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Résumé: Les avancées rapides des télé-
communications au cours des dernières dé-
cennies ont révolutionné la manière dont les
gens échangent des informations. Grâce
à ces progrès, l’utilisateur moyen peut dé-
sormais communiquer avec d’autres person-
nes à travers le monde en temps réel et
avec un délai minimal. Avec environ 60%
de la population mondiale ayant accès à
Internet, des milliards d’individus interagis-
sent en partageant du contenu généré par
les utilisateurs (UGC) sous diverses formes.
Ce type de contenu, qui comprend souvent
des critiques et des opinions, constitue une
source précieuse d’informations, offrant une
vue d’ensemble des tendances mondiales.
La traduction automatique joue un rôle vi-
tal en permettant une communication fluide
et en facilitant le traitement automatique de
l’UGC à des fins d’exploration de données.
Cependant, la traduction des UGC présente
des défis uniques par rapport à la traduction
d’un texte traditionnel. L’UGC est très pro-
ductif et présente divers phénomènes tels
que des caractères répétés, des erreurs ty-
pographiques, des contractions, du jargon
et des structures de phrases non conven-
tionnelles. Ces spécificités entraînent un
nombre important de mots hors vocabulaire
(OOV) et de séquences rares, qui posent des
problèmes car ils ne sont pas représentés
de manière adéquate dans les corpus paral-
lèles standard utilisés pour entraîner les mod-
èles de traduction automatique. En outre, les
techniques conventionnelles d’adaptation au
domaine, telles que le “fine-tuning”, n’ont
qu’un succès limité dans la résolution de
ces problèmes. Elles souffrent d’une dégra-
dation des performances lorsqu’elles sont
appliquées aux données du domaine et ne

sont pas en mesure de suivre l’évolution con-
stante de la nature de l’UGC.
Dans cette étude, nous nous concentrons
sur la tâche de traduction automatique
des UGC dans le scénario “zero-shot”, où
nous nous abstenons d’utiliser des don-
nées d’apprentissage spécifiques aux UGC.
Notre objectif est de développer des architec-
tures de traduction automatique plus général-
isées, capables de gérer le “distributional
shift”, inhérente à l’évaluation de la traduc-
tion des UGC. Dans la phase initiale de notre
recherche, nous avons consacré nos efforts
à l’identification et à la quantification des
spécificités de l’UGC qui entravent la perfor-
mance de la traduction. Nous avons égale-
ment créé des cadres d’évaluation et des
collections de données pour nous aider dans
cette tâche. À l’aide de modèles “off-the-
shelf”, nous étudions les difficultés rencon-
trées par les systèmes de traduction automa-
tique lorsqu’ils traduisent des UGC et nous
établissons un lien entre les erreurs et les
mécanismes sous-jacents.
Ensuite, nous nous penchons sur l’étude
et la proposition de différentes méthodes
pour relever les défis posés par l’UGC. Ces
méthodes comprennent l’exploration des
pipelines de normalisation, l’emploi de tech-
niques de tokenisation plus granulaires et
l’utilisation de modèles de variables latentes
pour améliorer la robustesse des systèmes
de traduction automatique. Pour chacune
de ces approches, nous évaluons systéma-
tiquement les performances et la robustesse
des systèmes, nous effectuons une analyse
détaillée des erreurs et nous proposons des
pistes prometteuses pour aborder la traduc-
tion automatique des UGC dans une évalua-
tion “zero-shot”.
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Abstract: The rapid advancements in
telecommunications over the past few
decades have revolutionized the way peo-
ple exchange information. Thanks to these
advancements, the average user can now
communicate with others across the globe
in real-time and with minimal delay. With
approximately 60% of the global population
having Internet access, billions of individuals
interact by sharing user-generated content
(UGC) in various forms. This kind of content,
which often includes reviews and opinions,
provides a valuable source of information, of-
fering a comprehensive view of global trends.
Machine Translation (MT) plays a vital role
in enabling smooth communication and facil-
itating the automatic processing of UGC for
data mining purposes.
However, translating UGC presents unique
challenges compared to translating tradi-
tional text. UGC is highly productive and ex-
hibits various phenomena such as repeated
characters, typographical errors, contrac-
tions, jargon, and unconventional sentence
structures. These specificities lead to a sig-
nificant number of Out-of-Vocabulary tokens
(OOVs) and rare sequences, which pose
problems since they are not adequately rep-
resented in the standard parallel corpora
used to train MT models. Additionally, con-
ventional domain adaptation techniques like
fine-tuning have limited success in address-
ing these challenges. They suffer from per-

formance degradation when applied to in-
domain data and are unable to keep up with
the ever-evolving nature of UGC.
In this study, we focus on the task of auto-
matically translating UGC in the zero-shot
scenario, where we restrain from using any
UGC-specific training data. Our aim is to de-
velop more generalized MT architectures that
can handle the distributional drift inherent in
UGC. In the initial phase of our research,
we dedicated our efforts to identifying and
quantifying the specificities of UGC that hin-
der translation performance. We have also
created evaluation frameworks and data col-
lections to aid in this endeavor. Using off-the-
shelf models, we investigate the challenges
faced by MT systems when translating UGC
and link the errors to their underlying mecha-
nisms.
Subsequently, we delve into the study and
proposal of different methods to address the
challenges posed by UGC. These methods
include exploring normalization pipelines,
employing more granular tokenization tech-
niques, and utilizing latent variable models to
enhance the robustness of MT systems. For
each of these approaches, we systematically
evaluate the performance and robustness of
the systems, conduct a detailed error analy-
sis, and offer insights into promising avenues
for tackling the automatic translation of UGC
in the zero-shot setting.
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Summary

In this work, we address the automatic translation of user-generated content (UGC), that is

to say, the content published by users on online platforms, such as social media discussion

channels or public user reviews. Translating UGC is both a necessary step to make this data

amenable to automatic processing and a way to test the robustness of NLP pipelines to this kind

of content: the way we now communicate through social networks has resulted in a fundamental

change in the quantity and fluidity of exchanges, which makes UGC a particularly rich source of

information: by automatically processing these massive, unstructured, and diverse texts, we can

provide insights of large-scale trends in – virtually – real-time if (and only if) we are able to cope

with the extreme, ever-evolving lexical and morphological variability that characterize this kind of

content.

At a time when neural networks and, more specifically, transformers, seem to provide a

solution to all NLP problems, translating UGC also constitutes an important contribution to the

question of identifying the limits of this architecture, a problematic currently at the heart of many

works in the NLP community. Indeed, due its high productivity, its multi-lingual, language-specific

and topic-specific nature, UGC is the epitome of expecting endless possibilities. Deploying MT

systems that are capable of handling UGC is highly challenging as this kind of content is not

present in the corpora usually considered to train MT systems and the ever-evolving nature of

UGC, as well as the costs of cleaning and annotating UGC data do not allow us to build the

parallel corpora necessary to learn or even to fine-tune a neural translation model. This is why

we put ourselves in a particularly difficult zero-shot scenario likely to highlight the limits of NMT.

We start this dissertation by studying UGC specificities that make it different from standard

and widely-available parallel corpora. In this respect, we investigate distinct UGC linguistic

features that we later link to translation quality. We analyze and compare the prediction errors
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that occur when translating UGC using different off-the-shelf MT baselines.

As a first approach to the task at hand, we explore UGC normalization using automatically

extracted phonetization to take into account phonemic information not contained in the corpus.

Moreover, phonemic similarities often lead to typographical errors and compressed/abbreviated

phonemic forms, which we study and aim to cope with. Subsequently, we explore the robustness

properties of MT to UGC when using different translation granularities (e.g. character-based

or subword-based tokenization) and end-to-end data-driven tokenization rules. To assess the

robustness of such models, we built an UGC evaluation framework that can isolate each of

UGC characteristic to assess their individual impact on automatic translation. Finally, in the last

part of this research, we explore, compare and propose MT architectures with more robust

learning representation by means of variational inference, and study how such models can

enforce generalization over UGC by alleviating overfitting.
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Résumé

Dans ce travail, nous abordons la traduction automatique du contenu généré par l’utilisateur

(UGC), c’est-à-dire le contenu publié par les utilisateurs sur des plateformes en ligne, comme

les canaux de discussion des médias sociaux ou commentaires publiques d’utilisateurs. La

traduction de l’UGC est à la fois une étape nécessaire pour rendre ces données exploitables

pour un traitement automatique et un moyen de tester la robustesse des pipelines NLP pour

ce type de contenu. En outre, en s’attelant à cette tâche, la technologie s’attaque à la barrière

linguistique, permettant une conversation plus fluide entre les locuteurs du monde entier, tout

en étant capable d’utiliser la langue avec laquelle les utilisateurs sont plus à l’aise. En effet,

les réseaux sociaux ont changé notre façon de communiquer, permettant une portée et une

fluidité d’échange sans précédent. Cela fait que l’UGC constitue une source d’information

particulièrement riche : en traitant automatiquement ces textes massifs, non structurés et

diversifiés, nous pouvons fournir des tendances à grande échelle en – virtuellement – temps

réel si (et seulement si) nous sommes capables de faire face à l’extrême variabilité lexicale et

morphologique, en constante évolution, qui caractérise ces textes.

En raison de sa productivité élevée, souvent multilingue, spécifique à une langue ou un ou

spécifique à un sujet, et dont les acteurs sont des millions de pairs décentralisés à travers le

monde, la traduction des UGC est l’exemple même de l’attente de possibilités infinies. Ceci

constitue un scénario particulièrement difficile pour déployer des systèmes de MT capables de

traiter le UGC car ses propriétés ne sont pas présentes dans les corpus standard, largement

utilisés pour entraîner les systèmes de traduction automatique. De plus, la grande diversité des

UGC et la présence de formes émergentes de communication, ainsi que les coûts de nettoyage

et d’annotation des données de l’UGC, imposent de fortes contraintes à la production de grands

corpus parallèles de ces textes pour l’entraînement ou l’adaptation au domaine.
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Nous rapportons et analysons les principaux problèmes des architectures de MT actuelles

lors du traitement de l’UGC et nous orientons notre étude pour aborder cette tâche sous une

évaluation détaillée, en rapportant systématiquement les résultats sur des tests UGC qui ont une

nature et source diverses, ainsi qu’en contraignant nos ressources d’entraînement à des corpus

standards et bien formatés. Dans cette ligne de pensée, nous nous concentrons principalement

sur les propriétés de robustesse des modèles de MT et visons à proposer des systèmes de

traduction plus intrinsèquement robustes et généraux.

Nous commençons cette thèse en étudiant les spécificités des UGC qui le rendent différents

des corpus parallèles standard et largement disponibles. A cet égard, nous étudions les traits

linguistiques distincts de l’UGC que nous lions ensuite à l’impact sur la performance lors de

la traduction de ce type de texte. Nous analysons et comparons les erreurs de prédiction qui

se produisent lors de la traduction d’UGC à l’aide de différents systèmes baselines de MT

standard.

Comme première approche de la tâche à accomplir, nous explorons la normalisation de l’UGC

à l’aide de la phonétisation extraite automatiquement afin de prendre en compte les informations

phonétiques non contenues dans le corpus. De plus, les similarités phonémiques conduisent

souvent à des erreurs typographiques et à des formes phonétiques compressées/abrégées, que

nous étudions et cherchons à résoudre. Par la suite, nous explorons les propriétés de robustesse

de la MT à l’UGC lors de l’utilisation de différentes granularités de traduction et des règles

de tokenisation apprises de bout en bout; et nous élaborons sur les capacités de vocabulaire

ouvert des systèmes MT au niveau des caractères. Pour évaluer la robustesse de ces modèles,

nous avons conçu un cadre d’évaluation de l’UGC qui peut isoler chacun des phénomènes de

l’UGC annotés afin d’évaluer leur impact individuel sur la traduction automatique. Enfin, dans la

dernière partie de cette recherche, nous explorons, comparons et proposons des architectures

de traduction automatique qui ont pour but d’apprendre représentations robustes en utilisant

des méthodes d’inférence variationnelle qui visent la généralisation sur l’UGC en réduisant

l’overfitting.
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Chapter 1

Introduction

In this chapter, we introduce the scope, questions, and contributions of this dissertation, before

presenting the main scientific context in which this work takes place. We will start by describing

the interest of correctly processing automatically User-Generated Content (UGC), that is to say

the content published by users of online platforms, such as social media discussion channels.

We then establish the set of questions that will be addressed throughout this dissertation, the

outline of its contents, and the contributions of this study.

1.1 Context

In recent decades, forms and channels of communication have undergone a steep change

following the revolutionary onset of the Internet and its associated technologies. This has

given regular users access to a vast and increasing number of platforms and media for content

exchange, and a reach and organized information sharing that is unprecedented in history. The

large amount of data on the Internet needs to be automatically processed to take full advantage

of it.

In this work, we specifically focus on written forms of User-Generated Content (UGC) and

study how Natural Language Processing (NLP) methods perform when treating such a kind

of text. More precisely, we focus on Machine Translation (MT), a fundamental task to tackle in

order to facilitate and ensure information sharing between speakers of different languages.

Concretely, working on UGC MT is putting efforts towards making communication and

information exchange more fluid between individuals, as millions of users interact, employing
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hundreds of different natural languages and dialects every day. In addition, the immense and

diverse volume of UGC can be regarded as a rich and ubiquitous source of data. As such,

automatically processing these texts is of great interest both from an economic and societal point

of view, as we will see in Chapter 3. Moreover, online communication catalyzed the rapid and

massive emergence of new forms of texts accompanied by increased volume in multilingual user

interaction. In this context, the “Parsing the Impossible: Translating the Improbable” (ParSiTi)

project (ANR-16-CE33-0021), which funded this doctoral work, seeks to adapt current language

technologies to cope with the challenges raised by UGC.

Indeed, most of the NLP research mainly focuses on clean edited high-resource texts,

overseeing the non-canonical, multilingual and contextual nature of such information streams

and the ParSiTi project, identifies two main scientific challenges related to the automatic

processing of UGC. The first one is the lack of generalization of current NLP models, which

emerges from the shallow or void learning of linguistic knowledge in state-of-the-art NLP models.

As these models consider tokens (i.e. phrases, words our sub-word units) as unstructured

discrete units, they will consider the UGC French sentence “ki ca ?” and its canonical version

“qui ça ?” as two unrelated sentences, whereas the average French-speaking user could easily

identify the similarities (phonemic resemblance for the first token, “ki”, and lack of cedilla for “ca”),

and thus correctly interpret the phrase. There are also multilingual and strongly contextual

utterances in UGC, which can, for instance, be seen in Table 1.1, where understanding the

user’s discussion is challenging without the context given by the photo.

Specifically, the main focus of this work, UGC automatic translation, is an important problem

for open and real-world MT systems, which must be able to cope with such arbitrarily diverse

text constructs that ultimately trigger the apparition of out-of-vocabulary (OOV) tokens such

as non-existent words or foreign alphabets. The lack of MT robustness has led to unfortunate

mistranslations (sometimes at large scale) in the past, as we will discuss further in Chapter 3.

1.2 Our approach

In this research work, we intend to design MT architectures that are robust to out-of-distribution

(OOD) texts. More specifically, we will consider two kinds of OOD texts: out-of-domain canonical

texts and noisy UGC. As we will discuss in Chapter 3, UGC is a multi-domain type of text with

14



(@rigolboche)

Original source Bing© translation

! T’as vu il l’a bien cherché wsh #AperoChezRicard ! Did you see he looked for it wsh #AperoChezRicard
! +10000, shah! ! +10000, shah!
! tabuz, lavé rien fé ! tabuz, washed nothing fe
! ki ca ? lemecousonchien ? ! ki ca ? theguyorhisdog?
! Wtf is wrong with him ? #PETA4EVER ! Wtf is wrong with him ? #PETA4EVER.
! ki ca ? le chien ? looool ! ki ca ? the dog? looool

Figure 1.1: Typical social media thread initiated by a seed photo and its automatic translation. Inspired from a real
conversation about a series of demonstrations that took place on Greece. Bing was used (on the 14/05/2015) as it
was then the official MT engine for Twitter and Facebook.

many specificities.

To achieve this goal, we will use, throughout this work, a consistent experimental protocol in

which we systematically evaluate our models on both canonical OOD (i.e. different domain from

the train data), and OOD UGC test sets. Such an evaluation protocol, in addition to reporting

results of all our systems on in-domain test sets, is intended to assess whether the models

developed for translating UGC are still able to translate canonical corpora.

Furthermore, since we aim to improve robustness to a wide set of OOD conditions, we

decided not to use any target-specific information, and we have restricted ourselves to develop

only zero-shot methods. Specifically, we assume our systems to have no access to UGC during

training. Indeed, because of the vast diversity of UGC specificities, it is impossible to collect

all possible variations in a single corpus and UGC always contains new emergent forms of

written expression: for instance, Martínez Alonso et al. (2016) shows that normalization schemes

designed for UGC data collected in 2011 were not suitable for data collected in 2014. It is

therefore necessary to develop models that perform well, not only on a given UGC corpus, but

that will continue to do so in the future or under different circumstances (platform, language,
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domain, etc.) without constantly annotating data, which is a particularly challenging task. That is

why, our study focuses on characterizing and addressing UGC performance from a robustness

perspective rather than using target-distribution information, for instance, by fine-tuning pre-

trained models on UGC data. Modeling and explaining MT performance on noisy UGC remains

today a challenge. To address this aspect, we introduce an extensive UGC evaluation framework

to assess the detrimental impact of UGC’s distinct specificities. It is noteworthy that, when this

doctoral research work started, a lack of UGC evaluation resources in the literature prevails,

making it difficult to study their impact on NLP tasks. Since, a rather limited number of parallel

corpora and evaluation frameworks (including ours) have been proposed. The parallel test set

annotated with UGC specificities we developed during this thesis in Chapter 6 is one of the main

contributions of this work.

1.3 Challenges raised by UGC: questions to address

Now that the scope of our work has been introduced and that we have stated the premises and

interests of this study, we will detail the plan of this report and our main contributions. In a first

step, we identify and quantify the impact of UGC specificities on state-of-the-art MT systems.

Then, we propose and discuss different approaches to address these problems, ranging from

pre-processing and normalization via a phonetization process, to considering different NMT

architectures that could deal with the noise present in our evaluation. In all of our experiments,

we systematically show an error analysis to highlight and explain the caveats and the observed

improvements of our methods.

Now we describe the research questions raised by the translation of UGC that we address in

this work.

How does UGC impact translation quality? At first, we want to evaluate the impact of UGC

specificities on MT translation quality. To do so, we review, in Chapter 2, popular state-of-the-art

MT architectures. We have considered both classical phrase-based models and models based

on neural networks. Our first results raise several questions:

• What is the difference between phrase-based and neural machine translation systems,

and how comparably robust are they to UGC?
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• How do NMT systems behave when processing such kinds of texts and can translation

errors be linked to their architecture?

In Chapter 4, we compare the MT predictions of UGC and quantitatively assess the performance

of different MT systems and evaluate their robustness. In the second part of this chapter, we

study the internal working of NMT systems to explain some of the observed errors as well as

models behavior.

Which UGC specificities result in translation errors? The work described in Chapters 4

and 6 aims to characterize which of the specificities, described in Chapter 3, make translation

more complicated, thus leading to a lower translation quality. More precisely, we address the

following research questions:

• Do UGC’s specificities distribution conditions performance for a given NMT architecture?

• How much do such UGC specificities impact translation quality individually?

In this work, the potential interactions between different types of UGC are addressed carefully

by isolating and documenting translation quality detriment caused by them.

What kind of methods can be used to cope with UGC specificities for zero-shot transla-

tion? To answer this question, we propose and explore normalization methods and promising

NMT architectures to overcome the variability of UGC due to its inherent links to users’ creativity.

In the scope of this work, we keep a systematic effort toward studying zero-shot methods,

i.e. without using neither parallel nor monolingual UGC. Some questions addressed in this part

of the thesis are:

• Can supplementary natural language information, such as phonetization, provide a solution

to the challenges raised by the translation of UGC?

• Can subword-level NMT models’ properties take advantage of morphological information

to resolve OOV occurrences imposed by UGC?

• Does the use of latent variables in translation models reduce the impact of the UGC noise

on the translation quality?

Under the zero-shot translation condition, we intend to review methods that augment the capacity

of MT models by either providing information, as the model described in Chapter 5 that makes
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use of automatically-extracted phonetization or leveraging on subword morphological features,

as we explore in Chapter 6. Finally, in Chapter 7, we explored latent-vector models, which,

notably, take into consideration stochastic perturbations to the model, and we give insights on

their robustness to UGC.

1.4 Contributions of this work

Addressing these questions and analyzing the experimental evidence that they resulted in,

resulted in several contributions:

• The caveats and considerations for the range of different MT systems when processing

UGC were noticed and documented, including the effects that this noise has on NMT,

specifically, the attention mechanisms. Additionally, we investigate and report a robust-

ness perspective of such NMT models that we further link to specific morphosyntactic

specificities in this kind of texts.

• A new automatic normalization pipeline was developed to account for phonetic writing

and letter omission by leveraging pronunciation similarities in French, which proved to be

especially effective for aiding in the translation of UGC short sentences.

• The effect of translation level for translating noisy texts was studied, and we describe new

considerations regarding the open-vocabulary capabilities of character-based MT involving

the choice of vocabulary and show that it is possible to reduce the effect of rare or OOV

characters in MT.

• A series of corpora and evaluation protocols were designed specifically to unveil the impact

of the different UGC specificities introduced in Chapter 3 on translation quality. In order to

do so, we released an evaluation framework to control the UGC specificity present during

evaluation, notably preserving only one specificity at the time to disentangle their individual

effects on performance. This resource also enabled us to account for the performance

impact of a significantly wider range of such specificities than that was reported in the

state-of-the-art literature, and provided a new and extensible framework for evaluating the

robustness capabilities of any MT system.

• We explore models that use latent representations by including variational Bayesian

methods in state-of-the-art MT models (namely Transformer) in order to assess whether
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such approaches can produce inherently more robust translation systems from noisy inputs.

We also propose a novel variational MT architecture that achieves better results compared

to a strong baseline model, especially, when processing UGC. We show how these

methods act as noise regularizer, enforcing the model to learn more robust representations.

We also study and showcase the semi-supervised training capabilities of these models by

introducing a source-side sentence reconstruction loss term. Finally, we conduct translation

experiments with our proposed model in a different language pair (Japanese-English) and

show that our findings also hold in this experimental setup.

1.5 Dissertation outline

In this work, we study the impact of UGC on MT and characterize this type of text in order to link

translation quality to specific morphosyntactic phenomena presented in UGC. Then, we propose

and discuss methods to cope with the noise present in UGC to bridge the performance gap

between such texts and canonical texts.

We start by describing the Phrase-Based Statistical Machine Translation (PB-SMT) and NMT

models we consider in this work. Furthermore, we discuss and explain MT notions and methods

traditionally used to cope with noise and domain-drift scenarios by leveraging segmentation and

translation granularity. We also explain the automatic metrics used to assess the performance

and robustness capabilities of the MT systems used in this work.

We then discuss, in Chapter 3, the interest and challenges raised by UGC for NLP models,

specifically translation models. We also explain, in this chapter, the importance from a user

perspective of correctly processing UGC to extract useful information about a wide range of

topics. We additionally highlight the importance of devising robust MT models for real-world

applications, as they can hardly avoid UGC when deployed in public and real-world scenarios

and applications.

Once the context surrounding this doctoral thesis, the difficulties to overcome when translating

UGC, and the main MT and evaluation methods are introduced, we develop an in-depth study

of our first MT baselines in Chapter 4. In this part, we describe the caveats of different MT

systems when they are processing UGC, including the effects that this type of texts has on NMT

architectures, specifically, the attention mechanisms. Additionally, we investigate and report a
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robustness perspective of the studied MT systems and discuss how different MT paradigms are

sensitive to noise in the input.

In order to set a first baseline for improving UGC MT, we explain, in Chapter 5, our approach

to address the phonetic writing specificities of French UGC such that we can automatically

generate token-level normalization to reduce the presence of noise in the system input. We

report improvement over several UGC test sets while hurting performance on canonical tests

because of the artificial ambiguities induced by the method. We also report how sentence length

impact the performance of our methods.

We continue our search for improving modeling by studying the impact of translation granu-

larity on MT robustness in Chapter 6. The motivation of the method developed in this chapter

is to improve the capacity of NMT to learn token representation to representations to ensure

that noisy tokens and their normalized form have “close” or “similar” representation, rather than

pinpointing a UGC specificity such as we did in Chapter 5. By doing so, we aim to attack a

broader range of UGC phenomena, thus leading our research to rigorously assess performance

and robustness in order to know what our models are doing better.

In the same track of thought, although the robustness of different types of MT systems was

assessed, the reasons why UGC translation performs typically worse than canonical evaluation

sets, remains, at best, obscure and corpus-level metrics have proven to be too coarse of a

metric to explain the impact on the performance of the variety of UGC features described

in Chapter 3. This is why, in Chapter 6, we have designed an evaluation framework that,

to the best of our knowledge, contains the widest range of UGC specificity typology in the

literature with 13 different UGC specificity annotations. Also, to address the potential interaction

between such UGC phenomena, we designed a code base that can isolate them and generate

a series of subcorpus with any given distribution of such types. Such an evaluation framework

proved useful to compare different MT systems, concretely, NMT models with finer translation

granularities (subword and character segmentation), which could benefit from a larger token-

level coverage with a reduced number of vocabulary elements. Indeed, by using our proposed

evaluation resource, we were able to assess robustness properties of the character-based NMT

models in comparison to our baseline vanilla NMT systems, where the former showed to be

considerably more robust to misspellings (character changes, missing diacritics), tokenization

errors, graphemic and punctuation stretching, and inconsistent case changes.
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Moreover, as character-level NMT showed the worst robustness capabilities when confronted

to special and rare characters, we performed a study to revisit the open-vocabulary properties

of such char-level MT systems and these results showed that we can get improved translation

performance by correctly managing unknown character by the means of setting the character

vocabulary size correctly, often overlooked in today’s character-level MT literature.

As a final stage of this work, in Chapter 7, we investigate another approach to zero-

shot noisy UGC, for which we have introduced and studied new Variational Neural Machine

Translation (VNMT) architectures that outperformed strong baselines when translating UGC. In

this phase chapter of the dissertation, we provide further insight on how VNMT latent neural

representations are more robust to UGC, by proposing novel approaches of visualization and

explanation surrounding such models. In addition, we conducted a series of detailed ablation

experiments to justify and understand the impact of our design choices.

Finally, in Chapter 8, we conclude and give some perspectives and interesting future avenues

to cope with UGC MT that emerged from this work.
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Chapter 2

Machine translation: a review of

methods and techniques

Now that we have introduced the problems and questions we will be addressing in this dis-

sertation, we present the different Machine Translation frameworks and methods used in our

work. We will start by describing the two most popular families of MT approaches: phrase-based

statistical systems (Section 2.1) and neural architectures (Section 2.2), which are the systems

used in the experiments throughout this work. Then, in Section 2.3, we will describe and discuss

MT tokenization methods as well as other approaches and considerations introduced to address

the Out-of-Vocabulary (OOV) problem, notably present in out-of-distribution evaluation. In the

final part of this chapter (Section 2.4) we discuss different methods to evaluate the performance

of the models and explain their behavior.

2.1 Statistical MT

Statistical Machine Translation (SMT) (Weaver 1949; Brown et al. 1988) is a set of methods

that rely on statistics to translate sentences by modeling the relationship between two parallel

bilingual corpora without the need to use explicit linguistic rules.
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Noisy-channel paradigm In SMT, the problem of choosing the best translation ŷ given the

input sentence x can be formally formulated as the following optimization problem:

ŷ = argmax
y

p(y|x) = argmax
y

p(x|y)⇥ p(y) (2.1)

in which p(x|y) is estimated by the translation model, which will be introduced next, and

p(y), computed by the target language model, a well-known probabilistic model that captures

dependencies between words of a given sentence. This framework combining translation and

target language models is known as the noisy-channel model (Shannon 1948).

It should be noted that the probability search space of translations is considerably large

as, even if we have the n correct target words, there will be n! permutations, and finding the

best-scoring permutation (i.e. solving the argmax) is NP-complete (Udupa and Maji 2006). That

is why SMT relies on approximate search methods, such as beam search, to find the best

translation.

Phrase-based approach Phrase-based statistical machine translation (PB-SMT) is the ap-

proach in this framework that achieves the best performance and had long been the state-of-the-

art method in SMT (Koehn 2009). Phrase-based models process phrases made of sequence of

words (i.e. n-grams) that are translated using a translation table, containing, for each sequence

of source words of the training data, the possible corresponding target word sequences and

their probabilities. For instance, the translation table associates the German word “natürlich”

to its possible translations: “of course”, “of course ,” and “naturally”. The phrase table is built

automatically from the word alignments.

In a phrase-based model, the source sentence is broken down in K phrases xk and the

probability p(x|y) is estimated as:

p(x|y) =
KY

k=1

�(xk|yk) (2.2)

This equation uses the probability �(xk|yk) of translating yk to xk that is stored in the translation

table, automatically extracted from the training data (Koehn 2009). This first (simplified) model

has been devised to allow taking into consideration other features (e.g. to describe words
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reordering) in the estimation of the translation probability (Bertoldi et al. 2009). Equation 2.2

highlights the main characteristics of phrase-based models: computing the score of a translation

hypothesis relies on finding an exact match of a source phrase (i.e. a subsequence of the source

sentence) in the phrase table, which is particularly problematic for the translation of UGCs since

the high variability present in the source sentences strongly reduces the probability that a given

sequence of words has been seen during training and ultimately extracted in the phrase table.

2.2 Neural machine translation

Neural Machine Translation (NMT) is a set of methods that employs artificial neural network

architectures to translate sentences. These models are capable of automatically learning

relevant representations of the source and target sentences from the training set and do not rely

any longer on exact matches of source phrases as PB-SMT systems. The MT task is part of a

wide family of architectures called sequence-to-sequence models that can be used to learn the

mapping of an observations’ sequence to a label sequence, and it is behind multiple other NLP

tasks, such as language modeling and summarization. NMT has proven to outperform statistical

MT models, setting a new state-of-the-art for MT when compared to SMT approaches (Bentivogli

et al. 2016; Mutal et al. 2019).

In this section, we review the most popular NMT architectures that we used in our experiments.

First, we describe the encoder-decoder model, which is at the heart of NMT and other sequence

modeling tasks. We then focus on two neural frameworks, namely, RNN-based models and

attention-based models (i.e. Transformers), which are the two most popular NMT architectures

nowadays. Both architectures generate a hidden representation, either sequentially in recurrent

networks or in parallel in Transformers. This representation is used to encode the meaning of the

source sentence, and passed in cascade through the network to generate the target sequence

of target language tokens.

2.2.1 The encoder-decoder architecture for MT

Most of the modern NMT models have adopted the encoder-decoder paradigm, introduced

by Sutskever et al. (2014) and Cho et al. (2014). Using this paradigm in MT has two main

advantages over previous approaches: first, it generates contextually appropriate translations
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Input Encoder State (h) Decoder Output

Figure 2.1: The encoder-decoder architecture..

(https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html)

(Way 2019) for target sentences with an arbitrary length (Jurafsky and Martin 2009); second, it

allows designing and train a single, end-to-end model directly from a parallel corpus.

The underlying idea of this paradigm is to have a first — possibly stack of — neural networks,

known as the encoder, which outputs, for each token of the TS-length source sentence x =

(x1, x2, ..., xTS ), a contextualized representation h =
⇣
hD1 , h

D
2 , ..., h

D
t , ..., h

D
TS

⌘
each of these

representations being a vector of D dimensions, where D is generally called the “hidden size”.

These vectors (or only some of them) are then ‘fed’ to another neural network (i.e. considered

as its input), called the decoder, that is in charge of generating the Td-length sequence of target

tokens y = (y1, y2, ..., yn). An overview of this type of architectures is shown in Figure 2.1.

2.2.2 Sequential RNN-based models

The first type of NMT models that were proposed are based on Recurrent Neural Networks

(RNN). This kind of architecture processes the input sentence token by token and progressively

builds a “hidden vector”, h, as introduced previously. For a given encoding step (hdt , where

t 2 [1...TS ] represents each one of the source sentence tokens), depends on the previous

tokens 1, ..., t� 1, allowing the RNN to propagate the information throughout the sentence and

these representations to be contextualized. The last hidden vector contains the information that

summarizes the whole source sentence and is used as the input of the decoder. In addition,

bidirectional RNN encoders (Schuster and Paliwal 1997) have been shown to consistently

outperform uni-directional encoders (Graves et al. 2005; Sundermeyer et al. 2014) by building

two h vectors using the left-to-right and right-to-left streams (i.e. processing the source sentence

from first to last token, as well as from end to start). It is worth mentioning that the decoder is

always uni-directional since we do not have access to future target tokens, as they are generated

one by one conditioning each decoding step to the past produced tokens.

In Figure 2.2, we show a typical encoder-decoder RNN MT architecture featuring a bidi-

rectional encoder. Left-to-right and right-to-left encoding streams are marked as forward and

backward, respectively. In a first stage, each token of the input sequence, x, is passed to each
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Figure 2.2: Bidirectional RNN Encoder-Decoder architecture. Reproduced from Chowdhury and Vig (2018).

of the encoder’s RNN cells, whose hidden states (ht for t in [1, TS ], corresponding to the TS-long

source), are sequentially computed and propagated through these cells until the last state, hTS ,

is generated. In addition, as discussed previously, the token-by-token encoding is usually done

in a bidirectional fashion, and the final hidden vector is defined as the concatenation of the

resulting representations for both directions ([cforwTS
; cbackTS

] in the figure). Figure 2.2 portrays this

approach, showing left-to-right flow (forward) in dark green, and right-to-left (backward) in light

green.

In a second stage, the decoder generates each of the target tokens in an autoregressive

fashion, i.e. by outputting one token at a time, conditioned on both the context vector and the

last token produced by the decoder, while propagating the inner hidden state of each of the

decoder’s RNN units. Finally, a softmax layer maps the RNN outputs to a probability distribution

over each possible token of the target language vocabulary for each decoding step.

The optimization problem for NMT, as well as it sequential autoregressive decoding can be

expressed as:

argmax
�

p(y|x) = argmax
�

JY

i=1

p(yi|yj<1,x) (2.3)

where � is the architecture’s trainable parameters and J is a maximal output length, which is

used to stop the generation in case the <eos> symbol is not generated for the (x,y) pair.
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In Figure 2.2, red and green blocks represent the encoder and decoder RNN neurons,

respectively. These are most commonly chosen (Yang et al. 2020) to be Long-short Term

Memory (LSTM) networks (Hochreiter and Schmidhuber 1997), which have been shown to

outperform vanilla RNNs (Chung et al. 2014; Lipton 2015). In Figure 2.3 we can see the three

gated mechanisms introduced within an LSTM cell, which, in contrast to vanilla RNNs, do not

store all the information in its state for a training sequence, but selectively learns to remember or

forget (Skrlj et al. 2019).

Figure 2.3: Diagram of an LSTM, the RNN architecture used in this work. Reproduced from (Olah 2015).

For all RNN-based NMT experiments presented in this work, we use the LSTM architecture,

according to the current trends in the field (Yang et al. 2020). Nonetheless, to cope with

the computational overhead due to longer sequences for the character-level RNN models in

Chapter 6, we use a simplification of LSTM, consisting of a single gated output. It is known as

Gated Recurrent Unit (GRU) (Cho et al. 2014), and it achieves similar performances to LSTM

while being more computationally efficient (Chung et al. 2014).

Attention mechanisms As discussed in Section 2.2.1, the decoder network, is conditioned on

the encoder’s hidden vector ht, for each target token produced in an instant t according to the

following equations:

ht = sigm(W hxxt +W hhht�1)

yt = W yhht

(2.4)
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where W hx and W hh are the encoder’s parameters and W yh the decoder’s parameters.

Since the last hidden vector (hTS ) contains the representation for the whole input sequence,

learning the alignments, i.e. the most important tokens in the input when producing a given target

token; becomes a sub-task delegated primarily to the decoder network. In order to accomplish

this, a method introduced by Bahdanau et al. (2015), called attention, aims to unburden the

decoder by explicitly attributing the alignment modeling to the encoder. Since then, attention

methods have greatly driven the research in NMT and proved to improve sequence-to-sequence

architectures.

Concretely, at each decoding step t, a context vector ct is computed as a weighted vector

along the h1:TS components of the hidden vector output by the encoder. This context vector

is intended to help the decoder focusing more on a hidden vector component (that is, on a

corresponding source token) than others, computed at each decoding step by the alignment

model as:

ci =
JX

j=1

aijhi (2.5)

where at is the attention vector that assigns a certain weight to each token component of the

hidden vector. The vectors a and c are shown accordingly in Figure 2.2. In order to calculate

at, a scoring function is combined with a softmax function to output a distribution on the last

decoder’s state st�1 and the encoder’s hidden vectors. This equation is formulated as follows:

at = softmax(scoring(st�1,h)) (2.6)

In this work, we study the attention behavior to perform error analysis and investigate whether

such errors can be explained in terms of faulty attention weight distribution for a given decoding

time step.

The concept of attention rapidly evolved and eventually led to a series of models in which

the sequences and order of tokens can be fully captured by positional embeddings (Vaswani

et al. 2017). This evolution resulted in a breakthrough in NMT research and in a new kind of

architecture family: transformers.
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2.2.3 Transformers

The Transformer model (Vaswani et al. 2017) demonstrates how self-attention networks can

perform sequence-to-sequence tasks without explicitly modeling the sequential nature of a

sentence, i.e. sequential decoding and training of the network’s parameters in equation 2.4.

Instead, the whole input token sequence is processed simultaneously in parallel and the position

of each token is encoded by a positional embedding, where the several parallel and independent

self-attention mechanisms provide information for each token of the input. Thus, Transformer

self-attention layers connect the sequence tokens with a constant number of operations, whereas

RNN networks require O(n) operations to for n-length sequences, resulting in improved perfor-

mance of the former for long-range dependencies (Vaswani et al. 2017). As a consequence,

the Transformer has access to more information simultaneously during the output generation

than RNN approaches. Hence, this model has been widely adopted as the state-of-the-art

architecture (Xia et al. 2019), as it has also been consistently shown to perform better than

RNN. In addition, this model is highly scalable through parallelization, contrary to sequential

architectures.

Transformer is another instance of the encoder-decoder paradigm, as shown in Figure 2.4.

The principal component of this architecture is a set of multi-head self-attention networks, where

several independent attention mechanisms model the inner relations between tokens

After reviewing the main MT architectures used in this work, we discuss other complementary

methods that influence translation quality. Specifically, we will describe tokenization methods

and granularity of translation, i.e. using words, subword or characters in the input and output

vectors, which have a noticeable impact on translation quality (Sennrich et al. 2016) and play an

important role in the vocabulary coverage learned by the MT model (Ataman et al. 2019).

2.3 Tokenization methods

In this section, we introduce the tokenization methods used during this work and discuss the

motivation for using different token granularities in MT. Tokenization is especially important when

there are many out-of-vocabulary (OOV) tokens, that is to say, tokens that have not been seen

during training. This happens when translating morphologically rich or low-resource language or

30



Figure 2.4: The Transformer Encoder-Decoder architecture. The encoder on the left side of the diagram and the
decoder on the right one. Reproduced from Vaswani et al. (2017).

in the context of distributional shifts such as UGC translation. Coping with these OOV tokens is

an important problem, as they often degrade translation performance (Sutskever et al. 2014)

and tokenization is the simplest way to reduce their number.

MT systems were initially designed using words as the basic input unit: A rule-based

tokenization algorithm appends spaces between independent sequence of characters (such

as text and punctuation) in order to reduce vocabulary and make training easier (Ataman and

Federico 2018). However, this approach results in many OOV because of the considerable

lexical diversity of words in many languages and the poor compositional properties of many

models. Translating these OOV raises many challenges as these words cannot be properly

modelled, affecting translation quality. Indeed, OOVs have to be mapped to a special <UNK>
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symbol that is generally kept unchanged during translation and is therefore still present in the

MT output. This token can be directly copied into the output by incorporating a copy mechanism

(Gu et al. 2016), or subsequently translated by replacing it in a post-processing step (Jean et al.

2015; Mi et al. 2016), or via embedding substitution (Haddad et al. 2018; Yang et al. 2018).

The “post-processing” approach is straightforward and consequently, by far, the most widely

used in today MT systems (even if it often seems to be ignored in the literature with the

development of NMT). Its main advantage is that this approach is completely independent of

the MT architecture used and, thus, can be easily applied to any MT system. The alignment

between the source sentence and the translation hypothesis can either be predicted directly

using a word-alignment method such as IBM models (Mi et al. 2016) or can be deduced from

the attention matrix as proposed by Jean et al. (2015). Throughout this work, we will use the

former approach and replace <UNK> in the evaluation translation hypothesis using source-target

alignments predicted with fastalign (Dyer et al. 2013).

This strategy is, however, very limited and several alternatives have been proposed to actually

translate the OOVs rather than copying them unchanged from the source sentence. The most

straightforward way to deal with OOV is to consider smaller, sub-word tokens and to leverage on

composition to represent words (Sennrich and Zhang 2019).

The finest grain segmentation possible consists in cutting out the input sentence in a stream

of characters and modeling it directly (resulting in a character-based model). This approach

raises two main problems, the first being the computational cost of the resulting methods: the

number of characters in a sentence is substantially larger than the number of words, and thus

the computation times are mechanically increased. For instance, Luong and Manning (2016)

report spending about 3 months training a purely character-level model. Another important

problem, and a fundamental drawback of character-based models, is the difficulty of modeling

long-range dependencies (Wood-Doughty et al. 2018; Al-Rfou et al. 2019).

To avoid the pitfalls of character models, subword-level segmentation models have been

proposed: Their goal is to uncover a word segmentation that limits the number of units created

(to avoid complexity problems) while limiting the size of the vocabulary (to ensure that the

frequency of units is sufficiently high). Notably, Sennrich et al. (2016) propose to use the Byte-

Pair Encoding (BPE) algorithm to produce a subword vocabulary and Schuster and Nakajima

(2012) introduce Wordpiece.

32



The use of subword-level segmentation has proved to consistently outperform word-based

MT and is currently systematically used in all NMT systems. We adopt BPE tokenization

throughout this work unless stated otherwise (our character-based models in Chapter 6). When

using BPE, the vocabulary is built by merging the most frequent sequences of characters to reach

a number of operations set as a hyperparameter. The intuition is that frequent n-gram structures

constitute subword particles (e.g. prefixes or suffixes) and, by leveraging on their compositionality,

we can decompose potential OOV during evaluation in a sequence of in-vocabulary n-grams.

BPE ensures that there are almost no OOV tokens in both the train and test sets, with the

exception, for instance, of words in the test set that contain characters that do not appear in the

train set. However, translation quality still suffers from the actual OOV words that existed before

BPE segmentation (Araabi et al. 2022), as these words are often divided into many BPE tokens.

2.4 Analyzing translation hypothesis

In this work, we will use two methods to analyze the predictions of the different MT systems we

consider: the first method is a qualitative method that uses the attention matrices at the heart of

NMT models to explain the decisions made by the translation system; the second method relies

on the automatic metrics usually used to evaluate the translation systems. Finally, we will also

introduce several metrics to assess translation robustness to noise in the input sentence that we

use throughout this work.

2.4.1 Visualization: understanding NMT decisions

Although NMT systems are commonly regarded as black-box systems because their decision

process is difficult to interpret, a popular way to gain insight into the inner workings of these

systems is through self- and cross-attention matrices. Using attention to explain neural network

decisions is subject to a long-lived debate (Serrano and Smith 2019), but has been proven to be

informative in many works (Ding et al. 2017). The attention matrix quantifies the “importance” of

a (source or target) token to generate each one of the target tokens. We will use this method in

Chapter 4 to highlight some of the pitfalls of NMT systems when translating UGC.
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Source-Target Attention Figure 2.5 gives an example of a cross-attention matrix (as the one

shown in Figure 2.2) between an English source sentence (horizontal axis) being translated into

French (vertical axis shows the predicted target tokens). It shows how the decoder focuses on

some specific source words to different degrees when producing a given target word. Attention

weights from Equation 2.6 are depicted in grey-scale (the whiter, the closer to 1). These are

computed by the model as the attention scoring function is learned during training. For instance,

it can be noted that to generate the French tokens “ne peut plus” the decoder mainly relies on

the English tokens “can longer produce”. This shows how attention can give special importance

to the most pertinent encoder hidden vectors (each corresponding to a source-side token).

Figure 2.5: Attention matrix example showing the alignments between the French sentence predicted by an NMT
system (y-axis) given the English sentence (x-axis). Reproduced from Bahdanau et al. (2015).

Self-Attention Another type of attention mechanism, self-attention (used by the Transformer

architecture), contrary to sequential source-target attention, allows processing all the (either

source or target) sentence’s tokens at once and model contextualized relations between each

sentence’s words, as seen in Figure 2.6. Another particularity of the self-attention approach

proposed in Vaswani et al. (2017), is the multi-head mechanism, in which several self-attention
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matrices are computed independently, which are marked in Figure 2.6 as the 8 different colors,

which stand for the 8 attention heads featured in the vanilla Transformer Base architecture.

The intuition behind this is that each one of the heads will be able to capture different relations

between the sentence tokens.

Figure 2.6: Self-attention matrix example as produced by the Transformer model. It shows the dependencies
between tokens of the same sentence that are useful to produce the current output token. The attention block colors
stand for each one of the 8 multi-head attention mechanisms (here aligned horizontally). Reproduced from Vaswani
et al. (2017).

2.4.2 Evaluation metrics

(Sacre)BLEU As a corpus-level automatic translation quality metric, we systematically re-

port results using case-sensitive BLEU (Papineni et al. 2002), as it is the standard way to

quantify translation performance of the MT systems. More specifically, we consistently re-

port results using its tokenization-agnostic versions, that is, SacreBLEU (Post 2018) and

multi-bleu-detok.perl
1, both taking the detokenized translation hypothesis as input

and performing their own internal tokenization, which can be easily reproduced. This follows

the recent trend of evaluating translations without any specific tokenization (other than space

delimiters between words) to ensure the reproducibility of the evaluation regardless of the

different tokenization rules that different researchers may use. Indeed, the necessity to report

results using detokenized evaluation frameworks has been widely acknowledged (Marie et al.

2021) as this BLEU metric flavor is increasingly popular over traditional BLEU score.

1
https://github.com/moses-smt/mosesdecoder
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Edit distance Metrics based on BLEU are evaluating translation quality at the corpus-level:

they are not accurate when ranking single sentences or small corpora due to the high sparseness

of n-grams in these conditions (Ye et al. 2007). In consequence, correlation between human

evaluation and sentence-level BLEU can be astonishingly low (Liu and Gildea 2005; Li et al.

2016). In order to have a sentence-level metric, which enables single translation outputs to be

ranked and compared, we have chosen to use token-level edit distance between predictions and

references (Przybocki et al. 2006). Having a sentence-level metric proves useful in Chapter 6 for

a fine-grained characterization of UGC and the challenges it raises.

chrF The BLEU metric has the limitation of needing an exact token-level match between

prediction and reference, thus, a change in the lexicon or relatively small and fine-grained errors

(e.g. a predicted token differing in a single character to that of the reference translation) are

not quantifiable. Hence, we also use the MT character-level chrF (Popović 2015) evaluation

metric, which we use to compare to BLEU metrics and explain UGC translation quality taking into

account character-level editions. This metric proved to be the most reliable when characterizing

the robustness of MT to UGC in Chapter 6 and Chapter 7.

chrF is defined as the F-score on character n-grams that overlap between the hypothesis

and reference:

chrF� = (1 + �2)
chrP · chrR

�2 · chrP + chrR
(2.7)

where chrP , the character n-gram precision, is the percentage of n-grams in the hypothesis

contained in the reference; and chrR, the character n-gram recall, is the percentage of n-grams

in the reference also present in the hypothesis. � is a parameter that gives proportionally more

importance to recall than to precision. In this work, we have chosen � = 1, which gives the same

importance to the recall and precision.

2.4.3 Assessing the performance impact of noise in the source sentence

We are particularly interested in assessing the translation quality impact caused by noise by

the means of comparing the performance achieved by a given MT system when translating

“raw” noisy sentences to the translation output by the very same system when translating the

“normalized” version of the same sentences (i.e. sentences with the same meaning in which the
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noise has been “removed”). As notation to further discussing this kind of metrics, we will refer to

x as the original noisy source, x̃ as its normalized version, and y, ỹ their respective translation

hypothesis.

It should be noted that these metrics require “normalized” corpora, in which noisy source

sentences have been “corrected” to a form that complies with the language’s rules. Only a

few normalized corpora are freely available, as this kind of annotation is difficult to accomplish

because of potential ambiguity in the source text. This problem is all the more important because

it is often necessary to produce new references corresponding to the expected translations

when the sources do not contain noise, since removing it from the sentences can also remove

information and thus modify the corresponding reference translation (e.g. if emojis or emoticons

are removed from the input, they should also be suppressed in the reference). These consider-

ations raise a major resource-intensive limitation that makes such metrics costly and renders

annotation consensus notably hard. In addition, this kind of annotated UGC corpora is highly

dependent on the specificities and scheme used. For instance, Fujii et al. (2020) provides a

UGC corpus annotated in terms of four static UGC specificities, but it remains difficult to extend

it to other noise categories.

Throughout this work, we use two metrics to assess the robustness of each NMT model by

quantifying to what extent the noise in the source impacts translation quality. They are based

on a monotonically increasing metric with respect to the translations’ quality, and which we

proceed to elaborate on using the BLEU score; although they can be adapted to be used for

the-lower-the-better metrics trivially.

Noise impact ratio (NR) The noise impact ratio (Fujii et al. 2020) is the quotient between the

BLEU score obtained by translating the original, noisy sentences evaluated using the original

references, and the BLEU score achieved by inputting the normalized version of the same source

sentences instead and evaluating using the accordingly normalized references. It is calculated

as:

NR(x, x̃,y, ỹ) =
BLEU(x,y)

BLEU(x̃, ỹ)
(2.8)

In other words, this metric compares the translation quality achieved by an MT system when
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translating noisy sentences to the one that would have been obtained if no noise had been

present in the source. Hence, an NR score of 1.0 means that the noise in the source sentence

does not impact the MT quality at all (i.e. the MT system was able to automatically remove the

noise present in the source sentence or least ignore it); conversely, the smaller the score, the

greater the impact that noise has on translation quality.

Target-source noise ratio (TSNR) Proposed by Anastasopoulos (2019), this metric aims to

assess how much perturbation is artificially added during the MT system due to the noise initially

present in the input sequence. It is defined as:

TSNR(x, x̃,y, ỹ) =
100� BLEU(y, ỹ)

100� BLEU(x, x̃)
(2.9)

This is to say, by using this metric, we quantify to what extent the noise present in the

input sentence (estimated by BLEU (x, x̃)) is compared to the noise output by the system when

producing the target translation (estimated by BLEU (y, ỹ). Concisely, a TSNR value close to 1

indicates that the noisy textual perturbations (assessed using BLEU) in the input are comparable

to those of the resulting translation. This is to say that the drift UGC specificities present in

the source On the other hand, a low TSNR value suggests that the MT system is less prone

to propagate the source-side noise and, consequently, generating a relatively more similar

translation to the translation of the normalized version.

2.5 Conclusions

In this chapter, we have given a broad vision of the methods used in this thesis and how they

compare, which commonly translates into advantages and disadvantages regarding memory

size, computation time, and models’ complexity.

We have discussed the main MT model families, focusing on the different NMT architectures

we address in the next chapters. In addition, we have presented how we exploit the information

provided by the attention matrices for the error analysis when exploring how different MT

technologies behave when translating UGC in Chapter 4.

In the final part of this chapter, we presented and discussed the metrics we use in the next
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chapters to evaluate the translation quality of the explored MT systems. Especially, we reviewed

TSNR and NR, that we use to assess MT robustness to UGC. We also discussed challenges

regarding the use of such metrics, which require additional annotation efforts to normalize UGC,

ultimately leading to complex normalization guidelines and difficult inter-annotator consensus.

Now that we have established our scientific framework and explained the set of MT methods

that will be used throughout this work, we proceed to describe and discuss UGC and elaborate

on the challenges and the interests it poses for NLP, specifically MT.
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Chapter 3

User-generated content: an NLP

nightmare

In this chapter of the dissertation, we introduce in further detail the main task to be addressed in

this work and why it is as problematic as it can be useful to conceive robust NLP models that

can cope with a wide range of linguistic phenomena. As we will discuss below, UGC is widely

and increasingly present in today’s discussion channels and can provide an interesting source

of data, although it is characterized by extremely high lexical and semantic variability.

3.1 What is UGC and what is at stake?

UGC consists of different types of content, such as pictures, videos, audio, and texts created

and published on the Internet by its users (George and Scerri 2007). Concretely, under the

scope of this work, we address text-based forms of UGC, specifically, noisy social-media UGC,

or non-canonical text, which is a kind of written content that is produced by users in online

discussion channels such as Twitter, Facebook or Doctissimo. This type of texts has

been extensively studied over the years, e.g. (Foster 2010; Seddah et al. 2012; Eisenstein

2013; Sanguinetti et al. 2020). In this context, users are often able to add elements that are

typically not presented in canonical corpora in order to denote emotions, shortening typing time

or efforts and, thus, promoting spelling, grammatical, and semantic diversity, whether purposely

or not. Despite the challenges posed by UGC, which we will discuss in this chapter, such

content can provide a direct way to estimate customer needs and trends (Bahtar and Muda
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2016; Timoshenko and Hauser 2019) and thus can represent a powerful asset for data mining

due to their ubiquitous presence on the Internet (Krumm et al. 2009; O’Hern and Kahle 2013).

As an easily available source of data, UGC has also provided a interesting, if not valuable,

source of data for different NLP tasks, such as hate speech detection (Mossie 2020; Gomez

et al. 2020), prevention against human trafficking (Chambers et al. 2019), sentiment analy-

sis (Schmunk et al. 2013), fact-checking (Bondielli and Marcelloni 2019) and mental health

assessment (Calvo et al. 2017).

Almost by definition, UGC covers multiple different domains; is multi-modal in nature

(Khoshamooz and Taleai 2017), addresses diverse topics and because of the diversity of

the users, entails a large degree of language variation (Sanguinetti et al. 2020). Interestingly,

these variations are perceptible also through many orthographic variants that span over named-

entities (Jijkoun et al. 2008). Specific idioms and domain-related jargon make clear the fact that

UGC does not constitute an homogeneous domain and instead could be seen as a multidimen-

sional space where each axis would relate to one specific aspect (domain, divergence to the

orthographic/grammatical norm, sentiment expression, socio-demographic characterization of

the user, etc.) (Foster 2010; Seddah et al. 2012; Eisenstein 2013; Martínez Alonso et al. 2016).

Exploiting this type of text and, therefore, designing translation systems capable of treating

them has been an crucial ongoing research question in the literature (Chen 2022). As coping

with the noise that rifles UGC still poses many challenges1, the questions about the extent to

which an UGC phrase effectively conveys information remains, as opposed to being gibberish or

the cause of an unfortunate mistranslation.

For example, the automatic translation of a noisy Arabic version of “good morning” triggered a

terrorist alert when Facebook mistranslated it, resulting in an unjustified arrest in 2017 (Guardian

2017). A similar unfortunate situation took place massively when the Facebook translation

engine translated thousands of Burmese posts that contained the name of the Chinese president,

Xi Jinping, into a slur word in English, forcing the company to issue a public apology (Times

2020). Beyond these scandals, modern NLP pipelines continue to make mistakes when faced

with noisy input, and proposing architectures that overcome these issues is still an open question.

1Cf. the long standing series of workshops on Noisy User-Generated Text http://noisy-text.github.io/
2022/.
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Encoding simplification: covers a set of phenomena aiming to reduce writing efforts (English trans.)
Word omission “je n’aime pas” ! “j’aime pas” I don’t like
Irregular tokenization “I was” ! “Iwuz” (contraction)

“c’était” ! “c t” (over-splitting) It was
Spoken language “je ne sais pas” ! “chais pa” I don’t know

Marks of expressiveness: denote emotion and expressiveness of the author
Emojis and emoticons :)
Punctuation reduplication
and Graphemic stretching “Trooooooppp !!!!” ! “Trop !” Too much

Context dependency: encompasses all the tokens related to the ongoing discussion
Proper nouns or NE Flappy Bird
Hashtags and user mentions #CoupeDuMonde, Jonhdoe11

Spelling and typographical errors “Je fsit” ! “Je fais” I do
Grammatical errors “There are a lots”, “Elle es grand”
Jargon “mec”, “wesh” Dude/man
Profanities (occasionally masked)
Dialects
Code-switching “C’est trop good” It’s too good
Phonetic writing errors “J’ai regarder” ! “J’ai regardé” I watched
Internet slang “to be honest” ! “tbh”
Inconsistent casing “Allez !” ! “ALLEZ !” Go

Table 3.1: Examples showing common noisy phenomena in UGC (Seddah et al. 2012).

3.2 Comparing UGC to canonical texts

UGC has many specific characteristics that explain why it differs from canonical texts (Sanguinetti

et al. 2020; Michel and Neubig 2018), which are, in contrast, clean and well-formed corpora that

comply with the set of linguistic rules of a given language.

Regarding the different noise specificities that are prevalent in UGC, we display, in Table 3.1,

the ones we consider and discuss in further detail in Section 3.3.

Because of these specificities, UGC text differs from widely distributed canonical corpora,

used to train reproducible (and usually license-friendly) NLP models. These differences, which,

among others, result in a high number of Out-of-Vocabulary (OOV) tokens, raise many challenges

to the automatic processing of UGC. First, large UGC corpora are expensive to annotate

and can intrinsically impose major consensus issues due to ambiguities and, occasionally,

incomprehensible phrases. Second, due to the extremely high productivity of UGC, which

permeates this type of text at all linguistic levels (lexical, grammatical, and syntactic); there are

too many morphological variations of every possible linguistic construct to account for all of

them. Specifically, MT, which constitutes the main scope of this work, illustrates the difficulties of

processing UGC, as performances are affected when translating due to its specificities.

In this regard, we now present different lexical, grammatical, and syntactical UGC speci-
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ficities that make it different from canonical corpora in terms of a well-defined linguistic and

morphological classification. Thus, in order to illustrate the difficulties imposed by translating

UGC, we show some examples and their translations by public and popular translation systems

in Table 3.2. Indeed, a decrease in translation quality has been documented when MT systems

have to translate this kind of text (Khayrallah and Koehn 2018; Fujii et al. 2020). In this respect,

we use the phenomena discussed in the following to explain and identify the caveats of MT when

facing UGC in terms of its distinctive linguistic traits.

Cr#pbank src ma TL se vide après j’me fais chier puis jme sens seule mais c surtout pdt les vacs mais c pas le
cas dc ça compte pas trop

ref my TL is emptying then I get bored then I feel alone but mostly during holidays but it’s not the case so
it’s not so important

google my TL is empty after I’m pissing then I feel alone but c especially pdt vacs but it does not matter that it
does not count too much

src Dans Flappy Bird quand mon Bird il fait 10 jsuis trop contente #TeamNul Mdddr
ref At Flappy Bird when my Bird has 10 Im so happy #TeamFail Loool
google In Flappy Bird when my Bird is 10, I’m too happy #TeamNul Mdddr

src Boooooooooooooooooooooonnne Annniversaure Ma viiiiiiiiiiiiiie jtm plus que tout profite bien de
tes 22ans moaaaaaaaaa

ref Haaaaaaaaaaaaaaaaaaaaaapppy Biiirthday My liiiiiiiiiiiiiife luv you more than anything enjoy your
22years mwaaaaaaaaah

google Boooooooooooooooooooooonnne Annniversaure My viiiiiiiiiiiiiie jtm more than anything enjoy your 22
years moaaaaaaaaaa

MTNT src AJA que le XV de France féminin est un train de faire un grand chelem, OKLM
ref TIL that the XV of Feminine France is doing a grand chelem, FRESH
google AJA that the XV of France feminine is a train of a grand slam, OKLM

src Je pensais mais c’est le même ident et mdp que mon compte "normal", et il détecte même la profile
pic et le nom

ref I thought so but it’s the same username and password as my ’normal’ account, and it detects even the
profile pic and the name

google I thought but it’s the same ident and mdp as my "normal" account, and it even detects the pic profile
and the name

src Aaaaaaaah.... 8 ans après, je viens de percuter.... :o ’tai je me disais bien que je passais à côté
d’un truc vu les upvotes.

ref Aaaaaaaah.... 8 years later, I’ve just realized.... :o damn I had the feeling that I was missing something
considering the upvotes.

google Aaaaaaaah .... 8 years later, I just collided ....: oh well I was telling myself that I was missing something
seen the upvotes.

Table 3.2: Examples from both UGC showing the source phrase, reference translation, and Google Translate output.
UGC specificities are highlighted using bold characters. Translation site accessed on 28-01-2021.

3.3 UGC specificities

In this section, we proceed to discuss in detail the UGC’s idiosyncrasies previously introduced. In

order to characterize UGC, we consider a list of 13 syntactical, grammatical, and morphological

UGC specificities presented in Table 3.3, which is based on the typology of Sanguinetti et al.

(2020). These categories represent distinct lexical and grammatical variability that can be

43



UGC’s specificities

Encoding simplification
• Letter change/deletion/addition
• Diacritic omission/error
• Phonetization
• Contraction over-splitting
• Wrong verb tense
• Wrong gender/grammatical number
• Abbreviation

Marks of expressiveness
• Inconsistent casing
• Emoticons/smileys

• Punctuation reduplication
and Graphemic stretching

• Interjections

Boundary shifting
• Tokenization errors

UGC Context-dependent
• UGC-specific characters
• Named Entity

Table 3.3: Typology of UGC specificities used in this work and as our manual annotation scheme. Extended from
Sanguinetti et al. (2020).

classified and which we investigate in terms of their impact on translation quality. Our defined

types differ from the original typology only by not considering code-switching and profanities but,

on the other hand, adding a category for interjections.

To introduce the considered typology, we will start by explaining the main groups of UGC’s

specificities in Table 3.1, which in turn we divide in the fine-grained typology presented for the

experiments in this thesis. Essentially, these groups are classified in a purpose-oriented manner,

i.e. they encompass the lexical, grammatical, and syntactical peculiarities, characterized in

terms of concrete morphosyntactic specificities of user expression while associating a reason

for employing such linguistic resources. For instance, in UGC, users often simplify the message

to reduce writing efforts or express emotions more vividly, which often leads to a very high

lexical variability, such as those seen for the “Word omission” and “Punctuation reduplication”

categories in Table 3.1.

We also base some of the UGC specificities on a context and domain-related axis (Martínez Alonso

et al. 2016), for example, Named Entities (NE) evoking a certain television series.
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3.3.1 Encoding simplification

This kind of UGC’s phenomenon involves a large set of noisy occurrences, commonly used

by users for shortening the messages’ length, while enjoying the freedom to introduce new

morphological variations for otherwise known and comprehensible words. Arguably, they are

responsible for a large number of spelling errors, consequently introducing OOVs and rare token

sequences. In Table 3.4, we present artificial examples of how these UGC specificities could

affect the quality of the translation individually, which we will comment on in more detail.

Letter change, deletion or addition Words that present some form of letter alternation or

modification from the correct form, introduced by the user willingly or not. They often lead to

OOV tokens and some can compromise the full meaning of the translation, e.g. ”Je suis alé à la

bibliothèque“ is translated from French to English by Google Translate as ”I am random at the

library“ in example ¨. The error appears to be that the MT system predicted alé as aléatoire,

which is translated as random in English, whereas the correct spelling should have been allé

(went in English). This encoding simplification phenomenon can be seen as the omission of the

missing letter (l) to match the correct French word.

Diacritics omission or error As in character-level modifications for an existing word, diacritic

errors often cause OOVs, but the size of the search space of possible combinations is substan-

tially reduced by the fact that each letter can only be changed by the same letter with different

diacritics (i.e. accents). State-of-the-art MT models later proved remarkable robustness to these

UGC specificities further in this work, and we found no example containing only this type that

produces an incorrect translation in GOOGLE TRANSLATE when consulted.

Encoding simplification

¨ Letter change/deletion/addition ≠ Abbreviation
SRC Je suis alé[allé] à la bibliothèque SRC Merci bn[bien], les amis.
REF I went to the library REF Thank you very much, friends.
Google I am random at the library Google Thank you bn, friends.

Æ Phonetization/spelling mistake Ø Wrong verb tense
SRC Il est nez[né] pour sa[ça]. SRC Je suis allez[allé] à l’école.
REF He was born for it. REF I went to school.
Google He is nose for his Google I am going to school

Table 3.4: Examples of translation impact due to Encoding Simplification phenomena. The references (REF) are
translations by the same MT engine of the correct form, accordingly. Translations were produced on the 07/03/2022
Normalized version of the tokens is displayed in blue brackets.
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Phonetization It takes place when a word is written using an alternative orthography (existing

or not) that shares a similar pronunciation. This phenomenon involves knowing the pronunciation

to match it with its corresponding canonical form. For instance, in example Æ in Figure 3.4, “nez”

is translated using its literal meaning to “nose” in English, whereas the correct source French

token is “né”, sharing the same pronunciation /ne/. The same happens for the tokens “sa” et

“ça”, leading to substantial changes in translation, as can be seen.

Wrong verb tense We study grammar conjugation errors that can lead to ambiguities and

could cause errors in translations.

Wrong gender or grammatical number We also take into account grammar inconsistencies to

explore whether they represent an inconvenience to MT performance and a source of ambiguity

during translation. These are annotated with respect to grammatical differences in gender and

number.

Abbreviation These constitute a rather high compression modification of the message, includ-

ing the omission of letters for any given word and compacting multi-word expressions (MWE) in

a reduced sequence of characters. They most often lead to OOV tokens that could be mapped

to a sequence of known target tokens, although it often proves challenging since it requires, to a

large extent, a lexicon. In example ±, the abbreviation “bien” ! “bn” for a fairly standard French

expression fails to produce the correct translation (“very much”).

3.3.2 Marks of expressiveness

These account for any modification or addition of words, letters and punctuation symbols in

the message in order to convey emotions. In this work, we considered three specific UGC

morphological features that are related to such a group. Examples of the impact on translation

quality are shown in Table 3.5, referenced in this subsection.

Emoticons and emojis The former corresponds to sequences of characters to state the

intended tone and denote emotions (often by representing facial expressions using punctuation

symbols) (Dictionary 2017), and consequently introduces rare sequences of often known source
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tokens. On the other hand, emojis, are specially encoded characters that represent miniaturized

figures, serving, in a general way, to the same purposes as emoticons, but introducing an

ever-increasing list of valid emojis (3,251 emojis in Unicode Standard, as of September 2020).

Although emojis are progressively present in today’s linguistic landscape (the 2015 Oxford

Language word was, indeed, an emoji (Verge 2015)), their high number and variability often

results in character-level OOV during evaluation. In example ¨, the Unicode-encoded emoji

(“U-1F972”), a character-level OOV, is ignored during translation. Conversely, the emoticon “:O)”,

representing a surprised expression, being a rare sequence not present in canonical texts, is

treated by the MT engine as “où”, producing its corresponding English translation “where”.

Marks of expressiveness

¨ Emoticons and emojis ≠ Grapheme stretching and Punct. reduplication
SRC C’est vrai :O il est là U-1F972 . SRC C’est supeeeerrrr !!![super!].
REF It’s true :O he is there U-1F972 . REF It’s great!!!
Google It’s true: where he is Google It is supereeeerrrr !!!

Æ Inconsistent casing Ø Interjections
SRC Ça c’EsT TRÈS BiEn. SRC C’est ça ptdr.
REF That IS VERY GOOD. REF That’s it, lol.
Google THAT IS VERY GOOD. Google This is ptdr.

Table 3.5: Examples of translation impact due to Marks of Expressiveness phenomena. The references (REF) are
manual edits of Google’s translations of the correct form to include the missing characters. Normalized version of the
tokens is displayed in blue brackets.

Grapheme stretching and Punctuation reduplication They consist of repetitive structures

to emphasize emotion by expanding certain words or punctuation. These are most often

manifested in rare repetition sequences of characters and punctuation marks. Example ≠

shows how these specificities can affect translation by adding repeated characters. Punctuation

repetitions (“!!!!”) are arguably easier to treat, as they can be tokenized and recopied in the

output, while words undergoing stretching have to be mapped to a known word and translated

accordingly (“supeeeerrrr ” in the example).

Inconsistent casing This UGC specificity involves any kind of casing occurrence that does

not comply with the language rules. They introduce different (possibly alternated) upper- or

lowercase versions of characters or full words, which, in turn, are represented by completely

different elements in the vocabulary. However, current MT systems employ methods such as

translating the full lowercase version of the text and employing placeholders to recover the actual
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source-side casing, known as in-line casing (Berard et al. 2019b). The public translation engine

appears to be robust to this UGC specificity, as can be seen in example Æ. However, it is an

additional confounding factor for translation; for instance, in the presence of a letter deletion,

Google’s translation system outputs: “C’est très bin” ! “It’s very good”, whereas, when an

inconsistent case is introduced, the result is “C’est très BIN” ! “It’s very BIN”.

Interjections These are words often related to MWE that also set the intended tone of the

message. They are specifically difficult to process correctly without any lexicon or example

dataset, since they represent rare sequences that can be extended into spans of several words.

In example Ø, the interjection “ptdr ”, which stands for “peté de rire”, which is analogous to lol

(laughing out loud) in English, is not recognized by the translator and is copied into the output.

Some interjections are correctly translated by Google’s engine, e.g. it is the case if we substitute

“ptdr ” by “mdr ”, another known French to evoke laughter, which is translated as “lol”.

3.3.3 Boundary shifting

This category groups the phenomenon of changing the segmentation between words, either to

reduce writing efforts or due to typographical errors.

Tokenization errors We include in this group any sequence of words whose segmentation

(mostly delimited by spaces and apostrophes in French and English) is not in agreement with

its canonical segmented form. In the examples in Table 3.6, we can see how these UGC’s

specificities can impact translation.

Boundary shifting

¨ Contraction ≠ Over-splitting
SRC Jviens[Je viens] defaire[de faire] un bon marché. SRC C’est p lutôt[plutôt] pas mal ça.
REF I just did a good deal. REF It’s pretty good.
Google I have come to do a good market. Google It’s not bad soon.

Table 3.6: Examples of translation impact due to Boundary Shifting phenomena. The references (REF) are translations
by the same MT engine of the correct form, accordingly. Normalized version of the tokens is displayed in blue
brackets.
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3.3.4 UGC context-dependent specificities

These make reference to any peculiarities of the message related to the specific nature of

the channel or the exchange platform used. In this work, we divide them into two types, with

corresponding examples in Table 3.7:

UGC Context-dependent specificities

¨ Special characters ≠ Named entities
SRC #Tenez bon ça va durer. SRC c’est excellent de jouer à fish fins.
REF #Hold on it’s going to last. REF It’s excellent to play fish fins.
Google #Get good it will last. Google It is excellent to play fine fish.

Table 3.7: Examples of translation impact due to Marks of Expressiveness phenomena. The references (REF) are
manual edits of Google’s translations of the correct form to include the missing tokens. Normalized version of the
tokens is displayed in blue brackets.

Special character sequences These are occurrences of characters that, due to the UGC’s

extreme diversity could be, in principle, any type of character, possibly in a different encoding.

They can also depend on the UGC platform having distinguishable uses to access functionality,

e.g. the characters # and for hashtags and user mentions, respectively, in TWITTER or URL

strings (http(s):// ). In example ¨, the character # prevented the correct translation of “tenez bon”

! “hold on”.

Named entities They are NE that are in line with the informational context surrounding the

UGC, e.g. names of films or games (possibly written in a foreign language). Some other NE

depend on the publication platform, as is the case of RT and TT, denoting Retweet and Trending

Topics in TWITTER discussions. In example ≠, the name of a hypothetical game (fish fins) is

incorrectly translated when it should be kept unmodified in the output.

3.4 UGC as an ever-changing way of expression

In addition, motivated by the observation that the potential variations in UGC are too wide and

variable to be accounted for, and, lacking sufficiently large translated UGC training datasets in

open access, we set as our main approach not to use any domain-adaptation technique nor

target-specific (UGC) data. Furthermore, a constant evolution of ways of expression, such as

the increasing use of an ever-growing set of available emojis and endless possible discussion
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topics, gives UGC a considerable dynamic through time and location of the users (Broni 2021),

and that has recently been shown to strongly contribute to emergent linguistic constructs (Raviv

et al. 2020).

Furthermore, Oren et al. (2019) highlighted the disadvantages of fine-tuning, which requires

knowing the test distribution, especially variable for UGC; and training a different model or

module that specializes in targeting a domain distribution. These limitations ultimately pose an

overhead for MT systems and require a priori understanding of the test distribution. The authors

also assessed that using text outside the main target distribution, such as in UGC-augmented

training corpora, actually degrades performance on the original target distribution (canonical text

used during training).

In this regard, we focus our research on exploring methods that can generalize over a

wide range of noisy phenomena when testing, which, in turn, aim to produce more robust MT

systems without using any specific UGC text. Concretely, we have systematically chosen training

corpora constrained to canonical texts and zero-shot evaluation of UGC test sets, these being

considerably outside the distribution of our training datasets, as we will quantify and discuss

in further detail in Section 3.6 At this point, it is worth noting that, since we want to conceive

MT architectures that can adapt and generalize over new forms and noisy variations of the

canonical training datasets, we are particularly interested in Neural Machine Translation (NMT)

approaches. In this train of thought, our work mainly focuses on proposing methods that can

enhance neural learning representations of noisy constructs, either by pre-processing pipelines

or architecture modifications that translate into performance improvement when processing

UGC.

In this zero-shot scenario, we intend to resolve UGC specificities without using any UGC

data, for which we explore and propose methods that leverage some heuristics or fine-grained

morphological properties. Under these premises, we proceed to state the challenges and main

research questions for this thesis work.

3.5 Datasets

In this section, we describe the datasets for training, developing, and testing all of the MT models

investigated throughout this work. We elaborate both on the canonical and commonly used
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corpora for MT, as well as the UGC ones, which we compare in terms of automatic metrics for

noise and domain-drift assessment (discussed in Section 2.4.2).

Canonical data We train our models on two different canonical parallel corpora. We first

consider the traditional corpus for training MT systems, namely the WMT data consisting

of the europarl (v7) corpus2 and the newscommentaries (v10) corpus3. We use the

newsdiscussdev2015 corpus as a development set. This is exactly the data confgiura-

tion used to train the system described in Michel and Neubig (2018), which will be used as a

reference throughout this work.

We also consider the French-English parallel portion of OpenSubtitles’18 (Lison et al.

2018) as a second training set. This corpus is a collection of crowd-sourced and peer-reviewed

edited subtitles for movies. We assume that because it is made up of informal dialogues, such

as those found in popular sitcoms, sentences from OpenSubtitles will be much more similar

to the UGC data than the WMT training dataset. However, it must be noted that UGC differs

significantly from subtitles in many aspects: emotion denoted with repetitions, typographical and

spelling errors, emojis, etc.

To allow for a fair comparison between systems trained on WMT and on OpenSubtitles, we

consider a small version of the OpenSubtitles corpus, that has nearly the same number of

tokens as the WMT training set and a large version that contains all OpenSubtitles parallel

data.

To evaluate our system on in-domain data, we use two test sets, namely, newstest’14, as

well as 11,000 sentences extracted from OpenSubtitles, which we refer to as OpenSubTest

throughout this dissertation. Statistics for our different datasets are presented in Table 3.9.

Non-canonical UGC data To evaluate our models, we consider two data sets of manually

translated UGC.

The first is a collection of French-English parallel sentences manually translated from an

extension of the Parallel French Social Media Bank (Seddah et al. 2012), which contains

texts collected on Facebook, Twitter, as well as from the forums of JeuxVideos.com and

2
www.statmt.org/europarl/

3
www.statmt.org/wmt15/training-parallel-nc-v10.tgz
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Doctissimo.fr.4

We refer to this corpus as PFSMB for Parallel French Social Media Bank, and it consists of

1,554 comments in French annotated with different kinds of linguistic information: Part-of-Speech

tags and surface syntactic representations. Phrases have been translated from French to English

by a native French speaker and an extremely fluent, near-native English speaker. Typographic

and grammatical errors were corrected in the gold translations, but the linguistic register was

kept. For instance, idiomatic expressions were mapped directly to the corresponding ones

in English (e.g. “mdr” has been translated to “lol” and letter repetitions were also kept (e.g.

“ouiii” has been translated to “yesss”). For our experiments, we divided the PFSMB into a test

set and a blind test set containing 777 comments each.

We also consider, for these experiments, the MTNT corpus (Michel and Neubig 2018), a

dataset made up of French sentences that were collected from Reddit and translated into

English by professional translators. We use their designated test set and add a blind test set of

599 sentences we sampled from the MTNT validation set. The PFSMB and MTNT corpora both

differ in the domains they consider, their collection date, and the way sentences were collected

to ensure that they are sufficiently noisy. Several statistics of these two corpora are reported in

Table 3.9. As expected, our two UGC test sets have a substantially higher token-to-type ratio

(TTR) than the canonical test corpora, indicating greater lexical diversity.

As discussed previously, we have divided the UGC test sets into two subsets: common test

sets and blind test sets. This is motivated by the necessity of unforeseen test corpora in order to

fairly report results of our methods after choosing the best configurations and MT systems over

the common UGC tests. To gain more insights into the sizes and basic statistics of our entire

dataset collection, please refer to Table 3.9, where the statistics of the mentioned corpora are

shown.

Some examples of samples from the PFSMB and MTNT UGC corpora, and their corresponding

reference translation, can be found in Table 3.8. On the other hand, to evaluate whether our

methods keep their generalization properties and, thus, are still able to perform well when

processing clean test sets, our evaluation policy is to always display the performance of our MT

systems over two canonical test sets: newstest’14 and OpenSubTest. Both of these test

corpora cover the domain of our training data respectively: formal linguistic forms featured in

4Popular French websites devoted respectively to video-games and health.
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UGC Corpus Example

MTNT FR (src) Je sais mais au final c’est moi que le client va supplier pour son offre et comme Jsui
un gars cool, jfai au mieux.

EN(ref) I don’t know but in the end I am the one who will have to deal with the customer
begging for his offer and because I’m a cool guy, I do whatever I can to help him.

PFSMB
FR (src) si vous me comprenez vivé la mm chose ou [vous] avez passé le cap je pren tou ce

qui peu m’aider.
EN (ref) if you understand me leave the same thing or have gotten over it I take everything

that can help me.

Table 3.8: Examples for our considered UGC corpora. Noisy tokens and their corresponding translations are shown
in bold font.

WMT and considerably more colloquial ways of expression in OpenSubtitles.

Corpus #sentences #tokens ASL TTR #chars

train set
WMT 2.2M 64.2M 29.7 0.20 335
OpenSubtitles 9.2M 57.7M 6.73 0.18 428

test set
OpenSubTest 11,000 66,148 6.01 0.23 111
newstest’14 3,003 68,155 22.70 0.23 111

Corpus #sents #tokens ASL TTR #chars

UGC test
PFSMB 777 13,680 17.60 0.32 116
MTNT 1,022 20,169 19.70 0.34 122

UGC blind
PFSMB 777 12,808 16.48 0.37 119
MTNT 599 8,176 13.62 0.38 127

Table 3.9: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-Token
Ratio, ASL for average sentence length.

3.6 Quantifying the difference between canonical texts and UGC

As a first exploratory approach for the corpora being considered, we can note their token-level

statistics in Table 3.9. It is worth noting that the TTR of our four UGC test sets are roughly 42%

higher than the train and canonical test corpora, which indicates a proportionally higher lexical

variability for UGC.

Several metrics have been proposed to quantify domain drift and extraneous n-grams

apparitions overall between two corpora. In particular, the perplexity of a language model and

the Kullback-Leibler (KL)-divergence between the character-level 3-gram distribution of the train

and test sets were two useful measurements capable of estimating the noise-level of UGC

corpora as shown respectively by Seddah et al. (2012) and Martínez Alonso et al. (2016). We

also employed the perplexity (PPL) of a 5-gram Knesser-Nay language model (Ney et al. 1994)

trained on Large OpenSubtitles as a measure to assess the out-of-domain (OOD) (Haddow

and Koehn 2012) of a given corpus.

Table 3.10 reports the noise level of our test sets introduced in Section 3.5 with respect to
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# Metric / Test set ! PFSMB
† MTNT† Newstest OpenSubsTest

3-gram KL-Div 1.563 0.471 0.406 0.006
%OOV 12.63 6.78 3.81 0.76

avg. BPEstab 0.018 0.024 0.049 0.13
PPL 599.48 318.24 288.83 62.06

Table 3.10: Domain-related measure on the source side (FR), between Test sets and LARGE OPENSUBTITLES

training set. Dags indicate UGC corpora.

our largest training set, LARGE OPENSUBTITLES. The measures show how divergent our UGC

corpora are from our largest training set. As shown by its OOV ratio, PPL, and KL-divergence

value, the PFSMB corpus is considerably noisier than the MTNT corpus, making it a more difficult

target in this translation scenario. We can also notice that both UGC test sets are considerably

dissimilar to other canonical OOD set (newstest’14), especially in terms of OOV ratio and

BPE piece stability (BPEstab). This metric, proposed by us in Rosales Núñez et al. (2019),

quantifies the average lexical diversity of a test set for a given BPE tokenization model, i.e. low

average BPE stability points to a more variable BPE neighborhood for the average BPE piece,

and thus, higher average vocabulary complexity. Specifically, if N is the total number of BPE

tokens in a tokenized corpus, j each of the words of the BPE vocabulary (set to 16K) and freqj

the frequency of such a BPE token j in the test corpus, we computed it as follows:

1

N
·

16KX

j=1

freqj ·
#unique_neighborsj

#neighborsj

This corresponds to the weighted average of the diversity of BPE neighbors for the whole

fixed-size vocabulary.

3.7 Scarcity of UGC resources for NLP

As previously discussed, UGC has inherent characteristics, such as addressing any possible

kind of domain and raising considerable challenges to overcome for consensus and annota-

tion (Martínez Alonso et al. 2016) due to its extreme variability. This makes their evaluation

intrinsically a low-resource scenario in NLP (Meftah 2021), as parallel UGC corpora is scarce in

publicly available datasets (Lohar 2020).

In contrast, availability of good quality data in sufficiently large quantities strongly conditions

the development and training of NLP models for new domains (Bamman 2017). Recently, some
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valuable and peer-reviewed UGC collections have appeared, specifically for MT, for example, the

MTNT and 4Square corpora. However, they have primary adaptation and evaluation purposes,

containing dozens of thousands of training sentences, substantially less than the usual number

of samples needed to train today’s NMT models. Additionally, noise present in large and

automatically scraped UGC corpora for training purposes, such as the ParaCrawl
5 has shown

to negatively impact the quality of NMT (Rikters 2018), which in turn leads to a consequent loss

of performance over in-domain corpora, even when UGC is available for training.

3.8 Related works in UGC translation

In this section, we review the works related to the series of MT methods and protocols developed

to cope with UGC throughout this dissertation. We also link each of the following sets of MT

literature to our proposed approaches in each chapter to justify their relevance at each stage of

this work.

3.8.1 MT of UGC: general overview

We start by discussing the literature on the impact on translation performance caused by UGC

translation. In this sense, we first review the work that characterizes UGC translation and its

performance related to canonical text MT.

Automatic translation of UGC has proven to be a difficult task compared to canonical text

MT (Berard et al. 2019a; Fujii et al. 2020), also involving challenges in terms of robustness and

optimal vocabulary choice, due to an arbitrarily high variation of terms and orthography, informal

language, and spelling errors (Berard et al. 2019b). Its differences, compared to other domain

adaptation MT task, lie in the fact that UGC can encompass multiple topics while maintaining

increased lexical variation and grammar inconsistencies due to its rich productivity (Michel and

Neubig 2018), as previously discussed.

We then review the literature comparing NMT and PB-SMT, highlighting their application for

UGC translation, which constitute our first MT baselines in Chapter 4. These are later used to

identify and report caveats of the main popular MT paradigms when processing UGC. Bentivogli

et al. (2016) showed that NMT predictions need less post-edition processing and present lower
5http://statmt.org/paracrawl
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error rates than PB-SMT in English ! German translation of TED talks. On the same train of

thought, Bojar et al. (2016)’s results also indicate that NMT is significantly better than PB-SMT,

since less post-editing is needed to output a correct translation. On the other hand, Castilho et al.

(2017) reports were somewhat ambiguous, showing that NMT has an edge over PB-SMT in

terms of fluency and translation errors, while some results reflect an improvement over PB-SMT

in terms of post-editing needs. However, none of the aforementioned works were conducted

using experimental setups with a purposely high mismatch between training and test corpora. In

this line of research, Haddow and Koehn (2012); Koehn and Knowles (2017) found that NMT

performs relatively poorly when translating OOD texts, as well as under low-resource conditions.

Dowling et al. (2018) also showed a significant improvement of PB-SMT’s BLEU score over NMT

on -typically- low-resource English ! Irish translation. More recently, Anastasopoulos (2019)

conducted experiments to determine how source-side error estimation can be related to different

grammatical errors in translations using NMT models.

3.8.2 Normalization and handling ambiguities via DAGs

Further during this dissertation, in Chapter 5, we proposed an automatic normalization pipeline

to approach noisy versions of text sequences to canonical constructs, which are ultimately

expected to perform better, since the inherent OOD-drift nature of UGC gets minimized. In

this order of ideas, several works have focused on using lattices to model uncertain inputs or

potential processing errors that occur in the early stage of the translation pipeline. For instance,

Su et al. (2017) proposed lat2seq, an extension of sequence-to-sequence models (Sutskever

et al. 2014), which are capable of encoding several possible input possibilities by conditioning

the RNN output to multiple predecessors’ paths. More recently, Sperber et al. (2017) introduced

a model based on Tree-LSTMs (Tai et al. 2015), to correct the output of an Automatic Speech

Recognition (ASR) system. On the other hand, Le et al. (2008) use lattices composed of written

subword units to improve the recognition rate in ASR.

However, none of the aforementioned works focus on processing noisy UGC corpora, and

they do not consider the use of phonetizers and pronunciation similarity to recover correct tokens.

They aim to correct known tokens, such that a neural language model chooses the best output

when an uncertain input is present (typically words with similar pronunciation from an ASR
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output). Instead, our approach calculates the phonetization of the source token and candidates

are proposed based on their phonemic similarity to it, whether this original word is an OOV or

not, i.e. an alternative phonemic orthography, or incorrectly using another existing word due to

their pronunciation resemblance.

On the same trend, Qin et al. (2012) combined several ASR systems to improve the de-

tection of OOVs. More recently, van der Goot and van Noord (2018) achieved state-of-the-art

performance on dependency parsing of UGC using lattices.

Closely related to this work, Baranes (2015) explored several normalization techniques on

French UGC. In particular, to recover from typographical errors, they considered a rule-based

system, SxPipe (Sagot and Boullier 2008), which produced lattices encoding the alternative

spelling of OOVs and used a language model to select the best correction.

Several works have explored different approaches to normalize noisy UGC in various lan-

guages. For instance, Stymne (2011) use Approximate String Matching, an algorithm based

on a weighted Levenshtein edit distance to generate lattices containing alternative spelling of

OOVs. Wang and Ng (2013) employ a Conditional Random Field and a beam-search decoding

approach to address missing punctuation and words in Chinese and English social media text.

More recently, Watson et al. (2018) proposed a neural sequence-to-sequence embedding that

improves FastText (Bojanowski et al. 2017) representations with word-level information, which

achieved state-of-the-art on the QALB Arabic normalization task (Mohit et al. 2014).

3.8.3 Character-level MT for UGC

The impact of noise on the charCNN and char2char models has been evaluated by Belinkov

and Bisk (2018) and Ebrahimi et al. (2018) by artificially adding noise to canonical texts (the

TEDTalk dataset). Their results show that the different character-level models fail to translate

even moderately noisy texts when trained on ‘clean’ data, and that it is necessary to train a

model on noisy data (either natural or synthetic) to make it robust. Note that, as discussed in

Chapter 3, and as of the date of this dissertation, there is no UGC parallel corpus large enough

to train an NMT model, and we must rely on the model’s ability to learn, from canonical data

only, noise- and error-resistant representations of their input that are robust to the specificities

found in UGC. This is why, in this work, we are interested in studying the MT performance in a
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zero-shot scenario when translating noisy UGC, as discussed previously in Section 3.4.

To the best of our knowledge, no work has studied the performance of the character-

based NMT architectures on an actual UGC scenario with real-world gathered and fine-grained

annotated noisy sentences. This sets the main motivation for the character-level MT study in

Chapter 6.

3.9 Conclusion

In this chapter, we reviewed substantial reasons to be interested in designing robust MT systems

that can correctly translate noisy UGC, especially for public and widespread translation engines.

As noticed, the ubiquity of UGC in the modern communication world, and the richness of being

massively produced by a large number of users, make them also valuable and to be taken into

consideration for different NLP tasks.

We discuss the specificities of UGC and provide a fine-grained typology that can be used

to explain translation errors in a black-box query-based fashion to ultimately characterize the

difficulties involved in this task. Additionally, examples of translations for each UGC phenomenon

we consider are displayed and discussed to illustrate how they impact MT quality, notably when

using very popular and public translation engines.

Finally, after stating the motivation and translation problems at hand, we reviewed the

literature on UGC translation related to each of the approaches studied in this work.

After reviewing the main methods and techniques for MT and discussing the challenges that

UGC poses for automatic translation; in the next chapter, we present our first out-of-the-box MT

baselines. This set of experiences has a twofold purpose: it helped us identify and characterize

the main translation quality problems caused by UGC on the most used MT approaches; and

these baseline results are useful to keep track of the impact of possible methods to cope with

UGC investigated throughout this dissertation.
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Chapter 4

Machine Translation of Noisy UGC:

Translating the Impossible

In this chapter, we describe the main experimental protocols, data and MT systems that we use

as baselines and architecture backbone for our methods aiming to enhance the quality of MT

systems on UGC. In order to keep consistency and ensure a fair comparison between all the

methods presented in this work, we have systematically considered translating French UGC

to English and identical training and test corpora. All the datasets and experimental protocols

correspond to those of our first publication (Rosales Núñez et al. 2019).1

4.1 MT noisy translation with state-of-the-art systems

In this chapter, we start by reviewing and analyzing the behavior of off-the-shelf modern PB-SMT

and NMT methods when processing noisy UGC, in order to identify difficulties related to UGC

translation. In this respect, we intend to use both automatic metrics and detailed error analysis

discussed in Section 2.4.2.

Even if NMT has become the predominant MT approach in recent years (Yang et al. 2020), we

decided to include a PB-SMT system in our comparison because, to the best of our knowledge,

the robustness of this family of methods has never been evaluated on UGC. Indeed, PB-SMT’s

translation tables may behave differently to UGC specificities; thus, these may be interesting.
1The main goal of this thesis is to improve MT performance when translating noisy UGC. Nevertheless, it is worth

noting that we started to explore the impact of UGC on the performance of NLP system with a Part-of-Speech task.
This first experience, resulted in a publication at TALN in 2018.
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4.2 Zero-shot MT and UGC

As we have discussed in Section 3.7, due to its productivity in terms of new forms, new structures,

or new domains, UGC is extremely variable and constantly evolving. Robust UGC MT is expected

to cope with an arbitrarily wide range of unknown inputs, as UGC has an evolving nature (Lobato

et al. 2011), ultimately resulting in new terms over time (and consequently potential OOV tokens).

Furthermore, building a parallel UGC dataset large enough to train MT systems is not possible

due to the scarcity of good, consistent and license-friendly real-world UGC data, as discussed

in Chapter 3. This is why, in this work, we focus on a zero-shot scenario, with training data

constrained to canonical, standard, and publicly available corpora, whereas UGC data are used

only to evaluate the robustness of our systems. This choice, motivated by the nature of the

data and the task at hand, is particularly restrictive and makes the development of translation

systems substantially more difficult. In particular, it strongly constraints the use of all the fine-

tuning methods, today, at the heart of many NLP methods (Ramponi and Plank 2020). This

experimental configuration was recently used as a new track in the WMT 2020 Robustness

Shared Task (Specia et al. 2020).

In short, our aim is to improve the inherent robustness of MT models. Thus, in order

to unequivocally account for the improvements to our methods, we remove any impact on

performance caused by the means of using UGC data during training.

4.3 First baselines: getting started

To set a first comparison point and assess whether our proposed methods and pipelines result

in any performance improvement, we started by training three mainstream off-the-shelf MT

architectures using PB-SMT and NMT approaches. For the former, we used the well-known

Moses framework (Koehn et al. 2007a), and for the latter, we chose the two most commonly

used encoder-decoder sequence-to-sequence techniques, i.e. a Bidirectional Long-Short Term

Memory Recursive Neural Networks (Bi-LSTM) encoder with attention-based decoding (Luong

et al. 2015; Michel and Neubig 2018), and a Transformer architecture that relies on a multi-head

attention mechanism (Vaswani et al. 2017). The training, development, and test corpora are

those described in Section 3.5.
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This first study also aims to provide a comparison and error analysis of PB-SMT and NMT

when translating noisy UGC. More precisely, our contributions in this chapter are threefold:

• We compare the performance of PB-SMT and NMT systems when translating either

canonical or noisy UGC text;

• we analyze, both quantitatively and qualitatively, several cases in which PB-SMT outper-

forms NMT on highly noisy UGC, and we discuss the advantages, in terms of robustness,

that PB-SMT offers over NMT approaches;

• we explain how these findings support previous observations on the limits of recurrent

seq2seq (Koehn and Knowles 2017) and Transformer (Passban et al. 2021) NMT

architectures, by studying cases in which, as opposed to the PB-SMT system, the attention

mechanism fails to provide a correct translation.

The results presented in this chapter have been published in (Rosales Núñez et al. 2019).

4.3.1 Addressing tokenization: adopting the first mainstream robustness tech-

niques

Following the usual practice used in the literature to address the OOV problem, and as stated

in Section 2.3, we have adopted Byte-Pair Encoding (BPE) tokenization (Sennrich et al. 2016).

This method has enjoyed extensive literature support, and its principle is aimed at leveraging on

subword n-gram unit composition in order to resolve possible OOV. That is, using this tokenization

method, the MT systems will decompose words in a sentence into a sequence of the K most

frequent n-grams occurring in the train set to output a translation, where K, the vocabulary size,

is the only parameter to be set. It is worth mentioning that, as discussed in Section 2.3, any MT

system will automatically replace OOV by a special <UNK> token during inference, and, although

BPE ensures almost no OOV tokens (Araabi et al. 2022), OOV characters (e.g. emojis) and rare

characters (e.g. under-represented alphabets in the train set) are the exceptions.

We have chosen to use a BPE tokenization with a vocabulary size of 16K token, as it is

a common parameter value for BPE in literature. We only consider this kind of tokenization

since it has been virtually used in all NMT systems and systematically outperforms word-level

tokenization (Ding et al. 2019; Yang et al. 2020). Each tokenization model is trained on the

corresponding dataset used to train the MT system, as described in Section 3.5.
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4.3.2 Results

Table 4.1 reports the results of the different models that we have considered. It is important

to note that, as stated in Section 2.3, we have implemented an alignment-based method to

substitute any possible <UNK> token into the predictions by copying their corresponding aligned

match from the source phrase. Alignments have been predicted by FastAlign (Dyer et al.

2013) trained on the same training data as the corresponding MT system.

PB-SMT seq2seq Transformer

PFSMB MTNT News Open PFSMB MTNT News Open PFSMB MTNT News Open

WMT 20.5 21.2 22.5† 13.3 17.1 24.0 29.1† 16.4 15.4 21.2 27.4† 16.3

Small 28.9 27.3 20.4 26.1† 26.1 28.5 24.5 28.2† 27.5 28.3 26.7 31.4†

Large 30.0 28.6 22.3 27.4† 21.8 22.8 17.3 28.5† 26.9 28.3 26.6 31.5†

Table 4.1: BLEU score results for our three models for the different train-test combinations. The best result for each
test set is marked in bold, best result for each system (row-wise) in blue, and score for in-domain test sets with a dag.
‘News’ and ‘Open’ stand, respectively, for the newstest’14 and OpenSubtitlesTest test sets.

PB-SMT seq2seq Transformer

PFSMB MTNT News Open PFSMB MTNT News Open PFSMB MTNT News Open

Large
32K 22.7 22.1 16.1 27.4† 25.3 27.2 21.9 28.4† 27.8 28.5 27.1 31.9†

Table 4.2: BLEU scores for the Large training configuration using a 32K BPE vocabulary.

Surprisingly enough, it appears that the PB-SMT model outperforms both NMT architectures

when translating PFSMB, the noisiest test set (please refer to Table 3.10 in Chapter 3). We can

observe mixed results for the less-noisy UGC MTNT corpus. On the other hand, a consistent

trend emerges: NMT consistently outperforms PB-SMT when translating canonical out- and

in-domain test sets (newstest’14 and OpenSubTest). Overall, these results support the

observations that NMT produces, a priori, the best results under in-domain evaluation conditions.

However, such performance hides poor robustness for UGC test sets. This manifests itself as a

performance gap between PB-SMT and NMT that reaches the highest value when comparing

in-domain translation performance (+4.4 BLEU score on average2). In the same train of thought,

a considerable performance decrease can be observed when evaluating another less related

canonical corpus (+2.6 BLEU on average for newstest’14), and continues to decrease for

the relatively clean MTNT UGC corpus (+2 BLEU) to finally be favorable to PB-SMT for PFSMB

2To compute the average performance gap, we consider the WMT and Small trained systems, defining
newstest’14 and OpenSubTest and in-domain and OOD canonical test sets accordingly
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(-3.1 BLEU).

These results are consistent with observations concerning the comparison of PB-SMT and

NMT under low-resource conditions (Dowling et al. 2018), out-domain evaluation (Koehn and

Knowles 2017) and noise robustness (Khayrallah and Koehn 2018); which highlight the relatively

low performance of vanilla NMT systems compared to PB-SMT under these conditions. In the

following sections, we will analyze these results to further highlight the difficulty of NMT models

to generalize to UGC sentences by assessing their robustness capabilities.

Impact of vocabulary size We have also trained a version of each of our architectures, i.e.

PB-SMT, seq2seq and Transformer, using a 32K vocabulary size in the LARGE OPENSUBTITLES

training corpus to evaluate the impact of the BPE vocabulary size on translation quality. This

was motivated by the observation that, as can be seen in Table 4.1, our NMT models performed

considerably worse than PB-SMT with a 16K vocabulary on LARGE OPENSUBTITLES, even

suffering a performance drop compared to SMALL OPENSUBTITLES, which shares the same

domain and origin, while being substantially smaller than the former.

The results achieved by this system are reported in Table 4.2, for the larger vocabulary

version (32K), PB-SMT seems to severely lose generalization capabilities: it achieves a similar

performance for in-domain test sets, whereas performance on other test sets drops sharply.

In contrast, NMT witnesses a generalization improvement. A similar observation has already

been reported by Al-Haj and Lavie (2012) for PB-SMT, and is explained by an excessive token

fragmentation, which limits the contextual information captured by the phrases.

In all experiments described in this work, we chose to keep the 16K BPE segmentation, as

this setting results in the best performance for both of our training configurations.

4.3.3 Error analysis: are PB-SMT systems better than NMT architectures when

processing UGC?

The goal of this section is to analyze both quantitatively and qualitatively the output of NMT

systems to explain their poor performance when translating UGC. Several works have already

identified two main limits of NMT systems: translation dropping (Sato et al. 2016), manifested as

the production of sensible shorter prediction than the ground-truth translation, and excessive

token generation, also known as over-generation (Roturier and Bensadoun 2011; Kaljahi et al.
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Figure 4.1: Distribution of PFSMB translations length ratio with respect to ground truth translations.

2015; Kaljahi and Samad 2015; Michel and Neubig 2018), in which the NMT systems output

longer translation hypothesis than expected, typically producing repetitive sequences of tokens.

This phenomena were also observed in more recent works (Ramesh et al. 2020), where

NMT was found to produce translated token repetitions, omissions and spurious words when

considering other low-resource scenarios. Next, we will analyze in detail how these two problems

impact the MT models.

Translation dropping By manually inspecting the system outputs, we found that NMT models

tend to produce shorter outputs than the translation hypotheses of the PB-SMT system, often

avoiding translating the noisiest parts of the source sentence. For instance, the French sentence

“Bon je veux regard te _en w _olf [...]”3 (Well I want to watch Teen Wolf [...]) is

translated to a considerably shorter output by seq2seq, “I want to look at you”, which

results in an obvious change in meaning by the NMT system, also known as hallucinations

(Raunak et al. 2021).

Analyzing the attention matrix for this observation, in Figure 4.2, shows that this problem is

caused by a rare BPE token (“te”), part of the Named Entity “teen wolf”, which is confused

3“_” indicates BPE pieces
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¿ src Vos gueul ac vos Zlatan
ref Shut the fck up with your Zlatan.
PB-SMT Your scream in your Zlatan
seq2seq Your shrouds with your Zlatan
Transformer Zlatan!

¡ src CE SOIR Y A L’ÉPISODE DE #TeenWolf OMFGGGG
ref TONIGHT THERE’S THE #TeenWolf EPISODE OMFGGGGG
PB-SMT Tonight’s It At The EPISODE OF #Teen Wolf OMFGGGG
seq2seq Teenwolf OMFGGGGGGGGGG
Transformer THIS SOIRY HAS THE #TeenWOL OMFGGGGGGGGGG

¬ src arretez de parler de teen wolf svp
:(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((

ref stop talking about teen wolf please
:((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((

PB-SMT stop talking about teen wolf please
:(( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “( ˇ “(

seq2seq Stop Tenwolf, please. Please, please, please, please, please, please,
please, yes, yes, yes, yes, yeah, yeah, yeah, yeah, yeah, yeah, yeah,
yeah, yeah, yeah, yeah, yeah, yeah, yeah, yeah, yeah, yeah, yeah,
yeah, yeah, yeah, yeah, yeah,

Transformer Please stop!

Table 4.3: Examples from our noisy UGC corpus translated by our MT systems, displaying source (src) and reference
translation (ref ).

with the very common French pronoun “te” (you in English), where the attention weights

are maximal across the sequence. As a consequence, the seq2seq model suddenly stops

translating because the hypothesis “I want to look at you” is a very common English

sentence with a much lower perplexity than the (correct) UGC translation. A similar pattern

can be observed with the Transformer architecture in the case of rare token sequences on the

source side, such as in examples ¬ and ƒ in Table 4.3, causing the translation to stop abruptly,

whereas this is not the case for seq2seq and PB-SMT.

The phrase-based model, PB-SMT, does not suffer from this issue, as there is no entry in the

phrase table that matches the sequence of BPE tokens of the source sentence. This illustrates

how alignment tables can be more efficient than soft-alignment produced by attention mech-

anisms for highly noisy cases, in particular when the BPE tokenization generates ambiguous

tokens, which confuses the NMT model.

In order to quantify the translation dropping phenomenon, we show, in Figure 4.1, the

distribution of the ratio between the reference (ground-truth) translation sentence lengths and
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Figure 4.2: Attention matrix for the source sentence “Bon je veux regardé teen wolf moi mais ce soir nsm” (Ok, I do
want to watch Teen Wolf tonight motherf..r) predicted by a seq2seq model.
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the ones produced by PB-SMT and NMT for PFSMB. This figure shows that both NMT systems,

(i.e. RNN-based and Transformers models), have a consistent tendency to produce shorter

sentences than expected, while PB-SMT does not. These results show that off-the-shelf NMT

systems produce overall shorter translations, as other authors have noticed (Zhang et al. 2020).

Moreover, there is a substantial percentage of NMT predictions that are 60% shorter than the

references, demonstrating the presence of translations that are dropped or shortened.

Over-generation A second well-known issue with NMT is that the model sometimes repeatedly

outputs tokens that lack any coherence, thus adding considerable artificial noise to the output

(Tu et al. 2016).

When manually inspecting the output, it can be noticed that this phenomenon occurred

in UGC sentences that contain a rare, and often repetitive sequence of tokens, such as “ne

spooooooooilez pas teen wolf non non non et non je dis non” (don’t spoooooil

Teen wolf no and no I say no), in which the speaker’s emotion is expressed by repeated char-

acters (graphemic and punctuation stretching) and word repetition. These correspond to the

“Marks of Expresiveness” UGC specificities category, reviewed in Section 3.3.

The attention matrix obtained when translating such sentences with a seq2seq model often

shows that the attention mechanism becomes stalled due to the repetition of some BPE token,

as shown, for example, in the attention matrix in Figure 4.3. More generally, it is noticeable

that there are many cases in which the attention weights start increasingly focusing on the

end-of-sentence token until the translation is terminated, while ignoring the source sentence

tokens thereafter.

The transformer model exhibits similar problems (for instance, it translates the previous exam-

ple to “No no no no no no no no no no no no no no no no no no”). The PB-SMT

system does not suffer from this problem and arguably produces the best translation: “don’t

spooooooozt Teen Wolf, no, no, no, no, I say no”.

4.3.4 Source-side artificially amplified noise

As we just observed in the qualitative analysis and translation examples, noisy occurrences

can affect the MT system’s performance to a greater extent than the original source-side, e.g.

single noisy tokens in the input can produce a larger-span negative impact on the system
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Figure 4.3: Attention matrix of a seq2seq model that exhibits the excessive token repetition problem. The sharp
symbol (#) indicates spaces between words before the BPE tokenization.

representations of other tokens in the sentence. Therefore, to assess and quantify such a

phenomenon and compare our MT systems within this scope, we report in Table 4.4 the Target-

Source Noise Ratio (TSNR), introduced by (Anastasopoulos 2019) and previously described in

Chapter 2.

As a reminder, a TSNR value greater than 1 indicates that the MT system adds more noise

on top of the source-side noise, i.e. the rare and noisy tokens present in the source create even

more noise on the output. Consequently, the higher the score, the more amplified the input-side

UGC noise is (noisy artefacts caused by the MT system). That is, most of the noise and errors

present in the translation hypotheses are due to errors of the MT system when processing noisy

inputs.

This metric assumes that a corrected version of each source sentence is available. Hence,

in order to compute this metric, we first manually corrected 200 source sentences of the PFSMB

test corpus. By doing so, we produced a normalized canonical version of the French UGC

source sentences, which is meant to be compared to the original (noisy) version. In Table 4.4, we
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PB-SMT seq2seq Transformer

WMT 4.62 5.00 4.92
Small 4.11 4.27 4.19
Large 3.99 4.27 4.09

Table 4.4: Noise added by the MT system estimated by TSNR for the PFSMB corpus, the lower, the better. Small
and Large refer to the small and large instances of the OpenSubtitles training set.

report TSNR scores for our MT systems trained using our three training corpora, i.e. WMT, SMALL

OPENSUBTITLES and LARGE OPENSUBTITLES. First, it can be noticed that for all systems,

the value is considerably larger than 1 (between 4 and 5), which means that these MT models

amplify the UGC noise occurrences in a proportion of roughly 4-fold, on average. Next, we can

observe that PB-SMT has a better TSNR score, thus adding fewer artefacts (including dropped

tokens and over-translations) to the output. It is also worth noting that the gap between the

PB-SMT and NMT architectures (about 0.3 BLEU points) is much larger when training on WMT

than when training in our OpenSubtitles (about 0.1 BLEU points). This could be explained by

a more related linguistic register of the latter to social media discussion UGC, than that of the

former. Indeed, the perplexity of the PFSMB corpus on a WMT language model is 826, compared

to roughly 599 when using OpenSubtitles.

4.4 Conclusions and perspectives

In this chapter, we evaluate the capacity of different off-the-shelf MT architectures to translate

UGC, and we perform a qualitative analysis of translations to understand when and why these

systems lack robustness to UGC. An in-depth analysis of attention-based mechanisms depicts

common causes of low translation performance and how UGC can “crash” the translation

process.

Our experiments show that PB-SMT systems are more robust to noise than NMT models, and

we provide several explanations about this relatively surprising fact. Concretely, we observed

and investigated the discrepancy between BPE tokens as interpreted by the translation model at

decoding time; and the addition of lexical noise factors that can get amplified during translation.

We have also shown, by producing a new dataset with more variability, that using more training

data was not necessarily the solution to cope with the specificities of UGC. The aim of this work
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is, of course, not to discourage the NMT system deployment for UGC, but to better understand

what aspect of PB-SMT methods contributes to noise robustness.

We have made our best effort to rule out the vastly documented scenario where NMT is in

disadvantage compared to PB-SMT due to low-resource availability (Koehn et al. 2007b; Dowling

et al. 2018), mainly caused by not large enough training corpus, regardless of the domain or

noise breach between training and test sets. In this regard, we chose a fairly bigger training

corpora than the reported minimum word quantity, which is roughly 20M (Koehn and Knowles

2017).

Our findings are in line with the NMT issues described in the works discussed in Section 3.8,

where rare vocabulary or unusual token sequences often trigger bad or truncated translations by

NMT. The conclusion of (Anastasopoulos 2019) that found a correlation between the performance

detriment of NMT and the noise in the source sentence is confirmed. Nevertheless, we also

show that PB-SMT seems much more robust, and its performance on highly noisy UGC corpora

is much more stable performance-wise compared to both studied NMT architectures (RNN and

Transformer).

Now that we have our MT baselines and first exploratory results of translating UGC, in the

next chapter, we start searching for a simple and modular normalization baseline by conceiving

a pre-processing pipeline that bridges the gap between UGC and canonical texts through

correcting phonetic writing, to subsequently let the MT systems translate the normalized form.

As we will see, this normalization pipeline leverages on the phonemic similarity between original

UGC tokens and possible normalization candidates, which allows us to make corrections without

any UGC normalization database.
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Chapter 5

Addressing a frequent feature of

French UGC: phonetic writing

Having our MT baselines and first results on translating UGC in the previous chapter, we propose

a simple and modular normalization baseline. We design a pre-processing pipeline that bridges

the gap between UGC and canonical texts through correcting noisy occurrences, and later

having the MT systems translate the normalized form.

As discussed in Chapter 3, there is an extensive presence of phonetic writing in UGC (Moens

et al. 2014), and the contribution of such a phenomenon has been studied specifically in French

digital media writing styles (Wachs 2017). In this regard, we have developed an automatic

normalization pipeline that leverages on the phonetic similarity between original UGC tokens

and potential normalization candidates, which enables us to make corrections without any UGC

normalization database. By doing so, we intend to recover from noise in the source by correcting

tokens and, then, translate the normalized sentences using off-the-shelf MT systems.

In further detail, in this section, we present our first attempts to improve MT translation by

proposing a re-ranking pipeline that aims to correct phonetic writing. As seen in Chapter 5,

phonetic writing ultimately results in an increase of OOVs, e.g “j’ai fait” (I have done) ! “g fé”,

both phrases being homophones in French, although the latter is incorrect and does not exist in

canonical texts. The phonetic writing UGC specificity can also cause incorrect syntactic use of

known words, e.g. “j’ai regardé” (I watched) ! “j’ai regarder” (I have watch). In this sense, this

method aims to transform these unusual and non-canonical constructs into their canonical form,
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which can be translated by any standard MT system in a subsequent stage.

Our contributions are threefold:

• We propose a pre-processing pipeline to normalize UGC and improve MT quality without

using UGC training data in any form;

• by quantifying the corrections made by our normalizer in our UGC corpora, we quantify

the presence of noise due to phonetic writing and demonstrate that using the phonetic

information can be potentially exploited to produce corrections of UGC without the necessity

of any kind of annotated data;

• we explore the performance improvement that can be achieved in machine translation by

using a phonetic similarity heuristic to generate different normalization candidates.

The work presented in this chapter was presented at the W-NUT workshop (Núñez et al.

2019), co-located with EMNLP 2019.

5.1 Phonetic correction model

To automatically process phonetic writing and map UGC to their correct spelling, we propose a

simple model based on finding, for each token of the sentence, words with similar pronunciations.

Next, we select the best spelling alternative, using a language model. More precisely, our

approach is made up of 4 steps:

1. Phonetizing: the pronunciation of each source token is automatically produced. All words

in the input sentence as misspelled tokens are not necessarily OOVs (e.g. “j’ai manger”

— literally “I have eat” — which must be corrected to “j’ai mangé” — “I have eaten”, the

French words “manger” and “mangé” having both the same pronunciation /mÃ.ge/);

2. Retrieving in-vocabulary tokens with similar pronunciation: using these phonetic represen-

tations, the method looks, for each word w of the input sentence, for every word in the

training vocabulary with a “similar” pronunciation to w according to an ad-hoc metric we

discuss below;

3. Encoding in Directed Acyclic Graphs (lattices): we represent each input sentence by a

lattice of n + 1 nodes, where n is the number of words in the sentence, in which the

edge between the i-th and (i+ 1)-th nodes is labelled with the i-th word of the sentence.
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Figure 5.1: Example of lattice for a segment of a PFSMB UGC sample.

Alternative spellings can then be encoded by adding an edge between the i-th and (i+1)-th

nodes, labelled by a possible correction of the i-th word. Figure 5.1 displays an example

of such a lattice, showing the normalization candidates. In these lattices, a path between

the initial and final nodes represent a (possible) normalization of the input sentence.

4. Normalization: using a language model, the probability to observe each alternative spelling

of every normalized token of the sentence is computed (note that, by construction, the

original UGC sentence is also contained in the lattice) and find the most probable path

(and therefore potential normalization) of the input sentence. Note that finding the most

probable path in a lattice can be done with complexity proportional to the size of the

sentence, even if the lattice encodes a number of paths that grows exponentially with

the sentence size (Mohri 2002). For these experiments, we used the OpenGRM (Roark

et al. 2012) and OpenFST (Allauzen et al. 2007) frameworks that provide a very efficient

implementation to score a lattice with a language model.

This process can be seen as a naive spell-checker, in which we only consider a reduced set

of variations, tailored to the specificities of UGC texts. We will now detail the first two steps

discussed above.

Generating the pronunciation of input words To predict the pronunciation of an input word,

i.e. its representation in the International Phonetic Alphabet (IPA), we use the gtp-seq2seq

python library1 to implement a grapheme-to-phoneme conversion tool based on a Transformer

model (Vaswani et al. 2017). We use a 3 layers model with 256 hidden units that is trained

on a pronunciation dictionary automatically extracted from Wiktionary (our dataset is further

described below). This vanilla model achieves a word-level accuracy of 94.6%, that is, it is able

to find the exact correct phonetization of almost 95% of the words of our held-out data.

1
https://github.com/cmusphinx/g2p-seq2seq
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We also consider, as a baseline, the pronunciation generated by the Espeak program.2 that

uses a synthesis method to produce phonetizations based on acoustic parameters.

Finding words with similar pronunciation In order to generate alternative spellings for each

input word, we look in our pronunciation dictionary for alternative candidates based on phonetic

similarity. We define the phonetic similarity of two words as the edit distance between their IPA

representations, all edit operations being weighted depending on the articulatory features of the

sounds involved. Thus, to compute the phonetic similarity, we used the implementation (and

weights) provided by the PanPhon library (Mortensen et al. 2016).

To account for peculiarities of French orthography, we also systematically consider alternative

spellings in which diacritics (acute, grave, and circumflex accents) for the letter “e” (which is

the only one that changes the pronunciation for different accentuation in French) were added

whenever possible. Indeed, users often tend to ‘forget’ diacritics when writing online, and this

kind of spelling error results in phonetic distances that can be large (e.g. the pronunciation of

bebe and bébé is very different). We do not add diacritics on other French vowels, as accents

do not change the French pronunciation for these, and, doing so increases the phonetic search

space substantially.

We ultimately only keep as candidates words those that are present in the training corpus

presented in Chapter 4 to filter out OOV and non-existent words.

Pronunciation dictionary To train our Grapheme-to-Phoneme model, we use a dictionary

mapping words to their pronunciation (given by their IPA representation). To the best of our

knowledge, there are no easily accessible pronunciation dictionaries for French. In our experi-

ments, we have considered a pronunciation dictionary automatically extracted from Wiktionary

dumps based on the fact that, at least for French, pronunciation information is identified using

special templates, making its extraction straightforward (Pécheux et al. 2016).

The dictionary extracted from French Wiktionary contains 1,571,090 words. We trained

our G2P phonetizer on 1,200,000 examples, leaving the rest to evaluate its performance. When

looking for words with similar pronunciation, as discussed in the previous section, we consider

only the words that appear in our parallel MT training data (described in Chapter 4) to speed

2
espeak.sourceforge.net
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up the search and rule out any possible OOV during evaluation. After filtering, our dictionary

contained pronunciation information for roughly 82K French words.

5.2 Statistics of the normalization process

Table 5.1 reports the most common normalization changes performed by this method in the

PFSMB test set (described in Chapter 3). It can be noticed that they are mainly grammatical

corrections of badly used in-vocabulary tokens with identical French pronunciation.

Normalization a!à sa!ça et!est la!là à!a tous!tout des!de regarder!regardé ils!il prend!prends
Number of app. 87 16 15 13 12 11 8 7 6 6

Table 5.1: Most frequent normalization replacements on the PFSMB test corpus.

On the other hand, in Figure 5.2, we show the effect of changing the maximum phonetic

distance threshold in order to consider that any given word in the training word-level vocabulary

should be retained as a normalization candidate in the lattice. It is straightforward to see that a

higher value of this parameter leads to a linear increasing quantity of word-level replacements.

However, due to the combinatorial nature of the lattices, a value that is too high has, as a direct

outcome, an exploding quantity of candidate normalization phrases, and consequently, a higher

computational cost.

To avoid an explosion of the number of alternatives that we consider, and upon experi-

mentation, we determined that the best phonetic distance threshold value was 0.1 for these

experimental conditions, which, as can be seen in Figure 5.2, corresponds to keeping only

homophone normalization candidates, in which we could observe the most conservative normal-

ization without introducing excessive noise to possible DAG paths, as discussed previously. This

results, as can be seen in the figure, in a total of 600 replacements that take place in the PFSMB

test set, which corresponds to changing 5% of the original tokens.

5.3 Machine translation results

Table 5.2 show the MT BLEU performances, ultimately produced by the proposed method along

with the baselines, PB-SMT and Transformer MT systems, described in Chapter 4, and whose

results are reported again to make comparison easier.
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Figure 5.2: Number of replacement operations of our normalizer over the PFSMB test set. The quantity of non-
homophones normalizations are displayed as point labels.

We noticed a significant improvement in the results for the UGC test corpora when using the

Transformer architecture trained with the SMALL OPENSUBTITLES training set. Specifically,

a BLEU score improvement for the PFSMB and MTNT test corpora when using G2P and Espeak

phonetic normalization in Table 5.2, compared to the baseline MT systems. Interestingly, these

improvements only hold for the Transformer model, whereas we consistently obtain a slight

decrease of BLEU scores when the normalized text is translated using the PB-SMT model.

Concisely, we noticed an improvement of +1.5 BLEU for PFSMB using the G2P phonetizer, and

+0.5 for MTNT when using the Espeak phonetizer instead.

PB-SMT Transformer

PFSMB MTNT News Open PFSMB MTNT News Open

Baseline
WMT 20.5 21.2 22.5† 13.3 15.4 21.2 27.4† 16.3
Small 28.9 27.3 20.4 26.1† 27.5 28.3 26.7 31.4†
Large 30.0 28.6 22.3 27.4† 26.9 28.3 26.6 31.5†

G2P

WMT 20.4 20.2 21.9† 13.4 15.0 20.4 26.7† 16.2
Small 28.4 26.2 19.9 26.1† 29.0 28.3 25.7 31.4†
Large 29.0 27.6 21.8 27.4† 28.5 28.2 25.9 31.5†

Espeak

WMT 20.4 20.4 21.7† 13.4 14.6 20.7 26.5† 16.1
Small 28.0 26.3 19.8 26.2† 28.5 28.8 25.6 31.4†
Large 28.3 27.7 21.6 27.4† 27.5 28.6 25.8 31.5†

Table 5.2: BLEU score results for our three benchmark models on baselines (without normalization) and normalized
test sets using G2P and Espeak phonetizers. The best result for each test set is marked in bold, in-domain scores
with a dag.
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Blind Tests
System MTNT PFSMB

Large - PB-SMT Raw 29.3 30.5
Large - PB-SMT Phon. Norm 26.7 26.9

Small - Transformer Raw 25.0 19.0
Small - Transformer Phon. Norm 24.5 18.3

M&N18 Raw 19.3 13.3
M&N18 UNK rep. Raw 21.9 15.4

Table 5.3: BLEU score results comparison on the MTNT and PFSMB blind test sets. The G2P phonetizer has been
used for normalization. M&N18 stands for (Michel and Neubig 2018)’s baseline system.

Regarding the performance decrease in the canonical test corpora, newstest’14 and

OpenSubtitles, we can observe that there is usually a considerable under-performance on

the latter (-0.65 BLEU averaging over the 6 models and training set configurations), which is

not as noticeable in the former (-0.1 BLEU in the worst case). This could be explained by the

substantially longer sentences in newstest’14 compared to OpenSubtitles, which have

roughly 6 times more words on average, according to Table 3.9 in Chapter 3. That is, when

sentences are longer, the number of possible paths in the lattice grows exponentially, thus

increasingly adding confusion to the language model’s decisions, which will ultimately produce

the most probable normalization. This observation strongly suggests that the performance of

the normalizing method depends on the length of the target sentence that is to be normalized.
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Figure 5.3: Bar plot of the BLEU score for the PFSMB test set. The translation hypotheses are divided into sentences’
length groups.

Motivated by this observation, we have also calculated the BLEU score of the PFSMB

corpus by groups of sentences’ length in order to further investigate why this method improves
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the translation quality of Transformer but not for PB-SMT models. The results reported in

Figure 5.3 show that the highest improvement resulting from phonetic normalization is present

in short sentences (between 1 and 10 words). It is worth noting that this is the only situation

in which Transformer outperforms PB-SMT. Hence, the higher overall Transformer BLEU

score over PB-SMT is certainly due to a relatively high successful normalization over the shortest

sentences of the PFSMB test set. This is in line with the documented fact that NMT is consistently

better than PB-SMT on short sentences (Bentivogli et al. 2016) and, in this concrete example, it

seems that Transformer can take advantage of this when this normalization pipeline is applied.

Furthermore, these results could be considered as evidence supporting the conclusion that the

proposed method generally performs better for short sentences, as observed in Table 5.2.

Furthermore, we have applied our method to a set of blind tests of UGC corpora MTNT and

PFSMB. These results are displayed in Table 5.3; we also show the performance of the (Michel

and Neubig 2018)’s baseline system on such test sets. The translation system is selected as

the best for each of the UGC sets in Table 5.2. For this test corpus, we noticed a 0.5 and a

3 BLEU point decrease for the Transformer and PB-SMT systems, respectively, when our

normalizer is used on the MTNT blind test. On the other hand, we obtained a 0.7 BLEU point

loss for Transformer and a 3.6 point drop for PB-SMT, both evaluated on the PFSMB blind

test. These results suggest that, when we do not tune our method (using an adequate UGC

development set) looking for the best translation system, and for certain UGC sets, our approach

introduces too much artificial noise, and MT performance can therefore be negatively impacted.

5.4 Qualitative analysis

Table 5.4 reports some examples of the output of this method, along with their translation before

and after correction by our phonetic normalization process.

For Example ¿ in Table 5.4, it can be observed that the normalizer enables the MT system

to produce the first part of the translation (“When I get to the taff ”) correctly. This is the result

of correcting the French homophones “arriver ” into “arrivé”, i.e. from the infinitive to the past

form. It is very interesting to note that the robustness of the Transformer using subword

units, seems to be good enough to correctly translate the typographical error “ce met a battre”,

thus, the correct proposed normalization (“se met à battre”) does not impact the MT result but
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¿ src arriver au taff, des que j’ouvre le magasin je commence a avoir le vertige mon coeur ce met
a battre a 200 et je sens que je vais faire un malaise,

norm src arrivé au taff, dès que j’ouvre le magasin je commence à avoir le vertige mon coeur se met à
battre à 200 et je sens que je vais faire un malaise,

ref once at work, as soon as I open the store I’m starting to feel dizzy my heart starts racing at
200 and I feel I’m gonna faint,

raw MT I start to get dizzy. My heart starts to beat at 200 and I feel like I’m going to faint.
norm MT When I get to the taff, as soon as I open the store, I start to get dizzy. My heart starts

pounding at 200 and I feel like I’m gonna get dizzy.

¡ src c un peu plus que mon ami qui faite son annif,
norm src c’est un peu plus que mon amie qui fête son annif
ref it’s a bit more than a friend to me who celebrate his birthday,
raw MT It’s a little more than my friend doing his birthday,
norm MT It’s a little more than my friend celebrating her birthday,

¬ src zlatan est nez pour marqué
norm src zlatan est né pour marquer
ref Zlatan was born to score
raw MT Zlatan’s nose is for marking
norm MT Zlatan was born to score

√ src Cartes bancaires de Zlatan retrouvés dans un taxi... On en parle ou pas WWW44
norm src Carte bancaire de Zlatan retrouvé dans un taxi... On en parle ou pas WWW44
ref Zlatan’s bank cards found in a cab... we talk about it or not WW44
raw MT Zlatan’s bank cards found in a cab... we talk about it or not WW44
norm MT Zlatan bank card found in a taxi... we talk about it or not WWW44

Table 5.4: Examples from our noisy UGC corpus normalizations. We show the original UGC source (src), refer-
ence translation (ref), the normalized source produced by our approach (norm src), the translation produced by
Transformer from the original source (raw MT) and the one using the normalized source (norm MT).

certainly has an effect over the correctness of the French phrase.

Regarding Example ¡ in Table 5.4, it should be noted that the normalized proposition

significantly improves MT translation, producing an output closer to the reference translation,

compared to the raw MT output. The key normalization change is the misused French token

“faite” (pronounced /fEt/) — “does” in English — by its correct homophone “fête” — “celebrates”

in English. It can also be noticed that the robustness of the MT system is once again capable of

correctly translating a phonetic writing contraction “c” as the two correct tokens “c’est”.

Example ¬ in Table 5.4 shows how semantically different can be a misused French word due

to confusing homophones. We can observe that the normalization replacement “nez” (“nose”

in English) ! “né” (“born” in English), which are French homophones, drastically changes the

meaning of the output translation. Additionally, the correction “marqué” ! “marquer”3 (changing

to correct verb tense) also causes the translation to be closer to the reference.

Finally, in Example √ in Table 5.4 we show some caveats and limitations for our proposed

method, where the correct original plural “Cartes bancaires ... retrouvés” was changed to the
3marked vs. mark-INFINITIVE in English.
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singular form “Carte bancaire ... retrouvé”. This is due to the homophonic pronunciation of most

French singular and plural pronunciations. Whenever there is no discriminant token with different

pronunciation, such as an irregular verb, the language model has trouble choosing the correct

final normalized phrase since both plural and singular propositions are proposed as candidates.

Thus, either can be indistinctly kept as final normalization, since both forms are correct and

theoretically very similar in their perplexity measure.

5.5 Conclusions

In this chapter, we have proposed a pre-processing method that relies on phonetic similarity to

normalize UGC. Our method can improve the translation quality of UGC of modern off-the-shelf

NMT systems. Conversely, we have performed an error analysis showing that the MT system

successfully translates phonetic-related errors with its increased robustness. However, it must be

noted that we obtained negative results on a blind test evaluation, suggesting that the phonetic

normalization approach introduced more noise than useful corrections on totally unseen data.

This highlights the importance of holding out data in the form of blind test sets so that the real

efficiency of an MT system can be verified. In addition, we have applied our normalizer to clean

canonical test data and have shown that it slightly hurts MT performance. More in-depth studies

are needed to assess whether our proposed normalization pipeline can correct phonetic-related

errors in UGC for other languages and other difficult UGC scenarios, such as video game chat

logs (Martínez Alonso et al. 2016), while maintaining good performance on canonical texts.

Although our normalization pipeline showed some interesting corrections and helped NMT

recover from errors that otherwise it could not, it also turned out to add artificial noise to some

extent and displayed poor generalization over our blind test, showing a negative impact for the

PB-SMT translation system. In this sense, our proof-of-work could benefit from other heuristics

and constraints for the re-ranking, as well as further investigating and refining the phonetic

distance measuring.

Subsequently, we decided to focus our efforts on exploring other alternatives to cope with

UGC by using end-to-end learning representations of NMT models to account for a wide

spectrum of different specificities (discussed and listed in Section 3.3) that can be resolved

using morphological cues, instead of pinpointing a single type of UGC idiosyncrasy. We thus
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investigate finer granularity-level translation (i.e. char-based) to assess how well char-based

performs when translating UGC compared to the coarser translation granularities used so far in

the dissertation. Furthermore, we also realized that a single corpus-level BLEU score was not

helpful to assess whether the proposed MT models perform better or worse than the baselines

with respect to any given UGC specificity. This led us to propose, in the next chapter, a UGC

evaluation framework that links performance change with concrete UGC specificities, uncovering

many of the performance and robustness caveats and advantages of a given MT system in

terms of well-defined UGC specificities.
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Chapter 6

Character-level for noisy UGC MT

After exploring our first automatic normalization method tailored to one UGC specificity (phonetic

writing), we decided to study and improve the generalization properties of NMT systems by

leveraging fine-grained translation granularity. This approach, compared to the one introduced

in the previous chapter, aims to address a wider range of UGC specificities that the MT system

could correctly translate by relying on models that operate at the character level. Indeed,

character-based models are open-vocabulary models designed specifically to learn n-grams

representations (and therefore translations) of tokens. Segmentation at the character-level is one

of the standard approaches to deal with the OOV problem in NLP systems as it is, in contrast to

handling OOVs using an a unique <UNK> token (discussed in Section 2.3), capable of producing

a learning representation for any sequence of seen characters.

In order to investigate the impact of these models on UGC translation, we compare the

robustness of characters-based systems and that of BPE-based systems. We do not consider

coarser granularities, such as words, since it has been proven that BPE tokenization consistently

outperforms word-level segmentation applied to MT, as reviewed in Section 2.3. Our intuition

is that, by conceiving robust-enough NMT systems that take advantage of character-level

compositions, the architecture could associate neural representations of noisy OOVs (e.g.

spelling errors) to ‘clean’ tokens, therefore automatically recovering from noise.

In a second step, building on the results of our first experiments, in Section 6.3 we show,

that despite their word-level open-vocabulary properties, the presence of out-of-vocabulary

characters (charOOVs), a characteristic of UGC (refer to Chapter 3), hurts translation quality of

character-based models and questions our intuition about these models. In order to elaborate
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on this issue, we study the open-vocabulary capacities of character-based models and proposed

a simple way to deal with charOOVs, by strongly shortening the character vocabulary size,

which we also found had low impact on canonical and in-domain translation. Specifically,

our approach uses substantially smaller character vocabulary size than standard character-

level model configurations constitutes a call for action to correctly tune the vocabulary size, a

parameter that has been overlooked in the literature.

During our experiments, we noticed that, in order to correctly and better assess the advan-

tages of our proposed methods for translating UGC, a single metric that evaluates the translation

for a corpus with several confounded phenomena was not sufficient to identify how distinct UGC

specificities are handled differently by a given model. This led us to develop a UGC evaluation

framework that aims to rigorously characterize the capabilities of an MT system to cope with

UGC evaluation. This framework is described in Section 6.5.1.

In the final part of this chapter (Section 6.7), we combine character-level NMT with a

phoneticized version of the source to produce the target translation characters, which we refer

to as phon2char, and whose robustness capabilities are also assessed using our evaluation

framework.

6.1 Why character-based MT?

We intend to use character-level NMT approaches to investigate to what extent they are robust

to UGC specificities and noise at test time. Character-based MT seems to be a promising

method to translate UGC because of its open-vocabulary property: character-based systems

can model the inner semantics of potential word-level OOVs and will translate them, instead of

simply generating a <UNK> token as in usual word or sub-word tokenizations.

This feature is appealing for translation when spelling errors and, more generally, OOVs, can

be mapped to canonical (sequences of) tokens that are present during training. Indeed, in this

case, the usual methods for treating OOV (copying them from the source using alignment-based

methods and the <UNK> token) will not attempt to translate them. It should however be noted

that implementing this intuition has to avoid a potential pitfall: in UGC many OOV are named

entities (such as hashtag, people names, etc.) that are often the same in the source and target

languages.
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6.2 Character-based models

As discussed in Section 2.3, character-level models pose inherent challenges, namely, increased

computational costs and long-range dependency modeling. In order to overcome these difficul-

ties, convolutional neural network encoding has been explored to get the best of both worlds,

i.e. maximizing the capacity-to-compression ratio (Cherry et al. 2018) of a given NMT base

architecture. We investigate two of these character-based architectures. The first model we

consider, charCNN (Kim et al. 2016), is a classic encoder-decoder in which the encoder uses

character-based embeddings in combination with convolutional and highway layers to replace

the standard lookup-based word representations. The model considers, as input, a stream

of words (i.e. it assumes the input has been tokenized beforehand) and tries to learn a word

representation that is more robust to noise by unveiling regularities at the character level. Thus,

it should be noted that, despite learning character-based representation for the source words,

charCNN processes the input and decoding at the word level. This architecture was initially

proposed for language modeling Costa-jussà and Fonollosa (2016); shows how it can be used

in an NMT system and reports improvements up to 3 BLEU points when translating from a

morphologically-rich language, German, to English.

The second model we consider does not rely on an explicit segmentation into words: Lee

et al. (2017) introduce the char2char model that directly maps a source character sequence to

a target character sequence without any segmentation (spaces being considered as a vocabulary

element) thanks to a character-level convolutional network with max-pooling at the encoder. It

can be considered as an open-vocabulary model: it can generate any word made of any of the N

most frequent characters of the train set (where N is a model hyperparameter) and only outputs

a <UNK> token in the presence of a character that is not in this (char-) vocabulary. Lee et al.

(2017) show that this model outperforms subword-level (i.e. BPE-based) translation models on

two WMT’15 tasks (De-En and Cs-En) and gives comparable performance on two tasks (Fi-En

and Ru-En). Lee et al. (2017) additionally report that in a multilingual setting, the character-level

encoder significantly outperforms the subword-level encoder on all the language pairs.
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WMT OpenSubtitles

PFSMB MTNT News† OpenSubTest PFSMB MTNT News OpenSubTest†

BPE-based models
seq2seq 9.9 21.8 27.5 14.7 17.1 27.2 19.6 28.2

+ <UNK> rep. 17.1 24.0 29.1 16.4 26.1 28.5 24.5 28.2
Transformer 15.4 21.2 27.4 16.4 27.5 28.3 26.7 31.4

Character-based models
charCNN 6.2 12.7 17.2 9.2 13.3 16.3 10.1 21.7

+ <UNK> rep. 16.1 18.2 22.1 11.5 18.6 20.2 14.6 23.9
char2char 7.1 13.9 18.1 8.8 23.8 25.7 17.8 26.3

Table 6.1: BLEU score for our models for the different train-test combinations. In-domain test sets are marked with a
dag. ‘News’ and ‘Open’ stand, respectively, for the WMT and OpenSubtitles test sets. WMT and OpenSubtitles

are the training corpora, described in Section 3.5

6.3 Results

Table 6.1 reports the BLEU scores of the different character- and BPE-based models that

we consider. As observed in Section 4.3, the simple replacement strategy for the <UNK>

token substantially increases the BLEU score, which also benefits the word-level decoding of

charCNN, whereas char2char, with a character-by-character output, and using the original

implementation parameter, does not output any <UNK>.
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Figure 6.1: BLEU score in function of the number of charOOVs in the input sentence.

As expected, all models perform better when trained on the OpenSubtitles corpus than

when trained on WMT, as the former is intuitively more similar to UGC data than the latter.

Moreover, it appears that character-based models are largely outperformed by BPE-based

models for most train-test combinations and, therefore, that their relative capacity to learn word
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representations that are robust to noise can be questioned. We explore some ways to reduce

the performance gap between these two NMT approaches in the following.

Another interesting observation is that, while Transformer achieves the best results in

all test sets when trained using OpenSubtitles, it is outperformed by seq2seq on the WMT

training configuration. The situation is similar for character-based models. This observation

suggests that these models do not capture the same kind of information and do not have the

same generalization capacities, as they roughly have the same number of parameters (69M

parameters for the char2char and Transformer models, 65M for the charCNN and 49M for

the seq2seq model).

Finally, the impact of charOOVs on BLEU performance is shown in Figure 6.1, comparing the

results for the Transformer and char2char models for different numbers of such tokens in

the inputs of the PFSMB test corpus. It can be seen that the former is considerably more sensitive

to occurrences of charOOVs, showing a consistent performance detriment as there are more of

them in the inputs. In turn, Transformer is increasingly good when more charOOVs appear

in the sources, which can be explained by the fact that most charOOVs are left unchanged

between the source and the reference (e.g. emojis, # and @). In this sense, Transformer

shows a clear advantage due to its ability to manage <UNK> tokens, present during training to

some extent, whereas the char2char system does not produce any <UNK>, being unable to

output charOOVs, and, furthermore, these occurrences affect the rest of the input sequence,

leading the model to produce wrong translations as shown in Table 6.3.

Error analysis In order to find which kind of UGC specificities are the most difficult to translate

and can explain the difference in performance between character-based and BPE-based sys-

tems, we have conducted a contrastive analysis between the predictions of the Transformer

and the char2char models. For each system, we have selected the 100 source sentences

with the best translation and the 100 ones with the worst translation.1 We have manually anno-

tated these 400 sentences, using the typology described in Table 6.2, to identify which UGC

specificities were the hardest to translate. Examples of annotations are given in Table 6.3.

For instance, the char2char model only outputs 8 sharp symbols when translating the test

1The translation quality was simply defined as the edit distance between the translation hypothesis and the
reference translation.
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set of the PFSMB, whereas the reference, contains 345 hash tags starting with a ‘#’.

While the Transformer model is less sensitive to this problem (it produces 105 sharp

symbols when translating the PFSMB test), its translation quality also suffers from the presence

of hashtags as it often tries to translate part of the hashtags relying on the sub-word units

identified by the BPE tokenization rather than simply copying them from the source. Additionally,

it can be noticed that errors 2 and 12 (diacritization and graphemic/punctuation stretching) are

treated somewhat better by the char2char model than by the Transformer model, being

less frequent in the worst translations of the former.

code kind of specificities

(1) Letter deletion/addition

(2) Missing diacritics

(3) Phonetic writing

(4) Tokenization error

(5) Wrong verb tense

(6) Special chars. (#, @, URL)

(7) Wrong gender/number

(8) Inconsistent casing

(9) Emoji

(10) Named Entity

(11) Contraction

(12) Graphemic/punct. stretching

(13) Interjection

Table 6.2: Typology of UGC specificities used
in our manual annotation scheme. Refer to
Section 3.3 for further details.

Figure 6.2 shows the number of UGC specificities in

each of the 100 worst and best translations of the two

considered models.2 For both models, the most difficult

specificities appear to be the presence of NE (category

10) and the inconsistent casing (category 8) often cor-

responding to several words written in full uppercase

to denote emotions or excitement. Interestingly, these

two types of noise have more impact on the char2char

model than on the Transformer model, even if it could

be expected that the character embeddings learned by

the former would not be sensitive to the case. Another

important category of errors is category 6 that corre-

sponds to hashtags, mentions, and URLs, for which the

char2char model is not capable of producing charac-

ters or a sequence of characters that are rare in the

training set (namely, #, @ or http://www).

Finally, in Figure 6.1, it can be seen that for the PFSMB phrases that do not have any

charOOVs, the char2char BLEU score is much similar than that of the Transformer in

Table 6.1. Concretely, the performance gap is reduced from 3.7 BLEU points to 1.9 in the

absence of charOOVs, while other UGC specificities are still present. This encourages us to

further investigate the char2char behavior when charOOVs are present in the input, which

2Similar conclusions can be drawn from the observation of the 100 best translations (see Figure 1 in supplementary
material for details).
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Figure 6.2: Comparison of the number of UGC specificities in the best and worst translation hypotheses of char2char
and Transformer. Noise categories are defined in Table 6.2.

we further investigate using the copy task control experiment below.

Qualitative analysis Table 6.3 reports translation hypotheses predicted by the Transformer

and char2char models. These examples illustrate the difficulty of the char2char model to

translate named entities: while the simple strategy of copying unknown OOVs from the source

implemented by the Transformer is very effective, the char2char model tends to scramble

or add letters to NE. They also illustrate the impact of phonetic writing on translation: for instance

“rescend” that should be spelled “ressents” (example 4) and “joue a” that should be spelled

“joue à” (example 5) both result in a wrong translation: in the former case, the meaning of the

sentence is not captured, and in the latter the “a” is wrongly copied in the translation hypothesis.

6.4 Copy task control experiment

To corroborate our analysis of the impact of special characters on char2char and quantify

the impact of charOOVs and of rare character sequences, we conduct a control experiment in

which a char2char system with different vocabulary sizes must learn to copy the source, that

is to say: we train the char2char model on an artificial parallel corpus in which the source and
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¿ src JohnDoe389 (10) qui n’arrive pas a (2) depasser (2) 1 a (2) FlappyBird ... ptddddr (11, 12)
ref JohnDoe389 who can’t score more than 1 at FlappyBird ... lmaooooo
Tx John Doe389 who can’t pass one to Flappy Bird... ptdddr.
c2c Johndeigh doesn’t happen to pass one on Flappyrib... please.

¡ src JohnDoe665 (10) viens (5) de regarder Teen Wolf (2011) S03E17 [Silverfinger] (10) et s’en va
apprendre l’humanité à Castiel (10).

ref JohnDoe665 just watched Teen Wolf (2011) S03E17 [Silverfinger] and he’s on his way to teach Castiel
humanity.

Tx John Doe665 just watched Teen Wolf (2011) S03E17 (Silverfinger) and is going to teach humanity
at Castiel.

c2c Johndoedsoids is looking at Teen Wolf 2011, and learn about humanity in Castiel.

¬ src Jai (1,4) fait 10 a (2) flappy bird (10) mddr (11, 12) # JeMeLaDonneMaisJavancePas (6)
ref I did 10 at flappy bird lool # JeMeLaDonneMaisJavancePas
Tx I did 10 a flappy bird mdr # I’m not moving
c2c ˇ “( I’ve made 10 flappy birdd ˇ “(

√ src Si au bout de 5 mois tu rescend (3) toujours se (3) genre "d’effet secondaire" c’est vraiment mauvais.
ref If after 5 months you’re still feeling this kind of "side effect" that’s really bad.
Tx If after five months you’re still re-exciting this whole "special effect" thing is really bad.
c2c In the end of five months, you’re always responding to secondary effects, that’s really bad.

ƒ src y a ma cousine qui joue a (2) flappy bird (10) mdrrrrrrrrrrr (11, 12) elle et plus nuuul (12,7) que moi
ref my cousin plays flappy bird loooooooooool she’s more hopeless than me
Tx There’s my cousin who plays a flappy bird mdrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
c2c There’s my cousin that plays a flappy bird might bring her and nouse than me.

Table 6.3: Examples from our noisy UGC corpus showing the Transformer (denoted as Tx) and char2char

(denoted as c2c) predictions. Source sentences have been annotated with UGC specificities of Table 6.2 (in blue)
according to their numerical code. Parts of the reference that were correctly translated are underlined and noise
occurrences and their translations are marked in bold.
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target sentences are identical. By varying the number of characters considered by the system,

we can control the number of rare characters in our corpora (recall that with a char-vocabulary of

size N all characters, but the N most frequent ones are mapped to a special <UNK> character).

Note that this task is a simplification of the problem we have highlighted in the previous section:

the model simply has to learn to always make an exact copy of the whole source sentence and

not to detect some special characters (such as # or @) from the input that trigger the copy of the

next characters, while the rest of the sentence should be translated.

More precisely, we built an artificial train set containing 1M random sentences with lengths be-

tween 5 and 15 characters long, keeping a 164 fixed-size character vocabulary (this corresponds

to the size of the extended ASCII alphabet), and whose characters are distributed uniformly,

in order to rule out the impact of rare characters and keeping only the effect of char-OOVs

over the performance. We consider two test sets made of 3,000 sentences each: in-test that

uses the same 164 characters as the train set and out-test that uses 705 different characters.

Source and reference are identical for every example of the train and test sets.

Results Table 6.3 reports the results achieved on the copy task with and without replacing the

predicted <UNK> symbols.

Note that, in this very simple task, <UNK> characters are always replaced by their true value.

These results show that this task is not trivial for char-based systems: even when all characters

have been observed during training, the system is not able to copy the input perfectly.

Above all, reducing the vocabulary size from 164 to 125 results in an increase of the BLEU

score on the two considered conditions, even without replacing the <UNK> that the system has

started to generate, where ‘%<UNK> pred.’ indicates the percentage of <UNK> tokens in the

prediction. Further reducing the size of the vocabulary artificially improves the quality of the

systems: they generate more and more <UNK>, which are replaced during post-processing

by their true value. These observations suggest that unknown or rare characters are not only

difficult to copy, but they also distort the representation of the input sequence built by the system,

impacting the whole prediction.
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Vocabulary Size
164 125 100 80 60

in-test

%<UNK> pred. 0 0.2 5 17 29.5
BLEU 92.9 95.8 77.6 24.9 1.9
+<UNK> rep. 92.9 96.6 98.4 98.5 98.7

out-test

%<UNK> pred. 0 9.2 13.8 25 36
BLEU 54.5 63.7 52.3 15.3 0.9
+<UNK> rep. 54.4 96.6 98.7 99.1 99.5

Figure 6.3: Results of the copy task, evaluated by the BLEU score before and after <UNK> replacement (+<UNK>
rep.) and percentage of <UNK> characters in the prediction (%<UNK> pred.).

6.5 Robustness impact of UGC’s specificities

In order to quantify and link robustness and performance impact of NMT when processing noisy

UGC, we annotated 400 random-sampled PFSMB source sentences according to the typology

shown in Table 6.2, including a software framework to control the type and occurrences of noise

in the source, and, automatically producing a comparable reference for evaluation.

The PMUMT corpus To understand the impact of UGC peculiarities we created the Phenomena

Modeling UGC Machine Translation (PMUMT) by manually annotate 400 source sentences

sampled from the PFSMB: one of the authors, fluent in French and with good knowledge of UGC,

has identified spans in the sentence that differ from canonical French and characterized these

specificities using the fine-grained typology of Sanguinetti et al. (2020) (see Table 6.2). Since

the whole annotation process was done by a single person, no inter-annotator agreement can

be calculated. Nevertheless, results of our pilot study for each individual UGC peculiarity (cf.

Table 6.5 for a cross-metrics analysis), show that MT performance consistently performs better

on our normalized corpus than on the original noisy set.

Each span containing a UGC specificity has been ‘normalized’ to a form closer to canonical

French.3 Table 6.4 shows some examples of annotated (source) sentences. Additionally, a

normalized form of each target (i.e. English) sentence has also been produced to ensure that

3To ensure that this normalization has actually made our corpus closer to a canonical corpus, we have computed
the perplexity of the original sentences and of the normalized sentences estimated by a 5-gram Kneser-Ney language
model trained on the OpenSubtitles corpus: the normalized version has a perplexity of 2,214 (and 11.60% of its
token are OOV) far lower than the original version (with a perplexity of 8,546 and an OOV ratio of 19.60%).
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the target can be generated from the ‘normalized’ source.

In the end, the annotation of this corpus represents 200h of work, comprising an iterative

improvement and debugging of the annotations to achieve the corpus’ current version. 4

On the other hand, to reduce the lexical variability and model the impact of UGC’s named

entities on translation quality, all occurrences of these have been manually mapped to a frequent

named entity in the train set, ‘Jean’ (a French first name). A similar strategy has been proposed

by Marton et al. (2010) to reduce the diversity of number in parsing. Considering a ‘real’ named

entity allows us to preserve the structure of the sentence, which would have been compromised

by simply erasing NE. These approaches proved to be experimentally adequate, since we can

see in the column named entity in Table 6.5 that our fully-normalized version using this trick,

performs better than its noisy counterpart (the original UGC corpus only keeping named entities

occurrences) across our MT models and metrics.
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Figure 6.4: Distribution of UGC specificites in PMUMT.

The resulting corpus contains more than 1, 310 annotations. On average, each sentence

contains 2.8 UGC peculiarities; the average span length of the UGC specificities is 1.27 tokens

and its maximal value 17 tokens (a full sentence in upper-case). Figure 6.4 describes the

distribution of UGC peculiarities in the corpus. It appears that the most frequent kinds of

specificities found in UGC are the presence of named entities and special characters (e.g. @ or

4The annotated corpus and code collection can be found in https://github.com/josecar25/PMUMT_anno
tated_UGC_corpus/
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#) or emoticons. Although the least frequent type is the inconsistent case changing, these have

the longest span among all the UGC specificities, as some sentences are written completely in

uppercase.

Additionally, in Table 6.4, we display some of the annotated examples using their correspond-

ing typology (Table 6.2) and position in the source and reference sentences.

¿ src JohnDoe389 (10) qui n’arrive pas a (2) depasser (2) 1 a (2) FlappyBird ... ptddddr (12,13)
ref JohnDoe389 who can’t score more than 1 at FlappyBird ... lmaooooo

N. src Jean qui n’arrive pas à dépasser 1 à Jean ...
N. ref Jean who can’t score more than 1 at Jean...

¡ src #CaMeVénèreQuand (6) le matin a (2) 7h on me parle alors que je suis pas encore réveiller. (5)
ref #ItAnnoysMeWhen in the moring at 7 am someone talks to me although I didn’t wake up yet.

N. src le matin à 7h on me parle alors que je suis pas encore réveillé.
N. ref in the moring at 7 am someone talks to me although I didn’t wake up yet.

¬ src vu sa tete (2) c (3) normal kon (3) est (3) jms (11) parler (5) d’elle !
ref in light of her face it’s normal no one ever spoke about her!

N. src vu sa tête c’est normal qu’on a jamais parlé d’elle !
N. ref in light of her face it’s normal no one ever spoke about her!

√ src y a ma cousine qui joue a (2) flappy bird (10) mdrrrrrrrrrrr (12, 13) elle et plus nuuul (12,7) que
moi

ref my cousin plays flappy bird loooooooooool she’s more hopeless than me

N. src y a ma cousine qui joue à Jean Jean elle et plus nulle que moi
N. ref my cousin plays Jean Jean she’s more hopeless than me

Table 6.4: Examples from our annotated noisy UGC corpus. Source sentences have been annotated with UGC
specificities of Table 6.2 (in blue) according to their numerical code. For each example, the original source and
reference (src and ref ) and their corresponding normalized version (N. src and N. ref ) are shown.

Controlling the Number of Specificities per Sentence Thanks to the alignment between the

UGC specificities in a sentence and its normalized form, it is possible to create a normalized

version of each source sentence that is closer to canonical French. Comparing the predictions of

an NLP system, taking either the normalized sentences or the original non-canonical sentences

as input, allows us to measure the impact of UGC on this system. However, it is impossible to

perform a fine-grained analysis in which, for example, the impact of different types of specificities

are compared, since UGC sentences generally contain several specificities of different types

and the interactions between them cannot be easily neutralized: in our corpus, there are only 68

sentences in which a single kind of specificities occur, i.e. 17% of the original sentences.

That is why, a second version of the corpus has been automatically generated to aid analyzing

the interactions between the UGC specificities in a sentence: by substituting only some of the
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span we have annotated, it is possible to create corpora in which the number and the kind of

specificities present in each sentence is tightly controlled: we can, for instance, generate a

corpus in which sentences have at least two specificities of the 1st, 2nd and 3rd kind. In this

framework, each original sentence can be (partially) rewritten into as many sentences as there

are UGC specificities in it.

This possibility of partial substitution greatly reduces the amount of data to be annotated for

the analyses: instead of having to annotate a large amount of data to find enough sentences

fulfilling the requested criteria, the framework is capable of generating these sentences from

our original annotation of 400 sentences. For instance, by substituting all spans but one in our

original corpus, we have generated a corpus of 1,282 sentences each containing exactly one

UGC specificity and by substituting all spans but two, a corpus of 1, 176 sentences containing

two different specificities. We will see in Section 6.5.1 the importance of controlling the number

of specificities per sentence to unravel the complex interactions between them.

6.5.1 Impact of UGC specificities on translation quality

original normalized

seq2seq 25.8 32.4
char2char 24.1 30.5
Transformer 28.6 33.6

Figure 6.5: BLEU scores on the original and normalized source sentences of the PMUMT corpus.

We have used the PMUMT corpus to evaluate the impact of UGC peculiarities on translation

quality: we have reported in Table 6.5 the BLEU scores achieved by the considered systems on

both the 400 original sentences and the 400 normalized sentences. As expected, translations

of normalized sentences, that are more similar to the training data, are of better quality than

translations of original (noisy) sentences: the BLEU scores achieved when translating normalized

UGC content are close to those obtained on the in-domain test-set.

For all systems, considering the non-canonical original sentences results in a drop in

translation quality of the same order of magnitude, which shows that, even if these models

build sentence representations from completely different information, the presence of UGC

peculiarities have a similar impact on all of them.
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Individual UGC errors To get a more precise picture of the impact of UGC on translation

quality, we have computed, for each kind of peculiarities, the BLEU scores achieved on the corpus

built to contain only this peculiarity and the BLEU score computed on the ‘normalized’ version

of the same sentences. Table 6.5 reports the ratio between these two scores. Additionally, we

have calculated the translation scores using more metrics, namely, CHRF and MULTI-BLEU-PERL-

DETOK (MB) along with their 95% confidence interval. This is done in order to ensure that we

have a large-enough data collection to obtain a stable corpus-level metric, such as BLEU.
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MB 0.78
(25.3)

0.94
(31.1)

0.92
(23.2)

0.95
(30.6)

0.98
(28.6)

0.83
(24.8)

0.95
(25.1)

0.77
(26.7)

0.87
(29.6)

0.87
(30.9)

0.91
(28.4)

0.83
(29.9)

0.90
(26.5)

chrF 0.93
(46.7)

0.97
(53.1)

0.89
(43.1)

0.95
(50.9)

0.99
(50.6)

0.91
(44.3)

0.98
(49.3)

0.76
(40.2)

0.94
(51.1)

0.94
(51.7)

0.93
(47.3)

0.93
(47.3)

0.96
(48.0)

SB 0.80
(28.7)

0.95
(33.9)

0.93
(27.3)

0.96
(30.8))

0.94
(30.7)

0.88
(26.1)

0.95
(27.1)

0.75
(27.7)

0.91
(31.0)

0.86
(31.7)

0.95
(30.8)

0.90
(30.2)

0.93
(29.2)

c2c

MB 1.00
(29.5)

1.00
(27.4)

0.85
(22.5)

0.99
(29.7)

0.97
(26.9)

0.80
(23.5)

0.97
(25.5)

0.91
(27.7)

0.83
(25.1)

0.95
(31.7)

0.88
(26.6)

0.93
(28.0)

0.91
(25.7)

chrF 0.99
(48.5)

1.00
(50.6)

0.92
(44.8)

0.95
(50.1)

0.99
(49.1)

0.84
(44.0)

0.98
(49.9)

0.78
(40.6)

0.93
(49.5)

0.95
(51.6)

0.92
(48.8)

0.90
(47.8)

0.95
(49.7)

SB 0.99
(32.5)

0.99
(29.6)

0.86
(25.2)

1.00
(31.9)

0.97
(28.8)

0.81
(24.6)

0.96
(28.9)

0.86
(28.0)

0.83
(26.2)

0.94
(32.7)

0.91
(30.4)

0.95
(26.2)

0.91
(28.7)

TX

MB 0.96
(30.3)

1.01
(33.0)

0.98
(33.2)

0.98
(31.5)

1.01
(31.6)

0.90
(28.4)

0.97
(31.4)

0.98
(25.8)

0.72
(26.7)

1.06
(35.7)

0.90
(28.4)

0.81
(25.9)

0.83
(27.0)

chrF 0.95
(48.2)

1.00
(52.3)

0.98
(46.6)

0.99
(51.0)

1.01
(52.4)

0.93
(46.5)

0.97
(50.9)

0.80
(30.7)

0.88
(49.1)

1.00
(52.6)

0.93
(48.9)

0.87
(46.2)

0.92
(46.2)

SB 0.98
(35.3)

1.02
(34.0)

1.03
(33.2)

0.98
(32.9)

1.02
(33.7)

0.92
(29.2)

0.97
(33.8)

0.90
(26.9)

0.75
(28.3)

0.99
(35.4)

0.93
(31.1)

0.85
(26.9)

0.86
(30.2)

CI Err. (E-3) 4.5
(0.17)

1.5
(0.13)

2.7
(0.11)

2.6
(0.17)

2.4
(0.15)

1.8
(0.12)

1.7
(0.23)

5.7
(0.30)

3.0
(0.23)

2.2
(0.11)

2.2
(0.16)

2.5
(0.24)

3.1
(0.22)

Table 6.5: BLEU score ratios between pairs of noisy and normalized sets of sentences, containing only one UGC
specificity. BLEU scores on noisy sets are shown in parenthesis. Three different metrics are shown for comparison:
MULTIBLEU-DETOK.PERL (MB) , CHRF and SACREBLEU (SB). Error for 95% confidence intervals (CI Err).

The impact of a given kind of UGC specificity on translation quality is very different from

one system to another: It appears that the source sentences representation that MT systems

learn to construct are not sensitive to the same kind of noise or errors in the source sentence,

and even seem to be complementary. For instance, inconsistent casing strongly penalizes

the seq2seq model but has only a limited impact on the char2char model (with a ratio of,

respectively, 0.75 and 0.86 BLEU scores). In contrast, the presence of characters specific to

online conversation, such as @ or # results in a substantial decrease in translation quality for
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char2char with a BLEU ratio of 0.81 , but has less impact for seq2seq or Transformer (with

a ratio of, respectively, 0.88 and 0.92) , suggesting that character-based models are not able to

properly model characters that hardly appear in the training set.

Interestingly, the Transformer model appears to be very robust to a wide array of UGC

peculiarities, even if it was not designed specifically to handle noisy input: in particular, the

presence of named entities, spelling errors (i.e. substitution, deletion, or insertion of letters),

agreement error (of verb tense or in gender and number) as well as tokenization errors

hardly hurt translation quality. Similarly, the char2char model succeeds in correctly translating

sentences with letter addition or suppression, showing that the model actually manages to learn

sentence representations that are robust to spelling errors, even if such errors are not present at

training time. This result contrasts with the conclusion drawn by Belinkov and Bisk (2018) on

artificially noisy data. However, it fails to capture regularities that are expressed in longer spans

(e.g. in named entities).

It is worth noting that missing diacritics, phonetic writing and wrong tense

categories give a counter-intuitive result, with a ratio larger than 1.0 (this value being within

the confidence interval for the latter), implying that noisy inputs for these UGC specificities

seem easier to translate for the Transformer. To further investigate this, we have evaluated

these corpus partitions again using complementary metrics (discussed in Section 2.4.2), namely,

MULTI-BLEU-DETOK.PERL (Koehn et al. 2007a) and CHRF (Popović 2015) in order to recalculate

the results in question. In this regard, in Table 6.5 it can be seen that at least one of the metric

results in a ratio larger than 1.0, to which we attribute a difference between both BLEU pieces of

software.

Combination of specificities Table 6.6b also shows that UGC specificities seem to have less

impact when sentences are selected to contain a single specificity: for instance, the char2char

has an average ratio of 0.942 on the corpora used to compute the scores reported in Table 6.5,

while its ratio is 0.79 on the original corpus. To better understand the impact of combinations

of UGC peculiarities on translation quality, Table 6.6b reports the ratios between the BLEU

scores computed on the translation of a corpus in which there are exactly N different UGC

peculiarities in a sentence and on the translation of the normalized version of these sentences.

It appears that for all our systems’ translation quality decreases linearly with the number of
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specificities, suggesting that the impacts of the different specificities are independent of each

other. Surprisingly enough, the gap between the char2char and Transformer is getting

smaller with the number of specificities in each sentence.

It can be seen that, initially, the ratios decrease quickly for the three models and, as there

are 3 or more UGC specificities, they get to a plateau (plotted in Figure 6.6a). This suggests that

the drop in performance caused by such occurrences is substantially more important as soon

as noise starts appearing, and their aggregated effect does not increase linearly. Regarding

the systems’ performance on the normalized versions, we can see an overall downtrend for

char2char and Transformer, probably due to a bias caused by a higher number of UGC

specificities being contained, naturally, by longer sentences. Another important factor and

a limitation of our data augmentation approach, is that there is an increasingly constrained

sentence evaluation diversity, since phrases with a high number of UGC idiosyncrasies are

relatively rarer and each original PFSMB sentence can generate more augmented samples,

proportion is given by the ‘Augment ratio’ in the table.

1 2 3 4to7

0.8

0.9

Number of present UGC specificities per sent.

R
at

io

s2s
c2c
tx

(a)

1 2 3 4+

# sents. 1,306 1,776 1,439 1,089

Augment ratio 3.26 5.82 8.51 13.04

s2s 0.90
(30.1)

0.83
(27.0)

0.77
(24.2)

0.75
(23.2)

c2c 0.92
(29.5)

0.87
(26.6)

0.83
(24.3)

0.83
(23.2)

TX 0.96
(32.8)

0.89
(30.0)

0.86
(28.3)

0.84
(26.5)

(b)

Figure 6.6: (a) Noisy/Clean BLEU scores’ ratios for an accumulated number of UGC specificities present per sentence
for each model, corresponding to the results in Table 6.6b. The 4to7 bin groups more than 4 types to provide a
larger subcorpus, which weighted average is 4.34 UGC specificities per sentence. (b) BLEU score ratio between
pairs of normalized and noisy sentences containing N specificities. BLEU scores on noisy sentences are shown in
parenthesis.

Additionally, it can be noticed that scores over the normalized sentences are mixed but

their weighted averages by the number of phrases in each column, confirm the Transformer,

seq2seq and char2char observed performance trend in the test sets in Table 6.1. Inter-

estingly, in Table 6.5, where we present the quotient between noisy and normalized ver-

sions per UGC peculiarities within a 95% confidence interval, we can see that errors 1
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- letter change/deletion/addition, 2 - diacritics omission/error and 5 -

wrong verb tense for char2char, have a very close ration to 1.0, especially when com-

pared to their BPE-based counterpart with the same architecture, seq2seq. Examples of

the impact of such occurrences on MT performance are displayed in elements ¿, ¡ and ¬ in

Table 6.6. On the other hand, 8 - inconsistent casing seems to impact the performance

of char2char the least compared to the BPE seq2seq, suggesting higher robustness of the

latter to this type of UGC particularity, for which examples » and … demonstrate a noticeable dif-

ference in performance. These two observations are in line with the findings of (Niu et al. 2020),

which found subword-regularized NMT to be more robust to misspellings in general (here divided

in the former 3 UGC specificities evaluated using character-level regularization of char2char)

and case-changing. Additionally, we can also notice some advantage of using char2char

when for the error 4 - faulty tokenization over seq2seq, but it is surpassed by the

BPE-based Transformer, as can be seen in example ƒ and ≈ in Table 6.6.

Interestingly, on the other hand, we can notice that error 6 - special character and 9

- emojis/emoticons (usually also out-of-vocabulary) caused the highest relative performance

drop when comparing char2char to seq2seq. Such observation is illustrated in example  ,

where we notice the difficulty of the char2char model to output such domain-related characters.

This motivates our efforts in the following sections to make char2char more robust to these

occurrences, which we address as out-of-vocabulary characters (charOOVs) from now on.

6.6 Improving robustness by learning to manage OOV characters

This set of experiments is motivated by observing that, even though character-level NMT systems

are often praised by their word-level open vocabulary, we observed the downside that characters

not presented (charOOVs) or underrepresented in the training data impose challenges to these

architectures. In this respect, we hypothesize that producing the special <UNK> token, to be

replaced by a source-side token during post-processing (as discussed in Section 2.3) can be a

better alternative to avoid incorrect translation for some sequences that are underrepresented or

not contained at all in the training data. In our framework, this aspect is especially important

since the robust NMT systems we aim to conceive for noisy social media text can contain any

kind of charOOVs (notably an ever-growing set of emojis) only limited by the users’ will.
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Letter deletion/addition/change

¿ src j’arrive pas à boir normalemen
norm j’arrive pas à boire normalement
ref I can’t drink normally
s2s I can’t drink normal.
c2c I can’t drink normally.
Tx I can’t drink normal men.

¡ src Je conseille à toux ceux qui ont l’esprit disons, un peu fermé de regarder sur les "Français d’origine contrôlée"
norm Je conseille à tous ceux qui ont l’esprit disons, un peu fermé de regarder sur les "Français d’origine contrôlée"
ref I advise everyone with a, let’s say a little narrow mind to watch about the "Français d’origine contrôlée"
s2s I suggest cough those who have minds say, a little closed to look at the "frances of controlled origins"
c2c I counsel those who have the mind, a little close to looking at the French original controlled original controlled.
Tx I advise anyone with a mind, say, a little closed to look at the controlled French.

ƒ src le côté suis tro cool au quotidien et je relach tout quan j’ai bu
norm les gens qui m’aiment me détestent quand j’ai bu
ref my side very cool in everyday life and loosen everything when I’ve been drinking
s2s I’ve been drinking all the time and I’ve been drinking everything quan I’ve been drinking.
c2c the side of the daily cool side and relacing everything when I’ve been drinking
Tx I’m the cool side. I’m the cool one.

Tokenization

≈ src J’sais pas vous, mais de voir la joie des grands joueurs comme Zlatan, Motta, Verratti je trouve ça magnifique
norm Je sais pas vous, mais de voir la joie des grands joueurs comme Jean, Jean, Jean je trouve ça magnifique
ref I don’t know about you, but seeing the joy of great players like Zlatan, Motta, Verratti I think it’s wonderful
s2s I don’t know you, but seeing the joy of the great players like Zlatan, Motta, Verratti, I think it’s beautiful.
c2c I don’t know about you, but to see the joy of great players like Zlatan, Motta, Varratt, I think it’s beautiful.
Tx I don’t know about you, but seeing the joy of big players like Zlatan, Motta, Verratti, I think it’s beautiful.

∆ src pendant que vous me laissez en chien à l’atelier mon score de flappy bird fait que d augmenter
norm pendant que vous me laissez en chien à l’atelier mon score de Jean fait que d’augmenter
ref while you’re bailing out on me at the workshop my flappy bird score is just increasing
s2s when you leave me as a dog when you leave me as a dog at the workshop.
c2c while you leave me dog at the workshop my flappy bird score is that increasing
Tx while you leave me as a dog at the workshop my flappy bird score is just up.

« src il ma dit que c’était normal aussi et que ça allait redescendre,
norm il m’a dit que c’était normal aussi et que ça allait redescendre,
ref he told me it was normal too and that it would come down,
s2s He said it was normal, too, and it was going to go down,
c2c He told me it was normal, too, and it was going back,
Tx He told me it was normal, too, and it was gonna come down,

Inconsistent casing

» src Jean DANS VOS YEUX … src JE VIENS DE VOIR Jean ET Jean JE PEUX PLUS
norm Jean dans vos yeux norm Je viens de voir Jean je peux plus
ref Jean IN YOUR EYES ref I JUST WATCHED Jean AND Jean CAN’T TAKE IT
s2s Jean D in VOSY s2s I’m going to kill Jean and Jean I can’t believe it.
c2c Jean in your eyes c2c I’m here to see Jean And Jean I can no longer.
Tx Jean in your eyes Tx I just saw Jean and Jean again.

Domain-specific characters and emojis

  src Avec mes magnifiques jumeaux Jean et Jean @maxcarver @Charlie_Carver ⇤
norm Avec mes magnifiques jumeaux Jean et Jean
ref With my wonderful twins Jean and Jean @maxcarver @Charlie_Carver ⇤
s2s with my gorgeous Jean and Jean @maxarver @Carlie_Carver @Carlie_Carver #
c2c with my beautiful Jean twins, Jean Jean and Jean Charlier Charlier Carver.
Tx with my beautiful twins Jean and Jean imexcarver Charlie_Charver @Charver

Table 6.6: Examples from our noisy UGC corpus showing the Transformer, char2char and seq2seq predictions.
Present UGC specificities of Table 6.2 (in blue) are marked in bold.
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We have noticed that the special <UNK> token management and generation are highly

affected by the training vocabulary size for character-based models, i.e. if there are not enough

characters excluded from the vocabulary (and consequently, replaced by <UNK>) at train time,

the translation system does not learn how to correctly manage such tokens when present during

test time. For the sake of this observation, we trained character-based systems with different

vocabulary sizes, for which were observed <UNK> being generated during evaluation only when

retaining 90 characters or fewer. In terms of configuration, our new char2char systems have

6 vocabulary size variations: 90, 85, 80, 75, 70 and 65. In this way, we hypothesize that

the choice of optimal vocabulary size, often overlooked in the NMT character-based literature,

can help to improve generalization over out-of-domain (OOD) test sets, while keeping optimal

performance on in-domain test evaluation. Furthermore, regarding our two noisy UGC test sets,

as we previously mentioned, the PFSMB contains an especially high overlap between source and

reference compared to the MTNT, which serve us to evaluate whether our strategy can benefit

the most from copying from the source without compromising translation of noisy texts that,

change much more between source and reference.

vocab. size PFSMB MTNT News Open

90 23.9 25.8 18.7 26.6
85 23.9 25.3 19.9 26.9
80 23.9 25.8 18.3 26.6
75 24.5 25.9 17.8 26.3
70 24.6 25.4 17.8 26.3
65 22.7 25.5 18.0 26.4

Table 6.7: BLEU results for MT of char2char with reduced vocabulary size.

PFSMB

blind
MTNT
blind

Transformer 19.0 25.0
seq2seq 22.1 20.4

char2char-base 17.8 20.9
+vocab-75 18.3 24.0
+vocab-70 18.7 22.8

Table 6.9: BLEU results for reduced-vocabulary MT systems.

To follow, we report results for variations of the base char2char (Lee et al. 2017) model

(originally with 302 characters kept in the vocabulary) with considerably less number of characters
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in an effort to correctly train the model to produce <UNK> when needed. In Table 6.7 we can see

that the best char2char for our noisy UGC test sets are those with a similar vocabulary size of

70 and 75, which improves the performance of the base char2char in Table 6.1 by +0.8 and

+0.6 BLEU points on the PFSMB and MTNT test sets respectively. Furthermore, these models do

not lose any performance on in-domain evaluation, having the same or higher BLEU performance

for newstest’14 and OpenSubTest clean test set for all the reduced vocabulary size systems.

It is also worth noticing that the vocab-85 system also improves the newstest’14 by +2.1

BLEU points, which is a different domain to the training corpus (OpenSubtitles).

Additionally, in Table 6.9, we show results for the noisy UGC blind tests, for which we can

observe a BLEU performance improvement on both tests, outperforming the seq2seq model with

<UNK> replacement. In turn, with these results, we noticed that the BPE-based Transformer

continues to be an upper-bound of performance for the character-base models considered,

although the gaps have been reduced.
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Figure 6.7: Reference/hypothesis length ratios for different vocabulary sizes.

In order to study the occurrences of abnormally short (dropped translations) or long predic-

tions (over-translation), we display the length ratio between predictions and references for the

noise UGC test set, PFSMB, and the clean corpus OpenSubTest in Figure 6.7. It can be seen

that the base char2char model with 300 characters in the vocabulary incurs in 8% and 5%

over-translation for such test sets, respectively. When we vary the number of characters retained

in the vocabulary, we succeeded to control such behavior. However, for other sub-optimal
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vocabulary sizes (90, 75, 70, and 65), dropped translations were present with up to 16% and 5%

of shortening on the predictions with respect to the references on PFSMB and newstest’14,

respectively. It is interesting to note that the variability between the lowest and the highest

prediction length is considerably bigger for the noisy UGC test. These results point to the fact

that an optimal choice of the vocabulary size can alleviate excess tokens production.

6.7 Phoneme2Char translation: a character-based phonemic MT

Our method presented in Chapter 5 cannot resolve phonetic writing errors that are segmented on

multiple source tokens, and that cannot generate more than one normalization tokens (we have

only considered single words when looking for phonetically-closed elements in the dictionary

described in Section 5.1, otherwise, the computation time becomes prohibitive). With this in

mind, we intend to overcome such limitations by exploring the possibility of training MT systems

that can directly translate from the French phonetization form of sentences to English text.

By doing so without using an explicit tokenization, segmentation is either determined using

phoneme-based BPE units or 1-grams for comparison purposes, producing NMT systems that

fully perform the complete phonetization-normalization pipeline.

Phoneticizing and translating For the data used, we phoneticized the French source-side of

the OpenSubtitles dataset training, development and test corpora used to train and evaluate

its respective MT baseline in this chapter, using the G2P phonetizer, as seen in Section 5.1.

Characters and sequences that are not phonetizable were detected using a regular expression

and kept unchanged in their corresponding relative position with respect to neighbor phonemes.

To keep the same case-sensitive MT comparison configuration, the original pre-phonetization

casing is encoded in the source phoneme sequence to learn to generate the corresponding

target casing, by using two different placeholders (“<T>” to mark capital letters and “<U>” for

fully-uppercased tokens) to keep the case information in the phoneticized version of the source

sentences leveraging on Factored NMT (Garcia-Martinez et al. 2016), corresponding to the

inline casing approach used in Berard et al. (2019c).

Three models are compared: the Transformer model, either with a 16K BPE tokenization

over the phonemes of IPA character-level segmentation; and the fully character-level char2char
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model (Lee et al. 2017), that we refer to as phon2char, standing for the phoneticized source

version. The latter, is supposed to process the input as a stream of characters, which segment

(n-grams, possibly overlapped) embeddings are extracted end-to-end using a CNN block, as

seen in Chapter 2. Additionally, we also show the MT results using a Transformer model to

compare how self-attention NMT systems would perform on this phoneme-to-text task approach.

For the Transformer, we have chosen to explore using an IPA-level character segmentation

and a 16K BPE tokenization version.

Additionally, we have experimented using two versions of the phoneticized source corpus for

training: either keeping the spaces between original words after phonetization to take advantage

of the original tokenization information, or removing such spaces and leaving only the phonemes.

We found that the latter consistently outperformed the former, probably because of inter-word

liaisons in French pronunciation, however, since leaving the spaces leads to inherently larger

source sequences, and we do not have access to enough UGC data to produce a control

corpus of both approaches with comparable sequence lengths, we cannot rule out the impact

of sequence length, nor it is in the scope of this work. These experiences, thus, only served

the exploratory purposes of identifying the best pre-processing in order to produce the most

performing phoneme-to-text MT systems.

Results In Table 6.8, the results of using the alternative method discussed previously. It is very

interesting to notice that. for this task, the char2char model achieved a notable performance

for UGC and OOD test (newstest’14) compared to the Transformer, which contrasts to

our previous text-to-text MT experimental results. However, we can see that the latter performs

better in in-domain translation, which points to low robustness properties on this MT task. In the

second place, it can be noted that the finer-grained IPA-level Transformer, is systematically

outperformed by its BPE tokenization counterpart, probably because BPE helps the model to

disambiguate between very similar pronunciations by containing larger phoneme tokens.

Finally, we can notice that using only the phoneticized source information is detrimental

to MT, at least in overall translation quality compared to our phoneticized correction systems

in Chapter 5, which achieves +5.1 and +3.1 BLEU over in-domain (OpenSubTest) and UGC

(PFSMB) test sets respectively for the char2char model. This suggests that conceiving methods

that exploit both phoneticized and original text information are worth it over purely phoneme-
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to-text training data, and justifies up to some extent the processing over-head needed for our

normalization pipeline in Chapter 5.

Small Training Corpus

PFSMB MTNT News Open

phon2char 20.7 20.1 13.5 21.7†

Transformer

16K Phon. BPE 10.4 12.1 4.4 22.5†
IPA-level 5.2 7.3 2.2 18.8†

Figure 6.8: BLEU score results for our three phoneme-to-text models on clean and noisy test sets. The best result for
each test set is marked in bold, in-domain scores with a dag.

6.8 Robustness of our proposed character-based NMT models

In order to identify and characterize the robustness to phonetic writing of our phon2char model,

which was the most performing system in Table 6.8, we evaluate our PMUMT corpus with it and

we present these results in Table 6.10 for a single and unique UGC specificity, and in Table 6.9

for all types of UGC confounded only varying the total number of specificities occurrences (from

1 to 4+).

In the first place, in Table 6.10 we can notice that the corresponding MT system (char2char)

becomes more robust to phonetic writing specificity, compared to the SB metrics in Chap-

ter 5 Table 5.2, specifically, it increases in +13% (from 0.86 to 0.97), however, the difference

in overall translation performance (lower for phon2char as discussed before), make the noisy

BLEU score not comparable. Additionally, it is interesting to notice that phon2char is +8% and

+4% more robust to contractions and inconsistent casing, respectively. These results

suggest that phonetization can help to recover from such UGC specificities by approaching the

noise in UGC to the phoneticized form of canonical constructs.

On the other hand, phon2char showed a loss of -17% and -4% for tokenization and

named entity, respectively with respect to char2char, which could be explained by losing

some of the original word-level segmentation information through the phonetization process for

the former and adding confusion to names, some of which are not readily french-phonetizable.

In addition, the specificities repetition and interjections, also suffer from a de-

creased robustness of roughly -7% comparing phon2char to char2char. This can be ex-
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plained due to the fact that phoneticizing such sequences will arguably always map to incorrect

and rare phoneme sequences, since such specificities are not meant to be phoneticized.

Finally, regarding the impact of a given number of present UGC specificities, we can notice

in Table 6.9 that phon2char have the same overall robustness profile of char2char when

comparing to Table 6.6b, but the former seems more robust to a relatively high number of

occurring UGC specificities.
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phon2char 0.96
(31.3)

1.00
(27.0)

0.97
(27.2)

0.81
(25.5)

0.99
(27.4)

0.79
(22.0)
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0.79
(22.9)

0.90
(27.4)

0.95
(30.0)

0.88
(25.5)

0.87
(26.9)

Table 6.10: BLEU score ratios between pairs of noisy and normalized sets of sentences for the phon2char system,
containing only one UGC specificity. BLEU scores on noisy sets are shown in parenthesis.

1 2 3 4+

# sents. 1,306 1,776 1,439 1,089

phon2char 0.91
(27.0)

0.86
(24.2)

0.83
(22.5)

0.81
(22.3)

Figure 6.9: BLEU score ratio between pairs of normalized and noisy sentences containing N specificities for the
phon2char system. BLEU scores on noisy sentences are shown in parenthesis.

6.9 Conclusions

In this chapter, we have tested the capacity of convolutional character-based NMT systems to

translate noisy UGC content, and we have compared their performance to mainstream BPE-

based models. We also developed a novel UGC evaluation framework to identify the advantages

and caveats of our proposed models when translating UGC.

By using our proposed evaluation protocols, annotated data, and code, we were able to

show that, contrary to what could be expected, this kind of system is very sensitive to UGC

idiosyncrasies, and it is especially challenging to translate texts that are productive in terms of

new forms, new structures, or new domains, although we did notice a generalization advantage

over BPE subword units NMT for faulty or missing diacritization and letter change (to constitute

a misspelling), inconsistent casing, and graphemic and punctuation repetition.
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We have also investigated the effects and caveats of choosing different training vocabulary

sizes in order to train character-based NMT systems to correctly treat charOOVs and rare

characters during UGC evaluation, for which the results strongly point to the importance of

carefully choosing the number of characters kept in the vocabulary set. Additionally, this aspect

has a considerable effect on the length of the predictions and is also one factor that determines

abnormal behavior. In this respect, our analysis concludes that reducing the training vocabulary

and looking for its optimal size can help training more robust character-based NMT systems,

which process charOOVs that can be present on OOD evaluation scenarios and real-world MT

applications.

Finally, we combine our new character-based models with phonetization information of the

source tokens to propose other methods to cope with UGC, which serves a twofold purpose: as

a phoneme-based baseline that allowed us to quantify the performance of our phonemic MT

systems in Chapter 5 and justify the extra computing overhead needed; and it also constituted

the focus of our evaluation procedure to identify its robustness capabilities beyond phonetic

writing.
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Chapter 7

Variational inference methods for UGC

The previous chapters have highlighted the difficulties raised by the translation of UGCs and

the need to consider a zero-shot scenario in which no parallel data is used during training. We

have also described our first experiments to improve the robustness of translation systems to

a well-identified UGC specificity. In this chapter, we describe a new contribution of our work

aiming at using latent variables models to build better text representations, robust to the whole

set of variations that can be found in UGC.

To address the problem raised by OOD texts, an increasing number of works explore the

possibility to combine deep learning with latent variable (LV) models: the latter are indeed able to

capture underlying structure information and to model unobserved phenomena. The combination

of LV models with neural networks was shown to increase performance in several NLP tasks

(Kim et al. 2018). In this work, we focus on a specific LV model for MT, Variational NMT (VNMT),

introduced by (Zhang et al. 2016) which has been reported to have good performance and

interesting adaptability properties (Przystupa 2020; Xiao et al. 2020).

The goal of the work described in this chapter is twofold. First, we aim to evaluate the

performance of VNMT when translating French social-media noisy UGC, a kind of OOD texts

that has never been considered before in the VNMT literature. We hypothesize that, by leveraging

on Variational NMT, latent models can build more robust representations able to represent OOD

observations that are symptomatic of noisy UGC and automatically map them to in-distribution

instances, which can be more easily translated.

Second, to account for the diversity of UGC phenomena, we introduce a new extension of

VNMT that relies on Mixture Density Networks (Bishop 1994) and Normalizing Flows (Rezende
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and Mohamed 2015). Intuitively, each mixture component extracts an independent latent space

to represent the source sentence and can potentially learn different multi-modal regularization

distributions, more robust to noise and capable of better translating UGC.

At the end, our contributions can be summarized as follows:

• we study the performance, in a zero-shot scenario, of VNMT models and evaluate their

capacity to translate French UGC into English;

• we introduce a new model that uses Transformer as the backbone of a variational inference

network to produce robust representation of noisy source sentences, and whose results

outperform strong VNMT and non-latent baselines when translating UGC in a zero-shot

scenario. Specifically, our model demonstrates a high robustness to noise while not

impacting in-domain translation performance;

• by probing the learned latent representations, we show the importance of using several

latent distributions to model UGC and the positive impact of the ability of VNMT models to

discriminate between noisy and regular sentences while maintaining their representation

closer in the embedding space;

• we report evidence supporting that our VNMT models act as regularizers to their backbone

models, leading to more robust source embeddings that can be later transferred with a

relatively high performance gain in our zero-shot UCG translation scenario.

7.1 Background

In this section, we review the methods featured in this chapter. We start by discussing variational

approaches and their interest to robust NMT. We then study specific architectures used to

improve performance and that we rely upon to build our proposed VNMT model.

7.1.1 Variational Neural Machine Translation

Variational Inference (VI) methods (Kingma and Ba 2015) are generative architectures capable,

from a distributional perspective, of modeling the hidden (i.e. latent) relations that can be found

in data. In a sequence-to-sequence MT tasks, where x and y are respectively the source and

target sentences, VNMT assume that there exists a random variable, z (known as the latent
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state), modeling the implicit structure (i.e. relations) between the bilingual sentence pairs (Zhang

et al. 2016).

In the context of UGC translation, we believe that this latent variable can capture the variations

between a source sentence and its canonical, normalized form, recovering its underlying

meaning and ensuring that their representations are similar. We explore this hypothesis in

Section 7.5 by assessing perturbations caused by UGC specificities.

To make computations tractable, in spite of the latent variable, VI combines a so-called

variational posterior q�(z|x,y) that is chosen to approximate the true posterior distribution,

p(z|x), and a neural decoder generative distribution, p✓(y|x, z), in charge of generating the

translation hypothesis conditioned on the latent variable. Once the family of densities q is chosen,

the parameters of the two distributions are jointly estimated to model the output y by looking for

the parameters (✓,�) that minimize the evidence lower bound objective function:

log p✓(y) � Eq�(z|x,y)[log p✓(y|x, z)]

�DKL[q�(z|x,y)||p(z|x)]
(7.1)

7.1.2 Normalizing Flows

One of the major caveats of variational methods is that choosing the prior q(z) is a complicated

process that requires some a priori knowledge of the task. In practice, a normal distribution

with fixed parameters (generallyµ = 0.0 and � = 1.0) is often chosen for computational reasons.

However, such an assumption can be restrictive when modeling more complex processes.

Regarding this issue, Rezende and Mohamed (2015) propose to enhance variational methods

with Normalizing Flows (Tabak and Turner 2013; Tabak and Vanden-Eijnden 2010). A normalizing

flows is a series of simple bijective functions automatically chosen to extract a more suitable

representation for the task at hand from a random variable.

In MT, normalizing flows were recently used to improve VNMT models: Setiawan et al. (2020)

show that using them in an in-domain evaluation setting results in an increase of +1.3 BLEU

points on the IWSLT’14 (De-En) and +0.2 BLEU points on the WMT’18 (En-De).
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7.1.3 Mixture Density Networks

Mixture Density Networks (MDN) are another interesting generalization of variational encoding

for modeling UGC. In MDN, the posterior distribution p(z|x) is no longer approximated by a single

variational posterior q�(z|x,y) but by a linear combination of variational posteriors q̃m(z|x,y):

q(z|x) =
MX

m=1

↵m(x,y) · q̃m(z|x,y) (7.2)

where ↵m are known as the mixing coefficients. Intuitively, an MDN is a combination of M

variational encoders. Our intuition is that UGCs contain several different kinds of variations

covering very different aspects ranging from morphology to phonemics, including lexicon and

sentence structure (see Chapter 3) and it is illusory to hope that a single latent variable will be

able to capture all of them. But, with an MDN, it is possible that each component of the encoder

is able to model different UGC specificities, allowing us to better model UGC. In the past, MDN

has been used to address sequence-to-sequence generative tasks, such as SketchRNN (Ha

and Eck 2018) and modeling of sequential environment states in reinforcement learning (Ha and

Schmidhuber 2018).

7.1.4 Gumbel-Softmax sampling

Regarding the mixing coefficients computation, we also explore the use of a categorical proba-

bility distribution, for which probabilities are calculated by the network, such as in Ha and Eck

(2018). Unlike theirs, our supervised end-to-end training requires backpropagating the error

gradient through the variational network via reparameterized sampling (Kingma and Welling

2014) which poses optimization challenges because of the discrete random variables used as

latent vector for categorical distributions. For this reason, we use the reparameterization of this

distribution via the Gumbel-softmax sampling (Jang et al. 2017; Maddison et al. 2017), such that,

the argmax function is approximated by a softmax and generates the relaxed one-hot encoded

samples corresponding to the mixing coefficients:

↵m =
exp(log(⇡m) + gm)/⌧)

PM
j=1 exp((log(⇡j) + gj)/⌧)

(7.3)
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where gm...gM are i.i.d sampled from the Gumbel(0,1) distribution (Gumbel 1954; Maddison

et al. 2017), ⇡i is the probability associated to the m-th MDN’s Gaussian components, jointly

generated by neural networks along with the computations of the corresponding parameters

(µm,�m) for m...M ; and ⌧ is the temperature parameter, which controls variability of the sampling.

When ⌧ ! 0, the sampling exhibits a perfectly one-hot encoded output, whereas, conversely,

when ⌧ ! inf, the distribution approaches a uniform one across all the MDN’s components.

7.2 Extending variational methods for robust MT

The model we designed in this work adopts a variational encoder-decoder architecture inspired

by SketchRNN (Section 7.1) that uses an MDN on the decoder’s variational network to model

multiple and independent continuous generative variational distributions. However, unlike

SketchRNN, we use a Transformer backbone for the encoder and the decoder and train our

model in an end-to-end manner on canonical parallel corpora. In the following, we will first

describe the general architecture of our model, denoted multi-VNMT, and then detail the

encoder and decoder parameters.

7.2.1 General architecture

Figure 7.1a shows the architecture of our model. The source sentence is processed by a

standard Transformer encoder, whose output is passed as input to a VI network enhanced with

NF to predict a latent representation of the input sentence. This vector and the output of the

Transformer encoder’s last layer are combined using the gating mechanism of Setiawan et al.

(2020).

This combined representation is then fed to the decoder that has a similar architecture: it

consists of a “standard” Transformer decoder and an MDN. The latter is sampled to obtain a

prediction that will be combined with the Transformer output by (again) a gating mechanism.

The model can be trained in an end-to-end fashion using the “reparameterization trick”

(Kingma and Welling 2014). In order to ensure that the estimated standard deviations for the

variational posteriors are positive, we used the softplus activation function (Zheng et al. 2015),

as done in van den Berg et al. (2018)’s implementation. This choice alleviates the possibility of

exploding gradients in comparison to the exponential function, often used to serve the same
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Figure 7.1: (a) multi-VNMT architecture overview. (b) Directed graph of our encoder-decoder model variational
inference. Dashed lines represent the variational approximation for the posterior distribution, and solid lines stand for
the generative models. The blue arrow depicts the generative networks for source-side monolingual reconstruction
distribution p(x|z).

purpose (Ha and Eck 2018).

We also explored two methods to compute the mixing coefficient in the decoder’s MDN:

either using softmax (non-latent approach), or resorting to relaxed categorical variational method

that relies on a Gumbel-softmax sampling (Section 3.8).1

7.2.2 Encoder

According to our Transformer Base baseline architecture from Vaswani et al. (2017), the

encoder is composed by a 6-layered Transformer Base encoder, which output is feed to a

128-dimensional variational network, that estimates the final latent hidden encoded vector.

In Figure 7.1b, we show the Transformer and variational encoding latent state (z) as being

estimated (p(z|x)) approximating the posterior distribution parameters, learned using the repa-

rameterization trick (Kingma and Welling 2014). On the other hand, the blue arrow in the figure,

shows how we can introduce a source-side reconstruction loss in order to introduce mono-lingual

training generative posterior (q(x|z)), such as seen applied to VNMT in Zhao et al. (2019), used

as regularizer to enforce source information to be efficiently propagated and mitigate posterior

collapse. In this work, we also study the impact of this source reconstruction as an accessory

module for our proposed VNMT model.

In order to be comparable to the recently introduced NF-VNMT (Setiawan et al. 2020), we also

report results for our VNMT model extending the encoder’s variational inference mechanism with

a 4-flows Normalizing Planar Flows (PF) (Rezende and Mohamed 2015). Other autoregressive

1The model has been implemented in OpenNMT (Klein et al. 2018).
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normalizing models, such as Sylvester Flows (van den Berg et al. 2018), are available and could

prove interesting for higher capacity. However, we decided to only address PF since they are

the simplest solution with comparable performance improvement as other more complex flow

models, according to results from Setiawan et al. (2020).

Similarly to NF-VNMT, we mix the last Transformer layer output to the latent vectors using

a gating mechanism, and a feed-forward network in order to upscale the latent representation

dimensionality and match the Transformer Base decoder number of dimensions (i.e, from

128 to 512); but unlike this model, we do so for both the encoder and decoder blocks’ outputs

since we introduce variational networks on both sides.

7.2.3 Decoder

The Transformer decoder’s last layer output is passed as input to an 128-component MDN,

with trainable parameters �, encoding the mean and standard deviation of each one of these

multivariate Gaussian kernels; and ⇡, which contains the probabilities of the categorical dis-

tribution that generates the mixing coefficient for each component, as seen in Section 7.1.

Concisely, we estimate a series of M posteriors parameterized by h�;⇡i, i.e. q̃�;⇡m (zdec|x,y1:t�1),

conditioned via the decoder’s Transformer, on both the gated latent encoder’s output and the

last t� 1 predicted tokens, y1:t�1. To compute the MDN’s mixing coefficients, ↵m(x,y1:t�1), we

explore either using a fully-connected layer with a softmax activation, or the relaxed categorical

Gumbel distribution. Both networks computing q̃m and ↵m are jointly trained in an end-to-end

fashion, such that translation loss is minimal for representations sampled from the resulting

mixture, obtained according to Equation 7.4. We train the MDN by variational inference using

reparameterized sampling, similarly to our variational encoder network.

By using MDN, the posterior distribution of the current decoding step, p(z|x,yt), is no longer

approximated by a single variational distribution q�(z|x,y1:t�1) but by a linear combination of

variational posteriors q̃m� (z|x,y1:t�1):

p(z|x,yt) =
MX

m=1

↵m(x,y1:t�1) · q̃m(z|x,y1:t�1) (7.4)

where ↵m are known as the mixing coefficients.

Regarding our choice of architecture, we also explored incorporating Normalizing Flows to
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the MDN’s components variational inference, which resulted in poor performance and very large

number of parameters. We, thus, apply these two methods independently, and we leave their

simultaneous use within a single variational network for future works.

7.2.4 Jointly-learned MLM representations

An interesting property of our model is that it is inherently capable of being pre-trained (or jointly

trained) as an auto-encoder considering only monolingual data in the source language. This

pre-trained model can be later fine-tuned on other MT domains or bootstrapped to be used in

other NLP tasks. Indeed, the reconstruction error can be minimized as training objective such

that the network predicts one or several masked token in the source sentence.

In this work, we use the MASS approach (Song et al. 2019) as masked language model

(MLM) scheme, by introducing a supplementary source reconstruction loss while masking the

source tokens to predict.

Using these tools, we explore a semi-supervised approach, as done in Zhao et al. (2019),

and performed experiments adding a source-side reconstruction loss term, both for MLM and

reconstruction objectives:

Lmono = Ez⇠q�(z|x)[log(p�(x|z)]�DKL(q�(z|x)kp�(z)) (7.5)

This objective is maximized by sampling the approximated posterior distribution (p✓(z|x)) by the

means of variational inference, represented as the blue arrow in Figure 7.1b. Using the MASS

MLM auxiliary loss and adding a source reconstruction term to it will, intuitively, guide the latent

representation of the source sentence by modeling the inner relationships between its tokens.

In our experiments, we only use the source sentences contained by the training datasets

in order to be able to unequivocally assess the advantages of this auxiliary task, ruling out the

impact of supplementary monolingual data. However, using additional monolingual corpora is

arguably the main interest of this approach.
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7.3 Experimental Evaluation

7.3.1 Evaluation Protocol

We have conducted experiments on our VNMT systems and the NF-VNMT baseline using the

data and protocols discussed in Chapter 3. In this regard, we present an ablation test of

our proposed multi-VNMT system and show the impact of our architecture’s design over MT

performance across our different test sets. We also performed experiments by incorporating

MLM and reconstruction objective functions, as reviewed in Section 7.1. In addition, we evaluate

the impact of temperature ⌧ in order to assess whether the sparsity of mixing coefficients favors a

given type of texts among our test sets. Concerning this, as an initial experimental configuration,

we chose ⌧ = 1.0, which was selected mainly aiming to avoid artificial gradient scaling during

backpropagation, directly caused by this coefficient being relatively larger than 0 in order to

introduce variability to the sampling process.

We quantify the robustness of multi-VNMT by employing the PMUMT evaluation framework

discussed in Section 6.5. Finally, we present a series of visualizations and metrics to characterize

how multi-VNMT behaves when processing UGC during evaluation, in order to give further

insights of its robustness capabilities compared to the NF-VNMT and Transformer baselines.

Training models All systems are trained using a batch size of 4,096 tokens using the Adam

optimizer (Kingma and Ba 2015) accumulating gradients every two steps, and the Noam learning

rate schedule (Vaswani et al. 2017) with 8,000 warm-up steps. Throughout training, learning rate

reaches a maximum value of 0.0009 and minimal value of 0.0001. Both encoder and decoder

Transformers are trained using 0.1 dropout, and we used 0.1 label smoothing (Szegedy et al.

2016). Training for, at most, 300K training iterations on a single Nvidia V100 took about 50

hours to converge for the multi-VNMT models. In order to avoid posterior collapse, we use

�C-VAE (Prokhorov et al. 2019), with values � = 1 and C = 0.1, as done in Setiawan et al.

(2020). Additionally, we used a Kullback-Leibler (KL) annealing schedule of 80K iterations, i.e.

scaling the KL divergence term in Equation 7.1, which allows the model to mostly focus on the

translation loss before starting regularizing the KL divergence.

We have also retrained the Transformer Base baseline system presented in previous

chapters with the optimal hyperparameters found for the VNMT systems, namely, a peak learning
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rate of 1.5 for the Noam schedule (Vaswani et al. 2017) (instead of 2.0 for the vanilla version)

and training for 400K training steps, as opposed to 200K used before. This was done to keep

all the NMT systems comparable, and resulted in a small improvement of the Transformer

Base, as we report in the following section.

7.3.2 MT scores

Test performances achieved by the NMT systems are reported in Table 7.1 using BLEU (Papineni

et al. 2002) and chrF2 (Popovic 2017), both computed by SACREBLEU (Post 2018) with the

‘intl’ tokenization, after detokenizing the systems outputs.

We computed the 95% statistical significance by using a 1,000-samples bootstrapping for

both BLEU2 and chrF2
3, as in Koehn (2004). It should first be noted that the performances

of the three systems we consider are identical when they are evaluated on in-domain data,

whatever the evaluation measure considered (no statistically significant difference between the

models). This observation highlights one of the strength of the proposed method: contrary to

fine-tuning (arguably the most common method to adapt a system to a new domain) that often

hurts performance on in-domain evaluation because of catastrophic forgetting (McCloskey and

Cohen 1989), the improvement of the quality of UGCs by the proposed method is not at the

expense of the quality of translation of canonical texts.

It also appears that, on out-of-domain text, multi-VNMT, the approach proposed in this

work, outperforms the standard Transformer model as well as the state-of-the-art VNMT

model, supporting our hypothesis that considering several variational inference components

allows to better capture all the variations that can be found in UGC and will result in improved

translation quality. Interestingly, our system also performs better than Transformer when

evaluated on out-domain canonical data and not only on UGC data. It should be noted, however,

that the gains of our model are consistent but small and statistically significant mainly when

translation quality is assessed using chrF2.

Ablation study To better understand the impact of the different components of our model, we

conduct an ablation study, whose results are reported in Table 7.2. Overall, we obtain the best

2SACREBLEU signature: nrefs:1|bs:1000|seed:12345|case:mixed|eff:no|tok:intl|smooth:exp|version:2.1.0.
3SACREBLEU signature: nrefs:1|bs:1000|seed:12345|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.1.0.
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BLEU scores across all test sets for the “full” multi-VNMT model.

In Table 7.2 we can notice that, overall, we obtain the best BLEU scores across all test sets for

the full multi-VNMT version. As interesting mixed results, we can highlight the cases for static

latent representation (z static), where instead of sampling from the learned distributions, we

retrieve their mean as output, and which showed slightly better BLEU scores when translating the

MTNT and newstest’14 test sets, with +1.2 and +0.1 BLEU points improvement, respectively.

However, results are inconsistent for UGC test sets and otherwise worse than those of the full

model for both in-domain and canonical OOD test sets for our two training configurations. This

might be explained by the lack of stochastic perturbations provided by the sampling step during

training, leading the model to lose generalization during evaluation.

It is also interesting to note that using a categorical variational version of the mixing coef-

ficients rather than the usual choice of computing them with a softmax improves translations

quality: the latter is only performing better for the newstest’14 test set when training on

the OpenSubtitles corpus (⇡ non-latent). Following the same trend, the WMT training data

configuration also shows improvements when using the Gumbel-Softmax version, for which +0.8

and +0.3 BLEU point increment were obtained for both the PFSMB and MTNT UGC test sets,

respectively.

Posterior collapse Comparing multi-VNMT and its ablated version system removing the

MDN module, both trained on OpenSubtitles and when evaluating the corresponding in-

domain test set (OpenSubTest), we have calculated the average KL divergence of the vari-

ational decoder’s MDN, which resulted in 0.21 and 0.15, respectively. Performing the same

analysis for the WMT training and evaluation configuration, KL divergence resulted in 0.38 for the

full multi-VNMT and 0.33 for its version removing the MDN block. These results suggest that

our proposed architecture is less prone to suffer from the posterior collapse phenomenon, and

this could be explained by the use of several independent posterior distributions when including

MDN in our model. This could also explain why, in Table 7.1, our systems employing MDN have

an overall higher BLEU results than the aforementioned ablated system where we remove this

component.
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WMT OpenSubtitles

PFSMB
†

MTNT
†

News
⇧

OpenSubTest PFSMB
†

MTNT
†

News OpenSubTest
⇧ # params.

B
LE

U Transformer 15.1 21.3 27.9 16.4 27.7 28.4 26.4 31.4 69M

NF-VNMT 15.5 21.4 27.9 16.4 28.0 28.9 26.5 31.4 72M
multi-VNMT 16.0* 21.8 27.9 16.7* 28.4 29.2 26.4 31.5 77M

c
h
r
F
2 Transformer 37.8 45.1 54.4 38.6 46.9 48.3 52.6 48.9 69M

NF-VNMT 38.3 45.1 54.6 38.6 47.6 49.2* 53.1* 48.9 72M
multi-VNMT 38.5* 45.5 54.6 39.0* 47.7* 49.6* 52.9* 49.0 77M

Table 7.1: BLEU and chrF2 test scores for our models. The † symbol indicates the UGC test sets, and ⇧ in-domain
test sets. Highest metrics for each test set are in bold; scores significantly better than Transformer (p < 0.05) are
marked with a *.

WMT OpenSubtitles

PFSMB
†

MTNT
†

News
⇧

OpenSubTest PFSMB
†

MTNT
†

News OpenSubTest
⇧ # params.

multi-VNMT 16.0 21.8 27.9 16.7 28.4 29.2 26.4 31.5 77M
⇡ non-latent 15.8 21.0 27.8 16.4 28.1 28.5 26.6 31.3 77M
-NF 15.3 21.6 28.0 16.5 28.3 28.8 26.1 31.3 76M

z static 16.5 20.9 28.0 16.4 28.1 29.3 26.2 31.4 76M
-MDN 16.5 20.9 27.8 16.6 27.7 28.7 26.2 31.3 72M

Table 7.2: BLEU test scores our ablated variants. The † symbol indicates the UGC test sets, and ⇧ in-domain test
sets.

7.3.3 Impact of source-side monolingual joint training

In Table 7.3 we report results with our proposed multi-VNMT system when using source-side

monolingual corpora MLM and reconstruction loss terms. It appears that the result we achieve

are quite disappointing: for the two training configurations, the reconstruction term (MonoMLM)

allows keeping performances on newstest’14 close to those of the baseline, while having

little impact on the OpenSubTest corpus. Results on the UGC test sets show improvements,

but these are not consistent and depend on the train set chosen. Although conclusions are

difficult to drawn from these results, some UGC translation improvements for OpenSubtitles

are interesting and more experimentation in needed, specifically mechanisms and protocols to

control the contribution of the reconstruction loss terms, such as adding importance weights to

the terms, ablation schedules, and adding extra monolingual data that introduce new information.
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WMT OpenSubtitles

PFSMB
†

MTNT
†

News
⇧

OpenTest PFSMB
†

MTNT
†

News OpenTest
⇧

multi-VNMT 16.0 21.8 27.9 16.7 28.4 29.2 26.4 31.5

Mono-multi-VNMT 15.8 21.8 28.0 16.5 29.3 28.7 26.2 31.6

MLM-multi-VNMT 15.6 21.8 27.9 16.5 28.0 28.9 26.4 31.5

MonoMLM-multi-VNMT 15.6 21.6 28.0 16.5 27.8 29.0 26.3 31.5

Table 7.3: Best system using MLM and source monolingual variational reconstruction loss.

in-dom test

NF-VNMT (Z ~ 4-PF)
(Setiawan et al. 2020) 36.1†

multi-VNMT (Z ~ 4-PF) 36.3

Table 7.4: Translation performance of our considered VNMT models on the De-En IWSLT’14 experimental setup.
The † symbol denotes reported results. They have been computed using tokenized BLEU, as we reproduced the
same pre-processing and vocabulary parameters.

7.3.4 Results using a standard experimental setup

In order to assess how multi-VNMT compares to NF-VNMT’s results reported in Setiawan et al.

(2020), we have recreated4 their IWSLT’14 De-En configuration with 160K training sentence

and 10K source-target joint BPE vocabulary, which in turn was adopted in Edunov et al. (2018)

and Wu et al. (2019).

This is an interesting alternative setup with a much smaller train set than the ones we

considered in our experiments. This setup allows us to assess whether our findings on the two

transformer-based VNMT architectures hold for a different language pair and a “low-resource

conditions”. In this regard, we report our results for multi-VNMT in this setting in Table 7.4,

where it can be seen that our model has on-par (slightly better) results compared to the VNMT

baseline.

7.4 Qualitative analysis

In Table 7.5, we show some examples from the PFSMB and MTNT test sets and their translation

by different NMT systems. We notice a general trend of multi-VNMT (MTX in the table),

4We have re-implemented our models using the Fairseq toolkit (Ott et al. 2019) to keep the same NMT framework.
We focus on their system using 4 Planar NF as ours use the same approach.
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outperforming the baselines and producing overall longer predictions when rare tokens or

letter repetition are present in the source sentence. This is the case for Example ¿ in which

some tokens have an inconsistent case ; Example ¡ contains repeated characters and words ;

Example ¬ has an out-of-vocabulary character “•”, and Example √ contains a hashtag and

several user mentions both identified by OOD characters (“#” and “@” respectively).

120



PFSMB

¿ src OOOOOOOUUUUUUUIIIIIIII ZLATAN IBRAHIMOVIC SIGNE UN DOUBLÉ À LA 90eme MINUTE ET
ENVOI LE #PSG EN FINALE!!!!

ref YYYYYYYEEEEEEESSSSSSSS ZLATAN IBRAHIMOVIC PERFORMS A DOUBLE AT THE 90th
MINUTE AND SENDS THE #PSG TO FINAL!!!! 1-2!!!!

TX OOOOOOOOOOOUUULL ZLATAN IBRAHIMOVYSIG A DOUBLED IN THE 90th MINUTE
NF OOOOOOOOOOUUUIIIZLATANIBRAHIMOVIC SIGNS A DOUBL AT THE 90th MINUTE
MTX OOOOOOOOOUUUUIII ZLATAN IBRAIMOV SIGNS A DOUBLED ON THE 90th MINUTE!

¡ src ne spooooooooilez pas teen wolf non non non et non je dis non
ref don’t spooooooooil teen wolf no no no and no I say no
TX Don’t spoil it.
NF No, no, no, no, no, no, no, no.
MTX Don’t spoooooooil. Don’t. Don’t.

¬ src Roman Godfrey a regardé Teen Wolf (2011) • S03E17 Silverfinger et retourne dessiner des ronds
sur son gitan préféré.

ref Roman Godfrey watched Teen Wolf (2011) • S03E17 Silverfinger and is back drawing circles on his
favorite gypsy.

TX Roman Godfrey looked at Teen Wolf.
NF Roman Godfrey looked at Teen Wolf.
MTX Roman Godfrey watched Teen Wolf (2011), this is S03E17 Silverfinger and goes back to drawing a

round about his favorite gypsy.

√ src Vient de perdre une grosse heure a #flappybird cc @JohnDoe533 @JohnDoe534 @JohnDoe535
ref Just lost a big hour on #flappybird cc @JohnDoe533 @JohnDoe534 @JohnDoe535
TX #Flappybird cc #JohnDoe53 #JohnDoe53 #53 #1
NF #Flappybird c@JohnDoe5333)@JohnDoe53@JohnDoe53
MTX Just lost a huge hour at #flappybird cc at John Doe53 #John John Doe

MTNT

ƒ src Le programme ‘hwclock‘et le fichier de configuration ‘/etc/adjtime‘servent à cela.
ref The program ‘hwclock‘ and the configuration file /etc/adjtime‘ are used for that.
TX Program /hwock and file configuration file /adjtime to that.
NF The hwclock program and the configuration file are for this.
MTX The program ’hwlock’ and file of configuration - and/adjtime are at that.

≈ src Chui bourré (Côte du rhône master race) et je viens de recevoir ma paie... Vive l’intérim et l’emploi
précaire qui te paie le 15 du mois!

ref I’m drunk (Côte du rhône master race) and I just got paid.... Long live temp work and unstable jobs
that pay you on the 15th of the month!

TX Drunk Chui, and I just got my pay... live the temp and the early job that pays you on the 15th of the
month!

NF Drunk chui, and I just got my paycheck, and I’ve got the temp and the pre-job that pays you on the
15th!

MTX Drunk pot roast, and I just got my pay... cheers for the temp and the job that pays you on the 15th of
the month!

∆ src Osti jle cherche depuis un boutte le montrer à une amie un brin plus jeune.
ref Goodness I’ve been looking for it for a while to show a friend a younger strand.
TX I’m looking for it from a piece of paper to a younger friend.
NF Ostij’s been looking for it ever since we started showing it to a friend who’s younger.
MTX Osti I’ve been looking for a bit to show it to a younger friend.

Table 7.5: Examples from our noisy UGC corpora showing the Transformer, NF-VNMT and our model,
multi-VNMT, predictions. NF and MTX stand for the NF-VNMT (Setiawan et al. 2020) and multi-VNMT VNMT
systems, respectively.
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7.4.1 Robustness

To assess the robustness of our proposed model, we report in Figure 7.2 the noise impact

ratio metric (as defined in Section 2.4.3) for each UGC specificity (Table 7.6) and with respect

to the number of different UGC specificities in the input sentence (Table 7.2b). It appears

that our model is, overall, more robust than all the models we have used so far, notably when

OOV and rare character are present in the source (namely, special char. and emojis.

On the other hand, some specificities seem to degrade performance for our architecture,

notably wrong tense, agreement and repetition, that might be explained by the several

semantically-equivalent sentence versions they represent, and that multi-VNMT has problems

to disambiguate from. Overall, in Table 7.2b, it can be noticed that multi-VNMT is less sensitive

to the number of noise occurrences, witnessing a less pronounced impact on performance as

more specificities are present in the input. However, for a large quantity of specificities (4-7 in

Table 7.2b), the assessed robustness of our proposed architecture diminishes, matching that of

the Transformer baseline.
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s2s
0.80
(28.7)

0.95
(33.9)

0.93
(27.3)

0.96
(30.8)

0.94
(30.7)

0.88
(26.1)

0.95
(27.1)

0.75
(27.7)

0.91
(31.0)

0.86
(31.7)

0.95
(30.8)

0.90
(30.2)

0.93
(29.2)

c2c
0.99
(32.5)

0.99
(29.6)

0.86
(25.2)

1.00
(31.9)

0.97
(28.8)

0.81
(24.6)

0.96
(28.9)

0.86
(28.0)

0.83
(26.2)

0.94
(32.7)

0.91
(30.4)

0.95
(26.2)

0.91
(28.7)

TX
0.98
(35.3)

1.02
(34.0)

1.03
(33.2)

0.98
(32.9)

1.02
(33.7)

0.92
(29.2)

0.97
(33.8)

0.90
(26.9)

0.75
(28.3)

0.99
(35.4)

0.93
(31.1)

0.89
(30.8)

0.86
(30.2)

multi-VNMT

1.00
(35.5)

0.99
(34.7)

0.95
(34.0)

0.96
(33.1)

1.00
(32.5)

0.92
(30.3)

1.00
(30.2)

0.88
(26.8)

0.83
(30.6)

0.98
(35.1)

0.96
(31.1)

0.86
(28.3)

0.83
(28.2)

Table 7.6: BLEU score ratios between pairs of noisy and normalized sets of sentences, containing only one UGC
specificity. BLEU scores on noisy sets are shown in parenthesis.

7.5 Learning representations: where does the magic happen?

In this section, we analyze the neural representations, namely the variational encoder’s latent

space and source-side embeddings (the very same input layer in the Transformer backbone).

We intend to assess how our model behaves when translating UGC in comparison to both our

latent and non-latent baselines. By doing so, we also aim to undercover if VNMT indeed learns
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mdn-tx

(a)

1 2 3 4+

# sents. 1,306 1,776 1,439 1,089

s2s 0.90
(30.1)

0.83
(27.0)

0.77
(24.2)

0.75
(23.2)

c2c 0.92
(29.5)

0.87
(26.6)

0.83
(24.3)

0.83
(23.2)

TX 0.96
(32.8)

0.89
(30.0)

0.86
(28.3)

0.84
(26.5)

multi-VNMT
0.97
(33.0)

0.93
(30.3)

0.88
(28.4)

0.84
(26.6)

(b) BLEU score ratio between pairs of normalized and noisy sen-
tences containing N specificities. BLEU scores on noisy sen-
tences are shown in parenthesis.

Figure 7.2: Comparison of multi-VNMT’s robustness to different number of present UGC specifies.

more robust neural representations, and, confirm that variational approaches act as regularizers

and are able to promote robust backbone’s representations (embeddings).

7.5.1 Latent space analysis

To assess how VNMT builds more robust learning representations than our baselines, we report

the cosine similarity distribution between the representations of the French noisy sentences

and their normalized version, taking advantage of the PMUMT introduced in Chapter 6. To obtain

these embeddings, we fed the 400 original noisy UGC sentences and their corresponding 400

fully normalized versions to our VNMT baseline, NF-VNMT, and to multi-VNMT.

To measure the perturbations that the model suffers when noise is present in the source, we

measure the similarity between the latent representations built by our two VNMT models of the

noisy sentences from PMUMT and the representations of their corresponding normalized version.

We observe that the average similarity between the representations of multi-VNMT is 0.36

compared to an average similarity of 0.26 for the representations of NF-VNMT, suggesting that

the former provides more robust representations of UGC than the former. We also compare the

distribution of cosine similarities of both VNMT systems in Figure 7.3, which confirms this trend

by showing multi-VNMT’s skewed to overall higher similarities between original and normalized

sentence pairs.

In Figure 7.4, we show the t-SNE (van der Maaten and Hinton 2008) visualization of both

VNMT systems, displaying the latent encoding of noisy and normalized PMUMT sentences.
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Figure 7.3: Histogram of cosine similarity for corresponding noisy and normalized PMUMT samples in the encoder’s
latent space of NF-VNMT and multi-VNMT.

First, we can notice that the NF-VNMT latent representations present a series of outliers when

noisy sentences abound, contrary to the multi-VNMT representations, which also have a

more compact support. In this set of 43 outlier observations (roughly 5% of the 800 plotted

sentences’ representation), 88% (37) are the original – noisy – UGC samples of PMUMT. Secondly,

multi-VNMT embeddings have higher sparsity (0.190 compared to 0.185 of NF-VNMT), which

suggests that our model has more structured representations (Bach et al. 2011), which we link

to MDN multiple components in Section 7.7, seemingly contributing to enforce sparsity.

Latent encoding and performance In order to visualize if the latent space is linked to MT

performance, we report, in Figure 7.5 the noisy sentences and we represent their character-level

edit distance metric comparing predictions to the ground truth using 4 quantiles, with cumulative

probability distribution partitions of 25%, 50% and 75%, respectively. On one hand, we first

considered the word-level edit distance, which gave us equal sets of bin delimiters for the

quantiles [0.55, 0.64, 0.87] for our model and the VNMT baseline. On the other hand, character-

level edit distance resulted in multi-VNMT having a better performance distribution (smaller

edit distance), with [0.297, 0.433, 0.563] quantiles’ delimiters, compared to [0.304, 0.448, 0.583]

of the baseline, which also hints that word-level BLEU might not uncover the real translation
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(a) NF-VNMT (b) multi-VNMT

Figure 7.4: T-SNE representation of the latent space for noisy and normalized versions of PMUMT sentences during
evaluation.

(a) NF-VNMT (b) multi-VNMT

Figure 7.5: T-SNE representation of the latent space for noisy PMUMT sentences during evaluation. Color portrays
the quantile of character edit distance between prediction and reference. Q1 contains the best translations (lowest
edit metric).

performance gap in our benchmarking. Figure 7.5 does not show clear clusters of perfor-

mance, however, multi-VNMT seems to perform worse for vectors with larger norm, whereas

performances appear to be more uniformly-distributed for the baseline.

Latent space recovering from noise To measure the perturbations that the model suffers

when source-side noise is present, we compare how the latent representations built by our two

VNMT models of the noisy PMUMT match those of their corresponding normalized version. In Fig-

ure 7.6, we plot the same dimensional reduced latent space and we encode color for their bins of

cosine similarity of the hereby shown noisy sentences to their corresponding normalized version.

The bins for both plots were chosen using partitions’ delimiters [0.30, 0.44, 0.57]. This was done

to compare both latent spaces with the same similarity values’ bins, however, multi-VNMT has
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(a) NF-VNMT (b) multi-VNMT

Figure 7.6: T-SNE representation of the latent space for noisy PMUMT sentences during evaluation. Color portrays the
quantile of cosine similarity between noisy and normalized versions. Q1 contains the samples with the least distance
(worse performance).

overall higher metric quantiles ([0.24, 0.36, 0.45]) compared to NF-VNMT ([0.19, 0.30, 0.40]), which

suggests that the multi-VNMT latent representations are more robust to UGC.

7.5.2 More robust embeddings for UGC

In this section, we study the source embeddings of our models to assess whether VNMT

promotes learning more robust embeddings that could prove valuable for larger-scale transfer

learning models. We compare noisy and normalized versions of the FR PMUMT source side to

assess whether they have a closer representation.

Noisy vs canonical data We now study the embeddings learned by multi-VNMT and assess

how noise affects them compared to those of the baselines. We computed the pair-wise cosine

similarity between corresponding PMUMT noisy and normalized samples’ source embeddings

learned by Transformer Base, NF-VNMT and multi-VNMT, which resulted in 0.706, 0.744

and 0.750, respectively. This quantifies how VNMT can enforce learning more robust source

representations since noisy UGC sentences are more related to their normalized version than

for the baseline. We display the source embeddings for the three NMT systems in Figure 7.7

and we mark the noisy and normalized corpus’s versions in red and blue, respectively. Each

observation in the graph corresponds to the embedding of each sentence, computed by taking

the average of the token-level embeddings. We can notice how both VNMT systems have a

tendency to separate noisy and normalized sentences compared to Transformer Base, and
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(a) Transformer Base (0.706) (b) NF-VNMT (0.744) (c) multi-VNMT (0.750)

Figure 7.7: T-SNE representation of the encoder embeddings for noisy and corresponding normalized PMUMT

sentences during evaluation. Average cosine similarity between corresponding noisy and normalized version of the
PMUMT evaluation framework are reported between parentheses for each NMT system.

having, at the same time, higher cosine similarity. This seems to indicate that VNMT captures

some noise structure information, as a separation between noisy and normalized text becomes

more evident (Carbonnelle and Vleeschouwer 2021), as opposed to our results on the latent

space learning representations, discussed previously.

Recovering from UGC specificities Likewise, we now report the cosine similarity between

sentences with only an unique type of UGC specificity, following the isolation and study of

individual and controlled UGC phenomena discussed in Chapter 6.

Bootstrapping VNMT embeddings As discussed above, in Figure 7.7 we noticed that VNMT

seems to enforce noisy morphology modeling to the Transformer’s embeddings in an implicit

fashion. This motivated us to study whether the information in such learning representations can

be used by the Transformer Base backbone model and benefit from improved robustness

without the direct latent space contribution, i.e. removing all the VI blocks, thus using only the

backbone model. This is also computationally favorable, since the number of parameters of the

final model matches the backbone architecture, avoiding all the complexity overhead introduced

by the VI modules. Thus, we report BLEU scores for the Transformer Base model trained

on OpenSubtitles, by either initializing the VNMT-pretrained embeddings or fine-tuning (FT)

the system. We have performed FT using the same data configuration as in OpenSubtitles
5

and continued training for 3 epochs from the Transformer Base model in Table 7.1 while

replacing the embeddings by their VNMT-learned version’s weights.

5It is worth highlighting that there is no difference between the corpus used for any of the transfer-learning MT
systems and the one used for training the benchmark in Table 7.1.
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PFSMB
†

MTNT
†

News OpenSubTest
⇧

Transformer Base 27.7 28.4 26.4 31.4

multi-VNMT 28.4 29.2 26.4 31.5

Pretrained init. 29.0 28.2 26.2 31.3

Frozen embs. 28.4 28.9 26.8 31.3

Fine-tuned 28.4 28.9 26.5 31.4

Table 7.7: VNMT-learned source embeddings to transfer robust representations to the Transformer Base model.

Results in Table 7.7 provide evidence that VNMT enforces more robust embeddings, which

perform significantly better over the PFSMB UGC test set compared to the baseline, the system

Frozen embs. giving the most consistent results over UGC. This system also keeps good

performance over the newstest’14 canonical OOD test set, while taking advantage of an

increased robustness to UGC. Such an improvement alleviates the loss of performance over

newstest’14 in our previous results, which was the only test set for which multi-VNMT

underperformed the non-VNMT baseline in Table 7.1. However, since the embeddings are

less prone to over-fitting, the in-domain OpenSubTest’s results are -0.1 BLEU points less than

Transformer Base. Only the Fine-tuned model was able to maintain the same in-domain

performance. These results indicate that VNMT promotes robustness to the NMT backbone and

could be useful for achieving more robust pretrained embeddings.

7.6 Blind test sets scores

We now evaluate our best performing model (multi-VNMT trained on OpenSubtitles) on

the blind test sets used previously during this dissertation, translating never-seen UGC tests,

to assess whether our approach proves valuable for generalization over a larger spectrum of

UGC types. We have also included the 4Square corpus (Berard et al. 2019a) to validate our

VNMT system on other domain of UGC (restaurant reviews). We also display the results when

using the NF-VNMT baseline and the Transformer Base model to assess improvement of our

proposed architecture for such test sets. We report such results in Table 7.8, where we can see

that multi-VNMT consistently outperforms the baselines for our blind UGC test sets, including

the 4Square corpus, which it UGC domain differs from the PFSMB and MTNT social-media
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PFSMB (Blind) MTNT (Blind) 4Square

Transformer Base 19.7 25.0 21.9
+FT emb. 19.4 25.3 22.0

NF-VNMT 20.0 25.3 22.0

multi-VNMT 20.0 26.4 22.5

Table 7.8: BLEU scores of our best systems on UGC blind test sets.

discussion corpora. It is very interesting to notice that, although the in-domain performances for

these 3 systems are very similar (between 31.4 and 31.5 BLEU in Table 7.1), the performance

gap of blind UGC test sets is considerably larger, roughly +1.7 BLEU. We have also added the

best transfer-learning model from the previous section (Transformer Base +FT emb.) and

showed an increase of performance when translating MTNT and 4Square blind test sets by +0.3

and +0.1 BLEU, respectively. However, contrary to the VNMT models, we noticed that +FT emb.

was outperformed by the baseline, suffering a performance detriment of 0.3 BLEU.

7.7 How do MDN’s components react to UGC?

We now proceed to analyze and visualize how the MDN mixture coefficients react when translat-

ing our different test sets. In order to do so, in Figure 7.8 we report results for the canonical test

sets, the normalized PMUMT corpus, and its noisy original UGC version. Each bar of the Wind

Rose diagram represents one of the 128 independent trained distributions’ mixture weights,

which have been normalized and scaled across the four graphics, and where the 7th MDN

component seems to be consistently the one that drives most of the decoding for the presented

experiments. Furthermore, we can notice that most mixing coefficients are, for the most part,

have around 50% probability of contributing to the final inference mixture, despite not enforcing

this behavior with any specific method (e.g. dropout). On the other hand, the visualization

suggests that both yellow (50-60%) and blue components (30-40% of activation) are variable

across test sets, being very similar between PMUMT Norm and OpenSubTest, which could

indicate that the mixture components are learning to encode different types of texts, potentially

working as an implicit topic modeling module. Regarding the visualization when translating

PMUMT Noisy, the main MDN component identified above, seems less important even when

compared to the out-of-domain newstest’14 set, which suggests that the MDN uses more
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dense representations when processing noisy texts. Comparing the mixture coefficients in the

figure, we can notice that the noisy UGC PMUMT and the out-of-domain newstest’14, diverge

from the in-domain OpenSubTest and normalized UGC PMUMT corpus.

7.8 VNMT for other languages: Japanese UGC

Datasets and experiments In order to assess whether our results on UGC translation hold

for different languages, we trained the same OpenSubtitles data configuration, i.e. 9.2M

sentences with 16K BPE tokenization, using the Ja-En language pair. In addition, we segmented

Japanese using Kytea (Neubig et al. 2011) and the Transformer Base with unchanged

training hyperparameter is used for both multi-VNMT and baseline. For evaluating these

systems, we report results using the JESC (Pryzant et al. 2018) subtitles corpus and KFTT

(Neubig et al. 2011) as both in-domain and OOD canonical corpora, respectively, as well as,

MTNT’s Ja-En UGC corpus.

Discussion of UGC Ja-En MT task In order to assess whether our results on UGC translation

hold for different languages, we trained the same OpenSubtitles data configuration using the

Ja-En language pair (2.1 M sentences) with 16K BPE tokenization. In addition, we segmented

Japanese using Kytea as pre-processing. We train for 120K iterations and use a target word

drop rate of 0.4. For evaluating these systems, we report results using the JESC (Pryzant et al.

2018) subtitles corpus as in-domain test set, as well as the MTNT’s Ja-En UGC corpus (Michel

and Neubig 2018). Results are reported in Table 7.9, which showed that multi-VNMT performs

better than the non-latent baseline when translating the MTNT and the in-domain JESC test

sets with a +0.4 and +0.3 BLEU improvement respectively. Despite the different experimental

conditions, it can be interesting to have an overview of the level of performance to expect

in different language conditions. Table 7.9 shows that our results are on par with previously

reported scores, even if the settings are not comparable (we have trained a transformer-based

model with fewer data compared to Michel and Neubig (2018) and a different architecture than

Pryzant et al. (2018), as well.)
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(a) PMUMT norm (b) PMUMT noisy

(c) OpenSubTest (d) newstest’14

Figure 7.8: Average MDN mixture weights for test sets of different natures.

MTNT
† JESC⇧

Transformer 5.90 11.50

multi-VNMT 6.30 11.80

(Michel and Neubig 2018) 6.65 —
(Michel and Neubig 2018) (+tuning) 9.82 —
(Pryzant et al. 2018) — 6.30

Table 7.9: BLEU scores of our translation systems trained on OpenSubtitles Ja-En. The † symbol indicates the
UGC test sets, and ⇧ in-domain test sets.
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7.9 Conclusion and perspectives

Our results prove that we can achieve consistent performance improvement by using extended

VNMT architectures that employ MDN, for which, N independent multi-way variational posterior

approximations are produced and mixed as in Gaussian Mixture Model. Our approach adds

roughly 3.5M parameters (+5%) and, systematically, outperforms previous Transformer-based

VNMT using normalizing flows on MT, witnessing the largest performance gap for our very noisy

PFSMB corpus.

In addition, by exploring the learning representations trained by our VNMT model, and

through conducting transfer learning experiments with such, we investigate the robustness

brought to UGC, and show that VNMT enforces such property to the backbone model, bringing

a promising avenue for more robust pretrained neural learning representations. However, an

open question arising from this work, it is currently unclear if the performance gain we observed

is due to a better generalisation to distributional shift or if it corresponds to a better adaptation

to noise in the input. Future works will be devoted to this question, which can be abstracted

away to study whether UGC idiosyncrasies are a form of noise, some parts being learnable, or

are rather points to a new domain. We report interesting but mitigated results when using an

accessory source reconstruction loss to improve robustness, which we plan to study in the future

using other sorts of monolingual data and training protocols, such as denoising autoencoders

and monolingual source-side UGC corpora.

132



Chapter 8

Conclusions and perspectives

The goal of this work is to improve the robustness of Neural Machine Translation (NMT) when

processing noisy social media user-generated content (UGC). Such texts pose challenges due

to their extensive forms of expression and multi-domain nature, as explained in Chapter 3. We

have focused on the zero-shot translation scenario, in which the training data is restricted to

publicly available canonical corpora, and developed methods that are agnostic to the target

distribution of UGC, and can better generalize over a wide range of UGC sources.

Identification and formulation We started by describing NMT and phrase-based statistical

machine translation baselines in Chapter 4 and elaborated on the differences in performance on

test sets of different nature. Particularly, we focused on the type of errors observed when using

NMT to translate UGC and assessed how robust our baselines are. In this regard, neural-based

translation methods provided overall best results for canonical test data, while being relatively

brittle to UGC noise than PB-SMT.

We therefore focused our research (mainly on the French-English language pair) on NMT,

which turned out to be better at translating in-domain and out-domain canonical corpora, but not

robust to UGC compared to PB-SMT. An analysis of the attention mechanism provides a first

explanation for NMT’s inadequacy to translate UGC: NMT indeed predicts translations with a

less similar length distribution than the references, caused either by omission of translations,

over-translation due to failure of the attention mechanism, or hallucinations.
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Using pronunciation to correct from noise As a first attempt to recover from UGC specifici-

ties, in Chapter 5 we proposed a normalization pipeline to correct phonetic writing (discussed

in Section 5.1) by finding potential normalized candidates using pronunciation similarities. A

ranking of such candidates by a language model (LM) provides the most likely corrected sen-

tence. As discussed, our results showed interesting normalization cases and slightly improved

results over UGC translation, without requiring any supplementary data. However, they showed

limited impact on blind UGC test sets and suffered from artificial noise by confusing potentially

normalized tokens. Regarding this last aspect, the identical French pronunciation of certain

plural forms was shown to introduce erroneous correction of tokens that otherwise should not

have been changed. Relative to the reported caveats of our methods, the study of an end-to-end

trained NMT phonetic embeddings, providing both original and pronunciation information to

output the best translation.

Understanding UGC specificities and fine granularity impact on MT In order to account

for a wider range of UGC phenomena, we explored the use of character-based representations

to assess their robustness to UGC in Chapter 6. We have highlighted the importance of

the vocabulary size for char-based systems, a parameter whose importance had never been

discussed until now.

These experiments also motivated the creation of a novel UGC evaluation framework with a

fine-grained typology and the possibility to isolate different specificities of UGC, a necessary

step to understand the mechanism at play while translating noisy UGC. This framework aims to

evaluate how different models behave under different kinds of noise. Our results showed that

character-level NMT is less sensitive to misspellings (in the form of letter addition or deletion,

incorrect diacritics, and incorrect verb tense), as well as incorrect tokenization and inconsis-

tent casing. However, character-based systems were generally outperformed by subword

segmentation, which performed better in our experimental setup.

Improving robustness to UGC via latent variable methods In the last part of this dissertation

(Chapter 7), we explored Variational Neural Machine Translation (VNMT) and presented a

novel architecture using Mixture Density Networks to perform multimodal Variational Inference.

We introduce mixture models to perform VI in a multimodal information flow, which showed
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improved robustness capabilities when translating UGC. Through probing and visualization

methods, we investigated how latent codes can be useful to recover from noise by enforcing

robust learning representations, while mitigating overfitting and thus improving out-of-domain

translation performance. We conducted several experiments to evaluate how the representations

of the VNMT models are less sensitive to UGC-related perturbations compared to a non-latent

baseline. Our proposed approach showed improved robustness capabilities to UGC, without

hurting translation quality on canonical (in-domain and out-domain) test sets.

Six years after the ParSiTi project proposal: progress on UGC translation In recent

years, much of the attention in NLP has been focused on Large Language Models (LLM), which

have been shown to be able to capture high-order information structures and exhibit interesting

properties in zero-shot scenarios (Kojima et al. 2022). Surprisingly, these capabilities arise from

a relatively simple language modeling (LM) task, i.e. masked LM, which allows the exploitation of

massive amounts of text in an unsupervised manner. This property, combined with the possibility

of instant access to huge and extremely diverse corpora thanks to the Internet, has led to the

development of text-based systems with impressive generative power and flexibility (Guardian

2022). This approach makes it possible to exploit UGC data without the need of producing

reference translations, thus enhancing NMT with an apparent advantage when translating UGC.

To illustrate the case, in Figure 8.1, we revisit the original UGC sample studied in Chapter 1

translated by popular translation engines, some using LLM.

In Figure 8.1 we can observe that UGC translation is still much of a work in progress to this

day: in most cases, the French UGC-specific tokens (e.g. “tabuz”, correctly spelled “t’abuses”)

are left unchanged in their English translation, apparently due to the MT systems treating them

as Named Entities.

It can, however, be noticed that GPT-based (Brown et al. 2020) systems succeed in translating

two noisy UGC tokens: BingGPT© correctly translates “Ki ca ?” into “Who is it ?” and “lavé rien

fé” into “did nothing”, correcting French phonetic writing on both; ChatGPT© is able of partially

translating “lemecousonchien?” into “The guy with the dog?”, recovering from the missing word

segmentation, even if it mistranslates “ou” into “with” rather than “or ”.

These examples show that, despite relying on large amounts of text, most of them gathered

from the Internet, state-of-the-art MT engines have made little progress in UGC translation,
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(@rigolboche)

Original source

T’as vu il l’a bien cherché wsh #AperoChezRicard
! +10000, shah!
! tabuz, lavé rien fé
! ki ca ? lemecousonchien ?
! Wtf is wrong with him ? #PETA4EVER
! ki ca ? le chien ? looool

Bing© (2016) Bing© (2023)

Did you see he looked for it wsh #AperoChezRicard Did you see he looked for it wsh #AperoChezRicard
! +10000, shah! ! +10000, sheh!
! tabuz, washed nothing fe ! tabuz, washed nothing fe
! ki ca ? theguyorhisdog? ! Kica? Lemecousonchien?
! Wtf is wrong with him ? #PETA4EVER. ! Wtf is wrong with him ? #PETA4EVER.
! ki ca ? the dog? looool ! ki ca? The dog? looool

Google Translator© (2023) DeepL© (2023)

Did you see he looked for it wsh #AperoChezRicard You see he had it coming wsh #AperoChezRicard
! +10000, sheh! ! +10000, shah!
! tabuz, washed nothing fe ! tabuz, washed nothing fe
! Kica? Lemecousonchien? ! kica? lemecousonchien?
! Wtf is wrong with him ? #PETA4EVER ! Wtf is wrong with him ? #PETA4EVER.
! ki ca? The dog? looool ! ki ca? the dog? looool

BingGPT© (2023) ChatGPT© (2023)

Did you see he deserved it wsh #AperoChezRicard Did you see he was asking for it, wsh #AperoChezRicard
! +10000, sheh! ! +10000, sheh!
! tabuz, did nothing ! Tabuz, didn’t wash anything
! kica? lemecousonchien? ! Kica? The guy with the dog?
! Wtf is wrong with him ? #PETA4EVER ! What’s wrong with him? #PETA4EVER.
! who is it ? the dog ? looool ! Ki ca? The dog? Looool.

Figure 8.1: Typical social media thread initiated by a seed photo and its automatic translation. Inspired from a real
conversation about a series of demonstrations that took place in Greece. Bing was used (in April 2016) as it was
then the official MT engine for Twitter and Facebook.

six years after the ParSiTi project started. This observation highlights the inadequacies of

utilizing large amounts of training data to “understand” UGC, a never productive domain, and,

consequently, justify the zero-shot setting we have adopted in this work.
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General conclusions

In this work, we have addressed the automatic translation of UGC and the challenges it poses,

both in terms of target distribution drift and robustness to noise. Indeed, a very rich productivity

lies behind the amazing nature of UGC: a rich hub for emergent communication derived from

user interactions. This observation motivates our focus on the zero-shot scenario, i.e., we

intended to study and improve the generalization capabilities of the models without any or

minimal effort to try to match the target distribution, nor any attempt to tailor the data source to

the task throughout this dissertation.

Regarding our efforts to improve UGC MT performance, we started our work by producing

a lexical normalizer based on specific heuristics (i.e., aiming to correct phonetic spelling), in

order to later broaden our scope and analyze a larger set of UGC specificities, thus directing

our research towards improving and evaluating the robustness of NMT for UGC. To this end, we

found our proposed UGC evaluation framework helpful, allowing us to both compare different

NMT architectures and assess the impact of well-defined UGC phenomena on performance.

Regarding our research on NMT, popular character-level NMT architectures showed interesting

robustness properties, being relatively more robust than their subword BPE counterparts, but

lacking overall in-domain performance in our experiments.

In the final stage of this research, we obtained promising results when exploring Transformer-

based VNMTs, which provide consistently better results than their non-latent backbones and

improved robustness to UGC. As part of our experiments, we proposed a VNMT model with

Mixture Density Networks, which results in better translation quality, especially when when pro-

cessing UGC. In addition, by exploring these models, we show evidence of VNMT’s robustness

capabilities to UGC and, Perhaps more interestingly, we report experiments and visualizations

suggesting that VNMT forces more robust learning representations on the backbone model,

which can later be exploited without the VI blocks and retained after transfer (e.g., for fine-tuning).

In summary, our research has demonstrated the complex and extremely variable nature

of UGC, requiring us to expect the improbable during evaluation, motivating our studies on

generalization and robustness. As a complementary framework, we developed evaluation

protocols and resources to characterize the impact of UGC on performance, making our best

efforts to avoid reducing UGC specificities to simple noise. Finally, variational architectures
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were proposed as a promising avenue for UGC translation, which, compared to other domain

adaptation methods such as domain specialization (i.e., fine-tuning), is data-agnostic and

maintains optimal performance for in-domain test sets.
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