
HAL Id: tel-04305354
https://theses.hal.science/tel-04305354

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of a distributed bio-inspired neural
architecture on FPGA

Tarek Elouaret

To cite this version:
Tarek Elouaret. Implementation of a distributed bio-inspired neural architecture on FPGA. Auto-
matic. CY Cergy Paris Université, 2023. English. �NNT : 2023CYUN1178�. �tel-04305354�

https://theses.hal.science/tel-04305354
https://hal.archives-ouvertes.fr

CY Cergy Paris University - École doctorale no 405 Économie, management,
mathématiques, physique et sciences informatiques (EM2PSI)

Implémentation d’une architecture
neuronale bio-inspirée distribuée

sur FPGA

by

Tarek Elouaret

This dissertation is submitted for the degree of
Doctor of Philosophy from CY Cergy Paris University

Catherine Dezan Bretagne Occidentale Université Rapporteure
Jean-Christophe Prévotet INSA de Rennes Rapporteur
Virginie Fresse Université de Saint-Etienne Présidente du jury
Andrea Pinna Sorbonne Université Examinateur
Olivier Orfila VEDECOM Examinateur
Stéphane Zuckerman CY Cergy-Paris Université Encadrant
Lounis Kessal ENSEA Directeur
Olivier Romain CY Cergy-Paris Université Co-Directeur

Submitted: April, 5th, 2023

English Abstract

Implémentation d’une architecture neuronale
bio-inspirée distribuée sur FPGA

Abstract:

Autonomous vehicles heavily rely on efficient self-localisation mechanisms. Cameras are the
most common kinds of sensors to perform this task: they provide rich input at very low
cost. The computational intensity of visual localisation varies depending on the complexity
of the environment surrounding the vehicle, which influences which real-time task should
run, and when. Real-time image processing in this context requires fast processing, as well
as the ability to store enough information to take decisions in an energy-efficient manner,
especially in the case of electric vehicles. Hence, leveraging FPGAs is a natural answer
to many issues raised by such an application, in order to facilitate application prototyping
and estimate the proper energy savings. We introduce a distributed solution to implement
a large bio-inspired visual localisation model. The proposed workflow is comprised of the
following: (1) an image processing IP which yields the pixels information per each visual
landmark detected in each captured image; (2) an implementation of N-LOC, a bio-inspired
neural architecture on FPGA board; (3) A distributed version of N-LOC and its evaluation
over a single FPGA, as well as a design to be used on a multi-FPGA platform with gigabit
transceivers to link the various substrates. Comparisons with a pure software solution
show that our hardware-based IP implementation yields up to 9× lower latency times, 7×
higher throughput (frames/second) than the reference software implementation, and power
footprint as low as 2.741W for the whole system, i.e., up to 5.5-6× less than what Nvidia
Jetson TX2 consumes on average.

Keywords:
FPGA, bio-inspired algorithms, neural networks, hardware acceleration, GTX Transceiver

French Abstract

Implémentation d’une architecture neuronale
bio-inspirée distribuée sur FPGA

Résumé:
Les véhicules autonomes utilisent des mécanismes d’auto-localisation efficaces pour se dé-
placer sans l’intervention humaine. Les caméras sont les capteurs les plus courants pour
effectuer cette tâche : elles fournissent des données riches à très faible coût.

L’intensité calculatoire de la localisation basé sur caméra varie en fonction de la complexité
de l’environnement entourant le véhicule. Ce qui influe sur la tâche en temps réel à exé-
cuter et sur le moment où elle doit être exécutée. Le traitement d’images en temps réel
dans ce contexte exige un traitement rapide, ainsi que la capacité de stocker suffisamment
d’informations pour prendre des décisions de manière économe en énergie, notamment dans
le cas des véhicules électriques.

Par conséquent, l’utilisation des FPGA est une réponse explicite à des nombreux problèmes
soulevés par une telle application, afin de faciliter le prototypage de l’application et d’estimer
les économies d’énergie appropriées.

Nous présentons ici une solution distribuée originale pour mettre en œuvre un grand modèle
de localisation visuelle bio-inspiré. Le projet de travail pour notre collaboration est composé
et structuré comme suivants : (1) une IP de traitement d’image qui produit les informations
de pixels par chaque repère visuel détecté dans chaque image capturée ; (2) une implémenta-
tion de N-LOC, une architecture neuronale bio-inspirée sur une carte FPGA ; (3) une version
distribuée de N-LOC et son évaluation sur un seul FPGA, ainsi qu’une conception destinée
à être utilisée sur une plate-forme multi-FPGA avec des émetteurs-récepteurs gigabit GTX
pour relier les différents substrats.

La comparaison avec une solution purement logicielle montre que notre mise en œuvre
matérielle de l’IP permet d’obtenir des temps de latence jusqu’à 9× fois inférieurs, un débit
(images/seconde) 7× fois supérieur à celui de la mise en œuvre logicielle de référence, et une
empreinte énergétique aussi faible que 2,141 W pour l’ensemble du système, soit jusqu’à 5.5-
6× fois moins qu’un système embarqué basé sur une plateforme telle que la Nvidia Jetson
TX2 effectuant le même calcul en moyenne.

Mot-clefs:
FPGA, bio-inspired algorithms, neural networks, hardware acceleration, GTX Transceiver

iii

Publications

Journals

• T. Elouaret., S.Colomer, S. Zuckerman, F. Demelo, N. Cuperlier, O. Romain, & L.
Kessal. Implementation of a bio-inspired neural architecture for autonomous vehicle
on a multi-FPGAs platform. MDPI Sensors journal. MDPI DOI: https://doi.org/
10.3390/s23104631

International conferences

• T. Elouaret., S.Colomer, S. Zuckerman, F. Demelo, N. Cuperlier, O. Romain, & L.
Kessal. Implementation of a bio-inspired neural architecture for autonomous vehicle
on a reconfigurable platform. In 2022 Alaska/ Electronic System on Chip and Real Time
Embedded Control (ISIE22), pages 1–6, June 2022. IEEE DOI: https://ieeexplore.
ieee.org/abstract/document/8881834

Workshops

• T. Elouaret., S. Zuckerman, L. Kessal, Y. Espada, N. Cuperlier, G. Bresson, F.
B.Ouezdou, & O. Romain. Position paper: Prototyping autonomous vehicles ap-plications
with heterogeneous multi-fpgasystems. In 2019 UK/ China Emerging Technologies
(UCET), pages 1–2, Aug 2019. IEEE DOI: https://ieeexplore.ieee.org/abstract/
document/8881834

https://doi.org/10.3390/s23104631
https://doi.org/10.3390/s23104631
https://ieeexplore.ieee.org/abstract/document/8881834
https://ieeexplore.ieee.org/abstract/document/8881834
https://ieeexplore.ieee.org/abstract/document/8881834
https://ieeexplore.ieee.org/abstract/document/8881834

Contents
English Abstract i

French Abstract ii

List of Figures viii

List of Tables xii

Preface xiii

I General Introduction 1

II Background and state of the art 5

1 Background 6
1.1 Generalities on autonomous vehicles, their applications, and limitations 6
1.2 Common tools for autonomous vehicles localisation . 7
1.3 LiDAR systems detecting pavement marking . 12
1.4 Processing and deciding: Traditional AI systems for autonomous vehicles 14

1.4.1 Artificial neural network and their beneficial . 14
1.4.2 Convolutional and Deep Neural Networks . 14
1.4.3 Convolutional Neural Network (CNN) architecture . 15
1.4.4 Localisation with autonomous car . 17
1.4.5 Visual Place Recognition . 18

1.5 LPMP, a bio-inspired model of localisation. 19
1.5.1 Principles of the LPMP model . 20
1.5.2 Some Advantages and Limitations of LPMP .. 21

1.6 Conclusion . 22

2 Hardware Acceleration for autonomous vehicles localisation 24
2.1 Computational supports for Hardware implementation . 25

2.1.1 GPU .. 25
2.1.1.1 Using GPU for navigation process. 25
2.1.1.2 An example of embedded GPU: NVIDIA’s Jetson TX2 26

2.1.2 FPGA .. 27
2.1.2.1 Principles . 27
2.1.2.2 Using FPGA for navigation process and motivation beyond . . . 27

2.1.3 Comparing State-of-the-Art Hardware Platforms: Performance, Fea-
tures, and Costs . 28
2.1.3.1 Programming FPGA using VHDL .. 31
2.1.3.2 Programming FPGA using High-level Synthesis 31

2.1.4 Heterogeneous System Architecture . 32
2.1.5 Exploring Hardware and Software Scheduling Strategies on Heteroge-

neous HW .. 33
2.1.6 Leveraging partial reconfiguration . 33
2.1.7 Facilitating DPR .. 34

2.1.7.1 Using Ker-ONE as a hypervisor for DPR facility 34

vi Contents

2.1.7.2 Abstracting FPGA manipulation through adequate system-
level layers FOS . 35

2.2 Accelerating the localisation task: FPGA vs. GPU .. 36
2.3 The Wizarde Platform . 37
2.4 Mixed architectures: SoC + FPGA .. 37

2.4.1 Gigabit Transceivers Interface . 38
2.4.1.1 Comparaison to related work . 39
2.4.1.2 Towards using GTX Transceivers for a data-transmission over

Wizarde platform . 40
2.5 Accelerating Image processing and VPR model using Heterogeneous computing

system . 41
2.5.1 Difference of Gaussian DoG interface-based Image Processing for the

localisation task of Autonomous Vehicles. 41
2.5.2 Integration of the Pyramid IP to a Wizarde’s Tile . 41
2.5.3 Hardware implementation of a VPR model . 44

2.6 Conclusion . 44

3 Problem Statement 45

III Contributions 47

4 MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS 48
4.1 Introduction. 48
4.2 Implementing N-LOC on FPGA .. 48

4.2.1 Visual signature computation . 49
4.2.2 Angular position computation. 49
4.2.3 Spatial working memory . 49
4.2.4 The place cell neurons group . 50
4.2.5 Modes of operation . 50

4.3 Evaluation of the LPMP model on real-time constrained environments 51
4.4 Fixed-point arithmetic . 52
4.5 Use of HLS to implement N-LOC .. 53

4.5.1 Methodology for Implementing the LPMP Model on FPGA Platform . . 54
4.6 Experimental results . 54

4.6.1 Experimental setup and implementation parameters . 55
4.6.2 Resource utilisation . 57

4.7 Conclusion . 60

5 A DISTRIBUTED N-LOC ARCHITECTURE 64
5.1 Introduction. 64
5.2 Comparison with related work. 65
5.3 Distributed N-LOC: Principles of Learning and Using modes . 66

5.3.1 Principles of the LPMP models . 66
5.3.2 Implementation . 68

5.4 Experiments with distributed N-LOC on a single FPGA .. 69
5.5 Communication protocol via GTX transceivers . 74

5.5.1 Highspeed transceivers on the Wizarde platform . 74
5.5.2 GTX micro-benchmarking in Wizarde . 74
5.5.3 Toward a distributed N-LOC architecture on Wizarde . 76
5.5.4 Conclusion . 77

Contents vii

5.6 Implementing distributed N-LOC using Dynamic Partial Reconfiguration DPR
system . 78
5.6.1 Experiments with Ker-ONE .. 78
5.6.2 Experiments with FOS. 79
5.6.3 Discussion and comparison: FOS vs. Ker-ONE.. 81

5.7 Wizarde data-path communication and protocols for N-LOC’s neural network
deployment . 82
5.7.1 Different tasks communication scenarios on Wizarde’s tiles 82
5.7.2 Tasks communication policies-formulas on Wizarde platform 84
5.7.3 Bio-inspired neural network tasks placement using DPR 86

5.8 Conclusion . 86

IV General conclusion and Perspectives 88

6 Bibliography 91

List of Figures
1 The principle type of sensors in autonomous vehicle (AV). 2

1.0 mapping dataflow. 8
1.1 localisation dataflow. 8
1.2 Mapping and Localisation dataflow pipeline used in the implementation project

by Levinsonet al. [84]. 8
1.3 Framework of the proposed algorithm, recreated from Wang et al. work in [143]. 9
1.4 Overview of the proposed visual localisation system. The aim is to localise a

monocular camera within a 3D prior map (augmented with surface reflectivi-
ties) constructed from 3D LiDAR scanners. Given an initial pose belief, after,
they generate numerous synthetic views of the environment, which allow them
to evaluate using normalised mutual information against the live view from
camera imagery. Recreated from Wolcott et al. work in [145]. 10

1.5 The trajectory obtained with the proposed localisation system (red) in an ar-
chitectural floor plan (blue) of a factory-like scenario. The map of LiDAR
observations (black) shows also structures not represented in the floor plan.
The map is aligned online to the CAD drawing to localise the robot. The sys-
tem works robustly even when the floor plan is fully occluded and in situations
where Monte Carlo Localisation (grey) fails [35]. Recreated from Boniard et
al. work in [35]. 11

1.6 LiDAR Retroreflection intensities of different pavement markings. Recreated
from Boniard et al. work in [35]. 13

1.7 Retroreflection luminance and luminance of a pavement marking according to
the CEN standard EN 1436. Recreated from Sauteret et al. work in [124]. 13

1.8 Picture of the perception vehicle Recreated from Sauteret et al. work in [124]. . 14
1.9 overview description of a simple artificial neural network composed of input,

two hidden layers, and final output for needed results. 15
1.10 Difference between machine learning and deep learning. 16
1.11 Architecture of Conventional Neural Network composed of conventional and

Pooling blocs. 16
1.12 Points of Interest detection referred to as landmarks. 20
1.13 Saliency points filtering. 20
1.14 Points of Interest detection along with Azimuth layer encoding grouped in

Working-space-memory. 21
1.15 Memory querying as Place cells.. 21
1.16 Overview of LPMP model. This figure illustrates how the LPMP model

builds a neural representation of an environment from visual information. To
do so, the system must go through several stages: Points of Interest detec-
tion (“Visual System,” on the left); Saliency points filtering (Deriche filter and
DoG); Points of Interest encoding (Log-Polar encoding); and finally, mem-
ory querying (access through Signature-Layer, Spatial-Working-Memory, and
Place-Cells). At this stage, the neural activity of Place memory provides the
best-recognised location based on what it has previously learned [51]. 23

List of Figures ix

2.1 Point cloud processing time comparison between Miki et al. method and an
existing implementation on CPU [56]. The calculation time increases more
with the baseline method while it stays comparatively low with miki et aL.’s
approach. The number of points is indicated with 2xBpearl [8] and 1xrealsense
[7] on the plot. The proposed mapping pipeline could process the data in real-
time, while the baseline method had a considerable delay on the onboard PC
(Jetson). recreated from Miki et al. work in [98].. 26

2.2 An overview of the NVIDIA Jetson TX2, which was utilised in our experiments.
See section 4.6.1.. 27

2.3 Proposed system on top of Zynq7000 SoC FPGA for the application support.
Recreated from Miki et al. work in [83]. 28

2.4 Ker-ONE consists of a micro-kernel and of a Virtual Machine Monitor running
at a privileged level. The User environment executes in a non-privileged level.
Recreated from XIA et al. work in [146]. 35

2.5 FOS extends the ZUCL framework with Linux integration, python libs, and
C++ runtime management to provide support for: multi-tenancy (concurrent
processes with hardware accel.), dynamic offload, GUI, network connection
and flexibility. Recreated from Anuj et al. work in [141]. 36

2.6 The Wizarde Platform. It is composed of 3 × 3 Zynq XC7Z045 SoCs, able to
a system independently. Each tile is connected to the others through gigabit
transceive 2.4). 39

2.7 A simplex mode implemented on GTX transceivers as a first-stage protocol to
communicate between two adjacent Wizarde tiles. 40

2.8 Global overview for scaling-based image-processing IP. The flow of pixels comes
from the camera and goes to the CPU’s memory through a DMA. An interme-
diate output can be selected thanks to a dedicated register. Another register
allows selecting which feature to read. Finally, the keypoints can be read
through the memory-mapped interface . 42

2.9 Block Diagram based on multiple chains of Hardware IPs for image processing
DoG application, using IP Pyramid as a processing-core IP. Alongside other
pre-existed Xilinx IPs to fed, output data as Axis-Stream-type information.” . . 43

2.10 DoG IP resource consumption . 43

4.1 The figure 4.1a refers to the learning mode where the values of weights between
the signature layer and pixel flow are provided by the values of the pixel of each
landmark that the image contains. The figure 4.1b indicates the using mode,
where the values of all weights between layers are fixed, however, the neurons
are invited to do different types of calculations, in the signature layer the
weighted sum operation is performed, in SWM layer an activation function
with correlation between signature layer’ neuron value, and azimuth layer’
neuron value, the place cell is weighted sum type of operation to choose the
score and appropriate landmark according to the evaluated input.. 51

4.2 An example is shown for the fixed-point format of QKF based on two’s com-
plement. 53

4.3 Overview of our bio-inspired neural architecture. On the left-hand side, the
Pyramid IP identifies and sends keypoints information to the bio-inspired neu-
ral IP, pictured on the right-hand side of the figure. Data is sent pixel by
pixel, for each landmark of each image. The Learning Mode processes 10 im-
ages for each time period. If a consensus is found (i.e., the measured error is
acceptable), the system then switches to Using Mode. 61

x List of Figures

4.4 Resource consumption in term of LUT, BRAM, registers and DSP, for config-
urations with different numbers of place cells. 62

4.5 Figure (a) illustrates the comparison of learning latency using different neu-
rons in PC. Figure (b) demonstrates the comparison of latency using different
neurons in PC. Figure (c) presents the comparison of throughput performance.
The learning latency for N-LOC is 2.6 ms, while it remains consistent at 18.99
ms for both the baseline and optimised reference. Based on our experimenta-
tion, we have achieved a navigation speed of up to 200 km/h specifically for
N-LOC processing. 63

5.1 Expanding bio-inspired neural network architecture N-LOC over Wizarde multi-
tiles. In the learning phase, the data copy of each current landmark will be
held on one bloc IP. If the number of learned neurons in N-LOC1 is overloaded
(superior to a fixed threshold T), we will switch to the next available bloc IP
which is the second one. Then, it will be the same rule for all different bloc IPs.
In the process phase, all bloc IPs work simultaneously, the best score among
the three represents the accurate and appropriate localisation of a given image. 67

5.2 The overall N-LOC distribution model over different reconfigurable fabrics
within Wizarde. Each N-LOC IP takes a part of the whole architecture, as all
the N-LOC IPs have the same number of neurons in their decision. 69

5.3 Overall architecture for a design leveraging 3 N-LOC instances. The
design is implemented throughout multi-N-LOCs architecture based on Wiz-
arde (see section 3). TX/RX pairs can be implemented following multiple
means: gigabit transceivers, GPIOs, Ethernet, etc. An N-LOC IP (detailed in
the upper-left corner) awaits an x Azimuth coordinate (i.e., its row number),
an x landmark coordinate (i.e., also its row number), the current pixel to pro-
cess, and its tile ID within Wizarde. Conversely, an N-LOC instance sends the
score obtained in the local WTA, its line number in the local Place Cell Mem-
ory, and its tile ID. The image acquisition and processing IP is implemented
in the central tile, and a lightweight resource manager collects local WTA win-
ners, and performs the final WTA, in parallel with scheduling communications. 72

5.4 Data transmission protocol using GT transceivers implemented throughout a
multi-N-LOC architecture based on Wizarde multi-tiles.. 73

5.5 Waveform data acquisition. We trigger the data acquisition on the chip scope
from the pseudo-random value 0x06E3 and we can verify that the reset and
activation signals of the GTX are valid and that the received data are in
conformity with those sent. We also check the error-accumulator signal remains
at 0. This benchmark is set up with a throughput of 6.25Gbps. 76

5.6 Vivado report: Resource usage per tile. The usage rates are almost equal, as
such 18 more logic LUTs and less than 2 Flip Flops were recruited for the
6.25Gbps frequency upgrade. 76

5.7 Vivado report: Resource usage per tile. The usage rates are almost equal, as
such the 5 more logic LUT’s and the less of 2 Flip Flops less were recruited
for the 6.25Gbps frequency upgrade. 77

5.8 Vivado design based on Vivado tool 2016.4. As the partial region contains
rather the median or sobel filter, and the Arm Cortex A9 on which the Ker-
ONE hypervisor will be ported. Zynq7000 SoC FPGA is the type of board
used for the evaluation. 79

List of Figures xi

5.9 Overview of Vivado design. This figure illustrates the different required
IPs components to communicate between two different tiles, for more details
see section 5, in specific, see section 5.5. The main goal of this design is to
leverage Byteman relocatable and manipulation tool. 81

5.10 The placement of the hardware resources is indicated by blue, as the ARM
cortex part is in orange. The rectangle in yellow represents the needed surface
of hardware resources to relocate the hardware implementation N-LOC based
on bio-inspired architecture, for more details, see chapter 4. As byteman will
be responsible for hardware resources implementation by providing the needed
LUTs, BRAMs, DSPs, and FF registers, also it stitches between static part
and dynamic relocatable region with high efficiency according to [91]. 82

5.11 Waveform data acquisition. We trigger the data acquisition on the chip scope
from the pseudo-random value 0x06E3 and we can verify that the reset and
activation signals of the GTX are valid and that the received data are in
conformity with those sent. We also check the error-accumulator signal remains
at 0. This benchmark is set up with a throughput of 6.25Gbps. 83

5.12 Placement and protocol of switch control on PL Part. 84

List of Tables
1.1 Evolution of localisation accuracy in the last century. Data collected by Reid et

al. [117]. 7

2.1 Comparing state-of-the-art hardware platforms: Performance, features, and
costs.. 30

2.2 Hardware acceleration platforms: Quantitative features. 31
2.3 FPGA vs. GPU comparison: Host-Accelerator data transfer overhead, in mil-

liseconds. The latency was computed using 1000 roundtrips, each exchanging
a 32-bit value. 37

2.4 Contents of a Wizarde tile, based on the Zynq xc7z045ffg900-2. 38

4.1 Results of the LPMP model on the Satory circuit type of testing
environment at VEDECOM institute . Three different trajectories were
tested: a looping trajectory nloop, a long trajectory HallA and a trajectory in
a closed area "Parking". Std stands for standard deviation. Recreated from
Colomer et al. in [44]. 52

4.2 Resource consumption estimation for 8, 16, and 32 landmarks, depending on
the number of neurons in the place cells layer. Only 50 and 80 neurons are
shown for 32 landmarks: resources saturate beyond that number. The results
were obtained using Vivado HLS 2016.4, and they provide an estimation of
the post-synthesis outcome.. 57

4.3 N-LOC: Performance and efficiency. The system is configured with different
number of place cell neurons, which corresponds to the number of neurons
to be learned. The system is then evaluated and tested with 100 images for
different place cell configurations. Results are generated using NVIDIA Jetson
TX2 platform for software reference (using all 6 CPU cores when possible
for the optimised version), and an FPGA ZC706 board for N-LOC Hardware
implementation. The used frequency in FPGA in both 30 and 60 PC neurons
is 100 MHZ. For 90 neurons, the frequency is set it 70 MHZ to satisfy timing
constraints. 59

4.4 Total power consumption (static + dynamic) generated by all integrated IPs.
Results obtained with 100 place cell neurons (maximum of neurons to be
trained), and 16 landmarks per image. We used Vivado’s power estimator. 59

4.5 Resource utilisation for each integrated IP, implemented on one tile of Wizarde,
for 100 neurons of place cell neurons group, and 16 landmarks per each image.
The raw values are provided, along with the percentage they represent between
parentheses. 60

5.1 Timings for 90 place cell neurons: Python reference code (“Baseline Re”),
optimised multicore version (“Optimised Ref”), a single large N-LOC instance,
and a distributed 3×N-LOC architecture (3 × 30 neurons), implemented on a
single Zynq-7045 SoC’s FPGA part. The controller is implemented on the
Cortex A9 as bare-metal software. 70

5.2 Single and distributed N-LOC: speedups. Baseline: the optimised reference
Python application compiled with Cython.. 70

5.3 N-LOC: resource usage. The percentage of a given resource usage on the
Zynq-7045 is given between parentheses. Each processed image contains 16
landmarks. 71

5.4 N-LOC: Power consumption (in Watts) for 90 place cell neurons. The last
column computes the power consumption ratio between a 1 × 90 and a 3 ×
30 configuration. We used Vivado power estimator to evaluate the power
consumption of each IP. 73

5.5 N-LOC: Performance (number of thousands of operations per second). 74
5.6 Aurora IP configuration. The line transmission rate is set to 6,25Gbps, and

the GT reference clock is set to 125 Mhz on both TX and RX of adjacent tiles
(North, and West-North). 75

5.7 Nombres de cellules logiques nécessaires et temps de la reconfiguration des
blocs reconfigurables. 79

xiv List of Tables

Preface

My most sincere gratitude goes to my supervisor Dr. Stephane Zuckerman, who, through his
intellectual rigor, his always relevant comments, his knowledge of the subject and method-
ological aspects, as well as her great availability, his largely contributed to my training in
educational research. The constant monitoring she provided at all stages of this doctoral
research made this project a reality.

To my thesis director Prof. Olivier Romain, and Dr. Lounis Kessal, a great thanks for their
contribution to the realisation of this thesis through their remarks which are always very
enlightening, their mastery of various fields and great experience. The critical opinions ex-
pressed by my co-supervisors allowed me to deepen my reflection and to take a retrospective
look at this research. My work was initiated thanks to the INEX Paris-Seine AAP 2018
project, as well as the financial support of VEDECOM institute in Versailles for their help
in the establishment of this project.

I would like to thank the members of the jury individually for doing me the honor of judging
this work. I thank them for their careful reading of my thesis as well as for the comments
they will address to me during this defense in order to improve my work. Special thanks
to Prof. Catherine Dezan and Prof. Jean-Christophe Prévotet who followed me during the
monitoring committees of my thesis. It is thanks to their comments that I was able to im-
prove several weak points to which I had not paid attention. During these years I was part
of the CELL team of the ETIS laboratory. I thank all the members of CELL who gave me a
warm welcome and with whom I had various discussions. I consider of course also those that
I have crossed regularly.

Last but not least, I would also like to acknowledge by deeply appreciating the invaluable
support (financial, emotional, and intellectual) that my mother FATIMA ZOHRA has given
me through my life. I would especially like to thank my sister Fairouz Judy who has believed in
me and have always encouraged me to reach the goal. I would like to thank them here for their
contribution, without which the realisation of this research would have been impossible.

Part I
General Introduction

2

Nowadays, new technologies in the communication and robotics fields, have had a substantial
influence on our daily life which transportation is no exception. These technologies have given
a high increase to the prospect of autonomous vehicle (AV) technology which aims to minimise
and mitigate crashes, energy consumption, pollution, and congestion while at the same time
increasing transport accessibility [55]. Even though the idea of driverless vehicles has been
around for decades, the exorbitant costs have prevented large-scale production [55]. Besides,
there has been an acceleration in the research and development efforts in the last decade
to bring the idea of the AV to possession [55]. For instance, the advent of the Google car
brought AVs to the spotlight [66, 93]. Moreover, the automotive industry spends around €77
billion worldwide on R&D in order to nurture innovation and to stay competitive [74, 105].

The primary motivation behind the research and development of AVs are the need for in-
creased driving safe, an increasing population that also leads to an increase in vehicles on
the road, expanding of the infrastructure, the comfort and ease of relying on machines for
tasks like driving, and the demand for optimisation of resources and time management. With
the population growing, a considerable impact has been created on our roads, infrastructure,
open spaces, fuel stations, and resources [109].

One of the most challenging tasks in environment perception of automated driving is differ-
entiating between individual objects, vehicle tracking, self-localisation, pedestrian detection,
predicting trajectories for unknown paths by generalisation, and understanding traffic pat-
terns [109]. Figure 1 represents the positioning of different sensors on a vehicle.

Figure 1: The principle type of sensors in autonomous vehicle (AV).

Electric autonomous vehicles have been at the centre of attention of robotics and embedded
systems fields in the last decade [42]. Current solutions tend to promote LIDAR cameras for
medium-range localisation, coupled with convolutional neural networks (CNN) [77]. However,
leveraging LIDAR cameras for localisation is expensive and energy-consuming. Hence, a
neurorobotics architecture modelling mammal’s hippocampus was proposed by Espada et
al. [53] as a counterpart to what exists in the localisation & navigation approaches in the
state of art. In particular, the computational intensity varies, depending on the environment
surrounding the vehicle (e.g., night vs. day; rural vs. urban; etc.). This leads to changes in
terms of which real-time task(s) should run. However, Colomer et al. [43] demonstrated in
their last work that the LPMP model leads to the same considerable computational intensity
wherever the vehicle could be found.

3

The resulting neural network relies on fewer layers than now-current CNNs, thus simplifying
the overall neural architecture, but at the cost of a potentially much higher neuron count.
This solution is LIDAR-free and has shown its ability to correctly assess its environment.
However, it does not scale: at medium to high speeds, a pure software implementation is
not adequate. However, a custom hardware solution is very likely to succeed. In particular,
the computational intensity varies, depending on the environment surrounding the vehicle
(e.g., night vs. day; rural vs. urban; etc.). This leads to changes in terms of which real-time
task(s) should run.

This work revolves around implementing parts of this navigation phase onto a unique multi-
FPGA platform, Wizarde, which is a 3 × 3 tile grid. Each tile contains a system-on-chip,
which combines a multicore processor and high-performance FPGA. Adjacent tiles are linked
by high-bandwidth transceivers.

Hence, the amount of the workload must be adequately load-balanced across Wizarde’s tiles,
while at the same time respecting power and energy constraints, as well as real-time con-
straints.

In addition, it is very likely that hardware tasks will model various sizes of neuron clusters,
thus requiring varying needs of hardware resources.

Hence, resizing the whole application, task placement and data locality are important factors,
to properly map the application’s neural network onto the multi-FPGAs fabric, and efficient
scheduling algorithms must be proposed to use, which take these constraints into account.

Therefore, Being able to process images in a real-time context requires not only fast processing
means, but also the ability to store enough information to take decisions, as well as means of
saving energy as much as possible. As a result, leveraging reconfigurable fabrics is a solution
to many issues raised by such an application. However, to ensure energy is properly managed,
it is paramount to power on as little of the circuit as possible: everything powered on should
be for a good reason.

Eventually, exposing Wizarde as a unique prototyping board combining several Zynq system-
on-chips which allows for the configuration of multiple FPGAs, driven by several multi-core
processors, Hence, we intend to leverage a heterogeneous platform, composed of high-end
general-purpose embedded processors and FPGAs. This will allow us to provide specialised
circuits to process specific parts of the NN. The FPGAs will need to carry out several tasks:
extraction of salient points in images [57], as well as maintaining and updating a large NN
implemented in hardware, we use the LPMP model proposed by [43]. Because the NN will
be large, we will suggest such a scenario with an off-line scheduling policy, in order to deploy
the NN application on multiple FPGAs, relying on the Cortex A9s to perform local and
distributed hardware and software task scheduling.

4

How to read this manuscript

To address the different challenges previously mentioned, this manuscript was divided into
several chapters, illustrating each part of this research work.

Part I (General introduction): Presents the aim concerning the motivation behind the
research topic for my dissertation. Along with some concepts and definitions of the targeted
application with the related and needed tools.

Part II (background & state of the art): Presents the related works on the autonomous
vehicle in the recent era such as how can we provide both localisation and mapping aspects
into it. We explore different research in the state of the art of how we could incorporate
those aspects to propose a real-time localisation process with a high-security level, as well as
confidence. We demonstrate some of the artificial intelligence, neural network, and especially
bio-inspired neural network algorithms. Finally, we highlight the issues addressed and the
chosen approach to address them.

Part III (contributions): Introduces the bio-inspired neural network model called N-LOC
that we aim to prototype, and implement onto the FPGA board. We also show some results
related to this implementation, like the latency, accuracy, and resource consumption using
different parameters required by each different scenario.

Within that, a proposed scenario as a strategy for the deployment of the bio-inspired neural
architecture onto multiple FPGAs called Wizarde, by using GTX transceivers as hardcore
resources provided by Xilinx vendors.

Part IV (General conclusion): A general conclusion is made, summarizing the main
contributions of this work. Perspectives are also drawn, providing some elements for future
improvements and addressing the future work to be done in order to fully implement and
evaluate the application, and further by incorporating it into a real mobile robot.

Funding

This work is supported by the VEDECOM Institute and CY University’s INEX program
#2017 − 2182017 − 2018 − C01 − A0..

Part II
Background and state of the
art

1
Background

1.1 Generalities on autonomous vehicles, their applications,
and limitations

In this chapter, we present the motivation of this dissertation, by providing some background
and literature on the target application, which is self-driving cars with the specific feature
of driving delegation. We then show the necessity of both localisation and navigation in this
environment exploration. Hence, the localisation task will be our main focus in this thesis,
alongside using monocular cameras instead of LiDARs, due to their high energy consumption
and financial cost as will be depicted later in this chapter.

We then present some different types of algorithms to perform the localisation like the bio-
inspired neural architecture which is a novel approach, in contrast to what state-of-art pro-
poses like CNN and/or DNN.

Autonomous vehicles have been at the centre of attention in robotics and embedded systems
fields in the last decade. Research and development work on autonomous vehicles (AVs) has
accelerated in recent years, driven by technological advances in both hardware and software.
However, a number of significant challenges must be addressed before the widespread adoption
of AVs. These include legal and regulatory issues, public perceptions of AV technologies,
cost, accuracy and reliability of onboard sensing equipment, computational constraints and
the limitations of current algorithms and systems for tasks such as environment perception,
path planning and control.

Environment perception is arguably one of the most important fields for future AV devel-
opment; accurate perception of the environment allows automated driver assistance systems
(ADASs) to perform an informed decision during functions such as adaptive cruise control,
lane changing, parking and obstacle and collision avoidance [92]. Components of the envi-
ronment which must be detected by an ego vehicle include: traffic signals and signs, road
markings, lane and junction topology and other road users including vehicles, cyclists and
pedestrians [92].

To provide well-trusted security, AVs must rely upon reliable solutions. According to a recent
technical report by the National Highway Traffic Safety Administration, 94% of road accidents
are caused by human errors [131]. Thus, automated Driving solutions (ADSs) are considered
to be reliable solutions and are being implemented with the promise of reducing accident
rates, with an ease-of-use of driving vehicles [46]. They require precise knowledge of their
position and orientation in all weather and traffic conditions for path planning, perception,
control, and general safe operation [46].

The challenge facing localisation for autonomous systems in terms of required accuracy and re-
liability at scale is unprecedented [117]. Reid et al. in [117] shows that AVs require decimeter-
level positioning for motorway operation and near-centimetre level for operation on local and

1.2. Common tools for autonomous vehicles localisation 7

residential streets (Residential street means a subdivision street adjacent to a property that
is anticipated to develop as single-family residences, apartment buildings, or other similar
dwelling structures [13]). These requirements trunk from one target: ensure that the vehicle
knows it is within its lane. Horizontally, this is broken down by lateral (side-to-side) and
longitudinal (forward-backward) components [117]. Vertically, the vehicle must know what
road level it is on when located among multi-level roads. At a certain point, the vehicle will
have an assessment of its maximum position error in each direction. These are known as pro-
tection levels [117]. These alert limits are design variables which are needed to be sufficiently
small to guarantee that the vehicle remains within its lane at all times. If the protection level
is larger than the alert limit at any given time, there is less certainty the vehicle will remain
within its lane. The challenge of decimeter location accuracy is presented in perspective by
table 1.1 which shows the progress in localisation throughout the last century.

System Years Active Horizontal Accuracy [m] Latency Fix Type Coverage
Celestial-
Chronometry

1770–1920 3,200 Hours 2D

LORAN-C 1957–2010 460 None 2D North America,
Europe

Transit 1964–1996 25 30–100
min

2D Global

GPS 1995–Present 3 None 3D Global

Table 1.1: Evolution of localisation accuracy in the last century. Data collected by Reid et
al. [117].

We are interested in autonomous electrical vehicles EVs because they offer the potential to
substantially decrease carbon emissions from both the transportation and power generation
sectors of the economy [118]. The mass adoption of EVs is expected to have a significant
and beneficial impact in several ways, including the ability to assist in the integration of
renewable energy into existing electric grids [118]. Alternative vehicle technologies, such as
EVs, are being developed to reduce the world’s dependence on oil for transportation and
limit transportation-related CO2 emissions [118]. Likewise, renewable energy sources are
being developed and deployed to displace fossil fuel-based electricity generation, reducing
greenhouse gas emissions as well as the emission of other pollutants such as nitrous oxides
(NOx) and sulfur dioxide (SO2) [118]. Hence, the integration of the transportation and
electricity sectors, in combination with EVs and renewable energy, offers the potential to
drastically decrease the world’s dependence on fossil fuels and the consequent emission of
greenhouse gases [118].

According to what we have presented and highlighted previously, EVs are a promising choice
for a more ecological environment. In the remainder of this thesis, localisation will be our
main focus and field of research during our thesis and project as part of the EVs.

1.2 Common tools for autonomous vehicles localisation

The localisation as presented and described in the section 1.1 and in the table 1.1 is thus a
key capability for any AVs to be able to navigate properly in any well-known environment.
Current solutions tend to combine multi-modal sensors (light detection and ranging LiDAR,
cameras, radars, etc.) to perform an end-to-end environmental localisation task, coupled
with convolutional neural networks (CNNs as core-process to take the decision) [77].

8 1. Background

Among techniques used in mapping, especially for localisation are the landmarks or points
of interest of an image, which are used as primary features in an urban environment, with
the use of a stereo camera system [132]. Spangenberg et al. presented the resulting map
representation, allowing for easy storage and online updates See 1.2. The localisation is car-
ried out in real-time by a stereo camera system as the main sensor, using vehicle odometry
and an off-the-shelf GPS as secondary information sources, along with a particle filter ap-
proach, coupled with a Kalman filter for robustness and sensor fusion [132]. This leads to a
lateral accuracy below 20 cm in various urban test areas (according to Levinson et al. [84].).
The proposed system has been validated in such autonomous test vehicles and successfully
demonstrated the full loop from mapping to autonomous driving (specifically in an urban
environment).

Figure 1.0: mapping dataflow.

Figure 1.1: localisation dataflow.

Figure 1.2: Mapping and Localisation dataflow pipeline used in the implementation project
by Levinsonet al. [84].

Levinson et al. in [84] have demonstrated based on their approach to landmarks detection
called pole-like structures (described on 1.2), it can serve as a reliable approach in urban
scenarios for autonomous driving. The realised accuracies were sufficient in various scenarios
and allowed for smooth autonomous control behaviour. Increasing the availability of the
localisation to a comprehensive approach by the integration of further landmark classes is a
future goal. The integration of the map building into a large-scale SLAM method is another
extension, which is explicitly related to the question of efficient map updates to maintain
them accurately. The average accuracy in the night, and day modes, is about ≈ 91 · %.

Wang et al. in [144] propose another approach for precise and robust localisation. That
method is proposed to precisely localise the autonomous vehicle using a 3D-LIDAR sensor.
First, a curb detection algorithm is performed (without any assumption for the type of road

1.2. Common tools for autonomous vehicles localisation 9

in which the AV is navigating). Next, a beam model is utilised to extract the contour of
the multi-frame curbs and to eliminate the most of outliers. Then, the iterative closest
point algorithm and two Kalman filters are employed to estimate the position of autonomous
vehicles based on the high-precision map [143]. However, the proposed algorithm may break
to locate the vehicle correctly when the obstacle blocks the curb (according to Wang et al.
in [143]). The proposed method also has the limitation of locating the vehicle where there is
no curb, also the 3D-LIDAR sensor consumes highly the battery in the case of incorporating
it in the EVs. The results of the performance evaluation presented in this work showed that
CAET (content-aware video encoding technique) increased the bitrate by 2.9% over the main
existing segmentation schemes in the field of distributed encoding, but it also increased the
encoding speed by 15.3% and improved the overall performance efficiency.

Figure 1.3 shows the proposed curb-map-based localisation algorithm. First, an algorithm
of curb detection is performed on the point cloud of a single frame. The detected curbs are
densified by projecting former curbs into the current vehicle coordinate system. Then, the
beam model is applied to extract the contour of the densified curbs. Finally, the generated
contour is matched to the high-precision map by ICP algorithm [143]. The framework of the
proposed algorithm is shown in figure 1.3.

Figure 1.3: Framework of the proposed algorithm, recreated from Wang et al. work in [143].

The common sensor on these platforms, a three-dimensional (3D) light detection and ranging
(LIDAR) scanner, which generates dense point clouds with measures of surface reflectively-
which other state-of-the-art localisation methods have shown are capable of centimetre-level
accuracy. Alternatively, in order to obtain comparable cheaper localisation accuracy, Wol-
cott et al. in [145] proposed to localise a single monocular camera within a 3D prior ground-
map, generated by a survey vehicle equipped with 3D LIDAR scanners. The system exploited
a graphics processing unit (GPU) to generate several synthetic views of the belief environment
[145].

They proposed an exploitation of 3D prior maps (an offline mapping stage, which generates

10 1. Background

the map to be used for online localisation), augmented with surface reflectivities constructed
by a survey vehicle equipped with 3D LIDAR scanners. Afterwards, they move to localise a
vehicle by comparing imagery from a monocular camera against several candidate views [145],
seeking to maximise normalised mutual information (NMI) (as outlined in figure 1.4).

Figure 1.4: Overview of the proposed visual localisation system. The aim is to localise a
monocular camera within a 3D prior map (augmented with surface reflectivi-
ties) constructed from 3D LiDAR scanners. Given an initial pose belief, after,
they generate numerous synthetic views of the environment, which allow them to
evaluate using normalised mutual information against the live view from camera
imagery. Recreated from Wolcott et al. work in [145].

The Authors of this project demonstrated that a single monocular camera can be used as an
information source for visual localisation in a 3D LiDAR map containing surface reflectivities.
By maximising normalised mutual information, it will be accessible to register a camera
stream to the prior map. The system is aided by a GPU implementation, leveraging OpenGL
to produce synthetic views of the environment; this implementation is able to give corrective
positional updates at ≈10 Hz. Moreover, Wolcott et al. in [145] compared their algorithm
against the state-of-the-art LiDAR-only automated vehicle localisation, revealing that the
proposed approach can achieve a similar order of magnitude error rate, with a sensor that is
several orders of magnitude cheaper. Likewise, this can reveal that monocular cameras can
deliver accurate information with certain precision into localisation benchmarking. They show
then that they are able to achieve longitudinal and lateral root mean square (RMS) errors
of 19.1 cm and 14.3 cm, respectively, on the Downtown dataset. They also got longitudinal
and lateral RMS errors of 45.4 cm and 20.5 cm, respectively, on the Stadium dataset.

Modern automation requires mobile robots to be robustly localised in complex scenarios.
Current localisation systems typically use maps that require to be built and interpreted
by experienced operators, growing deployment costs as well as decreasing the adaptability

1.2. Common tools for autonomous vehicles localisation 11

of robots to rearrangements in the environment. In contrast, architectural floor plans can
be understood by non-expert users and typically explain only the non-rearrangeable parts
of buildings [35]. Boniardieta et al. in [35] proposed a system for robot localisation in
architectural CAD drawings. The aim focuses on employing a method for a simultaneous
localisation and mapping approach to online augment the floor plan with a map represented
as a pose-graph with LiDAR measurements (a pose-graph object stores information for a
2-D pose graph representation. A pose graph includes nodes connected by edges. Each
estimated node is connected to the graph by edge constraints that define the relative pose
between nodes and the uncertainty on that measurement [12]). Whenever the environment
is accurately mapped in the vicinity of the robot, they use the graph to perform relative
localisation. Authors thoroughly evaluate the system in challenging real-world scenarios.
Experiments demonstrate that the method is able to robustly track the robot pose even
when the floor plan shows major discrepancies from the real-world [35].

Figure 1.5 shows the system is localising a robot in a factory-like environment, including
situations where the floor plan is fully blocked up by large structures.

Figure 1.5: The trajectory obtained with the proposed localisation system (red) in an archi-
tectural floor plan (blue) of a factory-like scenario. The map of LiDAR observa-
tions (black) shows also structures not represented in the floor plan. The map
is aligned online to the CAD drawing to localise the robot. The system works
robustly even when the floor plan is fully occluded and in situations where Monte
Carlo Localisation (grey) fails [35]. Recreated from Boniard et al. work in [35].

Furthermore, Boniardieta et al. in [35] presented a LiDAR-based system for localisation
in architectural floor plans, while the robot is moving through its environment, it uses a
SLAM method to online generate a map, represented in figure 1.5 as a pose-graph with
LiDAR readings. The priors for the trajectory are computed with the proposed GICP-based
scan-to-map-matcher to fit the generated pose graph onto the floor plan. When the map
sufficiently covers the area in the vicinity of the robot, Boniardieta etal. estimates its relative
pose with respect to the matching nodes of the pose graph without a global optimisation
process. This combination makes the system robust to missing information in CAD drawings
and also computationally efficient. They evaluated the proposed approach in several real-
world scenarios and showed that the method works robustly in complex environments and
is as accurate and efficient as common state-of-the-art localisation systems. Through the

12 1. Background

experimental evaluation based on different datasets recorded in different buildings, they got
a localisation accuracy error of ≈ 9.5%mm along the x and y axes and a yaw average error of
≈ 0.47◦. Along with this, they carried a runtime performance on an 8-core 4.0GHz I7 CPU,
the elapsed time at each update step and over each entire experiment were ≈ 54ms.

The function of higher visual camera detection and better-performing markings has been
studied with Vedecom. LiDAR (Light Detection And Ranging scanning) technology could
assist to fill the remaining gaps, as it actively sends out infrared light (IR), that yields reliable
images of the road scenario and pavement markings both day and nighttime. To evaluate
the opportunities of LiDAR technology for the detection of road markings, 3M Deutschland
GmbH, Transportation Safety Laboratory and the University of Applied Sciences in Dresden
worked together on a joint research project. All-Weather Elements (AWE), are the latest
development of high-performance optics, using high index beads to provide reflectivity with
both in dry and wet conditions. It was determined that high-performance markings help to
increase the level of detection by both camera and LiDAR sensors [124].

1.3 LiDAR systems detecting pavement marking

Mono or stereo cameras with suitable image processing algorithms have been incorporated
in several implementations as sensors for lane detection up to now. Used in highly and
fully automated driving functions, these sensors will be one of the sources of information to
manoeuvre the car in the centre of the traffic lane. However, there are various situations in
which this sensor technology fails, according to Sauter et al. [124].

In existing SAE 2 driver assistance systems (the Society of Automotive Engineers (SAE)
defines 6 levels of driving automation ranging from 0 (fully manual) to 5 (fully autonomous).
These levels have been adopted by the U.S. Department of Transportation [1].), the driver
must immediately turn off the systems himself, if the driver must immediately deactivate
the systems (if they do not automatically turn off) and regain control of the vehicle. This
is the state of the art for autonomous vehicles (AVs), e.g. in Tesla’s "Autopilot" system, the
driver remains responsible and must always keep control of the system. In the case of the
higher level of automation (SAE level 3) of an AV, a period of at least 4 seconds is allowed
for the change; in the case of fully automated vehicles (SAE level 4), it is several minutes.
This represents a completely new challenge for the detection systems for unambiguous and
permanent lane recognition [124]. This cannot be solved with cameras or video sensors alone,
especially since it is not a measurement process from a physical point of view. A sensor that
is particularly suitable for this application is a laser scanner. The travel time of the infrared
radiation (time of flight, ToF) is measured so that a physical connection exists [124]. This is a
particularly important point circumstance for the development of safety-critical technologies
[124]. In figure 1.6, the potential is illustrated by means of measurement at the University of
Applied Sciences Dresden.

Sauter et al. in [124], aimed to estimate the performance of different pavement marking prod-
ucts in various conditions by evaluating the detectability with an advanced camera Driving
assistance systems (ADAS). They specifically measure the contrast between the road surface
and the pavement marking with a camera as an indicator of how easily they would be detected
by an ADAS such as a Lane Lane Assist System (LKA) in actual operation. See figure 1.7.

A dedicated methodology has been developed in order to maximise the detection of the
pavement marking section by the onboard camera so as to measure accurate contrast values.

1.3. LiDAR systems detecting pavement marking 13

Figure 1.6: LiDAR Retroreflection intensities of different pavement markings. Recreated from
Boniard et al. work in [35].

Figure 1.7: Retroreflection luminance and luminance of a pavement marking according to the
CEN standard EN 1436. Recreated from Sauteret et al. work in [124].

The vehicle camera system and the algorithms were modified in order to acquire data. See
figure 1.8.

Different state-of-art research has been dissected within this chapter. As seen before, a lot
of projects tend to use LiDAR camera tool-based solution to navigate over different types
of environments (wet, dry, rural, and urban). Benterki et al. [29], Espada et al. [53], and
Colomer et al. [43] put forward an alternative solution to minimise the power consumption
of the electric vehicle with driver delegation.

14 1. Background

Figure 1.8: Picture of the perception vehicle Recreated from Sauteret et al. work in [124].

1.4 Processing and deciding: Traditional AI systems for au-
tonomous vehicles

1.4.1 Artificial neural network and their beneficial

Artificial intelligence AI has become an essential component of Autonomous vehicles (AV) for
perceiving the surrounding environment and making the appropriate decisions in motion. To
achieve the goal of full automation (i.e., self-driving), it is important to know how AI works
in AV systems. Existing research has made great efforts in investigating different aspects of
applying AI in AV development [89]. Mhafuzulet et al. [71] their main idea is to shorten
the gap by providing a comprehensive study in this research avenue. Specifically, it intends
to analyse the use of AIs in supporting primary applications such as perception, localisation
and mapping, and decision-making.

The performances of robotic localisation systems rely on their ability to continuously build a
stable and accurate representation of their environment, according to Yurtsever et al. [150].
Besides, building such a representation remains a challenge for autonomous cars that have to
deal with large and dynamic environments, since they are intended to be deployed over long
periods of time in environments of several tens of kilometres. Even on a daily scale, changing
conditions such as light variations, the transient presence of vehicles or pedestrians, and
unpredictable changes in the urban landscape (road works) particularly affect the perception
of space [151]. you

1.4.2 Convolutional and Deep Neural Networks

Deep learning (DL), a branch of machine learning (ML) algorithms, is inspired by the biolog-
ical process of neural networks, and it is the most effective, supervised, time and cost-efficient
ML approach.

In DL techniques, there is direct learning from the data for all aspects of the model [78].
The lowest level features characterise a suitable representation of the data, It then provides

1.4. Processing and deciding: Traditional AI systems for autonomous vehicles15

higher-level abstractions for each of the specific problems in which it is applied [78]. Thus,
DL becomes more advantageous when the amount of training data is increased. The develop-
ment of DL models has grown with the increase in the software and hardware infrastructure
[78].

DNNs have made a prestigious breakthrough with appreciable performance in a wide variety
of applications. Among architectures that interest us and especially in face recognition, object
detection, classification domains, is the convolution neural network (CNN) [48, 147]. A deep
neural network architecture with 2 hidden layers in it, See 1.9.

Figure 1.9: overview description of a simple artificial neural network composed of input, two
hidden layers, and final output for needed results.

The two principal key factors on which DL methodology is based are :

• Nonlinear processing in multiple layers or stages

• supervised or unsupervised learning

Nonlinear processing in multiple layers refers to a hierarchical method in which the present
layer accepts the results from the previous layer and passes its output as input to the next
layer. Hierarchy is established among layers so as to organise the importance of the data.
This is unlike supervised and unsupervised learning which are linked to the class target label.
Its availability means a supervised system and absence indicates an unsupervised system. See
1.10.

1.4.3 Convolutional Neural Network (CNN) architecture

A CNN is a multi-layer neural network and is based on the animal visual cortex [48]. The
first CNN was developed by Le Cun et al. [80]. The application areas of CNN include mainly
image classification & recognition, and handwritten character recognition, e.g., postal code
interpretation. Given the architecture, see 1.11, the top layers are used to identify features
such as the edges of an image and the subsequent layers are used for feature recombination
to form high-level attributes of the input followed by classification. Next, pooling operations
will be performed, which mitigates the dimensionality of the extracted features [48].

16 1. Background

Figure 1.10: Difference between machine learning and deep learning.

The next step is to perform convolution and then again pooling, which is fed into a perfectly
linked multi-layer perceptron (MLP) [48], which is a supervised learning algorithm that learns
a function f(.) : Rm → Ro by training on a dataset where m is the number of dimensions
for input and o is the number of dimensions for output [11]. The responsibility of the final
layer called the output layer is to recognise the features in the image using back-propagation
algorithms, which is a set of steps used to update network weights in order to reduce the
network error [5]. In CNN, the advantage of deep processing layers, convolutional layer,
pooling and a fully connected classification layer reveals various applications such as speech
recognition, medical applications, video recognition and various natural language processing
tasks. In figure 1.11, a conventional Neural Network composed of conventional and Pooling
blocs is illustrated [48].

Figure 1.11: Architecture of Conventional Neural Network composed of conventional and
Pooling blocs.

Vision-based navigation systems of autonomous vehicles primarily focus on DNN-based sys-
tems, in which the controller obtains input from sensors/detectors, such as cameras, and pro-
duces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely

1.4. Processing and deciding: Traditional AI systems for autonomous vehicles17

in a roadway traffic environment. Typically, these DNN-based systems in the autonomous
vehicle are trained through supervised learning [149, 116].

Etxeberria-Garcia et al. in [54] have shown that using a monocular vision-based method, in-
corporated with a deep learning inference can give promising results to localise a railway using
techniques like visual Odometry, SLAM or pose estimation [54]. However, it requires gener-
ating a new dataset to perform new learning for a given application, which basically slows
down the navigation process and doesn’t make it a real-time solution for AVs applications.

Mhafuzulet et al. in [71] show that a trained DNN-based system can be compromised by
perturbation or some negative inputs. Similarly, this perturbation can be introduced into the
DNN-based systems of autonomous vehicles by unexpected roadway hazards, such as debris
or roadblocks. Thus, proposing a hazardous roadway environment that can compromise the
DNN-based navigational system of an autonomous vehicle, and produce an incorrect steering
wheel angle, which could cause crashes resulting in fatality or injury. This implies developing
a DNN-based autonomous vehicle driving system using object detection and semantic seg-
mentation to mitigate the adverse effect of this type of hazard, which helps the autonomous
vehicle to navigate safely around such hazards [71].

Among different available sensors to perform the localisation of robots or self-driving cars, is
the use of vision, which has attracted recently much attention from the state-of-art, called
visual place recognition (VPR) [150]. That extracted information is fed through a monocular
camera to perform self-localisation in such environments (rural, urban). Thus, the current
location is found by searching, among the places already visited, the one with the appearance
closest to the current image.

However, there exist other navigation models proposed in the community [40, 151]. Among
the accurate models that are proposed is CNN which provides accuracy for the navigation
decision. Nevertheless, it is a resource-consuming, and it has to be fed by large data sets,
along with off-chip memory access which is the primary bottleneck in accelerating those
large-scale models, especially with large input size [154].

A visual place recognition (VPR) system always follows a similar pathway: it requires an
image acquisition, followed by some image processing that allows building a representation
that characterises the current location [25, 152]. Thus, passing those images through an image
processing pipeline will carry out a form of information selection followed by its encoding.
Due to its multidisciplinary nature, the field of VPR has been studied by several communities
and used in a wide variety of applications: in machine vision, [137, 127, 151], in databases
[110, 25], and in robotics, [36, 129, 59].

Therefore, CNNs and DNNs require considerable computational capability [21], their use in
embedded devices places constraints in terms of power consumption as well as computational
capability. However, with the recent and advanced development of new AI-decision-based al-
gorithms, it has become viable to implement the localisation based on the visual-localisation-
recognition in an energy-efficient embedded computing environment.

1.4.4 Localisation with autonomous car

To achieve the task of localisation, a self-driving vehicle must successfully handle a large
number of problems simultaneously [150]. For example, the system must locate its position,
identify practicable pathways, determine potential routes or prevent sources of accidents
etc.

18 1. Background

To deal with such a variety of issues, car architectures are generally composed of a wide
variety of modules, specialised in solving a reduced number of problems [18]. The information
extracted by these modules is successively merged to go from the raw sensor to the action
on the vehicle. The pipeline is often very classical and follows a logical order: first, the
information from the sensors is processed (perception system); then this information is used
to localise the vehicle in its environment (localisation system); thereafter a trajectory is
computed from the location of the vehicle (path planning system); finally, the trajectory is
read and carried out via motor control mechanisms (motor control system) [142].

In such architecture, the responses obtained by the localisation modules have a great impact
on the performance of the system. Indeed, the planning block relies heavily on the location
provided by the system and requires a high degree of reliability [125]. To reach the highest
possible level of performance, location blocks are generally based on the use of very powerful
and accurate sensors such as LiDAR (see section 1.3), or RTK GPS [119]. The vehicles that
have achieved the greatest localisation trajectories are mostly based on these technologies
[33]. For example, the autonomous car proposed by the VisLab team in the VIAC project
(VisLab Intercontinental Autonomous Challenge1) used information from GNSS and LiDAR
to locate the vehicle [31].

However, these sensors remain costly, energy consumptive and heavily impacted by the envi-
ronment [49, 81]. For example, GNSS (refers to a constellation of satellites providing signals
from space that transmit positioning and timing data to GNSS receivers. The receivers then
use this data to determine location [16]) is heavily impacted by the nature of the environment,
and may not function properly around large buildings or in overcast areas. In the context of
electric (i.e., battery-powered) autonomous vehicles, this yields a significant impact [49].

This insight led to the development of new alternatives, notably the use of visual information
since cameras are cheap and passive sensors that provide access to a rich space of informa-
tion.

1.4.5 Visual Place Recognition

Visual Place Recognition (VPR) is a field of research that addresses the issue of locating a
place from visual information. The general idea is to determine the position at which an
image was taken by comparing it with a geo-referenced database of images. The proposed
methods have been used in many fields such as robotics [36, 40], big data [110] or machine
vision [127, 151]. Each case has very specific constraints, notably in terms of computational
time, accuracy and computational cost, which do not necessarily lend themselves to every
use case.

From an architectural point of view, VPR models often follow this workflow: first, an image
is analysed to find its characteristic information; second, the detected information is trans-
formed into a compact and meaningful location code; finally, the code is sent to a memory
which has to store the location code (for the learning phase) or send information back (for
the using phase), if the image belongs to an already known location [40, 44]. Thus, it be-
comes possible to create a complete representation of an environment by memorising images
at regular intervals.

In general, the performance of a VPR system is evaluated according to three criteria: first,
the accuracy of the model, i.e., the average distance between the coordinates of an image

1The objective of the VIAC project was to test the capability of an autonomous vehicle at very high intensity
by taking it on a track of 16,000km from Italy to China

1.5. LPMP, a bio-inspired model of localisation 19

to localise and the coordinates of the image that the model best recognises; second, the
computation frequency of the model as a function of the number of images learned; and third
the use of computing resources.

Currently, the best performing state-of-the-art models are deep models such as NetVlad, Hy-
bridNet or RegionVlad [151]. However, these models are very expensive in terms of computa-
tional resources2 with higher complexity than traditional, non-Machine Learning approaches.
For example, the CoHog model [151] gives comparable performances to deep models while
being much less greedy in computational resources. Nevertheless, this model is a VPR model
of the “Global Handcrafted Feature” family and does not need to be trained before being
used.

1.5 LPMP, a bio-inspired model of localisation

Among the various existing models, the Log-Polar Max-Pi model [53, 43] (LPMP) is depicted
in figure 1.16 represents our main research context for a hardware implementation of a visual
localisation model (for further details and results, see section 2). Inspired by the functioning
of animal cognition, the model allows for the building of a neuronal representation of an
environment from visual information. In particular, it mimics a family of spatial neurons
called place cells that can be observed in the hippocampal formation of mammals [64].

Initially designed to reproduce observations made in neurobiology in small mostly indoor
environments, however, the model is not adapted to operate in autonomous vehicles. Prelim-
inary works have thus been conducted and have demonstrated the need to overcome several
problems before being able to use the model in the field of AVs [53, 53].

In particular, The work of Colomer et al. showed that a scaling up of Espada et al. bio-
inspired neural module for visual localisation, called the LPMP model, is necessary to consider
its use on a self-driving vehicle.

The main reasons why we have used the LPMP approach in our thesis project:

• As the LPMP model is the unique localisation model in the state of art of the bio-
inspired models, with a few neurons in its model

• The ability of the model to operate in large environments, also the encoding used
method to process visual information in order to reduce the computational cost of the
system.

• The robustness to various environmental conditions, as it was demonstrated by Colomer et
al., the model needs to be robust to many different conditions (weather, traffic, etc.)
to be able to operate for long periods of time.

• The Adaptation to AVs operation, as the model, offers a well-established navigation
process (from localisation to control) for the AVs. The transition on vehicle implies the
shift from a visuospatial representation to a sensorimotor one and the integration of
the contributions made on the visual localisation (See Colomer et al. work for more
details [43]).

2These models use a very large number of neurons to encode an image and often require the use of a graphics
card.

20 1. Background

1.5.1 Principles of the LPMP model

The model is used in two stages: The first is the learning stage, where a representation of the
environment is learned in one-shot learning. During this stage, the model learns a number of
images that are representative of a particular position. Depending on its version, the system
learns the images, unsupervised and online, at regular intervals of distance or via a novelty
detector (LPMP+vig). The second stage is the query stage. During this stage, the system
analyses a batch of N images and returns their localisation within the learned representation.
In the case of an autonomous vehicle application, the image analysed by the system is the
one acquired by the camera.

Points of Interest detection To localise an image, the model follows the classic VPR
system pipeline (see section 1.4.5): LPMP analyses an Image I to detect its points of interest
(PoI).

Figure 1.12: Points of Interest detection referred to as landmarks.

Saliency points filtering During this step, I is convolved with a Deriche filter, then with a
DoG (Difference Of Gaussians) filter from which the most salient points are selected through
a competition mechanism to retain only the most pertinent ones.

Figure 1.13: Saliency points filtering.

Points of Interest encoding Then, LPMP encodes points of interest to get a compact
and meaningful code of a place. At this point, the LPMP model builds a visuospatial pattern
by performing a what-where merging in a Max-Pi layer, by using the visual identity of each
PoI (via Log-Polar encoding) with their absolute orientation angle (obtained through azimuth
computation and encoding). To encode the visual identity of a landmark, the LPMP model
proceeds to a log-polar transform on the thumbnail around the PoI.

Memory querying Finally, LPMP queries its memory to return the location that best
matches I. To do so, the visuospatial pattern is passed to a neural memory: WTA (Winner-
Take-All). This memory contains the patterns of all previously learned locations (one location

1.5. LPMP, a bio-inspired model of localisation 21

Figure 1.14: Points of Interest detection along with Azimuth layer encoding grouped in
Working-space-memory.

per neuron). At the time of a request, it returns by neuron a level of activity correlated to
the proximity level of the current pattern and of all those learned.

Figure 1.15: Memory querying as Place cells.

1.5.2 Some Advantages and Limitations of LPMP

LPMP offers a promise, particularly in terms of simplicity and consistency when the scene
exhibits minimal variation under a specific lighting level. However, it is sensitive to abrupt
changes in lighting conditions, such as transitioning from a bright sunny environment to
a dark tunnel, and vice versa. Nevertheless, if the ambient light levels remain relatively
stable, LPMP demonstrates high accuracy in recognising locations even in the presence of
human activity, including moving objects like pedestrians, cyclists, and other vehicles. This
level of accuracy is deemed sufficient, considering that LPMP has undergone validation using
diverse datasets, some of which are considerably large, as demonstrated by Espada et al.
[53]. LPMP has proven its competitiveness when compared to other state-of-the-art models
and has achieved accurate results in localising objects in the KITTI dataset [60], even with
a small sample size for image learning [43].

22 1. Background

1.6 Conclusion

The localisation task for autonomous vehicle navigation is mandatory to provide the decision-
making feature to it. A lot of projects and surveys dissect different aspects of their imple-
mentations, deployment, and energy efficiency. We have seen previously that LiDAR as a
system for detecting landmarks through frames of image processing, is greedy of energy and
costly. Thus, that is why we have decided to use a visual place recognition based on a bio-
inspired neural architecture called LPMP, for localisation specifically. The LPMP model uses
a monocular type of camera for the landmark or points of interest information.

In the next chapter, we will explore the different platforms used to accelerate such intensive
calculations, and the specifications and requirements we need to set to make our application
run-time, as well as, efficient. Thus, we will see the GPU and FPGA as types of boards for
the application acceleration. In addition, we will present how the state of art lave-rage from
those embedded efficient platforms deploy and respond to their demanded specifications, also
set a comparison between those two different architectures, and then conclude which of those
is the more appropriate and conveyable to our demands.

1.6. Conclusion 23

Fi
gu

re
1.

16
:O

ve
rv

ie
w

of
LP

M
P

m
od

el
.

T
hi

s
fig

ur
e

ill
us

tr
at

es
ho

w
th

e
LP

M
P

m
od

el
bu

ild
s

a
ne

ur
al

re
pr

es
en

ta
tio

n
of

an
en

vi
ro

nm
en

t
fro

m
vi

su
al

in
fo

rm
at

io
n.

To
do

so
,t

he
sy

st
em

m
us

t
go

th
ro

ug
h

se
ve

ra
ls

ta
ge

s:
Po

in
ts

of
In

te
re

st
de

te
ct

io
n

(“
V

isu
al

Sy
st

em
,”

on
th

e
le

ft)
;S

al
ie

nc
y

po
in

ts
fil

te
rin

g
(D

er
ich

e
fil

te
r

an
d

D
oG

);
Po

in
ts

of
In

te
re

st
en

co
di

ng
(L

og
-P

ol
ar

en
co

di
ng

);
an

d
fin

al
ly

,m
em

or
y

qu
er

yi
ng

(a
cc

es
s

th
ro

ug
h

Si
gn

at
ur

e-
La

ye
r,

Sp
at

ia
l-W

or
ki

ng
-M

em
or

y,
an

d
Pl

ac
e-

C
el

ls)
.

A
t

th
is

st
ag

e,
th

e
ne

ur
al

ac
tiv

ity
of

Pl
ac

e
m

em
or

y
pr

ov
id

es
th

e
be

st
-r

ec
og

ni
se

d
lo

ca
tio

n
ba

se
d

on
w

ha
t

it
ha

s
pr

ev
io

us
ly

le
ar

ne
d

[5
1]

.

2
Hardware Acceleration for

autonomous vehicles localisation

The use of a Convolutional Neural Network based method for object detection increases
an accuracy that surpasses human visual system [133]. Because it requires considerable
computational capability as seen in section 1.4.3, its use in embedded devices, which place
constraints in terms of power consumption as well as computational capability has thus far
been limited. However, with the recent development of graphics processing unit GPUs for use
in embedded devices and open-source software libraries for machine learning, it has become
viable to utilise CNNs and various machine learning acceleration means in an energy-efficient
embedded computing environment [106].

These complexities (computational support for application acceleration and power consump-
tion) impose numerous challenges for the design of autonomous driving edge computing
systems (Edge computing is a distributed computing framework that brings enterprise ap-
plications closer to data sources such as the Internet of things IoT devices or local edge
servers. This proximity to data at its source can deliver strong business benefits, including
faster insights, improved response times and better bandwidth availability [6].). First, edge
computing systems for autonomous driving need to process an enormous amount of data
in real-time, and often the incoming data from different sensors are highly heterogeneous.
Since autonomous driving edge computing systems are mobile, they often have very strict
energy consumption restrictions. Thus, it is imperative to deliver sufficient computing power
with reasonable energy consumption, to guarantee the safety of autonomous vehicles, even
at high speed. Second, in addition to the edge system design, vehicle-to-everything (V2X)
provides redundancy for autonomous driving workloads and alleviates stringent performance
and energy constraints on the edge side [86].

Therefore, we present within this chapter the use of Heterogeneous systems-on-chip (HeSoC)
based on reconfigurable accelerators, such as Field-Programmable Gate Arrays (FPGA) for
implementing the localisation application based on the Visual Processing Recognition (VPR)
algorithm. FPGA represents an appealing option to deliver the performance/Watt required
by the advanced perception and localisation tasks employed in the design of autonomous
Vehicles [86]. Contrary to software-programmed GPUs, FPGA development involves signif-
icant hardware design effort, which in the context of HeSoCs is further complicated by the
system-level integration of HW and SW blocks. High-Level Synthesis is increasingly being
adopted to ease hardware IP design, allowing us to quickly prototype their solutions [86].

2.1. Computational supports for Hardware implementation 25

2.1 Computational supports for Hardware implementation

2.1.1 GPU

the graphics processing unit (GPU) has emerged as a versatile platform for running massively
parallel computation [113]. Graphics hardware presents clear advantages for processing huge
type datasets encountered in different domains of applications, as they provide computation
support with a high memory bandwidth, high computation throughput, support for floating-
point arithmetic, the lowest price per unit of computation, and a programming interface
accessible to the non-expert [113]. These features have raised tremendous enthusiasm in
many disciplines, such as linear algebra, differential equations, databases, data mining, com-
putational biophysics, molecular dynamics, fluid dynamics, seismic imaging, game physics,
and dynamic programming [39].

2.1.1.1 Using GPU for navigation process

Perceiving the surrounding environment is crucial for autonomous mobile robots. Autonomous
vehicles can use the information of the key point for navigation in an unknown environment or
perceptive locomotion control over rough terrain [98]. Depending on the application, various
post-processing steps may be incorporated, such as smoothing, painting or plane segmenta-
tion. Miki et al. [98] in their work, suggest an elevation mapping pipeline leveraging GPU
for fast and efficient processing with additional features both for navigation and locomotion,
with a demonstration of their mapping framework through extensive hardware experiments.
The result is shown in figure 2.1. Since the processing calculation is done on GPU, the pro-
cessing time remained short even for large numbers of points. While the baseline method’s
calculation (which uses the CPU) time grew at a steeper rate with respect to the number
of points. With the use of Bpearl sensor [8] data to measure the calculation time for each
component on Jetson Xavier and collected 1000 measurements, the calculation time per fea-
ture (with a number of points of 43017), is 6.857ms, without taking into consideration the
data-movement between CPU DRAM and device shared memory.

However, it’s true that Miki et al. used Xavier Jetson AGX for their acceleration. Along with
a LiDAR camera, which is greedy for energy as a type of source. Thus, the overall energy
consumption will be considerable, although the latency and time execution is as considerable
as FPGA will deliver see chapter 5.

In another work conducted by Beyeler et al. in [32] which presents a cortical neural network
model for visually guided navigation that has been embodied on a physical robot exploring
a real-world environment. The model includes a rate-based motion energy model for area
V1 of the brain, and a spiking neural network model for cortical area MT. The model gen-
erates a cortical representation of optic flow, determines the position of objects based on
motion discontinuities, and combines these signals with the representation of a goal location
to produce motor commands that successfully steer the robot around obstacles toward the
goal. The model produces robot trajectories that closely match human behavioural data.
This study demonstrates how neural signals in a model of the cortical area might provide
sufficient motion information to steer a physical robot on human-like paths around obstacles
in a real-world environment, and exemplifies the importance of embodiment, as behaviour
is deeply coupled not only with the underlying model of brain function but also with the
anatomical constraints of the physical body it controls. This work uses NVIDIA Jetson TX2
as a type of board to accelerate the calculation of the cortical neural network model for

26 2. Hardware Acceleration for autonomous vehicles localisation

visually guided navigation, the latency and time of getting implemented on the platform
are nearly 100-150× slower than our N-LOC hardware implementation of the visual place
recognition LPMP model, further details see chapter 5.

Along side, Tesla has introduced the Tesla D1, a new chip specifically designed for artificial
intelligence. Powered by NVIDIA, the Tesla D1 is capable of delivering a power of 362
TFLOPs and shows great promise for turbocharging autonomous driving [15].

Figure 2.1: Point cloud processing time comparison between Miki et al. method and an
existing implementation on CPU [56]. The calculation time increases more with
the baseline method while it stays comparatively low with miki et aL.’s approach.
The number of points is indicated with 2xBpearl [8] and 1xrealsense [7] on the
plot. The proposed mapping pipeline could process the data in real-time, while the
baseline method had a considerable delay on the onboard PC (Jetson). recreated
from Miki et al. work in [98].

2.1.1.2 An example of embedded GPU: NVIDIA’s Jetson TX2

The NVIDIA Jetson TX2 is an a high-end embedded heterogeneous system, which features an
ARM Cortex-57 quad-core processor, an NVIDIA Pascal GPU with 2×128 cores (2 shared-
memory processors, or SMPs), 8 GiB of DRAM, and 32 GiB of eMMC storage. It aims at
real-time image and video processing, possibly within the context of an AI application. Edge
computing is clearly one of the targets of the Jetson TX2. For more details see Figure 2.2.

2.1. Computational supports for Hardware implementation 27

Figure 2.2: An overview of the NVIDIA Jetson TX2, which was utilised in our experiments.
See section 4.6.1.

2.1.2 FPGA

2.1.2.1 Principles

In recent years, FPGA is becoming a promising solution for algorithm acceleration [68].
Compared with CPU, GPU, and DSP platforms, for which the software and hardware are
designed independently, FPGA allows the developers to implement only the necessary logic in
hardware according to the needed algorithm [68]. By eliminating the redundancy in general
hardware platforms, FPGAs can achieve higher efficiency. Application-specific integrated
circuits (ASICs) based solutions achieve even higher efficiency but require a much longer
development cycle and higher cost [68].

2.1.2.2 Using FPGA for navigation process and motivation beyond

Future autonomous vehicles are directly related and depend on vision-based navigation, which
imposes great computational challenges, as we have seen and explored in the chapter 1.
Lentarise et al. in [83] develop a high-performance supporting custom computer vision algo-
rithms of increased complexity for AVs pose tracking. At the algorithmic level, they follow a
6D pose by rendering a depth image from an object mesh model and robustly matching edges
detected in the depth and intensity images. At the system level, they devise an architecture to
exploit the structure of commercial system-on-chip FPGAs, i.e., Zynq7000, and the benefits
of tightly coupling VHDL accelerators with CPU-based functions, the figure 2.3 gives details
of the implemented architecture for the tackled application. At the implementation level,
they employ their custom HW/SW co-design methodology and an elaborate combination of
digital circuit design techniques to optimise and map efficiently all functions to a compact
embedded device. Providing significant performance per watt improvement, the resulting
system achieves a throughput of 10-14 FPS for 1 Mpixel images, with only 4.3 watts mean
power and 1U size while tracking in real-time with only 0.5% mean positional error. The

28 2. Hardware Acceleration for autonomous vehicles localisation

final system: resources on SoC FPGA XC7Z100IFFG900-2L, it consumes overall 36% of the
Look-up-table (LUT), 77% of the BRAM, in addition, it requires ≈ 83ms.

Based on what we have presented in GPU and FPGA sections before, for their use in the
navigation of mobile robots or even for AVs. Using the FPGA as a type of board to accelerate
the calculation, especially for the localisation task, is justified by the comparable latency that
can provide hundreds of milliseconds compared to the GPU results, also the computational
challenges via a combination of techniques at the architecture and VHDL level. Thus, To
decrease time and make it a run-time system, we shall employ a deep-pipelining, module
replication, parallel memory organisation, tight coupling of PS and PL functions, as well as
task-level parallelisation and balanced scheduling.

Figure 2.3: Proposed system on top of Zynq7000 SoC FPGA for the application support.
Recreated from Miki et al. work in [83].

2.1.3 Comparing State-of-the-Art Hardware Platforms: Performance, Fea-
tures, and Costs

In the realm of hardware platforms, two contenders stand tall: FPGA (Field-Programmable
Gate Array) platforms, including Zynq 7000 and Ultrascale, and GPU platforms like NVIDIA
Jetson TX2 and NVIDIA Jetson Xavier. When comparing these state-of-the-art options, it’s
important to consider the specific application, workload, and implementation at hand. To
assist in the selection process, Table 2.1 presents a comprehensive overview of the metrics used
to evaluate the suitability of an FPGA as an acceleration platform. These metrics include
flexibility, power consumption, performance, reconfigurability, and scalability. By utilizing
these metrics, we can assess the FPGA’s potential for meeting our specific requirements and
implementation needs.

2.1. Computational supports for Hardware implementation 29

After careful evaluation and consideration of the aforementioned metrics, the FPGA emerges
as the chosen platform for acceleration. With its remarkable flexibility, low power consump-
tion, impressive performance, reconfigurability, and scalability, the FPGA proves itself to be
the true champion in this epic battle of hardware platforms. The metrics are presented and
explained as follow:

• Flexibility refers to the ability of a hardware architecture to adapt and support a wide
range of applications and functionalities. A highly flexible HW architecture allows for
efficient implementation of various algorithms and designs by providing a diverse set of
resources.

• Power consumption is a metric that quantifies the amount of electrical power consumed
by an architecture during its operation.

• Performance refers to the speed and efficiency of an architecture in executing a specific
task or workload. It is typically measured in terms of throughput, latency, or operations
per second.

• Reconfigurability measures the ability of an architecture to be dynamically repro-
grammed or reconfigured during runtime. This feature is exclusive to FPGA platforms
that can effectively utilise such functionality.

• Scalability refers to the ability of an architecture to efficiently accommodate designs of
varying sizes and complexities. A scalable HW architecture can support small, medium,
and large designs without significant degradation in performance or resource utilisation.

Throughput
FPGAs are highly parallelisable and can achieve high throughput by implementing custom
hardware designs. The actual throughput of an FPGA depends on the design and optimisa-
tion techniques employed.

GPUs are optimised for parallel processing and can also achieve high throughput for cer-
tain workloads, such as image and video processing: Tasks such as image and video encod-
ing/decoding, object detection, image recognition, and video transcoding can be accelerated
using GPUs, machine learning and deep learning: Training and inference tasks in machine
learning and deep learning algorithms can be accelerated using GPUs, Computational Fluid
Dynamics (CFD): CFD simulations involve solving complex equations to study fluid dynam-
ics, financial modeling: Financial institutions often deal with vast amounts of data for risk
analysis, portfolio optimisation, and pricing models, etc. The throughput of a GPU depends
on factors such as the number of cores and the efficiency of the implemented algorithms.

Performance
FPGAs offer high performance due to their ability to implement custom hardware designs
tailored to specific applications. They can achieve low latency and high-speed processing for
tasks that benefit from hardware acceleration, such as Real-time Signal Processing: FPGAs
can be utilised for real-time signal processing applications such as digital filtering, audio
and video processing, radar and sonar signal processing, and wireless communication, High-
Frequency Trading: In the financial industry, FPGA-based solutions are often employed for
high-frequency trading (HFT), Network Packet Processing: FPGAs can be used for network
packet processing tasks, such as packet parsing, deep packet inspection, and traffic classifica-
tion, Cryptography and Security: FPGAs can accelerate cryptographic algorithms, including
encryption, decryption, hashing, and authentication, High-Performance Computing (HPC):

30 2. Hardware Acceleration for autonomous vehicles localisation

FPGAs can be integrated into HPC systems to accelerate computationally intensive tasks,
Machine Learning Inference: FPGAs can be utilised for high-performance machine learning
inference tasks.

GPUs excel in tasks that can be parallelised, such as graphics rendering and machine learn-
ing. With their large number of cores, GPUs can process substantial amounts of data con-
currently.

Power consumption
FPGAs generally consume less power compared to GPUs. This is because FPGA designs are
customised to efficiently perform specific tasks, resulting in reduced power requirements.

GPUs have higher power consumption due to their large number of cores and complex archi-
tectures designed for general-purpose computing.

Cost
FPGAs can be more expensive than GPUs, particularly when factoring in development costs.
FPGA development typically necessitates specialised knowledge and tools, which can con-
tribute to higher overall expenses.

GPUs, especially those designed for embedded systems like NVIDIA Jetson TX2 and Jetson
Xavier, are relatively more affordable and widely accessible.

Flexibility
FPGAs offer a high degree of flexibility as their hardware designs can be reprogrammed to
adapt to changing requirements. This makes FPGAs suitable for applications that require
frequent updates or customisation.

GPUs provide flexibility at the software level, enabling developers to leverage parallel pro-
cessing capabilities for a wide range of tasks. However, GPUs are less flexible at the hardware
level compared to FPGAs.

Based on the presented reference in table 2.1, FPGA is the architecture that offers the most
favorable comparison across the different metrics listed in Table 2.1. To further quantify
the comparison between FPGA and GPU, Table 2.2 presents power consumption estimates
for various workloads. For instance, for a highly complex application involving both image
processing IP and machine learning IP, the power consumption can be approximately 7W.
In contrast, the NVIDIA Jetson TX2 can reach up to approximately 15W.

HW Plts Flexibility Power con-
sumption

Performance Reconfigurability Scalability

CPU [67] [114, 67] [15, 67] N/A [67]
GPU [15] [114, 67] [15, 34, 67] N/A [15, 34]

FPGA [34, 75] [140, 34,
114, 75]

[140, 34, 114,
67, 75]

[34] [140, 34, 114, 75]

ASIC [75] [75] [75] N/A [75]

Table 2.1: Comparing state-of-the-art hardware platforms: Performance, features, and
costs.

The throughput of a GPU relies on factors such as the number of cores and the efficiency of
the implemented algorithms. They excel in tasks that can be parallelised, such as graphics

2.1. Computational supports for Hardware implementation 31

rendering and machine learning, leveraging their numerous cores to process large volumes
of data concurrently. GPU power consumption varies, ranging from 800W for the latest
server or workstation-oriented GPUs to as low as 15W for the Jetson TX2 SoC. This power
consumption is attributed to their large core counts and complex architectures designed for
general-purpose computing, even in embedded settings. GPUs, particularly those designed
for embedded systems like NVIDIA Jetson TX2 and Jetson Xavier, offer relative affordability
and wide accessibility. At the software level, GPUs provide flexibility, allowing developers to
harness parallel processing capabilities for diverse tasks, as mentioned earlier in the context of
throughput workloads. However, when considering the inherent design architecture of GPUs
and FPGAs, and drawing upon the definition of flexibility as a metric, GPUs exhibit less
hardware-level flexibility compared to FPGAs.

HW plts Power consumption estimation Performance estimation Cost
(state-of-the-art) (state-of-the-art)

FPGA Zynq 7000 Up to ≈ 7W Up to ≈ 10TFOPS Reasonable
NVIDIA Jetson TX2/TX2i 7.5W / 15W 1.33 TFLOPs Affordable

NVIDIA Javier Xavier 15W / 30W 21TOPS Reasonable

Table 2.2: Hardware acceleration platforms: Quantitative features.

2.1.3.1 Programming FPGA using VHDL

VHDL is one of the commonly used Hardware Description Languages (HDL) in digital circuit
design [17]. VHDL stands for VHSIC Hardware Description Language. In turn, VHSIC
stands for Very-High-Speed Integrated Circuit [17].

VHDL was initiated by the US Department of Defense around 1981. The cooperation of
companies such as IBM and Texas Instruments led to the release of VHDL’s first version in
1985. Xilinx, which invented the first FPGA in 1984, soon supported VHDL in its products.
Since then, VHDL has evolved into a mature language in digital circuit design, simulation,
and synthesis [97].

VHDL is a programming language that has been designed and optimised for describing the
behaviour of digital circuits and systems [17]. As such, VHDL combines features of the
following, a simulation modelling language, a design entry language, a test language, and
a netlist language [9]. VHDL is optimised for electronic circuit design, and as such their
many points in the overall design process at which it can help [9]. It can help with design
specification, design capture, design simulation and documentation, and so on and so forth
[9].

2.1.3.2 Programming FPGA using High-level Synthesis

Specialised hardware has the potential to provide huge acceleration at a fraction of a pro-
cessor’s energy, the main drawback is related to its design. On one hand, describing these
components in a hardware description language (HDL) (e.g. VHDL or Verilog) allows the
designer to adopt existing tools for RTL and logic synthesis into the target technology. On
the other hand, this requires the designer to specify functionality at a low level of abstraction,
where cycle-by-cycle behaviour is completely specified. The use of such languages requires
advanced hardware expertise, besides being cumbersome to develop. This leads to longer
development times that can critically impact the time-to-market [103].

32 2. Hardware Acceleration for autonomous vehicles localisation

An interesting solution to realise such heterogeneity and, at the same time, address the time-
to-market problem is the combination of reconfigurable hardware architectures, such as field-
programmable gate arrays (FPGAs) and high-level synthesis (HLS) tools [27]. FPGAs are
integrated circuits that can be configured by the end user to implement digital circuits. Most
FPGAs are also reconfigurable, allowing a relatively quick refinement and optimisation of a
hardware design with no additional manufacturing costs. The designer can modify the HDL
description of the components and then use an FPGA vendor toolchain for the synthesis of the
bitstream to configure the FPGA. HLS tools start from a high-level software programmable
language (HLL) (e.g. C, C++, SystemC) to automatically produce a circuit specification
in HDL that performs the same function [103]. HLS offers benefits to software engineers,
enabling them to reap some of the speed and energy benefits of hardware, without actually
having to build up hardware expertise. HLS also offers benefits to hardware engineers, by
allowing them to design systems faster at a high-level abstraction and rapidly explore the
design space.

2.1.4 Heterogeneous System Architecture

Heterogeneous computing is a key strategy to meet the requirements of many compute-
intensive applications [34]. However, current platforms which leverage both CPUs and FP-
GAs are commonly underutilised, as scheduling is often constrained to a run-to-completion
model or to the acceleration of a single application at a time [41]. With specifically designed
hardware, reconfigurable fabrics represent the next possible solution to surpass GPUs in speed
and energy efficiency [34]. Various FPGA-based accelerator designs have been proposed with
software and hardware optimisation techniques to achieve high speed and energy efficiency
[41].

In contrast, GPUs offer up to 10 TOP/s (i.e., tera-operations ≈ 10·1012 operations per second)
peak performance and are good choices for high-performance neural network applications.
Development frameworks like Caffe [76] and Tensorflow [20] also offer easy-to-use interfaces
which makes GPU the first choice for neural network acceleration. Alongside CPUs and
GPUs, FPGAs are becoming a platform candidate to achieve energy-efficient neural network
processing. FPGAs can implement high parallelism and make use of the properties of neural
network computation to remove additional logic. Algorithm researches also show that a
Neural Network (NN) model can be simplified in a hardware-friendly fashion without hurting
the model accuracy [68]. Therefore, FPGAs offer the potential to achieve higher energy
efficiency compared to CPUs and GPUs [104]. However, FPGAs are also infamous for being
hard to design and program energy-efficient and highly performant neural networks, especially
from a software developer’s perspective, compared to a CPU and/or GPU-centric approach
[104]. Nevertheless, FPGAs are the best-suited devices if one requires end-to-end control, as
they allow the systems engineer to design a tailored platform, provided the necessary field
expertise is there to exploit them and yield a low power and energy footprint [104].

Several FPGA vendors propose AI-based or neural architecture-oriented solutions using FP-
GAs, including Xilinx products such as Alveo U55C [19], which is geared toward HPC and
Big Data workloads; Versal ACAPs, a cloud-oriented platform, etc. However, such solutions
rapidly become of limited use when considering unconventional solutions, e.g., to imple-
ment bio-inspired algorithms in hardware, as resource utilisation can quickly lead to resource
exhaustion when evaluating new algorithms. This leads the systems designer to explore
other venues, such as multi-FPGA designs, and solve additional issues, e.g., how to cor-
rectly synchronise FPGA systems connected through gigabit serial links, and find the best
communication schedule for a given (set of) design(s).

2.1. Computational supports for Hardware implementation 33

Hence, the reasons to resort to using a multi-FPGA board with an embedded high-speed
interconnect are the following:

• Necessity for prototyping complex algorithms that need to be scaled.

• Leveraging Dynamic partial reconfiguration for the aim of reducing energy, power con-
sumption, and space locality Task placement.

• Facilitate the incorporation of such middle-ware for partitioning: if there is a need to
schedule work on multiple devices, how much workload should be executed on each
device? For instance, scheduling 25% of the threads on CPU and 75% of the threads
on FPGA.

• Leveraging high-speed transceiver protocols as an intrinsic property of FPGA to com-
municate over multiple ones.

2.1.5 Exploring Hardware and Software Scheduling Strategies on Hetero-
geneous HW

The second issue requires the exploration of new scheduling strategies to correctly allocate
parts of a NN to the target real-time offline scheduling for heterogeneous architectures, many
of which get their inspiration from Topcuoglu et al.’s HEFT [136], an offline scheduler for
periodic tasks. Yet, while autonomous vehicles may benefit from a good default allocation
policy using this method, the rapid changes in the environment also require good online
scheduling strategies. Some efforts, such as e.g., Chen et al.’s [41], propose a scheduling al-
gorithm for non-reconfigurable heterogeneous embedded platforms. Rossi et al. [120] propose
an algorithm to make the reconfiguration process preemptive to allow higher-priority tasks
to be reconfigured first.

Finally, some strategies co-schedule periodic and aperiodic tasks on heterogeneous systems [122],
which requires to use of a hybrid offline/online algorithm. We wish to go in that direction
for multi-FPGA systems, with “general-purpose” Partial Reconfigurable regions (PRRs) to
reduce the parameter space during the decision-making phase of the scheduler.

2.1.6 Leveraging partial reconfiguration

Since a pure software implementation is not sufficient to meet an autonomous vehicle’s real-
time requirements, an accelerator is needed. Hardware implementations can vastly outper-
form software ones. However, Fiack’s work also shows resources are quickly saturating when
implementing NN on FPGAs [57]: around 100K neurons were implemented on a Stratix V
board. Yet, while Wizarde (described in section 2.3) is arguably more powerful, it features
≈ 350K cells per tile—roughly half what is available in a Stratix V.

Hence, the use of dynamic partial reconfiguration (DPR) is essential to implement neural
networks. Our main application which is the localisation task is large enough that it will
not completely fit into the available reconfigurable fabric. Moreover, the LPMP model [43],
which studies and tackles the localisation aspect of an AV, shows that it is linked directly to
the capability and the performance of an AV on self-localisation, or even in the environment
exploration [43], for more details about the deployment and distribution of the bio-inspired
neural architecture see 5.

34 2. Hardware Acceleration for autonomous vehicles localisation

Thus, the computational stills unchangeable according to the vehicle’s environment, e.g.,
transitioning from a dense urban area to a rural one, the neurons used to decide will be
the same for all kinds of environment transition [43]. As a result, relying on a full hardware
solution is not reasonable or realistic. Therefore, to leverage the whole multi-FPGAs platform
wisely, and to grant the implemented application a high capability to navigate indoors or/and
outdoors, the system should rely on a light software layer which will provide a scheduling
and resource management environment, to decide which and where hardware task to allocate,
within an FPGA.

Hence, two major steps must be achieved:

• A middleware layer to provide an API to load and replace hardware tasks.

• Set of a scheduler(s) able to achieve real-time navigation using a bio-inspired approach.

Hence, scheduling algorithms’ capabilities must be tested to figure out the best task allocation
strategy to achieve real-time navigation using a bio-inspired approach. Through the emerg-
ing of CPU, FPGA accelerators can be managed much more efficiently with more complex
strategies, which inevitably optimises and outperforms the acceleration.

2.1.7 Facilitating DPR

2.1.7.1 Using Ker-ONE as a hypervisor for DPR facility

Ker-ONE is a hypervisor proposed by Xia et al. [146]. It provides a Partially Reconfigurable
Region (PRR) Monitor, to let the system software know which PRR is available for reconfig-
uration. Ker-ONE provides an API a programmer can use to load new bitstreams using this
approach. Which allows us to use it as a bare-metal kind of setup. The Ker-ONE binaries
yield a very small footprint: the kernel is 123KiB large; the user binary is 109KiB large. The
associated static design, including Ker-ONE’s partial reconfigurable region (PRR) monitor,
takes 5504 LUTs, which is less than 2% of the available real estate on a Kintex-7 FPGA.

The Ker-ONE framework is shown in figure 2.4. It consists of a host micro-kernel and a
user-level environment. Ker-ONE follows the principle of minimal authority and low com-
plexity. The micro-kernel is the only component that runs at the highest privilege level in
the kernel part, in the supervisor mode. Only the basic features that are security-critical
have been implemented in the micro-kernel [146], such as the scheduler, memory manage-
ment, and inter-VM communication. All non-required features have been eliminated so that
the microkernel’s Trust Computing Base (TCB) is mitigated and reduced. The Trust Com-
puting Based corresponds to pieces of software and hardware on top of which the system
security is built. As known in the operating system development, a smaller TCB size cor-
responds to higher security [130]. Since it reduces the system’s attack surface. The user
environment runs in user mode and is composed of additional system services, such as device
drivers, file systems, VM bootloaders, which run as server processes, see figure 2.4. Thus,
this framework is designed to be scalable and easily adaptable to extension mechanisms [146].
Multiple virtual machines (VM) run on top of the user environment and Ker-ONE is based
on para-virtualisation. In this technique, a guest OS is modified to explicitly make calls (i.e.
hyper-calls) to the hypervisor or a virtual machine monitor in order to handle privileged op-
erations. Each virtual machine can host a para-virtualised OS (i.e. guest OS) or a software
image of a user application, which has its own independent address space and executes on a
virtual piece of hardware. Therefore, Ker-ONE relies on a virtual machine monitor(VMM)

2.1. Computational supports for Hardware implementation 35

to support the execution of guest OSs in their associated virtual machine. It then handles
virtual machines’ hyper-calls, emulates sensitive instructions and provides virtual resources
to the virtual machines.

The design of Ker-ONE has been based on some assumptions, presented as follow:

• It is ported only on one single-core architecture.

• Ker-ONE deals with the virtualisation of simple guest OSs such as uC/OS or FreeRTOS,
instead of complex systems such as Linux, since para virtualising these types of OS
would be quite expensive and error-prone.

• In order to provide strong protection to critical tasks, all critical real-time tasks are
executed in one specific guest real-time OS (RTOS). The less critical tasks execute in
general-purpose OSs (GPOSs). Therefore, Ker-ONE is designed to cohost a single guest
RTOS and one or multiple additional guest GPOSs.

Figure 2.4: Ker-ONE consists of a micro-kernel and of a Virtual Machine Monitor running
at a privileged level. The User environment executes in a non-privileged level.
Recreated from XIA et al. work in [146].

2.1.7.2 Abstracting FPGA manipulation through adequate system-level layers
FOS

While useful, DPR itself requires the application designer to provide their own custom sched-
uler for each application. A better way would be to somehow abstract reconfigurable regions
and make them available through some kind of middleware or system software. This is what
FOS (FPGA Operating System) proposes to do [141]: after providing a static design for the
FPGA (of which some are “glue logic” to interact with FOS, and the rest is what the actual
system designer wishes to use for their application), reconfigurable regions can be considered

36 2. Hardware Acceleration for autonomous vehicles localisation

“simple” accelerator slots, much like GPUs in mainstream computing, for more details about
FOS architecture, see figure 2.5. The goal beyond this work is to see how FOS can be used
to drive a multi-FPGA system from a scheduling policy viewpoint, as well as from a DPR
perspective. In addition, care will need to be taken to add transceiver logic to the FOS in-
frastructure, so that various instances of FOS (one per tile) can efficiently communicate. The
welcoming team at Manchester, led by Dr Dirk Koch, is behind the design and implementa-
tion of FOS and is very interested in dealing with scheduling tasks across multiple FPGAs,
but also implementing dynamic scheduling policies, as well as managing various task sizes,
which will probably require all parties of this project to design task descriptors which will
include meta-data to describe the needs and constraints of the tasks.

Figure 2.5: FOS extends the ZUCL framework with Linux integration, python libs, and C++
runtime management to provide support for: multi-tenancy (concurrent processes
with hardware accel.), dynamic offload, GUI, network connection and flexibility.
Recreated from Anuj et al. work in [141].

2.2 Accelerating the localisation task: FPGA vs. GPU

The (LPMP) localisation task requires autonomous vehicles to process visual information
in hard real-time to feed the spatial working memory and ultimately, efficiently compute
the vehicle’s location. Quite simply put, the higher the speed of the vehicle, the higher
the processed frame rate must be, in order to allow the decision-making system to perform
safely and efficiently. Hence, decision-making relies on a very low-latency localisation task,
especially at high speeds.

Table 2.3 compares a relatively high-end CPU+FPGA System-on-Chip (SoC), a Xilinx zc706
board, with two different GPU-based SoC embedded platforms: NVIDIA Jetson TX2 and
Jetson Xavier. The table displays the host-accelerator latency overhead for data transfer

2.3. The Wizarde Platform 37

Zynq-7045 NVIDIA Jetson TX2 NVIDIA Jetson Xavier AGX
Overhead (ms) 7.02 · 10−3 5.70 · 10−1 1.28 · 10−1

Table 2.3: FPGA vs. GPU comparison: Host-Accelerator data transfer overhead, in mil-
liseconds. The latency was computed using 1000 roundtrips, each exchanging
a 32-bit value.

roundtrips of very small data packets (a single 32-bit word at a time, which is representative
of what our system must deal with, with an objective of very low latency). As can be seen
from Table 2.3, while the Jetson Xavier system yields a much lower latency than the Jetson
TX2, a 32-bit host-GPU roundtrip is still ≈ 100 times higher latency-wise than its SoC-
FPGA equivalent. This confirms data transfers between host and accelerator tend to favour
FPGA-based systems: several studies, e.g., Qasaimehe et al. [114], observe between 100× and
10000× shorter latency or higher bandwidth when comparing CPU+FPGA vs. CPU+GPU
(depending on which kind of NVIDIA platform is used). Likewise, power consumption is
largely in favour of reconfigurable systems when compared to GPUs, as shown in Table 4.4
(see Section 5.3), which is in line with what Qasaimeh et al. detail in their work [114] (see
Section 5.2 for more information). In addition, as we present in Table 4.4, the power consumed
by N-LOC is around ≈ 3W for the whole system, whereas in the case of Jetson systems it
is situated in the 7.5-15W range, i.e., a Jetson system would consume between two and five
times more power than our resulting hardware implementation of LPMP. Thus, this justifies
our choice of using FPGAs as a platform to prototype and implement the bio-inspired neural
architecture.

2.3 The Wizarde Platform

To help with prototyping embedded applications running on a heterogeneous system com-
posed of multiple FPGAs, we have designed Wizarde, a custom board which aggregates
several system-on-chips (SoCs). It is composed of 3 × 3 tiles, organised in a 2D mesh. Each
tile is equipped with a Zynq XC7Z045, i.e., a SoC which embeds an ARM Cortex A9, which is
a dual-core general-purpose processor; and a Xilinx Kintex-7 FPGA, which holds 350K pro-
grammable logic cells [52]. Wizarde’s tiles are described in table 2.4. An important feature
of Wizarde is the gigabit transceiver interface set between two neighbouring tiles. This will
allow hardware tasks, i.e., their bitstream representation, to be mapped to different modules
of the target FPGA(s) depending on the run-time context. For example, due to specific
resource contention, a given reconfigurable region may not be available to a task which used
to run on it. As a result, such a task may be run on a different available slot somewhere
else in Wizarde. Besides, each tile is independent (equipped with USB, Ethernet, micro-SD,
DRAM, etc.), but all tiles are connected to their neighbours through a gigabit transceiver.

2.4 Mixed architectures: SoC + FPGA

Heterogeneous computing is a key strategy to meet the requirements of many compute-
intensive applications. However, current platforms which leverage both CPUs and FPGAs
are commonly underutilised as scheduling is often constrained to a run-to-completion model
or acceleration of a single application at a time [34].

38 2. Hardware Acceleration for autonomous vehicles localisation

Zynq SoC A9 + Kintex-7
LUTs 218,600

FlipFlops: 437,200
Block RAMs 545

SMA connector 1 port
DDR3 SDRAM 1 GB (connected to PS)

DDR3 SODIMM 1 GB (connected to PL)
Gbit Transceivers 16
USB 2.0/UART 1 port
Gbit Ethernet 1 port

Table 2.4: Contents of a Wizarde tile, based on the Zynq xc7z045ffg900-2.

To tackle this challenge, our future aim within this dissertation project is to leverage a mid-
dleware or bare-metal software layer, in which we will include and propose a new scheduling
policy to minimise the overhead caused by reconfiguration, and also to maximise the util-
isation of FPGA resources by dynamically scaling the resource allocation (we aim to use
Ker-ONE [146] as a Hypervisor). Moreover, FPGA technology is currently going through an
exciting time as FPGAs are becoming essential components in critical applications and SoCs
are now available for building sophisticated embedded systems that couple powerful ARM
SoCs with FPGAs. However, despite these key advancements, heterogeneous runtime systems
targeting FPGAs have not achieved their full potential, which occurs when orchestrating all
the heterogenous resources together. A heterogeneous runtime system has to optimise four
main scheduling problems:

• Device type selection: Which device (or combination of devices) an application should
be executed on (i.e. deciding between CPU or FPGA)?.

• Partitioning: If scheduling on multiple devices, how much workload should be executed
on each device? For instance, scheduling 25% of the threads on CPU and 75% of the
threads on FPGA.

• Number of compute units: How many instances of compute units should be allocated
for the task? For instance, the number of CPU cores or FPGA accelerators.

• Accelerator type selection: If a device has multiple implementation alternatives (e.g.,
FPGA accelerators with different micro-architectures or big. LITTLE CPUs), which
implementation should be selected

2.4.1 Gigabit Transceivers Interface

To bring out the high-speed signals from inside the FPGA and interface with the real world,
a needed demand for the use of transceivers is put in context. Compared to an approach
using ordinary IO Pins for FPGA interconnection, it has several advantages: the provided
bandwidth is very high while only a few wires are required [50]. Thus, to leverage this
FPGA’s features aspect, a pre-developed hardcore IP has been incorporated within our FPGA
ecosystem development.

The LogiCORE IP 7 Series FPGAs Transceivers Wizard is a type of serial communication that
will be used and already incorporated in the wizarde board, it provides the ability to automate
the task of creating HDL wrappers to configure on-chip FPGA transceivers. The wizard’s

2.4. Mixed architectures: SoC + FPGA 39

Figure 2.6: The Wizarde Platform. It is composed of 3 × 3 Zynq XC7Z045 SoCs, able to
a system independently. Each tile is connected to the others through gigabit
transceive 2.4).

customisation GUI allows users to configure one or more high-speed serial transceivers using
either pre-defined templates supporting popular industry standards, or let us build a protocol
from scratch [2].

2.4.1.1 Comparaison to related work

An interconnect framework for FPGAs based on multi-gigabit transceivers (MGTs), typically
available in modern reconfigurable devices is proposed by Dreschmannetal et al. [50]. The
framework provides higher bandwidth while using fewer pins, compared to existing approaches
based on ordinary FPGA IO pins. Unlike other implementations using MGTs for device
interconnection, special care has been taken to achieve high throughput and data integrity
while keeping latency, resource usage and protocol overhead very low. Depending on the
available MGTs, the bandwidth per connection reaches from 3.125 to 28 GBit/s, allowing
large amounts of data to be moved quickly between multiple FPGAs [50].

Yangfane et al. present in their work a network on chip (NoC) emulation at the physical
level [87], with two levels of interconnects that are adapted to mimic NoC on-chip commu-
nications: high bandwidth and low latency parallel on-board wires, and high-speed serial
multi-gigabit transceivers, which is particularly important, as it helps the proposed NoC
emulation platform to scale well as the NoC size increases.

Aloisio et al. shows that high-speed serial links are a key component of data acquisition
systems for high energy physics [23]. They carry physics events data and often also a clock,

40 2. Hardware Acceleration for autonomous vehicles localisation

trigger and fast control signals. The authors demonstrated that the jitter on the clock re-
covered from the serial stream is a critical parameter since it directly affects the timing
performance of data acquisition and trigger systems. While FPGAs include multi-gigabit
serial transceivers, which are configurable with various options and support many data en-
codings.

2.4.1.2 Towards using GTX Transceivers for a data-transmission over Wizarde
platform

As presented in the section 2.3, and based on different types of projects which try to in-
corporate the GTX Giga transmission into their implementation, see section 2.4.1.1, thus,
according to the high transmission and latency of the data communication which can reach
up to 12 GBit/s [50]. Therefore, a multi-FPGAs platform is constructed for prototyping
embedded applications, and leveraging its features as GTX Transceivers will be an essential
step to deploy the targeted localisation application.

Data in the Frame generator are sampled with ref_clk of 50 MHz before being sent to North-
west tile (NW) via MGT transceivers. The burst sending is expected with a frequency of
3.125 GHz. See figure 2.7

The different signals to be considered in the GTX transmission protocol, are as follows:

• Error_count: it should be NULL based on chosen frequency.

• DRP clock

• Rx_reset_done: should be at 1 when data are well received.

Figure 2.7: A simplex mode implemented on GTX transceivers as a first-stage protocol to
communicate between two adjacent Wizarde tiles.

2.5. Accelerating Image processing and VPR model using Heterogeneous
computing system 41

2.5 Accelerating Image processing and VPR model using Het-
erogeneous computing system

In the application domain of robot patrolling, the robot is considered as fully-autonomous
and all the computing parts of the robot are designed as dedicated embedded systems [57].
The robot is not considered as a remote set of sensors but as a programmed and independent
agent, taking its own decisions on the basis of learning [57]. That is the reason why Fiack et
al. proposed a specific real-time and embedded vision system. Their system, and main
contribution, are composed of two main parts:

• the Vision layer: a smart camera extracting visual features according to a bio-inspired
attentional model,

• the Neural control layer: an embedded framework implementing higher cognitive tasks
such as those implicated in the navigation scenario proposed in this paper.

In our thesis, we are interested in the vision layer called the Difference of Gaussian DoG,
as it provides richness for this sense and and importance in the sensation-action loop [57].
Otherwise, Fiack et al. proposed a platform which consists in a specific hardware architecture
(Zynq 700) that should provide intensive computation capabilities to deal with low-level
image processing. The proposed architecture combines video sensing, image processing and
communication into a System-on-Chip (SoC) embedded in the robot. This vision system
is designed as a full hardware architecture deployed onto an FPGA device. Alongside, we
incorporate the VPR LPMP model proposed by Colomer et al. in [43], as a bio-inspired
neural architecture to process the keypoints or the salient points extracted from the visual
processing DoG IP.

2.5.1 Difference of Gaussian DoG interface-based Image Processing for the
localisation task of Autonomous Vehicles

The Intellectual Property (IP) DoG implemented by Fiack et al. [57] resorts to several types of
operations, including gradients, as well as several differences of Gaussians (DoGs) operations.
It provides pixel data of each landmark identified on the captured image, based on a sequence
of differences of Gaussians. DoGs are used in multi-resolution methods to avoid expensive
computations due to a filtering operation. The algorithm used to construct the processing
phases of each level of resolution is detailed and evaluated by Fiack et al. [57] on FPGAs.
Their IP is based on successive image filtering operations with 2D Gaussian kernels. It detects
features in an image stream and then passes them to the central core as post-processing. More
details see 2.9.

2.5.2 Integration of the Pyramid IP to a Wizarde’s Tile

The DoG IP developed and implemented by Fiack et al. on Zynq-7000 FPGA family, de-
termines the keypoints of images passed through a VITA-2000 camera module [57], also the
project was carried out using ISE-2013 Xilinx tool.

The goal beyond this project is to leverage Wizarde platform and evaluate the logic it takes to
synthesise the IP, but also how much logic is left for other designs on the same tile. Likewise,
we shall plug the DoG IP in the larger context of a 3 × 3 SoC board called Wizarde (see
section 2.3), by taking in consideration the constraint file for wizarde, thus the appropriate

42 2. Hardware Acceleration for autonomous vehicles localisation

device tree, internal branches & electronics configurations, and the same Hardware design and
software application implemented in Zynq xc7z045ffg900-2. Likewise, The purpose beyond
this project is to give the number of resources required for the Zynq ZC706 board to operate
and support applications as depicted in 2.10. The architecture chosen represents one tile
within 9 of Wizarde. As we have seen before, the organisation of the architecture is depicted
in 2.8, It is composed of a chain of custom Intellectual Properties (IPs), written in VHDL,
that takes its input from a camera through a streaming interface. The IP can be configured by
the CPU part specifically by the memory-mapped interface. The IP chain generates several
results which can be read back by the software part:

• A Difference of gaussian (DoG) or an intermediate processed image, selectable thanks
to a dedicated register.

• The list of keypoints (the pixels information from the landmarks region of a processed
image) extracted and sorted by the IP at the different frequency band

• The list of log-polar (is a coordinate system in two dimensions, where a point is identified
by two numbers, one for the logarithm of the distance to a certain point, and one for
an angle [10].) features associated to each key-point.

Figure 2.8: Global overview for scaling-based image-processing IP. The flow of pixels comes
from the camera and goes to the CPU’s memory through a DMA. An intermediate
output can be selected thanks to a dedicated register. Another register allows
selecting which feature to read. Finally, the keypoints can be read through the
memory-mapped interface

The detected features are identified by their coordinates. Since most of the IPs follow a
data-flow model of computation, they produce and consume pixels at inputs and outputs,
respectively. Thus, the coordinates of the pixels are mandatory for each IP in order to
carry out the needed calculation. Moreover, the learning of the visual cells for navigation
needs to know the coordinates of the keypoints. The coordinates of the pixels must then be

2.5. Accelerating Image processing and VPR model using Heterogeneous
computing system 43

Figure 2.9: Block Diagram based on multiple chains of Hardware IPs for image processing
DoG application, using IP Pyramid as a processing-core IP. Alongside other pre-
existed Xilinx IPs to fed, output data as Axis-Stream-type information.”

Figure 2.10: DoG IP resource consumption

transferred from one IP to one other. Across the pipeline, these data must be either delayed
or regenerated by each processing IP depending on its latency. Furthermore, the results

44 2. Hardware Acceleration for autonomous vehicles localisation

shown below represent the first attempts our the design proposed to emulate and achieve the
target specified:

2.5.3 Hardware implementation of a VPR model

Although significant improvements have been made to VPR models, they are still not widely
used as the main source of localisation for navigation. Performing a navigation task on
an autonomous vehicle requires a fairly high localisation frequency that most VPR models
cannot achieve. For instance, a vehicle must provide a location very fast when it is travelling
in fast lanes, so that it does not lose the navigation route. However, these constraints could
be overcome by moving to a high-performance implementation.

In this work, we propose to leverage a VPR algorithm by moving to a hardware implemen-
tation. We are particularly interested in the VPR models using neural networks. Neural
architecture has the advantage of being particularly well suited to hardware implementation,
in particular by massively parallelising the computations performed by neural networks.

We thus propose to leverage the Log-Polar Max-Pi model (LPMP) [44, 43], a bio-inspired
VPR model based on the use of a single conventional camera and neural networks based on
a firing rate model. It has several interesting features for hardware implementation. First,
LPMP is competitive with the state of the art, with high performance at small sampling
scales. Second, it is a relatively simple model with a much smaller number of neurons than
deep models. Third,although also based on a feedforward architecture, the model is not
based on a succession of regular layers as in CNN’s but is rather composed of a succession
of neuronal populations with different characteristics. In addition, Colomer et al.’s reference
implementation is purely software-based (using Python). Without any optimisation, it cannot
scale to satisfy an autonomous vehicle’s real-time constraints for localisation. It thus lends
itself quite well to an FPGA implementation.

2.6 Conclusion

Based on what we have explored and presented previously, we have seen that FPGA is the
common and appropriate choice for better prototyping of the run-time and energy-efficient
application like the localisation using powerful and complex algorithms based on neural net-
work layers, or even the bio-inspired neural architectures. Nevertheless, with the growing
demand for the current approaches in terms of energy, and resource consumption for higher
performance, it becomes quite urgent to find out a better strategy to implement such kinds of
applications on dedicated platforms that can yield better efficiency and considerable perfor-
mance. Alongside, leveraging pre-existed middlewares, or micro-kernels in which we can rely
upon schedule and manage the placement of the tasks within the demanded specifications.
Thus, Implementing the LPMP visual place recognition model onto a hardware IP is our next
challenge to track, in the next chapter. However, we will demonstrate that even in one tile
of FPGA, the localisation score accuracy still needs to be considered. Therefore, the need
of scaling up the application onto a multi-FPGA board (the LPMP model in our case) is
mandatory (see chapter 5).

3
Problem Statement

Electric autonomous vehicles have been the focus of many works in robotics and embedded
systems over the last decade. Current solutions tend to favour LIDAR cameras for medium-
range localisation, coupled with convolutional neural networks (CNN) [77]. For example, Gao
et al. propose to fuse CNNs and vision algorithms with LIDARs [58].

However, leveraging LIDAR cameras for localisation is expensive and energy-consuming. A
bioinspired artificial hippocampus algorithm was proposed by Espada et al. [53], which models
a neural architecture based on a neurobotic model.

While the resulting neural network (NN) is large, there are not many layers between neurons,
contrary to Deep Learning implementations— which simplifies the overall architecture, and
gets rid of LIDARs. Espada demonstrates the potential of such an approach in unknown
environments but also exposes the need to scale to be useful in a real-life context. Indeed,
the original algorithm was implemented as pure software, on a (high-end) general-purpose
processor. Previous work by Fiack et al. shows FPGA-based neural networks far outperform
their software counterpart but quickly saturates available hardware resources [57]. Likewise,
the image-processing part of the algorithm has already been implemented using FPGAs by
Fiack et al., and the results show a drastic increase in performance once specialised hard-
ware is used [57]. Other FPGA-based solutions show they outperform other heterogeneous
(CPU+GPU) solutions for (convolutional) NNs, in terms of both performance and energy
consumption [85].

Hence, we intend to leverage a heterogeneous platform, composed of high-end general-purpose
embedded processors and FPGAs. This will allow us to provide specialised circuits to pro-
cess specific parts of the NN. The FPGAs will need to execute several tasks: extraction of
salient points in images [57], as well as updating a large (pre-trained) NN implemented in
hardware. Because the NN will be large, we will suggest one of the major contributions
of such a scenario as well as a workbench to deploy the bio-inspired algorithm on multiple
FPGAs. Furthermore, we rely on the Cortex A9s to perform local and distributed hardware
and software task scheduling.

Basically, we start by implementing hardware tasks into one tile’s FPGA then Measure
latency & throughput in order to compare it with pure CPU implementations, then we
get across multiple FPGAs / tiles. Once all of that is done, we fetch the neural network
which fits into one tile’s FPGA after we map a larger neuron which fits onto multiple tiles’
FPGA.

Some challenges need to be overcome during our implementation, we aim to program the bio-
inspired neural application using the HLS programming tool, and then, the implementation
design will be carried out using the Vivado Xilinx platform. Thus, some challenges need to
be tracked within this thesis, we outline them as follows:

46 3. Problem Statement

• The main goal of my thesis is to deploy the whole neural architecture on the multi-
FPGA board system. Scheduling the intra-inter communication through FPGA tiles
is the main issue in our research. We will present a scenario in which we will set the
CPU part as the master controller, and the FPGA tiles will carry out the accelerator
IPs of the tackled application (whether it is the DoG image processing IP or the N-
LOC bio-inspired neural ones). The signals on which the variables of the bio-inspired
neural model need to model, have to be on fixed point values. By avoiding the float
types to provide a better representation of the system, and by minimising the resource
consumption of the used board. Also, the fixed-point representation gives the same
degree of precisions as float one.

Part III
Contributions

4
MODELLING A BIO-INSPIRED

ALGORITHM FOR FPGAS
4.1 Introduction

As we have discussed in chapter 3, Colomer et al. proposed a new way for the LPMP
model to encode visual information based on the use of a sparse coding algorithm. It is a
representation learning method which aims at finding a sparse representation of the input
data (also known as sparse coding) in the form of a linear combination of basic elements as
well as those basic elements themselves [14]. Inspired by the function of the visual cortex, it
strongly compresses the visual information by keeping only useful information for localisation
issues. In particular, this method was developed to build a code resistant to the translation
undergone during the spatial movement of a vehicle [43]. Therefore, its use in the LPMP
model has greatly improved the computational and memory cost of the system while slightly
improving the model’s localisation performance [43]. The LPMP model has been designed
and deployed for large-scale environments, and also it reduces the computational and memory
cost caused by its method of visual information encoding [43].

In addition, Colomer et al. have assessed the robustness of their model in dynamic environ-
mental conditions (i.e subject to strong variations of human activity such as traffic, pedestrian
activity, etc.), in order to determine whether and how the model should be improved [43].
Finally, they developed a new method for evaluating its performance based on its formulation
as a model of Visual Place Recognition (VPR) and on the use of a more realistic dataset (we
both use Oxford RobotCar Dataset to evaluate the model [90]).

In this chapter, our main focus will be the implementation of the localisation task on re-
configurable fabric specifically on field programmable gate array (FPGA). As discussed in
chapter 3, the target neural architecture for Visual Place Recognition (VPR) will implement
the LPMP bio-inspired model, as it delivers more reliability, and robustness of scores or
results, and yields a low-cost energy-consumption on the term of application [44, 43].

In the remainder of this chapter, we depict the N-LOC architecture which is the LPMP model
hardware implementation into three different essential blocs, the Signature Layer (SL), spatial
working memory (SWM), and Place Cell (PC). Afterwards, a representation and discussion
of the size of architecture alongside with resources it takes on FPGA implementation will be
highlighted in detail.

4.2 Implementing N-LOC on FPGA

The LPMP mimics the hippocampus. N-LOC "only" implements the modelling LPMP which
relies on a bio-inspired neural architecture implemented on the FPGA Zynq-7000 type of

4.2. Implementing N-LOC on FPGA 49

family. As we showed earlier, LPMP performs visual localisation by mimicking the function-
ing of the mammalian brain [53, 44]. To localise an image, the architecture encodes these
extracted landmarks (given by the image-processing DoG IP, see section 2.5.1) in a unique vi-
suospatial pattern via several neural structures. Our resulting IP is composed of 3 stages: (1)
the computation of the landmarks’ visual signature via a winner-takes-all network (WTA) in
the signature layer (SL), along with the computation of their angular position in the azimuth
layer (AL); (2) merging of SL with AL via a spatial working memory (SWM); (3) computation
of “place cell” (PC) activity via winner-takes-all for an appropriate localisation.

4.2.1 Visual signature computation

The computation of the visual signature landmarks relies on a WTA. It consists of a neural
network and carries out input signals discrimination through competition. This WTA mod-
els cognitive properties, e.g., decision-making, visual and auditory attention, and selective
amplification. A WTA consists of a weighted average-based computation, with a post-tree-
reduction selection, in order to only keeps the highest activity among activated neurons in
that group of neurons. we denote SL as the signature Layer for the WTA computation.

Si = 1 −
Npixels∑

j=1
(|Ej − Wij |)/Npixels (4.1)

Where i is the index of the neuron being considered, j is the index of the pixel being processed,
Wij is the weight of the i-th neuron processing the j-th pixel, and Npixels is the total number
of pixels per landmark.

4.2.2 Angular position computation

The computation of the landmarks angular position θnorth
l (or azimuth), where l is the lth

neuron in the AL vector and relies on the interpolation between the landmark angular position
θego

poi and the vehicle orientation θnorth
V ehicle. It is described by eq. 4.2 1.

θnorth
l = θego

poi + θnorth
V ehicle (mod 2π) (4.2)

θnorth
l is in radians, This information is encoded in the form of a population of neurons,

a bio-inspired neural structure which encodes the current azimuth value in the form of an
activity bubble. Besides, we fix the AL vector in our experiment, to focus only on the visual
signature computation.

4.2.3 Spatial working memory

The spatial working memory (SWM) is a NS ×NA pixel matrix. NS is the number of neurons
in the SL vector, and NA is the number of angles considered in the model. In figure 4.3,
NA = 4, where each angle of 45◦ is coded by a group of neurons in the AL vector. In our
actual experiments (see section 4.6.1), we set NA = 3. We denote NSWM the total number
of values which compose the SWM. A is the number of groups in AL, with A = 4 (i.e.,
each group holds 60 neurons). Eq. 4.4 gives the intensity of the il neuron where si(t) is the
signature layer’s neuron activity, wi,il(t) is the weight value between SWM and SL, aj(t)

1Each neuron encodes 2◦. We need a population of 180 neurons for 360◦ of total camera angle.

50 4. MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS

represents the AL’s neuron value, wj,il(t) is the weight value between SWM and AL, eq. 4.3
yields its final activity, where f is the activation function of Sigmoid which is applied to
normalise the final results, it is used to determine the output of neural network like yes or
no, thus, It maps the resulting values in between 0 to 1.

xil(t) = f(xil(t − 1) + Iil(t) − xil(t − 1).In(t)) (4.3)

Iil(t) = (si(t).wi,il(t)).(max
j∈Nal

(aj(t).wj,il(t))) (4.4)

The connection weights between AL and SL are assigned to 1 in the SWM. The execution
workflow of the second WTA is described in figure 4.3.

4.2.4 The place cell neurons group

The activity of the SWM matrix characterises the current location. It is memorised in a
place cell vector (PC) of NP neurons, which will then be fed to another WTA. This is in
reference to “place cells neurons” found in the hippocampus which has a close activity [102].
NP refers to the maximal number of images that N-LOC can memorise. Eq. 4.5 gives the
activity of the neuron i at time t, we denote that by Pi(t), as W SWM

ij − xj(t) is the weight
value between SWM and PC, and xil(t) is SWM’s neuron value obtained from the Eq. 4.4.
Each neuron in PC holds connections related to learned images: the activity of one neuron
gives the similarity between a learned place and an image. Thus, it eventually provides the
appropriate information about the current location to the localisation system.

Pi(t) = 1 −
NSWM∑

j=1
(|W SWM

ij − xj(t)|)/NSWM (4.5)

4.2.5 Modes of operation

The N-LOC model has two modes of operation for the localisation process. The first is learn-
ing, where the connection weights of its different components can be updated to memorise
new images. It is triggered when the autonomous car starts the localisation process, or when
the car enters a new location. Thus, a set of images must first be streamed to the neural IP
to extract features and compute the weights of the connections between neurons and pixels
at each stage. See figure 4.1 for more details about the learning mode. The second is using,
where the connection weights are fixed. This is where the actual assessment and evalua-
tion of the accuracy and performance measurement of the environment localisation per each
captured image throughout camera VITA [30] occurs. Thus, we aim to have the maximum
score rate for the selected sparked neuron, which represents a previously learned image. See
figure 4.1 for more details about the using mode.

4.3. Evaluation of the LPMP model on real-time constrained environments 51

(a) Learning mode

(b) Using mode

Figure 4.1: The figure 4.1a refers to the learning mode where the values of weights between
the signature layer and pixel flow are provided by the values of the pixel of each
landmark that the image contains. The figure 4.1b indicates the using mode,
where the values of all weights between layers are fixed, however, the neurons are
invited to do different types of calculations, in the signature layer the weighted
sum operation is performed, in SWM layer an activation function with correla-
tion between signature layer’ neuron value, and azimuth layer’ neuron value, the
place cell is weighted sum type of operation to choose the score and appropriate
landmark according to the evaluated input.

4.3 Evaluation of the LPMP model on real-time constrained
environments

Colomer et al. [43] conducted different types of experimentations on real-time constrained
environments (three types of weather were encountered: sunny, cloudy, overcast) with the
VEDECOM vehicle on the Satory track, to evaluate the navigation performance of the
model.

Table 4.1 shows that 5 sessions of experiments have been performed in total, after stabilisation
of a functional version of the model, in order also, to evaluate and assess the LPMP model
by Colomer et al.. Among the five experiments, four types of weather were encountered:
sunny (once), partly cloudy (once), overcast (once) and cloudy (twice). It also shows that

52 4. MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS

the attendance of the track has always been basic, except for experiment 4 where various
vehicles were moving on the track.

The table 4.1 shows that out of the 11 trials performed, 6 can be considered as successful. A
trial on each of the target trajectories has been passed, proving that the model can work in
all three environments. It also shows that most failed tests occurred when the weather was
cloudy (experimental sessions 3 and 5), illustrating the difficulty of the model to work during
this weather. Cloudy weather is particularly hard for a visual navigation system, which
has to deal with very important light variations in a short period of time. Difficulties were
encountered in adjusting the BlackFly camera [4] to keep the brightness level more or less
constant (the used camera, although being quite powerful, is very sensitive to the variation
of luminosity which strongly modifies incoming images).

T
ra

je
ct

or
y

na
m

e

T
ri

al
in

de
x

E
xp

er
im

en
t

se
ss

io
n

in
de

x

W
ea

th
er

T
ot

al
di

st
an

ce
in

m
.

T
ot

al
du

ra
ti

on
in

s.
(l

ea
rn

in
g

du
ra

ti
on

)

N
um

be
r

of
co

rr
ec

ti
on

s

N
um

be
r

of
pl

ac
e

ce
lls

B
es

t
di

st
an

ce
in

m
.

A
ve

ra
ge

pl
ac

e
re

co
gn

it
io

n
ac

-
cu

ra
cy

in
m

.
(s

td
)

M
ea

n
di

st
an

ce
to

ta
rg

et
tr

aj
ec

to
ry

in
m

.
(s

td
)

1 1 Partly cloudy 2672 2221 (933) 10 51 1367 4.36 (3.69) 1.54 (1.8)
2 2 Sunny X X 18 48 ∼2734 X X
3 3 Cloudy 628 355 (121) 3 49 156 4.51 (8.74) 1.14 (0.93)
4 3 Cloudy 691 401 (115) 4 47 128 7.38 (10.39) 1.77 (1.18)
5 4 Overcast 1108 567 (112) 6 41 228 4.66 (5.46) 1.36 (1.05)
6 4 Overcast 1163 657 (162) 8 44 147 4.23 (4.29) 1.22 (1.04)
7 4 Overcast 3154 1531 (171) 11 45 1660 4.43 (3.64) 1.54 (1.21)

nloop

8 5 Cloudy 1701 755 (60) 17 46 194 4.94 (4.92) 1.44 (1.19)
9 1 Partly cloudy 3600 1613 (168) 6 97 422 4.52 (12.76) 0.8 (0.75)HallA
10 5 Cloudy 1625 584 (172) 100 90 2.74 (1.59) 1.4 (1.1)

Parking 11 5 Cloudy 1103 1218 (171) 10 65 79 3.68 (2.53) 1.86 (1.66)

Table 4.1: Results of the LPMP model on the Satory circuit type of testing envi-
ronment at VEDECOM institute . Three different trajectories were tested:
a looping trajectory nloop, a long trajectory HallA and a trajectory in a closed
area "Parking". Std stands for standard deviation. Recreated from Colomer et al.
in [44].

4.4 Fixed-point arithmetic

Traditionally, when targeting reconfigurable hardware, fixed-point values are used to repre-
sent decimal values. Our implementation uses 8-bit values, with 2 bits for the integer part,
and 6 bits for the fractional one. This coding is motivated by the fact that all neurons’ weights
and values are between 0 and 1. We have experimented with different resolutions, i.e., 8, 10,
12, and 16-bit fixed-point numbers. Our experiments showed no significant improvement in
accuracy for place cells activation. Our target device is maintained for the same project as
in the image processing, Xilinx Zynq-7000 SoC ZC706.

4.5. Use of HLS to implement N-LOC 53

Using a fixed point representation is proposed rather than choosing the floating-point type,
which consumes and requires a lot of hardware resources even when dealing with small types
of operations. Therefore, fixed-point representation is efficient and justified both in terms of
accuracy and resources consumption [45, 22], the normal way of representing the split between
integer, fractional bits in a vector with a fixed-point number is x,y where x represents the
number of integer bits and y the number of fractional bits.

For our implementation, we have selected 8 bits as the total representation of signals type,
"2,6" represents 2 integer bits and 6 fractional bits. This format is often called Q format,
sometimes denoted Qm.n, where m represents the number of integer bits, and n represents
the number of fractional bits. Figure 4.2 illustrates the explained Q format. According to our
experimentation, we have noticed that even though we change the representation of the Q
format (increasing the bits in both integer and fractional), will maintain the same score and
accuracy in the final results, with ≈ 93% for all different Q format representations (according
to our experimentations). However, it will drastically impact resource consumption, thus,
the "2,6" fixed-point(2 integer bits and 6 fractional bits) is the optimal thread-off for this
selection. We use the ap_fixed hls library for fixed-point features.

Figure 4.2: An example is shown for the fixed-point format of QKF based on two’s comple-
ment.

4.5 Use of HLS to implement N-LOC

Several academic and industrial efforts have been devoted in order to increasing the produc-
tivity of FPGA-based designs by means of using High-Level Synthesis (HLS) tools [22]. The
HLS approach in Electronic Design Automation (EDA) is a way in the design flow aiming at
moving the design effort to a higher abstraction level. Although the first generations of HLS
tools failed to produce efficient hardware designs, different reasons have motivated researchers
to continue improving these tools [45]. Among these reasons, we can mention:

• The emergence of IP-based design approaches.

• Trends towards using hardware accelerators on SoCs.

• The time-to-market constraint usually presses to reduce the design time.

As FPGA offers a tremendous number of logic cells on a single chip, digital design for such
huge hardware resources under time-to-market constraint urged the evolution of High-Level
Synthesis (HLS) tools [22]. Today, several existing HLS tools have shown their efficiency in
producing acceptable design performances and shortening time-to-market [103, 94]. Thus,

54 4. MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS

several HLS optimisation steps have been proposed in the state of the art, in order to improve
the system’s performance.

We outline here a pre-evaluation and initiative to go forward by using the VHDL programming
tool first. However, according to the complexity of design and the difficulty of leveraging the
appropriate pragmas to carry out the different possible optimisation. Moreover, to explore
the possible optimisation steps that could be done in order to achieve an efficient hardware
implementation, further see table 4.2.

4.5.1 Methodology for Implementing the LPMP Model on FPGA Plat-
form

The VHDL code generation process for the LPMP model leverages High-Level Synthesis
(HLS) techniques to facilitate efficient development. The implementation of the LPMP model
involves two crucial phases.

Firstly, the storage of pixels is accomplished by utilizing the available Block RAMs (BRAMs)
and Look-Up Tables (LUTs). This phase focuses on efficiently organizing and managing the
pixel data.

Secondly, the acceleration of neuron calculations occurs during the "Using" phase by paral-
lelizing the computations with the aid of
#pragma HLS unroll factor=NUMBER_NEURONS_IN_LAYER.
This pragma directive enables the efficient utilisation of hardware resources and enhances
the computational performance. NUMBER_NEURONS_IN_LAYER represents the signature layer
vector which contains neurons that carry out same calculation.

To optimize the signals and vectors of neurons and weights, specific directives are employed.
For example, to utilize the LUTRAM efficiently, the code incorporates the directive
#pragma HLS resource variable=NEURONS_LAYER1 core=RAM_1P_LUTRAM
in the appropriate section of the code. Additionally, for efficient memory allocation, the code
implements
#pragma HLS ARRAY_PARTITION variable=NEURONS_WEIGHT block factor=10 dim=1
. . . to partition the array into different BRAM blocks.
Furthermore, to ensure proper synchronisation between neuron layers, the following directive
is employed:
#pragma HLS pipeline.
This directive enables efficient pipelining of computations, enhancing the overall performance
of the design.

4.6 Experimental results

This section presents the results of our implementation: resource utilisation, latency, and
throughput performance. Results were obtained using Vivado’s HLS framework v2016.4,
coupled with a custom workbench. The design was implemented on a ZC706 board, which
features the same Zynq-7045 SoC that Wizarde uses, See chapter 3. This board was the
target used in Vivado to obtain performance measurements, resource consumption, and power
consumption estimates. We used the parameters described in section 4.

4.6. Experimental results 55

4.6.1 Experimental setup and implementation parameters

The target hardware platform is based on the Zynq-7045 system-on-chip, which features
a dual-core ARM Cortex A9 processor, coupled with a Kintex-7 FPGA (see Table 2.3 for
additional details). The Processing System (PS, featuring the dual-core Cortex A9) runs
a bare-metal executable which streams pixels to the programmable logic (PL). N-LOC was
designed using Vivado HLS, i.e., using the OpenCL language with FPGA-specific pragmas
to specify bus sizes, etc. The PL implements our N-LOC IP, which was synthesised and
implemented on the FPGA part of the Zynq SoC. Hence the performance results shown below
are obtained using an actual implementation of our design (not a simulation). Moreover, we
used Vivado 2016.4 to synthesize the IP on our FPGA. The Wizarde board was validated with
this toolchain and we have not yet qualified and validated Wizarde with a more recent Vivado
version (in our future work, we will generate a device tree for a Linux distribution which is
compatible with a more recent version of Vivado). Resource-wise, we compared the synthesis
reports of Vivado 2016.4 and 2019.3. The difference is below 4%. While the synthesis process
of a more recent version of Vivado may yield better resource usage in general, we believe the
nature of our IPs would see only marginal gains compared to Vivado 2016.4 in our specific
case. Moreover, the number of DSPs would remain the same, even in parts of the IP which
can take advantage of them (e.g., the WTA part).

Additionally, for the purpose of software reference evaluation, we utilised the NVIDIA Jetson
TX2 as the hardware platform to execute the software application. The characteristics of
the hardware platform, as well as the versions of the different packages employed to run the
Python-based software code on it, are defined below:

• NVIDIA Pascal™ Architecture GPU, 2 Denver, 64-bit CPUs + Quad-Core A57 Com-
plex.

• DDR4 Memory & 8 GB L128 bit.

• OS (Ubuntu 18.04).

• CPython 3.0, OpenCV 4.6.

Ideally, we would like to plug the image-processing IP (which performs the pyramidal decom-
position of the acquired images) directly to N-LOC. However, in order to correctly isolate the
N-LOC part of the processing chain, we opted to use a small bare-metal executable which
will stream images taken from the Oxford dataset [90]. This will also prove useful when we
evaluate the distributed N-LOC architecture, as it also requires a minimal runtime system to
orchestrate data synchronisation between multiple N-LOC instances (see Section 5.5.1).

Hence, a set of parameters is given to obtain around 90% accuracy when comparing the value
of computed place cells after the second WTA and the value in pre-learned images. As ex-
plained in Section 4.4, accuracy does not change significantly when increasing the fixed-point
number format to a higher number of bits. The initial training/learning phase uses as many
images as there are place cell neurons. Our bio-inspired IP uses the
following parameters:

• On the target Zynq-7045 chip, the signature layer (SL) can fit at most 1600 neurons; the
SWM 4800 neurons; the place cells vector 100 neurons, with 16 landmarks per image.

• The azimuth layer (which represents the angle orientation of each captured image)
contains 180 neurons.

56 4. MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS

• The values of azimuth neurons are fixed for this experimentation; varying azimuths will
be added in the future.

• We parameterised N-LOC with three configurations: 30, 60 and 90 place cell neurons.
They represent the number of images that need to be learned in the localisation process.

• We used 100 images to “feed” N-LOC.

• The maximum of neurons that we can accommodate on FPGA Zynq-7045 is 180, as
the last one, saturates the resources in both LUT and BRAM, see section 4.2 for more
details.

We compare our bio-inspired neural IP with Colomer’s Python-based application [44] to
build the place cells vector. As will be detailed in Section 4.6.2, we considered two versions
of the software implementation: the baseline and its optimised version. Both make use of
Cython, numpy and OpenCV to speed up computations. However, the optimised version
of the software implementation is also parallelised and makes better use of Cython to help
guide it toward more efficient code generation. As detailed in Section 2.5.1, image pre-
processing is performed either using OpenCV in the Python script or in the image processing
IP. A previous version of this model was validated on large datasets, as shown by Espada
et al. [53]. Iterations over LPMP led to an optimised code, which was tested in a mobile
robot in a real-life environment (closed tracks) to evaluate the performance of a software
LPMP implementation. As Colomer et al. show [44, 43], the algorithm is accurate and
correctly identifies landmarks. However, this implementation does not go fast enough to
scale at higher speeds. In addition, only the learning and using phases leading to building
the place cell vectors are evaluated; i.e., we do not time the video pre-processing which does
the gray-scaling and applies difference of Gaussians and Log-Polar conversion performed by
the previous component in the pipeline. As we described above, the reference code is written
in Cython, with uses of NumPy and OpenCV where appropriate. Our application directly
embeds all (grayscaled) images to exploit and as a result we subtracted the time taken
by the Python application to perform all the processing prior to the actual learning/using
phases, i.e., I/O operations to read image files, putting colour images to gray scale, dividing
images into landmarks, etc. These operations represent roughly 20% of the total execution
time in the baseline and optimised software implementations. We used different learning
configurations: the system had to learn using 30, 60 and 90 gray-scale images taken from the
Oxford dataset [90] to train the system (learning mode), then used 100 images in total in the
using mode. Each image has a resolution of 640 × 400 pixels. Python results were obtained
with NVIDIA Jetson TX2 and followed the same principles for the learning/using ratio.

Colomer et al. already showed how the LPMP model behaves with large datasets [44]. In
particular, real-life environment data obtained on close tracks using a mobile robot running
the software version of LPMP were gathered and validated the LPMP model’s accuracy and
precision [43]. The (optimised) reference code correctly identifies the right landmarks in a
real-life context. Moreover, our hardware implementation also selected the same landmarks in
our experiments as the software reference implementations. Hence, to compare our hardware
implementation to the software implementation used by Colomer, we consider it is sufficient
to resort to the Oxford dataset and run it on both software and hardware implementations to
compare the two and check how faithful N-LOC is to the original software implementation.

4.6. Experimental results 57

4.6.2 Resource utilisation

This implementation requires ≈ 26% of available LUTs, and ≈ 50% of BRAM blocks. The
amount of BRAM used is consistent with the format used for the SWM, which is essentially a
dense 1600 × 3 matrix of neurons yielding 8-bit values. Table 4.2 provides details for specific
resources required to implement our neural IP to process 8 or 16 landmarks, respectively.
We cannot consume more resources to increase the number of neurons because space must
be made to also fit the image processing IP.

Results numbers were obtained using Vivado’s HLS framework v2016.4, coupled with a cus-
tom workbench. The design was implemented on a ZC706 board, which features the same
Zynq-7045 SoC that Wizarde uses. This board allowed us to obtain performance measure-
ments, resources consumption, and power consumption estimates. We used the parameters
described in Section 4.2. Further, we also used those parameters to implement the neural IP.

8 landmarks
neurons 50 80 90 100 150 170 180
LUTs (%) 11.68 15.56 18.08 19.79 29.12 31.99 27.41
BRAMs (%) 16.70 31.38 49.72 53.39 86.42 93.76 132.29
FLIP FLOP (%) 2.69 1.67 2.85 2.89 3.16 3.27 2.03
DSPs (%) 1.33 0.33 1.33 1.33 1.33 1.33 1.44
16 landmarks
neurons 50 80 90 100 150 170 180
LUTs (%) 16.73 24.51 28.37 31.41 41.75 46.67 52.32
BRAMs (%) 35.05 60.73 97.43 104.77 110.28 124.95 150.41
FLIP FLOP (%) 3.21 2.55 3.45 3.50 2.13 4.16 4.76
DSPs (%) 1.33 0.33 1.33 1.33 1.67 2.37 2.89
32 landmarks
neurons 50 80 90 100 150 170 180
LUTs (%) 33.62 48.21 55.45 60.90 88.19 99.08 104.53
BRAMs (%) 24.04 94.50 94.50 94.50 376.33 376.33 376.33
FLIP FLOP (%) 2.68 1.33 2.71 2.71 2.75 2.75 2.76
DSPs (%) 1.89 2.44 1.89 1.89 1.89 1.89 1.89

Table 4.2: Resource consumption estimation for 8, 16, and 32 landmarks,
depending on the number of neurons in the place cells layer.
Only 50 and 80 neurons are shown for 32 landmarks: resources
saturate beyond that number. The results were obtained using
Vivado HLS 2016.4, and they provide an estimation of the post-
synthesis outcome.

We conducted our experimentation using three different learning configurations, to compare
both software and hardware approaches. We set the numer of place cell neurons at 30, 60,
and 90 respectively, and then test and evaluate the using phase on 100 images. Our FPGA-
based implementation outperforms the baseline Python-based reference implementation [44],
with an average throughput of 52 images/s vs. 7 images/s. Moreover, the LPMP algorithm
performs 50961 operations per image for 16 landmarks of one processed-image. Thus, by

58 4. MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS

multiplying those values, we get 0.032 GFLOPS/s for the Python implementation), and 2.3
GFLOP/s for our FPGA-based solution. The learning phase latency is 6× shorter, and for
the using phase, the latency is 9× shorter, with a total throughput ≈ 7× larger. See Table 4.3
for more details about the performance comparison.

A traditional Python implementation is around 10 times slower than sequential implemen-
tation with close-to-the-metal languages such as C. The first implementation of Colomer et
al. is not pure Python: it resorts to Cython, which translates Python code into C and com-
piles it natively, and also makes use of numpy and OpenCV, which are written in C and
C++. In their second implementation, processing neurons in SL, SWM, and PC structures
is parallelised in the using mode. As a result, it is much faster than the sequential reference
implementation we use as our baseline.

In term of learning latency, the optimised LPMP reference improves significantly its process-
ing performance compared to the baseline. N-LOC still yields better throughtput and latency
compared to the optimised version (≈ 9× lower). The optimised version stores all of the image
pixels in one shot, whereas we stream them one by one. However, while the optimised version
does perform twice as well as the baseline for the using latency, NLOC still outperforms this
optimised version, as its latency is ≈ 2 − 3× lower (≈ 9× compared to the baseline). The
learning phase is dominated by data (pixel) transfers, whereas the using phase is significantly
more intensive computationally speaking. Thus, as the number of image comparisons grows
in the learning phase, the using phase takes progressively longer in time [44]. Our imple-
mentation of the using phase’s latency is ≈ 9× lower than the baseline, and ≈ 2 − 3× lower
than the optimised version. Consequently, the throughput of the optimised LPMP version is
≈ 1.5 − 2× faster than the baseline when considering total throughput, but N-LOC’s total
throughput is itself ≈ 3 − 4× higher than the optimised LPMP version (and ≈ 7× higher
than the baseline). All the details of our experiments are shown in Table 4.3. Each image is
composed of 16 landmarks, of resolution 12 × 12 pixels.

The figure 4.4 illustrates the increase in the number of resources used in the FPGA for each
experimentation in which we varied the number of neurons in place cells for each N-LOC IP
during the design implementation using the Vivado tool. Our analysis revealed that the LUT
and BRAM were the primary resources consumed. This can be attributed to the N-LOC
architecture’s reliance on both storing pixel values on neuron weights and performing simple
mathematical operations on LUTs rather than using DSP.

Table 4.2 and figure 4.5 provide the various metrics we have considered. Multiple experiments
have allowed us to assess the accuracy of our visual recognition process compared to pre-
learned images following Colomer’s model. It is predicated on the number of landmarks per
image. Table 4.5 shows resource utilisation of the overall application implementation. Hence,
a resource consumption trade-off must be considered to make the design fit the board.

Table 4.4 details the power footprint of the whole hardware-based application (image process-
ing and neural IPs). The overall footprint (image processing IP and N-LOC IP) consumes
2.75W. This is to be compared to the nominal power consumption of NVIDIA Jetson TX2
used for our experiments (with a power consumption of 7.5W–15W).

4.6. Experimental results 59

Number of neurons in place cells 30 60 90

N-LOC
Learning: Latency (ms) 2.6 2.6 2.6
Using: Latency (ms) 11.4 20.3 29.2
Total Throughput (img/s) 82 45 31
Total Power consumption ≈ 2.8 ≈ 2.8 ≈ 2.8
static + dynamic (W)

Baseline reference
Learning: Latency (ms) 17.76 17.86 18.99
Using: Latency (ms) 100.32 123.93 146.66
Total Throughput (img/s) 9 7 6
Total Power consumption ≈ 7.5 − −15 ≈ 7.5 − −15 ≈ 7.5 − −15
static + dynamic (W)

Optimised reference
Learning: Latency (ms) 17.16 17.10 17.48
Using: Latency (ms) 61.11 66.05 72.60
Total Throughput (img/s) 13 12 11
Total Power consumption ≈ 7.5 − −15 ≈ 7.5 − −15 ≈ 7.5 − −15
static + dynamic (W)

Table 4.3: N-LOC: Performance and efficiency. The system is configured with different
number of place cell neurons, which corresponds to the number of neurons
to be learned. The system is then evaluated and tested with 100 images for
different place cell configurations. Results are generated using NVIDIA Jetson
TX2 platform for software reference (using all 6 CPU cores when possible for
the optimised version), and an FPGA ZC706 board for N-LOC Hardware
implementation. The used frequency in FPGA in both 30 and 60 PC neurons
is 100 MHZ. For 90 neurons, the frequency is set it 70 MHZ to satisfy timing
constraints.

(IP) Block Description Power (W)
Image processing Image acquisition and landmark identifica-

tion
0.783

Bio-inspired Neural
accelerator

Neuron activation ; place cell recognition 0.141

Processing system Hardcore processor (ARM Cortex A9) 1.567
Total power on chip
(static + dynamic)

2.749

Table 4.4: Total power consumption (static + dynamic) generated by all integrated IPs. Re-
sults obtained with 100 place cell neurons (maximum of neurons to be trained),
and 16 landmarks per image. We used Vivado’s power estimator.

60 4. MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS

IP block Slice
LUTs

BRAM
Tile

FLIP
FLOPs

DSPs

Image process-
ing

29647
(13.6%)

255
(46.8%)

30553
(7.0%)

298
(33.1%)

Single N-LOC 62377
(28.5%)

164
(30.0%)

7879
(1.8%)

4
(0.4%)

Table 4.5: Resource utilisation for each integrated IP, implemented on one tile of Wiz-
arde, for 100 neurons of place cell neurons group, and 16 landmarks per each
image. The raw values are provided, along with the percentage they represent
between parentheses.

4.7 Conclusion

We proposed a low-footprint and high-performance accelerator for feature and image recog-
nition in the context of autonomous vehicle navigation. It leverages a bio-inspired algorithm
which extracts pixel values to perform feature extraction and image recognition, by porting
a previously software-based process and designing a hardware-based one, which relies on the
difference of Gaussian operations. Compared to previous (highly accurate) implementations,
ours provides not only accuracy, but also very low latency (13× shorter than the Cython
reference implementation), low power consumption (30× lower), and high frame rate (10×
higher).

Our experimental results show that the proposed accelerator achieves a speedup of 10x
compared to Cython-based software and a power dissipation of approximately 2.141W which
is 30× more efficient than a high-end CPU.

Unlike previous proposals, our solution tends to a high run-time speed compared to a software
implementation, and with comparable accuracy. Furthermore, we propose a novel solution
to implement this new bio-inspired neural IP that has the lead to give functionality control
for a mapped system over a tested environment.

In the next chapter, we will be demonstrating the capability of duplicating the neural ar-
chitecture on one FPGA, and some performance results from that perspective. Then, the
interest of duplicating the architecture on multiple FPGAs, using the Gigabit transceivers
GTX provided by Xilinx vendor.

4.7. Conclusion 61

Fi
gu

re
4.

3:
O

ve
rv

ie
w

of
ou

r
bi

o-
in

sp
ire

d
ne

ur
al

ar
ch

ite
ct

ur
e.

O
n

th
e

le
ft-

ha
nd

sid
e,

th
e

Py
ra

m
id

IP
id

en
tifi

es
an

d
se

nd
s

ke
yp

oi
nt

s
in

fo
rm

at
io

n
to

th
e

bi
o-

in
sp

ire
d

ne
ur

al
IP

,p
ic

tu
re

d
on

th
e

rig
ht

-h
an

d
sid

e
of

th
e

fig
ur

e.
D

at
a

is
se

nt
pi

xe
lb

y
pi

xe
l,

fo
r

ea
ch

la
nd

m
ar

k
of

ea
ch

im
ag

e.
T

he
Le

ar
ni

ng
M

od
e

pr
oc

es
se

s1
0

im
ag

es
fo

re
ac

h
tim

e
pe

rio
d.

If
a

co
ns

en
su

si
sf

ou
nd

(i.
e.

,t
he

m
ea

su
re

d
er

ro
ri

sa
cc

ep
ta

bl
e)

,
th

e
sy

st
em

th
en

sw
itc

he
s

to
U

sin
g

M
od

e.

62 4. MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS

Figure 4.4: Resource consumption in term of LUT, BRAM, registers and DSP, for configura-
tions with different numbers of place cells.

4.7. Conclusion 63

(a)

(b)

(c)

Figure 4.5: Figure (a) illustrates the comparison of learning latency using different neurons in
PC. Figure (b) demonstrates the comparison of latency using different neurons in
PC. Figure (c) presents the comparison of throughput performance. The learning
latency for N-LOC is 2.6 ms, while it remains consistent at 18.99 ms for both
the baseline and optimised reference. Based on our experimentation, we have
achieved a navigation speed of up to 200 km/h specifically for N-LOC processing.

5
A DISTRIBUTED N-LOC

ARCHITECTURE
5.1 Introduction

The LPMP bio-inspired neural network (NN) architecture was implemented on one FPGA
board, and as seen in table 4.2, the maximum number of neurons (in the Place cells group)
that we can fit in one FPGA board is 180 neurons (after many optimisations on the HLS-
based programming application), with an accuracy ≈ 95 and ≈ 30FPS. As that number
of neurons in PC, is the maximum that we can accommodate in our FPGA board ZC706,
therefore a need to scale up the NN architecture and deploy it through multiple ones is a
must.

First and foremost, expanding the neural architecture of the targeted localisation application
means increasing the capacity of self-driving vehicles or mobile robots to self-localise them-
selves based on a pre-learning of such environment that they could find themselves in it. Thus,
the efficiency of the model relies strictly on the number of neurons that contains. Meanwhile,
a large neural architecture implies a wide and efficient place-recognition figure 5.1.

Therefore, we need to exploit a large FPGA board to prototype the same application with
a large number of neurons, for instance, providing 500 neurons in place cells, see chapter 4.
As said before, as maximum as we provide a large FPGA board, it will be limited by the
size of the application, thus, a need for multi-FPGAs to explore the portability and how
we can leverage those boards to communicate the data between each FPGA. In addition,
Wizarde will be used as a targeted platform (see figure 2.6) to mimic our proposed solution
for prototyping. In this chapter we then demonstrate the possibility of how we deploy the
N-LOC IP on multiple tiles of FPGAs, we will as a result, it is necessary to explore the
possibility of producing a distributed version of N-LOC, which could scale as needed, by
GTX Transceivers which requires communication between FPGA tiles.

A reminder of this contribution and chapter is as follows: we present, and demonstrate the
need for scalability of the bio-inspired neural architecture by distributing the N-LOC IP on
different FPGAs. We start by exploring and prototyping the proposed concept on one tile
of FPGA, then we show how it is possible to do so on multiple ones. As our bio-inspired
neural architecture hardware implementation is the first ever attempt to propose such an
implementation. as well as for our distributed N-LOC hardware IP on a single zc706 FPGA
board, including its software controller. We will present also a distributed N-LOC for a
multi-FPGA board with gigabit transceivers type of communication to communicate data
through a certain type of specified and established scenarios.

5.2. Comparison with related work 65

5.2 Comparison with related work

Overall, a growing autonomous vehicle market needs to implement tasks such as visual nav-
igation, object detection, etc. Hence, a broad summary with various software and hardware-
based implementations, running on CPU, GPU and/or FPGAs, is detailed in various sur-
veys [100, 155, 70, 128, 115].

One of the major venues to deal with autonomous vehicle navigation is the use of Machine
Learning and Deep Learning. Deploying a Deep Learning model directly to edge devices
comes with many advantages compared to traditional cloud deployments: by eliminating
communications, inter- and intra-processes can reduce latency and reliance on the network
connection. Since the data never leave the device, edge-inference helps with maintaining user
privacy. Moreover, since the amount of cloud resources is drastically reduced, edge-inference
can also reduce ongoing costs [79, 144].

The porting of ML applications running on edge devices both drives and is driven by the
development of specialised hardware accelerators such as GPUs, ASICs or FPGAs. FP-
GAs are dominating and attracting people to this research domain, thanks to their steadily
improving performance, internal expanded bandwidth and high throughput [26]. A lot
of works and benchmark instances are proposed to implement CNN, NN circuits with all
required features for, e.g., Xilinx FPGA platforms [101, 21], which define a benchmark-
ing approach to co-design, construct and optimise any such algorithm into an inference
accelerator IP [140, 34].

Another way to implement the navigation process is to resort to bio-inspired models and
algorithms. In this context, spiking neural networks (SNNs) and visual place recognition
(VPR) models serve different purposes. SNNs, such as the temporal neural encoder (TNE)
proposed by Kheradpisheh et al. [99], are inspired by the spiking neurons in the brain and
can encode sensory information in the form of spike trains. This allows SNNs to process and
recognise temporal patterns and sequences, which are particularly useful for navigation tasks
that require tracking of moving objects or path integration. LPMP, as currently designed,
does not include temporal sequences (yet), but provides a much simpler model, which in turn
makes it easier to follow a hardware–software co-design approach, like the one we used for this
work, as the complexity of the neural network is lessened compared to SNNs. VPR models
are particularly useful for global localisation tasks in which the robot needs to determine its
position relative to a known map of the environment [139].

Hence, our approach relies on a bio-inspired VPR model, which, by contrast with ML/DL
models, has a “neural circuitry” which is closer to what can be found in nature, i.e., the
way we model individual neurons is not significantly closer to what DL models do, but the
structure of the network itself follows more closely what can be found in a mammal’s brain:
there are no hidden layers, etc. The resulting neural network is simpler in its structure,
but may result in a less memory-efficient way of storing information if implemented naïvely.
The LPMP approach (and its hardware implementation) also differs from more “traditional”
bio-inspired spiking algorithms in that it relies on recognising visual similarities.

Cuperlier et al. have shown how it could be beneficial to implement a neural processing unit
as an IP onto FPGA-based reconfigurable fabrics for an embedded navigation application [47,
28]. This is what led us to propose a hardware-based implementation of their bio-inspired
algorithm.

Beyond the use of an accurate and precise model, there is the question of providing an imple-
mentation that is sufficiently fast to be useful in real life. Hence, the use of accelerators such as

66 5. A DISTRIBUTED N-LOC ARCHITECTURE

GPUs and FPGAs is an important area of research for navigation algorithm implementation
to be embedded in vehicles, with performance and energy-efficiency in mind. Qasaimehet et
al. in [114] conducted a comprehensive benchmark of the run-time performance and energy
efficiency of a wide range of vision kernels in order to determine which embedded platform
is most suitable for their application. The conducted study is performed for three commonly
used hardware accelerators for embedded vision applications, ARM57 CPU, Jetson TX2 GPU
and ZCU102 FPGA using the vendor-optimised vision libraries OpenCV, VisionWorks and
xfOpenCV. The results show that the GPU achieves an energy/frame reduction ratio of 1.1×–
3.2× compared to the others for simple kernels. However, for more complex kernels and more
complete vision pipelines, the FPGA outperforms the others with energy/frame reduction
ratios of 1.2×–22.3×. They report also that the FPGA performs increasingly better as a
vision application’s pipeline complexity grows.

A publicly available chart summarising neural network accelerator performance and power
consumption has been made available by the Energy Efficient Computing Group at Tsinghua
University, China [67]. It would be interesting to see where our system fits in this chart.

5.3 Distributed N-LOC: Principles of Learning and Using modes

In this section, the possibility of distributing the N-LOC architecture across one and/or
multiple FPGA tiles is explored. As discussed in the previous introduction, expanding the
neural architecture of the localisation tasks will give rise to the AV’s capacity to localise itself
mechanically. For instance, a larger neural network implies a larger pre-learning environment
and a larger online learning capacity in general (see section 4 for details about how the bio-
inspired algorithm implemented in N-LOC works). Hence, a large neural architecture results
in a wider and more efficient place recognition task.

5.3.1 Principles of the LPMP models

The LPMP model is presented in section 2 in section 1.5, and implemented in Hardware N-
LOC IP (see previous chapter). The last implemented one resort to two main phases which
are the learning and phasing modes. We will describe each in detail, from a distributed point
of view.

As detailed in chapter 4, these two phases help the N-LOC IP extract the features from pixel
streams/image landmarks, copy some of them in the NN architecture, and finally choose which
place cell should be activated in the scene. By introducing two modes of how the N-LOC
IPs can process and communicate the data with each other, the master controller which is a
C-based programme implemented on the ARM A9 cortex part of the Zynq will be responsible
for organising the data path and sending commands into all the post-implemented N-LOC
IPs. Basically, we have two different modes of operations within this N-LOC deployment,
the Learning phase and using phase, as seen in section 4, the N-LOC IP extracts the features
from the image landmarks, and copy it to the weights values of the NN architecture, then, we
have the using mode through which we assess the application and by which the mobile-robot
or the AV can explore the environment.

5.3. Distributed N-LOC: Principles of Learning and Using modes 67

(a) Learning mode (b) Using mode

Figure 5.1: Expanding bio-inspired neural network architecture N-LOC over Wizarde multi-
tiles. In the learning phase, the data copy of each current landmark will be held on
one bloc IP. If the number of learned neurons in N-LOC1 is overloaded (superior
to a fixed threshold T), we will switch to the next available bloc IP which is the
second one. Then, it will be the same rule for all different bloc IPs. In the process
phase, all bloc IPs work simultaneously, the best score among the three represents
the accurate and appropriate localisation of a given image.

Learning phase in a distributed N-LOC environment, the Learning phase workflow is
represented as follows, the N-LOC IPs are duplicated and distributed on different reconfig-
urable regions. After setting that up, we connect the pixel stream which contains the pixel
information of the landmark, to the appropriate N-LOC block if its neurons’ weights are not
saturated (we set T as the maximum of neurons that a bloc N-LOC IP can contain). If an
N-LOC block is saturated during the learning phase (i.e., the maximum number of neurons
to initialise has been reached), we then switch to the next available N-LOC block, to carry
on the ongoing or further learning of different captured images.

Using phase likewise, its workflow is: the pixel stream is connected through all N-LOC
blocks simultaneously. Then, all N-LOC blocks simultaneously will perform different compu-
tations based on different pre-learned information. Thus, a threshold-based comparison is set
by the master controller, to select the highest activated neurons among the N-LOC blocks.
See figure 5.1, the Using mode specifically.

In order to organise this proposed scenario, and ensure the distribution of the N-LOC through
the different reconfigurable fabric, also the way learning and using modes alternates between
each other according to the need of the vehicle exploration over the environment. Thus, a
master controller is proposed, who has the responsibility to be in charge of communicating
with all N-LOCs, using a bidirectional communication protocol. See figure 5.1, the learning
mode specifically.

68 5. A DISTRIBUTED N-LOC ARCHITECTURE

A proof of concept of this distributed architecture was implemented on a single Zynq-7045’s
programmable logic, with 3 N-LOC block instances. We next discuss the possibility of using
gigabit transceivers to enable fast communications between GTX users.
5.3.2 Implementation

We conducted some different experiments to show how possible we can distribute the N-LOC
hardware architecture over multiple N-LOC IPs. First of all, we evaluated the proposed
scenario of duplicating and dividing the whole neural architecture, as described and illustrated
in figure 5.2, on one FPGA fabric. The obtained results were compared to the results of one
whole implementation of N-LOC, as referred to in section 4.6. In the next section, we show
that it will be as promising to use a distributed version by duplicating it through multiple
FPGA fabrics as the number of resources, as well as latency performance, are considerable
compared to one single N-LOC implementation.

The master controller will be responsible to schedule and organise the communication and
implementation of those IPs. It will be at the processing part of the Zynq. In the algorithm
explained here 1, we dissect the adopted policy to make this arrangement.

In order to ease the implementation, we used AXI-LITE as a type of bus to interface between
the three N-LOCs IPs and Processor Zynq in the PS part. As the AXI-LITE is a type of
bus through which we send data per clock cycle. Afterwards, we incorporated the AXI-
STREAM as a type of communication between IPS, also, the transceivers are equipped with
such interface, thus, it is required to make all the interfaces in similar communication.

Algorithm 1 Algorithm for a master controller of N-LOC distribution
Result: Algorithm for a master controller of N-LOC distribution
while Image’s landmarks are successfully processed do

if mode learning is activated then
We duplicate the same neural architecture onto different tiles.
Pixel flow is connected to the appropriate N-LOC bloc if its neurons’ weights are
not overloaded.
Moreover, once we saturate the neural architecture, we switch to the next available
one, to carry on the ongoing or further learning of different captured images.
The master controller is responsible to communicate with all N-LOCs, in bidirec-
tional communication.
switch to the using mode.

else
Pixel flow is connected through all N-LOC blocs simultaneously.
All N-LOCs perform different computations based on different pre-learned informa-
tion, simultaneously.
Threshold-based comparison will be set by the master controller, to select the highest
activated neurons among the N-LOCs.
if score of activated neuron in PC < FIXED_THRESHOLD then

switch to the learning mode

else
keep navigating in the using mode

end
end

end

5.4. Experiments with distributed N-LOC on a single FPGA 69

Figure 5.2: The overall N-LOC distribution model over different reconfigurable fabrics within
Wizarde. Each N-LOC IP takes a part of the whole architecture, as all the N-
LOC IPs have the same number of neurons in their decision.

5.4 Experiments with distributed N-LOC on a single FPGA

Experimental setup: we experimented with our distributed N-LOC model by instan-
tiating three N-LOC blocks on a single Zynq-7045 SoC. The controller is implemented in
software on a bare-metal ARM Cortex A9 microprocessor. The FPGA and Cortex A9 are
linked through an AXI lite bus. Our distributed N-LOC system is composed of 3×N-LOC
instances of 30 place cell neurons each, for a total of 90 PC neurons. As demonstrated in
chapter 4, we show that with up to 180 neurons we can saturate our FPGA. For ease of
implementation and to reduce the time of synthesising and experimentation in the Vivado
tool, we decide to implement less than 100 of neurons in N-LOC IP. Hence, the total number
of neurons in these 3 place cells of N-LOCs is 90, a three blocks IPs of 30 of each, will be
compared to the total one which contains 90 neurons in its place cells.

As described earlier, we compare our results with a Python program which makes use of
NumPy, OpenCV, and is compiled with Cython. The experimental conditions are the same
as described in section 4.6.1.

Experimental results Table 5.1 shows the latency and throughput calculated from both
the Learning phase (where a single N-LOC is active at a time) and the Using phase (where
all N-LOCs compute in parallel) are assessed at the same time. The latency performance
in one learning phase is roughly the same, whether the N-LOC system is distributed or not,
as the learning phase pixels path is actually performing sequentially. The Using phase fares
better with a distributed N-LOC system when processing a single image, the performance
gain is caused by the simultaneous calculation made by the three N-LOCs at the same time,
in contrast to a single full N-LOC. In both cases, the global throughput to both learn images
and use this knowledge to localise the vehicle is at least an order of magnitude better than
with the reference application. We propose here a merit factor metric

70 5. A DISTRIBUTED N-LOC ARCHITECTURE

Baseline Ref Optimised Ref 1 × 90 N-LOC 3 × 30 N-LOC
Learning Latency (ms) 18.99 17.6 2.6 3.57
Using Latency (ms) 146.66 72.60 29.2 9.81
Total Throughput
(img/s)

6 11 31 70

Merit factor (Through-
put/Power)

≈ 0.4 – 0.8 ≈ 0.73 – 1.46 14.75 26.53

Table 5.1: Timings for 90 place cell neurons: Python reference code (“Base-
line Re”), optimised multicore version (“Optimised Ref”), a sin-
gle large N-LOC instance, and a distributed 3×N-LOC architec-
ture (3×30 neurons), implemented on a single Zynq-7045 SoC’s
FPGA part. The controller is implemented on the Cortex A9
as bare-metal software.

to assess the performance of the system in terms of throughput per power consumption. The
merit factor serves as a valuable indicator, reflecting the efficiency and effectiveness of the
targeted system or application. We have observed that a higher merit factor corresponds to
significant gains in throughput while minimising power consumption. In our experiments, we
compared the performance of different configurations, specifically the 1×90 N-LOC and 3×30
N-LOC setups, against an optimised software reference. We noticed that both the 1 × 90
N-LOC and 3 × 30 N-LOC configurations outperformed the optimised version by substantial
margins. The 1 × 90 N-LOC configuration exhibited a considerable improvement, achieving
a merit factor that was up to 10× higher than the optimised version. Similarly, the 3 × 30 N-
LOC configuration displayed a significant increase in performance, surpassing the optimised
version by a factor of up to 18×. These results highlight the significant advantages of the
proposed configurations in terms of merit factor. Hence, this metric provides a comprehensive
evaluation of system performance, enabling us to make informed decisions about system
design and optimisation strategies for current and future designs.

Moreover, while the Learning phase only copies pixel values as weight into neurons’ edges, the
Using phase performs much more computationally intensive operations, as there is a winner-
take-all (WTA) stage to update the signature layer (SL), then an update of the spatial
working memory (SWM), and once the image has been fully processing – i.e., in our case,
once all sixteen landmarks which compose an image have been processed, yet another WTA
operation takes place to select the most active place cell neuron and decide if the measured
score is high enough (i.e., has reached the preset value threshold). Hence, the Using phase
latency is bound to be much higher than the Learning one.

Speedups 1 × 90 N-LOC 3 × 30 N-LOC
Learning Latency 8 4
Using Latency 3 7
Total Throughput 4 6

Table 5.2: Single and distributed N-LOC: speedups. Baseline: the optimised refer-
ence Python application compiled with Cython.

Table 5.2 provides speedups of a monolithic and a distributed N-LOC systems vs. the op-
timised software implementation. Compared to the optimised reference application, N-LOC

5.4. Experiments with distributed N-LOC on a single FPGA 71

is 4-6× faster, but compared to the individually measured Learning and Using latency, this
performance is rather low. It is important to note that in the reference code, as the number
of place cell neurons increases, the processing time also increases dramatically: the learning
latency reported in Table 4.3 is 60% higher than the 1 × 90 configuration shown in Table 5.1;
the Using latency is 16% higher; and the total image throughput is 7% lower. While we must
make use of additional FPGA units to extend the size of our network, the intrinsic parallelism
used in the various phases ensures that image processing latency remains relatively constant;
the only true bottleneck is the communication between the processing system (PS) and the
programmable logic (PL).

In general, the main bottleneck in the N-LOC hardware implementation is the naïve im-
plementation we made, where we isolated the N-LOC instances as much as possible, but
which results in multiple AXI-Lite roundtrips between the processing system (PS) and the
programmable logic (PL). A more involved architecture would have the PS only send mes-
sages once for broadcasting, with a hardware-based broadcasting designed internally to carry
the data frames to each N-LOC instance. However, this approach also has drawbacks: it
makes the overall architecture more “rigid,” which in turn may hamper the capacity of the
system to scale with several N-LOC instances, e.g., up to eight, or even nine, if we target the
Wizarde platform. Further, one of the inherent difficulties dealing with FPGAs stems from
inherent issues related to (reconfigurable) hardware and the use of HLS: as we grow from 60
to 90 place cells configuration, in order to maintain acceptable timings and clock distribution
within the system, we must reduce the clock frequency from 100MHz to about 70MHz. This
is a limitation tied to a relatively naïve approach in our own design, and we plan on exploring
ways to increase the clock frequency to improve performance.

Power-wise, both the PS and PL parts of the target Zynq SoC see a slight power consumption
increase, as shown in Table 5.4. This is not unexpected: on top of sending pixels to the FPGA,
the Cortex A9 core is now also tasked with selecting N-LOC instances during the Learning
phase, but also to send the pixel stream to all instances during the Using phase. Likewise,
each N-LOC instance requires proportionally more FPGA resources compared to their single
N-LOC counterpart. The resulting total power consumption (static + dynamic) is around
2.8W, with ≈ 0.2W for the hardware part. Compared to NVIDIA Jetson TX2 board used to
run the reference program, this is a 5.5-6× improvement.

Neurons Slice LUTs BRAM Tile FLIP FLOPs DSPs
1 × 90 N-LOC 68209

(31.2%)
192 (35.2%) 3039 (0.7%) 18

(2.0%)
1 × 30 N-LOC 28869

(13.2%)
32 (5.9%) 2614 (0.6%) 17

(3.4%)
3 × 30 N-LOC 84198

(38.51%)
96 (17.61%) 8199 (3.75%) 51

(10.2%)

Table 5.3: N-LOC: resource usage. The percentage of a given resource usage on
the Zynq-7045 is given between parentheses. Each processed image
contains 16 landmarks.

Table 5.3 shows the resource utilisation of the overall application implementation. The 1×90
N-LOC instance requires fewer resources than its 3 × 30 N-LOC counterpart: it requires 20%
fewer LUTs, 63% fewer flip-flops, and 65% fewer DSPs. However, the relatively large dense
memory matrix required by a monolithic 90 place cell neuron network requires a complex

72 5. A DISTRIBUTED N-LOC ARCHITECTURE

BRAM usage by synthesizer, and BRAM usage is twice as large as with 3 × 30 neurons. For
the DSP part, this is a limitation tied to the needs for computations of a single IP: with
a single 1 × 30 N-LOC block, we reach almost the same amount of DSPs used than with
1 × 90.

Figure 5.3: Overall architecture for a design leveraging 3 N-LOC instances. The
design is implemented throughout multi-N-LOCs architecture based on Wizarde
(see section 3). TX/RX pairs can be implemented following multiple means:
gigabit transceivers, GPIOs, Ethernet, etc. An N-LOC IP (detailed in the upper-
left corner) awaits an x Azimuth coordinate (i.e., its row number), an x landmark
coordinate (i.e., also its row number), the current pixel to process, and its tile
ID within Wizarde. Conversely, an N-LOC instance sends the score obtained in
the local WTA, its line number in the local Place Cell Memory, and its tile ID.
The image acquisition and processing IP is implemented in the central tile, and a
lightweight resource manager collects local WTA winners, and performs the final
WTA, in parallel with scheduling communications.

Table 5.2 and 5.4 summarise all the synthesis results generated and presented within our
works, along with some ratio comparisons in terms of latency, throughput, and power con-
sumption.

Table 5.5 provides the performance per Watt of several configurations, one with 100 place
cell neurons, and the other with 90 neurons. The performance ratio with power consumption
when comparing the reference code with N-LOC instances varies from 4× to 7× (for 30, 60
and 90 place cell neurons according to results showed in Table 4.3). This metric is obtained
by computing the following: (1) Each image is partitioned into 16 landmarks, each composed
of 12 × 12 pixels, i.e., there are 2304 pixels to process in each image. (2) During the Using

5.4. Experiments with distributed N-LOC on a single FPGA 73

Figure 5.4: Data transmission protocol using GT transceivers implemented throughout a
multi-N-LOC architecture based on Wizarde multi-tiles.

phase, there are three distinct types of operations: For the first winner-take-all, each pixel is
broadcast to each element of the vector of neurons. To process all pixels for a single neuron,
there are [(12 × 12) · 16] · 3 = 6912 operations to perform. Since there are 16 × 100 = 1600
neurons in the Signature Layer, the total number of operations to perform in the neurons
vector is 6912·1600 = 11, 059, 200 operations. Once this is done, there is a MAX computation
to be performed between all 1600 neurons, i.e., 1601 additional operations; to update the
Spatial Working Memory, a single neuron is updated according to all azimuth neurons for the
image orientation, resulting in 362 operations for that step; and there are 101 max operations
to execute to perform the second winner-take-all. (3) We sum all operations required to
perform both WTAs and the SWM update, which yields ≈ 11.1·106 operations = 11.1 MOPs.
To get the performance per Watt, we compute the following: Perf_per_Watt = Nops

P ower , using
the throughput values reported in Tables 4.3 and 5.1, as well as the power consumption of

IP Block 1 × 90 N-LOC 3 × 30 N-LOC 3 × 30 vs. 1 × 90
N-LOC 0.472 0.993 2.10

N-LOC (Learning) 0.182 0.283 1.55
N-LOC (Using) 0.289 0.708 2.44

Processing System 1.629 1.639 1.00
TOTAL 2.101 2.638 1.25

Table 5.4: N-LOC: Power consumption (in Watts) for 90 place cell neurons. The last
column computes the power consumption ratio between a 1 × 90 and a 3 ×
30 configuration. We used Vivado power estimator to evaluate the power
consumption of each IP.

74 5. A DISTRIBUTED N-LOC ARCHITECTURE

1 × 100 Ref 769 KOPS
1 × 100 N-LOC 239 MOPS
1 × 90 Ref 820 KOPS
1 × 90 N-LOC 269 MOPS
3 × 30 N-LOC 299 MOPS

Table 5.5: N-LOC: Performance (number of thou-
sands of operations per second).

Table 4.4 and 5.4.

Hence, the first winner-take-all step is overwhelmingly more computationally intensive than
the other steps. The total number of operations to process a single image is ≈ 11.1 · 106

operations, or 11.1 MOPS. The reference code runs on NVIDIA Jetson TX2 with a thermal
design power (TDP) up to 15W, which we used as the baseline to compute the performance
per Watt of various configurations. As the table shows, there is a 4× to 6× ratio in favor of
our N-LOC design.

We have demonstrated in previous sections, the possibility of implementing distributed N-
LOC IPs over one FPGA tile. The approach has shown a gain in performance in both latency,
and power of consumption compared to just one full N-LOC IP, see table 5.1, and table 5.4.

The actual aim is to enhance and increase the capacity of the self-driving vehicles or mobile
robots to self localise, thus, it implies expanding our bio-inspired neural architecture, and
that requires creating, distributing, and implementing a lot of N-LOC IPs over FPGA tiles,
as Wizarde see chapter 2, is our targeted platform. Therefore, to do so, we need at first,
well-established communication management and scheduling in this part. The fastest means
of communication on wizarde is through the use of gigabit transceivers.

5.5 Communication protocol via GTX transceivers

5.5.1 Highspeed transceivers on the Wizarde platform

As seen in chapter 2, the eventual platform on which to run N-LOC is Wizarde, a 3 × 3
tile board, with a 2D mesh communication network composed of gigabit transceivers (GTX).
Hence, we must define a protocol and a communication scheduling policy to leverage its
GTXs. The data transfer policy relies on streaming pixels at each rising edge into our N-
LOC blocks (when the data are sent to the SL layer). Then, all the information required
by each block is sent to it accordingly. We have evaluated that 32 bits is the maximum
packet size required to transfer data for both the RX and TX sides of the GTX interface, for
more details see the figure 5.4. Our design is illustrated in the upper-left corner of figure 5.3,
including the various required word sizes for TX and RX.

5.5.2 GTX micro-benchmarking in Wizarde

We use Aurora, a LogiCORE IP [3] designed to enable easy implementation of Xilinx transceivers
while providing a lightweight user interface on top of which we can build our own protocol.

5.5. Communication protocol via GTX transceivers 75

This IP offers sufficiently low overhead for our needs and will allow us to build our own
higher-level protocols in the future while maintaining a high scalability potential.

Specifically, we leverage an 8B/10B encoding, a protocol for high-speed serial data transmis-
sion. It provides a good clock recovery on reception and balances the number of zeroes and
ones to avoid the presence of a direct current (DC) on the line. It is used in some versions of
Ethernet-based network links [3].

Aurora exposes an interface with an AXI4-stream bus, which will allow us to send high-speed
data, e.g., via its external DDR memory and a DMA, from the processing system part of the
Zynq to its programmable logic part.

We implemented tests to validate that tile-to-tile data transfers are indeed correct on the
Wizarde platform. We specifically targeted communications between the North and North-
West tiles. The benchmarks are carried out at 3.125 Gbps and 6.25 Gbps, as the maximum
admissible frequency for the Aurora 8B/10B IP is 6.6 Gbps. The Aurora configuration is
shown in table 5.6 for 6.6Gbps.

North FPGA North-W FPGA
Lane Width (Bytes) 2 2

Line Rate (Gbps) 6.25 6.25
GT Refclk (Mhz) 125 125

Init clk (Mhz) 50 50
DRP clk (Mhz) 50 50
DRP clk (Mhz) TX-only RX-only

simplex simplex

Table 5.6: Aurora IP configuration. The line transmission rate is set to 6,25Gbps, and
the GT reference clock is set to 125 Mhz on both TX and RX of adjacent tiles
(North, and West-North).

We use the IP in simplex mode (i.e, one-directional data transfers). The North tile will be
in the transmit mode while the North-West will be in the receive mode. Our clock reference
on Wizarde is set to 125 MHz, to be able to boost the frequency up to 6.25 Gbps. Each tile
has a pair of GTX links connected to its nearest neighbours (e.g., the central module has 4
pairs of MGTs to provide a high-speed transmission to each of its immediate neighbours).

Finally, to carry out the tests we used the example design with the dedicated core IP, which
has modules for frame generation (on the TX side) and frame verification (on the RX side).
The frames are composed of pseudo-random numbers sent in the AXI4-stream format.

Our tests show the data we send (TX) are identical to the received data (RX), with a delay
overhead of (≈ clk_cycl/10). As shown in figure 5.5, we send arbitrary fixed numbers from
side to side, and then evaluate the received data (registered in BRAM memory), according
to the transmitted ones on the TX register.

To ensure proper activation and reset of the GTXs on both sides of the transmission, we have
added some functionalities to send and receive data through DMA, by activating a streaming
mode, instead of using framing mode, according to the Xilinx [3]. For more documentation
on the chronogram and the VHDL codes used for both sides of TX and RX and for better
efficient control, see page 55 [3].

76 5. A DISTRIBUTED N-LOC ARCHITECTURE

(a) North-tile.

(b) North-West-tile.

Figure 5.5: Waveform data acquisition. We trigger the data acquisition on the chip scope
from the pseudo-random value 0x06E3 and we can verify that the reset and acti-
vation signals of the GTX are valid and that the received data are in conformity
with those sent. We also check the error-accumulator signal remains at 0. This
benchmark is set up with a throughput of 6.25Gbps.

Figure 5.6 and 5.7 showcase the resource utilisation for post-implementation, using two dif-
ferent boosting clock frequencies 3.125 Gbps and 6.25 Gbps. The illustrated results are
generated and exposed from both sides of tiles on North and West-North.

(a) North-West-tile (RX-tile), for 3,125
Gbps

(b) North-West-tile (RX-tile), for 6,25 Gbps

Figure 5.6: Vivado report: Resource usage per tile. The usage rates are almost equal, as such
18 more logic LUTs and less than 2 Flip Flops were recruited for the 6.25Gbps
frequency upgrade.

5.5.3 Toward a distributed N-LOC architecture on Wizarde

This section discusses the possibility to implement a distributed N-LOC architecture using
a multi-FPGA platform. We will use Wizarde (see chapter 2) as our target. Our reasons to
resort to Wizarde are three-fold: (1) Beyond the intrinsic overhead induced by a distributed
architecture and its associated control signals, one of the reasons our first attempt at imple-
menting distributed N-LOC does not perform as well as a single N-LOC block is the very

5.5. Communication protocol via GTX transceivers 77

(a) North-tile (TX-tile). (b) North-tile (TX-tile).

Figure 5.7: Vivado report: Resource usage per tile. The usage rates are almost equal, as such
the 5 more logic LUT’s and the less of 2 Flip Flops less were recruited for the
6.25Gbps frequency upgrade.

small size of each neural network, which can be alleviated if a sizeable portion of each tile
involved in the design can be leveraged (as one tile is roughly able to store 4600 neurons with
100 place cell neurons) (2) the GTX links, coupled with the AXI Stream protocol should offer
a more asynchronous way of transferring data between the controller (still implemented in
software) and its neighbouring tiles, which should reduce communication overheads (for both
throughput and latency); and (3) this is the only way we can eventually implement a large
neural network – large enough to be useful in a self-driving car. Moreover, such a network
could be grown dynamically and on-demand, according to the computational needs of the
current context in which the car is situated.

We target four tiles in the Wizarde board: for instance, the central tile, as well as the North,
East, and West tiles. The latter tiles implement an instance of the N-LOC IP, combined
with a GTX interface (see figure 5.3). The central tile implements the image processing
IP (see chapter 2), and orchestrates communications across all tiles via the GTX interface.
The communication scheduler is implemented in software on the central tile, using the ARM
Cortex A9 processor.

The N-LOC data exchange of buffer size is detailed such the compass value (image orientation,
i.e., azimuth values) is sent once for each image to process, also the Azimuth values are
computed locally in each N-LOC block. For each landmark (12 × 12 pixels), the x coordinate
of the keypoint is sent to the N-LOC block, besides, for each pixel, the value of the most
active neuron in SL (and its x coordinate, i.e., its “line number”) is sent to the relevant
N-LOC block. Thus, Once all 16 vignettes have been processed, the value of the most active
neuron in the PC layer of each N-LOC is sent back to the controller (PS), for more details
and illustration see figure 5.3 and figure 5.1.

As a result, each N-LOC block must receive a new compass value every 16 vignettes. The
word size for the azimuth buffer takes 8 bits for each period of 16 ·144 cycles of ref_clk cycle.
In addition, it must receive a new x coordinate value for each new vignette The word size of
the Azimuth landmark’s x coordinate also takes 8 bits for every 144 periods of ref_clk cycle
(144 · ref_clk period). It must then send its most active place cell value every time a full
image has been processed. The word size of place cell (block’s output) takes 8 bits for each
(16 · 144 + cst) ref_clk cycle). cst is a constant which varies with each target system.

5.5.4 Conclusion

Finally, we have seen the necessity of expanding the bio-inspired neural architecture as it
is linked directly to the capability and the performance of an AV on self-localisation, or

78 5. A DISTRIBUTED N-LOC ARCHITECTURE

even in environment exploration. N-LOC is a type of VPR and in particular that hardware
implementation of LPMP model [43], on an FPGA board. In chapter 4, we have presented
some different results of the implementation of the N-LOC on FPGA, such as the latency,
and power consumption, comparing it to the Python-based reference implementation. Thus,
promising results from this implementation were generated. Furthermore, in this chapter,
a need for distributed N-LOC architecture is highlighted, with the feasibility of distributing
the IPS over one FPGA board, we have also demonstrated and presented the need for multi-
FPGAs to do so, as Wizarde will be our targeted platform. We then concluded by showing
that in order to deploy the N-LOC IPS over the FPGA tiles, we need to establish and
leverage GTX gigabit transceivers as it is the protocol communication that all tiles of FPGA
incorporate. However, there will be respect for both N-LOC data-path between N-LOC IPs,
which is already demonstrated and proposed in this section. As well as, we need to establish
and propose how the data shall be transferred and communicated between all tiles of FPGA,
we thus talk about this aspect in the next section.

5.6 Implementing distributed N-LOC using Dynamic Partial
Reconfiguration DPR system

The distribution and implementation of the N-LOC onto one or multiple reconfigurable fabrics
in an efficient manner are what every researcher or engineer tries to seek. Until now, we have
proposed a new scenario with a static aspect, which means that every N-LOC IP in such
an application can’t be changed or modified in real-time. Thus, leveraging DPR techniques
as a tool in creating and designing the dynamic accelerators and static part of the design
is required for that purpose. Even though, we have demonstrated that the maximum of
N-LOC instances we create and deploy over FPGAs reconfigurable fabrics, the more efficient
the localisation will be in different exploring environments. In the next sections, we present
some conducted experiments, we have done using both Ker-ONE a software programmer-
friendly, hypervisor with a very small footprint (for more details see chapter 3), and FOS
a hardware programmer friendly, a Linux + kernel modules developed using HLS (for more
details see chapter 3). Thus, this section described the various experiments we ran to test
both systems.

In conclusion, Ker-ONE requires a deep technical understanding of its architecture (both the
user part which is made for software development, as well as for the kernel part which is
basically made upon both hardware control registers and the Linux file system), in addition
to, back to the year when we have started by exploring and testing that hypervisor, a lot of
updates and modifications were in time, thus, that what we led us to find out other alternative
solutions in the state of art.

5.6.1 Experiments with Ker-ONE

Ker-ONE relies its powerful control on its hypervisor, to leverage and use the partial recon-
figuration that Xilinx architectures provide in their architecture, for more details, see the
chapter 3. We have conducted some experiments in which we present the generated over-
heads caused by the switch between different accelerators (filters based applications), on the
same relocated region. Figure 5.8 presents the architecture we have proposed to test and
evaluate ker-ONE the hypervisor, with a different type of partial regions that we have cre-
ated to switch and change between the hardware accelerators. We manage to create all the

5.6. Implementing distributed N-LOC using Dynamic Partial Reconfiguration
DPR system 79

bitstreams and BIN files corresponding to each IP, also, by using the AXI-Timer to measure
the elapsed time of each IP, separately. Thus, through the communication between DMA and
partial regions, we must specify that the choice of size of the reconfigurable blocks and the
memory address is very important for control registers that Ker-ONE has in its architecture,
see figure 2.4 in section 2 for more details. Moreover, we present in the figure 5.7 the elapsed
time to upload and switch the partial accelerators based on bitstream files, to the targeted
platform Zynq XC7Z045.

Figure 5.8: Vivado design based on Vivado tool 2016.4. As the partial region contains rather
the median or sobel filter, and the Arm Cortex A9 on which the Ker-ONE hy-
pervisor will be ported. Zynq7000 SoC FPGA is the type of board used for the
evaluation.

Type of filter Nombre de Execution time resource consumption time of reconfiguration
LUT necessaire (ms) (LUT) (ms)

Mediane filter 9 467 44830 1.172
Sobel filter 30 2826 44835 1.129

Table 5.7: Nombres de cellules logiques nécessaires et temps de la reconfiguration des blocs
reconfigurables.

5.6.2 Experiments with FOS

Byteman enables a user to build a bitstream for the larger device using Vivado and then
relocate it as if were the smaller FPGA and possibly bypass the software limitations, lever-
aging FOS as the scheduler system part. For more details about Byteman and FOS, see the
chapter 3.

The capabilities of partial reconfiguration (PR) are the desired features to be extracted from
the reconfigurable fabrics, and to be fully explored for dynamic execution pipelines at runtime
[91]. Besides, it’s accepted that it is most complicated to materialise PR at scale, and FPGAs
are only used as updatable ASICs [91]. Manevet et al. in their work [91] proposes a resourceful
FPGA bitstream manipulation framework called Byteman. The proposed tool provides means
for parsing, modification, and generation of bitstream files, and it has been open-sourced and
demonstrated in a working system. As a distinguished feature, it supports multi-die FPGAs
(among the 106 Xilinx 7 Series, UltraScale, and UltraScale+ devices), and enables datacenter
FPGAs to be used for relocatable PR. Bundled with an efficient bitstream manipulation core,

80 5. A DISTRIBUTED N-LOC ARCHITECTURE

the efficiency is demonstrated by two case studies where the obtained performance giving by
58-377x higher bitstream merging throughput than a current state-of-art tool.

In 2021, we had a chance to get a grant for a HiPEAC mobility, through which we aimed to
develop and rise a new promising collaboration between what we are doing in our laboratory at
ETIS, with a new laboratory called APT Advanced Processor Technologies Research Group of
Computer Science at the University of Manchester, United Kingdom. This is the first time the
University of Manchester and the ETIS laboratory are collaborating. The research interests
of both teams complement, and this will be an excellent way to foster further collaboration
in the future. The core of this collaboration is to integrate the Byteman partial configuration
tools and FOS (the FPGA operating system) from Manchester into a framework around the
Wizarde heterogeneous multi-FPGA platform for autonomous vehicle navigation, which is
developed by ETIS.

We have proposed to explore scheduling policies and inter-FPGA task placement (and poten-
tial migration) by leveraging FOS, in the context of multi-grain task scheduling, i.e., where
hardware tasks may vary in size and hardware resource requirements. This will be done
through the following steps:

• Run the vanilla FOS on UltraScale and look at how to add a new scheduling policy.

• Add transceiver IPs and a software layer for multiple instances of FOS to communicate.

• Work on scheduling policies to take into account inter-FPGA task and data migration

First of all, We aimed to use Byteman an open-source high-performance bitstream relocation
and manipulation tool, to demonstrate the capability of implementing and switching the
accelerator modules through their partial regions. See figure 5.9 for more details about the
proposed hardware design. The workflow is as follows:

• Develop and create the static and partial bitstreams using the Vivado tool.

• Feed the partial and static bitstreams to Byteman to stitch between the pre-generated
static design and reconfigurable modules. Byteman tool helps us to relocate, search,
and map for appropriate resources for our bitstreams.

Furthermore, by selecting the N-LOC instance in the Netlist pane, we then draw a tall narrow
box on the clock region. The exact size and shape do not matter at this point, but we keep
the box within the clock region. The General tab of the Pblock Properties pane can be used
to add these if needed. The Statistics tab shows the resource requirements of the currently
loaded reconfigurable Module. See figure 5.10 in which we present the floorplanning, the
reconfigurable region as we use one region for DPR.

The relocation and the partial regions management handled by Byteman was not completed
as it has been meant to be, for the provided accelerators instances at that time, when the
distribution of N-LOC through FPGA fabric (see figure 5.9) was ongoing of development.
Thus, exploring and leveraging the scheduling policy that FOS uses, was a big deal for us. We
aim further to re-implement the same execution pipeline to create the final relocatable partial
regions along with the static part (which contains the GTX transceivers and image processing
DoG IPS) on Vivado IDE and hardware accelerators (distributed N-LOCs). Promising results
will be the goal of the publication.

5.6. Implementing distributed N-LOC using Dynamic Partial Reconfiguration
DPR system 81

Figure 5.9: Overview of Vivado design. This figure illustrates the different required IPs
components to communicate between two different tiles, for more details see sec-
tion 5, in specific, see section 5.5. The main goal of this design is to leverage
Byteman relocatable and manipulation tool.

5.6.3 Discussion and comparison: FOS vs. Ker-ONE

FOS incorporates Byteman which is a partial relocation tool. FOS uses Round-Robin as a
type of scheduling algorithm to place the partial accelerator. The Byteman tool shows its
capability to place, and relocate the accelerators on very fined and appropriate hardware
resources, as well as the partial regions (created by VHDL or HLS) with more flexibility and
efficiency than what exists in the state of the art. Manev et al. in their experimental results
[91], observed that 58×-377× higher bitstream merging throughput than current state-of-
art tools can yield. Unlike Ker-ONE, which is a hypervisor and considered middleware,
also its hardware side lacks hardware control registers (according to our Ker-ONE hands-
on experimentation in 2019), and it follows a high complexity (according to our evaluation
of Ker-ONE) rather than what was presented by Xia et al. in [146]. In addition, FOS
demonstrates its flexibility, and high efficiency when it comes to complex accelerators that
can leverage the high throughput of a system or platform.

In conclusion, FOS proposes a new custom hardware tool-chain (Byteman) to perform the
partial reconfiguration placement as efficiently as possible, along with, using a soft middleware
to incorporate pre-existed scheduling algorithms. However, Ker-ONE uses a vivado hardware
toolchain to carry out and create the partial reconfigurable regions, and in contrast to FOS
policy, Ker-ONE invests in the software part by proposing user and kernel modes, in which
it incorporates specific software registers, drivers, etc.

82 5. A DISTRIBUTED N-LOC ARCHITECTURE

Figure 5.10: The placement of the hardware resources is indicated by blue, as the ARM
cortex part is in orange. The rectangle in yellow represents the needed surface
of hardware resources to relocate the hardware implementation N-LOC based
on bio-inspired architecture, for more details, see chapter 4. As byteman will
be responsible for hardware resources implementation by providing the needed
LUTs, BRAMs, DSPs, and FF registers, also it stitches between static part and
dynamic relocatable region with high efficiency according to [91].

5.7 Wizarde data-path communication and protocols for N-
LOC’s neural network deployment

5.7.1 Different tasks communication scenarios on Wizarde’s tiles

In this chapter, The possibility of implementing two different scenarios for data-path and
tasks communication through Wizarde platform will be discussed. Many previous works
have proposed different methodologies to measure the bandwidth and the latency between
multiple FPGAs [153, 65, 108].

5.7. Wizarde data-path communication and protocols for N-LOC’s neural
network deployment 83

As seen in chapter 4, the necessity of duplicating the N-LOC IP for the localisation task
is essential to increase and grant the mobile robot or AV the efficient way of how it can
explore the environment in resilience, and run-time. Therefore, we need also to focus and
show through which type of communication the data needs to be moved along.

We thus present two essential scenarios that we aim to incorporate and deal with in future,
after modelling and partitioning our bio-inspired neural application N-LOC [51].

• Communication between two adjacent tiles of Wizarde:

– Using GTX Transceivers will help us reach high-performance communications and
carefully-designed communication optimisation strategies.

• Communication between two Non-adjacent tiles of Wizarde

– The first scenario to be proposed, we suppose that all traffic and data communi-
cation control have to pass through the central tile, see figure 5.11.

(a) Central tile as traffic roundabout for the data-path.

(b) Number of transceivers for each Wizarde tile.

Figure 5.11: Waveform data acquisition. We trigger the data acquisition on the chip scope
from the pseudo-random value 0x06E3 and we can verify that the reset and acti-
vation signals of the GTX are valid and that the received data are in conformity
with those sent. We also check the error-accumulator signal remains at 0. This
benchmark is set up with a throughput of 6.25Gbps.

84 5. A DISTRIBUTED N-LOC ARCHITECTURE

The throughput and data path could create a bottleneck in the central tile. Nonetheless,
we should not consider it as the router of our communication data. Likewise, to avoid the
problem caused by the non-adjacent tiles scenario, we set some policies and premises:

• The control signals for data communications belong to the scheduler.

• Every FPGA tile has its identification number, to get the communication well estab-
lished.

• If the data path is vertically or horizontally then the inter-FPGAs communication will
be set linearly; otherwise, the scheduler will prioritise the central tile through which the
data will be passed into. When the lanes of transceivers are IDLE or available, else, it
chooses another available path of a specified tile to cross over.

Figure 5.12: Placement and protocol of switch control on PL Part.

We are currently trying to analyse all possible cases that could happen during the commu-
nication process and put forward our first algorithm for this data path and inter-FPGAs
management communication, based on several previous works and according to Wizarde’s
schematic design. A short latency is required to minimise physical distancing between com-
municating tiles, transmission time, and power consumption. Thus, we present in the Algo-
rithm 2 the transfer-data-processing as explained in the previous conditions.

5.7.2 Tasks communication policies-formulas on Wizarde platform

Some previous works in the field of massively-parallel FPGA-based platforms have been
proposed by Mencer et al. in [96]. The aim of creating this cubic FPGA platform in this work

5.7. Wizarde data-path communication and protocols for N-LOC’s neural
network deployment 85

is to outperform the estate-locality challenge, latency, and throughput (intra and/or inter-
FPGA communication), and further to give the best performance ratio for the application
systems. In our case study, we are going to highlight the experimental studies in such levels,
so our study will focus on one board of Wizarde.

The proposed scenarios will be presented, with the aim of establishing task communication
over tiles for the bio-inspired neural application.

To ease the process of implementation, we have to presuppose some assumptions that would
help us to reduce the real-time constraints. Therefore, the scheduler must ensure that task
allocation has to occur near each other, thus, affording a fast data transfer between FPGAs.

For the case of having just one wizard board and if we consider the non-adjacent data path
communication scenario which will be established between tiles (SW & NE). Thus, the trans-
fer time between those FPGA tiles and the data path are calculated based on the equations
5.1 and 5.2. The dmin is the minimum required time we can have for such a data transfer,
as well as the dmax is the maximum time we can get, such as T_t2t refers to the measured
time between two adjacent tiles, and T_t2t refers to the waiting time during the routing
communication inside an FPGA tile.

dmin = 4 ∗ Tt2t + Twr (5.1)

dreal = 6 ∗ Tt2t (5.2)

However, we should take into consideration that a priority in the data transmission must
be pre-established, hence, to make sure that the channel is well allocated for data-path
transmission, otherwise, an overlapping issue would occur in the traffic. Moreover, some
registers are proposed to retrieve and store the streaming data (on-chip memory), besides,
a FIFO pipeline is needed during each process of memory fetching, in order to manage the
consumed and loading data.

As mentioned, the waiting time is required to minimise a critical path, transmission time, and
power consumption. We present in the algorithm 2 the transfer data processing as explained
in the previous conditions:

Algorithm 2 Algorithm for Tasks communication inter-tiles
Result: Algorithm for Tasks inter-tiles communication
Placement of Tasks & sub-tasks over Wizarde;
Associate an ID number into each tile of Wizarde;

while Placement is successfully done do
instructions if non-adjacent sub-groups transfer demand then

the scheduler chooses a private locked path-transfer
Measuring the transfer time (overhead)
free the line-path transfer

else
chose a linear line for transfer
calculate the transfer time correlated with waiting for & overhead

end
end

86 5. A DISTRIBUTED N-LOC ARCHITECTURE

5.7.3 Bio-inspired neural network tasks placement using DPR

In order to grant our localisation system better capabilities in terms of accuracy-based wide-
range navigation, we need to expand the bio-inspired neural network architecture imple-
mented as hardware-accelerator-based N-LOC. However, the resource consumption and mem-
ory footprint of that purpose is very costly. As we have seen in table 4.2, the percentage of
resources is limited over ≈180 neurons Place-Cell for each FPGA tile. Therefore, leveraging
dynamic partial reconfiguration (DPR) is essential to implement scalable neural networks.
As implemented, the localisation task is large enough that it will not completely fit into the
available reconfigurable fabric. Moreover, the computational needs may change according to
the vehicle’s environment, e.g., transitioning from a dense urban area to a rural one, with a
possible shift in available light. Thus, the neurons used to decide, will not be the same and
will yield different weights. As a result, relying on a full hardware solution is not reasonable
or realistic.

Instead, the system should rely on a light software layer which will provide a scheduling and
resource management environment, to decide which and where hardware tasks to allocate,
within an FPGA. Hence, a major step must be achieved, by providing a layer to provide an
API to load and replace hardware tasks.

As a future work, post-scheduling algorithms’ capabilities (Fixed priority with Round-Robin,
along with, priority-driven scheduling in real-time) must be tested to figure out the best task
allocation strategy to achieve real-time navigation using a bio-inspired approach. Thus, using
a CPU scheduling system, FPGA accelerators can be managed much more efficiently with
more complex strategies, which inevitably optimises and outperforms the acceleration.

5.8 Conclusion

We proposed a low-footprint and high-performance accelerator for feature and image recog-
nition in the context of autonomous vehicle navigation. It leverages a bio-inspired algorithm
which extracts pixel values to perform feature extraction and image recognition, by porting
a previously software-based process and designing a hardware-based one, which relies on the
difference of Gaussian operations. Compared to previous (highly accurate) implementations,
ours provides not only accuracy, but also very low latency (9× shorter than the Python
reference implementation), low power consumption (5.5× lower), and high frame-rate (7×
higher). In addition, our experimental results show that the proposed accelerator yields a
much lower power consumption footprint (0.257W for the LPMP implementation; 2.741W
for the whole system) compared to the pure software reference implementation running on a
high-end embedded system.

However, increasing the number of neurons in Place cells can be beneficial to have a long-
term distance vehicle navigation capability with the same accuracy as architecture with fewer
neurons. Otherwise, we can have a higher accuracy of the system, with short-distance navi-
gation that we can have with an architecture that contains fewer neurons, according to [43].
Thus, the bigger the bio-inspired neural architecture size will be, the more precise and able
to explore and navigate the vehicle will be, as it depends on the number of images that we
have learned, and their pixels are stored on the weights of the Signature Layer. In addition,
we have shown that over 180 neurons in the Place cell (which corresponds to the number of
images we can process and learn in our architecture), can easily saturate FPGA resources.

5.8. Conclusion 87

Therefore, the need to resize the whole application is a must for us. We then consider doing
that, by distributing multiple N-LOCs over multiple FPGA tiles.

We demonstrated Wizarde’s multi-FPGA capability to implement the whole neural network
(≈1000 neurons) over multi-tiles, by leveraging Wizarde’s gigabit transceivers. The software
processing part will be deployed on the FPGA centre tile to communicate and control all
FPGA tiles, by receiving and assessing the localisation score of each captured image from
different NLOC accelerator modules.

Future work includes implementing LPMP on the Jetson TX2’s GPU, as well as modifying
our architecture to increase its clock frequency to improve its performance, and compare it
to GPU-based embedded systems in terms of performance and power consumption. We also
aim to embed our bio-inspired neural IP into a mobile robot to test its limits and perform
a runtime assessment of the implemented navigation approach. Furthermore, a dynamic
scheduling scenarios based on pre-existed software platform will be proposed to efficiently
deploy the whole application by delivering a high performance run-time circuit.

Part IV
General conclusion and Per-
spectives

89

To implement bio-inspired algorithms and their underlying neural network on heterogeneous
systems relying on reconfigurable fabric, a novel hardware platform called Wizarde was pro-
posed and used to prototype and deploy the NN architecture onto it. besides, system software
and scheduling strategies will need to be designed.

In chapter 4, we have demonstrated the capability of modelling the bio-inspired neural ar-
chitecture on FPGA. The architecture has been proposed by [43]. The authors Colomer et
al. have shown the limits of the vehicle speed in all different environments, by implementing
and testing via different scenarios at the VEDECOM institute. We have shown that our
custom original hardware implementation of the LPMP model, outperforms the reference
application by yielding up to 9× lower latency times, 7× higher throughput (frames/second)
than the reference software implementation, and power footprint as low as 2.741W for the
whole system, i.e., up to 5.5× less than a regular high-end computer system on average.

However, the need to yield more powerful results and well efficient run-time system is a
necessity for the autonomous vehicle to be able to auto-drive in any kind of environment.
Therefore, according to [44], the more we have neurons in the Place cell to represent and
memorise images during the learning phase, the more that the vehicle can make a trust-
ful result and explore widely. thus, the need of scaling the application is required in this
situation.

In chapter 5, we have started by displaying the capability of duplicating the targeted hardware
application through multiple accelerators or IPs, such as each different IP has the opportu-
nity and permission to learn specific images (refereed as Learning mode), and all of them will
be evaluated during the navigation process (refereed as using mode), by feeding same images
that have been learned before. According to our results, the distribution through multiple
IPs on the same FPGA can provide a speedup up to 2× compared to a monolithic N-LOC
system, likewise, it keeps yielding up to 4 − 6× faster than the original software implemen-
tation, however, compared to the individually measured Learning and Using latency, this
performance is rather low. It is important to note that in the reference code, as the number
of place cell neurons increases, the processing time also increases dramatically.

In the same chapter, we have conducted some real-time experimentations through which the
gigabit transceivers are shown to be our best solution to communicate between wizarde’s
tiles, with a frame rate which can’t overpass 6 GB/s, in order, to decrease the overhead time
communication between FPGAs.

As a future work, and after porting the artificial hippocampus’s NN to the Wizarde platform
to test its ability to reconfigure its various partial reconfiguration regions, we will leverage
the Dynamic partial reconfiguration DPR to take care of minimizing task relocation when
possible. Once this is done, the next steps will include designing simple IPs to start to
evaluate efficient multi-FPGA scheduling strategies with real-time deadlines.

Besides, leveraging a middleware or hypervisor [141, 146], with an online scheduling policy
would help us to facilitate and achieve our goal, in addition, We plan on running several
scheduler instances (one per tile) to efficiently perform DPR locally, but also to allow hardware
and software task migration across tiles when necessary, and one all of that is done, we change
scheduling policy to make it convenient for our objectives.

We start by scheduling hardware tasks into one tile’s FPGA then Measure latency & through-
put to compare it with pure CPU implementations, then we get across multiple FPGAs /
tiles. and once all of that is done, we fetch the neural network which fits into one tile’s FPGA

90

after we map a larger neuron which fits onto multiple tiles’ FPGA. further, to overcome spa-
tiality and estate issues, we associate reconfigurable regions to each available FPGA such as
each tile’s FPGA being configured in the same way.

6
Bibliography

[1] The 6 levels of vehicle autonomy explained. https://www.synopsys.com/automotive/
autonomous-driving-levels.html. Accessed: 2023-07-06. 12

[2] 7 series fpgas transceivers wizard v3.6. https://www.xilinx.com/content/
dam/xilinx/support/documentation/ip_documentation/gtwizard/v3_6/
pg168-gtwizard.pdf. Accessed: November 30, 2016. 39

[3] Aurora 8b/10b v11.0, logicore ip product guide. https://docs.xilinx.com/v/u/11.
0-English/pg046-aurora-8b10b. Accessed: 2016. 74, 75

[4] Blackfly s usb3. https://www.flir.fr/products/blackfly-s-usb3/?vertical=
machine+vision&segment=iis. Accessed: 2023-07-06. 52

[5] A comprehensive guide to the backpropagation algorithm in neural networks. https://
neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide. Ac-
cessed: 2023-07-06. 16

[6] Edge computing acts on data at the source. https://www.ibm.com/cloud/
what-is-edge-computing. Accessed: 2023-07-06. 24

[7] Intel realsense (2021, april). https://www.intelrealsense.com/. Accessed: 2023-
07-06. ix, 26

[8] Intelrs-bpearl (2021, april).. https://www.robosense.ai/en/rslidar/RS-Bpearl.
Accessed: 2023-07-06. ix, 25, 26

[9] An introduction to vhdl. http://www.uco.es/~ff1mumuj/h_intro.html. Accessed:
2023-07-06. 31

[10] Log-polar coordinates. https://en.wikipedia.org/wiki/Log-polar_coordinates.
Accessed: 2023-07-06. 42

[11] Multi-layer perceptron. https://scikit-learn.org/stable/modules/neural_
networks_supervised.html. Accessed: 2023-07-06. 16

[12] posegraph, create 2-d pose graph. https://en.wikipedia.org/wiki/Sparse_dict_
onary_learning. Accessed: 2023-07-06. 11

[13] Residential street definition. https://www.lawinsider.com/dictionary/
residential-street. Accessed: 2023-07-06. 7

[14] Sparse dictionary learning. https://www.mathworks.com/help/nav/ref/posegraph.
html. Accessed: 2023-07-06. 48

[15] Tesla’s new chip promises to turbocharge autonomous driving. https://dug.com/
teslas-new-chip-promises-to-turbocharge-autonomous-driving/. Accessed:
2023-07-06. 26, 30

https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.xilinx.com/content/dam/xilinx/support/documentation/ip_documentation/gtwizard/v3_6/pg168-gtwizard.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/ip_documentation/gtwizard/v3_6/pg168-gtwizard.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/ip_documentation/gtwizard/v3_6/pg168-gtwizard.pdf
https://docs.xilinx.com/v/u/11.0-English/pg046-aurora-8b10b
https://docs.xilinx.com/v/u/11.0-English/pg046-aurora-8b10b
https://www.flir.fr/products/blackfly-s-usb3/?vertical=machine+vision&segment=iis
https://www.flir.fr/products/blackfly-s-usb3/?vertical=machine+vision&segment=iis
https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide
https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide
https://www.ibm.com/cloud/what-is-edge-computing
https://www.ibm.com/cloud/what-is-edge-computing
https://www.intelrealsense.com/.
https://www.robosense.ai/en/rslidar/RS-Bpearl.
http://www.uco.es/~ff1mumuj/h_intro.html
https://en.wikipedia.org/wiki/Log-polar_coordinates
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://en.wikipedia.org/wiki/Sparse_dict_onary_learning
https://en.wikipedia.org/wiki/Sparse_dict_onary_learning
https://www.lawinsider.com/dictionary/residential-street
https://www.lawinsider.com/dictionary/residential-street
https://www.mathworks.com/help/nav/ref/posegraph.html
https://www.mathworks.com/help/nav/ref/posegraph.html
https://dug.com/teslas-new-chip-promises-to-turbocharge-autonomous-driving/
https://dug.com/teslas-new-chip-promises-to-turbocharge-autonomous-driving/

92 6 Bibliography

[16] What is gnss? https://www.euspa.europa.eu/european-space/
eu-space-programme/what-gnss. Accessed: 2023-07-06. 18

[17] What is vhdl? getting started with hardware description language for digi-
tal circuit design. https://www.allaboutcircuits.com/technical-articles/
hardware-description-langauge-getting-started-vhdl-digital-circuit-design/.
Accessed: 2023-07-06. 31

[18] Handbook of Intelligent Vehicles. Springer London, London, 2012. 18

[19] Alveo u55c, 2015. Accessed: 2021. 32

[20] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, 2015. 32

[21] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, and François Berry. Accelerating
cnn inference on fpgas: A survey. ArXiv, abs/1806.01683, 2018. 17, 65

[22] Karim M. A. Ali, Rabie Ben Atitallah, Nizar Fakhfakh, and Jean-Luc Dekeyser. Ex-
ploring hls optimizations for efficient stereo matching hardware implementation. In
Stephan Wong, Antonio Carlos Beck, Koen Bertels, and Luigi Carro, editors, Applied
Reconfigurable Computing, pages 168–176, Cham, 2017. Springer International Publish-
ing. 53

[23] Alberto Aloisio, Francesco Cevenini, Raffaele Giordano, and Vincenzo Izzo. Charac-
terizing jitter performance of multi gigabit fpga-embedded serial transceivers. In 2009
16th IEEE-NPSS Real Time Conference, pages 96–101, 2009. 39

[24] Elissa M. Aminoff, Kestutis Kveraga, and Moshe Bar. The role of the parahippocampal
cortex in cognition. Trends in Cognitive Sciences, 17(8):379–390, Aug 2013.

[25] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad:
Cnn architecture for weakly supervised place recognition. arXiv:1511.07247 [cs], May
2016. arXiv: 1511.07247. 17

[26] Arslan Arif, Felipe Barrigon, Francesco Gregoretti, Javed Iqbal, Luciano Lavagno, Mi-
hai Teodor Lazarescu, Liang Ma, and Manuel Palomino. Performance and energy-
efficient implementation of a smart city application on fpgas. j real-time image proc 17,
729–743 (2020). In Journal of Real-Time Image Processing 17, 729–743 (2020), 2020.
65

[27] I Augé and F Pétrot. High-level synthesis: From algorithm to digital circuit, 2008. 32

[28] Saeed Safari Behrooz Abdoli. A reconfigurable real-time neuromorphic hardware for
spiking winner-take-all network. In Int J Circ Theor Appl. 2020; 48: 2141– 2152, 2020.
65

[29] Abdelmoudjib Benterki, Moussa Boukhnifer, Vincent Judalet, and Choubeila Maaoui.
Artificial intelligence for vehicle behavior anticipation: Hybrid approach based on ma-
neuver classification and trajectory prediction. IEEE Access, 8:56992–57002, 2020. 13

https://www.euspa.europa.eu/european-space/eu-space-programme/what-gnss
https://www.euspa.europa.eu/european-space/eu-space-programme/what-gnss
https://www.allaboutcircuits.com/technical-articles/hardware-description-langauge-getting-started-vhdl-digital-circuit-design/
https://www.allaboutcircuits.com/technical-articles/hardware-description-langauge-getting-started-vhdl-digital-circuit-design/

6 Bibliography 93

[30] Mario Bergeron, Steve Elzinga, Gabor Szedo, Greg Jewett, and Tom Hill. 1080p60
camera image processing reference design. In XAPP794 (v1.3) December 20, 2013,
2013. 50

[31] Massimo Bertozzi, Luca Bombini, Alberto Broggi, Michele Buzzoni, Elena Cardarelli,
Stefano Cattani, Pietro Cerri, Alessandro Coati, Stefano Debattisti, Andrea Falzoni,
Rean Isabella Fedriga, Mirko Felisa, Luca Gatti, Alessandro Giacomazzo, Paolo Grisleri,
Maria Chiara Laghi, Luca Mazzei, Paolo Medici, Matteo Panciroli, Pier Paolo Porta,
Paolo Zani, and Pietro Versari. Viac: An out of ordinary experiment. In 2011 IEEE
Intelligent Vehicles Symposium (IV), page 175–180, Baden-Baden, Germany, Jun 2011.
IEEE. 18

[32] Michael Beyeler, Nicolas Oros, Nikil Dutt, and Jeffrey L Krichmar. A gpu-accelerated
cortical neural network model for visually guided robot navigation. Neural Networks,
72:75–87, 2015. 25

[33] Keshav Bimbraw. Autonomous cars: Past, present and future - a review of the develop-
ments in the last century, the present scenario and the expected future of autonomous
vehicle technology:. In Proceedings of the 12th International Conference on Informat-
ics in Control, Automation and Robotics, page 191–198, Colmar, Alsace, France, 2015.
SCITEPRESS - Science and and Technology Publications. 18

[34] Michaela Blott, Nicholas J. Fraser, Giulio Gambardella, Lisa Halder, Johannes Kath,
zachary Neveu, Yaman Umuroglu, Alina Vasilciuc, Miriam Leeser, and Linda Doyle.
Evaluation of optimized cnns on heterogeneous accelerators using a novel benchmarking
approach. IEEE Transactions on Computers, 70(10):1654–1669, 2021. 30, 32, 37, 65

[35] Federico Boniardi, Tim Caselitz, Rainer Kümmerle, and Wolfram Burgard. Robust
lidar-based localization in architectural floor plans. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3318–3324, 2017. viii, 11,
13

[36] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sebastien Glaser. Simultaneous lo-
calization and mapping: A survey of current trends in autonomous driving. IEEE
Transactions on Intelligent Vehicles, 2(3):194–220, Sep 2017. 17, 18

[37] John Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986.

[38] Gail A. Carpenter, Stephen Grossberg, and John H. Reynolds. Artmap: Supervised
real-time learning and classification of nonstationary data by a self-organizing neural
network. Neural Networks, 4(5):565–588, 1991.

[39] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, and Kevin
Skadron. A performance study of general-purpose applications on graphics processors
using cuda. Journal of parallel and distributed computing, 68(10):1370–1380, 2008. 25

[40] Yutian Chen, Wenyan Gan, Lei Zhang, Chong Liu, and Xianlei Wang. A survey on
visual place recognition for mobile robots localization. page 187–192, Nov 2017. 17, 18

[41] Y. Chen, H. C. Liao, and T. Tsai. Online real-time task scheduling in heterogeneous
multicore system-on-a-chip. IEEE Transactions on Parallel and Distributed Systems,
24(1):118–130, Jan 2013. 32, 33

[42] Kanika Chourasia. Autonomous vehicles: challenges, opportunities, and future impli-
cations for transportation policies. International Journal of Research, 6:459–463, 2019.
2

94 6 Bibliography

[43] Sylvain Colomer, Nicolas Cuperlier, Guillaume Bresson, Philippe Gaussier, and Olivier
Romain. Lpmp: A bio-inspired model for visual localization in challenging environ-
ments. Frontiers in Robotics and AI, 8, 2022. 2, 3, 13, 19, 21, 33, 34, 41, 44, 48, 51,
56, 78, 86, 89

[44] Sylvain Colomer, Nicolas Cuperlier, Guillaume Bresson, and Olivier Romain. Forming
a sparse representation for visual place recognition using a neurorobotic approach. In
ITSC 2021, Indianapolis, United States, Sept. 2021. xii, 18, 44, 48, 49, 52, 56, 57, 58,
89

[45] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang. Source-to-
Source Optimization for HLS, pages 137–163. Springer International Publishing, Cham,
2016. 53

[46] Travis J. Crayton and Benjamin Mason Meier. Autonomous vehicles: Developing a
public health research agenda to frame the future of transportation policy. Journal of
Transport and Health, 6:245–252, 2017. 6

[47] Nicolas Cuperlier, Frederic Demelo, and Benoît Miramond. Fpga-based bio-inspired
architecture for multi-scale attentional vision. In 2016 Conference on Design and Ar-
chitectures for Signal and Image Processing (DASIP), pages 231–232, 2016. 65

[48] Kumar M. Ayyagari M. Kumar G. Dargan, S. A survey of deep learning and its
applications: A new paradigm to machine learning. archives of computational methods
in engineering. IEEE Access, 27(4):1071–1092, 2020. 15, 16

[49] Qi Deng, Hao Sun, Fupeng Chen, Yuhao Shu, Hui Wang, and Yajun Ha. An optimized
fpga-based real-time ndt for 3d-lidar localization in smart vehicles. IEEE Transactions
on Circuits and Systems II: Express Briefs, 68(9):3167–3171, 2021. 18

[50] Michael Dreschmann, Jan Heisswolf, Michael Geiger, Jürgen Becker, and Manuel
HauBecker. A framework for multi-fpga interconnection using multi gigabit
transceivers. In 2015 28th Symposium on Integrated Circuits and Systems Design
(SBCCI), pages 1–6, 2015. 38, 39, 40

[51] Tarek Elouaret, Sylvain Colomer, Frederic Demelo, Nicolas Cuperlier, Olivier Romain,
Lounis Kessal, and Stephane Zuckerman. Implementation of a bio-inspired neural ar-
chitecture for autonomous vehicle on a reconfigurable platform. In 2022 IEEE 31st
International Symposium on Industrial Electronics (ISIE), pages 661–666, 2022. viii,
23, 83

[52] Tarek Elouaret, Stéphane Zuckerman, Lounis Kessal, Yoan Espada, Nicolas Cuperlier,
Guillaume Bresson, Fethi Ben Ouezdou, and Olivier Romain. Position paper: Pro-
totyping autonomous vehicles applications with heterogeneous multi-fpgasystems. In
2019 UK/ China Emerging Technologies (UCET), pages 1–2, 2019. 37

[53] Yoan Espada, Nicolas Cuperlier, Guillaume Bresson, and Olivier Romain. From Neu-
rorobotic Localization to Autonomous Vehicles. Unmanned Systems, 07(03):183–194,
July 2019. 2, 13, 19, 21, 45, 49, 56

[54] Mikel Etxeberria-Garcia, Mikel Labayen, Maider Zamalloa, and Nestor Arana-
Arexolaleiba. Application of computer vision and deep learning in the railway domain
for autonomous train stop operation. In 2020 IEEE/SICE International Symposium
on System Integration (SII), pages 943–948, 2020. 17

6 Bibliography 95

[55] Daniel J Fagnant and Kara Kockelman. Preparing a nation for autonomous vehicles:
opportunities, barriers and policy recommendations. Transportation Research Part A:
Policy and Practice, 77:167–181, 2015. 2

[56] Péter Fankhauser, Michael Bloesch, and Marco Hutter. Probabilistic terrain mapping
for mobile robots with uncertain localization. IEEE Robotics and Automation Letters,
3(4):3019–3026, 2018. ix, 26

[57] Laurent Fiack, Nicolas Cuperlier, and Benoît Miramond. Embedded and real-time
architecture for bio-inspired vision-based robot navigation. Journal of Real-Time Image
Processing, 10(4):699–722, Dec 2015. 3, 33, 41, 45

[58] H. Gao, B. Cheng, J. Wang, K. Li, J. Zhao, and D. Li. Object classification using cnn-
based fusion of vision and lidar in autonomous vehicle environment. IEEE Transactions
on Industrial Informatics, 14(9):4224–4231, Sep. 2018. 45

[59] Sourav Garg, Tobias Fischer, and Michael Milford. Where is your place, visual place
recognition? In Proceedings of the Thirtieth International Joint Conference on Arti-
ficial Intelligence, page 4416–4425, Montreal, Canada, Aug 2021. International Joint
Conferences on Artificial Intelligence Organization. 17

[60] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets robotics: The kitti dataset.
The International Journal of Robotics Research, 32(11):1231–1237, Sep 2013. 21

[61] Farouk Ghallabi, Ghayath El-Haj-Shhade, Marie-Anne Mittet, and Fawzi Nashashibi.
LIDAR-Based road signs detection For Vehicle Localization in an HD Map. In IV’19 -
IEEE Intelligent Vehicles Symposium, Paris, France, June 2019. IEEE.

[62] MA Goodale and AD Milner. Separate visual pathways for perception and action.
Trends in Neurosciences, 15(1):20–25, 1992.

[63] S Gourichon, J A Meyer, S H Ieng, L Smadja, and R Benosman. Estimating ego-motion
using a panoramic sensor: Comparison between a bio-inspired and a camera-calibrated
method. page 11, 2003.

[64] Roddy M Grieves and Kate J Jeffery. The representation of space in the brain. Be-
havioural processes, 135:113–131, 2017. 19

[65] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and J.
Cong. Fp-dnn: An automated framework for mapping deep neural networks onto fpgas
with rtl-hls hybrid templates. In 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 152–159, 2017. 82

[66] Erico Guizzo. How google’s self-driving car works. IEEE Spectrum Online, 18(7):1132–
1141, 2011. 2

[67] K Guo, W Li, K Zhong, Z Zhu, S Zeng, S Han, Y Xie, P Debacker, M Verhelst, and Y
Wang. Neural network accelerator comparison [online, last checked: 2021-11-10.]. 30,
66

[68] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. A survey of
fpga-based neural network accelerator. arXiv preprint arXiv:1712.08934, 2017. 27, 32

[69] Michael E Hasselmo. The role of acetylcholine in learning and memory. Current Opinion
in Neurobiology, 16(6):710–715, Dec 2006.

[70] Muhammad Imad, Muhammad Abul Hassan, Hazrat Junaid, Izaz Ahmad, et al. Nav-
igation system for autonomous vehicle: A survey. Journal of Computer Science and
Technology Studies, 2(2):20–35, 2020. 65

96 6 Bibliography

[71] Mhafuzul Islam, Mashrur Chowdhury, Hongda Li, and Hongxin Hu. Vision-based nav-
igation of autonomous vehicles in roadway environments with unexpected hazards.
Transportation Research Record, 2673(12):494–507, 2019. 14, 17

[72] Seigo Ito, Felix Endres, Markus Kuderer, Gian Diego Tipaldi, Cyrill Stachniss, and
Wolfram Burgard. W-rgb-d: Floor-plan-based indoor global localization using a depth
camera and wifi. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 417–422, 2014.

[73] Pierre-Yves Jacob, Giulio Casali, Laure Spieser, Hector Page, Dorothy Overington, and
Kate Jeffery. An independent, landmark-dominated head-direction signal in dysgranu-
lar retrosplenial cortex. Nature Neuroscience, 20(2):173–175, Feb 2017.

[74] Malte Jaensch and Hannes Bantle. 100 experts, 1 opinion: Predicting future electric
vehicle and powertrain component sales. In CTI SYMPOSIUM 2018, pages 196–209.
Springer, 2020. 2

[75] Junekyo Jhung, Ho Suk, Hyungbin Park, and Shiho Kim. Hardware accelerators for
autonomous vehicles. In Artificial Intelligence and Hardware Accelerators, pages 269–
317. Springer, 2023. 30

[76] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 32

[77] James Kuffner. Systems and methods for detection by autonomous vehicles, Mar. 14
2019. US Patent App. 15/701,695. 2, 7, 45

[78] Vaibhav Kumar and ML Garg. Deep learning as a frontier of machine learning: A.
International Journal of Computer Applications, 975:8887. 14, 15

[79] Liangzhen Lai and Naveen Suda. Rethinking machine learning development and de-
ployment for edge devices. arXiv preprint arXiv:1806.07846, 2018. 65

[80] Bengio Y. Hinton G. LeCun, Y. Deep learning. Nature 521, page 436–444, 2015. 15

[81] Sanghoon Lee, Dongkyu Lee, Pyung Choi, and Daejin Park. Accuracy–power control-
lable lidar sensor system with 3d object recognition for autonomous vehicle. Sensors,
20(19):5706, 2020. 18

[82] Sang Wan Lee, John P. O’Doherty, and Shinsuke Shimojo. Neural computations medi-
ating one-shot learning in the human brain. PLOS Biology, 13(4):1–36, 04 2015.

[83] George Lentaris, Ioannis Stratakos, Ioannis Stamoulias, Dimitrios Soudris, Manolis
Lourakis, and Xenophon Zabulis. High-performance vision-based navigation on soc
fpga for spacecraft proximity operations. IEEE Transactions on Circuits and Systems
for Video Technology, 30(4):1188–1202, 2020. ix, 27, 28

[84] Jesse Levinson, Jake Askeland, Jennifer Dolson, and Sebastian Thrun. Traffic light
mapping, localization, and state detection for autonomous vehicles. In 2011 IEEE
International Conference on Robotics and Automation, pages 5784–5791, 2011. viii, 8

[85] Yixing Li, Zichuan Liu, Kai Xu, Hao Yu, and Fengbo Ren. A gpu-outperforming fpga
accelerator architecture for binary convolutional neural networks. J. Emerg. Technol.
Comput. Syst., 14(2):18:1–18:16, July 2018. 45

[86] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. Edge
computing for autonomous driving: Opportunities and challenges. Proceedings of the
IEEE, 107(8):1697–1716, 2019. 24

6 Bibliography 97

[87] Yangfan Liu, Peng Liu, Yingtao Jiang, Mei Yang, Kejun Wu, Weidong Wang, and
Qingdong Yao. Building a multi-fpga-based emulation framework to support networks-
on-chip design and verification. International Journal of Electronics, 97(10):1241–1262,
2010. 39

[88] D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings of
the Seventh IEEE International Conference on Computer Vision, page 1150–1157 vol.2.
IEEE, 1999.

[89] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. Artificial intelligence applica-
tions in the development of autonomous vehicles: a survey. IEEE/CAA Journal of
Automatica Sinica, 7(2):315–329, 2020. 14

[90] Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul Newman. 1 year, 1000 km:
The oxford robotcar dataset. IJRR. 48, 55, 56

[91] Kristiyan Manev, Joseph Powell, Kaspar Matas, and Dirk Koch. byteman: A bitstream
manipulation framework. 11 2022. xi, 79, 81, 82

[92] Patrick Mannion. Vulnerable road user detection: state-of-the-art and open challenges.
arXiv preprint arXiv:1902.03601, 2019. 6

[93] John Markoff. Google cars drive themseleves, in traffic. The New York Times, 9, 2010.
2

[94] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk Stroobandt. An
overview of today’s high-level synthesis tools. Design Automation for Embedded Sys-
tems, 16(3):31–51, 2012. 53

[95] Bartlett Mel and Christof Koch. Sigma-pi learning: On radial basis functions and
cortical associative learning. In D. Touretzky, editor, Advances in Neural Information
Processing Systems, volume 2. Morgan-Kaufmann, 1990.

[96] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y. Wong, and P. H. W.
Leong. Cube: A 512-fpga cluster. In 2009 5th Southern Conference on Programmable
Logic (SPL), pages 51–57, 2009. 84

[97] I. Mezei and V. Malbasa. Using vhdl to improve an fpga based educational microcom-
puter. In EUROCON 2005 - The International Conference on "Computer as a Tool",
volume 1, pages 799–802, 2005. 31

[98] Takahiro Miki, Lorenz Wellhausen, Ruben Grandia, Fabian Jenelten, Timon
Homberger, and Marco Hutter. Elevation mapping for locomotion and navigation using
gpu. arXiv preprint arXiv:2204.12876, 2022. ix, 25, 26

[99] Maryam Mirsadeghi, Majid Shalchian, Saeed Reza Kheradpisheh, and Timothée
Masquelier. Stidi-bp: Spike time displacement based error backpropagation in mul-
tilayer spiking neural networks. Neurocomputing, 427:131–140, 2021. 65

[100] Payal Mittal, Raman Singh, and Akashdeep Sharma. Deep learning-based object detec-
tion in low-altitude uav datasets: A survey. Image and Vision Computing, 104:104046,
2020. 65

[101] Sparsh Mittal. A survey of FPGA-based accelerators for convolutional neural networks.
In Neural Comput and Applic 32, 1109–1139 (2020), 2020. 65

[102] May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place cells, grid cells, and
memory. Cold Spring Harbor Perspectives in Biology, 7(2):a021808, Feb 2015. 50

98 6 Bibliography

[103] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew
Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. A survey
and evaluation of fpga high-level synthesis tools. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 35(10):1591–1604, 2015. 31, 32, 53

[104] Tan Nguyen, Samuel Williams, Marco Siracusa, Colin MacLean, Douglas Doerfler, and
Nicholas J Wright. The performance and energy efficiency potential of fpgas in scientific
computing. In 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), pages 8–19. IEEE, 2020. 32

[105] JAH Nieuwenhuijsen. Diffusion of automated vehicles: a quantitative method to model
the diffusion of automated vehicles with system dynamics. 2015. 2

[106] Sangyoon Oh, Minsub Kim, Donghoon Kim, Minjoong Jeong, and Minsu Lee. Investi-
gation on performance and energy efficiency of cnn-based object detection on embedded
device. In 2017 4th International Conference on Computer Applications and Informa-
tion Processing Technology (CAIPT), pages 1–4. IEEE, 2017. 24

[107] Shane M. O’Mara. Spatially selective firing properties of hippocampal formation neu-
rons in rodents and primates. Progress in Neurobiology, 45(3):253–274, Feb. 1995.

[108] M. Owaida and G. Alonso. Application partitioning on fpga clusters: Inference over
decision tree ensembles. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pages 295–2955, 2018. 82

[109] Darsh Parekh, Nishi Poddar, Aakash Rajpurkar, Manisha Chahal, Neeraj Kumar, Gya-
nendra Prasad Joshi, and Woong Cho. A review on autonomous vehicles: Progress,
methods and challenges. Electronics, 11(14):2162, 2022. 2

[110] Minwoo Park, Jiebo Luo, Robert T. Collins, and Yanxi Liu. Beyond gps: determining
the camera viewing direction of a geotagged image. In Proceedings of the international
conference on Multimedia - MM ’10, page 631. ACM Press, 2010. 17, 18

[111] L. Pezzarossa, A. T. Kristensen, M. Schoeberl, and J. Spars. Can real-time systems
benefit from dynamic partial reconfiguration? In 2017 IEEE Nordic Circuits and
Systems Conference (NORCAS): NORCHIP and International Symposium of System-
on-Chip (SoC), pages 1–6, 2017.

[112] Tony A Plate. Randomly connected sigma–pi neurons can form associator networks.
Network: Computation in Neural Systems, 11(4):321–332, Jan 2000.

[113] Guillem Pratx and Lei Xing. Gpu computing in medical physics: A review. Medical
physics, 38(5):2685–2697, 2011. 25

[114] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zambreno, and
Phillip H. Jones. Comparing energy efficiency of cpu, gpu and fpga implementations
for vision kernels. In 2019 IEEE International Conference on Embedded Software and
Systems (ICESS), pages 1–8, 2019. 30, 37, 66

[115] Avadhesh Rathi. Real-Time Adaptation of Visual Perception. PhD thesis, University
of California, Riverside, 2022. 65

[116] Ratheesh Ravindran, Michael J. Santora, and Mohsin M. Jamali. Multi-object detection
and tracking, based on dnn, for autonomous vehicles: A review. IEEE Sensors Journal,
21(5):5668–5677, 2021. 17

6 Bibliography 99

[117] Tyler G.R. Reid, Sarah E. Houts, Robert Cammarata, Graham Mills, Siddharth Agar-
wal, Ankit Vora, and Gaurav Pandey. Localization requirements for autonomous vehi-
cles. SAE International Journal of Connected and Automated Vehicles, 2(3), Sep 2019.
xii, 6, 7

[118] David B Richardson. Electric vehicles and the electric grid: A review of modeling
approaches, impacts, and renewable energy integration. Renewable and Sustainable
Energy Reviews, 19:247–254, 2013. 7

[119] Francisca Rosique, Pedro J. Navarro, Carlos Fernández, and Antonio Padilla. A sys-
tematic review of perception system and simulators for autonomous vehicles research.
Sensors, 19(3):648, Feb 2019. 18

[120] Enrico Rossi, Marvin Damschen, Lars Bauer, Giorgio Buttazzo, and Jörg Henkel. Pre-
emption of the partial reconfiguration process to enable real-time computing with fpgas.
ACM Trans. Reconfigurable Technol. Syst., 11(2):10:1–10:24, July 2018. 33

[121] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International Conference on Computer Vision, page
2564–2571. IEEE, Nov 2011.

[122] S. Saha, A. Sarkar, A. Chakrabarti, and R. Ghosh. Co-scheduling persistent periodic
and dynamic aperiodic real-time tasks on reconfigurable platforms. IEEE Transactions
on Multi-Scale Computing Systems, 4(1):41–54, Jan 2018. 33

[123] Aman B Saleem. Two stream hypothesis of visual processing for navigation in mouse.
Current Opinion in Neurobiology, 64:70–78, Oct 2020.

[124] Gernot Sauter, Marcel Doring, and Rik Nuyttens. High performance pavement mark-
ings enhancing camera and LiDAR detection. IOP Conference Series: Materials Science
and Engineering, 1202(1):012033, nov 2021. viii, 12, 13, 14

[125] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-making
for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous Sys-
tems, 1(1):187–210, May 2018. 18

[126] Eric L. Schwartz. Computational anatomy and functional architecture of striate cortex:
A spatial mapping approach to perceptual coding. Vision Research, 20(8):645–669, jan
1980.

[127] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann
LeCun. Overfeat: Integrated recognition, localization and detection using convolutional
networks. arXiv:1312.6229 [cs], Feb 2014. arXiv: 1312.6229. 17, 18

[128] Weijing Shi, Mohamed Baker Alawieh, Xin Li, and Huafeng Yu. Algorithm and hard-
ware implementation for visual perception system in autonomous vehicle: A survey.
Integration, 59:148–156, 2017. 65

[129] Sayem Mohammad Siam and Hong Zhang. Fast-seqslam: A fast appearance based
place recognition algorithm. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), page 5702–5708. IEEE, May 2017. 17

[130] Lenin Singaravelu, Calton Pu, Hermann Härtig, and Christian Helmuth. Reducing tcb
complexity for security-sensitive applications. volume 40, pages 161–174, 10 2006. 34

[131] Santokh Singh. Critical reasons for crashes investigated in the national motor vehicle
crash causation survey, 2015. 6

100 6 Bibliography

[132] Robert Spangenberg, Daniel Goehring, and Raúl Rojas. Pole-based localization for
autonomous vehicles in urban scenarios. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2161–2166, 2016. 8

[133] Asim Suhail, Manoj Jayabalan, and Vinesh Thiruchelvam. Convolutional neural net-
work based object detection: A review. Journal of critical reviews, 7(11):786–792, 2020.
24

[134] Rolls Edmund T. Spatial view cells and the representation of place in the primate
hippocampus. Hippocampus, 9(4):467–480, 1999.

[135] Qi Tang, Zhe Wang, Biao Guo, Li-Hua Zhu, and Ji-Bo Wei. Partitioning and scheduling
with module merging on dynamic partial reconfigurable fpgas. ACM Trans. Reconfig-
urable Technol. Syst., 13(3), Aug. 2020.

[136] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Dis-
tributed Systems, 13(3):260–274, March 2002. 33

[137] Akihiko Torii, Josef Sivic, Tomas Pajdla, and Masatoshi Okutomi. Visual place recog-
nition with repetitive structures. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2013. 17

[138] Stefan Treue. Visual attention: the where, what, how and why of saliency. Current
Opinion in Neurobiology, 13(4):428–432, Aug. 2003.

[139] Konstantinos A Tsintotas, Loukas Bampis, and Antonios Gasteratos. Visual place
recognition for simultaneous localization and mapping. Autonomous Vehicles Volume
2: Smart Vehicles, pages 47–79, 2022. 65

[140] Yaman Umuroglu, Yash Akhauri, Nicholas James Fraser, and Michaela Blott. Logic-
nets: Co-designed neural networks and circuits for extreme-throughput applications.
In 2020 30th International Conference on Field-Programmable Logic and Applications
(FPL), 2020. 30, 65

[141] Anuj Vaishnav, Khoa Dang Pham, Joseph Powell, and Dirk Koch. Fos: A modular
fpga operating system for dynamic workloads. ACM Transactions on Reconfigurable
Technology and Systems Volume, (28):13Issue 4December 2020 Article No.: 20pp 1–28,
2020. ix, 35, 36, 89

[142] Jessica Van Brummelen, Marie O’Brien, Dominique Gruyer, and Homayoun Najjaran.
Autonomous vehicle perception: The technology of today and tomorrow. Transportation
Research Part C: Emerging Technologies, 89:384–406, Apr 2018. 18

[143] Liang Wang, Yihuan Zhang, and Jun Wang. Map-based localization method for au-
tonomous vehicles using 3d-lidar **this work is supported in part by the national
natural science foundation of china under grant no. 61473209. IFAC-PapersOnLine,
50(1):276–281, 2017. 20th IFAC World Congress. viii, 9

[144] Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, and Xu
Chen. Convergence of edge computing and deep learning: A comprehensive survey.
IEEE Communications Surveys Tutorials, 22(2):869–904, 2020. 8, 65

[145] Ryan W. Wolcott and Ryan M. Eustice. Visual localization within lidar maps for
automated urban driving. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 176–183, 2014. viii, 9, 10

6 Bibliography 101

[146] Tian Xia, Ye Tian, Jean-Christophe Prévotet, and Fabienne Nouvel. Ker-one: A new
hypervisor managing fpga reconfigurable accelerators. Journal of Systems Architecture,
98:453–467, 2019. ix, 34, 35, 38, 81, 89

[147] Yanming Yang, Xin Xia, David Lo, and John Grundy. A survey on deep learning for
software engineering. ACM Comput. Surv., dec 2021. Just Accepted. 15

[148] Ryan M. Yoder, Benjamin J. Clark, and Jeffrey S. Taube. Origins of landmark encoding
in the brain. Trends in Neurosciences, 34(11):561–571, Nov 2011.

[149] Skrynnik A. Krishtopik A. et al Yudin, D.A. Object detection with deep neural networks
for reinforcement learning in the task of autonomous vehicles path planning at the
intersection. Opt. Mem. Neural Networks, (28):283–295, 2019. 17

[150] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A sur-
vey of autonomous driving: Common practices and emerging technologies. CoRR,
abs/1906.05113, 2019. 14, 17

[151] Mubariz Zaffar, Shoaib Ehsan, Michael Milford, David Flynn, and Klaus McDonald-
Maier. Vpr-bench: An open-source visual place recognition evaluation framework with
quantifiable viewpoint and appearance change. arXiv:2005.08135 [cs], May 2020. arXiv:
2005.08135. 14, 17, 18, 19

[152] S.W. Zhang, K. Bartsch, and M.V. Srinivasan. Maze learning by honeybees. Neurobi-
ology of Learning and Memory, 66(3):267–282, Nov 1996. 17

[153] W. Zhang, J. Zhang, M. Shen, G. Luo, and N. Xiao. An efficient mapping approach
to large-scale dnns on multi-fpga architectures. In 2019 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1241–1244, 2019. 82

[154] Xiwu Zhang, Lei Wang, and Yan Su. Visual place recognition: A survey from deep
learning perspective. Pattern Recognition, 113:107760, 2021. 17

[155] Jiangpeng Zhu, Guofeng Yang, Xuping Feng, Xiyao Li, Hui Fang, Jinnuo Zhang, Xiulin
Bai, Mingzhu Tao, and Yong He. Detecting wheat heads from uav low-altitude remote
sensing images using deep learning based on transformer. Remote Sensing, 14(20):5141,
2022. 65

	English Abstract
	French Abstract
	List of Figures
	List of Tables
	Preface
	I General Introduction
	II Background and state of the art
	Background
	Generalities on autonomous vehicles, their applications, and limitations
	Common tools for autonomous vehicles localisation
	LiDAR systems detecting pavement marking
	Processing and deciding: Traditional AI systems for autonomous vehicles
	Artificial neural network and their beneficial
	Convolutional and Deep Neural Networks
	Convolutional Neural Network (CNN) architecture
	Localisation with autonomous car
	Visual Place Recognition

	LPMP, a bio-inspired model of localisation
	Principles of the LPMP model
	Some Advantages and Limitations of LPMP

	Conclusion

	Hardware Acceleration for autonomous vehicles localisation
	Computational supports for Hardware implementation
	GPU
	Using GPU for navigation process
	An example of embedded GPU: NVIDIA's Jetson TX2

	FPGA
	Principles
	Using FPGA for navigation process and motivation beyond

	Comparing State-of-the-Art Hardware Platforms: Performance, Features, and Costs
	Programming FPGA using VHDL
	Programming FPGA using High-level Synthesis

	Heterogeneous System Architecture
	Exploring Hardware and Software Scheduling Strategies on Heterogeneous HW
	Leveraging partial reconfiguration
	Facilitating DPR
	Using Ker-ONE as a hypervisor for DPR facility
	Abstracting FPGA manipulation through adequate system-level layers FOS

	Accelerating the localisation task: FPGA vs. GPU
	The Wizarde Platform
	Mixed architectures: SoC + FPGA
	Gigabit Transceivers Interface
	Comparaison to related work
	Towards using GTX Transceivers for a data-transmission over Wizarde platform

	Accelerating Image processing and VPR model using Heterogeneous computing system
	Difference of Gaussian DoG interface-based Image Processing for the localisation task of Autonomous Vehicles
	Integration of the Pyramid IP to a Wizarde’s Tile
	Hardware implementation of a VPR model

	Conclusion

	Problem Statement

	III Contributions
	MODELLING A BIO-INSPIRED ALGORITHM FOR FPGAS
	Introduction
	Implementing N-LOC on FPGA
	Visual signature computation
	Angular position computation
	Spatial working memory
	The place cell neurons group
	Modes of operation

	Evaluation of the LPMP model on real-time constrained environments
	Fixed-point arithmetic
	Use of HLS to implement N-LOC
	Methodology for Implementing the LPMP Model on FPGA Platform

	Experimental results
	Experimental setup and implementation parameters
	Resource utilisation

	Conclusion

	A DISTRIBUTED N-LOC ARCHITECTURE
	Introduction
	Comparison with related work
	Distributed N-LOC: Principles of Learning and Using modes
	Principles of the LPMP models
	Implementation

	Experiments with distributed N-LOC on a single FPGA
	Communication protocol via GTX transceivers
	Highspeed transceivers on the Wizarde platform
	GTX micro-benchmarking in Wizarde
	Toward a distributed N-LOC architecture on Wizarde
	Conclusion

	Implementing distributed N-LOC using Dynamic Partial Reconfiguration DPR system
	Experiments with Ker-ONE
	Experiments with FOS
	Discussion and comparison: FOS vs. Ker-ONE

	Wizarde data-path communication and protocols for N-LOC's neural network deployment
	Different tasks communication scenarios on Wizarde's tiles
	Tasks communication policies-formulas on Wizarde platform
	Bio-inspired neural network tasks placement using DPR

	Conclusion

	IV General conclusion and Perspectives
	Bibliography

