
HAL Id: tel-04301500
https://theses.hal.science/tel-04301500v2

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecting Resilient Computing Systems : a
Component-Based Approach

Miruna Stoicescu

To cite this version:
Miruna Stoicescu. Architecting Resilient Computing Systems : a Component-Based Approach. Ubiq-
uitous Computing. Institut National Polytechnique de Toulouse - INPT, 2013. English. �NNT :
2013INPT0120�. �tel-04301500v2�

https://theses.hal.science/tel-04301500v2
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :
Systèmes Informatiques

Présentée et soutenue par :
Mme MIRUNA STOICESCU

le lundi 9 décembre 2013

Titre :

Unité de recherche :

Ecole doctorale :

CONCEPTION ET IMPLEMENTATION DE SYSTEMES RESILIENTS PAR
UNE APPROCHE A COMPOSANTS.

Systèmes (Systèmes)

Laboratoire d'Analyse et d'Architecture des Systèmes (L.A.A.S.)
Directeur(s) de Thèse :

M. JEAN CHARLES FABRE
M. MATTHIEU ROY

Rapporteurs :
M. ALEXANDER ROMANOVSKY, UNIVERSITY OF NEWCASTLE GB

M. LIONEL SEINTURIER, UNIVERSITE LILLE 1

Membre(s) du jury :
1 M. CHARLES CONSEL, ENSEIRB, Président
2 M. ALAIN ROSSIGNOL, ASTRIUM, Membre
2 M. ANIMESH PATHAK, INRIA LE CHESNAY, Membre
2 M. JEAN CHARLES FABRE, INP TOULOUSE, Membre
2 M. MATTHIEU ROY, LAAS TOULOUSE, Membre

Contents

List of Figures v

List of Tables vii

List of Listings vii

List of Acronyms xi

Introduction 1

Chapter 1 Context & Problem Statement 5

1.1 Introduction . 5

1.2 From Dependability to Resilience . 6

1.2.1 Resilience . 6

1.2.2 Dependability . 7

1.2.3 Bridging the Gap . 8

1.3 A Motivating Example . 8

1.4 Problem Statement . 9

1.4.1 From Fault Model to Change Model . 10

1.4.2 Types of Adaptation . 10

1.4.3 The Scientific Challenge . 12

1.4.4 Two Ways of Stating the Problem . 12

1.5 Overall Approach . 13

1.6 What This Thesis Is NOT About . 15

1.7 Related Work . 16

1.7.1 Fault Tolerance and Fault Tolerance Mechanisms 16

1.7.2 Adaptive Fault Tolerance . 16

1.7.3 Design Patterns for Fault Tolerance . 23

1.7.4 Component-Based Software Engineering . 25

1.7.5 Autonomic Computing . 25

i

Contents

1.7.6 Reconfigurable (Ubiquitous) Systems and Frameworks 26

1.8 Summary . 28

Chapter 2 Adaptation of Fault Tolerance Mechanisms (FTMs) 29

2.1 Introduction . 29

2.2 Change Model and Associated Frame of Reference 30

2.3 Classification of FTMs . 31

2.4 Presentation of Considered FTMs . 33

2.4.1 Tolerance to Crash Faults . 33

2.4.2 Tolerance to Hardware Value Faults . 33

2.4.3 Underlying (FT,A,R) Characteristics . 34

2.5 Transitions Between FTMs . 34

2.5.1 Possible Transitions . 34

2.5.2 Anticipation of Changes . 35

2.5.3 Detailed Analysis of Transition Scenarios . 37

2.6 Summary . 40

Chapter 3 Design for Adaptation of FTMs 41

3.1 Introduction . 41

3.2 Requirements and Initial Design . 42

3.3 First Design Loop: Generic Protocol Execution Scheme 43

3.4 Second Design Loop: Externalization of Duplex Concerns 45

3.4.1 Composing FTMs . 46

3.4.2 Fault Tolerance Design Patterns (FTDPs) . 46

3.5 Validation & Evalution . 47

3.6 Summary . 48

Chapter 4 Component-Based Architecture of FTMs for Adaptation 49

4.1 Introduction . 49

4.2 Standards, Tools and Runtime Support . 50

4.2.1 The SCA Standard . 50

4.2.2 FRASCATI . 51

4.2.3 Runtime Reconfiguration Support . 52

4.2.4 Runtime Support Requirements for On-line Adaptation of FTMs 53

4.3 Component-Based Architecture of PBR for Adaptation 54

4.3.1 Separation of Concerns . 55

4.3.2 SCA Entities . 55

4.3.3 PBR in Action . 57

ii

4.3.4 Component State Management . 58

4.3.5 From Objects to Components: Design Choices 59

4.3.6 Developing the Pieces and Putting Them Together 60

4.4 Transition Process . 62

4.5 Implementing On-line Transitions Between FTMs . 65

4.5.1 PBR→LFR . 65

4.5.2 LFR→LFR⊕TR . 70

4.5.3 LFR→Assert&Duplex . 72

4.6 Consistency of Distributed Adaptation . 75

4.6.1 Local Consistency . 75

4.6.2 Consistency of Request Processing . 75

4.6.3 Distributed Consistency . 75

4.6.4 Recovery of Adaptation . 76

4.7 Summary . 77

Chapter 5 Evaluation, Integration, Application 79

5.1 Introduction . 79

5.2 Evaluation . 80

5.2.1 Performance . 80

5.2.2 Agility . 82

5.3 Integrating AFT in the Development Process . 83

5.3.1 Motivation and Context . 83

5.3.2 The Sense-Compute-Control Paradigm . 84

5.3.3 An Illustrative Example . 85

5.3.4 Overall Approach . 86

5.3.5 Lessons Learned . 88

5.4 Integrating AFT in WSN-Based Applications . 89

5.4.1 Motivation and Context . 89

5.4.2 Application Scenario . 89

5.4.3 Adaptive FTMs in the Application Scenario 90

5.4.4 Macroprogramming Toolkit . 93

5.4.5 Lessons Learned & Work in Progress . 97

5.5 Summary . 98

Conclusion & Future Work 99

1 Conclusion . 99

2 Future work . 100

iii

Contents

Résumé 103

Appendix 121

Bibliography 123

iv

List of Figures

1.1 Change Classification . 6
1.2 Recursive Chain of Dependability Threats . 7
1.3 Main Technologies Supporting Compositional Adaptation ([McKinley et al., 04]) 14

2.1 Change Model and Associated Frame of Reference 30
2.2 Classification of FTMs . 32
2.3 Possible Transitions Between FTMs . 35
2.4 Transition Scenarios Between FTMs . 38

3.1 Overview of the Primary-Backup Replication . 42
3.2 Initial Design of the Primary-Backup Replication . 43
3.3 Monolithic Processing (left) vs. Generic Protocol Execution Scheme (right) 44
3.4 First Design Loop . 45
3.5 Second Design Loop . 45
3.6 Excerpt from FT Design Patterns Toolbox (server package) 46
3.7 FT Toolbox Design and Implementation: Development Time (left) and Source

Lines of Code (right) . 47

4.1 A Simple SCA-Based Application . 51
4.2 FRASCATI Explorer Showing Reconfiguration Features and the Architecture of

the Platform and of the Running Application . 53
4.3 Component-Based Architecture of Primary-Backup Replication 56
4.4 Overview of the Adaptation Process . 63
4.5 Reconfiguration Process . 64
4.6 PBR→LFR Transition: Scenario (left); Initial and Final Component-Based Archi-

tectures (center and right) . 67
4.7 LFR→LFR⊕TR Transition: Scenario (left); Initial and Final Component-Based Ar-

chitectures (center and right) . 70
4.8 LFR→Assert&Duplex Transition: Scenario (left); Initial and Final Component-

Based Architectures (center and right) . 72
4.9 Transition Process . 76

5.1 Distribution of Duration of Transitions w.r.t. Number of Components Replaced . 82
5.2 Duration of Execution of Transitions w.r.t. Number of Components Replaced . . 82
5.3 The Sense-Compute-Control Paradigm . 84

v

List of Figures

5.4 Overview of the Approach . 86
5.5 Functional and Supervisory Layers of the Anti-Intrusion Application 87
5.6 FRASCATI-Based Architecture of a Crash-Tolerant Camera Using LFR 88
5.7 Scenario of the Multi-Floor Parking Structure Management Application 90
5.8 Integrating Fault Tolerance in the Application Scenario 91
5.9 Transition Scenario (left) and FTM Component Toolkit Deployed on Totems (right) 92
5.10 Task Graph Representing a Fragment of the ATaG Program for the Parking Man-

agement Application . 94
5.11 Overview of ATaG-Based Application Development Using Srijan 95
5.12 Overview of the Development Process of Fault-Tolerant WSN-Based Applications 96

vi

List of Tables

2.1 Underlying Characteristics of the Considered FTMs 34

3.1 Generic Execution Scheme of FTMs . 44

5.1 Number of Components & Variable Features Replaced During Transitions 80
5.2 FTM Deployment from Scratch vs. Duration of Execution of Transitions (ms) . . 81

vii

List of Tables

viii

List of Listings

4.1 Java Interface Representing an SCA Service . 60

4.2 Implementation of an SCA-Based Component in Java 61

4.3 Excerpt from the ftm.composite File Definition . 62

4.4 The Script Implementing the PBR→LFR Transition 66

4.5 SyncBeforeService Java Interface . 67

4.6 SyncBefore Java Class for PBR . 68

4.7 SyncBefore Java Class for LFR . 69

4.8 Proceed Java Class for PBR and LFR . 71

4.9 Proceed Java Class for Composing PBR or LFR and TR 71

4.10 SyncAfter Java Class for LFR . 73

4.11 SyncAfter Java Class for Assert&LFR . 74

ix

List of Listings

x

List of Acronyms

AC
ACID
ADL
AFT
AOP
API
ATaG
CBSE
CORBA
DSL
FT
FTM
LAN
LFR
NVP
PBR
RB
SCA
SCC
SCDL
SOA
TR
UML
WAN
WSN
XML

Autonomic Computing
Atomicity, Consistency, Isolation, Durability
Architecture Description Language
Adaptive Fault Tolerance
Aspect-Oriented Programming
Application Programing Interface
Abstract Task Graph
Component-Based Software Engineering
Common Object Request Broker Architecture
Domain Specific Language
Fault Tolerance
Fault Tolerance Mechanism
Local Area Network
Leader-Follower Replication
N-Version Programming
Primary-Backup Replication
Recovery Blocks
Service Component Architecture
Sense-Compute-Control
Service Component Definition Language
Service-Oriented Architecture
Time Redundancy
Unified Modeling Language
Wide Area Network
Wireless Sensor Network
eXtensible Markup Language

xi

List of Acronyms

xii

Introduction

“There is truth, my boy. But the doctrine you desire, abso-
lute, perfect dogma that alone provides wisdom, does not ex-
ist. Nor should you long for a perfect doctrine, my friend.
Rather, you should long for the perfection of yourself. The de-
ity is within you, not in ideas and books. Truth is lived, not
taught.”

— Hermann Hesse, The Glass Bead Game

Evolution in response to change during service life is a key challenge for a plethora of
systems. Changes originate from the environment (ranging from interactions with the user to
physical perturbations due to natural phenomena) or from inside the system itself. Internal
changes may occur in different layers of the computing system, ranging from the hardware
support and the network infrastructure to the software.

Whatever the origin, the system either directly copes with change or it does not. In the
first case, it may either continue to deliver the original service in its entirety or a subset of
functionalities (called a degraded mode of operation), according to the change impact. This
case corresponds to a foreseeable change for which provisions were made by the system de-
signers and/or developers (in the form of a predefined/preprogrammed reaction). However,
one cannot predict everything and, even if it were possible, developing a system equipped
for the worst case scenario on all imaginable dimensions is often cost-prohibitive. In the sec-
ond case, when there is no preprogrammed reaction, the system must be modified to tackle
the unpredicted change. There are two possibilities: either the system cannot be modified in a
satisfactory manner and it is unusable in the current situation or it can be adapted to accommo-
date changes. As a result, the capacity to easily evolve in order to successfully accommodate
change is a requirement of utmost importance. A disciplined design and a flexible architecture
are well-established solutions to this problem, although often easier said than done, especially
with the increasing complexity of systems.

The situation is more challenging in the case of dependable systems, which have to continu-
ously deliver trustworthy services. Dependable systems must evolve in order to accommodate
change but this evolution must not impair dependability. Resilient computing, defined by the
addition of this evolutionary dimension to dependability, represents the core of the present
work. On the one hand, resilience encompasses several aspects, among which evolvability, i.e.,
the capacity of a system to evolve during its execution. On the other hand, dependability re-
lies on fault-tolerant computing at runtime, which is enabled by the presence of fault tolerance

1

Introduction

mechanisms attached to the system. As a result, enabling the evolvability (also called adaptiv-
ity in this work) of fault tolerance mechanisms appears to be a key challenge towards achieving
resilient computing.

Fault-tolerant applications generally consist of two abstraction layers. The first one, usually
represented at the base, is the functional layer and it implements the business logic. The second
one contains the non-functional features in the form of fault tolerance mechanisms, in this
case. Other examples of non-functional features include cryptography and QoS policies. This
separation of concerns facilitates the distribution of roles and tasks in the system development
process. On the one hand, the design and implementation of the functional layer are executed
by teams with a well-defined hierarchy and according to a thoroughly documented system
development lifecycle. On the other hand, the non-functional layer usually requires so-called
expert knowledge and can be delegated to a third-party.

Evolvability has long been a prerogative of the functional layer. A solid body of knowledge
exists in this field, spawning from encountered problems and best practices. Solutions come in
the form of programming paradigms, architectural patterns, runtime support, methodologies
for the software development process etc.. In comparison, little effort has been done for the
adaptivity of fault tolerance mechanisms, especially for benefiting from the aforementioned
solutions. Nevertheless, their adaptivity is crucial and sometimes proves to be more important
than the adaptivity of the functional layer. It is the case for long-lived autonomous systems,
among others. Satellites and deep-space probes belong to this class of systems. These appli-
cations are mission-critical, resource-constrained, mostly non-repairable and their service life
consists in a series of operational phases characterized by varying requirements. A key aspect
to take into account is the dynamics of the environment (e.g., physical interferences and per-
turbations) that often leads to new threats. Embedding exhaustive fault tolerance strategies is
unfeasible due to resource limitations and to the practical impossibility of foreseeing all events
occurring during the service life of the system (that can span over decades). Evolution is gen-
erally tackled through ad-hoc modifications. In this context, we propose a methodology and
accompanying tools for the systematic adaptation of fault tolerance mechanisms in operation,
from design to the actual fine-grained modifications of mechanisms at runtime.

Autonomic computing has gained tremendous attention since its introduction and many
systems adhere to its principles, among which future NASA swarm-based spacecraft systems.
In order for a system to be autonomic, it must be self-configuring, self-healing, self-optimizing
and self-protecting. Self-healing is defined as the automatic discovery and correction of faults.
This definition is extremely similar to that of fault tolerance. However, changes can also be
perceived as faults because they represent events that deviate from the expected behavior. A
fault tolerance mechanism is effective if the change/fault falls in its effectiveness domain. Oth-
erwise, the fault tolerance mechanism must be adapted to accommodate the specific change,
so the system must be resilient. Given that autonomic computing also targets systems with
ever-increasing complexity operating in dynamic environments, it is our belief that there is a
significant overlap between resilience and self-healing. In this context, the contributions pre-
sented in this thesis are part of the broader spectrum of autonomic computing.

In the present work, multiple facets of the adaptivity of fault tolerance mechanisms are
discussed. First of all, in Chapter 1, we elaborate on the relations between adaptivity, depend-

2

ability and resilience. Then, we present several categories of adaptation and identify the most
suitable one for our case, namely on-line agile fine-grained adaptation. The overall approach
is discussed and related research efforts are presented.

In Chapter 2, we identify a change model and establish a frame of reference in which the
dynamics faced by fault-tolerant systems can be illustrated. This frame of reference unifies
the parameters that determine which fault tolerance mechanism to attach to an application,
among several options. Next, a classification of fault tolerance mechanisms is presented and
a subset of strategies is described. Several transition scenarios, based on the variation of the
aforementioned parameters, are discussed.

Next, in Chapter 3, the selected mechanisms are thoroughly analyzed, in order to reveal
their similarities and their specificities. The iterative analysis results in a generic execution
scheme for the “design for adaptation” of fault tolerance mechanisms. More precisely, the
execution of protocols is broken down in three steps corresponding to their variable features.

In Chapter 4, we map the above mentioned generic execution scheme on a reflective
component-based middleware. The choice of this support is discussed. Next, we leverage
the control features provided by the platform for executing on-line fine-grained transitions be-
tween fault tolerance mechanisms. Several transitions, stemming from the adaptation scenario
presented in Chapter 2, are illustrated.

Chapter 5 is structured in two main parts. The first one focuses on the evaluation of the
proposed approach in terms of transition execution time and agility. The second one focuses on
the usability of the proposed fine-grained adaptive fault tolerance mechanisms. To this aim, we
describe their integration, first, in an overall development process centered on the traceability
of requirements and, second, in a toolkit for wireless sensor network-based applications.

3

Introduction

4

Chapter 1

Context & Problem Statement

“The only people who see the whole picture are the ones who
step out of the frame.”

— Salman Rushdie, The Ground Beneath Her Feet

1.1 Introduction

In this chapter, we present the context of our research endeavor and define several key concepts
from the field of dependable computing. The motivation of our research endeavor is presented
through an illustrative example. We state the challenge of this thesis, namely, enabling the
evolution of dependable systems in operation.

Next, we describe the overall approach for achieving this research goal. Last but not least,
we present related work from the various research areas connected to the topic of this thesis
and put our contributions into perspective.

5

Chapter 1. Context & Problem Statement

1.2 From Dependability to Resilience

1.2.1 Resilience

Resilience (from the latin word resilio, to rebound, to spring back) is a concept appearing in
many different fields, such as psychology, materials science, business, ecology and, last but not
least, computing, which is our area of interest. These fields share a similar understanding of
this notion based on two key elements: disturbance and the ability to recover from it. Dis-
turbances take different forms, according to the field under consideration: stress, a physical
shock/impact, a natural disaster etc. Recovery from disturbance can be immediate (e.g., an ob-
ject recovering after being struck) or span over a longer time interval (e.g., a business recovering
from a terrorist attack, an ecosystem recovering from human activities such as deforestation or
overfishing).

In the field of dependable computing systems, resilience was defined in [Laprie, 08] as “the
persistence of dependability when facing changes” or, when incorporating the definition of
dependability [Avižienis et al., 04], “the persistence of service delivery that can justifiably be
trusted, when facing changes”. As a result, in order for a system to be resilient, first, it must
be dependable and, second, it must conserve this attribute despite changes. In the remainder
of this section, we explain dependability-related concepts and discuss their relationship with
resilience.

Changes are classified in [Laprie, 08] according to three dimensions: nature, prospect, and
timing (see Figure 1.1). It is worth noting that, in the context of dependable systems, changes
can concern or lead to modifications in the threats the system is facing. With respect to the
prospect criterion, it is obvious that unforeseen changes (e.g., an explosion in the number
of client requests) are more difficult to tackle than foreseen (e.g., software versioning) and
foreseeable ones (e.g., the advent of new hardware). This change classification, extracted
from [Laprie, 08], provides a higher-level perspective than the one we propose in the next chap-
ter, especially regarding the nature criterion. However, it provides a good view of the different
aspects of change that must be taken into account and illustrates key concepts recurrent in our
work such as prospect and timing that we further detail.

Changes

Nature Prospect Timing

Functional

Environmental

Technological

Foreseen

Foreseeable

Unforeseen

Short term

Medium term

Long term

Threat changes

Figure 1.1: Change Classification

6

1.2. From Dependability to Resilience

1.2.2 Dependability

As previously mentioned, a resilient system must be dependable in the first place. Depend-
ability is a well-documented concept, older than resilient computing, and with a thoroughly
defined taxonomy. A cornerstone of any *-critical system (*=safety, mission, business), de-
pendability was defined by the IFIP 10.4 Working Group on Dependable Computing and Fault
Tolerance as the “trustworthiness of a computing system which allows reliance to be justifiably
placed on the service it delivers”. Dependability is defined by its attributes, the threats to it
and the means by which to achieve it [Avižienis et al., 04]. The attributes it encompasses are the
following:

• availability, i.e., readiness for correct service;

• reliability, i.e., continuity of correct service;

• safety, i.e., absence of catastrophic consequences on the user(s) and the environment;

• integrity, i.e., absence of improper system alterations;

• maintainability, i.e., ability to undergo modifications and repairs.

The threats to dependability are failures, errors and faults. A failure is an event that occurs
when the service delivered by the system deviates from the correct service (i.e., the one imple-
menting the system function expected by the client). A service can fail either because it does
not comply with the specification or because the specification does not accurately describe the
system function. A service failure is a transition from correct service to incorrect service. Given
that a service consists in a sequence of the system’s external states (observed by the client), the
occurrence of a failure means that at least one of the external states deviates from the correct
service state. The deviation is called an error, which represents the part of the total state of the
system that may lead to a failure, in case it reaches the interface of the system service. The
determined or presumed cause of an error is called a fault.

As systems generally consist of a set of interconnected subsystems, they are most often sub-
ject to a recursive chain of threats as illustrated in Figure 1.2. A failure occurring at the service
interface of a subsystem is perceived as a fault by the subsystem calling the service. This fault,
when activated, produces an error, which in turn can lead to a failure at the service interface of
the second subsystem. Dependability aims at breaking this causal chain and stopping a fault
from propagating from one subsystem to another one and from producing a failure perceived
by the user.

system 1 system 2 system 3 user

fault
error
failure

∢

Figure 1.2: Recursive Chain of Dependability Threats

The means for achieving dependability are grouped in four categories [Avižienis et al., 04]:

7

Chapter 1. Context & Problem Statement

• fault prevention aims to prevent the occurrence or introduction of faults;

• fault tolerance aims to avoid service failure in the presence of faults;

• fault removal aims to reduce the number and severity of faults;

• fault forecasting aims to provide an estimation of the present number of faults, future
incidence and possible consequences of faults.

1.2.3 Bridging the Gap

Resilience encompasses four major tracks of investigation1: evolvability, assessability, usability
and diversity. An important feature within evolvability is adaptivity, which is the capacity
to evolve during execution. These so-called technologies for resilience [Laprie, 08] are ob-
viously related to the means for achieving dependability. Among these, fault tolerance is a
non-functional activity accompanying the system throughout its operational life while fault
prevention, removal and forecasting are generally performed off-line, before deployment. As
adaptivity (and more generally, evolvability) deals with changes during operational life, it is
only natural to address resilient computing by adding an evolutionary dimension to fault tol-
erance (and, more specifically, to fault tolerance mechanisms). Adaptive Fault Tolerance (AFT)
was defined in [Kim and Lawrence, 90] as: “an approach to meeting the dynamically and widely
changing fault tolerance requirement by efficiently and adaptively utilizing a limited and dynamically
changing amount of available redundant processing resources". Considered at the time a branch of
fault tolerance still in its incipient form, adaptive fault tolerance has meanwhile gained interest
and, in our view, represents a key aspect of resilient computing.

The contributions brought by the present work to the field of resilient computing consist in
a methodology and a set of tools for enabling agile on-line fine-grained adaptation of fault toler-
ance mechanisms (FTMs). These attributes and their role are further explained. The evolution
of FTMs may be required due to environmental changes (e.g., electromagnetic interferences
on aircraft or spacecraft), application changes due to versioning (e.g., a deterministic version
is updated to a new non-deterministic one), runtime support changes (e.g., loss of hardware
devices) or fault type changes (e.g., transient hardware value faults to be tolerated due to hard-
ware aging).

1.3 A Motivating Example

Satellites are autonomous objects providing complex functions with limited resources and en-
ergy. Many of the functions provided are critical, at least from an economic viewpoint. As de-
scribed in [James et al., 10], despite thorough verification processes, software faults may remain
in operation and both internal and external faults (radiation effects, temperature, vibration or
operator faults) may impair space missions. Fault-tolerant computing has been used since the
60s in spacecraft and is essential for systems such as deep-space autonomous probes to handle
errors with limited ground connexion.

1 Definitions and overview can be found in the ReSIST European Network of Excellence web pages:
http://www.resist-noe.org/

8

http://www.resist-noe.org/

1.4. Problem Statement

A satellite may have an expected or contractual lifetime of up to several years (most often
achieved or even largely exceeded in practice). An important characteristic with regards to
its maintenance and evolution is that on-site reparation after launch is extremely difficult and
costly, if problems occur. In an autonomous device, not all possible problems can be predicted
(loss of resources, fault impact, hardware aging, etc.) and fault tolerance solutions cannot be
anticipated for unknown problems. The evolution of the functional software, of the configu-
ration and health state of resources and of the operational procedures is also something that
must be considered during the lifetime of the satellite, that may change some assumptions for
the selection of the fault tolerance strategy. In this context, when the need presents itself, the
adaptation of fault tolerance mechanisms (and of the functional layer as well), is executed in
an ad-hoc manner. Depending on the case, adaptation takes various forms, e.g., changes in pa-
rameter values, low-level updates of memory regions, i.e., software in-flight (re)programming,
or even full replacements of the embedded procedures.

The approach we propose has many merits that can be illustrated with the above exam-
ple. Defining and validating a priori all possible dependability mechanisms and their com-
binations according to failures and threats in operation is impossible (undecidable a priori,
an NP-complete problem). Moreover, loading too many combinations in a spacecraft would
be unacceptable due to memory space limitations. Our approach aims at designing FTMs
as a Lego system, leveraging concepts and tools from the field of software engineering such
as component-based architectures and runtime support. Applications/functions are initially
equipped with some FTMs according to the initial non-functional requirements. The moni-
toring done within the satellite informs ground engineers about the current state of the satel-
lite. The proposed approach enables engineers to design a fault tolerance solution off-line at
any time during the satellite’s operational life, to upload the needed Lego pieces to update
the FTM, to install and attach a new FTM to the target function. In summary, according to
monitoring done on-board (characteristics of the functions, available resources, priority among
functions, etc.), we propose a differential update of dependability mechanisms, alleviating the
burden of managing the whole embedded software as a single block with limited resources and
connexion. Compared to ad-hoc modifications of FTMs, our approach enables their methodical
adaptation. By leveraging existing software engineering tools, the proposed approach provides
means to systematically develop the necessary bricks and to integrate them in the embedded
software architecture.

The benefits of this work go far beyond long-lived space missions, as resilience is a chal-
lenge as well for small autonomous devices that need to survive without human intervention.
This is true for autonomous smart submarine earthquake-detection probes or fire-detection
probes in forests. This work is thus a contribution to self-healing techniques required for au-
tonomic computing [Kephart and Chess, 03], targeting many autonomous non-repairable de-
vices that will be part of our daily life in the near future.

1.4 Problem Statement

In general, dependable systems are complex systems having a long service life which often
consists in a sequence of operational phases. Operational phases are established at design time.

9

Chapter 1. Context & Problem Statement

For a rocket placing a satellite into orbit, these phases are: launch, flight according to flight
plan, and release of the satellite. In highly dynamic environments, phases must be triggered by
the system manager, who observes changes in the environment and in the system, during the
system’s service life, e.g., for a military aircraft, these phases can be flight, observation, attack,
defense, retreat, with phases occurring more than once and not always in the same order.

Each phase has a set of functional and non-functional requirements, e.g., reliability, avail-
ability. In this work, we focus on fault tolerance requirements, particularly the type(s) of faults
to tolerate. While application characteristics are expected to have a fixed value during an oper-
ational phase (i.e., the version of an application module will not be changed during its execu-
tion), resources are subject to change due to the dynamics of the environment.

1.4.1 From Fault Model to Change Model

In this context, the evolution of a dependable system is analyzed through the following aspects:

• the required dependability properties and, in particular, its fault tolerance capabilities
(FT);

• application characteristics at a given point in time (A);

• available resources (R).

Dynamics (change) occurring along these dimensions may have an impact on dependability,
more specifically, on the fault tolerance mechanism(s) attached to the application. This repre-
sents the change model we consider. The degree of impact ranges from a drop in the quality of
the provided service to a total impairment of the mechanism. An FTM change is required when
applications evolve (different characteristics A) or when the operational conditions change ei-
ther because available resources R vary or because the fault tolerance requirements FT change
(similar to the threat changes in Figure 1.1) during the service life of the system.

In this work, FT encompasses one or several FTMs that are obviously strongly related to
the fault model and the required dependability properties (reliability, availability, integrity,
confidentiality). The characteristics of the application A have an impact on the validity of the
selected FTMs. To run the selected mechanisms, a set of resources R is required and should
be available. The choice of an appropriate FTM for a given application is based on the values
of the parameters (FT,A,R) and, at any point in the lifetime of the system, this triplet must be
consistent with the current FTM in order to fulfill dependability properties. Any change(s) in
the values of these parameters may invalidate the initial choice and require a new FTM. Transi-
tions between FTMs are needed when inconsistency is found between an FTM and operational
conditions.

1.4.2 Types of Adaptation

Providing fault-tolerant systems with flexibility and adaptivity [Gouda and Herman, 91] is a
crucial aspect. Evolution has traditionally been tackled off-line, with systems being stopped,
updated and restarted. However, this is not satisfactory for dependable systems whose service
cannot be stopped for a long period of time, e.g., air traffic control systems, and which must

10

1.4. Problem Statement

comply with stringent requirements in terms of availability, responsiveness etc. In this con-
text, on-line adaptation of FTMs (i.e., while the system is in operation) appears to be the only
acceptable solution for dependable systems to accommodate change.

Further on, the adaptation of FTMs at runtime can be performed in two substantially dif-
ferent manners, according to its degree of flexibility:

1. preprogrammed adaptation: several FTMs coexist from the beginning and according to
changes in the environment, user policies etc., one FTM is selected over the others. Cer-
tainly, this provides an amount of flexibility to the fault-tolerant system compared to
static fault tolerance but the degrees of freedom are limited to the initial set of FTMs which
are hard-coded. Basically, this type of adaptive fault tolerance can be implemented as a
switch statement where each case is represented by one of the considered FTMs. On-line
adaptation consists in changing the current branch/case based on some triggers. Pro-
viding from the very beginning a set of FTMs rich enough to accommodate all changes
demands a great amount of design effort and is often impossible.

2. agile adaptation: the application is deployed together with a minimal set of FTMs comply-
ing with the initial requirements. Some FTMs may be modified or added after the system
is put in operation. During operational life, using the FTMs in real conditions may lead to
slight upgrades, parameter tuning or composition of FTMs. According to such runtime
observations, new FTMs can be designed off-line but integrated on-line with a limited
effect on service availability. This provides much greater flexibility than preprogrammed
adaptation. Agile adaptation of FTMs can be considered a type of “compositional adapta-
tion” [McKinley et al., 04] defined as exchanging “algorithmic or structural system com-
ponents with others that improve a program’s fit to its current environment. [...] an
application can adopt new algorithms for addressing concerns that were unforeseen dur-
ing development. This flexibility supports much more than simply tuning of program
variables or strategy selection. It enables dynamic recomposition of the software during
execution-for example, to switch program components in and out of a memory-limited
device or to add new behavior to deployed systems”. The means for putting agile adap-
tation into practice are further shown.

A second criterion for analyzing the adaptation of FTMs is the granularity of changes per-
formed during transitions:

1. coarse-grained adaptation: FTMs are replaced in a monolithic manner, the initial one is
removed and a new one is introduced. This can imply a lot of duplicated code, thus
rendering the application difficult to maintain, as many FTMs share certain features. Fur-
thermore, certain complex operations such as state transfer between the two FTMs are
mandatory in the case of monolithic transitions.

2. fine-grained adaptation: FTMs are replaced in a differential manner. By analyzing the initial
FTM and the final one, common and variable features become apparent. In order to min-
imize the impact on the architecture of the fault-tolerant application, adaptation should
only affect the latter, i.e., a fine-grained modification should be performed. The identifi-
cation of such variable features has additional benefits, such as reducing the amount of

11

Chapter 1. Context & Problem Statement

time and effort spent on designing and developing new FTMs, as common parts can be
reused. Besides, it can alleviate the task of transferring the state between the two FTMs.

1.4.3 The Scientific Challenge

Given the above considerations, the issue we focus on can be summarized as follows: how
to perform agile adaptation of FTMs at runtime by modifying, in a fine-grained approach, only
the specific points which are different between the considered FTMs? To tackle this challenge,
we propose a novel solution for the on-line evolution of FTMs that minimizes the impact on
system behavior and architecture at runtime. This solution leverages recent advances in the
field of software engineering.

The benefits of agile adaptation are obvious, especially in the case of complex systems hav-
ing a long lifespan in a dynamic environment, but also for resource-constrained systems which
cannot afford to load a plethora of FTMs from which only one is used at a time. A fine-grained
approach is beneficial both for agile and preprogrammed adaptation as it can substantially re-
duce the amount of time necessary for performing a transition between FTMs and building
new ones from existing bricks. To the best of our knowledge, agile fine-grained adaptation
of FTMs leveraging a standard component model has not yet been tackled. Based on related
work we have examined, adaptation of FTMs has so far been performed in a coarse-grained
preprogrammed manner, with some exceptions.

1.4.4 Two Ways of Stating the Problem

In software engineering and in other fields of science, there are two natural approaches for
reasoning about a problem or for designing a system: top-down and bottom-up. The first one
consists in breaking down the initial system into subsystems, which are then refined in greater
detail, sometimes on several additional levels, until the elementary building blocks are reached.
The second one consists in assembling systems for building larger systems. When used indi-
vidually, each one of these techniques can present some drawbacks: in a top-down design, one
might end up with a nonuniform design granularity for the different subsystems, refining too
much certain parts and losing sight of the overall system objectives, while in the bottom-up
approach, one might end up with a complex mixture of subsystems and links very far from
the initial big picture. In practice, these two techniques are usually applied in conjunction in
software development: the problem is broken down is subproblems (top-down) while code
reuse and the introduction of Commercial-Off-The-Shelf (COTS) software are typical examples
of bottom-up design.

The scientific challenge that we aim to solve can be stated from two different points of
view, similar to the above-mentioned reasoning methods. In a top-down view, the evolu-
tion of dependable systems and the transition from dependability to resilience represents an
issue which needs to be addressed. Fault tolerance is one of the facets of dependability par-
ticularly targeting change and dynamics during the operational life. As such, fault tolerance
mechanisms must no longer be predefined statically at design time but in a flexible way en-
abling subsequent modification, composition and reuse, should the need present itself. This
calls for special software development tools enabling separation of concerns, fine-grained de-

12

1.5. Overall Approach

sign and architectural modifications at runtime. Such tools correspond ideally to reflective
component-based middleware. In a bottom-up way of seeing things, recent advances in soft-
ware engineering such as Component-Based Software Engineering (CBSE) [Szyperski, 02], Ser-
vice Component Architecture (SCA) [Marino and Rowley, 09], and Aspect-Oriented Program-
ming (AOP) [Kiczales et al., 97] clearly open unprecedented perspectives and opportunities for
research in other fields, among which dependable computing. Consequently, it is definitely
worth trying to see what benefits these technological advances bring to dependable computing
and what are their limits. The scientific challenge lies at the intersection of these two reason-
ing methods: while it is essential to keep in sight the big picture, to thoroughly understand
what must be accomplished and to be able to break down the overall goal in smaller ones, it is
also important to let oneself be guided by the features provided by the technological advances
which can offer a fresh perspective over an older topic. To the best of our knowledge, targeting
agile fine-grained adaptation of fault tolerance software at runtime using such approaches has
not yet been investigated.

1.5 Overall Approach

Separation of concerns [Dijkstra, 82], is a generally accepted idea for implementing highly modu-
larized software [Parnas, 72] and enabling the separate development of the functional behavior
and of the cross-cutting concerns [McKinley et al., 04] such as Quality of Service, security, de-
pendability etc.. In the case of fault-tolerant applications, the obvious two concerns are the
functional services and the non-functional ones, i.e., the fault tolerance mechanism(s).

Computational reflection [Maes, 87], consists in a program’s capacity to reason about its struc-
ture (i.e., structural reflection) and its behavior (i.e., behavioral reflection) and, possibly, modify
them. Reflection consists of two activities: introspection, enabling the application to observe
itself, and intercession, enabling the application to modify itself.

Software architectures built on these principles consist of two abstraction levels where the
base level provides the required functionalities (i.e., the business logic) and the top level/meta-
level contains the non-functional mechanisms (e.g., FTM(s) [Fabre, 09]). As we target the adap-
tation of FTMs, we must manage the dynamics of the top level, which can have two causes:

• The application level remains unchanged but the FTM must be modified either because
the fault model changes (e.g., due to physical perturbations) or because fluctuations in
resource availability make it unsuitable or, at least, suboptimal from a performance view-
point (i.e., changes in FT or R).

• Changes in the top level are indirectly triggered by modifications in the application level
which make the fault tolerance mechanism unsuitable (i.e., changes in A). In this case
both levels execute a transition to a new configuration.

The adaptation of FTMs can be viewed as a third concern, thus requiring a third ab-
straction level. This separation has the same benefits as the separation between the func-
tional and the non-functional levels, ensuring flexibility, therefore, reusability and evolv-
ability of the adaptation mechanisms [Redmond and Cahill, 02]. As previously mentioned,

13

Chapter 1. Context & Problem Statement

agile adaptation of FTMs can be regarded as a particular form of compositional adapta-
tion [McKinley et al., 04]. Figure 1.3 shows the main technologies enabling compositional adap-
tation identified in [McKinley et al., 04]. We share this view of necessary technologies and con-
cepts, and the further enumerated steps of the overall approach emphasize it.

Separation of
concerns

Computational
reflection

Component-
based design

Compositional
adaptation

Middleware

Figure 1.3: Main Technologies Supporting Compositional Adaptation ([McKinley et al., 04])

In order to tackle this particular aspect of resilient computing, namely on-line fine-grained
adaptation of FTMs, several milestones must be achieved. First of all, the previously mentioned
change mode is detailed, in order to enumerate all the parameters responsible for the choice of
a particular FTM over another. The values of these parameters indicate, at design time, which
is the most appropriate FTM to attach to the application, if such an FTM exists. The variation of
these parameters may invalidate the initial choice and trigger a transition towards a new FTM,
determined by the new values. A classification of well-known FTMs is obtained based on this
change model (and its accompanying frame of reference). Furthermore, it provides the logical
base for a set of transition scenarios between FTMs.

Next, we thoroughly analyze a subset of FTMs from the classification in terms of structure
and behavior. The purpose of this analysis is to identify common points and variable features
that form a generic protocol execution scheme. Needless to say, on-line fine-grained transitions
are difficult (impossible?) to perform without some previous preparation steps and without
the proper tools. These preparation steps are what we call a “design for adaptation” approach,
which means that the considered FTMs must be designed in such a way as to isolate common
and variable features for subsequent reuse and modification. This approach has benefits not
only for runtime adaptation but also for the development of static FTMs as it provides building
blocks which can be reused and customized. The result of this step is a system of patterns for
fault tolerance. The effectiveness of the approach is evaluated by measuring the impact of de-
sign refinements on the development time necessary for building new FTMs. This preparation
step should not be regarded as another form of preprogrammed adaptation limited to this sub-
set of FTMs. Based on the lessons learned from the “design for adaptation” step, particularly
the generic protocol execution scheme, the transition scenario can be extended to encompass
new variants of the FTMs from the illustrative subset, other FTMs from the classification or
other non-functional mechanisms (e.g., authentication, encryption, logging etc.).

Once the variable features between FTMs are clearly identified, the next step is to leverage
specific tools for runtime adaptation such as reflective middleware [Coulson, 01], i.e., a mid-

14

1.6. What This Thesis Is NOT About

dleware providing introspection and intercession capabilities, and map the previous design
patterns for fault tolerance on a component-based architecture. At this stage as well, design
choices are extremely important as they determine the granularity of on-line modifications: the
variable features must be mapped to individual component entities which can be identified
and modified at runtime, otherwise the “design for adaptation” approach is fruitless. We im-
plement our previously mentioned transition scenarios in order to prove the feasibility of our
approach and to illustrate the dynamics brought by this state-of-the-art software engineering
support to our adaptive FTMs. The benefits of our approach are discussed and further evalu-
ated by measuring the impact of runtime differential modifications on the architecture of the
initial FTM in terms of number of modified components and duration of reconfiguration (i.e.,
of executing the transition from the initial component-based architecture/configuration to the
final one). The consistency of the adaptation process, a crucial aspect as on-line transitions
must modify FTMs in a transactional manner, is also discussed.

Last but not least, we evaluate the usability of our adaptive fault tolerance middleware
through two examples of integration. In the first one, we integrate adaptive fault tolerance
in a design-driven development process for Sense-Compute-Control (SCC) applications (and
underlying tool suite named DiaSuite). This example proves that our adaptive FTMs are gen-
eral enough to be attached to external applications provided by different stakeholders. The
design-driven methodology ensures a traceability of fault tolerance requirements from design
to deployment and is meant to assist the developers of Sense-Compute-Control applications
in the process of adding fault tolerance to their application by rendering it as transparent as
possible. In the second example, the proposed adaptive fault tolerance mechanisms are in-
tegrated in Srijan, a toolkit for developing wireless sensor network-based applications using
data-driven macroprogramming. The goal is, first, to develop a language for specifying fault
tolerance requirements and describing the FTMs and, second, to integrate the FTMs and to cus-
tomize them for the targeted platform and applications. It is worth emphasizing that DiaSuite
and Srijan entered the integration process with no previous explicit notion of fault tolerance.
At the end of this work, the platforms can either use the FTMs as stand-alone solutions or take
advantage of their adaptive nature.

1.6 What This Thesis Is NOT About

Having stated the research goal and given an overview of how to reach it, we establish the
perimeter of the present contributions. As such, the risk of creating false/unrealistic expecta-
tions is minimized.

• We do not build new software engineering tools, e.g., a new component-based middle-
ware, a new DSL etc. One of the research goals is to examine the benefits and limitations
of using already existing software engineering tools (built by specialists in a different field
of expertise than ours) for tackling an issue in our field of research.

• We do not design new FTMs. There is a rich body of research on the topic dating back
as early as the 60s [Avižienis, 67, Lyons and Vanderkulk, 62], and the intuitive principles
lying at the foundations of fault tolerance, such as replication and design diversity can be

15

Chapter 1. Context & Problem Statement

traced back long before the era of digital computers, e.g., in Dionysius Lardner’s article
on Babbage’s calculating engine [Lardner, 34]. Furthermore, FTMs have long been used
in industry. In this work, we revisit existing (static) FTMs under the angle of adaptation
and evolvability.

• The decision for adaptation is not a part of the contributions presented in this thesis. We
focus on what happens in the system once this decision is taken (by a system manager, be
it human or not) and on how the system must be prepared for adaptation. The triggers of
adaptation are discussed but we do not provide a decision manager, a monitoring system
or a control-command system.

1.7 Related Work

The topic of this dissertation is at the intersection of several research areas:

1. Fault Tolerance (FT) and Fault Tolerance Mechanisms (FTMs)

2. Adaptive Fault Tolerance (AFT)

3. Design patterns for fault tolerance

4. Component-Based Software Engineering (CBSE)

5. Autonomic Computing (AC)

6. Reconfigurable (ubiquitous) systems

1.7.1 Fault Tolerance and Fault Tolerance Mechanisms

An extensive body of research exists on the topic of fault tolerance in dependable computing
systems [Lee and Anderson, 90, Laprie et al., 92, Knight, 12]. The set of fault tolerance mecha-
nisms covered in our transition scenarios are thoroughly discussed in Chapter 2.

1.7.2 Adaptive Fault Tolerance

The field of adaptive fault tolerance has attracted the interest and efforts of researchers for some
time now. Just as the principles lying behind fault tolerance are very intuitive (i.e., redundancy
of data, hardware, design diversity), the shortcomings of applying static fault tolerance in any
situation are also easy to perceive. Static fault tolerance demands complete understanding
and control over the system, its mission and its environment throughout its entire service life,
blocks the evolution of user requirements and requires an amount of resources which often
proves to be prohibitive for real-life systems. Although the motivation is straightforward, the
means to implement a solution are much less.

Certainly, there are a lot of projects in the literature focusing on adaptive fault tolerance.
However, the meaning of adaptation of fault tolerance mechanisms is not uniform. Adaptation
most often has a parametric form, e.g., changing the number of replicas inside one particular
FTM or tuning the interval of time between two consecutive checkpoints in the case of passive

16

1.7. Related Work

replication. In our work, adaptation implies executing a transition between one FTM which
is no longer consistent with current operational conditions to another one, i.e., an evolution
which can be represented as a trajectory in a frame of reference defined by certain parameters,
as explained in Chapter 2.

The first attempt we have found to establish the concept of Adaptive Fault Tolerance (AFT)
and the major underlying research issues is presented in [Kim and Lawrence, 90]. The def-
inition of AFT, extracted from this work, has already been cited on page 8. It is extremely
interesting to analyze this theoretical work dating back more than twenty years ago, in light
of research advances and trends that have taken place meanwhile, e.g., the autonomic com-
puting initiative, the introduction of Aspect-Oriented Programming (AOP), of standards such
as Service Component Architecture (SCA), the birth and consolidation of Wireless Sensor Net-
works (WSNs) and ubiquitous computing etc., and to compare it with our own view and con-
tributions (both theoretical and practical) to AFT, largely influenced by the aforementioned
advances. AFT, which was back then “still at the concept-formulation stage" is viewed as “a
far-fetched notion in comparison to the notion of fault tolerance that has been dealt with in the
past three decades" (today, this means more than fifty years ago). “In a sense, the AFT can be
viewed as a highly specialized branch of fault-tolerant computing since it is relevant only in
large-scale complex distributed computing systems applications which involve widely varying
dynamic changes in their operating conditions." As the authors do not give a quantitative defi-
nition of “large-scale complex distributed computing system", it is difficult to say whether this
restriction on the applicability of AFT in modern systems is still valid. However, it is worth
mentioning that, while at that time a complex distributed computing system generally con-
sisted of a given number of computers interconnected through a Local Area Network (LAN) or
a Wide Area Network (WAN), nowadays, systems are becoming increasingly heterogeneous,
incorporating devices ranging from small sensors to smartphones and computers, e.g., intelli-
gent building management systems. These modern systems might not necessarily be extremely
complex in terms of application logic (e.g., start heating rooms when temperature goes beyond
a given threshold and there is a person inside) but do require fault tolerance and taking into
account evolution of user requirements and changes in resources, e.g., sensor hardware aging.

There are several common points between the claims of the authors of this paper and the
ones we make in our work. They first notice that “the distinctive nature of AFT as compared
to more conventional fault tolerance becomes more evident when the fault tolerance require-
ment or the resource availability changes in a noticeably discrete fashion, i.e., from one mode
to another mode". In our change model, parameters also change in a discrete manner, i.e.,
from one fault model to another one, or from determinism to non-determinism. Further on,
they state that a Fault Tolerance Management System (FTMS) that is able to enter a new mode
of operating fault tolerance capabilities (an “adaptive multi-mode FTMS") is “bound to have
a highly modularized structure and thus easier to implement reliably than monolithic static
FTMSs which may mobilize all available fault tolerance mechanisms all the time". Although in
our work we do not build a fault tolerance management system (i.e., we do not tackle adap-
tation decision-making), our fine-grained fault tolerance mechanisms are built on this core as-
sumption that a highly modularized structure can evolve much more easily than a monolithic
one. Regarding the origin of changes, the authors consider that changes can come from the ap-

17

Chapter 1. Context & Problem Statement

plication environment (external) or from the internal fault pattern. They identify two types of
changes: anticipated and unforeseen. They do not discuss adaptation to unforeseen changes,
as the adaptation to anticipated changes is already challenging enough.

In [Armstrong, 94], the Adaptive Fault Tolerance Program is described, aiming to provide
complex distributed military systems with greater degrees of survivability and graceful degra-
dation than currently available. The definition of AFT [Kim and Lawrence, 90] also stems from
this program. The need for an adaptive approach to fault tolerance in the context of Battle
Management Command, Control, Communication, and Intelligence (BMC3I) systems is clearly
stated as such systems must cope with dynamics on various dimensions. A taxonomy of faults
is established and several already existing FTMs are classified according to this taxonomy. The
concepts are demonstrated on a case study represented by the monitor function of the Strategic
Defense System Command Center Element (SDS-CCE). The adaptation consists in replacing
the Recovery Blocks mechanism (RB) [Randell, 75] attached to the monitor function with Dis-
tributed Recovery Blocks (DRB) [Kim and Welch, 89]. Later, this led to the definition of the
Adaptable Distributed Recovery Block (ADRB) scheme [Kim et al., 97]. RB is a strategy for
tolerating software faults consisting in running on a single processor a series of “try-blocks”
coded differently for the same function and submitting the result to an acceptance test whose
result determines whether the result can be sent to the client or the subsequent block must be
executed. This mechanism requires application state restoration (rollback) between two con-
secutive blocks. DRB is the distributed version of RB. Each block is executed on a separate
processor and as such it facilitates forward recovery and is appropriate for real-time applica-
tions, unlike the sequential version. In the adaptation scenario, the transition between RB and
DRB is triggered based on the evaluation of the time spent in backward error recovery (i.e.,
the rollback between two subsequent blocks in RB) as the error rate increases. As this time
increases, deadlines are missed more frequently. This requires replacing RB with DRB. The im-
plementation is not discussed in detail and the project appears to have stopped prematurely in
an interim demonstration stage.

In the analysis of existing work on AFT, we have considered the following comparison
criteria:

1. what is provided?

2. target applications/adaptation scenario

3. change model (i.e., a frame of reference for describing system evolution composed of
parameters whose variation triggers the adaptation of FTMs)

4. preprogrammed vs. agile

5. granularity (monolithic vs. differential replacement of FTMs)

What Is Provided?

Regarding the first point, contributions in adaptive fault tolerance generally take the form of a
middleware leveraging a distributed communication support [Bharath et al., 01] such as Com-
mon Object Request Broker Architecture (CORBA). The architecture of the middleware usually

18

1.7. Related Work

follows a pattern, featuring an Adaptive Fault Tolerance Manager in charge of receiving and
analyzing input from the user, system probes for monitoring resources, various logs regarding
resource usage, system failures and deciding when the current FTM is no longer appropriate,
which is the most suitable strategy among the available ones and triggering the transition.

In [Shokri et al., 97], an architectural framework of an Adaptive Fault Tolerance Manage-
ment (AFTM) middleware is presented. The authors start by identifying target applications for
AFT, namely mission-critical systems such as military planning and monitoring applications,
which are inherently distributed, subject to change and have an operational life consisting of
multiple phases. The change model they briefly mention is similar to ours, featuring the fol-
lowing sources of change: environment, application requirements and resources. However,
the definition of these axes is vague. Their middleware provides fault tolerance mechanisms
(called modes) dealing with hardware and software faults: sequential recovery blocks, dis-
tributed recovery blocks and exception handler. It is not clear how transitions are performed
between these modes, whether on-line or off-line and neither the granularity of change nor its
reactive/proactive triggers are invoked. The practical result of this work is a CORBA-based
Adaptive Fault Tolerance Management middleware, developed on top of Solaris and leverag-
ing the multi-threaded programming and real-time facilities provided by this operating system.
It is interesting to note that the authors, like us, stress the importance of using state-of-the-art
software engineering methods for tackling the challenges of building their middleware. At
the time, this meant using object-oriented design and programming for separation of concerns
(both between functional and non-functional aspects and, within fault tolerance software, be-
tween application-independent and application-specific features) and location-transparent ob-
ject interactions through CORBA. Method call interception is performed by using the filter
facility provided by Orbix, the CORBA-compliant Object Request Broker (ORB) used in this
work. This filter mechanism, like aspect-oriented programming, enables the application devel-
oper to introduce additional code to be executed before and after the actual server program.

A framework for building adaptive fault tolerance in multi-agent systems is presented
in [Marin et al., 01]. Such distributed systems are essentially decentralized and subject to host
or network failures, changing requirements and environment. A particularity of multi-agent
systems is that the relative importance of the various entities involved can change during the
computation. An example of application domain given by the authors is the field of crisis man-
agement systems in which software is developed for assisting different teams (e.g., paramedics,
policeman, firemen) and coordinating them. The focus shifts from one activity to another, there-
fore the criticality of each activity fluctuates according to the different stages of the crisis. As it
is cost-prohibitive to attach fault-tolerance protocols all the time to all entities, it is essential to
be able to tailor the FTMs to the requirements of each task. The authors present a Java-based
framework called DARX for designing reliable distributed applications. Each task can be repli-
cated any number of times resulting in a replication group completely hidden to other tasks
using either passive or active replication. The framework enables each agent to change at run-
time its replication strategy and to tune the parameters of the current strategy (e.g., number
of replicas, interval between checkpoints in the case of passive replication). Each agent has an
associated replication manager which keeps track of all the replicas in the group and of the
current strategy. The manager is also in charge of switching between replication strategies. The

19

Chapter 1. Context & Problem Statement

adaptation of FTMs is not tackled dynamically, in the sense that both replication strategies seem
to be hard-coded and available all the time (e.g., in a switch statement) and the transition be-
tween them consists in changing the case branch to be executed. Furthermore, the granularity
of the adaptation is not taken into account.

Other works, such as [Goldberg et al., 93, Hiltunen and Schlichting, 94,
Hiltunen and Schlichting, 96], focus more on conceptual frameworks, algorithms,
on defining AFT and providing examples of target applications. For example,
in [Hiltunen and Schlichting, 96], a model for describing existing adaptation algorithms
is presented. This model breaks the adaptation process in three steps: change detection,
agreement and action. In [Chang et al., 98], an approach for adapting to changes in the fault
model is presented. More precisely, a program that assumes no failures (or only benign
failures) is combined with a component that is responsible for detecting if failures occur and
then switching to a given fault-tolerant algorithm. Provided that the detection and adaptation
mechanisms are not too expensive, this approach results in a program with smaller fault-
tolerance overhead and thus a better performance than a traditional fault-tolerant program.
In [Gong and Goldberg, 94], the authors present, in the context of the conceptual framework
described in [Goldberg et al., 93], two algorithms for adapting between Primary-Backup Repli-
cation [Budhiraja et al., 93] and the State-Machine approach (more generally known as Active
Replication or Triple Modular Redundancy in the literature) [Wensley et al., 78, Schneider, 90].
Their approach is modular, in the sense that any Primary-Backup or State-Machine protocol
can be used among the existing ones. In order to execute the heavy State-Machine protocol
only when the need presents itself, i.e., in the presence of arbitrary or Byzantine faults, their
adaptive algorithm executes a default Primary-Backup algorithm and also attempts to detect
the presence of non-manifest faults, i.e., faults such as crash and omission. For this, the authors
modify the Primary-Backup protocol by letting the backup servers participate in the service
as well. The backup servers receive not only checkpoints containing the state of the primary
server after request computation (like in ordinary Primary-Backup Replication) but also the
initial client request. They monitor the primary for any inconsistency by checking whether
the primary computes requests in First In, First Out (FIFO) order and whether the response
is correct. The authors make the assumption that servers have implemented a Byzantine
agreement protocol for agreeing on the next client request to process. If the backup servers
detect an inconsistency, they report the error to the client and start a Byzantine agreement
protocol among themselves to recover from it. While this work explores the relationship
between the two protocols and enables a transition based on a change of fault model, the
approach is still preprogrammed, as the algorithm is hard-coded from the beginning.

In [Zheng and Lyu, 10] an adaptive fault tolerance algorithm and a middleware, both tar-
geting reliable Web services, are presented. The authors propose a model of user require-
ments and Quality of Service (QoS) attributes and an algorithm for selecting the most ap-
propriate strategy between sequential strategies (either Retry [Chan et al., 07] or Recovery
Blocks [Randell, 75]) and parallel ones, like N-Version Programming [Avižienis, 85] or Active
Replication [Salatge and Fabre, 07]. The proposed QoS-aware middleware is inspired by the
user-participation and user-collaboration concepts of Web 2.0. This user-collaborated middle-
ware is used for obtaining and maintaining up-to-date information wrt user QoS requirements

20

1.7. Related Work

and the actual QoS attributes of the available Web services, representing the necessary input for
the algorithm which determines the most appropriate strategy. From our understanding, this
is a preprogrammed adaptation as the set of strategies is predefined and cannot be enriched
on-the-fly.

Target Applications & Change Model

Concerning the targeted applications and domains, examples come from: deep-
space autonomous systems [James et al., 10, Hecht et al., 00], military/strategic defense sys-
tems [Armstrong, 94], crisis management systems [Marin et al., 01], reliable SOA applications
based on Web services [Zheng and Lyu, 10], etc. All these critical systems have in common the
fact that they operate in highly dynamic environments and that they must adapt to changes
during their lifetime.

Dynamics occurs along various dimensions, representing the considered change model:
available resources, user preferences, QoS requirements, operational phases, external threats
be they in the form of enemy attacks or cosmic radiation etc.

Preprogrammed vs. Agile Adaptation & Granularity of Modifications

With respect to the granularity of adaptations, as already discussed, transitions between FTMs
can be executed either in a fine-grained or in a coarse-grained manner. Although not directly
targeted at FTMs but at fault-tolerant protocols which are part of larger FTMs, e.g., group ori-
ented multicast, [Hiltunen and Schlichting, 93] presents an interesting approach for achieving
modularity. The idea is to implement the individual properties of a protocol as separate micro-
protocols and then to combine the necessary micro-protocols in a composite protocol by using
an event-driven software framework. Micro-protocols are structured as collections of event
handlers, i.e., procedures which are called when a specific event occurs. For obtaining different
types of reliable multicast, the authors propose the following micro-protocols: FIFO (message
ordering) which can be reliable or unreliable, causality (reliable or unreliable transmission), to-
tal (message ordering) available in different versions/algorithms, reliability available in two
versions (one based on negative acknowledgment and one based on positive acknowledg-
ment), stability, membership, which is further broken down in micro-protocols dealing with
process failures and joins, liveness and validity. The authors propose in [Bhatti et al., 97] a sim-
ilar approach for achieving fine-grained construction of communication services. In our work,
more specifically in the “design for adaptation” step, we are guided by a similar idea: isolating
the specific features of FTMs in components constituting a generic execution scheme. We go
one step further, by leveraging this fine-grained design at runtime through differential adapta-
tions.

In [Pareaud et al., 08], the authors present an approach leveraging the reflective component-
based middleware support provided by OpenCOM [Coulson et al., 08] for enabling the fine-
grained adaptation of FTMs. The fault tolerance software is decomposed in generic services,
that are likely to remain unchanged during transitions, and specific inter-replica protocols
(IRPs). A fine-grained componentization of the FTM is achieved based on the taxonomy of fault
tolerance proposed in [Avižienis et al., 04]. The transition between Leader-Follower Replication

21

Chapter 1. Context & Problem Statement

(semi-active replication) and Primary-Backup Replication (passive replication) is presented as
a case study in which only the component representing the inter-replica protocol must be
changed. In our approach, the componentization of FTMs goes further, as the inter-replica
protocol is also broken down in separate components based on a generic protocol execution
scheme.

Another work leveraging component-based support, this time provided by CORBA Com-
ponent Model (CCM) [ccm, 11], is presented in [Fraga et al., 03]. The Adaptive Fault-Tolerance
on the CORBA Component Model (AFT-CCM) enables the adaptation of the fault tolerance
strategy at runtime transparently for the application layer. Based on fault occurrence rate and
QoS requirements specified by the user at runtime, the AFT manager entity switches between
a configuration with no replication, a configuration with passive replication (also known as
Primary-Backup in the literature) [Speirs and Barrett, 89] and a configuration with semi-active
replication (also known as Leader-Follower in the literature) [Barret et al., 90]. The actual inter-
replica protocol (corresponding either to passive replication or to semi-active replication) is
implemented in one component, called the Replication coordinator. The granularity of modifi-
cations is coarser than in our approach as a transition implies replacing the whole Replication
coordinator component. Furthermore, adaptation appears to be preprogrammed. An infras-
tructure tackling the same adaptation scenario, this time leveraging Fault-Tolerant CORBA
(FT-CORBA) [ftc, 02] is presented in [Lung et al., 06]. The authors propose a set of extensions to
the standard (which provides static fault tolerance support) consisting in interfaces and service
implementations enabling the change of the replication strategy at runtime. The set of FTMs
among which transitions can be executed is preprogrammed (known at design time).

Chameleon [Kalbarczyk et al., 99] is an adaptive software infrastructure enabling different
degrees of fault tolerance requirements (and, consequently, different fault tolerance strategies)
to be supported concurrently in a network environment. The system is based on the use of
ARMORs (Adaptive, Reconfigurable, and Mobile Objects for Reliability) that control all opera-
tions. There are three types of ARMORs:

• Managers remotely install and uninstall ARMORs on other nodes, assign unique identi-
fiers to them and keep an up-to-date list of them. There are three main types of managers:

– the Fault Tolerance Manager interprets the user’s fault tolerance requirements and
chooses an appropriate fault tolerance strategy, initializes parameters characteristic
to the strategy, chooses the hosts on which to deploy the strategy based on criteria
such as load and failure;

– the Surrogate Manager executes the application under the specified fault tolerance
strategy and can install any other ARMOR necessary for executing the application
under that strategy;

– the Backup Fault Tolerance Manager prevents the Fault Tolerance Manager from be-
coming a single-point-of-failure by monitoring it, maintaining its own state consis-
tent with it and replacing it in case of failure.

• Common ARMORs encapsulate specific techniques that are part of fault tolerance strate-
gies, e.g., heartbeat, voter, checkpoint etc.

22

1.7. Related Work

• Daemons reside on every node and perform accessory functions such as installing AR-
MORs locally, monitoring local ARMORs, acting as gateways between ARMOR and the
Chameleon environment etc.

Fault tolerance mechanisms are broken down in common ARMORs, which shows concern for
fine-grained design and for facilitating evolution and adaptation. Furthermore, the structure
of ARMORs can be immediately translated in CBSE terms: they are composites containing ba-
sic building blocks which, in turn, may also be composites of smaller building blocks. Like in
CBSE, to ensure the substitutability of building blocks, they must implement the same inter-
face i.e., have the same inputs and outputs. Changing the structure of ARMORs at runtime
is possible thanks to the CompositeController, a basic building block in charge of replacing
the other building blocks, after ensuring that they are in a quiescent state, i.e., not currently
processing a message. New ARMORs can be developed and integrated on-the-fly (i.e., adap-
tation can be performed in an agile manner) in systems allowing dynamic linking. Otherwise,
all components which are likely to be necessary during the lifetime of the application must be
included a priori. This work is similar to ours as fault tolerance strategies have a fine-grained
design and adaptation can be performed both in a preprogrammed and in an agile manner.
However, as this is a framework, much is left to the judgment of the developer. Furthermore,
the considered fault tolerance mechanisms are not described methodologically, therefore their
actual design is unclear. Another issue is the fact that Chameleon does not leverage an existing
mature component-based support or a standard component model.

As already stated, the vast majority of works dealing with AFT which have come to our
attention tackle adaptation in a preprogrammed manner, hard-coded at design time. Undoubt-
edly, the underlying middleware support (e.g., CORBA) plays a significant role in this: if the
support does not provide “plug-and-play” capabilities for runtime reconfiguration, agile adap-
tation cannot be performed. In this work, we leverage a reflective component-based middle-
ware which provides such facilities. In the case of CORBA-based approaches [Shokri et al., 97,
Narasimhan et al., 05, Lung et al., 06, Fraga et al., 03], adaptation is done in a preprogrammed
manner because the underlying support cannot accommodate unanticipated changes. How-
ever, by integrating the contribution presented in [Sadjadi and McKinley, 04], namely the
Adaptive CORBA Template (ACT), adaptation could also be done in an agile manner in the
aforementioned works. Based on generic interceptors, this framework template can be com-
posed with existing adaptive CORBA frameworks to help tackle unanticipated changes.

1.7.3 Design Patterns for Fault Tolerance

Design patterns [Gamma et al., 93] represent efficient and reusable solutions to recurring prob-
lems in different fields (e.g., architecture, mechanics, software engineering). In the field of
object-oriented development process, design patterns are building bricks from which more
complex designs are created. In addition to this, patterns do not exist in isolation but present
interdependencies which become apparent when they are placed in pattern systems. A pat-
tern system is defined as a “collection of patterns for software architecture, together with
guidelines for their implementation, combination and practical use in software development"
[Buschmann et al., 96, Chapter 5: Pattern Systems]. In the dependability area, FTMs represent

23

Chapter 1. Context & Problem Statement

well-established strategies providing solutions to specific problems described in terms of the
(FT,A,R) parameters. These strategies are often strongly related, especially when they comply
with the same FT requirements, e.g., duplex strategies for tolerating crash faults, voter-based
strategies and acceptance-test-based strategies for tolerating software faults. Therefore, it is
only natural to describe FTMs in the form of design patterns for fault tolerance and to place
them in pattern systems which highlight their connections. We have identified several works
on this topic.

In [Saridakis, 02], several well-known mechanisms for error detection (e.g.,
Acknowledgment, I Am Alive), error recovery (i.e., Rollback and Roll Forward)
and error masking (e.g., Active Replication) are described in the form of design patterns.
Detection, recovery and masking are three aspects of fault tolerance and the author uses this
classification scheme to organize them in a pattern system. This classification can be further
extended either with other existing mechanisms dealing with one of the three aspects or with
new categories. In our pattern system, we go one step further by identifying the structural
similarities inside the fault tolerance mechanisms through a generic execution scheme.

In [Daniels et al., 97], the focus is on design patterns for software faults. The authors classify
existing software fault tolerance techniques according to the adjudication method (i.e., voter,
acceptance-test and hybrid) and extract a general pattern-like structure called the Reliable
Hybrid pattern from which a great variety of FTMs can be instantiated, ranging from basic
approaches (e.g., N-Version Programming, Recovery Blocks) to complex hybrid solutions (e.g.,
Consensus Recovery Block). This work is complementary to our pattern system which cur-
rently deals solely with hardware faults (i.e., crash and value faults). A direction for future
work could be to compose this pattern with ours in order to address a broader spectrum of
faults.

A more general pattern system is described in [Ferreira and Rubira, 98]. The core of this
work is the Reflective State Pattern, which is a refinement of the State design pat-
tern [Gamma et al., 95, Chapter 5: Behavioral Patterns] based on the Reflection architec-
tural pattern [Buschmann et al., 96, Chapter 2: Architectural Patterns]. The State design pat-
tern, labeled as a behavioral pattern, allows an object to change its behavior when its inter-
nal state changes. The Reflection architectural pattern, labeled as a pattern for “designing
for change/evolution" in adaptable systems, provides a mechanism for changing the structure
and behavior of software systems dynamically. This is achieved by splitting the application
in a base-level providing the application logic and a meta-level, providing information about
selected system properties. The resulting Reflective State Pattern addresses the dif-
ficulties of implementing the state machine for the State pattern by separating the control
aspects from the functional aspects through the use of the Reflection pattern. By specializ-
ing this pattern for the fault tolerance field, the Software Redundancy pattern is obtained,
a general pattern which defines a common structure that can be applied to three kinds of fault
tolerance, namely hardware, software and environmental. In this pattern, the base-level classes
represent the services and their replicates, while the meta-level classes implement the strategy
specific to each FTM. To tolerate software faults, for instance, the base-contains a FTComponent
providing the service and several RedundantComponents implementing different versions of
the service (i.e., design diversity), while the meta-level implements the Voter for the N-Version

24

1.7. Related Work

Programming technique or the Acceptance Test for the Recovery-Block technique. This is an
abstract pattern that must be customized in order to implement environmental, software and
hardware fault tolerance strategies, thus leading to a system of patterns. The pattern system is
represented as a Pattern-Relationship Tree where patterns are connected by relationships such
as refinement, variation or combination. Although this pattern system covers a broader spec-
trum of faults than ours, it is too coarse-grained for our purpose. In our work, we descend
at a finer level of detail and break down the considered FTMs in order to identify structural
similarities between them.

1.7.4 Component-Based Software Engineering

Component-based software engineering is a well-established branch of software engineer-
ing. The idea of software componentization enabling subsequent reuse can be traced back as
early as 1968 in Douglais Mcllroy’s talk “Mass Produced Software Components” [McIlroy, 68].
Since then, a plethora of component models, both commercial and academic, e.g., En-
terprise JavaBeans (EJB) [ejb] developed by Sun Microsystems, Component Object Model
(COM) [com] from Microsoft, CORBA Component Model (CCM) [ccm, 11, Wang et al., 01],
OpenCOM [Coulson et al., 08], Fractal [Bruneton et al., 06], have been introduced, using dif-
ferent technologies, targeting different purposes and based on different principles. Based on
technologies such as object-oriented development, architecture description languages (ADL)
etc., component-based development has not managed to provide a set of standard princi-
ples, unlike object-oriented programming [Crnković et al., 11]. A commonly accepted defini-
tion of the notion of software component comes from [Szyperski, 02]: “A software component
is a unit of composition with contractually specified interfaces and explicit context dependen-
cies only. A software component can be deployed independently and is subject to compo-
sition by third party.” However, alternative definitions exist emphasizing the importance of
component models to which components must comply, as discussed in [Crnković et al., 11].
We do not aim to provide a survey of existing component models as extensive work al-
ready exists on this topic stemming from the software engineering community [Szyperski, 02,
Heineman and Councill, 01, Crnković et al., 11, Feljan et al., 09, Hošek et al., 10]. The approach
we propose abstracts away from the specificities of the various candidates to identify the mini-
mal set of features that must be provided by a certain platform in order for it to be appropriate
for our experimental work. We advocate the use of this kind of technologies for enabling ag-
ile fine-grained adaptation of fault tolerance mechanisms at runtime in order to make systems
resilient. The specific technologies we used in this work are described in Chapter 4.

1.7.5 Autonomic Computing

One of the main challenges of modern systems, as stated by IBM in “The Vision of Autonomic
Computing" [Kephart and Chess, 03], is the ever-increasing total cost of ownership (TCO) due
to their continuous evolution. Given the growing complexity of both individual systems and
dependencies between them, the solution, according to the authors, is autonomic computing,
a term coined by IBM in 2001, i.e., computing systems which can manage themselves based on
high-level policies provided by human administrators. The term autonomic originates from bi-

25

Chapter 1. Context & Problem Statement

ology: the autonomic nervous system is a part of the nervous system which controls vital func-
tions such as heart rate, body temperature, breath rate, digestive functions etc. By operating
largely below the level of consciousness, it enables the latter to focus on more complex tasks.
Similarly, an autonomic computing system should enable the human system manager to focus
on high-level task by being self-configuring, self-healing, self-optimizing and self-protective.

Autonomic computing is also enticing for ubiquitous systems based on technologies such
as Wireless Sensor Networks (WSNs). The goal of this “trend” is defined in [Sterritt, 05] as
addressing “today’s concerns of complexity and total cost of ownership while meeting to-
morrow’s needs for pervasive and ubiquitous computation and communication”. One of our
first areas of interest was autonomic computing due to its self-healing dimension, i.e., systems
which are able to detect when their behavior deviates from the expected one and, if possible,
take some repairing action. However, as also pointed out in [Sterritt, 05], many of the issues
within autonomic computing have been at the core of other disciplines, e.g., fault tolerance,
distributed systems, multi-agent systems etc. The novelty lies in the “holistic aim” of regroup-
ing all relevant research efforts in a common framework. Focusing on the intersection be-
tween autonomic computing and fault tolerance, the same author, in [Sterritt and Bustard, 03],
reaches the conclusion that dependability and fault tolerance are not only “specifically aligned
to the self-healing facet” of autonomic computing but, on a closer view, “all facets of autonomic
computing are concerned with dependability” (i.e., self-configuration, self-optimization and self-
protection as well). As such, the approach presented in this thesis can be regarded as a contri-
bution to autonomic computing.

1.7.6 Reconfigurable (Ubiquitous) Systems and Frameworks

A complex example of (re)configurable framework which also touches the areas of ubiquitous
systems, AC and fault-tolerant computing is Gaia [Román et al., 02], which builds on the core
concept of active spaces. Heterogeneous devices, such as PCs, sensors, smart-phones, blend in
the environment and interact with the user through a uniform interface. A method of adding
an autonomic dimension to this framework is the use of a planner from the field of artificial
intelligence, as presented in [Ranganathan and Campbell, 04], which has the role of creating a
path between the current state and a goal state given by a user or by a developer. This planner
can be considered analogous to our transition algorithm. In [Chetan et al., 05], the authors add a
fault tolerance dimension to Gaia by emphasizing the importance of dependability in pervasive
systems, i.e., systems that interact closely with the users, possibly even in a healthcare context.
They only endow Gaia with the property of tolerating fail-stop faults. Although this framework
tries to cover issues from many areas, including dependable computing, the proposed solution
appears to be closely linked to an underlying operating system called 2K, the case studies focus
only on managing media presentations and the approach to fault tolerance is somewhat basic.

In the area of reconfigurable software architectures, Rainbow [Garlan and Schmerl, 02]
builds on the use of architectural models for problem diagnosis and repair. The proposed
framework includes a monitoring layer composed of two types of entities, namely probes that
gather basic data from the running system and gauges [Garlan et al., 01] that perform com-
putations on the data in order to obtain measures of the system properties. An architecture
manager is in charge of maintaining the architectural model at runtime and of verifying that

26

1.7. Related Work

the constraints on the system elements are verified and to trigger reconfiguration in case they
are not. The project is very complex as it includes a very expressive Architecture Descrip-
tion Language (ADL) called ACME [Garlan et al., 00], a system in charge of verifying con-
straints, called ARMANI, a library of gauges and a language for describing adaptations, called
Stitch [Cheng and Garlan, 12]. The idea of placing an ADL on top of a component-based mid-
dleware is the topic of [Batista et al., 05], in which the authors describe their experience in asso-
ciating an enriched version of ACME with the OpenCOM middleware [Coulson et al., 08] for
performing programmed and ad-hoc changes at runtime while maintaining certain constraints.

27

Chapter 1. Context & Problem Statement

1.8 Summary

This chapter described the context of our research endeavor and the motivation of our work.
Evolution is mandatory, especially in the case of long-lived systems. Dependable systems must
be appropriately equipped to accommodate change. In this context, an approach is proposed
for tackling a key aspect of resilient computing: on-line adaptation of FTMs in a fine-grained
manner. Next, we discussed related work in different fields connected to our goal and empha-
sized our contributions compared to already existing approaches.

28

Chapter 2

Adaptation of Fault Tolerance
Mechanisms (FTMs)

“Imagination will often carry us to worlds that never were.
But without it we go nowhere.”

— Carl Sagan, Cosmos

2.1 Introduction

In this chapter, a set of well-known fault tolerance mechanisms is presented, serving as a basis
for our investigations on potential adaptations. Already well-documented in the past and used
in industrial environments, these FTMs are represented in a frame of reference we have estab-
lished in order to “visualize” and reason on evolution. This frame of reference is discussed and
different representations of these FTMs are provided.

Several transition scenarios, stemming from the underlying characteristics of the considered
FTM, are then presented. First, we provide a high-level view of possible transitions. Next,
transitions are thoroughly analyzed and additional aspects such as adaptations triggers and
stability of transitions are discussed.

29

Chapter 2. Adaptation of Fault Tolerance Mechanisms (FTMs)

2.2 Change Model and Associated Frame of Reference

As previously mentioned in Chapter 1, the choice of an appropriate FTM for a given appli-
cation is based on the values of a set of parameters (FT,A,R). These parameters represent the
dimensions along which dynamics may occur and invalidate the initial choice of FTM. At any
point in time, (FT,A,R) must be consistent with the current FTM in order to guarantee depend-
ability properties. Transitions between FTMs are needed when inconsistency is found between
an FTM and operational conditions (i.e., (FT,A,R) not in the domain of the FTM). Updating an
FTM is required when applications evolve (different characteristics A) or when the operational
conditions change either because available resources R vary or when fault tolerance require-
ments FT change during the service life of the system.

FT

R

A

FTM1

FTM2

FTM3

FTM4

Effectiveness domain of FTMi
in terms of (FT,A,R)

Valid operational conditions
(for which at least one FTM exists)

Invalid operational conditions
(for which no generic FTM exists)

Change(s) in operational conditions
requiring transitions between FTMs

Figure 2.1: Change Model and Associated Frame of Reference

We proposed a 3-axis frame of reference [Stoicescu et al., 11b], resulting from the change
model, for depicting the evolution of a fault-tolerant application (see Figure 2.1). Each axis
represents one of the multivariate variables (FT,A,R). In this space, each FTM occupies a cer-
tain place, that we call effectiveness domain, represented by a cloud in Figure 2.1, given by its
parameter values. The initial values of (FT,A,R) (i.e., the operational conditions) place the ap-
plication in the effectiveness domain of a certain FTM. When these values change, the applica-
tion may either fall inside the effectiveness domain of another FTM (in which case, a transition
between FTMs is required) or in an empty region, for which no generic solution is available.
Evolution during the service life of the system can be visualized as a trajectory in the space
defined by this frame of reference.

We make no pretense of this representation being complete and fully accurate. Firstly, the
labels symbolize multivariate variables for which we do not have a total order relation. The
only axis for which an order relation can be unequivocally established is R, e.g., FTM1 re-
quires more bandwidth than FTM2 or 3 CPUs instead of 2. For the two others, an order re-
lation could be based on the complexity of FTMs and the difficulty of developing them. In
the case of fault models FT, a value fault is “harder” than a crash fault because a mecha-
nism tolerating the former is structurally more complex, requiring an acceptance test/asser-
tion/voter which are not present in a mechanism tolerating solely the latter and because, gen-
erally, an FTM tolerating the former also tolerates the latter. Further on, software faults are
“harder” than hardware value faults because even if the corresponding FTMs have a simi-
lar external structure (i.e., N-Version Programming [Avižienis, 85] is similar to Active Replica-

30

2.3. Classification of FTMs

tion [Lyons and Vanderkulk, 62, Chérèque et al., 92], Recovery Blocks [Randell, 75] are similar
to Time Redundancy, N-Self-Checking Programming [Laprie et al., 90] is similar to Compari-
son&Double Duplex), they require design diversity, which is difficult to achieve. Secondly, the
representation is inaccurate because the variables are discrete, not continuous. However, it is
more difficult to visualize FTMs as sets of points in a three-dimensional grid. The role of this
representation is to give a visual perspective of the dimensions of evolution and adaptation
during the lifetime of a fault-tolerant application and of the aim of our research, namely pro-
viding the means for an application to remain fault-tolerant despite changes ergo to be resilient.

2.3 Classification of FTMs

The axes of our frame of reference represent multivariate variables, e.g., A (application charac-
teristics) stands for determinism, statefulness of the application and state accessibility, which
represent, in our approach, all the application-related parameters that have an impact on the
choice of an appropriate FTM. By refining two of these axes, namely FT and A, a tree-graph
classification of a set of well-established FTMs is achieved (see Figure 2.2) [Stoicescu et al., 11a].
This representation can serve in the process of selection of an appropriate FTM when design-
ing a fault-tolerant application (by browsing the tree in depth) and in deciding towards which
FTM a transition must be executed, in case the operational conditions change (by browsing the
tree from the leaf representing the current FTM towards the root).

The first criterion in this selection process is the fault models to tolerate. Our fault model
classification is based on known types [Avižienis et al., 04], i.e., software and hardware faults.
Establishing the fault model leads to the selection of a subtree on which the second class of cri-
teria is applied, namely application characteristics. In the design of fault-tolerant applications
(based on separation of concerns), we assume that the functional layer cannot be modified for
fault tolerance purposes. The application provides the required “hooks” enabling the FTM
to reify service calls and, in some cases, to access service state. However, if the application
presents some non-deterministic features, the FTM will not be able to intervene on them. This
explains why in Figure 2.2, in case the application is stateful and non-deterministic but does not
provide a method for managing state, no generic solution is provided. Non-determinism could
be tackled on a case-by-case basis by interfering with the application to solve non-determinism
points as done in [Barret et al., 90] to deal with preemptive tasks in real-time systems. In our ap-
proach, we adopt a black-box model of the application to maintain a clear separation between
the functional and the non-functional layer and the generality of the mechanisms.

For clarity, the tree-graph presents different levels of detail: duplex strategies are refined in
more detail than the rest. For example, Active Replication only works in the case of determinis-
tic applications. Also, the criterion related to resources is not shown. However, resources play
an important part and represent the last step in the selection process. In case several solution
exist, given the values of the parameters FT and A, the resource criterion can invalidate some
of the solutions. For instance, in case the fault model is crash and the application is determinis-
tic and provides state access, two potential FTMs are shown in Figure 2.2, namely Passive and
Semi-Active Replication. A cost function can be associated to each solution, based on necessary
resources (number of CPUs, memory, network bandwidth, energy consumption).

31

Chapter 2. Adaptation of Fault Tolerance Mechanisms (FTMs)

FA
U

LT
-R

E
L

A
T

E
D

M
O

D
E

L
S

A
P

P
L

IC
A

T
IO

N
C

H
A

R
A

C
T

E
R

IS
T

IC
S

FA
U

LT
T

O
L

E
R

A
N

C
E

H
W

FA
U

LT
S

C
R

A
SH

FA
U

LT

D
U

P
L

E
X

ST
A

T
E

L
E

SS

R
E

ST
A

R
T

ST
A

T
E

F
U

L

B
A

C
K

W
A

R
D

R
E

C
O

V
E

R
Y

ST
A

T
E

A
C

C
E

SS

D
E

T
E

R
M

IN
IS

M

PA
SS

IV
E

R
E

P
L

IC
A

T
IO

N

SE
M

I-
A

C
T

IV
E

R
E

P
L

IC
A

T
IO

N

N
O

N

D
E

T
E

R
M

IN
IS

M

PA
SS

IV
E

R
E

P
L

IC
A

T
IO

N

N
O

ST
A

T
E

A
C

C
E

SS

D
E

T
E

R
M

IN
IS

M

SE
M

I-
A

C
T

IV
E

R
E

P
L

IC
A

T
IO

N

N
O

N

D
E

T
E

R
M

IN
IS

M

N
O

G
E

N
E

R
IC

SO
L

U
T

IO
N

FO
R

W
A

R
D

R
E

C
O

V
E

R
Y

P
E

R
M

A
N

E
N

T

V
A

L
U

E
FA

U
LT

A
SS

E
R

T
IO

N

&
D

U
P

L
E

X

A
C

T
IV

E

R
E

P
L

IC
A

T
IO

N

C
O

M
PA

R
IS

O
N

&
D

O
U

B
L

E

D
U

P
L

E
X

T
R

A
N

SI
E

N
T

V
A

L
U

E
FA

U
LT

A
SS

E
R

T
IO

N

&
D

U
P

L
E

X

T
IM

E

R
E

D
U

N
D

A
N

C
Y

ST
A

T
E

L
E

SS

R
E

P
E

T
IT

IO
N

ST
A

T
E

F
U

L

ST
A

T
E

A
C

E
SS

ST
A

T
E

F
U

L
T

IM
E

R
E

D
U

N
D

A
N

C
Y

N
O

ST
A

T
E

A
C

C
E

SS

N
O

G
E

N
E

R
IC

SO
L

U
T

IO
N

C
O

M
PA

R
IS

O
N

&
D

O
U

B
L

E

D
U

P
L

E
X

A
C

T
IV

E

R
E

P
L

IC
A

T
IO

N

SW
FA

U
LT

S

R
E

C
O

V
E

R
Y

B
L

O
C

K
S

ST
A

T
E

L
E

SS

ST
A

T
E

L
E

SS

R
E

C
O

V
E

R
Y

B
L

O
C

K

ST
A

T
E

F
U

L

ST
A

T
E

A
C

E
SS

ST
A

T
E

F
U

L

R
E

C
O

V
E

R
Y

B
L

O
C

K

N
O

ST
A

T
E

A
C

C
E

SS

N
O

G
E

N
E

R
IC

SO
L

U
T

IO
N

N
-V

E
R

SI
O

N

P
R

O
G

R
A

M
M

IN
G

N
-S

E
L

F
-

C
H

E
C

K
IN

G

P
R

O
G

R
A

M
M

IN
G

Fi
gu

re
2.

2:
C

la
ss

ifi
ca

ti
on

of
FT

M
s

32

2.4. Presentation of Considered FTMs

2.4 Presentation of Considered FTMs

To illustrate our approach, we describe in detail a set of FTMs among the ones represented in
Figure 2.2: the two variants of duplex tolerating crash faults and two mechanisms for tolerat-
ing hardware value faults, namely Time Redundancy and Assertion&Duplex. We discuss both
the way these FTMs operate and their underlying characteristics in terms of the (FT,A,R) pa-
rameters. The discussion is limited to this subset of FTMs because they represent the practical
basis for the rest of this work. The other FTMs contained in Figure 2.2 are well-established
solutions thoroughly discussed in literature, e.g., N-Version Programming (NVP) is presented
in [Avižienis, 85], N-Self-Checking Programming is presented in [Laprie et al., 90] and Recov-
ery Blocks are presented in [Randell, 75].

2.4.1 Tolerance to Crash Faults

Crash faults in client-server systems can be tolerated through duplex protocols by replicating
the server on two or more hosts (master and slave(s)), assuming that a host running the server
is fail-silent. A crash of the master is detected by a dedicated entity (e.g., heartbeat, watchdog)
and triggers a recovery action through which the slave becomes master (or one of the slaves is
elected master).

There are two main types of duplex protocols, represented in Figure 2.2: passive and semi-
active (sometimes also called active). Primary-Backup Replication (PBR) [Speirs and Barrett, 89]
is a passive strategy: only the master (primary) processes client requests and sends checkpoints
containing its state to the slave(s) (backups). Checkpoints can be sent either for each request
processed or at a certain interval or in a differential manner, depending on the application.
Leader-Follower Replication (LFR) [Barret et al., 90] is a semi-active strategy: all replicas process
input requests but only the master (leader) replies to the client. Checkpoints are not necessary
because each replica updates its own state.

2.4.2 Tolerance to Hardware Value Faults

Hardware value faults are tolerated using repetition of request processing or duplex pro-
cessing with acceptance tests/assertions or parallel executions followed by voting, in
the case of active replication [Chérèque et al., 92] (also known as Triple Modular Redun-
dancy [Lyons and Vanderkulk, 62]) or the state machine approach [Schneider, 90] in the lit-
erature. Several strategies exist, as shown in Figure 2.2 among which we analyze two. Time
Redundancy (TR) tolerates transient value faults and requires only one host. A request is pro-
cessed twice and results are compared. If results differ, it means a transient fault occurred, so
the request is processed again and if two results out of three are identical, the reply is sent.
Assertion&Duplex (Assert&Duplex) can tolerate both transient and permanent value faults. As
the name indicates, it requires two separate hosts. A request is processed by both replicas. An
assertion is applied to the result of the master: if the assertion succeeds, the master sends the
reply to the client, otherwise, the assertion is applied to the result of the slave and, if it succeeds,
this result is sent to the client.

33

Chapter 2. Adaptation of Fault Tolerance Mechanisms (FTMs)

2.4.3 Underlying (FT,A,R) Characteristics

The underlying characteristics of these FTMs, in terms of the parameters (FT,A,R) are shown
in Table 2.1. We can see that although PBR and LFR tolerate the same fault model, their char-
acteristics in terms of A and R are substantially different: LFR requires determinism of the
application behavior (i.e., identical inputs must produce identical outputs because all replicas
process input requests) but does not require state access for recovery. Conversely, PBR does not
require determinism of the application behavior (the master propagates its state to the slaves)
but imposes state capture and restoration for checkpointing that can be very complex actions.
Depending on how checkpoints are built and verified, PBR can be more prone to fault prop-
agation because of state transfer between replicas. In terms of resources, PBR requires more
network bandwidth than LFR in normal operation (i.e., in the absence of faults) due to check-
points while LFR requires more processing than PBR (and, consequently, more energy) with all
replicas active, as indicated by H symbols in Table 2.1.

Characteristics
FTM

PBR LFR TR A&Duplex

Fault Model

Crash 3 3 3 Legend
Transient value 3 3

Permanent value 3 PBR=Primary-Backup Replication

Application
Characteristics

Deterministic 3 3 3 3 LFR=Leader-Follower Replication
Non-deterministic 3 3 TR=Time Redundancy

Requires state access 3 3 A&Duplex=Assertion&Duplex

Resources
Bandwidth HH H n/a H

CPU H HH HH HH

Table 2.1: Underlying Characteristics of the Considered FTMs

TR requires state access because application state must be captured before the first request
processing and restored between two consecutive executions. As it runs on only one host, it
cannot tolerate crash and it has no bandwidth requirements. Assert&Duplex can tolerate both
crash faults and value faults as two CPUs are used to run the replicas. Unlike TR, it does not
require state access. Both TR and Assert&Duplex require more computation power (i.e., more
energy) than PBR because of multiple request processing. However, with Assert&Duplex, the
coverage of transient faults detection is lower than when using TR. This illustrates the kind of
trade-offs that must be analyzed when choosing an FTM.

Here, we discussed in detail only the subset of FTMs that serves as a basis for our subse-
quent work. A less detailed view of the underlying characteristics of the entire set of FTMs
contained in Figure 2.2 can be found in Table 3 in the Appendix.

2.5 Transitions Between FTMs

2.5.1 Possible Transitions

During the service life of the system, the values of the parameters enumerated in Table 2.1 can
change. An application can become non-deterministic because a new version is installed. The
fault model can become more complex, e.g., from crash-only it can become crash and value

34

2.5. Transitions Between FTMs

fault due to hardware aging or physical perturbations. Available resources can also vary, e.g.,
bandwidth drops or constraints in energy consumption. Figure 2.3 shows a graph of possible
transitions between the previously enumerated FTMs. The vertices represent the FTMs and
the edges are labeled with the parameter (FT,A,R) whose variation triggers the transition. The
PBR→LFR transition is triggered by a change in application requirements or in resources, while
the PBR→Assert&Duplex transition is triggered by a change in the considered fault model.
Transitions can occur in both directions, according to parameter variation. As we further show,
there is a subtle difference between a transition and its reverse, in particular to prevent oscilla-
tions.

PBRstart PBR⊕TR

LFR LFR⊕TR

Assert&
DuplexA,R

FT

FT

A,R

A

FT

FT A

Figure 2.3: Possible Transitions Between FTMs

The fault model can change by becoming more or less complex. Its variation most often
requires a composition of FTMs, e.g., if we start by tolerating only crash faults with PBR and we
want to add tolerance to transient value faults, we will compose PBR with TR and obtain a
composed FTM with the features specific to PBR and those specific to TR.

In this work, the ⊕ operator denotes composition of FTMs (e.g., PBR⊕TR in Figure 2.3).
Generally, two FTMs are composed in order to tolerate both types of faults that they tar-
get individually (i.e., a complex fault model). Using our approach, an FTM can also be
composed with another non-functional strategy, e.g., authentication, encryption, logging.

The state machine representation provided in Figure 2.3 is complementary to the tree-graph
in Figure 2.2. While the tree can be used for identifying the most appropriate FTM to deploy
in the beginning (i.e., which leaf to choose), the state machine illustrates, like the frame of ref-
erence associated to the change model in Figure 2.1, the dynamics along the three dimensions
occurring during the lifetime of the system and towards which FTM to execute a transition.

2.5.2 Anticipation of Changes

As previously mentioned, dependable systems usually have a long service life consisting in a
sequence of operational phases that can be known a priori, at design time, or even not at all and
may require a change of FTM, if the values of the (FT,A,R) parameters vary. The point now is
to distinguish if the situations triggering changes can be anticipated (i.e., if operational phases
can be defined a priori or not) and if this has an impact on the dependability of the system.

35

Chapter 2. Adaptation of Fault Tolerance Mechanisms (FTMs)

Changes in Resources (R)

The amount of available resources may increase or decrease. When less resources such as net-
work bandwidth, memory space, CPU time, are available, the system manager can search for
a suitable FTM requiring less resources in normal operation (i.e., in the absence of faults). If
the drop in available resources is too abrupt, the impact can be more acute than a simple unde-
sirable overhead, going as far as impairing either the FTM or the functional layer. Indeed, the
application and the FTM might find themselves in competition for resources such as computa-
tion power or energy. This is the case of satellite systems, for instance, in which the trade-off
between dependability and energy consumption is extremely important, but also changes, ac-
cording to the operational phase.

Changes in Application Characteristics (A)

When an application changes, i.e., a new version with different characteristics A (e.g., deter-
minism, state accessibility) is available, the system manager can define a priori a suitable FTM
for the new version, taking input from the application designer w.r.t. the new characteristics
of the application. Thus, the on-line update encompasses changing the application version
together with the FTM. This change can be done using our fine-grained approach to reduce
impact on the system architecture and service disruption as much as possible. On-line fine-
grained evolutions are of particular interest for dependable large-scale systems, e.g., air traffic
control systems, because the overall system must deliver continuous service and cannot be
stopped for updating a part of it.

Changes in the Fault Model (FT)

This is the most complex case. In the context of operational phases, one can understand that
the fault model for a given phase (take-off, landing, cruise, . . .) has been anticipated a priori.
For critical phases, the fault model is usually stronger than for non-critical ones. For each
phase, a given FTM is defined a priori and is instantiated using our differential approach when
switching from one phase to the next.

For unanticipated changes, that require the intervention of the system manager, the sit-
uation is more problematic because unpredicted faults occurring at some point may not be
tolerated by the FTM currently attached to the application. In other words, some operational
faults are out of the scope of the fault model that was considered in order to define the FTM
for the applications in the system. Unanticipated faults exiting the fault model of the current
FTM have an impact on reliability, availability and safety. Improving at least availability by
changing the FTM and extending the fault model seems to be a real advance. We can consider
that a dependable system has several lines of defense, preventing a fault from propagating too
far before being detected. In Chapter 1, the recursive chain of dependability threats was pre-
sented. Even if the fault has affected one subsystem that was not equipped at the time with the
necessary FTM, applying the appropriate FTM at any point afterwards in the other subsystems
can improve detection coverage and error latency.

For instance, let us consider that a duplex strategy was selected beforehand to tolerate crash
faults. Transient hardware faults have been ignored because of their low probability of occur-

36

2.5. Transitions Between FTMs

rence. With hardware aging, the probability of transient fault increases, leading to value faults
affecting the output results.

Ideally, in this context, the evolution of the fault model in operation must be addressed in a
proactive way that performs FTM updates in advance, either because the system is getting to a
new operational phase or because of an early detection of fault model changes. If, for example,
confidentiality and/or integrity attacks on the system are suddenly observed, cryptography
mechanisms can be added or replication strategies can be set in case of denial-of-service attacks.

Based on the analysis of the three cases, we can state that application changes A and resource
changes R can be tackled through reactive adaptation. While the former also require input from
the system manager regarding new application characteristics (e.g., determinism and state ac-
cessibility), the latter can be dealt with by probes measuring the amount of resources and, based
on thresholds, triggering transitions between FTMs. On the other hand, fault model changes
FT require proactive adaptation and input from the system manager regarding evolution of the
fault model. Proactive adaptation triggers are out of the scope of this work but can be based on
error log analysis supplied by various lines of defense (nested assertions, defensive program-
ming, safety bags...).

2.5.3 Detailed Analysis of Transition Scenarios

To illustrate all types of changes requiring transitions between FTMs (FT,A,R), we focus on
the two duplex strategies (PBR and LFR) and on the mechanisms which tolerate value faults
(TR and Assert&Duplex). We analyze in details the bidirectional transitions between PBR and
LFR, between LFR and LFR⊕TR (i.e., composition of LFR with TR) and between LFR and As-
sert&Duplex. As previously shown in Table 2.1 and in Figure 2.3, the transition between PBR
and LFR can be triggered either by changes in A (i.e., determinism and state accessibility) or
in R (i.e., bandwidth and CPU), while the transition between LFR and LFR⊕TR and the one
between LFR and Assert&Duplex are triggered by changes in FT (i.e., the fault model goes
from crash to crash and value fault). Figure 2.4 shows a graph of transition scenarios between
the FTMs in our subset. We call it a graph of scenarios because there are several events which
lead to a transition between FTMs. For instance, we start by deploying PBR, which is appropri-
ate for the system, given the initial values of (FT,A,R). When the bandwidth between replicas
drops below a given threshold, LFR is chosen over PBR. Later, when a more critical operational
phase starts, transient value faults must also be tolerated, so LFR⊕TR is chosen. For the sake
of clarity, we present a simplified view of adaptation triggers. In general, they consist in more
complex logical expressions.

Mandatory vs. Possible Transitions. As we can see in Figure 2.4, there are three types of
transitions: mandatory transitions (continuous red lines), possible transitions (dashed green
lines) and intra-FTM transitions (dotted black lines). There are parameters whose variation
invalidates the initial FTM or affects its performance and therefore requires a transition to-
wards an appropriate one. These are mandatory transitions. When starting from PBR, there
are two such cases: bandwidth drop (which introduces undesired overheads) and state inac-

37

Chapter 2. Adaptation of Fault Tolerance Mechanisms (FTMs)

cessibility (which makes checkpoints impossible). On the other hand, there are parameters
whose variation only makes possible the use of another FTM, without invalidating the initial
strategy. These are possible transitions. When starting from PBR, there are two such cases:
increase in available CPU (because LFR demands more processing than PBR) and application
determinism (because both PBR and LFR work in this case). While mandatory transitions can
be executed automatically, possible transitions are executed only if the system manager de-
cides to. The intra-FTM transitions are only represented for the sake of completeness. If the
system manager decides not to execute a possible transition towards a new FTM (e.g., to go
from “PBR with non-determinism” to “LFR with state access” when the application becomes
deterministic), the values of the parameters characterizing the current FTM will still change,
i.e., an intra-FTM transition is executed (e.g., “PBR with non-determinism” goes to “PBR with
determinism” when the application becomes deterministic).

PROACTIVEREACTIVE

PBR
determinism

PBR
non-

determinism

LFR
state

access

LFR
no state
access

LFR⊕TR

Assert&
Duplex

No generic
solution

Bandwidth drop

CPU increase

�
State

access loss

�Application
non-determinism

�
Applic

ati
on dete

rm
in

ism

�State
access loss

�Application
determinism

Bandwidth increase

CPU drop

�
Applic

ati
on non-d

ete
rm

in
ism

�State
access loss

�Start a more critical phase

�Hardware aging

�
State access

�Start a more critical phase

�State
access

�Hardware aging

�Application
non-determinism

�Hardware replaced

�Start a less critical phase

�State
access loss

�Hardware replaced

�Start a less critical phase

�State
access

�State
access

�Application
determinism

mandatory inter-FTM transition
possible inter-FTM transition

intra-FTM transition

 detected by probes

� system manager input

Figure 2.4: Transition Scenarios Between FTMs

38

2.5. Transitions Between FTMs

Stability of Transitions. A problem which can be encountered in adaptive fault tolerance,
perceived as a closed loop system, is the oscillation between FTMs: if a transition is triggered
by the variation of a parameter that oscillates near the reconfiguration threshold, the system
can become unstable and reconfigure itself too often, thus reducing its availability. By distin-
guishing between mandatory and possible transitions, this issue is solved: as Figure 2.4 shows,
the reverse of a mandatory transition is always a possible one. The risk of oscillation is par-
tially eliminated because once the system executes a mandatory transition due to the variation
of a parameter, it will not be able to revert to the previous FTM, unless the system manager
decides to. For instance, the system executes a mandatory transition PBR→LFR because the
bandwidth drops below a given threshold. After a very short period of time, the bandwidth
increases just above the threshold, which makes it possible for the system to revert to PBR.
However, if the bandwidth drops again, the system would have to revert to LFR; should such
variations occur too often, the system might find itself spending more time reconfiguring itself
than in normal operation. This is countered by the system manager who decides not to execute
the reverse transition from LFR→PBR based on bandwidth, considering other parameters, e.g.,
forecasted demands. This approach prevents instability in the case of independent parameter
variation. Should the variation of one parameter impact another one (as is the case of band-
width and CPU), additional measures must be taken for ensuring stability. For instance, an
approach used in signal processing and electronics [Moghimi, 00] is to add an amount of hys-
teresis on triggers, to reduce instability and noise. The definition of threshold values on CPU
and bandwidth is out of the scope of this work.

Probe-Triggered vs. Human-Triggered. Figure 2.4 shows another distinction between transi-
tions: the variation of some parameters can be detected automatically by using probes
, while
others require input/observations from the application developer or from the system manager
�. The former encompasses R variations, the latter concerns A and FT variations, as previously
discussed.

Reactive vs. Proactive. Last but not least, the reactive/proactive nature of transitions is also
visible in Figure 2.4. In Subsection 2.5.2, we discussed the issue of change anticipation. The
transition between PBR and LFR is caused either by variations in A or in R. As such, it can
be tackled through reactive adaptation. The transition between LFR and LFR⊕TR and the one
between LFR and Assert&Duplex are caused by variations in FT, the fault model becoming
more complex. Ideally, they should be tackled through proactive adaptation.

39

Chapter 2. Adaptation of Fault Tolerance Mechanisms (FTMs)

2.6 Summary

This chapter focused on the dynamics faced by fault-tolerant systems during their lifetime,
which leads to transitions between fault tolerance mechanisms. As dynamics occurs along var-
ious axes, first, a frame of reference was established, for visualizing evolution. We defined a
set of parameters whose values must be known in order to choose the most appropriate FTM
and whose variation may invalidate the initial choice. Then, several well-known FTMs were
described and represented, in the context of our frame of reference. Next, various transition
scenarios, stemming from the underlying characteristics of the considered FTMs, were ana-
lyzed. Last but not least, other aspects connected to transitions, such as adaptation triggers
and stability were discussed.

40

Chapter 3

Design for Adaptation of FTMs

“We make our world significant by the courage of our ques-
tions and by the depth of our answers.”

— Carl Sagan, Cosmos

3.1 Introduction

Design for adaptation, also called design for change/evolution, is a fundamental issue when
designing the architecture of a software system as changes “should not affect the core function-
ality or key design abstractions, otherwise the system will be hard to maintain and expensive to
adapt to changing requirements” ([Buschmann et al., 96, p. 169]). In general, software systems
are likely to be subject to change both before deployment (i.e., during design and implementa-
tion), because of incomplete or misunderstood client requirements, and after deployment (i.e.,
during the operational life), due to versioning, user customization etc. This calls for flexible
architectures designed with evolution in mind.

In our specific case, the aim is to design fault tolerance mechanisms in such a way as to
facilitate their on-line evolution through a minimal set of structural and/or behavioral modi-
fications. The design for adaptation of FTMs is an iterative process representing a preparation
step for the actual transitions at runtime. Being performed off-line, this step is part of what we
call “cold resilient computing”, as opposed to “hot resilient computing”, covered in the next
chapter.

In this chapter, the process of designing a set of FTMs for facilitating subsequent evolution
is presented. The process consists in several design loops and results in the identification of a
generic execution scheme of fault tolerance protocols reproducible both in object-oriented (as
presented in this chapter) and in component-based (as presented in the next chapter) design
and a toolbox of reusable and customizable Fault Tolerance Design Patterns (FTDPs).

41

Chapter 3. Design for Adaptation of FTMs

3.2 Requirements and Initial Design

The initial requirements set for building the toolbox of FTMs were to develop mechanisms
targeting the crash fault model, which can be attached to query-response systems and which
preserve the “only-once” semantics. To illustrate our “design for adaptation” approach, we use
a simple replication protocol. Following the classification in Figure 2.2, our choice fell on the
passive version of duplex protocols, i.e., PBR. Figure 3.1 presents the “big picture” of this FTM.
There are three main entities/hosts, the client, the primary and the secondary (backup). The
client sends requests to the primary through an unreliable connexion (1). After processing the
request, the primary synchronizes its internal state with the secondary by sending a checkpoint
(2) through the reliable inter-replica connexion (3). Next, the primary sends the reply to the
client (4). In parallel, a pair of monitors/crash detectors periodically query the liveness of their
local server (a) and of the partner (b). In case the primary server crashes (either the process or
the entire host), the secondary takes over.

Figure 3.1: Overview of the Primary-Backup Replication

We first developed and validated a prototype both on a simple service (a basic calculator)
and on a more complex use case, an application for controlling a Parrot AR.Drone. A full
account of this work can be found in [André et al., 11]. IBM Rational Software Architect v8.0
was used for UML design, code generation in C++ and synchronization between design and
implementation. The class diagram in Figure 3.2 represents the design of the first prototype.
The design consists of several packages: server, grouping the elements of the crash-tolerant
server, client, communication and monitor. In the following, our focus is on the classes
inside the server package constituting a crash-tolerant server implementing a set of services
required by the client, which can be accessed remotely and which provide methods for state
management. The actual inter-replica protocol is concentrated in the DuplexProtocolPBR

42

3.3. First Design Loop: Generic Protocol Execution Scheme

class encompassing general fault tolerance concerns, duplex concerns and specific PBR con-
cerns. Having as a starting point this ad-hoc design, the aim of the subsequent design loops
was to achieve a clean separation between all these concerns in order to easily develop both
duplex variants and other FTMs without unnecessary code duplication.

server
client

communication

monitor
-clientComm

-interDuplexComm

-monitorComm -monitorComm

-interMonitorComm

-clientComm

«interface»
StateManager

Server Remote

RemoteServer

RecoverableRemoteServer

DuplexProtocolPBR

«interface»
Services

ProxyServer

Client

Socket

«interface»
Communication

CrashDetector

Figure 3.2: Initial Design of the Primary-Backup Replication

3.3 First Design Loop: Generic Protocol Execution Scheme

The analysis of the previously discussed set of FTMs led to the identification of a generic ex-
ecution scheme. By breaking down an ordinary monolithic processing in separate execution
steps (see Figure 3.3), we managed to capture their common parts and their variable features.

This scheme is inspired from Aspect-Oriented Programming [Kiczales et al., 97]. Upon re-
ception of a request from the client, a fault-tolerant server executes some actions before process-
ing (e.g., filter inputs, synchronize with a replica). Then it proceeds with request processing.
After processing, it executes some actions (e.g., filter results, apply assertions, synchronize with
a replica) and finally it sends the reply to the client. We called this the before-proceed-after generic
execution scheme of FTMs .

Table 3.1 shows the content of each execution step for the set of FTMs included in our tran-
sition scenario. This scheme can be directly applied to the other FTMs included in the classifi-

43

Chapter 3. Design for Adaptation of FTMs

cation in Figure 2.2, e.g., in the case of N-Version Programming, before consists in multicasting
the client request to all versions, proceed consists in processing the request (by all versions) and
after consists in collecting the results from all the versions which reply before a certain timeout
and voting on them. The steps of this generic execution scheme represent the variable features
between FTMs.

Proceed

Before

After

Figure 3.3: Monolithic Processing (left) vs. Generic Protocol Execution Scheme (right)

FTM Before Proceed After
PBR (Primary) Nothing Compute Checkpoint to Backup
PBR (Backup) Nothing Nothing Process checkpoint
LFR (Leader) Forward request Compute Notify Follower
LFR (Follower) Receive request Compute Process notification
TR Capture state Compute Restore state
A&Duplex Nothing Compute Assert output

Table 3.1: Generic Execution Scheme of FTMs

It is worth noting that the behavior of each FTM can be described according to our generic
execution scheme in a natural way. Furthermore, this scheme can be used to describe the pro-
tocol at different view levels and it can nest itself or be combined with another one following
the same scheme.

When designing a duplex mechanism, this scheme can be translated in sync_before-proceed-
sync_after, because an inter-replica synchronization takes place before request processing and
another one after. This synchronization consists in sending/receiving client requests, compu-
tation results, checkpoints etc., depending on the protocol. Let us compare PBR and LFR in
terms of inter-replica protocol: in the sync_ before step, in PBR, the master and the slave do
nothing, while in LFR, the master forwards the request to the slave and the slave receives it;
in the proceed step, in PBR, the master computes the request and the slave does nothing, while
in LFR, both master and slave compute; in the sync_ after step, both in PBR and in LFR, the
master sends some information (checkpoint and notification, respectively) to the slave which
processes it.

This generic execution scheme enabled us to factorize in a class what is common to all

44

3.4. Second Design Loop: Externalization of Duplex Concerns

duplex protocols, DuplexProtocol, and then specialize, through inheritance, the concrete
FTMs, PBR and LFR (see Figure 3.4). Other duplex variants can be added to the framework,
either by inheriting from the abstract base class DuplexProtocol or from one of the concrete
classes, PBR or LFR.

DuplexProtocol

PBR LFR

Figure 3.4: First Design Loop

Variable Features. The steps of our generic execution scheme represent the variable features
between FTMs. Comparing, for instance, the execution scheme of PBR with that of LFR (see
Table 3.1) gives us the intuition that by dividing the inter-replica protocol in isolated brick-
s/components which can be identified and modified on-line, we could execute a differential
transition between PBR and LFR. This way, we replace only the components which contain the
variable features between the two FTMs, without modifying the rest of the system (e.g., com-
munication with the client, the actual processing to which proceed only forwards the requests).
By identifying the variable features, we can easily develop FTM variants from existing ones
(off-line) and, when using a component-based middleware support (as further shown in the
next chapter), execute transitions between FTMs with minimal modifications (on-line).

3.4 Second Design Loop: Externalization of Duplex Concerns

Another separation can be done between what is common to all FTMs and what is specific
to duplex ones. Communication with the client, preservation of “only-once" semantics (i.e.,
each request must be processed only once by the fault-tolerant server, therefore duplicate re-
quests must be detected) and request forwarding to the concrete functional service in the pro-
ceed step are encapsulated in a class, FaultToleranceProtocol in Figure 3.5. This second
factorization enabled us to introduce in our framework non-duplex protocols targeting other
fault models than crash, more precisely value faults (transient and permanent, see Figure 2.2):
TimeRedundancy and Assertion, which follow the same generic execution scheme, as al-
ready shown in Table 3.1.

FaultToleranceProtocol

TimeRedundancy DuplexProtocol Assertion

PBR LFR

Figure 3.5: Second Design Loop

45

Chapter 3. Design for Adaptation of FTMs

New protocols can be easily added to the framework either by extending the abstract base
class FaultToleranceProtocol or one of the concrete classes. This is useful especially in
the case of Assertion, which is usually application-tailored and can also depend on client
requests.

3.4.1 Composing FTMs

As a direct consequence of the two design loops, the composition of FTMs is intuitive and
almost immediate. By inheriting from a duplex protocol (tolerating crash faults) and from a
value fault tolerance mechanism, we obtain four composed FTMs (Figure 3.6): PBR_TR and
LFR_TR, corresponding to PBR⊕TR and LFR⊕TR respectively in Figure 2.3, and PBR_A and
LFR_A which are two variants of Assert&Duplex. Figure 3.6 shows an excerpt of the final
framework of FTDPs resulting from the two design loops, namely the server package. The
client-side and the crash detection mechanism represented in Figure 3.2 were not modified
during the design iterations.

server

«virtual» «virtual» «virtual»

«interface»
StateManager

Server Remote

RemoteServer

RecoverableRemoteServer

FaultToleranceProtocol

TimeRedundancy DuplexProtocol Assertion

PBR LFR

PBR_A

LFR_A

LFR_TR

PBR_TR

Figure 3.6: Excerpt from FT Design Patterns Toolbox (server package)

3.4.2 Fault Tolerance Design Patterns (FTDPs)

A definition of design patterns is provided in [Gamma et al., 95]: “Design patterns capture so-
lutions that have developed and evolved overtime. Hence they aren’t the designs people tend

46

3.5. Validation & Evalution

to generate initially. They reflect untold redesign and recoding as developers have struggled
for greater reuse and flexibility in their software. Design patterns capture these solutions in a
succinct and easily applied form.” Similarly, our “design for adaptation of FTMs” approach
consists of several design loops, each of which represents a refinement step towards achieving
the optimal representation of the various concerns and protocols.

Several design patterns and systems of patterns for fault tolerance exist in the literature
among which we have cited a few in the state of the art (see Subsection 1.7.3). Compared to
them, the system of patterns we propose describes in greater detail the structural links between
the considered fault tolerance mechanisms. Furthermore, to the best of our knowledge, this is
the only system of patterns designed as a preparation step for subsequent on-line adaptation.

3.5 Validation & Evalution

All the above design versions have been implemented and validated in C++. As further ex-
plained, the benefits of the “design for adaptation” approach lie in reducing the development
time and effort necessary for implementing new FTMs and in increasing readability and sep-
aration of concerns/functionalities. It is worth noting that the implementation of composed
mechanisms is almost immediate thanks to the two design loops. Their significance is nonethe-
less powerful: they extend the fault model initially considered (the crash fault model) to crash
faults and value faults, making the application more robust to faults which were not taken into
account in a first place.

Design loop/FTM Days FTM class LOC
1st Design loop: DP 4 FTP 170
LFR 1,5 DP 215
2nd Design loop: FTP 5 PBR 70
Assertion 0,5 LFR 63
Time Redundancy 0,5 TR 80
Combination 0,5 Assertion 40

PBR_TR 45
LFR_TR 30
PBR_A 40
LFR_A 30

0

1

2

3

4

5

6

1st Design
loop: DP

LFR 2nd Design
loop: FTP

Assertion Time
Redundancy

Combination

Development time
Days

0

50

100

150

200

250

Source Lines of Code (SLOC)
SLOC

Design loop/FTM Days FTM class LOC
1st Design loop: DP 4 FTP 170
LFR 1,5 DP 215
2nd Design loop: FTP 5 PBR 70
Assertion 0,5 LFR 63
Time Redundancy 0,5 TR 80
Combination 0,5 Assertion 40

PBR_TR 45
LFR_TR 30
PBR_A 40
LFR_A 30

0

1

2

3

4

5

6

1st Design
loop: DP

LFR 2nd Design
loop: FTP

Assertion Time
Redundancy

Combination

Development time
Days

0

50

100

150

200

250

Source Lines of Code (SLOC)
SLOC

Figure 3.7: FT Toolbox Design and Implementation: Development Time (left) and Source Lines
of Code (right)

During the development of this FT toolbox, we observed that our design approach was
very efficient, in terms of development time of new mechanisms and in terms of code reuse
and lines of code to be produced (see Figure 3.7). Our statistics are based on the work done by
a pair of junior developers, thoroughly described in [Gibert et al., 12]. The results show that the
development of a concrete protocol takes less than a quarter of the time spent on a design loop
for adaptation. For instance, while the second design loop took five days, the development
of Assertion and Time Redundancy each took half a day. The composition of FTMs, which is
probably the most interesting result of this endeavor, only took half a day thanks to the two
design loops. In terms of lines of code, as expected, the intensive use of inheritance results in

47

Chapter 3. Design for Adaptation of FTMs

small concrete classes/FTMs compared to the abstract base classes: the ratio is situated between
one quarter and one third.

3.6 Summary

In this chapter, we presented the “design for adaptation” approach of fault tolerance mecha-
nisms. The associated toolbox validates the approach, proving that careful design, evolution
prediction, modularity and clean separation of concerns, in the large and in the small, enable
us to reach a generic protocol execution scheme which is the cornerstone of our framework.
The result is interesting in itself as this toolbox can be a starting point for developing an adap-
tive fault tolerance framework for a real-world application in which new FTMs can be easily
developed and integrated off-line. Throughout this iterative process, we gained a thorough
understanding of the considered mechanisms and, most importantly, of their variable features.
In the context of our overall work, the “design for adaptation” approach is an essential step
performed before the actual transitions between FTMs at runtime.

48

Chapter 4

Component-Based Architecture of
FTMs for Adaptation

“When thought becomes excessively painful, action is the
finest remedy.”

— Salman Rushdie

4.1 Introduction

In this chapter, we describe in details the practical implementation of component-based adap-
tive FTMs for addressing resilient computing. This fundamental phase of our work proves its
overall feasibility by bringing together the lessons learned from the “design for adaptation”
phase presented in Chapter 3 and state-of-the-art software engineering tools.

To begin with, the standards and instruments we used are presented and our choice of
tools is explained. Then, we show how these instruments are leveraged, first, for developing
component-based stand-alone fault tolerance mechanisms and, second, for executing agile fine-
grained on-line transitions between different mechanisms (i.e., while the overall system is in
operation).

Next, we discuss a crucial aspect of the transition process, namely the consistency of adap-
tation, and present the steps we have taken to enforce the tolerance of the adaptation process
to faults that might occur during transitions.

49

Chapter 4. Component-Based Architecture of FTMs for Adaptation

4.2 Standards, Tools and Runtime Support

Recent advances in the field of software engineering represent one of the catalysts of this re-
search work. These advances take various forms, ranging from standards and specifications to
complex middleware platforms providing a plethora of features. In this section, we present the
novelties from software engineering that we have found to be particularly useful for achieving
our aim, that of performing fine-grained on-line modifications of the fault tolerance software.

In our choice of tools, we were not primarily guided by the novelty of the proposed solu-
tions because new does not necessarily mean better. We were mainly interested in finding a
solution providing the features we had already identified as primordial for our purposes, sum-
marized in what we call “a minimal API for on-line adaptation of fault tolerance mechanisms”
that is further detailed. A second criterion was the presence of a strong support for these tools
from their developers and the possibility to interact with them and give/receive feedback on
our particular use of the chosen platforms.

4.2.1 The SCA Standard

The Service Component Architecture (SCA) [Chappell, 07, Marino and Rowley, 09] is a set of
specifications for building and composing loosely-coupled, tailorable distributed applications
based on the Service-Oriented Architecture (SOA) and Component-Based Software Engineer-
ing (CBSE) principles and encompassing a wide range of technologies. The specifications are
hosted in the Open CSA section of the OASIS consortium which includes partners such as IBM,
Oracle, Red Hat, SAP and TIBCO (http://www.oasis-opencsa.org).

While SOA [Margolis and Sharpe, 07] specifies a way of organizing software by expos-
ing coarse-grained, loosely-coupled services which can be accessed remotely, it fails in spec-
ifying how these services should be implemented. SCA addresses this gap by specifying a
language-independent programming model and promoting the use of components and ar-
chitecture descriptors. SCA is not the only solution in the SOA world combining software
components and services, another one being OSGi [OSG], that has received significant adop-
tion. Although the two technologies do share a lot of similarities, what makes them essen-
tially different is that OSGi is purely Java-based while SCA preaches programming language-
agnosticism [Marino and Rowley, 09] for implementing components and defines a common as-
sembly mechanism for combining components into applications.

The main idea behind SCA is that applications have a hierarchical structure based on com-
ponents which can be included in composite components. Both components and composites can
expose properties, i.e., configuration parameters represented as name-value pairs read at run-
time. Components provide and require services. Required services are called references and
they are connected to the actual service provider through wires (in case of local connections) or
bindings (in case of remote connections). References and services owned by a component can
be promoted at the level of the composite enclosing it. Composites can also act as components
inside bigger composites (i.e., a component can either be a primitive component or a composite
component). Figure 4.1 illustrates these notions. Components and composites are deployed
and contained within a larger construct called domain.

By separating the interfaces (services and references) from the actual implementa-

50

http://www.oasis-opencsa.org

4.2. Standards, Tools and Runtime Support

tion [Szyperski, 02], this approach facilitates reuse, evolution and technology-agnosticism as
components consume services provided by other components without being aware of how
they are implemented and whether their implementation changes over time. The novel pro-
gramming model of SCA enables developers to build distributed applications more easily. By
abstracting away the intricacies of distributed computing and the specifics of underlying com-
munication technologies, it allows them to focus on business logic and on structuring applica-
tions in well-cut reusable and customizable bricks.

Server-side app

user

Client-side app

front_end back_end composite component

SCA legend

property

service reference

 wire(local)

X Y

service reference

binding(remote)

reference reference

promote

service service

promote

Figure 4.1: A Simple SCA-Based Application

To be more specific, the SCA standard is based on four sets of specifications [Chappell, 07]:

• assembly language: components are assembled in composites using an XML-based Ar-
chitecture Description Language (ADL) called Service Component Definition Language
(SCDL, commonly pronounced “skiddle”). This format makes use of the previously in-
troduced concepts of service, reference, wire etc.;

• component implementations: these specifications define how services are implemented;

• binding specifications define how SCA services are accessed, both between two SCA-based
applications and between an SCA-based application and any other service-oriented tech-
nology. Services and references are bound to a specific communication protocol (e.g.,
SOAP for Web Services, Java RMI etc.);

• policy sets/intents: non-functional features such as confidentiality and transactions must
be provided by SCA platforms in order to separate application code from transport and
communication protocol issues.

It is worth noting that all these specifications can be extended according to user needs and
emerging technologies, e.g., one can specify how to implement components in a new (possibly
proprietary) programming language or add policy sets for new non-functional requirements.
All the previously introduced SCA notions are thoroughly explained in Section 4.3.

4.2.2 FRASCATI

As the SCA standard only provides a set of specifications, applications complying to them
require an appropriate runtime support for deployment and execution. Several independent

51

Chapter 4. Component-Based Architecture of FTMs for Adaptation

SCA platforms exist, both commercial (e.g., IBM WEBSPHERE Application Server Feature Pack
for SOA, Oracle Event-driven Architecture Suite) and open-source (e.g., Apache Tuscany, Fab-
ric3, Service Conduit, and FRASCATI). Although all the above-mentioned commercial and
open-source implementations have strong support from their communities and are continu-
ously upgraded (which is to be expected in the case of commercial products), there are some
differences between them. While the first three are better documented and more business-
oriented (i.e., Apache Tuscany is thoroughly explained in [Laws et al., 11], all code examples
in [Marino and Rowley, 09] are based on Fabric3, and Service Conduit advertises itself as “the
leading open source SCA implementation” on the official website), FRASCATI stems from an
academic community and provides several key features for our work which are not present
in the other platforms, neither in the open-source nor in the commercial ones. More precisely,
these extra-features represent the previously mentioned “minimal API for on-line adaptation
of fault tolerance mechanisms” which is further explained.

We developed our adaptive FTMs on FRASCATI (version 1.4 and 1.5) [Seinturier et al., 11],
an open-source platform providing runtime support for SCA-based applications and imple-
mented according to SCA principles. The FRASCATI runtime provides support for SCA com-
posite definitions following the SCA Assembly Model V1.0 specification, Java component im-
plementation (SCA Java Component Implementation V1.0 and SCA Java Common Annota-
tions and APIs V1.0), remote component bindings using Web Services (Soap or RESTful) and
Java RMI protocols.

Unlike the other above-mentioned platforms, FRASCATI goes beyond the SCA specification
as its creators have also identified several shortcomings of the original standard and addressed
them as well. According to [Seinturier et al., 11], a fundamental omission of the SCA standard
is that it does not address runtime management of the application or of the underlying plat-
form, as the assembly of components is only used to instantiate and initialize the application.
Given that our adaptive fault tolerance mechanisms essentially depend on the runtime recon-
figuration support provided by the underlying platform, a mere implementation of the SCA
standard would be insufficient for our needs. FRASCATI addresses runtime reconfiguration of
component-based architectures thanks to the integration of FRACTAL-based reflective comput-
ing capabilities [Bruneton et al., 06]. FRACTAL is a programming language-independent com-
ponent model designed for building highly configurable software systems. As a result of this
integration, components inside SCA-based applications running on top of FRASCATI are also
endowed with FRACTAL-specific controllers for life cycle management, for introspecting and
reconfiguring the component-based architecture at runtime.

4.2.3 Runtime Reconfiguration Support

FRASCATI brings to SCA reflective and on-line reconfiguration capabilities. On-line architec-
ture exploration and reconfiguration can be performed in several ways:

• through FRASCATI Explorer, which is a graphical management tool thanks to which
users can interactively load and start composites, invoke methods, explore and recon-
figure the component-based architecture of a running SCA application (see Figure 4.2);

• by using the FRACTAL control API in Java;

52

4.2. Standards, Tools and Runtime Support

• by executing reconfiguration scripts written in FSCRIPT.

Figure 4.2: FRASCATI Explorer Showing Reconfiguration Features and the Architecture of the
Platform and of the Running Application

For our purposes, the most convenient option is using FPATH and FSCRIPT [David et al., 09]
as they allow for a much more concise writing of reconfiguration actions than the basic FRAC-
TAL API and also present some key additional properties. FPATH is a query language for intro-
specting and navigating inside FRACTAL-based architectures at runtime. Dedicated to modify-
ing component-based applications, the FSCRIPT scripting language provides support for safe
transactional changes [Léger et al., 10], thus guaranteeing that a reconfiguration either takes a
component-based architecture to a consistent state or leaves it unmodified in its initial state,
should an exception be thrown during reconfiguration. This is an essential property for our
transitions as the addition of dynamics to FTMs should not impair the reliability of the mech-
anisms. The consistency of the overall distributed reconfiguration process, which is further
discussed, relies on the Atomicity, Consistency, Isolation, Durability (ACID) properties guar-
anteed by FSCRIPT.

4.2.4 Runtime Support Requirements for On-line Adaptation of FTMs

Before choosing the appropriate tools, we identified a set of features which must be provided
by the underlying platform in order for it to become a candidate for our resilient computing
framework. These features are all related to the degree of observability and control that the
platform provides over the component-based architecture of applications at runtime:

• control over components’ life cycle at runtime (add, remove, start, stop);

• control over interactions between components at runtime, for creating or removing bind-
ings.

53

Chapter 4. Component-Based Architecture of FTMs for Adaptation

Furthermore, to ensure consistency before, during and after reconfiguration, several issues
must be carefully considered:

• components must be stopped in a quiescent state, i.e. when all internal processing has
finished;

• incoming requests on stopped components must be buffered, to ensure consistency of
request processing.

This set of elements represents a minimal API and set of features which must be provided
by a component-based middleware to make it a candidate for our practical experience. We
chose FRASCATI (together with its FSCRIPT interpreter) because it provides these features, this
being the first criterion for choosing a particular middleware support. FRASCATI also fills the
second criterion, namely a strong support from its developers, as it is continuously upgraded
with new features. Our direct interaction with its designers and developers, members of the
ADAM research project-team from INRIA Lille, in the context of the “Software Engineering
for Resilient Ubiquitous Systems” Collaborative Research Action (ARC SERUS), represented a
significant advantage in the process of developing our adaptive FT middleware. It is worth
noting that our approach is reproducible on any other runtime platform providing a minimal
implementation of the adaptation API we have identified.

Unlike other SCA platforms, the FRASCATI middleware is itself developed according to
SCA principles [Seinturier et al., 11] and is a Software Product Line (SPL) enabling users to
build configurable runtime platforms compliant with their requirements and their targeted
systems (i.e., the memory footprint ranges from 256 KB for the minimal configuration to 25
MB for the full configuration). This way, we can choose among the modules of FRASCATI a
minimal subset providing the required functionalities (e.g., FRASCATI provides support for
several remote component binding technologies such as Java RMI, REST, Web Services etc. but
as we only need one of them, we plug only that specific module in our version). The SCA-
based components constituting FRASCATI itself are also endowed with reflective FRACTAL-
based capabilities and as such can be explored and reconfigured at runtime. The component-
based structure of the platform can be seen in Figure 4.2 which shows both our application (the
master composite and everything underneath it) and the component-based middleware (the
org.ow2.frascati.FraSCAti composite and its contents).

4.3 Component-Based Architecture of PBR for Adaptation

In the following, we describe in details a proof-of-concept consisting in the component-based
architecture of a simple PBR strategy [Stoicescu et al., 12a]. This proof-of-concept results from
the implementation of our before-proceed-after generic execution scheme on FRASCATI accord-
ing to the SCA specifications. The strategy is applied to client/server systems based on request-
response interactions. The inter-replica communication channel is reliable while the client com-
munication channel is supposed unreliable in this example. The client can issue a request up
to three times, in case it does not receive a reply, and the FTM guarantees that requests are
processed only once. For the sake of clarity, we consider in this work a single-threaded clien-
t/server application.

54

4.3. Component-Based Architecture of PBR for Adaptation

4.3.1 Separation of Concerns

Figure 4.3 shows an SCA diagram representing the component-based design of Primary-
Backup Replication. We name the two replicas master and slave rather than primary and
backup in order to have a uniform naming convention when passing to another duplex pro-
tocol, e.g. Leader-Follower Replication. Our architecture consists of three composite compo-
nents and their interactions: the client, the master processing the requests and the slave
processing the checkpoints sent by the master.

The design in Figure 4.3 emphasizes the separation of concerns between the functional
layer of the application and the non-functional one. The former implements the functional
service (server component), the aim being to trigger the execution of the FTM protocol.
The application component is wrapped in an independent composite (master_server and
slave_server composite, respectively) in order to maintain the clean separation of cross-
cutting concerns should application complexity increase (e.g., the application could consist in
a front end and a back end, like in Figure 4.1). The non-functional layer is further broken down
into an inter-replica protocol (here, the FTM composite corresponding to PBR) and the crash de-
tection mechanism, common to all duplex strategies, (crash detector master and crash
detector slave, respectively) through which the replicas monitor each other’s liveness and
perform recovery actions in case a crash occurs.

4.3.2 SCA Entities

The component-based architecture of PBR in Figure 4.3 illustrates all SCA notions previously
introduced:

• Components: bricks of business logic which can either be primitive components imple-
mented in Java (e.g., protocol, replyLog) or in FSCRIPT (recovery) or composite
components (e.g., FTM is a composite component inside the master composite);

• Composites: basic units of deployment, containing one or more components, e.g., FTM,
master;

• Services: components implement interfaces representing the services they provide, e.g.,
server implements ComputeService (a Java interface) and provides a service named
compute in our example;

• References: relations such as composition, association, aggregation are trans-
formed in reference-service connections, e.g., protocol has an attribute of type
ReplyLogService, an interface implemented by replyLog;

• Properties: configurable attributes of components or composites, e.g., crash detector
slave has a property specifying the timeout for the watchdog mechanism, which can
be configured according to network latency and a property specifying the frequency at
which it checks the master’s liveness, which can also be configured according to network
resources;

55

Chapter 4. Component-Based Architecture of FTMs for Adaptation
m

as
te

r

F
T

M

p
ro

to
co

l

sy
n

cB
ef

o
re

re
p

ly
L

o
g

p
ro

ce
ed

se
rv

er

sy
n

cA
ft

er

p
ro

xy

re
co

v
er

y

cl
ie

n
t

cl
ie

n
t_

m
ac

h
in

e

cr
as

h

d
et

ec
to

r
m

as
te

r

m
as

te
r_

se
rv

er

sl
av

e

F
T

M

p
ro

to
co

l

sy
n

cB
ef

o
re

re
p

ly
L

o
g

p
ro

ce
ed

se
rv

er

sy
n

cA
ft

er

cr
as

h

d
et

ec
to

r
sl

av
e

sl
av

e_
se

rv
er

co
m

p
o

si
te

co

m
p

o
n

en
t

se
rv

ic
e

re
fe

re
n

ce

S
C

A
 l

eg
en

d

p
ro

p
er

ty

w
ir

e(
lo

ca
l)

X

Y

se
rv

ic
e

re
fe

re
n

ce

 b
in

d
in

g
(r

em
o

te
)

0

1

2

3

4

5

8

7
9

6

11

10

13

14

A

B

1’

2’

3’

4’

5’

6’

7’

8’

11
’

C

Fi
gu

re
4.

3:
C

om
po

ne
nt

-B
as

ed
A

rc
hi

te
ct

ur
e

of
Pr

im
ar

y-
Ba

ck
up

R
ep

lic
at

io
n

56

4.3. Component-Based Architecture of PBR for Adaptation

• Wires and bindings connecting references to services, e.g., protocol’s reference of type
ReplyLogService is connected to the service provided by replyLog through a wire,
while syncBefore components (master-side and slave-side) are connected through a
pair of bindings.

4.3.3 PBR in Action

The component-based implementation of PBR represented in Figure 4.3 operates in the follow-
ing manner:

• the client component sends a request to the proxy (wire 0);

• the proxy component adds an identifier to the request and sends it on binding 1 from
which it is received by the protocol component;

• the protocol component checks in replyLog (wire 2) whether it is a duplicate request:
if so, it sends directly the stored reply, otherwise, it sends the request to syncBefore on
wire 3;

• syncBefore first synchronizes with the other replica on binding 4 (in PBR there is no
synchronization before the actual request processing);

• syncBefore sends the request for processing to proceed on wire 5;

• proceed calls the actual service provided by the server on binding 6 and the result is
sent back to syncBefore;

• syncBefore writes the result in replyLog (wire 7) and then calls syncAfter (wire
8);

• syncAfter gets the last result and request identifier from the replyLog (wire 9), cap-
tures the server state by calling the state management service provided by the server
(binding 10) and builds a checkpoint based on this information which it sends to
syncAfter of the other replica (binding 11);

• protocol gets the result from the replyLog (wire 2) and sends it to the client;

• on the other replica, syncAfter writes the last result and the last request identifier in
replyLog (wire 13) and maps the new server state by calling the state management
service provided by the server (binding 14).

In parallel with request processing, crash detector slave periodically calls the crash
detector master (binding A) to check its liveness. If the master does not get a call before
the time interval (set by the previously mentioned timeout property) expires, it concludes the
slave is dead and becomes master-alone, therefore it performs only request processing and no
synchronization (i.e., no call on bindings 4 and 11). The slave can come back after the crash
and start its periodic calls again, in which case master-alone becomes master and it restarts
synchronizing at each request processing.

57

Chapter 4. Component-Based Architecture of FTMs for Adaptation

If the master does not reply to the slave before the timeout expires, the slave concludes
it is dead and performs recovery by calling the recovery component on client_machine
(binding B). This is a component written in FSCRIPT which removes binding 1 to the old
master. Next, it creates binding 1′ to the new master. From now on, all client requests are
sent directly to the new master-alone (ex-slave), i.e., the server which simply processes client
requests and does not have a partner to synchronize with. The master can come back after hav-
ing been repaired and its presence is detected by the new master-alone (thanks to the periodic
calls on binding A). In order not to disrupt the client (who now sends all requests to the old
slave), the old master becomes slave and the new master-alone becomes master and synchro-
nizes its state with the other replica at each request processing (i.e., on bindings 4′ and 11′).
Should the new master crash, the partner detects this and performs recovery by calling the
recovery component on client_machine (binding C). This time, binding 1′ is removed
and binding 1 is created towards the new master-alone.

This is a classic activity of Primary-Backup Replication. The novelty lies in implementing
it according to the SCA programming model. This is a challenging exercise per se as the focus
shifts from objects (as in object-oriented programming) to services. Although interesting, this
exercise would be futile if it was not an essential preparing step before the fine-grained runtime
reconfiguration enabling us to perform a transition towards a new mechanism.

4.3.4 Component State Management

Component state management is an important issue when developing FTMs as one of the roles
of fault tolerance is to ensure that application state is not lost due to faults. The designer must
decide how it is going to be performed. Several options can be envisaged, among which we
cite two:

• stateful components can explicitly provide a state management service (in the form of a
Java interface with getState() and setState() methods, implemented by applica-
tion developers) which is called when needed;

• the designer can create a @State annotation and place it on the attributes representing
component state and develop the corresponding component controller which interprets
this annotation.

When we started developing the adaptive FT middleware, using FRASCATI v1.4, we chose the
first option. Recently, in FRASCATI v1.5, a State controller has been introduced (the second
option), that we plan to integrate in our mechanisms in the near future. In our current imple-
mentation, the server component in Figure 4.3 provides two services: the functional service
(i.e., the application) and a state management service enabling us to capture and restore state
for protocols demanding it, i.e., PBR and TR.

Components inside the actual FTM containing the variable features (i.e., syncBefore,
proceed, syncAfter in Figure 4.3), which are subject to modification during transitions,
are stateless, as a result of our thorough “design for adaptation" approach. The state of the
FTM consists of information stored in the replyLog component and the state of the applica-
tion, accessible through the state management interface of the server. These components are

58

4.3. Component-Based Architecture of PBR for Adaptation

unaffected by transitions. Should stateful components be manipulated on-line, it is the respon-
sibility of the FTM developer to provide mapping functions to initialize new components from
the state of the old ones. This can be done by one of the above mentioned options.

4.3.5 From Objects to Components: Design Choices

The “design for adaptation” approach previously presented provides a “differential knowl-
edge” of the considered FTMs, by emphasizing their variable features. The system of patterns
for fault tolerance described in Chapter 3 is the result of a process consisting of several design
loops. Similarly, the current component-based architecture of PBR (and of the other FTMs) is
the result of several design iterations. The generic before-proceed-after execution scheme guided
us in breaking the FTM composites in (at least) three components isolating the variable features.
However, some issues still needed to be considered, e.g., how to interconnect these compo-
nents, how to preserve the state of FTMs in components which are not subject to modification
during transitions in order to facilitate reconfiguration. The transition from an object-oriented
design to a component-based architecture is not an automatic process, neither in terms of en-
tities nor in terms of interactions between them. However, this paradigm shift from objects
to services as first-class entities is a very useful exercise thanks to which we can benefit from
the runtime control capabilities provided by the platform. During the process of mapping our
object-oriented design to components [Stoicescu et al., 12b], we observed the following:

• Relationships such as composition, association and aggregation are usually translated
into a reference-service interaction;

• Translating inheritance usually needs to be tackled on a case-by-case basis;

• In some cases, 1 object maps to 1 component, e.g. FaultToleranceProtocol to protocol;

• In other cases, 1 method maps to 1 component, e.g. sync_before() to syncBefore.

Components containing variable features may be subject to modification at runtime, ac-
cording to the reconfiguration required by changes in the environment. As such, they should
store as little state as possible in order to reduce the number of actions to perform during a tran-
sition not only for facilitating the task but, more importantly, for reducing the window of time
during which the system is executing a transition. The longer it takes to perform transitions,
the longer service delivery is disrupted because the system parts affected by reconfiguration
must be stopped in a quiescent state. In our component-based architecture, we chose to iso-
late the variable features (before, proceed, after) in stateless components and have them store
and extract state information from a component which is not subject to modification during
transitions, namely replyLog. This component is similar to a stable storage (stable only at
runtime because in case of crash, the information is lost). Let us consider that the fault-tolerant
application works for some time in a PBR configuration. When a transition towards LFR is
required, components representing variable features first need to finish their internal process-
ing, before being stopped. This means finishing processing the current request and writing the
necessary state information in replyLog. Then, the components are replaced and if a client
request arrives during reconfiguration, it is buffered. Upon completion of the transition, the

59

Chapter 4. Component-Based Architecture of FTMs for Adaptation

newly introduced stateless components are started and the new request can be processed. For
this, the new components only need to access data in the replyLog.

Component-based architectures provide a great degree of flexibility if they are carefully de-
signed and can open new perspectives for adaptation scenarios not yet considered. As shown
in Figure 4.3, the protocol component, which is not subject to change during transitions,
only delegates request processing to syncBefore. The latter is in charge of orchestrating the
before-proceed-after execution logic: first, it synchronizes with the other replica (wire 4 in Fig-
ure 4.3), next it calls proceed (wire 5), it writes the result in replyLog (wire 7) and then
calls syncAfter (wire 8). This execution logic could have been wired otherwise. One op-
tion would have been to wire all components containing variable features to the protocol
component (that is not subject to modification during transitions as its single role is to ensure
the only-once semantics). Design decisions have a strong impact on the usability and flexi-
bility of the proposed solution and can become an impediment to adaptation. This particular
component-based design has proved to be flexible enough to enable all previously discussed
transition scenarios to be implemented.

4.3.6 Developing the Pieces and Putting Them Together

The SCA standard advocates technology-agnosticism, both regarding the programming lan-
guage used for implementing components and the communication protocol. For dealing with
the heterogeneity of these two areas, it provides the assembly language meant to “glue” com-
ponents together.

The architecture of PBR in Figure 4.3 consists of a set of interconnected components written
all in Java, except for recovery on client_machine that is written in FSCRIPT. Below, we
present the implementation of protocol. Components developed in FSCRIPT are thoroughly
illustrated in the reconfiguration process.

As illustrated in Figure 4.3, protocol provides one service and requires two services, i.e.,
has two references (see Listing 4.2). The service is represented by the Java interface that it
implements, ComputeServiceFTM, illustrated in Listing 4.1. Given that this service is called
remotely (by the client), it requires a binding of a specific type supported by FRASCATI (e.g.,
Java RMI, JSON-RPC, Web Services etc.). In all our implementation, we use bindings of type
Java REST because FSCRIPT provides support for adding and removing bindings of this type at
runtime. The other binding type supported by FSCRIPT is Web Services. The remaining binding
types available in FRASCATI can be interactively modified at runtime through the FRASCATI

Explorer GUI (see Figure 4.2). The @POST annotation on the compute method is specific to the
use of Java REST for remote method invocation.

Listing 4.1: Java Interface Representing an SCA Service
@Service
public interface ComputeServiceFTM {

@POST
double compute(ClientRequest req);

}

60

4.3. Component-Based Architecture of PBR for Adaptation

Listing 4.2: Implementation of an SCA-Based Component in Java
1 @EagerInit
2 @Service (value=ComputeServiceFTM.class)
3 @Scope ("COMPOSITE")
4 public class FTProtocol implements ComputeServiceFTM {
5 private SyncBeforeService syncBefore;
6 private ReplyLogService rLog;
7
8 @Reference (name="syncBeforeService")
9 public void setSyncBeforeService (SyncBeforeService s) {

10 this.syncBefore = s;
11 }
12
13 @Reference (name="replyLogService")
14 public void setReplyLogservice(ReplyLogService s) {
15 this.rLog = s;
16 }
17
18 public FTProtocol() {}
19
20 public double compute(ClientRequest req) {
21 int id = req.getId();
22 double logReply = rLog.getReply(req.getId());
23 double result = 0.0;
24 if (Double.isNaN(logReply)) {
25 this.syncBefore.triggerBefore(req);
26 result = this.rLog.getReply(id);
27 }
28 else {
29 System.out.println("Request id" + id + " already completed");
30 result = logReply;
31 }
32 return result;
33 }
34 }

Coming back to Listing 4.2, we can see the two references, one to SyncBeforeService
and one to ReplyLogService. Upon reception of a client request, the component verifies if
the request has already been processed. If so, it gets directly the result (from replyLog), if not,
it calls the SyncBeforeService, which starts the whole before-proceed-after execution chain.
At the end of the processing, proceed gets the result from replyLog. The @Scope annotation
is specific to SCA and its parameter indicates to the SCA runtime how to manage instances of
a component. In our case, there is one instance per composite which is used across all service
calls. The default value is ’STATELESS’, meaning there is one instance created per service call.
The @EagerInit annotation tells the SCA runtime to override the default lazy initialization of
components (upon service calls).

Composites represent the basic unit of deployment. Each composite in Figure 4.3
(i.e., client_machine, ftm, master_server, slave_server, master, slave) is
described through a composite file written in SCDL, an XML-based language. Listing 4.3 shows
an excerpt from ftm.composite corresponding to the protocol component, whose implemen-
tation in Java has already been discussed, and the replyLog component. We can see that the
composite named ftm promotes the service provided by protocol and has a REST binding
attached to it for remote invocation.

61

Chapter 4. Component-Based Architecture of FTMs for Adaptation

Listing 4.3: Excerpt from the ftm.composite File Definition
1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
3 xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1"
4 xmlns:wsdli="http://www.w3.org/2004/08/wsdl-instance"
5 xmlns:xs="http://www.w3.org/2001/XMLSchema" name="ftm"
6 targetNamespace="http://frascati.ow2.org/lfr-rest">
7 <property name="mode" type="xs:int">0</property>
8
9 <service name="computeServiceFTM" promote="protocol/computeServiceFTM">

10 <frascati:binding.rest uri="http://localhost:8080/ComputeServiceFT" />
11 </service>
12 <component name="protocol">
13 <implementation.java class="org.ow2.frascati.examples.ftm.lib.FTProtocol"/>
14 <service name="computeServiceFTM">
15 <interface.java interface="org.ow2.frascati.examples.ftm.api.ComputeServiceFTM"/>
16 </service>
17
18 <reference name="syncBeforeService">
19 <interface.java interface="org.ow2.frascati.examples.ftm.api.SyncBeforeService"/>
20 </reference>
21
22 <reference name="replyLogService">
23 <interface.java interface="org.ow2.frascati.examples.ftm.lib.ReplyLogService"/>
24 </reference>
25 </component>
26
27 <component name="replyLog">
28 <implementation.java class="org.ow2.frascati.examples.ftm.lib.ReplyLog"/>
29 <service name="replyLogService">
30 <interface.java interface="org.ow2.frascati.examples.ftm.lib.ReplyLogService"/>
31 </service>
32 </component>
33 <wire source="protocol/replyLogService" target="replyLog/replyLogService" />
34 </composite>

For each component, we must declare the Java class (or the FScript file) implementing it.
Services and references are also declared, with their corresponding Java interfaces. In the
end, we see an explicit wire connecting the reference of protocol to the service provided
by replyLog. We have omitted the rest of components for the sake of clarity.

4.4 Transition Process

Our differential approach leverages the reflective component-based support provided by
FRASCATI. Having decomposed our FTMs in fine-grained bricks, we tackle both reactive and
proactive adaptation by replacing only components containing variable features.

Figure 4.4 represents the “big picture" of the adaptation process, consisting of several ac-
tors/entities and their interactions:

• the System runs a fault-tolerant application deployed on its specific hardware support;

• the System manager observes the system for detecting changes in (FT,A,R) parameters.
The manager then triggers the Fault Tolerance Adaptation Controller through a secure
channel using authentication, giving it as input the new FTM towards which a transition

62

4.4. Transition Process

must be executed. Changes in R, detected by probes
, can automatically trigger transi-
tions. Detecting changes in FT and A requires input from system developers or from the
specifications of operational phases �, as already shown in Figure 2.4;

• the Fault Tolerance Adaptation Controller then accesses the FTM&Adaptation repository
to get the specific transition package (whose content is further detailed) corresponding
to the transition from the current FTM to the new one, determined by the system man-
ager; upon reception of the package (if it exists), the controller deploys the package (this
process is further detailed) and calls the script interpreter, giving it as input the transition
scripts, written in FSCRIPT;

• the Script interpreter, which is the FSCRIPT interpreter provided by FRASCATI, runs the
transition scripts and modifies the system; the scripts, as shown below, consist in actions
such as the ones we identified in the minimal adaptation API in Subsection 4.2.4 (add,
remove, bind, unbind);

• the FTM&Adaptation Repository contains transition packages, which can be modified
and enriched during the lifetime of the system, according to new threats and changes, by
the FTM developer.

System

FTM &
Adaptation
Repository

New
components

script

Transition
package1

New
components

script

Transition
package2

Script
interpreter

access

modify

call

observe

trigger

Fault Tolerance
Adaptation
Controller

Hot Resilient
Computing

Cold Resilient
Computing

Probes

System
manager

FTM
developer

ON-LINE OFF-LINE

Figure 4.4: Overview of the Adaptation Process

Cold vs. Hot Resilient Computing. We consider that resilient computing encompasses two
aspects: cold resilient computing, which covers off-line activities and preparation, such as “de-
sign for adaptation" and hot resilient computing, which covers on-line/runtime activities. The
FTM&Adaptation repository concerns the former, while all the other actors and their interac-

63

Chapter 4. Component-Based Architecture of FTMs for Adaptation

tions form the latter. Together, they form a loop, as the cold one feeds transition packages to
the hot one, while the hot one provides feedback for improving and enriching the cold one.

Transition Packages. Transition packages, called contributions in SCA vocabulary, contain the
new components which must be installed to execute a transition towards a new FTM and the
script component which replaces old components with new ones. For executing the transi-
tion PBR→LFR, the corresponding transition package contains the components syncBefore
and syncAfter specific to LFR and the script which removes the old syncBefore and
syncAfter specific to PBR and inserts the new ones. Transition packages can either transform
an FTM in another one through a subtraction ⊖, when changes impact resources or application
characteristics or compose ⊕ it with another one, when changes affect FT. In the case of PBR to
LFR, we subtract from LFR what it has in common with PBR and the difference represents the
set of components which must be inserted.

Application

Fault Tolerance
Adaptation Controller

FTM &
Adaptation
Repository

1) package =getTransitionPackage(FTM1,FTM2)

2) deployTransitionPackage(package)

Master Slave

Application Application

3) callReconfigurationScripts

Application

Figure 4.5: Reconfiguration Process

Reconfiguration Process. The reconfiguration process is illustrated in Figure 4.5. A script
acts locally (i.e., in one process/JVM), on the site on which the FSCRIPT component is de-
ployed, in order to access and modify the local component graph. Therefore, the script run-
ning on the master transforms the Primary in Leader and an identical script, running on the
slave, transforms the Backup in Follower. Once the system manager triggers a transition be-
tween FTMs, the Fault Tolerance Controller does the following operations. It loads from the
FTM&Adaptation Repository the necessary transition package (step 1) and it deploys a copy
on the master and another one on the slave (step 2). As a result, the new components which

64

4.5. Implementing On-line Transitions Between FTMs

must be inserted become available on each site, together with the components containing the
transition scripts. Next, the controller calls the reconfiguration services provided by the script
components (step 3), which is equivalent to calling the script interpreter. Once the transition is
executed, the controller removes the script components from the master and the slave.

4.5 Implementing On-line Transitions Between FTMs

In the following, we focus on the implementation of several transitions in Figure 2.3: PBR→LFR,
LFR→LFR⊕TR (i.e., a composition between LFR and TR) and LFR→Assert&Duplex. In this sub-
section, we show both the content of the script components performing the transition mechan-
ics and the contents of the old components and the new ones replacing them, representing the
behavioral differences between FTMs. The script components and the new components which
are to be introduced in the initial architecture are contained in the transition packages deployed
through the process explained above. We leverage the runtime reconfiguration capabilities of
FRASCATI and FSCRIPT for executing these transitions between FTMs.

4.5.1 PBR→LFR

Regarding the first transition, PBR→LFR, the variable features between PBR and LFR are
syncBefore and syncAfter, according to Table 3.1. In practice, other variants of PBR and
LFR exist, for which only the post-processing inter-replica synchronization (i.e., syncAfter)
differs, which is all the more reason to perform fine-grained differential transitions between
the two duplex strategies. Listing 4.4 shows the script (written in FSCRIPT) which modifies the
component-based architecture of PBR from Figure 4.3 to reach LFR.

In short, the script does the following:

• disconnect the old syncBefore and syncAfter from all their services and references
(lines 8 − 17 and 35 − 43);

• delete the old components (lines 18 − 20 and 44 − 46);

• add the new components (lines 21 − 24 and 47 − 49);

• connect the new syncBefore and syncAfter to all the necessary services and refer-
ences (lines 25 − 33 and 50 − 60).

In order to seamlessly replace components, they must provide services described through
identical interfaces. For instance, the syncBefore components characteristic to PBR and to
LFR must implement the same SyncBeforeService interface so as to not affect components
which have references to them and which are common to all FTMs (e.g., protocol, see Fig-
ure 4.3). Listing 4.5 contains the SyncBeforeService Java interface implemented by these
components. There are two methods in it. The first one, executeBefore(...), annotated
with @POST and @OneWay (meaning non-blocking in SCA terms), is used for calling the syn-
chronization method of the other replica. The second one, triggerBefore(...), executes
the local synchronization operations.

65

Chapter 4. Component-Based Architecture of FTMs for Adaptation

Listing 4.4: The Script Implementing the PBR→LFR Transition
1 action changeStrategyPbr2Lfr() {
2 ftm=$domain/scadescendant::ftm;
3 protocol=$ftm/scachild::protocol;
4 pbrlfr=$domain/scachild::transition_launcher/scachild::pbr2lfr;
5 old_sync_before=$ftm/scachild::syncBefore;
6 old_sync_after=$ftm/scachild::syncAfter;
7 --Replace syncBefore
8 set-state($old_sync_before,’STOPPED’);
9 set-state($protocol,’STOPPED’);

10 remove-scawire($protocol/scareference::syncBeforeService,$old_sync_before/scaservice::execute);
11 set-state($protocol,’STARTED’);
12 remove-scawire($old_sync_before/scareference::syncAfterService,
13 $old_sync_after/scaservice::execute);
14 remove-scawire($old_sync_before/scareference::logService,
15 $ftm/scachild::replyLog/scaservice::logService);
16 remove-scawire($old_sync_before/scareference::proceedService,
17 $ftm/scachild::proceed/scaservice::execute);
18 set-state($ftm,’STOPPED’);
19 remove-scachild($ftm,$old_sync_before);
20 set-state($ftm,’STARTED’);
21 add-scachild($ftm,$pbrlfr/scachild::syncBefore);
22 set-state($pbrlfr,’STOPPED’);
23 remove-scachild($pbrlfr,$pbrlfr/scachild::syncBefore);
24 new_sync_before=$ftm/scachild::syncBefore;
25 add-scawire($protocol/scareference::syncBeforeService,$new_sync_before/scaservice::execute);
26 add-scawire($new_sync_before/scareference::proceedService,
27 $ftm/scachild::proceed/scaservice::execute);
28 add-scawire($new_sync_before/scareference::logService,
29 $ftm/scachild::replyLog/scaservice::logService);
30 add-rest-binding($new_sync_before/scareference::syncBeforeService,
31 "http://localhost:8081/SyncBeforeService");
32 add-rest-binding($new_sync_before/scaservice::execute,
33 "http://localhost:8080/SyncBeforeService");
34 --Replace syncAfter
35 set-state($old_sync_after,’STOPPED’);
36 remove-scawire($old_sync_after/scareference::logService,
37 $ftm/scachild::replyLog/scaservice::logService);
38 remove-scabinding($old_sync_after/scareference::stateAccessService,
39 $old_sync_after/scareference::stateAccessService/scabinding::*);
40 remove-scabinding($old_sync_after/scareference::synchronizeService,
41 $old_sync_after/scareference::synchronizeService/scabinding::*);
42 remove-scabinding($old_sync_after/scaservice::execute,
43 $old_sync_after/scaservice::execute/scabinding::*);
44 set-state($ftm,’STOPPED’);
45 remove-scachild($ftm,$old_sync_after);
46 set-state($ftm,’STARTED’);
47 add-scachild($ftm,$pbrlfr/scachild::syncAfter);
48 remove-scachild($pbrlfr,$pbrlfr/scachild::syncAfter);
49 new_sync_after=$ftm/scachild::syncAfter;
50 add-scawire($new_sync_before/scareference::syncAfterService,
51 $new_sync_after/scaservice::execute);
52 add-scawire($new_sync_after/scareference::logService,
53 $ftm/scachild::replyLog/scaservice::logService);
54 add-rest-binding($new_sync_after/scareference::synchronizeService,
55 "http://localhost:8081/SyncAfterService");
56 add-rest-binding($new_sync_after/scareference::stateAccessService,
57 "http://localhost:8080/StateAccessService");
58 add-rest-binding($new_sync_after/scaservice::execute,"http://localhost:8080/SyncAfterService");
59 set-state($new_sync_after,’STARTED’);
60 set-state($new_sync_before,’STARTED’); }

66

4.5. Implementing On-line Transitions Between FTMs

PBR PBR⊕TR

LFR LFR⊕TR

Assert&
DuplexA,R

FT

FT

A,R

A

FT

FT A

FTM

replyLog

 syncBefore
proceed

syncAfter

server

protocol

FTM

replyLog

 syncBefore
proceed

syncAfter

server

protocol

Figure 4.6: PBR→LFR Transition: Scenario (left); Initial and Final Component-Based Architec-
tures (center and right)

Listing 4.5: SyncBeforeService Java Interface
@Service
public interface SyncBeforeService {

@POST
@OneWay
public void executeBefore(ClientRequest syncMessage);
public void triggerBefore(ClientRequest syncMessage);

}

We only manipulate stateless components, thanks to our “design for adaptation" approach.
State information such as the last client request, the last reply etc. are available and accessible in
replyLog (see Figure 4.3), which is not affected by the reconfiguration. Buffering incoming re-
quests, putting components in a quiescent state when executing various actions such as wiring
references, binding and unbinding services and references are handled by the middleware and
transparent to the user, as already mentioned in paragraph 4.2.4.

Figure 4.6 illustrates the PBR→LFR transition. On the left, the scenario from Chapter 2
is recalled and the transition in question is highlighted (purple dotted line). On the right,
the initial component-based architecture and the final one are represented, with a focus on the
components changed during the transition (syncBefore and syncAfter represented in gray,
meaning a different implementation). Besides, we can notice that the number of references is
different between the initial components and the final ones.

Having detailed the mechanics behind transitions, the actual behavioral modifications cor-
responding to the transition between the two FTMs are now explained. Both syncBefore and
syncAfter are replaced during this transition but, for the succinctness of the presentation, we
only show the contents of the syncBefore components corresponding to PBR and LFR.

67

Chapter 4. Component-Based Architecture of FTMs for Adaptation

Listing 4.6: SyncBefore Java Class for PBR
......
@Scope("COMPOSITE")
@Service(value=SyncBeforeService.class)
@EagerInit
public class SyncBefore implements SyncBeforeService {

private SyncAfterService syncAfter;
private ComputeService proceed;
private ReplyLogService rlog;

@Reference (name="proceedService")
public void setComputeService(ComputeService s) {

this.proceed = s;
}

@Reference (name="replyLogService")
public void setReplyLogService(ReplyLogService s) {

this.rlog = s;
}

@Reference (name="synchronizeAfterService")
public void setSyncBeforeService(SyncAfterService s) {

this.syncAfter = s;
}

public SyncBefore() {}

@Init
public void initialize() {}

public void executeBefore(ClientRequest syncMsg) {}

public void triggerBefore(ClientRequest syncMsg) {
double res = proceed.compute(syncMsg.getOp1(),syncMsg.getOp2(),syncMsg.getOp());
this.rlog.setLog(syncMsg, res);
this.syncAfter.triggerAfter(new SyncAfterMessage(syncMsg.getId()));

}
}

Listing 4.6 and Listing 4.7 outline the contents of the syncBefore components of PBR and
LFR, respectively. In PBR, syncBefore only orchestrates the computation on the master (see
triggerBefore method in Listing 4.6). It calls proceed, writes the result in replyLog and
then calls syncAfter. No information is sent to the slave, which does nothing during this
step (the empty executeBefore method in Listing 4.6). In LFR, syncBefore on the master
forwards the client request to the slave (see triggerBefore method in Listing 4.7) and then
orchestrates its local computation. On the slave, the client request is also computed and the
result is written in the local replyLog (see executeBefore method in Listing 4.7).

68

4.5. Implementing On-line Transitions Between FTMs

Listing 4.7: SyncBefore Java Class for LFR
......
@Scope("COMPOSITE")
@Service(value=SyncBeforeService.class)
@EagerInit
public class SyncBefore implements SyncBeforeService {

@Controller (name="component")
protected Component fractalComponent;
protected SCAPropertyController propCtrl;
private SyncBeforeService syncBefore;
private SyncAfterService syncAfter;
private ComputeService proceed;
private ReplyLogService rlog;
@Reference (name="proceedService")
public void setComputeService(ComputeService s) {

this.proceed = s;
}
@Reference (name="replyLogService")
public void setReplyLogService(ReplyLogService s) {

this.rlog = s;
}
@Reference (name="synchronizeBeforeService")
public void setSyncBeforeService(SyncBeforeService s) {

this.syncBefore = s;
}
@Reference (name="synchronizeAfterService")
public void setSyncBeforeService(SyncAfterService s) {

this.syncAfter = s;
}
public SyncBefore() {}
@Init
public void initialize() {}

SuperController superCtrl = null;
try {

superCtrl = Fractal.getSuperController(fractalComponent);
Component[] parents = superCtrl.getFcSuperComponents();
Component ftm = parents[0];
propCtrl = (SCAPropertyController)ftm.getFcInterface(SCAPropertyController.NAME);

}
catch (NoSuchInterfaceException e1) {

e1.printStackTrace();
}

}
public void executeBefore(ClientRequest syncMsg) {

double res = proceed.compute(syncMsg.getOp1(),syncMsg.getOp2(),syncMsg.getOp());
this.rlog.setLog(syncMsg, res);

}
public void triggerBefore(ClientRequest syncMsg) {

int mode = Integer.parseInt(this.propCtrl.getValue("mode").toString());
if(mode==1) {

this.syncBefore.executeBefore(syncMsg);
}
double res = proceed.compute(syncMsg.getOp1(),syncMsg.getOp2(),syncMsg.getOp());
this.rlog.setLog(syncMsg, res);
this.syncAfter.triggerAfter(new SyncAfterMessage(syncMsg.getId()));

}
}

69

Chapter 4. Component-Based Architecture of FTMs for Adaptation

4.5.2 LFR→LFR⊕TR

The second transition we present is LFR→LFR⊕TR, which is a composition of FTMs. The before-
proceed-after execution scheme of TR is presented in Table 3.1. In order to facilitate the mapping
to components and to minimize the number of components to introduce in the architecture
of LFR (hence, the reconfiguration time, as further shown), we decided to combine the execu-
tion steps of TR in a single proceed component. In short, the syncBefore and syncAfter
components of LFR are left untouched, as inter-replica synchronization is specific to a duplex
strategy, while the initial proceed component, which simply consisted in a service call on the
server in LFR (see Listing 4.8), is replaced with a more complex component containing the
specificities of TR (see Listing 4.9):

• state capture on the server prior to computation;

• multiple service invocations and result storage;

• state restoration on the server between consecutive service invocations;

• comparison of results.

Figure 4.7 illustrates this transition. On the left, the transition is highlighted in the context
of the scenario from Chapter 2 (purple dotted line). On the right, the initial component-based
architecture and the final one are represented, with a focus on the components changed during
the transition (proceed represented in gray, meaning a different implementation). We can
also notice that the final component has an additional reference, towards the state management
service provided by the server.

PBR PBR⊕TR

LFR LFR⊕TR

Assert&
DuplexA,R

FT

FT

A,R

A

FT

FT A

FTM

replyLog

 syncBefore
proceed

syncAfter

server

protocol

FTM

replyLog

 syncBefore
proceed

syncAfter

server

protocol

Figure 4.7: LFR→LFR⊕TR Transition: Scenario (left); Initial and Final Component-Based Archi-
tectures (center and right)

The LFR→LFR⊕TR transition package contains the new proceed component which must
be introduced and the component written in FSCRIPT which performs the reconfiguration. The
script follows the same pattern as the previous one: it disconnects the old proceed from all its
services and references, deletes the old component, adds the new proceed and connects it to
all necessary services and references.

70

4.5. Implementing On-line Transitions Between FTMs

Listing 4.8: Proceed Java Class for PBR and LFR
@Scope("COMPOSITE")
@Service(value=ComputeService.class)
@EagerInit
public class Proceed implements ComputeService {

@Reference (name="compute")
private ComputeService server;

public Proceed() {}

public double compute(double op1, double op2, char op) {
return server.compute(op1, op2, op);

}
}

Listing 4.9: Proceed Java Class for Composing PBR or LFR and TR
@Scope("COMPOSITE")
@Service(value=ComputeService.class)
@EagerInit
public class Proceed implements ComputeService {

@Reference (name="compute")
private ComputeService server;

@Reference (name = "stateAccessService")
private ServerStateAccessService stateAccess;

private ServerState state;

public Proceed() {}

public double compute(double op1, double op2, char op) {
this.state = this.stateAccess.captureState();
Double reply1 = new Double(this.server.compute(op1, op2, op));
this.stateAccess.mapState(this.state);
Double reply2 = new Double(this.server.compute(op1, op2, op));
if (reply1.compareTo(reply2) == 0) {

return reply1;
}
else {

this.stateAccess.mapState(this.state);
Double reply3 = new Double(this.server.compute(op1, op2, op));
if ((reply1.compareTo(reply3) == 0) || (reply2.compareTo(reply3) == 0)) {

return reply3;
}
else {

System.out.println("error detected; crashing now");
System.exit(0);

}
}
return Double.NaN;

}
}

It is worth noting that the same transition package is used for executing the PBR→PBR⊕TR
transition from Figure 4.7. This is possible because the proceed component is the same in
PBR and LFR (Listing 4.8), consisting in a service call on the server, and the transition script
is identical to the one used for composing LFR with TR.

71

Chapter 4. Component-Based Architecture of FTMs for Adaptation

4.5.3 LFR→Assert&Duplex

As previously mentioned, several versions of Assert&Duplex can be designed. In the toolbox
of FT design patterns described in Chapter 3, two versions were developed, one based on PBR
and one based on LFR (PBR_A and LFR_A, respectively in Figure 3.6). Both these versions
were mapped on the component-based architecture.

Their execution leverages the fact that the client can issue a request up to three times, if it
does not receive a reply. In the syncAfter step of these mechanisms, an assertion is applied to
the result obtained by the master. If the assertion succeeds, the master sends either a checkpoint
(in Assert&PBR) or a notification (in Assert&LFR) to the slave and the reply to the client. If the
assertion fails, the master crashes, to enforce the fail-silent assumption. The slave detects its
crash and becomes master-alone. When the client reissues the request, it arrives this time on
the ex-slave. This one either already has the reply (in Assert&LFR, the slave computes the
request in parallel with the master) or computes the request as a new one (in Assert&PBR).

The LFR→Assert&Duplex transition is executed by replacing the syncAfter component
of LFR with a new one implementing the specificities of Assertion. Figure 4.8 illustrates this
transition. On the left, the transition is highlighted in the context of the scenario from Chapter 2
(purple dotted line). On the right, the initial component-based architecture and the final one
are represented, with a focus on the components changed during the transition (syncAfter
represented in gray, meaning a different implementation).

PBR PBR⊕TR

LFR LFR⊕TR

Assert&
DuplexA,R

FT

FT

A,R

A

FT

FT A

FTM

replyLog

 syncBefore
proceed

syncAfter

server

protocol

FTM

replyLog

 syncBefore
proceed

syncAfter

server

protocol

Figure 4.8: LFR→Assert&Duplex Transition: Scenario (left); Initial and Final Component-Based
Architectures (center and right)

Listing 4.10 shows the contents of the syncAfter component characteristic to LFR. List-
ing 4.11 outlines the contents of the syncAfter component corresponding to Assert&LFR.
The behavior corresponding to LFR is maintained (i.e., the master sends the id of the last re-
quest processed to the slave) and is enriched with the application of an assertion on the master
(triggerAfter method).

72

4.5. Implementing On-line Transitions Between FTMs

Listing 4.10: SyncAfter Java Class for LFR
.......
@Scope("COMPOSITE")
@Service(value=SyncAfterService.class)
@EagerInit
public class SyncAfter implements SyncAfterService {

@Controller(name = "component")
protected Component fractalComponent;
protected SCAPropertyController propCtrl;
private ReplyLogService log;
private SyncAfterService syncAfter;
@Reference (name="synchronizeService")
public void setSyncAfterService (SyncAfterService s) {

this.syncAfter = s;
}
@Reference (name="replyLogService")
public void setReplyLogService (ReplyLogService s) {

this.log = s;
}
public SyncAfter() {}
@Init
public void initialize() {

SuperController superCtrl = null;
try {

superCtrl = Fractal.getSuperController(fractalComponent);
Component[] parents = superCtrl.getFcSuperComponents();
Component ftm = parents[0];
propCtrl = (SCAPropertyController)ftm.getFcInterface(SCAPropertyController.NAME);

}
catch (NoSuchInterfaceException e1) {

e1.printStackTrace();
}

}
public void triggerAfter(SyncAfterMessage syncMessage) {

if(syncMessage.getRecovery()) {
int id = this.log.getId();
syncMessage.setRequest_id(id);
syncMessage.setReply(this.log.getReply(id));
this.syncAfter.executeAfter(syncMessage);

}
else {

int mode = Integer.parseInt(this.propCtrl.getValue("mode").toString());
if(mode==1) {

this.syncAfter.executeAfter(syncMessage);
}

}
}
public void executeAfter(SyncAfterMessage syncMessage) {

int id = syncMessage.getRequest_id();
if (syncMessage.getRecovery()) {

this.log.setLog(id, syncMessage.getReply());
}
else {

System.out.println("received from Master id: " + id);
}

}
}

73

Chapter 4. Component-Based Architecture of FTMs for Adaptation

Listing 4.11: SyncAfter Java Class for Assert&LFR
......
@Scope("COMPOSITE")
@Service(value=SyncAfterService.class)
@EagerInit
public class SyncAfter implements SyncAfterService {

@Controller (name = "component")
protected Component fractalComponent;
protected SCAPropertyController propCtrl;
private ReplyLogService log;
private SyncAfterService syncAfter;
private Assertion assertion;
@Reference (name="synchronizeService")
public void setSyncAfterService (SyncAfterService s) {

this.syncAfter = s;
}
@Reference (name="replyLogService")
public void setReplyLogService (ReplyLogService s) {

this.log = s;
}
public SyncAfter() {

this.assertion = new Assertion();
}
@Init
public void initialize() {

SuperController superCtrl = null;
try {

superCtrl = Fractal.getSuperController(fractalComponent);
Component[] parents = superCtrl.getFcSuperComponents();
Component ftm = parents[0];
propCtrl = (SCAPropertyController)ftm.getFcInterface(SCAPropertyController.NAME);

}
catch (NoSuchInterfaceException e1) {

e1.printStackTrace();
}

}
public void triggerAfter(SyncAfterMessage syncMessage) {

int mode = Integer.parseInt(this.propCtrl.getValue("mode").toString());
if(syncMessage.getRecovery()) {

int id = this.log.getId();
syncMessage.setRequest_id(id);
syncMessage.setReply(this.log.getReply(id));
this.syncAfter.executeAfter(syncMessage);

}
else {

int id = syncMessage.getRequest_id();
ClientRequest req = this.log.getRequest();
assertion.applyAssertion(log.getReply(id),req.getOp1(),req.getOp2(),req.getOp());
if (assertionField == 0) {

if(mode ==1) {
this.syncAfter.executeAfter(syncMessage);

}
}
else {

System.out.println("assertion failed! crashing now");
System.exit(0);

}
}

}
public void executeAfter(SyncAfterMessage syncMessage) {

int id = syncMessage.getRequest_id();

74

4.6. Consistency of Distributed Adaptation

if (syncMessage.getRecovery()) {
this.log.setLog(id, syncMessage.getReply());

}
else {

System.out.println("received from Master id: " + id);
}

}
}

4.6 Consistency of Distributed Adaptation

A crucial aspect of transitions between FTMs is ensuring their consistency because evolvability
must not reduce the reliability of fault-tolerant applications. Thanks to the support provided
by the underlying component-based middleware and to the manner in which transitions are
performed, our approach tackles key aspects such as local and distributed consistency and
recovery in case of crash during adaptation.

4.6.1 Local Consistency

FRASCATI and its integrated FSCRIPT engine guarantee the consistency of local reconfigura-
tions performed using scripts. FSCRIPT enforces an all-or-nothing semantics [Léger et al., 10].
The reliability of the reconfiguration process is achieved by using a model of configurations
(i.e., component-based architectures) and reconfigurations (i.e., transitions between two consis-
tent configurations), verifying integrity constraints (i.e., configuration invariants and pre/post
conditions on elementary reconfiguration operations) and performing reconfigurations in a
transactional manner [Léger et al., 10]. In case of constraint violation during the reconfiguration
process, a ScriptException is thrown, the transaction is rolled back and the component-
based architecture remains in its initial configuration.

4.6.2 Consistency of Request Processing

Stopping a component implies waiting for all its internal processing to finish, blocking its in-
puts and buffering them. Therefore, the components which must be replaced during transitions
can only be stopped when their processing is finished. This means that, if a client request is
received just before adaptation is triggered, the request is processed and the client receives
the reply before the subsequent requests are blocked and buffered and the interaction between
replicas is locked (see Figure 4.9). When the lock is released, the buffered client requests are
processed in the new configuration of the FTM.

4.6.3 Distributed Consistency

The FTMs discussed in this work consist of two replicas and a specific inter-replica protocol,
therefore transitions between FTMs must be performed on two different sites. On each site,
a script component performs the required reconfiguration, which can either terminate suc-
cessfully or with a ScriptException, in case integrity constraints are violated. The script
component on each site is wrapped in a Java class which kills the local replica if an exception is

75

Chapter 4. Component-Based Architecture of FTMs for Adaptation

thrown, to enforce the fail-silent assumption and to prevent the overall FTM from reaching an
inconsistent hybrid configuration. Therefore, a local reconfiguration can either terminate suc-
cessfully (see Figure 4.9) or with a crash. The failure detection mechanism incorporated in the
considered duplex strategies detects the crash and informs the remaining replica which, if the
reconfiguration has succeeded on it (i.e., it has not crashed during reconfiguration), becomes
master-alone.

C
request

M S STOP
& buffer

LOCK

Release
LOCK

Reconfig. Reconfig.

T T

START

new
config.

Figure 4.9: Transition Process

4.6.4 Recovery of Adaptation

We consider that replicated computing units can crash during transitions. Therefore, upon suc-
cessful completion of the reconfiguration on one replica (either master or slave), the current
configuration (i.e., the target FTM) is logged on a stable storage (see Figure 4.9). If the other
replica crashes (either because of a ScriptException or because of an ordinary crash fault)
before completing its own reconfiguration, it is normally restarted/replaced by the system
manager to comply with the fault tolerance requirements. However, it must not be restarted in
its old configuration (i.e., with the initial FTM), but in the same one as its counterpart, which
has successfully completed the transition. This information is recovered from the stable storage
which keeps track of the currently active configuration. This is a form of forward recovery: the
FTM is re-established in its final configuration not in the one before adaptation.

Let us assume that the PBR→LFR transition is triggered and the Backup crashes before be-
coming Follower, while the Primary successfully becomes Leader and logs the new status. The
Leader detects the crash of the slave and becomes Leader-only. If the slave is repaired/re-
booted, it must not be deployed as Backup but as Follower, according to the new status. For
this, it must first read the stable storage to identify which entity must be deployed, to complete
the current FTM configuration, namely LFR.

76

4.7. Summary

4.7 Summary

This chapter focused on the mapping of the previously described fault tolerance design pat-
terns on a reflective component-based middleware and on the agile on-line differential transi-
tions between FTMs.

First of all, we detailed the necessary infrastructure for developing component-based FTMs
and explained our choice of tools by identifying a set of functionalities that must be provided
by the runtime support.

Next, we described the result of mapping the before-proceed-after generic execution scheme
on a component-based architecture. Afterwards, the transition process leveraging the support
provided by the chosen reflective component-based middleware was explained.

Three examples of transitions between FTMs were presented, each one requiring a dif-
ferent set of modifications in terms of variable features: PBR→LFR requires the replacement
of syncBefore and syncAfter, LFR→LFR⊕TR requires the replacement of proceed and
LFR→Assert&LFR requires the replacement of syncAfter.

Last but not least, the consistency of distributed adaptation of replicas involved in FTMs
was discussed, with an emphasis on the strategy for making the adaptation process tolerant to
faults that might occur during transitions.

77

Chapter 4. Component-Based Architecture of FTMs for Adaptation

78

Chapter 5

Evaluation, Integration, Application

“His way had therefore come full circle, or rather had taken the
form of an ellipse or a spiral, following as ever no straight un-
broken line, for the rectilinear belongs only to Geometry and
not to Nature and Life.”

— Hermann Hesse, The Glass Bead Game

5.1 Introduction

This chapter consists of two main parts. In the first part, we assess the performance of our
adaptive fault tolerance middleware. This is done, firstly, by providing quantitative measure-
ments of transition time between FTMs and, secondly, in terms of the agility of modifications.

In the second part, we illustrate the usability and interest of this framework by describing
its integration in two different platforms. In the first example, our notion of adaptive fault
tolerance is incorporated in a design-driven development methodology - named DiaSuite - for
the design, development, and deployment of resilient applications. This methodology aims
to ensure the traceability of dependability requirements along the application life cycle, in-
cluding runtime adaptation. In the second example, we illustrate the interest of adaptive fault
tolerance in a scenario based on a parking structure management application. The proposed
adaptive fault tolerance mechanisms are integrated in Srijan, a toolkit for enabling application
development for WSNs based on data-driven macroprogramming. These two examples prove
that the framework presented in this work can be readily integrated and exploited in differ-
ent contexts where the need for adaptive fault tolerance arises. This is facilitated by a clear
separation between the different concerns and roles of the stakeholders.

79

Chapter 5. Evaluation, Integration, Application

5.2 Evaluation

In this section, we analyze the performance and agility of our differential approach and as-
sociated on-line transitions between FTMs. Firstly, we assess the advantages of performing
differential modifications as opposed to monolithic replacements of FTMs by providing a set
of quantitative measurements. Next, the agility of transitions is discussed.

5.2.1 Performance

In order to assess the performance of agile fine-grained transitions between FTMs, we mapped
all the protocols designed in Chapter 3 (see Figure 3.6) on a component-based architecture.
More precisely, we developed PBR, LFR, PBR⊕TR, LFR⊕TR, Assert&PBR and Assert&LFR as
stand-alone FTMs that can be directly deployed and all the differential transitions between
them, both direct and inverse. In Chapter 4, in order to illustrate the approach, we described
in detail three transitions, which are part of this implementation.

All the FTMs were validated through fault injection. The duplex mechanisms were tested
by random crash faults. The mechanisms tolerating value faults were tested by injecting ran-
dom value faults. All the composed mechanisms were validated through software imple-
mented fault injection using multiple faults. Before presenting the comparison between dif-
ferential transitions and monolithic deployments of FTMs, we must emphasize that these are
simplified implementations of existing FTMs, serving as proof-of-concept. This explains the
low total number of components in one FTM (7) shown below.

Table 5.1 shows that, while the architecture of a full FTM (on one replica) contains 7 compo-
nents (first line), transitions between FTMs affect a much smaller number of components, be-
tween 1 (e.g., PBR→PBR⊕TR, PBR→Assert&PBR) and 3 (e.g., for the complex PBR→LFR⊕TR).
It is worth noting that these components are stateless, thanks to our “design for adaptation”
step, which means that state transfer issues inherent in monolithic transitions are completely
eliminated. This shows that by modifying tiny bricks which contain variable features, we ob-
tain other FTMs, in a flexible and reversible manner. The underlying variable features affected
by transitions are also shown in Table 5.1 (B=Before, P=Proceed, A=After).

Initial FTM
Final FTM

PBR LFR PBR⊕TR LFR⊕TR Assert&PBR Assert&LFR

∅ 7 7 7 7 7 7
PBR - 2 (B,A) 1 (P) 3 (B,P,A) 1 (A) 2 (B,A)
LFR 2 (B,A) - 3 (B,P,A) 1 (P) 2 (B,A) 1 (A)

PBR⊕TR 1 (P) 3 (B,P,A) - 2 (B,A) 2 (P,A) 3 (B,P,A)
LFR⊕TR 3 (B,P,A) 1 (P) 2 (B,A) - 3 (B,P,A) 2 (P,A)

Assert&PBR 1 (A) 2 (B,A) 2 (P,A) 3 (B,P,A) - 2 (B,A)
Assert&LFR 2 (B,A) 1 (A) 3 (B,P,A) 2 (P,A) 2 (B,A) -

Table 5.1: Number of Components & Variable Features Replaced During Transitions

In Table 5.2, we compare the time necessary for deploying full FTMs (first line) and the
time necessary for executing differential transitions between them. The functional application

80

5.2. Evaluation

used for testing the FTMs consists in a single component whose deployment has a negligible
effect on the overall deployment time. These results represent averages over 100 tests for each
cell of the table. All tests have been performed on a Dell Latitude E6420 with an Intel Core
i5-2410M CPU at 2.30 GHz, having 8 GB of RAM and running under Windows 7 Professional.
As deployment of FTMs and transitions are performed in parallel on two replicas, in this table
we show the time corresponding to one replica. We can notice that our differential approach
not only eliminates state transfer issues inherent to monolithic replacements of FTMs but is
also more efficient in terms of execution time, making the system more reactive to changes.
For instance, we can see that performing PBR→PBR⊕TR in a differential manner takes 840 ms,
while deploying PBR⊕TR from scratch takes 3.8 s.

Initial FTM
Final FTM

PBR LFR PBR⊕TR LFR⊕TR Assert&PBR Assert&LFR

∅ 3819 3751 3852 3783 3824 3786
PBR - 1003 840 1146 856 1090
LFR 1011 - 1151 838 1085 840

PBR⊕TR 836 1148 - 1012 937 1191
LFR⊕TR 1145 830 1019 - 1186 930

Assert&PBR 851 1081 938 1184 - 1007
Assert&LFR 1085 834 1186 932 1005 -

Table 5.2: FTM Deployment from Scratch vs. Duration of Execution of Transitions (ms)

Obviously, the ratio between the transition time and the deployment time is more relevant
than absolute values. These values are based on a simplified implementation of the FTMs but
the ratio should remain constant if the implementation becomes more complex because both
the stand-alone FTM and the transition packages would be affected.

As we have explained earlier, transitions consist in three main steps: deployment of tran-
sition packages, execution of reconfiguration scripts and removal of script components. This
process is orchestrated by the Fault Tolerance Adaptation Controller (see Figure 4.4). Figure 5.1
shows the contribution of each step to the overall transition execution time for three transitions
affecting different number of components (i.e., from one variable features to all three). We
see that the actual execution of the reconfiguration script, which can be considered the most
complex step, takes 19% of the total time for the replacement of one component, 35% for two
components and 40% for three components.

This means that even in the most complex transitions, affecting all three variable features,
the execution of the transition script (i.e., of the reconfiguration mechanics) takes less then half
of the total transition time. These quantitative measurements also give us indications as to
what could speed up the transition process, namely the optimization of the deployment step,
which currently takes approximately half of the total transition time.

Figure 5.2 shows the correlation between the number of components which are replaced
during transitions and the different steps of the reconfiguration process (deployment, script
execution, removal), on the one hand, and the total transition time, on the other hand. The
removal step takes almost the same amount of time in all three cases. The time necessary
for the deployment of transition packages depends on the number of components (that are

81

Chapter 5. Evaluation, Integration, Application

inside them). As scripts consist of basic mechanical operations of wiring and unwiring, their
execution is expected to have a roughly linear correlation with the number of components
which are being replaced.

Deploy

package

59%

Execute

transition

script

19%

Remove

 package

22%

(a) LFR→LFR⊕TR (1)

Deploy

package

48%
Execute

transition

script

35%

Remove

package

17%

(b) PBR→LFR (2)

Deploy

package

45%

Execute

transition

script

40%

Remove

 package

15%

(c) PBR→LFR⊕TR (3)

Figure 5.1: Distribution of Duration of Transitions w.r.t. Number of Components Replaced

833

1003

1246

157

352

504 451
497

558

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

T
im

e
(m

s)

components

Total transition time

Script execution time

Deployment time

Package removal time

Figure 5.2: Duration of Execution of Transitions w.r.t. Number of Components Replaced

5.2.2 Agility

It is worth noting that, beyond the quantitative evaluation of the approach, the capacity to
perform evolution of FTMs using an agile fine-grained approach is a key feature for long-lived

82

5.3. Integrating AFT in the Development Process

autonomous systems. The proposed approach aims to equip an application only with the FTMs
which are necessary and thus operational at a certain point in time and to provide system devel-
opers and managers with the means to replace or augment these FTMs only if/when necessary
in order to accommodate change. This flexibility is expected to have an impact on the time
necessary for executing a transition. An agile transition consisting in the deployment of new
components and removal of old ones is expected to be more time consuming than a prepro-
grammed one which can be visualized as the choice of a branch in an already programmed
switch statement.

The current implementation of our framework proves the feasibility of agile adaptation
of FTMs (as opposed to the preprogrammed one, be it fine-grained or coarse-grained). As
illustrated in Figure 4.4, transitions which were either unknown or considered unnecessary
at design time can be performed during the lifetime of the system by developing off-line the
necessary differential package and integrating it on-line. All the transitions between FTMs
are performed by minimizing the impact on the overall component-based architecture, i.e., by
replacing only the variable features. Furthermore, at no point in time is the system loaded
with unnecessary FTMs or parts of FTMs (resulting in inactive code) as in the case of prepro-
grammed adaptations.

In our investigation of related work on adaptive fault tolerance, we found some exam-
ples of quantitative evaluations of transitions between FTMs. In [Marin et al., 01], the switch
from active (equivalent to our LFR) to passive strategy (equivalent to our PBR) takes 4.5ms.
The stabilization between passive and active replication takes 360ms and the reverse takes
390ms in [Lung et al., 06]. In both cases adaptation is preprogrammed, i.e., the supported fault
tolerance strategies are known at initial design time and hard-coded at system deployment.
In [Fraga et al., 03], it takes 260ms to alternate between passive and active strategy. Although
the authors leverage a component model, reconfiguration does not appear to be performed
agilely at runtime and adaptation has a coarse grain compared to ours: there is a replication
coordinator component encapsulating all the fault tolerance logic. While in our case the tran-
sition from passive to active replication takes 1003ms in total (i.e., package deployment, script
execution and package removal combined), the substantial difference lies in the fact that this is
an agile adaptation, not a preprogrammed one. As expected, agility comes with an additional
cost in terms of deployment time. However, compared to [Lung et al., 06, Fraga et al., 03], this
cost does not appear to be excessive, given that our approach brings flexibility and the ability
to accommodate changes unforeseen at design time.

5.3 Integrating AFT in the Development Process

5.3.1 Motivation and Context

The integration of fault tolerance strategies in applications is often performed in an ad-hoc
manner, leading to code which is difficult to understand, reuse and maintain. When runtime
adaptation of these strategies must also be taken into account, resulting systems become even
more complex. Design-driven development approaches provide a solution to this growing
complexity by enabling a clear separation of the various cross-cutting concerns.

83

Chapter 5. Evaluation, Integration, Application

In the case of resilient systems, general-purpose approaches have often proven to be insuf-
ficient in terms of guiding the development process and providing traceability of requirements
from design to deployment (and, further on, to runtime evolution). When targeting pervasive
computing systems that, by definition, operate in the immediate vicinity of humans, resilience
is mandatory. This calls for an integrated development process centered around a conceptual
framework that allows to guide the development process of a resilient application in a system-
atic manner [Enard et al., 13]. The fine-grained adaptive FTMs developed in this work repre-
sent a brick in this integrated development process architected in the context of the “Software
Engineering for Resilient Ubiquitous Systems” Collaborative Research Action (ARC SERUS),
with two INRIA projects (PHOENIX Project from Bordeaux and ADAM Project from Lille).

5.3.2 The Sense-Compute-Control Paradigm

The overall approach, described in [Enard et al., 13], relies on a design language that is ex-
tended with fault tolerance declarations. DiaSuite [Cassou et al., 11b] is a design-driven
methodology for developing applications based on the SCC paradigm. The SCC paradigm
originates from the Sense/Compute/Control architectural pattern [Taylor et al., 09], which is ex-
tremely appropriate for applications interacting with their external environment, e.g. domotics,
automotive, avionics etc.

Figure 5.3 illustrates this paradigm. The architectural pattern encompasses three types of
components:

• entities, corresponding to devices (both hardware and software, e.g., a surveillance cam-
era and its device driver) that interact with the external environment through its sensing
and actuating capabilities;

• context components that refine (i.e., filter, aggregate and interpret) raw data sensed by en-
tities;

• controller components that trigger actions on entities, based on refined data.

Figure 5.3: The Sense-Compute-Control Paradigm

Several similarities between this pattern and other existing paradigms can be easily iden-
tified, undoubtedly because of their common target: systems having a strong interaction
with their environment and subject to dynamics. Two examples of such paradigms are
the MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) autonomic loop [Computing, 06,

84

5.3. Integrating AFT in the Development Process

Huebscher and McCann, 08] and the architecture-based adaptation illustrated in RAIN-
BOW [Garlan et al., 01], using two types of low-level entities: probes, similar to entities and
gauges, similar to context components.

The particularity of DiaSuite lies in the fact that it leverages the SCC paradigm to support
each stage of the development process, from design to deployment. In the course of the SERUS
research project, the approach was extended to incorporate resilience.

5.3.3 An Illustrative Example

In order to illustrate the overall approach, an anti-intrusion application was chosen. The appli-
cation secures a room with video cameras and alarms. To detect an intrusion, the application
controls a video camera and periodically analyzes the pictures it has taken of the environ-
ment. When an intrusion is detected, an alarm is triggered and the pictures are recorded in a
database that can be consulted by an operator for examining the situation and/or identifying
the intruder. Since the application is critical for the security of the building and its inhabitants,
intrusion detection should be guaranteed in the event of hardware defects.

This typical example of pervasive computing application illustrates two of the main goals
of the approach: ensuring traceability of requirements and ensuring separation of concerns.

Traceability

As stated throughout this thesis, in order for an application to be resilient, it must first be
dependable and, secondly, it must be able to preserve this attribute in the presence of changes.
The anti-intrusion application is critical and, as such, it must be augmented with an appropriate
FTM. The choice of FTMs is based on the frame of reference presented in Chapter 2, i.e., targeted
fault model, application characteristics and resources. In this particular example, the fault
model to tolerate is the crash of the camera. For this, our duplex mechanisms can be used and
the application requires two cameras. The values of the parameters are fixed throughout the
development process but may vary at runtime. Therefore, dependability requirements must be
traceable at every step of the life-cycle, from design to development and, further on, to runtime
evolution. This approach aims at providing the necessary support to developers for ensuring
the conformance of the application with the requirements throughout the application life-cycle.

Separation of Concerns

In this example, we consider the following adaptation scenario. The two cameras used for
tolerating the crash can work either on battery or connected to the main power supply. An
intruder may switch off the main power supply in order to deactivate the surveillance system.
In this case, the system must rely on alternate power sources (batteries) and, as a result, the
application must adapt to lower its power consumption. FTMs have a strong impact on power
consumption and, in this example, the application needs to adapt its corresponding FTM to the
current energy consumption requirements. When running on the main power supply, the sys-
tem uses LFR for reducing recovery time in case of crash and optimizing network bandwidth.
However, LFR comes with high computation and energy consumption. Therefore, when run-
ning on battery, PBR is used to reduce energy consumption.

85

Chapter 5. Evaluation, Integration, Application

Runtime adaptation requires the developers to deal with the functional application, fault
tolerance and adaptation concerns while implementing the application logic. In this example,
the developers must tackle the monitoring of the power supply, the use of PBR and LFR, and
the transition between them. Separation of concerns is essential in this process. The design-
driven development approach ensures the separation of concerns at design time, by clearly
identifying the layer in charge of fault tolerance and the one in charge of runtime adaptation.
Through generation of programming support, the separation of concerns is preserved along
the application life-cycle.

5.3.4 Overall Approach

Figure 5.4 shows an overview of the DiaSuite design-driven methodology enriched with sup-
port for taking into account resilience. At the design stage, the DiaSpec language provides
SCC-specific declarations (stage 1) [Cassou et al., 11a]. A component is defined by its interac-
tion contract. For integrating the new requirements in the methodology, the DiaSpec language
has been extended in the course of the project, allowing a safety expert to refine the interaction
contract of an SCC component with fault tolerance declarations (stage 2). The declarations
reflect the fault tolerance taxonomy presented in Chapter 2. For the time being, we focus on
physical faults and the safety expert can annotate the critical components either with require
availability (i.e., the fault model is crash-only) or with require correctness (i.e., value faults
must be tolerated). The design language can be easily extended to take into account other fault
models.

Figure 5.4: Overview of the Approach

With respect to runtime adaptation strategies, the design of a resilient application is layered
into application logic and a supervisory layer in charge of monitoring and triggering transitions
between FTMs. It is worth noting that both layers are described through the SCC paradigm,
in order to ensure separation of concerns without introducing additional concepts in the de-
sign language. Figure 5.5 shows the two layers of the crash-tolerant anti-intrusion application,
using SCC notation. On the left, the application logic is illustrated: there are four entities, a
Timer, a Camera, an Alarm and a Database, two context components, ImageProcessing

86

5.3. Integrating AFT in the Development Process

and Intrusion, and an AlarmController. When the ImageProcessing context compo-
nent receives a signal from the Timer, it accesses the images provided by the Camera. The
image represents the raw data that is further processed by the Intrusion context to determine
whether there is an intrusion. In case there is one, the AlarmController uses the Trigger
action on Alarm entities and the Log action on the Database entity. As the diagram shows,
the safety expert has considered that the Camera and Alarm entities are required to tolerate
crash faults. On the right, the supervisory layer is depicted. The power source is used by the
FTStrategy context component to determine whether the camera is on main power supply
or on battery and triggers a transition between FTMs based on this information. The transition
is operated by the AdaptationController component that triggers the AdaptFT action on
Camera.

Figure 5.5: Functional and Supervisory Layers of the Anti-Intrusion Application

The FT declarations require availability are compiled into programming constraints to en-
sure the traceability of the requirements. From a DiaSpec description, a programming frame-
work is generated to guide and support the application developer (step 3 in Figure 5.4). The
design is leveraged to automatically generate a deployment framework that guides the inte-
grator to combine the functional and non-functional developments step 5 in Figure 5.4. The
generative approach [Cassou et al., 11a], ensuring the conformance between the design, the im-
plementation and the deployment, is out of the scope of this thesis. The methodology and
toolkit are designed and developed by the Phoenix research group from INRIA Bordeaux, the
initiators of the SERUS project.

As the reader has surely intuited, our role in this project is determinant in steps 2 and
4 in Figure 5.4. Our contribution consists in providing the frame of reference for describ-

ing existing FTMs, the fault taxonomy and, most importantly, the library of component-based
FTMs. Figure 5.6 shows the result of integrating the component-based architecture of LFR in
the intrusion-detection SCC-based application. The server component from the initial architec-
ture that only served as a dummy-component for testing the FTM is replaced by the Camera
entity. The client from the initial architecture is, in this example, the ImageProcessing con-

87

Chapter 5. Evaluation, Integration, Application

text component that requests data from the crash-tolerant master-camera.

Figure 5.6: FRASCATI-Based Architecture of a Crash-Tolerant Camera Using LFR

5.3.5 Lessons Learned

Our participation in the SERUS Collaborative Research Action was very fruitful. On the one
hand, it provided the context for us to become familiar with the FraSCAti middleware devel-
oped and maintained by the ADAM Project from Lille and illustrated the interest and usability
of this platform in a new context, that of dependable computing. On the other hand, the in-
tegration of our adaptive fault tolerance mechanisms in DiaSuite demonstrates that they can
be easily reused in an overall development process. Furthermore, DiaSuite was enhanced with
fault tolerance abstractions and mechanisms, which represents an asset. Although only one
transition was illustrated for the proof of concept, several interesting perspectives exist. First,
the integration of other transitions triggered by changes in resources and fault models should
consolidate the approach. Next, by further developing the considered example (i.e., the anti-
intrusion application), changes in the business logic can be introduced, e.g., storing a video
instead of a picture, which would constitute new adaptation triggers.

88

5.4. Integrating AFT in WSN-Based Applications

5.4 Integrating AFT in WSN-Based Applications

5.4.1 Motivation and Context

During the past few years, Wireless Sensor Networks (WSNs) have attracted a significant
amount of interest, both from industry and academia. They are used in a plethora of appli-
cations of pervasive/ubiquitous computing for detecting and measuring physical properties
of interest. The actual devices range from basic nodes sending a boolean value (e.g., metal
detectors) to more sophisticated nodes, embedding several different sensors and processing
capabilities (e.g. Sun SPOTs2). In general, WSNs have a heterogeneous structure. Despite their
various domains of applicability, they share common challenges such as resource constraints,
scalability and dynamics of the environment. Given their presence in the immediate vicinity
of humans and the economic stake inherent in many WSNs-based applications, fault tolerance
must also be carefully considered [Chetan et al., 05].

WSNs share common failure causes with traditional wired and wireless distributed systems
and also introduce new ones [Paradis and Han, 07], especially related to the environment in
which they are deployed and to their limited resources. Failures occur at different layers of
the system [de Souza et al., 07], ranging from node hardware failures, to sink failures (sinks are
nodes with more resources that collect data from several elementary sensors and forward them,
possibly after some intermediate processing), to failures of the actual application that receives
input from sensors, due to software faults. As many networks use multi-hop routing, a lot
of effort has been devoted to designing algorithms for fault-tolerant routing, in order to avoid
network partitioning in case of node failure. Tolerance to crash faults at node level is intrinsic to
networks in which several sensors provide the same functionality. In case one of them crashes,
readings (and, possibly, alternate routing) will be provided by its neighbors and the node will
be either rebooted, repaired or replaced. To tolerate faults on more complex nodes, that run
stateful applications based on input from sensors, more complex fault tolerance mechanisms
such as the ones presented in this work can be readily used.

In this section, we illustrate the applicability of our adaptive FTMs in a scenario based on a
parking structure management application. Secondly, we describe the integration of our library
of adaptive FTMs in Srijan [Pathak and Prasanna, 08], a toolkit for sensor network macropro-
gramming having previously no notion of fault tolerance. These contributions were developed
in the context of the ANR MURPHY research project that included partners from academia
(INRIA, CNAM) and from industry (SmartGrains3).

5.4.2 Application Scenario

The scenario is based on a parking structure management application deployed by Smart-
Grains. The role of this application is to reduce traffic, fuel consumption and pollution in
a multi-floor parking structure. Figure 5.7 shows the hierarchical structure of the entities de-
ployed for this purpose. Each parking slot contains a sensor that monitors its occupancy status.
Parking slots are grouped in rows and the status of each row is monitored and stored by a totem

2 http://www.sunspotworld.com
3 www.smartgrains.com

89

http://www.sunspotworld.com
www.smartgrains.com

Chapter 5. Evaluation, Integration, Application

that receives inputs from the elementary parking slot sensors. Each totem displays the number
of available slots in its row. All totems on one floor communicate their status (i.e., number of
available slots and other useful data such as the duration of occupancy) to a floor manager
that displays the total number of available slots on its floor. All floor managers forward infor-
mation to the parking manager, who is the person in charge of monitoring and maintenance
operations. The total number of available parking slots is displayed at the entrance of the park-
ing. The status of the parking (open/closed, number of available slots) is available through a
web service that car drivers can access through their smartphone.

1

floor manager1

....

2

...........................

1

floor manager2

....

0

...........................

1

floor manager3

....

1

...........................
Parking

manager

Web Service

Parking status

floor status

floor status

floor status

Figure 5.7: Scenario of the Multi-Floor Parking Structure Management Application

Parking slot sensors are resource-constrained entities that send a boolean representing their
occupancy status. According to their position, they either communicate their status directly to
their corresponding totem or they forward their information to their neighbors (i.e., multi-hop
routing). They have a limited battery life. Furthermore, they can be subject to interference in
the presence of large vehicles and can be affected by high temperatures during the day. Totems
are more resourceful and are capable of directly requesting the status of any sensor in their row.
They are connected to the main power supply but, in case of power outage, they run on battery.
Totems feature a main display and a secondary one.

5.4.3 Adaptive FTMs in the Application Scenario

Totems are stateful as they store and display the status of the rows they manage. In case they
exhibit incorrect behavior, such as displaying incorrect values and forwarding them to the floor
manager, the application requirements will be violated. Anomalous behavior such as display-
ing false positives (displaying available slots when there are none) or false negatives (declaring

90

5.4. Integrating AFT in WSN-Based Applications

a row full even if there are available slots) leads to financial losses and customer dissatisfaction.
For all these reasons, totems should be fault-tolerant. The main fault model to tolerate is crash:
a totem that becomes non-responsive due to crash cannot account for the slots in its row. This
has a high impact on the global status displayed at the entrance of the parking and on the floor
status. To tolerate crash faults, totems work by pairs: a totem has two roles, acting as master for
its row and as slave for the adjacent one (we assume there is an even number of rows on each
floor). If a totem crashes, its partner becomes in charge of both rows, as shown in Figure 5.8
(IRP stands for Inter-Replica Protocol). On the main display, it shows the number of available
slots in the row it is normally in charge of. On the secondary display, it shows the number
of available slots in the row of its crashed partner. This is a degraded mode of operation: the
totem may exhibit latency in updating information related to the secondary row as it is farther
placed from the corresponding slot sensors.

3

0

4

3

floor manager

Totem1

4

4

…………………………………………

Totem2

Totem3

Totem4

Totem1

Totem2 3

floor manager

floor status

IRP

IRP

IRP

Figure 5.8: Integrating Fault Tolerance in the Application Scenario

Based on this duplex configuration, the FTMs presented in this work can be readily in-
tegrated. In the initial configuration, the pairs of totems work in Primary-Backup mode. A
checkpoint consists in the occupancy vector of the row in question and information such as
duration of occupancy of the slots for computing statistics.

Several adaptation triggers can be illustrated through this application scenario. If there is
a bandwidth drop on the connection between the two partners, checkpoints can be sent less
frequently or the configuration can execute a transition to Leader-Follower mode. Conversely,
if there is a power outage and the totems must run on battery, the configuration must switch
back to Primary-Backup.

Furthermore, changes in the fault model can require the composition of the initial FTM

91

Chapter 5. Evaluation, Integration, Application

with another one that tackles transient value faults. These changes have physical causes. On
the one hand, sensor hardware aging, exhaustion of the sensor battery and electromagnetic in-
terferences result in erroneous readings. On the other hand, high temperatures have a negative
impact on the reliability of the sensor readings. Totems can detect a faulty sensor by comparing
its readings on a time interval. Furthermore, a totem can directly request the status from each
of its sensors for mechanisms such as Time Redundancy.

The proposed approach for fine-grained transitions between FTMs consisting of three steps
(i.e., download package, execute script, remove residual components) can be used as already
shown. However, in this scenario, the totems being numerous and expected to react quickly
to change, it may be more convenient to equip them, from the beginning, with the capacity
to operate in various FTM configurations. This eliminates the downloading and removal step
from the process, at least for predictable transitions, for which the totem is prepared from the
beginning. Obviously, other transitions that were not included in the initial set can be operated
as well, using the initial process. In the following, we discuss this alternate adaptation process
that is to be implemented on totems.

Figure 5.9 illustrates the alternate adaptation process. FTMs are equivalent to sets of inter-
connected components. In the alternate approach, the union of several FTMs is deployed from
the beginning on each totem. Thanks to the clear identification of common parts and variable
features between FTMs, the union is much smaller (in terms of number of components) than a
simple juxtaposition of FTMs, as already demonstrated. At any point in time, a single FTM is
“active”, which is equivalent to a certain component-based configuration.

PBRstart PBR⊕TR

LFR LFR⊕TR

Assert&
DuplexA,R

FT

FT

A,R

A

FT

FT A FTM component
 toolkit

Active
configuration

(PBR)

Totem

Application

Figure 5.9: Transition Scenario (left) and FTM Component Toolkit Deployed on Totems (right)

Let us consider, for instance, that the totem is expected to switch during its service
life between PBR, LFR, PBR⊕TR, LFR⊕TR and Assert&Duplex. The initial configuration is
PBR. The union of all these FTMs that must be loaded contains their intersection and the
variable features, namely: syncBeforePBR, syncBeforeLFR, proceed, proceedTR,
syncAfterPBR, syncAfterLFR, syncAfterAssert. In Figure 5.9, the active configuration
is PBR, which contains the intersection of the requested FTMs and the variable features cor-
responding to PBR (syncBeforePBR, proceed, syncAfterPBR). The proceed compo-
nent is common to PBR, LFR and Assert&Duplex, therefore it has no specific index, as opposed

92

5.4. Integrating AFT in WSN-Based Applications

to proceedTR. Although not specifically shown, the FTM toolkit must also contain the compo-
nents implemented in FScript that contain the actual transition scripts. The transitions on the
left of Figure 5.9 are highlighted in the same color as their corresponding components on the
right. For example, PBR→PBR⊕TR and LFR→LFR⊕TR are represented in green dotted lines,
that correspond to one component in the toolkit, namely proceedTR.

5.4.4 Macroprogramming Toolkit

In order to map our adaptive FTMs on target systems such as the totems in the application
scenario, we integrate them in a programming model and accompanying toolkit dedicated
to WSNs. In the context of the MURPHY research project, the FTMs presented in this work
were integrated in a data-driven macroprogramming language called Abstract Task Graph
(ATaG) [Pathak and Prasanna, 11] and its Srijan toolkit [Pathak and Prasanna, 08]. In the fol-
lowing, we briefly present ATaG and Srijan and discuss the integration process.

Programming model

In the macroprogramming philosophy, WSN-based applications are designed and developed at
system level, as opposed to node level. As a result, the application developer can abstract away
the intricacies of the underlying heterogeneous distributed system and focus on business logic.
This enables domain experts such as biologists and city planners to write their WSN-based
applications. Applications written in ATaG feature three main types of entities that interact in
order to detect and measure physical properties of interest, compute decisions based on this
data and act on the environment accordingly. This so-called sense-compute-actuate interaction
pattern is identical to the Sense/Compute/Control architectural pattern [Taylor et al., 09] men-
tioned earlier in this chapter.

To illustrate the use of ATaG, we show in Figure 5.10 a fragment of the parking management
application, namely the interaction between slot sensors on one parking row/alley and their
totem. The three types of actors in the sense-compute-actuate pattern are:

• Abstract Data Items are the main currency of information in an ATaG program (data-
driven language). They represent the information in its various stages of processing in-
side a WSN. In this application, slot sensors produce the VehiclePresence data item. Based
on their inputs, totems then produce the AlleyTotal data item;

• Abstract Tasks represent the processing performed on the abstract data items in the sys-
tem. In this application, there are three types of tasks: VehicleSampler (i.e., a slot sensor),
TotalCalculator (i.e., the application running on the totem) and AlleyTotalDisplayer (i.e.,
the display of the totem). Tasks are annotated with instantiation rules, specifying where
they can be located (e.g., VehicleSampler is deployed on every node that has a magne-
tometer sensor attached for detecting the presence of a vehicle; TotalCalculator must be
deployed “oncein(Alley)”, i.e., there is one such task per parking row, regardless of the
number of hardware devices). Furthermore, tasks are annotated with firing rules, specify-
ing whether the task is triggered periodically (e.g. “periodic:10”) or due to the production
of certain data item(s) (“anydata”, i.e., whenever data is available);

93

Chapter 5. Evaluation, Integration, Application

• Abstract Channels connect tasks to the data items consumed (i.e., ascending channel) or
produced (i.e., descending channel) by them. Channels are annotated with logical scopes,
expressing the interest of a task in a data item. For instance, “(0,Alley)” means that data
should only be collected from the row/alley where the TotalCalculator is placed.

Abstract Task

Instantiation rules &
Firing rules

Logical scope

Abstract Channel

Abstract Data Item

Figure 5.10: Task Graph Representing a Fragment of the ATaG Program for the Parking Man-
agement Application

DiaSpec and ATaG

Admittedly, application description in ATaG is very similar to the one in DiaSpec (see Sec-
tion 5.3), as the two languages describe similar interaction patterns. However, there are some
key differences between the two approaches. DiaSpec and its DiaSuite toolkit focus on the de-
velopment process, on the traceability of functional and non-functional requirements through-
out the application lifecycle. ATaG and its Srijan toolkit present a particular concern for scale,
an issue inherent in WSN-based applications, and for mapping tasks on physical devices. As
a result, integrating our adaptive FTMs in the two approaches is not redundant but illustrates
their usability in two different contexts and how they can enhance already existing toolkits that
target different goals. While DiaSuite shows how adaptive fault tolerance can be integrated in a
“disciplined” development process, Srijan brings us closer to performing real experimentation
on already deployed systems.

Application Development using ATaG and Srijan

Application development using ATaG is performed in two main phases through the Srijan
toolkit:

• The application is first specified through a task graph (as the one in Figure 5.10). From
this description, code templates are generated (abstract Java classes) and the application

94

5.4. Integrating AFT in WSN-Based Applications

developer/domain expert complements each task with imperative code detailing the ac-
tions performed by the hosting device when the task is fired.

• A network description is provided to the ATaG compiler, consisting of the properties of
each device in the target deployment. Based on this description and on input from the
first phase, the compiler instantiates copies of the abstract tasks and assigns them to the
devices on that target deployment.

Figure 5.11 shows this process. The first phase is illustrated on the left, and the second phase
on the right. Clear arrows show inputs, while dark arrows show the output of each step in the
process.

Figure 5.11: Overview of ATaG-Based Application Development Using Srijan

Incorporating (A)FT in ATaG Macroprograms

As already mentioned, there was no previous notion of fault tolerance integrated in ATaG.
Similarly to the DiaSuite approach, the goal was to integrate adaptive fault tolerance while
ensuring a clear separation of concerns. As developers of applications in ATaG are not expected
to tackle the intricacies of the underlying distributed physical system, the addition of fault
tolerance should not demand extra effort from them either.

To make a task fault-tolerant, an optional parameter whose value represents the fault model
to tolerate was added to the abstract task in the application description stage. In Figure 5.10,
the TotalCalculator task (running on the totem) has the “fault” parameter set to “crash”. Both
crash faults and value faults are tackled thanks to our FTMs. New annotations were introduced
to the imperative code for the developer to identify the variables storing task state. The ATaG

95

Chapter 5. Evaluation, Integration, Application

runtime was modified in order to intercept task firing and to redirect execution to our FTMs.
The compilation process was also enhanced in order to tackle task replication. When it is not
possible to instantiate extra copies (i.e., the description of the target system does not contain
the extra physical node necessary for replication), the compiler issues a warning during the
task-mapping process.

ATaG Program P = (T, D, C)

Java Code for Tasks

Requirements R: T -> 2^F

WSN Application Developer

Srijan Application Designer

Specification of Mechanism

m_i = (Faults tolerated,

 # of nodes needed,

annotations needed in code,

dependencies on other FTMs,

.jar binary implementation)

FT Mechanism Developer

Response:

T -> {Yes, No, More info needed}

Network Description =

Set of nodes n : (region,

attached sensors/actuators,

machine capabilities)

Deployment

Engineer

Srijan Compiler

FTM Database

Deployed code at each node:

(Comm. Library,

Task assigments,

FT code)

Response:

T -> {Yes, No, More info needed}

Figure 5.12: Overview of the Development Process of Fault-Tolerant WSN-Based Applications

Figure 5.12 illustrates the process of developing fault-tolerant WSN-based applications with
ATaG and Srijan:

1. We denote by F the overall set of possible faults tolerated by ATaG programs. The FTM
developer provides to a central database details about his mechanism mi, including: the
subset of F that it can help tolerate, the number of physical nodes needed for it to work,
specific implementation needed from application developers, dependencies or conflicts
with other FTMs, and path to the binary implementation of the FTM.

2. When a WSN application developer specifies the application in ATaG, he optionally spec-

96

5.4. Integrating AFT in WSN-Based Applications

ifies for each task T the requirements R(T) ⊆ F of the faults that all instances of T must
tolerate.

3. The Srijan toolkit provides feedback to the developer in case some of the faults in R(T)

need more information from T (e.g., annotation of state variables) in order to be tolerated.

4. The task graph is then instantiated on the network description provided by the deploy-
ment engineer. For each device in the deployment, the runtime system is customized
according to the requirement of the task graph as well as the fault-tolerance protocols
needed to satisfy the application requirements. In case of a mismatch (e.g., insufficient
number of suitable nodes available in a certain region), the compiler notifies the deploy-
ment engineer.

As the reader must have intuited, one of our roles in this process was to provide the FTMs
to the FTM database. We have also contributed to the identification of the elements featured in
the specification of FTMs. Based on this description, other FTM developers may integrate their
own solutions to the FTM database.

5.4.5 Lessons Learned & Work in Progress

In the context of the MURPHY research project, we examined a real WSN-based parking man-
agement system. Based on this data, we designed an application scenario that illustrates the
interest and applicability of A(FT) for such targets. In order to map the presented fine-grained
adaptive FTMs on these particular systems, we integrated them in Srijan, a macroprogramming
toolkit. The FTMs are generic enough to be easily attached to WSN-based applications. Fur-
thermore, we assisted the developers of Srijan in designing a specification of FTMs to ensure
that other FT developers can integrate their own solutions (be they adaptive or not) in their
repository. So far, Srijan and ATaG do not specify adaptation triggers, as opposed to DiaSpec
that uses the Sense/Compute/Control paradigm both for application description and for the
supervisory layer that triggers adaptation. On the other hand, Srijan enables us to perform
real experimentation on physical systems, with many resource constraints. We are currently
finalizing the integration of the adaptive FTMs in Srijan. The next step is to explicitly describe
adaptation triggers and finally to develop the full application scenario.

97

Chapter 5. Evaluation, Integration, Application

5.5 Summary

This chapter focused on two fundamental aspects. On the one hand, we assessed the per-
formance of our approach, firstly, through quantitative measurements of transitions between
FTMs and, secondly, in terms of the agility of the modifications. This led us to pinpoint a lin-
ear relationship between a transition execution time and the number of modified components.
More importantly, this assessment showed the overall feasibility of a performance-friendly and
agile adaptation strategy. Comparisons to other existing approaches were also provided.

On the other hand, we illustrated in two different development projects the usability of our
framework. During this process, we showed how to map the concepts related to adaptive fault
tolerance in two different scenarios. First, we described the integration of the adaptive FTMs in
DiaSuite, a design-driven development approach. Interestingly, the resulting methodology en-
sures the full traceability of dependability requirements along the application lifecycle, from its
design up to the ability of handling explicit runtime adaptation. Next, we illustrated the ben-
efits of adaptive fault tolerance in wireless sensor networks, a radically different development
environment. We described the different steps that have been performed to integrate (adaptive)
fault tolerance in a development environment tailored for resource-constrained wireless sensor
networks, highlighting similarities and differences between such environments and DiaSuite-
based development. We finally illustrated the resulting environment on the the scenario of
a parking management application deployed using WSNs, enriched with adaptive fault tol-
erance capabilities. To bridge the gap between our component-based FTMs and this target
system, we described the currently carried integration of our framework in the Srijan macro-
programming toolkit.

98

Conclusion & Future Work

“Each of us is merely one human being, merely an experiment,
a way station. But each of us should be on the way toward
perfection, should be striving to reach the center, not the pe-
riphery.”

— Hermann Hesse, The Glass Bead Game

1 Conclusion

In computing, resilience denotes the capacity of a system to maintain its dependability proper-
ties despite various types of changes. In this thesis, an approach was proposed for tackling a
key aspect of resilient computing, namely the systematic on-line adaptation of fault tolerance
mechanisms (FTMs). Although adaptive fault tolerance (AFT) has attracted research efforts for
some time now, existing solutions perform modifications of FTMs in a preprogrammed man-
ner. This is not satisfactory for long-lived systems that operate in highly dynamic environments
because it is impossible to predict all changes that might occur during their service life. As
adaptivity has long been a prerogative of the business logic, a substantial body of knowledge
exists in the field of software engineering. Consequently, we proposed an approach that lever-
ages state-of-the-art tools and standards from this field. The proposed approach comprises four
milestones: a change model frame of reference, a “design for adaptation” approach, mapping
of the design on a reflective component-based middleware, and experiments to validate and
illustrate the approach.

First of all, we identified three classes of parameters, namely fault tolerance requirements,
application characteristics and resources, whose values dictate the choice of an appropriate
FTM for a given application. The variation of these parameters can invalidate the initial choice
and may require a transition towards a new FTM consistent with the new values. A change
model frame of reference was established for visualizing the evolution of FTMs during the
service life of a system. Based on this frame of reference, we proposed a classification of well-
known FTMs and illustrated the goal of our work throughout several transition scenarios.

Next, we thoroughly analyzed a subset of FTMs with various underlying characteristics
during a “design for adaptation” process. Through this analysis that consisted of several itera-
tions, we revealed a generic protocol execution scheme capturing the variable features of FTMs.
Inspired from aspect-oriented programming, we named it the before-proceed-after scheme. A
second outcome of the “design for adaptation” process was a toolbox of fault tolerance design

99

Conclusion & Future Work

patterns that can serve as a starting point for real-world applications in which new FTMs can
be easily developed and integrated off-line. The generic execution scheme represented a cor-
nerstone of our overall approach as it facilitated the composition of FTMs and prepared the
ground for on-line fine-grained transitions.

Afterwards, we focused on the necessary infrastructure for performing on-line agile tran-
sitions between FTMs. To this aim, we identified a minimal API for runtime adaptation, rep-
resenting the set of functionalities that must be provided by a component-based middleware.
Then, we mapped the generic protocol execution scheme on FraSCAti, a reflective component-
based middleware providing the required runtime control capabilities. During this develop-
ment stage, the subset of FTMs were implemented as proof-of-concept and the fine-grained
transitions in the illustrative scenario were performed. The fine-grained design and transition
algorithms are reproducible on other platforms providing the minimal API.

Next, we assessed the performance of the approach, firstly, through quantitative measure-
ments of transitions between FTMs and, secondly, in terms of the agility of modifications. Com-
parisons to already existing works were also provided. The main benefit of the proposed ap-
proach lies in the agile fine-grained nature of runtime transitions between FTMs as opposed to
preprogrammed monolithic solutions. Furthermore, we illustrated the usability of our frame-
work and, more generally, of the concepts related to adaptive fault tolerance in two different
contexts, first in a design-driven development process and, second, in a scenario based on
a parking management application using WSNs. The successful integration of our adaptive
FTMs in two toolkits having no previous explicit notion of fault tolerance (let alone adaptive
fault tolerance) demonstrates the genericity of the proposed approach.

The main lesson learned during this thesis is that fine-grained agile adaptation of FTMs
can be achieved by combining the strengths of detailed design, performed with adaptivity
in mind, and reflective component-based middleware. This can obviously be extrapolated to
other non-functional concerns as well as to functional ones. The result is a development process
for enabling the systematic on-line adaptation of FTMs through fine-grained modifications.
The work presented in this thesis is essentially a contribution to the field of resilient comput-
ing. Given the significant overlap between the goals of resilience and the goals of self-healing
systems, the proposed approach is also part of the broader spectrum of autonomic computing.
Last but not least, our methodology illustrates the benefits brought by software engineering
tools and concepts in the context of fault-tolerant systems.

2 Future work

Situated at the intersection of several areas, primarily, dependability and software architectures
and, secondly, pervasive systems and autonomic computing, this thesis opens various research
perspectives for achieving medium/long-term goals.

A medium-term goal is to map the library of adaptive FTMs to another component-based
middleware providing the required minimal API. This would support the claim that our ap-
proach is reproducible on another support. Furthermore, it would provide the means to com-
pare different implementations and to evaluate the effort necessary for mapping the approach
to another support, for future reference.

100

2. Future work

Another medium-term goal is to push further the two examples of integration of the adap-
tive FTMs presented in Chapter 5. In the case of DiaSuite, this implies integrating the entire set
of transitions currently available and developing applications that illustrate various adaptation
triggers. In the case of Srijan, the next step is to develop the parking management application
scenario.

A long-term goal is to develop the adaptation logic, more specifically, a monitoring frame-
work and an adaptation manager which triggers adaptations between FTMs (with or without
human intervention). This requires a thorough analysis of adaptation triggers, specifically for
proactive transitions discussed in Chapter 2. The possible high-level triggers we have identi-
fied so far are the following:

• anticipation of operational phases;

• hardware aging that increases the number of transient faults and that can affect the soft-
ware running on it resulting in a high number of exceptions;

• decrease in software reliability due to the introduction of a new software version (i.e.,
containing residual bugs).

The monitoring framework and the adaptation logic should then be plugged in the adaptive
fault tolerance architecture presented in this thesis and illustrated on a complex running exam-
ple, such as a simulated satellite or any autonomous system with strong dependability require-
ments.

101

Conclusion & Future Work

102

Résumé

1 Introduction & Problématique

1.1 Concepts fondamentaux

L’évolution des systèmes informatiques pendant leur vie opérationnelle est incontournable.
Les systèmes doivent évoluer pour s’adapter aux changements internes et externes, provenant
de l’environnement ou de l’interaction avec les utilisateurs. En particulier, les systèmes sûrs
de fonctionnement, c’est-à-dire dans le service desquels les utilisateurs peuvent placer une
confiance justifiée [Laprie, 04], doivent évoluer pour s’adapter à des changements comme, par
exemple, de nouveaux types de fautes ou la perte de ressources. Le défi de l’évolution est plus
important dans ce contexte car une modification ne doit pas porter atteinte aux propriétés de
sûreté de fonctionnement. Dans ce contexte, la résilience informatique a été définie [Laprie, 08]
comme la persistance de la sûreté de fonctionnement en dépit des changements. La notion
de résilience n’est pas propre à l’informatique mais figure dans divers domaines comme la
psychologie, la science des matériaux ou l’écologie. Dans tous les domaines concernés, elle
représente la capacité d’une entité de se remettre après avoir subi une perturbation.

D’une part, la résilience informatique couvre plusieurs aspects, dont l’adaptivité, c’est-
à-dire la possibilité de faire évoluer un système pendant sa vie opérationnelle. D’autre
part, la sûreté de fonctionnement informatique est basée sur quatre moyens princi-
paux [Laprie et al., 96] :

• la prévention des fautes vise à empêcher l’occurence ou l’introduction de fautes;

• la tolérance aux fautes vise à fournir un service à même de remplir la fonction du système
en dépit des fautes;

• l’élimination des fautes vise à réduire la présence (nombre, sévérité) des fautes;

• la prévision des fautes vise à estimer la présence, la création et les conséquences des
fautes.

Par rapport aux trois autres moyens, la tolérance aux fautes, qui s’appuie sur des mécanismes
de détection des fautes et de recouvrement attachés à l’application, est une activité qui accom-
pagne les systèmes tout au long de leur vie opérationnelle. À ce titre, l’adaptation des mé-
canismes de tolérance aux fautes (FTMs) à l’exécution s’avère un défi essentiel pour dévelop-
per des systèmes résilients. Dans la plupart des travaux de recherche existants, l’adaptation
des FTMs à l’exécution est réalisée de manière préprogrammé [Fraga et al., 03, Lung et al., 06,

103

Résumé

Marin et al., 01] ou se limite à faire varier quelques paramètres. Tous les FTMs envisageables
doivent être connus dès la conception du système, déployés et attachés à l’application dès le
début. Pourtant, les changements ont des origines variées et équiper un système a priori pour le
pire scénario qui pourrait survenir pendant la vie opérationnelle est souvent impossible. Selon
les observations pendant la vie opérationnelle, de nouveaux FTMs peuvent être développés
hors-ligne, mais intégrés en-ligne, c’est-à-dire pendant que le système est en train de s’exécuter.
Nous appelons cette capacité adaptation agile, contrairement à l’adaptation préprogrammée qui
est plus répandue et qui confine le système à un scénario d’adaptation figé.

Dans cette thèse, nous présentons une approche pour développer des systèmes résilients
flexibles dont les FTMs peuvent s’adapter pendant l’exécution de manière agile par des modi-
fications à grain fin pour minimiser l’impact sur l’architecture logicielle. L’approche proposée
met à profit des outils et des concepts issus du domaine du génie logiciel, comme les archi-
tectures orientées services [Chappell, 07, Marino and Rowley, 09, Margolis and Sharpe, 07], la
programmation orientée aspect [Kiczales et al., 97] et les intergiciels réflexifs à base de com-
posants [Szyperski, 02], qui permettent l’observation, le contrôle et la reconfiguration de
l’architecture logicielle pendant la vie opérationnelle des systèmes.

1.2 Un exemple illustratif

Les satellites sont des objets autonomes assurant des fonctions complexes avec des ressources
limitées. La plupart des fonctions fournies sont critiques, au moins du point de vue
économique. Comme décrit dans [James et al., 10], en dépit d’amples campagnes de test, des
bogues peuvent rester non-détectés dans le logiciel. Ces bogues, ainsi que des fautes internes
et externes (des effets de rayonnement, des vibrations ou des fautes des opérateurs) peuvent
compromettre les systèmes, par exemple lors des missions spatiales. Nous allons illustrer notre
propos avec ce domaine applicatif dans lequel les systèmes sont autonomes, non réparables, à
ressources contraintes et avec des moyens de communication limités. La tolérance aux fautes
est utilisée depuis les années 60 à bord des véhicules spatiaux et elle est essentielle pour des
systèmes avec une connexion au sol limitée, tels que les sondes autonomes, afin de contenir les
éventuelles erreurs.

Un satellite a une durée de vie contractuelle pouvant aller jusqu’à plusieurs années (le plus
souvent atteinte, voire largement dépassée dans la pratique). Une caractéristique importante
en ce qui concerne sa maintenance et son évolutivité, c’est que la réparation sur place après le
lancement est extrêmement difficile et coûteuse, si des problèmes surviennent. Il est impossible
de prédire tous les problèmes auxquels un tel dispositif autonome pourrait se confronter durant
sa vie opérationnelle, par exemple les pertes accidentelles de ressources, l’impact des fautes, le
vieillissement du matériel. On ne peut pas anticiper des stratégies de tolérance aux fautes pour
pallier des problèmes qui ne sont pas encore connus. L’évolution du logiciel embarqué, de la
configuration et de l’intégrité des ressources doit aussi être prise en compte pendant la vie du
satellite et peut changer certaines hypothèses faites lors du choix de la stratégie de tolérance
aux fautes. Dans ce contexte, lorsque le besoin se présente, l’adaptation des mécanismes de
tolérance aux fautes (ainsi que de la couche fonctionnelle), est exécutée de manière ad-hoc.
Selon le cas, l’adaptation prend différentes formes, allant de l’application d’un patch qui met à
jour une région de la mémoire, jusqu’au remplacement complet des procédures embarquées.

104

Les bénéfices apportés par notre approche peuvent être illustrés à travers l’exemple ci-
dessus. Définir a priori tous les mécanismes de tolérance aux fautes (FTMs) envisageables
et leurs combinaisons selon les défaillances et les menaces qui peuvent survenir pendant la vie
du système est impossible (indécidable a priori, un problème NP-complet). D’ailleurs, embar-
quer un nombre trop élevé de mécanismes sur un équipement spatial serait inacceptable en
raison des ressources de mémoire limitées. Notre approche vise à concevoir les FTMs comme
un assemblage “Lego”, en s’appuyant sur des concepts et des outils du génie logiciel tels que
les architectures à base de composants et des supports d’exécution reconfigurables. Les appli-
cations sont initialement équipées de certains FTMs selon les spécifications non-fonctionnelles
initiales. Le monitoring effectué à bord du satellite informe les ingénieurs au sol sur l’état
actuel du satellite. L’approche proposée permet aux ingénieurs de concevoir une solution de
tolérance aux fautes hors-ligne à tout moment au cours de la vie opérationnelle du satellite, de
télécharger les “briques de Lego” nécessaires pour modifier le FTM initial et de les attacher à
celui-ci pour mettre en place un nouveau FTM qui soit cohérent avec les nouvelles conditions
opérationnelles. En résumé, selon le monitoring effectué à bord (ciblant les caractéristiques
des fonctions, les ressources disponibles, la priorité entre les fonctions, etc), nous proposons
une mise à jour différentielle des FTMs qui rend la gestion de l’ensemble du logiciel embar-
qué plus facile que s’il était représenté comme un seul bloc. Par rapport aux modifications
ad-hoc des FTMs (et, plus généralement du logiciel embarqué), notre approche permet une
adaptation méthodique. En s’appuyant sur les outils du génie logiciel, l’approche proposée
fournit un moyen de développer systématiquement les briques nécessaires et de les intégrer
dans l’architecture du logiciel embarqué existant.

Les bénéfices de l’approche proposée vont bien au-delà des missions spatiales de longue
durée. La résilience est un défi aussi bien pour les petits appareils autonomes qui doivent
opérer sans intervention humaine. C’est le cas, par exemple, des sondes sous-marines qui
détectent les tremblements de terre ou des sondes de détection d’incendie dans les forêts. Ce
travail est donc une contribution aux techniques de self-healing nécessaires à l’autonomic com-
puting [Kephart and Chess, 03], ciblant de nombreux équipements autonomes non réparables
qui feront partie de notre vie quotidienne dans un avenir proche .

1.3 Description générale de l’approche

La séparation des préoccupations [Dijkstra, 82] (en anglais, “separation of concerns”), est
un principe généralement adopté pour la mise en œuvre des logiciels à haute modular-
ité [Parnas, 72] qui permet le développement indépendant de la logique fonctionnelle et des
préoccupations transversales [McKinley et al., 04] telles que la qualité de service, la sécurité,
la fiabilité, etc. Dans le cas des applications tolérantes aux fautes, les deux préoccupations
évidentes sont les services fonctionnels et non-fonctionnels, à savoir le(s) mécanisme(s) de
tolérance aux fautes.

La réflexivité [Maes, 87] a servi de support à la séparation des préoccupations. Cette pro-
priété représente la capacité d’un programme à examiner sa structure (réflexion structurelle)
et son comportement (réflexion comportementale) et, éventuellement, les modifier. La réflex-
ivité se compose de deux activités: l’introspection, qui permet à l’application de s’observer, et
l’intercession, qui permet à l’application d’agir sur elle-même.

105

Résumé

Les architectures logicielles fondées sur ces principes se composent de deux niveaux
d’abstraction où le niveau de base fournit les fonctionnalités requises (i.e., la logique métier) et
le niveau supérieur, ou le méta-niveau, contient les mécanismes non-fonctionnels (par exem-
ple, le FTM(s) [Fabre, 09]). Comme nous ciblons l’adaptation des FTMs, nous devons gérer la
dynamique du niveau supérieur, qui peut avoir deux causes:

• Le niveau applicatif reste inchangé, mais le FTM doit être modifié soit à cause de
l’évolution des demandes en tolérance aux fautes FT (par exemple, l’évolution du modèle
de faute en raison de perturbations physiques) soit à cause des fluctuations des ressources
disponibles R qui le rendent inadéquat ou, au moins, sous-optimal du point de vue de la
performance;

• Les variations du niveau supérieur sont indirectement déclenchées par des modifications
du niveau applicatif qui rendent le mécanisme de tolérance aux fautes inadéquat (i.e., des
changements dans les caractéristiques de l’application A). Dans ce cas, les deux niveaux
doivent exécuter une transition vers une nouvelle configuration.

L’adaptation des FTMs peut être considérée comme une troisième préoccupation, né-
cessitant ainsi un troisième niveau d’abstraction. Cette séparation présente les mêmes
avantages que la séparation entre le niveau applicatif et le niveau non-fonctionnel, as-
surant la flexibilité et, par conséquent, la réutilisabilité et l’évolutivité des mécanismes
d’adaptation [Redmond and Cahill, 02].

Notre approche pour mettre en œuvre cet élément essentiel de la résilience, à savoir
l’adaptation en-ligne des FTMs, comprend plusieurs étapes. Tout d’abord, nous avons identifié
les paramètres responsables du choix d’un FTM particulier parmi un ensemble de mécanismes.
Les valeurs de ces paramètres indiquent, au moment de la conception, quel est le FTM le plus
approprié à joindre à une application, si un tel FTM existe. La variation de ces paramètres
peut invalider le choix initial et déclencher une transition vers un nouveau FTM, cohérent avec
les nouvelles valeurs. Ces paramètres forment un référentiel qui permet la visualisation de
la dynamique des FTMs. Une classification de FTMs classiques a été obtenue à partir de ce
référentiel. En outre, il nous a fourni la base pour une série de scénarios de transition entre
FTMs . Cette étape est résumée dans la Section 2.

Ensuite, nous avons analysé en détail un ensemble de FTMs selon leur structure et leur
fonctionnement. Le but de cette analyse a été d’identifier leurs éléments communs et leurs
points de variabilité. Inutile de dire, l’adaptation en-ligne à grain fin est extrêmement diffi-
cile, voire impossible, sans ce genre de préparation au préalable et sans les outils appropriés.
Cette étape de préparation est ce que nous appelons la “conception pour l’adaptation”, ce qui
signifie que les FTMs considérés doivent être conçus de manière à isoler leurs caractéristiques
communes et leurs points variables pour pouvoir les modifier en-ligne avec un impact mini-
mal sur l’architecture logicielle. Cette approche présente des avantages non seulement pour
l’adaptation à l’exécution, mais aussi pour le développement de FTMs statiques car elle fournit
des briques de base qui peuvent être réutilisés et customisés par la suite. Le résultat de cette
étape est un système de patrons de conception (en anglais, “design patterns”) pour la tolérance
aux fautes. L’efficacité de la méthode a été évaluée en mesurant l’impact du raffinement de

106

la conception/du design sur le temps de développement nécessaire à la construction de nou-
veaux FTMs. Ce travail est résumé dans la Section 3.

Une fois les éléments de variabilité entre FTMs clairement identifiés, l’étape suivante con-
siste à exploiter des outils spécifiques pour l’adaptation à l’exécution, à savoir un intergiciel
réflexif à base de composants, et projeter les patrons de conception pour la tolérance aux fautes
évoqués sur une architecture à base de composants. À ce stade aussi, les choix de conception
sont extrêmement importantes car ils déterminent la granularité des modifications en-ligne : les
caractéristiques variables doivent être projetées sur des entités/des composants individuels qui
puissent être identifiés et modifiés à l’exécution, sinon la “conception pour l’adaptation” n’est
pas mise à profit. Nous avons mis en œuvre nos scénarios de transition mentionnés précédem-
ment afin de prouver la faisabilité de notre approche et d’illustrer la flexibilité apportée à nos
FTM adaptatifs par ces outils provenant du génie logiciel. Les avantages de notre approche ont
été évalués en mesurant l’impact des modifications différentielles sur l’architecture du FTM ini-
tial quant au nombre de composants remplacés et au temps de reconfiguration. La cohérence
du processus d’adaptation, un aspect crucial car les transitions en-ligne doivent modifier les
FTMs de manière atomique, a aussi été prise en compte. Cette étape est briévement décrite
dans la Section 4.

Enfin, nous avons évalué la facilité d’utilisation de nos FTMs adaptatifs à travers deux ex-
emples d’intégration. Dans le premier, nous avons intégré nos FTMs dans un processus de
développement dirigé par la conception, dédié aux applications Sense-Compute-Control (et la
suite logicielle sous-jacente nommée DiaSuite) qui ne contenait précédemment pas d’élément
de tolérance aux fautes. Cet exemple prouve que nos FTMs adaptatifs sont génériques et
peuvent être attachés à des applications externes fournies par différentes parties prenantes et
peuvent être mis à profit dans différentes suites de développement logiciel. La méthodologie
dirigée par la conception assure la traçabilité des exigences de tolérance aux fautes, de la con-
ception jusqu’au déploiement et vise à aider les développeurs d’applications Sense-Compute-
Control dans le processus d’intégration de la tolérance aux fautes dans leurs applications en
la rendant la plus transparente possible. Dans le deuxième exemple, les FTMs adaptatifs ont
été intégrés dans Srijan, un outil qui sert à développer des applications pour les réseaux de
capteurs sans fil, basé sur le macroprogramming. Comme dans le premier cas, la plate-forme
ne contenait initialement pas de notion de tolérance aux fautes. L’objectif a été, d’une part, de
développer un langage de spécification des exigences de tolérance aux fautes et de décrire les
FTMs à l’aide de ce langage et, d’autre part, d’intégrer les FTMs dans Srijan et de les spécialiser
pour les applications ciblées. Ce travail est résumé dans la Section 5.

2 Adaptation des FTMs

2.1 Du modèle de faute au modèle de changement

Nous avons identifié trois classes de paramètres responsables du choix d’un FTM adéquat
parmi un ensemble de mécanismes :

• les exigences de sûreté de fonctionnement de l’application et, plus particulièrement, les
propriéés de tolérance aux fautes (FT) demandées;

107

Résumé

• les caractéristiques de l’application (A);

• les ressources disponibles (R).

Dans nos travaux, FT couvre un ou plusieurs FTM qui sont évidemment fortement liés
au modèle de faute et aux propriétés de sûreté de fonctionnement requises (fiabilité, disponi-
bilité, intégrité, confidentialité). Les caractéristiques de l’application A ont une incidence sur
la validié des FTM sélectionnés. Pour exécuter les mécanismes sélectionnés, un ensemble de
ressources R est nécessaire et devrait être disponible. Le choix d’un FTM approprié pour une
application donnée est basée sur les valeurs des paramètres (FT, A, R) et, à tout moment de
la vie opérationnelle du système, les valeurs de ce triplet doivent être cohérentes avec le FTM
courant afin de satisfaire les propriétés de sûreté de fonctionnement. Toute modification dans
les valeurs de ces paramètres peut invalider le choix initial et exiger un nouveau FTM. Les
transitions entre les FTM sont nécessaires lorsqu’il y a une incohérence entre le FTM actuel et
les conditions opérationnelles.

À partir de ces trois classes de paramètres, nous avons proposé un système de
référence [Stoicescu et al., 11b], appelé le référentiel du modèle de changement, dont chaque
axe correspond à une classe. Ce réfŕentiel, illustré dans la Figure 2.1 à la page 30, nous permet
de visualiser l’évolution d’une application tolérante aux fautes durant sa vie opérationnelle.
Les trois axes du référentiel sont des variables multivariées:

1. FT : nous nous concentrons ici sur le modèle de faute

2. A : les caractéristiques de l’application peuvent invalider certains FTMs qui tolèrent le
même modèle de faute :

• le déterminisme

• l’existence d’un état de l’application à restaurer en cas de défaillance

• l’accès à l’état de l’application

3. R : les ressources nécessaires au FTM :

• bande passante

• énergie

• ressources de calcul (CPU)

En détaillant les critères liés aux modèle de faute (pour lequel on se base sur
[Avižienis et al., 04]) et aux caractéristiques des applications, nous avons établi une classifica-
tion d’un ensemble de FTMs bien connus [Stoicescu et al., 11a]. Cette classification, représentée
dans la Figure 2.2, à la page 32, peut servir dans le processus de sélection d’un FTM adéquat,
au cours de la conception d’une application tolérante aux fautes.

2.2 Ensemble de FTMs considérés

Pour illustrer notre approche, nous nous sommes concentrés sur un ensemble réduit de FTMs
parmi ceux qui sont représentés dans la figure 2.2 : deux variantes de duplex pour tolérer les

108

fautes matérielles par crash et deux mécanismes pour tolérer les fautes matérielles par valeur,
à savoir Time Redundancy (redondance temporelle) et Assertion&Duplex. Dans ce qui suit, nous
discutons à la fois la façon dont ils fonctionnent et leurs caractéristiques sous-jacentes quant aux
paramètres (FT,A,R). La discussion est limitée à ce sous-ensemble de FTMs car ils représentent
la base pratique pour le reste de ce travail.

La tolérance aux fautes matérielles par crash

Les fautes par crash dans les systèmes client-serveur peuvent être tolérées par des protocoles
duplex en reproduisant le serveur sur deux ou plusieurs machines (maître et esclave(s)). Le
crash du maître est détecté par une entité de type heartbeat ou watchdog et déclenche une action
de recouvrement par laquelle l’esclave devient maître (ou l’un des esclaves est élu maître).

Il existe deux principaux types de protocoles duplex : passifs et semi-actifs (parfois aussi
appelés actifs). Primary-Backup Replication (PBR) [Speirs and Barrett, 89] est une stratégie pas-
sive : le maître (primary) est le seul à traiter les requêtes du client et il envoie des points de
reprise (checkpoints) contenant son état à l’esclave. Les points de reprise peuvent être envoyés
à chaque requête ou périodiquement ou de manière différentielle. Leader- Follower Replication
(LFR) [Barret et al., 90] est une stratégie semi-active : toutes les répliques traitent les requêtes
du client, mais seulement le maître (leader) lui envoie la réponse.

La tolérance aux fautes matérielles par valeur

Les fautes en valeur sont tolérées en répétant le traitement de la requête sur une machine ou en
utilisant une stratégie duplex accompagnée par des tests d’acceptation/assertions ou par des
exécutions parallèles, suivies par un vote sur les résultats. Plusieurs stratégies existent (comme
le montre notre classification de la Figure 2.2 de la page 32) dont nous analysons deux. Time
Redundancy (TR) (la redondance temporelle) tolère les fautes en valeur transitoires et nécessite
un seul ordinateur hôte. Une requête est traitée deux fois et les résultats sont comparés. Si
les résultats diffèrent, cela signifie qu’une faute transitoire a été détectée. La requête est traitée
à nouveau et si deux résultats sur trois sont identiques cette réponse est envoyée au client.
Assertion&Duplex (A&Duplex) tolère les fautes en valeur transitoires et permanentes. Comme
son nom l’indique, il nécessite deux ordinateurs hôte et les fautes sont détectées en utilisant
une assertion.

Caractéristiques (FT,A,R) des FTMs considérés

Les caractéristiques sous-jacentes de ces FTM, quant aux paramètres (FT , A, R) sont présentées
dans le Tableau 1. Nous pouvons voir que, bien que PBR et LFR tolèrent le même modèle
de faute, leurs caractéristiques A et R sont considérablement différentes : LFR exige le déter-
minisme du comportement de l’application (c’est-à-dire que des données d’entré identiques
doivent produire des résultats identiques parce que les requêtes sont traitées par toutes les ré-
pliques), mais ne nécessite pas d’accès à l’état de l’application parce que chaque réplique con-
struit son état local au fur et à mesure en traitant les requêtes. Inversement, PBR n’exige pas
le déterminisme du comportement de l’application (car le maître les modifications de son état

109

Résumé

aux esclaves à travers les points de reprise) mais impose la capture de l’état de l’application qui
peut être une action très complexe. PBR consomme plus de bande passante que LFR en fonc-
tionnement normal (c’est-à-dire, en absence des fautes) en raison des points de reprise. LFR
consomme plus de ressources de calcul que PBR (et, par conséquent, plus d’énergie) car toutes
les répliques traitent les requêtes, comme indiqué par le symbole Hdans le Tableau 1. TR né-
cessite l’accès à l’état de l’application pour le sauver avant le premier traitement de la requête
et le restaurer entre deux calculs consécutifs. Comme TR fonctionne sur une seule machine
hôte, ce FTM ne peut pas tolérer le crash et il ne consomme pas de bande passante. A&Duplex
peut tolérer le crash et les fautes en valeur car deux machines sont utilisées pour exécuter les
répliques. Contrairement à TR, ce FTM ne nécessite pas l’accès à l’état. Les mécanismes TR et
A&Duplex nécessitent plus de puissance de calcul (donc plus d’énergie) que PBR à cause du
traitement multiple des requêtes. Cependant, avec A&Duplex, la couverture de détection des
fautes transitoires est inférieure à celle de TR. Cela illustre le genre de compromis qui doit être
analysé au moment de choisir un FTM pour une application donnée.

Caractéristiques
FTM

PBR LFR TR A&Duplex

Modèle de faute

Arrêt (crash) 3 3 3 Légende
Valeur transitoire 3 3

Valeur permanente 3 PBR=Primary-Backup Replication

Caractéristiques
de l’application

Deterministe 3 3 3 3 LFR=Leader-Follower Replication
Non-deterministe 3 3 TR=Time Redundancy

Nécessite accès à l’état 3 3 A&Duplex=Assertion&Duplex

Ressources
Bande passante HH H n/a H

CPU H HH HH HH

Table 1: Caractéristiques (FT,A,R) des FTMs considérés

Scénario de transition entre les FTMs

Pendant la vie opérationnelle du système, les valeurs des paramètres énumérés dans le
Tableau 1 peuvent changer. Une application peut devenir non-déterministe lorsqu’une nou-
velle version est installée. Le modèle de faute peut devenir plus complexe passant, par exem-
ple, de crash à crash plus faute en valeur en raison du vieillissement du matériel ou de perturba-
tions physiques dans l’environnement. Les ressources disponibles peuvent également varier :
par exemple, la bande passante et/ou l’énergie peuvent baisser. La Figure 1 montre un graphe
de transitions possibles entre les FTMs évoqués précédemment. Les sommets représentent
les FTMs et les arêtes sont marquées avec le paramètre (FT,A,R) dont la variation déclenche
la transition. La transition LFR→LFR est déclenchée par un changement dans les caractéris-
tiques de l’application ou des variations dans les ressources disponibles, alors que la transition
PBR→A&Duplex est déclenchée par un changement dans le modèle de faute considéré. Les
transitions peuvent se produire dans les deux directions, selon la variation d’un paramètre.
Dans le Chapitre 2, nous élaborons sur la différence subtile qui existe entre une transition et
son inverse.

Le modèle de faute peut changer en devenant plus ou moins complexe. Sa variation néces-
site, le plus souvent, une composition de FTMs. Par exemple, si au début nous tolérons seulement

110

PBRstart PBR⊕TR

LFR LFR⊕TR

Assert&
DuplexA,R

FT

FT

A,R

A

FT

FT A

Figure 1: Transitions possibles entre les FTMs

les fautes par crash avec PBR et nous voulons ajouter la tolérance aux fautes en valeur transi-
toires, nous allons composer PBR avec TR et obtenir un FTM avec le comportement de PBR et
de TR.

Dans ce travail, l’opérateur ⊕ désigne la composition de FTMs (par exemple, PBR⊕TR
dans la Figure 1). Généralement, deux FTMs sont composés afin de tolérer les deux types
de faute qu’ils ciblent individuellement.

3 Conception pour l’adaptation des FTMs

La conception pour l’adaptation, aussi nommée conception pour le changement ou pour
l’évolution, est un problème fondamental lorsque l’on conçoit l’architecture d’un logiciel car
les changements ne devraient pas affecter les fonctionnalités de base, sinon le logiciel sera dif-
ficile à maintenir et la prise en compte des changements dans les besoins sera três coûteuse
([Buschmann et al., 96, p. 169]). Dans notre cas, l’objectif est de concevoir les FTMs de manière à
faciliter leur évolution en ligne (à l’exécution) en minimisant le nombre de modifications struc-
turelles et/ou comportementales à apporter lors des transitions entre différentes stratégies. La
conception pour l’adaptation est un procédé itératif qui représente une étape de préparation
avant les transitions à l’exécution proprement dites. Le procédé consiste en plusieurs boucles
de conception et a comme résultats un schéma d’exécution générique des FTMs, reproductible
tant dans la programmation orientée object (comme présenté dans cette section) que dans la
programmation orientée composant (comme présenté dans la section suivante), et un système
de patrons de conception pour la tolérance aux fautes.

3.1 Architecture initiale des FTMs

Pour illustrer notre approche, nous prenons comme point de départ le design (réalisé en
UML) et l’implémentation (en C++) d’une stratégie PBR. Les spécifications initiales dont ré-
sulte cette implémentation étaient de développer un framework de FTMs qui tolèrent les fautes
par crash. Le noyau de cette implémentation réside dans une classe qui englobe des fonction-
nalités générales de la tolérance aux fautes, le comportement des mécanismes duplex et aussi
la logique spécifique de PBR. Il va sans dire que ce design est très difficile à faire évoluer de

111

Résumé

manière efficace. En commençant l’étape de conception pour l’adaptation, notre objectif a été
d’arriver à une séparation nette entre toutes ces préoccupations afin de maximiser la réutilisa-
tion lors du développement de nouvelles variantes de duplex et d’autres FTMs.

3.2 Première itération de la conception pour l’adaptation

En analysant les FTM décrits ci-dessus, nous avons identifié un schéma d’exécution générique
qui capte leurs caractéristiques communes et leurs caractéristiques variables. Á la réception
d’une requête de la part du client, un serveur tolérant aux fautes exécute certaines actions
avant le traitement (telles que la synchronisation avec une réplique). Ensuite, il poursuit avec
le traitement de la requête. Après le traitement, il exécute certaines actions (telles que la syn-
chronisation avec une réplique) et, enfin, il envoie la réponse au client. Nous appelons cela
le schéma générique d’exécution before-proceed-after (avant-traitement-après), inspiré de la pro-
grammation orientée aspect [Kiczales et al., 97].

Le Tableau 2 décrit le contenu de chaque étape du schéma d’exécution pour tous les FTMs
considérés. Il est à noter que le fonctionnement de chaque FTM peut être décrit de manière très
intuitive selon notre schéma. Lors de la conception d’une stratégie duplex, ce schéma peut être

FTM Before Proceed After
PBR (Primary) Rien Traite requête Checkpoint au Backup
PBR (Backup) Rien Rien Traite checkpoint
LFR (Leader) Envoie requête au Follower Traite requête Notifie Follower
LFR (Follower) Reçoit requête Traite requête Traite notification
TR Sauve état appli Traite requête Restaure état appli
A&Duplex Rien Traite requête Vérifie assertion

Table 2: Schéma générique d’exécution des FTMs

traduit en sync_before-proceed-sync_after, car une synchronisation inter-répliques a lieu avant le
traitement des requêtes et une autre après. Ce schéma d’exécution nous a permis de factoriser
dans une classe mère ce qui est commun à tous les protocoles duplex, DuplexProtocol et
ensuite spécialiser, par héritage, les FTMs proprement dits, PBR et LFR (voir le diagramme de
classes de la Figure 2). D’autres variantes de duplex peuvent être ajoutées au framework, soit
en héritant de la classe de base abstraite DuplexProtocol ou de l’une des classes concrètes.

Caractéristiques variables des FTMs

Les étapes de notre schéma générique d’exécution représentent les caractéristiques variables/-
points de variation des FTMs. En comparant, par exemple, le fonctionnement de PBR avec celui
de LFR (voir le Tableau 2), nous avons l’intuition que si on divisait le protocole inter-répliques
dans des briques isolées qui puissent être identifiées et remplacées en-ligne, nous pourrions
exécuter une transition différentielle entre PBR et LFR. De cette façon, nous ne remplacerions
que les composants qui contiennent les caractéristiques variables entre les deux FTMs, sans
modifier le reste du système (par exemple, la communication avec le client, le traitement de

112

server

«virtual» «virtual» «virtual»

«interface»
StateManager

Server Remote

RemoteServer

RecoverableRemoteServer

FaultToleranceProtocol

TimeRedundancy DuplexProtocol Assertion

PBR LFR

PBR_A

LFR_A

LFR_TR

PBR_TR

Figure 2: Extrait du framework de patrons de conception pour la tolérance aux fautes (paquet
serveur)

la requête). En identifiant les caractéristiques variables des FTMs, nous pouvons facilement
développer hors-ligne des variantes à partir des FTMs existants et, lorsque l’on utilise un inter-
giciel reconfigurable à base de composants (comme montré dans la section suivante), exécuter
les transitions entre FTMs en-ligne avec un minimum de modifications apportées au logiciel.

3.3 Deuxième itération de la conception pour l’adaptation

Une deuxième séparation des préoccupations peut être faite entre ce qui est commun à tous les
FTMs et ce qui est propre aux stratégies duplex. La communication avec le client et le trans-
fert des requêtes au service fonctionnel proprement dit (l’étape proceed) sont encapsulés dans
une classe, FaultToleranceProtocol sur la Figure 2. Cette deuxième factorisation nous
a permis d’introduire dans notre framework des protocoles non-duplex ciblant d’autres mod-
èles de fautes que le crash, plus précisément les fautes en valeur (transitoires et permanentes) :
TimeRedundancy et Assertion sur la Figure 2, qui suivent le même schéma d’exécution
générique, comme déjà indiqué dans le Tableau 2.

De nouveaux protocoles peuvent être facilement ajoutés au framework soit en héritant de
la classe de base abstraite FaultToleranceProtocol ou de l’une des classes concrètes. Ceci
est particulièrement utile dans le cas de Assertion, qui est dépend fortement de l’application.

113

Résumé

3.4 Composition de FTMs

Comme conséquence directe des deux itérations du processus de conception pour l’adaptation,
la composition des FTMs est intuitive et presque immédiate. En héritant d’un protocole duplex
(qui tolère les fautes par crash) et d’un mécanisme de tolérance aux fautes en valeur, nous
obtenons quatre FTMs composés (voir la Figure 2) : PBR_TR et LFR_TR qui correspondent
à PBR⊕TR et LFR⊕TR respectivement du graphe des transitions de la Figure 1 et PBR_A et
LFR_A qui sont deux variantes de A&Duplex. La Figure 2 montre un extrait de la version
finale du framework de patrons de conception pour la tolérance aux fautes résultant des deux
boucles de conception, à savoir le paquet serveur. Une évaluation des bénéfices apportés par
la conception pour l’adaptation quant à la facilité de développer de nouveaux protocoles se
trouve à la fin du Chapitre 2.

4 Architectures à base de composants des FTMs

Dans cette section, nous discutons l’implémentation à base de composants des FTMs adaptatifs.
Cette étape fondamentale de notre travail prouve la faisabilité de l’approche en rassemblant les
enseignements tirés du processus de conception pour l’adaptation et le support apportés par
des outils modernes du génie logiciel.

4.1 Standards et outils

Les progrès récents dans le domaine du génie logiciel représentent l’un des catalyseurs de ce
travail de recherche. Ces progrès prennent différentes formes allant de normes et spécifications
jusqu’à des supports d’exécutions/intergiciels (en anglais, middleware) complexes offrant une
pléthore de fonctionnalités. Dans ce qui suit, nous présentons les outils issus du génie logiciel
que nous avons trouvés particulièrement utiles pour la réalisation de notre objectif.

Notre choix d’outils n’a pas été dicté par la nouveauté des solutions proposées. Nous nous
sommes principalement intéressés à trouver une solution offrant les fonctionnalités que nous
avions déjà identifiées comme primordiales pour nos fins, résumées dans ce que nous appelons
“l’API minimale pour l’adaptation en-ligne des mécanismes de tolérance aux fautes”.

Le standard SCA

Service Component Architecture (SCA) [Chappell, 07, Marino and Rowley, 09] est un ensem-
ble de spécifications pour la construction d’applications distribuées faiblement couplées et
facilement modifiables et personnalisables. Ces applications s’appuient sur les principes de
la Service-oriented Architecture (SOA) et du Component-Based Software Engineering (CBSE)
et utilisent un large spectre de technologies.

L’idée principale à la base de SCA est que les applications ont une structure hiérarchique
basée sur des composants qui peuvent être inclus dans des composites. Les composants et
les composites peuvent exhiber des propriétés, c’est-à-dire des paramètres de configuration,
représentés sous forme de paires nom-valeur lues à l’exécution de l’application. Les com-
posants fournissent et requièrent des services. Les services requis sont appelés des références

114

client

master

FTM

replyLog

 syncBefore

proceed

syncAfter

server

protocol

slave

failure
detector

composite composant

Légende SCA

propriété

service référence

 fil(local)

X Y

service référence

binding(distant)

référence référence

promotion

service service

promotion

Figure 3: Architecture à base de composants de PBR

et ils sont connectés au fournisseur du service effectif par des fils, wires en anglais, (dans le
cas de connexions locales) ou par des bindings (dans le cas des connexions entre machines
différentes). Les références et les services appartenant à un composant peuvent être rendus
visibles au niveau du composite qui contient le composant par des liens de promotion. Les
composites peuvent également agir en tant que composants à l’intérieur de composites plus
grands (c’est-à-dire, un composant peut être soit un composant primitif soit un composant
composite). La Figure 3 illustre ces notions sur le cas spécifique de l’implémentation à base de
composants de PBR, qui sera discutée plus en détail. Les composites représentent l’unité de
déploiement des applications et sont contenus dans une structure appelée domaine.

En séparant les interfaces (services et références) de l’implémentation proprement
dite [Szyperski, 02], cette approche facilite la réutilisation, l’évolution et la combinaison de
diverses technologies, puisque les composants consomment des services fournis par d’autres
composants sans être “conscients” de la façon dont ils sont mis en œuvre et si l’implémentation
change au fil du temps. Le modèle de programmation promu par SCA permet aux
développeurs de construire des applications distribuées plus facilement. En s’abstrayant de
la complexité du système distribué et des spécificités des technologies de communication sous-
jacentes, le développeur peut se concentrer sur la logique des applications et les structurer dans
des briques réutilisables et personnalisables.

FRASCATI et le support d’exécution pour la reconfiguration

Étant donné que SCA ne fournit qu’un ensemble de spécifications, les applications dévelop-
pées selon ses principes nécessitent un support approprié pour le déploiement et l’exécution.
Il existe plusieurs plate-formes de ce type, commerciales ou bien open-source. FRASCATI

est une plate-forme open-source d’origine académique qui fournit non seulement le support
du standard SCA mais va plus loin, en y rajoutant des fonctionnalités essentielles pour nos
travaux. Selon [Seinturier et al., 11], une omission fondamentale de la norme SCA est la gestion

115

Résumé

à l’exécution de l’application et de la plate-forme sous-jacente (le support adéquat), puisque
la description de l’assemblage des composants est utilisée seulement pour instancier et dé-
ployer l’application. Étant donné que nos FTMs adaptatifs requièrent des capacités de recon-
figuration après le déploiement de la part du support d’exécution, une simple implémenta-
tion de la norme SCA serait insuffisant pour nos besoins. FRASCATI gère la reconfiguration à
l’exécution des applications à base de composants grâce à l’intégration des capacités de réflex-
ivité de FRACTAL [Bruneton et al., 06]. FRACTAL est un modèle à composants indépendant du
langage de programmation conçu pour la construction de systèmes logiciels hautement config-
urables. En conséquence de cette intégration, les composants à l’intérieur des applications SCA
qui s’exécutent au-dessus de l’intergiciel FRASCATI sont également dotés des CONTRÔLEURS

spécifiques à FRACTAL pour la gestion du cycle de vie, l’introspection et la reconfiguration à
l’exécution de l’architecture à base de composants. Il existe plusieurs moyens d’effectuer ces
opérations sous FRASCATI. Pour nos expérimentations, nous utilisons son interpréteur de
scripts de reconfiguration écrits en FSCRIPT [David et al., 09]. Le langage de script FSCRIPT

fournit du support pour les modifications atomiques sûres [Léger et al., 10] de l’architecture
des applications à base de composants, garantissant ainsi que l’opération de reconfiguration
soit aboutit dans un état cohèrent (du point de vue des invariants architecturaux) soit laisse
l’architecture non modifiée, dans son état initial, si une exception est levée. C’est une propriété
essentielle pour nos transitions puisque l’ajout de cette dimension dynamique aux FTMs ne
doit pas réduire la fiabilité des mécanismes.

L’API minimale pour l’adaptation en-ligne des FTMs

Avant même de choisir les outils et de réaliser nos expérimentations, nous avons identifié un
ensemble de fonctionnalités qui doivent être fournies par le support d’exécution pour qu’il
soit adéquat à nos objectifs. Toutes ces fonctionnalités sont liées au degré d’observabilité et de
contrôle de l’architecture à base de composants fourni par la plate-forme d’exécution:

• contrôle sur le cycle de vie des composants à l’exécution (pour ajouter ou supprimer des
composants, les démarrer ou les arrêter);

• contrôle sur les interactions entre composants à l’exécution (pour créer ou supprimer des
fils ou des bindings entre les références et les services).

Ensuite, pour assurer la cohérence avant, pendant et après la reconfiguration, ces problèmes
doivent aussi être pris en compte:

• les composants doivent être arrêtés dans un état de “quiescence” ou dormant, quand il
n’y a plus d’opération en cours d’exécution à l’intérieur;

• les requêtes entrantes sur les composants arrêtés doivent être bufférisées jusqu’au redém-
marage des composants en question pour assurer la cohérence du traitement.

Pour nos travaux, nous avons choisi FRASCATI (avec son interpréteur FSCRIPT) parce que
cette plate-forme implémente l’API minimale que nous venons d’introduire. Cependant, il
est important de souligner que notre approche est parfaitement reproductible sur tout autre
intergiciel avec ces fonctionnalités.

116

4.2 Architecture à base de composants de PBR

La Figure 3 montre l’architecture à base de composants d’une version simplifiée de
PBR [Speirs and Barrett, 89]. Cette preuve de concept résulte de la projection de notre schéma
d’exécution générique (before-proceed-after) présenté dans la Section 3 sur FRASCATI, selon
les spécifications de SCA. Nous pouvons observer la séparation des préoccupations entre la
logique applicative (le composant server) et le niveau non-fonctionnel. Ce dernier est com-
posé du protocole inter-répliques (le composite ftm qui implémente, dans ce cas, la logique de
PBR) et du mécanisme de détection des crash (le composant failure detector). Tous les
composants représentés dans la Figure 3 sont implémentés en Java. L’aspect essentiel de cette
architecture à base de composants est le fait que les étapes du schéma générique d’exécution
sont contenues dans des composants individuels, bien déterminés (syncBefore, proceed,
syncAfter) qui peuvent être modifiés à l’exécution, en faisant appel aux fonctionnalités
fournies par FRASCATI.

4.3 Transitions entre FTMs à l’exécution

Ayant décomposé les FTMs décrits dans la Section 2 en “briques” élémentaires, nous nous ap-
puyons sur les fonctionnalités de FRASCATI afin d’exécuter des transitions différentielles (à
grain fin) entre les FTMs, en remplaçant uniquement les composants qui contiennent les carac-
téristiques variables entre le FTM final et le FTM initial. La Figure 4 présente la vue d’ensemble
du processus de transition qui regroupe plusieurs entités et leurs interactions:

• le Système sur lequel s’exécute une application tolérante aux fautes, attachée à un FTM
adéquat;

• le Manager du système qui observe le système afin de détecter des changements dans
les valeurs des paramètres (FT,A,R). Lorsque le FTM courant n’est plus cohérent avec les
nouvelles valeurs des paramètres, le manager appelle le Contrôleur d’adaptation en lui
donnant comme paramètres d’entrée le nouveau FTM vers lequel une transition doit être
exécutée;

• le Contrôleur d’adaptation appelle le Dépôt de FTMs adaptatifs pour récupérer le paquet
de la transition en question. Ce paquet contient les nouveaux composants qui doivent être
introduits dans l’architecture actuelle afin d’arriver, de manière différentielle, au FTM
désiré et le script (en FSCRIPT) dans lequel s’exécute la mécanique de reconfiguration
(suppression des composants qui ne sont plus nécessaires et introduction des nouveaux);

• l’Interpréteur de scripts, qui est en fait l’interpréteur FSCRIPT de FRASCATI, interprète
le script contenu dans le paquet de la transition désirée et modifie le système. Les scripts
sont construits à partir des actions élémentaires identifiées dans l’API minimale pour
l’adaptation des FTMs;

• le Dépôt de FTMs adaptatifs contient les paquets de transition. L’agilité promue par
notre approche réside dans le fait que de nouveaux paquets peuvent être développés
hors-ligne à tout moment pendant la vie opérationnelle du système et introduits en-ligne

117

Résumé

System

FTM &
Adaptation
Repository

New
components

script

Transition
package1

New
components

script

Transition
package2

Script
interpreter

access

modify

call

observe

trigger

Fault Tolerance
Adaptation
Controller

Hot Resilient
Computing

Cold Resilient
Computing

Probes

System
manager

FTM
developer

ON-LINE OFF-LINE

Figure 4: Aperçu du processus d’adaptation des FTMs

lorsque le besoin se présente avec un impact minimal sur l’architecture existante pour
exécuter de nouvelles transitions, pas prévues au design.

Le Chapitre 4 présente en détail l’implémentation à base de composants de PBR et plusieurs
transitions parmi celles du graphe de la Figure 1. Par exemple, la transition PBR→LFR requièrt,
d’après l’analyse des caractéristiques variables du Tableau 2, le remplacement des composants
syncBefore et syncAfter caractéristiques à PBR avec ceux de LFR.

5 Evaluation, intégration et application

Dans le Chapitre 5 de cette thèse, nous avons discuté deux aspects fondamentaux. Dans la
première partie du chapitre, nous avons analysé les performances de notre approche, d’une
part, à travers des mesures du temps nécessaire pour exécuter une transition et du nombre de
composants modifiés et, d’autre part, en discutant l’agilité des modifications. Cette campagne
de mesures nous a permis de trouver une dépendance linéaire entre le temps d’exécution d’une
transition et le nombre de composants remplacés et, plus important, à travers cette analyse
nous avons démontré la faisabilité de l’adaptation agile des FTMs. Nous avons également
comparé les performances avec celles d’autres approches existantes.

Dans la deuxième partie, nous avons illustré l’intérêt et l’utilisabilité de notre approche.
Dans ce but, nous avons montré comment appliquer les concepts liés à la tolérance aux fautes
adaptatives dans deux scénarios différents . Tout d’abord, nous avons décrit l’intégration des
FTMs adaptatifs dans DiaSuite [Cassou et al., 11b], une approche de développement dirigée par
la conception. La méthodologie résultante [Enard et al., 13] assure la traçabilité des exigences
de sûreté de fonctionnement le long du cycle de vie de l’application, de sa conception jusqu’à
la capacité de gérer l’adaptation à l’exécution. Ensuite, nous avons illustré les avantages de

118

la tolérance aux fautes adaptative dans les réseaux de capteurs sans fil, un environnement
de développement radicalement différent. Nous avons décrit les différentes étapes qui ont
été effectuées pour intégrer la tolérance aux fautes (classique et adaptative) dans un environ-
nement de développement dédié aux réseaux de capteurs sans fil, en soulignant les similitudes
et les différences entre cet environnement et celui basé sur DiaSuite. Nous avons enfin illustré
l’environnement résultant sur le scénario d’une application de gestion de parking déployée en
utilisant des réseaux de capteurs et enrichie avec des capacités de tolérance aux fautes adap-
tative. Pour combler l’écart entre nos FTMs à base de composants et le système cible, nous
avons décrit l’intégration de notre framework dans Srijan [Pathak and Prasanna, 08] un toolkit
de macroprogrammation. Cette intégration est en train d’être finalisée.

6 Conclusion & Perspectives

6.1 Conclusion

La résilience informatique désigne la capacité d’un système à maintenir ses propriétés de sûreté
de fonctionnement en dépit des changements. Dans cette thèse, une approche a été proposée
pour s’attaquer à un aspect fondamental de la résilience informatique, à savoir l’adaptation
en-ligne des mécanismes de tolérance aux fautes (FTMs). Bien que la tolérance aux fautes
adaptative (AFT) ait déjà attiré l’intérêt depuis un certain temps, dans les solutions existantes,
l’adaptation des FTMs est faite de manière préprogrammée. Dans ces approches, tous les FTMs
qui représentent de potentiels candidats pour une application doivent être connus dès la con-
ception du système et déployés dès le début. Cette méthode n’est pas satisfaisante pour les
systèmes avec une longue vie opérationnelle dans des environnements très dynamiques, car il
est impossible de prévoir tous les changements qui pourraient survenir. Comme l’adaptivité
a longtemps été l’apanage du niveau fonctionnel des applications (qui implémente la logique
métier), une quantité considérable de travaux existe dans le domaine du génie logiciel sur ce
sujet. Par conséquent, nous avons proposé une approche qui s’appuie sur des outils et des stan-
dards provenant de ce domaine. L’approche proposée comporte quatre étapes : un référentiel
pour illustrer la dynamique des FTMs et les paramètres qui en sont responsables, un proces-
sus itératif de “conception pour l’adaptation” des FTMs, le développement des FTMs sur un
intergiciel réflexif à base de composants, et des expérimentations pour valider et illustrer la
démarche .

6.2 Perspectives

Située à l’intersection de plusieurs domaines, à savoir la sûreté de fonctionnement et le génie
logiciel en premier lieu, l’informatique ubiquitaire et les systèmes autonomiques dans une
moindre mesure, cette thèse ouvre plusieurs perspectives de recherche.

Un objectif à moyen terme est de développer l’ensemble de FTMs adaptatifs sur un autre
intergiciel à base de composants fournissant l’API minimale requise. Ce travail nous fournirait
les moyens de comparer différentes implémentations et d’évaluer les efforts nécessaires pour
instancier l’approche sur un autre support. Un deuxième objectif à moyen terme est de pousser
plus loin les deux exemples d’intégration des FTMs adaptatifs (dans DiaSuite et Srijan).

119

Résumé

Un objectif à long terme est de développer la logique d’adaptation, plus particulièrement,
un moniteur et un manager d’adaptation qui déclenche les transitions entre FTMs (avec ou
sans intervention humaine).

120

Appendix

FTM
Fault

model
Nb. of
nodes

Application
characteristics

PBR Crash 2 Requires state access
LFR Crash 2 Requires determinism
TR Transient 1 Requires state access

A&Duplex
Crash

Transient
Permanent

2
May require determinism

or state access

TMR
Crash

Transient
Permanent

3 Requires determinism

Comp&DD
Crash

Transient
Permanent

4 Requires determinism

RB
Transient
Software

1
Requires state access,

determinism,
design diversity

NVP

Crash
Transient

Permanent
Software

3,5,...
Requires determinism,

design diversity

NSCP

Crash
Transient

Permanent
Software

4
Requires determinism,

design diversity

Legend
PBR=Primary-Backup Replication
LFR=Leader-Follower Replication
TR=Time Redundancy
A&Duplex=Assertion&Duplex
TMR=Triple Modular Redundancy
Comp&DD=Comparison&Double Duplex
RB=Recovery Blocks
NVP=N-Version Programming
NSCP=N-Self-Checking Programming

Table 3: Underlying characteristics of the entire set of FTMs from Figure 2.2

121

Appendix

122

Bibliography

[com] Component Object Model Technologies. http://www.microsoft.com/com/
default.mspx.

[ejb] Enterprise Java Beans® 3.1. http://www.oracle.com/technetwork/java/
javaee/ejb/index.html.

[OSG] OSGi Alliance. http://www.osgi.org.

[ftc, 02] OMG Fault-Tolerant CORBA. 2002. http://www.omg.org/cgi-bin/doc?
formal/02-12-02.

[ccm, 11] OMG CORBA Component Model v4.0. 2011. http://www.omg.org/spec/CCM/
4.0/.

[André et al., 11] Pierre André, Jean-Charles Fabre, Camille Fayollas, Jérémie Guiochet,
Matthieu Roy, and Miruna Stoicescu. A Simple Primary-Backup Replication Design Pat-
tern: Development in UML and application. LAAS Report 11476, LAAS, Sep 2011. http:
//dbserver.laas.fr/pls/LAAS/publis.rech_doc?langage=FR&clef=118731.

[Armstrong, 94] L. T. Armstrong. ADAPTIVE FAULT TOLERANCE. Technical report, GE
Aerospace Advanced Technology Laboratories, 1994. http://www.dtic.mil/cgi-bin/
GetTRDoc?AD=ADA281251&Location=U2&doc=GetTRDoc.pdf.

[Avižienis, 67] Algirdas Avižienis. Design of fault-tolerant computers. In Proceedings of the
November 14-16, 1967, fall joint computer conference, AFIPS ’67 (Fall), pages 733–743, New
York, NY, USA. ACM, 1967. http://doi.acm.org/10.1145/1465611.1465708.

[Avižienis, 85] Algirdas Avižienis. The N-Version Approach to Fault-Tolerant Software. IEEE
Transactions on Software Engineering, (12):1491–1501, IEEE, 1985. http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=1701972&userType=inst.

[Avižienis et al., 04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Trans. Dependable Secur. Comput., 1:11–33, IEEE Computer Society Press, Los Alami-
tos, CA, USA, January 2004. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1335465.

123

http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.osgi.org
http://www.omg.org/cgi-bin/doc?formal/02-12-02
http://www.omg.org/cgi-bin/doc?formal/02-12-02
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/CCM/4.0/
http://dbserver.laas.fr/pls/LAAS/publis.rech_doc?langage=FR&clef=118731
http://dbserver.laas.fr/pls/LAAS/publis.rech_doc?langage=FR&clef=118731
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA281251&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA281251&Location=U2&doc=GetTRDoc.pdf
http://doi.acm.org/10.1145/1465611.1465708
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1701972&userType=inst
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1701972&userType=inst
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335465
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335465

Bibliography

[Barret et al., 90] P.A. Barret, A.M. Hilborne, P.G. Bond, D.T. Seaton, P. Verissimo, L. Rodrigues,
and N.A. Speirs. The Delta-4 extra performance architecture (XPA). In Fault-Tolerant Com-
puting, 1990. FTCS-20. Digest of Papers., 20th International Symposium, pages 481–488. IEEE,
1990. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=89386.

[Batista et al., 05] Thais Batista, Ackbar Joolia, and Geoff Coulson. Managing Dynamic Re-
configuration in Component-Based Systems. In Proceedings of the 2nd European conference
on Software Architecture, EWSA’05, pages 1–17, Berlin, Heidelberg. Springer-Verlag, 2005.
http://dx.doi.org/10.1007/11494713_1.

[Bharath et al., 01] Roger Bharath, Melanie Dumas, and Mevlut Erdem Kurul. Adaptive
Fault Tolerance in Distributed Systems. Department of Computer Science University of Cal-
ifornia, San Diego La Jolla, CA, 2001. http://charlotte.ucsd.edu/classes/wi01/
cse221/OSSurveyW01/papers/rbharath,mdumas,mkurul.adaptive_fault_

tolerance_in_distributed_systems.pdf.

[Bhatti et al., 97] Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting, and Wanda Chiu.
COYOTE: A System for Constructing Fine-Grain Configurable Communication Services.
ACM Transactions on Computer Systems, 16:321–366, 1997. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.52.3037.

[Bruneton et al., 06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The FRACTAL component model and its support in Java. Software:
Practice and Experience, 36(11-12):1257–1284, Wiley Online Library, 2006. http://www.cs.
colostate.edu/saxs/se/FractalComponent.pdf.

[Budhiraja et al., 93] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The
Primary-Backup Approach. Distributed systems, 2:199–216, Addison-Wesley, 1993. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.5896.

[Buschmann et al., 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-oriented Software Architecture, volume 1: A System of Patterns.
Wiley Chichester, United Kingdom, 1996. https://wiki.sch.bme.hu/images/9/98/
Sznikak_jegyzet_Pattern-Oriented-SA_vol1.pdf.

[Cassou et al., 11a] Damien Cassou, Emilie Balland, Charles Consel, and Julia Lawall. Leverag-
ing Software Architectures to Guide and Verify the Development of Sense/Compute/Con-
trol Applications. In Proceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 431–440, New York, NY, USA. ACM, 2011. http://doi.acm.org/10.
1145/1985793.1985852.

[Cassou et al., 11b] Damien Cassou, Julien Bruneau, Charles Consel, and Emilie Balland. To-
wards a Tool-based Development Methodology for Pervasive Computing Applications.
IEEE TSE: Transactions on Software Engineering, 2011. http://arxiv.org/abs/1203.
6459.

[Chan et al., 07] Pat. P.W. Chan, Michael R. Lyu, and Miroslaw Malek. Reliable Web Services:
Methodology, Experiment and Modeling. In Web Services, 2007. ICWS 2007. IEEE International

124

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=89386
http://dx.doi.org/10.1007/11494713_1
http://charlotte.ucsd.edu/classes/wi01/cse221/OSSurveyW01/papers/rbharath,mdumas,mkurul.adaptive_fault_tolerance_in_distributed_systems.pdf
http://charlotte.ucsd.edu/classes/wi01/cse221/OSSurveyW01/papers/rbharath,mdumas,mkurul.adaptive_fault_tolerance_in_distributed_systems.pdf
http://charlotte.ucsd.edu/classes/wi01/cse221/OSSurveyW01/papers/rbharath,mdumas,mkurul.adaptive_fault_tolerance_in_distributed_systems.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.3037
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.3037
http://www.cs.colostate.edu/saxs/se/FractalComponent.pdf
http://www.cs.colostate.edu/saxs/se/FractalComponent.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.5896
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.5896
https://wiki.sch.bme.hu/images/9/98/Sznikak_jegyzet_Pattern-Oriented-SA_vol1.pdf
https://wiki.sch.bme.hu/images/9/98/Sznikak_jegyzet_Pattern-Oriented-SA_vol1.pdf
http://doi.acm.org/10.1145/1985793.1985852
http://doi.acm.org/10.1145/1985793.1985852
http://arxiv.org/abs/1203.6459
http://arxiv.org/abs/1203.6459

Conference on, pages 679–686. IEEE, 2007. http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=4279659&tag=1.

[Chang et al., 98] Ilwoo Chang, Matti A. Hiltunen, and Richard D. Schlichting. Affordable
Fault Tolerance through Adaptation. In Parallel and Distributed Processing, pages 585–603.
Springer, 1998. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
52.7628.

[Chappell, 07] David Chappell. INTRODUCING SCA. 2007. http://www.
davidchappell.com/articles/Introducing_SCA.pdf.

[Cheng and Garlan, 12] Shang-Wen Cheng and David Garlan. Stitch: A language for
architecture-based self-adaptation. Journal of Systems and Software, Special Issue on State of
the Art in Self-Adaptive Systems, 85(12), December 2012. http://www.sciencedirect.
com/science/article/pii/S0164121212000714#.

[Chérèque et al., 92] Marc Chérèque, David Powell, Philippe Reynier, Jean-Luc Richier, and
Jacques Voiron. Active Replication in Delta-4. In The Twenty-Second Annual International
Symposium on Fault-Tolerant Computing (Digest of Papers: FTCS-22), pages 28–37. IEEE, 1992.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=243618&tag=1.

[Chetan et al., 05] Shiva Chetan, Anand Ranganathan, and Roy Campbell. Towards Fault Tol-
erant Pervasive Computing. Technology and Society Magazine, IEEE, 24(1):38–44, IEEE, 2005.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1407746.

[Computing, 06] Autonomic Computing. An architectural blueprint for autonomic comput-
ing. IBM White Paper, IBM, 2006. http://www-03.ibm.com/autonomic/pdfs/AC%
20Blueprint%20White%20Paper%20V7.pdf.

[Coulson, 01] Geoff Coulson. What is Reflective Middleware? IEEE Distributed Systems On-
line, 2(8):165–169, 2001. http://www.comp.lancs.ac.uk/~geoff/Publications/
RMARTICLE1.pdf.

[Coulson et al., 08] Geoff Coulson, Gordon Blair, Paul Grace, François Taïani, Ackbar Joolia,
Kevin Lee, Jo Ueyama, and Thirunavukkarasu Sivaharan. A Generic Component Model for
Building Systems Software. ACM Trans. Comput. Syst., 26(1):1:1–1:42, ACM, New York, NY,
USA, March 2008. http://dl.acm.org/citation.cfm?id=1328672.

[Crnković et al., 11] Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis, and Michel R.V.
Chaudron. A Classification Framework for Software Component Models. IEEE Transac-
tions on Software Engineering, 37(5):593–615, IEEE, 2011. http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5587419&tag=1.

[Daniels et al., 97] Fonda Daniels, Kalhee Kim, and Mladen A. Vouk. The Reliable Hy-
brid Pattern A Generalized Software Fault Tolerant Design Pattern. In Int. Conf.
PloP, pages 1–9. 1997. http://130.203.133.150/viewdoc/summary;jsessionid=
5F290EAC59945420527DD66FCB518994?doi=10.1.1.52.3351.

125

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4279659&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4279659&tag=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.7628
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.7628
http://www. davidchappell. com/articles/Introducing_SCA. pdf
http://www. davidchappell. com/articles/Introducing_SCA. pdf
http://www.sciencedirect.com/science/article/pii/S0164121212000714#
http://www.sciencedirect.com/science/article/pii/S0164121212000714#
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=243618&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1407746
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www.comp.lancs.ac.uk/~geoff/Publications/RMARTICLE1.pdf
http://www.comp.lancs.ac.uk/~geoff/Publications/RMARTICLE1.pdf
http://dl.acm.org/citation.cfm?id=1328672
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5587419&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5587419&tag=1
http://130.203.133.150/viewdoc/summary;jsessionid=5F290EAC59945420527DD66FCB518994?doi=10.1.1.52.3351
http://130.203.133.150/viewdoc/summary;jsessionid=5F290EAC59945420527DD66FCB518994?doi=10.1.1.52.3351

Bibliography

[David et al., 09] Pierre-Charles David, Thomas Ledoux, Marc Léger, and Thierry Coupaye.
FPath and FScript: Language support for navigation and reliable reconfiguration of Frac-
tal architectures. Annales des Télécommunications, 64(1-2):45–63, 2009. http://link.
springer.com/article/10.1007%2Fs12243-008-0073-y.

[de Souza et al., 07] Luciana Moreira Sá de Souza, Harald Vogt, and Michael Beigl. A Survey
on Fault Tolerance in Wireless Sensor Networks. Interner Bericht. Fakultät für Informatik, Uni-
versität Karlsruhe, 2007. http://ahvaz.ist.unomaha.edu/azad/temp/multipath/
09-souza-wireles-sensor-networks-fault-tolerance-survey.pdf.

[Dijkstra, 82] Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on
Computing: A Personal Perspective, pages 60–66. Springer, 1982. http://www.cs.utexas.
edu/users/EWD/ewd04xx/EWD447.PDF.

[Enard et al., 13] Quentin Enard, Miruna Stoicescu, Emilie Balland, Charles Consel, Laurence
Duchien, Jean-Charles Fabre, and Matthieu Roy. Design-Driven Development Methodology
for Resilient Computing. In CBSE’13: Proceedings of the 16th International ACM Sigsoft Sym-
posium on Component-Based Software Engineering. 2013. http://dl.acm.org/citation.
cfm?id=2465458.

[Fabre, 09] Jean-Charles Fabre. Architecting Dependable Systems Using Reflective Comput-
ing: Lessons Learnt and Some Challenges. In WADS’09, pages 273–296. 2009. http:
//link.springer.com/chapter/10.1007%2F978-3-642-17245-8_12.

[Feljan et al., 09] Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petričić, and Ivica
Crnković. Classification and survey of component models. Technical report,
2009. http://www.fer.unizg.hr/_download/repository/classification_

dices_tech_report_1.0.pdf.

[Ferreira and Rubira, 98] Luciane Lamour Ferreira and Cecília Mary Fischer Rubira. Reflec-
tive Design Patterns to Implement Fault Tolerance. In OOPSLA Workshop on Reflective Pro-
gramming. 1998. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.104.9709&rep=rep1&type=pdf.

[Fraga et al., 03] Joni Fraga, Frank Siqueira, and Fábio Favarim. An Adaptive Fault-Tolerant
Component Model. In Proceedings of the Ninth IEEE Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS’03), pages 179–186. IEEE, 2003. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.59.1124.

[Gamma et al., 93] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Abstraction and Reuse of Object-Oriented Design. In ECOOP ’93, pages 406–431.
Springer-Verlag, 1993. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.136.2555.

[Gamma et al., 95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

126

http://link.springer.com/article/10.1007%2Fs12243-008-0073-y
http://link.springer.com/article/10.1007%2Fs12243-008-0073-y
http://ahvaz.ist.unomaha.edu/azad/temp/multipath/09-souza-wireles-sensor-networks-fault-tolerance-survey.pdf
http://ahvaz.ist.unomaha.edu/azad/temp/multipath/09-souza-wireles-sensor-networks-fault-tolerance-survey.pdf
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://dl.acm.org/citation.cfm?id=2465458
http://dl.acm.org/citation.cfm?id=2465458
http://link.springer.com/chapter/10.1007%2F978-3-642-17245-8_12
http://link.springer.com/chapter/10.1007%2F978-3-642-17245-8_12
http://www.fer.unizg.hr/_download/repository/classification_dices_tech_report_1.0.pdf
http://www.fer.unizg.hr/_download/repository/classification_dices_tech_report_1.0.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9709&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9709&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1124
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1124
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.2555
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.2555

[Garlan et al., 00] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural De-
scription of Component-Based Systems. In Gary T. Leavens and Murali Sitaraman, ed-
itors. Foundations of Component-Based Systems, pages 47–67. Cambridge University Press,
New York, NY, USA, 2000. http://www.cs.cmu.edu/afs/cs/project/able/ftp/
acme-fcbs/acme-fcbs.pdf.

[Garlan and Schmerl, 02] David Garlan and Bradley Schmerl. Model-based Adaptation for
Self-Healing Systems. In Proceedings of the first workshop on Self-healing systems, WOSS ’02,
pages 27–32, New York, NY, USA. ACM, 2002. http://dl.acm.org/citation.cfm?
id=582134.

[Garlan et al., 01] David Garlan, Bradley Schmerl, and Jichuan Chang. Using Gauges for
Architecture-Based Monitoring and Adaptation. In Proceedings of the Working Conference
on Complex and Dynamic Systems Architecture. 12-14 December 2001. http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.103.5333&rep=rep1&type=pdf.

[Gibert et al., 12] Victor Gibert, Mathilde Machin, Jean-Charles Fabre, and Miruna Stoic-
escu. Design for Adaptation of Fault Tolerance Strategies. LAAS Report 12198, LAAS,
Apr 2012. http://dbserver.laas.fr/pls/LAAS/publis.rech_doc?langage=
FR&clef=120092.

[Goldberg et al., 93] Jack Goldberg, Ira Greenberg, and Thomas F. Lawrence. Adaptive Fault
Tolerance. In Proceedings of the IEEE Workshop on Advances in Parallel and Distributed Sys-
tems, pages 127–132. IEEE, 1993. http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=00588861.

[Gong and Goldberg, 94] Li Gong and Jack Goldberg. Implementing Adaptive Fault-Tolerant
Services for Hybrid Faults. Technical report, 1994. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.31.312.

[Gouda and Herman, 91] Mohamed G. Gouda and Ted Herman. Adaptive Programming.
IEEE Transactions on Software Engineering, 17(9):911–921, IEEE, 1991. https://webspace.
utexas.edu/goudamg/IEEE/00092911.pdf.

[Hecht et al., 00] Myron Hecht, Herbert Hecht, and Eltefaat Shokri. Adaptive Fault Tolerance
for Spacecraft. In Aerospace Conference Proceedings, 2000 IEEE, volume 5, pages 521–533. IEEE,
2000. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=878526.

[Heineman and Councill, 01] George T. Heineman and William T. Councill. Component-Based
Software Engineering: Putting the Pieces Together, volume 17. Addison-Wesley Reading, 2001.

[Hiltunen and Schlichting, 93] Matti A. Hiltunen and Richard D. Schlichting. An Approach to
Constructing Modular Fault-Tolerant Protocols. In SRDS, Proceedings of the 12th Symposium
on Reliable Distributed Systems, pages 105–114. IEEE, 1993. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=393468.

[Hiltunen and Schlichting, 94] Matti A. Hiltunen and Richard D. Schlichting. A Model for
Adaptive Fault-Tolerant Systems. In EDCC, Proceedings of the 1st European Dependable

127

http://www.cs.cmu.edu/afs/cs/project/able/ftp/acme-fcbs/acme-fcbs.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/acme-fcbs/acme-fcbs.pdf
http://dl.acm.org/citation.cfm?id=582134
http://dl.acm.org/citation.cfm?id=582134
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5333&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5333&rep=rep1&type=pdf
http://dbserver.laas.fr/pls/LAAS/publis.rech_doc?langage=FR&clef=120092
http://dbserver.laas.fr/pls/LAAS/publis.rech_doc?langage=FR&clef=120092
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00588861
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00588861
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.312
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.312
https://webspace.utexas.edu/goudamg/IEEE/00092911.pdf
https://webspace.utexas.edu/goudamg/IEEE/00092911.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=878526
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=393468
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=393468

Bibliography

Computing Conference, Lecture Notes in Computer Science, pages 3–20. Springer-Verlag, 1994.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3108.

[Hiltunen and Schlichting, 96] Matti A. Hiltunen and Richard D. Schlichting. Adaptive Dis-
tributed and Fault-Tolerant Systems. Computer Systems Science and Engineering, 11(5):275–
285, 1996. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.
3907.

[Hošek et al., 10] Petr Hošek, Tomáš Pop, Tomáš Bureš, Petr Hnětynka, and Michal Malohlava.
Comparison of Component Frameworks for Real-Time Embedded Systems. In CBSE, Pro-
ceedings of the 13th International Symposium on Component-Based Software Engineering, Prague,
Czech Republic, pages 21–36. Springer, 2010. http://link.springer.com/chapter/
10.1007%2F978-3-642-13238-4_2.

[Huebscher and McCann, 08] Markus C. Huebscher and Julie A. McCann. A survey of Au-
tonomic Computing–Degrees, Models, and Applications. ACM Computing Surveys (CSUR),
40(3), ACM, 2008. http://dl.acm.org/citation.cfm?id=1380585.

[James et al., 10] Mark James, Paul Springer, and Hans Zima. Adaptive Fault Tolerance for
Many-Core Based Space-Borne Computing. In Euro-Par Parallel Processing, Proceedings of
the 16th International Euro-Par Conference, Ischia, Italy. Springer, 2010. http://link.
springer.com/chapter/10.1007%2F978-3-642-15291-7_25.

[Kalbarczyk et al., 99] Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, Saurabh Bagchi, and Keith
Whisnant. Chameleon: A Software Infrastructure for Adaptive Fault Tolerance. IEEE Trans-
actions on Parallel and Distributed Systems, 10(6):560–579, IEEE, 1999. http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=774907.

[Kephart and Chess, 03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic
Computing. Computer, 36(1):41–50, IEEE, 2003. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1160055.

[Kiczales et al., 97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming.
ECOOP’97 – Proceedings of the European Conference on Object-Oriented Programming, pages
220–242, Springer, 1997. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.115.8660.

[Kim et al., 97] K. H. (Kane) Kim, Jack Goldberg, Thomas F. Lawrence, and C. Subbaraman.
The Adaptable Distributed Recovery Block Scheme and a Modular Implementation Model.
In Proceedings of the 1997 Pacific Rim International Symposium on Fault-Tolerant Systems, PRFTS
’97, pages 131–, Washington, DC, USA. IEEE Computer Society, 1997. http://dl.acm.
org/citation.cfm?id=826040.827004.

[Kim and Lawrence, 90] K. H. (Kane) Kim and Thomas F. Lawrence. Adaptive Fault Tolerance:
Issues and Approaches. In Proceedings of the Second IEEE Workshop on Future Trends of Dis-
tributed Computing Systems, pages 38–46. IEEE, 1990. http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=138292.

128

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3108
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3907
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3907
http://link.springer.com/chapter/10.1007%2F978-3-642-13238-4_2
http://link.springer.com/chapter/10.1007%2F978-3-642-13238-4_2
http://dl.acm.org/citation.cfm?id=1380585
http://link.springer.com/chapter/10.1007%2F978-3-642-15291-7_25
http://link.springer.com/chapter/10.1007%2F978-3-642-15291-7_25
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=774907
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=774907
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.8660
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.8660
http://dl.acm.org/citation.cfm?id=826040.827004
http://dl.acm.org/citation.cfm?id=826040.827004
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=138292
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=138292

[Kim and Welch, 89] K. H. (Kane) Kim and Howard O. Welch. Distributed Execution of Re-
covery Blocks: An Approach for Uniform Treatment of Hardware and Software Faults in
Real-Time Applications. IEEE Transactions on Computers, 38(5):626–636, IEEE Computer So-
ciety, Washington, DC, USA, May 1989. http://dx.doi.org/10.1109/12.24266.

[Knight, 12] John Knight. Fundamentals of Dependable Computing for Software Engineers. CRC
Press, 2012.

[Laprie, 04] Jean-Claude Laprie. Sûreté de fonctionnement des systèmes: concepts de base et
terminologie. REE. Revue de l’électricité et de l’électronique, (11):95–105, Société de l’Electricité,
de l’Electronique et des Technologies de l’Information et de la Communication (SEE), 2004.

[Laprie, 08] Jean-Claude Laprie. From Dependability to Resilience. In International Conference
on Dependable Systems and Networks (DSN 2008), Anchorage, AK, USA, volume 8. 2008. http:
//www.ece.cmu.edu/~koopman/dsn08/fastabs/dsn08fastabs_laprie.pdf.

[Laprie et al., 90] Jean-Claude Laprie, Jean Arlat, Christian Béounes, and Karama Kanoun.
Definition and Analysis of Hardware- and Software-Fault-Tolerant Architectures. Com-
puter, 23(7):39–51, IEEE, 1990. http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=56851.

[Laprie et al., 96] Jean-Claude Laprie, Jean Arlat, Jean-Paul Blanquart, Alain Costes, Yves
Crouzet, Yves Deswarte, Jean-Charles Fabre, Hubert Guillermain, Mohamed Kaâniche,
Karama Kanoun, Corinne Mazet, David Powell, Christophe Rabéjac, and Pascale Thévenod.
Guide de la Sûreté de Fonctionnement. Cépaduès, 1996. ISBN 978-2-854-28382-2.

[Laprie et al., 92] Jean-Claude Laprie, A. Avižienis, and H. Kopetz, editors. Dependability: Ba-
sic Concepts and Terminology, volume 5 of Dependable Computing and Fault-Tolerant Systems.
Springer-Verlag Wien New York, Inc., 1992.

[Lardner, 34] Dionysius Lardner. Babbage’s Calculating Engine. Edinburgh Review,
59(120):263–327, 1834.

[Laws et al., 11] Simon Laws, Mark Combellack, Raymond Feng, Haleh Mahbod, and Simon
Nash. Tuscany SCA in Action. Manning Publications Co., 2011.

[Lee and Anderson, 90] Peter A. Lee and Thomas Anderson. Fault Tolerance, volume 3 of De-
pendable Computing and Fault-Tolerant Systems. Springer-Verlag Wien New York, Inc., 1990.

[Léger et al., 10] Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable Dynamic Re-
configurations in a Reflective Component Model. In Proceedings of the 13th international con-
ference on Component-Based Software Engineering, CBSE’10, pages 74–92, Berlin, Heidelberg.
Springer-Verlag, 2010. http://dx.doi.org/10.1007/978-3-642-13238-4_5.

[Lung et al., 06] Lau Cheuk Lung, Fabio Favarim, Giuliana Teixeira Santos, and Miguel Cor-
reia. An Infrastructure for Adaptive Fault Tolerance on FT-CORBA. In Proceedings of the Ninth
IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC ’06). IEEE, 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.68.6352.

129

http://dx.doi.org/10.1109/12.24266
http://www.ece.cmu.edu/~koopman/dsn08/fastabs/dsn08fastabs_laprie.pdf
http://www.ece.cmu.edu/~koopman/dsn08/fastabs/dsn08fastabs_laprie.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=56851
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=56851
http://dx.doi.org/10.1007/978-3-642-13238-4_5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.6352
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.6352

Bibliography

[Lyons and Vanderkulk, 62] R.E. Lyons and W. Vanderkulk. The Use of Triple-Modular Re-
dundancy to Improve Computer Reliability. IBM Journal of Research and Development,
6(2):200–209, IBM, 1962. http://www.ccs.neu.edu/course/csg712/resources/
Lyons-Vanderkulk-62.pdf.

[Maes, 87] Pattie Maes. Concepts and Experiments in Computational Reflection. In Proceedings
on Object-Oriented Programming Systems, Languages and Applications, OOPSLA ’87, pages 147–
155, New York, NY, USA. ACM, 1987. http://dl.acm.org/citation.cfm?id=38821.

[Margolis and Sharpe, 07] Ben Margolis and Joseph L. Sharpe. SOA for the Business Developer:
Concepts, BPEL, and SCA. MC Press, 2007.

[Marin et al., 01] Olivier Marin, Pierre Sens, Jean-Pierre Briot, and Zahia Guessoum. To-
wards Adaptive Fault-Tolerance for Distributed Multi-Agent Systems. In Proceedings of The
Fourth European Research Seminar on Advances in Distributed Systems, ERSADS ’01, pages
195–201. 2001. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.28.6131&rep=rep1&type=pdf.

[Marino and Rowley, 09] Jim Marino and Michael Rowley. Understanding SCA (Service Compo-
nent Architecture). Addison-Wesley Professional, 2009.

[McIlroy, 68] M. D. McIlroy. Mass produced software components. In First NATO Soft-
ware Engineering Conference, Garmisch Pattenkirchen, Germany, pages 138–157. 1968. http:
//homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

[McKinley et al., 04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. Composing Adaptive Software. Computer, 37(7):56–64, IEEE, 2004. http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1310241.

[Moghimi, 00] Reza Moghimi. Curing Comparator Instability with Hysteresis. Analog Dia-
logue, 34(7), 2000. http://www.analog.com/library/analogDialogue/archives/
34-07/comparators/comparators.pdf.

[Narasimhan et al., 05] P. Narasimhan, T. A. Dumitraş, A. M. Paulos, S. M. Pertet, C. F. Reverte,
J. G. Slember, and D. Srivastava. MEAD: support for Real-Time Fault-Tolerant CORBA.
Concurrency and Computation: Practice and Experience, 17(12):1527–1545, Wiley Online Library,
2005. http://www.gm.ece.cmu.edu/~mead/ccpe-2005.pdf.

[Paradis and Han, 07] Lilia Paradis and Qi Han. A Survey of Fault Management in Wireless
Sensor Networks. Journal of Network and Systems Management, 15(2):171–190, Plenum Press,
New York, NY, USA, June 2007. http://dx.doi.org/10.1007/s10922-007-9062-0.

[Pareaud et al., 08] Thomas Pareaud, Jean-Charles Fabre, and Marc-Olivier Killijian. Com-
ponentization of Fault Tolerance Software for Fine-Grain Adaptation. In Proceedings of
The 14th IEEE Pacific Rim International Symposium on Dependable Computing, PRDC ’08,
pages 248–255. IEEE, 2008. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=4725303.

130

http://www.ccs.neu.edu/course/csg712/resources/Lyons-Vanderkulk-62.pdf
http://www.ccs.neu.edu/course/csg712/resources/Lyons-Vanderkulk-62.pdf
http://dl.acm.org/citation.cfm?id=38821
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.6131&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.6131&rep=rep1&type=pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1310241
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1310241
http://www.analog.com/library/analogDialogue/archives/34-07/comparators/comparators.pdf
http://www.analog.com/library/analogDialogue/archives/34-07/comparators/comparators.pdf
http://www.gm.ece.cmu.edu/~mead/ccpe-2005.pdf
http://dx.doi.org/10.1007/s10922-007-9062-0
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4725303
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4725303

[Parnas, 72] D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, ACM, 1972. http://www.cs.umd.edu/
class/spring2003/cmsc838p/Design/criteria.pdf.

[Pathak and Prasanna, 08] Animesh Pathak and Viktor K. Prasanna. Srijan: A Graph-
ical Toolkit for WSN Application Development. In ProSenSe Workshop in the 4th
IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), San-
torini, Greece. June 2008. https://who.rocq.inria.fr/Animesh.Pathak/papers/
pathakprosense08.pdf.

[Pathak and Prasanna, 11] Animesh Pathak and Viktor K. Prasanna. High-Level Applica-
tion Development for Sensor Networks: Data-Driven Approach. In Theoretical Aspects of
Distributed Computing in Sensor Networks, pages 865–891. Springer, 2011. http://link.
springer.com/chapter/10.1007%2F978-3-642-14849-1_26.

[Randell, 75] Brian Randell. System Structure for Software Fault Tolerance. IEEE Transac-
tions on Software Engineering, (2):220–232, IEEE, 1975. http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=6312842.

[Ranganathan and Campbell, 04] Arnand Ranganathan and Roy H. Campbell. Autonomic
Pervasive Computing based on Planning. In Proceedings of the First International Conference
on Autonomic Computing, ICAC ’04, pages 80–87, Washington, DC, USA. IEEE Computer
Society, 2004. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
1301350f.

[Redmond and Cahill, 02] Barry Redmond and Vinny Cahill. Supporting Unanticipated Dy-
namic Adaptation of Application Behaviour. In Proceedings of the 16th European Confer-
ence on Object-Oriented Programming, ECOOP ’02, pages 205–230. Springer, 2002. http:
//link.springer.com/chapter/10.1007%2F3-540-47993-7_9.

[Román et al., 02] Manuel Román, Christopher Hess, Renato Cerqueira, Arnand Ranganathan,
Roy H. Campbell, and Klara Nahrstedt. A Middleware Infrastructure for Active Spaces.
IEEE Pervasive Computing, 1(4):74–83, 2002. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=1158281.

[Sadjadi and McKinley, 04] S. M. Sadjadi and P. K. McKinley. ACT: An Adaptive CORBA
Template to Support Unanticipated Adaptation. In Proceedings of the 24th International Con-
ference on Distributed Computing Systems (ICDCS’04), pages 74–83, Washington, DC, USA.
IEEE Computer Society, 2004. http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=1281570.

[Salatge and Fabre, 07] Nicolas Salatge and Jean-Charles Fabre. Fault Tolerance Connec-
tors for Unreliable Web Services. In Proceedings of the 37th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN ’07, pages 51–60, Washing-
ton, DC, USA. IEEE, 2007. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=4272955.

131

http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://who.rocq.inria.fr/Animesh.Pathak/papers/pathakprosense08.pdf
https://who.rocq.inria.fr/Animesh.Pathak/papers/pathakprosense08.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-14849-1_26
http://link.springer.com/chapter/10.1007%2F978-3-642-14849-1_26
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6312842
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6312842
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301350f
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301350f
http://link.springer.com/chapter/10.1007%2F3-540-47993-7_9
http://link.springer.com/chapter/10.1007%2F3-540-47993-7_9
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1158281
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1158281
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1281570
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1281570
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4272955
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4272955

Bibliography

[Saridakis, 02] Titos Saridakis. A System of Patterns for Fault Tolerance. In Proceed-
ings of the 7th European Conference on Pattern Languages of Programs, EuroPLoP ’02,
pages 535–582. 2002. http://hillside.net/europlop/HillsideEurope/Papers/
EuroPLoP2002/2002_Saridakis_ASystemOfPatternsForFaultTolerance.pdf.

[Schneider, 90] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: A Tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, ACM, 1990.
http://www.cs.cornell.edu/fbs/publications/smsurvey.pdf.

[Seinturier et al., 11] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Vale-
rio Schiavoni, and Jean-Bernard Stefani. A Component-Based Middleware Platform for Re-
configurable Service-Oriented Architectures. Software: Practice and Experience, Wiley, 2011.
http://hal.inria.fr/docs/00/56/74/42/PDF/frascati.pdf.

[Shokri et al., 97] Eltefaat Shokri, Herbert Hecht, Patrick Crane, Jerry Dussault, and
K. H. (Kane) Kim. An Approach for Adaptive Fault-Tolerance in Object-Oriented Open
Distributed Systems. In Proceedings of the Third IEEE Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS ’97), pages 298–305. IEEE, 1997. http://ieeexplore.ieee.
org/stamp/stamp.jsp?arnumber=00609971.

[Speirs and Barrett, 89] N.A. Speirs and P.A. Barrett. Using Passive Replicates in Delta-4
to Provide Dependable Distributed Computing. In Digest of Papers., Nineteenth Interna-
tional Symposium on Fault-Tolerant Computing, FTCS ’89, pages 184–190. IEEE, 1989. http:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00105564.

[Sterritt, 05] Roy Sterritt. Autonomic computing. Innovations in Systems and Software
Engineering, 1(1):79–88, Springer, 2005. http://eprints.ulster.ac.uk/8226/1/
17-2005-NASA-J-U7335H136027G642.pdf.

[Sterritt and Bustard, 03] Roy Sterritt and Dave Bustard. Autonomic Computing–a Means of
Achieving Dependability? In Proceedings of the Tenth IEEE International Conference and Work-
shop on the Engineering of Computer-Based Systems. 2003. http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=1194805.

[Stoicescu et al., 11a] Miruna Stoicescu, Jean-Charles Fabre, and Matthieu Roy. Architecting
Resilient Computing Systems: Overall Approach and Open Issues. In Software Engineering
for Resilient Systems, volume LNCS 6968 of SERENE ’11, pages 48–62. 2011. http://link.
springer.com/chapter/10.1007%2F978-3-642-24124-6_5.

[Stoicescu et al., 11b] Miruna Stoicescu, Jean-Charles Fabre, and Matthieu Roy. Towards a Sys-
tem Architecture for Resilient Computing. In Actes de la Journée Sécurité des Systèmes & Sûreté
des Logiciels (3SL), pages 17–19, Saint-Malo (France). 2011. http://www.univ-orleans.
fr/lifo/evenements/3SL/actes/3sl.pdf.

[Stoicescu et al., 12a] Miruna Stoicescu, Jean-Charles Fabre, and Matthieu Roy. Experiment-
ing with Component-Based Middleware for Adaptive Fault Tolerant Computing (fast ab-
stract). European Dependable Computing Conference, 2012. http://arxiv.org/pdf/
1204.1232v1.pdf.

132

http://hillside.net/europlop/HillsideEurope/Papers/EuroPLoP2002/2002_Saridakis_ASystemOfPatternsForFaultTolerance.pdf
http://hillside.net/europlop/HillsideEurope/Papers/EuroPLoP2002/2002_Saridakis_ASystemOfPatternsForFaultTolerance.pdf
http://www.cs.cornell.edu/fbs/publications/smsurvey.pdf
http://hal.inria.fr/docs/00/56/74/42/PDF/frascati.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00609971
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00609971
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00105564
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00105564
http://eprints.ulster.ac.uk/8226/1/17-2005-NASA-J-U7335H136027G642.pdf
http://eprints.ulster.ac.uk/8226/1/17-2005-NASA-J-U7335H136027G642.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1194805
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1194805
http://link.springer.com/chapter/10.1007%2F978-3-642-24124-6_5
http://link.springer.com/chapter/10.1007%2F978-3-642-24124-6_5
http://www.univ-orleans.fr/lifo/evenements/3SL/actes/3sl.pdf
http://www.univ-orleans.fr/lifo/evenements/3SL/actes/3sl.pdf
http://arxiv.org/pdf/1204.1232v1.pdf
http://arxiv.org/pdf/1204.1232v1.pdf

[Stoicescu et al., 12b] Miruna Stoicescu, Jean-Charles Fabre, and Matthieu Roy. From De-
sign for Adaptation to Component-Based Resilient Computing. In 18th Pacific Rim Inter-
national Symposium on Dependable Computing, PRDC, pages 1 –10. IEEE, nov. 2012. http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6385065.

[Szyperski, 02] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[Taylor et al., 09] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Archi-
tecture: Foundations, Theory, and Practice. Wiley Publishing, 2009.

[Wang et al., 01] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. Overview of
the CORBA Component model. In George T. Heineman and William T. Councill, ed-
itors. Component-Based Software Engineering: Putting the Pieces Together, pages 557–571.
Addison-Wesley Longman Publishing Co., Inc., 2001. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.121.717&rep=rep1&type=pdf.

[Wensley et al., 78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N.
Levitt, P. M. Melliar-Smith, Robert E. Shostak, and Charles B. Weinstock. SIFT: De-
sign and Analysis of a Fault-Tolerant Computer for Aircraft Control. Proceedings of
the IEEE, 66(10):1240–1255, IEEE, 1978. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.66.8167&rep=rep1&type=pdf.

[Zheng and Lyu, 10] Zibin Zheng and Michael R. Lyu. An adaptive QoS-aware fault toler-
ance strategy for web services. Empirical Software Engineering, 15(4):323–345, Springer, 2010.
http://link.springer.com/article/10.1007%2Fs10664-009-9126-8.

133

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6385065
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6385065
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.717&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.717&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.8167&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.8167&rep=rep1&type=pdf
http://link.springer.com/article/10.1007%2Fs10664-009-9126-8

Bibliography

134

Abstract
Evolution during service life is mandatory, particularly for long-lived systems. Dependable systems, which continu-

ously deliver trustworthy services, must evolve to accommodate changes e.g., new fault tolerance requirements or varia-
tions in available resources. The addition of this evolutionary dimension to dependability leads to the notion of resilient
computing. Among the various aspects of resilience, we focus on adaptivity. Dependability relies on fault-tolerant com-
puting at runtime, applications being augmented with fault tolerance mechanisms (FTMs). As such, on-line adaptation of
FTMs is a key challenge towards resilience. In related work, on-line adaption of FTMs is most often performed in a pre-
programmed manner or consists in tuning some parameters. Besides, FTMs are replaced monolithically. All the envisaged
FTMs must be known at design time and deployed from the beginning. However, dynamics occurs along multiple dimen-
sions and developing a system for the worst-case scenario is impossible. According to runtime observations, new FTMs can
be developed off-line but integrated on-line. We denote this ability as agile adaption, as opposed to the preprogrammed
one. In this thesis, we present an approach for developing flexible fault-tolerant systems in which FTMs can be adapted
at runtime in an agile manner through fine-grained modifications for minimizing impact on the initial architecture. We
first propose a classification of a set of existing FTMs based on criteria such as fault model, application characteristics and
necessary resources. Next, we analyze these FTMs and extract a generic execution scheme which pinpoints the common
parts and the variable features between them. Then, we demonstrate the use of state-of-the-art tools and concepts from the
field of software engineering, such as component-based software engineering and reflective component-based middleware,
for developing a library of fine-grained adaptive FTMs. We evaluate the agility of the approach and illustrate its usability
throughout two examples of integration of the library: first, in a design-driven development process for applications in
pervasive computing and, second, in a toolkit for developing applications for WSNs.

Keywords: resilience, runtime adaptation, fault tolerance mechanisms, component-based architecture

Résumé
L’évolution des systèmes pendant leur vie opérationnelle est incontournable. Les systèmes sûrs de fonctionnement doivent
évoluer pour s’adapter à des changements comme la confrontation à de nouveaux types de fautes ou la perte de ressources.
L’ajout de cette dimension évolutive à la fiabilité conduit à la notion de résilience informatique. Parmi les différents as-
pects de la résilience, nous nous concentrons sur l’adaptativité. La sûreté de fonctionnement informatique est basée sur
plusieurs moyens, dont la tolérance aux fautes à l’exécution, où l’on attache des mécanismes spécifiques (Fault Tolerance
Mechanisms, FTMs) à l’application. A ce titre, l’adaptation des FTMs à l’exécution s’avère un défi pour développer des
systèmes résilients. Dans la plupart des travaux de recherche existants, l’adaptation des FTMs à l’exécution est réalisée de
manière préprogrammée ou se limite à faire varier quelques paramètres. Tous les FTMs envisageables doivent être connus
dès le design du système et déployés et attachés à l’application dès le début. Pourtant, les changements ont des origines
variées et, donc, vouloir équiper un système pour le pire scénario est impossible. Selon les observations pendant la vie
opérationnelle, de nouveaux FTMs peuvent être développés hors-ligne, mais intégrés pendant l’exécution. On dénote cette
capacité comme adaptation agile, par opposition à l’adaptation préprogrammée. Dans cette thèse, nous présentons une ap-
proche pour développer des systèmes sûrs de fonctionnement flexibles dont les FTMs peuvent s’adapter à l’exécution de
manière agile par des modifications à grain fin pour minimiser l’impact sur l’architecture initiale. D’abord, nous proposons
une classification d’un ensemble de FTMs existants basée sur des critères comme le modèle de faute, les caractéristiques de
l’application et les ressources nécessaires. Ensuite, nous analysons ces FTMs et extrayons un schéma d’exécution générique
identifiant leurs parties communes et leurs points de variabilité. Après, nous démontrons les bénéfices apportés par les
outils et les concepts issus du domaine du génie logiciel, comme les intergiciels réflexifs à base de composants, pour
développer une librairie de FTMs adaptatifs à grain fin. Nous évaluons l’agilité de l’approche et illustrons son utilité à
travers deux exemples d’intégration : premièrement, dans un processus de développement dirigé par le design pour les
systèmes ubiquitaires et, deuxièmement, dans un environnement pour le développement d’applications pour des réseaux
de capteurs.

Mots-clés: résilience, adaptation, mécanismes de tolérance aux fautes, architectures logicielles à base de composants

	Couverture
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Listings
	List of Acronyms
	Introduction
	Chapter 1.Context & Problem Statement
	1.Introduction
	2.From Dependability to Resilience
	2.1Resilience
	2.2Dependability
	2.3Bridging the Gap

	3.A Motivating Example
	4.Problem Statement
	4.1From Fault Model to Change Model
	4.2Types of Adaptation
	4.3The Scientific Challenge
	4.4Two Ways of Stating the Problem

	5.Overall Approach
	6.What This Thesis Is NOT About
	7.Related Work
	7.1Fault Tolerance and Fault Tolerance Mechanisms
	7.2Adaptive Fault Tolerance
	7.3Design Patterns for Fault Tolerance
	7.4Component-Based Software Engineering
	7.5Autonomic Computing
	7.6Reconfigurable (Ubiquitous) Systems and Frameworks

	8. Summary

	Chapter 2.Adaptation of Fault Tolerance Mechanisms (FTMs)
	2.1Introduction
	2.2 Change Model and Associated Frame of Reference
	2.3Classification of FTMs
	2.4Presentation of Considered FTMs
	2.4.1Tolerance to Crash Faults
	2.4.2Tolerance to Hardware Value Faults
	2.4.3Underlying (FT,A,R) Characteristics

	2.5Transitions Between FTMs
	2.5.1Possible Transitions
	2.5.2Anticipation of Changes
	2.5.3Detailed Analysis of Transition Scenarios

	2.6Summary

	Chapter 3.Design for Adaptation of FTMs
	3.1Introduction
	3.2Requirements and Initial Design
	3.3First Design Loop: Generic Protocol Execution Scheme
	3.4Second Design Loop: Externalization of Duplex Concerns
	3.4.1Composing FTMs
	3.4.2Fault Tolerance Design Patterns (FTDPs)

	3.5Validation & Evalution
	3.6Summary

	Chapter 4.Component-Based Architecture of FTMs for Adaptation
	4.1Introduction
	4.2Standards, Tools and Runtime Support
	4.2.1The SCA Standard
	4.2.2FraSCAti
	4.2.3Runtime Reconfiguration Support
	4.2.4Runtime Support Requirements for On-line Adaptation of FTMs

	4.3Component-Based Architecture of PBR for Adaptation
	4.3.1Separation of Concerns
	4.3.2 SCA Entities
	4.3.3PBR in Action
	4.3.4Component State Management
	4.3.5From Objects to Components: Design Choices
	4.3.6Developing the Pieces and Putting Them Together

	4.4Transition Process
	4.5Implementing On-line Transitions Between FTMs
	4.5.1PBRLFR
	4.5.2LFRLFRTR
	4.5.3LFRAssert&Duplex

	4.6Consistency of Distributed Adaptation
	4.6.1Local Consistency
	4.6.2Consistency of Request Processing
	4.6.3Distributed Consistency
	4.6.4Recovery of Adaptation

	4.7Summary

	Chapter 5.Evaluation, Integration, Application
	5.1Introduction
	5.2Evaluation
	5.2.1Performance
	5.2.2Agility

	5.3Integrating AFT in the Development Process
	5.3.1Motivation and Context
	5.3.2The Sense-Compute-Control Paradigm
	5.3.3An Illustrative Example
	5.3.4Overall Approach
	5.3.5Lessons Learned

	5.4Integrating AFT in WSN-Based Applications
	5.4.1Motivation and Context
	5.4.2Application Scenario
	5.4.3Adaptive FTMs in the Application Scenario
	5.4.4Macroprogramming Toolkit
	5.4.5Lessons Learned & Work in Progress

	5.5Summary

	Conclusion & Future Work
	1.Conclusion
	2.Future work

	Résumé
	Appendix
	Bibliography
	Abstract
	Résumé

