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Résumé: En combinatoire algébrique, les
treillis sont des ensembles partiellement or-
donnés qui possèdent à la fois des opérations
inf et sup. L’ordre faible sur les permu-
tations est un exemple classique d’un treil-
lis qui possède une riche structure combina-
toire. Cela en a fait un point de départ à
partir duquel d’autres objets combinatoires
ont été définis. Pour cette thèse, nous nous
concentrons sur l’étude de deux familles dif-
férentes de treillis en relation avec l’ordre
faible: les treillis des permutarbres et le s-
ordre faible.

La première partie de la thèse concerne
la théorie des quotients de treillis de l’ordre
faible en s’appuyant sur le travail de N.
Reading. On se concentre spécifiquement
sur la famille des quotients des permutar-
bres de l’ordre faible. En les considérant
comme des permutarbres, comme dans le
travail de V. Pilaud et V. Pons, nous éten-
dons la technologie des vecteurs de crochet
des arbres binaires en définissant les vecteurs
d’inversion et les vecteurs cubiques. Le
vecteur d’inversion capture l’opération de
meet de ces treillis tandis que le vecteur
cubique permet de les réaliser géométrique-
ment via un plongement cubique. En
changeant de point de vue et en étudiant
ces quotients à travers les éléments mini-
maux de leurs classes de congruence, nous
utilisons la description de Coxeter de type A
des permutations pour caractériser les per-

mutarbres avec l’aide d’automates. Ces au-
tomates capturent l’évitement de motifs ijk
et/ou kij impliqués par ces quotients et nous
permettent de définir des algorithmes qui
généralisent le tri par pile. Dans le cas
où le quotient correspond à un treillis cam-
brien, nous relions nos automates au tri de
Coxeter. Nous donnons quelques indications
sur le même phénomène pour les groupes de
Coxeter de types B et D.

La deuxième partie de cette thèse découle
du travail de V. Pons et C. Ceballos qui
ont défini le s-ordre faible sur les arbres s-
décroissants où s est une séquence d’entiers
positifs. Dans le cas de s = (1, . . . , 1),
cette définition récupère l’ordre faible. Dans
leur premier article, les auteurs ont con-
jecturé que le s-permutaèdre pouvait être
réalisé dans l’espace comme une subdivi-
sion polyédrale d’un zonotope. Nous don-
nons une réponse positive à leur conjecture
lorsque s est une séquence d’entiers positifs
en définissant un graphe dont leur polytope
de flot nous permettent de récupérer le s-
ordre faible. Nous utilisons des techniques
de flots sur les graphes, de géométrie dis-
crète et de géométrie tropicale pour obtenir
des réalisations du s-permutaèdre avec dif-
férentes propriétés. Finalement, nous intro-
duisons une opération sur les graphes pour
décrire les permutarbres et leurs treillis à
travers les polytopes de flot.
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Abstract: In algebraic combinatorics, lattices
are partially ordered sets which possess both
meet and join operations. The weak order on
permutations is a classical example of a lattice
that has a rich combinatorial structure. This
has made it a starting point from which other
combinatorial objects have been defined. For
this thesis, we focus on studying two different
families of lattices in relation to the weak order:
the permutree lattices and the s-weak order.

The first part of the thesis involves the the-
ory of lattice quotients of the weak order build-
ing upon the work of N. Reading, specifically
focusing on the family of permutree quotients
of the weak order. Considering them as per-
mutrees, as done by V. Pilaud and V. Pons, we
extend the technology of bracket vectors from
binary trees by defining inversion and cubic vec-
tors. The inversion vector captures the meet op-
eration of these lattices while the cubic vector
helps realize them geometrically via a cubical
embedding. Changing our point of view and
studying these quotients through the minimal
elements of their congruence classes, we use the
Coxeter Type A description of permutations to
characterize permutrees using automata. These

automata capture the pattern avoidance of the
patterns ijk and/or kij implied by these quo-
tients and allow us to define algorithms which
generalize stack sorting. In the case where the
quotient corresponds to a Cambrian lattice we
relate our automata with Coxeter sorting. We
give some insight about the same phenomenon
for Coxeter groups of types B and D.

The second part of this thesis stems from the
work of V. Pons and C. Ceballos who defined
the s-weak order on s-decreasing trees where s
is a sequence of non-negative integers. In the
case of s = (1, . . . , 1) this definition recovers the
weak order. In their first article, the authors
conjectured that the s-permutahedron could be
realized in space as a polyhedral subdivision of
a zonotope. We give a positive answer to their
conjecture when s is a sequence of positive in-
tegers by defining a graph whose flow polytope
allows us to recover the s-weak order. We use
techniques from flows on graphs, discrete ge-
ometry, and tropical geometry to obtain real-
izations of the s-permutahedron with different
properties. Finally, we introduce a graph oper-
ation to describe permutrees and their lattices
through flow polytopes.





- ¿Sabe?, soy un extranjero.
- Esta ciudad está llena de nosotros, ¿no? Yo mismo soy uno.

- Buscando algo que falta. Echando de menos algo dejado atrás.
- Quizá, con buena suerte, encontraremos lo que nos eludió en los lugares que una vez

llamamos hogar.

The French Dispatch. Wes Anderson, 2021.

- I’m a foreigner, you know.
- This city is full of us, isn’t it? I’m one, myself.

- Seeking something missing. Missing something left behind.
- Maybe, with good luck, we’ll find what eluded us in the places we once called home.

The French Dispatch. Wes Anderson, 2021.

- Vous savez, je suis un étranger.
- Cette ville est pleine de nous, n’est-ce pas? Je suis un moi-même.

- Cherchant quelque chose qui manque. Manquant quelque chose laissé derrière.
- Peut-être, avec de la chance, nous trouverons ce que nous a échappé dans les endroits

que nous avons appelés autrefois chez nous.

The French Dispatch. Wes Anderson, 2021.
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Introduction

Context
This thesis finds its place in the domain of combinatorics, somewhere in the interplay between algebraic
combinatorics and geometric combinatorics. That is, it relies on connections between families endowed
with algebraic operations such as finite groups or partially ordered sets and structures from discrete
geometry such as polytopes.

Combinatorics in it of itself is interested in taking discrete objects and studying patterns within
them. Most classically, it can be seen as an area interested in counting objects and phenomena or
conversely, finding an object or property that describes a sequence of numbers. As such, it pops
up in many distinct areas of mathematics either as a principal or secondary actor. Appearances of
combinatorics can be found in algebraic topology [FF46] [Koz08], number theory [TV06], and even
theoretical and statistical physics [Tan20] [Rue69] just to mention a few. Due to its nature of studying
discrete structures, combinatorics has found a strong connection with computer science. For example,
the study on algorithms and their complexities or optimizations is inherently combinatorial. Recip-
rocally, many combinatorial results come from algorithmic analysis and computer exploration. More
concretely, areas like integer programming and optimization, graph theory, and sorting algorithms find
themselves using ideas from combinatorics and informatics symbiotically. Our work is no stranger to
this, as much if not all of it, has been influenced on experiments implemented in the open source
software SageMath [Sag23].

Weak Order
The combinatorial family at the very core of our work is that of permutations. These structures make
part of some of the most simple objects in combinatorics. Namely, a permutation of size n is a way of
taking n objects in order and rearranging them in a new order. As such, they can also be thought as
bijections from [n] := {1, 2, . . . , n} to itself. This point of view endows permutations with an algebraic
structure where the multiplication of permutations is simply the composition of their corresponding
bijections. This forms an algebraic structure called the symmetric group where each permutation is
presented by a rearrangement of the numbers 1 through n. A quick way of distinguishing permutations
is by verifying which pairs (i, j) have been inversed. Any pair that finds itself in this situation is said
to be an inversion. The set of such pairs is called the inversion set of a permutation and defines a
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way to give a partial order on permutations through the containment of their inversion sets. This is
called the weak order on permutations [Bón22].

Adjacent permutations under the weak order can be expressed through the inversion of a single
pair (i, i+1). We say that the permutations that correspond to these rearrangements are the adjacent
transpositions of the weak order. This is a crucial step in showing that given two permutations within
the weak order, it is always possible to find a unique maximal (resp. minimal) permutation that is
smaller (resp. larger) than both of them. These operations turn the weak order from being a partially
ordered set (i.e. a poset) into an algebraic structure called a lattice [GR63].

Each permutation σ of [n] can be associated with the point (σ(1), . . . , σ(n)) in the space Rn. If one
takes the convex hull of this configuration of points, the resulting polytope is called the permutahedron
whose properties reflect phenomena of the weak order [Sch11] [GG77]. For example, orienting the
permutahedron in a particular direction, the directed graph consisting on its 1-skeleton (i.e. vertices
and edges) corresponds precisely with the order described by the weak order. Moreover, this process of
obtaining the permutahedron shows that its faces are indexed by the ordered partitions of [n]. Another
geometrical way of presenting the permutahedron and the weak order structure is by partitioning the
inversion sets of permutations via the smallest element that was inversed and taking the cardinalities of
these sets. The resulting structure is an embedding of the permutahedron onto a cube [BF71] [RR02].

Tamari Lattice
Another family of combinatorial objects from which much of our work is based on are binary trees.
These consist of rooted trees where each node can be said to have one parent and two children.
Binary trees are counted by one, if not the most prolific sequence of numbers, called the Catalan
numbers [OEI23, A000108], and thus are in bijection with a myriad of combinatorial objects [Sta15].

Given a binary tree with n nodes, we can label its vertices via an anti-clockwise walk on the graph
by labeling with i the i-th vertex that we visit for a second time in our traversal. This is called the
inorder of binary trees and the resulting labeling has the characteristic that for any vertex, its label is
greater than the labels in its left subtree and smaller than the labels in its right subtree. This allows
us to define the rotation of an edge i→ j to an edge j → i where the structure of the subtrees below i

and j is maintained. Rotations are a classical operation used for balancing binary search trees (i.e.
making their height as small as possible) to obtain efficient sorting algorithms [AL62]. These rotations
define an order on all binary trees called the Tamari lattice [Tam62].

To get a geometrical structure out of binary trees, one needs to consider vectors where each coordi-
nate i is the product of the number of leaves in the left subtree times the leaves in the right subtree for
a vertex labeled i. The resulting convex hull of these vertices is called the associahedron [Lod04] and
its faces are indexed by Schröder trees [Sta11]. As before, orienting the associahedron in a particular
direction lets us find the Tamari lattice through its 1-skeleton. At this point a relation between binary
trees and permutations starts to appear as the associahedron is a removahedron. That is, the asso-
ciahedron can be obtained simply by removing certain facets of the permutahedron [SS93]. As with
permutations, changing the coordinates corresponding to binary trees to quantities derived from which
and how many rotations it has endured, one obtains a new set of vectors called bracket vectors. These
vectors allow for a constructive proof for the lattice property of the Tamari lattice [HT72] and also a
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cubical embedding of the associahedron [Knu93]. These techniques have seen use in generalizations
and structures related to the Tamari lattice [CPS20] [Com21] [FMN21] [Com22] [CG22] [PP23].

Still, a more direct relation between binary trees and permutations can be found through the
insertion algorithm of [Ton97] [HNT05]. As such, the fibers of binary trees under this algorithm
are intervals of permutations whose minimal elements avoids the pattern 312. These fibers coincide
with the fibers of the Stack-sorting algorithm [Knu73] and form a congruence relation in the weak
order that respects the operations of meets and joins. Such congruences receive the name of lattice
congruences and in this case lead to the Tamari lattice being found as the order induced by the minimal
permutations in these fibers. This lattice congruence is known as the sylvester congruence.

Permutrees
The combinatorial family that motivates this thesis and that we study from different perspectives is
that of permutrees [PP18]. This family is general enough to encode permutations, binary trees, Cam-
brian trees [LP13] [CP17], and binary sequences while still defining new types of trees. A permutree
consists of an unrooted directed tree with labeled nodes in [n] where each node can be said to have
one or two parents and one or two children while each label of a vertex satisfies a relation similar to
the one of binary trees via the inorder. As such, permutrees are characterized by how many parents
and children each node has which is called the decoration of the node. As the vertices are labeled, this
groups permutrees into δ-permutrees where δ is a vector of decorations.

In a similar vein to [HNT05], the insertion algorithm of [PP18] gives a surjection from permutations
onto δ-permutrees for each possible decoration. These fibers describe a lattice congruence called the δ-
permutree congruence. The fibers of δ-permutrees under this algorithm are intervals of permutations
whose minimal element avoids the pattern kij and/or jki for each j ∈ {2, . . . , n− 1} and 1 ≤ i < j <

k ≤ n depending on the decoration δj .
Like for binary trees, δ-permutrees have rotations that change their local structure at the level

of a single edge while maintaining the rest of the tree intact. These rotations define the δ-permutree
rotation posets. These posets are actually shown to be lattices in [PP18], but the proof uses lattice
quotients to show that this poset is a sublattice of the weak order. In general, they are called δ-
permutree lattices and generalize the type A Cambrian lattices of [Rea06].

No matter the decoration, permutrees can be assigned to a vector whose coordinates correspond
to a manipulation of the number of nodes at their right and left subtrees. This gives rise to a
polytope called the δ-permutreehedron. Orienting these polytopes in a particular direction recovers
their corresponding δ-permutree lattice. Although δ-permutrees and their permutree congruences
may be different, for certain subsets of decorations their lattices are isomorphic and for others their
permutreehedra are combinatorially equivalent.

Coxeter Groups
Our ideas of permutations and the weak order are only but a part of a bigger scheme which is de-
scribed by Coxeter groups. Introduced in [Cox34] and later completely classified for the finite case
in [Cox35], Coxeter groups describe groups generated by simple reflections coming from hyperplane
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arrangements [Hum90]. As such, elements are sequences of simple reflections called words and re-
flections correspond to inversions. Said inversions form inversion sets which in turn define the weak
order of a Coxeter group. Thus, the permutations are just a particular case of a Coxeter group called
Coxeter groups of type A. Similar combinatorial families can be found for other types such as signed
permutations and even signed permutations for Coxeter groups of types B and D respectively [BB06].
Other groups do not have such combinatorial descriptions to our knowledge. Still, the nature of
Coxeter groups allows for them to be studied via algebraic, geometric, combinatorial or language the-
oretic means. This has lead for properties of the language of reduced words in Coxeter groups being
described via automata [BH93] [HNW16].

Going further than generalizing permutations and their properties, the context of Coxeter groups
gives a broader space in which lattice congruences can be defined. This was done considering Coxeter
groups as the poset of regions of hyperplane arrangements in [Rea04]. Afterwards, the concept of c-
sorting (also known as Coxeter sorting) was introduced in [Rea07a] giving c-sortable elements which
were shown in [Rea07b] to be the minimal elements of Cambrian congruences. These results were
unified for all finite of Coxeter groups regardless of type in [RS11] and then compended in [Rea12]. In
this situation the sylvester congruence is a Cambrian congruence in type A and its c-sortable elements
coincide with the stack-sortable permutations. Moreover, all Cambrian congruences of type A are
permutree congruences.

s-Weak Order
Other possible generalizations of the weak order come from taking multipermutations instead of per-
mutations. That is, given a sequence of positive integers r = (r1, . . . , rn) an r-permutation is a
rearrangement of the word 1r1 · · ·nrn where iri is the repetition of the letter i a total of ri times.
Coming from a geometrical setting in [RR02], they were used to describe embeddings of the combi-
nohedron which was known to come from a lattice structure called the multinomial lattice [BB94].
Independently in a more algebraic setting, the case where all ri = m for an m ≥ 1 was introduced
in [NT20] to study the m-sylvester congruence. Renaming r as k, k-permutations that avoid the pat-
tern 121 are called k-Stirling permutations. These permutations have seen ample interest and many of
their properties have been determined through their statistics and bijections with other combinatorial
families [Par94a] [Par94b] [Par94c] [KP11] [JKP11] [RW15] [Gon19].

Still, apart from all these constructions there is a more recent one linked to them that we are
interested in, that is, the s-weak order [CP19] [CP23]. Taking a weak composition s = (s1, . . . , sn)
(i.e. si ∈ Z≥0), s-decreasing trees consist of labeled rooted trees with n nodes such that each node
has exactly one parent and si + 1 children and all descendants have smaller labels. These trees have
inversions defined from the relative position between nodes. As before, these inversions define an
order on s-decreasing trees called the s-weak order which is shown constructively to be a lattice and
have a geometrical structure called the s-permutahedron. Moreover, there is an underlying order called
the s-Tamari lattice with a geometrical counterpart called the s-associahedron. These correspond to
the ν-Tamari lattice of [PV17] and ν-associahedron of [CPS19] for certain values of ν. Whenever s is
a composition, s-decreasing trees are in bijection with s-Stirling permutations, that is, s-permutations
avoiding the pattern 121. The s-weak order coincides with the weak order of permutations when si = 1
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for all coordinates of s and with the metasylvester lattice of [Pon15] when si = m with m ≥ 1 for all
coordinates of s.

Flow Polytopes
A family of polytopes that we consider for a good part of our work because of their versatility is
that of flow polytopes. They come from a loopless directed graph where each vertex is equipped
with an integer that denotes the netflow passing through it. That is, the difference between the
incoming and the outgoing flow determined respectively by the incoming and outgoing edges of each
vertex must equal this netflow. This limits the possible flows that can be assigned to the edges of
the graph while being coherent with the netflow. Taking flows as points in the space of edges of the
graph forms a polytope called the flow polytope. As flows and netflows are models of networks, flow
polytopes have seen ample use in optimization problems. As such, there has been much research on the
combinatorics of these polytopes [RH70] [FRD71] [GS78a] [Hil03] [MM19] [GHMY21]. In particular,
the normalized volume of the flow polytope decomposes nicely using the Kostant partition formula via
the Baldoni–Vergne–Lidskii formulas [BV08]. This has given new identities showing of many known
numbers via product decompositions as exemplified in [BGH+19].

We are interested in flow polytopes specially because of their possible subdivisions. In particular,
endowing each vertex of a graph with independent total orders for their incoming edges and outgoing
edges (i.e. a framing), the cliques of coherent routes of the graph give us a triangulation of the flow
polytope when the netflow is i := (1, 0, . . . , 0,−1). This triangulation is called the DKK triangulation
and comes equipped with a height function that makes it regular [DKK12]. Another possible subdivi-
sion consists on taking a series of reductions on the graph which translate as cutting the flow polytope
into smaller pieces that are combinatorially equivalent to other flow polytopes. This process gives the
Postnikov–Stanley subdivision [Pos14] [Sta00]. The usefulness of these two subdivisions comes from
the fact that when the graph is framed, framed Postnikov–Stanley subdivisions become DKK triangu-
lations [MMS19]. This gives a bijection between simplices of the DKK triangulation of netflow i and
integer points in the flow polytope of netflow d where di is the shifted indegree of the i-th vertex.
This bijection between two different flow polytopes has allowed for the recovering of certain posets as
the dual of the interior faces of the DKK triangulation such the ν-Tamari lattice and principal order
ideals of Young’s lattice [vGMY23].

Tropical Geometry
Tropical geometry comes from changing the usual operations of sums and multiplications respectively
for minima and sums and the inclusion of infinity as an element [Jos21]. Although it has interesting
links with economics [Shi15] and mechanism design [CT18], we are more interested in how it relates
with classical discrete geometry. The change of operations and base set allows for new definitions of ge-
ometrical structures such as tropical polynomials, tropical hypersurfaces, and tropical varieties. These
objects have been studied in their own right and have also shown to have strong connections with con-
vex geometry [Jos17]. For example, all point configurations are in correspondence with tropical polyno-
mials. Also, classical techniques from discrete geometry like the Cayley trick [Stu94] [HRS00] [DRS10]
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have seen repeated uses in the tropical context [DS04] [FR15] [Jen16] [JL16] [MS21].

Contributions
With the given context this thesis finds itself as a part of a bigger project that aims to answer the
following question. Can we study permutree congruences in all Coxeter types? Although we do not
give a complete answer to this question, we give three new points of view from which type A permutrees
can be studied together with other linked results we achieved using some of these tools for the s-weak
order. These contributions are contained in the following articles.

• D. Tamayo Jiménez. Inversion and Cubic Vectors for Permutrees, 2023. arXiv:2308.05099,

where we gave a direct constructive proof of the lattice property of permutree rotation lattices
and a cubical embedding of permutreehedra.

• V. Pilaud, V. Pons, and D. Tamayo Jiménez. Permutree Sorting. Algebraic Combinatorics,
6(1):53–74, 2023,

where we characterized minimal elements of the permutree classes in type A through their
reduced words using automata and found leads for other Coxeter types (B and D).

• R.S. González D’León, A.H. Morales, E. Philippe, D. Tamayo Jiménez, and M. Yip. Realizing
the s-Permutahedron via Flow Polytopes, 2023. arXiv:2307.03474,

where we gave a positive answer to a conjecture of Ceballos and Pons on the geometric realization
of the s-weak order (when s has no zeros) using polytopal subdivisions of flow polytopes, sums
of hypercubes, and tropical geometry.

• R.S. González D’León, A.H. Morales, E. Philippe, D. Tamayo Jiménez, and M. Yip. Flow
Polytopes and Permutree Lattice Quotients of the s-Weak Order. In preparation, 2023+,

where we found a description of permutrees and their rotation lattices using subdivisions of flow
polytopes.

The first three works have been presented in several international workshops, seminars, and conferences
either as posters or presentations. The work in these articles uses ideas from the bracket vectors of
binary trees, the language theoretic approach to Coxeter groups together with automata, and the
combinatorics of flow polytopes supported by tropical geometry.

Thesis Outline
The work presented in this thesis is divided into three parts. Part I describes the main combinatorial
actors and the permutree problematic at the core of our work. Afterwards, Part II presents two of
our answers to this problematic in Chapters 3 and 4. Finally, Part III deals with the use of Flow
Polytopes in our context. Our contributions in this part are contained in Chapters 6 and 7. Figure 1
shows the dependencies between the contents of the thesis and describes the recommended reading
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order. The reader is invited to skip Chapters 1, 2, and/or 5, if they are already familiar with the
corresponding material. We have tried to make this thesis as self-contained as possible and thus the
only real requirement to read it is knowledge of linear algebra. Experience with discrete geometry is
not required but strongly recommended for intuition purposes. Still, throughout our work we have
been invested on producing useful figures to better transmit our ideas, results, and in general, points
of view from which we have approached the problems we have studied. We hope they aid the reader
in times of need.

Chapter 2 Subsection 2.4.7Chapter 1

Part I

Preliminaries

Chapter 7Chapter 6Chapter 5

Part III

Flow Polytopes

Combinatorics and
Discrete Geometry

Permutree
Perspectives

Weak Order,
Quotients, and
Generalizations

Flow Polytopes
and Tropical
Geometry

Recovering
Permutrees with
Flow Polytopes

Realizing the
s-Permutahedron
via Flow Polytopes

Part II

Permutrees

Chapter 3

Inversion and
Cubic Vectors
for Permutrees

Chapter 4

Permutree Sorting

Figure 1 – Thesis outline.

Preliminaries
Part I is formed by two chapters introducing in different generality the main combinatorial concepts
we use. Chapter 1 introduces first the concepts of partial orders, lattices, and lattice congruences which
are at the core of all parts of our work. Afterwards, we describe the bases of convex geometry including
polytopes, fans, complexes, and several classical operations and techniques involving them. Lastly we
recall the bases of automata theory and its capability of recognizing patterns in words. The convex
geometry and automata theory setting gives us an advantageous point of view for the problems we
tackle in the thesis. In Chapter 2 we present first the weak order on permutations together with binary
trees and permutrees while describing their similarities in terms of combinatorics, orders, polytopes, and
how they relate to each other through lattice congruences. Afterwards, we recall the generalizations
of the weak order onto the weak order of Coxeter groups and the s-weak order. The generalization to
Coxeter groups helps us describe the core problematic of this thesis which revolves around finding new
combinatorial families through which we can study permutrees and their lattices (Perspective 2.4.55).
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Permutrees
In Part II we provide two answers to Perspective 2.4.55. The first, presented in Chapter 3 is based
on the article [Tam23] and consists of two generalizations of the bracket vectors of binary trees to
permutrees. We begin by defining inversion sets for a permutree together with how they can be
partitioned to give inversion vectors. Like inversion sets for permutations, we characterize these sets
in terms of transitivity, cotransitivity, and two additional conditions depending on the permutree
decoration at hand (Lemma 3.1.3). Following the steps of [HT72] with binary trees, we show that
the permutree rotation order can be interpreted via the inclusion of inversion sets (Lemma 3.1.6)
and that the intersection of these sets together with a special condition defines a meet operation on
the poset of permutrees (Theorem 3.1.7). This allows us to recover in a constructive manner the
result of [PP18] about the rotation order on permutrees having a lattice structure (Corollary 3.1.11).
Afterwards, we define cubic sets and cubic vectors for permutrees. This allows us to generalize the cubic
embeddings of the permutahedron given in [BF71] and [RR02] and the associahedron as in [Knu93]
for any permutreehedron (Theorem 3.2.9).

The second answer given in Chapter 4 comes from the article [PPT23] where we characterize
minimal elements of the permutree congruence classes using finite state automata that read reduced
words. We start considering the case where the permutree decoration is given by a single oriented
edge of the Coxeter diagram of type A. In such setting we define the automata U(j) and D(j) that
read reduced words corresponding to permutations. These automata are relevant to our permutree
setting because the property of a permutation having a reduced word accepted by them is shown to
be equivalent to the pattern avoidance characterized by permutrees (Theorem 4.1.14). After having
this result, we devise an algorithm such that given a permutation, it returns a reduced word accepted
by the automaton at play (Algorithm 1). We show that the property of this reduced word being
a reduced word of the original permutation is equivalent to the permutation being minimal in its
permutree congruence class (Corollary 4.1.22). We also present how the set of accepted reduced words
generates a tree structure within the Hasse diagram of the weak order (Theorem 4.1.24).

Passing from the single orientations, we move on to the case where any edge of the Coxeter
diagram can have at most one orientation. In this situation we devise the automaton P(U,D) as the
intersection of our previous automata and through it, we extend our previous results to this larger
case of permutree congruences. That is, a reduced word being accepted by this automaton is shown
to be equivalent to the corresponding permutation avoiding the patterns dictated by the permutree
congruence (Corollary 4.2.4). We define an algorithm (Algorithm 2) transforming a permutation to a
reduced word with the property that the fact of the reduced word describes the permutation if and
only if the permutation is minimal in its permutree congruence class (Theorem 4.2.12). It is also
shown that the set of accepted reduced words generates a tree structure within the Hasse diagram of
the weak order (Theorem 4.2.13).

With these results at hand, we study the maximal case where all the orientations of the Coxeter
diagram have exactly one orientation. As this case coincides with the Cambrian congruences, we show
that the event of a permutation being minimal in its permutree congruence class (or any of its equiva-
lent events with pattern avoidance or acceptance in P(U,D)) is equivalent to that permutation being
Coxeter sortable and that the corresponding c-sorting word is accepted by P(U,D) (Theorem 4.3.3).
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Finally, we propose a set of automata that have been checked computationally to characterize
permutree minimal elements for Coxeter groups of types B and D. In type B our proposal covers all
possible ranks while in type D is covers only up to certain cases of n = 5. Based on the definition
of c-singletons from [HLT11], we support our proposal by defining δ-singletons, δ-accepters, δ-maccrs
(minimal accepters), and δ-smaccrs (shortest minimal accepters) which we conjecture allow with slight
modifications for the definition of automata in any finite Coxeter group (Conjecture 4.4.5). We also
present Conjectures 4.4.4 and 4.4.6 about the relation between maccrs and smaccrs together with
computational evidence and examples in types D and H.

Flow Polytopes
Part III is dedicated to describe how triangulations of flow polytopes can realize distinct families of
posets as 1-skeleta of simplicial complexes and how this can be used in our context together with
other polytopal techniques. Chapter 5 gives the necessary background on flow polytopes including the
definitions of flows, flow polytopes, the Baldoni–Vergne–Lidskii formulas for their volume, and Kostant
partition function. We recall the constructions of the Danilov–Karzanov–Koshevoy triangulations and
Postnikov–Stanley subdivisions together with their relations when the PS subdivisions are framed. For
DKK triangulations we refine Proposition 5.1.31 from [DKK12] that states a sufficient condition on
routes for a height function to be admissible for the triangulation. We define the resolvent for a conflict
between two routes and introduce the concept of minimal conflicts. This allows us to turn Propo-
sition 5.1.31 into a necessary and sufficient condition (Lemma 5.1.33) and then relax the necessary
condition while keeping the if and only if (Lemma 5.1.34). Afterwards, we present the basic defini-
tions of tropical geometry we require by concentrating ourselves in the geometrical constructions of
tropical surfaces, domes, Newton polytopes, and dual subdivisions on point configurations. This chap-
ter finishes with a note about how taking several point configurations, doing their Cayley embedding,
and applying the Cayley trick relates their corresponding tropical constructions (Proposition 5.2.14).
While most of this background comes from [Jos21], we refine Proposition 5.2.11 that relates these
definitions and defines a dimension reversing bijection between cells of tropical hypersurfaces and cells
of dual subdivisions. We do this by showing that this bijection restricts to the bounded cells of the
tropical hypersurface and the interior cells of the dual subdivision (Lemma 5.2.12).

Chapter 6 is based completely on the article [GMP+23a] and focuses on answering Conjecture 2.5.12
of realizing the s-permutahedron as a polyhedral subdivision of a polytope combinatorially isomorphic
to a zonotope for the case when s has no zeros. For this we define two framed graphs called the oruga
graph Orun and the s-oruga graph Oru(s). We prove that for the shifted indegree netflow d, the
integer d-flows in Oru(s) are in bijection with s-Stirling permutations (Theorem 6.1.4) and even in
the case when s contains zeros, in bijection with s-decreasing trees (Remark 6.1.6). Continuing with s
being a composition, after using the bijection between integer d-flows of Oru(s) and maximal simplices
in the DKK triangulation of the flow polytope of FOru(s)(i) with the basic netflow i := (1, 0, . . . , 0,−1)
from [MMS19], we show that these maximal simplices are in bijection with Stirling s-permutations
(Lemma 6.1.10) and that their adjacency encodes the 1-skeleton of the s-weak order (Theorem 6.1.11).
From here, we define a simplex associated to a face of the s-permutahedron and show that this mapping
defines an inclusion reversing isomorphism between the faces of the s-permutahedron and simplices
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of the DKK triangulation of the flow polytope FOru(s)(i) (Corollary 6.1.21). This realizes the s-
permutahedron as a high dimensional polytope so to reduce its dimension we use the Cayley trick as
described in [San05] to obtain an inclusion reversing bijection between the s-permutahedron and the
interior cells of a mixed subdivision of a sum of hypercubes of varying dimension (Theorem 6.2.4).
This realization has the desired dimension of the conjecture (Remark 6.2.5) but lacks explicit co-
ordinates. To mend this we use the DKK formula to obtain an explicit a height function on the
routes on Oru(s) (Lemma 6.3.1). Consequently, we prove that there is an arrangement of tropical
hypersurfaces whose tropical dual is the mixed subdivision of hypercubes we obtain from applying
the Cayley trick to Oru(s) (Theorem 6.3.4). This allows us to obtain the s-permutahedron through
the polyhedral complex of bounded cells of this tropical arrangement (Theorem 6.3.6). As immediate
consequences we describe several properties of this realization including its vertices (Theorem 6.3.8),
containing hyperplane (Corollary 6.3.9), edge directions showing that it is a generalized permutahe-
dron (Theorem 6.3.10), supporting vertices and hyperplanes (Lemma 6.3.12), and the fact that it is
indeed the translation of a zonotope that is isomorphic to a permutahedron (Theorem 6.3.15). The
chapter finishes with certain results and remarks on how the enumeration techniques in flow polytopes
decompose the number of s-combinatorial objects (Corollary 6.4.1).

Finally, in Chapter 7 we use the flow polytope techniques to give a third answer to Perspec-
tive 2.4.55 for type A permutrees. This answer consists on the description of permutree rotation
lattices through DKK triangulations of flow polytopes. We begin by defining M-moves on Orun which
create new framed graphs called the δ-bicho graphs Bicδ according to the permutree decoration at
play. Among them, we have our oruga graph Orun, the caracol graph Carn of [BGH+19], and a new
mariposa graph Marn (Remark 7.1.3). We show that integer d-flows in Bicδ and δ-permutrees have the
same cardinalities (Theorem 7.2.6) and that the refinement order on permutree decorations determines
the structure of maximal cliques of coherent routes between distinct δ-bicho graphs (Lemma 7.3.4).
With this in hand we prove that the simplices of the DKK triangulation of Bicδ are in bijection with δ-
permutrees (Theorem 7.3.5) and that the permutree rotation lattice is encoded by the adjacencies of
the simplices in the DKK triangulation (Corollary 7.3.7).

Conjectures and Perspectives
Throughout the work of this thesis we made extensive use of the open source software SageMath [Sag23]
for implementations and computations on the combinatorial objects we studied. This allowed us
to obtain an intuition around the problems we worked on and define concretely our results. In
particular, we found computational evidence for several combinatorial phenomena that we leave here
as Conjectures 4.4.4, 4.4.5, 4.4.6, 7.4.1, and 7.4.2.

In a more general way, we also present several directions for future work that we could take
following the problematics treated in this thesis. For some of them we have partial results or a
strong intuition while others just state the natural next step to follow. We give them in Perspec-
tives 2.4.55, 4.3.10, 6.4.5, 6.4.6, 6.4.7, 7.4.4, 7.4.5, 7.4.6, 7.4.7, and 7.4.8.
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Contexte
Ce mémoire se trouve dans le domaine de la combinatoire, à l’intersection de la combinatoire al-
gébrique et la combinatoire géométrique. Autrement dit, il repose sur les connexions entre familles
dotées d’opérations algébriques comme les groupes finis et les ensembles partiellement ordonnés, et
des structures de la géométrie discrète comme les polytopes.

La combinatoire s’intéresse à prendre des objets discrets et à étudier leurs motifs. De manière clas-
sique, on peut la considérer comme un domaine qui s’intéresse au comptage d’objets et de phénomènes,
ou inversement, à la recherche d’un objet ou d’une propriété qui décrit une séquence de nombres.
Par nature, la combinatoire apparaît dans nombreuses branches des mathématiques, que ce soit en
tant qu’acteur principal ou secondaire. Des applications de la combinatoire peuvent être trouvées en
topologie algébrique [FF46] [Koz08], en théorie des nombres [TV06] et même en physique théorique
et statistique [Tan20] [Rue69]. Comme elle étudie des structures discrètes, la combinatoire a établi
une forte connexion avec l’informatique. Par exemple, l’étude des algorithmes, leurs complexités et
optimisations est intrinsèquement combinatoire. Réciproquement, de nombreux résultats combina-
toires proviennent de l’analyse algorithmique et de l’exploration informatique. Plus concrètement, des
domaines tels que l’optimisation linéaire en nombres entiers, la théorie des graphes et les algorithmes
de tri font appel de manière symbiotique aux idées provenant de la combinatoire et de l’informatique.
Notre travail n’échappe pas à cette réalité, car la majeure partie, voire la totalité de nos idées, ont été
influencée par des expériences faites dans le logiciel libre SageMath [Sag23].

Ordre faible
La famille combinatoire au cœur de notre travail est celle des permutations. Ces objets font partie des
plus simples de la combinatoire. Plus précisément, une permutation de taille n consiste à prendre n
objets dans un certain ordre et à les réarranger dans un nouvel ordre. Dit autrement, on peut les
considérer comme les bijections de [n] := {1, 2, . . . , n} sur lui-même. Ce point de vue confère aux
permutations une structure algébrique où la multiplication de permutations correspond simplement
à la composition de leurs bijections correspondantes. Cela forme une structure algébrique appelée le
groupe symétrique, où chaque permutation est présentée par une réarrangement des nombres 1 à n.
Une façon rapide de distinguer les permutations est de vérifier quelles paires (i, j) ont été inversées.
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Toute paire qui se trouve dans cette situation est appelée une inversion. L’ensemble de telles paires
est appelé l’ensemble d’inversions d’une permutation et définit une relation d’ordre partiel sur les
permutations en fonction de l’inclusion de leurs ensembles d’inversions. Cela s’appelle l’ordre faible
sur les permutations [Bón22].

Les permutations adjacentes dans l’ordre faible peuvent être exprimées par l’inversion d’une seule
paire (i, i+ 1). Nous disons que les permutations correspondant à ces réarrangements sont les trans-
positions simples de l’ordre faible. Avec ça on peut montrer que, étant donné deux permutations dans
l’ordre faible, il est toujours possible de trouver une permutation maximale (resp. minimale) unique
qui est plus petite (resp. plus grande) que les deux. Ces opérations transforment l’ordre faible en un
ensemble partiellement ordonné (i.e. un poset) avec une structure algébrique appelée treillis [GR63].

Chaque permutation σ de [n] peut être associée au point (σ(1), . . . , σ(n)) dans l’espace Rn. Si
on prend l’enveloppe convexe de cette configuration de points, le polytope résultant est appelé le
permutaèdre, dont les propriétés reflètent les phénomènes de l’ordre faible [Sch11] [GG77]. Par exemple,
en orientant le permutaèdre dans une direction particulière, le graphe orienté constitué par son 1-
squelette (i.e. sommets et arêtes) correspond précisément à l’ordre faible. Par ailleurs, ce processus
pour obtenir le permutaèdre montre que ses faces sont indexées par les partitions ordonnées de [n].
Une autre façon géométrique de présenter le permutaèdre et la structure de l’ordre faible consiste à
partitionner les ensembles d’inversions des permutations en fonction du plus petit élément dans une
inversion et prendre les cardinalités de ces ensembles. La structure résultante est un plongement du
permutaèdre dans un cube [BF71] [RR02].

Treillis de Tamari
Une autre famille d’objets combinatoires sur laquelle repose une grande partie de notre travail est celle
des arbres binaires. Il s’agit d’arbres enracinés où chaque nœud a un parent et deux enfants. Les arbres
binaires sont dénombrés par une des séquences de nombres les plus prolifiques, appelée les nombres de
Catalan [OEI23, A000108], et sont donc en bijection avec une myriade d’objets combinatoires [Sta15].

Étant donné un arbre binaire avec n nœuds, nous pouvons étiqueter ses sommets en effectuant une
marche dans le sens contraire des aiguilles d’une montre sur le graphe, en étiquetant le i-ème sommet
que nous visitons une deuxième fois lors de notre parcours. Cela s’appelle l’ordre infixe des arbres
binaires, et l’étiquetage résultant a la propriété que pour chaque sommet, son étiquette est supérieure
aux étiquettes de son sous-arbre gauche et inférieure aux étiquettes de son sous-arbre droit. Cela nous
permet de définir la rotation d’une arête i → j en une arête j → i, tout en maintenant la structure
des sous-arbres de i et j. Les rotations sont une opération classique utilisée pour équilibrer les arbres
binaires de recherche (c’est-à-dire réduire leur hauteur au minimum) afin d’obtenir des algorithmes de
tri efficaces [AL62]. Ces rotations définissent un ordre sur tous les arbres binaires appelé le treillis de
Tamari [Tam62].

Pour obtenir une structure géométrique à partir des arbres binaires, il faut considérer des vecteurs
où chaque coordonnée i est le produit des feuilles dans le sous-arbre gauche et les feuilles dans le sous-
arbre droit du nœud étiqueté i. L’enveloppe convexe de ces sommets est appelée l’associaèdre [Lod04]
et ses faces sont indexées par les arbres de Schröder [Sta11]. Comme précédemment, en orientant
l’associaèdre dans une direction particulière, nous pouvons trouver le treillis de Tamari à travers
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son 1-squelette. À ce stade, une relation entre les arbres binaires et les permutations commence à
apparaître, car l’associaèdre est un enlevoèdre. Autrement dit, l’associaèdre peut être obtenu en en-
levant certaines facettes du permutaèdre [SS93]. Comme pour les permutations, en changeant les
coordonnées correspondant aux arbres binaires par des quantités dérivées des rotations subies et de
leur nombre, on obtient un nouvel ensemble de vecteurs appelés vecteurs de crochet. Ces vecteurs per-
mettent une preuve constructive de la propriété du treillis de l’ordre de Tamari [HT72] et également un
plongement cubique de l’associaèdre [Knu93]. Ces techniques ont été utilisées avec des généralisations
et des structures liées au treillis de Tamari [CPS20] [Com21] [FMN21] [Com22] [CG22] [PP23].

Une relation plus directe entre les arbres binaires et les permutations peut être trouvée grâce à
l’algorithme d’insertion de [Ton97] [HNT05]. Ainsi, les fibres des arbres binaires sous cet algorithme
sont des intervalles de permutations dont les élément minimaux évitent le motif 312. Ces fibres corre-
spondent aux les fibres de l’algorithme du tri par pile [Knu73] et forment une relation de congruence
dans l’ordre faible qui respecte les opérations de infimum et de supremum. On appelle ces congruences
des congruences de treillis et dans ce cas, elles conduisent au treillis de Tamari qui est l’ordre induit
par les permutations minimales dans ces fibres. Cette congruence de treillis est connue sous le nom
de congruence congruence sylvestre.

Permutarbres
La famille combinatoire qui motive cette thèse et que nous étudions sous différents angles est celle
des permutarbres [PP18]. Cette famille est suffisamment générale pour encoder les permutations, les
arbres binaires, les arbres cambriens [LP13] [CP17], et les séquences binaires, tout en permettant de
définir de nouveaux types d’arbres. Un permutarbre est constitué d’un arbre dirigé non enraciné avec
des nœuds étiquetés par [n], où chaque nœud peut avoir un ou deux parents et un ou deux enfants,
tandis que chaque étiquette d’un sommet satisfait une relation similaire à celle des arbres binaires
via l’ordre infixe. Ainsi, les permutarbres sont caractérisés par le nombre de parents et d’enfants
de chaque nœud, ce qui est appelé la décoration du nœud. Comme les sommets sont étiquetés, cela
regroupe les permutarbres en δ-permutarbres où δ est un vecteur de décorations.

Dans la même lignée que [HNT05], l’algorithme d’insertion de [PP18] établit une surjection des
permutations sur les δ-permutarbres pour chaque décoration possible. Ses fibres décrivent une con-
gruence de treillis appelée congruence des δ-permutarbres. Les fibres des δ-permutarbres par cet
algorithme sont des intervalles de permutations dont l’élément minimal évite le motif kij et/ou jki

pour chaque j ∈ {2, . . . , n− 1} et 1 ≤ i < j < k ≤ n en fonction de la décoration δj .
Comme pour les arbres binaires, les δ-permutarbres ont des rotations qui modifient leur structure

locale au niveau d’une seule arête tout en maintenant le reste de l’arbre intact. Ces rotations définissent
les posets de rotations des δ-permutarbres. Dans [PP18], il est démontré démontré que ces posets sont
des treillis mais la démonstration utilise des quotients de treillis pour montrer que ce poset est un
sous-treillis de l’ordre faible. En général, ils sont appelés treillis de δ-permutarbres et généralisent les
treillis cambriens en type A de [Rea06].

Peu importe la décoration, les permutarbres peuvent être associés à un vecteur dont les coordonnées
correspondent à une manipulation du nombre de nœuds dans leurs sous-arbres droit et gauche. Cela
donne naissance à un polytope appelé le δ-permusylvèdre. En orientant ce polytope dans une direction
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particulière, on retrouve leur treillis correspondant. Bien que les δ-permutarbres et leurs congruences
de permutarbres puissent être différents, pour certains sous-ensembles de décorations, leurs treillis
sont isomorphes et pour d’autres, leurs permusylvèdres sont combinatoirement équivalents.

Groupes de Coxeter
Nos idées sur les permutations et l’ordre faible ne constituent qu’une partie d’un schéma plus vaste
décrit par les groupes de Coxeter. Introduits dans [Cox34] et ensuite entièrement classifiés pour le cas
fini dans [Cox35], les groupes de Coxeter décrivent des groupes engendrés par des réflexions simples
provenant d’arrangements d’hyperplans [Hum90]. Ainsi, les éléments sont des séquences de réflex-
ions simples appelées mots, et les réflexions correspondent aux inversions. Ces inversions définissent
des ensembles d’inversions qui, à leur tour, définissent l’ordre faible d’un groupe de Coxeter. Ainsi,
les permutations ne sont qu’un cas particulier des groupes de Coxeter appelé les groupes de Cox-
eter de type A. Il y a des familles combinatoires similaires qui peuvent être trouvées pour d’autres
types tels que les permutations signées et les permutations signées paires pour les groupes de Cox-
eter de types B et D respectivement [BB06]. À notre connaissance, les autres groupes n’ont pas de
descriptions combinatoires similaires. Néanmoins, la nature des groupes de Coxeter permet de les
étudier par des moyens algébriques, géométriques, combinatoires ou par la théorie des langages. Cela
a conduit à décrire les propriétés du langage des mots réduits dans les groupes de Coxeter à l’aide
d’automates [BH93] [HNW16].

En allant plus loin que la généralisation des permutations et de leurs propriétés, le contexte des
groupes de Coxeter offre un espace plus large dans lequel les congruences de treillis peuvent être
définies. Cela a été réalisé en considérant les groupes de Coxeter comme l’ensemble des régions
d’arrangements d’hyperplans dans [Rea04]. Ensuite, le concept de c-triage (également connu sous
le nom de triage de Coxeter) a été introduit dans [Rea07a]. Cela a donné les éléments c-triables
dont Reading a démontré plus tard qu’ils étaient les éléments minimaux des congruences cambri-
ennes [Rea07b]. Ces résultats ont été unifiés pour tous les groupes de Coxeter finis, indépendamment
de leur type, dans [RS11], puis résumés dans [Rea12]. Dans ce contexte, la congruence sylvestre est
une congruence cambrienne de type A, et ses éléments c-triables coïncident avec les permutations
triables par pile. De plus, toutes les congruences cambriennes de type A sont des congruences de
permutarbres.

s-ordre faible
D’autres généralisations possibles de l’ordre faible proviennent des multipermutations plutôt que
des permutations. Cela signifie qu’étant donné une séquence d’entiers positifs r = (r1, . . . , rn),
une r-permutation est un réarrangement du mot 1r1 · · ·nrn où iri représente la répétition de la let-
tre i un total de ri fois. Venant d’un cadre géométrique dans [RR02], elles ont été utilisées pour
décrire quelques plongements du combinohèdre, qui était connu pour provenir d’une structure de
treillis appelée le treillis multinomial [BB94]. Indépendamment, dans un cadre plus algébrique,
le cas où tous les ri = m pour un m ≥ 1 a été introduit dans [NT20] pour étudier la congru-
ence m-sylvestre. En renommant r en k, les k-permutations évitant le motif 121 sont appelées
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k-permutations de Stirling. Ces permutations ont suscité un vif intérêt et de nombreuses de leurs
propriétés ont été déterminées grâce à leurs statistiques et leurs bijections avec d’autres familles com-
binatoires [Par94a] [Par94b] [Par94c] [KP11] [JKP11] [RW15] [Gon19].

Cependant, en dehors de toutes ces constructions, il en existe une plus récente liée à ces idées et
qui nous intéresse appelée le s-ordre faible [CP19] [CP23]. En prenant une composition faible s =
(s1, . . . , sn) (c’est-à-dire si ∈ Z≥0), les s-arbres décroissants sont des arbres enracinés étiquetés avec n
nœuds tels que chaque nœud a exactement un parent et si + 1 enfants, et tous les descendants ont des
étiquettes plus petites. Ces arbres ont des inversions définies à partir de la position relative entre les
nœuds. Comme précédemment, ces inversions définissent un ordre sur les s-arbres décroissants appelé
le s-ordre faible. Pour cet ordre il a été montré de manière constructive qu’il a une structure de treillis
et a une structure géométrique appelée le s-permutaèdre. De plus, il existe un ordre sous-jacent appelé
le s-treillis de Tamari avec une contrepartie géométrique appelée le s-associaèdre. Ils correspondent
au ν-treillis de Tamari de [PV17] et au ν-associaèdre de [CPS19] pour certaines valeurs de ν. Chaque
fois que s est une composition, les s-arbres décroissants sont en bijection avec les s-permutations de
Stirling, c’est-à-dire les s-permutations évitant le motif 121. Le s-ordre faible coïncide avec l’ordre
faible des permutations lorsque si = 1 pour toutes les coordonnées de s, et avec le treillis métasylvestre
de [Pon15] lorsque si = m avec m ≥ 1 pour toutes les coordonnées de s.

Polytopes de flot
Une famille de polytopes que nous considérons pour une bonne partie de notre travail en raison de
leur polyvalence est celle des polytopes de flot. Ils proviennent d’un graphe orienté sans boucles où
chaque sommet est équipé d’un entier qui représente le flot net traversant. Autrement dit, la différence
entre le flot entrant et le flot sortant déterminée respectivement par les arêtes entrantes et sortantes
de chaque sommet doit être égale à ce flot net. Cela limite les flots possibles qu’on peut assigner aux
arêtes du graphe tout en étant cohérents avec le flot net. En considérant les flots comme des points
dans l’espace des arêtes du graphe, on obtain un polytope appelé le polytope de flot. Étant donné que
les flots et les flots nets sont des modèles de réseaux, les polytopes de flot ont été largement utilisés
dans les problèmes d’optimisation. Par conséquent, de nombreuses recherches ont été faites sur la
combinatoire de ces polytopes [RH70] [FRD71] [GS78a] [Hil03] [MM19] [GHMY21]. En particulier, le
volume normalisé du polytope de flot se décompose de manière agréable avec la formule de partition de
Kostant à travers des formules de Baldoni-Vergne-Lidskii [BV08]. Cela a permis de mettre en évidence
de nouvelles identités démontrant de nombreux nombres connus via des décompositions en produits,
comme cela est illustré dans [BGH+19].

Nous nous intéressons aux polytopes de flot en particulier en raison de leurs possibles subdivisions.
En particulier, en dotant chaque sommet d’un graphe de relations d’ordre totales indépendantes
pour ses arêtes entrantes et sortantes (c’est-à-dire un cadre), les cliques de routes cohérentes du
graphe nous donnent une triangulation du polytope de flot lorsque le flux net est i := (1, 0, . . . , 0,−1).
Cette triangulation est appelée la triangulation DKK et est équipée d’une fonction de hauteur qui la
rend régulière [DKK12]. Une autre subdivision possible consiste à effectuer une série de réductions
sur le graphe, ce qui se traduit par la découpe du polytope de flot en plusieurs morceaux qui sont
combinatoirement équivalents à d’autres polytopes de flot. Ce processus donne la subdivision de
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Postnikov-Stanley [Pos14] [Sta00]. L’utilité de ces deux subdivisions réside dans le fait que lorsque
le graphe est encadré, les subdivisions encadrées de Postnikov-Stanley deviennent des triangulations
DKK [MMS19]. Cela établit une bijection entre les simplexes de la triangulation DKK du flot net i et
les points entiers du polytope de flot du flot net d, où di est le degré d’entrée décalé du i-ème sommet.
Cette bijection entre deux polytopes de flot différents a permis de retrouver certains treillis comme le
dual des faces intérieures de la triangulation DKK, tels que le treillis de Tamari ν et les idéaux d’ordre
principal du treillis de Young [vGMY23].

Géométrie tropicale
La géométrie tropicale provient du remplacement des opérations habituelles de l’addition et de la
multiplication respectivement par les opérations du minimum et de la somme, et l’inclusion de l’infini
comme élément [Jos21]. Bien qu’elle ait des liens intéressants avec l’économie [Shi15] et la con-
ception de mécanismes [CT18], nous sommes intéressés par sa relation avec la géométrie discrète
classique. Le changement des opérations et de l’ensemble de base permet de définir de nouvelles
structures géométriques telles que les polynômes tropicaux, les hypersurfaces tropicales et les variétés
tropicales. Ces objets ont été étudiés en tant que tels et ont également montré des liens avec la
géométrie convexe [Jos17]. Par exemple, toutes les configurations de points sont en correspondance
avec des polynômes tropicaux. De plus, les techniques classiques de la géométrie discrète telles que
la méthode de Cayley [Stu94] [HRS00] [DRS10] ont été utilisées à plusieurs reprises dans le contexte
tropical [DS04] [FR15] [Jen16] [JL16] [MS21].

Contributions
Avec ce contexte donné, cette thèse s’inscrit dans le cadre d’un projet plus vaste visant à répondre à
la question suivante: pouvons-nous étudier les congruences des permutarbres dans tous les types de
Coxeter? Bien que nous ne donnions pas une réponse complète à cette question, nous proposons trois
nouveaux points de vue à partir desquels les permutarbres de type A peuvent être étudiés, ainsi que
d’autres résultats liés que nous avons obtenus en utilisant certains de ces outils pour le s-ordre faible.
Ces contributions sont contenues dans les articles suivants:

• D. Tamayo Jiménez. Inversion and Cubic Vectors for Permutrees, 2023. arXiv:2308.05099,
où nous avons donné une preuve constructive de la propriété de treillis pour les treillis des
rotations des permutarbres et une incorporation cubique des permusylvèdres.

• V. Pilaud, V. Pons, et D. Tamayo Jiménez. Permutree Sorting. Algebraic Combinatorics,
6(1):53-74, 2023,
où nous avons caractérisé les éléments minimaux des classes des permutarbres de type A à l’aide
de leurs mots réduits en utilisant des automates, et trouvé des pistes pour d’autres types de
Coxeter (B et D).

• R.S. González D’León, A.H. Morales, E. Philippe, D. Tamayo Jiménez, and M. Yip. Realizing
the s-Permutahedron via Flow Polytopes, 2023. arXiv:2307.03474,
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où nous avons donné une réponse positive à une conjecture de Ceballos et Pons sur la réalisation
géométrique de l’ordre faible s (lorsque s ne contient pas de zéros) en utilisant des subdivisions
polytopales de flow polytopes, des sommes d’hypercubes et de la géométrie tropicale.

• R.S. González D’León, A.H. Morales, E. Philippe, D. Tamayo Jiménez, and M. Yip. Flow
Polytopes and Permutree Lattice Quotients of the s-Weak Order. In preparation, 2023+,

où nous avons trouvé une description des permutarbres et de leurs treillis de rotations en utilisant
les subdivisions de flow polytopes.

Les trois premiers travaux ont été présentés dans plusieurs ateliers, séminaires et conférences interna-
tionales, sous forme de posters ou de présentations. Les travaux contenus dans ces articles s’appuient
sur des idées telles que les vecteurs de parenthèses des arbres binaires, la théorie du langage dans les
groupes de Coxeter avec automates, et la combinatoire des flow polytopes soutenue par la géométrie
tropicale.

Plan de la thèse
Le travail présenté dans cette thèse est divisé en trois parties. La Partie I décrit les principaux
outils combinatoires et la problématique des permutarbres qui est au cœur de notre travail. Ensuite,
la Partie II présente deux de nos réponses à cette problématique dans les chapitres 3 et 4. Enfin, la
Partie III traite sur l’utilisation des polytopes de flot dans notre contexte. Nos contributions dans cette
partie sont contenues dans les chapitres 6 et 7. La figure 2 montre les dépendances entre les contenus de
la thèse et décrit l’ordre de lecture recommandé. Le lecteur est invité à sauter les chapitres 1, 2 et/ou 5
s’il est déjà familier avec le matériel correspondant. Nous avons essayé de rendre cette thèse aussi
autonome que possible, de sorte que la seule exigence réelle pour la lire est la connaissance de l’algèbre
linéaire. De l’expérience en géométrie discrète n’est pas nécessaire, mais fortement recommandée pour
avoir une meilleure intuition de notre contexte. Cependant, tout au long de notre travail, nous avons
nous avons pris soin de proposer des figures utiles afin de mieux communiquer nos idées, nos résultats
et, en général, les points de vue à partir desquels nous avons abordé les problèmes que nous avons
étudiés. Nous espérons que le lecteur les trouvera utiles.

Préliminaires
La Partie I se compose de deux chapitres qui introduisent, à différents niveaux de généralité, les
principaux concepts combinatoires que nous utilisons. Le chapitre 1 commence par introduire les
concepts d’ordres partiels, de treillis et de congruences de treillis qui sont au cœur de toutes les parties
de notre travail. Ensuite, nous décrivons les bases de la géométrie convexe, y compris les polytopes, les
cônes, les complexes, ainsi que plusieurs opérations et techniques classiques qui les concernent. Enfin,
nous rappelons les bases de la théorie des automates et sa capacité à reconnaître des motifs dans les
mots. Le cadre de la géométrie convexe et de la théorie des automates nous offre un point de vue
avantageux pour aborder les problèmes traités dans cette thèse.
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Figure 2 – Plan de la thèse.

Dans le chapitre 2, nous présentons d’abord l’ordre faible sur les permutations, ainsi que les arbres
binaires et les permutarbres, en décrivant leurs similarités en termes de combinatoire, d’ordres et de
polytopes, ainsi que leurs relations mutuelles à travers des congruences de treillis. Ensuite, nous
rappelons les généralisations de l’ordre faible à l’ordre faible des groupes de Coxeter et à le s-ordre
faible. La généralisation aux groupes de Coxeter nous aide à décrire le problème central de cette thèse,
qui consiste de trouver nouvelles familles combinatoires à travers lesquelles nous pouvons étudier les
permutarbres et leurs treillis (Perspective 2.4.55).

Permutarbres
Dans la Partie II, nous fournissons deux réponses à la Perspective 2.4.55. La première, présentée
dans le chapitre 3, est basée sur l’article [Tam23] et consiste en deux généralisations des vecteurs
de parenthèses des arbres binaires aux permutarbres. Nous commençons par définir les ensembles
d’inversions pour un permutarbre, ainsi que la façon dont ils peuvent être partitionnés pour donner des
vecteurs d’inversions. Comme les ensembles d’inversions pour les permutations, nous caractérisons ces
ensembles en termes de transitivité, de cotransitivité et de deux conditions supplémentaires en fonction
de la décoration du permutarbre étudié (Lemme 3.1.3). En suivant les étapes de [HT72] avec les arbres
binaires, nous montrons que l’ordre de rotation des permutarbres peut être interprété via l’inclusion
des ensembles d’inversions (Lemme 3.1.6) et que l’intersection de ces ensembles, accompagnée d’une
condition spéciale, définit une opération d’infimum sur le poset des permutarbres (Théorème 3.1.7).
Cela nous permet de retrouver de manière constructive le résultat de [PP18] selon lequel l’ordre de
rotation sur les permutarbres a une structure de treillis (Corollaire 3.1.11). Ensuite, nous définissons
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les ensembles cubiques et les vecteurs cubiques pour les permutarbres. Cela nous permet de généraliser
les plongements cubiques du permutaèdre donnés dans [BF71] et [RR02], ainsi que l’associaèdre comme
dans [Knu93], pour n’importe quel permusylvèdre (Théorème 3.2.9).

La deuxième réponse, présentée dans le chapitre 4, provient de l’article [PPT23] où nous carac-
térisons les éléments minimaux des classes de congruence des permutarbres à l’aide d’automates finis
qui lisent des mots réduits. Nous commençons par considérer le cas où la décoration des permutarbres
est donnée par une seule arête orientée du diagramme de Coxeter de type A. Dans ce cadre, nous
définissons les automates U(j) et D(j) qui lisent des mots réduits correspondant à des permutations.
Ces automates sont pertinents dans notre cadre de permutarbres car il est démontré que la propriété
d’une permutation ayant un mot réduit accepté par ces automates est équivalente à l’évitement de
motifs caractérisé par les permutarbres (Théorème 4.1.14). Après avoir obtenu ce résultat, nous con-
cevons un algorithme qui, étant donnée une permutation, renvoie un mot réduit accepté par l’automate
en jeu (Algorithme 1). Nous montrons que la propriété selon laquelle ce mot réduit est un mot ré-
duit de la permutation d’origine est équivalente à ce que la permutation soit minimale dans sa classe
de congruence des permutarbres (Corollaire 4.1.22). Nous montrons également comment l’ensemble
des mots réduits acceptés génère une structure d’arbre dans le diagramme de Hasse de l’ordre faible
(Théorème 4.1.24).

Nous passons ensuite au cas où chaque arête du diagramme de Coxeter peut avoir au plus une
orientation. Dans cette situation, nous concevons l’automate P(U,D) comme l’intersection de nos
automates précédents, et à travers celui-ci, nous étendons nos résultats précédents à ce cas plus large
des congruences des permutarbres. Autrement dit, il est montré que le fait qu’un mot réduit soit
accepté par cet automate est équivalent à la propriété que la permutation correspondante évite les
motifs dictés par la congruence des permutarbres (Corollaire 4.2.4). Nous définissons un algorithme
(Algorithme 2) qui transforme une permutation en un mot réduit ayant la propriété que ce mot réduit
décrit la permutation si et seulement si la permutation est minimale dans sa classe de congruence des
permutarbres (Théorème 4.2.12). Il est également montré que l’ensemble des mots réduits acceptés
génère une structure d’arbre dans le diagramme de Hasse de l’ordre faible (Théorème 4.2.13).

Avec ces résultats en main, nous étudions le cas maximal où toutes les orientations du diagramme
de Coxeter ont exactement une orientation. Comme ce cas coïncide avec les congruences Cambriennes,
nous montrons que le fait qu’une permutation soit minimale dans sa classe de congruence des permu-
tarbres (ou tout autre événement équivalent avec l’évitement de motifs ou l’acceptation dans P(U,D))
est équivalent à ce que cette permutation soit Coxeter triable et que le c-sorting mot correspondant
est accepté par P(U,D) (Théorème 4.3.3).

Enfin, nous proposons un ensemble d’automates dont on a vérifié de manière calculatoire qu’ils
caractérisent les éléments minimaux des permutarbres pour des groupes de Coxeter de types B et D.
Dans le cas de type B, notre proposition couvre tous les rangs possibles, tandis que dans le cas
de type D, elle ne couvre que certains cas jusqu’à n = 5. En nous basant sur la définition des c-
singletons de [HLT11], nous définissons par ailleurs les δ-singletons, les δ-accepteurs, les δ-maccrs
(accepteurs minimaux) et les δ-smaccrs (accepteurs minimaux les plus courts) et nous conjecturons
qu’ils permettent, avec de légères modifications, la définition d’automates dans n’importe quel groupe
de Coxeter fini (Conjecture 4.4.5). Nous présentons également les conjectures 4.4.4 et 4.4.6 sur la
relation entre les maccrs et les smaccrs, accompagnées d’explorations informatiques et d’exemples
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dans les types D et H.

Polytopes de flot
La partie III est consacrée à décrire comment les triangulations des polytopes de flot peuvent réaliser
des familles distinctes de posets en tant que 1-squelettes de complexes simpliciaux, et comment
cela peut être utilisé dans notre contexte en combinaison avec d’autres techniques polytopales. Le
Chapitre 5 donne les bases nécessaires sur les polytopes de flot, y compris les définitions de flots, de
polytopes de flot, des formules de Baldoni–Vergne–Lidskii pour leur volume et de la fonction de parti-
tion de Kostant. Nous rappelons les constructions des triangulations de Danilov–Karzanov–Koshevoy
et des sous-divisions de Postnikov–Stanley ainsi que leurs relations lorsque les sous-divisions PS sont
encadrées. Pour les triangulations DKK, nous affinons la Proposition 5.1.31 de [DKK12] qui énonce
une condition suffisante sur les routes pour qu’une fonction de hauteur soit admissible pour la trian-
gulation. Nous définissons la résolvante pour un conflit entre deux routes et introduisons le concept
de conflits minimaux. Cela nous permet de transformer la Proposition 5.1.31 en une condition néces-
saire et suffisante (Lemma 5.1.33) et ensuite de relâcher la condition nécessaire tout en conservant le
si et seulement si (Lemma 5.1.34). Ensuite, nous présentons les définitions de base de la géométrie
tropicale dont nous avons besoin en nous concentrant sur les constructions géométriques de surfaces
tropicales, de domes, de polytopes de Newton et de sous-divisions duales sur des configurations de
points. Ce chapitre se termine par une note sur la manière de prendre plusieurs configurations de
points, de faire leur plongement de Cayley et d’appliquer la méthode de Cayley pour relier leurs con-
structions tropicales correspondantes (Proposition 5.2.14). Bien que la plupart de ces éléments de
base proviennent de [Jos21], nous affinons la Proposition 5.2.11 qui relie ces définitions et définit une
bijection qui inverse les dimensions entre les cellules des hypersurfaces tropicales et les cellules des
sous-divisions duales. Nous le faisons en montrant que cette bijection se restreint aux cellules bornées
de l’hypersurface tropicale et aux cellules intérieures de la sous-division duale (Lemme 5.2.12).

Le chapitre 6 est entièrement basé sur l’article [GMP+23a] et se concentre sur la réponse à la Con-
jecture 2.5.12 concernant la réalisation du s-permutahèdre en tant que subdivision polyédrale d’un
polytope qui est combinatorialement isomorphe à un zonotope, dans le cas où s ne contient pas de zéros.
Pour cela, nous définissons deux graphes encadrés appelés le graphe oruga Orun et le graphe Oru(s)
pour le cas général. Nous démontrons que pour le flot net de degré d décalé d, les d-flots entiers
dans Oru(s) sont en bijection avec les s-permutations de Stirling (Théorème 6.1.4), et même dans le
cas où s contient des zéros, en bijection avec les s-arbres décroissants (Remarque 6.1.6). En pour-
suivant avec s étant une composition, après avoir utilisé la bijection entre les d-flots entiers de Oru(s)
et les simplexes maximaux dans la triangulation DKK du polytope de flot FOru(s)(i) avec le flot net
de base i := (1, 0, . . . , 0,−1) provenant de [MMS19], nous montrons que ces simplexes maximaux
sont en bijection avec les s-permutations de Stirling (Lemme 6.1.10) et que leur adjacence encode le
1-squelette de l’ordre s-faible (Théorème 6.1.11). À partir de là, nous définissons un simplexe associé
à une face du s-permutaèdre et montrons que cette correspondance définit un isomorphisme inversant
l’inclusion entre les faces du s-permutaèdre et les simplexes de la triangulation DKK du polytope de
flot FOru(s)(i) (Corollaire 6.1.21). Cela réalise le s-permutaèdre en tant que polytope de grande dimen-
sion, donc pour réduire sa dimension, nous utilisons la méthode de Cayley telle que décrite dans [San05]
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pour obtenir une bijection inversant l’inclusion entre le s-permutaèdre et les cellules intérieures d’une
subdivision mixte d’une somme d’hypercubes de dimensions variables (Théorème 6.2.4). Cette réali-
sation a la dimension souhaitée de la conjecture (Remarque 6.2.5), mais elle manque de coordonnées
explicites. Pour remédier à ça, nous utilisons le résultat de DKK pour obtenir une fonction de hau-
teur explicite sur les routes de Oru(s) (Lemma 6.3.1). En consequence, nous prouvons qu’il existe
un arrangement d’hypersurfaces tropicales dont le dual tropical est la subdivision mixte d’hypercubes
que nous obtenons en appliquant la méthode de Cayley à Oru(s) (Théorème 6.3.4). Cela nous permet
d’obtenir le s-permutaèdre à travers du complexe polyédrale des cellules bornées de cet arrangement
tropical (Théorème 6.3.6). Comme conséquences immédiates, nous décrivons plusieurs propriétés de
cette réalisation telles que ses sommets (Théorème 6.3.8), son hyperplan contenant (Corollaire 6.3.9),
les directions de ses arêtes montrant qu’il s’agit d’un permutaèdre généralisé (Théorème 6.3.10), ses
sommets et ses hyperplans de support (Lemme 6.3.12), et le fait qu’il est effectivement la transla-
tion d’un zonotope qui est isomorphe à un permutaèdre (Théorème 6.3.15). Le chapitre finit avec
certains résultats et remarques sur la façon dont les techniques d’énumération des polytopes de flot
décomposent le nombre de s-objets combinatoires (Corollaire 6.4.1).

Enfin, dans le chapitre 7, nous utilisons les techniques des polytopes de flot pour donner une
troisième réponse à la Perspective 2.4.55 pour les permutarbres de type A. Cette réponse consiste en
la description des treillis de rotation de permutarbres à travers des triangulations DKK des polytopes
de flot. Nous commençons par définir les M-mouvements sur Orun qui créent de nouveaux graphes
encadrés appelés les δ-bicho graphes Bicδ en fonction de la décoration des permutarbres en jeu. Parmi
eux, nous avons notre oruga graphe Orun, le caracol graphe Carn de [BGH+19], et le nouveau mariposa
graphe Marn (Remarque 7.1.3). Nous montrons que les d-flots entiers de Bicδ et les δ-permutarbres
ont les mêmes cardinalités (Théorème 7.2.6) et que l’ordre de raffinement sur les décorations des
permutarbres détermine la structure des cliques maximales des routes cohérents entre les distincts δ-
bicho graphes (Lemme 7.3.4). Avec cela en main, nous prouvons que les simplexes de la triangulation
DKK de Bicδ sont en bijection avec les δ-permutarbres (Théorème 7.3.5) et que le treillis de rotation des
permutarbres est encodé par les adjacences des simplexes dans la triangulation DKK (Corollaire 7.3.7).

Conjectures et perspectives
Tout au long de cette thèse, nous avons fait un usage intensif du logiciel libre SageMath [Sag23]
pour les implémentations et les calculs sur les objets combinatoires que nous avons étudiés. Cela
nous a permis d’obtenir une intuition sur les problèmes sur lesquels nous avons travaillé et de définir
concrètement nos résultats. En particulier, nous avons obtenu des vérifications calculatoires pour
plusieurs phénomènes combinatoires que nous laissons comme les Conjectures 4.4.4, 4.4.5, 4.4.6, 7.4.1
et 7.4.2.

De manière plus générale, nous présentons également plusieurs pistes de recherche pour des travaux
futurs que nous pourrions entreprendre en suivant les problématiques traitées dans cette thèse. Pour
certains d’entre eux, nous avons des résultats partiels ou une forte intuition, tandis que d’autres
indiquent simplement la prochaine étape naturelle à suivre. Nous les présentons dans les Perspec-
tives 2.4.55, 4.3.10, 6.4.5, 6.4.6, 6.4.7, 7.4.4, 7.4.5, 7.4.6, 7.4.7 et 7.4.8.
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Chapter 1
Combinatorics and Discrete Geometry

For our work we denote by Rn the standard Euclidean space, Zn the point lattice of vectors of Rn
with all entries integers. The standard basis of Rn is denoted by e1, . . . , en and the vectors of all 0’s
as 0 and all 1’s as 1. In general all vectors are bolded like x,y, z.

As notation, the sets of consecutive numbers are denoted [n] := {1, . . . , n} and in more general-
ity, [i, j] := {i, i + 1, . . . , j − 1, j}. For a finite set X we denote by |X| its cardinality and Xc the
complement of X in its appropriate context. For subsets,

(
[n]
k

)
:= {A ⊆ [n] : |A| = k}.

Definition 1.0.1. Let R ⊆ [n]2 be a relation on [n]. We say that R is

• reflexive if (x, x) ∈ R for all x ∈ [n],

• antisymmetric if (x, y) ∈ R and (y, x) ∈ R implies x = y, for all x, y ∈ [n],

• transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R, for all x, y, z ∈ [n].

• cotransitive if (x, y) /∈ R and (y, z) /∈ R implies (x, z) /∈ R, for all x, y, z ∈ [n].

We denote by Rtc the transitive closure of R (i.e. the smallest transitive relation containing R).

1.1 Partial Orders and Lattices
This thesis revolves around objects with an associated notion of order. Therefore, we start by intro-
ducing several definitions and constructions on sets and orders on them. Most on this section is based
on [Sta11] and [Rea16].

1.1.1 Partially Ordered Sets
Definition 1.1.1. A partially ordered set (poset) consists of a discrete set X with a binary relation ≤
that is reflexive, antisymmetric, and transitive. If for a pair of elements x, y ∈ X we have that x ≤ y

or x ≥ y we say that they are comparable, otherwise they are incomparable. Whenever all elements
of (X,≤) are comparable, we say that ≤ is a total order on X.

3
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Example 1.1.2. Some examples of posets include:

• Any subset of integers with the usual order.
• The partitions of the set [n] ordered by refinement.
• The set of subsets of a finite set ordered by inclusion.
• The divisors of an integer n ordered by divisibility.

Figure 1.1 shows examples of some of these posets.

60

30 20 12

461015

5 3 2

1

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

−87

22

42

99

Figure 1.1 – A poset of integers as a chain, the poset of subsets of [3], and the divisors of 60.

The theory of posets comes with a plethora of useful concepts. We only introduce a “few” of them
here. For a more complete treatment we refer the reader to [Sta11].

Definition 1.1.3. Let (X,≤) be a poset and consider elements x, y ∈ X. The set [x, y] := {z ∈ X :
x ≤ z ≤ y} is called the interval of x and y. For an interval [x, y] of cardinality 2, the pair (x, y)
is called a covering relation, and we say that y covers x denoted by x l y. An element is minimal
(resp. maximal) if it does not cover (resp. is not covered by) any other element. A poset is said to
be bounded if it has a unique minimal element denoted by 0̂ and a unique maximal element denoted
by 1̂. The atoms (resp. coatoms) of P are the elements that cover 0̂ (resp. covered by 1̂). The Hasse
diagram of (X,≤) is the directed graph on X where x→ y if and only if xly. Unless stated otherwise
our figures of posets consist of their Hasse diagrams drawn with minimal elements at the bottom and
maximal elements at the top.

As is the case of many combinatorial structures, it is possible to construct other posets from an
initial one. We describe several such constructions now.

Definition 1.1.4. Given a poset (X,≤) and Y ⊆ X, we say that (Y,≤) is a(n) (induced) subposet
of X if for a, b ∈ Y we have that a ≤ b in Y if and only if a ≤ b in X. Likewise in this case (X,≤) is
a supposet of Y . If ≤′ is a partial order over X such that x ≤ y implies x ≤′ y we say that ≤ ⊆ ≤′.

A linear extension of (X,≤) is a poset (X,≤tot) where ≤tot is a total order and ≤ ⊆ ≤tot. Figure 1.2
shows a poset together with its linear extensions. The dual of (X,≤) is the poset (X,≤∗) where y ≤∗ x
if and only if x ≤ y.
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Figure 1.2 – A poset on [5] and its linear extensions.

Definition 1.1.5. Given a poset (X,≤), a chain (resp. antichain) is a subposet Y ⊆ X where all
(resp. none) elements are pairwise comparable. An ideal (resp. filter) of (X,≤) is a subposet Y ⊆ X

such that if y ∈ Y (resp. x ∈ Y ) and x ≤ y then x ∈ Y (resp. y ∈ Y ).

Remark 1.1.6. Notice that whenever X is finite, antichains, ideals, and filters are all in bijection.
The antichain corresponding to an ideal (resp. filter) is the set of its maximal (resp. minimal) elements
in the induced subposet. Conversely, the ideal (resp. filter) corresponding to an antichain is the set of
all elements under (resp. above) an element of the antichain. Ideals and filters correspond by being
complements of each other.

Definition 1.1.7. A poset is finite if it has a finite number of elements. For a finite chain of X, its
length is its number of elements minus one. The length of a poset is the length of its longest chain.
If X is bounded and all of its maximal chains (i.e. chains between 0̂ and 1̂) have the same length,
then X is said to be graded. The rank of a graded poset is the length of its maximal chains and the
rank of an element x is the length of the chains in [0̂, x].

To distinguish posets from each other we consider them up to isomorphism as follows.

Definition 1.1.8. Let (X,≤) and (Y,≤′) be posets. A poset isomorphism from (X,≤) to (Y,≤′) is a
bijection φ : X → Y such that φ(x) ≤′ φ(y) if and only if x ≤ y. That is, φ and its inverse are both
order preserving.

If (X,≤) and (X,≤∗) are isomorphic then X is said to be self-dual.

1.1.2 Lattices
The posets we work with possess a pair of operations where given a family of elements, one can find
a unique element that is minimal (resp. maximal) and above (resp. below) all the family. To define
these operations we need to consider the relation of bounds within posets.

Definition 1.1.9. Let (X,≤) be a poset with x, y ∈ X. An upper bound (resp. lower bound) of x
and y is an element z ∈ X such that x ≤ z and y ≤ z (resp. z ≤ x and z ≤ y).

The minimal upper bound (resp. maximal lower bound) of x and y is the least (resp. greatest)
element in the set of upper bounds (resp. lower bounds) of x and y, and we call it the join (resp. meet)
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of x and y if it exists. We write x ∨ y for the join of x and y and x ∧ y for the meet of x and y. For
a nonempty subset S ⊂ X of a lattice, we can denote by

∧
S (resp.

∨
S) the meet (resp. join) of all

elements of S. The meet (resp. join) of a single element is the element itself.

Given these operations one can think about expressing elements of a lattice as meets (resp. joins)
of other elements. Of particular interest are those that cannot be expressed in such a way.

Definition 1.1.10. Given a lattice (L,≤), an element x ∈ L is said to be meet-irreducible (resp.
join-irreducible) if it covers (resp. is covered by) exactly one element. That is, an element w is a meet-
irreducible (resp. join-irreducible) if there does not exist a set S ⊂ X of elements such that w =

∧
S

(resp. w =
∨
S).

Definition 1.1.11. A lattice is a poset (X,≤) such that for every subset S ⊆ X the elements
∨
S

and
∧
S exist. If (X,≤) only has a meet (resp. join) operation it is called a meet-semilattice (resp.

join-semilattice).

Figure 1.3 – A poset that is not a lattice (left), a lattice that is polygonal (middle), and a
lattice that is not polygonal (right).

Notice that all finite lattices have 0̂ and 1̂ since we can calculate (very inefficiently) the meet or
join of all elements of the lattice. Figure 1.3 presents a poset that is not a lattice and two lattices. In
the case of the converse direction we have the following theorem.

Proposition 1.1.12 ([Sta11, Prop.3.3.1],[Rea16, Lem.9-2.1]). If X is a finite meet-semilattice with 1̂
then X is a lattice. Dually, a finite join-semilattice X with 0̂ is a lattice.

Definition 1.1.13. A polygon inside a lattice is an interval [x, y] that is the union of two finite
maximal chains between x and y whose intersection is only x and y. We say that a lattice is polygonal
if the following occurs:

1. if y1 and y2 are different elements that cover x, then [x, y1 ∨ y2] is a polygon,

2. if x1 and x2 are different elements that are covered by y, then [x1 ∧ x2, y] is a polygon.

For a polygon [x, y], the incident edges to x (resp. y) are called the bottom edges (resp. top edges)
of [x, y] and the others are called side edges. See Figure 1.3 for examples of when a lattice is polygonal
and when it is not.
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1.1.3 Lattice Congruences
Just as with normal sets, we can define equivalence relations over posets. Of special interest for us
are equivalence relations on lattices that are compatible with the meet and join operations.

Definition 1.1.14. Given a lattice (L,≤), a congruence on L is an equivalence relation ≡ on L such
that for all x1, x2, y1, y2 ∈ L if x1 ≡ x2 and y1 ≡ y2 then x1 ∨ y1 ≡ x2 ∨ y2 and x1 ∧ y1 ≡ x2 ∧ y2.

If xl y and x ≡ y we say that ≡ contracts the edge xl y.

The following characterization of when an equivalence relation is a lattice congruence is a key
element for our work.

Proposition 1.1.15 ([Rea16, Prop.9-5.2]). Let ≡ be an equivalence relation over a lattice L. Then ≡
is a lattice congruence if and only if all the following conditions hold:

1. each equivalence class of ≡ is an interval of L,

2. the mappings π≡↑ and π≡↓ that respectively send an element to the maximal and minimal repre-
sentative of its class are order preserving.

Definition 1.1.16. Given a lattice congruence ≡ on a lattice (L,≤), the lattice quotient of L by ≡ is
the lattice L/≡ whose elements are equivalence classes of ≡ with relations A � B if and only if there
exists x ∈ A and y ∈ B such that x < y. The meet A ∧ B (resp. join A ∨ B) consists of the only
equivalence class that contains all x ∧ x′ (resp. x ∨ x′) for x ∈ A and x′ ∈ B.

It is possible to give a second nice characterization of lattice quotients using lattice homomorphisms
in the following way.

Definition 1.1.17. Given lattices L and L′, a map f : L → L′ is a lattice homomorphism if for
all x, y ∈ L we have that f(x ∧L y) = f(x) ∧L′ f(y) and f(x ∨L y) = f(x) ∨L′ f(y).

Proposition 1.1.18. A surjective map f : L→ L′ is a lattice homomorphism if and only if

1. f is order preserving,

2. for every interval [x, y] of L′ the fiber f−1([x, y]) is an interval.

Definition 1.1.19. For a lattice L with a lattice congruence ≡, the set π≡↓ L := {π≡↓ (x) : x ∈ L} is
a poset as an induced poset of L. Similar for π≡↑ L.

Proposition 1.1.20 ([Rea16, Prop.9-5.5]). Let L be a lattice and ≡ a lattice congruence on L.
Then π≡↓ L (resp. π≡↑ L) is a lattice and it is isomorphic to the quotient lattice L/≡. Moreover, π≡↓
(resp. π≡↑ ) is a lattice homomorphism.

Out of the characteristics of lattice quotients, we are interested in how they preserve the property
of polygonality.

Proposition 1.1.21 ([Rea16, Prop.9-6.2]). Let L be a finite polygonal lattice and ≡ a congruence
on L. Then the lattice quotient L/≡ is polygonal.

7
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Remark 1.1.22. In the case where a lattice is polygonal, lattice congruences may be described in
terms of merging/contracting edges. Here we provide the superficial details for this idea together with
Figure 1.4. See [Rea16] for the explicit construction. Let (x, y1) be an edge of a polygonal lattice L
contracted by an equivalence relation ≡. As L is polygonal, (x, y1) is in a family of polygons. If x
is not the minimal element and y1 is not the maximal element a polygon, one can easily check that
no calculations of meets or joins have been affected. In the case that x is minimal, our polygon
is [x, y1 ∨ y2], and we have that y1 ∨ y2 = y1 ∨ z ≡ x ∨ z = z for any z ∈ [y2, y1 ∨ y2]. Thus, all
elements of [y2, y1 ∨ y2] form an equivalence class. Repeating this with the meet operation results
on the polygon collapsing onto only two equivalence classes with minimal elements x and y2. This
happens in each polygon every time a new edge is contracted. We also refer to this phenomenon as
the forcing of the congruence ≡1.

Informally speaking, a contraction either contracts no other edge of a polygon if it is on a side of the
polygon or contracts both sides together with a minimal relation and its maximal opposite. Figure 1.4
shows examples of this where the original contracted edge is in red and the resulting equivalence
classes are in blue. The minimal elements of the equivalence classes are in black.

x

y1 ∨ y2

x

y1

⇒
x

y1

y1 y2

⇒

x

y1 ∨ y2

y1 y2

Figure 1.4 – Examples of congruences (in heavily bolded blue) on polygonal lattices generated
by an edge contraction (in bolded red).

Figure 1.5 shows an example of a lattice congruence forcing through a bigger lattice following the
cases that can happen in each polygon as in Figure 1.4. At each step the new contractions are in red
and the old ones in blue. Again, the minimal elements are those colored with black. Only the last
poset is a lattice.

1.2 Convex Geometry
In this section we present a selection of basic definitions and results on polytopes based mostly
on [GKZ94], [Zie95], and [DRS10]. For a more in depth introduction to polytopes and finer details we
refer the reader to [Zie95] and [DRS10].

1Forcing is a term most known from its use in set theory. In our case of the study of congruences in lattice
theory one can find a vague use of this term in [Weh03]. For a concrete use of the term in our context we refer
the reader to [Rea16]. In recent times one can see that the term has become standard through its appearance
in works such as [PS17], [PPR22], and [BM21].
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1.2. Convex Geometry

Figure 1.5 – A lattice with a congruence relation forcing through it following the polygon cases
of Figure 1.4. The equivalence classes at each step are heavily bolded in blue while the new
edges to be contracted are bolded in red.

1.2.1 Polytopes
Definition 1.2.1. Let A ⊆ Rn be a set of k ∈ Z≥0 points.

The affine hull of A is

aff(A) =
{

k∑
i=1

λiai : ai ∈ A, λi ∈ R,
k∑
i=1

λi = 1
}
.

The cone or conic hull of A denoted cone(A) is the set of all conic combinations of A, that is

cone(A) =
{

k∑
i=1

λiai : ai ∈ A, λi ∈ R≥0

}
.

Finally, their convex hull conv(A) is the set of all convex combinations of points in A. That is,

conv(A) =
{

k∑
i=1

λiai : ai ∈ A, λi ∈ R≥0,
k∑
i=1

λi = 1
}
.

Although the definitions are slightly different, the sets change quickly. Figure 1.6 shows an example
of how much these hulls can differ for the same point configuration.

We say that a set A is convex if conv(A) = A. We denote the segment conv({x,y}) by [x,y].

Definition 1.2.2. A hyperplane in Rn is a set of the form {x ∈ Rn : 〈x,v〉 = c} obtained by fixing
a vector v ∈ Rn \ {0} and a scalar c ∈ R where 〈x,v〉 denotes the inner product x1v1 + · · · + xnvn.
That is, a subspace of codimension 1 with normal vector v. Visually, the vector v give the orthogonal
direction the subspace while c dictates how shifted it is the origin. In particular, 0 is a point of the
subspace if and only if c = 0. Every hyperplane separates Rn into two halfspaces. We say that a
hyperplane H supports a set A (is a supporting hyperplane of A) if

• A is contained completely in one of its halfspaces (i.e. 〈x,v〉 ≥ c or 〈x,v〉 ≤ c for all x ∈ A),

• H ∩ A is not empty.

9
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Figure 1.6 – The affine (left), conic (middle), and convex (right) hulls of a set of points.

Definition 1.2.3. [Zie95, Thm.1.1] A polytope P is equivalently one of the following:

• V-description: the convex hull of a finite number of points,

• H-description the bounded intersection of a finite number of halfspaces.

Figure 1.7 shows an example of a polytope via both descriptions.

Figure 1.7 – A polytope in R2 with its V-description (left) and H-description (right).

The dimension of a polytope P is the dimension of aff(P ). The faces of P are the intersections P∩H
where H is a supporting hyperplane of P . It follows that the faces of P are also polytopes themselves.
Notice that the empty set ∅ and the whole polytope P are faces of P . Certain faces of a polytope of
dimension d have their own names:

• A vertex of P is a face of dimension 0.

• An edge of P is a face of dimension 1.

• A facet of P is a facet of dimension d− 1 (codimension 1 with respect to P ).

The V and H descriptions of polytopes are both useful, so we use them interchangeably. Their
equivalence is not trivial by any means [Zie95], in particular for computational issues.

Definition 1.2.4. An unbounded intersection of a finite amount of halfspaces is called a polyhedron.

Remark 1.2.5. Notice that polytopes do not need to have the maximal dimension possible. When-
ever this happens we say that the polytope is full dimensional. Most of our polytopes are not full
dimensional but do live in nice subspaces of Rn.
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Definition 1.2.6. Let P be a d-dimensional polytope in Rn. We say that P is

• simplicial if every facet of P has exactly d vertices,

• simple if every vertex of P is contained in exactly d facets of P .

Example 1.2.7. A polytope P in Rn that is the convex hull of d ≤ n+ 1 affinely independent points
is called a simplex. Notice that such a simplex is a polytope of dimension d − 1 ≤ n and that its
faces are parametrized by subsets of [d]. The standard simplex ∆n−1 is defined as conv

(
ei : i ∈ [n]

)
.

Notice that ∆n−1 is both simple and simplicial and its faces are parametrized via all subsets of [n].
Its H-description consists of the inequalities xi ≥ 0 for i ∈ [n] together with

∑
i∈[n] xi = 1.

Example 1.2.8. The standard cube Cuben is the n-dimensional polytope conv
(
(x1, . . . , xn) : xi ∈

{0, 1}
)
. Notice that Cuben is simple but not simplicial. Its H-description consists of the inequali-

ties 0 ≤ xi and xi ≤ 1 for all i ∈ [n]. Any other polytope that is combinatorially equivalent (see
Definition 1.2.20) to Cuben is called a cube.

There are diverse ways to obtain new polytopes from old ones. We are particularly interested in
the following two.

Definition 1.2.9. Given polytopes P,Q in Rn their Minkowski sum is

P +Q = conv
(
p + q : p ∈ P, q ∈ Q

)
.

We denote the sum of k copies of P by kP . Figure 1.8 shows an example of a Minkowski sum.

+ =

Figure 1.8 – The Minkowski sum of a triangle and a square.

Example 1.2.10. A zonotope is a polytope of the form Z = z +
∑k
i=1[0,xi] for a collection of

vectors z,x1, . . . ,xk ∈ Rn. Equivalently said, a zonotope is a Minkowski sum of line segments or the
affine projection of a cube [Zie95].

Definition 1.2.11. Let P be a polytope defined by a family of halfspaces H. If for a subset H′ ⊂ H
the intersection of the corresponding halfspaces is still bounded, then the resulting polytope Q is said
to be obtained by removing facets of P . An example of this process is shown in Figure 1.9.

11
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Figure 1.9 – A polytope obtained by removing facets.

1.2.2 Fans
Cones are useful to us as they share an intimate relation with polytopes. We begin by describing how
they share some properties of polytopes.

Definition 1.2.12. Given a cone C, the dimension of C is the dimension of its affine hull aff(C). The
faces of dimension 1 of C are called rays and faces of dimension d − 1 are called facets. A cone of F
of codimension 0 is called a chamber.

Definition 1.2.13. A collection of cones F in Rn is a fan if it satisfies:

• if F is a face of a cone C ∈ F , then F ∈ F ,

• if C1, C2 ∈ F , then the cone C1 ∩ C2 is a common face of C1 and C2.

We say that F is complete if
⋃
C∈F C = Rn, and that F is pointed if {0 ∈ F}. The dimension of F is

the dimension of the affine hull of the union of its cones.

In our case all fans are assumed to be complete and pointed. Moreover, we can construct a fan
from a polytope in the following way.

Definition 1.2.14. Let P be a polytope. A normal vector of a facet F of P is the normal vector of
a hyperplane that supports F . The normal cone of a non-empty face F is the cone formed from all
normal vectors of F . The collection of all normal cones of the faces of P is called the normal fan of P
and denoted N (P ). Figure 1.10 shows an example of a polytope together with its normal fan.

Since normal cones come from polytopes, their faces have a dual-like description based on their
original polytopes.

Remark 1.2.15. Let P be a polytope andN (P ) its normal cone. The following are in correspondence:

• vertices of P with chambers of N (P ),

• edges of P with facets of N (P ),

• facets of P with rays of N (P ).

In general, if P is full dimensional, the k-dimensional faces of P correspond to (n − k)-dimensional
faces of N (P ).
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Figure 1.10 – A polytope (blue) together with its normal fan (green).

Definition 1.2.16. Given two fans F1,F2 of Rn, we say that F1 refines F2 if every cone of F2 is a
union of cones of F1. Conversely, we say that F2 coarsens F1.

Example 1.2.17. The following are some examples of fans:

• For the simplex conv({0, e1, . . . , en}) in Rn, its fan is the fan generated by the collection of
vectors −e1, . . . ,−en and 1.

• For a zonotope of the form Z = z+
∑k
i=1[0,xi] the normal fan is the fan given by the arrangement

of the respective hyperplanes normal to x1, . . . ,xk.

• For a Minkowski sum P + Q, the normal fan N (P + Q) is the common refinement of N (P )
and N (Q).

1.2.3 Realizations
Let P be a polytope in Rn with vertices {p1, . . . ,pr}. The search of which sets of vertices can play
the role of defining a particular polytope is not easy. Moreover, knowing when two sets of vertices
give the same polytope is complicated as well. Similarly, if we are given a set of vertices and its
convex hull, its is not immediate to know how much one can budge a vertex and still preserve the
combinatorics of the original polytope. This begs the question, is there a ‘good’ set of vertices that can
be constructed algorithmically/combinatorially to define a particular polytope? This can be called the
realization problem over polytopes. Linked to this problematic, another classical problem of polytopes
is to understand the combinatorial structure of its 1-skeleton.

Definition 1.2.18. The 1-skeleton of P is the graph on the vertices and edges of P . In the case that
there is another polytope Q such that the 1-skeleton of P is isomorphic to a subgraph of the 1-skeleton
of Q, we say that P is embeddable in Q.

The 1-skeleton of a polytope sometimes corresponds to the Hasse diagram of a poset by orienting
the polytope in a generic direction. A non-example of this is the simplex ∆n as it does not have a
corresponding poset since a Hasse diagram cannot have triangles. In Chapter 6 we study this particular
problem for a particular polytope. First we need the following notions to get there.
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Definition 1.2.19. The face lattice Fl(P ) of a polytope P is the poset of all faces of P ordered by
inclusion. The meet of two faces is their intersection and the join is the smallest face containing them.

Definition 1.2.20. A polytope Q = conv({qi}ri=1) is combinatorially equivalent to P if the face
lattices Fl(P ) and Fl(Q) are isomorphic. Given a poset (F,≤), we say that P realizes the order (F,≤)
if there is an order-preserving bijection between an orientation of the 1-skeleton of P and the elements
of F .

It is possible to study in more generality the realizations of polytopes via their realization space,
but such topic falls outside the scope of this thesis. We refer the reader to [RG06].

Example 1.2.21. The boolean lattice on [n] is realized by the Cuben, and it is the face lattice of
the simplex ∆n−1. In this case each vertex of the cube corresponds to the characteristic vectors of a
subset of [n]. The case n = 3 is shown in Figure 1.11.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.11 – The boolean lattice of [3] and one of its realizations.

We now give other notions under which polytopes can be considered equivalent which are exem-
plified in Figure 1.12

Definition 1.2.22. Let P ⊂ Rn and Q ⊂ Rm be two polytopes. We say that P and Q are

• normal equivalent if we have N (P ) = N (Q) for their normal fans,

• integrally equivalent if there exists an affine function f : Rn → Rm whose restriction f : P → Q

is a bijection and f(P ∩ Zn) = Q ∩ Zm, that is, f preserves the lattice structure.

1.2.4 Complexes and Subdivisions
Apart from studying polytopes by themselves, we can study the structures they make gluing them
together into complexes or dividing them into smaller polytopes giving subdivisions.

Definition 1.2.23. A polyhedral complex C is a collection of polyhedra such that

1. if P ∈ C and F is a face of P , then F ∈ C,

2. if P1, P2 ∈ C, then P1 ∩ P2 is a face of both P1 and P2.
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Figure 1.12 – A collection of combinatorially equivalent polytopes. All except the second one
are normal equivalent and only the first and last are integrally equivalent.

Figure 1.13 – A non-pure polytopal complex of dimension 3 and a pure polyhedral complex of
dimension 2.

The polyhedra forming a complex C are called the cells of the complex. A cell is a boundary cell if it
has a supporting hyperplane that also supports C. Otherwise, it is an interior cell.

The polyhedral subcomplex of cells of dimension k is the k-dimensional skeleton of C. If all maximal
cells under inclusion have the same dimension, then C is called a pure complex.

A polyhedral complex is a polytopal complex if all its polyhedra are bounded (that is, polytopes).
The face poset of a polyhedral complex C is the poset (C,⊆) and the dimension of C is the maximal
dimension of its polyhedra.

See Figure 1.13 for an example of a polytopal complex and a polyhedral complex.

Example 1.2.24. Let H be a polyhedron.

• The complex C(H) is the polytopal complex formed by all of its faces. If H is a polytope, the
face poset is exactly the face lattice Fl(H).

• Let H be a polyhedron. The boundary complex C(∂H) is the subcomplex of C(H) given by all
proper faces of H.

We are interested in a particular complex of polytopes that is obtained from a polytope by dividing
it geometrically.

Definition 1.2.25. Consider a point configuration A with polytope P = conv(A) and dim(P ) = n.
A polytopal subdivision of A is a collection of polytopes S = {Si := conv(Ai)} such that
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1. Ai ⊂ A and dim(Si) = n for all i,

2. any intersection Si ∩ Sj is a face of Si and Sj and Ai ∩ Si ∩ Sj = Aj ∩ Si ∩ Sj for all pairs i, j,

3.
⋃
i Si = P .

When all points in A are vertices of P we say that S is a polytopal subdivision of P .

Definition 1.2.26. Let S = {Si}, T = {Tj} be two subdivisions of a point configuration A. We say
that S refines T if for every Tj , the collection of Si such that Si ⊆ Tj is a subdivision of Tj . Moreover,
this implies that the set of subdivisions of A is a partially ordered set with respect to refinement.
The minimal elements of such a poset are the triangulations of A and the maximal element is P .
Figure 1.14 shows an example of a general subdivision and a triangulation of a point configuration.

Figure 1.14 – Two subdivisions of a point configuration and two subdivisions of a polytope.
Only the second and fourth subdivisions are triangulations in their respective cases.

Definition 1.2.27. Let A be a point configuration in Rn. A height function is a function h : A → R≥0.

We now show a way to use height functions to obtain subdivisions of polytopes.

Definition 1.2.28. Let h be a height function of a point configuration A in Rn such that P = conv(A)
and consider the n+ 1-dimensional polyhedron

Ph = conv
(
(x, y) : y ≤ h(x),x ∈ A, y ∈ R

)
.

The upper faces of Ph can be seen to be defined by the piecewise-linear function fh : P → R
with fh(x) = max(y : (x, y) ∈ Ph). Since the upper facets are n-dimensional the projection over the
last coordinate of them gives polytopes Si. Then S = {Si} is a subdivision of P . If h is generic then
the subdivision is a triangulation of P .

A subdivision S obtained in this way using a height function is a regular subdivision. Such a height
function is said to be admissible with respect to S.

Definition 1.2.29. [San05] Consider n-dimensional polytopes P1, . . . , Pk in Rn with Pi = conv(Ai).
A Minkowski cell of the Minkowski sum

∑
Pi is a full dimensional polytope B of the form

∑
Bi

where Bi = conv(A′i) and A′i ⊆ Ai.
A mixed subdivision of said Minkowski sum is a collection of Minkowski cells B such that

•
⋃
B∈B B =

∑
Pi,
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• for any Minkowski cells B =
∑
Bi and B′ =

∑
B′i, then for i ∈ [k] the intersection Bi ∩B′i is a

common face.

A fine mixed subdivision is a minimal mixed subdivision via containment of its summands.

In Figure 1.15 we show an example of a Minkowski cell inside a mixed subdivision. Notice that
the Minkowski cells are not necessarily always simplices. Still, they are Minkowski sums of simplices
if the mixed subdivision is fine.

+ =

Figure 1.15 – The Minkowski cell in a mixed subdivision of a Minkowski sum.

Sometimes, instead of studying a certain characteristic of a polytope, one can study another
structure on a related polytope. Fortunately for us this is the case between certain mixed subdivisions
and polytopal subdivisions of certain polytopes via a theorem called the Cayley trick. The Cayley
trick is useful to us as it not only permits us to relate the combinatorics of distinct polytopes but also
reduces greatly the ambient dimension where we work. For an extensive view of applications of the
Cayley trick we refer the reader to [Stu94], [HRS00], [San05], and [DRS10].

Definition 1.2.30. Given polytopes P1, . . . , Pk in Rn we define the Cayley embedding as

C(P1, . . . , Pk) := conv
(
{e1} × P1, . . . , {ek} × Pk

)
⊂ Rk × Rn.

Proposition 1.2.31 (The Cayley trick [San05, Thm. 1.4]). Let P1, . . . , Pk be polytopes in Rn. The
regular polytopal subdivisions (resp. triangulations) of the Cayley embedding C(P1, . . . , Pk) are in
bijection with the regular mixed subdivisions (resp. fine mixed subdivisions) of P1 + · · ·+ Pk.

Remark 1.2.32. The bijection consists of taking a polytopal subdivision of C(P1, . . . , Pk) and inter-
secting it with the subspace (

∑ 1
k · ei)

k

i=1 × R
n. The result of this operation is a mixed subdivision

of P1 + · · ·+ Pk up to a scaling of 1
k . Figure 1.16 exemplifies this process.

1.3 Automata Theory
We now move on to describe the bases of automata following notation from [FS09]. For a wider
introduction to automata see [Eil74].

Definition 1.3.1. An alphabet is a set such that its elements are called letters A. A word on this
alphabet is a finite sequence of letters. A collection of words is called a language.
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Figure 1.16 – The Cayley trick illustrated following Figure 1.15. Figure inspired from [DRS10].

A finite automaton A is a directed multigraph with edges labeled by letters from a finite alphabetA.
The vertices of A are called states and denoted by Q. The edges of A are said to be the transitions of
the automaton. Unless stated otherwise, our automata have only 1 starting state denoted by q0. The
set of final states is denoted by Qf ⊆ Q. Graphically we represent a final state as a double circle and
a non-final state as a simple circle.

A is deterministic if for every state q ∈ Q and letter a ∈ A there is at most one transition labeled
by a leaving q. Otherwise, A is non-deterministic. If there is exactly one transition labeled by a

leaving q for all a ∈ A and q ∈ Q, we say that A is complete.

Automata are useful as they process words in the alphabet A and determine a language out of
said words.

Definition 1.3.2. Let A be an automaton with alphabet A and w = wi . . . wn a word of A. We say
that A accepts w if there is a sequence of edges in A starting from q0 and ending in a final state qf such
that the concatenation of the labels of the edges is precisely w. Otherwise, we say that A rejects w.

Informally in a deterministic finite automaton (DFA), this amounts to reading the word w from
left to right and following the transitions of A accordingly. If the word is accepted, we also say that A
recognizes w. See Figure 1.17 for an example.

DFA are of particular interest to us since they can be used to characterize patterns in words.

a

ab

bba

a, b

Figure 1.17 – An automaton that recognizes words containing the pattern abb. Figure based
on [FS09].

Definition 1.3.3. Let A be an automaton with alphabet A. The language of A is the set of words
accepted by A. We denote it by L(A). In particular, a language of a DFA or a language recognized
by a DFA is called a regular language.

Definition 1.3.4. Let A1, A2 be automata over an alphabet A. The product automaton A1 × A2 is
the automaton over A with state set Q1 ×Q2. The initial state is (q01, q02) and the set of final states
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is Qf1 × Qf2. There is a transition between (q1, q2) and (q′1, q′2) labeled a ∈ A if and only if there
exists transitions between q1 and q′1 and q2 and q′2 both with label a.

We provide the product of two automata in Figure 1.18.

bb

aa

a, b

×

a

b

a, b

=

a a

a a

a

b b b

bb a, b

Figure 1.18 – Two automata and their product.
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Chapter 2
Weak Order, Quotients, and Generalizations

This chapter lays out our main objects of study: the weak order, permutrees, other Coxeter groups,
and the s-weak order. Since they are all objects that have as a common point permutations, we bundle
them together in what follows.

2.1 Permutations
We begin stating some properties of permutations and the weak order that are at the core of our
thesis.

2.1.1 Combinatorics
We present the main results on permutations and the weak order that we need. For a more in depth
view of this subject we recommend [CSW16], [BB06], and [Sta11].

Definition 2.1.1. Given n ∈ N, the set of permutations of size n denoted by Sn is the set of
bijections from [n] to [n]. For us permutations are denoted in 1-line notation, that is, as a sequence
of numbers π = π1π2 . . . πn where πi := π(i).

Another way to represent permutations is via its factorization into cycles. An l-cycle is a se-
quence (i1 i2 . . . il) such that πik = ik+1 and πil = i1. A permutation is then a product of disjoint
cycles which is called its cycle decomposition.

The following is a visual way to describe a permutation useful to us.

Definition 2.1.2. The table of a permutation π is the n × n grid with points in positions (π(i), i).
The positions equivalently are given by (i, π−1(i)).

Example 2.1.3. The permutation π = 41325 can be represented as (1 4 2)(3)(5) or (3)(4 2 1)(5). Its
table is given in Figure 2.1.

21



Chapter 2. Weak Order, Quotients, and Generalizations

1 2 3 4 5

1

2

3

4

5

Figure 2.1 – The table of π = 41325.

Definition 2.1.4. Given a permutation π ∈ Sn in 1-line notation, its corresponding total order is the
order given by π1 < π2 < · · · < πn. Following this, we say that given a poset (P,≤P ), the set of its
linear extensions is a subset of Sn.

Definition 2.1.5. Permutations whose cycle decomposition is formed only by 1-cycles and a 2-
cycle (i j) with i < j are called transpositions and are denoted by τi,j . If j = i + 1 we call them
adjacent transpositions and denote them by si.

As we are working with permutations, we also consider their actions on permutations themselves.
We say that transposition τi,j acts on a permutation π

• on its right if it interchanges the values of πi and πj and leaves the rest of the elements the same
(i.e. interchanges positions i and j),

• on its left if it interchanges the values of i and j and leaves the rest of the elements the same
(i.e. interchanges positions π−1

i and π−1
j ).

We denote these actions as π ◦ τi,j and τi,j ◦ π respectively.

Example 2.1.6. Consider the permutation π = 41325. Then π ◦ τ2,4 = 42315 via the right action,
and τ2,4 ◦ π = 21345 via the left.

Definition 2.1.7. Given words π, σ on [n] of respective lengths r > s, we say that π contains the
pattern σ if there is a subsequence of π whose relative order is isomorphic to the relative order of σ.
If no such subsequence exists, we say that π avoids the pattern σ.

Example 2.1.8. Let π = 1352645. Then π contains the patterns 231 and 121 as it respectively
contains the subsequences 352 and 565. It avoids the pattern 321 as no subsequence of π has relative
order isomorphic to 321.

Definition 2.1.9. Let π ∈ Sn be a permutation and (i, j) ∈ [n]2 such that i < j. If πi > πi+1
(resp. πi < πi+1) then i is said to be a descent (resp. ascent) of π. We say that (i, j) is an inversion
of π if π−1

i > π−1
j and denote by inv(π) the set of inversions of π. Otherwise, (i, j) is a version and

the set of versions is denoted ver(π). Letting ai := |{j ∈ [i + 1, n] : π−1
i > π−1

j }| (i.e. the amount of
elements transposed relative to i), the sequence (a1, . . . , an−1) is called the Lehmer code or inversion
vector of π. Note that we omit an since it is always 0.
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2.1. Permutations

Remark 2.1.10. The reader may notice that our definition of inversions can also be found in the
literature as that of coinversions. Here we have opted for the definition using the inverse permutation
in aims to be consistent with [PP18] and how to relate tables of permutations with binary trees,
permutrees, and decreasing trees.

Proposition 2.1.11 ([Sta11, Prop.1.3.12]). Let Bn := [0, n − 1] × [0, n − 2] × · · · × [0, 1]. The
map L : Sn → Bn sending each permutation to its Lehmer code is a bijection.

Example 2.1.12. Consider the permutation π = 41325. Then

inv(π) = {(1, 4), (2, 3), (2, 4), (3, 4)},
ver(π) = {(1, 2), (1, 3), (1, 5), (2, 5), (3, 5)},

and its Lehmer code is (1, 2, 1, 0).

Proposition 2.1.13 ([GR63, Thm.2],[CSW16, Lem.7-2.4]). A subset of N2 of the form E = {(i, j) :
i < j} is the inversion set of a permutation in Sn if and only if E is transitive and cotransitive.

2.1.2 Weak Order
Permutations allow themselves to be partially ordered in several ways. We focus on the orders that
come from the containment of inversion sets. Enter the main object of this thesis, the weak order.

Definition 2.1.14. The (right) weak order on Sn is the partial order ≤ such that for π, σ ∈ Sn we
have that π ≤ σ ⇐⇒ inv(π) ⊆ inv(σ).

The minimal (resp. maximal) element of Sn under this definition is the identity permutation e =
123 . . . n (resp. longest element w0 = n . . . 321).

21

12

123

213

231312

132

321

1234

1324 1243

2143 1342 142331242314

3241 2431 3412 4213 4132

431242313421

4321

143241232413314223413214

2134

Figure 2.2 – The weak orders for S2, S3, and S4 with edges given by the adjacent transposi-
tions s1 = (1 2), s1 = (2 3) (bolded), and s3 = (3 4) (heavily bolded).
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Proposition 2.1.15 ([CSW16]). The cover relations of (Sn,≤) are given by π l σ if and only
if σ = π ◦ si for some i ∈ [n− 1]. Moreover, inv(σ) = inv(π) ∪ {(πi, πi+1)}.

This is a powerful proposition as it allows us to think of all edges of the weak order as adjacent
transpositions. That is, to find what order of adjacent transpositions gives a permutation, it is enough
to follow a route on the poset. Figure 2.2 shows how this is the case for n = 2, 3, 4. Furthermore, we
get the following result.
Corollary 2.1.16. The weak order (Sn,≤) is ranked by the amount of adjacent transpositions needed
to form a permutation starting from the identity permutation. That is, rank(π) = | inv(π)| with
minimal and maximal values rank(e) = 0 and rank(w0) =

(n
2
)
.

Both inversions and the weak order can be defined for the left action of transpositions on permu-
tations. This gives the left weak order which we state here for completeness.
Definition 2.1.17. The cover relations of (Sn,≤L) are given by π l σ if and only if σ = si ◦ π for
some i ∈ [n− 1].

The left and right weak order are not the same. However, they are isomorphic and thus the results
we write for the right weak order are equally true for the left weak order. The following proposition
gives the isomorphism and Figure 2.3 shows the left and right weak orders for n = 4.
Proposition 2.1.18. The map π 7→ π−1 is an isomorphism between the left and right weak orders.

1234

1324 1243

2143 1423 134223143124

4213 4132 3412 3241 2431

342142314312

4321

143223413142241341233214

2134

1234

1324 1243

2143 1342 142331242314

3241 2431 3412 4213 4132

431242313421

4321

143241232413314223413214

2134

Figure 2.3 – The left (left) and right (right) weak orders on S4.

Proposition 2.1.19 ([GR63],[HP07]). The weak order (Sn,≤) is a lattice. Moreover, the meet and
join of π, σ ∈ Sn are given by the permutations π ∧ σ and π ∨ σ such that

inv(π ∧ σ) = {inv(π) ∪ inv(σ)}tc,
ver(π ∨ σ) = {ver(π) ∪ ver(σ)}tc.

Proposition 2.1.20 ([CSW16, Thm.7-4.3]). The weak order (Sb,≤) is an autodual lattice via the
involutive dual automorphism f such that inv(f(π)) = inv(w0) \ inv(π) for π ∈ Sn. In particular, it
satisfies π ∧ f(π) = e and π ∨ f(π) = w0 for all π.
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2.1. Permutations

2.1.3 Permutahedra
In addition of having a nice combinatorial structure, the weak order enjoys several geometric inter-
pretations which also have rich combinatorial properties.

Definition 2.1.21. The permutahedron is the polytope Permn defined equivalently as:

• the convex hull of the coordinates (σi, . . . , σn) for σ ∈ Sn,

• the intersection of the following hyperplane and half-spacesx ∈ Rn :
∑
i∈[n]

xi =
(
n+ 1

2

) ∩ ⋂
∅(I([n]

{
x ∈ Rn :

∑
i∈I

xi ≥
( |I|+ 1

2

)}
,

• the shifted zonotope
∑

1≤i<j≤n[ei, ej ].

See Figure 2.4 for an example of Perm4.

Proposition 2.1.22. Let v = (w0)− (e) = (n−1, n−3, . . . ,−n+ 3,−n+ 1) = (2i− n− 1)i∈[n]. The
Hasse diagram of the weak order (Sn,≤) is isomorphic to the 1-skeleton of the permutahedron Permn

oriented with the vector v.

Figure 2.4 – The permutahedron Perm4.

There is a detail we must take care of when talking about Proposition 2.1.22. Our weak or-
der (Sn,≤) is the right weak order whereas the poset obtained from the oriented 1-skeleton of Permn

gives the left weak order. We know from Proposition 2.1.18 that both orders are isomorphic already.
We go one step further and present a way to see both of this orders by describing the faces of the
permutahedron combinatorially through different combinatorial objects. See Figure 2.5.

Definition 2.1.23 ([NT06],[HNT08]). A finite word over the alphabet N>0 is packed if all the letters
between 1 and its maximum m appear at least once.
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Chapter 2. Weak Order, Quotients, and Generalizations

Definition 2.1.24. An ordered partition λ of [n] into k parts is a sequence τ = (τ1, . . . , τk) such that
the disjoint union of the parts gives

⊔
i∈[k] τi = [n].

The following propositions describing the faces of the permutahedron in terms of packed words
and ordered partitions are well known and thus are adapted to our context. We refer the reader
to [NT06], [HNT08], [Sim97], and [Mat03] for further details and connections of this phenomenon.

Proposition 2.1.25. The faces of the permutahedron Permn are in bijection with the packed words
of length n. The face corresponding to a packed word w with maximum k is the (n− k)-dimensional
face given by the convex hull of the σ ∈ Sn such that if wi < wj then σ−1

i < σ−1
j .

Proposition 2.1.26. The faces of the permutahedron Permn are in bijection with the ordered parti-
tions of [n]. The face corresponding to the ordered partition τ = (τ1, . . . , τk) is the (n−k)-dimensional
face given by the convex hull of the σ ∈ Sn such that σ ≺ τ where ≺ is the refinement order for par-
titions.

1|2|3

2|1|3

2|3|1

1|3|2

3|1|2

12|3 1|23

13|2

3|1223|1

2|13 123

3|2|1321

312

213

123

132

231

112 122

121

221211

212 111

Figure 2.5 – Perm3 with faces labeled with packed words (left) and ordered partitions (right).

Following Figure 2.5 one might sense that ordered partitions correspond to the right weak order
and packed words to the left weak order. That is part of a more general story that lands outside the
scope of this thesis. We refer the reader for more details about this respectively to [Sim97], [Mat03],
and [Pil20] for the ordered partitions side and [NT06], [Ton97], and [Mlo22] for the packed words side.

Having talked about the permutahedron Permn, we now move to talk about its normal fan. Via
the zonotope description of Definition 2.1.21 we can describe it easily as follows.

Proposition 2.1.27. The normal fan N (Permn) is the fan formed by the collection of hyperplanes
of the form xi = xj for all 1 ≤ i < j ≤ n. This fan is known as the braid fan.

Definition 2.1.28. A polytope P with n := dim(P ) is a generalized permutahedron if its normal
fan N (P ) coarsens the braid fan N (Permn). Generalized permutahedra are also equivalently defined
as any polytope P ∈ Rn such that any edge (v,u) satisfies v − u = λ(ei − ej) for some λ ∈ R
and 1 ≤ i < j ≤ n. A polytope obtained by removing facets (i.e. deleting inequalities in the H-
description) from Permn is a called a removahedron.
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2.1. Permutations

Example 2.1.29. The zonotope conv((0, 0, 0), (1,−1, 0), (0, 1,−1), (1, 0,−1)) is a generalized permu-
tahedron. Notice that this polytope is combinatorially equivalent to Cube2. In general all polytopes
that are combinatorially equivalent to Cuben are generalized permutahedra in this sense.

Example 2.1.30. Generalized permutahedra do not need to strictly coarsen the braid fan. Figure 2.6
shows three examples of generalized permutahedra. The first one is the permutahedron Perm4 itself
while the second is a polytope combinatorially equivalent to Perm4. The third one is a generalized
permutahedron with a coarser fan.

Figure 2.6 – 3 examples of Generalized permutahedra together with their normal fans.

2.1.4 Cubical Embeddability
Apart from the standard permutahedron, another possible combinatorial realization of Permn is its
embedding into a dilatation of the n − 1-cube Cuben−1 ([BF71], [RR02]). This embedding is shown
in Figure 2.7 for n = 4. This structure appears also as a particular case of δ-cliff posets (see [CG22,
Prop.1.2.1.])

Proposition 2.1.31 ([RR02, Thm.3.1]). Let Qn−1 = [0, n−1]×· · ·×[0, 1]. The permutahedron Permn

is embeddable in the cubeQn−1 via the function that sends a permutation to its Lehmer code (inversion
vector).

Figure 2.7 – The cubical embedding of Perm4.
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2.2 Binary Trees
Permutations share connections with many combinatorial families. One of the most classical ones
come from binary trees which we now proceed to describe.

2.2.1 Combinatorics
Definition 2.2.1. A binary tree is a rooted plane tree (i.e. with a concrete embedding) on the
nodes {v1, . . . , vn} where each node has exactly two subtrees. In other words, each node has exactly
two children and one parent. We denote the collection of binary trees with n nodes by BT n. The left
(resp. right) subtree of a node vi is denoted by Li (resp. Ri). We say that i → j if either vi ∈ Lj
or vi ∈ Rj . Given a binary tree T , its partial order on [n] is defined by i < j if i→ j.

Binary trees are an interesting family of combinatorial objects. In particular, they are counted
by the Catalan numbers Cn = 1

n+1

(
2n
n

)
. Catalan numbers appear in a wide variety of combinatorial

problems as they count a plethora of combinatorial families. So many in fact (200+) that we avoid
going in detail about them. We refer the dauntless reader to [Sta15] for a more in depth view of this
subject. Some other objects counted by Catalan numbers include:

• 312-avoiding permutations,

• triangulations of a convex (n+ 2)-gon,

• Dyck paths of length 2n,

• non-crossing matchings of [2n],

• non-crossing partitions of [n],

• ballot sequences of length 2n.

On top of being interesting between themselves, Catalan families (Cn) also have connections with
other combinatorial families by how they are labeled. For example, binary trees with increasing
labeling on both left and right subtrees give factorial families (n!). If the labeling is increasing in
one side and free in the other one obtains families counted by parking functions ((n+ 1)n−1). A free
labeling in both subtrees gives families counted by n!Cn. See [CG19] for more information on this
idea.

Definition 2.2.2. Taking an anticlockwise walk, we label the nodes of a binary tree with the set [n]
whenever we visit a node for the second time. In other words, all labels of vertices in Li (resp. Ri) are
smaller (resp. larger) than i. This is called the in-order labeling of the binary tree. Figure 2.8 shows
an example of a binary tree with its in-order labeling.
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7

4

52

6
31

Figure 2.8 – A binary tree with its in-order labeling.

2.2.2 Tamari Lattice
We now move on to describe the Tamari lattice which shares a key relation with the weak order
classically studied through the Stack-Sort algorithm as in [Knu73], and [Knu97]. Historically, the
Tamari lattice was first described using parenthisations in [HT72]. Here we proceed instead using
binary trees and basing our statements on [Lod04] and [Pal86].

Definition 2.2.3. Let T ∈ BT n be an in-ordered binary tree with an edge (vi, vj) where 1 ≤ i < j ≤ n
such that i→ j. An ij-edge rotation is the operation of replacing the right subtree of vi by the subtree
with root vj and the left subtree of vj by Ri. Figure 2.9 shows an example of an edge rotation.

Given two binary trees T1, T2 we say that T1 l T2 if and only if T2 can be obtained from T1 by a
single edge rotation.

<

Ri

i

j

Ri

i

j

Figure 2.9 – Rotation on binary trees.

The poset obtained by edge rotations is called the Tamari lattice. To prove the lattice property,
Huang and Tamari [HT72] relied on a bijection between parenthisations on n objects and bracketing
functions on n objects. We forgo this definition and instead use the following equivalent formulation
given directly in terms of binary trees.

Definition 2.2.4 ([Knu93], [Pal86], [BW96]). Let T be a binary tree with vertex set [n] labeled
in in-order. Its bracket set is B(T ) := {(i, j) : j ∈ Ri} and its bracket components are B(T )i =
{j ∈ [n] : (i, j) ∈ B(T )}. To a bracket set we associate a bracket vector ~b(T ) = (b1, . . . , bn−1) such
that bi = |B(T )i|.

Notice that we do not consider B(T )n as Rn = ∅. Figure 2.10 presents all bracket sets for BT 3.
We now characterize which vectors are bracket vectors of binary trees with our terminology.
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({2, 3}, {3})

(∅, {3})

({2, 3}, ∅)

({2}, ∅)

(∅, ∅)

Figure 2.10 – The Tamari lattice for n = 3 and its corresponding bracket sets represented by
their components.

Proposition 2.2.5 ([HT72]). The bracket set map is a bijection from binary trees to the sets B ∈ 2[n]

such that their components satisfy

1. Bi = ∅ or Bi = {i+ 1, i+ 2, . . . , i+ l} for some l > 0,
2. if j ∈ Bi, then Bj ⊆ Bi.

The bracket set has similarities to inversions of permutations and the notation is reminiscent of
that of Proposition 2.1.31. This is not a coincidence, and we study it in Chapter 3.

Proposition 2.2.6 ([HT72]). Given two binary trees T, T ′ with n vertices, there exists the binary
tree T ∧ T ′ under the binary tree rotation order. Moreover, it satisfies

B(T ∧ T ′)i = B(T )i ∩B(T ′)i. (2.1)

Figure 2.11 illustrates the meet operation between two binary trees in BT 5.

1

4

2

3

5 ∧ =

1

2

3

4

5

1

2

3

5

4

Figure 2.11 – The meet of two binary trees. Calculating their bracket sets via Equation 2.1
yields ({2, 3, 4, 5}, ∅, ∅, {5}) ∩ (∅, ∅, {4, 5}, {5}) = (∅, ∅, ∅, {5}).

Corollary 2.2.7 ([HT72]). The poset of binary trees (BT n,≤) is a lattice.
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2.2.3 Sylvester Congruence
The Tamari lattice can be obtained as a lattice quotient of the weak order via the sylvester congruence
in the following way.

Definition 2.2.8 ([HNT05]). The sylvester congruence is a lattice congruence over Sn given as the
transitive closure on relations of the form

UikV jW ≡sylv UkiV jW

where i < j < k and U, V,W are words in the over [n].

Proposition 2.2.9. The Tamari lattice is isomorphic to Sn/≡sylv.

Figure 2.12 shows the sylvester congruence and the resulting Tamari lattice for n = 4.

4321

4231 43123421

34123241 2431 4213 4132

1234

1324 12432134

21432314 3124 1342 1423

3142 2413 4123 14323214 2341

Figure 2.12 – The sylvester congruence for n = 4 (left) and the Tamari lattice (right). Figure
from [PS17].

This congruence can also be characterized as follows.

Proposition 2.2.10 ([HNT05], [Knu73], [PP18]). The sylvester congruence ≡sylv on Sn can be
defined equivalently as the equivalence relation whose classes are:

• the linear extensions of binary trees,
• the fibers of the Stack-sorting algorithm.

Furthermore, the following objects are in bijection:

• binary trees on n vertices,
• sylvester congruence classes,
• permutations that avoid the pattern 312.

See Figure 2.13 for an example.
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1
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21543

25143

52143 25413

52413

54213

Figure 2.13 – A binary tree on 5 nodes (left) and its corresponding 3ki-avoiding permutations
as a congruence class (right).

2.2.4 Associahedra
The Tamari lattice has several geometric realizations associated to the diverse lenses from which it
can be studied (see [HL07]). Here we concentrate on the one described in [Lod04].

Definition 2.2.11. Any polytope whose 1-skeleton realizes the Tamari lattice is called the Associa-
hedron Assocn or Stasheff polytope.

See Figure 2.14 for an example of Assoc4.

Proposition 2.2.12. The associahedron is the polytope Assocn defined equivalently as:

• [Lod04] the convex hull of the coordinates (l1r1, . . . , lnrn) for T ∈ BT n where li (resp. ri) is the
number of leaves of Li (resp. Ri),

• [SS93] the intersection of the following hyperplane and half-spacesx ∈ Rn :
∑
i∈[n]

xi =
(
n+ 1

2

) ∩ ⋂
1≤i≤j≤n

x ∈ Rn :
∑
i≤`≤j

x` ≥
(
j − i+ 2

2

) ,
• [Pos09] the shifted Minkowski sum of the faces ∆[i,j] of ∆n−1 for all 1 ≤ i ≤ j ≤ n where

∆X := conv(ex : x ∈ X).

For more constructions of the associahedron we refer the reader to [HL07], [CSZ15], and [PSZ23].

Proposition 2.2.13. Let v = (w0) − (e) = (n − 1, n − 3, . . . ,−n + 3,−n + 1) = (2i− n− 1)i∈[n].
The 1-skeleton of the associahedron Assocn oriented with the vector v is isomorphic to the Hasse
diagram of the Tamari lattice.

2.2.5 Cubical Embeddability
Like in the case of the permutahedron, the associahedron also possesses a cubical embedding. Although
this way of representing the associahedron via coordinates in the cube Qn = [0, n− 1]× · · ·× [0, 1] has
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Figure 2.14 – The associahedron Assoc4.

been known since the 80s (see [Pal86] and [BW96]), the first explicit illustration of this embedding as
an actual cube seems to date from a video lecture of Knuth in 1993 [Knu93]. We invite (in genuine
interest) the archaeological reader to find an older illustration of this embedding into Qn−1. Thanks
to Francisco Santos Leal we have learned of a first appearance of this phenomenon due to Stasheff in
1963 [Sta06]. Still, Stasheff’s embedding comes not from polytopes but from a complex Ki given by
a cell decomposition of the boundary of a convex body. Taking logarithms of the defining inequalities
of Ki seems to yield our desired structure. As such, our archaeological invitation still stands to find
who studied these complexes visually in a cubical manner before Knuth’s video!

The polytopal cubic phenomenon that we are interested on has appeared in recent works related
with Tamari intervals [Com22], parabolic Tamari lattices in Coxeter groups of type B [FMN21], Fuss-
Catalan posets [CG22], and Hochschild lattices [Com21] [PP23].

In Figure 2.15 we show the cubical embedding of Assoc4 following [Knu93].

Proposition 2.2.14 ([Knu93]). The associahedron Assocn is embeddable in the cube Qn−1 = [0, n−
1]× · · · × [0, 1] via the function that sends a binary tree to its bracket vector.

Figure 2.15 – The cubical embedding of Assoc4. Figure based on the video [Knu93].

33



Chapter 2. Weak Order, Quotients, and Generalizations

2.3 Permutrees
Binary trees are part of a more general family of combinatorial objects called permutrees. Defined by
Pons and Pilaud in [PP18], they generalize permutations and binary trees in such a way that they
also capture binary sequences and Cambrian trees (see [LP13] and [CP17]) that were motivated by the
Cambrian lattices of [Rea06]. In this section we give the basic definitions and facts about permutrees
from two different perspectives: trees and congruences of the weak order. We follow [PP18] throughout
most of this section.

2.3.1 Combinatorics
Definition 2.3.1. A permutree is a directed unrooted tree T with vertex set {v1, . . . , vn} such that
for each vertex vi:

1. vi has exactly one or two parents (outward neighbors) and one or two children (inward neigh-
bors). We denote respectively LAi, RAi, (resp. LDi, RDi) the left and right ancestor (resp.
descendant) subtree of vi. In the case that a vertex has only one ancestor (resp. descendant)
subtree we denote it Ai (resp. Di),

2. if vi has two parents (resp. children), then all vertices vj ∈ LAi (resp. vj ∈ LDi) satisfy j < i

and all vertices vk ∈ RAi (resp. vk ∈ RDi) satisfy i < k.

If vj is a descendant of vi we say that j → i. Given a permutree T , its partial order on [n] is given
by j < i if and only if j → i.

The decoration of a permutree T is the vector δ(T ) ∈ { , , , }n with entries defined as

δ(T )i =


if vi has one parent and one child,
if vi has one parent and two children,
if vi has two parents and one child,
if vi has two parents and two children.

Letting δ := δ(T ) we say that T is a δ-permutree and denote by PT n(δ) the collection of all δ-
permutrees on n vertices.

Example 2.3.2. Permutrees PT n(δ) correspond to:

• permutations when δ = n following Definition 2.3.4,

• binary trees when δ = n,

• Cambrian trees when δ ∈ { , }n,

• binary sequences of length n − 1 when δ = n via the correspondence that the coordinates of
the binary sequence are si = 0 (resp. si = 1) if the vertex vi is a child (resp. parent) of vi+1.

Figure 2.16 contains several examples of permutrees with distinct decorations.
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Figure 2.16 – 5 examples of δ-permutrees on 4 vertices. These permutrees respectively corre-
spond to the permutation 4213, the binary sequence 101, a rooted binary tree, a Cambrian tree
and a generic permutree.

Remark 2.3.3. Notice that the decorations δ1 and δn do not actually affect the structure of the δ-
permutree since the subtrees LA1, LD1, RAn, and RDn are always empty. We never make use of
these subtrees, so we always take δ1 = δn = for simplicity.

All of our drawings of δ-permutrees have their edges directed upwards and thus, they are presented
unoriented. As well, the vertices vi appear from left to right in ascending order. We make this more
precise now with an explicit algorithm that is our main tool for constructing and drawing permutrees.
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Figure 2.17 – The insertion algorithm of -permutrees applied to the table of the
permutation 5741326. Figure inspired from [PP18].

Definition 2.3.4. A δ-decorated permutation is a permutation table with each point (π(i), i) decorated
by δi. The insertion algorithm is the following procedure. Let π be a δ-decorated permutation. We
draw a red wall under (resp. above) all vi such that δi ∈ { , } (resp. δi ∈ { , }). The red walls
partition the table in zones where each vertex can only see his next immediate children (resp. parents)
looking downwards (resp. upwards). Start the algorithm by generating a string from the bottom of
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Chapter 2. Weak Order, Quotients, and Generalizations

these areas. Now extend these strings by units of height 1 along the table from bottom to top as if
reading the permutation π. At each step, if the height of a string is the same of a vertex vi of the
table, we say that if

• δi ∈ { , }, the vertex catches the only string it can see,
• δi ∈ { , }, the vertex catches both strings it can see and merges them,

and then if

• δi ∈ { , }, the vertex releases a single string,
• δi ∈ { , }, the vertex releases two strings around the red wall above it.

The algorithm ends when the strings have lengths n+ 1. The resulting δ-permutree is denoted Θ(π).
Figure 2.17 has a complete example of this algorithm.

The insertion algorithm gives us all possible δ-permutrees via the following propositions.

Proposition 2.3.5. The insertion algorithm is a surjection between δ-decorated permutations and δ-
permutrees.

Proposition 2.3.6. Let T ∈ PT n(δ). The permutations π such that Θ(π) = T , are exactly the linear
extensions of the poset of the δ-permutree T .

In Figure 2.18 we show an example of a δ-permutree and its corresponding linear extensions.

1

2

3

4

1324

3124 1342

3142

3412

Figure 2.18 – A -permutree (left) and its corresponding linear extensions corresponding
to permutations simultaneously avoiding the patterns 2ki, 3ki, and ki3 as a congruence class
(right).

As well, the insertion algorithm leads to the following enumeration result.

Lemma 2.3.7. The number of edges of a δ-permutree T is given by∣∣∣E(T)∣∣∣ = n+ 1 +
∣∣∣{i ∈ [n] : δi ∈ { , }

}∣∣∣+ 2
∣∣∣{i ∈ [n] : δi ∈ { }

}∣∣∣
Proof. There are 1 + |{i ∈ [n] : δi ∈ { , }}| (resp. 1 + |{i ∈ [n] : δi ∈ { , }}|) corresponding to
the bottom and top of the zones created by the red walls at the start of the insertion algorithm. The
remaining n−1 come from the vertices being connected upwards through the insertion algorithm.
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We can count the number of δ-permutrees of size n by recursion in the following way.

Proposition 2.3.8 ([PP18, Cor.2.26]). For any permutree decoration δ, the number of δ-permutrees
follows the recursive formula∣∣PT (δ)

∣∣ =
∏
k∈[`]

∑
i∈[bk−1,bk]∩δ−1

( )
J⊆[bk−1,bk]∩δ−1

( )
∣∣PT (δ[bk−1,i−1]\J)

∣∣∣∣PT (δ[i+1,bk]\J)
∣∣∣∣J ∣∣!

where {b0 < · · · < b`} = {0, n} ∪ δ−1( ).

2.3.2 Permutree Lattices
Like for binary trees, for any fixed decoration δ one can define edge rotations on δ-permutrees.

Definition 2.3.9. Let T ∈ PT n(δ) be a δ-permutree with an edge i → j where 1 ≤ i < j ≤ n.
An ij-edge rotation is the operation of replacing the (right) subtree of vi by the (left) subtree of vj
and the (left) subtree by the tree with root vi, maintaining rest of T intact. Figure 2.19 shows all
possible ij-edge rotations.

The edge cut in T defined by i → j is the ordered partition (I ‖ [n] \ I) of the vertex set of T
where I are the vertices whose undirected paths to vi do not visit vj .

Example 2.3.10. Consider the -permutree given in Figure 2.18. The respective edge cuts of
the directed edges 1→ 2, 3→ 2, and 3→ 4, are ({1} ‖ {2, 3, 4}), ({3, 4} ‖ {1, 2}), and ({1, 2, 3} ‖ {4}).

Proposition 2.3.11. The ij-rotation of a δ-permutree T is a δ-permutree T ′ whose edge cuts are
precisely those of T except the edge cut defined by i→ j.

The resulting poset is called the rotation poset of δ-permutrees and its covering relations are
characterized by edge rotations. Figure 2.19 shows rotations between all possible adjacent vertices
and Figure 2.20 presents an example of such a rotation poset where δ = .

Remark 2.3.12. Notice that δ-permutree posets are always bounded. The minimal element 0̂δ (resp.
maximal element 1̂δ) is the δ-permutree such that i→ i+ 1 (resp. i+ 1→ i) for all i ∈ [n− 1].

As for binary trees, the rotation poset of permutrees is a lattice.

Proposition 2.3.13 ([PP18, Prop.2.32]). The poset of δ-permutrees (PT n(δ),≤) is a lattice.
Moreover, the δ-permutree lattice is isomorphic to

• the weak order of Sn if δ = n,
• the Tamari lattice if δ = n,
• the (Type A) Cambrian lattices if δ ∈ { , }n,
• the boolean lattice if δ = n.

The proof of [PP18] of the lattice property uses the theory of lattice quotients. A constructive
proof of this fact using similar ideas as Proposition 2.2.6 is possible and is presented in Chapter 3.
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Figure 2.19 – All possible ij-rotations of δ-permutrees. Figure based from [PP18].

2.3.3 Permutree Congruences
The δ-permutree lattice can also be constructed via an equivalence relation on the weak order of Sn.

Proposition 2.3.14 ([PP18, Prop.32]). The δ-permutree lattices are lattice quotients of the weak
order.

Going further, these lattices can be characterized in the following ways.

Proposition 2.3.15 ([PP18]). Let δ ∈ { , , , }. The permutree equivalence relation ≡δ can be
defined equivalently as the equivalence relation whose classes are

• the linear extensions of δ-permutrees,
• the transitive closure on the relations of the form

UikV jW ≡δ UkiV jW if δ ∈ { , },
UjV ikW ≡δ UjV kiW if δ ∈ { , },

where i < j < k are positive integers and U, V,W are words in the over [n],
• the fibers of the insertion algorithm (Definition 2.3.4).

Furthermore, the following objects are in bijection:

• permutrees with decoration δ,
• δ-permutree congruence classes,
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Figure 2.20 – The poset of rotations of -permutrees.

• permutations that avoid the patterns kij if δj ∈ { , } and jki if δj ∈ { , } (minima
of δ-permutree congruence classes).

Definition 2.3.16. Consider the order on permutree decorations ≺ { , } ≺ . Given δ, δ′ ∈
{ , , , }n, we say that δ refines δ′ (resp. δ′ coarsens δ) denoted δ � δ′ if δi � δ′i for all i ∈ [n].

Proposition 2.3.17. Let δ, δ′ ∈ { , , , }n two permutree decorations. If δ � δ′ then as con-
gruences ≡δ refines ≡δ′ .

Figure 2.21 shows all δ-permutree congruences for δ ∈ { , , , }4 ordered by refinement and
with initial and final decorations following Remark 2.3.3. See Figure 2.18 for an example of the
bijection in Proposition 2.3.15.

Remark 2.3.18. Following Remark 1.1.22, the δ-permutree congruences ≡δ are also referred to as
the rank 2 lattice congruences of the weak order. This is due to the fact that they are generated by the
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Figure 2.21 – The fibers of all · { , , , }2 · -permutree congruences. Figure
from [PP18].
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2.3. Permutrees

forcing of the congruence relations 12 · · · (j− 1)(j+ 1)j · · · (n− 1)n ≡ 12 · · · (j+ 1)(j− 1)j · · · (n− 1)n
if δj ∈ { , } and 12 · · · j(j+ 1)(j− 1) · · · (n− 1)n ≡ 12 · · · j(j+ 1)(j− 1) · · · (n− 1)n if δj ∈ { , }.
We explore this idea in a wider context in Subsection 2.4.6.

2.3.4 Permutreehedra
Proposition 2.3.19 ([PP18, Thm.3.4]). The δ-permutree rotation lattice (PT n(δ)) is realized by
the δ-permutreehedron PT(δ) defined equivalently as:

• the convex hull of points of the form

a(T )i =


1 + d if δi = ,

1 + d+ |LDi||RDi| if δi = ,

1 + d− |LAi||RAi| if δi = ,

1 + d+ |LDi||RDi| − |LAi||RAi| if δi = ,

where d is the number of descendants of vi, and T is a δ-permutree,
• the intersection of the following hyperplane and half-spacesx ∈ Rn :

∑
i∈[n]

xi =
(
n+ 1

2

) ∩ ⋂
I∈I

{
x ∈ Rn :

∑
i∈I

xi ≥
( |I|+ 1

2

)}
,

where I = {I ( [n] : ∃ a δ-permutree with edge cut (I ‖ [n] \ I)}.

See Figure 2.22 for some examples of δ-permutreehedra.

Proposition 2.3.20. Let v = (w0)−(e) = (n−1, n−3, . . . ,−n+3,−n+1) = (2i− n− 1)i∈[n]. The 1-
skeleton of the PT(δ) oriented with the vector v is isomorphic to the Hasse diagram of the δ-permutree
rotation lattice.

Figure 2.22 – The permutreehedra PT( ) (left) and PT( ) (right).

Remark 2.3.21. Consider δ, δ′ ∈ { , }. Although the δ-permutree lattice might not be isomorphic
to the δ′-permutree lattice, the δ-permutreehedron is isomorphic to the δ′-permutreehedron. That is,
all these permutreehedrons are associahedrons.
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2.4 Finite Coxeter Groups
In this section we present the basic theory of finite Coxeter groups basing ourselves on [Hum90]
and [BB06].

Definition 2.4.1. Let S be any set together with integers ms,t ∈ N>0 for all pairs (s, t) ∈ S ×S such
that

• ms,t = 1 if and only if s = t,

• ms,t = mt,s for all s, t ∈ S.

The Coxeter graph is the graph with vertex set S and edges (s, t) where ms,t ≥ 3. If ms,t ≥ 4 the edges
are labeled with ms,t, otherwise they are unlabeled. The corresponding Coxeter group is the group
generated as W = 〈S | (st)ms,t = e〉 where e is the identity element. If ms,t ≥ 3 we call (st)ms,t = e a
braid relation.

The pair (W,S) is called Coxeter system, S is the set of Coxeter generators and |S| is the rank
of W . The system (W,S) is said to be irreducible if its Coxeter graph is connected. Figure 2.23
contains the Coxeter graphs of all irreducible finite Coxeter groups.

Proposition 2.4.2 ([Cox35]). An irreducible Coxeter Group is finite if and only if its Coxeter graph
appears in Figure 2.23.

An

Bn

Dn

In
n

4

F4

H3

H4

4

5

5

E6

E7

E8

Figure 2.23 – The Coxeter graphs of all irreducible finite Coxeter groups. The infinite family An
is defined for n ≥ 1, Bn for n ≥ 2, Dn for n ≥ 4, and In for n ≥ 5.

Remark 2.4.3. Since ms,s = 1, we have that s2 = e for all generators. Thus, the relation (st)ms,t = e

implies
ststst · · · st︸ ︷︷ ︸
ms,t times

= tststs · · · ts︸ ︷︷ ︸
ms,t times

.

Remark 2.4.4. If the Coxeter graph of a Coxeter system (W,S) consists of the connected compo-
nents G1, . . . , Gm, thenW is the direct product of the Coxeter groupsW1×· · ·×Wm of each connected
component.
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2.4. Finite Coxeter Groups

Example 2.4.5. Consider a graph G of n isolated vertices. This signifies that ms,t = 2 for all s, t ∈ S
and the corresponding Coxeter group W = A1 × · · · ×A1 is the group Z2 × · · · × Z2.

Example 2.4.6. Consider the Coxeter system of type (In, {s, t}) where ms,t = n. Any word in this
group is expressed via these generators and thus only a product of s and t. Sending s and t to the
appropriate reflections of an n-gon, one can see that the Coxeter group In = 〈s, t | s2 = t2 = (st)n = e〉
is isomorphic to Dn = 〈s, r | s2 = (sr)2 = (r)n = e〉.

Definition 2.4.7. Given a Coxeter system (W,S), its reflections are T = {wsw−1 : s ∈ S, w ∈ W}.
In this way the generators in S are also called the simple reflections of W and the right and left
inversion sets of w ∈W are the sets

IR(w) ={t ∈ T : l(wt) < l(w)},
IL(w) ={t ∈ T : l(tw) < l(w)}.

Definition 2.4.8. Let (W,S) be a Coxeter system. Considering the elements w ∈ W written as
products of generators w = s1 · · · sk for si ∈ S, the length of w is the minimum k such that w = s1 · · · sk,
is denoted as l(w), and s1 · · · sk is said to be a reduced word or reduced expression of w.

Remark 2.4.9. Due to Definition 2.4.1 of Coxeter groups, an element w ∈ W has a set of reduced
words all related by a sequence of braid moves. On one hand, this signifies that the length is well-
defined. On the other, this proves that if a transposition si is in a reduced word of w, then si is in
every reduced word of w.

Proposition 2.4.10. Some useful properties of the length function include:

• l(ws) = l(w)± 1,

• l(w) = |I(w)|,

• l(w) = l(w−1),

• |l(u)− l(w)| ≤ l(uw) ≤ l(u) + l(w).

Definition 2.4.11. Given an element w ∈W of a Coxeter system (W,S), the (right) descent set and
(left) descent set are

DR(w) ={s ∈ S : l(ws) < l(w)},
DL(w) ={s ∈ S : l(sw) < l(w)}.

We call their elements the right (resp. left) descents of w.

Proposition 2.4.12. Let s ∈ S and w ∈W . Then

• s ∈ DR(W ) if and only if there exists a reduced word of w ending with the letter s.

• s ∈ DL(W ) if and only if there exists a reduced word of w starting with the letter s.
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Chapter 2. Weak Order, Quotients, and Generalizations

Figure 2.24 – The right weak order of the Coxeter groups A1 × A2, I5, and B3.

Definition 2.4.13. Let J ⊆ S of a Coxeter system (W,S). The subgroup of W generated by J is a
parabolic subgroup of W and is denoted by WJ . The quotient corresponding to J is W J= {w ∈ W :
l(ws) > l(w) for all s ∈ J} The Coxeter graph of WJ is the subgraph of the Coxeter graph induced
by J . In this context we note by W〈si〉 the parabolic group generated by all adjacent transpositions
except si.

Proposition 2.4.14. For an element w ∈W , w ∈W J if and only if no reduced expression of w ends
with a generator in J .

Proposition 2.4.15. Given w ∈W , there is a unique wJ ∈W J and wJ ∈WJ such that w = wJwJ .
Moreover, l(w) = l(wJ) + l(wJ) and wJ is the unique element of minimal length in the coset wWJ .

2.4.1 Weak Order
For any Coxeter system we can define a myriad of orders. Here we are interested only in the right and
left weak orders.

Definition 2.4.16. Let (W,S) be a Coxeter system, s ∈ S, and w ∈ W . The right (resp. left) weak
order ≤ is the transitive closure of the cover relations wlws (resp. wlsw) if and only if l(w) < l(ws)
(resp. l(w) < l(sw)).

Figure 2.24 shows some examples of the weak order. In our case of finite Coxeter groups, we obtain
the following result.

Proposition 2.4.17. Let W be a finite group. There exists an element w0 ∈ W such that w < w0
for all w ∈W . We call w0 the longest element of W .
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The longest element is crucial for the finite case of Coxeter groups. We list some of its properties.

Proposition 2.4.18. Let w0 be the longest element of a Coxeter system (W,S). Then

• w2
0 = e,

• l(w0) = |T |.

In full generality, the weak order is only a complete semi-lattice. However, in our finite case
Proposition 2.4.17 together with Proposition 1.1.12 gives us the lattice property.

Proposition 2.4.19. The poset (W,≤) is a lattice.

Unless stated otherwise, ≤ refers to the right weak order.

Proposition 2.4.20. The weak order has the following properties.

1. The reduced words of an element w ∈ W are in bijection with maximal chains of the inter-
val [e, w].

2. u ≤ w if and only if l(u) + l(u−1w) = l(w).
3. u ≤ w if and only if any reduced word of u is a prefix of a reduced word of w.
4. If s ∈ DL(u) ∩DL(w), then u ≤ w if and only if su ≤ sw.
5. u ≤R w if and only if IL(u) ⊆ IL(w).

Certain morphisms of Coxeter systems are of particular usefulness to us.

Proposition 2.4.21. Consider a Coxeter system (W,S).

• The maps w → ww0 and w → w0w are antiautomorphisms of W .
• The map w → w0ww0 is an automorphism.
• The map w → w−1 is an automorphism sending the right weak order to the left weak order.

2.4.2 Type A
Coxeter groups of type A are of particular interest for us since they are precisely the symmetric groups.

Consider S = {s1, . . . , sn−1} where identifying generators with adjacent transpositions as si =
(i i + 1). Given an adjacent transposition s and a reduced word x of a permutation π ∈ Sn, the
word xs (resp. sx) corresponds to the permutation π · si (resp. si · π). Whenever we consider there is
no room for confusion we use interchangeably a permutation π instead of a reduced word x.

Moreover, a quick calculation shows that the generators S satisfy the relations (sisi+1)3 = e

and (sisj)2 = e if |j − i| > 1. This gives the intuition for the following result.

Proposition 2.4.22. (Sn, S) is a Coxeter system of type An−1.

This construction leads to a reframing of certain characteristics of permutations in terms of Coxeter
groups.
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Proposition 2.4.23. Let π ∈ Sn. Then,

• l(π) = | inv(π)|,

• DR(π) = {si ∈ S : πi > πi+1}.

We finish with a useful lemma given by Proposition 2.4.20 in the case of permutations.

Lemma 2.4.24. A permutation π ∈ Sn permutes the values j and j+1 if and only if it has a reduced
word starting with sj .

Proof. Recall that π permuting j and j + 1 is equivalent to π containing the inversion (j j + 1).
Proposition 2.4.20 (5) gives us that this is equivalent to sj · e < π where e is the identity permutation.
Proposition 2.4.20 (3) tells us that this occurs if and only if sj is a prefix of a reduced word of π as
desired.

2.4.3 Type B
For an easier reading we will use the notation i for the negative integer −i.

Definition 2.4.25. Let SB
n be the group of permutations on [±n] := {n, . . . , 1, 1, . . . , n} satisfy-

ing π(i) = π(i) for all i ∈ [n]. This group is called the group of all signed permutations on [n].
Given w ∈ SB

n we write w = w(n) · · ·w(1)w(1) · · ·w(n) in the usual 1-line permutation notation
or w = [w(1) · · ·w(n)] in what is called the window notation of w.

Remark 2.4.26. Notice that Sn ⊂ SB
n naturally by identifying Sn with the signed permutations w

such that w([n]) = w([n]).

Similar to the definitions for permutations given in Definition 2.1.31, signed permutations have a
cycle decomposition as now exemplified.

Example 2.4.27. If w = 5 3 2 1 4 4 1 3 2 5, then w = [4 1 3 2 5] and one of its cycle decompositions
is (1 4 2 1 4 2)(3)(3)(5 5).

Similar to Definition 2.1.5, cycle decompositions give us adjacent transpositions.

Definition 2.4.28. In the context of signed permutations the adjacent transpositions are si := (i i+
1)(i i+ 1) for i ∈ [n− 1] and sn := (n n).

Proposition 2.4.29. The group of signed permutations SB
n is generated by the adjacent transposi-

tions SB = {s1, . . . , sn−1, sn}.

Definition 2.4.30. We say that (i, j) ∈ [n]2 is a B-inversion of π if i < j and π−1
i > π−1

j or i ≤ j

and π−1
i

> π−1
j and denote by invB(π) the set of B-inversions of π. We define the length of π ∈ SB

n

by `B(w) := | invB(w)|.

Proposition 2.4.31. (SB
n , S

B) is a Coxeter group of type B.
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2.4.4 Type D
Definition 2.4.32. Let SD

n be the subgroup of SB
n of signed permutations having an even number of

negative values in their window notation. This group is called the group of all even signed permutations
of [n].

As a subgroup of SB
n , we can describe a generating set of SD

n in the following way.

Proposition 2.4.33. The group of signed permutations SD
n is generated by the adjacent transposi-

tions SD = {s1, . . . , sn−1, sn} where si := (i i+ 1)(i i+ 1) for i ∈ [n−1] and sn := (n n− 1)(n−1 n).

Definition 2.4.34. We say that (i, j) ∈ [n]2 is a D-inversion of π if i < j and π−1
i > π−1

j or i < j

and π−1
i

> π−1
j and denote by invD(π) the set of D-inversions of π. We define the length of π ∈ SD

n

by `D(w) := | invD(w)|.

Proposition 2.4.35. (SD
n , S

D) is a Coxeter group of type D.

2.4.5 Automata
As the theory of Coxeter groups is based on words, it is natural that the theory of automata has seen
applications on it (see [BH93] and [HNW16]). Here we concentrate ourselves on the automaticity of
Coxeter groups of [BH93].

The automaticity was given in general for all finitely generated Coxeter groups using small roots.
Since we do not delve into the geometric aspect of Coxeter groups, we rephrase their results using
inversion sets. As a disclaimer, we can only do this since we are working with finite Coxeter groups.

Proposition 2.4.36. Let (W,S) be the Coxeter system of a finite Coxeter group W . The language of
reduced words ofW is regular. Moreover, it is recognized by the DFA with states Q = {I(w) : w ∈W}
and transitions I(w)→ I(wsi) labeled by si if and only if si /∈ DR(w). The starting set is the empty
set and all states are final states.

Example 2.4.37. The language of reduced words of (S3, {s1, s2}) is recognized by the automaton in
Figure 2.25.

{s1, s1s2s1}

{s2, s1s2s1}{s1}

{s2}

∅ {s1, s2, s1s2s1}

s2

s1

s2

s1

s1

s2

Figure 2.25 – A DFA recognizing the language of reduced words of (S3, {s1, s2}).
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2.4.6 Coxeter Sorting
In this section we present the theory of c-sorting following [Rea07b]. As a starting point we define
Cambrian congruences for any Coxeter group.

Definition 2.4.38. Let W be a Coxeter group and −→G be a complete orientation of the Coxeter
diagram G. The Cambrian congruence associated to −→G is the smallest lattice congruence that identifies
the elements of the interval [t, tsts · · · ] (ms,t − 1 letters) for all s→ t.

Figure 2.26 shows an example of a Coxeter graph and the corresponding Cambrian congruence.

4

e

s2s1 s2s3 s3s2 s3s4 s4s3

s2 s3s1

s1s2

s4

s2s3s2s1s2s1 s3s4s3 s4s3s4

s3s4s3s4

Figure 2.26 – A complete orientation of the Coxeter graph of B4 and the lattice congruence it
specifies. The minimal elements of the lattice congruence are in black and the congruence classes
are shown in bolded blue. Notice that we do not draw the squares given by the commuting
relations between {s1, s3}, {s1, s4}, or {s2, s4} as any congruence relation of rank 2 in these
cases would force a congruence relation of rank 1 following Remark 1.1.22.

Remark 2.4.39. Notice that in type A the Cambrian congruences correspond to the δ-permutree
congruences ≡δ where δ ∈ { , }n as in Proposition 2.3.15.

Definition 2.4.40. Let (W,S) be a Coxeter system. A Coxeter element is a word of length n = |S|
where each generator appears exactly once.

Remark 2.4.41. Notice that Coxeter elements codify complete orientations of the Coxeter graph
and thus Cambrian congruences. Indeed, given a Coxeter element c = s1 · · · sn we orient j → j − 1
(resp. j − 1→ j) if j appears before (resp. after) j − 1 in c.

Definition 2.4.42. Given a Coxeter element c together with a fixed reduced word c = s1 · · · sn, its
infinite word is c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| · · · where “|” are dividers that mark the separation of
each instance of c.

The c-sorting word of an element w ∈ W is the lexicographically first subword of c∞ that is
a reduced word of w. We denote it as w(c). The c-sorting word w(c) can be divided into finite
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factors L1, L2, . . . , Ln where each factor Li is a set of letters of w(c) appearing between the dividers i
and i+ 1. We say that an element w ∈W is c-sortable or Coxeter-sortable if the factors satisfy L1 ⊇
L2 ⊇ . . . ⊇ Ln.

Example 2.4.43. Let π := 3421 and take the Coxeter element c := s2 · s1 · s3. Consider the
infinite word c∞ = c · c · c · · · = s2 · s1 · s3 · s2 · s1 · s3 · s2 · s1 · s3 · · · . Then the c-sorting word of π
is π(c) = s2 · s1 · s3 · s2 · s3. Since L1 ⊃ L2 ⊃ L3 = ∅, π is c-sortable.

Remark 2.4.44. Notice that c∞ does not actually need to be infinite. Indeed, the choosing of a
Coxeter element implies the choosing of a reduced word of the largest element w0.

Remark 2.4.45. Although the c-sorting word depends heavily on the choosing of the reduced word
of c, the property of being c-sortable does not. Thus, we refer to c-sortable elements without specifying
the reduced word of c.

Coxeter sorting is of interest to us as it recovers the classical notion of stack-sorting [Knu73] via
another lens.

Proposition 2.4.46. For the Coxeter word c = s1 · · · sn−1, the c-sortable permutations are precisely
the stack-sortable permutations of [Knu73].

The following are some simple lemmas showing the relationship between c-sorting and the weak
order.

Lemma 2.4.47 ([Rea07b, Lems.2.1 & 2.2]). Consider a Coxeter element of the form c = s` · d and
let w ∈W . Then

• if w = s` · u with `(w) = `(u) + 1, then w(c) = s` · u(d · s`),
• otherwise, w(c) = w(d · s`).

Lemma 2.4.48. Fix a reduced expression of a Coxeter element c. Consider a c-sortable element w ∈
W and si, sj ∈ S two distinct generators appearing in the c-sorting word w(c).

1. if si appears before sj in c, then si appears before sj in w(c),
2. if sj does not appear in w(c) between two occurrences of si, then it does not appear afterwards.

Proof. We prove both statements separately.

1. As both si and sj appear in w(c), it is immediate from the construction of w(c) from c.
2. Notice that each generator can appear at most once in each factor L. Since w is c-sortable, the

factors are weakly decreasing via inclusion. Thus, if sj appeared after two occurrences of si, it
would have to appear between them.

Coxeter-sorting has a close relationship with lattice congruences of the weak order.

Proposition 2.4.49. Let c be a Coxeter element of a Coxeter group W . The c-sortable elements are
precisely the bottom elements of the congruence classes of the c-Cambrian congruence ≡c associated
to the complete orientation of G where s→ t if s appears before t in c.
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Proposition 2.4.50. The map w → ww0 sends the lattice congruence ≡c to the lattice congru-
ence ≡c−1 .

Proposition 2.4.51 ([Rea07a, Thm.9.1]). The amount of c-sortable elements of a Coxeter group W
of rank n is the W -Catalan number.

The W -Catalan numbers are presented in Table 2.1.

Bn(
2n
n

)An

1
n+2

(
2n+2
n+1

) Dn

3n−2
n

(
2n−2
n−1

) In

n− 1

E7

4160833

E6 E8

25080 105

F4 H3

32

H4

280

Table 2.1 – The W -Catalan numbers.

Following Proposition 2.4.49 we can define a particular subset of c-sortable elements which help
define polytopes whose oriented 1-skeleton correspond to the c-Cambrian lattice obtained from the
lattice congruence ≡c.

Definition 2.4.52 ([HLT11]). Let c be a Coxeter element. A c-sortable element w ∈W is said to be
a c-singleton if any of the following equivalent events occurs:

• w is the only element in its congruence class under ≡c,

• w has a reduced word that is a prefix of w0(c) up to commutations,

• w is c-sortable and ww0 is c−1-sortable.

Proposition 2.4.53. Given a Coxeter element c, the intersection of all defining half-spaces of Permn

whose corresponding facet contains a c-singleton is a polytope whose oriented 1-skeleton is the c-
Cambrian lattice.

2.4.7 Permutree Perspectives
Having all tools in hand, we present the main problematic of this thesis. Following Remark 2.4.39,
one can define permutree congruences for any Coxeter type as follows.

Definition 2.4.54. Let (W,S) be a Coxeter system with its Coxeter diagram GW . We call a multi-
orientation −−→GW an endowing of each edge of GW with either none, one, or both possible orientations.
The permutree congruence associated to −−→GW is the smallest lattice congruence that identifies the
elements of the interval [t, tsts · · · ] (ms,t − 1 letters) if s→ t.

As each orientation can have none, one, or two orientations, an identification of each edge with a
coordinate gives an encoding of each permutree congruence by a decoration δ ∈ { , , , }|E(GW )|.
That is, we have that

• δst = if the edge (s, t) is not oriented,

• δst = if the edge (s, t) is oriented s→ t,
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2.5. s-Decreasing Trees

• δst = if the edge (s, t) is oriented t→ s,

• δst = if the edge (s, t) has both orientations.

Figure 2.27 shows an example for this in type B. In the cases of types A, B, I, F , and H these
vectors can be simply indexed by [n] where n = |S|. In types D and E one must be careful as there
are non-commuting braid relations between non-consecutive indices.

4

e

s2s1 s2s3 s3s2 s3s4 s4s3

s2 s3s1

s1s2

s4

s2s3s2s1s2s1 s3s4s3 s4s3s4

s3s4s3s4

Figure 2.27 – A multi-orientation of the Coxeter graph of B4 and the -permutree congru-
ence it specifies. The minimal elements of the lattice congruence are in black and the congruence
classes are shown in bolded blue.

Although Cambrian lattices are well understood in any finite type Coxeter group via their con-
nections with finite type cluster algebras (see [FZ02], [FZ03], [PS13], [PS15]), permutree lattices are
well understood only in type A [PP18] and partially understood in type B [PPR22].

Perspective 2.4.55. Are there other combinatorial families or methods through which we can study
permutree lattices for any finite Coxeter group?

2.5 s-Decreasing Trees
In this section we present another generalization of permutations that we study in Part III. This
section is based on [CP19] and [CP23]. Let s = (s1, . . . , sn) be a weak-composition (i.e. a vector with
non-negative integer entries) and |s|=

∑n
i=1 si.

2.5.1 s-Weak Order
Definition 2.5.1. An s-decreasing tree is a rooted plane tree (i.e. with a concrete embedding) on n
internal vertices (called nodes), labeled by [n], such that the node labeled i has si + 1 children and
any descendant j of i satisfies j < i. We denote by T i0, . . . , T isi the subtrees of node i from left to right,
and by Ts the set of s-decreasing trees.
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4

2 3

1

2

3

1

Figure 2.28 – A (0, 1, 0, 2)-decreasing tree (left) and a (1, 2, 1)-decreasing tree (right).

Remark 2.5.2. Since the node 1 only has leaves as children, the first entry of s can be arbitrary
and does not influence the combinatorics or geometry of s-decreasing trees. See Figure 2.28 for some
examples.

By its construction the root of an s-decreasing tree is always the number of internal nodes. More-
over, their decreasing aspect allow for a direct calculation of their cardinality. That is, the number
of s-trees is given by a generalization of the formula for factorials as follows.

Proposition 2.5.3. Given a weak composition s, the number of s-decreasing trees is

|Ts| =
n−1∏
i=1

(1 + sn−i+1 + sn−i+2 + · · ·+ sn) .

Proof. There is only one (sn)-decreasing tree with one node labeled n and sn + 1 leaves. The next
node n − 1 together with its sn−1 + 1 leaves can be placed in any of the sn + 1 leaves from before.
This results in (1 + sn) possible (sn−1, sn)-decreasing trees. Continuing inductively on the length
of s, we get that at step k the number of (sk, . . . , sn)-decreasing trees with labels in [k, n] is |Ts| =∏n−k
i=1

(
1 +

∑n
j=n−i+1 sj

)
. We can now place the node labeled k − 1 in any of the

(
1 +

∑n
r=k sr

)
leaves

of any such tree. We finish when we place the node with label 1. This gives the desired formula.

Definition 2.5.4. Let T be an s-decreasing tree and 1 ≤ a < c ≤ n. We say that a is left (resp. right)
of c if there is a node d such that a < d, c < d, a ∈ T dx , and c ∈ T dy where x < y (resp. x > y). We
denote by inv(T ) the multiset of inversions of T formed by pairs (c, a) with multiplicity (also called
cardinality)

|(c, a)T | =


0, if a is left of c,
i, if a ∈ T ci ,
sc, if a is right of c.

Similar to Definition 2.1.14 and Proposition 2.4.20, this allows to define an analogue of the weak
order.

Definition 2.5.5. Let R, T be s-decreasing trees. We say that R E T if we have that inv(R) ⊆ inv(T ).
We call (Ts,E) the s-weak order.

As before with Coxeter groups, the s-weak order enjoys several properties coming from the weak
order of permutations. A key one for us being the lattice property which can be seen in Figure 2.29.
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Figure 2.29 – The (1, 2, 2)-weak order on (1, 2, 2)-decreasing trees. Figures based on [CP23].

Theorem 2.5.6 ([CP19, Thms.3.2 & 3.3], [CP23, Prop.1.35]). The s-weak order on s-decreasing trees
is a polygonal lattice. The join of two s-decreasing trees R and T is the s-decreasing tree R ∨ T that
satisfies inv(R ∨ T ) =

(
inv(R) ∪ inv(T )

)tc.
Notice that the transitive closure requires attention since it is being done over multisets. We

postpone the complete definition of the transitive closure for a particular case. Still, the following
characterization of multisets of inversions for s-decreasing trees gives a hint about it.

Definition 2.5.7 ([CP23, Def. 1.5, Prop. 1.6]). The multisets of inversions of s-decreasing trees are
exactly the multisets I that satisfy:

• Transitivity: if a < b < c, then |(b, a)T | = 0 or |(c, a)T | ≥ |(c, b)T |.

• Planarity: if a < b < c, then |(b, a)T | = sb or |(c, b)T | ≥ |(c, a)T |.

Definition 2.5.8. Let T be an s-decreasing tree. An ascent (resp. descent) of T is a pair (a, c) such
that

1. a ∈ T ci for some 0 ≤ i < sc (resp. 0 < i ≤ sc),

2. if a < b < c and a ∈ T bi , then i = sb (resp. i = 0),

3. if sa > 0, then T asa (resp. T a0 ) is empty (i.e. only a leaf).
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Notice that in the case where s has no zeros, the ascents (resp. descents) of T are in bijection
with the leaves of T that are rightmost (resp. leftmost) of their parent, excepting the rightmost (resp.
leftmost) leaf of T . The ascents and descents allow us to define the rotations on s-decreasing trees,
which characterize the cover relations of the s-weak order.

Definition 2.5.9 ([CP23]). Let T be an s-decreasing tree with an ascent (a, c). The rotation of T
along (a, c) is the s-decreasing tree T + {(a, c)} corresponding to the transitive closure multiset of
inversions obtained from inv(T ) after increasing |(a, c)|T by 1. If A is a subset of ascents of T , we
denote by T+A the s-decreasing tree with inversion set

(
inv(T )+A

)tc. See Figure 2.30 for an example
of a rotation.

Proposition 2.5.10 ([CP23, Thm.1.32]). The cover relations of the s-weak order correspond to
rotations of s-decreasing trees along ascents.

142

3 5

7T =

6 3

T ′ = 7

4

5

1

2 6

Figure 2.30 – The rotation of the (1, 1, 2, 1, 3, 1, 2)-decreasing tree T along the ascent (5, 7)
giving T ′.

With rotations in hand we can define the analogue of the permutahedron for the s-weak order as
a combinatorial complex as follows.

Definition 2.5.11. The s-permutahedron is the combinatorial complex Perms with faces (T,A)
where T is an s-decreasing tree and A is a subset of ascents of T . The face (T,A) is contained
in (T ′, A′) if and only if [T, T + A] ⊆ [T ′, A′] as intervals in the s-weak order. In particular, the
vertices of Perms are the s-decreasing trees and the edges correspond to the s-tree rotations.

Definition 2.5.11 portrays Perms as combinatorial complex. In the original article [CP19] the
authors gave the following conjecture on the geometric structure of Perms.

Conjecture 2.5.12 ([CP19, Conjecture 1]). Let s be a weak composition. Perms can be real-
ized as a polyhedral subdivision of a polytope which is combinatorially isomorphic to the zono-
tope

∑
1≤i<j≤n sj(ei − ej).

In Chapter 6 we give a positive answer to this conjecture for when s is a composition.

54



2.5. s-Decreasing Trees

2.5.2 Stirling s-Permutations
From here onwards s = (s1, . . . , sn) denotes a composition (i.e. si > 0 for all i ∈ [n]). This is required
for us to study the s-weak order with objects more akin to permutations that we now define.

Definition 2.5.13. Let s be a composition. A Stirling s-permutation is a permutation of the
word 1s12s2 . . . nsn that avoids the pattern 121. We denote byWs the set of all Stirling s-permutations.

Proposition 2.5.14. Stirling s-permutations are in bijection with the set of s-decreasing trees by
reading the labels of the nodes of an s-decreasing tree in in-order. Moreover, this bijection induces
a correspondence between leaves of an s-decreasing tree and prefixes of the corresponding Stirling s-
permutation.

See Figure 2.31 for an example of the bijection between a Stirling (2, 1, 1, 2)-permutations and
a (2, 1, 1, 2)-decreasing tree.

4

2 3

2 3

4 4

1

1 1

Figure 2.31 – A (2, 1, 1, 2)-decreasing tree with vertices labeled via in-order. The corresponding
Stirling s-permutation is w = 241143.

Remark 2.5.15. Notice that in the case s = (k, . . . , k), Stirling s-permutations are exactly the
Stirling k-permutations of [JKP11]. Since decreasing trees can be naturally transformed into increasing
trees, the bijection of Proposition 2.5.14 recovers the classical bijection of Gessel between (k + 1)-ary
increasing trees and Stirling k-permutations in this case (see [CG19, §5], [JKP11], and [GS78b]).

To describe the covering relations of the s-weak order in terms of Stirling s-permutations we need
the following.

Definition 2.5.16. Let w be a Stirling s-permutation. For a ∈ [n], the a-block Ba of w is the shortest
substring u of w containing all sa occurrences of a.

Remark 2.5.17. Some quick facts about a-blocks in a Stirling s-permutation include:

• An a-block of w necessarily starts and ends with a and contains only letters in [a].

• For a < b we have that either Ba ⊂ Bb or Ba ∩Bb = ∅. Otherwise, a partial intersection would
imply that w contains the pattern 121.

• For a < c, w contains the substring ac if and only if it is of the form w = u1Bacu2 where u1
and u2 are words on [n].
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Following Figure 2.31 we have that B1 = 11, B2 = 2, B3 = 3, and B4 = 4114.

Definition 2.5.18. Let w be a Stirling s-permutation. A pair (a, c) with 1 ≤ a < c ≤ n is an ascent
(resp. descent) of w if ac (resp. ca) is a substring of w.

If w is of the form w = u1Bacu2 where a < c, the transposition of w along the ascent (a, c) is the
Stirling s-permutation u1cBau2. We denote by inv(w) the multiset of inversions formed by pairs (c, a)
with multiplicity |(c, a)w|∈ [0, sc] the number of occurrences of c that precede the a-block in w.

If A is a subset of ascents of w, we denote by w + A the Stirling s-permutation with inversion
set

(
inv(w) +A

)tc.
Lemma 2.5.19. Let w be a Stirling s-permutation, T (w) its corresponding s-decreasing tree and 1 ≤
a < c ≤ n.

1. The pair (a, c) is an ascent (resp. descent) of T (w) if and only if it is an ascent (resp. descent)
of w.

2. |(c, a)T (w)| = |(c, a)w|.

Moreover, suppose (a, c) is an ascent of T = T (w) so that w is the of the form w = u1Bacu2. Then T ′
is the s-tree rotation of T along (a, c) if and only if T ′ = T (w′) where w′ = u1cBau2.

Proof. The proofs follow easily from the definitions and Proposition 2.5.14.

Corollary 2.5.20. Let w and w′ be Stirling s-permutations. Then w′ covers w in the s-weak order
if and only if w′ is the transposition of w along an ascent.

The analogue of Figure 2.29 showing the s-weak order on Stirling s-permutations can be found in
Figure 2.32.
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Figure 2.32 – The (1, 2, 2)-weak order on Stirling (1, 2, 2)-permutations.
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Example 2.5.21. Let s = (1, 1, 2, 1, 3, 1, 2) and consider the s-permutation w = 33725455716. The
transposition of w along the ascent (5, 7) switches the 5-block B5 = 5455 of w with the 7 immediately
after it and gives w′ = 33727545516. The corresponding rotation in terms of s-decreasing trees is
shown in Figure 2.30.

This translation of the s-weak order on s-decreasing trees to Stirling s-permutations allows us
to consider the s-permutahedron Perms as the combinatorial complex with faces (w,A) where w is
a Stirling s-permutation and A is a subset of ascents of w. It is with this definition that we study
Conjecture 2.5.12 in Chapter 6.

We finish this section by stating some tools on the transitivity of multisets which are of help to us
when working with the faces of the s-permutahedron. The following comes mostly from [GMP+23a].

Definition 2.5.22 ([CP23, Def.1.14]). Let I be a multiset of inversions. A transitivity path between
two values c > a is a list of values a = b1 < · · · < bk = c such that (bi+1, bi)I > 0 for all i ∈ [k − 1]. In
this way the transitive closure Itc of I is the multiset of inversions with cardinalities

|(c, a)Itc | := max
(
|(c, bk−1)I | : a = b1 < · · · < bk = c is a transitivity path of (c, a).

)
Definition 2.5.23 ([GMP+23a]). Let w be a Stirling s-permutation, A a subset of ascents of w
and 1 ≤ a < c ≤ n such that |(c, a)w| < sc. We say that the pair (a, c) is A-dependent in w if there is
a sequence a ≤ b1 < · · · < bk < bk+1 = c such that:

• b1 is the greatest letter strictly smaller than c such that Ba ⊆ Bb1 ,

• for all i ∈ [k − 1], the bi-block Bbi is directly followed by Bbi+1 ,

• Bbk is directly followed by an occurrence of c,

• (bi, bi) ∈ A for all i ∈ [k].

Example 2.5.24. Let w be a Stirling s-permutation and A a subset of ascents of w.

• If (a, c) ∈ A, then (a, c) is A-dependent taking b1 = a and b2 = c.

• Let w = 33725455716 and A = {(2, 5), (5, 7), (1, 6)}. The pair (2, 7) is A-dependent through the
sequence b1 = 2, b2 = 5 and b3 = 7. Meanwhile, (2, 6) is not A-dependent as the only block
containing B2 is B7 but 7 > 6 and B7 is followed by B1 before the next occurrence of 6.

Theorem 2.5.25 ([GMP+23a, Prop.3.12]). Let w be a Stirling s-permutation and A a subset of its
ascents. Then

inv(w +A) =
{
|(c, a)w|+ 1 if (a, c) is A-dependent in w
|(c, a)w| otherwise.

Example 2.5.26. Let w = 33725455716 and A = {(2, 5), (5, 7), (1, 6)}. Augmenting these inversions
gives the Stirling s-permutation w + A = 33775245561. The pairs whose multiplicity in the multiset
of inversion has been increased by 1 are {(5, 2), (6, 1), (7, 2), (7, 4), (7, 5)}.
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Proof. Let be I the multiset of inversions defined as

|(c, a)I | :=
{
|(c, a)w|+ 1 if (a, c) is A-dependent in w
|(c, a)w| otherwise.

Notice that for an A-dependent pair (a, c) and an integer d > c we have that |(d, c)I | = |(d, a)I |.
Moreover, (a, d) is A-dependent if and only if (c, d) is also A-dependent. We need to verify that I is
transitive and that it is the smallest transitive multiset of inversions containing inv(w) +A. We begin
with the latter statement.

First, it is clear that inv(w) + A ⊂ I from the definition of I as every pair in A is A-dependent.
Now let us show that any transitive multiset of inversions I ′ that contains inv(w) + A necessarily
contains I. Since inv(w) + A ⊆ I ′ is clear that for any pair we have |(c, a)I′ | ≥ |(c, a)w|. Let (a, c) be
an A dependent pair in w through a sequence a ≤ b1 < · · · < bk < bk+1 = c. We proceed by induction
on the length k of the sequence. For k = 1 we have that

• either b1 = a and (a, c) ∈ A. Giving us that |(c, a)I′ | ≥ |(c, a)w|+ 1,

• or a < b1 < c. In this case |(b1, a)I′ | ≥ |(b1, a)w| > 0 by since Definition 2.5.16 Ba ⊂ Bb1 . Now
we get that

|(c, a)I′ | ≥ |(c, b1)I′ | ≥ |(c, b1)w|+ 1 = |(c, a)w|+ 1 (2.2)
where the first inequality comes from transitivity, the second from the previous case as (b1, c) ∈ A
and the last equality from (a, b1) being A-dependent.

Suppose that k > 1. The induction hypothesis tells us that |(bk, a)I′ | ≥ |(bk, a)w| + 1 > 0. Applying
transitivity to a < bk < c and using that (bk, c) ∈ A and that (a, bk) is A-dependent (such that there
is no occurrence of c between a and bk) gives us the inequalities |(c, a)I′ | ≥ |(c, bk)|I′ ≥ |(c, bk)w|+ 1 =
|(c, a)w|+ 1. Thus, I ⊆ I ′.

Lastly let us see that I is transitive in the following cascade of cases. Let 1 ≤ a < b < c ≤ n.

• If |(b, a)I | = 0 then there is nothing to prove for this pair.
• If |(b, a)I | > 0 we need to see that |(c, a)I | ≥ |(c, b)I |.

– If |(b, a)w| = 0, then (a, b) is A-dependant and |(c, a)I | = |(c, b)I | by our observation at the
start of the proof.

– Suppose that |(b, a)w| > 0.
∗ If |(c, b)I | = |(c, b)w|, then by the inclusion inv(w) ⊂ I and the transitivity of inv(w)

we have that |(c, a)I | ≥ |(c, a)w| ≥ |(c, b)w| = |(c, b)I |.
∗ Suppose that |(c, b)I | = |(c, b)w|+1 (i.e. (b, c) is A-dependent). If |(c, a)w| ≥ |(c, b)w|+

1, we have |(c, a)I | ≥ |(c, a)w| ≥ |(c, b)w|+ 1 = |(c, b)I |. Otherwise, we have |(c, a)w| =
|(c, b)w| =: i. From our assumption that |(b, a)w| > 0 we know that the a-block Ba
appears in w between the first occurrence of b and the i-th occurrence of c. Thus, (b, c)
being A-dependant implies that (a, c) is also A-dependant as the sequence of (a, c) is
included in the sequence of (b, c) in w. These two A-dependencies together with the
transitivity of w for a < b < c concludes that |(c, a)|I = |(c, a)|w + 1 ≥ |(c, b)|w + 1 =
|(c, b)|I as wished.
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Permutrees
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Chapter 3
Inversion and Cubic Vectors for Permutrees

In this chapter we present two generalizations of the bracket vectors of binary trees for permutrees
based on [Tam23]. The first generalization which we call the inversion vectors helps prove in a
constructive manner the lattice property for δ-permutree rotation posets. The second generalization
called the cubic vectors allows for the construction of an embedding of these lattices onto a cube.

3.1 Inversion Vectors
We begin defining inversion vectors for δ-permutrees with the aim of proving the lattice property
of δ-permutrees rotation posets (Proposition 2.3.13) in a constructive manner.

Recall that j → i if vj is a descendant of vi.

Definition 3.1.1. Consider T ∈ PT n(δ) to be a δ-permutree. Its inversion set and inversion compo-
nents are

B(T ) := {(i, j) : i < j and j → i},
B(T )i := {j ∈ [n] : (i, j) ∈ B(T )}.

That is, all j > i such that vj is a descendant of vi. An inversion set has an associated inversion
vector ~b(T ) = (b1, . . . , bn−1) such that bi = |B(T )i|.

Since RDn = ∅, its component does not alter the combinatorics of inversion sets and thus, we do
not consider it. Figure 3.1 contains the inversion vectors for all -permutrees.

Example 3.1.2. Let 1̂, 0̂, Tl, and Tr respectively be the top, bottom, middle left, and middle right
elements of the lattice of -permutrees as in Figure 3.1. Then

B(1̂) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
B(0̂) = ∅,
B(Tr) = {(2, 4), (3, 4)},
B(Tl) = {(1, 2), (3, 4)}.
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Figure 3.1 – The rotation lattice of -permutrees (left) with their respective inversion sets
represented via their components (right). The elements in brown correspond to the permutrees
that are not extremal.

Lemma 3.1.3. Let 1 ≤ i < j < k ≤ n. The set of inversion sets {B(T ) : T ∈ PT n(δ)} is the set of
all subsets E ⊆ {(i, j) ∈ [n]2 : 1 ≤ i < j ≤ n} such that

1. E is transitive,
2. E is cotransitive,
3. if δj ∈ { , }, (i, j) /∈ E, and (j, k) ∈ E, then (i, k) /∈ E,
4. if δj ∈ { , }, (i, j) ∈ E, and (j, k) /∈ E, then (i, k) /∈ E.

Proof. Let T be a δ-permutree and E := B(T ). If (i, j), (j, k) ∈ E, then j → i, k → j, evidently k → i.
That is, (i, k) ∈ E and E is transitive. The fact that E is cotransitive follows a similar argument. For
property 3, the facts that (i, j) /∈ E and (j, k) ∈ E respectively mean that vi ∈ LDj and vk ∈ RDj .
Thus, vk is not a child of vi and (i, k) /∈ E. Property 4 follows a similar argument.

For the opposite direction we wish to construct a δ-permutree T (E) in accordance with the elements
in E. Let Ei = {j ∈ [n] : (i, j) ∈ E} be the components of E. Notice that En = ∅ and that
if (i, j) ∈ Ei, and (j, k) ∈ Ej then (i, k) ∈ Ei due to E being transitive. With this in mind, we can
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construct T (E) in the following way. Take an n× n grid. As step 0, place vertex vn anywhere in the
last column. Now for step i, place the vertex vn−i in the n− i-th column and at the height such that
it is above (resp. below) all j such that (n− i, j) ∈ E (resp. (n− i, j) /∈ E). If such height was already
used by another vertex, move the placed vertices up or down as required maintaining the relative
others established in the previous steps. After step n − 1 we get a permutation table. Decorate
each vertex vi with the decoration δi. Following the insertion algorithm (see Definition 2.3.4) we
obtain a δ-permutree T (E). Notice that the placement of the vertices in the grid ensures transitivity
and cotransitvity and that the red walls from the decorations in the insertion algorithm accomplish
properties 3 and 4. See Figure 3.2 for an example.
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Figure 3.2 – The construction of the -permutree corresponding to the inversion
set {(1, 2), (3, 4), (3, 6), (3, 7), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7)}.

Remark 3.1.4. In the case of cover relations TlT ′ between δ-permutrees, that is, an ij-edge rotation
from T to T ′, Definition 2.3.9 tells us that such a rotation only affects the edge between vi and vj
while the rest of the tree remains the same. In terms of inversions this means that the rotation only
turns into inversions the pairs of the form (i, x) where x ∈ RDj(T ) and if δi ∈ { , }, also all the
pairs that depend on these in a transitive manner. That is, B(T ′) = (B(T )∪ {(i, j)})tc no matter the
decoration δ.

Remark 3.1.5. The characterization of inversion sets was already given in [CPP19, Section 2.3.2]
where they are called IPIP (PIP meaning permutree interval poset). With Lemma 3.1.3, not only
we have characterized inversion sets for permutrees but also described how to recover the permutree
given its inversion set which is not done in [CPP19].

To use inversion sets as a tool we need first to show that we can describe the δ-permutree rotation
order via their containment.
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Chapter 3. Inversion and Cubic Vectors for Permutrees

Lemma 3.1.6. Let T, T ′ be two δ-permutrees. Then T < T ′ if and only if B(T ) ⊂ B(T ′).

Proof. Suppose that T < T ′. Since the rotation order on permutrees is the transitive closure of the
covering relations given by the rotations in Figure 2.19, it is enough to prove this in the case that T ′
covers T . Remark 3.1.4 tells us that in such a case B(T ′) = (B(T )∪{(i, j)})tc and thus B(T ) ⊂ B(T ′).

Before moving to the other direction let 0̂ be the minimal δ-permutree in the rotation lattice. The
fact that T lT ′ implies that B(T ) = (B(T ) ∪ {(i, j)})tc tells us that for any chain 0̂ = T0lT1l · · ·l
Tl l Tl+1 = T in the interval [0̂, T ], we have that a sequence of inversions (ix, jx) such that B(Tx) =
(B(Tx−1) ∪ {(ix, jx)})tc for all x ∈ [l]. In this way we say that a sequence (i1, j1), . . . , (il, jl) gener-
ates T . It is easy to see that T < T ′ if and only if for every sequence (i1, j1), . . . , (il, jl) that generates T
there exists a sequence that generates T ′ of the form (i1, j1), . . . , (il, jl), (il+1, jl+1), . . . , (il′ , jl′). Take
notice that the length of the chains in an interval of permutrees might not always be the same.

Now suppose that B(T ) ⊂ B(T ′) and let (i1, j1), . . . , (il, jl) be a sequence of T . We claim that for
all x ∈ {0, . . . , l} the sequence (i1, j1), . . . , (ix, jx) is the start of sequence of T ′. Let Tx correspond
to the δ-permutree corresponding to the claim corresponding to x. Notice that the claim for x = l

amounts to proving T < T ′. We proceed by induction on the length of the chain which is given
by x. If x = 0 then T0 = 0̂ and the claim is trivial. Now suppose that the claim holds for x − 1
and (i1, j1), . . . , (ix−1, jx−1) is the start of a sequence of T ′, that is, Tx−1 < T . Suppose as well that
the Tx ≮ T ′. Since Tx < T ′, this means that with the ixjj-edge rotation, Tx obtained an inversion
that T ′ does not possess. This is a contradiction since B(Tx) = (B(Tx−1) ∪ {(ix, jx)})tc ⊂ B(T ) ⊂
B(T ) as all sets B are transitive. Thus, Tx < T for all x ∈ {0, . . . , l} and T < T ′.

Theorem 3.1.7. Given two δ-permutrees T, T ′ on n vertices, there exists a δ-permutree T ∧T ′ under
the δ-permutree rotation order. Moreover, it satisfies

B(T ∧ T ′) = B(T ) ∩B(T ′) ∩ {(i, j) : ∀ i < l < j, (i, l) or (l, j) ∈ B(T ) ∩B(T ′)}. (3.1)

Example 3.1.8. Figure 3.3 presents the meet operation between δ-permutrees. Taking the last set of
the right-hand side of Equation (3.1) as I, we have that the corresponding inversion sets in this case
are

B(T ) = {(2, 3), (2, 4), (2, 5), (3, 4)}
B(T ′) = {(1, 2), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

I = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}
B(T ∧ T ′) = {(2, 4), (3, 4)}

and satisfy Theorem 3.1.7. Translating this into the components of the inversion sets we have that

∅ ∩ {2, 4, 5} ∩ {2, 3} = ∅
{3, 4, 5} ∩ {4, 5} ∩ {3, 4} = {4}

{4} ∩ {4, 5} ∩ {4, 5} = {4}
∅ ∩ {5} ∩ {5} = ∅

Remark 3.1.9. Notice that inversion sets of { }n-permutrees are bracket sets of binary trees as in
Definition 2.2.4. We recover Proposition 2.2.6 whenever δ ∈ { }n as B(T )∩B(T ′) is contained in the
last set of Equation (3.1). To see this, notice that if (i, j) ∈ B(T ) then vl ∈ RDi for all i < l < j. If
not, it would contradict that δj = . Thus, (i, l) ∈ B(T ). The same argument applies if (i, j) ∈ B(T ′)
and thus in this case (i, j) ∈ B(T )∩B(T ′) implies (i, l) ∈ B(T )∩B(T ′) giving us the desired inclusion.
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Figure 3.3 – The meet of two -permutrees.

Remark 3.1.10. Our meet operation is similar to the tdd operation defined in [CPP19, Section 1.2.2]
on integer posets. In this context, Theorem 3.1.7 can be seen as [CPP19, Corollary 2.39] through the
tdd and our Lemma 3.1.3. Nevertheless, we give here a direct proof without relying on the results
of [CPP19].

We proceed to prove Theorem 3.1.7.

Proof. First let us see that B(T ∧ T ′) satisfies the conditions of Lemma 3.1.3 and thus defines T ∧ T ′
as a δ-permutree.

Assume that (i, j), (j, k) ∈ B(T ∧T ′). As (i, j), (j, k) ∈ B(T )∩B(T ′), the transitivity of these sets
tells us that (i, k) ∈ B(T )∩B(T ′). We just need to see that (i, k) is also in the last set of Equation 3.1.
Let l such that i < l < k. If i < l < j, then as (i, j) ∈ B(T∧T ′) we have that either (i, l) ∈ B(T )∩B(T ′)
or (l, j) ∈ B(T ) ∩ B(T ′). In the former case we are done. In the latter, as (j, k) ∈ B(T ) ∩ B(T ′),
using transitivity we get that (l, k) ∈ B(T )∩B(T ′), and we are done. If instead l = j, we immediately
finish as by assumption (i, j), (j, k) ∈ B(T ) ∩ B(T ′). Finally, suppose that j < l < k. In this case
since (j, k) ∈ B(T ∧ T ′), either (j, l) ∈ B(T ) ∩ B(T ′) or (l, k) ∈ B(T ) ∩ B(T ′). In the latter case we
finish. For the former, as (i, j) ∈ B(T ) ∩ B(T ′), using transitivity we get that (i, l) ∈ B(T ) ∩ B(T ′).
Thus, we conclude that B(T ∧ T ′) is transitive.

To see that B(T ∧ T ′) is cotransitive notice that its complement is the transitive closure of B(T )
and B(T ′). That is, B(T ∧T ′)c = (B(T )c∪B(T ′)c)tc. By definition of transitive closure it is immediate
that B(T ∧ T ′) is cotransitive.

Now suppose that δj ∈ { , }, (i, j) /∈ B(T∧T ′), and (j, k) ∈ B(T∧T ′). The last assumption tells
us that (j, k) ∈ B(T ) ∩B(T ′) and for all l such that j < l < k, either (j, l) ∈ B(T ) ∩B(T ′) or (l, k) ∈
B(T ) ∩ B(T ′). On the other hand, that (i, j) /∈ B(T ∧ T ′) means that either (i, j) /∈ B(T ), (i, j) /∈
B(T ′), or there exists i < l∗ < j such that (i, l∗), (l∗, j) /∈ B(T ) ∩ B(T ′). If either (i, j) /∈ B(T )
or (i, j) /∈ B(T ′), then because of Property 3 of Lemma 3.1.3 and the fact that (j, k) ∈ B(T ) ∩B(T ′)
we have that (i, k) /∈ B(T ) and (i, k) /∈ B(T ′) respectively. That is, (i, k) /∈ B(T ∧T ′) and we are done
in this case.

Consider then that (i, j) ∈ B(T ) ∩ B(T ′) and there exists i < l∗ < j such that (i, l∗), (l∗, j) /∈
B(T )∩B(T ′). For contradiction’s sake suppose that (i, j) ∈ B(T ∧T ′). By definition of B(T ∧T ′) this
means that either (i, l∗) ∈ B(T )∩B(T ′) or (l∗, k) ∈ B(T )∩B(T ′). The former case is a contradiction
with the condition on which l∗ exists, thus either (i, l∗) ∈ B(T ) or (i, l∗) ∈ B(T ′) and the latter case
happens. Without loss of generality suppose that (i, l∗) ∈ B(T ). As (l∗, k) ∈ B(T ) ∩ B(T ′) ⊂ B(T ),
Property 3 of Lemma 3.1.3 tells us that (i, k) /∈ B(T ) and thus (i, k) /∈ B(T ∧ T ′) as we wanted. The

65



Chapter 3. Inversion and Cubic Vectors for Permutrees

final Property of Lemma 3.1.3 follows a similar proof, and thus we omit it. We conclude that B(T ∧T ′)
indeed corresponds to a permutree T ∧ T ′.

Let us now see that T ∧T ′ is in fact the meet of T and T ′. Since B(T ∧T ′) ⊂ B(T ) and B(T ∧T ′) ⊂
B(T ′) Lemma 3.1.6 tells us that T ∧ T ′ < T and T ∧ T ′ < T ′. Now suppose that there is a δ-
permutree S such that S < T and S < T ′. We claim that S ≤ T ∧ T . Because of Lemma 3.1.6 we
know that B(S) ⊂ B(T ) ∩ B(T ′). Let (i, j) ∈ B(S) ⊂ B(T ) ∩ B(T ′) and i < l < j. Notice that
if both elements (i, l), (l, j) /∈ B(S), then (i, j) /∈ B(S) as it is cotransitive, and we would have a
contradiction. Without loss of generality suppose (i, l) ∈ B(S). As B(S) ⊂ B(T ) ∩ B(T ′), we have
that (i, l) ∈ B(T )∩B(T ′). Thus, for all i < l < j either (i, l) ∈ B(T )∩B(T ′) or (l, j) ∈ B(T )∩B(T ′).
Meaning that, (i, j) ∈ B(T ∧ T ′) and we conclude that B(S) ⊆ B(T ∧ T ′). By Lemma 3.1.6 we get
that S ≤ T ∧ T ′ as we wished.

Corollary 3.1.11. PT (δ) is a lattice for any decoration δ ∈ { , , , }n.

Proof. The δ-tree rotation poset has a meet thanks to Theorem 3.1.7. Since it is a bounded poset,
Proposition 1.1.12 tell us that it is a lattice.

3.2 Cubic Vectors
Having inversion vectors in hand, the reader might ask if it is the case that inversion vectors also give
a cubic embedding of δ-permutree lattices. This is not the case as can be seen in Figure 3.4.
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Figure 3.4 – The rotation lattice of -permutrees (left) together with its geometric realiza-
tions using inversion vectors (middle) and cubic vectors (right). Taking T to be the left -
permutree, we have ~b(T ) = (1, 0) and ~c(T ) = (2, 0).

One can still manage to get such an embedding, it suffices to slightly relax the definition of our
sets.
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Definition 3.2.1. Consider T ∈ PT n(δ) to be a δ-permutree. Its cubic set is

C(T ) :=
{

(i, j) : i < j and vj ∈ Di if δi ∈ { , },
vj ∈ RDi if δi ∈ { , },

}

and its cubic components are C(T )i = {j ∈ [n] : (i, j) ∈ C(T )}. A cubic set has an associated cubic
vector ~c(T ) = (c1, . . . , cn−1) such that ci = |C(T )i|.

Remark 3.2.2. Like in Remark 3.1.4, we have that for a covering relation of δ-permutrees T l T ′

the respective cubic sets satisfy C(T ′) = (C(T ) ∪ {(i, j)})tc. The key difference between the transitive
closures of cubic vectors against inversion vectors is that the transitive closure turns into inversions the
pairs of the form (i, x) where x ∈ RDj(T ) and nothing else. This is a consequence of the replacement
of the condition j → i in inversion sets to j ∈ RDi (resp. i < j and j ∈ Di) in cubic sets.

Definition 3.2.3. Let T, T ′ ∈ PT n(δ). We say that there is an edge between ~c(T ) and ~c(T ′) if and
only if T l T ′. The convex hull of the cubic vectors together with this collection of edges is called the
cubical realization Cδ of (PT (δ),≤).

Example 3.2.4. If δ = (resp. δ = ), the cubic vector reduces to the bracket vector
of binary trees (resp. to the Lehmer code of permutations), and we recover the cubic realization of the
Tamari lattice in [Knu93] and [Com22] (resp. of the weak order of [BF71] and [RR02]). See Figure 3.5
for these cubic realizations and other examples.

Figure 3.5 – The cubical realization Cδ of several permutreehedra.

We now enunciate several properties of cubical realization which culminate in showing that Cδ is
an embedding of PTn(δ) into the cube Qn = [0, n− 1]× · · · × [0, 1].
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Chapter 3. Inversion and Cubic Vectors for Permutrees

Theorem 3.2.5. If T, T ′ ∈ PT n(δ) are δ-permutrees such that T < T ′ in the δ-permutree rotation
lattice, then ~c(T ) <lex ~c(T ′) and the edges of Cδ have directions ei.

Proof. We prove it for covering relations T l T ′ as the δ-rotation order is the transitive closure of
the relations in Figure 2.19. Following Remark 3.2.2 we have that the inclusion C(T ′) = (C(T ) ∪
{(i, j)})tc and the relations between components C(T )i ⊂ C(T ′)i and C(T )j = C(T ′)j if j 6= i. This
tells us that ~c(T ′) − ~c(T ) = (0, . . . , 0, c(T ′)i − c(T )i, 0, . . . , 0). Therefore, ~c(T ) ≤lex ~c(T ′) and the
edge [~c(T ),~c(T ′)] has direction ei.

Theorem 3.2.6. Cδ is normal equivalent to Cuben−1 (i.e. has the same normal fan).

Proof. Let Qn−1 := [0, n− 1]×· · ·× [0, 1]. First note that 0 ≤ c(T )i ≤ n− i for all i ∈ [n− 1] meaning
that Cδ ⊂ Qn−1. To see the reverse inclusion it is enough to prove that all vectors ~r = (r1, . . . , rn−1)
where ri ∈ {0, n− i}, have a preimage through the function f : PT n(δ)→ Cδ such that f(T ) = ~c(T ).
We call such preimages extremal δ-permutrees.

Take any such ~r. We now present how to construct a δ-permutree in the preimage f−1(~r). Consider
an n × n grid. At step 1 place v1 at (1, 1) (resp. (1, n)) if r1 = 0 (resp. r1 = n − 1). At step i

place vi at (i, d) (resp. (i, n − u)) where d := |{j ∈ [n] j < i and rj = 0}| (resp. u := |{j ∈ [n] j <
i and rj = n − j}|). After step n − 1 place vn in the only coordinate of column n that shares no
vertex horizontally. Thus, we get a permutation table. Decorate each vertex vi with the decoration δi.
Following the insertion algorithm (see Definition 2.3.4) we obtain a δ-permutree T (~r).

Notice that in T (~r), for each vertex vi we have either |RDi| = 0 (resp. |{j ∈ [n] : i < j and vj ∈
Di}| = 0) or |RDi| = n − i (resp. |{j ∈ [n] : i < j and vj ∈ Di}| = n − i) That is, the values
corresponding to ~r. Therefore, Cδ = Qn−1 and normal equivalent to Cuben−1.

Remark 3.2.7. Notice that since the interior of Qn−1 has no integer points, we have that all cubic
coordinates are on the surface of Cδ.

Figure 3.6 shows an example of the construction of extremal permutrees described in the proof of
Theorem 3.2.6. In Figure 3.1 the extremal -permutrees are colored in black while the 2 that
are extremal are colored in brown. We now show that these preimages are unique as a part of the
following bigger result.

Theorem 3.2.8. The map f : PT n(δ)→ Cδ sending a δ-permutree to its cubic vector is injective.

Proof. Consider T, T ′ ∈ PT δ two different δ-permutrees. Due to them being different, there is a
maximal vertex i such that RD(T )i 6= RD(T ′)i (resp. {j ∈ [n] : i < j and vj ∈ D(T )i} 6= {j ∈
[n] : i < j and vj ∈ D(T ′)i}). If c(T )i = |RD(T )i| 6= |RD(T ′)i| = c(T ′)i (or the equivalent in
the Di case) we are done. Otherwise, there exists a maximal vertex r ∈ RD(T )i ∩ RD(T ′)i such
that RD(T )r 6= RD(T ′)r which contradicts the existence of i. Therefore, ~c(T ) 6= ~c(T ′).

Theorem 3.2.9. Cδ is an embedding of the δ-permutreehedron. In particular, maximal cells of Cδ are
in bijection with facets of the δ-permutreehedron.
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Figure 3.6 – The construction of the extremal -permutree corresponding to the
corner (6, 0, 0, 0, 2, 1) ∈ Q6.

Proof. Recall from Proposition 2.3.19 that the facets of the δ-permutreehedron are in bijection with
the proper subsets I ( [n] such that there is a δ-permutree that admits (I ‖ [n] \ I) as an edge cut.
Let J := [n] \ I. As δ-permutrees are connected, edge cuts partition a δ-permutree T into a δI -
permutree TI and a δJ -permutree TJ which as subtrees are connected only via an edge (i, j) such
that i→ j and vi ∈ Ti and vj ∈ Tj .

Take an edge-cut (I ‖ J). We proceed to construct a cell K of Cδ containing all cubic vectors ~c(T )
of δ-permutrees T that admit said edge-cut. Consider the minimal elements 0̂δI and 0̂δJ (resp. maximal
elements 1̂δI and 1̂δJ ). Connecting them via the insertion algorithm gives us the (I ‖ J)-admitting δ-
permutree T given by T I := 0̂δI and T J := 0̂δJ (resp. T given by T I := 1̂δI and T J := 1̂δJ ). Notice
that T (resp. T ) is the minimal (resp. maximal) δ-permutree that admits (I ‖ J) as an edge cut. This
in turn shows that ~c(T ) (resp. ~c(T )) is the lexicographical minimal (resp. maximal) cubic vector that
relate with this edge-cut. Thus, we define our cell as K := {~c(T ) ∈ Cδ : T ≤ T ≤ T}.

Let us see that K is maximal by showing it is contained in a hyperplane. Suppose that n ∈ J . In
such case, for any δ-permutree T such that T ≤ T ≤ T we have that RD(T )max(I) = ∅ (resp. {j ∈ [n] :
max(I) < j and vj ∈ D(T )max(I)} = ∅) and we conclude that get thatK is in the hyperplane xmax(I) =
0. If instead n ∈ I, then we obtain that K is in the hyperplane xmax(J) = n − max(J) following a
similar argument. Finally, note that all other n − 2 entries of the cubic vectors change between T

and T through rotations between the vertices I or J . This together with Theorem 3.2.5 gives us
that K is a maximal cell of Cδ.

The conjunction of Theorems 3.2.5, 3.2.6, and 3.2.8 and our bijection between facets and cells
gives us that Cδ is an embedding of the δ-permutreehedron.
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Chapter 4
Permutree Sorting

In this chapter we present a way to study permutree congruences via the theory of automata. This
chapter is based directly on the article [PPT23].

Recall from Subsection 2.4.2 that the symmetric group Sn together with the set S = {s1, . . . , sn−1}
of simple reflections si = (i i+ 1) is a Coxeter system of Type A. In this way each permutation can
be represented by a set of reduced words in the generators S. We begin by rephrasing δ-permutrees
in a notation that is more convenient for our purposes.

Definition 4.0.1. Let δ ∈ { , , , }n. We denote U := {j ∈ [2, n − 1] : δj ∈ { , }}
and D := {j ∈ [2, n − 1] : δj ∈ { , }}. In this context and following Proposition 2.3.15, we call
(U,D)-permutree minimal the minimal permutations of ≡δ.

As a rephrasing, this chapter is dedicated to study how to discern the reduced words of (U,D)-
permutree minimal permutations.

Remark 4.0.2. Following Definition 2.4.54, the sets U and D can also be defined as j ∈ U (resp. j ∈
D) if j → j − 1 (resp. j − 1→ j).

4.1 Single Automata
We begin by studying the case where U = ∅ and D = {j} (resp. U = {j} and D = ∅) for some j ∈
[2, n− 1].

Definition 4.1.1. Consider U = {j} (resp. D = {j}) for some j ∈ [2, n−1] and the set of generators S
as an alphabet. We define the automaton U(j) (resp. D(j)) recursively following Figure 4.1 with
automata U(n) (resp. D(0)) defined for consistency. As our automata are complete with each node
having the n− 1 transitions labeled by adjacent transpositions s1, . . . , sn−1, all missing transitions in
our figures are meant to be loops. Figure 4.2 shows the complete automata U(j) and D(j).
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Figure 4.1 – The automata U(j) (left) and D(j) (right) defined recursively.
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Figure 4.2 – The complete automata U(j) and D(j).

Remark 4.1.2. As our automata are complete, it is immediate from their definition that the lan-
guages L(U) and L(D) are infinite. Thus, we narrow our scope and instead of asking what is the
language recognized by them, we ask which reduced words are accepted (read from left to right) by
them and in which states they are accepted. This leads us to the following definition.

Definition 4.1.3. We say that a state of U(j) (resp. D(j)) is healthy, ill, or dead, if it is respectively
in the top, middle, bottom row of the automaton. The sequence of healthy states of U(j) (resp. D(j))
is called the spine the automaton.
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4.1. Single Automata

Remark 4.1.4. One didactic way of seeing our automata is the following. Given an orientation j →
j− 1 (resp. j− 1→ j), the spine of U(j) (resp. D(j)) can be built taking a walk on the Coxeter graph
starting from the start of the orientation (i.e. j (resp. j − 1)) to the end opposite to the orientation.
Afterwards the other states can be built recursively following the pattern given in the Figure 4.1.

With this definition our final/accepting states are partitioned into healthy or ill states while
rejecting/non-final states are dead states. To explain why these states receive these names right
now is a spoiler. First, we need to redefine slightly what it means to avoid a pattern in this chapter.

Definition 4.1.5. Fix a j ∈ [2, n − 1]. We say that a permutation π ∈ Sn avoids the pattern jki

(resp. kij) if for all 1 ≤ i < j and j < k ≤ n, the word jki (resp. kij) is not a subword of π.

Remark 4.1.6. We bring special attention to the reader to notice that since j is fixed in Defini-
tion 4.1.5, this pattern avoidance is different from the usual as in Definition 2.1.7.

Example 4.1.7. The permutation 42135 avoids 2ki, 3ki, and 4ki (and thus the pattern 231), but
contains ki3 (and thus the pattern 312) since it contains the subsequence 423.

4.1.1 Properties of U(j) and D(j)
Since our automata read reduced words from left to right, it is convenient to us to study how the event
of U(j) (resp. D(j)) accepting or rejecting a reduced word changes when we multiply on the left said
word by the transposition sj , sj−1, or si with i /∈ {i, j − 1}. The following Lemmas and Examples do
this while studying in parallel how our fixed pattern avoidance changes under the same circumstances.
The following proofs are written for the case of U(j) and the pattern jki to ease reading. The proofs
for the cases of D(j) and the pattern kij are similar.

Lemma 4.1.8. Let σ ∈ Sn such that σ([j − 1]) = [j − 1], σ(j) = j, and σ([n] \ [j]) = [n] \ [j]
and τ ∈ Sn such that `(σ · τ) = `(σ) + `(τ), then:

1. τ possesses a reduced word accepted by U(j) (resp. D(j)) if and only if σ · τ posses a reduced
word accepted by U(j) (resp. D(j)),

2. τ avoids jki (resp. kij) if and only if σ · τ avoids jki (resp. kij).

Proof. We prove both events separately as follows.

1. The constraints on σ imply that the transpositions sj and sj−1 do not appear in any of its
reduced words (see Remark 2.4.9). Therefore, any reduced word of σ ends in the initial state
of U(j), and it is trivially accepted. Thus, the accepting or rejecting of σ · τ depends uniquely
on τ . The result immediately follows.

2. The constraints on σ show that the assumption 1 ≤ i < j < k ≤ n implies that 1 ≤ σ(i) <
σ(j) = j < σ(k) ≤ n. Thus, τ contains the pattern jki if and only if σ · τ contains the
pattern jσ(k)σ(i).
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Example 4.1.9. Consider j := 4 and the permutations σ := 312465 = s2 · s1 · s5, τ1 := 143256 =
s3 · s2 · s3, and τ2 := 124536 = s3 · s4. Multiplying we obtain σ · τ1 = 342165 and σ · τ2 = 314625.
Following the order of Lemma 4.1.8 we have that:

1. U(4) accepts all reduced words of both τ1 and σ · τ1 on its first ill state, and rejects all reduced
words of both τ2 and σ · τ2 on its first dead state,

2. both τ1 and σ · τ1 avoid 4ki, while both τ2 and σ · τ2 contain 4ki.

Lemma 4.1.10. Let τ ∈ Sn be a permutation with a reduced word starting with sj−1 (resp. sj) that
is accepted by U(j) (resp. D(j)), then

1. τ does not permute j and j + 1 (resp. j − 1 and j),
2. τ avoids jki (resp. kij).

Proof. Consider a reduced word w starting with sj−1 and accepted by U(j). Since w starts with sj−1
and is accepted by U(j), it is accepted in the first ill state of U(j). Such state contains only loops and
the transitions sj to a dead state. Since w does not arrive to said dead state, we know that w does
not contain the transposition sj . Following Remark 2.4.9 we know that no word of w contains sj . We
conclude our claims as follows:

1. Since sj = (j j + 1), not having sj in w implies that τ does not permute j and j + 1.
2. As τ does not contain sj in any reduced word, τ([j]) = [j] and τ([n + 1] \ [j]) = [n + 1] \ [j].

Thus, τ avoids the subword ki with i < j < k and by consequence avoids as well jki.

Example 4.1.11. Consider j := 4 and τ := 413265, with reduced word s3 · s5 · s2 · s1 · s3 accepted
by U(4). We get that

1. τ does not permute 4 and 5,
2. τ avoids 4ki.

Lemma 4.1.12. Let τ ∈ Sn be a permutation that does not permute j and j+ 1 (resp. j− 1 and j),
then

1. sj · τ (resp. sj−1 · τ) possesses a reduced word accepted by U(j) (resp. D(j)) if and only if τ
possesses a reduced word accepted by U(j + 1) (resp. D(j − 1)),

2. sj · τ (resp. sj−1 · τ) avoids jki (resp. kij) if and only if τ avoids (j + 1)ki (resp. ki(j − 1)).

Proof. We deal with the two statements separately again:

1. Consider w a reduced word for τ accepted by U(j+1). Since τ does not permute j and j+1, we
know that sj does not appear in w, and sj ·w is a reduced word for sj · τ . By construction sj ·w
is accepted by U(j).
Now suppose that sj · τ possesses a reduced word w accepted by U(j). Notice that w cannot
start by sj−1 due to Lemma 4.1.10 but contains sj since sj · τ permutes j and j + 1. Using
Lemma 4.1.8 we can also assume that w begins with sj as any other possibilities yield only
loops. Thus, after reading sj , the corresponding accepted suffix is a reduced word for τ that is
accepted by U(j + 1).
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2. Notice that since (j j + 1) is an inversion of sj · τ but not of τ , the value j + 1 cannot be
used as k to form the pattern jki in sj · τ and the value j cannot be used as i to form the
pattern (j+ 1)ki in τ . Since multiplying on the left by sj only exchanges the values j and j+ 1
the result follows.

Example 4.1.13. Consider j := 4 and the permutations τ1 := 142536 and τ2 := 142563 that do not
permute 4 and 5. Multiplying we obtain s4 · τ1 = 152436 and s4 · τ2 = 152463. In this scenario we
have that

1. the reduced word s4 · s3 · s4 · s2 of s4 · τ1 is accepted by U(4) and the reduced word s3 · s4 · s2
of τ1 is accepted by U(5), while all reduced words of s4 · τ2 are rejected by U(4) and all reduced
words of τ2 are rejected by U(5),

2. s4 · τ1 avoids 4ki and τ1 avoids 5ki, while s4 · τ2 contains 463 and τ2 contains 563.

We now have in our hands the tools required to prove the hinted relationship between our automata
and pattern avoidance.

Theorem 4.1.14. Fix j ∈ [2, n− 1] and π ∈ Sn. The following statements are equivalent:

• π possesses a reduced word accepted by the automaton U(j) (resp. D(j)),

• π avoids the pattern jki (resp. kij) with i < j < k.

Proof. We proceed by an induction on the length of the permutations. The base case is trivial due to
the construction of our automata and the only permutation of length 0 being the identity 12 · · ·n.

Let π ∈ Sn such that it has a reduced word w accepted by U(j). Supposing that w begins with si,
let τ ∈ Sn such that π = si · τ .

• If i /∈ {j − 1, j}, τ possesses a reduced word accepted by U(j) by Lemma 4.1.8 (1), so that τ
avoids jki by induction. Thus, π = si · τ avoids jki by Lemma 4.1.8 (2).

• If i = j − 1, then π avoids jki by Lemma 4.1.10 (2).

• If i = j, then τ possesses a reduced word accepted by U(j+ 1) by Lemma 4.1.12 (1). We obtain
by induction that τ avoids (j + 1)ki. Thus, π = sj · τ avoids jki by Lemma 4.1.12 (2).

No matter the case, we see that π avoids jki.
Now for the reverse direction let π ∈ Sn be a permutation avoiding the pattern jki. We get the

following two cases.

• There exists m minimal such that j < m and π−1(j) > π−1(m). In such a case, π−1(l) >
π−1(m) for all l ∈ [j,m − 1]. Following Lemma 2.4.24, π possesses a reduced word starting
with sm−1sm−2 · · · sj+1sj . Let σ = sm−1sm−2 · · · sj+1 giving us the factorization π = σ ·sj · τ for
some τ ∈ Sn. Using Lemma 4.1.8 (2) and then Lemma 4.1.12 (2) we obtain that τ avoids (j +
1)ki. By induction, we obtain that it possesses a reduced word accepted by U(j + 1). By
Lemmas 4.1.8 (1) and 4.1.12 (1), we conclude that π possesses a reduced word accepted by U(j).
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• For all m ∈ [j + 1, n] we have that and π(j) < π(m). Let w be a reduced word of π which by
the previous sentence Lemma 2.4.24 cannot begin by sm for m ∈ [j + 1, n]. If it is accepted
by U(j), we are done. Otherwise, w is rejected and up to commutations with transpositions sc
with c ∈ [1, j − 2] we have that w starts with sj−1 and then followed by sj . Call i and k the
two elements that are exchanged when the reduced word first uses sj . We have that i < j < k

and π contains the pattern jki (because j and k are not exchanged in π, and i and k are already
exchanged, so they remain exchanged in π). This is a contradiction with our assumption that π
avoids jki.

Thus, in any case we get that π possesses a reduced word accepted by U(j).

4.1.2 The Structure of Accepted Reduced Words of U(j) and D(j)
Via Proposition 2.3.15, Theorem 4.1.14 allows us to distinguish when a permutation is minimal in
its permutree class for a congruence given through a single orientation of the Coxeter graph. Still,
as the number of reduced word of permutations grows very quickly (for the longest word w0 there
are (n2)!∏n−1

k=1 (2k−1)n−k
reduced expressions [OEI23, A005118]), trying all reduced words on our automata

in hopes of finding one that is accepted is not practical. Therefore, we now move to present certain
properties of the set of accepted reduced words of our automata with the aim of describing how to
efficiently propose a single candidate reduced word in the context of Theorem 4.1.14.

Remark 4.1.15. Given the structure of our automata, a permutation may possess reduced words w,w′
such that w is accepted by U(j) while w′ is rejected by U(j). For example consider π = 321 with
reduced words w = s2 · s1 · s2 and w′ = s1 · s2 · s1. Then w is accepted by U(2) while w′ is rejected
by U(2).

However, we do have the following nice properties on the set of reduced words.

Theorem 4.1.16. The set of reduced words accepted by U(j) (resp. D(j)) is closed by taking prefixes.

Proof. This follows from the fact that any path to an accepting state in U(j) begins in the initial
state and contains only accepting states. Thus, any prefix of a reduced word accepted by U(j) is
also accepted by U(j). Since all prefixes of a reduced word are also reduced words, we obtain the
result.

Theorem 4.1.17. Let ` ∈ [n − 1] be distinct from j − 1 (resp. j). A permutation π ∈ Sn that
avoids jki (resp. kij) and reverses ` and `+ 1 possesses a reduced word starting with s` and accepted
by U(j) (resp. D(j)).

Proof. Since π reverses ` and `+1, it possesses a reduced word of the form π = s`·τ (see Lemma 2.4.24).
To finish proving the proposition we have the following cases:

• if ` = j, then τ does not reverse j and j + 1 and thus avoids (j + 1)ki by Lemma 4.1.12 (2).
Hence, τ has a reduced word accepted by U(j + 1) by Theorem 4.1.14, and we conclude by
Lemma 4.1.12 (1).
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• if ` /∈ {j − 1, j}. In this case τ avoids jki by Lemma 4.1.8 (2) and thus, τ has a reduced word
accepted by U(j) by Theorem 4.1.14. We conclude by Lemma 4.1.8 (1).

Theorem 4.1.18. Given a permutation π ∈ Sn, all the reduced words for π accepted by U(j)
(resp. D(j)) are accepted at the same state.

It is possible to give a direct proof of this theorem by verifying that commutations and braid moves
between accepted reduced words do not change the state on which the reduced words are accepted.
One can also classify which expressions of reduced words are accepted at each state. We prefer going
for the following stronger result which characterizes where the reduced words of a permutation land
depending on its inversions. For simplicity, we state it in terms of U(j), although a similar statement
holds for the automaton D(j).

Theorem 4.1.19. Given a permutation π ∈ Sn, partition the inversions of π as into the following
two sets:

invj(π) = {(i, j) : i < j and π−1(i) > π−1(j)}
invj(π) = {(j, k) : j < k and π−1(j) > π−1(k)}

Then we have the following properties:

1. if | invj(π)| = 0, then all reduced words for π end at the same healthy state of U(j),
2. if | invj(π)| = 0, then all reduced words for π end at the same state of U(j). The state is healthy

if π avoids ji, ill if π contains ji but avoids jki, or dead if π contains jki,
3. if | invj(π)| 6= 0 6= | invj(π)|, all accepted reduced words for π end at the same ill state of U(j)

while the rejected reduced words may end at distinct dead states of U(j).

Proof. We proceed by induction on the length of a permutation. Notice that the base case is trivial
as the identity has no reduced words and corresponds to our initial state which is always accepting.
Consider an arbitrary reduced word w for π. Letting it begin by sl let w = sl · w′ and π = sl · τ
where w′ is a reduced word of τ ∈ Sn. Depending on the value of l we have the following cases:

• if ` /∈ {j − 1, j}, then s` is a loop in U(j) giving us the equalities | invj(π)| = | invj(τ)|
and | invj(π)| = | invj(τ)|,

• if ` = j, then sj goes to the initial state of U(j + 1), and we have that | invj(π)| = | invj+1(τ)|
and | invj(π)| = | invj+1(τ)|+ 1,

• if ` = j − 1, then sj−1 goes to the first ill state of U(j) and | invj(π)| = | invj+1(τ)| + 1
and | invj(π)| = | invj+1(τ)|.

By induction, we obtain that the reduced word w′ for τ ends as predicted in the statement. The
previous observations ensure that the reduced word w for π also does.

Example 4.1.20. We provide examples for each of the three cases of Theorem 4.1.19.

1. For π := 4312, we have that | inv2(π)| = 0 and all of its 5 reduced words end at the third healthy
state of U(2).
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2. For π := 32145 (resp. π := 43215, resp. π := 43251), we have | inv4(π)| = 0 and all its 2 (resp. 16,
resp. 35) reduced words end at the first healthy (resp. ill, resp. dead) state of U(4).

3. For π := 4321, we have | inv2(π)| = |{(1, 2)}| = 1 and | inv2(π)| = |{(2, 3), (2, 4)}| = 2. Among
the 16 reduced words of π, the automaton U(2) accepts 7 at its third ill state, rejects 7 at its
first dead state, and rejects the other 2 at its second dead state.

Notice that Theorem 4.1.17 allows us to algorithmically construct a candidate reduced word to
verify if a permutation π is ({j}, ∅)-permutree minimal. This would be done by accumulating transpo-
sitions s` depending on if the values ` and `+ 1 are permuted and verifying that the resulting reduced
word is accepted by U(j).

Here we go for a sorting approach as in [Knu73], meaning that we construct a reduced word
accepted by U(j) which is a reduced word of π if and only if π avoids the pattern jki. We call the
following algorithm the ({j}, ∅)-permutree sorting.

Algorithm 1 : ({j}, ∅)-permutree sorting
Input : a permutation π ∈ Sn and an integer j ∈ [n]
Output : a reduced word accepted by U(j), candidate reduced word for π

1 w := ε
2 repeat
3 if ∃ ` 6= j − 1 such that ` and `+ 1 are reversed in π then
4 π := s` · π, w := w · s`
5 if ` = j then j := j + 1
6 if j − 1 and j are reversed in π then
7 π := sj−1 · π, w := w · sj−1
8 w := w · w′ · w′′ where w′ sorts π[j] and w′′ sorts π[n]\[j]
9 return w

Example 4.1.21. Table 4.1 shows the ({2}, ∅)-permutree sorting algorithm in action for the permu-
tations π1 := 3421 and π2 := 4231. Each row contains the permutation πi, the reduced word wi, and
the values of ji and `i in use at each step of the algorithm.

Notice that for π1 the algorithm ends with the identity and is thus ({2}, ∅)-sortable, which coincides
with the fact that it avoids 2ki. In contrast, for π2 the algorithm ends with the permutation 1243,
meaning that π2 is not ({2}, ∅)-sortable, which coincides with the fact that π2 contains 2ki.

Corollary 4.1.22. For any permutation π and j ∈ [2, n− 1], Algorithm 1 returns a reduced word w
accepted by U(j) with the property that w is a reduced word for π if and only if π avoids jki.

Proof. First notice that Algorithm 1 creates a reduced word following U(j). It begins prioritizing
healthy states in lines 2 to 5 by considering transpositions that are loops following Lemma 4.1.8 and
then changing j to j + 1 following Lemma 4.1.12. This repeats for as many transitions as possible
until we have to consider sj−1 and go to an ill state in line 6. At this point we cannot use sj as
this would lead to an ill state. After this point, we can use as many transitions in {s1, . . . , sj−1}
(resp. {sj+1, . . . , sn−1}) to sort [j] (resp. [n] \ [j]).
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3421

π1

ε

w1

2

`1j1

4231

π2

ε

w2

32

`2j2

2

2431 s2 3 1

1432 s2 · s1 3 3

1342 s2 · s1 · s3 4 2

1243 s2 · s1 · s3 · s2 4 3

1234 s2 · s1 · s3 · s2 · s3 4

3241 s3 22

2341 s3 · s2 13

1342 s3 · s2 · s1 23

1243 s3 · s2 · s1 · s2 3

Table 4.1 – The ({2}, ∅)-permutree sorting of 3421 (left) and 4231 (right).

The resulting reduced word is accepted by U(j) as we never use sj after an ill state. If it happens
that w is a reduced word of π, then by Theorem 4.1.14 π avoids jki. Conversely, if π avoids jki, by
Theorem 4.1.17 we have that w started being constructed with the respective transpositions sl and
lines 2 to 5 of the algorithm, and then forced to end in lines 6 to 9 in an expression unique up to
commutations. Thus, it is a reduced word of π.

Remark 4.1.23. Notice it is line 8 of Algorithm 1 which makes it a sorting algorithm as in [Knu73].
Indeed, w becomes a reduced word for π at the end of the algorithm if and only if π becomes the
identity permutation. We say that π is then ({j}, ∅)-permutree sortable. If one does not want to go
so far one can just verify at line 8 if π([j]) = [j] and π([n] \ [j]) = [n] \ [j].

4.1.3 Generating Trees
Similar to how Theorem 4.1.17 has an algorithmic consequence, Theorem 4.1.16 and Theorem 4.1.18
have a combinatorial consequence. Namely, they define generating trees for ({j}, ∅)-permutree min-
imal permutations as subgraphs of the Hasse diagram of the weak order on Sn. To construct them
without ambiguity let ≺ be a total order on {s1, . . . , sn−1} which we call a priority order on adja-
cent transpositions. Given a ({j}, ∅)-permutree minimal permutation π ∈ Sn, let π({j}, ∅,≺) be
the ≺-lexicographic minimal reduced word for π that is accepted by U(j) and

R(n, {j}, ∅,≺) :=
{
π({j}, ∅,≺) : π ∈ Sn is ({j}, ∅)-permutree minimal

}
.

Theorem 4.1.24. The set R(n, {j}, ∅,≺) is closed by taking prefixes.

Proof. Consider a reduced word w = u · v where u /∈ R(n, {j}, ∅,≺). If u is rejected by U(j), then w
is rejected as well due to Theorem 4.1.16. Otherwise, there exists a reduced word u′ representing
the same permutation as u, accepted by U(j) such that it is ≺-lexicographic smaller than u. Due to
Theorem 4.1.18, u and u′ end at the same state of U(j) and thus if w = u · v is accepted by U(j), so
is u′ · v. Since u′ · v is ≺-lexicographically smaller than u · v and represents the same permutation, we
have that w is not in R(n, {j}, ∅,≺).

Theorem 4.1.24 gives us a generating tree where the root is the empty reduced word and the
parent of a reduced word is obtained by deleting the last letter. Taking this tree as the sequence of
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associated transpositions in the weak order, we obtain a generating tree on ({j}, ∅)-permutree minimal
permutations as a sublattice of the weak order on Sn. Figure 4.3 shows all possible trees for S4 and
priority order s1 ≺ s2 ≺ s3.

4.2 Multiple Automata
We now move on to the case where U and D are arbitrary subsets of [2, n − 1]. In this context
Theorem 4.1.14 tells us that the following are equivalent statements for a permutation π ∈ Sn:

1. π is a (U,D)-permutree minimal permutation,

2. letting i < j < k, π avoids the pattern jki (resp. kij) if j ∈ U (resp. j ∈ D),

3. for each j ∈ U (resp. j ∈ D) π possesses a reduced word accepted by U(j) (resp. D(j)).

Statements (1) and (2) happen simultaneously while statement (3) gives a reduced word for each
element of U and D. Unfortunately the reduced word that is accepted by an automaton might be
rejected by another. Such is the case of the following example.

Example 4.2.1. Let us revisit Remark 4.1.15 in more generality. Let j ∈ [2, n−1] and U = D = {j}.
Consider the permutation π ∈ Sn with sj ·sj−1 ·sj and sj−1 ·sj ·sj−1 as its only reduced words. Notice
that sj · sj−1 · sj is accepted by U(j) and rejected by D(j) while sj−1 · sj · sj−1 is accepted by D(j) and
rejected by U(j). Thus, π has no reduced word accepted by both automata.

This gives us the following remark.

Remark 4.2.2. If U and D are not disjoint, there exists permutations who do not possess a reduced
word accepted by all the respective automata U(j) and D(j).

Hope is not lost though, as this is not the case when U and D are not disjoint as the following
theorem shows.

Theorem 4.2.3. Let U and D be disjoint subsets of [2, n− 1] and π ∈ Sn. The following statements
are equivalent:

• π possesses a reduced word accepted by U(j) for j ∈ U and D(j) for j ∈ D.

• π avoids the patterns jki for j ∈ U and kij for j ∈ D with i < j < k.

Proof. If π possess a reduced word accepted at the same time by all U(j) for j ∈ U and D(j) for j ∈ D,
Theorem 4.1.14 gives us our desired pattern avoidance. For the opposite direction consider π ∈ Sn

such that π avoids the patterns jki for j ∈ U and kij and j ∈ D with i < j < k. Let U ′ = {j ∈
U : invj(π) 6= ∅} and D′ = {j ∈ D : invj(π) 6= ∅}. Using Theorem 4.1.19 we have that any reduced
word of π is accepted by U(j) for j ∈ U \ U ′ and D(j) for j ∈ D \ D′. Since these cases are trivial
we can assume without loss of generality that U = U ′, D = D′ and one of the two is not empty.
Say U = U ′ 6= ∅.
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Figure 4.3 – Generating trees for the ({j}, ∅) and (∅, {j})-permutree minimal permutations
of S4, with priority order s1 ≺ s2 ≺ s3.
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The following is an adaptation of the proof of Theorem 4.1.14 by induction. Let j◦ := max(U)
and m minimal such that j◦ < m and π−1(j◦) > π−1(m). By said minimality we have that π−1(l) >
π−1(m) for all l ∈ [j,m − 1]. Therefore, π contains the corresponding subwords mj◦l and l /∈ D

for l ∈ [j + 1,m− 1]. Notice as well that l /∈ U by maximality of j0. Now, due to Lemma 2.4.24 the
minimality of m tells us that π can be written as π = sm−1sm−2 · · · sj◦ · τ .

Lemma 4.1.8 (2) and Lemma 4.1.12 (2) give us that

• τ avoids jki for all j ∈ U \ {j◦} and kij for all j ∈ D \ {m},

• τ avoids (j◦ + 1)ki,

• τ avoids kij◦ if m ∈ D.

By our induction step, we have that τ possesses a reduced word w that is accepted by all U(j)
(resp. D(j)) for j ∈ U \ {j◦} and j = j◦+ 1 (resp. j ∈ D \ {m} and j = j◦ if m ∈ D). Lemma 4.1.8 (1)
and Lemma 4.1.12 (1) give us that sm−1 · · · sj◦ ·w is a reduced word for π accepted by all U(j) for j ∈ U
and D(j) for j ∈ D as we wished.

4.2.1 Multiplying Automata
The current statement of Theorem 4.2.3 uses an automaton per element of U and D. We can however,
use the product of all of them to rephrase the theorem in a more compact way. See Definition 1.3.4
for the details on the product of automata. We denote by P(U,D) the automaton resulting from the
product of all automata U(j) if j ∈ U and D(j) if j ∈ D.

Corollary 4.2.4. Let U andD be disjoint subsets of [2, n−1]. The following statements are equivalent:

• π possesses a reduced word accepted by P(U,D),

• π avoids the patterns jki for j ∈ U and kij j ∈ D with i < j < k.

Definition 4.2.5. Following Definition 4.1.3 we say that a state of P(U,D) is healthy if its correspond-
ing states in all U(j) for j ∈ U and all D(j) for j ∈ D are healthy. We say that a state of P(U,D) is ill
if its corresponding sets have at least one ill (resp. dead) state and no dead states. A state of P(U,D)
is said to be dead if it contains at least one dead state.

Figure 4.4 illustrates the automata P({4}, {2}) when n = 5 (left), P({3}, {2}) for n = 4 (middle),
and P({2}, {4}) for n = 5 (right). For the first two automata, we draw the complete automata on
top, and their skeletons on the bottom. Here, we call skeleton a simplification of the automaton that
recognizes the same reduced words. It is obtained using the fact that the word is rejected as soon as
we reach a dead state, and that the automata U(n) and D(1) accept all reduced words. For the last
automaton, the complete product is too big, so we only draw the reachable healthy states. We color
the transitions in red, blue, or purple depending on whether only U, only D, or both U and D change
state.
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Figure 4.4 – The automaton P({4}, {2}) for n = 5 and its skeleton (left), the automa-
ton P({3}, {2}) for n = 4 and its skeleton (middle), and the healthy states of the automa-
ton P({2}, {4}) for n = 5 (right).
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4.2.2 The Structure of Accepted Reduced Words of P(j)
Following Section 4.1.2, we can extend Theorems 4.1.16, 4.1.17, and 4.1.18 to P(U,D) as follows.

Theorem 4.2.6. The set of reduced words accepted by P(U,D) is closed by taking prefixes.

Theorem 4.2.7. A permutation π ∈ Sn that avoids jki for j ∈ U and kij for j ∈ D and possesses
a reduced word starting with s` such that the transposition sl leads to a healthy state of P(U,D),
possesses a reduced word starting with s` and accepted by P(U,D).

Theorem 4.2.8. Given a permutation π ∈ Sn, all the reduced words for π accepted by P(U,D) are
accepted at the same state.

The proofs of these theorems are left out as they are obtained directly from their corresponding
single automata versions and the definition of the product of automata.

4.2.3 Permutree Sorting
Corollary 4.2.4 tells us that the set of (U,D)-permutree minimal permutations having reduced words
accepted by P(U,D) is non-empty in the case of U,D being disjoint subsets of [2, n− 1]. With this in
hand, following the intuition developed in Subsection 4.1.2 and taking into account that the accepted
reduced words are closed by prefix as in Theorem 4.2.6, Theorem 4.2.7 allows us to think of sorting
algorithms following only (U,D)-permutree minimal permutations.

Definition 4.2.9. A (U,D)-permutree sorting algorithm is a sorting algorithm such that

• applied to a (U,D)-permutree minimal permutation π, it only passes through (U,D)-permutree
minimal permutations and ends with the identity permutation,

• it fails to sort a non (U,D)-permutree minimal permutation π.

Example 4.2.10. The stack sorting algorithm [Knu73] is a ({2, . . . , n − 1}, ∅)-permutree sorting
algorithm.

Clearly, we recover Algorithm 1 as a ({j}, ∅)-permutree sorting algorithm for any j ∈ [2, n−1]. We
now generalize it to a (U,D)-permutree sorting algorithm in a recursive way. As before, the algorithm
follows the automaton P(U,D) without explicitly constructing it. Since P(U,D) uses transitions
composed by tuples of transpositions, we use the following notation

moveU(U, `) =
{
U if ` /∈ U,
(U \ {`}) ∪ {`+ 1} if ` ∈ U,

moveD(D, `) =
{
D if `+ 1 /∈ D,
(D \ {`+ 1}) ∪ {`} if `+ 1 ∈ D.
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Algorithm 2 : (U,D)-permutree sorting
1 Function permutreeSort(π, U,D)

Input : a permutation π ∈ Sn and two disjoint subsets U and D of [n]
Output : a reduced word accepted by P(U,D), candidate reduced word for π

2 if ∃ ` ∈ [n− 1] such that ` and `+ 1 are reversed in π, and `+ 1 /∈ U and ` /∈ D then
3 return s` · permutreeSort(s` · π, moveU(U, `), moveD(D, `))
4 if ∃ ` ∈ [n− 1] such that ` and `+ 1 are reversed in π, and
5 (`+ 1 ∈ U and π([`+ 1]) = [`+ 1]) or (` ∈ D and π([`− 1]) = [`− 1]) then
6 return s` · permutreeSort(s` · π, moveU(U \ {`+ 1}, `), moveD(D \ {`}, `))
7 return ε

Example 4.2.11. Table 4.2, has the ({3}, {2})-permutree sorting of 3214, 1324 and 1342. In Table 4.3,
we show the ({2}, {4})-permutree sorting of 54213 and 15342. Each table contains the permutation πi,
the reduced word wi, the sets Ui andDi and the values of `i in use at each step of the algorithm together
with the value ki for which we need to check that π([ki]) = [ki]. A red cross signifies that this last
condition has failed. Figure 4.4 contains the corresponding automata P({3}, {2}) and P({2}, {4}).

3214

π1

ε

U1 D1

{2} 1

k1`1
·{3}

w1

3124 s1 {1} 2 3{3}
2134 s1 · s2 {1} 1 0∅
1234 s1 · s2 · s1

1324

π2

ε

U2 D2

{2} 2

`2
{3} 1, 3

k2w2

1342

π3 U3 D3

{2} 2

`3
{3} 1, 3

k3w3

ε

1234 s2

Table 4.2 – The ({3}, {2})-permutree sorting of 3214 (left), 1324 (top right), and 1342 (down
right).

54213

π4

ε

53214 s3

52314 s3 · s2
51324 s3 · s2 · s1
41325

31425

21435

12435

12345

s3 · s2 · s1 · s4
s3 · s2 · s1 · s4 · s3
s3 · s2 · s1 · s4 · s3 · s2
s3 · s2 · s1 · s4 · s3 · s2 · s1
s3 · s2 · s1 · s4 · s3 · s2 · s1 · s3

15342

π5

ε

w5 U5 D5

2

`5 k5
·{2}

15243 s2 ·3{3}
15234 s2 · s3 ·4{3}{4}
14235 s2 · s3 · s5 3{3}{5} 2

{4}
{4}

U4 D4 `4 k4
·{4}

w4

·
·
·
·
·

{3}
{2}

{4}
{4}
{4}

{3}
{3}

{3}

{1}

{2}

{2}

{1}
{1}
{1}
∅

3

2

1

4

3

2

1

3 4

0

Table 4.3 – The ({2}, {4})-permutree sorting of 54213 (left) and 15342 (right).
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Corollary 4.2.12. For any permutation π and disjoint subsets U,D of [2, n− 1], Algorithm 2 returns
a reduced word w accepted by P(U,D) with the property that w is a reduced word for π if and only
if π avoids jki for j ∈ U and kij for j ∈ D.

Proof. First notice that Algorithm 2 creates a reduced word following P(U,D). It begins prioritizing
healthy states in lines 2 by considering transpositions that transition to other healthy states in all
the U(j) or D(j) following Lemma 4.1.12. As we are in the product of said automata, this amounts to
updating ` to `+ 1 when ` ∈ U and `+ 1 to ` when `+ 1 ∈ D as in line 3. This repeats for as many
transitions as possible until we have to go to an ill state of at least one of the automata.

If there is `+1 ∈ U (resp. ` ∈ D) such that s` is a descent of π and π([`+1]) = [`+1] (resp. π([`−
1]) = [`− 1]), then by Theorem 4.1.19 (i) any reduced word for π is accepted by the automaton U(`)
(resp. D(`)). We can thus start with s` and forget about the automaton U(`) (resp. D(`)) which is
represented in lines 4, 5 and 6. Finally, if none of these options are possible, any reduced word for π
leads to a dead state in at least one of the automata, so that π is not (U,D)-sortable. We return the
empty reduced word in line 7 in such a case.

4.2.4 Generating Trees
As in Subsection 4.1.3, we can also obtain generating trees for the corresponding permutree minimal
permutations. Let ≺ be a priority order on {s1, . . . , sn−1}. Given a (U,D)-permutree minimal per-
mutation π ∈ Sn, let π(U, J,≺) be the ≺-lexicographic minimal reduced word for π that is accepted
by P(j) and

R(n,U,D,≺) :=
{
π(U,D,≺) : π ∈ Sn is (U,D)-permutree minimal

}
.

The proof given in Theorem 4.1.24 works as well for proving the following theorem, so we skip its
proof.

Theorem 4.2.13. The set R(n,U,D,≺) is closed by taking prefixes.

As before, Theorem 4.2.13 gives us a generating tree where the root is the empty reduced word and
the parent of a reduced word is obtained by deleting the last letter. Taking this tree as the sequence of
associated transpositions in the weak order, we obtain a generating tree on (U,D)-permutree minimal
permutations as a subgraph of the Hasse diagram of the weak order on Sn. Figure 4.5 shows all
possible trees for S4 and priority order s1 ≺ s2 ≺ s3.

4.3 Coxeter Sorting via Automata
Notice that in Section 4.2, the biggest our sets U and D could go without a permutation failing
to have a common reduced word accepted by all the automata was whenever U and D formed a
partition of [2, n− 1]. Recalling Remark 4.0.2 and Definition 2.4.38, we see that this case is precisely
when (U,D)-permutree congruences are Cambrian congruences in type A and the number of (U,D)-
permutree minimal elements is the Catalan number Cn. This section is devoted to explore this
connection with the definitions and technology developed in Subsection 2.4.6.
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Definition 4.3.1. Let c be a Coxeter element of (Sn, S). Uc and Dc are the partition of [2, n − 1]
where j ∈ Uc (resp. j ∈ Dc) if sj appears before (resp. after) sj−1 in c.

Remark 4.3.2. Another equivalent way of seeing the construction of Uc (resp. Dc) is that j ∈ Uc
(resp. j ∈ Dc) if c is accepted by U(j) but not by D(j) (resp. is accepted by D(j) but not by U(j)).

Coxeter sorting and (Uc, Dc)-permutree sorting are related by the following theorem.

Theorem 4.3.3. Let c be a Coxeter element and π ∈ Sn. The following statements are equivalent:

(i) π is c-sortable,

(ii) the c-sorting word π(c) is accepted by the automaton P(Uc, Dc),

(iii) there exists a reduced word for π accepted by the automaton P(Uc, Dc),

(iv) for each j ∈ {2, . . . , n − 1}, there exists a reduced word for π that is accepted by the automa-
ton U(j) if j ∈ Uc and D(j) if j ∈ Dc,

(v) π avoids jki for j ∈ Uc and kij for j ∈ Dc.

Theorem 4.2.3 and Corollary 4.2.4 give equivalences (iii) ⇐⇒ (iv) ⇐⇒ (v). In the following
lemmas we show the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii). As a general assumption for the rest of
this section let c be a Coxeter element and π ∈ Sn. We begin by showing (i) ⇐⇒ (ii).

Lemma 4.3.4. If π is c-sortable, its c-sorting word π(c) is accepted by P(Uc, Dc).

Proof. Let π(c) be the c-sorting word. It is enough to see that π(c) is accepted by U(j) for j ∈ Uc
and D(j) for j ∈ Dc. We proceed to show it for U(j) since the case for D(j) is similar. We have two
possible cases:

• if π(c) does not contain sj , then π(c) either remains in the first healthy state of U(j) or ends in
the first ill state of U(j).

• if π(c) does contain sj , by Lemma 2.4.48 (1) we have that sj appears before sj−1 in π(c), and π(c)
moves onto the second healthy state of U(j). Notice that because of the recursive construction
of U(j), π(c) can now only end in a dead state if it contains as a reduced subword slV lslsl+1
where V l is a reduced word with transpositions in S \ {sl, sl+1} such that sl−1 ∈ V l. Such
containment is impossible due to Lemma 2.4.48 (2).

Thus, in both cases π(c) is accepted by U(j).

Lemma 4.3.5. If the c-sorting word π(c) is accepted by P(Uc, Dc), then π is c-sortable.

Proof. Assume that π is not c-sortable and let us find an automaton that rejects π(c) between the U(j)
and D(j) that define P(Uc, Dc). To do this we follow an induction on the length of π and the size of c.

Consider s` to be the first letter of c and write c = s` · d. As s` appears before both s`−1 and s`+1
we have that ` ∈ Uc and ` + 1 ∈ Dc. Notice that s` transitions from the initial state to the second
healthy state of both U(`) and D(` + 1) and stays in the initial state of all U(j) for j ∈ Uc \ {`}
and D(j) for j ∈ Dc \ {`+ 1}. We now have two possible cases:
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• if π reverses ` and `+ 1 and can be written as π = s` · τ . By Lemma 2.4.47 we have that the c
sorting word factorizes as π(c) = s` · τ(d · s`) and τ is not d · s`-sortable. By our induction
we have that τ(d · s`) is a reduced word rejected by an automaton between U(j) for j ∈ Ud·s`
and D(j) for j ∈ Dd·s` . Notice that Ud·s` = Uc∆{`, `+ 1} and Dd·s` = Dc∆{`, `+ 1}. Because of
this, depending on the value for j for which the automaton rejects τ(d · s`) either Lemma 4.1.8
or Lemma 4.1.12 ensures that π(c) = s` · τ(d · s`) is also rejected by said automaton.

• if π does not reverse ` and `+1 then π not being c sortable is equivalent to π not being d-sortable
in W〈s`〉. By induction on the size of c, π(d) is not accepted by P(Ud, Dd). Since π(c) = π(d) we
have that π(c) is rejected by P(Uc, Dc). We finish as Ud ⊆ Uc and Dd ⊆ Dc.

Moving to (ii) ⇐⇒ (iii) notice that (ii) ⇒ (iii) follows immediately from the fact that π(c) is
always a reduced word for π. The opposite direction is a bit more involved.

Lemma 4.3.6. If π possesses a reduced word accepted by P(Uc, Dc), then its c-sorting word π(c) is
accepted by P(Uc, Dc).

Proof. We proceed by induction on the length of π and the size of c. As before, consider s` to be the
first letter of c and write c = s` · d. As s` appears before both s`−1 and s`+1 we have that ` ∈ Uc
and `+1 ∈ Dc. Notice that s` transitions from the initial state to the second healthy state of both U(`)
and D(` + 1) and stays in the initial state of all U(j) for j ∈ Uc \ {`} and D(j) for j ∈ Dc \ {`+ 1}.
We now have two possible cases:

• if π reverses ` and `+1 and can be written as π = s` ·τ . Notice that the reduced word of π that is
accepted by P(Uc, Dc) might not be related with τ . Still, since π has an accepted reduced word
by P(Uc, Dc), we have that π avoids the patterns corresponding to the elements of U and D.
With this in hand, Theorem 4.1.17 tells us that π possesses a reduced word of the form w = s` ·v
such that w is accepted by U(j) for j ∈ Uc and D(j) for j ∈ Dc. Notice that in our context
the use of the Theorem 4.1.17 fails for U(` + 1) and D(`) but as ` ∈ Uc and ` + 1 ∈ Dc these
automata do not affect us.
At this point Lemma 4.1.8 (resp. Lemma 4.1.12) gives us that τ possesses a reduced word
accepted by U(j) for j /∈ {`, `+1} (resp. U(j+1)). This coincides with the fact that sj−1 and sj
have not changed order between (resp. s` appears now after sl−1 and sl+11 after) c = s` ·d to d ·`.
Thus, by induction we have that τ(d · s`) is accepted by P(Ud·s` , Dd·s`). Using Lemma 2.4.47
gives us that π(c) = s` · τ(d · s`) is accepted by P(Uc, Dc).

• if π does not reverse ` and `+1. We claim that in this case π does not have s` its reduced words.
Notice that this is equivalent to showing that π([`]) = [`] and π([n]\ [`]) = [n]\ [`]. Suppose that
the accepted reduced word w by P(Uc, Dc) contains s`. As ` ∈ Uc (resp. `+ 1 ∈ Dc) and π does
not reverse ` and `+1, the fact that w is accepted by U(`) (resp. D(`+1)) means that w has s`+1
followed eventually by s` before any s`−1 (resp. s`−1 followed eventually by s` before any s`+1).
This implies that π contains the pattern k` for some ` < k (resp. (` + 1)i for some i < ` + 1).
As ` and `+ 1 are not reversed, π contains k`(`+ 1)i contradicting twice Theorem 4.1.14, and
we can work as in W〈s`〉 via induction.
Notice that the automata corresponding to d are all the automata of c without the transitions
having s` and thus any reduced word accepted or rejected for j ∈ Ud (resp. j ∈ Dd) is also

89



Chapter 4. Permutree Sorting

accepted or rejected for j ∈ Uc (resp. j ∈ Uc). Notice as well that this also aligns with `, `+1 /∈ Ud
(resp. `, ` + 1 /∈ Dd). Since π does not use s` in any reduced word, the reduced word accepted
by P(Uc, Dc) is also accepted by P(Ud, Dd). By induction, we have that π(d) = π(c) is accepted
by P(Ud, Dd) and thus also by all U(j) for j ∈ Uc \ {`} and D(j) for j ∈ Dc \ {`+ 1}. As π(c)
also does not use any s`, we have that π(c) is accepted in either the first healthy or ill state of
both U(`) and D(`+ 1). We conclude that π(c) is accepted by P(Uc, Dc).

We move to give some remarks about nuances of c-sortability and (Uc, Dc)-permutree sorting.

Remark 4.3.7. The fact that a permutation π avoids jki (resp. kij) for a given j, does not assure
that there exists a Coxeter element c for which π is c-sortable and j ∈ Uc (resp. j ∈ Dc). For example,
let π := 41352 that avoids 2ki and ki4. Notice that π is not sortable since it contains both 3ki and ki3
via the respective subwords 352 and 413.

Remark 4.3.8. Lemma 4.3.4 fails when a permutation π is not c-sortable as there might exist j ∈ Uc
(resp. j ∈ Dc) for which the c-sorting word π(c) is not accepted by U(j) (resp. D(j)) even if π avoids jki
(resp. kij). For example, take c = s2 ·s1 ·s3 and π = 4213 = s3 ·s1 ·s2 ·s1 = s3 ·s2 ·s1 ·s2 = s1 ·s3 ·s2 ·s1.
Then 2 ∈ Uc, and the c-sorting word π(c) = s1 · s3 · s2 · s1 is rejected by U(2) while s3 · s2 · s1 · s2 is
accepted by U(2).

Remark 4.3.9. Notice that in the definition of c-sorting, the infinite word c∞ is a sorting network as
in [Knu73]. That is, Our algorithm rely on a series of transpositions to be applied at the appropriate
time. With this in mind and taking into account Theorem 4.3.3, it is important to notice that
Algorithm 2 is not a sorting network. The order on which the values of ` are chosen depending on the
state of the automata that is being visited and the permutation itself. This demands the following
perspective.

Perspective 4.3.10. Let U and D be disjoint subsets that do not cover [2, n − 1]. Is it possible to
find a word c̃ replacing c∞ such that checking for π(c̃) is enough to verify if π is accepted by P(U,D)?

We finish with a remark on both positive and negative cases for Perspective 4.3.10.

Remark 4.3.11. Consider the case n = 5, U = {2}, and D = {4}. In this case one can check via
computer exploration that no reduced word c̃ of the maximal permutation 54321 can be used as a
sorting network. This implies that for all general choices of c̃, there exists a permutation π which is
accepted by P(U,D) although its reduced word π(c̃) is rejected. The healthy states of P({2}, {4}) are
shown in Figure 4.4. In this case the problem lies in that certain accepted reduced words can only
start with either s2 or s3. For example, for 54213 as shown in Example 4.2.11 all accepted reduced
words start with s3 whereas for some other permutations such as 35421, all accepted reduced words
start with s2. This gives us no possible choice for c̃.

Still the answer is positive in the Cambrian case with the c-sorting word when U and D form a
partition of {2, . . . , n− 1} or when |U |+ |D| = 1 and we have a single automaton. In this later case, c̃
is constructed by reading the healthy states of the automaton from left to right, adding at each state
the word (si1 · · · sik)ksj where si1 , . . . , sik are the loops and sj is the unique transition going to the
next healthy state. This process gives a prefix that can be extended in any way to obtain a proper
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sorting word c̃ (that is, a reduced word of w0). With this construction, if U = {2}, we obtain the
prefix s3 · s2 · s1 · s3 and indeed s3 · s2 · s1 · s3 · s2 · s1 acts as a sorting network equivalent to ({2}, ∅)-
permutree sorting. This seems to extend to all cases where, at each healthy state of the P(U,D), the
choices for the healthy transitions commute like for n = 5, U = {4} and D = {2} (see Figure 4.4). In
this case the word s1 ·s2 ·s4 ·s3 ·s2 ·s1 ·s4 ·s3 ·s2 gives a proper sorting network for ({4}, {2})-permutree
sorting.

4.4 Permutree Sorting other Infinite Families
Based on Chapter 4.3 and [HLT11] and [Def22] we strongly believe that the results of permutree sorting
can be extended from type A to the more general case of Coxeter Groups. In this section we present
some observations on recognizing minimal elements of permutree congruences through automata in
other Coxeter group based on computer exploration using SageMath [Sag23]. We first propose some
automata for Types B and D and then present some definitions and directions that seem promising.

4.4.1 Type B
For this subsection consider the Coxeter system of type B given by the group of signed permuta-
tions (SB

n , S
B). For this case we have the general definition of automata as follows.

Definition 4.4.1. Consider U = {j} (resp. D = {j}) for some j ∈ [2, n − 1] and the set of genera-
tors SB as an alphabet. We define the automaton U(j) (resp. D(j)) recursively following Figure 4.6
with automata D(0) defined for consistency. Our automata are complete with all missing transitions
being loops. Figure 4.7 shows the complete automata U(j) and D(j).

start
sj

sj−1

sj

UB(j + 1)

start

UB(j) :=

UB(n) :=

sn−1

sn

sn
DB(n)

start
sj−1

DB(j − 1)

sj−1

sj

start

DB(j) :=

DB(0) :=

s1

Figure 4.6 – The automata UB(j) (left) and DB(j) (right) defined recursively.
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· · ·
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sn−1

sn−1

UB(j) :=

DB(j) :=

Figure 4.7 – The complete automata UB(j) and DB(j).

Remark 4.4.2. Like in Remark 4.1.4, the automata UB(j) and DB(j) can be built via a walk in
the Coxeter graph in the opposite direction of the defining orientation with a slight twist. The walk
corresponding to DB(j) ends at s1 similarly as in type A while the walk corresponding to UB(j) ends
at sn which has an edge with label 4 meaning it must go back and travel the graph to the other end
making DB(j) appear. As in other apparitions of Type B, this reflects idea that the Coxeter group Bn
can be thought as folding of the Coxeter groups A2n along the central symmetry of its Coxeter diagram
(see [HL07]).

Following in Sections 4.1 and 4.2 we have verified computationally up to n = 6 that these automata
correctly sort (U,D)B-permutree minimal elements for all possible combinations of U,D ⊆ [2, n − 1]
such that U ∩ D = ∅. Moreover, the sets of reduced words of accepted elements by these automata
and their products also form trees inside the weak order of SB

n . In the case that U and D form a
partition of [2, n−1] we correctly recover the fact that there are

(2n
n

)
elements that are (U,D)B-minimal

permutree, that is, the B-Catalan number.

4.4.2 Type D
For type D we do not possess currently even a candidate definition for the general construction of
the automata UD(j) and DD(j). In certain cases of a single orientation in the Coxeter diagram of Dn

we have found an automaton that recognizes (U,D)D-permutree minimal elements. To construct it
seems to be useful to consider the guiding ideas of Remarks 4.1.4 and 4.4.2 by considering a walk
on the Coxeter graph with the twist that a fork of the walk at s2 implies a forking in the spine of
the automata and that walks must bounce at least once. This forking of the spine is equivalent to
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considering several automata and taking their product. We choose this representation for our figures
of these automata.

For the case of D4 we have a family of automata that have been computationally checked to
recognize permutree minimal permutations in the corresponding congruences. Figure 4.8 shows the
automata for the orientations 2→ 0 and 0→ 2 for D4. As D4 is symmetric via rotations, the automata
for the other single orientations are obtained by rotating the labels of these diagrams according to the
desired orientation around the center vertex corresponding to s2. For n = 5 certain orientations still
elude us and for n ≥ 6 we have no further indications.

start
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s2

s3

s4

s2 s3

s1 s2

s2

s1 s2

s4

s4
start

s2

s2

s1

s4

s2 s1

s3 s2

s2

s3 s2

s4

s4

2→ 4 :

4→ 2 :

×

start
s4

s4s2

s4 s2

s2 s1

s1

s2

s3
start

s4

s4s2

s4 s2

s2 s3

s3

s2

s1

×

Figure 4.8 – The automata corresponding to the orientations 0→ 2 and 2→ 0 in the Coxeter
diagram of D4.

We finish this chapter by providing certain definitions that seem to have a hand in determining
automata for general Coxeter groups.

4.4.3 Ideas and Perspectives
Taking inspiration from [HLT11] and their work on c-singletons, we propose the following definitions.

Definition 4.4.3. Let (W,S) be a Coxeter group of rank n and ≡δ with δ ∈ { , , , }n − 1 the
permutree equivalence class corresponding to the multi-orientation of the Coxeter graph. Consider an
element w ∈W . We say that w is

• a δ-singleton if w is the only element in its permutree equivalence class,

• a δ-accepter if for all w ≤ u, we have that u is a δ-singleton,

• a δ-minimal accepter (abbreviated δ-maccr) if w is an accepter and there is no s ∈ S such
that w l w · s and w · s is an accepter,

• a δ-smaccr if w is a maccr and has the shortest length across all maccrs.
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The use of δ in these definitions serves only to recall that they depend on the congruence ≡δ
similar to how c-singletons depend on the congruence ≡c. We do not propose by this notation that δ
describes a reduced word of w0 from which the permutree sortable elements can be derived, as it is
the case for the Coxeter element c. We have seen in Remark 4.3.11 that such reduced word might not
always exist for the δ case.

Based on computational evidence we propose the following conjectures. Let ≡δ be any permutree
congruence of a Coxeter group W .

Conjecture 4.4.4. There exists a unique δ-smaccr in the left weak order of W . Moreover, the δ-
smaccr is the join of all the smaccrs coming from single orientations.

Conjecture 4.4.5. For each single orientation associated to δ, each reduced word of the δ-smaccr
defines the start of the spine of an automaton such that the product of these automata recognizes the
permutree minimal elements of this orientation.

Furthermore, the product of these automata for each single orientation associated to δ is an
automaton that recognizes δ-permutree minimal elements.

Conjecture 4.4.6. Let x ∈W be a δ-smaccr. For each δ-maccr y ∈W there exists reduced words u
and v of x and y such that u is a suffix of v. That is, the δ-smaccr is the smallest δ-maccr in the left
weak order of W .

Given a congruence ≡δ, the reduced words of the δ-smaccr seem to be good candidates from which
to start defining automata whose product recognizes the corresponding δ-permutree minimal elements.
Example 4.4.8 shows this for an orientation in H3.

Example 4.4.7. In D4 the smaccr of the orientation for 2 → 4 (resp. 4 → 2) has as set of re-
duced words {s2s3s1s2, s2s1s3s2} (resp. {s4s2s1s3, s4s2s3s1}). The spines of the automata shown in
Figure 4.8 start with these reduced words.

Example 4.4.8. In H3 the smaccr of the orientation 2 → 3 has as set of reduced words the
pair {s3s2s1s3s2s3s2, s3s2s3s1s2s3s2}. The spines of the automata shown in Figure 4.9 are formed
with these reduced words plus a transition s1.

Remark 4.4.9. Let δ denote a permutree congruence of a Coxeter groupW corresponding to a single
orientation in the Coxeter graph. We have verified the existence of a unique δ-smaccr for the following
Coxeter groups. We list them together with the amount of reduced words they have in each case.

• In An (n ≤ 5) it has 1 reduced word.
• In Bn (n ≤ 4) it has 1 reduced word.
• In D4 it has 2 reduced words.
• In D5 it can have anywhere between 2, 5, 46, 100 reduced words.
• In H3 it has 1 reduced word except for the orientation 1→ 2 where it has 2.
• In F4 it has 2 reduced words except for any orientation of the middle edge, in which case it has

12.
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Figure 4.9 – A single orientation of H3 and a product of automata that recognizes the minimal
elements.
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Chapter 5
Flow Polytopes and Tropical Geometry

In this chapter we present the preliminaries of flows on graphs and tropical geometry needed for
our work on Conjecture 2.5.12. Each section consists of the main tools known in the corresponding
literature together with certain refinements appearing in [GMP+23a].

5.1 Flows on Graphs
This section consists of the basic notions of the combinatorics and geometry of flows on graphs. We
base our presentation of these topics mainly on [MM19] and [MMS19]. In what follows, all graphs are
connected loopless digraphs.

5.1.1 Graphs and Flows
Definition 5.1.1. Let G = (V,E) be a graph with vertex set V = {v0, . . . , vn}, and a multiset of
edges E where each edge (vi, vj) ∈ E is oriented vi → vj if i < j. We respectively denote by Ii and
Oi the set of incoming edges and outgoing edges of the vertex vi.

A netflow is a vector x = (x0, . . . , xn) ∈ Zn+1 such that
∑n
i=0 xi = 0. Given a netflow a =

(a0, . . . , an−1,−
∑n−1
i=0 ai) with ai ∈ Z≥0, a a-flow of G is a function f : E → R≥0 such that∑

e∈Ii
f(e) + ai =

∑
e∈Oi

f(e) (5.1)

for all i ∈ [1, n − 1]. In particular, if f(e) ∈ Z≥0 for all e ∈ G, then f is called an integer flow of G.
We also call a function f : E → R≥0 that satisfies Equation 5.1.1 an admissible flow. The support of
a flow f is supp(f) = {e ∈ E : f(e) 6= 0}.

See Figure 5.1 for an example of flows on a graph.

Remark 5.1.2. Due to our definition of flows, the netflows that we consider always have a unique
sink being vertex vn. As well, whenever we think of flows and netflows, our graph G is assumed to have
a non-zero amount of incoming and outgoing edges for the vertices {v1, . . . , vn−1}. This assumption
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is out of simplicity and not a requirement. If we had such a vertex with no incoming (resp. outgoing)
edges, any flow corresponding to an edge in Ii (resp. Oi) would be zero. Therefore, we can always
assume we are working modulo such vertices.

1.5 3 2 3

2 2 2 2110.51.5

0.5 0

3 1 0 1 −5 3 1 0 1 −5v0 v1 v2 v3 v4

Figure 5.1 – The zigzag graph Zig4 according to our notation and a pair of (3, 1, 0, 1,−5)-flows
on it. Only the one in the right is an integer flow.

Remark 5.1.3. For the reader who is not fond of working with graphs having multisets of edges, we
remark that for our graphs, studying the multiedge case is equivalent to the single edges. Indeed, for
a a-flow f and a multiedge (vi, vj) of multiplicity k one can remove k − 1 multiplicities and replace
them by the family of edges (vi−l, vi−l+1) and (vi−l, vj) for l ∈ [1, k − 1] while shifting the indices of
the vertices {vz}z∈[i−1] accordingly. This transforms a to a netflow a∗ by passing the netflow of vi
to vi−(k−1), assigning 0 netflow to all vertices {vi−l}l∈0,k and all others remain the same. In this
sense f is transformed to an a∗-flow f∗ where f∗((vi−l, vj)) = f((vi, vj)l) and f∗((vi−l, vi−(l−1))) =
f∗((vi−(l−1), vi−(l−2)))+f∗((vi−(l−1), vj)) and all other edges e remain their original flow. See Figure 5.2
for an example of this. This is a particular case of [GHMY21, Cor.2.13].

10

21

0

36

4

100

3
22

21

10 −10

3
4

1

⇒

Figure 5.2 – A multiedged graph with a flow and its equivalent flow on a simple graph.

5.1.2 Flow Polytopes
Notice that in Definition 5.1.1 the admissible flows can be considered as points in R|E|. This begs for
the following geometric definition.

Definition 5.1.4. Let G be a directed multigraph on n vertices withm edges and consider a netflow a.
Denote by XG the multiset of vectors ei − ej for each edge (vi, vj) in G where i < j and by M the
matrix with columns the vectors in XG. The flow polytope of G with netflow a is

FG(a) := {x ∈ Rm : Mx = a and xi ≥ 0 for all i ∈ [m]}.
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Since the points in this polytope correspond to nonnegative real flows on the edges of G, we usually
use the following notation for describing the flow polytope

FG(a) =
{(
f(e)

)
e∈E(G) : f is a a-flow of G

}
⊂ Rm.

We denote by FZG(a) the set of integer a-flows of G. Between all possible flows, the flows d :=
(0, d1, . . . , dn−1,−

∑n−1
i=1 di) where di := indegi(G) − 1 and i := e0 − en = (1, 0, . . . , 0,−1) are of

particular interest to us. Since any i-flow of G corresponds to a route R of G, we denote such flow by

the indicator function 1R where 1R(e) =
{

1 if e ∈ R,
0 otherwise .

Example 5.1.5. Some examples of polytopes that are integrally equivalent to FG(i) include:

• the simplex ∆n−1 when G is the graph with vertex set {v0, v1} and the multiedge (v0, v1) with
multiplicity n,

• the cube Cuben−1 when G is the graph with vertex set {v0, . . . , vn} and each multiedge (vi, vi+1)
for i ∈ [0, n− 1] has multiplicity 2,

• the type A Chan-Robbins-Yuen polytope (CRY (n) [CRY98], [CR99]) when G is the complete
graph Kn+1,

• all order polytopes of strongly planar posets. We refer the reader to [MMS19, §3.3] for the
construction of the corresponding graph.

Figure 5.3 contains instances of each of these graphs.

1 0 −10 0

1 0 0 −1

1 0 −10 0

1 −1

Figure 5.3 – The graphs G whose respective flow polytopes FG(i) are respectively integrally
equivalent to ∆4 (top left), Cube2 (top right), CRY (4) (bottom left), and O(P ) where P is the
chain on 3 elements (bottom right).

Flow polytopes have plenty of interesting properties. Here we present just a few that are pertinent
for our work. For a deeper dive we recommend [GS78a], [RH70], [FRD71], and [Hil03]. Before that,
we introduce some notation on paths within our graphs.
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Chapter 5. Flow Polytopes and Tropical Geometry

Definition 5.1.6. A path of a graph G is a connected sequence of edges. That is, a sequence of the
form ((vk0 , vk1), (vk1 , vk2), . . . , (vkl , vKk+1)), with k0 < k1 < k2 < · · · < kl < kl+1. A maximal path
of G is said to be a route of G.

Remark 5.1.7. For the context of this thesis and due to the specifications of Definition 5.1.1 all
routes of G start at the source v0 and end at the unique sink vn.

Proposition 5.1.8 ([Hil03, Lem.2.1]). The flow polytope FG(a) is the convex polytope

FG(a) = conv
(
(f(e))e∈E(G) : supp(f) contains no (undirected) cycles

)
.

In the particular case of the netflow i one obtains that FG(i) is a 0/1-polytope in the following
way.

Proposition 5.1.9 ([GS78a, Cor.3.1]).

FG(i) = conv
(
(1R(e))e∈E(G) : R is a route of G

)
.

See Figure 5.4 for an example.

1 0 0 −1

Figure 5.4 – A graph G and its flow polytope FG(i). Each vertex of the flow polytope is labeled
by the route that it corresponds to. Figure adapted from [MMS19].

Proposition 5.1.10 ([BV08, §.1.1]). The flow polytope FG(a) has dimension |E| − |V |+ 1.

Our flow polytopes have a particular connection with the root systems of Coxeter groups when
describing their volumes and Ehrhart functions. We present it here making use of the following
definition.

Definition 5.1.11 ([MM19, Eq.2.3]). The Kostant partition function KG : Zn+1 → Z is the function

KG(a) :=

∣∣∣∣∣∣
(bi)i∈[m] :

∑
i∈[m]

bivi = a and bi ∈ Z≥0


∣∣∣∣∣∣

where m := |E| and {v1, . . . ,vm} is the multiset of vectors corresponding to the multiset of edges
of G under the map sending an edge (vi, vj) to the vector ei − ej. Equivalently, the Kostant partition
function counts the number of ways to express a as a linear combination of positive type A roots with
coefficients in N.
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Proposition 5.1.12 ([Pos14],[Sta00],[BV08]). Let G be a graph on vertices {v0, . . . , vn} and de-
note di = indegi(G)− 1. The normalized volume of the flow polytope FG(i) can be expressed as

vol
(
FG(i)

)
= KG

(
0, d1, . . . , dn−1,−

∑
di
)
.

Example 5.1.13. Taking G as the graph in Figure 5.4, we have that vol(FG(i)) = 2. This coincides
with the fact that KG(0, 1, 1,−2) = 2 as (0, 1, 1− 2) can be expressed either as (e2 − e4) + (e3 − e4)
or (e2 − e3) + 2(e3 − e4).

Proposition 5.1.14 ([Sta00]). The amount of integer points in the FG(i) is KG(i). Moreover, the
Ehrhart polynomial of the flow polytope FG(i) is given by LFG(i)(t) = KG(t, 0, . . . , 0,−t).

Although Propositions 5.1.12 is defined for the basic netflow i = (1, 0, . . . , 0,−1), the general case
can be seen to decompose nicely using the Kostant partition formula.

Definition 5.1.15. Let b and c be two weak compositions of an integer N > 0. We say that b
dominates c if

∑k
i=1 bi ≥

∑k
i=1 ci. We denote the dominance order by b � c. Let

((m
k

))
=
(m+k−1

k

)
be

the number of multisets of [m] of size k.

Theorem 5.1.16 ([BV08, Thm.39]). Consider a graph G with vertices {v0, . . . , vn} and a netflow a ∈
Zn+1. Let dj = indegj(G) − 1 (resp. oj = outdegj(G) − 1) and m := |E|. The volume and Kostant
partition functions of FG(a) decompose as

vol
(
FG(a)

)
=
∑

j

(
m− n

j0, . . . , jn−1

)
aj00 · · · a

jn−1
n−1 KG(j0 − o0, . . . , jn−1 − on−1, 0),

KFG(a) =
∑

j

(
a0 + o0
j1

)
· · ·
(
an−1 + on−1

jn−1

)
KG(j0 − o0, . . . , jn−1 − on−1, 0)

=
∑

j

((
a0 − d0
j0

))
· · ·
((
an−1 − dn−1

jn−1

))
KG(j0 − o0, . . . , jn−1 − on−1, 0)

where the sums go over all weak compositions j ofm−n such that
∑k
i=0 ji ≥

∑k
i=0 oi for all i ∈ [0, n−1].

These are known as the Baldoni–Vergne–Lidskii formulas.

Remark 5.1.17. The Baldoni–Vergne–Lidskii formulas describe a subdivision technique on FG(a)
(see Subsection 5.1.4). In [MM19] it was shown that the composition j of each summand represents
a type of cell of said subdivision. In this way the Kostant partition function describes the number of
times that type of cell appears in the subdivision and the binomial coefficients give its volume.

Example 5.1.18. Some interesting volumes of flow polytopes include:

• vol
(
FKn+1(i)

)
=
∏n−2
i=1 Ci where Ci is the i-th Catalan number.

• vol
(
FZign+1(i)

)
= En−1 where En is the number of alternating permutations in Sn.

• vol
(
FCarn+1(i)

)
= Cn−2 where Carn+1 is the caracol graph and Cn−2 is a Catalan number.
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Chapter 5. Flow Polytopes and Tropical Geometry

The following is a geometrical result from which the geometrical reader is invited to derive exten-
sions of Propositions 5.1.12 and 5.1.14 to any netflow a.

Proposition 5.1.19 ([BV08, §3.4],[MM19, Prop.2.1]). Let G be a graph on {v0, . . . , vn} and a ∈ Zn+1

a netflow. Then

FG(a) =
n−1∑
i=0

aiFG(ei − en).

We finish with a crucial relation between flow polytopes and Cayley embeddings.

Definition 5.1.20. Let G be a graph on {v0, . . . , vn}. The graph G∗ is the graph obtained from G

by adding a vertex v∗ and edges (v∗, vi) for i ∈ [0, n− 1]. See Figure 5.5 for an example.

Proposition 5.1.21 ([MM19, Prop.7.2]). The flow polytope FG∗(e0 − en+1) is the Cayley embed-
ding C

(
FG(e0 − en), . . . ,FG(en−1 − en)

)
.

G∗ G

a0 a1 a2 −(a0 + a1 + a2)

Figure 5.5 – The construction of the graph G∗ whose flow polytope is the Cayley embedding of
flow polytopes from G. Figure based on [MM19].

Proposition 5.1.22. Let G be a graph on {v0, . . . , vn}. The flow polytope FG(e0−en) is the Cayley
embedding of the flow polytopes FG(ei − en) for the i ∈ [n] such that G has an edge (v0, vi).

We now move on to the main property of flow polytopes that is of use for our work which is how
they can be subdivided into smaller polytopes. We present the techniques of two such subdivisions
coming from [DKK12] and [Sta00].

5.1.3 DKK Triangulations
For the first subdivision let us define a way to compare routes by inducing a partial order on routes
from an order on in-coming and out-going edges of the vertices of G. We base our presentation
on [DKK12].

Definition 5.1.23. Let G be a graph on {v0, . . . , vn}. A framing of G is a choice of linear orders �Ii
and �Oi on the sets of incoming and outgoing edges for each vertex vi where i ∈ [n− 1]. When G is
endowed with such a framing �, we say that G is framed. For an edge e = (vi, vj) we denote by I(e)
(resp. O(e)) the position of the edge e in the framing order �Ii (resp. �Oi).
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5.1. Flows on Graphs

Definition 5.1.24. Let P,Q be two routes of G that contain vertices vi and vj . We denote by Pvi
the prefix of P that ends at vi, viP the suffix of P that starts at vi and viPvj the subroute of P that
starts at vi and ends at vj .

Let ≺ be a framing of G and consider viP, viQ (res. Pvi, Qvi) a pair of paths between vi and vn
(resp. between v0 and vi) which coincide from vi until a minimal vertex vj (resp. from a maximal
vertex vj until vi) (possibly i = j). Denote by ep and eQ the corresponding edges in P and Q with
starting (resp. ending) vertex vj . We say that viP � viQ if eP �Oj eQ (resp. Pvi � Qvi if eP �Ij eQ).

Definition 5.1.25. Consider G to be a graph with framing ≺. Let P and Q be routes of G that
share a subroute between the vertices vi and vj . We say that P and Q are conflicting routes at [vi, vj ]
(possibly vi = vj) if the initial paths Pvi and Qvi are ordered different relative to the paths viP
and viQ with respect to ≺. In the case that P and Q have no conflict in any common subroute we
say that P and Q are coherent routes.

See Figure 5.6 for an example of coherent and conflicting routes on a framed graph.

vi vj· · ·

1
1Q

P 0
0

vi vj· · ·

1
1Q

P 0
0

Figure 5.6 – A framed graph with a pair of coherent (left) and conflicting (right) routes. Only 1
route is bolded.

Remark 5.1.26. Notice that one could define framing orders for v0 (resp. vn) but since this vertex
has no incoming (resp. outgoing) edges, checking for coherence is trivially true and thus not necessary.
For completeness, we say that O1(e) = 0 (resp. In(e) = 0) for any starting (resp. final) edge.

Definition 5.1.27. Let (G,�) be a framed graph. We call a set of mutually coherent routes of G
a clique. We denote by Cliques(G,�) the set of cliques of (G,�), and MaxCliques(G,�) the set of
maximal collection of cliques under inclusion. If a route P is coherent with all other routes of G we
say that P is exceptional.

Remark 5.1.28. Notice that the coherence relation between routes is reflexive and symmetric but
not transitive. Take all the routes given in Figure 5.7 for a particular framed graph. The maximal
cliques in this case are {R1, R2, R3, R5} and {R1, R2, R4, R5}. Notice that although R1 is coherent with
both R3 and R4, they are not coherent as they have a conflict in the inner vertex. The routes R1, R2,
and R5 are all exceptional routes.

Definition 5.1.29. Given the flow polytope FG(i) and a clique C ∈ Cliques(G,�), we define the
simplex ∆C corresponding to C as

∆C = conv
((
1R(e)

)
e∈E : R is a route in C

)
.

Proposition 5.1.30 ([DKK12, Thm.1 & 2]). Given a graph G with framing �, the set of sim-
plices {∆C : C ∈ MaxCliques(G,�)} form a regular triangulation of FG(i). We refer to this triangu-
lation as the DKK triangulation and denote it by TriangDKK(G,�).
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0

1

0

1
R1 =

0

1

0

1
R3 =

0

1

0

1
R2 =

0

1

0

1
R4 =

0

1

0

1
R5 =

Figure 5.7 – All possible routes (bolded in blue) of a framed graph.

For the regularity of TriangDKK(G,�), the authors in [DKK12] gave the following condition for a
height function to be admissible where P +Q denotes the union of the edges of the routes P and Q.

Proposition 5.1.31 ([DKK12, Lem.2]). Let (G,�) be a framed graph. A function h from the routes
of G to R is an admissible height function of TriangDKK(G,�) if for any two non-coherent routes P
and Q there exist routes P ′ and Q′ such that P +Q = P ′ +Q′ and

h(P ) + h(Q) > h(P ′) + h(Q′). (5.2)

We refine the condition on the non-coherence to make it necessary and sufficient. For that we need
the following definition.

Definition 5.1.32. Let (G,�) be a framed graph and P,Q a pair of conflicting routes at the sub-
routes [vi1 , v′i1 ], . . . , [vik , v′ik ], where i1 ≤ i′1 < i2 ≤ i′2 . . . < ik ≤ i′k. We call the resolvents of P and Q
the paths P ′ and Q′ defined as

P ′ := Pvi1Qvi2Pvi3 · · · ,
Q′ := Qvi1Pvi2Qvi3 · · ·

where Pvi1Qvi2Pvi3 · · · denotes the concatenation of the subroutes Pvi1 , vi1Qvi2 , vi2Pvi3 , . . . finishing
with vikP or vikQ depending on the parity of k.

We say that P and Q are in minimal conflict if they are in conflict in exactly one subroute [vi, vj ]
and the edges of P and Q that end at vi (resp. start at vj) are adjacent for the total order �Ii
(resp. �Oj ).

See Figure 5.8 for an example of the resolvents of a minimal conflict.

Q
P

0

1

0

1 P ′
Q′ 0

1

0

1

Figure 5.8 – Two routes with a minimal conflict (left) and their resolvents (right). Only 1 route
is bolded.

Lemma 5.1.33 ([GMP+23a, Lem.5.4]). Let (G,�) be a framed graph. A function h from the routes
of G to R is an admissible height function of TriangDKK(G,�) if and only if for any two non-coherent
routes P and Q with resolvents P ′ and Q′ we have

h(P ) + h(Q) > h(P ′) + h(Q′). (5.3)
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Proof. The proof of Proposition 5.1.31 works the same when P ′ and Q′ are the resolvents of P and Q as
the resolvents are always coherent not only between themselves but also with P and Q. We thus omit
this direction. Suppose that h is an admissible height function for TriangDKK(G,�) and consider P
and Q two non-coherent routes with resolvents P ′ and Q′. As P ′ and Q′ are coherent, they are
part of at least one clique and p′ = (1P ′(e))e∈E and q′ = (1Q′(e))e∈E are the vertices of an edge
of TriangDKK(G,�). Letting p and q be the corresponding points to the routes P and Q, we have
that the point (c) = 1

2(p′+ q′) = 1
2(p + q) is in the edge [p′,q′]. As this edge must be lifted to a lower

face of the lift of FG(i) via the admissible function h we have that h(P ) + h(Q) > h(P ′) + h(Q′).

Using minimal conflicts we can make this statement stronger.

Lemma 5.1.34 ([GMP+23a, Lem.5.5]). Let (G,�) be a framed graph. A function h from the routes
of G to R is an admissible height function of TriangDKK(G,�) if and only if for any two non-coherent
routes P and Q in minimal conflict with resolvents P ′ and Q′ we have

h(P ) + h(Q) > h(P ′) + h(Q′). (5.4)

Proof. Let h be a function from the routes of G to R such that for any minimal conflict between two
routes P and Q with resolvents P ′ and Q′, we have h(P )+h(Q) > h(P ′)+h(Q′). From Lemma 5.1.33
we only need to show that for any two conflicting routes P and Q, there exist routes P ′ and Q′ such
that P +Q = P ′ +Q′ and h(P ) + h(Q) > h(P ′) + h(Q′). We proceed by induction on the number of
conflicts between P and Q.

First, suppose that P and Q are conflicting at exactly one subroute [vi, vj ]. Let e1 := eP and ek :=
eQ be the respective edges of P and Q that end at vi and ei for i ∈ [2, k − 1] be all the other edges
of G such that we have I(e1)l I(e2)l · · ·l I(ek). Letting R1 := Pvi and Rk := Qvi, we define the
partial routes Ri (resp. Si) for i ∈ [2, k − 1] from right to left and from 1 to k − 1. The starting step
is the ending edge which is already determined. At step i we can choose any other edge unless we
arrive at a vertex common to a previously built partial route. In this case we must choose the same
edges as in this partial route. This gives Pvi = R1 ≺ R2 ≺ . . . ≺ Rk = Qvi and a similar construction
gives vjQ = S1 ≺ S2 ≺ . . . ≺ Sl = vjP .

With this for any x ∈ [k−1] and y ∈ [l−1] we have that the routes RxviPvjSy+1 and Rx+1viPvjSy
are in minimal conflict, with resolvents RxviPvjSy and Rx+1viPvjSy+1. Our assumption on the height
function h implies the inequality:

h(RxviPvjSy+1) + h(Rx+1viPvjSy) > h(RxviPvjSy) + h(Rx+1viPvjSy+1). (5.5)

Adding all these inequalities for all x ∈ [k − 1] and y ∈ [l − 1] we have that all terms of the
form h(RxviPvjSy) cancel out by pairs except for the pairs (x, y) ∈ {(1, 1), (k, t), (1, t), (k, 1)}. This
gives us the inequality

h(P ) + h(Q) = h(R1viPvjSt) + h(RkviPvjS1) > h(R1viPvjS1) + h(RkviPvjSt) = h(P ′) + h(Q′),

where P ′ and Q′ are the resolvents of P and Q as we wished.
For the induction step suppose that h satisfies h(P ) + h(Q) > h(P ′) + h(Q′) where P and Q are

conflicting routes with at most n conflicts and resolvents P ′, Q′. Let P and Q be conflicting routes
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with n+ 1 conflicts at the subroutes [x1, y1], . . . , [xn+1, yn+1]. Since the routes P and Px1Q (resp. Q
and Qx1P ) have n conflicts and their resolvents are Px1P

′ = P ′ and Px1Q
′ (Qx1P

′ and Q′x1Q = Q′),
the induction hypothesis gives us the inequalities

h(P ) + h(Px1Q) > h(P ′) + h(Px1Q
′),

h(Q) + h(Qx1P ) > h(Qx1P
′) + h(Q′).

Now notice that the routes P and Qx1P
′ only have one conflict and their resolvents are P ′ and Qx1P .

Therefore, we also have the inequalities

h(P ) + h(Qx1P
′) > h(P ′) + h(Qx1P ),

h(Q) + h(Px1Q
′) > h(Px1Q) + h(Q′).

Adding up these four inequalities yields

h(P ) + h(Q) > h(P ′) + h(Q′).

After obtaining a condition for the height function h to be admissible on TriangDKK(G,�), the
authors of [DKK12] constructed an explicit height function as follows.

Definition 5.1.35. Let P be a route in a framed graph (G,�) given by the edges ei1 , . . . , eik and ε > 0
sufficiently small. The height hε of P is defined as

hε(P ) :=
∑

1≤a<c≤k
εc−a(I(ea) +O(ec))2.

Proposition 5.1.36 ([DKK12, Lem.3]). Let (G,�) be a framed graph. The height function hε(R) is
an admissible height function for the triangulation TriangDKK(G,�) of FG(i).

5.1.4 Postnikov-Stanley Subdivisions
Another way to subdivide flow polytopes consists on dividing them into two polytopes that are inte-
grally equivalent to other flow polytopes. We refer the curious reader (out of respect like other flow
polytope papers do) to [Pos14] and [Sta00] for the birthing place of this subdivision. For an actual
detailed view we recommend [MM13] and [MM19]. For this subsection we follow [MM19].

Definition 5.1.37. Let G be a graph on vertices {v0, . . . , vn} with edges (vi, vj), (vj , vk) ∈ E(G). The
basic reduction is the creation of the graphs G1 and G2 on vertices {v0, . . . , vn} and edges

E(G1) := E(G) \ {(vj , vk)} ∪ {(vi, vk)},
E(G2) := E(G) \ {(vi, vj)} ∪ {(vi, vk)}.

Proposition 5.1.38 ([Pos14],[Sta00],[MM19, Prop.3.1]). Let G be a graph on {v0, . . . , vn} with a
pair of edges e1, e2 on which the basic reduction can be done. Then we have

FG(a) = P1 ∪ P2 and P◦1 ∩ P◦2 = ∅,

where Pi is integrally equivalent to FGi(a) and P◦ denotes the interior of the polytope P.
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Figure 5.9 contains an illustration of the basic reduction.
The repeated use of basic reductions (called a compounded reduction) on G together with some

extra conditions on when one discards a resulting graph yields a triangulation of FG(a) called a
Postnikov-Stanley triangulation Indeed, at the end of a compounded reduction one obtains multi-
graphs with edges of the form (vi, vn) for i ∈ [0, n − 1]. Like in Example 5.1.5, the flow polytopes of
these graphs are simplices of the highest dimension.

or

x ≥ y

vi vj vk vi vj vk

yx

y

x− y

y ≥ x

vi vj vk

y

y − x⇒

Figure 5.9 – The basic reduction of flow polytopes. Figure based on [MM19].

The choosing on the vertices or the pairs of edges taken for each step of the compounded reductions
can change the final triangulation. In [MMS19] it was shown that Postnikov-Stanley triangulations
coincided in certain cases with DKK triangulations by doing a compounded reduction following the
framing of G. The triangulations obtained like this are called framed Postnikov-Stanley triangulations.
In our interest, this includes the case of FG(i) which we now present.

Definition 5.1.39. Let (G,�) be a framed graph with netflow d. We define the function ΩG,�
between the maximal cliques MaxCliques(G,�) and the integer flows of FG(d) as

ΩG,�(C) :=
(
nC(e)− 1

)
e∈E(G)

where nC(vi, vj) := |{P ∈ C : (vi, vj) is in the prefix Pvj}|.

Proposition 5.1.40 ([MMS19, Thm 7.8]). Given a framed graph (G,�), the map ΩG,� is a bijection
between maximal cliques in MaxCliques(G,�) and integer flows in FG(d).

As a direct consequence of Proposition 5.1.40 we get the following result.

Proposition 5.1.41. For a graphG and netflow d := (0, d1, . . . , dn−1,−
∑
i di) where di = indegi(G)−

1, we have that
vol

(
FG(i)

)
=
∣∣∣FG(d)

∣∣∣.
5.2 Tropical Geometry
We now move on to describe the bases of tropical geometry and an application of this context to the
Cayley trick. We follow heavily [Jos17] and [Jos21].

Definition 5.2.1. The tropical semiring of the min-plus algebra is the tuple (T,�,⊕) formed by T :=
R ∪ {∞} together with the min operation as the tropical addition ⊕ and the usual addition + as the
tropical multiplication �. The additive identity is ∞ and the multiplicative identity is 0.
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Definition 5.2.2. An n-variate tropical polynomial is a linear combination of tropical monomials with
possibly negative exponents and appear as

F (x) =
⊕
m∈I

cm � xm = min
m∈I

(
cm + 〈m,x〉

)
where I is a finite subset of Zn and cm ∈ T. The support of a polynomial is the set supp(F ) = {m ∈
I : cm 6=∞}. The degree of a monomial xm1

1 · · ·xmnn is
∑n
i=1mi and the degree of a polynomial F is

the maximal degree of its monomials.

Remark 5.2.3. Notice that the support of a tropical polynomial can be seen as a point configuration
on Zn equipped with a height function given by the coefficients cm. In the reverse direction, any
lattice point configuration together with a lifting function determines a tropical polynomial. Thus,
any interest of heightened point configurations can make use of tropical polynomials.

0
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4
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6

7

−1
−1 0 1 2 3 4 5 6 7

3

1⊕ (0� x)⊕ (1� y)

3⊕ (0� x)⊕ (2� y)

3⊕ (1� x)⊕ (0� y)

6⊕ (2� x)⊕ (0� y)

6⊕ (0� x)⊕ (4� y)

Figure 5.10 – The tropical hypersurfaces of several tropical polynomials.

In R hypersurfaces of varying degree come from seeing where polynomials vanish. In the tropical
setting of T this is recontextualized by looking at where the minimum of a tropical polynomial is
attained at least twice.

Definition 5.2.4. The tropical hypersurface determined by F is the set

T (F ) := {x ∈ Rn : the minimum of F (x) is attained at least twice} .

Several tropical hypersurfaces are illustrated in Figure 5.10.

Proposition 5.2.5. For tropical polynomials F1, . . . , Fk we have that

T
( ⊙
i∈[k]

Fi
)

=
⋃
i∈[k]
T (Fi).
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5.2. Tropical Geometry

5.2.1 Polyhedral Constructions
Tropical geometry is of particular use to us since it has a deep relation with polyhedral geometry.
In this section we describe two polyhedral constructions we need as tools called the dome and the
Newton polytope of a tropical polynomial. We begin with the following crucial remark.

Remark 5.2.6. Notice that as F (x) consists only of linear combinations and minima, T (F ) is
an n− 1-polyhedral complex.

Definition 5.2.7. For a tropical polynomial F , its dome is the unbounded n+ 1-polyhedron

D(F ) :=
{

(x, s) ∈ Rn+1 : x ∈ Rn, s ∈ R, s ≤ F (x)
}

=
⋂

x∈supp(F )

{
(p, s) ∈ Rn+1 : s ≤ cm + 〈m,x〉

}
.

The dome helps us as it recovers in the polyhedral setting the geometry of the tropical hypersurface.

Proposition 5.2.8 ([Jos21, Cor. 1.6]). The tropical hypersurface T (F ) is the image of the n − 1-
skeleton of its dome D(F ) under the projection that forgets the last coordinate.

In other words, if F is an n-variate polynomial, T (F ) is a (n− 1)-dimensional polyhedral complex
and the connected components of its complement are projections of the relative interiors of facets of
the dome D(F ). In particular, each facet of the dome corresponds to a tropical monomial xa1

1 · · ·xann
and the edges correspond to when the minimum is shared between two monomials. See Figure 5.11
(left) for an example.

(5, 0)

(0, 5)

(0, 0)

Figure 5.11 – The orthogonal projection of the facets of D(F ) (left) and N (F ) (right) where F
is the product of the tropical polynomials in Figure 5.10.

The second polytope related to tropical polynomials is the Newton polytope associated to the
support points of F . See Figure 5.11 (right) for the Newton polytope of our running example.
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Chapter 5. Flow Polytopes and Tropical Geometry

Definition 5.2.9. Given a tropical polynomial F (x), the convex hull of its support is called the
Newton polytope of F . That is,

N (F ) := conv
(
m ∈ Zd : m ∈ supp(F )

)
.

The extended Newton polytope corresponds to the Minkowski sum

Ñ (F ) := conv
(
(m, r) ∈ Zd × R : m ∈ supp(F ), r ≥ cm

)
= conv

(
(m, cm) ∈ Zd × R : m ∈ supp(F )

)
+ cone(en+1).

Following Remark 5.2.3, consider supp(F ) as a point configuration. The projection downwards of the
faces of Ñ(F ) is a regular subdivision of the Newton polytope N (F ) called the dual subdivision and
denoted as S(F ).

Remark 5.2.10. Notice that the product of tropical monomials is

F (x) =
⊙
i∈[k]

Fi(x) =
⊙
i∈[k]

⊕
mi∈Ii

cmi � xmi

=
⊕

M∈I

⊙
i∈[k]

cmi � xmi =
⊕

M∈I
cm1 + · · ·+ cmk � xm1+···+mk

where Ii ⊂∈ Zn, I = I1 × · · · × Ik and M = (m1, . . . ,mk). Thus, for the product of tropical
polynomials F =

⊙
i∈[k] Fi, the corresponding Newton polytope is

N (F ) = N (F1) + · · ·+N (Fk).

Moreover, abusing the notation of Minkowski sums, we have that supp(F ) = supp(F1)+· · ·+supp(Fk).

It turns out that the dome and the Newton polytope of tropical polynomials are actually dual
constructions. Moreover, our constructions T (F ), D(F ), N (F ) and S(F ) are related in the following
way.

Proposition 5.2.11 ([Jos21, Thm.1.13]). Let F be an n-variate tropical polynomial.

• The faces of the dome D(F ) have an inclusion-reversing bijection with the bounded faces of the
extended Newton polytope Ñ (F ).

• The orthogonal projection of the proper faces of Ñ (F ) give the cells of the dual subdivision S(F ).

• The k-dimensional cells of T (F ) are in bijection with the (n − k)-dimensional cells of S(F )
for 0 ≤ k < n.

In particular, take notice that the bijection of Proposition 5.2.11 sends a vertex m ∈ N (F ) to
the region

{
x ∈ Rn | cm + 〈m,x〉 = minm′∈I

(
cm′ + 〈m′,x〉

)}
, and a cell of S to the intersection of

the regions corresponding to its vertices. See Figure 5.12 for an example. Due to the dual nature of
Proposition 5.2.11 we say that S(F) is the tropical dual of T (F ).

We go a step further and restrict Proposition 5.2.11 to the bounded cells of T (F ).
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(6, 6)
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(1, 0)

(2, 0)

(3, 1)

(3, 3)

(2, 3)
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Figure 5.12 – The orthogonal projection of D(F ) (left) with regions labeled by the respective
dominant monomial and the (flipped) dual subdivision S(F ) with cells labeled by their respec-
tive exponent in supp(F ) (right) where F is the multiplication of the tropical polynomials in
Figure 5.10.

Lemma 5.2.12 ([GMP+23a, Lem.5.2]). The bijection of Proposition 5.2.11 restricts to a bijection
between the bounded cells of T (F ) and the interior cells of S(F ).

Proof. Since S(F ) is a regular subdivision of a polytope, it is a pure complex. Thus, we abuse the
notation and call the (d − 1)-dimensional cells the facets of S(F ). We first show the Lemma for the
bounded edges of T (F ) and the interior facets of S(F ) in a fashion similar to the proof of [Jos21,
Theorem 1.13]. Let e be an edge of T (F ), H its corresponding facet in S via the bijection, and H̃ its
lift to Ñ (F ). We begin by characterizing these objects.

A point x ∈ e exists if and only if the minimum F (x) equals cm + 〈m,x〉 for each m ∈ H. This
means that taking (x, 1) := (x1, . . . , xn, 1), we have that the linear form (x, 1) attains its minimum
on H̃ and the vector −(x, 1) is in the normal cone of H̃. For H, and H̃, notice that since Ñ (F )
is Minkowski sum of a polytope and the ray cone(en+1), a vector is normal to an unbounded face
of Ñ (F ) if and only if its last coordinate is 0.

Suppose that e is unbounded, that is, e = w + cone(v) for some v,w ∈ Rd. From before we
have that for all λ ∈ R, −(w + λv, 1) is in the normal cone of H̃. Taking the limit of λ → ∞
of −

(
1
λw + v, 1

λ

)
tells us that −(v, 0) is also in the normal cone of H̃. Thus, H is in the boundary

of S.
Reciprocally, if H is in the boundary of S, it means that the normal cone of H̃ in Ñ (F ) is

a 2-dimensional cone whose extremal rays can be written − cone
(
(v, 0)

)
and − cone

(
(w, 1)

)
, for

some v,w ∈ Rd. Since for any λ ∈ R>0, the vector −(w + λv, 1) is in this cone, for all λ ∈ R>0
we have that the point w + λv belongs to the edge e in T (F ). Thus, this edge is unbounded.

Having that the bijection restricts to a bijection between the bounded edges of T (F ) and the
interior facets of S, we can extend easily the bijection to other faces. Notice that any cell of S is
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Chapter 5. Flow Polytopes and Tropical Geometry

either maximal in dimension and is sent to a vertex of T (F ), or it is an intersection of (possibly 1)
facets of S. A non-maximal cell of S is interior if and only if it is included only in interior facets of S.
Thus, by the inclusion-reversing bijection, it is sent to a cell of T (F ) containing only bounded edges.
Reciprocally, a non-bounded cell of T (F ) contains a non-bounded edge, so it is sent to a boundary
cell of S. We get the desired result.

5.2.2 An Application of the Cayley Trick
Consider a finite family of point configurations A1, . . . ,Ak with associated height functions hi :
A1 → R. Following Remark 5.2.3 these point configurations correspond to tropical polynomials
of the form Fi(x) =

⊕
ai∈Ai hi(a

i) � xai . Denote their multiplication by F =
⊙

i∈[k]Fi . Taking their
corresponding Newton polytopes N (F1), . . . ,N (Fk), we consider their Cayley embedding

C
(
N (F1), . . . ,N (Fk)

)
:= conv

(
{e1} × N (F1), . . . , {ek} × N (Fk)

)
and endow it with the height function on its integer points given by hF

(
(ei,ai)

)
= hi(ai). Let Σ(F )

be the regular subdivision of C
(
N (F1), . . . ,N (Fk)

)
induced by hF following the construction denoted

in Definition 1.2.28.
In this context the Cayley trick (Proposition 1.2.31) tells us that ΣF corresponds to a mixed

subdivision of N (F1) + · · · + N (Fk) =: N (F ). The following proposition tells us that this mixed
subdivision is one that we have already encountered.

Proposition 5.2.13 ([Jos21, Cor.4.9]). Let F =
⊙
i∈[k]Fi be a multiplication of tropical polyno-

mials. The mixed subdivision of N (F ) corresponding to the subdivision ΣF of the Cayley embed-
ding C(N (F1), . . . ,N (Fk)) via the Cayley trick is the dual subdivision S(F ).

We now reformulate Proposition 5.2.11 using the context we have obtained from Proposition 5.2.13.

Proposition 5.2.14. Let F = F1 � · · · � Fk be a product of tropical polynomials. The tropical dual
of the polyhedral complex T (F ) (i.e. the union

⋃
i∈[k] T (Fi)) is the mixed subdivision S(F ) obtained

via the Cayley trick.
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Chapter 6
Realizing the s-Permutahedron via Flow

Polytopes

We devote this chapter to answer Conjecture 2.5.12 of Ceballos and Pons [CP19, Conj.1] about realizing
the s-permutahedron Perms as a polyhedral subdivision of a zonotope in the case where s is free of
zeros. We make use of the combinatorial and geometrical toolbox of flows on graphs and tropical
geometry described in Chapter 5. This chapter is based directly on [GMP+23a]. In what follows we
present three realizations of Perms.

6.1 The Flow Polytope Realization
Let us start by defining a graph that encodes the s-weak order. Following the tradition of [BGH+19]
and [vGMY23] where the respective Caracol Carn and s-Caracol Car(s) graphs were defined, we
define the s-Oruga graph denoted Oru(s). Oruga and caracol are respectively the Spanish words for
caterpillar and snail. These names come from the embedding of these graphs when s = (1, . . . , 1) as
in Figure 7.1. Examples of this embedding for Car(s) and Oru(s) are shown in Figure 6.1.

sn

sn−1 − 1

s2 − 1

sn − 1

sn−1

s2

Figure 6.1 – The s-caracol Car(s) (left) and s-oruga Oru(s) (right) graphs.
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Chapter 6. Realizing the s-Permutahedron via Flow Polytopes

Definition 6.1.1. Let s = (s1, . . . , sn) be a composition, and for convenience of notation fix sn+1 = 2.
The s-oruga graph denoted Oru(s) is the graph on vertices {v−1, v0, . . . , vn} such that for

• i ∈ [n+ 1], there are si − 1 source edges (v−1, vn+1−i) labeled ei1, . . . , eisi−1,

• i ∈ [n], there are two edges (vn+1−(i+1), vn+1−i) called bump and dip labeled ei0 and eisi .

For the rest of our work we endow Oru(s) with the following framing for:

• the incoming edges of vn+1−i are ordered eij ≺In+1−i e
i
k for 0 ≤ j < k ≤ si,

• the outgoing edges of vn+1−i are ordered ei−1
0 ≺On+1−i e

i−1
si−1 .

When s = (1, . . . , 1), following Remark 6.1.3 we contract the edge (v−1, v0) and call the resulting
graph the oruga graph denoted Orun.

Figure 6.2 shows examples of this construction. We choose to draw the graph Oru(s) in such a
way that the framing of the incoming and outgoing edges at each inner vertex can be read “from top
to bottom”.

1

1
2
3 1

1
21

0
1
2

0 0 000

1
0

0

e21

e11
e41

e10e20

e22

e30

e31

Figure 6.2 – The graph Oru(s) for s = (2, 3, 2, 2) with framing shown in red (left) and the
graph Oru(s) for s = (1, 2, 1) with edge labels (right). Source edges are bolded in blue.

Remark 6.1.2. Given a composition s = (s1, . . . , sn), we denote |s| the sum of its entries. FOru(s)(a)
lives in dimension ∣∣∣E(Oru(s)

)∣∣∣ =
(
n+1∑
i=1

si − (n+ 1) + 2n
)

= |s|+ n+ 1

and following Proposition 5.1.10 we have that

dim
(
FOru(s)(a)

)
= |E| − |V |+ 1 = |s|+ n+ 1− (n+ 2) + 1 =

n∑
i=1

si = |s|.

Remark 6.1.3. Although the graph Oru(s) starts with vertex v−1 instead of v0, all the technology
of Section 5.1 can be applied to it. To see this, we can either contract the edge en+1

1 to obtain
a graph Oru(s)# such that FOru(s)#(a) is integrally equivalent to FOru(s)(a), or simply relabel the
vertices with [0, n + 1]. The resulting graph has flows and routes directly in bijection with the flows
and routes of Oru(s). Similar to Remark 5.1.3, this is a particular case of [GHMY21, Cor.2.13].

We now start relating the combinatorics of Oru(s) to the combinatorics of the s-weak order.
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6.1. The Flow Polytope Realization

Theorem 6.1.4. Let s be a composition and d := (0, d0, d1, . . . , dn−1,−
∑n−1
i=0 di) where di :=

indegi(Oru(s)). The set of Stirling s-permutations is in bijection with the set of integer d-flows
of Oru(s).

Proof. We begin by highlighting the fact that d = (0, 0, sn, sn−1, . . . , s2,−
∑n
i=2 si). Notice that any

integer d-flow f on Oru(s) has zero flow on every source edge. Therefore, f is characterized by the
fact that the sum of the flows passing by any pair of bump and dip edges satisfies f(ei0) + f(eisi) =
sn + · · ·+ si+1 for all i ∈ [n− 1]. This means that it suffices to describe the flow in the bump edges ei0
for all i ∈ [n− 1] to describe an integer d-flow on Oru(s).

Given a Stirling s-permutation w, let f(ei0) be the number letters strictly greater than i that occur
before the i-block Bi in w. As for each j > i there are at most sj such repetitions of j, this quantity
satisfies 0 ≤ fei0 ≤ sn + · · ·+ si+1. Meaning that it defines an integer d-flow on Oru(s).

Conversely, given a d-flow on Oru(s), we can build a Stirling s-permutation from the flow on the
bumps ei0 for i ∈ [n − 1] via an insertion algorithm in the following way. For step 0 we begin with
the sn consecutive copies of n. At step i, among the sn + · · ·+ sn−i+1 + 1 possible positions between
letters, insert the sn−i consecutive copies of n − i in the f(en−i0 )-th position. After step n − 1 we
obtain a permutation of the word 1s12s2 · · ·nsn . This permutation is 121-avoiding as all values have
been placed in descending order and by blocks.

In Figure 6.3 we illustrate the bijection of Proposition 6.1.4 including the insertion algorithm.

2 1 2 0 3 90

2 1 3 1 2 10 −100

1087643210 95

0

2

1

2

0

3

9

7

7 7 6

7 7 65 5 5

7 5 4 7 65 5

7 5 4 7 65 53 3

73 3 2 5 4 7 65 5

73 3 2 5 4 75 5 61

1

2

3

4

5

6

0

Positions
i e

n−i
0

7

Figure 6.3 – An integer d-flow of Oru((1, 1, 2, 1, 3, 1, 2)) (left) (only the flow passing by the
bumps is shown in blue) and the steps of the insertion algorithm that output the corresponding
to the Stirling s-permutation w = 33725455716 (right).

Due to Proposition 5.1.41, as the normalized volume of the flow polytope FOru(s)(i) is the number
of integer d-flows on Oru(s), then we obtain the following enumerative corollary.

Corollary 6.1.5. Given a composition s, then the volume of FOru(s) is the number of s-decreasing
trees and the number of Stirling s-permutations.

vol
(
FOru(s)(i)

)
= |Ts| = |Ws| =

n−1∏
i=1

(1 + sn−i+1 + sn−i+2 + · · ·+ sn) .
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Chapter 6. Realizing the s-Permutahedron via Flow Polytopes

Remark 6.1.6. It is also possible to give an explicit correspondence between s-decreasing trees and
integer d-flows of Oru(s) even when s is a weak composition.

Given an integer d-flow f of Oru(s), we construct an s-decreasing tree via induction as follows.
At step 0 start with a tree with root the node n and sn + 1 leaves. At step i for i ∈ [n − 1],
we have a decreasing tree with labeled nodes n to n + 1 − i, and 1 +

∑n
k=n+1−i sk leaves that we

momentarily label from 0 to
∑n
k=n+1−i sk along the counterclockwise walk of the tree. Graft to the

leaf labeled f(en−i0 ) the labeled node n− i with sn−i+1 leaves. After step n−1 we obtain a decreasing
tree with each node labeled i having si children. Conversely, any s-decreasing tree can be built in
this way as seen in Proposition 2.5.3. Therefore, any s-decreasing tree is associated to a choice of
integers f(ei0) ∈ [0,

∑n
k=n+1−i sk] for all i ∈ [n− 1]. That is, a d-flow of Oru(s).

See Figure 6.4 for an example of the bijection.

2 1 2 0 3 90

2 1 3 1 2 10 −100

7

2 4 1

3 5 6

Figure 6.4 – An integer d-flow of Oru((1, 1, 2, 1, 3, 1, 2)) (left) (only the flow passing by the
bumps is shown in blue) and its corresponding (1, 1, 2, 1, 3, 1, 2)-decreasing tree (right).

The routes of Oru(s) play a key role in what follows, so we denote them as R(k, t, δ). Intuitively
this notation comes from the fact that every route of Oru(s) starts from v−1, lands in a vertex vn+1−k
via a source edge labeled ekt and then follows k − 1 edges that are either bumps or dips meaning a
binary choice δ. Figure 6.5 contains an example of this. More formally, we give the following definition.

Definition 6.1.7. For k ∈ [n + 1], t ∈ [sk − 1], and δ = (δ1, . . . , δk−1) ∈ {0, 1}k−1, we denote by
R(k, t, δ) the sequence of edges (ektk , e

k−1
tk−1

, . . . , e1
t1) where

• tk := t,

• for all j ∈ [k − 1], tj := δjsj .

v−1 v3 v4 v5 v6 v7
e41 e21 e11

e30
e51

1

0

2
1
0

3

Figure 6.5 – The route R(5, 1, (1, 0, 1, 1)) of Oru((1, 1, 2, 1, 3, 1, 2)) (bolded in blue) together
with the framing orders I3 and O3.
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Wanting to use the technology of Subsection 5.1.3 and obtain TriangDKK(Oru(s),�), we describe
the maximal cliques of routes of Oru(s) via Stirling s-permutations.

Definition 6.1.8. Let s = (s1, . . . , sn) be a composition and w a Stirling s-permutation. Consider u
to be a (possibly empty) prefix of w. For all a ∈ [n], we denote by ta (or ta(u) if u is not clear
from the context) the number of occurrences of a in u, and by c the smallest value in [n] such
that 0 < tc < sc. If there is no such value, we set c = n+ 1 and tn+1 = 1. Notice that the minimality
of c implies that either ta = 0 or ta = sa for all a < c giving us a δ ∈ [c − 1]. We denote R[u] the
route R(c, tc, δ) = (ectc , e

c−1
tc−1 , . . . , e

1
t1).

For i ∈ [|s|], we call wi the i-th letter of w, and for i ∈ [0, |s|] we denote by w[i] the prefix of w of
length i, with w[0] := ∅. We denote by ∆w the set of routes {R[w[i]] | i ∈ [0, |s|]} and abusing notation
identify it with the simplex whose vertices are the indicator vectors of these routes.

Remark 6.1.9. Notice that the exceptional routes of (Oru(s),�) are the two routes that are re-
spectively formed only by bumps R(n + 1, 1, (0)n) = (en+1

1 , en0 , . . . , e
1
0) or by dips R(n + 1, 1, (1)n) =

(en+1
1 , en1 , . . . , e

1
1). Following Definition 6.1.8 we can see that ∆w always contains these two routes

as R[w[0]] = R(n+ 1, 1, (0)n) and R[w[|s|]] = R(n+ 1, 1, (1)n). See Figure 6.6 for an example of ∆w.

R[w[0]] =

R[w[1]] =

R[w[2]] =

R[w[3]] =

R[w[4]] =

Figure 6.6 – The maximal clique ∆w = {R[w[0]], . . . , R[w[4]]} corresponding to the Stir-
ling (1, 2, 1)-permutation w = 3221. Each route is bolded in blue.

We are now ready to characterize TriangDKK(Oru(s),�) using the s-weak order.

Lemma 6.1.10. The maximal simplices of TriangDKK(Oru(s),�) are exactly the simplices ∆w

where w ranges over all Stirling s-permutations.

Proof. Recall from Proposition 5.1.30 that the maximal simplices of TriangDKK(Oru(s),�) are the
simplices ∆C , where C is a maximal clique of coherent routes of (Oru(s),�). We claim that for a
Stirling s-permutation w, the simplex ∆w is a clique of coherent routes of (Oru(s),�). Let 1 ≤ i < j ≤
[|s|] corresponding to two routes R[w[i]] and R[w[j]] in ∆w. As i < j, we have the inequalities ta(w[i]) ≤
ta(w[j]) for all a ∈ [n]. This means that for any common vertex vn+1−a of R[w[i]] and R[w[j]], we have
that the incoming (resp. outgoing) edge of R[w[i]] is smaller than the incoming (resp. outgoing) edge
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Chapter 6. Realizing the s-Permutahedron via Flow Polytopes

of R[w[j]] in �. Thus, the routes R[w[i]] and R[w[j]] are coherent, and ∆w is a clique of coherent routes.
Now, since ∆w has |s| + 1 = dim(FOru(s)) + 1 elements, it is a maximal clique and corresponds to a
maximal simplex in TriangDKK(Oru(s),�).

Now let us see that assigning w to ∆w is injective. Let w′ be a Stirling s-permutation such
that w′ 6= w and i ∈ [|s| − 1] be the minimal index such that wi 6= w′i, meaning that R[w[j]] = R[w′[j]]
for all j < i. Without loss of generality we suppose that a := wi < w′i := b. We claim that R[w′[i]]
cannot belong to ∆w. Notice that a (resp. b) is the minimal value c in w[i] (resp. w′[i]) such that 0 <
tc < sc. If this were not the case then we would have that w (resp. w′) contains the pattern 121.
Thus, R[w[i]] contains the edge eata(w[i]) while R[w′[i]] contains eata(w′[i]) = eata(w[i])−1 as a < b. Meaning
that R[w[i]] 6= R[w′[i]]. Finally, for any j > i we have that ta(w[j]) ≥ ta(w[i]), so eata(w[i])−1 /∈ R[w[j]].
Therefore, R[w′[i]] /∈ ∆w and the map w 7→ ∆w is injective.

Through the chain of bijections from maximal simplices of TriangDKK(Oru(s),�), to d-flows
of Oru(s) (Proposition 5.1.40), to s-decreasing trees (Remark 6.1.6), to Stirling s-permutations (Propo-
sition 2.5.14) we get that this injection is a bijection.

Combining previous results, we now have the following commutative diagram of bijections:

Ts Ws FZOru(s)(d) MaxCliques(Oru(s),�)Prop. 2.5.14 Prop 6.1.4 Prop 5.1.40

Rem. 6.1.6

Lem. 6.1.10

6.1.1 The 1-Skeleton of the s-Weak Order
Theorem 6.1.11. Let s = (s1, . . . , sn) be a composition and w and w′ be two Stirling s-permutations.
There is a cover relation between w and w′ in the s-weak order if and only if the simplices ∆w and ∆w′

are adjacent in TriangDKK(Oru(s),�).

Proof. Suppose that w′ is obtained from w by a transposition along the ascent (a, c). From Corol-
lary 2.5.20 we have that w = u1Bacu2 and w′ = u1cBau2 where u1 and u2 are words in [n] and Ba
is the a-block of the permutations. We denote by `(u) the length of a word u. Notice that for
all i ∈ [0, `(u1)]∪ [`(u1) + `(Ba) + 1, |s|], the routes R[w[i]] and R[w′[i]] are equal as the corresponding
prefixes consist of the same amounts of the same values.

For the indices i ∈ [`(u1) + 1, `(u1) + `(Ba)− 1] we claim that the routes R[w[i]] and R[w′[i+1]] are
equal as well. Notice that for these i we have that tb(w[i]) = tb(w′[i+1]) for all b ∈ [n] \ {c}. Also, since
we are reading the substring Ba with these indices, we have that 0 < ta(w[i]) < sa. Using that a < c,
we get that the value tc(w[i]) (respectively tc(w′[i+1])) does not play a role in the determination of
the edges for the route R[w[i]] (respectively R[w′[i+1]]). In this way, the vertices of ∆w and ∆w′

differ only in one element. Namely, R[w[`(u1)+`(Ba)]] ∈ ∆w corresponding to the prefix u1Ba of w
and R[w′[`(u1)+1]] ∈ ∆w′ corresponding to the prefix u1c of w′. As simplices this means that ∆w′

and ∆w share a common facet in TriangDKK(Oru(s),�).
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6.1. The Flow Polytope Realization

Reciprocally, suppose that ∆w and ∆w′ are adjacent and thus differ only in one vertex (i.e. one
route). We denote u1 the longest common prefix of w and w′ and a := w`(u1)+1, c := w′`(u1)+1. Suppose
without loss of generality that a < c. This gives us that a /∈ u1 as if a ∈ u1 then w′ would contain the
subword aca and thus the pattern 121. Therefore, u1Ba is a prefix of w and the route R[w[`(u1)+`(Ba)]]
(resp. R[w′[`(u1)+1]]) is in ∆w (resp. ∆w′) but not in ∆w′ (resp. ∆w).

Thus, the only possibility that ∆w and ∆w′ differ only on these elements is that w = u1Bacu2
and w′ = u1cBau2, where u2 is their longest common suffix. This means that there is an s-tree rotation
along the ascent (a, c) between w and w′ and Corollary 2.5.20 gives us that w l w′.

Remark 6.1.12. In this context, we say that the common facet of ∆w and ∆w′ is associated to the
transposition of w along (a, c). Notice that such a facet lies in the interior of FOru(s) since it separates
two interior maximal simplices of TriangDKK(Oru(s),�).

Figure 6.7 shows the graph dual to the DKK triangulation of FOru(s)(i) for s = (1, 2, 1), which
corresponds to the (unoriented) Hasse diagram of the (1, 2, 1)-weak order. Notice that in this Figure
we omit the routes R[w[0]] and R[w[|s|]] since both appear in ∆w for every w ∈ W(1,2,1).
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Figure 6.7 – The dual realization of the (1, 2, 1)-permutahedron with vertices indexed by s-
decreasing trees, Stirling s-permutations, maximal cliques of routes (omitting R(n+ 1, 1, (0)n)
and R(n+ 1, 1, (1)n)), and integer flows.
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Chapter 6. Realizing the s-Permutahedron via Flow Polytopes

6.1.2 Higher Faces of the s-Permutahedron
We now show that not only the vertices and edges but all the faces of the s-permutahedron are also
encoded in the triangulation TriangDKK(Oru(s),�). We begin with some technical results.

Lemma 6.1.13. Let w be a Stirling s-permutation and R = R(k, t, δ) a route of Oru(s). R is a vertex
of ∆w if and only if the inversion set of w satisfies the following inequalities:

1. |(k, i)w| ≥ t for all 1 ≤ i < k such that δi = 0,

2. |(k, i)w| ≤ t for all 1 ≤ i < k such that δi = 1,

3. |(j, i)w| = 0 for all 1 ≤ i < j < k such that (δi, δj) = (1, 0),

4. |(j, i)w| = sj for all 1 ≤ i < j < k such that (δi, δj) = (0, 1).

We say that the route R implies these inequalities on inversion sets.

Proof. (⇒) Suppose that R(k, t, δ) is a vertex of ∆w. It means that R(k, t, δ) = R[w[r]] for a certain r ∈
[0, |s|]. This signifies that t corresponds to the number of occurrences of k in w[r], and for all 1 ≤ i < k,
the number of occurrences of i in w[r] is 0 (resp. si) if δi = 0 (resp. δi = 1). This gives the announced
inequalities on the inversion set of w.

(⇐) Reciprocally, suppose that inv(w) satisfies these inequalities. Then there is a prefix w[r] of w
that contains no occurrence of i for i such that δi = 0, all si occurrences of i for i such that δi = 1,
and exactly t occurrences of k. Then this prefix is exactly associated to the route R[w[r]] = R(k, t, δ)
following Definition 6.1.8.

Definition 6.1.14. Let (w,A) be a face of Perms. We define ∆(w,A) as the following intersection of
facets of ∆w following Remark 6.1.12:

∆(w,A) :=
⋂

(a,c)∈A

{
∆w ∩∆w′ : w′ is the transposition of w along (a, c)

}
,

and ∆(w,A) := ∆w if A = ∅.

Remark 6.1.15. Notice that the |A| routes that are in ∆w \∆(w,A) correspond to the prefixes of w
that end precisely between two letters of w that form an ascent in A.

Lemma 6.1.16. Let (w,A) be a face of Perms and w′ be a Stirling s-permutation. Then, w′ is in the
interval [w,w +A] if and only if ∆(w,A) ⊆ ∆w′ .

Proof. Recall that Theorem 2.5.25 describes inv(w+A) and that w′ ∈ [w,w+A] if and only if inv(w′)
satisfies |(c, a)w| ≤ |(c, a)w′ | ≤ |(c, a)w+A| for all 1 ≤ a < c ≤ n. We proceed to show that these
inequalities are exactly the ones implied by the routes that are vertices of ∆(w,A), in the sense of
Lemma 6.1.13.

Let (a, c) be a pair with |(c, a)w| =: t. For each inequality of Lemma 6.1.13 we describe a route R ∈
∆(w,A) such that R ∈ ∆w′ that implies it.
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6.1. The Flow Polytope Realization

1. Consider the inequality |(c, a)w′ | ≥ t. We can take the route that corresponds to the prefix of w
that ends following the t-th occurrence of c and that does not correspond to an ascent in A.
Such ending point necessarily lies before the a-block since a < c.

2. Consider the inequality |(c, a)w′ | ≤ t if and only if |(c, a)w+A| = t (i.e. the pair (a, c) is not A-
dependent). This inequality is only implied by routes that contain the edges ect and easa . Such
routes in ∆w correspond to prefixed of w that end between the last occurrence of a and the t-th
occurrence of c and that are not inside a b-block Bb for any b < c. The pair (a, c) is A-dependent
exactly when all such breaks are in A, so the corresponding routes are removed in ∆(w,A).

3. Consider the inequality |(c, a)w′ | ≤ t + 1 if t + 1 < sc and |(c, a)w+A| = t + 1 (i.e. (a, c) is
an A-dependent pair). We can take the route that corresponds to the prefix of w that ends
immediately after the (t+ 1)-th occurrence of c. Since t+ 1 < sc, other occurrences of c appear
afterwards. Therefore, this break is not an ascent. Notice that if t+ 1 = sc there is no need to
check that |(c, a)w′ | ≤ sc.

Lemma 6.1.16 also gives us the following alternative characterization of ∆(w,A).

Corollary 6.1.17. ∆(w,A) =
⋂
w′∈[w,w+A] ∆w′ .

Lemma 6.1.18. Let C be a clique of routes of (Oru(s),�) that contains the exceptional routes and
at least one route that starts with e for each source edge e that is not (v−1, v0), then ∆C is in the
interior of TriangDKK(Oru(s),�).

Proof. Suppose that ∆C is a boundary simplex of TriangDKK(Oru(s),�). Since it is contained in
a facet that is in the boundary of TriangDKK(Oru(s),�), this facet corresponds to a clique of the
form ∆w \R, where w is a Stirling s-permutation and R is a route of ∆w that does not correspond to
an ascent nor a descent of w. Hence, either R is an exceptional route or it corresponds to a prefix w[i]
such that wi = wi+1. In this case, wi is the t-th occurrence of some c in w with t < sc. In this
scenario R is the only route of ∆w that starts with the edge ect . As C ⊆ ∆w \ R, this means that C
does not satisfy the condition of the lemma.

Corollary 6.1.19. Let w be a Stirling s-permutation and A a subset of its ascents. Then ∆(w,A) is
an interior simplex of TriangDKK(Oru(s),�).

Proof. Due to Lemma 6.1.18 it is sufficient to show that ∆(w,A) contains the exceptional routes and at
least one route that starts with e for each source edge e that is not (v−1, v0). First, it is clear that ∆(w,A)
contains the exceptional routes because of Corollary 6.1.17. Now let c ∈ [n] and t ∈ [sc − 1]. In this
situation the prefix of w that ends with the t-th occurrence of c corresponds to a route R that contains
the edge source edge ect . Moreover, there cannot be an ascent of w after this prefix since there are still
occurrences of c afterwards. Thus, the route R is not removed from ∆w to ∆(w,A).

Theorem 6.1.20. The application (w,A) 7→ ∆(w,A) induces a poset isomorphism between the face
poset of Perms and the set of interior simplices of TriangDKK(Oru(s),�) ordered by reverse inclusion.

Proof. The fact that all ∆(w,A) are interior simplices of TriangDKK(Oru(s),�) is stated in Corol-
lary 6.1.19. Lemma 6.1.16 gives us the injectivity of this map. We now show that this map is
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Chapter 6. Realizing the s-Permutahedron via Flow Polytopes

surjective. Let F be an interior simplex of TriangDKK(Oru(s),�) and w be a Stirling s-permutation
that is minimal in the s-weak order with respect to the condition that F ⊆ ∆w. Notice that such w
is unique by the polygonality of Perms. Then, F is an intersection of facets of ∆w. These facets
correspond to certain transpositions that can be applied on w. We denote A the set of ascents corre-
sponding to these transpositions. The minimality of w implies that all elements in A are ascents of w
giving us that F = ∆(w,A).

Finally, let w,w′ be Stirling s-permutations and A,A′ the subsets of their respective ascents.
Lemma 6.1.16 implies that [w,w + A] ⊆ [w′, w′ + A′] if and only if ∆(w′,A′) ⊆ ∆(w,A), which proves
that the map is a poset isomorphism.

Just as how the atoms of the face poset of Perms have a characterization as the maximal cliques
of TriangDKK(Oru(s),�), the coatoms of the face poset also have an explicit characterization in terms
of cliques.

Corollary 6.1.21. A simplex ∆C of TriangDKK(Oru(s),�) corresponds to a maximal interior face
of Perms if and only if C is a clique of size |s|−n+ 2 that contains the exceptional routes and exactly
one route that starts with each source edge that is different from (v−1, v0).

Proof. We first highlight that for each i ∈ [n], Oru(s) has si − 1 source edges, implying that there
are

∑n
i=1(si − 1) = |s| − n source edges different from (v−1, v0). Together with the exceptional routes

this gives us that C has size |s| − n + 2. This together with Lemma 6.1.18 tells us that a clique C
with the above stated properties corresponds with a maximal interior face of Perms ⊂ R|s|+n+1.

Conversely, let (w,A) be a facet of Perms and denote by C := ∆(w,A) and by N ⊂ [0, |s|] the set
of non-ascent positions in w, so that C = ∪j∈NR[w[j]]. Since w is 121-avoiding, if it has n− 1 ascents,
then the ascents are of the form (i, ci) where i < ci for each i ∈ [n − 1]. Moreover, it is the si-th
occurrence of i in w which produces an ascent pair in w. Thus, N \ {0, |s|} indexes the first si − 1
occurrences of i in w for all i ∈ [n−1] and |N \{0, |s|}| = |s|−n. Now let j ∈ N \{0, |s|} be a non-ascent
position of w so that R[w[j]] ∈ C. If wj is the k-th occurrence of the value a in w for some k ∈ [sa−1],
then as before, the route R[w[j]] contains the proper source edge eak. Since |N \ {0, |s|}| = |s| − n,
then C satisfies the properties of the statement.

Notice that Theorem 6.1.20 does not suffice to answer Conjecture 2.5.12 as this construction lives
in an ambient space of dimension |s|+n+1 > n, and it does not have explicit geometrical coordinates.
We now fix the first of these issues using the Cayley trick (Proposition 1.2.31).

6.2 The Sum of Cubes Realization
To apply the Cayley trick to our triangulation TriangDKK(Oru(s),�), we follow Proposition 5.1.22
to describe FOru(s)(i) as the Cayley embedding of some lower-dimensional polytopes.

Definition 6.2.1. Let p :=
∑n+1
i=1 (si − 1). We parametrize the space R|s|+n+1 of edges of Oru(s)

as Rp × R2n where Rp (resp. R2n) corresponds to the space of source edges (resp. bumps and dips)
of Oru(s).
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6.2. The Sum of Cubes Realization

Notice that in the context of Rp×R2n, any integer point f of FOru(s) (i.e. an integer i-flow of Oru(s))
we have that f(ei0) + f(eisi) is determined by the coordinates f(ekt ) for k ∈ [i + 1, n + 1], t ∈ [sk − 1]
corresponding to source edges. Therefore, FOru(s) is affinely equivalent to its projection on to the
space Rp × Rn where Rn corresponds to the space of bumps ei0 for i ∈ [n].

With this in hand, for a route R(k, t, δ) of Oru(s) with k ∈ [n+ 1], t ∈ [sk − 1] and δ ∈ {0, 1}k−1,
we have that the indicator vector 1R(k,t,δ) (Definition 6.1.7) is ekt ×

∑
i∈[k−1], δi=0 e

i
0. Denoting by �k−1

the (k − 1)-dimensional hypercubes with vertices {0, 1}k−1 × {0}n−k+1 embedded in Rn, we get the
following Lemma.

Lemma 6.2.2.
FOru(s)(i) = C(�n,�n−1, . . . ,�n−1︸ ︷︷ ︸

(sn−1 − 1) times

, . . . ,�0, . . . ,�0︸ ︷︷ ︸
(s1 − 1) times

)

Definition 6.2.3. Given a composition s = (s1, . . . , sn), we denote Subdiv�(s) the fine mixed sub-
division of the Minkowski sum of hypercubes �n +

∑n
i=1(si − 1)�i−1 ⊆ Rn obtained by intersecting

the triangulation TriangDKK(Oru(s),�) (projected onto Rp×Rn) with the subspace
{

1
p

}p
×Rn as in

Remark 1.2.32.

Applying the Cayley trick (Proposition 1.2.31) together with the isomorphism between the face
poset of Perms and the interior simplices of TriangDKK(Oru(s),�) (Theorem 6.1.20) gives us the
following theorem.

Theorem 6.2.4. The face poset of the s-permutahedron Perms is isomorphic to the set of interior
cells of Subdiv�(s) ordered by reverse inclusion. Moreover, Stirling s-permutations are in bijection
with the maximal cells of Subdiv�(s).

Figure 6.8 contains an example of Subdiv�(s) and the dual graph formed by the adjacency of its
interior cells with edges oriented perpendicular to each inner wall.
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Figure 6.8 – Subdiv�((1, 2, 1)) (left) and its dual graph (right).
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Remark 6.2.5. Recall from Remark 6.1.3 that the graph Oru(s)# obtained from Oru(s) by con-
tracting the edge (v−1, v0) gives a flow polytope integrally equivalent to Foru(s)(i). In our situation of
summing cubes, we can use a different parametrization of the space where FOru(s)(i) lives by consider-
ing the cube �n (coming from the source edge en+1

1 ) as the Cayley embedding of two hypercubes �n−1
(making the bump en0 and dip ensn into source edges). We could equivalently intersect Rn with the
hyperplane xn = 1

2 . This allows us to lower the dimension further to n − 1 and obtain a fine mixed
subdivision of the Minkowski sum of hypercubes (sn + 1)�n−1 +

∑n−1
i=1 (si − 1)�i−1. We use this

representation for the figures.

Figure 6.9a shows how given the Stirling (1, 2, 1)-permutation w = 3221, its maximal clique ∆3221
determines the construction of its mixed cell via the Cayley trick. Said mixed cell is highlighted
in 6.9b. Both figures follow the coordinate system (e2

0, e
3
0).

e31

l1w
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+ +
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l0w l2w
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Figure 6.9 – (a) Summands of the Minkowski cell corresponding to w = 3221 with their corre-
sponding routes in the clique ∆w. (b) Mixed subdivision of 2�2 +�1 corresponding dually to
the (1, 2, 1)-permutahedron. The cells are numbered according to Figure 6.7. The highlighted
cell in blue corresponds to w = 3221 as obtained in Figure 6.9a.

Via Theorem 6.2.4 and Remark 6.2.5 we have obtained a realization of Perms of the correct di-
mension as in Conjecture 2.5.12. Still, we want to have explicit coordinates to further prove properties
of this polytopal complex. We solve this now using a tropical context.

6.3 The Tropical Realization
Recall that the routes of Oru(s) are described in Definition 6.1.7 and consider the DKK triangula-
tion TriangDKK(Oru(s),�) constructed in Section 6.1. Using Definition 5.1.35 and Proposition 5.1.36
we have the following lemma.
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Lemma 6.3.1. Let s be a composition and ε > 0 a sufficiently small real number. Consider hε to be
the function that associates to a route R = R(k, t, δ) of Oru(s) the quantity

hε(R) = −
∑

k≥c>a≥1
εc−a(tc + δa)2, (6.1)

where tc =
{

0 if δc = 0,
sc if δc = 1,

for all c ∈ [k − 1].

Then hε is an admissible height function for TriangDKK(Oru(s),�).

Before describing explicit coordinates for Perms, we take a moment to give an explicit bound for ε
such that Lemma 6.3.1 holds.

Theorem 6.3.2. For Lemma 6.3.1, it is enough to take ε < 1
n(1+

∑n

j=2(2sj+1)) .

Proof. Let P = R(k, t, δ) and Q = R(k′, t′, δ′) be two routes of Oru(s) that are in minimal conflict
at a common route [vn+1−y, vn−x]. Without loss of generality suppose that Pvn+1−y ≺ Qvn+1−y
giving us that δx = 1 and δ′x = 0. Taking P ′ and Q′ as they resolvents consider the quantity H :=
hε(P ) + hε(Q) − hε(P ′) − hε(Q′). As hε is a height function, Lemma 5.1.34 tells us that H > 0.
Therefore, to determine a bound for ε we compute H for the only three cases which can occur
between P and Q as they are adjacent in �In+1−y and �On+1−x . Figure 6.10 contains a visual aid
corresponding to each of these cases.

P
Q

Q

P
P

Q

Figure 6.10 – The possible cases of minimal conflict between routes. Only one route is bolded
in green, and the conflict area is heavily bolded in red.

• If k = k′ = y, t ∈ [sy − 2], and t′ = t + 1 we have that in hε(P ) + hε(Q) − hε(P ′) − hε(Q′),
all pairs (a, c) in formula 6.1 cancel out either with hε(P ) − hε(Q′) or hε(Q) − hε(P ′) except
for (a, c) = (x, y). Thus, H becomes

H = hε(P ) + hε(Q)− hε(P ′)− hε(Q′)

= −εy−x
(
(t+ 1)2 + ((t+ 1) + 0)2 − (t+ 0)2 − ((t+ 1) + 1)2

)
= 2 εy−x > 0.

• If k > k′ = y, δy = 0, and t′ = 1, then as in the previous case where (x, y) did not cancel out,
here (a, y) for x ≥ a do not cancel out. Now, in hε(P )− hε(Q) all pairs (a, c) cancel out except
those for k ≥ x > y and x ≥ a whose terms come solely from hε(P ). Similarly, for hε(Q)−hε(P )
all pairs (a, c) cancel out except those for k ≥ x > y and x ≥ a whose term tc comes from P ′

and δ′a comes from Q. Thus, the pairs that do not cancel out inH are all pairs (a, c) for k ≥ c ≥ y
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and x ≥ a and H becomes

H = −
∑
x≥a

εy−a
(
δ2
a + (1 + δ′a)2 − δ′a

2 − (1 + δa)2
)
−

∑
k≥c>y
x≥a

εc−a
(
(tc + δa)2 − (tc + δ′a)2

)

= 2 εy−x − 2
∑
x>a

εy−a(δ′a − δa)−
∑

k≥c>y
x≥a

εc−a
(
2 tc(δa − δ′a) + δ2

a − δ′a
2
)

≥ 2 εy−x − 2
∑
x>a

εy−a −
∑

k≥c>y
x≥a

εc−a(2sc + 1)

≥ 2 εy−x − 2 εy−x+1
(
x− 1 + x

∑
k≥c>y

(2sc + 1)
)

≥ 2 εy−x
(
1− ε

(
y − 2 + (y − 1)

∑
k≥c>y

(2sc + 1)
))
.

Thus, taking ε < 1
n(1+

∑n

j=2(2sj+1)) , gives us H > 0.

• If k′ > k = y, t = sy − 1, and δ′y = 1, then as in the previous case the pairs that do not cancel
out are all pairs (a, c) for k ≥ c ≥ y and x ≥ a. This gives us

H = −
∑
x≥a

εy−a
(
(sy − 1 + δa)2 + (sy + δ′a)2 − (sy − 1 + δ′a)2 − (sy + δa)2

)
−

∑
k≥c>y, x≥a

εc−a
(
(t′c + δ′a)2 − (t′c + δa)2

)
= 2 εy−x + 2

∑
x>a

εy−a(δ′a − δa)−
∑

k≥c>y, x≥a
εc−a

(
2 t′c(δ′a − δa) + δ′a

2 − δ2
a

)
.

The final computations are similar to the previous case and so, we omit them.

Remark 6.3.3. We disclose to the reader that the bound of Proposition 6.3.2 is not sharp at all.
However, the proof of Proposition 6.3.2, shows that for the cases s = (1, . . . , 1, k) for k ∈ Z>0 the
value ε can be any positive number. For the case k = 1 this is justified in since any two routes in
minimal conflict of Oru(1, . . . , 1) is the first one where ε just needed to be positive. For the case k > 1
notice that any Stirling (1, . . . , 1, k) permutation of length n can be obtained from a Stirling (1, . . . , 1)
permutation of length n+ k. Passing this idea through our realizations gives us that Perm(1,...,1,k) can
be thought as a projection of a Perm(1,...,1) of bigger dimension.

6.3.1 Coordinates for the s-Permutahedron
We move on to use the tropical technology of Section 5.2 to obtain explicit points for Perms. For the
remainder of this chapter h is an admissible height function for TriangDKK(Oru(s),�).

Since in Section 6.2 we used the Cayley trick on the triangulation TriangDKK(Oru(s),�) to obtain
the mixed subdivision Subdiv�(s), the following theorem directly follows from Proposition 5.2.14.
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Theorem 6.3.4. The tropical dual of the mixed subdivision Subdiv�(s) is the polyhedral complex
of cells induced by the arrangement of tropical hypersurfaces

Hs(h) :=
{
T (F kt ) : k ∈ [2, n+ 1], t ∈ [sk − 1]

}
,

where F kt (x) :=
⊕

h(R(k, t, δ))� xδ = min
{

h(R(k, t, δ)) +
∑
i∈[k−1] δixi : δ ∈ {0, 1}k−1

}
.

Notice that in this description of the tropical polynomials we avoid using the notation 〈δ,x〉
as x ∈ Rn while δ ∈ {0, 1}k−1.

Definition 6.3.5. We denote by Perms(h) the polyhedral complex of bounded cells induced by the
arrangement Hs(h).

Theorem 6.3.6. The face poset of the geometric polyhedral complex Perms(h) is isomorphic to the
face poset of the combinatorial s-permutahedron Perms.

Proof. In Theorem 6.2.4 we saw that the face poset of Perms is anti-isomorphic to the face poset of
interior cells of the mixed subdivision Subdiv�(s). From Lemma 5.2.12 and Theorem 6.3.4 we get
that this poset is isomorphic to the poset of bounded cells of Hs(h), which is precisely the face poset
of Perms(h).

Figure 6.11 shows some examples of the 1-skeleton of such realizations of the s-permutahedron
using the height function hε of Lemma 6.3.1. Figure 6.12 shows Perm(1,1,1,2)(h1) with its maximal
cells unglued. More examples with interactivity can be found in this website1.

Figure 6.11 – The 1-skeletons of Perm(1,1,1,2)(h1) (left) and Perm(1,2,2,2)(h0.2) (right) via their
tropical realization and the height function hε.

With this polytopal complex in hand, we can describe the explicit coordinates of the vertices
of Perms(h) as follows.

1https://sites.google.com/view/danieltamayo22/gallery-of-s-permutahedra
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Figure 6.12 – Perm(1,1,1,2)(h1) with its maximal cells distanced. One cell has been moved further
for a better view.

Definition 6.3.7. Let w ∈ Ws be a Stirling s-permutation, a ∈ [n] and t ∈ [sa]. We denote `(at)
the length of the prefix of w that precedes the t-th occurrence of a. As in Definition 6.1.8, this prefix
corresponds to the route R[w[`(at)]] in the maximal clique of coherent routes ∆w.

Theorem 6.3.8. The vertices of Perms(h) are in bijection with Stirling s-permutations. Moreover,
the vertex v(w) = (v(w)a)a∈[n] associated to a Stirling s-permutation w has coordinates

v(w)a =
sa∑
t=1

(
h(R[w[`(at)]])− h(R[w[`(at)+1]])

)
. (6.2)

Proof. We obtain the bijection between vertices of Perms(h) and Stirling s-permutations directly as
a consequence of Theorem 6.3.6.

Let w be a Stirling s-permutation. Its simplex ∆w is associated via Theorem 6.3.4 to the intersec-
tion of all regions of the form{

x ∈ Rn : h(R(k, t, δ)) +
∑

a∈[c−1]
δaxa = min

θ∈{0,1}k−1

{
h(R(k, t, θ)) +

∑
a∈[k−1]

θaxa
}}

, (6.3)

where R(c, t, δ) is a route in the clique ∆w. It follows from the bijection between vertices and
Stirling s-permutations that this intersection is a single point that we denote v. Let us show that v
has the coordinates stated in the theorem. Let a ∈ [n]. Both routes R[w[`(a1)]] and R[w[`(asa )+1]] are
of the form R(c, t, δ) and R(c, t, δ′) respectively, where c is the smallest letter such that the a-block Ba
is contained in the c-block Bc in w, and t denotes the number of occurrences of c that precedes Ba.
If the Ba is contained in no other block we set c = n + 1 and t = 1 (i.e. the routes start with the
source edge (v−1, v0)). The indicator vectors δ and δ′ satisfy that δ′ − δ is the indicator vector of the
letters b ≤ a such that the Bb is contained in Ba in w. The fact that both routes belong to ∆w implies
that h(R[w[`(a1)]]) +

∑
b∈[c−1] δbvb = h(R[w[`(asa )+1]]) +

∑
b∈[c−1] δ

′
bvb, thus∑

b∈[c−1]
(δ′b − δb)vb =

∑
b∈[a]
Bb⊆Ba

vb = h(R[w[`(a1)]])− h(R[w[`(asa )+1]]). (6.4)
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We finish with an induction on a ∈ [n]. If a = 1, then all terms of Equation 6.2 cancel out ex-
cept h(R[w[`(a1)]]) and −h(R[w[`(asa )]]) which is exactly Equation 6.4 for v1. Suppose we have the
vertex description of all coordinates vb for b < a. From Equation 6.4 and the induction hypothesis we
get that

va = h(R[w[`(a1)]])− h(R[w[`(asa )+1]])−
∑

b∈[a−1]
Bb⊂Ba

sb∑
t=1

(
h(R[w[`(bt)]])− h(R[w[`(bt)+1]])

)
.

In this case all terms on the right cancel whenever the value at position `(bt) + 1 6= a giving us terms
of the form −h(R[w[`(ar)]]) for r ∈ [2, sa] or h(R[w[`(ar)+1]]) for r ∈ [sa − 1].

As all maximal cliques ∆w contain the exceptional routes R(n + 1, 1, (0)n) and R(n + 1, 1, (1)n)
(see Remark 6.1.9), we obtain the following corollary.

Corollary 6.3.9. The s-permutahedron Perms(h) is contained in the hyperplane{
x ∈ Rn :

n∑
i=1

xi = h
(
R(n+ 1, 1, (0)n)

)
− h

(
R(n+ 1, 1, (1)n)

)}
. (6.5)

As a next step, we show that Perms(h) is a generalized permutahedron as in Definition 2.1.28.

Theorem 6.3.10. Let 1 ≤ a < c ≤ n and w and w′ be Stirling s-permutations of the form u1Bacu2
and u1cBau2 respectively, where Ba is the a-block of w and w′. The edge of Perms(h) corresponding
to the transposition between w and w′ is

v(w′)− v(w) =
(

h(R[u1c]) + h(R[u1Ba])− h(R[u1])− h(R[u1Bac])
)
(ea − ec). (6.6)

Proof. Denote t := |(c, a)w| + 1 meaning that the transposition from w to w′ exchanges the a-block
with the t-th occurrence of c. Let us describe v(w′)−v(w) via the expression of the explicit coordinates
we obtained in Theorem 6.3.8. Following the construction of routes R from prefixes u, notice that any
route ending inside u1 or inside u2 appears in ∆w ∩∆w′ as it has the same letters the same amount of
times meaning that it is cancelled out in v(w′)− v(w). Also, all routes ending inside Ba also appear
in v(w′)−v(w) as in this case c is not minimal enough to play the role of defining these routes. Thus,
they are also cancelled. The remaining routes that we have are u1, u1c, u1Ba and u1Bac, which gives
the same route as u1cBa. Therefore, we have that

v(w′)− v(w) =
(
v(w′)a − v(w)a

)
ea +

(
v(w′)c − v(w)c

)
ec

=
(
h(R[w′[`(a1)]])− h(R[w′[`(asa )+1]])− h(R[w[`(a1)]]) + h(R[w[`(asa )+1]])

)
ea

+
(
h(R[w′[`(ct)]])− h(R[w′[`(ct)+1]])− h(R[w[`(ct)]]) + h(R[w[`(ct)+1]])

)
ec

= (h(R[u1c])− h(R[u1cBa])− h(R[u1]) + h(R[u1Ba])) ea
+ (h(R[u1])− h(R[u1c])− h(R[u1Ba]) + h(R[u1Bac])) ec

= (h(R[u1c]) + h(R[u1Ba])− h(R[u1])− h(R[u1Bac])) (ea − ec).
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Lemma 6.3.11. For any strictly decreasing sequence of real numbers κ1 > · · · > κn, the direc-
tion

∑n
i=1 κiei orients the edges of Perms(h) according to the s-weak order covering relations.

Proof. Using Theorem 6.3.10, we know that the edges of Perms(h) have direction (h(R[u1c]) +
h(R[u1Ba]) − h(R[u1]) − h(R[u1Bac]))(ea − ec). As the routes R[u1Ba] and R[u1c] are in mini-
mal conflict at [vn+1−c, vn+1−a] and R[u1] and R[u1Bac] are their resolvents, Lemma 5.1.34 tells us
that h(R[u1c]) + h(R[u1Ba])− h(R[u1])− h(R[u1Bac]) > 0.

Lemma 6.3.12. The support supp(Perms(h)) (i.e. the union of faces of Perms(h)) is a polytope
combinatorially isomorphic to the (n − 1)-dimensional permutahedron. More precisely it can be
described as

1. the convex hull of the vertices v(wσ) where σ ∈ Sn and wσ is the Stirling s-permutation

wσ = σ(1) . . . σ(1)︸ ︷︷ ︸
sσ(1) times

. . . σ(n) . . . σ(n)︸ ︷︷ ︸
sσ(n) times

,

2. the intersection of the inequalities

〈δ,x〉 ≥ h(R(n+ 1, 1, (0)n))− h(R(n+ 1, 1, δ)), (6.7)

〈1− δ,x〉 ≤ h(R(n+ 1, 1, δ))− h(R(n+ 1, 1, (1)n)), (6.8)

for all δ ∈ {0, 1}n.

Proof. We prove each statement separately.

1. Let σ ∈ Sn and consider the linear functional f(x) =
∑
a∈[n] σ(a)xa. We claim that among

all faces of Perms(h), f is maximized on v(wσ). To see this let w be a Stirling s-permutation
and 1 ≤ a < c ≤ n. Notice the following cases.

• If w contains an ascent (a, c) such that σ(a) > σ(c), then f is increasing along the edge of
direction ea − ec corresponding to the transposition of w along the ascent (a, c).

• If w contains a descent (a, c) such that σ(a) < σ(c), then f is increasing along the edge of
direction ec − ea corresponding to the transposition of w along the descent (a, c).

• Otherwise, w = wσ.

This shows that the vertices of supp(Perms(h)) have the same normal cones as the (n − 1)-
permutahedron (embedded in Rn), hence its normal fan is the braid fan.

2. From Remark 6.1.9 we know that that all cliques ∆w contain the routes R(n + 1, 1, (0)n)
and R(n + 1, 1, (1)n). This implies that all vertices of Perms(h) are contained in the follow-
ing intersection of regions given by Equation 6.3.1:{

x ∈ Rn : h(R(n+ 1, 1, (0)n)) = h(R(n+ 1, 1, (1)n)) + 〈1,x〉

= min
δ∈{0,1}n

{
h(R(n+ 1, 1, δ)) + 〈δ,x〉

}}
.
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This intersection is precisely the one obtained from the half-spaces defined in Equation 6.7 and
Equation 6.8.

Moreover, notice that since each a-block Ba in wσ is a consecutive repetition of the letter a, we
have that the vertex v(wσ) has coordinates v(wσ)a = h(R[wσ[`(a1)]]) − h(R[wσ[`(asa )+1]]). Thus,
letting I := {i ∈ [n] : δi = 1} for δ ∈ {0, 1}n, Equation 6.7 and Equation 6.8 achieve equality
with v(wσ) exactly when {σ(1), . . . , σ(|I|)} = I. Meaning that these inequalities define the
facets of supp(Perms(h)).

Remark 6.3.13. With similar arguments we can see that the restriction of the s-weak order to a face
of supp(Perms(h)), associated to an ordered partition, corresponds to a product of s′-weak orders, one
for each part of the ordered partition.

Remark 6.3.14. Since the zonotope
∑

1≤i<j≤n sj [ei, ej ] can be seen to be combinatorially isomorphic
to the (n − 1)-dimensional permutahedron, with Lemma 6.3.12 we have finished answering Conjec-
ture 2.5.12 in the case where s is a composition.

We finish by refining Remark 6.3.14 for the case where h is given by Lemma 6.3.1.

Theorem 6.3.15. Let ε > 0 be a small enough real number such that hε is an admissible height
function for TriangDKK(Oru(s),�). Then the support supp(Perms(hε)) is a translation of the zono-
tope 2

∑
1≤a<c≤n scε

c−a[ea, ec].

Proof. Lemma 6.3.12 and Theorem 6.3.10 tell us that the edges of supp(Perms(hε)) are of the
form [v(wσ),v(wσ′)], where σ and σ′ are permutations of [n] related by a transposition along an
ascent (a, c). Using the DKK height function hε from Equation 6.1 into Equation 6.6 with the modi-
fication that the letter c is replaced by sc occurrences of c (or a repeated use of Equation 6.6), we see
that the only terms that do not cancel out are those involving the pair (a, c) giving us:

v(wσ′)− v(wσ) =
(

h(R[u1Bc]) + h(R[u1Ba])− h(R[u1])− h(R[u1BaBc])
)
(ea − ec)

= −εc−a
(
(sc + 1)2 + (0 + 1)2 − (0 + 0)2 − (sc + 1)2

)
(ea − ec)

= 2 sc εc−a(ea − ec).

Thus, all edges with a same direction also have the same length. Since supp(Perms(h)[hε]) is combi-
natorially equivalent to a permutahedron, it follows that it is a zonotope.

6.4 Enumerative Consequences
We finish this chapter showing some enumerative consequences for the elements in the s-weak or-
der by calculating volume and the lattice points of FOru(s) via the Baldoni–Vergne–Lidskii formulas
(Theorem 5.1.16).
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Corollary 6.4.1. Let s be a (weak) composition. The number of elements in the s-weak order
decomposes as

n−1∏
i=1

(
1 +

n∑
r=n−i+1

sr
)

=
∑

j

(
sn + 1
j1

)(
sn−1 + 1

j2

)
· · ·
(
s2 + 1
jn−1

)
·
n−1∏
i=1

(j1 + · · ·+ ji − i+ 1)

=
∑

j

((
sn + 1
j1

))((
sn−1 − 1

j2

))
· · ·
((
s2 − 1
jn−1

))
·
n−1∏
i=1

(j1 + · · ·+ ji − i+ 1)

where the sums range over weak compositions j of n− 1 such that j � (1, 1, . . . , 1).

We give two proofs. The first proof is geometrical using the flow polytope FOrun while the second
is combinatorial using s-weak order families.

First proof. Let s be a weak composition. Notice that taking the oruga graph Orun, through Re-
mark 6.1.6 we can see that the flow polytope FOrun(sn, sn−1, . . . , s2,−

∑
i si) is integrally equivalent

to the product of segments
∏n−1
i=1 [0,

∑n
r=n−i+1 sr].

Using the Baldoni–Vergne–Lidskii formula for the volume and considering that Orun has shifted
outdegrees oi = 1 for i ∈ [n− 1] and shifted indegrees d1 = −1 and di = 1 for i ∈ [2, n], we have that

∣∣∣FZOrun

(
sn, sn−1, . . . , s2,−

∑
i

si
)∣∣∣ =

∑
j

(
sn + 1
j1

)(
sn−1 + 1

j2

)
· · ·
(
s2 + 1
jn−1

)
|FZOrun(j− 1)|,

=
∑

j

((
sn + 1
j1

))((
sn−1 − 1

j2

))
· · ·
((
s2 − 1
jn−1

))
|FZOrun(j− 1)|,

where the sums range over compositions j = (j1, . . . , jn−1) of n−1 that are � (1, 1, . . . , 1). Now, let us
count the integer flows in FZOrun(j−1). For such an integer flow, the incoming flow at vertex i ∈ [n−1]
is j1 + · · ·+ji−1−(i−1). Since the netflow on vertex i is ji−1, the outgoing flow equals j1 + · · ·+ji−i.
Moreover, there are j1 + · · ·+ ji − i+ 1 possible outgoing integer flows on the two edges (i, i+ 1) for
which the choice of flow is independent. Thus, we obtain as wished

vol
(
FOrun(j− 1)

)
=

n−1∏
i=1

(j1 + · · ·+ ji − i+ 1).

Second proof. We prove the equality of the (LHS) with each expression on the (RHS) separately.
The first formula using binomials, can be obtained similarly to the proof given in Proposition 2.5.3

enumerating s-decreasing trees. For step 0 we begin with the node labeled n. At step 1 we choose which
of its sn + 1 children become nodes (as opposed to leaves). This gives a coefficient

(sn+1
j1

)
, where j1 ∈

[min(sn+1, n−1)]. Among these j1 nodes, one carries the label n−1 with sn−1+1 children. Right before
step i, we have a partial s-decreasing tree with i nodes labeled by [n+1−i, n],and j1+· · ·+ji−1−(i−1)
unlabeled nodes, where jk is the number of non-empty subtrees of the node n+ 1−k, whose positions
were chosen at the step k. At step i we choose ji from the sn+1−i + 1 new children to become new
nodes. At this point we get ni := j1 + · · ·+ ji − (i− 1) nodes without labels. To ensure that ni > 0,
we have that constraint to verify that the jk chosen so far satisfy that

∑i
k=1 ji ≥ i. Afterwards we
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choose one of these ni nodes to carry the label n− i. We stop after step n− 1 where we have obtained
an s-decreasing tree.

The second formula that utilizes multiset binomials can be obtained in the following way of building
a Stirling s-permutation. Let us say that an a-block Ba covers a b-block Bb in w if a is the smallest
letter such that the Bb ⊂ Ba. At step 0 we begin with the sequence of sn consecutive occurrences
of n and choose a number j1 of blocks to be covered by Bn or appear before or after it in the final
multipermutation w. Notice that there are

((sn+1
j1

))
ways to arrange these blocks among the occurrences

of n. Choose one of these j−1 blocks to be the sequence of s(n−1) consecutive occurrences of n−1. At
the beginning of step i, we have a partial Stirling s-permutation that contains all occurrences of the
letters in [n+1−i, n] and j1+· · ·+ji−1−(i−1) unlabeled blocks, where jk is the number of blocks covered
by the (n+ 1− k)-block, whose positions were chosen at the step k. At step i choose the number ji of
blocks that to be covered by the (n+ 1− i)-block and one among the

((sn+1−i−1
ji

))
ways to arrange them

between the first and the last occurrence of n+ 1− i. Choose one of the ni := j1 + · · ·+ ji − (i− 1)
unlabeled block to be the (n− i)-block. After step n−1 we have inserted B1 and finished constructing
a Stirling s-permutation.

Remark 6.4.2. When s is a composition, Corollary 6.1.5, tells us that the RHS of Corollary 6.4.1
gives the volume of FOru(s)(i). This together with Proposition 5.1.41 gives us that

vol
(
FOru(s)(1, 0, . . . , 0,−1)

)
=
∣∣∣FZOru(s)(0, sn, sn−1, . . . , s2,−

∑
i

si)
∣∣∣

=
∣∣∣FZOrun(sn, sn−1, . . . , s2,−

∑
i

si)
∣∣∣, (6.9)

where the second equality follows from our Remark 6.1.3. Thus, the formulas of Corollary 6.1.5 as
decomposition formulas for the volume of FOru(s)(i) as well. This is the approach followed in [KMS21]
to prove geometrically the Lidskii decomposition of the Kostant partition formula given in Theo-
rem 5.1.16.

Remark 6.4.3. Notice that the Lidskii formulas hold for zero also when s is a weak composition.
Moreover, each term of the RHS of the first Lidskii formula is nonnegative for si ≥ 0, however terms
of the RHS of the second formula can be negative as in Example 6.4.4 for s = (1, 0, 1).

Example 6.4.4. For n = 3, Corollary 6.4.1 yields

(1 + s3)(1 + s2 + s3) =
(
s3 + 1

1

)(
s2 + 1

1

)
+
(
s3 + 1

2

)
· 2, (6.10)

=
(
s3 + 1

1

)(
s2 − 1

1

)
+
(
s3 + 2

2

)
· 2. (6.11)

We finish with some perspectives stemming out from our work.

Perspective 6.4.5. Ceballos and Pons also conjectured ([CP19, Conjecture 2]) that there exists a
geometric realization of Perms (when s is a strict composition) such that the s-associahedron can be
obtained from it by removing certain facets. Our realizations seem very promising for providing a
geometric relation between s-permutahedra and s-associahedra, but this is still work in progress.
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Perspective 6.4.6. Since in this chapter our objective was to answer Conjecture 2.5.12, we con-
centrated our efforts on studying the framing of Oru(s) described in Definition 6.1.1 to obtain the
triangulation TriangDKK(Oru(s),�) which encoded the s-weak order. It is natural to ask about
other DKK triangulations of FOru(s) coming from other framings and the poset structures that arise
from them. In the case of the caracol graph Car(s), Bell et al. [vGMY23] studied the length fram-
ing and the planar framing whose corresponding DKK triangulation correspondingly realized in their
dual graph the s-Tamari lattice and the principal order ideal I(ν) in Young’s lattice, where νi =
1 + sn−i+1 + sn−i+2 + · · ·+ sn.

Perspective 6.4.7. Although the s-weak order of Ceballos and Pons is defined for weak compositions,
all of our realizations are defined uniquely for compositions as Oru(s) requires that si > 0 for i ∈ [n+1].
Moreover, even though Corollary 6.1.5 does not hold for weak compositions, Remark 6.1.6 and the
first proof of Corollary 6.4.1 let us see that there is a connection. Computationally we have found
certain variations of Oru(s) to describe the s-weak order for certain families of weak compositions.
This is still work in progress.
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Recovering Permutrees with Flow Polytopes

In this chapter we apply our machinery of flow polytopes to give another answer to Perspective 2.4.55.
That is, we recover permutree lattices from the dual triangulation of a framed graph. This chapter
comes from ongoing work [GMP+23b].

Our inspiration for the following came from looking at Carn and Orun in Figure 7.1 and deducing
a way to create other similar graphs.

Figure 7.1 – The oruga Orun (left), caracol Carn (middle), and mariposa Marn (right) graphs.

7.1 M-Moves
Taking Orun as a starting point, we provide an operation on the edges of Orun to create new graphs
akin to Carn.

Definition 7.1.1. Let G be a graph on {v0, . . . , vn}. The graph obtained by the M-move applied on
an edge (vi, vi+1) is the graph M(G) on {v0, . . . , vn} with edge set E(M(G)) := (E(G)\{(vi, vi+1)})∪
{(v0, vi+1), (vi, vn)}.

Endow Orun with the framing ei0 �In+1−i e
i
1 (resp. ei−1

0 �On+1−i e
i−1
1 ) for i ∈ [1, . . . , n − 1]. The

graph M(Orun) resulting from the M-move on the edge ei0 (resp. ei1) has the new modified framing �′
where the new edges inherit the framing of the removed edge. Figure 7.2 contains examples of the M-
moves with the normal embedding of Orun. This framing is called the inherited framing of M(Orun).

We call the resulting graph after doing all possible M-moves on Orun the mariposa graph de-
noted Marn. Mariposa is the Spanish word for butterfly and as before, this name comes from the
embedding of Marn shown in Figure 7.1.
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Figure 7.2 – The resulting framed graph M(Orun) after applying an M-move M on the edge ei0
(top) (resp. ei1 (bottom)) of Orun. The edges affected by the M are bolded.

Notice that any sequence of M-moves gives a graph that can be considered to be between Orun
and Marn. Moreover, all M-moves are independent of each other as they manipulate disjoint sets
of edges. As we can apply M-moves to none, one, or both of the edges between the vertices vn+1−i
and vn+1−i, the following definition is in order.

Definition 7.1.2. Let δ ∈ · { , , , }n−2 · be a permutree decoration. Apply on Orun the
sequence of M-moves on the edge ei0 if δi ∈ { , } (resp. ei1 if δi ∈ { , }). We call the resulting
graph the δ-bicho graph and denote it by Bicδ. Bicho is the closest Spanish word for critter that
encompasses caterpillars, snails, and butterflies at the same time.

Remark 7.1.3. With Definition 7.1.2 it is clear that M(Bicδ) = Bicδ′ for a collection M of M-moves
if and only if δ refines δ′. In this context we say that M(δ) = δ′. Similar to Figure 2.21, this gives us
Figure 7.3 containing all possible δ-bicho graphs for decorations δ ∈ · { , , , }2 · .

With our δ-bicho graphs in hand, we can study their corresponding flow polytopes FBicδ(a).

Remark 7.1.4. Since we obtain Bicδ from Orun via M-moves, we get that its polytope lives in
dimension ∣∣∣E(Bicδ

)∣∣∣ = 2n+
∣∣∣{i ∈ [n] : δi ∈ { , }

}∣∣∣+ 2
∣∣∣{i ∈ [n] : δi ∈ { }

}∣∣∣
and

dim
(
FBicδ(a)

)
= n+

∣∣∣{i ∈ [n] : δi ∈ { , }
}∣∣∣+ 2

∣∣∣{i ∈ [n] : δi ∈ { }
}∣∣∣.

Similar to the case of Oru(s), we denote routes of Bicδ as R(k1, t1, θ, k2, t2). Intuitively this notation
comes from the fact that every route of Bicδ starts from v0, lands in a vertex vn+1−k1 via a source
bump or dip, follows k1 − k2 − 1 edges that can be either bumps or dips (depending on δ) and finally
jumps from a vertex vn+1−k2 to vn by a sink bump or dip. In a more formal fashion, we give the
following definition.
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7.1. M-Moves

Figure 7.3 – All · { , , , }2 · -bicho graphs. The bottom graph is the oruga graph, the
second graph in the middle is the caracol graph, and the top graph is the mariposa graph.

Definition 7.1.5. Let δ ∈ · { , , , }n−2 · and denote the sequences of sets

Θ =
(
∅,Θ2, . . . ,Θn−1, ∅

)
where

{
0 ∈ Θi if δi ∈ { , },
1 ∈ Θi if δi ∈ { , },

Ωin =
(
{0, 1},Ωin

2 , . . . ,Ωin
n−1, ∅

)
where

{
0 ∈ Ωin

i if δi ∈ { , },
1 ∈ Ωin

i if δi ∈ { , },

Ωout =
(
∅,Ωout

2 , . . . ,Ωout
n−1, {0, 1}

)
where

{
0 ∈ Ωout

i if δi ∈ { , },
1 ∈ Ωout

i if δi ∈ { , }.

We denote the routes of Bicδ as R(k1, t1, θ, k2, t2) where 2 ≤ k2 < k1 ≤ n, t1 ∈ Ωin
n+1−k1

, t2 ∈
Ωout
n+1−(k2−1), and θ ∈

∏n+1−k2
i=n+1−(k1−1) Θi.

139



Chapter 7. Recovering Permutrees with Flow Polytopes

Example 7.1.6. Consider the route R(6, 1, (1, 0, 1), 3, 0) of Bic depicted in Figure 7.4.
In this case 1 ≤ 3 < 6 ≤ 6, 1 ∈ Ωin

2 , 0 ∈ Ωout
6 , and δ ∈ Θ3 ×Θ4 ×Θ5 where

Θ = ∅ × {1} × {0, 1} × {0} × {0, 1} × ∅ × ∅,
Ωin = {0, 1} × {1} × ∅ × {0} × ∅ × {0, 1} × ∅,

Ωout = ∅ × {0} × ∅ × {1} × ∅ × {0, 1} × {0, 1}.

v3 v4 v5 v6 v7v2v1v0

Figure 7.4 – The route R(6, 1, (1, 0, 1), 3, 0) of Bic bolded in blue.

Remark 7.1.7. Given a route R := R(k1, t1, (θn+1−(k1−1), . . . , θn+1−(k2)), k2, t2) in Bicδ, the action of
doing an M-move M on an edge eik = (vn+1−(i+1), vn+1−i) of Bicδ either transforms R into a pair of
routes M(R) := {R1, R2} where

R1 := R(i, θn+1−i, (θn+1−(i−1), . . . , θn+1−k2), k2, t2)
R2 := R(k1, t1, (θn+1−(k1−1), . . . , θn+1−(i+1)), i+ 1, θn+1−i)

if k2 ≤ i ≤ k1 − 1 and k = θn+1−i or and does not affect R at all and M(R) = {R0} where R0 := R.
The routes R0, R1, R2 are all shown in the graph BicM(δ). See Figure 7.5 for an example of this
construction in Oru5.

7.2 Enumerating Integer d-Flows in Bicδ
In this section we draw several parallels between the enumeration of permutrees done in [PP18, Sec.2.5]
and the enumeration of integer d-flows in Bicδ.

Remark 7.2.1. Recall that d := (d0, d1, . . . , dn−1,−
∑n−1
i=0 di) which in our current context is defined

as di = indegi(Bicδ) − 1. Moreover, notice that for any permutree decoration δ we have that this
vector is always d = (0, 1 . . . , 1,−n+ 1).

140



7.2. Enumerating Integer d-Flows in Bicδ

R2 := R(5, 1, (1), 4, 0)

R1 := R(3, 0, (0), 2, 1)

R := R(5, 1, (1, 0, 0), 2, 1)

R := R(5, 1, (1, 1, 0), 2, 1)

R0 := R(5, 1, (1, 1, 0), 2, 1)

⇒

⇒

Figure 7.5 – The M-move corresponding to the bump (v2, v3) applied on two routes (left) of Oru5
and their responding routes after the M-move (right). The edges affected by the M-move are
bolded.

Lemma 7.2.2. Let δ be a permutree decoration and δ′ be any decoration such that δ−1( ) = δ′−1( )
and δ−1( ) = δ′−1( ). Then |FZBicδ(d)| = |FZBicδ′ (d)|.

Proof. Suppose that δ and δ′ are permutree decorations with the stated property. Notice that the
definition of M-moves and Bicδ is symmetric between choosing the decorations and except for
the defined framing. Therefore, the graphs Bicδ and Bicδ′ are isomorphic. Since the counting of
integer d-flows depends only on the underlying graph structure, we get our result.

Lemma 7.2.3. Suppose that a permutree decoration δ decomposes as δ = δ′ δ′′. Then |FZBicδ(d)| =
|FZBic

δ′
(d)| · |FZBic

δ′′
(d)|.

Proof. From Definition 7.1.2 it follows that an M-move corresponding to a decoration δi = partitions
the set of routes of Bicδ into routes of the form R(k′1, t′1, θ′, k′2, t′2) where i + 1 ≤ k′2 < k′1 ≤ n

and R(k′′1 , t′′1, θ′′, k′′2 , t′′2) where 2 ≤ k′′2 < k′′1 ≤ i. This partitions the edges of Bicδ into two sets
depending on the type of routes that contain them. In this context any d-flow on Bicδ gets divided
into the two sections of the graph. Since the sections form a partition, the flows are independent. As
the subgraphs corresponding to this partition are isomorphic to Bic

δ′
and Bic

δ′′
after a relabeling

of the vertices the result follows.

Remark 7.2.4. For n = 1 the graph Bicδ is isomorphic just two vertices with two edges no matter
the decoration. In this case d = (0, 0). As such, in this case there is only 1 integer d-flow which is
the constant flow f0 assigning to every edge flow 0. Similarly, for n = 0, we have that Bicδ is a point
with d = (0) and the same constant flow f0 is the only integer d-flow.
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Chapter 7. Recovering Permutrees with Flow Polytopes

Theorem 7.2.5. For any decoration δ ∈ { , }n, the sets of integer d-flows of Bicδ and δ-permutrees
are in bijection.

Proof. Given i ∈ [n] denote respectively by en+1−i
0 := (vi−1, vi) and en+1−i

1 :=
{

(vi−1, vi) if δi = ,

(vi−1, vn) if δi =
the bump edges of Bicδ and the dip edges of Bicδ that can receive any flow when the netflow is given
by d. In this context notice that a d-flow f is uniquely determined by the values f(en+1−i

0 ) as all
source edges have 0 flow, and all dip edges have flow that satisfies the recursive relations

f(en+1−i
1 ) =

f(en+1−(i−1)
0 ) + f(en+1−(i−1)

1 ) + 1− f(en+1−i
0 ) if δi−1 = ,

f(en+1−(i−1)
0 ) + 1− f(en+1−i

0 ) if δi−1 = .

Take f an integer d-flow of Bicδ. Let us construct a δ-permutree (with nodes relabeled {v′1, . . . , v′n}
to avoid confusion). We do this starting from the integers f(ei) and proceeding like in the proofs of
Lemma 3.1.3 and Theorem 3.2.6 using the insertion algorithm as follows. Begin by taking an n×n grid.
At step 1, since f(en+1−1) = 0, place the vertex v′1 anywhere in the first column. For convenience
place it at position (1, 1). At step i, place the vertex v′i in position (i, i − f(en+1−i)) moving all
previous vertices that are at the same or greater height upwards by 1 unit. After step n we obtain a
permutation table. Decorating this table with δ and applying the permutree insertion algorithm gives
us a δ-permutree Tf such that fTf = f . See Figure 7.6 for an example.

2

1

1

1

2

3

5

4

2

1

3

2

3

1

4

2

3

1

4

5

21210

0

0

0 0 0
2

0

Figure 7.6 – The construction of a -permutree (right) from the integer d-flow char-
acterized by the flow (0, 1, 2, 1, 2) on the bumps of Bic (left).

Conversely, let T ∈ PT (δ) be a δ-permutree. We define the function fT (en+1−i) =
∣∣{j ∈

[i − 1] : i → j}
∣∣. That is, the amount of vertices in LAi (resp. Ai) with label smaller than i.

We claim that this function is compatible with the netflow d. Indeed, notice that although the
definition tells us that fT (en+1−i) ≤ i − 1 for i ∈ [n], we actually have that fT (en+1−1) = 0
and fT (en+1−i) ≤ fT (en+1−(i−1)) + 1 for i ∈ [1, n]. This occurs as δ ∈ { , } implies that ei-
ther i − 1 → i and fT (en+1−i) ≤ fT (en+1−(i−1)) or i → i − 1 and fT (en+1−i) = fT (en+1−(i−1)) + 1.
So we know that the amount of flow is the correct one and respects the netflow d. Thus, fT can be
extended to a unique integer d-flow of Bicδ.
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Corollary 7.2.6. Given a permutree decoration δ, we have that∣∣PT (δ)
∣∣ =

∣∣FZBicδ(d)
∣∣ = vol

(
FBicδ(i)

)
.

Proof. Due to Lemma 7.2.3 and 7.2.2,
∣∣FZBicδ(d)

∣∣ can be decomposed as a product of
∣∣FZBicδ′ (d)

∣∣
where δ′i ∈ { , }. As these integer d-flows are in bijection with δ′-permutrees through Theorem 7.2.5
and δ-permutrees follow the same decomposition given in Proposition 2.3.8, we have that |FZBicδ(d)| =
|PT (δ)|. We finish by applying Theorem 5.1.41.

7.3 Permutrees and Cliques of Bicδ
As before, the routes of the framed graph Bicδ give us the triangulation TriangDKK(Bicδ,�) of FBicδ(i).
We proceed to show how simplices of these triangulations relate with each other.

Definition 7.3.1. Let C be a collection of routes of Bicδ and M a sequence of M-moves on a subset
of edges of Bicδ. We denote by M(C) the set

⋃
R∈CM(R) following Remark 7.1.7.

Lemma 7.3.2. If C is a set of coherent routes of Bicδ, thenM(C) is a set of coherent routes of BicM(δ).

Proof. It is enough to prove the lemma for the case when M is an M-move on a single edge eik =
(vn+1−(i+1), vn+1−i). In this case δ l δ′ and Bicδ′ has the same framing of Bicδ except for On+1−(i+1)
and In+1−i. Let P and Q be two routes in C. We have the three following cases.

• If both P and Q contain eik then M(P ) = {P1, P2} and M(Q) = {Q1, Q2}. Let us see
that {P1, P2, Q1, Q2} is a clique.

– The pairs of routes {P1, P2}, {P1, Q2}, (Q1, P2) and {Q1, Q2} are all cliques as each pair
of routes has no common vertices except v0 and vn. Thus, no possible conflict.

– For {P1, Q1} notice that their suffixes satisfy vn+1−iP1 = vn+1−iP and vn+1−iQ1 =
vn+1−iQ and that both their source edges are P1vn+1−i = Q1vn+1−i. Therefore, the edges
on which P1 and Q1 differ are the same as the edges on which P and Q differ. As P and Q
are coherent, P1 and Q1 are coherent. Similar for {P2, Q2}.

Thus, all routes in {P1, P2, Q1, Q2} are pairwise coherent.

• If P contains eik but Q does not, then M(P ) = {P1, P2} and M(Q) = {Q0}.

– If Q contains ei1−k then notice that as Q0 = Q, vn+1−iP1 = vn+1−iP and P2vn+1−(i+1) =
Pvn+1−(i+1), and their framing is inherited from P and Q, we have that no conflict can
arise.

– If Q does not contain ei1−k then the common edges of P1 and Q0 (resp. P2 and Q0) are
common edges of P and Q meaning that no conflict occurs.

Thus, P1, P2 and Q0 are pairwise coherent. The argument is similar with the roles of P and Q
reversed.
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Chapter 7. Recovering Permutrees with Flow Polytopes

• If neither P nor Q contain eik then M(P ) = {P0} and M(Q) = {Q0}. As P = P0, Q = Q0 and
their framings are the same as before, we have that P0 and Q0 are coherent.

As in all casesM(P )∪M(Q) is formed by pairwise coherent routes, we have thatM(C) =
⋃
R∈CM(R)

is a clique of Bicδ′ .

Remark 7.3.3. For the exceptional routes Rd = R(n, 1, (1)n−2, 2, 1) and Rb = R(n, 1, (0)n−2, 2, 1)
of Orun = Bic n , we have that M(Rd) ∪M(Rb) are the exceptional routes of Bic

M
( n).

Lemma 7.3.4. Let δ, δ′ be permutree decorations such that δ refines δ′ and M be the collection of
M-moves transforming Bicδ to Bicδ′ . Then every C ′ ∈ MaxCliques(Bicδ′ ,�) is of the form M(C) for
some C ∈ MaxCliques(Bicδ,�).

Proof. Suppose that δ l δ′ in the refinement order of permutree decorations. In this case, as an M-
move replaces 1 edge by 2 edges, we have that |E(Bicδ′)| = |E(Bicδ)|+1. Since the number of vertices
after an M-move is the same, we also obtain that dim(FBicδ′ (d)) = dim(FBicδ(d))+1. Suppose that C
is a maximal clique of coherent routes of Bicδ. Lemma 7.3.2 tells us that M(C) is a clique of coherent
routes of Bicδ′ . We proceed to show that M(C) is maximal, that is, |M(C)| = |C|+ 1.

Let eik denote the edge on which M is applied. Consider P,Q to be routes of Bicδ containing
the edge eik and let z denote the number of such routes. Following Remark 7.1.7 we have that
if vn+1−iP = vn+1−iQ then P1 = Q1 (resp. if Pvn+1−(i+1) = Qvn+1−(i+1) then P2 = Q2). Thus, each
path from v0 to vn+1−(i+1) and each path from vn+1−i to vn appearing in a route of C containing the
edge eik contributes a route to |M(C)|. The fact that each route containing eik contains 2 such paths
together with how coherent paths interact after an M-move shown in the proof of Lemma 7.3.1 gives
us that there is a total of z + 1 such paths in C. That is, there are z + 1 routes in M(C) contributed
from routes containing eik. Any route R that does not contain eik contributes just 1 to the cardinality
of |M(C)| as M(R) = {R0}. Since there are |C| − z such routes we are done.

The general case follows from the fact that all M-moves affect different edges coming from Orun.

Notice that Lemma 7.3.4 agrees with the fact that dim(Orun) = n and dim(Marn) = 3n − 4
as between n and n there are 2(n − 2) coarsening covering relations in the order of permutree
decorations.

Theorem 7.3.5. Let δ be a permutree decoration. The set of δ-permutrees PT (δ) is in bijection with
the set of maximal cliques of coherent routes MaxCliques(Bicδ,�).

Proof. Recall from Lemma 2.3.7 that the number of edges of a δ-permutree is precisely n+ 1 + |{i ∈
[n] : δi ∈ { , }}|+2|{i ∈ [n] : δi ∈ { }}|. This coincides with the number of elements of a maximal
clique of coherent routes of Bicδ being 1 more than the dimension calculated in Remark 7.1.4.

Let M denote the collection of M-moves such that M( n) = δ. We now proceed to label the
edges of a δ-permutree T with routes in Bicδ by doing an enhanced version of the permutree insertion
algorithm (see Definition 2.3.4).

Consider a decorated table corresponding to T . Below the table place the all-dip route Rd1
1 :=

R(n, 1, (1)n−2, 2, 1). Now, in increasing order for i ∈ [2, n − 1], if δi ∈ { , } (resp. if δi ∈ { , })
draw a red wall below (resp. above) the coordinate decorated with δi and apply an M-move Mi on
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the edge en+1−i
1 of Rdi1 as per Definition 7.1.2 to obtain Mi(Rdi) = {Rd(i+1)

1 , R
d(i+1)
2 }. At the bottom

of the left (resp. right) zone created by the red wall place Rd(i+1)
2 (resp. Rd(i+1)

1 ). This gives at the
bottom of each zone delimited by the red walls an exceptional route of Bicδ as given by M(Rd).

For step 0, from the bottom of each zone generate a string labeled with the route of that zone.
At step i extend these labeled strings by a unit of 1. If the height of a subset of labeled strings is the
same as the height of a decorated coordinate and are not separated by a red wall, the decoration at
the coordinate catches the labeled strings and then releases a new set of labeled strings through the
following rules.

• If δi = , then change en+1−i
1 by en+1−i

0 in the entering route.
• If δi = , then undo the M-move on en+1−i

1 from the two entering routes to get a single new
route and change its edge en+1−i

1 by en+1−i
0 .

• If δi = , then change en+1−i
1 by en+1−i

0 in the entering route and apply the M-move of en+1−i
0 .

• If δi = , apply rule and then rule .

The rules are depicted in Figure 7.7. The algorithm ends when the strings have lengths n + 1. See
Figure 7.8 for an example of a δ-permutree obtained through this altered insertion algorithm.

A

A

· · ·

· · · B

B

· · ·

· · ·BA

A · · · B· · ·BA

B· · ·A · · ·

BA

BA

i i i i

Figure 7.7 – The release and catching rules of the modified permutree insertion algorithm. A
(resp. B) represents a path from v0 to vn+1−(i+1) (resp. from vn+1−i to vn).

Denote by R(T ) the collection of routes that label the edges of T . We claim that R(T ) is a clique
of coherent routes of Bicδ. Moreover, we claim that R(T ) = M(C) where C is the clique of routes
that labels the n-permutree with same table as T . Suppose that nlδ and the general case follows
through any sequence of coarsening relations between n and δ. Following the proof of Lemma 6.1.10,
the maximal clique C in Oru((1, . . . , 1)) = Orun is endowed with a total order on the routes dictated
by its corresponding permutation. As each of the routes R ∈ C is transformed toM(R), these covering
relations are translated into the covering relations represented by the rules , , and . Following
the cases in the proof of Lemma 7.3.2 we get that

⋃
R∈CM(R) =: M(C) and R(T ) = M(C) which is

a set of coherent routes according to Lemma 7.3.4.
Since R(T ) has the same cardinality as the edges of T , it follows that R(T ) is a maximal clique of

coherent routes of Bicδ. As M-moves are independent between themselves and the rules in Figure 7.7
are also independent as they interact with different edges of T , it follows that this is an injection
from δ-permutrees to maximal cliques of routes of Bicδ. Corollary 7.2.6 tells us that these sets have
the same cardinality, so we obtain a bijection.
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1

3

5

4

2

Figure 7.8 – A -permutree with edges labeled by its maximal clique of flows.

Remark 7.3.6. The routes at the top of the zones of a δ-permutree T are exactly the exceptional
routes M(Rb) ordered from left to right via the M-moves on ei0 if δi ∈ { , }. Thus, we can also
describe the modified permutree insertion algorithm via strings going down.

Corollary 7.3.7. Let T1, T2 be different δ-permutrees. The simplices ∆T1 and ∆T2 are adjacent
in TriangDKK(Bicδ,�) if and only if there is a covering relation between T1 and T2 in the δ-permutree
rotation order.

Proof. Notice that an edge i→ j with i < j in a δ-permutree is equivalent to doing rule δi followed by
rule δj . Since these rules act on disjoint sets of routes in Bicδ, we have that the rules satisfy δi ◦ δj =
δj ◦ δi applied to the maximal route in RDi.

Suppose now that there is an ij-rotation from T1 to T2 with i < j. As the ij-rotation keeps the
structure of T1 intact except for the edge i → j changed to j → i, we have by Theorem 7.3.5 and
the start of our proof that this is equivalent to ∆T1 and ∆T2 differing exactly in 1 route. This route
corresponds to applying rule δj before δi in the modified permutree insertion algorithm.

In Figure 7.9 we present the 3 initial covering relations of the -permutree rotation lattice.
We finish this thesis with several perspectives that would be interesting to study stemming from

the work of this last chapter.

7.4 Perspectives and Conjectures
With Theorem 7.2.5 we opted to define a direct bijection between δ-permutrees and integer d-flows
of Bicδ when δ ∈ { , } instead of proving the full decomposition shown in Proposition 2.3.8 for
permutrees of said decorations. This leads us to the following conjecture.
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Figure 7.9 – The rank 1 covering relations of the -permutree rotation lattice with each
permutree having edges labeled by their maximal clique of flows.

Conjecture 7.4.1. Let δ ∈ { , }. The number of d-flows of Bicδ satisfies the recursive formula∣∣∣FZBicδ(d)
∣∣∣ =

∑
i∈δ−1

( )
J⊆δ−1

( )
∣∣∣FZBicδ[i−1]\J

(d)
∣∣∣∣∣∣FZBicδ[i+1,n]\J

(d)
∣∣∣|J |!.

Lemmas 7.2.2 and 7.2.3 together with Conjecture 7.4.1 would give us the following general recursive
decomposition of the number of d-flows of Bicδ as follows.

Conjecture 7.4.2. For any permutree decoration δ, the number of d-flows of Bicδ satisfies the recur-
sive formula ∣∣∣FZBicδ(d)

∣∣∣ =
∏
k∈[`]

∑
i∈[bk−1,bk]∩δ−1

( )
J⊆[bk−1,bk]∩δ−1

( )
∣∣∣FZBicδ[bk−1,i−1]\J

(d)
∣∣∣∣∣∣FZBicδ[i+1,bk]\J

(d)
∣∣∣|J |!

where {b0 < · · · < b`} = {0, n} ∪ δ−1( ).
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Perspective 7.4.3. The proof given in Theorem 7.2.5 also raises several interesting questions. A
concrete one being if it is possible to extend this bijection from the case δ ∈ { , } to all possible
permutree decorations. A more abstract one is that the proof makes use of an insertion algorithm
construction based on a vector like in the proofs of Lemma 3.1.3 and Theorem 3.2.6. As these proofs
characterized certain properties of permutrees linked to inversion and cubic vectors respectively, we
wonder if there is some other vector for permutrees at play here. At first glance it would appear to
be the bracket vector of δ l↔-permutrees where δ l↔ denotes the decoration obtained after flipping all
decorations and reversing the order of δ.

Perspective 7.4.4. Corollary 7.3.7 gives us a realization of the 1-skeleton of the permutreehe-
dron PT(δ) as the dual poset of the maximal interior faces of TriangDKK(Bicδ,�) with the inherited
framing of Orun. It would be nice to extend this to get a full realization of PT(δ) as the dual of
this triangulation. Furthermore, Proposition 5.1.22 tells us that the Cayley trick might give us an
interesting family of sums of polytopes somewhere between summations of cubes and summations of
simplices. Finally, applying the tropical toolbox described in Subsection 5.2 together with the DKK
framing should give us explicit coordinates and a new explicit realization of PT(δ).

Perspective 7.4.5. In this chapter we concentrated on the M-moves applied onto Orun since the
lattice structure of δ-permutrees was already given in [PP18]. It would be interesting to study M-
moves on Oru(s). The source edges created by the M-move correspond to adding a 1 to a coordinate
of s, but it is unclear what role the new sink edges play. The hope is that M-moves define lattice
congruences of the s-weak order. If so, this could give a path for permutrees to find their place in
the s and ν world.

Perspective 7.4.4 of obtaining explicit polytopes for these lattices applies to this case as well to
obtain s-permutreehedra. This is of particular interest as if PTs(δ) are obtained by removing facets
from Perms, we would have a positive answer to the conjecture [CP19, Conj.2] about obtaining the s-
associahedron by removing certain facets from the s-permutahedron when s is free of zeros.

Perspective 7.4.6. Permutrees only define a certain subset of lattice congruences on the weak order.
To study the whole set of lattice congruences of a lattice one needs to understand the join irreducible
elements of the lattice as done in [PS17] for the weak order. In our case that would mean extending
the arc diagram characterization of join irreducibles of permutations to s-arc diagrams for Stirling s-
permutations or even s-decreasing permutrees for the most general case.

Perspective 7.4.7. Moreover, it would be interesting to define and understand (s, δ)-permutrees and
develop their combinatorics as in [PP18] for permutrees. That is, finding (s, δ)-permutree congruences,
an s-insertion algorithm, s-permutreehedra, and even (s, δ)-permutree Hopf algebras.

Perspective 7.4.8. In [MM13] the concepts of graphs, flows, and the Kostant partition functions
were given not only for type A but also for types B and D. Since the definition of Orun seems to
have a certain connection with the Coxeter graph of type A, it may be worth it to look for similar
graphs for types B and D and specify M-moves on them. This could also help generalize the Cambrian
phenomenon found in all Coxeter types to the context of permutrees.
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