
HAL Id: tel-04308348
https://theses.hal.science/tel-04308348

Submitted on 27 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditional random sets with applications in
mathematical finance and optimization

Meriam El Mansour

To cite this version:
Meriam El Mansour. Conditional random sets with applications in mathematical finance and opti-
mization. Dynamical Systems [math.DS]. Université Paris sciences et lettres; Université de Tunis El
Manar, 2023. English. �NNT : 2023UPSLD023�. �tel-04308348�

https://theses.hal.science/tel-04308348
https://hal.archives-ouvertes.fr


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Préparée à l’Université Paris-Dauphine 

Dans le cadre d’une cotutelle avec La Faculté Des Sciences de Tunis 

Ensembles aléatoires conditionnels avec applications en 

mathématiques financières et en optimisation. 

Conditional random sets with applications in mathematical 

finance and optimization. 

Soutenue par 

Meriam EL MANSOUR  

Le 25 mai 2023 

Ecole doctorale n° ED 543  

Ecole doctorale SDOSE 

 

Spécialité 

Mathématique 

Composition du jury : 
 

Elyes, JOUINI 

Professeur, Université Paris-Dauphine PSL   Président 

   

Youri, KABANOV 

Professeur, Université de Franche-Comté   Rapporteur 

  

Serguei, PERGAMENCHTCHIKOV  

Professeur, Université de Rouen Normandie   Rapporteur  
 

Zorana, GRBAC 

Maître de conférences, Université Paris-Diderot  Examinateur 

  

Mohamed Amine, BEN AMOR 

Maître assistant, Université de Carthage   Examinateur 
 

Emmanuel, LEPINETTE 

Maître de conférences, Université Paris-Dauphine PSL  Directeur de thèse 
 

Dorra, BOURGUIBA 

Professeur, Faculté des Sciences de Tunis   Co-directeur de thèse 

 

Amina, ZEGHAL     Invitée 

Docteur, Université Paris-Dauphine     
 

 

 





CEREMADE, PARIS DAUPHINE UNIVERSITY
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Abstract

In this thesis we introduce two new types of conditional random sets taking values in
a Banach space: the conditional interior and the conditional closure. The conditional
interior is a version of the conditional core, as introduced by A. Truffert and recently
developed by Lépinette and Molchanov, and may be seen as a measurable version
of the topological interior. The conditional closure is a measurable version of the
topological closure. These concepts are useful for applications in mathematical
finance and conditional optimization as we shall see in the thesis.

In the second part of the thesis we apply the theoretical results established in
the first part to solve the problem of super-hedging European or Asian options
for discrete-time financial market models where executable prices are uncertain.
The risky asset prices are not described by single-valued processes but measurable
selections of random sets that allows to consider a large variety of models including
bid-ask models with order books, but also models with a delay in the execution of
the orders. We provide a numerical procedure to compute the infimum price under a
weak no-arbitrage condition, the so-called AIP condition, under which the prices of
any non negative European options are non negative. This condition is weaker than
the existence of a risk-neutral martingale measure but it is sufficient to numerically
solve the super-hedging problem. We illustrate our method by a numerical example.

In the last part we show that, in discrete-time, it is possible to evaluate the
minimal super-hedging price when we restrict ourselves to integer-valued strategies.
In fact, usual theory of asset pricing in finance assumes that the financial strategies,
i.e. the quantity of risky assets to invest, are real-valued so that they are not integer-
valued in general, as we can see in the Black and Scholes model for instance. This
is clearly contrary to what it is possible to do in the real world. Surprisingly, it
seems that there are few contributions in that direction in the literature (see the
reference in the last version). To do so, we only consider terminal claims that
are continuous piecewise affine functions of the underlying asset. We formulate a
dynamic programming principle that can be directly implemented on an historical
data, and which also provides the optimal integer-valued strategy.
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Résumé

Dans cette thèse nous introduisons deux nouveaux types d’ensembles aléatoires con-
ditionnels à valeurs dans un espace de Banach : l’intérieur conditionnel et la clôture
conditionnelle des ensembles aléatoires. L’intérieur conditionnel est une version
mesurable des ouverts topologiques, tel qu’introduit par A. Truffert et récemment
développé par Lépinette et Molchanov, et peut être vu comme une version mesurable
de l’intérieur topologique. La clôture conditionnelle est une généralisation de la no-
tion de support conditionnel d’une variable aléatoire. Ces concepts sont utiles pour
des applications en mathématique financière et en optimisation conditionnelle.

Dans la deuxième partie, nous appliquons les résultats théoriques établis dans la
première partie pour résoudre le problème de sur-réplication des options européennes
ou asiatiques pour les modèles de marchés financiers en temps discret où les prix
exécutables sont incertains. Les prix des actifs risqués ne sont pas décrits par des
processus à valeur unique mais des sélections mesurables d’ensembles aléatoires qui
permettent de considérer une grande variété de modèles, y compris des modèles bid-
ask avec carnets d’ordres, mais aussi des modèles avec un retard dans l’exécution
des ordres. Nous proposons un procédé numérique pour calculer le prix minimal
sous une condition faible de non-arbitrage, dite condition AIP, sous laquelle les
prix positifs des options européennes sont positifs. Cette condition est plus faible
que l’existence d’une probabilité risque neutre mais elle est suffisante pour résoudre
numériquement le problème de super-couverture. Nous illustrons notre méthode par
un exemple numérique.

Dans la dernière partie nous montrons que, dans un modèle de marché en temps
discret, il est possible d’évaluer le prix minimal de sur-réplication lorsqu’on se limite
aux stratégies à valeurs entières. En fait, la théorie habituelle de l’évaluation des
options en finance suppose que les stratégies financières, c’est-à-dire la quantité
d’actifs risqués à investir, sont à valeurs réelles de sorte qu’elles ne sont pas à valeurs
entières en général, comme on peut le voir dans le modèle de Black et Scholes par
exemple. Ceci est clairement contraire à ce qu’il est possible de faire dans le monde
réel. Il semble qu’il y’ait peu de contribution en ce sens dans la littérature. Pour
ce faire, nous ne considérons que des payoffs qui sont des fonctions continues affines
par morceaux de l’actif sous-jacent. Nous formulons un principe de programmation
dynamique qui peut être directement implémenté sur une donnée historique et qui
fournit également la stratégie optimale à valeurs entières.
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Chapter 1

General Introduction

1.1 Motivation

In mathematical finance, options plays an important role. They are a powerful tool
for investors to manage and hedge any potential risk. In fact, options are contracts
that give the holder the right (but not the obligation) to buy or sell the underlying
asset at a fixed price on a specified date. As a result, finding a fair price for both the
buyer and the seller has been a challenging problem that several mathematicians
tried to answer: The seller of the option will deliver a random amount at a specific
time to the buyer. In exchange the seller receives from the buyer some amount of
capital the we call price.

So, we introduce first the classical theory of arbitrage and pricing for financial
markets without frictions. We recall the definition of arbitrage opportunity and then
we present the the fundamental theory of asset pricing based on convex duality and
the dual characterization of super-hedging prices. We refer to [42] and [56] and the
references therein for a general overview.

1.2 Framework

In order to determine the price of an asset, we consider a discrete financial mar-
ket model defined by a complete filtered probability space (Ω,F ,F,P) where F :=
(Ft)0≤t≤T is a filtration that represents the information that the investor holds at
time t and such that FT = F . LetM(Rd,Ft) be the set of Rd-valued Ft-measurable
random variables. The random variables are defined up to neglugible set, which
means that we work directly with quotient spaces. We consider a price process
S := (S0

t , St)0≤t≤T such that St ∈ M(Rd
+,Ft). A strategy θ̂ = (θ0

t , θt)0≤t≤T is a
stochastic process adapted to the filtration F.

The liquidation value at time t using the strategy θ is given by:

V θ̂
t := θ0

tS
0
t + θt.St = θ0

tS
0
t +

d∑
i=1

θitS
i
t
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Definition 1.2.1. An European option is a financial contract between a buyer and
a seller that gives the buyer the right to execute the contract at a fixed maturity time
T and to get a terminal wealth ξT also known as the payoff. In return he should pay
the price of the contract to the seller at time t = 0. For example the payoff ξT of a
Call option is (ST −K)+ where K ≥ 0 is a constant called strike.

One of the interesting problems in mathematical finance is to find the price of
an option. So we need to recall some definitions and theorems that will be useful.

Definition 1.2.2. A portfolio process (V θ̂
t )t∈{0,...,T} is said to be self-financing if:

θ0
t−1S

0
t + θt−1.St = θ0

tS
0
t + θt.St, ∀t = 1, ..., T.

We have the following equivalences:

1. (V θ̂
t )t∈{0,...,T} is said to be self-financing.

2. Let ∆V θ̂
t = V θ̂

t − V θ̂
t−1, and ∆St = St − St−1, then

∆V θ̂
t = θ0

t−1∆S0
t + θt−1.∆St ∀t = 1, ..., T.

3. Let Ṽ θ̂
t =

V θ̂t
S0
t
, be the discounted value of V θ̂

t and S̃t = St
S0
t
, the discounted value

of St then
∆Ṽ θ̂

t = θt−1.∆S̃t ∀t = 1, ..., T.

In the sequel, we denote by DT0 the set of all the discounted terminal values Ṽ θ̂
T

with initial value Ṽ θ̂
0 = V0 = 0 that is:

DT0 =

{
T∑
t=1

θt−1.∆S̃t : θt ∈M(R,Ft), t = 0, ..., T − 1

}
.

We denote also by SHT
0 = DT0 −M(R+,FT ) the set of super-hedgeable claims, i.e

ξT ∈ SHT
0 if and only if there exists V θ̂

T ∈ DT0 such that V θ̂
T ≥ ξT a.s. A portfolio

process with terminal value V θ̂
T super-replicates ξT at time T if V θ̂

T ≥ ξT , a.s. If

V θ̂
T = ξT a.s then V θ̂

T replicates ξT .
Now, let’s give the definition of a price:

Definition 1.2.3. Let ξT be a payoff and V θ̂ be a self-financing portfolio process. A
price is any initial endowment V θ̂

0 such that V θ̂ ≥ ξT . We denote by P(ξT ) the set
of all prices for the payoff ξT .

We can define now the super hedging price. Let x be the initial capital of a
self-financing startegy denoted by V x,θ̂. If ξT is a contingent claim and Θ is the set
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of all strategies, then the (infimum) super-hedging price is denoted by p(ξT ), defined
by:

p(ξ) := inf
{
p ∈ R,∃θ̂ ∈ Θ s.t V p,θ̂

T ≥ ξT a.s
}
.

Note that it is an infimum price and we are not sure that it is a minimal price. The
classical approaches to solve the super-hedging problem is assuming the absence of
arbitrage (NA). To do so, let us recall the definition of an arbitrage opportunity.

Definition 1.2.4. An arbitrage opportunity is a financial strategy θ̂ starting from
a zero initial endowment such that:

• V θ̂
T ≥ 0,P a.s .

• P(V θ̂
T > 0) > 0.

Definition 1.2.5. The (NA) condition holds if there is no arbitrage condition.

This means that it is impossible to make a profit without taking some risk. The
(NA) condition can be expressed in the set setting as follow:

• NA holds if DT0 ∩M(R+,FT ) = {0}.

• NA holds if SHT
0 ∩M(R+,FT ) = {0}.

In the sequel we state the first fundamental theorem of asset pricing (FTAP) that
gives a characterisation of the absence of arbitrage using the martingale criterion
first proven by Harrison and Krep in [32] and Harrison and Pliska in [33] in the
case of finite universe Ω while Dalang, Morton and Willinger in [21] gave the proof
for an arbitrary Ω. There exist several proofs of this theorem based on the Hahn
Banach theorem and some results of functional analysis. One can find in [56] another
proof where the martingale measures are explicitly constructed using the Esscher
conditional transformation. In their seminal work [39], Jouini.E and Kallel.H worked
on arbitrage theory in presence of transaction costs and in [40] extend the result
to the case of multi-asset models especially the case of the currency models by
considering martingale density and solvency cones rather then measures.

Theorem 1.2.6. The financial market is arbitrage free if and only if there exists a
probability measure Q equivalent to P such that the discounted price process S̃ is a
Q-martingale measure1.

In fact FTAP states that: NA holds if and only if EMM(S) 6= ∅, where
EMM(S) is the set of all equivalent martingale measures. The dual elements of
the previous theorem allow to minimal super-replicating price.

1A sequence (Xt)0≤t≤T is said to be a martingale relative to the filtration (Ft)0≤t≤T if every
Xt is integrable and E(Xt | Fs) = Xs, ∀s < t.

12



Theorem 1.2.7. If NA holds then:

p(ξ) = sup
Q∈EMM(S)

EQ(ξ).

The second theorem of asset pricing is given by the following theorem:

Theorem 1.2.8. If EMM(S) 6= ∅, then the following holds: The market is complete
if and only if EMM(S) is a singleton.

The completeness of financial markets is an important condition. In fact, if the
market is complete then we can compute the super-hedging price as the expectation
of the contingent claim under the unique martingale measure which can be deter-
mined numerically using for example Monte Carlo methods. But in many cases, this
condition doesn’t hold true which complicates the task of determining the super-
hedging price using the dual characterisation. In [16], the authors introduced a weak
no-arbitrage condition called the absence of immediate profit (AIP) that ensures the
possibility to price a European claim in a financial market.

Definition 1.2.9. We say that a financial market satisfies the AIP condition if the
super-hedging price of the zero claim is zero.

Some contributions

In this thesis we introduce in a first place theoretical results that will be used to
solve the super-hedging problem. Actually we define two new types of conditional
random sets: Conditional interior and conditional closure sets and then we solve the
super-hedging problem without any no-arbitrage condition, by considering the price
process as measurable selections of random sets, contrarily to what it is usual to
do. We then provide a numerical procedure to compute the infimum of the super-
hedging price under AIP condition. We shall follow the idea of L.Carassus and
E.Lépinette [16] by considering the infimum value of the set of super-hedging prices
and then computing the super-hedging price by using the convex duality without
any assumptions on the market. To do so, we use the notions of Fenchel-Lengendre
conjugate and biconjugate, the conditional essential supremum and the conditional
support of random variables. Then we provide the optimal integer-valued strategy
and we formulate a dynamic programming principle implemented on an historical
data base. Several important notions are defined in the Appendix that will be used
throughout the thesis. For further references see [42], [16], [54] and [2].

13



Chapter 2

Conditional interior and
conditional closure of random sets

2.1 Introduction

The conditional essential supremum and infimum of a real-valued random variable
have been introduced in [4]. A generalization is then proposed in [41] for vector-
valued random variables with respect to random preference relations. Actually, these
two concepts are related to the notion of conditional core as first introduced in [58]
and developped in [45] for random sets in separable Banach spaces, with respect to
a complete σ-algebra H. A conditional core of a set-valued mapping Γ(ω), ω ∈ Ω,
is defined as the largest H-graph measurable random set Γ′(ω) such that Γ′(ω) ⊂
Γ(ω). This concept provides a natural conditional risk measure, that generalizes
the concept of essential infimum for multi-asset portfolios in mathematical finance.
Applications are deduced for geometrical market models with transaction costs: see
[46] and [45] and the theory with transaction costs developed in [42].

In this chapter, we first introduce the open version of the conditional core as
proposed in [58], [45]. Precisely, if H is a complete sub-σ-algebra on a probability
space, the conditional interior (or open conditional core)of a set-valued mapping
Γ(ω), ω ∈ Ω, is defined as the largest H-measurable random open set Γ′(ω) such
that Γ′(ω) ⊂ Γ(ω) P-almost every ω ∈ Ω. It may be seen as a measurable version
of the classical interior in topology. One of our main contribution is to show the
existence and uniqueness of such a conditional interior for an arbitrary random set
in a separable Banach space. Then, the dual concept, the conditional closure, is
introduced as a generalization of the conditional support of a real-valued random
variable to a family of vector-valued random variables. A numerical application of
the latter is deduced in conditional random optimization: We show that an essential
supremum is a pointwise supremum on a conditional closure.

The chapter is organized as follows. In Section 2.2, we recall the definition and
usual properties of measurable random sets in Banach spaces. Then, we introduce
the notion of conditional interior and show the existence of such sets in Banach
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spaces. In Section 2.3, the conditional closure is introduced and an application in
conditional optimization is formulated in the next section. At last, we present an
application in mathematical finance. The definitions of the conditional support,the
conditional essential supremum and the conditional essential infimumum are post-
poned to the appendix.

2.2 Conditional Interior

We consider a complete probability space (Ω,F ,P) and a complete sub-σ-algebra
H of F . Set-valued mappings we consider take their values in the family of all
subsets of a separable Banach space X equipped with its Borel σ-algebra B(X ). In
the following, we first recall the concept of graph measurable random set. We then
introduce the concept of conditional interior of a random set. Existence is deduced
from the existence of the conditional core of a closed random set, see [45], even if it
is not always non-empty.

Recall that a random set Γ(ω), ω ∈ Ω, is a set-valued mapping that assigns to
each ω ∈ Ω a subset Γ(ω) of X . We say that Γ is H-measurable if, for any open set
O ⊆ X ,

{ω ∈ Ω, Γ(ω) ∩O 6= ∅} ∈ H.

We say that Γ is H-graph measurable, if

graph Γ := {(ω, x) ∈ Ω×X : x ∈ Γ(ω)} ∈ H ⊗ B(X ).

When the sets Γ(ω) are closed (resp. open) P-almost for all ω ∈ Ω, we shall say
that Γ is closed (resp. open).

Remark 2.2.1. If Γ is closed-valued and the σ-algebra is complete, then Γ is H-
graph measurable, if and only if it is H-measurable: see [47, Definition 1.3.1].

We say that a F -measurable random variable ξ : Ω→ X is an F -measurable se-
lection of Γ if ξ(ω) ∈ Γ(ω) for almost all ω ∈ Ω. The set of such selections is denoted
by L0(Γ,F) ⊆M(X ,F) where the setM(X ,F) of all X -valued F -measurable ran-
dom variables is equipped with the metric of convergence in probability.

The following result may be found in [34, Th. 4.4] and, when applied, it is
usually mentioned as measurable selection argument, see also [47, Theorem 2.3].

Theorem 2.2.2 (Measurable selection argument). If Γ is an F-graph measurable
random set which is non-empty and closed a.s., then L0(Γ,F) 6= ∅.

The following result is proven in [45, Proposition 2.7] whenever the random set
we consider is closed or not. We denote by cl (X) the closure of any subset X ⊆ X
with respect to the norm topology. The closure of any subset of M(X ,F) is taken
with respect to the metric topology of L0(X ,F).
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Proposition 2.2.3. Suppose that F is complete. Suppose that Γ is an F-graph
measurable random set which is non empty a.s.. Then, cl (Γ) is F-graph measurable
and admits a Castaing representation, i.e., there exits a countable family (ξn)n≥1 of
measurable selections of Γ such that

cl (Γ(ω)) = cl (ξn(ω) : n ≥ 1), ω ∈ Ω.

Moreover, we have cl (L0(Γ,F)) = L0(cl (Γ),F).

Corollary 2.2.4. If Γ is an F-graph measurable random set, then its topological
interior int (Γ(ω)), defined for each ω ∈ Ω, and its boundary ∂Γ(ω) are also F-
graph measurable.

Proof. Indeed, consider Y (ω) = X \ Γ(ω). It is clear that Y is F -graph measur-
able. Moreover, we have

int (Γ(ω)) = int (X \ Y (ω)) = X \ cl (Y (ω)),

where cl (Y (ω)) is F -graph measurable by the proposition above, hence the com-
plement set int (Γ(ω)) is F -graph measurable. We also deduce that the boundary
∂Γ(ω) = cl (X(ω)) \ int (X(ω)) is F -graph measurable.

For x ∈ X and r ≥ 0, B(x, r) denotes the open ball in X of center x and radius
r and B̄(x, r) is its closure. For any A ⊆ X and λ ∈ R, we use the convention that
λ× A = {λa : a ∈ A}. In particular, 0× A = {0}. Recall the following definition,
see the paper by A. Truffert [58] and [45]:

Definition 2.2.5. The H-conditional core m(Γ|H), of a set-valued mapping Γ, is
the largest H-graph measurable random set Γ′ such that Γ′(ω) ⊆ Γ(ω) a.s..

Note that m(Γ|H) is the largest subset in the sense that, if Γ̃ is another H-graph
measurable random set contained in Γ a.s., then Γ̃(ω) ⊆ m(Γ|H)(ω) P-almost all
ω ∈ Ω. The following result is proved in [45] and is an extension of the primal result
of [58]. Recall that, if Γ is a random set, L0(Γ,H) ⊆ M(X ,H) is the set of all
H-measurable random variables γ with values γ(ω) ∈ Γ(ω) a.s..

Proposition 2.2.6. Suppose that Γ is a closed F-graph measurable set that may be
empty. Then, the conditional core m(Γ|H) exists and we have

L0(m(Γ|H),H) = L0(Γ,H).

If γ ∈ M(X ,H) and r ∈ M([0,∞),F), m(B̄(γ, r)|H) = B̄(γ, ess infHr). The
conditional core plays a role in mathematical finance as it naturally appears when
considering the dynamics of a self-financing discret-time portfolio process (Vt)

T
t=0 of

the form Vt−1 ∈ Vt + Gt, t ≥ 1, where Gt is the solvency set, see [42], i.e., Vt−1 ∈
m(Vt+Gt|Ft−1), see [46]. When the σ-algebra is trivial, the conditional core becomes
the set of fixed points of X; it is also related to the essential intersection considered
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in [35]. Notice that the H-measurable conditional core is mainly independent of F ,
i.e., instead of completing the underlying measurable space with respect to a single
(or a dominated family of) probability measure(s), one may pass to the universal
completion, and hence avoid postulating the existence of any reference measure.

We now introduce an open version of the conditional core:

Definition 2.2.7. The H-graph measurable interior o(Γ|H) of a set-valued mapping
Γ is the largest H-graph measurable random open set Γ′ such that Γ′(ω) ⊆ Γ(ω) a.s..

Notice that such a conditional interior is necessarily unique by definition. We
first show the existence of the conditional interior, when Γ is open-valued.

Theorem 2.2.8. Let us consider an F-graph measurable open random set O. Then,
there exits a unique H-graph measurable interior of O.

Proof. By Proposition 2.2.3, clO and ∂O := clO\O are closed F -graph measur-
able random sets, see Corollary 2.2.4. When ∂O(ω) = ∅, we define d(x, ∂O(ω)) =∞
for all x ∈ X . Otherwise, ∂O admits a Castaing representation on {∂O 6= ∅} by
Proposition 2.2.3. We deduce that the random mapping (ω, x) 7→ d(x, ∂O(ω)) is
F ⊗ B(X )-measurable. Therefore, the random sets

F n := {x : d(x, ∂O) ≥ 1/n} ∩ clO, n ≥ 1,

are closed F -graph measurable random subsets of O and we have O =
⋃
n F

n.
Let us define the H-graph measurable open random set (see Corollary 2.2.4 and
Proposition 2.2.6):

o(O|H) = int

(⋃
n

m(F n|H)

)
⊆ O.

Let us show that this is the largest H-graph measurable open random subset of O.
To do so, let OH ⊆ O be a H-graph measurable open subset of O. As for O, we
may write OH =

⋃
nH

n where Hn := {x : d(x, ∂OH) ≥ 1/n} ∩ clOH are H-graph
measurable closed subsets of OH.

We claim that Hn ⊆ F n. Indeed, if x ∈ Hn, it suffices to show that d(x, ∂OH) ≤
d(x, ∂O) a.s.. In the contrary case, on a non-null set, there exists o ∈ ∂O such that
o ∈ B(x, d(x, ∂OH)). By Lemma 2.2.10, this implies that o ∈ OH ⊆ O which yields
a contradiction.

As Hn is H-graph measurable and closed, Hn ⊆m(F n|H) for all n. We deduce
that OH ⊆

⋃
n m(F n|H) hence OH ⊆ o(O|H).

We then deduce the general case:

Theorem 2.2.9. For any F-graph measurable random set Γ, the H-graph measur-
able interior of Γ exists and o(Γ|H) = o(int Γ|H) is unique.

The following lemma is recalled for the sake of completeness. It is used in the
proof above.
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Lemma 2.2.10. Let O be an open set in a separable Banach space. For every
x ∈ O, B(x, d(x, ∂O)) ⊆ O.

Proof. Let us consider r∗ = supR where R is the non empty set of all r > 0
such that B(x, r) ⊆ O. It is trivial that B(x, r∗) ⊆ O. So, for all o ∈ ∂O,
d(x, o) ≥ r∗ hence r∗ ≤ d(x, ∂O). Moreover, by definition of r∗, for all n there exists
zn ∈ B(x, r∗ + n−1) such that zn /∈ O hence r∗ ≤ ‖zn − x‖ ≤ r∗ + n−1. As the
sequence (zn)n is bounded, using the completness of the Banach space we deduce
the existence of a subsequence, that we denote (zn)n converges to some z in the
Banach space. Then, ‖z− x‖ = r∗ hence z ∈ clO. In the case where z ∈ O, zn ∈ O
for n large enough since O is open, which yields a contradiction. Therefore, z ∈ ∂O.
This implies that r∗ = d(x, z) ≥ d(x, ∂O) and finally r∗ = d(x, ∂O).

2.3 Conditional Closure

We now introduce the concept of conditional closure. The existence is proved in
the following theorem which is the second main contribution of this chapter. As
previously, F and H are supposed to be complete with respect to some probability
measure P.

Definition 2.3.1. The H-graph measurable conditional closure cl (Γ|H) of a set-
valued mapping Γ is the smallest H-graph measurable random closed set Γ′ such that
Γ(ω) ⊆ Γ′(ω) a.s..

Theorem 2.3.2. For any F-graph measurable random set Γ, the H-graph measur-
able conditional closure cl (Γ|H) of Γ exists and is unique. We have

cl (Γ|H) = X \ o(X \ Γ|H).

Moreover, for all measurable selection γ of cl (Γ|H) and ε ∈ M(]0,∞[,H), for all
H ∈ H such that P(H) > 0, we have P({Γ ∩B(γ, ε) 6= ∅} ∩H) > 0.

Proof. The first part is a direct consequence of Corollary 2.2.9. Indeed, we
first observe that Γ ⊆ X \ o(X \ Γ|H). Moreover, if ΓH is a closed-valued H-graph
measurable set containing Γ, then X \ΓH ⊆ X \Γ. We deduce that X \ΓH ⊆ o(X \
Γ|H) and, finally, X \o(X \Γ|H) ⊆ ΓH. Suppose that P({Γ∩B(γ, ε) 6= ∅}∩H) = 0
for some H ∈ H and ε ∈ M((0,∞),H). Therefore, by definition of the conditional
closure as a smallest set, we have

cl (Γ|H) = cl (Γ|H)1Ω\H + cl (Γ|H) ∩ (X \B(γ, ε)) 1H .

Indeed, the H-graph measurable set in the r.h.s. above contains Γ by assumption
hence it contains cl (Γ|H). We get a contradiction since γ ∈ L0(cl (Γ|H),H) a.s. by
assumption. Uniqueness is clear as the conditional closure of Γ is the smallest closed
set, up to a negligible set, in the sense that it is included in any other H-measurable
set containing Γ.
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Remark 2.3.3. We may deduce the conditional support of a random variable X ∈
L0(X ,F). Precisely, there exists a smallest H-graph measurable random closed set
denoted by suppH(X) such that P(X ∈ suppH(X)) = 1. It is given by suppH(X) =
cl ({X}|H) and is called the H-conditional support of X. Moreover, for all γ ∈
L0(suppH(X),H) and ε ∈ M(]0,∞[,H), for all H ∈ H such that P(H) > 0, we
have P({X ∈ B(γ, ε)} ∩H) > 0.

Notice that the conditional support is necessarily non empty a.s. hence it admits
a measurable selection. In the following, we adopt the notation kA = {ka : a ∈ A}
for any subset A ⊆ X and k ∈ A.

Lemma 2.3.4. Let H ∈ H. Then, cl (Γ1H |H) = 1Hcl (Γ|H), for every F-graph
measurable set Γ.

Proof. First, observe that P(Γ1H ⊆ 1Hcl (Γ|H)) = 1 as 1Hcl (Γ|H) = {0} on
Ω\H. We deduce that cl (Γ1H |H) ⊆ 1Hcl (Γ|H) a.s. and cl (Γ1H |H) = {0} on Ω\H.
Let us define Z = cl (Γ1H |H)1H + cl (Γ|H)1Ω\H . As Γ ⊆ Γ1H on H, we deduce that
Γ ⊆ Z a.s. hence cl (Γ|H) ⊆ Z a.s.. Therefore, we deduce that cl (Γ|H)1H ⊆ Z1H
and finally cl (Γ|H)1H ⊆ cl (Γ1H |H) as the latter set is {0} on Ω \H.

Example 2.3.5. Let X = R and γ1, γ2 ∈ M(X ,F) be such that γ1 ≤ γ2 a.s..
Consider Γ = [γ1, γ2]. Then, cl (Γ|H) = [ess infHγ1, ess supHγ2] ∩ R. Indeed, first
observe that Γ ⊆ [ess infHγ1, ess supHγ2] ∩ R a.s.. Consider a H-measurable closed
set ΓH containing Γ and let us show that

[ess infHγ1, ess supHγ2] ∩ R ⊆ ΓH.

To do so, consider ξ ∈ L0([ess infHγ1, ess supHγ2] ∩ R,H) and suppose that P(ξ /∈
ΓH) > 0. We suppose w.l.o.g. that P(ξ /∈ ΓH) = 1. As Γ ⊆ ΓH, we necessarily
have ξ ∈ [ess infHγ1, γ1] ∩ R or ξ ∈ [γ2, ess supHγ2] ∩ R. Let us consider the case
where ξ ∈ [ess infHγ1, γ1] ∩ R, the other case being similar. If ess infHγ1 = γ1,
then ξ = γ1 ∈ ΓH, i.e., a contradiction. Therefore, ess infHγ1 < γ1 and, since ξ
is H-measurable and ξ ≤ γ1 a.s., we deduce that ξ ≤ ess infHγ1. It follows that
ξ = ess infHγ1 ∈ R. By definition of the essential infemum, there is a non-null set on
which ess infHγ1 + 1

2
d(ξ,ΓH) > γ1 where d(ξ,ΓH) > 0 as ξ /∈ ΓH. We may suppose

that ξ + 1
2
d(ξ,ΓH) ∈ [γ1, γ2] even if we have to change d(ξ,ΓH) by a smaller F -

measurable term. Therefore, ξ+ 1
2
d(ξ,ΓH) ∈ ΓH and d(ξ,ΓH) ≤ d(ξ, ξ+ 1

2
d(ξ,ΓH)) ≤

1
2
d(ξ,ΓH). We get a contradiction and, finally, cl (Γ|H) = [ess infHγ1, ess supHγ2]∩R.

Example 2.3.6. Let γ ∈M(X ,H) and r ∈M((0,∞),F). Consider Γ the random
closed ball B(γ, r) of center γ and radius r. We shall prove that

cl (Γ|H)) = B(γ, ess supHr).

First observe that Γ ⊆ B(γ, ess supHr) a.s. Moreover, consider ΓH a H-graph mea-
surable random closed set containing Γ a.s. Suppose that there is

ξ ∈ L0(B(γ, ess supHr),H)
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such that P(ξ /∈ ΓH) > 0. We first consider the case where ess supHr <∞. On the
set AH = {ξ /∈ ΓH} ∈ H, d(ξ,ΓH) > 0. Note that d(ξ,ΓH) <∞. There is a non-null
F -measurable subset of AH on which ess supHr − d(ξ,ΓH) < r by definition of the
essential supremum. Let us define ξ̃ = γ + α(ξ − γ) where α = r/(r + d(ξ,ΓH)).
As we have ‖ξ − γ‖ ≤ r + d(ξ,ΓH) when ess supHr − d(ξ,ΓH) < r, we deduce that
ξ̃ ∈ Γ and ξ̃ is only F -measurable. Therefore, ξ̃ ∈ ΓH and d(ξ,ΓH) ≤ ‖ξ̃− ξ‖ where
we may show that ‖ξ̃ − ξ‖ < d(ξ,ΓH) hence a contradiction. Consider now the case
where ess supHr = ∞. We need to show that ΓH = X . In the contrary case, on a
non-null set, we may construct a H-measurable selection ζ of X \ΓH. Moreover, on
a smaller non-null set, r ≥ ‖ζ − γ‖ as ess supHr = ∞. It follows that ζ ∈ Γ hence
ζ ∈ ΓH, i.e., a contradiction.

2.4 Applications

2.4.1 Conditional Optimization

The second main contribution is the following. It allows one to compute numeri-
cally an essential supremum as a pointwise supremum on the conditional closure.
This result is a generalization of [3, Proposition 2.7] and is useful in robust finance
dynamic programming, see our example below. In this section we suppose that
X = Rd. We recall that an integrand h(ω, x), (ω, x) ∈ Ω×X , is a jointly measurable
function, which is lower semi-continuous in x and takes values in the extended real
line R ∪ {+∞}, see [54, Corollary 14.34].

Lemma 2.4.1. Let h(ω, x), (ω, x) ∈ Ω×X , be an H⊗B(X )-measurable integrand.
Let Γ be a non-empty closed F-graph measurable set of X . Then, supx∈cl (Γ|H)(ω) h(x) =
supn h(γn) where (γn)n∈N is a Castaing representation of cl (Γ|H).

Proof. As cl (Γ|H) is H-graph measurable and closed-valued, it admits a Cas-
taing representation cl (Γ|H)(ω) = cl{γn(ω) : n ∈ N} a.s. where, for all n,
γn ∈ L0(cl (Γ|H),H), by Proposition 2.2.3. Notice that we may adjust the values
on a set of measure zero, and therefore assume that the equality holds everywhere
on Ω, see the proof of [42, Proposition 5.4.4].

As (γn)n ⊂ cl{γn : n ∈ N} = cl (Γ|H), h(γn) ≤ supx∈cl (Γ|H) h(x). Therefore,
supn h(γn) ≤ supx∈cl (Γ|H) h(x). Moreover, if x ∈ cl (Γ|H)(ω), we may write almost
surely x = limn γn(ω) by the Castaing representation (γn)n of cl (Γ|H). By the lower
semicontinuity of h, we get that h(x) ≤ lim infn h(γn). Thus, h(x) ≤ supn h(γn) and
supx∈cl (Γ|H)(ω) h(x) ≤ supn h(γn) on Ω. The equality is then deduced.

Theorem 2.4.2. Let h(ω, x), (ω, x) ∈ Ω×X , be an H⊗B(X )-measurable integrand.
Let Γ be a non-empty closed F-graph measurable set of X . Then, with the notation
h(γ)(ω) = h(ω, γ(ω)), we have

ess supH{h(γ) : γ ∈ L0(Γ,F)} = sup
x∈cl (Γ|H)(ω)

h(x), a.s..
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Proof. As cl (Γ|H) is H-graph measurable and closed-valued, it admits a Cas-
taing representation cl (Γ|H)(ω) = cl{γn(ω) : n ∈ N} where, for all n, γn ∈
L0(cl (Γ|H),H), by Proposition 2.2.3, see also the lemma above.
Step 1. We show that

sup
x∈cl (Γ|H)

h(x) = ess supH{h(γ), γ ∈ L0(cl (Γ|H),H)}.

To see it, notice that by Lemma 2.4.1,

sup
x∈cl (Γ|H)

h(x) = sup
n
h(γn) ≤ ess supH{h(γ), γ ∈ L0(cl (Γ|H),H)}.

If γ ∈ L0(cl (Γ|H),H), then γ ∈ cl{γn : n ∈ N} i.e., γ = limn γn for a subsequence
and, by lower semi-continuity,

h(γ) = lim inf
n

h(γn) ≤ sup
n
h(γn) = sup

x∈cl (Γ|H)

h(x).

Since the family {h(γ), γ ∈ L0(cl (Γ|H)} is directed upward, we also deduce that
supx∈cl (Γ|H) h(x) = limn ↑ h(γn) where γn ∈ L0(cl (Γ|H),H).
Step 2. We show that ess supH{h(γ) : γ ∈ L0(Γ,F)} = supx∈cl (Γ|H) h(x) a.s..
First notice that supx∈cl (Γ|H) h(x) = supn h(γn) is H-measurable, since h is H ⊗
B(X )-measurable. Moreover, as Γ(ω) ⊆ cl (Γ|H)(ω) a.s., we deduce that h(γ) ≤
supx∈cl (Γ|H) h(x), for every γ ∈ L0(Γ,F). We deduce that

ess supH{h(γ) : γ ∈ L0(Γ,F)} ≤ sup
x∈cl (Γ|H)

h(x) a.s..

To show the reverse inequality, consider any H-measurable selection γ of cl (Γ|H)
and a deterministic sequence εn > 0 with limn εn = 0. Let us define

Λn = {Γ ∩ B̄(γ, εn) 6= ∅} ∈ F .

By Theorem 2.3.2, P(Λn|H) > 0 a.s.. Indeed, in the contrary case, on a non-null
H-measurable set Λ̃n, we have P(Λ̃n ∩ Λn|H) = 0 hence P(Λ̃n ∩ Λn) = 0, i.e., a
contradiction with Theorem 2.3.2.

By a measurable selection argument, we consider γ̂n ∈ L0(Γ,F) such that
γ̂n ∈ B̄(γ, εn) on Λn. We define Λ̂n = {γ̂n ∈ B̄(γ, εn)}. Since Λn ⊆ Λ̂n, we
have P(Λ̂n|H) > 0 a.s.. Moreover, using the conditional expectation, we have

ess supH{h(γ) : γ ∈ L0(Γ,F)}1Λ̂n
≥ h(γ̂n)1Λ̂n

,

ess supH{h(γ) : γ ∈ L0(Γ,F)}P(Λ̂n|H) ≥ E(h(γ̂n)1Λ̂n
|H), a.s.. (2.4.1)

Moreover, we have

E(h(γ̂n)1Λ̂n
|H) ≥ E( inf

z∈B̄(γ,εn)
h(z)1Λ̂n

|H).
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Notice that infz∈B̄(γ,εn) h(z) = infz∈X h̄(z) where h̄ = h on B̄(γ, εn) and h̄ = +∞
otherwise. As h̄ is also an integrand, we deduce by [54, Theorem 14.37] that
infz∈B̄(γ,εn) h(z) is H-measurable. Therefore,

E( inf
z∈B̄(γ,εn)

h(z)1Λ̂n
|H) = inf

z∈B̄(γ,εn)
h(z)P(Λ̂n|H).

As P(Λ̂n|H) > 0 a.s., we deduce by (2.4.1) that

ess supH{h(γ) : γ ∈ L0(Γ,F)} ≥ inf
z∈B̄(γ,εn)

h(z), a.s.

for every n ≥ 1. Therefore,

ess supH{h(γ) : γ ∈ L0(Γ,F)} ≥ lim
n

inf
z∈B̄(γ,εn)

h(z), a.s..

Since B̄(γ, εn) is a.s. compact and h is a.s. lower semi-continuous, we deduce that
infz∈B̄(γ,εn) h(z) = h(zn) where zn ∈ B̄(γ, εn) converges pointwise to γ as n → ∞.
We finally deduce by lower semi-continuity that

ess supH{h(γ) : γ ∈ L0(Γ,F)} ≥ lim inf
n

h(zn) ≥ h(γ).

This inequality holds for any selection γ of cl(Γ|H). Therefore, we get that

ess supH{h(γ) : γ ∈ L0(Γ,F)} ≥ ess supH{h(γ), γ ∈ L0(cl(Γ|H),H)}.

The conclusion of the lemma follows.
Recall that a set Λ of measurable random variables is said F -decomposable if

for any finite partition (Fi)
n
i=1 ⊆ F of Ω, and for every family (γi)

n
i=1 of Λ, we have∑n

i=1 γi1Fi ∈ Λ. Decomposability was initially introduced by Rockafellar: see also
[36]. In the following, we denote by Σ(Λ) the F -decomposable envelope of Λ, i.e.,
the smallest F -decomposable family containing Λ. Notice that

Σ(Λ) =

{
n∑
i=1

γi1Fi : n ≥ 1, (γi)i=1,··· ,n ⊆ Λ, (Fi)i=1,··· ,n ⊆ F s.t.
n∑
i=1

Fi = Ω

}
.

The closure Σ(Λ) in probability of Σ(Λ) is decomposable even if Λ is not decompos-
able. By [42, Proposition 5.4.3], there exists an F -graph measurable closed random
set σ(Λ) such that Σ(Λ) coincides with L0(σ(Λ),F), the set of all measurable selec-
tors of σ(Λ).

Theorem 2.4.3. Let h(ω, x), x ∈ X , be an H ⊗ B(X )-measurable integrand. Let
us consider a family Λ of measurable random variables so that

Σ(Λ) = L0(σ(Λ),F)

is the set of all measurable selectors of some F-graph measurable random closed set
σ(Λ). Then,

ess supH{h(γ) : γ ∈ Λ} = ess supH{h(γ) : γ ∈ Σ(Λ)} = sup
x∈cl (σ(Λ)|H)

h(x).
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Proof. Notice that for any finite partition (Fi)
n
i=1 ⊆ F of Ω, n ≥ 1, and for every

family (γi)
n
i=1 of Λ, we have

h

(
n∑
i=1

γi1Fi

)
=

n∑
i=1

h(γi)1Fi .

Therefore, as ess supH{h(γ) : γ ∈ Λ} ≥ h(γ) a.s. for any γ ∈ Λ, we deduce that
ess supH{h(γ) : γ ∈ Λ} ≥ h(γ) a.s. for any γ ∈ Σ(Λ). Since h is l.s.c. and any
γ ∈ Σ(Λ) is a limit of elements of Σ(Λ), we get that the inequality also holds for
any γ ∈ Σ(Λ). Taking the essential supremum over all γ ∈ Σ(Λ), we deduce that

ess supH{h(γ) : γ ∈ Λ} ≥ ess supH{h(γ) : γ ∈ Σ(Λ)}

and, finally, the equality holds since Λ ⊆ Σ(Λ). The last equality of the corollary is
deduced from Theorem 2.4.1.

2.4.2 Application in Finance: Robust Super-Hedging of an
European or Asian Option

We consider a financial market in discrete time defined by a complete stochastic basis
(Ω, (Ft)Tt=0,P). We suppose that there is a non-risky asset whose price is S0 = 1,
without loss of generality. The (discounted) prices are modeled by a vector-valued
stochastic process (St)

T
t=0 adapted to the filtration (Ft)Tt=0 with values in Rd, d ≥ 1.

We consider the one step super-hedging problem between two dates t− 1 and t
with t ≥ 1. We suppose that after time t− 1 but strictly before time t the portfolio
manager observes the price St−1, as a consequence of her/his order. We denote by
St0 the price process (Su)u≤t, for all 0 ≤ t ≤ T. More precisely, the portfolio manager
knows St−2

0 at time t− 1 and sends an order at time t− 1 which is executed with a
delay so that the executed price St−1 is only observed strictly after t− 1.

Let us consider, for each t ≤ T , Λt ⊆ L0(Rd
+,Ft) an Ft-measurable random set

representing the possible prices for the risky assets at time t. We suppose that, at
time t, the set Λt may depend on the observed prices before time t− 1, i.e. to each
vector of prices St−1

0 , we associate a set Λt = Λt(S
t−1
0 ) representing the possible next

prices at time t given that we have observed the executed prices St−1
0 . Therefore:

Definition 2.4.4. A price process is an (Ft)Tt=0-adapted non-negative process (St)
T
t=−1

such that St ∈ Λt(S
t−1
0 ) for all t = 1, · · · , T and S−1 ∈ Rd is given .

Note that St represents the prices (S1
t , · · · , Sdt ) of the risky assets proposed by

the market to the portfolio manager when selling or buying. A typical case could
be Λt = L0(It,Ft) with

It = Πd
j=1[Sbjt , S

aj
t ],

where (Sbj)dj=1 and (Saj)dj=1 are respectively the bid and the ask price processes

observed in the market at time t that may depend on St−1
0 . They are not necessary
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the best bid/ask prices as, in practice, the real transaction price may be a convex
combination of bid and ask prices. Indeed, a transaction is the result of an agreement
between sellers and buyers but it also depends on the traded volume. Clearly, the
portfolio manager does not benefit from the last price observed in the market when
sending an order. On the contrary, he should face an uncertain price St which
depends on the type of order (which may be not executed) but it also depends on
some random events he does not control, e.g. slippage. A simple way to model this
phenomenon is to suppose that the executed prices obtained by the manager belong
to random intervals.

Another interesting case could be when Λt coincides with a parametrized family
{Sθt : θ ∈ Θ} of random variables. For instance, consider fixed processes (ξu)u≤T
and (mu)u≤T adapted to (Ft)Tt=0 and independent of Ft−1. Let C be a compact set
and suppose that S−1 is given. We define recursively

Λt(S
t−1
0 ) = {St−1 exp(σξt +mt) : St−1 ∈ Λt−1, σ ∈ C} , t ≤ T.

In this model, there is an uncertainty on prices because of the unknown parameter
(e.g. volatility) σ.

In the following, we consider the σ-algebra Ft−1 = σ(Su : u ≤ t − 1) for all
t ≥ 1. Let us consider a random function gt defined on Rt, t ≥ 1. We assume that
the mapping (ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft−1×B(R)-measurable and z 7→
gt(S0, S1, · · · , St−1, z) is lower-semicontinuous (l.s.c.) almost surely whatever the
price process St−1

0 . Our goal is to characterise the set Pt−1 of all Vt−1 ∈ L0(R,Ft−1)
such that

Vt−1 + θt−1∆St ≥ gt(S1, · · · , St), a.s. for allSt ∈ Λt(S
t−1
0 ), (2.4.2)

for some θt−1 ∈ L0(Rd,Ft−1). We observe that, by lower-semicontinuity, (3.3.2)
holds if and only if

Vt−1 + θt−1∆St ≥ gt(S1, · · · , St), for allSt ∈ Σ(Λt(S
t−1
0 ). (2.4.3)

Recall that Σ(Λt(S
t−1
0 ) is defined in the previous section. This means that

we may suppose w.l.o.g. that Σ(Λt(S
t−1
0 )) = Λt(S

t−1
0 ). In the following, we de-

note by It(S
t−1
0 ) the Ft-measurable closed random set such that Σ(Λt(S

t−1
0 )) =

L0(It(S
t−1
0 ),Ft): see [45, Theorem 2.4].

By Theorem 2.4.2, we deduce that (3.3.3) is equivalent to Vt−1 ≥ pt−1 where
pt−1 = pt−1(St−1

0 , θt−1) is given by

pt−1 = θt−1St−1 + sup
z∈cl (It(S

t−1
0 )|Ft−1)

(gt(S1, · · · , St−1, z)− θt−1z) ,

= θt−1St−1 + f ∗t−1(−θt−1).

In the formula above, f ∗t−1(y) = supz∈Rd(yz − ft−1(z)) is the Fenchel-Legendre
conjugate function of ft−1 defined as

ft−1(z) := −gt(S1, · · · , St−1, z) + δcl (It(S
t−1
0 )|Ft−1)(z),
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where δcl (It(S
t−1
0 )|Ft−1) ∈ {0,∞} is infinite on the complimentary of

cl (It(S
t−1
0 )|Ft−1) and 0 otherwise. Notice that f ∗t−1 is convex and l.s.c. as a supre-

mum (on cl (It(S
t−1
0 )|Ft−1)) of convex and l.s.c. functions. Moreover, by Theorem

2.4.2, (ω, y) 7→ f ∗t−1(ω, y) is Ft−1 ⊗ B(Rd)-measurable. Therefore, Dom f ∗t−1 :=
{y : f ∗t−1(ω, y) < ∞} is an Ft−1-measurable random set. We deduce that the
Ft−1-measurable prices at time t− 1 are given by

Pt−1(St−1
0 ) =

{
θt−1St−1 + f ∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
+L0(R+,Ft−1).

The second step is to determine the infimum super-hedging price as

pt−1(St−1
0 ) = ess infFt−1Pt−1(St−1

0 ).

To do so, we use the arguments of [3, Theorem 2.8] and we obtain that:

pt−1(St−1
0 ) = ess infFt−1

{
θt−1St−1 + f ∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
,

= ess infFt−1

{
−θt−1St−1 + f ∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
,

= −ess supFt−1

{
θt−1St−1 − f ∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
,

= −ess supFt−1

{
θt−1St−1 − f ∗t−1(θt−1) : θt−1 ∈ Dom f ∗t−1

}
,

= − sup
z∈Dom f∗t−1

(
zSt−1 − f ∗t−1(z)

)
,

= − sup
z∈Rd

(
zSt−1 − f ∗t−1(z)

)
,

= −f ∗∗t−1(St−1).

In the following, we suppose that, for all price process St−1
0 , there exists αt−1 ∈

L0(Rd,Ft−1) and βt−1 ∈ L0(R,Ft−1) such that

gt(S0, S1, · · · , St−1, x) ≤ αt−1x+ βt−1, ∀x ∈ cl (It(S
t−1
0 )|Ft−1).

This is the case for instance for Asian options whose payoff is of the form k(S0 +
S1 + · · ·+ St −K)+, k > 0. By [3, Theorem 2.8], we then deduce that

pt−1(St−1
0 ) =

inf
{
αSt−1 + β : αx+ β ≥ gt(S0, · · · , St−1, x), ∀x ∈ cl (It(S

t−1
0 )|Ft−1)

}
.

In this section, we have solved the super-hedging problem without any no-
arbitrage condition, contrarily to what it is usual to do.

2.5 Conclusions

In section 2.4.2, we have solved the general super-hedging problem in one step for an
Asian option. The next step is to repeat the whole procedure to deduce backwardly
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the infimum prices and the associated super-hedging strategy from the maturity
date T to the starting date t = 0. It will show the relevance of the conditional
closure.

The conditional closure could be also useful more generally for robust finance
dynamic programming as in the paper [28]. We conjecture that it is possible to solve
a discrete-time stochastic control problem through random set conditioning.

At last, some interesting problems leave open in the direction of conditional
topologies: see [27]. A deeper study of the basic properties of the conditional closure
and interior of random sets may be interesting with a comparison to the classical
results of topology but also with the paper by Truffert [58]. This also allows to
consider new types of martingales, see [36], and, in continuous time, new problems
should arise.
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Chapter 3

Robust discrete-time
super-hedging strategies under
AIP condition and under price
uncertainty

3.1 Introduction

As observed in practice, the executed value of an asset may depend on the order
sent by the trader and, also, on the quantities available in the order book. Among
the possible causes of the well-known slippage phenomenon, delays in the execution
of the orders, liquidity disorders, market impacts, or transaction costs may influence
the executed value. An approach to overcome this difficulty is to assume that we
do not know in advance the traded prices. In that case, as proposed in the chapter,
the order that the trader sends is a mapping that associates to each possible price
available in the market a quantity to sell or buy. This is exactly what we generally
observe in practice, in a presence of an order book for example, since there is no
single price.

On the contrary, it is traditional in mathematical finance to suppose that we first
observe a (new) single market price and, then, we choose almost instantaneously the
number of assets to sell or buy in order to revise the portfolio. This means that
the last traded price is kept constant long enough in the order book. Moreover, it
coincides with a bid and ask price so that the buy and sell orders are executed at
the same value.

In real life, there may be delayed information, see the recent paper [1] or [50],
[55] among others on stochastic control. The delayed information in the problem
of pricing is sometimes modeled through incomplete or restricted information as in
[38], [43], [25], [20] or using a two filtrations setting as in [19] or in [26].

Another type of uncertainty is due to the choice of the model supposed to ap-
proximate the real financial market [8]. Model risk may lead to price misevaluations
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that are studied in recent papers, in the growing field of robust finance. Since the
seminal work of Knight [44], it is now broadly accepted that uncertainty may be de-
scribed by a parametrized family of models, instead of considering only one model,
if there is a lack of information on the parameters, see [51] , [15], [48], [7], [6], [30],
[57]. Other models consider that the market is driven by a family of probability
measures in such a way that uncertainty stems from the existence of several possible
reference probability measures determining which events are negligible, see [52], [37],
[18], [13], [9], [14], [49], [17].

In any case, uncertainty is taken into account in the literature by considering
either several probabilistic structures, e.g. a family of reference probability measures
and filtrations for the same price process or a family of price process models on the
same stochastic basis. In the recent paper [53], the choice is made to fix only one
filtered probability space on which a collection of stochastic processes describes the
possible dynamics of the stock prices. We follow this alternative approach. Precisely,
we consider a unique stochastic basis but we suppose that, in discrete time, the next
stock prices at any time are not modeled by a unique vector-valued random variable
as it is usual to do. Instead, we assume that the next stock prices belong to a
collection of possible processes. The approach we adopt is slightly different from [53]
in the sense that the collections of possible prices we consider are connected from
time to time in such a way that it is possible to represent them through measurable
random sets.

Moreover, a less common type of uncertainty is introduced in this chapter. Recall
that it is usual in the literature, even in the recent papers on robust finance, to
suppose that the transactions are executed at a price which is known in advance.
For example, in the Black and Scholes model, the delta-hedging strategy for the
European Call option at time t is a function Φ(t, St) of the single price St observed at
time t. In practice, the strategy is discretized at some dates (ti)i=0,··· ,n with n→ +∞
so that the number of stocks to trade at time ti is ∆Φti = Φ(ti, Sti)−Φ(ti−1, Sti−1

).
In the case where ∆Φti < 0, the executed price at time ti should be a bid price in
the order book and an ask price otherwise, i.e. there should be at least two possible
prices.

We take into account this ambiguity or uncertainty in our chapter by assuming
that there may be several possible executable prices at the next instant. This means
in particular that we do not know in advance the price when we send an order to be
executed. Precisely, an executed price St at time t is only Ft+1-measurable where
Ft describes the market information available at time t. This is illustrated in our
numerical example where the stock price is modeled by a pair of bid and ask prices.

This chapter addresses the super-hedging problem of European or Asian options
under uncertainty and may be easily adapted to American options in discrete time.
Here the uncertainty mainly refers to the uncertainty in executed prices due to the
delay, which is modeled by random sets, and there is one single physical probability
measure. Moreover, uncertainty may also refers to the presence of an order book so
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that several prices may exist and depend on the traded volumes.

Figure 3.1: Vinci order book Figure 3.2: Airbus order book

Figure 3.3: Examples of order books

The advantage of the approach we consider is its flexibility, including a large va-
riety of possible models, e.g. with transaction costs or limit order books. Contrarily
to the classical approach, we do not suppose the existence of a risk-neutral probabil-
ity measure but we work under the AIP condition of [3], [16], i.e. we suppose that
the super-hedging prices of the non-negative European claims are non-negative, as
it is easily observed in the real financial market. We recall that the AIP condition
is weaker than the usual NA condition but it is sufficient to deduce numerically
tractable pricing estimations, as illustrated in our numerical example.

The chapter first focuses on the one-period case, see Section 3.3.1, and the multi-
period case is automatically obtained by (measurably) paste all periods together.
The one-period hedging problem can be described as:

Vt−1 + θt−1∆St ≥ gt(S0, · · · , St), a.s. for allSt ∈ Λt(S
t−1
0 ).

Here St is a possible executed price which is Ft+1-measurable, θt−1 is a trading
strategy which is made at time t− 1 and its outcome is revealed at the same time t
as St−1 due to execution delay and, thus, Vt−1, which models the portfolio value at
time t− 1, is also Ft-measurable; g is an Asian option to be hedged while Λt(S

t−1
0 )

represents the set of all possible prices St that can be traded strictly after time t.
We recall that St0 denotes the price process (Su)u≤t, for all 0 ≤ t ≤ T. The problem
is essentially converted to the one without delay by taking supremum conditioned
on Ft in the above equation, and the (minimal) super-hedging price is provided in
Theorem 3.3.1 in terms of the concave envelope of some related function restricted
on the conditional closure of Λt(S

t−1
0 ), see [29]. Properties of the hedging price,
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including continuity, convexity, and measurability are analyzed in Section 3.3.2.
These properties are important to deduce backwardly the multi-period case which
involves a measurable pasting.

The benefit of our approach is its easy implementation as illustrated in Section
3.4. Indeed, roughly speaking, our main results state that we only need to know
the range of the future price values in terms of the observed prices to deduce the
strategy θt to be followed. This can be achieved from a historical data. The strategy
depends at time t on the price St, i.e. θt = θt(St) where St is only revealed at time
t + 1 so that the order a time t is the Ft-measurable mapping z 7→ θt(z) and not
θt(St). Note that the executed price St will depend on the model, e.g. St may be
one of the several bid and ask prices, and the delayed observation of St at time t+ 1
allows to deduce the quantity θt(St) to hold in the portfolio.

3.2 Formulation of the problem

Let (Ω, (Ft)t∈{0,...,T+1},FT , P ) be a filtered complete probability space where T is
the time horizon. We suppose that F0 is the trivial σ-algebra and the σ-algebra Ft
represents the information available on the market at time t. The financial market
we consider is composed of d risky assets and a bond S0. We assume without loss
of generality that S0 = 1.

In the following, we shall consider random subsets A of Rd, i.e. A = A(ω) may
depend on ω ∈ Ω. We then denote by L0(A,Ft) the set of all random variables Xt

which are Ft-measurable and satisfies Xt(ω) ∈ A(ω) a.s.. At last, Rd
+ is the set of

all x = (xi)
d
i=1 ∈ Rd such that xi ≥ 0 for all i = 1, · · · , d.

Let us consider, for each t ≤ T + 1, Λt ⊆ L0(Rd
+,Ft+1) a collection of Ft+1-

measurable random variables representing the possible executable prices for the
risky assets between time t and time t + 1. We suppose that, at time t, the set Λt

may depend on the observed traded prices before time t, i.e. to each vector of prices
St−1

0 , we associate a set Λt = Λt(S
t−1
0 ) representing the possible next prices St after

time t given that we have observed the executed prices St−1
0 at time t. We adopt the

financial principle that the executed price St is only known strictly after the order
is sent at time t but before time t+ 1.

Definition 3.2.1. A price process is an (Ft+1)t=−1,··· ,T−1-measurable non-negative
process (St)t=−1,··· ,T such that St ∈ Λt(S

t−1
0 ) is Ft+1 measurable for all t = 0, · · · , T

and S−1 ∈ R is given.

Example 3.2.2. Recall that St represents the prices (S1
t , · · · , Sdt ) of d ≥ 1 risky

assets proposed by the market to the portfolio manager when selling or buying. A
typical case could be Λt = L0(It,Ft+1) with Ft+1 = σ(Su, u ≤ t) for all t ≥ 1 and

It = Πd
j=1[Sbjt , S

aj
t ],

where (Sbj)j=1,··· ,d and (Saj)j=1,··· ,d are respectively the bid and the ask price pro-
cesses observed in the market between time t and t + 1 that may depend on St−1

0 .
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They are not necessary the best bid/ask prices as, in practice, the real transaction
price may be a convex combination of bid and ask prices. Indeed, a transaction is
generally the result of an agreement between sellers and buyers but it also depends
on the traded volume. Clearly, the portfolio manager does not benefit in general
from the last traded price observed in the market when sending an order. On the
contrary, he should face an uncertain price St that depends on the type of order
(and may be not executed) but it also depends on some random events he does not
control, e.g. slippage. A simple way to model this phenomenon is to suppose that
the executable prices obtained by the manager belong to random intervals.

Example 3.2.3. Another interesting case is when Λt = {Sθt : θ ∈ Θ} is a
parametrized family of random variables. For instance, consider fixed processes
(ξu)u≤T and (mu)u≤T adapted to (Ft+1)t=0,··· ,T and independent of Ft. Let C be a
compact subset of R and suppose that S−1 is given. We define recursively

Λt(S
t−1
0 ) = {St−1 exp(σξt +mt) : σ ∈ C} , St−1 ∈ Λt−1, t ≤ T,

where Θ = {σ ∈ C}. In this model, there is an uncertainty on prices because of the
unknown parameter (volatility) σ. This is a classical problem in robust finance, see
for example [48].

A portfolio strategy is an (Ft+1)t=−1,··· ,T -adapted process θ̂ = (θ0, θ) where, for
all t = 0, · · · , T , θt ∈ Rd (resp. θ0

t ∈ R) describes the quantities of risky assets (resp.
the bond) held in the portfolio between time t and time t + 1. Since the strategies
are not supposed to be adapted to (Ft)t=0,··· ,T but only adapted to (Ft+1)t=0,··· ,T , the
manager is not supposed to control the quantity of assets he wants to sell or buy.
This is what happens in practice because the orders are not necessarily executed, for
instance in the case of limit stock market orders. Precisely, the portfolio manager
may send an Ft-measurable order at time t that depends on the uncertain price St
which is only Ft+1 measurable. For instance, such an order could be Buy at most
1000 units at a price less than or equal to 145 euros so that the strategies and the
executed prices are linked. In the example, the executed quantity should be deduced
from an order book as the minimum between 1000 and the number of assets we may
obtain for a price less than 145. Then, the executed price is a weighted average of
all prices available for less than 145 in the order book.

For such a strategy θ̂ = (θ0, θ), we define the portfolio process with initial en-
dowment V0 ∈ L0(R,F1), as the liquidation value

V θ̂ = θ0 + θS = θ0 +
d∑
i=1

θiSi.

Recall that St is observed strictly after the portfolio manager sends an order for
θt at time t. In the super-hedging problem we solve, we expect orders which are
mapping x 7→ ∆θt(x) = θt(x) − θt−1(St−1

0 ) where ∆θt(x) is Ft-measurable and the
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executed quantity ∆θt(St) is only Ft+1-measurable since St is Ft+1-measurable. Here
the notation xy is used to designate the Euler scalar product between two vectors
x, y of Rd.

In the following, we only consider self-financing portfolio processes V θ̂, i.e. they
satisfy by definition:

∆V θ̂
t := V θ̂

t − V θ̂
t−1 = θt−1∆St,

where ∆St := St − St−1. Indeed, this dynamics holds if and only if we have −(θ0
t −

θ0
t−1)S0

t = (θt − θt−1)St. This means that the cost of the new portfolio allocation
(θ0
t , θt), i.e. buying or selling the quantities (|θit − θit−1|)di=0, at the executed price St

is charged to the cash account. Therefore,

V θ̂
t = V0 +

t∑
u=1

θu−1∆Su. (3.2.1)

It is then natural by (3.2.1) to write V θ = V θ̂.

The aim of the chapter is to solve the following problem: Construct the minimal
super-hedging strategy of an Asian option whose payoff is g(S0, · · · , ST ) for some
convex deterministic function g on (Rd)T+1. Because of price uncertainty, this means
that we shall construct a self-financing strategy θ and we shall determine the minimal
initial endowment V0 = V θ

0 such that we have V θ
T ≥ g(S0, S1, · · · , ST ) independently

of the value of the executable prices St ∈ Λt(S
t−1
0 ) are for t ≤ T . Note that Vt is

Ft+1-measurable hence one more step is necessary to deduce the initial endowment
P0 at time t = 0 we need for initiating a super-hedging portfolio process V , i.e.
P0 ≥ V0. Indeed, P0 should be F0-measurable, i.e. a constant, or equivalently
P0 ≥ esssupF0(V0). We refer to [16] for the definitions of conditional essential
supremum and infimum.

3.3 The super-hedging problem

3.3.1 The one time step resolution

We first introduce the basic tools and theoretical results we need in this section. A set
Λ of measurable random variables is said F -decomposable if for any finite partition
(Fi)i=1,··· ,n ⊆ F of Ω, and for every family (γi)i=1,··· ,n of Λ, we have

∑n
i=1 γi1Fi ∈ Λ.

In the following, we denote by Σ(Λ) the F -decomposable envelope of Λ, i.e. the
smallest F -decomposable family containing Λ. Notice that

Σ(Λ) =

{
n∑
i=1

γi1Fi : n ≥ 1, (γi)i=1,··· ,n ⊆ Λ, (Fi)i=1,··· ,n ⊆ F s.t.
n∑
i=1

Fi = Ω

}
.

The closure Σ(Λ) in probability of Σ(Λ) is decomposable even if Λ is not decom-
posable. By [45, Theorem 2.4], there exists a F -measurable closed random set σ(Λ)
such that Σ(Λ) = L0(σ(Λ),F) is the set of all F -measurable selectors of σ(Λ).
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We now introduce the general one step problem between the dates t − 1 and t
for t ≥ 1. To do so, we suppose that after time t− 1 but strictly before time t the
portfolio manager observes the price St−1, as a consequence of her/his order, see
Definition 3.2.1. More precisely, the portfolio manager knows St−2

0 at time t−1 and
sends an order at time t−1 which is executed with a delay so that the executed price
St−1 ∈ Λt−1(St−2

0 ) is only observed strictly after t− 1, i.e. St−1 is Ft-measurable.

In the following, we consider the σ-algebra Ft = σ(Su : u ≤ t− 1) for all t ≥ 1.
Let us consider a random function gt defined on (Rd)t+1, t ≥ 1. We assume that
the mapping (ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft ⊗ B(Rd)-measurable and z 7→
gt(S0, S1, · · · , St−1, z) is lower-semicontinuous (l.s.c.) almost surely independently
the price process St−1

0 is. The first goal is to characterise the set Pt−1 of all Vt−1 ∈
L0(R,Ft) that depend on St−1

0 such that:

Vt−1 + θt−1∆St ≥ gt(S0, · · · , St), a.s. for allSt ∈ Λt(S
t−1
0 ), (3.3.2)

for some θt−1 ∈ L0(Rd,Ft) 1. As θt−1 is only Ft-measurable, we also expect a
dependence between θt−1 and St−1

0 as we shall see later. Nevertheless, we do not
suppose an explicit dependence of Λt(S

t−1
0 ) with respect to θt−1, which is an open

problem. We observe by lower-semicontinuity that (3.3.2) holds if and only if

Vt−1 + θt−1∆St ≥ gt(S0, · · · , St), a.s. for allSt ∈ Σ(Λt(S
t−1
0 )). (3.3.3)

This means that we may suppose w.l.o.g. that Σ(Λt(S
t−1
0 )) = Λt(S

t−1
0 ). In the

following, we denote by It(S
t−1
0 ) the Ft+1-measurable closed random set such that

Σ(Λt(S
t−1
0 )) = L0(It(S

t−1
0 ),Ft+1), see [45, Theorem 2.4].

By [29, Theorem 4.2], we deduce that (3.3.2) is equivalent to Vt−1 ≥ pt−1 where
pt−1 = pt−1(St−1

0 , θt−1) is given by

pt−1 = θt−1St−1 + sup
z∈cl (It(S

t−1
0 )|Ft)

(gt(S0, · · · , St−1, z)− θt−1z) ,

= θt−1St−1 + f ∗t−1(−θt−1).

In the formula above, cl (It(S
t−1
0 )|Ft) is the conditional closure of It(S

t−1
0 ), i.e.

the smallest Ft-measurable closed random set which contains It(S
t−1
0 ) almost surely.

We refer the readers to [29, Theorem 3.1] for the existence and uniqueness of such
conditional random set. Moreover, f ∗t−1(y) = supz∈Rd(yz − ft−1(z)) is the Fenchel-
Legendre conjugate function of ft−1 defined as

ft−1(z) := −gt(S0, · · · , St−1, z) + δcl (It(S
t−1
0 )|Ft)(z), (3.3.4)

where δcl (It(S
t−1
0 )|Ft) ∈ {0,∞} is infinite on the complimentary of

cl (It(S
t−1
0 )|Ft) and 0 otherwise. Notice that f ∗t−1 is convex and l.s.c. as a supre-

mum (on cl (It(S
t−1
0 )|Ft)) of convex and l.s.c. functions. Moreover, by [29, The-

orem 4.2], (ω, y) 7→ f ∗t−1(ω, y) is Ft ⊗ B(Rd)-measurable. Therefore, Dom f ∗t−1 :=

1Note that the condition Vt−1 ∈ L0(R,Ft) is not sufficient for the portfolio manager to observe
it when t = 1 as V0 is not F0-measurable.
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{y : f ∗t−1(ω, y) < ∞} is an Ft-measurable random set. We deduce that the Ft-
measurable prices at time t− 1 are given by the Minkowski sum

Pt−1(St−1
0 ) =

{
θt−1St−1 + f ∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft)

}
+L0(R+,Ft). (3.3.5)

The second step is to determine the infimum super-hedging price as

pt−1(St−1
0 ) = essinfFtPt−1(St−1

0 ). (3.3.6)

To do so, we use the arguments of [16, Theorem 2.8] and we obtain our first main
result:

Theorem 3.3.1. Suppose that the mapping (ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is
Ft⊗B(Rd)-measurable and z 7→ gt(S0, S1, · · · , St−1, z) is lower-semicontinuous (l.s.c.)
almost surely whatever the price process St−1

0 is. Let us consider the function ft de-
fined by (3.3.4) and the set of all prices given by (3.3.5). Then, the infimum price
given by (3.3.6), satisfies pt−1(St−1

0 ) = −f ∗∗t−1(St−1).

Proof. This is a consequence of the following chain of equalities:

pt−1(St−1
0 ) = essinfFt

{
θt−1St−1 + f ∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft)

}
,

= essinfFt
{
−θt−1St−1 + f ∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft)

}
,

= −esssupFt
{
θt−1St−1 − f ∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft)

}
,

= −esssupFt
{
θt−1St−1 − f ∗t−1(θt−1) : θt−1 ∈ L0(Dom f ∗t−1,Ft)

}
,

= − sup
z∈Dom f∗t−1

(
zSt−1 − f ∗t−1(z)

)
,

= − sup
z∈Rd

(
zSt−1 − f ∗t−1(z)

)
,

= −f ∗∗t−1(St−1). (3.3.7)

Note that we do not need to suppose no-arbitrage conditions to establish the
very general pricing formula above. It is only based on the lower-semicontinuity and
measurability assumptions satisfied by the payoff g.

3.3.2 Main properties satisfied by the one time step infimum
super-hedging price

In this section we introduce the main contribution. They are needed to propagate
the one time step pricing procedure of Section 3.3.1 to the multi-period case. In the
following, we suppose that, for all price process St−1

0 , there exists αt−1 ∈ L0(Rd,Ft)
and βt−1 ∈ L0(R,Ft) that may depend on St−1

0 such that
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gt(S0, · · · , St−1, x) ≤ αt−1x+ βt−1, ∀x ∈ cl (It(S
t−1
0 )|Ft). (3.3.8)

This is the case for Asian options whose payoffs are for example of the form k(S0 +
S1 + · · ·+ St −K)+, k ≥ 0. By [16][Theorem 2.8], we know that

pt−1(St−1
0 ) = (3.3.9)

inf
{
αSt−1 + β : αx+ β ≥ gt(S0, · · · , St−1, x), ∀x ∈ cl (It(S

t−1
0 )|Ft)

}
.

We first establish the following result:2

Proposition 3.3.2. Let St−1
0 be a price process. Suppose that the mapping (ω, z) 7→

gt(S0(ω), · · · , St−1(ω), z) is Ft⊗B(Rd)-measurable and the function z 7→ gt(S0, · · · , St−1, z)
is l.s.c. almost surely. If St−1 /∈ conv cl (It(S

t−1
0 )|Ft), then pt−1((St−1

0 )) = −∞.
Moreover, pt−1(St−1

0 ) ≥ gt(S0, · · · , St−1, St−1) if St−1 ∈ conv cl (It(S
t−1
0 )|Ft). At last,

if gt(S0, · · · , St−1, ·) is bounded from below by mt−1 ∈ L0(R,Ft) on cl (It(S
t−1
0 )|Ft),

then we have
pt−1((St−1

0 )) ≥ mt−1 if St−1 ∈ conv cl (It(S
t−1
0 )|Ft).

Proof. Suppose that St−1 /∈ conv cl (It|Ft) where It = It(S
t−1
0 ). By the Hahn-Banach

separation theorem and a measurable selection argument, there exists a non null
α∗t−1 in L0(Rd \ {0},Ft) and c1

t−1, c
2
t−1 ∈ L0(Rd,Ft) such that we have the inequality

α∗t−1y < c1
t−1 < c2

t−1 < α∗t−1St−1 for all y ∈ cl (It|Ft). Multiplying the inequality
by a sufficiently large positive multiplier, we may suppose that α∗t−1(St−1 − y) ≥
n where n ∈ N is arbitrarily chosen. Let us introduce α̃t−1 = αt−1 − α∗t−1 and

β̃nt−1 = βt−1 + α∗t−1St−1 − n, n ≥ 1. By construction, αt−1x + βt−1 ≤ α̃t−1x + β̃nt−1

for all x ∈ cl (It|Ft), where αt−1, βt−1 are given in (3.3.8). It follows that α̃t−1x +
β̃nt−1 ≥ gt(S1, · · · , St−1, x), for every x ∈ cl (It|Ft). By (3.3.9), we deduce that

pt−1 ≤ α̃t−1St−1 + β̃nt−1, i.e. pt−1 ≤ αt−1 + βt−1 − n. As n → ∞, we deduce that
pt−1 = −∞.

Suppose that z 7→ gt(S1, · · · , St−1, z) is a.s. convex and, furthermore, St−1 ∈
conv cl (It|Ft). By (3.3.9),

pt−1(St−1
0 ) ≥ gt(S0, · · · , St−1, St−1).

At last, suppose that z 7→ gt(S0, S1, · · · , St−1, z) is bounded from below by
mt−1 ∈ L0(R,Ft) on cl (It|Ft) and St−1 ∈ conv cl (It|Ft). Then, St−1 = limn→∞ Sn
where Sn ∈ conv cl (It|Ft), i.e. Sn =

∑Jn
i=1 λi,nxi,n where λi,n ≥ 0 with

∑Jn
i=1 λi,n = 1

and xi,n ∈ cl (It|Ft) for all i, n. Consider (α, β) such that αx+β ≥ gt(S0, · · · , St−1, x)

2The notation conv (A) designates the closed convex hull of A, i.e. the smallest convex closed
set containing A.
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for all x ∈ cl (It|Ft). Then, αSt−1 + β = limn→∞(αSn + β) with

αSn + β =
Jn∑
i=1

λi,n(αxi,n + β) ≥
Jn∑
i=1

λi,ngt(S1, · · · , St−1, xi,n)

≥ mt−1.

We deduce that αSt−1 + β ≥ mt−1 hence pt−1 ≥ mt−1 by (3.3.9).

Corollary 3.3.3. Let St−1
0 be a price process. Suppose that the mapping (ω, z) 7→

gt(S0(ω), · · · , St−1(ω), z) is Ft⊗B(Rd)-measurable and the function z 7→ gt(S0, · · · , St−1, z)
is l.s.c. a.s. and convex or bounded from below by mt−1 ∈ L0(R,Ft) on cl (It(S

t−1
0 )|Ft).

Then, pt−1(St−1
0 ) 6= −∞ if and only if St−1 ∈ conv cl (It(S

t−1
0 )|Ft). In particular,

the infimum super-hedging price of any non negative payoff function is finite if and
only if it is non negative or equivalently if St−1 ∈ conv cl (It(S

t−1
0 )|Ft).

As studied in [16], the non negativity of the prices for the zero claim or more
generally for non negative European call options corresponds to a weak no arbitrage
condition (AIP) which is naturally observed in practice. Adapted to our setting, we
introduce the following definition:

Definition 3.3.4. We say that condition AIP holds between t−1 and t if the prices
at time t−1 of the time t zero claim is non negative for every price process (Su)u≤t−1

of the model. Moreover, we say that the condition AIP holds when AIP holds at any
time step.

As observed in [16] and above, when AIP fails, the infimum of the zero claim, and
more generally of non negative payoffs, may be −∞. In that case, the numerical pro-
cedure we develop in this chapter is still valid but unrealistic and non-implementable
in practice. By Corollary 3.3.3, we have:

Corollary 3.3.5. The condition AIP holds between t−1 and t if and only if St−1 ∈
conv cl (It(S

t−1
0 )|Ft) for any price process St−1

0 , i.e.

It−1(St−2
0 ) ⊆ conv cl (It(S

t−1
0 )|Ft), t ≥ 1.

In the following, if g is a function defined on Rd and D is a subset of Rd, we
denote by conc(g,D) the (relative) concave envelope of g on D, i.e. the smallest
concave function defined on Rd which dominates g only on D. Observe that g ≤ h
on D is equivalent to g− δD ≤ h on Rd. Therefore, conc(g,D) always exists as soon
as g is dominated by an affine function on D.

The following result allows us to compute the infimum price rather easily.

Lemma 3.3.6. Let St−1
0 be a price process. Suppose that the mapping (ω, z) 7→

gt(S0(ω), · · · , St−1(ω), z) is Ft⊗B(Rd)-measurable and the function z 7→ gt(S0, · · · , St−1, z)
is l.s.c. almost surely. Consider the concave envelope

ht−1(x) = conc
(
gt(S0, · · · , St−1, ·), cl (It(S

t−1
0 )|Ft)

)
(x).
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Then,

pt−1(St−1
0 ) (3.3.10)

= inf
{
αSt−1 + β : αx+ β ≥ ht−1(x), for allx ∈ cl (It(S

t−1
0 )|Ft)

}
.

Proof. By definition, ht−1 is the smallest concave function which dominates g. We
deduce that the set of all affine functions dominating g coincides with the set of all
affine functions dominating ht−1. By (3.3.9) we deduce that (3.3.10) holds.

The following result provides a criterion under which the infimum price is a price:

Proposition 3.3.7. Suppose that AIP holds. Let St−1
0 be a price process. Suppose

that the mapping (ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft ⊗ B(Rd)-measurable and
z 7→ gt(S0, · · · , St−1, z) is l.s.c. almost surely. Moreover, suppose that there exists
αt−1 ∈ L0(Rd,Ft) and βt−1 ∈ L0(R,Ft) such that gt(S0, · · · , St−1, z) ≤ αt−1z + βt−1

for all z ∈ conv cl (It(S
t−1
0 )|Ft) and consider the concave envelope

ht−1(x) = conc
(
gt(S0, · · · , St−1, ·), cl (It(S

t−1
0 )|Ft)

)
(x). (3.3.11)

We have pt−1(St−1
0 ) ∈ [gt(S0, · · · , St−1, St−1), αt−1St−1 + βt−1]. Moreover, if the

super-differential ∂ht−1(St−1) 6= ∅ , then pt−1(St−1
0 ) = ht−1(St−1) is a price, i.e.

pt−1(St−1
0 ) ∈ Pt−1(St−1

0 ) with the super-replicating strategies θt−1 ∈ ∂ht−1(St−1).

Proof. It is clear by Lemma 3.3.6 that pt−1(St−1
0 ) ≥ h(St−1) when St−1 belongs to

cl (It(S
t−1
0 )|Ft). By definition, for all rt−1 ∈ ∂h(St−1) 6= ∅, for all x ∈ conv cl (It(S

t−1
0 )|Ft),

h(x) ≤ h(St−1) + rt−1(x− St−1) =: δ(rt−1, x). (3.3.12)

Therefore, pt−1(St−1
0 ) ≤ δ(rt−1, St−1) = h(St−1), and finally

pt−1(St−1
0 ) = h(St−1).

At last, applying (3.3.12) with x = St ∈ It(St−1
0 ) ⊆ cl (It(S

t−1
0 )|Ft), we deduce

that
pt−1(St−1

0 ) + rt−1∆St ≥ h(St) ≥ gt(S0, · · · , St−1, St).

Since x 7→ gt(S0, · · · , St−1, x) is l.s.c., we consider the following random set:

Gt := {(ω, rt−1) : δ(rt−1, x) ≥ gt(S0, · · · , St−1, x), ∀x ∈ conv cl (It(S
t−1
0 )|Ft)},

= {(ω, rt−1) : δ(rt−1, γ
n
t ) ≥ gt(S0, · · · , St−1, γ

n
t ), ∀n ∈ N},

where (γnt )n≥1 is a Castaing representation of conv cl (It(S
t−1
0 )|Ft). Since Gt is Ft⊗

B(Rd)-measurable and Gt 6= ∅ a.s, it admits a measurable selection which is a
measurable strategy θt for the price pt−1(St−1

0 ).

Remark 3.3.8. As the function ht−1 in (3.3.11) is concave and finite a.s. on the
conditional closure conv cl (It(S

t−1
0 )|Ft), see proof of Proposition 3.3.2, the super-

differential ∂h(St−1) of ht−1 at the point St−1 is not empty when St−1 belongs to the
interior of conv cl (It(S

t−1
0 )|Ft).

38



The following result proves the measurability of the infimum super-hedging price
pt−1(St−1

0 ) with respect to St−1
0 . To do so, we suppose the existence of a Castaing

representation, see [54], [45].

Proposition 3.3.9. Suppose that cl (It(S
t−1
0 )|Ft) admits a Castaing representation

(ξmt )m≥1 where ξmt = xm(St−1
0 ), for all m ≥ 1, and xm are Borel functions on (Rd)t

independent of St−1
0 . Then, there exist a Borel function φt−1 on (Rd)t such that

pt−1(St−1
0 ) = φt−1(St−1

0 ).

Proof. Let St−1
0 be a price process. We denote by

S(t−1) = St−1
0 and It−1 = cl (It(S(t−1))|Ft).

Recall that

pt−1(S(t−1)) = inf
(α,β)

{
αSt−1 + β : αx+ β ≥ gt(S(t−1), x), for allx ∈ It−1

}
.

By assumption xm is a Borel function on (Rd)t independent of the price process
St−1

0 . So:

pt−1(S(t−1)) = inf
(α,β)

{
αSt−1 + β : αxm(S(t−1)) + β ≥ gt(S(t−1), xm(S(t−1))),∀m

}
= inf

α

{
αSt−1 + f ∗t−1(−α,S(t−1))

}
such that f ∗t−1(−α,S(t−1)) = sup

m

[
gt(S(t−1), xm(S(t−1)))− αxm(S(t−1))

]
.

Let us denote Qd = {αn = (αn1 , ..., α
n
d), n ≥ 1, αni ∈ Q} and define the real-valued

mapping φt−1 as φt−1(S(t−1)) = inf
n

{
αnSt−1 + f ∗t−1(−αn,S(t−1))

}
. We claim that

pt−1(S(t−1)) = φt−1(S(t−1)). (3.3.13)

It is clear that pt−1(S(t−1)) ≤ φt−1(S(t−1)). Conversely, let α ∈ Rd, and αn ∈ Qd a
sequence such that for arbitrary fixed ε ∈ int(Rd

+), we have αn ≥ α and α > αn − ε
componentwise. Then, by definition of f ∗t−1, we have:

f ∗t−1(−α,S(t−1)) ≥ gt(S(t−1), xm(S(t−1)))− αxm(S(t−1)), ∀m ≥ 1

≥ gt(S(t−1), xm(S(t−1)))− αnxm(S(t−1))

+(αn − α)xm(S(t−1)), ∀m ≥ 1.

Notice that xm(S(t−1)) ∈ Rd
+ because xm(S(t−1)) ∈ It−1. So,

f ∗t−1(−α,S(t−1)) ≥ gt(S(t−1), xm(S(t−1)))− αnxm(S(t−1)), ∀m ≥ 1, ∀n ≥ 1

≥ f ∗t−1(−αn,S(t−1)), ∀n ≥ 1.
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Hence,

αSt−1 + f ∗t−1(−α) ≥ αSt−1 + f ∗t−1(−αn), ∀n ≥ 1

≥ αnSt−1 + f ∗t−1(−αn)− εSt−1, ∀n ≥ 1

≥ αnSt−1 + f ∗t−1(−αn)− εSt−1, ∀n ≥ 1

≥ φt−1(S(t−1))− εSt−1.

As ε → 0, we get αSt−1 + f ∗t−1(−α) ≥ φt−1(S(t−1)). Therefore, we deduce that
pt−1(S(t−1)) ≥ φt−1(S(t−1)). Hence, the equality (3.3.13) holds, which proves that the
infimum super-hedging price pt−1(St−1

0 ) is measurable with respect to the argument
St−1

0 .

The rest of this section aims to prove that, under some technical conditions, the
mapping St−1

0 7−→ pt−1(St−1
0 ) is lower-semicontinuous, which is needed to propagate

backwardly the numerical procedure of Theorem 3.3.6 in the multi-step model.

Definition 3.3.10. We say that the mapping

It : St−1
0 7−→ cl (It(S

t−1
0 )|Ft)

is lower-semicontinous if the following property holds: For all sequence of price pro-
cesses ((Snu )u≤t−1)n≥1 converging a.s. to a process St−1

0 , and for all z ∈ cl (It(S
t−1
0 )|Ft),

there exists a sequence (zn)n≥1 such that limn z
n = z and zn ∈ cl (It((S

n
u )u≤t−1)|Ft)

for all n ≥ 1.

Example 3.3.11. Suppose that d = 1 and

cl (It(S
t−1
0 )|Ft) = [mt−1St−1,Mt−1St−1]

where mt−1,Mt−1 ∈ L0(R+,Ft) and mt−1 ≤Mt−1.

Consider z ∈ cl (It(S
t−1
0 )|Ft), i.e. z = αtmt−1St−1 + (1 − αt)Mt−1St−1 where

αt ∈ L0([0, 1],Ft). Let us define zn = αtmt−1S
n
t−1 + (1− αt)Mt−1S

n
t−1 for all n ≥ 1.

Then, zn ∈ cl (It((S
n
u )u≤t−1)|Ft) and

|zn − z| ≤ 2Mt−1|Snt−1 − St−1|

hence limn z
n = z.

In the following, we define the closed convex random sets

Eε
t−1(St−1

0 , z) = B̄(0, ε) ∩
(
cl (It(S

t−1
0 )|Ft)− z

)
,

where B̄(0, ε) is the closed ball of center z = 0 and radius ε > 0. We say that the
mapping z 7→ Eε

t−1(St−1
0 , z) is convex if, for all α ∈ [0, 1], and z1, z2 ∈ Rd, we have

Eε
t−1(St−1

0 , αz1 + (1− α)z2) ⊆ αEε
t−1(St−1

0 , z1) + (1− α)Eε
t−1(St−1

0 , z2).

Note that this convexity property above is automatically satisfied if d = 1.
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Proposition 3.3.12. Consider a payoff function gt defined on (Rd)t+1 such that,
there exists αt−1 ∈ L0((Rd)t+1,Ft) such that gt(x) − gt(y) ≥ αt−1(x − y), x, y ∈
(Rd)t+1. Suppose that It : St−1

0 7−→ cl (It(S
t−1
0 )|Ft) is lower-semicontinous and that

z 7→ Eε
t−1(St−1

0 , z) is convex for all St−1
0 . Then, St−1

0 7−→ pt−1(St−1
0 ) is lower-

semicontinuous, i.e. pt−1(St−1
0 ) ≤ lim infn pt−1((Snu )u≤t−1) if ((Snu )u≤t−1)n≥1 con-

verges a.s. to St−1
0 .

Proof. Suppose that ((Snu )u≤t−1)n≥1 converges a.s. to St−1
0 . By assumption, we know

that for all z ∈ cl (It(S
t−1
0 )|Ft), there exists a sequence zn ∈ cl (It((S

n
u )u≤t−1)|Ft)

such that limn zn = z. We may suppose that |z − zn| ≤ ε where ε > 0 is arbitrarily
fixed. By assumption, for all z̃ ∈ cl (It((S

n
u )u≤t−1)|Ft) in the ball B̄(z, ε) of center z

and radius ε, we have:

gt(S
t−1
0 , z) ≤ gt((S

n
u )u≤t−1, z̃) + |αt−1| × |(St−1

0 , z)− ((Snu )u≤t−1, z̃)|,
gt(S

t−1
0 , z) ≤ gt((S

n
u )u≤t−1, z̃) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε,

gt(S
t−1
0 , z) ≤ h(n)(z̃) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε, (3.3.14)

where h(n) is an arbitrary affine function satisfying h(n) ≥ gt((S
n
u )u≤t−1, ·) on cl (It((S

n
u )u≤t−1)|Ft).

Let us define

h̄(n)(z) = inf
z̃∈B̄(z,ε)∩cl (It((Snu )u≤t−1)|Ft−1)

h(n)(z̃) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε.

By convention, we set inf ∅ = −∞. Let us show that h̄(n) is concave. To see
it, observe that z̃ ∈ B̄(z, ε) ∩ cl (It((S

n
u )u≤t−1)|Ft) if and only if z̃ = z + u where

u ∈ En(z) = B̄(0, ε) ∩ (cl (It((S
n
u )u≤t−1)|Ft)− z) . Therefore,

h̄(n)(z) = inf
u∈En(z)

h(n)(z + u) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε.

Let z = λz1 +(1−λ)z2. We only need to consider the case where En(z1) 6= ∅ and
En(z2) 6= ∅. We deduce that En(z) 6= ∅. Moreover, by assumption, any u ∈ En(z)
may be written as u = αu1 + (1− α)u2 where ui ∈ En(zi), i = 1, 2. Therefore,

h(n)(z + u) = αh(n)(z1 + u1) + (1− α)h(n)(z2 + u2),

≥ αh̄(n)(z1) + (1− α)h̄(n)(z2).

Taking the infimum in the left hand side of the inequality above, we deduce that
h̄(n)(λz1 + (1− λ)z2) ≥ αh̄(n)(z1) + (1− α)h̄(n)(z2), i.e. h̄(n) is concave.

By (3.3.14), we deduce that pt−1(St−1
0 ) ≤ h̄(n)(St) for all h(n). As Snt−1 ∈

En(St−1), for n large enough, under AIP, we deduce that

pt−1(St−1
0 ) ≤ h(n)(Snt−1) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε.
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Taking the infimum over all affine functions h(n), we get that for n large enough:

pt−1(St−1
0 ) ≤ pt−1((Snu )u≤t−1) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε.

As ε is arbitrarily chosen, we may conclude that

pt−1(St−1
0 ) ≤ lim inf

n
pt−1((Snu )u≤t−1).

3.3.3 Case of a convex payoff function

We shall prove that pt−1(St−1
0 ) is a convex function of the price process St−1

0 if so
Λt−1 is. In the following, we say that the mapping

Λt−1 : St−1
0 7−→ Λt−1(St−1

0 ) := conv
(
cl (It(S

t−1
0 )|Ft)

)
is convex for the inclusion if, for λ ∈ [0, 1],

Λt−1((λ(St−1
0 ) + (1− λ)((S̃u)u≤t−1) ⊆ λΛt−1(St−1

0 ) + (1− λ)Λt−1((S̃u)u≤t−1),

for all price process St−1
0 , (S̃u)u≤t−1.

Proposition 3.3.13. Suppose that the mapping

(ω, z) 7→ gt(S0, S1(ω), ..., St−1(ω), z) is Ft ⊗ B(Rd) measurable,

non negative and

z 7→ gt(S0, S1, ..., St−1, z) is lower semi-continuous and convex almost surely

and suppose that the mapping Λt−1 : St−1
0 7−→ Λt−1(St−1

0 ) is convex. Then, the
mapping St−1

0 7→ pt−1(St−1
0 ) is convex .

Proof. Let S̃t−1
0 , S

t−1

0 be two price processes. Let us define the following price process

St−1
0 = λS

t−1

0 + (1− λ)S̃t−1
0 for λ ∈ [0, 1]. We consider the following random sets:

Λt−1 = conv
(
cl (It(S

t−1
0 )|Ft)

)
, t ≥ 1,

Λ̃t−1 = conv
(

cl (It(S̃
t−1
0 )|Ft)

)
, t ≥ 1,

Λt−1 = conv
(

cl (It(S
t−1

0 )|Ft)
)
, t ≥ 1.

By assumption, we have Λt−1 ⊆ λΛt−1 + (1− λ)Λ̃t−1 for λ ∈ [0, 1]. Let h and h̃
be two affine functions such that:

h(x) ≥ gt(S
t−1

0 , x), ∀x ∈ Λt−1.
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h̃(x̃) ≥ gt(S̃
t−1
0 , x̃), ∀x̃ ∈ Λ̃t−1.

Thus, for λ ∈]0, 1[, we have

λh(x) + (1− λ)h̃(x̃) ≥ λgt(S
t−1

0 , x) + (1− λ)gt(S̃
t−1
0 , x̃)

≥ gt(λ(S
t−1

0 ) + (1− λ)(S̃t−1
0 ), λx+ (1− λ)x̃).

Let x ∈ Λt−1 such that x = λx+ (1− λ)x̃. By above, we have:

λh(x) + (1− λ)h̃(x̃) ≥ gt(S
t−1
0 , x) =: ĝt(x).

Now, let us consider

Ex =

{
λ− 1

λ
Λ̃t−1 +

1

λ
x, λ ∈]0, 1[

}
∩ Λt−1.

Observe that αEx1 +(1−α)Ex2 = Eαx1+(1−α)x2 for all α ∈ [0, 1], and x1, x2 ∈ Rd.
Then, with x = αx1 + (1−α)x2, any x ∈ Ex may be written as x = αx1 + (1−α)x2,
where xi ∈ Exi , i = 1, 2. As (x, x) 7→ h̃( 1

1−λ(x− λx)) is affine, we deduce that

λh(x) + (1− λ)h̃(
1

1− λ
(x− λx)) ≥ α

(
λh(x1) + (1− λ)h̃(

1

1− λ
(x1 − λx1))

)
+(1− α)

(
λh(x2) + (1− λ)h̃(

1

1− λ
(x2 − λx2))

)
,

λh(x) + (1− λ)h̃(
1

1− λ
(x− λx)) ≥ αĥ(x1) + (1− α)ĥ(x2),

where ĥ(x) = inf
x∈Ex
{λh(x)+(1−λ)h̃( 1

1−λ(x−λx))}. Therefore, taking the infimum in

the right side of the inequality above, we deduce that ĥ is a (non negative) concave
function with finite values. So, it is continuous and we have ĥ(x) ≥ ĝt(x) for all
x ∈ Λt−1. We deduce that

pt−1(St−1
0 ) ≤ ĥ(St−1)

≤ λh(St−1) + (1− λ)h̃(S̃t−1), ∀St−1 ∈ Λt−1, S̃t−1 ∈ Λ̃t−1.

Taking the infimum over all the affine functions h and h̃, we deduce that

pt−1(St−1
0 ) ≤ λpt−1(S

t−1

0 ) + (1− λ)pt−1(S̃t−1
0 )

and the conclusion follows.

Remark 3.3.14. Suppose that the AIP condition holds and that (3.3.8) holds.
Consider φt−1(u) = inf

n

{
αnut−1 + f ∗t−1(−αn, u)

}
, u = (u0, ..., ut−1) ∈ (Rd)t, where

f ∗t−1(−α, u) = sup
m

[gt(u, x
m(u))− αxm(u)]. Recall that, by Proposition 3.3.9,

pt−1(St−1
0 ) = φt−1(St−1

0 ).

When gt is convex, then φt−1 is convex by Proposition 3.3.13. Moreover, if gt ≥ 0,
0 ≤ φt−1 < ∞ by Proposition 3.3.7. Then, domφt−1 = (Rd)t and we deduce that
φt−1 is continuous on (Rd)t.
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Remark 3.3.15. Consider the case d = 1. By a measurable selection argument, we
may show that there exists mt−1,Mt−1 ∈ L0([0,∞],Ft) such that

conv
(
cl (It(S

t−1
0 )|Ft)

)
= [mt−1,Mt−1].

By Lemma 3.3.6, we deduce that under (AIP)

pt−1(St−1
0 ) = gt(S0, · · · , St−1,mt−1) (3.3.15)

+
gt(S0, · · · , St−1,Mt−1)− gt(S0, · · · , St−1,mt−1)

Mt−1 −mt−1

(St−1 −mt−1).

Moreover, the strategy is given by

θt−1 =
gt(S0, · · · , St−1,Mt−1)− gt(S0, · · · , St−1,mt−1)

Mt−1 −mt−1

.

If we suppose that mt−1 = kdt−1St−1 and Mt−1 = kut−1St−1 as in [3], where kdt−1

and kut−1 are deterministic coefficients, then pt−1(St−1
0 ) = gt−1(St−1

0 ) with

gt−1(x0, · · · , xt−1) = λt−1gt(x0, · · · , xt−1, k
d
t−1xt−1)+(1−λt−1)gt(x0, · · · , xt−1, k

u
t−1xt−1),

where λt−1 =
kut−1−1

kut−1−kdt−1
and gT is the payoff function.

At last, the order to be sent at time t is given by the deterministic mapping
defined on Rt by

θt−1(s0, · · · , st−1) =
gt(s0, · · · , st−1, k

u
t−1st−1)− gt(s0, · · · , st−1, k

d
t−1st−1)

(kut−1 − kdt−1)st−1

.

Remark 3.3.16 (Market impact). It is possible in our model to include a market
impact. Indeed, it suffices to make the order (demand) mapping Dt(x) = θt(x) −
θt−1(St−1) coincided at time t with the supply mapping Ot(x), i.e. the available
quantity we may buy or sell at price x in the order book. By convention, Ot is
negative for bid prices and positive for ask prices. It is an increasing function on
R+ starting from Ot(0+) = −∞ at price 0 (we can sell as many assets as we
want to the market at price 0) and ending up with Ot(+∞) = +∞, i.e. we can
buy as many assets as we want to the market at price +∞. As soon as Dt is
bounded, there exists executable bid prices Sbt in the order book such that Dt(S

b
t ) ≥

Ot(S
b
t ) when Dt(S

b
t ) ≤ 0, i.e. the order may be executed at price Sbt as the quantity

|Dt(S
b
t )| ≤ |Ot(S

b
t )|. The executed bid price is naturally the best one among all

possible. Similarly, there exists executable ask prices Sat in the order book such that
Dt(S

a
t ) ≤ Ot(S

a
t ) when Dt(S

a
t ) ≥ 0 and the order may be executed at price Sat for the

quantity Dt(S
a
t ) ≤ Ot(S

a
t ). Note that the executed bid price may be closed to 0 while

the executed ask price may be very large. This liquidity phenomenon is then taken
into account in the model through the conditional supports allowing to compute the
strategy in our approach.
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3.3.4 The multistep backward procedure

The main results of Section 3.3.2 for the one step model may be applied recursively,
starting from time T , as the payoff function gT is known.

Consider the case where the conditional support cl (It(S
t−1
0 )|Ft) admits a Cas-

taing representation (ξm)m≥1 where ξm = xm(St−1
0 ), for all m ≥ 1, and xm are Borel

functions on (Rd)t. Then, by Proposition 3.3.9, we know that the infimum price at
time T −1 is a Borel function gT−1 of the prices S0, · · · , ST−1. Then, we may repeat
the procedure if we are in position to verify that gT−1 is also l.s.c. This is the case
by Proposition 3.3.13 and Remark 3.3.14, under convexity conditions.

Many questions could be investigated for future research, e.g. sensitivity to
modeling assumptions, but also how to calibrate such a model from statistical es-
timations. Mainly, we need to estimate conditional supports. This is illustrated in
the numerical example that we propose in the next section. A technical question is
also to consider discontinuous payoff functions even if this is less usual in finance
where g is generally a convex function. Actually, by Lemma 3.3.6, we may replace
the payoff function by its concave envelope. Note that our analysis is general enough
to consider a lot of models, e.g. with order books.

3.4 Numerical illustration

3.4.1 Formulation of the problem with d = 1

In this section we consider the example of the European call option at time T = 2,
i.e. with the payoff function g(S2) = (S2 − K)+, K > 0. Let (St)t=0,1,2 be the
executed price process. Recall that St belongs to the random set Λt, for t = 0, 1, 2,
respectively. We suppose that the risk-free asset is given by S0 = 1. Recall that
there exist Ft+1-measurable closed random sets It = It(S

t−1
0 ) such that:

Σ(Λt(S
t−1
0 )) = L0(It(S

t−1
0 ),Ft+1), t = 0, 1, 2.

We may suppose that Λ = Σ(Λ) so that St ∈ It a.s. for t = 0, 1, 2. At each step, we
shall apply the procedure we have developed in the sections above. In particular,
we seek for the strategy θ and we deduce the portfolio value V associated to the
executed price process S. Then, we may estimate the error between the terminal
value of V2 and the payoff g2(S2) that we denote by ε2 = V2 − g2(S2).

We start from a known price S−1 at time t = 0, which corresponds to the last
traded price. We suppose that It = It(S

t−1
0 ) = [St−1mt, St−1Mt], t = 0, 1, 2, where

the two random variables mt and Mt are independent of St−1 and are uniformly
distributed as mt ∼ U [0.7, 1] and Mt = mt + sprt such that sprt ∼ U [0, 0.4] is
independent of mt. Observe that m−t = 0.7 and M+

t = 1.4.
At time t = 0, we choose in our model to pick randomly S0 in the interval I0.

Precisely, S0 = S−1m0 + k0S−1(M0 −m0), where k0 is a random variable such that
k0 ∼ U [0, 1]. We make this choice for simplicity and that corresponds to the case
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where the bid and ask prices of the market coincide with the mid price S0. The
order we sent is of the form buy or sell the quantity θ0(z) at the price z.

At time t = 1, we choose to model bid and ask prices Sbid1 , Sask1 respectively
as: Sbid1 = S0m1 and Sask1 = S0M1 where S0 is the last executed price. Notice
that the order of buying or selling depends on the bid-ask values, see Figure 3.4.
We define S∗1 such that ∆θ1(S∗1) = 0. If Sbid1 ≤ Sask1 ≤ S∗1 (in the green zone
{S1 : ∆θ1(S1) ≤ 0}), then S1 = Sbid1 since ∆θ1 ≤ 0. If S∗1 ≤ Sbid1 ≤ Sask1 , (the
yellow zone,) then S1 = Sask1 as ∆θ1 > 0. Otherwise, if Sbid < S∗1 < Sask1 , we may
arbitrarily choose S1 = Sask1 or S1 = Sbid1 . In our model, we make the (arbitrary)
choice that, if |S∗1 − Sbid1 | ≤ |S∗1 − Sask1 |, then S1 = Sask1 and S1 = Sbid1 otherwise.

Figure 3.4

At last, we choose S2 = Sask2 = Sbid2 ∈ I2 = [m2S1,M2S1] accordingly to the
formula S2 = S1m2 + k2S1(M2 − m2) where k2 a uniform random variable in the
interval [0, 1].

Note that the mapping s1 7→ ∆θ1(s1) is the F1-measurable order we send at time
t = 1, see Figure 3.4. The later depends on S0, which is F1-measurable.

3.4.2 Explicit computation of the strategy

We deduce the portfolio value and the strategy value at any time by dominating the
payoff function by the smallest affine function on the conditional support of S, as
mentioned in (3.3.9). We consider the terminal payoff function g(ST ) = (ST −K)+

for several strikes.

The strategy at time t = 1

Recall that S2 ∈ Λ2(S1) ∼ I2 = [S1m2, S1M2]. In order to compute the strategy
θ1 = θ1(S1) we first compute the function ϕ1 given by (3.3.9) which dominates the
the pay-off function g2 on the conditional support cl (I2(S1)|F2) = [S1m

−
2 , S1M

+
2 ].
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1st case: K ∈ [S1m
−
2 , S1M

+
2 ]⇔ S1 ∈ [ K

M+
2

, K
m−2

] .

The dominating affine function ϕ1, see Figure 3.5, is given by:

ϕ1(x) =
(S1M

+
2 −K)(x− S1m

−
2 )

S1(M+
2 −m−2 )

.

So,

V1(S1) = p1(S1) = ϕ1(S1) =
(S1M

+
2 −K)(1−m−2 )

M+
2 −m−2

=: g1(S1),

and

θ1(S1) =
S1M

+
2 −K

S1(M+
2 −m−2 )

.

A simple computation shows that:

V2 = V1(S1) + θ1(S1)(S2 − S1) = ϕ1(S2) ≥ g2(S2).

Figure 3.5 Figure 3.6

2nd case: K ≤ S1m
−
2 ⇔ S1 ≥ K

m−2
.

In this case, we have ϕ1(x) = (x − K)+ for all x ∈ [S1m
−
2 , S1M

+
2 ], see Figure 3.6.

Hence, V1(S1) = (S1 −K)+ =: g1(S1) and θ1(S1) = 1.

3rd case: K ≥ S1M
+
2 ⇔ S1 ≤ K

M+
2

.

Observe that the dominating affine function ϕ1 coincides with the x-axis on the
support [S1m

−
2 , S1M

+
2 ], see Figure 3.7. Therefore, V1(S1) = g1(S1) := 0 and we

deduce that θ1(S1) = 0.
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Figure 3.7

We finally deduce that

g1(x) =
(xM+

2 −K)(1−m−2 )

M+
2 −m−2

1[
K

M+
2

, K
m−2

](x) + (x−K)+1[
K

m−2
,∞

)(x).

The graph of the payoff function g1 is represented in Figure 3.7.

The strategy at time t = 0

In order to determine the strategy θ0, we compute the smallest affine function ϕ0

that dominates g1 on the conditional support cl(I1(S0)|F0).

1st case: S0M
+
1 ≤ K

M+
2

, i.e. S0 ≤ K
M+

1 M
+
2

.

We have V0(S0) = g0(S0) = 0 and θ0(S0) = 0, see Figure 3.8.

Figure 3.8
Figure 3.9
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2nd case: S0m
−
1 ≤ K

M+
2

and S0M
+
1 ∈ [ K

M+
2

, K
m−2

], i.e. S0 ∈ [ K
M+

1 M
+
2

, K
m−1 M

+
2

∧ K
m−2 M

+
1

].

We find that (see Figure 3.9):

ϕ0(x) =
(S0M

+
1 M

+
2 −K)(1−m−2 )

S0(M+
1 −m−1 )(M+

2 −m−2 )
(x− S0m

−
1 ).

So,

V0(S0) = ϕ0(S0) =
(S0M

+
1 M

+
2 −K)(1−m−2 )(1−m−1 )

(M+
2 −m−2 )(M+

1 −m−1 )
=: g0(S0),

and

θ0(S0) =
(S0M

+
1 M

+
2 −K)(1−m−2 )

S0(M+
2 −m−2 )(M+

1 −m−1 )
.

3rd case: S0m
−
1 ≤ K

M+
2

and S0M
+
1 ≥ K

m−2
, i.e. S0 ∈ [ K

m−2 M
+
1

, K
m−1 M

+
2

].

We have, see Figure 3.10:

ϕ0(x) =
S0M

+
1 −K

S0(M+
1 −m−1 )

(x− S0m
−
1 ).

Figure 3.10 Figure 3.11

So,

V0(S0) = ϕ0(S0) =
(S0M

+
1 −K)(1−m−1 )

M+
1 −m−1

=: g0(S0), θ0(S0) =
S0M

+
1 −K

S0(M+
1 −m−1 )

.

4th case: S0m
−
1 ∈ [ K

M+
2

, K
m−2

] and S0M
+
1 ∈ [ K

M+
2

, K
m−2

], i.e. S0 ∈ [ K
m−1 M

+
2

, K
m−2 M

+
1

].

We have ϕ0(x) = g1(x), for all x ∈ cl(I1(S0)|F0), see Figure 3.11. Therefore,

V0(S0) = ϕ0(S0) =
(S0M

+
2 −K)(1−m−2 )

M+
2 −m−2

=: g0(S0), θ0(S0) =
M+

2 (1−m−2 )

M+
2 −m−2

.
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5th case: S0m
−
1 ∈ [ K

M+
2

, K
m−2

] and S0M
+
1 ≥ K

m−2
, i.e. S0 ∈ [ K

m−1 M
+
2

∨ K
m−2 M

+
1

, K
m−1 m

−
2

].

We obtain that (see Figure 3.12):

ϕ0(x) =
(S0M

+
1 −K)(M+

2 −m−2 )− (S0m
−
1 M

+
2 −K)(1−m−2 )

S0(M+
1 −m−1 )(M+

2 −m−2 )
x

+
−m−1 (S0M

+
1 −K)(M+

2 −m−2 ) +M+
1 (S0m

−
1 M

+
2 −K)(1−m−2 )

(M+
1 −m−1 )(M+

2 −m−2 )
.

Figure 3.12 Figure 3.13

Then,

V0(S0) = ϕ0(S0) =: g0(S0)

=
(S0M

+
1 −K)(M+

2 −m−2 )(1−m−1 )− (S0m
−
1 M

+
2 −K)(1−m−2 )(1−M+

1 )

(M+
1 −m−1 )(M+

2 −m−2 )

and

θ0(S0) =
(S0M

+
1 −K)(M+

2 −m−2 )− (S0m
−
1 M

+
2 −K)(1−m−2 )

S0(M+
2 −m−2 )(M+

1 −m−1 )
.

6th case: S0m
−
1 ≥ K

m−2
and S0M

+
1 ≥ K

m−2
, i.e. S0 ≥ K

m−2 m
−
1

.

We have V0(S0) = (S0 −K)+ =: g0(S0) and θ0(S0) = 1, see Figure 3.13.

3.4.3 Empirical results

For an observed price S−1 at time t = 0 (which corresponds to the last traded
price), and for different strike values K, we test the infimum super-hedging strategy
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by computing the relative error εR from a data set of 106 simulated prices St for
t ∈ 0, 1, 2. To do so, we wrote a script in Python. The relative error is given by

εR =
V2 − (S2 −K)+

S2

.

In the following table 3.14, empirical results are presented for different values of
the strike K and a sample of 106 scenarios.

K 50 75 100 125 150

E(S0) 95.002 94.983 95.006 94.98 95.001
E(S1) 99.56 94.94 87.085 82.104 81.736
E(S2) 94.56 90.180 82.716 78.01 77.664

E(V0) 46.503 29.357 16.960 11.244 6.7
maxV0 89.677 66.72 49.726 33.05 22.562

E(V (S0)/S−1) 0.465 0.294 0.170 0.112 0.067
E(V (S0)/S0) 0.483 0.300 0.173 0.114 0.066
min(V (S0)/S0) 0.359 0.163 0.098 0.032 0
max(V (S0)/S0) 0.642 0.479 0.358 0.237 0.162

E(εR) 0.017 0.077 0.076 0.064 0.039
σ(εR) 0.024 0.045 0.04 0.037 0.0317
min εR 0 2.23 ∗ 10−6 1, 9 ∗ 10−7 5.975 ∗ 10−8 0
max(εR) 0.18 0.19 0.195 0.187 0.187

E(θ0S0/V0) 199% 255% 322% 333% 313%
E(θ1S1/V1) 205% 230% 134% 32% 3%

Figure 3.14: The empirical results.

We observe that the executed prices depend on the strike K > 0, i.e. there is
a market impact of the orders on the prices. Indeed, as expected, the orders we
send depend on the payoff function. As K increases, the payoff decreases and, as
expected, the option price V0 decreases. The distribution of S1 admits two regimes
as seen in Figure 3.16 that correspond to the bid and ask prices.

Notice that the proportion of the portfolio value invested in the risky assets at
time t = 1 decreases as the payoff decreases. We also observe that this proportion
decreases (resp. increases) when the price S decreases (resp. increases) between
time t = 0 and t = 1, i.e. when ∆S1 < 0 (resp. ∆S1 ≥ 0). At last, the empirical
results obtained for the relative error confirm the efficiency of the super-hedging
strategy, see Figure 3.18.
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Figure 3.15 Figure 3.16: K=100.

Figure 3.17: K=100. Figure 3.18: K=100.



Chapter 4

Super-hedging an arbitrary
number of European options with
integer-valued strategies

4.1 Introduction

The problem of super-hedging a European claim, such as a call option, is very
classical in mathematical finance but has only been solved for real-valued strategies
so that the optimal strategy, corresponding to the minimal hedging or super-hedging
price, is not integer-valued contrary to what it is allowed to do in the real life. In
this joint work with D.Cherif and E.Lepinette we propose to solve the problem of
super-hedging a European claim with integer-valued financial strategies.

Actually, the main contribution in the literature for integer-valued financial
strategies is the paper [31] where a finite set of states Ω is considered. In this
setting, the authors adapt the usual theory for the real-valued strategies to the
integer-valued ones, i.e. they introduce a no-arbitrage condition which is equivalent
to the existence of a risk-neutral probability measure and show that the minimal
super-hedging price may be characterized through the martingale measures similarly
to the usual case with real-valued strategies. See also [59] where Ω is finite. The
general case with an arbitrary state space Ω is still an open problem. Also, portfolio
optimization problems of Markowitz type are considered in [10], [12], [5].

Let us recall that the usual approach of pricing assumes that the financial market
model satisfies a no-arbitrage condition NA, which is equivalent to the existence of
a risk-neutral probability measure Q under which the discounted asset prices are
martingales, see the Dalang-Morton-Willinger theorem [21]. Under NA, we may
show that there exists a minimal super-hedging price P ∗0 (ξT ) for the European claim
ξT ≥ 0 given by

P ∗0 (ξT ) = sup
Q∈M(P )

EQ(ξT ), (4.1.1)
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where M(P ) is the set of all risk-neutral probability measures equivalent to the
initial probability measure P of the model. Here, we suppose that the risk-free
interest rate of the model is r = 0. Recall that the formula above holds in discrete
time but also in continuous time with extra-conditions on the model. Indeed, the
no-arbitrage condition needs to be strenghtened and it is only equivalent to the
existence of Q ∼ P under which discounted asset prices are local martingales, see
[22], [23], [24].

In any case, the optimal strategy that achieves the minimal super-hedging price
(4.1.1) is not, in general, integer-valued. The typical example is the continuous-
time Black and Scholes model where the so-called delta-hedging strategy for the
European call is explicit and lies in the set [0, 1] \ {0, 1}, see [11].

Clearly, a new approach is necessary to compute the super-hedging prices for only
integer-valued financial strategies. We follow the ideas developed in [16] where the
problem is initially solved without any no-arbitrage conditions. Then, a no-arbitrage
condition AIP naturally appears and means that the infimum price of the zero claim
( non negative claims more generally) is not −∞. This condition is clearly necessary
for numerical purposes. Actually, it is shown that AIP is equivalent to the property
that the infimum super-hedging price of any non negative claim is non negative, as
observed in the real markets. In this chapter, we do not explicitly suppose such a
no-arbitrage condition but the form of the conditional supports of the asset price
we assume implies this condition for the model with integer-valued strategies.

Our aim is to compute super-hedging prices with only integer-valued financial
strategies. We restrict ourselves to payoffs which are piecewise affine functions
of the underlying asset and we assume specific conditional supports for the asset
prices. Problems such as characterizations of the no-arbitrage condition NA with
only integer-valued strategies or generalization of our work to arbitrary conditional
supports of the asset prices remains open if Ω is not finite.

Notations If A ⊂ R is a random subset of R and F is a σ-algebra, we denote
by L0(A,F) the family of all F -measurable random variables X on the probability
space (Ω,F , P ) such that X ∈ A a.s..

4.2 Formulation of the problem

We consider n ≥ 1 options that we want to super-replicate in discrete time t =
{0, ...T}. Let (Ω, (Ft)0≤t≤T ) be a stochastic basis where (Ft)0≤t≤T is supposed to be
complete. We consider a financial market model composed of two assets. We sup-
pose, without loss of generality, that the risk-free asset is S0

t = 1 for all t ∈ {0, ...T},
while the risky asset price is described by a stochastic process S = (St)0≤t≤T . Recall
that a self-financing portfolio process (Vt)0≤t≤T satisfies by definition:

∆Vt = Vt − Vt−1 = θt−1∆St, t = 1, · · · , T,
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where θt−1 is Ft−1-measurable and represents the number of risky assets of the
portfolio.

In this chapter, we consider European options whose payoffs are of the form
ξT = g(ST ) ∈ L0(R,FT ), where g is a continuous piecewise affine function. The
typical example is the European call option, i.e. g(x) = (x−K)+, K > 0. Our goal
is to compute the set of all super-hedging prices of ξT , i.e the set of all V0, initial
values of self-financing portfolio processes (Vt)0≤t≤T , such that VT ≥ ξT almost surely.
Contrarily to what it is usual to do in the literature, we restrict ourselves to the
case of integer-valued strategies, i.e θt ∈ Z almost surely, for all t ∈ {0, ...T}, where
Z = N ∪ (−N) and N is the set of all non negative integers. In the case of super-
hedging an arbitrary number of options n ≥ 1, the problem reads as VT ≥ nξT , a.s.
and it is clearly interesting to analyse the impact of n on the strategies and the
infimum prices, as linearity is not necessarily preserved with respect to the quantity
n of claims.

To solve this problem, we follow the approach of [16], [3] that we adapt to
integer-valued strategies. To do so, we first solve backwardly the super-hedging
problem between two dates t − 1 and t, and we show that the procedure may be
propagated backwardly as the minimal super-hedging price we obtain at time t− 1
is still a continuous piecewise affine payoff function of the underlying asset. It is
then possible to deduce the minimal super-hedging price at time t = 0 by induction.

4.3 The super-hedging problem

Let t ≤ T and gt be a continuous piecewise affine function, i.e. there exists a
subdivision 0 = a0 < a1 < ... < an−1 < an = ∞ of [0,∞] such that gt is an
affine function for all x ∈ [ai, ai+1),∀i ∈ {0, ..., n − 1}. As the asset prices are non
negative, we suppose without loss of generality that a0 = 0. We first solve the one
step problem: find Vt−1 and the strategy θt−1 ∈ L0(R,Ft−1) such that:

Vt−1 + θt−1∆St ≥ gt(St), a.s.

This is equivalent to:

Vt−1 ≥ gt(St)− θt−1∆St,

⇔ Vt−1 ≥ gt(St)− θt−1St + θt−1St−1,

⇔ Vt−1 ≥ esssupFt−1(gt(St)− θt−1St) + θt−1St−1.

Equivalently, we have:

Vt−1 ≥ Vt−1(θt−1) := sup
x∈suppFt−1

(St)

(gt(x)− θt−1x) + θt−1St−1, (4.3.2)

where suppFt−1(St) is the conditional support of St knowing Ft−1, see [16] and [29]
for the definition and the proof of the inequality above.
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In the following, we suppose that there exist two deterministic numbers kdt−1 ∈
(0, 1) and kut−1 ∈ (1,∞) such that suppFt−1(St) = [kdt−1St−1, k

u
t−1St−1]. This model

may be seen as a generalization of the Binomial model and the conditions imposed
on the coefficients kdt−1 and kut−1 are equivalent to a no-arbitrage condition, see [16].
In particular, we have:

Vt−1(θt−1) = sup
x∈[kdt−1St−1,kut−1St−1]

(gt(x)− θt−1x) + θt−1St−1 ∈ L0(R,Ft−1).

We define V ∗t−1 as the infimum of all the superhedging prices at time t − 1 over all
integer-valued strategies in Z, i.e.

V ∗t−1 := ess infH
θt−1∈L0(Z,Ft−1)

Vt−1(θt−1).

Lemma 4.3.1. We have

V ∗t−1 = inf
θ∈Z

Vt−1(θ). (4.3.3)

Proof. Let us define γ = inf
θ∈Z

Vt−1(θ) ∈ L0(R,Ft−1), see [16]. As V ∗t−1 ≤ Vt−1(θ), for all

θ ∈ Z, we get that V ∗t−1 ≤ inf
θ∈Z

Vt−1(θ) = γ. On the other hand, if θt−1 ∈ L0(Z,Ft−1),

then:

θt−1 =
∑
θ∈Z

θ1{θt−1=θ},

Vt−1(θt−1) =
∑
θ∈Z

Vt−1(θ)1{θt−1=θ} ≥
∑
θ∈Z

γ1{θt−1=θ} = γ.

We deduce that V ∗t−1 ≥ γ and the conclusion follows.

Theorem 4.3.2 (One step problem). Let us consider t ∈ {1, ..., T} and suppose
that ξt = gt(St) where gt is a continuous piecewise affine function. Moreover, we
assume that there exists two deterministic numbers kdt−1 ∈ (0, 1) and kut−1 ∈ (1,∞)
such that

suppFt−1(St) = [kdt−1St−1, k
u
t−1St−1].

Then, V ∗t−1 = gt−1(St−1) where gt−1 is a continuous piecewise linear function.

Proof. By assumption, there exist a subdivision (ai)i=0,··· ,n of [0,∞], with a0 = 0 <
a1 < ... < an−1 < an =∞, such that gt is an affine function on each interval. Let us
define

xi(St−1) = (kdt−1St−1 ∨ ai) ∧ kut−1St−1, i = 0, · · · , n.

It is straightforward that

Vt−1(θt−1) = sup
i=0,··· ,n

[gt(xi(St−1))− θt−1xi(St−1)] + θt−1St−1.
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Note that x0(St−1) = kdSt−1 and xn(St−1) = kuSt−1 and some terms of the sequence
(xi)i may coincide. Let us define the functions

hi(θt−1, St−1) = gt(xi(St−1)) + θt−1(St−1 − xi(St−1)), i = 0, · · · , n.

The slopes of the affine functions θt−1 7→ hi(θt−1, St−1) are given by the non
decreasing sequence (St−1 − xi(St−1))i=n,n−1,··· ,0 such that St−1 − xn(St−1) < 0 and
St−1 − x0(St−1) > 0.

By ordering the indices in the decreasing order, we obtain (n + 1) affine func-
tions θt−1 7→ hi(θt−1) for i ∈ {n, n − 1, ..., 1, 0} with increasing slopes (St−1 −
xi)i∈{n,n−1,...,1,0}, such that: St−1−xn < 0 and St−1−x0 > 0. Therefore, the mapping
Vt−1 : θt−1 7→ sup

i=n,...,0
hi(θt−1, St−1) is a piecewise affine function, i.e. there exists a

subdivision:

−∞ = α0 < α1(St−1) ≤ ... ≤ αm−1(St−1) < αm =∞

such that Vt−1 is an affine function of θt−1 on each interval [αi(St−1), αi+1(St−1)],
i = 0, · · · ,m − 1. Note that the function Vt−1 is convex in θt−1 and the elements
of the partition define the intersection points between two distinct and successive
graphs of the affine functions hi+1(θt−1), hi(θt−1). So, there exists θ∗t−1 ∈ [α1(St−1)−
1, ..., αm−1(St−1) + 1] ∩ Z such that:

inf
θt−1∈Z

Vt−1(θt−1) = Vt−1(θ∗t−1).

It remains to evaluate α1(St−1) and αm−1(St−1). To do so, let us solve the equations
hi(α) = hj(α), i, j = 0, ...,m and xi 6= xj. Since we suppose that xi − xj 6= 0, we
get that

α =
gt(xi)− gt(xj)

xi − xj
.

We deduce that |α| ≤ Lt where Lt > 0 is a Lipschitz constant of the piecewise affine
function gt. We deduce that θ∗t−1 ∈ [−Lt − 1, Lt + 1] ∩ Z and

gt−1(St−1) = Vt−1(θ∗t−1(St−1)) = min
θt−1∈[−Lt−1,Lt+1]∩Z

sup
i=0,··· ,n

hi(θt−1, St−1).

We conclude that gt−1 is a continuous piecewise affine function as a finite minimum
of continuous piecewise affine functions.

Corollary 4.3.3. (The multi-period super-hedging problem) Suppose that, at time
T > 0, the payoff is ξT = gT (ST ) where gT is a continuous piecewise affine function.
Moreover, we assume that there exists deterministic numbers kdt−1 ∈ (0, 1) and kut−1 ∈
(1,∞) for each t = 1, · · · , T such that we have suppFt−1(St) = [kdt−1St−1, k

u
t−1St−1].

Then, there exists a minimal super-hedging portfolio process (V ∗t )t=0,··· ,T such that

57



V ∗T ≥ ξT . We have V ∗t = g(t, St) where g(t, ·) is a continuous piecewise affine
function given by

g(t, s) = min
θ∈[−Lt+1−1,Lt+1+1]∩Z

sup
i=0,··· ,n(t+1)

(
g(t+ 1, x

(t+1)
i (s)) + θ(s− x(t+1)

i (s))
)
,

x
(t+1)
i (s) = (kdt s ∨ a

(t+1)
i ) ∧ kut s, i = 0, · · · , n(t+1),

where Lt+1 is any Lipschitz constant of g(t+ 1, ·) and (a
(t+1)
i )i=0,··· ,n(t+1) is any par-

tition such that a
(t+1)
0 = 0 < a

(t+1)
1 < ... < a

(t+1)

n(t+1)−1
< a

(t+1)

n(t+1) = ∞ and g(t + 1, ·)
is an affine function on [a

(t+1)
i , a

(t+1)
i+1 ], i ≤ n(t+1) − 1. The associated super-hedging

strategy θ∗ is given by the argmin of the minimisation problem defining g(t, ·) in the
expression above.

4.3.1 Example in the one step problem: the case of the Call
option

At time t = T , suppose that the payoff is ξnT = ng(ST ) where n ≥ 1 and g(x) =
(x − K)+, K = 500. We suppose that suppFT−1

(ST ) = [kdST−1, k
uST−1] for some

constants kd, ku such that 0 < kd < 1 < ku. Precisely, we suppose that kd = 0.9
and ku = 1.2. Observe that the super-hedging problem VT−1 + θT−1∆ST ≥ ng(ST )
is equivalent to

VT−1 ≥ VT−1(θT−1) = max
k∈{kd,ku}

[ng(kST−1)− θT−1kST−1] + θT−1ST−1.

In the following we give the explicit expression of VT−1(θT−1) = V n
T−1(θT−1).

If ku ≤ K/ST−1, i.e. ST−1 ≤ K/ku, then

VT−1(θT−1) =

{
θT−1ST−1(1− ku) if θT−1 ≤ 0,

θT−1ST−1(1− kd) if θT−1 ≥ 0.

Therefore, θ∗,nT−1(ST−1) = 0, and V ∗,nT−1(ST−1) = VT−1(θ∗,nT−1) = 0.

If kd ≥ K/ST−1, i.e. ST−1 ≥ K/kd,

VT−1(θT−1) =

{
θT−1ST−1(1− ku) + nkuST−1 − nK if θT−1 ≤ n,

θT−1ST−1(1− kd) + nkdST−1 − nK if θT−1 ≥ n.

We conclude that θ∗,nT−1(ST−1) = n, and V ∗,nT−1(ST−1) = n(ST−1 −K).

If kd ≤ K/ST−1 ≤ ku, i.e. ST−1 ∈ [K/ku, K/kd],

VT−1(θT−1) =

{
θT−1ST−1(1− ku) + nkuST−1 − nK if θT−1 ≤ nkuST−1−nK

ST−1(ku−kd)
,

θT−1ST−1(1− kd) if θT−1 ≥ nkuST−1−nK
ST−1(ku−kd)

.
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Let us define

αnT−1(ST−1) :=
nkuST−1 − nK
ST−1(ku − kd)

,

fn(x, ST−1) := xST−1(1− kd)1{x≥αT−1(ST−1)}

+(xST−1(1− ku) + nkuST−1 − nK)1{x<αT−1(ST−1)}.

We denote by bαnT−1(ST−1)c the lower integer part of αnT−1. Then,

θ∗,nT−1(ST−1) =

{
bαnT−1(ST−1)c if fn(bαT−1(ST−1)c) ≤ fn(bαT−1(ST−1)c+ 1),

bαnT−1(ST−1)c+ 1 otherwise.

So, we have:

V ∗,nT−1(ST−1) = (bαnT−1(ST−1)cST−1(1− ku) + nkuST−1 − nK)1GnT−1
(ST−1)

+(bαnT−1c+ 1)ST−1(1− kd)1(GnT−1)c(ST−1),

where

Gn
T−1 := {S : fn(bαnT−1(S)c) ≤ fn(bαnT−1(S)c+ 1)} = {bαnT−1(S)c ≤ βnT−1(S)},

βnT−1(S) := αnT−1(S) +
1− kd

kd − ku
.

A graphic illustration of V ∗,nT−1/n as a function of ST−1 is given in Figure 4.1.

Figure 4.1: The function x = ST−1 7→ g(T −1, x, n)/n = V ∗,nT−1/n,K = 500, for n = 1
(black), n = 5 (blue), n = 100 (red).

We observe that V ∗,nT−1 is not a convex function of ST−1 even if the payoff function
is and, moreover, g(T − 1, x, n) 6= ng(T − 1, x, 1).
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4.4 Numerical illustration

In this section, we illustrate the method developed above when the underlying asset
S is the french CAC 40 index and the European claim is the Call option. The
historical data is composed of daily observations of the CAC 40 values between the
6th of June 2019 and the 16th of June 2021 (Appendix C[4.4]). We use the two first
years of the data set to calibrate the model while we implement the model on the
third year. Here, we suppose that suppFtSt+1 = [kdt St, k

u
t St] where kdt and kut are

estimated as follows:

kdt = min
i=j,··· ,N

S
(j)
t+1/S

(j)
t ,

kut = max
i=j,··· ,N

S
(j)
t+1/S

(j)
t ,

where N is the number of training periods and S
(j)
t are the observed values at time t

during the j-th periods. The algorithms are written in Python,see Appendix C [4.4].
The main difficulty is to write a code whose execution time is reasonable. Indeed,
recall that the price function g(t, x) is computed backwardly from g(t+ 1, x). If this
function g(t, x) is naively coded from g(t + 1, x), then the computation may take
more than two weeks ! So it is better to approximate, at each step, the function
g(t, x) as a numpy array consisting of discretized values following a grid (xi)

Nt
i=0

where xi = step∗ i. Here, we choose step = 0.1 and Nt is chosen so that xN0 ≤ Smax
0

where Smax
0 is the maximal value for S0 that we observe in our data. At last,

xNt ≤ Smax
0 ∗ (maxr≤t k

u
r )t.

The relative hedging error is defined as εT = 100 ∗ (VT − g(T, ST ))/ST where
(V ∗t )t=0,··· ,T is the optimal super-hedging portfolio process whose initial value is the
minimal super-hedging price, as computed in the last section. We present in Figure
4.2.1 the distribution of εT when n = 1. Of course, we expect that εT ≥ 0 a.s.
and this is confirmed on our test data set. Note that, we could have observed some
negative values as the model is calibrated from data values anterior to the test data
set.

Let us denote by g(t, x, n) the price function at time t of the optimal portfolio
process, i.e. V ∗,nt = g(t, St, n) such that V ∗,nT ≥ ξnT a.s., when the European claim is
ξnT := n ∗ (ST −K)+. The natural question is the following: Do we have g(t, x, n) =
ng(t, x, 1) ? The answer is yes when real-valued strategies are allowed since the
hedging problem is then linear with respect to the number of claims.

In the case of integer-valued strategies, the answer is not trivial and is actually
negative, see the first example above. By definition of the infimum super-hedging
price, we have g(t, x, n) ≤ ng(t, x, 1). As a first step, we have computed the relative
infimum super-hedging prices per unit of claims, i.e. V ∗,n0 /n at time 0, for different
values of n on each period of the test data set. Then, computing the average of the
V ∗,n0 /n values over all the periods, we get that the empirical average of V ∗,n0 /n is
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Figure 4.2: F1.1: Super-hedging errors with n = 1 and K = 3000. F1.2: Comparison
of the optimal strategies per unit of claims for n = 1 and n = 10.

approximately equal to 49.48% for n = 1, 5, 10, 15, 20. Nevertheless, we observe that
the price function per unit of unit of claims, i.e. g(0, S0, n)/n is non-increasing when
n increases, see Figure 4.3. This implies that the equality g(t, x, n) = ng(t, x, 1) does
not hold. We conjecture that g(t, x, n)/n converges to the price function ĝ(t, x) of
the model where real-valued strategies are allowed, see [16]. This is an open question
we suggest. In Figure 4.3, we clearly observe the convergence of x 7→ g(0, x, n)/n as
n→∞.

The same question arises for the optimal strategy associated to V ∗,n, i.e. do
we have θ∗(t, St, n) = nθ∗(t, St, 1)? Intuitively, this is a priori not the case as
θ∗(t, St, 1) = θ∗(t, St, n)/n could be not integer-valued. This is confirmed at time 0
when we compute the optimal strategy θ∗(0, S0, n)/n per unit of claims. This is il-
lustrated by Figure 4.2.2 where we compare θ∗(0, S0, n)/n for n = 10 to θ∗(0, S0, 1).
We may observe that the optimal strategy per unit of claims θ∗(0, S0, n)/n (blue
graph) is smaller that θ∗(0, S0, 1) for n = 10.
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Figure 4.3: Super-hedging price mapping x 7→ g(0, x, n)/n of n units of call option
per unit of claims for different values of n = 1 (black), n = 3 (grey), n = 5 (green),
n = 7 (blue), n = 10 (orange), n = 100 (red).
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Conclusion and future
perspectives

In this thesis, the main goal is to explore new approaches of pricing where executable
prices are uncertain. This chapter will discuss some potential ideas to explore in
future research.

It was possible to determine and compute the infimum of the super-hedging
price for general models by considering the conditional random sets and the essential
supremum and the essential infimum operators under the AIP condition without any
assumptions of no-arbitrage on the market. In fact the AIP condition was introduced
to ensure the finiteness of prices. It is important to note that we only needed to
know the conditional support of the returns St+1

St
to compute the infimum of the

super-hedging prices. We suggested a straightforward model in the one-dimensional
case. It is a generalisation of the binomial model as observed in [3] that works well
with real data. However, it is interesting to consider the multivariate case, i.e the
case of multiple assets. In this context, several questions arise :

1. How to define the conditional support for the multivariate case to get an
efficient calibration on a historical data base both with fast and simple com-
putation?

2. Moreover the advantage of the approach used in chapter 3 lies in its ability
to include a large range of potential models, e.g. with transaction costs or
limit order book. Therefore, the numerical aspect can be further explored and
compared to other models.

3. Another natural question is: what happens if we increase the number of dis-
crete dates?

4. It is also interesting to study the case where the payoff functions are not
necessary convex.

On the other hand, regarding the super-hedging problem with integer valued-
strategies, we can observe that the execution is large as soon as the number of dates
increases ( more then 6 dates). Also, we only considered simple payoff functions.
Then, the multivariate case can be studied with more complex payoff, but we expect
that the computation will be more time consuming.
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Appendices

Appendix A

Conditional support and conditional essential supremum

Definition 4.4.1. Let (Ω,F ,P) be a probability space, H a sub-σ algebra of F and
let X ∈ L0(Rd,F). Then the conditional support of X with respect to H is the
random set:

suppHX = ∩{A ⊂ Rd, closed ,P(X ∈ A | H(ω)) = 1}.

We remark that if H = {∅,Ω}, then suppHX is the support of X.

Proposition 4.4.2. Let H and F be complete σ−algebra such that H ⊂ F and
Λ = (λi)i∈I be a family of real valued F−measurable random variables. There ex-
ists a unique random variable H−measurable λH ∈ L0(R ∪ {∞},H), denoted by
ess supH(Λ) that satisfies:

1. λH ≥ λi a.s , ∀i ∈ I.

2. If α ∈ L0(R ∪ {∞},H) such that α ≥ λi a.s , ∀i ∈ I then α ≥ λH a.s .

Symmetrically the essential infimum is defined as:

ess inf
H

(Λ) = −ess sup
H

(−Λ)

Lower semi-continuity

Definition 4.4.3. Let f : Rd → R be a function.

• We call the effective domain the set dom(f) defined by:

dom(f) := {x ∈ Rd | f(x) <∞}

• We say that the function f is proper if:

1. There exists x ∈ Rd, such that f(x) <∞.
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2. For all x ∈ Rd, f(x) > −∞.

• The epigraph of f is the set:

epi(f) := {(x, α) ∈ Rd × R | α ≥ f(x)}.

Definition 4.4.4. A function f : Rd → R is said to be lower semi-continuous (l.s.c)
at x ∈ Rd if

∀ε > 0,∃δ > 0/ f(x)− ε < f(x),∀x ∈ B(x, δ).

The lower semi continuity can be characterised as fellow:

Theorem 4.4.5. The following properties of a function f : Rd → R are equivalent:

1. f is lower semi continuous on Rd.

2. The epigraph set epi(f) is closed in Rd × R.

Super-differential

Definition 4.4.6. [2]

• Let f : Rd → R be a convex function. We say that a vector v ∈ Rd is a
subgradient of f at x if it satisfies the following:

f(y) ≥ f(x) + v(y − x), ∀y ∈ Rd.

The set of subgradients at x is the sub-differential of f, denoted ∂f(x).

• If f is concave function satisfies the reverse inequality,i.e:

f(y) ≤ f(x) + v(y − x), ∀y ∈ Rd,

then we say that v is a supergradient of f at x.The set of supergradients is the
super-differential and also denoted ∂f(x).

Fenchel-Lengendre conjugate

Definition 4.4.7. Let f : Rd → R be a function. The Fenchel-Legendre conjugate
function is the function f ∗ : Rd → R defined by

f ∗(y) := sup
x
{< y, x > −f(x)}.

The biconjugate function is given by f ∗∗ = (f ∗)∗ defined by:

f ∗∗(x) := sup
y
{< y, x > −f ∗(y)}.
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Theorem 4.4.8. Let f : Rd → R a function. We denote by conv(f) the convex hull
of function f.1 We suppose that conv(f) is proper. Then f ∗ and f ∗∗ are proper, lsc
and convex and we have:

f ∗∗ = cl conv(f).

Moreover, we have f ∗∗ ≤ f, and if f is proper, lsc and convex then we have f ∗∗ = f.

1If f : Rd → R is a function, then conv(f) is the greatest convex function majorized by f.
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Appendix B

1

2 import pandas as pd

3 from statistics import stdev

4

5

6 def interval0(n0,N0,S_initial):

7 c0=1

8 A0 =0.8+1.2* rand(n0)

9 B0=A0+rand(n0)

10 i=randint(n0)

11 a0=A0[i]

12 j=randint(n0)

13 if a0 < b0:

14 I0=S_initial *(a0+((b0-a0)*(rand(N0))))

15 k=randint(N0)

16

17 S0=I0[k]

18

19 else:

20

21 c0=a0

22 a0=b0

23 b0=c0

24 I0=a0+((b0-a0)*( S_initial*rand(N0)))

25 k=randint(N0)

26 S0=I0[k]

27

28

29 def interval1(n1,N1,S0):

30 c1=1

31 A1 =0.8+1.2* rand(n1)

32 B1=A1+rand(n1)

33 i=randint(n1)

34 a1=A1[i]

35 j=randint(n1)

36 b1=B1[j]

37 return(a1,b1)
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39

40

41

42

43

44 def vals1(S0 ,K,S1ask ,S1bid):

45 m2=0.8

46 M2=2.2

47 m1=0.8

48 M1=2.2

49 if K/M2 <= S1ask <= K/m2: #1st case for S1

50 theta1_ask =(S1ask*M2-K)/( S1ask*(M2 -m2))

51

52 if S0*M1 <= K/M2: #1st case for S0

53

54 theta0 =0

55 S1star=K/M2

56 if S1ask <= S1star:

57 S1=S1bid

58

59 elif S1bid >= S1star:

60 S1=S1ask

61

62 elif S1bid <= S1star <= S1ask:

63 if abs(S1star -S1bid) <= abs(S1star -S1ask)

:

64 S1=S1ask

65

66 elif abs(S1star -S1ask) <= abs(S1star -

S1bid):

67 S1=S1bid

68

69

70

71 elif (S0*m1 <= K/M2) and (K/M2 <= S0*M1 <= K/m2):

#2nd case of S0

72

73 theta0= ( (S0*M1*M2 -K)* (1-m2) ) / ( S0* (M2 -

m2) * (M1-m1))

74 S1star=K/(M2-theta0 *(M2-m2))

75

76 if S1ask <= S1star:

77 S1=S1bid
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78

79

80 elif S1bid >= S1star:

81 S1=S1ask

82

83

84 elif S1bid <= S1star <= S1ask:

85 if abs(S1star -S1bid) <= abs(S1star -S1ask)

:

86 S1=S1ask

87

88

89 elif abs(S1star -S1ask) <= abs(S1star -

S1bid):

90 S1=S1bid

91

92

93

94 elif (S0*m1 <= K/M2) and ( S0*M1 >= K/m2):#3rd

case of S0

95

96 theta0= (S0*M1-K) / ( S0* (M1-m1))

97 S1star=K/(M2-theta0 *(M2-m2))

98

99 if S1ask <= S1star:

100 S1=S1bid

101

102 elif S1bid >= S1star:

103 S1=S1ask

104

105 elif S1bid <= S1star <= S1ask:

106 if abs(S1star -S1bid) <= abs(S1star -S1ask)

:

107 S1=S1ask

108

109 elif abs(S1star -S1ask) <= abs(S1star -

S1bid):

110 S1=S1bid

111

112

113

114 elif (K/M2 <= S0*m1 <= K/m2) and ( K/M2 <= S0*M1

<= K/m2):#4th case of S0
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115

116 theta0= (S0*M2-K) / ( S0* (M2-m2))

117 S1star=K/(M2-theta0 *(M2-m2))

118

119 if S1ask <= S1star:

120 S1=S1bid

121 elif S1bid >= S1star:

122 S1=S1ask

123

124 elif S1bid <= S1star <= S1ask:

125 if abs(S1star -S1bid) <= abs(S1star -S1ask)

:

126 S1=S1ask

127

128 elif abs(S1star -S1ask) <= abs(S1star -

S1bid):

129 S1=S1bid

130

131

132 elif (K/M2 <= S0*m1 <= K/m2) and ( K/m2 <= S0*M1

):#5th case of S0

133

134 theta0= ((S0*M1-K)*(M2-m2)-(S0*m1*M2-K)*(1-

m2) )/ ( S0* (M2 -m2)*(M1-m1))

135 S1star=K/(M2-theta0 *(M2-m2))

136

137 if S1ask <= S1star:

138 S1=S1bid

139

140 elif S1bid >= S1star:

141 S1=S1ask

142

143 elif S1bid <= S1star <= S1ask:

144 if abs(S1star -S1bid) <= abs(S1star -S1ask)

:

145 S1=S1ask

146

147 elif abs(S1star -S1ask) <= abs(S1star -

S1bid):

148 S1=S1bid

149

150

151
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152

153 elif (K/m2 <= S0*m1) and ( K/m2 <= S0*M1 ):#6th

case of S0

154

155 theta0 =1

156 S1star=K/m2

157

158 if S1ask <= S1star:

159 S1=S1bid

160

161 elif S1bid >= S1star:

162 S1=S1ask

163

164 elif S1bid <= S1star <= S1ask:

165 if abs(S1star -S1bid) <= abs(S1star -S1ask)

:

166 S1=S1ask

167

168 elif abs(S1star -S1ask) <= abs(S1star -

S1bid):

169 S1=S1bid

170

171

172 elif 0 <= S1ask <= K/M2: #2nd case of S1

173 theta1 =0

174 S1=S1bid

175

176

177

178 elif S1ask >=K/m2:#3rd case of S1

179 theta1 = 1

180 S1=S1ask

181

182

183 return S1

184

185

186

187 S0=interval0 (100 ,100 ,100)

188 m=interval1 (100 ,100,S0)

189 a1=m[0]

190 print(’a1=’,a1)

191 b1=m[1]
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192 print(’b1=’,b1)

193 S1ask=S0*a1

194 S1bid=S0*b1

195 K=100

196 S1=vals1(S0 ,K,S1ask ,S1bid)

197 print(’S1=’,S1)

198

199

200 def interval2(n2,N2,S1):

201 c2=1

202 A2 =0.8+1.2* rand(n2)

203 B2=A2+rand(n2)

204 i=randint(n2)

205 a2=A2[i]

206 j=randint(n2)

207 b2=B2[j]

208 if a2 < b2:

209

210 I2=S1*(a2+((b2 -a2)*(rand(N2))))

211 k=randint(N2)

212 S2=I2[k]

213

214 else:

215

216 c2=a2

217

218 a2=b2

219

220 b2=c2

221

222 I2=S1*(a2+((b2 -a2)*(rand(N2))))

223

224 k=randint(N2)

225

226 S2=I2[k]

227 return(S2)

228

229

230

231

232 def test1(S0 ,K):

233 S1=vals1(S0 ,K,S1ask ,S1bid)

234 if K<= S1*2.2 and S1*0.8<=K:
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235 V1=((1 -0.8) *((S1 *2.2)-K))/(2.2 -0.8)

236 #print(’1st case V1=’,V1)

237 theta1 =(S1*2.2-K)/(S1 *(2.2 -0.8))

238 #print(’1st case theta1=’,theta1)

239 i=1

240 return theta1

241 elif S1*0.8 >= K:

242 V1=S1-K

243 #print(’2nd case V1=’,V1)

244 theta1 =1

245 #print(’2nd case theta1=’,theta1)

246 i=2

247 return theta1

248 elif S1*2.2 <= K :

249 V1=0

250 #print(’3rd case V1=’,V1)

251 theta1 =0

252 #print(’3rd case theta1=’,theta1)

253 i=3

254 return theta1

255

256

257

258

259

260 def test0(n0 ,N0,S_initial ,K,S2):

261 S0=interval0(n0,N0,S_initial)

262 S1=vals1(S0 ,K,S1ask ,S1bid)

263 theta1=test1(S0 ,K)

264 m=max(0,S2-K)

265

266

267 if S0*2.2 <=K/2.2:

268 V0=0

269 #print(’1st case V0=’,V0)

270 theta0 =0

271 #print(’1st case theta0=’,theta0)

272 V2=theta1*S2

273 #print(’V2=’,V2)

274 eps=V2 -m

275 epsrel=eps/S2

276 #print(’the error value is:’,eps)

277 #return eps ,epsrel ,theta0
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278 return epsrel ,V0

279 elif S0*0.8 <= K/2.2 and K/2.2 <= S0*2.2 and S0*2.2

<= K/0.8:

280 V0=(((S0 *2.2*2.2) -K)*(1 -0.8) *(1 -0.8))/((2.2 -0.8)

*(2.2 -0.8))

281 #print(’2nd case V0=’,V0)

282 theta0 =(((S0 *2.2*2.2) -K)*(1 -0.8))/(S0*(2.2 -0.8)

*(2.2 -0.8))

283 #print(’2nd case theta0=’,theta0)

284 V2=V0+theta0 *(S1-S0)+theta1*S2

285 #print(’V2=’,V2)

286 eps=V2 -m

287 epsrel=eps/S2

288 #print(’the error value is:’,eps)

289 #return eps ,epsrel ,theta0

290 return epsrel ,V0

291 elif S0*0.8 <= K/2.2 and S0*2.2 >= K/0.8:

292 V0=(((S0 *2.2*2.2) -K)*(1 -0.8))/(2.2 -0.8)

293 #print(’3rd case V0=’,V0)

294 theta0 =((S0 *2.2*2.2) -K)/(S0*(2.2 -0.8))

295 #print(’3rd case theta0=’,thetat0)

296 V2=V0+theta0 *(S1-S0)+theta1*S2

297 #print(’V2=’,V2)

298 eps=V2 -m

299 epsrel=eps/S2

300 #print(’the error value is:’,eps)

301 #return eps ,epsrel ,theta0

302 return epsrel ,V0

303 elif K/2.2 <= S0*0.8 and S0*0.8 <= K/0.8 and K/2.2 <=

S0*2.2 and S0*2.2 <= K/0.8:

304 V0=(((S0 *2.2*2.2) -K)*(1 -0.8))/(2.2 -0.8)

305 #print(’4th case V0=’,V0)

306 theta0 =((S0 *2.2*2.2) -K)/(S0*(2.2 -0.8))

307 #print(’4th case theta0=’,thetat0)

308 V2=V0+theta0 *(S1-S0)+theta1*S2

309 #print(’V2=’,V2)

310 eps=V2 -m

311 epsrel=eps/S2

312 #print(’the error value is:’,eps)

313 #return eps ,epsrel ,theta0

314 return epsrel ,V0

315 elif K/2.2 <= S0*0.8 and S0*0.8 <= K/0.8 and S0*2.2

>= K/0.8:
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316 V0=((((S0*2.2) -K)*(2.2 -0.8) *(1 -0.8))+((S0

*0.8*2.2 -K)*(1 -0.8) *(2.2 -1)))/((2.2 -0.8)

*(2.2 -0.8))

317 #print(’5th case V0=’,V0)

318 theta0 =((((S0*2.2) -K)*(2.2 -0.8)) -(((S0 *0.8*2.2) -K

)*(1 -0.8)))/(S0*(2.2 -0.8) *(2.2 -0.8))

319 #print(’5th case theta0=’,thetat0)

320 V2=V0+theta0 *(S1-S0)+theta1*S2

321 #print(’V2=’,V2)

322 eps=V2 -m

323 epsrel=eps/S2

324 #print(’the error value is:’,eps)

325 #return eps ,epsrel ,theta0

326 return epsrel ,V0

327 elif S0*0.8 >= K/0.8 and S0*2.2 >= K/0.8:

328 V0=S0-K

329 #print(’6th case V0=’,V0)

330 theta0 =1

331 #print(’6th case theta0=’,theta0)

332 V2=V0+S1-S0+theta1*S2

333 #print(’V2=’,V2)

334 eps=V2 -m

335 epsrel=eps/S2

336 #print(’the error value is:’,eps)

337 #return eps ,epsrel ,theta0

338 return epsrel ,V0

339

340

341

342

343

344

345 S_initial =100

346 K=100

347 X=50 # nombre de traj

348 A=zeros(X)

349 Vzero=zeros(X)

350 Szero=zeros(X)

351 Sun=zeros(X)

352 vs=zeros(X)

353 vs1=zeros(X)

354 Sdeux=zeros(X)

355 for i in range(X):
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356 S0=interval0(X,X,S_initial)

357 print(’S0=’,S0)

358 m=interval1(X,X,S0)

359 a1=m[0]

360 b1=m[1]

361 S1ask=S0*b1

362 print(’S1ask=’,S1ask)

363 S1bid=S0*a1

364 print(’S1bid=’,S1bid)

365 S1=vals1(S0 ,K,S1ask ,S1bid)

366 print(’S1=’,S1)

367 S2=interval2(X,X,S1)

368 print(’S2=’,S2)

369 if S2 > K:

370

371 t0=test0(X,X,S_initial ,K,S2)

372 epsrel=t0[0]

373 V0=t0[1]

374 A[i]= epsrel

375 Szero[i]=S0

376 Sun[i]=S1

377 Sdeux[i]=S2

378 Vzero[i]=V0

379 vs[i]= Vzero[i]/ Szero[i]

380 vs1[i]=Vzero[i]/ S_initial

381 print(vs1[i])

382 print(’epsrel=’,epsrel)

383

384 moyenne_V0 ,Sinit=mean(vs1)

385 print(’la moyenne de V0 par Sinit est=’,moyenne_V0 ,Sinit)

386 moyenne_V0 ,S0=mean(vs)

387 print(’la moyenne de V0 par S0 est=’,moyenne_V0 ,S0)

388 maximum_V0 ,S0=max(vs)

389 print(’le maximum de V0 par S0 est=’,maximum_V0 ,S0)

390 minimum_V0 ,S0=min(vs)

391 print(’le minimum de V0 par S0 est=’,minimum_V0 ,S0)

392 moyenne_S0=mean(Szero)

393 print(’la moyenne de S0 est=’,moyenne_S0)

394 Maximum_V0=max(Vzero)

395 print(’la valeur maximale de V0 est=’,Maximum_V0)

396 moyenne_V0=mean(Vzero)

397 print(’la moyenne de V0 est=’,moyenne_V0)

398 moyenne_S1=mean(Sun)
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399 print(’la moyenne de S1 est=’,moyenne_S1)

400 moyenne_S2=mean(Sdeux)

401 print(’la moyenne de S2 est=’,moyenne_S2)

402 hist(Szero ,bins =100, width =2)

403 plt.title(’Distribution of S0’)

404 show()

405 hist(Sun ,bins =100, width =2)

406 plt.title(’Distribution of S1’)

407 show()

408 hist(Sdeux ,bins =100, width =2)

409 plt.title(’Distribution of S2’)

410 show()

411 ecarttype=stdev(A)

412 print(’L ecart type de l erreur relatif=’,ecarttype)

413 moyenne_err=mean(A)

414 print(’la moyenne de l erreur=’,mean(A))

415 Minimum_err=min(A)

416 print(’la valeur minimale de l erreur est=’,Minimum_err)

417 Maximum_err=max(A)

418 print(’la valeur maximale de l erreur est=’,Maximum_err)

419 hist(A,density=1,bins =100, width =10)

420 plt.title(’Distribution of the super -hedging relative

error’)

421 show()
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Appendix C

The data base presented below concerns the historical performance of CAC 40 and
was collected from Boursorama website (06/07/23).



Date Date Date Date Date Date

15/06/2022 6 030.13 +1.35% 6 062.62 5 972.31 6 022.84

14/06/2022 5 949.84 -1.20% 6 075.37 5 934.12 6 063.80

13/06/2022 6 022.32 -2.67% 6 122.26 6 006.28 6 088.05

10/06/2022 6 187.23 -2.69% 6 325.89 6 177.31 6 316.41

09/06/2022 6 358.46 -1.40% 6 456.91 6 342.99 6 412.58

08/06/2022 6 448.63 -0.80% 6 517.55 6 413.87 6 517.55

07/06/2022 6 500.35 -0.74% 6 523.60 6 459.92 6 523.16

06/06/2022 6 548.78 +0.98% 6 593.15 6 533.82 6 533.82

03/06/2022 6 485.30 -0.23% 6 547.82 6 473.74 6 545.00

02/06/2022 6 500.44 +1.27% 6 506.60 6 447.30 6 447.37

01/06/2022 6 418.89 -0.77% 6 510.26 6 414.22 6 509.19

31/05/2022 6 468.80 -1.43% 6 543.42 6 457.53 6 539.86

30/05/2022 6 562.39 +0.72% 6 582.05 6 536.77 6 547.86

27/05/2022 6 515.75 +1.64% 6 519.73 6 424.85 6 445.25

26/05/2022 6 410.58 +1.78% 6 424.88 6 298.45 6 301.49

25/05/2022 6 298.64 +0.73% 6 319.29 6 229.84 6 296.28

24/05/2022 6 253.14 -1.66% 6 322.74 6 243.84 6 282.32

23/05/2022 6 358.74 +1.17% 6 358.74 6 263.96 6 350.88

20/05/2022 6 285.24 +0.20% 6 377.58 6 264.84 6 305.46

19/05/2022 6 272.71 -1.26% 6 288.99 6 196.19 6 279.69

18/05/2022 6 352.94 -1.20% 6 455.80 6 342.67 6 440.30

17/05/2022 6 430.19 +1.30% 6 448.33 6 373.73 6 379.34

16/05/2022 6 347.77 -0.23% 6 369.05 6 286.02 6 315.68

13/05/2022 6 362.68 +2.52% 6 363.24 6 238.79 6 250.16

12/05/2022 6 206.26 -1.01% 6 238.25 6 098.22 6 130.69

11/05/2022 6 269.73 +2.50% 6 269.73 6 137.24 6 173.10

10/05/2022 6 116.91 +0.51% 6 206.56 6 116.91 6 151.52

09/05/2022 6 086.02 -2.75% 6 260.85 6 086.02 6 207.15

06/05/2022 6 258.36 -1.73% 6 322.43 6 213.64 6 318.66

05/05/2022 6 368.40 -0.43% 6 558.91 6 350.66 6 549.49

04/05/2022 6 395.68 -1.24% 6 494.99 6 395.68 6 482.26

03/05/2022 6 476.18 +0.79% 6 507.13 6 423.03 6 463.73

02/05/2022 6 425.61 -1.66% 6 474.81 6 308.47 6 469.31

29/04/2022 6 533.77 +0.39% 6 601.15 6 514.10 6 557.66

28/04/2022 6 508.14 +0.98% 6 575.95 6 435.75 6 520.53

27/04/2022 6 445.26 +0.48% 6 474.96 6 338.61 6 427.40

26/04/2022 6 414.57 -0.54% 6 535.92 6 412.49 6 520.01

25/04/2022 6 449.38 -2.01% 6 512.26 6 408.71 6 450.90

22/04/2022 6 581.42 -1.99% 6 654.64 6 572.87 6 618.69

21/04/2022 6 715.10 +1.36% 6 757.75 6 636.79 6 642.71

20/04/2022 6 624.91 +1.38% 6 636.55 6 542.21 6 557.96

19/04/2022 6 534.79 -0.83% 6 566.80 6 494.33 6 545.97

14/04/2022 6 589.35 +0.72% 6 607.55 6 541.90 6 557.66

13/04/2022 6 542.14 +0.07% 6 563.96 6 478.45 6 519.16

12/04/2022 6 537.41 -0.28% 6 570.75 6 424.97 6 454.25

11/04/2022 6 555.81 +0.12% 6 614.96 6 502.14 6 558.53

08/04/2022 6 548.22 +1.34% 6 581.56 6 494.63 6 540.20

07/04/2022 6 461.68 -0.57% 6 582.34 6 451.10 6 530.82

06/04/2022 6 498.83 -2.21% 6 643.75 6 442.44 6 634.83



05/04/2022 6 645.51 -1.28% 6 743.62 6 603.44 6 731.34

04/04/2022 6 731.37 +0.70% 6 745.22 6 641.61 6 709.60

01/04/2022 6 684.31 +0.37% 6 708.56 6 635.27 6 672.98

31/03/2022 6 659.87 -1.21% 6 776.13 6 658.74 6 759.42

30/03/2022 6 741.59 -0.74% 6 771.09 6 705.69 6 771.09

29/03/2022 6 792.16 +3.08% 6 829.40 6 658.78 6 675.15

28/03/2022 6 589.11 +0.54% 6 683.70 6 572.01 6 578.72

25/03/2022 6 553.68 -0.03% 6 615.90 6 538.80 6 569.45

24/03/2022 6 555.77 -0.39% 6 636.58 6 541.32 6 593.15

23/03/2022 6 581.43 -1.17% 6 684.70 6 559.31 6 674.68

22/03/2022 6 659.41 +1.17% 6 666.84 6 578.91 6 586.65

21/03/2022 6 582.33 -0.57% 6 642.46 6 574.07 6 608.79

18/03/2022 6 620.24 +0.12% 6 620.24 6 499.59 6 613.95

17/03/2022 6 612.52 +0.36% 6 635.31 6 530.79 6 617.23

16/03/2022 6 588.64 +3.68% 6 680.00 6 481.70 6 484.33

15/03/2022 6 355.00 -0.23% 6 383.75 6 206.05 6 294.72

14/03/2022 6 369.94 +1.75% 6 421.08 6 271.82 6 298.96

11/03/2022 6 260.25 +0.85% 6 466.12 6 165.41 6 233.12

10/03/2022 6 207.20 -2.83% 6 380.77 6 166.11 6 376.57

09/03/2022 6 387.83 +7.13% 6 387.83 6 122.80 6 131.28

08/03/2022 5 962.96 -0.32% 6 169.60 5 903.10 5 906.62

07/03/2022 5 982.27 -1.31% 6 115.23 5 756.38 5 887.83

04/03/2022 6 061.66 -4.97% 6 321.09 6 061.66 6 308.34

03/03/2022 6 378.37 -1.84% 6 543.77 6 361.60 6 488.25

02/03/2022 6 498.02 +1.59% 6 544.15 6 312.30 6 359.98

01/03/2022 6 396.49 -3.94% 6 662.25 6 396.49 6 646.16

28/02/2022 6 658.83 -1.39% 6 684.54 6 516.16 6 620.48

25/02/2022 6 752.43 +3.55% 6 762.78 6 521.56 6 571.95

24/02/2022 6 521.05 -3.83% 6 617.09 6 432.89 6 496.25

23/02/2022 6 780.67 -0.10% 6 904.81 6 768.38 6 801.66

22/02/2022 6 787.60 -0.01% 6 834.77 6 633.74 6 633.74

21/02/2022 6 788.34 -2.04% 6 986.83 6 744.13 6 984.31

18/02/2022 6 929.63 -0.25% 6 995.62 6 895.09 6 951.83

17/02/2022 6 946.82 -0.26% 7 017.07 6 905.69 6 999.13

16/02/2022 6 964.98 -0.21% 7 031.93 6 931.09 7 009.69

15/02/2022 6 979.97 +1.86% 6 983.14 6 823.45 6 830.74

14/02/2022 6 852.20 -2.27% 6 875.31 6 757.33 6 868.07

11/02/2022 7 011.60 -1.27% 7 071.01 6 992.09 7 025.50

10/02/2022 7 101.55 -0.41% 7 169.63 7 051.60 7 141.69

09/02/2022 7 130.88 +1.46% 7 146.31 7 086.34 7 086.34

08/02/2022 7 028.41 +0.27% 7 085.64 6 994.15 7 008.20

07/02/2022 7 009.25 +0.83% 7 025.59 6 929.71 6 987.17

04/02/2022 6 951.38 -0.77% 7 066.44 6 914.77 7 049.80

03/02/2022 7 005.63 -1.54% 7 125.58 6 995.41 7 115.30

02/02/2022 7 115.27 +0.22% 7 150.54 7 109.30 7 117.45

01/02/2022 7 099.49 +1.43% 7 105.23 7 035.91 7 052.30

31/01/2022 6 999.20 +0.48% 7 043.22 6 937.10 7 039.71

28/01/2022 6 965.88 -0.82% 7 053.00 6 846.22 7 043.43

27/01/2022 7 023.80 +0.60% 7 053.45 6 873.60 6 879.64

26/01/2022 6 981.96 +2.11% 7 024.14 6 901.74 6 901.74



25/01/2022 6 837.96 +0.74% 6 890.54 6 776.80 6 870.27

24/01/2022 6 787.79 -3.97% 7 070.92 6 754.24 7 014.84

21/01/2022 7 068.59 -1.75% 7 122.06 7 013.49 7 088.44

20/01/2022 7 194.16 +0.30% 7 199.97 7 123.62 7 190.02

19/01/2022 7 172.98 +0.55% 7 211.24 7 104.11 7 104.11

18/01/2022 7 133.83 -0.94% 7 175.46 7 098.19 7 172.43

17/01/2022 7 201.64 +0.82% 7 213.70 7 148.98 7 167.53

14/01/2022 7 143.00 -0.81% 7 171.40 7 119.01 7 132.59

13/01/2022 7 201.14 -0.50% 7 227.35 7 166.94 7 215.48

12/01/2022 7 237.19 +0.75% 7 249.88 7 183.38 7 235.47

11/01/2022 7 183.38 +0.95% 7 227.71 7 160.44 7 185.21

10/01/2022 7 115.77 -1.44% 7 250.24 7 105.55 7 245.21

07/01/2022 7 219.48 -0.42% 7 269.65 7 178.18 7 250.79

06/01/2022 7 249.66 -1.72% 7 316.06 7 240.88 7 264.00

05/01/2022 7 376.37 +0.81% 7 384.86 7 313.53 7 320.48

04/01/2022 7 317.41 +1.39% 7 332.21 7 250.24 7 273.57

03/01/2022 7 217.22 +0.90% 7 245.66 7 195.82 7 197.40

31/12/2021 7 153.03 -0.28% 7 163.73 7 139.60 7 153.66

30/12/2021 7 173.23 +0.16% 7 189.84 7 156.79 7 167.53

29/12/2021 7 161.52 -0.27% 7 201.65 7 137.35 7 179.11

28/12/2021 7 181.11 +0.57% 7 187.76 7 141.67 7 141.85

27/12/2021 7 140.39 +0.76% 7 149.14 7 062.40 7 070.14

24/12/2021 7 086.58 -0.28% 7 116.88 7 086.58 7 091.60

23/12/2021 7 106.15 +0.77% 7 119.87 7 049.92 7 071.93

22/12/2021 7 051.67 +1.24% 7 051.67 6 963.71 6 982.53

21/12/2021 6 964.99 +1.38% 6 967.93 6 888.52 6 935.66

20/12/2021 6 870.10 -0.82% 6 872.75 6 747.69 6 783.83

17/12/2021 6 926.63 -1.12% 7 011.61 6 884.91 6 982.07

16/12/2021 7 005.07 +1.12% 7 054.92 6 987.95 7 054.92

15/12/2021 6 927.63 +0.47% 6 949.92 6 904.94 6 923.52

14/12/2021 6 895.31 -0.69% 6 993.30 6 891.34 6 978.77

13/12/2021 6 942.91 -0.70% 7 029.38 6 929.13 7 004.76

10/12/2021 6 991.68 -0.24% 7 025.88 6 960.39 6 960.39

09/12/2021 7 008.23 -0.09% 7 044.99 6 983.33 7 035.93

08/12/2021 7 014.57 -0.72% 7 104.06 7 014.57 7 064.12

07/12/2021 7 065.39 +2.91% 7 066.95 6 934.68 6 934.68

06/12/2021 6 865.78 +1.48% 6 888.07 6 776.17 6 810.93

03/12/2021 6 765.52 -0.44% 6 872.79 6 730.63 6 860.73

02/12/2021 6 795.75 -1.25% 6 850.37 6 762.74 6 794.77

01/12/2021 6 881.87 +2.39% 6 902.46 6 750.65 6 774.80

30/11/2021 6 721.16 -0.81% 6 780.88 6 655.86 6 679.03

29/11/2021 6 776.25 +0.54% 6 841.79 6 760.31 6 831.41

26/11/2021 6 739.73 -4.75% 6 861.15 6 725.08 6 814.90

25/11/2021 7 075.87 +0.48% 7 079.49 7 047.86 7 067.61

24/11/2021 7 042.23 -0.03% 7 089.11 6 983.98 7 052.18

23/11/2021 7 044.62 -0.85% 7 112.49 7 002.56 7 064.38

22/11/2021 7 105.00 -0.10% 7 143.60 7 087.67 7 130.24

19/11/2021 7 112.29 -0.42% 7 183.08 7 068.43 7 172.72

18/11/2021 7 141.98 -0.21% 7 181.55 7 136.86 7 155.05

17/11/2021 7 156.85 +0.06% 7 167.80 7 147.01 7 149.30



16/11/2021 7 152.60 +0.34% 7 164.27 7 136.30 7 146.37

15/11/2021 7 128.63 +0.53% 7 136.13 7 088.71 7 090.96

12/11/2021 7 091.40 +0.45% 7 097.46 7 056.93 7 062.54

11/11/2021 7 059.55 +0.20% 7 072.63 7 032.35 7 038.84

10/11/2021 7 045.16 +0.03% 7 053.27 7 014.94 7 046.17

09/11/2021 7 043.27 -0.06% 7 079.58 7 016.73 7 023.58

08/11/2021 7 047.48 +0.10% 7 067.10 7 037.67 7 041.60

05/11/2021 7 040.79 +0.76% 7 063.40 6 983.80 6 983.80

04/11/2021 6 987.79 +0.53% 6 993.01 6 962.01 6 977.62

03/11/2021 6 950.65 +0.34% 6 955.10 6 917.75 6 919.47

02/11/2021 6 927.03 +0.49% 6 933.35 6 879.69 6 883.06

01/11/2021 6 893.29 +0.92% 6 908.65 6 859.44 6 870.28

29/10/2021 6 830.34 +0.38% 6 830.34 6 748.53 6 778.79

28/10/2021 6 804.22 +0.75% 6 804.22 6 750.78 6 750.78

27/10/2021 6 753.52 -0.19% 6 771.19 6 731.86 6 755.63

26/10/2021 6 766.51 +0.80% 6 775.82 6 711.21 6 723.06

25/10/2021 6 712.87 -0.31% 6 752.98 6 707.32 6 752.98

22/10/2021 6 733.69 +0.71% 6 765.46 6 716.15 6 720.92

21/10/2021 6 686.17 -0.29% 6 699.21 6 658.95 6 673.14

20/10/2021 6 705.61 +0.54% 6 715.52 6 636.61 6 636.61

19/10/2021 6 669.85 -0.05% 6 692.14 6 650.84 6 690.95

18/10/2021 6 673.10 -0.81% 6 697.60 6 642.16 6 697.29

15/10/2021 6 727.52 +0.63% 6 746.81 6 703.26 6 714.26

14/10/2021 6 685.21 +1.33% 6 692.94 6 618.79 6 651.18

13/10/2021 6 597.38 +0.75% 6 606.36 6 510.27 6 539.61

12/10/2021 6 548.11 -0.34% 6 548.11 6 491.58 6 495.15

11/10/2021 6 570.54 +0.16% 6 574.22 6 522.55 6 546.07

08/10/2021 6 559.99 -0.61% 6 617.34 6 559.99 6 609.51

07/10/2021 6 600.19 +1.65% 6 616.53 6 545.74 6 563.24

06/10/2021 6 493.12 -1.26% 6 510.47 6 421.64 6 509.60

05/10/2021 6 576.28 +1.52% 6 577.29 6 481.72 6 481.72

04/10/2021 6 477.66 -0.61% 6 540.96 6 452.78 6 484.90

01/10/2021 6 517.69 -0.04% 6 535.46 6 412.70 6 421.10

30/09/2021 6 520.01 -0.62% 6 621.75 6 509.23 6 615.99

29/09/2021 6 560.80 +0.83% 6 590.81 6 538.11 6 549.41

28/09/2021 6 506.50 -2.17% 6 643.58 6 491.42 6 634.72

27/09/2021 6 650.91 +0.19% 6 688.76 6 647.08 6 683.85

24/09/2021 6 638.46 -0.95% 6 678.65 6 625.43 6 675.73

23/09/2021 6 701.98 +0.98% 6 718.80 6 667.36 6 691.08

22/09/2021 6 637.00 +1.29% 6 642.31 6 595.93 6 612.10

21/09/2021 6 552.73 +1.50% 6 570.13 6 513.75 6 513.75

20/09/2021 6 455.81 -1.74% 6 471.09 6 389.62 6 450.39

17/09/2021 6 570.19 -0.79% 6 697.08 6 551.62 6 679.45

16/09/2021 6 622.59 +0.59% 6 663.41 6 612.16 6 613.71

15/09/2021 6 583.62 -1.04% 6 659.27 6 577.02 6 654.83

14/09/2021 6 652.97 -0.36% 6 677.07 6 613.52 6 672.19

13/09/2021 6 676.93 +0.20% 6 722.00 6 670.85 6 688.77

10/09/2021 6 663.77 -0.31% 6 722.73 6 651.06 6 707.33

09/09/2021 6 684.72 +0.24% 6 708.33 6 605.09 6 618.82

08/09/2021 6 668.89 -0.85% 6 712.05 6 628.98 6 688.84



07/09/2021 6 726.07 -0.26% 6 749.14 6 721.35 6 731.36

06/09/2021 6 743.50 +0.80% 6 756.40 6 700.45 6 704.35

03/09/2021 6 689.99 -1.08% 6 758.38 6 667.39 6 758.38

02/09/2021 6 763.08 +0.06% 6 778.33 6 747.17 6 753.18

01/09/2021 6 758.69 +1.18% 6 784.66 6 730.17 6 736.44

31/08/2021 6 680.18 -0.11% 6 708.14 6 650.90 6 692.85

30/08/2021 6 687.30 +0.08% 6 697.52 6 675.32 6 690.28

27/08/2021 6 681.92 +0.24% 6 682.15 6 644.68 6 658.27

26/08/2021 6 666.03 -0.16% 6 673.94 6 618.69 6 646.37

25/08/2021 6 676.48 +0.18% 6 684.21 6 667.25 6 683.18

24/08/2021 6 664.31 -0.28% 6 717.77 6 634.69 6 717.77

23/08/2021 6 683.10 +0.86% 6 699.32 6 657.14 6 699.32

20/08/2021 6 626.11 +0.31% 6 633.19 6 567.93 6 602.95

19/08/2021 6 605.89 -2.43% 6 671.17 6 560.74 6 665.12

18/08/2021 6 770.11 -0.73% 6 828.33 6 759.74 6 824.64

17/08/2021 6 819.84 -0.28% 6 827.49 6 789.11 6 812.42

16/08/2021 6 838.77 -0.83% 6 863.74 6 817.43 6 849.68

13/08/2021 6 896.04 +0.20% 6 913.67 6 885.64 6 888.48

12/08/2021 6 882.47 +0.36% 6 891.29 6 854.99 6 861.44

11/08/2021 6 857.99 +0.55% 6 867.11 6 821.21 6 840.28

10/08/2021 6 820.21 +0.10% 6 833.12 6 811.77 6 817.63

09/08/2021 6 813.18 -0.06% 6 832.77 6 806.98 6 818.54

06/08/2021 6 816.96 +0.53% 6 832.94 6 763.01 6 772.49

05/08/2021 6 781.19 +0.52% 6 788.69 6 750.86 6 750.86

04/08/2021 6 746.23 +0.33% 6 766.61 6 730.60 6 751.15

03/08/2021 6 723.81 +0.72% 6 749.88 6 688.12 6 692.60

02/08/2021 6 675.90 +0.95% 6 690.80 6 639.31 6 657.95

30/07/2021 6 612.76 -0.32% 6 648.20 6 596.99 6 608.16

29/07/2021 6 633.77 +0.37% 6 671.12 6 633.77 6 647.08

28/07/2021 6 609.31 +1.18% 6 609.31 6 530.74 6 547.47

27/07/2021 6 531.92 -0.71% 6 578.04 6 516.57 6 565.19

26/07/2021 6 578.60 +0.15% 6 588.09 6 517.05 6 532.01

23/07/2021 6 568.82 +1.35% 6 574.86 6 510.27 6 518.60

22/07/2021 6 481.59 +0.26% 6 525.21 6 474.05 6 498.31

21/07/2021 6 464.48 +1.85% 6 471.65 6 381.94 6 382.36

20/07/2021 6 346.85 +0.81% 6 386.46 6 304.85 6 325.16

19/07/2021 6 295.97 -2.54% 6 403.51 6 253.25 6 398.84

16/07/2021 6 460.08 -0.51% 6 526.76 6 418.25 6 524.95

15/07/2021 6 493.36 -0.99% 6 554.79 6 471.07 6 538.41

14/07/2021 6 558.38 -0.00% 6 565.20 6 530.91 6 533.80

13/07/2021 6 558.47 -0.01% 6 569.37 6 536.45 6 561.74

12/07/2021 6 559.25 +0.46% 6 567.98 6 479.54 6 525.11

09/07/2021 6 529.42 +2.07% 6 532.56 6 429.67 6 435.29

08/07/2021 6 396.73 -2.01% 6 483.32 6 348.64 6 479.40

07/07/2021 6 527.72 +0.31% 6 550.95 6 497.75 6 529.49

06/07/2021 6 507.48 -0.91% 6 561.51 6 483.20 6 551.00

05/07/2021 6 567.54 +0.22% 6 582.87 6 520.38 6 545.98

02/07/2021 6 552.86 -0.01% 6 582.79 6 540.12 6 572.00

01/07/2021 6 553.82 +0.71% 6 588.14 6 502.05 6 549.82

30/06/2021 6 507.83 -0.91% 6 575.84 6 474.43 6 562.17



29/06/2021 6 567.43 +0.14% 6 599.88 6 561.09 6 564.07

28/06/2021 6 558.02 -0.98% 6 633.73 6 556.88 6 611.99

25/06/2021 6 622.87 -0.12% 6 641.90 6 604.86 6 637.68

24/06/2021 6 631.15 +1.22% 6 639.83 6 572.81 6 576.07

23/06/2021 6 551.07 -0.91% 6 619.02 6 551.07 6 616.73

22/06/2021 6 611.50 +0.14% 6 622.20 6 583.50 6 609.98

21/06/2021 6 602.54 +0.51% 6 607.99 6 511.93 6 525.03

18/06/2021 6 569.16 -1.46% 6 687.29 6 560.12 6 657.23

17/06/2021 6 666.26 +0.20% 6 674.37 6 631.63 6 636.70

16/06/2021 6 652.65 +0.20% 6 659.38 6 632.36 6 657.52

15/06/2021 6 616.35 +0.35% 6 655.66 6 634.45 6 643.42

14/06/2021 6 616.35 +0.24% 6 650.16 6 599.27 6 625.55

11/06/2021 6 600.66 +0.83% 6 607.61 6 549.83 6 550.30

10/06/2021 6 546.49 -0.26% 6 574.59 6 526.23 6 574.59

09/06/2021 6 563.45 +0.19% 6 570.82 6 533.37 6 561.93

08/06/2021 6 551.01 +0.11% 6 574.21 6 540.71 6 545.69

07/06/2021 6 543.56 +0.43% 6 560.39 6 485.80 6 509.98

04/06/2021 6 515.66 +0.12% 6 517.93 6 497.39 6 514.27

03/06/2021 6 507.92 -0.21% 6 522.23 6 473.67 6 518.58

02/06/2021 6 521.52 +0.49% 6 521.82 6 482.10 6 489.90

01/06/2021 6 489.40 +0.66% 6 521.57 6 464.71 6 470.42

31/05/2021 6 447.17 -0.57% 6 496.32 6 441.76 6 483.32

28/05/2021 6 484.11 +0.75% 6 493.72 6 448.87 6 453.12

27/05/2021 6 435.71 +0.69% 6 467.72 6 379.83 6 379.83

26/05/2021 6 391.60 +0.02% 6 413.72 6 375.14 6 403.95

25/05/2021 6 390.27 -0.28% 6 422.83 6 390.27 6 416.61

24/05/2021 6 408.49 +0.35% 6 408.49 6 382.71 6 395.96

21/05/2021 6 386.41 +0.68% 6 402.10 6 351.95 6 360.88

20/05/2021 6 343.58 +1.29% 6 343.58 6 267.55 6 296.25

19/05/2021 6 262.55 -1.43% 6 310.49 6 192.33 6 292.05

18/05/2021 6 353.67 -0.21% 6 412.91 6 343.55 6 406.18

17/05/2021 6 367.35 -0.28% 6 410.21 6 349.33 6 397.22

14/05/2021 6 385.14 +1.54% 6 385.67 6 301.19 6 335.82

13/05/2021 6 288.33 +0.14% 6 303.70 6 150.43 6 219.73

12/05/2021 6 279.35 +0.19% 6 299.24 6 233.96 6 259.63

11/05/2021 6 267.39 -1.86% 6 324.31 6 226.11 6 314.27

10/05/2021 6 385.99 +0.01% 6 395.60 6 367.04 6 395.38

07/05/2021 6 385.51 +0.45% 6 390.04 6 342.37 6 388.92

06/05/2021 6 357.09 +0.28% 6 377.58 6 321.72 6 348.90

05/05/2021 6 339.47 +1.40% 6 339.47 6 275.14 6 284.54

04/05/2021 6 251.75 -0.89% 6 355.87 6 238.79 6 319.49

03/05/2021 6 307.90 +0.61% 6 314.92 6 252.66 6 285.51

30/04/2021 6 269.48 -0.53% 6 320.14 6 268.86 6 316.32

29/04/2021 6 302.57 -0.07% 6 352.36 6 287.44 6 341.12

28/04/2021 6 306.98 +0.53% 6 320.11 6 283.62 6 293.21

27/04/2021 6 273.76 -0.03% 6 282.52 6 255.41 6 273.36

26/04/2021 6 275.52 +0.28% 6 288.79 6 240.99 6 256.04

23/04/2021 6 257.94 -0.15% 6 280.81 6 227.19 6 259.63

22/04/2021 6 267.28 +0.91% 6 274.19 6 225.59 6 230.21

21/04/2021 6 210.55 +0.74% 6 227.04 6 178.66 6 180.69



20/04/2021 6 165.11 -2.09% 6 285.29 6 154.03 6 281.10

19/04/2021 6 296.69 +0.15% 6 319.08 6 293.17 6 294.74

16/04/2021 6 287.07 +0.85% 6 299.56 6 229.30 6 229.65

15/04/2021 6 234.14 +0.41% 6 244.23 6 209.59 6 219.04

14/04/2021 6 208.58 +0.40% 6 217.74 6 194.55 6 214.49

13/04/2021 6 184.10 +0.36% 6 193.24 6 156.49 6 171.88

12/04/2021 6 161.68 -0.13% 6 183.02 6 151.52 6 167.32

09/04/2021 6 169.41 +0.06% 6 188.48 6 161.42 6 171.60

08/04/2021 6 165.72 +0.57% 6 171.45 6 146.22 6 153.36

07/04/2021 6 130.66 -0.01% 6 154.38 6 118.91 6 137.63

06/04/2021 6 131.34 +0.47% 6 159.10 6 125.74 6 155.22

01/04/2021 6 102.96 +0.59% 6 106.12 6 063.86 6 079.67

31/03/2021 6 067.23 -0.34% 6 097.74 6 060.24 6 085.02

30/03/2021 6 088.04 +1.21% 6 095.08 6 041.39 6 044.54

29/03/2021 6 015.51 +0.45% 6 029.59 5 985.36 5 995.00

26/03/2021 5 988.81 +0.61% 6 002.95 5 962.46 5 979.23

25/03/2021 5 952.41 +0.09% 5 952.41 5 886.00 5 911.04

24/03/2021 5 947.29 +0.03% 5 948.67 5 890.55 5 901.64

23/03/2021 5 945.30 -0.39% 5 968.56 5 921.83 5 943.31

22/03/2021 5 968.48 -0.49% 5 987.23 5 943.71 5 960.85

19/03/2021 5 997.96 -1.07% 6 047.65 5 983.61 6 021.13

18/03/2021 6 062.79 +0.13% 6 082.92 6 044.32 6 076.21

17/03/2021 6 054.82 -0.01% 6 062.36 6 037.25 6 048.31

16/03/2021 6 055.43 +0.32% 6 061.19 6 034.76 6 050.40

15/03/2021 6 035.97 -0.17% 6 089.20 6 018.55 6 069.09

12/03/2021 6 046.55 +0.21% 6 046.55 6 017.41 6 030.63

11/03/2021 6 033.76 +0.72% 6 033.76 5 995.41 6 004.16

10/03/2021 5 990.55 +1.11% 5 993.63 5 912.35 5 915.17

09/03/2021 5 924.97 +0.37% 5 937.81 5 895.33 5 903.26

08/03/2021 5 902.99 +2.08% 5 912.50 5 799.05 5 822.92

05/03/2021 5 782.65 -0.82% 5 837.55 5 755.60 5 794.48

04/03/2021 5 830.65 +0.01% 5 844.69 5 797.67 5 800.73

03/03/2021 5 830.06 +0.35% 5 871.43 5 788.66 5 841.20

02/03/2021 5 809.73 +0.29% 5 835.74 5 773.52 5 774.62

01/03/2021 5 792.79 +1.57% 5 804.35 5 765.80 5 770.89

26/02/2021 5 703.22 -1.39% 5 768.03 5 688.26 5 715.69

25/02/2021 5 783.89 -0.24% 5 834.36 5 783.89 5 824.72

24/02/2021 5 797.98 +0.31% 5 804.14 5 758.30 5 769.21

23/02/2021 5 779.84 +0.22% 5 804.90 5 721.92 5 781.24

22/02/2021 5 767.44 -0.11% 5 776.64 5 703.48 5 737.47

19/02/2021 5 773.55 +0.79% 5 784.90 5 733.84 5 737.19

18/02/2021 5 728.33 -0.65% 5 779.01 5 720.58 5 757.75

17/02/2021 5 765.84 -0.36% 5 790.27 5 752.85 5 762.01

16/02/2021 5 786.53 +0.00% 5 797.92 5 768.96 5 796.43

15/02/2021 5 786.25 +1.45% 5 801.38 5 722.16 5 732.30

12/02/2021 5 703.67 +0.60% 5 705.02 5 627.99 5 651.67

11/02/2021 5 669.82 -0.02% 5 692.00 5 656.80 5 684.94

10/02/2021 5 670.80 -0.36% 5 719.32 5 647.28 5 719.32

09/02/2021 5 691.54 +0.10% 5 703.53 5 674.43 5 703.53

08/02/2021 5 686.03 +0.47% 5 714.28 5 673.63 5 688.68



05/02/2021 5 659.26 +0.90% 5 673.03 5 627.84 5 638.74

04/02/2021 5 608.54 +0.82% 5 613.95 5 566.58 5 568.39

03/02/2021 5 563.05 -0.00% 5 626.41 5 554.09 5 610.59

02/02/2021 5 563.11 +1.86% 5 574.77 5 509.24 5 510.62

01/02/2021 5 461.68 +1.16% 5 481.67 5 429.78 5 441.43

29/01/2021 5 399.21 -2.02% 5 474.80 5 399.21 5 421.53

28/01/2021 5 510.52 +0.93% 5 525.95 5 379.22 5 407.74

27/01/2021 5 459.62 -1.16% 5 545.45 5 401.43 5 517.53

26/01/2021 5 523.52 +0.93% 5 555.28 5 471.09 5 473.25

25/01/2021 5 472.36 -1.57% 5 584.40 5 453.24 5 579.73

22/01/2021 5 559.57 -0.56% 5 573.71 5 511.44 5 568.88

21/01/2021 5 590.79 -0.67% 5 665.98 5 589.80 5 660.27

20/01/2021 5 628.44 +0.53% 5 646.06 5 602.49 5 615.41

19/01/2021 5 598.61 -0.33% 5 655.22 5 592.20 5 647.75

18/01/2021 5 617.27 +0.10% 5 618.42 5 584.59 5 584.85

15/01/2021 5 611.69 -1.22% 5 656.45 5 563.74 5 648.70

14/01/2021 5 681.14 +0.33% 5 690.49 5 656.75 5 662.17

13/01/2021 5 662.67 +0.21% 5 679.07 5 643.75 5 648.96

12/01/2021 5 650.97 -0.20% 5 679.06 5 636.75 5 672.20

11/01/2021 5 662.43 -0.78% 5 704.09 5 629.46 5 684.66

08/01/2021 5 706.88 +0.65% 5 721.89 5 676.15 5 711.58

07/01/2021 5 669.85 +0.70% 5 689.28 5 629.49 5 651.04

06/01/2021 5 630.60 +1.19% 5 648.42 5 553.39 5 601.01

05/01/2021 5 564.60 -0.44% 5 603.66 5 530.48 5 561.60

04/01/2021 5 588.96 +0.68% 5 656.42 5 567.97 5 614.04

31/12/2020 5 551.41 -0.86% 5 598.93 5 551.41 5 573.20

30/12/2020 5 599.41 -0.22% 5 625.60 5 594.11 5 603.72

29/12/2020 5 611.79 +0.42% 5 625.52 5 603.74 5 610.13

28/12/2020 5 588.38 +1.20% 5 601.00 5 547.90 5 562.04

24/12/2020 5 522.01 -0.10% 5 545.71 5 517.01 5 542.49

23/12/2020 5 527.59 +1.11% 5 539.16 5 472.03 5 472.14

22/12/2020 5 466.86 +1.36% 5 477.87 5 411.15 5 411.15

21/12/2020 5 393.34 -2.43% 5 422.10 5 306.58 5 392.55

18/12/2020 5 527.84 -0.39% 5 581.96 5 519.17 5 533.78

17/12/2020 5 549.46 +0.03% 5 585.51 5 547.59 5 578.79

16/12/2020 5 547.68 +0.31% 5 589.76 5 515.50 5 551.45

15/12/2020 5 530.31 +0.04% 5 565.52 5 517.06 5 521.79

14/12/2020 5 527.84 +0.37% 5 577.18 5 527.84 5 547.30

11/12/2020 5 507.55 -0.76% 5 532.81 5 466.56 5 528.14

10/12/2020 5 549.65 +0.05% 5 572.80 5 511.48 5 558.96

09/12/2020 5 546.82 -0.25% 5 599.41 5 545.94 5 590.19

08/12/2020 5 560.67 -0.23% 5 574.57 5 521.87 5 553.79

07/12/2020 5 573.38 -0.64% 5 595.83 5 535.42 5 594.50

04/12/2020 5 609.15 +0.62% 5 616.62 5 574.12 5 574.12

03/12/2020 5 574.36 -0.15% 5 584.10 5 546.29 5 581.53

02/12/2020 5 583.01 +0.02% 5 585.87 5 549.79 5 563.05

01/12/2020 5 581.64 +1.14% 5 589.68 5 529.25 5 542.46

30/11/2020 5 518.55 -1.42% 5 599.94 5 518.55 5 564.16

27/11/2020 5 598.18 +0.56% 5 612.76 5 556.62 5 563.04

26/11/2020 5 566.79 -0.08% 5 592.78 5 559.72 5 589.38



25/11/2020 5 571.29 +0.23% 5 589.78 5 545.01 5 577.97

24/11/2020 5 558.42 +1.21% 5 574.69 5 536.11 5 546.07

23/11/2020 5 492.15 -0.07% 5 555.83 5 492.15 5 543.83

20/11/2020 5 495.89 +0.39% 5 524.25 5 461.39 5 463.99

19/11/2020 5 474.66 -0.67% 5 490.18 5 449.45 5 458.02

18/11/2020 5 511.45 +0.52% 5 521.01 5 452.12 5 468.17

17/11/2020 5 483.00 +0.21% 5 487.31 5 441.26 5 468.29

16/11/2020 5 471.48 +1.70% 5 518.91 5 402.31 5 430.57

13/11/2020 5 380.16 +0.33% 5 411.12 5 343.25 5 343.32

12/11/2020 5 362.57 -1.52% 5 421.40 5 348.63 5 394.37

11/11/2020 5 445.21 +0.48% 5 462.95 5 408.67 5 433.66

10/11/2020 5 418.97 +1.55% 5 439.08 5 327.22 5 351.31

09/11/2020 5 336.32 +7.57% 5 387.49 5 021.33 5 036.92

06/11/2020 4 960.88 -0.46% 4 997.74 4 915.24 4 964.26

05/11/2020 4 983.99 +1.24% 4 998.19 4 942.18 4 956.02

04/11/2020 4 922.85 +2.44% 4 926.56 4 730.31 4 736.46

03/11/2020 4 805.61 +2.44% 4 812.29 4 730.23 4 743.86

02/11/2020 4 691.14 +2.11% 4 705.11 4 581.86 4 614.95

30/10/2020 4 594.24 +0.54% 4 601.74 4 519.37 4 519.37

29/10/2020 4 569.67 -0.03% 4 606.72 4 512.57 4 571.13

28/10/2020 4 571.12 -3.37% 4 640.63 4 521.61 4 635.19

27/10/2020 4 730.66 -1.77% 4 818.98 4 723.70 4 818.98

26/10/2020 4 816.12 -1.90% 4 896.47 4 814.99 4 844.64

23/10/2020 4 909.64 +1.20% 4 934.71 4 843.14 4 843.28

22/10/2020 4 851.38 -0.05% 4 873.90 4 783.65 4 830.44

21/10/2020 4 853.95 -1.53% 4 945.33 4 849.01 4 945.33

20/10/2020 4 929.28 -0.27% 4 968.61 4 914.49 4 932.87

19/10/2020 4 942.62 +0.14% 4 993.39 4 881.46 4 955.39

16/10/2020 4 935.86 +2.03% 4 957.60 4 875.76 4 904.10

15/10/2020 4 837.42 -2.11% 4 881.31 4 808.58 4 873.03

14/10/2020 4 941.66 -0.12% 4 965.32 4 928.43 4 956.69

13/10/2020 4 947.61 -0.64% 4 976.58 4 928.64 4 976.28

12/10/2020 4 979.29 +0.66% 4 998.51 4 944.00 4 952.47

09/10/2020 4 946.81 +0.71% 4 954.02 4 918.06 4 925.41

08/10/2020 4 911.94 +0.61% 4 936.04 4 877.10 4 910.49

07/10/2020 4 882.00 -0.27% 4 915.63 4 865.26 4 888.49

06/10/2020 4 895.46 +0.48% 4 925.71 4 850.36 4 881.80

05/10/2020 4 871.87 +0.97% 4 876.86 4 842.26 4 863.63

02/10/2020 4 824.88 +0.02% 4 824.88 4 757.22 4 769.43

01/10/2020 4 824.04 +0.43% 4 871.83 4 804.77 4 850.20

30/09/2020 4 803.44 -0.59% 4 854.02 4 782.69 4 793.19

29/09/2020 4 832.07 -0.23% 4 846.63 4 806.45 4 832.87

28/09/2020 4 843.27 +2.40% 4 849.97 4 788.18 4 806.14

25/09/2020 4 729.66 -0.69% 4 758.05 4 666.26 4 754.81

24/09/2020 4 762.62 -0.83% 4 806.83 4 744.04 4 746.10

23/09/2020 4 802.26 +0.62% 4 871.45 4 802.26 4 824.17

22/09/2020 4 772.84 -0.40% 4 827.00 4 772.84 4 809.57

21/09/2020 4 792.04 -3.74% 4 949.76 4 779.21 4 949.76

18/09/2020 4 978.18 -1.22% 5 041.33 4 978.18 5 035.94

17/09/2020 5 039.50 -0.69% 5 053.32 4 995.65 5 005.89



16/09/2020 5 074.42 +0.13% 5 091.52 5 029.56 5 065.75

15/09/2020 5 067.93 +0.32% 5 087.99 5 035.10 5 056.90

14/09/2020 5 051.88 +0.35% 5 087.52 5 034.91 5 071.87

11/09/2020 5 034.14 +0.20% 5 053.63 4 997.86 5 014.97

10/09/2020 5 023.93 -0.38% 5 062.89 5 005.84 5 039.48

09/09/2020 5 042.98 +1.40% 5 058.35 4 973.36 4 980.46

08/09/2020 4 973.52 -1.59% 5 061.60 4 935.38 5 052.88

07/09/2020 5 053.72 +1.79% 5 064.64 4 979.87 4 979.87

04/09/2020 4 965.07 -0.89% 5 068.88 4 928.79 4 974.69

03/09/2020 5 009.52 -0.44% 5 131.39 4 982.34 5 074.64

02/09/2020 5 031.74 +1.90% 5 062.01 4 959.64 4 969.62

01/09/2020 4 938.10 -0.18% 4 993.56 4 892.83 4 974.42

31/08/2020 4 947.22 -1.11% 5 067.55 4 942.18 5 041.34

28/08/2020 5 002.94 -0.26% 5 031.53 4 970.64 5 031.31

27/08/2020 5 015.97 -0.64% 5 052.26 5 005.46 5 052.26

26/08/2020 5 048.43 +0.80% 5 050.10 4 977.94 4 991.63

25/08/2020 5 008.27 +0.01% 5 073.61 5 008.27 5 023.06

24/08/2020 5 007.89 +2.28% 5 013.70 4 948.71 4 948.71

21/08/2020 4 896.33 -0.30% 4 939.25 4 839.08 4 927.61

20/08/2020 4 911.24 -1.33% 4 937.95 4 888.15 4 914.69

19/08/2020 4 977.23 +0.79% 4 977.23 4 917.53 4 934.79

18/08/2020 4 938.06 -0.68% 5 001.29 4 924.15 4 951.98

17/08/2020 4 971.94 +0.18% 4 995.55 4 937.72 4 972.59

14/08/2020 4 962.93 -1.58% 5 018.95 4 921.58 5 018.95

13/08/2020 5 042.38 -0.61% 5 079.02 5 037.55 5 055.42

12/08/2020 5 073.31 +0.90% 5 096.53 5 010.80 5 017.73

11/08/2020 5 027.99 +2.41% 5 052.12 4 949.05 4 952.41

10/08/2020 4 909.51 +0.41% 4 937.63 4 878.58 4 905.27

07/08/2020 4 889.52 +0.09% 4 896.21 4 843.90 4 873.10

06/08/2020 4 885.13 -0.98% 4 951.86 4 860.98 4 919.41

05/08/2020 4 933.34 +0.90% 4 954.60 4 907.41 4 916.96

04/08/2020 4 889.52 +0.28% 4 920.80 4 856.65 4 905.66

03/08/2020 4 875.93 +1.93% 4 899.52 4 763.60 4 797.06

31/07/2020 4 783.69 -1.43% 4 902.90 4 783.69 4 866.24

30/07/2020 4 852.94 -2.13% 4 952.38 4 801.02 4 952.08

29/07/2020 4 958.74 +0.60% 4 978.50 4 945.58 4 948.48

28/07/2020 4 928.94 -0.22% 4 950.01 4 893.63 4 930.10

27/07/2020 4 939.62 -0.34% 4 957.77 4 923.19 4 944.30

24/07/2020 4 956.43 -1.54% 4 982.12 4 925.41 4 973.73

23/07/2020 5 033.76 -0.07% 5 083.97 5 019.21 5 064.72

22/07/2020 5 037.12 -1.32% 5 099.29 5 028.48 5 098.48

21/07/2020 5 104.28 +0.22% 5 172.98 5 097.42 5 129.78

20/07/2020 5 093.18 +0.47% 5 100.79 5 015.11 5 058.48

17/07/2020 5 069.42 -0.31% 5 091.13 5 045.07 5 088.00

16/07/2020 5 085.28 -0.46% 5 105.12 5 048.32 5 076.52

15/07/2020 5 108.98 +2.03% 5 145.33 5 039.19 5 045.92

14/07/2020 5 007.46 -0.96% 5 007.46 4 941.73 4 990.48

13/07/2020 5 056.23 +1.73% 5 060.43 4 980.12 5 026.20

10/07/2020 4 970.48 +1.01% 4 974.37 4 882.50 4 891.61

09/07/2020 4 921.01 -1.21% 5 014.85 4 911.56 5 006.52



08/07/2020 4 981.13 -1.24% 5 040.52 4 969.83 5 004.82

07/07/2020 5 043.73 -0.74% 5 056.52 5 009.03 5 054.04

06/07/2020 5 081.51 +1.49% 5 121.72 5 059.07 5 112.50

03/07/2020 5 007.14 -0.84% 5 062.51 4 982.24 5 056.67

02/07/2020 5 049.38 +2.49% 5 072.71 4 956.66 4 963.13

01/07/2020 4 926.94 -0.18% 4 963.37 4 851.37 4 939.80

30/06/2020 4 935.99 -0.19% 4 967.35 4 901.96 4 958.94

29/06/2020 4 945.46 +0.73% 4 977.63 4 867.33 4 887.23

26/06/2020 4 909.64 -0.18% 5 014.83 4 908.15 4 965.72

25/06/2020 4 918.58 +0.97% 4 941.96 4 795.05 4 860.16

24/06/2020 4 871.36 -2.92% 5 004.04 4 871.36 4 985.63

23/06/2020 5 017.68 +1.39% 5 046.31 4 962.60 4 972.88

22/06/2020 4 948.70 -0.62% 5 006.40 4 902.06 4 928.01

19/06/2020 4 979.45 +0.42% 5 040.47 4 979.45 4 997.53

18/06/2020 4 958.75 -0.75% 5 017.18 4 908.60 4 978.30

17/06/2020 4 995.97 +0.88% 5 026.84 4 952.57 4 952.57

16/06/2020 4 952.46 +2.84% 5 006.79 4 887.56 4 922.79

15/06/2020 4 815.72 -0.49% 4 841.53 4 691.81 4 716.98

12/06/2020 4 839.26 +0.49% 4 940.79 4 759.17 4 774.11

11/06/2020 4 815.60 -4.71% 4 956.30 4 815.60 4 925.95

10/06/2020 5 053.42 -0.82% 5 152.45 5 043.57 5 119.86

09/06/2020 5 095.11 -1.55% 5 203.42 5 053.21 5 187.09

08/06/2020 5 175.52 -0.43% 5 213.67 5 137.20 5 159.30

05/06/2020 5 197.79 +3.71% 5 199.65 5 060.92 5 060.92

04/06/2020 5 011.98 -0.21% 5 052.75 4 966.82 4 994.18

03/06/2020 5 022.38 +3.36% 5 026.45 4 909.99 4 911.45

02/06/2020 4 858.97 +2.02% 4 880.15 4 795.28 4 799.88

01/06/2020 4 762.78 +1.43% 4 782.03 4 721.63 4 776.72

29/05/2020 4 695.44 -1.59% 4 768.85 4 695.36 4 733.98

28/05/2020 4 771.39 +1.76% 4 784.09 4 701.52 4 718.11

27/05/2020 4 688.74 +1.79% 4 711.99 4 614.41 4 621.77

26/05/2020 4 606.24 +1.46% 4 619.84 4 573.89 4 588.30

25/05/2020 4 539.91 +2.15% 4 539.91 4 451.56 4 482.54

22/05/2020 4 444.56 -0.02% 4 475.35 4 368.80 4 381.82

21/05/2020 4 445.45 -1.15% 4 498.08 4 429.27 4 443.92

20/05/2020 4 496.98 +0.87% 4 499.79 4 396.20 4 434.62

19/05/2020 4 458.16 -0.89% 4 536.07 4 421.11 4 536.07

18/05/2020 4 498.34 +5.16% 4 508.95 4 354.73 4 361.03

15/05/2020 4 277.63 +0.11% 4 335.77 4 255.19 4 314.97

14/05/2020 4 273.13 -1.65% 4 313.26 4 194.58 4 294.01

13/05/2020 4 344.95 -2.85% 4 422.74 4 336.56 4 420.50

12/05/2020 4 472.50 -0.39% 4 499.39 4 453.65 4 473.43

11/05/2020 4 490.22 -1.31% 4 569.76 4 460.24 4 561.19

08/05/2020 4 549.64 +1.07% 4 560.19 4 519.59 4 538.09

07/05/2020 4 501.44 +1.54% 4 503.94 4 440.98 4 456.44

06/05/2020 4 433.38 -1.11% 4 484.16 4 425.78 4 484.16

05/05/2020 4 483.13 +2.40% 4 492.52 4 419.95 4 455.74

04/05/2020 4 378.23 -4.24% 4 427.74 4 362.13 4 413.14

30/04/2020 4 572.18 -2.12% 4 719.74 4 554.91 4 693.28

29/04/2020 4 671.11 +2.22% 4 678.93 4 552.81 4 566.29



28/04/2020 4 569.79 +1.43% 4 601.94 4 493.51 4 507.42

27/04/2020 4 505.26 +2.55% 4 505.26 4 448.05 4 479.86

24/04/2020 4 393.32 -1.30% 4 448.73 4 366.09 4 387.03

23/04/2020 4 451.00 +0.89% 4 495.90 4 395.75 4 450.19

22/04/2020 4 411.80 +1.25% 4 417.57 4 361.44 4 382.20

21/04/2020 4 357.46 -3.77% 4 477.31 4 357.46 4 467.49

20/04/2020 4 528.30 +0.65% 4 531.34 4 426.24 4 531.34

17/04/2020 4 499.01 +3.42% 4 550.78 4 464.09 4 470.92

16/04/2020 4 350.16 -0.08% 4 418.65 4 318.90 4 402.38

15/04/2020 4 353.72 -3.76% 4 525.50 4 335.59 4 511.87

14/04/2020 4 523.91 +0.38% 4 577.84 4 497.56 4 553.55

09/04/2020 4 506.85 +1.44% 4 543.69 4 409.04 4 512.30

08/04/2020 4 442.75 +0.10% 4 442.75 4 333.09 4 397.36

07/04/2020 4 438.27 +2.12% 4 527.60 4 379.27 4 489.40

06/04/2020 4 346.14 +4.61% 4 353.21 4 268.52 4 298.50

03/04/2020 4 154.58 -1.57% 4 214.59 4 142.28 4 204.81

02/04/2020 4 220.96 +0.33% 4 265.56 4 143.16 4 243.84

01/04/2020 4 207.24 -4.30% 4 266.69 4 186.45 4 259.94

31/03/2020 4 396.12 +0.40% 4 468.52 4 309.72 4 437.78

30/03/2020 4 378.51 +0.62% 4 379.15 4 216.41 4 362.09

27/03/2020 4 351.49 -4.23% 4 471.37 4 288.66 4 433.95

26/03/2020 4 543.58 +2.51% 4 543.58 4 296.06 4 332.79

25/03/2020 4 432.30 +4.47% 4 453.01 4 221.32 4 339.71

24/03/2020 4 242.70 +8.39% 4 242.70 4 038.06 4 087.61

23/03/2020 3 914.31 -3.32% 4 097.82 3 851.17 3 869.01

20/03/2020 4 048.80 +5.01% 4 109.11 3 984.30 4 066.79

19/03/2020 3 855.50 +2.68% 3 909.15 3 691.08 3 833.99

18/03/2020 3 754.84 -5.94% 3 908.72 3 726.45 3 905.53

17/03/2020 3 991.78 +2.84% 4 042.46 3 759.00 4 041.33

16/03/2020 3 881.46 -5.75% 3 962.01 3 632.06 3 886.82

13/03/2020 4 118.36 +1.83% 4 438.51 4 055.19 4 234.37

12/03/2020 4 044.26 -12.28% 4 404.26 4 025.89 4 374.67

11/03/2020 4 610.25 -0.57% 4 766.00 4 603.05 4 716.22

10/03/2020 4 636.61 -1.51% 4 924.84 4 615.16 4 770.62

09/03/2020 4 707.91 -8.39% 4 863.34 4 691.20 4 845.27

06/03/2020 5 139.11 -4.14% 5 284.08 5 117.57 5 253.82

05/03/2020 5 361.10 -1.90% 5 494.16 5 329.24 5 490.52

04/03/2020 5 464.89 +1.33% 5 493.25 5 357.35 5 400.43

03/03/2020 5 393.17 +1.12% 5 509.28 5 371.66 5 408.15

02/03/2020 5 333.52 +0.44% 5 430.05 5 197.57 5 416.02

28/02/2020 5 309.90 -3.38% 5 376.05 5 229.56 5 310.82

27/02/2020 5 495.60 -3.32% 5 613.72 5 421.31 5 571.72

26/02/2020 5 684.55 +0.09% 5 707.31 5 526.14 5 646.14

25/02/2020 5 679.68 -1.94% 5 828.46 5 670.71 5 825.37

24/02/2020 5 791.87 -3.94% 5 884.86 5 765.17 5 875.86

21/02/2020 6 029.72 -0.54% 6 067.29 5 995.14 6 035.03

20/02/2020 6 062.30 -0.80% 6 110.95 6 062.30 6 105.17

19/02/2020 6 111.24 +0.90% 6 111.41 6 072.66 6 086.11

18/02/2020 6 056.82 -0.48% 6 079.50 6 039.94 6 042.38

17/02/2020 6 085.95 +0.27% 6 088.60 6 064.92 6 079.53



14/02/2020 6 069.35 -0.39% 6 096.07 6 067.14 6 096.07

13/02/2020 6 093.14 -0.19% 6 098.26 6 028.28 6 076.92

12/02/2020 6 104.73 +0.83% 6 104.73 6 062.97 6 064.25

11/02/2020 6 054.76 +0.65% 6 060.97 6 032.79 6 047.96

10/02/2020 6 015.67 -0.23% 6 018.31 5 993.91 6 008.48

07/02/2020 6 029.75 -0.14% 6 044.97 5 999.95 6 027.54

06/02/2020 6 038.18 +0.88% 6 050.94 6 008.55 6 045.04

05/02/2020 5 985.40 +0.85% 6 004.33 5 912.49 5 919.06

04/02/2020 5 935.05 +1.76% 5 935.05 5 862.82 5 863.36

03/02/2020 5 832.51 +0.45% 5 857.40 5 804.14 5 822.04

31/01/2020 5 806.34 -1.11% 5 894.69 5 799.04 5 891.71

30/01/2020 5 871.77 -1.40% 5 904.08 5 846.45 5 886.02

29/01/2020 5 954.89 +0.49% 5 969.73 5 916.23 5 921.97

28/01/2020 5 925.82 +1.07% 5 933.72 5 857.23 5 886.81

27/01/2020 5 863.02 -2.68% 5 942.83 5 851.00 5 924.06

24/01/2020 6 024.26 +0.88% 6 064.55 6 016.77 6 019.60

23/01/2020 5 971.79 -0.65% 6 024.32 5 961.87 5 992.47

22/01/2020 6 010.98 -0.58% 6 069.26 6 005.77 6 053.85

21/01/2020 6 045.99 -0.54% 6 045.99 5 994.17 6 034.24

20/01/2020 6 078.54 -0.36% 6 094.09 6 071.17 6 092.97

17/01/2020 6 100.72 +1.02% 6 109.81 6 066.29 6 066.29

16/01/2020 6 039.03 +0.11% 6 058.97 6 021.03 6 039.62

15/01/2020 6 032.61 -0.14% 6 053.01 6 011.28 6 042.72

14/01/2020 6 040.89 +0.08% 6 046.12 5 980.05 6 037.45

13/01/2020 6 036.14 -0.02% 6 058.69 6 018.33 6 040.91

10/01/2020 6 037.11 -0.09% 6 057.83 6 028.29 6 056.74

09/01/2020 6 042.55 +0.19% 6 071.66 6 034.15 6 066.75

08/01/2020 6 031.00 +0.31% 6 031.00 5 972.77 5 986.81

07/01/2020 6 012.35 -0.02% 6 065.74 6 000.00 6 033.22

06/01/2020 6 013.59 -0.51% 6 017.97 5 955.25 6 001.21

03/01/2020 6 044.16 +0.04% 6 044.16 5 994.59 6 007.96

02/01/2020 6 041.50 +1.06% 6 062.92 6 011.21 6 016.61

31/12/2019 5 978.06 -0.07% 5 987.22 5 958.25 5 970.59

30/12/2019 5 982.22 -0.91% 6 037.70 5 982.22 6 028.96

27/12/2019 6 037.39 +0.13% 6 065.00 6 027.72 6 039.95

24/12/2019 6 029.55 +0.00% 6 033.99 6 025.62 6 027.19

23/12/2019 6 029.37 +0.13% 6 035.95 6 005.96 6 013.56

20/12/2019 6 021.53 +0.82% 6 024.17 5 966.88 5 979.53

19/12/2019 5 972.28 +0.21% 5 972.28 5 942.88 5 963.87

18/12/2019 5 959.60 -0.15% 5 983.02 5 959.60 5 971.40

17/12/2019 5 968.26 -0.39% 5 989.48 5 955.36 5 989.48

16/12/2019 5 991.66 +1.23% 6 003.38 5 942.30 5 946.65

13/12/2019 5 919.02 +0.59% 5 972.17 5 907.22 5 968.86

12/12/2019 5 884.26 +0.40% 5 915.65 5 845.00 5 871.20

11/12/2019 5 860.88 +0.22% 5 865.88 5 825.42 5 844.02

10/12/2019 5 848.03 +0.18% 5 851.11 5 776.67 5 833.48

09/12/2019 5 837.25 -0.59% 5 870.79 5 836.14 5 865.73

06/12/2019 5 871.91 +1.21% 5 871.91 5 811.29 5 815.75

05/12/2019 5 801.55 +0.03% 5 849.78 5 801.46 5 808.26

04/12/2019 5 799.68 +1.27% 5 812.71 5 725.97 5 725.97



03/12/2019 5 727.22 -1.03% 5 800.93 5 697.06 5 787.14

02/12/2019 5 786.74 -2.01% 5 947.68 5 781.03 5 910.12

29/11/2019 5 905.17 -0.13% 5 929.79 5 885.66 5 895.89

28/11/2019 5 912.72 -0.24% 5 919.13 5 900.21 5 909.95

27/11/2019 5 926.84 -0.05% 5 947.30 5 921.92 5 943.45

26/11/2019 5 929.62 +0.08% 5 941.51 5 909.93 5 927.41

25/11/2019 5 924.86 +0.54% 5 933.75 5 908.29 5 917.84

22/11/2019 5 893.13 +0.20% 5 930.46 5 885.61 5 885.61

21/11/2019 5 881.21 -0.22% 5 895.57 5 834.26 5 860.55

20/11/2019 5 894.03 -0.25% 5 902.95 5 859.58 5 880.69

19/11/2019 5 909.05 -0.35% 5 966.79 5 895.91 5 936.99

18/11/2019 5 929.79 -0.16% 5 942.47 5 900.35 5 939.64

15/11/2019 5 939.27 +0.65% 5 947.62 5 907.95 5 933.07

14/11/2019 5 901.08 -0.10% 5 916.90 5 894.07 5 902.40

13/11/2019 5 907.09 -0.21% 5 917.57 5 874.06 5 908.16

12/11/2019 5 919.75 +0.44% 5 931.19 5 897.30 5 904.27

11/11/2019 5 893.82 +0.07% 5 906.33 5 871.71 5 873.74

08/11/2019 5 889.70 -0.02% 5 889.70 5 861.61 5 867.42

07/11/2019 5 890.99 +0.41% 5 894.87 5 871.18 5 888.84

06/11/2019 5 866.74 +0.34% 5 876.27 5 838.40 5 847.61

05/11/2019 5 846.89 +0.39% 5 850.01 5 818.94 5 825.60

04/11/2019 5 824.30 +1.08% 5 833.69 5 784.85 5 788.36

01/11/2019 5 761.89 +0.56% 5 778.29 5 739.70 5 749.48

31/10/2019 5 729.86 -0.62% 5 778.24 5 718.63 5 770.26

30/10/2019 5 765.87 +0.45% 5 765.87 5 720.27 5 749.69

29/10/2019 5 740.14 +0.17% 5 742.08 5 715.26 5 728.10

28/10/2019 5 730.57 +0.15% 5 747.10 5 711.10 5 720.73

25/10/2019 5 722.15 +0.67% 5 722.64 5 671.82 5 694.90

24/10/2019 5 684.33 +0.55% 5 691.50 5 659.95 5 678.26

23/10/2019 5 653.44 -0.08% 5 657.65 5 616.02 5 617.30

22/10/2019 5 657.69 +0.17% 5 658.65 5 612.86 5 644.98

21/10/2019 5 648.35 +0.21% 5 664.58 5 625.10 5 633.04

18/10/2019 5 636.25 -0.65% 5 667.59 5 621.87 5 653.08

17/10/2019 5 673.07 -0.42% 5 737.15 5 673.07 5 679.92

16/10/2019 5 696.90 -0.09% 5 708.91 5 677.96 5 703.39

15/10/2019 5 702.05 +1.04% 5 724.31 5 659.69 5 676.74

14/10/2019 5 643.08 -0.40% 5 649.67 5 600.11 5 646.33

11/10/2019 5 665.48 +1.73% 5 667.40 5 574.26 5 576.95

10/10/2019 5 569.05 +1.27% 5 581.07 5 487.17 5 520.98

09/10/2019 5 499.14 +0.78% 5 515.64 5 447.01 5 458.16

08/10/2019 5 456.62 -1.18% 5 531.29 5 451.72 5 526.01

07/10/2019 5 521.61 +0.61% 5 524.19 5 461.59 5 476.77

04/10/2019 5 488.32 +0.91% 5 488.32 5 426.00 5 456.83

03/10/2019 5 438.77 +0.30% 5 472.62 5 393.49 5 432.01

02/10/2019 5 422.77 -3.12% 5 589.20 5 422.77 5 587.14

01/10/2019 5 597.63 -1.41% 5 704.93 5 594.93 5 696.20

30/09/2019 5 677.79 +0.66% 5 678.20 5 624.94 5 636.15

27/09/2019 5 640.58 +0.36% 5 645.36 5 621.58 5 627.44

26/09/2019 5 620.57 +0.66% 5 632.15 5 572.41 5 573.63

25/09/2019 5 583.80 -0.79% 5 600.76 5 531.62 5 598.50



24/09/2019 5 628.33 -0.04% 5 648.46 5 625.24 5 644.46

23/09/2019 5 630.76 -1.05% 5 683.93 5 619.29 5 679.31

20/09/2019 5 690.78 +0.56% 5 696.25 5 647.53 5 655.37

19/09/2019 5 659.08 +0.68% 5 662.86 5 616.91 5 617.70

18/09/2019 5 620.65 +0.09% 5 634.79 5 601.65 5 609.92

17/09/2019 5 615.51 +0.24% 5 619.45 5 587.74 5 602.96

16/09/2019 5 602.23 -0.94% 5 632.74 5 602.23 5 626.61

13/09/2019 5 655.46 +0.22% 5 672.07 5 638.17 5 649.23

12/09/2019 5 642.86 +0.44% 5 667.46 5 596.37 5 633.95

11/09/2019 5 618.06 +0.44% 5 626.05 5 606.43 5 606.43

10/09/2019 5 593.21 +0.08% 5 596.94 5 555.51 5 586.88

09/09/2019 5 588.95 -0.27% 5 611.59 5 579.93 5 606.36

06/09/2019 5 603.99 +0.19% 5 610.70 5 581.54 5 592.07

05/09/2019 5 593.37 +1.11% 5 605.88 5 559.82 5 569.59

04/09/2019 5 532.07 +1.21% 5 537.10 5 508.50 5 518.92

03/09/2019 5 466.07 -0.49% 5 484.54 5 441.18 5 484.36

02/09/2019 5 493.04 +0.23% 5 502.58 5 479.82 5 483.43

30/08/2019 5 480.48 +0.56% 5 504.01 5 446.58 5 451.60

29/08/2019 5 449.97 +1.51% 5 452.90 5 354.55 5 359.00

28/08/2019 5 368.80 -0.34% 5 375.04 5 322.99 5 372.08

27/08/2019 5 387.09 +0.67% 5 399.18 5 321.88 5 349.85

26/08/2019 5 351.02 +0.45% 5 377.02 5 300.99 5 310.16

23/08/2019 5 326.87 -1.14% 5 421.28 5 326.87 5 413.41

22/08/2019 5 388.25 -0.87% 5 439.64 5 378.25 5 414.81

21/08/2019 5 435.48 +1.70% 5 441.35 5 360.03 5 360.03

20/08/2019 5 344.64 -0.50% 5 391.23 5 328.94 5 363.59

19/08/2019 5 371.56 +1.34% 5 378.74 5 325.72 5 333.13

16/08/2019 5 300.79 +1.22% 5 306.07 5 249.33 5 254.62

15/08/2019 5 236.93 -0.27% 5 278.07 5 170.77 5 274.90

14/08/2019 5 251.30 -2.08% 5 367.54 5 233.86 5 367.54

13/08/2019 5 363.07 +0.99% 5 402.99 5 268.47 5 292.94

12/08/2019 5 310.31 -0.33% 5 386.46 5 293.76 5 362.39

09/08/2019 5 327.92 -1.11% 5 374.90 5 317.91 5 368.84

08/08/2019 5 387.96 +2.31% 5 387.96 5 305.86 5 333.18

07/08/2019 5 266.51 +0.61% 5 312.31 5 226.39 5 252.73

06/08/2019 5 234.65 -0.13% 5 297.45 5 234.65 5 245.52

05/08/2019 5 241.55 -2.19% 5 315.60 5 230.46 5 296.08

02/08/2019 5 359.00 -3.57% 5 455.13 5 350.76 5 427.55

01/08/2019 5 557.41 +0.70% 5 563.65 5 499.88 5 500.91

31/07/2019 5 518.90 +0.14% 5 538.59 5 503.13 5 511.51

30/07/2019 5 511.07 -1.61% 5 611.00 5 496.77 5 610.73

29/07/2019 5 601.10 -0.16% 5 624.34 5 590.82 5 598.65

26/07/2019 5 610.05 +0.57% 5 614.25 5 568.83 5 572.72

25/07/2019 5 578.05 -0.50% 5 672.77 5 549.66 5 646.73

24/07/2019 5 605.87 -0.22% 5 627.08 5 583.14 5 617.86

23/07/2019 5 618.16 +0.92% 5 638.66 5 580.52 5 590.60

22/07/2019 5 567.02 +0.26% 5 575.74 5 545.61 5 550.30

19/07/2019 5 552.34 +0.03% 5 598.00 5 534.25 5 580.99

18/07/2019 5 550.55 -0.38% 5 585.81 5 533.47 5 538.03

17/07/2019 5 571.71 -0.76% 5 621.21 5 567.85 5 602.25



16/07/2019 5 614.38 +0.65% 5 626.79 5 573.36 5 574.18

15/07/2019 5 578.21 +0.10% 5 606.48 5 550.86 5 581.11

12/07/2019 5 572.86 +0.38% 5 587.84 5 552.58 5 559.16

11/07/2019 5 551.95 -0.28% 5 592.30 5 548.95 5 589.68

10/07/2019 5 567.59 -0.08% 5 606.18 5 557.66 5 562.44

09/07/2019 5 572.10 -0.31% 5 582.77 5 544.62 5 578.34

08/07/2019 5 589.19 -0.08% 5 598.97 5 572.77 5 580.26

05/07/2019 5 593.72 -0.48% 5 616.63 5 573.35 5 613.92

04/07/2019 5 620.73 +0.03% 5 629.79 5 613.03 5 622.80

03/07/2019 5 618.81 +0.75% 5 618.81 5 579.04 5 579.24

02/07/2019 5 576.82 +0.16% 5 582.91 5 556.76 5 578.38

01/07/2019 5 567.91 +0.52% 5 611.28 5 567.91 5 584.13

28/06/2019 5 538.97 +0.83% 5 545.06 5 486.28 5 491.17

27/06/2019 5 493.61 -0.13% 5 511.22 5 465.62 5 508.38

26/06/2019 5 500.72 -0.25% 5 531.45 5 497.22 5 504.67

25/06/2019 5 514.57 -0.13% 5 523.57 5 499.65 5 499.82

24/06/2019 5 521.71 -0.12% 5 547.11 5 514.14 5 534.35

21/06/2019 5 528.33 -0.13% 5 582.24 5 518.39 5 534.43

20/06/2019 5 535.57 +0.31% 5 564.13 5 535.57 5 551.03

19/06/2019 5 518.45 +0.16% 5 521.81 5 496.54 5 513.32

18/06/2019 5 509.73 +2.20% 5 516.06 5 376.12 5 386.38

17/06/2019 5 390.95 +0.43% 5 408.75 5 368.07 5 370.76

14/06/2019 5 367.62 -0.15% 5 369.38 5 342.15 5 367.10

13/06/2019 5 375.63 +0.01% 5 392.51 5 353.11 5 361.60

12/06/2019 5 374.92 -0.62% 5 394.85 5 358.81 5 379.15

11/06/2019 5 408.45 +0.48% 5 431.54 5 381.31 5 382.88

10/06/2019 5 382.50 +0.34% 5 397.35 5 369.82 5 382.29

07/06/2019 5 364.05 +1.62% 5 389.95 5 299.71 5 299.71

06/06/2019 5 278.43 -0.26% 5 332.69 5 264.62 5 293.72



1 import xlrd

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 Fichier=xlrd.open_workbook("Data.xlsx") # Import our data

set

6 data=Fichier.sheet_by_index (0)

7 S=[]

8

9 for i in range (778):

10 s=data.cell_value (778-i,1)

11 s=s.replace(’ ’,’’)

12 s=float(s)

13 S.append(s) # S is the historical data set

14

15 pas =0.1 #pas=step

16 S_max=max(S)

17

18 def mon_min(x,y):

19 return x*(x<=y)+y*(y<x)

20

21 def mon_max(x,y):

22 return x*(x>=y)+y*(y>x)

23

24

25 NP_test =52 # number of periods

26 NP_calibration =25 # number of periods for calibration

27 T=int(9)

28 S_test =[S[i] for i in range (10* NP_calibration ,10*(

NP_calibration+NP_test))]

29 S_calibration =[S[i] for i in range (10* NP_calibration)]

30

31

32

33

34 kd=np.array ([100.0 for i in range (9)])

35 ku=np.array ([0.0 for i in range (9)])

36

37 for i in range (9):

38 for j in range(NP_calibration):

39 kd[i]=min(kd[i],S_calibration [10*j+i+1]/

S_calibration [10*j+i])
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40 ku[i]=max(ku[i],S_calibration [10*j+i+1]/

S_calibration [10*j+i])

41

42 kmax=ku.max()

43 s=[]

44

45 for t in range (10):

46 npas=int((S_max)*(kmax**t)/pas)

47 v_s=np.array([pas*i for i in range(npas +1)])

48 s.append(v_s) # s[t] is the set of values s we fix

when computing g(t,s)

49

50 def subdivision(g,t,ecart):# output= sequence (a_i)_i

where the piecewise affine function g=g(t,.) breaks

51 ecart=float(ecart)

52 deriv1 =(g[1:]-g[:-1])/pas

53 deriv2 =( deriv1 [1:]- deriv1 [:-1])/pas

54 long=len(s[t])

55 liste=s[t][1:long -1]

56 subd=liste[np.abs(deriv2)>ecart]

57 return subd

58

59 def gcall(x,n,K):

60 aux=n*(x-K)

61 y=aux*(aux >=0)

62 return y

63

64 def gcall_vect(n,K):

65 y=gcall(s[9],n,K)

66 return y

67

68 def h(s,a,t,teta ,g_tPlusUn):# output= quantity to

maximize as in Corollary 3.3.

69 t=int(t)

70 x_is=mon_min(mon_max(s*kd[t],a), s*ku[t])

71 x_is_aux=x_is/pas

72 type_x=type(x_is_aux)

73 if (type_x == float):

74 indic_x_is=int(x_is_aux) # index of x_is

75 valg_tPlusUn=g_tPlusUn[indic_x_is]

76 else:

77 indic_x_is=x_is_aux.astype(int)

78 valg_tPlusUn=np.array ([ g_tPlusUn[i] for i in
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indic_x_is ])

79

80 y=valg_tPlusUn+teta*(s-x_is)

81 return y

82

83 def g(t,g_tplus ,n):# output=g(t,S_t) computed from

g_tplus = g(t+1,S_{t+1}) (Dynamic Programming

Principle)

84 ecart=(t>=9) *1+(t<=8) *12*n

85 t=int(t)

86 a=subdivision(g_tplus ,t+1, ecart)

87 s_max=s[t].max()

88 a=np.append(0,a)

89 a=np.append(a,s_max)

90 Lips=n

91 teta=np.arange(n+1)

92 Matr3d=h(s[t][:,np.newaxis , np.newaxis],a[np.newaxis

,:,np.newaxis],t,\

93 teta[np.newaxis ,np.newaxis ,:], g_tplus)

94 Matr2d=np.max(Matr3d ,axis =1)

95 g_t=np.min(Matr2d ,axis =1)

96 indice_strat=np.argmin(Matr2d ,axis =1)

97 strat=np.array ([teta[i] for i in indice_strat ])

98

99 return g_t ,strat #output=g(t,.) and $\theta(t,.)$
100

101 def Num2(K,n): #output=hedging prices per unit of claims

at time 0

102 gcall =[]

103 gcall.append(gcall_vect(n,K))

104 g8=g(8,gcall[-1],n)

105 gcall.append(g8[0])

106 for j in range (8):

107 gcall_plus=gcall[-1]

108 gj=g(7-j,gcall_plus ,n)

109 gcall.append(gj[0])

110 ret=gcall [-1]/n

111 return ret
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ABSTRACT 

 

In this thesis we introduce two new types of conditional random sets taking values in a 

Banach space: the conditional interior and the conditional closure.  

In the second part of the thesis, we apply the theoretical results established in the first 

part to solve the problem of super-hedging European or Asian options for discrete-time 

financial market models where executable prices are uncertain. We illustrate our method 

by a numerical example. 

In the last part we show that, in discrete-time, it is possible to evaluate the minimal super-

hedging price when we restrict ourselves to integer-valued strategies. We formulate a 

dynamic programming principle that can be directly implemented on an historical data, 

and which also provides the optimal integer-valued strategy. 

MOTS CLÉS 

 

Ensemble aléatoire conditionnel, optimisation conditionnelle, problème de sur-réplication,  

Option européenne, prix de sur-réplication, information différées, incertitude, condition 

AIP , stratégie à valeurs entières, principe de programmation dynamique. 

RÉSUMÉ 

 

Dans cette thèse nous introduisons deux nouveaux types d'ensembles aléatoires 

conditionnels à valeurs dans un espace de Banach : l'intérieur conditionnel et la clôture 

conditionnelle des ensembles aléatoires. 

Dans la deuxième partie, nous appliquons les résultats théoriques établis dans la 

première partie pour résoudre le problème de sur-réplication des options européennes ou 

asiatiques pour les modèles de marchés financiers en temps discret où les prix 

exécutables sont incertains. Nous illustrons notre méthode par un exemple numérique. 

Dans la dernière partie nous montrons que, dans un modèle de marché en temps discret, 

il est possible d'évaluer le prix minimal de sur-réplication lorsqu'on se limite aux 

stratégies à valeurs entières. 

Nous formulons un principe de programmation dynamique qui peut être directement 
implémenté sur une donnée historique et qui fournit également la stratégie optimale à 
valeurs entières. 
 

KEYWORDS 

 

Conditional random set, conditional optimization, super-hedging problem, European 

option, super-hedging prices, delayed information, uncertainty, AIP condition, integer 

valued strategies, dynamic programming principle. 
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