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RESUMÉ

Selon un rapport de la National Highway Traffic Safety Administration (NHTSA),
94 % des accidents de la route sont dus à des erreurs humaines. Face à ce problème,
des systèmes de conduite autonome sont en cours de développement pour prévenir les
accidents et accroître l’efficacité du trafic.

Les percées dans le domaine de la vision par ordinateur sont le début de l’apprentissage
profond et la disponibilité de nouveaux capteurs, tels que le lidar. En outre, l’augmentation
de l’intérêt du public et du potentiel du marché a entraîné le développement de systèmes
de conduite autonome avec différents degrés d’automatisation. Cependant, la conduite
automatisée robuste en milieu urbain n’a pas encore été réalisée. Les accidents causés par
des systèmes immatures sapent la confiance.

La conduite entièrement autonome dans des scénarios urbains est considérée comme le
plus grand défi dans ce domaine depuis les premières tentatives. Lors du DARPA Urban
Challenge en 2007, de nombreux groupes de recherche internationaux ont testé leurs sys-
tèmes de conduite autonome dans un environnement d’essai calqué sur une scène urbaine
typique. Seules six équipes ont réussi à terminer l’épreuve, bien que cette compétition ait
été l’événement le plus important et le plus significatif jusqu’alors. L’environnement de
test était dépourvu de certains participants d’une scène de conduite urbaine réelle, comme
les piétons et les cyclistes. Cependant, le fait que six équipes aient réussi à relever le défi
a attiré l’attention.

Les systèmes de conduite autonome les plus modernes utilisent un large éventail de
capteurs embarqués. Une redondance élevée des capteurs est importante dans la plupart
des tâches pour la robustesse et la fiabilité. Le matériel peut être classé en cinq catégories
: les capteurs extéroceptifs pour la perception, les capteurs proprioceptifs pour le contrôle
de l’état interne, les unités de calcul, les réseaux de communication et les actionneurs.
Les capteurs extéroceptifs sont principalement utilisés pour percevoir l’environnement,
qui comprend des objets dynamiques et statiques, par exemple des zones carrossables, des
obstacles et des piétons. Les caméras, les lidars, les radars et les capteurs à ultrasons sont
les modalités les plus couramment utilisées pour cette tâche.

Les caméras peuvent détecter la couleur et sont passives puisqu’elles n’émettent au-
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cun signal pour les mesures. La détection de la couleur est tout à fait nécessaire pour des
tâches telles que la reconnaissance des feux de circulation. Plus important encore, la vision
par ordinateur en 2D est un domaine bien établi avec de nombreux algorithmes de pointe.
Cependant, les caméras présentent certains inconvénients. Les conditions d’éclairage af-
fectent considérablement leurs performances, la vitesse de transmission fixe entraîne des
problèmes de flou de mouvement, et les informations de profondeur sont difficiles à obtenir
à partir d’une seule caméra. Des études prometteuses ont été menées pour améliorer la
perception de la profondeur à l’aide d’une caméra monoculaire, mais des modalités qui
ne sont pas affectées par l’éclairage et les mouvements rapides restent nécessaires pour les
tâches de conduite dynamique. D’autres types de caméras suscitent un intérêt croissant,
notamment les caméras à flash, les caméras thermiques et les caméras événementielles.

Les caméras événementielles font partie des modalités de détection les plus récentes
utilisées dans les systèmes de conduite autonome. Contrairement aux caméras classique,
qui acquièrent des images à une fréquence fixe (par exemple, 30 images par seconde),
les caméras à événement répondent aux changements de luminosité de chaque pixel de la
scène de manière asynchrone et indépendante. Ainsi, la sortie d’une caméra événementielle
est une séquence dynamique d’"événements" numériques, chaque événement représentant
un changement de luminosité d’un seuil prédéfini pour un pixel. Ce codage s’inspire de la
nature de la stimulation des voies visuelles biologiques.

Les caméras événementielles sont des capteurs de données : leur sortie dépend de la
variation de luminosité de la scène ou de la quantité de mouvement (mouvement propre
et objets en mouvement). Plus le mouvement est rapide, plus le nombre d’événements
générés est important, car chaque pixel adapte son taux d’échantillonnage au taux de
changement. Les événements sont horodatés avec une résolution de l’ordre de la microsec-
onde et peuvent être transmis avec une latence inférieure à la milliseconde, ce qui permet
aux caméras événementielles de réagir rapidement aux stimuli visuels.

Les caméras événementielles présentent de nombreux avantages potentiels par rapport
aux caméras classique :

1. Haute résolution temporelle : la surveillance des changements de luminosité est
rapide dans les circuits analogiques, et la lecture des événements est numérique,
généralement avec une horloge de 1 MHz, de sorte que les événements sont détectés
et horodatés avec une résolution de l’ordre de la microseconde. Par conséquent, les
caméras événementielles peuvent capturer des mouvements rapides sans souffrir de
problèmes de flou de mouvement.
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2. Faible latence : chaque pixel fonctionne indépendamment, et il n’est pas nécessaire
d’attendre un temps d’exposition global. Dès que le changement est détecté, il est
transmis. Les caméras événementielles ont donc une latence minimale : environ dix
µs sur la paillasse du laboratoire et moins d’une milliseconde dans le monde réel.

3. Faible consommation d’énergie : Comme les caméras événementielles ne trans-
mettent que les changements de luminosité et éliminent donc les données redon-
dantes, l’énergie n’est utilisée que pour traiter les pixels changeants. Les systèmes
de caméras embarquées où le capteur est directement interfacé avec un processeur
ont montré une consommation d’énergie au niveau du système (c’est-à-dire détec-
tion plus traitement) de 100 mW ou moins.

4. Gamme dynamique élevée : La plage dynamique élevée des caméras événementielles
(140 dB) dépasse largement les 60 dB des caméras à base d’images, ce qui leur per-
met d’acquérir des informations du clair de lune à la lumière du jour. Cela est dû au
fait que les photorécepteurs des pixels fonctionnent sur une échelle logarithmique,
et que chaque pixel travaille indépendamment, sans attendre un obturateur global.

Pour conclure les points mentionnés ci-dessus, pour concevoir un système de conduite
autonome sûr et robuste, il faut sélectionner plusieurs capteurs pour le système de per-
ception, et les caméras classique sont l’un des capteurs les plus populaires, malgré leurs
inconvénients. Les caméras événementielles sont les capteurs les plus récents qui peuvent
compenser les inconvénients des caméras classique pour le système de conduite autonome.
Il est donc important d’étudier la vision basée sur les événements et la fusion entre les
caméras classique et à événement.

Une question critique concernant les caméras événementielles est de savoir comment
extraire des informations significatives des données événementielles pour remplir la tâche
de perception. Il s’agit d’une question globale puisque la réponse dépend de l’application
et qu’elle détermine la conception algorithmique du résolveur de tâches. Les caméras
événementielles acquièrent des informations de manière asynchrone et éparse, avec une
haute résolution temporelle et une faible latence. Par conséquent, l’aspect temporel joue
un rôle important dans le traitement des événements. Selon le nombre d’événements traités
simultanément, deux classes d’algorithmes peuvent être déterminées :

1. les méthodes qui fonctionnent sur la base d’un événement par événement, où
l’algorithme traite l’événement un par un, ce qui rend les données de l’événement
asynchrones.
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2. les méthodes qui fonctionnent sur des groupes d’événements, qui introduisent une
latence. Sans tenir compte des problèmes de latence, les méthodes basées sur
des groupes d’événements peuvent toujours fournir un processus événement par
événement si la fenêtre glisse d’un événement. Par conséquent, la différence en-
tre les deux classes est plus subtile : un événement seul ne fournit pas suffisam-
ment d’informations pour l’estimation, et des informations supplémentaires, sous la
forme d’événements passés ou de connaissances supplémentaires, sont donc néces-
saires.

En fonction de la manière dont les événements sont traités, on peut distinguer les ap-
proches basées sur des modèles et celles basées sur l’apprentissage profond. Chaque caté-
gorie présente des méthodes avec des avantages et des inconvénients, et la recherche
actuelle se concentre sur l’exploration des possibilités de chaque méthode.

De nombreux algorithmes concernant la vision basée sur les événements ont été dévelop-
pés au cours des dernières années. Selon la tâche abordée, on trouve la détection et le suivi
d’éléments, l’estimation du flux optique, la reconstruction 3D (monoculaire et stéréo),
l’estimation de la pose et le SLAM, l’odométrie visuo-inertielle, la reconstruction d’images,
la segmentation du mouvement, la reconnaissance et le contrôle neuromorphique.

Pour l’état de la recherche et tous les problèmes mentionnés ci-dessus, nous attirons
l’attention sur l’estimation du flux optique, la détection et le suivi d’objets avec les caméras
événementielles, et la fusion entre les caméras image et événementielles. Les principaux
travaux réalisés dans cette thèse sont résumés comme suit :

1. L’analyse du mouvement est l’un des problèmes les plus fondamentaux et les plus
difficiles de la vision par ordinateur. L’estimation du flux optique est l’un des
sujets qui représentent le mouvement des pixels d’images adjacentes. La caméra
événementielle peut fournir des informations temporelles riches car les données
événementielles contiennent des informations temporelles plus précises que l’image.
En outre, grâce à sa plage dynamique élevée et à sa faible latence, la caméra
événementielle peut mieux fonctionner dans des scénarios extrêmes. Pour extraire
les informations de mouvement des événements, nous avons analysé les méthodes
de prédiction du flux optique à partir des événements et proposé notre approche,
qui atteint des performances de pointe.

2. Le suivi d’objets est une tâche essentielle dans le domaine de la vision par ordi-
nateur. Dans la vue de la caméra, le problème du suivi peut être défini comme
l’estimation de la trajectoire des objets dans le plan de l’image lorsqu’ils se dépla-
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cent dans une scène. Pour obtenir un suivi d’objet meilleur et plus robuste, nous
avons proposé un approche basée sur un modèle pour la détection et le suivi d’objet
basé sur un modèle en utilisant un hybride de la caméra basée sur les événements
et de la caméra basée sur les images. Nous avons d’abord proposé un algorithme
de détection d’objets basé sur un modèle pour la caméra basée sur les événements.
Nous avons ensuite développé une stratégie de fusion pour les caméras basées sur
les événements et sur les images. Enfin, un filtre PMBM est adopté pour le suivi
en utilisant la détection fusionnée à partir de l’hybride de la caméra basée sur
l’événement et de la caméra classique.

3. Pour un véhicule autonome, il est nécessaire d’estimer complètement le modèle de
mouvement de chacun des participants environnants et de planifier les trajectoires
de l’ego en fonction de leurs états futurs afin de réduire les risques de collision.
En raison du mouvement du véhicule ego et des contraintes liées à la formation de
l’image, il est très difficile de classer les objets environnants comme étant en mou-
vement ou statiques, car même les objets statiques seront perçus comme étant en
mouvement. La segmentation du mouvement implique que les deux tâches doivent
être effectuées conjointement. La première se concentre sur la segmentation des
objets, dans laquelle les objets de classes spécifiques intéressantes sont mis en évi-
dence, comme les piétons ou les véhicules. La seconde se concentre sur la classifica-
tion du mouvement, dans laquelle un classificateur prédit si l’objet observé est en
mouvement ou statique. Comme mentionné précédemment, les caméras tradition-
nelles basées sur les images ne peuvent pas fournir d’informations temporelles, et
les caméras basées sur les événements manquent d’informations sur l’apparence et
la cohérence spatiale. Ces deux caractéristiques sont toutes deux importantes pour
la segmentation des mouvements. Nous avons proposé un classique d’apprentissage
profond pour la fusion entre la caméra basée sur l’événement et la caméra classique
et réaliser la segmentation du mouvement.

En résumé, la thèse a proposé trois algorithmes de vision basés sur des événements qui
tentent de fournir une meilleure et plus robuste perception des systèmes de conduite au-
tonome. Les tests et analyses réalisés ont prouvé la faisabilité et la fiabilité des algorithmes
de perception proposés.
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ABSTRACT

According to a report by the National Highway Traffic Safety Administration (NHTSA),
94% of road accidents are caused by human errors. Against this issue, autonomous driving
systems are being developed to prevent accidents and increase traffic efficiency.

The breakthroughs in computer vision are the beginning of deep learning and the
availability of new sensors, such as lidar. Furthermore, an increase in the public interest
and market potential caused the development of autonomous driving systems with varying
degrees of automation. However, robust automated driving in urban environments has yet
to be achieved. Accidents caused by immature systems undermine trust.

Fully autonomous driving in urban scenarios has been seen as the biggest challenge in
the field since the earliest attempts. During the DARPA Urban Challenge in 2007, many
global research groups tried their autonomous driving systems in a test environment
modeled after a typical urban scene. Only six teams managed to complete the event,
although this competition was the biggest and most significant event up to that time.
The test environment lacked certain participants of a real-world urban driving scene,
such as pedestrians and cyclists. However, the fact that six teams managed to complete
the challenge attracted significant attention.

State-of-the-art autonomous driving system utilize a wide selection of onboard sensors.
High sensor redundancy is important in most tasks for robustness and reliability. Hardware
can be categorized into five: exteroceptive sensors for perception, proprioceptive sensors
for internal state monitoring, computational units, communication arrays, and actuators.
Exteroceptive sensors are mainly used for perceiving the environment, which includes
dynamic and static objects, e.g., drivable areas, obstacles, and pedestrians. Camera, lidar,
radar, and ultrasonic sensors are this task’s most commonly used modalities.

The cameras can sense color and are passive since they do not emit any signal for
measurements. Sensing color is quite necessary for tasks such as traffic light recognition.
More critically, 2D computer vision is an established field with many state-of-the-art al-
gorithms. However, cameras have certain drawbacks. Illumination conditions affect their
performance drastically, fixed transmit rate causes motion blur problems, and depth in-
formation is challenging to obtain from a single camera. There are promising studies to
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improve monocular camera-based depth perception, but modalities that are not nega-
tively affected by illumination and fast motion are still necessary for dynamic driving
tasks. Other camera types gaining interest include flash cameras, thermal cameras, and
event cameras.

Event-based cameras are among the newer sensing modalities that have been used in
autonomous driving systems. In contrast to frame cameras, which acquire frame images
at a fixed rate (e.g., 30 fps), event cameras, respond to brightness changes for each pixel
in the scene asynchronously and independently. Thus, the output of an event camera is
a dynamic rate sequence of digital “events”, with each event representing a change of
brightness of a predefined threshold at a pixel. This encoding is inspired by the spiking
nature of biological visual pathways.

Event-based cameras are data-driven sensors: their output relies on the scene’s bright-
ness change or amount of motion (self-motion and moving objects). The faster the move-
ment, the more events are generated since each pixel adapts its sampling rate to the rate
of change. Events are timestamped with microsecond resolution and can be transmitted
with sub-millisecond latency, which makes event cameras react quickly to visual stimuli.

Event cameras present multiple potential advantages over frame cameras:

1. High temporal Resolution: monitoring brightness changes is fast in analog circuitry,
and the read-out of the events is digital, generally with a 1 MHz clock, so events are
detected and timestamped with microsecond resolution. Therefore, event cameras
can capture fast motions without suffering from motion blur problems.

2. Low latency: each pixel works independently, and there is no need to wait for a
global exposure time. When the change is detected, it is transmitted. Hence, event
cameras have minimal latency: about ten µs on the lab bench and sub-millisecond
in the real world.

3. Low power consumption: Because event cameras transmit only brightness changes
and thus remove redundant data, power is only used to process changing pixels.
Embedded event-camera systems where the sensor is directly interfaced with a pro-
cessor have shown system-level power consumption (i.e., sensing plus processing)
of 100 mW or less.

4. High Dynamic Range: The high dynamic range of event cameras (140 dB) notably
surpasses the 60 dB of frame-based cameras, allowing them to acquire information
from moonlight to daylight. This is because photoreceptors of the pixels operate
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on a logarithmic scale, and each pixel works independently, not waiting for a global
shutter.

To conclude the points mentioned above, to design a safe and robust autonomous
driving system, one should select multiple sensors for the perception system, and frame
cameras are one of the most popular sensors, although the drawbacks. Event cameras
are the newer sensors that can make up the drawbacks of the frame cameras for the
autonomous driving system. So, it is important to investigate event-based vision and
fusion between frame and event cameras.

One critical question of event cameras is how to extract meaningful information from
the event data to fulfill the perception task. This is a comprehensive question since the an-
swer is application dependent, and it drives the algorithmic design of the task solver. Event
cameras acquire information asynchronously and sparsely, with high temporal resolution
and low latency. Hence, the temporal aspect plays an important role in processing events.
Depending on how many events are processed simultaneously, two classes of algorithms
can be determined:

1. methods that work on an event-by-event basis, where the algorithm process the
event one by one, thus keeping asynchronous of the event data.

2. methods that work on groups of events, which introduce latency. Discounting la-
tency concerns, methods based on groups of events can still provide an event-by-
event process if the window slides by one event. Therefore, the difference between
both classes is more subtle: an event alone does not provide enough information
for estimation, and so additional information, in the form of past events or extra
knowledge, is needed.

Depending on how events are processed, we can distinguish between model-based ap-
proaches and deep learning-based approaches. Each category presents methods with ad-
vantages and disadvantages, and current research focuses on exploring each method’s
possibilities.

Many algorithms concerning event-based vision have been developed in the past few
years. According to the task addressed, there are feature detection and tracking, op-
tical flow estimation, 3D reconstruction (monocular and stereo), pose estimation and
SLAM, visual-inertial odometry, image reconstruction, motion segmentation, recognition,
and neuromorphic control.

For the research status and all the problems mentioned above, we draw attention to
optical flow estimation, object detection and tracking with the event cameras, and fusion
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between frame and event cameras. The main work carried out in the thesis is summarized
as follows:

1. Motion analysis is one of the most fundamental and challenging problems in com-
puter vision, the optical flow estimation is one of the topics that represent the
pixel motion of adjacent frame images. The event-based camera can provide rich
temporal information because the event data contains more accurate temporal in-
formation than the frame image. And because of the high dynamic range and low
latency, the event camera can work better in extreme scenarios. To extract the
motion information from events, we analyzed the methods for optical flow pre-
diction from events and proposed our approach, which achieves state-of-the-art
performance.

2. Object tracking is an essential task within the field of computer vision. In the
camera view, the tracking problem can be defined as estimating the trajectory of
objects in the image plane as it moves around a scene. To achieve a better and
more robust object tracking, we proposed the framework for model-based object
detection and tracking using the hybrid of the event-based and frame-based camera.
We first proposed a model-based object detection algorithm for the event based
camera. Then a fusion strategy for the event-based and frame-based cameras was
developed. At last, a PMBM filter is adopted for tracking using the fused detection
from the hybrid of the event-based and frame-based camera.

3. For an autonomous vehicle, it is required to fully estimate the motion model of each
of the surrounding participants and to plan the ego-trajectories based on their fu-
ture states to reduce collision risks. Due to the ego vehicle’s motion and constraints
related to image formation, it is very challenging to classify the surrounding ob-
jects as moving or static because even static objects will be perceived as moving.
Motion segmentation implies that the two tasks have to be performed jointly. The
first focuses on object segmentation, in which objects of specific interesting classes
are highlighted, such as pedestrians or vehicles. The second focuses on motion clas-
sification, in which a classifier predicts whether the observed object is moving or
static. As mentioned previously, traditional frame-based cameras cannot provide
temporal information, and event-based cameras lack appearance information and
spatial consistency. The two features are both important for Motion segmentation.
We proposed a deep learning framework for the fusion between the event-based
and frame-based camera and realize Motion segmentation.
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To sum up, the thesis proposed three event-based vision algorithms that try to pro-
vide a better and more robust perception of autonomous driving systems. The tests and
analyses conducted proved the feasibility and reliability of the proposed perception algo-
rithms.
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Chapter 1

INTRODUCTION

1.1 Overview and context of the work

Monocular frame-based cameras are one of the most commonly used sensors for object-
tracking tasks in many different areas, such as autonomous vehicles [84], unmanned aerial
vehicles (UAVs) [23], and industrial robots [49]. It synchronously transmits images, frame
by frame at a fixed rate. It has main drawbacks such as low temporal resolution, redundant
information and low dynamic range. More importantly, a frame image is transmitted at
a fixed frequency and does not contain time information, which is important for the
object tracking issue. More recently, the event-based camera, a bio-inspired technology of
silicon retinas, has been proposed to solve both classical and new computer vision tasks
[7], [33]. These cameras are asynchronous sensors that monitor the brightness change of
each pixel related to the viewed scene with a precise timestamp, which means that the
event-based camera provides explicitly time information. Thus, event-based cameras have
a large potential for computer vision applications in challenging scenarios compared to
standard cameras. Typically, they are used on the sensing modalities such as unmanned
aerial vehicles (UAVs) [60], robotics [11] or wearable electronics [12], where operation is
under unrealistic lighting conditions and sensitive to the temporal resolution. The common
applications for event-based vision are object tracking [11], surveillance and monitoring
[35], and optical flow estimation [1], [92]. For autonomous driving, [41] proposed a method
that can predict the vehicle’s steering angle according to the event data, and [5], [25]
proposed datasets that contain event data along with the vehicle control and diagnostic
data.

The event-based camera was first designed in the early 1990s with pioneering work
on Silicon Retina and Address Event Representation (AER) by Misha Mahowald and
Carver Mead. The motivation was to build the brain in silicon [17] and mimic biological
vision’s spiking, asynchronous nature. Compared to conventional frame-based cameras,
biological retinas have many advantages, such as high efficiency, low power consumption,
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Figure 1.1 – The frame-based camera fails in extreme scenarios

and low latency, and these advantages could become available to artificial retinas. The
event-based cameras rely on the smart pixels to generate events that can track their
measured brightness and trigger events when reaching the threshold and reset, adjusting
dynamically to changes in luminance. So event-based cameras are also called Dynamic
Vision Sensors.

The first practical and robust event-based camera is the Dynamic Vision Sensor (DVS)
[33] developed in 2008. This work caused the product of the DAVIS-240 and later the
DAVIS-346 cameras, with a 240 × 180 and 346 × 240 spatial sensor resolution, respec-
tively. A valuable feature of the two sensors was that they provide not only the event
data but also frame images on the same chip. This feature allowed recording both events
and conventional frames, perfectly registered and synchronized with each other. This fea-
ture, in combination with well-documented development software packages, resulted in the
widespread adoption of the DAVIS cameras in the research community. As a result, they
are the most commonly cited event-based camera hardware in the literature despite com-
petition from large industry efforts led by manufacturers such as Prophesee. Recently,
Prophesee has improved its development support by providing easy-to-use Application
Programming Interfaces (APIs). And they released an event camera with a resolution of
1280× 720 [16], but still without synchronized frame images.

For an event-based camera, each pixel keeps detecting the change in the measured
intensity. When the change in log intensity from the previous measurement exceeds the
predefined Contrast Threshold (CT), an event is triggered and transmitted immediately.
Each event is in the format of a tuple, consists of the event location [x, y], polarity p ∈
{−1,+1} (indicating the direction of the brightness change), and timestamp t (which
is the precise timestamp of the event in µs resolution). Because each pixel can report
events at any time, independently of the other pixels, the event based camera can take
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time

Figure 1.2 – The visualization of the event data

samples at a dynamic and scene-dependent rate. Since event-based cameras only give
updates on brightness changes in the scene, they are an efficient means of encoding visual
information. The frame-based cameras under-sample the scene when changes occur faster
than the fixed frame-rate, resulting in motion blur problems. The event-based cameras
avoid this by sampling the scene at a dynamic optimal rate regarding per-pixel brightness
changes.

Since event data is spatial-temporal data extended by polarity, it is better to view it
in a three-dimensional spatio-temporal plot, as shown in the figure (1.2). Each event is
represented by its location (x, y), timestamp t, and polarity p. From this point of view,
event data is much more similar to the point cloud than frame images.
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Datasets Resolution Purpose
IJRR [45] 240× 180 Pose Estimation, Visual Odometry, and SLAM

MVSEC [91] 346× 260 Depth and Optical Flow
CED [61] 346× 260 Image Reconstruction

DDD20 [25] 346× 260 Steering Prediction
DSEC [20] 640× 480 Semantic, Depth and Optical Flow

Table 1.1 – Event-based camera datasets and their purpose

There are two main ways to process events: model-based and model-free (also known
as data-driven or deep-learning-based) approaches. Due to the significant success that
deep-learning-based approaches have achieved for traditional computer vision using frame
cameras and LiDAR, there is now growing research interest in applying deep learning
techniques to event cameras, such as 3D reconstruction [9], [90], Pose Estimation and
SLAM [73], Image Reconstruction [52], [62], and Recognition [19], [87]

For bench-marking and training the event-based neural network models, several data-
sets are proposed for the event-based vision task, such as SLAM, depth and optical flow
estimation, and image reconstruction. The IJRR [45] event-based camera dataset was
recorded with the DAVIS240C model. It has a comparatively low spatial resolution of
240× 180 pixels and lengthens just about 20 minutes. However it has 13 gigabytes (event
data and frames images), and only 19 % is used up by the concurrent frame images
because of the fast-moving scenes. DDD20 [25], which are more compact than the frame-
based representation, contain comparatively slow-moving scenes. Table (1.1) shows the
information for various event camera datasets.

Modern vehicles are equipped with various sensors to perceive the surrounding envi-
ronment; each sensor has its advantages and disadvantages. For example, radar provides
good performance of depth measurement for close obstacles, but they lack semantic in-
formation and perform poorly for far objects. Frame-based cameras, instead, provide rich
appearance information from which scene semantics can be extracted; however, they lack
temporal information and rely on scene illumination. Their performances are highly de-
graded in adverse illumination conditions and fast-motion scenarios. On the other hand,
the event cameras provide accurate temporal information and do not suffer from bad illu-
mination and fast motion but lack appearance information. Data fusion has been proven
to provide improved performance in various tasks [27], [54], [64], [70]. So, it is important
to fuse the frame-based and event-based camera information to achieve a more robust
perception system for autonomous vehicles.
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1.2 Aims, Contributions and outline of thesis

Event-based cameras are naturally suitable for tasks that describe motion or moving 
objects, such as optical flow estimation, tracking, or motion segmentation. Such descrip-
tions of motion are essential parts of the autonomous driving system, as they are related 
to tasks such as detection, SLAM, visual odometry, or depth estimation. This thesis aims 
to hybrid the event-based camera and frame-based camera to achieve more robust object 
detection and tracking for the autonomous driving. Specifically, we aim to:

1. Extract the motion information using the event data

2. Develop object detection algorithms for event cameras.

3. Develop fusion strategies between the event-based camera and frame-based camera.

4. Develop object tracking algorithms using a hybrid of the event camera and the
frame camera.

we list our contributions and the outline of this thesis. Key contributions are listed,
following a brief introduction of the chapter following.

Chapter 2
Chapter 2 analyzes the methods for optical flow prediction from events. The key

contributions of this chapter are:
• Analyze and compare the current scene flow algorithms for event based cameras.
• A deep learning method is proposed for event based cameras to predict scene flow.
To kickstart our process, we prioritize optical flow estimation using an event camera.

Optical flow describes the apparent motion pattern of objects in an image over time,
resulting from either object movement or self-motion. Precise optical flow estimation is
essential for tasks that involve motion or moving objects. The event camera outperforms
frame images by providing more accurate optical flow, as event data contains more precise
temporal information. Moreover, the event camera’s high dynamic range and low latency
enable more accurate optical flow computation even in extreme scenarios. First, we intro-
duce the model-based optical flow algorithm utilized in our object tracking framework.
Subsequently, we present a deep learning model [70] capable of predicting accurate optical
flow, achieving state-of-the-art performance.

Chapter 3
Using the model-based optical flow method discussed in Chapter 2, we can proceed

to the object detection and tracking stage. In Chapter 3, we proposed the framework
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for model-based object detection and tracking using the hybrid of the event-based and
frame-based camera. The key contributions of this chapter are:

• The model-based object detection algorithm for the event based camera.
• The fusion strategy between the event-based and frame-based camera.
• The adapted Poisson multi-Bernoulli mixture (PMBM) filter for tracking with a

hybrid of the event-based and frame-based camera.
This chapter presents a framework [71] that leverages both event-based and frame-

based cameras to enhance object tracking effectiveness. The framework employs a clus-
tering algorithm to generate detections for the event data and a fusion strategy to combine
the frame camera detection. For tracking, we utilize a Poisson multi-Bernoulli mixture
(PMBM) filter. By utilizing the benefits of both camera types, our framework achieves
more robust object tracking.

Chapter 4
As the model-based framework is complex and computationally inefficient, in this

chapter, we apply deep learning to the problems of moving object detection and fusion
with the frame based camera. The main contributions are:

• A deep learning framework to detect moving objects.
• A deep learning framework for the fusion between the event-based and frame-based

camera.
The primary contribution of our work is an end-to-end deep learning model that facil-

itates moving object detection and fusion between event and frame cameras. Our model
takes an end-to-end approach, enabling simultaneous moving object detection and sensor
fusion. Our work harnesses the benefits of fusing events and images to conduct motion
segmentation in low illumination environments. By leveraging this fusion approach, we
significantly improve the detection of moving objects and achieve state-of-the-art perfor-
mance.

30



Chapter 2

CAMERA-BASED OPTICAL FLOW

ANALYSIS

2.1 Introduction

Motion analysis is one of the most fundamental and challenging problems in computer
vision, the optical flow estimation is one of the topics that represent the pixel motion of
adjacent frame images. Before discuss the optical flow estimation with the event cameras,
we need to introduce the optical flow estimation with the frame cameras first. Because
most of the event-based algorithms are developed based on the frame cameras’ approach.
The first framework for optical flow estimation is proposed by Horn and Schunck (HS) [24],
which uses a variational method to estimate dense optical flow (2.4). The objective can
be seen as a global energy function that is then minimized. Let the image be p = (x, y)T ,
and the underlying flow field is w(p) = [u(p), v(p)]T , where u and v are the optical flow
field. The HS algorithm needs two assumptions:

1. smoothness in the flow over the whole image

2. brightness constancy assumption

With first the assumption, we can have the brightness constancy equation:

I(x, y, t) =I(x+ dx, y + dy, t+ dt)

⇓
∂I

∂x

dx

dt
+∂I
∂y

dy

dt
= −∂I

∂t

(2.1)

Where (dx
dt
, dy
dt

)T is the optical flow (u, v)T , ( ∂I
∂x
, ∂I
∂y

)T and ∂I
∂t

is the spatial and temporal
gradient (Ix, Iy)T and It, so the brightness constancy equation can also be written as:

Ixu+ Iyv + It = 0 (2.2)
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Figure 2.1 – Solution with the brightness constancy constraint

With the Eq. (2.2), we can achieve the first part of the objective function:

min
u,v

[Ixui,j + Iyvi,j + It]2 (2.3)

However, with a single constraint, the solution cannot be determined as shown in the
figure (2.1), the solution lies on a straight line. So, we need to consider the second as-
sumption, smoothness. This assumption requires the optical flow is smooth from pixel to
pixel and the constraint is shown in figure (2.2). Combine the two constraints can the
final constraint function can be written as:

min
u,v

∑
i,j

[Es(i, j) + λEd(i, j)]2 (2.4)

Where Ed is the brightness constancy constraint, and Es is the smoothness constraint:

Ed(i, j) = [Ixui,j + Iyvi,j + It]2

Es(i, j) = 1
4[(uij − ui+1,j)2 + (uij − ui,j+1)2 + (vij − vi+1,j)2 + (vij − vi,j+1)2]

(2.5)

After the HS method, Lucas and Kanade (LK) [37] introduce local constraints and
estimate the sparse flow field following the assumptions:

1. small displacement within the neighbour field

2. approximately constant within a neighborhood of the point under consideration

If we consider a 5 x 5 image patch, 25 equations can be obtained according to the brightness
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optical flowu-componentconstraint

Figure 2.2 – Smooth flow constraint for the u-component of the optical flow

constancy equation in Eq. (2.1):

Ix(p1)u+ Iy(p1)v = −It(p1)

Ix(p2)u+ Iy(p2)v = −It(p2)
...

Ix(p25)u+ Iy(p25)v = −It(p25)

(2.6)

where p1, p2, ..., p25 is the 25 points in the image patch. We can also write the Eq. (2.6)
into the matrix form: 

Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

... ...
Ix(p25) Iy(p25)


u
v

 = −


It(p1)
It(p2)

...
It(p25)

 (2.7)

Then the least squares solution solve is:
∑p∈P IxIx

∑
p∈P IxIy∑

p∈P IyIx
∑
p∈P IyIy

 u
v

 = −
∑p∈P IxIt∑

p∈P IyIt

 (2.8)

Based on the basic methods HS and LK, many improvements and modifications have
been proposed [15], [50], [67], [81]; to solve several significant problems in the model-based
methods: large displacement, occlusion, and illumination change.

In terms of motion analysis, the event-based camera has the potential to achieve better
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performance for this task than the frame-based camera. Because the former captures
motion information while the latter records static absolute pixel value. Also, due to the
high dynamic range and temporal resolution, the event-based camera is free of motion
blur problems and can work in extreme light conditions. Therefore, developing the optical
flow algorithms for the event-based camera is essential. However, event based optical flow
estimation is not without challenges. The “brightness constancy” assumption central to
the classical models of Horn-Schunck and Lucas-Kanade does not hold in event data space.
The deep learning models are also challenging because the event data is asynchronous and
in a format of a tuple.

To overcome the challenges, in this chapter, we will discuss both the model-based and
deep learning-based approaches for optical flow estimation using an event-based camera.
We will first introduce the model-based optical flow algorithm that we adopted in our
model-based object detection and tracking framework. After that, we will propose our
deep learning approach [70], which achieves better performance compared to the state-of-
the-art approach.

2.2 Model-based approach

2.2.1 Related work

In the event-based vision, optical flow algorithms for event cameras have three levels
because of the asynchronous data type. First is the feature level, where optic flow is
estimated only at select parts of the image plane. Second is event masked dense, which
means the optical flow is estimated for each event; for the pixel that does not have event
data, there will have no optical flow estimations. The third is fully dense, where optical
flow is estimated at each pixel.

An early optical flow algorithm was presented by [10], in which the bio-inspired Direc-
tion Selective (DS) filters were used. The Direction Selective filter is based on the Surface
of Active Events (SAE); the SAE means an image in which each pixel contains the times-
tamp of the most recent event at that location. The Direction Selective filter compares the
timestamp of the incoming event to the previous events in the 0◦, 45◦, and 90◦ orientation.
Because the edges of moving object fire neighboring events almost instantaneously, a small
difference in timestamp between neighbors implies an edge, which can be compared to
prior edge detections in the SAE to compute the velocity through time-of-flight. Inspired
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by the [10], [48] proposed a spiking neural network model to simulate several banks of
DS filters. [8] use Direction Selective Gabor filter banks to estimate optic flow and apply
normalization to ameliorate the aperture problem.

However, this method only allows for discretized directions; [3] improved this work by
adapting the famous Lukas-Kanade algorithm. They maintained a histogram of previous
events over a short time window and updated it with subsequent events. The histogram is
used to estimate spatial and temporal gradients, which serve as input to an overdetermined
set of equations based on brightness constancy, which can then be solved for the optic
flow vector by least squares.

[59] further improved this work by providing symmetric gradients using central finite
differences. Since the spatio-temporal derivatives of event images are used, this method is
relatively sensitive to noise. This is because the event images may carry on small values
due to the potentially small number of events triggered by edges and the natural sparsity
of event data. This causes the derivative estimates to be unreliable. To reduce this effect,
[59] employed a Savitsky-Golay filter to smooth the event image.

The following works [4] proposed methods that fit a plane to each event on the SAE
and calculate the local gradient. This gradient is then equivalent to the optical flow of the
event at that location. Since this planar fit only approximates the surface at a given point,
the assumption of constant velocity in the local neighborhood is required. The planar fit
is calculated with the equation: ax + by + ct + d = 0 and requires at least three events
(the event plus the local neighbors).

2.2.2 Adopted Approach

In this section, we will introduce the work of [1] because it can provide accurate dense
optical flow estimations and is naturally synchronized with frame images. This method
will be used in our model-based object detection and tracking framework.

[1] proposed a novel optical flow method that leverages the high spatial fidelity of
synchronous image frames and the high temporal resolution of event data. They compute
the spatial derivative ( ∂I

∂x
, ∂I
∂y

) from frame images as the usual way and calculate the ∂I
∂t

from the event data. Next, we will introduce the details of this approach.
First, let J(x, t) denote a log intensity image sequence:

J(x, t) = log(I(x, t)) (2.9)

35



Part , Chapter 2 – Camera-based Optical flow analysis

Then we can define event data as when the change in log intensity exceeds a predefined
threshold τ :

ti+1(x) = arg min
t
{t > ti

∣∣∣|J(x, ti)− J(x, t)| > τ}

pi+1(x) = sign(J(x, ti+1)− J(x, ti))
(2.10)

Here, the event is in the format of tuple (x, ti+1, pi+1), where x is the position of the
pixel, ti is the precise timestamp of when the event occurs, pi is the polarity indicating
whether the change in the pixel intensity was brighter or darker.

Then, we need to adapt the brightness constancy equation (2.1) to log the brightness
constancy equation by dividing both sides by I(x, t):

∂J(x, t)
∂x

dx

dt
+ ∂J(x, t)

∂y

dy

dt
= −∂J(x, t)

∂t
(2.11)

Given the relations:

(∂J(x, t)
∂x

,
∂J(x, t)
∂y

)T =
(∂I(x,t)

∂x
, ∂I(x,t)

∂y
)T

I(x, t) (2.12)

∂J(x, t)
∂t

=
∂I(x,t)
∂t

I(x, t) (2.13)

If we compute the spatial derivative (∂I(x,t)
∂x

, ∂I(x,t)
∂y

)T from gray images I(x, t) with the
usual way and compute ∂I(x,t)

∂t
from ∂J(x,t)

∂t
, then we can write the brightness constancy

equation as follows:

∂I

∂x

dx

dt
+ ∂I

∂y

dy

dt
= −∂J(x, t)

∂t
· I(x, t) (2.14)

With the equation (2.14), we now are able to calculate the ∂J(x,t)
∂t

with the event
data. Assuming for the moment that log pixel intensity value J(x, t) is known at times
{ti(x)), ti+1(x)), ..., tN(x)}. Assume further that we can recover J(X, t) for an arbitrary
t ∈ R using the Nth degree polynomial interpolation, with the equation:

J(x, t) =
N∑
n=0

cnt
n (2.15)

The coefficients C = (c0, c1, ..., cN) can be obtained from solving a system of equations
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as follows: 
J(x, ti(x))
J(x, ti+1(x))

...
J(x, ti+N(x))


︸ ︷︷ ︸

J

=


1 ti(x)1 . . . ti(x)N

1 ti+1(x)1 . . . ti+1(x)N
... ...
1 ti+N(x)1 . . . ti+N(x)N


︸ ︷︷ ︸

A

·


c0

c1
...
cN


︸ ︷︷ ︸

C

(2.16)

Taking derivative of (2.15) we can get the estimation of the ∂J(x,t)
∂t

:

∂J(x, t)
∂t

=
N∑
n=1

ncnt
n−1 (2.17)

With equation (2.17), we can calculate the ∂J(x,t)
∂t

with the coefficients {c1, ..., cN}. Re-
calling that we have the assumption that J(x, t) is known at times {ti(x)), ti+1(x)), ..., tN(x)},
which is not in practice. Therefore we cannot solve the equation (2.17) directly, and we
need to calculate the coefficients {c1, ..., cN} differently:

With the definition of the event data, we can accumulate the events to recursively
reconstruct J(x, ti+N) from J(x, ti), as follows::

J(x, ti+N) = J(x, ti) + τ
N∑
n=1

pi+n (2.18)

Here, τ is the predefined threshold.

Then, we can rewrite the J as:


J(x, ti(x))
J(x, ti+1(x))

...
J(x, ti+N(x))


︸ ︷︷ ︸

J

=


J(x, ti(x))

J(x, ti(x)) + τpi+1(x)
...

J(x, ti(x)) + τ(pi+1(x) + · · ·+ pi+N(x))



=J(x, ti(x))


1
...
1


︸ ︷︷ ︸

1

+τ


0

J(x, ti(x)) + pi+1(x)
...

J(x, ti(x) + τ(pi+1(x) + · · ·+ pi+N(x)


︸ ︷︷ ︸

P

(2.19)
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With equations (2.16) and (2.19), the coefficients C = (c0, c1, ..., cN) can be computed
as:

C = A−1J = J(x, ti(x))A−11 + τA−1P (2.20)

In Eq. (2.20), A−11 = (1, 0, ..., 0)T , because the first column of A in Eq. (2.16) is 1
as shown in Eq. (2.19). Therefore, the log pixel intensity J(x, ti) has no influence over
{c1, ..., cN}. After all, we can calculate the coefficients {c1, ..., cN} as:


c1
...
cN

 = τA−1+


0

pi+1(x)
...

pi+1(x) + · · ·+ pi+N(x)

 (2.21)

With the calculated ∂J(x,t)
∂t

, we can then obtain the optical flow with the equation
(2.14). This algorithm leverages the high temporal resolution of the event data to compute
the temporal gradient at each frame and exploits the spatial fidelity of frame images to
estimate the spatial gradient, resulting in reliable estimates of motion vectors. We will use
it to provide optical flow estimations in our model based object detection and tracking
framework.

Figure (2.1) shows the optical flow estimation of [1] on various scenarios. The yel-
low arrow is the optical flow estimation, and the red arrow is the reference optical flow
calculated from the Inertial measurement unit (IMU) data according to Eq. (2.22), ignor-
ing the translation. All the flow vectors are downsampled and rescaled for visualization.
The estimations concentrated on the edges and contours of objects where the brightness
changes frequently. Because only the brightness changes, we can obtain enough event data
to estimate the optical flow.

dx

dt
= −ωy + ωzY + ωxXY − ωyX2

dy

dt
= +ωx − ωzX − ωyXY + ωxY

2
(2.22)

where the (ωx, ωy, ωz) is vector of the rotational velocities in radians/second.
In Figure (2.1a,b,c), we can confirm the accuracy of the optical flow by comparing

them with the IMU flow. These three sequences are recorded with only angular motion so
that the IMU flow can provide a trustable reference to the calculated results. We do not

38



2.3. Deep-learning-based approach

calculate the IMU flow in Figure (2.1e,g,i) because there are moving objects in the scene,
and there are many translation motions in the scenes. In the next chapter, the calculated
optical flow will be used in our object detection methods for the event cameras.

Just as Convolutional Neural Network (CNN) reached a new performance for the
frame-based camera, recent works have done the same in event-based vision. So in the
next section, we will propose our own method based on the deep learning approach.

2.3 Deep-learning-based approach

Although many works have already focused on using deep neural networks to estimate
the optical flow for frame images, they cannot directly be adapted to the event-based
vision. There are two main challenges for developing a deep learning-based approach for
the event-based camera. Firstly, the event data is asynchronous and sequential, while the
deep neural networks take the matrix-like data. An extra data preprocessing step is needed
so it can be fed into the neural network. Also, because the event-based camera is new
compared to the traditional sensors, the datasets, especially those with the ground truth,
are insufficient. However, neural network training depends on the quantity and quality of
the dataset. So another challenge is to train the network with less ground truth data.

2.3.1 Related work

For the optical flow with the frame-based camera, Convolutional Neural Network
(CNN) have been successfully used to solve the optical flow problem. Existing archi-
tectures for data-driven methods can be divided into two types: U-Net-based and spatial
pyramid networks.

The first work is proposed by [14] called FlowNet, which has an encoder-decoder
structure similar to the U-Net. Based on this basic encoder-decoder architecture, many
modifications [82], [88], [89] are proposed. [26] successively stack the FlowNet to create
a large network called FlowNet2.0. The accuracy of optical flow estimation is improved
due to the stacked iteration of sub-FlowNet. However, the model size and computation
consumption increased hugely.

[53] first propose a coarse-to-fine spatial pyramid network named SPyNet that can
output optical flow at multiple resolution levels. The main advantage of SPyNet is its
small model size. However, their performance still cannot catch up with FlowNet2.0. The
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(a) checkerboard

(b) classroom

(c) conference room
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(e) KITTI-13 sequence

(g) KITTI-16 sequence
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(i) KITTI-17 sequence

Figure 2.1 – Optical flow estimation of [1] on various scenarios.

SPyNet estimates large motions on the coarse level and warps the second image toward the
first using the up-sampled flow from the previous level. Thus, it only calculates residual
flow at each level. Based on [53], [68] propose a modified spatial pyramid network named
PWC-Net to deal with large displacements and decrease the number of parameters. They
employ feature warping operation rather than image warping at different scale and uses
the cost volume layer to calculate the matching cost at each pyramidal level, and achieves
promising results on several public datasets.

For the event camera, the research can be divided into two categories regarding the
challenges discussed above: Input adaption and Datasets for training.

Input Adaption

For the first problem, there are two categories to adapt the neural network algorithms
to the event-based vision: Spiking Neural Network and encoding the event data to image-
like representation for the traditional convolution neural network. Next, we will give an
introduction to these two methods.

For the first category, the Spiking Neural Network (SNN), inspired by the biological
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event spikes

Σ

Threshold

refractory period

Figure 2.2 – The dynamics of the Leaky Integrate-and-Fire (LIF) neuron model. The input
events are multiplied by the synaptic weight and then combined as the current inflow in the
membrane potential. Whenever the membrane potential reaches the threshold, the neuron
fires an output spike and resets the membrane potential to membrane rest potential.

neuron model, integrate the concept of time into their model. The neurons in the SNN
do not transmit information at each propagation cycle but transmit information when
a membrane potential – an intrinsic state of the neuron related to its current inflow –
reaches the threshold. This mechanism allows them to represent and integrate different
information dimensions such as time, frequency, and phase. So the SNN can naturally
capture the spatio-temporal dynamics of the event data with the precise spike timings
[72]. Due to the different inference mechanisms, the encoding of information through spikes
is still an open issue. The Leaky Integrate-and-Fire (LIF) model is one of the popular
spiking neuron models [28], which can be characterized by an internal state known as the
membrane potential. The membrane potential accumulates the inputs over time and emits
an output spike whenever it exceeds a set threshold. This mechanism naturally matches
the event-based asynchronous data, which also has a precise timestamp. The LIF neuron
model can be defined by the following equation:

τm
dvm
dt

= −(vm(t)− Er) +RmI(t) (2.23)

where vm(t) is the membrane potential, τm is the membrane time constant, Er is the
membrane rest potential which is a constant, Rm is the membrane resistance, and I(t)
is the sum of current supplied by the input synapses. The sum of current is then can be
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calculated by:

I(t) = W · S(t) (2.24)

where W = [w1, w2, ..., wN ] are the weights for the synapses connection. S(t) =
[s1(t), s2(t), ..., sn(t)] is the input spike like the event data.

si(t) =
∑

(x,y,p)
δ(t− t(x,y,p)i ) (2.25)

where t(x,y,p)i is the timestamp of the event at position (x, y) with polarity p.
The Leaky Integrate-and-Fire (LIF) model shows that the spiking neural network

naturally fits the event data format. The spike generation function of an LIF neuron is
a hard threshold function that emits a spike when the membrane potential exceeds a
firing threshold. Due to this discontinuous and non-differentiable neuron model, standard
backpropagation algorithms cannot be applied to SNN in their native form. Hence, several
approximate methods [30], [32] have been proposed to estimate the surrogate gradient of
the spike generation function. For the optical flow estimation using SNN, [51] presented a
methodology for optical flow estimation using convolutional SNN based on Spike-timing-
dependent plasticity (STDP) unsupervised training [13]. The problem of this work is that
they employ shallow SNN architectures because deep SNN needs to improve performance.
Also, the experiment results are only evaluated on relatively simple tasks. [32] have shown
that the number of spikes vanishes at deeper layers, leading to performance degradations
in deep SNN. [31] try to solve this problem by proposing a deep hybrid neural network
architecture called Spike-FlowNet. However, the training of the Spiking Neural Network
still needs to be faster and more stable.

For the second category, there are also several works that train a traditional neural
network to process the event data by transforming the events into a grid-based repre-
sentation. [92] summarize the number of events at each pixel and the last timestamp
and average timestamp at each pixel into an image-like matrix. Then, they calculate the
optical flow using an encoder-decoder network as shown in figure (2.3). However, this en-
coding method loses the information because of its way of summarization. [93] proposed
the following work and tries to solve this problem by adopting a bilinear sampling kernel
and using more channels for the event image so the temporal resolution increases, but
their method relies on depth and ego-motion. [83] adopted the same encoding method.
However, they estimate the optical flow via depth and ego-motion and assume the scene
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is static.

Resiudal
block

Resiudal
block

Encoder3

Encoder4

Decoder3

Decoder1 Flow1/depth1

Flow2/depth2Concat Decoder2

Concat Flow3/depth3

Decoder4Concat

Concat Flow4/depth4Encoder1Input

Encoder2

Decoder

Pose estimation

Figure 2.3 – Network structure of the [93].

Datasets and training

The second problem is the lack of datasets, especially those with ground truth. There
are two ways to overcome this problem: record the dataset and generate the ground truth
with the help of the Lidar and the frame camera or use a self-supervised training strategy.

For the event based optical flow dataset, [92] proposed the MVSEC dataset. They
computed ground truth optical flow from Lidar odometry and mapping for the outdoor
scenes. However, the ground truth quality is impaired by the lack of proper handling of
occlusions and moving objects. To solve this problem, [20] proposed the DSEC dataset.
They use stereo matching filtering to remove the Lidar points on moving objects. Fur-
thermore, to ensure accurate optical flow ground truth, they manually inspect the whole
dataset and extract all parts of sequences that contain static environments.

For the self-supervised training, [31], [92] use a self-supervised loss based on gray
images to replace ground truth. [93] presents an unsupervised learning approach using
only event camera data to estimate optical flow by accounting for motion blur in the
event image and then learning to rectify the motion blur.
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Contributions

The main contribution of this chapter is to propose a new encoding method and the
corresponding neural network architecture to process an event data stream. We proposed a
3D encoding representation that can better preserve the temporal nature of the event data.
We also present the 3D-FlowNet, a novel neural network architecture that can process
the 3D input and generate optical flow estimations. Finally, we train and evaluate the
proposed 3D-FlowNet using the Multi Vehicle Stereo Event Camera Dataset (MVSEC)
[91]. The results show that our approach outperforms current state-of-the-art methods;
we achieve 13% improvement compared to the Spike-FlowNet [31], and 32% compared to
the EV-FlowNet [92].

2.3.2 Proposed Approach

In this section, we explain our approach in detail. We first explain our event encoding
method, which encodes a group of event measurements into a 3D temporal-spatial event
image. Then, we describe the architecture of our network, which uses 3D convolutions to
process the spatial-temporal measurements and output the pixel-wise optical flow. Finally,
we describe our training strategy, and the self-supervised loss is also discussed, this work
has been published in [70].

Event Data Encoding Method

The event-based camera records the log intensity change of each pixel of the artificial
retina and generates an event whenever the log intensity changes over the threshold θ:

log(It+1)− log(It) ≥ θ (2.26)

The event measurement is in the format of a tuple, which consists of the location of the
pixel, timestamp of the event, and polarity of the change:

e = (x, y, t, p) (2.27)

Because the events are transmitted asynchronously, they cannot be immediately fed
into standard convolutional neural network layers. It is therefore important to keep the
necessary information while generating the encoding representation from the event stream.
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Several prior works have proposed different methods that transform the event out-
put into a synchronous image-like representation. In EV-FlowNet [92], only the latest
pixel-wise timestamps and the event counts are used to encode the event representation.
However, fast motions and dense scenarios can enormously overlap per-pixel timestamp
information. In [66], [93], the time domain is discretized to preserve the temporal distri-
butions. To improve the resolution and the temporal domain beyond the number of bins,
the authors insert events into this volume using a linearly weighted accumulation similar
to bilinear interpolation. However, the number of input channels increases significantly
as the time dimensions are finely discretized, further increasing the computation time for
encoding and forward propagation.

Considering all the methods discussed before, we propose in this work, a novel input
representation that can better exploit the information in the event data with less com-
putation complexity. Given a set of N input events EN = (xi, yi, ti, pi), i ∈ [1, N ], and a
time depth D to discretize the time dimension of event data, we accumulate each group
of event into images as follows:

tnorm = (t− t0)/(tN − t1) ∗ (D − 1)

I(x, y, t, p) =
∑
i

δ(p− pi)kb(x− xi)kb(y − yi)kb(t− tnorm)

kb(a) = max(0, 1− |a|)

(2.28)

Here, (x, y) denotes the position of the event, p is the polarity of the event, and δ is the
Kronecker delta operator. kb(·) denotes bi-linear sampling kernel. The generated event
image I is a (2, D,H,W ) matrix, where the number 2 represents the positive and negative
polarity, D is the discretized time depth, and (H,W ) are respectively the height and
width of the image. Then we split the event image into former and latter groups through
the time dimension and obtained a new event image with the shape of (4, D2 , H,W ).
Here the number 4 represents the four channels: Former positive events, former negative
events, latter positive events, and latter negative events. Figure (2.4) shows the proposed
input representation. Figure (2.4a) is the visualization of the event image and the relative
grayscale image, left is one slice of the event image, and the brighter represents the more
recent timestamp value. Figure (2.4b) is an example of the event representation where
D = 4.
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(a) Example of an event image and a gray scale image

Former Events Latter Events Time

Positive Events

Negative Events

(b) four channels for event data

Figure 2.4 – Visualization of our event encoding representation. (a) is one slice of the
event image Islice = (1, 1, H,W ), and the brighter represents the more recent timestamp
value. (b) is an example of the event representation where D = 4.

Proposed Network Architecture

With the input representation I4,D/2,H,W discussed before, we propose the 3D-FlowNet
architecture to predict the optical flow values. The 3D-FlowNet’s network adopts an
encoder-decoder architecture, containing four encoder layers, two residual blocks, and four
decoder layers as shown in figure (2.5). First, the input event image is passed through two
3D-encoders. The 3D-encoders down-sample the time dimension d/2 to 1, and compress
the 3D input into 2D ((4, D/2, H,W ) → (4, 1, H,W ) → (4, H,W )). Then the resulting
activation are passed through two 2D-encoders, two residual blocks, and four 2D-decoders.
For each decoder, the activation is up-sampled using the 2D transposed convolution and
then convolved, to obtain the final optical flow estimation.

There is a skip connection from each encoder to the corresponding decoder. For the skip
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encoder-conv3d

encoder-conv2d

decoder-conv2d

concatenation

Figure 2.5 – Network structure of the 3D-FlowNet.

connection between 2D-encoder and 2D-decoder, the activation of the encoder is directly
concatenated with the intermediate optical flow value and the activation of decoder. For
the skip connection between 3D-encoder and 2D-decoder, the 3D activation (C × D ×
W ×H) is flattened into 2D tensor ((C ·D)×W ×H) first, then it can be concatenated
with the activation of the decoder and the intermediate optical flow. The predicted optical
flows are then used together with the grayscale image for the loss calculation.

The details of the 3D-FlowNet are shown in figure (2.6). Red rectangle denotes the 3D
convolutional modules, where [3DConv,a,b,c,(d1, d2, d3), e] denotes a 2D convolutional
layer with the kernel size a, stride b, output channel c, padding size (d1, d2, d3) and
normalization layer e (BN is Batch Normalization). The green rectangle denote the 2D
convolutional block, where [2DConv,a,b,c,(d1, d2), e] denotes a 2D convolutional layer
with the kernel size a, stride b, output channel c, padding size (d1, d2) and normal-
ization layer e. Orange rectangle denote the transpose 2D convolutional block, where
[2DConvT,a,b,c,(d1, d2), e] denotes a 2D transpose convolutional layer with the kernel
size a, stride b, output channel c, padding size (d1, d2) and normalization layer e. The
blue rectangle represent ResBlock.

Self-Supervised Loss

The event-based camera is a sensor that can produce synchronous grayscale images
and asynchronous event data streams simultaneously. Compared to frame-based cam-
era datasets, the number of available event-based camera datasets with annotated la-
bels suitable for optical flow estimation is relatively small. As a result, for training our
Spike-FlowNet, we used a self-supervised learning method that uses proxy labels from the
recorded grayscale images [42], [85].

The total loss consists of a smoothness loss (Lsmooth) and a photometric reconstruction

49



Part , Chapter 2 – Camera-based Optical flow analysis

3DConv, 3, 2, 64, (2,1,1), BN

3DConv, 3, 2, 128, (2,1,1), BN

3DConv, 3, 2, 256, (0,1,1), BN

2DConv, 3, 2, 512, (0,0), BN

ResBlock-512

2DConvT, 4, 2, 256, (1,1), BN

2DConvT, 3, 2, 256, (1,1), BN

2DConvT, 3, 2, 128, (1,1), BN

2DConvT, 3, 2, 128, (1,1), BN

2DConv, 3, 1, 32, (0,0), BN

2DConv, 1, 1, 2, (0,0), BN

Optical Flow

Figure 2.6 – The details of the 3D-FlowNet
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loss (Lphoto) [85]. The network needs a pair of grayscale images (It, It+∆t) to calculate the
photometric loss, as well as the event data in the time window (t, t + ∆t). The second
grayscale image is warped to the first grayscale image using the network’s predicted optical
flow. The photometric loss (Lphoto) is used to minimize the difference between the first
grayscale image and the inversely warped second grayscale image. This loss is based on the
photometric consistency assumption, which states that a pixel value from the first image
will be similar to the second frame warped by the predicted optical flow. The photometric
loss can be written as:

Lloss(u, v, It, It+∆t) =∑
x,y

ρ(It(x, y)− It+dt(x+ u(x, y), y + v(x, y))) (2.29)

Then, the smoothness loss is adopted to improve the spatial consistency of neighboring
optical flow. It is calculated as:

Lsmooth =
∑
i

∑
j

(||ui,j − ui+1,j||+ ||(ui,j − ui,j+1||+

||(vi,j − vi+1,j||+ ||(vi,j − vi,j+1||)
(2.30)

The total loss for the training is computed as the weighted sum of the photometric
and smoothness loss:

Ltotal = Lphoto + λLsmooth (2.31)

where λ is the weight factor.

2.3.3 Experiments

Dataset and Implementation Details

The MVSEC dataset [91] is used for training and evaluating optical flow predictions.
The MVSEC dataset contains stereo event-based camera data, including flying, driving,
and handheld scenes. Moreover, the dataset provides ground truth poses and depth maps
for each event-based camera, and the ground truth optical flow can be generated accord-
ingly. To offer fair comparisons with prior works [31], [92], only the outdoor day2 sequence
is used for training.

During the training, the input is centrally cropped to 256 × 256 size. The ADAM
optimizer is used, and the initial learning rate of 1e-4. The model is trained for 30 epochs
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with a batch size of 16, while [31] takes 100 epochs. This is because the training of the
ANN is faster and more stable than the SNN one.

Results

Here, the Average End-point Error (AEE) is used to evaluate the optical flow result,
and it is defined as:

AEE = 1
n

∑
n

‖(u, v)pred − (u, v)gt‖2 (2.32)

Table 2.1 – Quantitative assessment of our approach compared to EV-FlowNet and Spike-
FlowNet

outdoor day1 indoor flying1 indoor flying2 indoor flying3
AEE ↓ Outlier ↓ AEE ↓ Outlier ↓ AEE ↓ Outlier ↓ AEE ↓ Outlier ↓

EV-FlowNet [92] 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9
Spike-FlowNet [31] 0.49 - 0.84 - 1.28 - 1.11 -

Ours 0.51 0.1 0.7 0.1 1.10 0.2 0.91 0.1

Where n is the number of the active pixel in the event image, (u, v)pred is the predicted
optical flow and (u, v)gt is the groundtruth. We also count the outliers that corresponds
to the percentage of points with AEE exceeding three pixels. For each sequence, the
AEE is calculated in pixels, and the %Outlier is defined as the percentage of points with
AEE < 3 pix. During the testing, the optical flow is also estimated on the centrally
cropped 256× 256 event images. The sequences of indoor flying 1,2,3 and outdoor day 1
are used. We use all events from the indoor_flying sequences and take events within 800
gray scale frames for the outdoor_day1 sequence similar to [31].

Table (2.1) show the results of the AEE evaluation in comparison to previous event-
based camera-based optical flow estimation approaches. Our approach achieves better
performances than the others in all the indoor_flying sequences. Our AEE performance
is similar to the others in the outdoor_day1 sequence, but we obtain fewer outliers.

Figure (2.6) shows the qualitative results of our approach. The grayscale, event image,
ground truth flow, and corresponding predicted flow images are displayed in this figure.
Notice that the estimated optical flow is less dense than the ground truth. In the evalua-
tion, we mask out the optical flow at points where the event data are absent. The masked
optical flow is used here because event-based cameras detect the brightness change in
pixels. Low texture regions, such as flat surfaces, produce very few events due to fewer
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(d) indoor flying3

Figure 2.6 – Visualization of the optical flow estimation.
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brightness changes, resulting in few optical flow predictions in the corresponding areas.
The results show that 3D-FlowNet can predict optical flow accurately in both indoor and
outdoor day1 sequences. Since we only trained our network on the outdoor sequence, this
proves that the proposed 3D-FlowNet generalizes well to a variety of environments.

2.4 Discussion

This chapter introduces the optical flow estimation for event-based vision. We first
present a model-based approach used in our object detection and tracking framework.
Then we propose our deep learning-based approach. In contrast to previous works, we
keep the 3D structure of the event data and use the 3D convolution module to process
and squeeze it. The results show that our method can provide more accurate optical flow
estimation compared to the state-of-the-art approaches, 13% improvement compared to
the Spike-FlowNet [31], and 32% compared to the EV-FlowNet [92].

Compared to the model-based approach, deep learning-based approaches do not re-
quire complex modeling procedures. Thay can be easily adapted to different tasks, while
the model-based approach still requires extra modeling processes. This advantage is shown
in the following chapters; our model-based object detection and tracking framework re-
quire modeling all the problems, such as object detection and sensor fusion. But with the
deep learning-based approach, we can quickly realize object detection by adding a detec-
tion head and sensor fusion by stacking the tensors. However, the model-based approach
is easier to analyze the performance and problems of the system. So it is still worth de-
veloping the model-based approach. In the following two chapters, we will introduce our
model-based and deep-learning-based approaches for object detection and tracking.
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Chapter 3

MODEL-BASED OBJECT DETECTION

AND TRACKING WITH A FUSION OF

EVENT-BASED CAMERA AND

FRAME-BASED CAMERA

3.1 Introduction

After we successfully extract the motion information from the event data by calculat-
ing the optical flow, we can then use it for our object detection and tracking task. Object
tracking is an essential task within the field of autonomous vehicles and it as been widely
addressed in the computer vision community. The extensive use of high-powered com-
puters, the availability of high-quality and inexpensive video cameras, and the increasing
need for automated video analysis within autonomous vehicles applications, have gener-
ated significant interest in object tracking algorithms.

In the camera space, the tracking problem can be defined as estimating the trajectory
of objects in the image plane as it moves around a scene. In other words, a tracker assigns
consistent labels to the tracked objects in different video frames. Additionally, depending
on the tracking domain, a tracker can also provide object-centric information, such as
the orientation, speed, or type of the object. Tracking objects can be complex due to the
limitation of the sensors and algorithms. During the tracking process, random numbers
of objects can birth and die at any time. Crowded objects can increase the complexity
of the data association. The occlusion problem will lead to wrong motion estimation and
downgrade the performance of the tracking. Apart from the modeling problems, the noise
from the camera will further increase the difficulty of tracking. The noise detection will
create false tracks, and the missing detection could lose current tracks.
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3.1.1 Related work

For event-based vision, most research focused on feature detection and tracking rather 
than object detection and tracking. Earlier methods to object tracking assumed a priori 
user-defined c ontours, w hich w as s hown i n s everal w orks [ 22], [ 46], [ 47]. For instance,
[46] forms event images in which an exponential function decays the value of each pixel 
with time as the parameter. The classic Iterative Closest Point (ICP) algorithm is then 
used to match a pre-defined contour to the event images and realize object detection and 
tracking. Those methods simplify the detection and tracking problem by integrating a 
priori knowledge into the system; however, they have very limited use cases.

More generic tracking was proposed by [57], [77] by adapting proven algorithms from 
conventional computer vision. [57] used Harris corner detection, and [77] used the tradi-
tional Kanade–Lucas–Tomasi feature tracker (KLT) onto the computed event images.

[74] developed a high-temporal tracking algorithm with a fusion of the event and frame 
cameras. They used principled arguments of event data generation to justify the choice 
of relevant features and proposed a pipeline to extract features from the frame images. 
Then, an event-based tracking algorithm is used for feature tracking.

For the multi object tracking, algorithms that are based on Random Finite Sets (RFS) 
have been popular recently [63]. The RFS theory is proposed to model the Multi-Object 
Tracking (MOT) problems; it is the mathematically simplest version of point process 
theory [40]. It provides a carefully constructed practitioners’ toolbox of explicit, rigorous, 
systematic, and general procedures. Among the family of MOT algorithms based on RFS, 
the Poisson multi-Bernoulli mixture (PMBM) is the state-of-art MOT algorithm [18], 
which has better performance than the cardinalized probability density (CPHD) filters and 
the generalized labeled multi-Bernoulli (GLMB) [78], [80]. The other competitors extract 
appearances of the objects from the image and achieve better association performance 
[79]. But the extraction requires an extra model, which will increase the complexity of the 
tracking algorithm, especially with multiple sensors.

3.1.2 Contributions

This chapter’s main contribution is an object tracking framework [71] that combines 
both Event-based camera and Frame-based camera information. This framework uses the 
event camera to add robustness in the frame camera in poor light conditions or fast mo-
tion environments. We present a novel density-based clustering algorithm, called Spatial-
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Temporal-Flow-Density-Based Spatial Clustering of Applications with Noise (STF-DBSCAN)
for the detection based on event data. We proposed a tracking approach that uses a hy-
bridisation of the event-based camera and frame-based camera processing, and this is the
first approach that uses the event camera to assist the frame-based camera in tracking
objects. The presented object tracking algorithms have three components: detector, fu-
sion strategy, and Poisson multi-Bernoulli mixture (PMBM) filter . The detector using
the event camera data is based on a clustering algorithm that makes use of the position,
timestamp, and optical flow of the event data (calculated with the model-based optical
flow estimation approach described in the chapter 1). For the frame image, we adopt an
deep learning model (RetinaNet, [34]) and obtain the bounding box as the detection. Since
the form of detection from the two sensors are different, and redundant measurements can
reduce the Signal-to-noise ratio (SNR), a fusion strategy is needed to unite the detection
and remove the redundant measurements. This work has been published in [71]

3.2 Proposed Approach

3.2.1 Basic Concepts and Algorithm Overview

Event-based camera Clusters

Clustering
Algorithms

Deep Learning

Multi-Object tracking

Enhanced Measurements

PMBM FilterFusion

Frame-based camera Bounding Box

Figure 3.1 – Diagram of our approach.

Our framework aims to achieve more robust object tracking with a hybrid of event
data and frame images. For the frame image, there are plenty of algorithms for reliable
and stable object detection. But in the extreme lightning conditions, the quality of the
frame image can be poor. The event camera can be used to fix the problem because of its
high dynamic range. Figure (3.1) is the diagram of our approach, the clusters from the
event camera and the detection (bounding box) from the frame camera are fused into the
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final detection, and a PMBM filter is used for the final tracking.
The problem tackled in this paper is the processing of image sequence Itk and the

groups of event data etk = [e1, e2, ..., em] into a set of estimated tracks of objects X̂k =
{x1

tk
,x2

tk
, ...,xn

tk
}, as shown in Eq. (3.1),

 I0, I1, ..., Itk

e0, e1, ..., etk
=⇒ X̂0, X̂1, ...X̂k (3.1)

here Itk denotes the frame image at time tk, etk represents a group of event data within
the temporal window [tk −∆t, tk + ∆t] of time tk. The object is represented by the state
vector:

x = [x, y, ẋ, ẏ] (3.2)

where (x, y) is the location of the object, (ẋ, ẏ) is the speed of object. Correspondingly,
the measurement vector is:

z = [xz, yz, wz, hz, conf ] (3.3)

where (xz, yz) is the measured location of the object which is the top-left point of the
bounding box, (wz, hz) is the width and height of the bounding box, and conf is the
confidence indicator of the measurement. The quantity Z = {z1, z2, ...,zn} is called the
measure set.

For the frame image, the detection is in the form of a bounding box b = [x1, y1, w, h],
and the top-left point p = (x1, y1) is used as the object location. For the event-based
camera, the detection is in the form of the clusters c = {e1, e2, ..., ek}. There are two type
of sensors in our framework, the fusion strategy is required to generate the final enhanced
measurements set Zk = Zc

k

⋃
+ Z1

k

⋃
+ · · ·⋃+ Zn

k , where Zc
k,Z1

k · · ·Zn
k are independent sets and

symbol ⋃+ stands for disjoint union, represent that Zc∪Z1∪ ...∪Zn = Z and Zc,Z1, ...,Zn

are mutually disjoint (and possibly empty). Zc
k is the set of clutter measurements, Zi

k is
the set of measurements produced by target i at time k. After that, the PMBM filter will
take measurement Zk as input and output the tracks X̂k. Next, we will introduce our
object detection method with the event-based camera.

3.2.2 Object Detection

In this section, we describe how to generate object detection with event data. We first
use the optical flow algorithm [1] describe in the previous chapter to generate optical flow,
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and then we propose the STF-DBSCAN method to cluster the event data into detections
based on the events and their corresponding optical flow. For the object detection with
frame-based camera, there has been exponential growth with rapid development of new
tools and techniques [86], so in our framework, we use RetinaNet to generate bounding
box as detection, and the details are in [34].

ST-DBSCAN is an extension to DBSCAN for clustering spatial-temporal data [6],
it uses two distance parameters (εs, εt) to measure the similarity of data according to
their spatial and temporal attribute. The raw event data is just spatial-temporal data
that can use the ST-DBSCAN. However, it is not suffgicient to only consider the spatial-
temporal information. Suppose there are two objects that stand closely and move in a
different direction simultaneously, the optical flow is different between the two objects but
the ST-DBSCAN will consider the two objects as one object. Therefore, we propose the
STF-DBSCAN, to measure the similarity of spatial, temporal and motion information.

In order to support three dimensions, we use (εs, εt, εof ) to measure the similarity
of spatial, temporal and optical flow, respectively. For event data we have (x, y, u, v, t),
which denotes the location, optical flow, and timestamp respectively. Two points will be
considered as neighbours only when the three conditions are met at the same time:

√
(x1 − x2)2 + (y1 − y2)2) < εs

|(t1 − t2)| < εt√
(u1 − u2)2 + (v1 − v2)2 < εof

(3.4)

The algorithm of our STF-DBSCAN is shown in algorithm 1. The input of the algorithm
is a set of event data and their optical flow: ek = {e1, e2, ..., em}, where em = (x, y, t, u, v).
(x, y) is the location of the event, t is the timestamp and (u, v) is the optical flow of the
event. The parameters of the algorithm are (εs, εt, εof ,minPts,∆ε). The minPts is the
required minimum number of points that a new cluster can be created and the ∆ε is the
threshold value to merge a cluster. The output is the label for all the event points. First,
the algorithm will pick one point and find all the neighbours of this point. If the number
of neighbour points exceed the threshold minPts, this point is a core point and a cluster
is formed. For the newly created cluster, we will expand it using a chain rules. If there is
another core point in the cluster, we will try to merge the new cluster into the previous
cluster as shown in lines 12-23 of Algorithm 1.

In the next section, we will introduce the fusion strategy between the detection of event
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Algorithm 1 STF-DBSCAN
Input: ek, εs, εt, εof ,minPts,∆ε
Output: labels
1: for em in ek do
2: if labelm undefined then
3: Neighbors = find_neighbor(em, εs, εt, εof )
4: if |Neighbors| < minPts then
5: labelm = noise
6: continue
7: end if
8: labelm ← next cluster label
9: for p in Neighbors do
10: labelp = labelm
11: end for
12: cluster = push(point in Neighbors)
13: while cluster is not empty do
14: point = cluster.pop()
15: Neighborsp = find_neighbor(point, εs, εt, εof )
16: if |Neighborsp| > minPts then
17: for q in Neighborsp do
18: if (labelq 6= noise or labelq) undefined and distance(clusterAvg, q) < ∆ε

then
19: labelq = labelm
20: end if
21: end for
22: end if
23: end while
24: end if
25: end for
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camera and frame camera, the details about the PMBM filter will also be discussed.

3.2.3 Fusion strategy

After obtaining the clusters, we propose a fusion strategy to hybrid the detection
from the frame image and clusters from the event data. The fusion strategy is shown in
Algorithm 2. The input are the bounding boxes Bk of the frame image and the clusters Ck
from event data. The output is the enhanced measurement set Zk. First, we generate the
bounding box Bek for the clusters Ck. After that, we calculate the Intersection over Union
(IoU) of each pair of the bounding boxes between the Bek and Bk. If the IoU is greater
than the threshold ε, then the two bounding boxes are paired, and the two measurements
are merged.

Algorithm 2 Fusion clusters and Detections
Input: Ck,Bk
Output: Enhanced measurements Zk

1: Generate bounding box matrix Bek for event clusters Ck
2: for b in Bk, be in Bek do
3: if IoU(b, be) ≥ ε then
4: Zk(·) = [x, y, w, h, 2]
5: Bek.pop(be)
6: Bk.pop(b)
7: end if
8: end for
9: for b in Bk do

10: Zk(·) = [x, y, w, h, 1]
11: end for
12: for be in Bek do
13: Zk(·) = [x, y, w, h, 0]
14: end for

In order to reduce noise detection, the enhanced measurements need a label to indicate
the confidence of detection. If the detection is from the frame camera and the event
camera together, which means the detection from the two sensors are paired, then the
measurement will be labeled with ’2’ considered as high confident detection. The detection
of the frame camera will be labeled with ’1’, and the detection from the event camera
is considered as low confident detection and marked with ’0’. Next, we will discuss the
details of the implementation of the PMBM filter.
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3.2.4 PMBM filter

The PMBM filter [18] is a multi-object tracking algorithm based on the Bayesian filter
framework with Random Finite Sets (RFS). In the standard framework for target tracking,
we have a single target state x ∈ Rnx (in our case x = [x, y, ẋ, ẏ, w, h] as defined before),
and a multi-target state X ∈ F(Rnx), where X is a set whose elements are single target
state vectors and F(Rnx) denotes the space of all finite subsets of Rnx . In the update
step, the state is observed by measurements that are represented as a set Z ∈ Rnx . Given
a prior multi-object density f(·) and the multi-object likelihood l(Z|X), the posterior
multi-target density of X given the observation Z according to the Bayes’ rule:

q(X) = l(Z|X)f(X)
ρ(Z) (3.5)

where ρ(Z) is the normalising constant is:

ρ(Z) =
∫
l(Z|X)f(X)δX

∞∑
n=0

1
n!

∫
l(Z|x1,x2, ...,xn)× f({x1,x2, ...,xn}){x1,x2, ...,xn}

(3.6)

The Bayesian filtering recursion then can be obtained with the prediction step.

p(Xt+1) =
∫
κ(Xt+1|Xt)q(Xt)δX (3.7)

where Xt+1 ∈ denotes the state at the next time step and κ(Xt+1|Xt) is the transition
density of the state given the state X. Figure (3.2) is the diagram of the Bayesian filtering
recursion. For each time step, we start with the posterior density of previous step q(Xt).
After the prediction step, we obtain the prior density at the next time step p(Xt+1). With
the measurement Zt+1 and update step, the posterior density of next step q(Xt+1) can be
obtained. For each time step, the hypothesis that has biggest weight will be extracted as
the track.

With the Bayesian equation, we still need to derive the likelihood l(Z|X) and multi-
object density f(X). For the likelihood l(Z|X) in the Bayesian filtering recursion: given
the set X of targets, the set Z of measurements as defined before. The likelihood density
can be written as:

l(Z|{x1, ...,xn}) = e−λc
∑

Zc

⋃
+ Z1

⋃
+ ...

⋃
+ Zn=Z

[c(·)]Zc
n∏
i=1

l̂(Zi|xi) (3.8)
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Prediction
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Figure 3.2 – Overview of the PMBM filter.

l̂(Z|x) =


pd · p(z|x) Z = {z}

1− pd Z = ∅
0 |Z| > 1

(3.9)

where l(Z|X) is the density of measurement set Z given target X and l̂(Z|x) is the density
of measurement set Z given target x; λc =

∫
c(z)dz and [c(·)]Z = ∏

z∈Z c(Z), [c(·)]∅ = 1.
For the set of measurements produced by ith object Zi, we get Zi = ∅ with probability
1 − pd, which corresponds to the case where the target is not detected, and Zi = {z}
where z has a density p(z|xi) with probability pd, which corresponds to the case where
the target is detected. The equation (3.8) means that given the Z, we go through all
the possible sets Zc,Z1, ...,Zn that meet the requirement Zc

⋃
+ Z1

⋃
+ ...

⋃
+ Zn = Z. In other

words, each term of the sum considers a measurement-to-object association hypothesis.
Figure (3.3) is an example of the association hypothesis when there are two measurements
{z1, z2} and n = 1. Note that the hypothesis that assigns multiple measurements to one
object will have zero probability. So the first hypothesis will be removed from the sum.

Due to the computation limitations, we still need to develop the approximation of the
multi-object density. The PMBM filter is the state-of-the-art approximation, which uses
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4 hypothesis

1 2 3 4

Figure 3.3 – Example of the association hypothesis.

the Poisson distribution representing the birth of targets and the multi-Bernoulli mixture
representing the tracks. The PMBM density can be defined as:

f(X) =
∑

Y
⋃
+ W=X

fp(Y)fmbm(W) (3.10)

where fp(·) is a Poisson density and fmbm(·) is a multi-Bernoulli mixture. The Poisson
fp(·)can be written as:

fp(X) = e−
∫
λ(x)dx[λ(·)]X (3.11)

where the λ(·) is the birth intensity, [λ(·)]X is set power, defined as [λ(·)]X = 1 if X = ∅
and [λ(·)]X = ∏

x∈X λ(x) if X 6= ∅.
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The multi-Bernoulli mixture has multiplicative weights is defined as:

fmbm(X) ∝
∑
j

∑
X1
⋃
+ ···
⋃
+ Xn

n∏
i=1

wj,ifj,i(Xi) (3.12)

where ∝ stands for proportionality, j is an index over all global hypotheses (components
of the mixtures), n is the number of potentially detected targets and, wj,i and fj,i(·) are
the weight and the Bernoulli density of potentially detected target i under the jth global
hypothesis. The Bernoulli densities have the expression:

fj,i =


1− rj,i X = ∅
rj,ipj,i(x) X = {x}

0 otherwise

(3.13)

where rj,i is the probability of existence and pj,i(·) is the state density given that it exists.
If there is only one mixture component in the multi-Bernoulli mixture in equation 3.12 (j
= 1), we can obtain a multi-Bernoulli density:

fmb(X) =
∑

X1
⋃
+ ···
⋃
+ Xn

n∏
i=1

f1,i(Xi) (3.14)

This derivation indicates that a new Bernoulli component should be created for each new
measurement, where its existence corresponds to the possibility that the measurement is
the first detection of a new target, and non-existence corresponds to the case that the
measurement is a false alarm or it corresponded to a different, previously detected object.
Also, we assume one object can create at maximum one measurement, so the number of
potentially detected objects corresponds to the number of measurements up to the current
time. The weight of global hypothesis j is proportional to the product of the hypothesis
weights ∏n

i=1wj,i for the n potentially detected targets. If a potentially detected target i is
not considered in the global hypothesis j, which means that its originating measurement
was assigned to another object, the wj,i = 1 and the probability of existence of fj,i(·) is
zero.

With the Eq. (3.10) and (3.12), we can have:

f(X) ∝
∑

Y
⋃
+ X1

⋃
+ ···
⋃
+ Xn=X

fp(Y)
∑
j

n∏
i=1

wj,ifj,i(Xi) (3.15)
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Note that, given X, Xi can be either empty or a single element set (otherwise, its density
fj,i(·) is zero) and Y can have any cardinality within the constraint Y⋃

+ X1
⋃
+ · · ·⋃+ Xn =

X.

After we obtain the approximation of the multi-object density, we still to give the def-
inition of the transition density and likelihood density in the Bayesian filtering recursion.

κ(Xt+1|Xt) =



1 Xt+1 = ∅,Xt = ∅
1− ps Xt+1 = ∅,Xt = {xt}

ps × π(xt+1|xt) Xt+1 = {xt+1},Xt = {xt}
0 otherwise

(3.16)

Here, ps is the survival possibility and π(xt+1|xt) is the single object motion model.
According to the Eq. (3.16), if the target “dies” (Xt+1 = ∅,Xt = {xt}), then the entire
trajectory will no longer be a member of the set of current trajectories. If the target
survives, then the trajectory is extended by one time step. For the single object motion
model, we use constant velocity motion model. Given the object state described, we can
define the motion model as:

xt = xt−1 + dt · ẋt−1

yt = yt−1 + dt · ẏt−1

ẋt = ẋt−1

ẏt = ẏt−1

(3.17)

Note that we use the Poisson distribution representing the birth target and the multi-
Bernoulli mixture representing the tracks. So, for the likelihood density, we first give the
update for a Poison prior using the likelihood in Eq. (3.8), For Z = {z1, ...,zm}, we can
write the likelihood (5) as:

l({z1, ...,zm}|X) = e−λc
∑

U
⋃
+ Y1

⋃
+ ...

⋃
+ Ym=X

[1− pd]U
m∏
i=1

l̂(zi|Yi) (3.18)

l̂(z|Y) =


pd × p(z|y) Y = {y}

c(z) Y = ∅
0 |Y| > 1

(3.19)

Eq. (3.18) means that we decompose the set X of targets into all possible sets U,Y1...Ym
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with the constraint that U⋃
+ Y1

⋃
+ ...

⋃
+ Ym = X. U represents the undetected targets and

Yi represents the object that generate ith measurement, which can be a single-element set
containing the state of the object that gave rise to the measurement, or an empty set if
the measurement is clutter. This is a different but equivalent way of expressing the data
association hypotheses considered in Eq. (3.8).

For the likelihood representation for the for the Bernoulli component, we have

lb(Z|Y,X1, · · · ,Xn) =
∑

Zy

⋃
+ Z1

⋃
+ ...

⋃
+ Zn=Z

l(Zy|Y)×
n∏
i=1

t(Zi|Xi) (3.20)

t(Zi|Xi) =



pd × l(z|x) Xi = {x},Zi = {z}
1− pd Xi = {x},Zi = ∅

1 Xi = ∅,Zi = ∅
0 otherwise

(3.21)

where Zy represents both measurements from targets in Y and clutter, and t(Zi|Xi) is
the likelihood for a set with zero or one measurement elements without clutter.
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Figure 3.4 – The birth strategy of our approach.
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At last, we still need to initialize the birth density because the Poisson density requires
prior knowledge of the birth target location. Usually, all measurements that fail to asso-
ciate with the current tracks will be considered birth objects. However, in our framework,
the detection is from two sensors. And the detection from the event data can be very
noisy. So we adopt the adaptive birth intensity strategy by using the confidence indicator
in the measurement. Only the measurement that has a positive confidence indicator can
be seen as a birth target. The strategy is shown in figure (3.4). For those measurements
that fail to be associated with current tracks, only the one that has a positive confidence
indicator can be used as a birth target.

3.3 Experiments

The evaluation contains two parts: detection and tracking. We first test our clustering
algorithm on the MOT Challenge15 (MOT15) dataset [29]. We convert the dataset into
the event-based camera version using the event camera simulator [58]. Then, we compare
our algorithm with the traditional clustering algorithms and the state-of-the-art methods
on three event-based camera datasets. The tracking performance is also evaluated on the
converted MOT Challenge15 (MOT15) dataset and compared with the approach that
only relies on the frame-based camera. At last, we test the approach with our experiment
vehicle and DAVIS346 camera to examine the feasibility of our approach in the real
environments.

3.3.1 Detection Rate

For the clustering algorithm, the detection rate is used to evaluate the detection per-
formance [65]. We first test our approach with the converted MOT15 dataset. Then we
test our approach with three challenging event-based camera datasets: EED [43], MOD
[60], EV-IMO [44], where EED is a real dataset in extreme light conditions; MOD is a
synthetic dataset designed for training the neural network of object detection; EV-IMO
is a real dataset focusing on the fast camera motion and rich texture surface.

The quantitative results are shown in table (3.1). The k-means and DBSCAN represent
the two cluster algorithms that use the position information only. DAViS Flow + k-means
represents the k-means algorithm that uses optical flow and position information. For the
three challenging event-based camera datasets, the results show that our approach has a
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(a) Miss Detection of frame image

(b) Detection of event data

(c) Detection of the dense pedestrians

Figure 3.5 – Detection evaluation based on the event data.

better performance than the other clustering algorithms. Compare to the [43], [65], our
approach has similar performance. But our approach requires fewer accumulated events
and is naturally synchronized with the frame image. So, our detection method is more
suitable for hybridizing the event camera and the frame camera. Our approach’s perfor-
mance in extreme light scenarios (EED) and the MOT15 is good. But for the scenario
that is full of texture and has fast camera motion (MOD, EV-IMO), our approach still
needs to be improved. The performance is unsatisfactory under two circumstances: 1. fast
self-motion of the event-based camera. 2. the object has no visible movement relative to
the camera. The qualitative results are shown in Figure (3.5). The potential solution is
to calculate the global motion of the camera using the IMU data and filter out the event
point caused by self-motion. Figure (3.5) (a) is the detection of the frame image and de-
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Table 3.1 – Comparison of the Detection Rate

Methods Detection rate ↑ for dataset (%)
MOT15 EED MOD EV-IMO

k-means 64.34 61.46 36.83 42.59
DBSCAN 79.78 80.91 40.15 45.37

DAViS Flow + k-means 74.05 85.49 46.83 55.73
Mitrokhin et al. [43] - 88.93 70.12 48.79
Stoffregen et al. [65] - 93.17 - -

Ours 80.15 92.32 64.36 48.82

tection is shown in blue bounding boxes. Figure (3.5) (b) is the clustering results of our
approach. The clusters are represented in different colors and the yellow points are those
event data that belong to the background. The results show that when the detection from
frame camera is missing, the event data can provide backup detection.

3.3.2 Multi-object Tracking Performance

For the object tracking evaluation, we compare our approach with the PMBM filter
that only uses the detection of frame images. We use the Higher Order Tracking Ac-
curacy (HOTA) metric described in [38]. This metric balances the effect of performing
accurate detection, localization, and association into a single unified metric: HOTA. The
quantitative results of our approach are shown in the table (3.2). The results show that
our approach has better overall performance then tracking with frame camera only. But
the association accuracy (AssA) and detection recall (DetRe) of our approach is slightly
worse, because the event camera increases the noise of the detection.

Table 3.2 – Comparison of Object tracking results

Methods HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
Our approach 31.21 48.54 20.39 64.82 54.63 21.92 73.45 75.40

frame image only 28.96 41.72 20.57 48.49 60.22 21.44 72.98 74.90

The evaluation we have performed, is based on the event camera simulator, all the data
is synthetic by doing interpolation between two frame images. Their spatial resolution is
different from the real event camera. In order to examine that our approach is also feasible
with the real event camera and vehicle, we test it on our experiment vehicle. Figure (3.6)
is the tracking results of a simple scenario: the experiment vehicle is moving forwards
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(a) Track visualization of our approach

(b) Autonomous vehicle (c) Our approach (d) Without event camera

Figure 3.6 – Visualization of our tracking approach. (a) is the visualization of the esti-
mation and ground truth tracks for KITTI-17, the red point is the estimated trajectory,
and the blue star is the ground truth. (b)-(d) Visualization of our tracking approach in
the real environment. The person is running from right to left in front of the vehicle, the
tracking with frame camera is in blue and the track of our approach is red.

slowly while a pedestrian is running across the road. The camera we use is the DAVIS346.
Figure (3.6) (c) is the track of the person based on our approach, figure (3.6) (d) is the
track based on the PMBM filter and frame camera. When the pedestrian passes the trash
bin, the object is lost due to the interfere of the trash bin. But our approach fixes this
problem with the detection from the event-based camera.

3.4 Discussion

In this chapter, we presented a novel approach that realizes object tracking based on
a hybrid of event camera and frame camera. This approach is the first framework that
tracks the object using the hybrid of the event camera and frame camera. The approach
exploits the temporal information by calculating the optical flow with the event data and
generating clusters according to their position, location, and optical flow. Then the clus-
ters are combined with detection from the frame image and fed into the PMBM filter. Our

73



Part , Chapter 3 – Model-based Object Detection and Tracking with a fusion of Event-based
Camera and Frame-based Camera

approach utilizes the advantages of the event camera to achieve better tracking perfor-
mance by providing complementary detection for the frame camera. Because a clustering
algorithm is adopted, our method has limitations in the crowded object and rich texture
background environment. In the future, improving the object detection algorithm for the
event camera under rich texture and crowded environment is a perspective direction. We
will also need to record datasets for the scenario with motion blur and extreme light con-
ditions where the frame camera fails, so we can develop a more robust detection algorithm
with the datasets.

As shown in our approach, the modeling process is complicated, and the whole frame-
work is computationally inefficient; the performance still needs to be improved. So, in
the next chapter, we will present a deep-learning-based approach that can realize object
detection and sensor fusion in one model and reduce the system’s complexity.
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Chapter 4

DEEP LEARNING-BASED MOVING

OBJECT DETECTION

4.1 Introduction

As discussed in the previous chapter, the model-based approach could be complex and
inefficient. So we proposed a deep-learning-based approach to improving the performance
of our framework. And since the event cameras can provide rich temporal information
(motion information), we modified our task to moving object detection, which is more
complex but essential to the autonomous driving system.

An Autonomous Vehicle (AV) needs an accurate perception of its surrounding envi-
ronment to work reliably and safely. Its perception system should transform raw sensory
data such as image pixels into semantic information for scene understanding [2]. For an
autonomous vehicle, it is required to fully estimate the motion model of each of the sur-
rounding participants and to plan the ego-trajectories based on their future states to
reduce collision risks. There are two main classes of motion in a typical autonomous driv-
ing scene: The surrounding moving objects and the scene motion generated by the ego
vehicle. Due to the ego vehicle’s motion and constraints related to the image formation,
it is very challenging to classify the surrounding objects as moving or static because even
static objects will be perceived as moving. Motion segmentation implies that the two tasks
have to be performed jointly. The first focuses on object segmentation, in which objects
of specific interesting classes are highlighted, such as pedestrians or vehicles. The second
focuses on motion classification, in which a classifier predicts whether the observed object
is moving or static.

For the segmentation task, the frame camera can achieve good performance with the
appearance information of the frame images. However, the frame images are not enough for
the motion classification task. Although we can use two consecutive images to simulate
the motion information, but they are not accurate enough for the complicated motion
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classification task. The event camera cannot provide appearance information but can
produce precise timestamps that contain rich motion information. So the frame camera
and event camera are good complementary for the motion segmentation task.

4.1.1 Related work

Because the event-based cameras can produce large numbers of events, especially when
the camera is moving, identifying the events produced by objects of interest in the general
event stream is difficult. For autonomous vehicles, the important events are those produced
by moving traffic participants and not those produced by the self-motion of the vehicle.
In this case, motion segmentation of event data is required.

[21] proposed a method to detect and track circular objects (such as a ball) in the
presence of clutter caused by camera self-motion. This work used an adapted directed
Hough transform, where each incoming event contributes to values in Hough space on
possible radii of a target circle. To reduce the complexity of the task and to improve the
robustness, a directed Hough transform is proposed with the estimated optical flow. The
assumption is that most events are generated at the circumference of a circular object,
such as a ball. [22] extend this work using a particle filter, and improve the robustness of
the tracking. A drawback of these methods is that they require a priori knowledge of the
target shape.

[76] proposed a method that detects corners in the event stream from an event camera
mounted on a robot. The method consists of two stages: the prior learning stage and the
operation stage. In the prior learning stage, they learn to estimate the corner’s motion as
a function of the robot joint velocities in a static scene. In the operation stage, corners are
detected and clustered in the event stream; if there is a discrepancy between these corners’
motions and the expected motions, those events are segmented out. While able to detect
more universal objects, this method depends on the pre-learned setting and configuration
and only works for scenes and objects with corners.

[43] proposed a method that estimates the camera’s motion with focus optimization
and considers it the dominant motion. The average timestamp of the motion-compensated
event image is then computed, and outliers from the dominant motion can be detected.
These outliers are assumed to be independently moving objects, and the resulting seg-
mentation is applied to surrounding events by using flood-fill in the event image. The
disadvantage is that segmentation in densely textured environments and crowded moving
objects fails.
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[65] proposed an improved method by providing a segmentation framework for arbi-
trary motion models and numbers of moving objects. This method uses focus optimization
on multiple motion models at the same time; a probabilistic model is used for each event
belonging to each model. The motion parameters and the event probabilities are then
updated iteratively in an Expectation Maximisation (EM) approach.

For the sensor fusion, former works mainly focused on the fusion between LiDAR and
the frame-based camera. [39] proposed an algorithm for 3D semantic segmentation using
LiDAR and camera. [56] proposed a semantic segmentation algorithm using fusion between
images and optical flow. In [55], a Convolutional Neural Network (CNN) architecture is
proposed for Moving Object Detection under low-light conditions by capturing motion
information from both camera and LiDAR sensors. It also presented the KittiMoSeg
dataset, which provides the moving object mask for the KITTI sequence.

4.1.2 Contributions

The main contribution of this chapter is to propose a novel Deep Neural Network ar-
chitecture for moving objects detection. This approach realized moving object detection
and sensor fusion in one model, reducing the complex modeling process and increasing the
computation efficiency. As mentioned previously, traditional frame-based cameras cannot
provide temporal information, and the event-based cameras lack appearance information
and spatial consistency. The two features are both important for moving object detection.
We address this problem by proposing a fusion network model that can use the informa-
tion from the two sensors simultaneously and achieve better performances. We train and
evaluate the proposed EV-FuseMODNet network using the extended KittiMoSeg dataset
[55]. The results show that the proposed approach outperforms current state-of-the-art
methods, by achieving 27.5% improvement compared to the FuseMODNet[55], and 36.7%
compared to the MODNet[64], this work has been submitted in IEEE Intelligent Vehicles
Symposium 2023.

4.2 Proposed Approach

In this section, we first explain the proposed network structure, including three feature
encoders, the fusion structure, and the decoder. We will also discuss our encoding method
for the event data because they are asynchronous and cannot be directly fed into the
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Event data encoder

RGB flow module

Fusion

Frame images t and t+1

encoder-conv3d

encoder-conv2d

decoder-conv2d

concatenation

Motion segmentation

Figure 4.1 – Network structure of the ev-FuseMODNet
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neural network.

4.2.1 Network structure

The overall architecture of the proposed EV-FuseMODNet, is shown in Figure (4.1).
It contains three main parts: frame-based optical flow, frame-based image processing, and
event data processing.

For the frame-based optical flow, we directly adopt the RAFT [75] model since it
achieves the state of the art performance and high efficiency in inference time. A 2D-
encoder is then used after the optical flow estimation to extract features for the fusion
step, shown as the RGB flow module in figure 4.1. This module is designed to provide
precise motion information to the model, and only the 2D-encoder will be trained during
the training process. The details about the 2D-encoder are shown in the figure (4.2). Green
rectangle denote the 2D convolutional block, where [2DConv,a,b,c,(d1, d2), e] denotes a 2D
convolutional layer with the kernel size a, stride b, output channel c, padding size (d1, d2)
and normalization layer e (BN is Batch Normalization). Blue rectangle is the ResBlock,
and its structure is shown in figure (4.3). The brown rectangle means ReLU activation
function.

For the frame image processing, we also use a 2D-encoder structure to extract the
features as shown at the top of figure (4.1). This 2D-encoder has the same design as the 2D-
encoder used for the RGB flow estimation, as shown in the figure (4.2). Two consecutive
images will be sent into the encoder so it can provide the appearance and general motion
features. Note that this encoder is pretrained with the cityscape segmentation dataset.

We adopt the 3D-encoder (as shown in 2.3) [69] for event data processing. This choice is
linked to the fact that it can better preserve the spatial-temporal information of the event
data compared to the 2D-encoder. The details of the 3D-encoder are shown in figure (4.4).
Red rectangle denotes the 3D convolutional modules, where [3DConv,a,b,c,(d1, d2, d3), e]
denotes a 2D convolutional layer with the kernel size a, stride b, output channel c, padding
size (d1, d2, d3) and normalization layer e. The green and blue rectangles represent the 2D
convolutional block and ResBlock, respectively. Since the event data is asynchronous and
cannot be used in the network directly, an encoding method is also required here. Given
a set of N input events EN = (xi, yi, ti, pi), i ∈ [1, N ], and a time depth D to discretize
the time dimension of event data, we accumulate each group of event data into images as
defined in Eq. (2.28).

Here, (x, y) denotes the position of the event, p is the polarity of the event, and δ
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2DConv, 7, 1, 64, (3,3), BN

2DConv, 3, 2, 64, (1,1), BN

2DConv, 3, 2, 128, (1,1), BN

2DConv, 3, 2, 128, (1,1), BN

ResBlock-64

ResBlock-64

ResBlock-128

ResBlock-128

Figure 4.2 – The details of the 2D-encoder for frame image processing and RGB flow
processing

2DConv, 3, 1, n, (1,1), BN 

2DConv, 3, 1, n, (1,1), BN 

Figure 4.3 – The details of the ResBlock
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3DConv, 3, 2, 64, (2,1,1), BN

3DConv, 3, 2, 128, (2,1,1), BN

3DConv, 3, 2, 256, (0,1,1), BN

2DConv, 3, 2, 512, (0,0), BN

ResBlock-512

Figure 4.4 – The details of the 3D-encoder for the event data processing

Time

Positive Events

Negative Events

t t+1

Figure 4.5 – Visualization of our event encoding representation.

is the Kronecker delta operator. kb(·) denotes bi-linear sampling kernel. The generated
event image I is a (2, D,H,W ) tensor, where the number 2 represents the positive and
negative polarity, D is the discretized time depth, and (H,W ) are respectively the height
and width of the image. Fig. 4.5 is an example of the event data representation where
D = 4.

4.2.2 The fusion architecture

The fusion architecture of the EV-FuseMODNet is shown in figure (4.6). A mid fu-
sion strategy is adopted in our model. Mid-Fusion represents feature-level-fusion where
features are extracted from each input separately using an encoder that is exclusive
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fuse

fuse

fuse

fuse

Frame images

Event data

rgbFlow

Motion segmentation

encoder-conv3d

encoder-conv2d

decoder-conv2d

concatenation

Figure 4.6 – Fusion details of the ev-FuseMODNet

to each input. The fusion is done by concatenating feature maps generated from each
stream before feeding them into the decoder. The details about the decoder is shown
in the figure (4.7). Orange rectangle denote the transpose 2D convolutional block, where
[2DConvT,a,b,c,(d1, d2), e] denotes a 2D transpose convolutional layer with the kernel size
a, stride b, output channel c, padding size (d1, d2) and normalization layer e. The green
and blue rectangles are 2D convolutional block and ResBlock, respectively. There is a
skip connection from each encoder to the corresponding decoder. For the skip connection
between 2D-encoder and the decoder, the activation of the encoder is directly concate-
nated with the activation of the decoder. For the skip connection of the 3D-encoder for
the event data processing, the 3D activation (C × D ×W × H) is flattened into a 2D
tensor ((C ·D)×W ×H) first, then it is concatenated with the activation of the decoder.
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2DConvT, 3, 2, 128, (1,1), BN 

2DConvT, 3, 2, 128, (1,1), BN 

2DConvT, 3, 2, 128, (1,1), BN 

2DConv, 1, 1, 64, (0,0), BN 

2DConv, 1, 1, 64, (0,0), BN 

2DConv, 3, 2, 1, (0,0), BN 

Flow estimation

ResBlock-128

ResBlock-128

ResBlock-128

Figure 4.7 – The details of the dencoder of the ev-FuseMODNet
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4.3 Experiments

4.3.1 Dataset and Implementation Details

We trained all proposed models end-to-end with weighted binary cross-entropy loss for
100 epochs and batch size of 8. The Adam optimizer is used with a learning rate of 1e-5
and a weight decay rate of 5e-4. We evaluate our methods with the extended KittiMoSeg
dataset. The extended KittiMoSeg provides the motion mask for the raw KITTI sequence
and contains 12919 images.

Our work is to develop a complete system for moving object detection that can work
under poor illumination conditions. For that purpose, we must evaluate our approach
with challenging low-illumination scenes where frame cameras would fail. As far as we
know, there exists no dataset providing low-illumination or night scenes in addition to
the information needed for the moving object detection task. So the night images are
generated using the Image-toImage translation technique [36]. The generated dark image
is used to simulated the nighttime as shown in figure (4.8).

4.3.2 Results

Table (4.1) shows the results of the Intersection-over-Union (IoU) for the moving ob-
jects in comparison to previous moving object detection approaches [55], [64]. The results
show that our approach shows a 22.7% improvement in the daytime KITTI sequence
and a 31.2% improvement in the generated nighttime KITTI sequence. We attribute the
improvement to the fusion with event data. Compared to the LiDAR, the event-based
camera is a better complementary to the frame-based camera for the moving object de-
tection task. The frame-based camera transmits images at a fixed rate. So it provides
the appearance information but no motion knowledge. On the opposite, the event-based
camera monitors the brightness change of each pixel and provides the precise timestamp
value of each event data. So it lacks appearance information but can give more precise
motion features. Also, the improvement in the Dark-KITTI sequence also proves that the
event-based camera can improve the robustness of the model in a bad light environment.

Figure (4.8) is the qualitative result of our approach. Results show the benefit of fusion,
where the network was able to segment the moving objects in both daytime and nighttime
scenes. Note that the ground truth mask is imperfect because it misses the left vehicle.
According to the rendering image, our approach performs better since it recognizes the left-
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4.3. Experiments

(a) Ground truth of the motion mask (b) Accumulated event visualization

(c) Predicted motion mask in the nighttime (d) Rendering nighttime image

(e) Predicted motion mask in the daytime (f) Rendering daytime image

(g) rgbFlow of the daytime image (h) rgbFlow of the nighttime image

Figure 4.8 – Qualitative result of the ev-FuseMODNet
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Table 4.1 – Quantitative assessment of our approach compared to the state-of-the-art
methods

Methods Moving IoU
KITTI

RGB-only 32.7
RGB+rgbFlow[64] 49.36
RGB+LidarFlow 41.64

RGB+rgbFlow+LidarFlow[55] 51.46
Ours-RGB+rgbFlow+Events 63.16

Dark-KITTI
RGB-only 26.5

RGB+rgbFlow[64] 39.5
RGB+LidarFlow 38.5

RGB+rgbFlow+LidarFlow[55] 43.5
Ours-RGB+rgbFlow+Events 57.51

moving vehicle. However, the performance of our model in the nighttime is downgraded;
Fig. 4.8 (c) shows that there is noise around the left vehicles, and the shape of the middle
vehicle is not satisfactory. This is because the quality of the frame images downgrades
under the low-illumination environment.

Figure (4.9) shows an example of failure of the ev-FuseMODNet. In this sample, the
ego vehicle is moving forward, and the target moving objects are two opposite-direction
cars and one same-direction car. In the daytime, our approach can provide an accurate
estimation of moving objects because the frame camera provides enough appearance fea-
tures to the model. However, during the nighttime, the prediction for the left car is not
satisfying. Their two main reasons: the left car is the most dark area of the RGB image,
which makes the frame camera completely fails. Also, the left car is moving beside the
trees and grass. This creates a textured background and downgrades the performance of
the event camera. we can verify this from the accumulated event visualization, the left
car is almost invisible because of the noise background, but the contour of the rest car is
still clear.
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(a) Ground truth of the motion mask (b) Accumulated event visualization

(c) Predicted motion mask in the nighttime (d) Rendering nighttime image

(e) Predicted motion mask in the daytime (f) Rendering daytime image

Figure 4.9 – Failure case of the ev-FuseMODNet
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4.4 Conclusions

In this chapter, we propose EV-FuseMODNet, a deep fusion neural network for moving
object detection, using a fusion of the frame-based camera and event-based camera data.
This architecture fuses appearance features and motion information that is captured from
both frame-based cameras and event-based cameras. The results show that our approach
can generate more accurate (27.5%-36.7%) moving object segmentation due to the fusion
of the event-based camera. However, the performance of this moving object detection
model still needs to be improved, so a more efficient and robust model is still needed.

In the future, adding more sensors (e.g. LiDAR) to the fusion model is a perspective
direction; better fusion architecture is also required since more sensors will increase the
computation time.
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CONCLUSION

Event-based cameras are a novel, bio-inspired type of visual sensor. Their generated
data shifted from synchronous, conventional absolute intensity images to asynchronous
update, low-latency events. By reporting only relative changes in brightness, event-based
cameras have several advantages compared to frame-based cameras: low latency (times-
tamped with a 1MHz clock), low power usage (on the order of mW), and high dynamic
range ( ≈ 140 dB). Event data are reported in the format of a tuple, consisting of position
(x, y), the polarity of brightness change p, and time t, which provides each event with a
fine-grained timestamp. Due to their working principle, event-based cameras emit sam-
ples at precisely the time of change of brightness, limited only by the Contrast Threshold
(the brightness change threshold required to trigger an event) and refractory period (the
period after firing during which a pixel can not emits a new event).

Because event-based cameras respond only to the dynamics of the scene, they are a
natural fit for algorithms that describe motion, such as optical flow estimation, object
tracking, or motion segmentation. However, because event-based cameras do not encode
spatial patterns and relationships in the intuitive way that frame-based cameras do, many
of the methods that are used in frame-based vision cannot be directly applied to event-
based vision. Also, because the event data do not provide the appearance information,
fusing it with the frame cameras is better to achieve more robust performance. This thesis
first tries to solve this problem by proposing a model-based object-tracking framework
that includes optical flow calculation, object detection, sensor fusion, and object tracking.
Every module of the model-based framework is independent, so the whole framework is
large and computationally inefficient. So, deep learning-based approaches are proposed
for optical flow estimation, sensor fusion, and motion segmentation.

Chapter 1 presents the optical flow estimation with the event data. We discuss this
first because this is the basis for the signal processing of event cameras. We introduced the
model-based optical flow that we used in our model-based object detection and tracking
framework. We also proposed a deep learning-based optical flow estimation model, which
uses 3D convolution to preserve the temporal information of the event data and achieve
better performance. Key contributions of this work are:
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(i) a 3D deep learning-based encoder for the event data;
(ii) an optical flow estimation model for event cameras. We showed that this approach

performed better than previous Lucas-Kanade [37] based methods [59] and deep learning-
based methods [31], [92].

Chapter 2 presents an object detection and tracking framework with a fusion of the
event camera and frame camera. This framework contains five modules: Object detection
algorithm for the frame images, optical flow estimation with the event data, object de-
tection using the optical flow and event data, detection fusion, and object tracking. In
this framework, the event-based camera provides clusters with the optical flow as detec-
tion; the frame camera provides the bounding box as the detection. The two types of
detections are fused according to their intersection over union (IoU). The random finite
set theory-based-PMBM filter is used for object tracking. Key contributions of this work
were:

(i) an object detection algorithm for the event cameras;
(ii) a fusion strategy for the event-based and frame-based camera;
(iii) a framework that realizes object tracking with a fusion of event-based and frame-

based camera.
Chapter 3 presents a deep learning-based sensor fusion and moving object detection

approach. In this work, we integrated sensor fusion and moving object detection in an
end-to-end approach. This approach uses precise temporal information from the event
data and rich appearance information from the frame images to achieve better perfor-
mance compared to the state-of-the-art methods. Key contributions of this work are: (i) a
moving object detection algorithm for the event cameras; (ii) a deep learning-based fusion
strategy for the event camera and frame camera; (iii) the investigation of the advantage
of the event-based camera about the high dynamic range using the generated dark KITTI
sequence.

This research has achieved good results for optical flow estimation and motion seg-
mentation from event-based cameras. Still, we see future works for additional research.
For the model-based object detection and tracking framework, two significant challenges
remain to be solved.

The first one is the model-based object detection algorithm. The current clustering
algorithm cannot perform well under a texture environment, especially when the self-
motion is fast. Also, the clustering algorithm will detect all objects, whether moving
or static. The potential way is to introduce the IMU information and distinguish the
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event data between the foreground and background before the clustering algorithm. The
foreground represents the segmentation caused by the moving object, and the background
is caused by the self-motion. By introducing the IMU information, we could obtain the
self-motion data and remove all the event data that is irrelevant to the moving object.

The second challenge is the fusion strategy; the current matching strategy only de-
pends on the Intersection over Union (IoU). This means that we only use the location
information for the fusion, which is insufficient. One promising way is to use the feature
point descriptors, such as Scale-invariant feature transform (SIFT) and Features from
accelerated segment test (FAST). Both descriptors have their event version, so it is possi-
ble to develop the relationship between the event-based descriptors and the frame-based
descriptors.

The third challenge is the deep-learning-based fusion and moving object detection
approach. The dataset we are using is designed for the frame-based cameras and Lidar.
We used the event camera simulator to generate the data, but it could be better to record
the data with the event camera. The challenging scenarios, such as extreme illumination
environment and fast motion, should be considered when preparing the dataset. Although
powerful results can be achieved using traditional neural networks by processing events in
batches, this methodology can introduce unwanted additional latency. We believe that an
exciting new research direction could be asynchronous Spiking Neural Networks (SNNs),
which is a natural fit with the event data.

Our research shows that event data contains rich temporal information that can pro-
duce high-quality optic flow and motion segmentation when combined with frame cam-
eras. This work positions event-based cameras as a valuable tool in mobile robotics, from
autonomous vehicles to drones. With the recent advancements in computer vision, deep
learning, and robotics capabilities, this is an exciting time to explore the possibilities of
this new frontier of computer vision. This thesis serves as an important foundation for
future research on sensor fusion and motion segmentation.
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Titre :  Détection et suivi d’objets en mouvement à l’aide d’une vision hybride basée sur les 
événements et sur les images pour la conduite autonome  

Mots clés :  Caméra basée sur les événements, flux optique, détection d’objets en mouvement, 
suivi d’objets 

Résumé :  La caméra basée sur les 
événements est un capteur bioinspiré qui diffère 
des caméras à images conventionnelles : Au 
lieu de saisir des images à une fréquence fixe, 
elles surveillent de manière asynchrone les 
changements de luminosité par pixel et 
produisent un flux de données d'événements 
contenant l'heure, le lieu et le signe des 
changements de luminosité. Les caméras 
événementielles offrent des propriétés 
intéressantes par rapport aux caméras 
traditionnelles : haute résolution temporelle, 
gamme dynamique élevée et faible 
consommation d'énergie.  Par conséquent, les 
caméras événementielles ont un énorme 
potentiel pour la vision par ordinateur dans des 

scénarios difficiles pour les caméras 
traditionnelles, tels que le mouvement rapide et 
la gamme dynamique élevée. Cette thèse a 
étudié la détection et le suivi d'objets avec la 
caméra événementielle en se basant sur un 
modèle et sur l'apprentissage profond. La 
stratégie de fuison avec la caméra d'image est 
proposée puisque la caméra d'image est 
également nécessaire pour fournir des 
informations sur l'apparence. Les algorithmes 
de perception proposés comprennent le flux 
optique, la détection d'objets et la segmentation 
du mouvement. Des tests et des analyses ont 
été effectués pour prouver la faisabilité et la 
fiabilité des algorithmes de perception 
proposés. 
 

 

Title : Moving Objects Detection and Tracking using Hybrid Event-based and Frame-based Vision 
for Autonomous Driving  

Keywords : Event-based camera, optical flow, moving object detection, object tracking 

Abstract : The event-based camera is a bio-
inspired sensor that differs from conventional 
frame cameras: Instead of grabbing frame 
images at a fixed rate, they asynchronously 
monitor per-pixel brightness change and output 
a stream of events data that contains the time, 
location and sign of the brightness changes. 
Event cameras offer attractive properties 
compared to traditional cameras: high temporal 
resolution, high dynamic range, and low power 
consumption. Therefore, event cameras have an 
enormous potential for computer vision in 
challenging scenarios for traditional frame 
cameras, such as fast motion, and high dynamic 
range.  

This thesis investigated the model-based and 
deep-learning-based for object detection and 
tracking with the event camera. The fusion 
strategy with the frame camera is proposed 
since the frame camera is also needed to 
provides appearance infomation. The proposed 
perception algorithms include optical flow, 
object detection and motion segmentation. 
Tests and analyses have been conducted to 
prove the feasibility and reliability of the 
proposed perception algorithms. 
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