
HAL Id: tel-04301338
https://theses.hal.science/tel-04301338

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessment of the performances of building energy
retrofit using sensor networks for the monitoring of

energy consumption and usages
Mathieu Bourdeau

To cite this version:
Mathieu Bourdeau. Assessment of the performances of building energy retrofit using sensor networks
for the monitoring of energy consumption and usages. Electronics. Université Gustave Eiffel, 2022.
English. �NNT : 2022UEFL2031�. �tel-04301338�

https://theses.hal.science/tel-04301338
https://hal.archives-ouvertes.fr
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précisément au jour de sa soumission, une période riche d’enseignements à de nombreux
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Côté université, je remercie tout d’abord M. Philippe Basset, Professeur à l’Université
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également sincèrement M. Elyes Nefzaoui, enseignant, maitre de stage et encadrant de
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iii



de revenir en France en 2018 et de commencer ce travail. Je remercie également mes

stagiaires, Mamadou et James, pour leur aide sur les analyses de données et pour m’avoir
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qui a su convaincre mon entourage aux moments opportuns que mon bien-être personnel

devait passer avant certaines opportunités. Un grand merci également à Jo, mon grand-
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Résumé

Le secteur du bâtiment, et sa part résidentielle notamment, figurent parmi les secteurs

les plus énergivores. La rénovation énergétique est un des principaux axes de

réduction des consommations d’énergie. Sa réalisation repose sur un outil clé : la

modélisation énergétique du bâtiment, largement employée notamment au travers de cal-

culs règlementaires mais qui fait face à un enjeu majeur que sont les écarts de performance

énergétique. Cette thèse porte sur l’étude des écarts de performance énergétique dans le

cadre de la rénovation d’un cas d’étude de trois bâtiments de logements sociaux. L’objectif

est l’amélioration de la calibration des modèles énergétiques par une meilleure car-

actérisation des consommations d’énergie et des comportements à retombées énergétiques

via la collecte de données de terrain. Cette collecte est effectuée sur plus de trois ans par

un réseau de capteurs comprenant 170 objets connectés, installés dans les parties com-

munes et dans un échantillon de huit logements représentatifs. La collecte et l’analyse des

données portent sur les consommations d’énergie, la qualité de l’environnement intérieur,

les comportements des occupants et la météo locale. Des scénarios typiques d’exploitation

des bâtiments sont extraits des données collectées et intégrés aux modèles énergétiques.

Ils mettent en évidence les différences importantes entre l’exploitation réelle des bâtiments

et les scénarios standardisés des études règlementaires. La calibration des modèles

énergétiques permet de quantifier le poids de leurs différents paramètres sur les con-

sommations d’énergie et contribue à améliorer leur précision au service d’une rénovation

énergétique performante.

Mots clés: Bâtiment, Consommations énergétiques, Réseaux de capteurs,

Modélisation, Usages, Rénovation énergétique
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Résumé substantiel

Le secteur du bâtiment, et sa part résidentielle notamment, sont encore aujourd’hui parmi

les secteurs les plus énergivores. En France, les bâtiments neufs bénéficient de l’application

la Règlementation Thermique (RT), désormais appelée Règlementation Environnementale

(RE). Cependant, une large partie du parc résidentiel français est constitué de bâtiments

anciens, construits avant ou au tout début des premières règlementations thermiques et qui

sont aujourd’hui loin de correspondre aux attentes en termes d’efficacité énergétique. Bien

que la RE s’applique depuis 2007 aux actions de rénovations énergétiques menées sur des

bâtiments existants, il subsiste un important potentiel de réduction des consommations

d’énergie et des émissions de gaz à effet de serre dans le secteur du bâtiment. C’est dans

ce contexte qu’un plan massif de réhabilitation énergétique a été lancé au niveau national

afin d’encourager et de démultiplier les actions de rénovation performante.

Pour être implémentées, les actions de rénovation reposent sur un outil clé : la

modélisation énergétique du bâtiment. Cet outil permet d’étudier dans un environ-

nement numérique la consommation d’énergie d’un bâtiment, entre autres paramètres,

afin d’en comprendre les principaux aspects, et notamment de tester des actions de

rénovation énergétique pour quantifier leur impact. Néanmoins, la principale difficulté

de la modélisation reste les écarts de performance entre les résultats des modèles et les

consommations mesurées. En effet, tout l’enjeu repose sur l’implémentation d’un modèle

qui reproduit fidèlement le comportement énergétique d’un bâtiment dans son ensemble

: consommations d’énergie des différents postes, températures intérieures, confort ther-

mique, niveau de détail des différents paramètres constituant le modèle, etc. C’est ce

processus de fidélisation des modèles énergétiques, appelé calibration, qui est le sujet de

recherche cette thèse.

L’objectif de ce travail est donc d’étudier les écarts de performance de bâtiments

résidentiels existants dans un contexte de rénovation énergétique lourde, et de proposer

une solution d’amélioration de la calibration des modèles énergétiques au travers de la

collecte de données in situ via un réseau de capteurs.

La modélisation énergétique du bâtiment dans son ensemble est le sujet du premier

chapitre de ce manuscrit. Une revue de la littérature est proposée sur trois aspects de

la modélisation : les méthodes de modélisation, les écarts de performance et la calibra-

tion des modèles. Parmi les méthodes de modélisation de la consommation d’énergie des

bâtiments, on s’intéresse aux méthodes dites ”bottom-up”. On distingue alors les tech-

niques basées sur la physique du bâtiment, celles basées sur les données et les méthodes
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hybrides, qui combinent les deux approches précédentes. La première partie de ce chapitre

décrit les principales techniques utilisées dans la littérature, leurs avantages et leurs in-

convénients. Au vue des objectifs de la thèse, on attend des modèles énergétiques qu’ils

soient les plus détaillés et les plus interprétables possible. Le niveau de détail dans un

modèle garanti une flexibilité dans l’investigation des sources d’incertitude qui peuvent en-

trainer des écarts de performance. L’interprétabilité permet de s’assurer que les résultats

des simulations et des tests sur différents paramètres mettront clairement en évidence

les liens entre les variables d’entrée des modèles et les performances énergétiques des

bâtiments étudiés. C’est pour ces raisons que les modèles basés sur la physique du

bâtiment sont sélectionnés comme la solution la plus adaptée au projet. La seconde

partie du chapitre présente le concept d’écart de performance énergétique et ses origines

dans le contexte du bâtiment. On identifie communément trois sources d’écarts de perfor-

mance qui correspondent aux phases de vie du bâtiment : la conception, la construction et

l’exploitation. Dans le cas de la rénovation énergétique, les sources potentielles d’écarts de

performance peuvent venir de ces trois aspects, aussi bien avant que pendant la rénovation.

Dans le contexte de la thèse, on se focalise sur la phase d’exploitation post-rénovation.

En effet, peu d’informations sont disponibles sur les bâtiments avant leur réhabilitation

et le chantier de rénovation est conduit indépendamment du travail de recherche. Il n’est

donc pas possible d’étudier les écarts de performance dans les phases de conception et

de construction. Pour tenter de réduire les écarts de performance, on s’oriente alors vers

une double stratégie : la calibration des modèles énergétiques au travers d’une meilleure

connaissance de l’exploitation des bâtiments garantie par la collecte de données de terrain.

La calibration est le sujet de la troisième partie de ce chapitre. La revue de littérature met

en évidence deux aspects importants que sont les sources d’incertitudes que la calibration

peut viser et les techniques de calibration. Dans le cas présent, sans négliger l’ensemble

des sources d’incertitudes dans un modèle énergétique, on s’intéresse principalement aux

incertitudes dites de scénarios, qui décrivent l’exploitation des bâtiments au travers de

différents paramètres tel que l’occupation, les températures de consigne de chauffage ou

la caractérisation des apports de chaleur internes, par exemple.

La stratégie de calibration des modèles énergétiques proposée repose ainsi sur

deux points importants : un terrain d’expérimentation existant et une solution

d’instrumentation exhaustive pour obtenir suffisamment de données et mener la cal-

ibration des modèles à bien. Le second chapitre de la thèse décrit le cas d’étude et

l’expérimentation. Il s’agit de trois bâtiments résidentiels comprenant 63 logements soci-

aux et construits en 1974. Les trois bâtiments ont été entièrement rénovés entre l’été 2020

et l’été 2021. Le réseau de capteurs sans fil déployé dans ces bâtiments est une solution
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d’instrumentation IoT (”Internet of Things”) reposant sur le protocole de communica-

tion radio LoRaWan (”Long Range Wide Area network”) et le protocole GPRS (”General

Packet Radio Service”). Le réseau de capteurs s’intéresse à trois aspects en lien avec

les performances énergétiques des bâtiments : les consommations d’énergie (thermique,

électrique et gas naturel), la qualité de l’environnement intérieur (température des parois

froides, température intérieure, humidité relative, concentration de CO2, luminosité),

et les comportements des occupants (ouverture des fenêtres, présence). Les mesures

sont effectuées dans les parties communes des bâtiments, sur les systèmes énergétiques

et dans un échantillon de huit logements ayant accepté de participer à la campagne

d’instrumentation. Au total, 170 capteurs sont installés sur site, dont 26 dans les parties

communes et sur les systèmes énergétiques, et 144 dans les logements, soit une moyenne

de 18 capteurs par logement. Une station météo est également déployée sur le campus

à trois kilomètres du cas d’étude. Elle mesure la température de l’air, l’humidité rela-

tive, la pluviométrie, l’irradiation solaire, la vitesse et la direction du vent, la pression

atmosphérique, la température radiante et la température de rosée. L’instrumentation

du cas d’étude permet la collecte d’une grande quantité de données et la caractérisation

de paramètres variés. L’implémentation et la supervision de la solution sur une période

de plus de trois ans apporte également un retour d’expérience conséquent sur l’utilisation

des solutions IoT pour le suivi des consommations énergétiques des bâtiments résidentiels

occupés. Plusieurs solutions sont finalement mises en lumière sur des aspects tels que

les mesures et les technologies des capteurs utilisés, la calibration de ces capteurs, et les

données manquantes, en vue d’une amélioration et d’une réplicabilité de la solution pour

de futurs projets.

L’analyse des données de terrain est le sujet du troisième chapitre de la thèse. Une

quantité importante de données a pu être collectée via le réseau de capteurs. L’accent est

mis sur certains paramètres spécifiques qui caractérisent l’exploitation des bâtiments, à

savoir les températures intérieures, l’occupation des logements, les puissances électriques

dissipées, les consommations d’eau chaude sanitaire et l’ouverture des fenêtres. La

première étape est la préparation des données, avec le nettoyage, la mise en forme et

l’évaluation de la qualité des données, leur reconstruction partielle, leur agrégation et la

transformation de certains paramètres. Ces étapes sont importantes pour obtenir des

données qui puissent être utilisées pour des analyses fiables. Elles fournissent également

une vision d’ensemble sur les données collectées et les performances du réseau de cap-

teurs. Les analyses portent sur l’extraction de tendances qui peuvent résumer l’évolution

de ces principaux paramètres représentatifs de l’exploitation des bâtiments. Les anal-

yses s’appuient sur plusieurs outils graphiques ainsi que sur une application de classi-
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fication de profils journaliers. Plusieurs résultats marquants sont mis en lumière. Il

apparait notamment que les températures intérieures sont particulièrement élevées, avec

des moyennes entre 21,4°C et 24,9°C sur l’échantillon instrumenté. Il n’y a pas non plus

de régulation apparente du système de chauffage, les températures étant constantes sur

la journée et en fonction des différentes typologies de jours. Les puissances dissipées, les

scénarios d’occupation et l’utilisation d’eau chaude sanitaire mettent en avant la diversité

des profils d’usages. Il apparait clairement que chaque appartement montre des profils

spécifiques à ses occupants. Il en résulte une importante différence entre les scénarios issus

de données et les scénarios standardisés extraits des logiciels de modélisation énergétique.

Ces scénarios sont notamment ceux utilisés pour les études thermiques règlementaires

qui sont à l’origine de l’évaluation avant-projet de l’efficacité des actions de rénovation

énergétique.

Le quatrième et dernier chapitre de la thèse présente l’étude des écarts de perfor-

mance énergétique sur le cas d’étude, et qui repose sur les résultats et conclusions des

trois précédents chapitres. On s’intéresse à la consommation de chauffage qui est le pre-

mier poste de consommation énergétique des bâtiments résidentiels en France. La cali-

bration des modèles est une calibration manuelle de niveau quatre (utilisation de données

collectées sur plusieurs mois), effectuée en trois étapes. Dans un premier temps, des

modèles énergétiques non calibrés sont développés pour chaque bâtiment. Ces modèles

sont développés comme pour une étude thermique règlementaire avec la description de

l’enveloppe et des systèmes énergétiques après rénovation. Les scénarios d’exploitation

sont standardisés. Des études de sensibilité sont également menées pour mettre en

évidence et quantifier l’impact des paramètres d’entrée des modèles. L’écart de perfor-

mance initial est évidemment important et les modèles montrent une sous-consommation

de chauffage dans les bâtiments. Si la description des bâtiments est sensée être réaliste,

leur exploitation réelle est différente de ce que les scénarios de modélisation initiaux pro-

posent. Les études de sensibilité montrent également l’impact majeur des températures

de consigne, assimilées aux températures intérieures, sur la consommation de chauffage.

Dans un second temps, les paramètres d’entrée ayant le plus d’impact sur les consomma-

tions énergétiques et caractérisant l’exploitation des bâtiments sont intégrés aux modèles

énergétiques, à partir des résultats d’analyse des données de terrain du Chapitre 3.

Cette intégration permet une calibration paramètre par paramètre. Les températures

intérieures, les puissances dissipées et l’occupation des logements sont traitées séparément,

puis combinés. Au vue de l’impact des températures intérieures sur les consommations

d’énergie, ce paramètre est également extrapolé pour les logements non instrumentés.

Les consommations d’eau chaude sanitaire sont quant à elles éliminées car elles n’ont
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pas d’impact sur les consommations de chauffage. Enfin, l’ouverture des fenêtres est

traitée séparément. Les données collectées pour ce paramètre permettent de quantifier

les temps d’ouverture. Néanmoins il manque un paramètre important et non mesuré,

qui est l’amplitude d’ouverture des fenêtres. Les différents tests de calibration montrent

des résultats qui ne sont pas tous à la hauteur des attentes initiales. La calibration

paramètre par paramètre confirme les résultats des analyses de sensibilité et le poids de

paramètres spécifiques sur les consommations de chauffage. L’étude des ouvrants montre

aussi l’importance majeure de ce paramètre et du comportement des occupants sur les per-

formances énergétiques des bâtiments. L’intégration des données apporte donc bien une

meilleure connaissance des bâtiments étudiés. Cependant, l’écart de performance pour la

calibration combinant tous les paramètres ajustés et l’extrapolation des températures

intérieures n’est réellement réduit que pour le plus petit des bâtiments. Les autres

bâtiments montrent un écart de performance quasi équivalent à celui avant calibration,

mais cette fois en surconsommation. Ces résultats mettent en lumière plusieurs points im-

portants et notamment sur les nombreuses incertitudes résiduelles dans les modèles. Ces

incertitudes concernent en particulier les hypothèses utilisées pour remplacer les données

manquantes et les caractéristiques des bâtiments pour lesquelles les informations n’ont

pas pu être obtenues. Elles se rapportent aussi à la diversité des usages mis en évidence

dans les analyses de données et qui interrogent la stratégie d’extrapolation employée.

La représentativité des mesures effectuées est également remise en question et souligne

certaines limites de la solution d’instrumentation. Néanmoins, ces résultats ouvrent des

perspectives prometteuses sur les futurs axes de recherche et d’amélioration de la solution

proposée, notamment sur l’utilisation d’objets connectés pour la collecte de données de

terrain au service d’un rénovation énergétique performante.
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Summary

Buildings, and specifically residential buildings, still remain today among the most energy-

consuming sectors. Building energy retrofit is one of the major line of actions to improve

building energy efficiency. It relies on a key tool, that is building energy modeling. Build-

ing energy modeling is widely used, particularly for regulatory calculations. However,

it faces a significant challenge with the energy performance gap, that is the difference

between simulation results and measured energy consumption. The present thesis focuses

on the study of the energy performance gap over in a context of deep energy retrofit of

three existing buildings of social housings. The goal is to improve the calibration of build-

ing energy models through an enhanced knowledge of building energy consumption and

energy-driving behaviors, using field data collection. Data collection is performed over

more than three years, using a wireless sensor networks comprising 170 connected objects.

Sensors were installed in common areas, on energy systems and in an eight-housing sam-

ple. The electrical and thermal energy consumption, the indoor environment quality, the

occupants’ behavior and the local weather were monitored. Data analyses are performed

to extract typical building operation patterns, and are integrated into building energy

models. These operation scenarios highlight the significant difference between field data

and standard building operation as in regulatory studies. The calibration of energy mod-

els underlines the impact of their different input parameters, and paves the way towards

an efficient building energy retrofit.

Key words: Building, Energy consumption, Sensor networks, Modeling, Us-

ages, Energy retrofit
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General introduction

This introduction gives an overview of contextual elements to put the research work

presented in this manuscript into perspective. First, the position of the building

sector as a major end-use for energy consumption and greenhouse gas emissions

is described to highlight challenges and opportunities. Thereafter, key energy

levers for building energy efficiency – namely, the thermal regulations, the ther-

mal retrofit and building instrumentation plans – and synergies are discussed.

Finally, the goals of this thesis and the frame of the manuscript are presented.
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GENERAL INTRODUCTION

Building energy efficiency in a climate change con-

text

The building sector has always been one of the main energy-consuming sectors in France.

In 1990, it already accounted for 43% of the overall final energy consumption and 27%

of the primary energy consumption [1]. It even increased up to 46% of the final energy

consumption in 2017 (Figure 1) to reach 67 Mtoe (Mega ton of oil equivalent). Tertiary

buildings (i.e. related to health services, teaching, hotels, restaurants, commercial activi-

ties, office spaces, sport and leisure, transport, and telecommunications) accounted for 25

Mtoe. Residential buildings alone consumed up to 42 Mtoe [2] and currently holds the

second place in final energy consumption, after transportation (46 Mtoe, 32%), and fol-

lowed by the industry (27 Mtoe, 19%), tertiary buildings (25 Mtoe, 16%) and agriculture

(4 Mtoe, 3%).

Figure 1: Distribution of final the energy consumption in France by sector from 1990 to

2016 – Translated and adapted from [1].

In terms of energy mix, for both residential and tertiary buildings in France, elec-

tricity is the first source of energy consumption (33% and 49%, in residential and tertiary

buildings, respectively), followed by natural gas (28% and 31%, respectively) [2]. Residen-
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Building energy efficiency in a climate change context

tial buildings have a much larger part of renewable (including electricity from renewable

energy sources) and waste energy consumption than tertiary buildings (Figure 2), with

22% against 4%, respectively. Oil accounts for 13% in both sectors, followed by heat-

ing networks and co-generation plants (4%). Comparing the evolution of energy sources

and their respective share in the energy consumption balance, oil consumption decreased

in residential buildings to the benefit of renewable energy consumption. Nevertheless,

natural gas and electricity consumption remained stable until today.

Figure 2: Distribution of energy sources in the final energy consumption for residential

buildings (a) and tertiary buildings (b) from 2000 to 2017 – Translated and adapted from

[2].
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With respect to the large share of electricity in building energy consumption, and

the origin of electricity production in France (63% from nuclear plants, 12% from hydro-

electricity [2]), the building sector exhibits a low carbon energy mix that results in 15%

and 7% of overall greenhouse gas (GHG) emissions in France [1], for residential and

tertiary buildings, respectively (Figure 3).

Figure 3: Distribution of greenhouse gas emissions in the different sectors in France in

2016 – Translated and adapted from [1].

The distribution of end-uses underlines differences between residential and tertiary

buildings [3, 4] (Figure 4). In both sectors, heating is the main end-use (64% and 43% for

residential and tertiary buildings, respectively), followed by specific electricity usage (18%

and 26%) and domestic hot water (12% and 20%). However, cooling is almost nonexistent

in residential buildings with 0.4% of the energy consumption, opposed to 11% tertiary

buildings. Cooking accounts for 6% and 5%, respectively.

Considering the heavy weight of buildings in the energy and GHG emission balance,

there are massive opportunities to improve their environmental footprint. Specifically,

thermal energy consumption holds the largest share of consumption in both residential

and tertiary buildings, and residential buildings alone account for almost a third of the

total final energy consumption in France.
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Thermal renovation and building instrumentation: addressing the
gaps of thermal regulations

Figure 4: Share of end-uses in energy consumption for residential buildings (a) and tertiary

buildings (b) in France in 2020 [3, 4]
.

Thermal renovation and building instrumentation: ad-

dressing the gaps of thermal regulations

Historically, the main plan of action towards building energy efficiency is the national ther-

mal regulation – ”Règlementation thermique” in French. It first started in 1974, followed

by five regulation changes in 1988, 2000, 2005, 2012 and the latest in 2020, to gradually

improve building energy efficiency and to enforce strict targets on different aspects of the

building energy consumption [5]. Table 1 provides an overview of the milestones in the

evolution of the French thermal regulation. Nowadays, the latest environmental regula-

tion (RE2020) sets very strict standards not only in terms of energy consumption, but for

greenhouse gas emissions and building carbon balance as well.

Nevertheless, the effects of thermal regulations are limited, first in terms of targets:

new buildings. It is only from 2007 that existing buildings are considered through retrofit

actions. Retrofit actions are not mandatory but must be conducted when an existing

building is modified or an energy system is changed. In that case, the energy efficiency

and thermal characteristics of retrofitted building parts and systems must meet the lat-

est standards. Furthermore, focusing on residential buildings, in 2017, 51% of the 28.5

millions of main residences were built before 1975, then before the application of the first
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Table 1: Evolution of the French thermal regulation from 1974 to 2020.
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thermal regulation [1]. Another 29% were built before 2000 and the renewal rate of the

building housing stock today is of less 1% [6]. In other words, there are more old build-

ings that do not fit any thermal efficiency standard than new energy-efficient buildings.

Therefore, the key to catch on with building energy efficiency goals is to enforce massive

energy retrofit plans of actions.

To address this need, the Housing Energy Retrofit Plan (”Plan de Rénovation En-

ergétique de l’Habitat”) [7] was launched in 2013. This national strategy targeted an

ambitious planning of retrofit actions in the residential sector relying on several financial

supports, with:

• Over 2014-2017: an annual rate of 180,000 private housings including 38,000 hous-

ings in an energy poverty situation and 90,000 social housings;

• From 2017: an annual rate of 380,000 private housings including 50,000 housings in

an energy poverty situation and 120,000 social housings;

• Within ten years: the retrofit of 1.5 millions of the most poorly insulated buildings.

Today, the national retrofit plan exhibits mixed results. Over 5 millions individual houses

have reported energy retrofit actions [1]. Although it looks like a significant number, it

does not mean that the full potential of renovation has been achieved. Indeed, there is a

large diversity of retrofit actions, and they do not all have the same impact on building

energy efficiency. Also, the review of preliminary results highlighted several issues [8].

Overall, the renovation did increase energy savings in the residential sector. However,

in some cases, specific actions did not have the intended effect or even had a negative

impact on building energy consumption – for instance, when a partial retrofit is conducted

without considering the full building picture in the energy balance. Finally, benefits of

the national retrofit plan mostly affected individual housings and private housing owners.

Therefore, there is yet a lot of work to be done to target these objectives and keep on

supporting the retrofitting effort.

Aside from their targets in terms of buildings, thermal regulations also only pro-

gressively took into account the energy systems. At first, they focused on thermal in-

sulation. Although the energy balance is now more detailed, several appliances are still

excluded, such as leisure equipment, small and middle-size domestic appliances, or ad-

ditional portable heaters. These appliances result in significant heat gains but can only

be considered if they are accurately surveyed and characterized. Then, it becomes an

enormous task among many others in building energy studies – assuming that the full

and detailed list of appliances can be available [9]. This also relates to the integration of
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GENERAL INTRODUCTION

usages and occupants’ behaviors. The management of building energy system is usually

automated based on specific physical parameters (e.g. the weather, a theoretical occu-

pancy, the time of the day). However, there is often a large difference between standard

building operation and the actual occupants’ behavior, including window opening for nat-

ural ventilation, manual changes over specific systems, or the use of additional appliances.

Such a difference impacts on building energy efficiency in unexpected ways [10].

Hence, alongside of the national retrofit campaign, two directives were implemented.

The ”Dispositif Eco Efficacité Tertiaire” also called ”Décret Tertiaire” – tertiary ordi-

nance, in English – was enacted in 2019 to target an ambitious 60%-decrease of energy

consumption in tertiary buildings (for buildings with an area greater than or equal to

1000 m2) [11]. It also enforced energy consumption data collection to create national

databases. Consequently, this directive significantly boosted the building instrumenta-

tion market, specifically building energy management systems (BEMS), to centralize and

manage all aspects of building operation through dedicated systems and platforms [12].

It was preceded by a complementary European directive that aspired to a massive im-

plementation of communicating meters for electricity and natural gas consumption in

residential and small tertiary buildings. In France, these meters are called Linky for elec-

tricity [13] and Gazpar for natural gas [14]. Linky meters rely on power line carriers for

data communication from 10-minute to one hour measurement time-step. Gazpar meters

use radio frequencies (169 MHz) for data communication, with two measurements per

day. Initial deployment goals were ambitious, with a target of 200 millions meters for

electricity and 45 millions meters for natural gas by 2020 – covering 72% and 40% of

European energy end-users, respectively [15]. However, only 99 millions electricity meters

and 16 millions gas meters were installed by that time [16]. It led to a target review:

123 millions meters by 2020, 225 millions meters by 2024 (77% of the metering points

in Europe) for electricity, and 31 millions meters by 2020 and 51 million meters by 2024

(44% of the metering points in Europe) for natural gas. In France, Linky meters were

expected up to 35 millions units by 2021 (the number of corresponding metering points at

that time): 31.2 millions were actually installed. Gazpar program aimed for 11 millions

units by 2022 and it seems to be on track due to a different deployment strategy. Indeed,

the installation of Gazpar meters is mandatory unlike for Linky, that recently opted for

this strategy as well.

Despite expected deployment delays, smart metering systems bring in a significant

benefit over traditional metering systems. Data collection is easier to conduct and with

a much smaller time-step. It provides a national overview, almost in real time, of the

electricity and natural gas consumption. Energy production management is eased and the

8
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prediction of energy needs is more accurate. Smart metering plans are a great asset for

retrofit actions as well [17]. Instead of collecting monthly billing information, Linky and

Gazpar meters offer a much more detailed source of data regarding energy consumption

and its dynamics with a fine data temporal granularity. Moreover, massive national

smart metering plans are complemented with the widespread use of new information and

communication technologies, including the Internet of Things (IoT) connected objects,

to collect other types of data such as indoor temperature, humidity or electricity use of

appliances [18].

Thesis goals and content

As highlighted in the previous sections, the building sector, and specifically residential

buildings, remain among the largest energy-consuming sectors. Several national and Eu-

ropean tools have been implemented over the past five decades to face this challenge,

starting with thermal regulations and followed by national energy retrofit and instrumen-

tation plans. Considering that the largest part of the building housing stock was built

before the most recent thermal regulations and that the actual renewal rate is extremely

low, massive retrofit actions are a priority. However, the efficiency of thermal renova-

tion conducted so far does not fully match the expectations because of a significant lack

of knowledge on building operation and the many parameters involved. Then, national

smart metering plans and the recent development of new information and communica-

tion technologies, with the IoT, can significantly contribute to ensure an efficient thermal

retrofit of buildings.

Based on these observations, the ANDRE research project – ”modèles pour l’ANalyse,

la Décomposition et la REconstruction de données de consommations énergétiques” /

models for the analysis, disaggregation, and reconstruction of energy consumption data, in

English – was jointly launched by six founding members: four laboratories from Université

Gustave Eiffel with ESYCOM, COSYS LISIS, GRETTIA and Lab’URBA to respectively

provide knowledge and skills on building energy modeling and instrumentation, calibration

of energy models, statistical data analyses and socioeconomic aspects of building energy

consumption. They were complemented by a social landlord, Marne-et-Chantereine Habi-

tat, to provide a case study undergoing retrofit actions, and a company from the energy

efficiency sector, CAMEO SAS, to bring in experimental skills and field expertise. The

research goals were to combine building instrumentation, building energy modeling and

data analyses from physics, statistical and socioeconomic perspectives, in order to assess

the performance of retrofit actions over an existing residential case study. The research
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presented in this thesis focuses on the three aspects of the project from a physics point-

of-view: building energy modeling and calibration of models based on the deployment of

a dedicated sensor network for data collection and analyses over an existing building case

study.

Consequently, the first chapter of the manuscript reviews the topic of building en-

ergy modeling. The first part of the chapter is dedicated to building energy modeling

approaches and techniques. It is followed by a study of the related challenges, with

discussions on the energy performance gap – i.e. the difference between the results of

energy models and the measured energy consumption – and the calibration of energy

models.

The second chapter introduces the case study on which the thesis relies and the

experimental set-up for field data collection. Three social apartment buildings undergo-

ing a deep energy renovation are considered. A wireless sensor network of 170 sensors

is deployed in common areas, on energy systems and in an eight-apartment sample to

characterize the local weather, the energy consumption, the indoor environment quality

and occupants’ behavior. The architecture of the sensor network is described along with

specifications of the measurements, data communication and storage. Then, a feedback

regarding the management of the instrumentation solution summarizes its benefits and

limitations, and discusses its replicability for future similar experimental projects.

The third chapter is based on the results of the sensor network. In the first place,

collected data are pre-processed. Pre-processing includes six steps: cleaning (the iden-

tification and correction of errors), formatting, data quality assessment, reconstruction,

aggregation and dedicated processing of specific parameters. Pre-processing is followed

by data analyses presented in the second part of the chapter. Results of data analyses

intend to be used to enhance building energy models. Hence, analyses focus on data

collected in apartments and specific drivers of the building energy consumption. The

goal is to characterize the dynamics of five parameters, including indoor air temperature,

occupancy, dissipated electric power, window opening and domestic hot water consump-

tion. These parameters are representative of the three aspects addressed in this thesis:

energy consumption, indoor environment quality and usages. Parameters are processed

using descriptive statistical tools and automatic classification tools to extract typical pat-

terns.

In the fourth and final chapter, we investigate the performance of the conducted

energy retrofit actions through the implementation and calibration of building energy

models. To this end, a three-step process is applied focusing on heating energy consump-
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tion that accounts for the largest share of energy consumption in residential buildings.

The chapter starts with a description of the overall modeling process. Then, we discuss

simulation results from non-calibrated building energy models that are implemented with

standard information on building operation as for a regulatory thermal study. The initial

performance gap – the difference between non-calibrated energy simulations and measured

heating energy consumption – is investigated. Then, in the third part of the chapter, we

propose a strategy to close the performance gap. Energy-driving parameters are selected

out of a sensitivity analysis and tuned with the results of data analyses from the third

chapter. Different tests are conducted to picture the impact of input tuning on the energy

models. This chapter is concluded with a discussion on the final energy performance gap

to further address the remaining uncertainties in building energy models.

Bibliography
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[10] A. L. Pisello and F. Asdrubali, “Human-based energy retrofits in residential buildings:

A cost-effective alternative to traditional physical strategies,” Applied Energy, vol. 133,

pp. 224–235, nov 2014. 8
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Chapter 1

Building energy modeling: methods

and challenges

The first chapter of this manuscript aims to provide an exhaustive summary and a tech-

nical framework over building energy modeling, as a key tool to improve building energy

efficiency. A review of the main modeling techniques – physics-based, data-driven and

hybrid – is provided. It is completed with a discussion on the best-fitted approach consid-

ering the targets of this research work. Challenges in building energy modeling are studied

in the second part of this chapter, specifically the energy performance gap. The calibration

of building energy models is stressed as a relevant strategy to close the performance gap.
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Introduction

Building energy modeling is one of the key tools to assess building energy consumption.

Building energy modeling makes it possible to formulate energy consumption – among

other outputs – as a function of a diversity of parameters describing a given case study

as precisely as possible. Various applications come out of building energy modeling. The

most common is the regulatory calculations for new or existing buildings, and used prior

to retrofit planning [1]. The literature review highlights a variety of modeling techniques,

but not all techniques are equivalent to each other. Types and amount of input data,

reliability, flexibility, interpretability of the modeling process: these are some of the many

aspects to consider to select the fittest energy modeling technique for a given case study

and a given purpose.

The first part of this chapter introduces the basics of building energy modeling. It

provides a review and a classification of building energy modeling techniques, a description

of the modeling process, a presentation of pros and cons of the different methods, and an

overview of modeling tools. The scope of the review is limited to building-scale energy

modeling in post-occupancy stage. Building energy modeling is a large research topic that

can be tackled with various strategies. Most techniques can be transposed to different

case studies and different spatial modeling scales, from an energy system to city-scale.

However, from one scale to the other, the inputs, the specificity of case studies or the

dynamics of energy consumption differ [2]. Therefore, conclusions on the applicability

of modeling techniques are also different. In the present work, we focus on bottom-up

modeling techniques, based on the combination of sub-building-level inputs to achieve the

final modeling output [3]. The building life stage also matters. Between the design, the

construction and the building operation, available data and modeling goals can be quite

disparate. Therefore, considering the goals of this research work, the scope of the review

is set with respect to our case study: existing and operated buildings.

Hence, the selection of a specific building energy modeling technique is crucial. How-

ever, aside from this specific aspect, building energy modeling entails other challenges.

A model aims to give a picture of an existing system – a building, in the present case –

as close as possible to the reality, and to test on various scenarios and process changes.

Therefore, the challenge lies in the accuracy and the reliability of the simulations. A

performance gap between the models and the actual building performances, meaning a

difference between simulation results and the monitored building energy consumption, is

often reported [4]. The goal is to minimize this performance gap but also to identify its

origins. Consequently, building energy models must be calibrated. The different input
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parameters of the models must be checked and tuned for the energy models to match

the existing case studies [5]. The second part of this chapter discusses the origins of the

performance gap with a focus on those related to the energy modeling process. Strategies

to the reduce the performance gap are also discussed, specifically the calibration process

of energy models.

1.1 A few definitions

Prior to the review of the literature, this section defines a few key concepts to ease the

reading and understanding of the chapter.

In the classification and description of modeling methods, we discriminate approaches

from methods and techniques. Approaches are defined as the broad strategies to imple-

ment building energy models. Methods and techniques refer to the specific algorithms

and processes that are implemented [1].

Through the comparison of building energy modeling methods, there is a concept of

performance that arises. From a modeling point of view, the performances can refer to

the accuracy of models (the closeness between simulation results and measured energy

consumption), but also to computing performances, such as computing speed. From

an energy point-of-view, the meaning of modeling performances is limited to modeling

accuracy since computing aspects are not the focus of the present research work.

Modeling interpretability is the expression used to discuss how the modeling process

links input variables to simulated outputs. It means that the impact of an input variable

on the output of a model can be clearly understood from a physics point-of-view [6].

Finally, a distinction is made between modeling and forecasting, as many reviewed

research papers use both terms. Modeling refers to a situation that can be compared

to measured field data. Forecasting refers to a future situation for which forecasting

performance cannot be assessed. Both modeling and forecasting depend on the same

process, and a forecasting is based on a model.

1.2 Approaches and techniques for building energy

modeling

1.2.1 Classification of bottom-up modeling techniques
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The review of the literature highlights a significantly large panel of approaches and meth-

ods to implement building energy modeling. There are two global strategies: bottom-up

modeling, opposed to top-down modeling. Both aim to identify and characterize the driv-

ing components of building energy consumption. However, these two categories of models

differ by their hierarchical construction. Swan and Ugursal [2] refer to bottom-up and

top-down models at the residential sector level and their definition can be transposed to

building-scale. Bottom-up modeling strategy is based on the combination of constitutive

elements of a building and its environment (i.e. the characteristics of the envelope, the

energy systems, the operation schedules, the local weather) to achieve the final building-

scale energy consumption. Top-down modeling works the other way around. It starts

from a larger scale (city-scale or country-scale, for instance) to get down to building-scale

energy consumption using a disaggregation strategy, and cross-referencing various meta-

data (e.g. the age of a building, the location, the architectural style, or socioeconomic

data on occupants) [3]. Considering the objectives of the present research work, in this

review, we focus on bottom-up techniques.

To provide a summary of the many existing modeling techniques, the present sec-

tion gives a classification of bottom-up energy modeling methods, based on the research

work we previously conducted on the review of data-driven energy modeling techniques

[7].

Three approaches are highlighted: physics-based, data-driven and hybrid building

energy models (BEM) (Figure 1.1). Physics-based methods, also called white-box models

[8] solve energy and mass-transfer equations in a building to describe its energy consump-

tion and thermal behavior. Several classifications have been suggested in the literature,

depending on the source of input data [2], the level of detail in the modeling process [1] or

the calibration methods [9, 10]. The sub-classification of Foucquier et al. [1] is preferred

in this review. It underlines differences regarding the level of detail and implemented cal-

culations, with computational fluid dynamics (CFD), zonal and multizone techniques. On

the opposite of physics-based approach, data-driven models, also called black-box models,

rely on the sole combination of measured or simulated datasets to deduce building energy

consumption [11]. Data-driven methods are based on machine learning algorithms. A

distinction is suggested between unique and combined models. The former is built upon

one single algorithm. The second combines two or more machine learning methods. Fi-

nally, hybrid models are the combination of physics-based and data-driven models. They

are also called grey-box models [8]. For hybrid models, there is no defined classification.

The literature review shows that the structure of hybrid BEM is mostly case-dependent.

The goal usually is to replace parts of the physics-based structure with data-driven algo-
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rithms.

Figure 1.1: Classification of building energy modeling approaches and techniques.

1.2.2 Metrics for modeling performance assessment

Many performance assessment metrics are reported in the literature. For each consid-

ered time step, the difference (i.e. the error) between the simulation results and the

comparative reference dataset (based on measured or simulated data) is computed and

summarized into one representative number for the studied timeframe. There is a large

variety of metrics in the literature. The most implemented metrics are the mean absolute

error (MAE – Eq. 1.1), the mean absolute percentage error (MAPE – Eq. 1.2) and the

root mean square error (RMSE – Eq. 1.3). Other metrics are implmented as well, such as

the coefficient of determination, R2, the mean square error (MSE), the mean relative error

(MRE), the mean bias error (MBE) and the normalized mean bias error (NMBE).
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MAE =
1

n

n∑
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|yt − ŷt| (1.1)
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yt
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RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (1.3)

Where, for a given time series, n is the number of data points in the time series,

t is the time-step, yt is a data point from the time series at time-step t , and ŷt is the

corresponding predicted output at time-step t .

The choice of a given metric offers specific insights on performances of a BEM[12].

Comparing RMSE, MSE and MAE, the latter is easier to understand due to the simple

calculation involved and it gives an equal weight to large and small modeling errors. The

former two penalize larger errors and the RMSE is usually preferred to the MSE since it

has the same units as the data. However, most reviewed studies in the literature seem

to choose the metrics that looks like the ”best” performance, meaning that the difference

between simulation results and data is minimized. For instance, in the work of Liu, Chen

and Mori [13], there are only two metrics – MSE and R2 – while a comparison of more

metrics such as in the work of Zhang et al. [14] – MAE, MAPE, RMSE, mean percentage

error, and mean error – provides a more complete assessment of modeling performances.

Also, two types of metrics should be distinguished: scale-dependent and scale-independent

metrics. The former, such as MAE, is useful to compare several methods over a given

dataset but cannot be used to provide a comparison of different case studies. In that case,

scale-independent metrics (percentage or relative error metrics), such as MAPE, should

be selected.

Performance assessment metrics are mostly found in data-driven applications, espe-

cially as input and output data can easily be compared and have the same time-step. It

may be implemented as well for physics-based and hybrid models. The only limitation

is the possibility to compare the physics-based or hybrid simulations with detailed field

data.
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1.2.3 Physics-based building energy modeling

1.2.3.1 Overall principle

Physics-based models compute energy and mass-transfer equations to assess the building

energy consumption [1]. They mostly focus on thermal energy – heating and cooling – but

also domestic hot water (DHW) and electricity demand. Depending on the modeling tools,

level of details and input parameters, other outputs can be obtained. Aside from energy

consumption and demand, physics-based models may provide outputs such as building

load profiles including peak loads, energy system efficiency, parameters to characterize

the thermal comfort (indoor temperature, humidity, solar gains) or life cycle analysis

[15].

We focus on building-scale energy modeling. Therefore, techniques such as CFD and

zonal approaches are not considered. Due to a very high level of details required with

these techniques, specifically in the definition of the geometrical mesh, CFD and zonal

techniques are mostly implemented on parts of the building for flow modeling (air flow,

thermal flux, etc.).

The process of physics-based building energy modeling process can be summarized

considering four categories of input parameters, as illustrated in Figure 1.2:

• The passive system includes a description of the envelope, with the building archi-

tecture, glazing system, walls, thermal bridges or crawl space, for instance;

• The energy systems with specifications over heating, cooling and DHW generation,

as well as ventilation, electric appliances, lighting and renewable energy systems if

any are considered;

• The operation scenarios that describes all building usages and including, for exam-

ple, occupancy, temperature setpoints, DHW demand, ventilation schedules, dissi-

pated power, window opening or shading;

• The outdoor environment, meaning the local weather and the surroundings such as

other buildings and vegetation that have a cooling or shading effect on buildings

[16].

Physics-based modeling is performed using specific software to build a digital twin

of a building focusing on energy aspects. A review of these tools is provided in Appendix

A.1.
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Figure 1.2: Summarized process for physics-based building energy modeling.

1.2.3.2 Multizone modeling

The multizone technique, also called nodal technique, is the method commonly applied

for building energy modeling. The overall principle is the same as in any physics-based

building energy model described in the previous section 1.2.3.1.

However, the key point of multizone building energy modeling is the definition build-

ing thermal zones. A thermal zone is a volume of a building showing a unique thermal

behavior and with dedicated operation scenarios. This volume can be the whole building,

a floor, an apartment, a room, or part of room such as in an open-space office with sev-

eral air-conditioning units, for instance. Building orientation can also be considered in the

definition of a thermal zone if the orientation induces different thermal conditions. Then,

energy consumption and thermal features are computed for each zone. The selection of

the most adapted number of thermal zones depends on the objective of the study and the

available information to implement the model. Because of the large number of required

input data, a thermal zone can only be considered if all features are known. Then, with
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a few large thermal zones, the computation time of the software is fast but there is lit-

tle available detail in the model. On the opposite, with several smaller thermal zones,

the picture becomes more accurate, but the calculation time and complexity significantly

increase, which is also a source of modeling mistakes. In practice, a commonly adopted

process is to first model a building as a single thermal zone and divide the building into

several thermal zones up to the highest expected level of detail. Such a process helps

identifying modeling errors and uncertainties on a large scale before the complexity of the

BEM is increased.

Multizone technique describes building the energy behavior on a large time-scale (up

to one year) and at full building-scale with customizable level of detail [17]. This is a

significant advantage over other modeling techniques described in the following sections.

There is a wide range of applications in the literature. Pan et al. [18] implemented a typ-

ical BEM of a high-rise building in China to assess energy conservation measures. They

use DOE-2 software to perform hourly time-step simulations, calibrated with monthly

billing data. Simplified applications have also been proposed such as the HC-method de-

veloped by Zhu et al. [19]. They used a limited description of the building characteristics

to assess its heating and cooling needs. Specific aspects of building energy performance

are also targeted. Two specific topics are highlighted by the literature review. The first

the characterization of the impact of energy retrofit actions, such as the work of Jankovic

[20], who compared building characteristics before and after retrofit to compute the per-

formance of retrofit actions through BEM. The second aspect is the study of the impact

of occupants’ behavior on building energy consumption. Dar et al. [21] looked at the

effect of occupants’ and their behavior on heating energy consumption for a detached

well-insulated housing. Ahn et al. [22] focused on predicting the occupants’ presence and

its effect on modeled building energy consumption, and compared with measured energy

consumption in a two laboratories.

The level of modeling detail in physics-based models is an advantage as well as a

major drawback. The accuracy and reliability of modeling performances entirely depends

on the available information to describe the different thermal zones. This information

are often quite difficult to collect and are often replaced with assumptions that lead to

uncertainties [23]. Although specific methods have been implemented for the collection

of data to provide modeling inputs [24], a lower level of detail necessarily implies a lower

modeling performance and less interpretability of energy models. Furthermore, physics-

based modeling software are limited regarding the modeling of thermal characteristics

and flows in and between different thermal zones. Indeed, it is not possible to model

the temperature gradient in a room, as only the temperature for a whole thermal zone is
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computed. Having several thermal zones then provides a compensation for an analysis of

the temperature gradient at building scale. Also, air flow between thermal zones, figuring

natural air flow or related to window/door opening is not considered.

1.2.4 Data-driven building energy modeling

We reported on data driven techniques for building energy modeling in a previous detailed

literature review. Therefore, the present section summarizes the main characteristics of

data-driven techniques and more details can be found in [7].

1.2.4.1 Overall approach

Unlike physics-based models, data-driven modeling techniques do not rely on physics laws

but on the links between sets of data collected in buildings, using statistical data analyses

methods and machine learning algorithms. A majority of methods focus on time series

data analyses [11], although a physical description of building may also be considered as

input variables [25].

The overall modeling concept, regardless of the data-driven method, is to solve a

regression problem. This means that the goal is to analyze the causal link between one

(or more) output(s) – usually the building energy consumption – and inputs, also called

explanatory variables. The combination of inputs aims to achieve the output(s), as for

physics-based modeling, but without physical information and using instead a function

deduced from measured data describing the building operation.

The data-driven modeling process follows four steps: data pre-processing, training,

validation, and testing (Figure 1.3). Data pre-processing prepares an initial dataset with

data cleaning and input data selection, that is then divided into three distinctive datasets

for each following step of the process. Datasets must include the same types of inputs

variables and the same corresponding outputs but with different combinations of values.

For instance, considering time series data, the three datasets should have the same inputs

but over different timeframes [26].

Training is the first step. The algorithm provides an initial function to formulate

the targeted output based on a combination of input variables. Simulation results are

compared with measured data from the training dataset. Parameters of the algorithm

tuned to reduce the error [27]. Validation is the second modeling step. The tuned algo-

rithm from training performs a second round of simulations using the validation dataset

that differs from the training dataset. The modeling error is assessed, and parameters of
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Figure 1.3: Data-driven building energy modeling process.
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the algorithm are tuned once more, if necessary. It is common in the literature to find

that this step is sometimes merged with the training step [7]. However, using a different

dataset with the validation step offers two advantages: a larger variety of situations in

building operation can be taken into account in the energy model, and it helps avoiding

over-fitting – the model would be too specific to a given combination of data and would

poorly model other events in building operation [14]. Finally, the testing step uses the

tuned model from validation step to provide an unbiased comparison between simulation

results and data. It is conventional not to tune the algorithm at this step, for the test-

ing results to be considered as the modeling performances of the implemented technique

[28].

Regarding the distribution of data in training, validation and testing datasets, the

majority of datasets use the largest part of the data for training or training and validation

– up to 60-80% of the data [7]. Then the rest of the data is evenly distributed between

validation and testing. Data distribution can be performed manually (e.g. the selection of

three distinct timeframes) or randomly, such as with cross-validation technique [29].

Finally, a key aspect of building energy modeling is the availability of data, and even

more so for data-driven techniques whose process entirely depends on data, as the name

suggests. There is no generic conclusion regarding the amount of data that is required to

implement data-driven techniques. It usually works the other way around: the amount

of available data drives on the choice of a modeling technique. There is also a balance to

observe. Small amounts of data for a few specific parameters may provide reliable models

if the measured parameters are related energy drivers and if the application range does

not drift much from the building operation depicted in the dataset. On the other hand,

a very large amount of data gives a larger picture of building operation but significantly

complicates the energy model. First, it requires a long and time-consuming data checking

and cleaning process. Then, more data does not necessarily mean better performances.

On the contrary, using too many or unsuitable inputs can decrease modeling performances

[30].

1.2.4.2 Data pre-processing

As for any data analysis, data pre-processing is an essential step to assess the quality of

collected data and decide what would be the optimal inputs, time-steps and timeframes

to consider for modeling.

Data pre-processing can be dividing into two steps: cleaning and data selection of ex-

planatory variables. Cleaning includes data checking, assessment of missing data, removal

24



1.2 Approaches and techniques for building energy modeling

and/or substitution of outliers to ensure an optimal training of data-driven models. Data

cleaning can be implemented manually [31] or automated such as in the work of Fan et

al. [28] who proposed an automated detection of outlying values to be removed before

the modeling process.

Input data selection is not mandatory. However, it is clear from the literature review

and the many implemented techniques that it is highly recommended. The first aspects

to consider are the time-step [32, 33], since it has an impact on modeling results [34],

but also the distribution of data for training, validation and testing [27, 35]. Then, the

physical meaning of the data can be taken into account to highlight specific building

operation characteristics and optimize building energy modeling: different models for

different building operation situations. Newsham and Birt [36] proposed to separate input

variables based on the typology of days (worked days versus days off), Ma et al. [37] and

Mena et al. [38] looked at weather conditions, and Tang et al. [39] considered seasonal

effects. However, a manual process might be biased because it relies on the experience of

the user. Classification, based on clustering algorithms, provides an automated alternative

although the results of input data distribution might be difficult to analyze if there is not

enough available knowledge on the case studies [39, 40].

The choice of specific input variables is the most adopted strategy. It aims to only

keep the most relevant input parameters, those that are the most impacting in terms of

building energy consumption [17, 41, 42, 43]. The most common methods are sensitivity

analyses [44] and principal component analysis (PCA) as implemented in the work of Li

et al. [45] and Nilashi et al. [46]. The literature also highlights other techniques. Deb

et al. [47] chose clustering analyses based on building variables, Paudel et al. [48] used

wavelet analysis for the clustering of days with similar climatic and building operation

conditions.

1.2.4.3 Single models

Single data-driven models relate to all data-driven methods using a single algorithm.

Among the easiest algorithms to implement are the moving average, the exponential

smoothing and the autoregressive models [11]. These types of algorithms are based on

iterative combinations of past observation of the output time series [49]. For building

energy consumption, it draws on the past data points of the energy consumption. Moving

average weights all terms of the combinations equally. Exponential smoothing gives a

larger weight to the most recent observations. Autoregressive models, whose most com-

mon variation is autoregressive integrated moving average (ARIMA) models [50] adds to
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the autoregressive part a linear combination (moving average) of the last modeling errors

– i.e. the difference between simulated and observed data. Although basic techniques

can be improved (considering seasonal aspects or exogenous variables such as building

occupancy [51, 52]) and are simple to handle, they have several major drawbacks. They

do not handle non-linear phenomena – although a common situation in building energy

modeling [53]. They show poor modeling results when the energy demand has significant

variations over a short period of time [54, 55], and they can only use a limited number of

explanatory variables, which means a poor modeling interpretability.

A second category of popular models are the statistical regressions. These models

group several different techniques combining explanatory variables into a mathematical

expression to give an output (building energy consumption in the present case). Statistical

regressions are often used as reference methods to compare with more complex techniques

[53]. They offer a simple implementation, a reasonable interpretability and relevant per-

formances. Their major drawbacks is their inability to handle non-linear modeling (except

for multivariate adaptive regression splines – MARS) and the large amount of data – in

term of data points – required to implement a model.

The k nearest neighbors (k-NN) technique stands out of the other types of regression

algorithms. k-NN aims to identify and group similar trends within time series [56]. For

instance, building energy consumption can be related to similar trends in occupancy,

weather conditions and other relevant parameters. Unlike other data-driven algorithms,

k-NN does not follow a training-validation-testing process. The whole set of available

data is used, and modeling is performed by comparing new inputs to other available

values of a given variable. The k-NN technique has two key parameters. The first is the

k parameter, which is the number of neighbors to which a new datapoint is compared

to be grouped. The second parameter is the distance metric to assess how close a new

datapoint is to its neighbors. The final energy consumption is deducted from the averaged

energy consumption of the k neighbors. Although they provide an intuitive and simple

implementation [37, 57] and reasonable modeling performances [27, 58], the latter highly

depends on the comprehensiveness of the dataset to depict the operation of building case

studies.

Three other categories of single models are the decision trees (DT), support vector

regressions (SVR) and artificial neural networks (ANN). The former, DT, is inspired

from the structure of trees, from roots to leaves. It consists in a set of consecutive

tests checking on values of explanatory variables and the final corresponding output.

Each test corresponds to a tree node. The number of tests, dealing with categorical or
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binary explanatory variables, depends on the number of combinations of values. Tests

are conducted until the final output is obtained. Using DT, the interpretation of results

is relatively simple [59]. This method offers significant modeling performances and is

adapted to non-linear modeling [30]. However, DT show issues in adapting to large sets

of data that would depict a large diversity of building operation conditions. It implies a

larger number of combinations and longer computation, which makes it quite difficult to

optimize the models.

SVR are based on SVM (support vector machine) process. It follows a similar idea to

a statistical regression but with a more complex approach, using several hyper-parameters

in order to fit to training time series. One key parameter is the kernel function. This

parameter transforms the data representation space to account for non-linearity in a

dataset: if the dataset cannot be accurately modeled by a linear expression, another

mathematical expression can be found in another dimension to fit to the dataset [48]. SVR

are especially performing for non-linear regression problems [60]. They rank among the

most used data-driven models [13, 61, 62]. However, the calibration of SVR is particularly

difficult because of the selection of hyper-parameters. Tuning hyper-parameters plays a

decisive role in modeling performances. Optimisation of SVR has even become a specific

research topic for building energy modeling [63, 64].

Finally, ANN algorithms are inspired by neural networks in the human brain and

are built on a similar concept of information propagation. Typical ANN are composed

of three types of layers. Input data are introduced through the first layer of neurons

and are given a random weight. The intermediate layers combine the different inputs,

transformed through a transfer function. The final layer provides the output result. The

combination-transformation-output process is reiterated until there is a convergence of

the error rate (the difference between simulation and measured data) or until the maxi-

mum number of iterations is reached. Key parameters can be optimized: the number of

intermediate neurons and layers, the connections between neurons, the transfer functions

[65] and the back-propagation of the error rate for the model to these parameters. ANN

basic algorithms offer a simple grasp of the mathematical model, performing for non-linear

phenomena, adapted to many types of input data and case studies. More advanced algo-

rithms offer a range of improvements. ANN is an umbrella term and numerous different

algorithms are implemented in the literature, from the simple three-layer neural networks

to deep neural networks [66]. Nevertheless, the modeling process is not interpretable and

the more advanced the algorithm, the more complex the implementation, with a risk of

over-fitting [61, 67].
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1.2.4.4 Combined models

Unlike single models, combined models rely on several algorithms combined to take advan-

tage of the strengths of each constituting technique. There are two types of combined mod-

els: ensemble models, and single models improved with an optimization technique.

Ensemble models combine single models together to improve modeling performance

[28]. It is a two-step process with i) the creation of several single sub-models called base-

learners or base-models and ii) the comparison of the performances of sub-models. Results

of each sub-model are weighted according to their performance and are combined to get

the fittest results. There are two types of ensemble models [30]. Homogeneous ensemble

models use one single modeling technique trained on several sub-datasets, such as random

forest [68, 69] or boosting decision trees [28, 30]. Heterogeneous models use different single

models trained on a unique dataset. Examples of heterogeneous models can be found in

the work of Fan et al. [28] who combined eight single models – statistical regressions,

auto-regressive models, SVR, k-NN and ANN – or the work of Alobaidi et al. [70] who

used a combination of ANNs. Ensemble models offer significant modeling performances.

However, they are particularly difficult to implement and they require advanced coding

skills and knowledge.

Improved models are the second category of combined models. There is no clear

definition in the literature. Some are called ”hybrid models” [71] but this expression also

refers to a combination of physics-based and data-driven techniques, as in this manuscript.

In the present case, improved models use optimization techniques to improve the perfor-

mance of single models. Common optimization techniques are swarm intelligence algo-

rithms. Most improved models are implemented with SVR [14] and ANN [72, 73].

1.2.4.5 Machine learning tasks

The modeling techniques presented above can be implemented with different tasks, de-

pending on how input data are taken into account. There are four main types of machine

learning tasks applied for data-driven BEM: supervised, unsupervised, reinforcement and

transfer learning.

Supervised learning is the most common task, found in the majority of reviewed

papers. With supervised learning, input data are known and labelled. The physical

meaning of each input data is clearly identified. All data, possibly pre-selected, are used

in the model and keep their label over the modeling process. All techniques introduced

above can be implemented with supervised learning approach. On the opposite, with
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unsupervised learning, input data are not labelled. The goal is to automatically identify

links between inputs that would not be obvious before the modeling process, and maybe

not even considered with a biased supervised modeling – since the user performs the

selection of inputs in supervised modeling. Hence, common tools aim to perform input

data characterization independently from their physical meaning. Unsupervised learning

is particularly adapted to very large sets of data when labelling would become difficult and

time-consuming [74]. It significantly improves modeling performances. However, because

input data are unlabelled, the interpretability of the models is particularly poor.

The literature review also highlights two other machine learning tasks. The first

task is reinforcement learning [75]. Unlike supervised and unsupervised machine learning,

the modeling process does not extract input data characteristics. Reinforcement learning

defines an artificial decision-making agent. A goal (the targeted energy consumption)

is defined and given to the agent and it must reach it. Each decision brings a reward

based on how close decisions lead the agent to the final result. The artificial agent must

maximize the reward to find the optimal way to achieve the final result. A frequent

analogy is the decision-making process of a mouse finding its way towards food in a maze.

Reinforcement learning algorithms are specific to this type of machine learning task but

rely on artificial neural networks.

Finally, transfer learning, as the name suggests, transfers knowledge from a given case

study to another case study for which there is a lack of information to model building

energy consumption [76]. For instance, Mocanu et al. [33] used transfer learning to

train a model using inputs from a specific commercial building and to model the energy

consumption of different commercial and residential buildings. Algorithms try and fit

data and modeling techniques from a building to the other by, for instance, adjustments

over seasonal or recurrent events. Transfer learning has been scarcely implemented for

building energy modeling applications.

1.2.5 Hybrid modeling

Hybrid building energy modeling, also called grey-box modeling [77], is the third category

of building energy models. It combines both previous approaches, physics-based and

data-driven methods: a simplified white-box basis complemented by the use of data with

data-driven models.
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1.2.5.1 Resistance-capacitance models

Resistance-capacitance models (RC-models) are the most implemented hybrid models [78].

They are implemented upon an electrothermal analogy with resistances and capacitances.

The former represents thermal resistances for the property of building materials to resist or

conduct heat flow. The latter mimics the thermal capacity of materials to store and release

heat over time. The order of a RC-model is given by the number of RC nodes, related to

the number of thermal zones in a building and its constituting elements (e.g. the envelope,

the energy systems, the occupants) [79]. RC-models mostly focus on thermal energy

consumption. Li et al. [78] highlighted the main RC-modeling applications including

heat dynamics analysis, thermal load calculation and thermal studies for building control

optimization, district/urban energy modeling and building grid integration. There are

two types of RC-models: the forward approach and the inverse approach. The former

is mostly physics-based. Resistance and capacitance components usually figure physical

components of a building calculated using a physics-based modeling software. The latter

is mostly data-driven-based: data-driven techniques are implemented to assess resistance

and capacitance components.

1.2.5.2 Other hybrid models

Other hybrid models follow a similar idea to inverse RC-modeling technique: the use of

data-driven models to assess and tune specific parameters or parts of a physics-based

model. Siddarth et al. [80] used a genetic algorithm to highlight key energy-driving

parameters in a physics-based model and to create realistic sets of values for these pa-

rameters to be tested in their model. The second hybrid modeling scheme aims to replace

part of physics-based models, for instance with a given energy system or energy driver.

Focusing, on HVAC (heating ventilation air conditioning) systems, Collinge et al., Dong et

al. and Ratz et al. [81, 82, 83] combined physics-based building models with data-driven

models of a HVAC.

1.2.6 Conclusions on the applications of approaches and meth-

ods for building energy modeling

Building energy modeling is one of the key tools to assess building energy consumption

and target energy savings. Building energy modeling has been a major research topic, well

documented and studied. In the past twenty-five years, at least twenty-four review pa-

pers have been published on the topic of building-scale energy modeling techniques alone,
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reviewing hundreds of original research papers (Table 1.1). The review of approaches

and techniques for building energy modeling highlighted the three main categories of

bottom-up techniques: physics-based, data-driven and hybrid modeling. The former re-

lies on physics equation solving, the second uses combinations of building energy-related

measured data and the later combines both strategies.

Each approach embeds various methods. Data-driven models offer the largest di-

versity of techniques. They have been a main research topic for building energy mod-

eling in the past twenty years. Twenty-three of the twenty-four reviewed review papers

targeted data-driven BEM, with fourteen articles that exclusively focused on these tech-

niques (Table 1.1). Data-driven techniques stand out for their modeling performance,

their accessibility thanks to several open-source tools (Appendix A.2) and the diversity

of applications (electricity, thermal energy, etc.). Also in their favour, they do not require

advanced knowledge on building science. However, they provide a poor interpretability.

Data-driven modeling is a purely statistical and mathematical process that prevents any

physics-oriented analysis of the modeling results. The main goal is modeling accuracy us-

ing time series data. Therefore, it is almost impossible – or at least particularly complex

– to interact with physical characteristics of the modeled buildings and their operation to

quantify the impact of specific changes on the energy consumption. Furthermore, without

sufficiently diverse and reliable building operation data, there is no model. It should also

be noted that, if there is an easy access to many pre-coded algorithms, a complete under-

standing of modeling techniques and of the tuning of parameters still requires advanced

coding skills and knowledge on machine learning.

On the opposite, physics-based methods solve physics equations that link the de-

scription of a building (structure, usage, environment, and energy systems) to its energy

consumption. Although, some models are more detailed than others, it is usually a com-

plex modeling process to perform. Physics-based BEM require specific software and tools,

with dedicated skills from the users. Nevertheless, physics-based models are well-known

and reliable methods, often used as references to compare with data-driven techniques

[77], for industrial energy analysis and diagnoses to enquire about energy efficiency and

potential savings over retrofit actions [97]. A significant benefit is the interpretability of

the models. The many inputs provide a large line of possibilities to optimize building

energy consumption, although the significant amount of information required can be a

drawback as well. Information are difficult to collect while they are a must to implement

an energy model and then have to be replaced with assumptions: the more assumptions,

the more uncertainty in the modeling results.
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Table 1.1: Review papers on building energy modeling published in the past 25 years.

Authors
Publishing

year

Reviewed techniques

Data-

driven

Physics-

based
Hybrid

Pedersen [84] 2007 X X

ASHRAE [9] 2009 X X

Swan and Ugursal [2] 2009 X

Zhao and Magoulès [23] 2012 X

Foucquier et al.[1] 2013 X X X

Fumo [10] 2014 X X X

Tardioli et al. [8] 2015 X

Chalal et al. [67] 2016 X X

Deb et al. [11] 2017 X

Mat Daut et al. [71] 2017 X

Wang and Srinivasan

[85]
2017 X

Yildiz et al. [86] 2017 X

Ahmad et al. [87] 2018 X

Amasyali and El-

Gohary [88]
2018 X

Wei et al. [89] 2018 X

Wei et al. [90] 2019 X

Bourdeau et al. [91] 2020 X X

Sun et al. [92] 2020 X

Fu et al. [93] 2021 X

Li et al. [78] 2021 X

Zhang et al. [94] 2021 X

Al-Shargabi et al. [95] 2022 X

Chen et al. [77] 2022 X X X

Lu et al. [96] 2022 X
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Finally, the third approach, is the combination of data-driven and physics-based

modeling. Hybrid models are a simplification of the latter tuned with the former. Then,

hybrid models offer a relevant balance between modeling interpretability, performances,

and ease of implementation. Most models are RC-models, focusing on the thermal needs

of building case studies as for physics-based models. However, in comparison with the

other two categories of techniques, hybrid modeling has been less implemented in the

literature for building energy modeling applications.

The implementation of different modeling techniques answers different questions.

Data-driven models are the most fitted to target the highest modeling performance. As

the meeting of data-driven and physics-based techniques, hybrid models offer the best

compromise between an interpretable and performing modeling process. However, if de-

scriptive knowledge of the building case studies is sufficient, physics-based modeling is

the most adapted approach to investigate energy consumption and identify energy-saving

strategies. The optimization of energy consumption usually targets building operation, en-

ergy systems or the envelope. However, usages and occupants tend to be under-considered

while they play a significant role over building energy consumption. Due to the many

involved parameters, physics-based modeling allows a dedicated investigation on a fully

understandable model which would be the most fitted choice in the present case.

Nevertheless, aside from the choice of a modeling technique a significant challenge re-

mains with all types of building energy models: the gap of modeling performance between

the model and the existing case study [4]. Identifying the gap, its origins and closing the

gap is a key research topic as well, discussed in the following section.

1.3 Performance gap in building energy modeling

1.3.1 Context and definitions

With BEM, the goal is the performance: to improve – reduce and optimize – energy

consumption of buildings, to accurately match modeling results with measured energy

consumption, and to comply with standards. However, when it comes to the comparison

with the measured building energy consumption, there is often a gap with the simulation

output [4].

This gap is called performance gap (PG [4, 98]. It is a discrepancy in building energy

consumption modeling due to various factors such as the building design, its operation

or modeling assumptions. This concept is of paramount importance and affects many
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building construction and energy efficiency stakeholders. The identification of origins and

improvement strategies is essential to take the full benefit of BEM.

1.3.2 Origins of performance gaps

Various origins to the PG have been identified in the literature. A recent review work

suggests a classification of origins following the building life cycle [4, 98]: design, con-

struction and post-occupancy. It applies for new buildings as well as retrofitted buildings,

since retrofit actions follow the same process of design, construction, and operation.

1.3.2.1 Building design

Issues in the building design lead to significant PG. It can originate from communication

issues, which is a very common situation within large projects when many actors do not

understand each other because of their different technical backgrounds [99]. This leads

to a poor definition of the design goals and a significant lack of understanding regarding

the final use of the building and its characteristics [36]. Also, a lack of perspective on

the construction project induces poorly executed work with many modifications and then

significant PG afterwards [100]. One of the most common challenges in building design

is also the lack of operational data. Because it is a design, there is no feedback on

how the building will actually operate [101]. Many assumptions are made to assess the

performances of the buildings and these assumptions may end up being quite different

from the real future operation.

Within the design goals, there are common misconceptions about how the design

fits to the needs of the project [102] and its feasibility. [4]. Over-original designs can be

counter-intuitive for users and too difficult to operate [103, 104]. This is even reinforced

because technical testing is conducted in controlled environments while the actual use in

the built environment reveals a very different operation perspective [105]. Then, one of

the keys is to provide a clear documentation regarding design choices, intended uses and

modifications which often lacks afterwards.

BEM in the design stage is a significant source of performance gaps as well. It is

very common to find differences between building operation and design modeling results

[106]. These may be related to the tools [107], the actors’ skills in design [108] or, as

previously stated, the challenges in assessing the many input parameters because there is

no feedback on building operation yet – for instance the occupancy or indoor heat gains.

Finally, an underestimated cause of PG is the testing of models performed during the

design phase [102]. As there are many parameters with uncertainties, designs and models

34



1.3 Performance gap in building energy modeling

must be adaptable enough to minimize the impact of these parameters [99]. Furthermore,

as part of building life cycle, short and long-term deterioration of systems and materials

must be considered in the design, specifically in case of retrofit actions [109].

1.3.2.2 Building construction

Construction is a second origin of PG, mostly because it is almost entirely manually

conducted, with very little automation. The first source of performance gap comes from

the checking of the quality of the construction that may not meet the initial goals –

specifically regarding thermal insulation and air tightness [4, 107, 110].

There are also common issues in project construction management: a lack of direc-

tives regarding technical details and leading to interpretations [111], construction defects

(intended or not) such as replacing materials for cost reduction [112], a lack of technical

skills from the construction teams, last minute modifications and tight schedules to follow

[4].

Construction issues are particularly difficult to survey because they would require a

full supervision of the building construction site from day one, which is hardly possible.

Therefore, most of the time, there is only a visual inspection when the building is delivered.

However, most issues may only be visible after a few months of operation, which is why

most strategies now focus on soft landing processes [113]. Soft landing processes provide

a longer handover period and energy performance assessment. Nevertheless, most of the

time, reception tests remain pretty simple and must be improved: ISABELLE [114] and

PROFEEL programs in France [97] aim to ensure the quality of construction and retrofit

actions with standard test processes.

1.3.2.3 Building operation

Building operation is the third origin of building energy PG. The first and most reported

driver is related to building users and their behavior [4, 98]. Depending on the building,

its size or the activities it hosts, parameters such as occupancy and usages may be difficult

to assess. Hence, this information is over-simplified using a few observations or standard

operation scenarios. They can significantly differ from measured occupancy and monitored

building operation [115, 116]. Behavior-related examples may include window opening

that impacts on energy consumption for heating and cooling, or the use of appliances

with an effect on internal heat gain assessment [110, 115, 116, 117]. Also, cultural and

social aspects can impact residents’ behavior and trigger a chain reaction on building

energy consumption [21, 108, 118].
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The human factor also impacts on energy management when it is manually per-

formed, modified by hand, or influenced by the occupants of buildings. It creates a PG

related to unexpected energy management strategies, because of a lack of expertise and

knowledge, interference with adjusted settings or unsuitable management strategies. En-

hancing residents comfort with respect to the optimal regulation of energy systems can

be a potential solution [119].

Overall, it is also necessary to acquire a more complete knowledge about considered

buildings. Most of the time, there is a lack of detailed information and data to optimize

energy performances. Data collection through instrumentation can be highly beneficial.

Many nation-wide intensive instrumentation plans have been set accordingly [120, 121,

122]. Mixed public and company-led initiatives are quite common as well to implement

massive sensor networks [97, 123]. However, the deploying a sensor network is not a

straightforward task and it faces many challenges. Sensors and meters frequently focus

only on energy consumption [20] while there are many other aspects to consider over the

study of building energy dynamics. As previously discussed, occupants are a major energy

driver. However, their presence and impact is difficult to monitor [124].

Another aspect to take into account is the spatial and temporal granularity of data

collection. The number and location of sensors is important to provide an exhaustive

picture of the building operation. Data collection time-step impacts on the quality of

analyses and the results that can be obtained: too few data lack of relevant information

and precious details that may alter the efficiency of energy monitoring [125] and result

in a PG. Finally, building instrumentation faces many challenges including installation,

calibration, data collection, or long-term network maintenance that can spearhead PG as

well[91].

1.3.3 Strategies to address the energy performance gap

Strategies have been developed to think ahead the PG, and try and close it [98]. Strategies

are divided into three categories: design strategies [100, 126, 127], technological and

methodological strategies, and soft measures [128, 129].

Many issues originate from the initial design, construction and operation of case

studies, both during the construction of studied buildings but also during energy retrofits.

The scope of this thesis focuses on building post-occupancy. It relies on a case study of

three existing buildings built in 1974 and presented in the following chapter. Buildings

underwent a deep energy retrofit, but the thesis was conducted without any control over

retrofit design and construction management. Therefore, the review of strategies to reduce
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PG is limited to strategies for operated buildings.

Post-occupancy strategies target a better understanding of the building operation.

They provide the tools to assess the impact of modifications of operation over building

energy consumption. These strategies are divided into three categories: energy modeling,

data collection and analysis, and characterisation of occupants’ behavior.

1.3.3.1 Building energy modelling

Reducing the performance gap starts with the improvement BEM performances, consid-

ering the needs for a model, the modeling process, and the reliability of simulation results.

There are many means of implementing a BEM, as detailed in Section 1.2. Such a pool

of techniques renders a difficult choice to select the best fitted method. The selection of

a method must be driven by the availability of data to provide modeling inputs, the goal

of the study, and the required level of detail and interpretability in a model.

Besides the choice of the modeling method, calibration is an essential aspect to tackle

the PG. Even though the modeling technique is suited for the application, if the model is

not calibrated, results cannot be relied on. Calibration is the process of using an existing

BEM and tuning various input parameters in the model so that the simulated energy

consumption matches with observed energy consumption within a given margin defined

by the user as acceptable [130]. In other words, a calibrated energy model provides results

that must be similar to the reality, in terms of cumulative consumption, energy dynam-

ics (peak demand, typical demand profiles) but also regarding the different end-uses and

parameters of the model. Considering a detailed physics-based energy model, the overall

energy consumption must be accurate, but heating, cooling, DHW and the different char-

acteristics of the building model (passive systems, operation scenarios, energy systems)

should also be as realistic as possible. Hence, if some assumptions are made in the mod-

eling process, they must be carefully considered to find the most suitable value to fit to

the measured energy consumption. Many methods are reported in the literature and are

further discussed in Section 1.4.

1.3.3.2 Data collection and analysis

Field data collection provides opportunities to improve the description of the building

energy consumption and to add specific relevant knowledge into an energy model to

replace assumptions. Data collection can be performed either during pre-occupancy or

post-occupancy stages.

Pre-occupancy data collection is usually straightforward. Buildings are not occu-
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pied. Hence, there are fewer potential sources of disturbance. However, for the same

reason, data do not necessarily reflect the actual building energy behavior. Parameters

such as occupancy and occupants’ behavior cannot be fully captured but only guessed.

Most collected data in pre-occupancy phase are related to the design of the buildings and

parameters that are not affected by building usage: the building envelope, the glazing sys-

tem, the technical description of energy systems. If the documentation on these features

is not available, processes can be applied to recreate specific conditions and characterize

building parameters [131], such as the thermal resistance of walls. Strategies have been

reported to improve pre-occupancy data collection. For instance, virtual reality solutions

can provide an immersive experience of a building to highlight design failures and collect

usage data [132]. Also, another promising opportunity lies in transfer learning [33, 133]

that relies on data from one building to another similar one, to gain knowledge that

cannot be accessed otherwise. Even though it is not a data collection method properly

speaking, it may be used for such purpose.

Post-occupancy data are suitable to accurately describe the actual building operation.

The most significant challenge, that is also the main interest, is the building occupancy

[91]. As the building is occupied, collected data are representative of how the building

is operated but there are many sources of disturbance. Occupants can disrupt data

collection (moving sensors, disconnecting gateways) and they can also be disturbed by

the sensors and adapt their behavior, which results in biased data collection. Intrusiveness

is also a key aspect of building instrumentation. There are many existing technologies

and techniques to collect data in the best possible conditions, including wireless sensor

networks [134], smart meters [135, 136], building energy management system (BEMS),

Wi-Fi or camera systems [124], for instance.

Once data are collected, data analysis is performed. There are two classical ap-

proaches: descriptive statistical analyses and data mining. A descriptive statistical anal-

ysis provides a summary on a given dataset using descriptive quantities (mean, median,

standard deviation and variance, for instance) [98] and statistical tests [31, 137]. It relies

on a sample of the collected data which is a representative population of the full data set.

Data mining uses different tools to analyse data from various perspectives, to summarize

useful information, to highlight the links between different parameters, to extract pat-

terns [34] and to eventually implement predictive models. Tools include machine learning

algorithms, artificial intelligence, database management and clustering [98]. Data min-

ing techniques are designed to process very large amounts of data, even the full amount

of collected data, unlike descriptive statistical analysis. However, it also reduces data

interpretability: it is not possible anymore to understand data analysis results from a
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physics-based point-of-view.

1.3.3.3 Integration of occupants’ behavior

Occupants’ behavior modeling and integration is the third major strategy to tackle PG

reduction in operated buildings. Occupants’ behavior has been reported many times

as a source of uncertainties and major energy driver [138]. It is often narrowed to a

few assumptions [7, 98]. However, a deeper understanding and characterisation of the

residents’ impact on building energy behavior is essential.

There are two means of considering occupants’ behavior, either with models or data

collection. The former relies on the latter. Data collection can be considered separately as

a source of information to input in BEM without going through occupancy modeling and

prediction. There is a wide variety of sensors for occupant-related data collection [124].

Basic measurements target the detection of occupants. However, the difficulty is to count

the number of occupants in a given area and not only to detect the occupants’ presence.

Occupants’ counting requires cameras or to use wireless local area networks, for instance,

which needs more complex, more expensive, and also more intrusive instrumentation set

ups. Other types of data collection strategies try and quantify the actions of occupants.

Carlucci et al. [139] reported on six types of occupant-related actions, including window,

solar shading and lighting operation, thermostat and clothing adjustment, and appliance

use. These parameters are directly related to human activity in a building and impact on

building energy consumption.

The modeling of occupants’ behavior depends on the collection of occupants-related

data. It goes further than a descriptive analysis and investigates the mechanics of occu-

pants’ behavior to predict occupants’ actions and their effect. Most models use occupants’

presence and counting, activity and movement between building zones [139]. Two types

of modeling strategies are highlighted in the literature. Implicit models focus on the ac-

tions of occupants and the link between building features and occupants. Explicit models

capture and predict the decision-making process of occupants. The details of occupants’

behavior modeling falls out of the scope of the present work. Further information and

details on this topic can be found in [139, 140].

The main challenges in an accurate model of occupants’ behavior are the reliability

of the models and the difficulty to handle both behaviors and their resulting actions at

the same time. Because they are models, they simplify the reality [141] while the reality

of occupants’ behavior is not as rational as building physics and depends on many inter-

dependent parameters that are difficult to quantify [142].
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1.3.4 Conclusions on energy performance gap

A major challenge in building energy modeling is to provide an accurate and reliable

picture of the reality. As a model, BEM remains a simplification of a real case study and

the PG, the difference between simulations and measurements can be significant. The PG

originate in the design, construction, and operation of buildings.

In building post-occupancy, origins of PG mostly come from the energy modeling

process and over-simplification of models, the characterization of the human impact on

energy consumption, the lack of general knowledge on studied buildings that requires a

more extensive data collection and the consecutive data collection means.

Most strategies to reduce the PG in building post-occupancy focus on enhancing BEM

with a calibration process. Strategies consider i) the modeling process itself to select the

fittest modeling technique for a given application and case study, ii) the collection and

analysis of more operation data, iii) the accurate characterization of occupants’ behaviors

and their impact on building energy consumption. These aspects play a major role in

providing a reliable – then calibrated – BEM. For these reasons, the next section focuses

on BEM calibration, and specifically the benefits of the integration of measured data in

BEM.

1.4 Calibration of building energy models

1.4.1 Identifying uncertainties

The calibration of energy models addresses the reduction of the PG. However, in order

to properly calibrate a model, it is important to understand the parameters to target

through the calibration and the origins of the modeling uncertainties. There are four

commonly reported categories of uncertainties that can be the focus of a calibration [134]:

specification uncertainties, modeling uncertainties, scenario uncertainties and numerical

uncertainties. Reddy et al. [130] also suggested a classification and grouped specifica-

tion, modeling and scenario uncertainties under the name, ”external errors”, opposed to

”internal errors” with numerical uncertainties.

Uncertainties can be summarized as follow. Specification uncertainties relate to

building-specific parameters and the way they are filled in a model. They are caused

by incorrect parameters or incompletely information in a model because of limited knowl-

edge on a case studies or the user’s limited skills. Building-specific parameters include,

for instance, the glazing system, the envelope, heating and cooling systems, or HVAC

40



1.4 Calibration of building energy models

units. Modeling uncertainties are linked to the building energy modeling process: the

selected method, the level of detail and the simplifications. It is up to the user to decide

what is the most appropriate modeling technique, and how its choices drive on modeling

uncertainties. Scenario uncertainties are about building usage and operating conditions.

They relate to all the aspects of building operation, meaning everything else than the

physical and technical description of the building: weather, occupancy, occupants’ behav-

ior, lighting schedules, for instance. Some are easily accessible (weather files are widely

available), some can be simply adjusted (equipment and system operation can be checked

onsite) but others (such as occupancy and energy-driving behaviors) are much more dif-

ficult to assess. It results in many assumptions and therefore large uncertainties. Finally,

numerical uncertainty are the errors introduced when the calculations are discretised and

due the simplifications of simulations with assumptions in the calculations performed by

the modeling tool [143].

1.4.2 Calibration methods

Calibration is the process to better fit building energy simulation results to the real

energy consumption. As presented in section 1.3.3.1, it tunes parameters for which there

is an uncertainty and to find the value for these parameters that gives the most accurate

simulation results.

Reddy et al. [130] first highlighted four categories of calibration methods: i) a ”man-

ual, iterative and pragmatic intervention”, ii) a ”suite of informative graphical compar-

ative display”, iii) ”special tests and analytical procedure” and iv) ”analytical/mathe-

matical methods”. The first category uses data from bills and short-term monitoring

complemented with audits. The second is based on the comparison of graphical represen-

tations of monthly energy consumption from simulations and bills. The third approach

considers specific tests: intrusive blink-tests (triggering on and off specific equipment

with very-short-term monitoring to disaggregate building power demand), short-term en-

ergy monitoring of specific end-uses over a three-to-five-day timeframe, signature analysis

method to compare more detailed measurements with simulations. Finally, analytical

and mathematical methods are based on specific algorithms for optimization problem

solving.

Fumo [10] proposed a broader picture, with a classification between the calibrated

approach relying on data collected onsite, opposed to the forward approach for which data

are unavailable. It depends on the comparison with tests from national standards such as

ASHRAE or the Règlementation Thermique in France. In the recent research, the focus
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has been given to the forward approach, further divided between manual and automated

methods [143]. The former involves all methods with a predominant intervention from

the user, and including the first two categories and part of the third category of methods

from Reddy et al. [130]. The latter groups methods that are not user-driven, then mostly

relying on statistical and mathematical tools.

A key aspect of calibration is the complexity level of the calibration process, based

on the available data. According to Fabrizio and Monetti [144], there are five complexity

levels. The first level only uses bills and as-built data. Complexity gradually increases

with the integration of site visits, detailed audits, short-term monitoring, and long-term

monitoring for level two, three, four and five, respectively. Level four and five figure the

most detailed processes. Because they rely on instrumentation set ups, they can target

other parameters than the sole energy consumption. The difference between the two

complexity levels is that level four uses several-month-long data acquisition, usually with

hourly to sub-hourly acquisition time-step of different energy-related parameters, while

Level five uses permanently installed metering systems with a significantly larger number

of equipment. With a level five complexity level, the instrumentation is more likely to be

managed through building energy management system (BEMS) [5].

A significant number of studies have reported on calibration methods and applica-

tions. Detailed reviews on the different applied techniques can be found in the work of

Coackley et al. [143] and Chong et al. [145]. Regardless of the implemented method,

the main idea remains the same: to perform the variation of specific parameters in a

BEM and observe the impact of this variation on the output of the model. Procedural

manual methods, specifically sensitivity analyses, are effective on offering an overview

of the impact of input parameters on BEM outputs [44]. However, the point is not to

fudge a model with over-tuning and to lose credibility in the results. The identification

of energy-driving parameters with large uncertainties must be carefully performed and

modifications should be implemented according to reliable information [143].

Furthermore, regardless of the calibration technique, it remains a complex process

with several issues. These issues include the identification of uncertainties and level of

detail in available input data, as previously reported. It also depends on the complexity

of the building energy model, the selected method and, mostly, and the user’s experience

[144].
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1.4.3 Conclusions on the calibration of building energy mod-

els

The calibration of building energy models follows a two-step process. The first step

identifies uncertainties in a model out of four categories: specification, modeling, scenario,

and numerical uncertainties.

Once the uncertainties are identified comes the choice of a calibration method. The

goal is to use additional data and information to input in the model for simulation results

to become more realistic. The complexity of the calibration depends on the level of

detail in the model and the type of available input data. Calibrations methods can either

be manual or automated. Manual methods heavily rely on the user whose skills and

expertise are driving the choices when the model is implemented, and when changes and

comparison are performed in order to calibrate the energy model. Automated techniques

rely on algorithms to identify and tune specific parameters in the model, and to fit the

simulation output to collected energy consumption data.

Regardless of the calibration method, the user’s judgment has a significant impact on

the results since physics-based building energy models are implemented by hand. Then,

the skills and experience of the user are also the key to avoid discrepancies in the models,

to save time and to provide a clear interpretation of the simulation results.

Conclusions

To implement a building energy model, three aspects must be considered: the modeling

process, the closeness between the simulation results and the measured energy consump-

tion, and the way to bridge the gap between models and measured data.

The literature review highlighted a variety of modeling techniques related to three

main categories of models: physics-based, data-driven and hybrid models. All three ap-

proaches and specific methods have pros and cons. However, considering the context of

the present study, physics-based modeling can be better fitted. The goal is to understand,

quantify and check the impact of retrofit actions on building energy consumption. Be-

cause these were conducted on almost all aspects of our building case study, there are

many different parameters involved. Therefore, there is a need for a detailed knowledge,

understanding and control over these parameters that data-driven techniques cannot of-

fer. Hybrid modeling also could be a relevant option. However, it still blacks out part

of the building energy model and cannot be considered for a fully interpretable energy
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analysis.

Once the choice of a modeling approach is defined, the performance gap must be

considered. It is expected to observe a difference between simulations and the measured

building energy consumption. The two key aspects of the performance gap are its origins

and the strategies to close it. Because the case study of this research project was recently

targeted by energy retrofit actions, the performance gap may come from all of three

stages of the building life-cycle – design, construction and operation. However, there

is no opportunity during the project for control nor a close follow up of the retrofit

work, apart from the collection of documentation. Therefore, considered strategies to

close the performance gap can only be related to building operation: building energy

modeling, data collection and integration of occupants’ behavior. The former is decided

with respect to the literature review of building energy modeling applications, as discussed

above. However, there is a gap in research for the collection of sufficient operation data, to

gain substantial knowledge over the building operation, specifically considering occupants’

behavior. Such a data collection aims for the calibration of BEM with the addition of

more realistic information on building operation and to replace initial assumptions.

The need of building operation data leads to the implementation of an exhaustive

instrumentation solution to target and characterize building energy consumption, indoor

environment quality (IEQ), the local weather and occupants’ behavior, described in the

following chapter.
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ans d’instrumentation,” tech. rep., 2020. 36

[124] J. Yang, M. Santamouris, and S. E. Lee, “Review of occupancy sensing systems and

occupancy modeling methodologies for the application in institutional buildings,” Energy

and Buildings, vol. 121, no. January, pp. 344–349, 2016. 36, 38, 39

[125] L. B. Saad and B. Tourancheau, “Multiple mobile sinks positioning in wireless sensor

networks for buildings,” in Proceedings - 2009 3rd International Conference on Sensor

Technologies and Applications, SENSORCOMM 2009, pp. 264–270, IEEE Computer So-

ciety, 2009. 36

[126] J. K. Day and D. E. Gunderson, “Understanding high performance buildings: The link

between occupant knowledge of passive design systems, corresponding behaviors, occupant

comfort and environmental satisfaction,” Building and Environment, vol. 84, pp. 114–124,

jan 2015. 36

[127] T. S. Blight and D. A. Coley, “Sensitivity analysis of the effect of occupant behaviour

on the energy consumption of passive house dwellings,” Energy and Buildings, vol. 66,

pp. 183–192, nov 2013. 36

[128] P. G. Tuohy and G. B. Murphy, “Closing the gap in building performance: Learning from

BIM benchmark industries,” Architectural Science Review, vol. 58, pp. 47–56, jan 2015.

36

[129] R. Cohen and B. Bordass, “Mandating transparency about building energy performance

in use,” Building Research and Information, vol. 43, pp. 534–552, jul 2015. 36

55

https://www.legifrance.gouv.fr/loda/id/JORFTEXT000022765140/
https://www.legifrance.gouv.fr/loda/id/JORFTEXT000022765140/


BIBLIOGRAPHY

[130] T. A. Reddy, “Literature review on calibration of building energy simulation programs:

Uses, problems, procedure, uncertainty, and tools,” in 2006 Winter Meeting of the

American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE

(ASHRAE Transactions, ed.), (Chicago, IL, United States), pp. 226–240, 2006. 37, 40, 41,

42

[131] P. Biddulph, V. Gori, C. A. Elwell, C. Scott, C. Rye, R. Lowe, and T. Oreszczyn, “Inferring

the thermal resistance and effective thermal mass of a wall using frequent temperature and

heat flux measurements,” Energy and Buildings, vol. 78, pp. 10–16, 2014. 38

[132] S. Shin, S. Jeong, J. Lee, S. W. Hong, and S. Jung, “Pre-Occupancy Evaluation based on

user behavior prediction in 3D virtual simulation,” Automation in Construction, vol. 74,

pp. 55–65, feb 2017. 38

[133] M. Ribeiro, K. Grolinger, H. F. ElYamany, W. A. Higashino, and M. A. Capretz, “Transfer

learning with seasonal and trend adjustment for cross-building energy forecasting,” Energy

and Buildings, vol. 165, pp. 352–363, apr 2018. 38

[134] D. Guyot, F. Giraud, F. Simon, D. Corgier, C. Marvillet, and B. Tremeac, “Building

energy model calibration: A detailed case study using sub-hourly measured data,” Energy

and Buildings, vol. 223, p. 110189, sep 2020. 38, 40

[135] GRDF, “Compteur gaz communicant Gazpar : comment ça marche?.” https://www.gr

df.fr/particuliers/fonctionnement-compteur-gaz-communicant-grdf. 38

[136] ENEDIS, “Linky, le compteur communicant.” https://www.enedis.fr/linky-compte

ur-communicant. 38

[137] M. Jia, R. S. Srinivasan, and A. A. Raheem, “From occupancy to occupant behavior: An

analytical survey of data acquisition technologies, modeling methodologies and simulation

coupling mechanisms for building energy efficiency,” feb 2017. 38

[138] A. L. Pisello and F. Asdrubali, “Human-based energy retrofits in residential buildings:

A cost-effective alternative to traditional physical strategies,” Applied Energy, vol. 133,

pp. 224–235, nov 2014. 39

[139] S. Carlucci, M. De Simone, S. K. Firth, M. B. Kjærgaard, R. Markovic, M. S. Rahaman,

M. K. Annaqeeb, S. Biandrate, A. Das, J. W. Dziedzic, G. Fajilla, M. Favero, M. Ferrando,

J. Hahn, M. Han, Y. Peng, F. Salim, A. Schlüter, and C. van Treeck, “Modeling occupant
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AND CHALLENGES
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Chapter 2

A sensor network for building energy

monitoring

The following chapter is dedicated to the experimental part of the research work.

To collect data for the calibration of energy models, a large wireless instrumenta-

tion solution is implemented over an existing case study. At first, a description

of the building case study is given. It is followed by a review of studies using

sensor networks as a mean to collect and target energy efficiency enhancement.

A full overview of the sensor network is provided, with details on the types of

measurements, the communication system and data storage. Finally, the chapter

is concluded with a feedback on the operation and management of the network.
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MONITORING

Introduction

Given the insights from the previous chapter, a relevant way to improve building energy

models and specifically the calibration process, is to replace the assumptions in standard

building operation data by measured field data. It implies that many different parameters

should be monitored over a large observation timeframe. Then, the field data collection

must be automated, and the fittest solution is a sensor network. Considering the building

case study of the research project and its characteristics such a sensor network should

solve two problems:

• The comprehensiveness of the solution: the sensor network must cover all or most

aspects related to building energy consumption, with a greater depth of details than

the usual sources of data (onsite inquiries, energy diagnoses, smart meters).

• The inclusion of field constraints : these constraints include the nature of the exper-

imentation site – pre-existing, occupied and renovated buildings – and the project

management – cost of the sensor network, maintenance and human resources.

To answer the first problem, there two aspects to address: the types of measure-

ments, and the spatial and temporal granularity of the measurements. Four types of

measurements can be targeted. The first and obvious category of measurements is the

energy consumption. Heating, DHW, ventilation, specific electricity and cooking are the

usual end-uses in residential buildings [1], considering there is no air cooling system for

the studied buildings. Other appliances should be included as well, such as electrical and

leisure goods, and any equipment that could result in indoor heat gains and depict occu-

pants’ behavior. Indoor environment quality, to characterize the indoor comfort, is the

second type of measurements, including (but not limited to) the indoor air temperature

(IAT), the relative humidity, the luminosity, solar gains, the radiant temperature, the CO2

concentration or volatile organic compounds (VOC). Occupants’ behaviors monitoring is

the third target of measurements. It is by far the most complex aspect to characterize

and it has a significant impact on building energy consumption, as discussed in Chapter

1. Finally, weather conditions are essential for building thermal energy behavior analy-

sis. They usually drive thermal energy consumption, and building energy management is

traditionally based on outdoor conditions. It is highlighted that physical building charac-

teristics, such as the building envelope and the energy systems, can also be instrumented.

In the present case, it is not part of the instrumentation campaign. Related information

are retrieved from technical documentation. Then, spatial and temporal granularity of

measurements depends on the target of the energy analysis and the types of acquired

measurements. For example, with a very small electrical energy consumption acquisition
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collection: a review of industrial and academic projects

time-step (one-minute or lower), it is possible to deduce relevant information on energy-

driving behaviors. Thermal energy consumption, on the opposite, is not expected to have

sudden variations. Half-hour or hourly measurements would be sufficient. Spatial gran-

ularity comprises measurements at neighborhood scale (for the weather), building scale,

housing scale and appliance scale. This strategy provides a variety of options and back-up

solutions for data analyses.

The second problem that impacts on the sensor network relates to the choice of data

collection technologies. Wireless or wired sensor network, in-house instrumentation or

commercial solution, IoT or fully embedded systems (such as BEMS): these are some

examples of technological options that impact on the cost, the maintenance and the

management process of the sensor network. In this project, our solution is a wireless

sensor network using IoT connected objects available on the professional market, and

managed between our research team and contractors.

This chapter describes our wireless sensor network deployed in three residential build-

ings for field data acquisition over more than three years. The first section provides a

review of instrumentation solutions and projects for building operation monitoring in a

retrofit context. It highlights the gaps in the current research, to position our instrumen-

tation solution. The second section introduces our case study. The third section details

the deployment of our instrumentation solution, the measurement targets – energy con-

sumption, indoor environment quality (IEQ), occupants’ behavior, and local weather, the

data communication and storage. It is complemented by Appendix B to provide more con-

text content regarding the concepts of IoT, wireless communication protocols for building

instrumentation and the calibration of the sensor network. Section four gives a feedback

on the management of our sensor network to discuss achievements, limitations and future

replicability.

2.1 Instrumentation solution for onsite building op-

eration data collection: a review of industrial and

academic projects

This section provides a review on instrumentation solutions for academic research and

industrial applications, to collect building operation data, including energy consumption,

occupants’ behavior and IEQ, preferably in a context of thermal renovation. It aims to

highlight the gaps in the current research on building instrumentation, to also compare
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with our strategy. It should be noted that this section does not aim a measurement-by-

measurement review of the literature, but it targets studies with a broader instrumentation

objective.

The review is divided between industrial and academic research projects. Academic

and industrial research context may not have the same objectives. The former targets

a feedback for professional applications, to disseminate broader knowledge to the public

and acquire in-house expertise to develop commercial solution. The later tends to dig

deeper into the details and to develop innovative methods for onsite data collection. It

is also quite likely that the former may access to a larger financial support, that would

impact on the instrumentation solution and data analysis results.

2.1.1 Industrial programs

2.1.1.1 PROFEEL: characterizing the impact of retrofit actions

PROFEEL [2] is a nine-project research program focusing on field-operative solutions to

prepare and optimize energy retrofit planning in buildings, to assess energy savings and the

performance of implemented retrofit actions. It stands for ”Programme de la Filière pour

l’innovation en faveur des Economies d’Energie dans le bâtiment” (translated to ”program

of the building sector for innovation towards building energy savings”). PROFEEL started

in 2019 to support massive energy renovation plans for existing buildings as targeted by the

national building retrofit plan [3]. The program was funded by CSTB (Centre Technique

et Scientifique du Bâtiment) and AQC (Agence Qualité Construction). It is supported

by five major actors of the energy sector in France and in Europe: EDF (Electricité De

France), ENGIE, TOTAL, ENI and CPCU (Compagnie Parisienne de Chauffage Urbain).

It also involves several public institutes: ADEME, Ministère de la transition écologique et

solidaire and Ministère de la cohésion des territoires et des relations avec les collectivités

territoriales.

Two specific projects from the PROFEEL program have similar objectives to those

of our research project.

The first project is called SEREINE (Solution d’Evaluation de la peRformance En-

ergétique IntrinsèquE des bâtiments). It focuses on the development of innovative and

efficient methods and tools to assess the performance of retrofit actions, based on the

study and instrumentation of newly retrofitted individual and small-size collective res-

idential buildings. Three outputs are expected. New methods for the characterization

of the performance of the building envelope at building-scale are designed and adapted

62



2.1 Instrumentation solution for onsite building operation data
collection: a review of industrial and academic projects

from existing techniques to assess the thermal resistance of walls [4]. It requires a fully

controlled environment (no occupants) and measurements of the indoor temperature,

heating power demand and outdoor meteorological conditions. The goal is also to im-

plement measurement campaigns over twenty-four hours and less, to provide accurate

results. Similarly, innovative techniques are developed for the characterization of energy

systems. The expected result should be a guideline for building energy experts to iden-

tify all energy systems in a given building and perform the adequate measurements for

energy performance assessment. However, data acquisition would either result from punc-

tual measurements or be extracted from technical documentation. There is no long-term

instrumentation procedure reported in the method The number of case studies ranges

between forty and fifty houses to develop and optimize the proposed methods. Then, all

collected data and information will gathered in an open-access database.

The second project of interest is called QSE (Qualité Sanitaire et Energétique). The

goal is to develop and simplify in situ measurements methods to assess the impact of

building energy retrofit actions, using IoT (Internet of Things) technologies and to target

the optimal balance between health, comfort, and energy performance. Case studies

include residential, commercial, office and school buildings. Up to date, the investigation

includes twenty-one individual houses, six collective residential buildings, five schools

and four office buildings. Unfortunately, there are no available details so far on the

type of sensors and instrumentation solutions deployed, nor on the characteristics of case

studies.

2.1.1.2 Agence Parisienne du Climat : energy performance in residential

condominiums

An industrial instrumentation project has conducted between 2017 and 2019 by Agence

Parisienne du Climat (APC) to study the energy performance of condominiums in a

context of energy retrofit planning [5]. The project was funded by six members – En-

ertech consulting firm, ADEME, Ville de Paris, Métropole du Grand Paris, ALEC Plaine

Commune – together with APC. The project was supported by the ACE-Retrofitting

European project.

The project aimed a large instrumentation campaign in eight residential condomini-

ums located in Paris and its suburb. Considered buildings were built between 1914 to

1978. Therefore, most of them did not fit to any specific construction standards regarding

energy consumption and efficiency. They comprised from 23 to 199 housings with a floor

area between 2,662 m2 and 13,385 m2.
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Measurements were conducted using two strategies. A ”light” instrumentation pro-

gram lasted for fourteen months over two heating seasons and in four condominiums. An

”advanced” program lasted for twenty months over two heating seasons in the remaining

four buildings. Measurements were conducted in a sixty-four-housing sample over the

eight buildings. Measurements included electricity consumption – with optical-reading

sensors on electricity meters, indoor temperature in living rooms and bedrooms, and

punctual measurements of ventilation air flow rates at extraction units. The ”advanced”

instrumentation program added measurements of CO2 and formaldehyde concentrations.

Seven out of eight boiler rooms were instrumented as well with pulse counting on energy

meters (the energy meters were installed prior to the project), hydraulic circuit temper-

atures and water flow measurements in the pipping circuits (using ultrasonic probes),

electricity consumption data acquisition for the boiler room systems and punctual mea-

surements of air flow in HVAC units. Finally, electricity consumption of common areas

was monitored using optical-reading sensors on electricity meters and electrical switch-

boards supervision. Measurements were complemented using energy bills, reports from

energy and architectural diagnoses, reports from regulatory calculations to assess the

impact of energy retrofit actions, and project management portfolios.

The results of the instrumentation campaign provided four types of insights:

• A feedback on the monitoring systems;

• An analysis of the performances of retrofit actions: the comparison between mea-

surements and energy models, and the assessment of performances of heating energy

systems, DHW production, ventilation and electricity in common area of the build-

ings;

• A discussion on IEQ and comfort related the thermal renovation;

• Energy saving strategies and energy management optimization solutions.

2.1.2 Academic research projects

This section provides an overview of academic research projects for building instrumen-

tation. Prior review work has been conducted on instrumentation solutions applied to

building energy consumption, IEQ and occupants’ behavior characterization. Ahmad et

al. [6] highlighted the most implemented technologies of sensors and communication pro-

tocols recovered. They reported on sensor technologies for electricity and gas metering

in the energy consumption category; air temperature, mean radiant temperature, relative

humidity, indoor air velocity, IAQ (indoor air quality, with volatile organic compounds,
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CO2, CO and other oxides) and daylight for IEQ characterization; and occupancy for oc-

cupants’ behavior assessment. They summarized common data communication protocols

including Zigbee, power line carriers, M-Bus, the Ethernet, Modbus, GPRS, Wi-Fi and

Bac net. It is a valuable review of technologies involved in sensor networks. However,

applications provide other perspectives on the typical implementation of instrumentation

strategies to collect field data. They also bring the light on practical issues that may be

encountered.

Non-intrusive load monitoring (NILM), that aims to characterize electricity demand

and electrical appliance signature [7], is voluntarily left apart from the review. There is a

significant amount of research work on the topic [8]. However, instrumentation techniques

are too specific. Although they give relevant perspectives on electricity monitoring, they

target extremely fine data granularity (usually sub-minute) to observe electric appliance

triggering which is beyond the focus of the data collection strategy implemented in this

thesis. A focus is given on studies with a broader application range, targeting energy

consumption, IEQ and occupants’ behavior at apartment and building scales.

Studies can be divided into two categories: field tests and in-lab tests. The main

topic of interest is the characterization of building energy performances. However, in-

lab sensor network implementations and applications bring in a design perspective that

may be relevant. A summary of reviewed studies is provided in Table 2.1. The work of

Mart́ın-Gaŕın et al.[9], Karami et al. [10] and Frei et al. [11] relate to the latter category

of studies. Authors describe the development of wireless Arduino-based sensor kits using

open-source storage technologies and platforms. The former two studies focused on IEQ

while the second focused on U-value measurements. Mart́ın-Gaŕın et al. designed a low-

cost IEQ wireless sensor network system based on Wi-Fi communication. They tested

their solution over seven days of one-minute time-step data in an apartment in Spain.

Karami et al. differed with their testing set-up in a computer lab, and they added PM2.5

and volatile organic compounds (VOC) measurements with occupancy assessment. Frei

et al. [11, 12] tested a sensor kit with eighteen sensors, considering energy consumption

measurements, in 8 single-family houses in Switzerland.

Studies that focus on the implementation rather than on the design of development

of sensor networks have larger instrumentation goals to survey energy performance [15,

16, 18] and on the impact of energy retrofit actions [13, 17]. For energy performance

characterization, Jnat et al. [16] used only two measurements (indoor air temperature

and relative humidity), Deb et al. [15] based their work on the solution from Frei et al.,

while Guyot et al. [14] used an existing building energy management system (BEMS)
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Table 2.1: Summary reviewed studies implementing sensor networks for data collection in

operating buildings.

S
tu

d
ie
s

F
re
i

et
a
l.
[1
1
,

1
2
]

M
a
rt́
ın
-G

a
ŕı
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system in three mix-used buildings with over 6,000 measurements points. For the study

of retrofit actions, Jankovic [13] relied on a measurement campaign over the retrofit of

two semi-attached houses in the United-Kingdom, to calibrate building energy models

and improve the assessment of the effect of energy retrofit actions. Jacopo et al. [17]

highlighted changes in IEQ after a deep energy retrofit of twenty apartments in Italy.

2.1.3 Discussions

The review of instrumentation projects for the characterization and monitoring of building

operation shows two distinct types of projects. Industrial projects deploy a large amounts

of sensors on a large number of buildings. They target the development of operative meth-

ods and broadcast the acquired knowledge for professionals from construction and energy

sectors. Because of the significant budget and human resources involved, monitoring and

data analysis opportunities are superior to academic projects, which are focusing on spe-

cific smaller-scale case studies. Academic research objectives are to dig deeper into the

specificity and details of a given case study and instrumentation method.

Indoor air temperature and relative humidity are the most common measurements,

supposedly because of the availability of simple components for such measurements. CO2

concentration and window opening detection are also popular. However, a significant

absent is the monitoring of heating/cooling energy consumption, specifically in academic

research. Some related measurements are used. Nevertheless, data are mostly collected

from bills or large time-step manual readings. Furthermore, occupants’ behavior char-

acterization is scarcely investigated. Yang et al. have reported a diversity of occupancy

monitoring techniques in their review [19]. However, only three studies focused on window-

opening and only one was monitoring the occupancy. Hence, there is a significant challenge

in gathering the many aspects of building energy efficiency – energy consumption, IEQ

and occupants’ behavior – in a single sensor network.

Between the design and implementation of sensor networks, regardless of the acqui-

sition time-step, a significant difference is the monitoring period. Design and calibration

of a set-up is made over a few days of monitoring. The study of building energy perfor-

mance requires several months of good-quality data. However, the question of ensuring

the calibration over time is not raised in reviewed studies focusing on sensor network

designs. Calibration is not mentioned at all in application studies while this should be an

important point to address, especially for long-term monitoring campaigns, when some

sensors may exhibit measurement drifts over time.

It is also important to highlight that the number of deployed sensors is usually quite
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small, which is evidently related to the fact that most solutions are developed by research

teams with limited human resources and because of the cost of commercial solutions. This

raises two questions regarding the replicability of the work, since technologies might not

be inter-operable; but also on the conclusions of the results, because of the small number

of measurements and case studies.

This review provided relevant perspectives on the instrumentation set-up. There are

three possible options: in-lab development, commercial solutions using IoT and portable

connected objects, and BEMS-like networks. A BEMS is quite likely to be installed in

buildings upon their construction. Otherwise, it is a costly and permanent solution, which

would not fit the objectives of our project. On the other hand, in-lab implementation is

time-consuming and it restricts the types of measurements that can be performed. The

inter-operability of the devices with other systems is also an issue. Hence, considering the

needs and goals of the thesis, the most affordable solution would be a commercial IoT

instrumentation solution, such as the one use by APC.

2.2 Case study: existing, occupied and retrofitted

residential buildings of social housings

This section provides a short overview of the main building features. More details are

given along with the description of the energy models, in Chapter 4.

2.2.1 General description

The case study is a group of three existing and occupied residential buildings located in

Seine-et-Marne, in Paris greater area. Buildings were built in 1974. Together, they group

sixty-three social housings, for a total living area of 3,825 m2. Through the manuscript,

buildings are referred as B1, B2 and B3 (Figure 2.1). They respectively have thirteen,

twenty-one and twenty-nine housings, and a living area of 765 m2, 1,275 m2 and 1,785

m2. A description of the characteristics of housings is given in Table 2.2.

The instrumentation campaign at building-scale is deployed on energy systems and

in shared areas. Sensors are also deployed in an eight-apartment sample recruited to

take part in the instrumentation campaign. The distribution of instrumented housings is

presented in Table 2.3
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Figure 2.1: Neighborhood plan and pictures of the facades of buildings before the retrofit.

Table 2.2: Summary of apartment features in the three considered buildings.

Housing

type
B1 B2 B3

Total num-

ber of apart-

ments

Area per

apartment

(m2)

1 living room/

bedroom (T1)
2 2 2 6 36

1 bedroom

(T2)
4 5 7 15 50-53

2 bedrooms

(T3)
4 10 14 28 63-68

3 bedrooms

(T4)
3 4 6 13 74-79

TOTAL 13 21 29 63 /
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Table 2.3: Description of the household sample that took part in the instrumentation

campaign.

Building
Floor

number
Orientation Size Surface

Number of

occupants

B1 2 South-East T3 63 m2 2

B1 3 North-East T2 50 m2 1

B2
Ground

floor
North-West T3 64 m2 1

B2 1 South-East T2 53 m2 1

B2 2 South-East T2 53 m2 1

B2 5 South-East T2 50 m2 1

B3
Ground

floor
North-East T4 74 m2 2

B3 2 North-West T3 70 m2 1

2.2.2 Summary of building characteristics and retrofit ac-

tions

All three buildings in our case study have undergone a deep energy retrofit from July

2020 to July 2021. The landlord, Marne-et-Chantereine Habitat, also built at the same

time a new building located nearby the existing buildings and where the current boiler is

now located.

The building envelope was fully insulated, including outdoor walls, and walls and

ceilings that separates heated areas from non-heated areas. The roof was not modified

since its thermal features were already up to the current energy efficiency requirements.

The ground floor, above the crawl space, was not insulated since it could not be properly

accessed during the retrofit. All windows, glazed doors, outdoor doors and apartment

entrance doors were changed. An entrance air lock was created at the main entrance of

the buildings.

Heating and DHW production system was already central. Prior to retrofit actions,

heating and domestic hot water were produced by a neighborhood furnace using natural

gas. The furnace served the three buildings as well as dozens of other social collective

housing buildings owned by another landlord. During the retrofit Marne-et-Chantereine

Habitat opted for a more cost-effective solution. A furnace was built in their new building

and connected the extended geothermal heating network of the city. Ventilation was

replaced by a new humidity-sensitive simple-flow CMV (controlled mechanical ventilation)
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in each building and new extraction units were installed in apartments.

Common areas of the building do not have any heaters nor ventilation. Appliances

include lifts (only for B2 and B3) and occupancy-driven lighting with a timer. These were

retrofitted up to required security standards. In housings, heaters were replaced with new

models including a thermostatic valve, and the main hot water pipes were insulated, as

well as part of the secondary piping circuit. Electric systems and switchboards were

rehabilitated.

2.2.3 Description of housings

There are four types of apartments in the three studied buildings, with a main bed-

room/living room or one, two and three bedrooms. Architectural features of housings are

similar within and between buildings. There are four apartments per floor, except for

the ground floor – three apartments – and the last floor – two apartments. Each hous-

ing is located in a corner of a floor and has two orientations: North-West, North-East,

South-East or South-West.

Energy meters, including electricity and natural gas, are located outside of the apart-

ment but on the same floor. Natural gas is only used for cooking, but most apartments

have electrical cooking appliances and do not use natural gas at all. Heaters are located

in each room, except in the bathroom and water closet – apartments of the last floor

have a heater in the bathroom. CMV extraction units are located in the bathroom, the

water closet and the kitchen. Water meters (tap water and hot water) are located in the

water closet. They serve the bathroom nearby and the kitchen on the other side of the

apartment.

The instrumented eight-housing sample shows an interesting diversity of sizes, loca-

tions in the buildings, orientations and residents’ profiles, summarized in Table 2.3. A few

socioeconomic information also highlight the variety of occupants’ profiles in instrumented

housings, and summarized in Table 2.4

2.3 Wireless sensor network

2.3.1 Targets and deployment

The wireless sensor network focuses on different energy end-uses and parameters, both

at building and household levels. Measurements are divided into four categories: i) the

energy consumption – with thermal energy, electricity, and natural gas, ii) the IEQ, iii)
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Table 2.4: Description of occupants in the instrumented households.

Building Floor Residents Occupancy Children Pets

B1 2 2 Public servant 1 None

B1 3 1 Public servant None None

B2
Ground

floor
1

Private sector

employee
None 6

B2 1 1 Public servant None None

B2 2 1 Teacher None 2

B2 5 1 Unemployed None 2

B3
Ground

floor
2 Retired None None

B3 2 1 Retired None 1

the occupants’ behaviors and iv) the local weather.

Energy consumption characterization is the first objective. As described in Section

2.2, energy sources include electricity, thermal energy for heating and domestic hot wa-

ter, and natural gas. IEQ focuses on parameters that depict the occupants’ comfort

[20] and the thermal characteristics of the building. Both are related to building energy

consumption [21, 22]. Occupants’ behavior is also a significant energy driver [23]. Fi-

nally, the local weather impacts on building energy needs, and specifically thermal energy

consumption.

Because of the diversity and the number of sensors, the deployment of the instru-

mentation solution is divided into two steps and four batches. The final schedule is the

following:

• Step 1: instrumentation in common areas and building-scale measurements, includ-

ing:

– Batch 1: the IEQ and the occupants’ behavior in common areas, the building-

scale electricity and thermal energy consumption monitoring;

– Batch 2: the weather station;

• Step 2: instrumentation in households, including:

– Batch 1: the IEQ and occupants’ behavior;

– Batch 2: the energy consumption (thermal, electricity and natural gas).

The complete installation took over two years and a half (Figure 2.2). Sensors and
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communication protocols from the first step, were also used as a test phase to highlight

practical issues and conclude on the use of sensors for specific data acquisition. In the

following sections, preparation of the sensor network is briefly summarized? and the

sensor network is detailed for each type of measurement. Common areas and housings

are discussed separately. Data communication and storage are described in a separate

section.

Figure 2.2: Deployment schedule of the instrumentation solution.

2.3.2 Preparing the measurement campaign

Before the selection and installation of the sensor network, there were a few non-technical

but necessary steps to consider.

A design brief was created to specify the needs and the purpose of the instrumenta-

tion. It is a reference document for all actors of the sensor network deployment, either from

the research team or contractors providing equipment and sensors. It evolved through

discussions with the contractors, to fit to the reality of the IoT market, regarding existing

instrumentation solutions and costs.

Once the design brief was ready, three actions were led simultaneously. First, project

volunteers were recruited. It was one of the major challenges of the research project

since participation of residents was voluntary. The entire data collection and research

project depended on a sufficient number of instrumented households. In exchange to

their participation, collected data are returned to residents with a dedicated overview

over their apartment and energy consumption. During the recruitment campaign, the

sixty-three households were considered as potential participants with an initial goal of

eighteen apartments for the instrumentation campaign:
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• Only nine housings agreed to participate, later reduced to eight housings since one

family moved out of their apartment during the measurement campaign and was

not replaced;

• Four households agreed at first and later declined their participation;

• Eighteen households strictly refused to be part of the experiment;

• Thirty-one households never answered any of our contact attempts.

Recruitment has highlighted that most residents did not pay much attention and

efforts to energy efficiency, either because they were not aware on the topic or because

they were mostly focused on the retrofit of their apartment in terms of comfort. A

few households were also concerned with the use and security of their data and electro-

sensitivity issues.

Jointly with the recruitment of housings, the call for commercial proposals was led,

to select one or several contractors to provide sensor network solutions. The strategy was

to keep the number of involved contractors to a minimum, to minimize potential project

management issues. After a large survey, thirteen contractors provided a commercial

offer. Four contractors were disqualified straightaway due to budget constraints. Seven

contractors went to a second round to refine their offer based on the detailed needs of the

project. Two contractors were finally selected. The first selected contractor provided the

supply, installation? and partial management of the sensor network for step 1 batch 1

and step 2 batch 1 of the instrumentation solution. The weather station (step 1 batch 2)

and step 2 batch 3 were provided by the second contractor. For these steps, part of the

setup, the installation and the supervision were performed by our research team.

The final step to prepare the instrumentation campaign focused on the communi-

cation about the project with CNIL organism (Commission Nationale Informatique et

Libertés). It was required to provide all details of the project related to data collection,

analyses and future use, to protect the residents’ privacy. CNIL advised on potential

warnings and provided recommendations. For similar projects, if a declaration on data

usage is mandatory, the implementation of recommendations is not. For the present

project, most comments were about:

• The relationship between the landlord and other project actors;

• The communication means and documents regarding the research project and for

the residents;

• Collected data usage: potential use outside of the European Union (resulting in
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modified regulations), storage specifications, data transmission means, residents’

personal data transferred to the landlord. Both the researchers and the landlord are

responsible for collected data use, since the data are related to residents living in

the landlord’s buildings, and even though data are processed by the research team

only;

• Residents’ agreement: it had to be a written agreement.

2.3.3 Data communication and storage

The sensor network is entirely wireless and it relies on two different communication proto-

cols. The first protocol is GPRS (general packet radio service), a standard data package

communication protocol. The second protocol is LoRaWan (long range wide area net-

work). It is a radio communication protocol commonly used for smart cities applications

[24] and relying on LoRa peer-to-peer technology to connect communicating objects. It

offers advantages over other competing communication protocols with a long range com-

munication and a very low energy consumption (more details can be found in Appendix

B.1). Within the sensor network, LoRaWan is divided between an operated network and

two private networks.

Operated LoRaWan networks are managed by national telecommunication compa-

nies. This option has a major benefit with a simple and straightforward implementation.

Communicating devices are declared online and a fee is applied for each communicated

data point. Data pre-processing such as identifying missing data, treating duplicates and

formatting is processed on the operator’s servers. However, operated LoRaWan networks

are constrained regarding bandwidth usage, which limits potential applications (such as

small acquisition time-steps or large numbers of sensors). For the implementation of

an operated LoRaWan network, gateways are used as data communication relays to the

operators’ servers.

Private LoRaWan networks rely on the same technology but the network is a local

network. LoRaWan communication is implemented between sensors and a dedicated

gateway. The gateway decodes radio packages and transfers the data to a private server

using the Internet. Hence, there is no constraint regarding data acquisition. However,

each sensor is connected to a specific gateway with a higher risk of data loss in case

of a malfunction, and the initial investment cost is more significant than with operated

networks – specifically because of the cost of the gateways.

The main part of the sensor network relies on LoRaWan protocol as illustrated in
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Figure 2.3. The LoRaWan operated network depends on two gateways for sensors in-

stalled in common areas, along with pulse sensors for gas meters and connected plugs in

housings. Two different private LoRaWan networks are implemented. The first (private

LoRaWan network #1 in Figure 2.3) is dedicated to sensors for IEQ monitoring (temper-

ature, humidity, luminosity and CO2) and presence detection in apartments. The second

private network (private LoRaWan network #2) connects all remaining sensors located

in apartments. It depends on two gateways due to the number of connected sensors.

GPRS data communication is used for electrical measurements on electric smart meters

and switchboards. All gateways are installed in technical rooms on the ground floor of

the buildings.

Prior to data storage, part of the collected data are pre-processed through network

servers. The GPRS and operated LoRaWan network are processed through Objenious

[25], the national LoRa company from Bouygues Telecom. IEQ data are managed through

the platform of The Things Network [26]. Data from private LoRaWan network #1 are

processed online by our research team.

Collected data are initially stored on separate servers due to sensor technologies and

deployment management during the research project. The largest part of the data is stored

on FTP (file transfer protocol) servers except for the LoRaWan private network support-

ing window opening detection sensors. Window-related data collection is event-driven.

Therefore, a HTTP (hypertext transfer protocol) server is required. Data processing is

performed to store all collected data on a single FTP server (FTP server #3 in Figure

2.3), in CSV (comma-separated values) files.

2.3.4 Measurements

Measurements are divided into four categories: the local weather, the energy consumption,

the IEQ and the occupants’ behavior. The following sections detail the instrumentation

for each type of measurements. The characteristics of the sensors with the accuracy and

operating range are summarized in Table 2.6.

2.3.4.1 Local weather

2.3.4.1.1 Context

Good quality weather data – meaning complete, exhaustive data for a specific location –

are a must to complete energy analyses.

Weather data can be collected through different means. The most common source of
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Figure 2.3: Description of the sensor network from sensors to data storage with three

layers: the sensing layer includes all meters and sensors, the communication and collection

layer relates to gateways and data processing platforms from Objenious [25] and The Things

Network [26], and the storage layer groups all FTP and HTTP storage servers.
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Table 2.5: Details on the numbers and types of sensors in the different instrumented

households (with one apartment per floor).

Building B1 B2 B3

TOTALSensors in housings

Housing floor 2
F

3
F

G
F

1
F

2
F

5
F

G
F

2
F

Sensor with clamp am-

pere meters
0 1 1 0 0 0 1 0 3

Pulse sensor for electric

smart meter
1 1 1 1 1 1 1 1 8

Connected plug 4 6 4 3 2 6 6 5 36

Pulse sensors for gas

meter
0 1 1 0 1 0 1 0 4

Contact temperature of

heaters
4 4 4 3 3 3 4 4 29

Contact temperature of

DHW pipes
1 1 1 1 1 1 1 1 8

Indoor temperature of

cold walls
2 3 2 0 2 3 3 2 17

Temperature, humidity,

luminosity, CO2, pres-

ence

1 1 1 1 1 1 1 1 8

Window opening detec-

tion
4 4 4 3 3 4 5 4 31

Total housings 17 22 19 12 14 19 23 18 144

Sensors in common areas

Sensor with clamp am-

pere meters
0 0 1 1

Pulse sensor for electric

smart meter
2 3 2 7

Thermal energy meter

for DHW and heating
2 2 2 5

Indoor temperature and

humidity
3 3 3 9

Presence detection 1 1 1 3

Total common areas 6 8 8 26

TOTAL SENSOR

NETWORK
45 72 49 170
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Table 2.6: Summary of the accuracy and operating range of the deployed sensors in

apartments and common areas.

Measurement

targets
Sensors Accuracy Operating range

Electricity

Sensor with clamp

ampere meters

(Ewattch Tyness)

N.C. N.C.

Pulse sensor for

electric smart meter

(Fludia BelSenso

FM410e)

N.A. 10 pulse/sec max

Connected plug

(NKEWatteco

Smartplug)

>1% (P > 40 W)

<1% (P < 40 W)

Voltage: 100...250 V

Frequency: 50...60 Hz

Natural gas

Pulse sensor for gas

meter (Adeunis Pulse

ATEX)

N.A. 8 pulse/sec max

Thermal energy

Thermal energy meter

for DHW and heating

(Ultraflow U1000)

±1...3% (flow>0.3

m/s)

Flow: 0.1...10 m/s

Temperature: 0...+85°C

Contact temperature

of heaters (SensingLab

TEM-LAB-14NS)

±0.5°C (-10...+85°C)

±2°C otherwise

Temperature: -45...+125°C

Contact temperature

of DHW pipes

(SensingLab

TEM-LAB-14NS)

±0.5°C (-10...+85°C)

±2°C otherwise

Temperature: -45...+125°C

IEQ

Indoor temperature

and humidity

(SensingLab

THY-LAB-41NS)

Temperature: ±0.3°C
Humidity: ±2%

Temperature: 0...+55°C

Humidity 0...80%

Indoor temperature of

cold walls (SensingLab

TEM-LAB-14NS)

±0.5°C (-10...+85°C)

±2°C otherwise

Temperature: -45...+125°C

Temperature ±0.2°C (0...+60°C) -40...+120°C
Humidity ±0.2% (10...90%,

T=25°C)

0...100%

CO2 ±50 ppm 0...2,000 ppm

Luminosity ±10 Lux 0...65,535 Lux

(ELSYS ERSCO2)

Occupants’ behavior

Presence detection N.A 0...255 motions

(ELSYS ERSCO2)

Presence detection

(common areas)

(SensingLab

PIR-LAB-41NS)

N.A. N.C.

Window opening

detection (SensingLab

OPE-LAB-41NS)

N.C. N.C.
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weather data is open-access or private weather station networks. The access is simple but

it has several major disadvantages. The weather station location can be different from the

location of the case study, and it induces significant micro-climate effects – for example

using data from an airport for a urbanized location [27]. Data quality and measurements

are also an issue. Data may be pre-processed to remove outliers and complete miss-

ing datapoints, without details on data pre-processing steps. Data collection time-step

cannot necessarily be customized, and all expected measurements may not be available

either. Moreover, weather data acquisition requires a significant budget with respect to

the number of measurements, temporal granularity and timeframe of the data.

A second alternative is to use energy data from energy modeling software. Software

embed weather files with various measurements used to simulate the building energy con-

sumption. Many locations can be found across the world and data are already processed

in adapted file formats for the modeling software [28]. However, the location of the col-

lected data still is an issue. Another major disadvantage is that these types of data are

statistical data processed from a much earlier time than the time of the research study.

Hence, it is impossible to relate statistical weather data to collected field data.

Considering the pros and cons of the two options above, a dedicated weather station

was acquired for the research project. With a reasonable budget, it provides a customized

data collection with little day-to-day supervision required and an autonomous power sup-

ply.

2.3.4.1.2 Technical specifications

The weather station includes eight measurements through three groups of sensors. The

main group gathers outdoor air temperature, relative humidity, rainfall, wind speed, wind

direction and atmospheric pressure sensors. Two sensors are added: a black ball with a

PT100 temperature probe inside to measure the radiant temperature, and a pyranometer

to measure the solar radiation. Specifications of the sensors are summarized in Table

2.7.

2.3.4.1.3 Set up

The weather station is set up on the roof of a university building, three kilometers away

from the instrumentation site. Installing the weather station directly onsite would have

been the optimal solution. However, the local building configuration could not allow

a simple and secure access on a roof for occasional maintenance. The weather station

data collection and transmission are entirely managed by a data logger using GPRS

data communication. The data acquisition and communication time-steps are set to
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Table 2.7: Summary of accuracy and operating range of the weather station.

Sensors Accuracy Operating range

Temperature ±0.3°C (0°C...+70°C)
0.4°C otherwise

-40...+105°C

Humidity ±1.8% (0...85%,

T=+15...+35°C)
±2.5% (85...100%,

T=+15...+35°C)
±2+1.5% otherwise

0...100%

Rainfall N.C. N.C.

Solar irradiation ±10 W/m2 0...2,000 W/m2

Wind speed ±2% (0...65 m/s), ±3%

otherwise

0...80 m/s

Wind direction ±2° 0...359.9°
Atmospheric pressure ±0.5hPa (800...1,100

hPa, T=25°C)
±1hPa (300...1,100

hPa, T=0...50°C)

300...1,100 hPa

Radiant temperature ±0.1°C -200...+650°C
Dew point temperature N.C. N.C.

five minutes. Data are stored on a dedicated FTP server and on the cloud storage of the

manufacturer. The later solution provides an online visualisation platform of the collected

data. The weather station has an autonomous power supply, with a photovoltaic solar

panel and a battery.

2.3.4.2 Energy consumption: electricity

2.3.4.2.1 Common areas

Electric appliances at building-scale include elevators, lighting, CMV and hot water

pumps. Two different types of sensor are implemented. Linky smart electricity me-

ters are already installed onsite. Although Linky data can be collected through a specific

process with the operating company Enedis [29], data granularity is thirty-minute at the

lowest. A smaller acquisition time-step is expected to capture small triggering events.

Hence, Linky meters are instrumented using a pulse sensor [30] (Figure 2.4(a)) to count

the number of light pulses: one pulse equals one unit of electricity consumption (in Wh).

Data are acquired and transferred at one-minute time-step using GPRS communication
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protocol.

Seven sensors are installed in technical rooms. In all three buildings, there is one

sensor for the elevator and the CMV (grouped together on the same meter), one sensor

for lighting, elevator lighting and the magnetic entrance door. The seventh meter is used

for the hot water pumps of the heating substation – and later removed when the heating

substation is modified following energy retrofit actions. Pulse sensors are powered with

batteries.

The building main electrical switchboard of B3 is instrumented with a sensor con-

nected to six clamp ampere meters [31] (Figure 2.4(b)). It measures the current of indoor

shared areas lighting and calculates the corresponding energy consumption – constant

240V voltage, single-phased current (C = 0.9). Data are collected and transferred with

a ten-minute time-step using GPRS. The ten-minute time-step is set up instead of one-

minute time-step which was initially planned. After a few months, the one-minute time-

step data acquisition resulted in sensor malfunctions. A dedicated power supply and

circuit breaker is required for this sensor.

(a) (b)

Figure 2.4: Pulse sensor installed on a Linky meter (a) and sensor with clamp ammeters

for electricity sub-metering on a electrical switchboard (b).

2.3.4.2.2 Housings

In housings, electricity monitoring targets two spatial scales for data collection. Pulse-

reading sensors for Linky smart meters are installed in each instrumented apartment.

They monitor the overall electricity consumption of the apartment. Sensors with clamp

82



2.3 Wireless sensor network

ammeters for electrical switchboard are used as well. Only three of these sensors are

installed, in B1/3, in B2/0 and in B3/0, because of the intrusive data collection process,

the difficult installation and the cost of the sensor and their installation. The supervision

of the electricity switchboard focuses on room-aggregated electricity consumption, light-

ing, and the large appliances whose electricity consumption cannot be accessed by other

means. The electricity monitoring system is complemented with connected plugs [32] that

measure the energy consumption on household appliances. They are used to break the

energy consumption of the apartments down to appliance-level. The number of smart

plugs depends on the configuration of the households and the identified appliances.

Data collection is performed using the operated LoRaWan network with one-minute

acquisition time-step and ten-minute data communication time-step. Hence, electric-

ity consumption can be analyzed at three different scales: apartment, room, and appli-

ance.

2.3.4.3 Energy consumption: thermal energy

2.3.4.3.1 Common areas

Thermal energy consumption refers to hot water production for heating and domestic use.

It is monitored using specifically designed thermal energy meters. Thermal energy meters

have three distinctive elements (Figure 2.5): i) two temperature probes: one on the inlet

and one on the outlet water pipe, ii) a flow meter installed on the outlet water pipe, iii) a

computer to calculate the corresponding thermal energy consumption out of temperature

and flow measurements with respect to the of the piping system features.

Energy meters can be integrated to the water circuit with specific interventions (cir-

cuit cleansing). However, this installation is costly and sensors cannot be removed af-

terwards. Considering the needs of our sensor network, this option is not considered.

Implemented thermal meters use ultrasonic water flow probes that do not require an in-

tegration into the water circuit. They are simply installed on the water pipes. Ultrasonic

meters measure the time needed by an ultrasonic impulsion to move from the sending

probe to the receiving probe through the water pipes. Knowing the traveling time and

depending on the inner diameter, outer diameter and material of the pipe, the water flow

is assessed. Temperature probes are located on the outside of the pipe and are insulated

from the surrounding environment.

Ultrasonic thermal energy meters are adapted to the objectives of our sensor network,

for short-term measurement campaigns and flexible applications. Nevertheless, they re-

quire a lot of attention regarding their installation and calibration. Calculations can be
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Figure 2.5: Schematic of a thermal energy meter for heating or ‘DHW energy metering –

Adapted from [33].

significantly influenced by a poor set up of the ultrasonic probes or wrong piping charac-

teristics (diameters, materials, or if the circuit is clogged). Furthermore, the position of

the probes is important to accurately measure the water flow. For example, elbow pipes

drastically impact on the water flow [33].

Thermal energy meters available on the IoT market are not communicating meters,

and it is necessary to add a pulse sensor [34]. As for electricity meters, this sensor counts

the number of pulses from the energy meter (one pulse equals one kWh of thermal energy

consumption). Thermal energy meters require a power supply with circuit breaker and

the pulse sensors are powered with batteries.

Thermal energy consumption data are collected for rather large time-range analyses

(daily, monthly or annual). Hence, an hourly acquisition and transmission time-step is

set up for all thermal energy meters using the operated LoRaWan network.

2.3.4.3.2 Housings

Thermal energy in apartments is characterized considering heaters and DHW pipes, but

it is more difficult than for building-scale data acquisition. Ideally, measurements for both

end-uses should be performed on the main hot water pipes with thermal energy meters.

However, these pipes can hardly be accessed, and such an instrumentation set up would

be too expensive to be considered.
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Contact temperature sensors [35] are installed on all heaters of each instrumented

apartment (Figure 2.6(a)). Measurements are performed on a private LoRaWan network

with thirty-minute data acquisition and communication time-steps.

For DHW, the same sensor ((Figure 2.6(b)) is used with one-minute acquisition time-step

and twenty-minute communication time-step. The small data acquisition time-step aims

to precisely capture DHW consumption through the variations of DHW temperature. The

sensor is installed on the outlet of hot water meters in the apartments.

(a) (b)

Figure 2.6: Installation of temperature sensor for DHW (a) and a heater (b) in apartments.

2.3.4.4 Energy consumption: natural gas

Natural gas is only used in a few apartments for cooking. Natural gas meters are equipped

with Gazpar modules [36]. As for the Linky smart electric meter, the Gazpar meter is a

smart meter implemented by the national administrator GRDF (Gaz Reseau Distribution

France) and collecting consumption data. A pulse sensor is used on Gazpar meters (Figure

2.7). It reads every pulse corresponding to a 10 dm3 gas consumption. Unlike other pulse

sensors, it is specifically adapted to be used in explosive atmospheres [37]. A total of four

sensors is implemented with a one-hour data acquisition and communication time-step on

the operated LoRaWan network.
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Figure 2.7: Pulse sensor for natural gas Gazpar meter.

2.3.4.5 Indoor environment quality (IEQ)

2.3.4.5.1 Common areas

In common areas of our building case study, IEQ is characterized through indoor air

temperature (IAT) and relative humidity measurements. One sensor is used to provide

both measurements [38]. For each building, three sensors are installed: one on the ground

floor, one on the intermediate floor and one on the last floor. Preferably, these sensors

would be installed at a height of 1.50 meters to give an averaged picture of the temperature

and humidity level in the rooms, considering temperature gradient phenomenon. However,

since sensors are installed in corridors, they need to be out of sight and reach. Sensors

are located under the ceiling, on the structure of the stairs (Figure 2.8).
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Data acquisition time-step is set to one hour. No sudden variations of temperature

and humidity are expected, apart from doors or windows that could be opened near the

sensors. Data are communicated with hourly time-step using the LoRaWan operated

network.

Figure 2.8: Temperature and humidity sensors installed in the buildings shared areas.

2.3.4.5.2 Housings

IEQ in housings is characterized with two types of sensors. A first sensor performs four

IEQ measurements: IAT, relative humidity, brightness and CO2 concentration [39]. These

parameters are also combined a fifth measurement in the sensor, the occupants’ presence

detection, described in the following section. The sensors are located in the living room of

housings. Measurements are performed with half-hour time-step on a private LoRaWan

network (private LoRaWan network #2 in Figure 2.3).

A second sensor measures the contact temperature of the inner surface of cold walls.

The sensor is the same as for heaters and DHW. These data aim to assess the radi-

ant temperature of walls, which is a relevant parameter regarding indoor comfort: even

though the air temperature might be high enough, if the surrounding walls are too cold

it affects the feeling of comfort [40]. These data can also be combined with IAT measure-

ments to calculate the operative temperature – the average between IAT and the indoor

temperature of cold walls. These sensors are set up with hourly data acquisition and

communication time-steps on the operated LoRaWan network.
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2.3.4.6 Occupants’ behavior

2.3.4.6.1 Common areas

Occupants’ behavior characterisation in buildings common areas is performed with pres-

ence detection sensors above the main entrance door of the buildings (Figure 2.9). Sensors

are infrared presence detectors [41]. This technology is commonly found in automated

lighting systems linked with timers [19]. PIR sensors do not discriminate between people

entering or leaving the building and they cannot count the number of detected people.

Presence detection is aggregated and communicated at hourly time-step using the oper-

ated LoRaWan network.

Figure 2.9: Infrared presence sensor in buildings shared areas.

2.3.4.6.2 Housings

Occupants’ behavior in households is characterized through two measurements: presence

detection in the apartments (from the same multi-measurement sensor as for IEQ moni-

toring [39]), and window and glazed door opening detection. Presence is assessed using an

infrared sensor as in common portions of the buildings. Data are aggregated at half-hour

time-step. It counts the number of passing in front of the sensor.

Window opening detection is monitored with contact sensors [42]. A magnet is

connected to the sensor and another magnet is installed on the window. When the two

magnets are in contact, then the window is closed, otherwise it is opened. Data acquisition

and communication are event-driven: data are acquired and transferred when the window

opening status changes. Then, if there is no status change for over an hour, a data point

is sent every hour to recall the latest opening/closing status of the window.
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2.4 Discussions

2.4.1 Feedback on the implementation and operation of the sen-

sor network

The deployment of our sensor network provides a valuable feedback on the main achieve-

ments and difficulties in the implementation of an instrumentation solution. Critical

points to take into account can be summarized in three categories (ranked by decreasing

impact on the project) and are further described in [43]:

• Installation conditions and environment. The user case study is a group of three

existing buildings from 1974. The integration of a sensor network is more difficult

than with a newly built or more recent building. In that case, the building design

would be more adapted to support the monitoring solution, even with an on-going

retrofit. Also, since it is the purpose of the research project, buildings are occupied.

This means that the sensor network must be as little intrusive as possible. However,

necessary maintenance can still disturb inhabitants and data collection may be

disturbed back by inhabitants (moving or switching off sensors and gateways, for

instance). Finally, retrofit actions are conducted during part of the instrumentation

process, which resulted in several issues.

• Targets of the sensor network. Because the sensor network targets a large range of

measurements, it is necessary to mix many different technologies of sensors, data

acquisition, communication and storage. These technologies are not always fully

compatible and result in additional challenges for the long-term project mainte-

nance. Also, the sensor network relies on IoT objects. We observed that the current

IoT market is more fitted for large-scale deployment strategies over a year or so,

rather than for high-precision measurements and long-term monitoring.

• Project management. From the design brief to the installation and long-term main-

tenance, the sensor network is a whole project than needs an optimized management,

specifically regarding external parties, such as volunteering housings and contrac-

tors. Participants are essential to the project, since the results entirely depend on

a sufficient amount and diversity of collected field data. Contractors also play a

significant role. They usually provide a ”plug-and-play” management: sensors are

provided, set up, installed and maintained. However, most of the IoT contractors

are energy managers that delegate installation and maintenance tasks to other con-

tractors and have limited field knowledge. Hence, it is very time-consuming to solve

any technical issue. On the other hand, a direct management by our research team
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eased and fasten up technical issues processing, but it required extensive technical

skills and knowledge.

In addition to the published results [43], the installation of sensors in households

has highlighted a few more insights on the challenges of building energy monitoring,

specifically on the limitations of radio frequencies. LoRaWan is the main communication

protocol of our sensor network. It uses free radio frequencies and is supposed to benefit

from a ”long range wide area” network. However, construction works have shown that the

LoRaWan network is easily disturbed, especially with scaffolding all around the buildings

that disrupted radio communication. The position of the LoRa gateways has a significant

impact as well on data communication, even with sensors and gateways within the same

building. Several options could be considered to try and solve this issue but all show

much uncertainty regarding their efficiency. LoRa antennas located on a building roof is

a simple and efficient strategy. However, it is difficult to link the antenna to the gateways,

knowing that the sensors must be above or at the same level as the gateways. It could

be possible to add more gateways but there is a question of cost and a lack of adapted

locations onsite to secure the equipment. Switching to an operated LoRaWan network

would also be a solution, but without guarantee that it could solve the problem. Moreover,

some sensors would remain on the private LoRaWan network because of acquisition time-

steps and bandwidth usage, and the cost of data collection fees would be significant with

an operated network.

2.4.2 Limitations and potential improvements

The objective of our sensor network was to provide an exhaustive characterization of

energy consumption, IEQ and inhabitants energy-driving behaviors in an occupied and

retrofit group of three existing buildings. We achieved a significant challenge with the

monitoring of twenty different parameters in housings, common areas and energy systems

of the three studied buildings with 170 sensors collecting data for over three years in

common areas and for one year in half in apartments. The implementation of the sensor

network resulted in a significant amount of collected data that provide extensive knowledge

on the operation of the studied buildings. Nevertheless, the sensor network still highlights

several gaps that leave room for improvements.

2.4.2.1 Measurements

The characterisation of the occupants’ behavior is performed with presence detection and

windows/glazed doors opening detection. Presence detection is achieved using a single
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sensor. One single presence detection sensor for each household limits the data acquisition

strategy. The location of the sensor, in the living room, also constrains data analyses –

even though volunteers declared spending most of their time in this specific room. Sensors

perform presence detection but they cannot count the number of occupants in the room.

To cope with these constraints, in terms of instrumentation, there would be complemen-

tary solutions, such as using additional sensors for presence detection in different rooms

and a monitoring of the entrance door opening. However, additional sensors would bring

up cost challenges and question inhabitant’s privacy protection. Housing occupancy can

be deduced from other measurements, including CO2 concentration, electricity consump-

tion of appliances and window opening. This option can be considered but relates to data

analyses rather than instrumentation solution.

Comfort and indoor environment characterization may be improved as well. In the

present study, it includes indoor air temperature, relative humidity, CO2 concentration,

luminosity and indoor surface temperature of cold walls. Several aspects could be further

explored with our sensor network, such as indoor air quality [44] (VOCs, air pollutants,

PM2.5), the characterization of thermal comfort [45], or visual and noise disturbances [46]

that can impact on occupants’ behaviors and energy consumption.

Thermal energy consumption monitoring at apartment scale was significantly con-

strained in our project. Because the main hot water pipes were not accessible, DHW and

heating energy consumption was assessed with contact temperature measurements on

DHW pipes and heaters. These measurements are useful to understand DHW and heat-

ing patterns. However, to translate to energy consumption, it requires other information

– hot water flow, heater and pipe characteristics – that cannot, or only partially, be col-

lected in apartments. Therefore, several assumptions are necessary to assess the energy

consumption. Another gap lies in the characterization of energy systems and building

envelope. Energy systems are considered with their energy consumption and through

information extracted from documentation. Building envelope is known thanks to the

retrofit project management portfolio. Depending on the energy system, there are many

existing characterization techniques [47]. For building envelope characterization, several

industrial and experimental methods have been developed as well [48]. Nevertheless, most

methods were too specific and costly for our research project that aimed a broader picture

of building energy monitoring.

Finally, spatial and temporal data granularity are essential aspects that could be im-

proved. More sensors in more apartments with a smaller time granularity would offer more

opportunities. Nevertheless, choices were made to the best of the knowledge regarding
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the needs for data and energy analyses, the specificities of the experimentation site and

also keeping in mind that the larger and the more detailed the sensor network, the larger

the challenge for day-to-day management, data processing and long-term maintenance.

With budget constraints and difficulties for the enrollment of participating households, it

was also decided to restrict the household sample and increase the number of sensors for

each housing, rather than limiting the number of sensors and recruiting more volunteers.

However, a limited eight-apartment sample can question the reliability of data analyses

and replicability of the research work.

2.4.2.2 Technological choices

The choice of data to collect is critical to perform the expected energy analyses. Mea-

surements are also impacted by available monitoring technologies and communication

protocols. Technological choices are performed based on the IoT market, the expertise of

contractors, the needs of our research project and the overall cost of the instrumentation

solution.

The instrumentation solution is efficiently monitoring the targeted measurements.

However, sensor technologies can be discussed. For instance, pulse technology is a sim-

ple, affordable and efficient mean to collect energy consumption data. Meters with pulse

output produce one pulse for each unit of consumed energy. The aggregated number of

pulses for a given time-step is the information communicated by a pulse sensor connected

to an energy meter. However, this technology does not provide the precision of meter

readings and rounds the energy consumption for each time-step. Hence, electricity and

thermal energy consumption monitoring can be improved. For the former, TIC technology

(Télé-Information Client, standing for remote client information) is an option. Instead

of counting the number of pulses, it collects the same data as those sent to the electric-

ity network administrator (energy index, amp demand, power demand, active power).

However, this technology was not available with the expected specifications through the

contractors we selected and it would have been too complicated for our research team to

install and supervise these sensors on its own.

For thermal energy monitoring, because of the configuration of our building case

study, ultrasonic thermal energy meters were selected. These meters can theoretically

be installed and removed easily on any piping system. In practice, ultrasonic meters

show strong limitations. Installation and calibration is tricky. Indeed, ultrasonic probes

must be carefully set up to make sure that the ultrasonic signal and flow calculation are

reliable. It needs a steady and reliable flow with a clean piping system, and meters must
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be installed on pipe sections at least two-meter long, without bending, size differences or

pumping systems nearby. Probes are very sensitive to dust, humidity, vibrations and any

handling that can significantly disturb the ultrasonic signal. Consequently, maintenance

is advised every six months to ensure the measurement quality. Finally, energy meters

also embed a calculator to assess the energy consumption based on flow measurements,

inlet-outlet temperature difference and characteristics of the piping system. The latter are

not always fully known. Therefore, integrated meters would have offered a more reliable

measurement but could not be installed. The other option would have been a Modbus

[49] communication protocol to provide flow and temperature difference data along the

energy consumption.

Other sensor technologies can be targeted by potential improvement, including pres-

ence detection and window opening sensors. There is a variety of occupant counting

technologies already used in industrial and commercial buildings [19]. These could be in-

vestigated with a focus on the preservation of privacy protection and a limited intrusivity

of the monitoring solution. Window opening detection sensors gave relevant insights on

occupants’ behavior. Nevertheless, a main issue is the impossibility to accurately assess

the amount of missing data because of the event-based data collection process. Fur-

thermore, window opening detection translates to window opening and closing duration.

There is no information on the opening width of the window. This information impacts

on the air flow between the inside and outside, that affects the IEQ, the IAT and the

heating energy demand.

Finally, communication protocols and equipment are an important part of the sensor

network. LoRaWan and GPRS both show pros and cons. The latter is reliable regarding

punctual data loss and network dependency. However, it may have troubles accessing the

network depending on the location of the sensors in the building. Moreover, because it

transfers data upon collection, the life expectancy of batteries is rather short. LoRaWan

is the main communication protocol for our research project, divided between operated

and private networks. Operated LoRa network is a ”plug-and-play” solution. It is fully

managed by operators and depends on a national LoRaWan network. However, because

it is operated, there are significant usage constraints regarding the amount of transmitted

data. A private network is the obvious replacement solution. Nevertheless, it entirely

relies on dedicated gateways. This is a precarious situation that results in data loss if

there are any arising technical issue.
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2.4.2.3 Calibration and long-term maintenance

Calibration and long-term maintenance are critical aspects to consider during the instal-

lation and supervision of a sensor network. They are essential to ensure the reliability of

collected field data over the duration of the research project.

All sensors except for the thermal energy meters were calibrated by manufacturers be-

fore their installation. Thermal energy meters are calibrated upon installation – although

temperature and flow measurements cannot be calibrated – and, as described in Section

2.4.2.2, it is recommended to regularly check on the calibration of these meters.

To account for potential measurement drifts, several options are available. Occasional

measurements onsite can be made to compare with a calibrated sensor. If a difference is

spotted between collected data and punctual measurements, sensors can be removed and

sent back to their manufacturer for calibration. The measurement difference can also be

accounted for in the following data analyses if the previous solution cannot be considered.

In any case, onsite punctual measurements are challenging. They require several-hour

measurements in apartments at different times over the research project, while one of

the key aspects of the solution is to be as little intrusive as possible. If sensors are sent

back to manufacturers, it results in a loss of data during the calibration, unless removed

sensors are momentarily replaced by other sensors which have to be specifically set up

for this application. This solution could not be implemented in our project because of

limited number of available sensors and the consecutive sensor management. Further-

more, measurement comparison is more or less simple to implement, depending on the

type of measures that are performed. IEQ, presence detection and contact temperature

measurements can be checked. It is significantly more challenging for electricity-related

sensors, when comparative measurements have to be acquired at the exact same time as

for the sensors installed onsite.

Due to technical and time constraints, an extensive calibration study could not be

conducted in our research project. Only IEQ sensors measuring IAT, relative humidity,

luminosity, presence detection and CO2 concentrations were investigated before their in-

stallation, to ensure the reliability of their measurements. The details of this study are

discussed in Appendix B.2.

2.4.2.4 Data loss

A final aspect to improve in our sensor network is related to the missing data. Sensors

were installed onsite and supervised to make sure they measured and communicated the
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targeted data. Nevertheless, this does not mean collected data are flawless. There might

be outliers (unexpected negative, zero or abnormal data, or error messages) or missing

data. These are related to different identified causes, such as:

• Installation conditions and environment: walls, scaffolding, metal elements, sensor

location or distance to the gateways;

• Unexpected sensors and gateways handling, from residents, construction teams or

visitors, willingly or accidentally;

• Electricity shortage affecting sensors and gateways with grid power supply;

• Equipment failure: worn out batteries, crashed sensors or gateways, either because

of manufacturing defect, punctual bugs, overuse or long-term usage defect;

• Network issues including difficulties for sensors or gateways to access GPRS or

LoRaWan networks;

• Server issues.

Because of the nature of these issues, there is very little that can be done to prevent

data loss. However, we observed that an efficient mean to reduce the loss of data to

a minimum is to implement an automated data collection checking system. This was

experimented on part of our sensor network, with a daily verification of the amount of

collected data for a group of sensors we supervised, comparing the size of the daily data

packages to the size of a normal data package, when there is no missing data. This solution

could be further improved with a dedicated detailed process to check on the amount of

data received for each individual sensor, and to send warning e-mails in case of a suspected

data loss.

Conclusions

This thesis project depends on field data collection for the characterization of energy

consumption (electricity, thermal energy, natural gas), local weather, indoor environment

quality (temperature, humidity, luminosity, CO2, temperature of indoor walls) and occu-

pants’ behavior (presence and window opening detection) in residential buildings. A case

study of three retrofitted residential buildings is selected. A sensor network is deployed

onsite, in common areas, on energy systems and in a eight-housing sample. The sensor

is entirely wireless, using LoRaWan and GPRS communication protocols. It includes

170 sensors and meters distributed between shared areas with 26 sensors and households

with 144 sensors, for an average of 18 sensors per housing. The weather station includes
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9 additional sensors. Data collection and storage are conducted using FTP and HTTP

servers. The deployment is performed over two years and a half, in four different batches.

Data are collected for over three years in common areas and for more than a year and

half in apartments.

The deployment and operation of the sensor network provided a relevant feedback

for the replicability of the project. Critical points include the installation conditions and

environment, the targets of the sensor network and the project management.

Efforts were made to cover most aspects of building energy monitoring in a retrofit

context. Nevertheless, some aspects were more depicted than others because of techno-

logical, human and budget constraints. Energy consumption is the most exhaustively

covered category of measurements with 102 related sensors (57% of the solution). IEQ

and residents’ behaviors could be improved both in terms of data acquisition technolo-

gies and targeted measurements to provide a more complete overview of the case study.

Calibration of the sensors network and long-term maintenance are significant topics as

well. They should be further explored to ensure the reliability of the solution and of the

collected data.

Despite these difficulties, the experimental set up resulted in a significant amount of

collected data to deepen the knowledge and understanding of the operation of the building

case study. Collected data should help assessing the efficiency of the retrofit actions and

improving building energy modeling performances. Field data analysis, which is the first

step towards these objectives, is presented and discussed in the following chapter.
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Chapter 3

Processing and analyses of field data

for building energy modeling

enhancement

The third chapter focuses on the analysis of field data collected through our sen-

sor network. It starts with a description of the data pre-processing, including data

cleaning, formatting, quality assessment, reconstruction, aggregation and processing

of specific datasets. From the many available measurements, a set of five parameters

is selected, namely the indoor air temperature, the occupancy, the electric dissipated

power, window opening and domestic hot water use, to target energy consumption,

indoor environment quality and usages. The second part of this chapter is dedicated

to the analyses of these parameters using descriptive statistical analysis techniques and

daily profile clustering. Finally, this chapter is concluded by a discussion on analyses

results and remaining opportunities for a better understanding of the buildings operation.
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CHAPTER 3 – PROCESSING AND ANALYSES OF FIELD DATA
FOR BUILDING ENERGY MODELING ENHANCEMENT

Introduction

As a result of the sensor network presented in Chapter 2, a large amount of field data is

collected. Collected data provide a variety of opportunities to acquire better knowledge

on building energy consumption, building energy management, but also other aspects

including the indoor environment quality and the interactions between occupants and the

buildings.

Prior to any data analysis, data processing has several targets. The first is the essen-

tial cleaning and formatting, to ensure data quality, to retain the essential information

and to work with a unified file format. Data are also partially rebuilt to collect enough

information and to perform reliable analyses. Then specific datasets are processed de-

pending on the intended analyses, with temporal aggregation and modifications to match

modeling inputs.

In this chapter, the goal of data analyses is to use field data to improve modeling

assumptions, specifically on usage scenarios and the regulation of energy systems, through

the study of the impact of occupants’ behavior on building energy consumption.

There is wide variety of tools and techniques for statistical analyses on occupants’

behavior, energy consumption and indoor environment such as classification algorithms

[1], artificial neural networks [2] or statistical analyses, onsite diagnoses and surveys [3].

Because of the many different monitored parameters and the large quantity of collected

data, it is hardly possible to implement specific tools for each targeted measurement.

The choice was made to build on previous work conducted by our research team on time

series analyses [4, 5]. Analyses focus on the characterization of data distributions over

selected timeframes such as heating periods, and the extraction of typical patterns using

classification techniques.

In the present chapter, the first section briefly introduces the tools used to perform

data analyses. Section 2 details the pre-processing of collected data with cleaning and

formatting, data quality assessment, reconstruction and aggregation, and specific mea-

surements processing. Section 3 presents the analysis techniques and results, focusing

on indoor air temperature and heating patterns, occupancy, electric dissipated power,

window opening and DHW.
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3.1 Materials for data processing and analysis

Data processing and analysis are performed using Python 3.7.12. Two environments are

used, with Spyder 3.8 and Google Research Colab 7.5.0.

Most of the processing rely on Pandas 1.3.5 and Numpy 1.21.5 packages, along with

Statistics and Math modules. Date and time formatting is supported by Datetime module.

Graphs and visualization are made with Matplotlib 3.2.2 and Seaborn 0.11.2.

Clustering is performed using R 4.1.1 in RStudio environment, with NbClust 3.0 and

TSclust 1.3.1 packages.

Data storage and part of the visualisations are performed using Microsoft Excel.

3.2 Data pre-processing

3.2.1 Cleaning and formatting

Prior to advanced data pre-processing steps and data analyses, it is essential to ”prepare”

the data with cleaning and formatting.

Data cleaning aims the recovery of critical information: date, time, measurement and

unit of measure. Remaining data such as battery level, error codes, text messages are

removed. In a second time, inconsistent data are also treated. Formatting standardizes

the data filing structure to help implementing unified coding scripts for processing and

analysis.

Regardless of the type of measurement, data from a given sensor can be related

to a unique identification number, called DevEUI (device extended unique identifier).

However, because of the different types of sensors, measurements, manufacturers and

communication protocols, the sensor network initially provides data in different format.

Data collected from step 1 batch 1 – common areas and energy systems – and step 2 batch

2 – electricity consumption and natural gas in housings (Section 2.3.1) – are managed by

a contractor. One file is generated every day for each sensor and attributed with their

respective DevEUI. However, it combines the different measurements if a sensor monitors

more than one parameter – for example, temperature and humidity measurements in

common areas. The weather station (Step 1 batch 2) creates one file for all measurements

every day. Data from sensors in apartments (step 2 batch 1) come in two different formats.

Sensors for IEQ and presence detection send their data on a dedicated FTP server with

limited data storing. Other sensors from this batch are treated separately. Each gateway
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provides one JSON (javascript object notation) file every day that aggregates data for

each connected sensor. JSON files are decoded and cleaned to retrieve the expected

information.

From the different sources of data, a unified format is created: one CSV file for

each measurement of each sensor, with daily update. Data are presented as time series

in columns. New data are added under the existing data. Another format is also used

specifically for clustering applications, with daily profiles (DP). CSV files are updated

daily with one new line for each day of data.

3.2.2 Data quality assessment, reconstruction and aggrega-

tion

3.2.2.1 Data quality

After cleaning and formatting, data quality is assessed before the reconstruction and

aggregation processes. Data quality assessment highlights the gaps in collected data.

These gaps have various origins. They also impact on the choice of available analysis

timeframes and data analysis techniques. The assessment of data quality provides two

types of information:

• The amount of collected data compared to the amount of expected data – it gives

an overall picture of the performance of the sensor network for different types of

measurements and different locations in the studied buildings;

• The time periods when one day or more data are missing for a given sensor – it

highlights significant periods when data are missing and helps investigate the causes

of data shortage.

A review of the performances of data collection is summarized in Appendix C.1, with

data collection rates for each type of sensor in the housings and common areas.

The main identified sources of data loss are:

• Communication issues: between sensors and gateways, between sensors and the

Internet (for GPRS), between gateways and servers;

• Unexpected equipment handling: removed or damaged sensors, unplugged gateways;

• Equipment failure: discharged batteries, sensor failure, power cuts, server crashing.

• Issues regarding data accessibility with contractors, specifically for some connected

plugs, pulse sensors for natural gas consumption and pulse sensors for electric smart
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metering.

3.2.2.2 Data reconstruction

Data reconstruction is performed to replace small parts of the missing data. Reconstruc-

tion applies to parameters including indoor air temperature (IAT), presence detection,

dissipated power (from electric power demand), DHW temperature and window opening,

that are further analyzed in the following sections.

The goal is not to explore the topic of time series reconstruction nor to develop

advanced reconstruction tools. In this context, data reconstruction aims to increase the

amount of available data, while keeping reconstructed information as realistic as possible

and so that they are representative enough of the existing building operation. The targets

of reconstruction are short periods of time and punctual missing data points. Indeed,

when too many consecutive data are missing, the dynamics of time series can hardly be

reproduced without the implementation of more complex algorithms.

The first step towards reconstruction is to assess the randomness and distribution

of missing data. Because data loss is related to unexpected events that are completely

independent from the measurements – i.e. there is no relationship between the fact the

data are missing and the type of data that are collected – data are missing completely at

random and missing data distribution is arbitrary within the datasets.

Reconstruction and filling of time series with missing data is a specific research topic

with many different available techniques. According to the literature, methods can be

grouped based on their implementing complexity [6]. Straightforward techniques rely

on imputation of missing data, either statistical (mean, regression) or machine-learning-

based such as k-NN or ANN. More complex approaches are model-based and implement

a data-driven model of time series to fill the gaps in datasets. In the present case, we aim

reconstruction for pattern classification in time series data. Among the many available

techniques, imputation with mean calculation of the close datapoints is selected.

A final aspect of the reconstruction is the reconstruction threshold. This parame-

ter defines the maximum amount of consecutive missing data points that can be recon-

structed, using the latest acquired measurements. The threshold is set depending on both

a number of data points and time scale, relating to the selected sensor, measurement and

its physical meaning. For instance, IAT in apartments is not expected to show sudden

variations. However, data are already acquired at half-hour time-step. Therefore, the

threshold is set to two data points, then one missing hour that can be reconstructed at

most. Electric power demand at housing-scale is measured with one-minute time-step and
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is most likely to rapidly and significantly increase or decrease. The threshold is set to

4 minutes. The summary of thresholds for the different measurements is given in Table

3.1.

Table 3.1: Sensors, data and thresholds for reconstruction.

Sensor and type of data
Acquisition

time-step

Reconstruction

threshold

Contact temperature of DHW pipes

(°C – SensingLab TEM-LAB-14NS)
1 minute 15 data points

IAT (°C – ELSYS ERSCO2) 30 minutes 2 data points

Presence detection (number of pass-

ing – ELSYS ERSCO2)
30 minutes 2 data points

Pulse sensor for electric power de-

mand in smart meters (Wh – Flu-

dia BelSenso FM410e) for dissipated

power

1 minute 4 data points

Window opening detection (N.A. –

SensingLab OPE-LAB-41NS)

Event-based,

resampled to 1

minute

60 data points

Results of data reconstruction are provided in Table 3.2. They highlight the impact of

this pre-processing step over the instrumentation period. The effect of the reconstruction

is significant on IAT data and presence detection data (performed by the same sensor),

and on DHW temperature data. ELSYS CO2 sensors, for the former two parameters,

often lack a few data points due to poor cellular network. This can easily be corrected

with the implemented reconstruction strategy. Similarly, DHW data, with a one-minute

acquisition time-step, can easily be filled to improve daily profile completion. Reconstruc-

tion barely impacts on electric power demand because Fludia sensors loose very little data

when they are operational. However, less than 40% of the expected profiles are available

due to several large time periods of malfunction. Finally, for window opening detec-

tion, no additional data could be recovered with reconstruction because of the selected

reconstruction threshold and event-based data acquisition.
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Table 3.2: Impact of data reconstruction and aggregation on daily profile completion –

statistics relate to the whole instrumentation period.

Collected After reconstruction After aggregation Expected

Complete

profiles

Acquired

vs. ex-

pected

Complete

profiles

Acquired

vs. ex-

pected

Complete

profiles

Acquired

vs. ex-

pected

Complete

profiles

IAT 430 7% 3,964 63% 4,030 65% 6,258

Presence 430 7% 3,964 63% 4,030 65% 6,258

Electric

power

demand

1,681 32% 1,797 35% 1,930 37% 5,197

Window

opening
6,784 39% 6,784 39% 10,001 57% 17,405

DHW 202 4% 1,171 23% 3,039 59% 5,153

3.2.2.3 Aggregation

As the many different sensors collect data at different time-steps, temporal data gran-

ularity requires a unified time-step to perform data analyses. Hourly time-step appears

to be the most consistent choice. For energy consumption, it directly relates with the

measurement unit (kWh). Also, most of the collected data aim to be used as operation

scenarios in building energy models, and modeling software rely on scenarios with hourly

time-step.

Aggregation is performed with the average of measurements within the same hour, for

all types of data. Energy consumption measurements, specifically electricity consumption

on smart meters is modified into power demand prior to aggregation.

Aggregation also impacts on data availability for analyses. At first, within a given

hour, several datapoints may be missing. After hourly aggregation, considering that

data aggregation is an hourly average, the completion of daily profiles is higher than

with a lower time-step (Table 3.2). It significantly enhances daily profile completion for

window opening and DHW temperature data, since both have a one-minute acquisition

time-step (defined acquisition time-step for the former, and resampling time-step for the

latter).
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3.2.3 Processing of datasets

In addition to quality assessment, reconstruction and aggregation, an additional specific

process is also applied depending on the type of acquired data, either before or after the

three other steps described above. This process applies to DHW temperature, window

opening and presence detection data.

Window opening data collection is event-based: data are acquired only when the

opening status of the window changes from opened to close or counterwise. A data point

is also sent every hour after the last update if the opening status has not changed within

the past hour. Hence, window opening requires a steady time-step to be analyzed as time

series. Resampling is performed at one-minute time-step. Resampled missing data are

replaced following the reconstruction process. Aggregation is performed at last.

Presence detection sensors are detecting and counting the number of passages and

movements within the range of the sensors. The number of passages is used to assess

the occupancy ratio of the apartment: if there is one passage or more, the occupancy

ratio is set to 1, otherwise it is set to 0. A checking is performed during night-time when

occupants are expected to be asleep and to ensure there is no faulty detection from the

sensor. Reconstruction and aggregation are performed afterwards.

DHW temperature is monitored using one-minute temperature measurements. How-

ever, energy modeling scenarios rely on hot water volume consumption for a given tem-

perature. Water consumption cannot be measured since meters are already installed and

operated by the billing company, and data cannot be accessed. Daily hot water volume

consumption is extracted from the study conducted by ADEME [7] on DHW needs in

residential housings. Two types of data can be used: daily DHW use depending on the

number of people in households, and daily DHW use depending on the size of the con-

sidered apartment. The latter is not as accurate as the former since in the present case

study, large apartments are sometimes occupied by one or two people instead of a fam-

ily. Hence, daily DHW use per people is the selected information, as detailed in Table

3.3. Reconstruction, aggregation and clustering are performed prior to transformation of

temperatures to DHW usage.

A 40°C-temperature threshold is applied on DHW temperature measurements to

match with the data extracted from the study of ADEME [7], along with binary process-

ing: any datapoints of 40°C and higher is replaced by one, for one minute of DHW use.

Other datapoints are replaced by zeros. Reconstruction is performed prior to this step

and aggregation is performed after, to give a number of minutes of DHW use for each
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hour of the day. The daily DHW use from Table 3.3 is evenly distributed between each

minute of DHW use. This process is depicted in (Figure 3.1).

Table 3.3: Averaged DHW daily needs per occupant and household (unit: liters, at 40°C
temperature) – Source: [7].

Number of people in housings

1 2 3 4 5

Average use per occupant (liters) 80 ±35 60 ±25 50 ±20 45 ±20 45 ±20

Average use per housing (liters) 80 ±35 120 ±45 150 ±50 170 ±70 220 ±105

3.3 Data analyses for building energy modeling en-

hancement and calibration

3.3.1 Analysis methods

As stated in the previous section, analyses methods are implemented on five types of data:

IAT, presence detection, DHW use, window opening and electric power demand. Two

types of data analyses are performed: descriptive statistical analyses and daily profiling

through clustering.

3.3.1.1 Descriptive statistical analyses

Descriptive statistical analyses focus on the characterization of data distributions in dif-

ferent samples. It is the first step to provide a relevant picture of different patterns in

collected field data.

Six tools are implemented on Python to provide different types of graphical and

statistical analyses. These can be distributed in three categories.

At first, a simple graphical inspection of time series is performed to highlight potential

missing data or long term (e.g. annual or monthly) patterns (Figure 3.2(a)). Calendar

mapping (Figure 3.2(f)) can be used for a similar purpose, using a three-dimensional

graphical representation with hours on abscissa axis, days on ordinate axis and a color

code from the lowest to the highest value of the considered parameter.

A second category of tools provides quantitative information on data distributions.

Adapted from energy balance tools, cumulative frequency curves (Figure 3.2(d)) rank

the values of a parameter from the highest to the lowest value and their corresponding
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Figure 3.1: Processing of DHW temperature measurements into volume consumption DP.
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Figure 3.2: Tools for descriptive statistical analyses: (a) time series graph, (b) box-plot, (c)

density plot, (d) cumulative frequency curve, (e) scatter plot, and (f) heatmap – displayed

data are IAT measurements in B2/0 from 2021/10/20 to 2022/05/10.
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frequency. Using different thresholds, it is possible to know the percentage of values

ranging above the thresholds for a given dataset. Density curves rely on a probability

density function to visualize what range(s) of values comprise most of the data (Figure

3.2(c)). Both tools provide relevant insights on the predominant patterns in the collected

field data. They can also help comparing different datasets, such as day and night or

weekdays and weekends. They can be complemented with box-plots that give the median,

first and third quartiles (Figure3.2(b)). The also provide two other values, the ”whiskers”

of the boxplot, which are the first value greater (for the higher whisker) or lower (for the

lower whisker) than the third quartile plus the inter-quartile (for the higher whisker) or

than the first quartile minus the inter-quartile (for the lower whisker).

Scatter plots show two different datasets on the same graph – the temperature of

the heater of the living room of B2/0 as a function of the difference between the IAT

minus the OAT in Figure 3.2(e)) – to investigate potential correlations. However, for the

analysis to be accurate, it requires that data from the different datasets must have the

same time-step and must be collected at the same time.

3.3.1.2 Daily profiling

Following descriptive analyses, classification tools are implemented on daily profiless (DP)

with hourly time-step. The goal of the clustering serves three purposes: to identify typical

operation patterns and provide a better understanding of the building use, to embed

realistic operation scenarios in energy models and to keep the use of data to a relatively

simple level.

The first purpose helps highlighting the diversity of operation profiles and under-

standing causes of such a diversity. The second purpose underlines the difference between

field collected data and standard data used in energy models. The third purpose keeps

the use data to a reasonable complexity. Using collected data without clustering could be

a solution, but there would not be any identification of operation patterns. Also, for the

sake of replicability, it is barely a practical solution to consider. It is quite uncommon

to have such an opportunity of detailed building instrumentation. Moreover, there are

missing data that cannot be reconstructed. Using data for the same days over another

year cannot be done, considering that these data might not be available or that they

would depict behaviors from before the retrofit of buildings.

Daily profiling is performed by clustering. Clustering process is adapted a study we

conducted on daily load profile characterization [5]. Although input data are different,

they remain building operation time series with similar patterns. The clustering process
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provides an almost-automated identification of typical operation patterns and with low

bias. Indeed, the clustering and calculations are fully automated but it requires an inter-

vention from the user, specifically when the cluster boundaries are defined and when a

tied result is obtained regarding the optimal number of clusters.

Clustering process is summarized in Figure 3.3. Following data pre-processing, daily

profiles (DP) with hourly time-steps are used as inputs. The goal is to compare and group

similar DP using a k-means clustering algorithm [8] and Euclidean distance calculation.

Euclidean distance has proven to be an efficient distance calculation comparing DP [9].

The number of clusters – i.e. the number of groups of similar DP – is given by cluster

validation indices (CVI) which are evaluation metrics to assess the optimal number of

clusters in a given dataset. The R package TSClust used for clustering computation

embeds thirty CVI. Five CVI commonly used in the literature for DP clustering are

selected [5]: Calinski-Harabaszch [10], Silhouette [8, 10], Davies-Bouldin [10, 11], gap

statistic [12] and Dunn [10]. The optimal number of clusters is selected with a majority

rule: the highest number of CVI that provide the same results identifies the optimal

clustering results. In case of tied results, both options are analyzed manually by the

user. Cluster distributions are also compared to make sure they are identical. Then

the optimal distribution of DP is extracted and illustrated with two types of graphical

illustrations: i) graphs of DP for each cluster with the corresponding averaged DP of the

cluster (black bold profile), and ii) a calendar mapping of clusters – each cell is related

to a given day and different colors are attributed to the different clusters. Averaged DP

of each cluster are expected to be representative of a specific typical situation that can

be further investigated through cross-analyses with other types of data (type of day or

meteorological data, for example).

Daily profiles are obtained using different data timeframes, depending on available

data and the purpose of the scenarios. Presence detection, DHW use, electric dissipated

power (from electric power demand) and window opening are analyzed over the largest

available timeframe and a maximum of one full year of data – clustering algorithms may

under-perform with more data [5]. However, IAT is only taken into account over the

heating season as it is assimilated to a heating setpoint temperatures in building energy

models. The details of selected timeframes for the different measurements are summarized

in Table 3.4.
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Figure 3.3: Schematic of the clustering process for DP classification.
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Table 3.4: Used timeframes for data processing and analyses – In Bi/j, i stands for the

building number and j for the floor number.

Indoor temperature Presence Dissipated power Window opening DHW

B1/2

From 2021/10/20 2021/6/10 2021/5/8 2021/6/1 2021/1/25

To 2022/5/7 2022/5/7 2021/12/4 2022/5/31 2022/1/6

Available profiles 80% 80% 95% 56% 56%

B1/3

From 2021/10/20 2021/6/10 2021/5/8 2021/6/1 2021/6/1

To 2022/5/7 2022/5/7 2021/12/4 2022/5/31 2022/5/31

Available profiles 80% 80% 97% 87% 97%

B2/0

From 2021/10/20 2021/6/10 2021/5/8 2021/6/1 2021/6/1

To 2022/5/7 2022/5/7 2021/12/4 2022/5/31 2022/5/31

Available profiles 81% 81% 100% 77% 93%

B2/1

From N.A. N.A. 2021/5/8 2021/6/1 N.A.

To N.A. N.A. 2021/12/4 2022/5/31 N.A.

Available profiles N.A. N.A. 98% 83% N.A.

B2/2

From N.A. N.A. 2021/5/8 2021/6/1 N.A.

To N.A. N.A. 2021/12/4 2022/5/31 N.A.

Available profiles N.A. N.A. 95% 82% N.A.

B2/5

From 2021/10/20 2021/6/10 N.A. 2021/6/1 N.A.

To 2022/5/7 2022/5/7 N.A. 2022/5/31 N.A.

Available profiles 80% 80% N.A. 40% N.A.

B3/0

From 2021/10/20 2021/6/10 2021/5/8 N.A. 2021/6/1

To 2022/5/7 2022/5/7 2021/12/4 N.A. 2022/5/31

Available profiles 76% 76% 100% N.A. 92%

B3/2

From 2021/10/20 2021/6/10 2021/5/8 2021/6/1 N.A.

To 2022/5/7 2022/5/7 2021/12/4 2022/5/31 N.A.

Availableprofiles 80% 80% 98% 52% N.A.
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3.3.2 Towards a better understanding of building operation and

usages

An improved understanding of building operation patters depends on the analysis of

key parameters and energy-drivers. Among these drivers, occupants’ behavior holds a

significant place [13]. Then, the characterization of IEQ provides a relevant picture to

investigate building energy consumption, specifically the thermal energy consumption

[3]. In building energy models, these aspects are described through building operation

scenarios. Standard scenarios are extracted from Pléaides energy modeling software.

However, these scenarios do not account for the characteristics of our building case study,

which may result in potential PG between simulated building energy consumption and

measured energy consumption.

In this section, IAT, dissipated electric power, occupancy, window opening and DHW

use are analyzed. Dissipated electric power is deducted from electric power demand and

occupancy results from the processing of presence detection. Standard scenarios from

Pléaides modeling software are compared to scenarios obtained from clustering. The

objective is to identify the differences between standard modeling scenarios and field

data, but also to highlight a relevant and effort-less data analysis process to customize

building energy models.

3.3.2.1 Indoor air temperature and heating patterns

Indoor temperature analysis is performed in two steps using descriptive statistical analysis

and clustering.

A regulatory scenario from Pleiades modeling software would offer four temperature

profiles, for work days, Wednesday, weekends and frost protection, respectively. Temper-

ature varies from 16°C to 19 °C (Figure 3.4) and is set to 7°C for frost protection (only

happening on the last week of the year in December).

Results extracted from box-plots and cumulative frequency curves, summarized in

Table 3.5, show a first eye-opening observation: the mean temperature over the heating

season 2021/2022 in the living rooms is much higher than what regulatory scenarios

suggest. It ranges between 21.4°C and 24.9°C in average with at least 97.9% of the

temperature measurements that are above the 19°C threshold. The range of temperature

within an apartment is also significant, between a 4°C and 8.5°C-difference when extreme

temperatures are compared over the heating period 2021/2022 (from October the 20th,

2021 to May the 10th, 2022). Comparing the instrumented apartments, there is a large
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Figure 3.4: Temperature profiles (°C) from Th-BCE calculations in Pléaides software.

diversity of temperature ranges as well (Figure 3.6). Although the instrumented sample

is relatively small with six housings, it seems that the higher the apartment floor, the

higher the temperature. This would be expected because of a to temperature gradient

within the building and higher solar gains on higher floors. Nevertheless, this ought to be

checked for other housings under the building ceiling which have more cold-wall surface

than the rest of the housings. Furthermore, the apartment B3/0 – ground floor with

North-East orientation – depicts unexpectedly high temperature levels. Possible reasons

might be an unexpected handling of the sensor from the residents and the location of the

sensor that might have been changed. It may also be related to the use of an additional

heat source nearby the sensor. It should be specified that most sensors are placed around

a height of two meters, usually on a furniture, to avoid for the sensors to be handled

by occupants. Therefore, measured temperatures might be slightly higher than what

should be measured at human height (around 1.5 meters) and is usually considered as the

reference room temperature. Nevertheless, taking into account the measurement error

reported by the manufacturer (0.2°C), these parameters cannot be the only explanations

for such high IAT.

Daily temperature profile clustering highlight a second important information as

temperature in instrumented apartments is constant over the day, as shown in Figure 3.7

for B2/0. Similar results are observed for other instrumented housings, and provided in

Appendix C.2. A lower temperature at night would be expected, as it is recommended for

optimal sleeping conditions [14]. Also, an overall decrease of indoor temperature would
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Figure 3.5: Statistical description of temperature measurements in instrumented apart-

ments.

Figure 3.6: Cumulative frequency curves of measured temperatures in instrumented apart-

ments.
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surely result in significant energy savings. However, this heating management strategy

is not identified in the present case. The analysis of cumulative frequency curves and

density curves also confirm observations from clustering results. There is no water logic

for heating management over the day and the night or on weekdays and weekends, as

depicted in B2/0 in Figure 3.8 (density curves for the remaining instrumented apartments

can be found in Appendix C.3).

Figure 3.7: Results of clustering on IAT in B2/0, with daily profiles in cluster 1 (a) and

cluster 2 (b), and calendar mapping of clusters (b) – the black bold line is the mean profile

of each cluster; the white cells in the heatmap are missing DP.

For IAT measurements, clustering always results in a two-cluster DP distribution.

Figure 3.7 (a) and (b) highlight the typical distribution of IAT DP in B2/0, which is

a typical housing among the instrumented sample. Clusters originate from the different
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Figure 3.8: Density curves for B2/0, comparing IAT measurements for day time and night

time (a), and during weekdays and weekends (b).

temperature levels over the heating period. However, there is no obvious correlation with

the type of day (work day or weekend) (Figure 3.7 (c)) which is the driver to define

operation scenarios in an energy modeling software. Considering the absence of water

logic and the constant daily temperature profiles, IAT DP for building energy modeling

are designed with constant averaged temperature measured in apartments over the heating

period and extracted from Table 3.5.

3.3.2.2 Occupancy

Occupancy in apartments results from the processing of presence detection in the living

rooms. Clustering is performed to extract the main occupancy profiles. Data are collected

from June the 10th, 2021 to May the 7th, 2022. A full year could not be considered because

of missing data in May and June 2021 and in May 2022.

Clustering results are illustrated in Figure 3.9, Figure 3.10 and Figure 3.11, for B1,

B2 and B3, respectively. The results clearly depict the activity in instrumented apart-

ments. There are three typical DP distribution: i) workdays versus weekends/days off

in apartments B1/2 and B2/0, ii) workdays, half workdays and weekends in apartment

B1/3, and iii) apartments with one main activity profile – B2/5, B3/0 and B3/2 – when

the second activity profile is either very similar to the first or shows the complete absence

of activity in the apartment. Daily profiles show the mean occupancy profile for each

cluster in the different apartments.

As highlighted in the calendar mapping of Figure 3.9, Figure 3.10 and Figure 3.11,

clustering results are not perfectly following a type-of-day configuration, although the
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main trends do. A rationalisation of results is necessary to depict the global picture of

occupancy and remove specific events that cannot be predicted. In details, in apartments

B3/0 (Figure 3.11(a)) and B3/2 (Figure 3.11(b)), the main occupancy profiles highlight

an activity in the apartments all along the day with a gap at night since sensors are

located in the living rooms. The other cluster shows a very small activity in the apart-

ment that seems, according to cluster mapping, to be related to a prolonged absence of

occupants. Although the second cluster provides relevant information, they are punctual

events that cannot be considered to picture the typical building operation. For these two

apartments, only cluster number one is considered to depict occupancy scenarios along

the year. Similarly, in apartment B2/5 (Figure 3.10(b)), there is one main occupancy

profile (cluster 1). The second profile is very similar to the first and only gathers fifteen

DP over the observation period (4% of the sample). Hence, only the profile from cluster 1

is considered. Occupancy in all three apartments can be related to their occupants: B3/0

and B3/2 have retired occupants and B2/5 hosts an unemployed occupant (Table 2.4).

Then, a steady presence over the day is not surprising.

The other three apartments – i.e. B1/2, B2/0 and B1/3 – behave differently. B2/0

(Figure 3.10(a)) shows a workday profile corresponding to the part-time professional ac-

tivity of the occupants: gap of activity in the morning, occupancy at noon and from 3p.m.

The second profile (cluster 2) shows a steady occupancy all along the day and is mapped as

a day off, happening on weekends and on a random weekday. However, it seems that from

the middle of January, the occupant of B2/0 stays home as on weekends, which is occu-

pancy configuration retained for the energy model. B1/2 has similar occupancy patterns

(Figure 3.9(a)): worked days versus days off. However, days off (cluster 2) are mostly

Mondays and Sundays with the timeframe between December and January. Worked days

(cluster 1) are from Tuesday to Saturday. Also, unlike other apartments, the workday

profile shows a high minimum of occupancy during the day. This might be related to

the occupants’ schedules. One works with office hours. The second is a high school stu-

dent. Finally, B2/3 has three occupancy profiles (Figure 3.9(b)): i) a worked day with

continuous absence during the day (cluster 1) figuring Mondays, Tuesdays, Thursdays

and Fridays; ii) a second cluster with a later peak of activity in the morning and small

gap of occupancy in the afternoon, figuring weekends; iii) a third cluster, with half-day

of absence on Wednesdays. As for other apartments, there are exceptions for profiles on

specific days. For the sake of rationalisation, the described cluster distribution is the one

retained for modeling. Selected occupancy DP distributions for building energy modeling

are summarized in Table 3.5.
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Figure 3.9: Mean clustered occupancy profiles and calendar mapping for B1/2 (a) and

B1/3 (b).

Table 3.5: Cluster summary for occupancy patterns in instrumented housings.

Cluster 1 Cluster 2 Cluster 3

B1/2
Worked days: Tuesday to

Saturday

Days off: Monday and Sun-

day, period from January to

February

/

B1/3
Worked days 1: Monday,

Tuesday, Thursday, Friday
Worked days 2: Wednesday

Days off: Saturday,

Sunday

B2/0

Worked days: four workdays

a week from Monday to Fri-

day

Days off: weekends, one

randomly selected day from

Monday to Friday, period

from January to May

/

B2/5 All days Not considered /

B3/0 Not considered All days /

B3/2 Not considered All days /
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Figure 3.10: Mean clustered occupancy profiles and calendar mapping for B2/0 (a) and

B2/5 (b).
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Figure 3.11: Mean clustered occupancy profiles and calendar mapping for B3/0 (a) and

B3/2 (b).
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3.3.2.2.1 Comparison with regulatory scenarios and correction

Clustering results highlight the diversity of occupancy profiles, depending on the num-

ber of occupants and professional activity. Over the six instrumented apartments, al-

though they share common trends, none have the same occupancy profiles. Standard

occupancy profiles, illustrated in Figure 3.12, are quite different from patterns extracted

from collected data. Hence, there is a significant gain of knowledge in a more detailed

characterization of occupancy profiles.

Figure 3.12: Occupancy profiles from Th-BCE calculations in Pléaides software.

Since measurements are performed in the living rooms, there is limited or no occu-

pancy detected at night. However, it does not depict the real occupancy in instrumented

housings. Furthermore, internal heat gains at night, when occupants are asleep, are lower

than the standard value along the day (90 W) which is pictured in Figure 3.12. There-

fore, a correction is applied over night-time on extracted profiles time. We assume that

all residents are in the apartment at night and sleeping, since there is no or little presence

detected in the living room. The occupancy rate is set to 70%, to match the dissipated

heat level for sleeping adults of 63 W [15]. This correction is applied from midnight (or

the latest activity peak in the early morning) to the first activity peak over 70% in the

morning, and from the latest activity peak of the evening to midnight (Figure 3.13).

Finally, since it is not possible to count the number of people in the apartment but

only to detect their presence, we assume that the apartment is occupied by all known

occupants when a presence is detected by the sensor.
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Figure 3.13: Initial and corrected occupancy profiles for night time in B1/3 – Dotted

lines in the morning and the evening show the initial occupancy profiles, red lines figure the

applied correction.

3.3.2.3 Electric dissipated power

Electric dissipated power is deducted from electric power demand at apartment-scale,

measured on smart electricity meters. Results highlight an overall trend with two-cluster

distributions. The first cluster figures a main group of DP and the second cluster highlights

outlying profiles. For instance, in B1/2, the cluster 1 shows the main dissipated power

pattern, while the cluster 2 groups two outliers (Figure 3.14). Although the range of power,

especially the peak demand can significantly vary in amplitude, typical profiles share a

similar trend over the day. Also, outliers are very different from the other DP. Similar

results are observed for B2/0, B2/2, B3/0 and B3/2, and are described in Appendix

C.4 along with calendar mapping. B2/1 shows comparable results, although highlighted

profiles are not outliers but dissipated power profiles without activity around noon (Figure

3.15). B1/3 is different. A cluster gathers all profiles from the last two days of September

2021 to the middle of October 2021. The second cluster groups all other profiles over the

observation period.

Additional tests are run after the first clustering results on B1/2, B2/0, B2/2, B3/0

and B3/2. Identified outliers are removed – since they are not considered as typical

operation profiles – to try and identify additional typical patterns within the remaining
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Figure 3.14: Clustering results for electric dissipated power in B1/2 – the mean profile of

each cluster is shown with a black bold curve.
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Figure 3.15: Clustering results for electric dissipated power in B2/1.

128



3.3 Data analyses for building energy modeling enhancement and
calibration

profiles. However, the second round of clustering tests did not offer conclusive results.

Details are provided in Appendix C.4. Results concluded that the clustering process either

kept on highlighting outlying profiles that were not initially identified (in B2/0 and B3/0)

or separated profiles that did not exhibit obvious differences with other clusters (in B1/2,

B2/2 and B3/2). This stresses the limits of the classification. It would not make sense

to keep on going with clustering and ”force” a process that is already slightly biased by

the analysis of results from the user. Therefore, the selected profile distribution is those

of the first clustering round, summarized in Table 3.6.

Table 3.6: Cluster summary for dissipated electric power in instrumented housings.

Cluster 1 Cluster 2

B1/2 All days Not considered (2 outliers)

B1/3 All days but...
... period from last two days of September to

middle of October

B2/0 All days Not considered (1 outlier)

B2/1 All days Not considered (similar profiles to cluster 1)

B2/2 All days Not considered (1 outlier)

B3/0 All days Not considered (5 outliers)

B3/2 All days Not considered (2 outliers)

3.3.2.4 Window opening

Window opening detection is performed on all windows and glazed doors in instrumented

apartments, with an average of four sensors for each housing. The details of installed and

operating sensors is summarized in Table 3.7.

Table 3.7: Summary of sensors for window opening detection.

Living room Kitchen Bedroom 1 Bedroom 2 Bedroom 3 TOTAL

B1/2 1 1 1 1 / 4

B1/3 2 1 1 / / 4

B2/0 1 1 1 1 / 4

B2/1 1 1 1 / / 3

B2/2 1 1 1 / / 3

B2/5 N.A. 1 1 / / 4

B3/0 N.A. N.A. N.A. N.A. N.A. N.A.

B3/2 N.A. 1 1 1 / 4

Clustering is performed for each available sensor over an observation timeframe of

one year. For the sake of legibility, all detailed results with DP clustering and calendar
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mapping are provided in Appendix C.5, along with the summary of clustering distribu-

tion.

Among the different housings, there is a large variety of different opening profiles.

These findings are particularly relevant, knowing that the default setting in building

energy models is to consider that the windows are always closed. The main trend is the

difference between the summer months and the rest of the year. The opening DP of

the living room window in B2/2 in Figure 3.16 illustrates this pattern: in summer, the

window is opened between forty and fifty minutes every hour, while in winter, the window

is opened less than fifteen minutes per hour. The summer-winter contrast is highlighted

in B1/2 (kitchen, living room, bedroom 1 and 2), B1/3 (kitchen, living room, bedroom

1 and 2), B2/0 (kitchen, living room), B2/1 (living room, bedroom), B2/2 (living room,

bedroom), B2/5 (kitchen, bedroom), and B3/2 (kitchen, bedroom 1). Therefore, most

sensors in most apartments show a much longer window opening in summer. This can

be interpreted in two ways. Data were acquired starting from the end of the retrofit

campaign in the studied buildings. Thermal insulation retrofit was already completed

and summer thermal comfort should be close to optimal – or at least better than for the

past summers before the retrofit. Therefore, it could mean that the thermal insulation

and/or the ventilation would not be adapted to ensure sufficient comfort in summer.

However, knowing that most residents have been living in apartments for many years

prior to the retrofit, it could also be related to their habits of opening the windows to

renew the air.

Figure 3.16: Window opening profiles and calendar mapping in the living room of B2/2

– The averaged window opening DP illustrate between summer (in orange) and winter (in

blue).

Most sensors highlight a two-cluster (summer/winter) distribution of data but there
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are also a few exceptions, with up to four clusters. In most cases, they identify outlying

profiles or an intermediate profile when the window is mostly closed in the first case and

mostly opened in the second case. Some sensors also highlight a very specific activity, as

for the first bedroom in B2/0: the window of this room is always opened for pets to come

in and out (Figure 3.17).

Figure 3.17: Window opening profiles and calendar mapping in the bedroom 1 of B2/0 –

Regardless of the time of the year, the window is always opened.

Three other parameters may also impact on opening trends: the orientation, the type

of room and the specificity of occupants in an apartment. Orientation does not seem to

have a significant impact on window opening, apart from the living room of B2/1. The

South-East orientation of the apartment may be related to the fact windows are opened

later in the day during the summer (Figure 3.18). However, it could also be related to the

professional activity of the resident (specific working hours, for instance), that cannot be

checked due to the absence of occupancy data for this apartment. Taking into account

the function of the rooms in instrumented housings does not highlight any specific trend.

However, different apartment show a similar trend for the different rooms. B1/3 is a

relevant example. Apart from the kitchen, all three other rooms (living room, bedroom

1 and 2) have very similar profiles in summer – windows opened at night and not in the

day – and for the rest of the year – windows are only opened for a few minutes every day.

Figure 3.19 illustrates the window opening patterns in the bedroom of B1/3 with East

exposure.
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Figure 3.18: Window opening profiles and calendar mapping in the living room of B2/1

– The opening peak at the end of the day in summer (in orange) may be related to the

orientation of the room or the working hours of the occupant.

Figure 3.19: Window opening profiles and calendar mapping in the bedroom of B1/3 –

These window opening DP depict the housing-specific patterns.
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3.3.2.5 Domestic hot water

Domestic hot water usage (DHW) is the fifth selected parameter and that describes a

direct effect of occupants’ behavior on building energy consumption. As detailed in Sec-

tion 3.2, DHW data are not directly analyzed. DHW consumption, in terms of hot water

volume, is assessed through temperature measurements with one-minute temporal granu-

larity, and combined with statistical data on DHW use from [7]. Clustering is performed

on temperature profiles. The mean profile of each cluster is modified to obtain a volume

consumption.

Over the four apartments dispatching sufficient data for analyses, B1/2 (Figure

3.20(a)) and B1/3 (Figure 3.20(b)) exhibit a main daily DHW use profile (cluster 1)

while other clusters show no specific patterns and gather outlying profiles (dotted lines

for clusters 2, 3 and 4 in B1/3, and for cluster 2 in B1/2). DHW profiles for B2/0 (Figure

3.20(c)) and B3/0 (Figure 3.20(d)) highlight two main profiles, that do not show much

difference. For B2/0, the mean profile from cluster two describes a higher DHW con-

sumption in the morning, found on Sundays and very occasionally on some weekdays.

The mean profile from cluster 1 shows a higher activity in the evening. For B3/0, the

pattern is similar with a higher DHW consumption over the day, specifically at noon, in

cluster two and compared with cluster one. However, there is no well-defined patterns for

the latter apartments, which makes the classification analysis more difficult to summarize

for building energy modeling inputs. In a nutshell, for B3/0, two profiles from the sec-

ond cluster are randomly distributed in each week. The remaining days exhibit a lower

DHW use from cluster 1. Detailed calendar mapping for the analysis of the distribution

of clusters are available in Appendix C.6.

Comparing the different apartments, we observe two distinctive DHW usage patterns.

B1/2 (Figure 3.20(a), blue line) and B1/3 (Figure 3.20(b), blue line) highlight a typical

DP that can be related to the professional activity of occupants – both have employed

occupants. B1/2 shows three peak usages, in the morning, at noon and in the evening.

For B1/3, the peaks are in the morning and in the evening with some less important use

around noon. B2/0 and B3/0 exhibit shared trends in the day in terms of DHW usage

distribution, although there is a clear sign of activity late at night for B3/0. Both housings

have retired occupants. It can also be noted that among the four studied apartments,

B1/2 has the highest DHW usage peaks, up to fourteen liters per hour. Although it has

two occupants as well, B3/0 shows smaller activity peaks. As for B1/3 and B2/0, it can

be interpreted in two different ways: either a larger diversity of profiles in a cluster, or

similar profiles but with more activity during the day than for B1/2. The summary of
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Figure 3.20: Mean profiles for DHW use in B1/2 (a), B1/3 (b), B2/0 (c) and B3/0 (d) –

B1/2 and B1/3 exhibit one main DP (in blue) while other profiles are outliers – B2/0 and

B3/0 have two DP that are quite similar to each other.

clustering for DHW can be found in Table 3.8.

The diversity of profiles compared with regulatory scenarios extracted from Pléaides

also show the interest in field data collection. A first issue comes from the fact that

regulatory scenarios are not designed depending on the number of people in the apartment

in contrast with our approach, but on the size of apartments. In our building case study,

some social housings (such as B2/0 and B3/0) are larger than what would be expected –

one resident for a two-bedroom apartment (B2/0) and two residents for a three bedroom

apartment (B3/0). Usage patterns are also quite different from a regulatory scenario.

As illustrated in Figure 3.21, peak usage for B1/2 happen at different times and have

a different amplitudes. For other apartment sizes, the shape of profiles from the energy

modeling software remains the same but the hourly consumption changes depending on the

size of the apartment. Finally, the average daily consumption from regulatory scenarios

differs from data extracted from the study of ADEME (Table 3.9) and related to the water

temperature of DHW (40°C in the present case, and 60°C in Pléaides software).
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Table 3.8: Cluster summary for DHW in instrumented housings.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

B1/2 All days
Not considered

(9 outliers)

Not considered

(14 outliers)

Not considered

(6 outliers)

B1/3 All days
Not considered

(7 outliers)
/ /

B2/0
Monday to

Saturday
Sunday / /

B3/0
All days ex-

cept for

Two days

per week,

randomly dis-

tributed

/ /

Table 3.9: Comparison of DHW daily averaged consumption from ADEME and Pléaides

software.

Housing type

ADEME Data [7]

for social housings

(liters, T=40°C)

Pléaides scenarios

modeling software

(liters, T=60°C)

1 living

room/bed-

room

75 ±60 39 ±12

1 bedroom 80 ±65 55 ±17

2 bedrooms 110 ±80 75 ±23

3 bedrooms 145 ±100 95 ±29
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Figure 3.21: Comparison of DHW consumption daily profiles from Pléaides software for

a two-bedroom apartment (a) and B1/2 (b) – The comparison highlights the difference

between measured field data and regulatory scenarios in terms of peak event timing and

amplitude.

Conclusions

This chapter detailed the processing and analysis of data collected through our wireless

sensor network described in Chapter 2. The goal was to acquire a detailed knowledge of

the operation of the case study, to refine building energy modeling assumptions.

After an overall picture of the quality of collected data, we focused on specific mea-

surements that are among the key parameters to study building energy consumption and

to implement building energy models: IAT, occupancy, dissipated electric power, window

opening and DHW consumption. To improve data availability, reconstruction through

mean imputation was performed. Up to 56% of additional complete daily profiles were

obtained. We also implemented hourly data aggregation to match the requirements for

energy modeling scenarios and it benefited the data completion.

Two types of data analyses were performed: descriptive statistical analyses and daily

profile clustering. The former inquired on field data distribution features and the latter

provided a classification of daily profiles to identify typical patterns.

Indoor air temperature was significantly higher than expected, as it ranged between

of 21.4°C and 24.9°C in average over the heating period, with at least 97.5% of acquired

data over 19°C in instrumented housings. Also, temperature profiles were constant over

day. This highlighted a significant potential in heating energy savings with two solutions

to focus on: the decrease of indoor air temperature and the implementation of water

laws for a better fitted heating energy management. These results also lead to think that
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thermal insulation following the building renovation matched expected targets.

Occupancy related to two parameters: the type of day and the professional activity

of occupants. Three patterns were extracted: i) a clear weekday-weekend distribution, ii)

a similar distribution of profiles with one additional profile figuring partial activity during

the day, and iii) a steady housing occupancy for unemployed and retired occupants.

Electric dissipated power and DHW also provided a diversity of daily profiles. How-

ever, most apartments had a single profile to summarize both parameters, which lead

to think that electricity and DHW use are steady throughout the year. Finally, window

opening emphasized the major difference in occupants’ habits between summertime and

the rest of the year. In all apartments and most rooms, windows were largely opened in

summer, while opening duration was much smaller otherwise. It raised the question of the

origin of this pattern: it could either be an issue with thermal comfort in summer despite

the recent retrofit, or behaviors inherited from cultural background or from living in the

buildings prior to retrofit actions, when the thermal insulation was poor. It also struck

that window opening patterns were apartment-specific: similar patterns could be found in

different rooms within a same apartment. However, opening patterns significantly differed

when apartments were compared. Finally, window orientation and room function seemed

to have very little or no impact on window opening duration.

Overall, analyses results, showed that the sensor network succeeded in providing

an overall yet detailed picture of building operation. With only a few sensors for the

characterization of IEQ, it was possible to observe significant issues, such as with IAT

in housings, that could lead to proposals for the optimization of heating management

and potentially significant energy savings. Clustering results struck by the diversity of

extracted patterns. Findings emphasized the differences with regulatory scenarios from

Th-BCE calculations, in terms of IAT, occupancy, DHW use, dissipated power and win-

dow opening operation profiles. Despite the difficulties to collect such an amount of data

and the complex analysis process required, these differences underline the relevance of

detailed data collection and analysis. For specific case studies, regulatory scenarios may

be too generic to be representative of building operation and lead to significant energy

performance gaps.

The presented analysis also showed that several aspects in the data collection could be

improved. Data quality assessment depicted large amounts of missing data due to several

technical onsite difficulties. Data reconstruction and aggregation balanced part of the

loss, but this process could not recover the full length of missing information. These pre-

processing steps also induce uncertainties because they rebuild part of the data, despite
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the fact it is obviously much more beneficial to have some slightly uncertain data than

not enough data to perform ant analysis.

Several assumptions may have an important effect on analyses results and further

building energy modeling. Assumptions are related to the instrumentation solution and

installation. IAT measurements may be disturbed by the surrounding environment and

setup. Occupancy is assessed from presence detection. It lacks a direct occupant counting

and requires assumptions on the number of people in the housing at a given moment for

apartments with several inhabitants. DHW use is the most uncertain data. The small data

acquisition time-step clearly depicts DHW use. However, DHW consumption is deducted

from statistical studies and is not directly measured onsite. Window opening and electric

dissipated power do not require many modifications. However, these parameters exhibit

significant amount of missing data over observation periods.

Clustering results mostly follow a day-type-based trend. However, it requires ad-

vanced knowledge on the buildings regarding technical characteristics, operation and

occupants. Part of the knowledge comes from information extracted from the retrofit

portfolio and acquired through onsite visits along the project. Considering the amount of

collected data and the diversity of parameters measured by the sensor network, there is

a significant remaining potential for data cross-analyses that could help refining cluster-

ing results. Specifically, to improve occupancy profiles and deepen the understanding of

energy-driving behaviors, cross-analyses of occupancy, CO2 concentration, window open-

ing and connected plug data, for instance, seems promising. The latter gives a very

detailed overview of electric appliances in housings. It could lead to an occupant-by-

occupant behavior characterization to accurately assess their presence and offer insights

on energy management optimization (with a warning on privacy respect). Although,

a significant challenge might still lie in the availability of data across apartments. As

discussed above, not all installed sensors are fully functional.

Finally, in the present chapter, IAT, dissipated electric power, occupancy, window

opening and DHW consumption have been processed and analyzed separately. This strat-

egy relates to the first objective of the data analyses, to extract typical patterns out of

this set of parameters and to replace assumptions in building energy models. Indeed,

building energy models take these inputs into account separately, while it is necessary to

specify that several of them are expected to be related in a realistic building operation. A

correlation between occupancy and dissipated electric power, window opening and DHW

use is quite foreseeable as, apart from some scheduled appliance triggering, all latter three

parameters are highly related to the behavior of occupants. The detailed correlation be-
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tween these inputs, as well as other parameters that could not be investigated in our study,

should be further explored as part of the future enhancement of data analyses.
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Chapter 4

Energy modeling, calibration and

performance gap

The concluding chapter of this manuscript describes the building energy modeling and

calibration processes after the energy retrofit of the considered buildings, based on the

analysis of field data collected through our wireless sensor network. The first part of

the chapter introduces the used numerical tools and the overall modeling process. It

is followed by the description of the characteristics of energy models, including the

envelope, the energy systems and the operation scenarios. The analysis of simulation

results is divided into two parts. First, non-calibrated simulation results and the ini-

tial performance gap are analyzed. Then, the results of the calibration process lead to

a discussion on the remaining energy performance gap and on further strategies to close it.
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Introduction

This fourth and final chapter presents the implementation of the energy models of the

considered buildings after their retrofit for the investigation of the energy performance

gap (PG). In Chapter 1, we selected the most fitted building modeling approach in terms

of modeling details and interpretability, namely physics-based multizone models. Several

strategies were discussed as well to target the PG. We decided to focus on the improvement

of the calibration of BEM, using field-collected building operation data, to enhance the

knowledge on building post-occupancy operation. Data collection was performed using

our wireless sensor network described in Chapter 2. From the large amount of available

data, a set of parameters – including IAT, occupancy, dissipated electric power, window

opening and DHW usage – was selected to address the building energy consumption,

the IEQ and the occupants’ behavior. These parameters were analyzed in Chapter 3 to

extract typical patterns that can be used in building energy models.

The study of the PG targets heating energy consumption. Heating in apartment

buildings, specifically for buildings built before 1975 (then before the first French thermal

regulation) as in the present case, account for 63% of their global energy consumption,

followed by electrical appliances (17%), DHW (13%) and cooking (6%) [1]. As newly

retrofitted buildings, the share of heating should be reduced to 54% of the averaged

building energy consumption, but it is still the first and main energy end-use.

We present in the first section the tools, the general modeling process and the de-

scription of energy models. The second section discusses the results of building energy

models. It starts with the analysis of heating energy metering results, used as the refer-

ence heating energy consumption of the instrumented buildings for the comparison with

simulations. Then, non-calibrated BEM (NC-BEM) are implemented using information

and data from documentation and regulatory operation scenarios. Simulation results are

compared to measured heating energy consumption to assess the initial PG. NC-BEM

simulations are complemented by sensitivity analyses to highlight the energy-driving in-

put parameters in the models. In the second part of the section, we focus on the tuning of

modeling input parameters based on the measured data, and selected through sensitivity

analyses. Finally, we conclude on the performances of the proposed strategy to reduce

the PG.
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4.1 Used modeling methods

4.1.1 Used tools: software and documentation

4.1.1.1 Energy modeling software

Physics-based energy modeling with multizone technique was highlighted as the fittest

approach to investigate the impact of energy retrofit actions, occupants’ behaviors and

the optimization of building operation.

There are many available software for building energy modeling as detailed in Ap-

pendix A.1. For this thesis, Pléaides software suite [2] (version 5.21.1.2) is used. The suite

provides different modules depending on the purpose of the study: assessment of heating

and cooling energy needs, dynamic energy simulations, regulatory studies for new and

existing buildings, optimization, sensitivity and uncertainty analyses, life cycle analysis,

and BIM (building information modeling). The versatility of applications is a significant

selection criterion, along with the affordability, and a responsive and efficient customer

service. An embedded library of building characteristics and building operation scenar-

ios is also available. It provides standard modeling components, that are compare with

measured data from our sensor network, as presented in Chapter 3.

4.1.1.2 Documentation

Available building information are scarce regarding the description of the existing con-

sidered case study, while they should be the first source of information to implement a

BEM.

The description of the building envelope depends on floor plans and the thermal

regulatory study (TRS) conducted prior to the retrofit. Some of the floor plans were

missing and had to be extrapolated, since the architecture of the buildings is similar. A

visual diagnosis was performed onsite with CAMEO SAS to complete the documentary

resources. The most detailed description of retrofit actions and characteristics of modified

elements in the buildings is provided by the retrofit project management portfolio. It

includes specifications on the plumbing and heating, the ventilation, electrical diagrams,

the indoor and outdoor windows and doors, and the thermal insulation. Additional

knowledge is brought by the many visits in housings and buildings over the deployment

of the sensor network.

Missing information and data are extracted directly from Pléaides software. The

embedded library provides scenarios, building and equipment characteristics that would
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be used for regulatory calculations and that can then be considered for the first part of

the energy modeling process.

4.1.2 Process for building energy modeling, calibration and per-

formance gap assessment

The process for building energy modeling, calibration and PG assessment is divided into

three steps. It focuses on buildings after the end of the energy retrofit.

Step 1 – Non-calibrated building energy models (NC-BEM). Non-calibrated energy

simulations depend on data and information extracted from the retrofit portfolio. It aims

to describe the buildings as for a TRS. Characteristics of the building envelope should

reflect on the reality of retrofit actions. Part of the features of the energy systems are found

in the retrofit portfolio and the TRS as well. Operation scenarios include temperature set

points, window opening, occupancy, dissipated power, shading, ventilation, lighting and

DHW use. These are standard scenarios from Th-BCE (Thermique besoin-consommation-

été) library embedded in Pléaides. Any missing information is set to standard parameters

suggested by the modeling software.

The NC-BEM leads to two sub-steps illustrated in Figure 4.1:

• Step 1.1: a comparison of the simulation results with the measurements from heating

energy consumption meters;

• Step 1.2: sensitivity analyses to highlight the most impacting parameters in the

energy models.

The comparison between simulations and measurements underlines the initial PG and

sets up the goals of the calibration. The sensitivity analysis selects the parameters to

tune for the calibration.

Step 2 – Integration of field-collected data. Following the non-calibrated simulation

results, data from the sensor network are integrated in Pléiades library to replace standard

information. Data originate from results of the analyses detailed in Chapter 3. They target

parameters related to building operation and underlined by the sensitivity analyses.

Step 3 – Calibration of BEM. Building energy models are calibrated based on the

NC-BEM tuned with post-operation data. The calibration is performed manually [3]

with level 4 calibration [4] – using data acquired through a several-month-long moni-

toring campaign. Simulation results are compared with the non-calibrated results and

measurements from the sensor network. The impact of input tuning is assessed, and the

144



4.1 Used modeling methods

remaining uncertainties are investigated to explain a potential residual PG.

Figure 4.1: Three-step building energy modeling and calibration process with: Step 1

NC-BEM, Step 2 the integration of field-collected data, and Step 3 the calibration of energy

models.

4.1.3 Sensitivity analysis

A sensitivity analysis identifies the energy-driving input parameters of a BEM. Regardless

of the implemented technique, sensitivity analyses force the variation of input parameters

to artificially test the weight of these inputs in the model. There are commonly two

types of sensitivity analyses: local sensitivity analyses and global sensitivity analyses. In

a nutshell, the former varies one parameter at a time around a set of given parameter

values, and independently from other parameters; the latter varies one parameter at a
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time and it also takes into account existing correlations with other input variables. A

detailed review of sensitivity analysis techniques falls out of the scope of this thesis, but

more details can be found in the work of Kristensen and Petersen [5], and in the work of

Tian et al. [6].

In the present modeling process, sensitivity analyses are local ”one-at-time” analyses.

The selection of this technique is driven by its availability in the sensitivity analysis tool

in Pléaides software, as well as its low computational cost and its ease to use. The list of

considered parameters is the following:

• Materials and construction elements: thermal conductivity, density, specific heat;

• Walls: height, width, thickness;

• Windows, glazed doors and doors: solar factor, thermal conductivity, width, height;

• Thermal bridges: integrated, linear and window thermal bridges;

• Ventilation: ventilation scenarios, permeability;

• Operation scenarios: IAT, occupancy, dissipated power, shading, DHW consump-

tion;

• Energy systems efficiency: heat emitters, ventilation electric power.

The number of simulations depends on the number of different of inputs for each

category of parameters. In the present case, when all parameters are selected, it performs

up to 95 different simulations. The variation threshold is set to 10% of the original value

of all parameters. A 10%-variation provides a significant but realistic change of input

values, considering that for instance for a 20°C IAT it equals to a 2°C-variation. This

way, each input variation is considered in a normalized manner.

Results provide a ranking of impacting input parameters. Results are summarized

for each category described above, with the global impact rated in terms of energy con-

sumption (kWh).

4.1.4 Description of implemented building energy models

4.1.4.1 General description

A dedicated separate energy model is created for each of the three renovated buildings

of the case study. Buildings are very similar regarding their respective architectural

features, as depicted in Figure 4.2. The only differences come from the number of floors,

the orientation of the main entrance and the distribution of apartments (in terms of size
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and number) within the buildings.

Characteristics of the envelope – including materials, construction elements, walls,

windows, glazed doors and doors, and thermal bridges – are the same for each building.

Characteristics of energy systems are similar as well, apart from the rated electric power

of the ventilation. Operation scenarios are adapted from Th-BCE scenarios embedded

in the software, to fit the size of the different housings. All aspects of building energy

models are processed within Pléaides modeling software.

Simulations are performed with a five-minute time-step from January the 1st to De-

cember the 31st. The heating season is from October the 20th to May the 10th.

Figure 4.2: Three-dimension models of B1 (a), B2 (b) and B3 (c) extracted from Pléaides,

compared with a photo of B3 after retrofit extracted from Google Earth (d).

4.1.4.2 Architectural specificity and thermal characteristics

All buildings have three apartments on the ground floor, four apartments on the inter-

mediate floors and two apartments on the last floor (Figure 4.3). Some apartments have
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distinctive architectural features, specifically in the living rooms of apartments located

on the last three floors. Theses rooms have sloping ceilings, up to 5-meters high. They

are located under the roof of the buildings without attics.

Figure 4.3: Floor plans of building B1 – all buildings share similar architectural features

for each floor.

Buildings are built above a crawl space. The ground floor has a technical room where

heating and DHW pipes enter the buildings from the underground network. They also

host a storage room for bikes and a dustbin room. Each floor has a technical closet

for electricity meters, a second one for natural gas meters and a third one for storage.

Buildings B2 and B3 also have an elevator. B1 does not, but it has the space for an
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elevator that has never been installed. Each floor has a U-shaped corridor serving each

apartment and the stairwell.

Thermal zoning is defined as follows. Technical, storage and dustbin rooms are

distinct thermal zones (green thermal zones on the ground floor in Figure 4.3). Technical

closets and elevator spaces are grouped together for each floor (green thermal zones for

each floor in Figure 4.3). On the two last floors, each attic is a separate thermal zone

(pink thermal zones in Figure 4.3). Corridors are grouped together with stairwells (yellow

thermal zones in Figure 4.3). Each stairwell is connected to the one above with a floor

defined with one layer of air but they are in detached thermal zones. The energy modeling

software offers the possibility to use an open floor. However, this would result in modeling

conflicts regarding thermal zoning that cannot take into account a thermal zone with an

opened wall. On the ground floor, the entrance airlock is also added to the thermal zone

of the corridor and the stairwell. Finally, each apartment is considered as an independent

thermal zone (orange thermal zones in Figure 4.3).

Other strategies could have been considered for the distribution of thermal zones.

However, a larger thermal zoning – with floor distribution, for instance – would not match

the goals of the research work – i.e. the detailed modeling of the energy consumption – and

the spatial granularity of the collected data. A smaller thermal zoning could be intended,

but there would be an issue with operation scenarios. Neither the regulatory scenarios

nor the sensor network could provide a detailed and reliable room-by-room splitting. The

details and numbers of thermal zones for each building are summarized in Table 4.1.

Table 4.1: Details of the number of thermal zones in B1, B2 and B3.

Type of thermal zone B1 B2 B3 TOTAL

Apartments 13 21 29 63

Corridors, stairwells and

entrance
4 6 8 18

Technical rooms 7 8 10 25

Attics 4 4 4 12

TOTAL 28 39 51 118

Thermal bridges are defined from the TRS. Characteristics of the different walls,

windows and doors are acquired through the retrofit portfolio. All walls are insulated up

to the most recent standards during retrofit, with an exception for the concrete slab of the

ground floor, some walls between apartments and technical rooms, and the building roof.

The crawl space under the buildings could not be entirely accessed and was not insulated
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during the renovation. Walls between apartments and technical rooms that were not

insulated are those of the former heating substation and rooms where heating and DHW

pipes are coming in – the insulation would prevent a secured access to the water circuit.

According to the retrofit portfolio, the roof was already insulated up to standards prior

to the renovation.

Windows are double glazed. The main entrance has two double-glazed metallic doors

creating an airlock. Doors for technical areas are insulated metallic doors. Entrance doors

of apartments have been changed as well for secure and better insulated designs.

4.1.4.3 Heating and domestic hot water

Heating and DHW are both provided by a central heating system located in a new building

built next to the three rehabilitated buildings of the case study. The boiler is connected

to a local geothermal heating network. Hot water is dispatched underground through an

insulated network from the new building to B2 where a heating substation was located

prior to retrofit and later removed (Figure 4.4). A water pump located in B2 distributes

hot water in B2, and to B1 and B3 through the existing underground water network.

This part of the network (orange dotted lines on Figure 4.4) has no reported thermal

insulation.

Figure 4.4: Heating and DHW network for B1, B2 and B3 with thermal energy metering

points (M1, M2 and M3).
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There is no available information on the characteristics of the heating and DHW

production except for general knowledge presented above. Neither the TRS nor onsite

visits could provide technical data on related energy systems. Therefore, in BEM, the

heating and DHW systems are modeled using a pre-filled heating network component

from Pléaides embedded library, that describes the existing heating network from the

nearby city (whose existing local geothermal heating network connected to the studied

buildings is an extension). It is a geothermal heating network with low-temperature hot

water production used for both heating and DHW. Unlike the existing system, and since

a distinct energy model is implemented for each studied building, hot water production

in the energy models is independently considered for each model and building with a

dedicated substation for B1, B2 and B3, respectively, that is directly connected to the

local geothermal network. The boiler in the newly built building and the underground

hot water networks are not considered due to the lack of available descriptive features.

The exchanged power of the heating substation is set based on thermal need calculations

for each building and depending on the temperature setpoints (that should vary along the

calibration process).

The hot water circuit distributes hot water in steel heaters in each apartment. Hous-

ings have a heater in every bedroom, in the living room and in the kitchen. Heaters

are also installed in bathrooms on the last floor of the buildings. There are no heaters

in common areas. DHW is dispatched through the apartments from the water closet to

the bathroom and to the kitchen. Following the retrofit, most hot water pipes inside the

building are insulated, except for the existing hot water pipes serving heaters within the

apartments and for part of the water columns that could not be accessed.

Two other parameters are considered as well and related to heating and DHW produc-

tion, namely the infiltration rates and the weather conditions. Infiltration is defined with

Q4Pa-surf and n50 coefficients. The former is the air leak rate with a 4-Pa-depression.

A global coefficient is given and divided for each type of cold wall (outdoor walls, roof,

windows and doors). The coefficient is left to default settings with Q4Pa-surf set to 1

m3/h/m2 (the recommended value from the latest environmental regulation for collective

housings), distributed with 10%, 50%, 20% and 20% for outdoor walls, roof, windows

and doors, respectively. The latter coefficient, n50, is the maximum air leak rate with

a 50-Pa-depression and is set to 0.6 vol/h. It is the default coefficient for all types of

buildings and usages.

Climatic conditions are of paramount importance since they drive the thermal energy

consumption and the building energy efficiency. As described in Section 2.3.4.1, a weather
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station is installed three kilometers away from the case study site. However, for building

energy simulations, an embedded weather file is selected from the same climatic zone

(H1a). This choice is driven by the complexity and cost of creating a dedicated weather

file based on local weather data, and because of the availability of weather data. There

are up to two months and half of cumulative missing data over the summer and autumn

of 2021. Since the weather station is installed in February 2020, there is not enough data

to create a complete and reliable weather file. Therefore, simulations are performed using

another weather station with similar climatic conditions. Then, simulation results are

corrected with local weather data: daily heating energy consumption per heating degree

days (HDD) from simulations is multiplied by local HDD (Eq. 4.1).

Hcorrected = (Hsimulated/HDDsimulation)×HDDlocal (4.1)

Where Hsimulated is the heating energy consumption over a given day and simulated

from building energy models; HDDsimulation is the number of heating degree days from

the same day and from the weather file used in the energy simulation; HDDlocal is the

number of heating degree days from the same day and calculated from OAT data collected

by the weather station; Hcorrected is the heating energy consumption from the same day,

simulated from building energy models and corrected with the HDD.

4.1.4.4 Ventilation

Ventilation in the buildings is provided by a humidity-sensitive simple-flow CMV (con-

trolled mechanical ventilation). Each building has eight ventilation extraction columns

(two per apartment). Air extraction units are located in the bathroom, water closet and

kitchen of the apartments. The air extraction rate is given in the retrofit portfolio for

each unit depending on the size of the apartment, room location and room use.

4.2 Modeling results and discussions

4.2.1 Heating energy consumption: measurements

Before the comparison between simulations and measurements, it is necessary to review

the measurements from heating energy meters in the sensor network.

There are three heating ultrasonic meters installed onsite. B1 and B3 both have one

meter counting their respective heating energy consumption (M1 and M3 metering points

in Figure 4.4). A third meter is installed in B2 (M2 metering point in Figure 4.4). This
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meter measures the aggregated heating energy consumption of B1, B2 and B3, including

the heat loss from B2 to B1 and from B2 to B3.

The heating season starts on the 20th of October, 2021 and ends on the 10th of May,

2022. However, acquired data for B1 and B3 range from the 24th of November, 2021 to

the end of the heating season. For B2, there are no exploitable data due to technical mal-

functions and the impossibility to find a suitable replacement solution in time. Therefore,

several assumptions are made to replace missing data and to perform a full-heating-season

comparison for the three buildings. Considering the set up for heating energy monitoring

described above, and summarized in Eq.4.2, the heating energy consumption of B2 would

be deducted, taking into account the heat loss in the underground hot water network

between B2 and B1 and between B2 and B3.

H tot = (HB1 +HB2 +HB3) + L (4.2)

Where Htot is the total heating energy consumption of B1, B2, B3 and including the heat

loss from B2 to B1 and from B2 to B3, measured in M2 on Figure 4.4; HB1 is the heating

energy consumption of B1, measured in M1 on Figure 4.4; HB2 is the heating energy

consumption of B2; HB3 is the heating energy consumption of B3, measured in M3 on

Figure 4.4; L is the heat loss through the piping network between B2 and B1 and between

B2 and B3.

However, because of the lack of data from B1, another strategy is adopted. A ratio

of heating energy consumption per unit of heated area is calculated for B3. This ratio is

applied to B1 (Eq. 4.3) and B2 (Eq. 4.4) to assess the heating energy consumption of

the two buildings.

HB1 =
HB3

AB3

× AB1 (4.3)

HB2 =
HB3

AB3

× AB2 (4.4)

Where AB1, AB2 and AB3 are the total heated area of B1, B2 and B3 respectively.

The subtraction between measurements in B2, the sum of measurements in B3 and

calculations for B1 and B2 results in heat loss assessment. Consequently, it is assumed

that heating consumption patterns in B1 and B2 are similar to B3.

Missing data at the beginning of the heating season are processed as well, using the

heating degree day method. It calculates the difference between the average daily outdoor

air temperature (OAT) and the IAT set point minus one degree Celsius. In other words,

it calculates ”how much” the outdoor air should be heated to reach the expected indoor
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air temperature. For a regulatory calculation, the temperature set point should be 19°C,
and the selected temperature is 18°C. The 1°C difference is assumed to be related to solar

gains and indoor heat gains (Eq. 4.5). In the present case however, analyses of IAT in

Chapter 3 highlighted that the temperature set points are far above 19°C. Hence, the
reference temperature is the daily averaged IAT of apartments within the same building

and for which measurements are performed.

{
HDD = 18◦C −OAT averaged , if OAT averaged < 18◦C

HDD = 0 , if OAT averaged >= 18◦C
(4.5)

Where HDD is the amount of heating degree days for a given day and OATaveraged is the

averaged outdoor air temperature for the same day.

A ratio is applied on each building to recover missing data at the beginning of the

heating season. The averaged heating energy consumption per HDD over the heating

season is multiplied by the number of HDD of a given missing day of data. It results in

the assessed heating energy consumption over the missing day (Eq. 4.6).

Hday, Bi = HDDday ×
HBi

HDDheating season

(4.6)

Where Hday, Bi is the heating energy consumption of building Bi (with i={1,2,3}) over

a missing day of data; HBi is the energy consumption of the same building Bi over the

whole heating season; HDDday is the amount of heating degree days over the missing day

of data; HDDheating season is the amount of heating degree days over the whole heating

season.

Results from measurements and calculations are summarized in Table 4.2 for the

heating season 2021/2022.

Heat loss over the heating network between B2 and B1 and between B2 and B3

are assessed up to 8% of the total heating energy consumption measured in B2 over the

heating season. There are no available information about the heating network that would

help investigate this result, such as piping diameter, thermal insulation, pipe material and

current overall state of the hot water circuit (such as leaks). However, it is assumed to be

old, unmaintained and poorly insulated since it could not be accessed and was not part

of the retrofit project. Considering these assumptions the overall heat loss may seem low,

although not completely unrealistic looking at comparative studies on heating networks

loss [7]. Nevertheless, the variations over the four months with most of the heating energy

consumption (November to February), may question the reliability of the calculations:
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Table 4.2: Measurements and assessments for heating energy consumption of B1, B2 and

B3 and the heat loss between B2 and B1 and between B2 and B3, over the heating season

from 2021/10/20 to 2022/05/10 – the gross floor areas of B1, B2 and B3 are 1,157 m2, 1,806

m2 and 2,255 m2, respectively.

B1+B2+

B3+loss

(mea-

sured)

B1 (assessed) B2 (assessed) B3 (measured) Heat loss (assessed)

kWh kWh
kWh

/m2 *
kWh

kWh

/m2 *
kWh

kWh

/m2 *
kWh

% of to-

tal

Oct-21 15,427 3,321 4.3 4,317 3.4 6,452 3.6 1,338 9%

Nov-21 45,381 8,870 11.6 13,662 10.7 19,479 10.9 3,369 7%

Dec-21 50,822 9,130 11.9 15,222 11.9 21,313 11.9 5,157 10%

Jan-22 50,391 9,994 13.1 16,663 13.1 23,331 13.1 403 1%

Fev-22 40,137 7,909 10.3 13,185 10.3 18,462 10.3 581 1%

Mar-22 29,814 5,915 7.7 9,861 7.7 13,807 7.7 232 1%

Avr-22 21,023 2,991 3.9 4,988 3.9 6,984 3.9 6,059 29%

May-22 2,440 274 0.4 457 0.4 640 0.4 1,069 44%

TOTAL 255,435 48,405 63.3 78,354 61.4 110,468 61.9 18,207 8%

* gross floor area

for an equivalent energy consumption in December and January, the calculated heat loss

dropped from 10% to 1%, which is quite unlikely to happen in reality.

4.2.2 Non-calibrated building energy models

4.2.2.1 Comparison: simulations versus measurements

A distinct NC-BEM is implemented for each building B1, B2 and B3 to model their

respective heating energy consumption after the retrofit. Non-calibrated simulations are

compared to measurements from our sensor network. Results of the comparison are

summarized in Table 4.3. For each energy model, MAE (Eq. 1.1), MAPE (Eq. 1.2)

and RMSE (Eq. 1.3) metrics are computed over the eight months of the heating season

to provide the monthly averaged error rate. The relative error between the aggregated

measured and simulated energy consumption over the heating season is also given by

Equation 4.7.

RE = 100× ŷhs − yhs
yhs

(4.7)

Where RE is the relative error in %; ŷhs is the energy consumption from simulations over

the heating season; yhs is the measured energy consumption over the heating season.

The comparative study highlights that simulated heating energy consumption re-
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Table 4.3: Comparison between the results of the NC-BEM, and measurements and as-

sessments from collected data, over the heating season 2021/2022 – errors are calculated

over the whole heating season.

Heating energy

consumption
Comparison: simulations versus measurements

over heating sea-

son (kWh)

MAE

(kWh)

MAPE

(%)

RMSE

(kWh)

Relative

error (%)

B1
Measurements 48,400 / / / /

NC-BEM 22,182 3,277 73% 3,586 -54%

B2
Measurements 78,346 / / / /

NC-BEM 55,019 2,916 43% 3,340 -30%

B3
Measurement 110,005 / / / /

NC-BEM 73,307 4,587 47% 5,152 -33%

produces the same monthly trend as in the measurements, illustrated in Figure 4.5 that

depicts the heating energy consumption from NC-BEM (brown color in the bar graphs

(a-1), (b-1) and (c-1)) and measurements (red color in the bar graphs (a-1), (b-1) and

(c-1)) along with the modeling error between the two (in the combined graphs (a-2), (b-2)

and (c-2), with the monthly difference between measurements and simulations in kWh in

the blue bar graph, and the relative error in % with the purple dotted line). However,

there is an under-estimation of the heating energy consumption compared to measured

heating energy consumption, with a difference -54%, -30% and -33% for B1, B2 and B3,

respectively. B2 and B3 have similar error rates with monthly MAPE of 43% and 47%,

respectively, over the heating season. However, the error rate of B1 is much larger with

a MAPE of 73%. Then, the comparison of MAE and RMSE underlines months includ-

ing February, March, October, November and December (in Figure 4.5 (a-1), (b-1) and

(c-1)), for which the difference between the simulations and measurements is more signif-

icant (since RMSE gives a higher weight to larger errors). There is also a clear trend that

shows that the higher the energy heating energy consumption, the lower the difference,

with an exception for the month of April in B2 and B3. Indeed, January exhibits the

smallest modeling error for all three buildings. In May, the relative error is significantly

higher compared with other months, due to the small heating energy consumption.

In light of data analyses from Chapter 3, the initial PG resulting from NC-BEM is

expected. Features of the building envelope, the surrounding environment and the energy

systems match the existing buildings as realistically as possible. However, building oper-

ation is standard while results of data analyses clearly underlined the difference between

standard building operation and field-measured data. Specifically, IAT is significantly

higher than for regulatory scenarios. Other operation scenarios also exhibited different
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Figure 4.5: Comparison of heating energy consumption from measurements and NC-BEM

– On the left is the monthly evolution of heating consumption for B1 (a-1), B2 (b-1) and B3

(c-1), from measurements in red and from NC-BEM in brown – On the right is the relative

error between models and measurements, for B1 (a-2), B2 (b-2) and B3 (c-2): the bar graph

shows the monthly relative error in kWh and the purple line shows monthly relative error

in %.
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patterns, both in terms of amplitude and timing of events.

4.2.2.2 Sensitivity analysis

A sensitivity analysis is performed for each studied building to identify the input param-

eters that drive the building heating energy consumption. It ranks each tested parameter

with respect to its effect on the selected output. Hence, it also provides a relevant line of

enquiry to identify potential sources of uncertainties in energy models. Input parameters

with their respective relative impact and ranking are presented in Table 4.4 for B1, B2

and B3.

Sensitivity analyses highlight the weight of IAT scenarios in the energy models as

the first-ranking energy-driving input. IAT has a relative impact of 68.3%, 55.2% and

60.3% on heating energy consumption, equivalent to an additional 13.1 kWh/m2, 16.8

kWh/m2 and 19.6 kWh/m2 for B1, B2 and B3, respectively, considering a 10% increase

of the temperature. Since heating is provided by a collective energy system without

indoor thermostat and with no possible interaction from building occupants, IAT is the

logical input to have the most effect on heating energy consumption. Occupancy and

dissipated power relate to indoor heat gains. The latter has a non-negligible but limited

predicted impact: 1.6 kWh/m2, 1.6 kWh/m2 and 2.2 kWh/m2 additional heating energy

consumption for B1, B2 and B3, respectively. Since dissipated power is electrical, it is

mostly related to occupancy of housings. Occupancy is at less than 5% of relative impact

on heating energy consumption. Shading standard scenarios are designed to simulate

rolling shutters used only from 8 pm to 7 am all along the year. Therefore, it is expected

to have very little effect: in winter it maximizes solar heat gains. There is little heat

loss through the ventilation and no reported impact of DHW use. However, it should be

observed that window opening cannot be selected for sensitivity analyses and its effect is

not taken into account, due to software limitation.

All other inputs relate to characteristics of the building envelope and of the energy

systems. They have a quite limited effect on heating energy consumption, except for the

dimensions of walls – for B1 and B3 – and the thermal conductivity of materials – for B1

– with at least 5% of relative impact.

Out of sensitivity analyses, we conclude that operation scenarios, and specifically IAT

scenarios are by far the most energy-driving inputs. For a 10% variation of the values

of input parameters, operation scenarios have 82.5%, 62.5% and 72.0% of cumulative

relative impact for B1, B2 and B3, respectively. Energy systems and the building envelope

have 28.9%, 19.1% and 20.5% of cumulative impact for B1, B2 and B3, respectively.
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Table 4.4: Results of local sensitivity analyses on NC-BEM for B1, B2 and B3 with relative

impact (in kWh and kWh/m2) and ranking of input parameters – The relative impact is

presented in absolute value.

B1 B2 B3

Rank

Relative

impact

(%)

kWh

/m2

*

Rank

Relative

impact

(%)

kWh

/m2

*

Rank

Relative

impact

(%)

kWh

/m2

*

NC-BEM / / 19.2 / / 30.5 / / 32.5

Measurements / / 41.8 / / 43.4 / / 48.8

Input parameters

Scenarios

IAT 1 68.3% 13.1 1 55.2% 16.8 1 60.3% 19.6

Dissipated

power
3 8.6% 1.6 2 5.2% 1.6 3 6.9% 2.2

Occupancy 6 3.3% 0.6 9 1.2% 0.4 5 2.6 % 0.8

Ventilation 8 2.2% 0.4 13 0.7% 0.2 7 2.0% 0.7

Shading 14 0.1% 0.0 14 0.3% 0.1 14 0.2% 0.1

DHW 17 0.0% 0.0 17 0.0% 0.0 17 0.0% 0.0

Dimensions

of walls
2 10.1% 1.9 4 4.3% 1.3 2 8.8% 2.8

Thermal

conductivity

of materials

4 6.1% 1.2 3 4.5% 1.4 4 2.8% 0.9

Linear ther-

mal bridge
5 3.5% 0.7 7 1.5% 0.5 10 1.1% 0.4

Energy

systems

and enve-

lope

Thermal

conductivity

of windows

7 2.9% 0.6 6 1.5% 0.5 8 1.5% 0.5

Thickness of

materials
13 0.6% 0.1 5 2.9% 0.9 6 2.4% 0.8

Efficiency of

heaters
9 1.9% 0.4 8 1.5% 0.4 9 1.6% 0.5

Solar factor

of windows
10 1.8% 0.3 10 1.0% 0.3 11 0.9% 0.3

Dimensions

of windows
11 1.0% 0.2 11 1.0% 0.3 12 0.8% 0.3

Air infiltra-

tion
12 0.9% 0.2 12 0.8% 0.2 13 0.4% 0.1

Density of

materials
15 0.1% 0.0 15 0.1% 0.0 16 0.1% 0.0

Specific heat

of materials
16 0.1% 0.0 16 0.1% 0.0 15 0.1% 0.0

* gross floor area
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Therefore, the largest uncertainties to explain the initial PG may lie in the building

operation scenarios.

4.2.2.3 Conclusions on the non-calibrated building energy models

Non-calibrated building energy models provide a simulation of heating energy consump-

tion for the three buildings of the case study after the energy retrofit. They are im-

plemented using information from the retrofit portfolio and standard operation scenar-

ios.

Simulations reproduce the monthly trends observed in the measurements but they

underestimate the heating energy consumption, which results in a significant PG for all

three buildings, with the largest gap for B1. Although the difference between models

and measurements is significant, it is expected as well. Indeed, as detailed in Chapter

3, dissipated power, IAT, occupancy, window opening and DHW use are quite different

from standard building operation scenarios.

Through the sensitivity analyses, we identified that IAT is, by far, the most energy-

driving modeling input. Among other impacting parameters are dissipated energy scenar-

ios, the occupancy and some features of building envelope. Because of the weight of IAT,

a variation of 10% of the parameter values in operation schedules can affect heating energy

consumption by more than three times that of a similar modification in the characteristics

of the building envelope and the energy systems. Therefore, the former group of inputs is

expected to hold the largest part of modeling uncertainties over building heating energy

consumption and are selected as the targets of BEM calibration.

4.2.3 Performance gap and calibration

4.2.3.1 Manual calibration: tuning of modeling inputs

To close the initial PG, the selected strategy relies on the manual tuning of NC-BEM

inputs. These inputs are the energy-driving parameters highlighted through sensitivity

analyses and that were investigated in previous data analyses. Five input parameters are

selected in the calibration process: IAT, dissipated power, occupancy, window opening

and ventilation. An assumption is made, as IAT considered in standard scenarios and in

sensitivity analyses is a temperature setpoint, while the IAT scenarios used to tune NC-

BEM are measured IAT. There no parameters related to ventilation that are monitored

in our sensor network. However, scenarios are adapted to match the peaks of occupancy

in the instrumented housings. DHW use is not considered due to its negligible impact on
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heating energy consumption.

The effect of window opening on heating energy consumption could not be assessed

from sensitivity analyses. Window opening data processing provides typical daily patterns

with the averaged opening duration over each hour of the day. The opening width of the

windows is not measured. There is a significant scientific literature on the modeling and

identification of patterns for window opening and closing [8, 9]. However, studies focus

on the drivers of window opening and on the opening duration and not on the opening

width of windows, while this input is not necessarily stationary and it depends on the

intended action of the occupants and on the types of windows.

Consequently, the effect of window opening on heating energy consumption is tested

separately, without other tuned parameters. The goal of the study is to calibrate building

energy models, and there would be too much uncertainty to consider window opening in

the calibration process. Several maximum opening widths are tested. The strategy is

the following: initially a window is always opened at maximum width, and the opening

duration profiles are used as adjustment coefficients. For instance, for a window that

can be opened at an 80% maximum opening width and that is opened for half-an-hour,

the maximum opening is set to 80% and the opening duration is 50% (half an hour).

Since the time-step of the window-opening time series is one hour, it is then considered

as equivalent to one hour of opening with 40% opening width. All windows are set with

the same maximum opening width for a given simulation. This process is summarized in

Figure 4.6.

A total of five tests are conducted for the manual calibration. At first, NC-BEM are

tuned with one parameter at a time (IAT, dissipated electric power and occupancy), and

only in instrumented housings for which there are available data. Indeed, data analyses

have highlighted that typical operation profiles for dissipated power and occupancy are

specific to a given housing. All non-instrumented apartments are modeled with standard

scenarios. Then, all three inputs are tuned together (including the modification of the

ventilation schedules). Finally, an extrapolation of IAT tuning in non-instrumented hous-

ings is implemented. Considering the measurements over the three studied buildings, it

might be reasonable to assume that non-instrumented apartments may exhibit similar

IAT patterns. Therefore, IAT scenarios are extrapolated to non-instrumented housings

using the average of IAT measurements in instrumented housings withing the same build-

ings: 22.2°C, 22.7°C and 24.3°C for B1, B2 and B3, respectively. Three tests are run

for window opening with a maximum opening width of 20%, 40% and 80% (which is the

largest opening width for the type of windows installed in considered buildings) and for
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Figure 4.6: Process of data modification to test window opening configurations in building

energy models – A maximum opening width (%) is used with a daily profile figuring window

opening duration (a) to provide daily profiles with window opening width: here are examples

with 20% (b), 40% (c) and 80% (d) maximum opening width.
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each of the building case study. Figure 4.7 summarizes the different tests for window

opening and the manual calibration of BEM.

Figure 4.7: Manual calibration and window opening tests for B1, B2 and B3 – Five

calibration tests are performed for each building with the tuning of the IAT, the occupancy,

the dissipated electric power, the combination of the three parameters, and the additional

extrapolation of IAT in non-instrumented housings – Three tests are conducted for each

building on window opening with 20%, 40% and 80% maximum opening width – Results

are compared with measurements and simulations from NC-BEM.
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4.2.3.2 Comparison: simulations versus measurements

BEM of each building are manually calibrated step by step. IAT, dissipated electric power

and occupancy are tuned separately. When one parameter is tuned, the other two are

set with standard scenarios as for NC-BEM. Then all three parameters at tuned at the

same time and, finally, the tuning is complemented with the extrapolation of IAT for

non-instrumented housings. Results are summarized in Table 4.5 and depicted in Figure

4.8.

The parameter-by-parameter tuning provides several insights. IAT tuning up to mea-

sured temperature levels significantly increases the heating energy consumption compared

to NC-BEM, which was expected, considering results of sensitivity analyses. There is 11%,

15% and 14% of heating energy consumption increase for B1, B2 and B3, respectively.

However, the resulting heating energy consumption remains lower than the measurements

as it only accounts for two apartments in each building for IAT.

Occupancy and dissipated power are the other two operation scenarios that are con-

sidered. The difference after calibration remains very low. With dissipated power, B1

and B2 show a 1% increase, while for B3 the increase is lower than a percent. For oc-

cupancy, only B2 exhibits around 1% of heating energy consumption increase. This low

impact is supported by the results of the sensitivity analyses: with a 10% difference of

the values of input parameters for all housings, the effect of dissipated electric power and

occupancy over heating energy consumption remains under 10% and under 5% respec-

tively in NC-BEM. As for IAT, these parameters are only monitored in a few apartments

for each building. It is also interesting to note that for both occupancy and dissipated

power, input tuning increases heating energy consumption. Both parameters translate to

internal heat gains, which means that the cumulative heat gains from measurements is

lower than that of standard scenarios.

When all tuned parameters in instrumented housings are combined – i.e. IAT, dis-

sipated power, occupancy and ventilation fitted to occupancy patterns – the resulting

increase in heating energy consumption is slightly higher than for IAT alone. As it accu-

mulates the effect of all three tuned inputs, this result is expected as well.

The last test combines all tuned input parameters and extrapolates the IAT to non-

instrumented housings (dark blue column of the bar graph in Figure 4.8 and in Figure

4.9). IAT levels differ from one housing to the other. Nevertheless, unlike for other

measurements, daily IAT patterns are stable along the day. Furthermore, the measure-

ments are much higher than the standard 19°C. Since IAT is the most energy-driving
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Table 4.5: Results of step-by-step input calibration on heating energy consumption for

B1, B2 and B3, over the heating season 2021/2022 – For each building, IAT, occupancy and

dissipated power are tuned separately from each other, then they are tuned at the same

time, and finally, the tuning of all three parameters is complemented with the extrapolation

of IAT to non-instrumented housings.

Heating en-

ergy
Measurements vs. simulations

consumption

(kWh)

MAE

(kWh)

MAPE

(%)

RMSE

(kWh)

Relative

error (%)

B1

NC-BEM 22,182 3,277 73% 3,586 -54%

Measures 48,400 / / / /

Tuning of

inputs only

for
instrumented
housings

IAT 27,799 2,575 54% 2,877 -43%

Dissipated

power
22,539 3,233 72% 3,537 -53%

Occupancy 22,444 3,269 72% 3,577 -54%

All parame-

ters*
28,235 2,521 53% 2,819 -42%

All parameters* +

extrapolation of IAT for non- 39,772 1,129 29% 1,281 -19%

instrumented housings

B2

NC-BEM 55,029 2,916 45% 3,340 -30%

Measures 78,346 / / / /

Tuning of

inputs only

for
instrumented
housings

IAT 66,685 1,586 18% 1,946 -15%

Dissipated

power
55,722 2,828 42% 3,252 -29%

Occupancy 55,266 2,885 43% 3,309 -29%

All parame-

ters*
67,822 1,486 17% 1,853 -13%

All parameters* +

extrapolation of IAT for non- 97,027 2,335 42% 2,642 +24%

instrumented housings

B3

NC-BEM 73,307 4,587 47% 5,152 -33%

Measures 110,005 / / / /

Tuning of

inputs only

for
instrumented
housings

IAT 89,460 2,815 22% 3,376 -19%

Dissipated

power
74,082 4,490 46% 5,052 -33%

Occupancy 74,207 4,475 46% 5,038 -33%

All parame-

ters*
90,805 2,729 23% 3,256 -17%

All parameters* +

extrapolation of IAT for non- 153,378 5,422 72% 5,888 +39%

instrumented housings

* includes ventilation scenarios adapted from peak activity in occupancy scenarios
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Figure 4.8: Comparison of heating energy consumption from measurements and calibra-

tion process for B1 (a), B2 (b) and B3 (c) over the heating season 2021/2022 – Measurements

are figured in red, non-calibrated models are in brown and the tuning of inputs is depicted

in grey, yellow, blue, green and dark blue for the tuning of IAT, dissipated power, oc-

cupancy, all parameters for instrumented housings, and the extrapolation of the IAT for

non-instrumented housings, respectively – The purple line shows the relative error in %

between simulations and measurements.
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Figure 4.9: Monthly evolution and comparison of heating energy consumption from mea-

surements and tuning of inputs for B1 (a), B2 (b) and B3 (c) – Non-calibrated models are

in brown and the tuning of inputs is depicted in grey, yellow, blue, green and dark blue for

the tuning of IAT, dissipated power, occupancy, all parameters for instrumented housings,

and the extrapolation of IAT for non-instrumented housings, respectively – The red dotted

line shows the measurements from our sensor network.
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input parameter in the model, it would be expected that a more realistic representation

of this input in non-instrumented housings could help bridge the energy PG. However,

the results of this step show that the heating energy consumption is now much higher

than the corresponding measurements, except for B1. The relative error is of -19%, +24%

and +39% for B1, B2 and B3, respectively, and compared with the measurements. The

smallest modeling error is achieved for B1, with a MAPE of 29%, while the MAPE for

B2 and B3 is of 42% and 72%, respectively.

The extrapolation of IAT tuning in non-instrumented housings highlights the limits

of the proposed strategy, specifically with the data collection focusing on a sample of the

apartments in the considered buildings. The role of IAT set point in heating energy con-

sumption is substantial. However, data could only be reliably collected for six apartments

out of sixty-three, which represents less than 10% of the housings. Moreover, the range of

temperatures in the different instrumented housings is significant and because of the size

of the sample, no specific trend with respect to housing orientation, floor or any other

parameter could be concluded. Therefore, using the average temperature of instrumented

apartments to extrapolate to non-instrumented apartments probably is an assumption

that is too strong with respect to the reality: it is quite unlikely that apartments may

all reach the exact same IAT levels. This might be one of the reasons why the calibra-

tion process is not fully successful. Indeed, there are also other remaining uncertainties,

regarding the impact of occupancy and dissipated power in other apartments. Finally,

another potential source of errors might be related to the lack of energy metering data

from our sensor network and the assumptions that were made to recover missing data,

since out of the three considered buildings, only the heating consumption of B3 and of

B1, B2 and B3 together were directly measured.

4.2.3.2.1 Window opening

Window opening is tested separately from other inputs. Indeed, window opening detection

is addressed by our wireless sensor network but the opening width is not monitored.

However, it is a significant parameter to consider as it relates to occupants’ behavior

and it is expected to impact on heat loss and heating energy consumption. Since there

is too much uncertainty regarding this parameter, it is not included in the calibration

process.

Three rounds of tests are performed for each building. In instrumented housings,

profiles extracted from field data analyses and described in Appendix C.5 are used and

modified according to the process described in Figure 4.6, with a maximum opening

width of 20%, 40% and then 80% set for each window. In non-instrumented apartments,
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windows are always closed. All windows of all housings are always closed as well in NC-

BEM, as it is the standard configuration for this parameter. Results are summarized and

compared with the simulations from NC-BEM in Table 4.6 and in Figure 4.10.

Table 4.6: Impact of window opening on the thermal energy consumption of B1, B2 and B3

over the heating season 2021/2022: 2, 4 and 1 instrumented housings with available window

opening data are considered in these tests, out of total of 13, 21 and 29 apartments in B1, B2

and B3, respectively – Results show the heating energy consumption of the whole building –

Window opening tests are conducted only for instrumented housings with available window

opening data.

Heating energy con-

sumption (kWh)

Normalized heating

energy consumption

(kWh/m2) *

Relative error

(%)

B1

NC-BEM – No win-

dow opening
22,182 19.2 /

Maximum opening

width – 20%
24,559 21.2 +10.7%

Maximum opening

width – 40%
26,839 23.2 +21.0%

Maximum opening

width – 80%
31,195 27.0 +40.6%

B2

NC-BEM – No win-

dow opening
55,019 30.5 /

Maximum opening

width – 20%
73,415 40.6 +33.4%

Maximum opening

width – 40%
84,496 46.8 +53.6%

Maximum opening

width – 80%
92,496 51.2 +68.1%

B3

NC-BEM – No win-

dow opening
73,307 32.5 /

Maximum opening

width – 20%
77,190 34.2 +5.3%

Maximum opening

width – 40%
80,622 35.8 +10.0%

Maximum opening

width – 80%
85,877 38.1 +17.1%

* gross floor area

The first striking result is that the effect of window opening on the heating energy

consumption is significant regardless of the number of instrumented housings or the num-

ber of sensors in a building, as illustrated in Figure 4.10. For instance, in B3, data are

only collected in B3/2 and for three out of four installed sensors. Nevertheless, even with

the lowest tested opening width (20%), there is still a 5.3% increase of the heating energy

consumption for a building (B3). Then, B1 has two instrumented apartments with all

eight operative sensors and B2 has four instrumented housings with two missing sensors
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Figure 4.10: Tests of maximum opening width of windows with 20% (in beige), 40% (in

orange) and 80% (in brown) maximum opening widths, compared with NC-BEM (in purple)

for B1 (a), B2 (b) and B3 (c) – A total of eight, twelve and three sensors, for two, four and

one instrumented housings are considered in B1, B2 and B3, respectively.
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out of fourteen.

The substantial role of the window opening width is consistent. Comparing a small

opening and a fully opened window, for the same duration, the heat loss in winter is

significantly higher. Obviously, it is not realistic to account for all windows to be fully

opened (80%) when the sensors detect a window opening. The opening width should vary,

depending on a variety of parameters such as the purpose of the natural ventilation, the

related activity from the occupant (ventilation after the night, cooking), climatic condi-

tions (outdoor temperature, humidity or wind) or even social and cultural backgrounds

[8]. Hence, it is of paramount importance to take this parameter into account and to

find a way to either collect related data or to assess a representative averaged opening

width.

However, it should be notified that these simulations have a main limitation. In

BEM, IAT is set as the temperature setpoint in the different thermal zones. If a window

is opened and there is a heat loss, the heating energy system compensates the heat loss to

achieve the temperature setpoint. In the case study, there is no thermostat in housings.

Therefore, if a window is opened, the system does not take this action into account and

the heat demand is not impacted. However, this also means that measured temperatures

in instrumented housings already account for window opening in the living rooms, which

reinforces the questions regarding the actual temperature setpoints and the overall heating

energy management in the studied buildings.

4.2.3.3 Conclusions on the performance gap and calibration

We addressed the manual calibration of BEM with the tuning of different input param-

eters. Energy-driving parameters identified through sensitivity analyses were selected.

Those depicting the building operation and for which data were collected through the

sensor network were modified to fit to modeling operation scenarios for the instrumented

housings. The calibration was manually performed input by input in five steps.

The tuning of individual parameters confirmed the predicted impact from sensitivity

analyses. Occupancy and dissipated electric power had a low impact while IAT, equated

to temperature setpoints, resulted in a significant increase of heating energy consumption.

We also observed that a change in occupancy and dissipated electric power to field-

measured data increased heating energy consumption, meaning that in the instrumented

sample, less heat gains than expected were generated.

We also proposed to extrapolate the tuning of IAT for non-instrumented housings

using data collected in other housings, which finally resulted in a significant final energy
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PG. For B2, the gap went from -30% to +24% after calibration and extrapolation. For B3,

it was even larger, going from -30% to +39% before and after tuning. Only B1 really got

closer to measurements, as the gap was reduced from -54% to -19% after calibration.

Several reasons may explain the large remaining PG. First of all, most parameter

tuning was only performed for instrumented housings, which relates to two, four and two

apartments in B1, B2 and B3, respectively. Occupancy had little observed impact but

results showed that the tuning of dissipated power had slightly more effect. For considered

housings, dissipated power tuning ended up increasing heating energy consumption due

to lower internal heat gains. It may also end up decreasing the energy consumption, if

some apartments have and use more electrical appliances. This parameter and its impact

over the model remain quite uncertain.

A second significant aspect resides in the choice of IAT scenarios for non-instrumented

housing. Measured IAT were assumed to be equal to temperature set points, that are the

input data scenarios used in energy models. Using the operative temperature instead, to

take into account the temperature of cold walls could be more realistic as a temperature

set point to take into account the occupants’ comfort. Then, for each non-instrumented

household, we made a strong assumption using the average temperatures over the heating

season in instrumented apartments from the same building, with 22.2°C, 22.7°C and 24.3°C
for B1, B2 and B3 respectively. However, these values are questionable and for several

reasons. There is significant range of temperature in apartments, from 21.4°C to 24.9°C
in average in B1/2 and B3/0, while the instrumented sample with available data accounts

for less than 10% of the whole housing stock of the case study. If the heating patterns are

expected to be similar, the temperature level may significantly differ from one apartment

to the other. Also, averaged temperatures for each building increase from the smaller to

the larger building. Considering that an overall 2°C variation of IAT increased the heating

energy consumption in the buildings by up to 55.2% to 68.3%, a small discrepancy in IAT

for non-instrumented housings may significantly impact on the model output and the final

energy PG.

A number of other modeling uncertainties remain. Most information regarding the

building envelope and the energy systems are extracted from the retrofit portfolio. These

documents are supposed to be the accurate summary of what was implemented onsite.

Nevertheless, there were several missing information regarding the characteristics of some

elements of the buildings such as the heating and DHW systems. There are also uncer-

tainties in the measurements and the sensor network set up. Assumptions were made

to complete the missing data from heating energy meters. These meters ended up being
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difficult to successfully operate all along the instrumentation period. IAT could also be

discussed on several critical points, including the location and number of the sensors in

the housing, with only one sensor installed in the living room.

Furthermore, it should not be forgotten that non-negligible origins of the energy PG

are often observed in the construction process, as discussed in Chapter 1. The quality of

the retrofit process and the accuracy of the documentation was not verified nor compared,

while the inputs related to the description of building energy systems and the envelope

have a non-negligible cumulative impact on heating energy consumption. Among these

parameters, the first-ranking is the dimension of walls. Although the BEM have been

checked several times, small modeling errors cannot be excluded.

4.2.4 Practical conclusions on heating energy performances for

the studied buildings

In the present chapter, we addressed the study of the energy PG through building energy

modeling, the calibration of models and the comparison with measurements from our

sensor network. This study raised several practical insights regarding the operation of the

considered building case study, that are summarized in this section.

Sensitivity analyses highlighted the most energy-driving input parameters of the BEM

with respect to the heating energy consumption. In other words, these parameters relate

existing building features, whose improvement or optimization can significantly reduce

heating energy consumption. Specifically, the thermal characteristics of the walls after

retrofit still has a non-negligible effect. Considering that the envelope of buildings was

not insulated prior to the retrofit, this action was definitely required.

In terms of energy consumption, it seems that the retrofit of the buildings achieved

the targeted energy efficiency. The regulatory study that was conducted before the retrofit

of the considered buildings predicted a heating energy consumption of 67,136 kWh, 96,244

kWh and 110,586 kWh for B1, B2 and B3, respectively, over a typical heating season.

Measurements and calculations described in Section 4.2.1 showed a heating energy con-

sumption of 48,405 kWh, 78,354 kWh and 110,468 kWh for B1, B2 and B3, respectively.

Hence, B1 and B2 apparently exceeded heating energy consumption goals, while B3 met

the objective, considering the assumptions that were used in the calculations of the heat-

ing energy consumption for B1 and B2.

However, there are still several lines of actions to further improve heating energy

efficiency. Specifically, IAT measurements in instrumented apartments were much higher
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than a standard 19°C, as they ranged from 21.4°C to 24.9°C in average over the heating

season 2021/2022. This large 3.5°C-difference between two apartments, here B1/2 and

B3/0, also highlighted the diversity of IAT levels in the instrumented sample. Hence, it

would be reasonable to think that non-instrumented housings may also show a diversity of

indoor temperature levels within a similar range. Furthermore, it was observed that there

is currently no water law for heating management. IAT measurements are constant over

day and night. These insights question the current heating energy management.

Several strategies could be considered. First, IAT should be reduced to a reasonable

level. It would induce a significant decrease of the heating energy consumption in the three

buildings. If the operative temperature – i.e. the average between the indoor temperature

of cold walls and the acrshortiat – is considered as the heating temperature set point, it

should still result in lower IAT in housings, since the building envelope was insulated

during the retrofit. Temperature measurements in different location within the buildings

could also be implemented, eventually with a thermostat to help optimizing heating energy

management. Even after the renovation, there are no temperature monitoring points in

the buildings to provide a feedback on the performances of the heating energy system.

Water laws would complement these strategies to reduce heating over night periods and

eventually fit to other specific heating needs in the three studied buildings. It is necessary

to highlight that, in that case, the repetitive triggering of boilers to compensate the

temperature decrease after the night could result in a higher energy consumption of the

boilers and higher electricity consumption from the hot water pumps, compared to a

constant temperature set point over the day. However, combined with the decrease of

IAT, as suggested above, we would still expect to observe a significant decrease of the

heating energy consumption.

Finally, the study of window opening depicts several trends as well, specifically over

the summer period. We found out that in most apartments and rooms, windows are

opened for a significantly longer time during the summer months (between May and

September, depending on the housings) compared to other times of the year. There could

be several reasons for this trend. Specifically, as many of the inhabitants, and specifically

the occupants of instrumented housings, have been living in the buildings for many years

prior to the energy retrofit, they may be used to open the windows during the summer

because of the poor thermal insulation of the buildings before our research project. This

is related to the rebound effect, as it may take up to several years for inhabitants of

retrofitted buildings to adapt to their new environment and modify their habits [10]. The

thermal insulation and ventilation of housings would need further checking as well. It is

indeed very common to find summer overheating after the retrofit of residential buildings
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[11] and that would drive on window opening. It may be related to unsuitable ventilation

strategies or a choice of insulation materials that is adapted to meet the requirements in

terms of winter heating energy savings but are unsuited for summer comfort perspectives.

This also confirms that summer comfort in the buildings of the case study should be

investigated in future works.

Conclusions

The energy performance gap is a major challenge in building energy modeling. To study

and intend to close the performance gap after retrofit actions, a three-step strategy was

proposed with the implementation of non-calibrated energy models as for a TRS, the

identification of the main energy-driving inputs of the models, and the tuning of these

inputs in NC-BEM using field data collected through our wireless sensor network.

As expected, NC-BEM resulted in a significant PG compared with measurements.

An intuition was leading to the IAT as one of the main reasons for this gap, considering

the heating centralized energy system and the very high IAT measurements observed in

instrumented housings. This assumption was confirmed by sensitivity analyses that un-

derlined the impact of IAT as the most energy-driving input. Other operation scenarios

including occupancy and dissipated power were considered less impacting. Due to the

weight of the IAT, it was observed that for a 10% variation of the values of input parame-

ters, scenarios of building operation could result in up to more than three times the effect

of a similar modification for parameters describing the building envelope and the energy

systems.

The tuning of parameters was manually conducted input by input: IAT, occupancy

and dissipated power alone, then all together, and complemented with an extrapolation

towards more realistic IAT levels in non-instrumented housings. Although the individual

tuning of inputs had a logical effect, the extrapolation of IAT was not fully successful. It

raised several questions on the remaining uncertainties in the BEM. Part of these uncer-

tainties relate to heating energy metering for the comparative study. Due to the defect of

some heating energy meters, several assumptions were made, and considering the difficul-

ties in maintaining the thermal energy metering solution over the time of our project, even

the available measurements could be questioned. Then, on the other side, other uncer-

tainties remain for the buildings’ features, the modeling process and the retrofit work that

was conducted. Retrospectively, these could be investigated with a different strategy for

the instrumentation and the building energy modeling processes. A larger housing sample
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but with less diversity in the measurements could be a relevant option to ensure an easier

management of the data collection and to target specific parameters. A larger number

of IAT measurement points in instrumented apartments should be considered. Also, IAT

could be replaced by the operative temperature, taking into account data collected for

the indoor temperature of cold walls.

These observations are also shared in the study of window opening. Collected data

provided an opening duration. However, the opening width was not monitored and it

was concluded as a substantial energy-driving parameter. A monitoring strategy would

be required to collect related data.

It is necessary to underline as well a limitation of the sensitivity analysis performed

in our study, with ”one-at-a-time” method. As energy models distinctively consider op-

eration scenarios, it is expected that most of these parameters, such as the occupancy,

the dissipated power and window opening may be related and not independent from each

other. This should be further explored using more adapted global sensitivity analyses

techniques.

Nevertheless, for the same reasons than the calibration process was not entirely suc-

cessful, it also offered relevant insights, specifically regarding the current heating energy

management and on the improvements that would be necessary for an even better per-

forming sensor network. Furthermore, the calibration strategy still remains relevant, and

it is expected to provide better performances with slightly more available data and a few

less uncertainties on key building features.

Finally, there is a large pool of opportunities to explore regarding the characterization

of the energy consumption and the impact of the renovation on the considered retrofitted

buildings. Although it is the main energy end-use, only the heating energy consumption

was studied. Other significant end-uses should be further investigated, including domestic

hot water consumption and usage of electric appliances. Furthermore, so far, the study

has been conducted at building scale. Many housings did not participate in the instrumen-

tation campaign and it resulted in the difficulties reported above regarding the calibration

of building energy models. Hence, a study at the scale of apartments could be considered

to explore a smaller spatial granularity, and try and characterize different behaviors and

energy demand patterns based on the specificity of the occupants. Finally, there is also

the question of the summer thermal comfort, a highly topical issue with respect to the

requirements of the French Environmental Regulation, that should be taken into account,

and on which window opening patterns, as an example of the occupants’ behavior, would

be expected to play an important role as well.
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tale des bâtiments.” https://www.izuba.fr/logiciels/outils-logiciels/. 143

[3] D. Coakley, P. Raftery, and M. Keane, “A review of methods to match building energy

simulation models to measured data,” Renewable and Sustainable Energy Reviews, vol. 37,

pp. 123–141, sep 2014. 144

[4] E. Fabrizio and V. Monetti, “Methodologies and Advancements in the Calibration of Build-

ing Energy Models,” Energies 2015, Vol. 8, Pages 2548-2574, vol. 8, pp. 2548–2574, mar

2015. 144

[5] M. H. Kristensen and S. Petersen, “Choosing the appropriate sensitivity analysis method for

building energy model-based investigations,” Energy and Buildings, vol. 130, pp. 166–176,

oct 2016. 146

[6] W. Tian, Y. Heo, P. de Wilde, Z. Li, D. Yan, C. S. Park, X. Feng, and G. Augenbroe, “A

review of uncertainty analysis in building energy assessment,” Renewable and Sustainable

Energy Reviews, vol. 93, pp. 285–301, oct 2018. 146
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General conclusions

The present thesis originates from the ANDRE research project funded by CAMEO SAS,

a company specializing in energy saving certification, the landlord Marne-et-Chantereine

Habitat, and researchers from Université Gustave Eiffel, with laboratories ESYCOM and

COSYS LISIS focusing on building energy modeling and calibration, Lab’URBA for so-

cial sciences and GRETTIA for data sciences. The ANDRE project aimed to investigate

a major topic, taking into account the current challenges in building energy efficiency.

Energy retrofit is indeed one of the main line of actions to reduce building energy con-

sumption. Considering the age and state of the existing housing stock in France, many

buildings would need to improve their overall environmental footprint. Consequently,

landlords are highly encouraged to implement ambitious energy retrofit actions over their

building stock but the results of the renovation are at stake. It is common to observe a

performance gap, which characterizes the difference between the expected results of the

thermal renovation and the actual energy performance of buildings resulting from the

retrofit. With this in mind, the landlord Marne-et-Chantereine Habitat provided three

existing social residential buildings from its stock, as a case study to investigate building

energy performance in a retrofit context, using a multi-field approach. This manuscript

discussed the research work conducted on data collection and analyses from a wireless

sensor network, to improve the calibration of building energy models.

In the introducing chapter, we provided an overview of building energy modeling as

a topic. The most implemented methods for building energy modeling were presented to

choose the fittest approach for our study, and to guide strategies to bridge the energy

performance gap. Data-driven approaches are among the most popular techniques nowa-

days, due to the increasing amount of collected field data on many aspects of the building

energy performance. However, the need for a highly interpretable and detailed energy

model to investigate implemented retrofit actions led us to choose a more conventional

physics-based approach. The review of the literature highlighted many potential origins

to the energy performance gap, along with adapted strategies to close it. With respect to
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the case study, we decided to investigate building post-occupancy as a source of modeling

uncertainties that could result in an energy performance gap. From this point of view,

it was highlighted that a better understanding of building operation to calibrate energy

models would be the adapted strategy.

Hence, the first step would be to collect field data to characterize post-occupancy

building operation. The case study supporting this research is a three-building complex

of sixty-three social housings, built in 1974. Deep energy retrofit actions were conducted

from the summer 2020 to the summer 2021 in the three buildings. The data collection

was performed using a wireless sensor that was deployed onsite. It comprised 170 sensors

distributed in an eight-apartment sample, in common areas and on energy systems, and

complemented by a weather station installed on the nearby university campus. At building

scale, data were collected over three years. In housings, data were collected over one year

and half. Aside from the large number of sensors, a specificity of the monitoring solution

was the targets of the instrumentation: energy consumption, indoor environment quality,

usages and local weather. The review of the literature on similar instrumentation solutions

for building energy monitoring showed that equivalent or more performing set ups would

mostly be industrial – with consecutive human and financial means – or relying on building

energy management systems. As a matter of fact, long-term management of monitoring

solutions is a complex task and such a sensor network inevitably faces technical challenges.

As a conclusion to the management of the sensor network over the full term of the project,

it was clear that there is room for improvements regarding the measurements, the choice

of monitoring technologies, and the automation of the network supervision. Nevertheless,

our instrumentation solution offered a relevant feedback on wireless data acquisition, that

is a hot topic for building efficiency applications. It also plainly filled its first and main

objective: to provide a large amount of diverse field data to explore building energy

operation and help calibrating building energy models.

For field data analyses, we focused on five parameters related to the energy consump-

tion, the indoor environment quality, and the occupants’ behavior in instrumented hous-

ings: indoor air temperature, occupancy, window opening, domestic hot water use and

electric dissipated power. Data pre-processing highlighted that raw measurements were

not necessarily optimal in terms of analyses. They required modifications, such as for oc-

cupancy detection and domestic hot water use. Nevertheless, passed these constraints, the

analyses of selected parameters provided relevant insights. For each parameter, different

patterns were observed. These patterns were apartment-specific. A major finding related

to indoor air temperature and heating patterns. As newly retrofitted buildings, it would

have been expected to find reasonable temperature levels and a close-to-optimised heat-
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ing energy management. On the contrary, measured air temperature was largely above

standards and there was no apparent heating management over day, night, weekdays and

weekends in the buildings, which would save a significant amount of energy. Furthermore,

the diversity of operation profiles observed from collected data questioned the reliability

of standard scenarios that proved to be very different from the reality. Although, it may

be quite difficult to use such an instrumentation campaign for every retrofit project, this

could lead a middle ground with different perspectives: small instrumentation batches

prior to the retrofit to collect dedicated field data, case-study-specific standard datasets

with more diversity in building operations and/or customizable profiles based on easy-to-

implement measurements such as the occupancy, that drives most of indoor activity.

We used the findings from field data analyses over the instrumented sample to re-

place energy modeling assumptions. We focused on heating energy consumption after the

retrofit, as the main energy end-use in apartment buildings. The modeling and calibra-

tion strategy was divided into three steps. At first, non-calibrated energy models of the

retrofitted buildings were implemented based on the retrofit portfolio and standard data

for the investigation of the initial performance gap, and the identification of energy-driving

inputs, using sensitivity analyses. Once the energy drivers were highlighted, corresponding

data analysis results were integrated to building energy models. They were then used to

tune energy-driving inputs and to calibrate the building energy models. As expected, the

non-calibrated building energy models exhibited a large gap compared to measurements.

Sensitivity analyses clearly depicted the impact of one specific input parameter: the in-

door air temperature. Along with other operation schedules, including the occupancy

and the dissipated electric power, these inputs were then tuned one-by-one to observe

their respective effect, and then together. The extrapolation of indoor air temperature

tuning to non-instrumented housings was also performed. However, it resulted in an al-

most equivalent energy performance gap with over-heating energy consumption for two

buildings.

Consequently, limitations were underlined in the overall data collection, the building

energy modeling and the calibration strategy. Coming back to the beginning of the

instrumentation process, due to budget and enrollment restrictions, it was decided to limit

the number of participating housings and to increase the number of sensors per apartment.

Also, the data collection started much earlier than the modeling process for obvious

reasons, such as the need of a significantly large amount of data and project management

constraints – both the instrumentation and the energy modeling were conducted by our

research team. From a data analysis point-of-view, and considering that collected data

would also be used by other members of the ANDRE project for their respective research
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goals, this strategy was meaningful.

For building energy modeling applications, the strategy could have been implemented

differently. A few potential ideas would be:

• To target a larger housing sample with less sensors but specifically selected mea-

surements, with reinforced monitoring to avoid extensive data loss and long-term

management issues;

• To start the energy modeling process at the same time as the instrumentation:

a simplified energy model with sensitivity analyses could highlight energy-driving

input parameters to focus on and modifications could be implemented in the sensor

network to comply with the needs of the energy models;

• To include the construction party in the research project to ensure there would be

less missing information regarding the building features.

Despite many possible improvements, the research project and its results presented in

this manuscript pave the ground for further research on building energy modeling calibra-

tion complemented with the use of wireless sensor networks. Our study focused on heating

energy consumption and highlighted the related most energy-driving parameters to mon-

itor: indoor air temperature, occupancy, dissipated energy and window opening. We

contemplate the idea that the study of other building energy end-uses based on collected

field data would help designing customized end-use-related instrumentation packages for

practical field studies and the efficient characterization of building energy consumption.

Consequently, there is a significant amount of data that could not be analyzed over the

time of this thesis. We expect that cross-analyses would lead to a deeper understanding

of occupants’ behavior and its impact on energy consumption. Future works should focus

on the investigation of the detailed electrical energy consumption from connected plugs

and sensors with clamp ampere meters, as well as the characterization of the summer

thermal comfort and the indoor air quality with cold wall temperatures, relative humidity

and CO2 concentration. All these different parameters could provide relevant insights to

contribute to the improvement of an efficient energy retrofit with the integration of occu-

pants’ behaviors. Finally, this work remains to be integrated to the research conducted by

the other members of the ANDRE project. The combination of instrumentation, building

physics, social sciences and data sciences is a novel approach. Advanced data analytic

and data-driven energy models could support data analysis goals listed above. Moreover,

our findings stressed how each different housing exhibited unique patterns of occupancy,

dissipated power, domestic hot water use and window opening. Some patterns could be

related to characteristics of the occupants of instrumented housings. However, a dedicated

182



GENERAL CONCLUSIONS

socioeconomic approach could bring other perspectives on the link between socioeconomic

aspects of housings and energy-driving behaviors.
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Appendix A

Tools for building energy modeling

Building energy models are implemented through specific tools and software. This ap-

pendix offers a summary of these tools for physics-based and data-driven energy modeling.

Hybrid models rely on the combination of tools from both categories.

A.1 Physics-based energy modeling

Physics-based modeling mostly depends on commercial and academic research software.

It exists a significant variety of software from different countries, companies and research

institutes with various embedded functions. Several reviews have been edited on the

topic [1, 2]. The BEST (Building Energy Software Tools) directory also offers among the

most complete overview of available tools [3]. From an initial list of seventy-two reported

modeling tools, we focused on the fourteen most commonly used software in the literature

and for industrial applications. Table A.1 focuses on the technical features of the modeling

software, Table A.2 provides an overview of the types of buildings that can be modeled

with the software, and Table A.3 summarizes the types of modeling outputs that can be

expected.
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Table A.1: Summary of software for physics-based energy modeling – Technical charac-

teristics.
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Table A.2: Summary of software for physics-based energy modeling – Applications: case

studies.
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Table A.3: Summary of software for physics-based energy modeling – Applications: mod-

eling outputs.
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A.2 Data-driven energy modeling

A.2 Data-driven energy modeling

The recent research interest and popularity of data-driven BEM is significantly supported

by the accessibility of many opens-source tools. Most tools are coding platforms that

benefit from several pre-coded packages. Non-expert users can easily implement many

algorithms, although the tuning of these algorithms still requires extensive knowledge on

the topic. The following Table A.4 summarizes the most encountered tools for data-driven

modeling, along with popular packages and implemented data-driven techniques.

Table A.4: Summary of coding tools, packages and applications for data-driven energy

modeling.

Tool
Available

packages
Applications

IBM SPSS Statistics [4] / Autoregressive models [5]

IBM SPSS Statistics [4] / Autoregressive models [5]

Python

Statsmodel [6] Statistical regressions [7]

Scikit-Learn [8]

SVR, statistical regressions

[7, 9], ensemble models [10],

DT [11]

Neurolab [12] ANN [10]

Tensorflow [13] ANN, DNN [14]

Keras [15] Deep learning [16]

Weka Software [17] /
k-NN [18], DT [19], statistical

regressions, ANN, SVR [20]

Matlab [21]

/

ANN [22], DNN [23],

ensemble models [24],

unsupervised and

reinforcement learning [25]

LibSVM [26],

FarutoUltimate [27]
SVR [14, 28, 29]

Neural Network

Toolbox
ANN [30, 31]

mySVM [32] / SVR [22]

R [33] / SVR [34]

189



BIBLIOGRAPHY

Bibliography

[1] Y. Chen, M. Guo, Z. Chen, Z. Chen, and Y. Ji, “Physical energy and data-driven models

in building energy prediction: A review,” Energy Reports, vol. 8, pp. 2656–2671, nov 2022.

185

[2] ASSOCIATION APOGEE, “Revue pratique des logiciels de simulation énergétique dy-
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Appendix B

Sensor network for building energy

monitoring

B.1 Connected objects and communication protocols

for building energy monitoring

This appendix provides additional context to the Chapter 2, specifically regarding wireless

communication in our sensor network. It defines and discusses several concepts, including

the Internet of Things, and LoRaWan and GPRS communication protocols.

B.1.1 The Internet of Things

National instrumentation plans, such as in Europe or the United States [1, 2, 3, 4] pushed

for the large installation of smart energy meters. These meters have boosted the recent

development of a complementing technology with a large range of small-size sensors, with

low energy consumption and cost: the Internet of Things (IoT).

The Internet of Things is a part of the information and communication technolo-

gies (ICT). The first occurrence of this concept is recent and goes back to 2005, with

the research of the Massachusetts Institute of Technology on networked radio-frequency

identification [5, 6]. Nowadays, most IoT technologies are supported by radio frequen-

cies.

A definition of IoT could refer the definition given by the International Telecommu-

nication Union: ”a global infrastructure for the Information Society, enabling advanced

services by interconnecting (physical and virtual) things based on, existing and evolving,
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interoperable information and communication technologies” [7]. However, this definition

is very broad and applies to a diversity of fields including health, security, energy, agricul-

ture, transportation or industries. To relate to our study, we define IoT as the network

solution including the sensors and meters, the communication protocols and supporting

equipment, and the data collection and storage solutions.

B.1.2 Communication protocols

B.1.2.1 Overview

The IoT market is supported by a variety of communication protocols. The most common

for the instrumentation of buildings and resilient cities are:

• LoRaWan, a ”Low Power, Wide Area (LPWA) networking protocol designed to

wirelessly connect battery operated ‘things’ to the internet in regional, national or

global networks. It targets key Internet of Things (IoT) requirements such as bi-

directional communication, end-to-end security, mobility and localization services”

[8]. It is the most commonly implemented communication protocol for applications

related to connected cities, industrial monitoring or agriculture [9, 10];

• Sigfox [11] is the competing network to LoRaWan and was designed in France.

Unlike LoRaWan, it is a private network, which has several national operated opened

networks. Sigfox is also common for smart cities and buildings instrumentation.

Hence, many sensors can be operated by both technologies;

• ZigBee [12], another competing network with LoRaWan and Sigfox;

• MODBUS [13] differs from the previous communication protocols. It focuses on

automated machine communication but is also frequently found on energy meters;

• Power line carriers traditionally rely on the electricity grid: data are simultaneously

communicated along with electricity power. Although it is relevant for applications

in remote places with low network connection, many issues have been reported

regarding wireless data transmission disturbed by the nearby electric grid [14];

• M-Bus, standing for Meter-Bus, is a communication protocol usually implemented

by utility providers to collect data from smart gas, heat or oil meters [15];

• BACnet, standing for building automation and control network, is, as the name

suggests, a communication protocol for building automation applications, developed

by ASHRAE [14];

• Wi-Fi is a common communication protocol for data communication with wide
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application to access the Internet using computers and smart-phones. It can be

used for wireless building instrumentation but has several drawbacks, including

serious security issues and a significant cost because of a higher energy consumption

compared with other protocols. It is usually preferred when the amount of data

to transfer is too significant for other communication protocols because of live-

transmission or high quality data requirements [14];

• GPRS (general packet radio service) is a famous communication protocol used in

building metering systems when the instrumentation requirements can not comply

with constraints of other networks, such as using a small data acquisition time-step.

In our sensor network, LoRaWan and GPRS protocols are implemented due to their

availability on the IoT market and ease of implementation.

B.1.2.2 LoRaWan

B.1.2.2.1 LoRa, LoRaWAN and LoRa Alliance

LoRaWan means long rang wide area network. This communication protocol targets

data communication between connected objects [16]. LoRa is the supporting peer-to-peer

communication technology. Historically, LoRa technology was developed from 2012 by a

French start-up company, Cycleo, and is now owned by Semtech company [17].

LoRaWan is developed by a non-profit association, the LoRa Alliance [8], to provide

a standardized and inter-operable network. Among the deciding members, there are man-

ufacturing companies such as Cisco, IBM or SagemCom, and network operators including

Bouygues Telecom with its LoRa subsidiary, Objenious.

B.1.2.2.2 Technical characteristics

LoRaWan protocol targets long-distance data communication with low energy consump-

tion. It depends on free radio frequencies – 868 MHz in France – and the Internet for a

small data throughput (0.3 to 50 Kbps – smaller than for 2G communication). This results

in the low energy consumption of communicating devices, which is a significant advantage

considering they may be located in remote places and powered with batteries.

Another aspect of LoRaWan protocol is the two-way communication with connected

objects: data can be collected and sent to a sensor. This is a useful feature to check on

communicating systems and to implement remote activation of devices [9].

LoRaWan network architecture is shaped in a star-of-star configuration. A central

server communicates with gateways that are used as data aggregators and communication
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relays for sensors, and also to assess the LoRaWan network quality. Gateways communi-

cate with sensors through the LoRaWan network. Between gateways and storage servers,

the Internet is used.

Finally, the LoRaWan, unlike competing networks such as Sigfox, is an opened net-

work. Any user can implement an instrumentation solution using LoRaWan, either with

operated or private networks. Operated networks are managed by national operators.

This option is usually preferred for the ease of use, because the operator manages the net-

work implementation and maintenance, subject to a connectivity fee. Private networks

have advantages over operated networks regarding security issues, network usage and for

large amounts of sensors when connectivity cost is not optimal.

B.1.2.2.3 Benefits and drawbacks

LoRaWan is a widely implemented and easily accessible communication protocol for build-

ing energy monitoring. There is a significant theoretical range of applications with long

range communication: 15 km for free field, 7 to 10 km for suburban areas, several hundred

meters in dense urban areas and a dozen vertical floors in buildings. LoRa technology also

provides other benefits. As described above, the energy consumption for data commu-

nication is also low, the communication protocol implements a two-way communication

between servers and sensors and LoRaWan is an opened network.

In practice, a major drawback is the limited use of the operated LoRaWan network

with a restriction of 1% of bandwidth usage at a time. It limits applications, specifically

when a large number of sensors are set up with small data acquisition time-step. The

obvious replacement solution is the private LoRaWan network. However, the initial cost

is higher, it not a cost-effective solution for a small number of sensors, and it requires a

day-to-day automated management since the network is managed by the user.

B.1.2.3 GPRS

GPRS (general packet radio service) is the second communication protocol used in our

sensor network. It evolved from GSM network (Global System for Mobile communication).

unlike LoRa, GPRS is fully supported by the Internet and directly communicates with

servers without gateways. Data throughput is also more significant than for LoRaWan.

A significant advantage of GPRS is the absence of limitations regarding network and

bandwidth use, which is why it is selected for electricity metering consumption that

required one-minute data acquisition time-step.
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B.1.2.4 Discussion: the recent evolution and the impact of IoT communica-

tion protocols

IoT connected objects for building energy monitoring are mostly supported by commu-

nication networks including LoRaWan, Sigfox and Zigbee, due to their many advantages

over other solutions available on the market. Recent news highlighted upcoming changes

over IoT communication protocols and also question their environmental impact.

National operator Objenious has announced in 2022 the final discontinuation of its

LoRaWan operated network by 2024 [18]. It will be replaced with emerging networks such

as LTE-M (long term evolution - machine) and NB-IoT (narrowband internet of things),

two communication protocols using cellular network and adapted to low power wide area

applications. Sigfox also faced changes with a judicial settlement that forced the Sigfox

company to target inter-operability of its products with other communication networks

[19].

These changes raise questions regarding the environmental impact of the IoT. Over

our research project, we observed a major discrepancy between the goal behind IoT ap-

plications for energy efficiency and its practical use. In buildings, IoT is implemented to

collect operation data, resulting in a better understanding and optimization of building

energy consumption. The global objective is to reduce the environmental footprint of

the building sector. However, the environmental footprint of the IoT solution should be

questioned as well. We noticed that in case of a malfunction, a sensor was automatically

replaced by our contractor. Eventually, the manufacturer would recover the sensor to try

and understand the issue, but none of our malfunctioning sensors have ever been repaired

to our knowledge, and the design of these sensors shows very little room for repairs any-

way. A perfect example is the batteries that power the sensors. If a sensor is designed

to be water and dust resistant, as many of the sensors we used, there is no mean for

the user to change batteries when they are worn out. Sensors are simply replaced and

hopefully recycled, but there is no available information on this topic. Furthermore, the

needs of an easy and quick installation and access to data supports this design strategy.

Considering the changes announced in IoT communication protocols, it is quite likely that

most operating sensors will have to be replaced, at least for the oldest ones because they

might not be compatible with the newest implemented communication protocols.
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B.2 Calibration checking of IEQ sensors for hous-

ings

The majority of installed sensors could not be calibrated by our research team before their

installation. Calibration is performed upon manufacturing. However, a compensating

solution is to check upon measurements in a known environment prior to their installation.

Because of the tight installation schedule most sensors were directly installed on site by

contractors. For the part of the instrumentation managed by our research team, similar

reasons pushed for a quick installation as well. However, IEQ ELSYS CO2 sensors could

undergo a checking process.

ELSYS CO2 sensors combined five measurements, among which four were dedicated

to IEQ characterization – including IAT, relative humidity, luminosity and CO2 con-

centration – and one to occupants’ behavior monitoring – presence detection [20]. The

accuracy and operating range of the sensors can be found in Table 2.6. The resolution of

the measurements is 0.1°C, 0.1%, 1 lux and 1ppm for temperature, humidity, luminosity

and CO2, respectively. The checking process was the following. Ten similar sensors with

the same characteristics were placed together above a shelf in an office room in our uni-

versity building. Measurements were performed over five days, including three working

days and two days of weekend. Considering the location of the sensors, indoor conditions

and measurements were expected to be very similar between the ten sensors. However,

as it was an office space and conditions were not fully controlled, especially regarding

the presence and number of occupants, occupancy detection was not considered for the

calibration checking. Measurements are depicted in Figure B.1.

The results of the calibration checking highlight three types of insights. Temperature

and humidity measurements are very similar among the ten sensors. The graphic analysis

highlights the same variations over time. A reference sensor is randomly selected among

the ten sensors – considering that the visual inspections show measurements are very close

to each other. The difference of measurement for each time-step is calculated between

the reference sensor and the remaining nine sensors. For temperature measurements,

the average difference is of 0.06°C, with a standard deviation of 0.07°C and a maximum

difference of 0.9°C over the five days of monitoring. For relative humidity the average

difference is of 0.25% with a standard deviation and maximum difference of 0.45% and 2%,

respectively. This confirms observations from temperature and humidity graphs.

Luminosity curves show that the sensors seem to detect similar events. However,

the amplitude of luminosity peaks is very different. The sensor IEQ5 is selected as the
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Figure B.1: Measurements from IEQ sensors over five days for calibration checking.
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reference sensor since it shows the highest luminosity peaks. The differences range from 6.6

±27.6 lux between IEQ5 and IEQ6 to 33.0 ±140.2 lux with IEQ10. Such a large range

of differences can find several explanations. Although the office space provides stable

conditions, as described above, they are not fully controlled over time. Furthermore, due

to a slightly different position on the shelf, sensors may not receive the same amount of

light. Over the weekend there is no luminosity detected (curtains are closed). Hence,

differences may originate from people opening the curtains, the door to the corridor (with

lighting), or switching on and off desk lamps. The sensors might not be exposed in the

exact same way to these light sources. Nevertheless, it is not possible to exclude a defect

of luminosity sensing probes on specific sensors.

CO2 concentration measurements highlight the necessity to check upon sensor cal-

ibration before installation. Variations over time are similar. However, there is a gap

between the measurements of the different sensors. Considering the difference between

two extreme sensors (IEQ4 and IEQ6, for instance), the averaged difference is of 312.3

±33.6 ppm, going up to 396 ppm. This gap is very significant, even with the 50-ppm

accuracy of the sensors taken into account. Moreover, IEQ4 shows a CO2 concentration

under 400 ppm which is impossible, considering that the reference CO2 concentration is

around 415 ppm (outdoor CO2 concentration). Unfortunately, at the time of the installa-

tion, there were no calibrated CO2 meters available for a reference comparison. It was not

possible either to send the sensors back to the manufacturer because of the tight instal-

lation schedule. However, in the sensor datasheet, the manufacturer specifies that these

sensors have an internal automatic calibration routine: the routine ”calibrates the sensor

to set 400 ppm to the lowest value that has been read in the last period of approximately

8 days. This means that in an eight-day period, the sensor must be exposed to fresh (well

ventilated) air at least once for the calibration to work”. Then if discrepancies would

still be observed in measurements – low CO2 concentration values, for instance – they

would be cross-analyzed with window opening. When a window would be opened for a

significant amount of time, the CO2 concentration in the apartment would be considered

equal to the CO2 concentration of the air outside. Values of measured CO2 concentration

would then be corrected accordingly.
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Appendix C

Data processing and analyses

C.1 Data quality assessment

This appendix provides an overview of the performances of the sensor network in terms of

data collection over the instrumentation period. Table C.1 summarizes data acquisition

rates for each type of sensors in instrumented housings, in common areas, for energy

systems and for the weather station. Acquisition rates are calculated for data collection

between the installation date of each sensor and the May the 31st, 2022, selected as

the final date for data analyses. Acquisition rates result from the comparison between

the number of collected data points (after the processing of duplicates, but before other

pre-processing steps) and the number of expected data points.

It is necessary to specify that a high data acquisition rate does not necessarily trans-

late into a high data availability rate for data analyses. Some sensors may collect and

transfer data but these data may not be exploitable. This relates specifically to contact

temperature sensors for DHW pipes in housings, and for heating and DHW energy me-

ters. For the former, temperature measurements can be acquired but if the measurements

are under the temperature threshold, data cannot be considered for further analysis. A

suspected explanation to this issue is that some occupants may have temporarily removed

and wrongly re-located the temperature probe of the sensor, such as in B2/1 and B2/2.

Heating and DHW energy metering is performed with an energy meter and a pulse count-

ing sensor for data communication. It may happen that the meter malfunctions but that

the pulse sensor keeps on sending data. Then collected data cannot be exploited in the

analyses.
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Table C.1: Summary of data collection rates over the instrumented buildings and housings.

HOUSINGS

Buildings B1 B2 B3 TOTAL

Housings B1/2 B1/3 B2/0 B2/1 B2/2 B2/5 B3/0 B3/2 TOTAL

Sensor with clamp

ampere meters
N.A. 95.2% 95.2% N.A. N.A. N.A. 98.0% N.A. 95.8%

Pulse sensor for

electric smart me-

ter

52.3% 53.4% 54.4% 52.0% 53.7% 0% 63.6% 70.3% 49.0%

Connected plug 72.5% 0% 46.3% 0% 0% 77.9% 72.9% 69.9% 53.8%

Pulse sensors for

gas meter
N.A. 0% 99.3% N.A. 99.6% N.A. 99.6% N.A. 99.5%

Contact tempera-

ture of heaters
57.7% 98.0% 76.1% 77.9% 79.0% 78.1% 58.0% 62.8% 72.3%

Contact tempera-

ture of DHW pipes
60.6% 97.1% 77.1% 81.7% 79.1% 0.0% 89.7% 0.0% 61.8%

Indoor temperature

of cold walls
63.0% 97.2% 77.1% N.A. 78.4% 76.1% 40.6% 77.1% 72.5%

Temperature. hu-

midity. luminosity.

CO2. presence

59.5% 67.1% 59.4% N.A. N.A. 58.0% 56.6% 59.2% 59.8%

Window opening

detection
/ / / / / / / / /

TOTAL 67.5% 23.3% 41.3% 26.2% 72.9% 59.5% 73.2% 65.0% 55.4%

COMMON AREAS AND ENERGY SYSTEMS

Buildings B1 B2 B3 TOTAL

Sensor with clamp

ampere meters
N.A. N.A. 17.7% 17.7%

Pulse sensor for

electric smart me-

ter

44.7% 27.0% 47.0% 37.8%

Thermal energy

meter for heating
99.6% 99.6% 99.3% 99.5%

Thermal energy

meter for DHW
55.4% 99.5% 99.6% 57.7%

Indoor temperature

and humidity
99.2% 99.7% 98.0% 99.1%

Presence detection 100% 100% 100% 100%

TOTAL 52.2% 29.7% 34.7% 37.8%

WEATHER STATION

TOTAL 92.4%
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C.2 Details of clusters for IAT in apartments

This appendix presents clustering results for B1/2 and B1/3 (Figure C.1 (a) and (b)),

B2/0 and B2/5 (Figure C.2 (a) and (b)), and B3/0 and B3/2 (Figure C.3 (a) and (b)),

corresponding to data analyses in Section 3.3.2.1.

Figure C.1: IAT clusters for B1/2 (a) and B1/3 (b).
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Figure C.2: IAT clusters for B2/0 (a) and B2/5 (b).
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Figure C.3: IAT clusters for B3/0 (a) and B3/2 (b).
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C.3 Density curves for IAT in apartments

The present appendix provides complementary density curves for instrumented apart-

ments B1/2 and B1/3 (Figure C.4 (a) and (b)), B2/0 and B2/5 (Figure C.6 (a) and (b)),

B3/0 and B3/2 (Figure C.6 (a) and (b)). Figures on top-left and bottom-left confront data

distributions between daytime and nighttime. Figures on the top-right and bottom-right

oppose data distributions in weekdays and weekends.

Figure C.4: Density curves for IAT in B1/2 (a) and B1/3 (b) – day and night density

curves are on the top and bottom left, weekdays and weekends density curves are on the

top and bottom right.
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Figure C.5: Density curves for IAT in B2/0 (a) and B2/5 (b) – day and night density

curves are on the top and bottom left, weekdays and weekends density curves are on the

top and bottom right.
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Figure C.6: Density curves for IAT in B3/0 (a) and B3/2 (b) – day and night density

curves are on the top and bottom left, weekdays and weekends density curves are on the

top and bottom right.
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C.4 Details of clusters for dissipated electric power

in apartments

This appendix complements analyses in Section 3.3.2.3 regarding electric dissipated power

clustering for B1/2 and B1/3 (Figure C.7 (a) and (b)), B2/0, B2/1 and B2/2 (Figure C.8

(a), (b) and (c)), and B3/0 and B3/2 (Figure C.9 (a) and (b)).

Figure C.7: Clusters and cluster mapping for dissipated electric power in B1/2 (a) and

B1/3 (b).

A second round of clustering is also performed after removing outliers identified

during the first clustering tests. The second test runs are implemented for B1/2, B2/0,

B2/2, B3/0 and B3/2, for which outlying profiles were highlighted. Detailed results from

the second round of clustering are provided in Figure C.10.
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Figure C.8: Clusters and cluster mapping for dissipated electric power in B2/0 (a), B2/1

(b) and B2/2 (c).
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Figure C.9: Clusters and cluster mapping for dissipated electric power in B3/0 (a) and

B3/2 (b).
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Figure C.10: Clusters for dissipated electric power from the second round of clustering,

in B1/2 (a), B2/0 (b), B2/2 (c), B3/0 (d) and B3/2 (e).
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C.5 Details of clusters and mapping for window

opening

This appendix shows clusters and calendar mappings for window opening in apartments

B1/2 and B1/3 (Figure C.11), B2/0, B2/1, B2/2 and B2/5 (Figure C.12), and B3/2 (Fig-

ure C.13), related to discussions in Section 3.3.2.4. It is complemented with the summary

of cluster distribution for B1 (Table C.2), B2 (Table C.3) and B3 (Table C.4).

Figure C.11: Mean profile from clusters and cluster mapping for window opening in B1.
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Table C.2: Clustering summary for window opening in B1.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

B1/2

Kitchen – North Year-round One random day per week – June to August

Living room –

West

September to

June
July to August / /

Bedroom 1 –

West

September to

June
July to August / /

Bedroom 2 –

West

September to

April
May to August / /

B1/3

Kitchen – North Year-round

Last week of

July to middle

of August

/ /

Living room –

East
July to May June / /

Living room –

North
Year-round Not considered / /

Bedroom – East
August to

April
May to July / /
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Figure C.12: Mean profile from clusters and cluster mapping for window opening in B2.
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Table C.3: Clustering summary for window opening in B2.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

B2/0

Kitchen – North
First two

weeks of June

Mid-June to

October
Rest of year closed

Living room –

West

Year-round

except for...

... the last

week of July
/ /

Bedroom 1 –

West

Not consid-

ered
Year-round / /

Bedroom 2 –

West

Year-round

except for...

...one random

day per week
/ /

B2/1

Kitchen – South Year-round
Not consid-

ered
/ /

Living room –

East

September to

April, July

May, June,

August
/ /

Bedroom – East Year-round
Not consid-

ered
/ /

B2/2

Kitchen – South
Year-round

except for...

...one random

day per week

from October

to March

/ /

Living room –

East

September to

March

April to Au-

gust
/ /

Bedroom – East Year-round
Not consid-

ered

Not consid-

ered
/

B2/5

Kitchen – South July to May June / /

Living room –

South
No available data

Living room –

East
No available data

Bedroom – East
September to

July
August

Not consid-

ered

Not consid-

ered
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Figure C.13: Mean profile from clusters and cluster mapping for window opening in B3.

Table C.4: Clustering summary for window opening in B3.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

B3/0

Kitchen – North No available data

Living room –

East
No available data

Bedroom 1 –

East
No available data

Bedroom 2 –

East
No available data

Bedroom 3 –

East
No available data

B3/2

Kitchen – North
October to

April, July

May, June,

August,

September

/ /

Living room –

West
No available data

Bedroom 1 –

West

October to

March, July

April to

June, August,

September

/ /

Bedroom 2 –

West
Year-round Not considered / /
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C.6 Details of cluster mapping for DHW in apart-

ments

This appendix provides calendar mapping for DHW use in apartments B1/2, B1/3, B2/0

and B3/0 (Figure C.14 (a), (b), (c), and (d), respectively) corresponding to results and

analyses in Section 3.3.2.5.

Figure C.14: Cluster mapping for DHW use in B1/2 (a), B1/3 (b), B2/0 (c) and B3/0

(d).
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