1.1.30)

ϑ(x) := (1 + |x|) ∧ V 2(x).

The strategy of proof relies on a domino strategy (telescopic sum) inspired by proofs of weak er-
ror expansion of discretization schemes of diffusion processes, see [TT90, BT96]. For a function
f : Rd → R being either Lipschitz-continuous (for the L1-Wasserstein distance) or measur-
able bounded (for the total variation distance), the domino strategy consists in a step-by-step
decomposition of the weak error to produce an upper bound as follows:

|Ef(X̄x
n) − Ef(Xx

Γn
)| = |P̄γ1 ◦ · · · ◦ P̄γnf(x) − PΓnf(x)|

=
∣∣∣∣∣

n∑
k=1

P̄γ1 ◦ · · · ◦ P̄γk−1 ◦ (P̄γk
− Pγk

) ◦ PΓn−Γk
f(x)

∣∣∣∣∣
≤

n∑
k=1

∣∣∣P̄γ1 ◦ · · · ◦ P̄γk−1 ◦ (P̄γk
− Pγk

) ◦ PΓn−Γk
f(x)

∣∣∣ , (1.1.31)

where P and P̄ are the transition kernels associated to X and X̄ respectively. Then three terms
appear:

• The time discretization error, for large k, corresponding to the error between X̄ and X
with small time horizon and where the error is controlled by classic weak and strong bounds
on the error of the Euler-Maruyama scheme.

• The first ergodic error, for small k, corresponding to the error between X̄ and X with
large time horizon. In this case, the ergodic properties of X also apply to X̄.

• The second ergodic error, corresponding to the distance between X and its invariant mea-
sure ν.

The case of the total variation distance is more difficult to deal with than the case of the L1-
Wasserstein distance, since dTV([X̄x

t ], [Xx
t ]) is in general difficult to bound for small t > 0.

Instead, [PP23] relies on Malliavin bounds using regularization properties of the semi-group.

1.2 Langevin equation and Langevin algorithms

1.2.1 The Langevin Equation

If the function V to be minimized in (1.1.1) is not convex, the gradient descent algorithm can
be trapped into a local minimum which is not the global minimum, see Figure 1.7. Moreover,
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x0 x⋆

V

Figure 1.7: Example of trap for the gradient descent.

saddle points of V may slow down the convergence of the algorithm [DPG+14]. The stochastic
gradient descent (1.1.2), adding a noise to the classic gradient descent, helps escaping from such
traps [Laz92, BD96]. Another possibility is to add an exogenous noise to the gradient descent,
which also adds regularization and stability to the algorithm. Considering (1.1.2) and adding a
white noise yields:

X̄n+1 = X̄n − γn+1
(
∇V (X̄n) + ζn+1

)
+ σ

√
γn+1Un+1, (1.2.1)

where (Un) is i.i.d, U1 ∼ N (0, Id) and σ > 0. Let us point out the fundamental difference
between the noise γn+1ζn+1 associated to the stochastic approximation of the gradient and the
exogenous white noise √

γn+1Un+1, in particular since γn → 0 the first one is of order γn and
the second one of order √

γn. This algorithm, called Stochastic Gradient Langevin Dynamics
(SGLD) was introduced by Welling and Teh in [WT11]. Langevin algorithms as (1.2.1) are
inspired by stochastic analysis and stochastic differential equations. Indeed, the continuous
version of (1.2.1) is

dXt = −∇V (Xt)dt+ σdWt, (1.2.2)

where W is a standard d-dimensional Brownian motion. Equation (1.2.2) was introduced by
Langevin in 1908 [Lan08] to model the random movement of a particle in a fluid colliding with
the other particles. Assuming that exp(−2V/σ2) ∈ L1(Rd) and denoting V ⋆ := minRd V , the
Langevin equation (1.2.2) admits an invariant measure which is the Gibbs measure given by the
density

νσ(dx) := Zσe
−2(V (x)−V ⋆)/σ2

dx with Zσ :=
(∫

Rd
e−2(V (x)−V ⋆)/σ2

dx

)−1
. (1.2.3)

Indeed, for g : Rd → R being C2 with compact support, a quick calculation shows that

d

dt
Eνσ [g(Xt)] = d

dt

∫
Rd

Ex[g(Xt)]νσ(dx) =
∫
Rd

Lg(x)νσ(dx)

= Zσ

∫
Rd

(
− ∇V (x) · ∇g(x) + σ2

2 ∆g(x)
)
e−2(V (x)−V ⋆)/σ2

dx

= Zσ

∫
Rd

∇ ·
(
∇g(x)e−2(V (x)−V ⋆)/σ2)

dx = 0, (1.2.4)
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where we used an integration by parts formula to get the last line, where L is the infinitesimal
generator associated to (1.2.2) and ∇· denotes the divergence operator.

Moreover, for small σ, the measure νσ is concentrated around the set argmin(V ). The
following proposition makes this last statement precise.

Proposition 1.2.1. Let V : Rd → R be a Borel function such that

V ⋆ := essinf(V ) = inf{y : λd{V ≤ y} > 0} > −∞.

Assume also that e−V ∈ L1(Rd) where λd denotes the Lebesgue measure on Rd. Then

∀ε > 0, νσ({V ≥ V ⋆ + ε}) → 0 as σ → 0.

Then if (Xt) defined in (1.2.2) is ergodic, solving (1.2.1) or (1.2.2) for small σ and large t
guarantees that Xt is close to argmin(V ) in some sense.

More precisely, convergence rates of Gibbs measures were studied by Hwang in 1980 [Hwa80].
Assuming that argmin(V ) = {x⋆

1, . . . , x
⋆
r} is finite and that each ∇2V (x⋆

i ), 1 ≤ i ≤ r, is positive
definite then νσ weakly converges to a mixture of Dirac measures at the x⋆

i ’s at rate σ.
[HRSS21] gives another heuristic for the Langevin equation and shows that some non-convex

optimization problems can be seen as convex optimization problems when considering functionals
defined on the infinite-dimensional space of probability measures on Rd. The Brownian noise
then appears as an entropic regularization term over the space of measures.

In the setting of Bayesian inference as presented in Section 1.1.4, [DM17, BDMS19, DM19,
MMS20] study the method to sample from some target distribution ν defined on Rd from the
Langevin equation with constant noise coefficient σ ∈ R (1.2.2) [WT11]. Indeed, assuming that
ν has positive probability density x 7→ ν(x), then ν is the invariant measure of (1.2.2) with

V (x) = −σ2

2 log(ν(x)), ∇V (x) = −σ2

2
∇ν(x)
ν(x) . (1.2.5)

[DM17, DM19] give bounds for the total variation distance and the L2-Wasserstein distance
between the discrete algorithm X̄n in (1.2.1) and the target distribution ν. [MMS20] focuses
on the scheme with constant step size γn ≡ γ > 0 and analyses the resulting asymptotic bias,
giving bounds for the L1 and L2-Wasserstein distances. As this is generally the case for MCMC
methods, this method only requires the knowledge of the density of ν up to some normalization
constant.

These results are valid only for constant coefficient σ. In the additive setting, the exact
diffusion and its Euler scheme are linked through the Girsanov formula so that the error is
bounded using the Pinsker inequality [PP23, Appendix B]. However, this strategy cannot be
applied to the multiplicative noise case, which turns out to be more demanding. [PP23], which
focuses on sampling from some distribution using (1.1.23), appears as an extension of [DM17]
to the case where σ is not constant.

1.2.2 Adaptive Langevin algorithms

Choosing in (1.2.1) and (1.2.2) a constant noise coefficient σ > 0, yielding an homogeneous
and isotropic white noise σdWt may not be relevant in general. Indeed, the components of the
gradient ∇V (Xt) may widely vary or may be correlated. To accelerate the convergence of Xt

to its invariant distribution, we rework (1.2.2) by allowing σ to depend on the position Xt,
leading to devise an adaptive Langevin algorithm. Allowing σ to be adaptive highly extends
the range of applications of Langevin algorithms. The case where σ is not constant is called

17



Chapter 1. Introduction

the "multiplicative case" whereas the case where σ is constant is called the ’additive case". A
general heuristic is the so-called Newton method, which consists in considering σ = (∇2V )−1

and thus adding more noise in the directions where the gradient of V slowly varies in order to
accelerate the exploration of the state space. However the exact computation of σ = (∇2V )−1

is cumbersome because

• In high-dimensional optimization problems where the dimension d is large, the Hessian
matrix has size d× d which is too large for both computation time and memory size.

• It becomes necessary to compute second-order derivatives whereas we only need to compute
first-order derivatives for "classic" SGLD

• As the size d× d of the Hessian matrix is large, computing its inverse is also costly.

[DdVB15] adapted the well-known Newton method, which consists in considering σ =
(∇2V )−1, to SGLD. Since the size of the Hessian matrix may be too large in practice, be-
cause inverting it is computationally costly and because the Hessian matrix may not be positive
in every point, it is suggested to consider instead |diag((∇2V ))2|−1. However, computing high-
order derivatives may be cumbersome; [SBCR16] adapts the quasi-Newton method [NW06] to
approximate the Hessian matrix to SGLD, yielding the Stochastic Quasi-Newton Langevin al-
gorithm.

[DHS11] and [LCCC16] give algorithms where the choice for σ is σ ≃ diag ((λId+[|∂iV |]1≤i≤d)−1),
where λ > 0 guarantees numerical stability. The idea of using geometry has been explored in
[PT13], where σ−2 defines the local curvature of a Riemannian manifold, giving the Stochas-
tic Gradient Riemaniann Langevin Dynamics algorithm where σ is equal to I−1/2

x where Ix is
the Fisher information matrix, or to some other choices (see [PT13, Table 1]) as Ix may be
intractable. [MCF15] extends the previous algorithm to Hamiltonian Monte Carlo methods,
where a momentum variable is added in order to take into account the "inertia" of the trajec-
tory [Nea96, DMS20], yielding the Stochastic Gradient Riemannian Hamiltonian Monte Carlo
method.

Allowing the matrix σ to depend on the position yields a faster convergence; we refer to the
previous references where the simulations prove that the new methods greatly improve classical
stochastic gradients algorithms. In particular, we refer to the simulations [SBCR16, Figure 2],
[PT13, Figure 2] and [MCF15, Figure 3] where the some of the above different methods are
compared.

As presented in [MCF15] and [LCCC16, Equation (3)] and formally demonstrated in [PP23,
Proposition 2.6], if σ is not constant then we need to add a correction term to the drift so that
the Gibbs measure νσ remains the invariant measure.

Proposition 1.2.2. Let a > 0 and let (Xt) denote the solution to the Rd-valued SDE in Rd

dXt = b(Xt)dt+ aσ(Xt)dWt, X0 ⊥⊥ W. (1.2.6)

Assume that ∇2V is bounded, e−2V/a2 ∈ L1(Rd), σ is C1 and uniformly elliptic i.e.

∃
¯
σ0 > 0, ∀x ∈ Rd, σ(x)σ⊤(x) ≥

¯
σ0,

and bounded with bounded partial derivatives. If the drift b satisfies

b(x) = −(σσ⊤∇V )(x) + a2

 d∑
j=1

∂j(σσ⊤)(x)ij


1≤i≤d

, (1.2.7)

then the distribution νa defined in (1.2.3) is the unique invariant distribution of the above Brow-
nian diffusion.
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1.2. Langevin equation and Langevin algorithms

Defining the correction term Υ(x) := [∑d
j=1 ∂j(σσ⊤)(x)ij ]1≤i≤d which reduces to zero in the

additive case, the discrete algorithm corresponding to the continuous SDE (1.2.6) reads

Xn+1 = Xn − γk+1σσ
⊤ (∇V (Xn) + ζn+1) + a2γn+1Υ(Xn) + a

√
γn+1σ(Xn)Un+1, (1.2.8)

where (Un)n≥1 is i.i.d. and N (0, Id)-distributed.

Let us provide a simple example of how the above extension to non constant diffusion coef-
ficients for Langevin simulation can be used, see [PP23, Section 2.4]. We consider the pseudo-
Cauchy distribution on Rd with exponent κ > 0 defined by

πκ(dx) = Cκ

(1 + x2)1+κ
dx = Cκe

−V (x)dx with V (x) = (d+ κ) log(1 + x2) + 1.

Then using Proposition 1.2.2 with σ = Id, the distribution πκ is the invariant distribution of the
one-dimensional Brownian diffusion

dYt = −(d+ κ) Yt

1 + |Y |2t
dt+ dWt.

However, we have in this case |b(x)| → 0 as |x| → ∞, suggesting that the convergence to πκ is
slow. On the other hand, using Proposition 1.2.2 with σ(x) = (1 + |x|2)1/2Id, the measure πκ is
also the invariant distribution of the Brownian diffusion

dXt = −(d+ κ− 1)Xtdt+
√

1 + |X|2t dWt

where the drift satisfies

⟨b(x) − b(y), x− y⟩ = −(κ− 1 + d/2)|x− y|2

so that Assumption (1.1.28) is satisfied for κ > 1 − d/2, suggesting that the convergence to πκ

is fast. For more details in particular concerning mean-reverting diffusions we refer to [PP23,
Section 2.4].

1.2.3 Langevin-Simulated anneling equation

Considering (1.2.2) with invariant measure νσ defined in (1.2.3) and since νσ is concentrated
around argmin(V ) for small σ (Proposition 1.2.1), a method for minimizing V is to solve (1.2.2)
while making the drift coefficient decrease to zero along time, leading to the Langevin-simulated
annealing equation:

dXt = −∇V (Xt) + a(t)σdWt, (1.2.9)

where Xt is Rd-valued, σ > 0 and a : R+ → R+ is decreasing and a(t) → 0 as t → ∞. Equation
(1.2.9) is a non-homogeneous Markov SDE; for every t ∈ R+ we can still define the "instanta-
neous" invariant measure as the invariant measure of the corresponding time-homogeneous SDE
when freezing the time dependent coefficient a(t). In our case it is the measure νa(t)σ. The
Langevin-simulated annealing equation shares indeed its heuristic with the original simulated
annealing algorithm [KGV83, vLA87], which builds a Markov chain from the Gibbs measure νσ

using the Metropolis-Hastings algorithm [MRR+53] and where the parameter σ, interpreted as
a temperature, slowly decreases to zero over the iterations. In Statistical Physics, the parameter
sequence (a(t)σ) is interpreted as the square root of the system temperature. At the beginning
of the algorithm, the temperature is high, allowing to explore the state space more efficiently
to the detriment of the optimization procedure; at the end the temperature is low allowing to
focus on the minima of V .
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In [CHS87, Roy89] is shown that choosing a(t) = A log−1/2(t) for some A > 0 in (1.2.9)
guarantees the convergence of Xt to ν⋆ defined as the limit measure of (νa) as a → 0, ν⋆ being
supported by argmin(V ). [Mic92] proves again the convergence of the SDE using free energies
inequalities. These studies deeply rely on some Poincaré and log-Sobolev inequalities and require
the following assumptions on the potential function:

lim
|x|→∞

V (x) = lim
|x|→∞

|∇V (x)| = ∞ and ∀x ∈ Rd, ∆V (x) ≤ C + |∇V (x)|2.

More specifically, taking σ = 1 in (1.2.9) and defining the Kullback-Liebler divergence (or free
energy):

Jt := dKL
(
Xt∥νa(t)

)
=
∫
Rd

log
(
p(t, x)
νa(t)(x)

)
p(t, x)dx, (1.2.10)

where p(t, x) is the density of Xt at x ∈ Rd (see [Fri64, Chapter 9, Theorem 7]) and follows the
Fokker-Planck equation:

∂tp(t, x) = ∇ · (∇V (x)p(t, x)) + 1
2a

2(t)∆p(t, x), (1.2.11)

using the expression of ∂tp(t, x) in (1.2.11), the explicit expression of the density νa(t)(x) and
the integration by parts formula, we obtain

dJt

dt
= 2
a4(t)

da2(t)
dt

∫
Rd
V (x)(νa(t)(x)−p(t, x))dx−2a2(t)

∫
Rd

∣∣∣∣∣∇
√
p(t, x)
νa(t)(x)

∣∣∣∣∣
2

νa(t)(x)dx. (1.2.12)

We then use a logarithmic Sobolev inequality:∫
Rd
f2 log(f2)dνa(t) ≤ C

∫
Rd

|∇f |2dνa(t) +
(∫

Rd
f2dνa(t)

)
log

(∫
Rd
f2dνa(t)

)
(1.2.13)

with
f(x) =

√
p(t, x)/νa(t)(x)

so that

−2σ2(t)
∫
Rd

∣∣∣∣∣∇
√
p(t, x)
νa(t)(x)

∣∣∣∣∣
2

νa(t)(x)dx ≤ −C
∫
Rd

p(t, x)
νa(t)(x) log

(
p(t, x)
νa(t)(x)

)
νa(t)(x)dx = −CJt.

On the other hand, ∫
Rd
V (x)(νa(t)(x) − p(t, x))dx = νa(t)(V ) − EV (Xt)

can be bounded independently of t using classic bounds on the growth of the potential, see
for example [PP23, Proposition A.1]. Then (1.2.12) gives a bound on dJt/dt and solving the
differential inequation with a(t) = A log−1/2(t) yields the convergence of Jt to 0.

[Zit08] proves that the convergence still holds under weaker assumptions, in particular where
the gradient of the potential is not coercive, using weak Poincaré inequalities. In [GM91] is
proved the convergence of the associated stochastic gradient descent algorithm.

1.3 Contributions of the thesis
Our research results and articles are available on my personal research website at the address:

https://perso.lpsm.paris/~pbras/.

Our code for simulations along with Jupyter notebooks are available on my GitHub page at the
address:

https://github.com/Bras-P.
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1.3. Contributions of the thesis

1.3.1 Convergence of Langevin-Simulated annealing algorithms

1.3.1.1 Convergence of the adaptive Langevin equation and its Euler-Maruyama
scheme for the L1-Wasserstein distance and in total variation

In Chapters 2 and 3, we prove the convergence and give convergence rates for Langevin-simulated
annealing algorithms with multiplicative noise i.e. for the SDE (1.2.6) and its associated Euler-
Maruyama scheme (1.2.8) where the coefficient of the exogenous noise (a(t)) decreases to 0 as
t → ∞. The target measure denoted ν⋆ is defined as the limit measure of νa as a → 0 and the
rates of convergence are given for the L1-Wasserstein distance and the total variation distance.
We make assumptions on V and σ similar to those in [PP23], in particular that |∇V |2 ≤ CV ,
∇V is Lipschitz continuous and σ is bounded with bounded derivatives. We also assume that
argmin(V ) is finite and that for every x⋆ ∈ argmin(V ), either ∇2V (x⋆) is definite positive or x⋆

is a strict polynomial minimum.
We adopt a domino strategy (see (1.1.31) and the description following) and use methods

described in Section 1.1.3.1 and in Section 1.1.4 however we need to adapt the strategy to non-
homogeneous Markov diffusion processes with evanescent ellipticity, since the diffusion coefficient
of the SDE depends on the time t and its ellipticity fades away as t → ∞. We prove that choosing
a coefficient (a(t)) of order log−1/2(t) is a sufficient - and generally necessary - condition for
convergence. We give a convergence rate for W1([Xt], ν⋆) which turns out to be somehow limited
by W1(νa(t), ν

⋆) which is of order a(t) ≃ log−1/2(t) under the assumption that ∇2V is positive
definite at every point of argmin(V ). Still we establish sharper bounds for the convergence of
W1(Xt, νa(t)):

W1([Xx0
t ], ν⋆) + W1([X̄x0

N(t)], ν
⋆) ≤ C max(1 + |x0|, V 2(x0))a(t),

W1([Xx0
t ], νa(t)) + W1([X̄x0

N(t)], νa(t)) ≤ Cα max(1 + |x0|, V 2(x0))t−α

for every α ∈ (0, 1) with N(t) = min{k ∈ N, Γk+1 > t}, see Theorems 2.2.1 and 2.2.4.
For the total variation distance, we obtain for every α ∈ (0, 1):

dTV([Xx0
t ], νa(t)) ≤ Cαe

C log1/2(t)(1+|x0|)t−α, (1.3.1)

dTV([X̄x0
N(t)], νa(t)) ≤ Cα

(
log1/2(t) max(V 2(x0), 1 + |x0|)t−α + eC log1/2(t)(1+|x0|2)tC/A2

γ
1/2
N(Ct)

)
(1.3.2)

with A defined by a(t) = A log−1/2(e+ t), see Theorem 3.2.1.
These results have been submitted as two separate articles as joints work with Gilles Pagès:

• The analysis of the convergence for the L1-Wasserstein distance, entitled Convergence
of Langevin-Simulated Annealing algorithms with multiplicative noise and accepted for
publication in Mathematics of Computation,

• The analysis of the convergence for the total variation distance, entitled Convergence of
Langevin-Simulated Annealing algorithms with multiplicative noise II: Total Variation and
which has been published in Monte Carlo Methods and Applications.

1.3.1.2 Convergence rates of Gibbs measures

In order to analyse the rate of convergence of Langevin algorithms, for D some distance on
P(Rd), let us write

D([Xt], ν⋆) ≤
{

D([Xt], νa) + D(νa, ν
⋆) if a > 0 is constant,

D([Xt], νa(t)) + D(νa(t), ν
⋆) if a is decreasing to 0. (1.3.3)
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Chapter 1. Introduction

The second term in this inequality D(νa, ν
⋆) corresponds to the bias term. It measures the

distance between the invariant distribution ν⋆ and its approximation using a Gibbs measure νa

and converges to 0 as a → 0. Consequently we also need to investigate the order of D(νa, ν
⋆) for

small a > 0. It is known that if argmin(V ) is finite and if for every x⋆ ∈ argmin(V ), ∇2V (x⋆) is
definite positive then νa converges weakly to ν⋆ which is a weighted sum of Dirac masses where
each weight is proportional to det−1/2(∇2V (x⋆)) and the rate of convergence is of order a as
a → 0 [Hwa80]. However, there are few results available when ∇2V (x⋆) is not positive definite
for some x⋆ ∈ argmin(V ). Assuming argmin(V ) = {x⋆} for simplifying notations, [AH10] gives a
convergence rate under the condition that there exists a function g : Rd → R with e−g ∈ L1(Rd)
and α1, . . . , αd ∈ (0,+∞) such that

∀h ∈ Rd,
1
a

[V (x⋆ + (aα1h1, . . . , a
αdhd)) − V (x⋆)] −→

a→0
g(h1, . . . , hd). (1.3.4)

In Chapter 4 we give conditions on V such that (1.3.4) is fulfilled and then elucidate the expres-
sion of g depending on V and its successive derivatives at x⋆. Instead of positive definiteness
we assume x⋆ is a strictly polynomial minimum of V i.e. V − V (x⋆) is bounded below in a
neighbourhood of x⋆ by some non-negative polynomial function null only at x⋆. Under some
assumptions, we give an algorithm to identify α = (α1, . . . , αd) ∈ Rd, an orthogonal transfor-
mation B and g : Rd → R a polynomial function which is not constant in any of its variables,
depending on the successive derivatives of V such that

∀h ∈ Rd,
1
a

(
V (x⋆ +B · (aα ∗ h)) − V (x⋆)

)
−→
a→0

g(h)

where aα is the vector (aα1 , . . . , aαd) and ∗ denotes the Schur product between two vectors i.e.
for u, v ∈ Rd, u ∗ v = (u1v1, . . . , udvd). Then we obtain the following central limit theorem:

a−α ∗ (B−1 · (Ya − x⋆)) −→
a→0

Y in law

where Ya ∼ ν√
2a and Y ∼ e−g(y)dy. We refer to Theorems 4.3.3 and 4.3.5.

Although the case where ∇2V (x⋆) is not positive definite may seem singular and mostly of
theoretical interest at first sight, it can actually occur in practice as pointed out by eminent
Machine Learning researchers, among them L. Bottou and Y. LeCun [SBL16, SEU+17], for
high-dimensional and over-parametrized optimization and inference problems, especially for the
calibration of artificial neural networks.

These results have been published as the following article: Pierre Bras. Convergence rates
of Gibbs measures with degenerate minimum. Bernoulli, 28(4):2431 – 2458, 2022.

1.3.2 Adaptive Langevin algorithms for deep Neural Networks

1.3.2.1 SGLD algorithms for deep neural networks, Layer Langevin algorithm,
application to image classification

In Chapter 5 we implement and run simulations to evaluate the performances of SGLD algo-
rithms described in Section 1.2.2 with different choice for the function σ on various problems
coming from Machine Learning: regression, classification, image recognition, time series analysis
etc. In particular we analyse the benefits of adding Gaussian noise during the training in com-
parison with the non-Langevin counterpart algorithms. More precisely, popular preconditioned
stochastic gradient methods in Machine Learning such as RMSprop [TH12], Adam and Adamax
[KB15] and Adadelta [Zei12] generally writes in a non-Langevin setting

Xn+1 = Xn − γn+1Pn+1 · gn+1 (1.3.5)
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Figure 1.8: Architecture of the VGG-16 network for an input image of size 224 × 224.

where gn+1 is an estimation of the gradient ∇V (Xn) and Pn+1 is some preconditioner rule, while
similarly to (1.2.8), the corresponding Langevin counterpart method writes

Xn+1 = Xn − γn+1Pn+1 · gn+1 + aγ
1/2
n+1N (0, Pn+1) + a2γn+1

[ d∑
j=1

∂jPn+1(Xn)ij
]
1≤i≤d

. (1.3.6)

In Chapter 6 we proceed to a side by side comparison of (1.3.5) and (1.3.6) for different choices
of stochastic gradient methods. As it was noted in [NVL+15, Ani19], adding gradient noise
can in fact improve the learning for very deep neural networks. Indeed, the noise provides
regularization and allows to escape from traps for the gradient descent such as local minima or
saddle points [DPG+14]. Moreover, the deeper the neural network is, the more non-linear it
is, thus increasing the number of such traps. Many advances in supervised learning were made
possible using very deep neural networks, which are able to tackle much more difficult problems
than shallow ones [KSH12, MPCB14, LBH15], in particular as it comes to image classification,
involving very deep convolutional architectures [SLJ+15, SZ15, HZRS16, HLVDMW17]. An
example of deep convolution architecture is given in Figure 1.8.

Still, as a price to be paid, deep neural networks are considerably more difficult to train
[GB10, DPG+14]. To cope with this issue, highway networks [SGS15] and residual networks
[HZRS16] were introduced. Their many successive layers behaves either as a dense layer or
as the identity function, allowing the gradient information to propagate trough the successive
layers.

We compare the benefits of preconditioned Langevin algorithms [LCCC16] for various archi-
tectures and for various depths of neural networks and we observe that the deeper the network is,
the greater are the gains provided by Langevin algorithms. Based on this heuristic and since the
most important non-linearities of the network are contained in the deepest layers, we introduce
a new optimization method that we call Layer Langevin algorithm, which consists in training
the network by adding Langevin noise only to the training of some weights and not to the other
weights. That is, the stochastic gradient method described in (1.3.6) becomes

X
(i)
n+1 = X(i)

n − γn+1
[
Pn+1 · gn+1

](i) + 1i∈J aγ
1/2
n+1[N (0, Pn+1)](i)

+ 1i∈J a
2γn+1

[ d∑
j=1

∂jPn+1(Xn)ij
](i)
, 1 ≤ i ≤ d

for some J subset of {1, . . . , d}. In particular, we choose J to be the set of indexes of the weights
of the k first (deepest) layers for some integer k. We refer to Section 6.4. We then highlight
the possibilities of training acceleration using Langevin and Layer Langevin methods on deep
residual [HZRS16] and dense convolutional networks [HLVDMW17] for image classification.

We give an implementation of Langevin and Layer Langevin algorithms in TensorFlow as
instances of the base class tf.keras.optimizers. Optimizers. These optimizers are directly
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u

· · · Ytk SDE Ytk+1 SDE Ytk+2 · · ·

G G G

· · · + + + · · ·

Figure 1.9: Depth of Markovian neural networks. The control u acts on Ytk
, which itself acts

on Ytk+1 , Ytk+2 , . . ., YtN , hence the depth of the network.

usable as the Python package langevin_optimizers, which is downloadable from the GitHub
repository https://github.com/Bras-P/langevin-for-stochastic-control and with the
command

1 $ pip install git+https :// github .com/Bras -P/langevin -for -stochastic -
control .git

These results have been presented at the International Neural Network Society Workshop
on Deep Learning Innovations and Applications (INNS DLIA), part of the Machine Learning
conference International Joint Conference on Neural Networks IJCNN 2023, and will be pub-
lished in the first edition of the INNS workshop series in Procedia Computer Science as Langevin
algorithms for very deep Neural Networks with application to image classification.

1.3.2.2 Langevin algorithms for deep stochastic control

In Chapter 7, we evaluate the benefits of Langevin algorithms on solving stochastic optimal
control problems using neural networks as described in Section 1.1.2.3. Indeed, if the control is
parametrized by a neural network and if it is applied at many discretization time steps, then
the stochastic control problem reads as the training of a very deep neural network, see Figure
1.9.

As in Section 1.3.2.1, we compare preconditioned Langevin algorithms with their respective
non-Langevin counterparts for solving various stochastic optimal control problems: fishing quo-
tas [LPP23], deep hedging of financial options [BGTW19], oil drilling and resource management
[GGKL21], and we show that Langevin and Layer Langevin optimizers can significantly improve
the training procedure.

These results have been presented at the Machine Learning conference International Joint
Conference on Neural Networks IJCNN 2023 and are published in the conference proceedings
as a joint work with Gilles Pagès and under the title Langevin algorithms for Markovian Neural
Networks and Deep Stochastic Control.

1.3.3 Simulation of stochastic processes and discretization schemes

1.3.3.1 Total variation convergence of the Euler-Maruyama scheme in small time

For the total variation bound in (1.3.2), while implementing the domino strategy described
in Section 1.1.4 we need to establish a bound for the total variation between an SDE and its
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one-step Euler-Maruyama scheme in small time i.e. a bound for dTV([X̄x
t ], [Xx

t ]) where

Xx
0 = x, dXt = b(Xt)dt+ σ(Xt)dWt, X̄t = x+ tb(x) + σ(x)Wt

where b and σ are general Lipschitz continuous coefficients here. Indeed, the difficulty of the
total variation distance in small time is the following: considering its representation formula and
comparing it with the L1-Wasserstein distance, if x and y ∈ Rd are close to each other and if
f : Rd → R is Lipschitz continuous, then we can bound |f(x) − f(y)| by [f ]Lip|x − y|; whereas
if f is simply measurable and bounded, then we cannot directly bound |f(x) − f(y)| in terms
of |x− y|. Previous results in the literature only focus on total variation bounds for fixed time
horizon T > 0 [BT96, GL08].

In Chapter 8, we show more generally that for two SDEs in Rd starting at the same point:

Xx
0 = x ∈ Rd, dXx

t = b1(Xx
t )dt+ σ1(Xx

t )dWt,

Y x
0 = x, dY x

t = b2(Y x
t )dt+ σ2(Y x

t )dWt

and assuming that for i = 1, 2, σi ∈ C2
b and is elliptic and b ∈ C1 with bounded derivatives, we

obtain
dTV([Xx

t ], [Y x
t ]) ≤ C(t1/2 + |σ1 − σ2|(x))2/3 + Cec|x|2t1/2, (1.3.7)

see Theorem 8.2.1. This bound relies on the following result for r = 1 which links the total
variation distance with the L1-Wasserstein distance provided that the laws of Xx

t and Y x
t are

regular enough:
Theorem 1.3.1. Let Z1 and Z2 be two random vectors in L1(Rd) and admitting densities p1
and p2 respectively with respect to the Lebesgue measure. Assume furthermore that p1 and p2
are C2r with r ∈ N and that ∇kpi ∈ L1(Rd) for i = 1, 2 and k = 1, . . . , 2r. Then we have

dTV(Z1, Z2) ≤ Cd,rW1(Z1, Z2)2r/(2r+1)
(∫

Rd

(
∥∇2rp1(ξ)∥ + ∥∇2rp2(ξ)∥

)
dξ

)1/(2r+1)
(1.3.8)

where the constant Cd,r depends only on d and on r.

In the case of SDEs, the densities of Xx
t and Y x

t can be expressed as the solution a Fokker-
Planck partial differential equation and we rely on Aronson bounds [Fri64] to control their
regularity.

We furthermore extend (1.3.7): assuming that σ ∈ C2r
b we prove that

dTV([Xx
t ], [Y x

t ]) ≤ C(t1/2 + |σ1 − σ2|(x))2r/(2r+1) + Cec|x|2t1/2, (1.3.9)

see Theorem 8.2.2. For r ≥ 2, we use a multi-step Richardson-Romberg extrapolation [RG11,
LP17] which is a method imported from numerical analysis and which builds a Taylor expansion
with null coefficients up to some high order.

These results have been published as: Pierre Bras, Gilles Pagès, and Fabien Panloup. Total
variation distance between two diffusions in small time with unbounded drift: application to the
Euler-Maruyama scheme. Electronic Journal of Probability, 27:1–19, 2022.

1.3.3.2 Weak error rates for numerical schemes of Stochastic Volterra Equations
with application to stochastic volatility models and option pricing under
path-dependent volatility

As a further research on convergence of Euler-Maruyama schemes for SDEs, in Chapter 9 we
study the rate of weak convergence of numerical schemes for Stochastic Volterra Equations as
described in Section 1.1.3.2, that is for f : Rd → R being smooth we give bounds on

E[f(X̄N )] − E[f(XT )]. (1.3.10)
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A first bound on the weak error can be obtained from bounds on the strong error, however this
is sub-optimal in general. For example, for Stochastic Differential Equations (SDE) the strong
error is of order O(1/

√
N) but the weak error is of order O(1/N). Such bounds get even worse in

the case of SVE with fractional kernel, giving a weak error bounded by the strong error which is
order O(N−H), where H ∈ (0, 1/2) is the Hurst parameter of the fractional kernel and is small
(H ≃ 0.1) in many financial applications. In [RTY21] are given bounds for the weak error for
the multi-level Euler-Maruyama scheme, however the authors only assume that the weak error is
bounded by the strong error (see [RTY21, Section 2.3]), which is largely suboptimal in general.
In [Gas23] are given weak error rates from some rough volatility models and are proved to be
of order O(N−(3H+1/2)∧1), yielding significantly better bounds in the case where H is close to
0. However the results are valid only for some special cases (semilinear or cubic test function),
hinting that obtaining general results for fractional processes is difficult.

As a first step, we focus on the regular case i.e. where K1 and K2 are defined and continuous
on [0, T ]2. Developing a domino strategy (1.1.31) that we adapt to the path-dependent case
and using pathwise derivatives of path-dependent functionals [VZ19, Dup19], we prove that the
convergence rate of (1.3.10) is of order O(1/N) in the non-singular case and where N is the
number of steps in the Euler-Maruyama scheme, see Theorem 9.2.2, thus giving a convergence
rate similar to the Markovian SDE case.

These results are a joint work with Masaaki Fukasawa and have been submitted to SIAM
Journal on Financial Mathematics (SIFIN ) and are currently in revision for possible publication.
The analysis of the singular rough case from adapting from the regular case is a work in progress.

1.3.3.3 Simulation of reflected Brownian motion on two dimensional wedges

In Chapter 10 we study the Brownian motion W in R2 which is reflected or stopped on a wedge,
i.e. the subset of R2 defined as

D = {(r cos(θ), r sin(θ)), r ≥ 0, θ ∈ [0, α]}

for some α ∈ (0, 2π) [Iye85, Met10, Pil14].
We prove the following density formula for the reflected Brownian motion Xx

t starting at
x = (r0 cos(θ0), r0 sin(θ0)):

Px(Xt ∈ dy) = 2r
tα
e−

r2+r2
0

2t

(
1
2I0

(
rr0
t

)
+

∞∑
n=1

Inπ/α

(
rr0
t

)
cos

(
nπθ

α

)
cos

(
nπθ0
α

))
drdθ

(1.3.11)

where Ia, a ≥ 0, stands for the modified Bessel function of the first kind, see Theorem 10.4.2.
Unfortunately, this formula involves oscillating infinite sums of Bessel functions that are hardly
usable for simulation purposes. Instead of directly computing these sums, we propose an alter-
native simulation method which uses an extension of the reflection principle in two dimensions
for a particular type of wedges with angle π/m, m ∈ N in Sections 10.5.2 and 10.5.3. As a
first step, we obtain a simulation method for E[f(WT ∧τ )] where τ stands for the first time the
process W touches the boundary of the wedge D. Applying the methodology for the stopped
process recursively one obtains an algorithm for the reflected process X. We then extend these
methods to the simulation of the reflection on D of the process Z with dZt = b(Zt)dt+ dWt for
some drift coefficient b.

The reflected Brownian motion and more generally reflected processes have applications in
finance (for example, in stochastic models where the process, which can model an interest rates,
is constrained to be non-negative [Ha09] or has other constraints like barriers such as in [IKP13]);
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in queueing models [GNR86], etc. Considering the particular case of a wedge may open the way
to new simulation algorithms for reflected processes adapted to non-smooth domains with corner
points.

These results have been published as the following article: Pierre Bras and Arturo Kohatsu-
Higa. Simulation of reflected Brownian motion on two dimensional wedges. Stochastic Processes
and their Applications, 156:349–378, 2023.
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Chapter 2
Convergence of Langevin-Simulated
Annealing algorithms with multiplicative
noise for the L1-Wasserstein distance

The results presented in this chapter have been accepted for publication in Math-
ematics of Computation as a joint work with Gilles Pagès. An arXiv preprint is
available [BP21].

Abstract

We study the convergence of Langevin-Simulated Annealing type algorithms with
multiplicative noise, i.e. for V : Rd → R a potential function to minimize, we
consider the stochastic differential equation dYt = −σσ⊤∇V (Yt)dt+a(t)σ(Yt)dWt +
a(t)2Υ(Yt)dt, where (Wt) is a Brownian motion, where σ : Rd → Md(R) is an
adaptive (multiplicative) noise, where a : R+ → R+ is a function decreasing to 0 and
where Υ is a correction term. This setting can be applied to optimization problems
arising in Machine Learning; allowing σ to depend on the position brings faster
convergence in comparison with the classical Langevin equation dYt = −∇V (Yt)dt+
σdWt. The case where σ is a constant matrix has been extensively studied however
little attention has been paid to the general case. We prove the convergence for
the L1-Wasserstein distance of Yt and of the associated Euler scheme Ȳt to some
measure ν⋆ which is supported by argmin(V ) and give rates of convergence to the
instantaneous Gibbs measure νa(t) of density ∝ exp(−2V (x)/a(t)2). To do so, we
first consider the case where a is a piecewise constant function. We find again
the classical schedule a(t) = A log−1/2(t). We then prove the convergence for the
general case by giving bounds for the Wasserstein distance to the stepwise constant
case using ergodicity properties.

Keywords– Stochastic Optimization, Langevin Equation, Simulated Annealing,
Neural Networks.
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2.1 Introduction
Langevin-based algorithms are used to solve optimization problems in high dimension and have
gained much interest in relation with Machine Learning [WT11, MCF15, LCCC16, DM17]. The
Langevin equation is a Stochastic Differential Equation (SDE) which consists in a gradient
descent with noise. More precisely, let V : Rd → R+ be a coercive potential function, then the
associated Langevin equation reads

dXt = −∇V (Xt)dt+ σdWt, t ≥ 0,

where (Wt) is a d-dimensional Brownian motion and where σ > 0. Under standard assumptions,
the invariant measure of this SDE is the Gibbs measure of density proportional to e−2V (x)/σ2 and
for small enough σ, this measure concentrates around argmin(V ), see [Dal17] and Chapter 4.
Adding a small noise to the gradient descent allows to explore the space and to escape from traps
such as local minima or saddle points appearing in non-convex optimization problems [Laz92,
DPG+14, HRSS21]. This noise may also be interpreted as coming from the approximation
of the gradient in stochastic gradient descent algorithms. Such methods have been recently
brought up to light again with Stochastic Gradient Langevin Dynamics (SGLD) algorithms
[WT11, LCCC16], especially for the deep learning and the calibration of large artificial neural
networks, which is a high-dimensional non-convex optimization problem.

The Langevin-simulated annealing SDE is the Langevin equation where the noise parameter
is slowly decreasing to 0, namely

dXt = −∇V (Xt)dt+ a(t)σdWt, t ≥ 0, (2.1.1)

where a : R+ → R+ is non-increasing and converges to 0. The idea is that the "instantaneous"
invariant measure νa(t)σ which is the Gibbs measure of density ∝ exp(−2V (x)/(a(t)2σ2)) con-
verges itself to argmin(V ). This method indeed shares similarities with the original simulated
annealing algorithm [vLA87], which builds a Markov chain from the Gibbs measure using the
Metropolis-Hastings algorithm and where the parameter σ, interpreted as a temperature, slowly
decreases to zero over the iterations.

In [CHS87, Roy89] is shown that choosing a(t) = A log−1/2(t) for some A > 0 in (2.1.1)
guarantees the convergence of Xt to ν⋆ defined as the limit measure of (νa(t)) as t → ∞ and
which is supported by argmin(V ). [Mic92] proves again the convergence of the SDE using free
energies inequalities. These studies deeply rely on some Poincaré and log-Sobolev inequalities
and require the following assumptions on the potential function:

lim
|x|→∞

V (x) = lim
|x|→∞

|∇V (x)| = ∞ and ∀x ∈ Rd, ∆V (x) ≤ C + |∇V (x)|2.

[Zit08] proves that the convergence still holds under weaker assumptions, in particular where the
gradient of the potential is not coercive, using weak Poincaré inequalities. In [GM91] is proved
the convergence of the associated stochastic gradient descent algorithm.

All these results are established in the so-called additive case, i.e. they highly rely on the fact
that σ is constant, whereas little attention has been paid to the multiplicative case, i.e. where
σ : Rd → Md(R) is not constant and depends on Xt. Allowing σ to be adaptive and to depend on
the position highly extends the range of applications of Langevin algorithms and such adaptive
algorithms are already widely used by practitioners and prove to be faster than non-adaptive
algorithms and competitive with standard non-Langevin algorithms or even faster. See Section
2.3.2 where various specifications for σ(x) that can be found in the Stochastic Optimization
literature are briefly presented, and Section 2.9 where we show results of simulations of the
training of an artificial neural network for various choices of σ. However, to our knowledge,

32



2.1. Introduction

a general result of convergence for Langevin algorithms with multiplicative noise is yet to be
proved. [PP23, Proposition 2.6] gives a general formula on b and σ so that the associated
Gibbs measure is still the invariant measure of the SDE dXt = b(Xt)dt + σ(Xt)dWt; a simple
example of acceleration of convergence using non-constant σ is then given in [PP23, Section
2.4]. More generally, [MCF15] gives a characterization of any SGMCMC (Stochastic Gradient
Markov Chain Monte Carlo) algorithm with multiplicative noise and with the corresponding
Gibbs measure as a target. In practice, the matrix σ is often chosen so that σσ⊤ ≃ (∇2V )−1 but
approximations are needed because of the high dimensions of the matrix (e.g. only considering
diagonal matrices). Still, our results hold also for non-diagonal σ, which opens the way to
algorithms with such σ.

In this paper, we consider the following SDE:

dYt = −(σσ⊤∇V )(Yt)dt+ a(t)σ(Yt)dWt +

a2(t)

 d∑
j=1

∂j(σσ⊤)(Yt)ij


1≤i≤d

 dt (2.1.2)

a(t) = A√
log(t)

, (2.1.3)

where the expression of the drift comes from [PP23, Proposition 2.6] and where the second drift
term is interpreted as a correction term so that νa(t) is still the "instantaneous" invariant measure
and satisfying −ba(t)ν + (1/2)∇ · (a(t)σν) = 0 for every t, where ba denotes the associated drift.
This last term boils down to 0 if σ is constant. The aim of this paper is to prove the convergence
for the L1-Wasserstein distance of the law of Yt to ν⋆ in the setting adopted in [PP23], assuming
in particular the convex uniformity of the potential outside a compact set and the ellipticity and
the boundedness of σ. We also prove the convergence of the corresponding Euler-Maruyama
scheme with decreasing steps and with noisy measurements of the gradient arising from mini-
batch sampling. In this paper we use Markov models along with stochastic calculus to study
the convergence of adaptive Langevin algorithms as a first theoretical study, however in practice
these algorithms often include history/momentum effects with time-exponential average, and do
not solely depend on Yt as assumed in (2.1.2). We refer to Section 5.2 for precise definitions of
some popular gradient algorithms.

Considering the convex condition outside a compact set is in fact quite different from the
convex setting and turns out to be more demanding. This setting often appears in optimization
problems (see Section 2.3.1), where a characteristic set - the compact set - contains the interesting
features of the model with traps such as local minima, and where outside of this set the loss
function is coercive and convex. We give classic examples of neural networks where this setting
applies.

We adopt a domino strategy like in [PP23], inspired by proofs of weak error expansion of
discretization schemes of diffusion processes [TT90, BT96]. In [PP23] is proved the convergence
of the Euler-Maruyama scheme X̄ with decreasing steps (γn) of an ergodic and homogeneous
SDE X with non constant σ, to the invariant measure of X; the additive case was tackled in
[DM17, BDMS19, DM19] and in [MMS20] for the constant step case. It then appears that the
multiplicative case is more demanding than the additive case. For a function f : Rd → R, the
domino strategy consists in a step-by-step decomposition of the weak error to produce an upper
bound as follows:

|Ef(X̄x
Γn

) − Ef(Xx
Γn

)| = |P̄γ1 ◦ · · · ◦ P̄γnf(x) − PΓnf(x)|

≤
n∑

k=1

∣∣∣P̄γ1 ◦ · · · ◦ P̄γk−1 ◦ (P̄γk
− Pγk

) ◦ PΓn−Γk
f(x)

∣∣∣ , (2.1.4)
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where P and P̄ are the transition kernels associated to X and X̄ respectively and where Γn =
γ1 + · · · + γn. Then two terms appear: first the "error" term, for large k, where the error is
controlled by classic weak and strong bounds on the error of an Euler-Maruyama scheme, and
the "ergodic" term, for small k, where the ergodicity of X is used.

However, we cannot directly apply this strategy of proof to our problem since we consider
a non homogeneous SDE Y , so we proceed as follows: we consider instead the SDE X where
the coefficient a(t) is non-increasing and piecewise constant and where the successive plateaux
[Tn−1, Tn) of a are increasingly larger time intervals. On each plateau we obtain a homogeneous
and uniformly elliptic SDE with an invariant Gibbs distribution νan where an is the constant
value of a on [Tn−1, Tn), to which a domino strategy can be applied. This ellipticity fades with
time since an goes to 0 and we need to carefully control its impact on the way the diffusion
X gets close to its "instantaneous" invariant Gibbs distribution νan . To this end we have to
refine several one step weak error results from [PP23] and ergodic bounds from [Wan20], which
extends the ergodic contraction bounds from [Ebe16] to the multiplicative case. Doing so we
derive by induction an upper-bound for the distance between Xt and ν⋆ after each plateau and
prove that a coefficient (a(t)) of order log−1/2(t) is a sufficient and generally necessary condition
for convergence. Using this result, we then prove the convergence of Yt and its Euler-Maruyama
scheme Ȳt by bounding the distance between Xt and Yt and Xt and Ȳt. We need to split
the problem into the cases where (a(t)) is piecewise constant and where (a(t)) is continuously
decaying and then use careful weak error comparisons to prove the convergence in the second
case, as we cannot use ergodic properties for the non-homogeneous processes at first sight. We
also consider the "Stochastic Gradient case" i.e. where the true gradient cannot be computed
exactly and where a noise, which is a sequence of increments of a martingale, is added to the
gradient. This case was treated in [GM91] in the additive setting. The process X is used as a
tool for the proof of the convergence of Yt, however the convergence of Xt to ν⋆ also has its own
interest since the "plateau" method is also used by practitioners.

We also establish a convergence rate which is somehow limited by W1(νa(t), ν
⋆), which is of

order a(t) under the assumption that argmin(V ) is finite and that ∇2V is positive definite at
every element of argmin(V ), thus giving the same convergence rate as in the additive case and
with the same rate for the annealing schedule (a(t)), see Remarks 2.4.7 and 2.5.2. If argmin(V )
is still finite but if ∇2V is not positive definite at every element of argmin(V ), but if we assume
instead that all the elements of argmin(V ) are strictly polynomial minima, then the rate is of
order a(t)δ for some δ ∈ (0, 1), see Chapter 4. We pay particular attention to the non-definite
case, since it was pointed out in [SBL16, SEU+17] that for some optimization problems arising
in Machine Learning, the Hessian of the loss function at the end of the training tends to be
extremely singular. Indeed, as the dimension of the parameter which is used to minimize the
loss function is large and as the neural network can be over-parametrized, many eigenvalues
of the Hessian matrix are close to zero. However, this subject is still new in the Stochastic
Optimization literature and needs more theoretical background.

Still we give sharper bounds on the rate of convergence of the L1-Wasserstein distance
between X or Y and νa(t) as in practice the optimization procedure stops at some (large) t and
the target distribution is actually νa(t) instead of ν⋆.

In a next paper, we shall prove the convergence in total variation distance. In this last case,
the domino strategy is more complex to implement and requires regularization lemmas, as in
[PP23] which studies the convergence for both distances.

The article is organized as follows. In Section 2.2 we first give the setting and assumptions of
the problem we consider. This setting is taken from [PP23]. We then state our main results of
convergence as well as convergence rates. In Section 2.3 we show how this setting applies to some
classic optimization problems arising in Machine Learning and present several general choices
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for σ that are used in practice. In Section 2.4 we consider the case where the coefficient a is
constant and give convergence rates to the invariant measure taking into account the ellipticity
parameter. We also give preliminary lemmas for the rate of convergence of νan to ν⋆. In Section
2.5 we prove the convergence of the solution of the SDE where a is piecewise constant, by
"plateaux". Using the dependence in a of the rate of convergence to the invariant measure in the
ergodic case we prove the convergence to argmin(V ). In Section 2.6 we prove the convergence
of the SDE in the case where a is not by plateau but is continuously decreasing. This is done by
bounding the Wasserstein distance with the "plateau" case and revisiting the lemmas for strong
and weak errors from [PP23]. In Section 2.7 and Section 2.8 we also prove the convergence for
the corresponding Euler-Maruyama schemes. The proofs actually follow the same strategy as
the previous one. In Section 2.9 we present experiments of training of neural networks using
various specifications for σ; the algorithms with multiplicative σ prove to be faster than the
algorithm with constant σ.

Notations
In addition to the notations given from page 1, we use the notation C to denote a positive

real constant, which may change from line to line. The constant C depends on the parameters
of the problem: the coefficients of the SDE, the choice of A in a(t) = A log−1/2(t), the upper
bound γ̄ on the decreasing steps, but C does not depend on t nor x.

2.2 Assumptions and main results

2.2.1 Assumptions

Let V : Rd → (0,+∞) be a C2 potential function such that V is coercive and

(x 7→ |x|2e−2V (x)/A2) ∈ L1(Rd) for some A > 0. (2.2.1)

Then V admits a minimum on Rd. Moreover, let us assume that

V ⋆ := min
Rd

V > 0, argmin(V ) = {x⋆
1, . . . , x

⋆
m⋆}, ∀ i = 1, . . . ,m⋆, ∇2V (x⋆

i ) > 0,

(2.2.2, HV 1)

i.e. minRd V is attained at a finite number m⋆ of points and in each point the Hessian matrix is
positive definite. We then define for a ∈ (0, A] the Gibbs measure νa of density :

νa(dx) = Zae
−2(V (x)−V ⋆)/a2

dx, Za =
(∫

Rd
e−2(V (x)−V ⋆)/a2

dx

)−1
(2.2.3)

We use the previous normalization for νa and Za however we emphasize that computing the den-
sity νa(x) does not require the knowledge of V ⋆ since we could write νa(dx) = Z̄a exp(−2V (x)/a2)dx
with the appropriate normalization constant Z̄a. Following [Hwa80, Theorem 2.1], the measure
νa converges weakly to ν⋆ as a → 0, where ν⋆ is the weighted sum of Dirac measures:

ν⋆ =

m⋆∑
j=1

(
det ∇2V (x⋆

j )
)−1/2

−1
m⋆∑
i=1

(
det ∇2V (x⋆

i )
)−1/2

δx⋆
i
. (2.2.4)

We consider the following Langevin SDE in Rd:

Y x0
0 = x0 ∈ Rd, (2.2.5)
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dY x0
t = ba(t)(Y x0

t )dt+ a(t)σ(Y x0
t )dWt,

where, for a ≥ 0, the drift ba is given by

ba(x) = −(σσ⊤∇V )(x) + a2

 d∑
j=1

∂j(σσ⊤)ij(x)


1≤i≤d

=: −(σσ⊤∇V )(x) + a2Υ(x), (2.2.6)

where W is a standard Rd-valued Brownian motion defined on some rich enough probability
space (Ω,A,P), where σ : Rd → Md(R) is C2 and

a(t) = A√
log(t+ e)

(2.2.7)

where A is defined in (2.2.1) and with log(e) = 1. This equation corresponds to a gradient
descent on the potential V with preconditioning σ and multiplicative noise; the second term in
the drift (2.2.6) is a correction term (see [PP23, Proposition 2.6]) which is zero for constant σ.

We make the following assumptions on the potential V :

lim
|x|→+∞

V (x) = +∞, |∇V |2 ≤ CV and sup
x∈Rd

||∇2V (x)|| < +∞, (2.2.8, HV 2)

which implies in particular that V has at most a quadratic growth. Let us also assume that

σ is bounded and Lipschitz continuous, ∇2σ is bounded, ∇(σσ⊤)∇V is bounded, (2.2.9, Hσ)

and that σ is uniformly elliptic, i.e.

∃
¯
σ0 > 0, ∀x ∈ Rd, (σσ⊤)(x) ≥

¯
σ2

0Id. (2.2.10)

Assumptions (2.2.8, HV 2) and (2.2.9, Hσ) imply that Υ is also bounded and Lipschitz continuous
and that ba is Lipschitz continuous uniformly in a ∈ [0, A]. Let the minimal constant [b]Lip be
such that:

∀a ∈ [0, A], ba is [b]Lip-Lipschitz continuous.

We make the non-uniform dissipative (or convexity) assumption outside of a compact set:
there exists α0 > 0 and R0 > 0 such that

∀x, y ∈ B(0, R0)c,
〈(
σσ⊤∇V

)
(x) −

(
σσ⊤∇V

)
(y), x− y

〉
≥ α0|x− y|2. (2.2.11, Hcf )

Taking y ∈ B(0, R0)c fixed, letting |x| → ∞ and using the boundedness of σ, (2.2.11, Hcf )
implies that |∇V | is coercive. Using (2.2.8, HV 2) and the boundedness of σ, there exists C > 0
(depending on A) such that:

∀a ∈ [0, A], 1 + |ba(x)| ≤ CV 1/2(x).

Let (γn)n≥1 be a non-increasing sequence of varying positive steps. We define Γn := γ1 +
· · · + γn and for t ≥ 0:

N(t) := min{k ≥ 0 : Γk+1 > t} = max{k ≥ 0 : Γk ≤ t}.

We make the classical assumptions on the step sequence, namely

γn ↓ 0,
∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞ (2.2.12, Hγ1)
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and we also assume that

ϖ := lim sup
n→∞

γn − γn+1
γ2

n+1
< ∞. (2.2.13, Hγ2)

For example, if γn = γ1/n
α with α ∈ (1/2, 1) then ϖ = 0; if γn = γ1/n then ϖ = γ1.

In Stochastic Gradient algorithms, the true gradient is estimated using mini-batches of ran-
domly selected training data, which introduces noise in the gradient estimates. This noise is
modelled by a zero-mean random vector ζ, which law only depends on the current position.
That is, let us consider a family of random fields (ζn(x))x∈Rd,n∈N such that for every n ∈ N,
(ω, x) ∈ Ω × Rd 7→ ζn(x, ω) is measurable and for all x ∈ Rd, the law of ζn(x) only depends on
x and (ζn(x))n∈N is an i.i.d. sequence independent of W . We make the following assumptions:

∀x ∈ Rd, ∀p ≥ 1, E[ζ1(x)] = 0 and E[|ζ1(x)|p] ≤ CpV
p/2(x). (2.2.14)

We then consider the Euler-Maruyama scheme with decreasing steps associated to (Yt):

Ȳ x0
0 = x0, Ȳ x0

Γn+1
= ȲΓn + γn+1

(
ba(Γn)(Ȳ x0

Γn
) + ζn+1(Ȳ x0

Γn
)
)

(2.2.15)

+ a(Γn)σ(Ȳ x0
Γn

)(WΓn+1 −WΓn),

We extend Ȳ x0
· on R+ by considering its genuine continuous interpolation:

∀t ∈ [Γn,Γn+1), Ȳ x0
t = Ȳ x0

Γn
+ (t− Γn)

(
ba(Γn)(Ȳ x0

Γn
) + ζn+1(Ȳ x0

Γn
)
)

(2.2.16)

+ a(Γn)σ(Ȳ x0
Γn

)(Wt −WΓn).

Assumption (2.2.11, Hcf ) along with the fact that ba is Lipschitz-continuous guarantee the no-
explosion of the above processes and numerical schemes [Tal90, LP02], see also Lemmas 2.6.1
and 2.7.1.

2.2.2 Main results

We now state our main results.

Theorem 2.2.1. (a) Let Y be defined in (2.2.5). Assume (2.2.2, HV 1), (2.2.8, HV 2), (2.2.9, Hσ),
(2.2.10) and (2.2.11, Hcf ). If A is large enough, then for every x0 ∈ Rd,

W1([Y x0
t ], ν⋆) −→

t→∞
0.

More precisely, for every t > 0:

W1([Y x0
t ], ν⋆) ≤ C max(1 + |x0|, V (x0))a(t)

and for every α ∈ (0, 1) we have

W1([Y x0
t ], νa(t)) ≤ C max(1 + |x0|, V (x0))t−α.

(b) Let Ȳ be defined in (2.2.15). Assume (2.2.2, HV 1), (2.2.8, HV 2), (2.2.9, Hσ), (2.2.10)
and (2.2.11, Hcf ). Assume furthermore (2.2.12, Hγ1) and (2.2.13, Hγ2), that V is C3 with
∥∇3V ∥ ≤ CV 1/2 and that σ is C3 with ∥∇3(σσ⊤)∥ ≤ CV 1/2. If A is large enough then for
every x0 ∈ Rd,

W1([Ȳ x0
t ], ν⋆) −→

t→∞
0.
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More precisely, for every t > 0:

W1([Ȳ x0
t ], ν⋆) ≤ C max(1 + |x0|, V 2(x0))a(t),

and for every α ∈ (0, 1) we have

W1([Ȳ x0
t ], νa(t)) ≤ C max(1 + |x0|, V 2(x0))t−α.

Remark 2.2.2. In particular, if argminV = {x⋆} is reduced to a point, we can rewrite the
conclusions of Theorem 2.2.1 as ∥Y x0

t − x⋆∥1 → 0 and ∥Ȳ x0
t − x⋆∥1 → 0 respectively and so on.

2.2.3 The degenerate case

In this subsection we consider the case where some of the ∇2V (x⋆
i )’s may be not definite positive

but where the x⋆
i ’s are strictly polynomial minima, i.e. is V (x) − V (x⋆

i ) is bounded below in a
neighbourhood of x⋆

i by a non-negative polynomial function null only in x⋆
i . This case can be

treated in a similar way using the change of variable given in Chapter 4.
First, let us restate the results from Theorem 4.3.3. To simplify, let us assume that argmin(V )

is reduced to a point.

Theorem 2.2.3. Assume that V is C2p with p ≥ 2, is coercive, that argmin(V ) = {x⋆}, that
e−AV ∈ L1(Rd) for some A > 0 and that x⋆ is a strictly polynomial minimum of order 2p i.e. p
is the smallest integer such that

∃r > 0, ∀h ∈ B(0, r) \ {0},
2p∑

k=2

1
k!∇

kV (x⋆) · h⊗k > 0.

Assume also the technical hypothesis (4.3.4) if p ≥ 5. Then there exist B ∈ Od(R), α1, . . . , αd ∈
{1/2, . . . , 1/(2p)} and a polynomial function g : Rd → R which is not constant in any of its
variables such that

∀h ∈ Rd,
1
s

[V (x⋆ +B · (sα1h1, . . . , s
αdhd)) − V (x⋆)] −→

s→0
g(h).

Moreover assume that g is coercive. Then if Zs ∼ ν√
2s,(

(B−1 · (Zs − x⋆))1
sα1

, · · · , (B−1 · (Zs − x⋆))d

sαd

)
L−→ Z as s → 0,

where Z has density proportional to exp(−g).

Theorem 2.2.4. Let us make the same assumptions as in Theorem 2.2.3 and assume that
V ⋆ > 0. Assume furthermore (2.2.8, HV 2), (2.2.9, Hσ), (2.2.10) and (2.2.11, Hcf ). Assume
furthermore (2.2.12, Hγ1) and (2.2.13, Hγ2), that V is C3 with ∥∇3V ∥ ≤ CV 1/2 and that σ is
C3 with ∥∇3(σσ⊤)∥ ≤ CV 1/2. Let us denote αmin := min(α1, . . . , αd). Then for every α ∈ (0, 1)
we have

W1([Y x0
t ], νa(t)) ≤ C max(1 + |x0|, V (x0))t−α,

W1([Ȳ x0
t ], νa(t)) ≤ C max(1 + |x0|, V 2(x0))t−α,

W1([Y x0
t ], ν⋆) ≤ C max(1 + |x0|, V (x0))a(t)2αmin ,

W1([Ȳ x0
t ], ν⋆) ≤ C max(1 + |x0|, V 2(x0))a(t)2αmin .

The proof is given in the Supplementary Material.
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2.3 Application to optimization problems

2.3.1 Potential function associated to a Neural Regression Problem

The setting described in Section 2.2 can first be applied to convex optimization problems where
the potential function V has a quadratic growth as |x| → ∞. Classical examples are least-squares
regression and logistic regression with quadratic regularization, that is:

min
x∈Rd

1
M

M∑
i=1

log(1 + e−vi⟨ui,x⟩) + λ

2 |x|2,

where vi ∈ {−1,+1} and ui ∈ Rd are the data samples associated with a binary classification
problem and where λ > 0 is the regularization parameter.

We now consider a scalar regression problem with a fully connected neural network with
quadratic regularization. Let φ : R → R be the sigmoid function. To simplify the proofs, we
may consider instead a smooth function approximating the sigmoid function such that φ′ has
compact support. Let K ∈ N be the number of layers and for k = 1, . . ., K, let dk ∈ N be
the size of the kth layer with dK = 1. For u ∈ Rdk−1 and for θ ∈ Mdk,dk−1(R), we define
φθ(u) := [φ([θ · u]i)]1≤i≤dk

. The output of the neural network is

ψ : Rd1,d0 × · · · × RdK ,dK−1 × Rd0 → R
ψ(θ1, . . . , θK , u) = ψ(θ, u) = φθK

◦ . . . ◦ φθ1(u).

Let ui ∈ Rd0 and vi ∈ R be the data samples for 1 ≤ i ≤ M . The objective is

minimize
θ1,...,θK

V (θ) := 1
2M

M∑
i=1

(ψ(θ1, . . . , θK , ui) − vi)2 + λ

2 |θ|2,

where θ = (θ1, . . . , θK) and where λ > 0.

Proposition 2.3.1. Consider a neural network with a single layer : ψ(θ, u) = φ(⟨θ, u⟩). Assume
that the data u and v are bounded, that u admits a continuous density and φ′ has bounded support
in R. Then V satisfies (2.2.8, HV 2) and for some R0, α0 > 0,

∀x, y ∈ B(0, R0)c, ⟨∇V (x) − ∇V (y), x− y⟩ ≥ α0|x− y|2 (2.3.1)

Proof. Let us define the measure Q on Rd0 ×R associated to the data, i.e. Q = (1/M)∑M
i=1 δui,vi .

Note that φ, φ′ and φ′′ are bounded. The function ψ is bounded so

2V (θ) =
∫

(φ(⟨θ, u⟩) − v)2Q(du, dv) + λ|θ|2 ∼ λ|θ|2 as |θ| → ∞,

so V is coercive. Moreover, we have

∇V =
∫
uφ′(⟨θ, u⟩)(φ(⟨θ, u⟩) − v)Q(du, dv) + λθ

so ∇V (θ) ∼ λθ as |θ| → ∞ and |∇V |2 ≤ CV . Then, let us assume that the support of
φ′ is included in [−R,R], that u has its values in B(0, R) and v in [−R,R]. Then the set
{u ∈ B(0, R), |⟨θ, u⟩| < R} has Lebesgue measure no larger than C/|θ| so∥∥∥∥∇2

∫
(φ(⟨θ, u⟩) − v)2Q(du, dv)

∥∥∥∥ ≤ C/|θ|,

so outside the compact set {|θ| ≤ 2C/λ}, we have ∥∇2V ∥ ≥ λ/2 which guarantees (2.3.1).
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This proposition can be extended to the case where φ is of sigmoid type, with fast de-
cay of φ′ as ±∞. However, we cannot directly extend this proposition to multi-layers neural
networks. Nevertheless, if we consider that the training stops if a parameter becomes too
large and if we replace ψ(θ, u) by ψ(ϕ(θ), u) where ϕ : R → R is a smooth approximation of
x 7→ min(x,R)1x≥0 + max(x,−R)1x<0 where R > 0 is large and where ϕ is applied in order
to avoid over-fitting coordinate by coordinate then the resulting potential V with quadratic
regularization satisfies (2.2.8, HV 2) and (2.3.1).

2.3.2 Practitioner’s corner: choices for σ

In this section we briefly present general choices for the non-constant matrix σ that are often
used in the Stochastic Optimization and Machine Learning literature.

[WT11] introduced the Stochastic Gradient Langevin Dynamics (SGLD) with constant pre-
conditioner matrix σ. [DdVB15] adapted the well-known Newton method, which consists in
considering σσ⊤ = (∇2V )−1, to SGLD. Since the size of the Hessian matrix may be too large in
practice, because inverting it is computationally costly and because the Hessian matrix may not
be positive in every point, it is suggested to consider instead |diag((∇2V ))2|−1/2. However, com-
puting high-order derivatives may be cumbersome; [SBCR16] adapts the quasi-Newton method
[NW06] to approximate the Hessian matrix to SGLD, yielding the Stochastic Quasi-Newton
Langevin algorithm.

[DHS11] and [LCCC16] give algorithms where the choice for σ is σ ≃ diag((λ + |∇V |)−1),
where λ > 0 guarantees numerical stability. The idea of using geometry has been explored in
[PT13], where σ−2 defines the local curvature of a Riemannian manifold, giving the Stochas-
tic Gradient Riemaniann Langevin Dynamics algorithm where σ is equal to I−1/2

x where Ix is
the Fisher information matrix, or to some other choices (see [PT13, Table 1]) as Ix may be
intractable. [MCF15] extends the previous algorithm to Hamiltonian Monte Carlo methods,
where a momentum variable is added in order to take into account the "inertia" of the trajec-
tory [Nea96, DMS20], yielding the Stochastic Gradient Riemannian Hamiltonian Monte Carlo
method.

Allowing the matrix σ to depend on the position yields a faster convergence; we refer to the
previous references where various simulations confirm that these new methods greatly improve
classical stochastic gradients algorithms. In particular, we refer to the simulations [SBCR16,
Figure 2], [PT13, Figure 2] and [MCF15, Figure 3] where the different methods based on mul-
tiplicative noise are compared.

In popular choices for σ like RMSprop [LCCC16] and Adam [KB15], the order of growth of
σ is roughly

σ(x) ≃ diag
(
η1(η2 + U(x))−1/4

)
,

with η1, η2 > 0 and U(x) = ∇V (x)∗2 where ∗ denotes the component-wise product. Then σ is
bounded and we have ∇U = 2∇V ∗ ∇2V and

∇σ = −(η1/2)
(
η2 + U

)−5/4 ∗ ∇V ∗ ∇2V,

where the shapes of the tensors are broadcast with ∗ if the orders are different. We obtain then
that ∇σ is bounded. Moreover

∇(σσ)⊤ · ∇V = −η1
(
(η2 + U)−3/2 ∗ ∇V ∗ ∇2V

)
· ∇V

is also bounded. Moreover

∇2σ =
(
(5/4)η1(η2 + U)−9/4 ∗ ∇V ∗ ∇2V

)
⊗2
(
∇V ∗ ∇2V

)
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− (1/2)η1(η2 + U)−5/4(∇2V ⊗22 + ∇V ∗ ∇3V )

with the rule a ⊗2 b = (aijbik)ijk, so that ∇2σ is also bounded. Thus the assumptions on the
growth of σ and on its derivatives (2.2.9, Hσ) are satisfied.

In practice, the annealing schedule (a(t)) converges slowly to 0 and practitioners often use
adaptive Langevin algorithms with a being constant or decreasing on a few plateau values
instead. At the end of the optimization procedure, the coefficient a(t) may thus not be zero,
yielding a convergence to the Gibbs measure νa(t), which still gives a good approximation of
argmin(V ) if a(t) is small enough and the theoretical bounds we give for the "plateau" case (see
Theorems 2.5.1 and 2.8.1) can still be applied for fixed t ∈ R. Moreover, adding small Langevin
noise can improve the learning procedure in comparison with non-Langevin gradient descent
algorithms, even if a is taken constant [LCCC16].

2.4 Langevin equation with constant time coefficient

In this section, we consider the following Rd-valued homogeneous SDE:

Xx
0 = x ∈ Rd, dXx

t = ba(Xx
t )dt+ aσ(Xx

t )dWt, (2.4.1)

with a ∈ (0, A] and where ba is defined in (2.2.6). The drift is specified in such a way that
the Gibbs measure νa defined in (2.2.3) is the unique invariant distribution of (Xx

t ) (see [PP23,
Proposition 2.6]).

2.4.1 Exponential contraction property

We now prove contraction properties of the SDE (2.4.1) under the uniform convex setting on the
whole Rd or outside a compact set (2.2.11, Hcf ). If the uniform dissipative assumption holds on
Rd then we have the following contraction property.

Proposition 2.4.1. Let Z be the solution of

Zx
0 = x ∈ Rd, dZx

t = bZ(Zx
t )dt+ σZ(Zx

t )dWt,

where the coefficients bZ and σZ are (globally) Lipschitz continuous. Assume the uniform con-
vexity i.e. there exists α > 0 such that

∀x, y ∈ Rd, ⟨bZ(x) − bZ(y), x− y⟩ + 1
2 ||σZ(x) − σZ(y)||2 ≤ −α|x− y|2. (2.4.2)

Then:
∀x, y ∈ Rd, W1 ([Zx

t ] , [Zy
t ]) ≤ C|x− y|e−αt.

Proof. By the Itō lemma, t 7→ e2αt |Zx
t − Zy

t |2 is a super-martingale, so

E |Zx
t − Zy

t |2 ≤ e−2αt|x− y|2,

which yields the desired result.

This proposition can be applied to X under the assumption

∀x, y ∈ Rd, ⟨ba(x) − ba(y), x− y⟩ + a2

2 ||σ(x) − σ(y)||2 ≤ −α|x− y|2,
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which may be hard to check because of the dependence in a. In [PP23, Corollary 2.5] is
proved that this contraction property is still true under uniform convexity outside a compact
set (2.2.11, Hcf ) using bounds from [Wan20]. [Wan20, Theorem 2.6] relies on explicit couplings
of [Xx

t ] and [Xy
t ] by reflection. Such reflection couplings were introduced in [Ebe16] for the

additive case σ = Id and were extended to the multiplicative case in [Wan20]. In the following
theorem we make explicit the dependence in a.

Theorem 2.4.2. Under the assumption (2.2.11, Hcf ),

(a) For every x, y ∈ Rd,

W1 ([Xx
t ] , [Xy

t ]) ≤ CeC1/a2 |x− y|e−ρat, ρa := e−C2/a2 (2.4.3, Pcf )

where the constants C, C1, C2 do not depend on a.

(b) For every x ∈ Rd,

W1 ([Xx
t ] , νa) ≤ CeC1/a2

e−ρatW1(δx, νa). (2.4.4)

Proof. (a) We refine the proof of [Wan20, Theorem 2.6] to enhance the dependence of the
constants in the parameter a. First we remark as in [PP23, Section 4.5] in the proof of Corollary
2.5, that Assumption (2.17) of [Wan20], stating that there exist constants K1, K2 and r0 > 0
such that, with

¯
σ :=

√
σσ⊤ −

¯
σ2

0Id,

a2

2 ∥
¯
σ(x) −

¯
σ(y)∥2 − |a2(σ(x) − σ(y))⊤(x− y)|2

2|x− y|2
+ ⟨ba(x) − ba(y), x− y⟩

≤
(
(K1 +K2)1|x−y|≤r0 −K2

)
|x− y|2, x, y ∈ Rd, (2.4.5)

is true, since a ∈ (0, A] and σσ⊤ bounded, as soon as there exist positive constants K̃1, K̃2 and
R1 such that

∀x, y ∈ Rd, ⟨ba(x) − ba(y), x− y⟩ ≤ K̃11|x−y|≤R1 − K̃2|x− y|2,

which is, up to changing the positive constants, equivalent to

∀x, y ∈ Rd, ⟨b0(x) − b0(y), x− y⟩ ≤ K̃11|x−y|≤R1 − K̃2|x− y|2,

which is in turn equivalent to (2.2.11, Hcf ). Then we repeat the argument leading to (4.3) in
[Wan20]. We reformulate the assumption of ellipticity (2.2.10) as:

dXt = ba(Xt)dt+ a(
¯
σ(Xt)dW 1

t +
¯
σ0dW

2
t ),

where
¯
σ ≥ 0 and where (W 1

t ) and (W 2
t ) are two independent Brownian motions in Rd (which

can be expressed in terms of W ). For x ̸= y, let Xx be the solution of this SDE with X0 = x
and let Y y solve the following coupled SDE for Y y

0 = y :

dY y
t = ba(Y y

t )dt+ a
¯
σ(Y y

t )dW 1
t + a

¯
σ0

(
dW 2

t − 2⟨Xx
t − Y y

t , dW
2
t ⟩(Xx

t − Y y
t )

|Xx
t − Y y

t |2

)
.

The process Y y is in fact defined by orthogonally symmetrizing the component of the noise in
W 2 w.r.t. Xx

t − Y y
t at every instant t. This SDE has a unique solution up to the coupling time

Tx,y := inf{t ≥ 0 : Xx
t = Y y

t },
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2.4. Langevin equation with constant time coefficient

and for t ≥ Tx,y we set Y y
t = Xx

t . Then Y y has the same distribution as Xy i.e. is a weak
solution of (2.4.1) with starting value y and it follows from (2.4.5) and from the Itō formula
applied to |Xx − Y y| that for every 0 ≤ u ≤ t ≤ Tx,y,

|Xx
t −Y y

t | − |Xx
u−Y y

u | ≤ Mt−Mu +
∫ t

u

(
(K1+K2)1|Xx

s −Y y
s |≤r0 −K2

)
|Xx

s −Y y
s |ds,

where
Mt =

∫ t

0

a⟨2
¯
σ0dW

2
s + (

¯
σ(Xs) −

¯
σ(Y y

s ))dW 1
t , X

x
s − Y y

s ⟩
|Xx

s − Y y
s |

is a true Brownian martingale with bracket process satisfying

⟨M⟩t ≥ 4a2
¯
σ2

0t. (2.4.6)

We now set, still like in the proof of (4.3) in [Wan20],

pt := |Xx
t − Y y

t | and p̄t := εpt + 1 − e−Npt ,

where
N := r0

a2
¯
σ2

0
(K1 +K2) and ε := Ne−Nr0 .

Then we have :

εpt ≤ p̄t ≤ (N + ε)pt, and ∀r ∈ [0, r0), 2N2

r(εeNr +N) ≥ K1 +K2
a2

¯
σ2

0
.

Then using (2.4.6) we derive for all 0 ≤ u ≤ t ≤ Tx,y:

p̄t − p̄u ≤
∫ t

u
(ε+Ne−Nps)dMs

+
∫ t

u
(ε+Ne−Nps)

(
(K1 +K2)1ps≤r0 −K2 − 2N2a2

¯
σ2

0
ps(εeNps +N)

)
psds

≤ M̃t − M̃u −K2

∫ t

u
(ε+Ne−Nps)psds ≤ M̃t − M̃u − εK2

∫ t

u
psds

≤ M̃t − M̃u − εK2
N + ε

∫ t

u
p̄sds.

So that we have
E[p̄t − p̄u] = E[(p̄t − p̄u)1t≤Tx,y ] ≤ − εK2

N + ε

∫ t

u
Ep̄sds,

so that
d

dt
E[p̄t] ≤ − εK2

N + ε
E[p̄t]

and then
Ep̄t ≤ p̄0e

− εK2
N+ε

t.

Noting that p̄0 ≤ (N + ε)|x− y|, we have

Ept ≤ N + ε

ε
|x− y|e− εK2

N+ε
t, .

so that
W1 ([Xx

t ] , [Xy
t ]) ≤ N + ε

ε
|x− y|e− εK2

N+ε
t ≤ CeC1/a2 |x− y|e−e−C2/a2

t.
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(b) As νa is the invariant distribution of the diffusion (2.4.1), using (2.4.3, Pcf ) we have

W1 ([Xx
t ] , νa) =

∫
Rd

W1 ([Xx
t ] , [Xy

t ]) νa(dy) ≤ CeC1/a2
e−ρat

∫
Rd

|x− y|νa(dy)

≤ CeC1/a2
e−ρatW1(δx, νa).

2.4.2 Time schedule and Wasserstein distance between Gibbs measures

For C(T ) > 0 and for β > 0, let us define the time schedule that will be used for the plateau
SDE in the next section:

Tn := C(T )n
1+β, (2.4.7)

and by a slight abuse of notation we define

an := a(Tn) = A√
log(Tn + e)

and ρn := ρan = e−C2/a2
n . (2.4.8)

Lemma 2.4.3. The sequence an = A log−1/2(Tn + e) satisfies

0 ≤ an − an+1 ≍ (n log3/2(n))−1. (2.4.9)

Proof. One straightforwardly checks that

an − an+1 ∼ − d

dn

 A√
log(C(T )n1+β + e)


= A(1 + β)

2 log3/2(C(T )n1+β+e)
(
n+ e/(C(T )nβ)

) ≍ 1
n log3/2(n)

.

We prove the following result that will be useful to study the convergence of the plateau
SDE.

Proposition 2.4.4. Let νa, a ∈ (0, A] be the Gibbs measure defined in (2.2.3). Assume that V
is coercive, that (x 7→ |x|2e−2V (x)/A2) ∈ L1(Rd) and (2.2.2, HV 1). Then for n ∈ N,

W1(νan , νan+1) ≤ C

n log3/2(n)
.

Moreover, for every s, t ∈ [an+1, an], we have

W1(νs, νt) ≤ C

n log3/2(n)
.

The proof of this proposition is given in the Supplementary Material. It relies on the following
lemma.

Lemma 2.4.5. Let µ and ν be two probability distributions on Rd with densities f and g re-
spectively with finite moments of order p. Assume that there exists M ≥ 1 such that f ≤ Mg.
Then

Wp(µ, ν)p ≤ E|X − Y |p − 1
M

E|X − X̃|p,

where X and X̃ ∼ µ, Y ∼ ν and X, X̃ and Y are mutually independent.
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2.5. Plateau case

Proof. We define a coupling on µ and ν inspired from the acceptance rejection sampling as
follows. Let X ∼ µ, Y ∼ ν, U ∼ U([0, 1]) and X, Y , U are independent, and let

X ′ = Y 1{U ≤ f(Y )/(Mg(Y ))} +X1{U > f(Y )/(Mg(Y ))}.

Then adapting the proof of the acceptance rejection method, X ′ ∼ µ and we have:

E|X ′ − Y |p = E|Y −X|p1{U > f(Y )/(Mg(Y ))}

=
∫

(Rd)2
|y − x|p

(∫ 1

0
1{u > f(y)/(Mg(y))}du

)
f(x)g(y)dxdy

=
∫

(Rd)2
|y − x|pf(x)g(y)dxdy − 1

M

∫
(Rd)2

|y − x|pf(x)f(y)dxdy

= E|X − Y |p − 1
M

E|X − X̃|p.

Lemma 2.4.6. We have
W1(νan , ν

⋆) ≤ Can. (2.4.10)

Proof. First let us prove that W1(νa, ν
⋆) → 0 as a → 0. By Proposition 2.4.4 and using that∑

n≥2(n log3/2(n))−1 < ∞,

(νan) is a Cauchy sequence in (L1(Rd),W1) so converges to some limit measure ν̃. But (νan)
also weakly converges to ν̃, so ν̃ = ν⋆. Moreover, W1(νan , ν

⋆) is bounded by the tail of the above
series, which is of order log−1/2(n).

Remark 2.4.7. Considering νa(dx) = Za exp(−2|x|2/a2)dx with V (x) = |x|2 gives

W1(νa, ν
⋆) = E|Za − 0| = (a/2)E|N (0, Id)|

with Za ∼ νa, showing that we cannot get better convergence rates in Lemma 2.4.6 in general.

2.5 Plateau case

We define (Xt) as the solution the following SDE where the coefficients piecewisely depend on
the time; X is then said to be "by plateaux":

Xx0
0 = x0, dXx0

t = bak+1(Xx0
t )dt+ ak+1σ(Xx0

t )dWt, t ∈ [Tk, Tk+1], (2.5.1)

where ba is defined in (2.2.6), (Tn) is defined in (2.4.7) and (an) is defined in (2.4.8). We first
prove the convergence of (Xt) using ergodic properties of the corresponding SDE on each plateau
[Tn, Tn+1]. We note that although the coefficients are not continuous, the process (Xx0

t ) is well
defined as it is the continuous concatenation of the solutions of the equations on the intervals
[Tk, Tk+1]. More generally, we define (Xx,n

t ) as the solution of

Xx,n
0 = x, dXx,n

t = bak+1(Xx,n
t )dt+ ak+1σ(Xx,n

t )dWt, t ∈ [Tk − Tn, Tk+1 − Tn], k ≥ n,

i.e. (Xx,n
t ) has the law of (XTn+t)t≥0 conditionally to XTn = x. We have Xx

t = Xx,0
t .
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Chapter 2. Convergence of Langevin-Simulated Annealing algorithms

Theorem 2.5.1. Let X be defined in (2.5.1). If

A > max
(√

(1 + β−1)C2,
√

(1 + β)C1

)
, (2.5.2)

where C1 and C2 are given in (2.4.3, Pcf ), then for every x0 ∈ Rd:

W1([Xx0
t ], ν⋆) −→

t→∞
0.

More precisely, for t ≥ 0 we have:

(i) W1([Xx0
t ], ν⋆) ≤ Ca(t)(1 + |x0|),

(ii) for all C ′ < C(T ), for all large enough n ≥ n(C ′
(T )),

W1([Xx0
Tn

], νan) ≤ Cn−1+(β+1)C1/A2
e−(C′)1−C2/A2 (β+1)nβ−(β+1)C2/A2

(1 + |x0|),

(iii) W1([Xx0
t ], νa(t)) ≤ C(1 + |x0|)

t(β+1)−1−C1/A2 log3/2(t)
.

Proof. For fixed x ∈ Rd and using Theorem 2.4.2 we have:

W1([Xx,n
Tn+1−Tn

], νan+1) ≤ CeC1/a2
n+1e−ρan+1 (Tn+1−Tn)W1(δx, νan+1).

So integrating x with respect to the law of Xx0
Tn

(and using the existence of the optimal coupling,
see for example [Wan12, Proposition 1.3]) yields:

W1([Xx0
Tn+1

], νan+1) ≤ CeC1/a2
n+1e−ρan+1 (Tn+1−Tn)

(
W1([Xx0

Tn
], νan) + W1(νan , νan+1)

)
. (2.5.3)

Iterating this relation yields

W1([Xx0
Tn+1

], νan+1) ≤ µn+1W1(νan , νan+1) + µn+1µnW1(νan−1 , νan) + · · ·

+ µn+1 · · ·µ1W1(νa0 , νa1) + µn+1 · · ·µ1W1(δx0 , νa0). (2.5.4)

where

µn := CeC1/a2
ne−ρan (Tn−Tn−1) = C(Tn + e)C1/A2

e−(Tn+e)−C2/A2 (Tn−Tn−1)

≤ C(C(T )n
β+1 + e)C1/A2

e−(C(T )nβ+1+e)−C2/A2
C(T )(β+1)(n−1)β

≤ Cn(β+1)C1/A2
e−(C′)1−C2/A2 (β+1)nβ−(β+1)C2/A2

, (2.5.5)

where we have used (2.4.7) and where the last inequality holds for large enough n. Note that
µn is bounded by a sequence in the form of nδ exp(−Lnη) = o(n−ℓ) for every ℓ ≥ 0. Owing to
(2.5.2), we have β − (β + 1)C2/A

2 > 0.
On the other hand, if Z ∼ νa0 then W1(δx0 , νa0) = E|x0 − Z| ≤ |x0| + E|Z|. Plugging this

into (2.5.4) and using that µn → 0 so is bounded and smaller than 1 for n large enough and
then (µn−1 · · ·µk)1≤k≤n−1 is bounded ; using Proposition 2.4.4 and that ∑n(n log3/2(n))−1 < ∞
yields

W1([Xx0
Tn+1

], νan+1) ≤ µn+1W1(νan , νan+1) + Cµn+1µn
(
W1(νan−1 , νan) + · · ·

+ W1(νa0 , νa1)
)

+ Cµn+1µnW1(δx0 , νa0)
≤ µn+1W1(νan , νan+1) + Cµn+1µn + Cµn+1µn(1 + |x0|)
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2.6. Continuously decreasing case

≤ C
µn+1

n log3/2(n)
(1 + |x0|) ≤ Cµn+1an+1(1 + |x0|),

where we used that µn = o(W1(νan , νan+1)). Then using Lemma 2.4.6 we have

W1([Xx0
Tn+1

], ν⋆) ≤ W1([Xx0
Tn+1

], νan+1) + W1(νan+1 , ν
⋆) ≤ Can(1 + |x0|),

where we used once again µn → 0.
Now, let us prove that W1([Xx0

t ], ν⋆) → 0 as t → ∞. For t ∈ [0, Tn+1 − Tn) we integrate
(2.4.4) with respect to the law of Xx0

Tn
, giving

W1([Xx0
Tn+t], νan+1) ≤ CeC1a−2

n+1e−ρan+1 tW1([Xx0
Tn

], νan+1)

≤ CeC1a−2
n+1

(
W1([Xx0

Tn
], νan) + W1(νan , νan+1)

)
≤ CeC1a−2

n+1W1(νan , νan+1)(1 + |x0|)

≤ C(1 + |x0|)
n1−(β+1)C1/A2 log3/2(n)

. (2.5.6)

Now, for t ≥ 0, let n be such that t ∈ [Tn, Tn+1). Then (n+ 1) ≥ t1/(β+1) and

W1([Xx0
t ], νa(t)) ≤ W1([Xx0

t ], νan+1) + W1(νan+1 , νa(t))

≤ C(1 + |x0|)
t(β+1)−1−C1/A2 log3/2(t)

, (2.5.7)

where we used the second claim of Proposition 2.4.4.
Furthermore owing to (2.5.2) we have (β + 1)C1/A

2 < 1, so that

W1([Xx0
Tn+t], ν

⋆) ≤ W1([Xx0
Tn+t], νan+1) + W1(νan+1 , ν

⋆) ≤ Can(1 + |x0|).

Remark 2.5.2. We find again the classic schedule a(t) of order log−1/2(t). If for example we
choose instead an = log(Tn)−(1+ε)/2 for some ε > 0, then we obtain

log(µ1 · · ·µn) = n log(C) + C1
A2

n∑
k=1

log1+ε(Tk) −
n∑

k=1

Tk − Tk−1

T
logε(Tk)C2/A2

k

.

Hence, as Tn − Tn−1 = o(T logε(Tn)C2/A2
n ), µ1 · · ·µn does not converge to 0 whatever the value of

A > 0 is.

2.6 Continuously decreasing case

We now consider (Yt) solution to (2.2.5) i.e. the Langevin equation where the time coefficient a(t)
before σ is continuously decreasing. More generally, since Y is solution to a non-homogeneous
SDE, we define for every x ∈ Rd and for every fixed u ≥ 0:

Y x
0,u = x, dY x

t,u = ba(t+u)(Y x
t,u)dt+ a(t+ u)σ(Y x

t,u)dWt, (2.6.1)

so that Y x = Y x
·,0. We define the kernel associated to Y between the times t and t + u as P Y

t,u

such that for all f : Rd → R+ measurable, P Y
t,uf(x) = E[f(Y x

t,u)]. We also consider X as defined
in (2.5.1) and its associated kernel denoted as PX,n

t such that for every f : Rd → R+ measurable,
PX,n

t f(x) = E[f(Xx,n
t )]. In this section we prove the convergence of (Yt) by giving bounds on

W1(Y x
t , X

x
t ) and using Theorem 2.5.1.
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Chapter 2. Convergence of Langevin-Simulated Annealing algorithms

2.6.1 Boundedness of the potential

Lemma 2.6.1. Let p > 0. Then there exists C > 0 such that for every n ≥ 0, for every u ≥ 0
and for every x ∈ Rd:

sup
t≥0

EV p(Xx,n
t ) ≤ CV p(x) and sup

t≥0
EV p(Y x

t,u) ≤ CV p(x).

Proof. By the Itō Lemma, we have for k ≥ n and for t ∈ [Tk − Tn, Tk+1 − Tn):

dV p(Xx,n
t ) = p∇V (Xx,n

t )⊤ · V p−1(Xx,n
t )ak+1σ(Xx,n

t )dWt

+ p∇V (Xx,n
t )⊤ · V p−1(Xx,n

t )
(
−σσ⊤(Xx,n

t )∇V (Xx,n
t ) + a2

k+1Υ(Xx,n
t )

)
dt

+ p

2
(
∇2V (Xx,n

t )V p−1(Xx,n
t ) + (p− 1)|∇V (Xx,n

t )|2 · V p−2(Xx,n
t )

)
a2

k+1σσ
⊤(Xx,n

t )dt.

Using the facts that (ak), Υ, σ, ∇2V are bounded, that |∇V | ≤ CV 1/2 and that V , |∇V | are
coercive and σσ⊤ ≥

¯
σ2

0Id, there exists R > 0 such that if |Xx,n
t | ≥ R then the coefficient of dt

in the last equation is bounded above by

pV p−1∇V (Xx,n
t )T ·

(
−

¯
σ2

0(Xx,n
t )∇V (Xx,n

t ) + C
)

+ CV p−1(Xx,n
t )||σ||2∞ ≤ 0,

so that
E[V p(Xx,n

t )] ≤ max
(

sup
|z|≤R

V p(z), V p(x)
)
.

The proof is the same for Y , replacing ak+1 by a(t).

2.6.2 Strong and weak error bounds

In this subsection we adapt the proofs to bound weak and strong errors from [PP23] while paying
attention to the dependence in an.

Lemma 2.6.2. Let p ≥ 1 and let γ̄ > 0. There exists C > 0 such that for all n ≥ 0, u, t ≥ 0
such that u ∈ [Tn, Tn+1], u+ t ∈ [Tn, Tn+1] and t ≤ γ̄,

||Xx,n
t − Y x

t,u||p ≤ C
√
t(an − an+1).

Proof. We first consider the case p ≥ 2. Noting that an+1 ≤ a(u+ s) ≤ an for all s ∈ [0, t] and
using Lemma 2.11.1 in the Appendix, with in mind that ba = b0 + a2Υ, we have

∥Xx,n
t − Y x

t,u∥p ≤
∥∥∥∥∫ t

0
(ban+1(Xx,n

s ) − ba(u+s)(Y x
s,u))ds

∥∥∥∥
p

+
∥∥∥∥∫ t

0
(an+1σ(Xx,n

s ) − a(u+ s)σ(Y x
s,u))dWs

∥∥∥∥
p

≤ [b]Lip

∫ t

0
||Xx,n

s − Y x
s,u||pds+

∫ t

0
||a2

n+1Υ(Xx,n
s ) − a(u+ s)2Υ(Y x

s,u)||pds

+ CBDG
p an+1[σ]Lip

(∫ t

0
||Xx,n

s − Y x
s,u||2pds

)1/2
+
∣∣∣∣∣∣∣∣∫ t

0
σ(Y x

s,u)(an+1 − a(u+s))dWs

∣∣∣∣∣∣∣∣
p

≤ [b]Lip

∫ t

0
||Xx,n

s − Y x
s,u||pds+ ||Υ||∞(a2

n − a2
n+1)t+ a2

n+1[Υ]Lip

∫ t

0
||Xx,n

s − Y x
s,u||pds

+ CBDG
p an+1[σ]Lip

(∫ t

0
||Xx,n

s − Y x
s,u||2pds

)1/2
+ ||σ||∞||W1||p

√
t(an − an+1),
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2.6. Continuously decreasing case

where we used the generalized Minkowski inequality. Set φ(t) := sup0≤s≤t ||Xx,n
s − Y x

s,u||p and
ψ(t) := ||Υ||∞(a2

n −a2
n+1)t+ ||σ||∞||W1||p

√
t(an −an+1). Both functions are non-decreasing and

φ(t) ≤ ψ(t) + ([b]Lip + a2
n+1[Υ]Lip)

∫ t

0
||Xx,n

s − Y x
s,u||pds

+ CBDG
p an+1[σ]Lip

(∫ t

0
||Xx,n

s − Y x
s,u||2pds

)1/2
.

Moreover, for every η > 0:
(∫ t

0
φ(s)2ds

)1/2
≤
√
φ(t)

√∫ t

0
φ(s)ds ≤ η

2φ(t) + 1
2η

∫ t

0
φ(s)ds.

Taking η =
(
CBDG

p an+1[σ]Lip
)−1

yields:

φ(t) ≤ 2ψ(t) +
(
2[b]Lip + 2a2

n+1[Υ]Lip + (CBDGan+1[σ]Lip)2
) ∫ t

0
φ(s)ds.

So the Gronwall Lemma yields for every t ∈ [0, γ̄]

φ(t) ≤ 2e(2[b]Lip+2a2
n+1[Υ]Lip+(CBDG

p an+1[σ]Lip)2)γ̄ψ(t),

which completes the proof for p ≥ 2, noting that a2
n − a2

n+1 ≤ 2an(an − an+1) = o(an − an+1).
If p ∈ [1, 2), the inequality is still true remarking that ∥ · ∥p ≤ ∥ · ∥2.

Lemma 2.6.3. Let p ≥ 1 and let γ̄ > 0. There exists a real constant C ≥ 0 such that for all
n ≥ 0,

∀t ∈ [0, γ̄], ||Xx,n
t − x||p ≤ CV 1/2(x)

√
t.

Proof. We perform a proof similar to the proof of Lemma 2.6.2. For p ≥ 2 we have

||Xx,n
t − x||p ≤

∥∥∥∥∫ t

0
ban+1(Xx,n

s )ds
∥∥∥∥

p
+
∥∥∥∥∫ t

0
an+1σ(Xx,n

s )ds
∥∥∥∥

p

≤ t|ban+1(x)| +A∥σ∥∞∥W∥1
√
t+ [b]Lip

∫ t

0
||Xx,n

s − x||pds

+A[σ]LipC
BDG
p

(∫ t

0
||Xx,n

s − x||2pds
)1/2

.

From here we use the Gronwall Lemma as in the proof of Lemma 2.6.2. For p ∈ [1, 2), we have
∥ · ∥p ≤ ∥ · ∥2.

Proposition 2.6.4. Let γ̄ > 0. There exists C > 0 such that for every g : Rd → R being C2, for
every γ ∈ (0, γ̄], every n ≥ 0 and every u ≥ 0 such that u ∈ [Tn, Tn+1] and u+ γ ∈ [Tn, Tn+1]:

|E
[
g(Y x

γ,u)
]

− E
[
g(Xx,n

γ )
]

| ≤ Cγ(an − an+1)Φg(x)

with Φg(x) = max

|∇g(x)|,

∣∣∣∣∣∣
∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Y x
γ,u)

||∇2g(ξ)||

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, V 1/2(x)
∣∣∣∣∣
∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
||∇2g(ξ)||

∣∣∣∣∣
∣∣∣∣∣
2

 .
Proof. By the second order Taylor formula, for every y, z ∈ Rd:

g(z) − g(y) = ⟨∇g(y)|z − y⟩ +
∫ 1

0
(1 − s)∇2g(sz + (1 − s)y)ds(z − y)⊗2.
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Chapter 2. Convergence of Langevin-Simulated Annealing algorithms

Applying this expansion with y = Xx,n
γ and z = Y x

γ,u yields:

E[g(Y x
γ,u) − g(Xx,n

γ )] = ⟨∇g(x)|E[Y x
γ,u −Xx,n

γ ]⟩ + E[⟨∇g(Xx,n
γ ) − ∇g(x), Y x

γ,u −Xx,n
γ ⟩]

+
∫ 1

0
(1 − s)E

[
∇2g(sY x

γ,u + (1 − s)Xx,n
γ )(Y x

γ,u −Xx,n
γ )⊗2

]
ds. (2.6.2)

The first term is bounded by |∇g(x)| · |E[Y x
γ,u −Xx,n

γ ]|, with

|E[Y x
γ,u −Xx,n

γ ]| =
∣∣∣E [∫ γ

0
(ba(s+u)(Y x

s,u) − ba(s+u)(Xx,n
s ))ds

]
+ E

[∫ γ

0
(ba(u+s)(Xx,n

s ) − ban+1(Xx,n
s ))ds

] ∣∣∣
≤ C[b]Lip(an − an+1)

∫ γ

0

√
sds+ ||Υ||∞γ(a2

n − a2
n+1) ≤ Cγ(an − an+1),

where we used Lemma 2.6.2. Using Lemma 2.6.3 and Lemma 2.6.2 again, the second term in
the right hand side of (2.6.2) is bounded by

C

∣∣∣∣∣
∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
||∇2g(ξ)||

∣∣∣∣∣
∣∣∣∣∣
2

√
γV 1/2(x)√γ(an − an+1).

Using Lemma 2.6.2, the third term is bounded by

1
2Cγ(an − an+1)2

∣∣∣∣∣∣
∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Y x
γ,u)

||∇2g(ξ)||

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

Proposition 2.6.5. Let T , γ̄ > 0. There exists C > 0 such that for every Lipschitz continuous
function f : Rd → R and every t ∈ (0, T ], for all n ≥ 0, for all γ < γ̄ and every u ∈ [Tn, Tn+1]
such that u+ t+ γ ∈ [Tn, Tn+1],∣∣∣E [PX,n

t f(Y x
γ,u)

]
− E

[
PX,n

t f(Xx,n
γ )

]∣∣∣ ≤ Ca−2
n+1(an − an+1)[f ]Lipγt

−1/2V (x).

Proof. We apply Proposition 2.6.4 to gt := PX,n
t f with t > 0. Following [PP23, Proposition

3.2(b)] while paying attention to the dependence in the ellipticity parameter a, we have

Φgt(x) ≤ C[f ]Lipa
−2
n+1t

−1/2 max

V 1/2(x),

∣∣∣∣∣∣
∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Y x
γ,u)

V 1/2(ξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, V 1/2(x)
∣∣∣∣∣
∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
V 1/2(ξ)

∣∣∣∣∣
∣∣∣∣∣
2

 .
But following (2.2.8, HV 2), ∇V/V 1/2 is bounded so V 1/2 is Lipschitz continuous and then∣∣∣∣∣

∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
V 1/2(ξ)

∣∣∣∣∣
∣∣∣∣∣
2

≤
∣∣∣∣∣∣V 1/2(x) + [V 1/2]Lip|Xx,n

γ − x|
∣∣∣∣∣∣

2
≤ CV 1/2(x)∣∣∣∣∣∣

∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Y x
γ,u)

V 1/2(ξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣V 1/2(x) + [V 1/2]Lip max(|Xx,n

γ − x|, |Y x
γ,u − x|)

∣∣∣∣∣∣
2

≤ CV 1/2(x),

where we used Lemmas 2.6.3 and 2.6.2. We thus obtain the desired result.
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2.6. Continuously decreasing case

Tn Tn+1

Tn+1 − Tγ

Figure 2.1: Intervals for the domino strategy.

2.6.3 Proof of Theorem 2.2.1.(a)

More precisely, we prove that for all β > 0, if

A > max
(√

(β + 1)(2C1 + C2),
√

(1 + β−1)C2

)
, (2.6.3)

then
W1([Y x0

t ], νa(t)) ≤ C max(1 + |x0|, V (x0))
log3/2(t)t(1+β)−1−(2C1+C2)/A2 .

Proof. We apply the domino strategy (2.1.4). Let us fix T ∈ (0, T1) and γ ∈ (0, T1 − T ). Here
γ is not linked to any Euler-Maruyama scheme but is an auxiliary tool for the proof. Let
n ≥ 0 and let f : Rd → R be Lipschitz continuous. We divide the two intervals [Tn, Tn+1 − T ]
and [Tn+1 − T, Tn+1] into smaller intervals of size γ (see Figure 2.1) and for x ∈ Rd using the
semi-group property of PX,n on [Tn, Tn+1) we write:∣∣∣Ef(Xx,n

Tn+1−Tn
) − Ef(Y x

Tn+1−Tn,Tn
)
∣∣∣

≤
⌊(Tn+1−Tn−T )/γ⌋∑

k=1

∣∣∣P Y
(k−1)γ,Tn

◦ (P Y
γ,Tn+(k−1)γ − PX,n

γ ) ◦ PX,n
Tn+1−Tn−kγf(x)

∣∣∣
+

⌊(Tn+1−Tn)/γ⌋−1∑
k=⌊(Tn+1−Tn−T )/γ⌋+1

∣∣∣P Y
(k−1)γ,Tn

◦ (P Y
γ,Tn+(k−1)γ − PX,n

γ ) ◦ PX,n
Tn+1−Tn−kγf(x)

∣∣∣
+
∣∣∣P Y

γ(⌊(Tn+1−Tn)/γ⌋−1),Tn
◦ (P Y

γ+(Tn+1−Tn)modγ,Tn+γ(⌊(Tn+1−Tn)/γ⌋−1) − PX,n
γ+(Tn+1−Tn)mod(γ))f(x)

∣∣∣
=: (a) + (b) + (c).

The term (a) is the "ergodic term", for which the exponential contraction from Theorem 2.4.2
can be exploited. The terms (b) and (c) are the "error terms" where we bound the error on
intervals of length no larger than T . The term (c) is a remainder term due to the fact that
Tn+1 − Tn is generally not a multiple of γ.

• Term (a) : It follows from Theorem 2.4.2 and Lemma 2.6.2 that

|(P Y
γ,Tn+(k−1)γ − PX,n

γ ) ◦ PX,n
Tn+1−Tn−kγf(x)|

= |EPX,n
Tn+1−Tn−kγf(Xx,n

γ ) − EPX
Tn+1−Tn−kγ,nf(Y x

γ,Tn+(k−1)γ)|

≤ CeC1a−2
n+1e−ρn+1(Tn+1−Tn−kγ)[f ]LipE|Xx,n

γ − Y x
γ,Tn+(k−1)γ |

≤ CeC1a−2
n+1e−ρn+1(Tn+1−Tn−kγ)[f ]Lip

√
γ(an − an+1)

Integrating with respect to P Y
(k−1)γ,Tn

and summing up yields

(a) ≤ CeC1a−2
n+1 [f ]Lip

√
γ(an − an+1)e

−ρn+1T − e−ρn+1(Tn+1−Tn)

eγρn+1 − 1
≤ CeC1a−2

n+1 [f ]Lip
√
γ(an − an+1)(γρn+1)−1.
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• Term (b): Applying Proposition 2.6.5 yields:

|(P Y
γ,Tn+(k−1)γ − PX,n

γ ) ◦ PX,n
Tn+1−Tn−kγf(x)| ≤ Ca−2

n+1(an − an+1)[f ]Lip
γ√

Tn+1 − Tn − kγ
V (x).

Integrating with respect to P Y
(k−1)γ,Tn

and using Lemma 2.6.1 which guarantees that P Y
(k−1)γ,Tn

V (x) ≤
CV (x) and summing with respect to k implies

(b) ≤ Ca−2
n (an − an+1)[f ]LipγV (x)

⌈T/γ⌉∑
k=1

(kγ)−1/2 ≤ Ca−2
n (an − an+1)[f ]LipT

1/2V (x).

• Term (c): Noting that γ + (Tn+1 − Tn) mod(γ) ≤ 2γ, Lemma 2.6.2 yields

(c) ≤ C[f ]Lip
√
γ(an − an+1).

Now we sum up the terms (a), (b) and (c). Since γ is constant we have:∣∣∣Ef(Xx,n
Tn+1−Tn

) − Ef(Y x
Tn+1−Tn,Tn

)
∣∣∣ ≤ CeC1a−2

n+1(an − an+1)ρ−1
n+1[f ]LipV (x),

so that for all x ∈ Rd,

W1([Xx,n
Tn+1−Tn

], [Y x
Tn+1−Tn,Tn

]) ≤ CeC1a−2
n+1(an − an+1)ρ−1

n+1V (x). (2.6.4)

Temporarily setting xn := Xx0
Tn

and yn := Y x0
Tn

, we derive

W1([Xx0
Tn+1

], [Y x0
Tn+1

]) = W1([Xxn,n
Tn+1−Tn

], [Y yn

Tn+1−Tn,Tn
])

≤ W1([Xxn,n
Tn+1−Tn

], [Xyn,n
Tn+1−Tn

]) + W1([Xyn,n
Tn+1−Tn

], [Y yn

Tn+1−Tn,Tn
])

≤ CeC1a−2
n+1e−ρn+1(Tn+1−Tn)W1([Xx0

Tn
], [Y x0

Tn
]) + CeC1a−2

n+1(an − an+1)ρ−1
n+1EV (Y x0

Tn
),

where we used Theorem 2.4.2 and (2.6.4). We then apply Lemma 2.6.1 which guarantees that
(EV (Y x0

Tn
))n is bounded by CV (x0). Let us denote

λn := CeC1a−2
n (an−1 − an)ρ−1

n = Ce(C1+C2)a−2
n (an−1 − an).

Owing to (2.6.3) we have λn → 0. Iterating this relation and using (µn) defined in (2.5.5) yields
like in the proof of Theorem 2.5.1:

W1([Xx0
Tn+1

], [Y x0
Tn+1

]) ≤ CV (x0) (λn+1 + µn+1λn + µn+1µnλn−1 + · · · + µn+1 · · ·µ2λ1)
≤ CV (x0) (λn+1 + µn+1 (λn + · · · + λ1))
≤ CV (x0) (λn+1 + nµn+1) .

But following (2.5.5) one checks that nµn+1 = o(λn+1) so that

W1([Xx0
Tn+1

], [Y x0
Tn+1

]) ≤ CV (x0)λn+1 ≤ CV (x0)
log3/2(n+ 1)(n+ 1)1−(β+1)(C1+C2)/A2 .

Moreover, owing to (2.6.3) and combining with Theorem 2.5.1 we get

W1([Y x0
Tn

], νan) ≤ W1([Y x0
Tn

], [Xx0
Tn

]) + W1([Xx0
Tn

], νan) ≤ C max(1 + |x0|, V (x0))
log3/2(n)n1−(β+1)(C1+C2)/A2
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T1 T2 T3 T4

t

a(t) Non plateau case
Plateau case

Figure 2.2: Decreasing of the noise coefficient a for the plateau and non plateau cases.

and as the right hand side of these inequalities is in o(an), we derive

W1([Y x0
Tn

], ν⋆) ≤ W1([Y x0
Tn

], [Xx0
Tn

]) + W1([Xx0
Tn

], ν⋆) ≤ Can max(1 + |x0|, V (x0)).

• Convergence for t → ∞ : Now let us prove that W1([Y x0
t ], ν⋆) → 0 as t → ∞. As

before, let T > 0. For t ≥ T , then we perform the same domino strategy where we replace Tn+1
by Tn + t and we consider the intervals [Tn, Tn + t− T ] and [Tn + t− T, Tn + t]. For t < T then
we only consider the terms (b) and (c) and we replace T by t in (b). Doing so we obtain

W1([Xx,n
t ], [Y x

t,Tn
]) ≤ CeC1a−2

n+1(an − an+1)ρ−1
n+1V (x).

So that, as before:

W1([Xx0
Tn+t], [Y

x0
Tn+t]) ≤ CeC1a−2

n+1W1([Xx0
Tn

], [Y x0
Tn

]) + CeC1a−2
n+1(an − an+1)ρ−1

n+1V (x0)

≤ CV (x0)
log3/2(n)n1−(β+1)(2C1+C2)/A2 .

Owing to (2.6.3) we have 1 − (β + 1)(2C1 + C2)/A2 > 1, so that, using (2.5.6),

W1([Y x0
Tn+t], νan+1) ≤ W1([Y x0

Tn+t], [X
x0
Tn+t]) + W1([Xx0

Tn+t], νan+1) ≤ C max(1 + |x0|, V (x0))
log3/2(n)n1−(β+1)(2C1+C2)/A2 .

We then prove the bound for W1([Y x0
t ], νa(t)) the same way as for (2.5.7), using the second claim

of Proposition 2.4.4.

2.7 Continuously decreasing case : the Euler-Maruyama scheme

We now consider (Ȳn) to be the Euler-Maruyama scheme of (Yt) with steps (γn) defined in
(2.2.15) and we also consider its genuine interpolation defined in (2.2.16). In this section we
prove the convergence of (Ȳt) by giving bounds on W1(Y x

t , X
x
t ) and using Theorem 2.5.1. As

with (2.6.1), we define more generally for every n ≥ 0, (Ȳ x
t,Γn

)t≥0, first at times Γk − Γn, k ≥ n,
by

Ȳ x
0,Γn

= x, Ȳ x
Γk+1−Γn,Γn

= Ȳ x
Γk−Γn,Γn

+ γk+1
(
ba(Γk)(Ȳ x

Γk−Γn,Γn
) + ζk+1(Ȳ x

Γk−Γn,Γn
)
)

+ a(Γk)σ(Ȳ x
Γk−Γn,Γn

)(WΓk+1 −WΓk
),

then at every time t by the genuine interpolation on the intervals ([Γk − Γn,Γk+1 − Γn))k≥n as
before. In particular Ȳ x = Ȳ x

·,0. Still more generally, we define Ȳ x
t,u where u ∈ (Γn,Γn+1) as

Ȳ x
0,u = x, Ȳ x

t,u =

 x+ t(ba(x) + ζn+1(x)) + a2(u)σ(x)(Wt −WΓu) if t ∈ [u,Γn+1]

Ȳ
Ȳ x

Γn+1−u,u

t−(Γn+1−u),Γn+1
if t > Γn+1.
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For n, k ≥ 0, for u ∈ [Γk,Γk+1) and γ ∈ [0,Γk+1 −u], let P Ȳ
γ,u be the transition kernel associated

to Ȳ·,u between the times 0 and γ i.e. for all f : Rd → R+ measurable, P Ȳ
γ,uf(x) = E[f(Ȳ x

γ,u)].

2.7.1 Boundedness of the potential

Lemma 2.7.1. Let p ≥ 1/2. There exists a constant C > 0 such that for every k ≥ 0, for every
u ∈ [Γk,Γk+1) and for every x ∈ Rd:

sup
n≥k+1

EV p(Ȳ x
Γn−u,u) ≤ CV p(x).

Proof. We rework the proof of Lemma 2(b) in [LP02]. Let us assume directly that u = Γk.
To simplify the notations, we define ỹn := Ȳ x

Γn−Γk,Γk
for n ≥ k and ∆ỹn+1 := ỹn+1 − ỹn. The

Taylor formula applied to V p between ỹn and ỹn+1 yields for some ξn+1 ∈ (ỹn, ỹn+1) and with
∇2(V p) = p(V p−1∇2V + (p− 1)V p−2∇V∇V T ):

V p(ỹn+1) = V p(ỹn) + pV p−1⟨∇V (ỹn),∆ỹn+1⟩ + 1
2∇2(V p)(ξn+1) · (∆ỹn+1)⊗2

= V p(ỹn) + pV p−1∇V (ỹn)T ·
(

− γn+1σσ
⊤(ỹn)∇V (ỹn) + γn+1a

2(Γn)Υ(ỹn)

+ γn+1ζn+1(ỹn) + √
γn+1a(Γn)σ(ỹn)Un+1

)
+ 1

2∇2(V p)(ξn+1) · (∆ỹn+1)⊗2,

where Un+1 ∼ N (0, Id). Moreover using (2.2.8, HV 2),
√
V is Lipschitz continuous so

E
[
supz∈(ỹn,ỹn+1) V

1/2(z)|ỹ1, . . . , ỹn
]

≤ V 1/2(ỹn) + [
√
V ]LipE[|ỹn+1 − ỹn||ỹ1, . . . , ỹn] ≤ CV 1/2(ỹn), (2.7.1)

and in particular
E[∥∇2(V p)(ξn+1)∥|ỹ1, . . . , ỹn] ≤ C∥∇2(V p)(ỹn)∥.

Moreover using that ∇2V is bounded and that |∇V | ≤ CV 1/2 we have

∥∇2(V p)(ỹn)∥ ≤ C∥(V p−1∇2V + V p−2∇V∇V T )(ỹn)∥ ≤ CV p−1(ỹn).

Then using the facts that a, Υ, σ, ∇2V are bounded and that γ2
n = o(γn), that V , ∇V are

coercive and σσ⊤ ≥
¯
σ2

0Id and (2.2.14), there exists R > 0 and N ∈ N such that if |ỹn| ≥ R and
n ≥ N then

E[V p(ỹn+1) − V p(ỹn)|ỹ1, . . . , ỹn]

≤ pV p−1∇V (ỹn)T ·
(
−γn+1¯

σ2
0(ỹn)∇V (ỹn) + Cγn+1

)
+ C∥∇2(V p)(ỹn)∥ ·

(
γ2

n+1∥σ∥4
∞|∇V (ỹn)|2 + Cγ2

n+1 + Cγ2
n+1V (x) + Cγn+1E|N (0, Id)|2

)
≤ Cγn+1V

p−1(ỹn)
[
|∇V (ỹn)|

(
− |∇V (ỹn)| + 1

)
+ γn+1(|∇V (ỹn)|2 + 1) + 1

]
≤ 0.

On the other side, if |ỹn| ≤ R then

E[|V p(ỹn+1) − V p(ỹn)||ỹ1, . . . , ỹn] ≤ Cγn+1 sup|x|≤R V
p(x).

Moreover for n ∈ {k, . . . , N} using (2.7.1) we have

E[|V p(ỹn+1) − V p(ỹn)||ỹ1, . . . , ỹn] ≤ CV p(ỹn)

so that
supk≤n≤N+1 E[V p(ỹn)] ≤ CN−kV p(x).

Finally we obtain
supn≥k E[V p(ỹn)] ≤ CV p(x).
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2.7.2 Strong and weak error bounds for the Euler-Maruyama scheme

Lemma 2.7.2. Let p ≥ 1. There exists C > 0 such that for every n, k ≥ 0, for every
u ∈ [Γk,Γk+1) and every t > 0 such that u ∈ [Tn, Tn+1], t ≤ Γk+1 − u and u+ t ∈ [Tn, Tn+1],

||Xx,n
t − Ȳ x

t,u||p ≤ C
(
V 1/2(x)t+

√
t(an − an+1)

)
.

Proof. As in the proof of Lemma 2.6.2, if p ≥ 2 we have

||Xx,n
t − Ȳ x

t,u||p ≤ [b]Lip

∫ t

0
||Xx,n

s − x||pds+ ||Υ||∞(a2
n − a2

n+1)t

+ a2
n+1[Υ]Lip

∫ t

0
||Xx,n

s − x||pds+ ∥ζ1(x)∥pt

+ CBDGan+1[σ]Lip

(∫ t

0
||Xx,n

s − x||2pds
)1/2

+ ||σ||∞||W1||p
√
t(an − an+1).

Plugging Lemma 2.6.3 and (2.2.14) into this inequality yields:

||Xx,n
t − Ȳ x

t,u||p ≤ CV 1/2(x)t3/2 + ||Υ||∞(a2
n − a2

n+1)t+ CV 1/2(x)t+ C
√
t(an − an+1),

which completes the proof for p ≥ 2. If p ∈ [1, 2), we remark that ∥ · ∥p ≤ ∥ · ∥2.

Proposition 2.7.3. For every g : Rd → R being C3, for every n, k ≥ 0 and every u ∈ [Γk,Γk+1)
such that u ∈ [Tn, Tn+1], γ ≤ Γk+1 − u and u+ γ ∈ [Tn, Tn+1]:

|E
[
g(Ȳ x

γ,u)
]

− E
[
g(Xx,n

γ )
]

| ≤ CV 1/2(x)
(
V 1/2(x)γ2 + γ(an − an+1)

)
Φ̄g,1(x)

+ CV (x)
(
V 1/2(x)γ2 + γ3/2(an − an+1)

)
Φ̄g,2(x),

with

Φ̄g,1(x) = max

|∇g(x)|, ||∇2g(x)||,

∣∣∣∣∣∣
∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Ȳ x
γ,u)

||∇2g(ξ)||

∣∣∣∣∣∣
∣∣∣∣∣∣
2

 ,
Φ̄g,2(x) =

∣∣∣∣∣
∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
||∇3g(ξ)||

∣∣∣∣∣
∣∣∣∣∣
4

.

The proof is given in the Supplementary Material.

Proposition 2.7.4. Let T > 0. There exists C > 0 such that for every Lipschitz continuous
function f and every t ∈ (0, T ], for all n, k ≥ 0, for all u ∈ [Γk,Γk+1), for all γ such that
Γk ∈ [Tn, Tn+1], γ ≤ Γk+1 − u and u+ t+ γ ∈ [Tn, Tn+1],

∣∣∣E [PX,n
t f(Ȳ x

γ,u)
]

− E
[
PX,n

t f(Xx,n
γ )

]∣∣∣
≤ C[f ]LipV

2(x) ·
(
a−2

n+1t
−1/2

(
γ2 + (an − an+1)γ

)
+ a−3

n+1t
−1
(
γ2 + γ3/2(an − an+1)

))
.

Proof. The proof is the same as for Proposition 2.6.5.
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2.7.3 Proof of Theorem 2.2.1.(b)

More precisely, we prove that for all β > 0, if

A > max
(√

(β + 1)(2C1 + C2),
√

(1 + β−1)C2

)
, (2.7.2)

then
W1([Ȳ x0

t ], νa(t)) ≤ C max
(
1 + |x0|, V 2(x0)

)
t(1+β)−1−(2C1+C2)/A2 .

Proof. We apply the same domino strategy as in Section 2.6.3. Let n ≥ 0 and let f : Rd → R be
Lipschitz continuous. Let us denote

γinit := ΓN(Tn)+1 − Tn ≤ γN(Tn)+1 and γend := Tn+1 − ΓN(Tn+1) ≤ γN(Tn+1)+1.

For x ∈ Rd we write:∣∣∣Ef(Xx,n
Tn+1−Tn

) − Ef(Ȳ x
Tn+1−Tn,Tn

)
∣∣∣ ≤

∣∣∣(P Ȳ
γinit,Tn

− PX,n
γinit) ◦ PX,n

Tn+1−ΓN(Tn)+1
f(x)

∣∣∣
+

N(Tn+1−T )∑
k=N(Tn)+2

∣∣∣P Ȳ
γinit,Tn

◦ P Ȳ
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦ P Ȳ
γk−1,Γk−2 ◦ (P Ȳ

γk,Γk−1 − PX,n
γk

) ◦ PX,n
Tn+1−Γk

f(x)
∣∣∣

+
N(Tn+1)−1∑

k=N(Tn+1−T )+1

∣∣∣P Ȳ
γinit,Tn

◦ P Ȳ
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦ P Ȳ
γk−1,Γk−2 ◦ (P Ȳ

γk,Γk−1 − PX,n
γk

) ◦ PX,n
Tn+1−Γk

f(x)
∣∣∣

+
∣∣∣P Ȳ

γinit,Tn
◦P Ȳ

γN(Tn)+2,ΓN(Tn)+1
◦ · · · ◦ P Ȳ

γN(Tn+1)−1,ΓN(Tn+1)−2

◦ (P Ȳ
γend+γN(Tn+1),ΓN(Tn+1)−1

− PX,n
γend+γN(Tn+1)

)f(x)
∣∣∣

=: (cinit) + (a) + (b) + (cend).

• Term (a): we have

|(P Ȳ
γk,Γk−1 − PX,n

γk
) ◦ PX,n

Tn+1−Γk
f(x)|

= |P Ȳ
γk,Γk−1 ◦ PX,n

T/2 ◦ PX,n
Tn+1−Γk−T/2f(x) − PX,n

γk,n ◦ PX,n
T/2 ◦ PX,n

Tn+1−Γk−T/2f(x)|

≤ |EPX,n
Tn+1−Γk−T/2(Ξx

k) − EPX,n
Tn+1−Γk−T/2(Ξ̄x

k)|

≤ CeCa−2
n+1e−ρn+1(Tn+1−Γk−T/2)[f ]LipE|Ξx

k − Ξ̄x
k|,

where Ξx
k and Ξ̄x

k are any random vectors with laws
[
X

Xx,n
γk

,n

T/2

]
and

[
X

Ȳ x
γk,Γk−1

,n

T/2

]
respectively

and where we used Theorem 2.4.2 to get the last inequality. Thus, it follows from the definition
of the Wasserstein distance that

|(P Ȳ
γk,Γk−1 − PX,n

γk
) ◦ PX,n

Tn+1−Γk
f(x)|

≤ CeCa−2
n+1e−ρn+1(Tn+1−Γk)[f ]LipW1

(
X

Xx,n
γk

,n

T/2 , X
Ȳ x

γk,Γk−1
,n

T/2

)
.

On the other hand, the Kantorovich-Rubinstein representation of the L1-Wasserstein distance
(see [Vil09, Equation (6.3)]) reads

W1

(
X

Xx,n
γk

,n

T/2 , X
Ȳ x

γk,Γk−1
,n

T/2

)
= sup

[g]Lip=1
E
[
g

(
X

Xx,n
γk

,n

T/2

)
− g

(
X

Ȳ x
γk,Γk−1

,n

T/2

)]
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= sup
[g]Lip=1

E
[
PX,n

T/2 g(Xx,n
γk

) − PX,n
T/2 g(Ȳ x

γk,Γk−1)
]
.

It follows from Proposition 2.7.4 and using [g]Lip = 1 that

E
[
PX,n

T/2 g(Xx,n
γk

) − PX,n
T/2 g(Ȳ x

γk,Γk−1)
]

≤ Ca−3
n+1

(
γ2

k + (an − an+1)γk

)
V 2(x),

so that

|(P Ȳ
γk,Γk−1 − PX,n

γk
) ◦ PX,n

Tn+1−Γk
f(x)|

≤ CeC1a−2
n+1e−ρn+1(Tn+1−Γk)[f ]Lipa

−3
n+1

(
γ2

k + (an − an+1)γk

)
V 2(x).

Finally, integrating with respect to P Ȳ
γinit,Tn

◦ P Ȳ
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦ P Ȳ
γk−1,Γk−2

yields:
∣∣∣P Ȳ

γinit,Tn
◦ P Ȳ

γN(Tn)+2,ΓN(Tn)+1
◦ · · · ◦ P Ȳ

γk−1,Γk−2 ◦ (P Ȳ
γk,Γk−1 − PX,n

γk
) ◦ PX,n

Tn+1−Γk
f(x)

∣∣∣
≤ CeC1a−2

n+1e−ρn+1(Tn+1−Γk)[f ]Lipa
−3
n+1

(
γ2

k + (an − an+1)γk

)
·
(

sup
ℓ≥N(Tn)+1

EV 2(Ȳ x
γinit+Γℓ−ΓN(Tn)+1,Tn

)
)

≤ CeC1a−2
n+1e−ρn+1(Tn+1−Γk)[f ]Lipa

−3
n+1

(
γ2

k + (an − an+1)γk

)
V 2(x),

where we used Lemma 2.7.1. Now, summing up over k yields:

(a) ≤ Ca−3
n+1e

C1a−2
n+1e−ρn+1Tn+1 [f ]LipV

2(x)
N(Tn+1−T )∑
k=N(Tn)+2

((an − an−1) + γk)γke
ρn+1Γk

≤ Ca−3
n+1e

C1a−2
n+1e−ρn+1Tn+1 [f ]Lip((an − an−1) + γN(Tn))V 2(x)

N(Tn+1−T )∑
k=N(Tn)+2

γke
ρn+1Γk−1

≤ Ca−3
n+1e

C1a−2
n+1e−ρn+1Tn+1 [f ]Lip((an − an−1) + γN(Tn))V 2(x)

∫ Tn+1−T

Tn

eρn+1udu

≤ Ca−3
n+1e

C1a−2
n+1 [f ]Lip((an − an−1) + γN(Tn))V 2(x)ρ−1

n+1

≤ Ca−3
n+1e

C1a−2
n+1 [f ]Lip(an − an−1)V 2(x)ρ−1

n+1,

where we used that (eρn+1γk)n,k≥0 is bounded and Lemma 2.11.3 in the last inequality. We
obtain likewise

(cinit) ≤ CeC1a−2
n+1e−ρn+1(Tn+1−Tn)[f ]Lipa

−3
n+1(an − an+1)γN(Tn)+1V

2(x).

• Term (b): Applying Proposition 2.7.4 yields:

(b) ≤ Ca−3
n+1

(
γN(Tn+1−T ) + √

γN(Tn+1−T )(an − an+1)
)

· [f ]LipV
2(x)

N(Tn+1)−1∑
k=N(Tn+1−T )+1

γk

Tn+1 − Γk

+ Ca−2
n+1

(
γN(Tn+1−T ) + (an − an+1)

)
[f ]LipV

2(x)
N(Tn+1)−1∑

k=N(Tn+1−T )+1

γk√
Tn+1 − Γk
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≤ Ca−3
n+1

(
γN(Tn+1−T ) + √

γN(Tn+1−T )(an − an+1)
)

· [f ]LipV
2(x)

∫ Tn+1−γN(Tn+1)

Tn+1−T

1
Tn+1 − u

du

+ Ca−2
n+1

(
γN(Tn+1−T ) + (an − an+1)

)
[f ]LipV

2(x)
∫ Tn+1−γN(Tn+1)

Tn+1−T

1√
Tn+1 − u

du

≤ Ca−3
n+1

(
γN(Tn+1−T ) + √

γN(Tn+1−T )(an − an+1)
)

[f ]LipV
2(x) log(1/γN(Tn+1))

+ Ca−2
n+1(an − an+1)[f ]LipV

2(x).

Using Lemma 2.11.4 in Appendix,
√
γN(Tn+1−T ) log(1/γN(Tn+1)) ≤ C

√
γN(Tn+1) log(1/γN(Tn+1)) → 0

and using Lemma 2.11.3 we also have

γN(Tn+1−T ) log(1/γN(Tn+1)) ≤ Cγ1−ε
N(Tn+1) = o

(
n−1−β′) = o(an − an+1)

where β′ > 0 for small enough ε. So that

(b) ≤ Ca−3
n+1(an − an+1)[f ]LipV

2(x).

• Term (cend): Using Lemma 2.7.2 and γend ≤ γN(Tn+1)+1 ≤ γN(Tn) yields:

|(P Ȳ
γend+γN(Tn+1),ΓN(Tn+1)−1

− PX,n
γend+γN(Tn+1)

)f(x)|

≤ C[f ]Lip
(√

γN(Tn)(an − an+1) + γN(Tn)
)
V 1/2(x).

Then we integrate with respect to P Ȳ
γinit,Tn

◦P Ȳ
γN(Tn)+2,ΓN(Tn)+1

◦· · ·◦P Ȳ
γk−1,Γk−2

and apply Lemma
2.7.1.

• So we have finally that |Ef(Xx,n
Tn+1−Tn

) − Ef(Ȳ x
Tn+1−Tn,Tn

)| is bounded by

Ca−3
n+1[f ]Lip(an − an+1)eC1a−2

n+1ρ−1
n+1V

2(x),

which implies that, for every x ∈ Rd,

W1([Xx,n
Tn+1−Tn

], [Ȳ x
Tn+1−Tn,Tn

]) ≤ Ca−3
n+1(an − an+1)eC1a−2

n+1ρ−1
n+1V

2(x).

We integrate this inequality with respect to the laws of Xx0
Tn

and Ȳ x0
Tn

and obtain, temporarily
setting xn := Xx0

Tn
and ȳn := Ȳ x0

Tn
,

W1([Xx0
Tn+1

], [Ȳ x0
Tn+1

]) = W1([Xxn,n
Tn+1−Tn

], [Ȳ ȳn

Tn+1−Tn,Tn
])

≤ W1([Xxn,n
Tn+1−Tn

], [X ȳn,n
Tn+1−Tn

]) + W1([X ȳn,n
Tn+1−Tn

], [Ȳ ȳn

Tn+1−Tn,Tn
])

≤ CeC1a−2
n+1e−ρn+1(Tn+1−Tn)W1([Xx0

Tn
], [Ȳ x0

Tn
]) + Ca−3

n+1(an − an+1)eC1a−2
n+1ρ−1

n+1EV
2(Ȳ x0

Tn
)

≤ CeC1a−2
n+1e−ρn+1(Tn+1−Tn)W1([Xx0

Tn
], [Ȳ x0

Tn
]) + Ca−3

n+1(an − an+1)eC1a−2
n+1ρ−1

n+1V
2(x0)

=: µn+1W1([Xx0
Tn

], [Ȳ x0
Tn

]) + vn+1V
2(x0),

where µn is defined in (2.5.5) and where we used again Lemma 2.7.1. We use Lemma 2.4.3
to bound (an − an+1) and owing to (2.7.2) we have vn → 0, so is bounded. We iterate this
inequality and obtain

W1([Xx0
Tn+1

], [Ȳ x0
Tn+1

]) ≤ CV 2(x0) (vn+1 + µn+1vn + µn+1µnvn−1 + · · · + µn+1 · · ·µ2v1)
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≤ CV 2(x0) (vn+1 + Cnµn+1) .

But following (2.5.5) we have nµn = O(vn) so that

W1([Xx0
Tn+1

], [Ȳ x0
Tn+1

]) ≤ CV 2(x0)vn+1 ≤ CV 2(x0)
(n+ 1)1−(β+1)(C1+C2)/A2 .

Moreover, owing to (2.7.2) and combining with Theorem 2.5.1 we get

W1([Ȳ x0
Tn

], νan) ≤ W1([Ȳ x0
Tn

], [Xx0
Tn

]) + W1([Xx0
Tn

], νan) ≤ C max(1 + |x0|, V 2(x0))
n1−(β+1)(C1+C2)/A2

and

W1([Ȳ x0
Tn

], ν⋆) ≤ W1([Ȳ x0
Tn

], [Xx0
Tn

]) + W1([Xx0
Tn

], ν⋆) ≤ Can max(1 + |x0|, V 2(x0)).

Finally, to prove that W1([Ȳ x0
t ], ν⋆) → 0 as t → ∞, we conclude as in the end of Section

2.6.3.

2.8 Convergence of the Euler-Maruyama scheme with plateau

In this section, we consider the Euler-Maruyama scheme for (Xt), that is

X̄x0
0 = x0, X̄x0

Γk+1
= X̄Γk

+ γk+1ban+1(X̄Γk
) + an+1σ(X̄Γk

)(WΓk+1 −WΓk
)

for k ∈ {N(Tn), . . . , N(Tn+1) − 1}. We also define as in Section 2.7 the genuine time-continuous
scheme and the Euler-Maruyama scheme for (Xx,n

t )t so that X̄x0,0 = X̄x.
Although we already proved the convergence of the Euler-Maruyama scheme for (Yt), we

shall also prove the convergence of the present scheme, since this algorithm is also used by
practitioners within the framework of batch methods.

Theorem 2.8.1. Assume (2.2.2, HV 1), (2.2.8, HV 2), (2.2.9, Hσ), (2.2.10) and (2.2.11, Hcf ).
Assume furthermore (2.2.12, Hγ1) and (2.2.13, Hγ2), that V is C3 with ∥∇3V ∥ ≤ CV 1/2 and
that σ is C3 with ∥∇3(σσ⊤)∥ ≤ CV 1/2. Then for large enough A > 0 and for every x0 ∈ Rd,

W1(X̄x0
t , ν⋆) −→

t→∞
0.

The proof of this theorem is given in the Supplementary Material.

2.9 Experiments
In this section, we compare the performances of adaptive Langevin-Simulated Annealing al-
gorithms versus vanilla SGLD, that is the Langevin algorithm with constant (additive) σ1.
We train an artificial neural network on the MNIST dataset [LBBH98], which is composed of
grayscale images of size 28 × 28 of handwritten digits (from 0 to 9). The goal is to recognize
the handwritten digit and to classify the images. 60000 images are used for training and 10000
images are used for test.

As done by practitioners in general, we do not include the correction term Υ in the Langevin
optimizers as computing second-order derivatives highly increases the training time. Moreover

1Our code is available at https://github.com/Bras-P/langevin-simulated-annealing.
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Figure 2.3: Performance of preconditioned Langevin algorithms compared with vanilla SGLD
on the MNIST dataset. The values of the hyperparameters are a(n) = A log−1/2(c1n + e) with
A = 2.10−3 and where c1n = 1 after 5 epochs; γn = γ1/(1 + c2n) where c2n = 1 after 5 epochs
and where for SGLD, γ1 = 0.001 for L-RMSprop and L-Adam and γ1 = 0.1 for L-Adadelta.

Preconditioner SGLD L-RMSprop L-Adam L-Adadelta
Best accuracy 95,24 % 96,94 % 97,60 % 97,63 %

Table 2.1: Best accuracy performance on the MNIST test set after 10 epochs.

the time step coefficient of Υ is a2
nγn with an ≪ 1 and γn ≪ 1, in comparison with γn for the

gradient and anγ
1/2
n for the Gaussian noise. We refer to Chapter 5 for more details.

We consider a feedforward neural network with two hidden dense layers with 128 units each
and with ReLU activation. For the adaptive Langevin algorithms, we choose the function σ
as a diagonal matrix which is the square root of the preconditioner in RMSprop [LCCC16], in
Adam [KB15] and in Adadelta [Zei12] respectively (see also Section 2.3.2), giving L-RMSprop,
L-Adam and L-Adadelta respectively. The results are given in Figure 2.3 and in Table 2.1.

As pointed out in the literature (see the references Section 2.3.2), the preconditioned Langevin
algorithms show significant improvement compared with the vanilla SGLD algorithm. The con-
vergence is faster and they achieve a lower error on the test set. We also display the value of
the loss function on the train set during the training to show that the better performances of
the preconditioned algorithms are not due to some overfitting effect.

We also compare preconditioned Langevin algorithms with their respective non-Langevin
counterpart. For shallow neural networks, adding an exogenous noise does not seem to improve
significantly the performances of the optimization algorithm. However, for deep neural networks,
which are highly non-linear and which loss function has many local minima, the Langevin version
is competitive with the currently widely used non-Langevin algorithms and can even lead to
improvement. The results are given in Figure 2.4 where we used a deep neural network with 20
hidden layers with 32 units each and with ReLU activation.

In order to understand how sensitive are these methods to poor initialization, we run an
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Figure 2.4: Side-by-side comparison of optimization algorithms with their respective Langevin
counterparts for the training of a deep neural network on the MNIST dataset. We display the
performance of SGD for reference. The values of the hyperparameters are a(n) = A log−1/2(c1n+
e) with A = 1.10−3 for L-Adam and A = 5.10−4 for L-RMSprop and where c1n = 1 after 5
epochs; γn = γ1/(1 + c2n) where c2n = 1 after 5 epochs and where γ1 = 0.01 for SGLD and
γ1 = 0.001 for the others.
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Figure 2.5: Performance of the Adam optimizer compared with its Langevin version at the
beginning of the training of a deep neural network on the MNIST dataset with poor initialization.
We record the accuracy on the test set 10 times per epoch.

experiment on the previous deep neural network where all the weights are initialized to zero,
as in [NVL+15, Section 4.1]. We plot the accuracy on the test set in Figure 2.5. We observe
that the non-Langevin optimizer needs some time before escaping from the neighbourhood of
the initial point whereas in its Langevin version, the Gaussian noise is effective to rapidly escape
from highly degenerated saddle points of the loss.

2.10 Conclusion and perspectives of future work

We proved the convergence of adaptive Langevin-Simulated annealing algorithms using both
ergodic properties and weak error analysis, which fills a gap between the theory, which focused
on the additive case, and the practice, where adaptive algorithm are commonly used to obtain
faster convergence rates. Dealing with non constant diffusion coefficient σ makes the study more
difficult as we need to rely on fine stochastic analysis. We finally obtained the same annealing
schedule in log−1/2(t) as in the additive case.

Future work would include relaxation of the assumptions on the coefficients of the SDE, in
particular on the growth the potential V at infinity, as it is done for the additive case in [MFT21].
Another perspective would include weak error analysis of the corresponding projected Langevin-
Simulated Annealing algorithm for optimization under constraint. We refer to [BEL15, Lam21]
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where W1-contraction properties from [Ebe16, Wan20] are also used in an additive noise setting,
but the multiplicative case is yet to be addressed by the literature.

2.11 Appendix

Lemma 2.11.1. Let Z and Z̃ be two continuous diffusion processes. Then for all t ≥ 0 and for
all p ≥ 2: ∥∥∥∥∫ t

0
(σ(Zs) − σ(Z̃s))dWs

∥∥∥∥
p

≤ CBDG
p [σ]Lip

(∫ t

0
∥Zs − Z̃s∥2

pds

)1/2
,

where CBDG
p is a constant which only depends on p.

Proof. It follows from the generalized Minkowski and the Burkholder-Davis-Gundy inequalities
that ∥∥∥∥∫ t

0
(σ(Zs) − σ(Z̃s))dWs

∥∥∥∥
p

≤ CBDG
p [σ]Lip

∥∥∥∥∫ t

0
|Zs − Z̃s|2ds

∥∥∥∥1/2

p/2

≤ CBDG
p [σ]Lip

(∫ t

0
∥Zs − Z̃s∥2

pds

)1/2

We now give some results on the step sequence (γn) associated to the Euler-Maruyama
scheme. Let us recall that the sequence (Tn) is defined in (2.4.7).

Lemma 2.11.2. Let (un) be a positive and non-increasing sequence such that
∑

n un < ∞.
Then un = o(n−1).

Proof. We have Nu2N ≤
∑2N

n=N un → 0 as N → ∞.

Lemma 2.11.3. We have
γN(Tn) = o

(
n−(1+β)

)
. (2.11.1)

Proof. Using the previous lemma, γn = o(n−1/2) so that Γn = o(n1/2) and then x2 = o(N(x))
as x → ∞ and then γN(Tn) = o

(
N(Tn)−1/2

)
= o

(
n−(1+β)

)
.

Lemma 2.11.4. The sequence (γN(Tn+1−T )/γN(Tn+1)) is bounded.

Proof. Using (2.2.13, Hγ2), we have for ϖ′ > ϖ and for large enough k, (γk − γk+1)/γ2
k+1 ≤ ϖ′

so that γk/γk+1 ≤ 1 +ϖ′γk+1 and then

log
(
γN(Tn+1−T ))
γN(Tn+1)

)
=

N(Tn+1)−1∑
k=N(Tn+1−T )

log
(
γk

γk+1

)
≤ C

N(Tn+1)−1∑
k=N(Tn)

γk

= C
(
ΓN(Tn+1) − ΓN(Tn+1−T )

)
≤ C(Tn+1 − (Tn+1 − T )).

62



2.12. Supplementary Material

2.12 Supplementary Material

2.12.1 Proof of Proposition 2.4.4

Proof. We have

νan+1(x)
νan(x) = Zan+1

Zan

e−2(V (x)−V ⋆)(a−2
n+1−a−2

n ) ≤
Zan+1

Zan

=: Mn.

We now consider (Pi)1≤i≤m⋆ a partition of Rd such that for all i, x⋆
i ∈ P̊i. Let us prove that for

all 1 ≤ i ≤ m⋆,

Z−1
a,i :=

∫
Rd
e−2(V (x)−V ⋆)/a2

1x∈Pidx ∼
a→0

ad
∫
Rd
e−x⊤∇2V (x⋆

i )xdx. (2.12.1)

Let r > 0 ; let us consider Ṽi defined as

Ṽi(x) =
{
V (x) if x ∈ B(x⋆

i , r)
|x− x⋆

i |2 + V ⋆ otherwise.

We also define Z̃−1
a,i :=

∫
Rd e−2(Ṽi(x)−V ⋆)/a2

1x∈Pidx. Then, owing to V ⋆ > 0 and (2.2.8, HV 2),

∀x ∈ Rd, C|x− x⋆
i |2 ≤ Ṽi(x) − V ⋆ ≤ C ′|x− x⋆

i |2 (2.12.2)

and then

Z̃−1
a,i = ad

∫
Rd
e−2(Ṽi(ax+x⋆

i )−V ⋆)/a2
1x∈a−1(Pi−x⋆

i )dx ∼
a→0

ad
∫
Rd
e−x⊤∇2V (x⋆

i )xdx,

where we get the equivalence by dominated convergence ; the domination comes from (2.12.2).
Then

Z−1
a,i − Z̃−1

a,i =
∫

B(x⋆
i ,r)c

e−2(V (x)−V ⋆)/a2
1x∈Pidx−

∫
B(x⋆

i ,r)c
e−2(Ṽi(x)−V ⋆)/a2

1x∈Pidx =: I1 − I2,

I2 = ad
∫

B(0,r/a)c
e−2|x|21x∈a−1(Pi−x⋆

i )dx ≤ ad
∫

B(0,r/a)c
e−2|x|2dx = o(ad) = o

(
Z̃−1

a,i

)
.

Moreover using Proposition 4.3.1 we have Za,iI1 → 0 as a → 0, so that

Z−1
a,i = Z̃−1

a,i + o
(
Z−1

a,i

)
+ o

(
Z̃−1

a,i

)
∼ Z̃−1

a,i ,

which proves (2.12.1) and then

Z−1
a ∼

a→0
ad

m⋆∑
i=1

∫
Rd
e−x⊤∇2V (x⋆

i )xdx. (2.12.3)

We now prove that
Z−1

an
− Z−1

an+1 ≤ Cad−1
n+1(an − an+1). (2.12.4)

Indeed, by convexity we have for all z ∈ R

∣∣∣e−2z/a2
n − e−2z/a2

n+1
∣∣∣ ≤ 2e−2z/a2

nz

∣∣∣∣∣ 1
a2

n

− 1
a2

n+1

∣∣∣∣∣ ≤ 4e−2z/a2
n

z

a2
n+1

(an − an+1)
an

. (2.12.5)
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and then

Z−1
an,i − Z−1

an+1,i = ad
n+1

∫
Rd

(
e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n1x∈a−1

n+1(Pi−x⋆
i )

− e−2(V (an+1x+x⋆
i )−V ⋆)/a2

n+11x∈a−1
n+1(Pi−x⋆

i )

)
dx

≤ 4ad−1
n+1(an − an+1)

∫
Rd
e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n
V (an+1x+ x⋆

i ) − V ⋆

a2
n+1

1x∈a−1
n+1(Pi−x⋆

i )dx︸ ︷︷ ︸
:=I3

.

Let us also define

Ĩ3 :=
∫
Rd
e−2(Ṽi(an+1x+x⋆

i )−V ⋆)/a2
n
Ṽi(an+1x+ x⋆

i ) − V ⋆

a2
n+1

1x∈a−1
n+1(Pi−x⋆

i )dx.

Then Ĩ3 converges by dominated convergence and |I3 − Ĩ3| is bounded by∣∣∣ ∫
Rd

(
e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n
V (an+1x+ x⋆

i ) − V ⋆

a2
n+1

− e−2(Ṽi(an+1x+x⋆
i )−V ⋆)/a2

n
Ṽi(an+1x+ x⋆

i ) − V ⋆

a2
n+1

)
1x∈a−1

n+1(Pi−x⋆
i )dx

∣∣∣
≤ a−d−2

n+1

∫
B(x⋆

i ,r)c
e−2(V (x)−V ⋆)/a2

n(V (x) − V ⋆)1x∈Pidx

+
∫

B(0,r/an+1)c
e−2(Ṽi(an+1x+x⋆

i )−V ⋆)/a2
n
Ṽi(an+1x+ x⋆

i ) − V ⋆

a2
n+1

1x∈a−1
n+1(Pi−x⋆

i )dx.

The second integral converges to 0 by dominated convergence by similar arguments as for I2.
Moreover we have for every x ∈ B(x⋆

i , r)c ∩ Pi, V (x) − V ⋆ ≥ ε for some ε > 0 and then for n
such that an ≤ A/

√
2:

a−d−2
n+1

∫
B(x⋆

i ,r)c
e−2(V (x)−V ⋆)/a2

n(V (x) − V ⋆)1x∈Pidx

≤ Ca−d−2
n+1

∫
B(x⋆

i ,r)c
e−2(V (x)−V ⋆)/a2

n |x− x⋆
i |21x∈Pidx

≤ Ca−d−2
n+1 e−ε/a2

n

∫
B(x⋆

i ,r)c
e−(V (x)−V ⋆)/a2

n |x− x⋆
i |21x∈Pidx

≤ Ca−d−2
n+1 e−ε/a2

n

∫
Rd
e−2(V (x)−V ⋆)/A2 |x− x⋆

i |2dx −→
n→∞

0,

where we used that (x 7→ |x|2e−2(V (x)−V ⋆)/A2) ∈ L1(Rd). Then we obtain that I3 converges to
Ĩ3, which proves (2.12.4). Then we have

1 −M−1
n =

Z−1
an

− Z−1
an+1

Z−1
an

≤ C
an − an+1

an
≤ C

n log(n) .

On the other hand, if X ∼ νan+1 , X̃ ∼ νan+1 , Y ∼ νan and X, X̃ and Y are mutually independent
then∣∣∣E|X − Y | − E|X − X̃|

∣∣∣
=
∣∣∣ad

n+1Zana
d
n+1Zan+1

m⋆∑
i,j=1

∫ ∫
an+1|x− y|e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n+1
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· e−2(V (an+1y+x⋆
i )−V ⋆)/a2

n · 1x∈a−1
n+1(Pi−x⋆

i )1y∈a−1
n+1(Pj−x⋆

i )dxdy

− (ad
n+1Zan+1)2

m⋆∑
i,j=1

∫ ∫
an+1|x− y|e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n+1

· e−2(V (an+1y+x⋆
i )−V ⋆)/a2

n+11x∈a−1
n+1(Pi−x⋆

i )1y∈a−1
n+1(Pj−x⋆

i )dxdy
∣∣∣

= a2d+1
n+1 Zan+1

m⋆∑
i,j=1

∫ ∫
|x− y|e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n+1

·
∣∣∣Zane

−2(V (an+1y+x⋆
i )−V ⋆)/a2

n − Zan+1e
−2(V (an+1y+x⋆

i )−V ⋆)/a2
n+1
∣∣∣

· 1x∈a−1
n+1(Pi−x⋆

i )1y∈a−1
n+1(Pj−x⋆

i )dxdy

≤ an+1
(
a2d

n+1Z2
an+1

) m⋆∑
i,j=1

∫ ∫
|x− y|e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n+1

·
∣∣∣e−2(V (an+1y+x⋆

i )−V ⋆)/a2
n − e−2(V (an+1y+x⋆

i )−V ⋆)/a2
n+1
∣∣∣1x∈a−1

n+1(Pi−x⋆
i )1y∈a−1

n+1(Pj−x⋆
i )dxdy

+ an+1
(
a2d

n+1Z2
an+1

) m⋆∑
i,j=1

∫ ∫
|x− y|e−2(V (an+1x+x⋆

i )−V ⋆)/a2
n+1e−2(V (an+1y+x⋆

i )−V ⋆)/a2
n

·
∣∣∣∣∣1 − Zan

Zan+1

∣∣∣∣∣1x∈a−1
n+1(Pi−x⋆

i )1y∈a−1
n+1(Pj−x⋆

i )dxdy.

So using (2.12.5), dominated convergence as for the proof of (2.12.3), (2.12.3) itself with (2.4.9)
and the bound for 1 − Zan/Zan+1 = 1 −M−1

n we have

lim sup
n→∞

[
n log3/2(n)

∣∣∣E|X − Y | − E|X − X̃|
∣∣∣]

≤ C
m⋆∑
i=1

∫ ∫
|x− y|e−x⊤∇2V (x⋆

i )xe−y⊤∇2V (x⋆
i )y
(
1 + y⊤∇2V (x⋆

i )y
)
dxdy.

So that using Lemma 2.4.5 and the fact that E|X − X̃| is of order an we have

W1(νan , νan+1) ≤ E|X − Y | − 1
Mn

E|X − X̃|

≤ E|X − Y | − E|X − X̃| + C

n log(n)E|X − X̃| ≤ C

n log3/2(n)
.

The proof for the second claim is similar.

2.12.2 Proof of Proposition 2.7.3

Proof. As in the proof of [PP23, Proposition 3.5], we split |E[g(Ȳ x
γ,u)] − E

[
g(Xx,n

γ )
]

| into four
terms A1, A2, A3 and A4, that is, by the Taylor formula, for every y, z ∈ Rd,

g(z) − g(y) = ⟨∇g(y)|z − y⟩ +
∫ 1

0
(1 − u)∇2g (uz + (1 − u)y) du(z − y)⊗2.

For a given x ∈ Rd, it follows that

g(z) − g(y) = ⟨∇g(x)|z − y⟩ + ⟨∇g(y) − ∇g(x)|z − y⟩
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+
∫ 1

0
(1 − u)∇2g (uz + (1 − u)y) (z − y)⊗2du

= ⟨∇g(x)|z − y⟩ + ⟨∇2g(x)(y − x)|z − y⟩

+
∫ 1

0
(1 − u)∇3g(uy + (1 − u)x)(y − x)⊗2(z − y)du

+
∫ 1

0
(1 − u)∇2g (uz + (1 − u)y) du(z − y)⊗2.

Applying this expansion with y = Xx,n
γ and z = Ȳ x

γ,u, this yields:

E[g(Ȳ x
γ,u) − g(Xx,n

γ )] = ⟨∇g(x)|E[Ȳ x
γ,u −Xx,n

γ ]⟩︸ ︷︷ ︸
=:A1

+E
[
⟨∇2g(x)(Xx,n

γ − x)|Ȳ x
γ,u −Xx,n

γ ⟩
]

︸ ︷︷ ︸
=:A2

+ E
[∫ 1

0
(1 − u)∇3g(uXx,n

γ + (1 − u)x)(Xx,n
γ − x)⊗2(Ȳ x

γ,u −Xx,n
γ )du

]
︸ ︷︷ ︸

=:A3

+
∫ 1

0
(1 − u)E

[
∇2g

(
uȲ x

γ,u + (1 − u)Xx,n
γ

)
(Ȳ x

γ,u −Xx,n
γ )⊗2

]
du︸ ︷︷ ︸

=:A4

.

• Term A1: The term A1 is bounded by |∇g(x)| · |E[Ȳ x
γ,u −Xx,n

γ ]|, with

E[Ȳ x
γ,u −Xx,n

γ ] = E
[∫ γ

0
ba(u)(x) − ba(u)(Xx,n

s ))ds
]

+ E
[∫ γ

0
(ba(u)(Xx,n

s ) − ban+1(Xx,n
s ))ds

]
=: A11 +A12.

We have |A12| ≤ γ||Υ||∞(a2
n − a2

n+1) and

|A11| =
∣∣∣∣∫ γ

0

∫ s

0
E
[
∇ba(u)(Xx,n

v )ba(u)(Xx,n
v ) + 1

2∇2ba(u)(Xx,n
v )a2

n+1σσ
⊤(Xx,n

v )
]
dv

∣∣∣∣
≤ Cγ2 sup

v∈[0,γ]
E[V 1/2(Xx,n

v )] ≤ Cγ2V 1/2(x),

where we used that |∇ba| ≤ C and ∥∇2ba∥ ≤ CV 1/2 because we assumed ∥∇3V ∥ ≤ CV 1/2 and
∥∇3(σσ⊤)∥ ≤ CV 1/2.

• Term A2: We have:

|A2| ≤
∑

1≤i,j≤d

|∂ijg(x)||E[(Xx,n
γ − x)i(Xx,n

γ − Ȳ x
γ,u)j ]|

and we have

E[(Xx,n
γ − x)i(Xx,n

γ − Ȳ x
γ,u)j ] = E[(Xx,n

γ − Ȳ x
γ,u)i(Xx,n

γ − Ȳ x
γ,u)j ] + E[(Ȳ x

γ,u − x)i(Xx,n
γ − Ȳ x

γ,u)j ].

Using Lemma 2.7.2, the first term of the right-hand side is bounded by C(V 1/2(x)γ + √
γ(an −

an+1))2 and in the second term we write (Ȳ x
γ,u − x)i =

(
γba(u)(x) + γζk+1(x) + a(u)σ(x)Wγ

)
i

and we have

|E[(γba(u)(x) + γζk+1(x))i(Xx,n
γ − Ȳ x

γ,u)j ]| ≤ γV 1/2(x)(V 1/2(x)γ + √
γ(an − an+1))

and using that the increments of ζ and W are independent,

|E[(a(u)σ(x)Wγ)i (γζk+1(x))j ]| = 0
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and using the Itō isometry:∣∣∣∣E [(a(u)σ(x)Wγ)i

(∫ γ

0
(ban+1(Xx,n

s ) − ban+1(x) + ban+1(x) − ba(u)(x))jds

+
∫ γ

0
((an+1σ(Xx,n

s ) − an+1σ(x) + an+1σ(x) − a(u)σ(x))dWs)j

)]∣∣∣∣
≤ C[b]Lip

∫ γ

0
||Wγ ||2||Xx,n

s − x||2ds+ C(a2
n − a2

n+1)||Wγ ||1γ||Υ||∞

+ C

∣∣∣∣∣
d∑

k=1

∫ γ

0
E[σik(x)(σjk(Xx,n

s ) − σjk(x)]ds
∣∣∣∣∣+ C(an − an+1)E[W 2

γ ]

≤ CV 1/2(x)γ2 + C(an − an+1)γ3/2 + CV 1/2(x)γ2 + C(an − an+1)γ,

where we used an argument similar to A11 to bound the third term, using that ∇σ and ∇2σ are
bounded.

• Term A3: Using the three fold Cauchy-Schwarz inequality, Lemma 2.6.3 and Lemma 2.7.2,
A3 is bounded by

C

∣∣∣∣∣
∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
||∇3g(ξ)||

∣∣∣∣∣
∣∣∣∣∣
4

V (x)γ
(
V 1/2(x)γ + √

γ(an − an+1)
)
.

• Term A4: Using Lemma 2.7.2, A4 is bounded by

C
(
V 1/2(x)γ + √

γ(an − an+1)
)2
∣∣∣∣∣∣
∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Ȳ x
γ,u)

||∇2g(ξ)||

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

2.12.3 Proof of Theorem 2.2.4

Proof. We remark that according to Proposition 4.3.1, for all κ > 0 we have e−κg ∈ L1(Rd). We
first prove that

W1(νan , νan+1) ≤ C

n log1+αmin(n)
, (2.12.6)

so that (W1(νan , νan+1)) is still a converging Bertrand series. To do so, we directly adapt the
proof of Proposition 2.4.4, replacing the change of variables in the integrals in ax by the change
of variables in B · (a2α1x1, . . . , a

2αdxd). Still using (2.12.5), we successively obtain

Z−1
a ∼

a→0
a2α1+···+2αd

∫
Rd
e−2g(x)dx

Z−1
an

− Z−1
an+1 ≤ 4a2α1+···+2αd−1

n+1 (an − an+1)
∫
Rd
e−2g(x)g(x)dx

1 −M−1
n ≤ C

n log(n)∣∣∣E|X − Y | − E|X − X̃|
∣∣∣ ≤

Ca2αmin
n+1

n log(n) .

Then, using (2.12.6) we prove that W1(νn, ν
⋆) ≤ Ca2αmin

n the same way as in Lemma 2.4.6.
The next parts of the proof are the same as for the definite positive case.
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2.12.4 Proof of Theorem 2.5.1

To prove Theorem 2.8.1, we proceed as for the proof of Theorem 2.2.1.
In the following, for γ > 0 we denote by (X̄x,n,γ

t )t∈[0,γ] the Euler-Maruyama scheme over
one step with coefficient an+1. We first recall [PP23, Lemma 3.4(b), Proposition 3.5(a)] giving
bounds for the weak and strong errors for the one-step Euler-Maruyama scheme, which do not
depend on the ellipticity parameter an.
Lemma 2.12.1. Let p ≥ 1 and let γ̄ > 0. There exists C > 0 such that for every n ≥ 0, for
every γ ∈ (0, γ̄] and every t ∈ [0, γ]:

||Xx,n
t − X̄x,n,γ

t ||p ≤ CV 1/2(x)t.
Proposition 2.12.2. Let γ̄ > 0. Then for every g : Rd → R being C3 and for every 0 ≤ γ ≤
γ′ ≤ γ̄: ∣∣∣E [g(X̄x,n,γ′

γ )
]

− E
[
g(Xx,n

γ )
]∣∣∣ ≤ CV 3/2(x)γ2Φg(x),

where

Φg(x) = max

|∇g(x)|, ||∇2g(x)||,

∣∣∣∣∣∣
∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,X̄x,n,γ′
γ )

||∇2g(ξ)||

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

∣∣∣∣∣
∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
||∇3g(ξ)||

∣∣∣∣∣
∣∣∣∣∣
4

 .
Proposition 2.12.3. Let T , γ̄ > 0. Then for every Lipschitz continuous function f : Rd → R,
for every n ≥ 0 and every t ∈ (0, T ] and every 0 ≤ γ ≤ γ′ ≤ γ̄:∣∣∣E [Ptf(X̄x,n,γ′

γ )
]

− E
[
Ptf(Xx,n

γ )
]∣∣∣ ≤ Ca−3

n [f ]Lipγ
2t−1V 2(x).

Proof. The proof is the same as in [PP23, Proposition 3.6]. When applying [PP23, Proposition
3.2(b)], we remark that the lowest exponent of

¯
σ0 is −3.

Moreover, by the same proof as in Lemma 2.7.1 we get
supm≥k+1 EV p(X̄x,n

Γm−Γk
) ≤ CV p(x).

We now prove Theorem 2.8.1.

Proof. Let us write:
W1([X̄x0

Tn
], ν⋆) ≤ W1([X̄x0

Tn
], [Xx0

Tn
]) + W1([Xx0

Tn
], ν⋆).

Temporarily setting x̄n := X̄x0
Tn

and xn := Xx0
Tn

, we have

W1([X̄x0
Tn+1

], [Xx0
Tn+1

]) = W1([X̄ x̄n,n
Tn+1−Tn

], [Xxn,n
Tn+1−Tn

])

≤ W1([X̄ x̄n,n
Tn+1−Tn

], [X x̄n,n
Tn+1−Tn

]) + W1([X x̄n,n
Tn+1−Tn

], [Xxn,n
Tn+1−Tn

]),
and we find a bound on the first term using the same proof as in [PP23, Section 4.2]. For
x ∈ Rd, we split |Ef(X̄x,n

Tn+1−Tn
) − Ef(Xx,n

Tn+1−Tn
)| into three terms (a), (b) and (c). We however

pay attention to the dependence in an when applying Lemma 2.12.1, Proposition 2.12.3 and
Theorem 2.4.2. We then have:

(c) ≤ C[f ]LipγN(Tn)V
1/2(x),

(b) ≤ Ca−3
n+1γN(Tn) log

(
T + ||γ||∞
γN(Tn)

)
,

(a) ≤ Ca−3
n+1e

C1a−2
n+1V (x)γN(Tn)ρ

−1
n+1.

Then we establish a recursive relation and prove the convergence as in the proof of Theorem
2.2.1.
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Chapter 3
Convergence of Langevin-Simulated
Annealing algorithms with multiplicative
noise II: Total Variation

The results presented in this chapter have been published in Monte Carlo Methods
and Applications as a joint work with Gilles Pagès [BP23a].

Abstract

We study the convergence of Langevin-Simulated Annealing type algorithms with
multiplicative noise, i.e. for V : Rd → R a potential function to minimize, we
consider the stochastic differential equation dYt = −σσ⊤∇V (Yt)dt+a(t)σ(Yt)dWt +
a(t)2Υ(Yt)dt, where (Wt) is a Brownian motion, where σ : Rd → Md(R) is an
adaptive (multiplicative) noise, where a : R+ → R+ is a function decreasing to 0
and where Υ is a correction term. Allowing σ to depend on the position brings faster
convergence in comparison with the classical Langevin equation dYt = −∇V (Yt)dt+
σdWt. In a previous paper we established the convergence in L1-Wasserstein distance
of Yt and of its associated Euler scheme Ȳt to argmin(V ) with the classical schedule
a(t) = A log−1/2(t). In the present paper we prove the convergence in total variation
distance. The total variation case appears more demanding to deal with and requires
regularization lemmas.

Keywords– Stochastic Optimization, Langevin Equation, Simulated Annealing,
Neural Networks.

3.1 Introduction

Langevin-based algorithms are used to solve optimization problems in high dimension and have
gained much interest in relation with Machine Learning. The Langevin equation is a Stochastic
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Differential Equation (SDE) which consists in a gradient descent with noise. More precisely, let
V : Rd → R+ be a coercive potential function, then the associated Langevin equation reads

dXt = −∇V (Xt)dt+ σdWt, t ≥ 0,

where (Wt) is a d-dimensional Brownian motion and where σ > 0. Under standard assumptions,
the invariant measure of this SDE is the Gibbs measure νσ2 of density proportional to e−2V (x)/σ2

and for small enough σ, this measure concentrates around argmin(V ) see [Dal17] and Chapter
4. Adding a small noise to the gradient descent allows to explore the space and to escape from
traps such as local minima or saddle points appearing in non-convex optimization problems
[Laz92, DPG+14]. Such methods have been recently brought up to light again with Stochastic
Gradient Langevin Dynamics (SGLD) algorithms [WT11, LCCC16], especially for the deep
learning and the calibration of large artificial neural networks.

The Langevin-simulated annealing SDE is the Langevin equation where the noise parameter
is slowly decreasing to 0, namely

dXt = −∇V (Xt)dt+ a(t)σdWt, t ≥ 0, (3.1.1)

where a : R+ → R+ is non-increasing and converges to 0. The idea is that the "instantaneous" in-
variant measure νa(t)σ which is the Gibbs measure of density ∝ exp(−2V (x)/(a(t)2σ2)) converges
itself to argmin(V ). Although the additive case i.e. where σ is constant has been extensively
studied (see for example [DM17, DM19]), little attention has been paid to the multiplicative
case i.e. where σ : Rd → Md(R) depends on Xt.

The objective of the present paper is to study the convergence in total variation of the
Langevin-Simulated annealing SDE, i.e. (3.1.1) with non-constant σ. Following [PP23, Propo-
sition 2.6], we need to add a correction term in the drift, giving

dYt = −(σσ⊤∇V )(Yt)dt+ a(t)σ(Yt)dWt +

a2(t)

 d∑
j=1

∂j(σσ⊤)(Yt)ij


1≤i≤d

 dt, (3.1.2)

a(t) = A√
log(t+ e)

, (3.1.3)

so that νa(t) is still the the "instantaneous" invariant measure. We also study the convergence of
its Euler-Maruyama scheme Ȳt with decreasing steps and with noisy gradient estimates coming
from stochastic gradient algorithms. We assume in particular the convex uniformity of the
potential V outside a compact set (but we do not assume that the potential is convex) and the
ellipticity and the boundedness of σ.

We studied this SDE and proved the convergence in L1-Wasserstein distance of Y and Ȳ
to ν⋆ which is the limit measure of νa as a → 0, in a previous chapter, see Chapter 2. More
precisely, we proved that W1(Yt, ν

⋆) is of order a(t) as t → ∞ and that W1(Yt, ν(a(t))) is of
order t−α for every α ∈ (0, 1). For more details, we refer to the introduction of Chapter 2. In
particular, for applications to optimization problems arising in Stochastic Optimization and in
Machine Learning and for choices of σ : Rd → Md(R) used by practitioners, we refer to Section
2.3.

The proof for the total variation distance case relies on the same strategy developed in
Chapter 2. We first introduce the process X where the coefficient (a(t)) is "by plateaux"
i.e. non-increasing and piecewise constant on time intervals [Tn, Tn+1]. Then we give bounds
on dTV(Xt, Yt) using a domino strategy (2.1.4). However the main difference with the L1-
Wasserstein distance concerns the total variation distance between X and Y in small time as in
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general, it is more difficult to give bounds in small time for the total variation distance between
two processes with close coefficients. Indeed, considering the functional characterization and
comparing it with the L1-Wasserstein distance, if x and y ∈ Rd are close to each other and if
f : Rd → R is Lipschitz-continuous, then we can bound |f(x) − f(y)| by [f ]Lip|x − y|; however
if f is measurable bounded, then we cannot directly bound |f(x) − f(y)| in terms of |x − y|.
Instead, the common strategy of proof in the literature is to use Malliavin calculus in order to
perform an integration by parts and to use bounds on the derivatives of the density. In this
context, [PP23] relies on a highly technical Malliavin approach inducing a "regularization from
the past" (see [PP23, Theorem 3.7 and Appendix B]).

We give bounds in small time relying on Chapter 8 and we adapt some of the proofs to
the non-homogeneous Markovian setting. These bounds rely on estimates of the density of the
solutions to SDE’s and their derivatives [Fri64]. The strategy of proof is the following: we first
reduce to the null drift case using a Girsanov change of measure. Then we introduce an artificial
regularization in order to perform a Malliavin-type integration by parts and we use Aronson’s
bounds on the density and its derivatives; we need to pay attention to the dependency in the
parameter a, controlling the ellipticity of the SDE and which converges to 0, of the constants
that appear in the Aronson bounds. Moreover, we rely on [DMR18] to give bounds on the total
variation between two Gaussian laws.

Contrary to the L1-Wasserstein distance, we do not prove the convergence as t → ∞ of Yt

and Ȳt to ν⋆ since in most of the cases, ν⋆ is supported by a finite number of points and then if
Yt has a density then dTV(Yt, ν

⋆) = 2. Instead, we prove the convergence in total variation of Yt

and Ȳt to their "instantaneous invariant measure" νa(t) which itself converges to ν⋆ (in law, for
the L1-Wasserstein distance etc, see for example [Hwa80, Theorem 2.1] and Lemma 2.4.6 and
we give bounds on dTV(Yt, νa(t)) and on dTV(Ȳt, νa(t)) as t → ∞.

The paper is organized as follows. In Section 3.2 we give the setting and assumptions of
the problem we consider and state our main results of convergence with convergence rates.
This setting is the same as in Chapter 2. In Section 3.3 we establish bounds in small time
for dTV(Xt, Yt) and for dTV(Xt, Ȳt), inspired from Chapter 8. In Section 3.4, we prove the
convergence of the plateaux SDE X using exponential contraction properties. Using this con-
vergence, the convergences of dTV(Yt, νa(t)) and dTV(Ȳt, νa(t)) are proved in Section 3.5 and 3.6
respectively. In section 3.7 we compare additive and multiplicative Langevin algorithms on a
numerical optimization problem and we give numerical evidence that multiplicative Langevin
algorithms improve the optimization procedure.

We use the notations defined from page 1.

3.2 Assumptions and main results

3.2.1 Assumptions

Let us briefly recall the setting adopted in Chapter 2. Let V : Rd → (0,+∞) be a C2 potential
function such that V is coercive and

(x 7→ |x|2e−2V (x)/A2) ∈ L1(Rd) for some A > 0. (3.2.1)

Then V admits a minimum on Rd. Moreover, let us assume that

V ⋆ := min
Rd

V > 0, argmin(V ) = {x⋆
1, . . . , x

⋆
m⋆}, ∀ i = 1, . . . ,m⋆, ∇2V (x⋆

i ) > 0,

(3.2.2, HV 1)
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i.e. minRd V is attained at a finite number m⋆ of points and at each point the Hessian matrix is
positive definite. We then define for a ∈ (0, A] the Gibbs measure νa of density :

νa(dx) = Zae
−2(V (x)−V ⋆)/a2

dx, Za =
(∫

Rd
e−2(V (x)−V ⋆)/a2

dx

)−1
(3.2.3)

Following [Hwa80, Theorem 2.1], the measure νa converges weakly to ν⋆ as a → 0, where ν⋆ is
the weighted sum of Dirac measures:

ν⋆ =

m⋆∑
j=1

(
det ∇2V (x⋆

j )
)−1/2

−1
m⋆∑
i=1

(
det ∇2V (x⋆

i )
)−1/2

δx⋆
i
. (3.2.4)

Following Lemma 2.4.6, νa also converges to ν⋆ as a → 0 for the L1-Wasserstein distance.

We consider the following Langevin SDE in Rd:

Y x0
0 = x0 ∈ Rd, dY x0

t = ba(t)(Y x0
t )dt+ a(t)σ(Y x0

t )dWt, (3.2.5)

where, for a ≥ 0, the drift ba is given by

ba(x) = −(σσ⊤∇V )(x) + a2

 d∑
j=1

∂j(σσ⊤)ij(x)


1≤i≤d

=: −(σσ⊤∇V )(x) + a2Υ(x), (3.2.6)

where W is a standard Rd-valued Brownian motion defined on a probability space (Ω,A,P),
where σ : Rd → Md(R) is C2 and

a(t) = A√
log(t+ e)

(3.2.7)

where A is defined in (3.2.1) and with log(e) = 1. This equation corresponds to a gradient
descent on the potential V with preconditioning σ and multiplicative noise ; the second term in
the drift (3.2.6) is a correction term (see [PP23, Proposition 2.6]) which is zero for constant σ.

We make the following assumptions on the potential V :

|∇V |2 ≤ CV and sup
x∈Rd

||∇2V (x)|| < +∞, (3.2.8, HV 2)

which implies in particular that V has at most a quadratic growth. Let us also assume that

σ is bounded and Lipschitz-continuous, ∇2σ is bounded, ∇(σσ⊤)∇V is bounded, (3.2.9, Hσ)

and that σ is uniformly elliptic, i.e.

∃
¯
σ0 > 0, ∀x ∈ Rd, (σσ⊤)(x) ≥

¯
σ2

0Id. (3.2.10)

Assumptions (3.2.8, HV 2) and (3.2.9, Hσ) imply that Υ is also bounded and Lipschitz-continuous
and that ba is Lipschitz-continuous uniformly in a ∈ [0, A]. Let the minimal constant [b]Lip be
such that:

∀a ∈ [0, A], ba is [b]Lip-Lipschitz continuous. (3.2.11)

We make the non-uniform dissipative (or convexity) assumption outside of a compact set:
there exists α0 > 0 and R0 > 0 such that

∀x, y ∈ B(0, R0)c,
〈(
σσ⊤∇V

)
(x) −

(
σσ⊤∇V

)
(y), x− y

〉
≥ α0|x− y|2. (3.2.12, Hcf )
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Taking y ∈ B(0, R0)c fixed, letting |x| → ∞ and using the boundedness of σ, (3.2.12, Hcf )
implies that |∇V | is coercive. Using (3.2.8, HV 2) and the boundedness of σ, there exists C > 0
(depending on A) such that:

∀a ∈ [0, A], 1 + |ba(x)| ≤ CV 1/2(x).

Let (γn)n≥1 be a non-increasing sequence of varying positive steps. We define Γn := γ1 +
· · · + γn and for t ≥ 0:

N(t) := min{k ≥ 0 : Γk+1 > t} = max{k ≥ 0 : Γk ≤ t}. (3.2.13)

We make the classical assumptions on the step sequence, namely

γn ↓ 0,
∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞ (3.2.14, Hγ1)

and we also assume that

ϖ := lim sup
n→∞

γn − γn+1
γ2

n+1
< ∞. (3.2.15, Hγ2)

For example, if γn = γ1/n
η with η ∈ (1/2, 1) then ϖ = 0; if γn = γ1/n then ϖ = γ1.

In stochastic gradient algorithms, the true gradient is measured with a zero-mean noise ζ,
which law only depends on the current position. That is, let us consider a family of random
fields (ζn(x))x∈Rd,n∈N such that for every n ∈ N, (ω, x) ∈ Ω × Rd 7→ ζn(x, ω) is measurable
and for all x ∈ Rd, the law of ζn(x) only depends on x and (ζn(x))n∈N is an i.i.d. sequence
independent of W . We make the following assumptions:

∀x ∈ Rd, ∀p ≥ 1, E[ζ1(x)] = 0 and E[|ζ1(x)|p] ≤ CpV
p/2(x). (3.2.16)

We then consider the Euler-Maruyama scheme with decreasing steps associated to (Yt):

Ȳ x0
0 = x0, Ȳ x0

Γn+1
= ȲΓn + γn+1

(
ba(Γn)(Ȳ x0

Γn
) + ζn+1(Ȳ x0

Γn
)
)

+ a(Γn)σ(Ȳ x0
Γn

)(WΓn+1 −WΓn),
(3.2.17)

We extend Ȳ x0
· on R+ by considering its genuine continuous interpolation:

∀t ∈ [Γn,Γn+1), Ȳ x0
t = Ȳ x0

Γn
+ (t− Γn)

(
ba(Γn)(Ȳ x0

Γn
) + ζn+1(Ȳ x0

Γn
)
)

+ a(Γn)σ(Ȳ x0
Γn

)(Wt −WΓn).
(3.2.18)

3.2.2 Main results

Theorem 3.2.1. (a) Let Y be defined in (3.2.5). Assume (3.2.2, HV 1), (3.2.8, HV 2), (3.2.9, Hσ),
(3.2.10) and (3.2.12, Hcf ). Then, for every α ∈ (0, 1), if A is large enough, then for every
x0 ∈ Rd and for every t > 0:

dTV
(
Y x0

t , νa(t)
)

≤ CeC
√

log(t)(1+|x0|2)t−α. (3.2.19)

(b) Let Ȳ be defined in (3.2.17). Assume (3.2.2, HV 1), (3.2.8, HV 2), (3.2.9, Hσ), (3.2.10) and
(3.2.12, Hcf ). Assume furthermore that σ ∈ C2r

b . Assume furthermore (3.2.14, Hγ1) and
(3.2.15, Hγ2), that V is C3 with ∥∇3V ∥ ≤ CV 1/2 and that σ is C3 with ∥∇3(σσ⊤)∥ ≤
CV 1/2. Then, for every α ∈ (0, 1), if A is large enough, then for every x0 ∈ Rd and for
every t > 0:

dTV
(
Ȳ x0

t , νa(t)
)

≤ C

(
log1/2(t) max

[
V 2(x0), 1 + |x0|

]
t−α + eC

√
log(t)(1+|x0|2)tC/A2

γ
r/(2r+1)
N(Ct)

)
.

(3.2.20)
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Remark 3.2.2. Depending on the step sequence (γn), we can compare the two terms arising in
the right-hand side of (3.2.20). For example, if γn = γ1n

−η for some η ∈ (1/2, 1], then

• If η = 1, then γN(Ct) ≍ e−Ct and the first term is the dominating term.

• If η ∈ (1/2, 1) then γN(Ct) ≍ (Ct)−η/(1−η).

3.2.3 Extensions and interpolations of the processes

Let us define the following processes that will be used as auxiliary tools in the proofs.
• We define (Xt) as the solution the following SDE where the coefficients piecewisely depend

on the time; X is then said to be "by plateaux":

Xx0
0 = x0, dXx0

t = bak+1(Xx0
t )dt+ ak+1σ(Xx0

t )dWt, t ∈ [Tk, Tk+1], (3.2.21)

where ba is defined in (3.2.6) and the time schedule (Tn) is defined by

Tn := C(T )n
1+β, (3.2.22)

where C(T ) > 0, β > 0 and an := a(Tn). More generally, we define (Xx,n
t ) as the solution of

Xx,n
0 = x, dXx,n

t = bak+1(Xx,n
t )dt+ ak+1σ(Xx,n

t )dWt, t ∈ [Tk − Tn, Tk+1 − Tn], k ≥ n,
(3.2.23)

i.e. (Xx,n
t ) has the conditional law of (XTn+t)t≥0 given XTn = x. We have Xx

t = Xx,0
t . The

Markov transition kernel associated to X ·,n denoted PX,n
t reads on Borel functions f : Rd → R+,

PX,n
t f(x) = E[f(Xx,n

t )].

• Considering now the original SDE (3.2.5), we also define for every x ∈ Rd and every fixed
u ≥ 0:

Y x
0,u = x, dY x

t,u = ba(t+u)(Y x
t,u)dt+ a(t+ u)σ(Y x

t,u)dWt, (3.2.24)

so that Y x = Y x
·,0. We define the Markov transition kernel associated to Y between the times t

and t+ u by P Y
t,u such that for all Borel functions f : Rd → R+, P Y

t,uf(x) = E[f(Y x
t,u)].

• Considering finally (3.2.17) and (3.2.18), we define for every n ≥ 0, (Ȳ x
t,Γn

)t≥0, first at times
Γk − Γn, k ≥ n, by

Ȳ x
0,Γn

= x, Ȳ x
Γk+1−Γn,Γn

= Ȳ x
Γk−Γn,Γn

+ γk+1
(
ba(Γk)(Ȳ x

Γk−Γn,Γn
) + ζk+1(Ȳ x

Γk−Γn,Γn
)
)

+ a(Γk)σ(Ȳ x
Γk−Γn,Γn

)(WΓk+1 −WΓk
), (3.2.25)

then at every time t by the genuine interpolation on the intervals ([Γk − Γn,Γk+1 − Γn))k≥n as
before. In particular Ȳ x = Ȳ x

·,0. Still more generally, we define Ȳ x
t,u where u ∈ (Γn,Γn+1) as

Ȳ x
0,u = x, Ȳ x

t,u =

 x+ t(ba(x) + ζn+1(x)) + a2(u)σ(x)(Wt −WΓu) if t ∈ [u,Γn+1]

= Ȳ
Ȳ x

Γn+1−u,u

t−(Γn+1−u),Γn+1
if t > Γn+1.

For n, k ≥ 0, for u ∈ [Γk,Γk+1) and γ ∈ [0,Γk+1 − u], let P Ȳ
γ,u be the Markov transition

kernel associated to Ȳ·,u between the times 0 and γ i.e. for all Borel functions f : Rd → R+,
P Ȳ

γ,uf(x) = E[f(Ȳ x
γ,u)].
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3.3 Bounds in total variation for small t

In this section we give bounds for the total variation distance between the processes X, Y and Ȳ .
Although such bounds are straightforward for Lp-distances, they are more difficult to establish
for dTV. To this end we adopt a strategy similar to Chapter 8.

For x ∈ Rd and for a ∈ R+ we define the "cut" drift b̃x
a : Rd → Rd which is the drift ba

which is null outside a compact set centred on x. More precisely, we choose R > 0 and we
consider a C∞ decreasing function ψ : R+ → R+ such that ψ = 1 on [0, R2] and ψ = 0 on
[(R+ 1)2,∞) and we define b̃x

a(y) := ba(y)ψ(|y−x|2), so that |b̃x
a| is bounded by C(1 + |x|) since

ba is Lipschitz-continuous.
For σ : Rd → Md(R), we denote the martingale:

M(σ)x
0 = x, dM(σ)x

t = σ(M(σ)x
t )dWt (3.3.1)

with its associated one-step Euler-Maruyama scheme:

M̄(σ)x
t = x+ σ(x)Wt. (3.3.2)

Lemma 3.3.1. Let Z be solution of the following SDE:

dZx
t = u(t)σZ (Zx

t )dWt,

where u : R+ → (0,∞) is C1 and bounded. Then (Zt) ∼ (M(σ)F (−1)(t)), where F : R+ → R+ is
solution of the differential equation

F (0) = 0, F ′(t) = 1
u2(F (t))

and where F (−1) denotes the (continuous) inverse function of F .

Proof. First, F is well defined and is strictly increasing with F (t) → ∞ as t → ∞ since u is
bounded, so that F (−1) : R+ → R+ is well defined as well. We have

d
(
Zx

F (t)

)
= u(F (t))σZ (Zx

F (t))d
(
WF (t)

)
= F ′(t)1/2u(F (t))σZ (Zx

F (t))dW̃t = σZ (Zx
F (t))dW̃t.

where W̃ is the Brownian motion defined by W̃t =
∫ t

0(F ′(s))−1/2dWF (s).

3.3.1 Total variation bound in small time for the Euler-Maruyama scheme

Proposition 3.3.2. Assume that σ ∈ C2r
b . There exists C > 0 such that for every n, k ≥ 0, for

every u ∈ [Γk,Γk+1) and every t > 0 such that u ∈ [Tn, Tn+1], t ≤ Γk+1−u and u+t ∈ [Tn, Tn+1],

dTV(Xx,n
t , Ȳ x

t,u) ≤ CeCa−1
n+1(1+|x|2)tr/(2r+1) + Ca−2

n (an − an+1). (3.3.3)

Proof. We apply a strategy of proof similar to Theorem 8.2.2. However we need to pay attention
to the dependency of the constants in the bounds in (an). Let us write

dTV(Xx,n
t , Ȳ x

t,u) ≤ dTV(Xx,n
t , X̃x,n

t ) + dTV(X̃x,n
t , Zx,n

t ) + dTV(Zx,n
t , Z̄x,n

t )
+ dTV(Z̄x,n

t , X̄x,n
t ) + dTV(X̄x,n

t , Ȳ x
t,u), (3.3.4)

where

X̃x,n
0 = x, dX̃x,n

t = b̃x
an+1(X̃x,n

t )dt+ an+1σ(X̃x,n
t )dWt,
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Zx,n
0 = x, dZx,n

t = an+1σ(Zx,n
t )dWt,

Z̄x,n
0 = x, Z̄x,n

t = x+ an+1σ(x)Wt.

• Using Lemma 8.3.3, we have

dTV(Xx,n
t , X̃x,n

t ) ≤ C(1 + |x|2)t,

where the constant C does not depend on n.
• We use [QZ04, Theorem 2.4] and we rework the bound from Lemma 8.3.6 to make explicit

the dependency in an. Reworking Lemma 8.3.5, we have for q ≥ 1:

E
[
sups∈[0,t] |Ux,n

s |2q
]

≤ CeCqa−1
n+1(1+|x|2), (3.3.5)

Ux,n
0 = 1, dUx,n

s = a−1
n+1U

x,n
s

〈
σ−1(Zx,n

s )b̃x
an+1(Zx,n

s ), dWs

〉
.

Moreover, following Lemma 3.3.1 we have (Zx,n
t ) ∼ (M(σ)x

F (−1)(t)) where the process (M(σ)t)
does not depend on n and where F (−1)(t) = a2

n+1t. Thus following [Fri64, Chapter 9, Theorem
7] (also see Theorem 8.3.1 for the application to SDE’s) and since σ ∈ C2

b we have

|∇xpM(σ)(t, x, y)| ≤ C

t(d+1)/2 e
−c|y−x|2/t (3.3.6)

and then

|∇xpZ (t, x, y)| = |∇xpM(σ)(a
2
n+1t, x, y)| ≤

Ca
−(d+1)
n+1

t(d+1)/2 e−ca−2
n+1|y−x|2/t ≤

Ca
−(d+1)
n+1

t(d+1)/2 e−c|y−x|2/t.

Then using Lemma 8.3.6 with the adapted bound on Ux,n
s (3.3.5) along with [QZ04, Theorem

2.4], we obtain
dTV(X̃x,n

t , Zx,n
t ) ≤ CeCa−1

n+1(1+|x|2)t1/2. (3.3.7)

The same way, we obtain

dTV(Z̄x,n
t , X̄x,n

t ) ≤ CeCa−1
n+1(1+|x|2)t1/2.

• Following Lemma 3.3.1, we have (Zx,n
t ) ∼ (M(σ)x

a2
n+1t

) and (Z̄x,n
t ) ∼ (M̄(σ)x

a2
n+1t

), where
both processes M(σ) and M̄(σ) do not depend on n. We then use Theorem 8.2.2 to get

dTV(M(σ)x
t , M̄(σ)x

t ) ≤ CeC|x|2tr/(2r+1)

which implies

dTV(Zx,n
t , Z̄x,n

t ) ≤ CeC|x|2a
2r/(2r+1)
n+1 tr/(2r+1) ≤ CeC|x|2tr/(2r+1).

• Let us now investigate dTV(X̄x,n
t , Ȳ x

t,u). Conditionally to ζ(x), both random vectors are
Gaussian vectors with

X̄x,n
t ∼ N

(
x+ tban+1(x), a2

n+1tσσ
⊤(x)

)
, Ȳ x

t,u ∼ N
(
x+ tba(u)(x) + tζ(x), a2(u)tσσ⊤(x)

)
.

Then, conditionally to ζ(x) we have

dTV(X̄x,n
t , Ȳ x

t,u)
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≤ dTV
(
N
(
x+ tban+1(x), a2

n+1tσσ
⊤(x)

)
,N

(
x+ tba(u)(x) + tζ(x), a2

n+1tσσ
⊤(x)

))
+ dTV

(
N
(
x+ tba(u)(x) + tζ(x), a2

n+1tσσ
⊤(x)

)
,N

(
x+ tba(u)(x) + tζ(x), a2(u)tσσ⊤(x)

))
=: D1 +D2.

We then refer to [DMR18] which gives bounds on the total variation between two Gaussian laws,
first in the case d > 1. Using [DMR18, Theorem 1.1] with λ1 = · · · = λd = (a(u)2 −a2

n+1)/a2
n+1,

we have

D2 ≤ C

(
a2(u) − a2

n+1
a2

n+1

)
≤ Ca−1

n (an − an+1).

Using [DMR18, Theorem 1.2], since the ρi’s are bounded independently of n and since for every
y ∈ Rd, y⊤σσ⊤(x)y ≥

¯
σ2

0|y|2, we have

D1 ≤ C
√
ta−1

n+1(1 + |ζ(x)|1/2).

Now, integrating over the law of ζ(x) and using that E|ζ(x)| ≤ CV (x), we obtain

dTV(X̄x,n
t , Ȳ x

t,u) ≤ Ca−1
n (an − an+1) + C

√
t(1 + V 1/2(x)).

In the case d = 1, we use [DMR18, Theorem 1.3] and obtain the same bounds.
• Conclusion: Considering (3.3.4), we get

dTV(Xx,n
t , Ȳ x

t,u) ≤ C(1 + |x|2)t+ CeCa−1
n+1(1+|x|2)t1/2 + CeC|x|2tr/(2r+1)

+ Ca−1
n (an − an+1) + C

√
t(1 + V 1/2(x))

≤ CeCa−1
n+1(1+|x|2)tr/(2r+1) + Ca−1

n (an − an+1).

3.3.2 Total variation bound in small time for the continuous SDE

Proposition 3.3.3. Assume that σ ∈ C2r
b and let γ̄ > 0. There exists C > 0 such that for all

ε > 0, n ≥ 0, u, t ≥ 0 such that u ∈ [Tn, Tn+1], u+ t ∈ [Tn, Tn+1] and t ≤ γ̄,

dTV(Xx,n
t , Y x

t,u) ≤ CeCa−1
n+1(1+|x|2)t1/2 + Ca

−(d+r)
n+1 (a(u) − an+1)2r/(2r+1). (3.3.8)

Proof. We have

dTV(Xx,n
t , Y x

t,u) ≤ dTV(Xx,n
t , X̃x,n

t ) + dTV(X̃x,n
t , Zx,n

t ) + dTV(Zx,n
t , Z̃x

t,u)
+ dTV(Z̃x

t,u, Ỹ
x

t,u) + dTV(Ỹ x
t,u, Y

x
t,u) (3.3.9)

where

dX̃x,n
t = b̃x

an+1(X̃x,n
t )dt+ an+1σ(X̃x,n

t )dWt,

dZx,n
t = an+1σ(Zx,n

t )dWt,

dZ̃x
t,u = a(u+ t)σ(Z̃x

t,u)dWt,

dỸ x
t,u = b̃x

a(u+t)(Ỹ x
t,u)dt+ a(u+ t)σ(Ỹ x

t,u)dWt.

Using Lemma 8.3.3, we have

dTV(Xx,n
t , X̃x,n

t ) + dTV(Ỹ x
t,u, Y

x
t,u) ≤ C(1 + |x|2)t.
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Using (3.3.7) again, we have

dTV(X̃x,n
t , Zx,n

t ) ≤ CeCa−1
n+1(1+|x|2)t1/2.

Moreover, using [QZ04, Theorem 2.4] (with an immediate adaptation to the non-homogeneous
case) and establishing the same bounds as in Lemma 8.3.6, we also have

dTV(Z̃x
t,u, Ỹ

x
t,u) ≤ CeCa−1

n+1(1+|x|2)t1/2. (3.3.10)

We now turn to dTV(Zx,n
t , Z̃x

t,u). Using Lemma 3.3.1 as in (3.3.6) we have

|∇2r
y pZ (t, x, y)| = |∇2r

y pM(σ)(a
2
n+1t, x, y)| ≤ C

a
−(d+r)
n+1
t(d+r)/2 e

−c|x−y|2/t.

To bound p
Z̃

we use the change of time F satisfying F ′(t) = a−2(u+ F (t)) so that

a−2
n t ≤ F (t) ≤ a−2

n+1t and a2
n+1t ≤ F (−1)(t) ≤ a2

nt

and then

|∇2r
y p

Z̃
(t, x, y)| = |∇2r

y pM(σ)(F
(−1)(t), x, y)| ≤ C

a
−(d+r)
n+1
t(d+r)/2 e

−c|x−y|2/t.

We prove as in Lemma 2.6.2 that

∥Zx,n
t − Z̃x

t,u∥1 ≤ C(a(u) − an+1)t1/2

and then using Theorem 8.2.7 we get

dTV(Zx,n
t , Z̃x

t,u) ≤ Ca
−(d+r)
n+1 (a(u) − an+1)2r/(2r+1).

• Conclusion: considering (3.3.9), we get

dTV(Xx,n
t , Y x

t,u) ≤ C(1 + |x|2)t+ CeCa−1
n+1(1+|x|2)t1/2 + Ca

−(d+r)
n+1 (a(u) − an+1)2r/(2r+1).

Remark 3.3.4. As in Theorem 8.2.5, we could improve the dependency in |x| in (3.3.3) and
(3.3.8), at the expanse of further assumptions on V . However it would require to track the
dependency in the ellipticity (in an) in the bounds proved in [MPZ21], which rely on Malliavin
calculus. We believe that it would considerably increase the length and the technicality of the
present article, while bringing no significant improvement to our final results.

3.4 Convergence of the plateau SDE Xt in total variation

In this section, we prove the convergence of the plateau SDE (Xt) defined in (3.2.21).

3.4.1 Exponential contraction in total variation

We first show that the property of exponential contraction that holds for the L1-Wasserstein
distance under the setting described in Section 3.2.1 (see Theorem 2.4.2) also holds for the total
variation distance.
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Theorem 3.4.1. Let X be the solution to

Xx
0 = x, dXx

t = ba(Xx
t )dt+ aσ(Xx

t )dWt, (3.4.1)

with a ∈ (0, A] and where ba is defined in (3.2.6), so that νa defined in (3.2.3) is the unique
invariant distribution of X ([PP23, Proposition 2.6]). Let t0 ∈ (0, 1]. Under the assumption
(3.2.12, Hcf ),

(a) For every x, y ∈ Rd and for every t ≥ t0 we have

dTV(Xx
t , X

y
t ) ≤ Ca−1eC1/a2

e−ρat|x− y|, ρa := e−C2/a2
. (3.4.2)

(b) For every x ∈ Rd and for every t ≥ t0 we have

dTV(Xx
t , νa) ≤ Ca−1eC1/a2

e−ρatνa(|x− ·|). (3.4.3)

Proof. (a) Following Theorem 2.4.2, we have

∀x, y ∈ Rd, W1 (Xx
t , X

y
t ) ≤ CeC1/a2 |x− y|e−ρat.

Let t ≥ t0 and let f : Rd → R a Borel bounded function. Then

E[f(Xx
t )] − E[f(Xy

t )] = E[PX
t0 f(Xx

t−t0)] − E[PX
t0 f(Xx

t−t0)],

where PX denotes the kernel associated to X. But using [PP23, Proposition 3.1] we have for
every z1 and z2 ∈ Rd,

PX
t0 f(z2) − PX

t0 f(z1) = ⟨∇PX
t0 f(ξ), z2 − z1⟩

= 1
t0
E
[
f(Xξ

t )
〈∫ t0

0
(a−1σ−1(Xξ

s )Y ξ
s )⊤dWs, z2 − z1

〉]
,

where ξ ∈ (z1, z2) and (Y ξ
s )s≥0 denotes the tangent process of (Xξ

s ), i.e.

Y ξ
0 = Id, dY ξ

s = ∇ba(Xξ
s )Y ξ

s ds+ a∇σ(Xξ
s )Y ξ

s ⊗ dWs. (3.4.4)

Since ∇σ and ∇ba are bounded (uniformly in a), we have

supξ∈Rd,s∈[0,t0] E∥Y ξ
s ∥2

2 < +∞,

where the bound does not depend on a. So that

PX
t0 f(z2) − PX

t0 f(z1) ≤ C||f ||∞|z2 − z2|a−1 sup
ξ∈Rd,s∈[0,t0]

E∥Y ξ
s ∥2,

and then [PX
t0 f ]Lip ≤ Ca−1∥f∥∞. Then we obtain

dTV(Xx
t , X

y
t ) ≤ Ca−1W1(Xx

t−t0 , X
y
t−t0) ≤ Ca−1eC1/a2

e−ρat|x− y|.

(b) As νa is the invariant distribution of the diffusion (3.4.1) we have

dTV (Xx
t , νa) ≤

∫
Rd

dTV (Xx
t , X

y
t ) νa(dy) ≤ CeC1/a2

e−ρat
∫
Rd

|x− y|νa(dy)

≤ CeC1/a2
e−ρatνa(|x− ·|).
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3.4.2 Convergence of the plateau SDE

Let (Tn) be the time schedule defined in (3.2.22) and by a slight abuse of notation we define

an := a(Tn) = A√
log(Tn + e)

and ρn := ρan = e−C2/a2
n . (3.4.5)

We recal Lemma 2.4.3:
0 ≤ an − an+1 ≍ (n log3/2(n))−1. (3.4.6)

Proposition 3.4.2. Let νa, a ∈ (0, A], be the Gibbs measure defined in (3.2.3). Assume that V
is coercive, that (x 7→ |x|2e−2V (x)/A2) ∈ L1(Rd) and (3.2.2, HV 1). Then for n ≥ 2,

dTV(νan , νan+1) ≤ C

n log(n) . (3.4.7)

Moreover, for every s, t ∈ [an+1, an], we have

dTV(νs, νt) ≤ C

n log(n) . (3.4.8)

The proof is given in the Appendix 3.8.1.
We now prove the convergence of the SDE "by plateaux" for the total variation distance.

Theorem 3.4.3. Let X be the process defined in (3.2.21) and (3.2.23). Let t0 be defined as
in Theorem 3.4.1. If A > max(

√
(1 + β−1)C2,

√
(1 + β)C1) where C1 and C2 are defined in

(3.4.2), then for all x0 ∈ Rd and for all C ′
(T ) < C(T ), for all large enough n ≥ n(C ′

(T )), on the
time schedule (Tn) we have

dTV(Xx0
Tn
, νan) ≤ Ca−1

n n−1+(β+1)C1/A2 exp
(
−(C ′

(T ))1−C2/A2(β + 1)nβ−(β+1)C2/A2) (1 + |x0|)
(3.4.9)

and for every t ∈ R+ \ (⋃n≥1[Tn, Tn + t0]) we have

dTV(Xx0
t , νa(t)) ≤ C(1 + |x0|)

t(1+β)−1−C1/A2 log(t+ e)
. (3.4.10)

Proof. For fixed x ∈ Rd and using Theorem 3.4.1, we have for every bounded Borel function
f : Rd → R,

E[f(Xx,n
Tn+1−Tn

)] − E[f(Zan+1)] ≤ Ca−1
n+1e

C1/a2
n+1e−ρan+1 (Tn+1−Tn)∥f∥∞E|x− Zan+1 |,

where Zan+1 ∼ νan+1 . Now integrating x with respect to the law of Xx0
Tn

yields

dTV(Xx0
Tn+1

, νan+1) ≤ Ca−1
n+1e

C1/a2
n+1e−ρan+1 (Tn+1−Tn)

(
W1(Xx0

Tn
, νan) + W1(νan+1 , νan)

)
≤ C

a−1
n+1µn+1

n log3/2(n)
(1 + |x0|),

µn := eC1/a2
n+1e−ρan+1 (Tn+1−Tn) (3.4.11)

where we used Theorem 2.5.1 and Proposition 2.4.4. We use the bound on µn given by (2.5.5).
Then to bound dTV(Xx0

t , νan+1) for any t ∈ (Tn+t0, Tn+1), we apply Theorem (3.4.1) on the time
interval [Tn, t] which length is not smaller than t0 and we conclude as in the proof of Theorem
2.5.1.

Remark 3.4.4. The condition that t does not belong in any interval [Tn, Tn + t0] is a technical
condition which is specific to our strategy of proof. However this condition is not a problem for
the convergence of Yt and Ȳt since for these two processes, the time schedule (Tn) is only a tool
for the proof.
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3.5 Convergence of Yt in total variation

We now consider (Yt) as defined in (3.2.5) with extended definition (3.2.24).

3.5.1 Preliminary lemmas

Lemma 3.5.1. Let λ ∈ R+. There exists C > 0 such that for every n ≥ 0, u ≥ 0 and every
x ∈ Rd:

sup
t≥0

E
[
eλ|Xx,n

t |2
]

≤ Ceλ|x|2 and sup
t≥0

E
[
eλ|Y x

t,u|2
]

≤ Ceλ|x|2 . (3.5.1)

Sketch of proof. By Itō’s Lemma, we have for k ≥ n and for t ∈ [Tk − Tn, Tk+1 − Tn):

d
(
eλ|Xx,n

t |2
)

= λeλ|Xx,n
t |2 (2⟨Xx,n

t , dXx,n
t ⟩ + d⟨Xx,n⟩t) + 2λ2|Xx,n

t |2eλ|Xx,n
t |2d⟨Xx,n⟩t

= λeλ|Xx,n
t |2

(
− 2⟨σσ⊤∇V (Xx,n

t ), Xx,n
t ⟩dt+ 2a2

n+1⟨Xx,n
t ,Υ(Xx,n

t )⟩dt

+ 2an+1⟨Xx,n
t , σ(Xx,n

t )dWt⟩ + a2
n+1 Tr(σσ⊤(Xt))dt

)
+ 2λ2eλ|Xx,n

t |2a2
n+1(Xx,n

t )⊤σσ⊤(Xx,n
t )Xx,n

t dt

the "dominating" term is −⟨σσ⊤∇V (Xx,n
t ), Xx,n

t ⟩dt which makes E[eλ|Xx,n
t |2 ] decrease. Using

assumption (3.2.12, Hcf ), we have for |Xx,n
t | large enough,

−⟨σσ⊤∇V (Xx,n
t ), Xx,n

t ⟩ ≤ −C
¯
σ2

0α0|Xx,n
t |2.

Moreover, using the facts that Υ and σ are bounded, that an → 0, that |∇V | ≤ CV 1/2 and
that σσ⊤ ≥

¯
σ2

0Id, for large enough |Xx,n
t | and large enough n, the coefficient in dt in the last

equation is negative. We deal with the cases where |Xx,n
t | is not large enough or where n is not

large enough the same way as in the proof of Lemma 2.6.1 and Lemma 2.7.1, where more details
can be found.

The proof is the same for Y , replacing ak+1 by a(u+ t).

Proposition 3.5.2. Let T , γ̄ > 0. There exists C > 0 such that for every Borel bounded
function f : Rd → R and every t ∈ (0, T ], for all n ≥ 0, for all γ < γ̄ such that u ∈ [Tn, Tn+1]
and u+ t+ γ ∈ [Tn, Tn+1],

∣∣∣E [PX,n
t f(Y x

γ,u)
]

− E
[
PX,n

t f(Xx,n
γ )

]∣∣∣ ≤ Ca−2
n+1(an − an+1)∥f∥∞γt

−1V (x). (3.5.2)

Proof. We apply Proposition 2.6.4 to gt := PX,n
t f with t > 0. Following [PP23, Proposition

3.2(b)], we have

Φgt(x) ≤ C∥f∥∞a
−2
n+1t

−1 max

V 1/2(x),

∣∣∣∣∣∣
∣∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Y x
γ,u)

V 1/2(ξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, V 1/2(x)
∣∣∣∣∣
∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )
V 1/2(ξ)

∣∣∣∣∣
∣∣∣∣∣
2

 .
We conclude as in the proof of Proposition 2.6.5.
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3.5.2 Proof of Theorem 3.2.1(a)

More precisely, we prove that for all β > 0, if

A > max
(√

(β + 1)(2C1 + C2),
√

(1 + β−1)C2

)
, (3.5.3)

then

dTV
(
Y x0

t , νa(t)
)

≤ CeC
√

log(t)(1+|x0|2)

t(1+β)−1−(2C1+C2)/A2 . (3.5.4)

Proof. We follow the proof of Theorem 2.2.1(b) in Section 2.7.3 based on a domino strategy
with respect to some decreasing step sequence (γn), even though Y is not an Euler-Maruyama
scheme. In this case, the step sequence (γn) is only a tool for the proof. This way we can choose
freely the sequence (γn) in this section. We use Theorem 3.4.1 in place of Theorem 2.4.2 and
Proposition 3.5.2 in place of Proposition 2.7.4. For f : Rd → R bounded measurable and for
x ∈ Rd we write∣∣∣Ef(Xx,n

Tn+1−Tn
) − Ef(Y x

Tn+1−Tn,Tn
)
∣∣∣ ≤

∣∣∣(P Y
γinit,Tn

− PX,n
γinit) ◦ PX,n

Tn+1−ΓN(Tn)+1
f(x)

∣∣∣
+

N(Tn+1−T )∑
k=N(Tn)+2

∣∣∣P Y
γinit,Tn

◦ P Y
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦ P Y
γk−1,Γk−2 ◦ (P Y

γk,Γk−1 − PX,n
γk

) ◦ PX,n
Tn+1−Γk

f(x)
∣∣∣

+
N(Tn+1)−1∑

k=N(Tn+1−T )+1

∣∣∣P Y
γinit,Tn

◦ P Y
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦ P Y
γk−1,Γk−2 ◦ (P Y

γk,Γk−1 − PX,n
γk

) ◦ PX,n
Tn+1−Γk

f(x)
∣∣∣

+
∣∣∣P Y

γinit,Tn
◦P Y

γN(Tn)+2,ΓN(Tn)+1
◦ · · · ◦ P Y

γN(Tn+1)−1,ΓN(Tn+1)−2

◦(P Y
γend+γN(Tn+1),ΓN(Tn+1)−1

− PX,n
γend+γN(Tn+1)

)f(x)
∣∣∣∣

=: (cinit) + (a) + (b) + (cend),

where

γinit := ΓN(Tn)+1 − Tn ≤ γN(Tn)+1 and γend := Tn+1 − ΓN(Tn+1) ≤ γN(Tn+1)+1.

Then we have

(a) ≤ Ca−3
n+1e

C1a−2
n+1e−ρn+1Tn+1∥f∥∞V (x)(an − an+1)

N(Tn+1−T )∑
k=N(Tn)+2

γke
ρn+1Γk

≤ Ca−3
n+1e

C1a−2
n+1∥f∥∞(an − an+1)V (x)ρ−1

n+1.

We obtain likewise

(cinit) ≤ Ca−3
n+1e

−ρn+1(Tn+1−Tn)∥f∥∞(an − an+1)γN(Tn)V (x).

Applying Proposition 3.5.2 yields

(b) ≤ Ca−2
n+1(an − an+1)∥f∥∞V (x)

N(Tn+1)−1∑
k=N(Tn+1−T )+1

γk

Tn+1 − Γk

≤ Ca−2
n+1(an − an+1)∥f∥∞V (x) log(1/γN(Tn+1)).
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Applying Proposition 3.3.3 with r = 1 along with Lemma 3.5.1 yields

(cend) ≤ C∥f∥∞
(
eCa−1

n+1(1+|x|2)γ
1/2
N(Tn) + a

−(d+1)
n+1 (a(Tn+1 − γN(Tn+1)) − an+1)2/3

)
.

But we have

a(Tn+1−γN(Tn+1)) − an+1 = a(Tn+1−γN(Tn+1)) − a(Tn+1) ≤ C
da

dt
(Tn+1) · γN(Tn+1)

≤
CγN(Tn+1)
Tn+1

.

We now choose γn = γ1n
−2/3 so that γN(Tn) ≍ n−2 and then

(cend) ≤ CeCa−1
n+1(1+|x|2)n−1.

This way we obtain for every x ∈ Rd:

|Ef(Xx,n
Tn+1−Tn

) − Ef(Y x
Tn+1−Tn,Tn

)| ≤ C∥f∥∞ a−3
n+1e

C1a−2
n+1(an − an+1)V (x)ρ−1

n+1︸ ︷︷ ︸
=:vn+1

eCa−1
n+1(1+|x|2).

(3.5.5)

We integrate this inequality with respect to the laws of Xx0
Tn

and Ȳ x0
Tn

and obtain, temporarily
setting xn := Xx0

Tn
and yn := Y x0

Tn
and using Lemma 2.6.1 and Lemma 3.5.1,

dTV(Xx0
Tn+1

, Y x0
Tn+1

) ≤ dTV(Xxn,n
Tn+1−Tn

, Xyn,n
Tn+1−Tn

) + dTV(Xyn,n
Tn+1−Tn

, Y ȳn

Tn+1−Tn,Tn
)

≤ Ca−1
n+1e

C1a−2
n+1e−ρn+1(Tn+1−Tn)︸ ︷︷ ︸

:=µ′
n+1=a−1

n+1µn+1

dTV(Xx0
Tn
, Y x0

Tn
) + Cvn+1e

Ca−1
n+1(1+|x0|2)︸ ︷︷ ︸

:=wn+1

,

where µn is defined in (3.4.11). Iterating this inequality yields

dTV(Xx0
Tn+1

, Y x0
Tn+1

) ≤ C(wn+1 + µ′
n+1wn + · · · + µ′

n+1 · · ·µ′
2w1) ≤ Cwn+1,

where we used, since A satisfies (3.5.3), that µ′
n = O(e−Cnη ) for some η > 0 (see (2.5.5)) and

that wn is bounded as it converges to 0. Moreover using Theorem 3.4.3 we have

dTV(Y x0
Tn
, νan) ≤ dTV(Xx0

Tn
, Y x0

Tn
) + dTV(Xx0

Tn
, νan) ≤ CeC

√
log(n)(1+|x0|2)

n1−(β+1)(C1+C2)/A2 . (3.5.6)

Finally, let us bound dTV(Xx0
t , Y x0

t ) for any t ∈ [Tn, Tn+1]. If t ∈ [Tn + t0, Tn+1] then we can
apply Theorem 3.4.1 and we proceed as in the end of Section 2.6.3. If t ∈ [Tn, Tn + t0], then we
consider another shifted time schedule T̄n := C(T )n

1+β + 2t0 such that
∞⋃

i=0
[Tn, Tn + t0] ∩

∞⋃
i=0

[T̄n, T̄n + t0] = ∅.

Making use of the new time schedule we obtain as before a bound on dTV(Y x0
t , νa(t)) for every

t /∈
⋃∞

i=0[T̄n, T̄n + t0]. Since the time schedules (Tn) and (T̄n) are only tools for the proof of
convergence of Yt, we then obtain a bound on dTV(Yt, νa(t)) for every t ∈ R+.

3.6 Convergence of the Euler-Maruyama scheme in total varia-
tion

We now consider (Ȳn) as in (3.2.17) with extended definition (3.2.25).
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3.6.1 Preliminary lemmas

Lemma 3.6.1. Let λ ∈ R+. There exists a constant C > 0 such that for every k ≥ 0, for every
u ∈ [Γk,Γk+1) and for every x ∈ Rd:

sup
n≥k+1

E
[
eλ|Y x

Γn−u,u|2
]

≤ Ceλ|x|2 . (3.6.1)

Proof. The prove is the same as for Lemma 3.5.1. For the adaptation to discrete time, we refer
to the proof of Lemma 2.7.1.

Proposition 3.6.2. Let T > 0. There exists C > 0 such that for every Lipschitz continuous
function f and every t ∈ (0, T ], for all n ≥ 0, for all γ such that Γk ∈ [Tn, Tn+1], γ ≤ γk+1 and
Γk + t+ γ ∈ [Tn, Tn+1],∣∣∣E [Ptf(Ȳ x

γ,Γk
)
]

− E
[
Ptf(Xx,n

γ )
]∣∣∣

≤ C∥f∥∞V
2(x)

(
a−2

n+1t
−1
(
γ2+(a(Γk)−an+1)γ

)
+ a−3

n+1t
−3/2

(
γ2+γ3/2(a(Γk) − an+1)

))
.

(3.6.2)

Proof. The proof is the same as the proof of Proposition 3.5.2, using Proposition 2.7.3. We also
remark that we can directly improve the bound in (an − an+1) into (a(Γk) − an+1).

3.6.2 Proof of Theorem 3.2.1(b)

More precisely, we prove that for all β > 0, if σ ∈ C2r
b and if

A > max
(√

(β + 1)(2C1 + C2),
√

(1 + β−1)C2

)
(3.6.3)

and if A is large enough so that

n(β+1)C1/A2
γ

r/(2r+1)
N(Tn) −→

n→∞
0, (3.6.4)

then

dTV(Ȳ x0
t , νa(t)) ≤ C

(
log1/2(t) max

[
V 2(x0), 1 + |x0|

]
t(β+1)−1−(2C1+C2)/A2 + eC

√
log(t)(1+|x0|2)tC1/A2

γ
r/(2r+1)
Ct

)
.

(3.6.5)

Proof. We still follow the proof of Theorem 2.2.1 in Section 2.7.3 based on a domino strategy,
using Theorem 3.4.1 in place of Theorem 2.4.2 and Proposition 3.6.2 in place of Proposition 2.7.4.
Let n ≥ 0, for f : Rd → R bounded measurable, we split |Ef(Xx,n

Tn+1−Tn
) −Ef(Ȳ x

Tn+1−Tn,Tn
)| into

four terms (cinit), (a), (b), (cend).
Using Theorem 3.4.1, Lemma 2.7.1 and Proposition 3.6.2 we get as in Section 2.7.3:

(a) ≤ Ca−4
n+1e

C1a−2
n+1∥f∥∞(an − an+1)V 2(x)ρ−1

n+1.

(cinit) ≤ Ca−4
n+1e

C1a−2
n+1e−ρn(Tn+1−Tn)∥f∥∞(an − an+1)γN(Tn)+1V

2(x).

Using Proposition 3.6.2 and Lemma 2.7.1, we obtain

(b) ≤ Ca−3
n+1

(
γN(Tn+1−T )+

√
γN(Tn+1−T )(an−an+1)

)
∥f∥∞V

2(x)
N(Tn+1)−1∑

k=N(Tn+1−T )+1

γk

(Tn+1−Γk)3/2
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3.7. Experiments

+ Ca−2
n+1

 N(Tn+1)−1∑
k=N(Tn+1−T )+1

γN(Tn+1−T )γk

Tn+1 − Γk
+

N(Tn+1)−1∑
k=N(Tn+1−T )+1

γk(a(Γk)−an+1)
Tn+1 − Γk

 ∥f∥∞V
2(x).

But we remark that

a(Γk) − an+1 = a(Γk) − a(Tn+1) ≤ C
da

dt
(Tn+1) · (Γk − Tn+1) ≤ C(Γk − Tn+1)

Tn+1 log3/2(Tn+1)

and then

(b) ≤ Ca−3
n+1

(
γN(Tn+1−T ) + √

γN(Tn+1−T )(an−an+1)
)

∥f∥∞V
2(x)

∫ Tn+1−γN(Tn+1)

Tn+1−T

du

(Tn+1−u)3/2

+ Ca−2
n+1

(
γN(Tn+1−T )

∫ Tn+1−γN(Tn+1)

Tn+1−T

du

Tn+1−u
+ 1
Tn+1

∫ Tn+1−γN(Tn+1)

Tn+1−T
du

)
∥f∥∞V

2(x)

≤ Ca−3
n+1

(
γN(Tn+1−T ) + √

γN(Tn+1−T )(an − an+1)
)

∥f∥∞V
2(x)γ−1/2

N(Tn+1)

+ Ca−2
n+1

(
γN(Tn+1)| log(γN(Tn+1))| + T−1

n+1

)
∥f∥∞V

2(x)

≤ Ca−3
n+1

(
γ

1/2
N(Tn+1) + (an − an+1)

)
∥f∥∞V

2(x).

Applying Proposition 3.3.2 along with Lemma 3.6.1 yields

(cend) ≤ C∥f∥∞
(
eCa−1

n+1(1+|x|2)γ
r/(2r+1)
N(Tn+1) + a−2

n (an − an+1)
)
.

We finally obtain for every x ∈ Rd:

|Ef(Xx,n
Tn+1−Tn

)−Ef(Ȳ x
Tn+1−Tn,Tn

)|

≤ C∥f∥∞
(
a−4

n+1e
C1a−2

n+1(an−an+1)V 2(x)ρ−1
n+1+eCa−1

n+1(1+|x|2)γ
r/(2r+1)
N(Tn+1)

)
.

The same way as in Section 3.5.2 we get

dTV(Ȳ x0
Tn+1

, νan+1)

≤ C
(
a−4

n+1e
C1a−2

n+1(an−an+1) max
[
V 2(x0), 1 + |x0|

]
ρ−1

n+1 + eCa−1
n+1(1+|x0|2)γ

r/(2r+1)
N(Tn+1)

)
and, for t ∈ [Tn, Tn+1],

dTV(Ȳ x0
t , νa(t))

≤ CeC1a−2
n+1

(
a−4

n+1e
C1a−2

n+1(an−an+1) max
[
V 2(x0), 1 + |x0|

]
ρ−1

n+1+eCa−1
n+1(1+|x0|2)γ

r/(2r+1)
N(Tn+1)

)
.

3.7 Experiments
In this section, we compare the performances of adaptive Langevin-Simulated Annealing algo-
rithms versus vanilla SGLD, that is the Langevin algorithm with constant (additive) σ1. We
train an artificial neural network on the CIFAR-10 dataset [KH09], which is composed of RGB
images of size 32 × 32 belonging to ten different classes: airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. 50000 images are used for training and 10000 images are used

1An implementation of Langevin optimizers in TensorFlow is available at https://github.com/Bras-P/
deep-layer-langevin.
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Figure 3.1: Comparison of Langevin optimizers for the training of ResNet20 on the CIFAR-10
dataset. Batch size is 512. The schedules are γn = γ1/(1 + c0n) where γ1 = 5 e −3 and c0n = 1
after n = 20 epochs, and an = A log−1/2(c0n+ e) where A = 5 e −3.

for test. We use the architecture ResNet20 [HZRS16] with initial width parameter 8. We con-
sider the Adam [KB15] and the RMSprop [TH12] preconditioners for the adaptive Langevin
algorithms, giving L-Adam and L-RMSprop respectively. The results are given in Figure 3.1.

As pointed out in the literature [LCCC16], the preconditioned Langevin algorithms show
significant improvement compared with the vanilla SGLD algorithm. The convergence is faster
and they achieve a lower error on the test set. We also display the value of the loss function
on the train set during the training to show that the better performances of the preconditioned
algorithms are not due to some overfitting effect.

3.8 Appendix

3.8.1 Proof of Proposition 3.4.2

Proof. We use the characterization of the total variation distance as the L1-distance between
the densities, which reads

dTV(νan , νan+1) =
∫
Rd

∣∣∣Zane
−2(V (x)−V ⋆)/a2

n − Zan+1e
−2(V (x)−V ⋆)/a2

n+1
∣∣∣ dx

≤ Zan+1

∫
Rd

∣∣∣e−2(V (x)−V ⋆)/a2
n − e−2(V (x)−V ⋆)/a2

n+1
∣∣∣ dx+ |Zan − Zan+1 |

∫
Rd
e−2(V (x)−V ⋆)/a2

ndx

= Zan+1a
d
n+1

∫
Rd

∣∣∣e−2(V (an+1x)−V ⋆)/a2
n − e−2(V (an+1x)−V ⋆)/a2

n+1
∣∣∣ dx

+
∣∣∣∣∣1 − Zan

Zan+1

∣∣∣∣∣Zan+1a
d
n

∫
Rd
e−2(V (anx)−V ⋆)/a2

ndx.

Using (2.12.3) and (2.12.5), the first term is bounded by

C
an − an+1

an

∫
Rd
e−2(V (an+1y)−V ⋆)/a2

n
V (an+1y) − V ⋆

a2
n

dx ≤ C
an − an+1

an
,
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because the integral converges by dominated convergence as for the proof of (2.12.3). Using
(2.12.3) and (2.12.4), the second term is bounded by C(n log(n))−1.
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Chapter 4
Convergence rates of Gibbs measures with
degenerate minimum

This chapter corresponds to the article [Bra22] published in Bernoulli.

Abstract

We study convergence rates of Gibbs measures, with density proportional to e−f(x)/t,
as t → 0 where f : Rd → R admits a unique global minimum at x⋆. We focus
on the case where the Hessian is not definite at x⋆. We assume instead that the
minimum is strictly polynomial and give a higher order nested expansion of f at
x⋆, which depends on every coordinate. We give an algorithm yielding such an
expansion if the polynomial order of x⋆ is no more than 8, in connection with
Hilbert’s 17th problem. However, we prove that the case where the order is 10
or higher is fundamentally different and that further assumptions are needed. We
then give the rate of convergence of Gibbs measures using this expansion. Finally
we adapt our results to the multiple well case.

4.1 Introduction
Gibbs measures and their convergence properties are often used in stochastic optimization to
minimize a function defined on Rd. That is, let f : Rd → R be a measurable function and let
x⋆ ∈ Rd be such that f admits a global minimum at x⋆. It is well known [Hwa80] that under
standard assumptions, the associated Gibbs measure with density proportional to e−f(x)/t for
t > 0, converges weakly to the Dirac mass at x⋆, δx⋆ , when t → 0. The Langevin equation
dXs = −∇f(Xs)ds + σdWs consists in a gradient descent with Gaussian noise. For σ =

√
2t,

its invariant measure πt has a density proportional to e−f(x)/t (see for example [Kha12], Lemma
4.16), so for small t we can expect it to converge to argmin(f) [Dal17] [BV22]. The simulated
annealing algorithm [vLA87] builds a Markov chain from the Gibbs measure where the parameter
t converges to zero over the iterations. This idea is also used in [GM91], giving a stochastic
gradient descent algorithm where the noise is gradually decreased to zero. Adding a small
noise to the gradient descent allows to explore the space and to escape from traps such as local
minima and saddle points which appear in non-convex optimization problems [Laz92] [DPG+14].
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Such methods have been recently brought up to light again with SGLD (Stochastic Gradient
Langevin Dynamics) algorithms [WT11] [LCCC16], especially for Machine Learning and training
of artificial neural networks, which is a high-dimensional non-convex optimization problem.

The rates of convergence of Gibbs measures have been studied in [Hwa80], [Hwa81] and
[AH10] under differentiability assumptions on f . It turns out to be of order t1/2 as soon as the
Hessian matrix ∇2f(x⋆) is positive definite. Furthermore, in the multiple well case i.e. if the
minimum of f is attained at finitely many points x⋆

1, . . ., x⋆
m, [Hwa80] proves that the limit

distribution is a sum of Dirac masses δx⋆
i

with coefficients proportional to det(∇2f(x⋆
i ))−1/2 as

soon as all the Hessian matrices are positive definite. If such is not the case, we can conjecture
that the limit distribution is concentrated around the x⋆

i where the degeneracy is of the highest
order.

The aim of this paper is to provide a rate of convergence in this degenerate setting, i.e.
when x⋆ is still a strict global minimum but ∇2f(x⋆) is no longer definite, which extends the
range of applications of Gibbs measure-based algorithms, especially SGLD algorithms, where
positive definiteness is generally assumed in the literature. In particular, our results are useful for
establishing bounds for the bias made when δx⋆ is approximated by πt in Langevin algorithms.

As pointed out by eminent Machine Learning researchers, among them L. Bottou and Y.
LeCun, in [SBL16] and [SEU+17], for some classification problems using neural networks, the
Hessian of the loss function at the end of the training tends out to be extremely singular.
Indeed, as the dimension of the parameter which is used to minimize the loss function is large
and as the neural network can be over-parametrized, many eigenvalues of the Hessian matrix
are close to zero. "Therefore, a lot of methodology that assumes non-singular Hessian cannot
be applied without an appropriate modification" [SBL16]. However, this subject is still new
in the Stochastic Optimization literature and needs more theoretical funding. Thus, studying
the case of a degenerate minimum helps establishing theoretically the convergence of Langevin
algorithms in these cases, as in Chapter 2, where is established the convergence of Langevin-
simulated annealing algorithms in the multiplicative case i.e. the diffusion has a noise coefficient
σ depending on the position and slowly decreases with time ; the case where the minimum is
degenerate is then dealt with using the results of the present article. Furthermore following
Section 2.2.3, it is not needed to know beforehand the degree of degeneracy of the minimum in
order to establish the convergence to the minimum, however knowing the degree of degeneracy
additionally gives the precise rate of convergence of such Langevin algorithms.

A general framework is given in [AH10], which provides rates of convergence based on dom-
inated convergence. However a strong and rather technical assumption on f is needed and
checking it seems, to some extent, more demanding than proving the result. To be more precise,
the assumption reads as follows: there exists a function g : Rd → R with e−g ∈ L1(Rd) and
α1, . . . , αd ∈ (0,+∞) such that

∀h ∈ Rd,
1
t

[f(x⋆ + (tα1h1, . . . , t
αdhd)) − f(x⋆)] −→

t→0
g(h1, . . . , hd). (4.1.1)

Our objective is to give conditions on f such that (4.1.1) is fulfilled and then to elucidate the
expression of g depending on f and its derivatives by studying the behaviour of f at x⋆ in every
direction. In particular, we detail the different cases that can occur. Doing so we can apply the
results from [AH10] yielding the convergence rate of the corresponding Gibbs measures. The
orders α1, . . ., αd must be chosen carefully and not too large, as the function g needs to depend
on every of its variables h1, . . ., hd, which is a necessary condition for e−g to be integrable. We
also extend our results to the multiple well case.

We generally assume f to be coercive, i.e. f(x) → +∞ as ||x|| → +∞, C2p in a neigh-
bourhood of x⋆ for some p ∈ N and we assume that the minimum is polynomial strict, i.e.
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the function f is bounded below in a neighbourhood of x⋆ by some non-negative polynomial
function, null only at x⋆. Thus we can apply a multi-dimensional Taylor expansion to f at x⋆,
where the successive derivatives of f : Rd → R are seen as symmetric tensors of Rd. The idea is
then to consider the successive subspaces where the derivatives of f are null up to some order ;
using that the Taylor expansion of f(x⋆ +h)−f(x⋆) is non-negative, some cross derivative terms
are null. However a difficulty arises at orders 6 and higher, as the set where the derivatives of f
are null up to some order is no longer a vector subspace in general. This difficulty is linked with
Hilbert’s 17th problem [Hil88], stating that a non-negative multivariate polynomial cannot be
written as the sum of squares of polynomials in general. We thus need to change the definition
of the subspaces we consider. Following this, we give a recursive algorithm yielding an adapted
decomposition of Rd into vector subspaces and a function g satisfying (4.1.1) up to a change of
basis, giving a canonical higher order nested decomposition of f at x⋆ in degenerate cases. An
interesting fact is that the case where the polynomial order of x⋆ is 10 or higher fundamentally
differs from those of orders 2, 4, 6 and 8, owing to the presence of even cross terms which
may be not null. The algorithm we provide works at the orders 10 or higher only under the
assumption that all such even cross terms are null. In general, it is more difficult to get a general
expression of g for the orders 10 and higher. We then apply our results to [AH10], where we
give conditions such that the hypotheses of [AH10], especially (4.1.1), are satisfied so as to infer
rates of convergence of Gibbs measures in the degenerate case where ∇2f(x⋆) is not necessarily
positive definite. The function g given by our algorithm is a non-negative polynomial function
and non-constant in any of its variables, however it needs to be assumed to be coercive to be
applied to [AH10]. We study the case where g is not coercive and give a method to deal with
simple generic non-coercive cases, where our algorithm seems to be a first step to a more general
procedure. However, we do not give a general method in this case.

Our results are applied to Gibbs measures but they can also be applied to more general
contexts, as we give a canonical higher order nested expansion of f at a minimum, in the case
where some derivatives are degenerate.

For general properties of symmetric tensors we refer to [CGLM08]. In the framework of
stochastic approximation, [FP99] Section 3.1 introduced the notion of strict polynomial local
extremum and investigated their properties as higher order "noisy traps".

The paper is organized as follows. In Section 4.3, we recall convergence properties of Gibbs
measures and revisit the main theorem from [AH10]. This theorem requires, as an hypothesis,
to find an expansion of f at its global minimum ; we properly state this problem in Section 4.3.2
under the assumption of strict polynomial minimum. In Section 4.3.3, we state our main result
for both single well and multiple well cases, as well as our algorithm. In Section 4.4, we detail
the expansion of f at its minimum for each order and provide the proof. We give the general
expression of the canonical higher order nested expansion at any order in Section 4.4.1, where
we distinguish the orders 10 and higher from the lower ones. We then provide the proof for each
order 2, 4, 6 and 8 in Sections 4.4.3, 4.4.4, 4.4.6 and 4.4.7 respectively. We need to prove that,
with the exponents α1, . . ., αd we specify, the convergence in (4.1.1) holds ; we do so by proving
that, using the non-negativity of the Taylor expansion, some cross derivative terms are zero.
Because of Hilbert’s 17th problem, we need to distinguish the orders 6 and 8 from the orders 2
and 4, as emphasized in Section 4.4.5. For orders 10 and higher, such terms are not necessarily
zero and must then be assumed to be zero. In Section 4.4.8, we give a counter-example if this
assumption is not satisfied before proving the result. In Section 4.4.9, we prove that for every
order the resulting function g is constant in none of its variables and that the convergence in
(4.1.1) is uniform on every compact set. In Section 4.4.10, we study the case where the function
g is not coercive and give a method to deal with the simple generic case. In Section 4.5, we prove
our main theorems stated in Section 4.3.3 using the expansion of f established in Section 4.4.
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In Section 4.6, we deal with a "flat" example where all the derivatives in the local minimum are
zero and where we cannot apply our main theorems. In Section 4.7 we give a practical example
of a function f arising from an optimization problem with non definite Hessian matrix at the
minimum and we numerically compute high order derivatives.

4.2 Definitions and notations
We give a brief list of notations that are used throughout the paper.

We endow Rd with its canonical basis (e1, . . . , ed) and the Euclidean norm denoted by || · ||.
For x ∈ Rd and r > 0 we denote by B(x, r) the Euclidean ball of Rd of center x and radius r.
For E a vector subspace of Rd, we denote by pE : Rd → E the orthogonal projection on E. For
a decomposition of Rd into orthogonal subspaces, Rd = E1 ⊕· · ·⊕Ep, we say that an orthogonal
transformation B ∈ Od(R) is adapted to this decomposition if for all j ∈ {1, . . . , p},

∀i ∈ {dim(E1) + · · · + dim(Ej−1) + 1, . . . ,dim(E1) + · · · + dim(Ej)}, B · ei ∈ Ej .

For a, b ∈ Rd, we denote by a ∗ b the element-wise product, i.e.

∀i ∈ {1, . . . , d}, (a ∗ b)i = aibi.

For v1, . . ., vk vectors in Rd and T a tensor of order k of Rd, we denote the tensor product

T · (v1 ⊗ · · · ⊗ vk) =
∑

i1,...,ik∈{1,...,d}
Ti1···ik

v1
i1 . . . v

k
ik
.

More generally, if j ≤ k and v1, . . . , vj are j vectors in Rd, then T · (v1 ⊗ · · · ⊗ vj) is a tensor
of order k − j such that:

T · (v1 ⊗ · · · ⊗ vj)ij+1...ik
=

∑
i1,...,ij∈{1,...,d}

Ti1...ik
v1

i1 . . . v
j
ij
.

For h ∈ Rd, h⊗k denotes the tensor of order k such that

h⊗k = (hi1 . . . hik
)i1,...,ik∈{1,...,d}.

For a function f ∈ Cp
(
Rd,R

)
, we denote ∇kf(x) the differential of order k ≤ p of f at x, as

∇kf(x) is the tensor of order k defined by:

∇kf(x) =
(

∂kf(x)
∂xi1 · · · ∂xik

)
i1,i2,...,ik∈{1,...,d}

.

By Schwarz’s theorem, this tensor is symmetric, i.e. for all permutation σ ∈ Sk,

∂kf(x)
∂xiσ(1) · · · ∂xiσ(k)

= ∂kf(x)
∂xi1 · · · ∂xik

.

We recall the Taylor-Young formula in any dimension, and the Newton multinomial formula.

Theorem 4.2.1 (Taylor-Young formula). Let f : Rd → R be Cp and let x ∈ Rd. Then:

f(x+ h) =
h→0

p∑
k=0

1
k!∇

kf(x) · h⊗k + ||h||po(1).
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We denote by
( k

i1,...,ip

)
the p-nomial coefficient, defined as:(

k

i1, . . . , ip

)
= k!
i1! . . . ip! .

Theorem 4.2.2 (Newton multinomial formula). Let h1, . . . , hp ∈ Rd, then

(h1 + h2 + · · · + hp)⊗k =
∑

i1,...,ip∈{0,...,k}
i1+···+ip=k

(
k

i1, . . . , ip

)
h⊗i1

1 ⊗ · · · ⊗ h⊗ip
p . (4.2.1)

For T a tensor of order k, we say that T is non-negative (resp. positive) if

∀h ∈ Rd, T · h⊗k ≥ 0 (resp. T · h⊗k > 0). (4.2.2)

We denote L1(Rd) the set of measurable functions f : Rd → R that are integrable with respect
to the Lebesgue measure on Rd. We denote by λd the Lebesgue measure on Rd. For f : Rd → R
such that e−f ∈ L1(Rd), we define for t > 0, Ct :=

(∫
Rd e−f/t

)−1
and πt the Gibbs measure

πt(x)dx := Cte
−f(x)/tdx.

For a family of random variables (Yt)t∈(0,1] and Y a random variable, we write Yt
L−→

t→0
Y meaning

that (Yt) weakly converges to Y .
We give the following definition of a strict polynomial local minimum of f :

Definition 4.2.3. Let f : Rd → R be C2p for p ∈ N and let x⋆ be a local minimum of f . We
say that f has a strict polynomial local minimum at x⋆ of order 2p if p is the smallest integer
such that:

∃r > 0, ∀h ∈ B(0, r) \ {0},
2p∑

k=2

1
k!∇

kf(x⋆) · h⊗k > 0. (4.2.3)

Remarks :

1. A local minimum x⋆ of f is not necessarily strictly polynomial, for example, f : x 7→
e−||x||−2 and x⋆ = 0.

2. If x⋆ is polynomial strict, then the order is necessarily even, because if x⋆ is not polynomial
strict of order 2l for some l ∈ N, then we have hn → 0 such that the Taylor expansion in
hn up to order 2l is zero ; by the minimum condition, the Taylor expansion in hn up to
order 2l + 1 must be non-negative, so we also have ∇2l+1f(x⋆) · h⊗2l+1

n = 0.

For f : Rd → R such that minRd(f) exists, we denote by argmin(f) the arguments of the
minima of f , i.e.

argmin(f) =
{
x ∈ Rd : f(x) = min

Rd
(f)
}
.

Without ambiguity, we write "minimum" or "local minimum" to designate f(x⋆) as well as x⋆.
Finally, we define, for x⋆ ∈ Rd and p ∈ N:

Ap(x⋆) :=
{
f ∈ C2p(Rd,R) : f admits a local minimum at x⋆

}
.

A ⋆
p (x⋆) :=

{
f ∈ C2p(Rd,R) : f admits a strict polynomial local minimum at x⋆ of order 2p

}
.
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4.3 Convergence of Gibbs measures

4.3.1 Properties of Gibbs measures

Let us consider a Borel function f : Rd → R with e−f ∈ L1(Rd). We study the asymptotic
behaviour of the probability measures of density for t ∈ (0,∞):

πt(x)dx = Cte
− f(x)

t dx

when t → 0. When t is small, the measure πt tends to the set argmin(f). The following
proposition makes this statement precise.

Proposition 4.3.1. Let f : Rd → R be a Borel function such that

f⋆ := essinf(f) = inf{y : λd{f ≤ y} > 0} > −∞,

and e−f ∈ L1(Rd). Then
∀ε > 0, πt({f ≥ f⋆ + ε}) −→

t→0
0.

Proof. As f⋆ > −∞, we may assume without loss of generality that f⋆ = 0 by replacing f by
f − f⋆. Let ε > 0. It follows from the assumptions that f ≥ 0 λd-a.e. and λd{f ≤ ε} > 0 for
every ε > 0. As e−f ∈ L1(Rd), we have

λd{f ≤ ε/3} ≤ eε/3
∫
Rd
e−fdλd < +∞.

Moreover by dominated convergence, it is clear that

C−1
t ↓ λd{f = 0} < +∞.

We have

Ct ≤
(∫

f≤ε/3
e− f(x)

t dx

)−1

≤

e− ε
3t λd{f ≤ ε

3}︸ ︷︷ ︸
>0


−1

.

Then

πt{f ≥ ε} = Ct

∫
f≥ε

e− f(x)
t dx ≤

eε/3t
∫

f≥ε e
−f(x)/tdx

λd{f ≤ ε
3}

≤ e−ε/3tC−1
3t

λd{f ≤ ε
3}

−→
t→0

0,

because if f(x) ≥ ε, then e− f(x)
t ≤ e− 2ε

3t e− f(x)
3t , and where we used that C−1

3t ≤ C−1
1 if t ≤ 1/3

Now, let us assume that f : Rd → R is continuous, e−f ∈ L1(Rd) and f admits a unique
global minimum at x⋆ so that argmin(f) = {x⋆}. In [AH10] is proved the weak convergence of
πt to δx⋆ and a rate of convergence depending on the behaviour of f(x⋆ + h) − f(x⋆) for small
enough h. Let us recall this result in detail.

Theorem 4.3.2 (Athreya-Hwang, 2010). Let f : Rd → R be a Borel function and let x⋆ ∈ Rd

such that :

1. e−f ∈ L1(Rd).

2. For all δ > 0, inf{f(x) − f(x⋆), ||x− x⋆|| > δ} > 0.
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3. There exist α1, . . . , αd > 0 such that for all (h1, . . . , hd) ∈ Rd,

1
t
[f(x⋆ + (tα1h1, . . . , t

αdhd)) − f⋆] −→
t→0

g(h1, . . . , hd) ∈ R.

4.
∫
Rd

sup
0<t<1

e− f(x⋆+(tα1 h1,...,tαd hd))−f(x⋆)
t dh1 . . . dhd < ∞.

For 0 < t < 1, let Xt be a random vector with distribution πt. Then e−g ∈ L1(Rd) and((Xt − x⋆)1
tα1

, . . . ,
(Xt − x⋆)d

tαd

)
L−→ X as t → 0 (4.3.1)

where the distribution of X has a density proportional to e−g(x1,...,xd).

Remark: Hypothesis 2. is verified as soon as f is continuous, coercive (i.e. f(x) −→ +∞ when
||x|| → +∞) and that argmin(f) = {0}.

To study the rate of convergence of the measure πt when t → 0 using Theorem 4.3.2, we
need to identify α1, . . . , αd and g such that the condition (4.3.1) holds, up to a possible change
of basis. Since x⋆ is a local minimum, the Hessian ∇2f(x⋆) is positive semi-definite. Moreover,
if ∇2f(x⋆) is positive definite, then choosing α1 = · · · = αd = 1

2 , we have:

1
t
[f(x⋆ + t1/2h) − f(x⋆)] −→

t→0

1
2h

T · ∇2f(x⋆) · h := g(x).

And using an orthogonal change of variable:∫
Rd
e−g(x)dx =

∫
Rd
e− 1

2
∑d

i=1 βiy
2
i dy1 . . . dyd < ∞,

where the eigenvalues βi are positive. However, if ∇2f(x⋆) is not positive definite, then some of
the βi are zero and the integral does not converge.

4.3.2 Statement of the problem

We still consider the function f : Rd → R and assume that f ∈ A ⋆
p (x⋆) for some x⋆ ∈ Rd and

some integer p ≥ 1. Then our objective is to find α1 ≥ · · · ≥ αd ∈ (0,+∞) and an orthogonal
transformation B ∈ Od(R) such that:

∀h ∈ Rd,
1
t

[f(x⋆ +B · (tα ∗ h)) − f(x⋆)] −→
t→0

g(h1, . . . , hd), (4.3.2)

where tα denotes the vector (tα1 , . . . , tαd) and where g : Rd → R is a measurable function which is
not constant in any h1, . . . , hd, i.e. for all i ∈ {1, . . . , d}, there exist h1, . . . , hi−1, hi+1, . . . , hd ∈
Rd such that

hi 7→ g(h1, . . . , hd) is not constant. (4.3.3)

Then we say that α1, . . . , αd, B and g are a solution of the problem (4.3.2). The hypothesis
that g is not constant in any of its variables is important ; otherwise, we could simply take
α1 = · · · = αd = 1 and obtain, by the first order condition:

1
t

[f(x⋆ + t(h1, . . . , hd)) − f(x⋆)] −→
t→0

0.
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Chapter 4. Convergence rates of Gibbs measures with degenerate minimum

4.3.3 Main results : rate of convergence of Gibbs measures

4.3.3.1 Single well case

Theorem 4.3.3 (Single well case). Let f : Rd → R be C2p with p ∈ N and let x⋆ ∈ Rd such that:

1. f is coercive, i.e. f(x) → +∞ when ||x|| → +∞.

2. argmin(f) = x⋆.

3. f ∈ A ⋆
p (x⋆).

4. e−f ∈ L1(Rd).

Let (Ek)k, (αi)i, B and g to be defined as in Algorithm 1 stated right after, so that for all h ∈ Rd,

1
t

[f (x⋆ +B · (tα ∗ h)) − f(x⋆)] −→
t→0

g(h),

and where g is not constant in any of its variables. Moreover, assume that g is coercive and the
following technical hypothesis if p ≥ 5:

∀h ∈ Rd, ∀(i1, . . . , ip) ∈ {0, 2, · · · , 2p}p, (4.3.4)
i1
2 + · · · + ip

2p < 1 =⇒ ∇i1+···+ipf(x⋆) · pE1
(h)⊗i1 ⊗ · · · ⊗ pEp

(h)⊗ip = 0.

Then the conclusion of Theorem 4.3.2 holds, with:( 1
tα1

, . . . ,
1
tαd

)
∗ (B−1 · (Xt − x⋆)) L−→ X as t → 0,

where X has a density proportional to e−g(x).

Algorithm 1. Let f ∈ A ⋆
p (x⋆) for p ∈ N.

1. Define (Fk)0≤k≤p−1 recursively as:{
F0 = Rd

Fk = {h ∈ Fk−1 : ∀h′ ∈ Fk−1, ∇2kf(x⋆) · h⊗ h′⊗2k−1 = 0}.

2. For 1 ≤ k ≤ p − 1, define the subspace Ek as the orthogonal complement of Fk in Fk−1.
By abuse of notation, define Ep := Fp−1.

3. Define B ∈ Od(R) as an orthogonal transformation adapted to the decomposition

Rd = E1 ⊕ · · · ⊕ Ep.

4. Define for 1 ≤ i ≤ d,

αi := 1
2j for i ∈ {dim(E1) + · · · + dim(Ej−1) + 1, . . . ,dim(E1) + · · · + dim(Ej)}. (4.3.5)

5. Define g : Rd → R as

g(h) =
2p∑

k=2

1
k!

∑
i1,...,ip∈{0,...,k}

i1+···+ip=k
i1
2 +···+ ip

2p
=1

(
k

i1, . . . , ip

)
∇kf(x⋆) ·pE1

(B ·h)⊗i1 ⊗· · ·⊗pEp
(B ·h)⊗ip . (4.3.6)
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Remarks :
1. The function g is not unique, as we can choose any base B adapted to the decomposition

Rd = E1 ⊕ · · · ⊕ Ep.

2. The case p ≥ 5 is fundamentally different from the case p ≤ 4, since Algorithm 1 may fail
to provide such (Ek)k, (αi)i, B and g if the technical hypothesis (4.3.4) is not fulfilled, as
explained in Section 4.4.8. This yields fewer results for the case p ≥ 5.

3. For p ∈ {1, 2, 3, 4}, the detail the expression of g in (4.4.7), (4.4.8), (4.4.10) and (4.4.13)
respectively.

4. The function g has the following general properties : g is a non-negative polynomial of
order 2p; g(0) = 0 and ∇g(0) = 0.

5. The condition on g to be coercive may seem not natural. We give more details about the
case where g is not coercive in Section 4.4.10 and give a way to deal with the simple generic
case of non-coercivity. However dealing with the general case where g is not coercive goes
beyond the scope of our work.

6. The hypothesis that g is coercive is a necessary condition for e−g ∈ L1(Rd). We actually
prove in Proposition 4.4.6 that it is a sufficient condition.

Practical aspect: How to check the technical hypothesis (4.3.4): Let us define Tk :=
∇kf(x⋆) for k ≤ 2p and Ip := {(i1, . . . , ip) ∈ {0, 2, . . . , 2p}2p : i1/2 + · · · + ip/(2p) < 1}.

We first apply Algorithm 1. We perform the change of basis given by B; then the new
derivative tensor after change of coordinates is given by (B⊤)⊗k · Tk. To simplify the notations,
let us assume that B = Id. For every (i1, . . . , ip) ∈ Ip we check the condition (4.3.4) as follows.
Let k := i1 + · · ·+ ip. The function h 7→ Tk ·pE1(h)⊗i1 ⊗· · ·⊗pEp(h)⊗ip is a polynomial function,
so we need to check that all of its coefficient are null. Let us define the sets of indexes:

Iℓ := {i1 + · · · + iℓ−1 + 1, . . . , i1 + · · · + iℓ}, 1 ≤ ℓ ≤ p,

Lℓ := {dim(E1) + · · · + dim(Eℓ−1) + 1, . . . ,dim(E1) + · · · + dim(Eℓ)}, 1 ≤ ℓ ≤ p.

Having in mind that B = Id so that for all h ∈ Rd, 1 ≤ m ≤ p and 1 ≤ j ≤ d, we have
[pEm

(h)]j = hj if j ∈ Lm and 0 otherwise. Then we have

Tk · pE1
(h)⊗i1 ⊗ · · · ⊗ pEp

(h)⊗ip =
∑

j1,...,jk∈{1,...,d}
[Tk]j1,...,jk

p∏
m=1

∏
ℓ∈Im

[pEm
(h)]jl

=
∑

(j1,...,jk)∈L
i1
1 ×···×L

ip
p

[Tk]j1,...,jk

k∏
ℓ=1

hjℓ
.

Moreover, having in mind that the tensor Tk is a symmetric tensor, we deduce that the condition
(4.3.4) is satisfied if and only if

∀(i1, . . . , ip) ∈ Ip, ∀(j1, . . . , ji1+···+ip) ∈ Li1
1 × · · · × Lip

p , [Ti1+···+ip ]j1,...,ji1+···+ip
= 0.

Practical aspect: If the function f is analytically known, then the derivative tensors can be
computed analytically, in particular using automatic differentiation. If the function f is not
analytically known, in particular if f is known only at some points, then the present article
gives possible convergence rates of Gibbs-based minimization algorithms and proves that the
convergence rate is still polynomial under the assumption that the minimum is strictly polyno-
mial. Degenerate cases yield a different behaviour that can be empirically detected; the order
of degeneracy can be estimated as well.
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Chapter 4. Convergence rates of Gibbs measures with degenerate minimum

4.3.3.2 Multiple well case

Still following [AH10], we study the multiple well case, i.e. the global minimum is attained in
a finite number of points in Rd, say {x⋆

1, . . . , x
⋆
m} for some m ∈ N. In this case, the limiting

measure of πt will have its support in {x⋆
1, . . . , x

⋆
m}, with different weights.

Theorem 4.3.4 (Athreya-Hwang, 2010). Let f : Rd → R be a Borel function, let f⋆ ∈ R and
let x⋆

1, . . . , x
⋆
m ∈ Rd such that :

1. e−f ∈ L1(Rd).

2. For all δ > 0, inf{f(x) − f⋆, ||x− x⋆
i || > δ, 1 ≤ i ≤ m} > 0.

3. There exist (αij)1≤i≤m
1≤j≤d

such that for all i, j, αij ≥ 0 and for all i:

1
t
[f(x⋆

i + (tαi1h1, . . . , t
αidhd)) − f⋆] −→

t→0
gi(h1, . . . , hd) ∈ [0,∞).

4. For all i ∈ {1, . . . ,m},∫
Rd

sup
0<t<1

e−
f(x⋆

i
+(tαi1 h1,...,tαid hd))−f⋆

t dh1 . . . dhd < ∞.

Then, let α := min1≤i≤m

{∑d
j=1 αij

}
and let J :=

{
i ∈ {1, . . . ,m} : ∑d

j=1 αij = α
}

. For 0 <
t < 1, let Xt be a random vector with distribution πt. Then:

Xt
L−→

t→0

1∑
j∈J

∫
Rd e−gj(x)dx

∑
i∈J

∫
Rd
e−gi(x)dx · δx⋆

i
.

Theorem 4.3.5 (Multiple well case). Let f : Rd → R be C2p for p ∈ N, let f⋆ ∈ R and let
x⋆

1, . . . , x
⋆
m ∈ Rd such that:

1. f is coercive i.e. f(x) → +∞ when ||x|| → +∞.

2. argmin(f) = {x⋆
1, . . . , x

⋆
m} and for all i, f(x⋆

i ) = f⋆.

3. For all i ∈ {1, . . . ,m}, f ∈ A ⋆
pi

(x⋆
i ) for some pi ≤ p.

4. e−f ∈ L1(Rd).

Then, for every i ∈ {1, . . . ,m}, we consider (Eik)k, (αij)j, Bi and gi as defined in Algorithm 1,
where we consider f to be in A ⋆

pi
(x⋆

i ), so that for every h ∈ Rd:

1
t
[f(x⋆

i +Bi · (tαi ∗ h)) − f⋆] −→
t→0

gi(h1, . . . , hd) ∈ [0,∞),

where tαi is the vector (tαi1 , . . . , tαid) and where gi is not constant in any of its variables. Fur-
thermore, we assume that for all i, gi is coercive and the following technical hypothesis for every
i such that pi ≥ 5:

∀h ∈ Rd, ∀(i1, . . . , ipi) ∈ {0, 2, . . . , 2pi}pi ,

i1
2 + · · · + ipi

2p < 1 =⇒ ∇i1+···+ipif(x⋆
i ) · pEi1

(h)⊗i1 ⊗ · · · ⊗ pEipi
(h)⊗ipi = 0.
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4.4. Expansion of f at a local minimum with degenerate derivatives

Let α := min1≤i≤m

{∑d
j=1 αij

}
and let J :=

{
i ∈ {1, . . . ,m} : ∑d

j=1 αij = α
}

. Then:

Xt −→
t→0

1∑
j∈J

∫
Rd e−gj(x)dx

∑
i∈J

∫
Rd
e−gi(x)dx · δx⋆

i
.

Moreover, let δ > 0 be small enough so that the balls B(x⋆
i , δ) are disjoint, and define the random

vector Xit to have the law of Xt conditionally to the event ||Xt − x⋆
i || < δ. Then:( 1

tαi1
, . . . ,

1
tαid

)
∗ (B−1

i · (Xit − x⋆
i )) L−→ Xi as t → 0,

where Xi has a density proportional to e−gi(x).

4.4 Expansion of f at a local minimum with degenerate deriva-
tives

In this section, we aim at answering to the problem stated in (4.3.2) in order to devise condi-
tions to apply Theorem 4.3.2. This problem can also be considered in a more general setting,
independently of the study of the convergence of Gibbs measures. It provides a non degenerate
higher order nested expansion of f at a local minimum when some of the derivatives of f are
degenerate. Note here that we only need x⋆ to be a local minimum instead of a global minimum,
since we only give local properties.

For k ≤ 2p, we define the tensor of order k, Tk := ∇kf(x⋆).

4.4.1 Expansion of f for any order p

In this section, we state our result in a synthetic form. The proofs of the cases p = 1, 2, 3, 4 are
individually detailled in Sections 4.4.3, 4.4.4, 4.4.6 and 4.4.7 respectively.

Theorem 4.4.1. Let f : Rd → R be C2p for some p ∈ N and assume that f ∈ A ⋆
p (x⋆) for some

x⋆ ∈ Rd.

1. If p ∈ {1, 2, 3, 4}, then there exists orthogonal subspaces of Rd, E1, . . . , Ep such that

Rd = E1 ⊕ · · · ⊕ Ep,

and satisfying for every h ∈ Rd:

1
t

[
f
(
x⋆ + t1/2pE1

(h) + · · · + t1/(2p)pEp
(h)
)

− f(x⋆)
]

(4.4.1)

−→
t→0

2p∑
k=2

1
k!

∑
i1,...,ip∈{0,··· ,k}

i1+···+ip=k
i1
2 +···+ ip

2p
=1

(
k

i1, . . . , ip

)
Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip . (4.4.2)

The convergence is uniform with respect to h on every compact set. Moreover, let B ∈
Od(R) be an orthogonal transformation adapted to the decomposition E1 ⊕ · · · ⊕ Ep, then

1
t

[f (x⋆ +B · (tα ∗ h)) − f(x⋆)] −→
t→0

g(h), (4.4.3)
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where

g(h) =
2p∑

k=2

1
k!

∑
i1,...,ip∈{0,...,k}

i1+···+ip=k
i1
2 +···+ ip

2p
=1

(
k

i1, . . . , ip

)
Tk · pE1

(B · h)⊗i1 ⊗ · · · ⊗ pEp
(B · h)⊗ip (4.4.4)

is not constant in any of its variables h1, . . . , hd and

αi := 1
2j for i ∈ {dim(E1) + · · · + dim(Ej−1) + 1, . . . ,dim(E1) + · · · + dim(Ej)}.

(4.4.5)

2. If p ≥ 5 and if there exist orthogonal subspaces of Rd, E1, . . . , Ep such that

Rd = E1 ⊕ · · · ⊕ Ep

and satisfying the following additional assumption

∀h ∈ Rd, ∀(i1, . . . , ip) ∈ {0, 2, . . . , 2p}p, (4.4.6)
i1
2 + · · · + ip

2p < 1 =⇒ Ti1+···+ip · pE1
(h)⊗i1 ⊗ · · · ⊗ pEp

(h)⊗ip = 0,

then (4.4.2) stills holds true, as well as the uniform convergence on every compact set.
Moreover, if B ∈ Od(R) is an orthogonal transformation adapted to the previous decompo-
sition, then (4.4.3) still hold true. However, depending on the function f , such subspaces
do not necessarily exist.

Remarks:

1. The limit (4.4.2) can be rewritten as:
2p∑

k=2

∑
i1,...,ip∈{0,··· ,k}

i1+···+ip=k
i1
2 +···+ ip

2p
=1

Tk ·
pE1

(h)⊗i1

i1! ⊗ · · · ⊗
pEp

(h)⊗ip

ip! .

2. For p ∈ {1, 2, 3, 4}, we explicitly give the expression of the sum (4.4.2) and the p-tuples
(i1, . . . , ip) such that i1

2 + · · ·+ ip

2p = 1, in (4.4.7), (4.4.8), (4.4.10) and (4.4.13) respectively.

3. For p ∈ {1, 2, 3, 4}, we give in Algorithm 1 an explicit construction of the orthogonal
subspaces E1, . . . , Ep as complementaries of annulation sets of some derivatives of f .

4. The case p ≥ 5 is fundamentally different from the case p ∈ {1, 2, 3, 4}. The strategy of
proof developed for p ∈ {1, 2, 3, 4} fails if the assumption (4.4.6) is not satisfied. In 4.4.8
a counter-example is detailed. The case p ≥ 5 yields fewer results than for p ≤ 4, as the
assumption (4.4.6) is strong.

5. For p ≥ 5, such subspaces E1, . . ., Ep may also be obtained from Algorithm 1, however
(4.4.6) is not necessarily true in this case.

The proof of Theorem 4.4.1 is given first individually for each p ∈ {1, 2, 3, 4}, in Sections
4.4.3, 4.4.4, 4.4.6, 4.4.7 respectively. The proof for p ≥ 5 is given in Section 4.4.8. The proof of
the uniform convergence and of the fact that g is not constant is given in Section 4.4.9.
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4.4.2 Review of the one dimensional case

We review the case d = 1, as it guides us for the proof in the case d ≥ 2. The strategy is to find
the first derivative f (m)(x⋆) which is non zero and then to choose α1 = 1/m.

Proposition 4.4.2. Let f : R → R be Cp for some p ∈ N and let x⋆ be a strict polynomial local
minimum of f . Then :

1. The order of the local minimum m is an even number and f (m)(x⋆) > 0.

2. f(x⋆ + h) =
h→0

f(x⋆) + f (m)(x⋆)
m! hp + o(hm)

Then α1 := 1/m is the solution of (4.3.2) and

1
t
(f(x⋆ + t1/mh) − f(x⋆)) −→

t→0

f (m)(x⋆)
m! hm

which is a non-constant function of h, since f (m)(x⋆) ̸= 0. The direct proof using the Taylor
formula is left to the reader.

4.4.3 Proof of Theorem 4.4.1 for p = 1

Let f ∈ A ⋆
1 (x⋆). The assumption that x⋆ is a strict polynomial local minimum at order 2

implies that ∇2f(x⋆) is positive definite. Let us denote (βi)1≤i≤d its positive eigenvalues. By
the spectral theorem, let us write ∇2f(x⋆) = BDiag(β1:d)BT for some B ∈ Od(R). Then:

1
t
(f(x⋆ + t1/2B · h) − f(x⋆)) −→

t→0

1
2

d∑
i=1

βih
2
i . (4.4.7)

Thus, a solution of (4.3.2) is α1 = · · · = αd = 1
2 , B, and g(h1, . . . , hd) = 1

2
∑d

i=1 βih
2
i , which is a

non-constant function of every h1, . . . , hd, since for all i, βi is positive.
In the following, our objective is to establish a similar result when ∇2f(x⋆) is not necessarily

positive definite.

4.4.4 Proof of Theorem 4.4.1 for p = 2

Theorem 4.4.3. Let f ∈ A2(x⋆). Then there exist orthogonal subspaces E and F such that
Rd = E ⊕ F , and that for all h ∈ Rd:

1
t

[
f(x⋆ + t1/2pE (h) + t1/4pF (h)) − f(x⋆)

]
−→
t→0

1
2∇2f(x⋆) · pE (h)⊗2 + 1

2∇3f(x⋆) · pE (h) ⊗ pF (h)⊗2 + 1
4!∇

4f(x⋆) · pF (h)⊗4. (4.4.8)

Moreover, if f ∈ A ⋆
2 (x⋆), then this is a solution to the problem (4.3.2), with E1 = E, E2 = F ,

α defined in (4.4.5), B adapted to the previous decomposition and g defined in (4.4.4).

Remark: The set of 2-tuples (i1, i2) such that i1
2 + i2

4 = 1, are (2, 0), (1, 2) and (0, 4), which
gives the terms appearing in the sum in (4.4.2).

Proof. Let F := {h ∈ Rd : ∇2f(x⋆) · h⊗2 = 0}. By the spectral theorem and since ∇2f(x⋆) is
positive semi-definite, F = {h ∈ Rd : ∇2f(x⋆) · h = 0⊗1} is a vector subspace of Rd. Let E be
the orthogonal complement of F in Rd.
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For h ∈ Rd we expand the left term of (4.4.8) using the Taylor formula up to order 4 and
the multinomial formula (4.2.1), giving

4∑
k=2

1
k!

∑
i1,i2∈{0,...,k}

i1+i2=k

(
k

i1, i2

)
t

i1
2 + i2

4 −1Tk · pE (h)⊗i1 ⊗ pF (h)⊗i2 + o(1).

The terms with coefficient ta, a > 0, are o(1) as t → 0. By definition of F we have ∇2f(x⋆) ·
pF (h) = 0⊗1, so we also have

∇3f(x⋆) · pF (h)⊗3 = 0

by the local minimum condition. This yields the convergence stated in (4.4.8).
Moreover, if x⋆ is a local minimum of polynomial order 4, then by the local minimum

condition, ∇4f(x⋆) > 0 on F in the sense of (4.2.2). Moreover, since ∇2f(x⋆) > 0 on E, then
the limit is not constant in any h1, . . . , hd.

Remark: The cross odd term is not necessarily null. For example, consider

f : R2 −→ R
(x, y) 7−→ x2 + y4 + xy2.

Then f admits a global minimum at x⋆ = 0 since |xy2| ≤ 1
2(x2 + y4). We have E1 = R(1, 0),

E2 = R(0, 1) and for all (x, y) ∈ R2, T3 · (xe1) ⊗ (ye2)⊗2 = 2xy2 is not identically null.

4.4.5 Difficulties beyond the 4th order and Hilbert’s 17th problem

If we do not assume as in the previous section that ∇4f(x⋆) is not positive on F , then we carry
on the development of f(x⋆ + h) up to higher orders. A first idea is to consider F2 := {h ∈ F :
∇4f(x⋆) ·h⊗4 = 0} ⊆ F and E2 a complement subspace of F2 in F , and to continue this process
by induction as in Section 4.4.4. However, F2 is not necessarily a subspace of F .

Indeed, let T be a symmetric tensor defined on Rd′ of order 2k with k ∈ N. As T is symmetric,
there exist vectors v1, . . . , vq ∈ Rd′ , and scalars λ1, . . . , λq ∈ R such that T = ∑

i λi(vi)⊗2k

(see [CGLM08], Lemma 4.2.), so

∀h ∈ Rd′
, T · h⊗2k =

q∑
i=1

λi(vi)⊗2k · h⊗2k =
q∑

i=1
λi⟨vi, h⟩2k.

For k = 2 and T = ∇2kf(x⋆)|F , since x⋆ is a local minimum, we have, identifying F and Rd′ ,

∀h ∈ Rd′
, T · h⊗2k ≥ 0

Then, we could think it implies that for all i, λi ≥ 0, and then

T · h⊗2k = 0 =⇒ ∀i, ⟨vi, h⟩ = 0

which would give a linear caracterization of {h ∈ Rd′ : T · h⊗2k = 0} and in this case, F2
would be a subspace of F . However this reasoning is not correct in general as we do not have
necessarily that for all i, λi ≥ 0.

We can build counter-examples as follows. Since T is a non-negative symmetric tensor, T can
be seen as a non-negative homogeneous polynomial of degree 2k with d′ variables. A counter-
example at order 2k = 4 is T (X,Y, Z) = ((X−Y )(X−Z))2, which is a non-negative polynomial
of order 4, but {T = 0} = {X = Y or X = Z}, which is not a vector space.
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Another counterexample given in [Mot67] at order 2k = 6 is the following. We define

T (X,Y, Z) = Z6 +X4Y 2 +X2Y 4 − 3X2Y 2Z2

By the arithmetic-geometric mean inequality and its equality case, T is non-negative and
T (x, y, z) = 0 if and only if z6 = x4y2 = x2y4, so that

{T = 0} = R

1
1
1

 ∪ R

−1
1
1

 ∪ R

 1
−1
1

 ∪ R

 1
1

−1

 .
Hence, {T = 0} is not a subspace of R3. In particular T cannot be written as ∑i λi(vi)⊗2k with
λi ≥ 0.

In fact, this problem is linked with the Hilbert’s seventeenth problem that we recall below.

Problem 1 (Hilbert’s seventeeth problem). Let P be a non-negative polynomial with d′ variables,
homogeneous of even degree 2k. Find polynomials P1, . . . , Pr with d′ variables, homogeneous
of degree k, such that P = ∑r

i=1 P
2
i

Hilbert proved in 1888 [Hil88] that there does not always exist a solution. In general {T = 0}
is not even a submanifold of Rd′ . Indeed, taking T : h 7→ ∇2kf(x⋆) · h⊗2k, we have ∂hT · h =
2k∇2kf(x⋆) · h⊗2k−1 is not surjective in h = 0, so the surjectivity condition for {T = 0} to be a
submanifold is not fulfilled.

4.4.6 Proof of Theorem 4.4.1 for p = 3

We slightly change our strategy of proof developed in Section 4.4.4. For k ≥ 2, we define Fk

recursively as

Fk := {h ∈ Fk−1 : ∀h′ ∈ Fk−1, ∇2kf(x⋆) · h⊗ h′⊗2k−1 = 0}, (4.4.9)

instead of {h ∈ Fk−1 : ∇2kf(x⋆) · h⊗2k = 0}. Then, by construction, Fk is a vector subspace of
Rd.

Theorem 4.4.4. Let f ∈ A3(x⋆). Then there exist orthogonal subspaces of Rd, E1, E2 and F2,
such that

Rd = E1 ⊕ E2 ⊕ F2,

and such that for all h ∈ Rd,

1
t

[
f(x⋆ + t1/2pE1

(h) + t1/4pE2
(h) + t1/6pF2

(h)) − f(x⋆)
]

(4.4.10)

−→
t→0

1
2∇2f(x⋆) · pE1

(h)⊗2 + 1
2∇3f(x⋆) · pE1

(h) ⊗ pE2
(h)⊗2 + 1

4!∇
4f(x⋆) · pE2

(h)⊗4

+ 4
4!∇

4f(x⋆) · pE1
(h) ⊗ pF2

(h)⊗3 + 10
5! ∇5f(x⋆) · pE2

(h)⊗2 ⊗ pF2
(h)⊗3 + 1

6!∇
6f(x⋆) · pF2

(h)⊗6.

Moreover, if f ∈ A ⋆
3 (x⋆), then this is a solution to the problem (4.3.2), with E3 = F2, α defined

in (4.4.5), B adapted to the previous decomposition and g defined in (4.4.4).

Remark: The set of 3-tuples (i1, i2, i3) such that i1
2 + i2

4 + i3
6 = 1, are (2, 0, 0), (1, 2, 0), (0, 4, 0),

(1, 0, 3), (0, 2, 3), (0, 0, 6), which gives the terms appearing in (4.4.2).
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Proof. We consider the subspace

F1 := {h ∈ Rd : T2 · h⊗2 = 0} = {h ∈ Rd : T2 · h = 0⊗1},

since T2 ≥ 0. Then, let E1 be the orthogonal complement of F1 in Rd and consider the vector
subspace of F1 defined by

F2 = {h ∈ F1 : ∀h′ ∈ F1, T4 · h⊗ h′⊗3 = 0}.

Let E2 be the orthogonal complement of F2 in F1. Then we have

Rd = E1 ⊕ F1 = E1 ⊕ E2 ⊕ F2.

For h ∈ Rd we expand the left term of (4.4.10) using the Taylor formula up to order 6 and the
multinomial formula (4.2.1), giving

6∑
k=2

1
k!

∑
i1,i2,i3∈{0,...,k}

i1+i2+i3=k

(
k

i1, i2, i3

)
t

i1
2 + i2

4 + i3
6 −1Tk · pE1

(h)⊗i1 ⊗ pE2
(h)⊗i2 ⊗ pF2

(h)⊗i3 + o(1),

and we prove the convergence stated in (4.4.10).

All the terms with coefficient ta where a > 0 are o(1) as t → 0.
Order 2: we have T2 · pE2

(h) = 0⊗1 and T2 · pF2
(h) = 0⊗1 so the only term for k = 2 is

1
2T2 · pE1

(h)⊗2.

Order 3: ▷ Since x⋆ is a local minimum and T2 · pF1
(h)⊗2 = 0, we have T3 · pF1

(h)⊗3 = 0.
Then, using property Proposition 4.8.1, if the factor pE1

(h) does not appear as an argument in
T3, then the corresponding term is zero.

▷ Let us prove that
T3 · pE1

(h) ⊗ pF2
(h)⊗2 = 0.

Using Theorem 4.4.3 with E = E1, F = E2 ⊕ F2, we have in particular that for all h ∈ Rd,

1
2T2 · pE (h)⊗2 + 1

2T3 · pE (h) ⊗ pF (h)⊗2 + 1
4!T4 · pF (h)⊗4 ≥ 0. (4.4.11)

Then taking h ∈ E1 ⊕ F2 so that h = pE1
(h) + pF2

(h) and with[
T4 · pF2

(h)
]

|F1
≡ 0⊗3, (4.4.12)

we may rewrite (4.4.11) as

1
2T2 · pE1

(h)⊗2 + 1
2T3 · pE1

(h) ⊗ pF2
(h)⊗2 ≥ 0.

Now, considering h′ = λh, we have that for all λ ∈ R,

λ2
(1

2T2 · pE1
(h)⊗2 + λ

2T3 · pE1
(h) ⊗ pF2

(h)⊗2
)

≥ 0,

so that necessarily T3 · pE1
(h) ⊗ pF2

(h)⊗2 = 0.
▷ Let us prove that

T3 · pE1
(h) ⊗ pE2

(h) ⊗ pF2
(h) = 0.
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We use again (4.4.11), with pF (h) = pE2
(h) + pF2

(h), so that

1
2T2 · pE1

(h)⊗2 + 1
2T3 · pE1

(h) ⊗
(
pE2

(h) + pF2
(h)
)⊗2

+ 1
4!T4 ·

(
pE2

(h) + pF2
(h)
)⊗4

≥ 0.

But using (4.4.12) and that T3 · pE1
(h) ⊗ pF2

(h)⊗2 = 0, we obtain

1
2T2 · pE1

(h)⊗2 + 1
2T3 · pE1

(h)⊗pE2
(h)⊗2 + T3 · pE1

(h)⊗pE2
(h)⊗pF2

(h) + 1
4!T4 · pE2

(h)⊗4 ≥ 0.

Now, considering h′ = pE1
(h) + pE2

(h) + λpF2
(h), we have that for all λ ∈ R,

1
2T2 · pE1

(h)⊗2 + 1
2T3 · pE1

(h)⊗pE2
(h)⊗2 + λT3 · pE1

(h)⊗pE2
(h)⊗pF2

(h) + 1
4!T4 · pE2

(h)⊗4 ≥ 0,

so necessarily T3 · pE1
(h) ⊗ pE2

(h) ⊗ pF2
(h) = 0.

▷ The last remaining term for k = 3 is 1
2T3 · pE1

(h) ⊗ pE2
(h)⊗2.

Order 4: If the factor pE1
(h) does not appear and if the factor pF2

(h) appears at least once,
then using (4.4.12) the corresponding term is zero. If pE1

(h) appears, the only term with a non-
positive exponent of t is 4

4!T4 · pE1
(h) ⊗ pF2

(h)⊗3. So the only terms for k = 4 are 1
4!T4 · pE2

(h)⊗4

and 4
4!T4 · pE1

(h) ⊗ pF2
(h)⊗3.

Order 5: ▷ The terms where pE1
(h) appears at least once have a coefficient ta with a > 0

so are o(1) when t → 0.
▷ We have T2 · pF2

(h)⊗2 = 0, T3 · pF2
(h)⊗3 = 0, T4 · pF2

(h)⊗4 = 0 and since x⋆ is a local
minimum, we have

T5 · pF2
(h)⊗5 = 0.

▷ Let us prove that
T5 · pE2

(h) ⊗ pF2
(h)⊗4 = 0.

Let h ∈ Rd. We have
1

t11/12

[
f(x⋆ + t1/4pE2

(h) + t1/6pF2
(h)) − f(x⋆)

]
−→
t→0

1
4!T5 · pE2

(h) ⊗ pF2
(h)⊗4 ≥ 0.

Hence, considering h′ = λh, we have for every λ ∈ R,

λ5T5 · pE2
(h) ⊗ pF2

(h)⊗4 ≥ 0,

which yields the desired result.
▷ The only remaining term for p = 5 is

10
5! T5 · pE2

(h)⊗2 ⊗ pF2
(h)⊗3.

Order 6: The only term for k = 6 is 1
6!T6 · pF2

(h)⊗6 ; the other terms have a coefficient ta
with a > 0, so are o(1) when t → 0.

Remark : As in Theorem 4.4.3 and the remark that follows, the remaining odd cross-terms
cannot be proved to be zero using the same method of proof, and may be actually not zero. For
example, consider:

f : R2 −→ R
(x, y) 7−→ x4 + y6 + x2y3,

which satisfies h 7→ ∇5f(x⋆) · pE2
(h)⊗2 ⊗ pF2

(h)⊗3 ̸≡ 0.
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Order 2 (2, 0, 0, 0)
Order 3 (2, 1, 0, 0)
Order 4 (0, 4, 0, 0), (1, 1, 0, 2), (1, 0, 3, 0)
Order 5 (1, 0, 0, 4), (0, 2, 3, 0), (0, 3, 0, 2)
Order 6 (0, 1, 3, 2), (0, 2, 0, 4), (0, 0, 6, 0)
Order 7 (0, 1, 0, 6), (0, 0, 3, 4)
Order 8 (0, 0, 0, 8)

Table 4.1: Terms expressed as 4-tuples in the development (4.4.13)

E1 F1

T2 ≥ 0

T2 = 0
E2 F2

T4 ≥ 0
T4 = 0

E3 F3
T6 ≥ 0 T6 = 0

Table 4.2: Illustration of the subspaces

4.4.7 Proof of Theorem 4.4.1 for p = 4

Theorem 4.4.5. Let f ∈ A4(x⋆). Then there exist orthogonal subspaces of Rd, E1, E2, E3 and
F3 such that

Rd = E1 ⊕ E2 ⊕ E3 ⊕ F3,

and for all h ∈ Rd,

1
t

[
f(x⋆ + t1/2pE1

(h) + t1/4pE2
(h) + t1/6pE3

(h) + t1/8pF3
(h)) − f(x⋆)

]
−→
t→0

8∑
k=2

1
k!

∑
i1,...,i4∈{0,...,k}

i1+···+i4=k

(
k

i1, . . . , i4

)
Tk · pE1

(h)⊗i1 ⊗ pE2
(h)⊗i2 ⊗ pE3

(h)⊗i3 ⊗ pF3
(h)⊗i4 .

(4.4.13)

These terms are summarized as tuples (i1, . . . , i4) in Table 4.1. Moreover, if f ∈ A ⋆
4 (x⋆), then

this is a solution to (4.3.2), with E4 = F3, α defined in (4.4.5), B adapted to the previous
decomposition and g defined in (4.4.4).

Proof. As before, we define the subspaces F0 := Rd and by induction:

Fk =
{
h ∈ Fk−1 : ∀h′ ∈ Fk−1, T2k · h⊗ h′⊗3 = 0

}
for k = 1, 2, 3. We define Ek as the orthogonal complement of Fk in Fk−1 for k = 1, 2, 3, so that

Rd = E1 ⊕ E2 ⊕ E3 ⊕ F3.

Then we apply a Taylor expansion up to order 8 to the left side of (4.4.13) and the multinomial
formula (4.2.1), which reads

8∑
k=2

1
k!

∑
i1,...,i4∈{0,...,k}

i1+···+i4=k

(
k

i1, . . . , i4

)
t

i1
2 +···+ i4

8 −1Tk·pE1
(h)⊗i1⊗pE2

(h)⊗i2⊗pE3
(h)⊗i3⊗pF3

(h)⊗i4+o(1).
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4.4. Expansion of f at a local minimum with degenerate derivatives

▷ If i1
2 + · · · + i4

8 > 1 then the corresponding term is in o(1) when t → 0.
▷ If i1

2 + · · · + i4
8 < 1 then the corresponding term diverges when t → 0, so we need to prove that

actually
Tk · pE1

(h)⊗i1 ⊗ pE2
(h)⊗i2 ⊗ pE3

(h)⊗i3 ⊗ pF3
(h)⊗i4 = 0. (4.4.14)

– If i1
2 + i2

4 + i3
6 + i4

8 < 1 but if we also have i1
2 + i2

4 + i3
6 + i4

6 < 1, then by applying the
property at the order 6 (Theorem 4.4.4) with the 3-tuple (i1, i2, i3 + i4), we get (4.4.14).

– So we only need to consider 4-tuples such that i1
2 + i2

4 + i3
6 + i4

8 < 1 and i1
2 + i2

4 + i3
6 + i4

6 ≥ 1.
We can remove all the terms which are null by the definitions of the subspaces E1, E2, E3, F3.
The remaining terms are:

For k = 4: t21/24

6 T4 ·pE1
(h)⊗pF3

(h)⊗3, t11/12

2 T4 ·pE1
(h)⊗pE3

(h)⊗pF3
(h)⊗2, t23/24

2 T4 ·pE1
(h)⊗

pE3
(h)⊗2 ⊗ pF3

(h).
For k = 5 : t21/24

12 T5 · pE2
(h)⊗2 ⊗ pF3

(h)⊗3, t11/12

4 T5 · pE2
(h)⊗2 ⊗ pE3

(h) ⊗ pF3
(h)⊗2, t23/24

4 T5 ·
pE2

(h)⊗2 ⊗ pE3
(h)⊗2 ⊗ pF3

(h).
For k = 6 : t21/24

5! T6 ·pE2
(h)⊗pF3

(h)⊗5, t11/12

4! T6 ·pE2
(h)⊗pE3

(h)⊗pF3
(h)⊗4, t23/24

12 T6 ·pE2
(h)⊗

pE3
(h)⊗2 ⊗ pF3

(h)⊗3.
First, we note that

1
t21/24

[
f(x⋆ + t1/2pE1

(h) + t1/4pE2
(h) + t1/6pE3

(h) + t1/8pF3
(h)) − f(x⋆)

]
−→
t→0

1
6T4 · pE1

(h) ⊗ pF3
(h)⊗3 + 1

12T5 · pE2
(h)⊗2 ⊗ pF3

(h)⊗3 + 1
5!T6 · pE2

(h) ⊗ pF3
(h)⊗5 ≥ 0.

Then, considering h′ = λpE1
(h) + pE2

(h) + pE3
(h) + pF3

(h), we have that for all λ ∈ R,

λ

6T4 · pE1
(h) ⊗ pF3

(h)⊗3 + 1
12T5 · pE2

(h)⊗2 ⊗ pF3
(h)⊗3 + 1

5!T6 · pE2
(h) ⊗ pF3

(h)⊗5 ≥ 0,

so necessarily
T4 · pE1

(h) ⊗ pF3
(h)⊗3 = 0.

Then, considering h′ = pE2
(h) +λpF3

(h) for λ ∈ R, we get successively that the two other terms
are null.

Likewise, we prove successively that the terms in t11/12 are null, and then that the terms in
t23/24 are null. This yields the convergence stated in (4.4.13).

4.4.8 Counter-example and proof of Theorem 4.4.1 with p ≥ 5 under the
hypothesis (4.4.6)

Algorithm 1 may fail to yield such expansion of f for orders no lower than 10 if the hypothesis
(4.4.6) is not fulfilled. Indeed for p ≥ 5, there exist p-tuples (i1, . . . , ip) such that i1

2 +· · ·+ ip

2p < 1
and i1, . . ., ip are all even. Such tuples do not appear at orders 8 and lower, but they do appear
at orders 10 and higher, for example (0, 2, 0, 0, 4) for k = 6. In such a case, we cannot use the
positiveness argument to prove that the corresponding term Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip is

zero, and in fact, it may be not zero.
Let us give a counter example. Consider

f : R2 −→ R
(x, y) 7−→ x4 + y10 + x2y4.

Then f ∈ A ⋆
5 (0) and we have E1 = {0}, E2 = R · (1, 0), E3 = {0}, E4 = {0}, F4 = R · (0, 1).

But
1
t
f(t1/4, t1/10) = 1

t

(
t+ t+ t9/10

)
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goes to +∞ when t → 0.
Now, let us give the proof of Theorem 4.4.1 for p ≥ 5. In this proof, we assume that

the subspaces E1, . . . , Ep given in Algorithm 1 satisfy the hypothesis (4.4.6).

Proof. We develop (4.4.1), which reads:
2p∑

k=2

1
k!

∑
i1,...,ip∈{0,...,k}

i1+···+ip=k

(
k

i1, . . . , ip

)
t

i1
2 +···+ ip

2p
−1
Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip + o(1) =: S.

The terms such that i1
2 + · · · + ip

2p < 1 may diverge when t → 0, so let us prove that they are in
fact null. Let

α := inf
{ i1

2 + · · · + ip
2p

: h 7−→
2p∑

k=2

1
k!

∑
i1,...,ip∈{0,...,k}

i1+···+ip=k
i1
2 +···+ ip

2p
=α

(
k

i1, . . . , ip

)
Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip ̸≡ 0

}
,

and assume by contradiction that α < 1. Then we have for all h ∈ Rd:

t1−αS −→
t→0


2p∑

k=2

1
k!

∑
i1,...,ip∈{0,...,k}

i1+···+ip=k
i1
2 +···+ ip

2p
=α

(
k

i1, . . . , ip

)
Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip


≥ 0,

by the local minimum property. Then, considering h′ = λ1pE1
(h) + · · · + λppEp

(h), we have, for
all h ∈ Rd and λ1, . . . , λd ∈ R,

2p∑
k=2

1
k!

∑
i1,...,ip∈{0,...,k}

i1+···+ip=k
i1
2 +···+ ip

2p
=α

λi1
1 . . . λ

ip
p

(
k

i1, . . . , ip

)
Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip ≥ 0. (4.4.15)

Now, we fix h ∈ Rd such that the polynomial in (4.4.15) in the variables λ1, . . . , λp is not
identically zero, and we consider kmax its highest homogeneous degree, so that we have∑

i1,...,ip∈{0,...,kmax}
i1+···+ip=kmax

i1
2 +···+ ip

2p
=α

λi1
1 . . . λ

ip
p

(
kmax

i1, . . . , ip

)
Tkmax · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip ≥ 0.

If kmax is odd, this yields a contradiction, taking λ1 = · · · = λp =: λ → ±∞. If kmax is even, we
consider the index l1 such that il1 =: a1 is maximal and the coefficients in the above sum with
il1 = a1 are not all zero. Then fixing all the λl for l ̸= l1 and taking λl1 → ∞, we have

∑
i1,...,ip∈{0,...,kmax}

i1+···+ip=kmax
i1
2 +···+ ip

2p
=α

il1 =a1

λi1
1 . . . λ

ip
p

(
kmax

i1, · · · , ip

)
Tkmax · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip ≥ 0.
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Thus, if a1 is odd, this yields a contradiction. If a1 is even, we carry on this process by induction
: knowing l1, . . . , lr, we choose the index lr+1 such that lr+1 /∈ {l1, . . . , lr}, the corresponding
term ∑

i1,...,ip∈{0,...,kmax}
i1+···+ip=kmax

i1
2 +···+ ip

2p
=α

il1 =a1,...,ilr+1 =ar+1

λi1
1 . . . λ

ip
p

(
kmax

i1, . . . , ip

)
Tkmax · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip

is not identically null and such that ilr+1 =: ar+1 is maximal. Necessarily, ar+1 is even. In the
end we will find a non-zero term whose exponents iℓ are all even which contradicts assumption
(4.4.6).

4.4.9 Proofs of the uniform convergence and of the non-constant property

In this section we prove the additional properties claimed in Theorem 4.4.1 : the uniform
convergence with respect to h on every compact set and the fact that the function g is not
constant in any of its variables h1, . . . , hd.

Proof. First, let us prove that the convergence is uniform with respect to h on every compact
set. Let ε > 0 and let R > 0. By the Taylor formula at order 2p, there exists δ > 0 such that
for ||h|| < δ,∣∣∣∣∣∣f(x⋆ + h) − f(x⋆) −

2p∑
k=2

1
k!

∑
i1+···+ip=k

(
k

i1, . . . , ip

)
Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip

∣∣∣∣∣∣ ≤ ε||h||2p.

Now, let us consider t → 0 and h ∈ Rd with ||h|| ≤ R. Then we have:

∀t ≤ max
(

1,
(
δ

R

)1/(2p))
, ||t1/2pE1

(h) + · · · + t1/(2p)pEp
(h)|| ≤ δ,

so that∣∣∣∣1t [ f(x⋆ + t1/2pE1
(h) + · · · + t1/(2p)pEp

(h)) − f(x⋆)
]

−
2p∑

k=2

1
k!

∑
i1+···+ip=k

(
k

i1, . . . , ip

)

·t
i1
2 +···+ ip

2p
−1
Tk · pE1

(h)⊗i1 ⊗ · · · ⊗ pEp
(h)⊗ip

∣∣∣∣ ≤ ε

t
||t1/2pE1

(h) + · · · + t1/(2p)pEp
(h)||2p.

We proved or assumed that the terms such that i1
2 + · · · + ip

2p < 1 are zero. We denote by g1(h)
the sum in the last equation with the terms such that i1

2 + · · · + ip

2p = 1 and by g2(h) the sum
with the terms such that i1

2 + · · · + ip

2p > 1. We also define a as the smallest exponent of t
appearing in g2(h):

a := min
{
i1
2 + · · · + ip

2p : i1, . . . , ip ∈ {0, . . . , 2p}, i1 + · · · + ip ≤ 2p, i12 + · · · + ip
2p > 1

}
> 1.

So that: ∣∣∣∣1t
[
f(x⋆ + t1/2pE1(h) + · · · + t1/(2p)pEp

(h)) − f(x⋆)
]

− g1(h)
∣∣∣∣ (4.4.16)

≤ ta−1|g2(h)| + ε

t
||t1/2pE1

(h) + · · · + t1/(2p)pEp
(h)||2p.
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We remark that h 7→ g2(h) is a polynomial function so is bounded on every compact set. We
also have:

ε

t
||t1/2pE1

(h) + · · · + t1/(2p)pEp
(h)||2p ≤ ε(t1/(2p))2p

t
||h||2p = ε||h||2p.

So (4.4.16) converges to 0 as t → 0, uniformly with respect to h on every compact set.

Now let us assume that f ∈ A ⋆
p (x⋆) ; we prove that the function g defined in (4.3.6) is

not constant in any of its variables in the sense of (4.3.3). Let B ∈ Od(R) adapted to the
decomposition Rd = E1 ⊕ · · · ⊕ Ep. We have:

1
t

[f (x⋆ +B · (tα ∗ h)) − f(x⋆)] −→
t→0

g(h).

Let i ∈ {1, . . . , p} and k such that vi := B · ei ∈ Ek. Let us assume by contradiction that g does
not depend on the ith coordinate. Considering the expression of g in (4.3.6) and setting all the
variables outside Ek to 0, we have:

∀h ∈ Ek, λ ∈ R 7→ T2k · (h+ λvi)⊗2k

is constant. Then applying (4.2.1), we have:

∀h ∈ Ek, T2k · vi ⊗ h⊗2k−1 = 0.

Moreover, for h ∈ Fk−1, let us write h = h′ + h′′ where h′ ∈ Ek and h′′ ∈ Fk, so that

T2k · vi ⊗ h⊗2k−1 = T2k · vi ⊗ h′⊗2k−1 = 0,

where we used that
∀h(3) ∈ Fk−1, T2k · h′′ ⊗

(
h(3)

)⊗2k−1
= 0

following (4.4.9), and Proposition 4.8.1. Considering the definition of Ek as the orthogonal
complement of Fk, which is defined in (4.4.9), the last equation contradicts that vi ∈ Ek.

4.4.10 Non coercive case

The function g we obtain in Algorithm 1 is a non-negative polynomial function which is constant
in none of its variables. However, this does not always guarantee that e−g ∈ L1(Rd), or even
that g is coercive. Indeed, g can be null on an unbounded continuous polynomial curve, while
the polynomial degree of the minimum x⋆ of f is higher than the degree of g in these variables.
For example, let us consider

f : R2 → R (4.4.17)
(x, y) 7→ (x− y2)2 + x6.

Then f ∈ A ⋆
3 (0) and using Algorithm 1, we get

g(x, y) = (x− y2)2,

which does not satisfy e−g ∈ L1(Rd). In fact this case is highly degenerate, as, with

fε(x, y) := f(x, y) + εxy2 = x2 + y4 − (2 − ε)xy2 + x6,

we have that gε(x, y) = x2 + y4 − (2 − ε)xy2 satisfies e−gε ∈ L1(Rd) for every ε ∈ (0, 4) and that
x⋆ is not the global minimum of fε for every ε ∈ (−∞, 0) ∪ (4,∞).

We now prove that instead of assuming e−g ∈ L1(Rd), we can only assume that g is coercive,
which is justified in the following proposition. More specific conditions for g to be coercive can
be found in [BS15] and [BS19].
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Proposition 4.4.6. Let g : Rd → R be the polynomial function obtained from Algorithm 1. If
g is coercive, then e−g ∈ L1(Rd).
Proof. Let

Ak := Span (ei : i ∈ {dim(E1) + · · · + dim(Ek−1) + 1, . . . ,dim(E1) + · · · + dim(Ek)})

for k ∈ {1, . . . , p}. By construction of g, note that for all t ∈ [0,+∞),

g

( p∑
k=1

t1/2kpAk
(h)
)

= tg(h).

Since g is coercive, there exists R ≥ 1 such that for every h with ||h|| ≥ R, g(h) ≥ 1. Then, for
every h ∈ Rd, we have:

g(h) = g

( p∑
k=1

pAk
(h)
)

= g

( p∑
k=1

||h||1/2k

R1/2k
pAk

(
R1/2k h

||h||1/2k

))

= ||h||
R

g

( p∑
k=1

pAk

(
R1/2k h

||h||1/2k

))
.

Then, for ||h|| ≥ R,∣∣∣∣∣
∣∣∣∣∣

p∑
k=1

pAk

(
R1/2k h

||h||1/2k

)∣∣∣∣∣
∣∣∣∣∣
2

=
p∑

k=1

R1/k

||h||1/k
||pAk

(h)||2 ≥ R

||h||
||h||2 = R||h|| ≥ R2 ≥ R,

so that g(h) ≥ ||h||
R which in turn implies e−g ∈ L1(Rd).

We now deal with the simplest configuration where the function g is not coercive, as described
in (4.4.18), by dealing with the case where f is given by (4.4.17), which is an archetype of such
configuration. However, dealing with the general case is more complicated and to give a general
formula for the rate of convergence of the measure πt in this case is not our current objective.
Proposition 4.4.7. Let the function f be given by (4.4.17). Then, if (Xt, Yt) ∼ Cte

−f(x,y)/tdxdy,
we have: (

Xt

t1/6 ,
Y 2

t −Xt

t1/2

)
−→
t→0

C
e−x6

√
x

e−y2

√
π
1x≥0dxdy,

where C =
(∫∞

0
e−x6
√

x
dx

)−1
.

Proof. First, let us consider the normalizing constant Ct. We have :

C−1
t =

∫
R2
e− (x−y2)2+x6

t dxdy = 2t3/4
∫ ∞

−∞
e−t2x6

∫ ∞

0
e−(y2−x)2

dy dx

= t3/4
∫ ∞

−∞
e−t2x6

∫ ∞

−x

e−u2

√
u+ x

dy dx = t7/12
∫ ∞

−∞
e−x6

∫ ∞

−t−1/3x

e−u2√
t1/3u+ x

du dx

∼
t→0

t7/12
∫ ∞

0

e−x6

√
x

∫ ∞

−∞
e−u2

du dx,

where the convergence is obtained by dominated convergence and where we performed the change
of variables x′ = t−1/6x and u = t−1/2(y2 − x). Then we consider, for a1 < b1 and a2 < b2,

P
(
Xt

t1/6 ∈ [a1, b1], Y
2 −X

t1/2 ∈ [a2, b2]
)
.

Performing the same changes of variables and using the above equivalent of Ct completes the
proof.
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More generally, if the function g is not coercive and if we can write, up to a change of basis,

g(h1, . . . , hd) = Q1(h1, h2)2 +Q2(h3, h4)2 + · · · +Qr(h2r−1, h2r)2 + g̃(h2r+1, . . . , hd), (4.4.18)

where the Qi are polynomials with two variables null on an unbounded curve (for example,
Qi(x, y) = (x − y2), Qi(x, y) = (x2 − y3), Qi(x, y) = x2y2), and where g̃ is a non-negative
coercive polynomial, then(

a1 ((Xt)1, (Xt)2, t) , . . . , ar ((Xt)2r−1, (Xt)2r, t) ,( 1
tα2r+1

, . . . ,
1
tαd

)
∗
(
B̃ · ((Xt)2r+1, . . . , (Xt)d)

) )
−→
t→0

b1(x1, x2) . . . br(x2r−1, x2r)Ce−g̃(x2r+1,...,xd)dx1 . . . dx2rdx2r+1 · · · dxd,

where C is a normalization constant, B̃ ∈ Od−2r−1(R) is an orthogonal transformation and for
all k = 1, . . . , r, ak : R2 × (0,+∞) → R2 and bk is a density on R2. Such ak and bk can be
obtained by applying the same method as in Proposition 4.4.7. Algorithm 1 yields the first
change of variable for this method, given by the exponents (αi) (in the proof of Proposition
4.4.7, the first change of variable is t−1/2x and t−1/4y) and thus seems to be the first step of a
more general procedure in this case. However, we do not give a general formula as the general
case is cumbersome. Moreover, we do not give a method where the non coercive polynomials Qi

depend on more than two variables, like

Q(x, y, z) = (x− y2)2 + (x− z2)2.

The method sketched in Proposition 4.4.7 cannot be direclty applied to this case.

4.5 Proofs of Theorem 4.3.3 and Theorem 4.3.5 using Theorem
4.4.1

4.5.1 Single well case

We now prove Theorem 4.3.3.

Proof. Using Theorem 4.4.1, we have for all h ∈ Rd:
1
t
[f(x⋆ +B · (tα ∗ h)) − f(x⋆)] −→

t→0
g(h).

To simplify the notations, assume that there is no need of a change of basis i.e. B = Id. We
want to apply Theorem 4.3.2 to the function f . However the condition∫

Rd
sup

0<t<1
e− f(x⋆+(tα1 h1,...,tαd hd))−f(x⋆)

t dh1 . . . dhd < ∞

is not necessarily true. Instead, let ε > 0 and we apply Theorem 4.3.2 to f̃ , where f̃ is defined
as:

f̃(h) =
{
f(h) if h ∈ B(x⋆, δ)
||h− x⋆||2 + f(x⋆) else,

and where δ > 0 will be fixed later. Then f̃ satisfies the hypotheses of Theorem 4.3.2. The only
difficult point to prove is the last condition of Theorem 4.3.2. If t ∈ (0, 1] and h ∈ Rd are such
that (tα1h1, . . . , t

αdhd) /∈ B(0, δ), then

f̃(x⋆ + (tα1h1, . . . , t
αdhd)) − f(x⋆)

t
= ||(tα1h1, . . . , t

αdhd)||2
t

≥ ||h||2,
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because for all i, αi ≤ 1
2 . If t and h are such that (tα1h1, . . . , t

αdhd) ∈ B(0, δ), then choosing δ
such that for all (tα1h1, . . . , t

αdhd) ∈ B(0, δ),∣∣∣∣f(x⋆ + (tα1h1, . . . , t
αdhd)) − f(x⋆)

t
− g(h)

∣∣∣∣ ≤ ε,

which is possible because of the uniform convergence on every compact set (see Section 4.4.9),
we derive that

f(x⋆ + (tα1h1, . . . , t
αdhd)) − f(x⋆)

t
≥ g(h) − ε.

Hence ∫
Rd

sup
0<t<1

e− f̃(x⋆+tα1 h1,...,tαd hd))−f(x⋆)
t dh1 . . . dhd ≤

∫
Rd
e−||h||2dh+ eε

∫
Rd
e−g(h)dh.

Since g is coercive, using Proposition 4.4.6 we have e−g ∈ L1(Rd) and it follows from Theorem
4.3.2 that if X̃t has density π̃t(x) := C̃te

−f̃(x)/t, then(
(X̃t − x⋆)1

tα1
, . . . ,

(X̃t − x⋆)d

tαd

)
L−→ X as t → 0,

where X has density proportional to e−g(x).
Now, let us prove that if Xt has density proportional to e−f(x)/t, then we also have((Xt − x⋆)1

tα1
, . . . ,

(Xt − x⋆)d

tαd

)
L−→ X as t → 0. (4.5.1)

Let φ : Rd → R be continuous with compact support. Then

E
[
φ

((Xt)1
tα1

, . . . ,
(Xt)d

tαd

)
− φ

(
(X̃t)1
tα1

, . . . ,
(X̃t)d

tαd

)]

=
∫
Rd
φ

(
x1
tα1

, . . . ,
xd

tαd

)(
Cte

− f(x1,...,xd)
t − C̃te

− f̃(x1,...,xd)
t

)
dx1 . . . dxd =: I1 + I2,

where I1 is the integral on the set B(x⋆, δ) and I2 on B(x⋆, δ)c. We have then:

|I2| ≤ ||φ||∞(πt(B(x⋆, δ)c) + π̃t(B(x⋆, δ)c)) −→
t→0

0,

where we used Proposition 4.3.1. On the other hand, we have f = f̃ on B(x⋆, δ), so that

|I1| ≤ ||φ||∞|Ct − C̃t|
∫

B(x⋆,δ)
e− f(x)

t dx ≤ ||φ||∞

∣∣∣∣∣1 − C̃t

Ct

∣∣∣∣∣ .
And we have:

C̃t

Ct
=
∫
e− f(x)

t dx∫
e− f̃(x)

t dx

=
∫

B(x⋆,δ) e
− f(x)

t dx+
∫

B(x⋆,δ)c e− f(x)
t dx∫

B(x⋆,δ) e
− f(x)

t dx+
∫

B(x⋆,δ)c e− f̃(x)
t dx

.

By Proposition 4.3.1, we have when t → 0∫
B(x⋆,δ)c

e− f̃(x)
t dx = o

(∫
B(x⋆,δ)

e− f̃(x)
t dx

)
∫

B(x⋆,δ)c
e− f(x)

t dx = o

(∫
B(x⋆,δ)

e− f(x)
t dx

)
,

so that C̃t/Ct → 1, so I1 → 0, which then implies (4.5.1).
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4.5.2 Multiple well case

We now prove Theorem 4.3.5.

Proof. The first point is a direct application of Theorem 4.3.4. For the second point, we remark
that Xit has a density proportional to e−fi(x)/t, where

fi(x) :=
{
f(x) if x ∈ B(x⋆

i , δ)
+∞ else.

We then consider f̃i as in Section 4.5.1:

f̃i(x) =
{
fi(x) if x ∈ B(x⋆

i , δ)
||x− x⋆

i ||2 + f⋆ else.

and still as in Section 4.5.1, we apply Theorem 4.3.2 to f̃i and then prove that random variables
with densities proportional to e−f̃i(x)/t and e−fi(x)/t respectively have the same limit in law.

4.6 Infinitely flat minimum
In this section, we deal with an example of infinitely flat global minimum, where we cannot use
a Taylor expansion.

Proposition 4.6.1. Let f : Rd → R such that

∀x ∈ B(0, 1), f(x) = e
− 1

||x||2

and
∀x /∈ B(0, 1), f(x) > a

for some a > 0. Furthermore, assume that f is coercive and e−f ∈ L1(Rd). Then, if Xt has
density πt,

log1/2
(1
t

)
·Xt

L−→ X as t → 0,

where X ∼ U(B(0, 1)).

Proof. Noting that
∫

||x||>1 e
−f(x)/tdx → 0 as t → 0 by dominated convergence, we have

Ct ∼
t→0

(∫
B(0,1)

e−e
− 1

||x||2 /tdx

)−1

= logd/2
(1
t

)

∫

B(0,
√

log(1/t))
e−t

1
||x||2

−1

dx︸ ︷︷ ︸
→

t→0
Vol(B(0,1))



−1

,

where the convergence of the integral is obtained by dominated convergence. Then we have, for
−1 < ai < bi < 1 and ∑i a

2
i < 1, ∑i b

2
i < 1:

P
(

log1/2
(1
t

)
·Xt ∈

d∏
i=1

[ai, bi]
)

= Ct

logd/2
(

1
t

) ∫ (bi)

(ai)
e−t

1
|x|2

−1

dx −→
t→0

∏d
i=1(bi − ai)

Vol(B(0, 1)) .

114
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Figure 4.1: Distribution of the eigenvalues of the Hessian matrix at the end of training.

4.7 Simulations: computing high-order expansion of the loss
with singular Hessian matrix

In this section, we present simulations illustrating our theoretical results for degenerate cases
and showing how we can compute such high-order expansions in practice. Our code and a
demonstration notebook are available at

https://github.com/Bras-P/gibbs-measures-with-singular-hessian.

We consider the function f to be the loss function associated to the training of an artificial
neural network. We train a feedforward neural network on the MNIST dataset [LBBH98], which
is composed of grayscale images of size 28 × 28 of handwritten digits (from 0 to 9). The neural
network is composed of two hidden layers with 16 units each and with ReLU activation. After
training the neural network on the data, we compute the Hessian matrix of the loss with respect
to the kernel of the second Dense layer, as in practice we cannot compute the whole Hessian
matrix with respect to all the variables. The Hessian matrix is singular; we give the distribution
of its eigenvalues in Figure 4.1 where a gap appears between non-zero eigenvalues and zero
eigenvalues.

We then compute the expansion of the loss function as in (4.4.2) up to the order 4 on the
subspace of dimension 2 which is spanned by two eigenvectors, one with non-zero eigenvalue
(subspace E) and one with zero eigenvalue (subspace F ).

In TensorFlow, higher order derivatives can be computed the same way as first-order deriva-
tives by stacking several tf.GradientTape. We use tf.GradientTape.jacobian to compute
the Jacobian tensor of a tensor-valued function, since tf.GradientTape.gradient only com-
putes the gradient of a scalar-valued function.

1 def compute_hessian (model , inputs , targets ):
2 with tf. GradientTape () as g1:
3 with tf. GradientTape () as g2:
4 loss_value = model.loss(inputs , targets )
5 grads = g2. gradient (loss_value , model. trainable_variables )
6 hessian_matrix = g1. jacobian (grads , model. trainable_variables )
7 return hessian_matrix

Since the dimension of the variable may be very large for neural network, we compute
derivative tensors only with respect to some variables. To do so, we need to create a new Layer
object where the reduced kernel only includes these variables. We give the implementation of a
dense layer modified in order to compute (t1, . . . , tr) ∈ Rr 7→ ℓ(x⋆ + t1v1 + · · · + trvr) where ℓ
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stands for the output of the layer, where x⋆ ∈ Rd is fixed and where v1, . . . , vr are vectors. The
new layer class is defined as subclass of the base class tf.keras.layers.Layer. The method
build initializes the weights of the layer when the layer is called for the first time; each weight
is defined through the method add_weight. The method call defines the output of the layer
depending on the inputs and its weights.

1 class CustomLayer (tf.keras. layers .Layer):
2 def __init__ (self , x_star , direction_vectors , activation =None):
3 super( CustomLayer , self). __init__ ()
4 self. x_star = x_star # x_star [0] is the kernel matrix and x_star [1]

is the bias
5 self. direction_vectors = tf. reshape ( direction_vectors , [

direction_vectors . shape [0], x_star [0]. shape [0], x_star [0]. shape [1]])
6 self. activation = activation
7

8 def build(self , input_shape ):
9 self. kernel = self. add_weight (" kernel ", shape = [ direction_vectors .

shape [0] ,])
10

11 def call(self , inputs ):
12 outputs = tf. matmul (inputs , self. x_star [0] + tf. tensordot (self.

kernel , self. direction_vectors , axes =[[0] ,[0]]) ) + self. x_star [1]
13 if self. activation is not None:
14 outputs = self. activation ( outputs )
15 return outputs

We then obtain the following expansion up to the order 4; if we denote by x⋆ the (empirical)
minimum of the loss function, by x1 the eigenvector with non-zero eigenvalue and by x2 the
eigenvector with zero eigenvalue, for λ1, λ2 ∈ R we have

1
t

[
f(x⋆ + t1/2λ1x1 + t1/4λ2x2) − f(x⋆)

]
−→
t→0

λ2
1

2 ∇2f(x⋆) · x⊗2
1 + λ1λ

2
2

2 ∇3f(x⋆) · x1 ⊗ x⊗2
2 + λ4

2
4! ∇4f(x⋆) · x⊗4

2

where the three coefficients ∇2f(x⋆) · x⊗2
1 , ∇3f(x⋆) · x1 ⊗ x⊗2

2 and ∇4f(x⋆) · x⊗4
2 are computed

in the notebook by stacking several tf.GradientTape as in compute_hessian.
1 (<tf. Tensor : shape =() , dtype=float32 , numpy =0.026905548 > ,
2 <tf. Tensor : shape =() , dtype=float32 , numpy = -0.0007531713 > ,
3 <tf. Tensor : shape =() , dtype=float32 , numpy = -3.2213422e -05 >)
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4.8 Appendix: Properties of tensors

Proposition 4.8.1. Let Tk be a symmetric tensor of order k in Rd. Let E be a subspace of Rd.
Assume that

∀h ∈ E, Tk · h⊗k = 0.

Then we have
∀h1, . . . , hk ∈ E, Tk · h1 ⊗ · · · ⊗ hk = 0.
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Proof. Using (4.2.1), we have for h1, . . . , hk ∈ E and λ1, . . . , λk ∈ R,

Tk · (λ1h1 + · · · + λkhk)⊗k =
∑

i1+···+ik=k

(
k

i1, . . . , ik

)
λi1

1 . . . λ
ik
k Tk · h⊗i1

1 ⊗ · · · ⊗ h⊗ik
k = 0,

which is an identically null polynomial in the variables λ1, . . . , λk, so every coefficient is null,
in particular

∀h1, . . . , hk ∈ E, Tk · h1 ⊗ · · · ⊗ hk = 0.
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Chapter 5
Stochastic algorithms for artificial neural
networks with simulations in TensorFlow

5.1 Artificial neural networks

5.1.1 Calibration of artificial neural networks as a stochastic optimization
problem

Neural networks are a powerful tool for a wide range of problems (regression, classification, etc)
involving inferring a model from a huge amount of data. Neural networks are functions with
high-dimensional parametrization thus allowing to fit to many different problems and data. With
neural networks, the user does not need to devise a very specific model fitting to the data by
himself anymore.

Let us consider data samples ui ∈ Rdin and yi ∈ Rdout for 1 ≤ i ≤ M associated to a
regression problem, where (ui) are the inputs and where (yi) are the outputs. That is, we look
for a function ψ : Rdin → Rdout which fits to the data i.e.

∀ 1 ≤ i ≤ M, ψ(ui) ≈ yi.

In other words, the objective is to extract a model from the empirical data. We look for a function
ψ in a family of functions parametrized by a finite-dimensional parameter: {ψx, x ∈ Rd}. For
L : Rdout → R a loss function which measures the error between the prediction ψx(ui) and the
true data yi, the regression problem then becomes the minimization of the average loss over the
data and can be written as the following optimization problem:

Minimize
x∈Rd

V (x) := 1
M

M∑
i=1

L(ψx(ui) − yi). (5.1.1)

The output of a fully connected neural network ψx is defined as follows. Let us choose an
activation function φ : R → R, which is a non-linear sigmoid-type or ReLU-type function (see
Table 5.1). Let K + 1, K ∈ N, be the number of layers of the neural network and for k = 0,
. . . , K let dk ∈ N be the size of the kth layer with d0 = din and dK = dout; the output is defined
recursively as:

u(0) := u ∈ Rdin ,

u(k) = φ(αk · u(k−1) + βk) ∈ Rdk , 1 ≤ k ≤ K − 1,
ψx(u) = u(K) = αK · u(K−1) + βK .
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Figure 5.1: The Sigmoid and ReLU functions

The second equation should be understood for each coordinate of u(k). For every 1 ≤ k ≤ K,
αk ∈ Mdk,dk−1(R) and βk ∈ Rdk and the parameter x of the neural network is

x = (α1, β1, . . . , αK , βK) ∈ Md1,d0(R) × Rd1 × · · · × MdK ,dK−1(R) × RdK .

Neural networks have first gained interest as universal approximators since Cybenko’s the-
orem [Cyb89] stating that if dout = 1, if K = 2 and if φ : R → R is continuous and such
that

φ(t) −→
t→−∞

0 and φ(t) −→
t→+∞

1

then the setu 7→
d1∑

j=1
αj

2φ([α1 · u+ β1]j), d1 ∈ N, α1 ∈ Md0,d1(R), β1 ∈ Rd1 , α2 ∈ Rd1


is dense in C0([0, 1]din ,R) for the uniform norm. In fact, no monotonicity assumption is required
for φ.

5.1.2 Neural networks architectures for tasks other than regression

5.1.2.1 Classification

Let us consider a classification problem: the output to predict y is not a "continuous" data
having values in Rdout but is a classification label in {1, . . . , Nlabels}. In this case, the output
y is mapped to RNlabels as a one-hot vector i.e. for 1 ≤ j ≤ Nlabels, the jth coordinate is the
probability to belong to the jth class. Similarly to the logistic classification, the loss function used
for classification problems is the categorical cross-entropy: if the data y = i ∈ {1, . . . , Nlabels}
and the prediction vector is z ∈ RNlabels , then the resulting loss is log(1+e−zi). For more details
we refer to [TKV10].

5.1.2.2 Images and convolutional layers

An image encoded as a matrix can be seen as an input vector, however this does not take into
account the spatial properties of the image. Moreover, the original dimension of an image is
generally too large to be directly processed using fully-connected layers. A common way to
deal with image analysis is to stack a succession of 2D-convolutions which kernel is a trainable
parameter in order to extract its spatial features, and of pooling layers which are non-trainable
but reduce the dimension of the image by averaging or taking the maximum over small squares
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Figure 5.2: 2D-convolution layer followed by max-pooling architecture

[JKRL09]. Once the features are extracted and the dimension is reduced, we use dense layers
to extract the role of each feature. An illustration is given in Figure 5.2.

5.1.2.3 Time series

The problem is to predict the value of a time series in the future knowing the previous values
over a time window. This problem can be rewritten as a regression problem as follows. For a
whole time series (uk)1≤k≤T ∈ (Rd1)T , the input data is the extracted sub-series (uk+1, . . . , uk+ℓ)
where ℓ ≪ T and for each k the output is uk+ℓ+s where s is the number of time steps in the
future for which we predict the value of u.

To design a neural network adapted to time series analysis, we first need layers that extract
the features of the data and that take into account their sequential structure. Along with images,
we can use 1D-convolutional layers however such layers only extract short-term local features.
Recurrent Neural Networks (RNN) are more adapted to the analysis of short but also long-term
dependencies. RNN have a "hidden state" which is a time series that is recursively updated
according to the data [RHW86]. More specifically, the output of a RNN is the hidden state
(hk+1, . . . , hk+ℓ) that is recursively updated as

hj+1 = ψx(uj , hj)

where ψx is some neural function with trainable parameter x (independent of j). Popular choices
for the parametrization of ψx are LSTM (Long Short Term Memory) networks [HS96, HS97]
and GRU (Gated Recurrent Unit) networks [CvMBB14].

5.1.3 Neural networks, stochastic gradient and automatic differentiation

The stochastic gradient descent for (5.1.1) writes

xn+1 = xn − γn+1∇x
(
L(ψxn(uin+1) − yin+1)

)
(5.1.2)

where in+1 ∈ {1, . . . ,M} is an index chosen uniformly at random and where (γn) is a non-
increasing step sequence. In practice, SGD is implemented by batches where the gradient is
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estimated by the average over a small amount of data:

xn+1 = xn − γn+1
Nbatch

∑
i∈In+1

∇x (L(ψxn(ui) − yi)) (5.1.3)

where In+1 is a subset of {1, . . . ,M} of size Nbatch taken uniformly at random with Nbatch ≪ M .
The advantages of using batches are that the gradient descent is more stable and that for each
iteration, all the gradients ∇x(L(ψxn(ui) − yi)) for i ∈ In+1 are computed simultaneously by
parallelization in particular using GPU devices, so that computing Nbatch gradients takes the
same time as computing one gradient provided that Nbatch is not too large.

Computing the gradient ∇x (L(ψxn(ui) − yi)) using the finite difference method is inaccurate
and cumbersome in particular when the dimension of the parameter x is large. Instead we use
automatic differentiation: knowing that L(ψx(ui)−yi) is written as a composition of elementary
operations (addition, multiplication, etc) and functions (exp, log etc) of the parameter x as it
is the case for neural networks, then the gradient with respect to x is explicitly computed using
the chain rule.

In a more general framework, let us consider a function f : Rd → Rq of x which can be
written as a composition of elementary operations which gradients are analytically known. More
specifically, let us write these elementary operations as f(x0) = xN with xN defined recursively
as

x0 ∈ Rℓ0 , xn+1 =
(

xn

fn+1(xn)

)
=: Fn+1(xn) ∈ Rℓn+1 , n ∈ {0, . . . , N − 2}, xN = fN (xN−1)

(5.1.4)

where fn+1 : Rℓn → Rℓn+1−ℓn and Fn+1 : Rℓn → Rℓn+1 and d = ℓ0 < ℓ1 < · · · < ℓN−1 are
increasing dimensions and ℓN = q. Thus in order to compute the gradient ∂xN/∂x0, writing
ẋn := ∂xn/∂x0 ∈ Rℓn×ℓ0 with ẋ0 = Iℓ0 the identity matrix and using the chain rule we have

ẋn+1 = ∇Fn+1(xn) · ẋn. (5.1.5)

However (5.1.5) uses the matrix products ∇Fn+1(xn)·ẋn involving matrix products of dimensions
(ℓn+1 × ℓn) · (ℓn × ℓ0), which is computationally expensive in the cases where ℓ0 (the number of
parameters with respect to which we compute the gradient) is large and ℓN is small (typically
ℓN = 1). Another method is to consider instead the adjoint

x̄n :=
(
∂xN

∂xn

)⊤
∈ Rℓn×ℓN (5.1.6)

with x̄N = IℓN
so that we have the backward recursive relation

x̄n = (∇Fn+1(xn))⊤ · x̄n+1, (5.1.7)

involving matrix products of dimensions (ℓn × ℓn+1) · (ℓn+1 × ℓN ). Thus a method to compute
ẋN = x̄0 is:

1. Forward step: compute xN and the gradients ∇Fn+1(xn) using the forward recursive
relation (5.1.5).

2. Backward step: compute x̄0 using the backward recursive relation (5.1.7).
The gradients ∇Fn+1(xn) are directly computed using the known analytical expression of

∇fn+1 for fn+1 in a finite set of elementary operations and functions. For example, for f(x) = ex

then ∇f(x) = ex; for f(x, y) = x+ y ∈ Rℓ then ∇f(x, y) = (Iℓ, Iℓ); for f(x, y) = x ∗ y ∈ Rℓ then
∇f(x, y) = (diag(y), diag(x)).

For more details we refer to [Gil07, BPRS17].
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x0 x⋆

V

Figure 5.3: Behaviour of SGD when the learning rate is too large.

5.2 Stochastic gradient algorithms

5.2.1 Adaptive stochastic algorithms

Many variants of the the classic SGD algorithm (5.1.2) have been developed in order to make
more efficient and more stable algorithms and to accelerate their speed of convergence. One
main drawback of (5.1.2) is that the learning rate (γn) must be set by the user and may not be
adapted simultaneously to any optimization problem (5.1.1) in general. Indeed, if the learning
rate is too large then the algorithm may be repelled from minima or diverge as illustrated in
Figure 5.3. Other stochastic gradient methods are usually based on adaptive learning rates and
for a noisy measurement of the gradient gn+1 they read

xn+1 = xn − γn+1Pn+1 · gn+1 (5.2.1)

where Pn+1 ∈ Md(R) is positive definite. As the dimension of x is large, Pn+1 is chosen to be a
diagonal matrix, thus yielding an adaptive learning rate for each dimension.

Each different choice for the preconditionner rule P yields a different algorithm; let us present
some of the most used stochastic gradient methods in practice.

The RMSprop algorithm [TH12] consists in maintaining a discounted average of the square of
gradients for each weight and to divide the gradient by the root of this average. More precisely,
given α ∈ (0, 1) close to 1 and λ > 0 close to 0 the RMSprop update is written in Algorithm 1.

Algorithm 1 RMSprop
for 1 ≤ n ≤ Niter do

gn+1 = ∇x
(
L(ψxn(uin+1) − yin+1)

)
MSn+1 = αMSn +(1 − α)gn+1 ⊙ gn+1
Pn+1 = diag

(
1⊘

(
λ1+

√
MSn+1

))
xn+1 = xn − γn+1Pn+1 · gn+1

end for

The parameter λ is used for numerical stability. The operators ⊙ and ⊘ represent element-
wise product and division, respectively. Using a discounted average with rate α instead of the
current value allows to counter the unstable mini-batch effects, as evaluating the gradient on
mini-batches leads to estimates that may greatly differs from one iteration to the next.
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The Adam algorithm [KB15] is based on first and second moment estimates of the gradient.
For β1 ∈ (0, 1) and β2 ∈ (0, 1) both close to 1 and for λ > 0 close to 0, the Adam update is
written in Algorithm 2. Note that in the update of xn+1, an average of the gradient M̂n+1 over
the past iterations with exponentially decreasing weight is considered. The notations βn+1

1 and
βn+1

2 denote β1 and β2 to the power n+ 1 respectively.

Algorithm 2 Adam
for 1 ≤ n ≤ Niter do

gn+1 = ∇x
(
L(ψxn(uin+1) − yin+1)

)
Mn+1 = β1Mn + (1 − β1)gn+1
MSn+1 = β2 MSn +(1 − β2)gn+1 ⊙ gn+1
M̂n+1 = Mn+1/(1 − βn+1

1 )
M̂Sn+1 = MSn+1 /(1 − βn+1

2 )
Pn+1 = diag

(
1⊘

(
λ1+

√
M̂Sn+1

))
xn+1 = xn − γn+1Pn+1 · M̂n+1.

end for

The Adadelta algorithm [Zei12] uses as preconditioner the moving root mean square of the
increments of (xn) divided by the moving root mean square of the gradients (gn) and is given
in Algorithm 3.

Algorithm 3 Adadelta
for 1 ≤ n ≤ Niter do

gn+1 = ∇x
(
L(ψxn(uin+1) − yin+1)

)
MSn+1 = β1 MSn +(1 − β1)gn+1 ⊙ gn+1

Pn+1 = diag
(

(λ1+ M̂Sn) ⊘
(
λ1+

√
M̂Sn

))
xn+1 = xn − γn+1Pn+1 · gn+1.
M̂Sn+1 = β2 MSn +(1 − β2)(xn+1 − xn) ⊙ (xn+1 − xn).

end for

Other optimizers used in Machine Learning mainly rely on the same idea which is to adapt
the learning rate for each weight using gradient moving averages and are often based on tunes
of one of the previous algorithms, such as Adamax [KB15], which is a variant of Adam based
on the infinity norm instead of the L2-norm, and AMSgrad [RKK18].

Likewise, vanilla or preconditioned Langevin algorithms are obtained by adding Gaussian
noise to a stochastic gradient method for some choice of preconditioner. More specifically, the
Langevin version of (5.2.1) reads

xn+1 = xn − γn+1Pn+1 · gn+1 + an+1γ
1/2
n+1P

1/2
n+1 · N (0, Id) + a2

n+1γn+1Υn+1, (5.2.2)

where an+1 is a scalar positive decreasing or constant sequence controlling the amplitude of the
noise and where Υ is a second-order correction term given by

[
Υn+1

]
1≤i≤d

=
[ d∑

j=1
∂j [Pn+1]ij

]
1≤i≤d

. (5.2.3)

This formula is given in [MCF15] [LCCC16, Equation (3)] [PP23, Proposition 2.5]. For a
non-Langevin algorithm with name Name, we denote by L-Name its Langevin version i.e. the
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Langevin algorithm obtained by adding a preconditioned Gaussian noise and given by the update
(5.2.2).

5.2.2 Gradient optimizers in TensorFlow

We use the Machine Learning library TensorFlow [AAB+15] with Python. Neural networks can
be easily built by stacking layers:

1 import tensorflow as tf
2

3 model = tf.keras. Sequential ([
4 tf.keras. layers . Conv2D (8, (4, 4), activation =’sigmoid ’), # 8 filters

with convolution kernel of size 4x4
5 tf.keras. layers . MaxPooling2D ((2, 2)), # Pooling with infinity norm on

2x2 squares
6 tf.keras. layers . Flatten (),
7 tf.keras. layers .Dense (32, activation =’sigmoid ’), # 32 units
8 tf.keras. layers .Dense (10)
9 ])

Listing 5.1: Example of a 2D-convolutional neural network in TensorFlow

Once the model is built, we compile it with a loss function and an optimizer:
1 model. compile (
2 optimizer =’SGD ’,
3 loss=tf.keras. losses . SparseCategoricalCrossentropy ( from_logits =True)
4 )

Then the model is trained and its weights are fitted to the data:
1 model.fit( train_features , train_labels , batch_size =256 , epochs =20,

validation_data =( val_features , val_labels ))

Some gradient algorithms are already implemented in TensorFlow and can be found in the
module tf.keras.optimizers, such as tf.keras.optimizers.SGD, tf.keras.optimizers.
Adam, tf.keras. optimizers.RMSprop. We implement Langevin algorithms as subclasses of
the base class tf.keras. optimizers.Optimizer. The method _resource_apply_dense(self,
grad, var) defines the algorithm update rule applied to the weight of the model var knowing
the derivative of the loss grad with respect to var. For example, for the basic stochastic gradient
algorithm, the update rule is simply

1 def _resource_apply_dense (self , grad , var):
2 var. assign (var - self. learning_rate *grad)

Auxiliary variables of the optimizers can be defined in create_slots(self, var_list), for
example the gradient square moving average MSn for RMSprop, see Algorithm 1.

We give the code using these methods for the L-RMSprop algorithm in Listing 5.2. The code
for other L-algorithms can be found at

https://github.com/Bras-P/langevin-simulated-annealing/blob/main/optimizers.py.

We first create a subclass LangevinOptimizer of the base TensorFlow optimizer class tf.keras.
optimizers.Optimizer in order to handle the possible decreasing of sigma which is either a
float value either a tf.keras.optimizers. schedules. LearningRateSchedule:

1 class LangevinOptimizer (tf.keras. optimizers . Optimizer ):
2 def __init__ (self , learning_rate , sigma , name=’LangevinOptimizer ’,

** kwargs ):
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3 super (). __init__ (name , ** kwargs )
4 self. _set_hyper (" learning_rate ", kwargs .get("lr", learning_rate )

)
5 self. _set_hyper ("sigma", kwargs .get("sigma", sigma))
6

7 def _decayed_sigma (self , var_dtype ):
8 sigma = self. _get_hyper ("sigma", var_dtype )
9 if isinstance (sigma , tf.keras. optimizers . schedules .

LearningRateSchedule ):
10 local_step = tf.cast(self.iterations , var_dtype )
11 sigma = tf.cast(sigma( local_step ), var_dtype )
12 return sigma
13

14 def _prepare_local (self , var_device , var_dtype , apply_state ):
15 super (). _prepare_local (var_device , var_dtype , apply_state )
16 if "sigma" in self. _hyper :
17 sigma = tf. identity (self. _decayed_sigma ( var_dtype ))
18 apply_state [( var_device , var_dtype )]["sigma"] = sigma
19

20 def _get_coefficients (self , grad , var , apply_state =None):
21 var_device , var_dtype = var.device , var.dtype. base_dtype
22 coefficients = ( apply_state or {}).get(
23 (var_device , var_dtype )
24 ) or self. _fallback_apply_state (var_device , var_dtype )
25 lr_t , sigma = coefficients ["lr_t"], coefficients ["sigma"]
26 return coefficients , lr_t , sigma

Then the L-RMSprop algorithm is given as a subclass of LangevinOptimizer by:
1 class LRMSprop ( LangevinOptimizer ):
2 def __init__ (self , learning_rate =0.001 , sigma =0.001 , alpha =0.9 ,

diagonal_bias =1e-6, name=" LRMSprop ", ** kwargs ):
3 super (). __init__ ( learning_rate , sigma , name , ** kwargs )
4 self.alpha = alpha
5 self. diagonal_bias = diagonal_bias
6

7 def _create_slots (self , var_list ):
8 for var in var_list :
9 self. add_slot (var , "rms")

10

11 @tf. function
12 def _resource_apply_dense (self , grad , var , apply_state =None):
13 coefficients , lr_t , sigma = self. _get_coefficients (grad , var ,

apply_state )
14 rms_var = self. get_slot (var , "rms")
15 new_rms = self.alpha* rms_var + (1- self.alpha)*tf. square (grad)
16 preconditioner = 1./( self. diagonal_bias + tf.math.sqrt( new_rms ))
17 stddev = sigma*tf.math.sqrt(lr_t* preconditioner )
18 new_var = var - lr_t* preconditioner *grad + tf. random . normal (

shape=tf.shape(grad), stddev = stddev )
19 rms_var . assign ( new_rms )
20 var. assign ( new_var )

Listing 5.2: Implementation of the L-RMSprop optimizer in TensorFlow

The correction term Υ which includes second-order derivatives can be computed using auto-
matic differentiation as same as for the computation of first-order derivatives with the function
diag_jacobian from the module tensorflow_probability.python.math. However in general
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Figure 5.4: Double well potential

Algorithm SGLD L-RMSprop L-Adam
Mean escape time 217.8 90.40 87.13

Table 5.1: Mean escape time of the local minimum of a double-well function. The values of the
parameters are c = 0.1, x0 = −1.5 (initial point), γ = 0.1. The escape times are averaged over
1000 runs. The escape time is defined as the first iteration k such that xk ≥ 1.

we do not include the correction term Υ in the Langevin optimizers as computing second-order
derivatives highly increases the computation time and including the term Υ does not lead to
any visible improvement in practice in comparison with the computation time. Moreover the
time step coefficient of Υn in (5.2.2) is a2

nγn with an ≪ 1 and γn ≪ 1, in comparison with γn for
the gradient and anγ

1/2
n for the Gaussian noise, and if the regularization coefficient α is close to

1 then the preconditioner slowly varies at each iteration and then the true correction term Υ is
close to 0.

5.3 Simulations

We compare the performances of various adaptive (preconditioned) Langevin algorithms with
vanilla SGLD, which is the Langevin algorithm with constant (additive) σ (Pn), as well as
with standard non-Langevin algorithms. The algorithms are tested on diverse optimization and
inference problems with real-life data.

5.3.1 Double well potential

Let us start with a simple one-dimensional example. Let V : R → R be a coercive C2 "double-
well"-type function i.e. with two local minima x⋆

1 and x⋆
2 and such that V (x⋆

1) ≥ V (x⋆
2). In this

section we consider
V (x) = 1

4x
4 − 1

2x
2 − cx,

see Figure 5.4. Starting in the the neighbourhood of x⋆
1 = −1, we simulate how many itera-

tions are needed to escape the first local minimum and to reach x⋆
2 = 1. The Gaussian noise

added to the gradient descent indeed allows to escape from local minima and to explore the
whole space. The results are given in Table 5.1, where we compare the performances of pre-
conditioned Langevin algorithms with vanilla SGLD. Preconditioned Langevin algorithms show
better performances in exploring the state space with a lower mean escape time.
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Figure 5.5: Performance of preconditioned Langevin algorithms compared with vanilla SGLD
on the Adult dataset. The values of the hyperparameters are a = 0.01 and γ = 0.01 for SGLD,
L-RMSprop and L-Adam and γ = 0.5 for L-Adadelta, batch size is 32 and the window for the
posterior is N = 800. 95% confidence intervals are indicated.

5.3.2 Bayesian Logistic Regression

We compare vanilla SGLD with preconditioned Langevin algorithms on a Bayesian logistic
regression problem. Given a binary classification problem (ui, yi)1≤i≤N where yi ∈ {±1}, the
probability of the ith output is

p(yi|ui, x) = 1
1 + exp (−yi⟨x, ui⟩)

,

corresponding to the binary entropy loss. We use the Adult dataset a9a [Koh96] where the
binary classification task is to determine whether a person earns over 50k$ per year knowing 14
features such as age, education etc. We use a Bayesian approach for this problem and we simulate
the parameter x according to the Gibbs distribution of density proportional to e−2V (x)/a2 . The
empirical posterior distribution is given by the N last values of the weights in the algorithm.
The advantage of the Bayesian approach is to be able to quantify the uncertainty about the
inferred values of the weights and about the underlying process.

The results are given in Figure 5.5, showing that the decrease of the loss function is faster
for precondtioned Langevin algorithms than for vanilla SGLD.

5.3.3 Image classification (1)

We train a neural network on the MNIST dataset [LBBH98], which is composed of grayscale
images of size 28×28 of handwritten digits (from 0 to 9). The goal is to recognize the handwritten
digit and to classify the images. 60.000 images are used for training and 10.000 images are used
for test. Examples of predictions are given in Figure 5.6.

We first compare the performances of various Langevin algorithms for the training of a
feedforward neural network, composed of two hidden dense layers with 128 units each and with
ReLU activation. The results are given in Figure 5.7. The preconditioned Langevin algorithms
show significant improvement compared with the vanilla SGLD algorithm. Their convergence is
faster and they achieve a lower error on the test set. We also display the value of the loss function
on the train set during the training to show that the better performances of the preconditioned
algorithms are not due to some overfitting effect.

We then compare preconditioned Langevin algorithms with their respective non-Langevin
counterparts. For shallow neural networks, adding an exogenous noise does not seem to improve
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Figure 5.6: Examples of probability predictions for some images from the MNIST dataset
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Figure 5.7: Performance of preconditioned Langevin algorithms compared with vanilla SGLD
on the MNIST dataset. The values of the hyperparameters are a(n) = A log−1/2(c1n+ e) with
A = 2.10−3 and where c1n = 1 after 5 epochs; γn = γ1/(1 + c2n) where c2n = 1 after 5 epochs
and where for SGLD, γ1 = 0.001 for L-RMSprop and L-Adam and γ1 = 0.1 for L-Adadelta.
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Figure 5.8: Side-by-side comparison of optimization algorithms with their respective Langevin
counterparts for the training of a deep neural network on the MNIST dataset. We display the
performance of SGD for reference. The values of the hyperparameters are a(n) = A log−1/2(c1n+
e) with A = 1.10−3 for L-Adam and A = 5.10−4 for L-RMSprop and where c1n = 1 after 5
epochs; γn = γ1/(1 + c2n) where c2n = 1 after 5 epochs and where γ1 = 0.01 for SGLD and
γ1 = 0.001 for the others.

the performances of the optimization algorithm, although it adds some regularization. In par-
ticular, we could not reproduce the good results of [LCCC16] for feedforward neural networks,
as it is also noted in a footnote in [MO17]. However, for deep neural networks, which are highly
non-linear and which loss function has many local minima, the Langevin version is competitive
with the currently widely used non-Langevin algorithms and can even lead to improvements.
The results are given in Figure 5.8 where we used a deep neural network with 20 hidden layers
of 32 units each and with ReLU activation. This aspect shall be developed in a Chapter 6.

5.3.4 Image classification (2)

We train a convolutional neural network on the CIFAR-10 dataset [KH09], which is composed
of RGB images of size 32 × 32 belonging to 10 different classes: airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. 50000 images are used for training and 10000 images for
test. We train a deep neural network composed of two convolutional layers with 4×4 kernel size
and 32 channels for each; 2 × 2 max-pooling is used after each convolutional layer, which is a
standard network configuration [JKRL09]. These layers are followed by 20 hidden dense layers
with 64 units each and with ReLU activation. Since the images in the CIFAR10 dataset do not
have a good resolution, we cannot expect a very high accuracy on the test set.

We proceed to side-by-side comparison of Langevin algorithms with their respective non-
Langevin counterparts. The results are given in Figure 5.9 and show that in the case of a
deep neural network with a large number of hidden layers, preconditioned Langevin optimizers
achieve competing or even faster convergence speed than non-Langevin optimizers. For more
developments we refer to Chapter 6.

5.3.5 Time series analysis and prediction

We use the Jena Climate dataset which is a weather time series dataset recorded at the weather
station of the Max Planck Institute for Biogeochemistry in Jena, Germany. This dataset contains
14 different features such as air temperature, atmospheric pressure, humidity and wind. We also
pre-process the dataset and add some relevant features for weather prediction such as the the
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Figure 5.9: Side-by-side comparison of optimization algorithms with their respective Langevin
counterparts for the training of a deep neural network on the CIFAR-10 dataset. The values of
the hyperparameters are a(n) = A log−1/2(c1n+ e) with A = 5.10−4 and where c1n = 1 after 5
epochs; γn = γ1/(1 + c2n) where c2n = 1 after 5 epochs and where γ1 = 1 e −3, 2 e −3, 1 e −1 for
Adam, RMSprop and Adadelta respectively
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Figure 5.10: Example of hourly temperature prediction

hour in the day and the day in the year. We consider a recurrent neural network with one
LSTM layer with 64 filters and with tanh activation and sigmoid recurrent activation. The loss
function is the classic L2-mean square loss.

We compare the performance of the RNN model with the performance of the baseline model
which is the model obtained by simply predicting the future value by the current value. An
example of prediction of the temperature using a RNN is given in Figure 5.10.

We compare the performances of the preconditioned Langevin algorithms with the vanilla
SGLD algorithm in Figure 5.11 and in Table 5.2, showing that preconditioned optimizers achieve
a faster convergence speed.

Preconditioner SGLD L-RMSprop L-Adam L-Adadelta Baseline model
Best test loss 0.739 0.434 0.433 0.467 0.545

Table 5.2: Best accuracy performance on the JENA weather test set after 10 epochs.
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Figure 5.11: Performance of preconditioned Langevin algorithms compared with vanilla SGLD
on the JENA weather dataset. The values of the hyperparameters are a(n) = A log−1/2(c1n+e)
with A = 2.10−3 and where c1n = 1 after 5 epochs; γn = γ1/(1 + c2n) where c2n = 1 after
5 epochs and where for SGLD, γ1 = 0.001 for L-RMSprop and L-Adam and γ1 = 0.1 for L-
Adadelta.

5.3.6 Optimal Quantization

We consider the problem of vector optimal quantization as stated in Section 1.1.2.5, which does
not involve neural networks. For µ some probability distribution in L2(Rq) and for fixed K ∈ N,
the objective is to minimize the distortion function:

min
x=(x1,...,xK)∈(Rq)K

V (x) := 1
2

∫
Rq

min
1≤k≤K

|ξ − xk|2µ(dξ). (5.3.1)

Then defining the Voronoï partition of Rq:

Vk(x1, . . . , xK) :=
{
ξ ∈ Rq

∣∣ ∀ 1 ≤ j ≤ K, |ξ − xk| ≤ |ξ − xj |
}
, 1 ≤ k ≤ K,

the corresponding gradient descent algorithm reads with Xn = (X1
n, . . . , X

K
n ) ∈ (Rq)K and

Yn ∼ µ and iid:
Xn+1 = Xn − γn+1

[
1Yn+1∈Vk(Xn)(Xk

n − Yn+1)
]
1≤k≤K

. (5.3.2)

Optimal quantization problems involve the minimization of a potential function (distortion)
which is highly non-convex and with many local minima and saddle points. Indeed, if x =
(x1, . . . , xK) ∈ (Rq)K is a global minimizer, then by symmetry and for every τ ∈ SK the
group of permutations of {1, . . . ,K}, (xτ(1), . . . , xτ(K)) is also a minimizer. It follows from the
Mountain Pass theorem [AR73] the existence of critical points which are not global minimizer.
Moreover, the set of global minimizers is even larger if the law µ to be quantified has its own
symmetry properties. Typically for µ = N (0, Iq), if x = (x1, . . . , xK) ∈ (Rq)K is a global
minimizer then for every linear isometry B, (Bx1, . . . , BxK) is also a global minimizer. We
also refer to [GL00, Section 5] for a discussion on the uniqueness of optimal quantizers (up to
permutation) in the one-dimensional case. An illustration in a simple case is given in Figure
5.13.

Therefore, Langevin algorithms may be suitable for improving the CLVQ algorithm. In
Figure 5.12, we consider the optimal quantization problem with µ = N (0, Iq) in dimension q = 20
with K = 1 e 4 quantization points and we proceed to side-by-side comparison of Langevin and
non-Langevin optimizers, showing that Langevin methods improve the performances of classic
gradient descent methods for optimal quantization. We plot the two-dimensional projection of
the quantizers in Figure 5.14.
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Figure 5.12: Side-by-side comparison of optimization algorithms with their respective Langevin
counterparts for the quantization of the law N (0, I20) with 10000 quantization points. The batch
size is 512 and each epochs consists in 5 batches. At the end of each epoch, the distortion V is
evaluated over 25 × 512 samples and the 95%-confidence intervals are indicated (but may be too
small to be visible). The schedules are γn = 5 e −3 (2 e −2) and a(n) = 5 e −3 (5 e −2) for epochs
0 to 40 and γn = 5 e −4 (2 e −3) and a(n) = 0 beyond for Adam and RMSprop (for Adadelta).

Figure 5.13: Distortion function for µ =
N (0, 1) and K = 2.
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axes of the quantization of N (0, I20) with
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Chapter 6
Langevin algorithms for very deep Neural
Networks with application to image
classification

The results in this chapter have been presented at the International Neural Network
Society Workshop on Deep Learning Innovations and Applications (INNS DLIA),
part of the Machine Learning conference International Joint Conference on Neural
Networks IJCNN 2023, and will be published in the first edition of the INNS work-
shop series in Procedia Computer Science. An arXiv preprint is available [Bra23].

Abstract

Training a very deep neural network is a challenging task, as the deeper a neural
network is, the more non-linear it is. We compare the performances of various pre-
conditioned Langevin algorithms with their non-Langevin counterparts for the train-
ing of neural networks of increasing depth. For shallow neural networks, Langevin
algorithms do not lead to any improvement, however the deeper the network is and
the greater are the gains provided by Langevin algorithms. Adding noise to the
gradient descent allows to escape from local traps, which are more frequent for very
deep neural networks. Following this heuristic we introduce a new Langevin algo-
rithm called Layer Langevin, which consists in adding Langevin noise only to the
weights associated to the deepest layers. We then prove the benefits of Langevin and
Layer Langevin algorithms for the training of popular deep residual architectures
for image classification.

6.1 Introduction

Langevin algorithms are widely used for the training of neural networks in a Bayesian setting
[WT11, VBB+20]. Adding a small exogenous noise adds regularization to the training and allows
to quantify the degree of uncertainty on the parameters. In this paper, we consider Langevin
algorithms directly used for stochastic optimization of neural networks in a non-Bayesian setting
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and compare their performances with non-Langevin stochastic gradient algorithms. As it was
noted in [NVL+15, Ani19], adding gradient noise can in fact improve the learning. Similarly,
noisy activation functions [GMDB16, SLH+19] may yield better learning for very deep neural
networks. Indeed, the noise provides regularization and allows to escape from traps for the
gradient descent such as local minima and saddle points [DPG+14]. Moreover, the deeper the
neural network is, the more non-linear it is, thus increasing the number of such traps. Non-
convex optimization through Langevin algorithms shares heuristics with simulated annealing
which consists in sampling with respect to a Gibbs measure where the noise parameter gradually
decreases to zero, see [vLA87] and Chapter 2.

Many advances in supervised learning were made possible using very deep neural networks,
which are able to tackle much more difficult problems than shallow ones [KSH12, MPCB14,
LBH15], in particular as it comes to image classification [SLJ+15, SZ15, HZRS16, HLVDMW17].
Still, deep neural networks which consist in a succession of dense layers are considerably more
difficult to train [GB10, DPG+14] and may run into vanishing gradient problems [Hoc91, Han18].
Without proper adaptation or training, they show poor performance. To cope with this issue,
highway networks [SGS15] and residual networks [HZRS16] were introduced. Their many suc-
cessive layers behaves either as a dense layer or as the identity function, allowing the gradient
information to propagate trough the successive layers.

We compare the benefits of preconditioned Langevin algorithms [LCCC16] for various archi-
tectures and depths of neural networks and we proceed to side-to-side comparison of Langevin
algorithms with their respective non-Langevin counterparts. The purpose of our experiments
is to compare different methods on the same model architecture, not to achieve state-of-the-art
results. For shallow networks, there is no benefit in using Langevin algorithms as it only adds
noise to the gradient descent and brings a less accurate estimation of the minimum. However,
we observe that the deeper the network is, the greater are the gains provided by Langevin
algorithms.

Since the most important non-linearities of the network are contained in the deepest layers,
we introduce a new optimization method that we call Layer Langevin algorithm, which consists
in training the network by adding Langevin noise only to the training of some layers and not to
the other layers. In particular, we choose the Langevin layers to be the k first (deepest) layers for
some integer k. We then highlight the possibilities of training acceleration using Langevin and
Layer Langevin methods on deep residual networks [HZRS16] and dense convolutional networks
[HLVDMW17] for image classification.

Our code for the numerical experiments is available at

https://github.com/Bras-P/deep-layer-langevin.

It includes in particular ready-to-use Langevin optimizers and Layer Langevin optimizers as
instances of the TensorFlow Optimizer base class and a demonstration notebook.

6.2 Very deep neural networks

Training of very deep neural networks is a significantly more challenging task than for shallow
networks [GB10, DPG+14]. Let us write the output of a neural network with K layers and with
weights θ = (θ1, . . . , θK) as

ψθ(x) = φK
θK ◦ · · · ◦ φ1

θ1(x), (6.2.1)

where φ1, . . . , φK are activation function and where φk
θk : x 7→ φk(θk ·x) at every unit. Denoting

Φk(x) := φk
θk ◦ · · · ◦ φ1

θ1(x) (6.2.2)
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for 1 ≤ k ≤ K and Φ0(x) := x, then the gradient reads for 1 ≤ k ≤ K:

∇θkψθ(x) = (∇θKφθK ◦ ΦK−1(x)) · · · · · (∇θkφθk ◦ Φk−1(x)) . (6.2.3)

Thus heuristically, the deeper the layer is, the more the gradient with respect to the parameters
of this layer has annealing points, since more factors appear in (6.2.3), hinting that deep layers
show more non-linearities and local traps.

6.3 Langevin algorithms for the training of deep neural net-
works

6.3.1 Experimental setting

In our experiments we use the following datasets. The MNIST dataset [LBBH98] is composed of
28×28 grayscale images of handwritten digits (from 0 to 9). 60.000 images are used for training
and 10.000 images are used for test. The CIFAR-10 and the CIFAR-100 datasets [KH09] consist
in RGB images of size 32 × 32 belonging to 10 and 100 different classes respectively. For both
datasets 50.000 images are used for training and 10.000 images are used for test.

The neural networks are trained using preconditioned Langevin algorithms with per-dimension
adaptive stepsize [LCCC16] with different choices of preconditioner. That is, for a preconditioner
rule (Pn) the Langevin update reads

gn+1 = ∇θV (θn; Dn+1) (6.3.1)
θn+1 = θn − γn+1Pn+1 · gn+1 + σ

√
γn+1N (0, Pn+1), (6.3.2)

where σ ∈ (0,∞) controls the amount of injected noise, (γn) is the non-increasing learning rate
sequence, V denotes the objective function and where ∇θV (θn; Dn) stands for the mean gradient
computed on a subset Dn of the dataset. The corresponding preconditioned non-Langevin
algorithm follows the same update as in (6.3.2) without Gaussian noise. In our experiments we
use the RMSprop [DHS11, LCCC16], the Adam [KB15] and the Adadelta [Zei12] preconditioners
and we call the Langevin version of these algorithms as L-RMSprop, L-Adam and L-Adadelta
respectively. The preconditioner rules are given in Algorithms 4, 5, 6 respectively. Note that
depending on the algorithm version, in the update (6.3.2) the gradient gn+1 can be replaced
by an averaged gradient over the past iterations as this in the case in Adam (Algorithm 5) i.e.
momentum gradient is used. While comparing some preconditioned method with its Langevin
counterpart, we ensure that both training procedures start with the same initial weights.

Algorithm 4 RMSprop update
Parameters: α, λ > 0
MSn+1 = αMSn +(1 − α)gn+1 ⊙ gn+1
Pn+1 = diag

(
1⊘

(
λ1+

√
MSn+1

))
θn+1 = θn − γn+1Pn+1 · gn+1

Algorithm 5 Adam update
Parameters: β1, β2, λ > 0
Mn+1 = β1Mn + (1 − β1)gn+1
MSn+1 = β2 MSn +(1 − β2)gn+1 ⊙ gn+1
M̂n+1 = Mn+1/(1 − βn+1

1 )
M̂Sn+1 = MSn+1 /(1 − βn+1

2 )
Pn+1 = diag

(
1⊘

(
λ1+

√
M̂Sn+1

))
θn+1 = θn − γn+1Pn+1 · M̂n+1.

6.3.2 Plain and convolutional networks

We first train fully connected feedforward neural networks on the MNIST dataset. The networks
are composed of 3, 20, 30 and 40 hidden dense layers respectively with 64 units each and with
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Algorithm 6 Adadelta update
Parameters: β1, β2, λ > 0
MSn+1 = β1 MSn +(1 − β1)gn+1 ⊙ gn+1

Pn+1 = diag
(
M̂Sn + λ1⊘

(
λ1+

√
M̂Sn

))
θn+1 = θn − γn+1Pn+1 · gn+1.
M̂Sn+1 = β2 MSn +(1 − β2)(θn+1 − θn) ⊙ (θn+1 − θn).

ReLU activation, followed by one dense output layer. The results are given in Figure 6.1.
We observe that for shallow neural networks, Langevin algorithms do not outperform their
respective non-Langevin counterparts; they add noise to the gradient descent thus giving a
less accurate estimate of the minimum value. In particular and as noted in the footnote in
[MO17], we could not reproduce the good results from [LCCC16] for plain networks with two
hidden layers. However, the deeper the network is, the greater the gains induced by Langevin
algorithms compared with their respective non-Langevin counterparts are. We also display the
value of the loss function on the training set in order to highlight that the better performances
of the Langevin algorithms are not due to some overfitting effect. Langevin algorithms indeed
show improvements on 20-layer deep networks; beyond 30-layer deep networks, the gains are
significant. The training of 40-layer deep networks with non-Langevin algorithms may run into
the vanishing gradient problem, whereas such problem is avoided by Langevin algorithms. In
the latter case of very deep training, preconditioned Langevin algorithms not only add noise
preventing the vanishing of the gradient, they also help starting up the training in the right
directions. To obtain better results with Langevin algorithms, we recommend using a small
coefficient σ, empirically ranging from 1 e −3 to 5 e −5.

We then perform simulations in a similar setup on convolutional architectures that are more
adapted to image recognition [JKRL09] followed by a large number of hidden dense layers. More
specifically, we train neural networks composed of two convolutional layers with 4×4 kernel size
and 32 channels for each; 2×2 max-pooling is used after each convolutional layer. These layers
are followed by respectively 10 and 30 hidden dense layers with 64 units each and by one dense
output layer. Since the images in the CIFAR-10 dataset do not have a good resolution, we
cannot expect a very high accuracy on the test set. Instead, we focus on comparing different
algorithms on the same model architecture. The results are given in Figure 6.2 and we make
similar observations: Langevin algorithms show improvements with 10 hidden dense layers and
for 30 dense layers, non-Langevin algorithms run into vanishing gradient issues which is not the
case for Langevin algorithms.

6.3.3 Highway networks

We now perform the same simulations on Highway networks, in a setting very similar to [SGS15].
Comparably to residual networks, the output of a highway layer is a convex combination of the
output of a dense layer and the output of a identity layer; the parameter controlling the convex
combination is itself trainable. For a layer with weights (θD, θT ), the output reads

y = TθT
(x) ·DθD

(x) + (1 − TθT
(x)) · x, (6.3.3)

where T and D are dense layers and where T has sigmoid output.
We give the implementation of a Highway layer as a subclass of the base TensorFlow class

tf.keras. layers.Layer. The method build initializes the weights of the layer when the layer
is called for the first time; each weight is defined through the method add_weight. The method
call defines the output of the layer depending on the inputs and its weights; we need to resort
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Figure 6.1: Training of neural networks of various depths on the MNIST dataset using Langevin
algorithms compared with their non-langevin counterparts. (a): 3 hidden layers, (b): 20 hidden
layers, (c): 30 hidden layers, (d): 40 hidden layers. The batch size is 512. The schedules are
γn = 1 e −3 and σ = 5 e −4 for epochs 1 to 12 and γn = 1e− 4 and σ = 0 beyond.
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Figure 6.2: Training of convolutional neural networks on the CIFAR-10 dataset. (a): 10 hidden
dense layers, (b): 30 hidden layers. The batch size is 512. The schedules are γn = 1 e −3 and
σ = 2e− 4 for epochs 1 to 15 and γn = 1e− 4 and σ = 0 beyond.

to TensorFlow functions so that the gradient with respect to the layer weights is computed using
the TensorFlow automatic differentiation.

1 class Highway (tf.keras. layers .Layer):
2

3 def __init__ (self , activation =None , tgBias = -1.):
4 super(Highway , self). __init__ ()
5 self. activation = tf.keras. activations .get( activation )
6 self. tgActivation = tf.keras. activations .get(’sigmoid ’)
7 self. tgBias_init = tgBias
8

9 def build(self , input_shape ):
10 dim = input_shape [-1]
11 self. kernel = self. add_weight (" kernel ", shape =[dim , dim ])
12 self.bias = self. add_weight ("bias", shape =[dim ,])
13 self. tgKernel = self. add_weight (" tgKernel ", shape =[dim ,dim ])
14 self. tgBias = self. add_weight (" tgBias ", shape =[ dim], initializer

=tf.keras. initializers . Constant (self. tgBias_init ))
15 self.built = True
16

17 def call(self , inputs ):
18 outputs = tf. matmul (inputs , self. kernel )
19 outputs = tf.nn. bias_add (outputs , self.bias)
20 if self. activation is not None:
21 outputs = self. activation ( outputs )
22 transform_gate = tf. matmul (inputs , self. tgKernel )
23 transform_gate = tf.nn. bias_add ( transform_gate , self. tgBias )
24 transform_gate = self. tgActivation ( transform_gate )
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Figure 6.3: Training of a highway neural network with 80 dense hidden layers. The schedules
are γn = 1 e −3 and σ = 1e− 4 for epochs 1 to 15 and γn = 1e− 4 and σ = 0 beyond.

25 outputs = tf.math. multiply (outputs , transform_gate ) + tf.math.
multiply (inputs , tf.math.add (1.,- transform_gate ))

26 return outputs

We observe that Langevin algorithms become effectively faster than non-Langevin algorithms
only from a larger depth than for plain networks. In Figure 6.3 we plot the results for the training
of a network composed of 80 dense hidden layers with 64 units each and ReLU activation on the
CIFAR-10 dataset, showing the possibilities of acceleration through Langevin algorithms, even
in a residual (highway) architecture.

6.4 Layer Langevin algorithm

We introduce a new Langevin algorithm for stochastic optimization of deep neural networks that
we call Layer Langevin algorithm. Choosing a preconditioner rule P , some weights are updated
following the Langevin rule while the other weights are updated following the non-Langevin rule.
Denoting θ(i)

n the ith weight at step n, we have for every i:

θ
(i)
n+1 = θ(i)

n − γn+1[Pn+1 · gn+1](i) + 1i∈J σ
√
γn+1

[
N (0, Pn+1)

](i)
, (6.4.1)

where J is a subset of weight indices and where Pn denotes the preconditioner. To simplify the
choice of J , we choose J as the subset of indexes of weights belonging to some layers. However,
a finer control over the subset J remains possible. To implement this method in practice, we
simply assign before the training an attribute equals to 1i∈J to every trainable variable of the
network.

We compare the performances of Layer Langevin algorithms with the Adam preconditioner
for different choices of the subset of layers. The results are given in Figure 6.4 for the training
of a dense network with 30 hidden dense layers on the MNIST dataset in a setting similar
to Figure 6.1. For some optimizer Name, we denote LL-Name p% the corresponding Layer
Langevin algorithm where the subset J is the first p% layers of the network. We observe that
we obtain significant gains in comparison with the vanilla Langevin algorithm and that the best
performances are obtained when choosing the subset J as being the first ℓ layers for some ℓ ∈ N,
in particular all the layers of the network except the few last ones.
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Figure 6.4: Layer Langevin method comparison on a dense neural network with 30 hidden layers.
The schedules are γn = 1 e −3 and σ = 5e − 4 for epochs 1 to 13 and γn = 1e − 4 and σ = 0
beyond.
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Figure 6.5: Architecture of the VGG-16 network for an input image of size 224 × 224. The
architecture is composed of 5 convolution blocks; inside each block the number of channels is
kept constant. At each transition between two blocks, the height and the width of the image are
both divided by 2 while the number of channels is multiplied by 2 (except for the last block).
Two hidden fully connected layers are used at the end.

6.5 Application to deep architectures for image recognition
We now test the Layer Langevin algorithm to speed up the training of neural networks with
very deep architectures that are popular in image recognition.

Many advances in supervised learning were made possible using very deep neural networks,
which are able to tackle much more difficult problems than shallow ones. In particular, let
us focus on very deep convolutional networks for image recognition. VGG (Visual Geometry
Group) networks were introduced in [SZ15] and then became a standard for deep convolutional
neural networks. The VGG architecture consists in a succession of 2D convolutional layers with
kernel size 3 × 3 and with ReLU activation; a batch normalization layer is applied before each
convolutional layer. The dimensions of the input image are gradually reduced using 2×2 pooling
layers while the number of channels is increased. At the end of the network, dense layers are
applied for class prediction. An illustration of an example of VGG architecture is given in Figure
6.5.

However, as this is the case for fully connected neural networks, very deep convolutional
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Figure 6.7: ResNet size reduction block

networks are considerably more difficult to train. To cope with this issue, residual networks
(ResNets) were introduced in [HZRS16]. In this architecture, in order to propagate the gradient
information through the many layers a residual learning is implemented every few stacked layers.
More precisely, ResNets are composed of a succession of blocks as described in Figure 6.6. Each
of these blocks includes a shortcut connection and operates in part as a simple identity layer.
Contrary to a highway connection, the coefficient of the shortcut connection is 1 and is non-
trainable. Similarly to VGG nets, the size of the image is gradually reduced using convolutional
layers with 2 × 2 strides, see Figure 6.7. An example of ResNet architecture is given in Figure
6.8. Residual networks allow substantially deeper architectures and gain accuracy from increased
depth [HZRS16].

An implementation of residual networks using the TensorFlow functional API is given in
Listing 6.1. The (main) arguments are:

• block_layers: list of the number of blocks between two size reductions. For example,
[2,3,3] yields the architecture in Figure 6.8.

• filters: initial number of channels which is multiplied by 2 at every size reduction.

• mode: either ’resent’ or ’vgg’, in order to instantiate either the ResNet of the VGG
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Figure 6.8: Example of (reduced) residual network architecture.
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Chapter 6. Langevin algorithms for very deep Neural Networks

architecture.

An implementation of the VGG architecture can be directly obtained from Listing 6.1 by skipping
the shortcut connections in identity_block and convolutional_block.

1 class ResNet ( ModelBuilder ): # can also instantiate the VGG model
2 def __init__ (
3 self ,
4 input_shape = (32 ,32 ,3) ,
5 filters = 32,
6 block_layers = [4,4,4],
7 classes = 10,
8 zero_padding = (0 ,0) ,
9 mode = ’resnet ’ # equals to ’resnet ’ or to ’vgg ’

10 ):
11 self. input_shape = input_shape
12 self. filters = filters
13 self. block_layers = block_layers
14 self. classes = classes
15 self. zero_padding = zero_padding
16 self.mode = mode
17

18 def identity_block (self , x, filter_size ):
19 x_skip = x
20 x = tf.keras. layers . Conv2D ( filter_size , (3 ,3) , padding = ’same ’)

(x)
21 x = tf.keras. layers . BatchNormalization (axis =3)(x)
22 x = tf.keras. layers . Activation (’relu ’)(x)
23 x = tf.keras. layers . Conv2D ( filter_size , (3 ,3) , padding = ’same ’)

(x)
24 x = tf.keras. layers . BatchNormalization (axis =3)(x)
25 if not self.mode ==’vgg ’:
26 x = tf.keras. layers .Add ()([x, x_skip ])
27 x = tf.keras. layers . Activation (’relu ’)(x)
28 return x
29

30 def convolutional_block (self , x, filter_size ):
31 x_skip = x
32 x = tf.keras. layers . Conv2D ( filter_size , (3 ,3) , padding = ’same ’,

strides = (2 ,2))(x)
33 x = tf.keras. layers . BatchNormalization (axis =3)(x)
34 x = tf.keras. layers . Activation (’relu ’)(x)
35 x = tf.keras. layers . Conv2D ( filter_size , (3 ,3) , padding = ’same ’)

(x)
36 x = tf.keras. layers . BatchNormalization (axis =3)(x)
37 if not self.mode ==’vgg ’:
38 x_skip = tf.keras. layers . Conv2D ( filter_size , (1 ,1) , strides

= (2 ,2))( x_skip )
39 x = tf.keras. layers .Add ()([x, x_skip ])
40 x = tf.keras. layers . Activation (’relu ’)(x)
41 return x
42

43

44 def getModel (self):
45 filter_size = self. filters
46 x_input = tf.keras. layers .Input(self. input_shape )
47 x = tf.keras. layers . ZeroPadding2D (self. zero_padding )( x_input )
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Figure 6.9: Dense convolutional network block

48 x = tf.keras. layers . Conv2D ( filter_size , kernel_size =3, padding =’
same ’)(x) # kernel_size is 3 for CIFAR -10, 7 in general

49 x = tf.keras. layers . BatchNormalization ()(x)
50 x = tf.keras. layers . Activation (’relu ’)(x)
51

52 for i in range(len(self. block_layers )):
53 if i == 0:
54 # For sub -block 1 Residual / Convolutional block not

needed
55 for j in range(self. block_layers [i]):
56 x = self. identity_block (x, filter_size )
57 else:
58 filter_size = filter_size *2
59 x = self. convolutional_block (x, filter_size )
60 for j in range(self. block_layers [i] - 1):
61 x = self. identity_block (x, filter_size )
62

63 x = tf.keras. layers . AveragePooling2D ((2 ,2) , padding = ’same ’)(x)
64 x = tf.keras. layers . Flatten ()(x)
65 x = tf.keras. layers .Dense(self. classes )(x)
66

67 model = tf.keras. models .Model( inputs = x_input , outputs = x)
68 return model

Listing 6.1: ResNet implementation

Dense convolutional networks (DenseNets), introduced in [HLVDMW17], are composed of
convolutional layers; within every DenseNet blocks, each block is connected to all the following
layers inside the block, as described in Figure 6.9. Contrary to residual networks where simply
adding the features implies some loss of information, the layers are not connected by summation
but by concatenation, i.e. for y0, . . . , yℓ the outputs of the previous layers and Hℓ the ℓlayer in the
block which is composed of 2D convolution, activation and batch normalization, the output of the
ℓth layer isHℓ([x0, . . . , xℓ]) where [x0, . . . , xℓ] denotes the concatenation of the (same sized) multi-
channel images x0, . . . , xℓ, whereas the output for a resnet architecture is Hℓ(xℓ) + xℓ−1. This
architecture allowing feature reuse and improves the flow of information throughout the network
, which helps training of deeper architectures. Likewise VGG and residual networks, the different
blocks are concatenated using a convolutional layer and a pooling layer so that the size of the
image is progressively reduced. Dense convolutional networks obtained significant improvements
over previous architectures while also reducing the number of parameters [HLVDMW17].
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Figure 6.10: Layer Langevin method comparison for the training of ResNet-20. The initial
number of channels is 16. The schedules are γn = 1 e −3 (2 e −1 for Adadelta) and σ = 5 e −4
(5 e −3 for Adadelta) for epochs 1 to 40 γn is divided by 10 and σ is set to 0 beyond.

We train on the CIFAR-10 dataset a ResNet architecture composed of 2 blocks with 5
residual layers each; each block is followed by a size reduction layer. This architecture is given
as ResNet-20 in [HZRS16, Section 4.2]. Similarly, we train a DenseNet architecture with depth
L = 22 and growth order k = 5 [HLVDMW17] on the CIFAR-10 dataset. We apply usual
data augmentation to both CIFAR-10 and CIFAR-100 datasets [LXG+15, HZRS16]: 4 pixels
are padded on each side and a 32 × 32 crop is randomly sampled from the padded image or its
horizontal flip. The results are given in figure 6.10 and tables 6.1 and 6.2. Experiments show
that Layer Langevin algorithms (in this case LL-Adam 30%) yield improvements in comparison
with non-Langevin methods, even on residual architectures adapted to very deep learning. The
train loss is also plotted, showing that the better performances of Layer Langevin is not only
due to some overfitting effect.
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Table 6.1: Final test accuracy values obtained in Figures 6.10.

Adam LL-Adam RMSprop LL-RMSprop Adadelta LL-Adadelta
CIFAR-10 76.95 % 77.39 % 84.29 % 85.14 % 75.23 % 75.74 %
CIFAR-100 45.33 % 45.41 % 55.15 % 55.68 % 42.28 % 43.84 %

Table 6.2: Final test accuracy values on the CIFAR-10 dataset with DenseNet architecture. The
schedules are γn = 5 e −3 (2 e −1 for Adadelta) and σ = 5 e −4 (5 e −3 for Adadelta) for epochs
1 to 40 and γn is divided by 10 and σ is set to 0 for epochs 41 to 50.

Adam LL-Adam RMSprop LL-RMSprop Adadelta LL-Adadelta
CIFAR-10 87.81 % 88.16 % 57.59 % 57.56 % 71.64 % 72.72 %
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Chapter 7
Langevin algorithms for Markovian Neural
Networks and Deep Stochastic control

The results in this chapter have been presented at the Machine Learning conference
International Joint Conference on Neural Networks IJCNN 2023 and are published
in the conference proceedings as a joint work with Gilles Pagès [BP23b].

Abstract

Stochastic Gradient Descent Langevin Dynamics (SGLD) algorithms, which add
noise to the classic gradient descent, are known to improve the training of neural
networks in some cases where the neural network is very deep. In this paper we study
the possibilities of training acceleration for the numerical resolution of stochastic
control problems through gradient descent, where the control is parametrized by a
neural network. If the control is applied at many discretization times then solving
the stochastic control problem reduces to minimizing the loss of a very deep neural
network. We numerically show that Langevin algorithms improve the training on
various stochastic control problems like hedging and resource management, and for
different choices of gradient descent methods.

Keywords– Langevin algorithm, SGLD, Markovian neural network, Stochastic con-
trol, Deep neural network, Stochastic optimization.

7.1 Introduction

Stochastic Optimal Control (SOC), which consists in optimizing a functional of a trajectory of
a controlled Stochastic Differential Equation (SDE) has applications in a wide range of prob-
lems: management of resources, queuing systems, epidemic and population processes, pricing
of financial derivatives, portfolio allocation... In comparison with classic optimal control, SOC
models include a random noise with known probability distribution that affects the evolution or
the observation of the system. SOC also aims at managing the risk induced by this noise.

151



Chapter 7. Langevin algorithms for Markovian Neural Networks and Deep Stochastic control

SOC problems are usually solved using specific strategies, such as Forward-Backward SDEs
(FBSDEs) [PW99], or by solving Hamilton-Jacobi-Bellman (HJB) optimality conditions [Bel57]
through partial differential equations methods using appropriate numerical schemes or by stochas-
tic dynamic programming [KD01]. Such problems can also be solved using Neural Networks
calibrated by SGD techniques [GM05, HE16, WLP+19, CL21, BHLP22].

More specifically, in this article we consider the numerical resolution of a SOC problem where
the control is parametrized by a neural network calibrated by gradient descent. This method
implies to compute the path-wise derivatives along the trajectory of the SDE of the objective
function with respect to the parameters of the neural network, as introduced in [GG05, Gil07].
Stochastic gradient descent is a very general approach that can be applied to a wide range of
problems and which does not need to be specifically adapted to each problem under consid-
eration. Moreover, SGD scales very efficiently to high-dimensional problems, in contrast with
HJB-based methods, and has proved its efficiency on highly non-convex problems [DdVB15].

However, if the neural control is applied at many time steps as it is the case for the Euler-
Maruyama scheme where the (discrete) control is taken as an approximation of a continuous
control, then the SOC problem reads as the optimization of a very deep neural network, which
is roughly as deep as the number of instants at which the control can be applied (see Figures 7.1
and 7.2). Very deep neural networks are known to be considerably more difficult to train [GB10,
DPG+14] and may run into vanishing gradient problems [Hoc91, Han18]. Indeed, the deeper
the neural network is, the more non-linear it is, thus increasing the number of local traps for the
gradient descent such as local (but not global) and saddle points. In image analysis where very
deep convolutional neural networks are commonly used, residual [HZRS16] and convolutional
dense [HLVDMW17] networks were introduced to deal with this issue. These networks are based
on architectures with residual connections to propagate the gradient information through the
numerous successive layers.

As it comes to deep SOC, we cannot freely change the structure of the neural network since
it is fixed by the equations defining the SOC problem and therefore we cannot directly use
residual connections. We can only freely choose the structure of the neural network returning
the control, for which a few layers is often enough (see for example [BGTW19, BHLP22]).

A way to improve the learning is to replace SGD algorithms by Stochastic Gradient Langevin
Dynamics (SGLD) algorithms. Such optimizers add an exogenous white noise to the gradient
descent, providing regularization and allowing to escape from traps. It has indeed been ob-
served that adding noise improves the learning for very deep neural networks [NVL+15, Ani19,
GMDB16, SLH+19]. Moreover, Chapter 6 compares side-by-side Langevin with non-Langevin
algorithms on networks with increasing depth and shows that for shallow neural networks,
Langevin algorithms do nothing else than adding noise to the gradient descent, however the
deeper the network is, the greater the gains provided by Langevin algorithms are. We also refer
to Chapter 5.

In the present article we study the performances of Langevin optimizers on SOC problems
where the number of discretization times where the control is applied is large enough. We use
the preconditioned versions of SGD and SGLD [LCCC16] for various choices of preconditioners.
We compare side-by-side Langevin and non-Langevin algorithms and we show that Langevin
optimizers can significantly improve the training procedure on various problems: fishing quotas
[LPP23], deep hedging [BGTW19], oil drilling and resource management [GGKL21]. We mainly
consider two different approaches for numerical resolution of SOCs. In the first approach, the
control is a single neural network which is applied to every time step and which may depend
on the running time t (see Figure 7.1). This approach leads to a model with fewer trainable
parameters, which is critical in some data-driven financial applications where the amount of data
is limited, and which is more able to capture the specific Markovian features of the problem. In
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the second approach, a different neural network is used for each control time (see Figure 7.2).
This last setting is also suitable for applying the Layer Langevin algorithm, which is a variant
of the Langevin algorithm introduced in Chapter 6 and which proved to be more adapted to the
training of very deep neural networks than the Langevin algorithm itself.

We observe that the gains of Langevin algorithms depend on the preconditioner however.
While the Adam [KB15] and the Adadelta [Zei12] algorithms can be substantially accelerated
by Langevin training, the gains are more limited or sometimes null for RMSprop [TH12].

The code for the numerical experiments is available at

https://github.com/Bras-P/langevin-for-stochastic-control.

It includes in particular ready-to-use Langevin optimizers and Layer Langevin optimizers as
instances of the TensorFlow Optimizer base class, a framework for algorithm comparison in a
SOC setting with GPU support and a demonstration notebook.

In the following, on top of the notations defined from page 1, we consider multivariate (Ft)-
Brownian motions W and B defined on some filtered probability space (Ω,F , (Ft)t∈[0,T ]),P).

7.2 Stochastic control through gradient descent

7.2.1 Stochastic optimal control

We consider the following SOC problem in continuous time:

min
u
J(u) := E

[∫ T

0
G(Xt)dt+ F (XT )

]
, (7.2.1)

dXt = b(Xt, ut)dt+ σ(Xt, ut)dWt, t ∈ [0, T ] (7.2.2)

where b : Rd1 ×Rd3 → Rd1 , σ : Rd1 ×Rd3 → Md1,d2(R), W is a Rd2-valued Brownian motion and
u is a Rd3-valued continuous (Ft)-adapted process, T > 0, G : [0, T ]×Rd1 → R and F : Rd1 → R.

We first approximate the continuous SDE (Xt)t∈[0,T ] with its Euler-Maruyama scheme and
the control ut with a discrete-time control. For N ∈ N being the number of discretization times,
we consider the regular subdivision of [0, T ]:

tk := kT/N, k ∈ {0, . . . , N}, h := T/N (7.2.3)

and we approximate the control applied at times t0, . . . , tN−1 as the output of a single neural
network depending on t, or as the output of N neural networks, one for each discretization
instant tk:

utk
= ūθ(tk, Xtk

, Htk
) or utk

= ūθk(Xtk
, Htk

) (7.2.4)

where
Ht :=

∫ t

0
G(Xs)ds,

where ūθ is a neural function with finite-dimensional parameter θ ∈ Rd. Indeed, since (7.2.2)
defines a Markovian process, we can assume that ut depends only on t, Xt and Ht instead of t
and (Xs)s∈[0,t].

The SOC problem (7.2.1) is numerically approximated by:

min
θ
J̄(ūθ) := E

[N−1∑
k=0

(tk+1 − tk)G(X̄θ
tk+1) + F (X̄θ

tN
)
]
, (7.2.5)
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X̄θ
tk+1 = X̄θ

tk
+ (tk+1 − tk)b

(
X̄θ

tk
, ūk,θ(X̄θ

tk
, H̄θ

tk
)
)

+
√
tk+1 − tkσ

(
X̄θ

tk
, ūk,θ(X̄θ

tk
, H̄θ

tk
)
)
ξk+1,

(7.2.6)
H̄θ

tk+1 = H̄θ
tk

+ (tk+1 − tk)G(X̄θ
tk+1),

ξk ∼
i.i.d.

N (0, Id2)

where θ ∈ Rd and ūk,θ = ūθ(tk, ·) in the first case of (7.2.4) and θ = (θ0, . . . , θN−1) ∈ (Rd)N and
ūk,θ = ūθk in the second case of (7.2.4).

For every θ, ∇θJ̄ can be computed by automatic differentiation as the gradient w.r.t. to θ is
tracked all along the trajectory through the recursive relation (7.2.6) [GG05, Gil07]. Then the
SGD algorithm reads

θn+1 = θn − γn+1
1

nbatch

nbatch∑
i=1

∇θJ̄(ūθn , (ξ
i,n+1
k )1≤k≤N ) =: θn − γn+1gn+1 (7.2.7)

where (ξi,n
k )1≤k≤N,1≤i≤nbatch,n∈N is an array of i.i.d. random vectors N (0, Id2)-distributed, (γn)n∈N

is a non-increasing positive step sequence and where the dependence of J̄ in (ξi,n
k ) is made ex-

plicit.
If the number of Euler-Maruyama steps N is large, then the optimization problem in (7.2.5)

consists in the training of a very deep neural network that can be difficult to train directly (see
the Introduction). Both cases are illustrated in Figures 7.1 and 7.2.

7.2.2 Preconditioned stochastic gradient Langevin dynamics

We consider preconditioned stochastic gradient algorithms i.e. for (Pn) a preconditioner rule
the update reads

θn+1 = θn − γn+1Pn+1 · gn+1 (7.2.8)
where gn+1 is defined in (7.2.7). We use the Adam [KB15], the RMSprop [TH12] and the
Adadelta [Zei12] preconditioners, which are detailed in Algorithms 7, 8 and 9 respectively. For
some algorithm name, the corresponding Langevin algorithm denoted L-name reads

θn+1 = θn − γn+1Pn+1 · gn+1 + σn+1
√
γn+1N (0, Pn+1) (7.2.9)

where (σn) is a constant or non-decreasing sequence controlling the amount of injected noise.

Algorithm 7 Adam update
Parameters: β1, β2, λ > 0
Mn+1 = β1Mn + (1 − β1)gn+1
MSn+1 = β2 MSn +(1 − β2)gn+1 ⊙ gn+1
M̂n+1 = Mn+1/(1 − βn+1

1 )
M̂Sn+1 = MSn+1 /(1 − βn+1

2 )
Pn+1 = diag

(
1⊘

(
λ1+

√
M̂Sn+1

))
θn+1 = θn − γn+1Pn+1 · M̂n+1.

Algorithm 8 RMSprop update
Parameters: α, λ > 0
MSn+1 = αMSn +(1 − α)gn+1 ⊙ gn+1
Pn+1 = diag

(
1⊘

(
λ1+

√
MSn+1

))
θn+1 = θn − γn+1Pn+1 · gn+1

The Layer Langevin algorithm, introduced in Chapter 6 Section 6.4 consists in updating
with Langevin noise only some layers of the network. It relies on the heuristic that for a deep
neural network, the non-linearities of the network are mostly contained in the deepest layers
and adds Langevin noise to these layers only.

Choosing a preconditioner rule P called name, the Layer Langevin algorithm denoted LL-
name reads

θ
(i)
n+1 = θ(i)

n − γn+1[Pn+1 · gn+1](i) + 1i∈J σn+1
√
γn+1

[
N (0, Pn+1)

](i)
, (7.2.10)
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7.2. Stochastic control through gradient descent

Algorithm 9 Adadelta update
Parameters: β1, β2, λ > 0
MSn+1 = β1 MSn +(1 − β1)gn+1 ⊙ gn+1

Pn+1 = diag
(
(λ1+ M̂Sn) ⊘

(
λ1+

√
M̂Sn

))
θn+1 = θn − γn+1Pn+1 · gn+1.
M̂Sn+1 = β2 MSn +(1 − β2)(θn+1 − θn) ⊙ (θn+1 − θn).

u

· · · Xtk SDE Xtk+1 SDE Xtk+2 · · ·

G G G

· · · + + + · · ·

Figure 7.1: Depth of Markovian neural networks. The control u acts on Xtk
, which itself acts

on Xtk+1 , Xtk+2 , . . ., XtN , hence the depth of the network.

where J is a subset of weight indices. In particular, we denote LL-name p% the Layer Langevin
name algorithm where the Langevin layers are chosen to be the first p% layers.

7.2.3 Experimental setting

We proceed to side-by-side comparison of Langevin algorithms (7.2.9) with their non-Langevin
counterparts (7.2.8) on various SOC problems.

We consider a first case where the control is given by only one neural network depending on
t and a second case where a different neural network is used for each control time (7.2.4). In this
second case, since we can expect two consecutive control networks to have close parameters, one
usual way of performing the training procedure is to first train networks for a small amount of
control times, then to perform the whole training through transfer learning. We do not expect

utk utk+1

· · · Xtk SDE Xtk+1 SDE Xtk+2 · · ·

G G G

· · · + + + · · ·

Figure 7.2: Markovian neural network with one control for every time step.
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Langevin algorithms to be suitable for the fine tuning, but since the first step of the training
still consists in training a deep neural network, we analyse the benefits of Langevin algorithms
for this first step.

Unless stated otherwise, the batch size is set to nbatch = 512 i.e. stochastic gradient iterations
are performed by averaging the gradient over 512 random trajectories. In the plot, each epoch
consists in 5 batches i.e. the average loss J(uθ) is plotted every 5 iterations of the stochastic
gradient. After each epoch, J(uθ) is estimated over 25 × 512 trajectories and 95% confidence
intervals are indicated, although for some plots the intervals are too small to be visible. While
comparing some algorithm with its Langevin or Layer Langevin counterpart, we ensure that
both training procedures start with the same initial weights.

7.3 Fishing quotas

We consider the fishing quota problem introduced in [LPP23]. Let Xt ∈ Rd1 be the fish biomass
for every fish species; we wish to keep it close to an ideal state Xt ∈ Rd1 . The dynamics of X
are given by

dXt = Xt ∗ ((r − ut − κXt)dt+ ηdWt) , t ∈ [0, T ], (7.3.1)
where r ∈ Rd1 is the growth rate for each species, ut ∈ Rd1 is the controlled fishing (with
d3 = d1), κ ∈ Md1,d1(R) is the interaction matrix between the fish species, η ∈ Md1,d2(R), W
is a Rd2-valued Brownian motion. The control u is constrained to take its values in [um, uM ]d1 .
The objective is

J(u) = E
[∫ T

0
(|Xt − Xt|2 − ⟨α, ut⟩)dt+ β[u]0,T

]
, (7.3.2)

where α ∈ Rd1 , β ∈ R+, [u]0,T denotes the quadratic variation of u on [0, T ]. The term ⟨α, u⟩
penalizes small fishing quotas while the term β[u]0,T penalizes too many daily changes.

In the experiments, following [LPP23] we choose

d1 = d2 = 5, T = 1, X ≡ 1, r = 2 ∗ 1, η = 0.1 ∗ Id1 , α = 0.01 ∗ 1, β = 0.1, um = 0.1, uM = 1
(7.3.3)

and

κ =


1.2 −0.1 0 0 −0.1
0.2 1.2 0 0 −0.1
0 0.2 1.2 −0.1 0
0 0 0.1 1.2 0

0.1 0.1 0 0 1.2

 . (7.3.4)

The initial state X0 is randomly generated following N
(
1, (1/2)Id1

)
clipped to [0.2, 2]d1 . The

quadratic variation [u]0,T is approximated in the discretized setting by

[u]0,T ≃
N−1∑
k=0

|utk+1 − utk
|2. (7.3.5)

Each control uθ is given by a feedforward neural network with two hidden layers with 32 units
each and with ReLU activation while the output layer has sigmoid activation in order to fulfil
the constraint on u. An example of controlled trajectory is plotted in Figure 7.3.

The results are given in Figure 7.4 for the Adam optimizer with an increasing number of
Euler-Maruyama steps and with one single control, in Figure 7.5 for the RMSprop and L-
Adadelta optimizers and with one single control and in Figure 7.6 for the training with multiple
neural networks.
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Figure 7.3: Example of a trajectory of Xt ∈ R5 along with the controlled fishing ut with N = 100.
We recall that the objective biomass is Xt ≡ 1.
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Figure 7.4: Comparison of Adam et L-Adam algorithms during the training for the fishing control
problem with N = 20, 50, 100 respectively. The schedules are γn = 2 e −3 and σn = 1 e −3 (5 e −3
for N = 100) for epochs 0 to 40 and γn = 2 e −4 and σn = 0 beyond. At the end of each epoch,
J is estimated over 50 × 512 trajectories. A zoom on the last epochs is given.
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Figure 7.5: Comparison of Langevin algorithms with their non-Langevin counterparts during the
training for the fishing control problem with N = 50 respectively. The schedules are γn = 2 e −3
(5 e −1) and σn = 5 e −3 (1 e −2) for RMSprop (Adadelta resp.) for epochs 0 to 40 and γn is
divided by 10 and σn is set to 0 beyond. At the end of each epoch, J is estimated over 50 × 512
trajectories. A zoom on the last epochs for RMSprop is given.
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Figure 7.6: Training of the fishing problem with multiple controls with N = 10. The schedules
are γn = 2 e −3 and σn = 2 e −3 for Adam and γn = 5 e −1 and σn = 5 e −3 for Adadelta, for
epochs 0 to 40 γn is divided by 10 and σn is set to 0 beyond.
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7.4 Deep hedging

We consider the problem of hedging portfolio of derivatives as a SOC problem as in [BGTW19].
We aim to replicate a FT -measurable payoff Z defined on some portfolio St ∈ Rd1 by trading
(at least some of) the assets contained in St at times (tk). The control is given by ut ∈ Rd1

representing the amount held for each asset. The objective is

J(u) = ν

(
−Z +

N−1∑
k=0

⟨utk
, Stk+1 − Stk

⟩ −
N∑

k=0
⟨ctr, Stk

∗ |utk
− utk−1 |⟩

)
(7.4.1)

where ν : L1(Ω) → R is a convex risk measure (see [BGTW19, Definition 3.1]), ctr ∈ Rd1

represents proportional transaction costs and we fix ut−1 = utN = 0, implying full liquidation in
T . We furthermore assume that ν can be written as

ν(X) = inf
w∈R

(w + E[ℓ(−X − w)]) (7.4.2)

where the loss function ℓ : R → R is continuous, non-decreasing and convex. This is the case in
particular for the entropic risk measure where ℓ(x) = − exp(−λx) and the conditional value at
risk measure where ℓ(x) = (1 − α)−1 max(x, 0). Then (7.4.1) can be rewritten as

inf
u,w

J(u,w) := E
[
w + ℓ

(
Z −

N−1∑
k=0

⟨utk
, Stk+1 − Stk

⟩ +
N∑

k=0
⟨ctr, Stk

∗ |utk
− utk−1 |⟩ − w

)]
.

(7.4.3)
In the numerical experiments, we analyse the problem of hedging in a Heston model as

described in [BGTW19, Section 5]. For even d1, we consider d′
1 := d1/2 independent Heston

models where the price and volatility processes are described by the following SDEs for 1 ≤ i ≤
d′

1:

dS1,i
t =

√
V i

t S
1,i
t dBi

t, S1,i
0 = si

0, (7.4.4)

dV i
t = ai(bi − V i

t )dt+ ηi
√
V i

t dW
i
t , V i

0 = vi
0, (7.4.5)

where a, b, η, s0, vi ∈ (R+)d′
1 and for each 1 ≤ i ≤ d′

1, Bi and W i are standard Brownian motions
with correlation ρi ∈ [−1, 1]. The volatility V itself is not tradable directly but only through
options on variance modelled by the following variance swap:

S2,i
t := E

[∫ T

0
V i

s ds
∣∣∣ Ft

]
=
∫ t

0
V i

s ds+ Li(t, V i
t ), (7.4.6)

Li(t, v) := v − bi

ai

(
1 − eai(T −t)

)
+ bi(T − t). (7.4.7)

The payoff is given by

Z =
d′

1∑
i=1

(
S1,i

T −Ki)
+

where K ∈ (R+)d′
1 . We consider the convex risk measure associated to the value-at-risk i.e.

associated to the loss function
ℓ(x) = 1

1 − α
max(x, 0).

In the experiments we choose

d′
1 = 5, T = 1, a = 1, b = 0.04 ∗ 1, η = 2 ∗ 1, ρ = −0.7 ∗ 1, α = 0.9, (7.4.8)
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Figure 7.7: Example of trajectory for the deep hedging problem with N = 30.
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Figure 7.8: Comparison of algorithms during the training for the deep hedging control problem
with N = 30, 50, 50 respectively. The schedules are γn = 2 e −3 (5 e −1) and σn = 2 e −3 (5 e −3)
for Adam (resp. Adadelta) for epochs 0 to 80 and γn is divided by 10 and σn is set to 0 beyond.

s0 = K = 1, v0 = 0.1 ∗ 1, ctr = 5 e −4 ∗ 1. (7.4.9)

Each control uθ is given by a feedforward neural network with two hidden layers with 32
units each and with ReLU activation while the output layer has ReLU activation too in order
to forbid short-selling. As recommended in [BGTW19], since transaction costs are involved the
control uθ at time tk is a function of log(S1

tk
), Vtk

and utk−1 . An example of controlled trajectory
showing only one of the five Heston models is plotted in Figure 7.7.

The results are given in Figure 7.8 for the comparison of Langevin and non-Langevin algo-
rithms with a single control and in Figure 7.9 for the training with multiple controls.

7.5 Resource management

We consider the control problem in the management of natural resources applied to oil drilling
introduced in [GKL18] and extended in [GGKL21]. The objective is for an oil driller, to balance
the costs of extraction, storage in a volatile energy market. The oil price Pt ∈ R is assumed to
be a Black-Scholes process:

dPt = µPtdt+ ηPtdWt. (7.5.1)
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Figure 7.9: Training of the deep hedging problem with multiple controls with N = 10. The
schedules are γn = 2 e −3 (5 e −1) and σn = 2 e −3 (5 e −3) for Adam and RMSprop (resp.
Adadelta) for epochs 0 to 180 and γn is divided by 10 and σn is set to 0 beyond.

The control is given by qt = (qv
t , q

s
t , q

v,s
t ) ∈ R3 where qv

t is the quantity of extracted oil imme-
diately sold on the market per time unit, qs

t is the quantity of extracted oil that is stored per
time unit, qv,s

t is the quantity of stored oil that is sold per time unit. The cumulated quantities
of extracted and stored oil at time t are respectively given by

Et =
∫ t

0
(qv

r + qs
r)dr, St =

∫ t

0
(qs

r − qv,s
r )dr. (7.5.2)

The extraction and storage prices are respectively given by

ce(Et) = exp (ξeEt) , cs(St) = exp (ξsSt) − 1. (7.5.3)

The constraints on the control are the following:

qv
t , q

s
t , q

v,s
t ≥ 0, qv,s

t ≤ qS , qv
t + qs

t ≤ K0, 0 ≤ St ≤ QS , (7.5.4)

where qS , K0 and QS are operational bounds. The objective is

J(q) = −E
[∫ T

0
e−ρrU

(
qv

rPr + qv,s
r (1 − ε)Pr − (qv

r + qs
r)ce(Er) − cs(Sr)

)
dr

]
, (7.5.5)

where U : R → R is the utility function.
In the experiments we take

T = 1, µ = 0.01, η = 0.2, ρ = 0.01, ε = 0, K0 = 5,
ξe = 1 e −2, ξs = 5 e −3, qS = 10, P0 = 1, U(x) = x. (7.5.6)

The control qt is given by a feedforward neural network with two hidden layers with 32 units
and with ReLU activation while the output layer has several ReLU activations such that the
constraints on q (7.5.4) are fulfilled1. An example of controlled trajectory is given in Figure
7.10.

The results are given in Figure 7.11 for the comparison of Langevin and non-Langevin algo-
rithms with a single control. We do not display the results for the training with multiple controls
however as we could not obtain satisfying results neither with Langevin nor-with non-Langevin
methods.

1We remark that max(q, K) = K − ReLU(−q + K).
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Figure 7.10: Example of trajectory for the oil drilling problem with N = 20.
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Figure 7.11: Comparison of algorithms during the training for the deep hedging control problem
with N = 50. The schedules are γ = 2 e −3 (2 e −3, 5 e −1) and σ = 1 e −3 (2 e −3, 5 e −3) for
Adam (resp. RMSprop, Adadelta) for epochs 0 to 60 (resp. 80, 80) and γ is divided by 10 and
σ is set to 0 beyond.
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7.6 Comments on the numerical experiments
We observe that in many cases and in various SOC problems, Langevin and Layer Langevin
algorithms show improvement when compared with their respective non-Langevin counterparts,
provided that N is large enough, which is remarkable for randomized algorithms. Langevin
algorithms converge faster and/or toward a lower loss value. This is particularly visible for the
Adadelta method. The gains are limited in some cases (see Figures 7.5 and 7.11 for RMSprop)
but still the optimization procedure is improved.

The gains for the L-RMSprop algorithm remain limited however. In particular, we did not
observe any significant improvement for fishing SOC with multiple controls, for deep hedging
SOC with a single control and for oil drilling SOC. We do not have explanation for this fact.

The gains brought by Langevin algorithm increase with the depth of the network as shown
in Figures 7.4 and 7.8. However, contrary to Chapter 6, we did not observe overwhelming gains
as N becomes very large. We believe that this is due (in part) to the particular structure of the
deep SOC problem where the same control is repeated all along the trajectory.

As for SOC with multiple controls, we observe that Layer Langevin algorithms with a small
number of Langevin layers (10%-30%) generally outperforms Vanilla Langevin methods while
Vanilla Langevin may bring limited gains or be less efficient than the standard non-Langevin
methods, see Figures 7.6 and 7.9 for Adam.
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Chapter 8
Total variation distance between two
diffusions in small time with unbounded drift:
application to the Euler-Maruyama scheme

This chapter corresponds to the article [BPP22] published in Electronic Journal of
Probability as a joint work with Gilles Pagès and Fabien Panloup.

Abstract

We give bounds for the total variation distance between the solutions to two stochas-
tic differential equations starting at the same point and with close coefficients,
which applies in particular to the distance between an exact solution and its Euler-
Maruyama scheme in small time. We show that for small t, the total variation
distance is of order tr/(2r+1) if the noise coefficient σ of the SDE is elliptic and C2r

b ,
r ∈ N and if the drift is C1 with bounded derivatives, using multi-step Richardson-
Romberg extrapolation. We do not require the drift to be bounded. Then we prove
with a counterexample that we cannot achieve a bound better than t1/2 in general.

Keywords– Stochastic Differential Equation, Euler scheme, Total Variation, Richard-
son – Romberg extrapolation, Aronson’s bounds.

8.1 Introduction
The convergence properties of Euler-Maruyama schemes to approximate the solution of a Stochas-
tic Differential Equation (SDE) have been extensively studied, in particular for Lp distances.
However, the literature seems to lack some results about the convergence in total variation in
small time. More specifically, in this paper we consider the two following SDEs in Rd starting
at the same point:

Xx
0 = x ∈ Rd, dXx

t = b1(t,Xx
t )dt+ σ1(t,Xx

t )dWt,
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Y x
0 = x, dY x

t = b2(t, Y x
t )dt+ σ2(t, Y x

t )dWt,

where W is a Brownian motion. We generally assume that for i = 1, 2, bi is Lipschitz continuous
and that σi is elliptic, bounded and Lipschitz continuous, but we do not assume that bi is
bounded. Our objective is to give bounds of the total variation distance between the law of Xx

t

and the law of Y x
t , denoted dTV(Xx

t , Y
x

t ), as t → 0. In particular, we apply our results to the
case where Y x = X̄x is the one-step Euler-Maruyama scheme associated to the SDE X, given
by

dY x
t = b1(0, x)dt+ σ1(0, x)dWt.

Such bounds are well known for Lp distances and their associated Wasserstein distances and
are known to be of order t as t → 0. Yet the literature seems to lack results as it comes to dTV.
If σ1 = σ2 is constant, then it is classical background that dTV(Xx

t , Y
x

t ) is of order t, using a
Girsanov change of measure (see for example [PP23, Proposition 4.1]) but this strategy cannot
be applied to non-constant σ. The difficulty of the total variation distance in small time is
the following: considering its representation formula and comparing it with the L1-Wasserstein
distance, if x and y ∈ Rd are close to each other and if f : Rd → R is Lipschitz continuous, then
we can bound |f(x)−f(y)| by [f ]Lip|x−y|; whereas if f is simply measurable and bounded, then
we cannot directly bound |f(x) − f(y)| in terms of |x− y|. Moreover the regularizing properties
of the semi-group cannot be used in small time for the total variation distance.

Results in the literature focus on the Euler-Maruyama scheme. In [BT96] is proved the
convergence for a fixed time horizon T > 0 and as N → ∞, where N is the number of steps in
the Euler-Maruyama scheme on a finite horizon. More precisely, if σ1 is elliptic and if b1 and σ1
are C∞ with bounded derivatives (but b1 and σ1 are not supposed bounded themselves), then
([BT96, Theorem 3.1])

∀x ∈ Rd, dTV(Xx
T , X̄

x,N
T ) ≤ K(T )(1 + |x|Q)

NT q
,

where X̄x,N
T stands for the Euler scheme with N steps, where Q and q are positive exponents

and where K is a non-decreasing function depending on b1 and σ1. The common strategy of
proof for such bounds is to use Malliavin calculus in order to perform an integration by parts
and to use bounds on the derivatives of the density. However, we cannot infer a bound as T → 0
since we do not know whether K(T )/T q → 0 as T → 0 in general. In [GL08] are given bounds
in small time and as N → ∞. Assuming that σ1 is uniformly elliptic and that b1 and σ1 are
bounded with bounded derivatives up to order 3, then ([GL08, Theorem 2.3])

∀t ∈ (0, T ], ∀x, y ∈ Rd, |p(t, x, y) − p̄N (t, x, y)| ≤ K(T )T
Nt(d+1)/2 e

−C|x−y|2/t,

where p and p̄N denote the transition densities of Xx and X̄x,N respectively and where C is
a positive constant depending on d and on the bounds on b1 and σ1 and on their derivatives.
However, we cannot directly use this result for the total variation distance: taking N = 1 yields

dTV(Xx
t , X̄

x
t ) =

∫
Rd

|p(t, x, y) − p̄N (t, x, y)|dy ≤ K(T )Tt−1/2
∫
Rd

1
td/2 e

−C|x−y|2/t,

giving a bound in t−1/2 which does not converge to 0 as t → 0. Moreover, [GL08] assumes
that b1 is bounded. [BJ22] focuses on the case where b1 is bounded and measurable but not
necessarily regular and where σ1 is constant; it proves that the convergence in total variation of
the Euler scheme on a finite horizon which is regularized with respect to the irregular drift b1
and with step h, is of order

√
h.

168



8.1. Introduction

In the present paper, we first prove a convergence rate of order t1/3 for dTV(Xx
t , Y

x
t ), provided

that for i = 1, 2, σi is elliptic, σi and bi are Lipschitz-continuous with respect to their time
variable and that σi is C2

b and bi is C1 and Lipschitz-continuous with respect to their space
variable. More generally, if we furthermore assume that σ is C2r

b , then we obtain a convergence
rate of order tr/(2r+1). Letting r → ∞, we also prove that if σ ∈ C∞

b with some technical
condition on the derivatives of the densities of the random variables Xx

t and Y x
t , then the

convergence rate is of order t1/2 exp(C
√

log(1/t)) which is "almost" t1/2. Moreover, we provide
an example using the geometric Brownian motion where the convergence rate is exactly t1/2,
thus showing that we cannot achieve better bounds in general. To prove the bound in tr/(2r+1),
we use a multi-step Richardson-Romberg extrapolation [RG11, Gil08, LP17], which is a method
imported from numerical analysis that we use in our case for theoretical purposes. It relies on
a Taylor expansion with null coefficients up to some high order. Such method can be used in
more general settings with regularization arguments in order to improve the convergence rates
(in our case, we improve t1/3 into tr/(2r+1)).

Interestingly, the difference between the drift coefficients b1 − b2 does not need to be small
for our bounds to be valid. This is because the dominant term in dTV(Xx

t , Y
x

t ) comes from the
the diffusion part.

Recent results (see [Cle21]) establish a convergence in small time at rate t1/2 for the Euler
scheme of certain classes of diffusions driven by stable Lévy processes, not directly including
the Brownian case. This approach relies on Malliavin calculus techniques. In this work the
"standard" drift is replaced in the Euler scheme by the flow of the associated (noiseless) ODE.
This seems to be specific to Lévy driven SDEs. Adapting this approach to our general con-
tinuous framework is not as straightforward as could be expected and would deserve further
investigations for future work.

The total variation distance is closely related to the estimation of the density of the solution
to an SDE and this density satisfies a Fokker-Planck Partial Differential Equation PDE (8.3.2).
If the drift is bounded, then the density and its partial derivatives admit sub-gaussian Aronson’s
bounds (see [Fri64] and Section 8.3.1). However, giving estimates and bounds for the solution of
the PDE in the case of unbounded drift appears to be more difficult, see [Lun97, Cer00, BL05].
Recent improvements have been made in [MPZ21] using the parametrix method. Studying this
case is useful to study the convergence in total variation of SDE’s with unbounded drift, in
particular for the Langevin equation, very popular in stochastic optimization, and which reads

dXt = −∇V (Xt)dt+ σ(Xt)dWt,

where in many cases, V : Rd → R has quadratic growth and ∇V has linear growth (see for
example Chapter 2).

In order to deal with unbounded bi, we propose two different methods. First, we use a
localization argument and "cut" the drift bi into b̃i outside a compact set, so that we can use
bounds from [Fri64] for the bounded drift case. We use the Girsanov formula to explicit the
dependence of these bounds in ∥b̃i∥∞. A second method consists in using the density estimates
from [MPZ21, Section 4] to improve the dependency with respect to the bounds in x. However
this second approach relies on advanced parametrix methods which require further regularity
assumptions on the coefficients of the SDE and which are not fully detailed for higher order
derivatives. Our first method is clearly much more elementary, starting from a quite general
bound established for any pair of integrable random vectors (see Theorem 8.2.7) and calling
upon a standard regularization strategy which combined with a multistep procedure, seems to
be at least quasi-optimal in a very general framework.

Notations
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On top of the notations defined from page 1, we also use the following notations.
For k ∈ N and if f : Rd → R is Ck, we denote by ∇kf : Rd → (Rd)⊗k its differential of

order k. If f is Lipschitz continuous, we denote by [f ]Lip its Lipschitz constant. If f : (t, x) ∈
R × Rd 7→ f(t, x) is Ck with respect to x, we still denote by ∇kf its differential with respect to
x.

If Z is a Markov process with values in Rd, we denote, when it exists, its transition probability
from x to y ∈ Rd between times s < t, pZ (s, t, x, y).

8.2 Main results

We consider the two following SDEs in Rd:

Xx
0 = x ∈ Rd, dXx

t = b1(t,Xx
t )dt+ σ1(t,Xx

t )dWt, t ∈ [0, T ], (8.2.1)
Y x

0 = x, dY x
t = b2(t, Y x

t )dt+ σ2(t, Y x
t )dWt, t ∈ [0, T ], (8.2.2)

where T is a finite time horizon, bi : Rd → Rd, σi : Rd → Md(R), i = 1, 2, are Borel functions
and W is a standard Rd-valued Brownian motion defined on a probability space (Ω,A,P). The
one-step Euler-Maruyama scheme of X, denoted X̄, is defined by X̄x = Y x when Y x reads

dY x
t = b1(0, x)dt+ σ1(0, x)dWt, t ∈ [0, T ]. (8.2.3)

To allievate notations, we also define

∆b(x) := |b1(0, x) − b2(0, x)|, ∆σ(x) := |σ1(0, x) − σ2(0, x)|. (8.2.4)

Let us remark that if Y = X̄, then ∆b(x) = 0 and ∆σ(x) = 0. For g : (t, x) ∈ [0, T ] × Rd 7→
g(t, x) ∈ Rq and r ∈ N, let us define the following assumptions:

• Lipt(g): g is Lipschitz continuous with respect to t, uniformly in x.
• g ∈ Cr: g is differentiable with respect to x with continuous partial derivatives up to the

order r.
• g ∈ Cr

b : g ∈ Cr and is bounded with bounded partial derivatives up to the order r.
• g ∈ C̃r

b : g ∈ Cr and has partial bounded derivatives up to the order r, but we do not assume
that g is bounded itself.

• For σ : [0, T ] × Rd → Md(R), we say that σ is (uniformly) elliptic if

∃
¯
σ0 > 0, ∀x ∈ Rd, ∀t ∈ [0, T ], σ(t, x)σ(t, x)⊤ ≥

¯
σ2

0Id. (8.2.5)

Theorem 8.2.1. Let X and Y be the solutions of the SDEs (8.2.1) and (8.2.2). For i = 1, 2,
assume Lipt(bi), Lipt(σi), σi ∈ C2

b , bi ∈ C̃1
b and σi is elliptic. Then

∀t ∈ [0, T ], ∀x ∈ Rd, dTV(Xx
t , Y

x
t ) ≤ C(t1/2 + ∆σ(x))2/3 + Cec|x|2t1/2, (8.2.6)

where the positive constants C and c only depend on d, T ,
¯
σ0, ∥σi∥∞, [bi]Lip, [σi]Lip and

∥∇2σi∥∞. In particular, if Y = X̄ we have

dTV(Xx
t , Y

x
t ) ≤ Ct1/3 + Cec|x|2t1/2.

Theorem 8.2.2. Let X and Y be the solutions of the SDEs (8.2.1) and (8.2.2). For i = 1, 2,
assume Lipt(bi), Lipt(σi), that σi ∈ C2r

b , bi ∈ C̃1
b and that σi is elliptic. Then

∀t ∈ [0, T ], ∀x ∈ Rd, dTV(Xx
t , Y

x
t ) ≤ C(t1/2 + ∆σ(x))2r/(2r+1) + Cec|x|2t1/2, (8.2.7)

where the positive constants C and c only depend on d, T ,
¯
σ0, on ∥σi∥∞, on the bounds on the

derivatives of bi and σi and on their Lipschitz constants. In particular, if Y = X̄ we have

dTV(Xx
t , Y

x
t ) ≤ Ctr/(2r+1) + Cec|x|2t1/2.
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Remark 8.2.3. In Theorems 8.2.1 and 8.2.2, we can actually improve the dependency of the
constants in x in small time since we have more precisely:

∀t ∈ [0, Ce−2(2r+1)c|x|2 ], dTV(Xx
t , Y

x
t ) ≤ C(t1/2 + ∆σ(x))2r/(2r+1).

Remark 8.2.4. We can adapt the framework of Theorem 8.2.2 to the study of SDEs with homo-
geneous vanishing noise, i.e. where for a > 0,

dXx
t = b1(t,Xx

t )dt+ aσ1(Xx
t ), dY x

t = b2(t, Y x
t ) + aσ2(Y x

t )

and we identify the dependency in a as a → 0. Namely, with the same assumptions, for a > 0
small enough we have

dTV(Xx
t , Y

x
t ) ≤ Ceca−1|x|2t1/2 + Ca−(d+r)(t1/2 + ∆σ(x))2r/(2r+1), (8.2.8)

where the constant C does not depend on a. This bound is obtained adapting the proof of
Theorem 8.2.2 in Section 8.3.4 and using that if Zx is the martingale dZx

t = aσ(Zx
t )dWt then

(Zx
t ) ∼ (Z̃x

a2t) where Z̃x
t = σ(Z̃x

t )dWt which does not depend on a.
We can also improve the dependency in the initial condition x ∈ Rd using [MPZ21], however

at the expense of further regularity assumptions on bi and σi, i = 1, 2.

Theorem 8.2.5. Let X and Y be the solutions of the SDEs (8.2.1) and (8.2.2). For i = 1, 2,
assume Lipt(bi), Lipt(σi), σi ∈ C2r+1

b , bi ∈ C̃2r
b and σi is elliptic. Then

∀t ∈ [0, T ], ∀x ∈ Rd, dTV(Xx
t , Y

x
t ) ≤ C

(
t1/2(1 + ∆b(x)) + ∆σ(x) + t(|b1| + |b2|)(0, x)

)2r/(2r+1)
,

(8.2.9)
where the positive constants C and c only depend on d, T ,

¯
σ0, on ∥σi∥∞, on the bounds on the

derivatives of bi and σi and on their Lipschitz constants. In particular, if Y = X̄, we have

dTV(Xx
t , Y

x
t ) ≤ Ctr/(2r+1)

(
1 + t1/2(|b1| + |b2|)(0, x)|

)2r/(2r+1)
.

Remark 8.2.6. Choosing Y not to be the Euler-Maruyama scheme of X but a general SDE and
expressing the bounds in the Theorems in terms of ∆b(x) and ∆σ(x) allows to extend our results
to more general couples of diffusions with "close" coefficients, for example to SDE solvers other
than the genuine Euler-Maruyama scheme. Also, it is helpful to study perturbed SDEs, for
example if we consider

dXx
t = b1(t,Xx

t )dt+ a1(t)σ(Xx
t )dWt, dY x

t = b2(t, Y x
t )dt+ a2(t)σ(Y x

t )dWt (8.2.10)

where |a1(t) − a2(t)| → 0 as t → ∞. Then we have

dTV(Xx
t+s, Y

x
t+s) ≤ Cec|x|2s1/2 + C(s1/2 + |a1(t) − a2(t)|)2r/(2r+1)

and we obtain different convergence rates as t → ∞ and s → 0, depending on (t, s). A noticeable
example of this is the Langevin-simulated annealing SDE, see Chapter 2.

Furthermore we remark that in Theorems 8.2.1 and 8.2.2, the bounds do not depend on ∆b,
enhancing that the dominant term in the total variation comes from the diffusion part.

To improve the rate of convergence from t1/3 in Theorem 8.2.1 to tr/(2r+1) in Theorem 8.2.2,
we rely on a Richardson-Romberg extrapolation [RG11, Gil08, LP17]; this argument can also
be applied in a more general framework. The following proposition gives bounds on the total
variation between two random vectors, knowing bounds on the L1-Wasserstein distance and
bounds on the partial derivatives of the densities up to some order.
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Theorem 8.2.7. Let Z1 and Z2 be two random vectors in L1(Rd) and admitting densities p1
and p2 respectively with respect to the Lebesgue measure. Assume furthermore that p1 and p2
are C2r with r ∈ N and that ∇kpi ∈ L1(Rd) for i = 1, 2 and k = 1, . . . , 2r. Then we have

dTV(Z1, Z2) ≤ Cd,rW1(Z1, Z2)2r/(2r+1)
(∫

Rd

(
∥∇2rp1(ξ)∥ + ∥∇2rp2(ξ)∥

)
dξ

)1/(2r+1)
(8.2.11)

where the constant Cd,r depends only on d and on r.

If σ ∈ C∞
b , then we also prove that we can "almost" get a convergence rate of order t1/2.

Theorem 8.2.8. Let X and Y be the solutions of the SDEs (8.2.1) and (8.2.2). For i = 1, 2,
assume Lipt(bi), Lipt(σi), that σi ∈ C2r

b for every r ∈ N, bi ∈ C̃1
b , that σi is elliptic and that

∆σ(x) = 0. Assume furthermore that if Z and V are the martingales dZt = σ1(t, Zt)dWt and
dVt = σ2(t, Zt)dWt, then

∀r ∈ N, ∀t ∈ (0, T ], ∀x, y ∈ Rd, ∥∇2r
y pZ (0, t, x, y)∥ + ∥∇2r

y pV (0, t, x, y)∥ ≤ C2r

t(d+2r)/2 e
−c2r|y−x|2/t

with lim sup
r→∞

(
C2rc

−d/2
2r

)1/(2r)
< ∞. (8.2.12)

(see Theorem 8.3.1). Then

∀t ∈ (0, T ], ∀x ∈ Rd, dTV(Xx
t , Y

x
t ) ≤ Cec|x|2t1/2 + Ct1/2ec

√
log(1/t), (8.2.13)

where the positive constants C and c only depend on d, T ,
¯
σ0, on ∥σi∥∞, on the bounds on the

derivatives of bi and σi and on their Lipschitz constants.

Remark 8.2.9. Assumption (8.2.12) is satisfied in the case of a Brownian motion, which suggests
that this assumption is satisfied in general provided that σ is "regular enough". Indeed, if
dZt = σdWt with σ ∈ Md(R) being non degenerate, then with Σ := σσ⊤ we have for t > 0 and
x, y ∈ Rd:

pZ (0, t, x, y) = 1√
det(Σ)td/2 Φ

(
Σ−1/2 y − x√

t

)
, Φ(u) := 1

(2π)d/2 e
−|u|2/2.

Moreover for every r ∈ N and u ∈ Rd we have∥∥∥∥ dr

dur
Φ(u)

∥∥∥∥ ≤ 1
(2π)d/2 | Her(|u|)|e−|u|2/2

where Her is the rth probabilist Hermite polynomial. Following [Kra04] we have

∀u ≥ 0, | He2r(u)|e−u2/2 ≤ C2−r√
r

(2r)!2
r!2 ≤ C2r√

r,

using the Stirling formula for the last inequality. On the other hand, using [AS64, 22.14.15] we
have

∀u ≥ 0, | He2r(u)|e−u2/4 ≤ 2r+1r!.

Then, for for every ε ∈ (0, 1],

| He2r(u)|e−u2/2 =
∣∣∣He2r(u)e−u2/4

∣∣∣ε ∣∣∣He2r(u)e−u2/2
∣∣∣1−ε

e−εu2/4

≤ C (2rr!)ε
(
2rr1/2

)1−ε
e−εu2/2.

172



8.3. Proof of the Theorems

Then if we choose εr = log−1(r) for r ≥ 3, we have (r!)εr ≤ eεrr log(r) = er so that∥∥∥∥ dr

dur
Φ(u)

∥∥∥∥ ≤ C2rεrer2rr1/2e−εr|u|2/2 =: Are
−εr|u|2/2

and then for r ≥ 3 we have

∥∇2r
y pZ (0, t, x, y)∥ ≤ ∥Σ−1/2∥2r√

det(Σ)t(d+2r)/2
d2r

du2r
Φ
(

Σ−1/2 y − x√
t

)

≤ ∥Σ−1/2∥2r√
det(Σ)t(d+2r)/2Are

−εr∥Σ−1∥|y−x|2/(2t)

where
( (

∥Σ−1/2∥2rArε
−d/2
r

)1/(2r) )
is bounded. Thus Assumption (8.2.12) is satisfied.

Remark 8.2.10. For the Euler-Maruyama scheme (8.2.3), with a slight abuse of notation, x is
used both for the starting point and in the definition of the drift and diffusion coefficients. The
transition density should be considered for constant drift and diffusion coefficients in this case.
However the results remain valid as the Euler scheme is simply a Brownian process.

8.3 Proof of the Theorems

8.3.1 Recalls on density estimates for SDEs with bounded drift

We recall results on the bounds for the density of the solution of the SDE using the theory of
partial differential equations. Let us consider a generic SDE:

Zx
0 = x ∈ Rd, dZx

t = bZ (t, Zx
t )dt+ σZ (t, Zx

t )dWt, t ∈ [0, T ]. (8.3.1)
Then under regularity assumptions on bZ and on σZ , the transition probability pZ exists and is
solution of the backward Kolmogorov PDE:

pZ (t, t, x, ·) = δx, t ∈ [0, T ],

∂spZ (s, t, x, y) = ⟨bZ (s, x),∇xpZ (s, t, x, y)⟩ + 1
2Tr

(
σ⊤

Z
(s, x)∇2

xpZ (s, t, x, y)σZ (s, x)
)

(8.3.2)

for s < t ∈ [0, T ]. Moreover, pZ and its derivatives satisfy sub-gaussian Aronson’s bounds:
Theorem 8.3.1 ([Fri64], Chapter 9, Theorem 7). Let Z be the solution of (8.3.1) and let T > 0.
Assume Lipt(bZ ) and Lipt(σZ ), that bZ , σZ ∈ Cr

b and that σZ is elliptic. Then for every m0 = 0, 1
and for every 0 ≤ m1 +m2 ≤ r, ∇m0+m1

x ∇m2
y pZ exists and

∀s<t ∈ [0, T ],∀x, y ∈ Rd, ∥∇m0+m1
x ∇m2

y pZ (s, t, x, y)∥ ≤ C

(t− s)(d+m0+m1+m2)/2 e
−c|y−x|2/(t−s),

(8.3.3)
where the constants C and c only depend on the bounds on bZ and σZ and on their derivatives
and their Lipschitz constants, on the modulus of ellipticity of σZ , on d and on T .

Let us also recall the recent result from [MPZ21] giving Aronson’s bounds of the partial
derivatives with respect to y in the case where bZ is unbounded. Considering [MPZ21, Section
4] with [MPZ21, (3.1)], we have the following result.
Theorem 8.3.2. Let Z be the solution of (8.3.1) and let T > 0. Assume Lipt(bZ ) and Lipt(σZ ),
that bZ ∈ C̃r

b , σZ ∈ Cr+1
b and that σZ is elliptic. Then for every 0 ≤ m ≤ r, ∇m

y pZ exists and

∀s < t ∈ [0, T ], ∀x, y ∈ Rd, ∥∇m
y pZ (s, t, x, y)∥ ≤ C

(t− s)(d+m)/2 e
−c|y−x|2/(t−s), (8.3.4)

where the constants C and c only depend on the bounds on bZ and σZ and on their derivatives
and on their Lipschitz constants, on the modulus of ellipticity of σZ , on d and on T .
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Chapter 8. Total variation distance between two diffusions in small time

8.3.2 Preliminary results

In order to apply the bounds on the densities from Theorem 8.3.1 to Theorem 8.2.7, we first
"cut" the drifts b1 and b2 on a compact set. That is, we instead consider the processes X̃ and Ỹ
defined by

dX̃x
t = b̃x

1(t, X̃x
t )dt+ σ1(t, X̃x

t )dWt, t ∈ [0, T ], (8.3.5)
dỸ x

t = b̃x
2(t, Ỹ x

t )dt+ σ2(t, Ỹ x
t )dWt, t ∈ [0, T ], (8.3.6)

where b̃i, i = 1, 2 is defined as follows. We choose R > 0 and we consider a C∞ decreasing
function ψ : R+ → R+ such that ψ = 1 on [0, R2] and ψ = 0 on [(R + 1)2,∞) and we define
b̃x

i (t, y) := bi(t, y)ψ(|y − x|2), so that b̃x
i is bounded:

∀y ∈ Rd, ∀t ∈ [0, T ], |b̃x
i (t, y)| ≤ supz∈B(x,R+1) |bi(t, z)| ≤ C(1 + |x|), (8.3.7)

because bi is Lipschitz continuous.

Lemma 8.3.3. Assume Lipt(b1), Lipt(σ1), b1 ∈ C̃1
b , σ1 ∈ C1

b . Then for every x ∈ Rd and
t ∈ [0, T ],

dTV(Xx
t , X̃

x
t ) ≤ C(1 + |b1(0, x)|2)t. (8.3.8)

Proof. Let f : Rd → R be measurable and bounded. We remark that on the event {sups∈[0,t] |Xx
s −

x|2 ≤ R2}, we have X̃x
t = Xx

t , so that

|Ef(X̃x
t ) − Ef(Xx

t )| ≤ 2∥f∥∞P
(

sup
s∈[0,t]

|Xx
s − x|2 > R2

)
.

But using the inequality |u+ v|2 ≤ 2|u|2 + 2|v|2 we have

|Xx
t −x|2 ≤ 2

∣∣∣∣∫ t

0
b1(s,Xx

s )ds
∣∣∣∣2 + 2

∣∣∣∣∫ t

0
σ1(s,Xx

s )dWs

∣∣∣∣2
≤ 2t

∫ t

0
|b1(s,Xx

s )|2ds+ 2
∣∣∣∣∫ t

0
σ1(s,Xx

s )dWs

∣∣∣∣2
≤ 4t[b1]2Lip

(∫ t

0
|Xx

s − x|2ds+ 1
3 t

3
)

+ 4t2|b1(0, x)|2 + 2
∣∣∣∣∫ t

0
σ1(s,Xx

s )dWs

∣∣∣∣2
so that

E sup
s∈[0,t]

|Xx
s − x|2 ≤ 4t[b1]2Lip

∫ t

0

(
E sup

u∈[0,s]
|Xx

u − x|2
)
ds+ 4

3[b1]2Lipt
4 + 4t2|b1(0, x)|2

+ 2E sup
s∈[0,t]

∣∣∣∣∫ s

0
σ1(u,Xx

u)dWu

∣∣∣∣2 .
Moreover using Doob’s martingale inequality we have

E sup
s∈[0,t]

∣∣∣∣∫ s

0
σ1(u,Xx

u)dWu

∣∣∣∣2 ≤ 4E
∣∣∣∣∫ t

0
σ1(u,Xx

u)dWu

∣∣∣∣2 = 4E
∫ t

0
σ2

1(u,Xx
u)du ≤ 4∥σ1∥2

∞t.

Then we define the non-decreasing deterministic process St := E sups∈[0,t] |Xx
s − x|2 and we get

the differential inequality (using t ≤ T )

St ≤ 4t
(
T |b1(0, x)|2 + 1

3[b1]2LipT
3 + 2∥σ1∥2

∞

)
+ 4t[b1]2Lip

∫ t

0
Ssds,
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so the Gronwall lemma yields

St ≤ 4t
(
T |b1(0, x)|2 + 1

3[b1]2LipT
3 + 2∥σ1∥2

∞

)
e2t2[b1]2Lip ≤ C(1 + |b1(0, x)|2)t.

Using Markov’s inequality, we have then

|Ef(X̃x
t ) − Ef(Xx

t )| ≤ 2∥f∥∞P
(

sup
s∈[0,t]

|Xx
s − x|2 > R2

)
≤ 2∥f∥∞

C(1 + |b1(0, x)|2)t
R2 .

We can now apply Theorem 8.3.1 to X̃ and to Ỹ however the constants arising depend on
the bound on ∥b̃x

i ∥∞ and thus on x. In order to deal with the dependency in ∥b̃x
i ∥∞, we apply

the Girsanov formula and reduce to the null drift case.

Proposition 8.3.4. Let Zx be the solution of

Zx
0 = x, dZx

t = σ1(t, Zx
t )dWt, t ∈ [0, T ]. (8.3.9)

Assume Lipt(b1), Lipt(σ1), b1 ∈ C̃1
b , σ1 ∈ C1

b and σ1 is elliptic. Then we have for every t ∈ [0, T ],
x, y ∈ Rd,

p
X̃

(0, t, x, y) = pZ (0, t, x, y) +
∫ t

0
E
[
Ux

s ⟨b̃x
1(s, Zx

s ),∇xpZ (s, t, Zx
s , y)⟩

]
ds, (8.3.10)

where X̃ is defined in (8.3.5) and Ux is defined as

Ux
s = exp

(∫ s

0
⟨g(u, Zx

u)b̃x
1(u, Zx

u), dZx
u⟩ − 1

2

∫ s

0
⟨g(u, Zx

u)b̃x
1(u, Zx

u), b̃x
1(u, Zx

u)⟩du
)
, (8.3.11)

g = (σ1σ
⊤
1 )−1. (8.3.12)

Proof. First, note that since σ1 is elliptic and since b̃x
1 , σ1 ∈ C1

b , then p
X̃

and pZ exist as well as
∇xpZ (Theorem 8.3.1). We then use [QZ04, Theorem 2.4] extended to non-homogeneous diffu-
sion processes. Following [QZ04, Remark 2.5], since σ1 is elliptic and bounded, the assumptions
of [QZ04, Theorem 2.4] hold.

We also have the following bounds on the process Ux.

Lemma 8.3.5. With the same assumptions as in Proposition 8.3.4, for every p ≥ 2, x ∈ Rd

and t ∈ [0, T ] we have

E
[

sup
s∈[0,t]

|Ux
s |p
]

≤ eCp2∥b̃x
1 ∥2

∞t. (8.3.13)

Proof. We recall that for every q ≥ 1, the process (Ux)q is a martingale with

d(Ux
s )q = q(Ux

s )q〈g(s, Zx
s )b̃x

1(s, Zx
s ), σ1(s, Zx

s )dWs
〉
.

Thus, Doob’s martingale inequality yields

E
[

sup
s∈[0,t]

|Ux
s |2q

]
≤ Cq2∥b̃x

1∥2
∞E

∫ t

0
|Ux

s |2qds ≤ Cq2∥b̃x
1∥2

∞

∫ t

0
E
[

sup
u∈[0,s]

|Ux
s |2q

]
ds.

So with Ux
0 = 1 we obtain

E
[

sup
s∈[0,t]

|Ux
s |2q

]
≤ eCq2∥b̃x

1 ∥2
∞t.
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Lemma 8.3.6. With the same assumptions as in Proposition 8.3.4, we have for every x, y ∈ Rd

and t ∈ [0, T ],∣∣∣∣∫ t

0
E
[
Ux

s ⟨b̃x
1(s, Zx

s ),∇xpZ (s, t, Zx
s , y)⟩

]
ds

∣∣∣∣ ≤ CeC∥b̃x
1 ∥2

∞
e−c|y−x|2/t

t(d−1)/2 . (8.3.14)

Proof. We use Theorem 8.3.1 on the process Zx, which yields bounds with constants depending
on σ1 but not on b̃x

1 . We obtain for every q ≥ 1 and for every s ∈ [0, t]:

E |∇xpZ (s, t, Zx
s , y)|q =

∫
Rd

|∇xpZ (s, t, ξ, y)|qpZ (0, s, x, ξ)dξ

≤ Cq

(t− s)(q+(q−1)d)/2

∫
Rd

1
(s(t− s))d/2 exp

(
−cq

(
|y − ξ|2

t− s
+ |ξ − x|2

s

))
dξ

≤ Cq

td/2
1

(t− s)(q+(q−1)d)/2 e
−cq |y−x|2/t,

where we used Lemma 8.5.1 in the appendix. Then for p−1 + q−1 = 1 and p ≥ 2, using the
Hölder inequality we have∣∣∣∣∫ t

0
E
[
Ux

s ⟨b̃x
1(s, Zx

s ),∇xpZ (s, t, Zx
s , y)⟩

]
ds

∣∣∣∣
≤ ∥b̃x

1∥∞
(

sup
s∈[0,t]

E|Ux
s |p
)1/p

∫ t

0
(E |∇xpZ (s, t, Zx

s , y)|q)1/q ds

≤ ∥b̃x
1∥∞e

Cp∥b̃x
1 ∥2

∞tCqe
−cq |y−x|2/t

td/(2q)

∫ t

0

ds

(t− s)(1+(1−q−1)d)/2 .

The integral in ds converges under the condition q < d/(d − 1) if d > 1, and for any value of
q > 1 if d = 1. Then performing the change of variable s = tu we obtain∣∣∣∣∫ t

0
E
[
Ux

s ⟨b̃x
1(s, Zx

s ),∇xpZ (s, t, Zx
s , y)⟩

]
ds

∣∣∣∣ ≤ ∥b̃x
1∥∞e

Cp∥b̃x
1 ∥2

∞T Cqe
−cq |y−x|2/t

t(d−1)/2

≤ CeC∥b̃x
1 ∥2

∞
e−c|y−x|2/t

t(d−1)/2 .

8.3.3 Proof of Theorem 8.2.1

Lemma 8.3.7. We have for every x ∈ Rd and t ∈ [0, T ]:

dTV(Xx
t , Y

x
t ) ≤ dTV(Zx

t , V
x

t ) + CeC|x|2t1/2,

where dZx
t = σ1(t, Zx

t )dWt and dV x
t = σ2(t, V x

t )dWt.

Proof. Let us write

dTV(Xx
t , Y

x
t ) ≤ dTV(Xx

t , X̃
x
t ) + dTV(X̃x

t , Z
x
t ) + dTV(Zx

t , V
x

t ) + dTV(V x
t , Ỹ

x
t ) + dTV(Ỹ x

t , Y
x

t ),

where X̃ and Ỹ are defined in (8.3.5) and (8.3.6). Using Lemma 8.3.3 with (8.3.7), we have

dTV(Xx
t , X̃

x
t ) + dTV(Ỹ x

t , Y
x

t ) ≤ C(1 + |x|2)t.
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Using the formula (8.3.10) and the inequality (8.3.14), we have

dTV(X̃x
t , Z

x
t ) =

∫
Rd

|p
X̃

(0, t, x, y)−pZ (0, t, x, y)|dy

=
∫
Rd

∣∣∣∣∫ t

0
E
[
Ux

s ⟨b̃x
1(s, Zx

s ),∇xpZ (s, t, Zx
s , y)⟩

]
ds

∣∣∣∣ dy
≤ CeC∥b̃x

1 ∥2
∞t1/2

∫
Rd

e−c|x−y|2/t

td/2 dy ≤ CeC|x|2t1/2,

where we used (8.3.7). The term dTV(Ỹ x
t , V

x
t ) is treated likewise.

We now prove Theorem 8.2.1.

Proof. Let us introduce an artificial regularization. For ε > 0 and using Lemma 8.3.7 we have

dTV(Xx
t , Y

x
t ) ≤ CeC|x|2t1/2 + dTV(Zx

t , Z
x
t +

√
εζ) + dTV(Zx

t +
√
εζ, V x

t +
√
εζ) (8.3.15)

+ dTV(V x
t +

√
εζ, V x

t ) (8.3.16)

where ζ ∼ N (0, Id) and is independent of the Brownian motion W .
• Let f : Rd → R be measurable and bounded and let us define

φ : y ∈ Rd 7→ Ef(Zx
t + y) =

∫
Rd
f(ξ + y)pZ (0, t, x, ξ)dξ =

∫
Rd
f(ξ)pZ (0, t, x, ξ − y)dξ. (8.3.17)

Then φ is C2 with
∇2φ(y) =

∫
Rd
f(ξ)∇2

ypZ (0, t, x, ξ − y)dξ.

Moreover, using Theorem 8.3.1, we have

∥∇2
ypZ (0, t, x, ξ − y)∥ ≤ C

t(d+2)/2 e
−c|x−ξ+y|2/t,

where the constants C and c do not depend on b̃x
1 . This implies that for every y ∈ Rd,

∥∇2φ(y)∥∞ ≤ C∥f∥∞t
−1
∫
Rd

1
td/2 e

−c|x−ξ+y|2/tdξ ≤ C∥f∥∞t
−1.

Then using the Taylor formula, for every y ∈ Rd there exists ỹ ∈ (0, y) such that

φ(y) = φ(0) + ∇φ(0) · y + 1
2∇2φ(ỹ) · y⊗2

and then for some random ζ̃ ∈ (0, ζ) we have

|Ef(Zx
t +

√
εζ) − Ef(Zx

t )| = |Eφ(
√
εζ) − φ(0)| =

∣∣∣∣√εE[∇φ(0) · ζ] + ε

2E[∇2φ(
√
εζ̃) · ζ⊗2]

∣∣∣∣
≤ Cε∥f∥∞t

−1,

where we used that E[∇φ(0) · ζ] = ∇φ(0) · E[ζ] = 0. This way we obtain

dTV(Zx
t , Z

x
t +

√
ϵζ) ≤ Cεt−1.

The term dTV(V x
t , V

x
t +

√
ϵζ) is treated likewise.
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• Let f : Rd → R be measurable and bounded and let us define

fε : y 7→ Ef(y +
√
εζ) = 1

(2π)d/2

∫
Rd
f(y +

√
εξ)e−|ξ|2/2dξ = 1

(2πε)d/2

∫
Rd
f(ξ)e−|ξ−y|2/(2ε)dξ.

(8.3.18)
Then fε is C1 with

∇fε(y) = 1
(2πε)d/2

∫
Rd
f(ξ)ξ − y

ε
e−|ξ−y|2/(2ε)dξ = ε−1/2

(2π)d/2

∫
Rd
f(y +

√
εξ)ξe−|ξ|2/2dξ

= ε−1/2E[f(y +
√
εζ)ζ]

and then
[fε]Lip ≤ ∥f∥∞ε

−1/2E|ζ| ≤ C∥f∥∞ε
−1/2. (8.3.19)

So that

|Ef(Zx
t +

√
εζ) − Ef(V x

t +
√
εζ)| = |Efε(Zx

t ) − Efε(V x
t )|

≤ C∥f∥∞√
ε

∥Zx
t − V x

t ∥1 ≤ C∥f∥∞√
ε

(t+ t1/2∆σ(x)), (8.3.20)

where we used Lemma 8.5.3 in the Appendix. This implies that

dTV(Zx
t +

√
εζ, V x

t +
√
εζ) ≤ Cε−1/2(t+ t1/2∆σ(x)).

• Conclusion : Considering (8.3.15), we have

dTV(Xx
t , Y

x
t ) ≤ CeC|x|2t1/2 + Cεt−1 + Cε−1/2(t+ t1/2∆σ(x)).

We now choose ε =
[
t(t+ t1/2∆σ(x))

]2/3, so that

dTV(Xx
t , Y

x
t ) ≤ CeC|x|2t1/2 + C(t1/2 + ∆σ(x))2/3.

8.3.4 Proof of Theorem 8.2.2 using Theorem 8.2.7

We first prove Theorem 8.2.7.

Proof. Let f : Rd → R be measurable and bounded, let ε > 0 and let ζ ∼ N (0, Id) be indepen-
dent of (Z1, Z2). We have

|Ef(Z1) − Ef(Z2)| ≤
∣∣∣∣∣Ef(Z1) −

r∑
i=1

wiEfε/ni
(Z1)

∣∣∣∣∣+
∣∣∣∣∣

r∑
i=1

wiEfε/ni
(Z1) −

r∑
i=1

wiEfε/ni
(Z2)

∣∣∣∣∣
+
∣∣∣∣∣

r∑
i=1

wiEfε/ni
(Z2) − Ef(Z2)

∣∣∣∣∣ , (8.3.21)

where fε is defined as in (8.3.18) and where the ni’s and the wi’s will be defined later.
Let φ be as defined in (8.3.17) replacing Zx

t by Z1. Then, φ is differentiable up to the order
2r and for all k = 0, 1, . . . , 2r:

∇kφ(y) = (−1)k
∫
Rd
f(ξ)∇kp1(ξ − y)dξ.
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Using the Taylor formula up to order 2r, for every y ∈ Rd there exits ỹ ∈ (0, y) such that

φ(y) = φ(0) +
2r−1∑
k=1

∇kφ(0)
k! · y⊗k + ∇2rφ(ỹ)

(2r)! · y⊗2r.

Moreover, we have ∣∣∣∇2rφ(ỹ) · y⊗2r
∣∣∣ ≤ C∥f∥∞|y|2r

∫
Rd

∥∇2rp1(ξ)∥dξ. (8.3.22)

Then there exists a random ζ̃ ∈ (0, ζ) such that

Ef(Z1 +
√
εζ) − Ef(Z1) = Eφ(

√
εζ) − φ(0) (8.3.23)

=
2r−1∑
k=1

∇kφ(0)
k! εk/2 · E[ζ⊗k] + E[∇2rφ(

√
εζ̃) · ζ⊗2r]

(2r)! εr

=
r−1∑
k=1

∇2kφ(0)
(2k)! εk · E[ζ⊗2k] + E[∇2rφ(

√
εζ̃) · ζ⊗2r]

(2r)! εr =:
r−1∑
k=1

βk(t)εk + β̃r(t, ε)εr, (8.3.24)

because if k is odd, then E[ζ⊗k] = 0. We now rely on a multi-step Richardson-Romberg extrap-
olation [LP17, Appendix A]. Let us denote the refiners ni = 2i−1 and the auxiliary sequences
and weights

uk :=
(

k−1∏
ℓ=1

(1 − 2−ℓ)
)−1

, vk := (−1)k2−k(k+1)/2uk+1, wk := ukvr−k, k = 1, . . . , r. (8.3.25)

These weights are the unique solution to the r × r Vandermonde system
r∑

i=1
win

−k
i =

{
1 if k = 0,
0 else. , k = 0, 1, . . . , r − 1. (8.3.26)

Then we have
r∑

i=1
wi

(
Ef(Z1 +

√
ε/niζ) − Ef(Z1)

)
=

r∑
i=1

wi

r−1∑
k=1

βk(t)εkn−k
i +

r∑
i=1

wiβ̃r(t, ε/ni)εrn−r
i

=
r−1∑
k=1

εkβk(t)
r∑

i=1
win

−k
i + εr

r∑
i=1

β̃r(t, ε/ni)win
−r
i

= εr
r∑

i=1
β̃r(t, ε/ni)win

−r
i , (8.3.27)

where we used (8.3.26) in the last equation. Now, using (8.3.22) we have∣∣∣∣∣
r∑

i=1
β̃r(t, ε/ni)win

−r
i

∣∣∣∣∣ ≤ C∥f∥∞

(∫
Rd

∥∇2rp1(ξ)∥dξ
) r∑

i=1
|wi|n−r

i .

Since uk → u∞ = ∏
ℓ≥1(1 − 2−ℓ)−1 < ∞, the weights satisfy

|wi| ≤ u2
∞2−(r−i)(r−i+1)/2, i = 1, . . . , r,

so that
r∑

i=1

|wi|
nr

i

≤ u2
∞

r∑
i=1

2−(r−i)(r−i+1)/2 ≤ u2
∞

r∑
i=1

2(r−i)/2 = u2
∞

r−1∑
i=0

2−i/2 ≤ C. (8.3.28)
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As a consequence and since ∑r
i=1wi = 1, we may write from (8.3.27)∣∣∣∣∣Ef(Z1) −
r∑

i=1
wiEfε/ni

(Z1)
∣∣∣∣∣ ≤ C∥f∥∞ε

r
∫
Rd

∥∇2rp1(ξ)∥dξ. (8.3.29)

The same way, we obtain∣∣∣∣∣Ef(Z2) −
r∑

i=1
wiEfε/ni

(Z2)
∣∣∣∣∣ ≤ C∥f∥∞ε

r
∫
Rd

∥∇2rp2(ξ)∥dξ.

On the other side, using (8.3.19) we have∣∣∣∣∣
r∑

i=1
wiEfε/ni

(Z1) −
r∑

i=1
wiEfε/ni

(Z2)
∣∣∣∣∣ ≤ C∥f∥∞√

ε
W1(Z1, Z2)

(
r∑

i=1
|wi|2(i−1)/2

)
. (8.3.30)

Moreover, for every i = 1, . . . , r,

|wi|2(i−1)/2 ≤ u2
∞2−(r−i)(r−i+1)/2+(i−1)/2

and then
r∑

i=1
|wi|2(i−1)/2 ≤ u2

∞

r∑
i=1

2(i−1)/2 ≤ u2
∞2r. (8.3.31)

Thus considering (8.3.21), we obtain for every ε > 0,

dTV(Z1, Z2) ≤ Cεr
∫
Rd

(
∥∇2rp1(ξ)∥ + ∥∇2rp2(ξ)∥

)
dξ + Cε−1/2W1(Z1, Z2).

Optimizing in ε gives

ε⋆ =
(

W1(Z1, Z2)/(2r
∫
Rd

(
∥∇2rp1(ξ)∥ + ∥∇2rp2(ξ)∥

)
dξ)
)2/(2r+1)

and then

dTV(Z1, Z2) ≤ Cd,rW1(Z1, Z2)2r/(2r+1)
(∫

Rd

(
∥∇2rp1(ξ)∥ + ∥∇2rp2(ξ)∥

)
dξ

)1/(2r+1)
.

We now prove Theorem 8.2.2.

Proof. Using Lemma 8.3.7, we have

dTV(Xx
t , Y

x
t ) ≤ CeC|x|2t1/2 + dTV(Zx

t , V
x

t ) (8.3.32)

We now apply Theorem 8.2.7 with the random vectors Z1 = Zx
t and Z2 = V x

t . Assuming that
σ1 is C2r

b and using Theorem 8.3.1, ∇k
ypZ exists for k = 0, 1, . . . , 2r and

∀k = 0, 1, . . . , 2r, ∀t ∈ (0, T ], ∀x, y ∈ Rd, ∥∇k
ypZ (0, t, x, y)∥ ≤ C

t(d+k)/2 e
−c|y−x|2/t.

Then we have ∫
Rd

∇2r
y pZ (0, t, x, ξ)dξ ≤ Ct−r

∫
Rd

1
td/2 e

−c|x−ξ+y|2/tdξ ≤ Ct−r.

The same way we have ∫
Rd

∇2r
y pV (0, t, x, ξ)dξ ≤ Ct−r.

Applying Theorem 8.2.7 with Lemma 8.5.3 yields

dTV(Zx
t , V

x
t ) ≤ C(

√
t+ ∆σ(x))2r/(2r+1).
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8.3.5 Proof of Theorem 8.2.5

For the proof of Theorem 8.2.5, we do not use Lemma 8.3.7; instead we directly apply Theorem
8.2.7. Using Theorem 8.3.2, ∇k

ypX and ∇k
ypY exist for k = 0, 1, . . . , 2r and satisfy the same

bounds as previously. Then using Theorem 8.2.7 with Lemma 8.5.3 we obtain

dTV(Xx
t , Y

x
t ) ≤ C(

√
t(1 + ∆b(x)) + ∆σ(x) + t|b(x)|)2r/(2r+1).

8.3.6 Proof of Theorem 8.2.8

Proof. We use Lemma 8.3.7 again and rework the bound on dTV(Zx
t , V

x
t ) by paying attention to

the dependency of the constants in r in the proof of Theorem 8.2.7 with Z1 := Zx
t and Z2 := V x

t .
Since σ1 ∈ C2r

b for every r ∈ N, we write (8.3.24) for any r ∈ N and we have

|β̃r(t, ε)| ≤ C̃2r∥f∥∞t
−r E[|ζ|2r]

(2r)! , C̃2r := C2rc
−d/2
2r ,

where C2r and c2r are defined in (8.2.12) and where

E[|ζ|2r] = 2rΓ(d/2 + r)
Γ(d/2) =

r−1∏
i=0

(d+ 2i).

Using (8.3.28) we get ∣∣∣∣∣
r∑

i=1
β̃r(t, ε/ni)win

−r
i

∣∣∣∣∣ ≤ CC̃2r∥f∥∞t
−r

∏r−1
i=0 (d+ 2i)

(2r)!

and we obtain as in (8.3.29):∣∣∣∣∣Ef(Zx
t ) −

r∑
i=1

wiEfε/ni
(Zx

t )
∣∣∣∣∣ ≤ 1

2κ1∥f∥∞ε
rt−r, κ1 := CC̃2r

∏r−1
i=0 (d+ 2i)

(2r)!∣∣∣∣∣Ef(V x
t ) −

r∑
i=1

wiEfε/ni
(V x

t )
∣∣∣∣∣ ≤ 1

2κ1∥f∥∞ε
rt−r.

On the other hand, considering (8.3.30) and (8.3.31) with Lemma 8.5.3 with ∆σ(x) = 0 we have∣∣∣∣∣
r∑

i=1
wiEfε/ni

(V x
t ) −

r∑
i=1

wiEfε/ni
(Zx

t )
∣∣∣∣∣ ≤ κ2

∥f∥∞√
ε
t, κ2 := C2r. (8.3.33)

We now minimize κ1ε
rt−r + κ2ε

−1/2t in ε, giving

ε⋆ = t(2r+2)/(2r+1)

(2rκ1)2/(2r+1)κ
2/(2r+1)
2

and then

κ1ε
r
⋆t

−r + κ2ε
−1/2
⋆ t ≤ Cκ

2r/(2r+1)
2 κ

1/(2r+1)
1 tr/(2r+1)

with as r → ∞:

κ
2r/(2r+1)
2 κ

1/(2r+1)
1 ∼ C̃

1/(2r+1)
2r

(
r−1∏
i=0

(d+ 2i)
)1/(2r+1)

1
(2r)!1/(2r+1) 22r2/(2r+1)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.5

1 Black-Scholes process
Euler-Maruyama scheme

Figure 8.1: Example of trajectory of a Black-Scholes process (8.4.1) with x = 1 and σ = 0.5
along with its one-step Euler-Maruyama scheme (8.4.2).

with(
r−1∏
i=0

(d+ 2i)
) 1

(2r+1)

= exp
(

r

2r+1
1
r

r−1∑
i=0

log(d+ 2i)
)

≤ exp
(

r

2r+1 log(d+(r−1))
)

≤
√
d+r−1,

1
(2r)!1/(2r+1) ∼ e

2r , lim sup
r→∞

C̃
1/(2r+1)
2r < ∞

where we used Assumption (8.2.12), so that

κ
2r/(2r+1)
2 κ

1/(2r+1)
1 ≤ C

√
d+ r − 1 e2r2r.

Then we have dTV(Zx
t , V

x
t ) ≤ C2rr−1/2tr/(2r+1) and we choose r(t) = ⌊log1/2(1/t)⌋ so that as

t → 0,
dTV(Zx

t , V
x

t ) ≤ Ct1/2 exp
(
C
√

log(1/t)
)
.

8.4 Counterexample
In this section we give a counter-example showing that we cannot achieve a bound better than
t1/2 in general. More specifically, we show that we cannot achieve a bound better than t1/2 for
the total variation between an SDE and its Euler-Maruyama-scheme in general. For x > 0 and
σ > 0, let us consider the one-dimensional process

Y x
t = xeσWt , (8.4.1)

where W is a standard Brownian motion. The process Y is solution of the SDE dY x
t =

(σ2/2)Y x
t dt+ σY x

t dWt and its associated Euler-Maruyama schemes reads

Ȳ x
t = x+ (σ2/2)xt+ σxWt ∼ N

(
x(1 + tσ2/2), σ2x2t

)
. (8.4.2)

An example of trajectory is given in Figure 8.1.

Proposition 8.4.1. Let Y be the process defined in (8.4.1). Then for small enough t we have

dTV(Y x
t , Ȳ

x
t ) ≥ Cxt

1/2. (8.4.3)
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Proof. We have

pY (t, x, y) = 1√
2πσ2t

exp
(
− 1

2σ2t
log2(y/x)

)
y

1y≥0 (8.4.4)

so that

dTV(Y x
t , Ȳ

x
t ) = 1√

2πσ2t

∫
R

∣∣∣∣∣exp
(

− log2(y/x)
2σ2t

)
y−11y≥0 − exp

(
−(y − x− xtσ2/2)2

2σ2x2t

)
x−1

∣∣∣∣∣ dy
≥ 1√

2πσ2

∫ ∞

−x/
√

t

∣∣∣∣∣ 1
x+

√
ty

exp
(

− log2(1 +
√
ty/x)

2σ2t

)
− 1
x

exp
(

−(y − x
√
tσ2/2)2

2σ2x2

)∣∣∣∣∣ dy.
But we have as (t, y) → 0:

1
1 +

√
ty/x

exp
(

− log2(1 +
√
ty/x)

2σ2t

)
− exp

(
−(y − x

√
tσ2/2)2

2σ2x2

)

= (1 −
√
ty/x+O(ty2)) exp

(
− 1

2σ2t
( ty

2

x2 − t3/2y3

x3 +O(t2y4))
)

− exp
(

− y2

2σ2x2 − tσ2

8 +
√
ty

2σ2x

)

= e− y2

2σ2x2

[
(1 −

√
ty/x+O(ty2))

(
1 +

√
ty3

2σ2x3 +O(ty4)
)

−
(

1 +
√
ty

2σ2x
− tσ2

8 +O(t2) +O(ty2)
)]

= e− y2

2σ2x2

[
−

√
ty

x
−

√
ty

2σ2x
+

√
ty3

2σ2x3 + tσ2

8 +O(ty2) +O(t2)
]
.

Thus there exists ϵ > 0 and t0 such that for every t ≤ t0:

dTV(Y x
t , Ȳ

x
t ) ≥ 1√

2πσ2x2
e− ε2

2σ2x2

√
t

2

∫ ε

−ε

∣∣∣∣∣−y

x
− y

2σ2x
+ y3

2σ2x3

∣∣∣∣∣ dy,
so that dTV(Y x

t , Ȳ
x

t ) is of order t1/2 as t → 0.

However, the process Y does not satisfy the assumptions of Theorem 8.2.2 as its noise
coefficient is not elliptic neither bounded on (0,∞). We then prove the following result.

Proposition 8.4.2. There exists a diffusion process X on R with C1 and Lipschitz continuous
drift, with C∞

b and elliptic diffusion coefficient σ and there exists T > 0 and ε ∈ (0, 1) such that

∀t ∈ [0, T ], ∀x ∈ (ε, ε−1), dTV(Xx
t , X̄

x
t ) ≥ Cxt

1/2

where X̄ is the Euler-Maruyama scheme of X and where the positive constant Cx depends on x.

Proof. We construct from the geometric Brownian motion Y defined in (8.4.1), a process X
with elliptic and bounded drift and such that dTV(Xx

t , X̄
x
t ) ≥ Cxt

1/2. For ε ∈ (0, 1/2), let us
consider ψ : R → R+ a C∞

b approximation of

ψ̃ : x ∈ R 7−→


x if x ∈ [ε, ε−1],
ε if x ≤ ε
ε−1 if x ∈ [ε−1,∞)
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such that ψ = ψ̃ on [2ε, ε−1/2] ∪ (−∞, ε/2] ∪ [2ε−1,∞). Then we define the process with elliptic
and bounded noise coefficient

dXx
t = −σ2

2 X
x
t dt+ σψ(Xx

t )dWt.

Then for x ∈ (2ε, ε−1/2) we have X̄x
t = Ȳ x

t and

P(Y x
t ̸= Xx

t ) ≤ P
(
sups∈[0,t] Y

x
s ≥ ε−1/2

)
+ P

(
infs∈[0,t] Y

x
s ≤ 2ε

)
.

With a proof similar to the proof of Lemma 8.3.3, we show that

P
(
sups∈[0,t] Y

x
s ≥ ε−1/2

)
≤ Cx,εt.

Moreover, we remark that (Y x)−1 ∼ x−2Y x in law so

P
(
infs∈[0,t] Y

x
s ≤ 2ε

)
= P

(
sups∈[0,t](Y x

s )−1 ≥ ε−1/2
)

= P
(
sups∈[0,t] Y

x
s ≥ x2ε−1/2

)
≤ Cx,εt.

Then we obtain

dTV(Xx
t , X̄

x
t ) ≥ dTV(Y x

t , Ȳ
x

t ) − dTV(Xx
t , Y

x
t ) ≥ Cx

√
t.

Remark 8.4.3. We could also consider the process X with "cut" bounded drift b̃ and get the same
bounds, proving then that we cannot achieve better bounds in general than the ones established
in Theorem 8.2.8 even if we assume that b is bounded.

8.5 Appendix

Lemma 8.5.1 ([Fri64], Chapter 9, Lemma 7). For a > 0, 0 < u < t ≤ T , x ∈ Rd, ξ ∈ Rd, let

Ia :=
∫
Rd

1
(u(t− u))d/2 exp

(
−a

(
|x− y|2

t− u
+ |y − ξ|2

u

))
dy.

Then there exists a constant C > 0 depending only on d and T such that for every 0 < ε < 1,

Ia ≤ C

(εat)d/2 exp
(

−a(1 − ε) |x− ξ|2

t

)
.

Let us recall [PP23, Lemma 3.4(a)], with an immediate adaptation to the non-homogeneous
case.

Lemma 8.5.2. Let Z be solution to the generic SDE:

Zx
0 = x ∈ Rd, dZx

t = b(t, Zx
t )dt+ σ(t, Zx

t )dWt, t ∈ [0, T ],

where b and σ are Lipschitz continuous in (t, x) and where σ is bounded. Then for p ≥ 1,

∀t ∈ [0, T ], ∀x ∈ Rd, ∥Zx
t − x∥p ≤ C(p, T, [b]Lip, [σ]Lip, ∥σ∥∞)

(
t|b(0, x)| + t1/2

)
.

Lemma 8.5.3. Let X and Y be the solution to the two general SDEs (8.2.1) and (8.2.2). Assume
that b and σ are Lipschitz continuous in (t, x) and that σ is bounded. Then for every p ≥ 1,

∀t ∈ [0, T ], ∀x ∈ Rd, ∥Xx
t − Y x

t ∥p ≤ C
(
t(1 + ∆b(x)) + t3/2(|b1| + |b2|)(0, x) + ∆σ(x)t1/2

)
(8.5.1)
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Proof. We first deal with the case p ≥ 2. We have

∥Xx
t − Y x

t ∥p ≤
∥∥∥∥∫ t

0
(b1(s,Xx

s ) − b2(s, Y x
s ))ds

∥∥∥∥
p

+
∥∥∥∥∫ t

0
(σ1(s,Xx

s ) − σ2(s, Y x
s ))dWs

∥∥∥∥
p

≤
∥∥∥∥∫ t

0
(b1(s,Xx

s ) − b1(0, x))ds
∥∥∥∥

p
+ t∆b(x) +

∥∥∥∥∫ t

0
(b2(s, Y x

s ) − b2(0, x))ds
∥∥∥∥

p

+
∥∥∥∥∫ t

0
(σ1(s,Xx

s ) − σ1(0, x))dWs

∥∥∥∥
p

+
∥∥∥∥∫ t

0
∆σ(x)dWs

∥∥∥∥
p

+
∥∥∥∥∫ t

0
(σ2(s, Y x

s ) − σ2(0, x))dWs

∥∥∥∥
p

But using the Burkholder-Davis-Gundy and the generalized Minkowski inequalities, we have∥∥∥∥∫ t

0
(σ1(s,Xx

s ) − σ1(0, x))dWs

∥∥∥∥
p

≤ CBDG
p [σ1]Lip

∥∥∥∥∫ t

0
|(s,Xx

s ) − (0, x)|2ds
∥∥∥∥1/2

p/2

≤ CBDG
p [σ1]Lip

(∫ t

0
∥(s,Xx

s ) − (0, x)∥2
pds

)1/2
≤ C(t+ t3/2|b1(0, x)|),

where CBDG
p is a constant which only depends on p and where we used Lemma 8.5.2. So that

∥Xx
t − Y x

t ∥p ≤ [b1]Lip

∫ t

0
∥(s,Xx

s ) − (0, x)∥pds+ [b2]Lip

∫ t

0
∥(s, Y x

s ) − (0, x)∥p + t∆b(x)

+ C(t+ t3/2(|b1| + |b2|)(0, x)) + ∆σ(x)
√
t∥W1∥p

≤ C
(
t(∆b(x) + 1) + t3/2(|b1| + |b2|)(0, x) + ∆σ(x)

√
t
)

which completes the proof for p ≥ 2. For p ∈ [1, 2), the inequality is still true remarking that
∥ · ∥p ≤ ∥ · ∥2.
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Chapter 9
Weak error rates for numerical schemes of
non-singular Stochastic Volterra equations
with application to option pricing under
path-dependent volatility

The results presented in this chapter are a joint work with Masaaki Fukasawa. They
have been submitted to SIAM Journal on Financial Mathematics (SIFIN ) and are
currently in revision for possible publication.

Abstract

We study the weak error rate for the Euler-Maruyama scheme for Stochastic Volterra
equations (SVE) with application to pricing under stochastic volatility models. SVEs
are non-Markovian stochastic differential equations with memory kernel. We assume
in particular that the kernel is non-singular and C4. We show that the weak error
rate is of order O(1/N) where N is the number of steps of the Euler-Maruyama
scheme, thus giving the same weak error rate as for SDEs. Our proof consists in
adapting the classic weak error proof for Markov processes to SVEs; to this end we
rely on infinite dimensional functionals and on their derivatives. Our work opens
the way to study rough SVEs, which shall be investigated in a next paper.

Keywords– Stochastic Volterra equation, Rough volatility, Euler-Maruyama scheme,
Weak error rate.

9.1 Introduction

Stochastic Volterra equations (SVE) have recently attracted much attention in the mathematical
finance community in the context of rough volatility modelling, which is more able to reproduce
some features of asset prices [ALV07, GJR18, EEFR18, JR20, Fuk17, Fuk21]. SVEs have also
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been introduced with regular (non-singular) kernel for modelling in population dynamics, biology
and physics [Moh98], in order to generalize modelling to non-Markovian stochastic systems with
some memory effect. They where also motivated in particular by the physics of heat transfer
[GLS90] and have been mathematically studied since [BM80, Pro85]. Applications, e.g. pricing
options in financial practice, require numerical methods to simulate the solution of the SVE,
such as simulation through Euler-Maruyama schemes.

In the present paper, we give bounds for the weak error of the Euler-Maruyama scheme with
N steps of an SVE on a finite time interval [0, T ] in the case where the kernel is non-singular.
We consider two different Euler schemes: one where the kernel is not discretized, thus requiring
the simulation of a large Gaussian matrix with covariance, and another one where the kernel is
discretized, thus requiring only the simulation of (independent) Brownian increments.

A first bound on the weak error can be obtained from bounds on the strong error, however
this is sub-optimal in general. For example, for Stochastic Differential Equations (SDE) the
strong error is of order O(1/

√
N) but the weak error is of order O(1/N). Such bounds get even

worse in the case of SVE with fractional kernel, giving a weak error bounded by the strong error
which is order O(N−H), where H ∈ (0, 1/2) is the Hurst parameter of the fractional kernel and
is small (H ≃ 0.1) in many financial applications. In [RTY21] are given bounds for the weak
error for the multi-level Euler-Maruyama scheme, however the authors only assume that the
weak error is bounded by the strong error (see [RTY21, Section 2.3]). In [FU21] is shown that
the strong error is exactly of order H and the authors give the expression of the limit law of the
(rescaled) strong error. In [Gas23] are given weak error rates from some rough volatility models
and are proved to be of order (3H + 1/2) ∧ 1, yielding significantly better bounds in the case
where H is close to 0. However the results are valid only for some special cases (semilinear or
cubic test function), hinting that obtaining general results for fractional processes is difficult.
More recently, [FSW22] also proved that the weak error rate is of order (3H + 1/2) ∧ 1 for some
class of stochastic rough volatility models, including the rough Bergomi and the rough Stein-
Stein models. We recall that a rough (resp. Volterra) stochastic volatility model is a special
case of a singular (resp. non-singular) two-dimensional SVE, where the first process is an asset
price satisfying dSt = St

√
VtdBt for some Brownian motion B and where the second process

(Vt) is the volatility satisfying some rough (resp. Volterra) stochastic equation, then giving for
the joint process a matrix kernel K being diagonal and constant on its first coordinate.

Our main result states that for SVEs with non-singular kernel, the weak error of the Euler-
Maruyama scheme is of order O(1/N), which is the same rate as in the classic SDE case, under
regularity assumptions on the coefficients and the kernel: we assume that the kernel is defined
on the whole interval [0, T ] and is C2, that the drift and the diffusion coefficients are C4, bounded
with bounded derivatives. Our strategy of proof consists in adapting the domino method from
[TT90] to the SVE case. In the SDE case and for a function f : Rd → R, the domino strategy
consists in a step-by-step decomposition of the weak error to produce an upper bound as follows:

|Ef(X̄x
T ) − Ef(Xx

T )| = |P̄h ◦ · · · ◦ P̄hf(x) − PtN f(x)|

≤
N∑

k=1

∣∣∣P̄h ◦ · · · ◦ P̄h ◦ (P̄h − Ph) ◦ PtN −tk
f(x)

∣∣∣ , (9.1.1)

where h = T/N , tk = kh, X is the solution to the SDE and X̄ is the corresponding Euler-
Maruyama scheme, P and P̄ are the semi-group operators associated to X and X̄ respectively.
Then showing that with g := Ptn−tk

f , the short term weak error (P̄h − Ph)g(x) is of order
O(1/N2), the sum in (9.1.1) is then of order O(1/N). An elementary proof in the SDE case
using the domino method can be found in [Pag18, Section 7.6]. This strategy fundamentally
relies on a Markov semi-group and thus cannot be directly applied to the SVE case, as the
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future trajectory of X depends on the whole previous trajectory in this last case. Instead, we
consider the solution of an SVE as a Markov process on the infinite dimensional state space of
trajectories Ω and then we define a infinite-dimensional Markov semi-group, allowing us to use
the previously introduced domino method.

We then show that the weak error in small time is of order O(1/N2) by establishing a Itō
type formula for functionals g : Ω → R, involving the Fréchet derivatives of g. Such approach
involving the derivatives of functionals on infinite dimensional state space and establishing Itō
formula for SVEs was developed in [Dup19] and [VZ19], however in our case we only consider the
infinite dimensional state space of continuous paths instead of càdlàg paths, since we consider a
different semi-group.

Using a hybrid approach, combining ideas from both finite and infinite dimensional settings,
the Itō formula with a finite dimensional Brownian motion on the one side, and the Fréchet
derivatives of path functionals and the Markov property on an infinite dimensional state space
on the other side, we establish the weak convergence rate of the Euler-Maruyama for SVEs.
Studying the non-singular case by adapting the classic domino method to path-dependent setting
constitutes a first step for studying weak error rates for fractional SVEs as we believe our method
can be adapted to the singular case. We shall conduct such study in a next paper.

We give numerical evidence of the convergence rate we obtained on a Monte Carlo option
pricing problem with a stochastic volatility model where the volatility follows some non-singular
SVE. Proving weak error rates allows to design weighted and unweighted multi-level Richardson-
Romberg extrapolation estimators [Gil08, GS14, LP17] that exploit the faster convergence of
the weak error in comparison with the strong error; such application is particularly critical
for the Monte Carlo simulation of Volterra and rough stochastic equations where the Vanilla
Euler-Maruyama scheme has large time complexity (N2).

The article is organized as follows. In Section 9.2 we give the precise setting and assumptions
of the problem we consider, in particular the regularity assumptions on the coefficients and on
the kernel of the SVE, and we state our main theorem. In Section 9.3, we give general results on
random paths (φt

u)u≥0,t∈[0,T ] which are adapted with respect to t, in particular we establish an
Itō formula for infinite dimensional functionals g : Ω → R. The proof of the theorem is given in
Section 9.4. Considering (9.1.1), the proof of our main result is decomposed into three parts: we
prove that the short term error is of order O(1/N2), applying Itō formula for a regular functional
g : Ω → R as in the classic proof in the SDE case. Secondly we show that with g being the
concatenation of discrete kernels applied to f , then the functional g is indeed differentiable in the
Fréchet meaning and with bounded Fréchet derivatives. Lastly, in Section 9.5, we empirically
check the weak convergence rate for some SVE model with non-singular kernel.

9.2 Setting and main results

9.2.1 Setting

Let us consider the following SVE in Rd, d ∈ N:

Xt = X0 +
∫ t

0
K1(t, s)b(Xs)ds+

∫ t

0
K2(t, s)σ(Xs)dWs, t ∈ [0, T ], (9.2.1)

where (Wt) is a standard Brownian motion in Rq3 defined on some probability space (Ω,A,P),
where

b : Rd → Rq1 , K1 : [0, T ]2 → Md,q1(R), σ : Rd → Mq2,q3(R), K2 : [0, T ]2 → Md,q2(R),
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and where q1, q2, q3 ∈ N and for a, b ∈ N, Ma,b(R) denotes the set of a × b matrices with
coefficients in R. We denote by (Ft)t∈[0,T ] the filtration generated by the Brownian motion.

The starting point X0 ∈ Rd is fixed. Let us make the following assumptions on the coefficients
b and σ and on the kernels K1 and K2.

For (A, dA) and (B, dB) two metric spaces and k ∈ N, we consider the following sets of
functions from A to B:

• Ck(A,B): functions that are k times differentiable with continuous derivatives,

• Ck
b (A,B): functions that are bounded, k times differentiable with continuous and bounded

derivatives,

• C̃k
b (A,B): functions that are k times differentiable with continuous and bounded deriva-

tives.

When there is no ambiguity on the spaces, we also use the notations Ck, Ck
b and C̃k

b respectively.

Assumption 9.2.1. (i) K1 ∈ C2([0, T ]2,Md,q1(R)) and K2 ∈ C4([0, T ]2,Md,q2(R)), which
guarantees that K1 (resp. K2) is bounded with bounded derivatives up to order 2 (resp. 4).

(ii) b ∈ C5
b (Rd,Rq1) and σ ∈ C5

b (Rd,Mq3,q2(R)).

Then Assumption 9.2.1 guarantees that the solution of (9.2.1) is well defined (see for example
[AJ18, Lemma 5.29]).

To simplify the notations and for more readability of the proofs, we assume hereafter that
all the objects considered are one-dimensional, i.e. that d = q1 = q2 = q3 = 1. However the
main results in Section 9.2.2 remain valid for any (finite) dimensions d, q1, q2 and q3, re-writing
the proofs by replacing the the one-dimensional products by matrix products and writing them
as sums over indices.

Let us define the Euler-Maruyama scheme associated to (9.2.1). For N ∈ N, we define the
time step and the regular subdivision

h := T/N, tk := kT/N, k ∈ {0, . . . , N} (9.2.2)

and
X̄t = X0 +

∫ t

0
K1(t, s)b(X̄

¯
s)ds+

∫ t

0
K2(t, s)σ(X̄

¯
s)dWs, t ∈ [0, T ], (9.2.3)

where for s ∈ [0, T ], we define

¯
s = ⌊s/h⌋h.

The solution of (9.2.3) can be recursively simulated as

X̄t = X0 +
k∑

j=0

∫ tj+1∧t

tj

K1(t, s)b(X̄tj )ds+
k∑

j=0

∫ tj+1∧t

tj

K2(t, s)σ(X̄tj )dWs, t ∈ [tk, tk+1],

where the integrals (
∫ tj+1

tj
K2(t, s)dWs)j can be simulated on the discrete grid (tk)0≤k≤N by

generating the independent sequence of Gaussian vectors( ∫ tj+1

tj

K2(tk, s)dWs

)
k=j,...,N

, j = 0, . . . , N − 1,

using the Cholesky decomposition of the covariance matrix( ∫ tj+1

tj

K2(tk1 , s)K2(tk2 , s)ds
)

k1,k2=j,...,N
.
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We also define the Euler-Maruyama scheme associated to (9.2.1) with discretization of the
kernels as

⇀Xt = X0 +
∫ t

0
K1(t,

¯
s)b(⇀X

¯
s)ds+

∫ t

0
K2(t,

¯
s)σ(⇀X

¯
s)dWs, t ∈ [0, T ]. (9.2.4)

This scheme more convenient to simulate as it only requires the simulation of the Brownian
increments (Wtk+1 −Wtk

)0≤k≤N−1.
With no ambiguity, in the proofs we shall use the notation ψ̄ for ψ some function defined on

Rd, such that for every process Y and every s ∈ [0, T ] we have ψ̄(Ys) = ψ(Y
¯
s).

We extend the definition of K1 and K2 on R+ × R+ such that for i = 1, 2, Ki(t, s) = 0 for
(t, s) /∈ [0, 2T ] × [0, 2T ] and such that Ki is still bounded with bounded derivatives up to order
2.

In this paper, we use the notation C to denote a positive real constant, which may change
from line to line. The constant C depends on the parameters of the problem: the coefficients
and the kernels of the SVE, the time horizon T .

9.2.2 Main results

Theorem 9.2.2. Let f : Rd → R be C̃5
b and assume Assumption 9.2.1. Then we have

E[f(X̄T )] − E[f(XT )] = O (1/N) , (9.2.5)
E[f(⇀XT )] − E[f(XT )] = O (1/N) . (9.2.6)

Remark 9.2.3. • Since X, X̄ and ⇀X satisfy (9.2.1), (9.2.3) and (9.2.4) respectively with K1,
K2, b and σ being bounded, we obtain

E|XT | + E|X̄T | + E|⇀XT | < +∞.

Since f is Lipschitz-continuous, we get

E|f(XT )| + E|f(X̄T )| + E|f(⇀XT )| < +∞.

• The strategy of proof we develop in Section 9.4 does not allow us to give weak error bounds
for path-dependent functionals.

• We prove that the weak order of convergence of the Euler-Maruyama scheme for SVEs
with regular kernels is the same as for SDEs, however the computation time for this scheme
for SVEs is of order N2, against order N for SDEs.

9.3 Preliminary results on infinite dimensional paths

9.3.1 State space and path derivatives

For T ′ ∈ R+, we consider the infinite dimensional state space ΩT ′ being the space of R-valued
continuous trajectories on [0,∞) with support included in [0, T ′], with the topology of the
supremum norm. For ω ∈ ΩT ′ such that ω is C1, we denote ω̇ its derivative. If ω is Lipschitz-
continuous, we denote [ω]Lip its Lipschitz constant.

For g : ΩT ′ → R and for ω ∈ ΩT ′ , we define, when it exists, ∇g(ω) as the Fréchet derivative
of g with respect to ω, which is a linear operator on ΩT ′ :

g(ω + η) = g(ω) + ⟨∇g(ω), η⟩ + o(∥η∥∞), η ∈ ΩT ′ .
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More generally, for ℓ ∈ N we define, when it exists, the derivative of g of order ℓ recursively
as the ℓ-multilinear operator on Ω⊗ℓ

T ′ :

⟨∇ℓ−1g(ω+η1),
ℓ⊗

j=2
ηj⟩ = ⟨∇ℓ−1g(ω),

ℓ⊗
j=2

ηj⟩+⟨∇ℓg(ω),
ℓ⊗

j=1
ηj⟩+o(∥η1∥∞), ηi ∈ ΩT ′ , i = 1, . . . , ℓ.

We use the notation ⊗ only to enhance the multilinearity of ∇ℓg.
Remark 9.3.1. The path derivative can be made explicit in some simple cases:

• If g(ω) = g̃(ωu0) for some fixed u0 ∈ R+ and for some g̃ : R → R, then we have

⟨∇ℓg(ω),
ℓ⊗

j=1
ηj⟩ = ∇ℓg̃(ωu0) ·

ℓ⊗
j=1

ηj
u0 . (9.3.1)

• If g(ω) =
∫ T ′

0 g̃(ωu)du for some g̃ : R → R, then we have

⟨∇ℓg(ω),
ℓ⊗

j=1
ηj⟩ =

∫ T ′

0
∇ℓg̃(ωu) ·

ℓ⊗
j=1

ηj
udu. (9.3.2)

9.3.2 Expectation of the supremum of a random path process

Lemma 9.3.2. Let F (u, s)u≥0,s∈[0,T ] a R-valued random process adapted to the filtration F with
respect to its second variable, such that for every s ∈ [0, T ] and u > T ′, F (u, s) = 0, and
such that ∥F∥∞ ≤ C1 almost surely, ∂1F exists and ∥∂1F∥∞ ≤ C2 almost surely, for some
C1, C2 ∈ R+. and let (Ms)0≤s≤T be a R-valued martingale adapted to F with E⟨M⟩T < ∞. For
r ∈ [0, T ] let us define

φu :=
∫ r

0
F (u, s)dMs, u ≥ 0.

Then there exists a continuous modification φ̃ of φ such that

E sup
u≥0

∣∣φ̃u

∣∣2 ≤ C(T ′)2∥∂1F∥2
∞E⟨M⟩r. (9.3.3)

Proof. For u1, u2 ∈ [0, T ′] we have

E|φu1 − φu2 |2 = E
∣∣∣ ∫ r

0
(F (u1, s) − F (u2, s))dMs

∣∣∣2 = E
∫ r

0
|F (u1, s) − F (u2, s)|2d⟨M⟩s

≤ |u1 − u2|2∥∂1F∥2
∞E⟨M⟩r,

so that using the Kolmogorov continuity theorem (9.6.1), there exists a modification φ̃ of φ
which is almost surely α-Hölder for every α ∈ (0, 1/2), and taking for example α = 1/4 we have

E
[(

sup
u1,u2∈[0,T ′],u1 ̸=u2

|φ̃u1 − φ̃u2 |
|u1 − u2|1/4

)2]
≤ C(T ′)3/2∥∂1F∥2

∞E⟨M⟩r,

where C is an universal constant, so that taking u1 = u and u2 = 0 with φ0 = 0 we obtain

E sup
u≥0

∣∣φ̃u

∣∣2 = E sup
u∈[0,T ′]

∣∣φ̃u

∣∣2 ≤ C(T ′)2∥∂1F∥2
∞E⟨M⟩r.
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9.3. Preliminary results on infinite dimensional paths

Remark 9.3.3. In the following, we will use Lemma 9.3.2 for families of trajectories (φt)t∈[0,T ] of
the form

φt
u =

∫ t

0
F (u, s)dMs or φt

u =
∫ t

0
F (t+ u, s)dMs.

When the assumptions of Lemma 9.3.2 are checked, the bound (9.3.3) is true up to some modi-
fication of φ, i.e. for a family of trajectories (φ̃t

u) such that

∀t ∈ [0, T ], ∀u ≥ 0, P(φt
u = φ̃t

u) = 1 and ∀t ∈ [0, T ], u 7→ φ̃t
u is continuous.

Without loss of generality, each time we use Lemma 9.3.2 we do not mention explicitly the
modification.

9.3.3 A general Itō formula for path-dependent functionals

In this section we prove an extension of the classic Itō formula to processes of the form G(φt),
where G : ΩT ′ → R and where for every t ∈ [0, T ], φt is some Ft-measurable random path.

Theorem 9.3.4. Let us consider the family of random paths (φt
u)t∈[0,T ], u≥0 such that

φt
u = φ0

u +
∫ t

0
Z1(u, s)ds+

∫ t

0
Z2(u, s)dWs, (9.3.4)

where for every u ≥ 0, s 7→ Zi(u, s), i = 1, 2, is an adapted R-valued semi-martingale such that
∂1Zi and ∂2

11Z2 exist almost surely with

E∥Z1∥2
∞ + E∥∂1Z1∥∞ ≤ C, ∥Z2∥∞ + ∥∂1Z2∥∞ + ∥∂2

11Z2∥∞ ≤ C almost surely (9.3.5)

and such that Zi(u, s) = 0 for u > T ′, T ′ ∈ R+. We also assume that φ0 ∈ ΩT ′ ∩ C1 and is
Lipschitz-continuous. Moreover, let G : ΩT ′ → R with bounded pathwise derivatives up to order
3. Then we have almost surely

G(φt) = G(φ0) +
∫ t

0
⟨∇G(φs), Z1(·, s)⟩ds+

∫ t

0
⟨∇G(φs), Z2(·, s)⟩dWs

+ 1
2

∫ t

0
⟨∇2G(φs), Z2(·, s)⊗2⟩ds. (9.3.6)

Remark 9.3.5. We highlight the fact that in (9.3.4), the values of Zi(u, s) cannot depend on t.
For example, if we consider the SVE

φt
u = φ0

u +
∫ t

0
K2(t+ u, s)σ(As)dWs

for some adapted semi-martingale A, then we need to write φt
u as

φt
u = φ0

u +
∫ t

0
K2(s+ u, s)σ(As)dWs +

∫ t

0

( ∫ s

0
∂1K2(s+ u, v)σ(Av)dWv

)
ds.

Proof. We first remark that if G only depends on a finite number of times u1, . . . , un ∈ R+, i.e.
if we have

∀ω ∈ ΩT ′ , G(ω) = G̃(ωu1 , . . . , ωun), G̃ ∈ C2(Rn,R),

then we have

∀η ∈ Ω, ⟨∇G(ω), η⟩ =
n∑

i=1
∂iG̃(ωu1 , . . . , ωun)ηui ,
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∀η1, η2 ∈ Ω, ⟨∇2G(ω), η1 ⊗ η2⟩ =
∑

1≤i,j≤n

∂ijG̃(ωu1 , . . . , ωun)η1
ui
η2

uj
,

and then (9.3.6) directly comes from the classic Itō formula.

Then, let us define for n ∈ N the regular subdivision of [0, T ′]: un
i = iT ′/n, 0 ≤ i ≤ n and

for ω ∈ ΩT ′ we define ωn as the affine interpolation of ω on the subdivision (un
i )i i.e. ωn is

equal to the affine interpolation on [0, T ′] and then ωn and ω are both equal to 0 on [T ′,∞);
we also define Gn as for every ω ∈ ΩT ′ , Gn(ω) = G(ωn). Then for every ω ∈ Ω2T we have
Gn(ω) = G̃n(ωu1 , . . . , ωun) where G̃n : Rn → R is the composition of the affine interpolation
L n : Rn → Ω2T , which is a bounded linear operator, and of G, so is C2 and then (9.3.6) is true
for Gn. Moreover for every ω, η ∈ ΩT ′ such that ω is Lipschitz-continuous we have

|G(ω) −Gn(ω)| = |G(ω) −G(ωn)| ≤ ∥∇G∥∞∥ω − ωn∥∞ ≤ C∥∇G∥∞[ω]Lip/n.

Moreover, remarking that the affine interpolation is a bounded linear operator, we get that Gn

is also differentiable with
⟨∇Gn(ω), η⟩ = ⟨∇G(ωn), ηn⟩

so that∣∣⟨∇G(ω), η⟩ − ⟨∇Gn(ω), η⟩
∣∣ ≤ ∥∇2G∥∞∥ω − ωn∥∞∥η∥∞ + ∥∇G∥∞∥ω∥∞∥η − ηn∥∞. (9.3.7)

Moreover for η1, η2 ∈ ΩT ′ we have

⟨∇2Gn(ω), η1 ⊗ η2⟩ = ⟨∇2G(ωn), (η1)n ⊗ (η2)n⟩

so that ∣∣⟨∇2G(ω), η1 ⊗ η2⟩ − ⟨∇2Gn(ω), η1 ⊗ η2⟩
∣∣ ≤ ∥∇3G∥∞∥ω − ωn∥∞∥η1∥∞∥η2∥∞

+ ∥∇2G∥∞
(
∥ω∥∞∥η1 − (η1)n∥∞∥η2∥∞ + ∥ω∥∞∥η1∥∞∥η2 − (η2)n∥∞

)
(9.3.8)

Writing (9.3.6) with Gn gives

Gn(φt) = Gn(φ0) +
∫ t

0
⟨∇G((φs)n), Zn

1 (·, s)⟩ds+
∫ t

0
⟨∇G((φs)n), Zn

2 (·, s)⟩dWs

+ 1
2

∫ t

0
⟨∇2G((φs)n), Zn

2 (·, s)⊗2⟩ds, (9.3.9)

and we have

E|Gn(φt) −G(φt)|2 ≤ 2∥G∥∞E|Gn(φt) −G(φt)|2 ≤ C∥G∥∞∥∇G∥∞E[φt]Lipn
−1

with φt being C1 with

φ̇t
u = φ̇t

0 +
∫ t

0
∂1Z1(u, s)ds+

∫ t

0
∂1Z2(u, s)dWs,

where the interchange is ensured by the stochastic Fubini theorem. But following Lemma 9.3.2
with assumption (9.3.5), E[φt]Lip < ∞, so that Gn(φt) converges to G(φt) in L2. We proceed
the same way for Gn(φ0).

Moreover, we have

E
∣∣∣ ∫ t

0
⟨∇G((φs)n), Zn

1 (·, s)⟩ds−
∫ t

0
⟨∇G(φs), Z1(·, s)⟩ds

∣∣∣
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≤
∫ t

0
E|⟨∇G(φs), (Zn

1 (·, s) − Z1(·, s))⟩|ds+
∫ t

0
E|⟨∇G((φs)n) − ∇G(φs), Zn

1 (·, s))⟩|ds

≤ C∥∇G∥∞E∥∂1Z1∥∞n
−1 + C∥∇2G∥∞

∫ t

0
E
[
[φs]Lip∥Z1∥∞

]
ds n−1

≤ C∥∇G∥∞E∥∂1Z1∥∞n
−1 + C∥∇2G∥∞

∫ t

0

(
E[φs]2LipE∥Z1∥2

∞
)1/2

ds n−1 −→
n→∞

0,

where we used (9.3.7) and that E[φs]2Lip ≤ C with Lemma 9.3.2, where C does not depend on s.
Furthermore, following (9.3.7) we have

E
∣∣∣ ∫ t

0
⟨∇G((φs)n), Zn

2 (·, s)⟩dWs −
∫ t

0
⟨∇G(φs), Z2(·, s)⟩dWs

∣∣∣2
=
∫ t

0
E
∣∣⟨∇G((φs)n), Zn

2 (·, s)⟩ − ⟨∇G(φs), Z2(·, s)⟩
∣∣2ds

≤ 2∥∇G∥∞∥Z2∥∞

∫ t

0
E
∣∣⟨∇G((φs)n), Zn

2 (·, s)⟩ − ⟨∇G(φs), Z2(·, s)⟩
∣∣ds

≤ 2C∥∇G∥∞∥Z2∥∞
(
∥∇2G∥∞n

−1∥Z2∥∞

∫ t

0
E[φs]Lipds+ ∥∇G∥∞n

−1∥∂1Z2∥∞

∫ t

0
E∥φs∥∞ds

)
(9.3.10)

and using Lemma 9.3.2, we have E∥φs∥∞ ≤ C and E[φs]Lip ≤ C where C does not depend on
s, so that the quantity in (9.3.10) converges to 0 as n → ∞.

Last, using (9.3.8) we get

E
∣∣∣∣∫ t

0
⟨∇2G((φs)n), Zn

2 (·, s)⊗2⟩ds−
∫ t

0
⟨∇2G(φs), Z2(·, s)⊗2⟩ds

∣∣∣∣
≤ C∥∇3G∥∞n

−1∥Z2∥2
∞

∫ t

0
E[φs]Lipds+ C∥∇2G∥∞∥Z2∥∞∥∂1Z2∥∞n

−1
∫ t

0
E[∥φs∥∞]ds

−→
n→∞

0.

9.4 Proof of Theorem 9.2.2

In this section, we only give the full proof for (9.2.5). The proof of (9.2.6) is similar, as explained
in Section 9.4.5.

9.4.1 Definition of the infinite dimensional semi-group and domino strategy

We define the infinite dimensional semi-group that we use for the domino strategy. We do not
apply the domino strategy on X directly; instead we define an auxiliary process Y such that X
can be induced from Y , as follows. Let us consider the following family of processes:

Yt(u) =
∫ t

0
K1(t+ u, s)b(Xs)ds+

∫ t

0
K2(t+ u, s)σ(Xs)dWs, u ≥ 0, t ∈ [0, T ]. (9.4.1)

Following Lemma 9.3.2, for every u ≥ 0 and t ∈ [0, T ], Yt(u) is well defined and Yt : u 7→ Yt(u) is
continuous. Moreover, for every t ∈ [0, T ], Yt is Ft-measurable (but the process (Yt(u))u≥0 is not
adapted w.r.t. u) and using Lemma 9.3.2 again, Yt is almost surely C1 and Lipschitz-continuous
with

Ẏt(u) =
∫ t

0
∂1K1(t+ u, s)b(Xs)ds+

∫ t

0
∂1K2(t+ u, s)σ(Xs)dWs, (9.4.2)
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where the interchange is ensured by the stochastic Fubini theorem. We also note that

Yt(0) = Xt −X0, t ∈ [0, T ]. (9.4.3)

Then we have

Xv = X0 + Yt(v − t) +
∫ v

t
K1(v, s)b(Xs)ds+

∫ v

t
K2(v, s)σ(Xs)dWs, (9.4.4)

Yv(u) = Yt(v − t+ u) +
∫ v

t
K1(v + u, s)b(Xs)ds+

∫ v

t
K2(v + u, s)σ(Xs)dWs, (9.4.5)

0 ≤ t ≤ v ≤ T, u ≥ 0.

This leads us to define the following non-homogeneous semi-group Pr,t for t ∈ [0, T ] and r ∈
[0, T − t] on Ω2T :

Pr,t(ω)u = ωr+u +
∫ t+r

t
K1(t+ r + u, s)b(X̃s)ds+

∫ t+r

t
K2(t+ r + u, s)σ(X̃s)dWs, u ≥ 0,

(9.4.6)

where (X̃s)s∈[t,t+r] is the solution of the following SVE:

X̃v = X0 + ωv−t +
∫ v

t
K1(v, s)b(X̃s)ds+

∫ v

t
K2(v, s)σ(X̃s)dWs (9.4.7)

and where we omit here the dependency of X̃ in t and in ω. Since Ki(u, s) = 0 for u ≥ 2T , we
have indeed Pr,t : Ω2T → Ω2T . Then following (9.4.4) and (9.4.5) we have

Pr,t(Yt) = Yt+r. (9.4.8)

Likewise, we define

Ȳt(u) =
∫ t

0
K1(t+ u, s)b(X̄

¯
s)ds+

∫ t

0
K2(t+ u, s)σ(X̄

¯
s)dWs, u ≥ 0, t ∈ [0, T ] (9.4.9)

as well as the semi-group corresponding to the Euler-Maruyama scheme (9.2.3) for k ∈ {0, . . . , N−
1} and r ∈ [0, T − tk]:

P̄r,tk
(ω)u = ωr+u +

∫ tk+r

tk

K1(tk + r + u, s)b(X0 + ω0)ds+
∫ tk+r

tk

K2(tk + r + u, s)σ(X0 + ω0)dWs,

(9.4.10)
u ≥ 0,

so that we have
Ȳt(0) = X̄t −X0, t ∈ [0, T ] (9.4.11)

and for r ∈ [0, h]:

P̄r,tk
(Ȳtk

)u = Ȳtk
(r + u) +

∫ tk+r

tk

K1(tk + r + u, s)b(X0 + Ȳtk
(0))ds

+
∫ tk+r

tk

K2(tk + r + u, s)σ(X0 + Ȳtk
(0))dWs

= Ȳtk+r(u).
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By a slight abuse of notation, we use the notations P and P̄ also to denote the infinitesimal
generators such that for every g : Ω2T → R, ω ∈ Ω2T , t ∈ [0, T ] and r ∈ [0, T − t] we have

Pr,tg(ω) := Eg(Pr,t(ω)), P̄r,tg(ω) := Eg(P̄r,t(ω)).

For general semi-groups Q1, . . . , Qr we denote their composition as
r∏

k=1
Qk := Q1 ◦ . . . ◦Qr.

Then we obtain XT = YT (0)+X0 = PT,0(0̃)0 +X0 and X̄T =
(∏N−1

k=0 P̄h,tN−1−k
(0̃)
)

0 +X0, where
0̃ denotes the path on R+ constant to 0.

Now for f : R → R being C̃5
b we define

f̃ : ω ∈ Ω2T 7→ f(ω0 +X0). (9.4.12)

Following Remark 9.3.1, we also have f̃ ∈ C̃5
b . Moreover we can write

Ef(X̄T ) = Ef
((N−1∏

k=0
P̄h,tN−1−k

(0̃)
)

0 +X0
)

= Ef̃
(N−1∏

k=0
P̄h,tN−1−k

(0̃)
)

=
N−1∏
k=0

P̄h,tk
f̃(0̃).

We highlight that in our notations the order of the semi-groups is reversed whether ∏k P̄h,tk
is

applied to some ω ∈ Ω2T or to some g : Ω2T → R. We then rewrite the weak error as

Ef(X̄T ) − Ef(XT ) =
N−1∏
k=0

P̄h,tk
f̃(0̃) −

N−1∏
k=0

Ph,tk
f̃(0̃)

=
N−1∑
k=0

Pkh,0 ◦ (P̄h,tk
− Ph,tk

) ◦

 N−1∏
j=k+1

P̄h,tj

 f̃(0̃), (9.4.13)

where we used a telescopic sum.

9.4.2 Weak error in small time

In this section, we give a bound on the weak error in small time for the one-step Euler-Maruyama
scheme (P̄h,tk

− Ph,tk
)g(ω), where g : Ω2T → R is some smooth functional and ω ∈ Ω2T and

ω ∈ C2.

Proposition 9.4.1. Let ω ∈ Ω2T and be C2, g : Ω2T → R with bounded (pathwise) derivatives
up to order 5 and k ∈ {0, . . . , N − 1}. Then we have∣∣(P̄h,tk

− Ph,tk
)g(ω)

∣∣ ≤ C(1 + [ω]Lip)h2, (9.4.14)

where the constant C does not depend on k nor ω nor h.

Proof. We can assume that ω is Lipschitz-continuous without loss of generality.
• Let us consider (X̃s)s∈[tk,tk+h] as defined in (9.4.7). Then for v ∈ [tk, tk+1] and ε ∈

[0, tk+1 − v] we have

X̃v+ε − X̃v = ωv+ε−tk
−ωv−tk

+
∫ v

tk

(K1(v + ε, s)−K1(v, s))b(X̃s)ds+
∫ v+ε

v
K1(v + ε, s)b(X̃s)ds

+
∫ v

tk

(K2(v + ε, s) −K2(v, s))σ(X̃s)dWs +
∫ v+ε

v
K2(v + ε, s)σ(X̃s)dWs
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so that

dX̃v = ω̇v−tk
dv +K1(v, v)b(X̃v)dv +K2(v, v)σ(X̃v)dWv

+
(∫ v

tk

∂1K1(v, s)b(X̃s)ds+
∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

)
dv.

It follows from the classic Itō formula that for ψ : R → R and v ≥ tk we have

dψ(X̃v) = ∇ψ(X̃v)(K1(v, v)b(X̃v)dv + ω̇v−tk
dv +K2(v, v)σ(X̃v)dWv)

+ 1
2∇2ψ(X̃v)K2

2 (v, v)σ2(X̃v)dv

+ ∇ψ(X̃v)
(∫ v

tk

∂1K1(v, s)b(X̃s)ds+
∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

)
dv (9.4.15)

In particular we remark that for r ∈ [0, h] and if ψ is C2 with bounded derivatives,
∣∣Eψ(X̃tk+r) − ψ(X0 + ω0)

∣∣ ≤ ∥∇ψ∥∞(∥K1∥∞∥b∥∞r + [ω]Lip) + 1
2∥∇2ψ∥∞∥K2∥2

∞∥σ∥2
∞r

+ ∥∇ψ∥∞∥∂1K1∥∞∥b∥∞
r2

2 + ∥∇ψ∥∞∥∂1K2∥∞∥σ∥∞
2r3/2

3
≤ C(1 + [ω]Lip)r, (9.4.16)

where we bound the last term as follows:∣∣∣E ∫ tk+r

tk

∇ψ(X̃v)
(∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

)
dv
∣∣∣

≤ ∥∇ψ∥∞

∫ tk+r

tk

E
∣∣∣ ∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

∣∣∣dv
≤ ∥∇ψ∥∞∥∂1K2∥∞∥σ∥∞

∫ tk+r

tk

(v − tk)1/2dv.

• On the other side for r ≥ 0 we have

Pr+ε,tk
(ω)u − Pr,tk

(ω)u = ωr+ε+u − ωr+u +
∫ tk+r+ε

tk+r
K1(tk + r + ε+ u, s)b(X̃s)ds

+
∫ tk+r+ε

tk+r
K2(tk + r + ε+ u, s)σ(X̃s)dWs

+
∫ tk+r

tk

(K1(tk + r + ε+ u, s) −K1(tk + r + u, s))b(X̃s)ds

+
∫ tk+r

tk

(K2(tk + r + ε+ u, s) −K2(tk + r + u, s))σ(X̃s)dWs

so that we can write

dPr,tk
(ω)u = ω̇r+udr+K1(tk + r + u, tk + r)b(X̃tk+r)dr+K2(tk + r + u, tk + r)σ(X̃tk+r)dWtk+r

+
(∫ tk+r

tk

∂1K1(tk + r + u, s)b(X̃s)ds+
∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
dr

so that for G : Ω2T → R being C̃3
b and using Theorem 9.3.4 (and checking the assumption (9.3.5)

with Lemma 9.3.2) we obtain

dG(Pr,tk
(ω)) = ⟨∇G(Pr,tk

(ω)), ω̇r+·⟩dr + ⟨∇G(Pr,tk
(ω)), (K1(tk + r + u, tk + r))u≥0⟩b(X̃tk+r)dr
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+ ⟨∇G(Pr,tk
(ω)), (K2(tk + r + u, tk + r))u≥0⟩σ(X̃tk+r)dWtk+r

+ 1
2⟨∇2G(Pr,tk

(ω)), (K2(tk + r + u, tk + r))⊗2
u≥0⟩σ2(X̃tk+r)dr

+
〈
∇G(Pr,tk

(ω)),
(∫ tk+r

tk

∂1K1(tk + r + u, s)b(X̃s)ds

+
∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

〉
dr. (9.4.17)

In particular, we remark that

∣∣EG(Pr,tk
(ω)) −G(ω)

∣∣ ≤ ∥∇G∥∞[ω]Lipr + ∥∇G∥∞∥K1∥∞∥b∥∞r + 1
2∥∇2G∥∞∥K2∥2

∞∥σ∥2
∞r

+ ∥∇G∥∞∥∂1K1∥∞∥b∥∞
r2

2 + C∥∇G∥∞∥σ∥∞∥∂2
11K2∥2

∞
2r3/2

3 ,

≤ C(1 + [ω]Lip)r. (9.4.18)

where we used Lemma 9.3.2 to bound the last term.
Thus for g : Ω2T → R being C5

b we have

Eg(Ph,tk
(ω)) − g(ω)

= E
[ ∫ h

0
⟨∇g(Pr,tk

(ω)), ω̇r+·⟩dr + 1
2

∫ h

0
⟨∇2g(Pr,tk

(ω)), (K2(tk + r + u, tk + r))⊗2
u≥0⟩σ2(X̃tk+r)dr

+
∫ h

0
⟨∇g(Pr,tk

(ω)), (K1(tk + r + u, tk + r))u≥0⟩b(X̃tk+r)dr

+
∫ h

0

〈
∇g(Pr,tk

(ω)),
(∫ tk+r

tk

∂1K1(tk + r + u, s)b(X̃s)ds

+
∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

〉
dr
]

=:
5∑

i=1
Ii.

Likewise, we obtain a similar formula on Eg(P̄h,tk
(ω)) − g(ω), replacing b by b̄ and σ by σ̄, and

we write

Eg(P̄h,tk
(ω)) − g(ω) =:

5∑
i=1

Īi.

We shall now inspect the quantity Ii − Īi for every i = 1, . . . , 5.

• For fixed r ∈ [0, h], let Gr : η 7→ ⟨∇g(η), ω̇r+·⟩. Then Gr ∈ C3
b and we have

⟨∇Gr(η), τ⟩ = ⟨∇2g(η), ω̇r+· ⊗ τ⟩, ⟨∇2Gr(η), τ1 ⊗ τ2⟩ = ⟨∇3g(η), ω̇r+· ⊗ τ1 ⊗ τ2⟩.

Applying the Itō formula (9.4.17) again to α 7→ EGr(Pα,tk
(ω)) for α ∈ [0, r] and with the

estimate (9.4.18), we obtain

|EGr(Pr,tk
(ω)) −Gr(ω)| ≤ Cr(1 + [ω]Lip).

Similarly, we have ∣∣∣EGr(P̄r,tk
(ω)) −Gr(ω)

∣∣∣ ≤ Cr(1 + [ω]Lip),
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and then
∣∣I1−Ī1

∣∣ =
∣∣E[ ∫ h

0
Gr(Pr,tk

(ω))dr−
∫ h

0
Gr(P̄h,tk

(ω))dr
]∣∣ ≤ C(1+[ω]Lip)

∫ h

0
rdr ≤ C(1+[ω]Lip)h2.

• For fixed r ∈ [0, h], let

Gr : η 7→ 1
2⟨∇2g(η), (K2(tk + r + u, tk + r))⊗2

u≥0⟩.

Then Gr ∈ C3
b and we have

⟨∇Gr(η), τ⟩ = 1
2⟨∇3g(η), (K2(tk + r + u, tk + r))⊗2

u≥0 ⊗ τ⟩,

⟨∇2Gr(η), τ1 ⊗ τ2⟩ = 1
2⟨∇4g(η), (K2(tk + r + u, tk + r))⊗2

u≥0 ⊗ τ1 ⊗ τ2⟩.

Applying the Itō formulae we obtained in (9.4.17) and in (9.4.15) and the classic Itō formula for
a product, we get

E[Gr(Pr,tk
(ω))σ2(X̃tk+r)] −Gr(ω)σ2(X0 + ω0)

= E
[ ∫ r

0
d
(
Gr(Pα,tk

(ω))
)
σ2(X̃tk+α) +Gr(Pα,tk

(ω))d
(
σ2(X̃tk+α)

)
+ d⟨Gr(P·,tk

(ω)), σ2(X̃tk+·)⟩α
]

=: A1 +A2 +A3,

but σ2 is bounded and following (9.4.18), we obtain that A1 ≤ C(1+ [ω]Lip)r; the same way and
since Gr is bounded (independently on r) and following (9.4.16) we have A2 ≤ C(1 + [ω]Lip)r.
Moreover we have

d⟨Gr(P·,tk
(ω)), σ2(X̃tk+·)⟩α = ∇σ2(X̃tk+α)K2(tk + α, tk + α)σ2(X̃tk+α)

· ⟨∇Gr(Pα,tk
(ω)), (K2(tk + α+ u, tk + α))u≥0⟩dα

so that same way we get A3 ≤ Cr. Thus we finally obtain∣∣EGr(Pr,tk
(ω))σ2(X̃tk+r) −Gr(ω)σ2(X0 + ω0)

∣∣ ≤ C(1 + [ω]Lip)r. (9.4.19)

The same way we have∣∣EGr(P̄r,tk
(ω))σ2(X0 + ω0) −Gr(ω)σ2(X0 + ω0)

∣∣ ≤ C(1 + [ω]Lip)r,

so that
∣∣I2 − Ī2

∣∣ =
∣∣E[ ∫ h

0
(Gr(Pr,tk

(ω))σ2(X̃tk+r) −Gr(P̄r,tk
(ω))σ2(X0 + ω0))dr

]∣∣ ≤ C(1 + [ω]Lip)h2.

• For r ∈ [0, h] and u ≥ 0 let us define

φr
u :=

∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

and let us write

dφr
u = ∂1K2(tk + r + u, tk + r)σ(X̃tk+r)dWtk+r +

(∫ tk+r

tk

∂2
11K2(tk + r + u, s)σ(X̃s)dWs

)
dr.

(9.4.20)
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Moreover, using Lemma 9.3.2, we have E∥φr∥2
∞ ≤ C. We also define

G : (η1, η2) ∈ Ω2
2T 7→ ⟨∇g(η1), η2⟩.

Then G ∈ C3
b with

⟨∇G(η1, η2), (τ1, τ2)⟩ = ⟨∇2g(η1), τ1 ⊗ η2⟩ + ⟨∇g(η1), τ2⟩,
⟨∇2G(η1, η2), (τ1, τ2)⊗2⟩ = ⟨∇3g(η1), (τ1)⊗2 ⊗ η2⟩ + 2⟨∇2g(η1), τ1 ⊗ τ2⟩.

Using (9.4.17) and (9.4.20), for every r ∈ [0, h] we have

⟨∇g(Pr,tk
(ω)),

(∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

⟩

=
∫ r

0

[
⟨∇2g(Pα,tk

(ω)), ω̇r+· ⊗ φα⟩

+ ⟨∇2g(Pα,tk
(ω)), (K1(tk + α+ u, tk + α))u≥0 ⊗ φα⟩b(X̃tk+α)

+ 1
2⟨∇3g(Pα,tk

(ω)), (K2(tk + α+ u, tk + u))⊗2
u≥0 ⊗ φα⟩σ2(X̃tk+α)

+ ⟨∇2g(Pα,tk
(ω)),

(∫ tk+α

tk

∂1K1(tk + α+ u, s)b(X̃s)ds

+
∫ tk+α

tk

∂1K2(tk + α+ u, s)σ(X̃s)dWs

)
u≥0

⊗ φα⟩
]
dα

+
∫ r

0
⟨∇2g(Pα,tk

(ω)), (K2(tk + α+ u, tk + u))u≥0 ⊗ φα⟩σ(X̃tk+α)dWtk+α

+
∫ r

0

[
⟨∇g(Pα,tk

(ω)),
(∫ tk+α

tk

∂2
11K2(tk + α+ u, s)σ(X̃s)dWs

)
u≥0

⟩dα

+
∫ r

0
⟨∇g(Pα,tk

(ω)), (∂1K2(tk + α+ u, tk + α))u≥0⟩σ(X̃tk+α)dWtk+α

+
∫ r

0
⟨∇2g(Pα,tk

(ω)), (K2(tk + α+ u, tk + u))u≥0 ⊗ (∂1K2(tk + α+ u, tk + α))u≥0⟩

· σ2(X̃tk+α)dα

so that∣∣∣E⟨∇g(Pr,tk
(ω)),

(∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

⟩
∣∣∣ ≤ C(1 + [ω]Lip)r.

The same way, we obtain∣∣∣E⟨∇g(P̄r,tk
(ω)),

(∫ tk+r

tk

∂1K2(tk + r + u, s)σ̄(X0 + ω(0))dWs

)
u≥0

⟩
∣∣∣ ≤ C(1 + [ω]Lip)r

and then
|I5 − Ī5| ≤ C(1 + [ω]Lip)h2.

• The arguments to prove that

|I3 − Ī3| + |I4 − Ī4| ≤ C(1 + [ω]Lip)h2

are the same or more simple.
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9.4.3 Proof that the derivatives of g are bounded

In this section, we prove that if we choose g : Ω → R as in (9.4.13), then g has bounded
derivatives up to order 5 so that we can apply Proposition 9.4.1 to g.

Lemma 9.4.2. Let k ∈ {0, . . . , N − 1}, let us define

g(ω) :=
N−1∏
j=k

P̄h,tj
f̃(ω) = E

f((N−1∏
j=k

P̄h,tN−1+k−j
· ω)0

) ,
where f̃ is defined in (9.4.12). Then g is five times differentiable with

∥∇ℓg∥∞ ≤ C, ℓ ∈ {1, . . . , 5}.

Proof. We can rewrite

g(ω) = E
[
f(ωT −tk

+
∫ T

tk

K1(T, s)b̄(X̂ω
s )ds+

∫ T

tk

K2(T, s)σ̄(X̂ω
s )dWs)

]

where X̂ω follows the piecewise SVE:

X̂ω
v = X0 + ωv−tk

+
j∑

ℓ=k

b(X̂ω
tℓ

)
∫ tℓ+1∧v

tℓ

K1(v, s)ds+
j∑

ℓ=k

σ(X̂ω
tℓ

)
∫ tℓ+1∧v

tℓ

K2(v, s)dWs,

v ∈ [tj , tj+1], j ∈ {k, . . . , N − 1}.

The process X̂ω depends on k, but we omit this dependency in the notation without ambiguity.
We define the tangent process (Zω

v )v∈[T −tk,T ] as the process of the linear operators on Ω2T by
induction as:

⟨Zω
v , η⟩ = ηv−tk

+
j∑

ℓ=k

∇b(X̂ω
tℓ

) · ⟨Zω
tℓ
, η⟩

∫ tℓ+1∧v

tℓ

K1(v, s)ds (9.4.21)

+
j∑

ℓ=k

∇σ(X̂ω
tℓ

) · ⟨Zω
tℓ
, η⟩

∫ tℓ+1∧v

tℓ

K2(v, s)dWs, v ∈ [tj , tj+1], j ∈ {k, . . . , N − 1},

so that for every fixed v, we have Zω
v = ∇X̂ω

v , where ∇ is taken with respect to ω. We now give
a bound on ∥Zω

v ∥. For every η ∈ Ω2T and v ∈ [Tk, T ] we have

⟨Zω
v , η⟩ = ηv−tk

+
∫ v

tk

K1(v, s)∇b̄(X̂ω
s )⟨Zω

¯
s , η⟩ds+

∫ v

tk

K2(v, s)∇σ̄(X̂ω
s )⟨Zω

¯
s , η⟩dWs.

Let us denote
φv := sup

s∈[tk,v]
E∥Zω

s ∥2, v ∈ [tk, T ]

and we have (using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2)):

φv ≤ 3 + 3
∫ v

tk

(T∥K1∥2
∞∥∇b∥2

∞ + ∥K2∥2
∞∥∇σ∥2

∞)φsds

so that using the Gronwall inequality:

φv ≤ 3 exp
(
(v − tk)(T∥K1∥2

∞∥∇b∥2
∞ + ∥K2∥2

∞∥∇σ∥2
∞)
)

≤ C.
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Then we have

⟨∇g(ω), η⟩ = E

∇f
(
(
N−1∏
j=k

P̄h,tN−1+k−j
· ω)0

)
·
(
ηT −tk

+
∫ T

tk

K1(T, s)∇b̄(X̂ω
s )⟨Zω

¯
s , η⟩ds

+
∫ T

tk

K2(T, s)∇σ̄(X̂ω
s )⟨Zω

¯
s , η⟩dWs

)]

implying

∥∇g∥∞ ≤ ∥∇f∥∞
(
1 +

∫ T

tk

∥K1∥∞∥∇b∥∞φ
1/2
s ds+ (

∫ T

tk

∥K2∥2
∞∥∇σ∥2

∞φsds)1/2
)

thus implying that ∇g is bounded (independently of k and N).

We prove that the derivatives of g are bounded up to order 5 by following the same method.

9.4.4 Conclusion: proof of Theorem 9.2.2

Proof. Let us consider (9.4.13) again and for k ∈ {0, . . . , N − 1} we set ωk := Pkh,0(0̃) and

gk+1 :=
N−1∏

j=k+1
P̄h,tj

f̃ .

Then following Lemma 9.4.2, we have that gk+1 ∈ C̃5
b . On the other side, we have that ωk is C2

with

ω̇k
u =

∫ tk

0
∂1K1(tk + u, s)b(X̃s)ds+

∫ tk

0
∂1K2(tk + u, s)σ(X̃s)dWs,

ω̈k
u =

∫ tk

0
∂2

11K1(tk + u, s)b(X̃s)ds+
∫ tk

0
∂2

11K2(tk + u, s)σ(X̃s)dWs

where the interchange is ensured by the stochastic Fubini theorem, and following Lemma 9.3.2,
we obtain that E[ωk]Lip ≤ C. Then applying Proposition 9.4.1 with g = gk+1 and ω = ωk we
get

Pkh,0 ◦ (P̄h,tk
− Ph,tk

) ◦

 n−1∏
j=k+1

P̄h,tj

 f̃(0̃) ≤ Ch2.

Summing over k ∈ {0, . . . , N − 1} yields

E[f(X̄T )] − E[f(XT )] = O

( 1
N

)
.

9.4.5 Proof of weak error for the scheme with discretization of the kernels

The proof of (9.2.6) for the scheme ⇀X defined in (9.2.4) is similar to the proof for (9.2.5). We
define the associated semi-group as

⇀Pr,tk
(ω)u = ωr+u +

∫ tk+r

tk

K1(tk + r + u, tk)b(X0 + ω0)ds
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+
∫ tk+r

tk

K2(tk + r + u, tk)σ(X0 + ω0)dWs, u ≥ 0. (9.4.22)

The estimate for the weak error in small time (9.4.14) also holds for |(⇀Ph,tk
−Ph,tk

)g(ω)|; the only
necessary adaptation in the proof is for the estimate for I2 and I3. Indeed, instead of (9.4.19)
we need to prove

∣∣EGr(Pr,tk
(ω))σ2(X̃tk+r) − 1

2⟨∇2g(ω),K2(tk + r + ·, tk)⊗2⟩σ2(X0 + ω0)
∣∣ ≤ C(1 + [ω]Lip)r.

But we have
α 7→ ⟨∇2g(ω),K2(tk + r + ·, tk + α)⊗2⟩

is C1 with derivative

α 7→ 2⟨∇2g(ω),K2(tk + r + ·, tk) ⊗ ∂2K2(tk + r + ·, tk)⟩

and since g, K2, ∂2K2 and σ are bounded we have

∣∣EGr(Pr,tk
(ω))σ2(X̃tk+r) − 1

2⟨∇2g(ω),K2(tk + r + ·, tk)⊗2⟩σ2(X0 + ω0)
∣∣

≤
∣∣EGr(Pr,tk

(ω))σ2(X̃tk+r) −Gr(ω)σ2(X0 + ω0)
∣∣

+
∣∣EGr(ω)σ2(X0 + ω0) − 1

2⟨∇2g(ω),K2(tk + r + ·, tk)⊗2⟩σ2(X0 + ω0)
∣∣

≤ C(1 + [ω]Lip)r.

The argument for the estimate of I3 is similar.
Having proved the estimate for the weak error in small time, the conclusion of the proof is

the same as for X̄.

9.5 Simulations

In order to numerically check the convergence rate obtained in Theorem 9.2.2, we empirically
measure the weak convergence rate in the case of a stochastic volatility model where the volatility
follows some Volterra equation. We consider the following Volterra version of the Stein-Stein
model [SS91] where the analogous rough version was introduced in [AJ22]:

dSt = StVtdBt, S0 > 0,

Vt = V0 + g0(t) + κ

∫ t

0
K(t− s)Vsds+ ν

∫ t

0
K(t− s)dWs

(9.5.1)

where the asset price process S and the square volatility process V take their values in R, the
function g0 : R+ → R is deterministic and continuous, the processes B and W are standard
Brownian motions with correlation ρ ∈ [−1, 1] and the non-singular kernel K is given by

K(t) = A1(A2 + t)−1/4,

with A1, A2 > 0. The process (St, Vt)⊤ in (9.5.1) is a special case of the Volterra equation
(9.2.1) with 2 × 2 matrix kernels

K1(t, s) = K2(t, s) =
(

1 0
0 K(t− s)

)
.
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9.6. Appendix
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Figure 9.1: Example of trajectory of the asset price and the square volatility processes following
the SVE (9.5.1).

We consider the payoff function given by the Call option

f(x) = (x− K)+

with strike K ≥ 0.
We simulate (⇀ST ,

⇀VT ) by discretizing the kernel K using weights matching the second mo-
ment, see [Gas23, Section 3] and we plot Ef(⇀S⌊βN⌋

T ) − Ef(⇀SN
T ) for some β ∈ (1, 2] and for

different values of N , where N is the number of steps in the Euler-Maruyama scheme of the
SVE. If Ef(⇀SN

T ) = Ef(ST ) +O(1/N), then we should also have

Ef(⇀S⌊βN⌋
T ) − Ef(⇀SN

T ) = O(1/N).

An example of trajectory is given in Figure 9.1 and the results are given in Figure 9.2 with the
following parameters:

T = 1, S0 = 1, K = 1, κ = 0.01, X0 = 0.1, ρ = −0.7, ν = 0.05, A1 = 0.3, A2 = 0.02, β = 1.5,
g0 : t 7→ (4θ)/(3A1)t3/4, θ = 0.01.

We empirically obtain a convergence rate for the weak error which is approximatively −1, thus
confirming the results in Theorem 9.2.2.
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9.6 Appendix
We use the following version of the Kolmogorov continuity theorem, giving the precise upper
bound constant.

Theorem 9.6.1 (Kolmogorov continuity theorem). Let (Xt)t∈[0,T ] be a Rd-valued random pro-
cess and assume that for some p, ϵ > 0,

E[|Xt −Xs|p] ≤ C0|t− s|1+ε, t, s ∈ [0, T ].
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Figure 9.2: Simulation of (9.5.1) and weak error in log-log scale. We give in red the 95%
confidence intervals where the number of trajectories is 512 × 1024 × 2000 for each value of N .

Then there exists a modification X̃ of X which is α-Hölder continuous for every α ∈ (0, ε/p)
and with

E
[(

sup
t,s∈[0,T ], t̸=s

|X̃t − X̃s|
|t− s|α

)p]
≤ C0

(
21+α

1 − 2−α

)p
T 1+ε−αp

1 − 2−(ε−αp) .

Proof. We refer to the proof of [LG16, Theorem 2.9, Lemma 2.10], with an immediate adaptation
if we do not assume T = 1.
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Chapter 10
Simulation of Reflected Brownian motion on
two dimensional wedges

This chapter corresponds to the article [BKH23] published in Stochastic Processes
and their Applications as a joint work with Arturo Kohatsu-Higa.

Abstract

We study a correlated Brownian motion in two dimensions, which is reflected,
stopped or killed in a wedge represented as the intersection of two half spaces.
First, we provide explicit density formulas, hinted by the method of images. These
explicit expressions rely on infinite oscillating sums of Bessel functions and may
demand computationally costly procedures.
We propose suitable recursive algorithms for the simulation of the laws of reflected
and stopped Brownian motion which are based on generalizations of the reflection
principle in two dimensions. We study and give bounds for the complexity of the
proposed algorithms.

Keywords– Reflected Brownian motion, Wedge, Hitting times, Reflection principle,
Method of images, Monte Carlo simulation.

10.1 Introduction
The objective of the present article is to provide exact formulas and algorithms for the simulation
of a normally reflected two-dimensional Brownian motion starting at x0 ∈ R2.

The reflected process is denoted by X ≡ (Xt)t∈[0,T ] and the domain of reflection is a wedge
D, i.e. a subset of R2 delimited by two (non parallel) lines, so as to give Monte Carlo methods for
the estimation of Ex0 [f(XT )], where f : D → R is a measurable function such that f(XT ) ∈ L1

and T > 0 is the finite time horizon. Our first goal is to obtain an explicit formula for the
density of Xt (see Theorem 10.4.2). Unfortunately, this formula involves oscillating infinite
sums of Bessel functions. Instead of directly computing these sums, we propose an alternative
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simulation method which uses an extension of the reflection principle in two dimensions for a
particular type of wedges with angle π/m, m ∈ N. As a first step, we obtain a simulation method
for Ex0 [f(WT ∧τ )], where W = (Wt)t≥0 is a two-dimensional Brownian motion and τ stands for
the first time the process W touches the boundary of the wedge D. Applying the methodology
for the stopped process recursively one obtains an algorithm for the reflected process X. The
algorithms we present here rely on an idea which has links to the rectangle method [DL06]:
we include a smaller wedge of angle π/m inside the first wedge and simulate the exit from the
smaller wedge.

The algorithm for the simulation of the stopped process improves the method proposed
in [Met09]. In the reflected case, we prove that although some lower moments are finite, the
average number of simulations for this method is infinite. This effect is created due to the large
number of reflections that may happen if the process enters the corner of the wedge. We then
propose a modified approximation scheme which takes into account the asymptotic behaviour
of the density near the corner. With this modification, we show that the expected number of
iterations of the algorithm is finite and measure the error of approximation in total variation
distance. We then give adaptations of our algorithms to more general Itō processes reflected in
a wedge.

The expression of the density of the stopped Brownian motion in a wedge of R2 has been
obtained in [Iye85] using the method of images. However, the author does not provide full
arguments for the verification of the initial condition and some exchanges of infinite summation
and integrations are not fully explained. For the history of the expression of the density of the
stopped Brownian motion on a wedge, see [BnS97].

In [CBM15] and [Met10] the authors correct some mistakes in formulas appearing in [Iye85]
and give formulas for a number of other random variables related to the stopped Brownian
motion in two dimensions with general correlation coefficients, such as the survival probability
and the first-passage time distribution. However, formulas from [Iye85] and [Met10] are not
directly applicable to simulation algorithms of stopped processes, as they involve infinite sums
and Bessel functions. [Met09, Section 2] gives an approximate simulation algorithm using the
semi-analytic expression of the density established in [Iye85]. But this method implies the
approximation of an infinite sum of Bessel functions and it leads to bias when simulating the
stopping time τ .

More recent papers ([EFW13], [BSCD13]) extend the results of [Iye85] and [Met10] to three
dimensions and give algorithms and density formulas for the stopped Brownian motion in three
dimensions, using the method of images in R3. These algorithms which point towards the possi-
bility of larger dimension extensions are however limited to some specific values of correlation. In
[KLR18], the authors use the spectral decomposition method which applies in a larger generality
but still relies on efficient computational methods for eigenvalue calculations and truncations of
infinite sums. These references concentrate on the stopped Brownian motion case and there is
no discussion about the simulation of reflected Brownian motion in wedges.

Simulation algorithms for the reflected Brownian motion have been only partly studied,
although they share similarities with the stopped case. Simulation algorithms for quantities
related to reflected Brownian motion on an orthant in multi-dimensions can be found in [BM18]
and [BC15]. They do not use the method of images, but the characterization through the
Skorokhod problem and the so-called ε-strong methodology which relies on the regularity of the
reflection functional. Still, the method proposed has a theoretically infinite mean running time.

Other approximations methods which are closer to random walk versions of the reflected
Brownian motion on tile domains are studied in [Dub04] and [Kag07]. Furthermore, other
simulations methods for reflected Brownian motion which do not cover the case of the wedge
can be found in [CPS98], [BGT04], [BC08] and [BST10] the references therein.
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The reflected Brownian motion and more generally reflected processes have applications
in finance (for example, in stochastic models where the process, which can model an interest
rates, is constrained to be non-negative [Ha09] or has other constraints like barriers such as in
[IKP13]); in queueing models [GNR86], etc. In particular, in the recent years there has been a
lot of developments concerning the study of stationary measures of reflected Brownian motion
such as [DM09] which is slightly related to the ideas which we use here to construct a simulation
method on a wedge. For a review, on this topic and the relationship with queuing theory see
e.g. [Die10].

Considering the particular case of a wedge may open the way to new simulation algorithms for
reflected processes adapted to non-smooth domains with corner points in two or more dimensions
(see Section 10.11).

The paper is organized as follows. In Section 10.3 we state the framework of the problem,
giving a parametrization of the wedge in R2. We also give the formula for the density of the
stopped Brownian motion in a wedge of angle α ∈ (0, 2π). The density of the stopped Brownian
motion had already been obtained in [Iye85]. A more general case is studied in [BnS97] which
provides a detailed history and a full proof that the density formula is the fundamental solution
of the associated partial differential equation.

In Section 10.4, we provide the density of the reflected Brownian motion on the wedge. First,
we use the method of images in a special type of wedges as it serves to understand how one
induces the density of the reflected Brownian motion in the general case. In the Appendix we
include the proof in the reflected case on more general cones following [BnS97].

In Section 10.5, we give explicit algorithms for the simulation of the stopped and reflected
Brownian motions. To do so, we first derive from [Met10] and the formulas proved in Section
10.4 expressions of densities of the exit time and exit point from the wedge. Then, we give an
algorithm for the simulation of the stopped Brownian motion using the explicit expressions in
the case α = π/m. The simulation algorithm is based on the simulation of a random sequence
of stopped Brownian motion processes on domains with angle α = π/m. This first algorithm is
useful for the simulation of reflected Brownian motion, but it also has its own interest. Then
we give the simulation algorithm for the reflected Brownian motion with unit diffusion matrix.

In Section 10.6, we study the mean number of iterations of the algorithm to finish, denoted
E[N ]. For the stopped Brownian motion, E[N ] is bounded above by a constant. The reflected
case is more difficult to deal with. In this case, N is equal to the number of times a Brownian
motion goes from one frontier of a wedge to another. We first give theoretical bounds for E[N ]
and prove that although the number of iterations is almost surely finite, E[N ] is infinite, which
is due to the events when the Brownian motion comes close to the origin. We then propose
a modification of the algorithm: we stop the algorithm when the Brownian motion comes too
close to the origin, measured by a parameter ε and use an approximation of the density for the
reflected Brownian motion close to the origin, induced by the density formula in Section 10.4.
We then prove that for the modified algorithm, E[N ] has an upper bound which grows as ε1−p

for all p ∈ (1, 2), and that the error of approximation is of order ε.
In Section 10.7, we show how the algorithms can directly be applied for the simulation of

the reflected and stopped Brownian motions with non-zero drift. Then we give an algorithm
for the simulation of a class of Itō diffusion processes, reflected or stopped in a wedge in R2.
This algorithm is in fact a direct application of the precedent algorithms, combined with a
Euler-Maruyama scheme.

Finally, in Section 10.8, we perform Monte Carlo simulations for the estimation of reflected
and stopped Brownian motions and Itō processes. We show that the bias in the algorithm from
[Met09] can be significant compared with our method which is exact. Simulations prove the
need for the approximation algorithm for the reflected Brownian motion, as the exact algorithm
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takes too much time to be efficient. Clearly, one remaining subject which is not considered here
is the reflecting case with non-unit diffusion coefficient. This remains an open problem.

The authors would like to express thanks to the anonymous referee which provided references
[BnS97] and [DM09] which improved the results and shortened the proof of Theorem 10.4.2.

10.2 Notations

We give a brief list of notations that are used through the text.
The natural logarithm is denoted with log. We frequently use the notation ± in order to

denote the two rays that define a wedge. Sometimes rather than writing two equations we just
write one using the symbol ± or ∓ meaning that we are stating two equations, one using the
top symbols and another using the bottom symbols that appear throughout the equation.

Ia stands for the modified Bessel function of the first kind given for a ≥ 0, x ≥ 0 by:

Ia(x) =
∞∑

k=0

xa+2k

2a+2kk!Γ(k + a+ 1) . (10.2.1)

This function satisfies the differential equation

x2d
2Ia(x)
dx2 + x

dIa(x)
dx

− (x2 + a2)Ia(x) = 0, x ≥ 0. (10.2.2)

We consider the space R2 endowed with the Euclidean norm denoted by | · |.
For D ⊂ R2 and k ∈ N, we denote by Ck

b (D) the set of real-valued functions defined on D
which are bounded and have bounded partial derivatives up to the order k.

Now we define the probabilistic setting as follows. Let (Ω,F ,P, (Ft)t≥0) be a filtered proba-
bility space satisfying the usual conditions. Let T > 0 be the time horizon and let W = (Wt)t≥0
be a two-dimensional correlated Brownian motion on (Ω,F ,P, (Ft)t≥0). We denote by Σ the
covariance matrix of W and we assume that Σ is a non-singular matrix. We define a family of
probabilities on (Ω,F , (Ft)t≥0) by:

∀x0 ∈ R2, Px0 := P|W0=x0 .

We will denote by Ex0 the expectation under Px0 .
If W = (Wt)t≥0 is a Brownian motion we will say “stopped Brownian motion" to designate

the process (Wt∧τ )t≥0, and “killed Brownian motion" to designate the process (Wt1τ>T )t∈[0,T ],
where τ is some stopping time defined later.

We will frequently use in the proofs the Bessel process (Rt)t≥0 in dimension δ ≥ 2, i.e. a
real-valued process satisfying the stochastic differential equation:

Rt = r0 +Bt +
∫ t

0

δ − 1
2

ds

Rs
,

where (Bt)t≥0 is a standard one-dimensional Brownian motion starting from zero. The index of
the Bessel process is defined as ν = δ

2 − 1. For a general reference to these matters we refer to
[JYC09, Section 6].
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n(x1)

x1

n(x2)

x2

α

Figure 10.1: Example of a wedge of angle α.

10.3 Setting of the problem

Let a ∈ R ∪ {±} and consider the subset D ⊂ R2 defined by one of the four following cartesian
equations:

D =


{(x, y) ∈ R2, y ≥ 0 and y ≤ ax} with a > 0,
{(x, y) ∈ R2, y ≥ 0 and y ≥ ax} with a < 0,
{(x, y) ∈ R2, y ≥ 0 or y ≥ ax} with a > 0,
{(x, y) ∈ R2, y ≥ 0 or y ≤ ax} with a < 0.

(10.3.1)

The set D is called a wedge1. The angle of the wedge is denoted by α and chosen such that
α ∈ (0, 2π). An example is given in Figure 10.1. We write the wedge D in polar coordinates as
follows:

D = {(r cos(θ), r sin(θ)), r ∈ R+, θ ∈ [0, α]}.

We define its boundary as ∂D = ∂D− ∪ ∂D+, where

∂D− :={(x, y) ∈ D, y = 0} = {(r cos(θ), r sin(θ)), r ∈ R+, θ = 0},
∂D+ :={(x, y) ∈ D, y = ax} = {(r cos(θ), r sin(θ)), r ∈ R+, θ = α}.

In general, we use the notation D = ⟨α⟩ to denote a wedge which boundary is determined
by the rays ∂D±. In a similar way, we also generalize this notation to a general wedge which
boundaries are determined by the rays at the angles 0 ≤ α < β < 2π as V = ⟨α, β⟩.

We use the following stopping times:

τ = inf {t > 0,Wt ∈ ∂D}.
τ± = inf {t > 0,Wt ∈ ∂D±}.

As in [Met10], we parametrize the covariance matrix of W via its Cholesky decomposition
and write Σ = σσT with

σ =
(
σ1
√

1 − ρ2 σ1ρ
0 σ2

)
,

where ρ ∈ (−1, 1) and σ1, σ2 ≥ 0. Then assuming that σ is invertible, we consider the pro-
cess W ′ := σ−1W , which is a standard two-dimensional Brownian motion with independent
components. Furthermore, using the explicit formula for the inverse matrix, we deduce that

W 2 = 0 ⇐⇒ W ′2 = 0,
1The cases where a = 0 are not considered here because they lead to cases where the problem can be simplified

to a one dimensional problem.
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Cartesian
Equation

{y ≥ 0 and y ≤ ax},
a > 0

{y ≥ 0 and y ≥ ax},
a < 0

{y ≥ 0 or y ≥ ax},
a > 0

{y ≥ 0 or y ≤ ax},
a < 0

Value of α arctan(a) π + arctan(a) π + arctan(a) 2π + arctan(a)

Wedge for
the original

problem
a
a
a
a

α
α α

α

Equation
of W ′ if

σ2 − aσ1ρ > 0
{y ≥ 0 and y ≤ a′x},

a′ > 0
{y ≥ 0 and y ≥ a′x},

a′ < 0
{y ≥ 0 or y ≥ a′x},

a′ > 0
{y ≥ 0 or y ≤ a′x},

a′ < 0
Equation
of W ′ if

σ2 − aσ1ρ < 0
{y ≥ 0 and y ≥ a′x},

a′ < 0
{y ≥ 0 and y ≤ a′x},

a′ > 0
{y ≥ 0 or y ≤ a′x},

a′ < 0
{y ≥ 0 or y ≥ a′x},

a′ > 0

Figure 10.2: Table summing up the four different cases of wedge D

W 2 = aW 1 ⇐⇒

 W ′2 = aσ1
√

1−ρ2

σ2−aσ1ρ W ′1 if σ2 − aσ1ρ ̸= 0,
W ′1 = 0 if σ2 − aσ1ρ = 0.

In the case that σ2 − aσ1ρ = 0, then the problem reduces to two independent one-dimensional
Brownian motions being reflected or stopped in the first quadrant, and therefore the problem can
be reduced to using two independent reflected or stopped Brownian motions in one dimension.
For explicit formulas, see (10.4.2) and (10.4.1). Thus in the following we assume that σ2−aσ1ρ ̸=
0. So τ− is the first passage time of W ′ through the horizontal axis and τ+ is the time of the
first passage of W ′ through the line y = a′x, where

a′ = aσ1
√

1 − ρ2

σ2 − aσ1ρ
, (10.3.2)

so that τ = τ− ∧ τ+ is the exit time of W ′ from the wedge D′ = ⟨α′⟩, where α′ is defined as
arctan(a′) or π+ arctan(a′) or 2π+ arctan(a) depending on the cases. The process W ′ starts at
x′

0 = σ−1 · x0. The possible cases are summed up in Table 10.2.
After the above transformation the original wedge is transformed into a new one according

to this table. Therefore mutatis-mutandis, we shall omit the primes in the notation and without
loss of generality we directly assume that the process W has the correlation matrix Σ = I2 and
the wedge is given as in (10.3.1) with angle α.

In some results, we assume that the angle of the wedge satisfies the condition:

α = π

m
,

for some m ∈ N. We define adjacent wedges as follows. For k = 0, 1, ..., 2m− 1, let

Dk := {(r cos(θ), r sin(θ)) : r ∈ [0,+∞), θ ∈ [kα, (k + 1)α]}.

We remark that D0 = D and that R2 = ⋃2m−1
k=0 Dk. We also define the transformation Tk:

Tk :D0 −→ Dk

Tk((r cos θ, r sin θ)) :=(r cos(ϑk), r sin(ϑk))

ϑk :=
{

(k + 1)α− θ; k odd,
kα+ θ; k even.
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α = π
6

D

D1

D2

Figure 10.3: Partition of R2 using {Dk}k

From the definition, it follows that Tk is an isometric bijection between D0 and Dk. This
setting is represented in Figure 10.3.

The density of the killed Brownian motion and some related random quantities appear in
[Met10]. We first quote the explicit density result for killed Brownian motion which is fully
proven in [BnS97, Lemma 1] for generalized multidimensional cones.

Theorem 10.3.1 (Killed case). Assume that D = ⟨π/m⟩ for some m ∈ N. Then we have the
following formula for the density of killed Brownian motion on the wedge D:

∀t > 0, x, y ∈ D, Px(Wt ∈ dy, τ > t) = 1
2πt

2m−1∑
k=0

(−1)ke− |x−Tky|2

2t dy. (10.3.3)

In general, let α ∈ (0, 2π), D = ⟨α⟩ and x = (r0 cos(θ0), r0 sin(θ0)) ∈ D. Then for any y =
(r cos(θ), r sin(θ)) ∈ D, the density of the killed Brownian motion on the wedge D is given by

Px(Wt ∈ dy, τ > t) = 2r
tα
e−

r2+r2
0

2t

∞∑
n=1

Inπ/α

(
rr0
t

)
sin
(
nπθ

α

)
sin
(
nπθ0
α

)
drdθ. (10.3.4)

10.4 Analytic formulas for the density of the reflected process
In this section, we give explicit expressions for the densities of the reflected Brownian motion.
Before doing this, we review the one dimensional case which will also help explain the motivation
for the simulation methods to be introduced later. The one-dimensional case can be treated
using the classic reflection principle, which directly gives the density of the killed and reflected
Brownian motions. In the one-dimensional case, we can assume that D = [0,+∞) and that
Σ = 1. Then for all non-negative measurable functions f : D → R and x0 ≥ 0,

Ex0 [f(WT )1τ>T ] = Ex0

[
f(WT )1WT >0

(
1 − e− x0(x0+WT )

T

)]
, (10.4.1)

Ex0 [f(XT )] = Ex0

[
f(WT )1WT >0

(
1 + e− x0(x0+WT )

T

)]
. (10.4.2)

The above formulas show that the simulation of the killed and reflected Brownian motions in
the one-dimensional case can be easily performed using changes of measures on the original
unrestricted Brownian motion.

The proof in the reflected case in R2 shares common arguments with the killed case. Through-
out these arguments, one uses results from classical theory of partial differential equations on
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wedges. For a general reference on this topic, we refer the reader to [LSU68, chapter IV] and
[KZ16] where one can find existence and uniqueness results for the partial differential equations
that are related to the problems in this article.

Definition 10.4.1. We define the normal reflection process of a continuous adapted stochastic
process ξ on the subset D, as the unique solution (Xt, Lt)t≥0 of the following problem (see for
example [Pil14]):

1. Xt = ξt + Lt, where L = (Lt)t≥0 is some adapted process.

2. ∀t ≥ 0, Xt ∈ D.

3. L is a continuous process of bounded variation and L0 = 0.

4. ∀t ≥ 0, Lt =
∫ t

0 n(Xs)1Xs∈∂Dd|L|s, which means that the process L increases only when
Xt ∈ ∂D and that the reflection is normal to the boundary.

Therefore the normally reflected Brownian motion is the process that is obtained from the
above equation by taking ξ = W . In the one dimensional case, L corresponds to the local time
of Brownian motion.

The existence and uniqueness of a Brownian motion reflected in a wedge, which is a non-
smooth domain, has been proved in the decorrelated case in [VW85]. In this article we will
only consider normal reflections in the case of unitary diffusion matrix. Note that if we use the
decorrelation step as in (10.3.2) for the reflected Brownian motion, this transformation changes
the normal reflected process into an obliquely reflected process. We do not know how to obtain
the density of such a process.

Theorem 10.4.2 (Reflected case). Assume that D = ⟨π/m⟩ for some m ∈ N. Then we have the
following formulas for the density of the reflected Brownian motion on the wedge D = ⟨π/m⟩:

∀t > 0, x, y ∈ D, Px(Xt ∈ dy) = 1
2πt

2m−1∑
k=0

e− |x−Tky|2

2t dy. (10.4.3)

In the general case for α ∈ (0, 2π), D = ⟨α⟩ and x = (r0 cos(θ0), r0 sin(θ0)) ∈ D we have that
for any y = (r cos(θ), r sin(θ)) ∈ D, the density of the reflected Brownian motion on the wedge
D = ⟨α⟩ is given by

Px(Xt ∈ dy) = 2r
tα
e−

r2+r2
0

2t

(
1
2I0

(
rr0
t

)
+

∞∑
n=1

Inπ/α

(
rr0
t

)
cos

(
nπθ

α

)
cos

(
nπθ0
α

))
drdθ.

(10.4.4)

The proof of the above theorem is given in 10.10. The idea of using the simple case D = ⟨π/m⟩
to infer a general result appears in the literature of the image method. It has been used in a
non-trivial way in order to deduce stationary measures for reflected processes (see e.g. [DM09]).
A formula similar to (10.4.4) appears in [CJ59, page 379 (8)], which is proved using Laplace
transform inversion methods. We have decided to include a proof which uses the image method
because it gives some intuition on the simulations methods to be introduced later.

10.5 Exact simulation algorithms
Theorems 10.3.1 and 10.4.2 give formulas that can be directly used to simulate the final values
of the reflected and stopped processes in the case that the wedge angle is α = π/m (see Sections
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10.5.2 and 10.5.3). However, direct algorithms that arise due to these results demand the use of
approximations and larger computational time in general. Instead, we investigate an alternative
simulation method using the tractable case α = π/m and give algorithms for the exact simulation
of the reflected and stopped processes in any wedge.

10.5.1 Formulas for the simulation of (τ, Wτ ) in the case α = π/m

Before providing the simulation method, we give a formula that will be the key to provide a
simplified simulation method which avoids the calculation of Bessel functions.

Theorem 10.5.1. Let V = ⟨α−, α+⟩ and assume that α+−α− = π/m =: α for some m ∈ N and
let τ be the hitting time on the wedge V for W which starts at x0 = (r0 cos(θ0), r0 sin(θ0)) ∈ V,
then

Px0(τ ∈ dt, Wτ ∈ dy±) = r0
2πt2 e

−
r2+r2

0
2t

m−1∑
k=0

sin
(
γ±

k

)
e

rr0
t

cos(γ±
k )drdt, (10.5.1)

where y± = (r cos(α±), r sin(α±)) ∈ ∂V±. We use the notation

γ±
k := ± α± ± 2kπ

m
∓ θ0. (10.5.2)

Proof. We can assume that α− = 0 without loss of generality. We use the formulas [Met10,
(1.5), (1.6)]. If y ∈ ∂D−, writing y = (r, 0) for some r > 0, we have:

Px0(τ ∈ dt, Wτ ∈ dy) = π

α2tr
e−

r2+r2
0

2t

∞∑
n=1

n sin
(
nπθ0
α

)
Inπ/α

(
rr0
t

)
drdt. (10.5.3)

Using (10.3.4) and switching the order of derivation and integration, which can be justified
(see the proof of Theorem 10.4.2 with Corollary 10.10.1 in the Appendix), we obtain for y ∈ ∂D−:

Px0(τ ∈ dt, Wτ ∈ dy) = 1
2r2

∂

∂θ

∣∣∣∣
θ=0

Px0(τ > t,Wt ∈ d(r cos(θ), r sin(θ))).

So that in the case α = π/m, using (10.3.3) in polar coordinates and the definition of ϑk:

Px0(τ ∈ dt, Wτ ∈ dy) = 1
2r2

∂

∂θ

∣∣∣∣
θ=0

r

2πte
−

r2+r2
0

2t

2m−1∑
k=0

(−1)ke
1
t
rr0 cos(θ0−ϑk)drdt

= r0
2πt2 e

−
r2+r2

0
2t

m−1∑
k=0

sin(θ0 − 2kα)e
rr0

t
cos(θ0−2kα)drdt. (10.5.4)

Likewise, we obtain a similar formula for the case y ∈ ∂D+.

From here, we present a method to simulate τ and Wτ in the case of the wedge V = ⟨α−, α+⟩
with α+ − α− = π/m. For the simulation of Wτ , we use the same method which is proposed in
[Met09, Section 2.1] but we restrict to the case α = π/m. On the other hand, we propose an
unbiased simulation method for τ in comparison with the method proposed in [Met09] which
has a bias difficult to estimate (see [Met09, Proposition 2.1.8] and the remark that follows).

Simulation of Wτ : First, we simulate the selection of the boundary line on whichWτ arrives,
with a Bernoulli distribution. These two boundaries are denoted by ∂V± = {(r cos(α±), r sin(α±)) :
r ≥ 0}. Following [Met09, Corollary 2.1.5] we have:

Px0(Wτ ∈ V+) = θ0 − α−

α+ − α− , (10.5.5)
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We simulate on which frontier Wτ arrives first and then we directly simulate Wτ , without
simulating τ yet. Following [Met09, Proposition 2.1.6] one can compute explicit formulas for the
distribution function of the radius of exit given that it exits at V+ or V−. Also its inverse can
be computed and therefore the inverse transformation method for simulation can be applied.
Using these formulas, we can simulate the radius rτ as:

rτ =


r0

(
cos

(
πθ0
α

)
− sin

(
πθ0

α

)
tan((π−πθ0/α)(U−1))

)α/π

if Wτ ∈ V−,

r0

(
− cos

(
πθ0
α

)
− sin

(
πθ0

α

)
tan((πθ0/α)(U−1))

)α/π

if Wτ ∈ V+,

(10.5.6)

with U ∼ U([0, 1]).
Simulation of τ : Knowing Wτ , we simulate τ according to the conditional formula (see

(10.5.4) and recall that dy± = (dr cos(α±), dr sin(α±))):

Px0(τ ∈ dt| Wτ = y±) =
(
(Px0(Wτ ∈ dy±))−1dr

) r0
2πt2

m−1∑
k=0

sin(γ±
k )

· exp
(

−
(r − r0 cos(γ±

k ))2 + r2
0 sin2(γ±

k )
2t

)
dt. (10.5.7)

Since some of the coefficients sin(γ±
k ) are negative, we cannot directly simulate according to

this distribution as a mixture. Instead we select the indexes k±
0 , . . . , k

±
p± such that for all i,

sin(γ±
k±

i

) ≥ 0 and write:

Px0(τ ∈ dt| Wτ = y±) ≤
(
(Px0(Wτ ∈ dy±))−1dr

) r0
2πt2

p±∑
i=0

sin(γ±
k±

i

)

· exp

−
(r − r0 cos(γ±

k±
i

))2 + r2
0 sin2(γ±

k±
i

)

2t

 dt. (10.5.8)

This is the distribution of a discrete mixture of random variables ξk for 0 ≤ k ≤ p±, where ξk is
the inverse of an exponential random variable of parameter ((r− r0 cos(γ±

k±
i

))2 + r2
0 sin2(γ±

k±
i

))/2.
With this information, we build an acceptance-rejection sampling, based on the density on the
right hand side of (10.5.8) and accept the sample value t under the condition

U <

(
m−1∑
k=0

sin(γ±
k ) exp

(
−

(r − r0 cos(γ±
k ))2 + r2

0 sin2(γ±
k )

2t

))

×

 p±∑
i=0

sin(γ±
k±

i

) exp

−
(r − r0 cos(γ±

k±
i

))2 + r2
0 sin2(γ±

k±
i

)

2t

−1

,

with U ∼ U([0, 1]).
Simulation in the case W does not exit the wedge: So far, we have provided a

methodology in order to simulate the exit location and time for the simpler wedge V = ⟨α−, α+⟩
with α+ − α− = π/m. Now we discuss the case when W does not leave this wedge in the
time interval [0, T ]. To simulate the final value WT of the Brownian motion starting from x0
conditionally to the fact that it does not exit the wedge V on [0, T ], we need to simulate according
to the density (10.3.3), which is a sum where some terms are negative. We propose the following
method.
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A slight generalization of (10.3.3) to the wedge V = ⟨α−, α+⟩ with

ϑ̃k :=
{
ϑk + 2α− if k odd
ϑk if k even,

gives, for y ∈ V:

Px0(WT ∈ dy| τ > T ) = Px0(τ > T )−1

2πT

2m−1∑
k=0

(−1)ke− |x0−T̃ky|2

2T dy

≤ Px0(τ > T )−1

2πT

m−1∑
k=0

e− |x0−T̃2ky|2

2T dy, (10.5.9)

where T̃k(r cos(θ), r sin(θ)) = (r cos(ϑ̃k), r sin(ϑ̃k)). We then apply acceptance-rejection sam-

pling with the reference density proportional to 1
2πT

∑m−1
k=0 e

− |x0−T̃2ky|2

2T and accept the sample y
under the condition

U <

(2m−1∑
k=0

(−1)ke− |x0−T̃ky|2

2T 1y∈Vdy

)(
m−1∑
k=0

e− |x0−T̃2ky|2

2T

)−1

, (10.5.10)

with U ∼ U([0, 1]).

10.5.2 Algorithm for the simulation of the stopped Brownian motion: Gen-
eral case

In this subsection, we give a recursive algorithm to simulate the final value WT ∧τ of the stopped
process on the wedge D, for any angle α ∈ (0, 2π). This algorithm will be used for the simulation
algorithm of the reflected Brownian motion, but it also has its own interest as it can be used
as itself for the simulation of the stopped Brownian motion. In what follows, we denote Fn the
sigma algebra generated by the algorithm until the step n, i.e. Fn = σ(τ1, y1, . . . , τn, yn), where
τ1, . . . , τn and y1, . . . , yn are random variables generated by the algorithm. We also denote
by Pn and En the conditional probability and expectation with respect to Fn.

First, we propose an algorithm for the case where the angle is π/m. At the step n of the
algorithm we will define a wedge Vn ⊂ D of angle π/m for some m ∈ N and then simulate
the process stopped on this wedge. Define Θ := max ({π/m, m ∈ N} ∩ (0, α]). Note that since
α ∈ (0, 2π), we have α/2 < Θ ≤ α.

Algorithm I: Start at the point x0 = (r0 cos(θ0), r0 sin(θ0)) =: y0 at time T0 = 0. The
algorithm follows these steps for n ∈ N:

1. Given yn = (rn cos(θn), rn sin(θn)) ∈ Vn, define the angles:

β−
n+1 :=


0 if θn ∈

[
0, Θ

2

]
θn − Θ

2 if θn ∈
[

Θ
2 , α− Θ

2

]
α− Θ if θn ∈

[
α− Θ

2 , α
]

β+
n+1 := β−

n+1 + Θ.

By the definition of Θ, we have Θ ≤ α and therefore 0 ≤ Θ/2 ≤ α− Θ/2 ≤ α.

2. Consider the wedge Vn+1 = ⟨β−
n+1, β

+
n+1⟩ of angle Θ, which satisfies Vn+1 ⊂ D and yn =

(rn cos(θn), rn sin(θn)) ∈ Vn+1.
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yn+1

•yn

β−
n+1

β+
n+1

α

Θ/2

Θ/2

Figure 10.4: Example of the domains of simulation at step n+ 1.

3. Simulate on which one of the two sets ∂V+
n+1 or ∂V−

n+1, the process (Wt)t≥Tn starting from
yn, at time Tn, exits the wedge Vn+1 and define θn+1 := β±

n+1 according to the simulation
result. This is done using a Bernoulli variable and the formula (10.5.5).

4. Simulate yn+1 ∈ ∂Vn+1, which is the value of W when it reaches ∂Vn+1 for the first time
after starting at yn at time Tn, and knowing which one of the two events yn+1 ∈ ∂V±

n+1
has occurred, using formula (10.5.6). Denote the exit point as

yn+1 = (rn+1 cos(θn+1), rn+1 sin(θn+1)).

5. Simulate τn+1, the time for the process W starting at yn = (rn cos(θn), rn sin(θn)) at time
Tn to reach ∂Vn+1, knowing the event WTn+τn+1 = yn+1. This can be done using the
formula (10.5.7) and the acceptance-rejection procedure described after it. Define

Tn+1 := Tn + τn+1,

so that WTn+1 = yn+1.

If Tn + τn+1 < T then the algorithm iterates. This algorithm stops under one of these two
conditions:

• Condition 1: Tn + τn+1 ≥ T . Then simulate the final value WT knowing that WTn = yn

and that for t ∈ [Tn, T ], Wt ∈ Vn. We do this simulation conditionally to the event
Tn + τn+1 > T and “forget“ the exact simulated value of τn+1 as well as the value of
WTn+τn+1 . This is justified in Proposition 10.9.1, using X := (WT ∧Tn+1 , Tn+11Tn+1<T )|Fn

,
Y := (WTn+1 , Tn+1)|Fn

and A = R2 × [0, T ]. We simulate the value of WT using (10.5.9)
and the acceptance-rejection procedure described after it.

• Condition 2: θn+1 = 0 or θn+1 = α. Then we obtain τ := Tn+1 < T , i.e. the Brownian
motion reaches the wedge D before the time T and the result of the simulation is

WT ∧τ = (rn+1 cos(θn+1), rn+1 sin(θn+1)).

An illustration of this algorithm is given in Figure 10.4. Next, we prove that this algorithm can
be carried out in a finite number of steps.

Proposition 10.5.2. Algorithm I ends in finite time, i.e. the number of required iterations to
finish the algorithm, denoted by N , is such that N < ∞ almost surely. More precisely, for all
K ∈ N, Px0(N ≥ K) ≤ 2−⌊K/2⌋.
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Proof. Fix K ∈ N. For a wedge Vn, n ≤ N in Algorithm I, we say that “Vn intersects the
boundary of D" if β+

n = α or β−
n = 0. For n ≤ N , we have two possible cases:

• Vn does not intersect the boundary of D. Then, using the fact that Θ > α
2 and the definition

of β±
n+1, Vn+1 intersects the boundary of D, and θn is closer to β±

n+1 than β∓
n+1, where here

the sign ± is such that ∂V±
n+1 ∩ ∂D ≠ {0}. So using (10.5.5), Pn(yn+1 /∈ ∂D) ≤ 1/2.

• Vn intersects the boundary of D. Then if θn+1 /∈ {0, α}, Vn+1 does not intersect the
boundary of D and by the same reasoning as above Pn(yn+2 /∈ ∂D) ≤ 1/2.

Then, by tower property of conditional expectations, we have:

Py0(N ≥ K) ≤ Py0(y1 /∈ ∂D, . . . , yK /∈ ∂D) ≤ 2−⌊ K
2 ⌋.

So that:
Py0(N = ∞) = lim

K→∞
Py0(N ≥ K) = 0.

10.5.3 Algorithm for the simulation of the reflected Brownian motion

We now state an algorithm to simulate the final value of the reflected Brownian motion XT in
a wedge D = ⟨α⟩ of any angle α ∈ (0, 2π).

Algorithm II: Choose Θ := max ({π/m, m ∈ N} ∩ (0, α]) as before. Start at the point x0 =
(r0 cos(θ0), r0 sin(θ0)) =: y0 at time T0 = 0. In general, suppose that for n ∈ N the point
yn = (rn cos(θn), rn sin(θn)) has already been simulated.

1. Define the angles:

β−
n+1 := θn − Θ

2 ,

β+
n+1 := θn + Θ

2 = β−
n+1 + Θ.

2. Consider the wedge Vn+1 := ⟨β−
n+1, β

+
n+1⟩. Note that although yn ∈ Vn+1, we do not

necessarily have that Vn+1 ⊂ D.

3. Simulate the random variables τn+1 and zn+1, which are respectively the time and the
final point of a Brownian motion Z = (Zt)t≥0 starting at yn at time 0 and stopped on the
wedge Vn+1 using the steps 3-5 of Algorithm I in Section 10.5.2. Note that, since θn is in
the middle of the wedge Vn+1, we have by symmetry Pzn(Zτn+1 ∈ ∂V±

n+1) = 1/2.

4. If Tn + τn+1 < T , then we define rn+1 and θ̃n+1 to be respectively the radius and the angle
of zn+1. Since it is possible that zn+1 /∈ D, we define θn+1 as follows:

θn+1 =


θ̃n+1 if θ̃n+1 ∈ [0, α],
−θ̃n+1 if θ̃n+1 = β−

n+1 and β−
n+1 < 0,

2α− θ̃n+1 if θ̃n+1 = β+
n+1 and β+

n+1 > α.

And then we define yn+1 := (rn+1 cos(θn+1), rn+1 sin(θn+1)), so that yn+1 ∈ D. Note that
if zn+1 /∈ D, then yn+1 is the reflection of zn+1 with respect to the line {θ = 0} in the
second case or {θ = α} in the third case in the definition of θn+1. Then define the time:

Tn+1 = Tn + τn+1

and the algorithm iterates.
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zn+1

yn+1

•yn

β−
n+1

β+
n+1

α

Θ/2
Θ/2

Figure 10.5: Example of domains of simulation at the step n+ 1 in the reflected case.

5. If Tn + τn+1 > T , we simulate zn+1 ∈ Vn+1 as the value at time T − Tn of a Brownian
motion starting at yn and conditionally to the fact that it stays in the wedge Vn+1 in the
time interval [0, T − Tn]. This can be done using the acceptance-rejection method given
in (10.5.9) and what follows based on Proposition 10.9.1 as it was done in the termination
Condition 1 in Algorithm I in Section 10.5.2. Then we define yn+1 in function of zn+1 as
in step 4. Finally, we stop the algorithm, and the resulting value of the simulation is yn+1.

An illustration of this algorithm is given in Figure 10.5.

Proposition 10.5.3. Define N := inf{n ∈ N, τ1 + . . .+ τn > T}. Then N < ∞ almost surely.
That is, the algorithm terminates in finite time.

Proof. The stopping times (τi)i follow the same law as (τ̃i), defined by τ̃0 = 0 and:

τ̃i+1 := inf
{
t > 0 : |θ(Bt+τ̃i

) − θ(Bτ̃i
)| ≥ π

2m

}
, (10.5.11)

where m = π/Θ ∈ N, B = (Bt)t≥0 is a standard two-dimensional Brownian motion and θ(Bt)
denotes the angle of the process2 B. Then:

Px0

( ∞∑
i=1

τi < ∞
)

= Px0

( ∞∑
i=1

τ̃i < ∞
)
.

But, if T := ∑∞
i=1 τ̃i < ∞, then there exist two random sequences, (t1n) and (t2n), increasing

and converging to T , such that θ(Bti
n
) = ki

nπ/(2m) + θ0 for all n ∈ N and i ∈ {1, 2}, and where
ki

n ∈ Z has the same parity as i, so that the difference between θ(Bt1
n
) and θ(Bt1

n′
) is at least

π/(2m) for all n, n′ ∈ N. Taking n → ∞, we have necessarily that BT = 0, which occurs with
probability 0 on any closed time interval.

10.6 Folding number in a wedge and complexity
In this section we study the complexity of Algorithms I and II in Sections 10.5.2 and 10.5.3 in
separate cases. Recall that N denotes the number of iterations that an algorithm requires to

2We choose the angle of the process (θ(Bt))t≥0 so that it is continuous with respect to t.
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finish one simulation, i.e.

N := inf{n ∈ N : τ1 + . . .+ τn > T}.

For Algorithm I, N is the number of times we touch the boundaries of the corresponding sets
Vn, n ∈ N, before touching one of the boundaries of D or reaching time T . For Algorithm II, N
is the number of times that a Brownian motion reflected in a wedge V of angle π/(2m) goes from
one boundary ∂V± to another ∂V∓ until time T . For this reason, we may call N the number of
folds for the simulation of the reflected Brownian motion.

In this section, we give theoretical properties and bounds for N for each algorithm separately.

10.6.1 Majoration of N for the simulation algorithm of the stopped Brownian
motion

For Algorithm I, by Proposition 10.5.2, we have for all K ∈ N, Px0(N ≥ K) ≤ 2−⌊K/2⌋, so

Ex0 [N ] =
∞∑

K=1
Px0(N ≥ K) ≤

∞∑
K=1

2−⌊ K
2 ⌋ = 3.

So Algorithm I ends in finite time almost surely and its complexity is finite in expectation.

10.6.2 Majoration of the number of folds of the Brownian motion in a wedge

We now investigate the complexity for Algorithm II. We decompose the standard two-dimensional
Brownian motion W = (Wt)t≥0 in polar coordinates and introduce the notations that will be
used in this section and the next one as follows. The successive stopping times (τi)i which appear
in Algorithm II, have the same law as (τ̃i)i, defined as in the proof of Proposition 10.5.3. Then
we have

N
L= inf{n ∈ N : τ̃1 + . . .+ τ̃n > T}.

Moreover, using the skew-product representation of the Brownian motion (see [RY99, page
194]):

Bt = RtUF (t), (10.6.1)

where (Rt)t≥0 = (|Bt|)t≥0 is a Bessel process of dimension 2, (Ut)t≥0 is a Brownian motion on
S1 ⊂ R2 and F is defined as

F (t) =
∫ t

0

ds

R2
s

, (10.6.2)

which is a strictly increasing process almost surely. Moreover, the processes (Rt)t≥0 and (Ut)t≥0
are independent. If we let (θ(Ut))t≥0 be the angle of the process (Ut)t≥0 then (θ(Ut))t≥0 is a
standard one-dimensional Brownian motion.

Define the stopping times (si)i by s0 = 0 and

si+1 = inf{t > 0 : |θ(Ut+si) − θ(Usi)| ≥ π/(2m)}.

Then, the random variables si are i.i.d. and have the law of the time for one-dimensional
Brownian motion starting at 0 to reach the double barrier ±π/(2m). Then using (10.5.11) we
have that for all K ∈ N,

K∑
i=1

si
L= F

(
K∑

i=1
τ̃i

)
.
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So the estimation of N can be simplified as

Px0(N ≥ K) = Px0

(
K∑

i=1
τ̃i ≤ T

)
= Px0

(
K∑

i=1
si ≤ F (T )

)
. (10.6.3)

Note that F is a random change of time, independent of (si)i. Furthermore, the Laplace trans-
form of si is explicitly given in [JYC09, Section 3.5, Proposition 3.5.1.3] as

E[e−λs1 ] = 2

e
√

2π
√

λ
2m + e−

√
2π

√
λ

2m

.

In particular, we have:

(E[si],Var(si)) =
(
π2

4m2 ,
2
3

(
π

2m

)4
)

=: (µ, σ2).

Proposition 10.6.1. Let 0 < a < 1
2 . Then we have Ex0 [Na] < ∞. On the other hand, if

a ≥ 1/2 then Ex0 [Na] = ∞.

Equation (10.6.3) together with the estimate in (10.9.3) give the result which is a consequence
of the fact that the tails of F (T ) are large because the probability that the Bessel process R is
close to zero is large and therefore due to (10.6.1) the simulation may spend a large time close
to the origin.

Proof. We have that for all K ∈ N and δ > 1:

Px0(Na ≥ K) =
∫ µK1/a

δ

0
Px0

⌈K1/a⌉∑
i=1

si ≤ y

Px0 (F (T ) ∈ dy)

+
∫ ∞

µK1/a

δ

Px0

⌈K1/a⌉∑
i=1

si ≤ y

Px0 (F (T ) ∈ dy)

=: I1(K) + I2(K).

For I1(K), we will use the fact that

2 exp
(

π2

4δm2

)
< exp

(√
2π

2m

)
+ exp

(
−

√
2π

2m

)

for δ large enough. Then, we obtain that I1(K) decreases exponentially fast to zero. In fact,
using Markov inequality

I1(K) ≤ Px0

⌈K1/a⌉∑
i=1

si ≤ µK1/a

δ

 ≤ e
µK1/a

δ
(
Ex0

[
e−s1

])⌈K1/a⌉ ≤

 2e
π2

4δm2

e
√

2π
2m + e−

√
2π

2m

⌈K1/a⌉

.

(10.6.4)

Using (10.9.3), we have:

I2(K) ≤ Px0

(
F (T ) ≥ µK1/a

δ

)
∼

K→∞
CK− 1

2a , C = 1√
2Γ(1/2)

(∫ ∞
r2

0
2T

e−u

u
du

)(
µ

δ

)− 1
2
.

(10.6.5)
Since 0 < a < 1/2, the result follows.
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Similarly, in the case a ≥ 1/2, one has that

Px0(Na ≥ K) ≥
∫ ∞

2µK1/a
Px0

⌈K1/a⌉∑
i=1

si ≤ y

Px0 (F (T ) ∈ dy) .

For K large enough and y ≥ 2µK1/a, we have Px0(∑⌈K1/a⌉
i=1 si ≤ y) ≥ 1/2 by the Central Limit

Theorem, and Px0
(
F (T ) ≥ 2µK1/a

)
∼ CK−1/(2a) as K → ∞ for some constant C > 0 which

implies the result in this case.

From this result, we conclude that the average number of iterations of the algorithm in the
reflected case is infinite. A modification of the above algorithm with finite number of iterations
in expectation is provided below.

10.6.3 Proposition of modification of Algorithm II

When the simulated radii r1, . . . , rn in Algorithm II of Section 10.5.3 become small, the process
(Xt)t∈[0,T ] goes from one boundary ∂V± to the other boundary ∂V∓ many times and the number
of iterations becomes high. In Section 10.11 is hinted that this problem is in fact specific to the
dimension 2. To remedy this problem, we study the asymptotic behavior of Px0(Xt ∈ dy) when
r0 is close to zero. In fact, if the ratio rr0/t is small, then the density of the reflected Brownian
motion expressed in (10.4.4) can be approximated by the distribution obtained by taking only
n = 0:

Px0(Xt ∈ dy) ≃ r

tα
e−

r2+r2
0

2t I0

(
rr0
t

)
drdθ. (10.6.6)

The function above can be renormalized so that it becomes a density which can be simulated
using inequality (10.9.1) and the acceptance-rejection method with the reference density

∝ re− (r−r0)2
2t drdθ =

(
(r − r0)e− (r−r0)2

2t dr + r0e
− (r−r0)2

2t dr

)
dθ. (10.6.7)

Then we modify Algorithm II as follows. We choose some small ε ∈ (0, r0) and:

• Simulate the sequence of (rn)n and (θn)n as in Algorithm II in Section 10.5.3.

• If after some iteration n, we have

r2
n

T − Tn
< ε (10.6.8)

(note that T − Tn > 0 is the remaining time of the simulated process after step n), then
we directly simulate the final point X̄T according to the approximation (10.6.6):

Px0(X̄T ∈ dy| XTn = yn) = C(ε) r

(T − Tn)αe
− r2+r2

n
2(T −Tn) I0

(
rrn

T − Tn

)
drdθ, (10.6.9)

C(ε) :=
(∫ α

0

∫ ∞

0

r

(T − Tn)αe
− r2+r2

n
2(T −Tn) I0

(
rrn

T − Tn

)
drdθ

)−1

.

Using that I0(x) ≥ 1 for all x ≥ 0, one obtains that C(ε) ≤ er2
n/(2(T −Tn)). This upper bound

for C(ε) is enough in order to implement the acceptance-rejection sampling method. In
this case, the algorithm directly ends after one additional iteration.
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Proposition 10.6.2. Denote by N̄ the number of iterations of the modified algorithm, (10.6.9),
then for any 1 ≤ a < p < 2, there exists a quantity C(a, p, x0, T,m) > 0 such that for ε small
enough:

Ex0 [N̄a] ≤ C(a, p, x0, T,m)
εp−1 . (10.6.10)

Proof. We use a similar argument as in the proof of Proposition 10.6.1. Let ζε := inf {t ∈ [0, T ] :
R2

t /(T − t) ≤ ε} and let K ∈ N fixed. Using Markov’s inequality, we have:

Px0(N̄ − 1 ≥ K1/a) ≤ Px0

⌈K1/a⌉∑
i=1

si ≤ F (T ∧ ζε), F (T ∧ ζε) ≤ µK1/a

δ


+ Px0

(
F (T ∧ ζε) > µK1/a

δ

)

≤ e
µK1/a

δ
(
Ex0

[
e−s1

])⌈K1/a⌉ + δp

(µK1/a)p
Ex0 [F (T ∧ ζε)p] .

From here the result follows by using Lemma 10.9.5.

Proposition 10.6.3. Denote by X̄T , the result obtained from the above approximation algo-
rithm. Then, for α ∈ (0, 2π) and ε small enough, the error made by the approximation in total
variation distance satisfies:

dTV(X̄T , XT ) ≤ Cmε
min(1, π

2α ),
where Cm is a constant which only depends on m.

Proof. If the approximation is not used, then X̄T = XT . Else, we denote by n the step when
the approximation is used, so that we simulate the last step starting from (rn cos(θn), rn sin(θn))
with remaining time T − Tn =: t′. Since the ε-condition is reached, we have r2

n/t
′ < ε. Then if

we denote by dTVn(X̄T , XT ) the total variation distance conditioned to the filtration Fn up to
time Tn, and dn := 1/2 for n = 0 and dn := 1 otherwise, we have:

dTVn(X̄T , XT ) ≤
∫

D

∣∣∣(C(ε) − 1 + 1) r

t′α
e− r2+r2

n
2t′ I0

(
rrn

t′

)
− 2r
t′α

e− r2+r2
n

2t′
∞∑

k=0
dnIkπ/α

(
rrn

t′

)
cos

(
kπθ

α

)
cos

(
kπθn

α

) ∣∣∣drdθ
≤ |C(ε) − 1|

C(ε) +
∫ ∞

0

2r
t′
e− r2+r2

n
2t′

∞∑
k=1

Ikπ/α

(
rrn

t′

)
dr.

Using that for all x ≥ 0, I0(x) ≥ 1, we have C(ε) ≤ er2
n/(2t′). On the other hand, we have

C(ε)−1 ≤ 1
t′

∫ ∞

0
re−r2/(2t′)I0

(
rrn

t′

)
dr =

∫ ∞

0
ue−u2/2I0

(
rnu√
t′

)
du.

Using (10.2.1) one immediately obtains that |I ′
0(x)| + |I ′′

0 (x)| ≤ 2ex. Therefore the function
A(δ) :=

∫∞
0 ue−u2/2I0(δu)du, δ ≥ 0 is twice differentiable. As I0(0) = 1 and I ′

0(0) = 0, we
obtain A(0) = 1, A′(0) = 0 and then A(δ) = 1 +O(δ2) as δ → 0 which gives C(ε) ≥ 1 − Cε for
small enough ε > 0. These bounds on C(ε) imply that |C(ε) − 1|/(C(ε)ε) is bounded. For the
second term, using the expression (10.2.1) and a multiplicity property of the number of terms
of the type kπ/α in the interval [0, k], we have

∞∑
k=1

Ikπ/α

(
rrn

t′

)
=
(
rrn

2t′
) π

α
∞∑

k=0

∞∑
m=0

1
m!Γ

(
m+ (k+1)π

α + 1
) (rrn

2t′
)2m+ kπ

α
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≤
(
rrn

2t′
) π

α
∞∑

m=0

1
m!

(
rrn

2t′
)2m ∞∑

k=0

1
Γ
(

(k+1)π
α + 1

) (rrn

2t′
) kπ

α

≤
(
rrn

2t′
) π

α

e(
rrn
2t′ )2 α

π
e

rrn
2t′ .

With this inequality and the change of variable u = rrn/(2t′), we obtain

dTVn(X̄T , XT ) ≤Cε+ 8αt′
πr2

n

e− r2
n

2t′

∫ ∞

0
u1+ π

α eu2+ue
− 2t′

r2
n

u2

du =: Cε+ I(ε).

The integral I(ε) converges if γ ≡ γ(ε) := 2t′/r2
n > 1, which is satisfied as soon as ε < 2.

Then, denoting β := 1 + π/α,

I(ε) ≤8αt′
πr2

n

∫ ∞

0
uβe−(γ−1)u2+udu = 8αt′

πr2
n

e
1

4(γ−1)

∫ ∞

0
uβe

−(γ−1)
(

u− 1
2(γ−1)

)2

du

≤8αt′
πr2

n

e
1

4(γ−1)

(∫ ∞

1
2(γ−1)

uβe−(γ−1)u2
du+

( 1
2(γ − 1)

)β ∫ 0

− 1
2(γ−1)

e−(γ−1)u2
du

)

≤4αγ
π
e

1
4(γ−1)

(
1

√
γ − 11+β

∫ ∞

0
vβe−v2

dv + 1
2β(γ − 1)β+1/2

∫ 0

− 1
2

√
γ−1

e−v2
dv

)
.

The first term converges to zero as O(επ/(2α)) while the second term converges to zero as
O(ε1+π/α) when ε → 0. Taking all the elements into account we obtain that

dTV(X̄T , XT ) =
ε→0

O
(
εmin(1, π

2α )) .

10.7 Adaptation of the algorithms to general processes

10.7.1 Stopped Brownian motion with constant drift

Let b ∈ R2 and consider the Brownian motion with drift: W̃t := Wt + bt. Then by Girsanov’s
theorem, W̃ is a Brownian motion under the probability

Qx0
|Ft

:= e−b·Wt−b2t/2Px0
|Ft
, (10.7.1)

so that for any bounded test function f : D × [0, T ] → R:

Ex0

[
e

−b·W̃
T ∧τ̃

+ b2T ∧τ̃
2 f(W̃T ∧τ̃ , T ∧ τ̃)

]
= Ex0 [f(WT ∧τ , T ∧ τ)] .

So we have:
Ex0

[
f(W̃T ∧τ̃ , T ∧ τ̃)

]
= Ex0

[
eb·WT ∧τ − b2T ∧τ

2 f(WT ∧τ , T ∧ τ)
]
.

To simulate the Brownian motion with drift stopped in the wedge D, we proceed as follows:

1. Simulate WT ∧τ and T ∧ τ for the stopped process without drift according to Algorithm I
in Section 10.5.2.

2. The result of the simulation becomes

e− b2T ∧τ
2 eb·WT ∧τ f(WT ∧τ ) (10.7.2)
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We can also deduce an explicit formula for the density of the stopped Brownian motion with
drift using (10.3.4). In fact, for y ∈ D, we have

Px0(W̃t ∈ dy, τ̃ > t) = 2r
tα
e− b2t

2 eb·ye−(r2+r2
0)/2t

∞∑
n=1

Inπ/α

(
rr0
t

)
sin
(
nπθ

α

)
sin
(
nπθ0
α

)
drdθ,

(10.7.3)
with the same notations as before: τ̃ := inf{s : Ws + bs ∈ ∂D}, x = (r0 cos(θ0), r0 sin(θ0)) and
y = (r cos(θ), r sin(θ)).

10.7.2 Adaptation of the simulation algorithms for Itō processes

In this section, we present some extensions of the above simulation methods applied to the
approximation of stopped and reflected diffusions at some fixed time T > 0. Let us start, first
with the case of killed diffusion.

Consider the following Itō process in R2:{
dYt = b(Yt)dt+ σ(Yt)dWt

Y0 = x0,
(10.7.4)

where (Wt)t≥0 is a standard two-dimensional Brownian motion and x0 ∈ D. We define τ to be
the exit time of (Yt)t≥0 from D.

Simulation of YT ∧τ : Choose ti := Ti/n, i = 0, ..., n, a uniform partition of [0, T ] and con-
sider the following Euler-Maruyama scheme. Given Ȳtk

∈ int(D) (with Ȳt0 = x0) and supposing
that τ̄ := inf{s; Ȳs ∈ ∂D} > tk, simulate Ȳtk+1 as the final value of the following Brownian
motion with drift, stopped on the wedge D, t ∈ [tk, tk+1]:

Ȳt∧τ̄ := Ȳtk
+ b(Ȳtk

)(t− tk) + σ(Ȳtk
) · (Wt∧τ̄ −Wtk

), (10.7.5)

This is done using the algorithm in Section 10.7.1. More precisely, we simulate ȲT ∧τ̄ taking
b ≡ 0 while keeping track of the Brownian increments; then instead of f(ȲT ∧τ̄ ), the result of the
simulation becomes

exp
(

−1
2

∫ T ∧τ̄

0
|σ−1(Ȳs) · b(Ȳs)|2ds+

∫ T ∧τ̄

0
(σ−1(Ȳs) · b(Ȳs)) · dWs

)
f(ȲT ∧τ̄ ). (10.7.6)

Note that we have to take into account the decorrelation step and the change of angle as
described in Section 10.3 at every step. If the process (10.7.5) exits the wedge D in the interval
[tk, tk+1] then the algorithm directly stops. This scheme has weak order one. That is, for any
f, b, σ ∈ C5

b (D̄) one has that there exists a constant Cf > 0∣∣∣Ex0 [f(YT ∧τ )] − Ex0
[
f(ȲT ∧τ̄ )

]∣∣∣ ≤ Cfn
−1.

The proof is straightforward if one follows the same line of proof as in [Gob01]. In particular,
see Section 2.2.1 and note that our case is simpler as the proposed scheme does not have the
possibility of touching the boundary before it is stopped or reaches T . For a discussion about
the associated partial differential equation with Dirichlet conditions, see the discussion right
after (10.10.1).

Since the Girsanov change of measure uses an exponential function, it may not be suitable
to processes with large drifts as it may increase the variance. For this reason, we also propose
a two-step Euler-Maruyama scheme for the stopped process.
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Simulation of YT ∧τ : Choose ti := Ti/n, i = 0, ..., n, a uniform partition of [0, T ] and
consider the following two-step Euler-Maruyama scheme. Given Ȳtk

∈ int(D) (with Ȳt0 = x0)
and supposing that τ̄ := inf{s; Ȳs ∈ ∂D} > tk and that τ̃ := inf{s; Ỹs ∈ ∂D} > tk, simulate
Ȳtk+1∧τ̄ in two steps as follows for t ∈ [tk, tk+1]:

Ỹt∧τ̄ := Ȳtk
+ b(Ȳtk

)(t ∧ τ̄ − tk) (10.7.7)
Ȳt∧τ̃ := Ỹtk+1∧τ̄ + (Wt∧τ̄ −Wtk

). (10.7.8)

The second step is performed using the algorithm in Section 10.5.2. Note that we have to take
into account the decorrelation step and the change of angle as described in Section 10.3. If
the process exits the wedge D in the interval [tk, tk+1] then the algorithm directly stops. This
scheme has weak order one. That is, for any f, b, σ ∈ C5

b (D̄), there exists a constant Cf > 0 such
that ∣∣∣Ex0 [f(YT ∧τ )] − Ex0

[
f(ȲT ∧τ̄ )

]∣∣∣ ≤ Cfn
−1. (10.7.9)

The proof is similar to the proof for the convergence of the two-step Euler scheme for the
reflected processes in Proposition 10.7.1.

Now let (Zt)t≥0 to be the solution of a stochastic differential equation with drift coefficient
b which is normally reflected on the boundary of the wedge D. That is,

dZt = b(Zt)dt+ dWt + dLt.

For details on existence and uniqueness for this equation we refer to [Sai87].
In this case, we do not know how to extend the simulation method using the Girsanov change

of measure; instead we propose a two-step scheme.
Simulation of ZT : Choose ti := Ti/n, i = 0, ..., n a uniform partition of [0, T ] and consider

the following two-step scheme. Given Z̄tk
(with Z̄t0 = x0), simulate Z̄tk+1 as the final value

of the reflection on the wedge D of the Brownian motion and drift in two steps as follows for
t ∈ [0, tk+1 − tk]

Z̃t+tk
:= Z̄tk

+ b(Z̄tk
)(t− tk) + L1

t − L1
tk

(10.7.10)
Z̄t+tk

:= Z̃tk+1 + (Wt −Wtk
) + L2

t − L2
tk
. (10.7.11)

The terms Li, i = 1, 2, denote the respective local time terms for each of the two steps. The
simulation of the second step of this algorithm uses the argument described in either Sections
10.5.3 or 10.6.3. The weak rate of convergence for these methods is as follows:

Proposition 10.7.1. Assume that f, b ∈ C5
b (D̄) then∣∣∣Ex0 [f(ZT )] − Ex0

[
f(Z̄T )

]∣∣∣ ≤ Cfn
−1. (10.7.12)

Denoting by ẐT , the result of the algorithm using the approximation described in Section 10.6.3,
we have ∣∣∣Ex0 [f(ZT )] − Ex0

[
f(ẐT )

]∣∣∣ ≤ Cf

(
n−1 + εmin(1, π

2α )) . (10.7.13)

Proof. The proof of (10.7.13) is a small modification of (10.7.12). Therefore, we prove the rate
of convergence for the algorithm provided in Section 10.5.3.

The argument follows as in the classical diffusion case which can be found in the proof of the
main result in [TT90]. We use this argument and refer the reader to [TT90] for more details.
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First, consider u to be the solution of the following backward partial differential equation with
Neumann conditions:

∂tu(t, x) + Lu(t, x) = 0, (t, x) ∈ [0, T ] × D
u(T, x) = f(x), x ∈ D
∇u(t, x) · n(x) = 0, t > 0, x ∈ ∂D.

(10.7.14)

Here, Lu(t, x) := b(x)∇u(t, x) + 1
2∆u(t, x). Following the same discussion as in (10.10.1), one

obtains that u ∈ C7/2,7([0, T ] × D̄). This property will be used when doing Taylor’s expansions
for u. Next, note that

Ex0 [f(ZT )] − Ex0
[
f(Z̄T )

]
=

n−1∑
i=0

(
Ex0

[
u(ti, Z̄ti) − u(ti+1, Z̄ti+1)

])
=: −

n−1∑
i=0

Ai. (10.7.15)

We will now consider each term within the above sum. Using Itō-Tanaka formula (here one uses
(10.7.14) to cancel all local time terms), we have

Ai = Ex0

[
u(ti, Z̃ti+1) − u(ti, Z̄ti) +

∫ ti+1

ti

(
∂t + 1

2∆
)
u(s, Z̄s)ds

]
=
∫ ti+1

ti

Ex0

[
b(Z̄ti)∇u(ti, Z̃s) +

(
∂t + 1

2∆
)
u(s, Z̄s)

]
ds.

The following step relies on using the Taylor expansion for each of the terms involving ∇u(ti, Z̃s)
and (∂t + (1/2)∆)u(s, Z̄s) at (ti, Z̄ti) together with the fact that u solves (10.7.14). Without
going into much detail, let us consider the expansion of the term ∂tu(s, Z̄s):

∂tu(s, Z̄s) = ∂tu(ti, Z̄ti) +
∫ 1

0
∇∂tu(ti, αZ̄s + (1 − α)Z̄ti) · (Z̄s − Z̄ti)dα

+
∫ 1

0
∂t∂tu(αs+ (1 − α)ti, Z̄s) · (s− ti)dα

Each of the above derivatives of u is bounded. In the case of the increments of Z̄s − Z̄ti =
(Ws −Wti) +L2

s −L2
ti

+ Z̃ti+1 − Z̄ti one has to take one further step in the Taylor expansion to
be able to use the fact that the expectation of the Brownian increment is zero. Namely,∫ 1

0
∇∂tu(ti, αZ̄s + (1 − α)Z̄ti) · (Z̄s − Z̄ti)dα = ∇∂tu(ti, Z̄ti) · (Z̄s − Z̄ti)

+
∫ 1

0
(1 − α)(Z̄s − Z̄ti)⊤ · ∇2∂tu(ti, αZ̄s + (1 − α)Z̄ti) · (Z̄s − Z̄ti)dα.

After this and canceling the first terms of the expansion using (10.7.14) and taking expecta-
tions we see that the sum of most terms is of order O(n−2). The remaining terms are bounded
by C

∫ ti+1
ti

(Lj
s − Lj

ti
)ds for j = 1, 2. Considering these terms within (10.7.15), one obtains for

Lj
T = ∑n−1

i=0 (Lj
ti+1 − Lj

ti
) that these sums are bounded by

n−1∑
i=0

∫ ti+1

ti

Ex0 [Lj
s − Lj

ti
]ds ≤ n−1Ex0 [Lj

T ] ≤ Cn−1,

where we used that t 7→ Lj
t is increasing. The last inequality follows from an estimate for the

Skorohod problem in convex domains (see [Sai87, Theorem 4.2]). In the case of the algorithm
described in Section 10.6.3 one may modify the above arguments adding at each time ti, the
possibility of ending the simulation in the partition interval using the criteria provided in (10.6.8).
Using Proposition 10.6.3 one obtains the result.
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10.8. Simulations

Ex0 95 % interval Time (s) MC iterations Ex0 [N ]
Ex0 [f(Wτ )] with [Met09] 3.473 ± 0.082 0.67 50000 1

Ex0 [f(Wτ )] 3.489 ± 0.085 1.04 50000 1.45
Ex0 [τ ] with [Met09] 0.742 ± 0.030 7.06 20000 -

Ex0 [τ ] 0.590 ± 0.024 4.92 20000 -
Ex0 [f(Wτ∧T )] 2.980 ± 0.049 5.79 10000 1.37

Ex0 [(Wτ∧T ) · e1] 1.441 ± 0.012 6.26 10000 1.37
Ex0 [f(XT )], ε = 0 4.138 ± 0.224 13.2 1000 75.6

Ex0 [f(XT )], ε = 0.03 4.313 ± 0.072 28.2 10000 5.11

Table 10.1: Simulations with α = 0.9, r0 = 1.5, θ0 = 0.3, f(x, y) = x2 + y2, T = 1.

Ex0 95 % interval Time (s) MC iterations Ex0 [N ]
Ex0 [f(Wτ∧T )] 0.195 ± 0.003 8.85 10000 1.28

Ex0 [f(XT )], ε = 0.03 0.117 ± 0.003 9.26 5000 2.73

Table 10.2: Simulations with α = 0.58, r0 = 3, θ0 = 0.4, f(r cos(θ), r sin(θ)) = sin2(θ), T = 1.

10.8 Simulations

We implement the algorithms3 described in Sections 10.5.2 and 10.5.3 as well as the approxi-
mated version in Section 10.6.3. We also give simulation results obtained with Metzler’s algo-
rithm [Met09, Section 2.1]. This last algorithm simulates Wτ (instead of Wτ∧T ) directly for a
wedge of general angle α, by:

1. Simulate the radius |Wτ | using (10.5.6).

2. Conditionally simulate τ by acceptance-rejection, approximating the infinite sum by a
partial sum, and using a Cauchy distribution as reference density.

However, Metzler’s algorithm cannot be adapted to simulate Wτ∧T and is biased for the simu-
lation of τ (see [Met09, Proposition 2.1.8]).

In Tables 10.1 and 10.2, we consider the Monte Carlo estimation of various expectations.
We choose positive test functions in order to avoid cancellations and r0 so that Ex0 [τ ] is of the
same order as T , so that the stopped and reflected processes are significantly different than the
standard Brownian motion.

We note that for the estimation of E[f(Wτ )], our simulation method finds a similar value
as the algorithm proposed by Metzler, as both are exact simulation methods. However, for the
estimation of E[τ ], the bias in the method proposed by Metzler seems to be significant.

As a second way to check our algorithm, we also simulated the projection on the first axis
of Wτ∧T . Note that the simulation gives a result close to the initial point 1.5 · cos(0.3) ≃ 1.4330
which is reported on the sixth line of Table 10.1. This is because t 7→ Wτ∧t is a martingale.

For the estimation of E[f(XT )] (reflected Brownian motion), the exact algorithm takes too
much time, as hinted in Proposition 10.6.1, hence the need to use the approximation version
from Section 10.6.3. We only give a simulation example with 1000 samples, as we could not get a
more proper estimation. Indeed, if we increase the number of samples, there appear trajectories
where N becomes large and where the algorithm does not stop in reasonable time.

3The programs with a demonstration notebook are available at https://github.com/Bras-P/simulation_
reflected_brownian_motion_wedge
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Figure 10.6: (left) Histogram of N for the exact reflected algorithm with 50000 Monte Carlo
iterations. The horizontal axis represents the values of N while the vertical axis gives the number
of trajectories such that N is in the interval noted in the horizontal axis. The last bar counts
all the values greater than 150. On the right, average number of iterations in function of ε. The
parameters are the same as in Table 10.1 and for each value of ε, 50000 Monte Carlo iterations
are used.

Ex0 95 % interval Time (s) MC iterations Discretization step
Ex0 [f(Yτ∧T )] [Girsanov] 2.83 ± 0.06 456 5000 T/500
Ex0 [f(Yτ∧T )] [Two-step] 2.84 ± 0.06 457 5000 T/500
Ex0 [f(ZT )], ε = 0.01 3.77 ± 0.09 1140 5000 T/500

Table 10.3: Simulation of the process dYt = −µ(Yt −κ)+σdWt, with α = 0.9, r0 = 1.5, θ0 = 0.3,
µ = (0.1, 0.2), κ = (0.7, 0.5), σ = I2, f(x, y) = x2 + y2, T = 1. Z corresponds to the reflected
process in the same domain. The first stopped process is simulated using the Girsanov method
while the second one using the two-step Euler-Maruyama scheme.

To have a better idea of the behavior of the algorithm, we provide on the left side of Figure
10.6, the histogram of N for the exact Algorithm II from Section 10.5.3; if, for a trajectory, N
exceeds 150, then we stop the algorithm. We observe that for most of the trajectories, N is not
too large (does not exceed 5). However, for a few iterations (around 0.2%) which corresponds to
the case where the radius r becomes small, N is large, which slows down the algorithm. On the
right side of Figure 10.6 we trace Ex0 [N ] for the approximated reflected algorithm in function of
ε. However, we could not trace the bias in function of ε, as it seems negligeable in comparison
with the size of the confidence interval. This is why we do not need to lengthen the simulation
time of each trajectory by choosing a very small ε; ε = 0.02 or ε = 0.05 with Ex0 [N ] ≈ 5 is
sufficient.

In Table 10.3, we implement the algorithms adapted to general Itō processes from Section
10.7.2.

10.9 Appendix: Auxiliary Lemmas
We start with a simple lemma about the simulation of a r.v. X using only partial information
of a previously simulated r.v. Y.

Proposition 10.9.1. Let X and Y be two random variables. We want to simulate X. Let A
be a deterministic set. We consider the following algorithm :

1. Simulate Y.

2. If Y ∈ A, simulate X conditionally to the value of Y in the previous step, and return X.
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3. If Y /∈ A, simulate X conditionally to the event Y /∈ A, and return X.

Let us denote X̃ the value returned by the algorithm. Then:

X̃
L= X.

Proof. The random variable X̃ is defined conditionally to Y as:

P(X̃ ∈ dx| Y = y) =
{

P(X ∈ dx| Y = y) if y ∈ A
P(X ∈ dx| Y /∈ A) if y /∈ A

Then:

P(X̃ ∈ dx) =
∫

P(X̃ ∈ dx| Y = y)P(Y ∈ dy)

=
∫

y∈A
P(X ∈ dx| Y = y)P(Y ∈ dy) +

∫
y /∈A

P(X ∈ dx| Y /∈ A)P(Y ∈ dy)

= P(X ∈ dx, Y ∈ A) + P(X ∈ dx| Y /∈ A)P(Y /∈ A) = P(X ∈ dx).

10.9.1 Estimates on Bessel processes

Proposition 10.9.2. For all x ≥ 0, we have:

1 ≤ I0(x) ≤ ex. (10.9.1)

Furthermore, for x ≥ 0 and ν ≥ 0, we have:

Iν(x) ≤ ex + 1
π(ν + x) . (10.9.2)

Proof. The inequality follows from the integral representation [Wat44, p.181]:

Iν(x) = 1
π

∫ π

0
ex cos θ cos(νθ)dθ − sin(νπ)

π

∫ ∞

0
e−x cosh(t)−νtdt.

Now we provide two results on estimates related to the law of F (T ) =
∫ T

0
ds
R2

s
.

Proposition 10.9.3. Let (Rt)t≥0 be a Bessel process of dimension 2, or equivalently, of index
0. Then

Pr0 [F (T ) ≥ x] ∼
x→∞

1√
2Γ(1/2)

(∫ ∞
r2

0
2T

e−u

u
du

)
x−1/2. (10.9.3)

Proof. Step 1: We use [JYC09], Proposition 6.2.5.1, with a = 0 and ν = 0:

Er0

[
e− λ2

2 F (T )
]

= rλ
0

Γ(λ/2)

∫ ∞

0
v

λ
2 −1(1 + 2vT )−(1+λ)e−

r2
0v

1+2vT dv.

Performing the change of variable w := T v
1+2vT , so that v = w

T (1−2w) , we have for all λ > 0:

Er0

[
e− λ2

2 F (T )
]

= rλ
0

Γ(λ/2)T λ/2

∫ 1/2

0
w

λ
2 −1(1 − 2w)λ/2e−r2

0w/Tdw. (10.9.4)
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Step 2: In fact, we prove the asymptotic expansion:

Er0

[
e− λ2

2 F (T )
]

=
λ→0+

1 − λ

2

∫ ∞
r2

0
2T

e−u

u
du +O(λ2). (10.9.5)

We have for all x > 0, Γ(x+ 1) = xΓ(x) and Γ(1) = 1 so that

Γ(x) ∼
x→0+

1
x
.

Then, using (10.9.4) and the change of variable w = Tu/r2
0:

Er0

[
e− λ2

2 F (T )
]

= 1
Γ
(

λ
2

) ∫ r2
0

2T

0
u

λ
2 −1

(
1 − 2Tu

r2
0

)λ/2
e−udu.

Using the definition of the Gamma function and decomposing the integral in two parts, we have

1−Er0

[
e− λ2

2 F (T )
]

= 1
Γ
(

λ
2

)
∫ r2

0
2T

0
u

λ
2 −1e−u

(
1−
(

1−2Tu
r2

0

)λ/2
)
du+

∫ ∞
r2

0
2T

u
λ
2 −1e−udu

= : I1+I2.

We use the expansion (1 − x)α = ∑∞
k=0(α log(1 − x))k/k! for |x| < 1 and α → 0 in order to

analyze the first integral. This gives the following asymptotic equivalence

I1 =
λ→0+

−λ2

4

∫ r2
0

2T

0
u−1e−u log

(
1 − 2Tu

r2
0

)
du+ o(λ2) = O(λ2).

And on the other side:

I2 = 1
Γ
(

λ
2

) ∫ ∞
r2

0
2T

u
λ
2 −1e−udu =

λ→0+

λ

2

∫ ∞
r2

0
2T

e−u

u
du +O(λ2).

From here we obtain the asymptotic expansion (10.9.5).
Step 3: We get (10.9.3) from the expansion (10.9.5) and using Karamata Tauberian theorems

(see [EKM97], Corollary A3.10):

Proposition 10.9.4. Let df be a measure on R+, F (x) :=
∫ x

0 df , f̂(λ) :=
∫∞

0 e−λxF (x)dx,
0 ≤ γ < 1 and let L > 0. Then the following are equivalent:

1. 1 − f̂(λ) ∼ Lλγ , λ → 0+

2. 1 − F (x) ∼ L

Γ(1 − γ)x
−γ , x → ∞.

Next we will give an estimate for E[F (T ∧ ζε)p] in the case of the modified algorithm for
reflected Brownian motion.

Lemma 10.9.5. We define the stopping time ζε := inf{t ∈ [0, T ] : R2
t /(T − t) ≤ ε}. Then we

have the following bound for p ∈ (1, 2) and ε > 0 small enough:

Er0 [F (T ∧ ζε)p] ≤ C

(
1 + log

(2T
r2

0

))
(εT )1−p . (10.9.6)
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Proof. By [JYC09, (6.2.3)], the density of Rt in r is

r

t

(
r

r0

)ν

e−
r2+r2

0
2t Iν

(
rr0
t

)
, (10.9.7)

where ν = d
2 − 1 and d is the dimension of the Bessel process. Taking d = 2, we have:

Er0 [F (T ∧ ζε)p] ≤
∫ T

0
Er0

[
1
R2p

t

1
Rt≥

√
ε(T −t)

]
dt =

∫ T

0

∫ ∞
√

ε(T −t)

1
r2p−1t

e−
r2+r2

0
2t I0

(
rr0
t

)
drdt

=
∫ ∞

√
εT

∫ T

0

1
r2p−1t

e−
r2+r2

0
2t I0

(
rr0
t

)
dtdr +

∫ √
εT

0

∫ T

T −r2/ε

1
r2p−1t

e−
r2+r2

0
2t I0

(
rr0
t

)
dtdr

=: I1 + I2.

Then, using (10.9.1) for both I1 and I2:

I1 ≤
∫ ∞

√
εT

1
r2p−1

∫ T

0

1
t
e− (r−r0)2

2t dtdr =
∫ ∞

√
εT

1
r2p−1

∫ ∞

(r−r0)2
2T

e−v

v
dvdr

=
∫ √

2T +r0

√
εT

1
r2p−1

∫ ∞

(r−r0)2
2T

e−v

v
dvdr +

∫ ∞
√

2T +r0

1
r2p−1

∫ ∞

(r−r0)2
2T

e−v

v
dvdr.

But we have, for all a ≥ 0:∫ ∞

a

e−x

x
dx ≤

{
e−a if a ≥ 1,
e−1 + log(1/a) if a < 1.

So that

I1 ≤
∫ √

2T +r0

√
εT

dr

r2p−1

(
e−1 + log

( 2T
(r − r0)2

))
+
∫ ∞

√
2T +r0

dr

r2p−1 e
− (r−r0)2

2T

∼
ε→0

(εT )1−p

2(p− 1)

(
e−1 + log

(2T
r2

0

))
.

For the second integral, we have:

I2 ≤
∫ √

εT

0

1
r2p−1

∫ T

T −r2/ε
e− (r−r0)2

2t
dt

t
dr

=
∫ √

εT

0

1
r2p−1

∫ (r−r0)2

2(T −r2/ε)

(r−r0)2
2T

e−v

v
dvdr ≤

∫ √
εT

0

1
r2p−1

∫ (r−r0)2

2(T −r2/ε)

(r−r0)2
2T

dv

v
dr

= −
∫ √

εT

0

1
r2p−1 log

(
1 − r2

εT

)
dr = − 1

(εT )p−1

∫ 1

0

1
u2p−1 log(1 − u2)du,

where the last integral converges as soon as p < 2.

10.10 Appendix: Proofs in Section 10.4

Proof of Theorem 10.4.2 in the case that D = ⟨π/m⟩. We apply the method of images in R2.
Let f : D → [0,+∞) be a non-negative continuous function with compact support. The heat
equation with boundary conditions

∂tu(t, x) = 1
2∆u(t, x), (t, x) ∈ [0,+∞) × D

u(0, x) = f(x), x ∈ D
∇u(t, x) · n(x) = 0, t > 0, x ∈ ∂D,

(10.10.1)
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where n(x) denotes the inward unitary orthogonal vector on the boundary, can be rewritten as
a partial differential equation in polar coordinates (r, θ) as described in [MNP00, Chapter 1].
Furthermore if we perform the change of variable z = log(r), we obtain a parabolic problem
with non-constant coefficients in a strip with mixed type boundary condition. The existence and
uniqueness for this PDE is treated in [LSU68, chapter IV, Theorem 5.3]. From this reference
and the Feyman-Kac representation theorem we obtain that

u(t, x) := Ex [f(Xt)]

satisfies the heat equation on D described above. Now we define the function

f̃ : R2 → R
y 7→ f(T−1

k y) for y ∈ Dk,

and for t ≥ 0 and x ∈ R2,
ũ(t, x) := Ex

[
f̃(Wt)

]
.

Then ũ satisfies the heat equation on R2 with f̃ as initial condition, so that

ũ(t, x) = 1
2πt

∫
R2
f̃(y)e− |x−y|2

2t dy = 1
2πt

2m−1∑
k=0

∫
Dk

f̃(y)e− |x−y|2
2t dy = 1

2πt

∫
D
f(y)

2m−1∑
k=0

e− |x−Tky|2

2t dy.

On the other hand, u and ũ satisfy the same boundary equation on D. Indeed, for all x ∈ D,
f̃(x) = f(x) so u and ũ satisfy the same initial conditions. For x ∈ ∂D−, k = 0, . . . , 2m − 1
and y ∈ D, we have

(x− Tky) · n(x) = −(x− T2m−1−k
y) · n(x),

|x− Tky|2 = |x− T2m−1−k
y|2,

so that

∇ũ(t, x) · n(x) = − 1
2πt2

∫
D
f(y)

2m−1∑
k=0

(x− Tky) · n(x)e− |x−Tky|2

2t dy

= − 1
2πt2

∫
D
f(y)

m−1∑
k=0

(x− Tky) · n(x)e− |x−Tky|2

2t dy

+ 1
2πt2

∫
D
f(y)

m−1∑
k=0

(x− T2m−1−k
y) · n(x)e−

|x−T2m−1−k
y|2

2t dy = 0.

If x ∈ ∂D+, we get the same result noting that for all y ∈ D and k = 0, . . . , 2m− 1,

(x− T(k+1) mod 2m
y) · n(x) = −(x− T(2m−k) mod 2m

y) · n(x),
|x− T(k+1) mod 2m

y|2 = |x− T(2m−k) mod 2m
y|2,

So u(t, x) = ũ(t, x) for all t ≥ 0 and x ∈ D, and

Ex [f(Xt)] = 1
2πt

∫
D
f(y)

2m−1∑
k=0

e− |x−Tky|2

2t dy.
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Proof of Theorem 10.4.2 in the general case. As in the above proof we consider

u(t, x) = Ex [f(Xt)] , (10.10.2)

where t ≥ 0, x ∈ D, and f : D → [0,+∞) is a non-negative continuous function with compact
support. Then u is the solution of the partial differential equation (10.10.1). Considering the
formula obtained for the case α = π/m above, we would like to express it so that it does not
depend explicitly on m. We first assume that α = π/m for some m ∈ N. In order to switch
to polar coordinates, let x = (r0 cos(θ0), r0 sin(θ0)), y = (r cos(θ), r sin(θ)) and recall that ϑk

for 0 ≤ k ≤ 2m − 1 is the angle of Tk(y) in [0, 2π), i.e. Tk(y) = (r cos(ϑk), r sin(ϑk)) with
ϑ2k = 2kα+ θ and ϑ2k+1 = 2(k + 1)α− θ. We then rewrite (10.4.3):

Px(Xt ∈ dy) = r

2πte
−

r2+r2
0

2t

2m−1∑
k=0

e
rr0

t
cos(θ0−ϑk)drdθ. (10.10.3)

We use the following identity (see [GR07, page 933, (8.511.4)]), valid for γ, z ≥ 0:

eγz = I0(z) + 2
∞∑

n=1
Tn(γ)In(z),

where Tn is the nth Tchebychev’s polynomial of the first kind and In the modified Bessel function
of the first kind with order n. Then the result (10.3.4) follows because Tn(cos(θ)) = cos(nθ) and

2m−1∑
k=0

cos(n(θ0 − ϑk)) =
{

2m cos(nθ) cos(nθ0) if n is a multiple of m,
0 otherwise.

Using the above properties and m = π/α, we obtain

Px(Xt ∈ dy) =2r
tα
e−(r2+r2

0)/(2t)
(

1
2I0

(
rr0
t

)
+

∞∑
n=1

Inπ/α

(
rr0
t

)
cos

(
nπθ

α

)
cos

(
nπθ0
α

))
drdθ,

(10.10.4)

which gives a formula which does not depend on m. Now, we have to check that this formula is
well defined for any α ∈ (0, π) and that it is the unique solution the partial differential equation
(10.10.1) with D = ⟨α⟩.

This is explained in Corollary 10.10.1. In our current situation, d = 2, the eigenvalues are
λj := (jπ/α)2 for j ≥ 0 and the eigenfunctions are mj(θ) =

√
2/α cos (jπθ/α), j ≥ 1 and

m0 ≡ 1/
√
α.

Corollary 10.10.1. Consider a general d-dimensional cone generated by all rays emanating
from the origin and passing through a compact subset D ⊂ Sd−1 which has smooth boundary.
Consider X to be the normally reflected Brownian motion at the boundary of the cone. Then
Xt has a density given by

Px(Xt ∈ dy) = re−
r2+r2

0
2t

t(rr0)d/2−1

(
Iα0

(
rr0
t

)
m0(θ)m0(θ0) +

∞∑
n=1

Iαn

(
rr0
t

)
mn(θ)mn(θ0)

)
drdθ.

(10.10.5)

To explain the elements in the above formula, denote by LSd−1, the Laplace-Beltrami operator
on Sd−1. With the above assumptions, there exists a complete set of orthonormal eigenfunctions
mj with corresponding eigenvalues 0 ≤ λ0 < λ1 ≤ λ2 < . . . satisfying{

LSd−1mj(x) = −λjmj(x) for x ∈ D
∇mj(x) · n(x) = 0 for x ∈ ∂D,
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αj =

√
λj +

(
d

2 − 1
)2
.

Proof. The beginning of the proof is the same as in the statements following (10.10.1) in what
refers to the existence and uniqueness of the associated PDE. Existence and uniqueness for the
reflected process in the generalized cone can be deduced from [Bas96] (see also [BBC05, Remark
4.1] and the references therein).

In order to prove that (10.10.5) satisfies the associated PDE, one follows a similar proof in
[BnS97] for the killed case. The proof in the reflected case follows line by line, the proof in
[BnS97], except that the required estimates and properties of the eigenvalues and eigenfunctions
of the Laplace-Beltrami operator in the case of Neumann boundary conditions have to be referred
to the proper literature (for this see, [GN13], [Gri02] and [Kro92]) although the estimates do not
change as far as it relates to the proof of [BnS97, Lemma 1] with the corresponding corrections
of typos. In order for the required estimates to be satisfied one needs that the generalized
d-dimensional cone is generated by all rays emanating from the origin and passing through a
compact subset D ⊂ Sd−1 which has smooth boundary.

We also remark that the density expressions in [BnS97] are written under polar measures
which explains why our expressions have an extra r which appears due to the Jacobian of the
change of coordinates.

We also provide a full elementary proof that (10.10.4) satisfies the initial conditions in the
Supplementary Material.

10.11 Appendix: A hint for higher dimensions

The following proposition is provided so as to hint at the possibilities in dimension higher than
two. It shows that dimension two is the case which is mathematically difficult to treat.

Proposition 10.11.1. Let (Rt)t≥0 be a Bessel process in dimension d ≥ 3 and let F (T ) =∫ t
0 ds/R

2
s. Then:

Er0 [F (T )] < +∞.

Proof. The density of Rt in r is given in (10.9.7), so by performing the change of variable r = ut,
we have

Er0 [F (T )] =
∫ T

0

∫ ∞

0

1
rt

(
r

r0

)ν

e−
r2+r2

0
2t Iν

(
rr0
t

)
drdt

= 1
rν

0

∫ T

0
tν−1

∫ ∞

0
Iν(ur0)e− tu2

2 −
r2

0
2t uν−1dudt.

Note that for all ε > 0,
∫ T

ε
tν−1

∫ ∞

0
Iν(ur0)e− tu2

2 −
r2

0
2t uν−1dudt ≤

(∫ T

ε
e−

r2
0

2t tν−1dt

)(∫ ∞

0
Iν(ur0)e−εu2/2uν−1du

)
< ∞,

where for we used the Proposition 10.9.2 for the convergence of the second integral. So to prove
the convergence of the integral, we only need to prove the convergence for the integral in t
around zero. To do so we use Proposition 10.9.2 again so that for ν, r0 > 0:

Er0 [F (ε)] ≤ 1
rν

0

∫ ε

0
tν−1e−

r2
0

2t

∫ ∞

0

(
eur0 + 1

π(ν + ur0)

)
e− tu2

2 uν−1dudt < ∞.
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In fact, using that ν > 0, we have

I1 := 1
rν

0

∫ ε

0
tν−1

∫ ∞

0
e− t

2 (u− r0
t )2

uν−1dudt ≤ 1
rν

0

∫ ε

0
tν−1

∫ ∞

−∞
e− t

2 u2
(

|u| + r0
t

)ν−1
dudt

= 2
rν

0

∫ ε

0
tν−3/2

∫ ∞

0
e−u2/2

(
u√
t

+ r0
t

)ν−1
dudt ≤ 2

rν
0

∫ ε

0
tν−3/2

∫ ∞

0
e−u2/2

(
u+ r0
t

)ν−1
dudt

= 2
rν

0

∫ ε

0
t−1/2

∫ ∞

0
e−u2/2 (u+ r0)ν−1 dudt < ∞.

As for the second integral, we have

I2 := 1
rν

0

∫ ε

0
tν−1

∫ ∞

0

1
π(ν + ur0)e

− tu2
2 −

r2
0

2t uν−1dudt ≤ 1
rν

0

∫ ε

0
tν−1e−

r2
0

2t dt

∫ ∞

0

uν−1

π(ν + ur0)du < ∞.
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10.12 Supplementary material

10.12.1 Proof of the convergence to the initial condition when t → 0
In this section, we prove the following result:
Proposition 10.12.1. The formula (10.4.4) satisfies the initial conditions of the heat equation,
i.e. for all functions f : D → R continuous with compact support, r0 > 0 and θ0 ∈ (0, α):∫

D
f̂(r, θ)2r

tα
e−(r2+r2

0)/2t

(
1
2I0

(
rr0
t

)
+

∞∑
n=1

Inπ/α

(
rr0
t

)
cos

(
nπθ

α

)
cos

(
nπθ0
α

))
drdθ

(10.12.1)
−→
t→0

f̂(r0, θ0), (10.12.2)

where f̂ : [0,∞) × [0, α] → R denotes the function f expressed in polar coordinates.

For the proof, we use the following representation:

∀x > 0, ∀α ≥ 0, Iα(x) = 1
π

∫ π

0
ex cos(u) cos(αu)du− sin(απ)

π

∫ ∞

0
e−x cosh(u)−αudu.

Let us denote by A1 and A2 the two terms appearing in the integral representation in (10.12.2)
after replacing with the above formula, with dn = 1

2 if n = 0 and dn = 1 for n ≥ 1:

A1 := 2
απ

∫
D

r

t
f̂(r, θ)e−

r2+r2
0

2t

∞∑
n=0

dn cos
(
nπθ

α

)
cos

(
nπθ0
α

)∫ π

0
e

rr0
t

cos(u) cos
(
nπ

α
u

)
dudrdθ,

A2 := − 2
απ

∫
D

r

t
f̂(r, θ)e−

r2+r2
0

2t

∞∑
n=1

sin
(
nπ2

α

)
cos

(
nπθ

α

)
cos

(
nπθ0
α

)∫ ∞

0
e− rr0

t
cosh(u)− nπ

α
ududrdθ.
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Proposition 10.12.2. We have A2 −→
t→0

0.

Proof. Step 1: For the moment let us assume that the integration order can be switched. For
all a ∈ R and b > 0, we have:

g(a, b) :=
∞∑

n=0
sin(na)e−nb = ℑ

( ∞∑
n=0

eina−nb

)
= e−b sin(a)

(1 − e−b cos(a))2 + e−2b sin2(a)
. (10.12.3)

We use the following trigonometric identity written in compact form

4 cos(a) cos(b) sin(c) = sin(a+ b+ c) + sin(c− a− b) + sin(a− b+ c) + sin(c− a+ b)
(10.12.4)

Ajk(θ) :=π

α
((−1)jθ + (−1)kθ0 + π),

∞∑
n=1

cos
(
nπθ

α

)
cos

(
nπθ0
α

)
sin
(
nπ2

α

)
e− nπ

α
u = 1

4

1∑
j,k=0

g

(
Ajk(θ), π

α
u

)
.

Now we prove that for all j, k ∈ {0, 1}, we have:

Jj,k := 1
t

∫
D
rf̂(r, θ)e−

r2+r2
0

2t

∫ ∞

0
e− rr0

t
cosh(u)g

(
Ajk(θ), π

α
u

)
dudθdr −→

t→0
0.

We will do the analysis of Jj,k dividing the integration region in two: J1
j,k which comprises the

integral on the region D × (1,∞) and the remaining which is denoted by J2
j,k. With this in

mind, note that g is continuous on [0,∞) × (0, α) and is locally integrable in (0, 0). In fact, for
all a ∈ R and b > 0:

g(a, b) = e−b sin(a)
(1 − e−b cos(a))2 + e−2b sin2(a)

∼
a,b→0

a(
(1 − e−b

(
1 − a2

2

))2
+ a2

∼ a

a2 + b2 . (10.12.5)

Moreover,∫
[0,1]2

a

a2 + b2dadb =
∫ 1

0

[1
2 log(a2 + b2)

]a=1

a=0
db = 1

2

∫ 1

0

(
log(1 + b2) − log(b2)

)
db < ∞.

Next, note that ∂bg(a, b) is negative, so

∀u ≥ 1, ∀θ ∈ R,
∣∣∣∣g (Ajk(θ), π

α
u

)∣∣∣∣ ≤ e− π
α

(1 − e
π
α )2

,

and since u 7→ u2/ cosh(u) is non-negative and bounded above, there exists B > 0 such that

|J1
jk| ≤ C1

t

∫ ∞

0
re−

r2+r2
0

2t

∫ ∞

1
e−B

rr0
t

u2
dudr ≤ C2√

tr0
e−

r2
0

2t (2t)3/4
∫ ∞

0

√
r′e−r′2

dr′ −→
t→0

0.

On the other hand, using (10.12.5) and the continuity of g we obtain

|J2
jk| ≤ ||f ||∞

1
t

∫ ∞

0
re−

r2+r2
0

2t dr ·
∫ 1

0

∫ α

0

∣∣∣∣g (Ajk(θ), π
α
u

)∣∣∣∣ dθdu −→
t→0

0.

So that

|A2| ≤ 1
2απ

1∑
j,k=0

|Jjk| −→
t→0

0.
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Step 2: Now, we prove that one can interchange the order of the integrals and sum in
A2. Note that Fubini’s theorem does not apply here because of the factors cos(nπθ/α) and
cos(nπθ0/α). A computation similar to (10.12.3) leads to, for all N ∈ N:

gN (a, b) :=
∞∑

n=N

sin(na)e−nb = ℑ
( ∞∑

n=N

e−nb+ina

)
= e−Nb sin(Na) − e−b sin((N − 1)a)

(1 − e−b cos(a))2 + e−2b sin2(a) .

Next, we prove that, for all j, k ∈ {0, 1} and for all t > 0, denoting RN
jk the difference between

the infinite sum and the partial sum up in A2 to N ,

RN
jk := 1

t

∫
D
re−

r2+r2
0

2t f̂(r, θ)
∫ ∞

0
e− rr0

t
cosh(u)gN

(
Ajk(θ), π

α
u

)
dudθdr −→

N→∞
0.

Let us remark that

eNbgN (a, b) = sin(Na) − e−b sin((N − 1)a)
(1 − e−b cos(a))2 + e−2b sin2(a) ∼

a,b→0

a

a2 + b2 ,

so that (a, b) 7→ eNbgN (a, b) is integrable in (0, 0). We denote RN,1
jk and RN,2

jk the two terms
obtained after splitting the integral with respect to u on (0, 1) and (1,∞) respectively. We have
then

|RN,2
jk | ≤ 1

t
||f ||∞

∫ ∞

0
re−

r2+r2
0

2t dr

∫ 1

0
e− Nπu

α

∫ α

0
e

Nπu
α

∣∣∣∣gN

(
Ajk(θ), π

α
u

)∣∣∣∣ dθdu −→
N→∞

0,

where we use Lemma 10.12.3 for the above convergence. Moreover for all u ≥ 1, θ ∈ R,

|gN (Ajk(θ), π
α
u)| ≤ e−N π

α
u 2

(1 − e− π
α )2

,

so we have

|RN,1
jk | ≤ 1

t
||f ||∞

∫ ∞

0
re−

r2+r2
0

2t dr

∫ ∞

1
e−N π

α
u 2

(1 − e− π
α )2

du −→
N→∞

0.

From the above arguments we obtain the conclusion: RN
jk → 0 for all j, k ∈ {0, 1}.

Lemma 10.12.3. Let b > 0 and let f ∈ L1((0, b)) be non-negative and continuous. Then:∫ b

0
e−Nxf(x)dx −→

N→∞
0.

Proof. Let ε > 0 and choose δ > 0 such that
∫ δ

0 f(x)dx ≤ ε. Then for N big enough:
∫ b

0
e−Nxf(x)dx ≤

∫ δ

0
f(x)dx+ e−Nδ||f ||1 ≤ 2ε.

Proposition 10.12.4. We have A1 −→
t→0

f̂(r0, θ0).
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Proof. First, let us assume that the integration order can be exchanged. This will be further
discussed in Step 5.

Step 1 : We exchange the order of integrals in A1 as:

A1 =
∫ π

0
f1(u, t)f2(u, t)du,

f1(u, t) := 2√
tαπ

e−
r2

0 sin2(u)
2t ,

f2(u, t) :=
∫ ∞

0

re− (r−r0 cos(u))2
2t

√
t

∞∑
n=0

dn cos
(
nπθ0
α

)
cos

(
nπ

α
u

)∫ α

0
f̂(r, θ) cos

(
nπθ

α

)
dθdr.

We will study the limit of A1 in the above integral order. First, we treat the sum inside
f2(u, t) using trigonometric identities for cos

(
nπ(θ0±u)

α

)
. We see that is enough to find the limit

for:

1
2

∞∑
n=0

dn

(
cos

(
nπ(θ0 + u)

α

)
+ cos

(
nπ(θ0 − u)

α

))∫ α

0
f̂(r, θ) cos

(
nπθ

α

)
dθ.

In our case, we will use the following normalization of the classical Fourier inversion formula:

Theorem 10.12.5 (Fourier Formula). Let g : R → R be a periodic and continuous function of
period 2L. Then the following series converges for all x ∈ R and:

g(x) = a0
2 +

∞∑
n=1

an cos
(
nπx

L

)
+ bn sin

(
nπx

L

)
,

with an = 1
L

∫ L

−L
g(θ) cos

(
nπθ

L

)
dθ and bn = 1

L

∫ L

−L
g(θ) sin

(
nπθ

L

)
dθ.

Next, we extend the definition of the function f̂ . For all r ≥ 0 and θ ∈ [0, α], we define
f̂(r,−θ) := f̂(r, θ), and we make it 2α-periodic by defining f̂(r, θ + 2kα) = f̂(r, θ). This way, f̂
is an even and 2α-periodic function and is still continuous. With this definition, and using the
Fourier inversion formula, we get for θ0 ± u ∈ (−α, α):

1
2

∞∑
n=0

dn cos
(
nπ(θ0 ± u)

α

)∫ α

0
f̂(r, θ) cos

(
nπθ

α

)
dθ

= 1
4

∞∑
n=0

dn cos
(
nπ(θ0 ± u)

α

)∫ α

−α
f̂(r, θ) cos

(
nπθ

α

)
dθ = α

4 f̂(r, θ0 ± u). (10.12.6)

Step 2 : Next, let us study f2(u, t) in two separate cases the integral in r:

∫ ∞

0
f̂(r, θ0 ± u)re

− (r−r0 cos(u))2
2t

√
t

dr.

Case 1: If r0 cos(u) > 0:

re− (r−r0 cos(u))2
2t

√
t

= 1√
t
(r − r0 cos(u))e− (r−r0 cos(u))2

2t + r0 cos(u)e
− (r−r0 cos(u))2

2t

√
t

.
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The total mass of the first term is

∫ ∞

0

1√
t
(r − r0 cos(u))e− (r−r0 cos(u))2

2t dr =

−te
− (r−r0 cos(u))2

2t

√
t

∞

r=0

=
√
te−

r2
0 cos2(u)

2t −→
t→0

0.

And the second term is, up to the multiplicative constant
√

2π, an approximation of the unity
around r = r0 cos(u) > 0, so that in this case, the integral in r converges to

√
2πr0 cos(u)f̂(r0 cos(u), θ0 ± u).

Case 2: If r0 cos(u) ≤ 0: The total mass of 1√
t
re−(r−r0 cos(u))2/(2t) is bounded above by

1√
t

∫ ∞

0
re− r2

2t dr =
√
t −→

t→0
0,

so that the integral in r converges to 0. We remark here that convergences in the above two
cases are uniform with respect to u within their respective domains.

Step 3 : From the previous step, we consider now the integral with respect to u. Taking
into consideration the previous step, we can restrict to the case cos(u) > 0 or equivalently
u ∈ [0, π/2]. That is, consider

I± := 1√
t

∫ π/2

0
f̂(r0 cos(u), θ0 ± u)e−

r2
0 sin2(u)

2t cos(u)du.

Note that for all ε > 0, by dominated convergence,

1√
t

∫ π/2

ε
f̂(r0 cos(u), θ0 ± u)e−

r2
0 sin2(u)

2t cos(u)du −→
t→0

0.

Fix δ > 0 and take ε small enough such that cos(u) ≃ 1 and sin(u) ≃ u for all u ∈ [0, ε]. Then

1√
t

∫ ε

0
e−

r2
0 sin2(u)

2t cos(u)du ≃
t→0

1√
t

∫ ε

0
e−

r2
0u2

2t du −→
t→0

√
π

2r2
0
.

Thus, up to the multiplicative constant
√
π/(2r2

0), u 7→ e−r2
0 sin2(u)/(2t) cos(u) is an approximation

of the unity around u = 0, so that

I+ + I− −→
t→0

√
2π
r2

0
f̂(r0, θ0).

Step 4 : Now, we put all previous steps together. In Step 1, we proved that for all t > 0:

f2(u, t) :=
∫ ∞

0

re− (r−r0 cos(u))2
2t

√
t

α

4 (f̂(r, θ0 + u) + f̂(r, θ0 − u))dr.

We have proved in Step 2 that for all u, f2(u, t) converges when t → 0 to

f2(u) := α

4
√

2πr0 cos(u)
(
f̂(r0 cos(u), θ0 + u) + f̂(r0 cos(u), θ0 − u)

)
,

and in Step 3 that
∫ π

0 f1(u, t)f2(u)du converges when t → 0 to

lim
t→0

2
απ

√
t

∫ π/2

0

α

4
√

2πr0(f̂(r0 cos(u), θ0 + u) + f̂(r0 cos(u), θ0 − u))e−
r2

0 sin2(u)
2t cos(u)du
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= 2
απ

α

4
√

2πr0

√
π

2r2
0

2f̂(r0, θ0) = f̂(r0, θ0).

To end the proof of the convergence, we have to show that

lim
t→0

∫ π

0
f1(u, t)f2(u, t)du = lim

t→0

∫ π

0
f1(u, t)f2(u)du.

We have:∣∣∣∣∫ π

0
f1(u, t)f2(u, t)du− f1(u, t)f2(u)du

∣∣∣∣ ≤
(

sup
t

∫ π

0
f1(u, t)du

)
||f2(·, t) − f2(·)||∞,

and ||f2(·, t) − f2(·)||∞ → 0 since in Step 2, the convergence is uniform with respect to u.
Step 5 : We now prove that for all r0, θ0, t fixed, the integration order can be switched.

Note that for fixed n, by Fubini’s theorem, the integration order in r, θ and u can be switched,
as ∫ ∞

0

∫ α

0

∣∣∣∣∣f̂(r, θ)e−
r2+r2

0
2t cos

(
nπθ

α

)
cos

(
nπθ0
α

)∣∣∣∣∣
∫ π

0

∣∣∣∣e rr0
t

cos(u) cos
(
nπu

α

)∣∣∣∣ dudθdr
≤ ||f ||∞απ

∫ ∞

0
e−

r2+r2
0

2t e
rr0

t dr < ∞.

So that the order of integration can be exchanged for every partial sum. Now, for N ∈ N:∣∣∣∣∣
∫ π

0
e−

r2
0 sin2(u)

2t

∫ ∞

0
re− (r−r0 cos(u))2

2t

N∑
n=0

dn cos
(
nπθ0
α

)
cos

(
nπ

α
u

)∫ α

0
f̂(r, θ) cos

(
nπθ

α

)
dθdrdu

−
∫ π

0
e−

r2
0 sin2(u)

2t

∫ ∞

0
re− (r−r0 cos(u))2

2t

∞∑
n=0

dn cos
(
nπθ0
α

)
cos

(
nπ

α
u

)∫ α

0
f̂(r, θ) cos

(
nπθ

α

)
dθdrdu

∣∣∣∣∣
≤ α

4

∫ ∞

0
re−

r2+r2
0

2t

(∫ π

−π
e

rr0
t

cos(u)|f̂N (r, θ0 + u) − f̂(r, θ0 + u)|du
)
dr

where f̂N denotes the N th partial Fourier sum of f̂. Then, by Cauchy-Schwarz inequality:

≤ α

4

∫ ∞

0
re−

r2+r2
0

2t

√∫ π

−π

(
f̂N (r, θ0 + u) − f̂(r, θ0 + u)

)2
du

√∫ π

−π
e

2rr0
t

cos(u)dudr

≤ α

4

√⌈
π

α

⌉
sup

r
||f̂N (r, ·) − f̂(r, ·)||2

∫ ∞

0
re−

r2+r2
0

2t

√
2πe

rr0
t dr︸ ︷︷ ︸

<+∞

.

Using Parseval’s equality, we obtain

||f̂N (r, ·) − f̂(r, ·)||22 =
∞∑

n=N+1

∫ α

−α
cos

(
nπξ

α

)2
dξ

1
α2

(∫ α

−α
f̂(r, θ) cos

(
nπθ

α

)
dθ

)2

=
∞∑

n=N+1

∫ α

−α
cos

(
nπξ

α

)2
dξ · 1

n2π2

(∫ α

−α
∂θf̂(r, θ) sin

(
nπθ

α

)
dθ

)2

≤
∞∑

n=N+1

4α3

n2π2 ||∂θf̂ ||∞.

Although the extension of f̂ on [−α, α] is not an element of C1, we can perform the integration
by parts on each interval [0, α] and [−α, 0]. Then, ||f̂N (r, ·)− f̂(r, ·)||2 → 0 as N → ∞ uniformly
in r. That way we obtain the convergence to 0 of the difference between the partial sum and
the series.
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