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Résumé 
 

Les systèmes d'aide à la conduite automobile sont en mesure de prendre le contrôle du 

véhicule en cas de danger. La redondance et la capacité de reconfiguration en cas de panne des 

ordinateurs embarqués sont fondamentales pour assurer la continuité de la mission. 

L’alimentation des cœurs des processeurs se fait généralement à l’aide de convertisseurs 

multiphases qui offrent naturellement plusieurs chemins de courant (redondants) vers le 

processeur en raison de leur topologie parallèle. Cependant, l’organe de contrôle du 

convertisseur représente une faiblesse en termes de disponibilité car implanté majoritairement 

de manière centralisé. NXP Semiconductors a initié un partenariat avec le laboratoire 

LAPLACE afin de financer cette thèse pour l’étude d’un mode de contrôle distribué tolérant à 

la panne. Cette thèse se focalise sur l’utilisation d’une méthode de contrôle distribué, ne 

présentant aucun point de panne singulier, pour développer un organe de gestion de 

l’entrelacement des signaux de commande, modulaire et redondant, ainsi que pour maitriser son 

fonctionnement, en termes de temps de réponse et de stabilité. 

Le Chapitre I présente le contexte et l'état de l'art. Le contexte concerne la stratégie de 

sûreté de fonctionnement intégré utilisée par NXP ; une étude des exigences et des technologies 

récentes est présentée pour comprendre les enjeux de la conception des alimentations des 

processeurs modernes ; la tendance de l'augmentation de la charge de calcul requise et de la 

consommation électrique résultante est mise en évidence ; et l'adoption de convertisseurs 

multiphases est justifiée. Un état de l'art couvre alors principalement les techniques de contrôle 

distribué modulaire appliquées à la régulation de la tension de la charge et à l'équilibrage des 

courants des phases, puis aux techniques d'entrelacement, nécessaires au fonctionnement des 

convertisseurs multiphases. 

Les Chapitres II et III présentent l'étude théorique et l'évaluation respectivement de deux 

techniques d'entrelacement par approche distribuée préexistantes La même approche de 

modélisation est appliquée dans chaque chapitre pour obtenir un modèle à multiples entrées et 

multiples sorties conforme aux spécificités de chaque approche, dans le but d’identifier enfin 

les conditions de stabilité à respecter. Les particularités liées à la modélisation et à la mise en 

œuvre des simulations de validation sont décrites. Par la suite, une technique de choix de 
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correcteur pour l'optimisation de la réponse transitoire est proposée. Les singularités de chaque 

approche sont discutées et des simulations sont fournies à des fins de vérification. 

Le Chapitre IV présente l’élaboration d'une nouvelle approche originale de contrôle 

distribué pour l'entrelacement des signaux de commande, ainsi que son analyse. Il s'agit d'une 

approche à signaux mixtes, composée de quelques éléments de logique numérique et d'un noyau 

analogique. L'étude théorique et l'évaluation de cette nouvelle technique d'entrelacement sont 

présentées, ainsi que des résultats de simulation. Une preuve de concept a été élaborée en 

utilisant des composants CMS associées sur une carte de circuit imprimé. La réponse 

dynamique est vérifiée expérimentalement pour les perturbations modales, cas de démarrage et 

de reconfiguration. Le comportement lors d'un événement de panne de communication est 

également observé, comprenant le cas d'un court-circuit de ligne à la masse et de court-circuit 

de ligne à ligne. 

 

Mots Clés: Défaillance opérationnelle, tolérant à la panne, redondance, contrôle 

distribué, reconfiguration, continuité de mission, entrelacement, modulaire, extensible, chaine 

circulaire. 

 



 

 
 

 

 

Abstract 
 

Advanced Driver-Assistance Systems can take control of the vehicle in case of danger. 

Redundancy and reconfiguration ability in case of fault occurrence are fundamental to ensure 

mission continuity. The supply of computer cores is made usually with multiphase converters 

that offer naturally multiple (redundant) current paths to the processor thanks to its parallel 

topology. However, converter controller is a weakness in terms of availability usually 

implemented in a centralized way. NXP Semiconductors has initiated a partnership with the 

LAPLACE laboratory to finance this thesis for the study of a fault tolerant distributed control 

mode. This thesis focuses on the use of a distributed control method, presenting no single point 

of failure, to develop a modular and redundant control signal interleaving management unit, as 

well as to control its operation, in terms of response time and stability. 

Chapter I presents the context and state of the art. The context presents the NXP safety 

path; a survey of requirements and techniques is developed to understand up-to-date processors 

power supply; trends of workload and power consumption increases are highlighted; and the 

adoption of multiphase converter topology is verified. The state of the art covers mainly the 

modular distributed techniques applied on voltage regulation and current balance, and then on 

interleaving techniques, needed to multiphase converter operation. 

Chapter II and III present the theoretical studies and evaluations of two preexisting 

distributed interleaving techniques. The same modeling technique is applied in each chapter to 

develop a multiple inputs multiple outputs model compliant with the specificities of each 

approach and then reveal the stability concern. Subsequently, a technique of choice of corrector 

for the optimization of the transient response is proposed. The singularities of each approach 

are discussed and simulations are provided for verification. 

Chapter IV presents the conception of an improved original interleaving approach for 

control signal interleaving, as well as its analysis. It is a mixed-signal approach, consisting of a 

few digital logic devices and an analogue core. The theoretical study and evaluation of the new 

interleaving technique is presented, as well as simulation results. A proof of concept was 

developed using standard SMD components on a printed circuit board. The dynamic response 

of this interleaving approach is verified for modal disturbances, cases of start-up and 
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reconfiguration, where a module is inserted/removed during operation. The behavior during 

communication fault event are also shown, comprising the cases of a line shorted to ground and 

line-to-line short circuit. 

 

Key words: Fail-operational, fault-tolerant, distributed control, reconfiguration, mission 

continuity, interleaving, modular, scalable, circular-chain. 
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General introduction 

 

The mobility sector passes nowadays through a revolution. Electrical assistance is 

widely available in bikes and scooters. Fully autonomous vehicles are already available in the 

market. These vehicles can be individual or fit small groups of people, such as cars we know 

today. Recently general public flying taxis are being tested. These vehicles are composed of 

multiple electronic devices and computers. High availability and safety concerns have to be 

handled to avoid injures and damage. To overcome these challenges, safety strategies are 

evolving from the level “fail silent” (device disabled) to “fail operational” (fault corrected on-

the-fly), when the device reconfigures to guarantee mission continuity in case of a failure. 

This work is part of the partnership between NXP Semiconductors and “Laboratoire 

Plasma et Conversion d’Energie” (LAPLACE) on the development of embedded systems for 

the autonomous mobility. This work treats specifically the study and development of a modular 

fail operational control for multiphase power converters needed to supply the autonomous 

driving embedded computers. The studied techniques can be applied in any type of series and/or 

parallel multicellular converter topologies. 

The fail tolerant control with reconfiguration ability is sought using modular distributed 

control without single point of failure. The distributed control of multicell converters requires 

the generation of interleaved PWM signals, the balance of current/voltages between cells and 

the output regulation. The ultimate objective of this thesis is the study and evaluation of the 

distributed control for future market introduction of a NXP product for core processor supply 

in automotive applications. This work focusses mostly on the interleaving approaches. 

Chapter I presents the context and state of the art. The context includes the NXP safety 

path and focuses the step to reach fail operational power supplies for processors. The approach 

developed is based on distributed control without single point of failure. A survey of 

requirements and techniques is developed to understand up-to-date processors power supply; 

trends of workload and power consumption increase are highlighted; and the adoption of 

multiphase converter topology is verified. The state of the art covers mainly the modular 

distributed techniques applied on voltage regulation and current balance, and then on 

interleaving techniques. 



General introduction 

2 
 

Chapter II and III present the theoretical studies and evaluations of two preexisting 

distributed interleaving techniques. Chapter II studies a digital approach and chapter III studies 

an analog approach. The same modeling technique is applied in each chapter to develop a 

Multiple Inputs Multiple Outputs (MIMO) model compliant with the specificities of each 

approach and then reveal the stability concern. Modeling and simulation issues are described 

and a transient response optimization technique is proposed. Multiple specific items of each 

approach are discussed and simulations are provided for verification. 

Chapter IV presents the conception of an improved original interleaving approach and 

its analysis. It is a mixed signal approach, composed of a few digital logic devices and an 

analogue core. The theoretical study and evaluation of the new interleaving technique is 

presented. Simulation results are shown and a proof-of-concept to validate the mixed signal 

interleaving approach presented. The modular distributed controller was conceived using 

functions on SMD components and multiple of them were associated on a printed circuit board. 

The dynamic response of this interleaving approach is verified for modal disturbances, cases of 

start-up and reconfiguration, where a module is inserted during operation. The behavior during 

communication fault event are also shown, comprising the case of a line shorted to ground. 

In the same manner, Annex F presents a top level view of the architecture used for 

development of an integrated circuit using NXP SmartMOS10 technology applying the 

concepts developed in this document. Each module integrated is composed of a half-bridge 

power stage, a distributed carrier generator, a current sense and balance loop, a voltage 

regulation loop and a voltage reference. 
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 Context and state of the art 
 

The AAA Foundation for Traffic Safety published in 2019 an article entitled “Think 

You’re In Your Car More? You’re Right. Americans Spend 70 Billion Hours Behind the Wheel” 

showing an increase of more than 6 percent on driving time from 2014-15 and 2016-17. Current 

technology, involving automation and robotics, pushes the development of autonomous driving 

vehicles and soon the mass deployment of robot taxis. It will allow people to do other activities 

while moving and improve mobility of non-enabled people. 

In the other hand, according with the World Health Organization 2018 report “Every 

year the lives of approximately 1.35 million people are cut short as a result of a road traffic 

crash. Between 20 and 50 million more people suffer non-fatal injuries, with many incurring a 

disability as a result of their injury. (…) Road traffic crashes cost most countries 3% of their 

gross domestic product.” In most of the cases, the crashes are caused by human error and could 

be avoided. 

While the governments are enforcing regulations, the automotive industry is developing 

more sophisticated Advanced Driver-Assistance Systems (ADAS) to take control of the vehicle 

in case of danger. ADAS can be defined as the group of electronic systems that assists the 

drivers in driving and parking functions. Anti-lock braking systems (ABS), traction control, 

cruise control and automatic braking are some examples of ADAS systems. These ADAS 

systems require sensors, processors and actuators. 

At the same time, the embedded computers workload is rising also because of the 

autonomous driving trend. These embedded computers are critical, so redundancy and 

reconfiguration ability are fundamental to ensure mission continuity in case of fault occurrence. 

This thesis is dedicated to improve the availability of the energy conversion stages that supply 

those computers. 

Other demand from the very competitive automotive market is to offer very flexible and 

scalable solutions capable to address a wide range of market segments, i.e. being able to adapt 

to a wide range of computing workloads and consequently the required electrical power. The 

supply of computer cores is made usually with multiphase converters. Multiphase converters 
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use parallel topology to offer naturally multiple (redundant) current paths to the load. However, 

their weakness in terms of availability is due to the use of a centralized converter controller. 

NXP Semiconductors is the world leader in power management solutions for the 

automotive industry. Willing to propose solutions with these two characteristics, redundancy 

and scalability, NXP Semiconductors started the partnership with the LAPLACE laboratory in 

a research project leading to this thesis. The track to be studied is the use of distributed control: 

scalable, reconfigurable, and without Single Point Of Failures (SPOFs); a current topic in the 

LAPLACE research line. 

This chapter will provide an introduction about the NXP safety strategy, the control 

architectures, an overview on processor’s power supplies as well as an overview of the current 

trend on the processor’s market. The end of this chapter will be dedicated to a brief state of the 

art on voltage regulation, leg current balance and also the generation of interleaved signals. 

 Safety strategy 
NXP plan to introduced new safety solutions is shown in Figure I-1. The actual solutions 

are able to detect and react to a failure. However the reaction is limited, essentially by turning-

off the power system and asserting an output signal to, for example, turn-off the 

communications and prevent non-correct information to be delivered. 

 
Figure I-1 – NXP plan to improve safety. [1] 

The context of this work is to go further and propose a processor power supply with 

features able to reach the fail operational status, where a reconfiguration is performed in case 

of failure to keep the system operational and guarantee the mission continuity. Differently of 

the common sense, the different features making a system can have different safety goals, such 

as supplying correctly a processor. It is not necessary to all the features to be fail operational to 

classify a system as fail operational. This work will focus only on the control structure of the 

microprocessor power supply. 
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 Control architectures 
As computer networks and electric grids can have multiple architectures, the same is 

applicable to control systems. When multiple control elements are put together in order to 

achieve a common task, the control architecture can be conceived in multiple different ways. 

Those control architectures can be summarized in three different categories: centralized, 

decentralized and distributed. These different architectures are illustrated in Figure I-2. 

 
Figure I-2 – Network architectures: centralized, decentralized and distributed. [2] 

The centralized approach is based on a leader element and many followers. They are the 

most common, being easy to design and fast to develop, scalable but prone to failures, mainly 

because of the dependent failure with root cause in the leader. 

The decentralized approach is based on  a nest with many hubs where the followers are 

connected. They are less prone to failures than a centralized architecture, but the hubs still being 

cause of dependent failures. 

In distributed approach, all elements are in the same rank, multiple connections are used 

and hubs are avoided. As a result, no Single Point Of Failure (SPOF) is present, eliminating 

completely dependent failure. The circular chain of communications is an example of scalable 

and distributed architecture. 

 Power management 
As the processors evolve, its power management functions evolve as well. As the 

technological node reduces and workload increases, lower voltages and higher currents are 

required. Some techniques to minimize the processor power dissipation are described in the 

Texas Instruments application report “Adaptive (Dynamic) Voltage (Frequency) Scaling – 

Motivation and Implementation” [3]. 

Usually, to a given technological node, the processor performance increases with its 

supply voltage level, meaning faster clock signals can be applied and higher workload can be 
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handled. Due to process variations, some processors can handle faster clocks than others at the 

same voltage, but its current and power dissipation are higher. 

Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) were introduced 

to optimize the power consumption to each specific device. AVS adjusts the supply voltage for 

process and aging, while the DVS adjusts for temperature. Figure I-3 shows how the supply 

voltage of different devices (weak, nominal and strong) is adjusted to get the same power 

consumption and handle the same workload. The power dissipation is equalized by adjusting 

the supply voltage and, as a result, no more than necessary electrical power is used. 

 (a)   (b) 
Figure I-3 – AVS, power dissipation: a) before and b) after AVS adjustment. [3]. 

When a different workload (clock) is required, the dependency between voltage supply 

and workload can be used to change the processor’s performance. The processor supply voltage 

(and power dissipation) can be adjusted to ensure correct operation. This technique is called 

Dynamic Frequency Voltage Scaling (DVFS), where the supply voltage is adjusted on-the-fly 

to correspond to the clock frequency (workload) required. Figure I-4 (a) shows the power 

dissipation plot for different frequencies and (b) the energy required per instruction. A 

minimum can be seen in (b), being the optimal point for the processor operation, i.e. the lower 

energy per instruction rate. This point indicates where the processors work with optimal power 

consumption. 

(a)     (b) 
Figure I-4 – DVFS: a) power consumption vs. frequency, b) energy per instruction. 
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Originally, most of the digital circuit power consumption was related with gate 

switching, i.e. clock frequency. However, process evolution and parameter optimization led to 

a significant increase of leakage power, i.e. power consumption not related to the clock, 

responsible for around 50% of the power consumption since 45 nm process, as shown in Figure 

I-5. 

 
Figure I-5 – Evolution of active and leakage power densities with node technology. Source: Intel. 

As processor leakage power became an issue, fast cycles of “processing then rest” were 

introduced, thanks to clock modulation, to operate always at the more efficient point. During 

the rest time (idle), some processors regions are unsupplied to avoid leakage. Examples of 

power consumption as a function of active time can be seen in Figure I-6, where total energy 

consumption in case (b) is smaller than in case (a) for a same workload (not in scale). 

 (a)      (b) 
Figure I-6 – Clock modulation: a) 100% active-low, b) 50% active high + 50% idle. [4] 

The combination of DVFS and clock modulation result in a wide variety of possible 

combinations. These combinations are mapped and the processor is able to choose the best 

configuration to minimize the power consumption based on the workload, as shown in Figure 

I-7. 

When using clock modulation, the power consumption is no more constant, as seen in 

Figure I-6. This induces to the power supply very fast load transients, i.e. current transients. To 

handle this, a predictive technique called Adaptive Voltage Positioning (AVP) was introduced. 

Without AVP, the converter tries always to regulate the voltage in the middle of the voltage 

tolerance range to accommodate overshoots and undershoots, as shown in Figure I-8. 
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Figure I-7 – DVFS and clock modulation. Best efficiency mapping for different workloads. 

The AVP technique consists basically in adjusting the load voltage based on the current 

required. This dependency is also called Load Line (LL) because it is equivalent to a virtual 

resistance connecting an ideal voltage source (reference) with the load. The AVP allows to 

reduce both the output filter capacitor by a factor two and the power consumption. 

(a) (b) 
Figure I-8 – Load regulation, output voltage and current waveforms : a) without AVP, b) with AVP. [5] 

Figure I-9 shows all these techniques combined in a same chart. With AVS, all processor 

operation points stay on the same iso-power line to a given frequency and workload. The DVFS 

allows the processor to change between iso-power lines. And finally, AVP allows the processor 

to stay within limits during the clock modulation fast transients. 

 
Figure I-9 – Combined impact of AVS, DVFS and AVP techniques in the processor supply chart. 

A simplified scheme with all these techniques is shown in Figure I-10. On the processors 

side, AVS takes into account the process variations, temperature and aging to choose the most 

adapted voltage reference level. Additionally, the clock modulation and DVFS will then adjust 

the processor voltage and operation to the workload. The Voltage Regulator Module (VRM) 

refers to the Point of Load (PoL) regulator used to supply processors. The VRM will apply AVP 

to improve transients and reduce even further processor power consumption. 
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Figure I-10 – Simplified scheme of VRM and processor control techniques. 

Multiphase Buck converters are usually chosen due to the ability to deliver high current 

and being able to handle fast transients. The scheme of a Buck converter with 3 legs is shown 

in Figure I-11 (a). The converter control is composed of three main features: output voltage 

regulation, leg current balance and PWM leg control signal interleaving. The interleaving 

consists in equally spacing the switching commands on each leg (e.g. ON-time) to obtain a 

higher fundamental frequency in the combined inductor current at the output, as shown in the 

waveforms of Figure I-11 (b). 

(a)     (b) 
Figure I-11 – Multiphase Buck converter (3 legs): a) topology, b) signal waveforms. 

Once multicore processors were introduced, the power management become trickier 

because each core may require a different optimal supply voltage based on its own workload. 

For this reason, Integrated Voltage Regulators (IVR) were introduced. IVRs are Switching 

Mode Power Supplies (SMPS) integrated within the processors. In some cases, multiple IVR 

are integrated and each one is dedicated to supply a processor core individually. Instead of each 

core using the highest required core voltage, each core has only a minimum voltage overhead 

and thus the wasted energy is the minimum possible, as shown in Figure I-12. 
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 (a)   (b) 
Figure I-12 – FIVR: a) supply principle using either integrated LDO or IVR, b) supply scheme. [6, p.] 

These approach was introduced in the Intel Core i7-4700MQ Processor, shown in Figure 

I-13 (a), in a single die approach, called Fully Integrated Voltage Regulator (FIVR). Each 

domain highlighted in (d) is supplied by a dedicated converter. The converter topology used is 

a 3-level flying capacitor multiphase converter (c) with inductors integrated in the package (b). 

The inductors are very small, an astonishing 58 integrated inductor pattern can be count, 

operating as 2, 4, 6 or 8 multiphase converters can be observed in (e). The converter 

specification is shown in (f). 

(a) (b) (c) 

(d) (e) 
(f) 

Figure I-13 – Intel Core i7-4700MQ Processor: a) package, b) integrated inductors, c) converter 
topology, d) processor die, e) integrated inductors and capacitors view, f) converter specification. [7] 

Since the introduction of processors to the consumer market, the number of phases 

increases. This tendency is mainly due to the increase of the delivered power as the supply 

voltage within the processor technological node is reduced, resulting in higher current. With 

the FIVR introduction and its ability locally to divide the voltage by two and double the current, 



Context and state of the art 

13 
 

the voltage delivered by the upstream VRM took a step back and increased, while the phase 

number stabilized. 

Numerous power supply topologies were introduced and abandoned, such VRMs with 

coupled inductors, as well as the FIVR which was not kept in the following generation. 

However, Intel may reintroduce it as technology evolves or different trade-offs will appear. 

Figure I-14 shows some striking points of the VRM evolution with the number of phases 

associated. The number of phases should remain at these level (around 12) in the processor 

market as more efficient processors are introduced and thermal management issues are solved. 

 
Figure I-14 – Increasing number of phases tendency. 

In the recent years, the artificial intelligence boom occurred. To improve performances, 

these applications prefer specialized circuits like GPUs and specialized Neural Network 

Processors (NNP). As a result, the processor’s die sizes increased as well as their power 

consumption requirements. A die size comparison can be seen in Figure I-15. 

 
Figure I-15 – Processor’s die size comparison. [8] 

Tesla’s HW3 self-driving car computer deployed in Tesla Model 3, shown in Figure 

I-16 (a), is dedicated to autonomy level between 2 and 3. Its electronic board is composed by 

two processing units, each one supplied by a 2 phases Buck converter. The processors are very 

efficient, so only two standard power stages are sufficient. It should be noted a higher number 

of phases would increase redundancy and reduce the volume. 
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Intel and Nvidia introduced more big chips specialized in neural network processing for 

training neural networks and potentially accomplish autonomous driving level 5. These 

processors have huge size and very high power consumption. A 12-phase power supply can be 

seen in the right hand side of Intel Nervana NNP board, shown in Figure I-16 (b). This huge 

processor size induces drawbacks related to thermal management and reliability, what may raise 

concerns in the automotive industry. 

(a) (b) 
Figure I-16 – a) Tesla’s HW3 self-driving (level 2/3) car computer, b) Intel Nervana NNP 

Aiming to reduce the power conversion losses, processors can be supplied with direct 

conversion from 48V without intermediate rails. This solution was first introduced in datacenter 

application where the amount of converted power is very high, but it can also be used in 

automotive applications as 48V battery lines are available in some hybrid vehicle topologies. 

The most common approach is based on isolated solutions, where the high conversion 

ratio is achieved thanks to a transformer. To improve scalability and keep redundancy, these 

approaches use as well multiphase solutions. 

Figure I-17 (a) shows one ST semiconductors solution based on a Full-Bridge 

commutation cell at the primary, a resonant circuit and a current doubler at the secondary, and 

(b) shows its scalability up to 6 phases. 

(a) (b) 
Figure I-17 - ST semiconductors 48V direct conversion approach: a) topology, b) multiphase operation. 

Vicor proposed a disruptive solution where multiple transformers, transistors and 

drivers are integrated together. Vicor solution is also unique because no feedback is present in 

the transformer unit, i.e. it works in open loop. The output voltage is regulated by varying the 

transformer’s input voltage with a Buck-Boost converter. The two stages are called “PRMs (Pre 
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Regulation Modules) or Buck-Boost converter and VTMs (Voltage Transformation Modules) 

or current multipliers at the point of load”. The VTMs are made up of numerous resonant 

converters, called by Vicor as Sine Amplitude Converter (SACTM), as shown in Figure I-18. 

Their inputs are connected in series while theirs outputs are connected in parallel, obtaining 

then a current multiplication effect. 

(a) 
 

(c) 

Fully resonant. 
Zero Voltage Switching (ZVS). 
Zero Current Switching (ZCS). 
Efficiencies of 92% to 98%. 
Power from 150 W to 1 kW. 
Switching frequency up to1.7 MHz. 

 

 

(b) 
Figure I-18 – Vicor a) Factorized Power Architecture block diagram, b) typical SAC specifications, c) 
SAC/VTM topology. Source: Vicor. 

Vicor solution is already being used by Nvidia in its most recent A100 Tensor Core data 

center solution, shown in Figure I-19 (a), where 4 VTMs (brass color chip) can be seen, while 

Nvidia Tesla P100 solution (b) uses a 4+4+8 multiphase power supply. The A100 board has a 

maximum Total Power Dissipation (TPD) of 400W. 

(a) (b) 
Figure I-19 – Nvidia GPU boards: a) A100 Tensor Core, b) Tesla P100. 

In contrast with the multiphase solution, the VTM’s one seems to present multiple SPOF. 

The multiphase Buck converter intrinsic redundant characteristic contribute to obtain high 

reliability. For that reason, the multiphase is still the most adapted solution for the automotive 

industry, where the operating conditions, lifetime and cost requirements are tougher than in 

datacenter applications. 

To improve even more the multiphase Buck reliability, the fail operational status has to 

be reached by applying a control architecture without SPOFs and able to reconfigure in case of 
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fault. For this reason, the next section will introduce the state-of-the-art of the decentralized and 

distributed control methods applied for multiphase Buck converters. 

 State of the art 
This state of the art gives an overview of the decentralized and distributed control 

techniques developed for the multiphase Buck converters. The state of the art is divided in two 

distinct sections. One will be dedicated to a few examples of voltage regulation techniques 

combined with the leg current balance. The second will be dedicated to a deep analysis and 

classification of the carrier interleaving techniques. 

The state of the art will focus in techniques where all elements have equal importance, 

so called democratic, master-less, decentralized, or distributed. These solutions are preferred 

because of modularity and present no controller SPOF. 

I.4.1. Voltage regulation and current balance 
The multiphase Buck converter voltage regulation and current balance can be done in 

multiple different ways. This state-of-the-art will highlight only few options. The voltage 

regulation can be either centralized or distributed in a cooperative way. In most of the cases, 

the controllers use droop sharing techniques, like associating multiple converters with AVP. 

The current balance can be done by sharing the average current though a shared wire or by a 

circular chain of communications. Four examples will be presented to illustrate these four 

possible combinations. 

 Current balance distribution 
The first step to distribute the converter controller is to balance the current in a 

distributed manner, i.e. resulting in a partial distributed system. In these systems, a local 

adjustment is made to equalize the leg current based on the available information without a 

central controller intervention. 

 Shared wire 
International rectifier introduce in 2003 a scalable partial distributed approach based on 

a centralized voltage controller (IR3080) and a multiple phase IC (IR3086). The phase IC is 

composed of power stages, drivers and controllers able to combine the average current value in 

a shared wire and adjust it. This sharing technique was patented much earlier in 1988 by K. T. 

Small and all in “Single Wire Current Phase Paralleling Of Power Supplies” [9] and discussed 

in [10] by Lin and Chen. It is shown in Figure I-20 (a) for a voltage control mode (top) and for 

a current control mode (bottom). 
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 Circular chain 
An equivalent technique but using a circular chain of communications was proposed by 

Bolloch and all [11]. It is shown in Figure I-20 (b). In this approach, each leg controller can 

only access the current information of its own leg and the ones of its close neighbors to adjust 

the local duty-cycle. Inter-controller communications are made in the circular chain. Even if 

only the partial information is available, the system is able to balance correctly the leg currents 

and regulate the output voltage thanks to a centralized voltage controller (providing the D 

signal). 

(a)    (b) 
 

Figure I-20 – Current balance distribution: a) Shared (single) wire [10], b) Circular chain [11]. 

 Voltage regulation distribution 
When the voltage regulation is distributed, each leg becomes an independent converter. 

A converter using a classical PI voltage controller behaves in closed loop like an ideal voltage 

source. As a result, the legs can no more be connected in parallel because of the concurrent 

voltage loops, as very high recirculation currents would flow in between then, leading to 

potential destruction or useless power dissipation. 

One solution to connect them together is to allow each converter to behave as a non-

ideal voltage source. The converters can be connected together through real resistors, but virtual 

ones can be emulated by using the AVP technique (load line), resulting in limited recirculation 

currents with no unnecessary power dissipation. This technique works because the sensed load 

voltage carries the information of the current that shall be delivered. It is known that this 

technique has poor current balancing ability, because of mismatches in the voltage references, 

controller droop gains or load voltage sensors. For that reason, an additional current balancing 

technique can be added to improve the accuracy of the control system. 
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 Shared wire 
To improve the current balancing, a shared wire can be added to either obtain the leg 

current average value or take the average value of the reference voltages. The method using the 

average value of the reference voltages was proposed by Zhang and Huang [12], as shown in 

Figure I-21, where each leg’s references Vref are tied together. 

 
Figure I-21 – Zhang and Huang Modularized Voltage Regulator with shared wire average voltage 
reference [12]. 

This technique solves only a part of the problem, as the droop gain and the load voltage 

measurement mismatches cannot be compensated. 

Ericson PoL regulators from BMR series (463 to 467) uses the droop technique and they 

can be associated together in parallel using a leader/followers approach. To balance the current, 

the leader broadcasts its output current in a digital communication link and the followers adjust 

their own reference voltages to match the leader current, as shown in Figure I-22 (a) without 

balance and (b) when balance is enabled. As a result, the leader imposes the converter 

voltage/current characteristics. 

(a)    (b) 
Figure I-22 – Ericson BMR series POL regulators current balance strategy: a) no balance, b) with 
balance. 
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 Circular chain 
To avoid SPOF and improve current balance, the association of droop converters with 

a circular chain current balancing technique was proposed by COUSINEAU in [13]. In each 

leg, the difference of the local leg current and the adjacent currents is used by the controller to 

adjust the droop and obtain the same current in all legs, as shown in Figure I-23. 

(a)    (b) 
Figure I-23 – Cousineau droop slope adjustment technique to balance leg currents [13]: a) no balance, 
b) with balance. 

This technique presents a drawback as the average current appears as a gain in the 

control loop, so the balance has different performances with different current values. 

 Voltage regulation and current balance techniques summary 
As a conclusion, the droop technique with the circular chain current balancing technique 

is the most suitable to obtain modularity with no SPOF, as shown in Table I-1, because 

centralized control and shared wires shall be avoided. 

Table I-1 – Voltage regulation and balance techniques combinations. 

  Voltage regulation 
  Centralized Distributed 

Current Balance 
Shared wire Modular [9], [10] Modular [12] 

Circular chain Modular [11] Modular / No SPOF [13] 

I.4.2. Interleaved clock generation 
Interleaved converters presented in the literature and available in the market can be 

classified in two groups. 

The first group represents the ones using a centralized controller, called also multiphase 

controller. The centralized controller is associated with a specified number of switching-cells 

integrated or not in a power module. 

The second group represents the scalable controllers, also called stackable or modular. 

In this approach, controller and power stage are associated in the same chip. Each chip is a 

complete converter that can be associated with others to build a multiphase converter. 
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In both cases, the switching-cell modulator requires interleaved clock signals or 

interleaved carriers. The interleaved carriers can be, in many cases, obtained from the 

interleaved clocks. Therefore, in both operation modes, a Multiphase Clock Generator (MCG) 

is required. 

Some interleaving solutions are dedicated exclusively to scalable solutions, such as 

detecting the switching instant, interleaving bus, reducing the output subharmonic oscillation. 

Others are adaptations of centralized interleaving solutions to scalable operation. 

This section presents how are implanted classical centralized MCGs and how they are 

implanted in the scalable approaches. 

 Centralized Multiphase Clock Generators 
There are several different ways to generate interleaved clocks. This section will present 

the most used, such as the ring oscillator, DLL, a clock divider, and others. 

The ring oscillator is the simplest way to generate interleaved clocks. It is composed by 

inverter gates connected in a closed chain. This structure has two main weakness. First, the 

clock frequency depends on the number of elements and on its delay. Second, it only works 

with odd numbers of switching-cells and then clock signals. 

A Delay Locked Loop (DLL) is able to control the clock frequency through a feedback 

loop and generate the exact number of clocks required. It is composed by a Voltage Controlled 

Delay Loop (VCDL) and a phase/frequency feedback. The VCDL is an association of 

controlled delay cells. Each delay cell is associated with an interleaved clock signal. The 

phase/frequency feedback is composed by a Phase Detector (PD), a Charge Pump (CP) and a 

Loop Filter (capacitor). A DLL example is shown in Figure I-24. 

 
Figure I-24 – DLL circuit example. [14] 

Interleaved clocks can also be obtained through a high frequency clock and a phase 

splitter, i.e. a state machine equivalent to a clock divider. The phase splitter has one clock input 

and several outputs. The input frequency is normally the product of the output clock frequency 
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with the number of clock signals required. A pulse is sent through each output in a sequential 

manner, synchronized to each period of the input clock. It can be implanted using a shift register 

or a counter with a decoder, such as the one shown in Figure I-25. 

(a)     (b) 
Figure I-25 – Phase splitter: a) time diagram, b) scheme. [15] 

These techniques were also described and used in scalable converters. They will not be 

presented necessarily in this document. The reconfiguration ability will be discussed later. 

 Master-Slave Clock Generators 
The leader-followers techniques have at least an element (the leader) that works in a 

different manner regarding to the other devices (the followers). 

 Voltage Controlled Delay Loop 
The use of a ring oscillator was described in a patent by Hendrix and all in [16]. It shows 

an odd number of converters using a ring configuration to achieve interleaving. The 

reconfiguration is an issue in this approach because two converters have to be bypassed each 

time to avoid the oscillator from stopping. 

Linear Technologies introduced in 1999 the PolyPhaseTM trend mark [17]. The 

interleaving technique is based on  a clock signal being transmitted in an open daisy chain 

connections. The elements are cascaded and each one sends a clock signal to the next in the 

chain with a delay. The delay between input and output clocks is selected through an input 

“PHMODE” in each element. It is suitable for 2-, 3-, 4-, 6- and 12-phase interleaved operation. 

Some interleaved applications of the PolyPhaseTM module LTM4636-1 datasheet is shown in 

Figure I-26. This implementation is not suitable to reconfiguration during operation because 

the delay value is chosen by hardware and only some phase-delay values are possible. 

KOHAMA and all introduced in [18] uses a similar scalable interleaving technique 

based on a Voltage Controlled Delay Loop (VCDL) as shown in Figure I-27. The delay value 

is shared through a shared wire and its value is automatically adjusted based on the number of 

active modules, as the delay control voltage 𝑣𝑣𝑅𝑅 is dependent on the number of connected slaves. 
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Reconfiguration is very simple: the slave local resistor can be disconnected and the delay 

bypassed. Zhang introduced in [19] a similar VCDL system with improved delay computation. 

 
Figure I-26 – LTM4636-1 datasheet « Figure 4. Phase Selection Examples » extract. 

(a)                 (b) 
Figure I-27 – KOHAMA and all interleaving technique [18]: a) connections, b) delay calculation. 

The Renesas ISL8018 uses a similar but quite specific approach. The SYNCIN pin of 

the 𝑁𝑁𝑡𝑡ℎ module (with 𝑁𝑁 the number of legs) has a detection threshold equal to 0.9V, where the 

rising edge triggers the converter ON pulse. The SYNCHOUT pin of the 𝑁𝑁 − 1𝑡𝑡ℎ  module 

sources a current pulse 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, starting at every clock cycle. The current source is turned off 

when the voltage reaches 1V and the capacitor is discharged to restart a new cycle. The phase-

delay is set by attaching a capacitor across SYNCIN/SYNCHOUT to GROUND, setting the 

slew rate. The waveforms are shown in Figure I-28. This approach uses only two connections, 

but it does not allow reconfiguration as all parameters are constant. 
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Figure I-28 – Renesas ISL8018 interleaving technique. 

As a conclusion, these systems operate in open-loop, differently than a DLL, then all 

delays are not necessarily equal. As a result, the phases may not be precisely interleaved, also 

due to the cumulative errors. 

 Global Reference 
International Rectifiers introduced in [20] the XPhaseTM series, including the control IC 

IR3080 and the phase IC IR3086, shown in Figure I-29. In this partial decentralized application, 

the interleaving technique is based on a synchronization signal being transmitted by the control 

IC to all phase ICs, in this case, a triangular signal. Each phase ICs uses a local voltage divider 

and a comparator to generate the local interleaved High-Side turn-on signal. It is suitable for 

interleaved operation on, theoretically, any number of phases, but not for reconfiguration. 

(a) (b) 
Figure I-29 – IR XPhaseTM global reference technique [20]: a) Scheme, b) Reference ramp and 
synchronized PWM signals. 

Analog Device LTC3310S and Maxim MAX8686 uses a similar scalable interleaving 

technique up to four and eight phases, respectively, but the synchronization is made with a 
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digital clock signal instead of the analogue triangular signal. Texas Instruments TPS543C20 

requires only one resistor to set the phase-delay, but can only operate with two phases. These 

approaches are not suitable for reconfiguration because the phase-delay is chosen by hardware. 

The modules family BMR46x from Ericson, LGA80D series from ARTESYN, and 

ISL8272M from Renesas use a shared clock signal for synchronization. The phase-delay 

selection is made by software using a digital communication link. Reconfiguration can be made 

during operation by the master controller. A limited number of phase-delays are possible, e.g. 

BMR462-466 are limited to 16 possible values (22.5° steps), while BMR461 products support 

128 values (2.8° steps). 

GRÉGOIRE uses in [21] a circular-chain of communications and a local controllers to 

compute the local phase-delay, as shown in Figure I-30 (a). Each local controller has a feedback 

loop to position automatically the local phase-delay in between the neighbors’ ones. 

Interleaving is achieved without a master controller. A digital sawtooth signal, i.e. a counter 

output, is used for synchronization. GATEAU implanted in [22] a similar technique but using 

just a clock signal to synchronize the different carrier generators, as shown in Figure I-30 (b). 

These systems can be easily reconfigured by bypassing the communication links of the removed 

module, although the synchronization line still being a single point of failure. 

(a) (b) 
Figure I-30 – Global reference digital approach with local controller: a) GRÉGOIRE shared ramp 
(Counter) and local controller [21], b) GATEAU shared clock and local controllers [22]. 

 Phase Splitter 
To improve the phase-delay accuracy, International Rectifiers introduced the 

XPhase3TM trend mark, including the control IC IR3500 and the phase IC IR3505. This partial 

decentralized interleaving technique is similar to a shift register, where each phase IC has a D-

type flip-flop element of the shift register. A clock signal at the apparent switching frequency 

is sent to all modules while a closed daisy chain communication line is used to transmit the 

High-Side turn-on enable from one phase IC to the next. The interleaving precision is improved 

because the time base is generated in a single element. The control IC identifies the number of 

phases during start-up, and it can verify the clock line and daisy chain connections integrity 

during operation. Reconfiguration is easy as a phase IC can be bypassed and the clock generator 

can adjust the apparent frequency. 
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A similar technique was implanted earlier by Texas Instruments in the stackable 

controllers TPS40140 and TPS40180. The master modules send a clock signal to all modules 

at a multiple of the switching frequency to establish a precise time base. However, one clock 

pulse is missed to indicate the master position and to synchronized all elements, as shown in 

Figure I-31 (a). Each slave module uses an auxiliary input to configure its pulse synchronization. 

The synchronization clock is not necessarily at the apparent switching frequency, as some slave 

positions can be unpopulated. E.g. the TPS40180 has two clock configurations: 6 and 8 times 

the switching frequency, for 2-, 3-, and 6- phases operation, and for 2-, 4-, and 8- phases 

operation, respectively, so 5- 7- correctly interleaving cannot be achieved. The leader-followers 

connections are also different between these two product references. While TPS40180 uses a 

specific resistor to define the operation mode of each element, TPS40140 uses a resistor ladder 

of equal resistors, as shown in Figure I-31 (b). 

(a)     (b) 
Figure I-31 – TPS40140 and TPS40180 interleaving approach: a) TPS40180 clock signal and 
interleaving SW node signals and b) scheme. 

The point of connection on the resistor ladder define the operation mode and allows the 

leader to identify the number of followers connected. Each TPS40140 device has two phases 

controlled in phase opposition, and up to 4 modules can be connected together (8 phases 

properly interleaved). TPS40180 supports until 16 phases. This architecture is not suitable for 

reconfiguration because of the resistor configuration. A reconfiguration can be made by 

bypassing a resistor in the ladder configuration (patent pending, application number 

20305395.4). 

 Masterless techniques 
The previous techniques require a leader controller to send the clock and the followers 

roles are well defined by their connections. It introduces SPOFs, limits flexibility and 
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reconfiguration capabilities. This section will present some masterless interleaving techniques, 

where all elements are equal and observe the whole system from the same point of view. The 

solutions compose two main categories: the interleaving bus and the circular chain. 

 Interleaving bus 
The interleaving bus category is a generalization of all techniques that use a commonly 

sensed shared information to achieve interleaving. 

PERREAULT introduce an analogue interleaving bus in [23] to interleave a multiphase 

converter, as shown in Figure I-32 (a). In this approach, each module injects a current pulse 

through the shared wire in phase with its clock. Each module uses a PLL to lock the local clock 

in between the combined signal from the others modules, as shown by the local scheme in 

Figure I-32 (b). The PLL couples the different clock generators and the system converges to an 

interleaved state, independently of the start condition and on the number of elements. In steady 

state, the interleaving bus voltage should be as constant as possible without subharmonic 

oscillations. However, the analogue approach may be exposed to mismatch and noise sensitivity 

issues. 

(a)   (b) 
Figure I-32 – Interleaving bus approach [23]: a) modules interconnections, b) module scheme. 

KUDTONGNGAM introduced in [24] a similar approach, but by introducing a constant 

current once each two periods, as shown in Figure I-33 (a). It results in discrete voltage levels 

appearing in the interleaving bus, such as a stair. Then each module can identify the number of 

active modules and adjust its phase-delay to the previous interleaving bus voltage rising edge, 

as shown in Figure I-33 (b). 

These two techniques are very interesting because they transmit the phase-delay 

reference and the optimal position in the same wire. Nevertheless, the shared wire is a SPOF 

and should be avoided. For that reason, techniques using only shared information or local sense 

emerged. Some of them will be presented here. 

 Local measurement 
FENG and all introduced an automatic interleaving method for a parallel converter in 

[25] based on the detection of the switching instants. The switching instants were observed over 
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the output voltage through the high frequencies emitted during the switching-cell commutation. 

A PLL is implanted similarly as the one in the interleaving bus approach. 

(a)     (b) 
Figure I-33 – Discrete levels interleaving bus [24]: a) Modules connection scheme, b) Bus voltage 
principle. 

More recently, DUTTA and all presented a similar approach for a cascaded multilevel 

DC-AC converter in [26]. Each local controller senses the output current with the combined 

effect of all switching-cells and adjust the local phase-delay to reduce the sub-harmonic 

oscillations. The principle scheme is shown in Figure I-34 (a). 

SINHA and all presented a decentralized interleaving technique for a parallel converter 

in [27] where each local controller uses only the local phase current information. The 

connection scheme is shown in Figure I-34 (b). The interleaving is possible because all phase 

currents are coupled through the output voltage node. 

(a)          (b) 
Figure I-34 – Decentralized interleaving using local measurements: a) Series case [26], b) Parallel 
case [27]. 

It can be noted the technique used by SINHA may have issues related to noise immunity 

and mismatches because the other elements contribution is measured indirectly. This solution 
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may also impact the filter design or impose restrictions, as well as the response time, becoming 

an application issue. This technique may not be suitable for high performance PoL applications. 

 Circular chain 
This category is composed by modules connected in a daisy chain communication 

architecture. Each element only exchanges a signal with its neighbors to achieve interleaving. 

COUSINEAU introduced in [28] an analogue interleaving approach where the elements 

communicate their triangular carrier, as shown in Figure I-35. In each element, a local controller 

positions the local triangular carrier “tri” in between the neighbor’s ones “trip” and “trin”, for 

previous and next, respectively. This approach is modular, does not present SPOF and can 

reconfigure by bypassing its communications, achieving a new interleaved state for any number 

of active modules. More recently, this implementation gained more interest and was explored 

in different ways. Xiao simplified the implementation in [29] using some digital logic. 

 
Figure I-35 – Circular-chain based interleaving technique [28]. 

BROADMEADOW and all used in [30] a high speed low latency digital communication 

link to interleave their converters. Once a period, each module receives a synchronization 

message from its neighbors, as shown in Figure I-36 with the dotted arrows. A local controller 

identifies the message time difference, i.e. the error, then position the local carrier in the middle. 

This technique can present issues during reconfiguration if fast bypass is not available due to 

the higher communication complexity. 

MURRAY introduced in [31] a different technique to interleave converters using a 

variable frequency hysteretic current-mode control. As shown in Figure I-37, each module 

receives the neighbors’ gate signals, then compute the average switching period and phase-shift. 
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Two local controller are required. One adjusts the current ripple to equalize the switching 

periods, the second adjusts the current peak to obtain a phase-shift and consequently achieve 

interleaving. This approach has a limitation: it requires the information of the number of active 

modules N to compute the appropriate phase-shift. 

(a)        (b) 
Figure I-36 – Broadmeadow interleaving technique [30]: a) Simplified block diagram, b) Carrier 
waveforms, the dotted arrows represents a message. 

(a)   (b) 
Figure I-37 – Murray interleaved sub-inverters using circular chain [31]: a) Converter and control 
architecture, b) Local controller scheme. 

 Interleaving techniques summary 
Considering a reconfigurable solution, these interleaving techniques can be grouped into 

4 main categories related to how the modules get their phase reference and how they get the 

phase-delay. These two values can be either global or local. 

Table I-2 – Interleaving techniques mapping. 

  Phase-delay 

  Local Global 

Phase 
reference 

Local Circular chain [28]–[31] Voltage controlled delay loop [18], [19] 

Global Global reference [32] 
Phase splitter  

Interleaving bus [23], [24] 
Local measurement [25]–[27] 
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The technique using local measurements has the global phase-delay and phase reference 

information without SPOF. However it does not seem to be compatible with VRM applications 

due to the reasons already exposed. 

The techniques using the circular chain combine local averaging computations to obtain 

the phase-delay and the phase reference. This technique is modular and reconfiguration can be 

obtained by bypassing the communications based on a local decision. This technique seems to 

be the most adapted to obtain modularity and reconfiguration ability in a VRM application. 

 Scientific approach 
This thesis proposes and applies a formal method to model a system composed of 

identical control elements, called local controllers, all connected in a circular chain. It consists 

on the modeling of the individual local controller and the required communication links to set 

the whole system using matrix approach. The stability concern is simply solved using system 

diagonalization. This technique is applied on three different distributed interleaving systems, 

the third one being a new improved self-interleaving method. Concern involving the 

discontinuity on the angle are discussed, being fundamental for model simulation purposes. 

The chapter II is dedicated to the study of the technique involving the circular chain of 

communications introduce by GATEAU [22] that uses a shared clock line (global phase 

reference). This study will allow further understanding of the circular chain technique not yet 

fully exposed, including the modeling, the system diagonalization and the stability concern. A 

transient response optimization method is proposed. Operators to avoid wrong interleaving for 

simulation purposes and practical implementation are described. Model simulations involving 

modal response, reconfiguration and start-up are shown. The particular case of a local controller 

with the correction disabled is studied, such as the case of communication/connection issue. An 

additional case with multiple circular chains, i.e. connections with the second/third/… neighbor, 

is studied. A generalization is proposed to generalize the results to a generic system using shared 

wire approach. 

The chapter III is dedicated to the study of the technique involving the circular chain of 

communications introduce by COUSINEAU [28] where the local controllers exchange only the 

triangular carriers. A procedure similar to the one in chapter II is applied. The first part of the 

study include the modeling, system diagonalization and stability concern. A transient response 

optimization method is proposed and applied to design the equivalent controller. Model 

simulations involving modal response, reconfiguration and start-up are shown using the 

operator to avoid wrong interleaving. The steady-state values are revealed as a function of the 
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start arrangement. Some relations between mismatch and interleaving accuracy are provided. 

The particular case of a controller with infinite gain (comparator) is briefly analyzed. Circuit 

based simulations are used to validate the proposed model. 

A new technique is proposed in chapter IV combining the advantages of the two 

approaches studied in the previous chapters. It can be summarized as the use of digital 

communication signals, as well as the decoupling between phase-delay control and carrier 

generation. The first part of the study describes the different elements involved and mainly the 

static relationships. The second part of the study focuses on the dynamic behavior of each 

building block. The third part include the overall modeling, system diagonalization and stability 

concern. Model simulations involving modal response is shown. Fault hazard impacts are 

described and the expected steady-state arrangement is revealed. A proof-of-concept is 

developed using a printed circuit board and standard SMDs to validate the results shown, 

including local controllers, the start-up modal pre-positioning and fault injection devices. 

Practical measurements are shown to correlate with the simulation results provide by the models 

previously proposed.  

The perspectives, developed in Annex F, show the ongoing and non-accomplished 

works, including the integrated device developed with NXP SmartMOS10HV technology. The 

device consist of a converter with fully distributed control designed for parallel operation. The 

interleaving approach is the same presented in chapter IV. The voltage regulation is based on 

parallelized voltage regulators with AVP and the current balance uses a circular chain of 

communications to adjust the voltage references. The current balance technique is exposed and 

modeled, the constraints are exposed to the corrector calculation. 

 





 

 
 

 

 

 Digital interleaving study 
 

This chapter focuses on the solution introduced in [21], [22] that describes a digital 

solution to decentralized interleaving system where the carrier generators are synchronized with 

a shared reference clock signal. The Phase-Delay Local Controllers (PDLCs) are connected in 

a circular chain configuration to adjust their local Phase-Delay (PD) in between their 

neighboring PDs, as shown in Figure II-1. This circular chain approach is theoretically 

extensible to an infinite number of elements. The non-active PDLCs are simply bypassed by 

making a direct link between their respective neighbors in order to keep the chain of 

communications closed. When a reconfiguration is required, by either inserting or removing an 

active cell of the converter, a local decision is made to bypass or not the communications of the 

cell, so that the PDLCs reconfigure automatically their respective PDs without a 

centralized/supervisor decision. Ignoring the shared signal, this approach provide a good 

answer to SPOF issues by removing the notion of master. 

 

𝜽𝜽 = �

𝜃𝜃1
𝜃𝜃2
𝜃𝜃3
𝜃𝜃4

� = 2π �

0.00
0.25
0.50
0.75

� 

 
P: input from Previous 

N: input from Next 

Figure II-1 – Circular chain of inter-cell communications composed of four PDLCs (N = 4) associated 
with four carrier generators. 

The challenge here, related to the stability analysis of this system in steady-state, is the 

large number of variables to manage and their coupling, i.e. the multiplicity of feedback loops 

involved. The PDs are state-variables and must be studied all together. Several differential 

excitation modes exist. Therefore, the stability of the decentralized interleaving device must be 

carefully analyzed for both start-up and reconfiguration singular cases. 

 Decentralized interleaving and analytic model 
In this approach, each sub-system is composed by a PDLC that provides a PD and a 

carrier generator. A global synchronization clock signal at the switching frequency is used by 
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the carrier generator as phase reference, i.e. the rising edge of the clock signal is considered as 

the zero angle position. The carrier generator implements an internal signal generator which 

uses the local PD parameter to generate a phased carrier with respect to the phase reference 

imposed by the external clock. 

The PDLC involves a digital feedback loop to put the local PD in between the PDs of 

its neighboring cells. The PDLC will be modelled in this sub-chapter to reveal the system 

behavior. The iterations are considered synchronous for modelling, i.e. an iteration is done once 

all PDs have been updated. The PD values treated in this work are normalized, i.e. in between 

0 and 1, and the quantization effects are not taken into account. 

II.1.1. Local controller modelling 
In this approach, the PDs are numeric and sampled data due to the numerical 

implementation. As a result, the PDs signals 𝜃𝜃𝑘𝑘 are causal discrete-time signals, i.e. null for k 

< 0, where k is the iteration number. The discrete-domain step function is denoted 𝑢𝑢𝑘𝑘. The 

values of 𝜃𝜃𝑃𝑃𝑘𝑘 and 𝜃𝜃𝑁𝑁𝑘𝑘 are the Previous and Next neighboring PDs of the considered PDLC. 

For practical reason, it is important to mention that the values of the carrier positions are 

normalized, i.e. ranging from 0 to 1 instead of 0 to 2π radians. Their average value is the target 

position 𝜃𝜃�𝑘𝑘 for the next iteration, computed at the iteration k, evaluated by the simple Eq. (II-1). 

 𝜃𝜃�𝑘𝑘 = 0.5 �𝜃𝜃𝑃𝑃𝑘𝑘 + 𝜃𝜃𝑁𝑁𝑘𝑘� (II-1) 

𝜃𝜃𝑘𝑘 is the local PD, and 𝜀𝜀𝜃𝜃𝑘𝑘 is the local PD error evaluated by Eq. (II-2). 

 𝜀𝜀𝜃𝜃𝑘𝑘 = 𝜃𝜃�𝑘𝑘 − 𝜃𝜃𝑘𝑘 (II-2) 

∆𝜃𝜃𝑘𝑘 is the correction applied at the next iteration, given by the generic discrete transfer 

function 𝐶𝐶(𝑧𝑧) in Eq. (II-3). The stability study has to choose the 𝐶𝐶(𝑧𝑧) to ensure convergence. 

 
𝛥𝛥𝛥𝛥(𝑧𝑧)
𝜀𝜀𝜃𝜃(𝑧𝑧) = 𝐶𝐶(𝑧𝑧) (II-3) 

Eq. (II-4) gives the new PD obtained 𝜃𝜃𝑘𝑘+1 for the local controller at the iteration 𝑘𝑘 + 1. 

 𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛥𝛥𝛥𝛥𝑘𝑘 (II-4) 

The block diagram of an PDLC is shown in Figure II-2. 

 
Figure II-2 – Block diagram of the Phase-Delay Local Controller (PDLC) using digital feedback and a 
carrier generator. 
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The iteration evolution of the local PD 𝜃𝜃𝑘𝑘 is illustrated in Figure II-3 where neighboring 

PDs, 𝜃𝜃𝑃𝑃𝑘𝑘 and 𝜃𝜃𝑁𝑁𝑘𝑘, cannot move. 

(a) (b) 
Figure II-3 – Iterative local PD control phasor diagram: a) phase diagram, b) discrete-time 
diagram. 

Eq. (II-5) is the local controller open-loop discrete transfer function in the Z-domain. 

 
𝜃𝜃(𝑧𝑧) ′
𝜃𝜃(𝑧𝑧) = 𝐶𝐶(z)

1
𝑧𝑧 − 1

 (II-5) 

where 𝜃𝜃(𝑧𝑧) and 𝜃𝜃(𝑧𝑧) ′ represent respectively an injection and measurement to obtain 

the open-loop transfer function. 

The closed-loop pole values depends on the corrector 𝐶𝐶(𝑧𝑧). Discrete control theory 

establishes that the system is stable if the closed-loop poles absolute value are less than 1, i.e. 

each poles must be located into the unit circle, the circle itself being the stability limit criterion. 

Eq. (II-6) is the closed-loop local controller discrete response including the corrector 

𝐶𝐶(𝑧𝑧) in the Z-domain taking into account the initial value 𝜃𝜃0 and the input 𝜃𝜃�. Two terms are 

shown, the first one corresponds to the free response dependent on the start value 𝜃𝜃0 and the 

second corresponds to the forced response dependent on 𝜃𝜃�(𝑧𝑧). 

 𝜃𝜃(𝑧𝑧) =
𝑧𝑧

𝑧𝑧 − [1 − 𝐶𝐶(z)] 𝜃𝜃0 +
𝐶𝐶(z)

𝑧𝑧 − [1 − 𝐶𝐶(z)]𝜃𝜃
�(𝑧𝑧) (II-6) 

However, the variable 𝜃𝜃� is a combination of the previous and next PDs, i.e. other state-

variables connected through the circular chain. Therefore, the study of the system response by 

only focusing on the behavior of independent local loops is not accurate. The stability of the 

local loop does not guarantee the stability of the overall system. Later on, a similar expression 

will be shown for the complete system. 

II.1.2. Overall system modelling 

The study of the system’s stability with a generic number 𝑁𝑁 of PDLCs including the 

several connections existing between them has to be performed. The overall system will be then 

modeled using a matrix approach. The PD values 𝜃𝜃 of all PDLC are numbered arbitrarily from 
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1 to 𝑁𝑁 going by the circular chain next neighbor direction, as shown in in Figure II-1. The PDs 

from 𝜃𝜃1 to 𝜃𝜃𝑁𝑁 are then represented by a column vector θ (in bold in the following equations). 

In regard to the schematic shown by Figure II-2, the several error computation involved 

by the circular chain connection architecture can be represented using the matrix 𝑳𝑳. It is similar 

to the Laplacian matrix in graph theory. The matrix 𝑳𝑳, for 𝑁𝑁 equal to 6 and 𝜽𝜽 the vector of the 

PDs sorted in ascending order (1 to 𝑵𝑵) is shown in Eq. (II-7). It is an N-order square matrix 

composed of a negative unitary diagonal surrounded by factors 0.5. 

 

 

(II-7) 

This matrix is used to calculate the PD errors 𝜀𝜀𝜃𝜃1 to 𝜀𝜀𝜃𝜃𝜃𝜃 present in the column vector 

𝜺𝜺𝜽𝜽 derived from 𝜽𝜽. The error vector at iteration 𝑘𝑘 is calculated with Eq. (II-8), where 𝝋𝝋 is an 

additive term, required to insure continuity of the computation in a trigonometric circle, that 

will be discussed latter. The 𝝋𝝋 vector is considered here constant and will be calculated by the 

“phase-delay target operator”. Its value does not affect the stability study. 

 𝜺𝜺𝜽𝜽𝑘𝑘 = 𝑳𝑳 𝜽𝜽𝑘𝑘 + 𝝋𝝋 (II-8) 

From now on, all composing elements of the model are known, particularly the matrix 

𝑳𝑳 for the communication links and the vector 𝝋𝝋 for the error calculation. Figure II-4 shows a 

block diagram using the matrix 𝑳𝑳 operator with 𝑁𝑁 = 6. This system is linear, and the stability 

study can be easily performed. 

 
Figure II-4 – Matrix representation of the complete system with 𝑁𝑁 = 6. 

It derives Eq.(II-9), the open-loop discrete transfer function in the Z-domain. 

 
𝜽𝜽(𝑧𝑧) ′
𝜽𝜽(𝑧𝑧) = − 𝑳𝑳 𝐶𝐶(z) 

1
𝑧𝑧 − 1

 (II-9) 

The system closed-loop discrete transfer function can be written as represented by Eq. 

(II-10) that is comparable with Eq. (II-6) (monovariable), where 𝑰𝑰 is the identity matrix and 𝜽𝜽𝟎𝟎 

is a column vector filled with the starting values of the PDs. 

𝑳𝑳6 =

⎣
⎢
⎢
⎢
⎢
⎡
−1 0.5 0 0 0 0.5
0.5 −1 0.5 0 0 0
0 0.5 −1 0.5 0 0
0 0 0.5 −1 0.5 0
0 0 0 0.5 −1 0.5

0.5 0 0 0 0.5 −1⎦
⎥
⎥
⎥
⎥
⎤
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𝜽𝜽(𝑧𝑧) = �𝑧𝑧𝑰𝑰 − �𝑰𝑰 + 𝑳𝑳 𝐶𝐶(𝑧𝑧)��
−1

 𝑧𝑧𝑰𝑰 𝜽𝜽𝟎𝟎 + �𝑧𝑧𝑰𝑰 − �𝑰𝑰 + 𝑳𝑳 𝐶𝐶(𝑧𝑧)��
−1

 𝐶𝐶(𝑧𝑧)𝑰𝑰 𝝋𝝋(𝑧𝑧) (II-10) 

Now, the system’s stability can be verified by diagonalization or eigendecomposition. 

In this case the diagonalization is convenient because the corrector 𝐶𝐶(z) has a generic transfer 

function and its root locus can be plotted. The diagonalization and stability study will be 

performed analytically with respect to 𝐶𝐶(z). The system diagonalization reveals the decoupled 

system dynamics, called the modal responses, and which determine the response of the overall 

system to external excitations. The whole system is stable if all modal responses are stable. 

 Circulant matrices 
The matrix 𝑳𝑳 and the feedback loops couple all PDs together. A change of basis allows 

to decompose the original coupled system into several independent systems. The matrices 𝑳𝑳 is 

real, symmetric and circulant due to the circular chain architecture. Several interesting 

properties come from the fact that a matrix is circulant. 

II.2.1. Circulant matrix diagonalization 

Circulant matrices of order 𝑁𝑁 are diagonalisable with the Discrete Fourier Transform 

[33] (DFT) matrix 𝑾𝑾 (eigenvectors) for 𝑁𝑁 samples, as shown in Eq. (II-11). The change of 

basis matrix 𝑾𝑾 is the unitary DFT matrix, so 𝑾𝑾∗ × 𝑾𝑾 = 𝑰𝑰, with 𝑾𝑾∗ = 𝑾𝑾−1, where 𝑾𝑾∗ is the 

conjugate transpose of 𝑾𝑾 and equals to its inverse. Thus, the multiplication of 𝑾𝑾∗ with the PD 

vector 𝜽𝜽 produces the DFT of the PDs. 

 𝑾𝑾 =
1
√𝑁𝑁

⎝

⎜
⎛

1 1 1 ⋯ 1
1 𝜔𝜔 𝜔𝜔2 ⋯ 𝜔𝜔(𝑁𝑁−1)

1 𝜔𝜔2 (𝜔𝜔2)2 ⋯ 𝜔𝜔2(𝑁𝑁−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔𝜔(𝑁𝑁−1) 𝜔𝜔2(𝑁𝑁−1) ⋯ 𝜔𝜔(𝑁𝑁−1)2⎠

⎟
⎞

 
where 

𝜔𝜔 = 𝑒𝑒√−1
2𝜋𝜋
𝑁𝑁  

(II-11) 

Any circulant matrix 𝑪𝑪 is a sum of a the shift matrix 𝑺𝑺, shown in Eq. (II-12). 

 𝑪𝑪 = �𝑐𝑐𝑖𝑖 𝑺𝑺𝑖𝑖
𝑁𝑁−1

𝑖𝑖=0

 𝑺𝑺 =

⎝

⎜
⎛

0 1 0 ⋯ 0
0 0 1 ⋯ 0
0 0 0 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 1
1 0 0 ⋯ 0⎠

⎟
⎞

 (II-12) 

The eigenvalue matrix 𝚲𝚲𝑪𝑪 of the circulant matrix 𝑪𝑪 can be derived from Eq. (II-13). 

 𝚲𝚲𝑪𝑪 = 𝑾𝑾 𝑪𝑪 𝑾𝑾−𝟏𝟏 = �𝑐𝑐𝑖𝑖 𝑼𝑼𝑖𝑖
𝑁𝑁−1

𝑖𝑖=0

 𝑼𝑼 =

⎝

⎜
⎛

1 0 0 ⋯ 0
0 𝜔𝜔 0 ⋯ 0
0 0 𝜔𝜔2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜔𝜔(𝑁𝑁−1)⎠

⎟
⎞

 (II-13) 
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II.2.2. Complex conjugate orthogonal eigenvectors 

The matrix 𝑾𝑾 columns are denoted 𝑤𝑤𝑖𝑖 with 𝑖𝑖 = 0 …𝑁𝑁 − 1. Even if the columns 𝑤𝑤𝑖𝑖 are 

orthogonal eigenvectors, some of them can be written such as the conjugate of another, as 

shown in Eq. (II-14). As matrix 𝑾𝑾 is symmetric, it is also valid for its rows and the same 

property is valid for 𝑾𝑾∗. As all the processed PDs 𝜽𝜽 are real, the modal coefficient 𝜃𝜃∗𝑁𝑁−𝑖𝑖 found 

with those 𝑤𝑤𝑖𝑖
∗ vectors will be the complex conjugate of those found with 𝑤𝑤𝑁𝑁−𝑖𝑖

∗. 

λ𝑁𝑁−𝑖𝑖 = λ𝚤𝚤�  
𝑤𝑤𝑁𝑁−𝑖𝑖 = 𝑤𝑤𝚤𝚤��� 

𝜽𝜽 ∈ ℝ𝑵𝑵 ⇔ 𝜃𝜃∗𝑁𝑁−𝑖𝑖 = 𝑤𝑤𝑁𝑁−𝑖𝑖
∗ 𝜽𝜽 = 𝑤𝑤𝚤𝚤���∗ 𝜽𝜽 = 𝜃𝜃∗𝚤𝚤����

        𝑖𝑖 = � 1 …
𝑁𝑁 − 1

2
,   𝑖𝑖𝑖𝑖 𝑁𝑁 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜.

  1 …𝑁𝑁 2⁄ − 1,   𝑖𝑖𝑖𝑖 𝑁𝑁 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  
 (II-14) 

As a consequence, 𝑁𝑁 coefficients can represent the intrinsic information. The complex 

eigenvectors give two coefficients while the real ones gives only one. Those rows that can be 

written such as the conjugate of another have also the same eigenvalue. The matrix 𝑳𝑳 has only 

𝑀𝑀 different eigenvalues, where 𝑀𝑀 is an integer that satisfies the condition of Eq. (II-15). 

 𝑀𝑀 = �
𝑁𝑁 + 1

2
, 𝑖𝑖𝑖𝑖 𝑁𝑁 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜.

  𝑁𝑁 2⁄ + 1, 𝑖𝑖𝑖𝑖 𝑁𝑁 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  
 (II-15) 

A reduced representation can be used as decomposition matrix to represent the carried 

information. This matrix is named 𝑽𝑽. It is N-by-M matrix and is composed of the 𝑀𝑀  first 

columns of 𝑾𝑾. The columns of 𝑽𝑽 are named 𝑣𝑣𝑚𝑚 with 𝑚𝑚 = 0 …𝑀𝑀 − 1. The rows of 𝑽𝑽∗ and their 

respective spectrum with 𝑁𝑁 = 8 (𝑀𝑀 = 5) are shown in Figure II-5. 

 
Figure II-5 – Rows of 𝑽𝑽∗ and their Spectrum (𝑁𝑁 = 8). blue/red lines: real/imaginary coefficients. 

Each of them has an equivalent row in 𝑽𝑽∗, denoted 𝑣𝑣∗𝑚𝑚, that has a number of cycles 𝑚𝑚 

related to its fundamental frequency. This number of cycles 𝑚𝑚 will be used thereafter as the 
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modal index. For that reason, the indexation starts from 0. The vector 𝑣𝑣∗0 is real constant, so it 

will provide the average value, or also the common mode information of the decomposed 

variable. The eigenvectors of the double modes (𝑁𝑁 = 8, m from 1 to 3) are complex and are 

naturally in quadrature (orthogonal) with their real part. 

II.2.3. L matrix eigenvalues 

The eigenvalues of the circulant matrix are indeed known. All eigenvalues of 𝑳𝑳 have to 

be identified to ensure the stability of all modal responses and to adjust the convergence speed. 

Gerschgorin’s theorem shows that the eigenvalues of 𝑳𝑳 are real and in between −2 and 0. The 

eigenvalues of 𝑳𝑳 are shown in Eq. (II-16), where the complex exponential is rewritten in the 

cosine form. The 𝑁𝑁 diagonal elements λ𝑖𝑖𝑖𝑖 of 𝜦𝜦 are denoted λ𝑖𝑖 for 𝑖𝑖 = 0 …𝑁𝑁 − 1. 

λ𝑖𝑖 =
𝑒𝑒√−1

2𝜋𝜋𝜋𝜋
𝑁𝑁 + 𝑒𝑒−√−1

2𝜋𝜋𝜋𝜋
𝑁𝑁

2
− 1 = cos

2 𝜋𝜋 𝑖𝑖
𝑁𝑁

− 1, 𝑖𝑖 = 0 …𝑁𝑁 − 1  (II-16) 

As said previously, the 𝑀𝑀 different values can be found with 𝑖𝑖 = 0 …𝑀𝑀 − 1. Figure II-6 

illustrates the 𝑀𝑀 values found with Eq. (II-16) for 𝑁𝑁 odd and even. For convenient reason, to 

regroup double eigenvalues, for 𝑖𝑖 ≥ 𝑀𝑀, 𝑖𝑖 can be written as 𝑖𝑖 − 𝑁𝑁. In this way, the duplicated 

values have the same index. These duplicated values are related to the double modes shown in 

Figure II-5. If 𝑁𝑁 is even, a last eigenvalue equal to 2 is found for 𝑖𝑖 equal to 𝑁𝑁/2. In both cases, 

the first eigenvalue λ0 is null. 

Figure II-6 – Eigenvalues of L for a) N = 5 (M = 3), b) N = 6 (M = 4). 

As this system has only 𝑀𝑀 different eigenvalues, the study of the system can be done 

using only these 𝑀𝑀 eigenvalues of 𝑳𝑳. 

 Change of basis 
The state matrix 𝑳𝑳 diagonalization is described in Eq. (II-17). 

 𝜦𝜦 = 𝑾𝑾∗𝑳𝑳𝑳𝑳 (II-17) 

This system will be studied using the eigenvalues and the transformation matrices of 𝑳𝑳 

to reveal its stability. To do so, a change of basis expressed by the set of Eq. (II-18) is applied 

to the system, resulting in the Discrete Fourier Transform of all system signals. 

(a) (b) 
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𝜽𝜽∗ = 𝑾𝑾∗ 𝜽𝜽, 𝝓𝝓∗ = 𝑾𝑾∗ 𝝓𝝓, 𝜺𝜺𝜽𝜽∗ = 𝑾𝑾∗ 𝜺𝜺𝜽𝜽 𝜽𝜽𝟎𝟎∗ = 𝑾𝑾∗ 𝜽𝜽𝟎𝟎 (II-18) 

It should be noted that 𝜺𝜺𝜽𝜽∗, the error vector DFT, can be used to visualize the corrector 

performance, i.e. modal settling time, by looking the time required to mitigate it. Expression to 

compute its absolute value is shown in Eq. (II-19). 

 |𝜺𝜺𝜽𝜽∗| = 𝑎𝑎𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑𝑑𝑑( 𝜺𝜺𝜽𝜽)� = 𝑎𝑎𝑎𝑎𝑎𝑎( 𝑾𝑾∗ 𝜺𝜺𝜽𝜽) (II-19) 

Each element of |𝜺𝜺𝜽𝜽∗| is shown in Eq. (II-20). The components express the residual 

disturbance contained in each mode during simulation. It has to converge to zero as the system 

goes to steady-state. 

 |𝜀𝜀𝜃𝜃∗|𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎( 𝒘𝒘∗
𝒎𝒎 𝜺𝜺𝜽𝜽), 𝑚𝑚 = 0 …𝑀𝑀− 1 (II-20) 

The others coefficients not chosen in Eq. (II-20) are duplicated (complex conjugated) 

because 𝜺𝜺𝜽𝜽 is always real. The open-loop discrete transfer function in the Z-domain in Eq. (II-9) 

is rewritten in a diagonal form in Eq. (II-21). 

 
𝜽𝜽∗(𝑧𝑧)′
𝜽𝜽∗(𝑧𝑧) = − 𝜦𝜦 𝐶𝐶(z) 

1
𝑧𝑧 − 1

 (II-21) 

As the eigenvalue matrix 𝜦𝜦 is diagonal, Eq. (II-21) can be rewritten in 𝑁𝑁 independent 

modal open-loop transfer functions (OLTF) as denoted in Eq. (II-22) using the diagonal index 

𝑖𝑖, where the 𝑁𝑁 diagonal elements of 𝜦𝜦 are denoted λ𝑖𝑖 for 𝑖𝑖 = 0 …𝑁𝑁 − 1. 

 
𝜃𝜃𝑖𝑖∗(𝑧𝑧)′
𝜃𝜃𝑖𝑖∗(𝑧𝑧) = − λ𝑖𝑖  

1
𝑧𝑧 − 1

𝐶𝐶(z), 𝑖𝑖 = 0 …𝑁𝑁 − 1 (II-22) 

It should be noted that the diagonal OLTF in Eq. (II-22) is quite similar to the previous 

local OLTF of Eq. (II-5) where the only difference is the multiplicative term −λ𝑖𝑖. Nevertheless, 

its value is important and can compromise the system stability. Eq. (II-22) shows that the OLTF 

of each mode has the same identical corrector 𝐶𝐶(z) multiplied with different eigenvalues. As a 

result, the modes cannot be independently controlled because of the feedback matrix L. Using 

different correctors for each PDLC invalidates the approach presented here witch rely on 

identical correctors 𝐶𝐶(z) to make the diagonalisation. 

The closed-loop transfer function (CLTF) of Eq. (II-10) can also be written in a diagonal 

form such as in Eq. (II-23). 

𝜽𝜽∗(𝑧𝑧) = �𝑧𝑧𝑰𝑰 − �𝑰𝑰 + 𝜦𝜦 𝐶𝐶(𝑧𝑧)��
−1

 𝑧𝑧𝑰𝑰 𝜽𝜽𝟎𝟎∗ + �𝑧𝑧𝑰𝑰 − �𝑰𝑰 + 𝜦𝜦 𝐶𝐶(𝑧𝑧)��
−1

 𝐶𝐶(𝑧𝑧) 𝝋𝝋∗(𝑧𝑧) (II-23) 

Eq. (II-23) can be rewritten as a system of 𝑁𝑁 independent transfer functions provided 

by Eq. (II-24) because all matrices in Eq. (II-23) are diagonal. 
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𝜃𝜃∗𝑖𝑖(𝑧𝑧) =
𝑧𝑧

𝑧𝑧 − �1 + λ𝑖𝑖 𝐶𝐶(𝑧𝑧)�
 𝜃𝜃0∗𝑖𝑖 +

𝐶𝐶(z)
𝑧𝑧 − �1 + λ𝑖𝑖 𝐶𝐶(𝑧𝑧)�

 𝜑𝜑∗
𝑖𝑖(𝑧𝑧),   𝑖𝑖 = 0 …𝑁𝑁 − 1 (II-24) 

It should also be noted that the diagonal CLTF term of Eq. (II-24) is quite similar to the 

previous local CLTF of Eq. (II-6) where the only difference is the multiplicative term − λ𝑖𝑖, as 

expected. The eigenvalues λ𝑖𝑖 must be found to establish the stability criteria and determine the 

several independent modal responses. 

The revealed transfer functions are similar to the case of one single loop (II-6), but with 

the eigenvalues λ𝑖𝑖 playing as a multiplicative factor, instead of the constant −1. Two important 

points have to be highlighted here. At first, the mode 0 (common mode) pole is always equals 

to 1 because λ0 = 0 . Second, all differential modes, i.e. 𝑚𝑚 = 1 …𝑀𝑀 − 1  cannot be 

independently controlled because the eigenvalues come from the feedback matrix 𝑳𝑳 imposed 

by the circular chain architecture, as described previously. It is also important to note that all 

local controllers are identical, so they use the same corrector. These conclusions are valid for 

any type of local controller chosen. 

It should be noted finally that this system does not take in account the average value of 

the PDs (common mode value) with the PDLC computations. As a consequence, this system is 

not able to impose any PD value because the common mode is not controllable, only relative 

values are controlled. The PDs and their average values may have any absolute value. If this 

observation is an issue, it can be avoided in noise sensitive applications using one constant PD 

for instance, but this solution may raise other stability considerations addressed in section II.8. 

 Stability concern 
The corrector 𝐶𝐶(𝑧𝑧) has to guarantee stability and convergence of all differential modes. 

To do so, in this discrete system model, all closed-loop poles have to be located inside the unit 

circle. Besides that, the controller specifications normally impose basic closed-loop constraints, 

such as steady-state error (static gain), settling time and damping. The corrector can be very 

simple or more complex, depending on the flexibility required. However, best trade-offs can be 

made with higher number of poles and zeros provided by the corrector 𝐶𝐶(z). Eq. (II-25) shows 

four possible correctors 𝐶𝐶(𝑧𝑧) , which are respectively proportional, integral, proportional-

integral, and lead-lag. 

Proportional Integral Proportional-Integral Lead-Lag 
(II-25) 

𝐶𝐶(z) = α  𝐶𝐶(z) = α 
𝑧𝑧

𝑧𝑧 − 1
 𝐶𝐶(z) = α 

𝑧𝑧 − 𝑧𝑧𝑂𝑂𝑂𝑂
𝑧𝑧 − 1

 𝐶𝐶(z) = α 
𝑧𝑧 − 𝑧𝑧𝑂𝑂𝑂𝑂
𝑧𝑧 − 𝑝𝑝𝑂𝑂𝑂𝑂
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These correctors have, 1, 1, 2, and 3 freedom degrees, respectively. The three first 

controllers can be considered as special cases of the lead-lag controller. The proportional 

controller has 𝑧𝑧𝑂𝑂𝑂𝑂 = 𝑝𝑝𝑂𝑂𝑂𝑂 that compensate each other, the integral controller has 𝑧𝑧𝑂𝑂𝑂𝑂 = 0 and 

𝑝𝑝𝑂𝑂𝑂𝑂 = 1, the proportional-integral controller has 𝑝𝑝𝑂𝑂𝑂𝑂 = 1. 

While the poles and zeros values imposes the possible locations of the closed-loop poles 

(root locus), this is the gain value α who sets closed-loop poles values (pole-zero plot). As the 

eigenvalue λ𝑖𝑖 appears as a gain factor, all modal root locus are the same. Nevertheless the pole-

zero plots are different for each mode. The root locus analysis (lines) and pole-zero locations 

(poles “x” and zeros “o”) of all modal CLTF using the correctors transfer functions C(𝑧𝑧), 

presented in Eq. (II-25), are revealed in Figure II-7 for 𝑁𝑁 = 8, where the closed-loop poles of 

five different transfer functions (𝑀𝑀 = 5) are shown. The coefficients values α = 1, 𝑧𝑧𝑂𝑂𝑂𝑂 = 1/4, 

𝑝𝑝𝑂𝑂𝑂𝑂 = 1/2 are chosen to illustrate this example. 

(a) (b) 

 

 

(c) (d) 

 

Figure II-7 – Modal root locus analysis and pole-zero locations for 𝐶𝐶(𝑧𝑧): a) proportional, b) integral, 
c) proportional-integral, and d) lead-lag (with N = 8 the number of PDLCs and M = 5 the number of 
independent modes). 
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All closed-loop poles are visible in these figures. Note that the mode 0 corresponds to 

the common mode which is not regulated. Each modal CLTF has different poles values due to 

its specific eigenvalue, but all zeros overlap. The integral controller is the only one in these 

particular cases that do not present a stable root locus, all poles are on the unit circle. This is 

because the open-loop transfer function becomes a double integrator, then, as known, a double 

integrator is always in stability limit, leading to undamped oscillations. 

The proportional controller has only one coefficient, so a trade-off has to be made 

between the static gain, the settling time and the damping factor. It means that the coefficient α 

has to be as high as possible to ensure a small static error, but not too high to prevent the poles 

going outside the unit circle. As shown in Figure II-7 (a), α = 1 places mode 4 pole on the unit 

circle. The proportional-integral and lead-lag controllers present double poles for each mode. 

As they have more freedom degrees, better pole locations can be achieved, i.e. closer to the 

origin and providing higher damping. The lead-leg controller’s three coefficients can potentially 

provide a very good trade-off concerning static gain, global transient response and modal 

transient response. 

From now, a complete study of the stability and system dynamic responses for the 

proportional and lead-lag correctors will be developed. It will be done for any α and 𝑁𝑁 to reveal 

the stability criteria and to optimize the settling time. 

II.4.1. Proportional corrector 

The proportional corrector represented by the gain α is the simplest case because the 

transfer function order does not change and all pole values are real. In this study, the gain α is 

also called “the convergence factor”. The system dynamics can be easily identified from Figure 

II-4, Eq. (II-9) and Eq. (II-10). The state matrix 𝑨𝑨 , in Eq. (II-26), can be easily introduced for 

the stability study. 

 𝑨𝑨 = 𝑰𝑰 + 𝛼𝛼 𝑳𝑳, (II-26) 

The stability can now be studied using the eigen decomposition of the matrix 𝑨𝑨 , 

revealing the system eigenvalues, i.e. the poles of the system. The eigenvalue matrix of 𝑨𝑨 is 

named 𝚲𝚲𝑨𝑨.The 𝚲𝚲𝑨𝑨 expression is shown in Eq. (II-27). 

 𝚲𝚲𝑨𝑨 = 𝑾𝑾∗𝑨𝑨𝑨𝑨 = 𝐈𝐈 + α 𝚲𝚲 (II-27) 

The 𝑁𝑁  diagonal elements λ𝐴𝐴𝐴𝐴𝐴𝐴  of 𝚲𝚲𝑨𝑨 , named λ𝐴𝐴𝐴𝐴  for 𝑖𝑖 = 0 …𝑁𝑁 − 1, are the 𝑁𝑁  modal 

poles of the diagonal representation shown in Eq. (II-28). As shown earlier, there are only 𝑀𝑀 
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different eigenvalues, so only 𝑀𝑀 modes have to be studied. As a result, the poles of the diagonal 

modal transfer function described in (II-24) are revealed in Eq. (II-28). 

 λ𝐴𝐴𝐴𝐴 = 1 + α λ𝑚𝑚,   𝑚𝑚 = 0 …𝑀𝑀 − 1 (II-28) 

 Stability Criterion 

To guarantee the stability, all differential modes (𝑚𝑚 ≠ 0) have to be damped correctly, 

i.e. its eigenvalues’ absolute value must be less than 1, so the convergence factor α has to 

respect the condition 0 < α < 1 to ensure stability. The demonstration is shown in Eq. (II-29). 

Assuming 
then 

|λ𝐴𝐴𝐴𝐴| = |1 + α λ𝑚𝑚| < 1,    − 2 ≤ λ𝑚𝑚 < 0,    m = 1 …𝑀𝑀 − 1 
|1 + α λ𝑚𝑚| < 1  ⟺   −1 < 1 + α λ𝑚𝑚 < 1  ⟺   0 < α < 1 

(II-29) 

It makes a difference compare to the model taking into account only one single loop. 

Indeed, the system seemed to be stable for α between 0 and 2 because the eigenvector does not 

appear. Figure II-8 shows the different eigenvalues as a function of α. The values for α equal 

to 1, 3/4 and 1/2 are highlighted. It shows the trade-off between stability (being in the range –1 

to 1) and the system dynamics (being close to 0) made with the choice of α. Increasing α from 

0 to 0.5 decreases λ𝐴𝐴𝐴𝐴 absolute values. When α is greater than 0.5, some eigenvalues become 

negative and their absolute value increase. Those modes are still stable, but they have an under-

damped oscillating response. It should be noted the last mode (mode 4) reaches the stability 

limit when α = 1. 

(a) (b) 

α = 1 

 

α = 3/4 

α = 1/2 

 
Figure II-8 – Eigenvalue analysis with N = 8. a) Eigenvalue 𝜆𝜆𝐴𝐴𝐴𝐴 vs. Convergence Coefficient α, b) Pole-
zero plot for α equal to 1, 3/4 and 1/2. 

 Settling Time Optimization 
The settling time of a mode depends both on the local controller computation frequency/ 

period and on the corrector parameters. Indeed, there is no physical process behind this 

interleaving system, i.e. no inertia, power or energy involved. The computation period can also 
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be completely independent of the carrier period. The computation period is limited mainly by 

the serial communication bandwidth, if used, and by the computation delays. 

Based on the corrector parameters, initial value 𝜃𝜃0∗𝑖𝑖 and 𝜑𝜑∗
𝑖𝑖(𝑧𝑧), the discrete domain 

modal responses 𝜃𝜃∗𝑚𝑚(𝑘𝑘) can be computed to each mode by taking the inverse Z-transform 

(operator noted ℒ−1) of 𝜃𝜃∗𝑖𝑖(𝑧𝑧), shown in Eq. (II-24). This result is shown in Eq. (II-30), where 

𝜃𝜃∗𝑚𝑚ℎ(𝑘𝑘) is the natural (homogeneous) response and 𝜃𝜃∗𝑚𝑚𝑚𝑚(𝑘𝑘) is the forced (non-homogeneous) 

response, m is the mode number, H is the Homogeneous marker and F is the non-homogeneous 

(Forced) marker. 

 𝜃𝜃∗𝑚𝑚(𝑘𝑘) = ℒ−1{𝜃𝜃∗𝑖𝑖(𝑧𝑧)} = 𝜃𝜃∗𝑚𝑚𝑚𝑚(𝑘𝑘) + 𝜃𝜃∗𝑚𝑚𝑚𝑚(𝑘𝑘),   𝑚𝑚 = 0 …𝑁𝑁 − 1 (II-30) 

where 

𝜃𝜃∗𝑚𝑚𝑚𝑚(𝑘𝑘) = ℒ−1 �
𝑧𝑧

𝑧𝑧 − �1 + λ𝑖𝑖 𝐶𝐶(𝑧𝑧)�
 𝜃𝜃0∗𝑚𝑚� 𝜃𝜃∗𝑚𝑚𝑚𝑚(𝑘𝑘) = ℒ−1 �

𝐶𝐶(z)
𝑧𝑧 − �1 + λ𝑖𝑖 𝐶𝐶(𝑧𝑧)�

 𝜑𝜑∗
𝑚𝑚(𝑧𝑧)� 

Then, based on the corrector parameters, the number of iterations for convergence can 

be computed, for example, by the number k of iterations necessary to reduce the absolute value 

of each natural (homogeneous) differential mode response 𝜃𝜃∗𝑚𝑚𝑚𝑚 to less than 5% of its initial 

value 𝜃𝜃0∗𝑚𝑚. The natural (homogeneous) modal response 𝜃𝜃∗𝑚𝑚ℎ shown in Eq. (II-31) is found by 

computing the inverse Z-transform shown in Eq. (II-30). 

 𝜃𝜃∗𝑚𝑚𝑚𝑚(𝑘𝑘) = λAm
k 𝜃𝜃0∗𝑚𝑚,   k ≥ 0, 𝑚𝑚 = 1 …𝑀𝑀 − 1 (II-31) 

Eq. (II-32) shows the general formula for the number of iterations required derived from 

Eq. (II-31). 

 
𝑎𝑎𝑎𝑎𝑎𝑎 �

𝜃𝜃∗𝑚𝑚𝑚𝑚(𝑘𝑘)
𝜃𝜃0∗𝑚𝑚

� = 𝑎𝑎𝑎𝑎𝑎𝑎�λAm
k� ≤ 5%    ⇒ 

𝑘𝑘5%_m ≥
𝑙𝑙𝑙𝑙𝑙𝑙(0.05)

𝑙𝑙𝑙𝑙𝑙𝑙�𝑎𝑎𝑎𝑎𝑎𝑎(λAm)�
,   𝑚𝑚 = 0 …𝑀𝑀 − 1 

(II-32) 

Table II-1 shows the number of iterations required for the convergence of the 

differential modes in the cases of Figure II-8. The mode 4 is at the limit of stability and oscillates 

with α = 1. The modes 1 and 2 speeds up when α increases. 

Table II-1 – Number of iterations for 5% response (𝑁𝑁 = 8). 

 k5%_1 k5%_2 k5%_3 k5%_4 
α = 1 8.6 0 8.6 +∞ 

α = 3/4 12 2.2 2.4 4.3 
α = 1/2 19 4.3 1.6 0 
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It shows explicitly the number of iterations required for each differential mode with a 

given α parameter. With different configurations observed, it is not easy to guess which would 

be the optimal one. As numerous performances depend on the same parameter, a criterion has 

to be proposed to find a trade-off helping to choose α. Each differential mode eigenvalue has 

to be reduced in absolute value to speed up the response. One option is to improve the worst 

case by reducing as much as possible the absolute value of the larger eigenvalue. A second 

option is to improve the response globally such as minimizing either the quadratic sum of the 

λAm or the number of iterations 𝑘𝑘5% of each mode. The results of these three approaches are 

shown in Figure II-9 for 𝑁𝑁 = 8. 

 
Figure II-9 – Optimized Convergence Coefficient α. Minimising criterion: absolute maximum, least 
squares of 𝜆𝜆𝐴𝐴𝐴𝐴 and least squares of 𝑘𝑘5%_𝑚𝑚. 

The minimum value using the absolute maximum criterion is found with α = 0.87. It is 

also the point where the absolute values of λA1 and λA4 are equal. The minimum value using 

the 𝚲𝚲𝐀𝐀 eigenvalue least squares criterion is found with α = 0.62. Finally, the minimum value 

using the 𝑘𝑘5% least squares criterion is found with α = 0.78. Each criterion gives different 

optimum values. For this configuration with 𝑁𝑁 = 8, a convenient value is about 3/4. 

It should be noted, in this system, the convergence dynamics depend also on which 

modes are excited. Indeed, if only fast modes are excited the convergence is faster. For instance, 

if mode 1 is not excited with α = 1/2, its convergence would be faster than the case where α =

3/4 and all modes are excited. An example will be shown latter. 

 Eigenvalues and Stability vs. Number of Active PDLCs 
Using this distributed democratic approach for the interleaving of the carriers, the ability 

of self-reconfiguration if an active PDLC is added or removed is inherent to this system. So the 

eigenvalues have to be computed for several numbers of active PDLCs. The eigenvalues are 

computed as a function of α in Figure II-10 for the cases of N ranging from 5 to 8. Several lines 

are drawn expressing the values of the existing eigenvalues that are related to N. λA0, which is 

related to the common mode, is constant equal to 1, independent of N and α, because the system 

is made to control only PD differences. 
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Figure II-10 – Eigenvalues vs. Convergence Coefficient α for different numbers of active PDLCs (N = 
5…8) 

All differential modes are controllable because their eigenvalues depend on the 

parameter α. The differential modes are double and overlap themselves two-by-two (studied 

together), M going from 1 to (N−1)/2. If N is even, the last mode (m = N/2) is a single mode. 

When α is equal to 1 with 𝑁𝑁  even, the last mode 𝑁𝑁/2  reaches the stability limit. 

Nevertheless, if 𝑁𝑁 is odd, the value of the last mode does not reach −1, but only if N tends 

towards infinity. Thus, the limit of stability is never reached for the case of 𝑁𝑁 odd. Therefore, 

this system is stable for any value of 𝑁𝑁 if 0 < α < 1. 

A reconfiguration event is the modification during operation of the number 𝑁𝑁 of active 

PDLCs. Non-active PDLCs are bypassed in order to maintain closed the chain of 

communications and become invisible (transparent) to active PDLCs. As seen before, all 

eigenvalues depend on a single convergence factor α, and a trade-off has to be made. On the 

other hand, when a reconfiguration is made, α remains the same and the eigenvalues have to 

continue, in a reasonable limit, to ensure stability and fast convergence time. The bypassed 

PDLCs are no longer taken into account in the stability analysis. Figure II-11 shows the pole 

locations for different values 𝑁𝑁 of active PDLCs with α equal to 3/4 and 1. 

 
Figure II-11 – Root locus for α equal to 3/4 and 1 and N ranging from 6 to 10 
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As shown in the figure, the number of existing modes is a function of 𝑁𝑁. As 𝑁𝑁 increases, 

the eigenvalues shift to the right, and the new ones appear on the left. As the eigenvalues change, 

they stay always in the same range between 1 − 2α and 1, e.g. [-1/2 1] for α equal to 3/4 and [-

1 1] for α equal to 1. As previously demonstrated in section II.4.1.1 Stability Criterion, this 

system is stable for any value of 𝑁𝑁 if 0 < α < 1. 

The 5% response should also be optimal when 𝑁𝑁 varies. However the number of active 

modules is unknown and all local controllers should be equal. To simplify the design, the same 

α is used for any 𝑁𝑁 value and a relative time response degradation is observed. 

The parameter 𝑘𝑘5%_m shows the performance of each mode independently. However, to 

optimize all modes together, a new parameter combining all mode performances has to be 

proposed. One possibility is to use the least squares of 𝑘𝑘5%_m as a fonction of the convergence 

coefficient α and the number 𝑁𝑁 of active PDLCs, as shown in Figure II-12. 

 
Figure II-12 – Optimized Convergence Coefficient α using least squares of k5%_m criterion. Sensibility 
to 𝑁𝑁. 

The several curves show the minimum is in general between 0.6 and 0.9, and it goes up 

with 𝑁𝑁 . This happens because λ1  goes down with 𝑁𝑁  and the 1𝑠𝑠𝑠𝑠  mode (𝑚𝑚 = 1) becomes 

dominant. The curves would shift slightly to the right for 𝑁𝑁 odd because the eigenvalues are 

slightly smaller in this case. A global optimum can be chosen at 3/4, where most of the curves 

loose less than 10% relative to the optimum. More information about the parameter combining 

all mode performances can be find in [34]. 

II.4.2. Lead-lag corrector 
The lead-lag corrector shown in Eq. (II-25) brings more flexibility to the controller 

design because three parameters can be chosen, i.e. gain, zero and pole values. These 

parameters are considered as Open-Loop (OL) zero 𝑧𝑧𝑂𝑂𝑂𝑂 and pole 𝑝𝑝𝑂𝑂𝑂𝑂, both real numbers. The 

properties developed during the previous study of the proportional controller are still valid here 

using the proposed corrector. Complementary explanations about the corrector design will be 

given here. 
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 Stability criterion 
With the lead-lag corrector, the new expression of the modal natural (homogeneous) 

response 𝜃𝜃∗𝑚𝑚ℎ is shown in Eq. (II-33). It can be used to define the stability criterion and the 

dynamic responses of the differential modes, i.e. the settling time or 5% response. 𝜃𝜃∗𝑚𝑚ℎ  is 

found by inserting the corrector transfer function 𝐶𝐶(𝑧𝑧) at the first term of Eq. (II-30), where m 

is the mode number and h is the homogeneous marker. 

𝜃𝜃∗𝑚𝑚ℎ(𝑧𝑧) =
𝑧𝑧2 −  (𝑝𝑝𝑂𝑂𝑂𝑂 + 1) 𝑧𝑧 + 𝑝𝑝𝑂𝑂𝑂𝑂

𝑧𝑧2 − (𝑝𝑝𝑂𝑂𝑂𝑂 + 1 + α λ𝑚𝑚) 𝑧𝑧 + (𝑝𝑝𝑂𝑂𝑂𝑂 + α λ𝑚𝑚 𝑧𝑧𝑂𝑂𝑂𝑂) 𝜃𝜃0∗𝑖𝑖 ,        m = 0 … M − 1 (II-33) 

To simplify the study and further implementation, some relations are proposed. The 

stability criterion and its constraint are shown in Eq. (II-34). This result is valid for any value 

of 𝑁𝑁. 

 0 < α <
1 + 𝑝𝑝𝑂𝑂𝑂𝑂
1 +  𝑧𝑧𝑂𝑂𝑂𝑂

   ⟺    0 < 𝑧𝑧𝑂𝑂𝑂𝑂 < 𝑝𝑝𝑂𝑂𝑂𝑂 < 1 (II-34) 

The demonstration is shown in Annex A. 

 Transient response optimization 
To optimize the transient response, the 5% settling time remains a good criterion. An 

eigen decomposition can be performed and the eigenvalues can be used to compute the number 

of iterations required for convergence. However, if only the dominant pole is considered, it 

would be inaccurate because the zeros of the transfer functions disturb and delays the response. 

For this reason, the diagonalization is preferred. The number of iterations for 5% convergence 

𝑘𝑘5% should be the number 𝑘𝑘 > 0 of iterations necessary to reduce the absolute value of each 

natural (homogeneous) differential mode response 𝜃𝜃∗𝑚𝑚ℎto less than 5% of its initial value 𝜃𝜃0∗𝑚𝑚. 

The envelope on Bode diagram is considered to simplify the analysis. So 𝑘𝑘5% is the number of 

iterations 𝑘𝑘 > 0  when the envelope reaches the 5% criterion. Depending on the modal 

eigenvalue λ𝑚𝑚 and α, four different pole cases can be found: two complex conjugate poles, two 

real coincident poles, two real different poles or one real pole. Their partial fraction 

decomposition is shown in Eq. (II-35) with its envelope, found by applying the inverse Z-

transform to the partial fractions. 

𝑝𝑝1,𝑝𝑝2 ∈ ℂ,   𝑝𝑝2 = 𝑝𝑝1∗ 
𝑟𝑟

1 − 𝑝𝑝1 𝑧𝑧−1
+

𝑟𝑟∗

1 − 𝑝𝑝1∗ 𝑧𝑧−1
 2 |𝑟𝑟| |𝑝𝑝1|𝑘𝑘 

(II-35) 
𝑝𝑝1,𝑝𝑝2 ∈ ℝ,   𝑝𝑝2 = 𝑝𝑝1 

𝑟𝑟1
1 − 𝑝𝑝1 𝑧𝑧−1

+
𝑟𝑟2 𝑝𝑝1 𝑧𝑧−1

(1 − 𝑝𝑝1 𝑧𝑧−1)2 |𝑟𝑟1 + 𝑘𝑘 𝑟𝑟2| |𝑝𝑝1|𝑘𝑘 
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𝑝𝑝1,𝑝𝑝2 ∈ ℝ,   𝑝𝑝2 ≠ 𝑝𝑝1 
𝑟𝑟1

1 − 𝑝𝑝1 𝑧𝑧−1
+

𝑟𝑟2
1 − 𝑝𝑝2 𝑧𝑧−1

 |𝑟𝑟1 |𝑝𝑝1|𝑘𝑘 + 𝑟𝑟2 |𝑝𝑝2|𝑘𝑘| 

𝑝𝑝1 ∈ ℝ 
𝑟𝑟1

1 − 𝑝𝑝1 𝑧𝑧−1
+

𝑟𝑟2 𝑧𝑧−1

1 − 𝑝𝑝1 𝑧𝑧−1
 �𝑟𝑟1  +

𝑟𝑟2
|𝑝𝑝1|�  

|𝑝𝑝1|𝑘𝑘 

A settling time solution can be found analytically for the first and last cases, but only 

numeric solution can be used for the others. 

The time response depends on numerous parameters (𝑧𝑧𝑂𝑂𝑂𝑂, 𝑝𝑝𝑂𝑂𝑂𝑂, α, 𝑁𝑁 and 𝑚𝑚) and all of 

them could be optimized based on the closed-loop criteria. It gives a 5𝑡𝑡ℎ order problem where 

a comparison criterion has to be defined. In practice, results are hard to visualize and verify. 

For simplification proposes, the values 𝑧𝑧𝑂𝑂𝑂𝑂 = 1/4 and 𝑝𝑝𝑂𝑂𝑂𝑂 = 1/2 are chosen without 

further justification because they provide a good trade-off. The stability is ensured for 0 < α <

1.2 (6 5⁄ ) . Table II-2 shows the number of iterations required for convergence of the 

differential modes. The mode 4 is at the limit of stability and oscillates for α = 6/5. 

Table II-2 – Number of iterations for 5% response using lead-lag corrector (𝑁𝑁 = 8). 

 𝑘𝑘5%_4 𝑘𝑘5%_3 𝑘𝑘5%_2 𝑘𝑘5%_1 
α = 6/5 +∞ 6.4 4.0 6.8 
α = 1 5.3 3.0 4.5 7.2 
α = 3/4 3.4 3.9 5.2 7.9 

     
Table II-2 shows explicitly the number of iterations required for each differential mode 

with a given α parameter. With different configurations observed, it is not easy to guess which 

would be the optimal one. So the normalized least squares of 𝑘𝑘5% is used to provide a general 

criterion for each α value. 

Chosen 𝑧𝑧𝑂𝑂𝑂𝑂 and 𝑝𝑝𝑂𝑂𝑂𝑂 values and the normalized least squares of 𝑘𝑘5%_m, the problem is 

reduced to a 2𝑛𝑛𝑛𝑛  order problem, depending only on α and 𝑁𝑁. This system has an unknown 

number of active modules and all local controllers are identical. To simplify the design of the 

optimal 5% settling time, a parametric plot of the least squares of 𝑘𝑘5% versus the convergence 

coefficient 𝛼𝛼 and 𝑁𝑁 is shown in Figure II-13 for 𝑁𝑁 = 8. 
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Figure II-13 – Optimized Convergence Coefficient 𝛼𝛼 using least squares of 𝑘𝑘5% criterion. Sensibility to 
𝑁𝑁. 

The curves show the minimum is in general between 0.9 and 1.1, and it goes up with N. 

It happens because λ1 goes down with 𝑁𝑁 and 1𝑠𝑠𝑠𝑠 mode (𝑚𝑚 = 1) becomes dominant. The curves 

would shift slightly to the right for 𝑁𝑁 odd because the eigenvalues are slightly smaller in this 

case. A unitary α seems to be a global optimum, for which in most cases the performance will 

be only 10% worse than the optimum. 

In this system, the convergence dynamics is less dependent on which modes are excited 

because their related 5% settling times are harmonized, more uniform, i.e. the modal settling 

times are almost the same. This is due to the additional parameters provided by the lead-lag 

corrector. 

 Diagonal Response 
The dynamic behavior of the overall system will be simulated and the settling times 

compared with the ones predicted. A Multiple Input Multiple Output (MIMO) transfer function 

based model is defined and simulated using MathWorks MATLAB®. In the simulations 

performed hereafter, the system starts in its expected equilibrium state with all the carriers well 

interleaved. Each mode is excited individually one after the other, from the common mode 

(mode 0) to the last one (mode 4) using the system eigenvectors (lines of the DFT matrix) as 

signal components. To do so, the disturbance signal 𝑫𝑫(𝑧𝑧) , composed of a sequence of 

orthogonal disturbances shown in Eq. (II-36), is summed with the corrector output. 

 𝑫𝑫(𝑧𝑧) =
1

2 𝑁𝑁
 𝒗𝒗0 𝑧𝑧−4 + �  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎𝑚𝑚𝒗𝒗𝑚𝑚) 𝑧𝑧−10𝑚𝑚−1

𝑀𝑀−1

𝑚𝑚=1

 (II-36) 

where 𝑎𝑎𝑚𝑚 are complex coefficients. 

Figure II-14 shows the simulation results of a system with eight PDLCs (N = 8) and α 

equal to either 1 or 6/5. Each simulation result consists of the modal disturbance applied 𝒅𝒅∗ =

|𝑽𝑽∗ 𝒅𝒅|, the PD 𝜽𝜽 behavior, the local error 𝜺𝜺𝜽𝜽, and its modal decomposition |𝜺𝜺𝜽𝜽∗|, to observe the 

total mode disturbance. 
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Figure II-14 – Dynamic modal response (N = 8) a) α = 1; b) α = 6/5. 

Using the modal disturbance 𝑫𝑫(𝑧𝑧) , it is possible to distinctly observe the modal 

excitations of each independent mode being applied successively. The PD values behave as 

expected. The deviations that appear are characterized by their eigenvectors’ shape behavior 

(kind of sine wave) and their cycle number, as shown in Figure II-5. 

For the case illustrated in Figure II-14 (a), all modes are correctly damped. For the case 

in Figure II-14 (b), the mode 4 (𝑚𝑚 = 4) is at its stability limit as demonstrated by the stability 

criterion. So it oscillates without damping because one pole value is equal to −1. This simulation 

confirms the expected value of the number of iterations required for convergence forecasted in 

Table II-2. It can be seen with 𝛼𝛼 = 1 case, all modes have different oscillation frequencies 

(different damping), but almost the same settling time as a result of the harmonization obtained 

using least squares strategy. 

II.4.3. General case stability criterion 
As mentioned earlier, the proportional, integral, and proportional-integral are particular 

cases of the lead-lag controller. Eq. (II-37) shows the general stability criterion with its 

constraint for all correctors previously introduced, allowing to choose the α range where the 
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system is stable to a given pole and zero couple. It should be noted this expression is not yet 

mathematically proven and acts only as a rule-of-thumb. 

 0 < α <
1 + 𝑝𝑝𝑂𝑂𝑂𝑂
1 +  𝑧𝑧𝑂𝑂𝑂𝑂

   ⟺   0 ≤ 𝑧𝑧𝑂𝑂𝑂𝑂 ≤ 𝑝𝑝𝑂𝑂𝑂𝑂 ≤ 1
𝑝𝑝𝑂𝑂𝑂𝑂 − 𝑧𝑧𝑂𝑂𝑂𝑂 < 1  (II-37) 

This expression is valid for the proportional controller (𝑧𝑧𝑂𝑂𝑂𝑂 = 𝑝𝑝𝑂𝑂𝑂𝑂), where the 𝑧𝑧𝑂𝑂𝑂𝑂 and 

𝑝𝑝𝑂𝑂𝑂𝑂  compensate each other, and for the proportional-integral controller ( 𝑝𝑝𝑂𝑂𝑂𝑂 = 1 ) also. 

Moreover, it should be noted the integral controller, which is instable, no does not respect the 

second constraint (𝑝𝑝𝑂𝑂𝑂𝑂 = 1, 𝑧𝑧𝑂𝑂𝑂𝑂 = 0, then 𝑝𝑝𝑂𝑂𝑂𝑂 − 𝑧𝑧𝑂𝑂𝑂𝑂 = 1). 

Since the stability condition established and the dynamic responses verified, the 

implementation related issues will be discussed. This study aims to guarantee the implemented 

system behaves as predicted by the model developed previously. 

 Phase-delay target operator and wrong interleaving discussion 
The principle of correction by comparison with the neighbors has been used previously 

in the literature for different purposes. For instance, in [11] a current balance system equalizes 

the values of several inductor currents with the circular chain. With this principle applied for 

the interleaving, it should be noted the system equalizes the PD differences between the 

neighbors, not its absolute values. In the approach presented in [28], the PD differences and 

their corrections are made in a relative manner to each local carrier. 

In the approach presented here, the PDs are related to a global phase reference, as shown 

in Figure II-3. Thus, there is a discontinuity between the last and the first PD due to the 

trigonometric circle itself, and therefore the operator 𝑳𝑳 does not work for all PDLCs. Using 

normalized PD, the discontinuity appears when the PD approaches the value 1 from the negative 

side, as shown in the Figure II-15 (a), but also when the PD approaches 0 from the positive side. 

Figure II-15 (b) shows a well-interleaved system with five carriers (𝑁𝑁 = 5 ) where the 

normalized PD differences are all equal to 0.2 (1/𝑁𝑁). The PD error has to be equal to zero. 

Figure II-15 (c) shows the expected target position 𝜃𝜃�1 for the first carrier and the computed 

average value of the positions of its neighbors. These two values are different and in phase 

opposition. 
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(a) (b) (c) 
Figure II-15 – PD representation: a) PD discontinuity around 1 and 0, b) Well-interleaved system with 
five carriers, c) Expected target 𝜃𝜃�1 and average position of 𝜃𝜃1 neighbours. 

As the expected target position 𝜃𝜃�1 is different from the 𝜃𝜃1 position, i.e. the neighbors’ 

position average, this system requires then additional operations such as those described in [21], 

[22], [35]. Issues are described in [30] as “ambiguous phase ordering” and “ambiguity in 

steady-state”, linked with the error signal calculation. The “phase-delay target operator” 

introduced here are able to evaluate the error and compute a new PD value despite the 

discontinuity. 

To illustrate the phase-delay target operator necessity, the values of the PD column 

vectors 𝜽𝜽 and 𝑳𝑳 𝜽𝜽 are shown in Eq. (II-38) and Eq. (II-39) respectively, using the position 

values relative to the well-interleaved system shown in Figure II-15 (b). 

 𝜽𝜽 = [0.1 0.3 0.5 0.7 0.9]𝑇𝑇 (II-38) 

 𝑳𝑳 𝜽𝜽 = [0.5 0.0 0.0 0.0 −0.5]𝑇𝑇 (II-39) 

As anticipated, the 𝑳𝑳 𝜽𝜽 operation, required to compute the several local errors, does not 

give the null error vector expected for a well-interleaved system. As the error operator result is 

wrong, the PDLCs having a neighbor across the discontinuity (𝜃𝜃1 and 𝜃𝜃5) have a local error 

different from zero. This value can be compensated by an additive term 𝝋𝝋 introduced earlier, 

as shown in Eq. (II-8). In this particular case, the required 𝝋𝝋 value evaluated from a well-

interleaved system is given in Eq. (II-40). 

 𝝋𝝋 = −𝑳𝑳 𝜽𝜽 = [−0.5 0.0 0.0 0.0 0.5]𝑇𝑇 (II-40) 

The sum of all the elements of the 𝝋𝝋 vector is null. This vector has always the same 

shape and can be generalized for any value of 𝑁𝑁. Any of its 𝑁𝑁 rotations 𝑺𝑺𝑖𝑖 𝝋𝝋, 𝑖𝑖 = 0 …𝑁𝑁 − 1, is 

a valid vector, only the discontinuity is moved. The PD discontinuity is in between its non-null 

values, in this case between the 5𝑡𝑡ℎ and the 1𝑠𝑠𝑠𝑠. Their signs define if the PD values are in an 

increasing or decreasing sequence. In the real system, each 𝜑𝜑𝑖𝑖 value is evaluated locally in real 

time in the 𝑖𝑖𝑡𝑡ℎ PDLC, taking into account the local and the neighbors’ PDs. For this reason, 

special attention has to be paid to the initial values of the PDs to obtain a proper 𝝋𝝋 vector and 

avoid any mistake in the interleaving. 
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Figure II-16 shows another case where the system is well interleaved but all the PDs are 

shifted by −0.2 units. It uses the same 𝝋𝝋  vector described in Eq. (II-40). As shown, the 

discontinuity position is no longer around zero, and 𝜃𝜃1 may be smaller than zero. Thus, some 

PDs values may be now outside the range from 0 to 1. 

 
Figure II-16 – Correct interleaving obtained using the 𝝋𝝋 vector (some PDs values are outside the range 
[0, 1]). 

Eq. (28) shows the solution for 𝜽𝜽 and 𝝋𝝋 related to Figure II-16. 

𝜽𝜽 = [−0.1 0.1 0.3 0.5 0.7]𝑇𝑇 𝝋𝝋 = [−0.5 0.0 0.0 0.0 0.5]𝑇𝑇 (II-41) 

A negative value is obtained because a second operator is required to keep each PD in 

the range [0, 1]. It is called the “modulo operator” and gives a positive remainder after division 

by 1 (normalized value, equivalent to 360° or 2π). The modulo operator removes 1 if the value 

is higher than 1 and adds 1 if the value is smaller than 0. 

The updated 𝜽𝜽 and 𝝋𝝋 vectors are shown in Eq. (II-42). All PD values in 𝜽𝜽 are now in 

the range [0, 1], and 𝝋𝝋 is updated. Both vectors are circularly shifted of one element to the right 

with respect to 𝜽𝜽 and 𝝋𝝋 in Eq. (II-38) and Eq. (II-40), respectively. Any circularly shifted 

version of these vectors is valid. The amount of zero elements in sequence in the 𝝋𝝋 vector has 

to be equal to N − 2. 

𝜽𝜽 = [0.9 0.1 0.3 0.5 0.7]𝑇𝑇 𝝋𝝋 = [0.5 −0.5 0.0 0.0 0.0]𝑇𝑇 (II-42) 

The whole algorithm implemented in the local controller is shown in the flowchart of 

Figure II-17. The first condition prevents undesired disturbances during start-up, when 

neighboring PD can be coincident. It can be seen in [22], during start-up, the PD in phase 

opposition is moving while it remains correctly in the middle of its neighbors. This condition 

makes PD in phase opposition constant only at the beginning, achieving better transient 

response and avoiding undesired disturbances. When neighboring PD are different, the target 

PD is corrected depending on the neighboring PD arrangement and on the local PD. 

The discontinuity handler adjusts the target value. It is trigged when the neighbors PDs 

are in a decreasing ordering, i.e. 𝜃𝜃𝑃𝑃 > 𝜃𝜃𝑁𝑁. Then a correction is made based on the local PD 

value. It should be noted the target value can be outside the PD normal range. It happens when 
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the PD has to cross the discontinuity. After the control routine, i.e. error calculation and 

correction, the modulo operator is applied to keep the local PD in the expected range. 

With all these precautions, the PD discontinuity around 1 and 0 is overcome and 

considered as if it does not exist. In the simulations, the 𝝋𝝋 vector is kept constant and the second 

operator is applied using post-processing. 

 
Figure II-17 – Phase-delay Local Controller Flowchart. 

Figure II-18 (a) and (b) show other cases where the phase differences are equal to 2/N. 

In the case (a), as the number of elements is odd, the system seems to be well interleaved. In 

case (b), in contrast, where the number of elements is even, there is an evident interleaving 

problem because some PDs are coincident. This issue appears if the phase differences (1/N) are 

multiplied by any integer in between 2 and N. In the limit case, for any N value, all PDs are 

coincident, i.e. the phase differences are equal to 1 (or zero) and no interleaving effect is 

observed. 

(a) (b) 
Figure II-18 – Interleaving issue when phase differences are equal to 2/N: a) N odd case (N = 5), b) N 
even case (N = 6). 
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Multiple solutions for θ and 𝝋𝝋 in case (b) can justify this arrangement. Two cases are 

shown in Eq. (II-43) and Eq. (II-44). A wrong interleaving with successive PD differences of 

2/N is observed in both cases. The first one is not possible because the error operator would not 

allow to compensate ±0.5 twice in the 𝝋𝝋 vector. The second one, however, is possible. This 

shows the presence of two discontinuities because two sequences ±0.5 are present in the 𝝋𝝋 

vector. 

𝜽𝜽 = [0.1 0.5 0.9 1.3 1.7]𝑇𝑇 𝝋𝝋 = [−1.0 0.0 0.0 0.0 1.0]𝑇𝑇 (II-43) 

𝜽𝜽 = [0.1 0.5 0.9 0.3 0.7]𝑇𝑇 𝝋𝝋 = [−0.5 0.0 0.5 −0.5 0.5]𝑇𝑇 (II-44) 

To ensure a correct interleaving, the 𝝋𝝋 vector has to contain only one discontinuity 

(±0.5 values). So special care has to be taken during start-up and reconfigurations to avoid going 

to these states. To do so, the PD values have to be in an ascending order where coincident values 

can be tolerated. Concerning a reconfiguration during operation, the bypass of a deactivated 

PDLC is simple because the system normally is already correctly interleaved and so ordered. 

On the other hand, in order to anticipate an insertion of a “sleeping” PDLC, its PD has to be 

pre-positioned between its neighboring PDs to anticipate an insertion, such as it being active 

but not visible. 

The start-up disposition of the PDs requires also special care to obtain correct 

interleaving. The expression on Eq. (II-45) generalizes the condition to obtain an ideal start-up 

condition that leads to correct interleaving arrangement, where the summation represents the 

sum of true statements. The cases that respects this condition are called a “Proper Interleaving 

Arrangement” (PIA). It consists on having only one PD that is not in a non-strict growing 

sequence, i.e. the next PD greater than or equal to the local PD. In a PIA, the only elements that 

do not respect this rule are the ones close to the phase-delay discontinuity. 

�𝜃𝜃𝑖𝑖 > 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=𝑁𝑁

𝑖𝑖=1

= 1         �𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖+1, 𝑖𝑖𝑖𝑖 𝑖𝑖 < 𝑁𝑁
𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃1, 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑁𝑁 (II-45) 

This concept can also be applied in steady-state arrangements. It can be noted that the 

arrangements on Figure II-15 (a) and Figure II-16 are PIA because only 𝜃𝜃5 > 𝜃𝜃1 and 𝜃𝜃1 > 𝜃𝜃2, 

respectively. It can be noted that the arrangements on Figure II-18 are not PIA because in (a) 

𝜃𝜃3 > 𝜃𝜃4 and 𝜃𝜃5 > 𝜃𝜃1 and in (b) 𝜃𝜃3 > 𝜃𝜃4 and 𝜃𝜃6 > 𝜃𝜃1. So the summation in (II-45) is higher 

than 1. Examples of these cases will be given in the next section. 
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 Convergence and steady-state value 
It is well understood now that the steady-state value depends on the target vector 𝝋𝝋, 

which, in turn, depends on the vector 𝜽𝜽. The vector 𝝋𝝋𝟎𝟎 is constant if the vector 𝜽𝜽 is properly 

chosen at the beginning, then the 𝝋𝝋(𝑧𝑧) signal is expressed in Eq. (II-46). 

 𝝋𝝋(𝑧𝑧) = 𝑧𝑧 /(𝑧𝑧 − 1) 𝝋𝝋𝟎𝟎 (II-46) 

In this way, as this system is causal, the value 𝜽𝜽 converges in steady-state towards the 

value 𝜽𝜽𝐬𝐬𝐬𝐬 that can be calculated using the Final Value Theorem (FVT) if all differential modes 

are damped and the 𝝋𝝋(𝑧𝑧) common mode is limited. The mathematical expression to calculate 

the steady-state value for this discrete system is shown in Eq. (II-47). 

 𝜽𝜽𝐬𝐬𝐬𝐬 = lim
𝑘𝑘→∞

𝜽𝜽𝑘𝑘 = lim
𝑧𝑧→1

 (𝑧𝑧 − 1) 𝜽𝜽(𝑧𝑧) (II-47) 

When in steady-state, 𝝋𝝋(𝑧𝑧) is constant and its common mode is null i.e. 𝑠𝑠𝑠𝑠𝑠𝑠(𝝋𝝋) = 0, 

the result in Eq. (II-48) is found by inserting Eq. (II-10) in Eq. (II-47) and solving. 

 𝜽𝜽𝐬𝐬𝐬𝐬 = 𝜽𝜽𝟎𝟎��� − 𝑳𝑳+ 𝝋𝝋𝟎𝟎 (II-48) 

where 𝜽𝜽𝟎𝟎��� = 1 𝑁𝑁⁄  𝟏𝟏𝑁𝑁𝑁𝑁𝑁𝑁 𝜽𝜽𝟎𝟎 is a vector in which each element is the average value of 𝜽𝜽𝟎𝟎, 

and 𝑳𝑳+ is the pseudo-inverse of 𝑳𝑳. It should be noted that the matrix 𝑳𝑳 is singular because one 

eigenvalue is null and has no inverse. 𝑳𝑳+ can be evaluated using Eq. (II-49). 

 𝑳𝑳+ = 𝑾𝑾 𝜦𝜦+ 𝑾𝑾−1 (II-49) 

where 𝜦𝜦+ is formed from 𝜦𝜦 by taking the reciprocal of all the non-zero elements. 

Eq. (II-48) reveals that, as expected, the steady-state depends on the start-up 

configuration 𝜽𝜽𝟎𝟎  that provides also 𝝋𝝋𝟎𝟎 , and, more importantly, on 𝑳𝑳+  that comes from the 

communication chain configuration matrix 𝑳𝑳. The steady-state value does not depend on the 

corrector 𝑪𝑪(𝑧𝑧). It should be noted that if 𝜽𝜽𝐬𝐬𝐬𝐬 is outside the range 0 to 1, the correct result is 

obtained by applying the modulo operator to each value. 

 Reconfiguration and start-up simulations 
As soon as the state of a PDLC changes, activated to be inserted into or deactivated to 

be removed from the chain, the remaining PDLCs have to modify their PDs to reach a new 

steady-state disposition where all the carriers are correctly interleaved again. The behavior of 

the several PDs in reaction to a reconfiguration event has to be studied carefully. A 

reconfiguration event excites the different modes, and the convergence towards the correct 

interleaving must be guaranteed. One can notice that these simulations of reconfiguration 

proposed here illustrate a real case of a decentralized interleaving operation. 
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The following simulations are performed using the lead-lag controller presented earlier. 

As the phase-delay target operator cannot be implanted in Matlab when using annexed code, 

the 𝝋𝝋 vector is predefined to a convenient value using pre-processing, and the modulo operator 

is applied using post-processing. The reconfiguration responses are analyzed hereafter, first 

with the removal case, followed by the insertion case and then with the specific case studies of 

start-up. 

II.7.1. PDLC removal 
The simulation of a reconfiguration proposed here illustrates the cases of a PDLC 

removal (the PDLC is bypassed). The removal is the simplest reconfiguration case because the 

system is already interleaved and there is no initial value to care about. 

Figure II-19 shows two reconfiguration simulations starting with nine well-interleaved 

PDLCs. The PDLC3 is disabled and bypassed at the first iteration, then the eight remaining 

active PDLCs reconfigure and reach another interleaving state. These eight PDLCs have the 

same dynamics revealed previously. Figure II-19 (a) shows the reconfiguration response with 

α = 1, and Figure II-19 (b) shows the reconfiguration response with α = 6/5. 

(a) (b)  

Figure II-19 – Reconfiguration response (N from 9 to 8): Local Controller 3 is bypassed, a) α = 1, b) α 
= 6/5. 

As expected, the system converges towards a new state of appropriate interleaving and 

the disabled PDLC, the sleeping one, continue to adjust its own PD to centralize its position 

between its neighbors. The simulations show that all differential modes are excited at the 

beginning. All modes are damped with respect to the values of Table I. In (a), all components 

of |𝜺𝜺𝜽𝜽∗| are mitigated very quickly and no particular mode dominates the settling time. In (b), 
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the mode 4 is at the limit of stability, so |𝜀𝜀𝜃𝜃∗| 4 is not damped and oscillates indefinitely. These 

two responses correspond exactly to the expected theoretical modal response detailed 

previously. 

II.7.2. PDLC insertion 
The simulation of a reconfiguration event proposed here illustrates the cases of a PDLC 

insertion, i.e. a previously bypassed sleeping PDLC becoming visible to its neighboring PDLCs 

in the communication chain. This event also excites all the different modes, and the 

convergence towards the correct interleaving must be guaranteed. 

Figure II-20 shows two reconfiguration simulations with eight PDLCs. At the beginning, 

seven PDLCs are well interleaved, and PDLC5, pre-positioned or not, is inserted. These eight 

PDLCs have the same dynamics as those revealed previously with α = 1 to ensure stability. 

Figure II-20 (a) shows the reconfiguration response where PD5 is pre-positioned in between its 

neighbors, and Figure II-20 (b) shows the case where its initial value is null. 

(a) (b) 
 

Figure II-20 – Reconfiguration response (N from 7 to 8, α = 2/3): Local Controller 5 is inserted a) in 
the middle of its neighbors, b) with a null starting value. 

The simulations show in Figure II-20 (a) and (b) the PDs converge either to a good and 

wrong steady-state with phase differences of 1/N and 2/N, respectively. The correct interleaving 

state is reached in Figure II-20 (a) because 𝜃𝜃5 is pre-positioned. Consequently, 𝝋𝝋(𝑧𝑧) keeps a 

constant value 𝝋𝝋𝟎𝟎. On the other hand, this is not the case in Figure II-20 (b). The null starting 

value of 𝜃𝜃5  disturbs PDLC4’s phase-delay target operator, and that disturbance causes a 

nonconforming modification in 𝝋𝝋 . After the first iteration, PDLC5’s phase-delay target 
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operator is also disturbed because 𝜃𝜃4 and 𝜃𝜃6 cross each other and modify again 𝝋𝝋. These 𝝋𝝋 

values lead to a wrong interleaving arrangement. 

As a conclusion, to avoid wrong interleaving arrangements, at the beginning of a 

reconfiguration event, the 𝜽𝜽 vector has to respect a specific shape to generate a proper 𝝋𝝋 vector. 

To do so, inactive PDLCs (bypassed) have to keep their PD computations active and correctly 

positioned in between their neighbors. 

II.7.3. Convergence behavior vs. start-up positions 
Now that reconfiguration events, insertion and removal cases, have been considered, it 

is important to focus on the stat-up of the system. Indeed, depending on the original positions 

of the carrier, the system may or not converge towards the appropriate interleaving. Several 

start-up cases have to be considered. Figure II-21 shows in (a) a classical start-up procedure 

such as the one described in [21], [22], [28] where one PD is put in phase opposition to the 

others. It shows in (b) an alternative start-up procedure where the PDs are put in two separate 

groups. The starting values are chosen to avoid 𝜽𝜽 values going outside the range 0 to 1 and then 

to avoid any changes in the 𝝋𝝋 vector. 

(a) (b)  

Figure II-21 – Start-up response (N = 8): a) one element in phase opposition (1+7), b) with two 
separated groups (4+4). 

In both cases the convergence is ensured and the settling times are slightly different. 

Indeed, the 𝜽𝜽 values at the beginning determine the disturbed modes. In case (a), the differential 

modes 1, 2 and 3 are disturbed, while in case (b), the differential modes 2 and 4 are disturbed. 

The correct steady-state interleaving is reached in both cases and the global settling times are 

similar because their modal settling times are quite uniform. A slow mode can be avoided to 
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optimize the settling time, e.g. chose case (b) if the mode 1 is the slower, choose (a) if mode 4 

is the slower. As case (a) does not disturbs the mode 4, it would converge even if mode 4 is at 

the limit of stability. 

The case (b) brings redundancy because more than one PD can be considered in phase 

opposition. It is an important feature for fault tolerant systems and gives more flexibility during 

start-up. 

 Freeze a carrier phase-delay 
In some applications using the proportional controller [21], [22], [35], one PD is freeze 

(cannot change value) to overcome instability with α = 1. Other applications have specific 

requirements to avoid noise issues. For example, one PD is imposed to overcome the impact of 

the switching noise. An imposed carrier position may be required by applications using an 

external clock with synchronous requirements. This section introduces the eigenvalue study, 

the time response and its dynamic analysis for the case with one PD kept constant. 

When the original position of a carrier is imposed and permanent, its local controller 

gain is null and its PD is no longer computed. The computations made inside its PDLC are 

turned off. It is equivalent to canceling the terms of the corresponding row of the 𝑳𝑳N matrix. 

The communication chain configuration with six carriers (𝑁𝑁 = 6), where θ1  is constant, is 

named 𝑳𝑳6−1 and expressed in Eq. (II-50). 

 

 

(II-50) 

The 𝑳𝑳N−1 eigenvalues are real, ranging between −2 and 0. It is no longer circulant, so 

the diagonalization matrix 𝑾𝑾 is not the DFT matrix anymore. Then, the concepts of common 

mode and sinusoidal components are no longer valid. The eigenvalues of 𝑳𝑳N−1 can be computed 

using Eq. (II-51) for any N value. This expression is not proven analytically. 

 λ𝑖𝑖 = cos
𝜋𝜋 𝑖𝑖
𝑁𝑁
− 1, 𝑖𝑖 = 0 …𝑁𝑁 − 1 (II-51) 

There are two differences to the general case. The first one is all modes are simple, no 

double modes. As a result, 𝑀𝑀 is equal to 𝑁𝑁. The second difference is that λ𝑖𝑖 is never equal to 2 

(−2 < λ𝑖𝑖 < 0). So the general stability criterion upper limit becomes non strict, i.e. α can be 

equal to the upper limit and the system is still stable with 𝑁𝑁 even, as shown in Eq. (II-52). 

𝑳𝑳6−1 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
0.5 −1 0.5 0 0 0
0 0.5 −1 0.5 0 0
0 0 0.5 −1 0.5 0
0 0 0 0.5 −1 0.5

0.5 0 0 0 0.5 −1⎦
⎥
⎥
⎥
⎥
⎤
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 0 < α ≤
1 + 𝑝𝑝𝑂𝑂𝑂𝑂
1 +  𝑧𝑧𝑂𝑂𝑂𝑂

   ⟺   0 ≤ 𝑧𝑧𝑂𝑂𝑂𝑂 ≤ 𝑝𝑝𝑂𝑂𝑂𝑂 ≤ 1
𝑝𝑝𝑂𝑂𝑂𝑂 − 𝑧𝑧𝑂𝑂𝑂𝑂 < 1  (II-52) 

II.8.1. Proportional corrector 
For the proportional corrector, the modal poles, i.e. eigenvalues, can still be easily 

evaluated as a function of α by Eq. (II-28). The eigenvalues λ𝐴𝐴𝐴𝐴  of the differential modes 

(𝑖𝑖 = 1 …𝑁𝑁 − 1) can be computed as previously and are shown in Figure II-22 for 𝑁𝑁 going from 

5 to 8. The important major difference is the system is unconditional stable even if α is equal 

to 1. 

 
Figure II-22 – One constant PD: Eigenvalues vs. Convergence Coefficient for N from 5 to 8. 

Table II-3 presents the iteration number for convergence for the case with 𝑁𝑁 = 8 and 

one PD constant, for α equal to 1, 3/4 and 1/2. The last mode, mode 7 in this case, is stable and 

no longer in stability limit with α = 1 for any 𝑁𝑁 value. However, mode 1 is almost 4 times 

slower than the case where PD can change values. 

Table II-3 – Iteration number for 5% response (𝑁𝑁 = 8) with one PD constant. 

 k5%_7 k5%_6 k5%_5 k5%_4 k5%_3 k5%_2 k5%_1 
α = 1 39 9.4 4.1 1 4.1 9.4 39 

α = 3/4 3.7 2.4 0.9 2.2 4.8 12 51 
α = 1/2 1.9 2.6 3.5 5.3 9.1 20 78 

        
Table II-3 presents the same pattern seen in Table II-1, and all the previous observations 

are still valid, such as the convergence of the overall system depends on the type of modes that 

are excited. 

II.8.2. Reconfiguration response 
Figure II-23 shows two simulation results using the same conditions described 

previously, but 𝜃𝜃1 is constant to 0. At the first iteration, PDLC3 is removed from the chain of 

communications. As PDLC1 provides a constant PD, its error is never corrected locally (blue 

line), and the other PDs have to change their value to cancel their own local error, and 

consequently PDLC1 error. In case (a), |𝜀𝜀𝜃𝜃∗|7 is quickly reduced to zero while |𝜀𝜀𝜃𝜃∗|1 dominates 
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the response. Indeed, it is much slower than the other modes. In case (b), |𝜀𝜀𝜃𝜃∗|1 and |𝜀𝜀𝜃𝜃∗|7 have 

the same convergence speed, but |𝜀𝜀𝜃𝜃∗|7  has a much higher disturbance at start-up, so it 

dominates the response. No sustained oscillation is observed, confirming the unconditional 

stability of this approach. 

(a) (b) 
 

Figure II-23 – Reconfiguration response: PD1 𝜃𝜃1 is constant, and PDLC3 is disabled and bypassed 
(𝑁𝑁 = 8), a) 𝛼𝛼 = 3/4, b) 𝛼𝛼 = 1. 

 Multiple circular chains 
Others circular chain arrangements can be used to improve redundancy or settling time. 

Instead of looking at only the close neighbors, each PDLC could have access to the second 

neighbors or third neighbors in the chain and try as well to place the local PD in between their 

PDs. Figure II-24 show an alternative configuration where a connection with the 𝑗𝑗𝑡𝑡ℎ neighbors 

is used. To simplify the formulation, a common corrector 𝐶𝐶(𝑧𝑧) is used and a particular gain is 

introduced in each feedback loop. It should be noted that multiple different correctors could be 

associated with the gains 𝑘𝑘𝑛𝑛. 
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Figure II-24 – PDLC with multiple feedback and its representation with a common corrector 𝐶𝐶(𝑧𝑧). 

Eq. (II-53) is the open-loop discrete transfer function in the Z-domain. 

𝜽𝜽(𝑧𝑧) ′
𝜽𝜽(𝑧𝑧) = −�𝑘𝑘1 𝑳𝑳1 + 𝑘𝑘2 𝑳𝑳2 + ⋯+ 𝑘𝑘𝐽𝐽  𝑳𝑳𝐽𝐽�  

1
𝑧𝑧 − 1

𝐶𝐶(z) = −�𝑘𝑘𝑗𝑗  𝑳𝑳𝑗𝑗
𝐽𝐽=𝑁𝑁

j=1

 
1

𝑧𝑧 − 1
𝐶𝐶(z) (II-53) 

where 𝑘𝑘j are the gains associated to the 𝑗𝑗𝑡𝑡ℎ neighbor connection, i.e. the error related to 

the 𝑗𝑗𝑡𝑡ℎ neighbors. 

The gain 𝑘𝑘j is normally a positive real number or equal to zero when the connection is 

not used or not available. 𝑳𝑳j = 0.5�𝑺𝑺−j + 𝑺𝑺j� − 𝑰𝑰 and its diagonal form is 𝜦𝜦j = 𝑾𝑾∗ 𝑳𝑳j 𝑾𝑾 =

0.5�𝑼𝑼−j + 𝑼𝑼j� − 𝑰𝑰. It shall be noted the terms 𝑗𝑗 in 𝑳𝑳j and 𝜦𝜦j are not powers of 𝑳𝑳 and 𝜦𝜦, even if 

𝑳𝑳1 = 𝑳𝑳 and 𝜦𝜦1 = 𝜦𝜦. It can be shown the 𝑖𝑖𝑡𝑡ℎ diagonal element of 𝜦𝜦j noted λ𝑖𝑖
𝑗𝑗 = cos 2 𝜋𝜋 𝑖𝑖 𝑗𝑗

𝑁𝑁
− 1. 

The homogeneous system closed-loop discrete transfer function ( 𝝋𝝋(𝑧𝑧) = 0 ) is 

represented by Eq. (II-54). 

 𝜽𝜽(𝑧𝑧) = �𝑧𝑧𝑰𝑰 − �𝑰𝑰 + 𝐶𝐶(𝑧𝑧)�𝑘𝑘𝑗𝑗  𝑳𝑳𝑗𝑗
𝐽𝐽=𝑁𝑁

j=1

��

−1

 𝑧𝑧𝑰𝑰 𝜽𝜽𝟎𝟎 (II-54) 

The CLTF on Eq. (II-54) can also be written in a diagonal form such as in Eq. (II-55). 

The diagonalization is made using the DFT matrix, as shown previously. 

 𝜽𝜽∗(𝑧𝑧) = �𝑧𝑧𝑰𝑰 − �𝑰𝑰 + 𝐶𝐶(𝑧𝑧)�𝑘𝑘𝑗𝑗  𝜦𝜦𝑗𝑗
𝐽𝐽=𝑁𝑁

j=1

��

−1

 𝑧𝑧𝑰𝑰 𝜽𝜽𝟎𝟎∗ (II-55) 

Eq. (II-55) can be rewritten as 𝑁𝑁 independent transfer functions as shown in Eq. (II-56) 

because all matrices in Eq. (II-55) are diagonal. 



Digital interleaving study 

66 
 

 𝜃𝜃∗𝑖𝑖(𝑧𝑧) =
𝑧𝑧

𝑧𝑧 − �1 + 𝐶𝐶(𝑧𝑧)∑ 𝑘𝑘𝑗𝑗  λ𝑖𝑖
𝑗𝑗𝐽𝐽=𝑁𝑁

j=1 �
 𝜃𝜃0∗𝑖𝑖, 𝑖𝑖 = 0 …𝑁𝑁 − 1 (II-56) 

It is known that all λ𝑖𝑖
𝑗𝑗 are comprised between –2 and 0 (−2 ≤ λ𝑖𝑖

𝑗𝑗 < 0). The general 

stability criterion for the previously presented controllers is shown in Eq. (II-57). 

 0 < �𝑘𝑘𝑗𝑗

𝐽𝐽=𝑁𝑁

j=1

<
1 + 𝑝𝑝𝑂𝑂𝑂𝑂
1 +  𝑧𝑧𝑂𝑂𝑂𝑂

   ⟺   
0 ≤ 𝑧𝑧𝑂𝑂𝑂𝑂 ≤ 𝑝𝑝𝑂𝑂𝑂𝑂 ≤ 1
𝑝𝑝𝑂𝑂𝑂𝑂 − 𝑧𝑧𝑂𝑂𝑂𝑂 < 1

α = 1, 𝑘𝑘𝑗𝑗 ≥ 0
 (II-57) 

If pushed to the limit, this approach consists in using Full State Feedback (FSF) offering 

the possibility to implement any closed-loop behavior. At last, this approach is no longer 

considered because modular aspect would be lost and the complexity of the communication 

network, i.e. the number of connections involved in the global system, increases drastically. 

II.9.1. Settling time 
In the approach previously presented, the lower modes are normally slower because 

their related eigenvalues are closer to zero (smaller in absolute value). When using a second 

circular chain, other set of modes can be privileged. The controller can be simplified to 𝐶𝐶(𝑧𝑧) =

1 to compare this approach with the proportional controller previously presented. The modal 

pole values in the general case with 𝐶𝐶(𝑧𝑧) = 1 are shown in Eq. (II-58). 

λ𝐴𝐴𝐴𝐴 = 1 + �𝑘𝑘𝑗𝑗  λ𝑚𝑚
𝑗𝑗

𝐽𝐽=𝑁𝑁

j=1

= 1 + 𝑘𝑘1 λ𝑚𝑚1 + 𝑘𝑘2 λ𝑚𝑚2 + ⋯𝑘𝑘𝐽𝐽 λ𝑚𝑚
𝐽𝐽 , 𝑚𝑚 = 0 …𝑀𝑀 − 1 (II-58) 

where λ𝑚𝑚  are the diagonal elements of 𝜦𝜦 and 𝑘𝑘𝑗𝑗  is the gain associated with the 𝑗𝑗𝑡𝑡ℎ 

neighbors connection. 

To illustrate this, a system with nine PDLCs (𝑁𝑁 = 9, 𝑀𝑀 = 5) with a second circular 

chain is proposed, where each PDLC is communicating with the third neighbors in the chain. 

For the proportional controller 𝐶𝐶(𝑧𝑧) = 1, the modal poles are defined in Eq. (II-59). 

 λ𝐴𝐴𝐴𝐴 = 1 + 𝑘𝑘1 λ𝑚𝑚1 + 𝑘𝑘3 λ𝑚𝑚3 , 𝑚𝑚 = 1 …𝑀𝑀 − 1 (II-59) 

This expression can be compared with the case where only the first neighbor circular 

chain was used, shown in Eq. (22). It can be noted 𝑘𝑘1 is equivalent to α and λ𝑚𝑚1  is equal to λ𝑚𝑚 

itself. An additional freedom degree linked with the third neighbor connection 𝑘𝑘3 can be noted. 

Table 1 shows the number of iterations required for convergence of the several 

differential modes in the cases of Figure II-24.  
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Table II-4 – Number of iterations for 5% response (𝑁𝑁 = 9). 

 k5%_4 k5%_3 k5%_2 k5%_1 
𝑘𝑘1 = 0.6, 𝑘𝑘3 = 0.1 2.6 1.3 2.9 8.7 
𝑘𝑘1 = 0.4, 𝑘𝑘3 = 0.3 2.0 3.3 2.0 3.2 
𝑘𝑘1 = 0.1, 𝑘𝑘3 = 0.6 1.3 18 0.7 1.2 
𝑘𝑘1 = 0, 𝑘𝑘3 = 2/3 0 +∞ 0 0 

     
The table shows the modes 1, 2 and 4 go faster as 𝑘𝑘1 goes down to zero and 𝑘𝑘3 goes up 

to 2/3. However, the mode 3 slows down and become uncontrollable when 𝑘𝑘1 = 0 because 

λ33 = 0, i.e. λA3 is not dependent on 𝑘𝑘3. 

II.9.2. Convergence behavior 

A particular convergence behavior can be noted when 𝑘𝑘3 is privileged over 𝑘𝑘1. Figure 

II-25 shows two start-up simulations, in (a) for the case (𝑘𝑘1 = 0.4, 𝑘𝑘3 = 0.3) and in (b) for the 

case (𝑘𝑘1 = 0.1, 𝑘𝑘3 = 0.6). 

(a) (b)  
Figure II-25 – Start-up simulation (𝑁𝑁 = 9), (1+8): a) 𝑘𝑘1 = 0.4, 𝑘𝑘3 = 0.3, b) 𝑘𝑘1 = 0.1, 𝑘𝑘3 = 0.6. 

The PDs reach the expected interleaving very fast in the case (a). However, in case (b) 

the PDs reach the expected interleaving very fast with their third neighbor because 𝑘𝑘3 (𝑗𝑗 = 3) 

is privileged. As 𝑁𝑁 = 9, three well interleaved groups (𝑁𝑁/𝑗𝑗) are formed. When the remaining 

disturbed modes are damped, mode 3 in this case, all PDs are well interleaved. 

II.9.3. Reconfiguration 
This special circular chain is not suitable for reconfiguration. When a PDLC is bypassed, 

besides sending the previous and next neighbor’s PDs, it has to maintain the circular chain with 
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the 𝑗𝑗𝑡𝑡ℎ as well. Nevertheless, this is not feasible with the circular chain. It should be noted that 

changing the topology of the communications network due to reconfiguration event requires 

for each case a complete and dedicated stability study. 

 Shared wire generalization and discussion 
The modeling techniques shown here can also be extrapolated to reveal the stability 

criteria of a hypothetical system using the shared wire technique. In this case, each LC compares 

the average value of the PDs shared on a single wire with its local PD. All error can be compute 

by the specific operator 𝑳𝑳 shown in Eq. (II-60), that is a circulant matrix, and the eigenvalues 

are revealed. 

 𝑳𝑳 = 𝑾𝑾𝚲𝚲𝑾𝑾∗ =
1
𝑁𝑁
𝟏𝟏𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑰𝑰 λ𝑖𝑖 = � 0, 𝑖𝑖 = 0

 −1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (II-60) 

It shall be noted that the common mode cannot be controlled because its first eigenvalue 

(𝑖𝑖 = 0) is null and all the differential modes have the same transient response because all related 

eigenvalues are equal. 

All modes have the same behavior with the shared wire approach because a disturbance 

applied in any LC will be seen in an equal manner by all LCs, while in the circular chain, the 

closest connection LCs will perceive the disturbance earlier than the others. 

 Conclusions 
In this chapter, a complete analytical study of a digital iterative distributed interleaving 

strategy has been developed. It highlights the existence of several modal responses whose 

number and dynamics depend on the number of carriers involved in the system. The stability 

criterion has been established for any number of active local controllers used. A convergence 

speed parameter has been defined to choose an appropriate convergence coefficient value for 

each application case. Examples have been given to show the resulting modal dynamics for 

different values of convergence coefficient. 

The ability to quickly converge towards the expected steady-state has been 

demonstrated both for the particular case of system reconfiguration during operation with the 

removal or the insertion of a local controller and for the case of system start-up with different 

phase-delay for the carriers. Guidelines for the implementation of the PDLC are provided, 

ensuring correct steady-state disposition. Recommendations for the reconfiguration and start-

up dispositions are also provided with an analytical expression of the dispositions reached after 

convergence. 



Digital interleaving study 

69 
 

The stabilizing effect of using a constant position for one carrier has been also 

highlighted. In that particular case, an unconditional stability is obtained at the cost of a loss of 

dynamic performance, even when using the best value for the convergence coefficient. The 

effect of multiple circular chains is also analyzed and revealed as well as the general case with 

all elements contributing on a single shared wire. 

The robustness of this distributed interleaving strategy is limited due to the shared line 

needed to share the phase-delay reference, i.e. the shared clock. This also adds the requirement 

either to provide of an external clock or one LC must send its clock to the others LCs. In the 

second case, one element would have a feature different to the others, resulting in a singular 

element and consequently an additional SPOF. 

In case of detection of fault occurrence leading to a defective PD communication line, 

the system can reconfigure to keep constant the phase-delay of the LC that cannot receive the 

correct information. However, the shared clock remains a concern in terms of SPOF. For that 

reason, this approach is not recommended for system requiring high availability and mission 

continuity in case of fault occurrence. 

 





 

 
 

 

 

 Triangular carrier self-alignment study 
 

The triangular carrier self-alignment modular approach studied in this chapter was first 

described by COUSINEAU in [28]. It uses only analog circuits to generate interleaved 

triangular carriers. In this approach, a given number 𝑁𝑁 of Triangular Carrier Generators (TCG), 

are connected in a circular chain, where each TCG receives the neighboring TCG’s triangular 

waveforms and send them back its own triangular waveform. This approach is modular and 

suitable to reconfiguration, as inactive TCG bypass its connections in the chain. Figure III-1 

shows a schematic view of the several TCGs connected with their neighbors forming a closed 

chain of inter-module communications. The TCG is composed by three elements, a bypass 

circuit, a Triangular Signal Generator (TSG) and an adjustable gain differential amplifier (𝛽𝛽) 

as a controller. 

 
Figure III-1 – Triangular Carrier Generators exchanging analog waveforms to interleave themselves. 

This approach is different to the numeric interleaving approach previously presented in 

chapter II. Then a summary list with advantages and disadvantages is given. 

Advantages: 

- No global clock required; 
- Full modularity and no SPOF; 
- No phase delay discretization. 

Disadvantages: 

- Triangular signal shape changes during reconfiguration disturbing the duty-cycle / 
PWM signal relation; 

- Noise immunity issues on analog connections; 
- Matching issues on triangular signal (DC level, peak-to-peak amplitude, slew-rate 

symmetry, frequency). 
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This system has been implemented in real applications [13] using an structure based on 

current sources. The experimental results proof its effectiveness. Nevertheless, the complete 

modelling and stability study has not been already proposed and verified. This study is now 

detailed hereafter. Besides providing the stability criterion, closed-loop performance constraints 

(settling time vs. static error) are shown and a settling time optimization procedure is proposed. 

A limited study reveals the mismatch (frequency, DC level) effect on static error. 

 Working principle and modeling 
The 𝑖𝑖𝑡𝑡ℎ TSG generates a triangular signal 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡_𝑖𝑖. It should be noted that, in the following 

explanations, all signals 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡  generated are considered ideal. They are symmetrical, have 

constant slew-rate value ±𝑆𝑆𝑅𝑅 and are bounded by two threshold voltages, a lower limit 𝑣𝑣𝑣𝑣 and 

an upper limit 𝑣𝑣ℎ , resulting in a signal with free running frequency 𝑓𝑓0 , period 𝑇𝑇0 . The 𝑓𝑓0 

expression is shown in Eq. (III-1) when the voltage thresholds are the constant values 𝑉𝑉𝐻𝐻 and 

𝑉𝑉𝐿𝐿. 

 𝑓𝑓0 =
0.5 𝑆𝑆𝑅𝑅
𝑉𝑉𝐻𝐻 − 𝑉𝑉𝐿𝐿

 (III-1) 

To obtain interleaved carriers, each module has to place the local triangular signal 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 

PD in between its Previous and Next neighboring TCGs triangular signals 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 phase 

delays, respectively. It can be obtained by superimposing 𝑉𝑉𝐻𝐻 and 𝑉𝑉𝐿𝐿 with an auxiliary signal 

𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙, where 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙 is a factor 𝛽𝛽 of the difference of the neighboring triangular signals 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, shown in Eq. (III-2), generated with the adjustable gain (𝛽𝛽) differential amplifier. 

 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙(𝑡𝑡) = 𝛽𝛽 �𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) − 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)� (III-2) 

Thus, the generated triangular signal 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 amplitude is modulated, affecting its PD. By 

geometrical construction, 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 is guided in phase to reach its steady-state position. The control 

input signal 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙 turns the TSG into a Voltage Controlled Oscillator (VCO). This neighbor 

connections are effectively feedback-loops that lead each triangular signal to center itself in 

between its two neighbors. When a given number 𝑁𝑁 ≥ 3 of TCGs are connected together in a 

circular chain, all PDs are correct and the carriers tend to be located in the middle of its 

neighbors, resulting in a well interleaved system. Figure III-2 shows the principle of operation 

waveforms, where 𝑣𝑣ℎ(𝑡𝑡) = 𝑉𝑉𝐻𝐻 + 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙(𝑡𝑡) and 𝑣𝑣𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝐿𝐿 + 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙(𝑡𝑡). 
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−𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) 
−𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)   
−𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) 

 

Figure III-2 – Triangular Carrier Self-Alignment principle of operation, Phase-Advance case reaching 
a stable position [28]. 

III.1.1. Phase-delay value 
A measurement of the triangular signal PD is necessary to reference one carrier PD to 

the others. The proposed measurement is based on the time delay to a similar reference 

triangular signal 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 with a constant period 𝑇𝑇0, as shown by the purple waveform shown in 

Figure III-3. The triangular signal 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 (in blue) can take values within and beyond 𝑉𝑉𝐿𝐿 and 𝑉𝑉𝐻𝐻. 

Assuming the triangular signals have the same DC level, the expected time delay ∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 is the 

horizontal distance between 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟  and the next 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡  value with the same slope. A slope 

projection is used when 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 amplitude is smaller than 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟. 

 
Figure III-3 – Triangular signal time delay measurement. 

When 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 has a higher amplitude than 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟, going out of the 𝑉𝑉𝐿𝐿 to 𝑉𝑉𝐻𝐻 range, then ∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑘𝑘  

presents a positive discontinuity and increases with time. When 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 has a smaller amplitude 

than 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 and does not touch 𝑉𝑉𝐿𝐿 nor 𝑉𝑉𝐻𝐻 levels, then ∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑘𝑘  presents a negative discontinuity and 

decreases with time. 

As the slew rate are considered equal and constant, the PD changes at each commutation 

of 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟, i.e. each change of the slope sign, and is kept constant until the next commutation. 

Figure III-4 shows the time delay and phase delay plot for modeling with the values shown in 

Figure III-3. 
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Figure III-4 – Time delay measurement plot for modeling. 

The resulting ∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) is similar to a continuous-time waveform reconstruction from a 

sample sequence ∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑘𝑘 using a zero-order hold, such as shown in Eq. (III-3), where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) is 

the rectangular function. 

 ∆𝑡𝑡(𝑡𝑡) = � ∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑘𝑘

∞

𝑘𝑘=−∞

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
2 𝑡𝑡 − 𝑇𝑇0/2 − 𝑘𝑘 𝑇𝑇0

𝑇𝑇0
� (III-3) 

The signal ∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) can be modelled as the output of a linear time-invariant system with 

impulse response equal to a rectangular function, where the inputs are a sequence of Dirac 

functions scaled to the sampled values. The sampling frequency is equal to 2 𝑓𝑓0 because each 

period 𝑇𝑇0 induces two samples. 

A normalized PD 𝜃𝜃 is evaluated with Eq. (III-4), resulting in values ranging between 0 

and 1. 

 𝜃𝜃𝑘𝑘 =
∆𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

𝑘𝑘

𝑇𝑇0
 (III-4) 

Now the similarity of the obtained PD signal with a discrete system representation is 

shown, the input sampled values expression has to be found to complete the model. 

III.1.2. Single TCG model 

Figure III-5 shows details of the signal waveforms involved in a given TCG. 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the triangular signals of the Previous and Next neighboring TCGs. The values 𝜃𝜃𝑃𝑃 and 

𝜃𝜃𝑁𝑁 are the related PDs. 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙 is the local threshold voltage from Eq. (III-2) superimposed over 

𝑉𝑉𝐻𝐻 . The target position 𝜃𝜃�𝑘𝑘  is located at the crossing of 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . The target local 

generated triangular signal is named 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
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Figure III-5 – Target position shown based on of neighbor positions. 

Figure III-5 shows that at the iteration 𝑘𝑘, 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 has already commutated, so its PD is 

already updated from 𝜃𝜃𝑃𝑃𝑘𝑘  to 𝜃𝜃𝑃𝑃𝑘𝑘+1 . This is natural due to the sequential nature of the 

commutations, i.e. the commutations are not simultaneous. Therefore, at a given iteration 𝑘𝑘, the 

target position 𝜃𝜃�𝑘𝑘 represents the average value of 𝜃𝜃𝑃𝑃𝑘𝑘+1 and 𝜃𝜃𝑁𝑁𝑘𝑘 values, as indicated in Eq. 

(III-5). 

 𝜃𝜃�𝑘𝑘 = 0.5 �𝜃𝜃𝑃𝑃𝑘𝑘+1 + 𝜃𝜃𝑁𝑁𝑘𝑘� + 𝜑𝜑𝑘𝑘 (III-5) 

where 𝜑𝜑𝑘𝑘  represents the PD target operator result required to handle the PD 

discontinuity as discussed in chapter II. 

The local PD 𝜃𝜃𝑘𝑘 is used to evaluate the local PD error 𝜀𝜀𝜃𝜃𝑘𝑘, expressed in Eq. (III-6). 

 𝜀𝜀𝜃𝜃𝑘𝑘 = 𝜃𝜃�𝑘𝑘 − 𝜃𝜃𝑘𝑘 (III-6) 

Now, it must be considered the discrete transfer function 𝐶𝐶(𝑧𝑧)  that establishes the 

relationship between the correction applied for the next iteration ∆𝜃𝜃  and the error 𝜀𝜀𝜃𝜃 . The 

expression of 𝐶𝐶(𝑧𝑧) can be determined analyzing the waveforms around to the commutation 

instant using a geometric approach as demonstrated in Annex B. The result is shown in Eq. 

(III-7) with its validity conditions to guarantee the geometric consistency. The corrector 𝐶𝐶(𝑧𝑧) 

is equivalent to a proportional gain 𝛼𝛼 called here “convergence coefficient”  

 𝐶𝐶(𝑧𝑧) =
𝛥𝛥𝛥𝛥(𝑧𝑧)
𝜀𝜀𝜃𝜃(𝑧𝑧) = 𝛼𝛼 =

4 𝛽𝛽
1 + 2 𝛽𝛽

 ,     

𝜃𝜃𝑃𝑃𝑘𝑘+1 ≤ 𝜃𝜃𝑘𝑘 ≤ 𝜃𝜃𝑁𝑁𝑘𝑘

𝜃𝜃𝑁𝑁𝑘𝑘 − 𝜃𝜃𝑃𝑃𝑘𝑘+1

2
≤ 0.5

−0.5 < 𝛽𝛽 < +∞  ⇔   −∞ < 𝛼𝛼 < 2

 (III-7) 

It should be noted that this expression is valid even beyond these limits. If −0.5 < 𝛽𝛽 <

0, 𝛼𝛼 is negative, resulting in a positive feedback, so this range shall be rejected. If 𝛽𝛽 → +∞, 𝛼𝛼 

tends to 2 and the operation is equivalent of using comparators, such as in [29]. 

Eq. (III-8) gives the new PD obtained 𝜃𝜃𝑘𝑘+1 reached by the local triangular signal at the 

iteration 𝑘𝑘 + 1. It is made up of the previous PD plus the correction applied and a disturbance 
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parameter 𝑑𝑑𝑘𝑘 . The disturbance parameter is a consequence of the triangular waveform 

imperfections and will be discussed latter in III.7. 

 𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛥𝛥𝛥𝛥𝑘𝑘 + 𝑑𝑑𝑘𝑘 (III-8) 

Figure III-6 shows a block diagram of all previously described PD operations. It reveals 

that the triangular carrier self-alignment system is similar to the one made up of discrete Local 

Controller (LC) previously presented. This model can be used for stability and convergence 

studies. As all PDs are measured regarding the same reference signal 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟, the iterations of all 

LCs happen at the same instant (𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 peak/valley), simplifying the whole system modelling. 

 
Figure III-6 – PD local Controller block diagram. 

Eq. (III-9) gives the latest local PD obtained 𝜃𝜃𝑘𝑘+1 by successive substitutions of all 

previous equations (III-5) to (III-8). The next local PD 𝜃𝜃𝑘𝑘+1 depends on the next Previous 

neighbor PD 𝜃𝜃𝑃𝑃𝑘𝑘+1, resulting in a non-causal system. 

 𝜃𝜃𝑘𝑘+1 = (1 − 𝛼𝛼) 𝜃𝜃𝑘𝑘 + 0.5 𝛼𝛼 �𝜃𝜃𝑃𝑃𝑘𝑘+1 + 𝜃𝜃𝑁𝑁𝑘𝑘� + 𝛼𝛼 𝜑𝜑𝑘𝑘 + 𝑑𝑑𝑘𝑘 (III-9) 

To solve this problem, the modelling of the overall system is required, including the 

whole closed chain of communications. 

III.1.3. Overall system modelling 

A system with a generic number 𝑁𝑁 of LCs is now considered. The LCs in circular chain 

are numbered from 1 to 𝑁𝑁 in the next direction, so the PD values are numbered from 𝜃𝜃1 to 𝜃𝜃𝑁𝑁, 

and can be represented by a column matrix 𝜽𝜽 (in bold in the equations). For computation 

purpose, the Previous PD vector 𝜽𝜽𝑃𝑃 and the Next PD vector 𝜽𝜽𝑁𝑁 are defined in Eq. (III-10) using 

the circular shift matrix 𝑺𝑺 and its conjugate transposed 𝑺𝑺∗, equal to its transposed 𝑺𝑺𝑇𝑇 because 𝑺𝑺 

is real. 

 𝜽𝜽𝑃𝑃 = 𝑺𝑺 𝜽𝜽 𝜽𝜽𝑁𝑁 = 𝑺𝑺∗ 𝜽𝜽 (III-10) 

The shift matrix 𝑺𝑺 for the case with 𝑁𝑁 = 4 is shown in Eq. (III-11). 

 𝑺𝑺 = �

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

� (III-11) 

The matrix form of Eq. (III-5), (III-6) and (III-8) are shown in Eq. (III-12), (III-13) and 

(III-14), respectively. 
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 𝜽𝜽�𝑘𝑘 = 0.5 �𝜽𝜽𝑃𝑃𝑘𝑘+1 + 𝜽𝜽𝑁𝑁𝑘𝑘� + 𝝋𝝋𝑘𝑘 (III-12) 

 𝜺𝜺𝜃𝜃𝑘𝑘 = 𝜽𝜽�𝑘𝑘 − 𝜽𝜽𝑘𝑘 (III-13) 

 𝜽𝜽𝑘𝑘+1 = 𝜽𝜽𝑘𝑘 + 𝛼𝛼 𝜺𝜺𝜃𝜃𝑘𝑘 + 𝒅𝒅𝑘𝑘 (III-14) 

where 𝝋𝝋𝑘𝑘 is the target operator result vector and 𝒅𝒅𝑘𝑘 is the disturbance vector. 

Eq. (III-15) gives the new PD 𝜽𝜽𝑘𝑘+1 obtained by replacing (III-10) in (III-12), then in 

(III-13) and then in (III-14), where 𝑰𝑰 is an order N identity matrix. 

 𝜽𝜽𝑘𝑘+1 = 𝜽𝜽𝑘𝑘 + 𝛼𝛼 [0.5 (𝑺𝑺 𝜽𝜽𝑘𝑘+1 + 𝑺𝑺∗ 𝜽𝜽𝑘𝑘) + 𝝋𝝋𝑘𝑘 − 𝜽𝜽𝑘𝑘] + 𝒅𝒅𝑘𝑘 (III-15) 

Figure III-7 shows the discrete time model block diagram based on Eq. (III-15). This 

system is linear, and the stability study can be easily performed. 

 
Figure III-7 – Triangular carrier self-alignment full system block diagram. 

Eq. (III-16) is the recurrence expression of 𝜽𝜽𝑘𝑘+1 find from Eq. (III-15) as a function of 

𝜽𝜽𝑘𝑘 and the inputs 𝝋𝝋𝑘𝑘 and 𝒅𝒅𝑘𝑘. The system is causal and depends on the actual PD values and on 

the actual inputs. 

 𝜽𝜽𝑘𝑘+1 = 𝑨𝑨 𝜽𝜽𝑘𝑘 + (𝑰𝑰 − 𝛼𝛼 0.5 𝑺𝑺 )−1 (𝛼𝛼 𝝋𝝋𝑘𝑘 + 𝒅𝒅𝑘𝑘) (III-16) 

where 𝑨𝑨 = (𝑰𝑰 − 𝛼𝛼 0.5 𝑺𝑺 )−1 [(1 − 𝛼𝛼) 𝑰𝑰 + 𝛼𝛼 0.5 𝑺𝑺∗]  

The closed-loop discrete transfer function of the system is shown in Eq. (III-17) with 

the initial condition 𝜽𝜽𝟎𝟎, where 𝜽𝜽𝟎𝟎 is a column vector filled with the starting PD values and 𝑰𝑰 is 

the identity matrix. 

 𝜽𝜽(𝑧𝑧) = (𝑧𝑧𝑰𝑰 − 𝑨𝑨)−1 �𝑧𝑧𝑰𝑰 𝜽𝜽𝟎𝟎 + (𝑰𝑰 − 𝛼𝛼 0.5 𝑺𝑺 )−1 �𝛼𝛼 𝝋𝝋(𝑧𝑧) + 𝒅𝒅(𝑧𝑧)�� (III-17) 

The system stability can be verified by diagonalization followed by root-analysis. The 

system diagonalization reveals the several decoupled dynamics, called the modal responses, 

which help to determine the response of the overall system to any external excitation. The whole 

system is stable if each of the modal dynamics are stable. 

III.1.4. Model validity domain 
The model validity domain determines the operational conditions where this study 

results are valid, i.e. stability criterion and settling time. Two main concerns have to be 

discussed, the model itself and the corrector transfer function. 
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The local PD correction 𝛥𝛥𝛥𝛥 is not always proportionally dependent on the error 𝜀𝜀𝜃𝜃. As 

mentioned previously, the difference of the neighbors’ triangular carriers 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙 is superimposed 

to the local carrier levels 𝑉𝑉𝐻𝐻 and 𝑉𝑉𝐿𝐿. Considering the neighbor signals as static, i.e. no correction 

applied to them, a mapping of the correction obtained as a function of all possible combinations 

of neighbor PDs differences named 𝛥𝛥𝛥𝛥𝑃𝑃,𝑁𝑁 =  𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃, the error 𝜀𝜀𝜃𝜃 and the particular case with 

gain 𝛼𝛼 = 0.5 is shown in Figure III-8. 

 
Figure III-8 – Correction as a function of the local error 𝜀𝜀𝜃𝜃 and the neighbor delays 𝛥𝛥𝛥𝛥𝑃𝑃,𝑁𝑁 for 𝛼𝛼 = 1.0. 

Three regions can be distinguished in Figure III-8: 1) a linear region in green where the 

correction is proportional to the error, i.e. 𝛥𝛥𝛥𝛥 = 𝛼𝛼 𝜀𝜀𝜃𝜃; 2) a saturation region in blue where 𝛥𝛥𝛥𝛥 

is limited; 3) a dead-zone in red where the correction is null to any error value. The model is 

then only valid in the region 1 where the correction is proportional to the error. 

As a conclusion, the corrector transfer function 𝐶𝐶(𝑧𝑧)  is valid around a steady-state 

operation point considering limited disturbances in some particular cases, e.g. 𝛥𝛥𝛥𝛥𝑃𝑃,𝑁𝑁 close to 

zero or close to 1. Modal excitations and reconfigurations involving small disturbances can be 

simulated with high confidence. However the results for the start-up case may be less reliable. 

 Change of basis and modal transfer functions 
The change of basis allows to decompose the original coupled system into several 

independent monovariable systems. It requires rewriting the system’s equations in a diagonal 

form. As all matrices involved in this system (𝑰𝑰 , 𝑺𝑺  and 𝑺𝑺∗ ) are circulanting, they are all 

diagonalizable with the Discrete Fourier Transform (DFT) matrix, shown in Section II.2.1. The 

diagonal expression of 𝑺𝑺 and 𝑺𝑺∗ are provided in Eq. (III-18), where 𝑼𝑼 and 𝑼𝑼∗ are the diagonal 

eigenvalue matrices of 𝑺𝑺  and 𝑺𝑺∗  respectively. One can note that 𝑺𝑺  and 𝑼𝑼  are the matrices 
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normally referred to as "shift and clock matrices" respectively, introduced by J. J. Sylvester in 

the 1880s. 

 𝑼𝑼 = 𝑾𝑾∗𝑺𝑺𝑺𝑺 𝑼𝑼∗ = 𝑾𝑾∗𝑺𝑺∗𝑾𝑾 (III-18) 

A change of basis expressed by the set of Eq. (III-19) is applied to the system. 

𝜽𝜽∗ = 𝑾𝑾∗ 𝜽𝜽 𝝓𝝓∗ = 𝑾𝑾∗ 𝝓𝝓 𝜺𝜺𝜽𝜽∗ = 𝑾𝑾∗ 𝜺𝜺𝜽𝜽 𝜽𝜽𝟎𝟎∗ = 𝑾𝑾∗ 𝜽𝜽𝟎𝟎 (III-19) 

The system’s equation, shown in Eq. (III-17), after diagonalization is made up using 𝑾𝑾 

and shown in Eq. (III-20). 

 𝜽𝜽∗(𝑧𝑧) = {𝑧𝑧𝑰𝑰 − 𝜦𝜦𝐴𝐴}−1{𝑧𝑧𝜽𝜽𝟎𝟎∗ + (𝑰𝑰 − 𝛼𝛼 0.5 𝑼𝑼 )−1 [𝛼𝛼 𝝓𝝓∗(𝑧𝑧) + 𝒅𝒅∗(𝑧𝑧)]} (III-20) 

where 𝜦𝜦𝐴𝐴 is the closed-loop diagonal eigenvalue matrix, shown in Eq. (III-21). 

 𝜦𝜦𝑨𝑨 = 𝑾𝑾∗𝑨𝑨𝑨𝑨 = (𝑰𝑰 − 𝛼𝛼 0.5 𝑼𝑼 )−1 [(1 − 𝛼𝛼) 𝑰𝑰 + 𝛼𝛼 0.5 𝑼𝑼∗] (III-21) 

The transfer functions matrix in Eq. (III-20) is rewritten as 𝑁𝑁  independent transfer 

function on Eq. (III-22), because, assuming all inverse matrices exists, all matrices in Eq. (III-19) 

are diagonal. The 𝑁𝑁 diagonal elements λ𝐴𝐴𝐴𝐴𝐴𝐴 of 𝜦𝜦𝑨𝑨 are named λ𝐴𝐴𝐴𝐴, for 𝑖𝑖 = 0 …𝑁𝑁 − 1. The same 

is established for 𝑼𝑼 and 𝑼𝑼∗, where 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑖𝑖
∗ are the diagonal values, respectively. 

𝜃𝜃∗𝑖𝑖(𝑧𝑧) =
𝑧𝑧

𝑧𝑧 − λ𝐴𝐴𝐴𝐴
 𝜃𝜃0∗𝑖𝑖 +  

1
𝑧𝑧 − λ𝐴𝐴𝐴𝐴

1
1 − 𝛼𝛼 0.5 λ𝑖𝑖

�𝛼𝛼 𝜑𝜑∗
𝑖𝑖(𝑧𝑧) + 𝑑𝑑∗𝑖𝑖(𝑧𝑧)� ,   𝑖𝑖 = 0 …𝑁𝑁 − 1 (III-22) 

It can be noted that each closed-loop eigenvalue corresponds to a modal closed-loop 

pole. The Eq. (III-23) shows the analytical expression of 𝜆𝜆𝐴𝐴𝐴𝐴 as a function of the gain 𝛼𝛼 and 𝜆𝜆𝑖𝑖. 

 𝜆𝜆𝐴𝐴𝑖𝑖 =
1 − 𝛼𝛼 (1 − 0.5 𝜆𝜆𝑖𝑖

∗) 
1 − 𝛼𝛼 0.5 𝜆𝜆𝑖𝑖

       𝑖𝑖 = 0 …𝑁𝑁 − 1 (III-23) 

The 𝑺𝑺 eigenvalues are known and shown in. Eq. (III-24) for any value of 𝑁𝑁. 

 λ𝑖𝑖 = exp �𝑗𝑗
2 𝜋𝜋 𝑖𝑖
𝑁𝑁

� = 1∠
2 𝜋𝜋 𝑖𝑖
𝑁𝑁

      𝑖𝑖 = 0 …𝑁𝑁 − 1 (III-24) 

 Stability Concern 
The corrector has only one degree of freedom, the gain 𝛼𝛼 . The common mode 

eigenvalue does not depends on 𝛼𝛼 and is equals to one (𝜆𝜆𝐴𝐴0 = 1). To guarantee stability and 

convergence in this discrete system, all closed-loop poles of the differential modes (i ≠ 0) have 

to be located inside the unit circle, i.e. their eigenvalues’ absolute values must be less than 1. 

The stability condition with its constraints are shown in Eq. (III-25). This result is valid for any 

𝑁𝑁 value. 

 |λ𝐴𝐴𝐴𝐴| < 1    ⇔     0 < α < 2    ⇔     0 < β < +∞,    𝑖𝑖 = 1 …𝑁𝑁 − 1 (III-25) 

The demonstration is provided in Annex C. 
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In order to illustrate with an example, the root locus for a system with 𝑁𝑁 = 8 are shown 

in Figure III-9. All poles start at 1 when gain 𝛼𝛼 is equal to 0 and go over the unit circle when 

the gain 𝛼𝛼 is equal to 2, being equivalent to 𝛽𝛽 going to infinity. 

 

 
α 0.75 1.0 

λ𝐴𝐴1 0.74 ∠ -7.4° 0.68 ∠ -16° 

λ𝐴𝐴2 0.42 ∠ -36° 0.45 ∠ -63° 

λ𝐴𝐴3 0.21 ∠ -81° 0.36 ∠ -120° 

λ𝐴𝐴4 0.09 ∠ -180° 0.33 ∠ -180° 

λ𝐴𝐴5 0.21 ∠ 81° 0.36 ∠ 120° 

λ𝐴𝐴6 0.42 ∠ 36° 0.45 ∠ 63° 

λ𝐴𝐴7 0.74 ∠ 7.4° 0.68 ∠ 16° 
 

Figure III-9 – Root locus for 𝑁𝑁 = 8 with pole-zero mapping for tree particular cases: 𝛼𝛼 = 0.75, 𝛼𝛼 =
1.0 and 𝛼𝛼 = 1.5. 

Based on the z-domain model, this plot confirms that a limited positive gain 𝛽𝛽 leads to 

a stable system. If comparators are used (𝛽𝛽 → +∞), all differential modes are in stability limit 

(all poles placed on the unitary circle) and oscillates. 

In Chapter II, the open-loop modal transfer functions have real eigenvalues that 

appeared as gain factors, so only one root locus exists and all pole-zero are located there, 

independently of the 𝑁𝑁 value. However, in the present case, such simplicity cannot be observed. 

The closed-loop eigenvalues can be expressed as a function of the matrix 𝑺𝑺 eigenvalues. The 

matrix 𝑺𝑺 eigenvalues are complex, their absolute values are all equal to 1, but their arguments 

are different, such as 𝜆𝜆𝑖𝑖 = 1∠𝜌𝜌, where 𝜌𝜌 depends on 𝑁𝑁 and 𝑖𝑖. Figure III-9 shows dotted lines as 

a function of the eigenvalue angle 𝜌𝜌, ranging between 0 and 2π, for several given α values. The 

lines λ𝐴𝐴(𝜌𝜌,α) are independent of 𝑖𝑖, showing the locations where the eigenvalues will land for 

any 𝑁𝑁 values. The non-plotted line λ𝐴𝐴(𝜌𝜌,α = 2.0) is coincident with the unit circle, as shown 

in Eq. (III-26). 

 𝜆𝜆𝐴𝐴𝑖𝑖|𝛼𝛼 = 2 = 𝜆𝜆𝑖𝑖
∗   ⇒   |𝜆𝜆𝐴𝐴𝑖𝑖||𝛼𝛼 = 2 = |𝜆𝜆𝑖𝑖

∗| = |𝜆𝜆𝑖𝑖| = 1,    𝑖𝑖 = 0 …𝑁𝑁 − 1 (III-26) 

It should be noted that the poles’ placement presents a symmetry with respect to the real 

axis. The symmetric poles correspond to the double modes, where 𝑤𝑤𝑁𝑁−𝑖𝑖 = 𝑤𝑤𝑖𝑖
∗ and λ𝐴𝐴(𝑁𝑁−𝑖𝑖) =

λ𝐴𝐴𝐴𝐴
∗. To avoid showing redundant information, the modal index 𝑚𝑚 = 0 …𝑀𝑀 − 1 can be used, 

where 𝑀𝑀 is defined as in the previous study. 

-1 -0.5 0 0.5 1

Real Axis

-1

-0.5

0

0.5

1

Im
ag

in
ar

y 
Ax

is

Root Locus N = 8

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

 1 /T

0.9 /T

0.8 /T

0.7 /T

0.6 /T
0.5 /T

0.4 /T

0.3 /T

0.2 /T

0.1 /T

 1 /T

0.9 /T

0.8 /T

0.7 /T

0.6 /T
0.5 /T

0.4 /T

0.3 /T

0.2 /T

0.1 /T

A1

A2

A3

A4

A5

A6

A7

A (  = 0.75)

A (  = 1.00)

A (  = 1.50)

A ( ,  = 0.75)

A ( ,  = 1.00)

A ( ,  = 1.50)



Triangular carrier self-alignment study 

81 
 

III.3.1. Settling time and voltage gain design 

The settling time depends on the triangular signal frequency 𝑓𝑓0 and on the number of 

iterations required to reject a disturbance. The value of the triangular signal frequency is 

imposed by the application. 

The number of iterations for convergence can be computed, for example, by the number 

𝑘𝑘  of iterations necessary to reduce the absolute value of each differential mode natural 

(homogeneous) response 𝜃𝜃∗𝑚𝑚ℎ  to less than 5% of its initial value 𝜃𝜃0∗𝑚𝑚 . The modal natural 

(homogeneous) response 𝜃𝜃∗𝑚𝑚ℎ  shown in Eq. (III-27) can be found by applying the inverse Z-

transform to the first term of Eq. (III-22), where 𝑚𝑚  is the mode number and ℎ  is the 

homogeneous marker. 

𝜃𝜃∗𝑚𝑚ℎ(𝑘𝑘) = λAm
k 𝜃𝜃0∗𝑚𝑚 = |λAm|k �1∠φλAm�

k
 𝜃𝜃0∗𝑚𝑚 ,     �

k ≥ 0
 λAm = |λAm| ∠φλAm
𝑚𝑚 = 1 …𝑀𝑀 − 1

   (III-27) 

Eq. (24) shows the general formula for the number of iterations derived from Eq. (III-28). 

 𝑘𝑘5%_m =
𝑙𝑙𝑙𝑙𝑙𝑙(0.05)
𝑙𝑙𝑙𝑙𝑙𝑙(|λAm|) , 𝑚𝑚 = 1 …𝑀𝑀 − 1 (III-28) 

Table III-1 shows the number of iterations required for convergence for the several 

differential modes in the case 𝑁𝑁 = 8. Note that no mode converges when α = 2. 

Table III-1 – Number of iterations for 5% convergence criterion (𝑁𝑁 = 8, 𝑀𝑀 = 5, 4 differential modes, 
4 eigenvalues). 

 md1: k5%_1 md2: k5%_2 md3: k5%_3 md4: k5%_4 
α = 2 +∞ +∞ +∞ +∞ 

α = 1.5 10 9.2 8.9 8.9 
α = 1 7.7 3.7 2.9 2.7 

α = 0.75 10 3.5 1.9 1.2 
     

Table III-1 shows explicitly the number of iterations required for each differential mode 

with a given α parameter. Observing the different configurations, it is not easy to guess which 

would be the optimal one. All differential mode eigenvalue absolute values, and consequently 

the response time, have to be reduced to speed-up the global response on any type of disturbance. 

As these values depend on α, a criterion has to be established to find a trade-off. Supposing all 

modes have the same importance, the criterion to choose the optimal configuration can be the 

quadratic sum. The quadratic sum can be applied on the eigenvalues or on the number of 

iterations k5% of each differential mode. Only the differential modal values (𝑚𝑚 = 1 …𝑀𝑀− 1) 



Triangular carrier self-alignment study 

82 
 

are considered in order not to overweight the double modes. These two approach results are 

shown in the plot of Figure III-10 for 𝑁𝑁 = 8. 

 
Figure III-10 – Optimized Convergence Coefficient α. Minimising criterion: least squares of 𝜆𝜆𝐴𝐴𝐴𝐴 and 
least squares of k5%_m. 

The minimum value using the eigenvalue least squares criterion is found with α = 0.8, 

while the minimum value using the k5% least squares criterion is found with α = 0.95. The least 

squares of k5% criterion is preferable because the response is more uniform due to the smaller 

response time dispersion. As a conclusion, for 𝑁𝑁 = 8, the optimal voltage gain 𝛽𝛽 would be in 

the range 0.4 and 0.5. 

Considering the first model with only the local loop, the case 𝛼𝛼 = 1 (𝛽𝛽 = 0.5) 

corresponds to the one shoot response, and is similar to the digital system described previously. 

However, the overall digital implementation is not stable in this condition, while the Triangular 

Carrier Self-Alignment seems to be stable, according to the proposed model. 

III.3.2. Eigenvalues and stability vs. number of active LCs 
This system has the intrinsic ability to reconfigure, so the eigenvalues have to be 

computed for several number of active LCs required in the application. The root locus analysis 

for the cases of 𝑁𝑁 = 4 … 9 are shown in Figure III-11 with the gain 𝛼𝛼 ranging from 0 to 2. 



Triangular carrier self-alignment study 

83 
 

 
Figure III-11 – Root locus for 𝑁𝑁 = 4 … 9 with 𝛼𝛼 ranging from 0 to 2. 

All λA0  related to the common mode are constant, equal to 1 and not shown. All 

differential modes are controllable because their eigenvalues depend on the parameter 𝛼𝛼. All 

differential modes are double and have a pole symmetrical to the imaginary axis (its conjugate), 

except when 𝑁𝑁 is even, where the mode 𝑁𝑁/2 is a single mode. 

A reconfiguration event is the modification during operation of the number 𝑁𝑁 of active 

LCs. Non-active LCs are bypassed, i.e. the chain of communication remains closed, and become 

invisible to active LCs. As seen before, all eigenvalues depend on a single convergence factor 

𝛼𝛼, and a trade-off has to be made. On the other hand, when a reconfiguration is made, 𝛼𝛼 remains 

the same, but the eigenvalues change. 

The 5% response convergence speed should also be optimal when 𝑁𝑁 varies. However 

the number of active modules is unknown and all local controllers have to be equal by definition. 

To simplify the design, the same 𝛼𝛼 is used in all cases and the relative response degradation is 

verified. A parametric plot of the least squares of 𝑘𝑘5%  as a function of the convergence 

coefficient 𝛼𝛼 and the value of 𝑁𝑁 is shown in Figure III-12. 
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Figure III-12 – Optimized Convergence Coefficient α using least squares of 𝜆𝜆𝐴𝐴  and k5% criterion. 
Sensibility to 𝑁𝑁. 

The curves show the minimum for 𝛼𝛼 is in general between 0.7 and 0.9, and it goes up 

with 𝑁𝑁. The least squares of 𝑘𝑘5% give a best time response trade-off. The optimum is much 

more dependent on 𝑁𝑁 than in the previous case, being between 0.65 and 1.05 in the range of 𝑁𝑁 

shown. The simulations presented here after are made using 𝑁𝑁 = 8 ± 1, so 𝛼𝛼 is chosen around 

the optimized value to 𝑁𝑁 = 8 using the least squares of λA and the least squares of 𝑘𝑘5%, being 

0.8 and 1.0, respectivelly. 

In this approach, the corrector is of type proportional represented by the Convergence 

Coefficient 𝛼𝛼. So, other than the transient response, 𝛼𝛼 impacts the static gain and consequently 

the steady-state error. It would be natural to choose a higher 𝛼𝛼 value to further reduction of the 

steady-state error. The disturbance impact in the steady-state error will be discussed in III.7. 

 Diagonal response 
The dynamic behavior of the overall system has been simulated and the settling time 

compared with the one predicted. A space state system based model is defined and simulated 

using MathWorks MATLAB®. In the simulations performed hereafter, the system starts in its 

expected equilibrium state with all the carriers well interleaved. Each mode is excited 

individually one after the other, from the common mode (mode 0) to the last one (mode 4) using 

the system eigenvectors (lines of the DFT matrix) as components of the disturbance signal 𝒅𝒅. 

Figure III-13 shows the simulation results of a system with eight LCs (𝑁𝑁 = 8) and α 

equal to either 0.8 or 1. Each simulation result is composed of the modal disturbance applied 

𝒅𝒅∗ = |𝑾𝑾−1𝒅𝒅| , the PD 𝜽𝜽  waveforms, and the local error 𝜺𝜺𝜽𝜽  modal decomposition |𝜺𝜺𝜽𝜽∗|  to 

observe the total mode disturbance. For simulation purposes, the target operator introduced in 

the digital case is required. Eq. (14) is taken to find the 𝝋𝝋 required considering 𝒅𝒅 = 𝟎𝟎 and 
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𝜽𝜽𝑘𝑘+1 = 𝜽𝜽𝑘𝑘, where 𝜽𝜽𝑘𝑘 is the expected PD in a well interleaved system. It results in the same 

values for 𝝋𝝋 found in the digital case shown in Eq. (II-40). 

(a) (b)  
Figure III-13 – Dynamic modal response (N = 8) a) α = 0.8; b) α = 1.0. 

The deviations that appear have the eigenvectors’ shape (similar to sine wave) and cycle 

number shown in Figure II-5. The PD values behave as expected. It is possible to distinctly 

observe the modal excitations being applied successively. All modes are correctly damped and 

the convergence speed confirm the figures shown in Table III-1. 

A singularity should be noted on 𝜽𝜽 waveforms. The 𝜽𝜽 waveforms do not have the same 

shape as the components of |𝜺𝜺𝜽𝜽∗|. When the mode 1 is disturbed on Figure III-13 (a), the 𝜃𝜃1 

response has almost a straight line shape. It is due to the inverse Z-transform of the single 

complex pole. The single complex pole response λAm
k changes the amplitude and phase, i.e. 

rotates the modal component, as seen in the modal response shown in Eq. (III-27). When 

complex conjugated poles are found, only the amplitude changes because the complex parts 

compensate each other. 

 Reconfiguration simulations 
As soon as a TCG state changes (activated/deactivated), the active TCGs evolve their 

triangular signal PDs to reach a new steady-state arrangement where all the carriers are correctly 

interleaved again. The model is used in reconfiguration simulations and its responses are 

analyzed hereafter, first with the removal case, then the insertion case. 
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The simulations show the differential modes are excited at the beginning and the 

responses have the same dynamics revealed previously on Table III-1. 

III.5.1. TCG removal 
The simulation of a reconfiguration proposed here illustrates the cases of a TCG 

removal (one TCG is bypassed). The removal is the simplest reconfiguration case because the 

system is already interleaved and there is no initial value to care about. 

Figure III-14 (a) shows a simulation starting with nine well-interleaved TCGs. The local 

controller TCG3 is disabled and bypassed at the first iteration, then the eight active TCGs 

reconfigure and reach another interleaving state with α = 1.0. 

III.5.2. TCG insertion 
The insertion reconfiguration is optimal when the reactivated TCGs are pre-positioned 

in between its neighbors, not necessarily in the middle. As a result, the errors are small, 

corrector non-linear behavior is avoided and settling time is known. 

Figure III-14 (b) shows a reconfiguration simulation starting with seven well-

interleaved TCGs. The local controller TCG5 is disabled and positioned in between its 

neighbors. TCG5 becomes visible at the first iteration, then the eight active TCGs reconfigure 

and reach another interleaving state. 

(a) (b) 
 

Figure III-14 – Reconfiguration response, α = 1.0: a) N from 9 to 8, TCG3 is bypassed, b) N from 7 to 
8, TCG5 is introduced. 

All components of |𝜺𝜺𝜽𝜽∗| are mitigated very quickly in both cases and the new correct 

interleaved state is reached.  
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The model proposed in this work is not able to reveal what happens when the system is 

outside the linear zone. However, it can be thought that if the reactivated TCGs is not too far 

from the linear zone, i.e. close enough to the area bounded by the neighbors, its neighbors are 

likely to be in the same condition, so the system shall converge to the correct interleaved state. 

For large differences, no conclusion can be stated due to the system nature. There is a risk of 

convergence to an incorrect or a non-usual interleaved arrangement. It can only be verified 

through simulation and practical implementation. For that reason, in any cases, a disabled TCG 

will always be pre-positioned in between its two neighbors. 

 Convergence and steady-state value 
The discrete time transfer function can be used to reveal the PDs’ steady-state 

arrangement to a given start condition if the system’s start condition (all PD errors) is in a linear 

region. To do so, a valid target vector 𝝋𝝋 required by the model has to be computed from the PD 

initial values 𝜽𝜽𝟎𝟎 at start-up. Then, the PDs’ steady-state values 𝜽𝜽𝐬𝐬𝐬𝐬 can be calculated using the 

Final Value Theorem (FVT) if all differential modes are damped. The result in Eq. (III-29) is 

found by inserting Eq. (III-17) into Eq. (II-47) and solving. The steady-state depends on the 

start-up configuration 𝜽𝜽𝟎𝟎 that provides 𝝋𝝋, and, more importantly, on 𝑳𝑳+, related to the circular 

communication chain configuration. As a result, the gain 𝛼𝛼 and the delay on 𝜽𝜽𝐏𝐏 connection do 

not affect 𝜽𝜽 final values. 

 𝜽𝜽𝐬𝐬𝐬𝐬 = 𝜽𝜽𝟎𝟎��� − 𝑳𝑳+ �𝝋𝝋 +
1
𝛼𝛼

 𝒅𝒅� (III-29) 

Again, a term related to the disturbance input 𝒅𝒅  appears in the expression. This 

expression is valid if 𝒅𝒅(𝑧𝑧) is constant, i.e. 𝒅𝒅(𝑧𝑧) = 𝒅𝒅 𝑢𝑢(𝑧𝑧), where 𝑢𝑢(𝑧𝑧) is the step function, and 

the common mode of 𝒅𝒅 is null, i.e. the sum of all elements of 𝒅𝒅 is null (𝒅𝒅∗0 = 0), what prevents 

𝜽𝜽 from sliding permanently. 

It can be highlighted, like in any control system using proportional gain, the interest of 

increasing the corrector gain to reduce the disturbance impact in the steady-state values. The 

relationship between the disturbance 𝒅𝒅 and the steady-state local error 𝜺𝜺𝜃𝜃𝐬𝐬𝐬𝐬 is revealed in the 

same way in Eq. (III-30). 

 𝜺𝜺𝜃𝜃𝐬𝐬𝐬𝐬 = −
1
𝛼𝛼

 𝒅𝒅 (III-30) 

To choose the minimum gain 𝛼𝛼, the expression of 𝒅𝒅 has to be analyzed. The term 𝒅𝒅 is 

related to all existing disturbances in the system, such as frequency mismatch, triangular wave 

mismatch, and electronic circuit mismatch. 
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 Disturbance estimation and error sensibility 
Willing to limit the closed-loop steady-state error 𝜺𝜺𝜃𝜃𝐬𝐬𝐬𝐬, the relation between the circuit 

parameters and the disturbance 𝒅𝒅 has to be revealed. This allows the system definer to specify 

the system building blocks tolerances to reach the expected performance, in this case 𝜺𝜺𝜃𝜃𝐬𝐬𝐬𝐬. 

Numerous parameters can cause disturbances in the PDs, but just some of them are 

discussed here. It is assumed each TCG is impacted by a disturbance 𝑑𝑑𝑖𝑖  ,  𝑖𝑖 = 0 …𝑁𝑁 − 1 , 

independent of the others TCGs that compose the disturbance vector 𝒅𝒅. In an arbitrary TCG, 

the disturbance 𝑑𝑑 is related to 𝑉𝑉𝐻𝐻 and 𝑉𝑉𝐿𝐿 values. All the others parameters, such as slew rates 

and gains, are considered equal in all TCGs on purpose of this this study. 

To find the expression of the equivalent disturbance 𝑑𝑑 , the voltages 𝑉𝑉𝐻𝐻  and 𝑉𝑉𝐿𝐿  are 

rewritten in two components, the differential mode Δ𝑉𝑉0 (Δ𝑉𝑉0 = 𝑉𝑉H − 𝑉𝑉L) and the common 

mode  𝑉𝑉DC0 (𝑉𝑉DC0 = (𝑉𝑉H + 𝑉𝑉L)/2). For modelling purpose, 𝛿𝛿𝛿𝛿dm is the local voltage deviation 

to the average differential mode Δ𝑉𝑉0 and 𝛿𝛿𝛿𝛿cm is the local voltage deviation to the average 

common mode 𝑉𝑉DC0. 

The PD expression can be evaluated using Eq. (III-8) (𝛥𝛥𝛥𝛥𝑘𝑘 = 0). Then 𝑑𝑑𝑘𝑘 expression 

of the disturbed triangular wave can be generically written as shown in Eq. (III-31). It can be 

noted 𝑑𝑑𝑘𝑘  is composed of a common mode 𝑑̅𝑑  (cumulative) and an oscillating mode 𝑑̃𝑑  (non-

cumulative). 

 𝑑𝑑𝑘𝑘 = 𝑑̅𝑑 + (−1)𝑘𝑘𝑑̃𝑑 (III-31) 

Figure III-15 and its impact on the PD. 

 
Figure III-15 – Reference and disturbed triangular waves. 

It should be noted the triangular wave common mode does not modify the period, but it 

disturbs the PD measurement, i.e. there is no cumulative effect (𝑑̅𝑑 = 0). In the other hand, the 

triangular wave differential mode modifies systematically the period, but does not cause 

oscillation (𝑑̃𝑑 = 0). 
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To obtain 𝑑̅𝑑 from Δ𝑉𝑉0  and 𝛿𝛿𝛿𝛿dm , the term 𝑑̃𝑑 has to be supressed. It can be done by 

computing the PD difference between two non-consecutive iterations 𝛿𝛿𝛿𝛿 , as shown in Eq. 

(III-32). 

𝛿𝛿𝛿𝛿 = 𝜃𝜃𝑘𝑘+2 − 𝜃𝜃𝑘𝑘 = 𝑑𝑑𝑘𝑘+1 + 𝑑𝑑𝑘𝑘 = 2 𝑑̅𝑑       ∴ 𝑑̅𝑑 = ½ 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿/𝑇𝑇0 =
𝛿𝛿𝛿𝛿dm
Δ𝑉𝑉0

 (III-32) 

Similarly, to obtain 𝑑̃𝑑 from Δ𝑉𝑉0 and 𝛿𝛿𝛿𝛿dm, the term 𝑑̅𝑑 has to be suppressed. It can be 

done by computing the difference between two consecutive iteration PD differences 𝛿𝛿𝛿𝛿, as 

shown in Eq. (III-33). 

𝛿𝛿𝛿𝛿 = (𝜃𝜃𝑘𝑘+2 − 𝜃𝜃𝑘𝑘+1) − (𝜃𝜃𝑘𝑘+1 − 𝜃𝜃𝑘𝑘) = 𝑑𝑑𝑘𝑘+1 − 𝑑𝑑𝑘𝑘 = 2 𝑑̃𝑑     ∴ 𝑑̃𝑑 = ½ 𝛿𝛿𝛿𝛿 = 2
𝛿𝛿𝛿𝛿cm
𝑉𝑉DC0

 (III-33) 

As a general rule, all mismatches impacting the frequency (e.g. average slew rate) can 

be generalized on the 𝑑̅𝑑  value, while the mismatches impacting the symmetry (e.g. 

positive/negative slew rate) will impact the components 𝑑̃𝑑i. 

The expressions in Eq. (III-34) shows the relations between the disturbance 𝑑̅𝑑  to a 

frequency deviation 𝛿𝛿𝛿𝛿 through a small signal approximation, where 𝑇𝑇 and 𝑇𝑇0 are the local and 

reference carrier periods, respectively, and 𝑓𝑓  and 𝑓𝑓0  their frequencies, respectively. The 

average local error 𝜀𝜀𝜃𝜃��� is also shown in Eq. (III-34). 

 

1 + 𝛿𝛿𝛿𝛿 = 1 + 2 𝑑̅𝑑 =
𝑇𝑇
𝑇𝑇0

=
𝑓𝑓0

𝑓𝑓0 + 𝛿𝛿𝛿𝛿
≅ 1 −

𝛿𝛿𝛿𝛿
𝑓𝑓0

  

𝑇𝑇 = 1 𝑓𝑓⁄
𝑇𝑇0 = 1 𝑓𝑓0⁄
𝑓𝑓 = 𝑓𝑓0 + 𝛿𝛿𝛿𝛿

                 
∴ 𝑑̅𝑑 ≅ −

1
2

 
𝛿𝛿𝛿𝛿
𝑓𝑓0

∴ 𝜀𝜀𝜃𝜃��� ≅
1

2𝛼𝛼
 
𝛿𝛿𝛿𝛿
𝑓𝑓0

 
(III-34) 

To guarantee the validity of the model, the disturbance common mode 𝒅𝒅∗0 has to be 

null, even if the local components 𝑑̅𝑑i are not null. It is achieved when the reference triangular 

signal frequency 𝑓𝑓0  is the average frequency of all active modules. As a consequence, the 

steady-state frequency is the average of all active TWGs’ frequencies and the interleaving error 

is only due to their frequency mismatches. 

Even if the average value of the oscillating component 𝑑̃𝑑 is null, it also affects the PWM 

signals PD generated from the triangular carrier. It is because the PWM signal is referenced 

only to one commutation (valley or peak), resulting in a systematic shift. This is a weakness of 

this approach, as the PD error is dependent not only on the frequency but also on the signal 

symmetry, so frequency trimming is not effective to reduce interleaving error. 
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To conclude, mathematical expressions can be derived and used to provide design 

recommendations such as local controller gain and frequency accuracy requirements to achieve 

the local error accuracy target. For instance, with a required local error accuracy 𝜀𝜀𝜃𝜃��� = ±1%, 

the frequency accuracy has to be better than ±2% if the local controller gain 𝛼𝛼 = 1. The 

complete expression of the final error regarding all parameters is not developed in this 

document. 

 Particular case using comparators (𝜶𝜶 = 𝟐𝟐) 
The approach presented by XIAO in [29] uses comparators to change the slope direction 

of the triangular signals, similar to applying an infinite voltage gain (𝛼𝛼 = 2). Considering the 

model still valid in this case, all poles are on the unit circle and all differential modes oscillate, 

and theoretically, there is no convergence. 

However, even if there is no convergence when the gain 𝛼𝛼 = 2, all triangular carriers 

change the sign of their slope at the neighbors’ crossing instant, such as in a correctly 

interleaved system with no mismatches. As these are contradictory situations, the system cannot 

be correctly interleaved. 

As shown previously, a DC level mismatch causes an oscillating disturbance. To solve 

the convergence issue, XIAO added in his approach a saturation in the triangular signals to keep 

them between 𝑉𝑉𝐿𝐿 and 𝑉𝑉𝐻𝐻, avoiding DC level mismatch and force convergence. 

 Circuit based simulations 
Circuit based simulations are realized to validate the model proposed. 

Figure III-16, Figure III-17 and Figure III-18 show two simulations each with 8 active 

TCGs to reveal the behavior of a system in (a) with limited positive gain 𝛽𝛽  (𝛼𝛼 = 1,𝛽𝛽 = 0.5) 

and in (b) a system with comparators (𝛼𝛼 = 2,𝛽𝛽 → +∞). The clock and triangular signals are 

shown on the top and bottom, respectively, with the following color code: 

 
 

where FCx stands for 𝑥𝑥𝑡𝑡ℎ LC, also named LCx. 

FC1.clk FC2.clk FC3.clk FC4.clk FC5.clk FC6.clk FC7.clk FC8.clk

 

 

FC1.Vtri FC2.Vtri FC3.Vtri FC4.Vtri FC5.Vtri FC6.Vtri FC7.Vtri FC8.Vtri
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 (a)  (b) 
Figure III-16 – Simulation Mode 2: a)  𝛼𝛼 = 1,𝛽𝛽 = 0.5; b) 𝛼𝛼 = 2,𝛽𝛽 → +∞. 

 (a)  (b) 
Figure III-17 – Simulation Mode 3: a)  𝛼𝛼 = 1,𝛽𝛽 = 0.5; b) 𝛼𝛼 = 2,𝛽𝛽 → +∞. 
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 (a)  (b) 
Figure III-18 – Simulation Mode 4: a)  𝛼𝛼 = 1,𝛽𝛽 = 0.5; b) 𝛼𝛼 = 2,𝛽𝛽 → +∞. 

As expected, based on the z-domain model, all modes are damped when 𝛽𝛽 is a limited 

positive gain   (𝛼𝛼 = 1,𝛽𝛽 = 0.5). According with the proposed model, the ideal system with 

comparators (𝛼𝛼 = 2,𝛽𝛽 → +∞)  and without delays results in non-damped oscillations. The 

model satisfactorily represents the transient performance, showing the stability limit when 𝛽𝛽 →

+∞, resulting in all poles close to the unitary circle. 

Figure III-19 shows two simulations to reveal the start-up response of a system with 

α = 1. In (a) start-up by groups (4+4) and (b) start-up in phase opposition(1+7). 

 (a)  (b) 
Figure III-19 – Start-up response, 𝛼𝛼 = 1, 𝑁𝑁 = 8: a) start-up by groups (4+4), b) start-up in phase 
opposition(1+7). 

It can be noted that the start-up by groups converges faster (Mode 1 is not disturbed) 

than the start-up with one LC in phase opposition as revealed by the model. 
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Considering the first model with only the local loop, the case 𝛼𝛼 = 1 (𝛽𝛽 = 0.5) 

corresponds to the one shoot response, and is similar to the digital system described previously. 

However, the overall digital implementation is not stable in this condition, while the Triangular 

Carrier Self-Alignment is shown with these simulations. 

Figure III-20 show a simulation of the particular case using comparators 

(α = 2,β → +∞) introduced by XIAO. In the simulation, only Mode 4 is disturbed at the 

beginning and triangular signals kept between 𝑉𝑉𝐿𝐿 and 𝑉𝑉𝐻𝐻. 

 
Figure III-20 – Simulation Mode 4 using comparators (𝛼𝛼 = 2,𝛽𝛽 → +∞) with triangular signals kept 
between 𝑉𝑉𝐿𝐿 and 𝑉𝑉𝐻𝐻. 

It can be noted in Figure III-20 that the system converges slowly to the expected steady-

state interleaving, even if α = 2,β → +∞. 

 Conclusion 
This chapter has presented a complete model of the triangular carrier self-alignment 

approach and analyzed its stability criterion. 

The proposed model shows the system is robust and can work properly in a wide range 

of gain and large number of LCs. However, the proportional controller (one freedom degree) 

limits the system performance because it links directly the transient response with the static 

error, requiring a trade-off. 

The interleaving method using analog signals at the communication links between 

devices complicate bypass circuits (analog switches and buffers are needed). Moreover, 

intrinsic mismatch between triangular signal generators (analog signals) cause phase-delay 

(interleaving) errors that cannot be avoided by frequency adjustment (trimming). 
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The ability to compute a proper correction even when the local phase-delay not in 

between the neighbors is an additional strength. Nevertheless, its inability to interleave between 

coincident neighbors makes start-up with numerous coincident carriers risky. Moreover, the 

mismatch impact in this condition (at start-up with very close neighbors) is still unknown. 

Reconfiguration disturbs the PWM signals when the triangular signal play the role of 

carrier. Using the control signal superimposed on only one threshold would improve this point, 

e.g. making correction on triangle peak threshold if duty cycle is low. However the triangle 

peaks would be well interleaved while the triangle valleys would be subject to the mismatch, 

resulting in an increase on interleaving error. 

The following 4 points summarize the triangular carrier self-alignment approach main 

weaknesses to be addressed in order to improve the system: 

- Non-flexible controller; 

- Uses analog signal; 

- Unable to interleave between coincident neighbors; 

- PWM disturbance during reconfiguration. 

 



 

 
 

 

 

 New approach: digital signal self-interleaving system 
This chapter introduces a new modular distributed self-interleaving approach based on 

elements exchanging only digital signals, such as clock signals. This chapter includes the design 

process required to obtain the system parameter values leading to high availability with good 

transient and static performances. A model and the study of its dynamic behavior are provided. 

Additionally, fault events in the communication lines are considered, described and simulated. 

The methods to detect and overcome this fault events are also described. 

 Self-interleaving features 
The circular-chain numeric interleaving and the triangular carrier self-interleaving 

methods have been deeply studied in chapter II and III respectively, where models have been 

proposed, their stability criterion stablished and their performance limits demonstrated. 

The interleaving system features can be classified in three main categories: topology, 

availability and performance. The feature categories and their goals for this interleaving system 

are listed on Table IV-1. 

Table IV-1 –New interleaving system features/goals. 

Feature category Goal 
Topology Modularity, scalability, unrestricted carrier type 

Availability Fail-operational, no Single Point Of Failure (SPOF) 

Performance Communication noise immunity, mismatch sensitivity, settle time, 
static error, smooth transient (no duty-cycle discontinuity) 

  
From now, the previous systems’ accomplished goals will be summarized. Then, their 

limitations will be highlighted. A new auto-interleaving method will be proposed, providing 

appropriate improvements, followed by its detailed theoretical study and its implementation. 

Finally, experimental results will be provided to demonstrate the validity of the proposed 

method. 

IV.1.1. Advantages, features to keep 
The advantages and features of the two interleaving techniques of chapter II and III to 

keep in the new approach are listed below. 

Advantages shared by both implementations: 
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a. Modularity: all modules are equal, i.e. no master required; 
b. Fail-operational when a communication line fails (note a fault detection is however 

required). 

Advantages of the circular-chain numeric interleaving due to its digital implementation: 

c. Digital communications, i.e. high noise immunity; 
d. Flexible local controller corrector (not only proportional), i.e. better closed-loop 

performance; 
e. Several possible carrier waveform choices and modulation techniques, i.e. carrier 

generator dissociated from the local controller; 
f. No mismatch issue. 

Advantages of the triangular carrier self-interleaving mainly due to its analog 

implementation: 

g. No shared wire, i.e. no wire connecting all elements (a global clock signal for instance); 
h. Theoretical unlimited scalability and with perfect interleaving: Continuous phase-delay 

values (not pre-defined/discrete). 

It should be noted the circular-chain numeric interleaving has a major drawback due to 

the required global clock share-wire. This common wire is a SPOF. So a system architecture 

such as the triangular carrier self-interleaving should be considered. However, its limitations 

and weaknesses, mismatches and noise dependences for instance, have to be improved. This 

will be discussed thereafter. 

IV.1.2. Limitations, features to improve 
To develop a robust circular chain interleaving system, the triangular carrier self-

interleaving weaknesses have to be listed and discussed. The main issues are: 

a. Matching issues: the control is based on arithmetical operations over analog signals; 

Each local controller and carrier generator has its own local references (voltages, 

currents). They can be slightly different from one to the other. On one hand, comparing two 

mismatched signals leads to make inevitable mistakes. On the other hand, comparing the time 

delay between two digital signals based on their rising and falling edges avoid all mismatch 

issues. 

b. Low noise immunity: the external analog signals are used to generate the local phase 
correction. 

The self-alignment principle is based on modifying the local Schmitt trigger thresholds 

using the difference of the neighbors’ triangular carrier analog signals. In that case, any external 

electrical noise injection can alter the Schmitt trigger commutation instant and therefore the 
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phase position accuracy. Filtering the control signal is not recommended because it would add 

an additional phase-delay on the commutation and generate a systematic error. 

c. Disturbance issues: PWM disturbance during reconfiguration due to transient on carrier
amplitudes;

The Schmitt trigger thresholds are strongly affected during the transient/reconfiguration

event, leading to affect the several carrier amplitudes. Therefore, the duty-cycles of the PWM 

signals are also affected, resulting in transient on both output voltage regulation and leg current 

balance. To avoid this issues, the carrier amplitudes have to remain constant. Note that, to 

implement the self-interleaving function, the carrier slope may be changed instead of the 

Schmitt trigger thresholds, but the slope values should be kept constant during the whole period. 

d. Closed-loop issues: trade-off between settle time and static error;

By nature, the equivalent local controller implied by the analog computation is a simple

proportional. A more sophisticated controller allowing to implement a more complex control 

law has to be identified, so that the different closed-loop performance indicators (static gain, 

settling time, damping) can be set independently. 

e. Carrier choice: the interleaving principle is attached to the triangular carrier;

The local controller computes the neighbors’ triangular carrier difference and

superposes it on the triangular signal generator thresholds. A more generic method has to be 

proposed that dissociates these two intrinsic points, i.e. the shape of the carrier and the 

interleaving management. 

f. Inter-connection number issue: a large number of connections is required (4 per LC).

To reduce communication lines, each neighbor connections can be a input/output and

perform AND operations by wire. E.g. if the outputs are of type open drain, when connected 

together, each local controller would obtain on the wire the AND result of the LCs outputs. 

However, reducing the number of connections may compromise the fail-operational status and 

potentially add some SPOFs. 

These 6 points can be summarized as the following actions to take: 

a. Avoid comparing analog signals from different sources;
b. Avoid using an external analog signal to control directly the local phase-delay;
c. Avoid altering the carrier shape during a period;
d. Use a more sophisticated controller transfer function;
e. Use a local control structure made of several dissociated functions (local controller +

VCO);
f. Mutualize connections if possible.

The study of the new interleaving technique will be described thereafter.
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 New improved self-interleaving technique building blocks 
To avoid signal mismatches, the module communications have to be based on digital 

signals, such as a clock signal. Many multiphase control structures do not require interleaved 

carriers but only interleaved clocks, such as peak/valley detection current-mode control or 

Digital PWM (D-PWM). In the literature and in many commercial applications, the interleaved 

clocks are generated from a global synchronization clock and a local Delay Locked Loop (DLL). 

In these applications, one oscillator generates the global synchronization clock and imposes the 

frequency to the other modules. The local interleaved clocks are generated using DLLs. Then, 

for our case, if a carrier is required, it can be generated using the same phase-delay of the local 

interleaved clock one. 

Now, in order to remove any SPOF, if the global synchronization clock is avoided, an 

oscillator has to be associated to each local interleaved signal. To obtain the targeted 

interleaving, a Voltage Controlled Oscillator (VCO) has to be used and a feedback loop is 

required to position its phase-delay in the middle of other two neighboring signals. It is 

comparable to a PLL system that locks the VCO output clock signal 𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜 to an input clock 

signal 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖, using a phase detector and a loop filter, such as the one shown in Figure IV-1. 

(a)     (b) 
Figure IV-1 – Phase-Locked Loop: a) Classical, b) Expected self-interleaving block diagram. 

However, to provide the interleaving with this new approach, a particular phase detector 

has to be designed, not only to observe the clock frequency, but also to interleave the local VCO 

clock signal 𝑐𝑐𝑐𝑐𝑐𝑐 with the two external clock signals 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁.Figure IV-1(b) shows an 

example of the expected block diagram of the circular-chain interleaving module that 

dissociates clearly each function block of the structure. 

It should be noted that the triangular carrier self-interleaving system, previously 

described in chapter III, is an application case of this approach, but using some analog shortcuts. 

Indeed, in that previous case, the “PLL” function is resulting of the analog computations made 

and is not that clear such as a classical PLL circuit: the subtraction of the neighbors’ carriers is 

equivalent of a phase detector, the voltage gain is equivalent to the loop filter, the triangular 

carrier generator with adjustable threshold acts like a VCO and includes a built-in feedback. 
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Thereafter, the implementation of each function composing the expected self-

interleaving block diagram has to be identified. 

IV.2.1. VCO and triangular carrier generator
The objective of this new system is to interleave clock signals and then obtain

interleaved carrier signals of any shape if required. So, a VCO that generates a clock signal is 

required. It is known that the carrier generator, previously described in chapter III, has an 

internal digital signal that is locked on the triangular carrier. So the digital signal Phase-Delay 

(PD) is the same as the triangular signal PD. The triangular carrier generator based on 

operational amplifiers can be slightly modified to become a classic VCO, such as the one shown 

in Figure IV-2 from Texas Instruments® LM358 datasheet. The equivalent signals OUTPUT1, 

OUTPUT2 and +𝑉𝑉𝐶𝐶∗ will be called 𝑐𝑐𝑐𝑐𝑐𝑐, 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑢𝑢, respectively, in this study. Here, the level 

of the signal 𝑢𝑢 imposes the clock frequency. The peak of the triangular signals is aligned with 

the clock rising-edge and its valley is aligned with the clock falling-edge. 

Figure IV-2 – Texas Instruments LM358 datasheet: VCO and triangular carrier generator. 

Now, if the edges of the square clock signals involved in the system are equally spaced 

in time, so the square clock signals become interleaved. So the triangular signals will be 

interleaved accordingly. 

IV.2.2. Phase detector
The PDs present between the local and the neighbors’ digital signals can be computed

using a common phase detectors such as the one used in a PLL or a DLL circuit. It should be 

noted that a Charge-Pump (CP) (charge manager using two control signal 𝑈𝑈𝑈𝑈  and 𝐷𝐷𝐷𝐷) is 

included in the phase detector. The position error of the local clock can be obtained by making 

the difference of two phase detector outputs, i.e. resulting in a Differential Phase Detector 

(DPD). An exclusive OR (XOR, ⨁) logic gate is commonly used as a phase detector operator. 
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An example of this operation is shown in Figure IV-3, where (a) shows a carrier correctly 

positioned (interleaved) and (b) shows a carrier slightly late (phase-delay case), where 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are respectively the previous, the local and the next triangular signals, 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃, 𝑐𝑐𝑐𝑐𝑐𝑐 , 

𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁  are their related clock signals, all with the same frequency, and 𝜃𝜃𝑃𝑃 , 𝜃𝜃 , 𝜃𝜃𝑁𝑁  are their 

respective PDs. 

(a) (b) 
Figure IV-3 – Phase detector operations on digital signals (outputs of the Schmitt triggers): a) carrier 
correctly positioned, b) carrier slightly late. 

Eq. (IV-1) develops the required phase detector expressions used in Figure IV-3. 

 𝑈𝑈𝑈𝑈 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐 𝐷𝐷𝐷𝐷 = 𝑐𝑐𝑐𝑐𝑐𝑐 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁 (IV-1) 

It should be noted that, in case (a), the PD of signals 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 is equal to the PD of 

signals 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The same remark applies for their respective clock signals. Then, the 

pink and blue surfaces observed on the XOR logic gate outputs are equal. However, in case (b), 

the PDs are different and the resulting pink and blue surfaces are different. The charge-pump 

converts these surfaces into two amounts of charges delivered to the loop filter. The loop filter 

convert the charges to a voltage to control the local VCO. 

Nevertheless, the XOR DPD has its limitations because each unitary phase detector 

(XOR gate) is not equivalent to a bijective function. In other words, the XOR operation 

periodical average (〈 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵 〉𝑇𝑇0) results on a signal which duty-cycle is proportional to 

the absolute value of the phase difference, as shown in Eq. (IV-2), where 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴 and 𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵 are two 

clock signals at the same frequency with period 𝑇𝑇0 and the normalized phase-delay 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐵𝐵, 

respectively. It does not indicate if each signal is in phase-delay or phase-advance. 

 𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵 ∈ [ 0, 1[,       ∆𝜃𝜃𝐴𝐴,𝐵𝐵 = 𝜃𝜃𝐵𝐵 − 𝜃𝜃𝐴𝐴      ⟹     (IV-2) 
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〈 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵 〉𝑇𝑇0 = 𝑓𝑓(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = �
2 �∆𝜃𝜃𝐴𝐴,𝐵𝐵�, 𝑖𝑖𝑖𝑖 �∆𝜃𝜃𝐴𝐴,𝐵𝐵� ≤ 0.5

2 − 2 �∆𝜃𝜃𝐴𝐴,𝐵𝐵� 𝑖𝑖𝑖𝑖 0.5 < �∆𝜃𝜃𝐴𝐴,𝐵𝐵� < 1

It can be noted that a plot of the XOR phase detector function presents a “V” shape if 

𝜃𝜃𝐴𝐴 or 𝜃𝜃𝐵𝐵 is equals to 0.5. It can be generalized with a triangular shape for different 𝜃𝜃𝐴𝐴 or 𝜃𝜃𝐵𝐵 

values. 

Now, the position error of the local signal with its two neighbors is provided by making 

the average of the difference of two phase detector output signals. The perceived error 𝜀𝜀𝜃𝜃′ when 

using the XOR gates is shown in Eq. (IV-3). 

�𝜃𝜃𝑃𝑃, 𝜃𝜃,𝜃𝜃𝑁𝑁  ∈ [ 0, 1[
𝜃𝜃𝑁𝑁 ≥ 𝜃𝜃𝑃𝑃

 ⟹ 

𝜀𝜀𝜃𝜃′ = 𝑓𝑓(𝜃𝜃𝑃𝑃,𝜃𝜃,𝜃𝜃𝑁𝑁) =
〈 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐 〉𝑇𝑇0 − 〈 𝑐𝑐𝑐𝑐𝑐𝑐 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁 〉𝑇𝑇0

4
 

(IV-3) 

Then, the perceived error 𝜀𝜀𝜃𝜃′ results in a subtraction of two triangular functions. Its 

value depends both on the relative position of the local signal 𝜀𝜀𝜃𝜃 and also the distance in phase 

of the two neighbors ∆𝜃𝜃𝑃𝑃,𝑁𝑁 = 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃. The result is shown in Figure IV-4. 

Figure IV-4 – Perceived error with XOR phase detector. 

Figure IV-4 shows that the response of DPD described in Eq. (IV-3) results in 4 distinct 

regions: 

a. Linear region (green): perceived error 𝜀𝜀𝜃𝜃′ equals to 𝜀𝜀𝜃𝜃;
b. Saturation region (blue): perceived error 𝜀𝜀𝜃𝜃′ non null and do not varies with 𝜀𝜀𝜃𝜃;
c. Reverse region (pink): perceived error 𝜀𝜀𝜃𝜃′ decreases while 𝜀𝜀𝜃𝜃 increases.
d. Dead zone (red): perceived error 𝜀𝜀𝜃𝜃′ null while 𝜀𝜀𝜃𝜃 non null;

It should be noted that all initial condition complying with a Proper Interleaving

Arrangement (PIA) are in the DPD linear region and leads consequently to a correct interleaving 

if the system is stable and the disturbances are moderated. 
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The XOR gate reacts to the rising and falling edges of the signals, resulting in two 

measurements per period. However, the double measurement can bring issues. For instance, if 

the clock signal duty-cycles are not equal, a dead-zone around the region where the error is 

close to zero may appear. This dead-zone will generate jitter and must be eliminated. A different 

logic can be used to solve this issue, such as detecting only the phase-delay around one edge, 

for instance around the falling edge (triangle valley) shown in Eq. (IV-4). 

𝑈𝑈𝑈𝑈 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃������ ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 𝐷𝐷𝐷𝐷 = 𝑐𝑐𝑐𝑐𝑐𝑐���� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁 (IV-4) 

This single edge approach provides the same results as the ones of the XOR gate, but 

the error measurement operator gain is divided by 2. 

Now special care has to be taken regarding the dead-zone around the region where 

neighbors are coincident, i.e. ∆𝜃𝜃𝑃𝑃,𝑁𝑁 = 0. This region can bring uncertainty during start-up. 

Moreover, when high number of local controllers is used, it may result in non-deterministic 

steady-state condition. This approach has also a limited lock-in range, so the frequency 

difference of the clock signals has to be small. 

In a real case with disturbances, the dead-zone can lead to a wrong interleaving even if 

the start condition is PIA. Then, the linear region can be increased around the origin (𝜀𝜀𝜃𝜃 =

0,∆𝜃𝜃𝑃𝑃,𝑁𝑁 = 0) to guarantee a correct interleaving in steady-state. Other DPD options to increase 

the linear region around the origin are discussed in Annex E. 

The single edge approach is adopted, due to the continuity insured in the whole PD 

operational domain. Its transient response could be slower in some cases due to the perceived 

error being smaller than the real error outside the linear region. However, the system stays in 

the linear region in normal operation even in extreme cases where some elements are in the 

bounds of 𝜀𝜀𝜃𝜃′ = 𝜀𝜀𝜃𝜃 , such as the case of start-up by groups (∆𝜃𝜃𝑃𝑃,𝑁𝑁 = 0.50, |𝜀𝜀𝜃𝜃| = 0.25) and the 

singular case of reconfiguration from 4 to 3 active carriers (𝜃𝜃𝑃𝑃 − 𝜃𝜃𝑁𝑁 = 0.75, |𝜀𝜀𝜃𝜃| = 0.25). 

The single edge approach presents the advantage of performing the interleaving base on 

the detection of only one edge of the clock signal, either the rising or falling-edge. Then, the 

events synchronized with these edges will be correctly interleaved. For instance, when a 

triangular carrier is used with low duty-cycle, in order to avoid any PWM signal interleaving 

error related to carrier symmetry mismatches, it is better to interleave the edges related to the 

triangle valley. 
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IV.2.3. Loop filter

The durations of the phase detector output signals 𝑈𝑈𝑈𝑈 and 𝐷𝐷𝐷𝐷 are converted into an

equivalent amount of charges by the charge-pump circuit. It should be noted that the charge-

pump output is a current named 𝑖𝑖𝑃𝑃 with high frequency content because the current sources are 

switched. As the name explains, the Loop Filter remove the high frequency content and sets the 

PLL closed-loop behavior. 

The system proposed here must have the VCO voltage constant in between periods, 

requiring them a very low cut-off frequency. However, it implies in a very limited transient 

response. To filter properly the CP current and have a good transient response, the loop filter 

will be divided in two: a periodic average circuit and a generic controller. Its simplified 

electrical diagram is shown in Figure IV-5. 

Figure IV-5 – Simplified electrical diagram used to compute the periodic average of the charge-pump 
current. 

The charge-pump output is connected to a capacitor 𝐶𝐶 to store the resulting charges 

within a full clock period, producing a voltage 𝑣𝑣𝐶𝐶  proportional to the average 𝑖𝑖𝑃𝑃 value. Then, 

𝑣𝑣𝐶𝐶  is sampled, i.e. a copy is stored in the capacitor 𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, using the “smp” signal. When “smp” 

is not active, 𝐶𝐶𝐻𝐻𝐻𝐻𝑙𝑙𝑑𝑑 holds the last sampled voltage. Then, 𝑣𝑣𝐶𝐶  is reset to zero using the signal “rst” 

at each period, avoiding any integration effect. The resulting maintained voltage is noted 𝑣𝑣𝜀𝜀𝜃𝜃 

because it is a voltage representing the error. The sampling and reset operations are 

synchronized with the opposite clock edge used for the error measurement. As a result, a half 

period delay is added in the control loop. The control signals and voltage waveforms are shown 

later in Figure IV-9. 

Periodic Average Circuit 

Figure IV-6 shows the current 𝑖𝑖𝐶𝐶 waveform of the charge-pump circuit when the local 

carrier is constant and the neighbor’s difference is kept constant ∆𝜃𝜃𝑃𝑃,𝑁𝑁 = 0.5. At the same time, 

the neighbor’s frequency changes so that the PDs change to produce a local error in a cosine 

shape with an amplitude of 0.25 and a period equal to 10 carrier periods. It is clearly shown that 

the current 𝑖𝑖𝐶𝐶 is directly dependent of the interleaving error and consequently the amount of 

charges provided to (blue area) or removed from (pink area) the capacitor. 
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Figure IV-6 – Current of the charge-pump circuit 𝑖𝑖𝐶𝐶 as a function of the neighbor’s PD (with 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 =
0.5), the fundamental 𝑖𝑖𝐶𝐶 1/10 𝑓𝑓0 and the periodical average 〈𝑖𝑖𝐶𝐶〉𝑇𝑇0. 

The 𝑖𝑖𝐶𝐶  fundamental harmonic waveform 𝑖𝑖𝐶𝐶 1/10 𝑓𝑓0  at 1/10 of the carrier frequency is 

shown. The curb 〈𝑖𝑖𝐶𝐶〉𝑇𝑇0 is the periodic average of 𝑖𝑖𝐶𝐶, i.e. a constant current applied within the 

period 𝑇𝑇0 , between 𝑘𝑘 𝑇𝑇0  and (𝑘𝑘 + 1) 𝑇𝑇0 . Both signals 𝑖𝑖𝐶𝐶  and 〈𝑖𝑖𝐶𝐶〉𝑇𝑇0  are representative of the 

error. It is confirmed by their Fast Fourier transform shown in Figure IV-7, where the frequency 

axis is normalized to the carrier frequency. 

Figure IV-7 – Normalized Fast Fourier Transform (FFT) of 𝑖𝑖𝐶𝐶 and 〈𝑖𝑖𝐶𝐶〉𝑇𝑇0. 

The 𝑖𝑖𝐶𝐶 signal FFT presents several high frequency harmonics. The desired information 

is provide at low frequency (here 𝑓𝑓0/10), but the dominant harmonic at the carrier frequency𝑓𝑓0 

has to be filtered. It can be noted most of the high frequency harmonics are mitigated with the 

〈𝑖𝑖𝐶𝐶〉𝑇𝑇0 signal FFT. 

Corrector 

The corrector 𝐶𝐶(𝑠𝑠) add compensation poles and zeros to ensure the system closed-loop 

criteria, such as a small static error, the system stability and the transient response performances. 

The controller output 𝑢𝑢 (VCO control voltage input) should also be kept constant each period 

to avoid disturbing the slope of the VCO triangular signal during reconfigurations and steady-

state operation. However, as a periodic average of the error is made, the voltage 𝑢𝑢 will vary 

slowly during the period if the corrector 𝐶𝐶(𝑠𝑠) has proportional behavior. 
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The controller C(s) can be implemented by several means. For instance, with a simple 

analog Op-Amp and its appropriate feedback made of resistors and capacitors. The resulting 

controller would be very flexible because many different transfer functions could be synthetized. 

The correction is considered to have slow variation between two successive samples and to be 

constant in steady-state. A switched capacitor approach could also be considered to implement 

the sampling circuit and the corrector C(s) at the same time in a unique stage (both functions 

would be merged). 

Considering all these elements, a small-signal model of one interleaving bloc will be 

proposed. Then the whole system with 𝑁𝑁 interleaved carriers will be modelled and its stability 

criteria will be revealed. 

Single loop model 
The static behavior of all elements was developed in the previous section. Now, a small 

signal continuous time model of a single interleaving element is proposed. As presented earlier, 

three subsystem have to be modeled. They are: 

1. The Error Detector 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠), composed by:
a. The Phase Detector,
b. The Charge-Pump,
c. The Periodic Average circuit,

2. The Corrector 𝐶𝐶(𝑠𝑠), composed by:
a. A stage providing the appropriate poles and zero,

3. The VCO 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠).

The error detector, noted 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠), combine three subsystems that are involved in an

unique transfer function. Figure IV-8 shows a simplified block diagram representing the LC 

internal elements, where 𝐶𝐶(𝑠𝑠) and 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) are the controller and the VCO transfer functions 

respectively. As shown in the figure, it is assumed that an additional noise signal 𝑛𝑛(𝑡𝑡) appears 

at the corrector input and also an additional disturbance signal 𝑑𝑑(𝑡𝑡) appears at the VCO input. 

Figure IV-8 – Small signal block diagram representing one LC elements. 

In our application, described later, the corrector 𝐶𝐶(𝑠𝑠) is composed by an operational 

amplifier with a feedback loop. Its transfer function, noted 𝐶𝐶(𝑠𝑠) = 𝑈𝑈(𝑠𝑠) 𝐸𝐸(𝑠𝑠)⁄ , will be chosen 

later. 
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The signal 𝜃𝜃 represents the normalized PD measurement of the local clock signal to a 

virtual reference clock signal at the frequency 𝑓𝑓0. It should be noted that no real reference clock 

signal appears in this system, but a virtual one is used here for modeling reasons. The classical 

VCO transfer function linearized around an operation point is composed by an integrator and a 

normalized gain 𝑘𝑘𝑑𝑑  [𝑉𝑉−1] , called the VCO gain factor, such as 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) = Θ(𝑠𝑠) 𝑉𝑉𝑐𝑐(𝑠𝑠)⁄ =

𝑘𝑘𝑑𝑑 (𝑇𝑇0 ∙ 𝑠𝑠)⁄ . The disturbance signal 𝑑𝑑(𝑡𝑡) is assumed constant and represents the frequency 

difference 𝛿𝛿𝛿𝛿  of the local oscillator frequency 𝑓𝑓 = 𝑓𝑓0 + 𝛿𝛿𝛿𝛿  with the steady-state frequency 

noted 𝑓𝑓0, then 𝑑𝑑(𝑡𝑡) = 𝛿𝛿𝛿𝛿. 

IV.3.1. Error detector 
The analog triangular carrier self-interleaving circuit shown in the previous chapter 

share its triangular carrier waveform with its neighbors. In that case, the PD measurement of 

the local carrier seemed to be sampled, but this is not correct. Indeed, the triangular carrier PD 

is available during the whole period, its value is constant and the corrections are sampled when 

the triangular signal slope changes. 

In this new approach, the clock signals edges are used to obtain the PD and the PD can 

be identified only during the switching instant. In the single edge approach, the PD is observed 

only once a period. As a result, the PD measured is by nature sampled. However, the correction 

signal 𝑢𝑢 is a continuous signal. 

Figure IV-9 shows a simulation result involving the signals of Figure IV-5 and Figure 

IV-8. On top of the figure are shown three analog triangular carriers 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 

related to the previous, local and next PDLC respectively. For each of them, the associated 

digital clock signals 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃, 𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁 are also shown, which are the Schmitt trigger output 

signals used by the local carrier generators of Figure IV-2. In one carrier generator, the carrier 

and the clock signals are always locked in the same phase and frequency because one is 

constructed based on the other. It should be noted that the clock edges are aligned with the peak 

and valley of the triangular signal. 

In this simulation, the local clock signal period is assumed to be always uniform equal 

to T0. At the 𝑘𝑘𝑡𝑡ℎ time period, the local clock rising edge instant is noted 𝑘𝑘, related to time 

instant 𝑘𝑘T0. The PD between 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃 and 𝑐𝑐𝑐𝑐𝑐𝑐 falling edges at the previous half period is noted 

Δ𝜃𝜃𝑃𝑃𝑘𝑘, and the PD between 𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁 falling edges at the previous full period is noted Δ𝜃𝜃𝑁𝑁𝑘𝑘. 

The signals 𝑣𝑣𝐶𝐶  and 𝑣𝑣𝜀𝜀𝜃𝜃  related to the periodical average circuit are also shown with their 

iterations with control signal. A first signal called 𝑠𝑠𝑠𝑠𝑠𝑠 is generated by comparing the triangular 
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carrier with a constant voltage level resulting in a digital signal centered with the triangle peak 

and showing a 10% duty-cycle. Then, the sample signal 𝑠𝑠𝑠𝑠𝑠𝑠 and reset signal  𝑟𝑟𝑟𝑟𝑟𝑟 are generated 

using logic gates with the clock signal, with 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐���� and 𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐. One can 

observe that 𝑣𝑣𝐶𝐶  increases with a constant rate when 𝑈𝑈𝑈𝑈 is high and decreases with the same 

constant rate when 𝐷𝐷𝐷𝐷 is high, 𝑣𝑣𝜀𝜀𝜃𝜃 assumes the same value as 𝑣𝑣𝐶𝐶  when 𝑠𝑠𝑠𝑠𝑠𝑠 is high and 𝑣𝑣𝐶𝐶  

goes back to its initial positions when 𝑟𝑟𝑟𝑟𝑟𝑟 is high. 

 
Figure IV-9 – Simulation of the single edge error PD measurement method. 

The static relationship between the charge-pump current and the clock signal PDs has 

been shown in the last section. Now, the dynamic relationship existing between the three clock 

signals 𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃(𝑡𝑡), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡), 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁(𝑡𝑡) and the sampled PD error 𝑣𝑣ε𝜃𝜃(𝑡𝑡) has to be revealed. 

The expression of the maintained voltage 𝑣𝑣ε𝜃𝜃(𝑡𝑡) , shown in Eq. (IV-5), is the 

convolution of 𝑣𝑣𝐶𝐶∗(𝑡𝑡), the capacitor 𝐶𝐶 sampled voltage, ℎZOH(𝑡𝑡), the Zero-Order hold impulse 

response, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(∙) is the rectangular function. 

 𝑣𝑣ε𝜃𝜃(𝑡𝑡) = 𝑣𝑣𝐶𝐶∗(𝑡𝑡) ∗ ℎZOH(𝑡𝑡) where ℎZOH(𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑡𝑡 − 𝑇𝑇0/2

𝑇𝑇0
� (IV-5) 

The capacitor 𝐶𝐶 sampled voltage expression is shown in Eq. (IV-6). 
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 𝑣𝑣𝐶𝐶∗(𝑡𝑡) = � 𝑣𝑣C(𝑘𝑘 𝑇𝑇0) ∙ 𝛿𝛿 �
𝑡𝑡 − 𝑘𝑘 𝑇𝑇0
𝑇𝑇0

�
∞

𝑘𝑘=−∞

 (IV-6) 

The capacitor 𝐶𝐶  voltage 𝑣𝑣C(𝑘𝑘 𝑇𝑇0)  can be written using its fundamental expression 

related to the integral of the charge-pump output current 𝑖𝑖P(𝑡𝑡). Its expression shown in Eq. 

(IV-7) is composed by the current integral during a period 𝑇𝑇0 plus its initial voltage value. Due 

to the reset circuit, it is assumed the initial capacitor voltage 𝑣𝑣C�(𝑘𝑘 − 1) 𝑇𝑇0� is null. Then, it 

become easy to determine the charge stored into the capacitor during the k𝑡𝑡ℎ period, noted 𝑄𝑄𝑘𝑘. 

 𝑣𝑣C(𝑘𝑘 𝑇𝑇0) =
1
𝐶𝐶
� 𝑖𝑖P(𝑡𝑡)
𝑘𝑘 𝑇𝑇0

(𝑘𝑘−1) 𝑇𝑇0
𝑑𝑑𝑑𝑑 + 𝑣𝑣C�(𝑘𝑘 − 1) 𝑇𝑇0� =

𝑄𝑄𝑘𝑘

𝐶𝐶
 (IV-7) 

The charge-pump output current 𝑖𝑖C(𝑡𝑡) expression is shown in Eq. (IV-8), where 𝐼𝐼P is a 

constant reference current, 𝑈𝑈𝑈𝑈(𝑡𝑡) and 𝐷𝐷𝐷𝐷(𝑡𝑡) are its digital input control signals. 

 𝑖𝑖P(𝑡𝑡) = 𝐼𝐼P [𝑈𝑈𝑈𝑈(𝑡𝑡) − 𝐷𝐷𝐷𝐷(𝑡𝑡)] (IV-8) 

The charge 𝑄𝑄𝑘𝑘 can be identified from Eq. (IV-7) and then solved, as shown in Eq. (IV-9). 

 𝑄𝑄𝑘𝑘 = � 𝑖𝑖P(𝑡𝑡)
𝑘𝑘 𝑇𝑇0

(𝑘𝑘−1) 𝑇𝑇0
𝑑𝑑𝑑𝑑 = 𝐼𝐼P 𝑇𝑇0 �𝐷𝐷𝑈𝑈𝑈𝑈𝑘𝑘 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘� (IV-9) 

with 
𝐷𝐷𝑈𝑈𝑈𝑈𝑘𝑘 =

1
𝑇𝑇0
� 𝑈𝑈𝑈𝑈(𝑡𝑡)
𝑘𝑘 𝑇𝑇0

(𝑘𝑘−1) 𝑇𝑇0
𝑑𝑑𝑑𝑑 =

t𝐿𝐿𝑘𝑘 − t𝑃𝑃𝑘𝑘

𝑇𝑇0
 

𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘 =
1
𝑇𝑇0
� 𝐷𝐷𝐷𝐷(𝑡𝑡)
𝑘𝑘 𝑇𝑇0

(𝑘𝑘−1) 𝑇𝑇0
𝑑𝑑𝑑𝑑 =

t𝑁𝑁𝑘𝑘 − t𝐿𝐿𝑘𝑘

𝑇𝑇0
 

 

where t𝑃𝑃𝑘𝑘, t𝐿𝐿𝑘𝑘  and t𝑁𝑁𝑘𝑘 are the instant where each interleaved 𝑐𝑐𝑐𝑐𝑐𝑐 falling edge event 

happens, 𝐷𝐷𝑈𝑈𝑈𝑈𝑘𝑘 and 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘 are UP and DW signals duty cycles at period 𝑘𝑘. 

There are two main ways to measure a phase-delay: either using instantaneous phasor 

values or using the time delay between the instants where the signals passes through the same 

level. It should be noted that the calculated charge in Eq. (IV-9) is equals to the definition using 

times delays, shown in Eq. (IV-10). 

 Δ𝜃𝜃𝑃𝑃𝑘𝑘 ≜
Δ𝑡𝑡𝑃𝑃𝑘𝑘

𝑇𝑇0
 Δ𝜃𝜃𝑁𝑁𝑘𝑘 ≜

Δ𝑡𝑡𝑁𝑁𝑘𝑘

𝑇𝑇0
 (IV-10) 

where Δ𝑡𝑡𝑃𝑃𝑘𝑘 = t𝐿𝐿𝑘𝑘 − t𝑃𝑃𝑘𝑘 Δ𝑡𝑡𝑁𝑁𝑘𝑘 = t𝑁𝑁𝑘𝑘 − t𝐿𝐿𝑘𝑘  

It should be noted that equalizing the Δ𝑡𝑡𝑃𝑃𝑘𝑘 and Δ𝑡𝑡𝑁𝑁𝑘𝑘, i.e. 𝑣𝑣ε𝜃𝜃(𝑡𝑡) equals to zero, leads to 

a properly interleaved system. Nevertheless, the phasor delay approach is needed to determine 

the transient behavior. 
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The phasor delay approach generate an instantaneous value, where all PDs are sampled 

together, i.e. synchronized at the same instant. However, the clock signal reveals its PD only in 

the edge event, the PDs at the falling edge events are expressed in Eq. (IV-11). 

𝜃𝜃𝑃𝑃(t𝑃𝑃𝑘𝑘) =
t𝑃𝑃𝑘𝑘

𝑇𝑇0
− 𝑘𝑘 𝜃𝜃(t𝐿𝐿𝑘𝑘) =

t𝐿𝐿𝑘𝑘

𝑇𝑇0
− 𝑘𝑘 𝜃𝜃𝑁𝑁(t𝑁𝑁𝑘𝑘) =

t𝑁𝑁𝑘𝑘

𝑇𝑇0
− 𝑘𝑘 (IV-11) 

To obtain the equivalent phasor measurement, 𝜃𝜃𝑃𝑃 and 𝜃𝜃𝑁𝑁 values must be expressed at 

the instant t𝐿𝐿𝑘𝑘. The previous and next sampled PDs can be rewritten as a function of the local 

sampling time, as shown in Eq. (IV-12). 

 𝜃𝜃𝑃𝑃(t𝑃𝑃𝑘𝑘) = 𝜃𝜃𝑃𝑃�t𝐿𝐿𝑘𝑘 − Δ𝑡𝑡𝑃𝑃𝑘𝑘� 𝜃𝜃𝑁𝑁(t𝑁𝑁𝑘𝑘) = 𝜃𝜃𝑁𝑁�t𝐿𝐿𝑘𝑘 + Δ𝑡𝑡𝑁𝑁𝑘𝑘� (IV-12) 

From now, all required relations to determine 𝑣𝑣ε𝜃𝜃(𝑡𝑡) are known and can be solved to 

express the perceived error. By substituting Eq. (IV-12) in Eq. (IV-11), then successively in Eq. 

(IV-10), Eq. (IV-9), Eq. (IV-7), Eq. (IV-6) and finally Eq. (IV-5), the expression of 𝑣𝑣ε𝜃𝜃(𝑡𝑡) in 

Eq. (IV-13) is obtained after a rearrangement. Some matrix notation representing convolution 

sum have been also used to simplify the equation. 

 

𝑣𝑣ε𝜃𝜃(𝑡𝑡) =
2 𝐼𝐼P 𝑇𝑇0
𝐶𝐶

 𝛿𝛿(𝑡𝑡 − 𝑇𝑇0 2⁄ ) ∗ ℎZOH(𝑡𝑡)

∗ � �
0.5
−1
0.5

�
𝑇𝑇

�
𝜃𝜃𝑃𝑃�𝑘𝑘 𝑇𝑇0 − Δ𝑡𝑡𝑃𝑃𝑘𝑘�

𝜃𝜃(𝑘𝑘 𝑇𝑇0)
𝜃𝜃𝑁𝑁�𝑘𝑘 𝑇𝑇0 + Δ𝑡𝑡𝑁𝑁𝑘𝑘�

� ∙ 𝛿𝛿 �
𝑡𝑡 − 𝑘𝑘 𝑇𝑇0
𝑇𝑇0

�
∞

𝑘𝑘=−∞

 
(IV-13) 

Eq. (IV-13) highlights that 𝜃𝜃𝑃𝑃  and 𝜃𝜃𝑁𝑁  are depend on themselves, Δ𝑡𝑡𝑃𝑃𝑘𝑘  and Δ𝑡𝑡𝑁𝑁𝑘𝑘 , 

respectively, because the PD vary between periods and consequently Δ𝑡𝑡𝑃𝑃𝑘𝑘 and Δ𝑡𝑡𝑁𝑁𝑘𝑘 change. In 

chapter III the chain delay was constant (one sampling period to the previous) and the PD 

constant until next period. 

IV.3.2. Error detector Laplace transfer function 

Now, error detector Laplace transfer function noted 𝑉𝑉ε𝜃𝜃(𝑠𝑠) has to be obtained from 

𝑣𝑣ε𝜃𝜃(𝑡𝑡). However, it cannot be done with the expression of Eq. (IV-13) because 𝜃𝜃𝑃𝑃  and 𝜃𝜃𝑁𝑁 

expressions have delays (Δ𝑡𝑡𝑃𝑃𝑘𝑘 and Δ𝑡𝑡𝑁𝑁𝑘𝑘) dependent on themselves. To avoid this issue, Δ𝑡𝑡𝑃𝑃𝑘𝑘 

and Δ𝑡𝑡𝑁𝑁𝑘𝑘 can be approximated by their steady-state expected values, which is 𝑇𝑇0 𝑁𝑁⁄  for a well 

interleaved system, under the assumption of small disturbances around the steady-state 

positions. This hypothesis is formulated on Eq. (IV-14). 

 𝜃𝜃𝑃𝑃�𝑘𝑘 𝑇𝑇0 − Δ𝑡𝑡𝑃𝑃𝑘𝑘� ≅ 𝜃𝜃𝑃𝑃(𝑘𝑘 𝑇𝑇0 − 𝑇𝑇0 𝑁𝑁⁄ ) = 𝛿𝛿(𝑡𝑡 − 𝑇𝑇0 𝑁𝑁⁄ ) ∗ 𝜃𝜃𝑃𝑃(𝑘𝑘 𝑇𝑇0) (IV-14) 
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𝜃𝜃𝑁𝑁�𝑘𝑘 𝑇𝑇0 + Δ𝑡𝑡𝑁𝑁𝑘𝑘� ≅ 𝜃𝜃𝑁𝑁(𝑘𝑘 𝑇𝑇0 + 𝑇𝑇0 𝑁𝑁⁄ ) = 𝛿𝛿(𝑡𝑡 + 𝑇𝑇0 𝑁𝑁⁄ ) ∗ 𝜃𝜃𝑁𝑁(𝑘𝑘 𝑇𝑇0) 

The simplified expression of 𝑣𝑣ε𝜃𝜃(𝑡𝑡) is detailled in Eq. (IV-15). 

 

𝑣𝑣ε𝜃𝜃(𝑡𝑡) ≅
2 𝐼𝐼P 𝑇𝑇0
𝐶𝐶

 𝛿𝛿(𝑡𝑡 − 𝑇𝑇0 2⁄ ) ∗ ℎZOH(𝑡𝑡)

∗ � �
0.5 𝛿𝛿(𝑡𝑡 − 𝑇𝑇0 𝑁𝑁⁄ )

−1
0.5 𝛿𝛿(𝑡𝑡 + 𝑇𝑇0 𝑁𝑁⁄ )

�

𝑇𝑇

∗ �
𝜃𝜃𝑃𝑃(𝑡𝑡)
𝜃𝜃(𝑡𝑡)
𝜃𝜃𝑁𝑁(𝑡𝑡)

� ∙ 𝛿𝛿 �
𝑡𝑡 − 𝑘𝑘 𝑇𝑇0
𝑇𝑇0

�
∞

𝑘𝑘=−∞

 
(IV-15) 

The Laplace transform 𝑉𝑉ε𝜃𝜃(𝑠𝑠) of 𝑣𝑣ε𝜃𝜃(𝑡𝑡) approximation in Eq. (IV-15) is expressed in 

Eq. (IV-16). 

𝑉𝑉ε𝜃𝜃(𝑠𝑠) = ℒ � 𝑣𝑣ε𝜃𝜃(𝑡𝑡) � =
2 𝐼𝐼P 𝑇𝑇0
𝐶𝐶

𝐻𝐻𝑍𝑍𝑍𝑍𝑍𝑍(𝑠𝑠) 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) �
0.5 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)

−1
0.5 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)

�

𝑇𝑇

�
 Θ𝑃𝑃(𝑠𝑠)
Θ(s)

 Θ𝑁𝑁(𝑠𝑠)
� (IV-16) 

where:   

𝐻𝐻𝑍𝑍𝑍𝑍𝑍𝑍(𝑠𝑠) = ℒ { ℎZOH(𝑡𝑡) } =
1 − e−𝑠𝑠𝑇𝑇0
𝑠𝑠𝑇𝑇0

 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) = ℒ { 𝛿𝛿(𝑡𝑡 + 𝑇𝑇0 2⁄ ) } = e
−𝑠𝑠𝑇𝑇0
2  

𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) = ℒ { 𝛿𝛿(𝑡𝑡 − 𝑇𝑇0 𝑁𝑁⁄ ) } = e
−𝑠𝑠𝑇𝑇0
𝑁𝑁  𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) = ℒ { 𝛿𝛿(𝑡𝑡 + 𝑇𝑇0 𝑁𝑁⁄ ) } = e

𝑠𝑠𝑇𝑇0
𝑁𝑁  

It can be observed that the block diagram in Figure IV-8 is not coherent with this transfer 

function because the delay transfer functions 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) and 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) are missing, being 

valid only in the case where 𝜃𝜃𝑃𝑃 and 𝜃𝜃𝑁𝑁 are constant. 

IV.3.3. Plant transfer function 

It is proposed here to consider the plant transfer function noted 𝑃𝑃(𝑠𝑠) , i.e. the 

combination of process and actuator transfer functions, as the function composed of 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 

and 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠), where 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) is composed by the three first terms of 𝑉𝑉ε𝜃𝜃(𝑠𝑠), while the last two 

terms are equivalent to the loop subtractor and the error calculation. The plant transfer function 

is shown in Eq. (IV-17). In the single loop case, the PDs inputs Θ𝑃𝑃(𝑠𝑠) and Θ𝑁𝑁(𝑠𝑠) are considered 

null and do not appears in 𝑃𝑃(𝑠𝑠). 

 𝑃𝑃(𝑠𝑠) =
𝑉𝑉ε𝜃𝜃𝜃𝜃(𝑠𝑠)
𝑈𝑈(𝑠𝑠) = H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) (IV-17) 

where: H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) =
2 𝐼𝐼𝑃𝑃 𝑇𝑇0
𝐶𝐶

 𝐻𝐻𝑍𝑍𝑍𝑍𝑍𝑍(𝑠𝑠) 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) =
𝑘𝑘𝑑𝑑
𝑠𝑠 𝑇𝑇0

  

It should be noted that 𝑃𝑃(𝑠𝑠)  is independent of the period 𝑇𝑇0  because term 𝑇𝑇0  in 

H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) simplify with the term 𝑇𝑇0−1 in 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠). The controller transfer function 𝐶𝐶(𝑠𝑠) is not 
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present in 𝑃𝑃(𝑠𝑠) and is considered in series with it in the forward path. An applicative case with 

the following parameters is defined: 

𝑓𝑓0 = 88 𝑘𝑘𝑘𝑘𝑘𝑘 𝐼𝐼𝑃𝑃 = 2 x 2.5 𝑉𝑉 16 𝑘𝑘Ω⁄  
𝑘𝑘𝑑𝑑 =

1
2.5 𝑉𝑉

10 𝑘𝑘Ω
50 𝑘𝑘Ω

 
𝑇𝑇0 = 1 𝑓𝑓0⁄ = 11.36 𝑢𝑢𝑢𝑢 𝐶𝐶 = 1 𝑛𝑛𝑛𝑛 

Figure IV-10 shows bode diagram of 𝑃𝑃(𝑠𝑠) to the presented applicative case. 

 
Figure IV-10 – P(s) bode diagram with phase and gain margins. 

This applicative case plant 𝑃𝑃(𝑠𝑠) has acceptable phase margin (>57°) at 7.85 kHz, where 

its magnitude is 0 dB. As conclusion, this system does not present particular stability issues. 

Assuming a closed-loop cutoff frequency 𝑓𝑓𝑐𝑐 equals to 7.85 kHz, the expected damping factor is 

𝜉𝜉 ≅ 𝑃𝑃𝑃𝑃 100⁄ = 0.58 if the corrector do not changes the phase in 𝑓𝑓𝑐𝑐  region. A proportional 

controller with a unitary gain would provide the expected transient response. A phase lag can 

be added to increase the static gain and cancel the steady-state error. 

At this point, the model of one local control loop is known, but it cannot reveal the 

stability criterion and dynamic behaviors of the global system. To do so, similar studies made 

in the previous chapters on the global system response will be carried out with this one. 

 Overall system modelling 
As in the previous chapters, the local errors are computed using the matrix 𝑳𝑳  that 

represents the circular chain of communications, i.e. the connections between the LCs. It is 

assumed that all LCs in the circular chain are identical, including an error detector, a VCO, and 

a controller as well. 

The same procedure is adopted here to find the overall system model. The study of the 

system stability with a generic number 𝑁𝑁 of LCs, including the several connections existing 

between them, is performed using a matrix approach. According to the circular-chain sequence, 

the PDs are numbered arbitrarily from 1 to 𝑁𝑁, from previous to next direction, from 𝜃𝜃1 to 𝜃𝜃𝑁𝑁, 
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and then represented by a column vector 𝜽𝜽 (in bold in the following equations). The order of 

all matrices and vectors is 𝑁𝑁 . The block diagram representing the all the elements of this 

interleaving system is shown in Figure IV-11. 

 
Figure IV-11 – Overall system model block diagram. 

For computation purpose, the previous PD vector 𝜽𝜽𝑃𝑃 and the next PD vector 𝜽𝜽𝑁𝑁 are 

defined in Eq. (IV-18) using the circular shift matrix 𝑺𝑺  expressed in Eq. (III-11) and its 

conjugate transposed 𝑺𝑺∗, equal to its transposed 𝑺𝑺𝑇𝑇 because 𝑺𝑺 is real. 

 𝜽𝜽𝑃𝑃 = 𝑺𝑺 𝜽𝜽 𝜽𝜽𝑁𝑁 = 𝑺𝑺∗ 𝜽𝜽 (IV-18) 

The target PD in the vector format, noted 𝜽𝜽�(𝑡𝑡), is shown in Eq. (IV-19), where 𝝋𝝋(𝑡𝑡) 

vector is calculated by the “target operator”. 𝝋𝝋(𝑡𝑡) does not affect the stability study. 

 𝜽𝜽�(𝑡𝑡) = 0.5 [𝜽𝜽𝑃𝑃(𝑡𝑡) + 𝜽𝜽𝑁𝑁(𝑡𝑡)] + 𝝋𝝋(𝑡𝑡) (IV-19) 

The PD error in the vector format, noted 𝜺𝜺𝜃𝜃(𝑡𝑡), is shown in Eq. (IV-20), where 𝑳𝑳 is a 

matrix representing the circular chain connections. 

 𝜺𝜺𝜃𝜃(𝑡𝑡) = 𝜽𝜽�(𝑡𝑡) − 𝜽𝜽(𝑡𝑡) = 𝑳𝑳 𝜽𝜽(𝑡𝑡) + 𝝋𝝋(𝑡𝑡) (IV-20) 

The Laplace transform of the error 𝜺𝜺𝜃𝜃(𝑡𝑡) is noted 𝚬𝚬𝚯𝚯(𝑠𝑠) and shown in Eq. (IV-21). 

 𝜠𝜠𝚯𝚯(𝑠𝑠) = 𝑳𝑳 𝚯𝚯(𝑠𝑠) + 𝚽𝚽(𝑠𝑠) (IV-21) 

However, the error detector circuit of Figure IV-8 cannot detect directly 𝜀𝜀𝜃𝜃, only the 

voltage 𝑣𝑣𝜀𝜀𝜃𝜃 related to it. The 𝑉𝑉ε𝜃𝜃(𝑠𝑠) expression in the single loop case shown by Eq. (IV-16) 

can be rewritten in the matrix format noted 𝑽𝑽ε𝜃𝜃(𝑠𝑠) as detailed in Eq. (IV-22). 

 𝑽𝑽ε𝜃𝜃(𝑠𝑠) =
2 𝐼𝐼P 𝑇𝑇0
𝐶𝐶

𝐻𝐻𝑍𝑍𝑍𝑍𝑍𝑍(𝑠𝑠) 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) 𝜠𝜠𝚯𝚯′(𝑠𝑠) (IV-22) 

where 𝜠𝜠𝚯𝚯′(𝑠𝑠), shown in Eq. (IV-23), is the perceived error, 

 𝜠𝜠𝚯𝚯′(𝑠𝑠) = 𝑳𝑳(𝑠𝑠) 𝚯𝚯(𝑠𝑠) + 𝚽𝚽(𝑠𝑠) (IV-23) 

and 𝑳𝑳(𝑠𝑠), shown in Eq. (IV-24), is a matrix representing the circular chain connections 

with the neighbors’ delays 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) and 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠). 

 𝑳𝑳(𝑠𝑠)  = 0.5 �𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) 𝑺𝑺 + 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) 𝑺𝑺∗� − 𝑰𝑰 (IV-24) 
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This expression can be simplified by removing from the model the neighbors 

measurement delays 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) and 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠). Then, the error vector 𝜠𝜠𝚯𝚯(𝑠𝑠) can appear in 

the final expression, as shown in Eq. (IV-25), because 𝑳𝑳(𝑠𝑠) becomes 𝑳𝑳. It should be noted that 

𝑳𝑳(𝑗𝑗0) = 𝑳𝑳. 

 𝑽𝑽ε𝜃𝜃(𝑠𝑠) =
 2 𝐼𝐼P 𝑇𝑇0
𝐶𝐶

𝐻𝐻𝑍𝑍𝑍𝑍𝑍𝑍(𝑠𝑠) 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) 𝜠𝜠𝚯𝚯(𝑠𝑠) (IV-25) 

The corrector and the VCO matrix transfer functions, 𝑪𝑪(𝑠𝑠) and 𝑯𝑯𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠), are diagonal. 

Their expressions are provided in Eq. (IV-26), where 𝑰𝑰 is the identity matrix and 𝑫𝑫(𝑠𝑠) the VCO 

frequency disturbance vector. 

𝑪𝑪(𝑠𝑠) =
𝑼𝑼(𝑠𝑠)
𝑬𝑬(𝑠𝑠) = 𝐶𝐶(𝑠𝑠) 𝑰𝑰 𝚯𝚯(𝑠𝑠) = 𝑯𝑯𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) �𝑼𝑼(𝑠𝑠)

𝑫𝑫(𝑠𝑠)� = �𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) 𝑰𝑰
1
𝑠𝑠
𝑰𝑰� �

𝑼𝑼(𝑠𝑠)
𝑫𝑫(𝑠𝑠)� (IV-26) 

The connections between the error detector and the corrector have in common the same 

disturbances, noted 𝑵𝑵(𝑠𝑠) in the vector format as shown in Eq. (IV-27). 

𝑬𝑬(𝑠𝑠) = 𝑽𝑽ε𝜃𝜃(𝑠𝑠) + 𝑵𝑵(𝑠𝑠) (IV-27) 

The plant transfer function comprising the Multiple Inputs and Multiple Outputs (called 

a MIMO system) of this system is noted 𝑷𝑷(𝑠𝑠) and shown in Eq. (IV-28). 

 𝑷𝑷(𝑠𝑠) =
𝑽𝑽ε𝜃𝜃(𝑠𝑠)
𝑼𝑼(𝑠𝑠) = −H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) 𝑳𝑳(𝑠𝑠) (IV-28) 

If all modules, including the controllers, are identical, the MIMO open-loop transfer 

function noted 𝒐𝒐𝒐𝒐(𝑠𝑠) and shown in Eq. (IV-29). 

 𝒐𝒐𝒐𝒐(𝑠𝑠) =
𝚯𝚯(𝑠𝑠)
𝚯𝚯′(𝑠𝑠) = −H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 𝐶𝐶(𝑠𝑠) 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) 𝑳𝑳(𝑠𝑠) (IV-29) 

 Change of basis and modal transfer functions 
All matrix transfer functions are diagonal and circulant, except 𝑳𝑳(𝑠𝑠) , that is only 

circulant. To obtain the modal open-loop transfer function, 𝑳𝑳(𝑠𝑠) has to be diagonalized using 

the DFT matrix. The same DFT matrix as the one shown in Section II.2.1 will be used. A change 

of basis expressed by the set of equations developed in Eq. (IV-30) is applied to the system. 

 𝚯𝚯∗(𝑠𝑠) = 𝑾𝑾∗ 𝚯𝚯(𝑠𝑠) 𝚯𝚯′∗(𝑠𝑠) = 𝑾𝑾∗ 𝚯𝚯′(𝑠𝑠) (IV-30) 

Then, the diagonal formulation of Eq. (IV-29) can be written. Its expression is detailed 

in Eq. (IV-31). 

 𝒐𝒐𝒐𝒐∗(𝑠𝑠) =
𝚯𝚯∗(𝑠𝑠)
𝚯𝚯′∗(𝑠𝑠) = −H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 𝐶𝐶(𝑠𝑠) 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) 𝑳𝑳∗(𝑠𝑠) (IV-31) 
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where 𝑳𝑳∗(𝑠𝑠) = 𝑾𝑾 𝑳𝑳(𝑠𝑠) 𝑾𝑾∗  

Eq. (IV-31) can be rewritten as a system of 𝑁𝑁 independent transfer functions in Eq. 

(IV-32) because 𝒐𝒐𝒐𝒐∗(𝑠𝑠)  is diagonal. The 𝑁𝑁  diagonal elements 𝑉𝑉∗𝑖𝑖𝑖𝑖(𝑠𝑠)  of 𝑳𝑳∗(𝑠𝑠)  are named 

𝐿𝐿∗𝑖𝑖(𝑠𝑠), for 𝑖𝑖 = 0 …𝑁𝑁 − 1, and the same for 𝒐𝒐𝒐𝒐∗(𝑠𝑠) with diagonal elements renamed 𝑜𝑜𝑜𝑜∗𝑖𝑖(𝑠𝑠). 

 𝑜𝑜𝑜𝑜∗𝑖𝑖(𝑠𝑠) =
Θ∗𝑖𝑖(𝑠𝑠)
Θ′∗𝑖𝑖(𝑠𝑠) = −H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 𝐶𝐶(𝑠𝑠) 𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) 𝐿𝐿∗𝑖𝑖(𝑠𝑠) (IV-32) 

where: 
𝐿𝐿∗𝑖𝑖(𝑠𝑠) = cos(2𝜋𝜋 𝑖𝑖 𝑁𝑁⁄ − 𝑗𝑗 𝑠𝑠 𝑇𝑇0) − 1, 𝑖𝑖 = 0 …𝑁𝑁 − 1 

𝑗𝑗 is the complex variable √−1 
 

Comparing the eigenvalues of 𝑳𝑳  with the eigenvalues of 𝑳𝑳(𝑠𝑠) , an additional term 

−𝑗𝑗 𝑠𝑠 𝑇𝑇0 appears in the cosine. It should be noted that 𝐿𝐿∗𝑁𝑁−𝑖𝑖(𝑠𝑠) = 𝐿𝐿∗𝑖𝑖(𝑠𝑠)∗ in all double modes, 

for 𝑖𝑖 = 1 …𝑀𝑀− 1, 𝑀𝑀 is defined in Eq. (II-15), but 𝐿𝐿∗𝑖𝑖(𝑠𝑠)∗ ≠ 𝐿𝐿∗𝑖𝑖(−𝑠𝑠), i.e. the conjugated of 

𝐿𝐿∗𝑖𝑖(𝑠𝑠) is different of 𝐿𝐿∗𝑖𝑖(−𝑠𝑠), revealing that this is not a classical control system. 𝐿𝐿∗𝑖𝑖(𝑠𝑠) values 

are real, but it has a non-null complex component.  

It should be noted that 𝐿𝐿∗𝑖𝑖(𝑠𝑠) can be split in a real and a complex components as shown 

in Eq. (IV-33). Indeed, classical control system have null complex component. The diagonal 

components of 𝑳𝑳(𝑠𝑠) are complex-coefficient systems as shown in [36]. 

 𝐿𝐿∗𝑖𝑖(𝑠𝑠) = 𝐿𝐿∗𝑖𝑖𝑅𝑅𝑅𝑅(𝑠𝑠) + 𝑗𝑗 𝐿𝐿∗𝑖𝑖𝐼𝐼𝐼𝐼(𝑠𝑠), 𝑖𝑖 = 0 …𝑁𝑁 − 1 (IV-33) 

where 
𝐿𝐿∗𝑖𝑖𝑅𝑅𝑅𝑅(𝑠𝑠) = cos(2𝜋𝜋 𝑖𝑖 𝑁𝑁⁄ ) cos(𝑗𝑗 𝑠𝑠 𝑇𝑇0) − 1 
𝐿𝐿∗𝑖𝑖𝐼𝐼𝐼𝐼(𝑠𝑠) = −𝑗𝑗 sin(2𝜋𝜋 𝑖𝑖 𝑁𝑁⁄ ) sin(𝑗𝑗 𝑠𝑠 𝑇𝑇0) 

 

The values of |𝐿𝐿∗𝑖𝑖(𝑠𝑠)|, for 𝑖𝑖 = 0 …𝑀𝑀− 1, are plotted in Figure IV-12 (a), showing the 

values for positive and negative frequencies. Figure IV-12 (b) show the real and complex 

decomposition of |𝐿𝐿∗𝑖𝑖(𝑠𝑠)|.  
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𝑖𝑖 = 0 

 (a)   (b) 

𝑖𝑖 = 1 

𝑖𝑖 = 2 

𝑖𝑖 = 3 

𝑖𝑖 = 4 

 

Figure IV-12 – 𝐿𝐿∗𝑖𝑖(𝑠𝑠) Transfer function: a) Positive and negative frequencies, b) Real and imaginary 
components. 

It should be noted that 𝐿𝐿∗𝑖𝑖(𝑗𝑗0) = 𝜆𝜆𝑖𝑖. Additionally, it can be noted for 𝑖𝑖 = 4 (higher gain) 

that 𝐿𝐿∗𝑖𝑖(𝑠𝑠) ≅ 𝜆𝜆𝑖𝑖 are similar until the expected cutoff frequency ±7.85 kHz. For the other 𝑖𝑖 =

1, 2, 3 , the components of |𝐿𝐿∗𝑖𝑖(𝑠𝑠)|  become different of |𝐿𝐿∗𝑖𝑖(−𝑠𝑠)|for at lower frequencies. 

However, these modes have smaller gains and will have smaller bandwidth. As a result, these 

differences will not be perceived within the mode bandwidth. For 𝑖𝑖 = 0, the mode is not 

controllable because the gain is very low. 

As a conclusion, the system is quite complex. The standard matrix 𝑳𝑳 could be a good 

approximation of 𝑳𝑳(𝑠𝑠) to simplify the model and help to design the corrector. If the model is 

simplified replacing 𝑳𝑳(𝑠𝑠) by 𝑳𝑳, 𝑳𝑳∗(𝑠𝑠) becomes 𝜦𝜦 developed in Eq. (II-17) and each mode gets 

a different gain equal to 𝜆𝜆𝑖𝑖, i.e. the eigenvalues of 𝑳𝑳 detailed in Eq. (II-16). 

 Stability concern 
To reveal the stability concern, the static error constraint must analyzed before the 

corrector synthesis. 

IV.6.1. Static gain constraint 

An integrator can be added to the controller 𝐶𝐶(𝑠𝑠) to cancel the error brought by the 

disturbance input 𝑫𝑫(𝑠𝑠). However, common mode deviation in the noise input 𝑵𝑵(𝑠𝑠) would 

saturate the VCO control voltage 𝑢𝑢. The common mode cannot be controlled because 𝐿𝐿∗0(𝑠𝑠) is 
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comparable to zero. This last point can become a real issue because it can generate frequency 

deviations an break the loop. 

In order to design the controller static gain to attenuate 𝑫𝑫(𝑠𝑠), the relationship between 

the disturbance 𝑫𝑫(𝑠𝑠) and the local error 𝜠𝜠𝚯𝚯(𝑠𝑠) has to be revealed. To do so, the signals 𝜠𝜠𝚯𝚯(𝑠𝑠) 

and 𝑫𝑫(𝑠𝑠) are diagonalized, as shown in Eq. (IV-34). 

 𝜠𝜠𝚯𝚯∗(𝑠𝑠) = 𝑾𝑾−𝟏𝟏 𝜠𝜠𝚯𝚯(𝑠𝑠) 𝑫𝑫∗(𝑠𝑠) = 𝑾𝑾−𝟏𝟏 𝑫𝑫(𝑠𝑠) (IV-34) 

The diagonal transfer functions from 𝑫𝑫∗(𝑠𝑠) to 𝜠𝜠𝚯𝚯∗(𝑠𝑠) is shown in Eq. (IV-35), where 

differential mode transfer functions are also shown, within the modal bandwidth, i.e. 

|𝑜𝑜𝑜𝑜∗𝑖𝑖(𝑠𝑠)| > 1. 

𝜠𝜠𝚯𝚯∗(𝑠𝑠)
𝑫𝑫∗(𝑠𝑠) =

𝑇𝑇0 𝑘𝑘𝑑𝑑⁄
H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 𝐶𝐶(𝑠𝑠) �𝑰𝑰 − 𝒐𝒐𝒐𝒐∗(𝑠𝑠)�

−1
𝒐𝒐𝒐𝒐∗(𝑠𝑠) , |𝑜𝑜𝑜𝑜∗𝑖𝑖(𝑠𝑠)| > 1  ⟹ 

   
𝛦𝛦Θ∗𝑖𝑖(𝑠𝑠)
𝐷𝐷∗

𝑖𝑖(𝑠𝑠) =
𝑇𝑇0 𝑘𝑘𝑑𝑑⁄

H𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) 𝐶𝐶(𝑠𝑠) ,    𝑖𝑖 =  1 …  𝑁𝑁 –  1 
(IV-35) 

It can be noted that 𝐶𝐶(𝑠𝑠)  can reduce the differential mode disturbances 𝐷𝐷∗
𝑖𝑖(𝑠𝑠). In 

steady-state, the differential mode errors are reduced by a factor 𝐶𝐶(𝑗𝑗0), so the interest of having 

|𝐶𝐶(𝑗𝑗0)| → ∞, i.e. having at least an integrator in 𝐶𝐶(𝑠𝑠). As a conclusion, a controller with a high 

static gain is good to reduce the differential modes. 

Nevertheless, a high static gain can cause side effects related to the common mode. To 

understand the issue, the signal 𝒖𝒖(𝑡𝑡) common mode final value 𝒖𝒖0 𝑆𝑆𝑆𝑆 has to be revealed. To do 

so, the signals 𝑼𝑼(𝑠𝑠) is diagonalized as 𝑫𝑫(𝑠𝑠) and 𝑵𝑵(𝑠𝑠), as shown in Eq. (IV-36). 

 𝑼𝑼∗(𝑠𝑠) = 𝑾𝑾−𝟏𝟏 𝑼𝑼(𝑠𝑠) (IV-36) 

The diagonal transfer functions from 𝑵𝑵∗(𝑠𝑠) to 𝑼𝑼∗(𝑠𝑠) is shown in Eq. (IV-37). As the 

common mode open-loop transfer function |𝑜𝑜𝑜𝑜∗0(𝑠𝑠)| ≪ 1  because 𝐿𝐿∗0(𝑠𝑠) ≅ 0 , the related 

common mode transfer function can be easily found, as shown in this equation. 

 
𝑼𝑼∗(𝑠𝑠)
𝑵𝑵∗(𝑠𝑠) = �𝑰𝑰 − 𝒐𝒐𝒐𝒐∗(𝑠𝑠)�

−1
 𝐶𝐶(𝑠𝑠) 

𝑈𝑈∗
0(𝑠𝑠)

𝑁𝑁∗
0(𝑠𝑠) =

𝐶𝐶(𝑠𝑠)
1 − 𝑜𝑜𝑜𝑜∗0(𝑠𝑠) = 𝐶𝐶(𝑠𝑠) (IV-37) 

𝐷𝐷∗
0(𝑠𝑠)  is null by definition. Indeed, as 𝑓𝑓0  is the average of all local free-running 

frequencies, the sum of 𝑑𝑑𝑖𝑖 = 𝛿𝛿𝛿𝛿𝑖𝑖 𝑘𝑘𝑑𝑑⁄  is null. So, the final value of 𝑢𝑢∗0(𝑡𝑡), noted 𝑢𝑢∗0 𝑆𝑆𝑆𝑆, shown 

in Eq. (IV-38), is obtained by applying the final value theorem to Eq. (IV-37). 

 𝑢𝑢∗0 𝑆𝑆𝑆𝑆 = lim
𝑡𝑡→∞

𝑢𝑢∗0(𝑡𝑡) = 𝑈𝑈∗
0(0) = |𝐶𝐶(0)| 𝑁𝑁∗

0(0) (IV-38) 

It is assumed that |𝑁𝑁∗
0(𝑗𝑗0)| has a limited value. 𝑢𝑢∗0 𝑆𝑆𝑆𝑆  is also limited if |𝐶𝐶(𝑗𝑗0)| is 

limited as well, otherwise the signal 𝑢𝑢 would saturate in some of the local controllers and 
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produce infinite value due to the controller integrator. A saturated local controller modify the 

transient response because it acts like if the loop was opened. As a consequence, 𝐶𝐶(𝑠𝑠) cannot 

implement an integrator, then |𝐶𝐶(𝑗𝑗0)| < ∞. 

The component 𝑢𝑢∗0 𝑆𝑆𝑆𝑆 causes a second side effect, it causes a deviation of the average 

frequency Δ𝑓𝑓0 in steady-state, noted Δ𝑓𝑓0 𝑆𝑆𝑆𝑆. Its expression is shown in Eq. (IV-39). 

Δ𝑓𝑓0 𝑆𝑆𝑆𝑆 =
𝑘𝑘𝑑𝑑
√𝑁𝑁

 𝑢𝑢∗0 𝑆𝑆𝑆𝑆  |Δ𝑓𝑓0 𝑆𝑆𝑆𝑆| = 𝑘𝑘𝑑𝑑 Δ𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠 (IV-39) 

where Δ𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠 is the maximum 𝑢𝑢 deviation from its neutral value. 

So, to limit the frequency deviation in a small range, |𝐶𝐶(𝑗𝑗0)| has to be limited and 

|𝑁𝑁∗
0(0)|  has to be as low as possible. A clear trade-off on |𝐶𝐶(𝑗𝑗0)| value has to be considered, 

impacting both the modal steady-state error and the frequency deviation. 

IV.6.2. Corrector synthesis
As seen in the previous chapter, some trade-off have to be made because the modes

present different gains, related to their eigenvalues, but all of them use the same corrector. The 

corrector is synthetized to provide the largest bandwidth with minimum phase margin of 55° 

combined with a phase-lag to increase the static gain. The matrix 𝑽𝑽(𝑠𝑠)  is simplified and 

replaced by 𝑳𝑳. 

In the use case considered here with 𝑁𝑁 = 8, the differential Mode 4 has the higher 

eigenvalue equals to 2, so the controller proportional gain must to be 0.50 to keep the same cut-

off frequency. A zero is added to the controller to increase the static gain. The zero frequency 

is placed at 145 Hz, at least 8 times smaller than the cut-off frequency of Mode 1 to keep enough 

phase margin. The controller static gain then limited to is 100, what reduces the proportional 

gain to 0.48. The controller transfer function is shown in Eq. (IV-40). All results shown here 

after are using this controller. 

𝐶𝐶(𝑠𝑠) =
1.10𝑚𝑚 𝑠𝑠 + 1

2.31𝑚𝑚 𝑠𝑠 + 0.01
(IV-40) 

Figure IV-13 shows the bode diagrams of the modal OLTF shown in Eq. ((IV-32)) for 

𝑁𝑁 = 8 (𝑀𝑀 = 5), 𝐶𝐶(𝑠𝑠) = 0.5 and 𝑳𝑳(𝑠𝑠) = 𝑳𝑳, then 𝐿𝐿∗𝑖𝑖(𝑠𝑠) = 𝜆𝜆𝑖𝑖 . As 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑁𝑁−𝑖𝑖 , only the values 

with 𝑖𝑖 = 0 …𝑀𝑀 − 1 are shown. Moreover, the common mode (mode 0) cannot be controlled 

because 𝜆𝜆0 = 0, so only the differential modes are studied, then 𝑖𝑖 = 1 …𝑀𝑀 − 1. 
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Figure IV-13 – Modal open-loop transfer function plot for 𝑁𝑁 = 8 (𝑀𝑀 = 5) and 𝑳𝑳(𝑠𝑠) = 𝑳𝑳. 

A disturbance rejection simulation is made with each of the modal transfer functions as 

shown in Figure IV-14. This simulation result is similar to the expected responses of the 

components of |𝜺𝜺𝜽𝜽∗|. 

Figure IV-14 – Modal closed-loop disturbance rejection simulation for 𝑁𝑁 = 8 (𝑀𝑀 = 5) and 𝑳𝑳(𝑠𝑠) = 𝑳𝑳. 

The rise time 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 for these underdamped system is defined as the time from 0% to 

100%. The rise time, overshoot and overshoot time 𝑇𝑇𝑂𝑂𝑂𝑂 are obtained from the model simulation 

shown in Figure IV-14. Table IV-2 summarizes the modal performances obtained in this study: 

𝑁𝑁 = 8 (𝑀𝑀 = 5) and 𝑳𝑳(𝑠𝑠) = 𝑳𝑳. 

Table IV-2 – Modal performances obtained with the model in the case study. 

Mode i Cut-off freq 𝑓𝑓𝑐𝑐𝑖𝑖 Phase Margin 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑖𝑖_5% Overshoot 𝑇𝑇𝑂𝑂𝑂𝑂 
1 1.17 kHz 78.2° 323 us 28.4 8.87 % 652 us 
2 3.95 kHz 71.7° 105 us 9.24 3.38 % 232 us 
3 6.70 kHz 61.4° 44.3 us 3.90 5.41 % 59.1 us 
4 7.82 kHz 56.9° 36.1 us 3.18 10.5 % 49.2 us 
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It can be noted that all modes’ phase margins are greater than 55°, i.e. within the 

specifications. Also, the modes’ rise times are different as expected, because they all depend on 

their associated cutoff frequency. 

It can be noted that mode 1 has an important overshoot when compared to the expected 

value from its phase margin. This is because the phase-lag open-loop zero is close to the mode 

1 cut-off frequency and disturbs its closed-loop response, similarly to a proportional-integral 

controller. The zero effect can be removed with a phase-lag controller based on an integral-

proportional equivalent topology. 

These rise time responses are valid only when all modules are located in between their 

local neighbors. The response is slowed down if some LCs are not in between their neighbors 

because the perceived errors reach limited values (saturation). In that case, the stability criterion 

will not be analyzed because the number of cases to considered will be very high and the non-

linear system to be analyzed will become very complex. 

IV.6.3. Diagonal response
The dynamic behavior of the overall system has been simulated and the observed

settling times compared with the ones predicted. A MIMO transfer function based model is 

defined and simulated using MathWorks MATLAB®. In the simulations performed hereafter, 

the system starts from its expected equilibrium state with all the carriers well interleaved. Each 

mode is excited individually, one after the other, from the common mode (mode 0) to the last 

one (mode 4) using the system eigenvectors (lines of the DFT matrix) as components of the 

disturbance signal 𝒅𝒅. 

Figure IV-15 shows the simulation results of a system with eight LCs (𝑁𝑁 = 8) and the 

controller previously designed. Each simulation result consists of the applied modal disturbance 

𝒅𝒅∗ = |𝑾𝑾−1𝒅𝒅| , the waveforms of the PDs 𝜽𝜽 , the local errors 𝜺𝜺𝜽𝜽  and the modal error 

decompositions |𝜺𝜺𝜽𝜽∗| to observe the total mode disturbances. For simulation purposes, the 

target operator introduced in the previous chapter for the digital case is required. 
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Figure IV-15 – Dynamic modal responses with N = 8 and controller 𝐶𝐶(𝑠𝑠) of Figure IV-13. 

The PD values behave as expected. It is possible to distinctly observe the modal 

excitations being applied successively and their respective responses. All modes are stable and 

𝑘𝑘𝑖𝑖_5% observed on |𝜺𝜺𝜽𝜽∗| corresponds to the simulated values from the modal transfer functions 

shown in Table IV-2. 

Fault hazards impact 
Considering the implementation of the real system in an integrated circuit, the devices 

or wire links are always exposed to fault issues, such as short-circuits or disconnections (open-

circuits). Most of the faults can be placed in two categories: short to ground and short to adjacent 

pin. The short to ground is a generic fault because causes a level freeze. The level freeze 

happens due a short to any level or pin disconnection, because most of the inputs have internal 

pull-up or pull-down. 

When an inter-LC communication wire is stuck to a constant level, its input comparator 

with hysteresis will be provide a constant logical level. As a result, when comparing the 

constant input with the local clock, the UP or DN signal will have 50% duty cycle. The 50% 
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duty cycle is equivalent to a detection of ±180° with its neighbor. It is equivalent to introducing 

an additional factor ±0.25 in the 𝝋𝝋  vector. The correctors will slowly saturate and cause 

consequently frequency deviation. During the time between the fault and the saturation, the PD 

will be in PD an unequal distribution because the others LCs will try to compensate an error 

that cannot be eliminated. After the saturation, the PD will be properly interleaved, but with a 

frequency deviation. 

Let consider now a system with 𝑁𝑁 LCs in which the communication input of one LC is 

stuck to a constant level so that the LC detects a PD equal to –0.5. The resulting wrong error is 

approximately equal to –0.25. The other LCs compensate equally this interleaving issue, each 

local error been approximately equal to 0.25 𝑁𝑁⁄ . The PD steady-state values can be derived 

from Eq. (II-8) and solved with the Final Value Theorem on Eq. (II-47), and the result expressed 

in Eq. (IV-41). 

𝜽𝜽 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑳𝑳+(𝜺𝜺𝜃𝜃 − 𝝋𝝋)� = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑳𝑳+(0.25 𝑁𝑁⁄ 𝑰𝑰 − 𝝋𝝋)� (IV-41) 

where 𝟏𝟏 = [1]1×𝑁𝑁, 𝑳𝑳+ is the pseudo-inverse of 𝑳𝑳, and 𝑚𝑚𝑚𝑚𝑚𝑚(∙) is the module operator to 

correct the common-mode, i.e. keep the PDs between 0 and 1. 

The level freeze fault can be easily detected by analyzing the UP/DN signals or verifying 

directly the clk signals received from the neighbors, i.e. verify if a rising and a falling edge are 

detected in each period. 

When a short-circuit occurs on adjacent communication wires, considering a AND 

operation by wire is obtained, both LC perceive the same rising and falling edges on its inputs. 

It should be noted that one LC notes its own rising edges while the other notes its own falling 

edges. As only one of the edges is used for the PD measurement, one of the LC controllers 

perceives its neighbor as coincident because detects its own edge, while the other LCs can detect 

properly the PD because it can detect the neighbor edge. This will cause some frequency 

deviation, and the impact on the interleaving error will be small because the PD error detected 

will be only equal to 0.5 𝑁𝑁⁄ . Because the sum of the errors has to be cancelled, the others LC 

errors, due to the compensations, would be approximately 0.5 𝑁𝑁2⁄ . 

Proof-of-concept development 
This section is dedicated to the development of the new interleaving proof-of-concept 

for model validation. The data obtained will be analyzed and the comparisons with the proposed 

model predictions will be verified. 
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The proof-of-concept is an electronic board where the interleaving LCs are implemented 

with basic functions, such as NAND gates, flip-flops, switches, comparators and operational 

amplifiers, in addition to resistors, capacitors and diodes. All these functions are of the type of 

commercial discrete Surface Mount Devices (SMD). 

The board shown in Figure IV-16 is composed by 6 identical carrier generators, each of 

them with a LCs and a bypass circuit. Additionally, shared functions are placed aside, composed 

of a start-up synchronization circuit (reset), a slope generator for phase-delay sampling and a 

fault introduction circuit composed by inter-connection analog switches. 

Figure IV-16 – Proof-of -concept board with 6 LCs and shared functions. 

Each LC has two inputs, noted “CssP” and “CssN”, to receive the previous and next LC 

signals. Each LC has also two outputs, noted “Css2P” and “Css2N”, to send signals to the 

previous and next LCs. The nature of the signal sent to the neighbors depends if the LC is 

bypassed or not, i.e. deactivated or activated. 

The LCs on the board are connected to their close neighbors. “Css2N” of the 𝑖𝑖𝑡𝑡ℎ LC is 

connected to “CssP” of the 𝑖𝑖 + 1𝑡𝑡ℎ LC and “Css2P” of the 𝑖𝑖 + 1𝑡𝑡ℎ LC is connected to “CssN” 

of the 𝑖𝑖𝑡𝑡ℎ LC. The circular chain of communications has to be closed with a cable using the 

connectors placed at the upper left and right sides of the board, connecting the LC6 to LC1. 

Multiple boards can be connected together, connecting LC6 to LC7 and LC12 to LC1, where 

LC7 to LC12 are the LCs of the second board for instance. 

IV.8.1. Triangular carrier generator and pre-positioning
The triangular carrier generator circuit is shown in Figure IV-17. It consists of a Schmitt

trigger made up of a comparator with hysteresis (1) and an operational amplifier in an integrator 

configuration (2). The comparator output called “Vtrig” is equivalent to the clock signal “clk”. 

The operational amplifier output is the triangular carrier called “Vtri”. 

To analyze the modal response, “Vtri” signal has to be set to a predefined value at the 

begging. The additional circuits required to pre-position the signal “Vtri” are also shown in 

Shared LC1 LC2 LC3 LC4 LC5 LC6 
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Figure IV-17. The comparator (1) initial position is controlled at its non-inversing input with 

an analog switch “s0”. The operational amplifier (2) output voltage is set to a predefined value 

thanks to the switch “s2” and the feedback resistors using the jumpers “Go” (open-loop gain) 

and “Gx” (gain x), where x is equals to 1, 2 and 4. The switch “s1” is added to force the 

operational amplifier polarity and to avoid the output voltage dependence with the comparator 

output. So the voltages “V0” (initial voltage) and “V0ax” (auxiliary initial voltage) determine 

in which quadrant the phase-delay starts. An additional comparator generates the digital signal 

“Sync” (Sinc) aligned with the triangular signal peak used for SMP and RST synchronization. 

 
Figure IV-17 – Triangular carrier generator and its additional circuits required for “Vtri” pre-
prepositioning. 

Figure IV-18 shows the 24 combinations of “V0”, “V0ax” and “Gx” (Go always closed), 

required to pre-position “Vtri” phase-delays within 15° steps. 

 
Figure IV-18 – 24 combinations of “V0”, “V0ax” and “Gx” to pre-position “Vtri” phase-delays. 

IV.8.2. New interleaving local controllers 
Table IV-3 shows the initial position chosen based on the initial modal error required. 

Table IV-3 – Modal initial position and modal error. 

 Local controller pre-positioning Initial modal error 

 LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 |𝜀𝜀𝜃𝜃∗|1 |𝜀𝜀𝜃𝜃∗|2 |𝜀𝜀𝜃𝜃∗|3 |𝜀𝜀𝜃𝜃∗|4 

s2 

s0 
s1 

(1) 

(2) 
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Mode 1 0 18 14 12 12 12 10 6 0.071 0.000 0.012 0.000 

Mode 2 0 18 18 18 12 6 6 6 0.000 0.177 0.000 0.000 

Mode 3 0 22 16 16 12 8 8 2 0.005 0.000 0.172 0.000 

Mode 4 0 18 18 12 12 6 6 0 0.000 0.000 0.000 0.354 

The new interleaving local controller is composed of a digital and an analog core. 

The digital core, shown in Figure IV-19 manages the start-up synchronization, generate 

the sample-and-hold control signals, and the “Up” and “Down” (UP/DN) signals that represents 

the phase-delay. The neighbors clock signals are applied on “VtrigP” and “VtrigN”, while the 

local clock is applied on “Vtrtr”. To avoid measurement errors, the D flip-flop at the left enables 

the measurement and corrections at start-up with the beginning of the carrier period, while the 

other on the right synchronizes the by-pass with the carrier period. 

Figure IV-19 – New interleaving digital core. 

The analog core shown in Figure IV-20 is composed, from left to right, of an integrator 

with reset, a sampling circuit, a voltage follower, a proportional corrector with phase-lag, and 

an amplifier to manipulate the triangular carrier generator frequency. The last amplifier injects 

a current proportional to the correction “eV” at the inverting input of the amplifier (2) shown 

in Figure IV-17. 

Figure IV-20 – New interleaving analog core. 

𝑣𝑣𝐶𝐶  𝑢𝑢 
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The measure can be trimmed using “MesTrim” trimmer potentiometer to avoid static 

error. 

IV.8.3. Fault introduction
The fault introduction module is located upstream LC1, i.e. between the LC1 and the

circular-chain connector. 

Three fault types can be applied individually or simultaneously (with separated control) 

on the lines “CssP” of LC1 and “CssN” of LC connected to LC1 though the cable. The faults 

are: open (disconnection), short-circuit to 5V and short-circuit to GND. 

Additionally, a short-circuit fault can also be introduced to connect “CssN” to “CssP” 

though an impedance. 

Experimental validation 
The experimental validation will be done using two proof-of-concept boars, a Teledyne 

LeCroy WaveRunner 8108HD 12-bit oscilloscope with 8 analog and 16 digital channels, a 

Keysight Tektronix 5 SERIES MSO58 8 analog channels mixed signal oscilloscope. The boards 

are powered with an external 5V DC power supply. A Keysight Tektronix MDO3014 4 

channels oscilloscope was used for debug purposes. The experimental validation bench is 

shown in Figure IV-21. 

Figure IV-21 – Experimental validation bench, LeCroy oscilloscope in the middle and Tektronix 
oscilloscope on the right. 

The 8 analog channels of the LeCroy oscilloscope are used to observe the sampled PDs 

(top) and the digital channels are used to monitor the oscillators clock signals clk (bottom). The 
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8 analog channels of the Tektronix oscilloscope are used to observe the LC errors (top), then 4 

the math channels are programmed to show the modal content of the measured errors (bottom). 

IV.9.1. Local controller validation
The local controller validation starts with the observation of the different signals in order

to be sure that all digital and analog control signals are functional and if the local controllers 

are able to interleave the carriers. Figure IV-22 shows in (a) and (b) the start-up response with 

4 local controllers in 1+3 configuration. 

 (a)  (b) 
Figure IV-22 – Local controller validation: a) LC2 signals detail; b) sampled PDs detail. 

In Figure IV-22 (a) are shown on the trop the 4 triangular signals of the 4 LCs from 1 

to 4, in yellow, red, blue and green, respectively. In the middle are shown the LC2 measured 

error 𝑣𝑣𝑐𝑐  (white), the sampled error 𝑣𝑣ε𝜃𝜃  (blue) and the correction 𝑢𝑢 (red). The digital signals 

from 0 to3 are the LC clk1 to clk4 respectively. The other digital signals from 4 to 8 are the 

sync, SMP, RST, UP and (not) DN signals of LD2. 

In Figure IV-22 (b) shows in the middle a ramp representing the PD relative to LC1 

(white). The ramp is sampled by the other LCs, resulting in the waveforms in blue, red and 

orange for LCs 2 to 4, respectively. The sampled values are proportional to the PDs regarding 

LC1 (reference). Digital signals 4 to 8 are the LC1 to LC4 SMP signals. LC1 SMP signal is 

used to reset the ramp signal, while LC2 to LC4 SMP signals used to sample and hold the ramp 

signal. The other signals are the same. 

All LC validation were successful, additionally, the triangular carrier generators and the 

local controllers were trimmed. The triangular signals peak-to-peak value is superior than the 

3.0 V designed because of the comparator delay. Then, the average open-loop frequency was 

set to 88 kHz instead of 100 kHz original value. 

IV.9.2. Diagonal response validation
The diagonal/modal responses were be validated using the carrier pre-positioning

shown in Figure IV-23. Due to the larger triangle signal amplitude and frequency trim (reduces 

the pre-positioning gain), an additional 0.5 step was added and the whole gain range (7.5) was 
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used, resulting in 60 stat positions. Some rotation were also needed to obtain propre start, 

mainly because triangle signal overshoot occurrences when initial value was close to the peak. 

Figure IV-23 – 60 combinations of “V0”, “V0ax” and “Gx” to pre-position “Vtri” phase-delays. 

Table IV-4 shows the adapted experimental positions used during the measurements. 

Table IV-4 – Experimental modal initial position and modal error. 

Local controller pre-positioning Initial modal error 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 |𝜀𝜀𝜃𝜃∗|1 |𝜀𝜀𝜃𝜃∗|2 |𝜀𝜀𝜃𝜃∗|3 |𝜀𝜀𝜃𝜃∗|4 

Mode 1 59 44 33 29 29 29 24 14 0.074 0 0.005 0 

Mode 2 53 38 38 38 23 8 8 8 0.006 0.177 0.006 0 

Mode 3 59 48 48 33 28 23 8 8 0.002 0 0.172 0 

Mode 4 48 48 33 33 18 18 3 3 0.012 0 0.012 0.354 

The responses of a system with 8 local controllers are shown in the following Figure 

IV-24, Figure IV-25, Figure IV-26, and Figure IV-27. The LeCroy scope plots show in the top

are the representation of the PDs 𝜽𝜽 from 𝜃𝜃1 to 𝜃𝜃8 upwards and the digital signals are the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

from 1 to 8; the Tektronix scope plots show on the top the local errors 𝜺𝜺𝜃𝜃 and on the bottom the

absolute value of the modal local errors |𝜺𝜺𝜽𝜽∗| components 1 to 4. |𝜀𝜀𝜃𝜃∗|4 was scaled with a factor

√2/2.
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 (a)  (b) 
Figure IV-24 – Mode 1 diagonal response: a) PDs and clks; b) errors and modal errors. 

 (a)  (b) 
Figure IV-25 – Mode 2 diagonal response: a) PDs and clks; b) errors and modal errors. 

 (a)  (b) 
Figure IV-26 – Mode 3 diagonal response: a) PDs and clks; b) errors and modal errors. 

 (a)  (b) 
Figure IV-27 – Mode 4 diagonal response: a) PDs and clks; b) errors and modal errors. 

The modal responses are stable and correspond to the expected values obtained with the 

model. The sampled modal error measurements are summarized on Table IV-5, where: 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟:  rise time from initial value to the first minimum; 

𝑉𝑉𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟:  voltage at the first minimum; 

 𝑉𝑉0:  initial voltage; 

𝑉𝑉𝑂𝑂𝑂𝑂:  overvoltage after first minimum; 
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𝑂𝑂𝑂𝑂%:  percentual overvoltage calculated as in Eq. (IV-36); 

𝑇𝑇𝑂𝑂𝑂𝑂:  over voltage time. 

𝑂𝑂𝑂𝑂% =
𝑉𝑉OV − 𝑉𝑉𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑉𝑉0 − 𝑉𝑉𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (IV-42) 

Table IV-5 – Modal performances measured in the case study. 

Mode i 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑉𝑉𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑉𝑉0 𝑉𝑉𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂% 𝑇𝑇𝑂𝑂𝑂𝑂 
1 294.8 us 0.0866 V 1.08 V 0.156 V 6.94 % 576.3 us 
2 101.9 us 0.0185 V 3.32 V 0.183 V 5.00 % 212.2 us 
3 49.3 us 0.115 V 2.32 V 0.219 V 4.70 % 78.3 us 
4 44.0 us 0.0385 V 4.56 V 0.407 V 8.13 % 57.3 us 

The experimental modal errors were computed from the sampled local error, while the 

model modal error are based on the continuous time value. Despite this, the measured values 

are very close to the ones shown in Table IV-2, even the corrector zero impact on Mode 1 can 

be observed. This validate the proposed model ability to anticipate the system performance. 

IV.9.3. Start-up response validation
The start-up transients are also verified. Figure IV-28  shows the start-up response

measurements with one PD in phase opposition (1+7). Figure IV-29 shows the start-up response 

measurements with by groups (4+4). 

 (a)  (b) 
Figure IV-28 – Start-up response with one PD in phase opposition (1+7): a) PDs and clks; b) errors 
and modal errors. 

 (a)  (b) 
Figure IV-29 – Start-up response by groups (4+4): a) PDs and clks; b) errors and modal errors. 
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The start-up responses measurements support the behavior predicted with the model, 

showing that the start-up response by groups (4+4) converges faster than the start-up with one 

PD in phase opposition because the Mode 1 is not disturbed. 

IV.9.4. Reconfiguration response validation
These reconfiguration simulations were meant to demonstrate the necessity of pre-

positioning a bypassed between their neighbors when inserted. Figure IV-30 (a) shows a well 

interleaved system where 𝜃𝜃5 is pre-positioned between 𝜃𝜃4 and 𝜃𝜃6 and then inserted to complete 

𝑁𝑁 = 8. The transient is smooth, but takes time to achieve steady-state because Mode 1 is 

disturbed. 

Multiples unsuccessfully attempts were made to obtain a proper measurement where 

LC5 is coincident with 𝜃𝜃1 at the begging, even using the pre-positioning. When bypassed, LC5 

was always able to position itself between its neighbors. This is a good result, observed in the 

particular case 𝑁𝑁 = 7 (LC5 bypassed), but the cause and the extension to other values of 𝑁𝑁 has 

to be demonstrated. 

Figure IV-30 (b) shows a measurement where LC5 is bypassed at the beginning 𝑁𝑁 = 7 

and the PD differences are 2/𝑁𝑁. It should be noted that 𝜃𝜃5 is in between its neighbors, even if 

coincident with 𝜃𝜃1. When LC5 is inserted, the PDs arrange themselves by groups, as expected, 

such as shown in Figure II-18. The signals still interleaved, but not in a Proper Interleaved 

Arrangement. As a result, the spectral content of the modulated signals is not optimal, 

considering optimal the highest as possible. 

 (a)  (b) 
Figure IV-30 – LC5 insertion transient measurement, PD differences: a) 1/𝑁𝑁; b) 2/𝑁𝑁. 

IV.9.5. Short to ground fault response validation
The behavior in case of connection link failure were reveals theoretically using the final

value theorem. However, the measurement is needed to observe if the system diverges, and in 

negative case, what happens when the fault is removed. 

Figure IV-31 shows a use case where the connection from LC1 to LC8 is shorted to 

ground during operation, i.e. LC8 input “CssN” is connected to 0V using the fault introduction 
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module. The experiment presents divided in 4 different states. The first state is at the beginning 

where all the LCs are properly interleaved. 

When the fault is applied (0 ms), the second state starts. In this state, the LCs try to 

correct the error using the proportional corrector and a fast PD rearrangement can be observed. 

The PDs are in a non-uniform arrangement and get closer, what indicates an increasing 

frequency. This goes until a LC saturates. 

The third state starts when a LC saturates (at 82 ms). At this point, one of the loops is 

broken. As this specific LC stops correcting the accepts to have a non-null error, a new steady-

state proper interleaving is obtained, but with a frequency deviation. 

The fourth state starts when the fault is removed (120 ms). The controller memory 

(integral effect) is slowly being removed and converges to the initial condition with proper 

interleaving and with the correct frequency. 

 (a)  (b) 
Figure IV-31 – LC8 CssN short to ground fault transient measurement: a) PDs and clks; b) errors and 
modal errors. 

IV.9.6. Noisy immunity: frequency jitter measurement

A jitter measurement was performed in the interleaved system in steady-state with 𝑁𝑁 =

8 to observe the noise immunity aspect of this proof-of-concept, shown in Figure IV-32. The 

clk signals of LCs 1 to 4 are shown on the left and of LCs 5 to 8 are shown on the right side, 

each of them with their histogram of the measured frequency jitter. It can be noted that the 

frequency deviation is limited to ±15 𝐻𝐻𝐻𝐻, corresponding to ±0.017% of the central frequency 

88.6 𝑘𝑘𝑘𝑘𝑘𝑘 . Considering that no special care was taken other than the placement of a few 

decoupling capacitors to improve the noise immunity, this is a quite good result, proving this 

approach has good noise immunity. 
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Figure IV-32 – Noise immunity: frequency jitter measurement. 

Conclusion 
This chapter has presented the complete design and modeling of a new approach for the 

self-interleaving of carriers using digital signals for the inter-LC communications. A controller 

has been designed to meet the system stability criterion and obtain good transient performance. 

A proof-of-concept has been built and experimental measurements have been performed. The 

experimental results support the developed theoretical study. 

This innovative approach is robust and can work properly with many active local 

controllers. The controller is flexible and easy to design using classical control theory because 

the diagonal systems where revealed. The controller chosen guarantees a good transient 

performance with low static error. Reconfiguration events are operational. They do not disturbs 

the duty-cycle of the PWM signals because the method consists to sample the error at each 

period. The LC events are synchronized with the beginning of each clock period to avoid 

incorrect PD measurement. 

The corrector designed was used in the proof-of-concept and the modal behavior has 

been measured and correlates with the theoretical one. The measurements during start-up 

transients with multiple disturbed modes also correlate with the theoretical, each individual 

mode had its expected transient without interactions with the other modes. 

Thanks to the digital signals used, the communication links between devices are now 

robust and present no matching issues. It should be noted however, the inability to interleave 

between coincident neighbors makes start-up with numerous elements risky. But this issue can 
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be solved using a different PD detector that extends the error detection to the region where the 

neighbors are coincident. 

Nevertheless, no issues were observed during experimental measurements with the error 

detector used. The performance was even better than expected, where the insertion of a non-

pre-positioned lead ways to a correct interleaving. This may be the result of the interaction with 

the others LCs, i.e. the group behavior surpass local flaws. No conclusion can be stated because 

these special cases with coincident neighbors are in limit of validity of the proposed model. 

The introduction of a short to ground fault did not lead to a catastrophic failure in the 

tested used case. Only a frequency deviation and a temporary incorrect interleaving were 

observed. As soon as the fault was removed, the system recovered to the correct interleaving. 

The frequency jitter measurement proved this approach has good noise immunity. An 

integrated circuit implementation will probably perform even better. 

 





 

 
 

 

 

Conclusion 
 

The theoretical procedure presented in this thesis where able to correlate with the circuit 

based simulations and the proof-of-concept experimental validation. This study provides the 

tools needed to design a robust distributed interleaving system, with good transient, static and 

noise immunity performances. 

The study of the digital approach in chapter II brough basic understanding of the circular 

chain constraints, mainly about the fact that a trade-off is needed to select the closed loop 

performance because all modes share almost the same transfer function with only a different 

gain. A transient optimization method was proposed and applied. Important elements for 

simulation were also highlighted and verified. The necessity of the shared clock line was the 

major issue to discard this interleaving approach. 

The study of the triangular carrier self-alignment in chapter III brough understanding to 

the modeling of non-synchronized systems by referring all of them to the same phase reference. 

After modeling, the stability criteria was revealed and transient performance optimization 

performance. A cyclic delay appears in the interconnections and a rotation effect was seen in 

the transient responses. The usage of analog connections and mismatch issues were the major 

issue to discard this interleaving approach. 

A new approach was proposed using digital signals self-interleaving in chapter IV. The 

conception was meant to avoid the issues on the two previous studied approaches. A basic 

structure was proposed, the modeling and corrector design performed. The modeling and 

theoretical study were validated with simulation and then a proof-of-concept was shown. The 

proof-of-concept validations present very good performance, being robust and easy to 

implement. 

As perspective, the implementation this new approach in an integrated circuit and 

validation remains to be done, as well as use of the interleaved clocks to generate the interleaved 

PWM signals of a multiphase converter. 
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 Proof 1: Lead-lag controller stability criterion 
 

The stability criterion can be find by studding the system’s modal closed loop poles 𝑝𝑝1 

and 𝑝𝑝2. The differential mode natural (homogeneous) transfer function response is shown in Eq. 

(A-1). 

𝜃𝜃∗𝑚𝑚ℎ(𝑧𝑧) =
𝑧𝑧2 −  (𝑝𝑝𝑂𝑂𝑂𝑂 + 1) 𝑧𝑧 + 𝑝𝑝𝑂𝑂𝑂𝑂

𝑧𝑧2 − (𝑝𝑝𝑂𝑂𝑂𝑂 + 1 + α λ𝑚𝑚) 𝑧𝑧 + (𝑝𝑝𝑂𝑂𝑂𝑂 + α λ𝑚𝑚 𝑧𝑧𝑂𝑂𝑂𝑂) 𝜃𝜃0∗𝑖𝑖 ,    m = 1 … M − 1 (A-1) 

Poles 𝑝𝑝1 and 𝑝𝑝2 can be found by applying the Bhaskara's formula to the denominator, 

as shown in Eq. (A-2). 

𝑎𝑎𝑑𝑑 = 1
𝑏𝑏𝑑𝑑 = −(𝑝𝑝𝑂𝑂𝑂𝑂 + 1 + α λ𝑚𝑚)
𝑐𝑐𝑑𝑑 = 𝑝𝑝𝑂𝑂𝑂𝑂 + α λ𝑚𝑚 𝑧𝑧𝑂𝑂𝑂𝑂

     𝑝𝑝1_𝑚𝑚,𝑝𝑝2_𝑚𝑚 =
−𝑏𝑏𝑑𝑑 ± �𝑏𝑏𝑑𝑑

2 − 4 𝑎𝑎𝑑𝑑 𝑐𝑐𝑑𝑑
2 𝑎𝑎𝑑𝑑

,    m = 0 … M − 1 (A-2) 

Solve the Bhaskara's formula analytically without any considerations proves to be very 

hard. Looking at the root locus, it can be noticed in Figure II-7(d) that the blue root locus line 

is always inside the unit circle for α > 0. However, the green root locus line for α > 0 is equals 

to −1  when it passes through the unit circle. As both poles are real and different, 𝑏𝑏𝑑𝑑
2 −

4 𝑎𝑎𝑑𝑑  𝑐𝑐𝑑𝑑 > 0. As the sought pole is the smaller one and 𝑎𝑎𝑑𝑑 > 0, it comes from the negative 

square root term. To stay in the unit circle, the simplified condition shown in Eq. (A-2) can be 

written as shown in Eq. (A-3) to define the stability criterion. 

𝑝𝑝2_𝑚𝑚 =
−𝑏𝑏𝑑𝑑 − �𝑏𝑏𝑑𝑑

2 − 4 𝑎𝑎𝑑𝑑  𝑐𝑐𝑑𝑑
2 𝑎𝑎𝑑𝑑

> −1,          �
−2 ≤ λ𝑚𝑚 < 0

𝑎𝑎𝑑𝑑 > 0
 m = 1 … M − 1

 (A-3) 

Eq. (A-4) shows the development of Eq. (A-3). 

𝑖𝑖𝑖𝑖 𝑎𝑎𝑑𝑑 = 1        ⇒         −�𝑏𝑏𝑑𝑑
2 − 4 𝑐𝑐𝑑𝑑 > 𝑏𝑏𝑑𝑑 − 2 

𝑖𝑖𝑖𝑖 𝑏𝑏𝑑𝑑
2 − 4 𝑐𝑐𝑑𝑑 > 0       ⇒        𝑏𝑏𝑑𝑑

2 − 4 𝑐𝑐𝑑𝑑 < (𝑏𝑏𝑑𝑑 − 2)2 
𝑡𝑡ℎ𝑒𝑒𝑒𝑒        ⇒     𝑏𝑏𝑑𝑑

2 − 4 𝑐𝑐𝑑𝑑 < 𝑏𝑏𝑑𝑑
2 − 4 𝑏𝑏𝑑𝑑 + 4 

⇒     − 𝑐𝑐𝑑𝑑 < − 𝑏𝑏𝑑𝑑 + 1 

⇒     𝑐𝑐𝑑𝑑 −  𝑏𝑏𝑑𝑑 > −1 

(A-4) 

Eq. (A-5) by replacing 𝑏𝑏𝑑𝑑 and 𝑐𝑐𝑑𝑑 from Eq. (A-2) in Eq. (A-4) result. 
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(𝑝𝑝𝑂𝑂𝑂𝑂 + α λ𝑚𝑚 𝑧𝑧𝑂𝑂𝑂𝑂) + (𝑝𝑝𝑂𝑂𝑂𝑂 + 1 + α λ𝑚𝑚) > −1 

⇒     α λ𝑚𝑚(1 + 𝑧𝑧𝑂𝑂𝑂𝑂) > −2 (1 + 𝑝𝑝𝑂𝑂𝑂𝑂) 

⇒     α λ𝑚𝑚 > −2 
1 + 𝑝𝑝𝑂𝑂𝑂𝑂
1 +  𝑧𝑧𝑂𝑂𝑂𝑂

 

𝑖𝑖𝑖𝑖 − 2 ≤ λ𝑚𝑚 < 0      ⇒       α <
1 + 𝑝𝑝𝑂𝑂𝑂𝑂
1 + 𝑧𝑧𝑂𝑂𝑂𝑂

 

(A-5) 

The final condition is find combining this condition with the start one (α > 0). 

 



 

 
 

 

 

 Proof 2: Triangular carrier self-alignment C(z) corrector 
expression 

 

The local triangular signal commutation instant is studied to determine the expression 

of the correction value ∆𝜃𝜃𝑘𝑘 as a function of the error 𝜀𝜀𝜃𝜃 and other implementation parameters. 

Figure B-1 shows in details the waveforms near the iteration instant, where local 

triangular carrier 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 rises until touching the threshold voltage 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙. 

 
Figure B-1 – Iteration instant details. 

To ensure the result is a linear expression, two conditions have to be verified: 

1. the PDs are in an ascending sequence as shown in Eq. (B-1); 

𝜃𝜃𝑃𝑃𝑘𝑘+1 ≤ 𝜃𝜃𝑘𝑘 ≤ 𝜃𝜃𝑁𝑁𝑘𝑘 ,   
𝜃𝜃𝑁𝑁𝑘𝑘 − 𝜃𝜃𝑃𝑃𝑘𝑘+1

2
≤ 0.5 (B-1) 

2. Vtri commutation happens in an instant when 𝑉𝑉𝑡𝑡ℎ𝑙𝑙𝑙𝑙 has a slope equal to − 2 𝑆𝑆𝑅𝑅 𝛽𝛽, 

with the constraints shown in Eq. (B-2). 

−∞ < − 2 𝛽𝛽 𝑆𝑆𝑅𝑅  < 𝑆𝑆𝑅𝑅     ⟹     −0.5 < 𝛽𝛽 < +∞ (B-2) 

Starting with two basic equations: 

∆𝜃𝜃𝑘𝑘 = 2 ∆𝑥𝑥1 (B-3) 
𝜀𝜀𝜃𝜃𝑘𝑘 = 2 ∆𝑥𝑥1 + ∆𝑥𝑥2 (B-4) 

Solve ∆𝑥𝑥2 to ∆𝑥𝑥1: 

∆𝑦𝑦 = 𝑆𝑆𝑅𝑅 ∆𝑥𝑥1 = 2 𝛽𝛽 𝑆𝑆𝑅𝑅 (∆𝑥𝑥1 + ∆𝑥𝑥2) 

⟹    ∆𝑥𝑥1 = 2 𝛽𝛽 (∆𝑥𝑥1 + ∆𝑥𝑥2) 
(B-5) 
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⟹    ∆𝑥𝑥2 =
1 − 2 𝛽𝛽

2 𝛽𝛽
∆𝑥𝑥1 

Solve 𝜀𝜀𝜃𝜃 to ∆𝑥𝑥1: 

𝜀𝜀𝜃𝜃 = 2 ∆𝑥𝑥1 + ∆𝑥𝑥2 

⟹   𝜀𝜀𝜃𝜃 = 2 ∆𝑥𝑥1 +
1 − 2 𝛽𝛽

2 𝛽𝛽
∆𝑥𝑥1 

⟹   𝜀𝜀𝜃𝜃 =
4 𝛽𝛽
2 𝛽𝛽

∆𝑥𝑥1 +
1 − 2 𝛽𝛽

2 𝛽𝛽
∆𝑥𝑥1 

⟹   𝜀𝜀𝜃𝜃 =
1 + 2 𝛽𝛽

2 𝛽𝛽
∆𝑥𝑥1 

(B-6) 

Then: 

∆𝑥𝑥1 =
2 𝛽𝛽

1 + 2 𝛽𝛽
𝜀𝜀𝜃𝜃    ⟹    ∆𝜃𝜃 = 2 

2 𝛽𝛽
1 + 2 𝛽𝛽

𝜀𝜀𝜃𝜃 (B-7) 

It proves: 

C(𝑧𝑧) =
𝛥𝛥𝛥𝛥(𝑧𝑧)
𝜀𝜀𝜃𝜃(𝑧𝑧) = 𝛼𝛼 =

4 𝛽𝛽
1 + 2 𝛽𝛽

,

𝜃𝜃𝑃𝑃𝑘𝑘+1 ≤ 𝜃𝜃𝑘𝑘 ≤ 𝜃𝜃𝑁𝑁𝑘𝑘

𝜃𝜃𝑁𝑁𝑘𝑘 − 𝜃𝜃𝑃𝑃𝑘𝑘+1

2
≤ 0.5

−0.5 < 𝛽𝛽 < +∞

 (B-8) 

 

It should be noted that this expression is valid even beyond these limits. 

 



 

 
 

 

 

 Proof 3: Triangular carrier self-interleaving stability criterion. 
 

The differential close loop eigenvalues formula and its validity conditions are given in 

Eq. (C-1). 

𝜆𝜆𝐴𝐴𝑖𝑖 =
1 − 𝛼𝛼 (1 − 0.5 𝜆𝜆𝑖𝑖

∗) 
1 − 𝛼𝛼 0.5 𝜆𝜆𝑖𝑖

,       −∞ < 𝛼𝛼 < 2,       𝑖𝑖 = 0 …𝑁𝑁 − 1 (C-1) 

The stability condition shown in Eq. (C-2) is derived from Eq. (C-1), where 𝛼𝛼 ∈ ℝ that 

respects the inequality has to be find. 

|λ𝐴𝐴𝐴𝐴| = �
1 − 𝛼𝛼 (1 − 0.5 𝜆𝜆𝑖𝑖

∗) 
1 − 𝛼𝛼 0.5 𝜆𝜆𝑖𝑖

� < 1,   −1 ≤ |λ𝑖𝑖| < 1
∴ −1 ≤ 𝑅𝑅𝑅𝑅(λ𝑖𝑖) < 1,     𝑖𝑖 = 1 …𝑁𝑁 − 1 (C-2) 

Using absolute value properties, the inequality in Eq. (C-2) is rewritten such as in Eq. 

(C-3): 

�
1 − 𝛼𝛼 (1 − 0.5 𝜆𝜆𝑖𝑖

∗) 
1 − 𝛼𝛼 0.5 𝜆𝜆𝑖𝑖

� < 1 ⟺    
|1 − 𝛼𝛼 (1 − 0.5 𝜆𝜆𝑖𝑖

∗) |
|1 − 𝛼𝛼 0.5 𝜆𝜆𝑖𝑖|

< 1,   𝑖𝑖𝑖𝑖 (1 − 𝛼𝛼 0.5 𝜆𝜆𝑖𝑖)  ≠ 0
∴ 𝛼𝛼 ≠ −2

 (C-3) 

There is no 𝛼𝛼 restriction solution if 𝜆𝜆𝑖𝑖 is a complex number. The only pure real 𝜆𝜆𝑖𝑖 value 

is –1 and it leads to a restriction 𝛼𝛼 ≠ −2. 

The new inequality in Eq. (C-3) can be rewritten as in Eq. (C-4). 

|1 − 𝛼𝛼 (1 − 0.5 𝜆𝜆𝑖𝑖
∗) | < |1 − 𝛼𝛼 0.5 𝜆𝜆𝑖𝑖| (C-4) 

As this is a complex expression, the absolute value operator in Eq. (C-4) can be rewritten 

by its definition in Eq. (C-5). 

�𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁)2 + 𝐼𝐼𝐼𝐼(𝑁𝑁𝑁𝑁𝑁𝑁)2 < �𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝐼𝐼𝐼𝐼(𝐷𝐷𝐷𝐷𝐷𝐷)2 (C-5) 

where: 

𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁) = 1 − 𝛼𝛼 + 𝛼𝛼 0.5 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖
∗) 𝐼𝐼𝐼𝐼(𝑁𝑁𝑁𝑁𝑁𝑁) = 𝛼𝛼 0.5 𝐼𝐼𝐼𝐼(𝜆𝜆𝑖𝑖

∗) 
𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷) = 1 − 𝛼𝛼 0.5 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖) 𝐼𝐼𝐼𝐼(𝐷𝐷𝐷𝐷𝐷𝐷) = −𝛼𝛼 0.5 𝐼𝐼𝐼𝐼(𝜆𝜆𝑖𝑖) 

It can be noted that the complex parts in Eq. (C-5) are equal, then, the inequality to be 

true, it has to respect the condition in Eq. (C-6). 

𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁)2 < 𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷)2 (C-6) 

An term equal to 𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷) can be find in 𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁) by adding and removing one unity, 

i.e. (+1 –1), as shown in Eq. (C-7). 
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𝑅𝑅𝑅𝑅(𝑁𝑁𝑁𝑁𝑁𝑁) = (2 − 𝛼𝛼) − [1 − 𝛼𝛼 0.5 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖
∗)] = (2 − 𝛼𝛼) − 𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷) (C-7) 

Eq. (C-8) shows the development of the first square of Eq. (C-6). 

(2 − 𝛼𝛼)2 − 2 (2 − 𝛼𝛼) 𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷)2 < 𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷)2 

⟹      (2 − 𝛼𝛼)2 − 2 (2 − 𝛼𝛼) [1 − 𝛼𝛼 0.5 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖
∗)] < 0 (C-8) 

By putting (2 − 𝛼𝛼) as a common factor, the expression in (C-8) expression can be 

rewritten as in Eq. (C-9). 

�if (2 − 𝛼𝛼) > 0
∴ 𝛼𝛼 < 2

    ⟹      (2 − 𝛼𝛼) 𝛼𝛼 [𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖
∗) − 1] < 0 (C-9) 

Knowing Eq. (C-10), 

−1 ≤ |λ𝑖𝑖| < 1   ⟹     −1 ≤ 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖) = 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖
∗) < 1,         𝑖𝑖 = 1 …𝑁𝑁 − 1 

∴ −2 ≤ 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖
∗) − 1 < 0 (C-10) 

Then Eq. (C-11) can be derived from (C-9). 

(2 − 𝛼𝛼) 𝛼𝛼 > 0    ⇔     0 < α < 2 (C-11) 

The stability criterion in Eq.(C-11) in valid the whole interval shown because the 

restrictions in Eq. (C-1), Eq. (C-3) and Eq. (C-9) are valid. 

 



 

 
 

 

 

 Triangular carrier self-alignment simulation guidelines 
 

The system state equations are shown in Eq. (D-1) and Eq. (D-2). 

𝜽𝜽𝑘𝑘+1 = (𝑰𝑰 − 𝛼𝛼 0.5 𝑺𝑺 )−1 [(1 − 𝛼𝛼) 𝑰𝑰 + 𝛼𝛼 0.5 𝑺𝑺∗] 𝜽𝜽𝑘𝑘 + (𝑰𝑰 − 𝛼𝛼 0.5 𝑺𝑺 )−1 (𝛼𝛼 𝝋𝝋𝑘𝑘 + 𝒅𝒅𝑘𝑘) (D-1) 
𝜺𝜺𝜃𝜃𝑘𝑘 = 0.5 𝑺𝑺 𝜽𝜽𝑘𝑘+1 + (0.5 𝑺𝑺∗ − 𝑰𝑰) 𝜽𝜽𝑘𝑘 + 𝝋𝝋𝑘𝑘 (D-2) 

This system can then be written in a discrete state space representation for simulation, 

such as in Eq. (D-3) and Eq. (D-4). 

𝒙𝒙𝑘𝑘+1 = 𝐀𝐀 𝒙𝒙𝑘𝑘 + 𝐁𝐁 𝒖𝒖𝑘𝑘 (D-3) 
𝒙𝒙𝑘𝑘+1 = 𝐀𝐀 𝒙𝒙𝑘𝑘 + 𝐁𝐁 𝒖𝒖𝑘𝑘 (D-4) 

The PDs 𝜽𝜽 are the state variables 𝒙𝒙 are, the local errors 𝜺𝜺𝜃𝜃 are placed as output variable 

𝒚𝒚 for observation. The input signals 𝝋𝝋 and 𝒅𝒅 are placed in the input 𝒖𝒖, as shown in Eq. (D-5). 

Any other connection is required because the system is already in the closed-loop form. Being 

thus, the natural response found is directly the closed-loop system behavior being sought. 

𝒙𝒙 = 𝜽𝜽 𝒚𝒚 = 𝜺𝜺𝜽𝜽 𝒖𝒖 = � 𝝋𝝋𝒅𝒅 � (D-5) 

By comparison of Eq. (D-3) with Eq. (D-1), the equivalent matrices for space state 

representation are shown in Eq. (D-6) are found. 

𝑨𝑨 = (𝑰𝑰 − 𝛼𝛼 0.5 𝑺𝑺 )−1 [(1− 𝛼𝛼) 𝑰𝑰 + 𝛼𝛼 0.5 𝑺𝑺∗] 𝑩𝑩 =  (𝑰𝑰 − 𝛼𝛼 0.5 𝑺𝑺 )−1[ 𝛼𝛼𝑰𝑰      𝑰𝑰 ] (D-6) 

The error expression in Eq. (D-2) can be rewritten as a function of the state variables 𝜽𝜽 

and of the input vector u. By comparison of Eq. (D-4) with Eq. (D-2), the equivalent matrices 

for space state representation are shown in Eq. (D-7) are found. 

𝑪𝑪 = 0.5 𝑺𝑺 𝑨𝑨 + 0.5 𝑺𝑺∗ − 𝑰𝑰 𝑫𝑫 = 0.5 𝑺𝑺 𝑩𝑩 + [ 𝑰𝑰    𝟎𝟎 ] (D-7) 

By post processing the modal disturbances and modal error are calculated, such as 

shown in Eq. (D-8), but only its 𝑀𝑀 first components are generally shown to avoid plotting 

redundant data. 

|𝒅𝒅∗| = |𝑾𝑾∗ 𝒅𝒅| |𝜺𝜺𝜃𝜃∗| = |𝑾𝑾∗ 𝜺𝜺𝜃𝜃| (D-8) 

 





 

 
 

 

 

 Other differential phase detector implementations 
 

Small manipulations can be done to displace the dead zone away and extend the linear 

zone in the proper region. 

The modification to displace the 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 = 0 dead zone consists in adding a delay in 

one of the 𝑈𝑈𝑈𝑈/𝐷𝐷𝐷𝐷 logic inputs, as shown in Eq. (E-1), where a normalized delay 𝜃𝜃𝑑𝑑 = 𝑡𝑡𝑑𝑑/𝑇𝑇0 

is added to 𝐿𝐿 in 𝑈𝑈𝑈𝑈 and the same delay is added to 𝑁𝑁 in 𝐷𝐷𝐷𝐷. 

 𝑈𝑈𝑈𝑈 = 𝑃𝑃� ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿, 𝜃𝜃𝑑𝑑) 𝐷𝐷𝐷𝐷 = 𝐿𝐿� ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁,𝜃𝜃𝑑𝑑) (E-1) 
where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿(𝑡𝑡),𝜃𝜃𝑑𝑑) = 𝐿𝐿(𝑡𝑡 − 𝑇𝑇0𝜃𝜃𝑑𝑑) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁(𝑡𝑡),𝜃𝜃𝑑𝑑) = 𝑁𝑁(𝑡𝑡 − 𝑇𝑇0𝜃𝜃𝑑𝑑)  

As a result, part of the perceived error response is shifted in the 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 by 𝜃𝜃𝑑𝑑. The 

result is shown in Figure E-1, where 𝜃𝜃𝑑𝑑 is equal to 0.1. The picture shows the 𝜃𝜃𝑑𝑑 shift in the 

𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 axis. The optimal 𝜃𝜃𝑑𝑑 value is not discussed in this work. 

 

Figure E-1 – Shifted perceived error plot when 𝜃𝜃𝑑𝑑 = 0.1. 

The picture shows the 𝜃𝜃𝑑𝑑 shift in the 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 axis. This system pushes away the dead 

zone in the perceived error when 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 is close to zero. 

 

Other possibility is to use two Phase Frequency Detector (PFD) to enlarge the perceived 

error range and presumably the lock-in range too, as shown in as shown in Figure E-2 (a). The 

PFD is composed basically of two D-type flip-flops and a reset circuit as shown in Figure E-2 

(b). The previous and next clock signals are considered as references (REF), one in each PFD. 

The local clock is connected in both feedback inputs (VAR). Two charge pumps are also 

necessary, so their outputs are connected together to feed the loop filter. 
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(a)         (b) 
Figure E-2 – Error detector: a) composed of two PFDCP, b) PFDCP: Phase Frequency Detector (PFD) 
and Charge Pump (CP). 

The perceived error plot when the three signals have the same frequency is shown in 

Figure E-3. 

 
Figure E-3 – Perceived error by an error detector composed of two PFDCP. 

The correct range of the perceived error region is larger in the region where 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 

values are small, being almost 50% of the total area, while it was only about 25% in the XOR 

and derivate cases. It is a huge advantage, but this criteria is not sufficient. It can be noted as 

well this approach result in two discontinuities in the phase detector transfer function (bounds 

of the region where 𝜀𝜀𝜃𝜃′ = 𝜀𝜀𝜃𝜃 and 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 = 0) and a second stable equilibrium point (|𝜀𝜀𝜃𝜃| =

0.5) This can result in carriers placed in phase opposition to their expected value. It can be an 

issue during start-up, for example, when some elements are placed exactly at the discontinuity, 

having 𝜃𝜃𝑃𝑃 − 𝜃𝜃𝐿𝐿 = 0.5 and |𝜀𝜀𝜃𝜃| = 0.25 or 𝜃𝜃𝑁𝑁 − 𝜃𝜃𝑃𝑃 = 0. It can lead to non-causal behavior. 

Indeed, the start-up condition are not so accurate due to noise and mismatches, so the 

final reached stead-state may not be linked to the initial conditions because at least two stable 

equilibrium points exist. Additional logic could be added to try to avoid these discontinuities, 

however these studies will not be carried out in this work. 

Combining both PFD outputs in a single charge pump (𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶 = 𝑈𝑈𝑈𝑈1 + 𝑈𝑈𝑈𝑈2,𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶 =

𝐷𝐷𝐷𝐷1 + 𝐷𝐷𝐷𝐷2) would result in a gain reduction of 50% outside the region 𝜃𝜃𝑃𝑃 < 𝜃𝜃𝐿𝐿 < 𝜃𝜃𝑁𝑁, i.e. 

when the local is not between the neighbors. 
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 Development of a modular distributed control monolithic fully 
integrated multiphase converter 

 

This annex is dedicated to the description of an integrated circuit development using 

NXP SmatMOS10 technology. This approach is intended to mitigate the SPOF in the 

distributed control architecture. The architecture is the same as the system described in [37], 

shown in Figure F-1, but with improvements in the current balance and interleaving approach, 

as shown in the previous chapter. With these changes, this device is more robust and goes a 

step closer to market requirements. 

 
Figure F-1 – One module block diagram of a distributed multiphase converter shown in [13]. 

The following sections will explain the changes proposed in the current balance 

architecture, and then describe in detail de implementation of each block. 

 Distributed voltage regulation and current balance 
The AVP technique make the output voltage 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 dependent on the converter output 

current 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜. The converter output can be modelled as a voltage reference 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 in series with 

virtual output impedance called usually Load Line 𝑅𝑅𝐿𝐿𝐿𝐿 . In a multiphase converter with 

centralized control architecture, the AVP control technique is applied following the static 

relation 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑅𝑅𝐿𝐿𝐿𝐿 × 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜, where the 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 is the sum of all legs currents 𝐼𝐼𝑖𝑖. 

The AVP can also be implemented to each leg and then combined in the same output, 

as shown in [12], [13]. Zhang shows in [12] that when independent references are used in each 

regulator, the combined output voltage tolerance is reduced (the shared voltage reference line 

is not mandatory). Using the shared voltage reference line reduces the leg current differences, 

but leg current 𝐼𝐼𝑖𝑖 still dependent on the equivalent local load line characteristic 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿. 

The circular chain current balance technique shown in [13] is distributed and has no 

single point of failure because it uses only module-to-module connections. The current balance 

is made by adjusting the load line to combine all in the currents in a focal point, as shown in 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 
𝐼𝐼𝑖𝑖 𝐿𝐿𝑖𝑖 

Circular chain of communication 
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Figure I-23. The current balance correctors with integrator can annul the error, but one current 

balance controller is disabled in order to avoid correction divergence. As no shared line is used, 

the focal point is always on the regulator characteristics where the balance regulator is disabled, 

and consequently the voltage precision improvement is lost. 

A detailed study of this approach shows the current balance loop is non-linear because 

the multiplication of the corrected slope 𝛼𝛼′𝑖𝑖  with 𝐼𝐼𝑖𝑖 , two state variables. Additionally, this 

system can diverges because current balance errors are applied to two cascaded integrators. As 

a result, this current balance approach has two drawbacks: 

1- The loop gain and consequently transient response depends on 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜. 

2- The closed loop line load characteristics 𝑅𝑅𝐿𝐿𝐿𝐿 may change if all correctors are activated 

with non-limited gain; 

To remove the non-linearity, the voltage references should be adjusted to equalize the 

leg currents instead of changing the load line to balance the current. To have the voltage 

precision improvement when using current balance, all balance correctors must be active and 

have the same limited static gain. 

 Voltage references adjustment: static behavior 
The output voltage and leg current tolerance analysis shall be written to reveal the 

advantages of using the voltage references adjustment with the circular chain. The static AVP 

relation is applied in each of the modular converter’s legs, following the expression shown in 

Eq. (F-1). 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐼𝐼𝑖𝑖 + 𝑅𝑅𝐶𝐶𝐶𝐶 × 𝜀𝜀𝑖𝑖, 𝑖𝑖 = 0 …𝑁𝑁 − 1  (F-1) 

where 𝜀𝜀𝑖𝑖 is the current error in the ith leg given by 𝜀𝜀𝑖𝑖 = 𝐼𝐼𝑖𝑖−1+𝐼𝐼𝑖𝑖+1
2

− 𝐼𝐼𝑖𝑖 and the current 

balance loop has static gain equals to 𝑅𝑅𝐶𝐶𝐶𝐶. The combined output voltage can be seen in Eq. (F-2). 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 =
1

∑ 1
𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿

𝑁𝑁
𝑖𝑖=1

��
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿

𝑁𝑁

𝑖𝑖=1

+ �
𝑅𝑅𝐶𝐶𝐶𝐶 × 𝜀𝜀𝑖𝑖
𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿

𝑁𝑁

𝑖𝑖=1

− 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜� (F-2) 

The same load line 𝑅𝑅𝐿𝐿𝐿𝐿 of the centralized case can be observed when each leg load line 

𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿  is equal to 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑁𝑁 × 𝑅𝑅𝐿𝐿𝐿𝐿 . Considering the simplification where 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑁𝑁 × 𝑅𝑅𝐿𝐿𝐿𝐿  and 

𝑅𝑅𝐶𝐶𝐶𝐶 = 𝑅𝑅𝐶𝐶, the equivalent output voltage is shown in Eq. (F-3). 
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𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 =
∑ 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑁𝑁
𝑖𝑖=1

𝑁𝑁
+ 𝑅𝑅𝐶𝐶�𝜀𝜀𝑖𝑖

𝑁𝑁

𝑖𝑖=1

− 𝑅𝑅𝐿𝐿𝐿𝐿 × 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 (F-3) 

It should be noted that the output voltage 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 tolerance benefits of the average of all 

voltage references 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. Additionally, the sum of the current leg errors is null, ∑ 𝜀𝜀𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0, so 

the current balance loop do not impacts the output voltage if 𝑅𝑅𝐶𝐶 is limited. As a result, this 

current balance structure with limited static gains allows to balance current keeping voltage 

reference tolerance improvement. 

By replacing 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 from Eq. (F-3) in Eq. (F-1) and considering ∑ 𝜀𝜀𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0, then the 

local current loop error can be expressed as shown in Eq. (F-4). 

𝜀𝜀𝑖𝑖 =

∑ 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑁𝑁
𝑖𝑖=1
𝑁𝑁 − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅𝐶𝐶𝐶𝐶
−
𝑅𝑅𝐿𝐿𝐿𝐿 × 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐼𝐼𝑖𝑖

𝑅𝑅𝐶𝐶𝐶𝐶
 (F-4) 

This approach fulfill the two requirements. Eq. (F-3) shows the output voltage benefits 

of the voltage refence average and without impact of the current balance. Eq. (F-4) shows the 

current balance can mitigate local voltage reference and local load line deviations. 
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